
DCAP407

Data Structure 



 

DATA STRUCTURE



Copyright © 2012 Lovely Professional University
All rights reserved

Printed by
EXCEL BOOKS PRIVATE LIMITED

A-45, Naraina, Phase-I,
New Delhi-110028

for
Lovely Professional University

Phagwara



SYLLABUS

Data Structure
Objectives: The objectives for this course are to gain a solid understanding of the following topics:

 The fundamental design, analysis, and implementation of basic data structures and algorithms

 Principles for good program design, especially the uses of data abstraction and modular program composition

 Basic concepts in the specification and analysis of programs

 

S. No. Description 

1. Basic concepts and notations: Data structures and data structure operations  

2. Complexity Analysis: Mathematical notation and functions, algorithmic complexity and time space 
trade off, Big O Notation, The best, average & Worst cases analysis of various algorithms. 

3. Arrays:  Linear & Multidimensional Arrays, Representation & traversal 

4. Pointers: Array Pointers, Records and Record Structures, Representation of Records in Memory; Parallel 
Arrays 

5. Linked list: Representation, traversal, searching, Insertion, deletion of linked list.  
Two way/multi linked structures, Header Lists, Circular Lists 

6. Stacks: Basic operation of Stack, Memory Representation, Traversal.   
Queues: Operations, Representation & Types. 

7. Recursion: Definition, Function Call & Recursion implementation, Anatomy of Recursive Call, 
Complexity issues 

8. Trees: Definition, Representation in memory. 

9. Binary trees: Binary tree traversal, Insertion, Deletion & Searching  

10. Binary Search Trees: Search, Insertion, deletion  
Intro to Heaps 



CONTENTS

Unit 1: Introduction to Data Structures 1

Unit 2: Complexity Analysis 19

Unit 3: Arrays 37

Unit 4: Pointers 59

Unit 5: Introduction to Linked List 79

Unit 6: Linked List Operations 91

Unit 7: Stacks 119

Unit 8: Queues 129

Unit 9: Recursion 149

Unit 10: Trees 177

Unit 11: Introduction to Binary Trees 199

Unit 12: Binary Tree Traversals and Operations 213

Unit 13: Binary Search Trees 235

Unit 14: Heaps 249





Unit 1:  Introduction to Data Structures 

LOVELY PROFESSIONAL UNIVERSITY 1 

1.1 Basic Concepts and Notations of Data Structures 

Unit 1: Introduction to Data Structures 

CONTENTS 

Objectives 

Introduction 

      1.1.1   Data Structures and Algorithms 

      1.1.2   The Concept of Data Type 

      1.1.3   Data Structure Notations 

1.2 Need for Data Structures 

      1.2.1   Goals of Data Structure 

      1.2.2   Features of Data Structure 

1.3 Classification of Data Structure 

      1.3.1   Primitive Data Structure 

      1.3.2   Non-primitive Data Structure 

1.4 Abstract Data Type 

      1.4.1   Abstract Data Type (ADT) Model 

1.5 Data Structure Operations 

      1.5.1   Operations on Primitive Data Structure 

      1.5.2   Operations on Non-primitive Data Structure 

1.6 Summary 

1.7 Keywords 

1.8 Self Assessment 

1.9 Review Questions 

1.10 Further Readings 

After studying this unit, you will be able to: 

Objectives 

• Understand the basic concepts and notations of data structures 

• Discuss the need for data structures 

• Explain the classification of data structures 

• Discuss abstract data types 

• Explain data structure operations 

The term data refers to numerical or other information represented in a form, suitable for processing by 
a computer. Structure can be defined as the way in which parts are arranged or put together to form a 
whole. A data structure can be defined as the combination of data and all the potential operations, 
which are required for those set of data. The basic data items include bits, characters and integers. Data 
structures deal with manipulation and assembling of data. However, the data available is usually in the 

Introduction 



Data Structure 

LOVELY PROFESSIONAL UNIVERSITY 2 

amorphous form. When different types of such amorphous data are related to each other, we refer to it 
as a data structure.  

 

 

 
Queues, Stacks, Trees etc. 

A data structure can be described as a set of domains d, a set of functions F and a set of rules A. 

D = {d, F, A} 

Where,  

D refers to Data structure 

d refers to Domain variable 

F refers to a set of functions or procedures operating on domain variables. 

A is a set of rules governing the operations of these functions on the domain variable. 

The instructions of a computer program use data to perform certain tasks. Some programs generate 
data without using any inputs. Some programs generate data using a set of inputs, while some 
programs use a data set to manipulate the given data. Thus, the data is processed efficiently only by 
organizing them in a particular structure.  

The study of data structures helps to understand the basic concepts involved in organizing and storing 
data as well as the relationship among the data sets. This in turn helps to determine the way 
information is stored, retrieved and modified in a computer’s memory. The study of data structures is 
not limited to the study of data sets. It further extends to the study of representation of data elements. 
This means that it explains how different types of data are placed in the computer's memory using the 
binary number system, which forms the storage structure or memory representation. Data structure is 
implemented in computer programs to manage data. The data is managed using certain logical or 
mathematical models or concepts. A complex data structure can also be built using simple data 
structures. 

Data structure is a branch of computer science. The study of data structure helps you to understand 
how data is organized and how data flow is managed to increase efficiency of any process or program. 
Data structure is the structural representation of logical relationship between data elements. This means 
that a data structure organizes data items based on the relationship between the data elements. 

1.1   Basic Concepts and Notations of Data Structures 

 

 

 
A house can be identified by the house name, location, number of floors and 
so on. These structured set of variables depend on each other to identify the 
exact house. Similarly, data structure is a structured set of variables that are 
linked to each other, which forms the basic component of a system 

1.1.1   Data Structures and Algorithms 
A data structure is basically an arrangement of data within a computer's memory in computer-
understandable language. In other words, data is stored in 0 and 1 format and is retrieved in ASCII 
(American Standard Code for Information Interchange) codes, which is human-understandable format.  

The structural and functional aspects of the program depend on the design of the data structure. Thus, a 
data structure forms the basic building block of a program. Different data structures are used in 
applications for efficient operation of these applications. The programmers must select the correct data 
structure to write more efficient programs. This helps to solve the complexity of the problems at a rapid 
rate. 

In computer science, an algorithm is defined as a finite list of distinct instructions for calculating a 
function. Algorithms are used for data processing, calculation and automated reasoning. An algorithm 
can also be defined as a set of rules that accurately defines a series of operations. 



Unit 1:  Introduction to Data Structures 

LOVELY PROFESSIONAL UNIVERSITY 3 

 

 

 
Instructions for assembling a puzzle can be an example of an algorithm. If you 
are given a preliminary set of marked pieces, you can follow the instructions 
given to complete the puzzle. 

According to Levitin, algorithms can be defined as, “A sequence of unambiguous instructions for 
solving a problem, i.e., for obtaining a required output for any legitimate input in a finite amount of 
time.” 

Most computer programs involve an algorithm and one or more data structures. An appropriate data 
structure needs to be selected for an algorithm as the efficiency of the algorithm depends on the data 
structure chosen. By increasing the data storage space, you may not be able to reduce the time needed 
for processing the data and vice versa. 

 

 

 
When we want to print a mailing list alphabetically we need to use a data 
structure and an algorithm. We first arrange all the names in a data structure 
(array) and then sort the names alphabetically using an algorithm (sorting). 

1.1.2   The Concept of Data Type 
A data type comprises a set of data with values and consists of predefined set of characteristics. To be 
specific, data is usually stored in a variable, where the value of the variable changes according to the 
program being executed. The four commonly used data types in C language include int (integer), float 
(real number), char (character) and pointer. The keywords int, float, char and so on always take 
lowercase letters. Generally, a data type includes constants and variables. A constant is considered as an 
entity that does not change in any given program. A variable is an entity that may change from one 
program to another. It is necessary to specify the variables that will be used in a program. Therefore, 
type declaration is made by giving the data type and then the variable names. The syntax for declaring 
the data type and the variable name is as given below:  

Syntax: 

<(data type)><variable names>; 

 

 

 
int x; 
Where, int is a data type and x is a variable 

Integer Data Type 

An integer data type includes only whole numbers. It does not contain any fractional data. It is denoted 
by the keyword int. It occupies 2 bytes of memory space. Integer data type can either be signed or 
unsigned. The signed type integer takes both positive and negative values. The range of integer 
constant is from -32768 to +32767 (-2^15 to +2^15 - 1) for a 16-bit compiler and -128 to 127 (-2^7 to +2^7 
- 1) for an 8-bit complier. A 16-bit compiler uses one bit for storing sign and the remaining 15-bits for 
storing numbers. An 8-bit complier uses one bit for storing sign and the remaining 7-bits for storing 
numbers. The unsigned integer ranges from 0 to 65535. The signed and unsigned integers are specified 
as follows: 

Syntax: 

Unsigned int value; 

Signed int value; 

The integer data type is denoted by placeholder format string % d, which indicates that the data being 
used is of integer values. 

 

 

 
int x; 
scanf (“%d”, &x); 



Data Structure 

LOVELY PROFESSIONAL UNIVERSITY 4 

Generally, there are three classes of integers namely, short int, int and long int. As shown in table 1.1, 
short integers occupy only 1 byte, int occupies 2 bytes and the long integers occupy 4 bytes of memory. 
Long integers can store longer range of values when compared to integer and short integer. 

 
Table 1.1: Integer Data Type Memory Allocation 

 
  
 

Short int Int Long int 

1 Byte 2 Bytes 4 Bytes 
 

 

Floating Point Data Type 

The floating point data type contains fractional numbers/real numbers and stores a maximum of six 
digits after decimal point. The keyword used to denote floating point number is 'float'. It occupies 4 
bytes of memory space. The floating point data type is denoted by the placeholder %f, which indicates 
that the data being used is of floating point values. The three classes of floating point data type are float, 
double and long double. 

 

 
 

 
float x; 
scanf (“%f”, &x); 

As shown in table 1.2, float occupies 4 bytes of memory space. Double has longer precision than float 
and occupies 8 bytes of memory space. The long double further extends the precision and occupies 10 
bytes of memory space. 

 Table 1.2: Floating Point Data Type Memory 
Allocation 

 
  
 

Float Double Long double 

4 Byte 8 Bytes 10 Bytes 
 

 

Character Data Type 

Character data type consists of a single character. It can store a single special symbol or alphabet placed 
within single inverted commas. It is denoted by the keyword char. It occupies only 1 byte of memory 
space. The character data type is denoted by placeholder %c, which indicates that the data being used is 
of character values. 

 

 

 
char x; 
scanf (“%c”, &x); 

 

 

 

 

 

 

 

 



Unit 1:  Introduction to Data Structures 

LOVELY PROFESSIONAL UNIVERSITY 5 

Table 1.3 gives the syntax and examples of the different data types. 

 
Table 1.3: Data Types 

 
  
 

Data type Syntax Examples Explanation 

Int int<variable name> int x; x = 5; 
short int x; 
long int x; 
unsigned int x; 
signed int x; 

In the example, int is a data type and x is a 
variable name. Variable can also hold a 
value.  The value of variable x is 5. 

Float float <variable name> float x; x = 6; 
double x; 
long double x; 

In the example, float is a data type and x is 
a variable name. ‘float’ will interpret the 
integer value 6 as 6.0.  

Char char <variable name> char x; x = ‘a’; 
char x; x = ‘5’; 
char x; x = ‘+’; 

In the example, char is a data type and x is 
a variable name. The character to be 
assigned to the char variables is specified 
within the single quotes.  

 

 

From the table 1.3, it is clear that each data type is capable of holding a particular type of value. This 
helps to determine the possible operations that can be performed using that data. 

Pointers 

A pointer is a reference data structure. A pointer is actually a variable that stores the address of another 
variable or structure in a program. The pointer variable holds only the memory location and not the 
actual content. The pointer normally uses the address operator represented by ‘&’ and the indirection 
operator represented by ‘*’. The address operator provides the address of the variable and the 
indirection operator provides the value of the variable which is being pointed by the pointer variable. 

 

 
 

 
The majority of microcomputers in this world use the ASCII (American Standard Code 
for Information Interchange) Character Set which has established values for 0 to 127. 

1.1.3   Data Structure Notations 
To find the best solution for a particular process, we must know which solution will take less time to 
run. To make the selection process easier, few notations are used, which are: 

1. Big-O Notation: Big-O is the technique of expressing the upper bound of the running time of an 
algorithm. It is an evaluation of the maximum amount of time it could possibly take for the 
algorithm to complete. 

 

 

 
The running time for printing a list of n items looking at each item once can be 
expressed as O (n). 

2. Big-Omega Notation: This notation describes the lower bound of the running time of an 
algorithm. It describes the best case running time of an algorithm for a given data size. 

 

 

 
The running time for finding the total number of prime factors of n, counting 
prime factors with multiplicity can be expressed as Ω (n). 

3. Big-Theta Notation: Big-Theta notation gives both the upper and lower bounds of the running 
time of an algorithm. This type of notation is used for comparing run-times or growth rates 
between two growth functions. 



Data Structure 

LOVELY PROFESSIONAL UNIVERSITY 6 

 

 

 
In a linear search algorithm, the lower bound is expressed as  (1) and the 
upper bound as  (n). 

The study of data structure helps programmers to store and manipulate data efficiently. Data structures 
help to understand the relationship of a data element with other data elements. They also provide 
various methods to organize and represent the data within the computer’s memory. 

Data structure is imperative since it governs the types of operations we perform on the data, and the 
competency of the operations carried out. It also governs how dynamic we can be in dealing with our 
data. 

1.2   Need for Data Structures 

 

 

 

Data structures specify if we can add additional data on the fly, or if we need to know 
about all the data initially. We determine which data structures to use for storing our 
data only after we have vigilantly analyzed the problem and know what we are 
expected to do with the data. 

There are different ways to organize data, for which there is a need for different kinds of data structure. 

Consider a set of data that represents points of interest in a country. For each point of interest, the 
location is represented by country name in the first level, then the state name and finally the point of 
interest. Here, data is organized in a hierarchical form and hence it needs a hierarchical type of data 
structure as shown in figure 1.1. 

 
Figure 1.1: Hierarchical Type of Data Structure 

 
  
 
 
 

There are more real world scenarios, where the data structure is implemented effectively to manage the 
data. 

 

 

 
Banks perform many operations such as opening accounts, closing accounts, 
adding money, and withdrawing money from an account. Hence, banking 
applications need appropriate data structures for their database system. The data 
structure should be such that it can efficiently handle search operations as well 
as basic functions like randomly inserting and deleting the data items from 
anywhere in the structure. 

      India 

    Karnataka     Maharashtra          Delhi 

    Bangalore 

     Lalbagh 

      Red Fort       Mumbai 

      Juhu Beach 



Unit 1:  Introduction to Data Structures 

LOVELY PROFESSIONAL UNIVERSITY 7 

From the preceding discussion it is clear that data structures are needed to analyze, store and organize 
data in a logical manner.  

 

 
 

 

Find some real world data which can be represented as a hierarchical data structure. 

1.2.1    Goals of Data Structure 
Data structure basically implements two complementary goals. The first goal of data structure is to 
develop mathematical entities and operations, which can be used to solve particular classes of 
problems. The second goal is to find out representations for these entities and then implement the 
operations on those representations. This goal considers implementing the high level data type to solve 
the problems, which in turn uses existing data types.  

The fundamental goal of data structure is to produce solutions that are correct and efficient. This in turn 
helps to produce quality software. Generally, the production of quality data structure to have quality 
software implementation involves the following additional goals: 

Correctness 

Data structure is designed such that it operates correctly for all kinds of input, which is based on the 
domain of interest. In other words, correctness forms the primary goal of data structure, which always 
depends on the specific problems that the data structure is intended to solve. 

 

 

 
A data structure designed to store a collection of numbers, in a specific order, 
must make sure that the numbers are not stored in a haphazard way.  

Efficiency 

Data structure also needs to be efficient. It should process the data at high speed without utilizing much 
of the computer resources such as memory space. In a real time state, the efficiency of a data structure is 
an important factor that determines the success and failure of the process. 

 

 

 
NASA space shuttle requires a high level data structure design, so that it 
reacts quickly to any changing conditions during a lift-off.  

1.2.2   Features of Data Structure 
Some of the important features of data structures are:  

1. Robustness 

2. Adaptability 

3. Reusability 

Robustness 

Generally, all computer programmers wish to produce software that generates correct output for every 
possible input provided to it, as well as execute efficiently on all hardware platforms. This kind of 
robust software must be able to manage both valid and invalid inputs. 

 

 

 
A program is developed which takes an integer as an input. However, if a 
floating point number is given as an input to it, then the program must be able 
to manage this error and recover gracefully from this error.   

Similarly, software must produce correct solution in spite of any limitation of the computer. 

 

 



Data Structure 

LOVELY PROFESSIONAL UNIVERSITY 8 

 

 

 
If a user wants to store more data items in a data structure than expected, then 
the software must be capable of extending the capacity of the structure to store 
the additional data. 

Adaptability 

Developing software projects such as word processors, Web browsers and Internet search engine 
involves large software systems that work or execute correctly and efficiently for many years. 
Moreover, software evolves due to ever changing market conditions or due to emerging technologies. 

 

 

 
Software evolves to adapt to the increase in speed of CPU or network, or it 
evolves to add new functionality as per the market demand. 

Thus, the goal of data structure is to develop quality software which is capable of adapting to any given 
situation.  

Reusability 

Reusability and adaptability go hand-in-hand. 

 

 

 
In reusable software, the code of the particular software developed can easily 
be incorporated or adapted in the component of different systems or 
application domains. 

It is a known fact that the programmer requires many resources for developing any software, which 
makes it an expensive enterprise. However, if the software is developed in a reusable and adaptable 
way, then it can be implemented in most of the future applications. Thus, by implementing quality data 
structures, it is possible to develop reusable software, which tends to be cost effective and time saving. 

 

 
 

 
Data Structures – Making Things Easy 

 
 

Einstein@Home is a distributed computing software project. It used NVIDIA’s CUDA (CUDA is 
NVIDIA’s parallel computing architecture) architecture to enable drastic increase in computing 
performance. But, with the existing data structure, it performed poorly when used with graphics 
processing units (GPUs). The whole data structure was redesigned. A novel spatial data structure 
called dynamic grid was optimized for CUDA usage. This resulted in a three-fold improvement in 
the performance of the GPUs. This improvement in the performance was achieved without even 
optimizing the code executed on the device. Thus the proper usage of data structure proved 
beneficial for the project. 

Source: http://gpgpu.org/2008/08/11/case-studies-on-gpu-usage-and-data-structure-design 

A data structure provides a structured set of variables that are associated with each other in different 
ways. It forms a basis of programming tool that represents the relationship between data elements and 
helps programmers to process the data easily.  

Data structure can be classified into two categories: 

1.3   Classification of Data Structure 

1. Primitive data structure 

2. Non-primitive data structure 

 

 

 



Unit 1:  Introduction to Data Structures 

LOVELY PROFESSIONAL UNIVERSITY 9 

 

 

 

Many different names are used for the data elements of a data structure. Some 
examples are “data element”, “data object”, “node” and “record”. The specific name 
that is used depends on the type of data structure. 

Figure 1.2 shows the different classifications of data structures. 

 
Figure 1.2: Classification of Data Structure 

 
  
 

 
 

1.3.1   Primitive Data Structure 
Primitive data structures consist of the numbers and the characters which are built in programs. These 
can be manipulated or operated directly by the machine level instructions. Basic data types such as 
integer, real, character, and Boolean come under primitive data structures. These data types are also 
known as simple data types because they consist of characters that cannot be divided. 

Integer is used for integral or fixed-precision values. It is denoted as int. The type INTEGER includes a 
subset of the whole numbers whose size may differ in different computer systems. It is considered that 
all operations on data of this type are precise and correspond to the ordinary laws of arithmetic, and if 
the result lies outside the representable subset, the computation might fail. 

The primitive data type REAL designates a subset of the real numbers. Arithmetic done with operands 
of the type INTEGER is considered to yield accurate results, whereas, arithmetic on values of type 
REAL is permitted to be incorrect within the limits of round-off errors. This is the main reason for the 
apparent distinction between the types INTEGER and REAL. The four basic arithmetic operations 
which are also the standard operators are addition (+), subtraction (-), multiplication (*), and division 
(/). 



Data Structure 

LOVELY PROFESSIONAL UNIVERSITY 10 

Character is used for character values. It is denoted as Char. The standard type CHAR consists of a set 
of printable characters. The type CHAR comprises 26 upper-case letters, 26 lower-case letters, 10 
decimal digits, and a number of other graphic characters such as, punctuation marks. The subsets of 
letters and digits are structured and contiguous. Every single computer stores character data in a one 
byte field as an integer value. A byte consists of 8 bits so the one byte field has 256 possibilities using the 
positive values of 0 to 255. 

The type Boolean is used for Boolean values. The standard type BOOLEAN values are denoted by the 
two identifiers TRUE and FALSE. The Boolean operators comprise logical conjunction, disjunction, and 
negation. The logical conjunction is denoted by the symbol &, the logical disjunction by OR, and 
negation by “~”. 

 

 
 

 

Based on the language and its implementation, primitive data types may or may not 
have a one-to-one connection with objects in the computer's memory. 

1.3.2   Non-primitive Data Structure 
Non-primitive data structures are those that are derived from primitive data structures. These data 
structures cannot be operated or manipulated directly by the machine level instructions. They focus on 
formation of a set of data elements that is either homogeneous (same data type) or heterogeneous 
(different data type). These are further divided into linear and non-linear data structure based on the 
structure and arrangement of data.  

Linear Data Structure 
A data structure that maintains a linear relationship among its elements is called a linear data structure. 
Here, the data is arranged in a linear fashion. But in the memory, the arrangement may not be 
sequential. 

 

 

 
Arrays, linked lists, stacks, queues. 

Array 

Array, in general, refers to an orderly arrangement of data elements. Array is a type of data structure 
that stores data elements in adjacent locations. Array is considered as linear data structure that stores 
elements of same data types. Hence, it is also called as a linear homogenous data structure.  

When we declare an array, we can assign initial values to each of its elements by enclosing the values in 
braces { }. 

 

 

 
int Paul [5] = { 26, 7, 67, 50, 66 };  
This declaration will create an array as shown below: 
                 0            1             2              3             4 
Paul 

The number of values inside braces { } should be equal to the number of elements that we declare for the 
array inside the square brackets [ ]. In the example of array Paul, we have declared 5 elements and in 
the list of initial values within braces { } we have specified 5 values, one for each element. After this 
declaration, array Paul will have five integers, as we have provided 5 initialization values. 

Arrays can be classified as one-dimensional array, two-dimensional array or multidimensional array.   

1. One-dimensional Array: It has only one row of elements. It is stored in ascending storage location.  

2. Two-dimensional Array: It consists of multiple rows and columns of data elements. It is also 
called as a matrix.  

26             7            67           50           66 



Unit 1:  Introduction to Data Structures 

LOVELY PROFESSIONAL UNIVERSITY 11 

3. Multidimensional Array: Multidimensional arrays can be defined as array of arrays. 
Multidimensional arrays are not bounded to two indices or two dimensions. They can include as 
many indices as required. 

Linked List 

A linked list is a data structure in which each data element contains a pointer or link to the next element 
in the list. Through linked list, insertion and deletion of the data element is possible at all places of a 
linear list. Also in linked list, it is not necessary to have the data elements stored in consecutive 
locations. It allocates space for each data item in its own block of memory. Thus, a linked list is 
considered as a chain of data elements or records called nodes. Each node in the list contains 
information field and a pointer field. The information field contains the actual data and the pointer field 
contains address of the subsequent nodes in the list. 

 
Figure 1.3: A Linked List 

 
  
 

 
Figure 1.3 represents a linked list with 4 nodes. Each node has two parts. The left part in the node 
represents the information part which contains an entire record of data items and the right part 
represents the pointer to the next node. The pointer of the last node contains a null pointer. 

Stacks 

A stack is an ordered list in which data items are inserted and deleted only from one end. It is also 
known as Last-In First-Out list (LIFO) because the last element which enters the stack will be on top of 
the stack and is the first one to come out. 

 
Figure 1.4: A Stack 

 
  
 

 

Figure 1.4 is a schematic diagram of a stack. Here, element FF is the top of the stack and element AA is 
the bottom of the stack. Elements are added to the stack from the top. Since it follows LIFO pattern, EE 



Data Structure 

LOVELY PROFESSIONAL UNIVERSITY 12 

cannot be deleted before FF is deleted, and similarly DD cannot be deleted before EE is deleted and so 
on. 

Queues 

Queue is a non-primitive linear data structure, where the homogeneous data elements are stored in 
sequence. In queue, data elements are inserted from one end and deleted from the other end. Hence, it 
is also called as First-In First-Out (FIFO) list. Figure 1.5 shows a queue with 4 elements, where 55 is the 
front element and 65 is the rear element. Elements can be added from the rear and deleted from the 
front. 

 
Figure 1.5: A Queue 

 
  
 

 

Non-linear Data Structure 
Non-linear data structure is a kind of data structure in which data elements are not arranged in a 
sequential order. There is a hierarchical relationship between individual data items. Here, the insertion 
and deletion of data is not possible in a linear fashion. Trees and graphs are examples of non-linear data 
structures.  

 

 

 

Trees and graphs are examples of non-linear data structures.  

Trees 

A tree is a non-linear data structure in which data is organized in branches. The data elements in tree 
are arranged in a sorted order. It imposes a hierarchical structure on the data elements.  

Figure 1.6 represents a tree which consists of 8 nodes. The root of the tree is the node 60 at the top. Node 
29 and 44 are the successors of the node 60. The nodes 6, 4, 12 and 67 are the terminal nodes as they do 
not have any successors. 

 
Figure 1.6: A Tree 

 
  
 

 
 
 



Unit 1:  Introduction to Data Structures 

LOVELY PROFESSIONAL UNIVERSITY 13 

 
 

Did you know? Each value or key in a tree occurs only once, i.e., there are no duplicates. 

Graphs 

A graph is also a non-linear data structure. In a tree data structure, all data elements are stored in 
definite hierarchical structure. In other words, each node has only one parent node. While in graphs, 
each data element is called a vertex and is connected to many other vertexes through connections called 
edges.  

Thus, a graph is considered as a mathematical structure, which is composed of a set of vertexes and a 
set of edges. Figure 1.7 shows a graph with six nodes A, B, C, D, E, F and seven edges [A, B], [A, C], [A, 
D], [B, C], [C, F], [D, F] and [D, E]. 

 
Figure 1.7: A Graph 

 
  
 

 

According to National Institute of Standards and Technology (NIST), a data structure is an organization 
of information, usually in the memory, for better algorithm efficiency. Data structures include queues, 
stacks, linked lists, dictionary, and trees. They could also be a conceptual entity, such as the name and 
address of a person. 

From the above definition, it is clear that the operations in data structure involve higher-level 
abstractions such as, adding or deleting an item from a list, accessing the highest priority item in a list, 
or searching and sorting an item in a list. When the data structure does such operations, it is called an 
abstract data type.  

An Abstract Data Type [ADT] is a technique that is used to specify the logical properties of a data type. 
ADT can be considered as a basic mathematical concept used to define the data types. An ADT consists 
of two parts, namely, a value definition and an operator definition. A value definition consists of a 
definition clause and a condition clause. 

1.4   Abstract Data Type 

 

 
 

 

Two basic structures, namely array and linked list can be used to implement an ADT 
list. 

The operator definition consists of three parts: a header, preconditions, and post-conditions. The 
preconditions and post-conditions are optional and can be used depending on the program 
requirement. 

 

  



Data Structure 

LOVELY PROFESSIONAL UNIVERSITY 14 

 
Complex numbers consists of a real part and an imaginary part and both parts 
are represented by real numbers. Different operations like addition, subtraction, 
multiplication, and division can be performed on complex numbers. As we do 
not have a true data type for complex numbers, we implement them using an 
ADT.  

Thus, ADT can be considered as the mathematical model for data structures that have similar 
semantics. 

 
 

Did you know? Applying an ADT means providing one procedure or function for every abstract 
operation. The ADT instances are illustrated by some concrete data structure that is 
manipulated by those procedures, according to the ADT's specifications. 

1.4.1   Abstract Data Type (ADT) Model 
As shown in figure 1.8, there are two different parts of the ADT model - functions (public and private) 
and data structures. Both, the functions and data structures are contained inside an ADT model and are 
not part of the application program. Data structures are available to all the ADT functions when 
required and a function may call any other function to accomplish its task. This shows that data 
structures and functions are within the scope of each other. Data is entered, accessed, modified and 
deleted through the external application programming interface. This interface can access only the 
public functions. Every ADT operation has an algorithm to perform a specific task. The operation name 
and parameters are available to the application, and they provide the interface to the application. 
Simple structures are used to implement a program that completely controls a list.  

 
Figure 1.8: ADT Model 

 
  
 

 

 
 

 

 
It is not enough if you just encapsulate the structure in an ADT. It is also necessary that 
multiple versions of the structure coexist. 

 

 
                                      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

               

 
Application 
Program Public Function Private Functions 

Data Structures 
Arrays  
Linked List 
  

Record 

ADT 



Unit 1:  Introduction to Data Structures 

LOVELY PROFESSIONAL UNIVERSITY 15 

Data which appears in the data structures are processed with the help of certain operations. Sometimes 
two or more of the operations may be used in a given situation. 

1.5   Data Structure Operations 

 

 

 
When you want to delete a record with a given key, you first need to use the 
search operation to find the location of the record and then use the delete 
operation. 

1.5.1    Operations on Primitive Data Structure 
Various operations can be performed on primitive data structures. Some of these operations are: 

1. Creation Operation: The creation operation creates a data structure. 

 

 

 

Consider an example of integer type data structure. 

int a; 
Here, declaration of int creates 2 bytes of memory space for variable ‘a’. This 
variable is used to store only integer value.  

2. Destroy Operation: The destroy operation destroys the data structure. In C language, a function 
called ‘free()’ is used to destroy the data structure. This helps in efficient use of memory.  

3. Selection Operation: The selection operation is used to access data within a data structure. The 
significance of selection operation is provided in file data structure. Files provide the option of 
sequential and random access, which totally depend on the nature of files. 

4. Update Operation: The update operation is used to modify data in data structure. 

1.5.2    Operations on Non-primitive Data Structure 
The operations on non-primitive data structure depend on the logical organization of data and their 
storage structure. Non-primitive data focuses on formation of a set of data elements that are either 
homogeneous (same data type) or heterogeneous (different data type). Therefore, non-primitive data 
cannot be operated or manipulated directly by the machine level instructions. Some of the operations on 
non-primitive data structure are: 

1. Traversing: Traversing is the method of processing each element exactly once. Traversing is 
generally done to check the availability of data elements in an array. After carrying out an 
insertion or deletion operation, you would want to check whether the operation has been 
successful or not. We use traversing to check if the element is successfully inserted or deleted.  

2. Sorting: Sorting is the technique of arranging the data elements in some logical order, either 
ascending or descending order. Some algorithms make use of sorted lists. Therefore, efficient 
sorting is essential for optimizing these algorithms to ensure that they work correctly. 

3. Merging: Merging is the method of combining the elements in two different sorted lists into a 
single sorted list. It is based on the divide-and-conquer algorithm. Merge sort can be considered as 
the best choice for sorting a linked list as it is easy to implement. 

4. Searching: Searching is the method of finding the location of an element with a given key value, or 
finding the location of an element which satisfies a given condition. Searching a data structure 
allows the efficient retrieval of unambiguous items from a set of items, such as a particular record 
from a database. 

5. Insertion: Insertion is the method of adding a new element to the data structure. The insertion 
process may add a new element in the ith position of the data structure. If sorting also needs to be 
performed, first we need to assign an item to the given elements and compare it with the previous 
elements. If the assigned element is smaller than the previous element, we need to swap the 
positions of both these items. This process is repeated until the correct position of the item is 
identified. 



Data Structure 

LOVELY PROFESSIONAL UNIVERSITY 16 

6. Deletion: Deletion refers to removing an item from the structure. When a node is not required in 
the data structure, it can be removed using the delete operation. 

 

 
 
 

 

A Company has a membership file in which each record contains the following data for a 
given member:  Name, Sex, Age, and Phone Number. 

Suppose the company wants to send email invitations for a party to all the members,   
which operation will be used to obtain the name and phone number of each member? 
Discuss. 

• A data structure is the organization or arrangement of data in a computer's memory or disk 
storage, so that it can be used efficiently. 

1.6   Summary 

• The study of data structure helps students to understand how data is organized and how the data 
flow is managed to increase efficiency of any process or program. 

• Algorithms are used for data processing, calculations, and automated reasoning. An algorithm can 
be defined as a set of rules that accurately define a series of operations. 

• A data type comprises a set of data with values and consists of predefined set of characteristics. 
The four commonly used data types in C are int (integer), float (real number), char (character), and 
pointer.  

• Two fundamental goals of data structure are correctness and efficiency. Some of the important 
features of data structures are robustness, adaptability and reusability. 

• Data structure can be classified into two categories: primitive data structure and non-primitive 
data structure. 

• Basic data types such as integer, real, character, and Boolean are categorized under primitive data 
structures. These data types are also known as simple data types because they consist of characters 
that cannot be divided.  

• Non-primitive data structures are further divided into linear and non-linear data structure based 
on the structure and arrangement of data. 

• Arrays, linked lists, stacks, queues are examples of linear data structure. Trees and graphs are 
examples of non-linear data structure.  

• An Abstract Data Type (ADT) is a technique that is used to specify the logical properties of a data 
type. It can be considered as a basic mathematical concept used to define the data types. 

• Data that appears in the data structures are processed with the help of certain operations. 
Sometimes two or more operations may be used for a data structure in a given situation. 

Amorphous: Not having a definite form; shapeless. 

Application Program: A program designed to perform a particular function directly for the user or for 
another application program. 

Private Functions: Functions that can be accessed only by the members of the same data structure. 

Public Functions: Functions that can be accessed by the members internal to the data structure as well 
as by members of other data structures. 

 

 

 

1.7   Keywords 



Unit 1:  Introduction to Data Structures 

LOVELY PROFESSIONAL UNIVERSITY 17 

1. State whether the following statements are true or false: 

1.8   Self Assessment 

(a) A data structure is the organization or arrangement of data in a computer's disk storage. 

(b) Data structure organizes data items based on the relationship between the data elements. 

(c) The study of microcomputers helps to create many complex applications, which involve 
many programmers and designers. 

(d) Efficiency forms the primary goal of the data structure. 

(e) Reusability and robustness go hand-in-hand in a software program. 

(f) The significance of selection operation is provided in file data structure. 

(g) Insertion operation is not possible if the sorting operation is not carried out beforehand. 

(h) Merging is based on the divide-and-conquer algorithm. 

2. Fill in the blanks: 

(a) In computer science, ……………………………..  is a useful method defined as a finite list of 
distinct instructions for calculating a function. 

(b) Practically, a data type includes a constant and ………………………………. 

(c) Floating point data type can store a maximum of ……………………… digits after decimal 
point. 

(d) Arithmetic done with operands of the type ……………………… is considered to yield 
accurate results. 

(e) ……………………… is a kind of data structure that stores elements of same data types. 

(f) Last-In First-Out list (LIFO) process happens in a ……………………… data structure. 

(g) ……………………… is considered as the mathematical model for data structures that have 
similar semantics. 

(h) The two different parts of the ADT model are functions and ……………………… 

1. ”Data structure is important in building a software program.” Discuss. 

1.9   Review Questions 

2. “The structural and functional aspects of the program depend on the design of the data structure”. 
Comment. 

3. By increasing the amount of space for storing the data, you may not be able to reduce the time 
needed for processing the data. Why? 

4. Why do you think long integers can store longer range of values when compared to integer and 
short integer? 

5. “The pointer variable holds only the memory location and not the actual content”. Discuss. 

6. Analyze why efficiency is one of the major goals of data structure. 

7. “Reusability and adaptability go hand-in-hand”. Discuss. 

8. What is the chief reason for the apparent distinction between the data types - integer and real? 

9. “Non-linear data structures do not permit the insertion and deletion of data in a linear fashion.” 
Comment. 

 

 



Data Structure 

LOVELY PROFESSIONAL UNIVERSITY 18 

10. Can we consider abstract data type as a basic mathematical concept which is used to define the 
data types? Justify your answer. 

11. “Files provide the option of sequential and random access”. Comment. 

12. “Non-primitive data cannot be operated or manipulated directly by the machine level 
instructions”. Discuss. 

Answers: Self Assessment 
1. (a) True            (b) True            (c) False          (d) False        (e) False        (f) True           (g) False            

(h) True 

2. (a) Algorithm     (b) Variables    (c) Six     (d) Integer     (e) Array     (f) Stack    

(g) Abstract data type                (h) Data structure 

 

1.10   Further Readings 

 

 
Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill 
Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications  

 

 

 
http://www-old.oberon.ethz.ch/WirthPubl/AD.pdf 
http://msdn.microsoft.com/en-us/library/06bkb8w2%28v=vs.71%29.aspx 
http://www.cplusplus.com/doc/tutorial/variables/ 

 
 



Unit 2: Complexity Analysis 

LOVELY PROFESSIONAL UNIVERSITY 19 

Unit 2: Complexity Analysis 

CONTENTS 

Objectives 

Introduction 

2.1 Mathematical Notation and Functions 

       2.1.1   Asymptotic Notations 

       2.1.2   Mathematical Functions 

2.2 Algorithmic Complexity and Time Space Tradeoff 

       2.2.1   Algorithmic Complexity 

2.3 Algorithmic Analysis 

       2.3.1   Types of Analysis 

2.4 Summary 

2.5 Keywords 

2.6 Self Assessment 

2.7 Review Questions 

2.8 Further Readings 

After studying this unit, you will be able to: 

Objectives 

• Explain  mathematical notation and functions 

• Analyze the algorithmic complexity and time space tradeoff 

• Discuss algorithmic analysis 

Each computer program is a series of instructions that are arranged in a specific order to perform a 
specific task. A computer program is written to instruct a computer to perform a specific task in order to 
obtain the desired result. Irrespective of the language used to develop a program, there are some 
generic steps that can be followed to solve a problem. These generic steps are called algorithms. 
According to H. Cormen, "Before there were computers, there were algorithms." An algorithm is a set of 
instructions that performs a particular task. It is considered as a tool that helps to solve a specific 
computational problem.  

Mathematical notation is a system of symbolic representations of mathematical objects and ideas. 
Mathematical functions appear quite often in the analysis of algorithm along with their notation. Some 
of the mathematical functions are floor and ceiling functions, summation symbol, factorial, Fibonacci 
numbers, and so on. 

The complexity of an algorithm is a function that describes the efficiency of an algorithm in terms of the 
amount of data the algorithm must process.  

The two main complexity measures of efficiency of an algorithm are: 

Introduction 

1. Time Complexity: It is a function that describes the time taken by an algorithm to solve a problem.  

 

 

 
Big-O notation is used to express the time complexity of an algorithm. 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 20 

2. Space Complexity:

Algorithm analysis is an important part of computational complexity theory. It provides theoretical 
estimates for the resources that are needed for any algorithm to solve a given problem. These estimates 
provide an insight into the measures that determine algorithm efficiency. It is necessary to check the 
efficiency of each of the algorithms in order to select the best algorithm. We can easily measure the 
efficiency of algorithms by calculating their time complexity. The shorthand way to represent time 
complexity is asymptotic notation. 

 It is a function that describes the amount of memory or space required by an 
algorithm to run. A good algorithm has minimum number of space complexity. 

 

 

 
Consider the algorithm for sorting a deck of cards. This algorithm continues by 
repeatedly searching through the deck for the lowest card. The square of the 
number of cards in the deck is the asymptotic complexity of this algorithm. 

Algorithms are widely used in various areas of study. We can solve different problems using the same 
algorithm. Therefore, all algorithms must follow a standard. The mathematical notations use symbols or 
symbolic expressions, which have a precise semantic meaning.  

According to Lancelot Hogben, "Every meaningful mathematical statement can also be expressed in 
plain language. Many plain language statements of mathematical expressions would fill several pages, 
while to express them in mathematical notation might take as little as one line. One of the ways to 
achieve this remarkable compression is to use symbols to stand for statements, instructions, and so on." 

2.1.1   Asymptotic Notations 
A problem may have various algorithmic solutions. In order to choose the best algorithm for a 
particular process, you must be able to judge the time taken to run a particular solution. More 
accurately, you must be able to judge the time taken to run two solutions, and choose the better among 
the two. 

To select the best algorithm, it is necessary to check the efficiency of each algorithm. The efficiency of 
each algorithm can be checked by computing its time complexity. The asymptotic notations help to 
represent the time complexity in a shorthand way. It can generally be represented as the fastest 
possible, slowest possible or average possible.  

Asymptotic notation within the limit deals with the character of a function that is a parameter with 
large values. The main characteristic of this approach is that, importance is given to the terms while 
neglecting the constant factors present in the expression. This helps in the classification of run-time 
functions into broad efficiency classes. 

The notations such as O (Big-O), Ώ (Omega), and θ (Theta) are called as asymptotic notations. These are 
the mathematical notations that are used in three different cases of time complexity. 

Big-O Notation  

‘O’ is the representation for Big-O notation. Big-O is the method used to express the upper bound of the 
running time of an algorithm. It is used to describe the performance or time complexity of the 
algorithm. Big-O specifically describes the worst-case scenario and can be used to describe the execution 
time required or the space used by the algorithm. 

 

 

 

 

 

 

2.1   Mathematical Notation and Functions 

 



Unit 2: Complexity Analysis 

LOVELY PROFESSIONAL UNIVERSITY 21 

Table 2.1 gives some names and examples of the common orders used to describe functions. These 
orders are ranked from top to bottom. 

 
Table 2.1: Common Orders 

 
  
 

Time complexity Examples 

O(1)                   Constant    Adding to the front of a linked list 

O(log n)             Logarithmic Finding an entry in a sorted array 

O(n)                    Linear Finding an entry in an unsorted array 

O(n log n)          Linearithmic Sorting ‘n’ items by ‘divide-and-conquer’ 

O(n2)                   Quadratic Shortest path between two nodes in a graph 

O(n3)                  Cubic Simultaneous linear equations 

O(2n)                  Exponential  The Towers of Hanoi problem 
 

 

Big-O notation is generally used to express an ordering property among the functions. This notation 
helps in calculating the maximum amount of time taken by an algorithm to compute a problem. Big-O 
is defined as: 

f(n)≤ c∗ g(n) 

where, n can be any number of inputs or outputs and f(n) as well as g(n) are two non-negative 
functions. These functions are true only if there is a constant c and a non-negative integer n0

≥
 such that, 

n n0

 

.  

The Big-O can also be denoted as f(n) = O(g(n)), where f(n) and g(n) are two non-negative functions and 
f(n) < g(n) if g(n) is multiple of some constant c. The graphical representation of f(n) = O(g(n)) is shown 
in figure 2.1, where the running time increases considerably when n increases.  

 

 
Consider f(n)=15n3+40n2+2nlogn+2n. As the value of n increases, n3 becomes 
much larger than n2, nlogn, and n. Hence, it dominates the function f(n) and we 
can consider the running time to grow by the order of n3. Therefore, it can be 
written as f(n)=O(n3

The values of n for f(n) and C* g(n) will not be less than n

). 
0. Therefore, the values less than n0

 

 are not 
considered relevant.  

Figure 2.1: Big-O Notation  f(n) = O(g(n)) 
 

  
 

 
Source: Puntambekar, A., A. (2010). Design and Analysis of Algorithms, Technical Publications Pune.  



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 22 

Let us take an example to understand the Big-O notation more clearly. 

 

 

 
Consider function f(n) = 2(n)+2 and g(n) = n2

≤
.  

We need to find the constant c such that f(n) c∗ g(n). 
Let n = 1, then  
f(n) = 2(n)+2 = 2(1)+2 = 4 
g(n) = n2 = 12 = 1 
Here, f(n)>g(n) 
Let n = 2, then 
f(n) = 2(n)+2 = 2(2)+2 = 6 
g(n) = n2 = 22 = 4 
Here, f(n)>g(n) 
Let n = 3, then 
f(n) = 2(n)+2 = 2(3)+2 = 8 
g(n) = n2 = 32

 

 = 9 
Here, f(n)<g(n) 
Thus, when n is greater than 2, we get f(n)<g(n). In other words, as n becomes 
larger, the running time increases considerably. This concludes that the Big-O 
helps to determine the ‘upper bound’ of the algorithm’s run-time. 

 

 
 

 

1. Big-O notation ignores all the constant factors and lower order factors of n. 

2. Big-O notation does not determine how quickly or slowly the algorithms 
actually execute for a given input. 

Omega Notation 

‘Ω’ is the representation for Omega notation. Omega describes the manner in which an algorithm 
performs in the best case time complexity. This notation provides the minimum amount of time taken 
by an algorithm to compute a problem. Thus, it is considered that omega gives the "lower bound" of the 
algorithm's run-time. Omega is defined as: 

f(n)≥ c∗ g(n) 

Where, n is any number of inputs or outputs and f(n) and g(n) are two non-negative functions. These 
functions are true only if there is a constant c and a non-negative integer n0 such that n>n0. 

Omega can also be denoted as f(n) = Ώ (g(n)) where, f of n is equal to Omega of g of n. The graphical 
representation of f(n) = Ώ (g(n))  is shown in figure 2.2. The function f(n) is said to be in Ώ (g(n)), if f(n) 
is bounded below by some constant multiple of g(n) for all large values of n, i.e., if there exists some 
positive constant c and some non-negative integer n0, ≥ such that f(n) c∗ g(n) for all n ≥n0

 

. 

 

 

 

 

 

 

 

 

 



Unit 2: Complexity Analysis 

LOVELY PROFESSIONAL UNIVERSITY 23 

Figure 2.2 shows Omega notation. 

 
Figure 2.2: Omega Notation  f(n) = Ώ (g(n)) 

 
  
 

 
Source: Puntambekar, A., A. (2010). Design and Analysis of Algorithms, First ed. Technical Publications Pune. Page. 
23. 

Let us take an example to understand the Omega notation more clearly. 

 

 

 
Consider function f(n) = 2n2+5 and g(n) = 7n.  
We need to find the constant c such that f(n)≥ c∗ g(n). 
Let n = 0, then 
f(n) = 2n2+5 = 2(0)2+5 = 5 
g(n) = 7(n) = 7(0) = 0 
Here, f(n)>g(n) 
Let n = 1, then 
f(n) = 2n2+5 = 2(1)2+5 = 7 
g(n) = 7(n) = 7(1) = 7 
Here, f(n)=g(n) 
Let n = 2, then 
f(n) = 2n2+5 = 2(2)2+5 = 13 
g(n) = 7(n) = 7(2) = 14 
Here, f(n)<g(n) 
Thus, for n=1, we get f(n)≥ c∗ g(n). This concludes that Omega helps to 
determine the "lower bound" of the algorithm's run-time. 

Theta Notation 

'θ' is the representation for Theta notation. Theta notation is used when the upper bound and lower 
bound of an algorithm are in the same order of magnitude. Theta can be defined as: 

c1 ∗ g(n)≤ f(n) ≤ c2 ∗ g(n)     for all n>n0 

Where, n is any number of inputs or outputs and f(n) and g(n) are two non-negative functions. These 
functions are true only if there are two constants namely, c1, c2, and a non-negative integer n0. 

Theta can also be denoted as f(n) = θ(g(n)) where, f of n is equal to Theta of g of n. The graphical 
representation of f(n) = θ(g(n)) is shown in figure 2.3. The function f(n) is said to be in θ (g(n)) if f(n) is 
bounded both above and below by some positive constant multiples of g(n) for all large values of n, i.e., 
if there exists some positive constant c1 and c2 and some non-negative integer n0, such that 
C2g(n)≤f(n)≤ C1g(n) for all n≥n0. 

 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 24 

Figure 2.3 shows Theta notation. 

 
Figure 2.3: Theta Notation  f(n) = θ(g(n)) 

 
  
 

 
 

Source: Puntambekar, A., A. (2010). Design and Analysis of Algorithms, First ed. Technical Publications Pune. Page. 
24. 

Let us take an example to understand the Theta notation more clearly. 

 

 

 
Consider function f(n) = 4n + 3 and g(n) = 4n for all n≥ 3; and f(n) = 4n + 3 and 
g(n) = 5n for all n≥ 3.  
Then the result of the function will be: 
Let n = 3 
f(n) = 4n + 3 = 4(3)+3 = 15 
g(n) = 4n =4(3) = 12  and 
f(n) = 4n + 3 = 4(3)+3 = 15 
g(n) = 5n =5(3) = 15  and 
here, c1 is 4, c2 is 5 and n0 is 3 
Thus, from the above equation we get c1 g(n) f(n)  c2 g(n). This concludes that 
Theta notation depicts the running time between the upper bound and lower 
bound. 
 

 

 
 

 

Determine a constant p for a given function f(n)≥ c∗ g(n) where f(n)=2n+3 and 
g(n)=2n. 

2.1.2   Mathematical Functions 
Mathematical functions express the idea that an input completely determines an output. A function 
provides exactly one value to each input of a specified type. The value can be real numbers or can be 
elements from any given sets: the domain and the codomain of the function. 

 

 

 

 

 



Unit 2: Complexity Analysis 

LOVELY PROFESSIONAL UNIVERSITY 25 

 

 

 

Function f(x)=2x 
In this case, the function is assigned to every real number, the real number with 
twice its value.  
Assume x=5, then we can write f(5) = 10. 

Some of the mathematical functions are described below: 

Floor and Ceiling Functions 

Floor function is represented as floor(x). Floor function which is also called greatest integer function 
gives the largest integer less than or equal to x. The range of floor(x) is the set of all integers, but the 
domain of floor(x) is the set of all real numbers. 

Let us take an example to understand the floor function more clearly. 

 

 

 
floor(1.01)=1 
floor(0)=0 
floor(2.9)=2 
floor(-3)=-3 
floor(-1.1)=-2 
Find out floor(x) for various values of x. 

Figure 2.4 shows the graph for floor(x). 

 
Figure 2.4: Floor Function 

 
  
 

 
Source: http://mathworld.wolfram.com/FloorFunction.html 

Ceiling function is represented as ceiling(x). It gives the smallest integer value greater than or equal to x. 
The domain of ceiling(x) is the set of all real numbers. The range of ceiling(x) is the set of all integers. 

 

 

 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 26 

Let us consider the following example. 

 

 

 
ceiling (1.5)=2 
ceiling(0)=0 
ceiling(2)=2 
ceiling(-3)=-3 
ceiling(-1.1)=-1 
Find out ceiling(x) for various values of x. 

Figure 2.5 shows the graph for ceiling(x). 

 
Figure 2.5: Ceiling Function 

 
  
 

 
Source: http://mathworld.wolfram.com/CeilingFunction.html 

 
 

Did you know? The name and symbol for the floor function and ceiling function was invented by K. E. 
Iverson (Graham et. al. 1994). 

Summation Symbol 

Summation symbol is Σ. Summation is the operation of combining a sequence of numbers using 
addition. The result is the sum or total of all the numbers. Apart from numbers, other types of values 
such as, vectors, matrices, polynomials, and elements of any additive group can also be added using 
summation symbol.  

 

 

 

 

 

 

 

 

 



Unit 2: Complexity Analysis 

LOVELY PROFESSIONAL UNIVERSITY 27 

 

 

 
Consider a sequence x1, x2, x3……x10. The simple addition of this sequence is 
x1+x2+x3+x4+x5+x6+x7+x8+x9+x10. Using mathematical notation we can 
shorten the addition. It can be done by using a symbol to denote “all the way up 
to” or “all the way down to”.  
Then, the expression will be x1+x2+x3+…..+x10. We can also represent the 
expression using Greek letter Σ as shown below: 
 

∑
=

b

aiableindex
iableindexiable

var
varvar

 
 
Here, a is the first index and b is the last index. The variables are the numbers 
that appear constantly in all terms. In the expression, 
x1+x2+x3+x4+x5+x6+x7+x8+x9+x10 
1 is the first index, 10 is the last index, and x is the variable. If we use i as the 
index variable then the expression will be 

∑
=

10

1i
ix

 

Exponent and Logarithm 

Exponential function has the form f(x) =ax

 

+B where, a is the base, x is the exponent, and B is any 
expression.  

If a is positive, the function continuously increases in value. As x increases, the slope of the function also 
increases.  

 

 

Consider a function. f(x)=2x 
Here, we have an exponential function with base 2. Some typical values for this 
function are: 

    x    -2     -1    0   1   2 

   )x(f     1/4    1/2    1    2   4 
 

The graph for y=2x is shown in figure 2.6. In the graph as x increases, y also increases, and as x increases 
the slope of the graph also increases. 

 
Figure 2.6: Graph for y=2

 
x 

  
 

 
Source: http://www.themathpage.com/aprecalc/logarithmic-exponential-functions.htm 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 28 

A logarithm is an exponent. The logarithmic function is defined as f(x)= logb  

 

x. Here, the base of the 
algorithm is b. The two most common bases which we use are base 10 and base e 

 

 

Consider the exponential equation 52=25 where 5 is base and 2 is exponent.  
The logarithmic form of this equation is: 
log5

Here, we can say that the logarithm of 25 to the base 5 is 2. 

Factorial 

The symbol of the factorial function is ‘!’. The factorial function multiplies a series of natural numbers 
that are in descending order. The factorial of a positive integer n which is denoted by n! represents the 
product of all the positive integers is less than or equal to n.  

n!=n*(n-1)*(n-2)……2*1 

25=2 

 

 

 

5!=5*4*3*2*1=120 

Fibonacci Numbers 

In the Fibonacci sequence, after the first two numbers i.e. 0 and 1 in the sequence, each subsequent 
number in the series is equal to the sum of the previous two numbers. The sequence is named after 
Leonardo of Pisa, also known as Fibonacci.  

Fibonacci numbers are the elements of Fibonacci sequence: 

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765……. 

Sometimes this sequence is given as 0, 1, 1, 2, 3, 5….. There are also other Fibonacci sequences which 
start with the numbers: 

3, 10, 13, 23, 36, 59……. 

Fibonacci numbers are the example of patterns that have intrigued mathematicians through the ages. In 
mathematical terms, the sequence Fn of Fibonacci numbers is defined as: 

Fn = Fn-1+ F

 

n-2 

 

 

Beginning with a single pair of rabbits, if every month each productive pair 
bears a new pair,  who become productive when they are 1 month old, how 
many rabbits will there be after n months? 
Assume that there are xn pairs of rabbits after n months. The number of pairs 
in n+1 month is xn+1. Each pair produces a new pair every month but no 
rabbit dies within that period. New pairs are only born to pairs which are at 
least 1 month old, so there is an xn-1 new pair.  
Xn+1 = xn + x

 

n-1 
This equation shows the rules for generating the Fibonacci numbers.  

 
Did you know? 

 
 
Fibonacci was the greatest mathematician of his age. He eliminated the use of complex 
Roman numerals and made mathematics more accessible to the public by bringing the 
Hindu-Arabic system (including zero) to Western Europe. 

Modular Arithmetic 

Modular arithmetic is a system of arithmetic for integers. In the modular arithmetic, numbers wrap 
around and reach a given fixed quantity, which is known as the modulus. This is 12 in the case of hours 
and 60 in the case of minutes or seconds in a clock. In the 12 hour clock, the day is divided into two 12 



Unit 2: Complexity Analysis 

LOVELY PROFESSIONAL UNIVERSITY 29 

hour periods. If the time is 6:00 now, then 9 hours later it will be 3:00. Usual addition suggests that the 
later time must be 6 + 9 = 15, but this is not true because clock time "wraps around" every 12 hours; 
there is no "15 o'clock". Likewise, if the clock starts at 12:00 noon then after 20 hours the time will be 8:00 
the next day, rather than 32:00. The hour number starts all over again after it reaches 12. Therefore, this 
is arithmetic modulo 12. 

 

 

 

Two numbers x and y are said to be equal or congruent module N if their 
difference is exactly divisible by n i.e. n/(x-y). 
Generally, x and y are non-negative and N is a positive integer. Thus, we can 
write 
x=y (mod n) 
If the difference between x and y is an integer multiple of n, then the number 
n is called the modulus of congruence. 

Complexity is a measure of performance of an algorithm. The complexity of computation is a 
characterization of time and space requirements, which helps to solve a problem using a specific 
algorithm. Computational complexity is mostly concerned with the lower bound. 

2.2.1   Algorithmic Complexity 
We can determine the efficiency of an algorithm by calculating its performance. Following are the two 
factors that help us to determine the efficiency of an algorithm:  

2.2   Algorithmic Complexity and Time Space Tradeoff  

1. Total time required by an algorithm to execute. 

2. Total space required by an algorithm to execute. 

Thus, the two main considerations required to analyze the program are: 

1. Time complexity 

2. Space complexity 

The amount of computer time required to solve a problem is the time complexity of an algorithm and 
the amount of memory required to compute the problem is the space complexity of an algorithm. 

Time Complexity 

Time complexity of an algorithm is the amount of time required by an algorithm to execute. It is always 
measured using the frequency count of all important statements or the basic instructions. This is 
because the clock limitation and multiprogramming environment makes it difficult to obtain a reliable 
timing figure.  

The time taken by an algorithm is the sum of compile time and run time. The compile time does not 
depend on the instance characteristics, as a program once compiled can be run many times without 
recompiling. Thus, only the run-time of the program matters while calculating time complexity. Let us 
take an example to get a clear idea of how time complexity of an algorithm is computed.  

 

 

 

 

 

 

 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 30 

Table 2.2 shows the analysis of time complexity. 

  
 

Table 2.2: Analysis of Time Complexity 
 

 
Algorithm Step Statements/Instructions 

A x = x+1 

B 
                 for a = 1 to n step 1 
                               x = x+1 
                 Loop 

C 

for a = 1 to n step 1 
for b = 1 to n step 1 
              x = x+1 
Loop  

 
In the table 2.2: 

1. In step A, there is one independent statement ‘x= x+1’ and it is not within any loop. Hence, this 
statement will be executed only once. Thus, the frequency count of step A of the algorithm is 1. 

2. In step B, there are three statements out of which ‘x = x+1’ is an important statement. As the 
statement ‘x = x+1’ is contained within the loop, the statement will be executed n number of times. 
Thus, the frequency count of algorithm is n. 

3. In step C, the inner and outer loop runs n number of times. Thus, the frequency count is n2. 

During the analysis of algorithm, the focus is on determining those statements that provide the greatest 
frequency count. The formulas used to calculate the steps executed by an algorithm are: 

                                                                1 + 2 +……+ n = n(n+1)/2 

12+22+…..+ n2 = n(n+1)(2n+1)/6 

If an algorithm has input of size n and performs f(n) basic functions, then the time taken to execute 
those functions will be cf(n), where c is a constant that depends upon the algorithm design.  

The time complexity of an algorithm can be further analyzed as best case, worst case and average case 
time complexity.  

1. In best case time complexity, an algorithm will take minimum amount of time to solve a particular 
problem. In other words, the algorithm runs for a short time.  

  

 Bubble sort has a best case time complexity of n. 

2. In worst case time complexity, an algorithm will take maximum amount of time to solve a 
particular problem. In other words, algorithm runs for a long time.  

  

 
 

Quicksort has a worst case time complexity of n2. 

3. In average case time complexity, only certain sets of inputs to the algorithm get the time 
complexity. It specifies the behavior of an algorithm on a particular input. 

 

 



Unit 2: Complexity Analysis 

LOVELY PROFESSIONAL UNIVERSITY 31 

 
 

 
 

 
Quicksort has an average case time complexity of n * log(n). 

In general, time complexity helps to estimate the number of functions required to solve a problem of 
size n. 

Space Complexity 

Space complexity is the amount of memory an algorithm requires to run. The space complexity of an 
algorithm can be determined by relating the size of a problem (n) to the amount of memory (s) needed 
to solve that problem. Thus, the space complexity can be computed by using the below two 
components: 

1. Fixed Space Requirement:

2. 

 It is the amount of space acquired by fixed sized structure, variables, 
and constants. 

Variable Space Requirement:

Therefore, to calculate the space complexity of an algorithm we have to consider the following two 
factors: 

 It is the amount of space required by the structured variables, whose 
size depends on particular problem instance.  

1. Constant characteristics 

2. Instant characteristics 

Thus, the space requirement S(p) is given as: 

S(p) = C + Sp 

Here, C is the constant (required fixed space) and Sp is the space that depends on a particular instance 
of variables.  

Let us take an example to determine the space complexity of the variables used in a program. 

 

 

 
Algorithm: To compute the sum of three elements 
//Input: x, y, and z are of integer type 
Input x, y, z 
//Output: The sum of three integers is returned 
return x+y+z 
Thus, if each of the input elements occupies 2 bytes of memory space,  
then the inputs x, y, z will require a total memory size of 6 bytes. 

In general, space complexity helps to define the amount of memory required to solve a particular 
problem. 

 

 

 

Write a searching algorithm and find out the best, worst, and average case time 
complexity of that algorithm. 

Time Space Tradeoff 

Most of the algorithms are constructed to work with inputs of arbitrary length. Usually, the efficiency of 
an algorithm is stated as a function relating to time complexity or space complexity. 

Time space tradeoff in context with algorithms relates to the execution of an algorithm. The execution of 
an algorithm can be done in a short time by using more memory, because execution time increases with 
less memory. Therefore, proper selection of one alternative over the other is the tradeoff. 

Problems like sorting or matrix-multiplication have many choices of algorithms. Some of the choices are 
extremely space-efficient and some are extremely time-efficient. Research in time-space tradeoff lower 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 32 

bounds seeks to prove that for certain problems, no algorithms exist that achieve lesser time complexity 
and space complexity simultaneously. 

Let us take an example to understand time space tradeoff more clearly. 

 

 

 

Assume that you are given a file of records which contains names, social 
security numbers, and other additional information among its fields. You 
can easily sort the file alphabetically and run a binary search to find the 
record for a given name. Suppose you are given only the social security 
number of a person and you are required to find the record for a given 
name. Then to solve such a problem, you can create a file which will be 
sorted numerically according to the social security number. But, this 
process increases the space required for sorting the data. 
Another way is to have the main file sorted numerically by social security 
number and to have an auxiliary array with only two columns as shown 
in figure 2.7. The first column contains an alphabetized list of the names 
and the second column contains pointers which give the locations of the 
corresponding records in the main file. This method is used frequently, 
since the required additional space is minimal when compared to the 
amount of extra information it provides. 

Figure 2.7 shows Time-Space tradeoff. 

 
Figure 2.7: Time Space Tradeoff 

 
  
 

 
 

Source: Lipschutz, S. (2011). Data Structures with C. Delhi: Tata McGraw-Hill. 

Analysis of an algorithm is required to determine the amount of resources such as time and storage 
necessary to execute the algorithm. Usually, the efficiency or running time of an algorithm is stated as a 
function which relates the input length to the time complexity or space complexity. 

Algorithm analysis framework involves finding out the time taken and the memory space required by a 
program to execute the program. It also determines how the input size of a program influences the 
running time of the program.  

2.3   Algorithmic Analysis 

In theoretical analysis of algorithms, it is common to estimate their complexity in the asymptotic sense, 
i.e., to estimate the complexity function for arbitrarily large input. Big-O notation, Omega notation, and 
Theta notation are used to estimate the complexity function for large arbitrary input. 



Unit 2: Complexity Analysis 

LOVELY PROFESSIONAL UNIVERSITY 33 

2.3.1   Types of Analysis 
The efficiency of some algorithms may vary for inputs of the same size. For such algorithms, we need to 
differentiate between the worst case, average case and best case efficiencies. 

Best Case Analysis 
If an algorithm takes the least amount of time to execute a specific set of input, then it is called the best 
case time complexity. The best case efficiency of an algorithm is the efficiency for the best case input of 
size n. Because of this input, the algorithm runs the fastest among all the possible inputs of the same 
size.  

To analyze the best case efficiency, we have to first determine the kind of inputs for which the count 
C(n) will be the smallest among all possible inputs of size n. Then, we ascertain the value of C(n) on the 
most convenient inputs. 

  

 
In case of sequential search, the best case for lists of size n is when their first 
elements are equal to the search key. Then, 
                                          Cbest (n) = 1 

 
 

 
 

 
Best case does not mean the smallest input. It means the input of size n for which the 
algorithm runs the fastest. 

Average Case Analysis 
If the time complexity of an algorithm for certain sets of inputs are on an average, then such a time 
complexity is called average case time complexity. 

Average case analysis provides necessary information about an algorithm’s behavior on a typical or 
random input. You must make some assumption about the possible inputs of size n to analyze the 
average case efficiency of algorithm. 

  

 
Assume that in case of sequential search, the probability of successful search is 
equal to t i.e. 0 ≤ t ≤ 1, and the probability of the first match occurring in the ith 
position of the list is the same for all values of i. From these assumptions we 
can easily find out the average number of key comparisons Cavg (n). 
In case of successful search, the probability of the first match occurring in the 

ith position of the list is 
n
t for all values of i and the comparison made by the 

algorithm is also i. 
In case of unsuccessful search, the number of comparison is n with the 
probability of )t1(   . Therefore, we can write: 

Cavg (n) = )t1.(n]
n
t.n....

n
t.i.....

n
t.2

n
t.1[   

              = )ti(n]n...i...21[
n
t

  

              = )t1(n
2

)2n(n
n
t


  

              = )t1(n
2

)1n(t


  

For t=1, the average number of key comparisons made by sequential search is 

2
)1n(   which means the algorithm inspects on an average about half of the 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 34 

list’s elements.  

For t=0, the average number of key comparisons is n which means the 
algorithm inspects all n element on all such inputs.  

  
 

 
 

 

The investigation of average case efficiency is more difficult compared to the best case 
efficiency and worst case efficiency. The direct approach for computing the average 
case efficiency involves the divison of all instances of size n into several classes. Thus, 
for each instance of the class, the number of times the algorithm’s basic operation 
executed is same. 

Worst Case Analysis 

If an algorithm takes maximum amount of time to execute for a specific set of input, then it is called the 
worst case time complexity.  The worst case efficiency of an algorithm is the efficiency for the worst case 
input of size n. The algorithm runs the longest among all the possible inputs of the similar size because 
of this input of size n.  

To determine the worst case efficiency of an algorithm, we have to analyze the algorithm to identify the 
kind of input suitable for the largest value of the basic operation’s count C(n) among all possible inputs 
of size n. Then, we can compute the worst case value Cworst

 

(n).  

 

 
In case of sequential search, if the search element key is present at the nth

Worst case efficiency guarantees that for any instance of size n, the running time will not exceed 
C

 position 
of the list, then the basic operations and time required to execute the algorithm is 
more. Thus, it gives the worst case time complexity. Worst case time complexity 
is represented as: 
                                       Cworst(n)=n 

worst(n), the running time on the worst-case inputs. 

• A computer program is written as a sequence of steps that needs to be performed to obtain the 
desired result. 

2.4   Summary 

• Mathematical notation is a system of symbolic representations of mathematical objects and ideas. 

• Some of the mathematical functions are floor and ceiling functions, summation symbol, factorial, 
Fibonacci numbers, and so on. 

• The complexity of an algorithm is a function which describes the efficiency of an algorithm in 
terms of the amount of data the algorithm must process. 

• The efficiency of each algorithm can be checked by computing its time complexity. 

• The asymptotic notations help to represent the time complexity in a shorthand way. It can 
generally be represented as fastest possible, slowest possible, or average possible. 

• The floor and ceiling functions give the nearest integer up or down. 

• In the Fibonacci sequence, after the first two numbers, i.e., 0 and 1 in the sequence, each 
subsequent number in the series is equal to the sum of the previous two numbers. 

• Analysis of an algorithm is required to determine the amount of resources such as, time and 
storage required to execute the algorithm.  

 

 



Unit 2: Complexity Analysis 

LOVELY PROFESSIONAL UNIVERSITY 35 

• Usually, the efficiency or running time of an algorithm is stated as a function which relates the 
input length to the time complexity or space complexity. 

• The efficiency of some algorithms may vary for inputs of the same size. For such algorithms, we 
need to differentiate between the worst case, average case and best case efficiencies. 

Lower Bound:  A mathematical argument which means that you can't hope to go faster than a certain 
amount. 

Memory: An internal storage area in the computer. 

Notation: The activity of representing something by a special system of characters. 

Upper Bound:

2.5   Keywords 

  A number equal to or greater than any other number in a given set. 

1. State whether the following statements are true or false: 

2.6   Self Assessment 

(a) An algorithm is a set of instructions that performs a particular task.  

(b) The efficiency of each algorithm can be checked by computing its space complexity.  

(c) Summation is the operation of combining a sequence of numbers using addition.  

(d) Factorial function means to multiply a series of descending natural numbers.  

(e) Time space tradeoff in context with algorithms relates to the execution of an algorithm.  

(f) Variable space requirement is the amount of space acquired by fixed size structure, variables 
and constants.  

2. Fill in the blanks: 

(a) The ………………………… help to represent the time complexity in a shorthand way.  

(b) ………………………… is generally used to express an ordering property among the 
functions.  

(c) A good algorithm must have ………………………… number of space complexity.  

(d) The …………………………describes the way algorithm performs in the best case time 
complexity.  

(e) If an algorithm takes maximum amount of time to execute a specific set of input, then it is 
called the ………………………… 

3. Select a suitable choice for every question: 

(a) Which of the following is used to express the space complexity of an algorithm? 

(i) Theta notation      (ii) Big-O notation     (iii) Omega notation     (iv) Factorial function 

(b) Which of the following provides an algorithm’s behavior on a typical or random input? 

(i) Best case analysis    (ii) Average case analysis   (iii) Floor function   (iv)  Ceiling function 

(c) Which of the following is called a greatest integer function? 

(i) Ceiling function       (ii ) Floor function     (iii) Modular arithmetic    (iv)  Factorial 

(d) Which of the following is an important part of computational complexity theory? 

(i) Algorithm analysis    (ii) Floor function   (iii)  Ceiling function   (iv) Time space tradeoff 

(e) Which of the following can be defined as “f(n)≥ c∗ g(n)”? 

(i) Big-O notation     (ii) Theta notation    (iii) Omega notation    (iv)  Floor function 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 36 

1. “Mathematical notation is a system of symbolic representations of mathematical objects and 
ideas.” Discuss. 

2.7   Review Questions 

2. “To select the best algorithm, it is necessary to check the efficiency of each algorithm.” Justify. 

3. “Big-O notation describes the performance or time complexity of an algorithm.” Comment. 

4. “The omega notation can be defined as f(n)≥ c∗ g(n).” Describe. 

5. “Floor function gives the largest integer lesser than or equal to x.” Describe with an example. 

6. Describe modular arithmetic with the help of a 12 hour clock. 

7. “Efficiency of an algorithm can be determined by calculating its performance.” Comment. 

8. “Time complexity of an algorithm is the amount of time required by an algorithm to execute.” 
Discuss with an example. 

9. “Time space tradeoff in context of algorithms relates to the execution of an algorithm.” Comment. 

10. “Analysis of an algorithm is required to determine the amount of resources it requires.” Discuss. 

11. “The best case efficiency of an algorithm is the efficiency of the algorithm for the best case input of 
size n.” Discuss with an example. 

12. “Complexity is a measure of the performance of an algorithm.” Comment. 

Answers: Self Assessment 
1. (a) True               (b) False                 (c) True               (d) True                (e) True                   (f) False 

2. (a) Asymptotic notations         (b) Big-O notation                                      (c) Minimum 

(d) Omega                                   (e) Worst case time complexity   

3. (a) Big-O notation                 (b) Average case analysis                       (c)     Floor function      

(d) Algorithm analysis             (e) Omega notation  

 

2.8   Further Readings 

 

 

Lipschutz, S. (2011). Data Structures with C. Delhi: Tata McGraw-Hill. 

Reddy, P. (1999). Data Structures Using C. Bangalore: Sri Nandi Publications. 

 

 

 

http://www-old.oberon.ethz.ch/WirthPubl/AD.pdf 

http://msdn.microsoft.com/en-us/library/06bkb8w2%28v=vs.71%29.aspx 

http://www.cplusplus.com/doc/tutorial/variables/ 

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-
introduction-to-algorithms-sma-5503-fall-2005/video-lectures/lecture-1-administrivia-
introduction-analysis-of-algorithms-insertion-sort-mergesort/lec1.pdf 



Unit 3: Arrays 

LOVELY PROFESSIONAL UNIVERSITY 37 

Unit 3: Arrays 

CONTENTS  

Objectives 

Introduction 

3.1 Fundamentals of Arrays  

3.2 Types of Arrays 

      3.2.1   Linear Array  

      3.2.2   Multidimensional Array  

3.3 Types of Array Operations  

      3.3.1   Adding Operation  

      3.3.2   Sorting Operation 

      3.3.3   Searching Operation 

      3.3.4   Traversing Operation 

3.4 Summary 

3.5 Keywords 

3.6 Self Assessment 

3.7 Review Questions 

3.8 Further Readings 

After studying this unit, you will be able to: 

Objectives 

• Recall the fundamentals of arrays 

• Explain the types of arrays 

• Describe the types of array operations 

A data structure consists of a group of data elements bound by the same set of rules. The data elements 
also known as members are of different types and lengths. We can manipulate data stored in the 
memory with the help of data structures. The study of data structures involves examining the merging 
of simple structures to form composite structures and accessing definite components from composite 
structures. An array is an example of one such composite data structure that is derived from a primitive 
data structure. 

Introduction 

 
 

Did you know? APL (named after the book A Programming Language), designed by Ken Iverson, was 
the first programming language to provide array programming capabilities. 

An array is a set of similar data elements grouped together. Arrays can be one-dimensional or 
multidimensional. Arrays store the entries sequentially. Elements in an array are stored in continuous 
locations and are identified using the location of the first element of the array. 

An array is a data type, much like a variable as both array and variable hold information. However, 
unlike a variable, an array can hold several pieces of data called elements. Arrays can hold any type of 

3.1   Fundamentals of Arrays 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 38 

data, which includes string, integers, Boolean, and so on. An array can also handle other variables as 
well as other arrays. An integer index identifies the individual elements of an array. 

Declaring an Array 
An array is declared before it is accessed. The syntax for accessing an array component is: 

data-type array_name[size];  

Here, data-type can be of various types like int, float, or char. The array name defines the name of the 
array and size defines its element storage capacity. In C, the array index starts from 0. 

 

 

 
Declaring an array 
 
int a[14]; 
 
Here, 14 memory locations are reserved for the variable a where the items 
have index ranging from 0-13. The array starts from the index 0, which is the 
lower bound and ends at the upper bound 13. Therefore, a[4] would refer to 
the fifth element in the array a, where 4 is the array index or subscript. 

Name of an array without array index refers to the address of the first element. 

 

 

 
a or a[0] refers to the first element of the array a. 

Initializing an Array  
We can initialize an array by assigning values to the elements during declaration. We can access the 
element by specifying its index. While initializing an array, the initial values are given sequentially 
separated by commas and enclosed in braces. 

 

 

 
Consider the elements 10, 20, 30, and 40. The array can be represented as: 
a[4]={10, 20, 30, 40} 
The elements can be stored in an array as shown below: 
a[0] = 10 
a[1] = 20 
a[2] = 30 
a[3] = 40 
The element 20 can be accessed by referencing a[1]. 
Now, consider n number of elements in an array. Hence, to access any element 
within the array, we use a[i], where i is the value between 0 to n-1. 
The corresponding code used in C language to read n number of integers in an 
array is: 
for(i= 0; i<n; i++) 
{ 
       scanf(“%d”,&a[i]); 
} 

 
 

 

 
Consider a class of 10 students whose weight is recorded as {24, 28, 26, 30, 34, 
36, 42, 44, 50, 45}. The array can be represented as a[10] = {24, 28, 26, 30, 34, 36, 
42, 44, 50, 45}; and the element 26 can be accessed by referencing a[2]. 

 
 
 
 
 



Unit 3: Arrays 

LOVELY PROFESSIONAL UNIVERSITY 39 

Array Initialization in its Declaration 

A variable is initialized in its declaration.  

 

 

 
int value = 10; 
Here, the value 10 is called an initializer. 

Similar to a variable, we can initialize an array at the time of its declaration. The following example 
shows an array initialization. 

 

 

 
int a[5] = {10, 11, 12, 13, 14}; 

In this declaration, a[0] is initialized to 10, a[1] is initialized to 11, and so on. There must be at least one 
initial value between braces. If the number of initialized array elements is lesser than the declared size, 
then the remaining array elements are assigned the value 0. 

If we provide all the array elements during initialization, it is not necessary to specify the array size. The 
compiler automatically counts the number of elements and reserves the space in the memory for the 
array. 

 

 

 
int a[] = {10, 20, 30, 40}; 
Here the compiler reserves four spaces for array a. 

 
 

 

 
The number of values specified during initialization cannot exceed the array size. If too 
many initial values are specified, a syntax error occurs. 
int weight[6] = {45, 48, 54, 58, 59, 62, 33, 21,43, 19, 4, 77}; 
Here, the array size is 6 but the number of initial values is 12. This leads to a syntax error. 

 
 
 

 

 

1. While defining an array size, it is better to use a symbolic constant than specifying 
a fixed quantity. 

# define GVAL 30                 //GVAL is the maximum size of the array which is 30 

int p[GVAL];                        //Declaring the array p to GVAL 

2. A string consists of characters enclosed within double quotes. They are 
considered as an array of characters. A string is terminated by a null character 
‘\0’. String input is read using either scanf() or gets(). 

 
 

 

 
In a string array, a user can enter any number of characters including blank 
characters. Each string is terminated by a null character.  
 
Consider the declaration: 
Char str[GVAL]; 
 
If scanf(“%s”,str) is used to read the string ‘GLOBAL WARMING’, only the string 
until the blank character (space between the words) is stored and then the string 
is terminated by a null character. Here, the blank character is treated as a 
terminator.  
The following syntax is used to read the string consisting of a blank, which acts as 
a character. 
scanf(“%[^\n]”,str); 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 40 

The elements in an array are referred either by a single subscript or by two or more subscripts. Hence, 
the arrays are of two types namely, one-dimensional array and multidimensional array, based on the 
subscript referred. A two-dimensional array is also a type of multidimensional array. When the array is 
referred by a single subscript, then it is known as one-dimensional array or linear array. When the array 
is referred by two subscripts, it is known as a two-dimensional array. Some programming languages 
allow more than two or three subscripts and these arrays are known as multidimensional arrays.  

3.2.1   Linear Array 
A linear or one-dimensional array is a structured collection of elements (often called array elements). It 
can be accessed individually by specifying the position of each element by an index value. 

3.2   Types of Arrays 

 

 

 
A linear array can be anything from a row of trees or a street full of lampposts. Any 
sequence with repeated objects or shapes forms a linear array. 

Now let us see how individual elements of linear array are accessed. The syntax for accessing an array 
component is: 

ArrayName[IndexExpression] 

The IndexExpression must be an integer value. The integer value can be of char, short int, long int, or 
Boolean value because these are integral data types. The simplest form of index expression is a constant.  

 

 

 
If we consider an array number[25], then, 
number[0]  specifies the 1st component of the array 
number[1]  specifies the 2nd component of the array 
number[2]  specifies the 3rd component of the array 
number[3]  specifies the 4th component of the array 
number[4]  specifies the 5th component of the array 
. 
. 
. 
number[23]  specifies the 2nd

To store and print values from the number array, we can perform the following: 

for(int i=0; i < 25; i++) 

{ 

          number[i]=i;                                      // Storing a number in each array element 

                         printf("%d", number[i]);       //Printing the value 

               } 

To store values in a number array we use a for loop. For every iteration of the for loop, the value of i is 
assigned to each element of the array and then the values are printed using a printf statement. 

Each element of an array is treated as a simple variable. Each array element is declared to hold a value 
of integer data type. 

 last component of the array 
number[24]  specifies the last component of the array 

 

 

 
for(int i=0; i < 25; i++)  
{                                                                  //Iterations 
                /* Double the value in each array element                                                  
and store it in the array element*/ 
                number[i]=2*number[i];   
 printf(“The output of Linear array is = %d”, number[i]); 
} 



Unit 3: Arrays 

LOVELY PROFESSIONAL UNIVERSITY 41 

 For the number array, the valid index range is from 0 to 24. Index is considered to be out-of-bounds, if 
the index expression results in a value less than 0 or greater than the array_size. 

Representation of Linear Arrays in Memory 
We know that the memory of a computer is just a sequence of address locations. Let A be a linear array 
in the memory of a computer. Figure 3.1 depicts computer memory addresses of the array A.  

 
Figure 3.1: Computer Memory Addresses of Array A 

 

  
 

 
 

100 

 
 

101 

 
 

102 

 
 

103 

 
 

104 

  
 

 

 

The following notation is used for the address of an element of array A: 

LOC (A[P]) = address of the element A[P] of the array A. 

We know that the elements of A are stored in successive memory cells. The computer keeps track of the 
address of A’s first element and not the address of every element. This is denoted by Base (A) and is 
known as the base address of A. The address of any element of A is calculated using the following 
formula: 

LOC (A[P]) = Base (A) + w (P – lower bound) 

Here, A is a linear array, w is the size of each element of the array A, LOC is a variable used to store the 
location of the linear array, and P is the index of the element. The time required to calculate LOC (A[P]) 
is fundamentally the same for any value of P. Suppose the array A has the capacity to store 4 elements. 
The size of the array elements is as shown below:  

A[0] = 2 bytes 

A[1] = 2 bytes 

A[2] = 2 bytes 

A[3] = 2 bytes   

Hence, the memory occupied by Array A is 8 bytes. 

 

 

 
Consider an array A having a base address of 100, so Base(A)= 100. 
Let us now calculate the address of A[1]. Here, index of the element is, P=1, size 
of each integer, w=2 and lower bound is 0. 
The formula is: LOC (A[P]) = Base (A) + w (P – lower bound) 
Therefore, LOC (A[1] = 100 + 2(1-0) = 102 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 42 

Let us consider an example wherein we declare an array, access the array using pointers, and print the 
array. 

 

 

 
#include<stdio.h> 
int i; 
void printarr(int b[]) 
{ 
 for(i=0;i<5;i++)                                                //Iterations using for loop 
    { 
       printf("Value in the array is %d\n",b[i]);  //Printing the values in the 
array 
     } 
} 
void printdetail(int b[]) 
{ 
        for(i=0;i<5;i++)                                         //Iterations using for loop 
     { 
      /*Printing the  values and addresses of the array elements*/ 
       printf("value in array is %d and its address is %8u\n", b[i],&b[i]);  
 
      } 
}      
 
void main() 
{ 
 int b[5];                                    //Declaring the array 
 clrscr();                                
 for(i=0;i<5;i++)                      //Iterations using for loop 
    { 
       b[i]=i;                               //Assign the value of i to each array element 
     } 
       printarr(b);                                   //Call the printarr function 
       printdetail(b);                              //Call the printdetail function 
 getch();              
} 

Output: 

Value in the array is 0 

Value in the array is 1 

Value in the array is 2 

Value in the array is 3 

Value in the array is 4 

Value in the array is 0 and its address is 65516 

Value in the array is 1 and its address is 65518 

Value in the array is 2 and its address is 65520 

Value in the array is 3 and its address is 65522 

Value in the array is 4 and its address is 65524 

 

 

 



Unit 3: Arrays 

LOVELY PROFESSIONAL UNIVERSITY 43 

In this example: 

1. First, the header files are included using #include directive and function 
printarr is defined. 

2. The function printarr(int b[]) accepts an array as a parameter and using a 
for loop, prints the values of the array. 

3.  The function  printdetail(int b[]), prints the values of the array along with 
their addresses using for loop.  

4. Variable i is declared globally. 

5. Inside the main() function, array b is declared. 

6. Using a for loop, the value of i is assigned to each element in an array. 

7. The functions printarr(b) and printdetail(b) are called. The getch() function  
prompts the user to press a key and the program terminates. 

 
 

 

 
Write an algorithm to add all the elements of an array. 

3.2.2   Multidimensional Array 
Multidimensional arrays are also known as "arrays of arrays." Programming languages often need to 
store and manipulate two or more dimensional data structures such as, matrices, tables, and so on. 
When programming languages use two subscripts they are known as two-dimensional arrays. One 
subscript denotes a row and the other denotes a column. 

The declaration of two-dimension array is as follows: 

data_type array_name[row_size][column_size]; 

 

 

 
int m[5][10] 
Here, m is declared as a two dimensional array having 5 rows (numbered from 0 
to 4) and 10 columns (numbered from 0 to 9). The first element of the array is 
m[0][0] and the last row last column is m[4][9] 

Now let us discuss a three-dimensional array. A three-dimensional array is considered as an array of 
two-dimensional arrays.  

 

 

 
A three dimensional array is created as follows:  
int bigArray [ ][ ][ ] = new int [10][10][4];  
This will create an array named bigArray containing 400 integers. We can 
access any element of this array by using 3 indices.  

 

 

 
Suppose we want to assign a value 312 to the element at position 3 down, 7 
across, and 2 in, then we  write it as:  
bigArray [2][6][1] = 312;  

The general form of an n-dimensional array is as follows: 

Consider an n-dimensional m1 x m2 x m3…..mn M containing elements m1, m2, m3,….mn. Each 
element is specified by a list of n integers k1, k2, k3….kn known as index. 

Where,  

1<=k1<=m1, 1<=k2<=m2,……………….. 1<=kn<=mn. 

An array M with index k1, k2, k3….kn is denoted by 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 44 

Mk1, k2, k3…….kn

 

 or M[k1, k2, ……….kn] 

A two-dimensional array marks[2][3] is given in the example. 

 

 
marks[0][0] 
15.5 
marks[0][1] 
20.5 
marks[0][2] 
25.5 
marks[1][0] 
30.5 
marks[1][1] 
35.5 
marks[1][2] 
40.5 
The first element is given by marks[0][0] which contains 15.5, the second 
element marks[0][1] contains 20.5, and so on. 

Initialization of Multidimensional Arrays 

Like the one dimension arrays, two-dimensional arrays are also initialized by declaring a list of initial 
values enclosed in braces. 

 

 

 
int table[2][3]={0,0,0,1,1,1}; 
 
The table array initializes the elements of first row to 0 and the second row to 
1. The initialization is done row by row. The above statement can be 
equivalently written as: 
int table[2][3]={{0,0,0},{1,1,1}} 

Three or four-dimensional arrays are more complicated. They can also be initialized by declaring a list 
of initial values enclosed in braces. 

 

 

 
int table[3][3][3]={1,2,3,4,5 6,7,8,…………….27 }; 
This will create an array named table containing 27 integers. We can access any 
element of this array by using 3 indices. 

The method to access table[1][1][1], is as shown below: 

The values for array - table[3][3][3] are as follows: 
 
{1, 2, 3} 
{4, 5, 6} 
{7, 8, 9} 
 
{10, 11, 12} 
{13, 14, 15} 
{16, 17, 18} 
 
{19, 20, 21} 
{22, 23, 24} 
{25, 26, 27} 
 
The values in the array can be accessed using three for loops. The loop contains 
three variables i, j, and k respectively. This is as shown below: 
for(i=0;i<3;i++) 
{ 
for(j=0;j<3;j++) 



Unit 3: Arrays 

LOVELY PROFESSIONAL UNIVERSITY 45 

{ 
for(k=0;k<3;k++) 
{ 
printf("%d\t",table[i][j][k]); 
} 
printf("\n"); 
} 
} 
printf(“%d”, table[1][1][1]); 
 
For every iteration of the i, j and k loops, the values printed are: 
[0][0][0] = 1 
[0][0][1] =2 
[0][0][2] =3 
[1][1][1] =14 

Representing Two-Dimensional Arrays in Memory 
Let M be a two-dimensional a x b array. Although, M is pictured as a rectangular array of elements 
with a rows and b columns, the array will be represented in the memory as a block of a x b sequential 
memory locations. Specifically, the programming language will store the array M either column wise or 
row wise. When the programming language stores an array column wise, it is known as column-major 
order and when it stores row wise it is known as row-major order.  

The figure 3.2 depicts the two storage ways when M is a two-dimensional 3 x 4 array.  

 
Figure 3.2: Two-dimensional 3 x 4 Array 

 
  
 

 
Source: Lipschutz, S. Data Structures with C. Delhi: Tata McGraw-Hill. Page 4.31. 

Now, consider the two-dimensional a x b array M. The computer keeps track of Base (A) – the address 
of the first element M[1,1] of M and computes the address LOC (M[J,K]) of M[J,K] using the formula: 

For column-major order,  

LOC (M[J,K]) = Base(M) = w[P(K-1) +(J-1) --- (1)  

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 46 

For row-major order, 

LOC (M[J,K]) = Base(M) = w[Q(J-1) +(K-1) --- (2)  

Again, w denotes the size of memory location for each element of the array M. P and K denotes the row 
major order and column major order respectively for the array M. 

 

 
 

In the two-dimensional a x b array M, the formulas are linear in J and K, and the address 
LOC (M[J,K]) is time independent of J and K. 

 
 

 

 
Consider that 25 students are given 4 tests. The students are numbered from 0-25 
and the test score is assigned in a 25 x 4 matrix array - MARKS. Thus, 
MARKS[13,2] contains the marks of the second test of the 14th student. 
 
In particular, the third row of the array, 
MARKS[3, 1], MARKS[3, 2], MARKS[3, 3], MARKS[3, 4]. This gives the score for all 
the four tests of the third student. 
 
Suppose Base (MARKS) = 100 and w=4 bytes, then, the program stores two-
dimensional arrays using row-major order. In this case, the row-major is 4. The 
address of MARKS[10,2], that is the marks scored by the tenth student in the 
second test are as per the formula: 
 
LOC (M[J,K])               = Base(M) + w[Q(J-1) +(K-1)] 
LOC (MARKS[13,2])  = 100 + 4[4(10-1) +(2-1)] 
                                      = 100 + 4[36+1] 
LOC (MARKS[13,2])  = 248 

The operations performed on an array, are: 

3.3   Types of Array Operations 

1. Adding operation 

2. Sorting operation 

3. Searching operation 

4. Traversing operation 

3.3.1   Adding Operation 
Adding elements into an array is known as insertion. The insertion of data elements is done at the end 
of an array. This is possible only if there is enough space in the array to add the additional elements. 
The elements can also be inserted in the middle of the array. Here, the average half of the array 
elements is moved to the next location to empty the block of memory, and to accommodate the new 
element. 

 

 

 
Consider an array a of size 5. If you need to add an element 8 at a[2] 
position, then all the elements from a[3] have to be moved down (i.e. to 
the next location). 

 

 

 

 

 



Unit 3: Arrays 

LOVELY PROFESSIONAL UNIVERSITY 47 

Figure 3.3 shows how to add elements to an array. 

 
Figure 3.3: Adding Elements to an Array 

 
  
 

 

Algorithm for Inserting an Element into an Array 

Let a be an array of size N and I be the array index. Algorithm to insert an element in the Mth

1. Start 

 position 
of the array a is as follows: 

2. read a[N], I<-0 

3. repeat for I=N to M (Decrement I by one) 

4. a[I+1]<- a[I] 

5. a[M]<-ELEMENT 

6. M<-M+1 

7. Stop 

The below program illustrates the concept of inserting an element into a one-dimensional array. 

 

 

 
#include<stdio.h> 
#include<conio.h> 
 
void main() 
{ 
int n, i, data, po_indx, a[50];        //Variable declaration 
clrscr(); 
 
printf("Enter number of elements in the array\n"); 
 
/*Get the number of elements to be added to the array from the user*/ 
 
scanf("%d", &n);                              
printf("\nEnter %d elements\n\n", n);        //Print the number of elements 
for(i=0;i<n;i++)                                                 //Iterations using for loop 
  scanf("%d",&a[i]);                                           //Accepting the values in the array 
 
printf("\nEnter a data to be inserted\n"); 
  scanf("%d",&data);                                     //Reads the data added by user 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 48 

 
printf("\nEnter the position of the item \n"); 
  scanf("%d",&po_indx);               //Reads the position where the data is inserted 
 
/* Checking if the position is greater than the size of the array*/ 
if(po_indx-1>n)                                 
printf("\nposition not valid\n");   //If the condition is true this will be printed 
else                                  //If the condition is false the ‘else’ part will get executed 
   { 
 
 for(i=n;i>=po_indx;i--)  //Iterations using for loop 
                    a[i]=a[i-1];                   //Value of a[i-1] is assigned to a[i] 
              /*Value of data will be assigned to [po_indx-1] position*/ 
 a[po_indx-1]=data;     
   n=n+1;                      //Incrementing the value of n 
  
printf("\nArray after insertion\n");            //Print the array list after insertion 
 for(i=0;i<n;i++)                              //Use for loop and 
 printf("%d\t",a[i]);                        //Print the final array after insertion 
   } 
 
 getch();                                                       //Display characters on screen 
} 
 
Output: 
Enter number of elements in the array 
5 
Enter 5 elements 
15 20 32 45 62 
Enter a data to be inserted 
77 
Enter the position of the item 
2 
Array after insertion  
15 77 20 32 45 62 

In this example: 

1. First, the header files are included using #include directive. 

2. Then, the index, array, and the variables are declared. 

3. The program accepts the number of elements in the array. 

4. Using a for loop, the values are accepted and stored in the array. 

5. Then, the program accepts the data along with the position where it needs to 
be inserted. 

6. If the position to be inserted is greater than the number of elements 
(po_indx-1>n) then the program displays “position is not valid”. Otherwise, 
the program by means of a for loop, checks whether i>=po_indx is true and 
assigns the a[i-1] value to a[i].  

7. Then data is assigned to a[po_indx-1].  

8. Then, the program increments the number of elements and prints the array 
after insertion. 

9. getch() prompts the user to press a key and the program terminates. 

 



Unit 3: Arrays 

LOVELY PROFESSIONAL UNIVERSITY 49 

 

 
 

 

Write an algorithm to delete an element at a specific position from an array.  

3.3.2    Sorting Operation 
Sorting operation arranges the elements of a list in a certain order. Efficient sorting is important for 
optimizing the use of other algorithms that require sorted lists to work correctly. 

Sorting an array efficiently is quite complicated. There are different sorting algorithms to perform the 
task of sorting, but here we will discuss only Bubble Sort. 

Bubble Sort 
Bubble sort is a simple sorting technique when compared to other sorting techniques. The bubble sort 
algorithm starts from the very first element of the data set. In order to sort elements in the ascending 
order, the algorithm compares the first two elements of the data set. If the first element is greater than 
the second, then the numbers are swapped. 

This process is carried out for each pair of adjacent elements to the end of the data set until no swaps 
occur on the last pass. This algorithm's average and worst case performance is O (2n) as it is rarely used 
to sort large, unordered data sets. 

Bubble sort can always be used to sort a small number of items where efficiency is not a high priority. 
Bubble sort may also be effectively used to sort a partially sorted list. 

 

 

 
Even when one element is not in order, bubble sort takes 2n of time. If two 
elements are not in order, bubble sort takes at most 3n time. 

Algorithm for Sorting an Array 

Let A be an array containing data with N elements. This algorithm sorts the elements in A as follows: 

1. Start 

2. Repeat Steps 3 and 4 for K= 1 to N-1 

3. Set PTR :=1 [Initializes pass pointer PTR] 

4. Repeat while PTR≤N – K: [Executes pass] 

If A[PTR]  > A[PTR+1], then: 

Interchange A[PTR] and A[PTR +1] 

[End of If structure] 

Set PTR := PTR+1 

         [End of inner loop] 

         [End of Step 2 outer loop] 

5. Exit 

In the algorithm, there is an inner loop, which is controlled by the variable PTR, and an index K 
controls the outer loop. K is used as a counter and PTR is used as an index. 

The below program illustrates the concept of sorting an array using bubble sort. 

 

 

 
#include <stdio.h> 
#include <conio.h> 
 
int A[8] = {55, 22, 2, 43, 12, 8, 32, 15};   //Declaring the array with 8 elements 
int N = 8;                                                  //Size of the array 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 50 

void BUBBLE (void);                              //BUBBLE Function declaration 
 
void main() 
{ 
int i;   //Variable declaration 
clrscr(); 
 
/*Printing the values in the array*/ 
printf("\n\nValues present in array A ="); 
for (i=0; i<8; i++)                                          //Iterations using for loop 
    printf(" %d, ", A[i]);                                  //Printing the array 
 
BUBBLE();                                                     //BUBBLE function is called 
 
/*Printing the values from the array after sorting*/ 
 
printf("\n\nValues present in the array after sorting =");    
 
for (i=0; i<8; i++)                                   //Iterations 
   printf(" %d, ", A[i]);                             // Printing the array after sorting 
 
 
getch();                                                   // waits for a key to be pressed 
} 
void BUBBLE(void)                              //BUBBLE Function definition 
 
{ 
   int K, PTR, TEMP;                                //Declaration variables  
 
   for(K=0; K <= (N-2); K++)               //Iterations 
   { 
 PTR = 0;                                                 //Assign 0 to variable PTR 
 while(PTR <= (N-K-1-1))                    //Checking if PTR <= (N-K-1-1) 
 { 
 /* Checking if the element at A[PTR] is greater than A[PTR+1]*/ 
                    if(A[PTR] > A[PTR+1])                       
                    { 
    TEMP = A[PTR];    
    A[PTR] = A[PTR+1]; 
    A[ PTR +1] = TEMP; 
                      } 
/*Increment the array index*/ 
                      PTR = PTR+1;    
                 } 
   } 
} 

 Output: 
Values present in A[8] = 55, 22, 2, 43, 12, 8, 32, 15 

 Values present in A[8] after sorting = 2, 8, 12, 15, 22, 32, 43, 55 

In this example: 

1. First, the header files are included using #include directive. 

2. Then, the array A is declared globally along with the array elements and the 
size. 

3. Then, inside the main function the variable i is declared. 



Unit 3: Arrays 

LOVELY PROFESSIONAL UNIVERSITY 51 

4. The values in the array are printed using a for loop. 

5. Next, the Bubble function is called. The sorting operation is carried out and 
values present in the array are printed. 

6. getch() prompts the user to press a key. Then the program terminates. 

7.  In The BUBBLE function the variables K, PTR and TEMP are declared as 
integers. 

8. PTR is set to 0. 

9. Within the while loop the adjacent array elements are compared. If the 
element at a lower position is greater than the element at the next position, 
both the elements are interchanged. 

10. The array index is then incremented.  

 

 
 

Did you know? There is no algorithm that can sort n items in time of order less than O(n log n). 
 

 

 
 

 

Consider the array NUM[10] = {11,55,71,37,55,29,8,13, 32,6} 

Write an algorithm to sort the array in descending order.  

3.3.3   Searching Operation 
Searching is an operation used for finding an item with specified properties among a collection of items. 
In a database, the items are stored individually as records, or as elements of a search space addressed by 
a mathematical formula or procedure. The mathematical formula or procedure may be the root of an 
equation containing integer variables. 

Search operation is closely related to the concept of dictionaries. Dictionaries are a type of data structure 
that support operations such as, search, insert, and delete. 

Computer systems are used to store large amounts of data. From these large amount of data, individual 
records are retrieved based on some search criterion. The efficient storage of data is an important issue 
to facilitate fast searching. 

There are many different searching techniques or algorithms. The selection of algorithm depends on the 
way the information is organized in memory. Now, we will discuss linear searching technique. 

 

 

 
Suppose A is a linear array with n elements. If no information on A is 
specified, then the most spontaneous way to search for a given ITEM in 
A is to compare ITEM with each element of A, one by one. First, we test 
whether A[1] = ITEM, and then we test whether A[2] = ITEM, and so 
on. This method of sequentially traversing array A is called linear 
search.  

 

 

 

 

 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 52 

Algorithm for Linear search 

Let A be a linear array with N elements and ITEM be the given item of information. The search 
algorithm will find the location LOC of ITEM in A or sets LOC :=0 if the search fails. The algorithm is 
as follows: 

1. Start 

2. [Insert ITEM at the end of A.] Set A[N+1] :=ITEM 

3. [Initialize counter.] Set LOC :=1 

4. [Search for ITEM.] 

            (a) Repeat while A[LOC] ≠ ITEM: 

            (b)  Set LOC := LOC + 1 

[End of loop] 

5. [Successful?] If LOC = N + 1, then: Set LOC := 0 

6. Exit 

The following example illustrates the concept of searching an element in a linear array. 

 

 

 
#include<stdio.h>  
#include<conio.h>  
#include<stdlib.h> 
 
void main() 
{  
/* Declaring array M that can store 20 integers and the variables ele, i and num  
as integer variables */ 
 
int M[20], i, ele, num;01 
clrscr();                                       //Clears the previously entered data 
printf("\nEnter the number of elements to insert in an array: ");  
 
/*Accepts the number of elements from the user to store in the array M*/ 
scanf("%d", &num); 
 
/*Accepts input from the user until i value is less than the num entered*/ 
for(i=0;i<num; i++)  
{  
printf("\nEnter Element %d: ", i+1);  
scanf("%d",&M[i]); //accepts the input from the user and stores in array M  
}  
printf("\nEnter the element to be searched: ");  
scanf("%d", &ele);  //Accepts the element to be searched from the user 
for(i=0;i<num;i++){  
/* Check if the element to be searched is equal to the value stored in the array */ 
if(M[i] == ele){   
/* Display the position of the element in the array */ 
printf("\nElement is found at position %d",i+1); 
getch(); //wait until a key is pressed 
exit(1);  
}  
}  
printf("\nElement not found");  
getch();  
} 



Unit 3: Arrays 

LOVELY PROFESSIONAL UNIVERSITY 53 

Output: 
Enter the number of elements to insert in an array: 
6 
Enter element 1: 10 
Enter element 2: 20 
Enter element 3: 30 
Enter element 4: 40 
Enter element 5: 50 
Enter element 6: 60 
Enter the element to be searched: 
40 
Element is found at position 4 

In this example: 

1. First, the header files are included using #include directive. 

2. An array named M with an element storage capacity of 20 is declared. 

3. The variable i, ele, and num are declared. 

4. The user enters the number of elements to be inserted in the array M. 

5. The first for loop accepts the input and stores the elements in the array M. 

6. Then, the user enters the element to be searched in the array M. 

7. The second for loop checks if the condition M[i] is equal to the search 
element entered. If the condition is true, then the position of the element in 
the array M is displayed. Otherwise, the program displays a message 
“Element not found”. 

8. The getch() prompts the user to press any key and then the program is 
terminated. 

 
 

 
 

 

Write an algorithm to search an element in an array using binary search technique.  

 3.3.4   Traversing Operation 
Traversing an array refers to moving in inward and outward direction to access each element in an 
array. To traverse an array, one can use for loop. The array elements are accessed using an array index 
or a pointer of type similar to that of array elements. To access the elements using a pointer, the pointer 
must be initialized with the base address of the array. Traversing operation also involves printing the 
elements in an array. 

Algorithm for Traversal Operation 

Let X be an array of size N. You need to traverse through the array and perform the required operations 
on each element of the array. Let the required operation be OP. Here, i is the array index and the lower 
bound starts with 0. The algorithm for traversing a given array is as follows: 

1. Start 

2. read X[N], i=0 

3. repeat for I = 0, 1, 2…..N 

OP on X[i] 

4. Stop 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 54 

 

 

 
#include<stdio.h> 
#include<conio.h> 
#define SIZE 20                                        //Define array size 
 
void main() 
{ 
 
float sum(float[], int);                              //Function declaration 
float x[SIZE], Sum_total=0.0;  
int i, n;                                                       //Variable declaration 
clrscr();    
 
printf("Enter the number of elements in array\n");  
scanf(" %d", &n);                                      //Reads the data added by user 
 
printf("Enter %d elements:\n", n);        //Printing the values in the array 
for(i=0; i<n; i++)                                       //Iterations using for loop 
 
/* Input the elements of the array (Traverse operation)*/ 
 
     scanf(" %f", &x[i]);                                 
printf("The elements of array are:\n\n");   //Printing the elements of the array 
for(i=0; i<n; i++)                                               //Iterations using for loop 
 
/*print the elements of array in floating point form(Traverse operation)*/ 
 
    printf(" %.2f\t", x[i]);                                   
/*Call the function sum and store the value returned in Sum_total*/ 
Sum_total = sum(x, n);                                   
 
/*Printing the sum*/ 
 
printf("\n\nSum of the given array is: %.2f\n", Sum_total);  
getch();                                               //wait until a key is pressed 
} 
float sum(float x[], int n)                   //Function declaration 
{ 
 
int i;                                                   //Variable declaration 
float total=0.0;                               //the variable total is set to 0.0 
for(i=0; i<n; i++)                          //Iterations 
total+=x[i];                                   //each element x[i] is added to the value of total  
return(total);                              //Returning the total value 
} 
 
Output: 
Enter the number of elements in array 
5 
Enter 5 elements  
14 15 16 17 18 
The elements of array are: 
14.00 15.00 16.00 17.00 18.00 
Sum of the given array is: 80.00 

 

 



Unit 3: Arrays 

LOVELY PROFESSIONAL UNIVERSITY 55 

In this example: 

1. First, the header files are included using #include directive. 

2. Using the #define directive, the array size, SIZE, is set to 20. 

3. In the main() function, the function sum and the variables are declared. 

4. A for loop is used accept the elements of the array. 

5. The next for loop prints the elements of the array. 

6. The program calls the sum() function to add all the elements of the array. 
The value returned by the sum() function is stored in the variable 
Sum_total. 

7. The program then prints the sum of the elements of the array. 

8. getch() prompts the user to press a key to exit the program. 

9. The function sum that accepts two arguments and returns a float value is 
defined. The function sum does the following steps: 

(a) Initializes an integer variable i.  

(b) Initializes a float variable total and assigns 0.0 to it.  

(c) Adds the elements of the array using a for loop and the result is 
stored in total. 

(d) Finally, it returns the value of total.  

 

 
1. Write a C program to accept a two-dimensional array, print the values 

and sum up the elements of the array. 

2. Write a C program to perform matrix addition and multiplication. 

• An array is a set of same data elements grouped together. Arrays can be one-dimensional or 
multidimensional. 

3.4   Summary 

• The fundamentals of arrays include the concepts of declaring and initializing an array. 

• A linear or one-dimensional array is a structured collection of elements (often called as array 
elements) that are accessed individually by specifying the position of each element with a single 
index value. 

• Multidimensional arrays are nothing but "arrays of arrays". Two subscripts are used to refer to the 
elements. 

• The operations that are performed on an array are adding, sorting, searching, and traversing. 

• Adding of elements is done at the end of an array or in the middle of an array. 

• Sorting operation arranges the elements of a list in a certain order. 

• Searching operation is used for finding an item with specified properties among a collection of 
items. 

• Traversing an array refers to moving in inward and outward direction to access each element in an 
array. 

 

 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 56 

Average Case Performance: Average case of a given algorithm denotes the average usage of the 
resources. Usually the resource considered is run time, but it could also be memory or any other 
resources. 

Composite Structures: Data structures made of distinguishable data types. 
 
Index: A non-negative integer used to identify an array element. 
 
Worst Case Performance: Worst case of a given algorithm denotes the maximum usage of resources. 
Usually the resource considered is run time, but it could also be memory or any other resources.  

3.5   Keywords 

1. State whether the following statements are true or false: 

3.6   Self Assessment 

(a) The data stored in the memory can be manipulated with the help of data structures. 

(b) An array is initialized by assigning values to the elements. 

(c) When an array is referred by multiple subscripts then it is called a linear array. 

(d) Linear arrays cannot be indexed. 

(e) An array can be initialized at the time of its declaration. 

(f) Programming languages need to store and manipulate two or more dimensional data 
structure such as matrices. 

2. Fill in the blanks: 

(a) ……………………… condition occurs if you try to insert the data to an array when there is no  
space available for insertion. 

(b) Any sequence with repeated objects or shapes forms a ……………………… 

(c) A ………………… character terminates every string. 

(d) ……………… sort is the simplest of all sorting algorithms. 

(e) …………………… operation involves printing each element in an array. 

3. Select a suitable choice for every question: 

(a) Which of the following operations arranges the elements of a list in a certain order? 

(i) Traversing      

(ii) Declaration      

(iii) Initialization     

(iv) Sorting 

(b) Which among the following algorithms have an average and worst case performance of 
O(n2)? 

(i) Bubble sort     

(ii) Merge sort       

(iii) Heap sort           

(iv) Quick sort 

 

 

 



Unit 3: Arrays 

LOVELY PROFESSIONAL UNIVERSITY 57 

(c) Which of the following searching techniques sequentially traverses an array to search an 
element? 

(i) Binary search   

(ii) Linear search     

(iii) Quick search    

(iv) Jump search 

(d) What is the memory address of the first element of an array called as? 

(i) Floor address    

(ii) Base address      

(iii) Foundation address    

(iv) First address 

(e) Which of the following is specified to access an element of an array? 

(i) Syntax               

(ii) Lower bound      

(iii) Index                              

(iv) Upper bound 

1. “Elements in an array are stored in continuous locations and are identified using the location of 
the first element.” Discuss. 

3.7   Review Questions 

2. “Any element can be accessed by specifying the index of the element.” Comment. 

3. “If the number of initial values in an array is less than the actual array size then, the remaining 
array elements will be initialized to zero.” Discuss. 

4. “Multidimensional arrays are nothing but arrays of arrays.” Comment. 

5. “Linear arrays can be indexed.” Analyze. 

6. “To use the values stored in the number array, we can treat each array element as a simple 
variable of data type int.” Comment. 

7. “If too many initial values are specified, a syntax error will occur.” Explain. 

8. “Efficient sorting is important for optimizing the use of other algorithms that require sorted lists to 
work correctly.” Discuss. 

9. “Bubble sort is the simple sorting technique among all sorting techniques.” Comment. 

10. “Efficient storage of data facilitates fast searching. “Analyze. 

11. “Traversing operation also involves printing each and every element in an array. “Comment. 

12. “Insertion of data elements is usually done at the end of an array.” Analyze. 

 

 

 

 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 58 

Answers: Self Assessment 
1. (a) True                     (b) True                          (c) False                            (d) False                       (e) True             

(f) True 

2.  (a) Overflow      (b) Linear array      (c) Null                       (d) Bubble             (e) Traversing 

3. (a) Sorting          (b) Bubble sort         (c) Linear search      (d) Base address  (e) Index 

 

3.8   Further Readings 

 
 

 

Lipschutz, S. Data Structures with C. Delhi: Tata McGraw-Hill. 

Reddy, P. (2009). Data Structures Using C. Bangalore: Sri Nandi Publications. 

 

 

http://www.exforsys.com/tutorials/c-language/c-arrays.html 

http://www.fearme.com/misc/alg/node19.html 

http://cboard.cprogramming.com/c-programming/52894-traversing-array.html 

 

 
 



Unit 4: Pointers 

LOVELY PROFESSIONAL UNIVERSITY 59 

Unit 4: Pointers 

CONTENTS 

Objectives 

Introduction 

4.1 Fundamentals of Pointers 

4.2 Operations on Pointers 

4.3 Dangling Pointers 

4.4 Pointers to Functions 

4.5 Pointers and Arrays 

      4.5.1   Array of Pointers 

4.6 Records and Record Structures 

       4.6.1   Indexing Items in a Record 

4.7 Representation of Records in Memory - Parallel Arrays 

       4.7.1   Variable Length Records 

4.8 Summary 

4.9 Keywords 

4.10 Self Assessment 

4.11 Review Questions 

4.12 Further Readings 

After studying this unit, you will be able to: 

Objectives 

• Understand the fundamentals of pointers 

• Analyze the operations on pointers 

• Explain dangling pointers  

• Discuss the concept of pointers to functions  

• Describe pointers and arrays 

• Explain records and record structures 

• Analyze the representation of records in memory - parallel arrays 

In C language, pointers are one of the strongest and the most powerful feature as they allow dynamic 
allocation of memory. Pointers are variables that point to data items. They store the reference of another 
variable. Although pointers provide flexibility while structuring data, you need to use pointers with 
caution as they can introduce bugs. These bugs cause difficulty while debugging a program.  

Introduction 

You can use pointers to write compact codes, thereby reducing the program length and complexity. The 
method of passing the address of an argument in the calling function to a corresponding parameter in 
the called function is called “pass by reference”. This method helps to access the data faster and 
supports dynamic allocation of memory. It can be used to access the byte or word locations and CPU 
registers. Dangling pointer is a pointer that points to a deleted object. Uninitialized pointers having 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 60 

invalid addresses might cause the system to crash. Pointers used incorrectly can cause bugs and is 
difficult to identify.  

The address which locates a variable within the memory is a reference to that variable and can be 
obtained by preceding the variable name with an ampersand (&) or the reference operator. 

4.1   Fundamentals of Pointers 

 

 

 
x = & a; 

This would assign the address of a to x. Since, & is a reference operator, it stores the address of the 
memory and not the content of the variable. 

 

 

 
a= 30; 
b= a; 
x= &a; 
Here, b will contain the value of a, whereas x will contain the address of a. 

Pointer can be declared as: 

type * variablename; 

Here, type is the data types of the value like int, char, and float that the pointer points to. 

 

 

 
int *a; 
char *name; 
float *username; 
*variablename is used to point to a value that the pointer will point.  
An asterisk (*) acts as a dereference operator. 

 
 

 

 
void main () 
{ 
    int iv, fv; 
    int * m; 
    m= & iv; 
    *m= 5; 
    m = &fv; 
    *m= 10; 
     printf( “ Initial value is %d\n “, &fv;) 
     printf( “ Final value is %d\n”, &sv;) 
} 
Output: 
Initial value is 5 
Final value is 10 
In this example: 

1. First, the address of iv is assigned to m using the reference operator (&).  

2. Then, the value 5 is assigned to the memory location pointed by m because 
at this moment, m is pointing to the location of iv, which modifies the value 
of iv.  

3. Then, the address of fv is assigned to m using the reference operator (&).  

4. Finally, the value 10 is assigned to the memory location pointed to by m, 
i.e., fv, using the dereference operator (*). 

 



Unit 4: Pointers 

LOVELY PROFESSIONAL UNIVERSITY 61 

A pointer to pointer can be declared as: 

int ** x; 

int can be accessed by dereferencing the pointer. 

 

 

 
j= **x;    //assign an integer to j 

Consider the following: 

int b = 5; 

int *c = &b 

int ** d = &c; 

Here, both c and d contain the address of an int, while d contains the address of a pointer to an int. 
There are three ways to update the value of variable b to 10. They are: 

                 a= 10; 

or 

*b= 10; 

or 

                 **c=10; 

All of them will set the value 10 to the variable b. 

typedef keyword can be used to assign name to type definition and use the type name to declare the 
variables. Syntax for defining names using typedef in pointers is shown below: 

typedef known_type_definition new_type_name 

Here, known_type_definition is the data type like, int, char, and float. 

         new_type_name is the new variable name 

 

 

 
typedef int *Inpt 
Inpt pointer1, pointer2; 
The new type name is used to declare pointer variables of type pointer to 
integers. 

 

 
 

Did you know? 
Address is a machine-level reference to a location in memory space of a process. 

 
 

 

1. “&” is the reference operator and is read as “address of.” 

2. “*” is the dereference operator and is read as “value pointed by.” 

3. A variable name referenced with “&” can be dereferenced with “*”. 

 

 

 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 62 

When a pointer is declared, C language allocates space for the pointer. There are many functions which 
can be used for dynamic memory allocation and deallocation. They are: 

1. Malloc():

2. 

 This function allocates a block of memory. A pointer of type void is returned when a 
block of memory with a specific size is reserved. This function can then be assigned to any type of 
pointers. 

Calloc():

3. 

 This function allocates same sized multiple blocks of storage, when required. 

Realloc():

4. 

 This function moves reserved block of memory to another location of different 
dimensions. This is used to change the memory allocated by functions, like calloc and malloc, 
when the memory is either insufficient or is in excess. 

Free():
 

 This function releases a previously used block of memory. 

 

 

Malloc() function is used when a pointer has to point to a block of memory and calloc() 
is used to request the memory space for an array which is initialized with zero-value 
blocks. 

Consider the following pointer declaration: 

char *y; 

The variable type for y is declared to be of pointer to char. The pointer y must be initialized at the time 
of its declaration to avoid the chances of random value being used as memory address: 

char *y = NULL; 
 

We can use pointer variables for various types of expressions. The table 4.1 specifies the operators 
which can be used using pointers. 

4.2   Operations on Pointers  

 
Table 4.1: Pointer Operations 

 
  
 

Operators name Symbols Examples 
(x and y are pointer variables) 

Relational operator > 
>= 
== 
< 
<= 
!= 
 

x>y 
x>=y 
x==y 
x<y 
x<=y 
x !=y 

Increment operator ++ x++ 
Decrement operator -- y-- 

 

 

The above mentioned operators such as, >=, <=, >, <, ==, !=, ++, and -- can be applied to pointers only 
when both operands are pointers.  

 

 

 
int *a, *b; 
If (a >= b)   
{ 
  
} 



Unit 4: Pointers 

LOVELY PROFESSIONAL UNIVERSITY 63 

The preceding example is valid because both a and b are pointers. However, the next example  is not 
valid because 50 is a numeric constant and not a pointer type. 

 

 

 
int *a; 
If (a > 50) 
{ 
  
} 

Table 4.2 shows some of the valid and invalid operations that can be performed on the pointers.  

 
Table 4.2: Valid and Invalid Pointer Operations 

 
  
 

Arithmetic operators Invalid operation Valid operation 
Addition m1 + m2 m1+2 
Subtraction m1-m2 m1-2 
Multiplication  m1*m2 *m1× *m2 

 

 
 

 

Equality operator (==) and inequality operator (!=) can be applied only if one of the 
operand is a null pointer ( NULL or ‘\0’.) 

A dangling or wild pointer is a pointer which does not point to a valid memory location. This means 
that a running process which has certain restrictions on accessing the memory location does not fall 
under the address space. A pointer if not handled properly produces serious bugs or a bad program. 
Dangling pointers can be created in many ways.  

4.3   Dangling Pointers  

 

 

 

{  
 char *p = NULL; 
 { 
  char a; 
  p = &a; 
 }                                      
//memory location which a was occupying is released 
// p is now a dangling pointer  
} 

Dangling pointer can be avoided by making p as a null pointer after exiting from the inner block. A 
dangling pointer in a program always points to a memory location outside the process space. Here, the 
location pointed by the dangling pointer may or may not contain a valid object. If it is modified, then 
the valid object’s value can change unexpectedly distorting the performance of the process which owns 
the object. This is called memory corruption. This leads to an erratic behavior of the system which will 
finally crash the system. 

Dangling pointers can be avoided by initializing them to “NULL” during their declaration or when they 
are not used in the program.  

A common programming error while creating a dangling pointer is returning the address of the local 
variable.  



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 64 

 

 

 

char *pointerfunction (void) 
{ 
 char c[ ] = “pointers and arrays”; 
 return c; 
} 
In this example, if it is necessary to “return” the address of c then you can 
declare it with the “static” storage specifier. 

Dangling pointers are usually created by the combination of malloc() and free() library calls. A pointer 
becomes dangling when the block of memory referred to by the pointer is set free.  

 

 

 
#include<stdlib.h> 
{ 
 char *c = malloc (A_CONST); 
 free( c) ; 
 c = NULL; 
} 

 
 

Did you know? In Java, object reference is a pointer and an address.  
 

Pointers can be used in function declaration. By using pointers, a complex function can be easily 
represented. The variables used to invoke the called function are known as arguments or actual 
parameters, and the variables used in the actual definition of the called function are called dummy 
parameters or formal parameters. Pointers used in the function definition are classified into two groups. 
They are: 

4.4   Pointers to Functions  

1. Pass by value or call by value 

2. Pass by reference or call by reference 

Pass by Value or Call by Value 
You have seen that when a function is invoked, a link has to be established between the formal and the 
actual parameters. A temporary storage has to be created so that the value of the actual parameters can 
be stored. The formal parameters will pick up the value from the storage area. This mechanism of data 
transfer between actual and formal parameters allows the actual parameter values to be copied into the 
formal parameters. This method is known as “call by value” or “pass by value”. The corresponding 
formal parameter will represent a local variable in the called function. The current value of the 
corresponding actual parameter will become the initial value of the formal parameter. The value of the 
formal parameter might be changed in the body of the actual parameter or subprogram by using the 
assignment or input statements. This will not change the value of actual parameters.  

 
# include<stdio.h> 
#include<conio.h> 
void num(int x, int y) 
{ 
      x = 100; 
     y = 200; 
} 
void main() 
{ 
     int m, n; 
     m = 10; 
     n = 20; 
     num (m, n); 
    printf(“m =  %d and n = %d”, m, n); 



Unit 4: Pointers 

LOVELY PROFESSIONAL UNIVERSITY 65 

 getch(); 
} 
Output:  
m = 10 and b = 20 

In the above example, two functions - num() and main() are used. Execution 
always starts from the main() function, where main() function is the calling 
function and num() is the called function. The sequence of steps are as 
follows: 

1. Execution starts from the calling function main(). Since, the variables m 
and n are defined within the function, memory is allocated for these 
variables during run-time and initialized with junk values ‘?’. Let the 
addresses of the variables be 1004 and 1008. 

2. After executing the statements:  

 m = 10; 

           n = 20; 

The values m and n are copied into the memory locations identified by 
m and n in the addresses 1004 and 1008.  

3. Function num()  is invoked with two parameters m and n. 

4. Control is then transferred to the called function num(). 

5. Memory is allocated for the formal parameters x and y. Assuming that 
the address of these variables is 2000 and 2004, the values of the actual 
parameters 10 and 20 are copied into these locations. Note that the 
number and the type of the actual parameters match with the number 
and type of formal parameters. So, the formal parameters obtain the 
value of actual parameters which is 10 and 20.  

6. When the statements 

           x=100  

           y = 200  

are executed, the earlier values 10 and 20  are  replaced by 100 and 200. 

7. Then, control transfers from the called function to the calling function. It 
points from where it was invoked earlier. Before the control is 
transferred to the calling function, the memory allocated for the formal 
parameters is de-allocated. 

8. Execution stops. 

 
 
 
 
 
 
 
 
 
 
 
 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 66 

 

 

 
Advantages of Pass by Value or Call by Value 
1. In Pass by value, expressions are passed as arguments instead of passing the values 

or variables as arguments. 

2. This protects the values of the actual variables from getting altered by the called 
function.  

Disadvantages of Pass by Value or Call by Value 

1. Pass by value technique will not allow the information to be sent back to the calling 
portion of the program. 

2. It allows only one-way transfer of information i.e., from the calling function to the 
called function. 

 
 

 
 

 

Write a C program to swap two numbers using pointers. 

Pass by Reference or Call by Reference 
When an address is passed to a function, the parameters receiving the address will have to be pointers. 
The process of calling a function by using pointers to pass the address of the variable is called pass by 
reference or call by reference. The function called by reference changes the values of the variable used in 
the call.  

 

 

 
#include<stdio.h> 
void num(int *x, int *y) 
{   
   *x = 100; 
   *y = 200; 
} 
void main() 
{ 
   int m, n; 
   m = 10; 
   n = 20; 
   num(&m, &n); 
   printf( “ m = %d and n= %d”, m, n); 
  getch(); 
} 
 
Output:  
m = 100 and n = 200 

There is a difference in output between the above two examples. The function 
num() is called again. The output will be 100 and 200. Here, instead of passing the 
values of actual parameters, the addresses of actual parameters, i.e., &m and &n are 
passed. The addresses are copied into formal parameters. Since the formal 
parameters contain the addresses, they are considered as pointers. The sequences of 
steps are as follows: 

1. Execution of the calling process i.e., the main function will start. Since, the 
variables m and n are defined within the function, memory is allocated for 
these variables during run-time and initialized with junk values ‘?’. Assume 
that the addresses of the variables are 1004 and 1008. 



Unit 4: Pointers 

LOVELY PROFESSIONAL UNIVERSITY 67 

2. After executing the statements: 

           m = 10 

           n = 20 

     The values 10 and 20 will be copied into the memory locations recognized by 
m and n in the addresses 1004 and 1008.  

3. Function num() is invoked with two parameters m and n. Here, the addresses 
of m and n are passed as parameters. 

4. Control is transferred to the called function num(). Memory is allocated for the 
formal parameters x and y. Let the addresses of the formal parameters be 2004 
and 2008. Since, the address of m which is 1004 and address of n which is 1008 
are passed as parameters, these addresses are copied into the location 2004 
identified by x and 2008 identified by y. Here, the formal parameters x and y 
contain the address of the actual parameters m and n, which means that the 
values of actual parameters is accessed by the formal parameters through 
pointers.  

5. When statements  

*x = 100 

*y = 200  

are executed, the memory location pointed to by x i.e., contents pointing to 
1004 which is 10, is replaced by 100. Similarly, the memory location pointed by 
y i.e., the contents pointing to 1008 which is 20 is replaced by 200. 

6. Control is transferred from the called function to the calling function to the 
point from where it was called. 

7. The actual parameters are indirectly changed by the formal parameters.   

8. Execution stops. 

Hence, the values in one function can be changed by some other functions by 
passing addresses, and then de-referencing the addresses using the indirection 
operator (*) in the called function.  

 
 

 

 
Advantages of Pass by Reference or Call by Reference 

1. In pass by reference, information can be sent back to the calling function through 
parameters. 

2. A two-way transfer of information can be achieved through pass by reference. 

  
 

 

 

Write a program to accept X elements into an array and then compute the sum using 
pointers. 

 

 

 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 68 

Array is a group of elements (homogenous type) which is stored in contiguous memory locations. The 
concept of arrays is similar to pointers. An array can be considered as an internal or hidden pointer 
since one element in the array is stored adjacent to another. The identifier of an array is equivalent to 
the address of the first element since a pointer is equal to the address of the first element which it points 
to.  

4.5   Pointers and Arrays  

 

 

 
int  num[20]; 
int *p; 

For the above example, the following assignment operation is valid: 

p = num; 

After the execution of this instruction, p and num are equal and will have the same properties. Here, the 
only difference is that, we can change the value of the pointer p by another value, while the num will 
always point to the first 20 elements of type int which was defined. Unlike p (ordinary pointer), 
numbers in an array are considered as a constant pointer. Hence, the following is not valid. 

num = p; 

Since num is an array, it operates as a constant operator. Therefore, it is not possible to assign value to 
it.  

 

 

 
#include<stdio.h> 
void  main() 
{ 
    int num[5], x; 
    int *p; 
    p = num; 
   *p = 10; 
   p++; 
  *p = 20; 
   p = &num[2]; 
  *p = 30; 
   p = num + 3; 
   *p = 40; 
    p = num; 
  *(p+4) = 50; 
  for (x=0;x<5; x++) 
     printf (“%d “, num[x]); 
    getch(); 
} 
Output: 10 20 30 40 50 
 
In this example: 

1. An array num is assigned to pointer p. 

2. A value is assigned to the memory location pointed by *p. 

3. The pointer p is incremented to point to the next location. 

4. Steps 2 and 3 are repeated for all the values. 

Bracket sign operator [ ] or dereference operator is known as offset operator. Similar to *, the offset 
operator dereferences the variable it follows, but also adds the number between the brackets to the 
address being dereferenced.  

 



Unit 4: Pointers 

LOVELY PROFESSIONAL UNIVERSITY 69 

 

 

 
b[5] = 0;                    //b[offset of 5] = 0 

*(b+5) = 0;                 //pointed by (a+5) = 0 

These two expressions are equal and valid if b is a pointer or an array. 

Three points need to be remembered while using pointers with arrays. They are: 

1. Elements of an array are always stored in contiguous memory locations. 

2. Incrementing or decrementing pointer variables lead to incrementing or 
decrementing memory location, depending on the data type of the defined pointer 
variable. 

3. The first element of an array is always numbered as zero, which makes the last 
element one less than the size of the array. 

4.5.1   Array of Pointers  
A two-dimensional array is a collection of one-dimensional arrays.  In the case of two-dimensional 
arrays, a single pointer can be used to point to the contiguous one-dimensional arrays. Therefore, 
instead of defining a two–dimensional array as; 

data_type array_name[ep1][ep2]  

we can define the two–dimensional array as:  

 data_type (*pt)[ep2]; 

Here, data_type is the data type of the array, array_name is the name of the array, and ep1 and ep2 are 
the maximum number of elements in that row or column.  

A two-dimensional vector with 3 rows and 3 columns can be initialized as: 

int  x[3][3] = { 

  {2,4,6}, 

  {3,6,9}, 

  {4,8,12} 

                       }; 

Figure 4.1 shows the row-wise representation of elements of the matrix x: 

 
Figure 4.1: Representation of Elements in Memory 

 
  
 

 
 

Pointers can be used to declare x as: 

int (*x)[3]; 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 70 

Here, x is defined as a pointer to a group of one-dimensional array, each having 3 elements in an array. 
Initially, x points to the first dimensional array called the first row of matrix which is Row 0. (x+1) 
points to the second one-dimensional array which is Row 1. (x+2) points to the third dimensional array 
which is Row 2.  

So, the starting address of the ith Row can be accessed using: 

x+i 

 The entire ith Row can be accessed using: 

*(x+i) 

The address of the first element in the jth Column can be accessed using:  

*(x+i) + j 

 The item in the jth Column can be accessed using: 

*(*(x+i)+j) 

Thus, by using &x[i][j] or *(x+i)+j  address of the ith Row and jth Column can be obtained and by using 
x[i][j] or *(*(x+i)+j) the item at the ith Row and jth

 

 Column can be obtained. 

 

A three-dimensional array of float type can be defined as: 

float b[10][20][30]; 

A three-dimensional array using pointers can be defined as: 

float (*b)[20][30]; 

A multidimensional array can be represented in terms of an array of pointers. The definition of a 
conventional array is: 

data_type array_name[exp1][exp2]; 

Array of pointers can be used to define two-dimensional array as 

data_type *array_name[exp1]; 

Here, data_type refers to the data type of an array 

 array_name is the name of the array 

 exp1 is the maximum number of elements in the row 

Here, exp2 is not used while defining array of pointers. 

 

 
Suppose, a two-dimensional vector is initialized with 3 rows and 3 columns as  
 int d[3][3] = { 
  { 10, 12, 14} 
  { 20, 22, 24} 
  { 30, 32, 34} 
          }; 

 

 

 

 

 

 



Unit 4: Pointers 

LOVELY PROFESSIONAL UNIVERSITY 71 

Then, the elements of the matrix d are stored in memory row-wise as shown in figure 4.2: 

 
Figure 4.2: Array of Pointers 

 
  
 

 
 

By using array of pointers, you can declare d as: 

int  *d[3]; 

Here, d is an array of pointers, d[0] gives the address of Row 0, d[1] gives the address of Row 1, and 
d[2] gives the address of Row 2. Now, d[0]+0 will give the address of the element in the 0th row and 0th 
column, d[0]+1 will give the address of the element in the 0th row and 1st column and so on.  

In general, the address of the element in the ith Row and jth Column is given by: 

 d[i]+j 

The element in the ith Row and jth Column can be accessed using “*” (indirection operator) by specifying 
*(d[i]+j). 

 

Usually, collection of data is organized into hierarchy of fields, records, and files. A file is a collection of 
similar records and a record is a collection of related data items, where each data item is called a field or 
an attribute. Each data item can be a group item composed of sub items. The items which cannot be 
decomposed are called elementary items, scalars or atoms. Identifiers are used to refer to the data types, 
variables, and functions. 

4.6   Records and Record Structures  

A record is a collection of data items that differs from a linear array in the following ways: 

1. A record can be a collection of non-homogenous data (data items with different data types). 

2. In a record, data items are indexed by attribute names. Therefore, there may not be a natural 
ordering of the elements. 

Under the relationship of a group item to sub item, “level” numbers can be used to describe the 
hierarchical structure of the data items in a record, as shown in the following example: 

 

 

 
Consider a kindergarten school maintaining a record of the admission application 
it receives. The record contains the following data items: name, gender, date of 
birth, father’s name, mother’s name, and address. Further, date of birth is a group 
item with sub items month, day, and year, Father and Mother group items will 
have sub items Name and Age, and Address group items will have sub items 
Dno, Road, and Area. 
 
The structure of the record can be as follows: 
1 Application 
        2 Name                                  //data item 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 72 

        2 Gender 
        2 Birthday                             //group item  
            3 Month                            // sub item 
            3 Day 
            3 Year 
        2 Father 
            3 Name 
            3 Age 
        2 Mother 
            3 Name 
            3 Age 
        2 Address 

             3 Dno 
            3 Road 
            3 Area 
 
The number to the left of each identifier is known as level number. Each group 
item is followed by its sub items. The level of sub items is 1 more than the level of 
the group item. 

In a record structure, some of the identifiers may also be referred to as arrays of elements. In the above 
example, suppose the first line of the structure is replaced by  

1 Application (20) 

This indicates that there is a file of 20 records, and the different records in the file can be distinguished 
by using the usual subscript notation. 

That is, we will write 

Application1 , Application2, Application

4.6.1   Indexing Items in a Record  
Suppose, we want to access few data items in a record, then we cannot simply write the data name of 
the item. This is because the name might appear in different places in the record.  

3  

Or 

Application [1], Application [2], Application [3] 

to denote the different records in the file. 

 

 
 
The structure of the kindergarten application record is as follows: 
1 Application 
        2 Name  
        2 Gender 
        2 Birthday  
            3 Month  
            3 Day 
            3 Year 
        2 Father 
            3 Name 
            3 Age 
        2 Mother 
            3 Name 
            3 Age 
        2 Address 
            3 Dno 
            3 Road 
            3 Area 



Unit 4: Pointers 

LOVELY PROFESSIONAL UNIVERSITY 73 

In the above example, Gender and Year does not require any qualification as each refers to a unique 
item in the structure.  

On the other hand, consider Age which is occurring more than once in the record. Therefore, in order to 
specify a particular item, we will have to qualify the name by using appropriate group names in the 
structure. This qualification can be done by using decimal points or periods to separate group items 
from sub items. 

If we want to refer to the Age of the mother then, it can be done in the following way: 

Application.Mother.Age or Mother.Age 

This reference is said to be fully qualified. Sometimes, we can include more identifiers for clarity. 

In the above example, if the first line of the record structure is replaced by: 

1 Application (20) 

 The Application is defined to be a file with 20 records, and then every item will automatically become a 
20 element array. Some languages allow the Gender in the Application to be referenced as:  

Application.Gender[5] or Gender[5] 

So, the name of the mother of the fifth child can be referenced by writing: 

Application.Mother.Age[5] or Mother.Age[5] 
 

 

 

Texts can use functional notation instead of dot notation to represent qualifying 
identifiers. For example, Age (Mother(Application )) instead of Application. Mother. 
Age. 

 

Records can contain a collection of non-homogenous data. Therefore, the elements of a record may not 
be stored in an array. In C language, structures can be used to store such non-homogenous data records. 

4.7   Representation of Records in Memory - Parallel Arrays  

 

 

 
Consider the record structure of kindergarten school Application . You can store 
the record in C by the following declaration, which defines the data aggregate 
called structure. 
struct Application 
{ 
       Char Name[20]; 
       Char Gender[1]; 
       struct Birthday 
       { 
         int Month; 
         int Day; 
         int Year; 
       }B; 
      struct Father 
      { 
       char Name[20]; 
        int Age; 
       }F; 
       struct Mother 
       { 
      char Name[20]; 
      int Age; 
      }M; 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 74 

      struct Address 
      { 
      int Dno; 
     int Road; 
     char Area; 
     }A 
}AN1; 

If a programming language does not support the hierarchical structures concept, then we can assume 
that the record contains non-homogenous data. The record can be stored in individual variables, one for 
each of its elementary data items. Suppose you want to store an entire file of records, then such a file 
can be stored as a collection of parallel arrays. This means that elements of different arrays with the 
same subscript can belong to the same record. The following two examples illustrate this. 
 

 

 

 

Suppose, a health club membership contains the name, age, gender, and telephone 
number of each member. Then, you can store the file in four parallel arrays i.e., 
Name, Age, Gender, and Phone as shown below: 

 
 
 

 

 

Consider the Kindergarten application records example. You can store the file of 
such records in twelve linear arrays such as, Name, Gender, Month, Day, Year, 
FatherName, FatherAge, MotherName, MotherAge, AddressDno, AddressRoad, 
AddressArea; one array for each elementary data item. 
 
Here, you must use different variable names for the name and age of the father and 
mother, which was not necessary in the previous example. Again, we can assume 
that the arrays are parallel  i.e., for a fixed subscript N, the elements  
Name[N], Gender[N], Month[N],……., AddressArea[N] belong to the same record. 

4.7.1   Variable Length Records 
Consider an elementary school which wants to keep a record of every student studying in their school. 
The record contains the following data: 

Name, Telephone Number, Father, Mother, and Siblings. 

Here, Father, Mother, and Siblings will contain the names of the student’s father, mother, and brothers 
or sisters who attend the same school.  

 

 

 

 

 

 



Unit 4: Pointers 

LOVELY PROFESSIONAL UNIVERSITY 75 

Two such records are represented in figure 4.3. 

 
Figure 4.3: Variable Length Records  

 
  

 

 
 

Here, “--------“means that student has no sibling studying in the school. 

This is an example of variable-length record because the data element Siblings contains zero or more 
names. One way of storing the file in the array is as shown in figure 4.4. 

 
Figure 4.4: Variable Length Records  

 
  

 

 
 

Here, the linear arrays Name, Phone, Father, and Mother are the first four data items in the records, and 
arrays Num and PT give the number and location of siblings in the array Sibling. 

 

 
1. Write a C program using pointers that accepts two arrays of equal size and 

creates a third array that contains the product of the elements of the two 
arrays. 

2. Write a C program using pointers that accepts two strings and prints the 
concatenation of both these strings. 

3. Write a C program using pointers and arrays that accepts a string and 
deletes ‘l’ characters from the nth position of a string. 

• Pointers are simple to use which help in reducing the length of the program. 

4.8   Summary 

• Pointer variable stores the memory address of another variable. 

• Careless use of pointers may cause unexpected errors in the execution of programs. 

• Pointer is a valid address stored in the pointer variable. 

• Pointer variable is usually declared like an ordinary variable with * preceding each variable name.  

• Pointer to pointer stores the address of the pointer. 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 76 

• Memory can be allocated and deallocated dynamically by using functions such as, malloc(), 
calloc(), realloc(), free(). 

• Since pointers can produce bugs, they should be used with caution as debugging becomes 
complicated. 

• Record is a collection of non-homogenous data. 

• Structures are used to store non-homogenous data. 

Bug: A fault in the code or routine of a program 

Contiguous Memory: Memory which is not fragmented into smaller blocks and arranged in different 
locations. 

CPU Registers: Special memory locations constructed from flip-flops. 

Junk Value: When no value has been assigned to a particular field in a database, the field contains a 
value called as junk value. 

4.9   Keywords 

1. State whether the following statements are true or false: 

4.10   Self Assessment 

(a) Pointer can be declared as int d.  

(b) Dangling pointer is a pointer which points to the data.  

(c) Memory is deallocated using malloc(). 

(d) Records should not contain non-homogenous data.  

(e) Pointer operation” m1+m2” is valid.  

(f) A file is a collection of similar records. 

2. Fill in the blanks: 

(a) Memory can be deallocated using ……………………… 

(b) Pass by value allows ……………………… transfer of data. 

(c) ……………………… is used to allocate a block of memory. 

(d) Dangling pointer is also known as………………………  

(e) In pass by value, ………………………can be passed as arguments. 

3. Select a suitable choice for every question: 

(a) Pointer to pointer is declared as:  

(i)  int **p; 

(ii)  int p;  

(iii)  int *p;  

(iv)  int p*; 

(b) Pointer is declared as:  

(i) int (p); 

(ii)  int p;  

(iii)  int *p;  

(iv)  int **p; 



Unit 4: Pointers 

LOVELY PROFESSIONAL UNIVERSITY 77 

(c) Two-dimensional array can be represented using pointers as: 

(i) data_type(*p)[ep1]; 

(ii) data_type(**p)[ep2]; 

(iii) data_type(*p)[ep2]; 

(iv) data_type (*p)[*ep]; 

(d) In pointers, reference operator is: 

(i) & 

(ii) @ 

(iii) $ 

(iv)  ^ 

(e) Equality operator can be applied only if:  

(i) Both operators are null 

(ii) One operator is null  

(iii) Operators are strings  

(iv) Operators are characters. 

 

1. “int *a;  

4.11   Review Questions 

           int *b; 

           int *c; 

           c= a+b”. Is this a valid operation? Justify. 

2.  “The address which locates a variable within the memory is a reference to that variable.” Explain. 

3. “There are many functions which can be used for dynamic memory allocation and deallocation.” 
Name and explain the functions. 

4. “typedef keyword can be used to assign name to type definition.” Explain. 

5. “Multidimensional array can be represented in terms of an array of pointers.” Explain. 

6. “Record is a collection of data items.” Discuss. 

7. “The function which is called by reference will change the values of the variable used in the call.” 
Comment. 

8. “Wild pointer is a pointer which does not point to a valid memory location.” Discuss. 

9. “A record which is a collection of data items differs from a linear array.” Explain.  

10. “Pointers can be used in function declaration.” Describe. 

11. “An array can be considered as an internal or hidden pointer.” Comment. 

12. “Records can contain a collection of non-homogenous data.” Explain. 

Answers: Self Assessment  
1. (a) False   (b) False                       (c) False                         (d) False               (e) False        (f) True 

2. (a) free()       (b) one-way transfer   (c) malloc()                    (d) Wild pointer      (e) Expressions 

3. (a) Int *p;      (b) int **p;                    (c) data_type(*p)[ep2];     (d) &                (e) one operator is null 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 78 

 

 

4.12   Further Readings 

 

 
 

 

Amdani, S. (2009 ). C Programming. New Delhi: Laxmi Publications. 

Tenebaum, A. (2009). Data Structures using C. South Asia: Dorling Kindersley. 

 

 

 

http://www.owasp.org/images/f/fa/OWASP_IL_8_Dangling_Pointer.pdf  

http://cslibrary.stanford.edu/102/PointersAndMemory.pdf 

 



Unit 5: Introduction to Linked List 

LOVELY PROFESSIONAL UNIVERSITY 79 

Unit 5: Introduction to Linked List 

CONTENTS 

Objectives 

Introduction 

5.1 Basics of Linked List 

5.2 Representation of Linked List in Memory 

5.3 Types of Linked Lists 

      5.3.1   Singly-Linked List 

      5.3.2   Doubly-Linked List 

      5.3.3   Circular Linked List 

      5.3.4   Circular Doubly-Linked List 

5.4 Summary 

5.5 Keywords 

5.6 Self Assessment 

5.7 Review Questions 

5.8 Further Readings 

After studying this unit, you will be able to: 

Objectives 

• Understand the basics of linked list 

• Analyze the representation of linked list in memory 

• Discuss the types of linked lists 

Linked lists are the most common data structures. They are referred to as an array of connected objects 
where data is stored in the pointer fields. Linked lists are useful when the number of elements to be 
stored in a list is indefinite.  

Introduction 

 

 

 
Consider the list of five students in an attendance register - Amar, Divya, Prateek, 
Sunil, and Yash. If you wish to add the name “Rita” to the list, then you have to 
create space for the new name in the list. A linked list performs this by moving 
the first three names in the list to the left and the last two names to the right.  

Linked lists are similar to arrays as they both are used to store a collection of data. The drawbacks of 
using arrays are: 

1. Once the elements are stored, it becomes difficult to insert or delete an element at any position in a 
list.  

2. Arrays have fixed size. Hence, if the memory allocated is too large than the actual data, unused 
portion of the memory is wasted. If the allocated memory is less, it will result in loss of data due to 
inadequate memory. 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 80 

 
 

Did you know? Linked lists were developed in the year 1955-56 by Allen Newell, Cliff Shaw, and 
Herbert Simon at RAND Corporation as a primary data structure. It was developed for 
their Information Processing Language (IPL). IPL was used by the authors to develop 
several early artificial intelligent programs, including Logic Theory Machine, the 
General Problem Solver, and a computer chess program. 

The advantage of using linked list is its ability to dynamically shrink and expand in size. This allows 
you to insert or delete elements efficiently at any position in the list. 

There are four types of linked lists namely, singly-linked list, doubly-linked list, circular list, and header 
lists. Linked list is used as an Abstract Data Type (ADT) as it can store data of any type in nodes that are 
interconnected to each other. 

The technique of dynamically implementing a list using pointers is known as linked list. Every element 
in a list is represented as a node. 

5.1   Basics of Linked List 

 

 

 
A train consists of several coaches that are interconnected to one another. Here, 
a linked list represents a train and the coaches form the nodes in a list. 

Figure 5.1 depicts a linked list consisting of four nodes. 

Each node in figure 5.1 consists of two fields: 

1. Data Field: It is a field that stores the element value of a specific data type in the list. 

2. Link Field: It is a pointer field used to point to the next consecutive node thereby establishing a 
link between two nodes. For example, in figure 5.1, the pointer field of Node1 holds the address of 
Node2, the pointer field of Node2 holds the address of Node3, and so on. 

 
Figure 5.1: Representation of a Linked List 

 
  
 
 
 

 

Each node holds the address of the next consecutive node and the pointer points to the data item in the 
next node. In figure 5.1, the Node4 address is assigned a NULL value to depict the end of the list. 

 
 

Did you know? Arrays follow a strategy of allocating memory for its elements in a single block of 
memory. Whereas, linked lists allocate memory for each element individually. The 
memory size increases as and when the data is added. This technique prevents 
memory wastage. 

 

Data  

Pointer 

Data 

Pointer Pointer 

Data Data 

NULL 

Node1 Node2 Node3 Node4 

Holds 
address of 
node2 

Holds 
address of 
node3 

Holds 
address of 
node4 

Data field 

Link field 



Unit 5: Introduction to Linked List 

LOVELY PROFESSIONAL UNIVERSITY 81 

The representation of a linked list in the memory is shown in figure 5.2. The linked list consists of three 
nodes. Each node contains a data field and a link field. The data field consists of any data item that is 
stored in a list such as, numbers, characters, strings, and so on. The link field holds the address of the 
next element.  

In the figure 5.2, HEAD Node holds the address of Node1 (0X80020), Node1 holds the address of Node2 
(0X80041), and Node2 holds the address of Node3 (Null). “NULL” denotes a null pointer which is the 
end of linked list or empty list. 

5.2   Representation of Linked List in Memory 

 
Figure 5.2: Representation of a Linked List in Memory 

 
  
 
 
 

A linked list can be represented in memory with the following declaration: 

struct new_list { 

  int element_value; 

  struct new_list *next_element; 

                             }; node1, node2, node3 

Here, a linked list named “new_list” is created. In “new_list” the data field named “element value” is 
declared. The “element_value” can be an integer, a character, floating point, or double type. The 
“new_list” also contains a link field named “*next_element” which points to the next node in the list. 
The end of the structure containing three nodes (node1, node2, and node3) denotes the objects. They are 
created to access the structure elements. 

 

 

 

In a linked list, the HEAD node holds the address of the first node. When there are no 
nodes present in a list, then the HEAD node will be equal to NULL and the list is 
known as Empty list or NULL list. 

The various types of linked list are: 

1. Singly-linked list 

2. Doubly-linked list 

3. Circular singly-linked list 

4. Circular doubly-linked list 

 

 

5.3   Types of Linked Lists 

0X80020 0X80041 NULL 11 12 13 

0X80041 0X80020 

0X80025 
Node1 Node2 Node3 

HEAD Node 

0X80025 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 82 

5.3.1   Singly-Linked List 
As the name suggests, a singly-linked list consists of only one pointer that points to another node. It is 
also known as a linear list because the last node in a singly-linked list is assigned a NULL value and 
hence does not point to any other node. The first node in the list is known as a HEAD or first node. 

Figure 5.3 depicts a singly-linked list. The HEAD Node is a dummy node pointing to Node1. Node1 
holds the address of Node2, and Node2 holds the address of Node3. Node3 points to NULL to indicate 
that there are no additional nodes present in the list. 

 
Figure 5.3: Representation of a Singly-linked List 

 
  
 
 

 
 

 

 

The program shows the implementation of a singly-linked list consisting of 
four nodes. The program displays the value present in each node.  
 
The program

1. Creating node1 with value 200 

 flow is depicted below: 
 

 
 
 
 

2. Creating node2 with value 400 

 

 
 
 

3. Creating node3 with value 600 

 

 
 
 

4. Creating node4 with value 800 

 

 
 
 
 
 
 
 

Address 
of Node2 

Address of 
Node3 

NULL 200 400 600 

Node1 Node2 Node3 

HEAD 
Node 

New_list 

200 400 

New_list 

200 400 600 

New_list 

200 400 600 800 

New_list 

200 



Unit 5: Introduction to Linked List 

LOVELY PROFESSIONAL UNIVERSITY 83 

#include<stdio.h> 
struct new_list 
{ 
           int value; 
           struct new_list *next_element; 
} n1, n2, n3, n4;                     //Creates four nodes of type new_list 
 
void main() 
{ 
 int j; 
n1.value = 200;                     //Assigning value to node1 
n2.value = 400;                     //Assigning value to node2 
n3.value = 600;                     //Assigning value to node3 
n4.value = 800;                     //Assigning value to node4 
 
n1.next_element = &n2;      //Assigning address of node2 to node1 
n2.next_element = &n3;      //Assigning address of node3 to node2 
n3.next_element = &n4;      //Assigning address of node4 to node3 
n4.next_element = 0;         //Assigning 0 to node4 to indicate the end of the list 
 
j = n1.next_element->value;            //Storing the value of node1 in variable j  
printf(“%d\n”, j);  
/* you can use this statement to print the value present in node1 or print j 
directly as depicted in the above statement*/ 
printf(“%d\n”, n1.next_element->value);   
printf(“%d/n”, n4.next_element->value);            //Printing the value of node4 
printf(“%d/n”, n2.next_element->value);           //Printing the value of node2 
printf(“%d/n”, n3.next_element->value);           //Printing the value of node3 
} 
Output: 

1. First a structure named new_list is created. The list contains an integer 
data variable named value to store data and a pointer variable named 
next_element to point to next node. 

When you run the program, the following output is obtained: 
400 
0 
600 
800 
In this example: 

2. Then, four objects namely, n1, n2, n3, and n4 are created to access the 
structure elements. In the program they act as nodes in a list. 

3. In the main() function, the value for the four nodes n1, n2, n3, and n4 are 
assigned. 

4. Then, the address of n2 is stored in n1, address of n3 is stored in n2, and 
address of n4 is stored in n3. The address of n4 is assigned zero to 
indicates the end of the list. 

5. Finally, the value present in n1, n4, n2 and n3 are printed. 

 
 

 

 

Write a simple singly linked list program to accept the elements from the user and store 
it in a list. 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 84 

5.3.2   Doubly-Linked List 
Doubly-linked list contains two pointers for each node in the list. The first pointer points to the next 
element and the second pointer points to the previous element. The previous pointer for the HEAD 
node points to NULL and the next pointer for the last node points to NULL. Doubly-linked list is also 
known as a two-way list as both forward and backward traversal is possible. 

Figure 5.4 depicts a doubly-linked list. The HEAD Node is a dummy node pointing to Node1. Node1 
has two pointers, the first pointer points to Node2 and the second pointer points to HEAD Node. 
Likewise, Node2 and Node3 also have two pointers to point to the next and the previous element in the 
list. The HEAD Node and the Node3 are assigned to NULL. The data field of Node1, Node2, and 
Node3 consists of values 20, 40, and 60 respectively. When you try to print the value of Node2’s next 
element, the value present in Node3 which is 60, will be printed. 

 
Fig 5.4: Representation of a Doubly-Linked List 

 
  
 
 

 
 

 

 
The program shows the implementation of a doubly-linked list consisting of three 
nodes. The program displays the value present in each node. 
 
#include<stdio.h> 
struct list 
{ 
           int value; 
           struct list *next;        //Creating a pointer to point to the next element 
           struct list *previous;//Creating a pointer to point to the previous element 
 
} n1, n2, n3;                           //Creating three nodes of type list 
 
void main() 
{ 
int j; 
 
n1.value = 20;                      //Assigning value to node1 
n2.value = 40;                      //Assigning value to node2 
n3.value = 60;                      //Assigning value to node3 
 
n1.next = &n2;                     //Assigning address of node2 to node1 
n2.next = &n3;                     //Assigning address of node3 to node2 
n2.previous = &n1;             //Assigning address of node1 to node2 
n3.previous = &n2;             //Assigning address of node2 to node3 
 
n3.next = 0;                          //Assigning 0 to node3 to indicate the end of the list 
n1.previous = 0;                 //Assigning 0 to node1 to indicate there are no elements 
present before node1 
 
j = n1.next->value;             //Storing the value of node1 in variable j 

NULL 

HEAD Node 

20 40 60 NULL 

Node1 Node2 Node3 



Unit 5: Introduction to Linked List 

LOVELY PROFESSIONAL UNIVERSITY 85 

printf(“%d\n”, j);  
//printf(“%d\n”, n1.next->value); // you can use this statement to print the value 
present in node1 or print j directly as depicted in the above statement 
 
printf(“%d/n”, n1.next->value);               //Printing the next value of node1 
printf(“%d/n”, n2.next->value);               //Printing the next value of node2 
printf(“%d/n”, n1.previous->value);       //Printing the previous value of node1 
printf(“%d/n”, n2.previous->value);       //Printing the previous value of node2 
printf(“%d/n”, n3.previous->value);       //Printing the previous value of node3 
} 
 
Output: 

1. First, a structure named list is created. The list contains an integer data 
variable named value to store data, a pointer variable named next_element 
to point to next node and a pointer variable named previous_element to 
point to previous node. 

When you run the program, the following output is obtained: 
40 
60 
0 
20 
40 
 
In this example: 

2. Then, the three objects namely, n1, n2, and n3 are created to access the 
structure elements. In the program they act as nodes in a list. 

3. In the main() function, the value for nodes n1, n2, and n3 are assigned. 

4. Then, the address of n2 is stored in n1 and address of n3 is stored in n2. In 
order to traverse backwards, the address of n1 is stored in n2 and address of 
n2 is stored in n3. The address of n3 is assigned a NULL value to depict the 
end of the list. 

5. Finally, the values present in n1, n2, and n3 are printed. 

5.3.3   Circular Linked List 
In a circular linked list, only one pointer is used to point to another node or next element. It is known as 
a circular list because the last node’s pointer points to the HEAD node. 

Figure 5.5 depicts a circular linked list. The linked list consists of four nodes like, Node1, Node2, and 
Node3 with values 35, 65, and 85 respectively. The last node which is Node3 points to the first node 
(Node1) and hence, the list continues to form a loop. When you try to print the value of Node3’s next 
element the value present in Node1, which is 35, will be printed. 

 
Figure 5.5: Representation of a Circular Linked List 

 
  
 
 

35 65 85 

HEAD or 
START node 

Last node 

Node1 Node2 Node3 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 86 

 

 

 

The program shows the implementation of a circular linked list consisting of 
three nodes. The program displays the value present in each node.  
 
#include<stdio.h> 
Struct list 
{ 
           int value; 
           struct list *next_element; 
} n1, n2, n3;                                      //Creates four nodes of type new_list 
 
void main() 
{ 
 int j; 
 
n1.value = 35;                                         // Assigning value to node1 
n2.value = 65;                                         // Assigning value to node2 
n3.value = 85;                                          //Assigning value to node3 
 
n1.next_element = &n2;                         //Assigning address of node2 to 
node1 
n2.next_element = &n3;                         //Assigning address of node3 to 
node2 
n3.next_element = &n1;                         //Assigning address of node3 to 
node1 
 
j = n1.next_element->value;                   //Storing the value of node1 in 
variable j  
printf(“%d\n”, j);                                   //Printing the value of j 
/* you can use this statement to print the value present in node1*/ 
printf(“%d\n”, n1.next_element->value);  
 
printf(“%d/n”, n2.next_element->value);                //Printing the value of 
node2 
printf(“%d/n”, n3.next_element->value);                //Printing the value of 
node3 
} 
Output: 

1. First, a structure named list is created. The list contains an integer data 
variable named value to store data and a pointer variable named 
next_element to point to next node. 

When you run the program, the following output is obtained: 
65 
65 
85 
35 
In this example: 

2. Then, the three objects namely, n1, n2, and n3 are created to access the 
structure elements. In this program, these objects act as nodes in a list. 

3. In the main() function, the value for nodes n1, n2 and n3 are assigned. 

4. Then, the address of n2 is stored in n1 and address of n3 is stored in 
n2. Since, it is a circular list, the address of n3 is assigned to n1 instead 
of NULL value. 

5. Finally, the values present in n1, n2, and n3 are printed. 



Unit 5: Introduction to Linked List 

LOVELY PROFESSIONAL UNIVERSITY 87 

 

 

 

Write a simple circular linked list program to accept the elements from the user and 
store it in a list. 

5.3.4   Circular Doubly-Linked List 
In a circular doubly-linked list, the previous pointer of the first node and the next pointer of the last 
node point to the HEAD node. The HEAD node can have a dummy data or it can store the total number 
of nodes present in the list. 

Figure 5.6 depicts a circular doubly-linked list. The linked list consists of four nodes such as, HEAD 
node, Node1, Node2, and Node3 with values 3, 10, 15 and 20 respectively. Each node has two pointers 
to point to the next and previous elements. The last node (Node3) points to the HEAD node and the 
HEAD node in turn points to the first node (Node1). 

 Figure 5.6: Representation of a Circular Doubly-
Linked List 

 
  

 
 

 
 

 
 

 
The program shows the implementation of a circular doubly-linked list consisting of 
three nodes and a HEAD node. The program displays the value present in each 
node. 
 
#include<stdio.h> 
struct list 
{ 
           int value; 
           struct list *next;         //Creating a pointer to point to the next element 
           struct list *previous;  //Creating a pointer to point to the previous element 
} n1, n2, n3, h;                       //Creates four nodes of type list 
 
void main() 
{ 
 int j; 
 
n1.value = 10;                      //Assigning value to node1 
n2.value = 15;                      //Assigning value to node2 
n3.value = 20;                      //Assigning value to node3 
h.value = 3;                          //Assigning value to HEAD node  
n1.next = &n2;                     //Assigning address of node2 to node1 
n2.next = &n3;                     //Assigning address of node3 to node2 
n3.next = &h;                       //Assigning address of HEAD node to node3 
h.next = &n1;                       //Assigning address of node1 to HEAD node 
 
n1.previous = &h;               //Assigning address of node1 to HEAD node 
n2.previous = &n1;             //Assigning address of node1 to node2 
n3.previous = &n2;             //Assigning address of node2 to node3 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 88 

h.previous = &n3;               //Assigning address of node3 to HEAD node 
 
j = n1.next_element->value;                 //Storing the value of node1 in variable j  
printf(“%d\n”, j);  
//printf(“%d\n”, n1.next->value);   // you can use this statement to print the value 
present in node1 or print j directly as depicted in the  above statement 
printf(“%d/n”, n2.next->value);                //Printing the value of node2 
printf(“%d/n”, n3.next->value);                //Printing the value of node3 
printf(“%d/n”, h.next->value);                  //Printing the value of HEAD node 
printf(“%d/n”, n1.previous->value);       //Printing the previous value of node1 
printf(“%d/n”, n2.previous->value);       //Printing the previous value of node2 
printf(“%d/n”, n3.previous->value);       //Printing the previous value of node3 
printf(“%d/n”, h.previous->value);         //Printing the previous value of HEAD 
node  
} 
 
Output: 
When you run the program, the following output is obtained: 
15 
20 
3 
10 
3 
10 
15 
20 
 
In this example: 

1. First, a structure named list is created. The list contains an integer data 
variable named value to store data, a pointer variable named next_element to 
point to next node, and a pointer variable named previous_element to point to 
previous node. 

2. Then, the four objects namely, n1, n2, n3, and h are created to access the 
structure elements. In this program, these objects act as nodes in a list. The 
HEAD node (h) contains the total number of nodes present in the list. 

3. In the main() function, the value for the nodes n1, n2, n3, and h are assigned. 

4. Then, the address of n2 is stored in n1 and the address of n3 is stored in n2. In 
order to traverse backwards, the address of h is stored in n3 and address of n1 
is stored in h. 

5. Finally, the values present in n1, n2, n3, and h are printed. 

 

 

 
Write a C program to store 20 integers in descending order in a linked list. 

 

 

 

 

 



Unit 5: Introduction to Linked List 

LOVELY PROFESSIONAL UNIVERSITY 89 

• Linked list is a technique of dynamically implementing a list using pointers. A linked list contains 
two fields namely, data field and link field.  

5.4   Summary 

• Linked lists are useful when the number of elements to be stored in a list is indefinite. 

• The HEAD node or the START node depicts the beginning of the list and holds the total number of 
elements or nodes present in a list. The various types of linked lists are singly-linked list, doubly-
linked list, circular singly-linked list, and circular doubly-linked list. 

• A singly-linked list consists of only one pointer to point to another node and the last node always 
points to NULL to indicate the end of the list.  

• A doubly-linked list consists of two pointers, one to point to the next node and the other to point 
to the previous node.  

• In a circular singly-linked list, the last node always points to the first node to indicate the circular 
nature of the list.  

• A circular doubly-linked list consists of two pointers for forward and backward traversal and the 
last node points to the first node. 

• Except for circular linked list, all other types of linked lists assign a NULL value to the last node to 
depict the end of the list 

Abstract Data Type (ADT): It is a mathematical model for certain classes of data structure such as, lists, 
stacks, tress, graphs, and so on that are similar in behavior.  

Iteration: In programming, iteration is an act of repeating a certain process to obtain the desired output.  

Null Pointer: It is a pointer not pointing to any element in the list. The link field of the last node is 
assigned a NULL value instead of any address. 

Start Node: It is also known as an external pointer. A start node consists of the address of the first node. 
Using the first node’s address the next consecutive nodes can be accessed. 

5.5   Keywords 

1. State whether the following statements are true or false: 

5.6   Self Assessment 

(a) A linked list follows a strategy of allocating memory in a single block. 

(b) The data field is a pointer that points to the data present in the consecutive nodes. 

(c) The disadvantage of using arrays is its ability to store a fixed number of elements. 

(d) A singly-linked list consists of a single pointer to point to the next node in the list. 

(e) The HEAD node in a linked list can hold a dummy data or store the total nodes present in 
the list. 

2. Fill in the blanks: 

(a) When there are no nodes present in a list, the list is known as ………………………. 

(b) ………………………. consists of two pointers for each node in a list. 

(c) In a ………………………. list does the last node’s pointer points to the head node. 

(d) ……………. are useful when you are not clear of the number of elements to be stored in a list. 

 

 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 90 

3. Select a suitable choice for every question. 

(a) Which of the following field holds the address of next element? 

(i) Data field     (ii) Node field       (iii) Link field        (iv) Address field 

(b) Which of the following value is assigned to the last node to depict the end of a list? 

(i)          Address of middle node                              (ii) NULL    

(iii)        Address of first node                                   (iv) Address of previous node 

(c) Which of the following list is also known as a two-way list? 

(i)           Singly-linked list                                           (ii) Circular linked list 

(iii)        Doubly-linked list                                          (iv) Header list 

(d) Which of the following node is referred to as a dummy node in a linked list? 

(i) Head node     (ii) Circular node       (iii) End node       (iv) First node 

1. “Linked lists are useful when the number of elements to be stored in a list is indefinite.” Discuss. 

5.7   Review Questions 

2. “Linked lists require additional storage for references as they use pointers. This makes linked lists 
impractical for those lists that store data of Character or Boolean types.” Discuss. 

3. “Doubly-linked lists are more advantageous than singly-linked lists.” Discuss. 

4. “Dynamic arrays can be used instead of linked lists.” Analyze. 

5. “Circular linked lists are better than linear lists. “Comment. 

6. “Linked lists allow only sequential access to elements. Whereas, arrays allow random access to its 
elements”. Analyze. 

Answers: Self Assessment 
1. (a) False (b) False  (c) True  (d) True  (e) True    

2. (a) Empty list or null list (b) Doubly linked list (c) Circular singly-linked list  

          (d) Linked list   

3. (a) Link field   (b) Loss of data  (c) NULL  

(d) Doubly-linked list  (e) Head node 

 

5.8   Further Readings 

 

 

Lipschutz, S. (2011). Data Structures with C. Delhi: Tata McGraw Hill. 

Reddy, P. (1999). Data Structures Using C. Bangalore: Sri Nandi Publications. 

 

 

 

http://www.scribd.com/doc/26312970/39/REPRESENTATION-OF-LINKED-LIST 

http://cslibrary.stanford.edu/103/LinkedListBasics.pdf 

 



Unit 6: Linked List Operations 

LOVELY PROFESSIONAL UNIVERSITY 91 

Unit 6: Linked List Operations 

CONTENTS 

Objectives 

Introduction 

6.1 Traversing a Linked List 

6.2 Searching a Linked List 

6.3 Inserting a Node into a Linked List 

      6.3.1   Inserting a Node at the Beginning of a List 

      6.3.2   Inserting a Node after a Given Node 

      6.3.3   Inserting a Node in a Circular Linked List 

6.4 Deleting a Node from a Linked List 

      6.4.1   Deleting a Node Following a Given Node 

6.5 Summary 

6.6 Keywords 

6.7 Self Assessment 

6.8 Review Questions 

6.9 Further Readings 

After studying this unit, you will be able to: 

Objectives 

• Explain the traversing of a linked list 

• Describe the process of searching a linked list 

• Explain the method of inserting a node into a linked list 

• Discuss the process of deleting a node from a linked list 

In the previous unit, we discussed the fundamentals of linked list. This unit deals with linked list 
operations for performing different functions. Data processing involves organizing data into lists. One 
way to store such data is by means of arrays. But, in arrays the process of insertion and deletion are 
expensive. Arrays occupy only a block of memory space and it is not possible to extend the size of the 
array. 

The alternative way of storing the data can be done in a list format. The elements are stored in a list that 
contains a field called a link or a pointer. The pointer contains the address of the next element in the list. 
In linked list, it is not essential that consecutive elements occupy contiguous space in memory. Hence it 
is easy to traverse and insert and delete items in the linked list.  

Introduction 

Traversing a linked list involves processing every node present in a list. It is useful to perform various 
operations such as, reversing the order of elements present in a list, sorting the elements in ascending or 
descending order, and so on. 

 

6.1   Traversing a Linked List 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 92 

Figure 6.1 depicts the traversal of a list. The figure shows a list consisting of HEAD or the START node 
pointing to the first node (Node1). The last node (Node4) points to NULL indicating the end of the list. 
It also includes a pointer variable named current to point to the next node. 

 
Figure 6.1: Linked List Traversal 

 
  
 

 
The list traversal can be achieved by using a while loop for every loop iteration. The pointer variable 
points to the next node and thus all the nodes in the list can be processed. 

 

 

 
The program shows the implementation of a traversal of a linked list and displays 
the elements present in a list. 
 
#include<stdio.h> 
#include<conio.h> 
int LIST[20]; 
int LIST1[20]; 
int HEAD; 
void MULT(int); 
void main() 
{ 
Int PTR; 
Clrscr(); 
 
LIST[0] =55; 
LIST[2]=15; 
LIST[3]=20; 
LIST[5]=65 
LIST[7]=35; 
LIST[8]=66; 
LIST[9]=12; 
LIST[11]=6; 
LIST[13]=75; 
LIST[14]=80; 
LIST[16]=79; 
LIST[18]=39; 
 
LIST1[0]=3; 
LIST1[2]=13; 
LIST1[3]=2; 
LIST1[5]=8; 
LIST1[7]=14; 



Unit 6: Linked List Operations 

LOVELY PROFESSIONAL UNIVERSITY 93 

LIST1[8]=9; 
LIST1[9]=18; 
LIST1[11]=16; 
LIST1[13]=5; 
LIST1[14]=-1; 
LIST1[16]=0; 
LIST1[18]=7; 
 
HEAD=11; 
PTR=HEAD; 
printf(“Initially entered list\n”); 
while(PTR!=-1) 
{ 
printf(“%d\t”, LIST[PTR]); 
PTR=LIST1[PTR]; 
} 
PTR=HEAD; 
while(PTR!=-1) 
{ 
MULT(PTR); 
PTR=LIST1[PTR]; 
} 
PTR=HEAD; 
printf(“\n \n List after traversal:\n”); 
while(PTR!=-1) 
{ 
printf(“%d\t”, LIST[PTR]); 
PTR=LIST1[PTR]; 
} 
getch(); 
} 
void MULT(int p1) 
{ 
LIST[p1]=LIST[p1]*10; 
} 
 
Output: 
When you run the program, the following output is obtained: 
Initially entered list: 
6 
79 
55 
20 
15 
75 
65 
66 
12 
39 
35 
80 
 
List after traversal: 
60 
790 
550 
200 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 94 

150 
750 
650 
660 
120 
390 
350 
800 
 
In this example: 

1. Two integer lists, named LIST[ ] and LIST1[ ] are declared with an element 
storage capacity of 20. 

2. An integer pointer named PTR is declared to point to the next element. 

3. An integer variable named HEAD is declared to specify the current position 
of the PTR. 

4. A list of values are assigned for LIST[ ] and LIST1[ ]. 

5. The PTR is set at position 11 in the list. 

6. The first while loop, prints the value present in LIST[11] (6) and then 
traverses to the eleventh element of LIST1[11] whose value is 16. The list then 
traverses back to LIST[16] and prints its value (79) as shown in the output. 

7. The steps 5 and 6 are repeated for each element until the PTR is not equal to -
1, which depicts the end of the elements in a list. 

8. The second while loop calls the function MULT(), which multiplies the 
traversed data by 10 and prints the value. For example, the value in 
LIST[11]=6 is multiplied by 10 and the result 60 is printed. 

9. Step 8 is repeated until the end of the loop is reached, i.e., until PTR is not 
equal to -1. 

 
 

 
 

 

Write a function to print the reverse of elements present in a list. 

Searching is the most common operation performed in a linked list. The search operation involves 
traversing through the list to search for a specific item. Several iterations may be performed until the 
desired number is found or until the end of the list is reached. In search operation, every element in the 
list is associated with a key element. The element is searched in the list by using a key. 

6.2   Searching a Linked List 

 

 

 
The program searches for a specific number entered by the user by traversing 
through each node present in a list. The program also displays the number’s 
position in the list.  
 
#include<stdio.h> 
#include<conio.h> 
int LIST[20]; 
int LIST1[20]; 
int HEAD; 
int SEARCH(int); 
void main() 
{ 



Unit 6: Linked List Operations 

LOVELY PROFESSIONAL UNIVERSITY 95 

int PTR, NUM, NUM_LOC;  
Clrscr(); 
LIST[0] =55; 
LIST[2]=10; 
LIST[3]=19; 
LIST[5]=60; 
LIST[7]=35; 
LIST[8]=20; 
LIST[9]=8; 
LIST[11]=12; 
LIST[13]=45; 
LIST[14]=68; 
LIST[16]=75; 
LIST[18]=80; 
 
LIST1[0]=3; 
LIST1[2]=13; 
LIST1[3]=2; 
LIST1[5]=8; 
LIST1[7]=14; 
LIST1[8]=9; 
LIST1[9]=18; 
LIST1[11]=16; 
LIST1[13]=5; 
LIST1[14]=-1; 
LIST1[16]=0; 
LIST1[18]=7; 
 
HEAD = 16; 
PTR=HEAD; 
printf(“Traversed List:\n); 
While(PTR!=-1) 
{ 
printf(“%d/t”, LIST[PTR]); 
PTR=LIST1[PTR]; 
} 
printf(“\n\n Enter the number to search”); 
scanf(“%d”, &NUM); 
NUM_LOC=SEARCH(NUM); 
if(NUM_LOC==-1) 
printf(“\n number is not present in the list”); 
else 
printf(“\n number %d is present at index location %d in the list”, NUM, 
NUM_LOC); 
getch(); 
} 
int SEARCH(int I) 
{ 
int p=HEAD; 
int L=-1; 
while(p!=-1) 
{ 
If(I==LIST[p]) 
{ 
L=p; 
break; 
} 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 96 

else 
p=LIST1[p]; 
} 
return(L); 
} 
 
Output: 
When you run the program, the following output is obtained: 
Traversed List: 
75   55   19  10   45   60  20  8  80  35  12  68 
Enter the number to search 
8 
Number 8 is present at index location 9 in the list 
 
In this example: 

1. Two integer lists named LIST[ ] and LIST1[ ] are declared with an element 
storage capacity of 20. 

2. An integer pointer named PTR is declared to point to the next element 

3. An integer variable named HEAD is declared to specify the current position 
of the PTR.  

4. A list of values are assigned for LIST[ ] and LIST1[ ]. 

5. The PTR is set at position 16 in the list. 

6. The first while loop prints the value present in LIST[16] which is (75) and 
traverses to the third element of LIST1[16] whose value is 0. The list then 
traverses back to LIST[0] and then prints its value (55) as shown in the 
output. 

7. Steps 5 and 6 are repeated for each element until the PTR is not equal to -1, 
which depicts the end of the elements in a list. 

8. The program prompts the input from the user to search a specific number in 
the list. 

9. If the number entered is equal to HEAD, then the while loop is terminated. 
Otherwise, the LIST1[p] is stored in p. The while loop iterates again and 
again until p reaches the end of the list. 

10. If the NUM_LOC has not reached the end of the list, then the NUM and 
NUM_LOC will be printed. Otherwise, a message saying “number not 
present in the list” is displayed. 

 

 

 
 

Did you know? Accessing data in a linked list takes more time when compared to arrays because to 
access a specific element, the list has to be traversed from starting point to the end 
point of the list, which consumes more time. 

Insertion is one of the basic operations in linked lists. There are three types of insertions that can be 
carried out: 

6.3   Inserting a Node into a Linked List 

1. Inserting a node at the beginning of a list 

2. Inserting a node at the end of the list 

3. Inserting a node after a given node 



Unit 6: Linked List Operations 

LOVELY PROFESSIONAL UNIVERSITY 97 

Figure 6.2 depicts the insertion of a new node. The linked list consists of five nodes such as, HEAD 
node, Node1, Node2, Node3, and Node4 respectively. Suppose, we insert node N between Node2 and 
Node3, then Node2 will point to new node N and node N will point to Node3. 

 
Figure 6.2: Insertion of a New Node 

 
  
 
 

 
 

6.3.1   Inserting a Node at the Beginning of a List 
Let us consider HEAD as the initial position in a linked  list, num as the input entered by the user, PTR 
as the pointer pointing to the next node address, and newnode as the node being inserted in the list. 

Algorithm to insert a new node at the beginning of a list is as follows: 

1. Input the value to be inserted 

2. Create a new node N 

3. Store the DATA in the data field of the node 

4. If HEAD is equal to NULL, then assign link field of newnode to NULL. Otherwise, assign HEAD 
to link field of newnode. The new node now points to HEAD. 

5. Exit 

 

 

 

The following program inserts a node at the beginning of a list: 
 
#include<stdio.h> 

#include<conio.h> 

#include<malloc.h> 

#include<process.h> 

#include<ctype.h> 

struct list 

{ 

     int value; 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 98 

     struct list *next; 

}*HEAD,*newnode,*PTR; 

void menu(); 

void createnode(); 

void display(); 

int emptylist(); 

void insert_beg(int); 

 

void main() 

{ 

    clrscr(); 

    menu(); 

} 

void menu() 

{ 

    int choice, num; 

    printf("MENU"); 

    printf("\n1. Create node"); 

    printf("\n2. Display"); 

    printf("\n3. Insert node at the beginning"); 

    printf("\n4.Exit"); 

    printf("\n Enter your choice: "); 

    scanf("%d",&choice); 

switch(choice) 

{ 

case 1: 

   createnode(); 

   clrscr(); 

   printf("The created linked list is:\n"); 

   display(); 

   getch(); 

   clrscr(); 

   menu(); 

   break; 

case 2: 

   clrscr(); 

   if(emptylist()==1) 



Unit 6: Linked List Operations 

LOVELY PROFESSIONAL UNIVERSITY 99 

{ 

   printf("The linked list is:\n"); 

   display(); 

} 

   getch(); 

   clrscr(); 

   menu(); 

   break; 

case 3: 

    clrscr(); 

    printf("\n Enter the number to be inserted: "); 

    scanf("%d",&num); 

    insert_beg(num); 

    clrscr(); 

    printf("\n After insertion at the beginning the linked list is:\n"); 

   display(); 

   getch(); 

   clrscr(); 

   menu(); 

   break; 

case 4: 

   exit(1); 

default: 

   clrscr(); 

   printf("Your choice is wrong\n\n"); 

   menu(); 

} 

} 

void createnode() 

{ 

   int num; 

   char ch; 

   clrscr(); 

   newnode=(struct list*)malloc(sizeof(struct list)); 

   HEAD=newnode; 

   do 

{ 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 100 

 printf("\n Enter data: "); 

 scanf("%d",&num); 

newnode->value=num; 

printf("\n Do you want to create another node:(y/n)"); 

fflush(stdin); 

scanf("%c",&ch); 

if(tolower(ch)=='y') 

{ 

newnode->next=(struct list*)malloc(sizeof(struct list)); 

newnode=newnode->next; 

} 

else 

{ 

newnode->next=NULL; 

} 

} 

while(tolower(ch)!='n'); 

} 

void display() 

{ 

int i; 

PTR=HEAD; 

i=1; 

while(PTR!=NULL) 

{ 

printf("\nNode %d : %d",i,PTR->value); 

PTR=PTR->next; 

i++; 

} 

} 

int emptylist() 

{ 

if(HEAD==NULL) 

{ 

printf("\nLinked List is empty"); 

return(0); 

} 



Unit 6: Linked List Operations 

LOVELY PROFESSIONAL UNIVERSITY 101 

else 

{ 

return(1); 

} 

} 

void insert_beg(int num) 

{ 

newnode=(struct list*)malloc(sizeof(struct list)); 

newnode->value=num; 

if(HEAD==NULL) 

{ 

HEAD=newnode; 

newnode->next=NULL; 

} 

else 

{ 

newnode->next=HEAD; 

HEAD=newnode; 

} 

} 

 
Output: 
When you run the program, the following output is obtained: 

Menu 

1. Create node 

2. Display 

3. Insert node at the beginning 

4. Exit 

Enter your choice: 

1 

Enter data: 40 

Do you want to create another node(y/n) 

y 

Enter data: 50 

Do you want to create another node(y/n) 

n 

 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 102 

The created linked list is: 

Node1: 40 

Node2: 50 

Menu 

1. Create node 

2. Display 

3. Insert node at the beginning 

4. Exit 

Enter your choice: 

2 

The linked list is: 

Node1: 40 

Node2: 50 

Menu 

1. Create node 

2. Display 

3. Insert node at the beginning 

4. Exit 

Enter your choice: 

3 

Enter the number to be inserted: 60 

After insertion at the beginning, the list is: 

Node1: 60 

Node2: 40 

Node3: 50 

In this example: 

1. A list is created with a data field named value and link field named *next. 

2. Three pointers are created namely, HEAD, PTR and newnode. HEAD points 
to the first node, PTR points to the next element, and newnode signifies the 
new node yet to be created. 

3. Four functions are created namely, menu(), createnode(), display(), 
emptylist(), and insert_beg(). The function menu() displays the operations 
that a user can perform. The operations are: 

(a) Creating a node 

(b) Displaying the list items 

(c) Inserting a node at the beginning of the list 

When the user tries to display an empty list, the function emptylist() is 
called.  

 



Unit 6: Linked List Operations 

LOVELY PROFESSIONAL UNIVERSITY 103 

4. The switch statement is used to implement the three operations. The details 
of the actions performed in each switch case is as follows: 

(a) Case 1 and case 2 call the function display() to display the elements 
present in a list or to display a message “linked list is empty” in case 
there are no elements. 

(b) Case 3 prompts the input from the user to insert a new node at the 
beginning of the list by calling insert_beg() function and also calls the 
display() function to display the list. 

(c) Case 4 results in the exit of the program. 

(d) The default prints a message “your choice is wrong” in case the user 
enters input greater than 4. 

5. The program terminates when the user enters 4. 

6.3.2   Inserting a Node after a Given Node 
Let us consider START as the initial position in a list, data as the input entered by a user, pos as any 
position in the list where the data will be inserted, and q and temp as the temporary pointers to hold 
the node address. 

Algorithm to insert a new node after a given node is as follows: 

1. Input the data 

2. Specify the pos where the data is to be inserted 

3. Initialize q to START. 

4. If q is equal to NULL, then print “there are less elements present in the list than the entered 
position number” 

5. for (i=0;i<pos-1;i++). q=q->link; 

temp=(struct node*)malloc(sizeof (struct node)); 

temp->link=q->link; 

temp->value=data; 

q->link=temp; 

6. Repeat step 5 until i  value is not less than pos-1 

7. Exit. 

 

 

 

The following program inserts a node after a given node: 
 
#include<stdio.h> 
#include<conio.h> 
#include<malloc.h> 
#include<process.h> 
 
void createlist(int); 
void add_beginning(int); 
void add_after(int, int); 
void Display(); 
struct node 
{ 
int value; 
struct node *link; 
}*START; 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 104 

void createlist(int data) 
{ 
struct node *q,*temp; 
temp= (struct node*)malloc(sizeof(struct node)); 
temp->value=data; 
temp->link=NULL; 
if(START==NULL)  
START=temp; 
else 
q=START; 
while(q->link!=NULL) 
q=q->link; 
q->link=temp; 
} 
void add_beginning(int data) 
{ 
struct node *temp; 
temp=(struct node*)malloc(sizeof(struct node)); 
temp->value=data; 
temp->link=START; 
START=temp; 
} 
void add_after(int data,int pos) 
{ 
struct node *temp,*q; 
int i; 
q=START; 
for(i=0;i<pos-1;i++) 
{ 
q=q->link; 
if(q==NULL) 
{ 
printf ("\n\n There are less than %d elements",pos); 
getch(); 
return; 
} 
} 
temp=(struct node*)malloc(sizeof (struct node)); 
temp->link=q->link; 
temp->value=data; 
q->link=temp; 
} 
void Display() 
{ 
struct node *q; 
if(START == NULL) 
{ 
printf ("\n\nList is empty"); 
return; 
} 
q=START; 
printf("\n\nList is : "); 
while(q!=NULL) 
{ 
printf ("%d ", q->value); 
q=q->link; 
} 



Unit 6: Linked List Operations 

LOVELY PROFESSIONAL UNIVERSITY 105 

printf ("\n"); 
getch(); 
} 
void main() 
{ 
int choice,n,m,position,i; 
START=NULL; 
while(1) 
{ 
clrscr(); 
printf ("1.Create List\n"); 
printf ("2.Add at beginning\n"); 
printf ("3.Add after \n"); 
printf ("4.Display\n"); 
printf ("5.Exit\n"); 
printf ("\nEnter your choice:"); 
scanf ("%d",&choice); 
switch (choice) 
{ 
case 1: 
printf ("\n\n Enter the number of nodes you want add:"); 
scanf ("%d",&n); 
for(i = 0;i<n;i++) 
{ 
printf ("\nEnter the element:"); 
scanf ("%d",&m); 
createlist(m); 
} 
break; 
 
case 2: 
printf ("\n\nEnter the element : "); 
scanf ("%d",&m); 
add_beginning(m); 
break; 
 
case 3: 
printf ("\n\nEnter the element:"); 
scanf ("%d",&m); 
printf ("\nEnter the position after which you want to insert the element:"); 
scanf ("%d",&position); 
add_after(m,position); 
break; 
 
case 4: 
Display(); 
break; 
case 5: 
exit(0); 
 
default: 
printf ("\n\n Wrong choice"); 
} 
} 
} 
 
 
 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 106 

Output: 
When you run the program, the following output is obtained: 

1. Create List 

2. Add at beginning 

3. Add after 

4. Display 

5. Exit 

Enter your choice: 1 

Enter the number of nodes you want to add: 2 

Enter the element: 10 20 

1. Create List 

2. Add at beginning 

3. Add after 

4. Display 

5. Exit 

Enter your choice: 4 

List is: 10 20 

1. Create List 

2. Add at beginning 

3. Add after 

4. Display 

5. Exit 

Enter your choice: 3 

Enter the element: 30 

Enter the position after which you want to insert the element:2 

1. Create List 

2. Add at beginning 

3. Add after 

4. Display 

5. Exit 

Enter your choice: 4 

List is: 10 20 30 

In this example: 

1. A list named node is created with a data field named value and link field 
named *link 

2. Four functions are created namely, createlist(), add_beginning(), add_after() 
and Display(). The user has to select the appropriate function to be 
performed. 

 



Unit 6: Linked List Operations 

LOVELY PROFESSIONAL UNIVERSITY 107 

3. The function createlist() allocates the memory for list node and stores the 
elements entered by the user. 

4. The function add_beginning() allocates the memory for each element entered 
by the user and stores the elements at the beginning of the list. 

5. The function add_after() prompts the user to enter the input for the element 
data and the position number where the data is to be stored. 

6. The for statement in the add_after() function searches for the position to 
insert the new element. 

7. If the user enters a position that is less than the actual elements, then a 
message saying “there are less elements present than the entered position 
number” is displayed. 

8. The Display() function displays the element data and the position where the 
data is inserted. 

9. The program terminates when the user enters 5. 

 
 

 

 

In a doubly-linked list, the HEAD node is set to NULL. Suppose, you want to create a 
node with a value of 20, then the head will now point to HEAD->next = new_node and 
the new node will point to newnode->previous=HEAD. This depicts how two pointers 
can be used to point to next and previous elements. Now, if you wish to add another 
node with a value 30, then the node having the value 20 will become the head node. 
You can create the second node by setting HEAD->next! =NULL and HEAD=HEAD-
>next. 

 
 

 
 

 

Write a program to insert a node at the beginning of a doubly-linked list. 

 
6.3.3   Inserting a Node in a Circular Linked List 
Let us consider num as the data entered by the user, tmp as the temporary variable holding the address 
of the first node and last as the last node in the list. 

Algorithm to insert a new node after a given node is as follows: 

1. Input the data 

2. Call the getnode() function. The getnode() allocates the memory for the first node. 

3. Save the node data in the tmp variable 

4. Assign the data entered by the user to the data file of the tmp 

5. If last node is equal to NULL, then assign the data present in tmp to last node. Otherwise, assign 
address of last node to the address of tmp. Now, the tmp holds the address of last node. 

6. Return the value present in last node 

7. Exit. 

 

 

 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 108 

 

 

 
The following program inserts a node in a circular linked list. 
 
#include<stdio.h> 

#include<conio.h> 

#include<alloc.h> 

#include<process.h> 

struct list 

{ 

int value; 

struct list *link; 

}; 

typedef struct list* node; 

node getnode() 

{ 

 node p; 

 p= (node) malloc(sizeof(struct list)); 

 if(p==NULL) 

{ 

 printf("Out of memory\n"); 

 exit(0); 

 } 

 return p; 

} 

node insert_beginning(int num, node last) 

{ 

node tmp; 

tmp=getnode(); 

tmp->value=num; 

if(last==NULL) 

last=tmp; 

else 

tmp->link=last->link; 

last->link=tmp; 

return last; 

} 

void display(node last) 

{ 



Unit 6: Linked List Operations 

LOVELY PROFESSIONAL UNIVERSITY 109 

node tmp; 

if(last==NULL) 

{ 

printf("list is empty\n"); 

return; 

} 

printf("contents of the list:\t"); 

for(tmp=last->link;tmp!=last;tmp=tmp->link) 

printf("%d/n", tmp->value); 

printf("%d\n", tmp->value); 

} 

void main() 

{ 

node last; 

int choice, num; 

last=NULL; 

for(;;) 

{ 

printf("1. Insert at beginning\n"); 

printf("2. display\n"); 

printf("3. Exit\n"); 

printf("enter the choice/n"); 

scanf("%d", &choice); 

switch(choice) 

{ 

case 1: 

printf("enter the number to be inserted\n"); 

scanf("%d", &num); 

last=insert_beginning(num, last); 

break; 

case 2: 

display(last); 

break; 

default: 

exit(0); 

} 

} 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 110 

} 

Output: 

1. Insert at beginning 

2. Display 

3. Exit 

Enter the choice 

1 

Enter the number to be inserted 

50 

1. Insert at beginning 

2. Display 

3. Exit 

Enter the choice 

2 

Contents of the list: 

50 

1. Insert at beginning 

2. Display 

3. Exit 

Enter the choice 

1 

Enter the number to be inserted 

40 

1. Insert at beginning 

2. Display 

3. Exit 

Enter the choice 

2 

Contents of the list: 

40 

50 

In this example: 

1. A structure named list is created with a data field named value and link 
field named *link. 

2. Three functions are created namely, insert_beginning(), display(), and 
exit. The user has to select the appropriate function to perform. 

3. The function getnode() creates and allocates memory for first node. If the 
memory allocation is unsuccessful, then the function displays a message 
“out of memory”. 



Unit 6: Linked List Operations 

LOVELY PROFESSIONAL UNIVERSITY 111 

4. The function insert_beginning() prompts input from user and inserts the 
entered number in the first position of the list. 

5. The function display() displays the list every time a new element is added 
to the list.  

6. The program terminates when the user enters 3. 

Figure 6.3 depicts the deletion of a node from the linked list. The linked list consists of five nodes such 
as, START, Node1, Node2, Node3, and Node4 respectively. If Node3 has to be deleted from the list, 
then assign the address of Node4 to Node2. This is represented as: 

Node2->next=&Node4 

6.4   Deleting a Node from a Linked List 

 
Figure 6.3: Deleting a Node from a Linked List 

 
  
 

 
6.4.1   Deleting a Node Following a Given Node 
Let us consider START as the initial position in a list, data as the element to be deleted, and temp and q 
as the temporary pointers to hold the address of the node. 

Algorithm for deleting a node is as follows: 

1. Input the data to be deleted 

2. If START is equal to the data entered by the user, then 

(a) temp=START 

(b) START=START->link 

(c) free the deleted temp node 

(d) exit 

3. Assign START to q 

4. While (q->link->link) is not equal to NULL, check if(q->link->data) is equal to data. If true then 
execute the statements in step 5. 

5. temp=q->link 

q->link=temp->link 

free the deleted temp node 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 112 

exit 

6. Assign q=q->link 

7. To delete the last element, check if(q->link->data) is equal to data. If true, then execute the 
statements in step 8. 

8. temp=q->link 

free the deleted temp node 

q->link=NULL 

exit 

9. Display entered element not found 

10. Exit. 

 

 

 

The following program deletes a node following the given node: 
 
#include<stdio.h> 
#include<conio.h> 
#include<malloc.h> 
#include<process.h> 
 
void createlist(int); 
void delete(int); 
void Display(); 
 
struct node 
{ 
int value; 
struct node *link; 
}*START; 
 
void createlist(int data) 
{ 
struct node *q,*temp; 
temp= (struct node*)malloc(sizeof(struct node)); 
temp->value=data; 
temp->link=NULL; 
if(START==NULL) 
START=temp; 
else 
q=START; 
while(q->link!=NULL) 
q=q->link; 
q->link=temp; 
} 
 
void delete(int data) 
{ 
struct node *temp,*q; 
if (START->value == data) 
{ 
temp=START; 
START=START->link; //to delete first element 
free(temp); 
return; 



Unit 6: Linked List Operations 

LOVELY PROFESSIONAL UNIVERSITY 113 

} 
q=START; 
while(q->link->link != NULL) 
{ 
if(q->link->value == data) //to delete element in between 
{ 
temp=q->link; 
q->link=temp->link; 
free(temp); 
return; 
} 
q=q->link; 
} 
if(q->link->value==data) //to delete last element 
{ 
temp=q->link; 
free(temp); 
q->link=NULL; 
return; 
} 
printf ("\n\nElement %d not found",data); 
getch(); 
} 
 
void Display() 
{ 
struct node *q; 
if(START == NULL) 
{ 
printf ("\n\nList is empty"); 
return; 
} 
q=START; 
printf("\n\nList is : "); 
while(q!=NULL) 
{ 
printf ("%d ", q->value); 
q=q->link; 
} 
printf ("\n"); 
getch(); 
} 
 
void main() 
{ 
int choice,n,m,position,i; 
START=NULL; 
while(1) 
{ 
clrscr(); 
printf ("1.Create List\n"); 
printf ("2.Delete element\n"); 
printf ("3.Display\n"); 
printf ("4.Exit\n"); 
printf ("\nEnter your choice:"); 
scanf ("%d",&choice); 
switch (choice) 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 114 

{ 
case 1: 
printf ("\n\n Enter the number of nodes you wish to add:"); 
scanf ("%d",&n); 
for(i = 0;i<n;i++) 
{ 
printf ("\nEnter the element:"); 
scanf ("%d",&m); 
createlist(m); 
} 
break; 
case 2: 
if (START == NULL) 
{ 
printf("\n\n List is empty"); 
continue; 
} 
printf ("\n\n Enter the element for deletion:"); 
scanf ("%d",&m); 
delete(m); 
break; 
case 3: 
Display(); 
break; 
case 4: 
exit(0); 
default: 
printf ("\n\nWrong choice"); 
} 
} 
} 
 
Output: 
When you run the program, the following output is obtained:  

1. Create List 

2. Delete element 

3. Display 

4. Exit 

Enter your choice:1 

Enter the number of nodes you wish to add: 4 

Enter the element: 10 20 30 40 

1. Create List 

2. Delete element 

3. Display 

4. Exit 

Enter your choice: 2 

Enter the element for deletion: 40 

1. Create List 

2. Delete element 



Unit 6: Linked List Operations 

LOVELY PROFESSIONAL UNIVERSITY 115 

3. Display 

4. Exit 

Enter your choice: 3 

List is: 10 20 30 

In this example: 

1. A structure named node with a data field named value and link field 
named *link are created. 

2. Three functions are created namely, createlist(), delete(), and Display(). 
The user has to select the appropriate function to be performed. 

3. The function createlist() allocates the memory for list node and stores 
the elements entered by the user. 

4. The delete() function compares the data entered by the user with the 
START element if both are equal then the first element is deleted. 
Otherwise, the elements in the other nodes are verified with the entered 
data and the deletion of the element takes place accordingly. 

5. The Display() function displays the list after the deletion operation. 

6. The program terminates when the user enters 4. 
 

 

 
  

 

Write a program to delete an element at the beginning of a circular linked list. 
 

 
 

 

 

Deleting a Node in a Circular Linked List 

Assume p as first node and q as last node, link as the pointer field pointing to the next 
node and value as the data stored in each node. 

To delete an element at the beginning of a circular linked list, follow the statements listed 
below: 

p=q->link 

q->link=p->link 

printf(“the deleted element is %d\n”, p->value) 

freenode(p); 

Suppose, only one node exists in the list then assign NULL value to q to indicate the 
empty list. 

The same is depicted in the following statements: 

If(q->link==q) { 

printf(“the deleted element is %d\n”, q->value) 

freenode(q) 

q=NULL 

return q  

} 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 116 

 
 

 

 
Use of Singly-Linked Lists in Development of Processors 

Technical Systems Consultants is a U.S. based software company, a supplier of software for Southwest 
Technical Products Corporation (SWTPC). The operating systems developed by Technical Systems 
Consultants used singly-linked lists as file structures, a directory entry pointed to the first sector of a 
file, and succeeding portions of the file were located by traversing pointers. The systems that used this 
technique are Flex (Motorola 6800 CPU), mini-Flex, and Flex9 (Motorola 6809 CPU). 

Source: http://www.absoluteastronomy.com/topics/Linked_list 

 

 
1. Write a program to delete a node at the end of a doubly-linked list. The 

program should prompt users to enter the data and must contain three 
functions create_node(), delete_end(), and display(). 

2. Write a program to insert a node at the beginning of a circular doubly-linked 
list. The program should prompt users to enter the data and must contain 
three functions create_node(), delete_end(), and display(). 

• We can perform many operations on a linked list like traversing, searching, inserting and deleting. 

6.5   Summary 

• The traversal operation in a linked list involves processing every node present in a list to obtain 
the desired output. 

• Searching operation involves searching for a specific element in the list using an associated key. 

• Insertion operation involves inserting a node at the beginning or end of a list.  

• Deletion operation involves deleting a node at the beginning or following a given node or at the 
end of a list. 

Key Element: An element from a given list which is made as a base reference to search other elements in 
that list. 
 
Link Field: The initial word of a message buffer which is used to point to the next buffer on the message 
row. 

6.6   Keywords 

1. State whether the following statements are true or false: 

6.7   Self Assessment 

(a) It is possible to insert an element anywhere in the linked list. 

(b) Linked list stores only a fixed set of data in the list. 

(c) Traversing operation is used to search a specific element in the list. 

(d) Deletion of a node can be done only at the beginning or end of a list. 

(e) Search operation is used for reversing and sorting the list elements.  

 

 

 



Unit 6: Linked List Operations 

LOVELY PROFESSIONAL UNIVERSITY 117 

2. Fill in the blanks: 

(a) ………………………… operation involves iterating through every element in a list to arrange 
the data in a specific order. 

(b) While inserting an element in the list ………………………… operation has to be performed. 

(c) ………………………… keyword is used to clear the data present in a variable. 

(d) In search operation, every element in the list is associated with a…………………………  

3. Select a suitable choice for every question: 

(a) In search operation, every element in the list is searched using a …………………… 

(i) Key 

(ii) Pointer 

(iii) Address 

(iv) Link 

(b) Which of the following operations are performed if the list is not empty? 

(i) The address of the next node is assigned to the HEAD node. 

(ii) The address of the next node is assigned to NULL.  

(iii) The address of the next is assigned to temp variable. 

(iv) The address of the previous node is assigned to NULL. 

1. “List traverse operation forms the basis for other operations such as, reversing and sorting of list 
elements.” Analyze. 

6.8   Review Questions 

2.  “In a doubly-linked list, insertion and deletion takes more time than linear linked list.” Analyze. 

3. “Using a head node is essential while performing linked list operations.” Discuss. 

4. “It is possible to insert an element anywhere in the linked list”. Justify 

Answers: Self Assessment 
1. (a) True    

(b) False    

(c) False   

(d) False    

(e) False    

2. (a) Traversing                  

(b) Incrementing     

(c) Free  

(d) Key element   

3. (a) Key            

(b) The address of the next node is assigned to the HEAD node  

 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 118 

 

6.9   Further Readings 

 

 

Lipschutz, S. (2011). Data Structures with C. Delhi: Tata McGraw Hill. 

Reddy, P. (1999). Data Structures Using C. Bangalore: Sri Nandi Publications. 

 

 

 

http://www.cs.rpi.edu/~musser/gp/List/lists1.html 

http://www.stsci.edu/~bsimon/linked_list.html 

 



Unit 7:  Stacks 

LOVELY PROFESSIONAL UNIVERSITY 119 

Unit 7: Stacks 
CONTENTS 

Objectives 

Introduction 

7.1 Fundamentals of Stacks 

     7.1.1   Stack Structure 

7.2 Basic Operations of Stack 

     7.2.1   Push Operation 

     7.2.2   Pop Operation 

7.3 Representing Stacks in Memory 

7.4 Stack Implementation using Arrays 

7.5 Summary 

7.6 Keywords 

7.7 Self Assessment 

7.8 Review Questions 

7.9 Further Readings 

After studying this unit, you will be able to: 

Objectives  

• Describe the fundamentals of stacks  

• Explain the basic operations of stack 

• Analyze representing stacks in memory 

• Discuss stack implementation using arrays 

Stacks are simple data structures and an important tool in programming language. Stacks are linear lists 
which have restrictions on the insertion and deletion operations. These are special cases of ordered list 
in which insertion and deletion is done only at the ends.  

The basic operations performed on stack are 

Introduction 

push and pop. Stack implementation can be done in two 
ways - static implementation or dynamic implementation. Stack can be represented in the memory 
using a one-dimensional array or a singly linked list. 

A stack is a linear data structure in which allocation and deallocation are made in a last-in-first-out 
(LIFO) method. In the LIFO method, the insertions and deletions are done at one end which is known as 
the top of the stack (TOS). In a stack, the top is a variable which points to the top element in the stack. 
Consider a stack of books or stack of coins. The items can be added or removed only from the top. This 
means that the last item that is added to the stack is the first item to be removed.  

7.1   Fundamentals of Stacks 

 
 

Did you know? The stack was first proposed in 1955 and then patented in 1957 by the German 
Friedrich L. Bauer. The same concept was developed independently, at around the 
same time, by the Australian Charles Leonard Hamblin. 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 120 

7.1.1   Stack Structure  
The stack data structure is used to maintain records of a file in which the order among the records of file 
is not important. Figure 7.1 displays the structure of a stack where stack is like a hollow cylinder with a 
closed bottom end and an open top end. In the stack data structure, the records are added and deleted 
at the top end. Last-In-First-Out (LIFO) principle is followed to retrieve records from the stack. The 
records added last are accessed first. In Figure 7.1, the order of entry of the records in the stack is item 1, 
2, 3, 4 and the order of retrieval of the records from the stack is item 4, 3, 2, 1. 

  
Figure 7.1: Stack Data Structure 

 

 
  
 

 
 

The basic operations of stack are to: 

7.2   Basic Operations of Stack  

1. Insert an element in the stack (Push operation) 

2. Delete an element from the stack (Pop operation) 

7.2.1   Push Operation 
The procedure to insert a new element to the stack is called push operation. The push operation adds an 
element on the top of the stack. ‘Top’ refers to the element on the top of stack. Push makes the ‘Top’ 
point to the recently added element on the stack. After every push operation, the ’Top’ is incremented 
by one. When the array is full, the status of stack is FULL and the condition is called stack overflow. No 
element can be inserted when the stack is full. Figure 7.2 illustrates the push operation in the stack data 
structure. 

 Figure 7.2: Push Operation in the 
Stack Data Structure 

 
  
 

 
In the figure 7.2, the stack has two elements 45 and 36. The ’Top’ points to ‘36’ as it is the last item in the 
stack. Element 52 is added on the stack through push operation. The ‘Top’ points to ‘52’ after the push 



Unit 7:  Stacks 

LOVELY PROFESSIONAL UNIVERSITY 121 

operation as it is the last item recently added. After adding 52, the stack is full or it is in stack overflow 
condition. No more items can be added in this stack. 
The syntax used for Push operation is PUSH (stack, item). 

Algorithm to Implement Push Operation on Stack 

 
PUSH (STACK, n, top, item)         /* n = size of stack*/ 
if (top = n) then STACK_FULL;  /* checks for stack overflow  */ 
else 
     { top = top+1;                    /* increases the top by 1 */ 
     STACK [top] = item ;}   /* inserts item in the new top position */ 
end PUSH 

7.2.2   Pop Operation 
The procedure to delete an element from the top of the stack is called pop operation. After every pop 
operation, the ‘Top’ is decremented by one. When there is no element in the stack, the status of the stack 
is called empty stack or stack underflow. The pop operation cannot be performed when it is in stack 
underflow condition. 

 
 Figure 7.3: Pop Operation 

 
  
 

 

 
 

 
Figure 7.3 shows the pop operation in stack. The stack initially has three items, 25, 37 and 18. The ‘Top’ 
points to the last item, 18. After the pop operation, item 18 is deleted from stack. Now, the ‘Top’ points 
to 37. 
The syntax used for Pop operation is POP (stack). 

Algorithm to Implement Pop Operation in a Stack 

POP (STACK, top, item) 
if (top = 0) then STACK_EMPTY;   /* check for stack underflow*/ 
else { item = STACK [top];   /* remove top element*/ 
          top = top – 1;   /* decrement stack top*/ 
        } 
end POP 

 

 

 

 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 122 

Stacks are represented in main memory by using one-dimensional arrays or by using a singly linked 
list. 

Array Representation of Stacks 

First, a memory block of sufficient size is allocated to accommodate the full capacity of the stack. The 
items of the stack are stored in a sequential manner.  

Using C language, stack is declared as an array of variable  

int stack[Max_STACK_SIZE]; 

or 

char stack[Max_STACK_SIZE]; 

where Max_STACK_SIZE is the maximum number of elements that can be inserted in a stack. 
Max_STACK_SIZE should be defined by an appropriate value.  

7.3   Representing Stacks in Memory 

 

 

 
In C language, we can define constants using #define statement. The stack size 
with a  capacity of storing 6 elements can be defined as 
#define MAX_STACK_SIZE 6 

Linked List Representation of Stacks 
The array representation of stacks is easy and convenient. However, it allows the representation of only 
fixed sized stacks. The size of the stack varies during program application for different applications. 
Representing stack using linked list can solve this problem. A singly linked list can be used to represent 
any stack. In a singly linked list, the data field represents the ITEM and the LINK field points to the 
next item. Figure 7.4 shows the linked representation of the stack. 

 Figure 7.4: Linked List Representation 
of a Stack 

 
  

 
 

In figure 7.4, the INFO field of the nodes holds the elements of the stack. The LINK field holds pointers 
to the next element in the stack. The START pointer of the linked list is the Top pointer variable of 
stack. 

A stack is a sequence of data elements. To implement a stack structure, an array can be used as it is a 
storage structure. Each element of the stack occupies one array element. Static implementation of stack 
can be achieved using arrays. The size of the array, once declared, cannot be changed during the 
program execution. Memory is allocated according to the array size. The memory requirement is 
determined before the compilation. The compiler provides the required memory. This is suitable when 
the exact number of elements is known. The static allocation is an inefficient memory allocation 
technique because if fewer elements are stored than declared, the memory is wasted and if more 
elements need to be stored than declared, the array cannot expand. In both the cases, there is inefficient 
use of memory.  

 

7.4   Stack Implementation using Arrays 



Unit 7:  Stacks 

LOVELY PROFESSIONAL UNIVERSITY 123 

 

 

 

 

Program for Stack Implementation Using Arrays 
 
 #include <stdio.h> 
#include <conio.h> 
 #define MAX 10 
 void push(); 
 int pop(); 
 void display(); 
 int stack_arr[MAX]; 
 int top= -1; 
                            void main()         /* program execution  begins in the main 
method */ 
                            { 
                                  int ch, pop_value; 
                                  clrscr(); 
                                   do                   /* do …while loop displays  three choices and 
accepts the choice                    entered*/ 
                                 { 
                                    printf(“\n 1. Push/n”); 
                                    printf(“\n 2. Pop/n”);       
                                    printf(“\n 3. Display/n”); 
                                    printf(“\n Enter the choice/n”); 
                                    scanf(“%d”, &ch); 
                                 switch (ch)                     /* switch case compares the value 
entered with each case */ 
                                 { 
                                     case 1: push(); 
                                     break; 
                                     case 2: pop_value = pop(); 
                                     break; 
                                     case 3: display(); 
                                     break; 
                                    case 4: exit(1); 
                                 /* If any choice other than 1,2 or 3 is entered, the message is 
displayed*/ 
                                     default: printf(“\n Wrong choice”);    
                                 } 
                                 } while(1); 
                                 } 
                                void push()        /* If the value entered is 1, the push method is 
called*/ 
                                { 
                                    int item; 
                                    if(top==(MAX-1))    /* if condition checks whether the stack 
is full or not*/ 
                                { 
                                    printf(“\n Overflow. Stack is full”);      /* If the stack is full, 
the message is displayed*/ 
                                  getch(); 
                                  exit(0); 
                              } 
                                  else 
                              { 
                             /* If the stack is not full, a message is displayed and values are 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 124 

accepted*/ 
                                 printf(“\n Enter the element to insert in the stack”); 
                                 scanf(“%d”,&item);          /* accepts the value entered in 
variable item*/ 
                                 top=top+1;                     /*after the insertion, top is incremented 
by 1*/ 
                                stack_arr[top]=item; 
                             } 
                             } 
                             int pop()        /* If the value entered is 2, the pop method is 
called*/           
                             { 
                                 int i  = 0; 
                                 if(top==-1)     /* if condition checks whether the stack is empty 
or not*/ 
                             {   
                                printf(“\n Stack underflow”);   /* If the stack is empty, the 
message is displayed*/ 
                                getch(); 
                                exit(0); 
                             } 
                           else 
                           { 
                               i=stack_arr[top];     /* If the stack is not empty, the item is 
deleted*/ 
                               top=top-1;              /* top is decremented by 1*/ 
                           } 
                          return i; 
                           } 
              void display()           /* display method displays the status of the stack*/ 
               { 
                   int i; 
                   if(top==-1)          /* if condition checks whether the stack is empty or 
not*/ 
              { 
                  printf(“\n Stack is empty”); 
                  getch(); 
                  exit(0); 
               } 
              else 
              { 
              for(i=top;i>=0;i--)  
               { 
                  printf(“\n The item is %d”,stack_arr[i]);  /* displays all the items in the 
stack*/ 
              } 
              } 
              } 
 
Output: 
               Push 
               Pop 
               Display 
               Exit 
               Enter the choice 
                1 



Unit 7:  Stacks 

LOVELY PROFESSIONAL UNIVERSITY 125 

               Enter the element to insert in the stack 
               50 
               Push 
               Pop 
               Display 
               Exit 
               Enter the choice 
                1 
               Enter the element to insert in the stack 
               60 
               Push 
               Pop 
               Display 
               Exit 
               Enter the choice 
               3 
              The item is 60 
              The item is 50 
              Push 
              Pop 
              Display 
              Exit 
              Enter the choice 
               2 
              Push 
              Pop 
              Display 
              Exit 
              Enter the choice 
              3 
             The item is 50 

 

In this example: 

1. The header files are included and a constant value 10 is defined for variable 
MAX using #define header. 

2. An integer stack array named stack_arr[MAX] is declared. The stack array 
can hold 10 elements. 

3. Three functions are created namely, push() , pop() and display(). The user 
has to select an appropriate function to be performed. 

4. The switch statement is used to call the push(), pop(), and display() 
functions.  

5. When the user enters 1, the push() function is called. In the push() function, 
the if loop checks for the stack size. If the stack array is full, the program 
displays a message “Overflow. Stack is full”. Else, it takes the input from the 
user and inserts into the stack. 

6. When the user enters 2, the function pop() is called. In the pop() function, 
the if loop checks for the stack size. If the stack array is empty, the program 
displays a message “Stack underflow”. Else, the pop() function pops the 
elements present in the stack array.  

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 126 

7. When the user enters 3, the function display() is called. In the display() 
function, the if loop checks for the stack size. If the stack array is empty, the 
program displays a message “Stack is empty“. Else, the for loop displays 
each element present in the array. 

8. When the user enters 4, the program terminates. 

 
 

Did you know? In Computer Science, a call stack stores information about the active subroutines of a 
computer program. This stack is known as control stack, machine stack or execution 
stack. It is usually shortened to “stack”. The details of the call stack are hidden and 
automatic in high-level programming language. 

 

 

 

Write a C program to convert the following expression into prefix and postfix 
expressions using stacks. 

(A + B) * (C – D)/ (E – F) 

• Stacks are simple data structures and important tools in programming language.  

7.5   Summary 

• A stack is a linear data structure in which allocation and deallocation are made in a last-in-first-out 
(LIFO) method. 

• The basic operations of stack are inserting an element on the stack (push operation) and deleting 
an element from the stack (pop operation). 

• Stacks are represented in main memory by using one-dimensional array or a singly linked list. 

• To implement a stack structure, an array can be used as its storage structure. Each element of the 
stack occupies one array element. Static implementation of stack can be achieved using arrays. 

Deallocation: A process by which memory is reclaimed. 

Dynamic Allocation: Automatic memory allocation where memory is allocated as required at run-time. 

Linear Lists: A sequential list. 

Static Allocation: Process of allocating memory at compile-time before the associated program is 
executed. 

7.6   Keywords 

1. State whether the following statements are true or false: 

7.7   Self Assessment 

(a) Stacks are ordered linear list in which insertion and deletion is done at both the ends. 

(b) A stack is a linear data structure in which allocation and deallocation are made in a last-in-
last-out (LILO) method. 

(c) The insertions and deletions in a stack is done at one end which known as top of the stack. 

(d) The size of the array once declared, cannot be changed during the program execution. 

(e) When the array is full, the condition is called stack overflow. 

 

 

 



Unit 7:  Stacks 

LOVELY PROFESSIONAL UNIVERSITY 127 

2. Fill in the blanks: 

(a) No element can be inserted when the status of the stack is ………………. 

(b) In a stack, the items can be added or removed only from the ……………….. 

(c) The ……………… operation adds an element on the top of the stack. 

3. Select a suitable choice for every question: 

(a) After every push operation the top is incremented by ………………… 

(i) 2 

(ii) 3 

(iii) 1 

(iv) 4 

(b) Pushing an element into a stack that is full results in a condition called …………………….. 

(i) Stack full 

(ii) Stack overfull 

(iii) Stack overflow 

(iv) Stack underflow 

(c) Static stack implementation can be achieved using ……………… 

(i) Linked list 

(ii) Array 

(iii) Queue 

(iv) Structure 

1. “Static implementation of stack can be achieved using arrays”. Explain with a program. 

7.8   Review Questions 

2. “Stacks are represented in main memory using two ways”. Discuss with a program. 

3. “The static allocation in a stack is an inefficient memory allocation technique”. Provide a solution 
to this problem with an example. 

4. “In static stack implementation, when the array is full, the status of stack is FULL and the 
condition is called stack overflow”. Discuss. 

5. “The pop operation cannot be performed when the status of the stack is underflow”. Discuss with 
an example. 

 

 

 

 

 

 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 128 

Answers: Self Assessment 
1. (a) False  (b) False  (c) True  (d) True  (e) False 

2. (a) Overflow  (b) Top  (c) Push 

3. (a) 1                   (b) Stack overflow (c) Array 

 

7.9   Further Readings 

 

 
Lipschutz, S. (2011). Data Structures with C. Delhi: Tata McGraw-Hill. 

Reddy, P. (1999). Data Structures Using C. Bangalore: Sri Nandi Publications. 
 

  

 

 

 

http://www.brucemerry.org.za/manual/structures/circular.html 

http://www.niitcrcs.com/btpc/btpc-08%20papers%5CIsha-Arrays.pdf 

http://www.sqa.org.uk/e-learning/ArrayDS02CD/page_19.htm 

 



Unit 8:  Queues 

LOVELY PROFESSIONAL UNIVERSITY 129 

Unit 8: Queues 

CONTENTS 

Objectives 

Introduction 

8.1 Fundamentals of Queues 

8.2 Basic Operations of Queue 

      8.2.1   Insert at Rear End 

      8.2.2   Delete from the Front End 

8.3 Representing Queue in Memory 

8.4 Types of Queue 

      8.4.1 Double Ended Queue 

      8.4.2 Circular Queue 

      8.4.3 Priority Queue 

8.5 Summary 

8.6 Keywords 

8.7 Self Assessment 

8.8 Review Questions 

8.9 Further Readings 

After studying this unit, you will be able to: 

Objectives 

• Describe the fundamentals of queues 

• Discuss the basic operations of queues 

• Analyze representing queues in memory 

• Explain the types of queues 

A queue is a linear list of elements that consists of two ends known as front and rear. We can delete 
elements from the front end and insert elements at the rear end of a queue. A queue in an application is 
used to maintain a list of items that are ordered not by their values but by their sequential value.  

Introduction 

 

 

 
If the users of a particular website want to select a list of reports throughout the 
day, and during idle time wants to print those reports. The website can be 
designed in a way that information stored internally can be retrieved easily by 
implementing the queue mechanism. If a user needs to find the name of the next 
report to print, the information can be obtained from the top of the queue and 
new addition of the reports get stored easily at the rear end. 

A queue is an ordered collection of items in which deletion takes place at one end, which is called the 
front of the queue, and insertion at the other end, which is called the rear of the queue. The queue is a 
‘First In First Out’ system (FIFO). In a time-sharing system, there can be many tasks waiting in the 

8.1   Fundamentals of Queues 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 130 

queue, for access to disk storage or for using the CPU. The queues in a bank, or railway station counter 
are examples of queue. The first person in the queue is the first to be attended. 

The two main operations in the queue are insertion and deletion of items. The queue has two pointers, 
the front pointer points to the first element of the queue and the rear pointer points to the last element 
of the queue. Figure 8.1 shows the structure of a queue. A new item is inserted at the rear end and 
elements are removed from the queue from the front end. 

 
Figure 8.1: Queue Structure 

 
  

 
 

The basic operations of queue are insertion and deletion of items which are referred as enqueue and 
dequeue respectively. In enqueue operation, an item is added to the rear end of the queue. In dequeue 
operation, the item is deleted from the front end of the queue. 

8.2.1   Insert at Rear End 
To insert an item into the queue, first it should be verified whether the queue is full or not. If the queue 
is full, a new item cannot be inserted into the queue. The condition FRONT=NULL indicates that the 
queue is empty. If the queue is not full, items are inserted at the rear end. When an item is added to the 
queue, the value of rear is incremented by 1. 

8.2.2   Delete from the Front End 
To delete an item from the stack, first it should be verified that the queue is not empty. If the queue is 
not empty, the items are deleted at the front end of the queue. When an item is deleted from the queue, 
the value of the front is incremented by 1. 

Figure 8.2 is a representation of the basic operations of a queue. The first element inserted into the 
queue is 10, the second element inserted is 15 and so on. 30 is the last inserted element. The first element 
to be deleted from the queue is 10. If a new element is added, it is inserted after 30 and it will be the last 
element in the queue. A new element cannot be inserted in the queue when the queue is full. 

8.2  Basic Operations of Queue 

 
Figure 8.2: Operations in Queue 

 
  

 
 

 

 
 



Unit 8:  Queues 

LOVELY PROFESSIONAL UNIVERSITY 131 

 

 

 
/*Program of queue using array*/ 
/*insertion and deletion in a queue*/  
/*insertion and deletion in a queue*/ 

# include <stdio.h> 

# define MAX 50 

int queue_arr[MAX]; 

int rear = -1; 

int front = -1; 

void ins_delete(); 

void insert(); 

void display(); 

void main() 

{ 

int choice; 

while(1) 

{ 

printf("1.Insert\n"); 

printf("2.Delete\n"); 

printf("3.Display\n"); 

printf("4.Quit\n"); 

printf("Enter your choice : \n"); 

scanf("%d",&choice); 

switch(choice) 

{ 

case 1 : insert(); 

break; 

case 2 : ins_delete(); 

break; 

case 3: ins_display(); 

break; 

case 4: exit(1); 

default: 

printf("Wrong choice\n"); 

}/*End of switch*/ 

          }/*End of while*/ 

    }/*End of main()*/ 

void insert() 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 132 

{ 

int added_item; 

if (rear==MAX-1) 

printf("Queue overflow\n"); 

else 

{ 

if (front==-1)    /*If queue is initially empty */ 

front=0; 

printf("Enter an element to add in the queue : "); 

scanf("%d", &added_item); 

rear=rear+1; 

queue_arr[rear] = added_item ; 

} 

         }                     /*End of insert()*/ 

void ins_delete() 

{ 

if (front == -1 || front > rear) 

{ 

printf("Queue underflow\n"); 

return ; 

} 

else 

{ 

printf("Element deleted from queue is : %d\n", queue_arr[front]); 

front=front+1; 

} 

}  /*End of delete() */ 

void display() 

{ 

int i; 

if (front == -1) 

printf("Queue is empty\n"); 

else 

{ 

printf("Elements in the queue:\n"); 

for(i=front;i<= rear;i++) 

printf("%d ",queue_arr[i]); 



Unit 8:  Queues 

LOVELY PROFESSIONAL UNIVERSITY 133 

printf("\n"); 

} 

}  /*End of display() */ 

 

Output: 

1. Insert 

2. Delete 

3. Display 

4. Quit 

Enter your choice: 1 

Enter an element to add in the queue: 25 

Enter your choice: 1 

Enter an element to add in the queue: 36 

Enter your choice: 3 

Elements in the queue: 25, 36 

Enter your choice: 2 

Element deleted from the queue is: 25 
 
In this example: 

1. The preprocessor directives #include are given. MAXSIZE is defined as 50 
using the #define statement. 

2. The queue is declared as an array using the declaration int queue_arr[MAX].  

3. In the while loop, the different options are displayed on the screen and the 
value entered in the variable choice is accepted. 

4. The switch case compares the value entered and calls the method 
corresponding to it. If the value entered is invalid, it displays the message 
“Wrong choice”. 

5. Insert method: The insert method inserts item in the queue. The if condition 
checks whether the queue is full or not. If the queue is full, the “Queue 
overflow” message is displayed. If the queue is not full, the item is inserted 
in the queue and the rear is incremented by 1. 

6. Delete method: The delete method deletes item from the queue. The if 
condition checks whether the queue is empty or not. If the queue is empty, 
the “Queue underflow” message is displayed. If the queue is not empty, the 
item is deleted and front is incremented by 1. 

7. Display method: The display method displays the contents of the queue. The 
if condition checks whether the queue is empty or not. If the queue is not 
empty, it displays all the items in the queue. 

The main attribute of a queue data structure is the fact that it permits accessibility only to the front and 
back of the structure. Additionally, elements can be removed only from the front and added to the back. 
In this way, the appropriate metaphor used to characterize queues is the idea of a checkout line.  

8.3   Representing Queue in Memory 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 134 

 

 

 

Cars moving in line at a gas station or machine parts on the assembly line are the real-
life examples where queues are prevalent.  

Thereby, queues in data structures are the same as queues that you would see in any shop while 
waiting to pay at the checkout counter. In each of the cases, the object or customer at the front of the line 
was the first to enter and the one at the end of the line is the last to have entered. Each time a customer 
makes payment for their goods (or the machine part is removed from the line) the customer leaves the 
queue. This represents the “dequeue” function of the queue. Each time another customer or object 
enters the line to wait, they join the end of the line. This represents the “enqueue” function of the queue. 
The “size” function of the queue returns the length of the line and “empty” function returns true only if 
the line is empty. Figure 8.3 depicts how a queue is represented. 

 
Figure 8.3: Representation of a Queue 

 
  

 

 
 

  
 

 

 

Queue can be implemented using arrays and linked list too. The main benefit in linked 
lists is that the size of the queue is not much of a concern. In linked lists, we can add as 
many nodes as possible and the queue will never have a full condition. The queue that 
uses linked list would be similar to that of a linked list. The only difference between the 
two of them is that, in queues, the leftmost node and the rightmost node is called as 
front and rear node respectively. Also, we cannot remove any of the arbitrary nodes 
from the queue. Always the front node needs to be removed.  

 
 
 
 
 
 
 
 



Unit 8:  Queues 

LOVELY PROFESSIONAL UNIVERSITY 135 

 

 

 
 

Use the  diagram depicted below to implement queue using linked list: 

 

 

The different types of queue are: 

8.4   Types of Queue 

1. Double ended queue 

2. Circular queue 

3. Priority queue 

8.4.1   Double Ended Queue 
Double ended queue is also known as deque. It is a type of queue where the insertions and deletions 
happen at the front or the rear end of the queue. The various operations that can be performed on the 
double ended queue are: 

1. Insert an element at the front end 

2. Insert an element at the rear end 

3. Delete an element at the front end 

4. Delete an element at the rear end 

Let us now discuss how an element can be inserted at the front end and deleted at the rear end of a 
deque. Figure 8.4 depicts inserting and deleting an element from deque. The front end of the queue is 
identified by F and the rear end is identified by R. If we want to insert an element 20 at the front end, 
we can do this by checking if F is equal to zero and then increment F and insert the element. We cannot 
insert an element at the front if an element is already present at the first position, as queue follows ‘First 
In First Out’ method. In the figure 8.4, the element 30 is already present in the first position of the 
queue. Hence, we cannot insert an element at the front end. If we want to delete element 60 at the rear 
end, access the element at the rear end and then decrement the pointer R. When the elements are 
deleted and queue becomes empty, reset the pointer F to 0 and rear end pointer R to -1. An element can 
be deleted only if the queue is not empty.  

 

 

 

 

 

 

 

 

 

 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 136 

Figure 8.4 depicts inserting and deleting an element from deque. 

 
Figure 8.4: Inserting and Deleting an Element from Deque 

 
  

 

 
 

 

 
Program for the Insertion and Deletion of an Element in a Dequeue. 
 
#include<stdio.h> 
#include<conio.h> 
#define SIZE 5 
int Q_F(int R) 
{ 
     return (R==SIZE-1)?1:0; 
} 
 
int Q_E(int F, int R) 
{ 
     return(F>R)?1:0; 
} 
 
void front_insert(int num, int Q[], int *F, int *R) 
{ 
     if(*F==0 || *R==-1) 
     { 
         Q[++(*r)]=item; 
          return; 
       } 
       if(*F!=0) 
       { 
           Q[--(*F)]=item; 
            return; 



Unit 8:  Queues 

LOVELY PROFESSIONAL UNIVERSITY 137 

        } 
        printf("Front inertion not possible\n"); 
} 
 
void rear_delete(int Q[], int *F, int *R) 
{ 
     if(Q_E(*F, *R)) 
     { 
         printf("Queue underflow\n"); 
         return; 
      } 
      printf("The element deleted is %d\n", Q[(*R)--]); 
  
     if(*F>*R) 
     { 
         *F=0, *R=-1; 
      } 
} 
 
void display(int Q[], int F, int R) 
{ 
      int i; 
      if(Q_E(F, R)) 
      { 
          printf("Queue is empty\n"); 
          return; 
      } 
      printf("Contents of the queue is:\n"); 
      for(i=F;i<=R; i++) 
      { 
          printf("%d\n", Q[i]); 
       } 
} 
void main() 
{ 
     int choice, num, F, R, Q[10]; 
     F=0; 
     R=-1; 
      for(;;) 
      { 
          printf("1. Insert at front/n"); 
          printf("2. Delete at rear end/n"); 
          printf("3. Display/n"); 
          printf("4. Exit/n"); 
          scanf("%d", &choice); 
 
        switch(choice) 
       { 
           case 1: printf("Enter the number to be inserted\n"); 
 scanf("%d", &num); 
 front_insert(num, Q, &F, &R); 
 break; 
          case 2: rear_delete(Q, &F, &R); 
 break; 
          case 3: display(Q, F, R); 
 break; 
          default: exit(0); 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 138 

       } 
     } 
} 
Output: 

1. Insert at front end 

2. Delete at rear end 

3. Display 

4. Exit 

1 

Enter the number to be inserted 

30 

1. Insert at front end 

2. Delete at rear end 

3. Display 

4. Exit 

1 

Enter the number to be inserted 

40 

1. Insert at front end 

2. Delete at rear end 

3. Display 

4. Exit 

3 

The contents of the queue is 30 40 

1. Insert at front end 

2. Delete at rear end 

3. Display 

4. Exit 

2 

The element deleted is 40 

In this example: 

1. The header files are defined and a constant value 5 is defined for variable 
SIZE using #define header. The SIZE defines the size of the queue. 

2. Four functions are created namely, Q_F(), Q_E(), front_insert(), 
rear_delete(), and display(). The user has to select an appropriate 
function to be performed. 

3. The switch statement is used to call the front_insert(), rear_delete(), and 
display() functions.  

4. When the user enters 1, the front_insert() function is called. In the 
front_insert() function the if loop checks if the F pointer is equal to 0 or 
R pointer is equal to -1. If the result is true, then the R pointer is 



Unit 8:  Queues 

LOVELY PROFESSIONAL UNIVERSITY 139 

incremented and the value entered by the user (num) is assigned to Q. 
The value of R is returned. The second if loop checks if the F pointer is 
not equal to 0. If the result is true, then the F pointer is decremented and 
the value entered by the user (num) is assigned to Q. The value of F is 
returned. Else, the program prints the message “front insertion not 
possible” 

5. When the user enters 2, rear_delete() function is called. In the 
rear_delete() function the if loop calls the Q_E() function with the 
current pointer values of F and R. If the condition is true, the program 
prints the message “Queue underflow”. It returns the value of F and R. 
The program prints the deleted element.  

6. When the user enters 3, the function display() is called. In the function 
display() the if loop checks for the queue size. If the queue is not empty 
the program displays the elements. 

7. When the user enters 4, the program terminates. 

 
 

 

 

Write an algorithm to perform insertion of an element at the rear end and deletion of an 
element at the front end for a deque. 

8.4.2   Circular Queue 
In a circular queue, the rear end is connected to the front end forming a circular loop. An advantage of 
circular queue is that, the insertion and deletion operations are independent of one another. This 
prevents an interrupt handler from performing an insertion operation at the same time when the main 
function is performing a deletion operation. The figure 8.5 depicts a circular queue. The queue elements 
are stored in an array. The front end of the queue is represented as F and the rear end is represented as 
R. Before inserting an element into the queue, the R pointer should be set to -1. The value of R is then 
incremented to insert the elements. In the first figure of figure 8.5, only one element (20) is present in the 
queue. Hence, the value of F and R pointer will be 0. In the second figure of figure 8.5, two elements are 
added (40 and 60) to the queue. This can be done by incrementing the R pointer. The following 
statement depicts the increment operation: 

R=(R+1) % SIZE 

Here,  

SIZE is the queue size. In this case, the size is 5. 

 

 

 

 

 

 

 

 

 

 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 140 

In the third figure of figure 8.5, elements 80 and 100 are added to the queue. Now the R value will be 5. 
Since, the value of SIZE is also 5, R will point to 0.  

 
Figure 8.5: Circular Queue 

 
  
 

 

 
 
 

 

 
Program for Implementation of Circular Queue. 
 
#include<stdio.h> 
#include<conio.h> 
#define SIZE 5 
 
int Q_F(int COUNT) 
{ 
     return (COUNT==SIZE)? 1:0; 
} 
 
int Q_E(int COUNT) 
{ 
     return (COUNT==0)? 1:0; 
} 
 
void rear_insert(int item, int Q[], int *R, int *COUNT) 
{ 



Unit 8:  Queues 

LOVELY PROFESSIONAL UNIVERSITY 141 

     if(Q_F(*COUNT)) 
     { 
         printf("Queue overflow"); 
         return; 
     } 
     *R=(*R+1) % SIZE; 
     Q[*R]=num; 
     *COUNT+=1; 
} 
void front_delete(int Q[], int *F, int *COUNT) 
{ 
     if(Q_E(*COUNT)) 
     { 
         printf("Queue underflow"); 
         return; 
      } 
     printf("The deleted element is %d\n", Q[*F]); 
     *F=(*F+1) % SIZE; 
     *COUNT-=1; 
} 
 
void display(int Q[], int F, int COUNT) 
{ 
     int i,j; 
     if(Q_E(COUNT)) 
     { 
         printf("Queue is empty\n"); 
         return; 
     } 
     printf("The contents of the queue are:\n"); 
      i=F; 
      for(j=1;j<=COUNT; j++) 
     { 
         printf("%d\n", Q[i]); 
         i=(i+1) % SIZE; 
     } 
     printf("\n"); 
} 
void main() 
{ 
     int choice, num, COUNT, F, R, Q[20]; 
     clrscr(); 
     F=0; 
     R=-1; 
     COUNT=0; 
     for(;;) 
     { 
        printf("1. iInsert at front\n"); 
        printf("2. Delete at rear end\n"); 
        printf("3. Display\n"); 
        printf("4. Exit\n"); 
        scanf("%d", &choice); 
 
        switch(choice) 
        { 
           case 1: printf("Enter the number to be inserted\n"); 
 scanf("%d", &num); 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 142 

 rear_insert(num, Q, &R, &COUNT); 
 break; 
           case 2: front_delete(Q, &F, &COUNT); 
 break; 
           case 3: display(Q, F, COUNT); 
 break; 
          default: exit(0); 
        } 
     } 
} 
Output: 

1. Insert at rear end 

2. Delete at front end 

3. Display 

4. Exit 

1 

Enter the number to be inserted 

50 

1. Insert at rear end 

2. Delete at front end 

3. Display 

4. Exit 

1 

Enter the number to be inserted 

60 

1. Insert at rear end 

2. Delete at front end 

3. Display 

4. Exit 

3 

The contents of the queue are 50 60 

1. Insert at rear end 

2. Delete at front end 

3. Display 

4. Exit 

2 

The element deleted is 50 

In this example: 

1. The header files are included and a constant value 5 is defined for variable 
SIZE using #define statement. The SIZE defines the size of the queue. 

 



Unit 8:  Queues 

LOVELY PROFESSIONAL UNIVERSITY 143 

2. A queue is created using an array named Q with an element capacity of 20. A 
variable named COUNT is declared to store the count of number elements 
present in the queue.  

3. Four functions are created namely, Q_F(), Q_E(), rear_insert(),  
front_delete(),and display(). The user has to select an appropriate function to 
be performed. 

4. The switch statement is used to call the rear_insert(), front_delete(), and 
display() functions.  

5. When the user enters 1, rear_insert() function is called. In the rear_insert() 
function, the if loop checks if the count is full. If the condition is true, then 
the program prints a message “Queue is empty”. Else, it checks for the value 
of R and assigns the element (num) entered by the user to R. Initially, when 
there are no elements in the queue, the value of R will be 0. After every 
insertion, the variable COUNT is incremented. 

6. When the user enters 2, the front_delete() function is called. In this function, 
the if loop checks if the variable COUNT is empty. If the condition is true, 
then the program prints a message “Queue underflow”. Else, the element in 
the 0th

7. When the user enters 3, the display() function is called. In this function, the if 
loop checks if the value of COUNT is 0. If the condition is true, the program 
prints a message “Queue is empty”. Else, the value of F is assigned to the 
variable i. The for loop then displays the elements present in the queue. 

 position will be deleted. The size of F is computed and the COUNT is 
set to 1. 

8. When the user enters 4, the program terminates. 

8.4.3   Priority Queue 
In priority queue, the elements are inserted and deleted based on their priority. Each element is 
assigned a priority and the element with the highest priority is given importance and processed first. If 
all the elements present in the queue have the same priority, then the first element is given importance. 

 

 

 
Program for Implementation of Priority Queue 
 
#include<stdio.h> 
#include<malloc.h> 
struct queue 
{ 
     int PRI; 
     int value; 
     struct queue *next; 
}*F, *q, *tmp, *new; 
typedef struct queue *P; 
 
void ins() 
{ 
    int num, el_pri; 
    new = ( P ) malloc(10 ); 
    printf( "Enter the element to be inserted:" ); 
    scanf( "%d", &num ); 
    printf( "Enter a priority:" ); 
    scanf( "%d", &el_pri ); 
    new->value = num; 
    new->PRI = el_pri; 
 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 144 

    if ( F == NULL || el_pri < F->PRI ) 
{ 
    new->next = F; 
    F = new; 
} 
    else 
{ 
    q = F; 
    while ( q->next != NULL && q->next->PRI <= el_pri ) 
    q = q->next; 
    new->next = q->next; 
    q->next = new; 
        } 
} 
void del() 
{ 
    if ( F == NULL ) 
        { 
            printf( "\n QUEUE UNDERFLOW\n" ); 
        } 
    else 
        { 
            new = F; 
            printf( "\nDeleted number is %d\n", new->value ); 
            F = F->next; 
            free( F ); 
        } 
} 
void disp() 
{ 
    tmp = F; 
    if ( F == NULL ) 
        printf( "QUEUE IS EMPTY\n" ); 
    else 
        { 
        printf( "QUEUE IS:\n" ); 
        while ( tmp != NULL ) 
        { 
         printf( "\n%d[PRI=%d]", tmp->value, tmp->PRI ); 
         tmp = tmp->next; 
         } 
        } 
} 
int main() 
{ 
    int choice; 
    clrscr(); 
    while(1) 
    { 
       printf( "\n 1. INSERT \n 2. DELETE \n 3. DISPLAY \n 4. EXIT" ); 
       printf( "\n Enter your choice" ); 
       scanf( "%d", &choice ); 
       switch ( choice ) 
       { 
           case 1: 
              ins(); 
             break; 



Unit 8:  Queues 

LOVELY PROFESSIONAL UNIVERSITY 145 

           case 2: 
              del(); 
              break; 
           case 3: 
              disp(); 
              break; 
           default: exit(1); 
        } 
   } 
} 
Output: 

1. INSERT 

2. DELETE 

3. DISPLAY 

4. EXIT 

Enter your choice: 

1 

Enter the element to be inserted 

10 

Enter a priority 

1 

1. INSERT 

2. DELETE 

3. DISPLAY 

4. EXIT 

Enter your choice: 

1 

Enter the element to be inserted 

20 

Enter a priority 

2 

1. INSERT 

2. DELETE 

3. DISPLAY 

4. EXIT 

Enter your choice: 

3 

QUEUE IS: 

10[PRI=1] 

20[PRI=2] 

1. INSERT 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 146 

2. DELETE 

3. DISPLAY 

4. EXIT 

Enter your choice: 

2 

Deleted number is 10 

1. INSERT 

2. DELETE 

3. DISPLAY 

4. EXIT 

Enter your choice: 

2 

Deleted number is 20 

1. INSERT 

2. DELETE 

3. DISPLAY 

4. EXIT 

Enter your choice: 

2 

QUEUE UNDERFLOW 

In this example: 

1. The header files namely, stdio and malloc are included. 

2. A structure named queue is created which consists of three variables namely, 
value, PRI, and next. The variable value holds the value of the element. The 
PRI holds the element priority value and next is a pointer variable that points 
to the next element in the queue. Four objects are declared namely, F, q, tmp, 
and new to access the structure elements. 

3. Three functions are created namely, ins(), del(), and disp().  The user has to 
select an appropriate function to perform. 

4. The switch statement is used to call the ins(), del(), and disp() functions.  

5. When the user enters 1, the ins() function is called. This function allocates 
memory of capacity 10 for the queue using malloc function. Then, the user 
enters the element to be inserted into the queue, and its priority. The value of 
the element entered is stored in value and its priority is stored in PRI. The if 
loop checks if the F value is equal to NULL or the priority of the entered 
element is less than the priority of the first element. If either of the condition 
is true, then the element entered is stored in the second position of the queue. 
Else, the value of F is assigned to q. The if loop checks if the third position of 
the queue is not equal to NULL and the priority of the second element is less 
than the third. If the condition is true, then the second element is stored in the 
third position and the third element is stored in the second position. The loop 
continues to check for the priority of all the elements in the queue and stores 
them accordingly. 



Unit 8:  Queues 

LOVELY PROFESSIONAL UNIVERSITY 147 

6. When the user enters 2, the del() function is called. In this function, the if 
loop checks if the value of F is equal to NULL. If the condition is true, then 
program prints the message “QUEUE UNDERFLOW”. Else, F is assigned to 
new, and the element in F is deleted. The pointer F is set free.  

7. When the user enters 3, the function disp() is called. In this function, the if 
loop checks if the value of F is equal to NULL. If the condition is true, then 
the program prints the message “QUEUE is EMPTY”. Else, it displays the 
elements present in the queue along with their priority.   

8. When the user enters 4, the program terminates. 

 

 
1. Create a circular queue having an element storage capacity of 5. Insert 4 

elements into the queue. Delete first two elements and insert an element at 
the position F=1 and R=3. 

2. Create a priority queue having an element capacity of 3. Insert the elements 
100 having priority 2, 200 having priority 1, and 300 having priority 3. Try 
deleting element with priority 2. Analyze the result. 

• A queue is an ordered collection of items in which deletion takes place at the front and insertion at 
the rear of the queue. 

8.5   Summary 

• The basic operations performed on a queue include inserting an element at the rear end and 
deleting an element at the front end. 

• In a memory, a queue can be represented in two ways; by representing the way in which the 
elements are stored in the memory, and by naming the address to which the front and rear 
pointers point to.  

• The different types of queues are double ended queue, circular queue, and priority queue. 

Dequeue: Process of deleting elements from the queue. 

Enqueue: Process of inserting elements into queue. 

Front End: Refers to the first node in the queue. 

Rear End: Refers to the last node in the queue. 

8.6    Keywords 

1. State whether the following are true or false. 

8.7   Self Assessment 

(a) Insertions and deletions can happen at the front or the rear end of the priority queue. 

(b) A double ended queue is also known as deque. 

(c) If the queue is not empty, the items are deleted at the rear end of the queue. 

2. Fill in the blanks. 

(a) The end of the queue from which the element is deleted is termed as 
……………………………. and the end at which the new element is added is termed as 
……………………………. 

(b) While inserting an element in a basic queue, the rear pointer is always……………………… 

(c) In a ……………………………. queue, insertion and deletion operations are independent of 
one another. 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 148 

(d) In priority queue, the elements are inserted and deleted based on 
their……………………………. 

3. Select a suitable choice for the following questions. 

(a) What should be the value of R pointer, before inserting elements into the queue? 

(i) -1 

(ii) 0 

(iii) 1 

(iv) Is not set to any value 

(b) Which among the following is a principle of queue? 

(i) Last in First Out 

(ii) First in First Out 

(iii) Last in Last Out 

(iv) First in Last Out 

(c) Using which of the following operation, an item is added to the rear end of the queue? 

(i) Enqueue 

(ii) Dequeue 

1.  “In circular queue the insertion and deletion operations are independent of each other.” Analyze. 

8.8   Review Questions 

2. “Using double ended queues is more advantageous than using circular queues. “Discuss 

3. “Stacks are different from queues.” Justify. 

4. “Using priority queues is advantageous in job scheduling algorithms. “Analyze 

5. Is it possible to insert an element in the front end in a queue? If yes, which method is followed? 
Discuss 

6. Can a basic queue be implemented to function as a dynamic queue? Discuss 

7. “It is more advantageous to implement queues using linked lists. “Analyze 

Answers: Self Assessment 
1.  (a) False  (b) True   (c) False 

2.  (a) Front, Rear (b) Decremented    (c) Circular (d) Priority 

3. (a) -1   (b)  First in First Out (c) Dequeue 

 

8.9   Further Readings 

 

 
Lipschutz, S. (2011). Data Structures with C. Delhi: Tata McGraw-Hill. 

Reddy, P. (1999). Data Structures Using C. Bangalore: Sri Nandi Publications. 
 

 

 

http://www.brucemerry.org.za/manual/structures/circular.html 

http://www.niitcrcs.com/btpc/btpc-08%20papers%5CIsha-Arrays.pdf 

http://www.sqa.org.uk/e-learning/ArrayDS02CD/page_19.htm 



Unit 9:  Recursion 

LOVELY PROFESSIONAL UNIVERSITY 149 

Unit 9:  Recursion 

CONTENTS 

Objectives 

Introduction 

9.1 Fundamentals of Recursion 

      9.1.1   Definition of Recursion 

      9.1.2   Types of Recursion 

9.2 Anatomy of Recursive Call 

9.3 Function Call and Recursion Examples 

      9.3.1   Factorial of a Number 

      9.3.2   Fibonacci Series 

      9.3.3   Tower of Hanoi 

9.4 Complexity Issues 

9.5 Iteration vs. Recursion 

9.6 Summary 

9.7 Keywords 

9.8 Self Assessment 

9.9 Review Questions 

9.10 Further Readings 

After studying this unit, you will be able to: 

Objectives 

• Discuss the fundamentals of recursion 

• Explain the anatomy of recursive call 

• Describe function call and recursion examples 

• Analyze the complexity issues 

• Compare iteration and recursion 

Recursion is one of the methods that can be used to solve problems related to mathematics, gaming, and 
so on. The conventional problem solving methods decompose the solution into steps and execute each 
step one by one. The recursive method of solving a problem breaks the problem into a smaller instance 
of the same type and solves the smaller instances. High level languages implement recursion by 
allowing a function to call itself. 

 

 

 

 

Introduction 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 150 

Let us consider a real life problem and analyze how recursion can be used to solve it.  

 
Figure 9.1: A Multi-Story Building 

 
  
 

 
 
 

Figure 9.1 depicts a multi-story building. When a ten story building is built, nine stories are first built, 
and then an extra story is added. Similarly, to construct nine stories, the builder first needs to build 
eight stories and then add an extra story. We can generalize and say that to build an n-story building, n-
1 stories need to be built and then one more story must be added. This is a simple example of recursion. 
This is like saying, “build story” function considers an n-story building and if the value of ‘n’ is greater 
than one, it first calls itself to build a lower story and then adds one to build the higher ones. 

Recursion is a function that directly or indirectly invokes an instance of itself. In C language, almost all 
the library functions can be used recursively. Recursion is considered to be an advanced kind of control 
flow. 

Recursive algorithms are mainly used for manipulating data structures, which are defined recursively. 
When a data object is recursively defined, it is easy to state algorithms that work recursively on such 
objects. Although some languages like BASIC and COBOL do not have the facility to provide recursion, 
all the latest programming languages use recursion as their basic iterative control structure.  

If our programming language does not permit recursion, it should not matter as we can easily translate 
a recursive program into a nonrecursive one. Recursion is an inherent property of C language. This unit 
helps you in understanding how recursion can be implemented using C language.  

This unit explains the concept of recursion, which is a problem solving technique. It provides various 
examples and explanation to design and understand recursion.  

 
 

Did you know? Recursion is a familiar concept in Mathematics and Logic. For instance, the natural 
numbers are defined recursively as follows:  
‘0’ is a natural number 
If ‘n’ is a natural number, then s(n) = (n+1) is a natural number, wherein, ‘s’ is a 
successor function. In this context, recursion is closely related to mathematical 
induction.  

It also discusses about recursive call and complexity issues. It also describes the difference between 
iteration and recursion.  

The ability of a function to call itself is called recursion. Recursion is an essential concept in Computer 
Science. Recursion makes it convenient to solve various problems that would be cumbersome to solve 
using iterative constructs such as for, while, and do while. 

9.1   Fundamentals of Recursion 



Unit 9:  Recursion 

LOVELY PROFESSIONAL UNIVERSITY 151 

In Computer Science and Mathematics, recursion just means self reference. Therefore, a recursive 
function is a function whose definition is based upon itself. In other words, a function that contains a 
call statement to itself or a call statement to another function that may eventually result in a call back to 
the original function is termed as a recursive function.  

Recursion defines a problem in terms of itself. A recursive solution repeatedly divides a problem into 
smaller sub problems till a solvable sub problem is attained. After obtaining the answer for the solvable 
sub problem, the answer is fed back into the larger sub problem to obtain the solution. This process 
goes on until we solve the main problem.  

Let us now discuss the concept of recursion.  

Let ‘P’ be the original problem. P can be redefined into sub problems like P1, P2 and so on. Let Pn be the 
last sub problem. If Pn sub problem can be defined without any subdivision, then the solution of Pn can 
be used to solve Pn-1 sub problem. Further, this solution is fed into Pn-2, … P1

 

 till the original problem 
‘P’ has been solved.  

 

 
Program to count till the entered number and to display information about the 
current recursion level 
 
/* A preprocessor directive */ 
#include <stdio.h>  
 
/* Declare an  integer variable named ‘level’ */ 
int level;   
 
/* Function declaration of count function that accepts an integer val */ 
void count (int val)   
{ 
/* Print the count value */ 
printf (“\n Start counting at level % 2d : val = %2d\n”, ++level, val); 
 
/* Checking if variable ‘val’ is greater than 1 */ 
if (val>1)  
 
/* A recursive call is made passing the value  (val-1) */ 
count (val-1);   
 
/* Print variable ‘val’ value */ 
printf (“Display val”, val);  
 
/* Print level and val. Then decrement the value of level */ 
printf (“Stop counting at level %2d : val = %2d\n”, level--, val);  
} 
 
/*Main Program*/ 
void main ()  
{ 
/* Function count and variable int are declared*/ 
int val; 
void count (int);  
printf (“Count till what value?”); 
 
/* Accept an integer value and store it in val */ 
scanf (“%d”, &val);  
/* Initialize level value to zero */ 
level = 0;  
/* Calling count function passing val as the parameter */ 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 152 

count (val);  
 } 
Output: 
Count till what value? 4 
Start counting at level 1: val =4 
Start counting at level 2: val =3 
Start counting at level 3: val =2 
Start counting at level 4: val =1 
Stop counting at level 4: val =1 
Stop counting at level 3: val =2 
Stop counting at level 2: val =3 
Stop counting at level 1: val =4 

In this example: 

1. First, the stdio.h header file is included, using the include keyword. 

2. Then, an integer variable named level is declared. 

3. Then, a function named count is declared. 

4. In the count() function,  

(a) First, increment the level value and print the values of level and val. 

(b) Then, check the value of val using an ‘if’ condition to determine whether 
it is greater than 1. If the condition is true, a recursive call is made by 
passing the value (val-1). 

(c) Then, print the value of val. 

(d) Finally, decrement the value of level and print the values of level and 
val. 

5. Execution begins at the function main () which does not return any value. 

6. In the main() function, 

(a) First, initialize an integer variable val. 

(b) Then, declare a function named count. 

(c) Then, accept an integer value and store it in val. 

(d) Then, set the value of level to zero. 

Finally, call the count function using the parameter val. 

Now let us understand how the recursion process functions. The program starts executing in the main 
function. Consider that the function count () has val = 4. The count (4) function starts executing while 
the main function is on hold. This function exhibits the level information which is nothing but the level 
of recursion. As value of val is equal to 4, which is greater than 1, the function count () is called after 
decrementing val to 3. Then count (3) exhibits details about the level of recursion. As value of val is 
equal to 3, which is greater than 1, the function count () is once again called with val=2.  

At this point, the main (), count (4) and count (3) are all on hold, and count (2) starts executing. Similar 
to the previous calls, count (2) exhibits details about the level of recursion. Then, the function checks 
whether its val value is greater than 1. As the condition is true, the main (), count (4), count (3), and 
count (2) are on hold, while count (1) starts executing. count (1) exhibits details about the level of 
recursion. Then the ‘if’ condition fails and control shifts to the next statement, i.e., to printf () statement 
to display the value of val. 

The best feature of the recursive function call is that, the last version called is the first to be performed. 
Also, the last one called is the first to finish its task. We can see this in the output shown.  
 



Unit 9:  Recursion 

LOVELY PROFESSIONAL UNIVERSITY 153 

9.1.1   Definition of Recursion 
A function that calls itself is termed as a recursive function and the process involved in doing this is 
called recursion. Recursion is a methodology that permits breaking down of a problem into one or 
many sub problems that are similar to the original problem. 

The parameters defined in the function definition are termed as formal arguments. The parameters 
defined in a caller function and provided in the function call are termed as local variables Every time a 
function is invoked, a new set of formal parameters and local variables are allocated on the stack. Then, 
these new values are used to execute from the beginning of the function. A call to itself repeats until the 
base or terminal condition is achieved. Once the base condition is achieved, the function returns the 
result of the earlier function. A series of returns ensure that the output to the original problem is 
obtained. 

 

 

 
A simple recursive example 
 
/* A preprocessor directive */ 
#include<stdio.h>  
/* printnum function definition */ 
int printnum (int begin)  
{ 
   /* If begin value is less than 9 */ 
    if (begin < 9)  
      { 
         /* Print begin value */ 
          printf (%d”, begin);  
        /* printnum function calls itself */ 
        printnum (begin + 1);  
       } 
/* Return begin value */ 
return (begin);  
} 
 
/* Main function */ 
void main ()  
{ 
     /* Initialize integer variables a and c and assign 1 to a */ 
     int a=1, c;   
    /* Clears the output screen */ 
     clrscr ();  
    /* Calls printnum function passing the parameter 1*/ 
     c = printnum (a);  
     /* Waits until a key is pressed */ 
     getch();  
} 

Output: 

12345678 

In this example: 

1. First, the stdio.h header file is included using the include keyword. 

2. Then, a function named printnum is declared which returns an 
integer value stored in begin. 

3.       In this method,  

(a) First, the value of begin using an ‘if’ condition is checked to 
determine whether it is less than 9. If the condition is true, begin 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 154 

is printed and the printnum (begin + 1) function is invoked.  

(b) Finally, the method returns the value of begin.  

4. Execution begins with the function main () which does not return any 
value. 

5. In the main() function,  

(a) First, integer variables a and c are initialized and value 1 is 
assigned to a.  

(b) Then, output screen is cleared using clrscr (). 

(c) Then, a parameter named a, which holds the value 1, is passed 
into the printnum function. This value is stored in variable c.  

Finally, the program terminates when any key is pressed.  
 
 

 

 
The functions that are generally defined recursively are: 

1. Factorial 

2. Greatest Common Divisor (GCD) 

3. Fibonacci 

4. Games 

(a) Chess 

(b) Towers of Hanoi 

To successfully apply recursion to a problem, you should be able to divide the problem into subparts, 
which is as shown in the problem given below. 

For instance, we can compute the positive exponential power of ab









>−∗
=

=
0));1(,(

0;1
),(

bifbapowera
bif

baPower

 using recursion.  

The recursive definition for finding a positive exponential power of a given number is as follows: 

 

Here, ‘a’ is the mantissa and ‘b’ is the exponent.  

In the same manner, you can determine the negative exponential power of number, such as, a-b









>−∗
=

=−
0)));1(,(/(1

0;1
),(

bifbapowera
bif

baPower

. The 
definition of recursion is as follows: 

 

Here, the power is negative, therefore, the inverse return value of a function is considered to be the 
exponential power of the number. That is, a-b = 1 / ab.  

Let us now consider an example that recursively computes power (x, y) such that the value contained in 
x is raised to yth

  
 power. 

 

 

A recursive routine that computes the value of 5 raised to the power of 2, i.e., 
power (5, 2).  

 /* A recursive function that returns the result of the value raised to the power 
contained in the variable raised*/ 
/* It returns 0 or -1 if the raised value is negative*/    
/* A preprocessor directive */ 



Unit 9:  Recursion 

LOVELY PROFESSIONAL UNIVERSITY 155 

# include <stdio.h> 
/* power function definition */ 
int power (int x, int y) 
{ 
/* Any value that is raised to zero is one */ 
if (y == 0) return 1;  
/* Any value that is raised to 1 returns the same value */ 
if (y==1) return x;  
/* power function calls itself */ 
return (x * power (x, y – 1)); 
 
} 
/* Main function */ 
void main () 
{ 
/* Initialize integer variables x, y and z */ 
int x, y, z; 
/* Clears the output screen */ 
clrscr(); 
/* Print enter the base value */ 
printf (“\n Enter the base value: “); 
/* Accept the base value and store it in x*/ 
scanf (“%d”, &x); 
/* Print enter the power */ 
printf (“\n Enter the Power: “); 
/* Accept the exponent value and store it in y*/ 
scanf (“%d”, &y); 
/* The power function is called with the arguments x and y*/ 
/* The value returned is assigned to z*/ 
z = power (x, y);  
/* The value of z is printed*/ 
printf (“\n %d raised to %d is %d”, x, y, z); 
/* Waits until a key is pressed */ 
getch (); 
} 

Output: 

The result of power (5, 1) is 5. 
The result of power (5, 2) is 25. 

In this example: 

1. First the stdio.h header file is included using the include keyword. 

2. Then, a function named power is declared which holds integer variables x 
and y. 

3. In the function power(),  

(a) First, using an ‘if’ condition, the value of y is checked. If y is equal to 
zero, the value 1 is returned.  

(b) Then, using an ‘if’ condition, the value of y is checked. If y is equal to 1, 
the value of x is returned.  

(c) Finally, power function calls itself to return x to the power (x, y-1). 

4. Execution begins at the function main () which does not return any value. 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 156 

5. In main(),  

(a) First, the integer variables x, y and z are initialized. 

(b) The output screen is cleared using clrscr (). 

(c) The base value is accepted and stored in x. 

(d) The exponent value is accepted and stored in y.  

(e) The power function is called with the arguments x and y. The value 
returned is assigned to z.  

(f) The value of z is printed. 

(g) Finally getch() prompts the user to press any key and the program 
terminates. 

Now let us consider how we solve 5 * power (5, 2). If power() function is called for power(5, 2), the 
processing performed is as shown below.  

power (5, 2) return (5 * power (5, 2-1)) 
power (5, 1) return (5 * power (5, 1-1)) 
power (5, 0) return 1 as any value that is raised to zero is one 
 

 

 

 

The expression a % b yields the remainder of ‘a’ divided by ‘b’. Greatest common 
divisor (GCD) of integers x and y is defined as:  

If (y <=x && x % y == 0); gcd (x, y) = y 

If (x < y); gcd (x, y) = gcd (y, x) 

Otherwise; gcd (x, y) = gcd (y, x % y) 

Write a recursive function in C to determine gcd (x, y). Also determine an iterative 
method to compute this function. 

9.1.2   Types of Recursion 
When a function invokes itself, it is called as recursion. There are two types of recursion. They are: 

1. Direct Recursion: In this kind of recursion, the function invokes itself. Direct recursion involves 
only one function.  

2. Indirect Recursion: Indirect recursion occurs when one method invokes the other, which 
eventually results in the original method being called again. 

Direct Recursion 

Direct recursion involves only one function that invokes itself till the specified condition is true. Let us 
analyze the following program: 

 

 

 
A program that performs sum of first five numbers using a call function  
 
/* A preprocessor directive to include standard input and output operations */ 
# include <stdio.h> 
/* A preprocessor directive that contains macros and function declaration used in 
working with processes and threads */ 
# include <process.h> 
/* Globally declare the main function */ 
void main (int);  
/* Initialize integer variables x and s and assign 0 to s */ 
int x, s = 0; 



Unit 9:  Recursion 

LOVELY PROFESSIONAL UNIVERSITY 157 

/* Variable x is passed onto the main function */ 
void main (x) 
{ 
      /* Add values of variable s and x and store in variable s */  
      s = s + x; 
    /* Print the value of x */ 
      printf (“\n x = %d s = %d”, x, s); 
    /* If x value is equal to 5 then terminate successfully */ 
     if (x==5) exit (0); 
     /* main function calls itself which holds post-incremented value of x */  
     main (++x); 
} 
Output: 
x=1 s=1 
x=2 s=3 
x=3 s=6 
x=4 s=10 
x=5 s=15 
 

In this example: 

1. First, the stdio.h header file is included using the include keyword. 

2. Then, the process.h header file that contains macros and function declaration 
are included using the include keyword. 

3. Then, the main() function is declared globally.  

4. Then, integer variables x and s are initialized and 0 is assigned to s.  

5. Execution begins with the void main (x) function which does not return any 
value, but a variable x is passed onto it. 

6. In this main() function,  

(a) First, the values of variable s and x are added and stored in variable s. 

(b) Then, the value of x is printed.  

(c) Then, using an ‘if’ condition the value of x is checked. If x is equal to 5, 
the loop is terminated successfully. 

(d) Finally, the main function calls itself with the post-incremented value of 
x. 

Indirect Recursion 

In indirect recursion, two or more functions are involved in recursion. When control passes from one 
function and enters into another function, the former function’s local variables are destroyed.   

 

 

 
A program that demonstrates indirect recursion between two functions.  
 
/* A preprocessor directive that contains standard input and output operations */ 
# include <stdio.h> 
/* A preprocessor directive that creates text user interfaces */ 
# include <conio.h> 
/* A preprocessor directive that contains macros and function declaration used in 
working with processes and threads */ 
# include <process.h> 
 
/* Initialize integer variable s globally*/ 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 158 

int s; 
/* The show function is defined globally which does not return any value */ 
void show (void); 
/* main function */ 
main () 
{ 
    /* If s value is equal to 5, the program execution comes to an end*/ 
    if (s==5) exit (0); 
    /* show function is called */ 
    show (); 
} 
/* show function definition */ 
void show () 
{ 
    /* Print the value of s */ 
    printf (“%d”, s); 
   /* Increment the value of s */ 
    s++; 
    /* main function is called */ 
    main (); 
 } 
Output: 
0 1 2 3 4 

In this example: 

1. First the stdio.h header file is included using the include keyword. 

2. Then, the conio.h header file that creates text user interfaces are included, 
using the include keyword. 

3. Then, the process.h header file is included using the include keyword. 

4. Then, the integer variable s is declared globally and initialized.  

5. Then, show function is defined globally which does not return any value.  

6. Execution begins in the main () function.  

7. In main(),  

(a) First, using an ‘if’ condition, the value of s is checked. If the value is 
equal to 5, the program execution comes to an end. 

(b) Finally, the show function is invoked.  

8. In the show function,  

(a) First, the value of s is printed.  

(b) Then, the value of s is incremented.  

(c) Finally, the main function is invoked.  

Recursive function comprises two types of cases. They are:  

9.2   Anatomy of Recursive Call 

1. A base case  

2. A recursive case 

A base case is the smallest instance of the problem whose solution is not recursive. It guarantees the 
termination of a function. Even a small problem can have many base cases. 



Unit 9:  Recursion 

LOVELY PROFESSIONAL UNIVERSITY 159 

A recursive case defines a problem in terms of smaller problems of similar type. Recursive case 
comprises a recursive function call. A problem can consist of many recursive cases.  

To determine recursive solution for any kind of problem, follow the steps given below: 

1. Define a problem in terms of a smaller problem of similar type.  

2. Define recursive part. In the power() function shown in 9.1.1, the statement ‘return (x * power (x, y 
– 1))’; is the recursive part. 

3. Define base case even for a small problem where solution can be calculated easily. 

To attain recursive solutions, follow the steps given below: 

1. Analyze how the problem can be defined in terms of smaller problems.  

2. Determine how each of the recursive calls help to divide the problem into sub-problems. 

3. Analyze the base case which can be solved without recursion. 

4. Find whether the base case can be attained or not when the problem is broken. 
 

 

 
Be careful while using recursive step. If the terminal or base condition is omitted and the 
recursive step is wrongly used, then it will result in infinite recursion that exhausts the           
memory slowly.  

Let us design a recursive solution for writing a string backwards.  

Problem: Write a string of characters in reverse order. 

Recursive solution: Write the last character of string and solve the problem by writing the first (n-1) 
character backward. Each recursive solution should increment the string pointer of the string that needs 
to be written backwards. Then, define the base case by writing an empty string backward which does 
not do anything. As the problem reduces, the base case is attained.  

 

 
 
 

 

Program to write a string of characters in reverse order 

/* A preprocessor directive that contains standard input and output operations */ 

#include<stdio.h> 

/* print_reverse is a recursive function which takes variable S */ 

print_reverse (char *S) 

/* S is a pointer which points to a character */  

{ 

     /* Check whether the string pointer value is not equal to NULL*/ 

     if (*S != NULL) 

         { 

                 /* print_reverse function calls itself after incrementing the pointer by 1 
*/ 

   print_reverse (++S); 

                /* putchar writes a single character to the standard output stream, that 
is, the value of S is decremented and that string pointer is written*/ 

   putchar (* (--S));  

       } 

/* Main function */ 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 160 

main () 

{ 

      /* A character array S whose size is 80 is declared */ 

      char S[80]; 

      printf ("\n Enter a string: \n"); 

      /* gets function declared in stdio.h header file reads a line from standard 
input and stores it in S. */ 

      gets (S); 

      printf("\nThe reversed string: \n"); 

      /* print_reverse function is called with the argument S */ 

      print_reverse (S); 

     /* Waits until a key is pressed */ 

      getch(); 

} 

Output: 

Enter the string to be reversed: english 

Output String : hsilgne 

In this example: 

1. First, the stdio.h header file is included using the include keyword. 

2. Then, a recursive function named print_reverse is declared. The function 
takes a parameter S, which is a character pointer. 

3. In the print_reverse () method:  

(a) First, using an ‘if’ condition, the value of string pointer S is checked. If 
the value is not equal to NULL, a recursive call is made by passing the 
incremented value of S.  

(b) Finally, the value of S is decremented and the string pointer value is 
written using putchar().  

4. Then, the main () function is executed.  

5. Then, a character array S whose size is 80, is declared.  

6. Then, gets function is used to read a line from the standard input and this is 
stored in S.  

7. Then, print_reverse function is invoked with the argument S. 

8. Finally, getch() prompts the user to press any key and when the key is 
pressed, the program is terminated.  

 
 
 
 
 
 
 



Unit 9:  Recursion 

LOVELY PROFESSIONAL UNIVERSITY 161 

 

 
 

 

Use the  function explained below to identify the following: 

1. The base case of the function Sample 

2. The recursive case of the function Sample 

int Sample (int base, limit) 

{ 

    if (base > limit)  return -1; 

    else  

         if (base == limit) return 1; 

         else 

         return base * Sample (base+1, limit); 

} 

 
 

 

 

1. Base case computes one or more specific numbers (usually 0 or 1) for which the 
result can be attained immediately.  

2. Recursive case computes result by calling recursively the function with a small 
argument and using the result to obtain the final answer. 

A function is a block of statements that can be utilized to perform a particular task. A function 
comprises the following parts: 

9.3   Function Call and Recursion Examples 

1. Function prototype declaration  

2. Function declarator  

3. Actual and formal arguments  

4. Return statement  

5. Invoking or calling function  

Function Prototype Declaration 
The functional prototypes are provided in the beginning of the program after the # include statement. 
The function prototype declaration comprises the return type, arguments list, and name of the function. 

Function Call 
A function is activated only when a function call is invoked. A function should be invoked by its name 
along with the argument list enclosed within parenthesis and terminated with a semi-colon.  

Actual and Formal Argument 
The arguments defined in a caller function and provided in the function call are termed as actual 
arguments. The arguments defined in the function definition are termed as formal arguments.  

Return Statement  
Return statement returns value to the caller function. Return statement returns just one value at a time. 
When the compiler encounters a return statement, the control of the program is transferred to the caller 
function. 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 162 

Let us see how recursion is implemented.  

When a function is invoked, the run-time system allocates memory spaces dynamically for storing 
parameters, variables, and constants that are defined within the function. Every function stores a return 
address.  

 

 

 
Program to illustrate the usage of stack  
 
/* Recursive Call */ 
/* A preprocessor directive that contains standard input and output operations */ 
# include <stdio.h> 
/* Main function */ 
main () 
{ 
    /* Initialize x as an integer variable with static as its storage class and assign  
    0 to it. Static storage refers to the memory locations which persist  
    Throughout the lifetime of the program. */   
    static int x = 0; 
    /* Increment the value of x */ 
    x++; 
    /* Condition statement: If x is less than 7, the main function itself is  
    invoked otherwise  x value is incremented */  
    x < 7 ? main () :  x++; 
    /* Print the value of x */ 
    printf (“%2d”, x); 
 } 
Output: 
8 8 8 8 8 8 8 

In this example: 

1. First the stdio.h header file is included using the include keyword. 

2. Then, the main function is defined. 

3. In main():  

(a) First, x is initialized as an integer variable with static as its storage class 
and 0 is assigned to it.   

(b) Then, x is incremented.   

(c) Then, using an ‘if’ condition, the value of x is checked. If x is less than 
7, the main function itself is invoked. Otherwise, the value of x is 
incremented.  

(d) Finally, the value of x is printed.  

9.3.1   Factorial of a Number  
Calculation of factorial of a number is another program that can be written recursively. Let us discuss 
how to write a program to determine the factorial of a number. Factorial of a number ‘n’ can be 
determined using the series: 1*2*3*…n = n! 

The recursive definition to determine factorial of n is given below: 

( ) 







−∗
=

=
otherwise;1nfactn
0nif;1

)n(Fact  

 

 



Unit 9:  Recursion 

LOVELY PROFESSIONAL UNIVERSITY 163 

By definition, 1 is the value for 0!. Let us compute the factorial of 5. Figure 9.2 depicts the factorial of 5. 

 
Figure 9.2: Factorial of 5 

 
  
 

 
 

But computations will be done in reverse order as depicted in figure 9.3. 

 Figure 9.3: Computations for Factorial of 5 in 
Reverse Order 

 
  
 

 
 

 
 

 

 

Program that computes the factorial of a number using recursion.  
 
#include<stdio.h> 
/* fact is a recursive function which takes an integer variable num and returns 
an integer value */ 
int fact (int num) 
{ 
    /* Check if num value is equal to zero */ 
    if (num==0)  
          /* Return the  value 1 */ 
          return 1; 
    /* Otherwise */ 
    else  
         /* Return num * fact (num-1) value */ 
         return (num * fact (num-1)); 
 } 
/* Main function */ 

                                                                          0! = 1 

              1! = 1 * 0! = 1 * 1 =1  

    2! = 2 * 1! = 2 * 1 = 2 

      3! = 3 * 2! = 3 * 2 =6 

      4! = 4 * 3! = 4 * 6 = 24 

     5! = 5 * 4! = 5 * 24 = 120 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 164 

void main () 
{ 
    /* Initialise an integer variable num */ 
    int num; 
     printf (“Enter the number: \n”); 
    /* Accept an integer value num */ 
    scanf (“%d”, &num); 
    /* Print the value of fact (num) */ 
    printf (“ The factorial of %d = %d\n”, num, fact (num)); 
} 
 
Output: 
Enter the number: 5 
The factorial of 5 = 120 
 
In this example:  

1. First, the stdio.h header file is included using the include keyword. 

2. Then, a recursive function fact is declared which takes an integer variable 
num and returns an integer value.  

3. In this method,  

(a) The value of num is checked using an ‘if’ condition to determine 
whether it is equal to 0. If the condition is true, value 1 is returned. 

(b) Otherwise, the fact function invokes itself by return (num * fact 
(num-1)). 

4. The main () program is then defined. It does not return any value. 

5. In main (): 

(a) First, an integer variable num is initialized.  

(b) Then, an integer value num is accepted. 

(c) Finally, the function fact (num) is invoked and the value is printed 
and returned. 

Suppose the value of ‘num’ is 4 when fact (num) is executed, then the value of ‘num’ along with a 
return address of say 1000, stored in the program counter is pushed onto the stack. Table 9.1 (a) depicts 
the stack at this point. As ‘num’ is not zero, (num-1) is set to 3. fact () function is invoked with (num-1) 
as the parameter. Prior to entering into the fact () function, assume that the return address is 2000 and 
the local parameters are pushed onto the stack as depicted in table 9.1 (b). Each time the fact () function 
is invoked recursively, a new set of local parameters will be pushed onto the stack. When fact () is 
invoked recursively till the value of ‘num’ becomes zero, the value of num is decremented by 1. Table 
9.1 (a) through 9.1 (e) depicts the stack every time the fact () function is called.  

When the value of ‘num’ becomes zero, the return statement with value 1 is returned. This is termed as 
base or terminal condition. Once the return statement executes, the top most stack variables are popped 
and the control moves to the original point from where it was invoked and value 1 is copied into fact 
(num-1).  

 

 

 

 

 



Unit 9:  Recursion 

LOVELY PROFESSIONAL UNIVERSITY 165 

The new values of num, num-1, fact (num-1) and (num * fact (num-1)) are depicted in table 9.1 (f) as the 
execution proceeds.  

 
Table 9.1: Illustrations of Stack while Determining fact (4) 

 
  
 
 

4 … … … 1000 
num num-1 fact(num-1) num*fact(num-1) Program Counter 

                                           fact(4) in main() 
                                       (a) 

 
4 3 … … 2000 
4 … … … 1000 
num num-1 fact(num-1) num*fact(num-1) Program Counter 

   fact(4) 
            (b) 
 

3 2 … … 2000 
4 3 … … 2000 
4 … … … 1000 
num num-1 fact(num-1) num*fact(num-1) Program Counter 

fact(3) 
(c) 

 
2 1 … … 2000 
3 2 … … 2000 
4 3 … … 2000 
4 … … … 1000 
num num-1 fact(num-1) num*fact(num-1) Program Counter 

fact(2) 
(d) 

 
1 0 … … 2000 
2 1 … … 2000 
3 2 … … 2000 
4 3 … … 2000 
4 … … … 1000 
num num-1 fact(num-1) num*fact(num-1) Program Counter 

(e) 
 

num num-1 fact(num-1) num*fact(num-1) 
1 0 1 1 
2 1 1 2 
3 2 2 6 
4 3 6 24 

(f) 

Finally, the control passes onto the main () program. The value 24 is copied into (num * fact (num-1)). A 
function can be invoked many times to solve a problem which is termed as depth of recursion. ‘num’ is 
called the depth of recursion to calculate fact (num).  

 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 166 

9.3.2   Fibonacci Series  
Fibonacci series is a series of numbers represented as 0, 1, 1, 2, 3, 5, 8, 13, 21, …. Fibonacci series starts 
with 0 and 1. Each of the subsequent Fibonacci number is computed as the sum of the previous two 
Fibonacci numbers. 

 
 

Did you know? The ratio of consecutive Fibonacci numbers is equal to 1.618. This repeatedly occurs in 
nature. This number has been termed as golden ratio or golden mean. Architects often 
design buildings, rooms and windows whose width and length are in ratio of the 
golden mean.  

Fibonacci series is defined recursively as: 

fibonacci (0) = 0 

fibonacci (1) = 1 

fibonacci (n) = fibonacci (n-1) + fibonacci (n-2) 

Let us calculate recursively the nth

 

 Fibonacci number using Fibonacci () function.  

 

 

Program to calculate recursively the nth fibonacci number using  

fibonacci () function. 

/* Recursive fibonanacci function */ 

/* A preprocessor directive to include standard input and output operations */ 

# include <stdio.h> 

/* Globally declare the fibonacci function */ 

long fibonacci (long n);  

/* Main function */ 

int main (void) 

{ 

/*Declare a long variable named result */ 

long result; 

/*Declare a long variable named number */ 

long number; 

printf (“Input an integer: “); 

/* Accept a long variable number */  

scanf (“%d”, & number); 

/* Fibonacci function is called and its value is stored in a variable named result */ 

result = fibonacci (number); 

/* Print the value of result */ 

printf (“Fibonacci (%1d) = %ld\n”, number, result); 

/* Return 0 */ 

return 0; 

} 



Unit 9:  Recursion 

LOVELY PROFESSIONAL UNIVERSITY 167 

/* Fibonacci recursion function */ 

long fibonacci (long n) 

{ 

/* Check if the value of n is equal to 1 */ 

if (n==1)  

{ 

/* Return 0 */ 

return 0; 

} 

/* Check if the value of n is equal to 2 */ 

if (n==2) 

{ 

/* Return 1 */ 

return 1; 

} 

/* Otherwise */ 

else  

{ 

/* Fibonacci function is invoked within itself and the value is returned */ 

return fibonacci (n-1) + fibonacci (n-2); 

} 

} 
 Output: 

Input an integer: 5 

Fibonacci (5) = 0, 1, 1, 2, 3 

In this example:  

1. First, the stdio.h header file is included using the include keyword. 

2. Then, fibonacci function is declared globally. It returns and accepts a long 
data type.  

3. Then, the int main (void) program is defined. This returns an integer value. 

4. In main (): 

(a) First, initialize the long variables result and number. 

(b) Then, accept the value for number. 

(c) Then, call the fibonacci function and store its value in a variable result. 

(d) Then, print the value of result. 

(e) Finally, return the value 0. 

5. Then the function fibonacci is defined. 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 168 

6. In this function:  

(a) First, check the value of n using an ‘if’ condition to determine whether 
it is equal to 1. If the condition is true, the value 0 is returned. 

(b) Then, check the value of n using an ‘if’ condition to determine whether 
it is equal to 2. If the condition is true, the value 1 is returned. 

(c) Otherwise, finally invoke the fibonacci function within itself and 
return the value of fibonacci (n-1) + fibonacci (n-2) to the main 
function from where it is called. 

In fibonacci () function, the statement ‘if (n==1) return 0;’ is the base case and the statement ‘if (n>1), 
then return fibonacci (n-1) + fibonacci (n-2);’ is the recursive step.  

 

 

 
Illustration of how fibonacci () function evaluates fibonacci (3).  

 
 
 

 

 
In situations where performance is a criterion, avoid the use of recursion. Recursive calls 
consume more time and additional memory.   

9.3.3   Tower of Hanoi 
Tower of Hanoi is a traditional game, which is an example of a problem that can be solved using 
recursion. In the simple Tower of Hanoi problem, there exist three pegs namely, A, B and C.  On peg A, 
there are ‘n’ discs of varied diameters that are placed one above the other, such that the smaller disc is 
always placed above the larger disc. Two pegs ‘B’ and ‘C’ are empty. Then, all discs in peg A are 
transferred to peg C with the help of peg B as the temporary storage. Following are the rules that need 
to be considered while moving the discs: 

• Only one disc can be transferred at a time. 

• The smaller disc must be on the top of a larger disc every time. 

 

 

 

 

 

 



Unit 9:  Recursion 

LOVELY PROFESSIONAL UNIVERSITY 169 

The initial set up of the Tower of Hanoi problem is depicted in figure 9.4. Let us analyze the set up.  

 
Figure 9.4: Initial Set up of Tower of Hanoi 

 
  
 

 
Once all the discs are transferred from ‘A’ to ‘C’, we get the setup as shown in Figure 9.5. 

 Figure 9.5: Set up of Tower of Hanoi After 
Transferring Discs 

 
  
 

 
To transfer ‘n’ discs from ‘A’ to ‘C’, the recursive method comprises three steps: 

1. Transfer (n-1) discs from ‘A’ to ‘B’. 

2. Transfer nth

3. Transfer (n-1) discs from ‘B’ to ‘C’. 

 disc from ‘A’ to ‘C’. 

 

 
Program that computes the Tower of Hanoi using recursion.  
 
/* A preprocessor directive to include functions related to user interfaces 
*/ 
# include <conio.h> 
/* A preprocessor directive to include functions related to standard 
input and output operations */ 
# include <stdio.h> 
 
/* Hanoi function is defined globally which holds four arguments and 
does not return any value */ 
void Hanoi (int, char, char, char); 
/* Main function */ 
main () 
{ 
    /* Declare an integer variable n */  
    int n; 
    printf (“\n Input the number of discs:”); 
    /* Accept the integer value n */ 
    scanf (“%d”, &n); 
    /* Hanoi function is invoked */ 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 170 

    Hanoi (n, ‘A’, ‘B’, ‘C’); 
 } 
 
/* Hanoi function definition holds four arguments namely n, source, 
dest and spare which are of integer and character data types respectively 
*/ 
void Hanoi (int n, char source, char dest, char spare) 
{ 
     /* Check whether n value is equal to 1 */ 
    if (n == 1) 
      { 
          /* Prints the values of source and dest */ 
          printf (“\n Transfer disc 1 from needle %c to needle %c”, source, 
dest); 
           
      } 
    /* Otherwise */ 
     else 
    { 
       /* Hanoi function is invoked within itself with n-1, source, spare and 
dest variables*/ 
       Hanoi (n-1, source, spare, dest); 
       /* Print the values of variables n, source and dest */ 
       printf (“\n Transfer disk %d from needle %c to needle %c”, n, 
source, dest); 
       /* Hanoi function is invoked within itself with n-1, spare, dest and 
source variables*/ 
       Hanoi (n-1, spare, dest, source); 
    } 
} 
 
Output: 
Input the number of discs: 3 
Transfer disk 1 from needle A to needle C 
Transfer disk 2 from needle A to needle B 
Transfer disk 1 from needle C to needle B 
Transfer disk 3 from needle A to needle C 
Transfer disk 1 from needle B to needle A 
Transfer disk 2 from needle B to needle C 
Transfer disk 1 from needle A to needle C 
 
In this example:  

1. First, the conio.h header file that creates text user interfaces are 
included using the include keyword. 

2. Then, the stdio.h header file is included using the include 
keyword. 

3. Then, Hanoi function is defined globally which holds four 
arguments and does not return any value.  

4. Then, the main () program is defined. 

5. In main (): 

(a) First, an integer variable n is initialized.  

(b) Then, the number of discs is accepted and stored in n.  

(c) Finally, the Hanoi function is invoked.  



Unit 9:  Recursion 

LOVELY PROFESSIONAL UNIVERSITY 171 

6. Then, a function named Hanoi is defined.  

7. In this function,  

(a) First, using an ‘if’ condition, the value of n is checked to 
determine whether it is equal to 1. If the condition is true, the 
values of source and dest are printed. 

(b) Otherwise, the Hanoi function is invoked within itself with n-
1, source, spare and dest variables. Then, the values of 
variables n, source and dest are printed. Then, Hanoi function 
is invoked within itself with n-1, spare, dest and source 
variables. 

The Hanoi () function performs as shown in figure 9.6. 

 
Figure 9.6: Working of Hanoi  Function 

 
  
 

 

Recursive procedures or algorithms invoke themselves and therefore their running time is described 
using a recursive equation.  

The recursive equation is as given below: 

T(n) = Time_for (iterative part, n) + Time_for (recursive part, n) 

Where,  

T(n) is the running time for computing any recursive function.  

9.4   Complexity Issues 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 172 

Time_for is the running time for the parts of the algorithm. The Time_for depends on the input data size 
for the computed recursive function. 

Therefore, the recurrence relation is as given below: 

T (n) = Time_for (Preprocess, n) + Time_for (Divide, n) + Time_for (Combine, n) + T(n1) + …. + T (nk).  

Where, n1 to nk is less than n.  
 

 

 

 

If a recursive algorithm takes ‘c’ steps and decreases the parameter by 1, then 
we  may express the running time as a function,  i.e., time (N). Here, time (N)        
represents the running time on N number of input elements.  

time (N) = c + time (N-1) 

If N =1, then time (1) = c 

This equation is easy to solve and the solution is as follows:  

time (N) = c + time (N-1) 

c + c + time (N-2) 

= c + c + … + time (1) 

= c + c + … + c (N times) 

= c * N 

Let us study iteration and recursion. They are applied to a program as per the situation. Table 9.2 
discusses the difference between iteration and recursion.  

9.5   Iteration vs. Recursion 

 
Table 9.2: Iteration vs. Recursion 

 
  
 
 

Iteration Recursion 
 

  
Uses repetitive structures like for, 
while or do while loop and uses them 
explicitly.   

Uses selection structures like if, if else 
or switch statement and achieves 
repetition with the help of repeated 
function calls. 

The body loop terminates when the 
termination condition fails. Each time 
control passes into the loop, the 
counter is updated.  
 

 Example:

In the example program, int factorial 
(int n), the function prototype is 

  
int factorial (int n) 
{ 
    int j, prod = 1; 
    for (j = 0; j < n; j++) 
      prod = prod * j; 
    return prod; 
 } 
 

The body loop terminates when the 
base condition is satisfied. The base 
condition is achieved by invoking the 
same function. Every time the function 
is invoked, a simple version of the 
original problem is obtained until base 
condition is achieved. 

 Example:

In the example program, int factorial 

  
int factorial (int n) 
{ 
     If (n==0)  
        return 1; 
     else  
       return (n*factorial(n-1)); 
} 

Contd.. 



Unit 9:  Recursion 

LOVELY PROFESSIONAL UNIVERSITY 173 

declared. Then variable ‘j’ and ‘prod’ 
are defined as integer. And prod is 
assigned a value ‘1’. prod =  
(prod * j) is calculated until the value 
of ‘j’ is lesser than the value of ‘n’. 
Finally, the program returns the value 
of ‘prod’.  

(int n), the function prototype is 
declared. If the value of ‘n’ entered is 
‘0’, then value ‘1’ is returned. 
Otherwise, (n*factorial (n-1)) value is 
returned until the value of ‘n’ becomes 
zero.  

Iterative functions can be designed 
easily. They occupy less memory and 
execute much faster. 

Every time a function is invoked, all 
the formal parameters, local variables, 
and return address are pushed onto 
the stack. Therefore, it occupies more 
space in the stack and more time is 
consumed in pushing and popping. 
Hence, recursion is costly in terms of 
memory usage and processor time.  

 Iteration is not suitable for problems 
like tree traversals, Tower of Hanoi 
and so on. Although these problems 
can be solved with the help of 
iterative functions, they are difficult to 
design, time-consuming and more 
error prone.   

Recursion is suitable for problems like 
tree traversal techniques, Tower of 
Hanoi, and so on. Recursive functions 
are easily understandable and efficient.   

 

 
 

 

 
1. Write a recursive function to add the first ‘n’ natural numbers. [Hint: 

(addition) = 1 + 2 + … + n]]. 

2. Write a recursive function to determine the sum of digits of a number that 
is entered through a keyboard. 

• Recursion is a function that directly or indirectly invokes an instance of itself. 

9.6   Summary 

• Recursion procedures solve a given problem by breaking down the problem into an instance of the 
same problem. 

• The two types of recursion are - direct and indirect recursion. Direct recursion is a kind of 
recursion in which the function invokes itself. Indirect recursion is a kind of recursion in which 
two functions invoke each other. 

• Recursive function comprises two types of cases namely, base case and recursive case. Base case is 
the smallest instance of the problem and its solution should not be recursive to guarantee function 
termination. Recursive case comprises a recursive function call. 

• Function is a block of statements that can be utilized to perform a particular task. A function is 
activated only when a function call is invoked.  

• Factorial, Fibonacci series and Tower of Hanoi are few examples of problems that can be solved 
using recursion. 

• Recursive procedures or algorithms invoke themselves. Therefore, the running time is described 
using a recursive equation. 

• Iterative functions can be designed easily.  They occupy less memory and execute much faster, 
whereas, recursion is costly in terms of memory usage and processor time. 

 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 174 

Actual Arguments: The arguments defined in a caller function and provided in the function call are 
termed as actual arguments. 
Formal Arguments: The arguments defined in the function definition are termed as formal arguments. 

Mantissa: It is the part of a floating-point number that contains its significant digits. 
Stack: Stack is an abstract or a last in first out (LIFO) data type and data structure. It is characterized by 
two fundamental operations like push and pop.  

9.7   Keywords 

1. State whether the following statements are true or false: 

9.8   Self Assessment  

(a) The actual arguments are defined in the function definition.  

(b) Recursive algorithms are mainly used for manipulating data structures which are defined 
recursively.  

(c) If a function is invoked with a base case, a result is returned as an output from the function.  

(d) In the Tower of Hanoi problem, multiple discs can be transferred at a time.  

(e) To transfer ‘n’ discs from ‘A’ to ‘C’ in Tower of Hanoi, the recursive method firstly involves 
the transfer of (n-1) discs from ‘A’ to ‘B’.  

(f) When a function is invoked, the run-time system allocates memory spaces dynamically for 
storing parameters, variables, and constants that are defined within it.  

2. Fill in the blanks: 

(a) ……………………………… starts with 0 and 1 and computes the subsequent numbers using 
the sum of the previous two numbers.  

(b) ……………………………… is a traditional game and an example of recursion.  

(c) In…………………………… the body loop terminates when the termination condition fails.  

(d) ……………………………… is a block of statements that can be utilized to perform a 
particular task.  

(e) ……………………………… is costly in terms of memory usage and processor time.  

3. Select a suitable choice for every question: 

(a) Which among the following is a function that invokes an instance of itself directly or 
indirectly? 

(i) Iteration  

(ii) Recursion  

(iii) Repetition 

(iv) Duplication 

(b) What does recursion mean? 

(i) Self reference  

(ii) Self iteration 

(iii) Self repetition 

(iv) Self rehearsal 

 

 



Unit 9:  Recursion 

LOVELY PROFESSIONAL UNIVERSITY 175 

(c) Which among the following cannot be defined recursively? 

(i) Factorial 

(ii) GCD 

(iii) Fibonacci 

(iv) Matrix multiplication  

(d) Which one of the following must be done to terminate recursion? 

(i) The smaller problems must match with the base case.  

(ii) The smaller problems must match with the recursive case. 

(e) Which of the following involves only one function that invokes itself till the specified 
condition is true? 

(i) Indirect recursion 

(ii) Direct recursion  

(iii) Tail recursion 

(iv) Mutual recursion 

1. Analyze various situations where recursion can be used.  

9.9   Review Questions 

2. “Recursion is an entirely different method of solving problems.” Justify.  

3. “Recursive function comprises two types of cases namely, a base case and a recursive case.” 
Elaborate.  

4. What is the functional aspect of return keyword in a recursive step? Discuss in brief. 

5. “float sum (float, int) is a function prototype declaration that comprises the return type, arguments 
list and name of the function.” Discuss. 

6. “Recursion occurs when a function invokes itself recursively.” Discuss the types of recursion and 
its usefulness while programming. 

7. “Function gets activated only when a function call is invoked.” Discuss. 

8. Using recursion in Tower of Hanoi game, how many steps would you need to shift the ‘n’ discs 
from ‘A’ to ‘C’?  

9. “T (n) = Time_for (iterative part, n) + Time_for (recursive part, n) is a recursive equation that 
describes the running time of recursive procedures or algorithms”. Elaborate. 

10. “For a small problem where solution can be calculated easily, the solution should never be 
recursive.” Elaborate. 

11.  “Recursive algorithms are mainly used for manipulating data structures which are defined 
recursively.” Justify.  

12. “If a function is called with a complex problem, the function breaks the problem into a sub-
problem that is similar to the original problem.” Discuss. 

Answers: Self Assessment 
1. (a) False                   (b) True                (c) True           (d) False           (e) True          (f) True 

2. (a) Fibonacci series  (b) Tower of Hanoi     (c) Iteration                (d) Function  (e) Recursion 

3. (a) Recursion           (b) Self reference         (c) Matrix multiplication        (d) The smaller problems 
must match with the base case.                       (e) Direct recursion 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 176 

 

9.10   Further Readings 

 

 
Reddy. P. (1999). Systematic Approach to Data Structures Using C. Bangalore: Sri Nandi 
Publications. 

Bandyopadhyay. S. K., Dey. K. N. (2009). Data Structures Using C. New Delhi, India: 
Dorling Kindersley. 

Kamthane. (2007). Introduction to Data Structures in C. New Delhi, India: Dorling 
Kindersley. 

Gupta. P., Agarwal. V., Vashney. M. (2007). Data Structure Using C. New Delhi: Firewall 
Media. 
 
 

 

 

 
my.safaribooksonline.com/book/programming/c/9780136085881 

www.slideshare.net/TraianRebedea/algorithm-design-and-complexity-course-3 

www.devshed.com/c/a/Practices/Solving-Problems-with-Recursion 

www.cs.sfu.ca/~tamaras/recursion/Direct_vs_Indirect.html/ 
 
 



Unit 10:  Trees 

LOVELY PROFESSIONAL UNIVERSITY 177 

Unit 10: Trees 

CONTENTS 

Objectives 

Introduction  

10.1 Trees 

      10.1.1   Representation of Tree in Graphs 

      10.1.2   Types of Graphs 

10.2 Types of Trees 

       10.2.1   Binary Tree 

       10.2.2   Binary Search Tree 

       10.2.3   2-3 Trees 

       10.2.4   Huffman Trees 

10.3 Representation of Tree in Memory 

10.4 Application of Trees 

      10.4.1   Expression Trees 

      10.4.2   Game Trees 

      10.4.3   Decision Trees 

10.5 Summary 

10.6 Keywords 

10.7 Self Assessment 

10.8 Review Questions 

10.9 Further Readings 

After studying this unit, you will be able to: 

Objectives 

• Define trees 

• Discuss the types of trees 

• Explain the representation of tree in memory 

• Discuss the application of trees 

We know that data structure is a set of data elements grouped together under one name. A data 
structure can be considered as a set of rules that hold the data together. Almost all computer programs 
use data structures. Data structures are an essential part of algorithms. We can use it to manage huge 
amount of data in large databases. Some modern programming languages emphasize more on data 
structures than algorithms.  

There are many data structures that help us to manipulate the data stored in the memory, which we 
have discussed in the previous units. These include array, stack, queue, and linked-list. 

Introduction 

Choosing the best data structure for a program is a challenging task. Similar tasks may require different 
data structures. We derive new data structures for complex tasks using the already existing ones. We 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 178 

need to compare the characteristics of the data structures before choosing the right data structure. A tree 
is a hierarchical data structure suitable for representing hierarchical information. The tree data structure 
has the characteristics of quick search, quick inserts, and quick deletes. 

A tree is a very important data structure as it is useful in many applications. A tree structure is a 
method of representing the hierarchical nature of a 

10.1   Trees 

structure in a graphical form. It is termed as "tree 
structure" since its representation resembles a tree. However, the chart of a tree is normally upside 
down compared to an actual tree, with the root at the top and the leaves at the bottom. 

The figure 10.1 depicts a tree structure, which represents the hierarchical organization of books. 

 
Figure 10.1: Tree Structure of Books 

 
  
 

 
 

In the hierarchical organization of books shown in figure 10.1, Books is the root of the tree. Books can 
be classified as Fiction and Non-fiction. Non-fiction books can be further classified as Realistic and 
Non-realistic, which are the leaves of the tree. Thus, it forms a complete tree structure. 

Trees are primarily treated as data structures rather than as data types. 

A tree is a widely-used data structure that depicts a hierarchical tree structures with a set of linked 
nodes. The elements of data structure in a tree are arranged in a non-linear fashion i.e., they use two 
dimensional representations. Thus, trees are known as non-linear data structures. This data structure is 
more efficient in inserting additional data, deleting unnecessary data, and searching new data. 

 

 

 
Genealogies and organizational charts are the most familiar applications of trees. 

Few other applications of tree data structures are as follows: 

1. To analyze electrical circuits 

2. To represent the structure of mathematical formulas 

3. To organize information in database systems 

4. To represent syntactic structure of source programs in compilers 

 
 
 

http://en.wikipedia.org/wiki/Structure�
http://en.wikipedia.org/wiki/Tree�
http://en.wikipedia.org/wiki/Data_structure�
http://en.wikipedia.org/wiki/Tree_structure�
http://en.wikipedia.org/wiki/Vertex_%28graph_theory%29�


Unit 10:  Trees 

LOVELY PROFESSIONAL UNIVERSITY 179 

10.1.1   Representation of Tree in Graphs 
A graph G consists of a set of objects V = {v1, v2, v3 …} called vertices (points or nodes) and a set of 
objects E = {e1, e2, e3 ….} called edges (lines or arcs). 

The set V (G) is called the vertex set of G and E (G) is the edge set. 

The graph is denoted as G = (V, E) 

Let G be a graph and {u, v} an edge of G. Since {u, v} is 2-element set, we write {v, u} instead of {u, v}. 
This edge can be represented as uv or vu. 

If e = uv is an edge of a graph G, then u and v are adjacent in G and e joins u and v.  

Consider the graph in figure 10.2. 

 
Figure 10.2: Graph 

 
  
 

 
 

This graph G is defined by the sets: 

V (G) = {u, v, w, x, y, z} and E(G) = { uv, uw, wx, xy, xz} 

Every graph has a diagram associated with it. The vertex u and an edge e are incident with each other 
as are v and e. If two distinct edges e and f are incident with a common vertex, then they are adjacent 
edges. 

Figure 10.3 depicts three examples of graphs. Graphs, unlike trees, can have sets of nodes that are 
disconnected from other sets of nodes. 

 
Figure 10.3: Examples of Graph 

 
  

 
 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 180 

In figure 10.3, the graph (i) has two different, unconnected set of nodes. Graphs can also contain cycles. 
Graph (ii) has several cycles. One such path is from x1 to x2 to x4 and back to x1. Another one is from x1 
to x2 to x3 to x5 to x4 and back to x1. (There are also cycles in graph (ii).) Graph (iii) does not have any 
cycles and all nodes are reachable. Therefore, it is a tree. 
 

 
 

Did you know? Programs like Microsoft MapPoint that can generate driving directions from one city 
to another, use graphs, where the modeling cities are represented as nodes in a graph 
and the roads connecting the cities as edges. 

Trees can be represented as graphs.  

Figure 10.4 represents a tree, which is a non-linear representation of data.  

 
Figure 10.4: A Tree Structure 

 
  
 

 
 

Let us now discuss some of the common terminologies used with respect to trees. 

Root Node 

The root of a tree is called a root node. In figure 10.4, A is the root node. A root node occurs only once in 
the whole tree. 

Parent Node  

The parent of a node is the immediate predecessor of that node. In the figure 10.4, A is the parent node 
of B and C, B is the parent node of D, and C is the parent node of E, F and G. G is the parent node of H. 

Child Node 

Child nodes are the immediate successors of a node. 

In the figure 8.4, B and C are the child nodes of A, D is the child node of B; E, F, and G are the child 
nodes of C and finally, H is the child node of G. 

Leaf Node 

A node which does not have any child nodes is known as a leaf node. In figure 10.4, D, E, F and H are 
the leaf nodes. 

Link 

The pointer to a node in the tree is known as a link. A node can have more than one link. In figure 10.4, 
node A has two links. Node C has three links. Nodes B and G have only one link and nodes D, E, F and 
H have no links. 



Unit 10:  Trees 

LOVELY PROFESSIONAL UNIVERSITY 181 

Path 

Every node in the tree is reachable from the root node through a unique sequence of links. This 
sequence of links is known as a path. The number of links in a path is considered to be the length of the 
path.  

In figure 10.2, the length of the path from A to D = (the link from A to B) + (the link from B to D) 

           = 1 + 1 

           = 2 

Levels 

The level of a node in the tree is considered to be its hierarchical rank in the tree. In figure 10.4, the root 
node A, is at level 0.  

Consider a node which is at level L. Then,  

The level of its parent node = L-1 

The level of its child node = L+1 

This rule does not apply to a root node as it does not have a parent node. In figure 10.4, node A is at 
level 0, nodes B and C are at level 1. Nodes D, E, F, and G are at level 2 and node H is at level 3. 

Number of nodes in the path = (the length of the path from the root to the node) +1 

In figure 10.4, the number of nodes in the path from A to D 

= (the length of the path from the root to the node) + 1 

= {(the link from A to B) + (the link from B to D)} + 1 

= {(1) + (1)} + 1 

= {2} + 1 

= 3 

Height 

The height of a non-empty tree is the maximum level of a node in the tree. The height of an empty tree 
(no node in a tree) is 0. The height of a tree containing a single node is 1. The longest path in the tree has 
to be considered to measure the height of the tree. 

Height of a tree (h) = Imax+ 1, where Imax is the maximum level of a tree. 

In figure 10.4, the maximum level of the tree is 3. 

So, height of the tree (h) = Imax+ 1 

             = 3 + 1 

           = 4 

Degree (Arity) 

The degree or arity of a node is the maximum number of children that a node has. In figure 10.4, the 
degree of node A is 2; the degree of node B is 1; and the degree of node C is 3. 

Siblings 

The nodes which have the same parent node are known as siblings. In figure 10.4, nodes B and C are 
siblings as they have have the same parent node, A. 

Graphs consist of a set of nodes and edges, just like trees. But for graphs, there are no rules for the 
connections between nodes. In graphs, there is no concept of a root node, nor a concept of parents and 
children. Rather, a graph is just a collection of interconnected nodes. All trees are graphs. A tree is a 
special case of a graph, in which the nodes are all reachable from some starting node. 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 182 

Figure 10.5 shows a graph with arcs. 

 
Figure 10.5: A Graph 

 
  
 

 
 

An arc is an ordered pair of vertices. In figure 8.5, the arcs are (a,b) and (b,c). In the arc (a, b), a is called 
the tail of the arc and b is called the head of the arc. Similarly, in the arc (b,c), b is called the tail of the 
arc and c is called the head of the arc. If (a,b) is a directional arc, then (a,b) is not equal to (b,a). 

In figure 10.5, Vertices (V) = {a, b, c} and Arcs (E) = {(a,b), (b,c)} 

The vertices of the graph are used to represent objects and the arcs are used to represent the relationship 
between the objects. 

10.1.2   Types of Graphs 
A graph consists of a set of vertices and edges/arcs.  

Graph (G) = (V, E); where V represents vertices and E represents edges/arcs. 

Vertices are also known as nodes.  

The three types of graphs are: 

1. Directed graphs 

2. Undirected graphs 

3. Mixed graphs 

Directed Graphs 

A graph in which each edge is assigned a direction is called a directed graph. 

The figure 10.6 shows a directed graph. Directed arcs connect the nodes. 

 
Figure 10.6: A Directed Graph 

 
  
 

 
 

A directed graph (G) consists of vertices (V) and a set of arcs (E). Directed graphs are also known as 
digraphs. In a tree, the nodes are considered as vertices and the directed lines are considered as arcs. 

 

 

 



Unit 10:  Trees 

LOVELY PROFESSIONAL UNIVERSITY 183 

Figure 10.7 shows example of directed graph. 

 
Figure 10.7: Example for Directed Graph 

 
  

 
 

In figure 10.7, the nodes of the tree represent cities. The arc represents the day and time of the flight 
from Delhi to Agra. The time of the flight from Delhi to Agra is not equal to the time of the flight from 
Agra to Delhi. Here, (Delhi, Agra) is not equal to (Agra, Delhi). 

Undirected Graphs 

An undirected graph is a graph in which each edge has no direction. 

The figure 10.8 shows an undirected graph. 

 
Figure 10.8: An Undirected Graph 

 
  

 
 

An undirected graph (G) consists of a set of vertices (V) and a set of edges (E). Each edge in undirected 
graphs has a disorganized pair of vertices. 

An edge is an unordered pair of vertices. If (a,b) is an undirected edge, then (a,b) = (b,a). 

 
 

Figure 10.9: Example for Undirected Graph 
 

  

 
 

In figure 10.9, the nodes of the tree represent cities. The edge represents the distance between the cities. 
The distance from Delhi to Agra is equal to the distance from Agra to Delhi. Here, (Delhi, Agra) is equal 
to (Agra, Delhi). 

Mixed Graph 

A mixed graph G contains both directed and undirected edges. It is represented as: 

G = (V, E, A)  

Where, V refers to a set of vertices, E refers to a set of edges and A refers to a set of arcs.  



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 184 

The figure 10.10 shows a mixed graph. 

 
Figure 10.10: Mixed Graph 

 
  
 

 
 
 

 

 
 

 

Construct a graph G for given vertices V = {2, 3, 4, 5} and edges E = {(2, 3), (2, 4), (2, 5), (3, 
4), (3, 5), (4, 3), (4, 5)}. 

 

There are different kinds of trees and it is important to understand the difference between them. We 
will discuss the following types of trees in this section: 

10.2   Types of Trees 

1. Binary tree 

2. Binary search tree 

3. 2-3 tree 

4. Huffman tree 

10.2.1   Binary Tree 
A tree data structure in which every node has a maximum of two child nodes is known as a binary tree. 
It is the most commonly used non-linear data structure. A binary tree could either have only a root node 
or two disjoint binary trees called the left sub-tree or the right sub-tree. An empty tree could also be a 
binary tree.  

 
Figure 10.11: A Binary Tree 

 
  

 
 



Unit 10:  Trees 

LOVELY PROFESSIONAL UNIVERSITY 185 

In the figure 10.11, the node A is the root node. The nodes B and D belong to the left sub-tree and nodes 
C, E, F and G belong to the right sub-tree. 

10.2.2   Binary Search Tree 
A binary search tree is a tree in which for a given node n, each node to the left is smaller than n and 
each node to the right is larger than n. This applies recursively down the left and right sub-trees. Figure 
10.12 shows a binary search tree.  

 
Figure 10.12: Binary Search Tree 

 
  

 
 

In figure 10.12, the nodes C, B, E and A belonging to left sub-tree are smaller than F and the nodes H, I, 
and M belonging to right sub-tree are larger than F. 

AVL Tree  

An AVL tree is a binary search tree having a balance factor of every node as 0 or +1 or −1. The balance 
factor of a node is defined as the difference between the heights of the node’s left and right sub-trees. 
The height of an empty tree is −1. 

The binary search tree in figure 10.13(i) is an AVL tree but the binary search tree in 10.13 (ii) is not an 
AVL tree. The numbers above the nodes indicate the balance factors of the nodes. 

 Figure 10.13: (i) AVL Tree 
(ii) Binary Search Tree that is not an AVL Tree 

 
  
 

 
 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 186 

10.2.3   2-3 Trees 
A 2-3 tree is another type of tree which has 2 types of nodes, 2-node and 3-node. 

The figure 10.14 represents a 2-node tree. 

 Figure 10.14: A 2-Node Tree 
 

 
  
 

 
 

The 2-node structure shown in figure 8.14 has one data element and two children. Every 2-node must 
have the following properties: 

1. Every value appearing in the child P must be ≤X. 

2. Every value appearing in the child Q must be ≥X. 

3. The length of the path from the root of a 2-node to every leaf in its child must be the same. 

The figure 10.15 represents a 3-node tree. 

 Figure 10.15: A 3-Node Tree 
 

 
  
 

 
 

The 3-node structure shown in figure 10.15 has two data elements and three children. Every 3-node 
must have the following properties: 

1. Every value appearing in child P must be ≤ X. 

2. Every value appearing in child Q must be in between X and Y. 

3. Every value appearing in child R must be ≥ Y. 

4. The length of the path from the root of a 3-node to every leaf in its child must be the same. 

10.2.4   Huffman Trees 
Huffman codes are digital data compression codes which were devised by Prof. David A. Huffman 
(1925-1999). Huffman codes provide good compression ratios. Even today, after 50 years, Huffman 
codes are very useful. Huffman compression is a compression technique in which there is no loss of 
information when the data is compressed i.e., after we decompress the data, the original information 
can be retrieved. Hence, it is named as ‘lossless compression’. Lossless compression is desired in 
compressing text documents, bank records, and so on.  



Unit 10:  Trees 

LOVELY PROFESSIONAL UNIVERSITY 187 

There are two data encoding schemes and Huffman Encoding scheme falls under one of the two 
schemes. The following are the two data encoding schemes:  

1. Fixed Length Encoding: In fixed length encoding, all symbols are encoded using the same number 
of bits. An example of fixed length encoding is ASCII code which uses 7 bits to encode a total of 
128 different symbols. The difficulty with fixed length codes is that the probability of occurrence of 
the symbols to be encoded is not considered. A symbol that occurs 1000 times is encoded with the 
same number of bits as a symbol which occurs only 10 times. This disadvantage makes fixed 
length encoding inefficient for data compression. 

2. Variable Length Encoding: Variable length encoding assigns less number of bits to symbols which 
occur more often and more number of bits to symbols whose frequency is less. The Huffman 
Encoding scheme falls in the category of variable length encoding i.e., code for the symbol 
depends on the frequency of occurrence of that symbol. 

Algorithm for Constructing Huffman tree  

The following sequence of steps needs to be followed to construct a Huffman tree: 

1. Input all symbols along with their respective frequencies.  

2. Create leaf nodes representing the scanned symbols. 

3. Let S be a set containing all the nodes created in step 2  

When there is only one node in S, the following steps need to be followed: 

1. Sort the nodes (symbols) in S with respect to their frequencies.  

2. Create a new node to combine the two nodes with least frequencies.  

3. Frequency of this new combined node will be equal to the sum of frequencies of nodes which were 
combined. This newly created combined node will be the parent of two nodes which were 
combined.  

4. Replace the two nodes which were combined with the new combined node in S.  

5. After the 4th

With the help of an example we will learn how to construct a Huffman tree. The table 10.1 shows the 
frequency of occurrence of different symbols. 

 step, you will be left with only one node, which is the root of the Huffman tree, 
having frequency equal to the sum of all frequencies of all symbols. Thus, a tree is generated with 
leaf nodes containing the basic symbols whose code is to be found. 

 
Table 10.1: Symbol Frequency Table 

 
  
 

Symbol Frequency of Occurrence 

A 24 

B 12 

C 10 

D 8 

E 8 
 

 
Using the symbols and frequencies from the table 10.1, we can create the leaf nodes and then sort them. 
Symbols D and E have the least frequency, 8; these two nodes are combined to make a node DE having 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 188 

frequency 8+8=16. This new node DE is the parent node of the nodes D and E, and DE replaces D and E 
as shown in figure 10.16. 

 
Figure 10.16: Step 1 for Constructing Huffman Tree 

 
  
 

 
Again we sort the nodes based on their frequency of occurrence. Now DE and C have the least 
frequencies i.e., 16 and 10 each. This time we combine DE and C to create a new node DEC having 
frequency 26.  

Nodes DE and C are replaced by their parent DEC as depicted in figure 10.17. 

 
Figure 10.17: Step 2 for Constructing Huffman Tree 

 
  
 

 
 

Similarly, combine B with frequency 12 and DEC with frequency 26 to create BDEC. BDEC becomes 
the parent of B and DEC with frequency 38. At last only two nodes are left namely, BDEC and A. We 
again sort them and combine both to form ABDEC which has a frequency count of 62. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Unit 10:  Trees 

LOVELY PROFESSIONAL UNIVERSITY 189 

Figure 10.18 depicts the Huffman tree. 

 
Figure 10.18: The Huffman Tree 

 
  
 

 
 

After making ABDEC parent of A and BDEC and replacing them with ABDEC, we have created the 
Huffman tree for the symbols in Table 10.1. Node ABDEC is the root of the tree. The figure 10.18 shows 
the Huffman tree thus constructed. 

Since a node in a general tree has a number of children, the implementation of this tree becomes 
complex than that of a binary tree. There are two ways to represent trees. They are: 

10.3   Representation of Tree in Memory 

1. Linked representation 

2. Array representation 

Linked Representation of Trees 

In linked representation of trees, if the maximum number of children is restricted to m, then the 
structure of the node can be represented as shown in figure 10.19. 

 
Figure 10.19: Structure of Node 

 
  
 

 
 

 
With LINK and DATA fields, you can represent a tree using the fixed node size linked structure. 
However, the null links in a node result in wastage of memory space.  
 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 190 

 
 

Did you know? If T is an m-ary tree with n nodes, then n(m-1) +1 of the nm link fields are null. 

Array Representation of Trees 

A tree can also be represented using arrays. In this case, you need to have three arrays namely, DATA, 
LEFTCHILD and SIBLING. The information content of the node is stored in DATA array, the left-most 
children of the node are stored in LEFTCHILD array, and the immediate sibling of the node is stored in 
SIBLING array. The array representation of the tree shown in figure 10.20 is shown in the table 10.2. 

 
Figure 10.20: A Tree 

 
  

 

 
 

Table 10.2 shows array representation of the tree. 

 
Table 10.2: Array Representation of the Tree  

 
  

 

 Data Left 
child 

Sibling 

1 A 2 0 

2 B 6 3 

3 C 8 4 

4 D 9 5 

5 E 0 0 

6 F 0 7 

7 G 11 0 

8 H 0 0 

9 I 14 10 

10 J 0 0 

11 K 0 12 

12 L 0 13 

13 M 0 0 

14 N 0 0 

 



Unit 10:  Trees 

LOVELY PROFESSIONAL UNIVERSITY 191 

In the above representation, 0 indicates the null link. The major advantage of array representation of 
trees is that it helps in getting direct access to any node. However, the drawback is that it is necessary to 
fix the maximum depth of the tree since the array size has already been decided. If the array size is quite 
larger than the depth of the tree, then it is considered to be memory wastage. If the array size is lesser 
than the depth of the tree, then it is not possible to represent some parts of the tree. 

Trees are used in operating systems, compiler design, and searching. Expression tree is an example of 
general structure known as parse tree, which is a central data structure in compiler design. Parse trees 
are not binary but are comparatively simple extensions of expression trees. Another remarkable 
application of trees is in designing of computer games such as Nim, Tic-tac-toe, Chess, Kalah, Checkers, 
and so on.  

A decision tree is a binary tree where a node represents a decision and edges represent the outcome of 
the decision. A decision tree is thus a powerful method for classification and prediction, and facilitates 
decision making in sequential decision problems.  

Let us discuss in detail the various applications of trees. 

10.4.1   Expression Trees 

10.4   Application of Trees 

Expression trees are special kind of binary trees. An expression tree provides a method to translate 
executable code into data. This translation of data is very useful to modify or transform the code before 
executing it. The leaves of an expression tree are operands such as constants or variable names, and the 
other nodes contain operators. This specific tree is binary because all the operations are binary, and it is 
not possible for nodes to have more than two children.  

To evaluate an expression tree, we recursively evaluate the left and right sub-trees and then apply the 
operator at the root. We can produce an infix expression by recursively producing a parenthesized left 
expression, and then printing out the operator at the root, and later recursively producing a 
parenthesized right expression. This approach (left, node, right) is known as an inorder traversal.  

An alternate traversal strategy is to recursively print out the left sub-tree, the right sub-tree, and then 
the operator. This traversal approach (left, right, node) is known as a postorder traversal.  

Figure 10.21 shows an example of an expression tree. In this example, the left sub-tree evaluates to a + 
(b * c) and the right sub-tree evaluates to ((d *e) + f)*g. The entire tree therefore represents (a + (b*c)) + 
(((d * e) + f)* g).  

 
Figure 10.21:  Expression Tree for (a + b * c) + ((d * e + f ) * g) 

 
  

 

 
 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 192 

An alternate traversal strategy is to recursively print the left sub-tree, the right sub-tree, and then the 
operator. If we apply this strategy to the tree above, the output is a b c * + d e * f + g * +. This traversal 
strategy is generally known as a post order traversal.  

A third traversal strategy is to print the operator first and then recursively print the left and right sub-
trees. The resulting expression, + + a * b c * + * d e f g, is the less useful prefix notation and the traversal 
strategy is called a preorder traversal.  

 

 
 

 

Construct an expression tree for the expression (2 * (5 + (6 + 4))). 

10.4.2   Game Trees 
A game tree is a graphical representation of a sequential game. It is a directed graph whose nodes are 
positions in a game and whose edges are moves. The complete game tree for a game starts at the initial 
position and contain all possible moves from each position. 

The game Nim is played by two players A and B. A board which initially contains a pile of n toothpicks 
describes the game. The players A and B make moves alternately with A making the first move. A legal 
move consists of removing either 1, 2, or 3 of the toothpicks from the pile. A player cannot remove more 
toothpicks than that present in the pile. The player who picks the last toothpick loses the game and the 
other player wins. The board configuration at any time is absolutely specified by the number of 
toothpicks remaining in the pile. At any time of the game, the status is determined by the board 
configuration together with the player whose turn it is to make the next move. A terminal board 
configuration is one which denotes both a win, lose, or draw situation and the further configurations 
are non-terminal. The only terminal configuration in Nim is the one in which there are no toothpicks in 
the pile. This configuration is a win for player A if B makes the last move, or else it is a win for B. The 
game of Nim cannot end in a draw. 
A sequence C1, ..., Cm

1. C

 of board configurations is assumed to be valid if:  

1

2. C

 is the starting configuration of the game 

i

3. C

, 0 < i < m, are non-terminal configurations 

i+1 is obtained from Ci

A valid sequence C

 by a legal move made by player A if i is odd and by player B if i is even.  

1, ...,Cm of board configurations with Cm a terminal configuration is an example of 
the game. The length of the order C1,C2, ...,Cm is m. A finite game is the game in which there are no 
valid sequences of infinite length. All possible instances of a finite game may be represented by a game 
tree. In a game tree for nim, each node of the tree represents a board configuration. The root node 
denotes the starting configuration C1

 

. The transitions from one level to the next level are made because 
of a move of A or B. Transitions from an odd level represents moves made by A. All other transitions 
are the result of moves made by B. Square nodes are used to represent the board configurations when it 
is A's turn to move. Circular nodes are used for other configurations. The edges from various levels are 
labeled with the move made by A and B respectively (for example, an edge labeled 1 means 1 toothpick 
is to be removed).  

The terminal configurations are represented by leaf nodes. Leaf nodes are labeled by the name of the 
player who wins when that configuration is reached. In the game of Nim, player A can win only at leaf 
nodes on odd levels while B can win only at leaf nodes on even levels. The degree of any node in a 
game tree is equal to the number of distinct legal moves. In Nim, there are maximum 3 legal moves 
from any configuration. The number of legal moves from any configuration is finite.  

 

 
In Nim, we represent the configuration of the piles by a monotone sequence of 
integers, such as (1,3,5,7) or (2,2,3,9,110). A player may remove, in one turn, any 
number of toothpicks from one pile of his/her choice. Thus, (1,3,5,7) would 
become (1,1,3,5) if the player were to remove 6 toothpicks  from the last pile. The 
player who takes the last toothpicks loses. The Nim game (1, 2, 2) is shown in 
figure 10.22. 



Unit 10:  Trees 

LOVELY PROFESSIONAL UNIVERSITY 193 

Figure 10.22 depicts game tree for (1,2,2) NIM. 

  
Figure 10.22:  Game Tree for (1, 2, 2) NIM 

  
 

 
 

In figure 10.22, the number in the root shows that at first, there are five toothpicks which consist of three 
sets, 1, 2, and 2. Assume A is the player who makes the first move. A may take one or two toothpicks. 
After A’s move, it is B’s turn and the numbers in the nodes represent the toothpicks left. Then B moves 
one or two toothpicks and the status is shown in the next nodes and so on until there is one toothpick 
left. 

We can use this game tree to analyze the best possible move. For each player, the best move is to make 
the opponent lose in order to win. So, one must make the move to get the MAX score and force their 
opponent to get the MIN score. A loss is presented by "0" and a win is presented by "1". The MAX nodes 
denote the position of the current player and the MIN nodes denote the position of the opponent. Since 
the goal of this game is that the player who removes the last toothpick loses, the scores are assigned to 
"0" if the leaves are at MAX nodes and the scores are assigned to "1" if the leaves are MIN. Then, the 
scores are totaled from the bottom nodes and assigned to the internal nodes. At MAX nodes, choose the 
MAXIMUM score of the children and at MIN nodes, choose the MINIMUM score of the children. In this 
manner, we may compute the scores of the non-leaf nodes from the bottom up. In the example shown in 
figure 10.22, the root node is "1" and thus, corresponds to a win for the first player. The first player must 
choose a child position that corresponds to a "1". 

The depth of a game tree is the length of a longest instance of the game. Similarly, it is easy to construct 
game trees for other finite games such as chess, Tic-tac-toe, Kalah, and so on. Chess is not a finite game 
because it is possible to repeat board configurations in the game. Chess can be considered as a finite 
game when this possibility is not allowed. In games with large game trees, the decision as to which 
move to make next can be made only by looking at the game tree for the next few levels. A game tree is 
useful in determining the next move a player should make.  

 

 

 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 194 

10.4.3   Decision Trees 
Decision trees represent a program in the form of tree with branches. Here, each node represents a 
decision. First, the root node is tested and then the control is passed to one of its sub-trees, depending 
on the result of the test. This flow is continued until the leaf node with the element of interest is reached.  

An example for a decision tree is given in figure 10.23. This decision tree decides the ascending order 
among three numbers x, y, and z. 

 Figure 10.23 Decision Tree that Determines the 
Ascending Order for Three Numbers 

 
  
 

 
First, we check if x is lesser than y. If the condition is true, then check if y is lesser than z. If yes, then the 
ascending order of these numbers is x<y<z. If not, check if x is lesser than z. If yes, then the ascending 
order of these numbers is x<z<y. If not, then the ascending order of these numbers is z<x<y. If the 
condition x<y is false, i.e., if x is not lesser than y, then check if y is lesser than z. If this is true, then 
check whether x is lesser than z. If yes, then the ascending order of these numbers is y<x<z. If the 
condition y<z is false, i.e., if y is not lesser than z, then the ascending order of these numbers is z<y<x. 

 

 

 

Construct a decision tree for finding the greatest number among a given set of 
numbers. 

• A tree structure is a way of presenting the hierarchical nature of a structure in a graphical form. 

10.5   Summary 

• The trees can be represented as graphs. 

• The three types of graphs are directed graphs, undirected graphs, and mixed graphs. 

• The different kinds of trees include binary tree, binary search tree, 2-3 tree, and Huffman tree. 

• The two ways to represent trees are linked representation and array representation. 

• The applications of trees include expression trees, game trees, and decision trees. 

• To evaluate an expression tree, we recursively evaluate the left and right sub-trees and then apply 
the operator at the root. 

• A game tree is a graphical representation of a sequential game. It is a directed graph whose nodes 
are positions in a game and whose edges are moves. 

• In decision trees, each node represents a decision. 

 



Unit 10:  Trees 

LOVELY PROFESSIONAL UNIVERSITY 195 

Compression Ratio: The measurement of compressed data. 

Data Encoding: The method by which certain communication devices encode digital data into an analog 
signal for transmission.

10.6   Keywords 

  

Genealogy: The study of ancestry and family history. 

Kalah: Kalah, also called Kalaha or Mancala, is a game in the Mancala family invented by William 
Julius Champion Jr in 1940. 

1. State whether the following statements are true or false: 

10.7   Self Assessment 

(a) Decision trees represent a program in the form of tree with branches. 

(b) The null links in a node result in wastage of memory space.  

(c) A game tree is an undirected graph whose nodes are positions in a game and whose edges 
are moves. 

(d) The major advantage of array representation of trees is that it helps in getting direct access to 
any node. 

(e) An AVL tree is a binary search tree having a balance factor of every node as 0 or +2 or −2. 

(f) A binary tree could either have only a root node or have two disjoint binary trees called the 
left sub-tree or the right sub-tree. 

2. Fill in the blanks: 

(a) An AVL tree is a ………………… tree. 

(b) The two nodes of 2-3 tree are ……………… and ………………… 

(c) The ………………… node is tested first, in a decision tree. 

(d) The information content of the node is stored in ………………… array.  

(e) A …………………graph contains both directed and undirected edges. 

3. Select a suitable choice for every question: 

(a) A tree data structure in which every node has a maximum of two child nodes is known as a 
…………………tree. 

(i)  Binary 

(ii)  AVL 

(iii)  Game 

(iv)  Huffman  

(b) An …………………tree is a binary search tree having a balance factor of every node as 0 or 
+1 or −1. 

(i) Huffman 

(ii) Binary 

(iii) Binary search 

(iv) AVL 

 

 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 196 

(c) The ………………… of the graph are used to represent objects. 

(i) Arcs 

(ii) Edge 

(iii) Vertices 

(iv) Directions 

(d) The nodes which have the same parent node are known as ……………… 

(i) Root 

(ii) Siblings 

(iii) Left nodes 

(iv) Right nodes 

(e) The height of an empty tree is ………………… 

(i) 0 

(ii) 1 

(iii) -1 

(iv) Null 

1. “Choosing the best data structure for a program is a challenging task”. Discuss. 

10.8   Review Questions 

2. “The trees can be represented as graphs”. Justify. 

3. “The height of a non-empty tree is the maximum level of a node in the tree”. Analyze. 

4. “An undirected graph is a graph in which each edge has no direction”. Discuss with example. 

5. “There are different kinds of trees and it is important to understand the difference between them”. 
Analyze. 

6. “An AVL tree is a binary search tree having a balance factor of every node as 0 or +1 or −1”. 
Explain with diagram. 

7. “A game tree is a graphical representation of a sequential game”. Explain with example. 

8. “A graph in which each edge is assigned a direction is called a directed graph”. Discuss with 
example. 

9. “A board which initially contains a pile of n toothpicks describes the Nim game”. Analyze. 

10. “A graph consists of a set of vertices and edges/arcs”. Explain with diagram. 

11. “There are two ways to represent trees”. Discuss in detail. 

12. “There are sequences of steps to be followed to construct a Huffman tree”. Explain with example. 

13. “Every 3-node in a 2-3 tree must have specific properties”. Discuss with diagram and example. 

 

 

 

 

 

 



Unit 10:  Trees 

LOVELY PROFESSIONAL UNIVERSITY 197 

Answers: Self Assessment 
1. (a) True   

(b) True                                    

(c) False             

(d) True                     

(e) False                              

(f) True 

2. (a) Binary search tree                  

(b) 2-node and 3-node    

(c) Root          

(d) Data     

(e) Mixed 

3. (a) Binary                                      

(b) AVL                             

(c) Vertices        

(d) Siblings     

(e) -1 

10.9   Further Readings 

 

 
Lipschutz. S. (2011). Data Structures with C. Delhi: Tata McGraw hill 

Reddy. P. (1999). Data Structures Using C. Bangalore: Sri Nandi Publications 

Samantha. D (2009). Classic Data Structures. New Delhi: PHI Learning Private Limited 

Weiss. M. (1996). Data Structures and Algorithm Analysis in C. Addison Wesley 
Publications 

 

 

 
http://msdn.microsoft.com/en-us/library/ms379574(v=vs.80).aspx 

http://cg.scs.carleton.ca/~luc/1997notes/topic11/ 

 

 
 
 
 
 
 
 
 
 
 
 
 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 198 

 
 
 



Unit 11:  Introduction to Binary Trees 

LOVELY PROFESSIONAL UNIVERSITY 199 

Unit 11: Introduction to Binary Trees 

CONTENTS 

Objectives 

Introduction 

11.1 Types of Binary Trees  

11.2 Storage Representation of Binary Tree  

11.3 Overview of Threaded Binary Trees  

11.4 Summary 

11.5 Keywords 

11.6 Self Assessment 

11.7 Review Questions 

11.8 Further Readings 

After studying this unit, you will be able to: 

Objectives 

• Discuss the different types of binary trees 

• Explain the storage representation of binary tree 

• Explain linked representation of binary tree in detail 

• Discuss the sequential representation of binary tree  

• Provide an overview of threaded binary trees 

A binary tree is an important data structure providing hierarchical representation of data in the 
memory. Each node in a binary tree can have a maximum of two branches. The binary tree is 
represented with a root node, which consists of two sub-trees at the left and right side of the root node. 
The two sub-trees are called as the left sub-tree and right sub-tree respectively. The nodes in the general 
tree can have any number of children, whereas, the nodes in the binary tree can have a maximum of 
two children.  

We can define a binary tree as a set of nodes which is either empty or contains a root and two disjoined 
right sub-tree and left sub-tree. 

 

 

 

 

 

 

 

 

 

Introduction 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 200 

Figure 11.1 represents a binary tree. 

 
Figure 11.1: A Binary Tree 

 
  
 

 
 

In the figure 11.1, node a is the root, node b and c are its child nodes. The nodes b and c form two sub-
trees. Node b forms the left sub-tree of node a while node c forms the right sub-tree. The nodes without 
successors are called as terminal nodes or leaf nodes. The nodes d, e, f and g are terminal nodes. 

 

 
 

 

The average depth of binary tree is 0(√n). 

 
 

 

 
Consider the binary tree in figure 11.2 with nodes 10, 20, 30, 40, 50, 100, 50. 

 
 

Figure 11.2: A Binary Tree 
 

  
 

 
 

The binary tree of figure 11.2 is structured such that the successor node value sums up to the value of 
root node. 

In this example, the root node is 100. The two nodes 50 and 50 form the left and the right sub-trees. 
Similarly, left tree 50 has two sub-trees 10 and 40, the right tree sub-tree 50 has two sub-trees 20 and 
30.The tree ends with terminal nodes 10, 40, 20 and 30. 

 Since the terminal nodes 10, 40, 20 and 30 do not have any successor nodes, they are termed as leaves. 

 



Unit 11:  Introduction to Binary Trees 

LOVELY PROFESSIONAL UNIVERSITY 201 

Binary trees can be classified on the basis of the level of nodes and the number of nodes that are present 
at each level of the tree. The types of binary trees are: 

11.1   Types of Binary Trees 

1. Complete binary tree 

2. Strictly binary tree 

3. Extended binary tree 

Complete Binary Tree  
A tree is known as a complete binary tree if each of its level, except the last level, is completely filled 
and all nodes are as far left as possible. Therefore, at any level ‘l’, the maximum number of nodes must 
be equal to 2l

 

. In a complete binary tree, at level 0 there must be only one node known as root node and 
it should have a maximum of two sub nodes at level 1, and at level 2 there must be a maximum of 4 sub 
nodes.  Figure 11.3 depicts a complete binary tree. The figure depicts the nodes in the binary tree with 
their associated levels.  

Figure 11.3: A Complete Binary Tree 
 

  
 

 
 

In the figure 11.3, the node T1 at level 0 represents the root node. The two sub nodes T2 and T3 are the 
child nodes at level 1. The successor nodes T4, T5, T6 and T7 are the terminal nodes. The number of 
nodes at level 1 is equal to 2. Similarly, the number of nodes at level 2 is equal to 4.  

The main advantage of a complete binary tree is that the position of the parent node and child node can 
be mapped easily in an array. The mapping for a binary tree is defined by assigning a number to every 
node in the tree. The root node is assigned the number 1.For the other nodes, if i is its number, then the 
left child node is assigned the position 2i and the right child node is assigned the position 2i+1. The 
mapping of binary tree provides a simple form of array storage representation. Hence the nodes in an 
array can be stored as a[i], where a[ ] is an array. 

 

 

 

 

 

 

 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 202 

Figure 11.4 depicts the representation of complete binary tree in an array. An array representation of 
binary tree allocates nodes of the tree in a memory. Each node is indexed such that the nodes are 
associated with the index number of the array for allocation. 

 Figure 11.4: Representation of Complete Binary Tree 
into an Array 

 
  
 

 
 

In the figure 11.4, consider the node e stored at index i=5. The parent node of node e is node b which is 
stored at the index i/2; 5/2=2. The left child node of node e is node j and it is stored at the index 2i; 2*5= 
10 and right child node k is stored at the index 2i+1 i.e., 2*5+1=11.  

Strictly Binary Tree 
A binary tree is called a strictly binary tree when the non-terminal nodes have exactly two child nodes 
forming left and the right sub-trees.   

Figure 11.5 depicts a strictly binary tree. A strictly binary tree with five nodes is provided such that the 
non-terminal nodes form the left and right sub-trees. 

 
Figure 11.5: Strictly Binary Tree 

 
  
 

 
 

In the figure 11.5, nodes a and b have two child nodes. The parent node a has two child nodes b and c 
forming the left sub-tree and right sub-tree respectively. Similarly, node b is the parent node for nodes 



Unit 11:  Introduction to Binary Trees 

LOVELY PROFESSIONAL UNIVERSITY 203 

d and e. A binary tree in which its non-leaf nodes possess exactly two child nodes represents a strictly 
binary tree. 

Extended Binary Tree 
A binary tree is called an extended binary tree when every node in the tree either has 0 or 2 sub nodes 
(child nodes). The nodes with two child nodes are called internal nodes and nodes without child nodes 
are called external nodes. The extended binary tree is also called a 2-tree. The nodes in the binary tree 
possessing only one child node can be extended with one more child node. The extended binary tree 
plays a very important role in implementing algebraic expressions. The algebraic expressions are 
represented by operands and operators. Hence, the left and right child nodes represent the operands 
and parent node represents the operator. 

 

 

 
Consider figure 11.6 that depicts a binary tree with a single child node. The 
binary tree with single child node is initial phase of designing the binary tree 
which can be made a complete binary tree by extending the nodes. 

 
 

Figure 11.6: Binary Tree with Single Child Node 
 

  

 
 

In the figure 11.6, the parent nodes b and c have only one child each, node d and e respectively. The 
node e also has single child node f. By adding another child node to the parent nodes b, c and e, we can 
obtain an extended binary tree. 

Figure 11.7 depicts an extended binary tree. 

 

In the figure 11.7, the extended binary nodes are represented by a rectangular box. The parent nodes b, c 
and e are provided with two child nodes by extending the nodes. 

 

 
Figure 11.7: Extended Binary Tree 

 
  

 
 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 204 

The binary tree can be represented by dynamic allocation technique and sequential allocation technique. 
In the dynamic allocation technique, memory is allocated to a node using a linked list and in the 
sequential allocation technique, memory is allocated to a node using an array. 

Linked Representation 
The binary tree is structured mainly on three nodes -the root (parent) node, the left and the right child 
nodes. In a linked representation, the nodes of the tree are indicated by three fields. They are: 

11.2   Storage Representation of Binary Tree 

1. info 

2. 

– It contains the actual information. 

llink

3. 

 – It represents the address of the left sub-tree. 

rlink

 

 – It represents the address of right sub-tree. 

 
 
Consider the tree representation shown in figure 11.8. Here each internal node has 
two child nodes. 
 

 

The tree representation of figure 11.8 is structured in a linked list for allocating the memory to a node as 
shown in figure 11.9. 

 
Figure 11.9: Linked Representation of Binary Tree 

 
  

 
 
 

In the figure 11.9, the binary tree is structured in the form of linked list for allocating memory to the 
nodes. Each node consists of three fields; the left link representing the address of the left node, right link 
representing the address of the right node, and the data present in the node. The llink (left link) of node 
a contains the address of node b which is the address of its left sub-tree. Similarly, the rlink (right link) 
of node a contains the address of node c which is the address of its right sub-tree.  

 Figure 11.8: A Binary Tree 
 

 
  
 

 
 



Unit 11:  Introduction to Binary Trees 

LOVELY PROFESSIONAL UNIVERSITY 205 

The linked form of representation is an easier way of identifying, storing and retrieving information in 
the memory. It represents the logical structure of the data involved. 
 

 
 

 

If there are n nodes in the binary tree, then the number of null links in the linked 
representation is n+1. 

Let us now discuss the algorithm for implementing the linked representation of a binary tree. 

Algorithm Binary_Tree (node1, info) 

Input – info is the content of the node with pointer node1 

Output – A binary tree with two sub-trees of the node1 

Data Structure - Linked list structure of binary tree 

Steps 

1. If (node1 ≠ Null) then// If tree is not empty 

(a)  node1.data = info   // Store data of node at node1 

(b) node1 has left sub-tree (Give option = Y/N)? 

(c)  If (option =Y) then     

(i) llink = GETNODE(node)// Allocate memory to the left child 

(ii)  node1.LC = llink    // Assign it to left link 

(iii)  Binary_Tree (llink, NEWL)// Build left sub-tree with next information as NEWL 

(d) Else 

(i) llink = Null 

(ii)  node1.LC = Null // Assign for empty left sub-tree 

(iii)  Binary_Tree (llink, Null)// Empty sub-tree 

(e) EndIf 

(f) Node1 has right sub-tree (Give option = Y/N)? 

(g) If (option = Y) then 

(i) rlink = GETNODE(node1)  // Allocate memory to right child 

(ii)  node1.RC = rlink  // Assign it to right link 

(iii)  Binary_Tree (rlink, NEWR) // build right sub-tree with next item as NEWR 

(h) Else 

(i) rlink = Null 

(ii) node1.RC = Null  // Assign for an empty right sub-tree 

(iii) Binary_Tree (rlink, Null) 

(i) EndIf 

2. EndIf 

3. Stop 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 206 

 

 

Advantages of Linked List Representation 

1. The insertion and deletion operations can be done easily without moving the 
other nodes. 

2. The memory representation of linked list provides dynamic memory 
representation. Large number of nodes can be created.  

Disadvantages of Linked List Representation 

1. Linked list representation does not allow direct access to the nodes in the 
binary tree and requires special algorithms for accessing the nodes. 

Sequential Representation  
The sequential or linear representation of the tree is a static representation, in which a block of memory 
for an array is allocated before storing the actual tree in the memory. The size of the tree is restricted 
according to the memory allocation. 

In the linear representation, nodes are stored sequentially, one level after another. The level of the nodes 
starts with zero level containing the root node. In the memory allocation, root node is stored as the first 
element in the array. 

The following principle is practiced for allocating node of a tree in the array. 

(Assume that indexing of array starts from 1) 

1. The root node is present at location 1. 

2. For any node with index i, 1< i ≤ n (for any value of n) 

 (a) PARENT (i) = [i/2] 

       For the node when i = 1, there is no parent 

 (b) LCHILD (i) = 2 * i 

       If 2 * i > n, then i has no left child 

 (c) RCHILD (i) = 2 * i + 1, then i has no right child 

 

 

 
In the figure 11.10, the arithmetic expression is logically structured in the form of 
a tree. Consider the following arithmetic expression represented in the tree 
structure. Memory must be allocated for each node present in the tree. The 
algebraic expression (T1 + T2) – T3 * (T4+T5) is represented in the tree as shown 
in figure 11.10. While evaluating the expression, the left sub-tree is computed 
first, then the right sub-tree and then finally the root. 

 
 
 
 
 
 
 
 
 
 
 
 
 



Unit 11:  Introduction to Binary Trees 

LOVELY PROFESSIONAL UNIVERSITY 207 

Figure 11.10 shows an expression of binary tree. 

The figure 11.11 depicts the allocation of memory for the binary tree shown in figure 11.10. 

In the figure 11.11, + node is stored at index i=2. The parent node of node + is node -, and is stored at 
the index i/2 i.e.,2/2=1. The left child node of node +is node T1 and is stored at the index 2i i.e., 2*2= 4 
and right child node T2 is stored at the index 2i+1 i.e., 2*2+1=5. This form of representation indicates the 
array form of memory allocation of nodes of a binary tree. 

Let us now discuss the algorithm for implementing the sequential representation of binary trees. 

Algorithm Binary_Tree (node2, info) 

Input – info refers to the data of node2 

Output – A binary tree containing two sub-trees of node2 

Data Structure – Array representation of tree 

Steps 

1. If (node2 ≠ 0) then      // If tree is not empty 

(a) A[node2] = info      // Store data of node2 into 
array A 

(b) node2 has left sub-tree (Give option = Y/N)?   

(c) If (option = Y) then                  // If node2 has left sub-tree  

(i) Binary_Tree (2*node2, NEWL)              // Then it is 2*node2 with next 
item as NEWL 

(d) 4. Else 

 
Figure 11.10: An Expression Binary Tree 

 
  
 

 
 

 Figure 11.11: Sequential Representation of Binary 
Tree 

 
  

 

                                   1           2          3         4             5            6         7            8             9 

- + * T1 T2 T3 + T4 T5 
 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 208 

(i) Binary_Tree (0, Null)              // Empty sub-tree 

(e) EndIf 

(f) node2 has right sub-tree (Give option = Y/N)? 

(g) If (option = Y)               // If node2 has right sub-tree 

(i) Binary_Tree (2*node2+1, NEWR)           // Then it is at 2*node2+1 with 
next item as NEWR 

(h) Else 

(i) Binary_tree (0, Null)            //Empty sub-tree 

(i) EndIf 

2. EndIf 

3. Stop 
 

 

 

Advantages of Sequential Representation of Binary Trees 

1. The nodes in the binary tree can be accessed by calculating the index of 
every node. It is efficient and quick. 

2. The data is stored without using pointers and the information can be traced 
easily with the index associated with each node. 

Disadvantages of Sequential Representation of Binary trees 

                    1. It is effective only for a full binary tree. Most of the other type of trees may   
                     be empty in an array. 

 

 
 

Did you know? Considering the memory requirement for a tree, linked representation uses more 
memory than sequential representation for allocating memory to binary tree. Linked 
representation uses extra memory to maintain pointers. 

 
 

 
 

 

Create a binary tree for the algebraic expression ((T1* T2 + T3) + (T4 – T5) * T6) and 
represent the binary tree in array representation. 

In a binary tree with n nodes, there exists n+1 NULL links and 2n number of total links. However, a 
large value of n, n+1 NULL and 2n number of links results in more space wastage. Hence, the solution 
is to change the node structure for leaf nodes so that the nodes only consist of data field. But, this 
solution provides complex algorithms. Hence, the only solution is to consider the fixed node structure 
and use the NULL links to simplify some of the operations. This solution provides the concept of 
threaded binary trees. 

In the threaded binary tree, the NULL links are replaced by pointers known as threads. These threads 
point to other nodes of a tree. When the tree is traversed in inorder, and if the left child of a node p in a 
binary tree is NULL, then it will be replaced with a thread. The thread will point to the node which 
appears just before the node p. Similarly, if the right child of node p is NULL, then it will be replaced 
with a thread. The thread will then point to a node that appears just after the node p after the inorder 
traversal of a tree. Such threads are known as inorder threads. 

 

11.3   Overview of Threaded Binary Trees 

 



Unit 11:  Introduction to Binary Trees 

LOVELY PROFESSIONAL UNIVERSITY 209 

 

 

 
Consider the binary tree in figure 11.16. The figure is a simple binary tree with 
four level of nodes. 

 

In the figure 11.12, the inorder traversal of the binary tree is “H D I B E A F C G”. The equivalent 
threaded binary tree is shown in figure 11.13. 

 
Figure 11.13: Threaded Binary Tree 

 
  
 

 
 

Leaf nodes are considered for a threaded binary tree. In figure 11.17, if we consider leaf node I then the 
inorder predecessor of I is D and the left thread will point at node D. 

Similarly, the inorder successor of I is B and the right thread will point at node B. All the nodes in the 
binary tree will be traversed in the similar format. 

But, the left thread of node H does not have an inorder predecessor and right thread of node G does not 
have inorder successor. In such situations, the threads pointing to particular node are not obtained. 
Hence, to solve such problems, the threaded binary tree uses a node called head node. The head node 
will have an identical structure similar to the normal tree nodes. In such cases, if the tree is non-empty, 
then its left child will point at the root of the tree. Similarly, the left thread of node H and right thread of 
node G will point to its head node. 

 

 

 

 
Figure 11.12: Binary Tree 

 
  

 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 210 

 

 
Write a C program to represent the linked list representation of binary tree into 
sequential representation. 

• A binary tree is a finite set of data elements and each node contains a maximum of two branches.  

11.4   Summary 

• A tree is known as a complete binary tree if each of its level, except the last level, is completely 
filled with child nodes. 

• A binary tree is called a strictly binary tree when the non-terminal nodes have exactly two child 
nodes forming left and the right sub-trees.   

• In an extended binary tree, the nodes possessing only one child node can be extended with one 
more child node. 

• The binary tree can be represented as array as well as linked list. 

• In a threaded binary tree, the pointers are represented as threads such that the threads point to the 
node in the binary tree for any operations. 

Leaf Nodes: The nodes without any successors.  

Node Predecessor: Node representing the parent node. 

Node Successor: Node representing the child node. 

Threads: The pointer linking the other nodes in the tree. 

11.5   Keywords 

1. State whether the following statements are true or false: 

11.6   Self Assessment 

(a) The strictly binary tree can have any number of children.  

(b) In a binary tree, at level 1, there must be only one node known as root node.  

(c) In an array representation, the size of tree is restricted according to the memory allocation.  

(d) In sequential representation, the level of the nodes starts with level one that contains the root 
node. 

2. Fill in the blanks: 

(a) The …………………… binary tree helps in mapping the nodes easily. 

(b) The data in …………………… representation is stored without any help of pointers. 

(c) In the threaded binary tree, the NULL links are replaced by pointers known as …………… 

3. Select a suitable choice for every question: 

(a) In which representation the memory allocation is restricted to the size of the tree? 

(i) Sequential                                       (ii) Linked list 

(b) Which among the following technique is used to allocate memory to a node using linked list? 

(i) Dynamic allocation                          (ii) Sequential allocation 

 

 

 



Unit 11:  Introduction to Binary Trees 

LOVELY PROFESSIONAL UNIVERSITY 211 

1. What is a binary tree? Construct a tree with the given string notation (T1 (T2 (T3 (T4),T5, T6), T7 
(T8, (T9(T10))))). 

11.7   Review Questions 

2. Construct a tree structure for the following array representation  

 
3. Write a procedure for linked list representation of binary tree. Consider the array representation 

provided in question 2 for constructing a linked representation. 

4. “Linked list representation consumes more memory than array representation.” Justify with an 
example. 

5. Represent the following binary tree in an array. 

              
6. Give the linked list representation of the following binary tree. 

            
7. “In threaded binary trees, threads are used instead of pointers.” Justify with example. 

 

 

 

 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 212 

Answers: Self Assessment 
1. (a) False   (b) False  (c) True  (d) False 

2. (a) Complete                 (b) Array (c) Threads 

3. (a) Sequential                 (b) Dynamic allocation 

11.8   Further Readings 

 

Reddy. P. (1999). Systematic Approach to Data Structures Using C. Bangalore: Sri Nandi 
Publications 

D. Samantha, Classic Data Structure, Delhi: Prentice Hall of India Publications 

Kamanthe A. N., Programming and Data Structures, South Asia: Dorling Kindersley 
(India) Publications 

 

 

 
http://www.cis.upenn.edu/~matuszek/cit594-2005/Lectures/09-binary-trees.ppt 

http://www.cprogramming.com/tutorial/lesson18.html 

 



Unit 12:  Binary Tree Traversals and Operations 

LOVELY PROFESSIONAL UNIVERSITY 213 

Unit 12: Binary Tree Traversals and Operations 

CONTENTS 

Objectives 

Introduction 

12.1 Binary Tree Traversals  

12.2 Preorder Traversal  

12.3 Inorder Traversal 

12.4 Postorder Traversal 

12.5 Binary Tree Operations  

      12.5.1 Insertion  

      12.5.2 Deletion  

      12.5.3 Searching  

12.6 Summary 

12.7 Keywords 

12.8 Self Assessment 

12.9 Review Questions 

12.10 Further Readings 

After studying this unit, you will be able to: 

Objectives 

• Discuss the different kinds of binary tree traversals 

• Explain in detail the preorder traversal 

• Describe in detail inorder traversal 

• Analyze and implement postorder traversal 

• Explain binary tree operations 

In the previous chapter, we discussed the fundamentals of binary tree. In this chapter, we will discuss 
the traversal and other operations of a binary tree. 

Traversals are the most basic operations performed on binary trees. In traversal technique, each node of 
a tree is systematically visited exactly once. The different traversal techniques are preorder, inorder, and 
post order traversal. 

The binary tree operations help in the logical implementation of the structure of a binary tree. The basic 
operations such as insertion of a node, deletion and searching of node are performed on the binary tree 
structure. 

Introduction 

Binary tree traversals refer to the commonly used traversing operations on a binary tree. Traversing 
refers to the order in which traversing is performed on a node of the tree, its right and left sub-trees. It 
deals with visiting each node in a tree exactly once. A complete traversal of binary tree provides the 
sequential ordering of information in a tree.  

12.1   Binary Tree Traversals 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 214 

A binary tree can be traversed in various ways. But the standard methods of traversal are: 

1. Preorder traversal 

2. Inorder traversal 

3. Postorder traversal 

The preorder traversal of a non-empty binary tree is defined as follows: 

12.2   Preorder Traversal 

1. First, visit the root node  

2. Next, traverse the left sub-tree of root node in preorder 

3. Finally, traverse the right sub-tree of root node in preorder 

The figure 12.1 depicts the functioning of preorder traversal. 

 
Figure 12.1: Preorder Traversal 

 
  
 

 
 

The algorithm for preorder traversal is as follows: 

Input – ROOT is the pointer to the root node of binary tree 

Output – Visiting all nodes in preorder manner 

Data Structure – Linked structure of binary tree 

Steps 

Preorder(Node *ptr) 

1. ptr = ROOT     //Start from ROOT 

2. If (ptr ≠ null) then    //If it is non-empty node 

3. Visit (ptr)     //Visit the node 

4. Preorder (ptrllink)    //Traverse left sub-tree of node in preorder 
manner 

5. Preorder (ptrrlink)    //Traverse right sub-tree of node in preorder 
manner 

6. EndIf 

7. Stop 

 

 
 
Consider the binary tree shown in figure 12.2. The binary tree is represented 
in such a way that the nodes in the binary tree are traversed in preorder 
traversal manner. 



Unit 12:  Binary Tree Traversals and Operations 

LOVELY PROFESSIONAL UNIVERSITY 215 

Figure 12.2 shows binary tree for preorder traversal. 

 
Figure 12.2: Binary Tree for Preorder Traversal 

 
  
 

 
 

In the figure 12.2, T1 is the root node, T2 and T3 are the sub-trees of the root node. The preorder 
traversal for a binary tree traverses the root node first, then the left sub-tree and finally the right sub-
tree. Since the traversing process is in the order of root node, left and right sub-trees, let us assign the 
alphabet N for visiting root node, L for visiting left sub-tree and R for visiting right sub-tree.  

The term T1NLR indicates that node T1 is the root node of the binary tree and subscript NLR indicates 
preorder tree traversal. The following represents the preorder traversal for binary tree present in the 
figure 12.2 

T1NLR---->T1 T2 NLR    T3 NLR  //After visiting T1NLR 

---->T1 T2T4 NLRµ T3 NLR //After visiting T2NLR,   µis empty child 

---->T1 T2 T4T7NLR T8NLR T3NLR//After visiting T4NLR 

----> T1 T2 T4 T7 µµT8NLR T3NLR//After visiting T7NLR ,µis empty left/right child 

---->T1 T2 T4 T7 T8 µµT3NLR//After visiting T8NLR 

---->T1 T2 T4 T7 T8 T3 T5NLRT6NLR//After visiting T3NLR 

 ---->T1 T2 T4 T7 T8 T3 T5 µT9NLRT6NLR//After visiting T5 

---->T1 T2 T4 T7 T8 T3 T5 T9 µµT6NLR//After visiting T9NLR 

---->T1 T2 T4 T7 T8 T3 T5 T9 T6 µµ//After visiting T6NLR 

---->T1 T2 T4 T7 T8 T3 T5 T9 T6 

Hence, the preorder traversal for the tree shown in figure 12.2 is T1 T2 T4 T7 T8 T3 T5 T9 T6. 

The traversal in preorder starts with traversing root, right sub-tree and left sub-tree. But this traversing 
happens only during the downward movement of the traverse operation in a binary tree. If the upward 
traversing is required in a tree, then it takes place in a reverse manner. To implement upward 
traversing, a stack is required to save pointer variable during the tree traversal. This mode of traversing 
is known as iterative traverse. The general form of iterative traversal for preorder using stack is as 
follows: 

Step 1:  If the tree is empty //Check if the tree is empty 

 then (“empty tree”)  // If tree is empty write “empty tree” 

 return 

 else 

 Place the pointer to the root of the tree on the stack// Move the pointer to the root of stack 

Step 2: Repeat step 3 while stack is not empty. 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 216 

Step 3: Pop the top of the stack. 

Repeat while the pointer value is not NULL. 

Write (Node containing data). 

If the right sub-tree is not empty, then stack the pointer to the right sub-tree and set pointer value to left 
sub-tree. 

The inorder traversal of a non-empty tree is defined as follows: 

12.3  Inorder Traversal 

1. First, traverse the left sub-tree of the root node in inorder. 

2. Next, visit the root node. 

3. Finally, traverse the right sub-tree of the root node. 

The figure 12.3 depicts the functioning of inorder traversal. The figure provides a functional procedure 
of the inorder traversal. 

The algorithm for inorder traversal is as follows: 

1. Input – ROOT is the pointer to the root node of binary tree 

2. Output – Visiting all nodes in inorder manner 

3. Data Structure – Linked structure of binary tree 

Steps: 

Inorder(Node *ptr) 

1. ptr = ROOT     //Start from ROOT 

2. If (ptr ≠ null) then    //If it is non-empty node 

3. Inorder (ptrllink)    //Traverse left sub-tree of node in inorder 
manner  

4. Visit (ptr)                   //Visit the node 

5. Inorder (ptrrlink)    //Traverse right sub-tree of node in inorder 
manner 

6. EndIf 

7. Stop 

 

 
Figure 12.3 Inorder Traversal 

 
  

 

 



Unit 12:  Binary Tree Traversals and Operations 

LOVELY PROFESSIONAL UNIVERSITY 217 

 

 
 

 

Consider the binary tree shown in the figure 12.2. The inorder traversing 
traverses first the left sub-tree, then the node and then the right sub-tree. 
Since, the traversing order is left sub-tree, root node and right sub-tree, 
the alphabets L, N, R can be used for representing inorder traversal.  

The term T1LNR indicates that node T1 is the root node of the binary tree 
and subscript LNR indicates inorder tree traversal. 

T1LNR---->T2LNR  T1  T3LNR  //After visiting T1LNR 

---->T4LNR  T2 µ  T1 T3LNR//After visiting T2LNR 

---->T7LNR  T4 T8 LNR  T2 µ  T1 T3LNR//After visiting T4LNR 

---->µ T7 µ  T4 T8 LNR  T2 µ  T1 T3LNR//After visiting T7LNR 

---->T7 T4 µ T8 µ  T2 µ  T1 T3LNR//After visiting T8LNR 

---->T7 T4 T8 T2 T1 T5LNR T3 T6LNR//After visiting T3LNR 

---->T7 T4 T8 T2 T1 µ T5T9LNR T3 T6LNR//After visiting T5LNR 

---->T7 T4 T8 T2 T1 T5µ T9µ T3 T6LNR//After visiting T9LNR 

---->T7 T4 T8 T2 T1 T5T9T3 µ T6 µ//After visiting T6

Program for inserting elements into the tree and traversing in inorder 

#include<stdio.h> 

#include<conio.h> 

/*Define tree as a structure with data and pointers to the left and right sub-tree*/ 

struct tree      

{ 

long info; 

struct tree *left; 

struct tree *right; 

}; 

/* bintree is declared as the datatype tree and initialized to Null*/ 

struct tree *bintree=NULL;     

/*Global declaration of function insert which returns a pointer to the tree structure and accepts a 
pointer to tree and a long digit as parameters */ 

struct tree *insert(struct tree*bintree,long digit); 

/*Global declaration of function inorder which does not return any value and accepts a pointer to tree 
as a parameter*/ 

void inorder(struct tree*bintree); 

void main()      // Define main function 

LNR 

---->T7 T4 T8 T2 T1 T5T9T3 T6 

Hence, the inorder traversal for the tree shown in figure 12.2 is T7 T4 T8 
T2 T1 T5T9T3 T6 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 218 

{ 

long digit; 

clrscr(); 

puts("Enter integers: and 0 to quit");    

scanf("%d",&digit);    //Reads the first number to be inserted 

while (digit!=0) 

{ 

bintree=insert(bintree,digit);   // Inserts the number entered 

scanf("%d",&digit); 

} 

puts("Inorder traversing of bintree:\n");   

inorder(bintree);     //Calling inorder function to traverse 
the tree 

} 

struct tree* insert(struct tree* bintree,long digit)  //insert function is defined 

{ 

if(bintree==NULL)    //checks if the tree is empty 

{ 

bintree=(struct tree*) malloc(sizeof(struct tree)); //Allocates memory for the tree 

bintree->left=bintree->right=NULL;  //Left and right sub-trees is set to NULL 

/* The digit entered is assigned to the info element of the tree node*/ 

bintree->info=digit;     

 } 

else 

{ 

if(digit<bintree->info)                    //If the entered number is less than the data of the node  

bintree->left=insert(bintree->left,digit);  //insert the digit in the left sub-tree 

else 

/*If the entered number is greater than the data of the node*/  

if(digit>bintree->info)     

bintree->right=insert(bintree->right,digit);  //insert the digit in the right sub-tree 

else 

if(digit==bintree->info)   //If entered number is equal to data of 
the node  

{ 

//exits program after printing that duplicate node is present  

puts("Duplicates node:program exited");   

  exit(0); 



Unit 12:  Binary Tree Traversals and Operations 

LOVELY PROFESSIONAL UNIVERSITY 219 

} 

} 

return(bintree);   

} 

void inorder(struct tree*bintree)   //Defining inorder function 

{ 

if(bintree!=NULL)   //Checks if tree is empty 

{ 

inorder(bintree->left);   //Calls the inorder function for left sub-trees 

printf("%4ld",bintree->info);  // Prints data of the node 

inorder(bintree->right);   // Inorder function of right sub-trees 

} 

} 

Output: 

Enter integers and 0 to quit 

6 1 2 3 7 8 9 0 

Inorder traversing of bintree 

1 2 3 6 7 8 9 

In this program, 

1. First the structure tree is defined. It contains a variable info of long type and pointers to the right 
and left sub-trees. 

2. The variable bintree is declared as data type tree and initialized to NULL. 

3. The function insert and inorder are globally declared. 

4. In the main() function,  

(a) First, the numbers to be entered are declared using long data type  

(b) Then, the digit entered is read by the computer. 

(c) If the digit is not 0, the insert() function is called to insert the entered digit into the binary 
tree. Step b, and c are repeated until the digit entered is 0. 

(d) Finally, the inorder() function is called to traverse the tree. 

5. The insert() function is defined. It accepts a pointer to a tree and a digit to be inserted in the tree as 
parameters. The insert function performs the following steps: 

(a) It checks if the tree is empty or non-empty. 

(b) If the tree is empty it assigns memory to the node, sets the left and right pointers of the node 
as NULL and assigns the digit to the info variable of the node. 

(c) If the tree is non-empty, then it performs the following steps: 

(i) If the digit entered is less than the info stored in the node, it recursively calls itself to 
enter the digit in the left sub-tree. 

(ii) If the digit entered is greater than the info stored in the node, it recursively calls itself 
to enter the digit in the left sub-tree. 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 220 

(iii) If the entered digit is equal to the info stored in the node, then it displays a message 
“Duplicates node: program exited” and exits.  

(d) The function inorder() is then defined. It accepts a pointer to a tree and a digit to be inserted 
in the tree as parameters 

(i) It checks if the tree is empty or non-empty. 

(ii) If the tree is non-empty, it traverses the left sub-tree first, then prints the value of the 
variable info stored in the node and then traverses the right sub-tree. 

In the inorder traversal, the nodes traversal starts with visiting right sub-tree, root and left sub-tree. 
While traversing using stacks, the left sub-tree in a binary tree is traversed by moving down the tree 
towards left and then pushing node with data into the stack until the left sub-tree pointer node is 
NULL. Once the left sub-tree is traversed, the stack becomes non-empty, then we can pop the elements 
from the stack and print the data, and then traverse the pointer towards right sub-tree. This process 
continues until right sub-tree is NULL. The algorithm for inorder traversal using stacks is as follows: 

 Step 1: If the tree is empty then 

{ 

 write( “empty tree”) 

 return 

} 

else 

 Place the pointer to the root of the tree on the stack 

Step 2: Repeat step 4 while stack is not empty. 

Step 3: Repeat while pointer value is not NULL and stack the pointer to the left sub-tree. 

Repeat while the pointer is not NULL. 

Write (Node containing data) 

If the right sub-tree is not empty, then stack the pointer to the right sub-tree and set pointer to the right 
sub-tree. 

 

 

 

In the inorder traversal, if we replace left by right and right by left, converse inorder 
traversal is obtained. The converse inorder traversal displays the tree contents in a tree 
fashion. 

The postorder traversal of a non-empty tree is defined as follows: 

12.4   Postorder Traversal 

1. First, traverse the left sub-tree of the root node in postorder. 

2. Next, the right sub-tree of the root node in postorder. 

3. Finally, visit the root node. 

 

 

 

 

 



Unit 12:  Binary Tree Traversals and Operations 

LOVELY PROFESSIONAL UNIVERSITY 221 

The figure 12.4 depicts the functioning of postorder traversal. The figure represents the functionality of 
postorder traversal. 

 
Figure 12.4: Postorder Traversal 

 
  

 
 

The algorithm for postorder traversal is as follows: 

Input – ROOT is the pointer to the root node of binary tree 

Output – Visiting all nodes in postorder manner 

Data Structure – Linked structure of binary tree 

Steps 

1. ptr = ROOT     //Start from ROOT 

2. If (ptr ≠ null) then    //If it is non-empty node 

3. Postorder (ptrllink)    //Traverse left sub-tree of node in postorder 
manner  

4. Postorder (ptrrlink)    //Traverse right sub-tree of node in postorder 
manner 

5. Visit (ptr)                   //Visit the node 

6. EndIf 

7. Stop 

 

 

 

Consider the binary tree shown in the figure 12.2. The postorder traversing 
depends on traversing first the left sub-tree, right sub-tree and then the node. 
Since, the traversing process starts with the left sub-tree, right sub-tree and root 
node, let us consider the alphabets L, R, N for postorder traversal.  

The term T1LRNindicates that node T1 is the root node of the binary tree and 
subscript LRN indicates postorder tree traversal. 

T1LRN---->T2LRNT3LRNT1  //After visiting T1LRN 

---->T4LRN µ  T2  T3LRNT1//After visiting T2LRN 

---->T7LRN  T8 LRNT4 T2 T3LRNT1//After visiting T4LRN 

---->µµT7 T8 LRNT4 T2 T3LRN T1//After visiting T7LRN 

---->T7 µµT8 T4T2 T3LRNT1//After visiting T8LRN 

---->T7 T8 T4 T2 T5LRN T6LRNT3T1//After visiting T3LRN 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 222 

---->T7 T8 T4 T2 µT9LRNT5T6LRNT3 T1//After visiting T5LRN 

---->T7 T8 T4 T2 µµT9T5T6LRNT3 T1//After visiting T9LRN 

---->T7 T8 T4 T2 T9 T5µµT6 T3 T1//After visiting T6

The post order traversal starts with left sub-tree, then moves to the right sub-tree, and then finally to the 
root. Considering the postorder traversal using stacks, each node is stacked twice during the traversal of 
left sub-tree and right sub-tree. To distinguish between the left sub-tree and right sub-tree, a traversing 
flag is used. During the traverse of right sub-tree, flag is set to 1. This helps in checking the flag field of 
the corresponding node. If the flag of a node is negative, then right sub-tree is traversed, else the left 
sub-tree is traversed. The algorithm for postorder of binary tree using stacks is as follows: 

Step 1: If the tree is empty then 

{ 

 write (“Empty tree”) 

 return 

} 

else 

Initialize the stack and pointer value to the root of tree 

Step 2: Start an infinite loop and repeat till step 5 

Step 3: Repeat while pointer value is no NULL, stack current pointer value. Set pointer value to left sub-
tree 

Step 4: Repeat while top pointer on stack is negative 

Pop pointer off stack 

write (value of pointer) 

If the stack is empty 

then return 

Step 5: Set pointer value to the right sub-tree of the value on top of the stack.  

Step 6: Stack the negative value of the pointer to right sub-tree 

 

Program for inorder, preorder and postorder tree traversals 

#include<stdio.h> 

#include<conio.h> 

struct node    //Declare node as struct variable 

{ 

int data;    //Declare data with data type int 

struct node *right, *left;  // The node stores pointers to the right and left sub-trees. 

}root,*p,*q;    // declare root as a variable of type node and p and q     
as pointers to node 

LRN 

---->T7 T8 T4 T2 T9 T5T6 T3 T1 

Hence, the postorder traversal for the tree shown in figure 12.2 is T7 T8 T4 T2 
T9 T5 T6 T3 T1  



Unit 12:  Binary Tree Traversals and Operations 

LOVELY PROFESSIONAL UNIVERSITY 223 

struct node *make(int y) 

{ 

struct node *newnode;  // Declare newnode as pointer to struct node 

newnode=(struct node *) malloc(sizeof(struct node));  //Allocate space in memory  

/*Assign object data to newnode and initialize to variable y*/ 

newnode->data=y;  

/*Declare right newnode and left newnode to NULL*/ 

newnode->right=newnode->left=NULL; 

return(newnode); 

} 

void left(struct node *r,int x)    // Define left sub-tree function 

{ 

/*Checks if left sub-trees is not equal to NULL*/ 

if(r->left!=NULL)       

printf("\n Invalid !");    // Prints invalid 

else  

r->left=make(x);     //Initialize left sub-tree 

} 

void right(struct node *r,int x)    //Define right sub-tree 

{ 

/*Checks if right sub-tree is not equal to NULL*/ 

if(r->right!=NULL)    

printf("\n Invalid !");    // Prints invalid 

else 

r->right=make(x);     //Initialize right sub-tree 

} 

void inorder(struct node *r)    //Define inorder traversal function 

{ 

/*Conditional statement, check if r is not equal to NULL*/ 

if(r!=NULL)       

{ 

/ *Recursively call inorder passing the address of the left sub-tree*/ 

inorder(r->left);  

printf("\t %d", r->data);   //Prints the data of the node 

/ *Recursively call inorder passing the address of the left sub-tree*/ 

inorder(r->right); 

} 

} 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 224 

void preorder(struct node *r)    //Define preorder function 

{ 

/*Checks if r is not equal to NULL*/ 

if(r!=NULL) 

{ 

printf("\t %d",r->data);    //Prints the data of the node  

/ *Recursively call preorder passing the address of the left sub-tree*/ 

preorder(r->left); 

/ *Recursively call preorder passing the address of the right sub-tree*/ 

preorder(r->right); 

} 

} 

void postorder(struct node *r)    //Define postorder function 

{ 

if(r!=NULL)      //Checks if r is not equal to NULL 

{ 

/ *Recursively call postorder passing the address of the left sub-tree*/ 

postorder(r->left); 

/ *Recursively call postorder passing the address of the left sub-tree*/ 

postorder(r->right); 

printf("\t %d",r->data);  //Prints the data of the node 

} 

} 

void main() 

{ 

int no;    //Declare variable no 

int choice;   //Declare variable choice 

clrscr(); 

printf("\n Enter the root:");     

scanf("%d",& no);   //Reads the number entered 

root=make(no);   //Initialize the number to root 

p=root;    // Value of root is then assigned to variable p 

while(1)    //Checks the conditions provided in while loop 

{ 

/*Prints the statement “Enter another number*/ 

printf("\n Enter another number:"); scanf("%d", &no);   
 //Reads the number entered 

/*Conditional statement, check if no is equal to -1*/ 



Unit 12:  Binary Tree Traversals and Operations 

LOVELY PROFESSIONAL UNIVERSITY 225 

if(no==-1)     

break;  //If condition is true, the if loop breaks 

p=root;   //Assign value of root to p variable 

q=root;   //Assign value of root to q variable 

/*Check if no is not equal to variable p and q not equal to NULL*/ 

while(no!=p->data && q!=NULL) 

{ 

p=q; 

if(no<p->data)  //Check if no is less than variable p 

/*Set q to the left sub-tree of p*/ 

q=p->left; 

else 

/*Set q to the right sub-tree of p*/ 

q=p->right;    

} 

/*Check if variable no is less than p variable with data*/ 

if(no<p->data) 

{ 

 

/*prints the node of left tree*/ 

printf("\n Left branch of %d is %d",p->data,no); left(p,no); 

} 

else 

{ 

right(p,no); 

/*prints the node of right tree*/ 

printf("\n Right Branch of %d is %d",p->data,no);// 

} 

while(1) 

{ 

printf("\n 1.Inorder Traversal \n 2.Preorder Traversal \n 3.Postorder 
Traversal \n 4.Exit"); 

printf("\n Enter choice:"); 

scanf("%d",&choice);  // Reads the choice entered 

switch(choice)  

{ 

/*Switches to inorder function and performs inorder traversal*/ 

case 1 :inorder(root); 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 226 

break; 

/*Switches to preorder function and performs preorder traversal*/ 

case 2 :preorder(root); 

break; 

/*Switches to postorder function and performs postorder traversal*/ 

case 3 :postorder(root);    

break; 

case 4 :exit(0);    //Exits from the function 

default:printf("Error ! Invalid Choice "); //Prints invalid statement 

break; 

} 

} 

getch(); 

} 

} 

Output: 

Enter the root : 5 

Enter another number: 7 

Right branch of 5 is 7 

1. Inorder traversal 

2. Preorder traversal 

3. Postorder traversal 

4. Exit 

Enter choice: 1 

       5       7 

1. Inorder traversal 

2. Preorder traversal 

3. Postorder traversal 

4. Exit 

Enter choice: 2 

 5      7 

1. Inorder traversal 

2. Preorder traversal 

3. Postorder traversal 

4. Exit 

Enter choice: 3 

        7      5 

 



Unit 12:  Binary Tree Traversals and Operations 

LOVELY PROFESSIONAL UNIVERSITY 227 

In this program, 

1. First, the header file stdio.h is included using include keyword. 

(a) The variable node is defined as a structure. It has an integer variable data and pointers to its 
left and right sub-trees, root is declared as a variable of type node. The variables p and q are 
declared as pointers to node. 

2. Then, the make() function is defined. It returns a pointer to the structure node and accepts an 
integer variable y as a parameter. It executes the following steps: 

(a) It declares newnode as pointer to the structure node and assigns memory to it. 

(b) It assigns the integer y to the data variable of the newnode. 

(c) It sets the right and left sub-tree pointers of the newnode to NULL. 

3. Then, the left() sub-tree function is defined. It accepts as parameters r which is a pointer to the 
structure node and an integer variable x. It executes the following steps: 

(a) It checks if the left pointer of r is empty. If it is not empty, then it calls the make function 
passing x as a parameter. 

4. Then, the right() sub-tree function is defined. It accepts as parameters r which is a pointer to the 
structure node and an integer variable x. 

(a) It checks if the right pointer of r is empty. If it is not empty, then it calls the make function 
passing x as a parameter. 

5. Then, the inorder() function is defined. It accepts as parameters r which is a pointer to the 
structure node. 

(a) It checks if r is non-empty. If it is non-empty, it then traverses the left sub-tree, prints the data 
and then traverses the right sub-tree. 

6. Then, the preorder() function is defined. It accepts as parameters r which is a pointer to the 
structure node. 

(a) It checks if r is non-empty. If it is non-empty, it prints the data, traverses the left sub-tree, and 
then traverses the right sub-tree. 

7. Then, the postorder() function is defined. It accepts as parameters r which is a pointer to the 
structure node. 

(a) It checks if r is non-empty. If it is non-empty, it then traverses the left sub-tree, then the right 
sub-tree and then prints the data. 

8. In the main() function, 

(a) The variables no, choice are declared as integer variables. 

(b) The value for the root node is accepted and added to the tree by calling the make() function. 

(c) The value of root is then assigned to variable p and q. 

(d) The program execution enters a while loop in which the following steps are performed: 

(i) First, it accepts another integer no. 

(ii) Then, the while loop is exited if no is equal to -1.  

(iii) Then, the following steps are repeatedly performed if the no. entered is not equal to 
variable data of p and q is not equal to NULL. 

I. First, p is assigned the value of q. 

II. If the number is lesser than the data of p, q is assigned the address of the left  sub-tree  
else q is assigned the address of the right  sub-tree  



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 228 

(iv) If no is less than data of variable p the function left() is called passing p and no as the 
parameters, else the function right () is called. 

(e) A while loop is used to obtain the choice of traversal. 

(i) If 1 is entered, inorder traversal is selected and the inorder function is executed. 

(ii) If 2 is entered, preorder traversal is selected and preorder function is executed. 

(iii) If 3 is selected, preorder traversal is selected and postorder function is executed. 

(iv) If 4 is entered, the while loop is exited. 

(v) If wrong digit is entered, an error message is printed on the screen. 

(f)  The getch() prompts the user to enter a key to exit the program. 
 

 

 

Consider the algebraic expression (A +(B-C)) / ((D-E) * (F+G-H)) 

Construct a binary tree with the above expression and traverse the tree in inorder, 
preorder, and postorder manner by applying the tree traversal algorithms. 

The binary tree operations are required to perform certain functions on a binary tree. The binary tree 
can be structured logically and implemented using the binary tree operations. The major operations on 
a binary tree are: 

12.5   Binary Tree Operations 

1. Insertion 

2. Deletion 

3. Searching 

12.5.1   Insertion 
The insertion operation deals with inserting a new node at any position in the binary tree. Before 
inserting the node, it is important to identify the location of insertion. Hence, searching operation must 
be performed before performing insertion operation. Search and insertion operation are inter-related.  

If an element T1 is given, and the task is to search and insert the element, then the operation is 
performed as follows: 

1. If element T1 < element of root node, then select left branch node and place the element T1 at the 
left side of the node. 

2. If element T1 > element of root node then place the element in the right branch of root node. 

This process continues until all the nodes are visited in the tree. 

Insertion is a two-step process. The first step deals with searching the node in a binary tree and the next 
step deals with inserting the node and providing a link for the new node. Insertion operation can be 
done on a sequential representation as well as linked representation of binary tree. Let us now discuss 
the insertion operation on sequential representation of binary tree. 

In the insertion operation, the key element is identified and a new node is inserted with its data 
element. 

The algorithm for insertion operation is as follows: 

Input – KEY is the node in the binary tree to identify the location of inserting a new node. 

Output – Newly inserted node with data as INFO. 

Data structure – Array A stores binary tree. 

 



Unit 12:  Binary Tree Traversals and Operations 

LOVELY PROFESSIONAL UNIVERSITY 229 

Steps 

1. L = SEARCH_SEQ(1, KEY)    // Search for key node in the tree 

2. If (L = 0) then 

(a) Print “Search is unsuccessful: No insertion” 

(b)         Exit 

3. EndIf       // Quit execution 

4. If (A[2 * L] = NULL) or (a[2 * L +1] = NULL)then  //If the left and right sub-trees are 
empty 

(a)  Read option to read as left (L) or right (R)  //child (give option = L/R) 

(b)  If (option = L) then 

(i) If A[2 * L] = NULL then  //Left link is empty 

 1. A[2 * L] = ITEM   // Store it in the array A 

(ii) Else    // Cannot be inserted as left child 

  1. Print “Desired insertion is not possible” //already has left child 

 2. Exit     //Return to end of procedure 

(iii) EndIf 

(c) EndIf 

(d) If (option = R) then   //Move to right side 

(i) If (A[2 * L +1] = NULL) then // Right link is empty 

 1. A[2 * L +1] = ITEM   //Store it in the array A 

(ii) Else    //Cannot be inserted as right child 

 1. Print “Desired operation is not possible” //already has a right child 

 2. Exit    // Return to the end of procedures 

(iii) EndIf 

(e) EndIf     //Key node having both the child 

  5. Else      //Key node does not have any empty link 

(a) Print “ITEM cannot be inserted as leaf node” 

   6. EndIf 

   7. Stop 

The recursive algorithm of search operation for inserting a node is as follows: 

Input – KEY is the item of search, INDEX is the index of node from which the searching process starts. 

Output – LOCATION is where the item KEY is located 

Data structure – Array A is for storing binary tree. SIZE indicates the size of A 

Steps 

1. L = SEARCH_SEQ(1, KEY) 

i = INDEX      //Start search from the root node 

2. If (A[i] ≠ KEY) then     //Present node is not key node 

1. If (2 * i ≤ SIZE) then     //If left sub-tree is not exhausted 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 230 

(a) SEARCH_SEQ (2*i, KEY)    //Search in left sub-tree 

2. Else      //Left sub-tree is exhausted and KEY not found 

(a) If(2*i + 1 ≤ SIZE)then   //If right sub-tree is not exhausted 

 1. SEARCH_SEQ (2*i + 1, KEY)  //Search in right sub-tree 

(b) Else     //KEY is found neither in left or right sub-tree 

 1. Return(0)    //Return NULL address for unsuccessful search 

(c) EndIf 

          EndIf 

3. Else 

(d) Return(i)    //Return address where KEY is found 

4. Stop 

12.5.2   Deletion 
Deletion operation is used to delete a node from a non-empty binary tree. To delete a node in the binary 
tree, it is important to visit the parent node of the node to be deleted. Deletion operation can be done on 
a sequential representation as well as linked representation of binary tree. Let us discuss the deletion 
operation on sequential representation of binary tree. 

In the deletion operation, the parent node of the deleting node must be traversed initially. 

The algorithm for deletion operation is as follows: 

Input – ITEM is the data of a node with which the node is identified for deletion. 

Output – Binary tree containing a node without data as ITEM. 

Data structure – Array A is for storing binary tree. SIZE indicates size of array A. 

Steps 

1. Flag = FALSE     //Start from root node 

2. L = SEARCH_SEQ (1, KEY)   //Start searching from starting  

3. If (A[2 * L] = NULL) and (A[2 * L +1]=NULL) //Test for leaf node 

(a)  flag = TRUE   // If leaf node is present, then delete it 

(b)  A[L] = NULL 

4. Else 

(a)  Print “The node containing ITEM is not a leaf node” 

5. EndIf 

6. If (flag = FALSE) 

(a)  Print “NODE does not exist :No deletion” 

7. EndIf 

8. Stop 

12.5.3   Searching 
Searching operation is a part of insertion and deletion operation. It is a basic step to be performed 
before inserting or deleting a node in the binary tree. In the insertion operation, the location for the new 
node to be inserted must be identified whereas, in the deletion operation, searching of the parent node 
of the deleting node is required. The algorithm of searching operation for inserting a node has been 
explained in the section 12.5.1. 



Unit 12:  Binary Tree Traversals and Operations 

LOVELY PROFESSIONAL UNIVERSITY 231 

 

 

 
1. Write a C program to traverse the following algebraic expression in inorder, 

postorder and pre-order traversal 

(A +B ) – C + ((D * E) + (F/ G) – H) 

2. Write a C program to obtain the swapped version of binary tree. 

• The binary tree can be traversed in various ways. The three major binary tree traversal techniques 
are inorder, preorder and postorder traversals. 

12.6   Summary 

• The various operations performed on binary tree are insertion, deletion and searching operations. 

• The searching operation is related with the insertion operation to identify the location to insert a 
node 

• In deletion operation, searching method is used to identify the parent node of the deleting node. 

Converse Inorder Traversal: The tree obtained after the inorder traversal is represented in the original     
tree format. 

Infinite Loop: A series of instructions in a computer program which, on execution, result in a cyclic   
repetition of the same instructions. 

Iterative Traverse: Repetitive traversal. 

Traversing Flag: Indicates if the node was visited during traversal. 

12.7   Keywords 

1. State whether the following statements are true or false: 

12.8   Self Assessment 

(a) A complete insertion operation of binary tree provides sequential ordering of information in 
a tree.  

(b) In the post order traversal of binary tree, first the right sub-tree is traversed. 

2. Fill in the blanks: 

(a) To delete a node in the binary tree, it is important to visit the ………………….. node of the 
node to be deleted. 

(b) The………………….. method deals with visiting each node in a tree exactly once. 

(c) The nodes in the binary tree can be accessed by calculating the ………………… of every 
node. 

3. Select a suitable choice for every question: 

(a) Which among the following traversal of binary tree starts with traversing the root node? 

(i) Preorder 

(ii) Inorder 

(iii) Postorder 

 

 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 232 

(b) Which among the following tree traversal deals with the term LRN? 

(i) Inorder 

(ii) Preorder 

(iii) Postorder 

(c) Which among the following traversals involve traversing from left tree, root and right tree? 

(i) Inorder 

(ii) Preorder 

(iii) Postorder 

(d) Which among the following operations is performed before performing insertion operation? 

(i) Searching 

(ii) Deletion 

(iii) Modification 
 

1. In the binary tree given, delete node D and insert node I. 

12.9   Review Questions 

 

 
 

2. Perform the preorder traversal for the given binary tree. 

 

      



Unit 12:  Binary Tree Traversals and Operations 

LOVELY PROFESSIONAL UNIVERSITY 233 

 
3. Perform an inorder traversal for the given binary tree. 

 

              
 

4. Perform a postorder traversal for the given binary tree. 

 
5. For the following algebraic expression, construct a binary tree. 

(T1+T2) + T3 – (T5 * T6) 

Answers: Self Assessment 
1. (a) False  (b) False   

2. (a) Parent  (b) Traversing (c) Index  

3. (a) Preorder   (b) Postorder  (c) Inorder  (d) Searching 

 

 

 

 

 

 

 

 

 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 234 

 

12.10   Further Readings 

 

 
Reddy. P. (1999). Systematic Approach to Data Structures Using C. Bangalore: Sri Nandi 
Publications 

D. Samantha, Classic Data Structure, Delhi: Prentice Hall of India Publications 

Kamanthe A. N., Programming and Data Structures, South Asia: Dorling Kindersley 
(India) Publications 

 

 

http://www.ehow.com/how_2056293_create-binary-tree-c.html 

http://www.cis.upenn.edu/~matuszek/cit594-2005/Lectures/09-binary-trees.ppt 

http://www.cprogramming.com/tutorial/lesson18.html 

 



Unit 13:  Binary Search Trees 

LOVELY PROFESSIONAL UNIVERSITY 235 

Unit 13: Binary Search Trees 

CONTENTS 

Objectives 

Introduction 

13.1 Binary Search Tree Operations 

       13.1.1   Searching in Binary Search Trees 

       13.1.2   Inserting in Binary Search Trees 

       13.1.3   Deleting in Binary Search Trees 

       13.1.4   Other Operations 

13.2 Summary 

13.3 Keywords 

13.4 Self Assessment 

13.5 Review Questions 

13.6 Further Readings 

After studying this unit, you will be able to: 

Objectives 

• Explain insertion operation in a binary search tree 

• Describe searching operation in a binary search tree 

• Explain deletion operation in a binary search tree 

• Find the height of a binary search tree 

• Determine the minimum and maximum value in a binary search tree 

• Write a C function to count the leaves and nodes of a binary search tree 

You have already learnt about binary trees. The disadvantage of binary trees is that data is stored in 
these trees in any order and hence, the time taken to search these trees is longer. Search trees are data 
structures that support many dynamic-set operations such as searching, finding the minimum or 
maximum values, insertion, and deletion. Binary search trees, AVL trees and B+ trees are examples of 
search trees.  

A binary search tree (BST) has binary nodes. In a binary search tree, for a given node with value n, each 
node to the left has a value lesser than n and each node to the right has a value greater than n. This 
applies recursively down the left and right sub-trees.  

 

 

 

 

 

 

Introduction 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 236 

Figure 13.1 shows a binary search tree where characters are stored in the nodes. 

 
Figure 13.1: A Binary Search Tree 

 
  
 

 
 

Binary search trees provide an efficient way to search through an ordered collection of objects. Consider 
searching an ordered list. The search must proceed successively from one end of the list to the other. On 
an average, n/2 nodes must be compared for an ordered list that contains n nodes. In the worst case, all 
n nodes need to be compared. For a large collection of objects, this is very expensive.  

Binary search tree enables searching quickly through the nodes. The longest path to search is equal to 
the height of the tree. Thus, the efficiency of a binary search tree depends on the height of the tree. For a 
tree with n nodes, the smallest possible height is log n and that is the number of comparisons that are 
needed on an average to search the tree. A tree must be balanced to obtain the smallest height, i.e., both 
the left and right sub-trees must have the same number of nodes. 

 
 

Did you know? The trees which are unbalanced are called degenerate trees. For a degenerate tree with 
n nodes, an average of n/2 comparisons is needed, with a worst case of n comparisons.  

Thus, binary search trees are node based data structures used in many system programming 
applications for managing dynamic sets. Another example for a binary search tree is given in Figure 
13.2. As discussed, all the elements in the left sub-tree are lesser than the root node and the elements in 
the right sub-tree are greater than the root node. 

 
Figure 13.2: Example for Binary Search Tree 

 
  
 

 
 

In the binary search tree represented in figure 13.2, 10 is the root node and all the elements in the left 
sub-tree are lesser than 10 and the elements in the right sub-tree are greater than 10. Every node in the 
tree satisfies this condition for the existing left and right sub-trees. 

 



Unit 13:  Binary Search Trees 

LOVELY PROFESSIONAL UNIVERSITY 237 

 

 

 

We use binary search trees for applications such as searching, sorting, and in–order 
traversal. 

The four main operations that we perform on binary trees are: 

13.1   Binary Search Tree Operations 

1. Searching 

2. Insertion 

3. Deletion 

4. Traversal 

13.1.1   Searching in Binary Search Trees 
In searching, the node being searched is called as key node. We first match the key node with the root 
node. If the value of the key node is greater than the current node, then we search for it in the right sub-
tree, else we search in the left sub-tree. We continue this process until we find the node or until no 
nodes are left. The pseudo code for searching a binary search tree is as follows: 

Pseudocode for a Binary Search Tree 

find(X, node){ 

if(node = NULL) 

     return NULL 

if(X = node:data) 

     return node 

else if(X<node:data) 

     return find(Y,node:leftChild) 

else if(X>node:data) 

     return find(X,node:rightChild) 

} 

 
Figure 13.3: Binary Search Tree 

 
  
 

 
 

 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 238 

13.1.2 Inserting in Binary Search Trees 
To insert a new element in an existing binary search tree, first we compare the value of the new node 
with the current node value. If the value of the new node is lesser than the current node value, we insert 
it as a left sub-node. If the value of the new node is greater than the current node value, then we insert it 
as a right sub-node. If the root node of the tree does not have any value, we can insert the new node as 
the root node. 

Algorithm for Inserting a Value in a Binary Search Tree 

1. Read the value for the node that needs to be created and store it in a node called NEW. 

2. At first, if (root! =NULL) then root = NEW. 

3. If (NEW->value < root->value) then attach NEW node as a left child node of root, else attach NEW 
node as a right child node of root. 

4. Repeat steps 3 and 4 for creating the desired binary search tree completely. 

When inserting any node in a binary search tree, it is necessary to look for its proper position in the 
binary search tree. The new node is compared with every node of the tree. If the value of the node 
which is to be inserted is more than the value of the current node, then the right sub-tree is considered, 
else the left sub-tree is considered. Once the proper position is identified, the new node is attached as 
the left or right child node. Let us now discuss the pseudo code for inserting a new element in a binary 
search tree. 

Pseudocode for Inserting a Value in a Binary Search Tree 

//Purpose: Insert data object X into the Tree 

//Inputs: Data object X (to be inserted), binary-search-tree node  

//Effect: Do nothing if tree already contains X; 

// otherwise, update binary search tree by adding a new node containing data object X 

insert(X, node){  

     if(node = NULL){ 

        node = new binaryNode(X,NULL,NULL) 

        return 

       } 

      if(X = node:data) 

        return 

     else if(X<node:data) 

        insert(X, node:leftChild) 

     else                                       // X>node:data 

         insert(X, node:rightChild) 

} 

 

 

 
Consider figure 13.4. In this figure, 35 has to be inserted. First, 35 is compared with 
the value of root node i.e., 10. As 35 is greater than 10, the right sub-tree is 
considered. Now, 35 is compared with 22. As it is greater than 22, the search moves 
to the right sub-tree. 35 is then compared with 34 and again the search moves to the 
right sub-tree. Now, 35 is compared with 40, but as it is lesser than 40, we need to 
move to the left branch of 40. But since the node 40 has no left child, 35 is attached 
as the left child of 40. After the insertion of 35, the tree looks as shown in the figure 
13.5. 



Unit 13:  Binary Search Trees 

LOVELY PROFESSIONAL UNIVERSITY 239 

Figure 13.4 shows binary tree before insertion. 

Figure 13.5 shows binary tree after insertion. 

 
Figure 13.5: Binary Tree After Insertion 

 
  

 
 

13.1.3   Deleting in Binary Search Trees 
If the node to be deleted has no children, we can just delete it. If the node to be deleted has one child, 
then the node is deleted and the child is connected directly to the parent node. 

There are mainly three cases possible for deletion of any node from a binary search tree. They are: 

1. Deletion of the leaf node 

2. Deletion of a node that has one child 

3. Deletion of a node that has two children 

We can delete an existing element from a binary search tree using the following pseudocode: 

Pseudocode for Deleting a Value from a Binary Search Tree 

//Purpose: Delete data object X from the Tree 

//Inputs: Data object X (to be deleted), binary-search-tree node 

//Effect: Do nothing if tree does not contain X; 

// else, update binary search tree by deleting the node containing data object X 

 
Figure 13.4: Binary Tree Before Insertion 

 
  

 
 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 240 

delete(X, node){ 

     if(node = NULL)    //nothing to do 

        return 

     if(X<node:data) 

        delete(X, node:leftChild) 

     else if(X>node:data) 

        delete(X, node:rightChild) 

     else {               // found the node to be deleted. Take action based on number of node children 

         if(node:leftChild = NULL and node:rightChild = NULL){ 

             delete node 

        node = NULL 

        return 

     } 

     else if(node:leftChild = NULL){ 

        tempNode = node 

        node = node:rightChild 

        delete tempNode} 

     else if(node:rightChild = NULL){ 

        tempNode = node 

        node = node:leftChild 

        delete tempNode 

        } 

     else { //replace node:data with minimum data from right sub-tree 

         tempNode = findMin(node.rightChild) 

         node:data = tempNode:data 

          delete(node:data,node:rightChild) 

          } 

     } 

Pseudocode for Finding Minimum Value from a Binary Search Tree 

//Purpose: return least data object X in the Tree 

//Inputs: binary-search-tree node node 

// Output: bst-node n containing least data object X, if it exists; NULL otherwise 

findMin(node) 

{ 

     if(node = NULL)             //empty tree 

        return NULL 

     if(node:leftChild = NULL) 

        return node 



Unit 13:  Binary Search Trees 

LOVELY PROFESSIONAL UNIVERSITY 241 

     return findMin(node:leftChild) 

} 

Deletion of a Leaf Node 

Deletion of a leaf node is considered to be the simplest form of deletion, wherein the left or right pointer 
of the parent node is set as NULL. From the given tree in figure 13.6, the node with value 6 has to be 
deleted. Hence, the left pointer of its parent node is set as NULL, i.e., left pointer of node with value 7 is 
set to NULL. The figure 13.7 represents the tree after deletion of node holding value 6. 

 
Figure 13.6: Before Deletion 

 
  

 
 

 
 

Figure 13.7: After Deletion 
 

  

 
 

Deletion of a Node That Has One Child 

Consider figure 13.8, to understand deletion of a node that has one child node. If the node 15 has to be 
deleted, node 18 must be copied to the place of 15 and then the node must be set free. It is noted that the 
inorder successor is always copied at the position of a node being deleted.  

 
Figure 13.8: Before Deletion 

 
  

 
 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 242 

The figure 13.9 represents the tree after deletion of node 15. 
 

Figure 13.9: After Deletion 
 

  

 
 

Deletion of a Node That Has Two Children 

Consider figure 13.10 to understand deletion of a node that has two children. The node with the value 8 
needs to be deleted and also the inorder successor of node 8 needs to be found. The inorder successor 
will be copied at the location of the node. The figure 13.11 represents the tree after deletion of node 
holding value 8. 

 
Figure13.10: Before Deletion 

 
  

 

 
 

 
 

Figure 13.11: After Deletion 
 

  
 

 
Thus, 9 must be copied at the position where the value of node was 8 and the left pointer of 10 must be 
set as NULL. This completes the entire deletion procedure. 

Traversal of a binary search tree is the same as traversal of a binary tree which has been explained in 
Unit 12. 



Unit 13:  Binary Search Trees 

LOVELY PROFESSIONAL UNIVERSITY 243 

 
 

Did you know? The insertion, deletion and search operations have an average case complexity of 
O(log n), where n is the number of nodes in the binary search tree. 

 
 

 
 

 

Write a pseudocode for traversing a binary search tree recursively. 

13.1.4   Other Operations 
Finding the Height of a Tree 

The maximum level is referred as the height of the tree. The root is always at zero level, the adjacent 
nodes to the root are the first level, and so on. In the given figure 13.12, the height of the tree is 3. The 
height of the tree is also referred as the depth of the tree. 

 
Figure 13.12: Binary Tree 

 
  

 
 

The C function to find the height of a tree is shown in the following example. 

 

 

 
struct node 
{ 
     int element; 
     struct node *L; 
     struct node *R; 
}; 
typedefstruct node* NODE; 
int max(int x, int y)                    // function to find maximum of two numbers                   
{   
     return(x>y)?x:y; 
  } 
int height(NODE root)              // function to find the height of the tree  
 { 
     if(root==NULL) 
         return 0; 
      return 1+max(height(root->L),height(root->R)); 
} 
In this example, 

1. A structure named node is created. It consists of two pointer variables 
named L and R that point to the left node and right node. 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 244 

2. An object called NODE is created to access the structure element. 

3. Two functions are created namely max and height. 

4. The two arguments x and y are compared by the max function, and the 
greater number is returned.  

5. The value of root is checked by the height function. If root is NULL, 0 is 
returned.  

6. The max function is recursively called by the height function by passing 
the left and right sub-trees as parameters. The value returned by the max 
function is incremented and returned. 

To Find the Maximum and Minimum Value in a tree 

In a binary search tree, a node with maximum value is found by traversing and obtaining the extreme 
right node of the tree. If there is no right sub-tree, then the root is returned as the node that holds the 
item of the highest value. 

The C function to return the address of highest item in binary search tree is shown in the following 
example. 

 

 

 
struct node 
{ 
     int element; 
     struct node *L; 
     struct node *R; 
 }; 
typedef struct node* NODE; 
NODE maximum(NODE root) 
{ 
     NODE data; 
     if(root==NULL) 
        return root; 
     data=root; 
     while(data->R!=NULL)  
        data=data->R;          // find right most node in binary search tree  
     return data; 
  } 

In this example: 

1. A structure named node is created. It consists of two pointer variables named 
L and R that point to the left node and right node. 

2. An object called NODE is created to access the structure element. 

3. The function maximum is defined which accepts the address of the root node 
as the parameter. 

4. In the function maximum(): 

(a) A variable data is declared as type NODE. 

(b) If root is entered as NULL, then the function returns root. Else, the 
value of root is assigned to the variable data. 

(c) Using the while loop, the extreme right node in the tree is found and its 
address is returned. 



Unit 13:  Binary Search Trees 

LOVELY PROFESSIONAL UNIVERSITY 245 

In a binary search tree, a node with minimum value is found by traversing and obtaining the extreme 
left node of the tree. If there is no left sub-tree, then the root is returned as the node which holds the 
item of the least value.  

The C function to return the address of least item in binary search tree is shown in following example. 

 

 

 
struct node   
 { 
     int element; 
     struct node *L; 
     struct node *R; 
 }; 
typedef struct node* NODE; 
NODE minimum(NODE root) 
 { 
       NODE data; 
       if(root==NULL)  
          return root; 
      data=root; 
      while(data->L!=NULL)  
        data=data->L;              // finds left most node in binary search tree 
     return data; 
} 

In this example: 

1. A structure named node is created. It consists of two pointer variables 
named L and R that point to the left node and right node. 

2. An object called NODE is created to access the structure element. 

3. The function minimum is defined which accepts the address of the root 
node as the parameter. 

4.  In the function minimum(): 

(a) A variable data is declared as type NODE. 

(b) If root is entered as NULL, then the function root is returned, else, 
the value of root is assigned to the variable data. 

(c) Using the while loop, the extreme left node in the tree is found and 
its address is returned. 

Count Nodes and Leaves in a Tree  

We obtain the number of nodes in the tree by traversing the tree using any traversal technique and 
incrementing the counter whenever a node is visited. The variable count is taken as a global variable 
and it is initialized to zero. In the given example, inorder traversal is used to visit each node. The C 
function to obtain the number of nodes in a tree is given in the following example. 

 

 

 
static count = 0; 
struct node   
{ 
     int element; 
     struct node *L; 
     struct node *R; 
 }; 
typedef struct node* NODE; 
int count_node(NODE root) 
{ 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 246 

      if(root!=NULL) 
      { 
         count_node(root->L); 
         count++; 
         count_node(root->R); } 
       } 
       return count; 
} 

In this example: 

1. The variable count is a global variable and it is initialized to zero. It is 
also declared static so that it retains its value in consequent function 
calls. 

2. A structure named node is created. It consists of two pointer variables 
named L and R that point to the left node and right node. 

3. An object called NODE is created to access the structure element. 

4. The function count_node is defined and has a parameter root of type 
NODE. 

5. In the function count_node(), 

(a) If root is not NULL, then the number of left nodes is counted by 
recursively calling the function and by passing the address of the 
left sub-tree. The count variable is also incremented. 

(b) Then, the number of right nodes is recursively counted by the 
function by passing the address of the right sub-tree. The count 
variable is also incremented. 

A leaf node is a node that has zero child nodes. To obtain the number of leaves in the tree, visit each 
node in the given tree. Whenever a leaf is found, update the count by one. The following example 
shows the function to count the leaves in a binary tree. 

 

 

 
static count = 0; 
struct node 
{ 
     int element; 
     struct node *L; 
      struct node *R; 
}; 
typedef struct node* NODE; 
void count_leaf(NODE root) 
{ 
     if(root!=NULL) 
     { 
         count_leaf(root->L);               // traverses recursively towards left  
         if (root->L==NULL &&root->R==NULL) 
        /* if a node has empty left and right child */ 
        count++; 
        count_leaf(root->R); 
       /* traverses recursively towards right */ 
       } 
} 

 

 



Unit 13:  Binary Search Trees 

LOVELY PROFESSIONAL UNIVERSITY 247 

In this example: 

1. The variable count is a global variable and it is initialized to zero. It is also 
declared static so that it retains its value in consecutive function calls. 

2. A structure named node is created. It consists of two pointer variables 
named L and R that point to the left node and right node. 

3. An object called NODE is created to access the structure element. 

4. The function count_leaf is defined which accepts a parameter root of type 
NODE. 

5. If root is not NULL, then the leaf nodes in the left sub-tree of the root is 
counted by the function. If a node has no left and right child, then the 
variable count is incremented. 

6. Then, the leaf nodes in the right sub-tree of the root is counted by the 
function. 

 
 

 

 

Which of the following are binary search trees? Justify your answers. 

 

 

 

 
Write a C program to implement a binary search tree. 

• Search trees are data structures that support many dynamic-set operations such as searching, 
finding the minimum or maximum value, inserting, or deleting a value.  

13.2   Summary 

• In a binary search tree, for a given node n, each node to the left has a value lesser than n and each 
node to the right has a value greater than n. 

• The time taken to perform operations on a binary search tree is directly proportional to the height 
of the tree.  

Degenerate Trees: Unbalanced trees. 

Dynamic Sets: Dynamic sets are data structures that support operations such as search, insert, delete, 
minimum, maximum, successor and predecessor. 

Inorder Successor: In binary tree, inorder successor of a node is the next node in inorder traversal of the 
binary tree. Inorder successor is null for the last node in inorder traversal. 

Ordered List: An ordered list is a list that is maintained in some predefined order such as, alphabetical 
or numerical order. 

13.3   Keywords 

 

 



Data Structure                                                                                                       

LOVELY PROFESSIONAL UNIVERSITY 248 

1. State whether the following statements are true or false: 

13.4   Self Assessment 

(a) A binary search tree has binary nodes.  

(b) The efficiency of a binary search tree depends on the height of the tree.  

(c) The smallest possible height of a tree with n nodes is log 2n.  

(d) In a binary search tree, a node with minimum value is found by traversing and obtaining the 
right most node of the tree. 

(e) A tree must be balanced to obtain the smallest height, where both the left and right sub-trees 
have the same number of nodes. 

2. Fill in the blanks: 

(a) In searching, the node being search is called as a ……………………. 

(b) We obtain the number of ……………………. in the tree by traversing the tree and 
incrementing the counter whenever a node is visited. 

(c) To insert a new element in an existing binary search tree, first we compare the value of the 
…………………… node with the current node value. 

3. Select a suitable choice for every question: 

(a) The maximum level of a tree is referred as the ……………………. of the tree. 

(i)  Height       (ii) Node             (iii)  Leaf            (iv)  Root 

(b) In searching operation, the node to be searched is known as. 

(i) Key node   (ii) Head node    (iii) Start node   (iv) Leaf node 

(c) Deletion of a leaf node involves setting left or right pointer of the parent node to? 

(i) Zero           (ii) NULL            (iii) Non zero      (iv) One 

1. “Binary search trees have more advantages when compared to other data structures”. Justify.  

13.5   Review Questions 

2. “Performance of a binary search tree depends on its height”. Explain. 

3. Write a function that will search a given binary search tree for a specific key. 

Answers: Self Assessment 
1. (a) True              (b) True                   (c) False            (d) False             (e) True          

2. (a) Key node            (b) Nodes          (c) New 

3. (a) Height                 (b) Key node     (c) NULL 

 

13.6   Further Readings 

 

 
Lipschutz.S. (2011). Data Structures with C. Delhi: Tata McGraw hill 

Reddy.P. (1999). Data Structures Using C. Bangalore:Sri Nandi Publications 

 

 

 
http://en.literateprograms.org/Binary_search_tree_(C) 

http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/binarySearchT
ree.htm 



Unit 14:  Heaps 

LOVELY PROFESSIONAL UNIVERSITY 249 

Unit 14: Heaps 

CONTENTS 

Objectives 

Introduction 

14.1 Fundamentals of Heaps 

14.2 Inserting into Heaps 

14.3 Deleting the Root of a Heap 

14.4 Heap Sort 

14.5 Priority Queue Using Heaps 

14.6 Summary 

14.7 Keywords 

14.8 Self Assessment 

14.9 Review Questions 

14.10 Further Readings 

After studying this unit, you will be able to: 

Objectives 

• Provide an introduction to heaps 

• Explain insertion operation on heap 

• Explain deletion of root of a heap 

• Discuss heap sort 

• Understand priority queue using heaps 

The heap data structure is a complete binary tree where each node of the tree has an orderly 
relationship with its successors. Binary search trees are totally ordered, but the heap data structure is 
only partially ordered. It is suitable for inserting and deleting minimum value operations. 

Heap is an array object that is considered as a complete binary tree. Each node of the tree corresponds 
to an element of the array that stores the value in the node. The tree is completely filled at all levels 
except possibly the lowest, which is filled from the left upwards to a point. Heap data structures are 
suitable for implementing priority queues. 

The heap serves as a foundation of a theoretically important sorting algorithm called heapsort, which 
we will discuss after defining the heap. 

Introduction 

A heap can be defined as binary trees with keys assigned to its nodes (one key per node). The two types 
of heaps are:  

14.1   Fundamentals of Heaps 

1. Max heaps 

2. Min heaps 

 

 



Data Structure 

LOVELY PROFESSIONAL UNIVERSITY 250 

Max Heaps - A max heap is defined as a heap in which the key value in each node is greater than or 
equal to the keys at its children, i.e., key (parent) ≥ key (child). The figure 14.1 depicts a max heap. Here, 
the root node 8 is greater than its child nodes 7 and 6. Similarly, 7 and 6 are greater than their child 
nodes. 

Min Heaps - A min heap is a heap where the key value in each node is lesser than or equal to the keys of 
its children i.e., key (parent) ≤ key (child).The figure 14.2 represents a min heap. Here, the root node 4 is 
lesser than its child nodes 6 and 5. Similarly, 6 and 5 are lesser than their child nodes. 

 
 Figure 14.2: Min Heap 

 
  

 
 

The Shape Requirement of Heaps 

The shape requirement of heaps defines that, in a binary tree all its levels must be full except possibly 
the last level, where only some rightmost leaves may be missing. This requirement is valid for both max 
and min heaps. In figure 14.3, the first tree (i) is a heap, but the second tree (ii) is not, as the tree’s shape 
requirement is violated. The tree in the figure 14.3 (i) satisfies the shape requirement, whereas the tree 
in the figure 14.3(ii) does not. The node 10 at level 1 of the figure 14.3 (ii) does not have a left child and 
therefore violates the shape requirement. 

 
 Figure 14.3: Illustration of Heaps 

 
  

 
 

 
 

 
Figure14.1: Max Heap 

 
  

 
 

(i) (ii) 



Unit 14:  Heaps 

LOVELY PROFESSIONAL UNIVERSITY 251 

 

 

 

1. Heap data structure can be an n-ary tree. 

2. Heap is not essentially sorted. 

 
  

 
 
 

 

Draw a max heap and a min heap for the sequence (20, 13, 16, 8, 15, 4, 9, 3, 12, 18) 

Architectural Approach of Heaps and Algorithms 

The two principal ways to construct a heap are: 

1. Bottom-up heap construction algorithm 

2. Top-down heap construction algorithm 

Let us now discuss the bottom-up heap construction. 

Bottom-up Heap Construction 
Bottom-up heap construction initializes the complete binary tree with n nodes by placing keys in the 
given order and then “heapifies” the tree as follows. Starting with the last parental node and ending 
with the root, the algorithm checks whether the parental dominance holds over the key at this node. If 
the parental dominance condition is not met, the algorithm exchanges the node’s key with the larger 
key of its children and checks for parental dominance of the key in its new position. This process 
continues until the parental dominance for the key is satisfied. After the “heapification” of the sub-tree 
rooted at the current parental node, the algorithm proceeds to do the same for the node’s immediate 
predecessor. 

If parental dominance does not hold over the key at a node, the algorithm exchanges the node’s key K 
with the larger key of its children and checks whether the parental dominance holds for K in its new 
position (Refer figures 14.4 and 14.5). In figure 14.4, the node with value 7 is lesser than its child node 
that has the value 8. Hence these two nodes are interchanged. 

 
Figure 14.4: Checking for Parental Dominance  

 
  

 
 

 

 

 

 

 

 

 

 



Data Structure 

LOVELY PROFESSIONAL UNIVERSITY 252 

Figure 14.5 shows how checking for parental dominance continues. 

 Figure 14.5: Continue Checking for Parental 
Dominance 

 
  
 

 
 

This process continues until the parental dominance requirement for K is satisfied. After completing the 
“heapification” of the sub-tree rooted at the current parental node, the algorithm continues to do the 
same for the immediate predecessor of the node as shown in figure 14.5. In figure 14.5, the node with 
value 9 is greater than its child nodes that have the values 6 and 4 and thereby holds the parental 
dominance. Then, this node with value 9 is compared with the root value 2, which is lesser than 9 and 
hence these two nodes are interchanged. The node with value 2 is lesser than its child nodes 6 and 4 and 
thus, it is interchanged with the node having larger value 6. The algorithm stops after this is done for 
the tree’s root to give the final heap in figure 14.6(i). The numbers above the nodes in the tree indicate 
their position in the array which is shown in the figure 14.6(ii). 

 
Figure 14.6: Heap and Array Representation 

 
  
 

 
 

As the value of a node’s key does not change during the process of shifting the node down the tree, it 
need not get involved in intermediate swaps. The empty nodes are swapped with the larger keys until a 
final position is reached where it accepts the deleted value again. 

Let us now study the algorithm for bottom-up heap construction. 

Algorithm: Heap Bottom-up (H [1...n]) 

//Constructs a heap from the elements of a given array 

// by the bottom-up algorithm 

//Input: An array H[1..n] of orderable items 

//Output: A heap H[1..n] 



Unit 14:  Heaps 

LOVELY PROFESSIONAL UNIVERSITY 253 

fori ←n/2 down to 1 do 

       k←i; v←H[k] 

heap←false 

while not heap and 2 * k ≤ n do 

      j←2 * k 

if j <n //there are two children 

     if H[ j ]<H[ j + 1] j ←j + 1 

     if v ≥ H[j ] 

         heap←true 

     else H[k]←H[j ]; k←j 

        H[k]←v  

Let us now trace the bottom-up heap construction algorithm. 

Algorithm Tracing of Bottom-up Heap Construction  

n=5 

Algorithm: Heap bottom-up (H [1...5]) 

//Constructs a heap from the elements of a given array 

// by the bottom-up algorithm 

//Input: An array H[1..5] of orderable items 

//Output: A heap H[1..5] 

for i ←5/2=1  down to 1 do 

     k←1; v←H[1] 

heap←false 

while not heap and 2 * 1 ≤ 5 do 

     j ←2 * 1 

if j <5 //there are five children 

      if H[ 2 ]<H[ 2 + 1] 2 ←2 + 1 

         if v ≥ H[2 ] 

            heap←true 

        else H[1]←H[2 ]; 1←2 

     H[1]←v 
 

 
 

 

Construct a heap for the list 2, 9, 7, 6, 2, 8, 5 using the bottom-up construction algorithm. 
 

Top-down Heap Construction Algorithm 
The top-down heap construction algorithm is less efficient and it constructs a heap by successive 
insertions of a new key into a previously constructed heap. The insertion of a new key into a heap is 
discussed in the section 14.2. 

 



Data Structure 

LOVELY PROFESSIONAL UNIVERSITY 254 

To insert a new key into a heap, add a new node with key K after the last leaf of the existing heap. Then, 
shift K up to its suitable place in the new heap. Consider inserting value 8 into the heap shown in the 
figure 14.7. 

14.2   Inserting into Heaps  

 
Figure 14.7: Inserting 8 into Heap 

 
  
 

 
 

 

Compare 8 with its parent key. Stop if the parent key is greater than or equal to 8. Else, swap these two 
keys and compare 8 with its new parent (Refer to figure 14.8). This swapping continues until 8 is not 
greater than its last parent or it reaches the root. In this algorithm too, we can shift up an empty node 
until it reaches its proper position, where it acquires the value 8. 

 Figure 14.8: Check for Parental Dominance until Tree 
is Balanced 

 
  
 

 
 

This insertion operation does not require more key comparisons than the heap’s height. Since the height 
of a heap with n nodes is about log2n, the time efficiency of insertion is in O(log n). 

The following steps show the method to delete the root key from a heap in the figure 14.9. 

14.3   Deleting the Root of a Heap  

 
Figure 14.9: Sample Heap 

 
  
 

 
 



Unit 14:  Heaps 

LOVELY PROFESSIONAL UNIVERSITY 255 

Step 1: Exchange the root’s key with the last key K of the heaps as shown in the figure 14.10. 

 Figure 14.10: Exchanging the Root Key with the Last 
Key 

 
  
 

 
Step 2: Decrease the heap’s size by 1 (Refer figure 14.11). 

 Figure 14.11:  Delete the Key Having the Original Root 
Key 

 
  

 
 

Step 3: “Heapify” the smaller tree by shifting K down the tree as we did in the bottom-up heap 
construction algorithm. That is, verify the parental dominance for K and if it holds, we complete the 
process (Refer figure 14.12). If not, swap K with the largest of its children and repeat this operation until 
the parental dominance condition holds for K in its new position. 

 
Figure 14.12: Heapified Tree 

 
  
 

 
 

We can determine the efficiency of deletion by the number of key comparisons required to “heapify” 
the tree after the swap is done, and the size of the tree is decreased by 1. Since it does not need more key 
comparisons than twice the heap’s height, the time efficiency of deletion is in O(log n). 

 

 
 
 

 

Name some applications of heap. 

A heap is used to implement heapsort. Heapsort uses the data structure max-heap which is a complete 
binary tree where the element at any node is greater than its children. Heapsort is a comparison-based 

14.4   Heap Sort  



Data Structure 

LOVELY PROFESSIONAL UNIVERSITY 256 

sorting algorithm which has a worst-case O(n log n) runtime. This is a two-stage algorithm which is as 
follows: 

Stage 1: (Heap construction): Construct a heap for a given array. 

Stage 2: (Maximum deletions): Apply the root-deletion operation n−1 times to the remaining heap. 

The pseudo code for the algorithm is shown below. 

Heapify(A, n){                                                     // heapify converts initial array into heap 

     l <- left(n)  

     r <- right(n)  

     if l <= heapsize[A] and A[l] > A[n]               // the root is compared with its two children  

        then largest <- l  

     else if largest <- n  

        if r <= heapsize[A] and A[r] > A[largest]  

           then largest <- r  

        if largest != n  

           then swap A[n] <-> A[largest]                   // the larger child is swapped with the root  

        Heapify(A, largest)                                      // heapify algorithm is applied to the  larger node 

} 

Buildheap(A){  

     heapsize[A] <- length[A]  

     for n<- |length[A]/2| down to 1  

     do Heapify(A, n)  

 } 

Heapsort(A){  

     Buildheap(A)  

     for n<- length[A] downto 2  

          do swap A[1] <-> A[n]  

     heapsize[A] <- heapsize[A] - 1  

     Heapify(A, 1)  

 } 

Heap sort first converts the initial array into a heap. The heapsort algorithm uses ‘heapify’ method to 
complete the task. The heapify algorithm, as given in the above code, receives a binary tree as input and 
converts it to a heap. Then, the root is compared with its two children, and the larger child is swapped 
with it. This may result in one of the left or right sub-trees losing the heap property. As a result, the 
heapify algorithm is recursively applied to the suitable sub-tree rooted at the node whose value was 
swapped with the root. This process continues until a leaf node is reached, or until the heap property is 
satisfied in the sub-tree. 

 

 

 

 



Unit 14:  Heaps 

LOVELY PROFESSIONAL UNIVERSITY 257 

Let us discuss the implementation of heapsort using the following example.  

 

 

 
Consider the following numbers 6,3,8,2,4,7,9. The tree representation of the set of 
numbers can be seen in the figure 14.13. 

 
 

Figure 14.13 Tree for the List 
 

  
 

 
 

Let us now perform the first stage of heapification on the tree to make it balanced as shown in the figure 
14.14. 

 
Figure 14.14: Process of Heapification 

 
  

 
 
 

We have obtained the heapified tree now (Refer figure 14.15) and we perform stage two which includes 
the deletion of the nodes. 

 
Figure 14.15: Heapified Tree 

 
  
 

 
 

 

 



Data Structure 

LOVELY PROFESSIONAL UNIVERSITY 258 

To perform the node deletion, we have to push the largest value on the top of the heap into an array 
and replace the value by the extreme left element in the tree as represented in figure 14.16. 

 
Figure 14.16 Node Deletion 

 
  
 

 
 

Now we obtain a tree which is not balanced. Therefore, we repeat the process of heapification to end 
with the largest element in the top node of the tree. This element is now pushed again into the array, 
and the extreme left bottom element replaces it. As we repeat this process, we finally obtain the sorted 
array as shown in figure 14.17. 

 

 

 

 

The time efficiency of heapsort is O(n log n) in both the worst and average cases. 

 

A priority queue is a queue with items having an orderable characteristic called priority. The objects 
having the highest priority are always removed first from the priority queues. 

A priority queue can be obtained by creating a heap. First call a function that creates an ascending heap. 
After creating the heap, delete the root node and call a function to recreate the heap for the remaining 
elements. This method helps in implementing an ascending priority queue. In the same way, we can 
implement a descending priority queue. 

The standard approach to implement priority queues using a heap is to use an array starting at position 
1 (instead of 0), where each item in the array relates to one node in the heap: 

14.5 Priority Queue Using Heap  

1. Array[1] holds the root of the heap 

2. Array[2] holds the left child 

3. Array[3] holds the right child 

 

 

 

 
Figure 14.17: Sorted Array 

 
  
 

 



Unit 14:  Heaps 

LOVELY PROFESSIONAL UNIVERSITY 259 

Let us discuss an example. Figure 14.18 represents both the conceptual heap (the binary tree), and its 
array representation. As shown, the root 9 is in array [1]. Its left child 7 is in array [2] and right child is 
in array[3]. In general, if a node is in array[m], then its left child is in array [m*2], right child in array 
[m*2 + 1] and its parent is in array [m/2]. 

 
Figure 14.18: Array Representation of Heap 

 
  
 

 
 

The shape property of the heap guarantees that there are no empty spaces in the array. 

• The heap data structure is a complete binary tree where each node of the tree relates to an element 
of the array that stores the value in the node. 

14.6   Summary 

• The two principal ways to construct a heap are by using the bottom-up heap construction 
algorithm and the top-down heap construction algorithm 

• A heap is used to implement heapsort. Heapsort is a comparison-based sorting algorithm which 
has a worst-case of O(n log n) runtime. 

• A priority queue is a queue with items having an orderable characteristic called priority. The 
objects having the highest priority are always removed first from the priority queues. 

• Priority queue can be attained by creating a heap. 

Ascending Heap: It is a complete binary tree in which the value of each node is greater than or equal to 
the value of its parent. 
 
Heapify: Heapify is a procedure for manipulating heap data structures. 
 
N-ary Tree: An n-ary tree is either an empty tree, or a non-empty set of nodes which consists of a root 
and exactly N sub-trees. The degree of each node of an N-ary tree is either zero or N. 

Parental Dominance: The key at each node is greater than or equal to the keys of the children and this is 
fulfilled automatically for leaf nodes. 

14.7   Keywords 

1. State whether the following statements are true or false: 

14.8   Self Assessment 

(a) Heaps are data structures that are suitable for implementing priority queues. 

(b) The top-down heap construction algorithm is more efficient and it constructs a heap by 
successive deletions of a new key into a previously constructed heap. 

(c) To insert a new key into a heap, a new node with key K is added after the last leaf of the 
existing heap and K is shifted up to its suitable place in the new heap. 

 



Data Structure 

LOVELY PROFESSIONAL UNIVERSITY 260 

2. Fill in the blanks: 

(a) …………………………… uses the data structure max-heap which is a complete binary tree 
where the element at any node is greater than its children. 

(b) …………………………… construction initializes the complete binary tree with n nodes by 
placing keys in the given order and then “heapifies” the tree. 

(c) The heapsort algorithm uses ………………………… method to convert the initial array into a 
heap.  

3. Select a suitable choice for every question: 

(a) A…………………………… is a set of items with an orderable characteristic called an item’s 
priority. 

(i) Priority queue  

(ii) Heap  

(iii) Data structure 

(iv) BST 

(b) Heapsort is a comparison-based sorting algorithm which has a worst-case 
…………………………… runtime. 

(i)  O(log n 

(ii) O(log 2n)  

(iii) O(n log n) 

(iv) O(n log 2n) 

(c) Priority queue can be attained by creating a ………………………… 

(i)  Queue  

(ii) Tree  

(iii) BST  

(iv) Heap 

(d) The time efficiency of insertion in heap is ……………………………  

(i)  O(n log n)  

(ii) O(log 2n) 

(iii) O(log n)  

(iv) O(n log 2n) 

1. “The bottom-up heap construction algorithm checks whether the parental dominance holds over 
the key at a node starting with the last parental node and ending with the root.” Discuss. 

14.9   Review Questions 

2.  “A heap can be implemented as an array by recording its elements in top-down left-to-right 
manner”. Describe in detail. 

3.  “Binary search property is different from heap property”. Justify. 

4.  “The heap data structure can be used for an efficient implementation of a priority queue”. 
Explain. 

5. Represent the max heap and min heap for the data 3, 8, 20, 28, 42, 54. 

 



Unit 14:  Heaps 

LOVELY PROFESSIONAL UNIVERSITY 261 

Answers: Self Assessment 
1. (a) True              (b) False                   (c) True             

2. (a) Heapsort             (b) Bottom-up heap                      (c) heapify          

3. (a)Heap                     (b) O(n log n)                                 (c) Heap                      (d) O(log n) 

 

14.10   Further Readings 

 

 
Lipschutz.S. (2011). Data Structures with C. Delhi: Tata McGraw hill 

Reddy.P. (1999). Data Structures Using C. Bangalore:Sri Nandi Publications 

 
 

 

 
http://orion.lcg.ufrj.br/Dr.Dobbs/books/book3/chap6.htm 

http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html 

 

 





Jalandhar-Delhi G.T. Road (NH-1)
Phagwara, Punjab (India)-144411
For Enquiry: +91-1824-300360
Fax.: +91-1824-506111
Email: odl@lpu.co.in

LOVELY PROFESSIONAL UNIVERSITY


	UObjectives
	UIntroduction
	U1.1   Basic Concepts and Notations of Data Structures
	U1.2   Need for Data Structures
	U1.3   Classification of Data Structure
	U1.4   Abstract Data Type
	U1.5   Data Structure Operations
	U1.6   Summary
	U1.7   Keywords
	U1.8   Self Assessment
	U1.9   Review Questions
	U1.10   Further Readings
	UObjectives
	UIntroduction
	U2.1   Mathematical Notation and Functions
	U2.2   Algorithmic Complexity and Time Space Tradeoff
	U2.3   Algorithmic Analysis
	U2.4   Summary
	U2.5   Keywords
	U2.6   Self Assessment
	U2.7   Review Questions
	U2.8   Further Readings
	UObjectives
	UIntroduction
	U3.1   Fundamentals of Arrays
	U3.2   Types of Arrays
	U3.3   Types of Array Operations
	U3.4   Summary
	U3.5   Keywords
	U3.6   Self Assessment
	U3.7   Review Questions
	U3.8   Further Readings
	UObjectives
	UIntroduction
	U4.1   Fundamentals of Pointers
	U4.2   Operations on Pointers
	U4.3   Dangling Pointers
	U4.4   Pointers to Functions
	U4.5   Pointers and Arrays
	U4.6   Records and Record Structures
	U4.7   Representation of Records in Memory - Parallel Arrays
	U4.8   Summary
	U4.9   Keywords
	U4.10   Self Assessment
	U4.11   Review Questions
	U4.12   Further Readings
	UObjectives
	UIntroduction
	U5.1   Basics of Linked List
	U5.2   Representation of Linked List in Memory
	U5.3   Types of Linked Lists
	U5.4   Summary
	U5.5   Keywords
	U5.6   Self Assessment
	U5.7   Review Questions
	U5.8   Further Readings
	UObjectives
	UIntroduction
	U6.1   Traversing a Linked List
	U6.2   Searching a Linked List
	U6.3   Inserting a Node into a Linked List
	U6.4   Deleting a Node from a Linked List
	U6.5   Summary
	U6.6   Keywords
	U6.7   Self Assessment
	U6.8   Review Questions
	U6.9   Further Readings
	UObjectives
	UIntroduction
	U7.1   Fundamentals of Stacks
	U7.2   Basic Operations of Stack
	U7.3   Representing Stacks in Memory
	U7.4   Stack Implementation using Arrays
	U7.5   Summary
	U7.6   Keywords
	U7.7   Self Assessment
	U7.8   Review Questions
	U7.9   Further Readings
	UObjectives
	UIntroduction
	U8.1   Fundamentals of Queues
	U8.2  Basic Operations of Queue
	U8.3   Representing Queue in Memory
	U8.4   Types of Queue
	U8.5   Summary
	U8.6    Keywords
	U8.7   Self Assessment
	U8.8   Review Questions
	U8.9   Further Readings
	UObjectives
	UIntroduction
	U9.1   Fundamentals of Recursion
	U9.2   Anatomy of Recursive Call
	U9.3   Function Call and Recursion Examples
	U9.4   Complexity Issues
	U9.5   Iteration vs. Recursion
	U9.6   Summary
	U9.7   Keywords
	U9.8   Self Assessment
	U9.9   Review Questions
	U9.10   Further Readings
	UObjectives
	UIntroduction
	U10.1   Trees
	U10.2   Types of Trees
	U10.3   Representation of Tree in Memory
	U10.4   Application of Trees
	U10.5   Summary
	U10.6   Keywords
	U10.7   Self Assessment
	U10.8   Review Questions
	U10.9   Further Readings
	UObjectives
	UIntroduction
	U11.1   Types of Binary Trees
	U11.2   Storage Representation of Binary Tree
	U11.3   Overview of Threaded Binary Trees
	U11.4   Summary
	U11.5   Keywords
	U11.6   Self Assessment
	U11.7   Review Questions
	U11.8   Further Readings
	UObjectives
	UIntroduction
	U12.1   Binary Tree Traversals
	U12.2   Preorder Traversal
	U12.3  Inorder Traversal
	U12.4   Postorder Traversal
	U12.5   Binary Tree Operations
	U12.6   Summary
	U12.7   Keywords
	U12.8   Self Assessment
	U12.9   Review Questions
	U12.10   Further Readings
	UObjectives
	UIntroduction
	U13.1   Binary Search Tree Operations
	U13.2   Summary
	U13.3   Keywords
	U13.4   Self Assessment
	U13.5   Review Questions

	U13.6   Further Readings
	UObjectives
	UIntroduction
	U14.1   Fundamentals of Heaps
	U14.2   Inserting into Heaps
	U14.3   Deleting the Root of a Heap
	U14.4   Heap Sort
	U14.5 Priority Queue Using Heap
	U14.6   Summary
	U14.7   Keywords
	U14.8   Self Assessment
	U14.9   Review Questions
	U14.10   Further Readings
	Letter blank.pdf
	Project.pdf
	Chapter_01.pdf
	Chapter_02.pdf
	Chapter_03.pdf
	Chapter_04.pdf
	Chapter_05.pdf
	Chapter_06.pdf
	Statistical Table.pdf




