
Operating System
DCAP403

OPERATING SYSTEM

Copyright © 2011 Anindita Hazra
All rights reserved

Produced & Printed by
EXCEL BOOKS PRIVATE LIMITED

A-45, Naraina, Phase-I,
New Delhi-110028

for
Lovely Professional University

Phagwara

SYLLABUS

Operating System
Objectives: In order to meet the ever increasing need of computers, study of operating system is compulsory. This is core
technology subject and the knowledge of which is absolutely essential for Computer Engineers. It familiarizes the students with
the concepts and functions of operating system. This subject provides knowledge to develop systems using advanced operating
system concepts.

z To learn the evolution of Operating systems.

z To study the operations performed by Operating System as a resource manager.

z To study computer security issues and Operating System tools.

1. Introduction: Operating system Meaning, Supervisor & User mode, operating system operations & Functions, Types of
OS: Single-processor system, multiprogramming, Multiprocessing, Multitasking, Parallel, Distributed, RTOS etc.

2. Operating System Structure: OS Services, System Calls, System Programs, OS Structures, layered structure Virtual
machines,

3. Processes: Process Concept, PCB, Operation on Processes, Cooperating Processes, Inter process Communication,
Process Communication in Client Server Environment.
Threads: Concept of Thread, Kernel level & User level threads, Multithreading, Thread Libraries, Threading Issues

4. Scheduling: scheduling criteria, scheduling algorithms, Type of Scheduling: Long term, Short term & Medium term
scheduling, multi-processor scheduling algorithm, thread scheduling,

5. Process Synchronization: Critical Section problem, semaphores, monitors, Deadlock characterization, Handling of
deadlocks - deadlock prevention, avoidance, detection, recovery from deadlock.

6. Memory Management: Logical & Physical Address space, Swapping, Contiguous memory allocation, paging,
segmentation, Virtual memory, demand paging, Page replacement & Page Allocation algorithms, thrashing,
Performance issues

7. File Management: File concepts, access methods, directory structure, fi le system mounting, fi le sharing, protection,
Allocation methods, Free space Mgt., Directory Implementation.

8. I/O & Secondary Storage Structure: I/O H/W, Application I/O Interface, Kernel I/O subsystem, Disk Scheduling, disk
management, swap-space management, RAID structure.

9. System Protection: Goals of protection, Access matrix and its implementation, Access control and revocation of access
rights, capability-based systems

10. System Security: Security problem, program threats, system and network threats, cryptography as a security tools, user
authentication, implementing security defenses, fi rewalling to protect systems and networks.
Case studies Windows OS, Linux or any other OS

CONTENTS

Unit 1: Introduction to Operating System 1

Unit 2: Operation and Function of Operating System 14

Unit 3: Operating System Structure 29

Unit 4: Process Management 48

Unit 5: Scheduling 70

Unit 6: Process Synchronization 96

Unit 7: Memory Management 119

Unit 8: File Management 139

Unit 9: I/O & Secondary Storage Structure 159

Unit 10: System Protection 182

Unit 11: System Security 200

Unit 12: Security Solution 225

Unit 13: Case Study: Linux 241

Unit 14: Windows 2000 300

Unit 1: Introduction to Operating System

Notes

 LOVELY PROFESSIONAL UNIVERSITY 1

Unit 1: Introduction to Operating System

CONTENTS

Objectives

Introduction

1.1 Operating System: Meaning

1.2 History of Computer Operating Systems

1.3 Supervisor and User Mode

1.4 Goals of an Operating System

1.5 Generations of Operating Systems

 1.5.1 0th Generation

 1.5.2 First Generation (1951-1956)

 1.5.3 Second Generation (1956-1964)

 1.5.4 Third Generation (1964-1979)

 1.5.5 Fourth Generation (1979 – Present)

1.6 Summary

1.7 Keywords

1.8 Self Assessment

1.9 Review Questions

1.10 Further Readings

Objectives

After studying this unit, you will be able to:

z Defi ne operating system

z Know supervisor and user mode

z Explain various goals of an operating system

z Describe generation of operating systems

Introduction

An Operating System (OS) is a collection of programs that acts as an interface between a user
of a computer and the computer hardware. The purpose of an operating system is to provide
an environment in which a user may execute the programs. Operating Systems are viewed as
resource managers. The main resource is the computer hardware in the form of processors,
storage, input/output devices, communication devices, and data. Some of the operating system
functions are: implementing the user interface, sharing hardware among users, allowing users
to share data among themselves, preventing users from interfering with one another, scheduling
resources among users, facilitating input/output, recovering from errors, accounting for resource
usage, facilitating parallel operations, organising data for secure and rapid access, and handling
network communications.

Operating System

Notes

2 LOVELY PROFESSIONAL UNIVERSITY

1.1 Operating System: Meaning

An operating system (sometimes abbreviated as “OS”) is the program that, after being initially
loaded into the computer by a boot program, manages all the other programs in a computer.
The other programs are called applications or application programs. The application programs
make use of the operating system by making requests for services through a defi ned Application
Program Interface (API). In addition, users can interact directly with the operating system
through a user interface such as a command language or a Graphical User Interface (GUI).

Computer
Operating SystemMouse

Keyboard

Sound Card
Speakers

MonitorVideo Card

Hard Drive

Figure 1.1: Operating System Interface

In a computer system, you fi nd four main components: the hardware, the operating system,
the application software and the users. In a computer system, the hardware provides the basic
computing resources. The applications programs defi ne the way in which these resources are
used to solve the computing problems of the users. The operating system controls and coordinates
the use of the hardware among the various systems programs and application programs for the
various users.

You can view an operating system as a resource allocator. A computer system has many resources
(hardware and software) that may be required to solve a problem: CPU time, memory space,
fi les storage space, input/output devices etc. The operating system acts as the manager of these
resources and allocates them to specifi c programs and users as necessary for their tasks. Since
there may be many, possibly confl icting, requests for resources, the operating system must decide
which requests are allocated resources to operate the computer system fairly and effi ciently.

An operating system is a control program. This program controls the execution of user programs
to prevent errors and improper use of the computer. Operating systems exist because: they are
a reasonable way to solve the problem of creating a usable computing system. The fundamental
goal of a computer system is to execute user programs and solve user problems.

While there is no universally agreed upon defi nition of the concept of an operating system, the
following is a reasonable starting point:

A computer’s operating system is a group of programs designed to serve two basic purposes:

1. To control the allocation and use of the computing system’s resources among the various
users and tasks, and

2. To provide an interface between the computer hardware and the programmer that simplifi es
and makes feasible the creation, coding, debugging, and maintenance of application
programs.

Unit 1: Introduction to Operating System

Notes

 LOVELY PROFESSIONAL UNIVERSITY 3

An effective operating system should accomplish the following functions:

1. Should act as a command interpreter by providing a user friendly environment.

2. Should facilitate communication with other users.

3. Facilitate the directory/fi le creation along with the security option.

4. Provide routines that handle the intricate details of I/O programming.

5. Provide access to compilers to translate programs from high-level languages to machine
language.

6. Provide a loader program to move the compiled program code to the computer’s memory
for execution.

7. Assure that when there are several active processes in the computer, each will get fair and
non-interfering access to the central processing unit for execution.

8. Take care of storage and device allocation.

9. Provide for long term storage of user information in the form of fi les.

10. Permit system resources to be shared among users when appropriate, and be protected
from unauthorised or mischievous intervention as necessary.

User 1 User 2 User 3 User n

Compiler Assembler Text editor Database
system

Application programs

Operating System

Computer hardware

Figure 1.2: Abstract View of the Components of a Computer System

Though systems programs such as editors and translators and the various utility programs (such
as sort and fi le transfer program) are not usually considered part of the operating system, the
operating system is responsible for providing access to these system resources.

The abstract view of the components of a computer system and the positioning of OS is shown
in the Figure 1.2.

Task “Operating system is a hardware or software”. Discuss.

1.2 History of Computer Operating Systems

Early computers lacked any form of operating system. The user had sole use of the machine and
would arrive armed with program and data, often on punched paper and tape. The program
would be loaded into the machine, and the machine would be set to work until the program
completed or crashed. Programs could generally be debugged via a front panel using switches
and lights. It is said that Alan Turing was a master of this on the early Manchester Mark I machine,

Operating System

Notes

4 LOVELY PROFESSIONAL UNIVERSITY

and he was already deriving the primitive conception of an operating system from the principles
of the Universal Turing machine.

Later machines came with libraries of support code, which would be linked to the user’s program
to assist in operations such as input and output. This was the genesis of the modern-day operating
system. However, machines still ran a single job at a time; at Cambridge University in England
the job queue was at one time a washing line from which tapes were hung with different colored
clothes-pegs to indicate job-priority.

As machines became more powerful, the time needed for a run of a program diminished and
the time to hand off the equipment became very large by comparison. Accounting for and
paying for machine usage moved on from checking the wall clock to automatic logging by the
computer. Run queues evolved from a literal queue of people at the door, to a heap of media on a
jobs-waiting table, or batches of punch-cards stacked one on top of the other in the reader, until
the machine itself was able to select and sequence which magnetic tape drives were online. Where
program developers had originally had access to run their own jobs on the machine, they were
supplanted by dedicated machine operators who looked after the well-being and maintenance
of the machine and were less and less concerned with implementing tasks manually. When
commercially available computer centers were faced with the implications of data lost through
tampering or operational errors, equipment vendors were put under pressure to enhance the
runtime libraries to prevent misuse of system resources. Automated monitoring was needed not
just for CPU usage but for counting pages printed, cards punched, cards read, disk storage used
and for signaling when operator intervention was required by jobs such as changing magnetic
tapes.

All these features were building up towards the repertoire of a fully capable operating system.
Eventually the runtime libraries became an amalgamated program that was started before the
fi rst customer job and could read in the customer job, control its execution, clean up after it,
record its usage, and immediately go on to process the next job. Signifi cantly, it became possible
for programmers to use symbolic program-code instead of having to hand-encode binary
images, once task-switching allowed a computer to perform translation of a program into binary
form before running it. These resident background programs, capable of managing multistep
processes, were often called monitors or monitor-programs before the term operating system
established itself.

An underlying program offering basic hardware-management, software-scheduling and
resource-monitoring may seem a remote ancestor to the user-oriented operating systems of
the personal computing era. But there has been a shift in meaning. With the era of commercial
computing, more and more “secondary” software was bundled in the operating system package,
leading eventually to the perception of an operating system as a complete user-system with
utilities, applications (such as text editors and fi le managers) and confi guration tools, and having
an integrated graphical user interface. The true descendant of the early operating systems is
what we now call the “kernel”. In technical and development circles the old restricted sense of an
operating system persists because of the continued active development of embedded operating
systems for all kinds of devices with a data-processing component, from hand-held gadgets up
to industrial robots and real-time control-systems, which do not run user-applications at the
front-end. An embedded operating system in a device today is not so far removed as one might
think from its ancestor of the 1950s.

1.3 Supervisor and User Mode

Single user mode is a mode in which a multiuser computer operating system boots into a single
superuser. It is mainly used for maintenance of multi-user environments such as network
servers. Some tasks may require exclusive access to shared resources, for example running fsck
on a network share. This mode may also be used for security purposes – network services are

Unit 1: Introduction to Operating System

Notes

 LOVELY PROFESSIONAL UNIVERSITY 5

not run, eliminating the possibility of outside interference. On some systems a lost superuser
password can be changed by switching to single user mode, but not asking for the password in
such circumstances is viewed as a security vulnerability.

You are all familiar with the concept of sitting down at a computer system and writing documents
or performing some task such as writing a letter. In this instance, there is one keyboard and one
monitor that you interact with.

Operating systems such as Windows 95, Windows NT Workstation and Windows 2000
professional are essentially single user operating systems. They provide you the capability to
perform tasks on the computer system such as writing programs and documents, printing and
accessing fi les.

Consider a typical home computer. There is a single keyboard and mouse that accept input
commands, and a single monitor to display information output. There may also be a printer for
the printing of documents and images.

In essence, a single-user operating system provides access to the computer system by a single
user at a time. If another user needs access to the computer system, they must wait till the current
user fi nishes what they are doing and leaves.

Students in computer labs at colleges or University often experience this. You might also have
experienced this at home, where you want to use the computer but someone else is currently
using it. You have to wait for them to fi nish before you can use the computer system.

1.4 Goals of an Operating System

The primary objective of a computer is to execute an instruction in an effi cient manner and to
increase the productivity of processing resources attached with the computer system such as
hardware resources, software resources and the users. In other words, you can say that maximum
CPU utilisation is the main objective, because it is the main device which is to be used for the
execution of the programs or instructions. Brief the goals as:

1. The primary goal of an operating system is to make the computer convenient to use.

2. The secondary goal is to use the hardware in an effi cient manner.

1.5 Generations of Operating Systems

Operating systems have been evolving over the years. you will briefl y look at this development
of the operating systems with respect to the evolution of the hardware/architecture of the
computer systems in this section. Since operating systems have historically been closely tied with
the architecture of the computers on which they run, you will look at successive generations of
computers to see what their operating systems were like. You may not exactly map the operating
systems generations to the generations of the computer, but roughly it provides the idea behind
them.

You can roughly divide them into fi ve distinct generations that are characterized by hardware
component technology, software development, and mode of delivery of computer services.

1.5.1 0th Generation

The term 0th generation is used to refer to the period of development of computing, which predated
the commercial production and sale of computer equipment. You consider that the period might
be way back when Charles Babbage invented the Analytical Engine. Afterwards the computers
by John Atanasoff in 1940; the Mark I, built by Howard Aiken and a group of IBM engineers
at Harvard in 1944; the ENIAC, designed and constructed at the University of Pencylvania by

Operating System

Notes

6 LOVELY PROFESSIONAL UNIVERSITY

Wallace Eckert and John Mauchly and the EDVAC, developed in 1944-46 by John Von Neumann,
Arthur Burks, and Herman Goldstine (which was the fi rst to fully implement the idea of the
stored program and serial execution of instructions) were designed. The development of EDVAC
set the stage for the evolution of commercial computing and operating system software. The
hardware component technology of this period was electronic vacuum tubes.

The actual operation of these early computers took place without the benefi t of an operating
system. Early programs were written in machine language and each contained code for initiating
operation of the computer itself.

The mode of operation was called “open-shop” and this meant that users signed up for computer
time and when a user’s time arrived, the entire (in those days quite large) computer system was
turned over to the user. The individual user (programmer) was responsible for all machine set
up and operation, and subsequent clean-up and preparation for the next user. This system was
clearly ineffi cient and dependent on the varying competencies of the individual programmer as
operators.

1.5.2 First Generation (1951-1956)

The fi rst generation marked the beginning of commercial computing, including the introduction
of Eckert and Mauchly’s UNIVAC I in early 1951, and a bit later, the IBM 701 which was also
known as the Defence Calculator. The fi rst generation was characterised again by the vacuum
tube as the active component technology.

Operation continued without the benefi t of an operating system for a time. The mode was called
“closed shop” and was characterised by the appearance of hired operators who would select the
job to be run, initial program load the system, run the user’s program, and then select another
job, and so forth. Programs began to be written in higher level, procedure-oriented languages,
and thus the operator’s routine expanded. The operator now selected a job, ran the translation
program to assemble or compile the source program, and combined the translated object program
along with any existing library programs that the program might need for input to the linking
program, loaded and ran the composite linked program, and then handled the next job in a
similar fashion.

Application programs were run one at a time, and were translated with absolute computer
addresses that bound them to be loaded and run from these reassigned storage addresses set by
the translator, obtaining their data from specifi c physical I/O device. There was no provision for
moving a program to different location in storage for any reason. Similarly, a program bound to
specifi c devices could not be run at all if any of these devices were busy or broken.

The ineffi ciencies inherent in the above methods of operation led to the development of the
mono-programmed operating system, which eliminated some of the human intervention in
running job and provided programmers with a number of desirable functions. The OS consisted
of a permanently resident kernel in main storage, and a job scheduler and a number of utility
programs kept in secondary storage. User application programs were preceded by control or
specifi cation cards (in those day, computer program were submitted on data cards) which
informed the OS of what system resources (software resources such as compilers and loaders; and
hardware resources such as tape drives and printer) were needed to run a particular application.
The systems were designed to be operated as batch processing system.

These systems continued to operate under the control of a human operator who initiated
operation by mounting a magnetic tape that contained the operating system executable code
onto a “boot device”, and then pushing the IPL (Initial Program Load) or “boot” button to initiate
the bootstrap loading of the operating system. Once the system was loaded, the operator entered
the date and time, and then initiated the operation of the job scheduler program which read
and interpreted the control statements, secured the needed resources, executed the fi rst user

Unit 1: Introduction to Operating System

Notes

 LOVELY PROFESSIONAL UNIVERSITY 7

program, recorded timing and accounting information, and then went back to begin processing
of another user program, and so on, as long as there were programs waiting in the input queue
to be executed.

The fi rst generation saw the evolution from hands-on operation to closed shop operation to the
development of mono-programmed operating systems. At the same time, the development of
programming languages was moving away from the basic machine languages; fi rst to assembly
language, and later to procedure oriented languages, the most signifi cant being the development
of FORTRAN by John W. Backus in 1956. Several problems remained, however, the most obvious
was the ineffi cient use of system resources, which was most evident when the CPU waited while
the relatively slower, mechanical I/O devices were reading or writing program data. In addition,
system protection was a problem because the operating system kernel was not protected from
being overwritten by an erroneous application program.

Moreover, other user programs in the queue were not protected from destruction by executing
programs.

1.5.3 Second Generation (1956-1964)

The second generation of computer hardware was most notably characterised by transistors
replacing vacuum tubes as the hardware component technology. In addition, some very important
changes in hardware and software architectures occurred during this period. For the most part,
computer systems remained card and tape-oriented systems. Signifi cant use of random access
devices, that is, disks, did not appear until towards the end of the second generation. Program
processing was, for the most part, provided by large centralised computers operated under
mono-programmed batch processing operating systems.

The most signifi cant innovations addressed the problem of excessive central processor delay
due to waiting for input/output operations. Recall that programs were executed by processing
the machine instructions in a strictly sequential order. As a result, the CPU, with its high speed
electronic component, was often forced to wait for completion of I/O operations which involved
mechanical devices (card readers and tape drives) that were order of magnitude slower. This
problem led to the introduction of the data channel, an integral and special-purpose computer
with its own instruction set, registers, and control unit designed to process input/output
operations separately and asynchronously from the operation of the computer’s main CPU near
the end of the fi rst generation, and its widespread adoption in the second generation.

The data channel allowed some I/O to be buffered. That is, a program’s input data could be
read “ahead” from data cards or tape into a special block of memory called a buffer. Then, when
the user’s program came to an input statement, the data could be transferred from the buffer
locations at the faster main memory access speed rather than the slower I/O device speed.
Similarly, a program’s output could be written another buffer and later moved from the buffer
to the printer, tape, or card punch. What made this all work was the data channel’s ability to
work asynchronously and concurrently with the main processor. Thus, the slower mechanical
I/O could be happening concurrently with main program processing. This process was called
I/O overlap.

The data channel was controlled by a channel program set up by the operating system I/O
control routines and initiated by a special instruction executed by the CPU. Then, the channel
independently processed data to or from the buffer. This provided communication from the CPU
to the data channel to initiate an I/O operation. It remained for the channel to communicate
to the CPU such events as data errors and the completion of a transmission. At fi rst, this
communication was handled by polling – the CPU stopped its work periodically and polled the
channel to determine if there is any message.

Polling was obviously ineffi cient (imagine stopping your work periodically to go to the post
offi ce to see if an expected letter has arrived) and led to another signifi cant innovation of the

Operating System

Notes

8 LOVELY PROFESSIONAL UNIVERSITY

second generation – the interrupt. The data channel was able to interrupt the CPU with a
message – usually “I/O complete.” Infact, the interrupt idea was later extended from I/O to
allow signalling of number of exceptional conditions such as arithmetic overfl ow, division by
zero and time-run-out. Of course, interval clocks were added in conjunction with the latter, and
thus operating system came to have a way of regaining control from an exceptionally long or
indefi nitely looping program.

These hardware developments led to enhancements of the operating system. I/O and data
channel communication and control became functions of the operating system, both to relieve
the application programmer from the diffi cult details of I/O programming and to protect the
integrity of the system to provide improved service to users by segmenting jobs and running
shorter jobs fi rst (during “prime time”) and relegating longer jobs to lower priority or night time
runs. System libraries became more widely available and more comprehensive as new utilities
and application software components were available to programmers.

In order to further mitigate the I/O wait problem, system were set up to spool the input batch from
slower I/O devices such as the card reader to the much higher speed tape drive and similarly,
the output from the higher speed tape to the slower printer. In this scenario, the user submitted
a job at a window, a batch of jobs was accumulated and spooled from cards to tape “off line,”
the tape was moved to the main computer, the jobs were run, and their output was collected on
another tape that later was taken to a satellite computer for off line tape-to-printer output. User
then picked up their output at the submission windows.

Toward the end of this period, as random access devices became available, tape-oriented
operating system began to be replaced by disk-oriented systems. With the more sophisticated
disk hardware and the operating system supporting a greater portion of the programmer’s work,
the computer system that users saw was more and more removed from the actual hardware-
users saw a virtual machine.

The second generation was a period of intense operating system development. Also it was the
period for sequential batch processing. But the sequential processing of one job at a time remained
a signifi cant limitation. Thus, there continued to be low CPU utilisation for I/O bound jobs and
low I/O device utilisation for CPU bound jobs. This was a major concern, since computers were
still very large (room-size) and expensive machines. Researchers began to experiment with
multiprogramming and multiprocessing in their computing services called the time-sharing
system.

Note A noteworthy example is the Compatible Time Sharing System (CTSS),
developed at MIT during the early 1960s.

Task CPU is the heart of computer system what about ALU.

1.5.4 Third Generation (1964-1979)

The third generation offi cially began in April 1964 with IBM’s announcement of its System/360
family of computers. Hardware technology began to use Integrated Circuits (ICs) which yielded
signifi cant advantages in both speed and economy.

Operating system development continued with the introduction and widespread adoption of
multiprogramming. This marked fi rst by the appearance of more sophisticated I/O buffering

Unit 1: Introduction to Operating System

Notes

 LOVELY PROFESSIONAL UNIVERSITY 9

in the form of spooling operating systems, such as the HASP (Houston Automatic Spooling)
system that accompanied the IBM OS/360 system. These systems worked by introducing two
new systems programs, a system reader to move input jobs from cards to disk, and a system
writer to move job output from disk to printer, tape, or cards. Operation of spooling system was,
as before, transparent to the computer user who perceived input as coming directly from the
cards and output going directly to the printer.

The idea of taking fuller advantage of the computer’s data channel I/O capabilities continued to
develop. That is, designers recognised that I/O needed only to be initiated by a CPU instruction –
the actual I/O data transmission could take place under control of separate and asynchronously
operating channel program. Thus, by switching control of the CPU between the currently
executing user program, the system reader program, and the system writer program, it was
possible to keep the slower mechanical I/O device running and minimizes the amount of time
the CPU spent waiting for I/O completion. The net result was an increase in system throughput
and resource utilisation, to the benefi t of both user and providers of computer services.

This concurrent operation of three programs (more properly, apparent concurrent operation,
since systems had only one CPU, and could, therefore execute just one instruction at a time)
required that additional features and complexity be added to the operating system. First, the fact
that the input queue was now on disk, a direct access device, freed the system scheduler from the
fi rst-come-fi rst-served policy so that it could select the “best” next job to enter the system (looking
for either the shortest job or the highest priority job in the queue). Second, since the CPU was to be
shared by the user program, the system reader, and the system writer, some processor allocation
rule or policy was needed. Since the goal of spooling was to increase resource utilisation by
enabling the slower I/O devices to run asynchronously with user program processing, and since
I/O processing required the CPU only for short periods to initiate data channel instructions,
the CPU was dispatched to the reader, the writer, and the program in that order. Moreover, if
the writer or the user program was executing when something became available to read, the
reader program would preempt the currently executing program to regain control of the CPU
for its initiation instruction, and the writer program would preempt the user program for the
same purpose. This rule, called the static priority rule with preemption, was implemented in the
operating system as a system dispatcher program.

The spooling operating system in fact had multiprogramming since more than one program
was resident in main storage at the same time. Later this basic idea of multiprogramming was
extended to include more than one active user program in memory at time. To accommodate
this extension, both the scheduler and the dispatcher were enhanced. The scheduler became able
to manage the diverse resource needs of the several concurrently active used programs, and
the dispatcher included policies for allocating processor resources among the competing user
programs. In addition, memory management became more sophisticated in order to assure that
the program code for each job or at least that part of the code being executed, was resident in
main storage.

The advent of large-scale multiprogramming was made possible by several important hardware
innovations such as:

1. The widespread availability of large capacity, high-speed disk units to accommodate the
spooled input streams and the memory overfl ow together with the maintenance of several
concurrently active program in execution.

2. Relocation hardware which facilitated the moving of blocks of code within memory without
any undue overhead penalty.

3. The availability of storage protection hardware to ensure that user jobs are protected from
one another and that the operating system itself is protected from user programs.

4. Some of these hardware innovations involved extensions to the interrupt system in order
to handle a variety of external conditions such as program malfunctions, storage protection

Operating System

Notes

10 LOVELY PROFESSIONAL UNIVERSITY

violations, and machine checks in addition to I/O interrupts. In addition, the interrupt
system became the technique for the user program to request services from the operating
system kernel.

5. The advent of privileged instructions allowed the operating system to maintain coordination
and control over the multiple activities now going on with in the system.

Successful implementation of multiprogramming opened the way for the development of a
new way of delivering computing services-time-sharing. In this environment, several terminals,
sometimes up to 200 of them, were attached (hard wired or via telephone lines) to a central
computer. Users at their terminals, “logged in” to the central system, and worked interactively
with the system. The system’s apparent concurrency was enabled by the multiprogramming
operating system. Users shared not only the system hardware but also its software resources and
fi le system disk space.

The third generation was an exciting time, indeed, for the development of both computer
hardware and the accompanying operating system. During this period, the topic of operating
systems became, in reality, a major element of the discipline of computing.

1.5.5 Fourth Generation (1979 – Present)

The fourth generation is characterised by the appearance of the personal computer and the
workstation. Miniaturisation of electronic circuits and components continued and Large Scale
Integration (LSI), the component technology of the third generation, was replaced by Very Large
Scale Integration (VLSI), which characterizes the fourth generation. VLSI with its capacity for
containing thousands of transistors on a small chip, made possible the development of desktop
computers with capabilities exceeding those that fi lled entire rooms and fl oors of building just
twenty years earlier.

The operating systems that control these desktop machines have brought us back in a full circle, to
the open shop type of environment where each user occupies an entire computer for the duration
of a job’s execution. This works better now, not only because the progress made over the years
has made the virtual computer resulting from the operating system/hardware combination so
much easier to use, or, in the words of the popular press “user-friendly.”

However, improvements in hardware miniaturisation and technology have evolved so fast that you
now have inexpensive workstation – class computers capable of supporting multiprogramming
and time-sharing. Hence the operating systems that supports today’s personal computers and
workstations look much like those which were available for the minicomputers of the third
generation.

 Example: Microsoft’s DOS for IBM-compatible personal computers and UNIX for
workstation.

However, many of these desktop computers are now connected as networked or distributed
systems. Computers in a networked system each have their operating systems augmented with
communication capabilities that enable users to remotely log into any system on the network
and transfer information among machines that are connected to the network. The machines that
make up distributed system operate as a virtual single processor system from the user’s point of
view; a central operating system controls and makes transparent the location in the system of the
particular processor or processors and fi le systems that are handling any given program.

1.6 Summary

z This unit presented the principle operation of an operating system. In this unit you had
briefl y described about the history, the generations and the types of operating systems.

Unit 1: Introduction to Operating System

Notes

 LOVELY PROFESSIONAL UNIVERSITY 11

z An operating system is a program that acts as an interface between a user of a computer
and the computer hardware.

z The purpose of an operating system is to provide an environment in which a user may
execute programs.

z The primary goal of an operating system is to make the computer convenient to use. And
the secondary goal is to use the hardware in an effi cient manner.

1.7 Keywords

An Operating System: It is the most important program in a computer system that runs all the
time, as long as the computer is operational and exits only when the computer is shut down.

Desktop System: Modern desktop operating systems usually feature a Graphical user interface
(GUI) which uses a pointing device such as a mouse or stylus for input in addition to the
keyboard.

Operating System: An operating system is a layer of software which takes care of technical
aspects of a computer’s operation.

1.8 Self Assessment

Choose the appropriate answers:

1. GUI stands for

(a) Graphical Used Interface

(b) Graphical User Interface

(c) Graphical User Interchange

(d) Good User Interface

2. CPU stands for

(a) Central Program Unit

(b) Central Programming Unit

(c) Central Processing Unit

(d) Centralization Processing Unit

3. FORTRAN stands for

(a) Formula Translation

(b) Formula Transformation

(c) Formula Transition

(d) Forming Translation

4. VLSI stands for

(a) Very Long Scale Integration

(b) Very Large Scale Interchange

(c) Very Large Scale Interface

(d) Very Large Scale Integration

Operating System

Notes

12 LOVELY PROFESSIONAL UNIVERSITY

5. API stands for

(a) Application Process Interface

(b) Application Process Interchange

(c) Application Program Interface

(d) Application Process Interfacing

Fill in the blanks:

6. An operating system is a

7. Programs could generally be debugged via a front panel using and lights.

8. The data channel allowed some to be buffered.

9. The third generation offi cially began in April

10. The system’s apparent concurrency was enabled by the multiprogramming

1.9 Review Questions

1. What is the relation between application software and operating system?

2. What is an operating system? Is it a hardware or software?

3. Mention the primary functions of an operating system.

4. Briefl y explain the evolution of the operating system.

5. What are the key elements of an operating system?

6. What do you understand by the term computer generations?

7. Who give the idea of stored program and in which year? Who give the basic structure of
computer?

8. Give the disadvantages of fi rst generation computers over second generation computers.

9. On which system, the second generation computers based on? What are the new inventions
in the second generation of computers?

10. Describe the term integrated circuit.

11. What is the signifi cance of third generation computers?

12. Give the brief description of fourth generation computers. How the technology is better
than previous generation?

13. What is the period of fi fth generation computers?

14. What are the differences between hardware and software?

15. What are the differences between system software and application software?

Answers: Self Assessment

1. (b) 2. (c) 3. (a) 4. (d)

5. (c) 6. control program 7. switches 8. I/O

9. 1964 10. operating system

Unit 1: Introduction to Operating System

Notes

 LOVELY PROFESSIONAL UNIVERSITY 13

1.10 Further Readings

Books Andrew M. Lister, Fundamentals of Operating Systems, Wiley.

 Andrew S. Tanenbaum and Albert S. Woodhull, Systems Design and Implementation,
Prentice Hall.

 Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.

 Colin Ritchie, Operating Systems, BPB Publications.

 Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.

 I.A. Dhotre, Operating System, Technical Publications.

 Milankovic, Operating System, Tata MacGraw Hill, New Delhi.

 Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons,
Seventh Edition.

 Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.

Online links www.en.wikipedia.org

 www.web-source.net

 www.webopedia.com

Operating System

Notes

14 LOVELY PROFESSIONAL UNIVERSITY

Unit 2: Operation and Function of Operating System

CONTENTS

Objectives

Introduction

2.1 Operations and Functions of OS

2.2 Types of Operating System

2.3 Operating System: Examples

 2.3.1 Disk Operating System (DOS)

 2.3.2 UNIX

 2.3.3 Windows

 2.3.4 Macintosh

2.4 Summary

2.5 Keywords

2.6 Self Assessment

2.7 Review Questions

2.8 Further Readings

Objectives

After studying this unit, you will be able to:

z Describe operations and functions of operating system

z Explain various types of operating system

Introduction

The primary objective of operating system is to increase productivity of a processing resource,
such as computer hardware or computer-system users. User convenience and productivity were
secondary considerations. At the other end of the spectrum, an OS may be designed for a personal
computer costing a few thousand dollars and serving a single user whose salary is high. In this
case, it is the user whose productivity is to be increased as much as possible, with the hardware
utilization being of much less concern. In single-user systems, the emphasis is on making the
computer system easier to use by providing a graphical and hopefully more intuitively obvious
user interface.

2.1 Operations and Functions of OS

The main operations and functions of an operating system are as follows:

1. Process Management

2. Memory Management

3. Secondary Storage Management

4. I/O Management

Unit 2: Operation and Function of Operating System

Notes

 LOVELY PROFESSIONAL UNIVERSITY 15

5. File Management

6. Protection

7. Networking Management

8. Command Interpretation.

Process Management

The CPU executes a large number of programs. While its main concern is the execution of user
programs, the CPU is also needed for other system activities. These activities are called processes.
A process is a program in execution. Typically, a batch job is a process. A time-shared user
program is a process. A system task, such as spooling, is also a process. For now, a process may
be considered as a job or a time-shared program, but the concept is actually more general.

The operating system is responsible for the following activities in connection with processes
management:

1. The creation and deletion of both user and system processes

2. The suspension and resumption of processes.

3. The provision of mechanisms for process synchronization

4. The provision of mechanisms for deadlock handling.

Memory Management

Memory is the most expensive part in the computer system. Memory is a large array of words or
bytes, each with its own address. Interaction is achieved through a sequence of reads or writes of
specifi c memory address. The CPU fetches from and stores in memory.

There are various algorithms that depend on the particular situation to manage the memory.
Selection of a memory management scheme for a specifi c system depends upon many factors, but
especially upon the hardware design of the system. Each algorithm requires its own hardware
support.

The operating system is responsible for the following activities in connection with memory
management.

1. Keep track of which parts of memory are currently being used and by whom.

2. Decide which processes are to be loaded into memory when memory space becomes
available.

3. Allocate and deallocate memory space as needed.

Secondary Storage Management

The main purpose of a computer system is to execute programs. These programs, together with
the data they access, must be in main memory during execution. Since the main memory is too
small to permanently accommodate all data and program, the computer system must provide
secondary storage to backup main memory. Most modem computer systems use disks as
the primary on-line storage of information, of both programs and data. Most programs, like
compilers, assemblers, sort routines, editors, formatters, and so on, are stored on the disk until
loaded into memory, and then use the disk as both the source and destination of their processing.
Hence the proper management of disk storage is of central importance to a computer system.

Operating System

Notes

16 LOVELY PROFESSIONAL UNIVERSITY

There are few alternatives. Magnetic tape systems are generally too slow. In addition, they are
limited to sequential access. Thus tapes are more suited for storing infrequently used fi les, where
speed is not a primary concern.

The operating system is responsible for the following activities in connection with disk
management:

1. Free space management

2. Storage allocation

3. Disk scheduling.

I/O Management

One of the purposes of an operating system is to hide the peculiarities or specifi c hardware
devices from the user. For example, in UNIX, the peculiarities of I/O devices are hidden from the
bulk of the operating system itself by the I/O system. The operating system is responsible for the
following activities in connection to I/O management:

1. A buffer caching system

2. To activate a general device driver code

3. To run the driver software for specifi c hardware devices as and when required.

File Management

File management is one of the most visible services of an operating system. Computers can store
information in several different physical forms: magnetic tape, disk, and drum are the most
common forms. Each of these devices has it own characteristics and physical organisation.

For convenient use of the computer system, the operating system provides a uniform logical view
of information storage. The operating system abstracts from the physical properties of its storage
devices to defi ne a logical storage unit, the fi le. Files are mapped, by the operating system, onto
physical devices.

A fi le is a collection of related information defi ned by its creator. Commonly, fi les represent
programs (both source and object forms) and data. Data fi les may be numeric, alphabetic or
alphanumeric. Files may be free-form, such as text fi les, or may be rigidly formatted. In general
a fi les is a sequence of bits, bytes, lines or records whose meaning is defi ned by its creator and
user. It is a very general concept.

The operating system implements the abstract concept of the fi le by managing mass storage
device, such as types and disks. Also fi les are normally organised into directories to ease their
use. Finally, when multiple users have access to fi les, it may be desirable to control by whom and
in what ways fi les may be accessed.

The operating system is responsible for the following activities in connection to the fi le
management:

1. The creation and deletion of fi les.

2. The creation and deletion of directory.

3. The support of primitives for manipulating fi les and directories.

4. The mapping of fi les onto disk storage.

5. Backup of fi les on stable (non volatile) storage.

6. Protection and security of the fi les.

Unit 2: Operation and Function of Operating System

Notes

 LOVELY PROFESSIONAL UNIVERSITY 17

Protection

The various processes in an operating system must be protected from each other’s activities. For
that purpose, various mechanisms which can be used to ensure that the fi les, memory segment,
CPU and other resources can be operated on only by those processes that have gained proper
authorisation from the operating system.

 Example: Memory addressing hardware ensures that a process can only execute within
its own address space. The timer ensures that no process can gain control of the CPU without
relinquishing it. Finally, no process is allowed to do its own I/O, to protect the integrity of
the various peripheral devices. Protection refers to a mechanism for controlling the access of
programs, processes, or users to the resources defi ned by a computer controls to be imposed,
together with some means of enforcement.

Protection can improve reliability by detecting latent errors at the interfaces between component
subsystems. Early detection of interface errors can often prevent contamination of a healthy
subsystem by a subsystem that is malfunctioning. An unprotected resource cannot defend
against use (or misuse) by an unauthorised or incompetent user.

Task “Memory is the most expensive part of system.” Discuss.

Networking

A distributed system is a collection of processors that do not share memory or a clock. Instead, each
processor has its own local memory, and the processors communicate with each other through
various communication lines, such as high speed buses or telephone lines. Distributed systems
vary in size and function. They may involve microprocessors, workstations, minicomputers, and
large general purpose computer systems.

The processors in the system are connected through a communication network, which can be
confi gured in the number of different ways. The network may be fully or partially connected.
The communication network design must consider routing and connection strategies and the
problems of connection and security.

A distributed system provides the user with access to the various resources the system maintains.
Access to a shared resource allows computation speed-up, data availability, and reliability.

Command Interpretation

One of the most important components of an operating system is its command interpreter. The
command interpreter is the primary interface between the user and the rest of the system.

Many commands are given to the operating system by control statements. When a new job is
started in a batch system or when a user logs-in to a time-shared system, a program which reads
and interprets control statements is automatically executed. This program is variously called
(1) the control card interpreter, (2) the command line interpreter, (3) the shell (in Unix), and so on.
Its function is quite simple: get the next command statement, and execute it.

The command statements themselves deal with process management, I/O handling, secondary
storage management, main memory management, fi le system access, protection, and
networking.

Operating System

Notes

18 LOVELY PROFESSIONAL UNIVERSITY

The Figure 2.1 depicts the role of the operating system in coordinating all the functions.

I/O
Management Protection &

Security
File

Management

Process
Management

Communication
Management

User
Interface Networking

Memory
Management

Secondary
Storage

Management
Operating System

Figure 2.1: Functions Coordinated by the Operating System

2.2 Types of Operating System

Modern computer operating systems may be classifi ed into three groups, which are distinguished
by the nature of interaction that takes place between the computer user and his or her program
during its processing. The three groups are called batch, time-sharing and real-time operating
systems.

Batch Processing Operating System

In a batch processing operating system environment users submit jobs to a central place where
these jobs are collected into a batch, and subsequently placed on an input queue at the computer
where they will be run. In this case, the user has no interaction with the job during its processing,
and the computer’s response time is the turnaround time the time from submission of the job
until execution is complete, and the results are ready for return to the person who submitted the
job.

Time Sharing

Another mode for delivering computing services is provided by time sharing operating
systems. In this environment a computer provides computing services to several or many users
concurrently on-line. Here, the various users are sharing the central processor, the memory, and
other resources of the computer system in a manner facilitated, controlled, and monitored by the
operating system. The user, in this environment, has nearly full interaction with the program
during its execution, and the computer’s response time may be expected to be no more than a
few second.

Real-time Operating System (RTOS)

The third class is the real time operating systems, which are designed to service those applications
where response time is of the essence in order to prevent error, misrepresentation or even disaster.
Examples of real time operating systems are those which handle airlines reservations, machine
tool control, and monitoring of a nuclear power station. The systems, in this case, are designed to
be interrupted by external signals that require the immediate attention of the computer system.

Unit 2: Operation and Function of Operating System

Notes

 LOVELY PROFESSIONAL UNIVERSITY 19

These real time operating systems are used to control machinery, scientifi c instruments and
ndustrial systems. An RTOS typically has very little user-interface capability, and no end-user
utilities. A very important part of an RTOS is managing the resources of the computer so that
a particular operation executes in precisely the same amount of time every time it occurs. In a
complex machine, having a part move more quickly just because system resources are available
may be just as catastrophic as having it not move at all because the system is busy.

A number of other defi nitions are important to gain an understanding of operating systems:

Multiprogramming Operating System

A multiprogramming operating system is a system that allows more than one active user program
(or part of user program) to be stored in main memory simultaneously. Thus, it is evident that a
time-sharing system is a multiprogramming system, but note that a multiprogramming system
is not necessarily a time-sharing system. A batch or real time operating system could, and indeed
usually does, have more than one active user program simultaneously in main storage. Another
important, and all too similar, term is “multiprocessing”.

MONITOR

PROGRAM 1

PROGRAM 2

PROGRAM N

. . .

. . .

Primary Memory

Figure 2.2: Memory Layout in Multiprogramming Environment

Buffering and Spooling improve system performance by overlapping the input, output and
computation of a single job, but both of them have their limitations. A single user cannot always
keep CPU or I10 devices busy at all times. Multiprogramming offers a more effi cient approach
to increase system performance. In order to increase the resource utilisation, systems supporting
multiprogramming approach allow more than one job (program) to reside in the memory to
utilise CPU time at any moment. More number of programs competing for system resources
better will mean better resource utilisation.

The idea is implemented as follows. The main memory of a system contains more than one
program (Figure 2.2).

The operating system picks one of the programs and starts executing. During execution of
program 1 it needs some I/O operation to complete in a sequential execution environment
(Figure 2.3a). The CPU would then sit idle whereas in a multiprogramming system, (Figure 2.3b)
the operating system will simply switch over to the next program (program 2).

Operating System

Notes

20 LOVELY PROFESSIONAL UNIVERSITY

Idle

P1

Idle

P1

Idle

P2

Idle

P2 P2P1

Program 1 Program 2

P1 P1 P1

Program 1

Program 2

(a) Sequential Execution

(b) Execution in Multiprogramming Environment

Figure 2.3: Multiprogramming

When that program needs to wait for some 110 operation, it switches over to program 3 and so
on. If there is no other new program left in the main memory, the CPU will pass its control back
to the previous programs.

Multiprogramming has traditionally been employed to increase the resources utilisation of a
computer system and to support multiple simultaneously interactive users (terminals).

Multiprocessing System

A multiprocessing system is a computer hardware confi guration that includes more than one
independent processing unit. The term multiprocessing is generally used to refer to large
computer hardware complexes found in major scientifi c or commercial applications.

A multiprocessor system is simply a computer that has >1 & not <=1 CPU on its motherboard. If
the operating system is built to take advantage of this, it can run different processes (or different
threads belonging to the same process) on different CPUs.

Today’s operating systems strive to make the most effi cient use of a computer’s resources.
Most of this effi ciency is gained by sharing the machine’s resources among several tasks
(multi-processing). Such “large-grain” resource sharing is enabled by operating systems without
any additional information from the applications or processes. All these processes can potentially
execute concurrently, with the CPU (or CPUs) multiplexed among them. Newer operating
systems provide mechanisms that enable applications to control and share machine resources at
a fi ner grain-, that is, at the threads level. Just as multiprocessing operating systems can perform
more than one task concurrently by running more than a single process, a process can perform
more than one task by running more than a single thread.

Unit 2: Operation and Function of Operating System

Notes

 LOVELY PROFESSIONAL UNIVERSITY 21

DDR

RAMBUS

Multiprocessor chip
sets

(Intel, AMD, VIA,
ServerWorks)

Multiprocessor
switch fabrics
(Sun, Unisys)

Memory Processors

Intel IA-32 and IA-64

AMD Athlon

Sun Ultra Sparc

System interconnect

PCI/PCI-X InfiniBand
AMD Hyper

Transport

USB 2 IEEE 1394 IDE SCSI Serial ATA Fibre Channel

Peripheral Bus

PC platform

System Bus

Figure 2.4: Diagrammatic Structure of Multiprocessor System

Task Distinguish between multiprocessing and multitasking OS.

Networking Operating System

A networked computing system is a collection of physical interconnected computers. The
operating system of each of the interconnected computers must contain, in addition to its own
stand-alone functionality, provisions for handing communication these additions do not change
the essential structure of the operating systems.

Distributed Operating System

A distributed computing system consists of a number of computers that are connected and
managed so that they automatically share the job processing load among the constituent
computers, or separate the job load as appropriate particularly confi gured processors. Such a
system requires an operating system which, in addition to the typical stand-alone functionality,
provides coordination of the operations and information fl ow among the component computers.
The networked and distributed computing environments and their respective operating systems
are designed with more complex functional capabilities. In a network operating system, the users
are aware of the existence of multiple computers, and can log in to remote machines and copy

Operating System

Notes

22 LOVELY PROFESSIONAL UNIVERSITY

fi les from one machine to another. Each machine runs its own local operating system and has its
own user (or users).

A distributed operating system, in contrast, is one that appears to its users as a traditional
uni-processor system, even though it is actually composed of multiple processors. In a true
distributed system, users should not be aware of where their programs are being run or where
their fi les are located; that should all be handled automatically and effi ciently by the operating
system.

True distributed operating systems require more than just adding a little code to a uni-processor
operating system, because distributed and centralised systems differ in critical ways. Distributed
systems, for example, often allow program to run on several processors at the same time, thus
requiring more complex processor scheduling algorithms in order to optimise the amount of
parallelism achieved.

Operating Systems for Embedded Devices

As embedded systems (PDAs, cellphones, point-of-sale devices, VCR’s, industrial robot control,
or even your toaster) become more complex hardware-wise with every generation, and more
features are put into them day-by-day, applications they run require more and more to run on
actual operating system code in order to keep the development time reasonable. Some of the
popular OS are:

1. Nexus’s Conix: an embedded operating system for ARM processors.

2. Sun’s Java OS: a standalone virtual machine not running on top of any other OS; mainly
targeted at embedded systems.

3. Palm Computing’s Palm OS: Currently the leader OS for PDAs, has many applications and
supporting companies.

4. Microsoft’s Windows CE and Windows NT Embedded OS.

Single Processor System

In theory, every computer system may be programmed in its machine language, with no systems
software support. Programming of the “bare-machines” was customary for early computer
systems. A slightly more advanced version of this mode of operating is common for the simple
evaluation boards that are sometimes used in introductory microprocessor design and interfacing
courses.

Programs for the bare machine can be developed by manually translating sequences of instructions
into binary or some other code whose base is usually an integer power of 2. Instructions and data
are then fed into the computer by means of console switches, or perhaps through a hexadecimal
keyboard. Programs are started by loading the program counter with the address of the fi rst
instruction. Results of execution are obtained by examining the contents of the relevant registers
and memory locations. Input/Output devices, if any, must be controlled by the executing
program directly, say, by reading and writing the related I/O ports. Evidently, programming of
the bare machine results in low productivity of both users and hardware. The long and tedious
process of program and data entry practically precludes execution of all but very short programs
in such an environment.

The next signifi cant evolutionary step in computer system usage came about with the advent
of input/output devices, such as punched cards and paper tape, and of language translators.
Programs, now coded in a programming language, are translated into executable form by
a computer program, such as compiler or an interpreter. Another program, called the loader,
automates the process of loading executable programs into memory. The user places a program

Unit 2: Operation and Function of Operating System

Notes

 LOVELY PROFESSIONAL UNIVERSITY 23

and its input data on an input device, and the loader transfers information from that input device
into memory. After transferring control to the loaded program by manual or automatic means,
execution of the program commences. The executing program reads its input from the designated
input device and may produce some output on an output device, such as a printer or display
screen. Once in memory, the program may be rerun with different set of input data.

The mechanics of development and preparation of programs in such environments are quite slow
and cumbersome due to serial execution of programs and numerous manual operations involved
in the process. In a typical sequence, the editor program is loaded to prepare the source code of
the user program. The next step is to load and execute the language translator and to provide
it with the source code of the user program. When serial input devices, such as card readers,
are used, multiple-pass language translators may require the source code to be repositioned
for reading during each pass. If syntax errors are detected, the whole process must be repeated
from the beginning. Eventually, the object code produced from the syntactically correct source
code is loaded and executed. If run-time errors are detected, the state of the machine can be
examined and modifi ed by means of console switches, or with the assistance of a program called
a debugger. The mode of operation described here was initially used in late fi fties, but it was also
common in low-end microcomputers of early eighties with cassettes as I/O devices.

In addition to language translators, system software includes the loader and possibly editor and
debugger programs. Most of them use input/output devices and thus must contain some code
to exercise those devices. Since many user programs also use input/output devices, the logical
refi nement is to provide a collection of standard I/O routines for the use of all programs.

In the described system, I/O routines and the loader program represent a rudimentary form
of an operating system. Although quite crude, it still provides an environment for execution of
programs far beyond what is available on the bare machine. Language translators, editors, and
debuggers are system programs that rely on the services of, but are not generally regarded as
part of, the operating system.

Although a defi nite improvement over the bare machine approach, this mode of operation is
obviously not very effi cient. Running of the computer system may require frequent manual loading
of programs and data. This results in low utilization of system resources. User productivity,
especially in multiuser environments, is low as users await their turn at the machine. Even with
such tools as editors and debuggers, program development is very slow and is ridden with
manual program and data loading.

Parallel Processing System

Parallel operating systems are primarily concerned with managing the resources of parallel
machines. This task faces many challenges: application programmers demand all the performance
possible, many hardware confi gurations exist and change very rapidly, yet the operating system
must increasingly be compatible with the mainstream versions used in personal computers and
workstations due both to user pressure and to the limited resources available for developing
new versions of these system. There are several components in an operating system that can be
parallelized. Most operating systems do not approach all of them and do not support parallel
applications directly. Rather, parallelism is frequently exploited by some additional software
layer such as a distributed fi le system, distributed shared memory support or libraries and
services that support particular parallel programming languages while the operating system
manages concurrent task execution.

The convergence in parallel computer architectures has been accompanied by a reduction in the
diversity of operating systems running on them. The current situation is that most commercially
available machines run a fl avour of the UNIX OS (Digital UNIX, IBM AIX, HP UX, Sun Solaris,
Linux).

Operating System

Notes

24 LOVELY PROFESSIONAL UNIVERSITY

Figure 2.5: Parallel Systems

Others run a UNIX based microkernel with reduced functionality to optimize the use of the CPU,
such as Cray Research’s UNICOS. Finally, a number of shared memory MIMD machines run
Microsoft Windows NT (soon to be superseded by the high end variant of Windows 2000).

There are a number of core aspects to the characterization of a parallel computer operating
system: general features such as the degrees of coordination, coupling and transparency; and
more particular aspects such as the type of process management, inter-process communication,
parallelism and synchronization and the programming model.

Multitasking

In computing, multitasking is a method where multiple tasks, also known as processes, share
common processing resources such as a CPU. In the case of a computer with a single CPU, only
one task is said to be running at any point in time, meaning that the CPU is actively executing
instructions for that task. Multitasking solves the problem by scheduling which task may be the
one running at any given time, and when another waiting task gets a turn. The act of reassigning
a CPU from one task to another one is called a context switch. When context switches occur
frequently enough the illusion of parallelism is achieved. Even on computers with more than
one CPU (called multiprocessor machines), multitasking allows many more tasks to be run than
there are CPUs.

In the early ages of the computers, they where considered advanced card machines and therefore
the jobs they performed where like: “fi nd all females in this bunch of cards (or records)”. Therefore,
utilisation was high since one delivered a job to the computing department, which prepared and
executed the job on the computer, delivering the fi nal result to you. The advances in electroniv
engineering increased the processing power serveral times, now leaving input/output devices
(card readers, line printers) far behind. This ment that the CPU had to wait for the data it required
to perform a given task. Soon, engineers thought: “what if we could both prepare, process and
output data at the same time” and multitasking was born. Now one could read data for the
next job while executing the current job and outputting the results of a previously job, thereby
increasing the utilisation of the very expensive computer.

Cheap terminals allowed the users themselves to input data to the computer and to execute jobs
(having the department do it often took days) and see results immediately on the screen, which
introduced what was called interactive tasks. They required a console to be updated when a key

Unit 2: Operation and Function of Operating System

Notes

 LOVELY PROFESSIONAL UNIVERSITY 25

was pressed on the keyboard (again a task with slow input). Same thing happens today, where
your computer actually does no work most of the time - it just waits for your input. Therefore
using multitasking where serveral tasks run on the same computer improves performance.

Multitasking is the process of letting the operating system perform multiple task at what seems
to the user simultaniously. In SMP (Symmetric Multi Processor systems) this is the case, since
there are serveral CPU’s to execute programs on - in systems with only a single CPU this is
done by switching execution very rapidly between each program, thus givin the impression of
simultanious execution. This process is also known as task swithcing or timesharing. Practically
all modern OS has this ability.

Multitasking is, on single-processor machines, implemented by letting the running process
own the CPU for a while (a timeslice) and when required gets replaced with another process,
which then owns the CPU. The two most common methods for sharing the CPU time is either
cooperative multitasking or preempetive multitasking.

Cooperative Multitasking: The simplest form of multitasking is cooperative multitasking. It lets
the programs decide when they wish to let other tasks run. This method is not good since it lets
one process monopolise the CPU and never let other processes run. This way a program may be
reluctant to give away processing power in the fear of another process hogging all CPU-time.
Early versions of the MacOS (up til MacOS 8) and versions of Windows earlier than Win95/
WinNT used cooperative multitasking (Win95 when running old apps).

Preempetive Multitasking: Preempetive multitasking moves the control of the CPU to the OS,
letting each process run for a given amount of time (a timeslice) and then switching to another
task. This method prevents one process from taking complete control of the system and thereby
making it seem as if it is crashed. This method is most common today, implemented by among
others OS/2, Win95/98, WinNT, Unix, Linux, BeOS, QNX, OS9 and most mainframe OS. The
assignment of CPU time is taken care of by the scheduler.

2.3 Operating System: Examples

2.3.1 Disk Operating System (DOS)

DOS (Disk Operating System) was the fi rst widely-installed operating system for personal
computers. It is a master control program that is automatically run when you start your personal
computer (PC). DOS stays in the computer all the time letting you run a program and manage
fi les. It is a single-user operating system from Microsoft for the PC. It was the fi rst OS for the PC
and is the underlying control program for Windows 3.1, 95, 98 and ME. Windows NT, 2000 and
XP emulate DOS in order to support existing DOS applications.

2.3.2 UNIX

UNIX operating systems are used in widely-sold workstation products from Sun Microsystems,
Silicon Graphics, IBM, and a number of other companies. The UNIX environment and the
client/server program model were important elements in the development of the Internet and
the reshaping of computing as centered in networks rather than in individual computers. Linux,
a UNIX derivative available in both “free software” and commercial versions, is increasing in
popularity as an alternative to proprietary operating systems.

UNIX is written in C. Both UNIX and C were developed by AT&T and freely distributed to
government and academic institutions, causing it to be ported to a wider variety of machine
families than any other operating system. As a result, UNIX became synonymous with “open
systems”.

Operating System

Notes

26 LOVELY PROFESSIONAL UNIVERSITY

UNIX is made up of the kernel, fi le system and shell (command line interface). The major shells are
the Bourne shell (original), C shell and Korn shell. The UNIX vocabulary is exhaustive with more
than 600 commands that manipulate data and text in every way conceivable. Many commands
are cryptic, but just as Windows hid the DOS prompt, the Motif GUI presents a friendlier image
to UNIX users. Even with its many versions, UNIX is widely used in mission critical applications
for client/server and transaction processing systems. The UNIX versions that are widely used
are Sun’s Solaris, Digital’s UNIX, HP’s HP-UX, IBM’s AIX and SCO’s UnixWare. A large number
of IBM mainframes also run UNIX applications, because the UNIX interfaces were added to
MVS and OS/390, which have obtained UNIX branding. Linux, another variant of UNIX, is also
gaining enormous popularity.

2.3.3 Windows

Windows is a personal computer operating system from Microsoft that, together with some
commonly used business applications such as Microsoft Word and Excel, has become a de facto
“standard” for individual users in most corporations as well as in most homes. Windows contains
built-in networking, which allows users to share fi les and applications with each other if their
PC’s are connected to a network. In large enterprises, Windows clients are often connected to a
network of UNIX and NetWare servers. The server versions of Windows NT and 2000 are gaining
market share, providing a Windows-only solution for both the client and server. Windows is
supported by Microsoft, the largest software company in the world, as well as the Windows
industry at large, which includes tens of thousands of software developers.

This networking support is the reason why Windows became successful in the fi rst place.
However, Windows 95, 98, ME, NT, 2000 and XP are complicated operating environments.
Certain combinations of hardware and software running together can cause problems, and
troubleshooting can be daunting. Each new version of Windows has interface changes that
constantly confuse users and keep support people busy, and Installing Windows applications
is problematic too. Microsoft has worked hard to make Windows 2000 and Windows XP more
resilient to installation of problems and crashes in general.

2.3.4 Macintosh

The Macintosh (often called “the Mac”), introduced in 1984 by Apple Computer, was the fi rst
widely-sold personal computer with a Graphical User Interface (GUI). The Mac was designed
to provide users with a natural, intuitively understandable, and, in general, “user-friendly”
computer interface. This includes the mouse, the use of icons or small visual images to represent
objects or actions, the point-and-click and click-and-drag actions, and a number of window
operation ideas. Microsoft was successful in adapting user interface concepts fi rst made popular
by the Mac in its fi rst Windows operating system. The primary disadvantage of the Mac is that
there are fewer Mac applications on the market than for Windows. However, all the fundamental
applications are available, and the Macintosh is a perfectly useful machine for almost everybody.
Data compatibility between Windows and Mac is an issue, although it is often overblown and
readily solved.

The Macintosh has its own operating system, Mac OS which, in its latest version is called Mac OS
X. Originally built on Motorola’s 68000 series microprocessors, Mac versions today are powered
by the PowerPC microprocessor, which was developed jointly by Apple, Motorola, and IBM.
While Mac users represent only about 5% of the total numbers of personal computer users, Macs
are highly popular and almost a cultural necessity among graphic designers and online visual
artists and the companies they work for.

Task DOS is a character based operating system what about Windows operating
system.

Unit 2: Operation and Function of Operating System

Notes

 LOVELY PROFESSIONAL UNIVERSITY 27

2.4 Summary

z Operating systems may be classifi ed by both how many tasks they can perform
“simultaneously” and by how many users can be using the system “simultaneously”. That
is: single-user or multi-user and single-task or multi-tasking.

z A multi-user system must clearly be multi-tasking.

z A possible solution to the external fragmentation problem is to permit the logical address
space of a process to be noncontiguous, thus allowing a process to be allocated physical
memory wherever the latter is available.

z Physical memory is broken into fi xed-sized blocks called frames. Logical memory is also
broken into blocks of the same size called pages.

z Memory protection in a paged environment is accomplished by protection bit that are
associated with each frame.

z Segmentation is a memory-management scheme that supports this user view of memory.

z Segmentation may then cause external fragmentation, when all blocks of free memory are
too small to accommodate a segment.

2.5 Keywords

Clustered System: A clustered system is a group of loosely coupled computers that work together
closely so that in many respects they can be viewed as though they are a single computer.

Distributed System: A distributed system is a computer system in which the resources resides
in separate units connected by a network, but which presents to the user a uniform computing
environment.

Real-time Operating System: A Real-time Operating System (RTOS) is a multitasking operating
system intended for real-time applications. Such applications include embedded systems
(programmable thermostats, household appliance controllers, mobile telephones), industrial
robots, spacecraft, industrial control and scientifi c research equipment.

2.6 Self Assessment

Fill in the blanks:

1. A is a program in execution.

2. is a large array of words or bytes, each with its own address.

3. A is a collection of related information defi ned by its creator.

4. A provides the user with access to the various resources the system
maintains.

5. An RTOS typically has very little user-interface capability, and no

6. A cannot always keep CPU or I10 devices busy at all times.

7. A multiprocessing system is a computer hardware confi guration that includes more than
........................ independent processing unit.

8. A system is a collection of physical interconnected computers.

9. A system task, such as, is also a process.

10. is achieved through a sequence of reads or writes of specifi c memory
address.

Operating System

Notes

28 LOVELY PROFESSIONAL UNIVERSITY

2.7 Review Questions

1. Write short note on Distributed System.

2. Explain the nature of real time system.

3. What is batch system? What are the shortcomings of early batch systems? Explain it.

4. Write the differences between the time sharing system and distributed system.

5. Describe real time operating system. Give an example of it.

6. Explain parallel system with suitable example.

7. Write the differences between the real time system and personal system.

8. “Most modern computer systems use disks as the primary on-line storage of information,
of both programs and data”. Explain.

9. Write short note on networking.

10. “The operating system picks one of the programs and starts executing”. Discuss.

Answers: Self Assessment

1. process 2. Memory 3. fi le

4. distributed system 5. end-user utilities 6. single user

7. one 8. networked computing 9. spooling 10. Interaction

2.8 Further Readings

Books Andrew M. Lister, Fundamentals of Operating Systems, Wiley.

 Andrew S. Tanenbaum and Albert S. Woodhull, Systems Design and Implementation,
Prentice Hall.

 Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.

 Colin Ritchie, Operating Systems, BPB Publications.

 Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.

 I.A. Dhotre, Operating System, Technical Publications.

 Milankovic, Operating System, Tata MacGraw Hill, New Delhi.

 Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons,
Seventh Edition.

 Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.

Online links www.en.wikipedia.org

 www.web-source.net

 www.webopedia.com

Unit 3: Operating System Structure

Notes

 LOVELY PROFESSIONAL UNIVERSITY 29

Unit 3: Operating System Structure

CONTENTS

Objectives

Introduction

3.1 Operating System Services

3.2 System Calls

3.3 System Programs

3.4 Operating System Structure

 3.4.1 Monolithic Systems

 3.4.2 Client-server Model

 3.4.3 Exokernel

3.5 Layered Structure

3.6 Virtual Machine

3.7 Summary

3.8 Keywords

3.9 Self Assessment

3.10 Review Questions

3.11 Further Readings

Objectives

After studying this unit, you will be able to:

z Describe operating system services

z Defi ne system calls

z Explain system programs

z Know operating system structure

z Describe layered structure

Introduction

Every general-purpose computer must have an operating system to run other programs.
Operating systems perform basic tasks, such as recognizing input from the keyboard, sending
output to the display screen, keeping track of fi les and directories on the disk, and controlling
peripheral devices such as disk drives and printers.

For large systems, the operating system has even greater responsibilities and powers. It is like
a traffi c cop – it makes sure that different programs and users running at the same time do not
interfere with each other. The operating system is also responsible for security, ensuring that
unauthorized users do not access the system.

System calls provide an interface between the process and the operating system. System calls
allow user-level processes to request some services from the operating system which process

Operating System

Notes

30 LOVELY PROFESSIONAL UNIVERSITY

itself is not allowed to do. It is because of the critical nature of operations that the operating
system itself does them every time they are needed.

 Example: For I/O a process involves a system call telling the operating system to read or
write particular area and this request is satisfi ed by the operating system.

The fact that improper use of the system can easily cause a system crash, thus the operating system
is introduced; it executes at the highest level of order and allows the applications to request for a
service – a system call – which is implemented through hooking interrupt(s). A system call is the
mechanism used by an application program to request service from the operating system. There
are different types of system call.

3.1 Operating System Services

The various operating system services are:

1. Program Execution

2. I/O Operations

3. File System Manipulation

4. Communications

5. Error Detection

Program Execution

The purpose of a computer systems is to allow the user to execute programs. So the operating
systems provides an environment where the user can conveniently run programs. The user does
not have to worry about the memory allocation or multitasking or anything. These things are
taken care of by the operating systems.

Running a program involves the allocating and deallocating memory, CPU scheduling in case of
multiprocess. These functions cannot be given to the user-level programs. So user-level programs
cannot help the user to run programs independently without the help from operating systems.

I/O Operations

Each program requires an input and produces output. This involves the use of I/O. The operating
systems hides the user the details of underlying hardware for the I/O. All the user sees is that the
I/O has been performed without any details. So the operating systems by providing I/O makes
it convenient for the users to run programs.

For effi ciently and protection users cannot control I/O so this service cannot be provided by
user-level programs.

File System Manipulation

The output of a program may need to be written into new fi les or input taken from some fi les.
The operating systems provides this service. The user does not have to worry about secondary
storage management. User gives a command for reading or writing to a fi le and sees his/her task
accomplished. Thus operating systems makes it easier for user programs to accomplished their
task.

This service involves secondary storage management. The speed of I/O that depends on
secondary storage management is critical to the speed of many programs and hence I think it is

Unit 3: Operating System Structure

Notes

 LOVELY PROFESSIONAL UNIVERSITY 31

best relegated to the operating systems to manage it than giving individual users the control of
it. It is not diffi cult for the user-level programs to provide these services but for above mentioned
reasons it is best if this services left with operating system.

Communications

There are instances where processes need to communicate with each other to exchange
information. It may be between processes running on the same computer or running on the
different computers. By providing this service the operating system relieves the user of the
worry of passing messages between processes. In case where the messages need to be passed to
processes on the other computers through a network it can be done by the user programs. The
user program may be customized to the specifi cs of the hardware through which the message
transits and provides the service interface to the operating system.

Error Detection

An error is one part of the system may cause malfunctioning of the complete system. To avoid
such a situation the operating system constantly monitors the system for detecting the errors.
This relieves the user of the worry of errors propagating to various part of the system and causing
malfunctioning.

This service cannot allowed to be handled by user programs because it involves monitoring
and in cases altering area of memory or deallocation of memory for a faulty process. Or may be
relinquishing the CPU of a process that goes into an infi nite loop. These tasks are too critical to
be handed over to the user programs. A user program if given these privileges can interfere with
the correct (normal) operation of the operating systems.

3.2 System Calls

System calls provide an interface between a running program and operating system. System calls
are generally available as assembly language instructions. Several higher level languages such as
C also allow to make system calls directly.

In UNIX operating system the system call interface layer contains entry point in kernel code. All
system resources are managed by the kernel. Any request from user or application that involves
access to any system resource must be handled by kernel code. The user process must not be given
open access to kernel code for security reason. Many opening into kernel code called system calls
are provided to user so that the user processes can invoke the execution of kernel code. System
calls allow processes and users to manipulate system resources.

There are three general methods that are used to pass information (parameters) between a
running program and the operating system.

1. One method is to store parameters in registers.

2. Another is to store parameters in a table in memory and pass the address of table.

3. The third method is to push parameters on stack and allow operating system to pop the
parameters off the stack.

System Calls for Process Management

These types of system calls are used to control the processes. Some examples are end, abort, load,
execute, create process, terminate process etc.

 Example: The exit() system call ends a process and returns a value to it parent.

Operating System

Notes

32 LOVELY PROFESSIONAL UNIVERSITY

In UNIX every process has an alarm clock stored in its system-data segment. When the alarm
goes off, signal SIGALRM is sent to the calling process. A child inherits its parent’s alarm clock
value, but the actual clock isn’t shared. The alarm clock remains set across an exec.

System Calls for Signaling

A signal is a limited form of inter-process communication used in UNIX, UNIX-like, and other
POSIX-compliant operating systems. Essentially it is an asynchronous notifi cation sent to a
process in order to notify it of an event that occurred. The number of signals available is system
dependent. When a signal is sent to a process, the operating system interrupts the process’ normal
fl ow of execution. Execution can be interrupted during any non-atomic instruction. If the process
has previously registered a signal handler, that routine is executed. Otherwise the default signal
handler is executed.

Programs can respond to signals three different ways. These are:

1. Ignore the signal: This means that the program will never be informed of the signal no
matter how many times it occurs.

2. A signal can be set to its default state, which means that the process will be ended when it
receives that signal.

3. Catch the signal: When the signal occurs, the system will transfer control to a previously
defi ned subroutine where it can respond to the signal as is appropriate for the program.

System Calls for File Management

The fi le structure related system calls available in some operating system like UNIX let you
create, open, and close fi les, read and write fi les, randomly access fi les, alias and remove fi les, get
information about fi les, check the accessibility of fi les, change protections, owner, and group of
fi les, and control devices. These operations either use a character string that defi nes the absolute
or relative path name of a fi le, or a small integer called a fi le descriptor that identifi es the I/O
channel. When doing I/O, a process specifi es the fi le descriptor for an I/O channel, a buffer
to be fi lled or emptied, and the maximum size of data to be transferred. An I/O channel may
allow input, output, or both. Furthermore, each channel has a read/write pointer. Each I/O
operation starts where the last operation fi nished and advances the pointer by the number of
bytes transferred. A process can access a channel’s data randomly by changing the read/write
pointer.

These types of system calls are used to manage fi les.

 Example: Create fi le, delete fi le, open, close, read, write etc.

System Calls for Directory Management

You may need the same sets of operations as for fi le management for directories also. If you
have a directory structure for organizing fi les in the fi le system. In addition, for either fi les or
directories, you need to be able to determine the values of various attributes, and perhaps to reset
them if necessary. File attributes include the fi le name, a fi le type, protection codes, accounting
information, and so on. At least two system calls, get fi le attribute and set fi le attribute, are
required for this function. Some operating systems provide many more calls.

System Calls for Protection

Improper use of the system can easily cause a system crash. Therefore some level of control is
required; the design of the microprocessor architecture on basically all modern systems (except

Unit 3: Operating System Structure

Notes

 LOVELY PROFESSIONAL UNIVERSITY 33

embedded systems) offers several levels of control - the (low privilege) level of which normal
applications execute limits the address space of the program to not be able to access nor modify
other running applications nor the operating system itself (called “protected mode” on x86),
it also prevents the application from using any system devices (i.e. the frame buffer, network
devices - any I/O mapped device). But obviously any normal application needs this ability,
thus the operating system is introduced, it executes at the highest level of order and allows the
applications to request for a service - a system call - which is implemented through hooking
interrupt(s). If allowed the system enters a higher privileged state, executes a specifi c set of
instructions which the interrupting program has no direct control over, then returns control to
the former fl ow of execution. This concept also serves as a way to implement security.

With the development of separate operating modes with varying levels of privilege, a mechanism
was needed for transferring control safely from lesser privileged modes to higher privileged
modes. Less privileged code could not simply transfer control to more privileged code at any
arbitrary point and with any arbitrary processor state. To allow it to do so could allow it to break
security. For instance, the less privileged code could cause the higher privileged code to execute
in the wrong order, or provide it with a bad stack.

System Calls for Time Management

Many operating systems provide a time profi le of a program. It indicates the amount of time that
the program executes at a particular location or set of locations. A time profi le requires either a
tracing facility or regular timer interrupts. At every occurrence of the timer interrupt, the value of
the program counter is recorded. With suffi ciently frequent timer interrupts, a statistical picture
of the time spent on various parts of the program can be obtained.

System Calls for Device Management

A program, as it is running, may need additional resources to proceed. Additional resources may
be more memory, tape drives, access to fi les, and so on. If the resources are available, they can be
granted, and control can be returned to the user program; otherwise, the program will have to
wait until suffi cient resources are available.

These types of system calls are used to manage devices.

 Example: Request device, release device, read, write, get device attributes etc.

Task System calls are generally available as assembly language instructions. If I use C
programming can I receive system call or not.

3.3 System Programs

Another aspect of a modern system is the collection of system programs. In the logical computer
hierarchy the lowest level is hardware. Next is the operating system, then the system programs,
and fi nally the application programs. System programs provide a convenient environment for
program development and execution. Some of them are simply user interfaces to system calls;
others are considerably more complex.

They can be divided into these categories:

1. File management: These programs create, delete, copy, rename, print, dump, list, and
generally manipulate fi les and directories.

Operating System

Notes

34 LOVELY PROFESSIONAL UNIVERSITY

2. Status information: Some programs simply ask the system for the date, time, amount
of available memory or disk space, number of users, or similar status information. That
information is then formatted, and is printed to the terminal or other output device or
fi le.

3. File modifi cation: Several text editors may be available to create and modify the content of
fi les stored on disk or tape.

4. Programming-language support: Compilers, assemblers, and interpreters for common
programming languages (such as C, C++, Java, Visual Basic, and PERL) are often provided
to the user with the operating system. Some of these programs are now priced and provided
separately.

5. Program loading and execution: Once a program is assembled or compiled, it must be
loaded into memory to be executed. The system may provide absolute loaders, relocatable
loaders, linkage editors, and overlay loaders. Debugging systems for either higher-level
languages or machine language are needed also.

6. Communications: These programs provide the mechanism for creating virtual connections
among processes, users, and different computer systems. They allow users to send messages
to one another’s screens, to browse web pages, to send electronic-mail messages, to log in
remotely, or to transfer fi les from one machine to another.

Most operating systems are supplied with programs that solve common problems, or perform
common operations. Such programs include web browsers, word processors and text formatters,
spreadsheets, database systems, compiler compilers, plotting and statistical-analysis packages,
and games. These programs are known as system utilities or application programs.

Perhaps the most important system program for an operating system is the command interpreter,
the main function of which is to get and execute the next user-specifi ed command.

Many of the commands given at this level manipulate fi les: create, delete, list, print, copy,
execute, and so on. These commands can be implemented in two general ways. In one approach,
the command interpreter itself contains the code to execute the command.

 Example: A command to delete a fi le may cause the command interpreter to jump to a
section of its code that sets up the parameters and makes the appropriate system call. In this case,
the number of commands that can be given determines the size of the command interpreter, since
each command requires its own implementing code.

An alternative approach-used by UNIX, among other operating systems implements most
commands by system programs. In this case, the command interpreter does not understand the
command in any way; it merely uses the command to identify a fi le to be loaded into memory
and executed. Thus, the UNIX command to delete a fi le.

3.4 Operating System Structure

The operating system structure is a container for a collection of structures for interacting with
the operating system’s fi le system, directory paths, processes, and I/O subsystem. The types
and functions provided by the operating system substructures are meant to present a model for
handling these resources that is largely independent of the operating system. There are different
types of structure as described in Figure 3.1.

Unit 3: Operating System Structure

Notes

 LOVELY PROFESSIONAL UNIVERSITY 35

other programs

other programs

sh

cc

nroff

a.out

date

wc

grepgrep
ed

vi

Id

as

comp

cpp

nroff

hardware

Figure 3.1: UNIX Operating System

It’s very common to fi nd pictures like Figure 3.2 below that describe the basic structure of an
operating system.

Applications

Interface

‘Outer’ OS

Kernel

Hardware

Figure 3.2: OS Structure Concepts

You might fi nd that some versions of this have different numbers of rings. What does each part
represent?

1. Hardware: The hardware is, obviously, the physical hardware and not particularly
interesting to us in this module.

2. Kernel: The kernel of an operating system is the bottom-most layer of software present on
a machine and the only one with direct access to the hardware. The code in the kernel is

Operating System

Notes

36 LOVELY PROFESSIONAL UNIVERSITY

the most ‘trusted’ in the system - and all requests to do anything signifi cant must go via the
kernel. It provides the most key facilities and functions of the system.

3. Outer OS: Surrounding the kernel are other parts of the operating system. These perform
less critical functions - for example, the graphics system which is ultimately responsible for
what you see on the screen.

4. Interface: The interface provides a mechanism for you to interact with the computer.

5. Applications: There are what do the actual work - they can be complex (for example Offi ce)
or simple (for example the is command commonly found on unix and Linux systems that
lists fi les in a directory (or folder).

3.4.1 Monolithic Systems

This approach is well known as “The Big Mess”. The operating system is written as a collection of
procedures, each of which can call any of the other ones whenever it needs to. When this technique
is used, each procedure in the system has a well-defi ned interface in terms of parameters and
results, and each one is free to call any other one, if the latter provides some useful computation
that the former needs.

For constructing the actual object program of the operating system when this approach is used,
one compiles all the individual procedures, or fi les containing the procedures, and then binds
them all together into a single object fi le with the linker. In terms of information hiding, there
is essentially none- every procedure is visible to every other one i.e. opposed to a structure
containing modules or packages, in which much of the information is local to module, and only
offi cially designated entry points can be called from outside the module.

However, even in Monolithic systems, it is possible to have at least a little structure. The services
like system calls provide by the operating system are requested by putting the parameters in
well-defi ned places, such as in registers or on the stack, and then executing a special trap
instruction known as a kernel call or supervisor call.

Operating
System
Process

Operating
System
Process

Operating
System
Process

Operating
System
Process

Operating
System
Process

Operating
System
Process

Operating System

Figure 3.3: Monolithic System

Unit 3: Operating System Structure

Notes

 LOVELY PROFESSIONAL UNIVERSITY 37

3.4.2 Client-server Model

A trend in modern operating systems is to take this idea of moving code up into higher layers
even further, and remove as much as possible from the operating system, leaving a minimal
kernel. The usual approach is to implement most of the operating system functions in user
processes. To request a service, such as reading a block of a fi le, a user process (presently known
as the client process) sends the request to a server process, which then does the work and sends
back the answer.

In Client-server Model, all the kernel does is handle the communication between clients and
servers. By splitting the operating system up into parts, each of which only handles one fact of
the system, such as fi le service, process service, terminal service, or memory service, each part
becomes small and manageable; furthermore, because all the servers run as user-mode processes,
and not in kernel mode, they do not have direct access to the hardware. As a consequence, if a
bug in the fi le server is triggered, the fi le service may crash, but this will not usually bring the
whole machine down.

Another advantage of the client-server model is its adaptability to use in distributed system. If a
client communicates with a server by sending it messages, the client need not know whether the
message is handled locally in its own machine, or whether it was sent across a network to a server
on a remote machine. As far as the client is concerned, the same thing happens in both cases: a
request was sent and a reply came back.

Client
application

Memory
server

Network
server

Process
server

File
server

Display
server

User

Kernel

Microkernel

Hardware

Figure 3.4: Client-server Model

3.4.3 Exokernel

Exokernel is an operating system kernel developed by the MIT Parallel and Distributed Operating
Systems group, and also a class of similar operating systems.

The idea behind exokernel is to force as few abstractions as possible on developers, enabling
them to make as many decisions as possible about hardware abstractions.

Applications may request specifi c memory addresses, disk blocks, etc. The kernel only ensures that
the requested resource is free, and the application is allowed to access it. This low-level hardware
access allows the programmer to implement custom abstractions, and omit unnecessary ones,

Operating System

Notes

38 LOVELY PROFESSIONAL UNIVERSITY

most commonly to improve a program’s performance. It also allows programmers to choose
what level of abstraction they want, high, or low.

Exokernels can be seen as an application of the end-to-end principle to operating systems, in that
they do not force an application program to layer its abstractions on top of other abstractions that
were designed with different requirements in mind.

 Example: In the MIT Exokernel project, the Cheetah web server stores preformatted
Internet Protocol packets on the disk, the kernel provides safe access to the disk by preventing
unauthorized reading and writing, but how the disk is abstracted is up to the application or the
libraries the application uses.

Operating systems defi ne the interface between applications and physical resources.
Unfortunately, this interface can signifi cantly limit the performance and implementation
freedom of applications. Traditionally, operating systems hide information about machine
resources behind high-level abstractions such as processes, fi les, address spaces and interprocess
communication. These abstractions defi ne a virtual machine on which applications execute; their
implementation cannot be replaced or modifi ed by untrusted applications.

Hardcoding the implementations of these abstractions is inappropriate for three main reasons:

1. It denies applications the advantages of domain-specifi c optimizations,

2. It discourages changes to the implementations of existing abstractions, and

3. It restricts the fl exibility of application builders, since new abstractions can only be added
by awkward emulation on top of existing ones (if they can be added at all).

These problems can be solved through application level resource management in which traditional
operating system abstractions, such as Virtual Memory (VM) and Interprocess Communication
(IPC), are implemented entirely at application level by untrusted software. In this architecture, a
minimal kernel-called an exokernel-securely multiplexes available hardware resources. Library
operating systems, working above the exokernel interface, implement higher-level abstractions.

Application writers select libraries or implement their own. New implementations of library
operating systems are incorporated by simply relinking application executables. Applications
can benefi t greatly from having more control over how machine resources are used to implement
higher-level abstractions. The high cost of general-purpose virtual memory primitives reduces
the performance of persistent stores, garbage collectors, and distributed shared memory systems.
Application-level control over fi le caching can reduce application-running time considerably.
Application-specifi c virtual memory policies can increase application performance. The
inappropriate fi le-system implementation decisions can have a dramatic impact on the
performance of databases. The exceptions can be made an order of magnitude faster by deferring
signal handling to applications.

To provide applications control over machine resources, an exokernel defi nes a low-level
interface. The exokernel architecture is founded on and motivated by a single, simple, and old
observation that the lower the level of a primitive, the more effi ciently it can be implemented,
and the more latitude it grants to implementors of higher-level abstractions.

To provide an interface that is as low-level as possible (ideally, just the hardware interface), an
exokernel designer has a single overriding goal of separating protection from management. For
instance, an exokernel should protect framebuffers without understanding windowing systems
and disks without understanding fi le systems.

One approach is to give each application its own virtual machine. Virtual machines can have severe
performance penalties. Therefore, an exokernel uses a different approach - it exports hardware
resources rather than emulating them, which allows an effi cient and simple implementation.

Unit 3: Operating System Structure

Notes

 LOVELY PROFESSIONAL UNIVERSITY 39

An exokernel employs three techniques to export resources securely:

1. By using secure bindings, applications can securely bind to machine resources and handle
events.

2. By using visible re-source revocation, applications participate in a resource revocation
protocol.

3. By using an abort protocol, an exokernel can break secure bindings of uncooperative
applications by force.

The advantages of exokernel systems among others are:

1. Exokernels can be made effi cient due to the limited number of simple primitives they must
provide

2. Low-level secure multiplexing of hardware resources can be provided with low overhead

3. Traditional abstractions, such as VM and IPC, can be implemented effi ciently at application
level, where they can be easily extended, specialized, or replaced

4. Applications can create special-purpose implementations of abstractions, tailored to their
functionality and performance needs.

Finally, many of the hardware resources in microkernel systems, such as the network, screen, and
disk, are encapsulated in heavyweight servers that cannot be bypassed or tailored to application-
specifi c needs. These heavyweight servers can be viewed as fi xed kernel subsystems that run in
user-space.

fd

read
ExOS

UNIX Application

Specialized
Application

T
C
P

F
S

p

Block b = Page p

b. . .

Buffer Cache Registry

Kernelb

ExOS
Subset

Figure 3.5: Exokernel

Task How application-specifi c virtual memory policies increase application
performance? Discuss.

Operating System

Notes

40 LOVELY PROFESSIONAL UNIVERSITY

3.5 Layered Structure

A generalization of the approach as shown in the Figure 3.6 for organizing the operating system
as a hierarchy of layers, each one constructed upon the one below it.

Layer M

New
operations M

Existing
operations M

hidden
operations M

Layer M - 1

Figure 3.6: An Operating System Layer

The system has 6 layers. Layer 0 dealt with allocation of the processor, switching between
processes when interrupts occurred or timers expired. Above layer 0, the system consisted of
sequential processes, each of which could be programmed without having to worry about the
fact that multiple processes were running on a single processor. In other words, layer 0 provided
the basic multiprogramming of the CPU.

Operator

User Programme

I/O Management

Operator/Process Communication

Memory (Main/secondary) Management

Processor Allocation + Multiprogramming

Hardware

Figure 3.7: Layered System

Layer 1 did the memory management. It allocated space for processes in main memory and on a
512k word drum used for holding parts of processes (pages) for which there was no room in main
memory. Above layer 1, processes did not have to worry about whether they were in memory
or on the drum; the layer 1 software took care of making sure pages were brought into memory
whenever they were needed.

Layer 2 handled communication between each process and the operator console. Above this
layer each process effectively had its own operator console.

Layer 3 took care of managing the I/O devices and buffering the information streams to and
from them. Above layer 3 each process could deal with abstract I/O devices with nice properties,
instead of real devices with many peculiarities.

Unit 3: Operating System Structure

Notes

 LOVELY PROFESSIONAL UNIVERSITY 41

Layer 4 was where the user programs were found. They did not have to worry about process,
memory, console, or I/O management.

The system operator process was located in layer 5.

Application program

ROM BIOS device drivers

Resident system program

MS DOS device drivers

Figure 3.8: MS - DOS Layer Structure

In MS-DOS, the interfaces and levels of functionality are not well separated. For instance,
application programs are able to access the basic I/O routines to write directly to the display
and disk drives. Such freedom leaves MS-DOS vulnerable to errant (or malicious) programs,
causing entire system crashes when user programs fail. Of course, MS-DOS was also limited
by the hardware of its era. Because the Intel 8088 for which it was written provides no dual
mode and no hardware protection, the designers of MS-DOS had no choice but to leave the base
hardware accessible.

The main advantage of the layered approach is modularity. The layers are selected such that
each uses functions (operations) and services of only lower level layers. This approach simplifi es
debugging and system verifi cation. The fi rst layer can be debugged without any concern for
the rest of the system, because, by defi nition, it uses only the basic hardware (which is assumed
correct) to implement its functions. Once the fi rst layer is debugged, its correct functioning can
be assumed while the second layer is worked on, and so on. If an error is found during the
debugging of a particular layer, we know that the error must be on that layer, because the layers
below it are already debugged. Thus, the design and implementation of the system is simplifi ed
when the system is broken down into layers.

Each layer is implemented using only those operations provided by lower level layers. A layer
does not need to know how these operations are implemented; it needs to know only what these
operations do. Hence, each layer hides the existence of certain data structures, operations, and
hardware from higher-level layers.

The layer approach to design was fi rst used in the operating system at the Technische Hogeschool
Eindhoven. The system was defi ned in six layers. The bottom layer was the hardware. The next
layer implemented CPU scheduling. The next layer implemented memory management; the
memory-management scheme was virtual memory. Layer 3 contained device driver for the
operator’s console. Because it and I/O buffering (level 4) were placed above memory management,
the device buffers could be placed in virtual memory. The I/O buffering was also above the
operator’s console, so that I/O error conditions could be output to the operator’s console.

Operating System

Notes

42 LOVELY PROFESSIONAL UNIVERSITY

This approach can be used in many ways. For example, the Venus system was also designed
using a layered approach. The lower layers (0 to 4), dealing with CPU scheduling and memory
management, were then put into microcode. This decision provided the advantages of additional
speed of execution and a clearly defi ned interface between the microcoded layers and the higher
layers.

The major diffi culty with the layered approach involves the appropriate defi nition of the various
layers. Because a layer can use only those layers that are at a lower level, careful planning is
necessary.

 Example: The device driver for the backing store (disk space used by virtual-memory
algorithms) must be at a level lower than that of the memory-management routines, because
memory management requires the ability to use the backing store.

Other requirements may not be so obvious. The backing-store driver would normally be above
the CPU scheduler, because the driver may need to wait for I/O and the CPU can be rescheduled
during this time. However, on a large system, the CPU scheduler may have more information
about all the active processes than can fi t in memory. Therefore, this information may need to be
swapped in and out of memory, requiring the backing-store driver routine to be below the CPU
scheduler.

A fi nal problem with layered implementations is that they tend to be less effi cient than other
types. For instance, for a user program to execute an I/O operation, it executes a system call
which is trapped to the I/O layer, which calls the memory-management layer, through to the CPU
scheduling layer, and fi nally to the hardware. At each layer, the parameters may be modifi ed,
data may need to be passed, and so on. Each layer adds overhead to the system call and the net
result is a system call that takes longer than one does on a non-layered system.

These limitations have caused a small backlash against layering in recent years. Fewer layers
with more functionality are being designed, providing most of the advantages of modularized
code while avoiding the diffi cult problems of layer defi nition and interaction. For instance, OS/2
is a descendant of MS-DOS that adds multitasking and dual-mode operation, as well as other
new features.

Because of this added complexity and the more powerful hardware for which OS/2 was designed,
the system was implemented in a more layered fashion. Contrast the MS-DOS structure to that of
the OS/2. It should be clear that, from both the system-design and implementation standpoints,
OS/2 has the advantage. For instance, direct user access to low-level facilities is not allowed,
providing the operating system with more control over the hardware and more knowledge of
which resources each user program is using.

As a further example, consider the history of Windows NT. The fi rst release had a very
layer-oriented organization. However, this version suffered low performance compared to that
of Windows 95. Windows NT 4.0 redressed some of these performance issues by moving layers
from user space to kernel space and more closely integrating them.

3.6 Virtual Machine

A virtual machine is a type of computer application used to create a virtual environment, which
is referred to as virtualization. Virtualization allows the user to see the infrastructure of a network
through a process of aggregation. Virtualization may also be used to run multiple operating
systems at the same time. Through the help of a virtual machine, the user can operate software
located on the computer platform.

There are different types of virtual machines. Most commonly, the term is used to refer to
hardware virtual machine software, also known as a hypervisor or virtual machine monitor. This
type of virtual machine software makes it possible to perform multiple identical executions on

Unit 3: Operating System Structure

Notes

 LOVELY PROFESSIONAL UNIVERSITY 43

one computer. In turn, each of these executions runs an operating system. This allows multiple
applications to be run on different operating systems, even those they were not originally
intended for.

Virtual machine can also refer to application virtual machine software. With this software, the
application is isolated from the computer being used. This software is intended to be used on a
number of computer platforms. This makes it unnecessary to create separate versions of the same
software for different operating systems and computers. Java Virtual Machine is a very well
known example of an application virtual machine.

A virtual machine can also be a virtual environment, which is also known as a virtual private
server. A virtual environment is used for running programs at the user level. Therefore, it is used
solely for applications and not for drivers or operating system kernels.

A virtual machine may also be a group of computers that work together to create a more powerful
machine. In this type of virtual machine, the software makes it possible for one environment to
be formed throughout several computers. This makes it appear to the end user as if he or she is
using a single computer, when there are actually numerous computers at work.

The heart of the system, known as the virtual machine monitor, runs on the bare hardware and
does the multiprogramming, providing not one, but several virtual machines to the next layer up.
However, unlike all other operating systems, these virtual machines are not extended machines,
with fi les and other nice features. Instead, they are exact copies of the bare hardware, including
kernel/user mod, I/O, interrupts, and everything else the real machine has.

Each virtual machine is identical to the true hardware; therefore, each one can run any operating
system that will run directly on the hardware. Different virtual machines can, and usually do, run
different operating systems. Some run one of the descendants of OF/360 for batch processing,
while other ones run a single-user, interactive system called CMS (Conversational Monitor
System) fro timesharing users.

Conceptually, a computer system is made up of layers. The hardware is the lowest level in all
such systems. The kernel running at the next level uses the hardware instructions to create a set
of system calls for use by outer layers. The systems programs above the kernel are therefore able
to use either system calls or hardware instructions, and in some ways these programs do not
differentiate between these two. Thus, although they are accessed differently, they both provide
functionality that the program can use to create even more advanced functions. System programs,
in turn, treat the hardware and the system calls as though they both are at the same level.

Some systems carry this scheme even a step further by allowing the system programs to be called
easily by the application programs. As before, although the system programs are at a level higher
than that of the other routines, the application programs may view everything under them in
the hierarchy as though the latter were part of the machine itself. This layered approach is taken
to its logical conclusion in the concept of a virtual machine. The VM operating system for IBM
systems is the best example of the virtual-machine concept, because IBM pioneered the work in
this area.

By using CPU scheduling and virtual-memory techniques, an operating system can create the
illusion of multiple processes, each executing on its own processor with its own (virtual) memory.
Of course, normally, the process has additional features, such as system calls and a fi le system,
which are not provided by the bare hardware. The virtual-machine approach, on the other hand,
does not provide any additional function, but rather provides an interface that is identical to
the underlying bare hardware. Each process is provided with a (virtual) copy of the underlying
computer.

The resources of the physical computer are shared to create the virtual machines. CPU scheduling
can be used to share the CPU and to create the appearance that users have their own processor.
Spooling and a fi le system can provide virtual card readers and virtual line printers. A normal
user timesharing terminal provides the function of the virtual machine operator’s console.

Operating System

Notes

44 LOVELY PROFESSIONAL UNIVERSITY

target
application

target
application

target operating system

host hardware

target
application

host operating system

malicious
service

malicious
service

Before infection

After infection

target
application

target operating system

virtual-machine monitor (VMM)

host hardware

Figure 3.9: Virtual Machine

A major diffi culty with the virtual-machine approach involves disk systems. Suppose that the
physical machine has three disk drives but wants to support seven virtual machines. Clearly, it
cannot allocate a disk drive to each virtual machine. Remember that the virtual-machine software
itself will need substantial disk space to provide virtual memory and spooling. The solution is to
provide virtual disks, which are identical in all respects except size; these are termed minidisks in
IBM’s VM operating system. The system implements each minidisk by allocating as many tracks
as the minidisk needs on the physical disks. Obviously, the sum of the sizes of all minidisks must
be less than the actual amount of physical disk space available.

Users thus are given their own virtual machine. They can then run any of the operating systems or
software packages that are available on the underlying machine. For the IBM VM system, a user
normally runs CMS, a single-user interactive operating system. The virtual-machine software
is concerned with multiprogramming multiple virtual machines onto a physical machine, but
does not need to consider any user-support software. This arrangement may provide a useful
partitioning of the problem of designing a multiuser interactive system into two smaller pieces.

3.7 Summary

z The operating system provides an environment by hiding the details of underlying
hardware where the user can conveniently run programs. All the user sees is that the I/O
has been performed without any details.

z The output of a program may need to be written into new fi les or input taken from some
fi les. It involves secondary storage management.

z The user does not have to worry about secondary storage management. There are instances
where processes need to communicate with each other to exchange information.

z It may be between processes running on the same computer or running on the different
computers. By providing this service the operating system relieves the user of the worry of
passing messages between processes.

Unit 3: Operating System Structure

Notes

 LOVELY PROFESSIONAL UNIVERSITY 45

z An error is one part of the system may cause malfunctioning of the complete system. To
avoid such a situation the operating system constantly monitors the system for detecting
the errors.

z System calls provide an interface between the process and the operating system. These
types of system calls are used to control the processes.

z A signal is a limited form of inter-process communication used in UNIX, UNIX-like, and
other POSIX-compliant operating systems. The number of signals available is system
dependent. File Management System Calls are used to manage fi les.

z Device Management System Calls are used to manage devices. System programs provide a
convenient environment for program development and execution. Communications are the
programs that provide the mechanism for creating virtual connections among processes,
users, and different computer systems.

3.8 Keywords

Device Management System Calls: These types of system calls are used to manage devices.

Error Detection: This is a process where the operating system constantly monitors the system for
detecting the malfunctioning of it.

File Management System Calls: These types of system calls are used to manage fi les.

File System Manipulation: Creation, deletion, modifi cation or updation of fi les is known as File
System Manipulation.

I/O Operations: It refers to the communication between an information processing system and
the outside world - possibly a human, or another information processing system.

File: A fi le is a collected of related information defi ned by its creator. Computer can store fi les on
the disk (secondary storage), which provide long term storage.

Operating System: An operating system is itself a computer program which must be executed.

Primary-Memory: Primary-Memory or Main-Memory is a large array of words or bytes and it
provides storage that can be access directly by the CPU.

Process Communication: A processes need to communicate with other process or with the user
to exchange the information, this is known as Process Communication.

Process: A process is only one instant of a program in execution.

Processes Control System Calls: These types of system calls are used to control the processes.

Program Execution: Program execution is a method in which user given commands call up a
processes and pass data to them.

Protection: It refers to mechanism for controlling the access of programs, processes, or users to
the resources defi ned by a computer system.

Signal: A signal is a limited form of inter-process communication used in some operating
systems.

System calls: It provides an interface between the process and the operating system.

Operating System

Notes

46 LOVELY PROFESSIONAL UNIVERSITY

3.9 Self Assessment

Fill in the blanks:

1. Running a program involves the and memory.

2. CPU scheduling is needed in case of

3. Reading from or writing to a fi le requires

4. System calls provide an interface between the and the

5. A system call is implemented through

6. System programs provide to users so that they do not need to write their own
....................... for program development and

7. structure is known as “The Big Mess”.

8. layers are there in the layered system structure.

9. Exokernel is developed by

10. In Client-server Model, all the does is handle the communication between
clients and servers.

State whether the following statements are true or false:

11. Users programme cannot control I/O service.

12. A process needs to communicate only with OS.

13. OS provides service to manage the primary memory only.

3.10 Review Questions

1. What are the differences between a programme and a process? Explain your answer with
example.

2. Explain process management briefl y.

3. What are the differences between primary storage and secondary storage?

4. Write a short notes on fi le management and I/O system management.

5. Do you think a single user system requires process communication? Support your answer
with logic.

6. Suppose a user program faced an error during memory access. What will it do then? Will
it be informed to the OS? Explain.

7. Defi ne command interpreter. Describe its role in operating system.

8. What is signal? How a program can respond to signals?

9. How information (parameters) is passed between a running program and the operating
system?

10. What is protected mode? How is it related to the operating system?

Unit 3: Operating System Structure

Notes

 LOVELY PROFESSIONAL UNIVERSITY 47

Answers: Self Assessment

1. allocating, deallocating 2. multiprocess 3. I/O service

4. process, operating system 5. hooking interrupt(s)

6. basic functioning, environment, execution (shells) 7. Monolithic Systems

8. Six 9. MIT 10. kernel 11. True

12. False 13. False

3.11 Further Readings

Books Andrew M. Lister, Fundamentals of Operating Systems, Wiley.

 Andrew S. Tanenbaum and Albert S. Woodhull, Systems Design and Implementation,
Prentice Hall.

 Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.

 Colin Ritchie, Operating Systems, BPB Publications.

 Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.

 I.A. Dhotre, Operating System, Technical Publications.

 Milankovic, Operating System, Tata MacGraw Hill, New Delhi.

 Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons,
Seventh Edition.

 Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.

Online links www.en.wikipedia.org

 www.web-source.net

 www.webopedia.com

Operating System

Notes

48 LOVELY PROFESSIONAL UNIVERSITY

Unit 4: Process Management

CONTENTS

Objectives

Introduction

4.1 Process Concepts

4.2 PCB (Process Control Blocks)

4.3 Operation on Processes

 4.3.1 Processes Creation

 4.3.2 Process State Transitions

 4.3.3 Process Termination

4.4 Cooperating Processes

4.5 Inter-process Communication

4.6 Process Communication in Client-Server Environment

4.7 Concept of Thread

4.8 User Level and Kernel Level Threads

4.9 Multi-threading

4.10 Thread Libraries

4.11 Threading Issues

4.12 Processes vs. Threads

4.13 Benefi ts of Threads

4.14 Summary

4.15 Keywords

4.16 Self Assessment

4.17 Review Questions

4.18 Further Readings

Objectives

After studying this unit, you will be able to:

z Explain process concepts

z Defi ne PCB

z Describe operation on processes

z Explain inter-process communication

z Describe concept of thread

Unit 4: Process Management

Notes

 LOVELY PROFESSIONAL UNIVERSITY 49

Introduction

Earlier a computer was used to be fasten the jobs pertaining to computation diligently and
incessantly for a single person. Soon it was realized that the computer was far more powerful than
just carrying out a single man’s single job. Such was the speed of operation that the CPU would
sit idle for most of the time awaiting user input. The CPU was certainly capable of carrying out
many jobs simultaneously. It could also support many users simultaneously. But, the operating
systems then available were not capable of this support. The operating systems facilitating a
single-user support at a time was felt inadequate. Then a mechanism was developed which
would prevent the wastage of CPU cycles. Hence multi-tasking systems were developed.

In a multi-tasking system a job or task is submitted as what is known as a process. Multi-tasking
operating systems could handle multiple processes on a single processor.

Process is a unit of program execution that enables the systems to implement multi-tasking
behavior. Most of the operating systems today have multi-processing capabilities. This unit is
dedicated to process and process related issues.

In this unit, present and discuss the mechanisms that support or enforce more structured forms
of interprocess communications. Subsequent sections are devoted to messages, an extremely
versatile and popular mechanism in both centralized and distributed systems, and to facilitate
interprocess communication and synchronization.

4.1 Process Concepts

An operating system manages each hardware resource attached with the computer by representing
it as an abstraction. An abstraction hides the unwanted details from the users and programmers
allowing them to have a view of the resources in the form, which is convenient to them. A process
is an abstract model of a sequential program in execution. The operating system can schedule a
process as a unit of work.

The term “process” was fi rst used by the designers of the MULTICS in 1960’s. Since then, the
term “process” is used somewhat interchangeably with ‘task’ or ‘job’. The process has been given
many defi nitions as mentioned below:

1. A program in Execution.

2. An asynchronous activity.

3. The ‘animated spirit’ of a procedure in execution.

4. The entity to which processors are assigned.

5. The ‘dispatchable’ unit.

Though there is no universally agreed upon defi nition, but the defi nition “Program in Execution”
is the one that is most frequently used. And this is a concept you will use in the present study of
operating systems.

Now that you agreed upon the defi nition of process, the question is - what is the relation between
process and program. It is same beast with different name or when this beast is sleeping (not
executing) it is called program and when it is executing becomes process. Well, to be very precise.
Process is not the same as program.

A process is more than a program code. A process is an ‘active’ entity as oppose to program
which is considered to be a ‘passive’ entity. As you all know that a program is an algorithm
expressed with the help of a programming language. A program is a passive entity sitting on
some secondary storage device.

Operating System

Notes

50 LOVELY PROFESSIONAL UNIVERSITY

Process, on the other hand, includes:

1. Current value of Program Counter (PC)

2. Contents of the processors registers

3. Value of the variables

4. The process-stack (SP) which typically contains temporary data such as subroutine
parameter, return address, and temporary variables.

5. A data section that contains global variables.

6. A process is the unit of work in a system.

In Process model, all software on the computer is organized into a number of sequential processes.
A process includes PC, registers, and variables. Conceptually, each process has its own virtual
CPU. In reality, the CPU switches back and forth among processes. (The rapid switching back
and forth is called multi-programming).

A process includes, besides instructions to be executed, the temporary data such as subroutine
parameters, return addresses and variables (stored on the stack), data section having global
variables (if any), program counter value, register values and other associated resources.
Although two processes may be associated with the same program, yet they are treated as two
separate processes having their respective set of resources.

Code Data

Process Status

Resources

Abstract Machine Environment (OS)

Figure 4.1: A Schematic representation of a Process

Task Process stack contains temporary data what about program counter.

4.2 PCB (Process Control Blocks)

The operating system groups all information that it needs about a particular process into a data
structure called a process descriptor or a Process Control Block (PCB). Whenever a process is created
(initialized, installed), the operating system creates a corresponding process control block to
serve as its run-time description during the lifetime of the process. When the process terminates,
its PCB is released to the pool of free cells from which new PCBs are drawn. The dormant state
is distinguished from other states because a dormant process has no PCB. A process becomes
known to the O.S. and thus eligible to compete for system resources only when it has an active
PCB associate with it.

Information stored in a PCB typically includes some or all of the following:

1. Process name (ID)

2. Priority

Unit 4: Process Management

Notes

 LOVELY PROFESSIONAL UNIVERSITY 51

3. State (ready, running, suspended)

4. Hardware state.

5. Scheduling information and usage statistics

6. Memory management information (registers, tables)

7. I/O Status (allocated devices, pending operations)

8. File management information

9. Accounting information.

Once constructed for a newly created process, the PCB is fi lled with the programmer defi ned
attributes found in the process template or specifi ed as the parameters of the CREATE-PROCESS
operating system call. Whenever a process is suspended, the contents of the processor registers
are usually saved on the stack, and the pointer to the related stack frame is stored in the PCB. In
this way, the hardware state can be restored when the process is scheduled to run again.

A process control block or PCB is a data structure (a table) that holds information about a process.
Every process or program that runs needs a PCB. When a user requests to run a particular
program, the operating system constructs a process control block for that program.

Typical information that is stored in a process control block is:

1. The location the process in memory

2. The priority of the process

3. A unique process identifi cation number (called PID)

4. The current process state (ready, running, blocked)

5. Associated data for the process.

The PCB is a certain store that allows the operating systems to locate key information about a
process. Thus, the PCB is the data structure that defi nes a process to the operating systems.

Process state

Process number

Parent process number

Program counter

Register

Memory limits

List of open files

Figure 4.2: Process Control Block or PCB

4.3 Operation on Processes

Modern operating systems, such as UNIX, execute processes concurrently. Although there is a
single Central Processor (CPU), which execute the instructions of only one program at a time, the
operating system rapidly switches the processor between different processes (usually allowing

Operating System

Notes

52 LOVELY PROFESSIONAL UNIVERSITY

a single process a few hundred microseconds of CPU time before replacing it with another
process.)

Some of these resources (such as memory) are simultaneously shared by all processes. Such
resources are being used in parallel between all running processes on the system. Other resources
must be used by one process at a time, so must be carefully managed so that all processes get
access to the resource. Such resources are being used in concurrently between all running
processes on the system.

The most important example of a shared resource is the CPU, although most of the I/O devices
are also shared. For many of these shared resources the operating system distributes the time a
process requires of the resource to ensure reasonable access for all processes. Consider the CPU:
the operating system has a clock which sets an alarm every few hundred microseconds. At this
time the operating system stops the CPU, saves all the relevant information that is needed to
re-start the CPU exactly where it last left off (this will include saving the current instruction being
executed, the state of the memory in the CPUs registers, and other data), and removes the process
from the use of the CPU.

The operating system then selects another process to run, returns the state of the CPU to what it
was when it last ran this new process, and starts the CPU again. Let’s take a moment to see how
the operating system manages this.

The processes in the system can execute concurrently, and they must be created and deleted
dynamically. Thus, the operating system must provide a mechanism (or facility) for process
creation and termination.

4.3.1 Processes Creation

The creation of a process requires the following steps. The order in which they are carried out is
not necessarily the same in all cases.

1. Name: The name of the program which is to run as the new process must be known.

2. Process ID and Process Control Block: The system creates a new process control block,
or locates an unused block in an array. This block is used to follow the execution of the
program through its course, keeping track of its resources and priority. Each process
control block is labeled by its PID or process identifi er.

3. Locate the program to be executed on disk and allocate memory for the code segment in
RAM.

4. Load the program into the code segment and initialize the registers of the PCB with the
start address of the program and appropriate starting values for resources.

5. Priority: A priority must be computed for the process, using a default for the type of
process and any value which the user specifi ed as a `nice’ value.

6. Schedule the process for execution.

Process Hierarchy: Children and Parent Processes

In a democratic system anyone can choose to start a new process, but it is never users which
create processes but other processes! That is because anyone using the system must already be
running a shell or command interpreter in order to be able to talk to the system, and the command
interpreter is itself a process.

When a user creates a process using the command interpreter, the new process becomes a child
of the command interpreter. Similarly the command interpreter process becomes the parent for
the child. Processes therefore form a hierarchy.

Unit 4: Process Management

Notes

 LOVELY PROFESSIONAL UNIVERSITY 53

Root Node Level 0

Level 1

Level 2

Child#1 Child#2 Child#3

Figure 4.3: Process Hierarchies

The processes are linked by a tree structure. If a parent is signaled or killed, usually all its children
receive the same signal or are destroyed with the parent. This doesn’t have to be the case – it is
possible to detach children from their parents – but in many cases it is useful for processes to be
linked in this way.

When a child is created it may do one of two things.

1. Duplicate the parent process.

2. Load a completely new program.

Similarly the parent may do one of two things.

1. Continue executing along side its children.

2. Wait for some or all of its children to fi nish before proceeding.

The specifi c attributes of the child process that differ from the parent process are:

1. The child process has its own unique process ID.

2. The parent process ID of the child process is the process ID of its parent process.

3. The child process gets its own copies of the parent process’s open fi le descriptors.
Subsequently changing attributes of the fi le descriptors in the parent process won’t affect
the fi le descriptors in the child, and vice versa. However, the fi le position associated with
each descriptor is shared by both processes.

4. The elapsed processor times for the child process are set to zero.

5. The child doesn’t inherit fi le locks set by the parent process.

6. The child doesn’t inherit alarms set by the parent process.

7. The set of pending signals for the child process is cleared. (The child process inherits its
mask of blocked signals and signal actions from the parent process.)

4.3.2 Process State Transitions

Blocking: It occurs when process discovers that it cannot continue. If running process initiates an
I/O operation before its allotted time expires, the running process voluntarily relinquishes the
CPU.

This state transition is:

Block: Running? Block.

Time-Run-Out: It occurs when the scheduler decides that the running process has run long
enough and it is time to let another process have CPU time.

Operating System

Notes

54 LOVELY PROFESSIONAL UNIVERSITY

This state transition is:

Time-Run-Out: Running? Ready.

Dispatch: It occurs when all other processes have had their share and it is time for the fi rst
process to run again

This state transition is:

Dispatch: Ready? Running.

Wakeup: It occurs when the external event for which a process was waiting (such as arrival of
input) happens.

This state transition is:

Wakeup: Blocked? Ready.

Admitted: It occurs when the process is created.

This state transition is:

Admitted: New? Ready.

Exit: It occurs when the process has fi nished execution.

This state transition is:

Exit: Running? Terminated.

New

Ready

Blocked

Running
Dispatch

Terminated

Admitted

I/O or event
completion

I/O or
wait event

Exit

Processor
Ready queue

Blocked queue

Figure 4.4: Process State Transitions

Unit 4: Process Management

Notes

 LOVELY PROFESSIONAL UNIVERSITY 55

New

Ready

Blocked

Running
Dispatch

Terminated

Admitted

I/O or event
completion

I/O or
wait event

Exit

Processor
Ready queue

Blocked queue

Interrupt

Figure 4.5: Process State Transitions

4.3.3 Process Termination

Processes terminate in one of two ways:

1. Normal Termination occurs by a return from main or when requested by an explicit call to
exit.

2. Abnormal Termination occurs as the default action of a signal or when requested by
abort.

3. On receiving a signal, a process looks for a signal-handling function. Failure to fi nd a
signal-handling function forces the process to call exit, and therefore to terminate.

4. A parent may terminate the execution of one of its children for a variety of reasons, such as
these:

(a) The child has exceeded its usage of some of the resources that it has been allocated.
This requires the parent to have a mechanism to inspect the state of its children.

(b) The task assigned to the child is no longer required.

(c) The parent is exiting, and the operating system does not allow a child to continue
if its parent terminates. On such systems, if a process terminates (either normally
or abnormally), then all its children must also be terminated. This phenomenon,
referred to as cascading termination, is normally initiated by the operating system.

4.4 Cooperating Processes

Concurrent processes executing in the operating system allows for the processes to cooperate
(both mutually or destructively) with other processes. Processes are cooperating if they can affect
each other. The simplest example of how this can happen is where two processes are using the
same fi le. One process may be writing to a fi le, while another process is reading from the fi le; so,
what is being read may be affected by what is being written. Processes cooperate by sharing data.
Cooperation is important for several reasons:

Information Sharing

Several processes may need to access the same data (such as stored in a fi le.)

Operating System

Notes

56 LOVELY PROFESSIONAL UNIVERSITY

Computation Speedup

A task can often be run faster if it is broken into subtasks and distributed among different
processes. For example, the matrix multiplication code you saw in class. This depends upon the
processes sharing data. (Of course, real speedup also required having multiple CPUs that can be
shared as well.) For another example, consider a web server which may be serving many clients.
Each client can have their own process or thread helping them. This allows the server to use the
operating system to distribute the computer’s resources, including CPU time, among the many
clients.

Modularity

It may be easier to organize a complex task into separate subtasks, and then have different
processes or threads running each subtask.

 Example: A single server process dedicated to a single client may have multiple threads
running – each performing a different task for the client.

Convenience

An individual user can run several programs at the same time, to perform some task.

 Example: A network browser is open, while the user has a remote terminal program
running (such as telnet), and a word processing program editing data.

Cooperation between processes requires mechanisms that allow processes to communicate data
between each other and synchronize their actions so they do not harmfully interfere with each
other. The purpose of this note is to consider ways that processes can communicate data with
each other, called Inter-process Communcation (IPC).

Note Another note will discuss process synchronization, and in particular, the most
important means of synchronizing activity, the use of semaphores.

4.5 Inter-process Communication

Inter-process Communication (IPC) is a set of techniques for the exchange of data among two
or more threads in one or more processes. It involves sending information from one process
to another. Processes may be running on one or more computers connected by a network. IPC
techniques are divided into methods for message passing, synchronization, shared memory, and
Remote Procedure Calls (RPC). The method of IPC used may vary based on the bandwidth and
latency of communication between the threads, and the type of data being communicated.

Two processes might want to co-operate in performing a particular task. For example a process
might want to print to document in response to a user request, so it starts another process to
handle the printing and sends a message to it to start printing. Once the process handling the
printing request fi nishes, it sends a message back to the original process, which reads the message
and uses this to pop up a dialog box informing the user that the document has been printed.

There are other ways in which processes can communicate with each other, such as using a
shared memory space.

Unit 4: Process Management

Notes

 LOVELY PROFESSIONAL UNIVERSITY 57

Method Provided by (Operating systems or other environments)

File All operating systems.

Signal Most operating systems; some systems, such as Windows, only implement signals
in the C run-time library and do not actually provide support for their use as an
IPC technique.

Socket Most operating systems.

Pipe All POSIX systems.

Named pipe All POSIX systems.

Semaphore All POSIX systems.

Shared memory All POSIX systems.

Message passing
(shared nothing)

Used in MPI paradigm, Java RMI, CORBA and others.

memory-mapped
fi le

All POSIX systems; may carry race condition risk if a temporary fi le is used.
Windows also supports this technique but the APIs used are platform specifi c.

Message queue Most operating systems.

Mailbox Some operating systems.

Table 4.1: Inter-process Communication Methods

4.6 Process Communication in Client-Server Environment

Basically the Client/Server environment is architected to split an application’s processing across
multiple processor to gain the maximum benefi t at the least cost while minimizing the network
traffi c between machines. The key phase is to split the application processing. In a Client/Server
mode each processing works independently but in cooperation with other processors. Each is
relying on the other to perform an independent activity to complete the application process.

A good example of this would be the Mid-Range computer, normally called a File Server, which
is responsible for holding the customer master fi le while the Client, normally the Personal
Computer, is responsible for requesting an update to a specifi c customer. Once the Client is
authenticated, the File Server is notifi ed that the Client needs Mr. Smith’s record for an update.
The File Server is responsible for obtaining Mr. Smith’s record and passing it to the Client for
the actual modifi cation. The Client performs the changes and then passes the changed record
back to the File Server which in turn updates the master fi le. As in this scenario, each processor
has a distinct and independent responsibility to complete the update process. The key is to
perform this cooperative task while minimizing the dialog or traffi c between the machines over
the network. Networks have a limited capacity to carry data and if overloaded the application’s
response time would increase. To accomplish this goal, static processes such as edits, and menus
are usually designed to reside on the Client. Update and reporting processes usually are designed
to reside on the File Server. In this way, the network traffi c to complete the transaction process
is minimized. In addition, this design minimizes the processing cost as the Personal Computer
usually is the least expensive processor, the File Server being the next expensive, and fi nally the
Main Frame the most expensive.

There are many Client/Server Models. First, one could install all of the application’s object
programs on the personal computer. Secondly, one could install the static object program routines
such as edits and menus on the personal computer and the business logic object programs on the
fi le server. Thirdly, one could install all the object programs on the fi le server. As another option,
one could install all the object programs on the mainframe. Which model you choose depends on
your application design.

Operating System

Notes

58 LOVELY PROFESSIONAL UNIVERSITY

4.7 Concept of Thread

Threads are a way for a program to fork (or split) itself into two or more simultaneously (or
pseudo-simultaneously) running tasks. A thread is a single sequence stream within in a process.
Because threads have some of the properties of processes, they are sometimes called lightweight
processes. In a process, threads allow multiple executions of streams. In many respect, threads
are popular way to improve application through parallelism.

The CPU switches rapidly back and forth among the threads giving illusion that the threads are
running in parallel. Like a traditional process i.e., process with one thread, a thread can be in any
of several states (Running, Blocked, Ready or Terminated). Each thread has its own stack. Since
thread will generally call different procedures and thus a different execution history. This is why
thread needs its own stack.

Scheduler

Context Switcher

Msg
Box

Thread

Stack

T1

Sleep=50ms

P1
Msg
Box

Thread

Stack

T3

P1

Blocked
Msg
Box

Thread

Stack

T2

P2

Running

Msg Msg Msg

Msg Msg Msg

Msg Msg

Held by

Waiting

Semaphore

Held by

Waiting

Waiting

Waiting

Semaphore

Mega32 State

R1, R2, R3
R4, ...

R30, R31,
etc.

.....

Figure 4.6: Threading

An operating system that has thread facility, the basic unit of CPU utilization is a thread. A
thread has or consists of a program counter (PC), a register set, and a stack space. Threads are not
independent of one other like processes as a result threads shares with other threads their code
section, data section, OS resources also known as task, such as open fi les and signals.

Unit 4: Process Management

Notes

 LOVELY PROFESSIONAL UNIVERSITY 59

Multitasking and multiprogramming, the two techniques that intend to use the computing
resources optimally have been dealt with in the previous unit at length. In this unit you will
learn about yet another technique that has caused remarkable improvement on the utilization of
resources - thread.

A thread is a fi ner abstraction of a process.

Recall that a process is defi ned by the resources it uses and by the location at which it is executing
in the memory. There are many instances, however, in which it would be useful for resources
to be shared and accessed concurrently. This concept is so useful that several new operating
systems are providing mechanism to support it through a thread facility.

Thread Structure

A thread, sometimes called a lightweight process (LWP), is a basic unit of resource utilization,
and consists of a program counter, a register set, and a stack. It shares with peer threads its code
section, data section, and operating-system resources such as open fi les and signals, collectively
known as a task.

A traditional or heavyweight process is equal to a task with one thread. A task does nothing if
no threads are in it, and a thread must be in exactly one task. The extensive sharing makes CPU
switching among peer threads and the creation of threads inexpensive, compared with context
switches among heavyweight processes. Although a thread context switch still requires a register
set switch, no memory-management-related work need be done. Like any parallel processing
environment, multithreading a process may introduce concurrency control problems that require
the use of critical sections or locks.

Also, some systems implement user-level threads in user-level libraries, rather than via system
calls, so thread switching does not need to call the operating system, and to cause an interrupt
to the kernel. Switching between user-level threads can be done independently of the operating
system and, therefore, very quickly. Thus, blocking a thread and switching to another thread
is a reasonable solution to the problem of how a server can handle many requests effi ciently.
User-level threads do have disadvantages, however. For instance, if the kernel is single-threaded,
then any user-level thread executing a system call will cause the entire task to wait until the
system call returns.

You can grasp the functionality of threads by comparing multiple-thread control with
multiple-process control. With multiple processes, each process operates independently of the
others; each process has its own program counter, stack register, and address space. This type of
organization is useful when the jobs performed by the processes are unrelated. Multiple processes
can perform the same task as well. For instance, multiple processes can provide data to remote
machines in a network fi le system implementation.

However, it is more effi cient to have one process containing multiple threads serve the same
purpose. In the multiple process implementation, each process executes the same code but
has its own memory and fi le resources. One multi-threaded process uses fewer resources than
multiple redundant processes, including memory, open fi les and CPU scheduling, for example,
as Solaris evolves, network daemons are being rewritten as kernel threads to increase greatly the
performance of those network server functions.

Threads operate, in many respects, in the same manner as processes. Threads can be in one of
several states: ready, blocked, running, or terminated.

A thread within a process executes sequentially, and each thread has its own stack and program
counter. Threads can create child threads, and can block waiting for system calls to complete; if
one thread is blocked, another can run. However, unlike processes, threads are not independent
of one another. Because all threads can access every address in the task, a thread can read or write

Operating System

Notes

60 LOVELY PROFESSIONAL UNIVERSITY

over any other thread’s stacks. This structure does not provide protection between threads. Such
protection, however, should not be necessary. Whereas processes may originate from different
users, and may be hostile to one another, only a single user can own an individual task with
multiple threads. The threads, in this case, probably would be designed to assist one another, and
therefore would not require mutual protection.

Threads Library

ThreadsThread Structures

The Kernel

Process Data

(Signal Table,
File Descriptors

Working Directory,
etc.)

Figure 4.7: Thread Structure

Let us return to our example of the blocked fi le-server process in the single-process model.
In this scenario, no other server process can execute until the fi rst process is unblocked. By
contrast, in the case of a task that contains multiple threads, while one server thread is blocked
and waiting, a second thread in the same task could run. In this application, the cooperation of
multiple threads that are part of the same job confers the advantages of higher throughput and
improved performance. Other applications, such as the producer-consumer problem, require
sharing a common buffer and so also benefi t from this feature of thread utilization. The producer
and consumer could be threads in a task. Little overhead is needed to switch between them,
and, on a multiprocessor system, they could execute in parallel on two processors for maximum
effi ciency.

Task Discuss something about structure of a thread.

4.8 User Level and Kernel Level Threads

The abstraction presented by a group of lightweight processes is that of multiple threads of control
associated with several shared resources. There are many alternatives regarding threads.

Threads can be supported by the kernel (as in the Mach and OS/2 operating systems). In this
case, a set of system calls similar to those for processes is provided. Alternatively, they can be
supported above the kernel, via a set of library calls at the user level (as is done in Project Andrew
from CMU).

Unit 4: Process Management

Notes

 LOVELY PROFESSIONAL UNIVERSITY 61

To implement parallel and concurrent mechanisms you need to use specifi c primitives of our
operating system. These must have context switching capabilities, which can be implemented in
two ways, using kernel level threads or using user level threads.

Thread Process

User space

Kernel space

Process table Thread table

Figure 4.8: Diagram of Kernel Thread

If I use kernel level threads, the operating system will have a descriptor for each thread belonging
to a process and it will schedule all the threads. This method is commonly called one to one. Each
user thread corresponds to a kernel thread.

There are two major advantages around this kind of thread. The fi rst one concerns switching
aspects; when a thread fi nishes its instruction or is blocked, another thread can be executed. The
second one is the ability of the kernel to dispatch threads of one process on several processors.
These characteristics are quite interesting for multi-processor architectures. However, thread
switching is done by the kernel, which decreases performances.

Thread Process

User space

Kernel space

Process tableThread tableRun-time
system

Figure 4.9: Diagram of User Thread

User level threads are implemented inside a specialized library that provides primitives to handle
them. All information about threads is stored and managed inside the process address space.
This is called many to one, because one kernel thread is associated to several user threads. Its has
some advantages: The fi rst is that is independent of the system, thus, it runs faster than context

Operating System

Notes

62 LOVELY PROFESSIONAL UNIVERSITY

switching at kernel level. The second comes from the scheduler that can be chosen by the user in
order to manage a better thread execution. Nevertheless, if a thread of a process is jammed, all
other threads of the same process are jammed too. Another disadvantage is the impossibility to
execute two threads of the same process on two processors. So, user level thread is not interesting
in multi-processor architectures.

User
thread

t_nosig
t_sig
t_hold
t_pslg
t_sslg
t_bslg
t_olmask
t_sl

p_slg

p_ignore
p_sininfo

Signal
bit maps

siginfo struct

k_sigset_t data types

Linked list of queued signals

Free pool of sigqueue
structs for pending signals

Free pool of sigqueue
structs for signotifyLinked list of

siginfo structs

aslwp kthread for
signal interception
for multithreaded
processes

Array of function pointers
to signal disposition

kthread

uarea

LWP

Kernel
address
space

User
address
space

p_sigqueue

p_sigqhdr
p_sigqhdr

p_aslwptp
u_entrymask
u_exitmask
u_signodefer
u_signostack
u_sigresethand
u_sigrestart
u_sigmask
u_signal

lwp_signalstask
lwp_curinfo
lwp_siginfo
lwp_sigoldmask

t_sigqueue

t_hold
t_sig

_t_slg_check

proc

Figure 4.10: Detail Diagram of a User Thread

Why should an operating system support one version or the other? User-level threads do not
involve the kernel, and therefore are faster to switch among than kernel-supported threads.
However, any calls to the operating system can cause the entire process to wait, because the kernel
schedules only processes (having no knowledge of threads), and a process which is waiting gets
no CPU time. Scheduling can also be unfair. Consider two processes, one with 1 thread (process
a) and the other with 100 threads (process b). Each process generally receives the same number of
time slices, so the thread in process a runs 100 times as fast as a thread in process b. On systems
with kernel-supported threads, switching among the threads is more time-consuming because
the kernel (via an interrupt) must do the switch. Each thread may be scheduled independently,
however, so process b could receive 100 times the CPU time that process it receives. Additionally,
process b could have 100 system calls in operation concurrently, accomplishing far more than the
same process would on a system with only user-level thread support.

Unit 4: Process Management

Notes

 LOVELY PROFESSIONAL UNIVERSITY 63

Process + Thread
Virtual Layout

Process + Thread
Creation

TSIDL

Thread scheduling

TSRUN

Process + Thread
TerminationTSRUNPROC

TSSLEEP

TSZOMB

Figure 4.11: Detail Diagram of a Kernel Thread

Because of the compromises involved in each of these two approaches to threading, some systems
use a hybrid approach in which both user-level and kernel-supported threads are implemented.
Solaris 2 is such a system. A diagrammatic approach of hybrid thread is mentioned in
Figure 4.12.

user-level thread

kernel entity

Process

runtime
mapping

Figure 4.12: Hybrid Thread

4.9 Multi-threading

When the computers were fi rst invented, they were capable of executing one program at a time.
Thus once one program was completely executed, they then picked the second one to execute and
so on. With time, the concept of timesharing was developed whereby each program was given

Operating System

Notes

64 LOVELY PROFESSIONAL UNIVERSITY

a specifi c amount of processor time and when its time got over the second program standing in
queue was called upon (this is called Multi-tasking, and you would learn more about it soon).
Each running program (called the process) had its own memory space, its own stack, heap and its
own set of variables. One process could spawn another process, but once that occurred the two
behaved independent of each other. Then the next big thing happened. The programs wanted
to do more than one thing at the same time (this is called Multi-threading, and you would learn
what it is soon). A browser, for example, might want to download one fi le in one window, while
it is trying to upload another and print some other fi le. This ability of a program to do multiple
things simultaneously is implemented through threads (detailed description on threads follows
soon).

Multi-tasking vs. Multi-threading

Multi-tasking is the ability of an operating system to execute more than one program
simultaneously. Though I say so but in reality no two programs on a single processor machine
can be executed at the same time. The CPU switches from one program to the next so quickly that
appears as if all of the programs are executing at the same time. Multi-threading is the ability of
an operating system to execute the different parts of the program, called threads, simultaneously.
The program has to be designed well so that the different threads do not interfere with each
other. This concept helps to create scalable applications because you can add threads as and
when needed. Individual programs are all isolated from each other in terms of their memory and
data, but individual threads are not as they all share the same memory and data variables. Hence,
implementing multi-tasking is relatively easier in an operating system than implementing multi-
threading.

4.10 Thread Libraries

The threads library allows concurrent programming in Objective Caml. It provides multiple
threads of control (also called lightweight processes) that execute concurrently in the same
memory space. Threads communicate by in-place modifi cation of shared data structures, or by
sending and receiving data on communication channels.

The threads library is implemented by time-sharing on a single processor. It will not take
advantage of multi-processor machines. Using this library will therefore never make programs run
faster. However, many programs are easier to write when structured as several communicating
processes.

Two implementations of the threads library are available, depending on the capabilities of the
operating system:

1. System threads: This implementation builds on the OS-provided threads facilities: POSIX
1003.1c threads for Unix, and Win32 threads for Windows. When available, system threads
support both bytecode and native-code programs.

2. VM-level threads: This implementation performs time-sharing and context switching at the
level of the OCaml virtual machine (bytecode interpreter). It is available on Unix systems,
and supports only bytecode programs. It cannot be used with native-code programs.

Programs that use system threads must be linked as follows:

 ocamlc -thread other options unix.cma threads.cma other fi les

 ocamlopt -thread other options unix.cmxa threads.cmxa other fi les

 POSIX 1003.1c threads for Unix, for windows which thread available.

Unit 4: Process Management

Notes

 LOVELY PROFESSIONAL UNIVERSITY 65

4.11 Threading Issues

The threading issues are:

1. System calls form and exec is discussed here. In a multithreaded program environment,
form and exec system calls is changed. Unix system have two version of form system calls.
One call duplicates all threads and another that duplicates only the thread that invoke the
form system call whether to use one or two version of form system call totally depends
upon the application. Duplicating all threads in unnecessary if exec is called immediately
after form system call.

2. Thread cancellation is a process of thread terminate before its completion of task.

 Example: In multiple thread environment thread concurrently searching through
a database. If any one thread return the result, the remaining thread might be cancelled.

3. Thread cancellation is of two types:

(a) Asynchronous cancellation: One thread immediately terminates the target thread.

(b) Deferred cancellation: The target thread periodically checks whether it should
terminate, allowing it an opportunity to terminate itself in an orderly fashion.

With deferred cancellation, one thread indicates that a target thread is to be cancelled, but
cancellation occurs only after the target thread has checked a fl ag to determine if it should be
cancelled or not.

4.12 Processes vs. Threads

As we mentioned earlier that in many respects threads operate in the same way as that of
processes. Let us point out some of the similarities and differences.

Similarities

1. Like processes threads share CPU and only one thread active (running) at a time.

2. Like processes, threads within a processes, threads within a processes execute
sequentially.

3. Like processes, thread can create children.

4. And like process, if one thread is blocked, another thread can run.

Differences

1. Unlike processes, threads are not independent of one another.

2. Unlike processes, all threads can access every address in the task .

3. Processes might or might not assist one another because processes may originate from
different users, but threads are design to assist one other.

Operating System

Notes

66 LOVELY PROFESSIONAL UNIVERSITY

OPERATING SYSTEM

PROCESS#1

REGISTERS THREAD 1A

THREAD 1B

THREAD 1C

PROCESS#2

REGISTERS THREAD 2A

THREAD 2B

THREAD 2C

PROCESS#3

REGISTERS THREAD 3A

THREAD 3B

THREAD 3C

PROCESS #1 PROCESS #2 PROCESS #3

MAIN MEMORY

Figure 4.13: Diagram of Process with Multi-thread

4.13 Benefi ts of Threads

Following are some reasons why threads are used in designing operating systems:

1. A process with multiple threads make a great server for example printer server.

2. Because threads can share common data, they do not need to use inter-process
communication.

3. Because of the very nature, threads can take advantage of multi-processors.

4. Threads need a stack and storage for registers therefore, threads are cheap to create.

5. Threads do not need new address space, global data, program code or operating system
resources.

4.14 Summary

z Process management is an operating system’s way of dealing with running multiple
processes at once.

z A multi-tasking operating system may just switch between processes to give the
appearance of many processes executing concurrently or simultaneously, though in fact
only one process can be executing at any one time on a single-core CPU (unless using
multi-threading or other similar technology).

Unit 4: Process Management

Notes

 LOVELY PROFESSIONAL UNIVERSITY 67

z Processes are often called tasks in embedded operating systems. Process is the entity to
which processors are assigned. The rapid switching back and forth of CPU among processes
is called multi-programming.

z A thread is a single sequence stream within in a process. A process can have fi ve states like
created, ready, running, blocked and terminated.

z A process control block or PCB is a data structure (a table) that holds information about a
process.

z Time-Run-Out occurs when the scheduler decides that the running process has run long
enough and it is time to let another process have CPU time.

z Dispatch occurs when all other processes have had their share and it is time for the fi rst
process to run again. Wakeup occurs when the external event for which a process was
waiting (such as arrival of input) happens. Admitted occurs when the process is created.
Exit occurs when the process has fi nished execution.

4.15 Keywords

Admitted: It is a process state transition which occurs when the process is created.

Blocking: It is a process state transition which occurs when process discovers that it cannot
continue.

Dispatch: It is a process state transition which occurs when all other processes have had their
share and it is time for the fi rst process to run again.

Exit: It is a process state transition which occurs when the process has fi nished execution.

Multiprogramming: The rapid switching back and forth of CPU among processes is called
multiprogramming.

Process control block (PCB): It is a data structure (a table) that holds information about a
process.

Process management: It is an operating system’s way of dealing with running multiple processes
at once.

Process: It is the entity to which processors are assigned.

Thread: A thread is a single sequence stream within in a process.

Time-Run-Out: It is a process state transition which occurs when the scheduler decides that the
running process has run long enough and it is time to let another process have CPU time.

Wakeup: It is a process state transition which occurs when the external event for which a process
was waiting (such as arrival of input) happens.

4.16 Self Assessment

Fill in the blanks:

1. Interrupt driven processes will normally run at a very priority.

2. Processes are often called in embedded operating systems.

3. The term “process” was fi rst used by the designers of the in

4. In new state, the process awaits admission to the state.

5. The operating system groups all information that it needs about a particular process into a
data structure called a process descriptor or

Operating System

Notes

68 LOVELY PROFESSIONAL UNIVERSITY

6. is a set of techniques for the exchange of data among two or more threads in
one or more processes.

7. are a way for a program to fork itself into two or more simultaneously
running tasks.

8. is the ability of an operating system to execute more than one program
simultaneously.

9. The threads library is implemented by time-sharing on a

10. A process includes PC, registers, and

4.17 Review Questions

1. Do you think a single user system requires process communication? Support your answer
with logic.

2. Suppose a user program faced an error during memory access. What will it do then? Will
it be informed to the OS? Explain.

3. What resources are used when a thread created? How do they differ from those when a
process is created?

4. What are the different process states? What is the state of the processor, when a process is
waiting for some event to occur?

5. Write a brief description on process state transition.

6. What is PCB? What is the function of PCB?

7. How a process is created?

8. What is process hierarchy?

9. How a process terminated?

10. What is cooperating process? Explain it with example.

11. Why inter-process communication required?

Answers: Self Assessment

1. high priority 2. tasks 3. MULTICS, 1960’s

4. ready 5. Process Control Block (PCB).

6. Inter-process Communication (IPC) 7. Threads

8. Multitasking 9. single processor 10. variables

4.18 Further Readings

Books Andrew M. Lister, Fundamentals of Operating Systems, Wiley.

 Andrew S. Tanenbaum and Albert S. Woodhull, Systems Design and Implementation,
Published by Prentice Hall.

 Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.

 Colin Ritchie, Operating Systems, BPB Publications.

Unit 4: Process Management

Notes

 LOVELY PROFESSIONAL UNIVERSITY 69

 Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.

 I.A. Dhotre, Operating System, Technical Publications.

 Milankovic, Operating System, Tata MacGraw Hill, New Delhi.

 Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons,
Seventh Edition.

 Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.

Online links www.en.wikipedia.org

 www.web-source.net

 www.webopedia.com

Operating System

Notes

70 LOVELY PROFESSIONAL UNIVERSITY

Unit 5: Scheduling

CONTENTS

Objectives

Introduction

5.1 CPU Scheduling

5.2 CPU Scheduling Basic Criteria

5.3 Scheduling Algorithms

 5.3.1 First-Come, First-Served (FCFS)

 5.3.2 Shortest-Job-First (SJF)

 5.3.3 Shortest Remaining Time (SRT)

 5.3.4 Priority Scheduling

 5.3.5 Round-Robin (RR)

 5.3.6 Multilevel Feedback Queue Scheduling

 5.3.7 Real-time Scheduling

 5.3.8 Earliest Deadline First

 5.3.9 Rate Monotonic

5.4 Operating Systems and Scheduling Types

5.5 Types of Scheduling

 5.5.1 Long-term Scheduling

 5.5.2 Medium Term Scheduling

 5.5.3 Short-term Scheduling

5.6 Multiple Processor Scheduling

5.7 Thread Scheduling

 5.7.1 Load Sharing

 5.7.2 Gang Scheduling

 5.7.3 Dedicated Processor Assignment

 5.7.4 Dynamic Scheduling

5.8 Summary

5.9 Keywords

5.10 Self Assessment

5.11 Review Questions

5.12 Further Readings

Unit 5: Scheduling

Notes

 LOVELY PROFESSIONAL UNIVERSITY 71

Objectives

After studying this unit, you will be able to:

z Describe CPU scheduling

z Explain CPU scheduling basic criteria

z Know scheduling algorithms

z Describe types of scheduling

z Explain multiple processor scheduling

z Defi ne thread scheduling

Introduction

CPU scheduling is the basics of multiprogramming. By switching the CPU among several
processes the operating systems can make the computer more productive. The objective of
multiprogramming is to have some process running at all times, in order to maximize CPU
utilization.

5.1 CPU Scheduling

The objective of multiprogramming is to have some process running at all times to maximize
CPU utilization. The objective of time-sharing system is to switch the CPU among processes
so frequently that users can interact with each program while it is running. For a uni-processor
system, there will never be more than one running process. If there are more processes, the rest
will have to wait until the CPU is free and can be rescheduled.

As processes enter the system, they are put into a job queue. This queue consists of all processes
in the system. The processes that are residing in main memory and are ready and waiting to
execute are kept on a list called the ready queue. This queue is generally stored as a linked list.
A ready-queue header will contain pointers to the fi rst and last PCBs in the list. Each PCB has a
pointer fi eld that points to the next process in the ready queue.

There are also other queues in the system. When a process is allocated the CPU, it executes for a
while and eventually quits, is interrupted, or waits for the occurrence of a particular event, such
as the completion of an I/O request. In the case of an I/O request, such a request may be to a
dedicated tape drive, or to a shared device, such as a disk. Since there are many processes in the
system, the disk may be busy with the I/O request of some other process. The process therefore
may have to wait for the disk. The list of processes waiting for a particular I/O device is called a
device queue. Each device has its own device queue.

Operating System

Notes

72 LOVELY PROFESSIONAL UNIVERSITY

partially executed
swapped-out processes

ready queue CPU

I/O waiting
queuesI/O

end

swap in swap out

Figure 5.1: CPU Scheduling

Task Differentiate between uniprocessor and multi-processor.

Scheduling Mechanisms

A multiprogramming operating system allows more than one process to be loaded into
the executable memory at a time and for the loaded process to share the CPU using
time-multiplexing. Part of the reason for using multiprogramming is that the operating system
itself is implemented as one or more processes, so there must be a way for the operating system
and application processes to share the CPU. Another main reason is the need for processes to
perform I/O operations in the normal course of computation. Since I/O operations ordinarily
require orders of magnitude more time to complete than do CPU instructions, multiprograming
systems allocate the CPU to another process whenever a process invokes an I/O operation.

Goals for Scheduling

Make sure your scheduling strategy is good enough with the following criteria:

1. Utilization/Effi ciency: keep the CPU busy 100% of the time with useful work

2. Throughput: maximize the number of jobs processed per hour.

3. Turnaround time: from the time of submission to the time of completion, minimize the time
batch users must wait for output

4. Waiting time: Sum of times spent in ready queue - Minimize this

5. Response Time: time from submission till the fi rst response is produced, minimize response
time for interactive users

6. Fairness: make sure each process gets a fair share of the CPU

Unit 5: Scheduling

Notes

 LOVELY PROFESSIONAL UNIVERSITY 73

Context Switching

Typically there are several tasks to perform in a computer system.

So if one task requires some I/O operation, you want to initiate the I/O operation and go on to
the next task. You will come back to it later.

This act of switching from one process to another is called a “Context Switch”

When you return back to a process, you should resume where you left off. For all practical
purposes, this process should never know there was a switch, and it should look like this was the
only process in the system.

To implement this, on a context switch, you have to

1. Save the context of the current process

2. Select the next process to run

3. Restore the context of this new process.

Non-preemptive vs. Preemptive Scheduling

Non-preemptive

Non-preemptive algorithms are designed so that once a process enters the running state(is
allowed a process), it is not removed from the processor until it has completed its service time (or
it explicitly yields the processor).

context_switch() is called only when the process terminates or blocks.

Preemptive

Preemptive algorithms are driven by the notion of prioritized computation. The process with the
highest priority should always be the one currently using the processor. If a process is currently
using the processor and a new process with a higher priority enters, the ready list, the process on
the processor should be removed and returned to the ready list until it is once again the highest-
priority process in the system.

context_switch() is called even when the process is running usually done via a
timer interrupt.

5.2 CPU Scheduling Basic Criteria

CPU scheduling is the basics of multiprogramming. By switching the CPU among several
processes the operating systems can make the computer more productive. The objective of
multiprogramming is to have some process running at all times, in order to maximize CPU
utilization. On systems with 1 processor, only one process may run at a time; any other processes
must wait until CPU is free to be rescheduled.

In multiprogramming, a process executes until it must wait (either interrupted, or doing IO), at
which point, the CPU is assigned to another process, which again, executes until it must wait, at
which point another process gets the CPU, and so on.

Processes generally execute a CPU burst, followed by an IO burst, followed by the CPU burst,
followed by the CPU burst, etc. This cycle is central to all processes. Every process must have CPU
bursts, and every process must do some IO. The operating system maintains what is known as a
ready-queue. Processes on this queue are ready to be executed. Whenever a currently executing

Operating System

Notes

74 LOVELY PROFESSIONAL UNIVERSITY

process needs to wait (does IO, is interrupted, etc.) the operating system picks a process from
the ready queue and assigns the CPU to that process. The cycle then continues. There are many
scheduling algorithms, ranging in complexity and robustness: First-come, First-serve scheduling,
Shortest Job First scheduling, Round-Robin scheduling, etc.

A major task of an operating system is to manage a collection of processes. In some cases, a single
process may consist of a set of individual threads.

In both situations, a system with a single CPU or a multi-processor system with fewer CPU’s than
processes has to divide CPU time among the different processes/threads that are competing to
use it. This process is called CPU scheduling.

There are many scheduling algorithms and various criteria to judge their performance. Different
algorithms may favor different types of processes. Some criteria are as follows:

1. CPU utilization: CPU must be as busy as possible in performing different tasks. CPU
utilization is more important in real-time system and multi-programmed systems.

2. Throughput: The number of processes executed in a specifi ed time period is called
throughput. The throughput increases .for short processes. It decreases if the size of
processes is huge.

3. Turnaround Time: The amount of time that is needed to execute a process is called
turnaround time. It is the actual job time plus the waiting time.

4. Waiting Time: The amount of time the process has waited is called waiting time. It is the
turnaround time minus actual job time.

5. Response Time: The amount of time between a request is Submitted and the fi rst response
is produced is called response time.

5.3 Scheduling Algorithms

Most Operating Systems today use very similar CPU time scheduling algorithms, all based on the
same basic ideas, but with Operating System-specifi c adaptations and extensions. What follows
is a description of those rough basic ideas.

What should be remarked is that this algorithm is not the best algorithm that you can imagine,
but it is, proven mathematically and by experience in the early days of OS programming (sixties
and seventies), the algorithm that is the closest to the ‘best’ algorithm. Perhaps when computers
get more powerful some day then we might implement the ideal CPU time scheduler.

Another remark is that this algorithm is designed for general-purpose computers. Special-purpose
Operating Systems or systems, and some real-time systems will use a very different algorithm.

CPU scheduling is the task of selecting a waiting process from the ready queue and allocating the
CPU to it. The CPU is allocated to the selected process by the dispatcher.

A CPU scheduling algorithm should try to maximize the following:

1. CPU utilization

2. Throughput

A CPU scheduling algorithm should try to minimize the following:

1. Turnaround time

2. Waiting time

3. Response time

Different algorithms are used for CPU scheduling.

Unit 5: Scheduling

Notes

 LOVELY PROFESSIONAL UNIVERSITY 75

5.3.1 First-Come, First-Served (FCFS)

This is a Non-Preemptive scheduling algorithm. FCFS strategy assigns priority to processes in
the order in which they request the processor. The process that requests the CPU fi rst is allocated
the CPU fi rst. When a process comes in, add its PCB to the tail of ready queue. When running
process terminates, dequeue the process (PCB) at head of ready queue and run it.

P1 P2 P3 P4 P5 P6

3 time
units

4 time
units

2 time
units

3 time
units

3 time
units

5 time
units

Figure 5.2: FCFS Scheduling

Advantage

Very simple

Disadvantages

1. Long average and worst-case waiting times

2. Poor dynamic behavior (convoy effect - short process behind long process)

empty!
I/O

empty!

I/O

CPU-bound

I/O-bound

CPU

CPU

Figure 5.3: Convey Effects

 Example:

Process Burst Time

P1 24

P2 3

P3 3

Operating System

Notes

76 LOVELY PROFESSIONAL UNIVERSITY

Suppose that the processes arrive in the order: P1, P2, P3. The Gantt chart for the schedule is:

P1 P2 P3

0 24 27 30

Waiting time for P1 = 0; P2 = 24; P3 = 27

Average waiting time: (0 + 24 + 27)/3 = 17

Suppose that the processes arrive in the order P2, P3, P1. The Gantt chart for the schedule is:

P1P2 P3

0 3 6 30
7

Waiting time for P1 = 6; P2 = 0; P3 = 3

Average waiting time: (6 + 0 + 3)/3 = 3

5.3.2 Shortest-Job-First (SJF)

The SJF algorithm takes processes that use the shortest CPU time fi rst. Mathematically seen, and
corresponding to the experience, this is the ideal scheduling algorithm. I won’t give details in
here about the performance. It’s all to do about overhead and response time, actually: the system
will be fast when the scheduler doesn’t take much of the CPU time itself, and when interactive
processes react quickly (get a fast response). This system would be very good.

The overhead caused by the algorithm itself is huge, however. The scheduler would have top
implement some way to time the CPU usage of processes and predict it, or the user should tell
the scheduler how long a job (this is really a word that comes from very early computer design,
when Batch Job Operating Systems were used would take. So, it is impossible to implement this
algorithm without hurting performance very much.

Advantage

Minimizes average waiting times.

Disadvantages

1. How to determine length of next CPU burst?

2. Starvation of jobs with long CPU bursts.

 Example:

Process Arrival Time Burst Time

P1 0.0 7

P2 2.0 4

P3 4.0 1

P4 5.0 4

1. SJF (non-preemptive)

Unit 5: Scheduling

Notes

 LOVELY PROFESSIONAL UNIVERSITY 77

P4P1 P2P3

0 3 7 8 12 16

 Average waiting time = (0 + 6 + 3 + 7)/4 = 4

2. SRT (preemptive SJB)

P1P1 P4P2P2 P3

0 2 4 5 7 11 16

Average waiting time = (9 + 1 + 0 +2)/4 = 3

5.3.3 Shortest Remaining Time (SRT)

Shortest remaining time is a method of CPU scheduling that is a preemptive version of shortest
job next scheduling. In this scheduling algorithm, the process with the smallest amount of time
remaining until completion is selected to execute. Since the currently executing process is the one
with the shortest amount of time remaining by defi nition, and since that time should only reduce
as execution progresses, processes will always run until they complete or a new process is added
that requires a smaller amount of time.

Shortest remaining time is advantageous because short processes are handled very quickly.
The system also requires very little overhead since it only makes a decision when a process
completes or a new process is added, and when a new process is added the algorithm only needs
to compare the currently executing process with the new process, ignoring all other processes
currently waiting to execute. However, it has the potential for process starvation for processes
which will require a long time to complete if short processes are continually added, though this
threat can be minimal when process times follow a heavy-tailed distribution.

Like shortest job fi rst scheduling, shortest remaining time scheduling is rarely used outside of
specialized environments because it requires accurate estimations of the runtime of all processes
that are waiting to execute.

5.3.4 Priority Scheduling

A priority is associated with each process, and the CPU is allocated to the process with the highest
priority. Priority can be defi ned either internally or externally. Internally defi ned priorities use
some measurable quantities to compute the priority of a process.

 Example: Time limits, memory requirements, no. of open fi les, ratio of average I/O burst
time to average CPU burst time etc. external priorities are set by criteria that are external to the
OS, such as the importance of the process, the type and amount of funds being paid for computer
use, the department sponsoring work and other often political factors.

Priority scheduling can be preemptive or non preemptive. A preemptive priority scheduling
algorithm will preempt the CPU if the priority of the newly arrived process is higher than the
priority of the currently running process. A non preemptive priority scheduling algorithm will
simply put the new process at the head of the ready queue.

A major problem with priority scheduling algorithms is indefi nite blocking or starvation. This
can be solved by a technique called aging wherein I gradually increase the priority of a long
waiting process.

Operating System

Notes

78 LOVELY PROFESSIONAL UNIVERSITY

Classifier

Scheduler

Port

Highest Priority

Middle Priority

Lowest Priority

Flow 1

Flow 2

Flow 3

Flow 4

Flow 5

Flow 6

Flow 7

Flow 8

Figure 5.4: Priority Scheduling

Advantages and Disadvantages

The main advantage is the important jobs can be fi nished earlier as much as possible. The main
disadvantage is the lower priority jobs will starve.

 Example:

Process Burst time Arrival Priority

P1 10 0 3

P2 1 0 1

P3 2 0 4

P4 1 0 5

P5 5 0 2

Gantt Chart

P2 P5 P1 P3 P4

0 1 6 16 18 19

Average waiting time: (0+1+6+16+18)/5 = 8.2

5.3.5 Round-Robin (RR)

Round-robin scheduling is really the easiest way of scheduling. All processes form a circular
array and the scheduler gives control to each process at a time. It is off course very easy to
implement and causes almost no overhead, when compared to all other algorithms. But response
time is very low for the processes that need it. Of course it is not the algorithm I want, but it can
be used eventually.

This algorithm is not the best at all for general-purpose Operating Systems, but it is useful for bath-
processing Operating Systems, in which all jobs have the same priority, and in which response
time is of minor or no importance. And this priority leads us to the next way of scheduling.

Unit 5: Scheduling

Notes

 LOVELY PROFESSIONAL UNIVERSITY 79

P8
2 time
units

P5
3 time
units

P4
3 time
units

P1
3 time
units

P7
4 time
units

P6
5 time
units

P2
4 time
units

P3
2 time
units

CPU
Running

2 units 2 units

2 units 2 units

2 units 2 units

2 units2 units

Figure 5.5: Round-Robin Scheduling

Advantages

Simple, low overhead, works for interactive systems

Disadvantages

1. If quantum is too small, too much time wasted in context switching

2. If too large (i.e., longer than mean CPU burst), approaches FCFS

 Example: Example of RR with Time Quantum = 20

Process Burst Time

P1 53

P2 17

P3 68

P4 24

The Gantt chart is:

Typically, higher average turnaround than SJF, but better response

Operating System

Notes

80 LOVELY PROFESSIONAL UNIVERSITY

Time Quantum and Context Switch Time

Turnaround Time Varies with the Time Quantum

 Example: Assume you have the following jobs to execute with one processor, with the
jobs arriving in the order listed here:

i T(pi) Arrival Time

0 80 0

1 20 10

2 10 10

3 20 80

4 50 85

1. Suppose a system uses RR scheduling with a quantum of 15. Create a Gantt chart illustrating
the execution of these processes?

Unit 5: Scheduling

Notes

 LOVELY PROFESSIONAL UNIVERSITY 81

2. What is the turnaround time for process p3?

3. What is the average wait time for the processes?

Solution:

1. As the Round-Robin Scheduling follows a circular queue implementation, the Gantt chart
is as follows:

2. The turnaround time for process P3 is =160-80

 = 80 sec.

3. Average waiting time:

Waiting time for process p0 = 0 sec.

Waiting time for process p1 = 5 sec.

Waiting time for process p2 = 20 sec.

Waiting time for process p3 = 30 sec.

Waiting time for process p4 = 40 sec.

Therefore, the average waiting time is (0+5+20+30+40)/5 = 22 sec.

5.3.6 Multilevel Feedback Queue Scheduling

In this CPU schedule a process is allowed to move between queues. If a process uses too much
CPU time, it will be moved to a lower priority queue. This scheme leaves I/O bound and
interactive processes in the higher priority queues. Similarly a process that waits too long in a
lower priority queue may be moved to a higher priority queue.

Figure 5.6: Multi-level Feedback Queue Scheduling

Operating System

Notes

82 LOVELY PROFESSIONAL UNIVERSITY

 Example: Multilevel Feedback Queue

Three Queues

1. Q0–RR with time quantum 8 milliseconds

2. Q1–RR time quantum 16 milliseconds

3. Q2–FCFS

Scheduling

1. A new job enters queue Q0 which is served FCFS. When it gains CPU, job receives 8
milliseconds. If it does not fi nish in 8 milliseconds, job is moved to queue Q1.

2. At Q1 job is again served FCFS and receives 16 additional milliseconds. If it still does not
complete, it is preempted and moved to queue Q2.

5.3.7 Real-time Scheduling

Real-time systems design is an increasingly important topic in systems research communities
as well as the software industries. Real-time applications and their requirements can be found
in almost every area of operating systems and networking research. An incomplete list of such
domains includes distributed systems, embedded systems, network protocol processing, aircraft
design, spacecraft design..., and the list goes on.

One of the most important responsibilities of a real-time system is to schedule tasks according
to their deadlines in order to guarantee that all real-time activities achieve the required service
level. Many scheduling algorithms exist for a variety of task models, but fundamental to many of
these are the earliest deadline fi rst (EDF) and rate-monotonic (RM) scheduling policies.

A schedule for a set of tasks is said to be feasible if a proof exists that every task instance in the set
will complete processing by its associated deadline. Also, a task set is schedulable if there exists
a feasible schedule for the set.

The utilization associated with a given task schedule and resource (i.e. CPU) is the fraction of
time that the resource is allocated over the time that the scheduler is active.

Unit 5: Scheduling

Notes

 LOVELY PROFESSIONAL UNIVERSITY 83

HWI

Background

Idle

Highest Priority Sampling Sampling

Processing
Frame

Lowest Priority

Figure 5.7: Real-time Scheduling

5.3.8 Earliest Deadline First

The EDF scheduling algorithm is a preemptive and dynamic priority scheduler that executes
tasks in order of the time remaining before their corresponding deadlines. Tasks with the least
time remaining before their deadline are executed before tasks with more remaining time. At
each invocation of the scheduler, the remaining time is calculated for each waiting task, and the
task with the least remaining time is dispatched. If a task set is schedulable, the EDF algorithm
results in a schedule that achieves optimal resource utilization. However, EDF is shown to be
unpredictable if the required utilization exceeds 100%, known as an overload condition. EDF is
useful for scheduling periodic tasks, since the dynamic priorities of tasks do not depend on the
determinism of request periods.

5.3.9 Rate Monotonic

Under the static-priority rate monotonic scheduling algorithm, tasks are ordered according to the
value of their request period, T. Tasks with shorter request periods are assigned higher priority
than those with longer periods. Liu and Layland proved that a feasible schedule is found under
rate monotonic scheduling if the total requested utilization is less than or equal to ln, which is
approximately 69.3%.

RM scheduling is optimal with respect to maximum utilization over all static-priority schedulers.
However, this scheduling policy only supports tasks that fi t the periodic task model, since
priorities depend upon request periods. Because the request times of a periodic tasks are not
always predictable, these tasks are not supported by the RM algorithm, but are instead typically
scheduled using a dynamic priority scheduler such as EDF.

Characteristics of Scheduling Algorithms

FCFS Round Robin SJF SRT HRRN Feedback
Selection
Function

max[w] constant Min[s] min[s-e] max[(w+s)/s] see text

Decision
mode

Non-preemptive preemptive Non-
preemptive

preemptive Non-
preemptive

preemptive
at time
quantum

Contd...

Operating System

Notes

84 LOVELY PROFESSIONAL UNIVERSITY

Throughput N/A low for small
quantum

high high high N/A

Response
Time

May be high good for short
processes

good for short
processes

good good N/A

Overhead minimal low Can be high can be high can be high can be high
Effect on
Processes
Starvation No No Possible Possible No Possible

w = time spent in the system so far, waiting and executing

e = time spent in execution so far.

s = total service time required by the process, including e.

Task “Priority scheduling can be preemptive or non-preemptive.” Discuss.

5.4 Operating Systems and Scheduling Types

1. Solaris 2 uses priority-based process scheduling.

2. Windows 2000 uses a priority-based preemptive scheduling algorithm.

3. Linux provides two separate process-scheduling algorithms: one is designed for time-
sharing processes for fair preemptive scheduling among multiple processes; the other
designed for real-time tasks:

(a) For processes in the time-sharing class Linux uses a prioritized credit-based
algorithm

(b) Real-time scheduling: Linux implements two real-time scheduling classes namely
FCFS (First come fi rst serve) and RR (Round Robin)

5.5 Types of Scheduling

In many multitasking systems the processor scheduling subsystem operates on three levels,
differentiated by the time scale at which they perform their operations. In this sense differentiate
among:

1. Long term scheduling: which determines which programs are admitted to the system for
execution and when, and which ones should be exited.

2. Medium term scheduling: which determines when processes are to be suspended and
resumed;

3. Short term scheduling (or dispatching): which determines which of the ready processes can
have CPU resources, and for how long.

5.5.1 Long-term Scheduling

Long term scheduling obviously controls the degree of multiprogramming in multitasking
systems, following certain policies to decide whether the system can honour a new job submission
or, if more than one job is submitted, which of them should be selected. The need for some form
of compromise between degree of multiprogramming and throughput seems evident, especially
when one considers interactive systems. The higher the number of processes, in fact, the smaller

Unit 5: Scheduling

Notes

 LOVELY PROFESSIONAL UNIVERSITY 85

the time each of them may control CPU for, if a fair share of responsiveness is to be given to all
processes. Moreover you have already seen that a too high number of processes causes waste of
CPU time for system housekeeping chores (trashing in virtual memory systems is a particularly
nasty example of this). However, the number of active processes should be high enough to keep
the CPU busy servicing the payload (i.e. the user processes) as much as possible, by ensuring that
- on average - there always be a suffi cient number of processes not waiting for I/O.

Simple policies for long term scheduling are:

1. Simple First Come First Served (FCFS): It’s essentially a FIFO scheme. All job requests
(e.g. a submission of a batch program, or an user trying to log in in a time shared system)
are honoured up to a fi xed system load limit, further requests being refused tout court, or
enqueued for later processing.

2. Priority schemes: Note that in the context of long term scheduling ̀ `priority’’ has a different
meaning than in dispatching: here it affects the choice of a program to be entered the system
as a process, there the choice of which ready process process should be executed.

Long term scheduling is performed when a new process is created. It is shown in the fi gure
below. If the number of ready processes in the ready queue becomes very high, then there is a
overhead on the operating system (i.e., processor) for maintaining long lists, context switching
and dispatching increases. Therefore, allow only limited number of processes in to the ready
queue. The “long-term scheduler” managers this. Long-term scheduler determines which
programs are admitted into the system for processing. Once when admit a process or job, it
becomes process and is added to the queue for the short-term scheduler. In some systems, a
newly created process begins in a swapped-out condition, in which case it is added to a queue
for the medium-term scheduler scheduling manage queues to minimize queueing delay and to
optimize performance.

New

Ready
suspend Ready

Waiting
suspend Waiting

Running

Terminated

Long-term
scheduling

Long-term
scheduling

Medium-term
scheduling

Short-term
scheduling

Event wait

Exit

Figure 5.8: Long-term Scheduling

The long-term scheduler limits the number of processes to allow for processing by taking the
decision to add one or more new jobs, based on FCFS (First-Come, fi rst-serve) basis or priority
or execution time or Input/Output requirements. Long-term scheduler executes relatively
infrequently.

5.5.2 Medium Term Scheduling

Medium term scheduling is essentially concerned with memory management, hence it’s very
often designed as a part of the memory management subsystem of an OS. Its effi cient interaction
with the short term scheduler is essential for system performances, especially in virtual memory

Operating System

Notes

86 LOVELY PROFESSIONAL UNIVERSITY

systems. This is the reason why in paged system the pager process is usually run at a very high
(dispatching) priority level.

Running
Terminate

Block

Run

Ready Blocked

Ready
suspended

Blocked
suspendedUnblock

Premt
(Short-term)
scheduling

Create

Unblock

Medium term
Scheduling Suspend Resume Suspend

Resume

Figure 5.9: Medium term Scheduling

Unblock is done by another task (a.k.a. wakeup, release, V) Block is a.k.a. sleep, request, P)

In addition to the short-term scheduling we have discussed, we add medium-term scheduling in
which decisions are made at a coarser time scale.

Recall my favorite diagram, shown again on the right. Medium term scheduling determines the
transitions from the top triangle to the b ottom line. We suspend (swap out) some process if
memory is over-committed, dropping the (ready or blocked) process down. We also need resume
transitions to return a process to the top triangle.

Criteria for choosing a victim to suspend include:

1. How long since previously suspended.

2. How much CPU time used recently.

3. How much memory does it use.

4. External priority (pay more, get swapped out less).

5.5.3 Short-term Scheduling

Short term scheduling concerns with the allocation of CPU time to processes in order to meet
some pre-defi ned system performance objectives. The defi nition of these objectives (scheduling
policy) is an overall system design issue, and determines the ``character’’ of the operating system
from the user’s (i.e. the buyer’s) point of view, giving rise to the traditional distinctions among
‘‘multi-purpose, time shared’’, ‘‘batch production’’, ‘‘real-time’’ systems, and so on.

From a user’s point of view, the performance criteria base on:

1. Response time: The interval of time from the moment a service is requested until the
response begins to be received. In time-shared, interactive systems this is a better measure
of responsiveness from a user’s point of view than turnaround time, since processes may
begin to produce output early in their execution.

Unit 5: Scheduling

Notes

 LOVELY PROFESSIONAL UNIVERSITY 87

2. Turnaround time: The interval between the submission of a process and the completion
of its execution, including the actual running time, plus the time spent sleeping before
being dispatched or while waiting to access various resources. This is the appropriate
responsiveness measure for batch production, as well as for time-shared systems that
maintain multiple batch queues, sharing CPU time among them.

3. Meeting deadlines: The ability of the OS to meet pre-defi ned deadlines for job completion.
It makes sense only when the minimal execution time of an application can be accurately
predicted.

4. Predictability: The ability of the system to ensure that a given task is executed within a
certain time interval, and/or to ensure that a certain constant response time is granted
within a strict tolerance, no matter what the machine load is.

When the overall system performance is considered, additional scheduling criteria must be taken
into account:

1. Throughput: The rate of completion of processes (processes completed per unit time). This
is a ‘‘raw’’ measure of how much work is performed, since it depends on the execution
length of processes, but it’s obviously affected by the scheduling policy.

2. User processor utilisation: Time (percentage of unit time) during which the CPU is running
user processes. This is a measure of how well the system can serve the payload and keep at
minimum time spent in housekeeping chores.

3. Overall processor utilisation: Time percentage during which the CPU is busy. It’s a
signifi cant criterion for expensive hardware, that must be kept busy as much as possible in
order to be justify its cost (e.g. supercomputers for numerical calculus applications).

4. Resource utilisation balance: It extends the idea of processor utilisation to take into account
all system resources. A good scheduler should try to keep all the hardware resources in use
at any time.

Ready Queue

Suspended
Ready Queue

Suspended
Block Queue

Block Queue

New State

CPU

Long Term Scheduling
Medium Term Scheduling
Short Term Scheduling

Operating System

Notes

88 LOVELY PROFESSIONAL UNIVERSITY

The design of the short term scheduler is one of the critical areas in the overall system design,
because of the immediate effects on system performance from the user’s point of view. It’s usually
one of the trickiest as well: since most processor architectures support their own task switching
facilities, the implementation of the process switch mechanism is generally machine-dependent.
The result is that the actual process switch software is usually written in the assembly language
of a particular machine, whether the operating system is meant to be portable across different
machines or not.

5.6 Multiple Processor Scheduling

The development of appropriate scheduling schemes for multiprocessor systems is problematic.
Not only are uni-processor algorithms not directly applicable but some of the apparently correct
methods are counter intuitive.

The scheduling problem for multiprocessor systems can be generally stated as “How can you
execute a set of tasks T on a set of processors P subject to some set of optimizing criteria C?”

The most common goal of scheduling is to minimize the expected runtime of a task set. Examples
of other scheduling criteria include minimizing the cost, minimizing communication delay,
giving priority to certain users’ processes, or needs for specialized hardware devices.

The scheduling policy for a multiprocessor system usually embodies a mixture of several of these
criteria. Issues in Multiprocessor Scheduling Solutions to the scheduling problem come in two
general forms: algorithms and scheduling systems.

Algorithms concentrate on policy while scheduling systems provide mechanism to implement
the algorithms. Some scheduling systems run outside the operating system kernel, while others
are part of a tightly-integrated distributed or parallel operating system.

Distributed systems communicate via message-passing, while parallel systems use shared
memory. A task is the unit of computation in computing systems, and a job consists of one or
more cooperating tasks. Global scheduling involves assigning a task to a particular processor
within the system.

Local scheduling determines which of the set of available tasks at a processor runs next on that
processor. Task migration can change the global mapping by moving a task to a new processor.
If you have several jobs, each composed of many tasks, you can either assign several processors
to a single job, or you can assign several tasks to a single processor. The former is known as space
sharing, and the latter is called time sharing.

Global scheduling is often used to perform load sharing. Load sharing allows busy processors
to off-load some of their work to less busy processors. Load balancing is a special case of load
sharing, in which the goal is to keep the load even across all processors. Sender-initiated load
sharing occurs when busy processors try to fi nd idle processors to off-load some work. Receiver-
initiated load sharing occurs when idle processors seek busy processors. It is now accepted
wisdom that full load balancing is generally not worth doing, as the small gain in execution time
over simpler load sharing is more than offset by the effort expended in maintaining the balanced
load.

As the system runs, new tasks arrive while old tasks complete execution (or are served). If the
arrival rate is greater than the service rate then the system is said to be unstable. If tasks are
serviced as least as fast as they arrive, the system is said to be stable. If the arrival rate is just
slightly less than the service rate for a system, an unstable scheduling policy can push the system
into instability. A stable policy will never make a stable system unstable.

Unit 5: Scheduling

Notes

 LOVELY PROFESSIONAL UNIVERSITY 89

Processor
Release

Admit
RQ0

Processor
ReleaseRQ1

Processor
ReleaseRQ2

Figure 5.10: Multi-processor Queue

5.7 Thread Scheduling

The main approaches of threading scheduling are:

1. Load sharing

2. Gang scheduling

3. Dedicated processor assignment

4. Dynamic scheduling

5.7.1 Load Sharing

Processes are not assigned to a particular processor. A global queue of ready threads is maintained
and each processor, when idle select a thread from the queue.

There are three versions of load sharing are these are:

1. First come fi rst served

2. Smallest number of threads fi rst

3. Preemptive smallest number of threads fi rst

1. First come fi rst served: when a job arrives each of its threads is placed consecutively at the
end of the shared queue. When a processor becomes idle it picks the next ready thread,
which it executes until completion or blocking.

2. Smallest number of thread fi rst: The shared ready queue is organized as a priority queue
with highest priority given to threads from jobs with the smallest number of unscheduled
threads. Jobs of equal priority are ordered according to which job arrives fi rst.

3. Preemptive smallest number of threads fi rst: Highest is given to jobs with the smallest
number of incomplete threads.

Operating System

Notes

90 LOVELY PROFESSIONAL UNIVERSITY

Advantages

Advantages of load sharing are:

1. The load is distributed evenly across the processors assuring that no processor is idle while
work is available to do.

2. No centralized scheduler is required

3. The global queue can be organized and accessed by using any of the schemes.

Disadvantages

Disadvantages of load sharing are:

1. The central queue copies a region of memory that must be accessed in a manner that
enforces mutual exclusion.

2. Preempted threads are unlikely to resume execution on the same processor.

3. If all threads are treated as a common pool of threads it is unlikely that all the threads of a
program will gain access to processors at the same time.

5.7.2 Gang Scheduling

1. If closely related processes executes in parallel, synchronization blocking may be reduced.

2. Set of related threads of scheduled to run on a set of processors.

3. Gang scheduling has three parts.

(a) Groups of related threads are scheduled as a unit, a gang

(b) All members of a gang run simultaneously on different timeshared CPUs.

(c) All gang members start and end their time slices together.

4. The trick that makes gang scheduling work is that all CPU are scheduled synchronously.
This means that time is divided into discrete quanta.

5. An example of how gang scheduling works is given in the Table 5.1. Here you have a
multiprocessor with six CPU being used by fi ve processes, A through E, with a total of 24
ready threads.

CPU

Time slot

0 1 2 3 4 5

0 A0 A1 A2 A3 A4 A5

1 B0 B1 B2 C0 C1 C2

2 D0 D1 D2 D3 D4 E0

3 E1 E2 E3 E4 E5 E6

4 A0 A1 A2 A3 A4 A5

5 B0 B1 B2 C0 C1 C2

6 D0 D1 D2 D3 D4 E0

7 E1 E2 E3 E4 E5 E6

Table 5.1: Gang Scheduling

Unit 5: Scheduling

Notes

 LOVELY PROFESSIONAL UNIVERSITY 91

(a) During time slot 0, threads A0 through A5 are scheduled and run

(b) During time slot 1, threads B0, B1, B2, C0, C1, C2 are scheduled and run

(c) During time slot 2, D’s fi ve threads and E0 get to run

(d) The remaining six threads belonging to process E run in the time slot 3. Then the
cycle repeats, with slot 4 being the same as slot 0 and so on.

(e) Gang scheduling is useful for applications where performance severely degrades
when any part of the application is not running.

5.7.3 Dedicated Processor Assignment

1. When application is scheduled its threads are assigned to a processor.

2. Some processor may be idle and no multiprogramming of processors.

3. Provides implicit scheduling defi ned by assignment of threads to processors. For the
duration of program execution, each program is allocated a set of processors equal in
number to the number of threads in the program. Processors are chosen from the available
pool.

5.7.4 Dynamic Scheduling

1. Number of threads in a process are altered dynamically by the application.

2. Operating system and the application are involved in making scheduling decisions. The
OS is responsible for partitioning the processors among the jobs.

3. Operating system adjusts load to improve the use:

(a) Assign idle processors.

(b) New arrivals may be assigned to a processor that is used by a job currently using
more than one processor.

(c) Hold request until processor is available

(d) New arrivals will be given a processor before existing running applications.

Task List various versions of load sharing.

5.8 Summary

z The processes in the system can execute concurrently, and they must be created and
deleted dynamically. Thus, the operating system must provide a mechanism (or facility)
for process creation and termination. Processes can be terminated in one of two ways:
Normal Termination and Abnormal Termination.

z When more than one process are executing concurrently in the operating system, then they
are allowed to cooperate (both mutually and destructively) with each other.

z Those processes are known as cooperating process. Inter-Process Communication (IPC)
is a set of techniques for the exchange of data among two or more threads in one or more
processes.

Operating System

Notes

92 LOVELY PROFESSIONAL UNIVERSITY

z When two or more concurrent processes are reading or writing some shared data and the
fi nal result depends on who runs precisely when, are called race conditions.

z Critical Section is a part of the program where the shared memory is accessed. Mutual
Exclusion is a way of making sure that if one process is using a shared modifi able data,
the other processes will be excluded from doing the same thing. Semaphore is a protected
variable whose value can be accessed and altered only by the operations P and V and
initialization operation called ‘Semaphoiinitislize’.

z Message passing is a form of inter process communication used in concurrent computing,
where the communication is made by the sending of messages to recipients.

5.9 Keywords

CPU scheduling: It is the basic of multiprogramming where the task of selecting a waiting process
from the ready queue and allocating the CPU to it.

CPU utilization: It is an important criterion in real-time system and multi-programmed systems
where the CPU must be as busy as possible in performing different tasks.

Response Time: The amount of time between a request is Submitted and the fi rst response is
produced is called response time.

Throughput: The number of processes executed in a specifi ed time period is called throughput.

Turnaround Time: The amount of time that is needed to execute a process is called turnaround
time. It is the actual job time plus the waiting time.

Waiting Time: The amount of time the process has waited is called waiting time. It is the
turnaround time minus actual job time.

5.10 Self Assessment

Fill in the blanks:

1. A header will contain pointers to the fi rst and last PCBs in the list.

2. scheduling is the basics of multiprogramming.

3. A major task of an operating system is to manage a collection of

4. The CPU is to the selected process by the dispatcher.

5. is a method of CPU scheduling that is a preemptive version of shortest job
next scheduling.

6. A scheduling algorithm will simply put the new process at the head of the
ready queue.

7. scheduling is essentially concerned with memory management.

8. The most common goal of scheduling is to of a task set.

9. scheduling involves assigning a task to a particular processor within the
system.

10. scheduling is really the easiest way of scheduling.

Unit 5: Scheduling

Notes

 LOVELY PROFESSIONAL UNIVERSITY 93

5.11 Review Questions

1. Suppose that a scheduling algorithm favors those processes that have used the least
processor time in the recent past. Why will this algorithm favor I/O-bound programs and
yet not permanently starve CPU-bound programs?

2. Assume you have the following jobs to execute with one processor, with the jobs arriving
in the order listed here:

i T(pi)
0 80
1 20
2 10
3 20
4 50

(a) Suppose a system uses FCFS scheduling. Create a Gantt chart illustrating the
execution of these processes?

(b) What is the turnaround time for process p3?

(c) What is the average wait time for the processes?

3. Suppose a new process in a system arrives at an average of six processes per minute and
each such process requires an average of 8 seconds of service time. Estimate the fraction of
time the CPU is busy in a system with a single processor.

4. A CPU scheduling algorithm determines an order for the execution of its scheduled
processes. Given n processes to be scheduled on one processor, how many possible different
schedules are there? Give a formula in terms of n.

5. Many CPU-scheduling algorithms are parameterized. For example, the RR algorithm
requires a parameter to indicate the time slice. Multilevel feedback queues require
parameters to defi ne the number of queues, the scheduling algorithms for each queue, the
criteria used to move processes between queues, and so on.

 These algorithms are thus really sets of algorithms (for example, the set of RR algorithms
for all time slices, and so on). One set of algorithms may include another (for example, the
FCFS algorithm is the RR algorithm with an infi nite time quantum).What (if any) relation
holds between the following pairs of sets of algorithms?

(a) Priority and SJF

(b) Multilevel Feedback Queues and FCFS

(c) Priority and FCFS

(d) RR and SJF

6. Distinguish between long term and short term scheduling.

7. Consider the following set of processes, with the length of the CPU burst given in
milliseconds.

Process Burst Time Priority

P1 10 3

P2 1 1

P3 2 3

P4 1 4

P5 5 2

Operating System

Notes

94 LOVELY PROFESSIONAL UNIVERSITY

 The processes are assumed to have arrived in the order P1, P2, P3, P4, P5 all at time 0.

(a) Draw four Gantt charts that illustrate the execution of these processes using the
following scheduling algorithms: FCFS, SJF, non-preemptive priority (a smaller
priority number implies a higher priority), and RR (quantum = 1).

(b) What is the turnaround time of each process for each of the scheduling algorithms in
part a?

(c) What is the waiting time of each process for each of the scheduling algorithms in part
a?

8. Consider the following set of processes, with the length of the CPU burst and arrival time
given in milliseconds.

Process Burst Time Priority

P1 8 0

P2 4 0.4

P3 1 1

(a) Draw four Gantt charts that illustrate the execution of these processes using the
following scheduling algorithms: FCFS, SJF, (the algorithm can look into the future
and wait for a shorter process that will arrive).

(b) What is the turnaround time of each process for each of the scheduling algorithms in
part a?

(c) What is the waiting time of each process for each of the scheduling algorithms in part
a?

9. Explain the differences in the degree to which the following scheduling algorithms
discriminate in favor of short processes:

(a) First Come First Served

(b) Round Robin

(c) Multilevel Feedback Queues

10. Write short notes on:

(a) Waiting time

(b) Response time

(c) Throughput

Answers: Self Assessment

1. ready-queue 2. CPU 3. processes

4. allocated 5. Shortest remaining time

6. non preemptive priority 7. Medium term 8. minimize the expected runtime

9. Global 10. Round-robin

Unit 5: Scheduling

Notes

 LOVELY PROFESSIONAL UNIVERSITY 95

5.12 Further Readings

Books Andrew M. Lister, Fundamentals of Operating Systems, Wiley.

 Andrew S. Tanenbaum and Albert S. Woodhull, Systems Design and Implementation,
Prentice Hall.

 Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.

 Colin Ritchie, Operating Systems, BPB Publications.

 Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.

 I.A. Dhotre, Operating System, Technical Publications.

 Milankovic, Operating System, Tata MacGraw Hill, New Delhi.

 Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons,
Seventh Edition.

 Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.

Online links www.en.wikipedia.org

 www.web-source.net

 www.webopedia.com

Operating System

Notes

96 LOVELY PROFESSIONAL UNIVERSITY

Unit 6: Process Synchronization

CONTENTS

Objectives

Introduction

6.1 Synchronization Process

6.2 Critical Selection Problem

 6.2.1 Mutual Exclusion Conditions

 6.2.2 Proposals for Achieving Mutual Exclusion

6.3 Semaphores

6.4 Monitors

6.5 Deadlock

6.6 Deadlock Characterization

6.7 Handling of Deadlocks

 6.7.1 Deadlock Prevention

 6.7.2 Deadlock Avoidance

 6.7.3 Deadlock Detection and Recovery

 6.7.4 Ignore Deadlock

 6.7.5 The Banker’s Algorithm for Detecting/Preventing Deadlocks

6.8 Summary

6.9 Keywords

6.10 Self Assessment

6.11 Review Questions

6.12 Further Readings

Objectives

After studying this unit, you will be able to:

z Describe synchronization process

z Know critical selection problem

z Defi ne semaphores

z Explain deadlock

z Describe handling of deadlocks

Introduction

Modern operating systems, such as Unix, execute processes concurrently. Although there is a
single Central Processor (CPU), which execute the instructions of only one program at a time, the
operating system rapidly switches the processor between different processes (usually allowing a
single process a few hundred microseconds of CPU time before replacing it with another process.)

Unit 6: Process Synchronization

Notes

 LOVELY PROFESSIONAL UNIVERSITY 97

Some of these resources (such as memory) are simultaneously shared by all processes. Such
resources are being used in parallel between all running processes on the system. Other resources
must be used by one process at a time, so must be carefully managed so that all processes get access
to the resource. Such resources are being used in concurrently between all running processes on
the system. The most important example of a shared resource is the CPU, although most of the
I/O devices are also shared. For many of these shared resources the operating system distributes
the time a process requires of the resource to ensure reasonable access for all processes. Consider
the CPU, the operating system has a clock which sets an alarm every few hundred microseconds.
At this time the operating system stops the CPU, saves all the relevant information that is needed
to re-start the CPU exactly where it last left off (this will include saving the current instruction
being executed, the state of the memory in the CPUs registers, and other data), and removes
the process from the use of the CPU. The operating system then selects another process to run,
returns the state of the CPU to what it was when it last ran this new process, and starts the CPU
again. Let’s take a moment to see how the operating system manages this.

In this unit, we shall discuss about the deadlock. A deadlock is a situation wherein two or more
competing actions are waiting for the other to fi nish, and thus neither ever does. It is often seen
in a paradox like ‘the chicken or the egg’.

This situation may be likened to two people who are drawing diagrams, with only one pencil and
one ruler between them. If one person takes the pencil and the other takes the ruler, a deadlock
occurs when the person with the pencil needs the ruler and the person with the ruler needs the
pencil, before he can give up the ruler. Both requests can’t be satisfi ed, so a deadlock occurs.

6.1 Synchronization Process

Process synchronization refers to the idea that multiple processes are to join up or handshake
at a certain point, so as to reach an agreement or commit to a certain sequence of action.
Synchronization involves the orderly sharing of system resources by processes.

To illustrate the process synchronization, consider the above railway intersection diagram. You
can think of this intersection as a system resource that is shared by two processes: the car process
and the train process. If only one process is active, then no resource confl ict exists. But what
happens when both processes are active and they both arrive at the intersection simultaneously?
In this case, the shared resource becomes a problem. They cannot both use the resource at the
same time or a collision will occur. Similarly, processes sharing resources on a computer must be
properly managed in order to avoid “collisions.”

Figure 6.1: Railway-road Intersection

Consider a machine with a single printer running a time-sharing operation system. If a process
needs to print its results, it must request that the operating system give it access to the printer’s

Operating System

Notes

98 LOVELY PROFESSIONAL UNIVERSITY

device driver. At this point, the operating system must decide whether to grant this request,
depending upon whether the printer is already being used by another process. If it is not, the
operating system should grant the request and allow the process to continue; otherwise, the
operating system should deny the request and perhaps classify the process as a waiting process
until the printer becomes available. Indeed, if two processes were given simultaneous access to
the machine’s printer, the results would be worthless to both.

Now that the problem of synchronization is properly stated, consider the following related
defi nitions:

1. Critical Resource: A resource shared with constraints on its use (e.g., memory, fi les,
printers, etc.)

2. Critical Section: Code that accesses a critical resource

3. Mutual Exclusion: At most one process may be executing a Critical Section with respect to
a particular critical resource simultaneously

Figure 6.2: Railway-road Intersection with Signal

In the example given above, the printer is the critical resource. Let’s suppose that the processes
which are sharing this resource are called process A and process B. The critical sections of process
A and process B are the sections of the code which issue the print command. In order to insure
that both processes do not attempt to use the printer at the same, they must be granted mutually
exclusive access to the printer driver. The idea of mutual exclusion with our railroad intersection
by adding a semaphore to the picture.

Semaphores are used in software systems in much the same way as they are in railway systems.
Corresponding to the section of track that can contain only one train at a time is a sequence of
instructions that can be executed by only one process at a time. Such a sequence of instructions
is called a critical section.

6.2 Critical Selection Problem

The key to preventing trouble involving shared storage is fi nd some way to prohibit more than
one process from reading and writing the shared data simultaneously. That part of the program
where the shared memory is accessed is called the Critical Section. To avoid race conditions and
fl awed results, one must identify codes in Critical Sections in each thread. The characteristic
properties of the code that form a Critical Section are:

1. Codes that reference one or more variables in a “read-update-write” fashion while any of
those variables is possibly being altered by another thread.

Unit 6: Process Synchronization

Notes

 LOVELY PROFESSIONAL UNIVERSITY 99

2. Codes that alter one or more variables that are possibly being referenced in “read-updata-
write” fashion by another thread.

3. Codes use a data structure while any part of it is possibly being altered by another thread.

4. Codes alter any part of a data structure while it is possibly in use by another thread.

Here, the important point is that when one process is executing shared modifi able data in its
critical section, no other process is to be allowed to execute in its critical section. Thus, the
execution of critical sections by the processes is mutually exclusive in time.

Critical Section

enter

exit
Signal S

Wait S

Figure 6.3: Critical Section

A way of making sure that if one process is using a shared modifi able data, the other processes
will be excluded from doing the same thing.

Formally, while one process executes the shared variable, all other processes desiring to do so
at the same time moment should be kept waiting; when that process has fi nished executing the
shared variable, one of the processes waiting; while that process has fi nished executing the shared
variable, one of the processes waiting to do so should be allowed to proceed. In this fashion, each
process executing the shared data (variables) excludes all others from doing so simultaneously.
This is called Mutual Exclusion.

Note Mutual exclusion needs to be enforced only when processes access shared
modifi able data - when processes are performing operations that do not confl ict with one
another they should be allowed to proceed concurrently.

6.2.1 Mutual Exclusion Conditions

If you could arrange matters such that no two processes were ever in their critical sections
simultaneously, you could avoid race conditions. You need four conditions to hold to have a
good solution for the critical section problem (mutual exclusion).

1. No two processes may at the same moment inside their critical sections.

2. No assumptions are made about relative speeds of processes or number of CPUs.

3. No process outside its critical section should block other processes.

4. No process should wait arbitrary long to enter its critical section.

6.2.2 Proposals for Achieving Mutual Exclusion

The mutual exclusion problem is to devise a pre-protocol (or entry protocol) and a post-protocol
(or exist protocol) to keep two or more threads from being in their critical sections at the same
time.

Operating System

Notes

100 LOVELY PROFESSIONAL UNIVERSITY

Problem: When one process is updating shared modifi able data in its critical section, no other
process should allowed to enter in its critical section.

Proposal 1: Disabling Interrupts (Hardware Solution)

Each process disables all interrupts just after entering in its critical section and re-enable all
interrupts just before leaving critical section. With interrupts turned off the CPU could not be
switched to other process. Hence, no other process will enter its critical and mutual exclusion
achieved.

Conclusion

Disabling interrupts is sometimes a useful interrupts is sometimes a useful technique within the
kernel of an operating system, but it is not appropriate as a general mutual exclusion mechanism
for users process. The reason is that it is unwise to give user process the power to turn off
interrupts.

Proposal 2: Lock Variable (Software Solution)

In this solution, you consider a single, shared, (lock) variable, initially 0. When a process wants
to enter in its critical section, it fi rst test the lock. If lock is 0, the process fi rst sets it to 1 and
then enters the critical section. If the lock is already 1, the process just waits until (lock) variable
becomes 0. Thus, a 0 means that no process in its critical section, and 1 means hold your horses -
some process is in its critical section.

Conclusion

The fl aw in this proposal can be best explained by example. Suppose process A sees that the
lock is 0. Before it can set the lock to 1 another process B is scheduled, runs, and sets the lock to
1. When the process A runs again, it will also set the lock to 1, and two processes will be in their
critical section simultaneously.

Proposal 3: Strict Alteration

In this proposed solution, the integer variable ‘turn’ keeps track of whose turn is to enter the
critical section. Initially, process A inspect turn, fi nds it to be 0, and enters in its critical section.
Process B also fi nds it to be 0 and sits in a loop continually testing ‘turn’ to see when it becomes
1.Continuously testing a variable waiting for some value to appear is called the Busy-Waiting.

Conclusion

Taking turns is not a good idea when one of the processes is much slower than the other. Suppose
process 0 fi nishes its critical section quickly, so both processes are now in their noncritical section.
This situation violates above mentioned condition 3.

Using Systems calls ‘sleep’ and ‘wakeup’

Basically, what above mentioned solution do is this: when a processes wants to enter in its critical
section , it checks to see if then entry is allowed. If it is not, the process goes into tight loop and
waits (i.e., start busy waiting) until it is allowed to enter. This approach waste CPU-time.

Now look at some interprocess communication primitives is the pair of steep-wakeup.

Unit 6: Process Synchronization

Notes

 LOVELY PROFESSIONAL UNIVERSITY 101

Sleep

It is a system call that causes the caller to block, that is, be suspended until some other process
wakes it up.

Wakeup

It is a system call that wakes up the process.

Both ‘sleep’ and ‘wakeup’ system calls have one parameter that represents a memory address
used to match up ‘sleeps’ and ‘wakeups’.

Bounded Buffer Producers and Consumers

The bounded buffer producers and consumers assumes that there is a fi xed buffer size i.e., a fi nite
numbers of slots are available.

Statement

To suspend the producers when the buffer is full, to suspend the consumers when the buffer is
empty, and to make sure that only one process at a time manipulates a buffer so there are no race
conditions or lost updates.

As an example how sleep-wakeup system calls are used, consider the producer-consumer
problem also known as bounded buffer problem.

Two processes share a common, fi xed-size (bounded) buffer. The producer puts information into
the buffer and the consumer takes information out.

Trouble arises when:

1. The producer wants to put a new data in the buffer, but buffer is already full. Solution:
Producer goes to sleep and to be awakened when the consumer has removed data.

2. The consumer wants to remove data the buffer but buffer is already empty.

 Solution: Consumer goes to sleep until the producer puts some data in buffer and wakes
consumer up.

Conclusion: This approaches also leads to same race conditions you have seen in earlier
approaches. Race condition can occur due to the fact that access to ‘count’ is unconstrained. The
essence of the problem is that a wakeup call, sent to a process that is not sleeping, is lost.

Task Discuss “sleep” and “Wakeup” stages.

6.3 Semaphores

E.W. Dijkstra (1965) abstracted the key notion of mutual exclusion in his concepts of
semaphores.

Defi nition

A semaphore is a protected variable whose value can be accessed and altered only by the
operations P and V and initialization operation called ‘Semaphoiinitislize’.

Operating System

Notes

102 LOVELY PROFESSIONAL UNIVERSITY

Binary Semaphores can assume only the value 0 or the value 1 counting semaphores also called
general semaphores can assume only nonnegative values.

The P (or wait or sleep or down) operation on semaphores S, written as P(S) or wait (S), operates
as follows:

P(S): IF S > 0

 THEN S := S – 1

 ELSE (wait on S)

The V (or signal or wakeup or up) operation on semaphore S, written as V(S) or signal (S),
operates as follows:

 V(S): IF (one or more process are waiting on S)

 THEN (let one of these processes proceed)

 ELSE S := S + 1

Operations P and V are done as single, indivisible, atomic action. It is guaranteed that once a
semaphore operations has stared, no other process can access the semaphore until operation has
completed. Mutual exclusion on the semaphore, S, is enforced within P(S) and V(S).

If several processes attempt a P(S) simultaneously, only process will be allowed to proceed. The
other processes will be kept waiting, but the implementation of P and V guarantees that processes
will not suffer indefi nite postponement.

Semaphores solve the lost-wakeup problem.

Producer-Consumer Problem using Semaphores

The Solution to producer-consumer problem uses three semaphores, namely, full, empty and
mutex.

The semaphore ‘full’ is used for counting the number of slots in the buffer that are full. The ‘empty’
for counting the number of slots that are empty and semaphore ‘mutex’ to make sure that the
producer and consumer do not access modifi able shared section of the buffer simultaneously.

Initialization

1. Set full buffer slots to 0.

 i.e., semaphore Full = 0.

2. Set empty buffer slots to N.

 i.e., semaphore empty = N.

3. For control access to critical section set mutex to 1.

 i.e., semaphore mutex = 1.

 Producer ()

 WHILE (true)

 produce-Item ();

 P (empty);

 P (mutex);

 enter-Item ()

Unit 6: Process Synchronization

Notes

 LOVELY PROFESSIONAL UNIVERSITY 103

 V (mutex)

 V (full);

 Consumer ()

 WHILE (true)

 P (full)

 P (mutex);

 remove-Item ();

 V (mutex);

 V (empty);

 consume-Item (Item)

A semaphore is hardware or a software tag variable whose value indicates the status of a common
resource. Its purpose is to lock the resource being used. A process which needs the resource
will check the semaphore for determining the status of the resource followed by the decision
for proceeding. In multitasking operating systems, the activities are synchronized by using the
semaphore techniques.

Semaphore is a machanism to resolve resources confl icts by tallying resource seekers what is the
state of sought resources, achieving a mutual exclusive access to resources. Often semaphore
operates as a type of mutual exclusive counters (such as mutexes) where it holds a number of
access keys to the resources. Process that seeks the resources must obtain one of those access
keys, one of semaphores, before it proceeds further to utilize the resource. If there is no more such
a key available to the process, it has to wait for the current resource user to release the key.

A semaphore could have the value 0,indicating that no wakeups were saved, or some positive
values if one or more wakeups were pending.

A semaphore s is an integer variable that apart from initialization, is accesssed only through two
standard atomic operations, wait and signal. these operations were orignially termed p(for wait
to test) and v(for signal to increment).

The classical defi nation of wait in psedocode is:

wait(s)

{

while(s<=0)

;// no-op

s--;

}

The classical defi nation of signal in psedocode is:

signal(s)

{

s++;

}

Modifi cation to the integer value of smaphore in wait and signal operations must be executed
individually.

That is, when one process modifi es the semaphore value no other process can simultaneously
modifi y that same semaphore value.

Operating System

Notes

104 LOVELY PROFESSIONAL UNIVERSITY

SR Program: The Dining Philosophers

This semaphore solution to the readers-writers problem can let writers starve because readers
arriving after a now-waiting writer arrived earlier can still access the database to read if enough
readers continually trickle in and ‘‘keep the database in a read state’’ then that waiting writer will
never get to write
resource philosopher

 import dining_server

body philosopher(i : int; dcap : cap dining_server; thinking, eating: int)

 write(“philosopher”, i, “alive, max think eat delays”, thinking, eating)

 procedure think()

 var napping : int

 napping := int(random(1000*thinking))

 writes(“age=”,age(),”, philosopher “,i,” thinking for “,napping,” ms\n”)

 nap(napping)

 end think

 procedure eat()

 var napping : int

 napping := int(random(1000*eating))

 writes(“age=”,age(),”, philosopher “,i,” eating for “,napping,” ms\n”)

 nap(napping)

 end eat

 process phil

 do true ->

 think()

 writes(“age=”, age(), “, philosopher “, i, “ is hungry\n”)

 dcap.take_forks(i)

 writes(“age=”, age(), “, philosopher “, i, “ has taken forks\n”)

 eat()

 dcap.put_forks(i)

 writes(“age=”, age(), “, philosopher “, i, “ has returned forks\n”)

 od

 end phil

end philosopher

resource dining_server

 op take_forks(i : int), put_forks(i : int)

body dining_server(num_phil : int)

 write(“dining server for”, num_phil, “philosophers is alive”)

 sem mutex := 1

 type states = enum(thinking, hungry, eating)

 var state[1:num_phil] : states := ([num_phil] thinking)

 sem phil[1:num_phil] := ([num_phil] 0)

 procedure left(i : int) returns lft : int

 if i=1 -> lft := num_phil [] else -> lft := i-1 fi

Unit 6: Process Synchronization

Notes

 LOVELY PROFESSIONAL UNIVERSITY 105

 end left

 procedure right(i : int) returns rgh : int

 if i=num_phil -> rgh := 1 [] else -> rgh := i+1 fi

 end right

 procedure test(i : int)

 if state[i] = hungry and state[left(i)] ~= eating

 and state[right(i)] ~= eating ->

 state[i] := eating

 V(phil[i])

 fi

 end test

 proc take_forks(i)

 P(mutex)

 state[i] := hungry

 test(i)

 V(mutex)

 P(phil[i])

 end take_forks

 proc put_forks(i)

 P(mutex)

 state[i] := thinking

 test(left(i)); test(right(i))

 V(mutex)

 end put_forks

end dining_server

resource start()

 import philosopher, dining_server

 var num_phil : int := 5, run_time : int := 60

 getarg(1, num_phil); getarg(2, run_time)

 var max_think_delay[1:num_phil] : int := ([num_phil] 5)

 var max_eat_delay[1:num_phil] : int := ([num_phil] 2)

 fa i := 1 to num_phil ->

 getarg(2*i+1, max_think_delay[i]); getarg(2*i+2, max_eat_delay[i])

 af

 var dcap : cap dining_server

 write(num_phil, “dining philosophers running”, run_time, “seconds”)

 dcap := create dining_server(num_phil)

 fa i := 1 to num_phil ->

 create philosopher(i, dcap, max_think_delay[i], max_eat_delay[i])

 af

 nap(1000*run_time); write(“must stop now”); stop

end start

/* Example compile and run(s)

Operating System

Notes

106 LOVELY PROFESSIONAL UNIVERSITY

% sr -o dphi dphi.sr

% ./dphi 5 10

5 dining philosophers running 10 seconds

dining server for 5 philosophers is alive

philosopher 1 alive, max think eat delays 5 2

age=37, philosopher 1 thinking for 491 ms

philosopher 2 alive, max think eat delays 5 2

age=50, philosopher 2 thinking for 2957 ms

philosopher 3 alive, max think eat delays 5 2

age=62, philosopher 3 thinking for 1374 ms

philosopher 4 alive, max think eat delays 5 2

age=74, philosopher 4 thinking for 1414 ms

philosopher 5 alive, max think eat delays 5 2

age=87, philosopher 5 thinking for 1000 ms

age=537, philosopher 1 is hungry

age=541, philosopher 1 has taken forks

age=544, philosopher 1 eating for 1351 ms

age=1097, philosopher 5 is hungry

age=1447, philosopher 3 is hungry

age=1451, philosopher 3 has taken forks

age=1454, philosopher 3 eating for 1226 ms

age=1497, philosopher 4 is hungry

age=1898, philosopher 1 has returned forks

age=1901, philosopher 1 thinking for 2042 ms

age=1902, philosopher 5 has taken forks

age=1903, philosopher 5 eating for 1080 ms

age=2687, philosopher 3 has returned forks

age=2691, philosopher 3 thinking for 2730 ms

age=2988, philosopher 5 has returned forks

age=2991, philosopher 5 thinking for 3300 ms

age=2992, philosopher 4 has taken forks

age=2993, philosopher 4 eating for 1818 ms

age=3017, philosopher 2 is hungry

age=3020, philosopher 2 has taken forks

age=3021, philosopher 2 eating for 1393 ms

age=3947, philosopher 1 is hungry

age=4418, philosopher 2 has returned forks

age=4421, philosopher 2 thinking for 649 ms

age=4423, philosopher 1 has taken forks

age=4424, philosopher 1 eating for 1996 ms

age=4817, philosopher 4 has returned forks

age=4821, philosopher 4 thinking for 742 ms

age=5077, philosopher 2 is hungry

Unit 6: Process Synchronization

Notes

 LOVELY PROFESSIONAL UNIVERSITY 107

age=5427, philosopher 3 is hungry

age=5431, philosopher 3 has taken forks

age=5432, philosopher 3 eating for 857 ms

age=5569, philosopher 4 is hungry

age=6298, philosopher 3 has returned forks

age=6301, philosopher 3 thinking for 1309 ms

age=6302, philosopher 5 is hungry

age=6304, philosopher 4 has taken forks

age=6305, philosopher 4 eating for 498 ms

age=6428, philosopher 1 has returned forks

age=6430, philosopher 1 thinking for 1517 ms

age=6432, philosopher 2 has taken forks

age=6433, philosopher 2 eating for 133 ms

age=6567, philosopher 2 has returned forks

age=6570, philosopher 2 thinking for 3243 ms

age=6808, philosopher 4 has returned forks

age=6810, philosopher 4 thinking for 2696 ms

age=6812, philosopher 5 has taken forks

age=6813, philosopher 5 eating for 1838 ms

age=7617, philosopher 3 is hungry

age=7621, philosopher 3 has taken forks

age=7622, philosopher 3 eating for 1251 ms

age=7957, philosopher 1 is hungry

age=8658, philosopher 5 has returned forks

age=8661, philosopher 5 thinking for 4755 ms

age=8662, philosopher 1 has taken forks

age=8664, philosopher 1 eating for 1426 ms

age=8877, philosopher 3 has returned forks

age=8880, philosopher 3 thinking for 2922 ms

age=9507, philosopher 4 is hungry

age=9511, philosopher 4 has taken forks

age=9512, philosopher 4 eating for 391 ms

age=9817, philosopher 2 is hungry

age=9908, philosopher 4 has returned forks

age=9911, philosopher 4 thinking for 3718 ms

age=10098, philosopher 1 has returned forks

age=10100, philosopher 1 thinking for 2541 ms

must stop now

age=10109, philosopher 2 has taken forks

age=10110, philosopher 2 eating for 206 ms

% ./dphi 5 10 1 10 10 1 1 10 10 1 10 1

5 dining philosophers running 10 seconds

dining server for 5 philosophers is alive

Operating System

Notes

108 LOVELY PROFESSIONAL UNIVERSITY

philosopher 1 alive, max think eat delays 1 10

age=34, philosopher 1 thinking for 762 ms

philosopher 2 alive, max think eat delays 10 1

age=49, philosopher 2 thinking for 5965 ms

philosopher 3 alive, max think eat delays 1 10

age=61, philosopher 3 thinking for 657 ms

philosopher 4 alive, max think eat delays 10 1

age=74, philosopher 4 thinking for 8930 ms

philosopher 5 alive, max think eat delays 10 1

age=86, philosopher 5 thinking for 5378 ms

age=726, philosopher 3 is hungry

age=731, philosopher 3 has taken forks

age=732, philosopher 3 eating for 3511 ms

age=804, philosopher 1 is hungry

age=808, philosopher 1 has taken forks

age=809, philosopher 1 eating for 3441 ms

age=4246, philosopher 3 has returned forks

age=4250, philosopher 3 thinking for 488 ms

age=4252, philosopher 1 has returned forks

age=4253, philosopher 1 thinking for 237 ms

age=4495, philosopher 1 is hungry

age=4498, philosopher 1 has taken forks

age=4499, philosopher 1 eating for 8682 ms

age=4745, philosopher 3 is hungry

age=4748, philosopher 3 has taken forks

age=4749, philosopher 3 eating for 2095 ms

age=5475, philosopher 5 is hungry

age=6025, philosopher 2 is hungry

age=6855, philosopher 3 has returned forks

age=6859, philosopher 3 thinking for 551 ms

age=7415, philosopher 3 is hungry

age=7420, philosopher 3 has taken forks

age=7421, philosopher 3 eating for 1765 ms

age=9015, philosopher 4 is hungry

age=9196, philosopher 3 has returned forks

age=9212, philosopher 3 thinking for 237 ms

age=9217, philosopher 4 has taken forks

age=9218, philosopher 4 eating for 775 ms

age=9455, philosopher 3 is hungry

age=9997, philosopher 4 has returned forks

age=10000, philosopher 4 thinking for 2451 ms

age=10002, philosopher 3 has taken forks

age=10004, philosopher 3 eating for 9456 ms

must stop now

 */

Unit 6: Process Synchronization

Notes

 LOVELY PROFESSIONAL UNIVERSITY 109

6.4 Monitors

A monitor is a software synchronization tool with high-level of abstraction that provides a
convenient and effective mechanism for process synchronization. It allows only one process to
be active within the monitor at a time. One simple implementation is shown below.

monitor monitor_name

{

 // shared variable declarations

 procedure P1 (…) { …. }

 …

 procedure Pn(…) {……}

 Initialization code (….) { …}

 …

}

6.5 Deadlock

Deadlock occurs when you have a set of processes [not necessarily all the processes in the system],
each holding some resources, each requesting some resources, and none of them is able to obtain
what it needs, i.e. to make progress. Those processes are deadlocked because all the processes
are waiting. None of them will ever cause any of the events that could wake up any of the other
members of the set, and all the processes continue to wait forever. For this model, I assume that
processes have only a single thread and that there are no interrupts possible to wake up a blocked
process. The no-interrupts condition is needed to prevent an otherwise deadlocked process from
being awakened by, say, an alarm, and then causing events that release other processes in the set.
In most cases, the event that each process is waiting for is the release of some resource currently
possessed by another member of the set. In other words, each member of the set of deadlocked
processes is waiting for a resource that is owned by another deadlocked process. None of the
processes can run, none of them can release any resources, and none of them can be awakened.
The number of processes and the number and kind of resources possessed and requested are
unimportant. This result holds for any kind of resource, including both hardware and software.

Process
A

Process
B

Resource
X

Resource
Y

Waiting
for X

Owned
by B

Owned
by A

Waiting
for Y

Figure 6.4: Processes are in Deadlock Situation

Operating System

Notes

110 LOVELY PROFESSIONAL UNIVERSITY

6.6 Deadlock Characterization

Necessary Conditions

Deadlock situation can arise if the following four conditions hold simultaneously in a system:

1. Resources are used in mutual exclusion.

2. Resources are acquired piecemeal (i.e. not all the resources that are needed to complete an
activity are obtained at the same time in a single indivisible action).

3. Resources are not preempted (i.e. a process does not take away resources being held by
another process).

4. Resources are not spontaneously given up by a process until it has satisfi ed all its
outstanding requests for resources (i.e. a process, being that it cannot obtain some needed
resource it does not kindly give up the resources that it is currently holding).

Resource Allocation Graphs

Resource Allocation Graphs (RAGs) are directed labeled graphs used to represent, from the point
of view of deadlocks, the current state of a system.

RESOURCE ALLOCATION GRAPHS

Process

[reusable] Resources with multiplicity 2

Pi Rj

RjPi

R1 P1

P2
R2

Request Edge from process Pi
to resource Rj

Assignment Edge from resource
Rj to process Pi

P1 holds two copies of
resource R1, and P2 holds
one copy of resource R1 and
requests one copy of R2

State transitions can be represented as transitions between the corresponding resource allocation
graphs. Here are the rules for state transitions:

1. Request: If process Pi has no outstanding request, it can request simultaneously any
number (up to multiplicity) of resources R1, R2, ..Rm. The request is represented by adding
appropriate requests edges to the RAG of the current state.

2. Acquisition: If process Pi has outstanding requests and they can all be simultaneously
satisfi ed, then the request edges of these requests are replaced by assignment edges in the
RAG of the current state

3. Release: If process Pi has no outstanding request then it can release any of the resources it
is holding, and remove the corresponding assignment edges from the RAG of the current
state.

Unit 6: Process Synchronization

Notes

 LOVELY PROFESSIONAL UNIVERSITY 111

Here are some important propositions about deadlocks and resource allocation graphs:

1. If a RAG of a state of a system is fully reducible (i.e. it can be reduced to a graph without
any edges using ACQUISITION and RELEASE operations) then that state is not a deadlock
state.

2. If a state is not a deadlock state then its RAG is fully reducible [this holds only if you are
dealing with reusable resources; it is false if you have consumable resources]

3. A cycle in the RAG of a state is a necessary condition for that being a deadlock state

4. A cycle in the RAG of a state is a suffi cient condition for that being a deadlock state only in
the case of reusable resources with multiplicity one.

 Example: Here is an example of reduction of a RAG:

R1

R2

P2

P3P1

R1

P3

R2

R2

P3

R1

R1

P3P1

R2

P3P1

R2

R1

Reduction of a RAG

And here is a deadlock-free system with a loop.

P1 P2

P3

R1

R2

RAG with Loop but no Deadlock

Task A monitor is a software synchronization tool or hardware synchronization tool.

Operating System

Notes

112 LOVELY PROFESSIONAL UNIVERSITY

6.7 Handling of Deadlocks

There are several ways to address the problem of deadlock in an operating system.

1. Prevent

2. Avoid

3. Detection and recovery

4. Ignore

6.7.1 Deadlock Prevention

Deadlocks can be prevented by ensuring that at least one of the following four conditions occur:

1. Mutual exclusion: Removing the mutual exclusion condition means that no process may
have exclusive access to a resource. This proves impossible for resources that cannot be
spooled, and even with spooled resources deadlock could still occur. Algorithms that
avoid mutual exclusion are called non-blocking synchronization algorithms.

2. Hold and wait: The “hold and wait” conditions may be removed by requiring processes
to request all the resources they will need before starting up (or before embarking upon
a particular set of operations); this advance knowledge is frequently diffi cult to satisfy
and, in any case, is an ineffi cient use of resources. Another way is to require processes to
release all their resources before requesting all the resources they will need. This too is
often impractical. (Such algorithms, such as serializing tokens, are known as the all-or-
none algorithms.)

3. No preemption: A “no preemption” (lockout) condition may also be diffi cult or impossible
to avoid as a process has to be able to have a resource for a certain amount of time, or the
processing outcome may be inconsistent or thrashing may occur. However, inability to
enforce preemption may interfere with a priority algorithm.

Note Preemption of a “locked out” resource generally implies a rollback, and is to be
avoided, since it is very costly in overhead.

 Algorithms that allow preemption include lock-free and wait-free algorithms and optimistic
concurrency control.

4. Circular wait: The circular wait condition: Algorithms that avoid circular waits include
“disable interrupts during critical sections” , and “use a hierarchy to determine a partial
ordering of resources” (where no obvious hierarchy exists, even the memory address of
resources has been used to determine ordering) and Dijkstra’s solution.

6.7.2 Deadlock Avoidance

Deadlock Avoidance, assuming that you are in a safe state (i.e. a state from which there is a
sequence of allocations and releases of resources that allows all processes to terminate) and you
are requested certain resources, simulates the allocation of those resources and determines if the
resultant state is safe. If it is safe the request is satisfi ed, otherwise it is delayed until it becomes
safe.

The Banker’s Algorithm is used to determine if a request can be satisfi ed. It uses requires
knowledge of who are the competing transactions and what are their resource needs. Deadlock
avoidance is essentially not used in distributed systems.

Unit 6: Process Synchronization

Notes

 LOVELY PROFESSIONAL UNIVERSITY 113

6.7.3 Deadlock Detection and Recovery

Often neither deadlock avoidance nor deadlock prevention may be used. Instead deadlock
detection and recovery are used by employing an algorithm that tracks resource allocation and
process states, and rolls back and restarts one or more of the processes in order to remove the
deadlock. Detecting a deadlock that has already occurred is easily possible since the resources
that each process has locked and/or currently requested are known to the resource scheduler
or OS.

Detecting the possibility of a deadlock before it occurs is much more diffi cult and is, in fact,
generally undecidable, because the halting problem can be rephrased as a deadlock scenario.
However, in specifi c environments, using specifi c means of locking resources, deadlock detection
may be decidable. In the general case, it is not possible to distinguish between algorithms that are
merely waiting for a very unlikely set of circumstances to occur and algorithms that will never
fi nish because of deadlock.

6.7.4 Ignore Deadlock

In the Ostrich Algorithm it is hoped that deadlock doesn’t happen. In general, this is a reasonable
strategy. Deadlock is unlikely to occur very often; a system can run for years without deadlock
occurring. If the operating system has a deadlock prevention or detection system in place, this
will have a negative impact on performance (slow the system down) because whenever a process
or thread requests a resource, the system will have to check whether granting this request could
cause a potential deadlock situation.

If deadlock does occur, it may be necessary to bring the system down, or at least manually kill a
number of processes, but even that is not an extreme solution in most situations.

6.7.5 The Banker’s Algorithm for Detecting/Preventing Deadlocks

Banker’s Algorithm for Single Resource

This is modeled on the way a small town banker might deal with customers’ lines of credit. In the
course of conducting business, our banker would naturally observe that customers rarely draw
their credit lines to their limits. This, of course, suggests the idea of extending more credit than
the amount the banker actually has in her coffers.

Suppose we start with the following situation

Customer Credit Used Credit Line

Andy 0 6

Barb 0 5

Marv 0 4

Sue 0 7

Funds Available 10

Max Commitment 22

Our banker has 10 credits to lend, but a possible liability of 22. Her job is to keep enough in
reserve so that ultimately each customer can be satisfi ed over time: That is, that each customer
will be able to access his full credit line, just not all at the same time. Suppose, after a while, the
bank’s credit line book shows.

Operating System

Notes

114 LOVELY PROFESSIONAL UNIVERSITY

Customer Credit Used Credit Line

Andy 1 6

Barb 1 5

Marv 2 4

Sue 4 7

Funds Available 2

Max Commitment 22

Eight credits have been allocated to the various customers; two remain. The question then is:
Does a way exist such that each customer can be satisfi ed? Can each be allowed their maximum
credit line in some sequence? We presume that, once a customer has been allocated up to his
limit, the banker can delay the others until that customer repays his loan, at which point the
credits become available to the remaining customers. If we arrive at a state where no customer
can get his maximum because not enough credits remain, then a deadlock could occur, because
the fi rst customer to ask to draw his credit to its maximum would be denied, and all would have
to wait.

To determine whether such a sequence exists, the banker fi nds the customer closest to his limit: If
the remaining credits will get him to that limit, The banker then assumes that that loan is repaid,
and proceeds to the customer next closest to his limit, and so on. If all can be granted a full credit,
the condition is safe.

In this case, Marv is closest to his limit: assume his loan is repaid. This frees up 4 credits. After
Marv, Barb is closest to her limit (actually, she’s tied with Sue, but it makes no difference) and 3
of the 4 freed from Marv could be used to award her maximum. Assume her loan is repaid; we
have now freed 6 credits. Sue is next, and her situation is identical to Barb’s, so assume her loan
is repaid. We have freed enough credits (6) to grant Andy his limit; thus this state safe.

Suppose, however, that the banker proceeded to award Barb one more credit after the credit book
arrived at the state immediately above:

Customer Credit Used Credit Line

Andy 1 6

Barb 2 5

Marv 2 4

Sue 4 7

Funds Available 1

Max Commitment 22

Now it’s easy to see that the remaining credit could do no good toward getting anyone to their
maximum.

So, to recap, the banker’s algorithm looks at each request as it occurs, and tests if granting it will
lead to a safe state. If not, the request is delayed. To test for a safe state, the banker checks to see
if enough resources will remain after granting the request to satisfy the customer closest to his
maximum. If so, that loan is assumed repaid, and the next customer checked, and so on. If all
loans can be repaid, then the request leads to a safe state, and can be granted. In this case, we see
that if Barb is awarded another credit, Marv, who is closest to his maximum, cannot be awarded
enough credits, hence Barb’s request can’t be granted —it will lead to an unsafe state3.

Banker’s Algorithm for Multiple Resources

Suppose, for example, we have the following situation, where the fi rst table represents resources
assigned, and the second resources still required by fi ve processes, A, B, C, D, and E.

Unit 6: Process Synchronization

Notes

 LOVELY PROFESSIONAL UNIVERSITY 115

Resources Assigned

Processes Tapes Plotters Printers Toasters

A 3 0 1 1

B 0 1 0 0

C 1 1 1 0

D 1 1 0 1

E 0 0 0 0

Total Existing 6 3 4 2

Total Claimed by Processes 5 3 2 2

Remaining Unclaimed 1 0 2 0

Resources Still Needed

Processes Tapes Plotters Printers Toasters

A 1 1 0 0

B 0 1 1 2

C 3 1 0 0

D 0 0 1 0

E 2 1 1 0

The vectors E, P and A represent Existing, Possessed and Available resources respectively:
 E = (6, 3, 4, 2)

 P = (5, 3, 2, 2)

 A = (1, 0, 2, 0)

Notice that

 A = E - P

Now, to state the algorithm more formally, but in essentially the same way as the example with
Andy, Barb, Marv and Sue:

1. Look for a row whose unmet needs don’t exceed what’s available, that is, a row where
P <= A; if no such row exists, we are deadlocked because no process can acquire the
resources it needs to run to completion. If there’s more than one such row, just pick one.

2. Assume that the process chosen in 1 acquires all the resources it needs and runs to
completion, thereby releasing its resources. Mark that process as virtually terminated and
add its resources to A.

3. Repeat 1 and 2 until all processes are either virtually terminated (safe state), or a deadlock
is detected (unsafe state).

Going thru this algorithm with the foregoing data, we see that process D’s requirements are
smaller than A, so we virtually terminate D and add its resources back into the available pool:
 E = (6, 3, 4, 2)

 P = (5, 3, 2, 2) - (1, 1, 0, 1) = (4, 2, 2, 1)

 A = (1, 0, 2, 0) + (1, 1, 0, 1) = (2, 1, 2, 1)

Now, A’s requirements are less than A, so do the same thing with A:

 P = (4, 2, 2, 1) – (3, 0, 1, 1) = (1, 2, 1, 0)

 A = (2, 1, 2, 1) + (3, 0, 1, 1) = (5, 1, 3, 2)

At this point, we see that there are no remaining processes that can’t be satisfi ed from available
resources, so the illustrated state is safe.

Operating System

Notes

116 LOVELY PROFESSIONAL UNIVERSITY

6.8 Summary

z Race condition is a fl aw in a system of processes whereby the output of the process is
unexpectedly and critically dependent on the sequence of other processes.

z It may arise in multi-process environment, especially when communicating between
separate processes or threads of execution.

z Mutual exclusion means that only one of the processes is allowed to execute its critical
section at a time. Mutex, semaphores and motors are some of the process synchronization
tools. Mutex is a software tool used in concurrency control. It is short form of mutual
exclusion.

z A mutex is a program element that allows multiple program processes to share the same
resource but not simultaneously. Semaphore is a software concurrency control tool.
It bears analogy to old Roman system of message transmission using fl ags. It enforces
synchronization among communicating processes and does not require busy waiting.

z In counting semaphore the integer value can range over an unrestricted domain. In binary
semaphore the integer value can range only between 0 and 1.

z A monitor is a software synchronization tool with high-level of abstraction that provides
a convenient and effective mechanism for process synchronization. It allows only one
process to be active within the monitor at a time.

z Bounded Buffer Problem, readers and writers problem, sleeping barber problem, and
dining philosopher problem are some of the classical synchronization problems taken from
real life situations.

z A deadlock is a situation wherein two or more competing actions are waiting for the other
to fi nish, and thus neither ever does. Resource Allocation Graphs (RAGs) are directed
labeled graphs used to represent, from the point of view of deadlocks, the current state
of a system. There are several ways to address the problem of deadlock in an operating
system – Prevent, Avoid, Detection and recovery and Ignore.

6.9 Keywords

Deadlock: A deadlock is a situation wherein two or more competing actions are waiting for the
other to fi nish, and thus neither ever does.

Monitor: It is a software synchronization tool with high-level of abstraction that provides a
convenient and effective mechanism for process synchronization.

Mute: It is a program element that allows multiple program processes to share the same resource
but not simultaneously.

Mutex: It is a software tool used in concurrency control. It is short form of mutual exclusion.

Mutual exclusion: It means that only one of the processes is allowed to execute its critical section
at a time.

Race condition: It is a fl aw in a system of processes whereby the output of the process is
unexpectedly and critically dependent on the sequence of other processes.

Resource Allocation Graphs (RAGs): Those are directed labeled graphs used to represent, from
the point of view of deadlocks, the current state of a system.

Semaphore: It is a software concurrency control tool.

Unit 6: Process Synchronization

Notes

 LOVELY PROFESSIONAL UNIVERSITY 117

6.10 Self Assessment

Fill in the blanks:

1. involves the orderly sharing of system resources by processes.

2. are used in software systems in much the same way as they are in railway
systems.

3. Part of the program where the shared memory is accessed is called the

4. A is a software synchronization tool with high-level of abstraction that
provides a convenient and effective mechanism for process synchronization.

5. Resource Allocation Graphs (RAGs) are labeled graphs.

6. Algorithms that avoid mutual exclusion are called synchronization
algorithms.

7. abstracted the key notion of mutual exclusion in his concepts of
semaphores.

8. “No preemption” condition also known as

9. processes share a common, fi xed-size (bounded) buffer.

10. Binary Semaphores can assume only the value 0 or the value

6.11 Review Questions

1. What is a safe state? What is its use in deadlock avoidance?

2. Describe briefl y any one method of deadlock prevention.

3. What is concurrency? Explain with example deadlock and starvation.

4. Explain the different deadlock strategies.

5. Can a process be allowed to request multiple resources simultaneously in a system where
deadlock are avoided? Discuss why or why not.

6. How deadlock situation are avoided and prevented so that no systems are locked by
deadlock?

7. Consider the following resource allocation situation:

 Process P = {P1, P2, P3, P4, P5}

 Resources R = {R1, R2, R3}

 Allocation E = {P1®R1, P1®R2, P2®R2, P3®R2, P4®R3, P5®R2, R2®P4, R3®P1}

 Resource instances n(R1)=3, n(R2)=4, n(R3)=1

 Draw the precedence graph. Determine whether there is a deadlock in the above
situation.

8. Explain process synchronization process.

9. What do you mean by mutual exclusion conditions? Explain

10. Write short note on semaphore.

Operating System

Notes

118 LOVELY PROFESSIONAL UNIVERSITY

Answers: Self Assessment

1. Synchronization 2. Semaphores 3. Critical Section 4. monitor

5. directed 6. non-blocking 7. E.W. Dijkstra (1965)

8. lockout 9. Two 10. 1

6.12 Further Readings

Books Andrew M. Lister, Fundamentals of Operating Systems, Wiley.

 Andrew S. Tanenbaum and Albert S. Woodhull, Systems Design and Implementation,
Prentice Hall.

 Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.

 Colin Ritchie, Operating Systems, BPB Publications.

 Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.

 I.A. Dhotre, Operating System, Technical Publications.

 Milankovic, Operating System, Tata MacGraw Hill, New Delhi.

 Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons,
Seventh Edition.

 Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.

Online links www.en.wikipedia.org

 www.web-source.net

 www.webopedia.com

Unit 7: Memory Management

Notes

 LOVELY PROFESSIONAL UNIVERSITY 119

Unit 7: Memory Management

CONTENTS

Objectives

Introduction

7.1 Memory Management

7.2 Logical and Physical Address Space

7.3 Swapping

7.4 Contiguous Memory Allocation

7.5 Paging

7.6 Segmentation

7.7 Segmentation with Paging

7.8 Virtual Memory

7.9 Demand Paging

7.10 Page Replacement

 7.10.1 Static Page Replacement Algorithms

 7.10.2 Dynamic Page Replacement Algorithms

7.11 Page Allocation Algorithm

7.12 Thrashing

7.13 Summary

7.14 Keywords

7.15 Self Assessment

7.16 Review Questions

7.17 Further Readings

Objectives

After studying this unit, you will be able to:

z Defi ne memory management

z Describe swapping

z Explain segmentation with paging

z Know virtual memory

z Describe demand paging

Introduction

Memory is the electronic holding place for instructions and data that the computer’s microprocessor
can reach quickly. When the computer is in normal operation, its memory usually contains the
main parts of the operating system and some or all of the application programs and related data

Operating System

Notes

120 LOVELY PROFESSIONAL UNIVERSITY

that are being used. Memory is often used as a shorter synonym for random access memory
(RAM). This kind of memory is located on one or more microchips that are physically close to the
microprocessor in the computer. Most desktop and notebook computers sold today include at
least 16 megabytes of RAM, and are upgradeable to include more. The more RAM you have, the
less frequently the computer has to access instructions and data from the more slowly accessed
hard disk form of storage.

Memory is sometimes distinguished from storage, or the physical medium that holds the much
larger amounts of data that won’t fi t into RAM and may not be immediately needed there.
Storage devices include hard disks, fl oppy disks, CD-ROM, and tape backup systems. The terms
auxiliary storage, auxiliary memory, and secondary memory have also been used for this kind
of data repository.

Additional kinds of integrated and quickly accessible memory are read-only memory (ROM),
programmable ROM (PROM), erasable programmable ROM (EPROM). These are used to keep
special programs and data, such as the basic input/output system, that need to be in the computer
all the time.

The memory is a resource that needs to be managed carefully. Most computers have a memory
hierarchy, with a small amount of very fast, expensive, volatile cache memory, some number of
megabytes of medium-speed, medium-price, volatile main memory (RAM), and hundreds of
thousands of megabytes of slow, cheap, non-volatile disk storage. It is the job of the operating
system to coordinate how these memories are used.

7.1 Memory Management

In addition to the responsibility of managing processes, the operating system must effi ciently
manage the primary memory of the computer. The part of the operating system which handles
this responsibility is called the memory manager. Since every process must have some amount
of primary memory in order to execute, the performance of the memory manager is crucial to
the performance of the entire system. The memory manager is responsible for allocating primary
memory to processes and for assisting the programmer in loading and storing the contents of the
primary memory. Managing the sharing of primary memory and minimizing memory access
time are the basic goals of the memory manager.

When an operating system manages the computer’s memory, there are two broad tasks to be
accomplished:

1. Each process must have enough memory in which to execute, and it can neither run into
the memory space of another process nor be run into by another process.

2. The different types of memory in the system must be used properly so that each process
can run most effectively.

The fi rst task requires the operating system to set up memory boundaries for types of software
and for individual applications.

 Example: Let’s look at an imaginary small system with 1 megabyte (1,000 kilobytes) of
RAM. During the boot process, the operating system of our imaginary computer is designed
to go to the top of available memory and then “back up” far enough to meet the needs of the
operating system itself. Let’s say that the operating system needs 300 kilobytes to run. Now, the
operating system goes to the bottom of the pool of RAM and starts building up with the various
driver software required to control the hardware subsystems of the computer. In our imaginary
computer, the drivers take up 200 kilobytes. So after getting the operating system completely
loaded, there are 500 kilobytes remaining for application processes.

Unit 7: Memory Management

Notes

 LOVELY PROFESSIONAL UNIVERSITY 121

When applications begin to be loaded into memory, they are loaded in block sizes determined
by the operating system. If the block size is 2 kilobytes, then every process that is loaded will be
given a chunk of memory that is a multiple of 2 kilobytes in size. Applications will be loaded in
these fi xed block sizes, with the blocks starting and ending on boundaries established by words
of 4 or 8 bytes. These blocks and boundaries help to ensure that applications won’t be loaded
on top of one another’s space by a poorly calculated bit or two. With that ensured, the larger
question is what to do when the 500-kilobyte application space is fi lled.

In most computers, it’s possible to add memory beyond the original capacity. For example, you
might expand RAM from 1 to 2 megabytes. This works fi ne, but tends to be relatively expensive.
It also ignores a fundamental fact of computing - most of the information that an application
stores in memory is not being used at any given moment. A processor can only access memory
one location at a time, so the vast majority of RAM is unused at any moment. Since disk space
is cheap compared to RAM, then moving information in RAM to hard disk can greatly expand
RAM space at no cost. This technique is called virtual memory management.

Disk storage is only one of the memory types that must be managed by the operating system, and
is the slowest. Ranked in order of speed, the types of memory in a computer system are:

1. High-speed cache: This is fast, relatively small amounts of memory that are available to
the CPU through the fastest connections. Cache controllers predict which pieces of data
the CPU will need next and pull it from main memory into high-speed cache to speed up
system performance.

2. Main memory: This is the RAM that you see measured in megabytes when you buy a
computer.

3. Secondary memory: This is most often some sort of rotating magnetic storage that keeps
applications and data available to be used, and serves as virtual RAM under the control of
the operating system.

The operating system must balance the needs of the various processes with the availability of the
different types of memory, moving data in blocks (called pages) between available memory as
the schedule of processes dictates.

Systems for managing memory can be divided into two categories: the system of moving
processes back and forth between main memory and disk during execution (known as swapping
and paging) and the process that does not do so (that is, no swapping and ping).

Memory
management

unit
Memory

CPU
card

The CPU sends virtual
addresses to the MMU

Disk
controller

CPU

The MMU sends physical
addresses to the memory

Bus

Figure 7.1: Memory Management

Task What is the concept of primary and secondary memory?

Operating System

Notes

122 LOVELY PROFESSIONAL UNIVERSITY

7.2 Logical and Physical Address Space

A memory address identifi es a physical location in computer memory, somewhat similar to a
street address in a town. The address points to the location where data is stored, just like your
address points to where you live.

In the analogy of a person’s address, the address space would be an area of locations, such as
a neighborhood, town, city, or country. Two addresses may be numerically the same but refer
to different locations, if they belong to different address spaces. This is similar to your address
being, say, “32, Main Street”, while another person may reside in “32, Main Street” in a different
town from yours.

Many programmers prefer to use a fl at memory model, in which there is no distinction between
code space, data space, and virtual memory – in other words, numerically identical pointers refer
to exactly the same byte of RAM in all three address spaces.

Main memory

CPU

MMU

Virtual addresses

Physical addresses

Device

Device addresses

IOMMU

Figure 7.2: Memory Management Unit

Physical Address

A physical address, also real address, or binary address, is the memory address, that is
electronically (in the form of binary number) presented on the computer address bus circuitry in
order to enable the data bus to access a particular storage cell of main memory.

Logical Address

Logical address is the address at which a memory location appears to reside from the perspective
of an executing application program. This may be different from the physical address due to the
operation of a Memory Management Unit (MMU) between the CPU and the memory bus.

Physical memory may be mapped to different logical addresses for various purposes.

 Example: The same physical memory may appear at two logical addresses and if
accessed by the program at one address, data will pass through the processor cache whereas if it
is accessed at the other address, it will bypass the cache.

In a system supporting virtual memory, there may actually not be any physical memory mapped
to a logical address until an access is attempted. The access triggers special functions of the

Unit 7: Memory Management

Notes

 LOVELY PROFESSIONAL UNIVERSITY 123

operating system which reprogram the MMU to map the address to some physical memory,
perhaps writing the old contents of that memory to disk and reading back from disk what the
memory should contain at the new logical address. In this case, the logical address may be
referred to as a virtual address.

Logical vs. Physical Address Space

An address generated by the CPU is commonly referred to as a logical address, whereas an
address seen by the memory unit – that is, the one loaded into the memory-address register of
the memory – is commonly referred to as a physical address.

The compile-time and load-time address-binding methods generate identical logical and physical
addresses. However, the execution-time address-binding scheme results in differing logical and
physical addresses. In this case, you usually refer to the logical address as a virtual address.

The set of all logical addresses generated by a program is a logical-address space; the set of all
physical addresses corresponding to these logical addresses is a physical-address space. Thus, in
the execution-time address-binding scheme, the logical- and physical-address spaces differ.

7.3 Swapping

Any operating system has a fi xed amount of physical memory available. Usually, application
need more than the physical memory installed on your system, for that purpose the operating
system uses a swap mechanism: instead of storing data in physical memory, it uses a disk fi le.

Swapping is the act of moving processes between memory and a backing store. This is done to
free up available memory. Swapping is necessary when there are more processes than available
memory. At the coarsest level, swapping is done a process at a time.

To move a program from fast-access memory to a slow-access memory is known as “swap out”,
and the reverse operation is known as “swap in”. The term often refers specifi cally to the use of
a hard disk (or a swap fi le) as virtual memory or “swap space”.

When a program is to be executed, possibly as determined by a scheduler, it is swapped into
core for processing; when it can no longer continue executing for some reason, or the scheduler
decides its time slice has expired, it is swapped out again.

Operating
systemSwapping device

(usually, a hard disk) Memory

SWAP-IN

SWAP-OUT

Figure 7.3: Memory Swapping

Task Differentiate PROM and EPROM type memory.

Operating System

Notes

124 LOVELY PROFESSIONAL UNIVERSITY

7.4 Contiguous Memory Allocation

The real challenge of effi ciently managing memory is seen in the case of a system which has
multiple processes running at the same time. Since primary memory can be space-multiplexed,
the memory manager can allocate a portion of primary memory to each process for its own
use. However, the memory manager must keep track of which processes are running in which
memory locations, and it must also determine how to allocate and deallocate available memory
when new processes are created and when old processes complete execution. While various
different strategies are used to allocate space to processes competing for memory, three of the
most popular are Best fi t, Worst fi t, and First fi t. Each of these strategies is described below:

1. Best fi t: The allocator places a process in the smallest block of unallocated memory in
which it will fi t. For example, suppose a process requests 12KB of memory and the memory
manager currently has a list of unallocated blocks of 6KB, 14KB, 19KB, 11KB, and 13KB
blocks. The best-fi t strategy will allocate 12KB of the 13KB block to the process.

2. Worst fi t: The memory manager places a process in the largest block of unallocated
memory available. The idea is that this placement will create the largest hold after the
allocations, thus increasing the possibility that, compared to best fi t, another process can
use the remaining space. Using the same example as above, worst fi t will allocate 12KB of
the 19KB block to the process, leaving a 7KB block for future use.

3. First fi t: There may be many holes in the memory, so the operating system, to reduce the
amount of time it spends analyzing the available spaces, begins at the start of primary
memory and allocates memory from the fi rst hole it encounters large enough to satisfy the
request. Using the same example as above, fi rst fi t will allocate 12KB of the 14KB block to
the process.

6KB

14KB

19KB

11KB

13KB 12KB

12KB

12KB

Primary
Memory

Best fit Worst fit First fit

Figure 7.4: Best Fit, Worst Fit and First Fit Memory Allocation Method

Notice in the above fi gure that the Best fi t and First fi t strategies both leave a tiny segment of
memory unallocated just beyond the new process. Since the amount of memory is small, it is not
likely that any new processes can be loaded here. This condition of splitting primary memory
into segments as the memory is allocated and deallocated is known as fragmentation. The Worst
fi t strategy attempts to reduce the problem of fragmentation by allocating the largest fragments
to new processes. Thus, a larger amount of space will be left as seen in the Figure 7.4.

Unit 7: Memory Management

Notes

 LOVELY PROFESSIONAL UNIVERSITY 125

Buddy System

Memory management, especially memory allocation to processes, is a fundamental issue in
operating systems. A fi xed partitioning scheme limits the number of active processes and may
use space ineffi ciently if there is a poor match between available partition sizes and process
sizes. A dynamic partitioning scheme is more complex to maintain and includes the overhead of
compaction. An interesting compromise is the buddy system.

In a buddy system, the entire memory space available for allocation is initially treated as a single
block whose size is a power of 2. When the fi rst request is made, if its size is greater than half
of the initial block then the entire block is allocated. Otherwise, the block is split in two equal
companion buddies. If the size of the request is greater than half of one of the buddies, then
allocate one to it. Otherwise, one of the buddies is split in half again. This method continues until
the smallest block greater than or equal to the size of the request is found and allocated to it.

In this method, when a process terminates the buddy block that was allocated to it is freed.
Whenever possible, an unnallocated buddy is merged with a companion buddy in order to form
a larger free block. Two blocks are said to be companion buddies if they resulted from the split
of the same direct parent block.

The following Figure 7.5 illustrates the buddy system at work, considering a 1024k (1-megabyte)
initial block and the process requests as shown at the left of the table.

0 128k 256k 512k 1024k

1024k

1024k

128 256

25664

64

64

D

D64

B

B

B

B

128

128

128

A

A

A

C

C

C

C

C256 128

128

128

128

128

512

512

512

512

512

512

512

512

512

start

A=70K

B=35K

C=80K

A ends

D=60K

B ends

D ends

C ends

end

Figure 7.5: Diagram of Buddy System

Notice that, whenever there is a request that corresponds to a block of sizes, your program should
select the block of that size that was most recently declared free. Furthermore, when a block is
split in two, the left-one (lower addresses) should be selected before the right-one.

You can assume that the list of requests is such that all requests can always be served. In other
words, you can make the following assumptions: no process will request more than the available
memory; processes are uniquely identifi ed while active; and no request for process termination
is issued before its corresponding request for memory allocation.

It is preferable when dealing with large amounts of memory to use physically contiguous pages
in memory both for cache related and memory access latency reasons. Unfortunately, due to
external fragmentation problems with the buddy allocator, this is not always possible.

Operating System

Notes

126 LOVELY PROFESSIONAL UNIVERSITY

7.5 Paging

It is a technique for increasing the memory space available by moving infrequently-used parts of
a program’s working memory from RAM to a secondary storage medium, usually hard disk. The
unit of transfer is called a page.

A memory management unit (MMU) monitors accesses to memory and splits each address into
a page number (the most signifi cant bits) and an offset within that page (the lower bits). It then
looks up the page number in its page table. The page may be marked as paged in or paged out.
If it is paged in then the memory access can proceed after translating the virtual address to a
physical address. If the requested page is paged out then space must be made for it by paging out
some other page, i.e. copying it to disk. The requested page is then located on the area of the disk
allocated for “swap space” and is read back into RAM. The page table is updated to indicate that
the page is paged in and its physical address recorded.

The MMU also records whether a page has been modifi ed since it was last paged in. If it has
not been modifi ed then there is no need to copy it back to disk and the space can be reused
immediately.

Paging allows the total memory requirements of all running tasks (possibly just one) to exceed
the amount of physical memory, whereas swapping simply allows multiple processes to run
concurrently, so long as each process on its own fi ts within physical memory.

Paging

Page #
18

Offset
14

Page Table

Page Table Entry (PTE)5

Physical Memory

0 1 2 3 4 5 6

Virtual Address

Figure 7.6: Paging

On operating systems, such as Windows NT, Windows 2000 or UNIX, the memory is logically
divided in pages. When the system needs a certain portion of memory which is currently in the
swap (this is called a page fault) it will load all the corresponding pages into RAM. When a page
is not accessed for a long time, it is saved back to disk and discarded.

Unit 7: Memory Management

Notes

 LOVELY PROFESSIONAL UNIVERSITY 127

In a virtual memory system, it is common to map between virtual addresses and physical
addresses by means of a data structure called a page table. A page table is the data structure
used by a virtual memory system in a computer operating system to store the mapping between
virtual addresses and physical addresses. Virtual addresses are those unique to the accessing
process. Physical addresses are those unique to the CPU, i.e., RAM.

The page number of an address is usually found from the most signifi cant bits of the address; the
remaining bits yield the offset of the location within the page. The page table is normally indexed
by page number and contains information on whether the page is currently in main memory, and
where it is in main memory or on disk.

Conventional page tables are sized to the virtual address space and store the entire virtual address
space description of each process. Because of the need to keep the virtual-to-physical translation
time low, a conventional page table is structured as a fi xed, multi-level hierarchy, and can be very
ineffi cient at representing a sparse virtual address space, unless the allocated pages are carefully
aligned to the page table hierarchy.

7.6 Segmentation

It is very common for the size of program modules to change dynamically. For instance, the
programmer may have no knowledge of the size of a growing data structure. If a single address
space is used, as in the paging form of virtual memory, once the memory is allocated for modules
they cannot vary in size. This restriction results in either wastage or shortage of memory. To
avoid the above problem, some computer systems are provided with many independent address
spaces. Each of these address spaces is called a segment. The address of each segment begins with
0 and segments may be compiled separately. In addition, segments may be protected individually
or shared between processes. However, segmentation is not transparent to the programmer like
paging. The programmer is involved in establishing and maintaining the segments.

Segmentation is one of the most common ways to achieve memory protection like paging. An
instruction operand that refers to a memory location includes a value that identifi es a segment
and an offset within that segment. A segment has a set of permissions, and a length, associated
with it. If the currently running process is allowed by the permissions to make the type of
reference to memory that it is attempting to make, and the offset within the segment is within the
range specifi ed by the length of the segment, the reference is permitted; otherwise, a hardware
exception is delivered.

In addition to the set of permissions and length, a segment also has associated with it information
indicating where the segment is located in memory. It may also have a fl ag indicating whether
the segment is present in main memory or not; if the segment is not present in main memory,
an exception is delivered, and the operating system will read the segment into memory from
secondary storage. The information indicating where the segment is located in memory might
be the address of the fi rst location in the segment, or might be the address of a page table for the
segment. In the fi rst case, if a reference to a location within a segment is made, the offset within
the segment will be added to address of the fi rst location in the segment to give the address in
memory of the referred-to item; in the second case, the offset of the segment is translated to a
memory address using the page table.

A memory management unit (MMU) is responsible for translating a segment and offset within
that segment into a memory address, and for performing checks to make sure the translation can
be done and that the reference to that segment and offset is permitted.

Operating System

Notes

128 LOVELY PROFESSIONAL UNIVERSITY

segment 0

segment 1

data 1

editor

logical memory
process P1

segment 0

segment 1

data 2

editor

logical memory
process P2

0 25286
4425

43062
683481

segment table
process P1 data 1

data 2

physical memory

editor

90003

98553

72773

43062
limit base

0 25286
8850

43062
900031

segment table
process P2

limit base

68348

Figure 7.7: Sharing of Segments in a Segmented Memory System

Task Differentiate between paging and segmentation technique.

7.7 Segmentation with Paging

Seg# Page# Offset

Virtual Address

Segment Table Page Table

Main Memory

Figure 7.8: Diagram of Segmentation with Paging

Segments can be of different lengths, so it is harder to fi nd a place for a segment in memory than
a page. With segmented virtual memory, you get the benefi ts of virtual memory but you still
have to do dynamic storage allocation of physical memory. In order to avoid this, it is possible
to combine segmentation and paging into a two-level virtual memory system. Each segment

Unit 7: Memory Management

Notes

 LOVELY PROFESSIONAL UNIVERSITY 129

descriptor points to page table for that segment. This give some of the advantages of paging (easy
placement) with some of the advantages of segments (logical division of the program).

segment descriptor

directory page offest

+

linear address

directory entry page table entry

page directory page table

page directory
base register

physical address

page frame

logical address selector offset

descriptor table

Figure 7.9: Intel 80386 Address Translation

Some operating systems allow for the combination of segmentation with paging. If the size of a
segment exceeds the size of main memory, the segment may be divided into equal size pages.

The virtual address consists of three parts: (1) segment number (2) the page within the segment
and (3) the offset within the page. The segment number is used to fi nd the segment descriptor
and the address within the segment is used to fi nd the page frame and the offset within that
page.

7.8 Virtual Memory

Many of us use computers on a daily basis. Although you use it for many different purposes
in many different ways, you share one common reason of using them; to make our job more
effi cient and easier.

However, there are times when computers cannot run as fast as you want it to or just cannot
handle certain processes effectively, due to the shortage of system resources. When the limitations
of system resources become a major barrier to achieving your maximum productivity, you often
consider the apparent ways of upgrading the system, such as switching to a faster CPU, adding
more physical memory (RAM), installing utility programs, and so on. As a computer user, you
want to make the most of the resources available; the process of preparing plans to coordinate the
total system to operate in the most effi cient manner. This is called a system optimization.

When it comes to system optimization, there is one great invention of modern computing called
virtual memory. It is an imaginary memory area supported by some operating system (for

Operating System

Notes

130 LOVELY PROFESSIONAL UNIVERSITY

example, Windows but not DOS) in conjunction with the hardware. You can think of virtual
memory as an alternate set of memory addresses. Programs use these virtual addresses rather
than real addresses to store instructions and data. When the program is actually executed, the
virtual addresses are converted into real memory addresses.

The purpose of virtual memory is to enlarge the address space, the set of addresses a program
can utilize.

 Example: Virtual memory might contain twice as many addresses as main memory.

A program using all of virtual memory, therefore, would not be able to fi t in main memory all at
once. Nevertheless, the computer could execute such a program by copying into main memory
those portions of the program needed at any given point during execution.

page frames

MAIN MEMORY

MAPPER

logical page + x

VIRTUAL ADDRESS

(not presert)

(present)
page frame + x

CPU

SECONDARY STORAGE

1

2

3

4

5

logical page

VIRTUAL MEMORY

Figure 7.10: Virtual Memory

To facilitate copying virtual memory into real memory, the operating system divides virtual
memory into pages, each of which contains a fi xed number of addresses. Each page is stored on a
disk until it is needed. When the page is needed, the operating system copies it from disk to main
memory, translating the virtual addresses into real addresses.

The process of translating virtual addresses into real addresses is called mapping. The copying of
virtual pages from disk to main memory is known as paging or swapping.

Some physical memory is used to keep a list of references to the most recently accessed information
on an I/O (input/output) device, such as the hard disk. The optimization it provides, is that it
is faster to read the information from physical memory, than use the relevant I/O channel to get
that information. This is called caching. It is implemented inside the OS.

Task Why operating system need virtual memory? Discuss.

7.9 Demand Paging

As there is much less physical memory than virtual memory the operating system must be careful
that it does not use the physical memory ineffi ciently. One way to save physical memory is to

Unit 7: Memory Management

Notes

 LOVELY PROFESSIONAL UNIVERSITY 131

only load virtual pages that are currently being used by the executing program. For example, a
database program may be run to query a database. In this case not the entire database needs to be
loaded into memory, just those data records that are being examined. Also, if the database query
is a search query then it does not make sense to load the code from the database program that
deals with adding new records. This technique of only loading virtual pages into memory as they
are accessed is known as demand paging.

VPFN 7

VPFN 6

VPFN 5

VPFN 4

VPFN 3

VPFN 2

VPFN 1

VPFN 0

PFN 4

PFN 3

PFN 2

PFN 1

PFN 0

VIRTUAL MEMORY

Process X

VPFN 7

VPFN 6

VPFN 5

VPFN 4

VPFN 3

VPFN 2

VPFN 1

VPFN 0

VIRTUAL MEMORYPHYSICAL MEMORY

Process Y

Process X
Page Tables

Process Y
Page Tables

Figure 7.11: Abstract Model of Virtual to Physical Address Mapping

When a process attempts to access a virtual address that is not currently in memory the CPU
cannot fi nd a page table entry for the virtual page referenced. For example, in Figure 7.11 there
is no entry in Process X’s page table for virtual PFN 2 and so if Process X attempts to read from
an address within virtual PFN 2 the CPU cannot translate the address into a physical one. At
this point the CPU cannot cope and needs the operating system to fi x things up. It notifi es the
operating system that a page fault has occurred and the operating system makes the process
wait whilst it fi xes things up. The CPU must bring the appropriate page into memory from the
image on disk. Disk access takes a long time, relatively speaking, and so the process must wait
quite a while until the page has been fetched. If there are other processes that could run then the
operating system will select one of them to run. The fetched page is written into a free physical
page frame and an entry for the virtual PFN is added to the processes page table. The process
is then restarted at the point where the memory fault occurred. This time the virtual memory
access is made, the CPU can make the address translation and so the process continues to run.
This is known as demand paging and occurs when the system is busy but also when an image is
fi rst loaded into memory. This mechanism means that a process can execute an image that only
partially resides in physical memory at any one time.

7.10 Page Replacement

When the number of available real memory frames on the free list becomes low, a page stealer is
invoked. A page stealer moves through the Page Frame Table (PFT), looking for pages to steal.

The PFT includes fl ags to signal which pages have been referenced and which have been modifi ed.
If the page stealer encounters a page that has been referenced, it does not steal that page, but
instead, resets the reference fl ag for that page. The next time the clock hand (page stealer) passes
that page and the reference bit is still off, that page is stolen. A page that was not referenced in
the fi rst pass is immediately stolen.

Operating System

Notes

132 LOVELY PROFESSIONAL UNIVERSITY

The modify fl ag indicates that the data on that page has been changed since it was brought into
memory. When a page is to be stolen, if the modify fl ag is set, a pageout call is made before
stealing the page. Pages that are part of working segments are written to paging space; persistent
segments are written to disk.

All paging algorithms function on three basic policies: a fetch policy, a replacement policy, and
a placement policy. In the case of static paging, describes the process with a shortcut: the page
that has been removed is always replaced by the incoming page; this means that the placement
policy is always fi xed. Since you are also assuming demand paging, the fetch policy is also a
constant; the page fetched is that which has been requested by a page fault. This leaves only the
examination of replacement methods.

7.10.1 Static Page Replacement Algorithms

Optimal Replacement Theory

In a best case scenario the only pages replaced are those that will either never be needed again, or
have the longest number of page requests before they are referenced. This “perfect” scenario is
usually used only as a benchmark by which other algorithms can be judged, and is referred to as
either Belady’s Optimal Algorithm or Perfect Prediction (PP). Such a feat cannot be ccomplished
without full prior knowledge of the reference stream, or a record of past behavior that is incredibly
consistent. Although usually a pipe dream for system designers, suggests it can be seen in very
rare cases, such as large weather prediction programs that carry out the same operations on
consistently sized data.

Random Replacement

On the fl ip-side of complete optimization is the most basic approach to page replacement:
simply choosing the victim, or page to be removed, at random. Each page frame involved has an
equal chance of being chosen, without taking into consideration the reference stream or locality
principals. Due to its random nature, the behavior of this algorithm is quite obviously, random
and unreliable. With most reference streams this method produces an unacceptable number of
page faults, as well as victim pages being thrashed unnecessarily. A better performance can almost
always be achieved by employing a different algorithm. Most systems stopped experimenting
with this method as early as the 1960’s.

First-In, First-Out (FIFO)

First-in, fi rst-out is as easy to implement as Random Replacement, and although its performance
is equally unreliable or worse, its behavior does follow a predictable pattern. Rather than choosing
a victim page at random, the oldest page (or fi rst-in) is the fi rst to be removed. Conceptually
compares FIFO to a limited size queue, with items being added to the queue at the tail. When the
queue fi lls (all of the physical memory has been allocated), the fi rst page to enter is pushed out of
head of the queue. Similar to Random Replacement, FIFO blatantly ignores trends, and although
it produces less page faults, still does not take advantage of locality trends unless by coincidence
as pages move along the queue. A modifi cation to FIFO that makes its operation much more
useful is First-In Not-Used First-Out (FINUFO). The only modifi cation here is that a single bit
is used to identify whether or not a page has been referenced during its time in the FIFO queue.
This utility, or referenced bit, is then used to determine if a page is identifi ed as a victim. If, since
it has been fetched, the page has been referenced at least once, its bit becomes set. When a page
must be swapped out, the fi rst to enter the queue whose bit has not been set is removed; if every
active page has been referenced, a likely occurrence taking locality into consideration, all of the
bits are reset. In a worst-case scenario this could cause minor and temporary thrashing, but is
generally very effective given its low cost.

Unit 7: Memory Management

Notes

 LOVELY PROFESSIONAL UNIVERSITY 133

Least Recently Used (LRU)

You have seen that an algorithm must use some kind of behavior prediction if it is to be effi cient.
One of the most basic page replacement approaches uses the usage of a page as an indication of
its “worth” when searching for a victim page: the Least Recently Used (LRU) Algorithm. LRU
was designed to take advantage of “normal” program operation, which generally consists of a
series of loops with calls to rarely executed code. In terms of the virtual addressing and pages,
this means that the majority of code executed will be held in a small number of pages; essentially
the algorithm takes advantage of the locality principal. As per the previous description of
locality, LRU assumes that a page recently referenced will most likely be referenced again soon.
To measure the “time” elapsed since a page has been a part of the reference stream, a backward
distance is stored. This distance must always be greater than zero, the point for the current position
in the reference stream, and can be defi ned as infi nite in the case of a page that has never been
referenced. Thus, the victim page is defi ned as the one with the maximum backward distance;
if two or more points meet this condition, a page is chosen arbitrarily. Actual implementation
of the backward distance number can vary, and does play an important role in the speed and
effi ciency of this algorithm. This can be done by sorting page references in order of their age into
a stack, allowing quick identifi cation of victims. However the overhead associated with sorting
does not generally justify the speed of identifi cation, unless specifi c hardware exists to perform
this operation. Many operating systems do not assume this hardware exists (such as UNIX), and
instead increment an age counter for every active page during the page stream progression, as
described by. When a page is referenced once again, or is brought in due to a page fault, its value
is simply set to zero. Since storage for the backward age is limited, a maximum value may also
be defi ned; generally any page that has reached this age becomes a valid target for replacement.
As with any algorithm, modifi cations can be made to increase performance when additional
hardware resources are available.

 Example: A machine with n page frames, the LRU hardware can maintain a matrix of
n × n bits, initially all zero. Whenever page frame k is referenced, the hardware fi rst sets all the
bits of row k to 1, then sets all the bits of column k to 0. At any instant, the row whose binary
value is lowest is the least recently used, the row whose value is next lowest is next least recently
used, and so forth. The workings of this algorithm are given in Figure 7.12 for four page frames
and page references in the order.

0 1 2 3 2 1 0 3 2 3

After page 0 is referenced, we have the situation of Figure 7.12(a). After page 1 is reference, we
have the situation of Figure 7.12(b), and so forth.

0

1

2

3

0 1 1 1
0 1 2 3

0 0 0 0

0 0 0 0

0 0 0 0

Page

(a)

0 0 1 1
0 1 2 3

1 0 1 1

0 0 0 0

0 0 0 0

Page

(b)

0 0 0 1
0 1 2 3

1 0 0 1

1 1 0 1

0 0 0 0

Page

(c)

0 0 0 0
0 1 2 3

1 0 0 0

1 1 0 0

1 1 1 0

Page

(d)

0 0 0 0
0 1 2 3

1 0 0 0

1 1 0 1

1 1 0 0

Page

(e)

0 0 0 0

1 0 1 1

1 0 0 1

1 0 0 0

(f)

0 1 1 1

0 0 1 1

0 0 0 1

0 0 0 0

(g)

0 1 1 0

0 0 1 0

0 0 0 0

1 1 1 0

(h)

0 1 0 0

0 0 0 0

1 1 0 1

1 1 0 0

(i)

0 1 0 0

0 0 0 0

1 1 0 0

1 1 1 0

(j)

Figure 7.12: LRU using a matrix when pages are referenced in the
order 0, 1, 2, 3, 2, 1, 0, 3, 2, 3.

Operating System

Notes

134 LOVELY PROFESSIONAL UNIVERSITY

Least Frequently Used (LFU)

Often confused with LRU, Least Frequently Used (LFU) selects a page for replacement if it
has not been used often in the past. Instead of using a single age as in the case of LRU, LFU
defi nes a frequency of use associated with each page. This frequency is calculated throughout
the reference stream, and its value can be calculated in a variety of ways. The most common
frequency implementation begins at the beginning of the page reference stream, and continues
to calculate the frequency over an ever-increasing interval. Although this is the most accurate
representation of the actual frequency of use, it does have some serious drawbacks. Primarily,
reactions to locality changes will be extremely slow. Assuming that a program either changes its
set of active pages, or terminates and is replaced by a completely different program, the frequency
count will cause pages in the new locality to be immediately replaced since their frequency is
much less than the pages associated with the previous program. Since the context has changed,
and the pages swapped out will most likely be needed again soon (due to the new program’s
principal of locality), a period of thrashing will likely occur. If the beginning of the reference
stream is used, initialization code of a program can also have a profound infl uence. The pages
associated with initial code can infl uence the page replacement policy long after the main body
of the program has begun execution. One way to remedy this is to use a popular variant of LFU,
which uses frequency counts of a page since it was last loaded rather than since the beginning of
the page reference stream. Each time a page is loaded, its frequency counter is reset rather than
being allowed to increase indefi nitely throughout the execution of the program. Although this
policy will for the most part prevent “old” pages from having a huge infl uence in the future of
the stream, it will still tend to respond slowly to locality changes.

7.10.2 Dynamic Page Replacement Algorithms

All of the static page replacement algorithms considered have one thing in common: they
assumed that each program is allocated a fi xed amount of memory when it begins execution,
and does not request further memory during its lifetime. Although static algorithms will work
in this scenario, they are hardly optimized to handle the common occurrence of adjusting to
page allocation changes. This can lead to problems when a program rapidly switches between
needing relatively large and relatively small page sets or localities. Depending on the size of
the memory requirements of a program, the number of page faults may increase or decrease
rapidly; for Stack Algorithms, you know that as the memory size is decreased, the numbers
of page faults will increase. Other static algorithms may become completely unpredictable.
Generally speaking, any program can have its number of page faults statistically analyzed for a
variety of memory allocations. At some point the rate of increase of the page faults (derivative
of the curve) will peak; this point is sometimes referred to as the hysteresis point. If the memory
allocated to the program is less than the hysteresis point, the program is likely to thrash its page
replacement. Past the point, there is generally little noticeable change in the fault rate, making the
hysteresis the target page allocation. Since a full analysis is rarely available to a virtual memory
controller, and that program behavior is quite dynamic, fi nding the optimal page allocation can be
incredibly diffi cult. A variety of methods must be employed to develop replacement algorithms
that work hand-in-hand with the locality changes present in complex programs. Dynamic paging
algorithms accomplish this by attempting to predict program memory requirements, while
adjusting available pages based on reoccurring trends. This policy of controlling available pages
is also referred to as “prefetch” paging, and is contrary to the idea of demand paging. Although
localities (within the scope of a set of operations) may change, states, it is likely that within the
global locality (encompassing the smaller clusters), locality sets will be repeated.

7.11 Page Allocation Algorithm

How do you allocate the fi xed amount of free memory among the various processes? If you have
93 free frames and two processes, how many frames does each process get? The simplest case of

Unit 7: Memory Management

Notes

 LOVELY PROFESSIONAL UNIVERSITY 135

virtual memory is the single-user system. Consider a single-user system with 128 KB memory
composed of pages of size 1 KB. Thus, there are 128 frames. The operating system may take 35
KB, leaving 93 frames for the user process. Under pure demand paging, all 93 frames would
initially be put on the free-frame list. When a user process started execution, it would generate
a sequence of page faults. The fi rst 93 page faults would all get free frames from the free-frame
list. When the free-frame list was exhausted, a page replacement algorithm would be used to
select one of the 93 in-memory pages to be replaced with the ninety-fourth, and so on. When the
process terminated, the 93 frames would once again be placed on the free-frame list.

There are many variations on this simple strategy. You can require that the operating system
allocate all its buffer and table space from the free-frame list. When this space is not in use by the
operating system, it can be used to support user paging. You can try to keep three free frames
reserved on the free-frame list at all times. Thus, when a page fault occurs, there is a free frame
available to page into. While the page swap is taking place, a replacement can be selected, which
is then written to the disk as the user process continues to execute.

Other variants are also possible, but the basic strategy is clear. The user process is allocated any
free frame.

Task Least frequency is calculated throughout the reference stream, and its value can
be calculated in a various ways. Discuss those ways.

7.12 Thrashing

Thrashing happens when a hard drive has to move its heads over the swap area many times
due to the high number of page faults. This happens when memory accesses are causing page
faults as the memory is not located in main memory. The thrashing happens as memory pages
are swapped out to disk only to be paged in again soon afterwards. Instead of memory access
happening mainly in main memory, access is mainly to disk causing the processes to become
slow as disk access is required for many memory pages and thus thrashing.

The OS can reduce the effects of thrashing and improve performance by choosing a more suitable
replacement strategy for pages. Having a replacement strategy that does not cause memory
areas to be written to disk that have not modifi ed since been retrieved reduces thrashing. Using
replacement strategies that allow little used rarely accessed pages to remain in memory while the
most required pages are swapped in and out.

Thrashing is a situation where large amounts of computer resources are used to do a minimal
amount of work, with the system in a continual state of resource contention. Once started,
thrashing is typically self-sustaining until something occurs to remove the original situation that
led to the initial thrashing behavior.

Usually thrashing refers to two or more processes accessing a shared resource repeatedly
such that serious system performance degradation occurs because the system is spending a
disproportionate amount of time just accessing the shared resource. Resource access time may
generally be considered as wasted, since it does not contribute to the advancement of any process.
This is often the case when a CPU can process more information than can be held in available
RAM; consequently the system spends more time preparing to execute instructions than actually
executing them.

Concept of Thrashing

If the number of frames allocated to a low priority process is lower than the minimum number
required by the computer architecture then in this case we must suspend the execution of this

Operating System

Notes

136 LOVELY PROFESSIONAL UNIVERSITY

low priority process. After this we should page out all of its remaining pages and freeing all of
its allocated frames. This provision introduces a swap in, swap-out level of intermediate CPU
scheduling. Let take a example of a process that does not have enough number of frames. If
the process does not have the number of frames it needs to support pages in active use, it will
quickly page fault. The only option remains here for process is to replace some active pages with
the page that requires a frame. However, since all of its pages are in active use, it must replace a
page that will be needed again right away. Consequently, it quickly faults again and again that
mean replacing pages that it must bring back in immediately. This high paging activity is called
Thrashing. Or we can say that a process is Thrashing if it is spending more time in paging then
executing. Thrashing results in severe performance problems.

7.13 Summary

z The part of the operating system that manages the memory hierarchy is the memory
manager.

z It keeps track of parts of memory that are in use and those that are not in use, to allocate
memory to processes when they need it and de-allocate it when they are done, and to
manage swapping between main memory and disk when main memory is too small to
hold all the processes.

z Memory is the electronic holding place for instructions and data that the computer’s
microprocessor can reach quickly.

z The memory manager is a part of operating system which is responsible for allocating
primary memory to processes and for assisting the programmer in loading and storing the
contents of the primary memory.

z Overlaying means replacement of a block of stored instructions or data with another.
Overlay Manager is part of the operating system, which loads the required overlay from
external memory into its destination region in order to be used.

z An address generated by the CPU is commonly referred to as a logical address and an
address seen by the memory unit – that is, the one loaded into the memory-address register
of the memory – is commonly referred to as a physical address.

z Memory Management Unit (MMU) is a computer hardware component responsible for
handling accesses to memory requested by the CPU. It is also known as Paged Memory
Management Unit (PMMU).

7.14 Keywords

Logical Address: An address generated by the CPU is commonly referred to as a logical
address.

Memory Management Unit (MMU): It is a computer hardware component responsible for
handling accesses to memory requested by the CPU.

Memory Manager: The memory manager is a part of operating system which is responsible for
allocating primary memory to processes and for assisting the programmer in loading and storing
the contents of the primary memory.

Memory: It is the electronic holding place for instructions and data that the computer’s
microprocessor can reach quickly.

Overlay Manager: It is part of the operating system, which loads the required overlay from
external memory into its destination region in order to be used.

Unit 7: Memory Management

Notes

 LOVELY PROFESSIONAL UNIVERSITY 137

Overlaying: It means replacement of a block of stored instructions or data with another.

Paged Memory Management Unit (PMMU): Same as MMU.

Physical Address: An address seen by the memory unit-that is, the one loaded into the memory-
address register of the memory-is commonly referred to as a physical address.

7.15 Self Assessment

Fill in the blanks:

1. The method assumes dividing a program into self-contained object code blocks called
........................... .

2. The place in memory where an overlay is loaded is called a region.

3. In multiprogramming several programs run at the same time on a

4. In memory allocation method the memory manager places a process in
the largest block of unallocated memory available.

5. To move a program from fast-access memory to a slow-access memory is known as
....................... .

6. The process of translating virtual addresses into real addresses is called

7. Belady’s Optimal Algorithm is also known as

8. happens when a hard drive has to move its heads over the swap area
many times due to the high number of page faults.

9. The full form of FINUFO is

10. EPROM stands for

11. RAM stands for

12. 1 MB equals to

7.16 Review Questions

1. Write a short description on:

(a) Binding of Instructions and Data to Memory

(b) Memory-Management Unit

(c) CPU utilization

(d) Memory Relocation

2. What is high-speed cache?

3. What is overlaying? Explain it.

4. Consider a logical address space of eight pages of 1,024 words each, mapped onto a physical
memory of 32 frames.

5. How many bits are there in the logical address?

6. How many bits are there in the physical address?

7. Why are segmentation and paging sometimes combined into one scheme?

8. Describe a mechanism by which one segment could belong to the address space of two
different processes.

Operating System

Notes

138 LOVELY PROFESSIONAL UNIVERSITY

9. Given memory partitions of l00K, 500K, 200K, 300K, and 600K (in order), how would each
of the fi rst-fi t, best-fi t, and worst-fi t algorithms place processes of 212K, 417K, 112K, and
426K (in order)? Which algorithm makes the most effi cient use of memory?

10. Why is it that, on a system with paging, a process cannot access memory that it does not
own? How could the operating system allow access to other memory? Why should it or
should it not?

11. What is the cause of thrashing? How does the system detect thrashing? Once it detects
thrashing, what can the system do to eliminate this problem?

12. What is virtual memory? Explain the working of virtual memory.

13. Describe the dynamic page replacement method.

Answers: Self Assessment

1. overlays 2. destination 3. uniprocessor

4. worst fi t 5. swap out 6. mapping

7. perfect prediction 8. Thrashing 9. First-In Not-Used First-Out

10. Erasable Programmable Read Only Memory 11. Random Access Memory

12. 1024 KB

7.17 Further Readings

Books Andrew M. Lister, Fundamentals of Operating Systems, Wiley.

 Andrew S. Tanenbaum And Albert S. Woodhull, Systems Design and Implementation,
Prentice Hall.

 Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.

 Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.

 Colin Ritchie, Operating Systems, BPB Publications.

 I.A. Dhotre, Operating System, Technical Publications.

 Milankovic, Operating System, Tata MacGraw Hill, New Delhi.

 Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons,
Seventh Edition.

 Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.

Online links www.en.wikipedia.org

 www.web-source.net

 www.webopedia.com

Unit 8: File Management

Notes

 LOVELY PROFESSIONAL UNIVERSITY 139

Unit 8: File Management

CONTENTS

Objectives

Introduction

8.1 File Systems

 8.1.1 Types of File Systems

 8.1.2 File Systems and Operating Systems

8.2 File Concept

8.3 Access Methods

8.4 Directory Structure

8.5 File System Mounting

8.6 File Sharing

8.7 Protection

8.8 File System Implementation

8.9 Allocation Methods

 8.9.1 Contiguous Allocation

 8.9.2 Linked Allocation

 8.9.3 Indexed Allocation

8.10 Free-space Management

 8.10.1 Bit-Vector

 8.10.2 Linked List

 8.10.3 Grouping

 8.10.4 Counting

8.11 Directory Implementation

8.12 Summary

8.13 Keywords

8.14 Self Assessment

8.15 Review Questions

8.16 Further Readings

Objectives

After studying this unit, you will be able to:

z Defi ne fi le systems

z Explain access methods

z Know directory structure

z Describe fi le system implementation

z Explain allocation methods

Operating System

Notes

140 LOVELY PROFESSIONAL UNIVERSITY

Introduction

Another part of the operating system is the fi le manager. While the memory manager is responsible
for the maintenance of primary memory, the fi le manager is responsible for the maintenance of
secondary storage (e.g., hard disks).

Each fi le is a named collection of data stored in a device. The fi le manager implements this
abstraction and provides directories for organizing fi les. It also provides a spectrum of commands
to read and write the contents of a fi le, to set the fi le read/write position, to set and use the
protection mechanism, to change the ownership, to list fi les in a directory, and to remove a fi le.
The fi le manager provides a protection mechanism to allow machine users to administer how
processes executing on behalf of different users can access the information in fi les. File protection
is a fundamental property of fi les because it allows different people to store their information on
a shared computer, with the confi dence that the information can be kept confi dential.

8.1 File Systems

A fi le system is a method for storing and organizing computer fi les and the data they contain to
make it easy to fi nd and access them. File systems may use a data storage device such as a hard
disk or CD-ROM and involve maintaining the physical location of the fi les, they might provide
access to data on a fi le server by acting as clients for a network protocol (e.g., NFS, SMB, or 9P
clients), or they may be virtual and exist only as an access method for virtual data.

More formally, a fi le system is a set of abstract data types that are implemented for the storage,
hierarchical organization, manipulation, navigation, access, and retrieval of data. File systems
share much in common with database technology, but it is debatable whether a fi le system can
be classifi ed as a special-purpose database (DBMS).

8.1.1 Types of File Systems

File system types can be classifi ed into disk fi le systems, network fi le systems and special purpose
fi le systems.

1. Disk fi le systems: A disk fi le system is a fi le system designed for the storage of fi les on a
data storage device, most commonly a disk drive, which might be directly or indirectly
connected to the computer.

 Example: Disk fi le systems include FAT, FAT32, NTFS, HFS and HFS+, ext2,
ext3, ISO 9660, ODS-5, and UDF. Some disk fi le systems are journaling fi le systems or
versioning fi le systems.

2. Flash fi le systems: A fl ash fi le system is a fi le system designed for storing fi les on fl ash
memory devices. These are becoming more prevalent as the number of mobile devices is
increasing, and the capacity of fl ash memories catches up with hard drives.

 While a block device layer can emulate a disk drive so that a disk fi le system can be used
on a fl ash device, this is suboptimal for several reasons:

(a) Erasing blocks: Flash memory blocks have to be explicitly erased before they can be
written to. The time taken to erase blocks can be signifi cant, thus it is benefi cial to
erase unused blocks while the device is idle.

(b) Random access: Disk fi le systems are optimized to avoid disk seeks whenever possible,
due to the high cost of seeking. Flash memory devices impose no seek latency.

(c) Wear leveling: Flash memory devices tend to wear out when a single block is repeatedly
overwritten; fl ash fi le systems are designed to spread out writes evenly.

Unit 8: File Management

Notes

 LOVELY PROFESSIONAL UNIVERSITY 141

 Log-structured fi le systems have all the desirable properties for a fl ash fi le system. Such fi le
systems include JFFS2 and YAFFS.

3. Database fi le systems: A new concept for fi le management is the concept of a database-
based fi le system. Instead of, or in addition to, hierarchical structured management, fi les
are identifi ed by their characteristics, like type of fi le, topic, author, or similar metadata.
Example: dbfs.

4. Transactional fi le systems: Each disk operation may involve changes to a number of
different fi les and disk structures. In many cases, these changes are related, meaning that
it is important that they all be executed at the same time. Take for example a bank sending
another bank some money electronically. The bank’s computer will “send” the transfer
instruction to the other bank and also update its own records to indicate the transfer has
occurred. If for some reason the computer crashes before it has had a chance to update
its own records, then on reset, there will be no record of the transfer but the bank will be
missing some money.

 Transaction processing introduces the guarantee that at any point while it is running, a
transaction can either be fi nished completely or reverted completely (though not necessarily
both at any given point). This means that if there is a crash or power failure, after recovery,
the stored state will be consistent. (Either the money will be transferred or it will not be
transferred, but it won’t ever go missing “in transit”.)

 This type of fi le system is designed to be fault tolerant, but may incur additional overhead
to do so.

 Journaling fi le systems are one technique used to introduce transaction-level consistency to
fi le system structures.

5. Network fi le systems: A network fi le system is a fi le system that acts as a client for a remote
fi le access protocol, providing access to fi les on a server.

 Example: Network fi le systems include clients for the NFS, SMB protocols, and
fi le-system-like clients for FTP and WebDAV.

6. Special purpose fi le systems: A special purpose fi le system is basically any fi le system that
is not a disk fi le system or network fi le system. This includes systems where the fi les are
arranged dynamically by software, intended for such purposes as communication between
computer processes or temporary fi le space.

 Special purpose fi le systems are most commonly used by fi le-centric operating systems
such as Unix. Examples include the procfs (/proc) fi le system used by some Unix variants,
which grants access to information about processes and other operating system features.

 Deep space science exploration craft, like Voyager I & II used digital tape based special
fi le systems. Most modern space exploration craft like Cassini-Huygens used Real-time
operating system fi le systems or RTOS infl uenced fi le systems. The Mars Rovers are one
such example of an RTOS fi le system, important in this case because they are implemented
in fl ash memory.

Task Discuss NTFS type of fi le system. Also explain the various benefi ts of NTFS fi le
system over FAT fi le.

Operating System

Notes

142 LOVELY PROFESSIONAL UNIVERSITY

8.1.2 File Systems and Operating Systems

Most operating systems provide a fi le system, as a fi le system is an integral part of any
modern operating system. Early microcomputer operating systems’ only real task was fi le
management - a fact refl ected in their names. Some early operating systems had a separate
component for handling fi le systems which was called a disk operating system. On some
microcomputers, the disk operating system was loaded separately from the rest of the operating
system. On early operating systems, there was usually support for only one, native, unnamed fi le
system; for example, CP/M supports only its own fi le system, which might be called “CP/M fi le
system” if needed, but which didn’t bear any offi cial name at all.

Because of this, there needs to be an interface provided by the operating system software between
the user and the fi le system. This interface can be textual (such as provided by a command
line interface, such as the Unix shell, or OpenVMS DCL) or graphical (such as provided by a
graphical user interface, such as fi le browsers). If graphical, the metaphor of the folder, containing
documents, other fi les, and nested folders is often used.

Flat fi le systems: In a fl at fi le system, there are no subdirectories-everything is stored at the same
(root) level on the media, be it a hard disk, fl oppy disk, etc. While simple, this system rapidly
becomes ineffi cient as the number of fi les grows, and makes it diffi cult for users to organise data
into related groups.

Like many small systems before it, the original Apple Macintosh featured a fl at fi le system, called
Macintosh File System. Its version of Mac OS was unusual in that the fi le management software
(Macintosh Finder) created the illusion of a partially hierarchical fi ling system on top of MFS.
This structure meant that every fi le on a disk had to have a unique name, even if it appeared to be
in a separate folder. MFS was quickly replaced with Hierarchical File System, which supported
real directories.

8.2 File Concept

A fi le is a collection of letters, numbers and special characters: it may be a program, a database, a
dissertation, a reading list, a simple letter etc. Sometimes you may import a fi le from elsewhere,
for example from another computer. If you want to enter your own text or data, you will start by
creating a fi le. Whether you copied a fi le from elsewhere or created your own, you will need to
return to it later in order to edit its contents.

The most familiar fi le systems make use of an underlying data storage device that offers access
to an array of fi xed-size blocks, sometimes called sector, generally 512 bytes each. The fi le system
software is responsible for organizing these sectors into fi les and directories, and keeping track
of which sectors belong to which fi le and which are not being used. Most fi le systems address
data in fi xed-sized units called “clusters” or “blocks” which contain a certain number of disk
sectors (usually 1-64). This is the smallest logical amount of disk space that can be allocated to
hold a fi le.

However, fi le systems need not make use of a storage device at all. A fi le system can be used to
organize and represent access to any data, whether it be stored or dynamically generated (e.g,
from a network connection).

Whether the fi le system has an underlying storage device or not, fi le systems typically have
directories which associate fi le names with fi les, usually by connecting the fi le name to an index
into a fi le allocation table of some sort, such as the FAT in an MS-DOS fi le system, or an inode in
a Unix-like fi le system. Directory structures may be fl at, or allow hierarchies where directories
may contain subdirectories. In some fi le systems, fi le names are structured, with special syntax
for fi lename extensions and version numbers. In others, fi le names are simple strings, and per-fi le
metadata is stored elsewhere.

Unit 8: File Management

Notes

 LOVELY PROFESSIONAL UNIVERSITY 143

Other bookkeeping information is typically associated with each fi le within a fi le system. The
length of the data contained in a fi le may be stored as the number of blocks allocated for the
fi le or as an exact byte count. The time that the fi le was last modifi ed may be stored as the fi le’s
timestamp. Some fi le systems also store the fi le creation time, the time it was last accessed, and
the time that the fi le’s meta-data was changed.

Note Many early PC operating systems did not keep track of fi le times. Other
information can include the fi le’s device type (e.g., block, character, socket, subdirectory,
etc.), its owner user-ID and group-ID, and its access permission settings (e.g., whether the
fi le is read-only, executable, etc.).

The hierarchical fi le system was an early research interest of Dennis Ritchie of Unix fame;
previous implementations were restricted to only a few levels, notably the IBM fame; previous
implementations were restricted to only a few levels, notably the IBM implementations, even of
their early databases like IMS. After the success of Unix, Ritchie extended the fi le system concept
to every object in his later operating system developments, such as Plan 9 and Inferno.

Traditional fi le systems offer facilities to create, move and delete both fi les and directories. They
lack facilities to create additional links to a directory (hard links in Unix), rename parent links
(“..” in Unix-like OS), and create bidirectional links to fi les.

Traditional fi le systems also offer facilities to truncate, append to, create, move, delete and
in-place modify fi les. They do not offer facilities to prepend to or truncate from the beginning of
a fi le, let alone arbitrary insertion into or deletion from a fi le. The operations provided are highly
asymmetric and lack the generality to be useful in unexpected contexts.

 Example: Interprocess pipes in Unix have to be implemented outside of the fi le system
because the pipes concept does not offer truncation from the beginning of fi les.

Secure access to basic fi le system operations can be based on a scheme of access control lists or
capabilities. Research has shown access control lists to be diffi cult to secure properly, which is
why research operating systems tend to use capabilities. Commercial fi le systems still use access
control lists.

8.3 Access Methods

There are several ways that the information in the fi le can be accessed. Some systems provide only
one access method for fi les. On other systems, many different access methods are supported.

Sequential Access

Information in the fi le is processed in order, one record after the other. This is by far the most
common mode of access of fi les. For example, computer editors usually access fi les in this fashion.
A read operation reads the next portion of the fi le and automatically advances the fi le pointer.
Similarly, a write appends to the end of the fi le and the fi le pointer. Similarly, a write appends to
the end of the fi le and the fi le pointer. Similarly, a write appends to the end of the end of the fi le
and advances to the end of the newly written material (the new end of fi le). Such a fi le can be reset
to the beginning, and, on some systems, a program may be able to skip forward or backward n
records, for some integer n. This scheme is known as sequential access to a fi le. Sequential access
is based on a tape model of a fi le.

A sequential fi le may consist of either formatted or unformatted records. If the records are
formatted, you can use formatted I/O statements to operate on them. If the records are

Operating System

Notes

144 LOVELY PROFESSIONAL UNIVERSITY

unformatted, you must use unformatted I/O statements only. The last record of a sequential fi le
is the end-of-fi le record.

Direct Access

Direct access is based on a disk model of a fi le. For direct access, the fi le is viewed as a numbered
sequence of block or records. A direct-access fi le allows arbitrary blocks to be read or written.
Thus, after block 18 has been read, block 57 could be next, and then block 3. There are no
restrictions on the order of reading and writing for a direct access fi le. Direct access fi les are of
great use for intermediate access to large amounts of information.

The fi le operations must be modifi ed to include the block number as a parameter. Thus, you have
“read n”, where n is the block number, rather than “read next”, and “write n”, rather that “write
next”. An alternative approach is to retain “read next” and “write next” and to add an operation;
“position fi le to n” where n is the block number. Then, to effect a “read n”, you would issue the
commands “position to n” and then “read next”.

Not all OS support both sequential and direct access for fi les. Some systems allow only sequential
fi le access; others allow only direct access. Some systems require that a fi le be defi ned as sequential
or direct when it is created; such a fi le can be accessed only in a manner consistent with its
declaration.

Direct-access fi les support both formatted and unformatted record types. Both formatted and
unformatted I/O work exactly as they do for sequential fi les.

Other Access Methods

Other access methods can be built on top of a direct-access method. These additional methods
generally involve the construction of an index for a fi le. The index contains pointers to the various
blocks. To fi nd an entry in the fi le, the index is searched fi rst and the pointer is then used to access
the fi le directly to fi nd the desired entry. With a large fi le, the index itself may become too large
to be kept in memory. One solution is to create an index for the index fi le. The primary index fi le
would contain pointers to secondary index fi les, which would point to the actual data items. For
example, IBM’s indexed sequential access method (ISAM) uses a small master index that points
to disk blocks of a secondary index. The secondary index blocks point to the actual fi le blocks.
The fi le is kept sorted on a defi ned key. To fi nd a particular item, I fi rst make a binary search of
the master index, which provides the block number of the secondary index. This block is read
in, and again a binary search is used to fi nd the block containing the desired record. Finally, this
block is searched sequentially. In this way, any record can be located from its key by at most
direct access reads.

8.4 Directory Structure

The directories themselves are simply fi les indexing other fi les, which may in turn be directories
if a hyerarchical indexing scheme is used. In order to protect the integrity of the fi le system in
spite of user of program error, all modifi cations to these particular directory fi les are commonly
restricted to the fi le management system. The typical contents of a directory are:

1. fi le name (string uniquely identifying the fi le), type (e.g. text, binary data, executable,
library), organization (for systems that support different organizations);

2. device (where the fi le is physically stored), size (in blocks), starting address on device (to
be used by the device I/O subsystem to physically locate the fi le);

3. creator, owner, access information (who is allowed to access the fi le, and what they may do
with it);

Unit 8: File Management

Notes

 LOVELY PROFESSIONAL UNIVERSITY 145

4. date of creation/of last modifi cation;

5. locking information (for the system that provide fi le/record locking).

As far as organization, by far the most common scheme is the hyerarchical one: a multi-level
indexing scheme is used, in which a top-level directory indexes both fi les and other directories,
which in turn index fi les and directories, and so on. Usually this scheme is represented in the
form of a tree.

The hyerarchical architecture has disctinct advantages over a simple, one-level indexing one:
the tree structure can be effectively used to refl ect a logical organization of the data stored in the
fi les; names can be reused (they must uniquely identify fi les within each directory, not across the
whole fl e system); in a multi-user system, name confl icts between fi les owned by different users
can be solved by assigning to each user a directory for her own fi les and sub-directories, the so
called user’s “home” directory.

A complete indexing of a fi le is obtained by navigating the tree starting from the top-level, “root”,
directory, and walking along a path to the tree leaf coresponding to the fi le.

A “pathname” is thus obtained, which uniquely identifi es the fi le within the whole fi le system.

 Example: The pathname for fi le “File-6” in Figure 8.1 is “Root-dir:Subdir-1:File-6”, where
a colon is used to separate tree nodes.

File-1

File-2

Subdir-1

Subdir-2 Subdir-1

File-1

File-1

File-6

Root-dir

Figure 8.1: Tree Representation of a Hyerarchical Directory Structure

A complete pathname is not the only way to identify a fi le in the directory tree structure: a
“relative” pathname, starting from a parent directory is suited just as well, provided that the
FMS already knows about that directory. This addressing methods can be usefully exploited by
making the FMS assign to all processes a “current working directory” (CWD) attribute, i.e. the
complete patname of a directory of interest, and defi ning a way for the process to identify fi les by
just specifying a “relative” pathname starting from that directory. In the same example, if “:Root-
dir:Subdir-1” is the CWD of a process, the above fi le might be identifi ed simply as “File-6”, using
the convention that patnames not starting with a color are relative to the CWD. The advantage is
twofold: the entire fi le system structure up to the CWD need not be known by a program (hence
its data can be safely moved in other directories withouth having to rewrite the program), and
fi le access time is decreased, since it’s no longer necessary to navigate the whole tree in order to
fi nd the address of a fi le.

Operating System

Notes

146 LOVELY PROFESSIONAL UNIVERSITY

Single Level Directory

In single level directory all fi les are contained in the same directory. It is easy to support and
understand. It has some limitations like:

1. Large number of fi les (naming).

2. Ability to support different users/topics (grouping).

cat bo a test data mail cont hex recordsdirectory

files

Figure 8.2: Single Level Directory

Two Level Directory

In two level directory structure one is master fi le directory and the other is user fi le directory.
Here each user has their own user fi le directory. Each entry in the master fi le directory points to a
user fi le directory. Each user has rights to access their own directory but can’t access other user’s
directory, if permission is not given by the owner of the second one.

user 1 user 2 user 3 user 4

cat bo a a datatest x data aa test

master
file
directory

user file
directory

Figure 8.3: Two Level Directory

Three Level Directory

In three level directory the directory structure is a tree with arbitrary height. Here users may
create their own subdirectories.

spell bin programs

stat mail dist find count hex recorder p e mail

prog copy prt exp recorder list find hex count

list obj spell lastall first

Figure 8.4: Three Level Directory

Unit 8: File Management

Notes

 LOVELY PROFESSIONAL UNIVERSITY 147

8.5 File System Mounting

The fi le system structure is the most basic level of organization in an operating system. Almost
all of the ways an operating system interacts with its users, applications, and security model are
dependent upon the way it organizes fi les on storage devices. Providing a common fi le system
structure ensures users and programs are able to access and write fi les.

File systems break fi les down into two logical categories:

1. Shareable vs. unsharable fi les

2. Variable vs. static fi les

Shareable fi les are those that can be accessed locally and by remote hosts; unsharable fi les are
only available locally. Variable fi les, such as documents, can be changed at any time; static fi les,
such as binaries, do not change without an action from the system administrator.

The reason for looking at fi les in this manner is to help correlate the function of the fi le with the
permissions assigned to the directories which hold them. The way in which the operating system
and its users interact with a given fi le determines the directory in which it is placed, whether that
directory is mounted with read-only or read/write permissions, and the level of access each user
has to that fi le. The top level of this organization is crucial. Access to the underlying directories
can be restricted or security problems could manifest themselves if, from the top level down, it
does not adhere to a rigid structure.

It is important to understand the difference between a fi le system and a directory. A fi le system is
a section of hard disk that has been allocated to contain fi les. This section of hard disk is accessed
by mounting the fi le system over a directory. After the fi le system is mounted, it looks just like
any other directory to the end user.

However, because of the structural differences between the fi le systems and directories, the data
within these entities can be managed separately.

When the operating system is installed for the fi rst time, it is loaded into a directory structure, as
shown in the following illustration.

Figure 8.5 File System Tree. This tree chart shows a directory structure with the/(root) fi le system
at the top, branching downward to directories and fi le systems. Directories branch to/bin, /dev,
/etc, and /lib. File systems branch to /usr, /tmp, /var, and /home.

/(root)
File System

Directories File Systems

/bin /dev /etc /lib /usr /tmp /var /home

Figure 8.5: File System Tree

The directories on the right (/usr, /tmp, /var, and /home) are all fi le systems so they have separate
sections of the hard disk allocated for their use. These fi le systems are mounted automatically
when the system is started, so the end user does not see the difference between these fi le systems
and the directories listed on the left (/bin, /dev, /etc, and /lib).

Operating System

Notes

148 LOVELY PROFESSIONAL UNIVERSITY

On standalone machines, the following fi le systems reside on the associated devices by default:

/File System /Device

/dev/hd1 /home

/dev/hd2 /usr

/dev/hd3 /tmp

/dev/hd4 /(root)

/dev/hd9var /var

/proc /proc

/dev/hd10opt /opt

The fi le tree has the following characteristics:

1. Files that can be shared by machines of the same hardware architecture are located in
the /usr fi le system.

2. Variable per-client fi les, for example, spool and mail fi les, are located in the /var fi le
system.

3. The /(root) fi le system contains fi les and directories critical for system operation.

 Example: It contains

(a) A device directory (/dev)

(b) Mount points where fi le systems can be mounted onto the root fi le system, for
example, /mnt

4. The /home fi le system is the mount point for users’ home directories.

5. For servers, the /export directory contains paging-space fi les, per-client (unshared) root fi le
systems, dump, home, and /usr/share directories for diskless clients, as well as exported
/usr directories.

6. The/proc fi le system contains information about the state of processes and threads in the
system.

7. The/opt fi le system contains optional software, such as applications.

The following list provides information about the contents of some of the subdirectories
of the /(root) fi le system.

/bin Symbolic link to the /usr/bin directory.
/dev Contains device nodes for special fi les for local devices. The /dev directory contains special fi les

for tape drives, printers, disk partitions, and terminals.
/etc Contains confi guration fi les that vary for each machine. Examples include:

1. /etc/hosts

2. /etc/passwd
/export Contains the directories and fi les on a server that are for remote clients.
/home Serves as a mount point for a fi le system containing user home directories. The /home fi le

system contains per-user fi les and directories.

In a standalone machine, a separate local fi le system is mounted over the /home directory. In
a network, a server might contain user fi les that should be accessible from several machines. In
this case, the server’s copy of the /home directory is remotely mounted onto a local /home fi le
system.

/lib Symbolic link to the /usr/lib directory, which contains architecture-independent libraries with
names in the form lib*.a.

Contd....

Unit 8: File Management

Notes

 LOVELY PROFESSIONAL UNIVERSITY 149

/sbin Contains fi les needed to boot the machine and mount the /usr fi le system. Most of the
commands used during booting come from the boot image’s RAM disk fi le system; therefore,
very few commands reside in the /sbin directory.

/tmp Serves as a mount point for a fi le system that contains system-generated temporary fi les.
/u Symbolic link to the /home directory.
/usr Serves as a mount point for a fi le system containing fi les that do not change and can be shared

by machines (such as executable programs and ASCII documentation).

Standalone machines mount a separate local fi le system over the /usr directory. Diskless and
disk-poor machines mount a directory from a remote server over the /usr fi le system.

/var Serves as a mount point for fi les that vary on each machine. The /var fi le system is confi gured as
a fi le system because the fi les that it contains tend to grow. For example, it is a symbolic link to
the /usr/tmp directory, which contains temporary work fi les.

Task How will you mount a fi le? Explain.

8.6 File Sharing

In today’s world where the working is a multiuser environment a fi le is required to be shared
among more than one users. There are several techniques and approaches to effects this operation.
Simple approach is to copy the fi le at the users local hard disk. This approach essentially creates
to different fi les, in therefore cannot be treated as fi le sharing.

A fi le can be shared in three different modes:

1. Read only: The user can only read or copy the fi le.

2. Linked shared: All the users can share the fi le and can make the changes but the changes
are refl ected in the order defi ned by the operating systems.

3. Exclusive mode: The fi le is acquired by one single user who can make the changes while
others can only read or copy it.

Sharing can also be done through symbolic links, but there occurs certain problems like concurrent
updation problem, deletion problem. Updation cannot be done simultaneously by two users at
a time, also one cannot delete a fi le if it in use by another user. The solution for this problem is
done by locking fi le techniques.

8.7 Protection

The data in the computer system should be protected and kept secure. A major concern is to
protect data from both physical damage (reliability) and improper access (protection). There is
a mechanisms in the computer system that a system program or manually it can take the backup
or duplicate the fi les automatically. File systems can be damaged by hardware problems (such as
errors in reading or writing), power surges or failures, head crashes, dirt, temperature extremes.
Also the data can be lost due to bugs on system. Protection can be provided in many ways. For
a small single-user system, you might provide protection by physically removing the fl oppy
disks and locking them in a desk drawer or fi le cabinet. In a multi-user system, however, other
mechanisms are needed.

8.8 File System Implementation

The most important issue in fi le storage is keeping track of which disk blocks go with which
fi le. Different operating systems use different methods - contiguous allocation and linked list

Operating System

Notes

150 LOVELY PROFESSIONAL UNIVERSITY

allocation are important to know. In the former, each fi le is stored as a contiguous block of data
on the disk, in the latter, the fi le is kept as a linked list of disk blocks - the fi rst word of each block
is used as a pointer to the next one. UNIX uses i-nodes to keep track of which blocks belong
to each fi le. An i-node is a table that lists the attributes and disk addresses of the fi le’s blocks.
The fi rst few disk addresses are stored in the i-node itself, so for small fi les, all the necessary
information is in the i-node itself which is fetched from disk to main memory when the fi le is
opened. For larger fi les, one of the addresses in the i-node is the address of a disk block called
a single indirect block which contains additional disk addresses. If this is insuffi cient, another
address called the double indirect block may contain the address of a block that contains a list of
single indirect blocks.

In order to create the illusion of fi les from the block oriented disk drives, the OS must keep track
of the location of the sectors containing the data of the fi le. This is accomplished by maintaining
a set of data structures both in memory and on disk that keep track of where data is allocated to
each fi le, and the name to fi le mapping encoded in the directory structure.

The simplest allocation of fi les is a contiguous allocation of sectors to each fi le. A directory entry
would contain the name of the fi le, its size in bytes and the fi rst and last sector of the fi le. This
results in a fast read of a given fi le and a compact representation, but also of sizable external
fragmentation which can require compaction to correct. The analog in memory management is
the base/limit register system of memory allocation.

As with memory management, you turn to more complex data structures and non contiguous
allocation to solve the problems. I can use a bitmap to record the allocated and unallocated sectors
on the disk, and keep a list of sectors assigned to each fi le in its directory entry. This isn’t often
used, because it makes searching for free space diffi cult and replicates the allocation information
in the fi le itself. (When it is used, the bitmap is kept both on disk and in memory).

The other system that is used in fi le systems and in memory management is a linked list. A
simple mechanism is to take one integer out of every fi le block and us that as the next sector
following this one (similar to linking the holes in memory management).

This is an improvement over bitmaps in effi ciency of storage use, but has a signifi cant drawback
in that fi nding the proper sector for a random access is expensive. Finding the right sector
containing a random sector is as expensive as reading to that point in the fi le.

To solve this we collect the sector pointers into a table (usually cached in main memory) separate
from the fi les. Now the OS can follow the separate pointers to fi nd the appropriate sector for a
random access without reading each disk block. Furthermore, the conceptual disk blocks and the
physical disk blocks now have the same size. This is essentially the FAT fi le system of MS-DOS.

Another organization is one optimized for small fi les (which research has shown dominate the
fi le system, in the sense that most fi les are small) while accommodating large ones. The system is
called the index node or i-node system. An i-node contains the attributes of the fi le and pointers
to its fi rst few blocks.

The last 3 sector pointers are special. The fi rst points to inode structures that contain only pointers
to sectors; this is an indirect block. The second to pointers to pointers to sectors (a double indirect
node) and the third to pointers to pointers to sectors (triple indirect).

This results in increasing access times for blocks later in the fi le. Large fi les will have longer
access times to the end of the fi le. I-nodes specifi cally optimize for short fi les.

8.9 Allocation Methods

One main problem in fi le management is how to allocate space for fi les so that disk space is
utilized effectively and fi les can be accessed quickly. Three major methods of allocating disk

Unit 8: File Management

Notes

 LOVELY PROFESSIONAL UNIVERSITY 151

space are contiguous, linked, and indexed. Each method has its advantages and disadvantages.
Accordingly, some systems support all three (e.g. Data General’s RDOS). More commonly, a
system will use one particular method for all fi les.

8.9.1 Contiguous Allocation

The contiguous allocation method requires each fi le to occupy a set of contiguous address on the
disk. Disk addresses defi ne a linear ordering on the disk. Notice that, with this ordering, accessing
block b+1 after block b normally requires no head movement. When head movement is needed
(from the last sector of one cylinder to the fi rst sector of the next cylinder), it is only one track.
Thus, the number of disk seeks required for accessing contiguous allocated fi les in minimal, as
is seek time when a seek is fi nally needed. Contiguous allocation of a fi le is defi ned by the disk
address and the length of the fi rst block. If the fi le is n blocks long, and starts at location b, then
it occupies blocks b, b+1, b+2, …, b+n-1. The directory entry for each fi le indicates the address of
the starting block and the length of the area allocated for this fi le.

The diffi culty with contiguous allocation is fi nding space for a new fi le. If the fi le to be created is
n blocks long, then the OS must search for n free contiguous blocks. First-fi t, best-fi t, and worst-fi t
strategies are the most common strategies used to select a free hole from the set of available holes.
Simulations have shown that both fi rst-fi t and best-fi t are better than worst-fi t in terms of both
time storage utilization. Neither fi rst-fi t nor best-fi t is clearly best in terms of storage utilization,
but fi rst-fi t is generally faster.

These algorithms also suffer from external fragmentation. As fi les are allocated and deleted, the
free disk space is broken into little pieces. External fragmentation exists when enough total disk
space exists to satisfy a request, but this space not contiguous; storage is fragmented into a large
number of small holes.

Another problem with contiguous allocation is determining how much disk space is needed for a
fi le. When the fi le is created, the total amount of space it will need must be known and allocated.
How does the creator (program or person) know the size of the fi le to be created. In some cases,
this determination may be fairly simple (e.g. copying an existing fi le), but in general the size of
an output fi le may be diffi cult to estimate.

0

5 6 7 8 9

10 11 12 13 14

15 16 17 18 1915 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

1 2 3 4
File A

File B

File C

File E

File D

directory

File Name
File A
File B
File C
File D
File E

2
9
18
30
26

3
5
8
2
3

Start Block Length

Since blocks are allocated
contiguously, external
fragmentation may occur.
Thus, compaction may be
needed.

Figure 8.6: Diagram of Contiguous Allocation

Operating System

Notes

152 LOVELY PROFESSIONAL UNIVERSITY

8.9.2 Linked Allocation

The problems in contiguous allocation can be traced directly to the requirement that the spaces
be allocated contiguously and that the fi les that need these spaces are of different sizes. These
requirements can be avoided by using linked allocation.

In linked allocation, each fi le is a linked list of disk blocks. The directory contains a pointer to the
fi rst and (optionally the last) block of the fi le. For example, a fi le of 5 blocks which starts at block
4, might continue at block 7, then block 16, block 10, and fi nally block 27. Each block contains a
pointer to the next block and the last block contains a NIL pointer. The value -1 may be used for
NIL to differentiate it from block 0.

With linked allocation, each directory entry has a pointer to the fi rst disk block of the fi le. This
pointer is initialized to nil (the end-of-list pointer value) to signify an empty fi le. A write to a fi le
removes the fi rst free block and writes to that block. This new block is then linked to the end of
the fi le. To read a fi le, the pointers are just followed from block to block.

There is no external fragmentation with linked allocation. Any free block can be used to satisfy a
request. Notice also that there is no need to declare the size of a fi le when that fi le is created. A fi le
can continue to grow as long as there are free blocks. Linked allocation, does have disadvantages,
however. The major problem is that it is ineffi cient to support direct-access; it is effective only for
sequential-access fi les. To fi nd the ith block of a fi le, it must start at the beginning of that fi le and
follow the pointers until the ith block is reached.

Note Note that each access to a pointer requires a disk read.

Another severe problem is reliability. A bug in OS or disk hardware failure might result in
pointers being lost and damaged. The effect of which could be picking up a wrong pointer and
linking it to a free block or into another fi le.

Figure 8.7: Diagram of Linked Allocation

Unit 8: File Management

Notes

 LOVELY PROFESSIONAL UNIVERSITY 153

8.9.3 Indexed Allocation

The indexed allocation method is the solution to the problem of both contiguous and
linked allocation. This is done by bringing all the pointers together into one location
called the index block. Of course, the index block will occupy some space and thus could
be considered as an overhead of the method. In indexed allocation, each fi le has its own
index block, which is an array of disk sector of addresses. The ith entry in the index block
points to the ith sector of the fi le. The directory contains the address of the index block of a
fi le. To read the ith sector of the fi le, the pointer in the ith index block entry is read to fi nd
the desired sector. Indexed allocation supports direct access, without suffering from external
fragmentation. Any free block anywhere on the disk may satisfy a request for more space.

Figure 8.8: Diagram of Indexed Allocation

Task File management is a big problem is operating system. How it will be resolved?

8.10 Free-space Management

Since there is only a limited amount of disk space, it is necessary to reuse the space from deleted
fi les for new fi les. To keep track of free disk space, the system maintains a free-space list. The
free-space list records all disk blocks that are free (i.e., are not allocated to some fi le). To create a
fi le, the free-space list has to be searched for the required amount of space, and allocate that space
to a new fi le. This space is then removed from the free-space list. When a fi le is deleted, its disk
space is added to the free-space list.

8.10.1 Bit-Vector

Frequently, the free-space list is implemented as a bit map or bit vector. Each block is represented
by a 1 bit. If the block is free, the bit is 0; if the block is allocated, the bit is 1.

Operating System

Notes

154 LOVELY PROFESSIONAL UNIVERSITY

 Example: Consider a disk where blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17, 18, 25, 26, and 27 are
free, and the rest of the blocks are allocated. The free-space bit map would be:

11000011000000111001111110001111…

The main advantage of this approach is that it is relatively simple and effi cient to fi nd n consecutive
free blocks on the disk. Unfortunately, bit vectors are ineffi cient unless the entire vector is kept
in memory for most accesses. Keeping it main memory is possible for smaller disks such as on
microcomputers, but not for larger ones.

...
0 1 2 n-1

bit[i] =
0 block[i] free
1 block[i] occupied

Figure 8.9: Free-space Management by Bit-Vector

8.10.2 Linked List

Another approach is to link all the free disk blocks together, keeping a pointer to the fi rst free
block. This block contains a pointer to the next free disk block, and so on. In the previous example,
a pointer could be kept to block 2, as the fi rst free block. Block 2 would contain a pointer to block
3, which would point to block 4, which would point to block 5, which would point to block 8, and
so on. This scheme is not effi cient; to traverse the list, each block must be read, which requires
substantial I/O time.

next

data

data

data

data

next

data

data

data

data

next

data

data

data

data

file

jeep 19

first index block

directory

Linked Scheme

Figure 8.10: Free-space Management by Linked List

8.10.3 Grouping

A modifi cation of the free-list approach is to store the addresses of n free blocks in the fi rst free
block. The fi rst n-1 of these are actually free. The last one is the disk address of another block

Unit 8: File Management

Notes

 LOVELY PROFESSIONAL UNIVERSITY 155

containing addresses of another n free blocks. The importance of this implementation is that
addresses of a large number of free blocks can be found quickly.

Figure 8.11: Free-space Management by Free List Grouping

8.10.4 Counting

Another approach is to take advantage of the fact that, generally, several contiguous blocks may
be allocated or freed simultaneously, particularly when contiguous allocation is used. Thus,
rather than keeping a list of free disk addresses, the address of the fi rst free block is kept and the
number n of free contiguous blocks that follow the fi rst block. Each entry in the free-space list
then consists of a disk address and a count. Although each entry requires more space than would

Operating System

Notes

156 LOVELY PROFESSIONAL UNIVERSITY

a simple disk address, the overall list will be shorter, as long as the count is generally greater
than 1.

0 1 2 4 5 63

O/S
Header

Oracle File
Header

Segment
Header

Data Data Data Data

Free
List
1

Free
List
2

X
Instance

Y
Instance

Data Segment

Figure 8.12: Free-space Management by Free Block Counting

8.11 Directory Implementation

Directories are generally simply fi les with a special interpretation. Some directory structures
contain the name of a fi le, its attributes and a pointer3 either into its FAT list or to its i-node.

This choice bears directly on the implementation of linking. If attributes are stored directly in
the directory node, (hard) linking is diffi cult because changes to the fi le must be mirrored in
all directories. If the directory entry simply points to a structure (like an i-node) that holds the
attributes internally, only that structure needs to be updated.

The simplest method is to use a linear list of fi le names with pointers to the data blocks. This
requires a linear search to fi nd a particular entry. Hash tables are also used by some operating
systems - a linear list stores the directory entries but a hash function based on some computation
from the fi le name returns a pointer to the fi le name in the list. Thus, directory search time is
greatly reduced.

In UNIX, each entry in the directory contains just a fi le name and its i-node number. When a fi le
is opened, the fi le system takes the fi le name and locates its disk blocks. The i-node is read into
memory and kept there until the fi le is closed.

8.12 Summary

z File is a named collection of data stored in a device.

z File manager is an integral part of the operating system which is responsible for the
maintenance of secondary storage.

z File system is a set of abstract data types that are implemented for the storage, hierarchical
organization, manipulation, navigation, access, and retrieval of data.

z Disk fi le system is a fi le system designed for the storage of fi les on a data storage device,
most commonly a disk drive, which might be directly or indirectly connected to the
computer.

z Flash fi le system is a fi le system designed for storing fi les on fl ash memory devices. Network
fi le system is a fi le system that acts as a client for a remote fi le access protocol, providing
access to fi les on a server.

Unit 8: File Management

Notes

 LOVELY PROFESSIONAL UNIVERSITY 157

z Flat fi le system is a fi le system where is no subdirectories and everything is stored at the
same (root) level on the media, be it a hard disk, fl oppy disk, etc.

z Directory is simple fi le containing the indexing of other fi les, which may in turn be
directories if a hyerarchical indexing scheme is used.

8.13 Keywords

Directory: It is simple fi le containing the indexing of other fi les, which may in turn be directories
if a hyerarchical indexing scheme is used.

Disk fi le system: It is a fi le system designed for the storage of fi les on a data storage device, most
commonly a disk drive, which might be directly or indirectly connected to the computer.

File manager: It is an integral part of the operating system which is responsible for the maintenance
of secondary storage.

File system: It is a set of abstract data types that are implemented for the storage, hierarchical
organization, manipulation, navigation, access, and retrieval of data.

File: It is a named collection of data stored in a device.

Flash fi le system: It is a fi le system designed for storing fi les on fl ash memory devices.

Flat fi le system: It is a fi le system where no subdirectories are present and everything is stored at
the same (root) level on the media, be it a hard disk, fl oppy disk, etc.

Network fi le system: It is a fi le system that acts as a client for a remote fi le access protocol,
providing access to fi les on a server.

8.14 Self Assessment

Fill in the blanks:

1. Shareable fi les are those that can be accessed and by

2. Three major methods of allocating disk space are, and
.......................... .

3. The diffi culty with contiguous allocation is for a new fi le.

4. There is no external fragmentation with allocation.

5. FAT stands for

6. NTFS stands for

7. Direct access is based on a of a fi le.

8. fi les support both formatted and unformatted record types.

9. A system is a fi le system designed for storing fi les on fl ash memory
devices.

10. A is a collection of letters, numbers and special characters.

11. The hierarchical fi le system was an early research interest of

8.15 Review Questions

1. What is a directory? Can we consider a directory as a fi le? Explain your answer.

2. What is a fl ash fi le system? Give an example of it.

Operating System

Notes

158 LOVELY PROFESSIONAL UNIVERSITY

3. What are the differences between fi le system and fi le manager?

4. Write short notes on:

(a) Disk fi le system

(b) Flat fi le system

(c) Network fi le system

5. What are the differences between a fi le system and a directory?

6. What is logical damage of data? How can it be recovered?

7. Write a short note on free space management.

8. What is indexed allocation method? How differs does it from linked list allocation?

9. Compare and contrast between contiguous disk space allocation method and linked list
allocation method.

10. What is disk scheduling? Describe different disk scheduling policies.

Answers: Self Assessment

1. locally, remote hosts 2. contiguous, linked, and indexed

3. fi nding space 4. linked 5. File allocation table

6. NT File system 7. disk model 8. direct-access

9. fl ash fi le 10. fi le 11. Dennis Ritchie

8.16 Further Readings

Books Andrew M. Lister, Fundamentals of Operating Systems, Wiley.

 Andrew S. Tanenbaum And Albert S. Woodhull, Systems Design and Implementation,
Prentice Hall.

 Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.

 Colin Ritchie, Operating Systems, BPB Publications.

 Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.

 I.A. Dhotre, Operating System, Technical Publications.

 Milankovic, Operating System, Tata MacGraw Hill, New Delhi.

 Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons,
Seventh Edition.

 Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.

Online links www.en.wikipedia.org

 www.web-source.net

 www.webopedia.com

Unit 9: I/O & Secondary Storage Structure

Notes

 LOVELY PROFESSIONAL UNIVERSITY 159

Unit 9: I/O & Secondary Storage Structure

CONTENTS

Objectives

Introduction

9.1 I/O Systems

9.2 I/O Hardware

 9.2.1 Input Device

 9.2.2 Output Device

9.3 Application I/O Interface

9.4 Functions of I/O Interface

9.5 Kernel I/O Sub-system

9.6 Disk Scheduling

9.7 Disk Management

9.8 Swap Space Management

 9.8.1 Pseudo-Swap Space

 9.8.2 Physical Swap Space

 9.8.3 Three Rules of Swap Space Allocation

9.9 RAID Structure

9.10 Summary

9.11 Keywords

9.12 Self Assessment

9.13 Review Questions

9.14 Further Readings

Objectives

After studying this unit, you will be able to:

z Defi ne I/O systems

z Describe I/O hardware

z Explain application I/O interface

z Know disk scheduling

z Describe swap space management

z Explain RAID structure

Introduction

The central processing unit is the unseen part of a computer system, and users are only dimly
aware of it. But users are very much aware of the input and output associated with the computer.
They submit input data to the computer to get processed information, the output. One of the
important tasks of the operating system is to control all of the I/O devices, such as issuing
commands concerning data transfer or status polling, catching and processing interrupts as well

Operating System

Notes

160 LOVELY PROFESSIONAL UNIVERSITY

as handling different kind of errors. In this unit, we shall discuss how operating system handles
the inputs and outputs.

9.1 I/O Systems

Input/output, or I/O, refers to the communication between an information processing system
(such as a computer), and the outside world – possibly a human, or another information
processing system. Inputs are the signals or data received by the system, and outputs are the
signals or data sent from it. The term can also be used as part of an action; to “perform I/O” is
to perform an input or output operation. I/O devices are used by a person (or other system) to
communicate with a computer. For instance, keyboards and mouses are considered input devices
of a computer, while monitors and printers are considered output devices of a computer. Devices
for communication between computers, such as modems and network cards, typically serve for
both input and output.

Note The designation of a device as either input or output depends on the perspective.
Mouses and keyboards take as input physical movement that the human user outputs and
convert it into signals that a computer can understand. The output from these devices
is input for the computer. Similarly, printers and monitors take as input signals that a
computer outputs. They then convert these signals into representations that human users
can see or read. (For a human user the process of reading or seeing these representations
is receiving input.)

In computer architecture, the combination of the CPU and main memory (i.e. memory that the
CPU can read and write to directly, with individual instructions) is considered the heart of a
computer, and from that point of view any transfer of information from or to that combination,
for example to or from a disk drive, is considered I/O. The CPU and its supporting circuitry
provide I/O methods that are used in low-level computer programming in the implementation
of device drivers.

Higher-level operating system and programming facilities employ separate, more abstract I/O
concepts and primitives. For example, most operating systems provide application programs
with the concept of fi les. The C and C++ programming languages, and operating systems in the
Unix family, traditionally abstract fi les and devices as streams, which can be read or written, or
sometimes both. The C standard library provides functions for manipulating streams for input
and output.

User process

Device-independent
software

Device drivers

Interrupt handler

hardware

I/O
request

I/O
replyLayer I/O Functions

Make I/O call; format I/O; spooling

Naming, protection, blocking, buffering, allocation

Setup device registers; check status

Wakeup driver when I/O completed

Perform I/O operation

Figure 9.1: I/O System

Unit 9: I/O & Secondary Storage Structure

Notes

 LOVELY PROFESSIONAL UNIVERSITY 161

9.2 I/O Hardware

I/O devices allow your managed system to gather, store, and transmit data. I/O devices are
found in the server unit itself and in expansion units and towers that are attached to the server.
I/O devices can be embedded into the unit, or they can be installed into physical slots.

Not all types of I/O devices are supported for all operating systems or on all server models.

 Example: Switch Network Interface (SNI) adapters are supported only on certain server
models, and are not supported for i5/OS® logical partitions.

9.2.1 Input Device

A hardware device that sends information into the CPU is known as input device. Without any
input devices a computer would simply be a display device and not allow users to interact with
it, much like a TV. Below is a listing of different types of computer input devices.

Keyboard: One of the main input devices used on a computer, a PC’s keyboard looks very similar
to the keyboards of electric typewriters, with some additional keys.

Figure 9.2: Keyboard

Mouse: An input device that allows an individual to control a mouse pointer in a graphical user
interface (GUI). Utilizing a mouse a user has the ability to perform various functions such as
opening a program or fi le and does not require the user to memorize commands, like those used
in a text-based environment such as MS-DOS. To the right is a picture of a Microsoft IntelliMouse
and is an example of what a mouse may look like.

Figure 9.3: Mouse

Touch Screen: A touch screen is a display which can detect the presence and location of a touch
within the display area. The term generally refers to touch or contact to the display of the device
by a fi nger or hand. Touch screens can also sense other passive objects, such as a stylus. However,
if the object sensed is active, as with a light pen, the term touch screen is generally not applicable.
The ability to interact directly with a display typically indicates the presence of a touch screen.

Operating System

Notes

162 LOVELY PROFESSIONAL UNIVERSITY

Figure 9.4: Touch Screen

Joystick: A joystick is an input device consisting of a stick that pivots on a base and reports its
angle or direction to the device it is controlling. Joysticks are often used to control video games,
and usually have one or more push-buttons whose state can also be read by the computer. A
popular variation of the joystick used on modern video game consoles is the analog stick.

Figure 9.5: Joystick

Scanner: Hardware input device that allows a user to take an image and/or text and convert it
into a digital fi le, allowing the computer to read and/or display the scanned object. A scanner is
commonly connected to a computer USB, Firewire, Parallel or SCSI port.

Figure 9.6: Scanner

Microphone: Sometimes abbreviated as mic, a microphone is a hardware peripheral that allows
computer users to input audio into their computers.

Figure 9.7: Microphone

Unit 9: I/O & Secondary Storage Structure

Notes

 LOVELY PROFESSIONAL UNIVERSITY 163

Webcam: A camera connected to a computer or server that allows anyone connected to the Internet
to view still pictures or motion video of a user. The majority of webcam web sites are still pictures
that are frequently refreshed every few seconds, minutes, hours, or days. However, there are
some sites and personal pages that can supply streaming video for users with broadband.

Figure 9.8: Webcam

Digital camera: A type of camera that stores the pictures or video it takes in electronic format
instead of to fi lm. There are several features that make digital cameras a popular choice when
compared to fi lm cameras. First, the feature often enjoyed the most is the LCD display on the
digital camera. This display allows users to view photos or video after the picture or video has
been taken, which means if you take a picture and don’t like the results, you can delete it; or if
you do like the picture, you can easily show it to other people. Another nice feature with digital
cameras is the ability to take dozens, sometimes hundreds of different pictures.

Figure 9.9: Digital Camera

9.2.2 Output Device

Any peripheral that receives and/or displays output from a computer is known as output device.
Below are some examples of different types of output devices commonly found on a computer.

Prointer: A printer is a peripheral which produces a hard copy (permanent human-readable
text and/or graphics) of documents stored in electronic form, usually on physical print media
such as paper or transparencies. Many printers are primarily used as local peripherals, and are
attached by a printer cable or, in most newer printers, a USB cable to a computer which serves as
a document source. Some printers, commonly known as network printers, have built-in network
interfaces (typically wireless or Ethernet), and can serve as a hardcopy device for any user on the
network. Individual printers are often designed to support both local and network connected
users at the same time.

Figure 9.10: Printer

Operating System

Notes

164 LOVELY PROFESSIONAL UNIVERSITY

Plotter: A plotter is a vector graphics printing device to print graphical plots, that connects
to a computer. There are two types of main plotters. Those are pen plotters and electrostatic
plotters.

Figure 9.11: Plotter

Fax: Fax (short for facsimile, from Latin fac simile, “make similar”, i.e. “make a copy”) is a
telecommunications technology used to transfer copies (facsimiles) of documents, especially
using affordable devices operating over the telephone network. The word telefax, short for
telefacsimile, for “make a copy at a distance”, is also used as a synonym. Although fax is not an
acronym, it is often written as “FAX”.

Figure 9.12: Fax

Monitors: A visual display unit, often called simply a monitor or display, is a piece of electrical
equipment which displays images generated from the video output of devices such as computers,
without producing a permanent record. Most new monitors typically consist of a TFT LCD,
with older monitors based around a cathode ray tube (CRT). Almost all of the mainstream new
monitors being sold on market now are LCD.

Figure 9.13: Monitor

Speakers: A hardware device connected to a computer’s sound card that outputs sounds
generated by the card.

Unit 9: I/O & Secondary Storage Structure

Notes

 LOVELY PROFESSIONAL UNIVERSITY 165

Figure 9.14: Speaker

Video card: Also known as a graphics card, video card, video board, or a video controller, a video
adapter is an internal circuit board that allows a display device, such as a monitor, to display
images from the computer.

Figure 9.15: Video Card

Task Discuss about any four I/O hardware devices.

9.3 Application I/O Interface

The I/O and memory interface are the counterparts to the bus control logic. What goes between
the bus control logic and interface is simply the conductors in the bus; therefore, the interface
must be designed to accept and send signals that are compatible with the bus control logic and its
timing. Although there are similarities in I/O interfaces, there are also signifi cant differences.

An I/O interface must be able to:

1. Interpret the address and memory-I/O select signals to determine whether or not it is
being referenced and, if so, determine which of its registers is being accessed.

2. Determine whether an input or output is being conducted and accept output data or control
information from the bus or place input data or status information on the bus.

3. Input data from or output data to the associated I/O device and convert the data from
parallel to the format acceptable to the I/O device, or vice versa.

4. Send a ready signal when data have been accepted from or placed on the data bus, thus
informing the processor that a transfer has been completed.

5. Send interrupt requests and, if there is no interrupt priority management in the bus control
logic, receive interrupt acknowledgments and send an interrupt type.

6. Receive a reset signal and reinitialize itself and, perhaps, its associated device.

Operating System

Notes

166 LOVELY PROFESSIONAL UNIVERSITY

Status/control
registers

Interface/controller
device

Data buffer
registers

Enable Control lines

Data lines

External
data bus
drivers

and
 receivers
(optional)

Hands-
haking
logic

Address
decoder

Daisy
chain
logic

(optional)

Data/status/control

Control

Read/write

Chip select

Register select

Interrupt
request

Interrupt
acknowledge

Memory-I/O

DMA controller
(optional)

A
dd

re
ss

 b
us C

on
tr

ol
 b

us D
at

a
bu

s

Figure 9.16 Typical Block Diagram of an I/O Interface

Figure 9.16 contains a block diagram of a typical I/O interface. The function of an I/O interface
is essentially to translate the signals between the system bus and the I/O device and provide
the buffers needed to satisfy the two sets of timing constraints. Most of the work done by the
interface is accomplished by the large block on the right of the fi gure. Most often this block is
implemented by a single IC device, but its functions could be scattered across several devices.
Clearly, its functions vary radically, depending on the I/O device with which it is designed to
communicate.

An interface can be divided into two parts, a part that interface to the I/O device and a part that
interface to the system bus. Although little can be said about the I/O device side of the interface
without knowing a lot about the device, the bus sides of all interfaces in a given system are very
similar because they connect to the same bus. To support the main interface logic there must
be data bus drivers and receivers, logic translating the interface control signals into the proper
handshaking signals, and logic for decoding the address that appear on the bus. In an 8086/8088
system, 8286 transceivers could drive the data bus, just as they are used to drive the bus at its bus
control logic end. However, the main interface devices may have built-in drivers and receivers
that are suffi cient for small, single board systems.

The handshaking logic cannot be designed until the control signals needed by the main interface
device are known, and these signals may vary from one interface to the next. Typically this logic
must accept read/write signals for determining the data direction and output the OE and T
signals require by the 8286s. In a maximum mode 8086/8088 system it would receive the IOWC
(or AIOWC) and IORC signals from the 8288 bus controller and in a minimum mode system it
would receive the RD , WR and M/IO (or IO/M) signals. The interrupt request, ready, and reset

Unit 9: I/O & Secondary Storage Structure

Notes

 LOVELY PROFESSIONAL UNIVERSITY 167

lines would also pass through this logic. In some cases, the bus control lines may pass through
the handshaking logic unaltered (i.e. be connected directly to the main interface device).

The address decoder must receive the address and perhaps a bit indicating wheteher the address
is in the I/O address space or the memory address space. In a minimum mode system this bit
could be taken from the M/IO (or IO/M) line, but in a maximum mode system the memory-I/O
determination is obtained directly from the IOWC and IORC lines. If the decoder determines that
its interface is being referenced, then the decoder must send signals to the main device indicating
that it has been selected and which register is being accessed. The bits designing the register may
be the low-order address bits, but are often generated inside the interface device from the read/
write control signal as well as the address signals.

 Example: If there are two registers A and B that can be read from and two registers C and
D that can be written into, then the read and write signals and bit 0 of the address bus could be
used to specify the register as follows:

Write Read Address Bit 0 Register Being Accessed
0 1 0 A
0 1 1 B
1 0 0 C
1 0 1 D

If a daisy chain is included in the system instead of an interrupt priority management device, then
each interface must contain daisy chain logic; and must include logic to generate the interrupt
type. Also, the interface may be associated with a DMA controller.

Many interface are designed to detect at least two kinds of errors. Because the lines connecting
an interface to its device are almost subject to noise, parity bits are normally appended to the
information bytes as they are transmitted. If even parity is used the parity bit is set so that the
total number of 1s, including the parity bit, is even. For odd parity the total number of 1s is odd.
As these bytes are received the parity is checked and if it is in error, a certain status bit is set in a
status register. Some interfaces are also designed to check error detection redundancy bytes that
are placed after blocks of data. The other type of error most interfaces can detect is known as an
overrun error. As we have seen when a computer inputs data it brings the data in form a data-in
buffer register. If, for some reason, the contents of this register are replaced by new data before
they are input by the computer, an overrun error occurs, such an error also happens when data
are put in a data-out buffer before the current contents of the register have been output. As with
parity errors, overrun errors cause a certain status bit to be set.

9.4 Functions of I/O Interface

An I/O interface is bridge between the processor and I/O devices. It controls the data exchange
between the external devices and the main memory; or external devices and processor registers.
Therefore, an I/O interface provides an interface internal to the computer which connects it to the
processor and main memory and an interface external to the computer connecting it to external
device or peripheral. The I/O interface should not only communicate the information from
processor to main I/O device, but it should also coordinate these two. In addition, since there
are speed differences between processor and I/O devices, the I/O interface should have facilities
like buffer and error detection mechanism. Therefore, the major functions or requirements of an
I/O interface are:

It should be able to provide control and timing signals

The need of I/O from various I/O devices by the processor is quite unpredictable. In fact it
depends on I/O needs of particular programs and normally does not follow any pattern. Since, the

Operating System

Notes

168 LOVELY PROFESSIONAL UNIVERSITY

I/O interface also shares system bus and memory for data input/output, control and timing are
needed to coordinate the fl ow of data from/to external devices to/from processor or memory.

 Example: The control of the transfer of data from an external device to the processor
might involve the following steps:

1. The processor enquires from the I/O interface to check the status of the attached device.
The status can be busy, ready or out of order.

2. The I/O interface returns the device status.

3. If the device is operational and ready to transmit, the processor requests the transfer of
data by means of a command, which is a binary signal, to the I/O interface.

4. The I/O interface obtains a unit of data (e.g., 8 or 16 bits) from the external device.

5. The data is transferred from the I/O interface to the processor.

It should Communicate with the Processor

The above example clearly specifi es the need of communication between the processor and I/O
interface. This communication involves the following steps:

1. Commands such as READ SECTOR, WRITE SECTOR, SEEK track number and SCAN
record-id sent over the control bus.

2. Data that are exchanged between the processor and I/O interface sent over the data bus.

3. Status: As peripherals are so slow, it is important to know the status of the I/O interface.
The status signals are BUSY or READY or in an error condition from I/O interface.

4. Address recognition as each word of memory has an address, so does each I/O device.
Thus an I/O interface must recognize one unique address for each peripheral it controls.

It should Communicate with the I/O Device

Communication between I/O interface and I/O device is needed to complete the I/O operation.
This communication involves commands, status or data.

It should have a Provision for Data Buffering

Data buffering is quite useful for the purpose of smoothing out the gaps in speed of processor
and the I/O devices. The data buffers are registers, which hold the I/O information temporarily.
The I/O is performed in short bursts in which data are stored in buffer area while the device can
take its own time to accept them. In I/O device to processor transfer, data are fi rst transferred
to the buffer and then passed on to the processor from these buffer registers. Thus, the I/O
operation does not tie up the bus for slower I/O devices.

Error Detection Mechanism should be in-built

The error detection mechanism may involve checking the mechanical as well as data
communication errors. These errors should be reported to the processor. The examples of the
kind of mechanical errors that can occur in devices are paper jam in printer, mechanical failure,
electrical failure etc. The data communication errors may be checked by using parity bit.

Unit 9: I/O & Secondary Storage Structure

Notes

 LOVELY PROFESSIONAL UNIVERSITY 169

9.5 Kernel I/O Sub-system

I/O services provides by kernel are:

1. Scheduling

2. Buffering

3. Caching

4. Spooling

5. Device reservation

6. Error handling

7. I/O protection

I/O Scheduling

1. Some I/O request ordering via per-device queue

2. Some OSs try fairness – no one application receives poor service

3. To support asynchronous I/O, it must keep track of many I/O requests at the same time

(a) Use device-status table

Buffering

Store data in memory while transferring between devices

1. To cope with device speed mismatch

 Example: File received via modem for storage on the hard disk via double
buffering (next slide shows the differences in device speeds)

2. To cope with device transfer size mismatch

(a) Common in computer networking

3. To maintain “copy semantics”

(a) The version of data written to disk is guaranteed to be the version on the time of the
application system call, independent of any subsequent changes in the application’s
buffer.

Caching

Fast memory holding copy of data

1. Always just a copy

2. Key to performance

Spooling

A buffer hat holds output for a device

1. If device can serve only one request at a time

2. Useful for printers and tape drives

Operating System

Notes

170 LOVELY PROFESSIONAL UNIVERSITY

Device Reservation

Coordination to provide exclusive access to a device

1. System calls for allocation and deallocation

2. Watch out for deadlock

Error Handling

1. OS can recover from disk read, device unavailable, transient write failures

2. Most OS’s return an error number or code when I/O request fails

3. System error logs hold problem reports

I/O Protection

User process may accidentally or purposefully attempt to disrupt normal operation via illegal
I/O instructions

1. All I/O instructions defi ned to be privileged

2. I/O must be performed via system calls

3. Memory-mapped and I/O port memory locations must be protected too

Task For complete the I/O operation you need two I/O operation and these operations
are.

9.6 Disk Scheduling

In order to satisfy an I/O request the disk controller must fi rst move the head to the correct
track and sector. Moving the head between cylinders takes a relatively long time so in order to
maximise the number of I/O requests which can be satisfi ed the scheduling policy should try to
minimise the movement of the head. On the other hand, minimising head movement by always
satisfying the request of the closest location may mean that some requests have to wait a long
time. Thus, there is a trade-off between throughput (the average number of requests satisfi ed in
unit time) and response time (the average time between a request arriving and it being satisfi ed).
Various different disk scheduling policies are used:

First Come First Served (FCFS)

The disk controller processes the I/O requests in the order in which they arrive, thus moving
backwards and forwards across the surface of the disk to get to the next requested location
each time. Since no reordering of request takes place the head may move almost randomly
across the surface of the disk. This policy aims to minimise response time with little regard for
throughput.

Each time an I/O request has been completed the disk controller selects the waiting request
whose sector location is closest to the current position of the head. The movement across the
surface of the disk is still apparently random but the time spent in movement is minimised. This
policy will have better throughput than FCFS but a request may be delayed for a long period if
many closely located requests arrive just after it.

Unit 9: I/O & Secondary Storage Structure

Notes

 LOVELY PROFESSIONAL UNIVERSITY 171

The drive head sweeps across the entire surface of the disk, visiting the outermost cylinders
before changing direction and sweeping back to the innermost cylinders. It selects the next
waiting requests whose location it will reach on its path backwards and forwards across the disk.
Thus, the movement time should be less than FCFS but the policy is clearly fairer than SSTF.

Circular SCAN (C-SCAN)

C-SCAN is similar to SCAN but I/O requests are only satisfi ed when the drive head is traveling
in one direction across the surface of the disk. The head sweeps from the innermost cylinder to
the outermost cylinder satisfying the waiting requests in order of their locations. When it reaches
the outermost cylinder it sweeps back to the innermost cylinder without satisfying any requests
and then starts again.

Look

Similarly to SCAN, the drive sweeps across the surface of the disk, satisfying requests, in
alternating directions. However the drive now makes use of the information it has about the
locations requested by the waiting requests.

 Example: A sweep out towards the outer edge of the disk will be reversed when there are
no waiting requests for locations beyond the current cylinder.

Circular LOOK (C-LOOK)

Based on C-SCAN, C-LOOK involves the drive head sweeping across the disk satisfying requests
in one direction only. As in LOOK the drive makes use of the location of waiting requests in order
to determine how far to continue a sweep, and where to commence the next sweep. Thus it may
curtail a sweep towards the outer edge when there are locations requested in cylinders beyond
the current position, and commence its next sweep at a cylinder which is not the innermost one,
if that is the most central one for which a sector is currently requested.

9.7 Disk Management

The hard disk is the secondary storage device that is used in the computer system. Usually the
primary memory is used for the booting up of the computer. But a hard disk drive is necessary
in the computer system since it needs to store the operating system that is used to store the
information of the devices and the management of the user data.

The management of the IO devices that is the Input Output devices, like the printer and the other
peripherals like the keyboard and the etc; all require the usage of the operating system. Hence the
information of the all such devices and the management of the system are done by the operating
system. The operating system works as an interpreter between the machine and the user.

The operating system is a must for the proper functioning of the computer. The computer is a
device that needs to be fed with the instructions that are to be carried out and executed. Hence
there needs to be an interpreter who is going to carry out the conversions from the high level
language of the user to the low level language of the computer machine.

Task If your system not proper shut down what happen when you restart the
system.

Operating System

Notes

172 LOVELY PROFESSIONAL UNIVERSITY

The hard disk drive as secondary memory is therefore needed for the purpose of installing the
operating system. If there is no operating system then the question arises where to install the
operating system. The operating system obviously cannot be installed in the primary memory
however large that may be. The primary memory is also a volatile memory that cannot be used
for the permanent storage of the system fi les of the operating system. The operating system
requires the permanent fi le storage media like the hard disk.

Moreover the hard disk management is an important part of maintaining the computer, since it
requires an effi cient management of the data or the user information. The information regarding
the Master Boot Record is stored in the hard disk drive. This is the information that is required
during the start up of the computer. The computer system needs this information for loading the
operating system.

The fi le management and the resources management is also a part of the hard disk management.
The hard disk management requires an effi cient knowledge of the operating system and its
resources and the methods of how these resources can be employed in order to achieve maximum
benefi t. The operating system contains the resources and the tools that are used to manage the
fi les in the operating system. The partitioning and the installation of the operating system itself
may be considered as the hard disk management.

The hard disk management also involves the formatting of the hard disk drive and to check the
integrity of the fi le system. The data redundancy check can also be carried out for the consistency
of the hard disk drive. The hard disk drive management is also important in the case of the
network where there are many hard disk drives to be managed.

Managing a single hard disk in a single user operating system is quite easy in comparison with
the management of the hard disk drives in a multi user operating system where there is more
than one user. It is not that much easy since the users are also required to be managed.

9.8 Swap Space Management

Swap space is an area on a high-speed storage device (almost always a disk drive), reserved
for use by the virtual memory system for deactivation and paging processes. At least one swap
device (primary swap) must be present on the system.

During system startup, the location (disk block number) and size of each swap device is displayed
in 512-KB blocks. The swapper reserves swap space at process creation time, but do not allocate
swap space from the disk until pages need to go out to disk. Reserving swap at process creation
protects the swapper from running out of swap space. You can add or remove swap as needed
(that is, dynamically) while the system is running, without having to regenerate the kernel.

9.8.1 Pseudo-Swap Space

When the system memory is used for swap space then it is called pseudo-swap space. It allows
users to execute processes in memory without allocating physical swap. Pseudo-swap is
controlled by an operating-system parameter.

Typically, when the system executes a process, swap space is reserved for the entire process, in
case it must be paged out. According to this model, to run one gigabyte of processes, the system
would have to have one gigabyte of confi gured swap space. Although this protects the system
from running out of swap space, disk space reserved for swap is under-utilized if minimal or no
swapping occurs.

When using pseudo swap for swap, the pages are locked; as the amount of pseudo-swap
increases, the amount of lockable memory decreases. Pseudo-swap space is set to a maximum
of three-quarters of system memory because the system can begin paging once three-quarters of

Unit 9: I/O & Secondary Storage Structure

Notes

 LOVELY PROFESSIONAL UNIVERSITY 173

system available memory has been used. The unused quarter of memory allows a buffer between
the system and the swapper to give the system computational fl exibility.

When the number of processes created approaches capacity, the system might exhibit thrashing
and a decrease in system response time.

9.8.2 Physical Swap Space

There are two kinds of physical swap space: device swap and fi le-system swap.

Device Swap Space

Device swap space resides in its own reserved area (an entire disk or logical volume of an LVM
disk) and is faster than fi le-system swap because the system can write an entire request (256 KB)
to a device at once.

File-system Swap Space

File-system swap space is located on a mounted fi le system and can vary in size with the system’s
swapping activity. However, its throughput is slower than device swap, because free fi le-system
blocks may not always be contiguous; therefore, separate read/write requests must be made for
each fi le-system block.

9.8.3 Three Rules of Swap Space Allocation

1. Start at the lowest priority swap device or fi le system. The lower the number, the higher
priority; that is, space is taken from a system with a zero priority before it is taken from a
system with a one priority.

2. If multiple devices have the same priority, swap space is allocated from the devices in a
round-robin fashion. Thus, to interleave swap requests between a number of devices, the
devices should be assigned the same priority. Similarly, if multiple fi le systems have the
same priority, requests for swap are interleaved between the fi le systems. In the fi gure,
swap requests are initially interleaved between the two swap devices at priority 0.

3. If a device and a fi le system have the same swap priority, all the swap space from the
device is allocated before any fi le-system swap space. Thus, the device at priority 1 will be
fi lled before swap is allocated from the fi le system at priority 1.

Task List various types of physical swap space.

9.9 RAID Structure

RAID stands for Redundant Array of Independent (or Inexpensive) Disks. It involves the
confi guration (setting up) of two or more drives in combination for fault tolerance and
performance. RAID disk drives are used frequently on servers and are increasingly being found
in home and offi ce personal computers.

Disks have high failure rates and hence there is the risk of loss of data and lots of downtime for
restoring and disk replacement. To improve disk usage many techniques have been implemented.
One such technology is RAID (Redundant Array of Inexpensive Disks). Its organisation is based
on disk striping (or interleaving), which uses a group of disks as one storage unit. Disk striping

Operating System

Notes

174 LOVELY PROFESSIONAL UNIVERSITY

is a way of increasing the disk transfer rate up to a factor of N, by splitting fi les across N different
disks. Instead of saving all the data from a given fi le on one disk, it is split across many. Since the
N heads can now search independently, the speed of transfer is, in principle, increased manifold.
Logical disk data/blocks can be written on two or more separate physical disks which can
further transfer their sub-blocks in parallel. The total transfer rate system is directly proportional
to the number of disks. The larger the number of physical disks striped together, the larger the
total transfer rate of the system. Hence, the overall performance and disk accessing speed is
also enhanced. The enhanced version of this scheme is mirroring or shadowing. In this RAID
organisation a duplicate copy of each disk is kept. It is costly but a much faster and more reliable
approach. The disadvantage with disk striping is that, if one of the N disks becomes damaged,
then the data on all N disks is lost. Thus striping needs to be combined with a reliable form of
backup in order to be successful.

Another RAID scheme uses some disk space for holding parity blocks. Suppose, three or more
disks are used, then one of the disks will act as a parity block, which contains corresponding bit
positions in all blocks. In case some error occurs or the disk develops a problems all its data bits
can be reconstructed. This technique is known as disk striping with parity or block interleaved
parity, which increases speed. But writing or updating any data on a disk requires corresponding
recalculations and changes in parity block. To overcome this the parity blocks can be distributed
over all disks.

RAID is a method of creating one or more pools of data storage space from several hard drives.
It can offer fault tolerance and higher throughput levels than a single hard drive or group of
independent hard drives. You can build a RAID confi guration with IDE (parallel ATA), SATA
(Serial ATA) or SCSI hard disks or, in fact, even drives like the old 3.5” fl oppy disk drive!

The exact meaning of RAID has been much debated and much argued. The use of “Redundant”
is, in itself, a contentious point. That several manufacturers have deviated from accepted RAID
terminology, created new levels of disk arrangements, called them RAID, and christened them
with a number has not helped. There are even some single disk RAID confi gurations! Double
parity, RAID 1.5, Matrix RAID etc., are examples of proprietary RAID confi gurations.

Data can be distributed across a RAID “array” using either hardware, software or a combination of
the two. Hardware RAID is usually achieved either on-board on some server class motherboards
or via an add-on card, using an ISA/PCI slot.

Basic RAID levels are the building blocks of RAID. Compound RAID levels are built by using:

JBOD: JBOD is NOT RAID. JBOD stands for ‘Just a Bunch Of Disks’. This accurately describes
the underlying physical structure that all RAID structures rely upon. When a hardware RAID
controller is used, it normally defaults to JBOD confi guration for attached disks. Some disk
controller manufacturers incorrectly use the term JBOD to refer to a Concatenated array.

Unit 9: I/O & Secondary Storage Structure

Notes

 LOVELY PROFESSIONAL UNIVERSITY 175

Concatenated Array: A Concatenated array is NOT RAID, although it is an array. It is a group of
disks connected together, end-to-end, for the purpose of creating a larger logical disk. Although
it is not RAID, it is included here as it is the result of early attempts to combine multiple disks
into a single logical device. There is no redundancy with a Concatenated array. Any performance
improvement over a single disk is achieved because the fi le-system uses multiple disks. This type
of array is usually slower than a RAID-0 array of the same number of disks.

The good point of a Concatenated array is that different sized disks can be used in their entirety.
The RAID arrays below require that the disks that make up the RAID array be the same size, or
that the size of the smallest disk be used for all the disks.

The individual disks in a concatenated array are organized as follows:

Drive 0

Drive 1

Drive 2

Drive 3

Figure 9.17 Concatenated Segments

RAID-0: In RAID Level 0 (also called striping), each segment is written to a different disk, until
all drives in the array have been written to.

The I/O performance of a RAID-0 array is signifi cantly better than a single disk. This is true on
small I/O requests, as several can be processed simultaneously, and for large requests, as multiple
disk drives can become involved in the operation. Spindle-sync will improve the performance for
large I/O requests.

This level of RAID is the only one with no redundancy. If one disk in the array fails, data is lost.

The individual segments in a 4-wide RAID-0 array are organized as follows:

Table 9.1: RAID-0 Segments

Drive 0 Drive 1 Drive 2 Drive 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

RAID-1: In RAID Level 1 (also called mirroring), each disk is an exact duplicate of all other
disks in the array. When a write is performed, it is sent to all disks in the array. When a read is
performed, it is only sent to one disk. This is the least space effi cient of the RAID levels.

A RAID-1 array normally contains two disk drives. This will give adequate protection against
drive failure. It is possible to use more drives in a RAID-1 array, but the overall reliability will
not be signifi cantly effected.

RAID-1 arrays with multiple mirrors are often used to improve performance in situations where
the data on the disks is being read from multiple programs or threads at the same time. By being
able to read from the multiple mirrors at the same time, the data throughput is increased, thus
improving performance. The most common use of RAID-1 with multiple mirrors is to improve
performance of databases.

Operating System

Notes

176 LOVELY PROFESSIONAL UNIVERSITY

Spindle-sync will improve the performance of writes. but have virtually no effect on reads. The
read performance for RAID-1 will be no worse than the read performance for a single drive. If the
RAID controller is intelligent enough to send read requests to alternate disk drives, RAID-1 can
signifi cantly improve read performance.

RAID-2: RAID Level 2 is an intellectual curiosity, and has never been widely used. It is more
space effi cient then RAID-1, but less space effi cient then other RAID levels.

Instead of using a simple parity to validate the data (as in RAID-3, RAID-4 and RAID-5), it uses
a much more complex algorithm, called a Hamming Code. A Hamming code is larger than a
parity, so it takes up more disk space, but, with proper code design, is capable of recovering
from multiple drives being lost. RAID-2 is the only simple RAID level that can retain data when
multiple drives fail.

The primary problem with this RAID level is that the amount of CPU power required to generate
the Hamming Code is much higher then is required to generate parity.

A RAID-2 array has all the penalties of a RAID-4 array, with an even larger write performance
penalty. The reason for the larger write performance penalty is that it is not usually possible to
update the Hamming Code. In general, all data blocks in the stripe modifi ed by the write, must
be read in, and used to generate new Hamming Code data.

Also, on large writes, the CPU time to generate the Hamming Code is much higher that to
generate Parity, thus possibly slowing down even large writes.

The individual segments in a 4+2 RAID-2 array are organized as follows:

Table 9.2: RAID-2 Segments

Drive 0 Drive 1 Drive 2 Drive 3 Drive 4 Drive 5

0 1 2 3 Code Code

4 5 6 7 Code Code

8 9 10 11 Code Code

12 13 14 15 Code Code

16 17 18 19 Code Code

20 21 22 23 Code Code

RAID-3: RAID Level 3 is defi ned as bytewise (or bitwise) striping with parity. Every I/O to the
array will access all drives in the array, regardless of the type of access (read/write) or the size
of the I/O request.

During a write, RAID-3 stores a portion of each block on each data disk. It also computes the
parity for the data, and writes it to the parity drive.

In some implementations, when the data is read back in, the parity is also read, and compared to
a newly computed parity, to ensure that there were no errors.

RAID-3 provides a similar level of reliability to RAID-4 and RAID-5, but offers much greater
I/O bandwidth on small requests. In addition, there is no performance impact when writing.
Unfortunately, it is not possible to have multiple operations being performed on the array at the
same time, due to the fact that all drives are involved in every operation.

As all drives are involved in every operation, the use of spindle-sync will signifi cantly improve
the performance of the array.

Because a logical block is broken up into several physical blocks, the block size on the disk drive
would have to be smaller than the block size of the array. Usually, this causes the disk drive
to need to be formatted with a block size smaller than 512 bytes, which decreases the storage
capacity of the disk drive slightly, due to the larger number of block headers on the drive.

Unit 9: I/O & Secondary Storage Structure

Notes

 LOVELY PROFESSIONAL UNIVERSITY 177

RAID-3 also has confi guration limitations. The number of data drives in a RAID-3 confi guration
must be a power of two. The most common confi gurations have four or eight data drives.

Some disk controllers claim to implement RAID-3, but have a segment size. The concept of
segment size is not compatible with RAID-3. If an implementation claims to be RAID-3, and has
a segment size, then it is probably RAID-4.

RAID-4: RAID Level 4 is defi ned as blockwise striping with parity. The parity is always written
to the same disk drive. This can create a great deal of contention for the parity drive during write
operations.

For reads, and large writes, RAID-4 performance will be similar to a RAID-0 array containing an
equal number of data disks.

For small writes, the performance will decrease considerably. To understand the cause for this, a
one-block write will be used as an example.

1. A write request for one block is issued by a program.

2. The RAID software determines which disks contain the data, and parity, and which block
they are in.

3. The disk controller reads the data block from disk.

4. The disk controller reads the corresponding parity block from disk.

5. The data block just read is XORed with the parity block just read.

6. The data block to be written is XORed with the parity block.

7. The data block and the updated parity block are both written to disk.

It can be seen from the above example that a one block write will result in two blocks being read
from disk and two blocks being written to disk. If the data blocks to be read happen to be in a
buffer in the RAID controller, the amount of data read from disk could drop to one, or even zero
blocks, thus improving the write performance.

The individual segments in a 4+1 RAID-4 array are organized as follows:

Table 9.3: RAID-4 Segments

Drive 0 Drive 1 Drive 2 Drive 3 Drive 4

0 1 2 3 Parity

4 5 6 7 Parity

8 9 10 11 Parity

12 13 14 15 Parity

16 17 18 19 Parity

20 21 22 23 Parity

RAID-5: RAID Level 5 is defi ned as blockwise striping with parity. It differs from RAID-4, in that
the parity data is not always written to the same disk drive.

RAID-5 has all the performance issues and benefi ts that RAID-4 has, except as follows:

Since there is no dedicated parity drive, there is no single point where contention will be created.
This will speed up multiple small writes.

Multiple small reads are slightly faster. This is because data resides on all drives in the array. It is
possible to get all drives involved in the read operation.

Operating System

Notes

178 LOVELY PROFESSIONAL UNIVERSITY

The individual segments in a 4+1 RAID-5 array are organized as follows:

Table 9.4: RAID-5 Segments

Drive 0 Drive 1 Drive 2 Drive 3 Drive 4

0 1 2 3 Parity

4 5 6 Parity 7

8 9 Parity 10 11

12 Parity 13 14 15

Parity 16 17 18 19

20 21 22 23 Parity

The above block layout is an example of Linux RAID-5 in left-asymmetric mode.

9.10 Summary

z Input is the signal or data received by the system and output is the signal or data sent from
it.

z I/O devices are used by a person (or other system) to communicate with a computer.

z Keyboard is the one of the main input devices used on a computer, a PC’s keyboard looks
very similar to the keyboards of electric typewriters, with some additional keys.

z Mouse is an input device that allows an individual to control a mouse pointer in a graphical
user interface (GUI).

z Scanner is a hardware input device that allows a user to take an image and/or text and
convert it into a digital fi le, allowing the computer to read and/or display the scanned
object.

z A microphone is a hardware peripheral that allows computer users to input audio into
their computers.

z Web Cam is a camera connected to a computer or server that allows anyone connected to
the internet to view still pictures or motion video of a user.

z Digital camera is a type of camera that stores the pictures or video it takes in electronic
format instead of to fi lm.

z A computer joystick allows an individual to easily navigate an object in a game such as
navigating a plane in a fl ight simulator.

z Monitor is a video display screen and the hard shell that holds it. It is also called a video
display terminal (VDT).

z Printer is an external hardware device responsible for taking computer data and generating
a hard copy of that data.

z Sound card is a sound card is an expansion card or integrated circuit that provides a
computer with the ability to produce sound that can be heard by the user. It is also known
as a sound board or an audio card.

z Speaker is a hardware device connected to a computer’s sound card that outputs sounds
generated by the card.

Unit 9: I/O & Secondary Storage Structure

Notes

 LOVELY PROFESSIONAL UNIVERSITY 179

9.11 Keywords

Digital camera: A type of camera that stores the pictures or video it takes in electronic format
instead of to fi lm.

I/O devices: Hardware, which are used by a person (or other system) to communicate with a
computer.

Input: It is the signal or data received by the system.

Joystick: A computer joystick allows an individual to easily navigate an object in a game such as
navigating a plane in a fl ight simulator.

Keyboard: One of the main input devices used on a computer, a PC’s keyboard looks very similar
to the keyboards of electric typewriters, with some additional keys.

Microphone: A microphone is a hardware peripheral that allows computer users to input audio
into their computers.

Monitor: Also called a video display terminal (VDT) a monitor is a video display screen and the
hard shell that holds it.

Mouse: An input device that allows an individual to control a mouse pointer in a graphical user
interface (GUI).

Output: It is the signal or data sent from the system.

Printer: An external hardware device responsible for taking computer data and generating a
hard copy of that data.

Scanner: Hardware input device that allows a user to take an image and/or text and convert it
into a digital fi le, allowing the computer to read and/or display the scanned object.

Web Cam: A camera connected to a computer or server that allows anyone connected to the
internet to view still pictures or motion video of a user.

9.12 Self Assessment

Fill in the blanks:

1. In computer architecture, the combination of the and is
considered the heart of a computer.

2. I/O devices can be installed into of the computer.

3. A hardware device that sends information into the CPU is known as device.

4. Any peripheral from a computer is known as output device.

5. A driver acts like a translator between the and

6. A is the smallest physical storage unit on the disk.

7. The size of a sector is

8. Most disks used in personal computers today rotate at a

9. The operating system works as between the machine and the user.

10. are often used to control video games, and usually have one or more
push-buttons whose state can also be read by the computer.

11. The I/O and memory interface are the to the bus control logic.

12. An is bridge between the processor and I/O devices.

Operating System

Notes

180 LOVELY PROFESSIONAL UNIVERSITY

9.13 Review Questions

1. What is device driver? How it communicates with the devices?

2. What is device controller? How it differs from device driver?

3. What is memory-mapped I/O? Describe its role in the I/O system.

4. What is burst-block transfer?

5. Write a short note on computer terminal.

6. How a hard disk is physically composed? Describe it with suitable diagram.

7. What is the function of a system disk controller?

8. Write short notes on:

(a) Pseudo swap space

(b) Device swap space

(c) File system swap space

9. What are the rules for swap space allocation?

10. Explain output unit in detail.

Answers: Self Assessment

1. CPU, main memory 2. physical slots 3. input

4. that receives and/or displays output 5. device, programs

6. sector 7. 512 bytes 8. a constant angular velocity

9. an interpreter 10. Joysticks 11. counterparts

12. I/O interface

9.14 Further Readings

Books Andrew M. Lister, Fundamentals of Operating Systems, Wiley.

 Andrew S. Tanenbaum and Albert S. Woodhull, Systems Design and Implementation,
Prentice Hall.

 Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.

 Colin Ritchie, Operating Systems, BPB Publications.

 Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.

 I.A. Dhotre, Operating System, Technical Publications.

 Milankovic, Operating System, Tata MacGraw Hill, New Delhi.

 Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons,
Seventh Edition.

 Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.

Unit 9: I/O & Secondary Storage Structure

Notes

 LOVELY PROFESSIONAL UNIVERSITY 181

Online links www.en.wikipedia.org

 www.web-source.net

 www.webopedia.com

Operating System

Notes

182 LOVELY PROFESSIONAL UNIVERSITY

Unit 10: System Protection

CONTENTS

Objectives

Introduction

10.1 System Protection

10.2 Goals of Protection

10.3 Access Matrix and its Implementation

10.4 Access Control

10.5 Access Control Techniques

 10.5.1 Passwords

 10.5.2 Memory Card

 10.5.3 Smart Card

 10.5.4 Hand-held Password Generators

 10.5.5 Biometrics

 10.5.6 Encryption

 10.5.7 Token

 10.5.8 Encrypted Keys

10.6 Revocation of Access Rights

10.7 Capability-based System

10.8 Summary

10.9 Keywords

10.10 Self Assessment

10.11 Review Questions

10.12 Further Readings

Objectives

After studying this unit, you will be able to:

z Know system protection

z Describe various goals of protection

z Explain access matrix and its implementation

z Defi ne access control

z Describe capability-based system

Introduction

The meaning of access control has changed over the last several years. Originally, access control
usually referred to restricting physical access to a facility, building or room to authorized persons.

Unit 10: System Protection

Notes

 LOVELY PROFESSIONAL UNIVERSITY 183

This used to be enforced mainly through a physical security guard. Then, with the advent of
electronic devices, access control has evolved into the use of physical card access systems of a
wide variety including biometric activated devices.

As computers evolved the meaning of access control began to change. Initially “access control
lists” evolved specifying the user identities and the privileges granted to them in order to access
a network operating system or an application.

Access control further evolved into the authentication, authorization and audit of a user for
a session. Access control authentication devices evolved to include id and password, digital
certifi cates, security tokens, smart cards and biometrics.

Access control authorization meanwhile evolved into Role Based Access Control (RBAC). This
normally involves “mandatory access control”. Mandatory access control is access control policies
that are determined by the system and not the application or information owner.

RBAC is commonly found in government, military and other enterprises where the role
defi nitions are well defi ned, the pace of change is not that fast and the supporting human resource
environment is capable of keeping up with changes to an identity re their roles and privileges.

Access control is the process by which users are identifi ed and granted certain privileges to
information, systems, or resources. Understanding the basics of access control is fundamental to
understanding how to manage proper disclosure of information.

10.1 System Protection

The use of computers to store and modify information can simplify the composition, editing,
distribution, and reading of messages and documents. These benefi ts are not free, however,
part of the cost is the aggravation of some of the security problems discussed above and the
introduction of some new problems as well. Most of the diffi culties arise because a computer and
its programs are shared amongst several users.

 Example: Consider a computer program that displays portions of a document on a
terminal. The user of such a program is very likely not its developer. It is, in general, possible for
the developer to have written the program so that it makes a copy of the displayed information
accessible to himself (or a third party) without the permission or knowledge of the user who
requested the execution of the program. If the developer is not authorised to view this information,
security has been violated.

In compensation for the added complexities automation brings to security, an automated system,
if properly constructed, can bestow a number of benefi ts as well.

 Example: A computer system can place stricter limits on user discretion. In the paper
system, the possessor of a document has complete discretion over its further distribution. An
automated system that enforces distribution constraints strictly can prevent the recipient of a
message or document from passing it to others. Of course, the recipient can always copy the
information by hand or repeat it verbally, but the inability to pass it on directly is a signifi cant
barrier.

An automated system can also offer new kinds of access control. Permission to execute certain
programs can be granted or denied so that specifi c operations can be restricted to designated
users. Controls can be designed so that some users can execute a program but cannot read or
modify it directly. Programs protected in this way might be allowed to access information not
directly available to the user, fi lter it, and pass the results back to the user.

Operating System

Notes

184 LOVELY PROFESSIONAL UNIVERSITY

Information contained in an automated system must be protected from three kinds of threats:

1. Unauthorised disclosure of information,

2. Unauthorised modifi cation of information and

3. Unauthorised withholding of information (usually called denial of service).

To protect the computer systems, you often need to apply some security models. Let us see in the
next section about the various security models available.

10.2 Goals of Protection

The goals of protection are to ensure secrecy, privacy, authenticity and integrity of information.
Table 10.1 provides descriptions of these goals.

Secrecy is a security concern because it is threatened by entities outside an operating system. An
OS addresses it using the authentication service. Privacy is a protection concern. An OS address
addresses privacy through the authorization service and the service and resource manager.
The authorization service determines privileges of a user and the service and resource manager
disallows request that exceed a user’s privileges. It is up to the users to ensure privacy of their
information using this set up. A user who wishes to share his programs and data with a few other
users should set the authorization for his information accordingly. You call it controlled sharing
of information. It is based on the need-to-know principle.

Goals Description
Secrecy Only authorized users should be able to access information. This goal is also called

confi dentiality.
Privacy Information should be used only for the purposes for which it is intended and

shared.
Authenticity It should be possible to verify the source or sender of information, and also verify

that the information is preserved in the form in which it was created or sent.

Integrity It should not be possible to destroy or corrupt information

Table 10.1: Goals of Computer Security and Protection

10.3 Access Matrix and its Implementation

The access matrix model for computer protection is based on abstraction of operating system
structures. Because of its simplicity and generality, it allows a variety of implementation
techniques, as has been widely used.

There are three principal components in the access matrix model:

1. A set of passive objects,

2. A set of active subjects, which may manipulate the objects and

3. A set of rules governing the manipulation of objects by subjects.

Objects are typically fi les, terminals, devices, and other entities implemented by an operating
system. A subject is a process and a domain (a set of constraints within which the process may
access certain objects). It is important to note that every subject is also an object; thus it may be
read or otherwise manipulated by another subject. The access matrix is a rectangular array with
one row per subject and one column per object. The entry for a particular row and column refl ects
the mode of access between the corresponding subject and object. The mode of access allowed
depends on the type of the object and on the functionality of the system; typical modes are read,
write, append, and execute.

Unit 10: System Protection

Notes

 LOVELY PROFESSIONAL UNIVERSITY 185

Table 10.2: An Access Matrix

 Objects
Subject

File 1 File 2 File 3

User 1 r, w R r, w, x

User 2 r R r, w, x

User 3 r, w, x R, w r, w, x

All accesses to objects by subjects are subject to some conditions laid down by an enforcement
mechanism that refers to the data in the access matrix. This mechanism, called a reference
monitor, rejects any accesses (including improper attempts to alter the access matrix data) that
are not allowed by the current protection state and rules. References to objects of a given type
must be validated by the monitor for that type.

While implementing the access matrix, it has been observed that the access matrix tends to be
very sparse if it is implemented as a two-dimensional array. Consequently, implementations that
maintain protection of data tend to store them either row wise, keeping with each subject a list of
the objects and access modes allowed on it; or column wise, storing with each object a list of those
subjects that may access it and the access modes allowed on each. The former approach is called
the capability list approach and the latter is called the access control list approach.

In general, access control governs each user’s ability to read, execute, change, or delete information
associated with a particular computer resource. In effect, access control works at two levels: fi rst,
to grant or deny the ability to interact with a resource, and second, to control what kinds of
operations or activities may be performed on that resource. Such controls are managed by an
access control system. Today, there are numerous methods of access controls implemented or
practiced in real-world settings.

Task Previously we call capability list approach now we call that approach.

Mandatory Access Control

In a Mandatory Access Control (MAC) environment, all requests for access to resources are
automatically subject to access controls. In such environments, all users and resources are
classifi ed and receive one or more security labels (such as “Unclassifi ed,” “Secret,” and “Top
Secret”). When a user requests a resource, the associated security labels are examined and access
is permitted only if the user’s label is greater than or equal to that of the resource.

Discretionary Access Control

In a Discretionary Access Control (DAC) environment, resource owners and administrators
jointly control access to resources. This model allows for much greater fl exibility and drastically
reduces the administrative burdens of security implementation.

Rule-based Access Control

In general, rule-based access control systems associate explicit access controls with specifi c system
resources, such as fi les or printers. In such environments, administrators typically establish access
rules on a per-resource basis, and the underlying operating system or directory services employ
those rules to grant or deny access to users who request access to such resources. Rule-based
access controls may use a MAC or DAC scheme, depending on the management role of resource
owners.

Operating System

Notes

186 LOVELY PROFESSIONAL UNIVERSITY

Role-based Access Control

Role-based access control (RBAC) enforces access controls depending upon a user’s role(s).
Roles represent specifi c organisational duties and are commonly mapped to job titles such as
“Administrator,” “Developer,” or “System Analyst.” Obviously, these roles require vastly
different network access privileges.

Role defi nitions and associated access rights must be based upon a thorough understanding of
an organisation’s security policy. In fact, roles and the access rights that go with them should be
directly related to elements of the security policy.

Take-grant Model

The access matrix model, properly interpreted, corresponds very well to a wide variety of actual
computer system implementations. The simplicity of the model, its defi nition of subjects, objects,
and access control mechanisms, is very appealing. Consequently, it has served as the basis for
a number of other models and development efforts. You now discuss a model based on access
matrix.

Take-grant models use graphs to model access control. They have been well researched. Although
explained in the terms of graph theory, these models are fundamentally access matrix models.
The graph structure can be represented as an adjacency matrix, and labels on the arcs can be
coded as different values in the matrix.

In a take-grant model, the protection state of a system is described by a directed graph that
represents the same information found in an access matrix. Nodes in the graph are of two types,
one corresponding to subjects and the other to objects. An arc directed from a node A to another
node B indicates that the subject (or object) A has some access right(s) to subject (or object) B. The
arc is labeled with the set of A’s rights to B. The possible access rights are read (r), write (w), take
(t), and grant (g). Read and write have the obvious meanings. “Take” access implies that node A
can take node B’s access rights to any other node.

 Example: If there is an arc labeled (r, g) from node B to node C, and if the arc from A to
B includes a “t” in its label, then an arc from A to C labeled (r, g) could be added to the graph.
Conversely, if the arc from A to B is marked with a “g”, B can be granted any access right A
possesses. Thus, if A has (w) access to a node D and (g) access to B, an arc from B to D marked
(w) can be added to the graph.

A t B

Initial Graph

C
r, g

A t B

Graph following A takes (r, g to C)

C
r, g

r, g

Take

Unit 10: System Protection

Notes

 LOVELY PROFESSIONAL UNIVERSITY 187

A

D

g
B

w

A

D

g
B

w
w

A Grants (w to D) to B

Grant

Because the graph needs only the inclusion of arcs corresponding to non-null entries in the access
matrix, it provides a compact way to present the same information given in a relatively sparse
access matrix. Capability systems are thus prime candidates for this modeling technique; each
arc would then represent a particular capability. Together with the protection graph, the model
includes a set of rules for adding and deleting both nodes and arcs to the graph.

Two of these, corresponding to the exercise of “take” and “grant” access rights, have already
been described. A “create” rule allows a new node to be added to the graph. If subject A creates a
new node Y, both the node Y and an arc AY are added to the graph. The label on AY includes any
subset of the possible access rights. A “remove” rule allows an access right to be removed from
an arc; if all rights are removed from an arc, the arc is removed as well.

Task Differentiate between DAC and RBAC concept.

10.4 Access Control

Access control is the ability to permit or deny the use of a particular resource by a particular
entity. Access control mechanisms can be used in managing physical resources (such as a movie
theater, to which only ticketholders should be admitted), logical resources (a bank account, with
a limited number of people authorized to make a withdrawal), or digital resources (for example,
a private text document on a computer, which only certain users should be able to read).

Today, in the age of digitization, there is a convergence between physical access control and
computer access control. Modern access control (more commonly referred to in the industry
as “identity management systems”) now provide an integrated set of tools to manage what a
user can access physically, electronically and virtually as well as providing an audit trail for the
lifetime of the user and their interactions with the enterprise.

Modern access control systems rely upon:

1. Integrated enterprise user and identity databases and Lightweight Directory Access
Protocol (LDAP) directories.

2. Strong business processes pertaining to the provisioning and de-provisioning of a user.

3. Provisioning software integrated with the business provisioning and de-provisioning
process.

4. Site, building and room based access control systems that are LDAP enabled or, able to be
integrated into a virtual enterprise LDAP directory.

Operating System

Notes

188 LOVELY PROFESSIONAL UNIVERSITY

5. A global enterprise id for each user to integrate the user’s identity between many
applications and systems.

6. A strong end to end audit of everywhere the physical person went as well as the systems,
application and information systems they accessed.

With many portions of an enterprise now outsourced, the challenges to access control have
increased. Today it is becoming common to have contractual agreements with the enterprise’s
outsource partners that:

1. Automatically provision and de-provision users

2. Build trusted authentication and authorization mechanisms

3. Provide end to end user session audit

4. Integrate with the remote user’s physical access e.g. to a call center operating on the
enterprise’s behalf.

Controlling how network resources are accessed is paramount to protecting private and
confi dential information from unauthorized users. The types of access control mechanisms
available for information technology initiatives today continues to increase at a breakneck pace.

Most access control methodologies are based on the same underlying principles. If you understand
the underlying concepts and principles, you can apply this understanding to new products
and technologies and shorten the learning curve so you can keep pace with new technology
initiatives.

Access control devices properly identify people, and verify their identity through an authentication
process so they can be held accountable for their actions. Good access control systems record and
timestamp all communications and transactions so that access to systems and information can be
audited at later dates.

Reputable access control systems all provide authentication, authorization, and administration.
Authentication is a process in which users are challenged for identity credentials so that it is
possible to verify that they are who they say they are.

Once a user has been authenticated, authorization determines what resources a user is allowed
to access. A user can be authenticated to a network domain, but only be authorized to access one
system or fi le within that domain. Administration refers to the ability to add, delete, and modify
user accounts and user account privileges.

10.5 Access Control Techniques

There are different types of access control technologies that can all be used to solve enterprise
access solutions. Tokens, smart cards, encrypted keys, and passwords are some of the more
popular access control technologies.

10.5.1 Passwords

Passwords are used for access control more than any other type of solution because they are
easy to implement and are extremely versatile. On information technology systems, passwords
can be used to write-protect documents, fi les, directories, and to allow access to systems and
resources. The downside to using passwords is that they are among the weakest of the access
control technologies that can be implemented.

The security of a password scheme is dependent upon the ability to keep passwords secret.
Therefore, a discussion of increasing password security should begin with the task of choosing a
password. A password should be chosen such that it is easy to remember, yet diffi cult to guess.

Unit 10: System Protection

Notes

 LOVELY PROFESSIONAL UNIVERSITY 189

There are a few approaches to guessing passwords which I shall discuss, along with methods of
countering these attacks.

Most operating systems, as well as large applications such as Database Management Systems,
are shipped with administrative accounts that have preset passwords. Because these passwords
are standard, outside attackers have used them to break into IT systems. It is a simple, but
important, measure to change the passwords on administrative accounts as soon as an IT system
is received.

A second approach to discovering passwords is to guess them, based on information about the
individual who created the password. Using such information as the name of the individual,
spouse, pet or street address or other information such as a birth date or birthplace can frequently
yield an individual’s password. Users should be cautioned against using information that is
easily associated with them for a password.

There are several brute force attacks on passwords that involve either the use of an
on-line dictionary or an exhaustive attempt at different character combinations. There are several
tactics that may be used to prevent a dictionary attack.

They include deliberately misspelling words, combining two or more words together, or
including numbers and punctuation in a password. Ensuring that passwords meet a minimum
length requirement also helps make them less susceptible to brute force attacks.

To assist users in choosing passwords that are unlikely to be guessed, some operating systems
provide randomly generated passwords. While these passwords are often described as
pronounceable, they are frequently diffi cult to remember, especially if a user has more than one
of them, and so are prone to being written down. In general, it is better for users to choose their
own passwords, but with the considerations outlined above in mind.

Password length and the frequency with which passwords are changed in an organization
should be defi ned by the organization’s security policy and procedures and implemented by the
organization’s IT system administrator(s).

The frequency with which passwords should be changed should depend on the sensitivity of the
data. Periodic changing of passwords can prevent the damage done by stolen passwords, and
make “brute force” attempts to break into system more diffi cult.

Too frequent changes, however, can be irritating to users and can lead to security breaches such
as users writing down passwords or using too obvious passwords in an attempt to keep track
of a large number of changing passwords. This is inevitable when users have access to a large
number of machines. Security policy and procedures should strive for consistent, livable rules
across an organization.

Some mainframe operating systems and many PC applications use passwords as a means of
access control, not just authentication. Instead of using mechanisms such as Access Control Lists
(ACLs), access is granted by entering a password. The result is a proliferation of passwords
that can signifi cantly reduce the overall security of an IT system. While the use of passwords
as a means of access control is common, it is an approach that is less than optimal and not cost-
effective.

There are numerous password-cracking utilities out on the Internet — some of which are freeware
and some of which are licensed professional products. If a hacker downloads an encrypted
password fi le, or a write-protected document with password protection, they can run the
password fi le or document through a password cracking utility, obtain the password, and then
either enter the system using a legitimate user’s account or modify the write-protected document
by inserting the correct password when prompted. By using a protocol analyzer, hackers can
“sniff” the network traffi c on the wire and obtain passwords in plaintext rather easily.

However, in spite of the risks in using passwords, they are still commonly used world over with
the assumption that taking the trouble to violate password protections would not be worth the

Operating System

Notes

190 LOVELY PROFESSIONAL UNIVERSITY

time and effort. If passwords are used, it is recommended that mixed-case passwords with both
numeric and alphabet characters are used, since these types of passwords are more diffi cult for
password cracking tools to crack. Passwords with names and real words in them are easiest to
crack. Good password choices look like this:

 1bHkL0m8

 a9T4j7uU

 7VbbsT10

 gL4lJT3m

 koO521qW

Poor password choices look like this:

 Billsmith

 Troutfi shing

 Jessica

 NewYorkOffi ce

 Surfdude

While stronger access control systems are clearly available, password models are not going to go
away anytime soon. Some organizations routinely run password crackers on end-user accounts
to check if end-users are using easy to guess passwords, or more secure password choices. As
long as passwords are being used, they should be managed through routine audits, and expired
according to a pre-determined schedule.

10.5.2 Memory Card

There is a very wide variety of memory card systems with applications for user identifi cation and
authentication. Such systems authenticate a user’s identity based on a unique card, i.e., something
the user possesses, sometimes in conjunction with a PIN (Personal Identifi cation Number), i.e.,
something a user knows.

The use of a physical object or token, in this case a card, has prompted memory card systems to
be referred to as token systems. Other examples of token systems are optical storage cards and
Integrated Circuit (IC) keys.

Memory cards store, but do not process, information. Special reader/writer devices control the
writing and reading of data to and from the cards. The most common type of memory card is a
magnetic stripe card.

These cards use a fi lm of magnetic material, similar or identical to audio and computer magnetic
tape and disk equipment, in which a thin strip, or stripe, of magnetic material affi xed to the
surface of a card. A magnetic stripe card is inexpensive, easy to produce and has a high storage
capacity.

The most common forms of a memory card are the telephone calling card, credit card, and ATM
card. The number on a telephone calling card serves as both identifi cation and authentication for
the user of a long distance carrier and so must remain secret.

The card can be used directly in phones that read cards or the number may be entered manually
in a touch tone phone or verbally to an operator. Possession of the card or knowledge of the
number is suffi cient to authenticate the user.

Possession of a credit card, specifi cally the card holder’s name, card number and expiration date,
is suffi cient for both identifi cation and authentication for purchases made over the telephone.

Unit 10: System Protection

Notes

 LOVELY PROFESSIONAL UNIVERSITY 191

The inclusion of a signature and occasionally a photograph provide additional security when the
card is used for purchases made in person.

The ATM card employs a more sophisticated use of a memory card, involving not only something
the user possesses, namely the card, but also something the user knows, viz. the PIN. A lost or
stolen card is not suffi cient to gain access; the PIN is required as well. This paradigm of use seems
best suited to IT authentication applications.

While there are some sophisticated technical attacks that can be made against memory cards,
they can provide a marked increase in security over password only systems. It is important that
users be cautioned against writing their PIN on the card itself or there will be no increase in
security over a simple password system.

Memory cards can and are widely used to perform authentication of users in a variety of
circumstances from banking to physical access. It is important that the considerations mentioned
above for password selection are followed for PIN selection and that the PIN is never carried
with the card to gain the most from this hybrid authentication system.

10.5.3 Smart Card

A smart card is a device typically the size and shape of a credit card and contains one or more
integrated chips that perform the functions of a computer with a microprocessor, memory, and
input/output. Smart cards may be used to provide increased functionality as well as an increased
level of security over memory cards when used for identifi cation and authentication.

Smart Cards are plastic cards that have integrated circuits or storage receptacles embedded in
them. Smart cards with integrated circuits that can execute transactions and are often referred to
as “active” smart cards.

Cards with memory receptacles that simply store information (such as your bank ATM card) are
referred to as “passive.” Whether or not a memory card is a type of smart card depends on who
you ask and what marketing material you are reading. Used to authenticate users to domains,
systems, and networks, smart cards offer two-factor authentication – something a user has, and
something a user knows. The card is what the user has, and the Personal Identifi cation Number
(PIN) is what the person knows.

A smart card can process, as well as store, data through its microprocessor; therefore, the
smart card itself (as opposed to the reader/writer device), can control access to the information
stored on the card. This can be especially useful for applications such as user authentication in
which security of the information must be maintained. The smart card can actually perform the
password or PIN comparisons inside the card.

As an authentication method, the smart card is something the user possesses. With recent
advances, a password or PIN (something a user knows) can be added for additional security
and a fi ngerprint or photo (something the user is) for even further security. As contrasted with
memory cards, an important and useful feature of a smart card is that it can be manufactured to
ensure the security of its own memory, thus reducing the risk of lost or stolen cards.

The smart card can replace conventional password security with something better, a PIN, which
is verifi ed by the card versus the computer system, which may not have as sophisticated a means
for user identifi cation and authentication.

The card can be programmed to limit the number of login attempts as well as ask biographic
questions, or make a biometric check to ensure that only the smart card’s owner can use it. In
addition, non-repeating challenges can be used to foil a scenario in which an attacker tries to
login using a password or PIN he observed from a previous login. In addition, the complexity of
smart card manufacturing makes forgery of the card’s contents virtually impossible.

Operating System

Notes

192 LOVELY PROFESSIONAL UNIVERSITY

Use of smart devices means the added expense of the card itself, as well as the special reader
devices. Careful decisions as to what systems warrant the use of a smart card must be made.
The cost of manufacturing smart cards is higher than that of memory cards but the disparity will
get less and less as more and more manufacturers switch to this technology. On the other hand,
it should be remembered that smart cards, as opposed to memory only cards, can effectively
communicate with relatively ‘dumb’, inexpensive reader devices.

The proper management and administration of smart cards will be a more diffi cult task than with
typical password administration. It is extremely important that responsibilities and procedures for
smart card administration be carefully implemented. Smart card issuance can be easily achieved
in a distributed fashion, which is well suited to a large organizational environment. However,
just as with password systems, care should be taken to implement consistent procedures across
all involved systems.

10.5.4 Hand-held Password Generators

Hand-held password generators are a state-of-the-art type of smart token. They provide a hybrid
authentication, using both something a user possesses (i.e., the device itself) and something a
user knows (e.g., a 4 to 8 digit PIN). The device is the size of a shirt-pocket calculator, and does
not require a special reader/writer device. One of the main forms of password generators is a
challenge-response calculator.

When using a challenge-response calculator, a user fi rst types his user name into the IT system.
The system then presents a random challenge, for example, in the form of a 7-digit number. The
user is required to type his PIN into the calculator and then enter the challenge generated by
the IT system into the calculator. The generator then provides a corresponding response, which
he then types into the IT system. If the response is valid, the login is permitted and the user is
granted access to the system.

When a password generator is used for access to a computer system in place of the traditional
user name and password combination, an extra level of security is gained. With the challenge
response calculator, each user is given a device that has been uniquely keyed; he cannot use
someone else’s device for access. The host system must have a process or a processor to generate
a challenge response pair for each login attempt, based on the initially supplied user name.

Each challenge is different, so observing a successful challenge-response exchange gives no
information for a subsequent login. Of course, with this system the user must memorize a PIN.

The hand-held password generator can be a low-cost addition to security, but the process is
slightly complicated for the user. He must type two separate entries into the calculator, and then
correctly read the response and type it into the computer. This process increases the chance for
making a mistake.

Overall, this technology can be a useful addition to security, but users may fi nd some
inconvenience. Management, if they decide to use this approach, will have to establish a plan for
integrating the technology into their IT systems. There will also be the administrative challenge
for keying and issuing the cards, and keeping the user database up-to-date.

10.5.5 Biometrics

Biometric devices authenticate users to access control systems through some sort of personal
identifi er such as a fi ngerprint, voiceprint, iris scan, retina scan, facial scan, or signature dynamics.
The nice thing about using biometrics is that end-users do not lose or misplace their personal
identifi er. It’s hard to leave your fi ngers at home. However, biometrics have not caught on as
fast as originally anticipated due to the false positives and false negatives that are common when
using biometric technologies.

Unit 10: System Protection

Notes

 LOVELY PROFESSIONAL UNIVERSITY 193

Biometric authentication systems employ unique physical characteristics (or attributes) of an
individual person in order to authenticate the person’s identity. Physical attributes employed in
biometric authentication systems include fi ngerprints, hand geometry, hand -written signatures,
retina patterns and voice patterns. Biometric authentication systems based upon these physical
attributes have been developed for computer login applications.

Biometric authentication systems generally operate in the following manner:

Prior to any authentication attempts, a user is “enrolled” by creating a reference profi le (or
template) based on the desired physical attribute. The reference profi le is usually based on the
combination of several measurements. The resulting template is associated with the identity of
the user and stored for later use.

When attempting to authenticate themselves, the user enters his login name or, alternatively,
the user may provide a card/token containing identifi cation information. The user’s physical
attribute is then measured.

The previously stored reference profi le of the physical attribute is then compared with the
measured profi le of the attribute taken from the user. The result of the comparison is then used
to either accept or reject the user.

Biometric systems can provide an increased level of security for IT systems, but the technology is
still less matures than memory or smart cards. Imperfections in biometric authentication devices
arise from technical diffi culties in measuring and profi ling physical attributes as well as from the
somewhat variable nature of physical attributes. Many physical attributes change depending on
various conditions.

 Example: A person’s speech pattern may change under stressful conditions or when
suffering from a sore throat or cold.

Biometric systems are typically used in conjunction with other authentication means in
environments requiring high security.

10.5.6 Encryption

Encryption is a process of coding information which could either be a fi le or mail message in
into cipher text a form unreadable without a decoding key in order to prevent anyone except
the intended recipient from reading that data. Decryption is the reverse process of converting
encoded data to its original un-encoded form, plaintext.

A key in cryptography is a long sequence of bits used by encryption/decryption algorithms.

The following represents a hypothetical 40-bit key:

00001010 01101001 10011110 00011100 01010101

A given encryption algorithm takes the original message, and a key, and alters the original
message mathematically based on the key’s bits to create a new encrypted message. Likewise, a
decryption algorithm takes an encrypted message and restores it to its original form using one
or more keys.

When a user encodes a fi le, another user cannot decode and read the fi le without the decryption
key. Adding a digital signature, a form of personal authentication, ensures the integrity of the
original message.

To encode plaintext, an encryption key is used to impose an encryption algorithm onto the data.
To decode cipher, a user must possess the appropriate decryption key. A decryption key consists
of a random string of numbers, from 40 through 2,000 bits in length. The key imposes a decryption
algorithm onto the data. This decryption algorithm reverses the encryption algorithm, returning

Operating System

Notes

194 LOVELY PROFESSIONAL UNIVERSITY

the data to plaintext. The longer the encryption key is, the more diffi cult it is to decode. For a
40-bit encryption key, over one trillion possible decryption keys exist.

There are two primary approaches to encryption: symmetric and public-key. Symmetric
encryption is the most common type of encryption and uses the same key for encoding and
decoding data. This key is known as a session key. Public-key encryption uses two different keys,
a public key and a private key. One key encodes the message and the other decodes it. The public
key is widely distributed while the private key is secret.

Aside from key length and encryption approach, other factors and variables impact the success
of a cryptographic system.

 Example: Different cipher modes, in coordination with initialization vectors and salt
values, can be used to modify the encryption method. Cipher modes defi ne the method in which
data is encrypted. The stream cipher mode encodes data one bit at a time. The block cipher
mode encodes data one block at a time. Although block cipher tends to execute more slowly than
stream cipher.

10.5.7 Token

A token is a handheld device that has a built-in challenge response scheme that authenticates with
an enterprise server. Today’s leading tokens typically use time-based challenge and response
algorithms that constantly change and expire after a certain length of time, e.g., one minute. Like
smart cards, tokens use two-factor authentication. However, unlike smart cards, the two-factor
authentication is constantly changing based on timed intervals – therefore, when a password is
entered, it cannot be reused, even if someone sniffi ng the wire detected it in transit.

10.5.8 Encrypted Keys

Encrypted keys are mathematical algorithms that are used to secure confi dential information
and verify the authenticity of the people sending and receiving the information. Standards for
encrypted keys have been created to make sure that security requirements are taken into account,
and to allow technologies made by different vendors to work together. The most widely used
standard for encrypted keys is called X.509 digital certifi cates. Using digital certifi cates allows
you to stipulate who can access and view the information you are encrypting with the key.

Task Explain various techniques of access controls.

10.6 Revocation of Access Rights

Revocation of access rights to objects in shared environment is possible.

Following parameter are consider for revocation of access rights.

1. Immediate and delayed

2. Selective and general

3. Partial and total

4. Temporary and permanent

Revocation is easy for access list and complex for capabilities list. The access list searched for
the access right to be revoked and they are detected from the list. Revocation may be immediate
general. It may be selective, total or partial.

Unit 10: System Protection

Notes

 LOVELY PROFESSIONAL UNIVERSITY 195

10.7 Capability-based System

Capability-based systems differ signifi cantly from conventional computer systems. Capabilities
provide (1) a single mechanism to address both primary and secondary memory, and (2) a single
mechanism to address both hardware and software resources. While solving many diffi cult
problems in complex system design, capability systems introduce new challenges of their own.

Conceptually, a capability is a token, ticket, or key that gives the possessor permission to access
an entity or object in a computer system. A capability is implemented as a data structure that
contains two items of information: a unique object identifi er and access rights, as shown in
Figure 10.1.

Access rights Unique object identifier

An object

Figure 10.1: A Capability

The identifi er addresses or names a single object in the computer system. An object, in this context,
can be any logical or physical entity, such as a segment of memory, an array, a fi le, a line printer,
or a message port. The access rights defi ne the operations that can be performed on that object.

 Example: The access rights can permit read-only access to a memory segment or send-and-
receive access to a message port.

Each user, program, or procedure in a capability system has access to a list of capabilities. These
capabilities identify all of the objects which that user, program, or procedure is permitted to
access. To specify an object, the user provides the index of a capability in the list.

 Example: To output a record to a fi le, the user might call the fi le system as follows:

PUT(fi le-capability , “this is a record”);

The capability specifi ed in the call serves two purposes. First, it identifi es the fi le to be written.
Second, it indicates whether the operation to be performed (PUT in this case) is permitted.

A capability thus provides addressing and access rights to an object. Capabilities are the basis for
object protection; a program cannot access an object unless its capability list contains a suitably
privileged capability for the object. Therefore, the system must prohibit a program from directly
modifying the bits in a capability. If a program could modify the bits in a capability, it could forge
access to any object in the system by changing the identifi er and access rights fi elds.

Capability system integrity is usually maintained by prohibiting direct program modifi cation of
the capability list. The capability list is modifi ed only by the operating system or the hardware.
However, programs can obtain new capabilities by executing operating system or hardware
operations.

 Example: When a program calls an operating system routine to create a new fi le, the
operating system stores a capability for that fi le in the program’s capability list. A capability
system also provides other capability operations. Examples include operations to:

1. Move capabilities to different locations in a capability list.

Operating System

Notes

196 LOVELY PROFESSIONAL UNIVERSITY

2. Delete a capability.

3. Restrict the rights in a capability, producing a less-privileged version,

4. Pass a capability as a parameter to a procedure.

5. Transmit a capability to another user in the system.

Thus, a program can execute direct control over the movement of capabilities and can share
capabilities, and therefore, objects, with other programs and users.

It is possible for a user to have several capability lists. One list will generally be the master
capability list containing capabilities for secondary lists, and so on. This structure is similar to a
multi-level directory system, but, while directories address only fi les, capabilities address objects
of many types.

Manage the access control matrix is to store it by rows. These are called capabilities. In the
example in Table 10.3, Bob’s capabilities would be as shown in Table 10.4.

Table 10.3: Naive Access Control Matrix

Operating System Accounts Program Accounting Data Audit Trail

Sam rwx rwx rw r

Alice x x rw –

Bob rx r r r

The strengths and weaknesses of capabilities are more or less the opposite of ACLs. Runtime
security checking is more effi cient, and you can do delegation without much diffi culty: Bob could
create a certifi cate saying “Here is my capability, and I hereby delegate to David the right to read
fi le 4 from 9 A.M. to 1 P.M.; signed Bob.” On the other hand, changing a fi le’s status can suddenly
become more tricky, as it can be diffi cult to fi nd out which users have access. This can be tiresome
when investigating an incident or preparing evidence of a crime.

Table 10.4: A Capability

User Operating System Accounts Program Accounting Data Audit Trail

Bob rx r r r

There were a number of experimental implementations in the 1970s, which were rather like
fi le passwords; users would get hard-to-guess bit strings for the various read, write, and other
capabilities to which they were entitled. It was found that such an arrangement could give very
comprehensive protection. It was not untypical to fi nd that almost all of an operating system
could run in user mode, rather than as supervisor, so operating system bugs were not security
critical. (In fact, many operating system bugs caused security violations, which made debugging
the operating system much easier.)

The IBM AS/400 series systems employed capability-based protection, and enjoyed some
commercial success. Now capabilities are making a comeback in the form of public key certifi cates.
For now, think of a public key certifi cate as a credential signed by some authority, which declares
that the holder of a certain cryptographic key is a certain person, a member of some group, or the
holder of some privilege.

As an example of where certifi cate-based capabilities can be useful, consider a hospital. If you
implemented a rule stating “a nurse will have access to all the patients who are on her ward, or
who have been there in the last 90 days,” naively, each access control decision in the patient record
system would require several references to administrative systems, to fi nd out which nurses
and which patients were on which ward, when. This means that a failure of the administrative
systems can now affect patient safety much more directly than was previously the case, which is

Unit 10: System Protection

Notes

 LOVELY PROFESSIONAL UNIVERSITY 197

a clearly bad thing. Matters can be much simplifi ed by giving nurses certifi cates that entitle them
to access the fi les associated with their current ward. Such a system is starting to be fi elded at our
university hospital.

One point to bear in mind is that as public key certifi cates are often considered to be “crypto”
rather than “access control,” their implications for access control policies and architectures are
not always thought through. The unit that could have been learned from the capability systems
of the 1970s are generally having to be rediscovered (the hard way). In general, the boundary
between crypto and access control is a fault line where things can easily go wrong. The experts
often come from different backgrounds, and the products from different suppliers.

10.8 Summary

z Access control mechanisms operate at a number of levels in a system, from applications
down through the operating system to the hardware.

z Higher-level mechanisms can be more expressive, but also tend to be more vulnerable
to attack, for a variety of reasons ranging from intrinsic complexity to implementer skill
levels.

z Most attacks involve the opportunistic exploitation of bugs; and software that is very large,
very widely used, or both (as with operating systems) is particularly likely to have security
bugs found and publicized.

z Operating systems are also vulnerable to environmental changes that undermine the
assumptions used in their design.

10.9 Keywords

Access control: It is the process by which users are identifi ed and granted certain privileges to
information, systems, or resources.

Access control device: It properly identifi es people, and verifi es their identity through an
authentication process so they can be held accountable for their actions.

Authentication: It is a process by which you verify that someone is who they claim they are.

Authorization: It is fi nding out if the person, once identifi ed, is permitted to have the resource.

Smart card: It is a device typically the size and shape of a credit card and contains one or more
integrated chips that perform the functions of a computer with a microprocessor, memory, and
input/output.

10.10 Self Assessment

State whether the following statements are true or false:

1. An automated system can also offer new kinds of access control.

2. Information should not be used only for the purposes for which it is intended and shared.

3. The access matrix model for computer protection is based on abstraction of operating
system structures.

4. Role-based access control enforces access controls does not depends upon a user’s role(s).

5. Take-grant models use graphs to model access control.

Operating System

Notes

198 LOVELY PROFESSIONAL UNIVERSITY

Fill in the blanks:

6. is the ability to permit or deny the use of a particular resource by a particular
entity.

7. Modern access control more commonly referred to in the industry as

8. LDAP stands for

9. are plastic cards that have integrated circuits or storage receptacles embedded
in them.

10. is a process of coding information which could either be a fi le or mail message
in into cipher text a form unreadable without a decoding key in order to prevent anyone
except the intended recipient from reading that data.

10.11 Review Questions

1. What do you mean by system protection?

2. Describe various goals of security and protection.

3. Explain access matrix. Also describe its implementation.

4. What do you mean by access control?

5. Describe various techniques of access controls.

6. Write short note on “Biometrics”.

7. Explain encryption concept.

8. What do you mean by smart card?

9. Describe capability based system.

10. Describe the concept of “hand-held password generators”.

Answers: Self Assessment

1. True 2. False 3. True 4. False

5. True 6. Access control 7. identity management systems

8. Lightweight Directory Access Protocol 9. Smart Cards

10. Encryption

10.12 Further Readings

Books Andrew M. Lister, Fundamentals of Operating Systems, Wiley.

 Andrew S. Tanenbaum and Albert S. Woodhull, Systems Design and Implementation,
Prentice Hall.

 Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.

 Colin Ritchie, Operating Systems, BPB Publications.

 Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.

 I.A. Dhotre, Operating System, Technical Publications.

Unit 10: System Protection

Notes

 LOVELY PROFESSIONAL UNIVERSITY 199

 Milankovic, Operating System, Tata MacGraw Hill, New Delhi.

 Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons,
Seventh Edition.

 Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.

Online links www.en.wikipedia.org

 www.web-source.net

 www.webopedia.com

Operating System

Notes

200 LOVELY PROFESSIONAL UNIVERSITY

Unit 11: System Security

CONTENTS

Objectives

Introduction

11.1 System Security

11.2 Security Problem

11.3 Program Threats

11.4 System and Network Threats

11.5 Cryptography as a Security Tools

 11.5.1 Hashing

 11.5.2 Pretty Good Privacy (PGP)

11.6 User Authentication

11.7 Implementing Security Defenses

11.8 Types of Intrusion Prevention System

11.9 Implementation Challenges

11.10 Firewall to Protect Systems and Networks

11.11 Summary

11.12 Keywords

11.13 Self Assessment

11.14 Review Questions

11.15 Further Readings

Objectives

After studying this unit, you will be able to:

z Defi ne system security

z Explain system and network threats

z Know cryptography as a security tools

z Describe user authentication

z Explain various types of intrusion prevention system

Introduction

Computer security is traditionally defi ned by the three attributes of confi dentiality, integrity,
and availability. Confi dentiality is the prevention of unauthorised disclosure of information.
Integrity is the prevention of unauthorised modifi cation of information, and availability is the
prevention of unauthorised withholding of information or resources. Protection refers to a
mechanism for controlling the access of programs, processes, or users to the resources defi ned
by a computer controls to be imposed, together with some means of enforcement. Protection can
improve reliability by detecting latent errors at the interfaces between component subsystems.

Unit 11: System Security

Notes

 LOVELY PROFESSIONAL UNIVERSITY 201

Early detection of interface errors can often prevent contamination of a healthy subsystem by a
subsystem that is malfunctioning. An unprotected resource cannot defend against use (or misuse)
by an unauthorised or incompetent user.

Even if a perfectly secure operating system was created, human error (or purposeful human
malice) can make it insecure. More importantly, there is no such thing as a completely secure
system. No matter how secure the experts might think a particular system is, there exists someone
who is clever enough to bypass the security.

It is important to understand that a trade-off always exists between security and the ease of use. It
is possible to be too secure but security always extracts a price, typically making it more diffi cult
to use your systems for their intended purposes. Users of a secure system need to continually
type in, continually change and memorise complex passwords for every computer operation,
or use biometric systems with retina and fi ngerprint and voice scans. All these measures along
with confi rmations are likely to bring any useful work to a snail’s pace. If the consequences are
great enough, then you might have to accept extreme security measures. Security is a relative
concept, and gains in security often come only with penalties in performance. To date, most
systems designed to include security in the operating system structure have exhibited either slow
response times or awkward user interfaces-or both.

11.1 System Security

Computer security can be very complex and may be very confusing to many people. It can even
be a controversial subject. Network administrators like to believe that their network is secure and
those who break into networks may like to believe that they can break into any network.

Computer security is the prevention and protection of computer assets from unauthorized
access, use, alteration, degradation, destruction, and other threats. There are two main subtypes:
physical and logical. Physical computer security involves tangible protection devices, such as
locks, cables, fences, safes, or vaults.

Logical computer security involves non-physical protection, such as that provided by
authentication or encryption schemes. Make a point of noting that the physical versus
non-physical (logical) distinction runs through a number of areas in computer science, despite
minor differences in defi nition.

Computer security, in many ways, is about secrecy, not in the sense of being mysterious
or clandestine, but because of the fact that you are always dealing with authorization and
Authenticity.

The major technical areas of computer security are usually represented by the initials CIA:
confi dentiality, integrity, and authentication or availability. Confi dentiality means that
information cannot be access by unauthorized parties.

Confi dentiality is also known as secrecy or privacy; breaches of confi dentiality range from the
embarrassing to the disastrous. Integrity means that information is protected against unauthorized
changes that are not detectable to authorized users; many incidents of hacking compromise the
integrity of databases and other resources.

Authentication means that users are who they claim to be. Availability means that resources are
accessible by authorized parties; “denial of service” attacks, which are sometimes the topic of
national news, are attacks against availability. Other important concerns of computer security
professionals are access control and non-repudiation.

Maintaining access control means not only that users can access only those resources and services
to which they are entitled, but also that they are not denied resources that they legitimately can
expect to access. Non-repudiation implies that a person who sends a message cannot deny that
he sent it and, conversely, that a person who has received a message cannot deny that he received

Operating System

Notes

202 LOVELY PROFESSIONAL UNIVERSITY

it. In addition to these technical aspects, the conceptual reach of computer security is broad and
multifaceted.

Computer security touches draws from disciplines as ethics and risk analysis, and is concerned
with topics such as computer crime; the prevention, detection, and remediation of attacks; and
identity and anonymity in cyberspace.

While confi dentiality, integrity, and authenticity are the most important concerns of a computer
security manager, privacy is perhaps the most important aspect of computer security for
everyday Internet users. Although users may feel that they have nothing to hide when they
are registering with an Internet site or service, privacy on the Internet is about protecting one’s
personal information, even if the information does not seem sensitive.

Because of the ease with which information in electronic format can be shared among companies,
and because small pieces of related information from different sources can be easily linked
together to form a composite of, for example, a person’s information seeking habits, it is now
very important that individuals are able to maintain control over what information is collected
about them, how it is used, who may use it, and what purpose it is used for.

Task System security is a major problem in this era. Discuss some important security
techniques for operating system.

11.2 Security Problem

System security can mean several things. To have system security I need to protect the system
from corruption and I need to protect the data on the system. There are many reasons why these
need not be secure.

1. Malicious users may try to hack into the system to destroy it.

2. Power failure might bring the system down.

3. A badly designed system may allow a user to accidentally destroy important data.

4. A system may not be able to function any longer because one user fi lls up the entire disk
with garbage.

Although discussions of security usually concentrate on the fi rst of these possibilities, the latter
two can be equally damaging the system in practice. One can protect against power failure by
using un-interruptible power supplies (UPS). These are units which detect quickly when the
power falls below a certain threshold and switch to a battery. Although the battery does not last
forever-the UPS gives a system administrator a chance to halt the system by the proper route.

The problem of malicious users has been heightened in recent years by the growth of international
networks. Anyone connected to a network can try to log on to almost any machine. If a machine is
very insecure, they may succeed. In other words, you are not only looking at our local environment
anymore, I must consider potential threats to system security to come from any source. The fi nal
point can be controlled by enforcing quotas on how much disk each user is allowed to use.

You can classify the security attacks into two types as mentioned below:

1. Direct: This is any direct attack on your specifi c systems, whether from outside hackers or
from disgruntled insiders.

2. Indirect: This is general random attack, most commonly computer viruses, computer
worms, or computer Trojan horses.

Unit 11: System Security

Notes

 LOVELY PROFESSIONAL UNIVERSITY 203

These security attacks make the study of security measures very essential for the following
reasons:

1. To prevent loss of data: You don’t want someone hacking into your system and destroying
the work done by you or your team members. Even if you have good back-ups, you still
have to identify that the data has been damaged (which can occur at a critical moment
when a developer has an immediate need for the damaged data), and then restore the data
as best you can from your backup systems.

2. To prevent corruption of data: Sometimes, the data may not completely be lost, but just be
partially corrupted. This can be harder to discover, because unlike complete destruction,
there is still data. If the data seems reasonable, you could go a long time before catching
the problem, and cascade failure could result in serious problems spreading far and wide
through your systems before discovery.

3. To prevent compromise of data: Sometimes it can be just as bad (or even worse) to have
data revealed than to have data destroyed. Imagine the consequences of important trade
secrets, corporate plans, fi nancial data, etc. falling in the hands of your competitors.

4. To prevent theft of data: Some kinds of data are subject to theft. An obvious example is the
list of credit card numbers belonging to your customers. Just about anything associated
with money can be stolen.

5. To prevent sabotage: A disgruntled employee, a dishonest competitor, or even a stranger
could use any combination of the above activities to maliciously harm your business.
Because of the thought and intent, this is the most dangerous kind of attack, the kind that
has the potential for the greatest harm to your business.

11.3 Program Threats

Any person, act, or object that poses a danger to computer security is called a threat. Any kind
of policy, procedure, or action that recognizes, minimizes, or eliminates a threat or risk is called
a countermeasure. Any kind of analysis that ties-in specifi c threats to specifi c assets with an
eye toward determining the costs and/or benefi ts of protecting that asset is called risk, or risk
assessment. Risk is always a calculated assumption made based on past occurrences.

Threat, on the other hand, is constant. Any kind of asset that is not working optimally and is
mission-critical or essential to the organization, such as data that are not backed-up, is called a
vulnerability, while anything imperfect is called a weakness. Any kind of counter measure that
becomes fairly automated and meets the expectations of upper management is called a control,
and there are many types of controls in a computer security environment, as well as threats, some
of which are given below:

Malicious Threats

Category Threat OSI
Layer

Defi nition Typical Be-
haviors

Vulnerabilities Prevention Detection Countermea-
sures

Mali-
cious
Software

Virus Applica-
tion

Malicious
software that
attaches itself to
other software.
For example, a
patched soft-
ware applica-
tion in which
the patch’s
algorithm is
designed to
implement the
same patch on
other applica-
tions, thereby
replicating.

Replicates
within com-
puter system,
potentially at-
taching itself to
every software
application
Behavior cat-
egories
Innocuous
Humorous
Data alter-

ing
Cata-

strophic

All computers
Common cat-
egories
Boot sector
Terminate

and Stay
Resident
(TSR)

Application
software

Stealth (or
Chameleon)

Mutation
engine

Network
Mainframe

Limit con-
nectivity.
Limit down-
loads
Use only
authorized
media for
loading data
and software
Enforce
mandatory
access con-
trols. Viruses
generally
cannot run
unless host
application
is running

Changes in fi le
sizes or date/
time stamps
Computer is
slow starting
or slow run-
ning
Unexpected
or frequent
system failures
Change of
system date/
time
Low computer
memory or
increased
bad blocks on
disks

Contain,
identify and
recover
Antivirus scan-
ners- look for
known viruses
Antivirus moni-
tors- look for
virus related
application
behaviors
Attempt to
determine
source of infec-
tion and issue
alert

Operating System

Notes

204 LOVELY PROFESSIONAL UNIVERSITY

Worm Applica-
tion

Network

Malicious soft-
ware which is
a stand alone
application

Often designed
to propagate
through a
network,
rather than just
a single com-
puter

Multitasking
computers,
especially those
employing
open network
standards

Limit
connectiv-
ity, employ
fi rewalls

Worms can
run even
without a
host applica-
tion

Computer is
slow starting
or slow run-
ning

Unexpected
or frequent
system failures

Contain,
identify and
recover

Attempt to
determine
source of infec-
tion and issue
alert

Trojan
Horse

Applica-
tion

A Worm which
pretends to be
a useful pro-
gram or a Virus
which is pur-
posely attached
to a useful
program prior
to distribution

Same as Virus
or Worm, but
also sometimes
used to send
information
back to or
make informa-
tion available
to perpetrator

Unlike Worms,
which self
propagate,
Trojan Horses
require user
cooperation

Untrained users
are vulnerable

User cooper-
ation allows
Trojan Hors-
es to bypass
automated
controls

User training
is best pre-
vention

Same as Virus
and Worm

Same as Virus
and Worm

Alert must be
issued, not
only to other
system ad-
mins, but to all
network users

Time
Bomb

Applica-
tion

A Virus or
Worm designed
to activate at a
certain date/
time

Same as Virus
or Worm, but
widespread
throughout
organization
upon trigger
date

Same as Virus
and Worm

Time Bombs
are usually
found before
the trigger date

Run associ-
ated anti-vi-
ral software
immediately
as available

Correlate
user problem
reports to fi nd
patterns indi-
cating possible
Time Bomb

Contain,
identify and
recover

Attempt to
determine
source of infec-
tion and issue
alert

Logic
Bomb

Applica-
tion

A Virus or
Worm designed
to activate
under certain
conditions

Same as Virus
or Worm

Same as Virus
and Worm

Same as
Virus and
Worm

Correlate
user problem
reports indi-
cating possible
Logic Bomb

Contain,
identify and
recover

Determine
source and
issue alert

Rabbit Applica-
tion

Network

A Worm de-
signed to repli-
cate to the point
of exhausting
computer re-
sources

Rabbit con-
sumes all
CPU cycles,
disk space or
network re-
sources, etc.

Multitasking
computers,
especially those
on a network

Limit
connectiv-
ity, employ
fi rewalls

Computer is
slow starting
or running

Frequent
system failures

Contain,
identify and
recover

Determine
source and
issue alert

Bacte-
rium

Applica-
tion

A Virus de-
signed to attach
itself to the OS
in particular
(rather than any
application in
general) and
exhaust com-
puter resources,
especially CPU
cycles

Operating
System con-
sumes more
and more CPU
cycles, result-
ing eventually
in noticeable
delay in user
transactions

Older versions
of operating
systems are
more vulner-
able than newer
versions since
hackers have
had more time
to write Bacte-
rium

Limit write
privileges
and oppor-
tunities to
OS fi les

System
administra-
tors should
work from
non-admin
accounts
whenever
possible

Changes in
OS fi le sizes,
date/time
stamps

Computer is
slow in run-
ning

Unexpected
or frequent
system failures

Antivirus scan-
ners: look for
known viruses

Antivirus
monitors:
look for virus
related system
behaviors.

Spoofi ng Spoofi ng Network
Data
Link

Getting one
computer on
a network to
pretend to have
the identity of
another com-
puter, usually
one with special
access privi-
leges, so as to
obtain access to
the other com-
puters on the
network

Spoofi ng
computer
often doesn’t
have access
to user level
commands so
attempts to use
automation
level services,
such as email
or message
handlers, are
employed

Automa-
tion services
designed for
network in-
teroperability
are especially
vulnerable,
especially those
adhering to
open standards

Limit system
privileges of
automation
services to
minimum
necessary

Upgrade
via security
patches as
they become
available

Monitor trans-
action logs
of automa-
tion services,
scanning for
unusual be-
haviors

If automating
this process do
so off-line to
avoid “tunnel-
ing” attacks

Disconnect
automation
services until
patched or
monitor auto-
mation access
points, such as
network sock-
ets, scanning
for next spoof,
in attempt to
trace back to
perpetrator

Contd...

Unit 11: System Security

Notes

 LOVELY PROFESSIONAL UNIVERSITY 205

Mas-
querade

Network Accessing a
computer by
pretending to
have an au-
thorized user
identity

Masquerading
user often em-
ploys network
or administra-
tor command
functions to
access even
more of the
system, e.g.,
by attempting
to download
password,
routing tables

Placing false
or modifi ed
login prompts
on a computer
is a common
way to obtain
user IDs, as
are Snooping,
Scanning and
Scavenging

Limit user
access to
network or
administra-
tor com-
mand func-
tions

Implement
multiple
levels of
administra-
tors, with
different
privileges
for each

Correlate
user identi-
fi cation with
shift times
or increased
frequency of
access

Correlate user
command
logs with
administra-
tor command
functions

Change user
password or
use standard
administra-
tor functions
to determine
access point,
then trace back
to perpetrator

Scan-
ning

Sequen-
tial Scan-
ning

Transport

Network

Sequentially
testing pass-
words/authen-
tication codes
until one is
successful

Multiple users
attempting
network or
administra-
tor command
functions, indi-
cating multiple
Masquerades

Since most
login prompts
have a time
delay built in to
foil automated
scanning, ac-
cessing the
encoded pass-
word table and
testing it off-
line is a com-
mon technique

Enforce or-
ganizational
password
policies.

Make even
system
administra-
tor access to
password
fi les cumber-
some

Correlate user
identifi cation
with shift
times

Correlate user
problem re-
ports relevant
to possible
Masquerades

Change entire
password fi le
or use baiting
tactics to trace
back to perpe-
trator

Diction-
ary Scan-
ning

Applica-
tion

Scanning
through a
dictionary of
commonly used
passwords/
authentication
codes until one
is successful

Multiple users
attempting
network or
administra-
tor command
functions,

indicating
multiple Mas-
querades

Use of com-
mon words
and names as
passwords or
authentication
codes (so called
“Joe Accounts”)

Enforce or-
ganizational
password
policies

Correlate user
identifi cation
with shift
times

Correlate user
problem re-
ports relevant
to possible
Masquerades

Change entire
password fi le
or use baiting
tactics to trace
back to perpe-
trator

Snoop-
ing
(Eaves-
drop-
ping)

Digital
Snoop-
ing

Network Electronic mon-
itoring of digi-
tal networks
to uncover
passwords or
other data

Users or even
system ad-
ministrators
found online at
unusual or off-
shift hours

Changes in
behavior of
network trans-
port layer

Example of
how COMSEC
affects COM-
PUSEC

Links can be
more vulnera-
ble to snooping
than nodes

Employ data
encryption

Limit physi-
cal access
to network
nodes and
links

Correlate user
identifi cation
with shift
times

Correlate
user problem
reports. Moni-
tor network
performance

Change
encryption
schemes or
employ net-
work monitor-
ing tools to
attempt trace
back to perpe-
trator

Shoul-
der
Surfi ng

Physical Direct visual
observation of
monitor dis-
plays to obtain
access

Authorized
user found on-
line at unusual
or off-shift
hours, indicat-
ing a possible
Masquerade

Authorized
user attempt-
ing administra-
tor command
functions

“Sticky” notes
used to record
account and
password
information

Password entry
screens that do
not mask typed
text

“Loitering” op-
portunities

Limit physi-
cal access to
computer
areas

Require
frequent
password
changes by
users

Correlate
user identi-
fi cation with
shift times
or increased
frequency of
access

Correlate user
command
logs with
administra-
tor command
functions

Change user
password or
use standard
administra-
tor functions
to determine
access point,
then trace back
to perpetrator

Scaveng-
ing

Dump-
ster
Diving

All Accessing
discarded
trash to obtain
passwords and
other data

Multiple users
attempting
network or
administra-
tor command
functions, indi-
cating multiple
Masquerades

“Sticky” notes
used to record
account and
password
information

System ad-
ministrator
printouts of
user logs

Destroy
discarded
hardcopy

Correlate user
identifi cation
with shift
times

Correlate user
problem re-
ports relevant
to possible
Masquerades

Change entire
password fi le
or use baiting
tactics to trace
back to perpe-
trator

Contd...

Operating System

Notes

206 LOVELY PROFESSIONAL UNIVERSITY

Brows-
ing

Applica-
tion

Network

Usually auto-
mated scan-
ning of large
quantities of
unprotected
data (discarded
media or online
“fi nger” type
commands) to
obtain clues
as to how to
achieve access

Authorized
user found on-
line at unusual
or off-shift
hours, indicat-
ing a possible
Masquerade

Authorized
user attempt-
ing administra-
tor command
functions

“Finger” type
services pro-
vide informa-
tion to any and
all users.

The informa-
tion is usually
assumed safe
but can give
clues to pass-
words (e.g.,
spouse’s name)

Destroy
discarded
media

When on
open source
networks
especially,
disable
“fi nger” type
services

Correlate
user identi-
fi cation with
shift times
or increased
frequency of
access

Correlate user
command
logs with
administra-
tor command
functions

Change user
password or
use standard
administra-
tor functions
to determine
access point,
then trace back
to perpetrator

Spam-
ming

Spam-
ming

Applica-
tion

Network

Overloading
a system with
incoming mes-
sage or other
traffi c to cause
system crashes

Repeated
system crashes,
eventually
traced to over-
full buffer or
swap space

Open source
networks espe-
cially vulner-
able

Require
authentica-
tion fi elds
in message
traffi c

Monitor disk
partitions,
network sock-
ets, etc. for
overfull condi-
tions

Analyze mes-
sage headers to
attempt trace
back to perpe-
trator

Tunnel-
ing

Tunnel-
ing

Network Any digital
attack that
attempts to get
“under” a secu-
rity system by
accessing very
low level sys-
tem functions
(e.g., device
drivers, OS
kernels)

Bizarre system
behaviors such
as unexpected
disk accesses,
unexplained
device failures,
halted security
software, etc.

Tunneling
attacks often
occur by creat-
ing system
emergencies to
cause system
reloading or
initialization

Design
security
and audit
capabilities
into even the
lowest level
software,
such as
device driv-
ers, shared
libraries, etc.

Changes in
date/time
stamps for low
level system
fi les or chang-
es in sector/
block counts
for device
drivers

Patch or re-
place compro-
mised drivers
to prevent
access

Monitor sus-
pected access
points to at-
tempt trace
back to perpe-
trator

Unintentional Threats

Category Threat OSI
Layer

Defi nition Typical Behav-
iors

Vulnerabilities Prevention Detection Counter-
measures

Malfunc-
tion

Equipment
Malfunc-
tion

All Hardware
operates in
abnormal,
unintended
mode

Immediate loss
of data due
to abnormal
shutdown Con-
tinuing loss of
capability until
equipment is
repaired

Vital peripheral
equipment is
often more
vulnerable than
the computers
themselves

Replication
of entire
system
including
all data
and recent
transac-
tions

Hardware
diagnostic
systems

On-site
replication
of hard-
ware com-
ponents
for quick
recovery

Software
Malfunc-
tion

Appli-
cation

Software
behavior is in
confl ict with
intended
behavior

Immediate loss
of data due
to abnormal
end Repeated
system failure
when re-fed
“faulty” data

Software devel-
oped using ad
hoc rather than
defi ned formal
processes

Compre-
hensive
testing
proce-
dures and
software
designed
for graceful
degrada-
tion

Software
diagnostic
tools

Backup
software
and robust
operating
systems
facilitate
quick re-
covery

Human
Error

Trap Door

(Back door)

Appli-
cation

System
access for
developers
inadvertently
left avail-
able after
software
delivery

Unauthorized
system access
enables view-
ing, alteration
or destruction
of data or soft-
ware

Software devel-
oped outside
defi ned organi-
zational policies
and formal
methods

Enforce
defi ned de-
velopment
policies

Limit net-
work and
physical
access

Audit
trails of
system
usage,
especially
user iden-
tifi cation
logs

Close Trap
Door or
monitor
ongoing
access to
trace back
to perpetra-
tor

User/
Operator
Error

All Inadvertent
alteration,
manipula-
tion or
destruction
of programs,
data fi les or
hardware

Incorrect data
entered into
system or in-
correct behav-
ior of system

Poor user docu-
mentation or
training

Enforce-
ment of
training
policies
and sepa-
ration of
program-
mer/opera-
tor duties

Audit
trails of
system
transac-
tions

Backup
copies of
software
and data

On-site
replication
of hard-
ware

Unit 11: System Security

Notes

 LOVELY PROFESSIONAL UNIVERSITY 207

Physical Threats

Category Threat OSI Layer Defi nition Typical
Behaviors

Vulnerabilities Prevention Detection Countermea-
sures

Physical
Environ-
ment

Fire
Dam-
age

N/A Physical de-
struction of
equipment
due to fi re
or smoke
damage

Physical
destruction
of systems
and sup-
porting
equipment

Systems located
near potential
fi re hazards,
e.g., fuel storage
tanks

Off-site
system
replica-
tion, while
costly,
provides
backup
capability

On-site
smoke
alarms

Halon gas or
FM200 fi re extin-
guishers mitigate
electrical and
water damage

Water
Dam-
age

N/A Physical
destruction
of equip-
ment due
to water
(including
sprinkler)
damage

Physical
destruction
of systems
and sup-
porting
equipment

Systems located
below ground
or near sprin-
kler systems

Off-site
system
replication

Water
detection
devices

Computer rooms
equipped with
emergency drain-
age capabilities

Power
Loss

N/A Comput-
ers or vital
supporting
equipment
fail due
to lack of
power

Immedi-
ate loss of
data due to
abnormal
shutdown,
even after
power
returns

Continu-
ing loss of
capability
until pow-
er returns

Sites fed by
above ground
power lines are
particularly
vulnerable

Power loss to
computer room
air conditioners
can also be an
issue

Dual or
separate
feeder lines
for com-
puters and
supporting
equipment

Power
level alert
monitors

Uninterruptible
Power Supplies
(UPS)

Full scale
standby power
facilities where
economically
feasible

Civil
Disor-
der

Vandal-
ism

N/A Physical
destruc-
tion during
operations
other than
war

Physical
destruction
of systems
and sup-
porting
equipment

Sites located in
some overseas
environments,
especially urban
environments

Low profi le
facilities
(no overt
disclosure
of high
value
nature of
site)

Physical
intrusion
detection
devices

Physical access
restrictions and
riot contingency
policies

Battle
Dam-
age

N/A Physical
destruction
during mili-
tary action

Physical
destruction
of systems
and sup-
porting
equipment

Site located in
theater

Off-site
system
replication

OPSEC and
low profi le
to prevent
hostile
targeting

Network
monitor-
ing sys-
tems

Hardened sites

11.4 System and Network Threats

Trojan horses, worms and DoS (denial of service) attacks are often maliciously used to consume
and destroy the resources of a network. Sometimes, misconfi gured servers and hosts can serve
as network security threats as they unnecessarily consume resources. In order to properly
identify and deal with probable threats, one must be equipped with the right tools and security
mechanisms.

Most experts classify network security threats in two major categories: logic attacks and resource
attacks. Logic attacks are known to exploit existing software bugs and vulnerabilities with the
intent of crashing a system. Some use this attack to purposely degrade network performance or
grant an intruder access to a system.

One such exploit is the Microsoft PnP MS05-039 overfl ow vulnerability. This attack involves an
intruder exploiting a stack overfl ow in the Windows PnP (plug and play) service and can be
executed on the Windows 2000 system without a valid user account. Another example of this

Operating System

Notes

208 LOVELY PROFESSIONAL UNIVERSITY

network security threat is the infamous ping of death where an attacker sends ICMP packets to a
system that exceeds the maximum capacity. Most of these attacks can be prevented by upgrading
vulnerable software or fi ltering specifi c packet sequences.

Resource attacks are the second category of network security threats. These types of attacks are
intended to overwhelm critical system resources such as CPU and RAM. This is usually done by
sending multiple IP packets or forged requests. An attacker can launch a more powerful attack
by compromising numerous hosts and installing malicious software. The result of this kind of
exploit is often referred to zombies or botnet. The attacker can then launch subsequent attacks from
thousands of zombie machines to compromise a single victim. The malicious software normally
contains code for sourcing numerous attacks and a standard communications infrastructure to
enable remote control.

Denial of Service Attack

On a modern time-sharing computer, any user takes some time and disk space, which is then not
available to other users. By “denying service to authorized users”, mean gobbling unreasonably
large amounts of computer time or disk space, for example:

1. By sending large amounts of junk e-mail in one day, a so-called “mail bomb”, Email
bombing refers to sending a large number of emails to the victim resulting in the victim’s
email account (in case of an individual) or mail servers (in case of a company or an email
service provider) crashing. In one case, a foreigner who had been residing in Shimla, India,
for almost thirty years wanted to avail of a scheme introduced by the Shimla Housing
Board to buy land at lower rates. When he made an application it was rejected on the
grounds that the 169 schemes was available only for citizens of India. He decided to take
his revenge. Consequently he sent thousands of mails to the Shimla Housing Board and
repeatedly kept sending e-mails till their servers crashed.

2. By having the computer execute a malicious program that puts the processing unit into an
infi nite loop.

3. By fl ooding an Internet server with bogus requests for webpages, thereby denying
legitimate users an opportunity to download a page and also possibly crashing the server.
This is called a Denial of Service (DoS) attack. This involves fl ooding a computer resource
with more requests than it can handle. This causes the resource (e.g. a web server) to crash
thereby denying authorized users the service offered by the resource. Another variation
to a typical denial of service attack is known as a Distributed Denial of Service (DDoS)
attack wherein the perpetrators are many and are geographically widespread. It is very
diffi cult to control such attacks. The attack is initiated by sending excessive demands to the
victim’s computer(s), exceeding the limit that the victim’s servers can support and making
the servers crash. Denial-of-service attacks have had an impressive history having, in the
past, brought down websites like Amazon, CNN, Yahoo and eBay.

DoS (Denial-of-Service) attacks are probably the nastiest, and most diffi cult to address. These are
the nastiest, because they’re very easy to launch, diffi cult (sometimes impossible) to track, and
it isn’t easy to refuse the requests of the attacker, without also refusing legitimate requests for
service.

Such attacks were fairly common in late 1996 and early 1997, but are now becoming less
popular.

Unit 11: System Security

Notes

 LOVELY PROFESSIONAL UNIVERSITY 209

Figure 11.1: Denial of Service Attack

11.5 Cryptography as a Security Tools

Internet provides essential communication between tens of millions of people and is being
increasingly used as a tool for commerce, security becomes a tremendously important issue to
deal with.

There are many aspects to security and many applications, ranging from secure commerce and
payments to private communications and protecting passwords. One essential aspect for secure
communications is that of cryptography.

When your computer sends the information out, it scrambles it by using some key. This scrambled
information would be gibberish to anyone who didn’t have the correct key to unscramble it at
the other end.

When the information reaches its destination, it gets unscrambled by using the key. This lets the
person or website read the information correctly at the other end.

Websites that use an encrypted connection use something called SSL (Secure Sockets Layer) to
secure the information going back and forth. This is how websites like Amazon or your bank can
ensure your private information like passwords and credit card numbers are safe from prying
eyes.

Cryptography can play many different roles in user authentication. Cryptographic authentication
systems provide authentication capabilities through the use of cryptographic keys known or
possessed only by authorized entities.

Cryptography also supports authentication through its widespread use in other authentication
systems.

 Example: Password systems often employ cryptography to encrypt stored password
fi les, card/token system often employ cryptography to protect sensitive stored information,
and hand-held password generators often employ cryptography to generate random, dynamic
passwords.

Operating System

Notes

210 LOVELY PROFESSIONAL UNIVERSITY

Cryptography is frequently used in distributed applications to convey identifi cation and
authentication information from one system to another over a network. Cryptographic
authentication systems authenticate a user based on the knowledge or possession of a
cryptographic key. Cryptographic authentication systems can be based on either private key
cryptosystems or public key cryptosystems.

Private key cryptosystems use the same key for the functions of both encryption and decryption.
Cryptographic authentication systems based upon private key cryptosystems rely upon a shared
key between the user attempting access and the authentication system.

Public key cryptosystems separate the functions of encryption and decryption, typically using a
separate key to control each function. Cryptographic authentication systems based upon public
key cryptosystems rely upon a key known only to the user attempting access.

Today’s cryptography is more than encryption and decryption. Authentication is as fundamentally
a part of our lives as privacy. You use authentication throughout our everyday lives – when you
sign your name to some document for instance – and, as you move to a world where our decisions
and agreements are communicated electronically, you need to have electronic techniques for
providing authentication.

Cryptography provides mechanisms for such procedures. A digital signature binds a document
to the possessor of a particular key, while a digital timestamp binds a document to its creation at
a particular time. These cryptographic mechanisms can be used to control access to a shared disk
drive, a high security installation, or a pay-per-view TV channel.

The fi eld of cryptography encompasses other uses as well. With just a few basic cryptographic
tools, it is possible to build elaborate schemes and protocols that allow us to pay using electronic
money, to prove you know certain information without revealing the information itself and to
share a secret quantity in such a way that a subset of the shares can reconstruct the secret.

While modern cryptography is growing increasingly diverse, cryptography is fundamentally
based on problems that are diffi cult to solve. A problem may be diffi cult because its solution
requires some secret knowledge, such as decrypting an encrypted message or signing some
digital document. The problem may also be hard because it is intrinsically diffi cult to complete,
such as fi nding a message that produces a given hash value.

Task Discuss work process of secure socket layers.

Computer encryption is based on the science of cryptography, which has been used throughout
history. Before the digital age, the biggest users of cryptography were governments, particularly
for military purposes.

Encryption is the transformation of data into a form that is as close to impossible as possible to
read without the appropriate knowledge. Its purpose is to ensure privacy by keeping information
hidden from anyone for whom it is not intended, even those who have access to the encrypted
data. Decryption is the reverse of encryption; it is the transformation of encrypted data back into
an intelligible form.

Encryption and decryption generally require the use of some secret information, referred to as a
key. For some encryption mechanisms, the same key is used for both encryption and decryption;
for other mechanisms, the keys used for encryption and decryption are different.

The existence of coded messages has been verifi ed as far back as the Roman Empire. But most
forms of cryptography in use these days rely on computers, simply because a human-based code
is too easy for a computer to crack.

Unit 11: System Security

Notes

 LOVELY PROFESSIONAL UNIVERSITY 211

There are several tools of cryptography and these are:

11.5.1 Hashing

Hash functions, also called message digests and one-way encryption, are algorithms that, in some
sense, use no key. Instead, a fi xed-length hash value is computed based upon the plaintext that
makes it impossible for either the contents or length of the plaintext to be recovered.

Hash algorithms are typically used to provide a digital fi ngerprint of a fi le’s contents, often
used to ensure that the fi le has not been altered by an intruder or virus. Hash functions are also
commonly employed by many operating systems to encrypt passwords. Hash functions, then,
provide a measure of the integrity of a fi le.

Broadly speaking, a cryptographic hash function should behave as much as possible like a
random function while still being deterministic and effi ciently computable.

A cryptographic hash function is considered insecure if either of the following is computationally
feasible:

1. Finding a (previously unseen) message that matches a given digest.

2. Finding “collisions”, wherein two different messages have the same message digest.

An attacker who can do either of these things might, for example, use them to substitute an
unauthorized message for an authorized one.

Ideally, it should not even be feasible to fi nd two messages whose digests are substantially similar;
nor would one want an attacker to be able to learn anything useful about a message given only its
digest. Of course the attacker learns at least one piece of information, the digest itself, which for
instance gives the attacker the ability to recognise the same message should it occur again.

Fox DFCD3454

The red fox
runs across

the ice

The red fox
walks across

the ice

Hash
function

52ED879E
Hash

function

46042841
Hash

function

Input Hash sum

Figure 11.2: Hash Function

11.5.2 Pretty Good Privacy (PGP)

It is one of today’s most widely used public key cryptography programs. Developed by Philip
Zimmermann in the early 1990s and long the subject of controversy, PGP is available as a
plug-in for many e-mail clients, such as Claris Emailer, Microsoft Outlook/Outlook Express, and
Qualcomm Eudora.

PGP can be used to sign or encrypt e-mail messages with the mere click of the mouse. Depending
upon the version of PGP, the software uses SHA or MD5 for calculating the message hash; CAST,
Triple-DES, or IDEA for encryption; and RSA or DSS/Diffi e-Hellman for key exchange and
digital signatures.

Operating System

Notes

212 LOVELY PROFESSIONAL UNIVERSITY

When PGP is fi rst installed, the user has to create a key-pair. One key, the public key, can be
advertised and widely circulated. The private key is protected by use of a passphrase. The
passphrase has to be entered every time the user accesses their private key.

Box 11.1: A PGP Signed Message

 -----BEGIN PGP SIGNED MESSAGE-----

 Hash: SHA1

 Hi Carol.

 What was that pithy Groucho Marx quote?

 /kess

 -----BEGIN PGP SIGNATURE-----

Version: PGP for Personal Privacy 5.0

 Charset: noconv

iQA/AwUBNFUdO5WOcz5SFtuEEQJx/ACaAgR97+vvDU6XWELV/GANjAAgBtUAnjG3

 Sdfw2JgmZIOLNjFe7jP0Y8/M

 =jUAU

 -----END PGP SIGNATURE-----

Box 11.1 shows a PGP signed message. This message will not be kept secret from an eavesdropper,
but a recipient can be assured that the message has not been altered from what the sender
transmitted. In this instance, the sender signs the message using their own private key. The
receiver uses the sender’s public key to verify the signature; the public key is taken from the
receiver’s keyring based on the sender’s e-mail address.

Note The signature process does not work unless the sender’s public key is on the
receiver’s keyring.

Box 11.2: A PGP Encrypted Message

-----BEGIN PGP MESSAGE-----
Version: PGP for Personal Privacy 5.0
MessageID: DAdVB3wzpBr3YRunZwYvhK5gBKBXOb/m
qANQR1DBwU4D/TlT68XXuiUQCADfj2o4b4aFYBcWumA7hR1Wvz9rbv2BR6WbEUsy
ZBIEFtjyqCd96qF38sp9IQiJIKlNaZfx2GLRWikPZwchUXxB+AA5+lqsG/ELBvRa
c9XefaYpbbAZ6z6LkOQ+eE0XASe7aEEPfdxvZZT37dVyiyxuBBRYNLN8Bphdr2zv
z/9Ak4/OLnLiJRk05/2UNE5Z0a+3lcvITMmfGajvRhkXqocavPOKiin3hv7+Vx88
uLLem2/fQHZhGcQvkqZVqXx8SmNw5gzuvwjV1WHj9muDGBY0MkjiZIRI7azWnoU9
3KCnmpR60VO4rDRAS5uGl9fi oSvze+q8XqxubaNsgdKkoD+tB/4u4c4tznLfw1L2
YBS+dzFDw5desMFSo7JkecAS4NB9jAu9K+f7PTAsesCBNETDd49BTOFFTWWavAfE
gLYcPrcn4s3EriUgvL3OzPR4P1chNu6sa3ZJkTBbriDoA3VpnqG3hxqfNyOlqAka
mJJuQ53Ob9ThaFH8YcE/VqUFdw+bQtrAJ6NpjIxi/x0FfOInhC/bBw7pDLXBFNaX
HdlLQRPQdrmnWskKznOSarxq4GjpRTQo4hpCRJJ5aU7tZO9HPTZXFG6iRIT0wa47
AR5nvkEKoIAjW5HaDKiJriuWLdtN4OXecWvxFsjR32ebz76U8aLpAK87GZEyTzBx
dV+lH0hwyT/y1cZQ/E5USePP4oKWF4uqquPee1OPeFMBo4CvuGyhZXD/18Ft/53Y
WIebvdiCqsOoabK3jEfdGExce63zDI0=

=MpRf

-----END PGP MESSAGE-----

Unit 11: System Security

Notes

 LOVELY PROFESSIONAL UNIVERSITY 213

Box 11.2 shows a PGP encrypted message (PGP compresses the fi le, where practical, prior to
encryption because encrypted fi les lose their randomness and, therefore, cannot be compressed).
In this case, public key methods are used to exchange the session key for the actual message
encryption using secret-key cryptography. In this case, the receiver’s e-mail address is the
pointer to the public key in the sender’s keyring; in fact, the same message can be sent to multiple
recipients and the message will not be signifi cantly longer since all that needs to be added is the
session key encrypted by each receiver’s private key. When the message is received, the recipient
must use their private key to extract the session secret key to successfully decrypt the message
(Box 11.3).

Box 11.3: The Decrypted Message

Hi Gary,

 “Outside of a dog, a book is man’s best friend.

 Inside of a dog, it’s too dark to read.”

 Carol

It is worth noting that PGP was one of the fi rst so-called “hybrid cryptosystems” that combined
aspects of SKC and PKC. When Zimmermann was fi rst designing PGP in the late-1980s, he wanted
to use RSA to encrypt the entire message. The PCs of the days, however, suffered signifi cant
performance degradation when executing RSA so he hit upon the idea of using SKC to encrypt
the message and PKC to encrypt the SKC key.

PGP went into a state of fl ux in 2002. Zimmermann sold PGP to Network Associates, Inc. (NAI)
in 1997 and himself resigned from NAI in early 2001. In March 2002, NAI announced that they
were dropping support for the commercial version of PGP having failed to fi nd a buyer for the
product willing to pay what NAI wanted. In August 2002, PGP was purchased from NAI by PGP
Corp. Meanwhile, there are many freeware versions of PGP available.

11.6 User Authentication

A user authentication method includes the steps of: inputting, by a user, a predetermined
password having a plurality of digits; examining whether an input password includes an actual
password that is predetermined by using less digits than the input password; authenticating the
input password if the input password includes the actual password; and refusing to authenticate
the input password if the input password does not include the actual password.

The user authentication method using the password is very useful for reinforcing the security
by applying a simple processing, not necessarily consuming high costs and much time. Further,
even when the password may be exposed to others, it is still safe. Also, although a password may
be used in many cases in common, the security still can be reinforced by differentiating the input
password. Most of all, the user can remember the actual password very easily, and yet get the
same effect with changing the password.

In a wired, switched network, the policy that controls what traffi c an authenticated user can
send and receive is typically based on the port through which the user is connected rather than
on the user’s identity. This works when only one user is connected via a given port. Also, where
physical barriers (locked doors, cardkeys etc.) are used to control access, it can be assumed that a
user who has physical access to a port is authorized to connect on that port.

When wireless access enters the picture, the identity of the user becomes crucial. Since multiple
users can connect through a single wireless access point, the assumption of one user per port
is no longer valid, and port-based access policies do not work. All sorts of users – visitors,

Operating System

Notes

214 LOVELY PROFESSIONAL UNIVERSITY

temporary workers, system administrators, the CFO – may all happen to access the network via
the same access point, sharing the same port. A single set of access rights for that port would be
too permissive for some users and too restrictive for others. Therefore, the system must be able to
distinguish between the users on a port, and apply policy based on each user’s identity.

Further, given the range of wireless access point signals, physical barriers become meaningless;
given the mobility of wireless devices, users are no longer constrained to connect only through
specifi c ports. In a wireless network, therefore, it is important both to determine who the user is
when he attempts to connect and to track the user throughout his entire session on the network.

The system must be able to track the user if he or she physically moves (from desk to conference
room, for example, roaming to a different access point and thus appearing on a different port) in
order to enforce the appropriate policy for that user.

Figure 11.3: User Authentication

Task Authentication means permission. What about cryptography?

11.7 Implementing Security Defenses

An Intrusion Prevention System is a network security device that monitors network and/or
system activities for malicious or unwanted behavior and can react, in real-time, to block or
prevent those activities.

Network-based IPS, for example, will operate in-line to monitor all network traffi c for malicious
code or attacks. When an attack is detected, it can drop the offending packets while still allowing
all other traffi c to pass. Intrusion prevention technology is considered by some to be an extension
of Intrusion Detection System (IDS) technology. The term “Intrusion Prevention System” was
coined by Andrew Plato who was a technical writer and consultant for *NetworkICE.

Intrusion Prevention Systems (IPSs) evolved in the late 1990s to resolve ambiguities in passive
network monitoring by placing detection systems in-line. Early IPS were IDS that were able

Unit 11: System Security

Notes

 LOVELY PROFESSIONAL UNIVERSITY 215

to implement prevention commands to fi rewalls and access control changes to routers. This
technique fell short operationally for it created a race condition between the IDS and the exploit
as it passed through the control mechanism.

Inline IPS can be seen as an improvement upon fi rewall technologies (snort inline is integrated
into one), IPS can make access control decisions based on application content, rather than IP
address or ports as traditional fi rewalls had done.

However, in order to improve performance and accuracy of classifi cation mapping, most IPS use
destination port in their signature format. As IPS systems were originally a literal extension of
intrusion detection systems, they continue to be related.

Intrusion prevention systems may also serve secondarily at the host level to deny potentially
malicious activity. There are advantages and disadvantages to host-based IPS compared with
network-based IPS. In many cases, the technologies are thought to be complementary.

An Intrusion Prevention system must also be a very good Intrusion Detection system to enable a
low rate of false positives. Some IPS systems can also prevent yet to be discovered attacks, such
as those caused by a Buffer overfl ow.

The role of an IPS in a network is often confused with access control and application-layer
fi rewalls. There are some notable differences in these technologies. While all share similarities,
how they approach network or system security is fundamentally different.

An IPS is typically designed to operate completely invisibly on a network. IPS products do not
typically claim an IP address on the protected network but may respond directly to any traffi c
in a variety of ways. (Common IPS responses include dropping packets, resetting connections,
generating alerts, and even quarantining intruders.) While some IPS products have the ability
to implement fi rewall rules, this is often a mere convenience and not a core function of the
product.

Moreover, IPS technology offers deeper insight into network operations providing information on
overly active hosts, bad logons, inappropriate content and many other network and application
layer functions.

Application fi rewalls are a very different type of technology. An application fi rewall uses proxies
to perform fi rewall access control for network and application-layer traffi c. Some application-
layer fi rewalls have the ability to do some IPS-like functions, such as enforcing RFC specifi cations
on network traffi c. Also, some application layer fi rewalls have also integrated IPS-style signatures
into their products to provide real-time analysis and blocking of traffi c.

Application fi rewalls do have IP addresses on their ports and are directly addressable. Moreover,
they use full proxy features to decode and reassemble packets. Not all IPS perform full
proxy-like processing. Also, application-layer fi rewalls tend to focus on fi rewall capabilities, with
IPS capabilities as add-on. While there are numerous similarities between the two technologies,
they are not identical and are not interchangeable.

Unifi ed Threat Management (UTM), or sometimes called “Next Generation Firewalls” are also a
different breed of products entirely. UTM products bring together multiple security capabilities
on to a single platform.

A typical UTM platform will provide fi rewall, VPN, anti-virus, web fi ltering, intrusion prevention
and anti-spam capabilities. Some UTM appliances are derived from IPS products such as 3Com’s
X-series products.

Others are derived from a combination with fi rewall products, such as Juniper’s SSG or Cisco’s
Adaptive Security Appliances (ASA). And still others were derived from the ground up as a
UTM appliance such as Fortinet or Astero. The main feature of a UTM is that it includes multiple
security features on one appliance. IPS is merely one feature.

Operating System

Notes

216 LOVELY PROFESSIONAL UNIVERSITY

Access Control is also an entirely different security concept. Access control refers to general
rules allowing hosts, users or applications access to specifi c parts of a network. Typically, access
control helps organizations segment networks and limit access.

While an IPS has the ability to block access to users, hosts or applications, it does so only when
malicious code has been discovered. As such, IPS does not necessarily serve as an access control
device. While it has some access control abilities, fi rewalls and network access control (NAC)
technologies are better suited to provide these features.

Figure 11.4: Intrusion Prevention System

11.8 Types of Intrusion Prevention System

Host-based

A Host-based IPS (HIPS) is one where the intrusion-prevention application is resident on that
specifi c IP address, usually on a single computer. HIPS compliments traditional fi nger-print-
based and heuristic antivirus detection methods, since it does not need continuous updates to
stay ahead of new malware. As ill-intended code needs to modify the system or other software
residing on the machine to achieve its evil aims, a truly comprehensive HIPS system will
notice some of the resulting changes and prevent the action by default or notify the user for
permission.

Extensive use of system resources can be a drawback of existing HIPS, which integrate fi rewall,
system-level action control and sandboxing into a coordinated detection net, on top of a traditional
AV product.

This extensive protection scheme may be warranted for a laptop computer frequently operating
in untrusted environments (e.g. on cafe or airport Wi-Fi networks), but the heavy defenses may
take their toll on battery life and noticeably impair the generic responsiveness of the computer as
the HIPS protective component and the traditional AV product check each fi le on a PC to see if it
is malware against a huge blacklist.

Unit 11: System Security

Notes

 LOVELY PROFESSIONAL UNIVERSITY 217

Alternatively if HIPS is combined with an AV product utilising whitelisting technology then
there is far less use of system resources as many applications on the PC are trusted (whitelisted).
HIPS as an application then becomes a real alternative to traditional antivirus products.

Network-based

A network-based IPS is one where the IPS application/hardware and any actions taken to
prevent an intrusion on a specifi c network host(s) is done from a host with another IP address on
the network (This could be on a front-end fi rewall appliance.).

Network Intrusion Prevention Systems (NIPSs) are purpose-built hardware/software platforms
that are designed to analyze, detect and report on security related events. NIPS are designed
to inspect traffi c and based on their confi guration or security policy, they can drop malicious
traffi c.

Content-based

A Content-based IPS (CBIPS) inspects the content of network packets for unique sequences,
called signatures, to detect and hopefully prevent known types of attack such as worm infections
and hacks.

Protocol Analysis

A key development in IDS/IPS technologies was the use of protocol analyzers. Protocol analyzers
can natively decode application-layer network protocols, like HTTP or FTP. Once the protocols are
fully decoded, the IPS analysis engine can evaluate different parts of the protocol for anomalous
behavior or exploits. For example, the existence of a large binary fi le in the User-Agent fi eld of an
HTTP request would be very unusual and likely an intrusion. A protocol analyzer could detect
this anomalous behavior and instruct the IPS engine to drop the offending packets.

Not all IPS/IDS engines are full protocol analyzers. Some products rely on simple pattern
recognition techniques to look for known attack patterns. While this can be suffi cient in many
cases, it creates an overall weakness in the detection capabilities. Since many vulnerabilities have
dozens or even hundreds of exploit variants, pattern recognition-based IPS/IDS engines can be
evaded. For example, some pattern recognition engines require hundreds of different signatures
(patterns) to protect against a single vulnerability. This is because they must have a different
pattern for each exploit variant. Protocol analysis-based products can often block exploits with a
single signature that monitors for the specifi c vulnerability in the network communications.

Rate-based

Rate-based IPS (RBIPS) are primarily intended to prevent Denial of Service and Distributed
Denial of Service attacks. They work by monitoring and learning normal network behaviors.
Through real-time traffi c monitoring and comparison with stored statistics, RBIPS can identify
abnormal rates for certain types of traffi c e.g. TCP, UDP or ARP packets, connections per second,
packets per connection, packets to specifi c ports etc. Attacks are detected when thresholds are
exceeded. The thresholds are dynamically adjusted based on time of day, day of the week etc.,
drawing on stored traffi c statistics.

Unusual but legitimate network traffi c patterns may create false alarms. The system’s effectiveness
is related to the granularity of the RBIPS rulebase and the quality of the stored statistics.

Once an attack is detected, various prevention techniques may be used such as rate-limiting
specifi c attack-related traffi c types, source or connection tracking and source-address, port or
protocol fi ltering (black-listing) or validation (white-listing).

Operating System

Notes

218 LOVELY PROFESSIONAL UNIVERSITY

Task How will you implements security defenses on your system? Discuss.

11.9 Implementation Challenges

There are a number of challenges to the implementation of an IPS device that do not have to be
faced when deploying passive-mode IDS products. These challenges all stem from the fact that
the IPS device is designed to work in-line, presenting a potential choke point and single point of
failure.

If a passive IDS fails, the worst that can happen is that some attempted attacks may go undetected.
If an in-line device fails, however, it can seriously impact the performance of the network.

Perhaps latency rises to unacceptable values, or perhaps the device fails closed, in which case
you have a self-infl icted Denial of Service condition on your hands. On the bright side, there will
be no attacks getting through! But that is of little consolation if none of your customers can reach
your e-commerce site.

Even if the IPS device does not fail altogether, it still has the potential to act as a bottleneck,
increasing latency and reducing throughput as it struggles to keep up with up to a Gigabit or
more of network traffi c.

Devices using off-the-shelf hardware will certainly struggle to keep up with a heavily loaded
Gigabit network, especially if there is a substantial signature set loaded, and this could be a
major concern for both the network administrator – who could see his carefully crafted network
response times go through the roof when a poorly designed IPS device is placed in-line – as
well as the security administrator, who will have to fi ght tooth and nail to have the network
administrator allow him to place this unknown quantity amongst his high performance routers
and switches.

As an integral element of the network fabric, the Network IPS device must perform much like a
network switch. It must meet stringent network performance and reliability requirements as a
prerequisite to deployment, since very few customers are willing to sacrifi ce network performance
and reliability for security. A NIPS that slows down traffi c, stops good traffi c, or crashes the
network is of little use.

Dropped packets are also an issue, since if even one of those dropped packets is one of those used
in the exploit data stream it is possible that the entire exploit could be missed. Most high-end
IPS vendors will get around this problem by using custom hardware, populated with advanced
FPGAs and ASICs – indeed, it is necessary to design the product to operate as much as a switch
as an intrusion detection and prevention device.

It is very diffi cult for any security administrator to be able to characterize the traffi c on his network
with a high degree of accuracy. What is the average bandwidth? What are the peaks? Is the traffi c
mainly one protocol or a mix? What is the average packet size and level of new connections
established every second – both critical parameters that can have detrimental effects on some
IDS/IPS engines? If your IPS hardware is operating “on the edge”, all of these are questions that
need to be answered as accurately as possible in order to prevent performance degradation.

Another potential problem is the good old false positive. The bane of the security administrator’s
life (apart from the script kiddie, of course!), the false positive rears its ugly head when an
exploit signature is not crafted carefully enough, such that legitimate traffi c can cause it to fi re
accidentally. Whilst merely annoying in a passive IDS device, consuming time and effort on
the part of the security administrator, the results can be far more serious and far reaching in an
in-line IPS appliance.

Unit 11: System Security

Notes

 LOVELY PROFESSIONAL UNIVERSITY 219

Once again, the result is a self-infl icted Denial of Service condition, as the IPS device fi rst drops
the “offending” packet, and then potentially blocks the entire data fl ow from the suspected
hacker.

If the traffi c that triggered the false positive alert was part of a customer order, you can bet that
the customer will not wait around for long as his entire session is torn down and all subsequent
attempts to reconnect to your e-commerce site (if he decides to bother retrying at all, that is) are
blocked by the well-meaning IPS.

Another potential problem with any Gigabit IPS/IDS product is, by its very nature and
capabilities, the amount of alert data it is likely to generate. On such a busy network, how many
alerts will be generated in one working day? Or even one hour? Even with relatively low alert
rates of ten per second, you are talking about 36,000 alerts every hour. That is 864,000 alerts each
and every day.

The ability to tune the signature set accurately is essential in order to keep the number of alerts
to an absolute minimum. Once the alerts have been raised, however, it then becomes essential to
be able to process them effectively. Advanced alert handling and forensic analysis capabilities
including detailed exploit information and the ability to examine packet contents and data
streams can make or break a Gigabit IDS/IPS product.

Of course, one point in favour of IPS when compared with IDS is that because it is designed
to prevent the attacks rather than just detect and log them, the burden of examining and
investigating the alerts – and especially the problem of rectifying damage done by successful
exploits – is reduced considerably.

11.10 Firewall to Protect Systems and Networks

A fi rewall is a dedicated appliance, or software running on another computer, which inspects
network traffi c passing through it, and denies or permits passage based on a set of rules.

Firewalls can be implemented in both hardware and software, or a combination of both. Firewalls
are frequently used to prevent unauthorized Internet users from accessing private networks
connected to the Internet, especially intranets. All messages entering or leaving the intranet
pass through the fi rewall, which examines each message and blocks those that do not meet the
specifi ed security criteria.

Basically, a fi rewall is a barrier to keep destructive forces away from your property. In fact, that’s
why its called a fi rewall. Its job is similar to a physical fi rewall that keeps a fi re from spreading
from one area to the next.

A fi rewall is simply a program or hardware device that fi lters the information coming through
the Internet connection into your private network or computer system. If an incoming packet
of information is fl agged by the fi lters, it is not allowed through. Let’s say that you work at a
company with 500 employees. The company will therefore have hundreds of computers that all
have network cards connecting them together.

In addition, the company will have one or more connections to the Internet through something
like T1 or T3 lines. Without a fi rewall in place, all of those hundreds of computers are directly
accessible to anyone on the Internet. A person who knows what he or she is doing can probe
those computers, try to make FTP connections to them, try to make telnet connections to them
and so on. If one employee makes a mistake and leaves a security hole, hackers can get to the
machine and exploit the hole.

With a fi rewall in place, the landscape is much different. A company will place a fi rewall at every
connection to the Internet (for example, at every T1 line coming into the company). The fi rewall

Operating System

Notes

220 LOVELY PROFESSIONAL UNIVERSITY

can implement security rules. For example, one of the security rules inside the company might
be:

Out of the 500 computers inside this company, only one of them is permitted to receive public
FTP traffi c. Allow FTP connections only to that one computer and prevent them on all others.

A company can set up rules like this for FTP servers, Web servers, Telnet servers and so on. In
addition, the company can control how employees connect to Web sites, whether fi les are allowed
to leave the company over the network and so on. A fi rewall gives a company tremendous control
over how people use the network.

Firewalls use one or more of three methods to control traffi c fl owing in and out of the network:

1. Packet fi ltering: Packets (small chunks of data) are analyzed against a set of fi lters.
Packets that make it through the fi lters are sent to the requesting system and all others are
discarded.

2. Proxy service: Information from the Internet is retrieved by the fi rewall and then sent to the
requesting system and vice versa.

3. Stateful inspection: A newer method that doesn’t examine the contents of each packet but
instead compares certain key parts of the packet to a database of trusted information.

Information traveling from inside the fi rewall to the outside is monitored for specifi c defi ning
characteristics, then incoming information is compared to these characteristics. If the comparison
yields a reasonable match, the information is allowed through.

Otherwise it is discarded. There are many creative ways that unscrupulous people use to access
or abuse unprotected computers:

1. Remote login: When someone is able to connect to your computer and control it in some
form. This can range from being able to view or access your fi les to actually running
programs on your computer.

2. Application backdoors: Some programs have special features that allow for remote access.
Others contain bugs that provide a backdoor, or hidden access, that provides some level of
control of the program.

3. SMTP session hijacking: SMTP is the most common method of sending e-mail over the
Internet. By gaining access to a list of e-mail addresses, a person can send unsolicited junk
e-mail (spam) to thousands of users. This is done quite often by redirecting the e-mail
through the SMTP server of an unsuspecting host, making the actual sender of the spam
diffi cult to trace.

4. Operating system bugs: Like applications, some operating systems have backdoors. Others
provide remote access with insuffi cient security controls or have bugs that an experienced
hacker can take advantage of.

5. Denial of service: You have probably heard this phrase used in news reports on the attacks
on major Web sites. This type of attack is nearly impossible to counter. What happens is
that the hacker sends a request to the server to connect to it. When the server responds with
an acknowledgement and tries to establish a session, it cannot fi nd the system that made
the request. By inundating a server with these unanswerable session requests, a hacker
causes the server to slow to a crawl or eventually crash.

6. E-mail bombs: An e-mail bomb is usually a personal attack. Someone sends you the same
e-mail hundreds or thousands of times until your e-mail system cannot accept any more
messages.

7. Macros: To simplify complicated procedures, many applications allow you to create a
script of commands that the application can run. This script is known as a macro. Hackers

Unit 11: System Security

Notes

 LOVELY PROFESSIONAL UNIVERSITY 221

have taken advantage of this to create their own macros that, depending on the application,
can destroy your data or crash your computer.

8. Viruses: Probably the most well-known threat is computer viruses. A virus is a small
program that can copy itself to other computers. This way it can spread quickly from one
system to the next. Viruses range from harmless messages to erasing all of your data.

9. Spam: Typically harmless but always annoying, spam is the electronic equivalent of junk
mail. Spam can be dangerous though. Quite often it contains links to Web sites. Be careful
of clicking on these because you may accidentally accept a cookie that provides a backdoor
to your computer.

10. Redirect bombs: Hackers can use ICMP to change (redirect) the path information takes by
sending it to a different router. This is one of the ways that a denial of service attack is set
up.

11. Source routing: In most cases, the path a packet travels over the Internet (or any other
network) is determined by the routers along that path. But the source providing the packet
can arbitrarily specify the route that the packet should travel. Hackers sometimes take
advantage of this to make information appear to come from a trusted source or even from
inside the network! Most fi rewall products disable source routing by default.

Task Discuss the role of fi rewall in the system security.

Some of the items in the list above are hard, if not impossible, to fi lter using a fi rewall. While
some fi rewalls offer virus protection, it is worth the investment to install anti-virus software on
each computer. And, even though it is annoying, some spam is going to get through your fi rewall
as long as you accept e-mail.

The level of security you establish will determine how many of these threats can be stopped by
your fi rewall. The highest level of security would be to simply block everything. Obviously that
defeats the purpose of having an Internet connection. But a common rule of thumb is to block
everything, then begin to select what types of traffi c you will allow.

Figure 11.5: Firewall

Operating System

Notes

222 LOVELY PROFESSIONAL UNIVERSITY

You can also restrict traffi c that travels through the fi rewall so that only certain types of
information, such as e-mail, can get through. This is a good rule for businesses that have an
experienced network administrator that understands what the needs are and knows exactly what
traffi c to allow through.

For most of us, it is probably better to work with the defaults provided by the fi rewall developer
unless there is a specifi c reason to change it. One of the best things about a fi rewall from a security
standpoint is that it stops anyone on the outside from logging onto a computer in your private
network.

While this is a big deal for businesses, most home networks will probably not be threatened in
this manner. Still, putting a fi rewall in place provides some peace of mind.

11.11 Summary

z A fi rewall is a software program or device that monitors, and sometimes controls, all
transmissions between an organization’s internal network and the Internet.

z However large the network, a fi rewall is typically deployed on the network’s edge to
prevent inappropriate access to data behind the fi rewall.

z The fi rewall ensures that all communication in both directions conforms to an organization’s
security policy.

z A denial-of-service attack (DoS attack) or distributed denial-of-service attack (DDoS attack)
is an attempt to make a computer resource unavailable to its intended users.

z Perpetrators of DoS attacks typically target sites or services hosted on high-profi le web
servers such as banks, credit card payment gateways, and even DNS root servers.

z It is very diffi cult to control such attacks. DoS (Denial-of-Service) attacks are probably the
nastiest, and most diffi cult to address.

11.12 Keywords

Computer security: It is more like providing means to protect a single PC against outside
intrusion.

Decryption: It is the reverse process of converting encoded data to its original un-encoded form,
plaintext.

Encryption: It is a process of coding information which could either be a fi le or mail message in
into cipher text a form unreadable without a decoding key in order to prevent anyone except the
intended recipient from reading that data.

Hash function: It is one-way encryption that uses no key.

Intrusion detection system: It gathers and analyzes information from various areas within a
computer or a network to identify possible security breaches, which include both intrusions and
misuse.

Network intrusion detection system: It is an independent platform which identifi es intrusions by
examining network traffi c and monitors multiple hosts.

Securing network infrastructure: It is like securing possible entry points of attacks on a country
by deploying appropriate defense.

Unit 11: System Security

Notes

 LOVELY PROFESSIONAL UNIVERSITY 223

11.13 Self Assessment

State whether the following statements are true or false:

1. Physical computer security involves tangible protection devices, such as locks, cables,
fences, safes, or vaults.

2. Confi dentiality is also known as secrecy or privacy.

3. Resource attacks are the fi rst category of network security threats.

4. DoS (Denial-of-Service) attacks are probably the nastiest, and most diffi cult to address.

5. Websites that use an encrypted connection use something called SSL (Secure Sockets Layer)
to secure the information going back and forth.

Fill in the blanks:

6. authentication systems authenticate a user based on the knowledge or
possession of a cryptographic key.

7. Encryption and generally require the use of some secret information,
referred to as a key.

8. can be used to sign or encrypt e-mail messages with the mere click of the
mouse.

9. Hash functions, also called and one-way encryption

10. Intrusion Prevention Systems (IPSs) evolved in the late

11.14 Review Questions

1. What do you mean by system security?

2. Explain security problem.

3. Describe program threats.

4. Write short note on “denial of service” attack.

5. What do you mean by hashing?

6. Describe “Pretty Good Privacy” concept.

7. Explain user authentication process in detail.

8. How will you implement security defenses? Explain

9. Describe fi rewall concept.

10. Describe various types of intrusion prevention system.

Answers: Self Assessment

1. True 2. True 3. False 4. True

5. True 6. Cryptographic 7. decryption 8. PGP

9. message digests 10. 1990s

Operating System

Notes

224 LOVELY PROFESSIONAL UNIVERSITY

11.15 Further Readings

Books Andrew M. Lister, Fundamentals of Operating Systems, Wiley.

 Andrew S. Tanenbaum and Albert S. Woodhull, Systems Design and Implementation,
Published by Prentice Hall.

 Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.

 Colin Ritchie, Operating Systems, BPB Publications.

 Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.

 I.A. Dhotre, Operating System, Technical Publications.

 Milankovic, Operating System, Tata MacGraw Hill, New Delhi.

 Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons,
Seventh Edition.

 Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.

Online links www.en.wikipedia.org

 www.web-source.net

 www.webopedia.com

Unit 12: Security Solution

Notes

 LOVELY PROFESSIONAL UNIVERSITY 225

Unit 12: Security Solution

CONTENTS

Objectives

Introduction

12.1 Encryption

12.2 How Encryption Works?

12.3 Symmetric or Secret-key Encryption

12.4 Public-key Encryption

12.5 Digital Encryption Standards (DES)

12.6 Triple—DES

12.7 RSA System

12.8 Comparison between Symmetric and Public Key Encryption

 12.8.1 Symmetric Key Encryption

 12.8.2 Public Key Cryptography (Encryption)

12.9 Digital Signature

 12.9.1 Signing Process

 12.9.2 Advantages of Digital Signature

12.10 Digital Certifi cate

12.11 Certifi cate Authority

12.12 Enterprise Authentication using Digital Certifi cates

12.13 Summary

12.14 Keywords

12.15 Self Assessment

12.16 Review Questions

12.17 Further Readings

Objectives

After studying this unit, you will be able to:

z Know the concept of encryption

z Describe secret and public key encryption

z Explain DES

z Describe digital signature

z Describe digital certifi cate concept

Operating System

Notes

226 LOVELY PROFESSIONAL UNIVERSITY

Introduction

Encryption is essentially the process of encoding – or hiding – the information you send across
the internet in a way that it can only be read by the person or website it is meant for. There are
various ways this is handled on the net.

Encryption uses a “key” - a certain sequence of numbers that is unique and only “known” by
your computer and the one you’re sending information to.

When your computer sends the information out, it scrambles it by using this key as a basis.
This scrambled information would be gibberish to anyone who didn’t have the correct key to
unscramble it at the other end.

When the information reaches its destination, it gets unscrambled by using the key. This lets the
person or website read the information correctly at the other end.

Websites that use an encrypted connection use something called SSL (Secure Sockets Layer) to
secure the information going back and forth. This is how websites like Amazon or your bank can
ensure your private information like passwords and credit card numbers are safe from prying
eyes.

There are different strengths of encryption codes. 40 bit encryption is the simplest, but it is
relatively easy to crack. Most secure websites use 128 bit encryption, which is practically
impossible to decode. You might even see 256 bit encryption is some very high-security cases.

12.1 Encryption

Encryption is a process of coding information which could either be a fi le or mail message in
into cipher text a form unreadable without a decoding key in order to prevent anyone except
the intended recipient from reading that data. Decryption is the reverse process of converting
encoded data to its original un-encoded form, plaintext.

A key in cryptography is a long sequence of bits used by encryption/decryption algorithms. For
example, the following represents a hypothetical 40-bit key:

00001010 01101001 10011110 00011100 01010101

A given encryption algorithm takes the original message, and a key, and alters the original
message mathematically based on the key’s bits to create a new encrypted message. Likewise, a
decryption algorithm takes an encrypted message and restores it to its original form using one
or more keys.

When a user encodes a fi le, another user cannot decode and read the fi le without the decryption
key. Adding a digital signature, a form of personal authentication, ensures the integrity of the
original message.

To encode plaintext, an encryption key is used to impose an encryption algorithm onto the data.
To decode cipher, a user must possess the appropriate decryption key. A decryption key consists
of a random string of numbers, from 40 through 2,000 bits in length. The key imposes a decryption
algorithm onto the data. This decryption algorithm reverses the encryption algorithm, returning
the data to plaintext. The longer the encryption key is, the more diffi cult it is to decode. For a 40-
bit encryption key, over one trillion possible decryption keys exist.

There are two primary approaches to encryption: symmetric and public-key. Symmetric
encryption is the most common type of encryption and uses the same key for encoding and
decoding data. This key is known as a session key. Public-key encryption uses two different keys,
a public key and a private key. One key encodes the message and the other decodes it. The public
key is widely distributed while the private key is secret.

Unit 12: Security Solution

Notes

 LOVELY PROFESSIONAL UNIVERSITY 227

Aside from key length and encryption approach, other factors and variables impact the success of
a cryptographic system. For example, different cipher modes, in coordination with initialization
vectors and salt values, can be used to modify the encryption method. Cipher modes defi ne the
method in which data is encrypted. The stream cipher mode encodes data one bit at a time. The
block cipher mode encodes data one block at a time. Although block cipher tends to execute more
slowly than stream cipher.

12.2 How Encryption Works?

Encryption or encoding information helps prevent it by unauthorized user. Both the sender and
receiver have to know what set of rules (called cipher) was used to transform original information
in to its cipher text (code) form – cipher text.

Simple cipher might to be add an arbitrary number of characters to all the character in the
message.

 Example: Say “Udupa”—is the original name

“Irida”—is the cipher text (arbitrary no. chosen is “!2”)

1 2 3 4 5 6 7 8 9 10 11 12

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

The decrypt (decode) “Irido”, First, start counting letter “I” & replace the letter “I” in the coded
text with the letter which comes after the count 12. So, “I” is replaced by “U”, similarly for other
letters to get back the original name “udupa” It is clear from the above example that both the
sender and recipient has to know the arbitrary number chosen in order to encrypt & decrypt the
original message.

Basically encryption has two parts:

1. Algorithm-a cryptographic algorithm is mathematical function.

2. Key-string of digit.

In the above example counting forward (to decrypt) & backward (encrypt) is the algorithm part.
Key used is 12.

Cryptographic algorithm combines the plain text or other intelligible information with a string
of digit called key’s to produce unintelligible cipher text. But some encryption algorithms does
not use a key.

Encryption on key-based system offers two important advantages.

1. It is diffi cult to come up with new-algorithm each time to communicate privately with
new correspondent. By using a key, same algorithm can be used with many people with
different key for each correspondent.

2. It is easy to change the key in case of any mal-practice rather than going for a new
algorithm.

The number of keys each algorithm can support depends on the number of bits in the key. Ex-8
bit key allows only 256 possible numeric combinations, each key is called a key of 28. Hence more
the digits (bit – length) more the possible keys and more diffi cult to crack an encrypted message.
For example, to unlock a physical number zero and nine, at one stage the lock-gets unlocked.
If it is a three digit decimal number, the p[ossible combinations vary from 000-999. Similarly if
a 1000 bit (binary) key wre used on a computer which is capable of guessing one million keys
every second could still take many centuries to discover the right key hence the security of the
encryption algorithm correlates with the length of the key. Trying each possible key to fi nd the
right one to get back original message is called Brute—force method.

Operating System

Notes

228 LOVELY PROFESSIONAL UNIVERSITY

12.3 Symmetric or Secret-key Encryption

With secret key cryptography, a single key is used for both encryption and decryption. As shown
in Figure 12.1, the sender uses the key (or some set of rules) to encrypt the plaintext and sends the
ciphertext to the receiver. The receiver applies the same key (or rule-set) to decrypt the message
and recover the plaintext. Because a single key is used for both functions, secret key cryptography
is also called symmetric encryption.

With this form of cryptography, it is obvious that the key must be known to both the sender and
the receiver; that, in fact, is the secret. The biggest diffi culty with this approach, of course, is the
distribution of the key.

Secret key cryptography schemes are generally categorized as being either stream ciphers or
block ciphers. Stream ciphers operate on a single bit (byte or computer word) at a time and
implement some form of feedback mechanism so that the key is constantly changing.

A block cipher is so-called because the scheme encrypts one block of data at a time using the same
key on each block. In general, the same plaintext block will always encrypt to the same ciphertext
when using the same key in a block cipher whereas the same plaintext will encrypt to different
ciphertext in a stream cipher.

Figure 12.1: Secret-key Cryptography

Stream ciphers come in several fl avors but two are worth mentioning here. Self-synchronizing
stream ciphers calculate each bit in the keystream as a function of the previous n bits in the
keystream. It is termed “self-synchronizing” because the decryption process can stay synchronized
with the encryption process merely by knowing how far into the n-bit keystream it is.

One problem is error propagation; a garbled bit in transmission will result in n garbled bits at the
receiving side. Synchronous stream ciphers generate the keystream in a fashion independent of
the message stream but by using the same keystream generation function at sender and receiver.
While stream ciphers do not propagate transmission errors, they are, by their nature, periodic so
that the keystream will eventually repeat.

Block Ciphers can operate in one of several modes; the following four are the most important:

Electronic Codebook (ECB) mode is the simplest, most obvious application: the secret key is used
to encrypt the plaintext block to form a ciphertext block. Two identical plaintext blocks, then,
will always generate the same ciphertext block. Although this is the most common mode of block
ciphers, it is susceptible to a variety of brute-force attacks.

Cipher Block Chaining (CBC) mode adds a feedback mechanism to the encryption scheme. In
CBC, the plaintext is exclusively-ORed (XORed) with the previous ciphertext block prior to
encryption. In this mode, two identical blocks of plaintext never encrypt to the same ciphertext.

Unit 12: Security Solution

Notes

 LOVELY PROFESSIONAL UNIVERSITY 229

Cipher Feedback (CFB) mode is a block cipher implementation as a self-synchronizing stream
cipher. CFB mode allows data to be encrypted in units smaller than the block size, which might
be useful in some applications such as encrypting interactive terminal input. If we were using
1-byte CFB mode, for example, each incoming character is placed into a shift register the same
size as the block, encrypted, and the block transmitted. At the receiving side, the ciphertext is
decrypted and the extra bits in the block (i.e., everything above and beyond the one byte) are
discarded.

Output Feedback (OFB) mode is a block cipher implementation conceptually similar to a
synchronous stream cipher. OFB prevents the same plaintext block from generating the same
ciphertext block by using an internal feedback mechanism that is independent of both the
plaintext and ciphertext bitstreams.

12.4 Public-key Encryption

Public-key cryptography has been said to be the most signifi cant new development in
cryptography in the last 300-400 years. Modern PKC was fi rst described publicly by Stanford
University professor Martin Hellman and graduate student Whitfi eld Diffi e in 1976. Their paper
described a two-key crypto system in which two parties could engage in a secure communication
over a non-secure communications channel without having to share a secret key.

Public-key cryptography, also known as asymmetric cryptography, is a form of cryptography in
which a user has a pair of cryptographic keys—a public key and a private key. The private key is
kept secret, while the public key may be widely distributed. The keys are related mathematically,
but the private key cannot be practically derived from the public key. A message encrypted with
the public key can be decrypted only with the corresponding private key.

The two main branches of public key cryptography are:

1. Public key encryption — a message encrypted with a recipient’s public key cannot be
decrypted by anyone except the recipient possessing the corresponding private key. This is
used to ensure confi dentiality.

2. Digital signatures — a message signed with a sender’s private key can be verifi ed by
anyone who has access to the sender’s public key, thereby proving that the sender signed
it and that the message has not been tampered with. This is used to ensure authenticity.

An analogy for public-key encryption is that of a locked mailbox with a mail slot. The mail slot
is exposed and accessible to the public; its location (the street address) is in essence the public
key. Anyone knowing the street address can go to the door and drop a written message through
the slot; however, only the person who possesses the key can open the mailbox and read the
message.

An analogy for digital signatures is the sealing of an envelope with a personal wax seal. The
message can be opened by anyone, but the presence of the seal authenticates the sender.

A central problem for public-key cryptography is proving that a public key is authentic, and
has not been tampered with or replaced by a malicious third party. The usual approach to this
problem is to use a public-key infrastructure (PKI), in which one or more third parties, known
as certifi cate authorities, certify ownership of key pairs. Another approach, used by PGP, is the
“web of trust” method to ensure authenticity of key pairs.

Operating System

Notes

230 LOVELY PROFESSIONAL UNIVERSITY

Figure 12.2: Public-key Cryptography

Public key techniques are much more computationally intensive than purely symmetric
algorithms. The judicious use of these techniques enables a wide variety of applications. In
practice, public key cryptography is used in combination with secret-key methods for effi ciency
reasons. For encryption, the sender encrypts the message with a secret-key algorithm using a
randomly generated key, and that random key is then encrypted with the recipient’s public key.
For digital signatures, the sender hashes the message (using a cryptographic hash function) and
then signs the resulting “hash value”. Before verifying the signature, the recipient also computes
the hash of the message, and compares this hash value with the signed hash value to check that
the message has not been tampered with.

Task One key encodes the message and the other decodes it. Then why we use
encryption techniques to encode and decode the message.

12.5 Digital Encryption Standards (DES)

The data encryption standard (DES) specifi es a FIPS (Federal Information Processing Standards)
approved cryptography algorithm. Encrypting data converts it to an unintelligible form called
cipher. Decrypting cipher converts the data back to its original form called plaintext. The
algorithm described in this standards specifi es both enciphering and deciphering operations
which are based on a binary number called a key.

A key consists of 64 binary digits (“O”s or “1”s)of which 56 bits are randomly generated and
used directly by the algorithm. The other 8 bits, which are not used by the algorithm, are used
for error detection. The 8 error detecting bits are set to make the parity of each 8-bit byte of the
key odd, i.e. there is an odd number of “1”s in each 8-bit byte. Authorized users of encrypted
computer data must have the key that was used to encipher the data in order to decrypt it.

Unit 12: Security Solution

Notes

 LOVELY PROFESSIONAL UNIVERSITY 231

The encryption algorithm specifi ed in this standard is commonly known among those using
the standard. The unique key chosen for use in a particular application makes the results of
encrypting data using the algorithm unique. Selection of a different key causes the cipher that
is produced for any given set of inputs to be different. The cryptographic security of the data
depends on the security provided for the key used to encipher and decipher the data.

Data can be recovered from cipher only by using exactly the same key used to encipher it.
Unauthorized recipients of the cipher whop know the algorithm but do not have the correct key
cannot drive the original data algorithmically. However, anyone who does have the key and
the algorithm can easily decipher the cipher and obtain the original data. A standard algorithm
based on a secure key thus provides a basis for exchanging encrypted computer data by issuing
the key used to encipher it to those unauthorized to have the data.

Data that is considered sensitive by the responsible authority, data that, has a high value, or
data that represents a high value should be cryptographically protected if it is vulnerable to
unauthorized disclosure or undetected modifi cation during transmission or while in storage. A
risk analysis should be performed under the direction of a responsible authority to determine
potential threats. The costs of providing cryptographic protection using this standards as well as
alternative methods of providing this protection and their respective costs should be projected.
A responsible authority then should make a decision, based on these analyses, whether or not to
use cryptographic protection and this standard.

Plain text

Left 32
bits

Right 32
bits

64 bit Cipher text block

Block of 64 bits Encryption Key

56 bit key

26 bits 28 bits

Encrypt
key split
into two
parts

In every iteration bits
from part shift by 1 bitXOR

Process further

New Right
32 bits

New Left
32 bits

No YesRepeated
15 times?

Figure 12.3: Data Encryption Standard Algorithm

DES divides the message into 64 bit block of plain text and a 56-bit key is used on the blocks to
encrypt the block. The same key is used for encryption and decryption. The algorithms available
as a software product and also as hardware chip. A simplifi ed DES algorithm is presented below,
in Figure 12.3.

Operating System

Notes

232 LOVELY PROFESSIONAL UNIVERSITY

The DES algorithm is well known. However, since the key is only 56 bit long, there is some
concern about security of data. A modifi cation to DES is triple-DES and this improves the security
aspects considerably.

12.6 Triple—DES

To strengthen DES, the DES encryption and decryption are done three times using either two
keys or three keys as shown in Figure 12.4.

Plain text

Encrypt with key 1

Encrypt with key 2

Encrypt with key 3

Cipher text

Plain text

Encrypt with key 1

Encrypt with key 2

Encrypt with key 3

Cipher text

3 Key DES encryption 3 Key DES encryption

Figure 12.4: 2 and 3 key DES Encryption Algorithm

12.7 RSA System

RSA is an Internet encryption and authentication system that uses an algorithm developed in 1977
by Ron Rivest, Adi Shamir, and Leonard Adleman. The RSA algorithm is the most commonly
used encryption and authentication algorithm and is included as part of the Web browsers
from Microsoft and Netscape. It’s also part of Lotus Notes, Intuit’s Quicken, and many other
products. The encryption system is owned by RSA Security. The company licenses the algorithm
technologies and also sells development kits. The technologies are part of existing or proposed
Web, Internet, and computing standards.

How the RSA System Works?

The mathematical details of the algorithm used in obtaining the public and private keys are
available at the RSA Web site. Briefl y, the algorithm involves multiplying two large prime
numbers (a prime number is a number divisible only by that number and 1) and through
additional operations deriving a set of two numbers that constitutes the public key and another
set that is the private key. Once the keys have been developed, the original prime numbers are

Unit 12: Security Solution

Notes

 LOVELY PROFESSIONAL UNIVERSITY 233

no longer important and can be discarded. Both the public and the private keys are needed for
encryption /decryption but only the owner of a private key ever needs to know it. Using the RSA
system, the private key never needs to be sent across the Internet.

The private key is used to decrypt text that has been encrypted with the public key. Thus, if I
send you a message, I can fi nd out your public key (but not your private key) from a central
administrator and encrypt a message to you using your public key. When you receive it, you
decrypt it with your private key. In addition to encrypting messages (which ensures privacy),
you can authenticate yourself to me (so I know that it is really you who sent the message) by
using your private key to encrypt a digital certifi cate. When I receive it, I can use your public key
to decrypt it. A table might help us remember this.

To do this Use whose Key
Send an encrypted message Use the receiver’s Public key
Send an encrypted signature Use the sender’s Private key
Decrypt and encrypted message Use the receiver’s private key
Decrypt an encrypted signature (and authenticate the sender) Use the sender’s Public key

12.8 Comparison between Symmetric and Public Key Encryption

12.8.1 Symmetric Key Encryption

Symmetric cryptography involves a single, secret key, which both the message-sender and the
message-recipient must have. It is used by the sender to encrypt the message, and by the recipient
to decrypt it.

Symmetric cryptography provides a means of satisfying the requirement of message content
security, because the content cannot be read without the secret key. There remains a risk exposure,
however, because neither party can be sure that the other party has not exposed the secret key to
a third party (whether accidentally or intentionally).

Symmetric cryptography can also be used to address the integrity and authentication requirements.
The sender creates a summary of the message, or ‘message authentication code (MAC)’ encrypts
it with the secret key, and sends that with the message. The recipient then re-create the MAC,
decrypts the MAC that was sent, and compares the two. If they are identical, then the message
that was received must have been identical with that which was sent.

A major diffi culty with symmetric schemes is that the secret key has to be possessed by both
parties, and hence has to be transmitted from whomever creates it to the other party. Moreover, if
the key is compromised, all of the message transmission security measures are undermined. The
steps taken to provide a secure mechanism for creating and passing on the secret key are referred
to as ‘key management’.

The technique does not adequately address the non-repudiation requirement, because both
parties have the same secret key. Hence the other, and a claim by either party not to have sent a
message is credible, because the other may have compromised the key expose each to the risk of
fraudulent falsifi cation of a message.

12.8.2 Public Key Cryptography (Encryption)

Whereas symmetric cryptography has existed, at least in primitive forms, for 2,000 years
asymmetric approaches were only invented in the mid-1970s.

Public key cryptography involves two related keys, referred to as a ‘key-pair’, one of which only
the owner knows (the ‘private key’) and the other which anyone can know (the ‘public key’).

Operating System

Notes

234 LOVELY PROFESSIONAL UNIVERSITY

The advantages of asymmetric encryption are:

Only one party needs to know the private key; and knowledge of the public key by a third party
does not compromise the security of message transmissions.

The crack a mere 40 or 56 bit asymmetric key would be trivially simple, because there are far
fewer of keys available (or, expressed more technically, the ‘key-space’ is relatively ‘sparse’). It is
currently conventional to regard a 1024-bit asymmetric key-length as being necessary to provide
security. Because of the much greater key-length, encryption and decryption require mush core
processing power, or, for a given processor, signifi cantly more processing time. Messages are
sent in large volumes; so the rsulting delays are of considerable consequence.

Task Discuss the use of Triple-DES for security purpose.

12.9 Digital Signature

Like the conventional signature, the digital signature assures all concerned that the contents of
the electronic messages are authentic, are really sent by the sender on the date and time recorded.
All these functions can be performed using the public-key encryption techniques and the message
digest techniques. As the message exchange and electronic commerce applications grow, the
importance of digital signatures will increase. Let us take the case that you ordered a few dresses
from an electronic store. The seller wants to make sure that your order is genuine and has come
from you, the information in the order is accurate and has been modifi ed on the network, and
fi nally you will not disown the order.

12.9.1 Signing Process

1. Prepare the message. All the mail and messaging software including messaging programs
like Microsoft exchange have all the needed software for handling digital signatures.

2. Create a message digest for the message using the secret key, which the sender is sharing
with the recipient.

3. Encrypt the message and the digest with the private key of the sender. At this stage the
document is signed as the message is authenticated with the private key of the sender.
If required, send also the digital certifi cate of the sender, as it contains the public key of
the sender. The sender should not encrypt this digital certifi cate, so as top facilitate easy
retrieval of the sender’s public key by the recipient.

4. Send the cipher text and the digital certifi cate to the recipient

5. The recipient retrieves the public key of the sender using his/her private key.

6. The recipient decrypts the cipher text

7. Recipient runs the message digest algorithm on the message, using the secret key shared
with the sender.

8. Compare the computed message digest with the received message digest. If they are the
same, then the message reached intact. Otherwise the message was tampered.

Unit 12: Security Solution

Notes

 LOVELY PROFESSIONAL UNIVERSITY 235

Secret key of the
sender, shared with
the recipient

Private key of the
sender

Message Message
digest
algorithm

Message
digest 9673
1045

Encryption
algorithm

Cipher text

1. Prepare
message

2. Create
message digest

3. Encrypt the message
and the digest with the
private key of the sender

Message

Mess Dig
Algorithm

Computed Mess
Dig

Mess Digest
Comparison

Decryption
Algorithm

Cipher
text and
Dig Cert

Send
Cipher
and Dig
Cert

Public Key Dig Cert

5 and 6 Decrypt message
and Dig using Pub Key of the

4 E-mail from
sender to recipient

Tampered if both inputs are not equal

Not tempered if the inputs are equal

Figure 12.5: Transaction with Signature

Each message produces a random message digest using the conversion formula. Private key is
used to encrypt that digest to obtain digital signature. Or in other words encrypts message digest
(private key is used for encryption) called digital signature.

encrypt(hash function message digest) Digital signature
with sender privae key

→ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→

Verifi cation of Digital Signature

Say person X is sending the message to person Y.

Steps

1. To send the message (X sends to Y)

(a) Develop message digest for each message. Using hash function.

Operating System

Notes

236 LOVELY PROFESSIONAL UNIVERSITY

(b) Encrypt the digest using “X”-private key [digital signature]

(c) Combine the plain text (X’s-message) with signature, and send it to person ‘Y’
through Internet.

2. To receive message (Y receive)

(a) Decrypt the ‘digital signature’ with ‘X’ public key

(b) Calculate the message digest using hash function. [person Y uses the same hash-
functions as that of person X, which was agreed upon before hand]

(c) Compare the each message digest, calculated and decrypted.

(d) If both message digest’s are same (one which is sent by X, and the one which is
generated by Y) –then it is authentic – if not signature or message has been
tempered.

12.9.2 Advantages of Digital Signature

Unauthorized person’s can access to the public key of person ‘X”, but cannot have his (X) hash
function, which makes the digital signature authentic.

Disadvantages: As the body of the message is sent as plain text, privacy is not maintained. To
overcome this diffi culty when privacy is important one could use symmetric algorithm for plain
text.

12.10 Digital Certifi cate

Digital certifi cates, or certs, simplify the task of establishing whether a public key truly belongs to
the purported owner. A certifi cate is a form of credential. Examples might to your driver’s license,
your passport, or your birth certifi cate. Each of these has some information on it identifying you
and some authorization stating that someone else has confi rmed your identity. Some certifi cates,
such as your passport, are important enough confi rmation or your identity that you would not
want to lose them, lest someone use them to impersonate you.

A digital certifi cate is data that functions much like a physical certifi cate. A digital certifi cate is
information included with a person’s public key that helps others verify that a key is genuine or
valid. Digital certifi cates are used to thwart attempts to substitute one person’s key for another.

A digital certifi cate consists of three things:

A public key certifi cate information (“Identity” information about the user, such as name, user ID
and so on). One or more digital signature (of the CA)

The purpose of the digital signature on a certifi cate is to state that the certifi cate information
has been attested to by some other person or entity. The digital signature does not attest the
authenticity of the certifi cate as a whole, it vouches only that the information, which the certifying
authority has signed, goes along or is bound to the public key listed in the certifi cate.

Basic aim to conduct secure and safe electronic transaction. Asymmetric cryptography allows
a merchants distribute his (merchants) public key to all his correspondents, may be e-mail, or
server, while keeping the private key secure (confi ned to himself only). But these key pairs can
be generated by any one, third person may generate a pair of key and send that public key
to the merchants correspondent, claiming that it has come from the merchant. This allows the
third person or party to forge the message in the name of merchant. This is where a “certifi cate
authority” comes into existence.

Unit 12: Security Solution

Notes

 LOVELY PROFESSIONAL UNIVERSITY 237

12.11 Certifi cate Authority

The certifying authority is an digital entity that binds the identity of a person to his public key.
The certifying authority certifi es that a person is the holder of a valid key pair and that person’s
identity has been authenticated by the certifying authority or its agents. The certifying authority
thus performs functions that are quasi-governmental and by their very nature require a high
amount of trust and security.

A certifying authority creates the digital certifi cate and digitally signs it using its own private
key. When any third person wishes to verify the authenticity of a subscriber’s certifi cate, he uses
the CA’s public key. The certifying authority thus validates the certifi cate and establishes a trust
model for the third party into a transaction with the subscriber.

Digital certifi cate is defi ned as a method to verify (ex. Public Key’s) electronically for
authenticity.

A certifi cate authority will accept merchant public key, along with some proof of the identity of
the merchant who sends it. Others (correspondents) can request fro verifi cation of merchant’s
public key from the certifi cate authority.

Contents of ONES Digital Certifi cate

It includes:

1. Holder’s name, organization, address.

2. The name of certifi cate authority

3. Public key of the holders for cryptographic use.

4. Time limit, these certifi cate are issued for 6 months to a year long

5. Class of certifi cate

6. Digital certifi cate identifi cation number

Class: Based on degree of verifi cation

Class 1: Easiest to obtain, it involves the fewest checks on the user’s back-round. (only the name of
e-mail address are verifi ed

Class 2: I includes user’s driver’s license. Social security number & date of birth along with the other
(class 1)

Class 3: In addition to class 2 checks, user’s credit card check is added.
Class 4: In addition to class 3 checks, user’s position within the organization is added.

Higher the class, higher the degree of verifi cation and hence higher the fee payable to commercial
or government certifi cate authorities. Certifi cate Revocation List (CRL) is maintained by
certifi cate authority. So that the user know which certifi cate are no longer valid. The CRL doesn’t
include expired certifi cate, because each certifi cate has a built in expiration. Certifi cate lost may
be revoked.

One encryption system is not ideal for all situations. One can use more than one encryption
method. Table below shows few algorithms for encryption used by PGP (Pretty Good Privacy).

Function Algorithms used Process
Message encryption IDEA, RSA Use IDEA with one time session key generated by sender to

encrypt message
Encrypt session key with RSA using recipient’s public key

Digital signature MD5, RSA Generate hash code of message with MD5
Encrypt message digest with RSA using sender’s private key.

Operating System

Notes

238 LOVELY PROFESSIONAL UNIVERSITY

12.12 Enterprise Authentication using Digital Certifi cates

When one connects to a secure web server such as https://www.Amazom.com and request that
server to authenticate itself, it has to so complex process involving public keys, private keys and
a digital certifi cate (also known as electronic credentials or digital IDS). They allow verifi cation of
the claim that a given public key does in fact belong to a given individual or entity. In other words
the digital certifi cate tells you that an independent third party has agreed that the server belongs
to the company it claims to belong to. A valid certifi cate means that you can have confi dence that
you are sending information to the right place.

12.13 Summary

Encryption is essentially the process of encoding – or hiding – the information you send across
the internet in a way that it can only be read by the person or website it is meant for. There are
various ways this is handled on the net.

There are two primary approaches to encryption: symmetric and public-key. Symmetric
encryption is the most common type of encryption and uses the same key for encoding and
decoding data. This key is known as a session key. Public-key encryption uses two different keys,
a public key and a private key. One key encodes the message and the other decodes it. The public
key is widely distributed while the private key is secret.

12.14 Keywords

Decryption: Decryption is the reverse process of converting encoded data to its original
un-encoded form, plaintext.

Digital signatures: A message signed with a sender’s private key can be verifi ed by anyone
who has access to the sender’s public key, thereby proving that the sender signed it and that the
message has not been tampered with. This is used to ensure authenticity.

Encryption: Encryption is a process of coding information which could either be a fi le or mail
message in into cipher text a form unreadable without a decoding key in order to prevent anyone
except the intended recipient from reading that data.

12.15 Self Assessment

Choose the appropriate answers:

1. SSL stands for

(a) Secure Service Layer

(b) Secure Socket Layer

(c) Source Service Layer

(d) Secure Service Link

2. MAC stands for

(a) Message Authentication Code

(b) Message Authentication Course

(c) Message Authorization Code

(d) Message Activity Code

Unit 12: Security Solution

Notes

 LOVELY PROFESSIONAL UNIVERSITY 239

Fill in the blanks:

3. A digital certifi cate is data that functions much like a

4. A certifying authority creates the digital certifi cate and digitally signs it using its own
....................... .

5. is defi ned as a method to verify (ex. Public Key’s) electronically for
authenticity.

6. A key in cryptography is a long sequence of bits used by algorithms.

7. One key encodes the message and the other it.

8. Encryption information helps prevent it by

9. The number of keys each algorithm can support depends on the number of bits in the
....................... .

10. schemes are generally categorized as being either stream ciphers or block
ciphers.

12.16 Review Questions

1. Explain the concept of digital encryption standards

2. Write short note on RSA system

3. Briefl y explain digital signature in details

4. What do you mean by digital certifi cate?

5. What do you understand by secret key cryptography? Explain with the help of suitable
diagram.

6. Distinguish between DES and Triple-DES techniques.

7. “Symmetric cryptography can also be used to address the integrity and authentication
requirements.” Explain

8. Explain the process of verifi cation of digital signature.

9. “Stream ciphers operate on a single bit at a time and implement some form of feedback
mechanism so that the key is constantly changing.” Discuss

10. Write short note on “Cipher Block Chaining”.

Answers: Self Assessment

1. (b) 2. (a) 3. physical certifi cate

4. private key 5. Digital certifi cate 6. encryption/decryption

7. decodes 8. unauthorized user 9. key

10. Secret key cryptography

Operating System

Notes

240 LOVELY PROFESSIONAL UNIVERSITY

12.17 Further Readings

Books Andrew M. Lister, Fundamentals of Operating Systems, Wiley.

 Andrew S. Tanenbaum and Albert S. Woodhull, Systems Design and Implementation,
Published by Prentice Hall.

 Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.

 Colin Ritchie, Operating Systems, BPB Publications.

 Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.

 I.A. Dhotre, Operating System, Technical Publications.

 Milankovic, Operating System, Tata MacGraw Hill, New Delhi.

 Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons,
Seventh Edition.

 Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.

Online links www.en.wikipedia.org

 www.web-source.net

 www.webopedia.com

Unit 13: Case Study: Linux

Notes

 LOVELY PROFESSIONAL UNIVERSITY 241

Unit 13: Case Study: Linux

CONTENTS

Objectives

Introduction

13.1 Design Principles

13.2 Kernel Modules

 13.2.1 Linux Kernel Modules

 13.2.2 Life Cycle of Linux Kernel Module

 13.2.3 Unloading Modules

13.3 Process Management

13.4 Process Scheduling

13.5 Memory Management

 13.5.1 Demand Paging

 13.5.2 Swapping

 13.5.3 Shared Virtual Memory

 13.5.4 Physical and Virtual Addressing Modes

 13.5.5 Access Control

 13.5.6 Caches

 13.5.7 Linux Page Tables

 13.5.8 Page Allocation and Deallocation

 13.5.9 Memory Mapping

 13.5.10 Demand Paging

 13.5.11 The Linux Page Cache

 13.5.12 Swapping Out and Discarding Pages

 13.5.13 Reducing the Size of the Page and Buffer Caches

 13.5.14 Swapping Out System V Shared Memory Pages

 13.5.15 Swapping Pages In

13.6 File Systems

13.7 Input & Output

13.8 Inter-process Communication

 13.8.1 Signals

 13.8.2 Pipes

 13.8.3 System V IPC Mechanisms

 13.8.4 Message Queues
Contd....

Operating System

Notes

242 LOVELY PROFESSIONAL UNIVERSITY

 13.8.5 Semaphores

 13.8.6 Shared Memory

13.9 Network Structure

 13.9.1 An Overview of TCP/IP Networking

 13.9.2 The Linux TCP/IP Networking Layers

 13.9.3 The BSD Socket Interface

 13.9.4 The INET Socket Layer

 13.9.5 The IP Layer

 13.9.6 The Address Resolution Protocol (ARP)

 13.9.7 IP Routing

13.10 Security

13.11 Summary

13.12 Keywords

13.13 Review Questions

13.14 Further Readings

Objectives

After studying this unit, you will be able to:

z Describe design principles and kernel modules

z Know process management and process scheduling

z Explain memory management and fi le systems

z Know Input & Output

Introduction

The objective of this unit is to introduce to the Linux operating system. Linux (often pronounced
LIH-nuhks with a short “i”) is a Unix-like operating system that was designed to provide personal
computer users a free or very low-cost operating system comparable to traditional and usually
more expensive Unix systems. Linux has a reputation as a very effi cient and fast-performing
system. Linux’s kernel (the central part of the operating system) was developed by Linus Torvalds
at the University of Helsinki in Finland. To complete the operating system, Torvalds and other
team members made use of system components developed by members of the Free Software
Foundation for the GNU Project.

Linux is a remarkably complete operating system, including a graphical user interface, an
X Window System, TCP/IP, the Emacs editor, and other components usually found in a
comprehensive Unix system. Although copyrights are held by various creators of Linux’s
components, Linux is distributed using the Free Software Foundation’s copyleft stipulations that
mean any modifi ed version that is redistributed must in turn be freely available.

Unlike Windows and other proprietary systems, Linux is publicly open and extendible by
contributors. Because it conforms to the Portable Operating System Interface standard user and
programming interfaces, developers can write programs that can be ported to other operating
systems. Linux comes in versions for all the major microprocessor platforms including the Intel,
PowerPC, Sparc, and Alpha platforms. It’s also available on IBM’s S/390. Linux is distributed
commercially by a number of companies.

Unit 13: Case Study: Linux

Notes

 LOVELY PROFESSIONAL UNIVERSITY 243

Linux is sometimes suggested as a possible publicly-developed alternative to the desktop
predominance of Microsoft Windows. Although Linux is popular among users already familiar
with Unix, it remains far behind Windows in numbers of users. However, its use in the business
enterprise is growing.

13.1 Design Principles

Linux is a modular Unix-like operating system. It derives much of its basic design from principles
established in Unix during the 1970s and 1980s. Linux uses a monolithic kernel, the Linux kernel,
which handles process control, networking, and peripheral and fi le system access. Device drivers
are integrated directly with the kernel.

Much of Linux’s higher-level functionality is provided by separate projects which interface with
the kernel. The GNU userland is an important part of most Linux systems, providing the shell
and Unix tools which carry out many basic operating system tasks. Atop these tools graphical
user interfaces can be placed, usually running via the X Window System.

User Interface

Linux is coupled to a text-based Command Line Interface (CLI), though this is usually hidden on
desktop computers by a Graphical User Interface (GUI). On small devices, input may be handled
through controls on the device itself, and direct input to Linux might be hidden entirely.

The X Window System (X) is the predominant graphical subsystem used in Linux. X provides
network transparency, enabling graphical output to be displayed on machines other than that
which a program runs on. X runs locally for desktop machines.

Early GUIs for Linux were based on a stand-alone X window manager such as FVWM,
Enlightenment, or Window Maker, and a suite of diverse applications running under it. The
window manager provides a means to control the placement and appearance of individual
application windows, and interacts with the X window system. Because the X window managers
only manage the placement of windows, their decoration, and some inter-process communication,
the look and feel of individual applications may vary widely, especially if they use different
graphical user interface toolkits.

This model contrasts with that of platforms such as Mac OS, where a single toolkit provides
support for GUI widgets and window decorations, manages window placement, and otherwise
provides a consistent look and feel to the user. For this reason, the use of window managers
by themselves declined with the rise of Linux desktop environments. They combine a window
manager with a suite of standard applications that adhere to human interface guidelines. While a
window manager is analogous to the Aqua user interface for Mac OS X, a desktop environment
is analogous to Aqua with all of the default Mac OS X graphical applications and confi guration
utilities. KDE, which was announced in 1996, along with GNOME and Xfce which were both
announced in 1997, are the most popular desktop environments.

Linux systems usually provide a CLI of some sort through a shell, the traditional way of interacting
with Unix systems. Even on modern desktop machines, some form of CLI is almost always
accessible. Linux distributions specialized for servers may use the CLI as their only interface, and
Linux machines can run without a monitor attached. Such “headless systems” may be controlled
by command line via a protocol such as SSH or telnet.

Most low-level Linux components, including the GNU Userland, use the CLI exclusively. The
CLI is particularly suited for automation of repetitive or delayed tasks, and provides very simple
inter-process communication. Graphical terminal emulator programs can be used to access the
CLI from a Linux desktop.

Operating System

Notes

244 LOVELY PROFESSIONAL UNIVERSITY

Shell Penal

The command interpreter is the interface between the user and the operating system, hence its
name “shell”.

Users
Shell

Kernel

The shell therefore acts as an intermediary between the operating system and the user using
command lines entered by the latter. Its role consists of reading the command line, interpreting
its meaning, executing the command, and then returning the result via the outputs.

The shell is an executable fi le responsible for interpreting commands, transmitting them to the
system, and returning the result. There are several shells, the most common being sh (called the
“Bourne shell”), bash (“Bourne again shell”), csh (“C Shell”), Tcsh (“Tenex C shell”), ksh (“Korn
shell”),and zsh (“Zero shell”). Their name generally matches the name of the executable.

Each user has a default shell, which will be launched when a command prompt is opened.
The default shell is specifi ed in the confi guration fi le /etc/passwd in the last fi eld of the line
corresponding to the user. It is possible to change the shell during a session simply by executing
the corresponding executable fi le, for example:

/bin/bash

Command Prompt Window (Prompt)

The shell is initialized by reading its overall confi guration (in a fi le of the directory /etc/),
followed by reading the user’s own confi guration (in a hidden fi le the name of which starts with
a dot, located in the basic user directory, i.e. /home/user_name/.confi guration_fi le). Then, a
command prompt window or prompt is displayed as follows:

machine:/directory/current$

By default, for most shells, the prompt consists of the name of the machine, followed by a colon
(:), the current directory, then a character indicating the type of user connected:

1. “$” specifi es a normal user

2. “#” specifi es the administrator, called “root”

Command Line Concept

A command line is a character string representing a command corresponding to an executable
system fi le or shell command along with optional arguments (parameters):

ls -al /home/jf/

In the above command, ls is the name of the command, -al and /home/jean-francois/ are
arguments. Arguments beginning with - are called options. Generally, for each command
there are a certain number of options which can be detailed by entering one of the following
commands:

command --help

command -?

man command

Unit 13: Case Study: Linux

Notes

 LOVELY PROFESSIONAL UNIVERSITY 245

Standard Input-output

Once a command is run, a process is created. This process then opens three fl ows:

1. stdin, called the standard input, where the process will read the input data. By default
stdin refers to the keyboard; STDIN is identifi ed by the number 0;

2. stdout, called standard output, where the process will write the output data. By default,
stdin refers to the screen; STDOUT is identifi ed by the number 1;

3. stderr, called standard error, where the process will write error messages. By default, stderr
refers to the screen. STDERR is identifi ed by the number 2;

Process

STDIN STDOUT

STDERR

By default, whenever a program is run data is read from the keyboard and the program sends its
output and errors to the screen. However, it is also possible to read data from any input device,
even a fi le, and send the output to a display device, a fi le, etc.

Redirections

Like any Unix type system, Linux has mechanisms which make it possible to redirect the standard
input-output to fi les.

So, using the “>” character makes it possible to redirect the standard output of a command on the
left to the fi le located on the right:

ls -al /home/jf/ > toto.txt

echo “Toto” > /etc/myconfi gurationfi le

The following command is equivalent to a copy of the fi les:

cat toto > toto2

The purpose of the “>” redirection is to create a new fi le. So, if a fi le with the same name already
exists it will be deleted. The following command simply creates an empty fi le:

> fi le

Using the double character “>>” makes it possible to add the standard output to the fi le, i.e. add
the output after the fi le without deleting it.

In the same way, the “<” character indicates a redirection of the standard input. The following
command sends the content of the toto.txt fi le to the input of the command cat, the only purpose
of which is to display the content on the standard output (example not useful, but instructive):

cat < toto.txt

Finally, using the “<<” redirection makes it possible to read on the standard input, until the
string located to the right is found. In the following example, the standard input will be read until
the word STOP is found, and then the result will be displayed:

cat << STOP

Operating System

Notes

246 LOVELY PROFESSIONAL UNIVERSITY

Communication Pipes

Pipes are a communication mechanism specifi c to all UNIX systems. A pipe, symbolised by a
vertical bar (“|” character), makes it possible to assign the standard output of one command to
the standard input of another, like a pipe enabling communication between the standard input
of one command with the standard output of another one.

In the following example, the standard output of the command ls -al is sent to the program sort,
which is responsible for sorting the results in alphabetical order:

ls -al | sort

This makes it possible to connect a certain number of commands through successive pipes. In
the example below, the command displays all the fi les in the current directory, selects the lines
containing the word “zip” (using the grep command), and counts the total number of lines:

ls -l | grep zip | wc -l

13.2 Kernel Modules

The Linux kernel is a Unix-like operating system kernel. It is the namesake of the Linux family
of operating systems. Released under the GNU General Public License (GPL) and developed by
contributors worldwide, Linux is one of the most prominent examples of free software/open
source.

The Linux Kernel was initially conceived and assembled by Linus Torvalds in 1991. Early on,
the Minix community contributed code and ideas to the Linux kernel. At the time, the GNU
Project had created many of the components required for a free software operating system, but
its own kernel, GNU Hurd, was incomplete and unavailable. The BSD operating system had not
yet freed itself from legal encumbrances. This meant that despite the limited functionality of the
early versions, Linux rapidly accumulated developers and users who adopted code from those
projects for use with the new operating system. Today the Linux kernel has received contributions
from thousands of programmers.

Linux operates in two modes - the Kernel mode (kernel space) and the User mode (user space).
The kernel works in the highest level (also called supervisor mode) where it has all the authority,
while the applications work in the lowest level where direct access to hardware and memory are
prohibited. Keeping in line with the traditional Unix philosophy, Linux transfers the execution
from user space to the kernel space through system calls and the hardware interrupts. The
Kernel code executing the system call works in the context of the process, which invokes the
system call. As it operates on behalf of the calling process, it can access the data in the processes
address space. The kernel code that handles interrupts, works to the processes and related to any
particular process.

13.2.1 Linux Kernel Modules

The Linux kernel is a monolithic kernel i.e. it is one single large program where all the functional
components of the kernel have access to all of its internal data structures and routines. The
alternative to this is the micro kernel structure where the functional pieces of the kernel are
broken out into units with strict communication mechanism between them. This makes adding
new components into the kernel, via the confi guration process, rather time consuming. The best
and the robust alternative is the ability to dynamically load and unload the components of the
operating system using Linux Kernel Modules.

The Linux kernel modules are piece of codes, which can be dynamically linked to the kernel
(according to the need), even after the system booting. They can be unlinked from the kernel
and removed when they are no longer needed. Mostly the Linux kernel modules are used for

Unit 13: Case Study: Linux

Notes

 LOVELY PROFESSIONAL UNIVERSITY 247

device drivers or pseudo-device drivers such as network drivers or fi le system. When a Linux
kernel module is loaded, it becomes a part of the Linux kernel as the normal kernel code and
functionality and it posses the same rights and responsibilities as the kernel code.

Figure 13.1: Block Diagram of Linux Operating System

13.2.2 Life Cycle of Linux Kernel Module

The life cycle of a module starts with the init_module(). The task of init_module is to prepare the
module for later invocation. The module is registered to the kernel and attaches its data-structures
and functionality to the kernel. The kernel-defi ned external functions are also resolved. The life
cycle of the module ends with cleanup_module(). It `unregisters’ the module functionality from
the kernel.

Simple Module Program

Let us now program a simple module to review its life cycle. The init_module is called when the
module is inserted into the kernel where as the cleanup_module is called just before removing it
from the kernel. In the following program, the init_module and the cleanup_module functions
are demonstrated.

/* Simple Linux kernel module Feb’2001

#include

#include

#if CONFIG_MODVERSIONS==1

#define MODVERSINS

#include

#endif

/ initialise the module /

int init_module()

Operating System

Notes

248 LOVELY PROFESSIONAL UNIVERSITY

{

printk(“init_module invokedn”);

printk(“the message is printed from the kernel spacen”);

/ if the non zero value is returned, then it means that the init_module failed
and the kernel module can’t be loaded /

return 0;

}

/ cleanup / end of module life cycle */

void cleanup_module()

{

printk(“cleanup_module invokedn”);

printk(“module is now going to be

unloaded from the kerneln”);

}

Compile the above program using the following:

#gcc -Wall -DMODULE -D__KERNEL__ -DLINUX -O -c simpelModule.c

Run the compiled module using the following:

#insmod simpleModule.o

Remember, you have to run the above command from the Linux shell at raw console (not from
the console in Xwindows environment) at root login.

Now check the status of the module using

#lsmod

Then remove the module using

#rmmod simpleModule

If you have not seen any of the module-initiated console printing (implemented using `printk’)
about the status of the module, use the following command to see the kernel messages. dmesg |
less In the above, commands insmod, lsmod and rmmod are used to load and unload modules to
the Linux kernel. The details are discussed in the following section.

Loading modules insmod loads the ̀ loadable kernel modules’ in the running kernel. insmod tries
to link a module into the running kernel by resolving all the symbols from the kernel’s exported
`symbol table’.

Let’s now discuss the demand loading of the module by the kernel, dynamically. When the Linux
kernel discovers the need for a module, the kernel requests to the kernel daemon (kerneld) to
load the appropriate module. To illustrate this with an example, lets mount a NTFS partition in
the Linux system. If the NTFS fi lesystem support is not statically implemented in the kernel (but
compiled as a module), the kernel daemon will search for the appropriate module and load it
from the repository. Then the partition is mounted for the use.

Lets go deep into the action of the kernel daemon (kerneld). The kerneld is the normal user
process having exclusive superuser privileges. At the time of booting, kerneld opens the IPC
channel to the kernel and uses it for transferring messages (request for loading modules), to and
from the kernel. While loading the module, the kerneld calls modprobe and insmod to load the
required module. The insmod utility should able to access the requested module. The demand
loadable kernel modules are usually located at/lib/module/directory as the object fi les linked
as relocatable images.

Unit 13: Case Study: Linux

Notes

 LOVELY PROFESSIONAL UNIVERSITY 249

Let us revisit the working of the insmod to get a clear picture of the module loading operation.
The insmod depends on some critical system calls to load the module to the kernel. It uses the
sys_create_module to allocate kernel memory to hold module. It uses get_kernel_syms system
call to get the kernel symbol table in order to link the module. It then calls the sys_init_module
system call to copy the relocatable object code of the module to the kernel space. And soon after
this, insmod calls the initialization function of the concerned module i.e. init_module. All of these
system calls can be found in kernel/module.c.

13.2.3 Unloading Modules

The modules can be unloaded using rmmod command. While removing modules, rmmod ensures
the restriction that the modules are not in use and they are not referred by any other module or
the part of the kernel. The demand loaded modules (i.e. the modules loaded by kerneld) are
automatically removed from the system by `kerneld’ when they are no longer used. Every time
it’s idle, timer expires and kerneld makes a system call requesting for all the demand loaded
kernels, which are not busy to be removed. The modules, whose visited fl ags are cleared and
marked as AUTOCLEAN, are `unloaded’.

Assuming that the module can be unloaded, the cleanup_module function of the concerned
module is called to freeup the kernel resources it has allocated. After the successful execution of
the cleanup_module, the module datastructure is marked DELETED and it is unlinked from the
kernel and unlisted from the list of kernel modules. The reference list of the modules on which
it (module removed) is dependent is modifi ed and dependency is released. The kernel memory
allocated to the concerned module is deallocated and returned to the kernel memory spool.

Version Dependency of modules Version dependency of the module is one of the trickiest parts
of the Linux Kernel Module programming. Typically, the modules are required to be compiled
for each version of the kernel. Each module defi nes a symbol called kernel_version, which
insmod matches against the version number of the current kernel. The kernel 2.2.x/2.4.x defi ne
the symbol in. Hence if the module is made up of multiple source fi les, should be included in
only one of the source fi les.

Though typically, modules should be recompiled for each kernel version, it is not always possible
to recompile module when it is run on as a commercial module distributed in binary form. Kernel
developers have provided a fl exible way to deal with the version problem. The idea is that a
module is incompatible with a different kernel version only if the software interface offered by
the kernel is changed. The software interface is represented by the function prototype and the
exact defi nition of all the data structures involved in the function call. The CRC algorithm can be
used to map all the information about software interface to the single 32bit number. The issue of
version dependency is handled by using the name of the each symbol exported.

13.3 Process Management

Any application that runs on a Linux system is assigned a process ID or PID. This is a numerical
representation of the instance of the application on the system. In most situations this information
is only relevant to the system administrator who may have to debug or terminate processes by
referencing the PID. Process Management is the series of tasks a System Administrator completes
to monitor, manage, and maintain instances of running applications.

Multitasking

Process Management beings with an understanding concept of Multitasking. Linux is what is
referred to as a preemptive multitasking operating system. Preemptive multitasking systems rely
on a scheduler. The function of the scheduler is to control the process that is currently using the
CPU. In contrast, symmetric multitasking systems such as Windows 3.1 relied on each running
process to voluntary relinquish control of the processor. If an application in this system hung or

Operating System

Notes

250 LOVELY PROFESSIONAL UNIVERSITY

stalled, the entire computer system stalled. By making use of an additional component to pre-
empt each process when its “turn” is up, stalled programs do not affect the overall fl ow of the
operating system.

Each “turn” is called a time slice, and each time slice is only a fraction of a second long. It is this
rapid switching from process to process that allows a computer to “appear’ to be doing two
things at once, in much the same way a movie “appears” to be a continuous picture.

Types of Processes

There are generally two types of processes that run on Linux. Interactive processes are those
processes that are invoked by a user and can interact with the user. VI is an example of an
interactive process. Interactive processes can be classifi ed into foreground and background
processes. The foreground process is the process that you are currently interacting with, and
is using the terminal as its stdin (standard input) and stdout (standard output). A background
process is not interacting with the user and can be in one of two states - paused or running.

The following exercise will illustrate foreground and background processes.

1. Logon as root.

2. Run [cd \]

3. Run [vi]

4. Press [ctrl + z]. This will pause vi

5. Type [jobs]

6. Notice vi is running in the background

7. Type [fg %1]. This will bring the fi rst background process to the foreground.

8. Close vi.

The second general type of process that runs on Linux is a system process or Daemon (day-mon).
Daemon is the term used to refer to process’ that are running on the computer and provide
services but do not interact with the console. Most server software is implemented as a daemon.
Apache, Samba, and inn are all examples of daemons.

Any process can become a daemon as long as it is run in the background, and does not interact
with the user. A simple example of this can be achieved using the [ls -R] command. This will list
all subdirectories on the computer, and is similar to the [dir /s] command on Windows. This
command can be set to run in the background by typing [ls -R &], and although technically you
have control over the shell prompt, you will be able to do little work as the screen displays the
output of the process that you have running in the background. You will also notice that the
standard pause (ctrl+z) and kill (ctrl+c) commands do little to help you.

Input, Output, and Error Redirection

In order to work with processes on Linux, you must understand the role of redirection. A process
that is set to run in the background will continue to display information on the console until it is
told otherwise. Changing where a program sends its output is known as redirection.

Standard Output, Standard Input, and Standard Error are the three items that can be redirected.
These items are represented by the fi les /dev/stdin, /dev/stdout, and /dev/stderr. All
interactive process’ are programmed to write to these three fi les for errors, output and input. By
default all three of these fi les are symlinked to through the /proc directory to the terminal the
user is currently using. In the case of an interactive user, the fl ow is as follows.
/dev/stdout -> /proc/self/fd/1 -> /dev/tty1

Unit 13: Case Study: Linux

Notes

 LOVELY PROFESSIONAL UNIVERSITY 251

The /proc directory is a virtual directory that contains information used to construct the users
interactive environment and is thus different for each user. In this case you can see that it provides
a layer of abstraction and acts as a link between the stdout fi le, and the fi le representing the users
console device.

Redirection involves using special characters to tell the shell to send input, output, and errors to
fi les other than the defaults. The following table lists these symbols.

Symbol, Meaning
 > Redirect stdout

 >> Redirect and append stdout

 2> Redirect stderr

 2>> Redirect and append stderr

 < Use in place of stdin

In order for a background process to truly run 100% in the background, you must suppress
display of all errors. The following example uses redirection to produce a fi le listing of the entire
fi le system as a background process.

Managing Running Processes

The [ps] command is the command used to manage running processes and can be used for many
things including viewing the status of your computer and getting a quick idea of how well the
computer is performing.

Here are some common ps commands.

Command, Usefulness

 ps View current interactive processes on this terminal.

 ps -a All current processes on this terminal, by all users.

 ps -x All processes not assigned to a terminal (daemons).

 ps -aux Output all process running and include resource utilization information.

The man page for ps contains extensive documentation on how to modify and interpret the
output of ps.

Top is a utility that can be used to display a live dataset of the currently running processes.
Activate it by typing [top].

Killing Stalled Processes

Processes that have stalled or frozen can sometimes cause problems. One of the jobs of a Linux
administrator is to identify and resolve stalled processes. The clues that a process has stalled can
range from an unresponsive GUI to a noted decrease in system performance. Either way, once
you have identifi ed that a processes has stalled you can terminate that process using the [kill]
command. The syntax is fairly simple. You kill process by referencing its process ID or PID. This
information can be seen in the output of just about any iteration of the ps command. To kill a
process you pass a signal to that process. The default signal tells the process to perform a clean
shutdown. Here are a few examples.

To kill a single process:

 ps

 PID TT STAT TIME COMMAND

 9408 p9 S 0:00 ue temp2.xdh

Operating System

Notes

252 LOVELY PROFESSIONAL UNIVERSITY

 9450 pa S 0:01 -Tcsh (Tcsh)

 9501 pa T 0:00 less csh.1

 9503 pa R 0:00 ps

 kill 9501

This kills process number 9501. Notice that the ps command which is entered to check on the
process ID’s has the latest process number.

To kill a process that refuses to die:

kill -9 9352

This makes a certain kill of process number 9352.

To kill a background job:

jobs

[1] + Running xterm -g 70x55

kill %1

[1] Done xterm -g 70x55

This kills job number 1 (one); the only job that is currently running.

To kill more than one process:

kill 8939 9543

This kills processes 8939 and 9543.

It is important to note that the kill command does not perform only negative actions. It can also
be used to restart processes, and to keep processes running, even after a logout.

Understanding the init Processes

[init] is the most important process in Linux. All processes are derived from the init process and
can trace their roots back to init. [init] always has a PID of 1 and is owned by root. The [init]
process is used to start other processes and must be running for the system to operate. In a later
article we will examine the boot process. Here [init] will be discussed in much more detail.

Parent Processes

Every process has a parent process, with the exception of [init], whose parent process ID (PPID)
is 0. It is important to understand the effects of killing a process, especially if that process has
spawned child processes.

 Sidebar…for all you parent process’s out there

When you kill a parent process, without fi rst killing the child procesi, then you have created
orphans. Orphans will generally cause performance decreases as they are taking up resources,
but not doing anything. Additionally, they usually do not self terminate, as that task can often be
left up the parent. To ensure that you do not create orphans, make sure that no child processes
exist when you kill the parent. This can be determined by reviewing the output of the -l switch of
the ps command. Compare the PID and PPID columns.

13.4 Process Scheduling

All processes run partially in user mode and partially in system mode. How these modes are
supported by the underlying hardware differs but generally there is a secure mechanism for

Unit 13: Case Study: Linux

Notes

 LOVELY PROFESSIONAL UNIVERSITY 253

getting from user mode into system mode and back again. User mode has far less privileges than
system mode. Each time a process makes a system call it swaps from user mode to system mode
and continues executing. At this point the kernel is executing on behalf of the process. In Linux,
processes do not preempt the current, running process, they cannot stop it from running so that
they can run. Each process decides to relinquish the CPU that it is running on when it has to wait
for some system event. For example, a process may have to wait for a character to be read from
a fi le. This waiting happens within the system call, in system mode; the process used a library
function to open and read the fi le and it, in turn made system calls to read bytes from the open
fi le. In this case the waiting process will be suspended and another, more deserving process will
be chosen to run.

Processes are always making system calls and so may often need to wait. Even so, if a process
executes until it waits then it still might use a disproportionate amount of CPU time and so
Linux uses pre-emptive scheduling. In this scheme, each process is allowed to run for a small
amount of time, 200ms, and, when this time has expired another process is selected to run and
the original process is made to wait for a little while until it can run again. This small amount of
time is known as a time-slice.

It is the scheduler that must select the most deserving process to run out of all of the runnable
processes in the system.

A runnable process is one which is waiting only for a CPU to run on. Linux uses a reasonably
simple priority based scheduling algorithm to choose between the current processes in the system.
When it has chosen a new process to run it saves the state of the current process, the processor
specifi c registers and other context being saved in the processes task_struct data structure. It then
restores the state of the new process (again this is processor specifi c) to run and gives control of
the system to that process. For the scheduler to fairly allocate CPU time between the runnable
processes in the system it keeps information in the task_struct for each process:

Policy: This is the scheduling policy that will be applied to this process. There are two types
of Linux process, normal and real time. Real time processes have a higher priority than all of
the other processes. If there is a real time process ready to run, it will always run fi rst. Real
time processes may have two types of policy, round robin and fi rst in fi rst out. In round robin
scheduling, each runnable real time process is run in turn and in fi rst in, fi rst out scheduling
each runnable process is run in the order that it is in on the run queue and that order is never
changed.

Priority: This is the priority that the scheduler will give to this process. It is also the amount of
time (in jiffi es) that this process will run for when it is allowed to run. You can alter the priority
of a process by means of system calls and the renice command.

rt_priority: Linux supports real time processes and these are scheduled to have a higher priority
than all of the other non-real time processes in system. This fi eld allows the scheduler to give
each real time process a relative priority. The priority of a real time processes can be altered using
system calls.

Counter: This is the amount of time (in jiffi es) that this process is allowed to run for. It is set to
priority when the process is fi rst run and is decremented each clock tick.

The scheduler is run from several places within the kernel. It is run after putting the current
process onto a wait queue and it may also be run at the end of a system call, just before a process
is returned to process mode from system mode. One reason that it might need to run is because
the system timer has just set the current processes counter to zero. Each time the scheduler is run
it does the following:

Kernel work: The scheduler runs the bottom half handlers and processes the scheduler task
queue.

Operating System

Notes

254 LOVELY PROFESSIONAL UNIVERSITY

Current process: The current process must be processed before another process can be selected
to run.

1. If the scheduling policy of the current processes is round robin then it is put onto the back
of the run queue.

2. If the task is INTERRUPTIBLE and it has received a signal since the last time it was
scheduled then its state becomes RUNNING.

3. If the current process has timed out, then its state becomes RUNNING.

4. If the current process is RUNNING then it will remain in that state.

Processes that were neither RUNNING nor INTERRUPTIBLE are removed from the run queue.
This means that they will not be considered for running when the scheduler looks for the most
deserving process to run.

Process selection: The scheduler looks through the processes on the run queue looking for
the most deserving process to run. If there are any real time processes (those with a real time
scheduling policy) then those will get a higher weighting than ordinary processes. The weight for
a normal process is its counter but for a real time process it is counter plus 1000. This means that
if there are any runnable real time processes in the system then these will always be run before
any normal runnable processes. The current process, which has consumed some of its time-slice
(its counter has been decremented) is at a disadvantage if there are other processes with equal
priority in the system; that is as it should be. If several processes have the same priority, the one
nearest the front of the run queue is chosen. The current process will get put onto the back of the
run queue. In a balanced system with many processes of the same priority, each one will run in
turn. This is known as Round Robin scheduling. However, as processes wait for resources, their
run order tends to get moved around.

Swap processes: If the most deserving process to run is not the current process, then the current
process must be suspended and the new one made to run. When a process is running it is using
the registers and physical memory of the CPU and of the system. Each time it calls a routine
it passes its arguments in registers and may stack saved values such as the address to return
to in the calling routine. So, when the scheduler is running it is running in the context of the
current process. It will be in a privileged mode, kernel mode, but it is still the current process
that is running. When that process comes to be suspended, all of its machine state, including
the program counter (PC) and all of the processor’s registers, must be saved in the processes
task_struct data structure. Then, all of the machine state for the new process must be loaded. This
is a system dependent operation, no CPUs do this in quite the same way but there is usually some
hardware assistance for this act.

This swapping of process context takes place at the end of the scheduler. The saved context for
the previous process is, therefore, a snapshot of the hardware context of the system as it was for
this process at the end of the scheduler. Equally, when the context of the new process is loaded, it
too will be a snapshot of the way things were at the end of the scheduler, including this processes
program counter and register contents.

If the previous process or the new current process uses virtual memory then the system’s page
table entries may need to be updated. Again, this action is architecture specifi c. Processors like
the Alpha AXP, which use Translation Look-aside Tables or cached Page Table Entries, must
fl ush those cached table entries that belonged to the previous process.

Scheduling in Multiprocessor Systems

Systems with multiple CPUs are reasonably rare in the Linux world but a lot of work has already
gone into making Linux an SMP (Symmetric Multi-Processing) operating system. That is, one that
is capable of evenly balancing work between the CPUs in the system. Nowhere is this balancing
of work more apparent than in the scheduler.

Unit 13: Case Study: Linux

Notes

 LOVELY PROFESSIONAL UNIVERSITY 255

In a multiprocessor system, hopefully, all of the processors are busily running processes. Each
will run the scheduler separately as its current process exhausts its time-slice or has to wait for
a system resource. The fi rst thing to notice about an SMP system is that there is not just one idle
process in the system. In a single processor system the idle process is the fi rst task in the task
vector, in an SMP system there is one idle process per CPU, and you could have more than one
idle CPU. Additionally there is one current process per CPU, so SMP systems must keep track of
the current and idle processes for each processor.

In an SMP system each process’s task_struct contains the number of the processor that it is
currently running on (processor) and its processor number of the last processor that it ran on
(last_processor). There is no reason why a process should not run on a different CPU each time
it is selected to run but Linux can restrict a process to one or more processors in the system using
the processor_mask. If bit N is set, then this process can run on processor N. When the scheduler
is choosing a new process to run it will not consider one that does not have the appropriate bit
set for the current processor’s number in its processor_mask. The scheduler also gives a slight
advantage to a process that last ran on the current processor because there is often a performance
overhead when moving a process to a different processor.

13.5 Memory Management

The memory management subsystem is one of the most important parts of the operating system.
Since the early days of computing, there has been a need for more memory than exists physically
in a system. Strategies have been developed to overcome this limitation and the most successful
of these is virtual memory. Virtual memory makes the system appear to have more memory than
it actually has by sharing it between competing processes as they need it.

Virtual memory does more than just make your computer’s memory go further. The memory
management subsystem provides:

Large Address Spaces: The operating system makes the system appear as if it has a larger amount
of memory than it actually has. The virtual memory can be many times larger than the physical
memory in the system.

Protection: Each process in the system has its own virtual address space. These virtual address
spaces are completely separate from each other and so a process running one application
cannot affect another. Also, the hardware virtual memory mechanisms allow areas of memory
to be protected against writing. This protects code and data from being overwritten by rogue
applications.

Memory Mapping: Memory mapping is used to map image and data fi les into a processes address
space. In memory mapping, the contents of a fi le are linked directly into the virtual address space
of a process.

Fair Physical Memory Allocation: The memory management subsystem allows each running
process in the system a fair share of the physical memory of the system.

Shared Virtual Memory: Although virtual memory allows processes to have separate (virtual)
address spaces, there are times when you need processes to share memory. For example there
could be several processes in the system running the bash command shell. Rather than have
several copies of bash, one in each processes virtual address space, it is better to have only one
copy in physical memory and all of the processes running bash share it. Dynamic libraries are
another common example of executing code shared between several processes.

Shared memory can also be used as an Inter Process Communication (IPC) mechanism, with two
or more processes exchanging information via memory common to all of them. Linux supports
the Unix TM System V shared memory IPC.

Before considering the methods that Linux uses to support virtual memory it is useful to consider
an abstract model that is not cluttered by too much detail.

Operating System

Notes

256 LOVELY PROFESSIONAL UNIVERSITY

VPFN 7

VPFN 6

VPFN 5

VPFN 4

VPFN 3

VPFN 2

VPFN 1

VPFN 0

PFN 4

PFN 3

PFN 2

PFN 1

PFN 0

VIRTUAL MEMORY

Process X

VPFN 7

VPFN 6

VPFN 5

VPFN 4

VPFN 3

VPFN 2

VPFN 1

VPFN 0

VIRTUAL MEMORYPHYSICAL MEMORY

Process Y

Process X
Page Tables

Process Y
Page Tables

Figure 13.2: Abstract Model of Virtual to Physical Address Mapping

As the processor executes a program it reads an instruction from memory and decodes it. In
decoding the instruction it may need to fetch or store the contents of a location in memory. The
processor then executes the instruction and moves onto the next instruction in the program. In
this way the processor is always accessing memory either to fetch instructions or to fetch and
store data.

In a virtual memory system all of these addresses are virtual addresses and not physical
addresses. These virtual addresses are converted into physical addresses by the processor based
on information held in a set of tables maintained by the operating system.

To make this translation easier, virtual and physical memory are divided into handy sized chunks
called pages. These pages are all the same size, they need not be but if they were not, the system
would be very hard to administer. Linux on Alpha AXP systems uses 8 Kbyte pages and on Intel
x86 systems it uses 4 Kbyte pages. Each of these pages is given a unique number; the page frame
number (PFN).

In this paged model, a virtual address is composed of two parts; an offset and a virtual page
frame number. If the page size is 4 Kbytes, bits 11:0 of the virtual address contain the offset
and bits 12 and above are the virtual page frame number. Each time the processor encounters a
virtual address it must extract the offset and the virtual page frame number. The processor must
translate the virtual page frame number into a physical one and then access the location at the
correct offset into that physical page. To do this the processor uses page tables.

In the Figure 13.2 shows the virtual address spaces of two processes, process X and process
Y, each with their own page tables. These page tables map each processes virtual pages into
physical pages in memory. This shows that process X’s virtual page frame number 0 is mapped
into memory in physical page frame number 1 and that process Y’s virtual page frame number 1
is mapped into physical page frame number 4. Each entry in the theoretical page table contains
the following information:

1. Valid fl ag. This indicates if this page table entry is valid,

2. The physical page frame number that this entry is describing,

3. Access control information. This describes how the page may be used. Can it be written to?
Does it contain executable code?

Unit 13: Case Study: Linux

Notes

 LOVELY PROFESSIONAL UNIVERSITY 257

The page table is accessed using the virtual page frame number as an offset. Virtual page frame
5 would be the 6th element of the table (0 is the fi rst element).

To translate a virtual address into a physical one, the processor must fi rst work out the virtual
addresses page frame number and the offset within that virtual page. By making the page size
a power of 2 this can be easily done by masking and shifting. Looking again at Figures 13.2 and
assuming a page size of 0x2000 bytes (which is decimal 8192) and an address of 0x2194 in process
Y’s virtual address space then the processor would translate that address into offset 0x194 into
virtual page frame number 1.

The processor uses the virtual page frame number as an index into the processes page table to
retrieve its page table entry. If the page table entry at that offset is valid, the processor takes the
physical page frame number from this entry. If the entry is invalid, the process has accessed a
non-existent area of its virtual memory. In this case, the processor cannot resolve the address and
must pass control to the operating system so that it can fi x things up.

Just how the processor notifi es the operating system that the correct process has attempted
to access a virtual address for which there is no valid translation is specifi c to the processor.
However the processor delivers it, this is known as a page fault and the operating system is
notifi ed of the faulting virtual address and the reason for the page fault.

Assuming that this is a valid page table entry, the processor takes that physical page frame
number and multiplies it by the page size to get the address of the base of the page in physical
memory. Finally, the processor adds in the offset to the instruction or data that it needs.

Using the above example again, process Y’s virtual page frame number 1 is mapped to physical
page frame number 4 which starts at 0x8000 (4 x 0x2000). Adding in the 0x194 byte offset gives
us a fi nal physical address of 0x8194.

By mapping virtual to physical addresses this way, the virtual memory can be mapped into the
system’s physical pages in any order. For example, in Figure 13.2 process X’s virtual page frame
number 0 is mapped to physical page frame number 1 whereas virtual page frame number 7 is
mapped to physical page frame number 0 even though it is higher in virtual memory than virtual
page frame number 0. This demonstrates an interesting byproduct of virtual memory; the pages
of virtual memory do not have to be present in physical memory in any particular order.

13.5.1 Demand Paging

As there is much less physical memory than virtual memory the operating system must be careful
that it does not use the physical memory ineffi ciently. One way to save physical memory is to
only load virtual pages that are currently being used by the executing program. For example, a
database program may be run to query a database. In this case not the entire database needs to
be loaded into memory, just those data records that are being examined. If the database query is
a search query then it does not make sense to load the code from the database program that deals
with adding new records. This technique of only loading virtual pages into memory as they are
accessed is known as demand paging.

When a process attempts to access a virtual address that is not currently in memory the processor
cannot fi nd a page table entry for the virtual page referenced. For example, in Figure 13.2 there is
no entry in process X’s page table for virtual page frame number 2 and so if process X attempts
to read from an address within virtual page frame number 2 the processor cannot translate the
address into a physical one. At this point the processor notifi es the operating system that a page
fault has occurred.

If the faulting virtual address is invalid this means that the process has attempted to access a
virtual address that it should not have. Maybe the application has gone wrong in some way, for
example writing to random addresses in memory. In this case the operating system will terminate
it, protecting the other processes in the system from this rogue process.

Operating System

Notes

258 LOVELY PROFESSIONAL UNIVERSITY

If the faulting virtual address was valid but the page that it refers to is not currently in memory,
the operating system must bring the appropriate page into memory from the image on disk. Disk
access takes a long time, relatively speaking, and so the process must wait quite a while until
the page has been fetched. If there are other processes that could run then the operating system
will select one of them to run. The fetched page is written into a free physical page frame and
an entry for the virtual page frame number is added to the processes page table. The process is
then restarted at the machine instruction where the memory fault occurred. This time the virtual
memory access is made, the processor can make the virtual to physical address translation and
so the process continues to run.

Linux uses demand paging to load executable images into a processes virtual memory.
Whenever a command is executed, the fi le containing it is opened and its contents are mapped
into the processes virtual memory. This is done by modifying the data structures describing
this processes memory map and is known as memory mapping. However, only the fi rst part of
the image is actually brought into physical memory. The rest of the image is left on disk. As the
image executes, it generates page faults and Linux uses the processes memory map in order to
determine which parts of the image to bring into memory for execution.

13.5.2 Swapping

If a process needs to bring a virtual page into physical memory and there are no free physical
pages available, the operating system must make room for this page by discarding another page
from physical memory.

If the page to be discarded from physical memory came from an image or data fi le and has not
been written to then the page does not need to be saved. Instead it can be discarded and if the
process needs that page again it can be brought back into memory from the image or data fi le.

However, if the page has been modifi ed, the operating system must preserve the contents of that
page so that it can be accessed at a later time. This type of page is known as a dirty page and
when it is removed from memory it is saved in a special sort of fi le called the swap fi le. Accesses
to the swap fi le are very long relative to the speed of the processor and physical memory and
the operating system must juggle the need to write pages to disk with the need to retain them in
memory to be used again.

If the algorithm used to decide which pages to discard or swap (the swap algorithm is not effi cient
then a condition known as thrashing occurs. In this case, pages are constantly being written to
disk and then being read back and the operating system is too busy to allow much real work to
be performed. If, for example, physical page frame number 1 in Figure 13.2 is being regularly
accessed then it is not a good candidate for swapping to hard disk. The set of pages that a process
is currently using is called the working set. An effi cient swap scheme would make sure that all
processes have their working set in physical memory.

Linux uses a Least Recently Used (LRU) page aging technique to fairly choose pages which might
be removed from the system. This scheme involves every page in the system having an age which
changes as the page is accessed. The more that a page is accessed, the younger it is; the less that it
is accessed the older and more stale it becomes. Old pages are good candidates for swapping.

13.5.3 Shared Virtual Memory

Virtual memory makes it easy for several processes to share memory. All memory access are
made via page tables and each process has its own separate page table. For two processes sharing
a physical page of memory, its physical page frame number must appear in a page table entry in
both of their page tables.

Figure 13.2 shows two processes that each share physical page frame number 4. For process X
this is virtual page frame number 4 whereas for process Y this is virtual page frame number 6.

Unit 13: Case Study: Linux

Notes

 LOVELY PROFESSIONAL UNIVERSITY 259

This illustrates an interesting point about sharing pages: the shared physical page does not have
to exist at the same place in virtual memory for any or all of the processes sharing it.

13.5.4 Physical and Virtual Addressing Modes

It does not make much sense for the operating system itself to run in virtual memory. This would
be a nightmare situation where the operating system must maintain page tables for itself. Most
multi-purpose processors support the notion of a physical address mode as well as a virtual
address mode. Physical addressing mode requires no page tables and the processor does not
attempt to perform any address translations in this mode. The Linux kernel is linked to run in
physical address space.

The Alpha AXP processor does not have a special physical addressing mode. Instead, it divides
up the memory space into several areas and designates two of them as physically mapped
addresses. This kernel address space is known as KSEG address space and it encompasses all
addresses upwards from 0xfffffc0000000000. In order to execute from code linked in KSEG (by
defi nition, kernel code) or access data there, the code must be executing in kernel mode. The
Linux kernel on Alpha is linked to execute from address 0xfffffc0000310000.

13.5.5 Access Control

The page table entries also contain access control information. As the processor is already using
the page table entry to map a processes virtual address to a physical one, it can easily use the
access control information to check that the process is not accessing memory in a way that it
should not.

There are many reasons why you would want to restrict access to areas of memory. Some memory,
such as that containing executable code, is naturally read only memory; the operating system
should not allow a process to write data over its executable code. By contrast, pages containing
data can be written to but attempts to execute that memory as instructions should fail. Most
processors have at least two modes of execution: kernel and user. You would not want kernel
code executing by a user or kernel data structures to be accessible except when the processor is
running in kernel mode.

3L 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

63 32

VF
O
R

F
O
W

F
O
E

A
S
M

K
R
E

K
W
E

U
W
E

U
R
E

G
H

_ _PAGE_DIRTY
_ _PAGE_ACCESSED

PFN

Figure 13.3: Alpha AXP Page Table Entry

The access control information is held in the PTE and is processor specifi c; Figure 13.3 shows the
PTE for Alpha AXP. The bit fi elds have the following meanings:

V: Valid, if set this PTE is valid,

Operating System

Notes

260 LOVELY PROFESSIONAL UNIVERSITY

FOE: “Fault on Execute”, Whenever an attempt to execute instructions in this page occurs, the
processor reports a page fault and passes control to the operating system,

FOW: “Fault on Write”, as above but page fault on an attempt to write to this page,

FOR: “Fault on Read”, as above but page fault on an attempt to read from this page,

ASM: Address Space Match. This is used when the operating system wishes to clear only some of
the entries from the Translation Buffer,

KRE: Code running in kernel mode can read this page,

URE: Code running in user mode can read this page,

GH: Granularity hint used when mapping an entire block with a single Translation Buffer entry
rather than many,

KWE: Code running in kernel mode can write to this page,

UWE: Code running in user mode can write to this page,

page frame number: For PTEs with the V bit set, this fi eld contains the physical Page Frame
Number (page frame number) for this PTE. For invalid PTEs, if this fi eld is not zero, it contains
information about where the page is in the swap fi le.

The following two bits are defi ned and used by Linux:

_PAGE_DIRTY: if set, the page needs to be written out to the swap fi le,

_PAGE_ACCESSED: Used by Linux to mark a page as having been accessed.

13.5.6 Caches

If you were to implement a system using the above theoretical model then it would work, but not
particularly effi ciently. Both operating system and processor designers try hard to extract more
performance from the system. Apart from making the processors, memory and so on faster the
best approach is to maintain caches of useful information and data that make some operations
faster. Linux uses a number of memory management related caches:

Buffer Cache

The buffer cache contains data buffers that are used by the block device drivers.

These buffers are of fi xed sizes (for example 512 bytes) and contain blocks of information that
have either been read from a block device or are being written to it. A block device is one that
can only be accessed by reading and writing fi xed sized blocks of data. All hard disks are block
devices.

The buffer cache is indexed via the device identifi er and the desired block number and is used to
quickly fi nd a block of data. Block devices are only ever accessed via the buffer cache. If data can
be found in the buffer cache then it does not need to be read from the physical block device, for
example a hard disk, and access to it is much faster.

Page Cache

This is used to speed up access to images and data on disk.

It is used to cache the logical contents of a fi le a page at a time and is accessed via the fi le and
offset within the fi le. As pages are read into memory from disk, they are cached in the page
cache.

Unit 13: Case Study: Linux

Notes

 LOVELY PROFESSIONAL UNIVERSITY 261

Swap Cache

Only modifi ed (or dirty) pages are saved in the swap fi le.

So long as these pages are not modifi ed after they have been written to the swap fi le then the next
time the page is swapped out there is no need to write it to the swap fi le as the page is already in
the swap fi le. Instead the page can simply be discarded. In a heavily swapping system this saves
many unnecessary and costly disk operations.

Hardware Caches

One commonly implemented hardware cache is in the processor; a cache of Page Table Entries. In
this case, the processor does not always read the page table directly but instead caches translations
for pages as it needs them. These are the Translation Look-aside Buffers and contain cached
copies of the page table entries from one or more processes in the system.

When the reference to the virtual address is made, the processor will attempt to fi nd a matching
TLB entry. If it fi nds one, it can directly translate the virtual address into a physical one and
perform the correct operation on the data. If the processor cannot fi nd a matching TLB entry
then it must get the operating system to help. It does this by signaling the operating system that
a TLB miss has occurred. A system specifi c mechanism is used to deliver that exception to the
operating system code that can fi x things up. The operating system generates a new TLB entry
for the address mapping. When the exception has been cleared, the processor will make another
attempt to translate the virtual address. This time it will work because there is now a valid entry
in the TLB for that address.

The drawback of using caches, hardware or otherwise, is that in order to save effort Linux must
use more time and space maintaining these caches and, if the caches become corrupted, the
system will crash.

13.5.7 Linux Page Tables

Linux assumes that there are three levels of page tables. Each Page Table accessed contains the
page frame number of the next level of Page Table. Figure 13.4 shows how a virtual address can
be broken into a number of fi elds; each fi eld providing an offset into a particular Page Table. To
translate a virtual address into a physical one, the processor must take the contents of each level
fi eld, convert it into an offset into the physical page containing the Page Table and read the page
frame number of the next level of Page Table. This is repeated three times until the page frame
number of the physical page containing the virtual address is found. Now the fi nal fi eld in the
virtual address, the byte offset, is used to fi nd the data inside the page.

VIRTUAL ADDRESS

Level 1 Level 2 Level 3 Byte within page

PFN

Level 1
Page Table

PFN

Level 2
Page Table

PFN

Level 3
Page Table

Physical
Page

PGP

Figure 13.4: Three Level Page Tables

Operating System

Notes

262 LOVELY PROFESSIONAL UNIVERSITY

Each platform that Linux runs on must provide translation macros that allow the kernel to
traverse the page tables for a particular process. This way, the kernel does not need to know the
format of the page table entries or how they are arranged.

This is so successful that Linux uses the same page table manipulation code for the Alpha
processor, which has three levels of page tables, and for Intel x86 processors, which have two
levels of page tables.

13.5.8 Page Allocation and Deallocation

There are many demands on the physical pages in the system. For example, when an image is
loaded into memory the operating system needs to allocate pages. These will be freed when
the image has fi nished executing and is unloaded. Another use for physical pages is to hold
kernel specifi c data structures such as the page tables themselves. The mechanisms and data
structures used for page allocation and deallocation are perhaps the most critical in maintaining
the effi ciency of the virtual memory subsystem.

All of the physical pages in the system are described by the mem_map data structure which is
a list of mem_map_t structures which is initialized at boot time. Each mem_map_t describes a
single physical page in the system. Important fi elds (so far as memory management is concerned)
are:

count: This is a count of the number of users of this page. The count is greater than one when the
page is shared between many processes,

age: This fi eld describes the age of the page and is used to decide if the page is a good candidate
for discarding or swapping,

map_nr: This is the physical page frame number that this mem_map_t describes.

The free_area vector is used by the page allocation code to fi nd and free pages. The whole buffer
management scheme is supported by this mechanism and so far as the code is concerned, the size
of the page and physical paging mechanisms used by the processor are irrelevant.

Each element of free_area contains information about blocks of pages. The fi rst element in the
array describes single pages, the next blocks of 2 pages, the next blocks of 4 pages and so on
upwards in powers of two. The list element is used as a queue head and has pointers to the page
data structures in the mem_map array. Free blocks of pages are queued here. map is a pointer to
a bitmap which keeps track of allocated groups of pages of this size. Bit N of the bitmap is set if
the Nth block of pages is free.

Figure 13.5 shows the free_area structure. Element 0 has one free page (page frame number 0)
and element 2 has 2 free blocks of 4 pages, the fi rst starting at page frame number 4 and the
second at page frame number 56.

Page Allocation

Linux uses the Buddy algorithm to effectively allocate and deallocate blocks of pages. The page
allocation code and attempts to allocate a block of one or more physical pages. Pages are allocated
in blocks which are powers of 2 in size. That means that it can allocate a block 1 page, 2 pages,
4 pages and so on. So long as there are enough free pages in the system to grant this request
(nr_free_pages ?min_free_pages) the allocation code will search the free_area for a block of pages
of the size requested. Each element of the free_area has a map of the allocated and free blocks of
pages for that sized block. For example, element 2 of the array has a memory map that describes
free and allocated blocks each of 4 pages long.

Unit 13: Case Study: Linux

Notes

 LOVELY PROFESSIONAL UNIVERSITY 263

PHYSICAL MEMORY

8

7

6

5

4

3

2

1

0 PFNFree PFN

0

1

2

3

4

5

free_area

map

map

map

map

0

4

mem_map_t

mem_map_t

56

mem_map_t

Figure 13.5: The Free_area Data Structure

The allocation algorithm fi rst searches for blocks of pages of the size requested. It follows the
chain of free pages that is queued on the list element of the free_area data structure. If no blocks
of pages of the requested size are free, blocks of the next size (which is twice that of the size
requested) are looked for. This process continues until all of the free_area has been searched or
until a block of pages has been found. If the block of pages found is larger than that requested it
must be broken down until there is a block of the right size. Because the blocks are each a power
of 2 pages big then this breaking down process is easy as you simply break the blocks in half. The
free blocks are queued on the appropriate queue and the allocated block of pages is returned to
the caller.

For example, in Figure 13.5 if a block of 2 pages was requested, the fi rst block of 4 pages (starting
at page frame number 4) would be broken into two 2 page blocks. The fi rst, starting at page frame
number 4 would be returned to the caller as the allocated pages and the second block, starting at
page frame number 6 would be queued as a free block of 2 pages onto element 1 of the free_area
array.

Page Deallocation

Allocating blocks of pages tends to fragment memory with larger blocks of free pages being
broken down into smaller ones. The page deallocation code recombines pages into larger blocks
of free pages whenever it can. In fact the page block size is important as it allows for easy
combination of blocks into larger blocks.

Whenever a block of pages is freed, the adjacent or buddy block of the same size is checked to
see if it is free. If it is, then it is combined with the newly freed block of pages to form a new free
block of pages for the next size block of pages. Each time two blocks of pages are recombined into
a bigger block of free pages the page deallocation code attempts to recombine that block into a yet
larger one. In this way the blocks of free pages are as large as memory usage will allow.

Operating System

Notes

264 LOVELY PROFESSIONAL UNIVERSITY

For example, in Figure 13.5, if page frame number 1 were to be freed, then that would be combined
with the already free page frame number 0 and queued onto element 1 of the free_area as a free
block of size 2 pages.

13.5.9 Memory Mapping

When an image is executed, the contents of the executable image must be brought into the
processes virtual address space. The same is also true of any shared libraries that the executable
image has been linked to use. The executable fi le is not actually brought into physical memory,
instead it is merely linked into the processes virtual memory. Then, as the parts of the program
are referenced by the running application, the image is brought into memory from the executable
image. This linking of an image into a processes virtual address space is known as memory
mapping.

Every processes virtual memory is represented by an mm_struct data structure. This contains
information about the image that it is currently executing (for example bash) and also has pointers
to a number of vm_area_struct data structures. Each vm_area_struct data structure describes the
start and end of the area of virtual memory, the processes access rights to that memory and a set
of operations for that memory. These operations are a set of routines that Linux must use when
manipulating this area of virtual memory. For example, one of the virtual memory operations
performs the correct actions when the process has attempted to access this virtual memory but
fi nds (via a page fault) that the memory is not actually in physical memory. This operation is
the nopage operation. The nopage operation is used when Linux demand pages the pages of an
executable image into memory.

vm_end

vm_start

vm_flags

vm_i node

vm_ops

vm_next

Virtua Memory
Operations

open ()
close ()
nomap ()
protect ()
sync ()
adivse ()
nopage ()
wppage ()
swapout ()
swapin ()

vm_area_struct

Virtual Area

Processes Virtual Memory

Figure 13.6: Areas of Virtual Memory

Unit 13: Case Study: Linux

Notes

 LOVELY PROFESSIONAL UNIVERSITY 265

When an executable image is mapped into a processes virtual address a set of vm_area_struct data
structures is generated. Each vm_area_struct data structure represents a part of the executable
image; the executable code, initialized data (variables), unitialized data and so on. Linux supports
a number of standard virtual memory operations and as the vm_area_struct data structures are
created, the correct set of virtual memory operations are associated with them.

13.5.10 Demand Paging

Once an executable image has been memory mapped into a processes virtual memory it can
start to execute. As only the very start of the image is physically pulled into memory it will soon
access an area of virtual memory that is not yet in physical memory. When a process accesses a
virtual address that does not have a valid page table entry, the processor will report a page fault
to Linux.

The page fault describes the virtual address where the page fault occurred and the type of
memory access that caused.

Linux must fi nd the vm_area_struct that represents the area of memory that the page fault
occurred in. As searching through the vm_area_struct data structures is critical to the effi cient
handling of page faults, these are linked together in an AVL (Adelson-Velskii and Landis) tree
structure. If there is no vm_area_struct data structure for this faulting virtual address, this process
has accessed an illegal virtual address. Linux will signal the process, sending a SIGSEGV signal,
and if the process does not have a handler for that signal it will be terminated.

Linux next checks the type of page fault that occurred against the types of accesses allowed for
this area of virtual memory. If the process is accessing the memory in an illegal way, say writing
to an area that it is only allowed to read from, it is also signalled with a memory error.

Now that Linux has determined that the page fault is legal, it must deal with it.

Linux must differentiate between pages that are in the swap fi le and those that are part of an
executable image on a disk somewhere. It does this by using the page table entry for this faulting
virtual address.

If the page’s page table entry is invalid but not empty, the page fault is for a page currently being
held in the swap fi le. For Alpha AXP page table entries, these are entries which do not have their
valid bit set but which have a non-zero value in their PFN fi eld. In this case the PFN fi eld holds
information about where in the swap (and which swap fi le) the page is being held. How pages in
the swap fi le are handled is described later in this unit.

Not all vm_area_struct data structures have a set of virtual memory operations and even those
that do may not have a nopage operation. This is because by default Linux will fi x up the access
by allocating a new physical page and creating a valid page table entry for it. If there is a nopage
operation for this area of virtual memory, Linux will use it.

The generic Linux nopage operation is used for memory mapped executable images and it uses
the page cache to bring the required image page into physical memory.

However the required page is brought into physical memory, the processes page tables are
updated. It may be necessary for hardware specifi c actions to update those entries, particularly
if the processor uses translation look aside buffers. Now that the page fault has been handled
it can be dismissed and the process is restarted at the instruction that made the faulting virtual
memory access.

13.5.11 The Linux Page Cache

The role of the Linux page cache is to speed up access to fi les on disk. Memory mapped fi les are
read a page at a time and these pages are stored in the page cache. Figure 13.7 shows that the
page cache consists of the page_hash_table, a vector of pointers to mem_map_t data structures.

Operating System

Notes

266 LOVELY PROFESSIONAL UNIVERSITY

inode

offset

next_hash

prev_hash

mem_map_t

inode

offset

next_hash

prev_hash

mem_map_t

12
0x8000

12
0x2000

:
:
:

page_hash_table

Figure 13.7: The Linux Page Cache

Each fi le in Linux is identifi ed by a VFS inode data structure and each VFS inode is unique and
fully describes one and only one fi le. The index into the page table is derived from the fi le’s VFS
inode and the offset into the fi le.

Whenever a page is read from a memory mapped fi le, for example when it needs to be brought
back into memory during demand paging, the page is read through the page cache. If the page is
present in the cache, a pointer to the mem_map_t data structure representing it is returned to the
page fault handling code. Otherwise the page must be brought into memory from the fi le system
that holds the image. Linux allocates a physical page and reads the page from the fi le on disk.

If it is possible, Linux will initiate a read of the next page in the fi le. This single page read ahead
means that if the process is accessing the pages in the fi le serially, the next page will be waiting
in memory for the process.

Over time the page cache grows as images are read and executed. Pages will be removed from
the cache as they are no longer needed, say as an image is no longer being used by any process.
As Linux uses memory it can start to run low on physical pages. In this case Linux will reduce
the size of the page cache.

13.5.12 Swapping Out and Discarding Pages

When physical memory becomes scarce the Linux memory management subsystem must attempt
to free physical pages. This task falls to the kernel swap daemon (kswapd).

The kernel swap daemon is a special type of process, a kernel thread. Kernel threads are processes
have no virtual memory, instead they run in kernel mode in the physical address space. The
kernel swap daemon is slightly misnamed in that it does more than merely swap pages out to the
system’s swap fi les. Its role is make sure that there are enough free pages in the system to keep
the memory management system operating effi ciently.

The Kernel swap daemon (kswapd) is started by the kernel init process at startup time and sits
waiting for the kernel swap timer to periodically expire.

Unit 13: Case Study: Linux

Notes

 LOVELY PROFESSIONAL UNIVERSITY 267

Every time the timer expires, the swap daemon looks to see if the number of free pages in the
system is getting too low. It uses two variables, free_pages_high and free_pages_low to decide
if it should free some pages. So long as the number of free pages in the system remains above
free_pages_high, the kernel swap daemon does nothing; it sleeps again until its timer next
expires. For the purposes of this check the kernel swap daemon takes into account the number
of pages currently being written out to the swap fi le. It keeps a count of these in nr_async_pages;
this is incremented each time a page is queued waiting to be written out to the swap fi le and
decremented when the write to the swap device has completed. free_pages_low and free_pages_
high are set at system startup time and are related to the number of physical pages in the system.
If the number of free pages in the system has fallen below free_pages_high or worse still free_
pages_low, the kernel swap daemon will try three ways to reduce the number of physical pages
being used by the system:

1. Reducing the size of the buffer and page caches,

2. Swapping out System V shared memory pages,

3. Swapping out and discarding pages.

If the number of free pages in the system has fallen below free_pages_low, the kernel swap
daemon will try to free 6 pages before it next runs. Otherwise it will try to free 3 pages. Each
of the above methods are tried in turn until enough pages have been freed. The kernel swap
daemon remembers which method it was using the last time that it attempted to free physical
pages. Each time it runs it will start trying to free pages using this last successful method.

After it has free suffi cient pages, the swap daemon sleeps again until its timer expires. If the
reason that the kernel swap daemon freed pages was that the number of free pages in the system
had fallen below free_pages_low, it only sleeps for half its usual time. Once the number of free
pages is more than free_pages_low the kernel swap daemon goes back to sleeping longer between
checks.

13.5.13 Reducing the Size of the Page and Buffer Caches

The pages held in the page and buffer caches are good candidates for being freed into the
free_area vector. The Page Cache, which contains pages of memory mapped fi les, may contain
unneccessary pages that are fi lling up the system’s memory. Likewise the Buffer Cache, which
contains buffers read from or being written to physical devices, may also contain unneeded
buffers. When the physical pages in the system start to run out, discarding pages from these
caches is relatively easy as it requires no writing to physical devices (unlike swapping pages
out of memory). Discarding these pages does not have too many harmful side effects other than
making access to physical devices and memory mapped fi les slower. However, if the discarding
of pages from these caches is done fairly, all processes will suffer equally.

Every time the Kernel swap daemon tries to shrink these caches it examines a block of pages
in the mem_map page vector to see if any can be discarded from physical memory. The size of
the block of pages examined is higher if the kernel swap daemon is intensively swapping; that
is if the number of free pages in the system has fallen dangerously low. The blocks of pages are
examined in a cyclical manner; a different block of pages is examined each time an attempt is
made to shrink the memory map. This is known as the clock algorithm as, rather like the minute
hand of a clock, the whole mem_map page vector is examined a few pages at a time.

Each page being examined is checked to see if it is cached in either the page cache or the buffer
cache. You should note that shared pages are not considered for discarding at this time and that
a page cannot be in both caches at the same time. If the page is not in either cache then the next
page in the mem_map page vector is examined.

Pages are cached in the buffer cache (or rather the buffers within the pages are cached) to make
buffer allocation and deallocation more effi cient. The memory map shrinking code tries to free
the buffers that are contained within the page being examined.

Operating System

Notes

268 LOVELY PROFESSIONAL UNIVERSITY

If all the buffers are freed, then the pages that contain them are also be freed. If the examined
page is in the Linux page cache, it is removed from the page cache and freed.

When enough pages have been freed on this attempt then the kernel swap daemon will wait
until the next time it is periodically woken. As none of the freed pages were part of any process’s
virtual memory (they were cached pages), then no page tables need updating. If there were not
enough cached pages discarded then the swap daemon will try to swap out some shared pages.

13.5.14 Swapping Out System V Shared Memory Pages

System V shared memory is an inter-process communication mechanism which allows two or
more processes to share virtual memory in order to pass information amongst themselves. For
now it is enough to say that each area of System V shared memory is described by a shmid_ds
data structure. This contains a pointer to a list of vm_area_struct data structures, one for each
process sharing this area of virtual memory. The vm_area_struct data structures describe where
in each processes virtual memory this area of System V shared memory goes. Each vm_area_struct
data structure for this System V shared memory is linked together using the vm_next_shared and
vm_prev_shared pointers. Each shmid_ds data structure also contains a list of page table entries
each of which describes the physical page that a shared virtual page maps to.

The kernel swap daemon also uses a clock algorithm when swapping out System V shared
memory pages. Each time it runs it remembers which page of which shared virtual memory
area it last swapped out. It does this by keeping two indices, the fi rst is an index into the set of
shmid_ds data structures, the second into the list of page table entries for this area of System V
shared memory. This makes sure that it fairly victimizes the areas of System V shared memory.

As the physical page frame number for a given virtual page of System V shared memory is
contained in the page tables of all of the processes sharing this area of virtual memory, the kernel
swap daemon must modify all of these page tables to show that the page is no longer in memory
but is now held in the swap fi le. For each shared page it is swapping out, the kernel swap daemon
fi nds the page table entry in each of the sharing processes page tables (by following a pointer
from each vm_area_struct data structure). If this processes page table entry for this page of
System V shared memory is valid, it converts it into an invalid but swapped out page table entry
and reduces this (shared) page’s count of users by one. The format of a swapped out System V
shared page table entry contains an index into the set of shmid_ds data structures and an index
into the page table entries for this area of System V shared memory.

If the page’s count is zero after the page tables of the sharing processes have all been modifi ed,
the shared page can be written out to the swap fi le. The page table entry in the list pointed at by
the shmid_ds data structure for this area of System V shared memory is replaced by a swapped
out page table entry. A swapped out page table entry is invalid but contains an index into the
set of open swap fi les and the offset in that fi le where the swapped out page can be found. This
information will be used when the page has to be brought back into physical memory.

13.5.15 Swapping Pages In

The dirty pages saved in the swap fi les may be needed again, for example when an application
writes to an area of virtual memory whose contents are held in a swapped out physical page.
Accessing a page of virtual memory that is not held in physical memory causes a page fault to
occur. The page fault is the processor signalling the operating system that it cannot translate a
virtual address into a physical one. In this case this is because the page table entry describing
this page of virtual memory was marked as invalid when the page was swapped out. The
processor cannot handle the virtual to physical address translation and so hands control back to
the operating system describing as it does so the virtual address that faulted and the reason for
the fault. The format of this information and how the processor passes control to the operating
system is processor specifi c.

Unit 13: Case Study: Linux

Notes

 LOVELY PROFESSIONAL UNIVERSITY 269

The processor specifi c page fault handling code must locate the vm_area_struct data structure
that describes the area of virtual memory that contains the faulting virtual address. It does this
by searching the vm_area_struct data structures for this process until it fi nds the one containing
the faulting virtual address. This is very time critical code and a processes vm_area_struct data
structures are so arranged as to make this search take as little time as possible.

Having carried out the appropriate processor specifi c actions and found that the faulting virtual
address is for a valid area of virtual memory, the page fault processing becomes generic and
applicable to all processors that Linux runs on.

The generic page fault handling code looks for the page table entry for the faulting virtual address.
If the page table entry it fi nds is for a swapped out page, Linux must swap the page back into
physical memory. The format of the page table entry for a swapped out page is processor specifi c
but all processors mark these pages as invalid and put the information necessary to locate the
page within the swap fi le into the page table entry. Linux needs this information in order to bring
the page back into physical memory.

At this point, Linux knows the faulting virtual address and has a page table entry containing
information about where this page has been swapped to. The vm_area_struct data structure may
contain a pointer to a routine which will swap any page of the area of virtual memory that it
describes back into physical memory. This is its swapin operation. If there is a swapin operation
for this area of virtual memory then Linux will use it. This is, in fact, how swapped out System
V shared memory pages are handled as it requires special handling because the format of a
swapped out System V shared page is a little different from that of an ordinary swapped out
page. There may not be a swapin operation, in which case Linux will assume that this is an
ordinary page that does not need to be specially handled.

It allocates a free physical page and reads the swapped out page back from the swap fi le.
Information telling it where in the swap fi le (and which swap fi le) is taken from the the invalid
page table entry.

If the access that caused the page fault was not a write access then the page is left in the swap
cache and its page table entry is not marked as writable. If the page is subsequently written
to, another page fault will occur and, at that point, the page is marked as dirty and its entry is
removed from the swap cache. If the page is not written to and it needs to be swapped out again,
Linux can avoid the write of the page to its swap fi le because the page is already in the swap
fi le.

If the access that caused the page to be brought in from the swap fi le was a write operation,
this page is removed from the swap cache and its page table entry is marked as both dirty and
writable.

13.6 File Systems

The fi rst thing that most new users shifting from Windows will fi nd confusing is navigating
the Linux fi lesystem. The Linux fi lesystem does things a lot more differently than the Windows
fi lesystem. This article explains the differences and takes you through the layout of the Linux
fi lesystem.

For starters, there is only a single hierarchal directory structure. Everything starts from the root
directory, represented by ‘/’, and then expands into sub-directories. Where DOS/Windows had
various partitions and then directories under those partitions, Linux places all the partitions
under the root directory by ‘mounting’ them under specifi c directories. Closest to root under
Windows would be c:.

Under Windows, the various partitions are detected at boot and assigned a drive letter. Under
Linux, unless you mount a partition or a device, the system does not know of the existence of that
partition or device. This might not seem to be the easiest way to provide access to your partitions
or devices but it offers great fl exibility.

Operating System

Notes

270 LOVELY PROFESSIONAL UNIVERSITY

This kind of layout, known as the unifi ed fi lesystem, does offer several advantages over the
approach that Windows uses. Let’s take the example of the /usr directory. This directory off the
root directory contains most of the system executables. With the Linux fi lesystem, you can choose
to mount it off another partition or even off another machine over the network. The underlying
system will not know the difference because /usr appears to be a local directory that is part of
the local directory structure! How many times have you wished to move around executables and
data under Windows, only to run into registry and system errors? Try moving c:windowssystem
to another partition or drive.

Another point likely to confuse newbies is the use of the frontslash ‘/’ instead of the backslash
‘’ as in DOS/Windows. So c:windowssystem would be /c/windows/system. Well, Linux is not
going against convention here. Unix has been around a lot longer than Windows and was the
standard a lot before Windows was. Rather, DOS took the different path, using ‘/’ for command-
line options and ‘’ as the directory separator.

To liven up matters even more, Linux also chooses to be case sensitive. What this means that
the case, whether in capitals or not, of the characters becomes very important. So this is not the
same as THIS or ThIs for that matter. This one feature probably causes the most problems for
newbies.

We now move on to the layout or the directory structure of the Linux fi lesystem. Given below is
the result of a ‘ls -p’ in the root directory.

bin/ dev/ home/ lost+found/ proc/ sbin/ usr/ boot/ etc/ lib/ mnt/ root/ tmp/
var/

/sbin: This directory contains all the binaries that are essential to the working of the system. These
include system administration as well as maintenance and hardware confi guration programs.
Find lilo, fdisk, init, ifconfi g etc here. These are the essential programs that are required by all the
users. Another directory that contains system binaries is /usr/sbin.

This directory contains other binaries of use to the system administrator.

This is where you will fi nd the network daemons for your system along with other binaries that
only the system administrator has access to, but which are not required for system maintenance,
repair etc.

/bin: In contrast to /sbin, the bin directory contains several useful commands that are used by
both the system administrator as well as non-privileged users. This directory usually contains
the shells like bash, cash etc. as well as much used commands like cp, mv, rm, cat, ls. There also
is /usr/bin, which contains other user binaries. These binaries on the other hand are not essential
for the user. The binaries in /bin however, a user cannot do without.

/boot: This directory contains the system.map fi le as well as the Linux kernel. Lilo places the boot
sector backups in this directory.

/dev: This is a very interesting directory that highlights one important characteristic of the Linux
fi lesystem - everything is a fi le or a directory. Look through this directory and you should see
hda1, hda2 etc, which represent the various partitions on the fi rst master drive of the system. /
dev/cdrom and /dev/fd0 represent your CDROM drive and your fl oppy drive. This may seem
strange but it will make sense if you compare the characteristics of fi les to that of your hardware.
Both can be read from and written to. Take /dev/dsp, for instance. This fi le represents your
speaker device. So any data written to this fi le will be re-directed to your speaker. Try ‘cat /etc/
lilo.conf > /dev/dsp’ and you should hear some sound on the speaker. That’s the sound of your
lilo.conf fi le! Similarly, sending data to and reading from /dev/ttyS0 (COM 1) will allow you to
communicate with a device attached there - your modem.

/etc: This directory contains all the confi guration fi les for your system. Your lilo.conf fi le lies in
this directory as does hosts, resolv.conf and fstab. Under this directory will be X11 sub-directory

Unit 13: Case Study: Linux

Notes

 LOVELY PROFESSIONAL UNIVERSITY 271

which contains the confi guration fi les for X. More importantly, the /etc/rc.d directory contains
the system startup scripts. This is a good directory to backup often. It will defi nitely save you a
lot of re-confi guration later if you re-install or lose your current installation.

/home: Linux is a multi-user environment so each user is also assigned a specifi c directory which
is accessible only to them and the system administrator. These are the user home directories,
which can be found under /home/username. This directory also contains the user specifi c
settings for programs like IRC, X etc.

/lib: This contains all the shared libraries that are required by system programs. Windows
equivalent to a shared library would be a DLL fi le.

/lost+foun: Linux should always go through a proper shutdown. Sometimes your system might
crash or a power failure might take the machine down. Either way, at the next boot, a lengthy
fi lesystem check using fsck will be done. Fsck will go through the system and try to recover any
corrupt fi les that it fi nds. The result of this recovery operation will be placed in this directory. The
fi les recovered are not likely to be complete or make much sense but there always is a chance that
something worthwhile is recovered.

/mnt: This is a generic mount point under which you mount your fi lesystems or devices.
Mounting is the process by which you make a fi lesystem available to the system. After mounting
your fi les will be accessible under the mount-point. This directory usually contains mount points
or sub-directories where you mount your fl oppy and your CD. You can also create additional
mount-points here if you want. There is no limitation to creating a mount-point anywhere on
your system but convention says that you do not litter your fi le system with mount-points.

/opt: This directory contains all the software and add-on packages that are not part of the default
installation. Generally you will fi nd KDE and StarOffi ce here. Again, this directory is not used
very often as it’s mostly a standard in Unix installations.

/proc: This is a special directory on your system.

/root: We talked about user home directories earlier and well this one is the home directory of
the user root. This is not to be confused with the system root, which is directory at the highest
level in the fi lesystem.

/tmp: This directory contains mostly fi les that are required temporarily. Many programs use this
to create lock fi les and for temporary storage of data. On some systems, this directory is cleared
out at boot or at shutdown.

/usr: This is one of the most important directories in the system as it contains all the user binaries.
X and its supporting libraries can be found here. User programs like telnet, ftp etc are also placed
here.

/usr/doc contains useful system documentation. /usr/src/linux contains the source code for
the Linux kernel.

/var: This directory contains spooling data like mail and also the output from the printer daemon.
The system logs are also kept here in /var/log/messages. You will also fi nd the database for
BIND in /var/named and for NIS in /var/yp.

13.7 Input & Output

I/O Event handling is about how your Operating System allows you to manage a large number
of open fi les in your application. You want the OS to notify you when FDs become active (have
data ready to be read or are ready for writing).

Operating System

Notes

272 LOVELY PROFESSIONAL UNIVERSITY

The Traditional UNIX Way

Traditional Unix systems provide the select(2) and/or poll(2) system calls. With both of these
you pass an array of FDs to the kernel, with an optional timeout. When there is activity, or when
the call times out, the system call will return. The application must then scan the array to see
which FDs are active. This scheme works well with small numbers of FDs, and is simple to use.
Unfortunately, for thousands of FDs, this does not work so well.

The kernel has to scan your array of FDs and check which ones are active. This takes approximately
3 microseconds (3 us) per FD on a Pentium 100 running Linux 2.1.x. Now you might think that
3 us is quite fast, but consider if you have an array of 1000 FDs. This is now 3 milliseconds (3
ms), which is 30% of your timeslice (each timeslice is 10 ms). If it happens that there is initially
no activity and you specifi ed a timeout, the kernel will have to perform a second scan after some
activity occurs or the syscall times out. Ouch! If you have an even bigger application (like a large
http server), you can easily have 10000 FDs. Scanning times will then take 30 ms, which is three
timeslices! This is just way too much.

You might say that 3 ms for 1000 FDs is not such a big deal: a user will hardly notice that. The
problem is that the entire array of FDs is scanned each time you want to go back to your polling
loop. The way these applications work is that after checking for activity on FDs, the application
processes the activity (for example, reading data from active FDs). When all the activity has been
processed, the application goes back to polling the OS for more FD activity. In many cases, only
a small number of FDs are active at any one time (say during each timeslice), so it may only
take a few milliseconds to process all the activity. High performance http servers can process
hundreds or thousands of transactions per second. A server that takes 2 ms to process each active
FD can process 500 transactions per second. If you add 3 ms for FD scanning in the kernel, you
now have 5 ms per transaction. That only gives 200 transactions per second, a massive drop in
performance.

There is another problem, and that is that the application needs to scan the “returned” FD array
that the kernel has updated to see which FDs are active. This is yet another scan of a large array.
This isn’t as costly as the kernel scan, for reasons I’ll get to later, but it is still a fi nite cost.

New POSIX Interfaces

A fairly simple proposal is to use the POSIX.4 Asynchronous I/O (AIO) interface (aio_read()
and friends). Here we would call aio_read() for each FD. This would then queue thousands of
asynchronous I/O requests. This model looks appealing, until we look under the hood of some
aio_*() implementations. The Linux glibc implementation is a case in point: there is no kernel
support. Instead, the C library (glibc 2.1) launches a thread per FD for which there are outstanding
AIO requests (up to the maximum number of confi gured threads). In general, implementing this
facility in the C library is reasonable, as it avoids kernel bloat. However, if you use this facility to
start thousands of AIO requests, you may end up creating thousands of threads. This is no good,
since threads are costly. The “obvious” solution is to implement AIO in the Linux kernel, then.
Another solution is to use userspace tricks to avoid the scalability problems (see the description
of migrating FDs below). These solutions may be fi ne if you only want to run under Linux, but
is not much help if you want to run under another OS which also implements AIO using threads
(and for which you don’t have the source code so you can change the implementation). The point
here is that there appears to be no guarantee that aio_*() implementations are scalable across
platforms which support it.

It is also worth noting that POSIX.4 Asynchronous I/O is not necessarily available on all POSIX.4
compliant systems (facilities defi ned by POSIX.4 are optional). So even if you were prepared to
limit your application to POSIX.4 systems, there is still no guarantee that AIO is available. Many
or most implementations will be scalable, but we can’t be sure all are scalable, so we need an
alternative.

Unit 13: Case Study: Linux

Notes

 LOVELY PROFESSIONAL UNIVERSITY 273

Optimising existing UNIX Interfaces

There are improvements we can make for the massive FD scanning problem. Firstly we can
optimise the way the scanning is done inside the kernel. Right now (2.1.106) the kernel has
to call the poll() method for each fi le structure. This is expensive. Back in the 2.1.5x kernels, I
coded a better implementation for the kernel which sped things up almost 3 times. While this
requires modifi cations to drivers to take advantage of this, it has the advantage of not changing
the semantics we expect from UNIX. Note one other interesting feature of this optimisation: it
centralises event notifi cation, which in turn would make implementing I/O readiness queues
simpler. I’m not sure how closure of FDs before readiness events are read should be handled.
This could complicate their implementation.

Doing this optimisation does not solve our problem, though. It only pushes the problem away
for a while.

Making better use of existing UNIX Interfaces

Note that for my purposes, it is better to optimise the application so that it works well on many
OSes rather than optimising a single OS. Creating new interfaces for Linux is a last resort. Also
note that this section assumes that an OS of interest does not have an existing (preferably POSIX)
mechanism that supports FD management in a scalable way.

Another solution (which would also benefi t from the kernel optimisation discussed above) is
for the application to divide the FD array into a number of smaller FD arrays, say 10. You then
create 10 threads, each of which has a polling loop using its smaller FD array. So each FD array is
now 100 entries long. While this doesn’t change the total number of FDs that must be scanned, it
does change when they have to be scanned. Since most FDs are inactive, not all the threads will
be woken up. Too see how this works, consider the example where, at any time (say during a
single timeslice of 10 ms), only 5 FDs are active. Assuming these FDs are randomly, uniformly
distributed, at most 5 threads will need to be woken up. These threads then process the activity
and go back to the start of their polling loops. Where we win is that only 5 threads had to go back
and call select(2) or poll(2). Since they each have 100 entry FD arrays, the kernel only has to scan
500 FDs. This has halved the amount of scanning required. The scanning load has gone from 30%
to 15% by this simple change. If you were to instead use 100 threads, you would still only have at
most 5 threads woken up for activity, and hence the total number of FDs scanned this timeslice
would be 50. This takes down the scanning load to 0.15%, which is negligible.

There is one thing to watch out for here: if you use select(2) in your polling loop, be aware that
the size of your FD array is equal to the value of your largest FD. This is because select(2) uses
a bitmask for its FD array. This means one of your threads will want to poll FDs 991 to 1000.
Unfortunately, your FD array is still 1000 long. What’s worse, the kernel still has to do a minimal
scan for all those 1000 FDs. The solution to this is to use poll(2) instead, where you only have to
pass as many FDs as you want to poll, and the kernel scans only those.

This solution sounds ideal: just create lots and lots of threads. At the extreme, you create one
thread per FD. There is a problem here, however, as each thread consumes system resources.
So you need to compromise between the number of threads and the FD scanning load. Also, the
more threads you have the more cache misses you induce, so this is something to avoid as well.
Fortunately in this case most threads will be running nearly the same code at the same time, so
cache pollution should not be a signifi cant problem.

A more advanced solution is to have dynamic migration of FDs depending on whether they are
mostly active or inactive. In the simplest case, you only have two threads. One which polls mostly
active FDs and the other polls mostly inactive FDs. The thread for active FDs will be woken up
very frequently, but on the other hand will have only a small number of FDs to scan. The other
thread will have to scan a large number of FDs, but it will only be woken up occasionally. For

Operating System

Notes

274 LOVELY PROFESSIONAL UNIVERSITY

each FD an activity counter is kept. When a FD on the mostly inactive list is deemed to be fairly
active, it is migrated to the mostly active list. A reverse operation occurs for fairly inactive FDs
on the mostly active list.

13.8 Inter-process Communication

Processes communicate with each other and with the kernel to coordinate their activities. Linux
supports a number of Inter-process Communication (IPC) mechanisms. Signals and pipes are
two of them but Linux also supports the System V IPC mechanisms named after the Unix TM
release in which they fi rst appeared.

13.8.1 Signals

Signals are one of the oldest inter-process communication methods used by Unix TM systems.
They are used to signal asynchronous events to one or more processes. A signal could be
generated by a keyboard interrupt or an error condition such as the process attempting to access
a non-existent location in its virtual memory. Signals are also used by the shells to signal job
control commands to their child processes.

There are a set of defi ned signals that the kernel can generate or that can be generated by other
processes in the system, provided that they have the correct privileges. You can list a system’s set
of signals using the kill command (kill -l), on my Intel Linux box this gives:

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL

 5) SIGTRAP 6) SIGIOT 7) SIGBUS 8) SIGFPE

 9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2

13) SIGPIPE 14) SIGALRM 15) SIGTERM 17) SIGCHLD

18) SIGCONT 19) SIGSTOP 20) SIGTSTP 21) SIGTTIN

22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ

26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO

30) SIGPWR

The numbers are different for an Alpha AXP Linux box. Processes can choose to ignore most of
the signals that are generated, with two notable exceptions: neither the SIGSTOP signal which
causes a process to halt its execution nor the SIGKILL signal which causes a process to exit can be
ignored. Otherwise though, a process can choose just how it wants to handle the various signals.
Processes can block the signals and, if they do not block them, they can either choose to handle
them themselves or allow the kernel to handle them. If the kernel handles the signals, it will
do the default actions required for this signal. For example, the default action when a process
receives the SIGFPE (fl oating point exception) signal is to core dump and then exit. Signals have
no inherent relative priorities. If two signals are generated for a process at the same time then
they may be presented to the process or handled in any order. Also there is no mechanism for
handling multiple signals of the same kind. There is no way that a process can tell if it received
1 or 42 SIGCONT signals.

Linux implements signals using information stored in the task_struct for the process. The number
of supported signals is limited to the word size of the processor. Processes with a word size of 32
bits can have 32 signals whereas 64 bit processors like the Alpha AXP may have up to 64 signals.
The currently pending signals are kept in the signal fi eld with a mask of blocked signals held in
blocked. With the exception of SIGSTOP and SIGKILL, all signals can be blocked. If a blocked
signal is generated, it remains pending until it is unblocked. Linux also holds information about
how each process handles every possible signal and this is held in an array of sigaction data

Unit 13: Case Study: Linux

Notes

 LOVELY PROFESSIONAL UNIVERSITY 275

structures pointed at by the task_struct for each process. Amongst other things it contains either
the address of a routine that will handle the signal or a fl ag which tells Linux that the process
either wishes to ignore this signal or let the kernel handle the signal for it. The process modifi es
the default signal handling by making system calls and these calls alter the sigaction for the
appropriate signal as well as the blocked mask.

Not every process in the system can send signals to every other process, the kernel can and super
users can. Normal processes can only send signals to processes with the same uid and gid or to
processes in the same process group. Signals are generated by setting the appropriate bit in the
task_struct’s signal fi eld. If the process has not blocked the signal and is waiting but interruptible
(in state Interruptible) then it is woken up by changing its state to Running and making sure that
it is in the run queue. That way the scheduler will consider it a candidate for running when the
system next schedules. If the default handling is needed, then Linux can optimize the handling
of the signal.

 Example: If the signal SIGWINCH (the X window changed focus) and the default handler
is being used then there is nothing to be done.

Signals are not presented to the process immediately they are generated., they must wait until the
process is running again. Every time a process exits from a system call its signal and blocked fi elds
are checked and, if there are any unblocked signals, they can now be delivered. This might seem
a very unreliable method but every process in the system is making system calls, for example to
write a character to the terminal, all of the time. Processes can elect to wait for signals if they wish,
they are suspended in state Interruptible until a signal is presented. The Linux signal processing
code looks at the sigaction structure for each of the current unblocked signals.

If a signal’s handler is set to the default action then the kernel will handle it. The SIGSTOP signal’s
default handler will change the current process’s state to Stopped and then run the scheduler to
select a new process to run. The default action for the SIGFPE signal will core dump the process
and then cause it to exit. Alternatively, the process may have specifi ed its own signal handler.
This is a routine which will be called whenever the signal is generated and the sigaction structure
holds the address of this routine. The kernel must call the process’s signal handling routine and
how this happens is processor specifi c but all CPUs must cope with the fact that the current
process is running in kernel mode and is just about to return to the process that called the kernel
or system routine in user mode. The problem is solved by manipulating the stack and registers of
the process. The process’s program counter is set to the address of its signal handling routine and
the parameters to the routine are added to the call frame or passed in registers. When the process
resumes operation it appears as if the signal handling routine were called normally.

Linux is POSIX compatible and so the process can specify which signals are blocked when a
particular signal handling routine is called. This means changing the blocked mask during the
call to the processes signal handler. The blocked mask must be returned to its original value
when the signal handling routine has fi nished. Therefore Linux adds a call to a tidy up routine
which will restore the original blocked mask onto the call stack of the signalled process. Linux
also optimizes the case where several signal handling routines need to be called by stacking them
so that each time one handling routine exits, the next one is called until the tidy up routine is
called.

13.8.2 Pipes

The common Linux shells all allow redirection. For example

$ ls | pr | lpr

Operating System

Notes

276 LOVELY PROFESSIONAL UNIVERSITY

f_mode

f_pcs

f_flags

f_count

f_ownet

f_inode

f_op

f_version

file
Process 1

f_mode

f_pcs

f_flags

f_count

f_ownet

f_inode

f_op

f_version

file
Process 2

inode

Pipe
Write
Operations

Pipe
Read
Operations

Data Page

Figure 13.8: Pipes

pipes the output from the ls command listing the directory’s fi les into the standard input of the
pr command which paginates them. Finally the standard output from the pr command is piped
into the standard input of the lpr command which prints the results on the default printer. Pipes
then are unidirectional byte streams which connect the standard output from one process into the
standard input of another process. Neither process is aware of this redirection and behaves just
as it would normally. It is the shell which sets up these temporary pipes between the processes.

In Linux, a pipe is implemented using two fi le data structures which both point at the same
temporary VFS inode which itself points at a physical page within memory. Figure 13.8 shows
that each fi le data structure contains pointers to different fi le operation routine vectors; one for
writing to the pipe, the other for reading from the pipe.

This hides the underlying differences from the generic system calls which read and write to
ordinary fi les. As the writing process writes to the pipe, bytes are copied into the shared data
page and when the reading process reads from the pipe, bytes are copied from the shared data
page. Linux must synchronize access to the pipe. It must make sure that the reader and the writer
of the pipe are in step and to do this it uses locks, wait queues and signals.

When the writer wants to write to the pipe it uses the standard write library functions. These
all pass fi le descriptors that are indices into the process’s set of fi le data structures, each one
representing an open fi le or, as in this case, an open pipe. The Linux system call uses the
write routine pointed at by the fi le data structure describing this pipe. That write routine uses
information held in the VFS inode representing the pipe to manage the write request.

If there is enough room to write all of the bytes into the pipe and, so long as the pipe is not
locked by its reader, Linux locks it for the writer and copies the bytes to be written from the
process’s address space into the shared data page. If the pipe is locked by the reader or if there is
not enough room for the data then the current process is made to sleep on the pipe inode’s wait
queue and the scheduler is called so that another process can run. It is interruptible, so it can

Unit 13: Case Study: Linux

Notes

 LOVELY PROFESSIONAL UNIVERSITY 277

receive signals and it will be woken by the reader when there is enough room for the write data
or when the pipe is unlocked. When the data has been written, the pipe’s VFS inode is unlocked
and any waiting readers sleeping on the inode’s wait queue will themselves be woken up.

Reading data from the pipe is a very similar process to writing to it.

Processes are allowed to do non-blocking reads (it depends on the mode in which they opened
the fi le or pipe) and, in this case, if there is no data to be read or if the pipe is locked, an error will
be returned. This means that the process can continue to run. The alternative is to wait on the
pipe inode’s wait queue until the write process has fi nished. When both processes have fi nished
with the pipe, the pipe inode is discarded along with the shared data page.

Linux also supports named pipes, also known as FIFOs because pipes operate on a First In, First
Out principle. The fi rst data written into the pipe is the fi rst data read from the pipe. Unlike
pipes, FIFOs are not temporary objects, they are entities in the fi le system and can be created
using the mkfi fo command. Processes are free to use a FIFO so long as they have appropriate
access rights to it. The way that FIFOs are opened is a little different from pipes. A pipe (its two
fi le data structures, its VFS inode and the shared data page) is created in one go whereas a FIFO
already exists and is opened and closed by its users. Linux must handle readers opening the FIFO
before writers open it as well as readers reading before any writers have written to it. That aside,
FIFOs are handled almost exactly the same way as pipes and they use the same data structures
and operations.

13.8.3 System V IPC Mechanisms

Linux supports three types of interprocess communication mechanisms that fi rst appeared in
Unix TM System V (1983). These are message queues, semaphores and shared memory. These
System V IPC mechanisms all share common authentication methods. Processes may access
these resources only by passing a unique reference identifi er to the kernel via system calls. Access
to these System V IPC objects is checked using access permissions, much like accesses to fi les
are checked. The access rights to the System V IPC object is set by the creator of the object via
system calls. The object’s reference identifi er is used by each mechanism as an index into a table
of resources. It is not a straight forward index but requires some manipulation to generate the
index.

All Linux data structures representing System V IPC objects in the system include an ipc_perm
structure which contains the owner and creator process’s user and group identifi ers. The access
mode for this object (owner, group and other) and the IPC object’s key. The key is used as a way
of locating the System V IPC object’s reference identifi er. Two sets of keys are supported: public
and private. If the key is public then any process in the system, subject to rights checking, can fi nd
the reference identifi er for the System V IPC object. System V IPC objects can never be referenced
with a key, only by their reference identifi er.

13.8.4 Message Queues

Message queues allow one or more processes to write messages, which will be read by one or
more reading processes. Linux maintains a list of message queues, the msgque vector; each
element of which points to a msqid_ds data structure that fully describes the message queue.
When message queues arxe created a new msqid_ds data structure is allocated from system
memory and inserted into the vector.

Operating System

Notes

278 LOVELY PROFESSIONAL UNIVERSITY

Figure 13.9: System V IPC Message Queues

Each msqid_ds data structure contains an ipc_perm data structure and pointers to the messages
entered onto this queue. In addition, Linux keeps queue modifi cation times such as the last time
that this queue was written to and so on. The msqid_ds also contains two wait queues; one for
the writers to the queue and one for the readers of the message queue.

Each time a process attempts to write a message to the write queue its effective user and group
identifi ers are compared with the mode in this queue’s ipc_perm data structure. If the process
can write to the queue then the message may be copied from the process’s address space into a
msg data structure and put at the end of this message queue. Each message is tagged with an
application specifi c type, agreed between the cooperating processes. However, there may be no
room for the message as Linux restricts the number and length of messages that can be written.
In this case the process will be added to this message queue’s write wait queue and the scheduler
will be called to select a new process to run. It will be woken up when one or more messages have
been read from this message queue.

Reading from the queue is a similar process. Again, the processes access rights to the write queue
are checked. A reading process may choose to either get the fi rst message in the queue regardless
of its type or select messages with particular types. If no messages match this criteria the reading
process will be added to the message queue’s read wait queue and the scheduler run. When a
new message is written to the queue this process will be woken up and run again.

13.8.5 Semaphores

In its simplest form a semaphore is a location in memory whose value can be tested and set
by more than one process. The test and set operation is, so far as each process is concerned,
uninterruptible or atomic; once started nothing can stop it. The result of the test and set operation
is the addition of the current value of the semaphore and the set value, which can be positive or
negative. Depending on the result of the test and set operation one process may have to sleep
until the semphore’s value is changed by another process. Semaphores can be used to implement
critical regions, areas of critical code that only one process at a time should be executing.

Unit 13: Case Study: Linux

Notes

 LOVELY PROFESSIONAL UNIVERSITY 279

Figure 13.10: System V IPC Semaphores

Say you had many cooperating processes reading records from and writing records to a single
data fi le. You would want that fi le access to be strictly coordinated. You could use a semaphore
with an initial value of 1 and, around the fi le operating code, put two semaphore operations, the
fi rst to test and decrement the semaphore’s value and the second to test and increment it. The fi rst
process to access the fi le would try to decrement the semaphore’s value and it would succeed,
the semaphore’s value now being 0. This process can now go ahead and use the data fi le but if
another process wishing to use it now tries to decrement the semaphore’s value it would fail as
the result would be -1. That process will be suspended until the fi rst process has fi nished with the
data fi le. When the fi rst process has fi nished with the data fi le it will increment the semaphore’s
value, making it 1 again. Now the waiting process can be woken and this time its attempt to
increment the semaphore will succeed.

System V IPC semaphore objects each describe a semaphore array and Linux uses the semid_ds
data structure to represent this. All of the semid_ds data structures in the system are pointed
at by the smeary, a vector of pointers. There are sem_nsems in each semaphore array, each one
described by a sem data structure pointed at by sem_base. All of the processes that are allowed to
manipulate the semaphore array of a System V IPC semaphore object may make system calls that
perform operations on them. The system call can specify many operations and each operation
is described by three inputs; the semaphore index, the operation value and a set of fl ags. The
semaphore index is an index into the semaphore array and the operation value is a numerical
value that will be added to the current value of the semaphore. First Linux tests whether or not
all of the operations would succeed. An operation will succeed if the operation value added to
the semaphore’s current value would be greater than zero or if both the operation value and the
semaphore’s current value are zero. If any of the semaphore operations would fail Linux may
suspend the process but only if the operation fl ags have not requested that the system call is
non-blocking. If the process is to be suspended then Linux must save the state of the semaphore
operations to be performed and put the current process onto a wait queue. It does this by building
a sem_queue data structure on the stack and fi lling it out. The new sem_queue data structure is
put at the end of this semaphore object’s wait queue (using the sem_pending and sem_pending_

Operating System

Notes

280 LOVELY PROFESSIONAL UNIVERSITY

last pointers). The current process is put on the wait queue in the sem_queue data structure
(sleeper) and the scheduler called to choose another process to run.

If all of the semaphore operations would have succeeded and the current process does not need
to be suspended, Linux goes ahead and applies the operations to the appropriate members of
the semaphore array. Now Linux must check that any waiting, suspended, processes may now
apply their semaphore operations. It looks at each member of the operations pending queue
(sem_pending) in turn, testing to see if the semphore operations will succeed this time. If they
will then it removes the sem_queue data structure from the operations pending list and applies
the semaphore operations to the semaphore array. It wakes up the sleeping process making
it available to be restarted the next time the scheduler runs. Linux keeps looking through the
pending list from the start until there is a pass where no semaphore operations can be applied
and so no more processes can be woken.

There is a problem with semaphores, deadlocks. These occur when one process has altered the
semaphores value as it enters a critical region but then fails to leave the critical region because
it crashed or was killed. Linux protects against this by maintaining lists of adjustments to the
semaphore arrays. The idea is that when these adjustments are applied, the semaphores will be
put back to the state that they were in before the a process’s set of semaphore operations were
applied. These adjustments are kept in sem_undo data structures queued both on the semid_ds
data structure and on the task_struct data structure for the processes using these semaphore
arrays.

Each individual semaphore operation may request that an adjustment be maintained. Linux
will maintain at most one sem_undo data structure per process for each semaphore array. If
the requesting process does not have one, then one is created when it is needed. The new sem_
undo data structure is queued both onto this process’s task_struct data structure and onto the
semaphore array’s semid_ds data structure. As operations are applied to the semphores in the
semaphore array the negation of the operation value is added to this semphore’s entry in the
adjustment array of this process’s sem_undo data structure. So, if the operation value is 2, then -2
is added to the adjustment entry for this semaphore.

When processes are deleted, as they exit Linux works through their set of sem_undo data
structures applying the adjustments to the semaphore arrays. If a semaphore set is deleted, the
sem_undo data structures are left queued on the process’s task_struct but the semaphore array
identifi er is made invalid. In this case the semaphore clean up code simply discards the sem_
undo data structure.

13.8.6 Shared Memory

Shared memory allows one or more processes to communicate via memory that appears in all of
their virtual address spaces. The pages of the virtual memory is referenced by page table entries
in each of the sharing processes’ page tables. It does not have to be at the same address in all of
the processes’ virtual memory. As with all System V IPC objects, access to shared memory areas
is controlled via keys and access rights checking. Once the memory is being shared, there are
no checks on how the processes are using it. They must rely on other mechanisms, for example
System V semaphores, to synchronize access to the memory.

Each newly created shared memory area is represented by a shmid_ds data structure. These are
kept in the shm_segs vector.

The shmid_ds data structure describes how big the area of shared memory is, how many processes
are using it and information about how that shared memory is mapped into their address spaces.
It is the creator of the shared memory that controls the access permissions to that memory and
whether its key is public or private. If it has enough access rights it may also lock the shared
memory into physical memory.

Unit 13: Case Study: Linux

Notes

 LOVELY PROFESSIONAL UNIVERSITY 281

Each process that wishes to share the memory must attach to that virtual memory via a system
call. This creates a new vm_area_struct data structure describing the shared memory for this
process. The process can choose where in its virtual address space the shared memory goes or it
can let Linux choose a free area large enough. The new vm_area_struct structure is put into the
list of vm_area_struct pointed at by the shmid_ds. The vm_next_shared and vm_prev_shared
pointers are used to link them together. The virtual memory is not actually created during the
attach; it happens when the fi rst process attempts to access it.

Figure 13.11: System V IPC Shared Memory

The fi rst time that a process accesses one of the pages of the shared virtual memory, a page
fault will occur. When Linux fi xes up that page fault it fi nds the vm_area_struct data structure
describing it. This contains pointers to handler routines for this type of shared virtual memory.
The shared memory page fault handling code looks in the list of page table entries for this shmid_
ds to see if one exists for this page of the shared virtual memory. If it does not exist, it will allocate
a physical page and create a page table entry for it. As well as going into the current process’s
page tables, this entry is saved in the shmid_ds. This means that when the next process that
attempts to access this memory gets a page fault, the shared memory fault handling code will use
this newly created physical page for that process too. So, the fi rst process that accesses a page of
the shared memory causes it to be created and thereafter access by the other processes cause that
page to be added into their virtual address spaces.

When processes no longer wish to share the virtual memory, they detach from it. So long as other
processes are still using the memory the detach only affects the current process. Its vm_area_
struct is removed from the shmid_ds data structure and deallocated. The current process’s page
tables are updated to invalidate the area of virtual memory that it used to share. When the last
process sharing the memory detaches from it, the pages of the shared memory current in physical
memory are freed, as is the shmid_ds data structure for this shared memory.

Further complications arise when shared virtual memory is not locked into physical memory. In
this case the pages of the shared memory may be swapped out to the system’s swap disk during
periods of high memory usage.

Operating System

Notes

282 LOVELY PROFESSIONAL UNIVERSITY

13.9 Network Structure

Networking and Linux are terms that are almost synonymous. In a very real sense Linux is
a product of the Internet or World Wide Web (WWW). Its developers and users use the web
to exchange information ideas, code, and Linux itself is often used to support the networking
needs of organizations. This unit describes how Linux supports the network protocols known
collectively as TCP/IP.

The TCP/IP protocols were designed to support communications between computers connected
to the ARPANET, an American research network funded by the US government. The ARPANET
pioneered networking concepts such as packet switching and protocol layering where one
protocol uses the services of another. ARPANET was retired in 1988 but its successors (NSF NET
and the Internet) have grown even larger. What is now known as the World Wide Web grew from
the ARPANET and is itself supported by the TCP/IP protocols. Unix TM was extensively used
on the ARPANET and the fi rst released networking version of Unix TM was 4.3 BSD. Linux’s
networking implementation is modeled on 4.3 BSD in that it supports BSD sockets (with some
extensions) and the full range of TCP/IP networking. This programming interface was chosen
because of its popularity and to help applications be portable between Linux and other Unix TM
platforms.

13.9.1 An Overview of TCP/IP Networking

In an IP network every machine is assigned an IP address, this is a 32 bit number that uniquely
identifi es the machine. The WWW is a very large, and growing, IP network and every machine
that is connected to it has to have a unique IP address assigned to it. IP addresses are represented
by four numbers separated by dots, for example, 16.42.0.9. This IP address is actually in two
parts, the network address and the host address. The sizes of these parts may vary (there are
several classes of IP addresses) but using 16.42.0.9 as an example, the network address would
be 16.42 and the host address 0.9. The host address is further subdivided into a subnetwork
and a host address. Again, using 16.42.0.9 as an example, the subnetwork address would be
16.42.0 and the host address 16.42.0.9. This subdivision of the IP address allows organizations
to subdivide their networks. For example, 16.42 could be the network address of the ACME
Computer Company; 16.42.0 would be subnet 0 and 16.42.1 would be subnet 1. These subnets
might be in separate buildings, perhaps connected by leased telephone lines or even microwave
links. IP addresses are assigned by the network administrator and having IP subnetworks is a
good way of distributing the administration of the network. IP subnet administrators are free to
allocate IP addresses within their IP subnetworks.

Generally though, IP addresses are somewhat hard to remember. Names are much easier. linux.
acme.com is much easier to remember than 16.42.0.9 but there must be some mechanism to
convert the network names into an IP address. These names can be statically specifi ed in the /
etc/hosts fi le or Linux can ask a Distributed Name Server (DNS server) to resolve the name for
it. In this case the local host must know the IP address of one or more DNS servers and these are
specifi ed in /etc/resolv.conf.

Whenever you connect to another machine, say when reading a web page, its IP address is used
to exchange data with that machine. This data is contained in IP packets each of which have an
IP header containing the IP addresses of the source and destination machine’s IP addresses, a
checksum and other useful information. The checksum is derived from the data in the IP packet
and allows the receiver of IP packets to tell if the IP packet was corrupted during transmission,
perhaps by a noisy telephone line. The data transmitted by an application may have been broken
down into smaller packets which are easier to handle. The size of the IP data packets varies
depending on the connection media; ethernet packets are generally bigger than PPP packets.
The destination host must reassemble the data packets before giving the data to the receiving
application. You can see this fragmentation and reassembly of data graphically if you access a
web page containing a lot of graphical images via a moderately slow serial link.

Unit 13: Case Study: Linux

Notes

 LOVELY PROFESSIONAL UNIVERSITY 283

Hosts connected to the same IP subnet can send IP packets directly to each other, all other IP
packets will be sent to a special host, a gateway. Gateways (or routers) are connected to more than
one IP subnet and they will resend IP packets received on one subnet, but destined for another
onwards. For example, if subnets 16.42.1.0 and 16.42.0.0 are connected together by a gateway
then any packets sent from subnet 0 to subnet 1 would have to be directed to the gateway so that
it could route them. The local host builds up routing tables which allow it to route IP packets to
the correct machine. For every IP destination there is an entry in the routing tables which tells
Linux which host to send IP packets to in order that they reach their destination. These routing
tables are dynamic and change over time as applications use the network and as the network
topology changes.

Destination
ethernet
address

Source
ethernet
address

Protocol Data Checksum

Length Protocol Checksum Source
IP address

Destination
IP address Data

Source TCP
address

Destination
TCP address

SEQ ACK Data

TCP Packet

ETHERNET FRAME

IP PACKET

Figure 13.12: TCP/IP Protocol Layers

The IP protocol is a transport layer that is used by other protocols to carry their data. The
Transmission Control Protocol (TCP) is a reliable end to end protocol that uses IP to transmit
and receive its own packets. Just as IP packets have their own header, TCP has its own header.
TCP is a connection based protocol where two networking applications are connected by a single,
virtual connection even though there may be many subnetworks, gateways and routers between
them. TCP reliably transmits and receives data between the two applications and guarantees
that there will be no lost or duplicated data. When TCP transmits its packet using IP, the data
contained within the IP packet is the TCP packet itself. The IP layer on each communicating host
is responsible for transmitting and receiving IP packets. User Datagram Protocol (UDP) also
uses the IP layer to transport its packets, unlike TCP, UDP is not a reliable protocol but offers
a datagram service. This use of IP by other protocols means that when IP packets are received
the receiving IP layer must know which upper protocol layer to give the data contained in this
IP packet to. To facilitate this every IP packet header has a byte containing a protocol identifi er.
When TCP asks the IP layer to transmit an IP packet , that IP packet’s header states that it contains
a TCP packet. The receiving IP layer uses that protocol identifi er to decide which layer to pass
the received data up to, in this case the TCP layer. When applications communicate via TCP/IP
they must specify not only the target’s IP address but also the port address of the application. A
port address uniquely identifi es an application and standard network applications use standard
port addresses; for example, web servers use port 80. These registered port addresses can be seen
in /etc/services.

This layering of protocols does not stop with TCP, UDP and IP. The IP protocol layer itself
uses many different physical media to transport IP packets to other IP hosts. These media may
themselves add their own protocol headers. One such example is the ethernet layer, but PPP and
SLIP are others. An ethernet network allows many hosts to be simultaneously connected to a
single physical cable. Every transmitted ethernet frame can be seen by all connected hosts and so

Operating System

Notes

284 LOVELY PROFESSIONAL UNIVERSITY

every ethernet device has a unique address. Any ethernet frame transmitted to that address will
be received by the addressed host but ignored by all the other hosts connected to the network.
These unique addresses are built into each ethernet device when they are manufactured and it is
usually kept in an SROM on the ethernet card. Ethernet addresses are 6 bytes long, an example
would be 08-00-2b-00-49-A4. Some ethernet addresses are reserved for multicast purposes and
ethernet frames sent with these destination addresses will be received by all hosts on the network.
As ethernet frames can carry many different protocols (as data) they, like IP packets, contain a
protocol identifi er in their headers. This allows the ethernet layer to correctly receive IP packets
and to pass them onto the IP layer.

In order to send an IP packet via a multi-connection protocol such as ethernet, the IP layer must
fi nd the ethernet address of the IP host. This is because IP addresses are simply an addressing
concept, the ethernet devices themselves have their own physical addresses. IP addresses on the
other hand can be assigned and reassigned by network administrators at will but the network
hardware responds only to ethernet frames with its own physical address or to special multicast
addresses which all machines must receive. Linux uses the Address Resolution Protocol (or
ARP) to allow machines to translate IP addresses into real hardware addresses such as ethernet
addresses. A host wishing to know the hardware address associated with an IP address sends
an ARP request packet containing the IP address that it wishes translating to all nodes on the
network by sending it to a multicast address. The target host that owns the IP address, responds
with an ARP reply that contains its physical hardware address. ARP is not just restricted to
ethernet devices, it can resolve IP addresses for other physical media, for example FDDI. Those
network devices that cannot ARP are marked so that Linux does not attempt to ARP. There is
also the reverse function, Reverse ARP or RARP, which translates physical network addresses
into IP addresses. This is used by gateways, which respond to ARP requests on behalf of IP
addresses that are in the remote network.

13.9.2 The Linux TCP/IP Networking Layers

Just like the network protocols themselves, Figure 13.13 shows that Linux implements the internet
protocol address family as a series of connected layers of software. BSD sockets are supported by
a generic socket management software concerned only with BSD sockets. Supporting this is the
INET socket layer, this manages the communication end points for the IP based protocols TCP
and UDP. UDP (User Datagram Protocol) is a connectionless protocol whereas TCP (Transmission
Control Protocol) is a reliable end to end protocol. When UDP packets are transmitted, Linux
neither knows nor cares if they arrive safely at their destination. TCP packets are numbered
and both ends of the TCP connection make sure that transmitted data is received correctly. The
IP layer contains code implementing the Internet Protocol. This code prepends IP headers to
transmitted data and understands how to route incoming IP packets to either the TCP or UDP
layers. Underneath the IP layer, supporting all of Linux’s networking are the network devices,
for example PPP and ethernet. Network devices do not always represent physical devices; some
like the loopback device are purely software devices. Unlike standard Linux devices that are
created via the mknod command, network devices appear only if the underlying software has
found and initialized them. You will only see /dev/eth0 when you have built a kernel with
the appropriate ethernet device driver in it. The ARP protocol sits between the IP layer and the
protocols that support ARPing for addresses.

Unit 13: Case Study: Linux

Notes

 LOVELY PROFESSIONAL UNIVERSITY 285

BSD
Sockets

INET
Sockets

TCP UDP

IP

PPP SLIP Ethernet

ARP

Network
Applications

User

Kernel

Socket
Interface

Protocol
Layers

Network
Devices

Figure 13.13: Linux Networking Layers

13.9.3 The BSD Socket Interface

This is a general interface which not only supports various forms of networking but is also an
inter-process communications mechanism. A socket describes one end of a communications
link, two communicating processes would each have a socket describing their end of the
communication link between them. Sockets could be thought of as a special case of pipes but,
unlike pipes, sockets have no limit on the amount of data that they can contain. Linux supports
several classes of socket and these are known as address families. This is because each class has
its own method of addressing its communications. Linux supports the following socket address
families or domains:

UNIX Unix domain sockets,

INET The Internet address family supports communications via

TCP/IP protocols

AX25 Amateur radio X25

IPX Novell IPX

APPLETALK Appletalk DDP

X25 X25

Operating System

Notes

286 LOVELY PROFESSIONAL UNIVERSITY

There are several socket types and these represent the type of service that supports the connection.
Not all address families support all types of service. Linux BSD sockets support a number of
socket types:

Stream: These sockets provide reliable two way sequenced data streams with a guarantee that
data cannot be lost, corrupted or duplicated in transit. Stream sockets are supported by the TCP
protocol of the Internet (INET) address family.

Datagram: These sockets also provide two way data transfer but, unlike stream sockets, there is
no guarantee that the messages will arrive. Even if they do arrive there is no guarantee that they
will arrive in order or even not be duplicated or corrupted. This type of socket is supported by
the UDP protocol of the Internet address family.

Raw: This allows processes direct (hence ‘‘raw’’) access to the underlying protocols. It is, for
example, possible to open a raw socket to an ethernet device and see raw IP data traffi c.

Reliable Delivered Messages: These are very like datagram sockets but the data is guaranteed to
arrive.

Sequenced Packets: These are like stream sockets except that the data packet sizes are fi xed.

Packet: This is not a standard BSD socket type, it is a Linux specifi c extension that allows processes
to access packets directly at the device level.

Processes that communicate using sockets use a client server model. A server provides a service
and clients make use of that service. One example would be a Web Server, which provides web
pages and a web client, or browser, which reads those pages. A server using sockets, fi rst creates
a socket and then binds a name to it. The format of this name is dependent on the socket’s address
family and it is, in effect, the local address of the server. The socket’s name or address is specifi ed
using the sockaddr data structure. An INET socket would have an IP port address bound to it.
The registered port numbers can be seen in /etc/services; for example, the port number for a
web server is 80. Having bound an address to the socket, the server then listens for incoming
connection requests specifying the bound address. The originator of the request, the client, creates
a socket and makes a connection request on it, specifying the target address of the server. For
an INET socket the address of the server is its IP address and its port number. These incoming
requests must fi nd their way up through the various protocol layers and then wait on the server’s
listening socket. Once the server has received the incoming request it either accepts or rejects it. If
the incoming request is to be accepted, the server must create a new socket to accept it on. Once a
socket has been used for listening for incoming connection requests it cannot be used to support
a connection. With the connection established both ends are free to send and receive data. Finally,
when the connection is no longer needed it can be shutdown. Care is taken to ensure that data
packets in transit are correctly dealt with.

The exact meaning of operations on a BSD socket depends on its underlying address family.
Setting up TCP/IP connections is very different from setting up an amateur radio X.25 connection.
Like the virtual fi lesystem, Linux abstracts the socket interface with the BSD socket layer being
concerned with the BSD socket interface to the application programs which is in turn supported
by independent address family specifi c software. At kernel initialization time, the address families
built into the kernel register themselves with the BSD socket interface. Later on, as applications
create and use BSD sockets, an association is made between the BSD socket and its supporting
address family. This association is made via cross-linking data structures and tables of address
family specifi c support routines. For example there is an address family specifi c socket creation
routine which the BSD socket interface uses when an application creates a new socket.

When the kernel is confi gured, a number of address families and protocols are built into the
protocols vector. Each is represented by its name, for example ``INET’’ and the address of
its initialization routine. When the socket interface is initialized at boot time each protocol’s
initialization routine is called. For the socket address families this results in them registering a set

Unit 13: Case Study: Linux

Notes

 LOVELY PROFESSIONAL UNIVERSITY 287

of protocol operations. This is a set of routines, each of which performs a a particular operation
specifi c to that address family. The registered protocol operations are kept in the pops vector, a
vector of pointers to proto_ops data structures.

The proto_ops data structure consists of the address family type and a set of pointers to socket
operation routines specifi c to a particular address family. The pops vector is indexed by the
address family identifi er, for example the Internet address family identifi er (AF_INET is 2).

count

files_struct

close_on_exec

open_fs

fd[0]

fd[1]

fd[255]

f_mode

file

f_pcs

f_flags

f_count

f_ownet

f_op

f_inode

f_version

inode

socket

type
ops
data

SOCK_STREAM
Address Family
socket operations

sock

type

protocol

socket

SOCK_STREAM

BSD Socket
File Operations

1seek
read
write
select
ioctl
fasync

Figure 13.14: Linux BSD Socket Data Structures

13.9.4 The INET Socket Layer

The INET socket layer supports the internet address family which contains the TCP/IP protocols.
As discussed above, these protocols are layered, one protocol using the services of another.
Linux’s TCP/IP code and data structures refl ect this layering. Its interface with the BSD socket
layer is through the set of Internet address family socket operations which it registers with the
BSD socket layer during network initialization. These are kept in the pops vector along with
the other registered address families. The BSD socket layer calls the INET layer socket support
routines from the registered INET proto_ops data structure to perform work for it. For example
a BSD socket create request that gives the address family as INET will use the underlying INET
socket create function. The BSD socket layer passes the socket data structure representing the
BSD socket to the INET layer in each of these operations. Rather than clutter the BSD socket wiht
TCP/IP specifi c information, the INET socket layer uses its own data structure, the sock which it

Operating System

Notes

288 LOVELY PROFESSIONAL UNIVERSITY

links to the BSD socket data structure. This linkage can be seen in Figure 13.14. It links the sock
data structure to the BSD socket data structure using the data pointer in the BSD socket. This
means that subsequent INET socket calls can easily retrieve the sock data structure. The sock
data structure’s protocol operations pointer is also set up at creation time and it depends on the
protocol requested. If TCP is requested, then the sock data structure’s protocol operations pointer
will point to the set of TCP protocol operations needed for a TCP connection.

Creating a BSD Socket

The system call to create a new socket passes identifi ers for its address family, socket type and
protocol.

Firstly the requested address family is used to search the pops vector for a matching address
family. It may be that a particular address family is implemented as a kernel module and, in
this case, the kerneld daemon must load the module before we can continue. A new socket data
structure is allocated to represent the BSD socket. Actually the socket data structure is physically
part of the VFS inode data structure and allocating a socket really means allocating a VFS inode.
This may seem strange unless you consider that sockets can be operated on in just the same way
that ordinary fi les can. As all fi les are represented by a VFS inode data structure, then in order to
support fi le operations, BSD sockets must also be represented by a VFS inode data structure.

The newly created BSD socket data structure contains a pointer to the address family specifi c
socket routines and this is set to the proto_ops data structure retrieved from the pops vector. Its
type is set to the socket type requested; one of SOCK_STREAM, SOCK_DGRAM and so on. The
address family specifi c creation routine is called using the address kept in the proto_ops data
structure.

A free fi le descriptor is allocated from the current processes fd vector and the fi le data structure
that it points at is initialized. This includes setting the fi le operations pointer to point to the set of
BSD socket fi le operations supported by the BSD socket interface. Any future operations will be
directed to the socket interface and it will in turn pass them to the supporting address family by
calling its address family operation routines.

Binding an Address to an INET BSD Socket

In order to be able to listen for incoming internet connection requests, each server must create an
INET BSD socket and bind its address to it. The bind operation is mostly handled within the INET
socket layer with some support from the underlying TCP and UDP protocol layers. The socket
having an address bound to cannot be being used for any other communication. This means that
the socket’s state must be TCP_CLOSE. The sockaddr pass to the bind operation contains the IP
address to be bound to and, optionally, a port number. Normally the IP address bound to would
be one that has been assigned to a network device that supports the INET address family and
whose interface is up and able to be used. You can see which network interfaces are currently
active in the system by using the ifconfi g command. The IP address may also be the IP broadcast
address of either all 1’s or all 0’s. These are special addresses that mean ``send to everybody’’.
The IP address could also be specifi ed as any IP address if the machine is acting as a transparent
proxy or fi rewall, but only processes with superuser privileges can bind to any IP address.
The IP address bound to is saved in the sock data structure in the recv_addr and saddr fi elds.
These are used in hash lookups and as the sending IP address respectively. The port number is
optional and if it is not specifi ed the supporting network is asked for a free one. By convention,
port numbers less than 1024 cannot be used by processes without superuser privileges. If the
underlying network does allocate a port number it always allocates ones greater than 1024.

As packets are being received by the underlying network devices they must be routed to the
correct INET and BSD sockets so that they can be processed. For this reason UDP and TCP

Unit 13: Case Study: Linux

Notes

 LOVELY PROFESSIONAL UNIVERSITY 289

maintain hash tables which are used to lookup the addresses within incoming IP messages and
direct them to the correct socket/sock pair. TCP is a connection oriented protocol and so there is
more information involved in processing TCP packets than there is in processing UDP packets.

UDP maintains a hash table of allocated UDP ports, the udp_hash table. This consists of pointers
to sock data structures indexed by a hash function based on the port number. As the UDP hash
table is much smaller than the number of permissible port numbers (udp_hash is only 128 or
UDP_HTABLE_SIZE entries long) some entries in the table point to a chain of sock data structures
linked together using each sock’s next pointer.

TCP is much more complex as it maintains several hash tables. However, TCP does not actually
add the binding sock data stucture into its hash tables during the bind operation, it merely checks
that the port number requested is not currently being used. The sock data structure is added to
TCP’s hash tables during the listen operation.

Making a Connection on an INET BSD Socket

Once a socket has been created and, provided it has not been used to listen for inbound connection
requests, it can be used to make outbound connection requests. For connectionless protocols like
UDP this socket operation does not do a whole lot but for connection orientated protocols like
TCP it involves building a virtual circuit between two applications.

An outbound connection can only be made on an INET BSD socket that is in the right state; that
is to say one that does not already have a connection established and one that is not being used
for listening for inbound connections. This means that the BSD socket data structure must be in
state SS_UNCONNECTED. The UDP protocol does not establish virtual connections between
applications, any messages sent are datagrams, one off messages that may or may not reach
their destinations. It does, however, support the connect BSD socket operation. A connection
operation on a UDP INET BSD socket simply sets up the addresses of the remote application; its
IP address and its IP port number. Additionally it sets up a cache of the routing table entry so that
UDP packets sent on this BSD socket do not need to check the routing database again (unless this
route becomes invalid). The cached routing information is pointed at from the ip_route_cache
pointer in the INET sock data structure. If no addressing information is given, this cached routing
and IP addressing information will be automatically be used for messages sent using this BSD
socket. UDP moves the sock’s state to TCP_ESTABLISHED.

For a connect operation on a TCP BSD socket, TCP must build a TCP message containing
the connection information and send it to IP destination given. The TCP message contains
information about the connection, a unique starting message sequence number, the maximum
sized message that can be managed by the initiating host, the transmit and receive window
size and so on. Within TCP all messages are numbered and the initial sequence number is used
as the fi rst message number. Linux chooses a reasonably random value to avoid malicious
protocol attacks. Every message transmitted by one end of the TCP connection and successfully
received by the other is acknowledged to say that it arrived successfully and uncorrupted.
Unacknowledges messages will be retransmitted. The transmit and receive window size is the
number of outstanding messages that there can be without an acknowledgement being sent. The
maximum message size is based on the network device that is being used at the initiating end
of the request. If the receiving end’s network device supports smaller maximum message sizes
then the connection will use the minimum of the two. The application making the outbound TCP
connection request must now wait for a response from the target application to accept or reject
the connection request. As the TCP sock is now expecting incoming messages, it is added to the
tcp_listening_hash so that incoming TCP messages can be directed to this sock data structure.
TCP also starts timers so that the outbound connection request can be timed out if the target
application does not respond to the request.

Operating System

Notes

290 LOVELY PROFESSIONAL UNIVERSITY

Listening on an INET BSD Socket

Once a socket has had an address bound to it, it may listen for incoming connection requests
specifying the bound addresses. A network application can listen on a socket without fi rst binding
an address to it; in this case the INET socket layer fi nds an unused port number (for this protocol)
and automatically binds it to the socket. The listen socket function moves the socket into state
TCP_LISTEN and does any network specifi c work needed to allow incoming connections.

For UDP sockets, changing the socket’s state is enough but TCP now adds the socket’s sock data
structure into two hash tables as it is now active. These are the tcp_bound_hash table and the
tcp_listening_hash. Both are indexed via a hash function based on the IP port number.

Whenever an incoming TCP connection request is received for an active listening socket, TCP
builds a new sock data structure to represent it. This sock data structure will become the bottom
half of the TCP connection when it is eventually accepted. It also clones the incoming sk_buff
containing the connection request and queues it onto the receive_queue for the listening sock
data structure. The clone sk_buff contains a pointer to the newly created sock data structure.

Accepting Connection Requests

UDP does not support the concept of connections, accepting INET socket connection requests
only applies to the TCP protocol as an accept operation on a listening socket causes a new socket
data structure to be cloned from the original listening socket. The accept operation is then passed
to the supporting protocol layer, in this case INET to accept any incoming connection requests.
The INET protocol layer will fail the accept operation if the underlying protocol, say UDP, does
not support connections. Otherwise the accept operation is passed through to the real protocol,
in this case TCP. The accept operation can be either blocking or non-blocking. In the non-blocking
case if there are no incoming connections to accept, the accept operation will fail and the newly
created socket data structure will be thrown away. In the blocking case the network application
performing the accept operation will be added to a wait queue and then suspended until a
TCP connection request is received. Once a connection request has been received the sk_buff
containing the request is discarded and the sock data structure is returned to the INET socket
layer where it is linked to the new socket data structure created earlier. The fi le descriptor (fd)
number of the new socket is returned to the network application, and the application can then
use that fi le descriptor in socket operations on the newly created INET BSD socket.

13.9.5 The IP Layer

Socket Buffers

One of the problems of having many layers of network protocols, each one using the services of
another, is that each protocol needs to add protocol headers and tails to data as it is transmitted
and to remove them as it processes received data. This make passing data buffers between the
protocols diffi cult as each layer needs to fi nd where its particular protocol headers and tails
are. One solution is to copy buffers at each layer but that would be ineffi cient. Instead, Linux
uses socket buffers or sk_buffs to pass data between the protocol layers and the network device
drivers. sk_buffs contain pointer and length fi elds that allow each protocol layer to manipulate
the application data via standard functions or ``methods’’.

Figure 13.15 shows the sk_buff data structure; each sk_buff has a block of data associated with it.
The sk_buff has four data pointers, which are used to manipulate and manage the socket buffer’s
data:

Head: Points to the start of the data area in memory. This is fi xed when the sk_buff and its
associated data block is allocated.

Unit 13: Case Study: Linux

Notes

 LOVELY PROFESSIONAL UNIVERSITY 291

sk_buff

next

prev

dev

head

data

tail

end

Packet
to be
transmitted

truesize len

Figure 13.15: The Socket Buffer (sk_buff)

Data: Points at the current start of the protocol data. This pointer varies depending on the
protocol layer that currently owns the sk_buff.

Tail: Points at the current end of the protocol data. Again, this pointer varies depending on the
owning protocol layer,

End: Points at the end of the data area in memory. This is fi xed when the sk_buff is allocated.

There are two length fi elds len and truesize, which describe the length of the current protocol
packet and the total size of the data buffer respectively. The sk_buff handling code provides
standard mechanisms for adding and removing protocol headers and tails to the application
data. These safely manipulate the data, tail and len fi elds in the sk_buff:

Push: This moves the data pointer towards the start of the data area and increments the len fi eld.
This is used when adding data or protocol headers to the start of the data to be transmitted,

Pull: This moves the data pointer away from the start, towards the end of the data area and
decrements the len fi eld. This is used when removing data or protocol headers from the start of
the data that has been received.

Put: This moves the tail pointer towards the end of the data area and increments the len fi eld.
This is used when adding data or protocol information to the end of the data to be transmitted,

Trim: This moves the tail pointer towards the start of the data area and decrements the len fi eld.
This is used when removing data or protocol tails from the received packet.

The sk_buff data structure also contains pointers that are used as it is stored in doubly linked
circular lists of sk_buff’s during processing. There are generic sk_buff routines for adding sk_
buffs to the front and back of these lists and for removing them.

Operating System

Notes

292 LOVELY PROFESSIONAL UNIVERSITY

Receiving IP Packets

Each device data structure describes its device and provides a set of callback routines that the
network protocol layers call when they need the network driver to perform work. These functions
are mostly concerned with transmitting data and with the network device’s addresses. When a
network device receives packets from its network it must convert the received data into sk_
buff data structures. These received sk_buff’s are added onto the backlog queue by the network
drivers as they are received.

If the backlog queue grows too large, then the received sk_buff’s are discarded. The network
bottom half is fl agged as ready to run as there is work to do.

When the network bottom half handler is run by the scheduler it processes any network packets
waiting to be transmitted before processing the backlog queue of sk_buff’s determining which
protocol layer to pass the received packets to.

As the Linux networking layers were initialized, each protocol registered itself by adding a
packet_type data structure onto either the ptype_all list or into the ptype_base hash table. The
packet_type data structure contains the protocol type, a pointer to a network device, a pointer
to the protocol’s receive data processing routine and, fi nally, a pointer to the next packet_type
data structure in the list or hash chain. The ptype_all chain is used to snoop all packets being
received from any network device and is not normally used. The ptype_base hash table is hashed
by protocol identifi er and is used to decide which protocol should receive the incoming network
packet. The network bottom half matches the protocol types of incoming sk_buff’s against one
or more of the packet_type entries in either table. The protocol may match more than one entry,
for example when snooping all network traffi c, and in this case the sk_buff will be cloned. The
sk_buff is passed to the matching protocol’s handling routine.

Sending IP Packets

Packets are transmitted by applications exchanging data or else they are generated by the network
protocols as they support established connections or connections being established. Whichever
way the data is generated, an sk_buff is built to contain the data and various headers are added
by the protocol layers as it passes through them.

The sk_buff needs to be passed to a network device to be transmitted. First though the protocol,
for example IP, needs to decide which network device to use. This depends on the best route for
the packet. For computers connected by modem to a single network, say via the PPP protocol,
the routing choice is easy. The packet should either be sent to the local host via the loopback
device or to the gateway at the end of the PPP modem connection. For computers connected to an
ethernet the choices are harder as there are many computers connected to the network.

For every IP packet transmitted, IP uses the routing tables to resolve the route for the destination
IP address. Each IP destination successfully looked up in the routing tables returns a rtable data
structure describing the route to use. This includes the source IP address to use, the address of
the network device data structure and, sometimes, a prebuilt hardware header. This hardware
header is network device specifi c and contains the source and destination physical addresses and
other media specifi c information. If the network device is an ethernet device, the hardware header
would be as shown in Figure 13 and the source and destination addresses would be physical
ethernet addresses. The hardware header is cached with the route because it must be appended
to each IP packet transmitted on this route and constructing it takes time. The hardware header
may contain physical addresses that have to be resolved using the ARP protocol. In this case the
outgoing packet is stalled until the address has been resolved. Once it has been resolved and the
hardware header built, the hardware header is cached so that future IP packets sent using this
interface do not have to ARP.

Unit 13: Case Study: Linux

Notes

 LOVELY PROFESSIONAL UNIVERSITY 293

Data Fragmentation
Every network device has a maximum packet size and it cannot transmit or receive a data packet
bigger than this. The IP protocol allows for this and will fragment data into smaller units to
fi t into the packet size that the network device can handle. The IP protocol header includes a
fragment fi eld which contains a fl ag and the fragment offset.

When an IP packet is ready to be transmited, IP fi nds the network device to send the IP packet
out on. This device is found from the IP routing tables. Each device has a fi eld describing its
maximum transfer unit (in bytes), this is the mtu fi eld. If the device’s mtu is smaller than the
packet size of the IP packet that is waiting to be transmitted, then the IP packet must be broken
down into smaller (mtu sized) fragments. Each fragment is represented by an sk_buff; its IP
header marked to show that it is a fragment and what offset into the data this IP packet contains.
The last packet is marked as being the last IP fragment. If, during the fragmentation, IP cannot
allocate an sk_buff, the transmit will fail.

Receiving IP fragments is a little more diffi cult than sending them because the IP fragments can
be received in any order and they must all be received before they can be reassembled. Each time
an IP packet is received it is checked to see if it is an IP fragment. The fi rst time that the fragment
of a message is received, IP creates a new ipq data structure, and this is linked into the ipqueue list
of IP fragments awaiting recombination. As more IP fragments are received, the correct ipq data
structure is found and a new ipfrag data structure is created to describe this fragment. Each ipq
data structure uniquely describes a fragmented IP receive frame with its source and destination
IP addresses, the upper layer protocol identifi er and the identifi er for this IP frame. When all of
the fragments have been received, they are combined into a single sk_buff and passed up to the
next protocol level to be processed. Each ipq contains a timer that is restarted each time a valid
fragment is received. If this timer expires, the ipq data structure and its ipfrag’s are dismantled
and the message is presumed to have been lost in transit. It is then up to the higher level protocols
to retransmit the message.

13.9.6 The Address Resolution Protocol (ARP)

The Address Resolution Protocol’s role is to provide translations of IP addresses into physical
hardware addresses such as ethernet addresses. IP needs this translation just before it passes the
data (in the form of an sk_buff) to the device driver for transmission.

It performs various checks to see if this device needs a hardware header and, if it does, if the
hardware header for the packet needs to be rebuilt. Linux caches hardware headers to avoid
frequent rebuilding of them. If the hardware header needs rebuilding, it calls the device specifi c
hardware header rebuilding routine. All ethernet devices use the same generic header rebuilding
routine which in turn uses the ARP services to translate the destination IP address into a physical
address.

The ARP protocol itself is very simple and consists of two message types, an ARP request and
an ARP reply. The ARP request contains the IP address that needs translating and the reply
(hopefully) contains the translated IP address, the hardware address. The ARP request is broadcast
to all hosts connected to the network, so, for an ethernet network, all of the machines connected
to the ethernet will see the ARP request. The machine that owns the IP address in the request will
respond to the ARP request with an ARP reply containing its own physical address.

The ARP protocol layer in Linux is built around a table of arp_table data structures which each
describe an IP to physical address translation. These entries are created as IP addresses need to

Operating System

Notes

294 LOVELY PROFESSIONAL UNIVERSITY

be translated and removed as they become stale over time. Each arp_table data structure has the
following fi elds:

last used the time that this ARP entry was last used,
last updated the time that this ARP entry was last updated,
fl ags these describe this entry’s state, if it is complete and so on,
IP address The IP address that this entry describes
hardware address The translated hardware address
hardware header This is a pointer to a cached hardware header,
timer This is a timer_list entry used to time out ARP requests that do not get a

response,
retries The number of times that this ARP request has been retried,
sk_buff queue List of sk_buff entries waiting for this IP address to be resolved

The ARP table consists of a table of pointers (the arp_tables vector) to chains of arp_table entries.
The entries are cached to speed up access to them, each entry is found by taking the last two bytes
of its IP address to generate an index into the table and then following the chain of entries until
the correct one is found. Linux also caches prebuilt hardware headers off the arp_table entries in
the form of hh_cache data structures.

When an IP address translation is requested and there is no corresponding arp_table entry, ARP
must send an ARP request message. It creates a new arp_table entry in the table and queues the
sk_buff containing the network packet that needs the address translation on the sk_buff queue of
the new entry. It sends out an ARP request and sets the ARP expiry timer running. If there is no
response then ARP will retry the request a number of times and if there is still no response ARP
will remove the arp_table entry. Any sk_buff data structures queued waiting for the IP address
to be translated will be notifi ed and it is up to the protocol layer that is transmitting them to cope
with this failure. UDP does not care about lost packets but TCP will attempt to retransmit on
an established TCP link. If the owner of the IP address responds with its hardware address, the
arp_table entry is marked as complete and any queued sk_buff’s will be removed from the queue
and will go on to be transmitted. The hardware address is written into the hardware header of
each sk_buff.

The ARP protocol layer must also respond to ARP requests that specfy its IP address. It registers
its protocol type (ETH_P_ARP), generating a packet_type data structure. This means that it will
be passed all ARP packets that are received by the network devices. As well as ARP replies,
this includes ARP requests. It generates an ARP reply using the hardware address kept in the
receiving device’s device data structure.

Network topologies can change over time and IP addresses can be reassigned to different
hardware addresses. For example, some dial up services assign an IP address as each connection
is established. In order that the ARP table contains up to date entries, ARP runs a periodic timer
which looks through all of the arp_table entries to see which have timed out. It is very careful not
to remove entries that contain one or more cached hardware headers. Removing these entries is
dangerous as other data structures rely on them. Some arp_table entries are permanent and these
are marked so that they will not be deallocated. The ARP table cannot be allowed to grow too
large; each arp_table entry consumes some kernel memory. Whenever the a new entry needs to
be allocated and the ARP table has reached its maximum size the table is pruned by searching out
the oldest entries and removing them.

13.9.7 IP Routing

The IP routing function determines where to send IP packets destined for a particular IP address.
There are many choices to be made when transmitting IP packets. Can the destination be reached
at all? If it can be reached, which network device should be used to transmit it? If there is more
than one network device that could be used to reach the destination, which is the better one? The

Unit 13: Case Study: Linux

Notes

 LOVELY PROFESSIONAL UNIVERSITY 295

IP routing database maintains information that gives answers to these questions. There are two
databases, the most important being the Forwarding Information Database. This is an exhaustive
list of known IP destinations and their best routes. A smaller and much faster database, the route
cache is used for quick lookups of routes for IP destinations. Like all caches, it must contain
only the frequently accessed routes; its contents are derived from the Forwarding Information
Database.

Routes are added and deleted via IOCTL requests to the BSD socket interface. These are passed
onto the protocol to process. The INET protocol layer only allows processes with superuser
privileges to add and delete IP routes. These routes can be fi xed or they can be dynamic and
change over time. Most systems use fi xed routes unless they themselves are routers. Routers run
routing protocols which constantly check on the availability of routes to all known IP destinations.
Systems that are not routers are known as end systems. The routing protocols are implemented
as daemons, for example GATED, and they also add and delete routes via the IOCTL BSD socket
interface.

Route Cache

Whenever an IP route is looked up, the route cache is fi rst checked for a matching route. If there
is no matching route in the route cache the Forwarding Information Database is searched for a
route. If no route can be found there, the IP packet will fail to be sent and the application notifi ed.
If a route is in the Forwarding Information Database and not in the route cache, then a new entry
is generated and added into the route cache for this route. The route cache is a table (ip_rt_hash_
table) that contains pointers to chains of rtable data structures. The index into the route table is a
hash function based on the least signifi cant two bytes of the IP address. These are the two bytes
most likely to be different between destinations and provide the best spread of hash values.
Each rtable entry contains information about the route; the destination IP address, the network
device to use to reach that IP address, the maximum size of message that can be used and so on.
It also has a reference count, a usage count and a timestamp of the last time that they were used
(in jiffi es). The reference count is incremented each time the route is used to show the number
of network connections using this route. It is decremented as applications stop using the route.
The usage count is incremented each time the route is looked up and is used to order the rtable
entry in its chain of hash entries. The last used timestamp for all of the entries in the route cache
is periodically checked to see if the rtable is too old. If the route has not been recently used, it is
discarded from the route cache. If routes are kept in the route cache they are ordered so that the
most used entries are at the front of the hash chains. This means that fi nding them will be quicker
when routes are looked up.

Forwarding Information Database

The forwarding information database (shown in Figure 13.16 contains IP’s view of the routes
available to this system at this time. It is quite a complicated data structure and, although it is
reasonably effi ciently arranged, it is not a quick database to consult. In particular it would be very
slow to look up destinations in this database for every IP packet transmitted. This is the reason
that the route cache exists: to speed up IP packet transmission using known good routes. The
route cache is derived from the forwarding database and represents its commonly used entries.

Each IP subnet is represented by a fi b_zone data structure. All of these are pointed at from the
fi b_zones hash table. The hash index is derived from the IP subnet mask. All routes to the same
subnet are described by pairs of fi b_node and fi b_info data structures queued onto the fz_list of
each fi b_zone data structure. If the number of routes in this subnet grows large, a hash table is
generated to make fi nding the fi b_node data structures easier.

Operating System

Notes

296 LOVELY PROFESSIONAL UNIVERSITY

fib_zones

fib_zone

fz_next

fz_list

fz_nent

fz_logmask

fz_mask

fz_hash_table

fib_node

fib_next

fib_use

fib_info

fib_metric

fib_los

fib_dst

fib_node

fib_next

fib_use

fib_info

fib_mmetric

fib_los

fib_dst

fib_info

fib_next

fib_prev

fib_gateway

fib_dev

fib_befent

fib_window

fib_flage

fib_roto

fib_itll

fib_info

fib_next

fib_prev

fib_gateway

fib_dev

fib_befent

fib_window

fib_flage

fib_roto

fib_itll

Figure 13.16: Forwarding Information Database

Several routes may exist to the same IP subnet and these routes can go through one of several
gateways. The IP routing layer does not allow more than one route to a subnet using the same
gateway. In other words, if there are several routes to a subnet, then each route is guaranteed
to use a different gateway. Associated with each route is its metric. This is a measure of how
advantageous this route is. A route’s metric is, essentially, the number of IP subnets that it must
hop across before it reaches the destination subnet. The higher the metric, the worse the route.

13.10 Security

Linux, like any computer system, has a set of security issues that need to be considered.
Regardless of what mechanisms are in place, the basic concepts are the same. In fact, the security
of a computer system is very much like the security of a house, just as running a computer system
is like running a household.

A knowledgeable user with root access to another Linux system can gain access to yours if
they have physical access. Even without access to another system, if that user has access to
the installation fl oppies, they can get into your system. Once in, it doesn’t matter what kind of
security is has been confi gured on the hard disk since the only security the system knows is what
it has been told by the fl oppy.

Regardless of what security issue you are talking about, any breach in security can be prevented
by not allowing access to the system. Now, this can be taken to extremes by not letting anyone to
have access. However, by limiting access to the system to only authorized users, you substantially
lower the risk of breaches in security. Keep in mind that there is no such thing as a secure system.
This is especially important when you consider that the most serious threat comes from people
who already have an account on that system.

Access control has been a part of Linux for a long time. It is a fundamental aspect of any
multi-user system. The most basic form of access control is in the form of user accounts. The only
way you should be able to gain access to a Linux system is through an account. Users usually
gain access to the system when they have an account set up for them. Each user is assigned an

Unit 13: Case Study: Linux

Notes

 LOVELY PROFESSIONAL UNIVERSITY 297

individual password that allows the access. Access to fi les is determined by the permissions that
are set on the fi les and directories.

Access to various services such as printers or even local fi le systems is also determined by
permissions. In addition, some services, as we shall see shortly can be restricted at a much lower
level.

In some cases, passwords may be blank, meaning you only need to press enter. In other cases it
can be removed altogether so you are never even prompted to input your password. Removing
the password may not always be a good idea. Since you have the source code, Linux allows you
the option to prevent users from either having no password or having to just press return. Since
we are talking here about security and accounts without passwords are not very secure, we’ll
restrict ourselves to talking about accounts that have passwords.

On many systems (including many Linux versions) one cannot force users to use (or not use)
specifi c passwords. As a system administrator it is your responsibility to not only enforce a
strong password policy, but to educate your users as to why this is important. Later, we’ll go
over some examples of what happens when users are not aware of the issues involved with
password security.

Although this password protection stops most attempts to gain unauthorized access to the
system, many security issues involve users that already have accounts. Unchecked, curious users
could access payroll information and fi nd out what their boss gets paid. Corporate spies could
steal company secrets. Disgruntled workers could wreak havoc by destroying data or slowing
down the system.

Once logged in, Linux provides a means of limiting the access of “authorized” users. This is in
the form of fi le permissions, which we already talked about. File permissions are one aspect of
security that most people are familiar with in regard to UNIX security. In many cases, this is the
only kind of security other that user accounts.

Each fi le has an owner, whether or not some user explicitly went out there and “claimed”
ownership. Its a basic characteristic of each fi le and is imposed upon them by the operating
system. The owner of the fi le is stored, along with other information, in the inode table in the
form of a number. This number corresponds to the User ID (UID) number from /etc/password.

Normally, fi les are initially owned by the user who creates them. However, there are many
circumstances that would change the ownership. One of the obvious ways is that the ownership
is intentionally changed. Only the owner of the fi le and root can change its ownership. If you are
the owner of a fi le, you can, in essence, “transfer ownership” of the fi le to someone else. Once you
do, you are no longer the owner (obviously) and have no more control over that fi le.

Another characteristic of a fi le is its group. Like the owner, the fi le’s group is an intrinsic part of
that fi les characteristics. The fi le’s group is also stored in the inode as a number. The translation
from this number to the group name is made from the /etc/group fi le. As we talked about in the
section on users, the concept of a group has only real meaning in terms of security. That is, who
can access which fi les.

What this means is that only “authorized” users can access fi les in any of the three manners: read,
write and execute. It makes sense that normal users cannot run the fdisk utility, otherwise they
would have the ability to re-partition the hard disk, potentially destroying data. It also makes
sense that normal users do not have write permission on the/etc/password fi le, otherwise they
could change it so that they would have access to the root account. Since we talked about it in the
section on shell basics and on users, there is no need to go into more details here.

There is also access to the all powerful root account. On a Linux system root can do anything.
Although it is possible to restrict roots access to certain functions, a knowledgeable user with
root privileges can overcome that. There are many instances where you have several people
administering some aspect of the system, such as printers or the physical network.

Operating System

Notes

298 LOVELY PROFESSIONAL UNIVERSITY

Access to the root account should be limited for a couple of reasons. First, the more people with
root access, the more people who have complete control over the system. This makes access
control diffi cult.

Also, the more people that have root access, the more fi ngers get pointed. There are people who
are going to deny having done something wrong. Often this results in a corrupt system, as there
are everyone has the power to do everything, someone did something that messed up the system
somehow and no one will admit. Sound familiar?

The fewer people that have root, the fewer fi ngers need to be pointed and the fewer people can
pass the buck. Not that what they did was malicious, mistakes do happen. If there are fewer
people with root access and something goes wrong, tracking down the cause is much easier.

Rather than several users all having the root password, some people think that it is safer to create
several users all with the UID of root. Their belief is that since there are several lognames, it’s
easier to keep track of things. Well, the problem in that thinking is that the system keeps track of
track of users by the UID. There is no way to keep these users separate, once they log in.

Another security precaution is to defi ne secure terminals. These are the only terminals that the
root user can login from. In my opinion, it is best to only consider directly connected terminals as
“secure”. That is, the root user can log into the system console, but not across the network. To get
access as root across the network, a user must fi rst login under their own account and then use
su. This also provides a record of who used the root account and when.

If the system is connected to the Internet, such as for a HTTP or FTP server, then security is a
primary consideration.

One way of avoiding compromising your system is to have your WWW server connected to the
Internet, but not to your internal network. Should someone be able to break into the WWW server,
the worst that can happen is that the WWW server is down for a day or so as you reload from
backups. If the intruder had access to the internal network, your livelihood could be threatened.

One very common attack is the dictionary attack. Here the hacker uses common words, encrypts
them using the same as the password taken from the password fi le and then the two are compared.
Remember that the /etc/passwd fi le is readable by everyone and the seed is contained within the
encrypted password is always the fi rst two characters.

Although this seems to be a major security hole, it is very effective if you use passwords that are
not easy to guess. The reason is that the encryption goes only one way.

13.11 Summary

Linux is a modular Unix-like operating system. Linux operates in two modes - the Kernel mode
(kernel space) and the User mode (user space). The Linux kernel is a monolithic kernel. Any
application that runs on a Linux system is assigned a process ID or PID. This is a numerical
representation of the instance of the application on the system. There are generally two types
of processes that run on Linux. Interactive processes are those processes that are invoked by a
user and can interact with the user. Interactive processes can be classifi ed into foreground and
background processes. The foreground process is the process that you are currently interacting
with, and is using the terminal as its stdin (standard input) and stdout (standard output). A
background process is not interacting with the user and can be in one of two states - paused or
running. All processes are derived from the init process and can trace their roots back to init.
All processes run partially in user mode and partially in system mode. Virtual memory is used
in Linux. It uses the Buddy algorithm to effectively allocate and deallocate blocks of pages. Its
developers and users use the web to exchange information ideas, code, and Linux itself is often
used to support the networking needs of organizations. This unit describes how Linux supports
the network protocols known collectively as TCP/IP.

Unit 13: Case Study: Linux

Notes

 LOVELY PROFESSIONAL UNIVERSITY 299

13.12 Keywords

Background process: It is a process which is not interacting with the user and can be in one of two
states - paused or running.

Foreground process: This is the process that user is currently interacting with, and is using the
terminal as its stdin (standard input) and stdout (standard output).

Interactive processes: Those processes that are invoked by a user and can interact with the user.

PID: This is a numerical representation of the instance of the application on the Linux system.

Semaphore: It is a location in memory whose value can be tested and set by more than one
process.

13.13 Review Questions

1. Does Linux Support Threads or Lightweight Processes?

2. What is virtual memory? How it is implemented in Linux?

3. Describe the page allocation process in Linux.

4. Write a brief description about the process scheduling in Linux.

13.14 Further Readings

Books Andrew M. Lister, Fundamentals of Operating Systems, Wiley.

 Andrew S. Tanenbaum and Albert S. Woodhull, Systems Design and Implementation,
Prentice Hall.

 Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.

 Colin Ritchie, Operating Systems, BPB Publications.

 Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.

 I.A. Dhotre, Operating System, Technical Publications.

 Milankovic, Operating System, Tata MacGraw Hill, New Delhi.

 Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons,
Seventh Edition.

 Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.

Online links www.en.wikipedia.org

 www.web-source.net

 www.webopedia.com

Operating System

Notes

300 LOVELY PROFESSIONAL UNIVERSITY

Unit 14: Windows 2000

CONTENTS

Objectives

Introduction

14.1 Design Principles

14.2 System Components

14.3 Environmental Sub-systems

14.4 File System

14.5 Networking

 14.5.1 Protocols

 14.5.2 Distributed-Processing Mechanisms

 14.5.3 Redirectors and Servers

 14.5.4 Domains

 14.5.5 Name Resolution in TCP/IP Networks

14.6 Programmer Interface

 14.6.1 Access to Kernel Objects

 14.6.2 Inter-process Communication

 14.6.3 Memory Management

14.7 Summary

14.8 Keywords

14.9 Review Questions

14.10 Further Readings

Objectives

After studying this unit, you will be able to:

z Explain design principles

z Describe system components

z Know environmental subsystems

z Defi ne fi le system

z Describe networking and programmer interface

Introduction

The objective of this unit is to introduce to the Windows 2000 operating system. Windows 2000
(W2K) is a commercial version of Microsoft’s evolving Windows operating system. Previously
called Windows NT 5.0, Microsoft emphasizes that Windows 2000 is evolutionary and “Built on
NT Technology.” Windows 2000 is designed to appeal to small business and professional users
as well as to the more technical and larger business market for which the NT was designed.

Unit 14: Windows 2000

Notes

 LOVELY PROFESSIONAL UNIVERSITY 301

Windows 2000 (also referred to as Win2K) is a preemptive, interruptible, graphical and
business-oriented operating system designed to work with either uni-processor or symmetric
multi-processor computers. It is part of the Microsoft Windows NT line of operating systems
and was released on February 17, 2000. It was succeeded by Windows XP in October 2001 and
Windows Server 2003 in April 2003. Windows 2000 is classifi ed as a hybrid kernel operating
system. Key goals for the system are portability, security, Portable Operating System Interface
(POSIX) or IEEE Std. 1003.1 compliance, multiprocessor support, extensibility, international
support, and compatibility with MS-DOS and MS-Windows applications.

The Windows 2000 product line consists of four products:

1. Windows 2000 Professional: Supports up to two processors and up to 4GB of RAM. Used as
a workstation or client computer and it is the replacement for Windows NT Workstation.

2. Windows 2000 Server: Supports up to four processors and up to 4GB of RAM. It is used for
web, application, print and fi le servers.

3. Windows 2000 Advanced Server: Supports up to eight processors and up to 8GB of RAM.
It is used in an enterprise network and very useful as an SQL server.

4. Windows 2000 Datacenter Server: Supports up to 32 processors and up to 64GB of RAM.
It is used in an enterprise network to support extremely large databases and real time
processing.

In this unit, we discuss the key goals for this system, the layered architecture of the system that
makes it so easy to use, the fi le system, networks and the programming interface.

14.1 Design Principles

The design goals that Microsoft has stated for Windows 2000 include extensibility, portability,
reliability, compatibility, performance, and international support.

Extensibility refers to the capacity of an operating system to keep up with advancements in
computing technology. So that changes are facilitated over time, the developers implemented
Windows 2000 using a layered architecture.

The Windows 2000 executive, which runs in kernel or protected mode, provides the basic system
services. On top of the executive, several server subsystems operate in user mode. Among them
are environmental subsystems that emulate different operating systems. Thus, programs written
for MS-DOS, Microsoft Windows, and POSIX can all run on Windows 2000 in the appropriate
environment. Because of the modular structure, additional environmental subsystems can be
added without affecting the executive. In addition, Windows 2000 uses loadable drivers in the
I/O system, so new fi le systems, new kinds of I/O devices, and new kinds of networking can
be added while the system is running. Windows 2000 uses a client-server model like the Mach
operating system, and supports distributed processing by remote procedure calls (RPCs) as
defi ned by the Open Software Foundation.

An operating system is portable if it can be moved from one hardware architecture to another
with relatively few changes. Windows 2000 is designed to be portable. As is true of the UNIX
operating system, the majority of the system is written in C and C++. All processor-dependent
code is isolated in a dynamic link library (DLL), called the hardware-abstraction layer (HAL). A
DLL is a fi le that gets mapped into a process’s address space such that any functions in the DLL
appear as though they are part of the process. The upper layers of Windows 2000 depend on
HAL, rather than on the underlying hardware, and that helps Windows 2000 to be portable. HAL
manipulates hardware directly, isolating the rest of Windows 2000 from hardware differences
among the platforms on which it runs.

Reliability is the ability to handle error conditions, including the ability of the operating system to
protect itself and its users from defective or malicious software. Windows 2000 resists defects and

Operating System

Notes

302 LOVELY PROFESSIONAL UNIVERSITY

attacks by using hardware protection for virtual memory, and software protection mechanisms
for operating system resources.

Windows 2000 comes with a native fi le system; the NTFS fi le system that recovers automatically
from many kinds of fi le-system errors after a system crash. Windows NT Version 4.0 has a C-2
security classifi cation from the U.S. government, which signifi es a moderate level of protection
from defective software and malicious attacks. Windows 2000 is currently under evaluation by
the government for that classifi cation as well.

Windows 2000 provides source-level compatibility to applications that follow the IEEE 1003.1
(POSIX) standard. Thus, they can be compiled to run on Windows 2000 without changes to the
source code. In addition, Windows 2000 can run the executable binaries for many programs
compiled for Intel X86 architectures running MS-DOS, 16-bitWindows, OS/2, LAN Manager, and
32-bit Windows, by using the environmental subsystems mentioned earlier. These environmental
subsystems support a variety of fi le systems, including the MSDOS FAT fi le system; the OS/2
HPFS fi le system, the ISO9660 CD fi le system, and NTFS. Windows 2000Õs binary compatibility,
however, is not perfect. In MS-DOS, for example, applications can access hardware ports directly.
For reliability and security, Windows 2000 prohibits such access.

Windows 2000 is designed to afford good performance. The subsystems that constitute Windows
2000 can communicate with one another effi ciently by a local-procedure-call facility that provides
high-performance message passing.

Except for the kernel, threads in the subsystems of Windows 2000 can be preempted by higher-
priority threads. Thus, the system can respond quickly to external events. In addition, Windows
2000 is designed for symmetrical multiprocessing: On a multiprocessor computer, several
threads can run at the same time. The current scalability of Windows 2000 is limited, compared
to that of UNIX. As of late 2000, Windows 2000 supported systems with up to 32 CPUs, whereas
Solaris ran on systems with up to 64 processors. Previous versions of NT supported only up to
8 processors.

Windows 2000 is also designed for international use. It provides support for different locales
via the national language support (NLS) API. NLS API provides specialized routines to format
dates, time, and money in accordance with various national customs. String comparisons are
specialized to account for varying character sets. UNICODE is Windows 2000Õs native character
code.

Windows 2000 supports ANSI characters by converting them to UNICODE characters before
manipulating them (8-bit to 16-bit conversion).

14.2 System Components

Windows 2000 is a highly modular system that consists of two main layers: a user mode and a
kernel mode. The user mode refers to the mode in which user programs are run. Such programs
are limited in terms of what system resources they have access to, while the kernel mode has
unrestricted access to the system memory and external devices. All user mode applications access
system resources through the executive which runs in kernel mode.

User Mode

User mode in Windows 2000 is made of subsystems capable of passing I/O requests to the
appropriate kernel mode drivers by using the I/O manager. Two subsystems make up the user
mode layer of Windows 2000: the environment subsystem and the integral subsystem.

The environment subsystem was designed to run applications written for many different types
of operating systems. These applications, however, run at a lower priority than kernel mode
processes.

Unit 14: Windows 2000

Notes

 LOVELY PROFESSIONAL UNIVERSITY 303

There are three main environment subsystems:

1. Win32 subsystem runs 32-bit Windows applications and also supports Virtual DOS
Machines (VDMs) , which allows MS-DOS and 16-bit Windows 3.1x (Win16) applications
to run on Windows.

2. OS/2 environment subsystem supports 16-bit character-based OS/2 applications and
emulates OS/2 1.3 and 1.x, but not 32-bit or graphical OS/2 applications as used on OS/2
2.x or later.

3. POSIX environment subsystem supports applications that are strictly written to either the
POSIX.1 standard or the related ISO/IEC standards.

The integral subsystem looks after operating system specifi c functions on behalf of the
environment subsystem. It consists of a security subsystem (grants/denies access and handles
logons), workstation service (helps the computer gain network access) and a server service (lets
the computer provide network services).

Kernel Mode

Kernel mode in Windows 2000 has full access to the hardware and system resources of the
computer. The kernel mode stops user mode services and applications from accessing critical
areas of the operating system that they should not have access to.

The executive interfaces with all the user mode subsystems. It deals with I/O, object management,
security and process management. It contains various components, including:

1. Object Manager: a special executive subsystem that all other executive subsystems must
pass through to gain access to Windows 2000 resources. This is essentially a resource
management infrastructure service that allows Windows 2000 to be an object oriented
operating system.

2. I/O Manager: allows devices to communicate with user-mode subsystems by translating
user-mode read and write commands and passing them to device drivers.

3. Security Reference Monitor (SRM): the primary authority for enforcing the security rules
of the security integral subsystem.

4. IPC Manager: short for Inter-Process Communication Manager, manages the communication
between clients (the environment subsystem) and servers (components of the executive).

5. Virtual Memory Manager: manages virtual memory, allowing Windows 2000 to use the
hard disk as a primary storage device (although strictly speaking it is secondary storage).

6. Process Manager: handles process and thread creation and termination.

7. PnP Manager: handles Plug and Play and supports device detection and installation at
boot time.

8. Power Manager: the power manager coordinates power events and generates power
IRPs.

9. The display system is handled by a device driver contained in Win32k.sys. The Window
Manager component of this driver is responsible for drawing windows and menus while
the GDI (Graphics Device Interface) component is responsible for tasks such as drawing
lines and curves, rendering fonts and handling palettes. Windows 2000 also introduced
alpha blending into the Graphics Device Interface which refl ects in the fade effect in
menus.

The Windows 2000 Hardware Abstraction Layer, or HAL, is a layer between the physical
hardware of the computer and the rest of the operating system. It was designed to hide differences
in hardware and therefore provide a consistent platform to run applications on. The HAL
includes hardware specifi c code that controls I/O interfaces, interrupt controllers and multiple
processors.

Operating System

Notes

304 LOVELY PROFESSIONAL UNIVERSITY

Figure 14.1: Windows 2000 Block Diagram

The hybrid kernel sits between the HAL and the executive and provides multiprocessor
synchronization, thread and interrupt scheduling and dispatching, trap handling and exception
dispatching. The hybrid kernel often interfaces with the process manager and is responsible
for initializing device drivers at boot-up that are necessary to get the operating system up and
running.

14.3 Environmental Sub-systems

Environmental subsystems are user-mode processes layered over the native Windows 2000
executive services to enable Windows 2000 to run programs developed for other operating
systems, including 16-bit Windows, MS-DOS, POSIX, and character-based applications for 16-bit
OS/2. Each environmental subsystem provides one API or application environment.

Windows 2000 uses the Win32 subsystem as the main operating environment, and thus to start all
processes. When an application is executed, the Win32 subsystem calls the VM manager to load

Unit 14: Windows 2000

Notes

 LOVELY PROFESSIONAL UNIVERSITY 305

the application’s executable code. The memory manager returns a status to Win32 that tells what
kind of executable the code is. If it is not a nativeWin32 executable, theWin32 environment checks
whether the appropriate environmental subsystem is running; if the subsystem is not running,
it is started as a user-mode process. Then, Win32 creates a process to run the application, and
passes control to the environmental subsystem.

The environmental subsystem uses the Windows 2000 LPC facility to get kernel services for the
process. This approach helps Windows 2000 to be robust, because the parameters passed to a
system call can be checked for correctness before the actual kernel routine is invoked. Windows
2000 prohibits applications from mixing API routines from different environments. For instance,
a Win32 application cannot call a POSIX routine.

Since each subsystem is run as a separate user-mode process, a crash in one has no effect on the
others. The exception is Win32, which provides all the keyboard, mouse, and graphical display
capabilities. If it fails, the system is effectively disabled.

The Win32 environment categorizes applications as either graphical or character based, where
a character-based application is one that thinks that interactive output goes to an 80 by 24
ASCII display. Win32 transforms the output of a character-based application to a graphical
representation in a window. This transformation is easy: Whenever an output routine is
called, the environmental subsystem calls a Win32 routine to display the text. Since the Win32
environment performs this function for all character-based windows, it can transfer screen text
between windows via the clipboard. This transformation works for MS-DOS applications, as well
as for POSIX command-line applications.

MS-DOS Environment

The MS-DOS environment does not have the complexity of the other Windows 2000 environmental
subsystems. It is provided by a Win32 application called the virtual DOS machine (VDM). Since
the VDM is just a user-mode process, it is paged and dispatched like any other Windows 2000
thread. The VDM has an instruction-execution unit to execute or emulate Intel 486 instructions.
The VDM also provides routines to emulate the MS-DOS ROM BIOS and .int software interrupt
services, and has virtual device drivers for the screen, keyboard, and communication ports. The
VDM is based on the MS-DOS 5.0 source code; it gives the application at least 620 kilobytes of
memory.

The Windows 2000 command shell is a program that creates a window that looks like an MS-DOS
environment. It can run both 16-bit and 32-bit executables. When an MS-DOS application is run,
the command shell starts a VDM process to execute the program. If Windows 2000 is running
on an x86 processor, MS-DOS graphical applications run in full-screen mode, and character
applications can run full screen or in a window. If Windows 2000 is running on different processor
architecture, all MS-DOS applications run in windows. Some MS-DOS applications access the
disk hardware directly, but they fail to run on Windows 2000 because disk access is privileged to
protect the fi le system. In general, MS-DOS applications that directly access hardware will fail to
operate under Windows 2000.

Since MS-DOS is not a multitasking environment, some applications have been written that hog
the CPU-for instance, by using busy loops to cause time delays or pauses in execution. The priority
mechanism in the Windows 2000 dispatcher detects such delays and automatically throttles the
CPU consumption (and causes the offending application to operate incorrectly).

16-Bit Windows Environment

The Win16 execution environment is provided by a VDM that incorporates additional software
called Windows on Windows that provides the Windows 3.1 kernel routines and stub routines for
window manager and GDI functions. The stub routines call the appropriate Win32 subroutines,

Operating System

Notes

306 LOVELY PROFESSIONAL UNIVERSITY

converting, or thinking, 16-bit addresses into 32-bit ones. Applications that rely on the internal
structure of the 16-bit window manager or GDI may not work, because Windows on Windows
does not really implement the 16-bit API.

Windows on Windows can multitask with other processes on Windows 2000, but it resembles
Windows 3.1 in many ways. Only one Win16 application can run at a time, all applications
are single threaded and reside in the same address space, and they all share the same input
queue. These features imply that an application that stops receiving input will block all the
other Win16 applications, just as in Windows 3.x, and one Win16 application can crash other
Win16 applications by corrupting the address space. Multiple Win16 environments can coexist,
however, by using the command start/separate win16application from the command line.

Win32 Environment

The main subsystem in Windows 2000 is the Win32 subsystem. It runs Win32 applications, and
manages all keyboard, mouse, and screen I/O. Since it is the controlling environment, it is designed
to be extremely robust. Several features of Win32 contribute to this robustness. Unlike the Win16
environment, each Win32 process has its own input queue. The window manager dispatches
all input on the system to the appropriate process’s input queue, so a failed process will not
block input to other processes. The Windows 2000 kernel also provides preemptive multitasking,
which enables the user to terminate applications that have failed or are no longer needed. Win32
also validates all objects before using them, to prevent crashes that could otherwise occur if an
application tried to use an invalid or wrong handle. TheWin32 subsystem verifi es the type of the
object to which a handle points before using that object. The reference counts kept by the object
manager prevent objects from being deleted while they are still being used, and prevents their
use after they have been deleted.

POSIX Sub-system

The POSIX subsystem is designed to run POSIX applications following the POSIX.1 standard,
which is based on the UNIX model. POSIX applications can be started by the Win32 subsystem or
by another POSIX application. POSIX applications use the POSIX subsystem server PSXSS.EXE,
the POSIX dynamic link library PSXDLL.DLL, and the POSIX console session manager POSIX.
EXE.

Although the POSIX standard does not specify printing, POSIX applications can use printers
transparently via the Windows 2000 redirection mechanism.

POSIX applications have access to any fi le system on the Windows 2000 system; the POSIX
environment enforces UNIX-like permissions on directory trees.

Several Win32 facilities are not supported by the POSIX subsystem, including memory-mapped
fi les, networking, graphics, and dynamic data exchange.

OS/2 Sub-system

Although Windows 2000 was originally intended to provide a robust OS/2 operating
environment, the success of Microsoft Windows led to a change; during the early development
of Windows 2000, the Windows environment became the default. Consequently, Windows
2000 provides only limited facilities in the OS/2 environmental subsystem. OS/2 1.x character-
based applications can run only on Windows 2000 on Intel x86 computers. Real-mode OS/2
applications can run on all platforms by using the MS-DOS environment. Bound applications,
which have dual code for both MS-DOS and OS/2, run in the OS/2 environment unless the OS/2
environment is disabled.

Unit 14: Windows 2000

Notes

 LOVELY PROFESSIONAL UNIVERSITY 307

Logon and Security Sub-systems

Before a user can access objects on Windows 2000, that user must be authenticated by the logon
subsystem. To be authenticated, a user must have an account and provide the password for that
account.

The security subsystem generates access tokens to represent users on the system. It calls an
authentication package to perform authentication using information from the logon subsystem
or network server. Typically, the authentication package simply looks up the account information
in a local database and checks to see that the password is correct. The security subsystem then
generates the access token for the user id containing the appropriate privileges, quota limits, and
group ids. Whenever the user attempts to access an object in the system, such as by opening a
handle to the object, the access token is passed to the security reference monitor, which checks
privileges and quotas.

The default authentication package for Windows 2000 domains is Kerberos.

14.4 File System

Microsoft Windows 2000 supports four types of fi le systems on readable/writable disks: the
NTFS fi le system and three fi le allocation table (FAT) fi le systems: FAT12, FAT16 and FAT32.
Windows 2000 also supports two types of fi le systems on CD-ROM and digital video disk (DVD)
media: Compact Disc File System (CDFS) and Universal Disk Format (UDF). The structures of
the volumes formatted by each of these fi le systems, as well as the way each fi le system organizes
data on the disk, are signifi cantly different. The capabilities and limitations of these fi le systems
must be reviewed to determine their comparative features.

In this section we will treat the NTFS fi le system because it is a modern fi le system unencumbered
by the need to be fully compatible with the MS-DOS fi le system, which was based on the CP/M
fi le system designed for 8-inch fl oppy disks more than 20 years ago. Times have changed and
8-inch fl oppy disks are not quite state of the art any more. Neither are their fi le systems. Also,
NTFS differs both in user interface and implementation in a number of ways from the UNIX fi le
system, which makes it a good second example to study. NTFS is a large and complex system and
space limitations prevent us from covering all of its features, but the material presented below
should give a reasonable impression of it.

Individual fi le names in NTFS are limited to 255 characters; full paths are limited to 32,767
characters. File names are in Unicode, allowing people in countries not using the Latin alphabet
(e.g., Greece, Japan, India, Russia, and Israel) to write fi le names in their native language.
For example, f, le is a perfectly legal fi le name. NTFS fully supports case sensitive names
(so foo is different from Foo and FOO). Unfortunately, the Win32 API does not fully support
case-sensitivity for fi le names and not at all for directory names, so this advantage is lost to
programs restricted to using Win32 (e.g., for Windows 98 compatibility).

An NTFS fi le is not just a linear sequence of bytes, as FAT-32 and UNIX fi les are. Instead, a fi le
consists of multiple attributes, each of which is represented by a stream of bytes. Most fi les have
a few short streams, such as the name of the fi le and its 64-bit object ID, plus one long (unnamed)
stream with the data. However, a fi le can also have two or more (long) data streams as well. Each
stream has a name consisting of the fi le name, a colon, and the stream name, as in foo:stream1.
Each stream has its own size and is lockable independently of all the other streams. The idea
of multiple streams in a fi le was borrowed from the Apple Macintosh, in which fi les have two
streams, the data fork and the resource fork. This concept was incorporated into NTFS to allow
an NTFS server be able to serve Macintosh clients.

File streams can be used for purposes other than Macintosh compatibility.

Operating System

Notes

308 LOVELY PROFESSIONAL UNIVERSITY

 Example: A photo editing program could use the unnamed stream for the main image
and a named stream for a small thumbnail version. This scheme is simpler than the traditional
way of putting them in the same fi le one after another.

Another use of streams is in word processing. These programs often make two versions of a
document, a temporary one for use during editing and a fi nal one when the user is done. By
making the temporary one a named stream and the fi nal one the unnamed stream, both versions
automatically share a fi le name, security information, timestamps, etc., with no extra work.

The maximum stream length is 264 bytes. To get some idea of how big a 264-byte stream is,
imagine that the stream were written out in binary, with each of the 0s and 1s in each byte
occupying 1 mm of space. The 267-mm listing would be 15 light-years long, reaching far beyond
the solar system, to Alpha Centuri and back. File pointers are used to keep track of where a
process is in each stream, and these are 64 bits wide to handle the maximum length stream, which
is about 18.4 exabytes.

The Win32 API function calls for fi le and directory manipulation are roughly similar to their
UNIX counterparts, except most have more parameters and the security model is different.
Opening a fi le returns a handle, which is then used for reading and writing the fi le. For graphical
applications, no fi le handles are predefi ned.

Standard input, standard output, and standard error have to be acquired explicitly if needed;
in console mode they are preopened, however. Win32 also has a number of additional calls not
present in UNIX.

14.5 Networking

Windows 2000 supports both peer-to-peer and client-server networking. It also has facilities for
network management. The networking components in Windows 2000 provide data transport,
inter-process communication, fi le sharing across a network, and the ability to send print jobs to
remote printers.

To describe networking in Windows 2000, we will refer to two of the internal networking
interfaces, called the Network Device Interface Specifi cation (NDIS) and the Transport Driver
Interface (TDI). The NDIS interface was developed in 1989 by Microsoft and 3Com to separate
network adapters from the transport protocols, so that either could be changed without affecting
the other. NDIS resides at the interface between the data-link control and media-access-control
layers in the OSI model and enables many protocols to operate over many different network
adapters. In terms of the OSI model, the TDI is the interface between the transport layer (layer
4) and the session layer (layer 5). This interface enables any session-layer component to use any
available transport mechanism. (Similar reasoning led to the streams mechanism in UNIX.) The
TDI supports both connection-based and connectionless transport, and has functions to send any
type of data.

14.5.1 Protocols

Windows 2000 implements transport protocols as drivers. These drivers can be loaded and
unloaded from the system dynamically, although in practice the system typically has to be
rebooted after a change. Windows 2000 comes with several networking protocols.

The server message-block (SMB) protocol was fi rst introduced in MS-DOS 3.1. The system uses
the protocol to send I/O requests over the network.

The SMB protocol has four message types. The Session control messages are commands that
start and end a redirector connection to a shared resource at the server. A redirector uses File

Unit 14: Windows 2000

Notes

 LOVELY PROFESSIONAL UNIVERSITY 309

messages to access fi les at the server. The system uses Printer messages to send data to a remote
print queue and to receive back status information, and the Message is used to communicate with
another workstation.

The Network Basic Input/Output System (NetBIOS) is a hardware-abstraction interface for
networks, analogous to the BIOS hardware-abstraction interface devised for PCs running MS-
DOS. NetBIOS, developed in the early 1980s, has become a standard network-programming
interface. NetBIOS is used to establish logical names on the network, to establish logical
connections or sessions between two logical names on the network, and to support reliable data
transfer for a session via either NetBIOS or SMB requests.

The NetBIOS Extended User Interface (NetBEUI) was introduced by IBM in 1985 as a simple,
effi cient networking protocol for up to 254 machines. It is the default protocol for Windows 95
peer networking and for Windows for Workgroups. Windows 2000 uses NetBEUI when it wants
to share resources with these networks. Among the limitations of NetBEUI are that it uses the
actual name of a computer as the address, and that it does not support routing.

The TCP/IP protocol suite that is used on the Internet has become the de facto standard networking
infrastructure; it is widely supported. Windows 2000 uses TCP/IP to connect to a wide variety
of operating systems and hardware platforms. The Windows 2000 TCP/IP package includes the
simple network management protocol (SNMP), dynamic host-confi guration protocol (DHCP),
Windows Internet name service (WINS), and NetBIOS support. The point-to-point tunneling
protocol (PPTP) is a protocol provided by Windows 2000 to communicate between remote-access
server modules running on Windows 2000 Server machines and other client systems that are
connected over the Internet. The remote-access servers can encrypt data sent over the connection,
and they support multi-protocol virtual private networks over the Internet.

The Novell NetWare protocols (IPX datagram service on the SPX transport layer) are widely used
for PC LANs. The Windows 2000 NWLink protocol connects the NetBIOS to NetWare networks.
In combination with a redirector (such as Microsoft’s Client Service for Netware or Novell’s
NetWare Client for Windows 2000), this protocol enables a Windows 2000 client to connect to a
NetWare server.

Windows 2000 uses the data-link control (DLC) protocol to access IBM mainframes and HP
printers that are connected directly to the network. This protocol is not otherwise used by
Windows 2000 systems.

The AppleTalk protocol was designed as a low-cost connection by Apple to allow Macintosh
computers to share fi les. Windows 2000 systems can share fi les and printers with Macintosh
computers via AppleTalk if a Windows 2000 server on the network is running the Windows 2000
Services for Macintosh package.

14.5.2 Distributed-Processing Mechanisms

Although Windows 2000 is not a distributed operating system, it does support distributed
applications. Mechanisms that support distributed processing on Windows 2000 include
NetBIOS, named pipes and mailslots, windows sockets, remote procedure calls (RPC), and
network dynamic data exchange (NetDDE).

In Windows 2000, NetBIOS applications can communicate over the network using NetBEUI,
NWLink, or TCP/IP. Named pipes are a connection-oriented messaging mechanism. Named
pipes were originally developed as a high-level interface to NetBIOS connections over the
network. A process can also use named pipes to communicate with other processes on the
same machine. Since named pipes are accessed through the fi le-system interface, the security
mechanisms used for fi le objects also apply to named pipes.

The name of a named pipe has a format called the uniform naming convention (UNC). A UNC
name looks like a typical remote fi le name. The format of a UNC name is __server name_share

Operating System

Notes

310 LOVELY PROFESSIONAL UNIVERSITY

name_x_y_z, where the server name identifi es a server on the network; a share name identifi es
any resource that is made available to network users, such as directories, fi les, named pipes and
printers; and the _x_y_z part is a normal fi le path name.

Mailslots are a connectionless messaging mechanism. They are unreliable, in that a message sent
to a mailslot may be lost before the intended recipient receives it. Mailslots are used for broadcast
applications, such as for fi nding components on the network; they are also used by the Windows
2000 Computer Browser service.

Winsock is the Windows 2000 sockets API. Winsock is a session-layer interface that is largely
compatible with UNIX sockets, with some Windows 2000 extensions. It provides a standardized
interface to many transport protocols that may have different addressing schemes, so that any
Winsock application can run on any Winsock-compliant protocol stack.

A remote procedure call (RPC) is a client-server mechanism that enables an application on one
machine to make a procedure call to code on another machine. The client calls a local procedure-a
stub routine-that packs its arguments into a message and sends them across the network to a
particular server process. The client-side stub routine then blocks. Meanwhile, the server unpacks
the message, calls the procedure, packs the return results into a message, and sends them back
to the client stub. The client stub unblocks, receives the message, unpacks the results of the RPC,
and returns them to the caller. This packing of arguments is sometimes called marshaling.

The Windows 2000 RPC mechanism follows the widely used distributed computing environment
standard for RPC messages, so programs written to use Windows 2000 RPCs are highly portable.
The RPC standard is detailed. It hides many of the architectural differences between computers,
such as the sizes of binary numbers and the order of bytes and bits in computer words, by
specifying standard data formats for RPC messages.

Windows 2000 can send RPC messages using NetBIOS, or Winsock on TCP/IP networks, or
named pipes on LAN Manager networks. The LPC facility, discussed earlier, is similar to RPC,
except that in the LPC case the messages are passed between two processes running on the same
computer.

It is tedious and error-prone to write the code to marshal and transmit arguments in the standard
format, to un-marshal and execute the remote procedure, to marshal and send the return results,
and to un-marshal and return them to the caller. Fortunately, however, much of this code can be
generated automatically from a simple description of the arguments and return results.

Windows 2000 provides the Microsoft Interface Defi nition Language to describe the remote
procedure names, arguments, and results. The compiler for this language generates header
fi les that declare the stubs for the remote procedures, and the data types for the argument and
return-value messages.

It also generates source code for the stub routines used at the client side, and for an un-marshaller
and dispatcher at the server side. When the application is linked, the stub routines are included.
When the application executes the RPC stub, the generated code handles the rest.

DCOM (COM) is a mechanism for inter-process communication that was developed for Windows.
COM objects provide a well defi ned interface to manipulate the data in the object. Windows 2000
has an extension called DCOM that can be used over a network utilizing the RPC mechanism to
provide a transparent method of developing distributed applications.

14.5.3 Redirectors and Servers

In Windows 2000, an application can use the Windows 2000 I/O API to access fi les from a remote
computer as though they were local, provided that the remote computer is running an MS-NET
server, such as is provided by Windows 2000 or Windows for Workgroups. A redirector is the

Unit 14: Windows 2000

Notes

 LOVELY PROFESSIONAL UNIVERSITY 311

client-side object that forwards I/O requests to remote fi les, where they are satisfi ed by a server.
For performance and security, the redirectors and servers run in kernel mode.

In more detail, access to a remote fi le occurs as follows:

1. The application calls the I/O manager to request that a fi le be opened with a fi le name in
the standard UNC format.

2. The I/O manager builds an I/O request packet.

3. The I/O manager recognizes that the access is for a remote fi le, and calls a driver called a
multiple universal-naming-convention provider (MUP).

4. The MUP sends the I/O request packet asynchronously to all registered redirectors.

5. A redirector that can satisfy the request responds to the MUP. To avoid asking all the
redirectors the same question in the future, the MUP uses a cache to remember which
redirector can handle this fi le.

6. The redirector sends the network request to the remote system.

7. The remote-system network drivers receive the request and pass it to the server driver.

8. The server driver hands the request to the proper local fi le-system driver.

9. The proper device driver is called to access the data.

10. The results are returned to the server driver, which sends the data back to the requesting
redirector. The redirector then returns the data to the calling application via the I/O
manager.

A similar process occurs for applications that use the Win32 network API, rather than the UNC
services, except that a module called a multi-provider router is used, instead of a MUP.

For portability, redirectors and servers use the TDI API for network transport. The requests
themselves are expressed in a higher-level protocol, which by default is the SMB protocol. The
list of redirectors is maintained in the system registry database.

14.5.4 Domains

Many networked environments have natural groups of users, such as students in a computer
laboratory at school, or employees in one department in a business. Frequently, we want all the
members of the group to be able to access shared resources on their various computers in the
group. To manage the global access rights within such groups, Windows 2000 uses the concept
of a domain. Previously, these domains had no relationship whatsoever to the Domain Name
System that maps Internet host names to IP addresses; now, however, they are closely related.
Specifi cally, a Windows 2000 domain is a group of Windows 2000 workstations and servers that
shares a common security policy and user database. Since Windows 2000 now uses the Kerberos
protocol for trust and authentication, a Windows 2000 domain is the same thing as a Kerberos
realm. Previous versions of NT used the idea of primary and backup domain controllers; now all
servers in a domain are domain controllers.

In addition, previous versions required the setup of one-way trusts between domains. Windows
2000 utilizes uses a hierarchical approach based on DNS, and allows transitive trusts that can
fl ow up and down the hierarchy. This approach reduces the number of trusts required for n
domains from n _ (n _ 1) to O(n). The workstations in the domain trust the domain controller
to give correct information about the access rights of each user (via the user’s access token). All
users retain the ability to restrict access to their own workstations, no matter what any domain
controller may say.

Because a business may have many departments, and a school may have many classes, it is
often necessary to manage multiple domains within a single organization. A domain tree is a

Operating System

Notes

312 LOVELY PROFESSIONAL UNIVERSITY

contiguous DNS naming hierarchy. For example, bell-labs.com might be the root of the tree, with
research.bell-labs.com and pez.bell-labs.com as children -(domains research and pez). A forest is
a set of non-contiguous names. An example would be the trees bell-labs.com and/or lucent.com.
A forest may be comprised of only one domain tree, however.

Trust relationships may be set up between domains in three ways: one-way, transitive, and cross-
link. Versions of NT through version 4.0 allowed only one-way trusts to be set up. A one-way
trust is exactly what its name implies: Domain A is told it can trust domain B. However, B would
not trust A unless another relationship is confi gured. Under a transitive trust, if A trusts B and
B trusts C, then A, B, and C all trust each other since transitive trusts are two-way by default.
Transitive trusts are enabled by default for new domains in a tree and can only be confi gured
among domains within a forest. The third type, a cross-link trust, is useful to cut down on
authentication traffi c. Suppose that domains A and B are leaf nodes, and that users in A often use
resources in B. If a standard transitive trust is used, authentication requests must traverse up to
the common ancestor of the two leaf nodes; but if A and B have a cross-linking trust established,
the authentications would be sent directly to the other node.

14.5.5 Name Resolution in TCP/IP Networks

On an IP network, name resolution is the process of converting a computer name to an IP address,
such as resolving www.bell-labs.com to 135.104.1.14.

Windows 2000 provides several methods of name resolution, including Windows Internet Name
Service (WINS), broadcast name resolution, domain name system (DNS), a hosts fi le, and an
LMHOSTS fi le. Most of these methods are used by many operating systems, so we describe only
WINS here.

Under WINS, two or more WINS servers maintain a dynamic database of name-to-IP address
bindings, and client software to query the servers. At least two servers are used, so that the WINS
service can survive a server failure, and so that the name-resolution workload can be spread over
multiple machines.

WINS uses the dynamic host-confi guration protocol (DHCP). DHCP updates address
confi gurations automatically in the WINS database, without user or administrator intervention,
as follows. When a DHCP client starts up, it broadcasts a discover message. Each DHCP
server that receives the message replies with an offer message that contains an IP address and
confi guration information for the client. The client then chooses one of the confi gurations and
sends a request message to the selected DHCP server. The DHCP server responds with the IP
address and confi guration information it gave previously, and with a lease for that address. The
lease gives the client the right to use that IP address for a specifi ed period of time. When the lease
time is half expired, the client will attempt to renew the lease for that address. If the lease is not
renewed, the client must get a new one.

14.6 Programmer Interface

The Win32 API is the fundamental interface to the capabilities of Windows 2000. This section
describes fi ve main aspects of the Win32 API: access to kernel objects, sharing of objects between
processes, process management, interprocess communication, and memory management.

14.6.1 Access to Kernel Objects

The Windows 2000 kernel provides many services that application programs can use. Application
programs obtain these services by manipulating kernel objects. A process gains access to a kernel
object named XXX by calling the CreateXXX function to open a handle to XXX. This handle is
unique to that process. Depending on which object is being opened, if the create function fails, it

Unit 14: Windows 2000

Notes

 LOVELY PROFESSIONAL UNIVERSITY 313

may return 0, or it may return a special constant named INVALID HANDLE VALUE. A process
can close any handle by calling the CloseHandle function, and the system may delete the object
if the count of processes using the object drops to 0.

Windows 2000 provides three ways to share objects between processes. The First way is for a
child process to inherit a handle to the object. When the parent calls the CreateXXX function,
the parent supplies a SECURITIES ATTRIBUTES structure with the bInheritHandle FIeld set to
TRUE. This fi eld creates an inheritable handle. Then, the child process can be created, passing
a value of TRUE to the CreateProcess function’s bInheritHandle argument. Assuming that the
child process knows which handles are shared, the parent and child can achieve interprocess
communication through the shared objects.

The second way to share objects is for one process to give the object a name when that object is
created, and for the second process to open that name. This method has two drawbacks. One is
that Windows 2000 does not provide a way to check whether an object with the chosen name
already exists. A second drawback is that the object name space is global, without regard to the
object type. For instance, two applications may create an object named .pipe. when two distinct
(and possibly different) objects are desired.

Named objects have the advantage that unrelated processes can share them readily. The First
process would call one of the CreateXXX functions and supply a name in the lpszName parameter.
The second process can get a handle to share this object by calling OpenXXX (or CreateXXX) with
the same name,

The third way to share objects is via the DuplicateHandle function. This method requires some
other method of interprocess communication to pass the duplicated handle. Given a handle to a
process, and the value of a handle within that process, a second process can get a handle to the
same object, and thus share it.

In Windows 2000, a process is an executing instance of an application, and a thread is a unit
of code that can be scheduled by the operating system. Thus, a process contains one or more
threads. A process is started when some other process calls the CreateProcess routine. This routine
loads any dynamic link libraries that are used by the process, and creates a primary thread.
Additional threads can be created by the CreateThread function. Each thread is created with its
own stack, which defaults to one MB unless specifi ed otherwise in an argument to CreateThread.
Because some C run-time functions maintain state in static variables, such as errno, a multithread
application needs to guard against unsynchronized access. The wrapper function beginthreadex
provides appropriate synchronization.

Every dynamic link library or executable fi le that is loaded into the address space of a process is
identifi ed by an instance handle. The value of the instance handle is actually the virtual address
where the fi le is loaded. An application can get the handle to a module in its address space by
passing the name of the module to GetModuleHandle. If NULL is passed as the name, the base
address of the process is returned. The lowest 64 kilobytes of the address space are not used, so a
faulty program that tries to dereference a NULL pointer will get an access violation.

Priorities in the Win32 environment are based on the Windows 2000 scheduling model, but not
all priority values may be chosen. Win32 uses four priority classes: IDLE PRIORITY CLASS
(priority level 4), NORMAL PRIORITY CLASS (level 8), HIGH PRIORITY CLASS (level 13)
and REALTIME PRIORITY CLASS (level 24). Processes are typically members of the NORMAL
PRIORITY CLASS unless the parent of the process was of the IDLE PRIORITY CLASS, or another
class was specifi ed when CreateProcess was called. The priority class of a process can be changed
with the SetPriorityClass function, or by an argument being passed to the START command. For
example, the command START/REALTIME observer.exe would run the observer program in
the REALTIME PRIORITY CLASS. Note that only users with the increase scheduling priority
privilege can move a process into the REALTIME PRIORITY CLASS.

Administrators and power users have this privilege by default.

Operating System

Notes

314 LOVELY PROFESSIONAL UNIVERSITY

When a user is running an interactive program, the system needs to provide especially good
performance for that process. For this reason, Windows 2000 has a special scheduling rule for
processes in the NORMAL PRIORITY CLASS.

Windows 2000 distinguishes between the foreground process that is currently selected on the
screen, and the background processes that are not currently selected. When a process moves
into the foreground, Windows 2000 increases the scheduling quantum by some factor-typically
by 3. (This factor can be changed via the performance option in the system section of the control
panel).

This increase gives the foreground process three times longer to run before a time sharing
preemption occurs.

A thread can be created in a suspended state: The thread will not execute until another thread
makes it eligible via the ResumeThread function. The SuspendThread function does the opposite.
These functions set a counter, so if a thread is suspended twice, it must be resumed twice before
it can run.

To synchronize the concurrent access to shared objects by threads, the kernel provides
synchronization objects, such as semaphores and mutexes.

In addition, synchronization of threads can be achieved by using the WaitForSingleObject or
WaitForMultipleObjects functions. Another method of synchronization in the Win32 API is the
critical section. A critical section is a synchronized region of code that can be executed by only
one thread at a time. A thread establishes a critical section by calling InitializeCriticalSection.

The application must call EnterCriticalSection before entering the critical section, and
LeaveCriticalSection after exiting the critical section. These two routines guarantee that, if
multiple threads attempt to enter the critical section concurrently, only one thread at a time will
be permitted to proceed, and the others will wait in the EnterCriticalSection routine. The critical-
section mechanism is slightly faster than the kernel-synchronization objects.

A fi ber is user-mode code that gets scheduled according to a user-defi ned scheduling algorithm.
A process may have multiple fi bers in it, just as it can have multiple threads. A major difference
between threads and fi bers is that threads can execute concurrently, but only one fi ber at a
time is permitted to execute, even on multiprocessor hardware. This mechanism is included in
Windows 2000 to facilitate the porting of those legacy UNIX applications that were written for a
fi ber-execution model.

The system creates a fi ber by calling either ConvertThreadToFiber or CreateFiber. The primary
difference between these functions is that CreateFiber does not begin executing the fi ber that
was created. To begin execution, the application must call SwitchToFiber. The application can
terminate a fi ber by calling DeleteFiber.

14.6.2 Inter-process Communication

One way that Win32 applications can do inter-process communication is by sharing kernel objects.
Another way is by passing messages, an approach that is particularly popular for Windows GUI
applications.

One thread can send a message to another thread or to a window by calling PostMessage,
PostThreadMessage, SendMessage, SendThreadMessage, or SendMessageCallback. The
difference between posting a message and sending a message is that the post routines are
asynchronous: They return immediately, and the calling thread does not know when the message
is actually delivered.

The send routines are synchronous-they block the caller until the message has been delivered
and processed.

Unit 14: Windows 2000

Notes

 LOVELY PROFESSIONAL UNIVERSITY 315

In addition to sending a message, a thread can also send data with the message. Since processes
have separate address spaces, the data must be copied. The system copies them by calling
endMessage to send a message of type WM COPYDATA with a COPYDATASTRUCT data
structure that contains the length and address of the data to be transferred. When the message is
sent, Windows 2000 copies the data to a new block of memory and gives the virtual address of
the new block to the receiving process.

Unlike the 16-bit windows environment, every Win32 thread has its own input queue from
which the thread receives messages. (All input is received via messages.) This structure is more
reliable than the shared input queue of 16-bit windows, because, with separate queues, one stuck
application cannot block input to the other applications.

14.6.3 Memory Management

TheWin32 API provides several ways for an application to use memory: virtual memory,
memory-mapped FIles, heaps, and thread-local storage.

An application calls VirtualAlloc to reserve or commit virtual memory, and VirtualFree to
decommit or release the memory. These functions enable the application to specify the virtual
address at which the memory is allocated.

They operate on multiples of the memory pagesize, and the starting address of an allocated
region must be greater than 0_10000.

A process may lock some of its committed pages into physical memory by calling VirtualLock.
The maximum number of pages that a process can lock is 30, unless the process FIrst calls
SetProcessWorkingSetSize to increase the minimum working-set size.

Another way for an application to use memory is by memory mapping a fi le into its address space.
Memory mapping is also a convenient way for two processes to share memory: Both processes
map the same fi le into their virtual memory. Memory mapping is a multistage process.

If a process wants to map some address space just to share a memory region with another process,
no fi le is needed. The process can call CreateFileMapping with a fi le handle of off 0×ffffffff and a
particular size. The resulting fi le-mapping object can be shared by inheritance, by name lookup,
or by duplication.

The third way for applications to use memory is a heap. A heap in the Win32 environment is just
a region of reserved address space. When a Win32 process is initialized, it is created with a 1-MB
default heap. Since many Win32 functions use the default heap, access to the heap is synchronized
to protect the heap’s space-allocation data structures from being damaged by concurrent updates
by multiple threads. Win32 provides several heap-management functions so that a process can
allocate and manage a private heap. These functions are HeapCreate, HeapAlloc, HeapRealloc,
HeapSize, HeapFree, and HeapDestroy.

TheWin32 API also provides the HeapLock and HeapUnlock functions to enable a thread to gain
exclusive access to a heap. Unlike VirtualLock, these functions perform only synchronization;
they do not lock pages into physical memory.

The fourth way for applications to use memory is a thread-local storage mechanism. Functions
that rely on global or static data typically fail to work properly in a multithreaded environment.
For instance, the C run-time function strtok uses a static variable to keep track of its current
position while parsing a string. For two concurrent threads to execute strtok correctly, they
need separate .current position. variables. The thread-local storage mechanism allocates global
storage on a per-thread basis. It provides both dynamic and static methods of creating thread-
local storage.

Operating System

Notes

316 LOVELY PROFESSIONAL UNIVERSITY

14.7 Summary

Microsoft designed Windows 2000 to be an extensible, portable operating system - one able to
take advantage of new techniques and hardware. Windows 2000 supports multiple operating
environments and symmetric multiprocessing. The use of kernel objects to provide basic services,
and the support for client-server computing, enable Windows 2000 to support a wide variety of
application environments. For instance, Windows 2000 can run programs compiled for MS-DOS,
Win16, Windows 95, Windows 2000, and/or POSIX. It provides virtual memory, integrated
caching, and preemptive scheduling. Windows 2000 supports a security model stronger than
those of previous Microsoft operating systems, and includes internationalization features.
Windows 2000 runs on a wide variety of computers, so users can choose and upgrade hardware
to match their budgets and performance requirements, without needing to alter the applications
that they run.

14.8 Keywords

I/O Manager: It allows devices to communicate with user-mode subsystems by translating user-
mode read and write commands and passing them to device drivers.

IPC Manager: Short form of Inter-Process Communication Manager, manages the communication
between clients (the environment subsystem) and servers (components of the executive).

Object manager: It is a special executive subsystem that all other executive subsystems must pass
through to gain access to Windows 2000 resources.

PnP Manager: It handles Plug and Play and supports device detection and installation at boot
time.

Power Manager: The power manager coordinates power events and generates power IRPs.

Process Manager: Handles process and thread creation and termination

Security Reference Monitor (SRM): The primary authority for enforcing the security rules of the
security integral subsystem.

Virtual Memory Manager: It manages virtual memory, allowing Windows 2000 to use the hard
disk as a primary storage device (although strictly speaking it is secondary storage).

Windows 2000 Advanced Server: It is an operating system which supports up to eight processors
and up to 8GB of RAM. It is used in an enterprise network and very useful as an SQL server.

Windows 2000 Datacenter Server: It is an operating system which upports up to 32 processors
and up to 64GB of RAM. It is used in an enterprise network to support extremely large databases
and real time processing.

Windows 2000 Professional: It is an operating system which supports up to two processors
and up to 4GB of RAM. Used as a workstation or client computer and it is the replacement for
Windows NT Workstation.

Windows 2000 Server: It is an operating system which supports up to four processors and up to
4GB of RAM. It is used for web, application, print and fi le servers.

14.9 Review Questions

1. What are the differences between Windows 2000 Professional, Server, Advanced Server,
and DataCenter?

2. Write short notes on:

(a) NTFS

Unit 14: Windows 2000

Notes

 LOVELY PROFESSIONAL UNIVERSITY 317

(b) POSIX subsystem

(c) Distributed-Processing Mechanisms

3. How Windows 2000 accesses the remote fi le?

4. What is IPC? How does it occur in Windows 2000?

14.10 Further Readings

Books Andrew M. Lister, Fundamentals of Operating Systems, Wiley.

 Andrew S. Tanenbaum and Albert S. Woodhull, Systems Design and Implementation,
Prentice Hall.

 Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.

 Colin Ritchie, Operating Systems, BPB Publications.

 Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.

 I.A. Dhotre, Operating System, Technical Publications.

 Milankovic, Operating System, Tata MacGraw Hill, New Delhi.

 Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons,
Seventh Edition.

 Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.

Online links www.en.wikipedia.org

 www.web-source.net

 www.webopedia.com

Jalandhar-Delhi G.T. Road (NH-1)
Phagwara, Punjab (India)-144411
For Enquiry: +91-1824-300360
Fax.: +91-1824-506111
Email: odl@lpu.co.in

LOVELY PROFESSIONAL UNIVERSITY

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

