
i

A HEUSIRTIC APPROACH TO MINE SOFTWARE REVISION

HISTORIES FOR QUALITY DRIVEN SOFTWARE DEVELOPMENT

A Dissertation Submitted by

Meghna Soni

11010056

To

Lovely School of Computer Science Engineering

In partial fulfillment of requirement for the

Award of the Degree of

Master of Technology in Computer Science

Under the Guidance of

Harshpreet Singh

Assistant Professor

May 2015

ii

iii

ABSTRACT

Mining software engineering data aims at removing irrelevant data and outliers or noisy data

from revision histories of various software applications by using various data mining

approaches. It helps in improving software debugging and software maintenance at low cost

and effort which prevents software failures and results in high quality of software.

Abundant research has been done on mining software engineering data for detecting error

patterns but still software engineering data remains an important topic of research for various

academicians due to unintentional violations made by some writers in the software data

which leads to software failure. To maintain software through its lifetime, continuous

evaluation of software is required, which can be accomplished by mining software

engineering data.

An efficient data mining strategy will be applied to source code plugins and method pairs of

revision histories of software applications which mine usage patterns and error patterns and

finally validate the patterns. The proposed approach will be compared with the existing

traditional algorithm in terms of memory acquired and execution time.

The proposed mining algorithm produced an efficient output when compared to Apriori

algorithm in terms of memory used and time taken for mining. The number of methods

mined by the new proposed algorithm is more as compared to Apriori algorithm. Different

java source code files of jEdit versions are mined and it was found that the new proposed

algorithm produced efficient results.

iv

CERTIFICATE

This is to certify that Meghna Soni has completed dissertation proposal titled “A Heuristic

Approach to Mine Software Revision Histories for Quality Driven Software

Development” under my guidance and supervision. To the best of my knowledge, the

present work is the result of her original investigation and study. This work has not been

submitted elsewhere for any other degree.

The dissertation proposal is fit for the submission and the partial fulfilment of the

conditions for the award of M.Tech Computer Science & Engg.

 Date: Signature of Advisor

 Name: Harshpreet Singh

 UID:17478

 Designation: Asst. Professor

 School of Computer Science

 and Engineering

v

ACKNOWLEDGEMENT

I would like to express my profound sense of gratitude and respect to all those who helped

me throughout the duration of this project. I am highly thankful to Mr. Harshpreet Singh

for his support, valuable time and advice, guidance, sincere cooperation during the study and

in completing the assignment of preparing the said project within the time stipulated.

This period proved for me one of the most productive and knowledgeable experiences of my

career. It provided me an opportunity to upgrade my skills as well as sharpen my professional

knowledge.

I would like to thank my Parents, God and friends. With their support and well wishes I am

able to complete this project in time.

vi

DECLARATION

I hereby declare that the dissertation proposal entitled, “A HEUSIRTIC APPROACH TO

MINE SOFTWARE REVISION HISTORIES FOR QUALITY DRIVEN SOFTWARE

DEVELOPMENT” submitted for the Master of Technology (M.Tech) Degree is

entirely my original work and all ideas and references have been duly acknowledged.

It does not contain any work for the award of any other degree or diploma.

Date: Investigator: Meghna Soni

 Registration No: 11010056

vii

TABLE OF CONTENTS

ABSTRACT ... i

CERTIFICATE .. iv

ACKNOWLEDGEMENT .. v

DECLARATION .. ivi

TABLE OF CONTENTS .. vii

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

CHAPTER 1 INTRODUCTION .. 1

 1.1 Software Engineering Data ... 1

 1.1.1 Types of software repositories .. 1

 1.2 Data mining ... 3

 1.2.1 Type of data to be mined .. 4

 1.2.2 Data Mining Tasks.. 4

 1.3 Software Engineering and Data Mining ... 5

 1.3.1 Association Rule and Frequent Pattern Mining 7

 1.3.2 Classification .. Error! Bookmark not defined.

 1.3.3 Prediction ... 11

 1.3.4 Clustering... 12

 1.3.5 Text Mining ... 14

CHAPTER 2 LITERATURE SURVEY ... 17

CHAPTER 3 PRESENT WORK .. 26

 3.1 Objectives of Research .. 26

 3.2 Research Plan .. 26

Chapter 4 RESULTS AND DISCUSSIONS .. 30

Chapter 5 CONCLUSION AND FUTURE SCOPE .. 37

REFERENCES………………………………………………………………………………38

LIST OF PAPERS………………………………………………………………………….. 41

viii

LIST OF TABLES

Tables Page No.

Table 1.1: Examples of software repositories 2

Table 1.2: Software Engineering Data, Mining Algorithms and 7

 Software Engineering Tasks

Table 1.3: Software Engineering Data Mined by Frequent Pattern Technique 7

Table 1.4: Software Engineering Data mined by Classification Techniques 9

Table 1.5: Software Engineering Data mined by Prediction Technique 11

Table 1.6: Software Engineering Data Mined by Clustering Technique 13

Table 1.7: Software Engineering Data mined by Text mining Technique 15

Table 4.1: Number of Methods Mined by Apriori Algorithm from jEdit4.3pre file 34

Table 4.2: Number of Methods Mined by New Algorithm of jEdit4.3 pre file 34

Table 4.3: Number of Methods mined by Apriori Algorithm from jEdit 5.0 file 35

Table 4.4: Number of Methods mined by New Algorithm from jEdit 5.0 version file 35

ix

LIST OF FIGURES

Figure Page No.

Figure 1.1: Data Mining Process 4

Figure 1.2: Process of Mining Software Repositories 7

Figure 1.3: Classification of Data Mining Techniques 14

Figure 1.4: Process of Mining Unstructured Data 14

Figure 3.1: Flowchart of Methodology 29

Figure 4.1: Browsing the jEdit version files 30

Figure 4.2: Mining Status Dialog Box appeared 31

Figure 4.3: Methods mined by Apriori algorithm 31

Figure 4.4: Methods mined by new algorithm 32

Figure 4.5: Methods mined by Apriori algorithm 32

Figure 4.6(a): Methods Mined by New Algorithm from jEdit 5.0 Version file 33

Figure 4.6(b): Methods mined by New algorithm 33

Figure 4.7: Number of methods mined by New Algorithm 34

Figure 4.9: Comparison in terms of Time 35

Figure 4.10: Graphical Representation of Time 36

Figure 4.11: Graphical Representation of Memory Required 36

1

Chapter 1

INTRODUCTION

This chapter gives the introduction about the software engineering data and a brief overview

about data mining. The chapter also contains the introduction to techniques of data mining

that are used to mine software engineering repositories.

1.1 Software Engineering Data

Software engineering is a constructive approach which involves systematic and cost effective

techniques for software development. Software systems are very complex due to which it

sometimes slows down the maintenance activities which lead to defects in system and finally

result in high cost of software.

Software ‘artifacts’ are the products which are produced during software development

processes which describes the functionality and design of software and also explains the

development process. The examples of artifacts are class diagrams, use case diagram, project

plans and business cases. The major challenge faced in software development is that these

software artifacts are generally lost and thus it becomes difficult to provide full history of

software system and its development process.

Software engineering data contains information about software and is also termed as

software repositories [Ahmed E. Hassan, 2008]. It comprises of source code, execution

traces, historical code changes, mailing lists and bug databases. Software engineering data

constitutes information about status and progress of the software projects with the help of

which practitioners can depend less on their intuition and experience and depend more on

historical data. It is used to keep record of the software projects and used to support decision

making process.

 1.1.1 Types of software repositories

 Software engineering data or software repositories can be classified into following types

[Ahmed E. Hassan et al, 2007]:

 Historical repositories: Historical repositories are used to track the history of a bug or a

feature. It contains the repositories such as source control, bug repositories and archived

communications. It is used to record the development history of a software project, bug

2

reports and tracks the all the changes related to source code and various aspects of project all

through its lifetime.

 Run time repositories: Runtime repositories keep track of information about the running

state of software application. It consists of deployment logs which contain information about

the execution and the usage of an application at a single or multiple deployment sites.

 Code repositories: Code repositories comprise of source code of various applications such

as Sourceforge.net and Google code.

Software engineering data which is generally mined [Ahmed E. Hassan, 2008] is:

a) Source code: The repositories store all the changes that the different source code files

undergo during the project. It also allows work to be done in parallel by different developers

over the same source code tree.

b) Issue tracking systems: Issue tracking systems handles the bug defects and user requests,

where users and developers can fill tickets describing the defects found, or a desired new

functionality.

c) Messages between developers and users: In open source software, the projects are opened

to world and the messages are communicated in the form of mailing lists, which can also be

mined for research purposes.

d) Meta data about the projects: The meta data about the software projects can also be useful

for research. It may include programming language, domain of application, license etc.

Table 1.1: Examples of Software Repositories

Repository

Description

Source control

repositories

These record the development history of a project. They track all the

changes in the source code along with meta data about each change. Ex:

change units such as files, functions, CVS

Bug repositories

They keep the record of history of bug reports of software project all

through its life. Ex: Bugzilla

3

Deployment logs

They record the information about the execution of a single deployment of

a software application or different deployments of the same applications.

Example: it may record the error messages reported by the application at

various deployment sites.

Archived

communications

The development team use some form of electronic communication to

have discussions. This repository keeps record of the discussions about

various aspects of software project throughout its lifetime. Examples are:

mailing lists, emails, IRC chats etc.

Majority of software development organizations make use of revision control software such

as CVS, subversion to manage the development of digital assets. Revision control software

keeps a historical record of each revision and makes users to access previous versions. It also

helps in analyzing historical artefacts produced during software development, such as

number of lines written, authors which wrote particular line or any software metrics. Many

organizations also make use of defect tracking software such as Bugzilla, JIRA which

associates bugs with meta information such as status, comments dates which helps to detect

defect prone modules.

1.2 Data mining

Data mining came into view around 1990. It can be expressed as knowledge mining from

data by applying intelligent methods for extraction. Data mining is a knowledge discovery

process which is used to reveal hidden patterns and trends in large datasets. It is the

extraction of hidden predictive information from large databases and transforms it into

understandable structure for further use. These discovered interesting patterns are presented

to the user and may be stored as new knowledge in knowledge base.

 It is a technology with great potential to help companies focus on the most important

information in their data warehouses. Data mining techniques can be implemented rapidly on

existing software and hardware platforms to enhance the value of existing information

resources, and can be integrated with new products and systems as they are brought on-line.

Data mining tools can answer business questions that traditionally were very much time

4

consuming to resolve. It polishes databases for hidden patterns, finding predictive

information that experts may miss because it lies outside their expectation.

1.2.1 Type of data to be mined

 Database data: Data base management system consists of collection of interrelated data

and software programs to access and manage this data. Relational databases can be mined

by searching for trends and data patterns.

 Data Warehouses: Data warehouse is a repository of information collected from various

sources and stored in a uniform manner. They are developed by data cleaning, data

integration, data transformation, data loading and periodic data refreshing.

 Transactional data: Transactional database comprises of transaction such as airline

booking

 Other: Other kinds of data beside the above mentioned data that can be mined are

historical records, stock exchange data, time series and biological sequence data, spatial

data, engineering design data, media data, graph and networked data.

Figure 1.1: Data Mining Process

1.2.2 Data Mining Tasks

There are six common tasks involved in data mining:

 Classification: Classification is the process of examining features of newly presented

objects and assigning them to a predefined class which consists of training sets.

 Prediction: Prediction is the process of getting valued outcomes for some unknown

continuous variables. It finds a function which models the data with the least error.

Database
Flat files

Data

Preprocessing

Data

analysis

Data

validation

5

 Association Rules: The rules that assign any association relation between set of objects

i.e. they occur together

 Clustering: Division of elements into similar groups or clusters is called clustering,

 Outlier Analysis: identification of unusual data such as noise or exceptions is outlier

analysis.

 Description and Visualization: This includes (i) verification of user’s hypothesis (ii)

discovery of patterns to find the future behavior of elements and representation of data

sets.

1.3 Software Engineering and Data Mining

In order to improve the software quality, data mining techniques have been used to mine

software engineering data which store the information about any software system related to

its source code, bug history [Ahmed E. Hassan, 2008]. Software metrics has been used to

calculate the reliability and performance of software, but there are some challenges faced

while using metrics for estimating the quality of software. Metrics can be uninformative,

invalid, irrelevant and can be difficult to change and compute [Quinn Taylor et. al, 2010].

Due to these challenges, data mining concepts provide better solution for computing quality

of software applications.

Mining Software Repositories Workshop was established in 2004 with an aim to improve the

quality of software engineering data by using different data mining procedures [Ahmed E.

Hassan, 2007]. Mining software engineering data finds its use in the following [Quinn

Taylor et. al, 2010]:

i. Development: Mining software engineering data makes development process of software

effortless because enough relevant data can be provided that will help in guiding

development.

ii. Management: Project managers have the task to prevent the introduction of faults and

ensure that these faults are discovered quickly so that they can use the software engineering

data to fulfill the requirements of customers.

6

iii. Research: From the research point of view, data mining helps in gaining insight about

different software projects so that a better guidance can be provided for its development.

 Mining software engineering data helps in converting the static records of software

applications into active repositories which helps in decision making processes for modern

software projects [Ahmed E. Hassan, 2007]. It focuses on mining frequent patterns from

revision histories of various software applications by using pertinent data mining strategies

along with the removal of outlier and noisy data. It helps in software maintenance at low

cost and effort which prevents software failures and results in high quality software.

 Mining information about software systems can help the developers to better understand the

system and propagate changes in other software systems [Ahmed E. Hassan, 2006]. Mining

software engineering data also helps in code reuse as extracting information from

repositories helps in producing frequent information used to develop software and can be

used as reusable component.

 Software plugins are the additional features provided by software applications which are

written by programmers who develop code for software [Benjamin Livshits et al, 2006].

Plugins and method calls in the source code of software applications may sometimes contain

common errors which can be extracted by using data mining approach. Many software

applications such as jEdit, Eclipse, Mozilla Firefox and many more consist of many plugins.

The mining of patterns from large datasets can be more time consuming, therefore extraction

of patterns by using a fast approach and that needs less space is a challenge [Daniel

Rodriguez et al, 2012].

 Software specific bugs are more likely to occur therefore huge amount of attention has been

given in finding those bugs or errors. Error patterns also occur in the source code revision

histories of many application systems due to programmers violating the coding rules

[Rakesh Agarwal et al, 1994]. Mining software revision histories for frequent error patterns

in large applications can be done using many data mining approaches which can be more

time consuming and has less memory usage for mining the source code repositories and to

uncover the work carried in mining software engineering data. Figure 1.2 shows the process

of mining software engineering data which includes extracting data set by pre-processing the

7

repositories and then applying the mining strategy to get the desired mining result which will

be used in different manners to improve the software quality.

Figure 1.2: Process of Mining Software Repositories

Table 1.2: Software Engineering Data, Mining Algorithms and Software Engineering Tasks

Software Engineering

Data

 Mining Algorithms Software Engineering

Tasks

Sequences:

execution/static traces,

co-changes.

Association rule mining, frequent

itemset/subsequence/partial-order

mining,sequence

matching/clustering/classification

Programming,

maintenance, bug

detection debugging

Graphs: dynamic/ static

call graphs, program

dependence graphs

Frequent subgraph mining, graph

matching/clustering/classification

Bug detection, debugging

Text: bug reports,

emails, code comments,

documentations

Text matching/clustering/classification Maintenance, bug

detection, debugging

1.3.1 Association Rule and Frequent Pattern Mining

Association rule and frequent pattern mining technique was proposed by Agrawal et al. in

1994. It is the method of achieving the relationship between the variables.

Table 1.3: Software Engineering Data Mined by Frequent Pattern Technique

Information

sources

Technique and

Tools used

Task Result Reference

Open source

NASA dataset

Classification model

based on relational

association

rule(DPRAR)

Predicted whether

a software

module is

defective or non-

defective

The proposed

classifiers

predicted the

defective

modules

Gabriela

Czibula et

al. 2014

Software

Revision

Histories

Preprocess-

ing Data Set

Mining

Approach

Desired

Mining

Outcome

8

Open source

projects(YARI,

Zest, JUnit

JFreeChart,

AgroUML)

Sub graph mining,

AST, UML

Detecting

identical data

structures in

object oriented

systems

Detected many

identical

structures that

can be classified

as software

design clones.

Umut

Tekin et

al. 2014

Data Streams Frequent pattern

mining algorithms

Comparative

study of each

algorithm

RARM and

ASPMS perform

better than other.

Shamila

Nasreen

et al.

2014

Real world data Mining algorithm and

tools, frequent

pattern mining,

Coding Tracker

Mining unknown

frequent code

change patterns

Algorithm was

scalable

efficient, mined

half a million of

instances in less

than six hours.

Stas

Negara

et al.

2013

Histories from

Eclipse project

Kenyon framework,

Bird Data

Mining crashes or

bugs, identifying

fix patterns and

fixing them

Identified three

major crashes

and found that

there are fix

patterns for

crashes

Jaechang

Nam et

al. 2013

Eclipse plugin GraPacc tool,

frequent pattern

mining

Mining API usage

patterns

Mines graph

based patterns

and completes

code

A. T.

Nguyen

et al.

2012

Health care

software system

Program dependence

graph, spatial pattern

search, graph based

pattern mining, false

positive pruning

Pattern mining of

cloned codes

Mined patterns

were used for

bug discovery,

pattern analysis

Wei Qu

et al.

2010

9

Classification is a predictive modeling technique which assigns an object to a certain class

based on its similarity. It is done by constructing a model or classifier to predict class and

assign a particular object to that class. Data classification is a two-step process which

consists of learning step and classification step. The procedure is given as follows:

Procedure: In the learning step, classification algorithm builds a classifier with the help of a

training set. A tuple X, represented by n dimensional attribute vector X=(x1,x2,…..xn), shows

n measurements made on the tuple from m database attributes, A1,A2,….Am. Each tuple X

belongs to a predefined class determined by class label attribute and individual tuples make a

training set called training tuples. In classification step, the model or classifier is used to

predict class labels for given data. Test set which comprises of test tuples and their associated

class labels is compared with the learned classifier’s class prediction

Table 1.4: Software engineering data mined by classification techniques

Information

sources

Technique and Tools

used

Task Result Reference

Eclipse version

control system,

Bugzilla

Eclipse metric plugin,

classifier algorithm, R

2.15 tool

Predicting

software defect

classification

by prediction

models

Models

predicted the

defects and

measure the

performance of

models

Hui

Wang

2014

PC1 dataset of

NASA’s MDP

Fuzzy c-means

clustering approach, k-

Nearest Neighbors

Classifiers and

combination of Fuzzy

c-mean and Genetic

algorithm, MATLAB

R2010

Comparing

performance of

software fault

prediction

system

Combination of

Fuzzy c-mean

and Genetic

algorithm is

more efficient.

Anil

Kumar

Singh et

al. 2014

NASA dataset Naive Bayes, Neural

Networks, Association

Rules, Decision Tree

Predict the

defective state

of software

modules

Best

performance in

predicting

defective

modules is of

Naïve Bayes

then neural

network then

decision tree.

Ahmed

H.

Yousef

2014

10

Open source

NASA dataset

Classification model

based on relational

association

rule(DPRAR)

predicted

whether a

software

module is

defective or

non-defective

The proposed

classifiers

predicted the

defective

modules

Gabriela

Czibula

et al.

2014

jEdit Genetic algorithm,

Chidamber & Kemerer

metrics suite

Finding classes

and metrics

that are fault

prone

The result was

measured in

terms of

accuracy and

found the

proposed

approach

efficient.

Aditi Puri

et al.2014

KC1 dataset of

NASA metric

data program

SVM(classifier

algorithm), WEKA

Investigated

accuracy of

SVM

SVM with Poly

kernel is most

accurate

P.A.

Selvaraj

et al.

2013

Linux kernel,

Mozilla, and

Apache

Randomly sampling

bugs, machine learning

techniques

Study the

characteristics

of software

bugs

Studied the root

cause and

impact of bugs.

Lin Tan

et al.

2013

NASA software

repository

Rule-based

classification,

enhanced RIDOR

algorithm

Classify the

software

modules as

fault prone or

not fault prone.

Accurately

mined defects

from datasets

Hassan

Najadat

et al.

2012

Eclipse versions,

Equnox

SVM and Fuzzy

classification

Predicting

defective

modules

Achieved 76.5

mean recall and

34.65 mean

false alarm rate.

Bharavi

Mishra et

al. 2012

NASA MDP COCA algorithm Predict

software

defects.

The algorithm

is more

effective

Xiao-

dong Mu

et al.

2012

Mozilla project,

CVS

Bugzilla, machine

learning, stratification

based resampling

Mining dataset

from project

Computed 18

object oriented

metrics,found

Heteroskedastic

Lourdes

PELAYO

et al.

2009

11

ity and

skewness

problems

NASA software

projects

AntMiner+ ant colony

optimization based on

classification

Prediction of

erroneous

software

modules

The approach is

accurate and

efficient in

predicting error

modules in

software

projects.

Olivier

Vandecru

ys et

al.2008

Eclipse plugin Change

classification(SVM)

Predicting

bugs inside an

IDE

Effective in

classifying

changes.

Madhava

n et al.

2007

1.3.3 Prediction

Prediction is a method in which the identity of one attribute is predicted based on the

description of another attributes that are interrelated. It is a supervised learning task in which

the data, without creating any explicit models, is used to predict the class value of a new

instance.

Procedure: Let us assume that we have a dataset where each record has attributes X1…..Xn

and Y. The goal of prediction is to learn a function and use this function to predict Y attribute

for input record(X1…Xn). Predicted values are usually continuous and here Y is a continuous

attribute. A model or predictor is constructed to compute the predicted value and prediction

techniques are based on fitting a curve by finding the relationship from predictor to predicted

value.

Table 1.5: Software engineering data mined by prediction technique

Information

sources

Technique and Tools

used

Task Result Reference

JHotDraw,

JEdit

Latent Dirichlet

allocation (statistical

modeling)

Evaluating

topic models in

the analysis of

software

evolution.

Topics in both the

systems grow as

the size of source

code grows.

Topic evolutions

of JHotDraw are

more active than

those of jEdit

Stephen

W.

Thomas et

al.2014

12

Rhino, ajc,

Lucene

FindBugs tool Study static

correspondenc

e and statistical

correlation

between

defects and

warning

No statistical

correspondence

but moderate

statistical

correlation

between defects

and warning

Cesar

Couto et

al. 2013

25 projects of

telecommunic

ation

system(GSM

operator),

NASA MDP

Defect prediction

model, static call graph

based ranking (CGBR),

nearest

neighbor sampling.

Prediction of

fault prone

modules in

large system

using data

mining.

70% of the

defects were

detected by the

proposed

approach.

Burak

Turhan et

al.2008

Windows XP

OS

Machine learning

algorithm(logistic

regression), MATLAB

Predict risk of

regression by

software

metrices.

70% of engineers

use regression

risk reports while

testing

Alexander

Tarvo

2008

1.3.4 Clustering

Clustering is the process of partitioning a set of data objects into subsets called a cluster.

Objects in a cluster are similar to one another and dissimilar to objects in other cluster.

Clustering methods are classified into following categories:

 Partitioning methods: Let there be set of n objects such that k partitioning of data is

constructed where each partitioning represent a cluster and nk  . Most partitioning

methods are distance based. There are two methods of partitioning:

o k-Means: Let D be a data objects containing n objects. Divide the objects into k

clustes, C1, C2,…….Ck such that DCi  and  ji CC . Ci is centroid of cluster.

  
 


k

i cp

i

i

cpdistE
1

2
,

o k-Medoid: In this method, absolute error criterion is used which is defined as:

  
 


k

i Cp

i

i

opdistE
1

,

13

where p is all objects in dataset and oi is the representative object of Ci. This is the

basis of k-medoid method,

which groups n objects into k clusters by minimizing the absolute error.

 Hierarchical methods: Hierarchical method creates hierarchical decomposition of data

objects. There are two sub categories of this method: agglomerative and divisive approach

(AGNES and DIANA). AGNES is a bottom-up approach and DIANA is a top-down

approach.

 Density-based methods: Density based method is based on density. The basic idea of this

method is to continue growing a given cluster as long as the density in the neighborhood

exceeds some threshold. The techniques used in this method are: Density Based Clustering

on Connected Regions with High Density (DBSCAN), Ordering Points to Identify the

Clustering Structure (OPTICS) and Clustering Based on Density Distribution Functions

(DENCLUE).

Table 1.6: Software engineering data mined by clustering technique

Information

source

Technique and

Tools used

Task Result Reference

Connection-

oriented

telecommunic

ation data

k-Means and Fuzzy

C-Means

Compared the

performance of

clustering

algorithms.

The

computational

time of k-

Means

algorithm is

less than FCM

algorithm.

Velmurug

an T 2014

3 PROMISE

repository

AR3, AR4

and AR5

Algorithms such as

DBSCAN,OPTICS,

X-means,CLOPE

Developed a falut

prediction model

which select

number of

clusters without

experts.

Performance

of X-means is

better than

that of other.

Mikyeong

Park et al

2014

Repository of

machine

learning

database

Advanced clustering

algorithms,K-

means,WEKA tool.

Proposed

algorithm to deal

with problem of

curse of

dimensionality.

Advanced

clustering

algorithms

have less

execution

time and are

more

accurate.

Amanpree

t Kaur

Toor et al.

2014

4 datasets k-Means clustering Proposed a The proposed Amita

14

Tunedit

Repository

algorithm, clustering

tool WEKA.

method for

making the K-

Means algorithm

more effective

and efficient

algorithm has

been found

effective

Verma et

al. 2014

1.3.5 Text Mining

Text Mining is a process of automatically extracting information from a large amount of

different unstructured textual resources. In this method, the patterns are extracted from

natural language text rather than database which result in improving the decisions and

predictions about given data. The data can be classified as structured data and unstructured

data. Language is usually unambiguous which makes text mining a hard process.

Procedure: Figure 1.4 below describes the process followed while mining textual data. It

includes the activities:

i) Document Collection

ii) Preprocessing the data

iii) Analysis of textual data

iv) Management Information System

v) Extracting knowledge

Figure 1.3 below shows the classification of different data mining techniques used to mine

software engineering data.

 Figure 1.3: Classification of Data Mining Techniques Applied on Software Engineering

Data

Data mining Techniques

Association rule Classification Prediction Text Mining Clustering

Apriori, FP-

growth, RARM,

Dyn FP-growth

algorithm

Decision tree,

SVM, Naïve

Bayes, neural

networks, genetic

algorithm, fuzzy

algorithm

Statistical and

logistic

regression

Computation

al linguistic,

database

queries, real

text data
mining

k-Means ,k-

Mediod,

DBSCAN,

OPTICS

15

Figure 1.4: Process of Mining Unstructured Data

Table 1.7: Software engineering data mined by text mining technique

Information

sources

Technique and Tools

used

Task Result Reference

ANDROID OS

malware families.

Text mining and

information retrieval

techniques

Proposed a text

mining approach

to automatically

classify

smartphone

malware samples.

Technique

is fast,

scalable and

very

accurate.

Guillermo

Suarez-

Tangil et

al 2014

3 open source

web applications

Text Mining

techniques and

software metrics

Compared

vulnerability

prediction models

based on text

mining with

models

using software

metrics as

predictors.

Text mining

provided

better

recall

performance

at same

cost.

James

Walden et

al 2014

Eclipse bug

report and code

revision of

Android

Sequential pattern

query language

Proposed a pattern

matching

approach for

effective and

efficient query of

sequential

software

engineering data.

Analysed

that there

are 5.84 %

files that

have gone

through

more than

10

revisions.

Chengnian

Sun et

al.2014

RCV1 data

collection and

TREC topics

Pattern deploying

algorithms, pattern

mining.

Proposed a pattern

discovery

technique to

extract relevant

information.

Proposed

PTM

outperforms

in terms of

F-measures.

Ning

Zhong et

al.2012

Collect

Document

Preprocess

the

document

Analyze

Text

Manage-

ment

Information

System

Knowledg

e

Extraction

16

C++ source code Text mining source

code management tool

Mining program

source code for

debugging

Code

maintenance

, outputs

code into

other format

A.V.Krish

na et al.

2010

17

Chapter 2

LITERATURE SURVEY
This chapter introduces the studies that have been already been used to mine software

engineering data. It introduces the techniques and tools that have been used by academicians

for mining software engineering data.

Madhavan et al. 2007 predicted bugs inside an IDE by using change classification in

Eclipse plugin. Change Classification uses Support Vector Machines (SVM), a machine

learning classifier algorithm, to classify changes to projects mined from their configuration

management repository. A Change Classification plugin for Eclipse was based on client-

server architecture and it was found that the approach was effective in classifying changes.

Olivier Vandecruys et al.2008 proposed a novel approach named AntMiner+, to predict

erroneous software modules. The approach used Ant Colony Optimization (ACO) to infer

rules from the data. AntMiner+ was applied on three publicly available datasets of NASA

software projects3: PC1, PC4 and KC1. To compare the results of AntMiner+, a

benchmarking study was performed that includes commonly used state-of the-art

classification techniques C4.5, RIPPER, logistic regression, 1-nearest neighbor, support

vector machine. It was found that the approach is accurate and efficient in predicting error

modules in software projects.

Sunghun KIM et al. 2008 proposed a technique for finding latent software bugs, called

change classification. Change classification makes the use of machine learning classifier

algorithm to determine whether a new software change is buggy or clean change. The file

change histories and features from source code of 12 open source projects were extracted

from their software configuration management systems. The classification accuracy, recall,

and precision were evaluated for each project. Support vector machine classifies file changes

as buggy or clean with 78% accuracy. The classification model was evaluated using 10 fold

cross validation method.

18

Alexander Tarvo 2008 predicted risk of regression by software metrics by using historical

data on changes in Windows XP operating system. The data collected included post-release

changes, or fixes, which are made after software system is released to the market. Machine

learning algorithm (logistic regression) was used to perform the experiment using MATLAB

tool. Analysis of system’s accuracy shows it could be successfully used to predict software

regressions. It was concluded that 70% of engineers use regression risk reports while testing

to support efficient testing.

Burak Turhan et al. 2008 predicted fault prone modules in large system using data mining

techniques. 25 projects of a large telecommunication system were analysed. To predict defect

proneness of modules, models on publicly available Nasa MDP data were trained. In the

experiments, static call graph based ranking (CGBR) as well as nearest neighbor sampling

was used for constructing method level defect predictors. The results suggested that for the

analyzed projects, at least 70% of the defects can be detected by inspecting only 6% of the

code using a Naïve Bayes model, 3% of the code using CGBR framework.

Lourdes PELAYO et al. 2009 extracted and mined a large scale software prediction dataset

from an open source software system, Mozilla project. The focus of research work was to

extract object oriented software metrics from the C++ classes contained in Mozilla and

relate them to defects found in those classes and report by Bugzilla defect tracking system.

18 metrics were computed for each class and joined these metrics to the number of defects

reported for each class. A statistical dataset of this dataset was constructed. It appeared that

Heteroskedasticity and skewness were significant problems within this dataset. This

skewness was removed by employing stratification based resampling. Further, it was stated

that this analysis could also be combined with additional evidence from other software

artifacts.

Wei Qu et al. 2010 proposed a framework for pattern mining of cloned codes by using a

joint space-logic-domain analysis. Different programs of health care software system were

used to perform this experiment. In this novel approach, graph matching was used to recover

lost information and enhance mining accuracy. Both false positive pruning and pattern

19

composition were further adopted to improve the pattern mining performance. Finally the

result was compared with the methods using only graph matching and it was found that this

approach reduces the high computational complexity and thus greatly improves the

algorithm’s efficiency.

Stephen W. Thomas et al. 2011 evaluated topic models in the analysis of software evolution

by performing a detailed manual analysis on the source code histories of two systems,

JHotDraw and jEdit. Latent Dirichlet allocation, a statistical topic modeling technique, was

applied to the release history of the source code, several metrics on the discovered topics

were computed and investigated the source code and project documentation to verify that the

evolution of metric values is useful and consistent with the actual change activity in the

source code. It was found that topics in both the systems grow as the size of source code

grows and topic evolutions of JHotDraw are more active than those of jEdit.

A.T. Nguyen et al. 2012 proposed GraPacc, a graph based, pattern-oriented, context-

sensitive code completion approach to mine API usage patterns. GraPacc represented and

managed the API usage patterns of multiple variables, methods, and control structures via

graph-based models. It extracted the context-sensitive features from the code e.g. the API

elements on focus and their relations to other code elements. The features were then used to

search and rank the patterns that are best matched with the current code. The proposed

approach was performed on Eclipse plugin. Empirical evaluation results showed that

GraPacc can achieve high accuracy in code completion up to 95% precision, 92% recall, and

93% f-score.

Bharavi Mishra et al. 2012 predicted defective modules by proposing an approach named as

Support Vector based Fuzzy Classification System. In the proposed model an initial rule set

was constructed using support vectors and Fuzzy logic and rule set optimization was done

using Genetic algorithm. The experiment was performed on three versions of Eclipse and

Equinox datasets. It was found that the prediction performance of SVFCS approach is

generally better than other prediction approaches. The approach achieved 76.5 mean recall

and 34.65 mean false alarm rate on three versions of Eclipse and Equinox software bug data

20

sets. The experimental results revealed the effectiveness of SVFIS in fault prone module

prediction.

Hassan Najadat et al. 2012 predicted the fault prone modules using data mining techniques

to help in building better designs in future systems and avoid error prone modules. Different

data mining rule based classification techniques were applied on the datasets of NASA

software repository which is composed of several static code attributes. The objective of the

work was to classify the software modules to either fault prone or not fault prone modules.

The selected datasets were: PC1, PC2, PC3, PC4, CM1, MW1, KC3, and KC4. A new

enhanced RIDOR algorithm was introduced which combines RIDOR and CLIPPER mining

algorithms and predicts defect using mining of static code attributes.

Ning Zhong et al. 2012 proposed a pattern taxonomy model to extract relevant information

from RCV1 data collection and TREC topics datasets. The model was based on pattern

deploying and pattern evolving approaches. It was found that proposed PTM outperforms

and resulted in 0.440 F-mseaure which is a performance measure.

Xiao-dong Mu et al. 2012 proposed an approach named, competitive organization

coevolutionary algorithm to improve the accuracy of prediction for software defect in large

data sets. In COCA, the individual’s fitness is calculated not only by a population but also

relying on competition among species. In this algorithm, population is divided into two

competitive parts which are species training data (STRD) and species test data (STED). The

experiment was based on the five datasets from NASA which were used to validate the

method. The experimental results showed that the proposed method is effective.

Jaechang Nam et al. 2013 reviewed the bug fixing histories extracted from Eclipse project.

All the commits related to fixing some bugs are extracted. Some common fix types are

revealed which were collected by Bird data and was used to fix certain kinds of program

exceptions. Kenyon framework was used to extract the data and get the major crashes of

Eclipse and 1999 fixes were found. It was summarized that there are three major crashes of

the Eclipse project: NullPointerException, IndexOutOfBoundException and

ClassCastException. It was identified that changes can be made to files to fix the crash and

21

was analyzed that by this methodology 80% of fixes require one file modification which help

developers to see only a small set of files for fixing a particular crash.

Lin Tan et al. 2013 identified the characteristics of software bugs by randomly sampling

2,060 real world bugs in three large open-source projects: the Linux kernel, Mozilla, and

Apache. The root cause, impacts and components of bugs were studied. The method

consisted of preprocessing bug reports step, training, evaluating classification performance

and applying classification models on the entire Bugzilla databases. It was found that

semantic bugs are the dominant root cause of bugs in software projects.

Cesar Couto et al. 2013 reviewed static correspondence and statistical correlation between

defects and warning by using FindBugs which is a bug finding tool used in Java systems.

FindBugs detected and removed defects in Rhino, ajc and Lucene systems. It was found that

no static correspondence exist between defects and warning but statistical tests showed that

there is a moderate level of correlation between warnings and software defects.

P.A. Selvaraj et al. 2013 investigated the accuracy of Support Vector Machine for software

defect prediction using different kernels. KC1 datasets which is a NASA metric data program

was used to predict defects. Several classifiers were discussed such as decision stumps,

Naïve Bayes and SVM. Weka, a machine learning software was used to carry out

classification. Experiments revealed that SVM with Poly kernel achieves best performance in

predicting defects.

Aditi Puri et al. 2014 proposed an approach, genetic algorithm, to find classes and metrics

that are fault prone. The raw data was collected in the form of structural codes, source code

of open source system, jEdit and the evaluation of this data obtained was done on Chidamber

& Kemerer metrics suite. The source code of jEdit was collected and analyzed and fed as

input into JArchitect which is astatic analysis tool for JAVA code. The parameters calculated

are number of public methods, cyclomatic complexity, LOC, efferent coupling, relational

cohesion, depth of inheritance tree. Genetic algorithm was applied on the metric values

which predicted the fault prone metrics.

22

Ahmed H. Yousef 2014 predicted the defective state of software modules by using Naive

Bayes, Neural Networks, Association Rules and Decision Tree methods. The algorithms

were performed on the NASA dataset which is available online. The prediction results were

measured with the parameters precision, recall, accuracy and F-measure. McCabe’s metrics,

Halstead Metrics, branch-count and five different measures representing the lines of code

were used for measurement. Comparison between accuracy of different models was done

using lift chart technique and classification metric technique. It was found that the best

performance in predicting defective modules is of Naïve Bayes then neural network and then

decision tree method.

Amanpreet Kaur Toor et al. 2014 proposed an algorithm to deal with problem of “curse of

dimensionality” in large dataset using advanced clustering algorithms and k-means

algorithm. Repository of machine learning database was that the advanced Clustering

Algorithm can improve the execution time and are more effective. It was found that SOM has

297 ms execution time and forms 6 clusters.

Amita Verma et al. 2014 proposed a modification in the simple K-means algorithm by

changing the distance similarity measure to make it more effective and efficient. The

experiment was performed on four datasets of Tunedit repository and it was found that

proposed algorithm was effective when compared with standard k-means clustering

algorithm in terms of execution time and was found that the enhanced K-means takes

0.03execution time. Table 2.4 provides the review of clustering algorithm for mining

software repositories.

Anil Kumar Singh et al. 2014 compared the performance of software fault prediction

system using three methods: Fuzzy c-means clustering approach, k-Nearest Neighbors

Classifiers and a combination of Fuzzy c-means and Genetic Algorithm. The defect dataset

was taken from NASA’s MDP software repository named as PC1. Suitable metric value was

set in database created in MATLAB R2010 as 0 for data with fault and 1 for data without

23

fault. A software fault prediction module was developed using the three data mining

techniques mentioned above. The results after classification of software fault data was in

form of efficiency parameters like Accuracy, Reliability, Mean Absolute Error, and Root

Mean Squared Error for the comparison of all the approaches. It was found that the hybrid

method gives more accuracy and less error as compared to Fuzzy C-means clustering and k-

Nearest Neighbors Classifier.

Chengnian Sun et al. 2014 proposed a pattern matching approach and designed a sequential

patterns query language to query sequential software engineering data. The query was

applied on Eclipse bug report and code revision of Android and explored the approach in

software development and maintenance. It was analyzed that there were 5.84 % files that

have gone through more than 10 revisions. The query searched for the Android files that are

modified by more than10 developers within a month and was found that it takes 43 seconds

to execute this query, and 14 files were returned. It was also found that the experiment on

Android file revision history takes longer time than Eclipse report.

Gabriela Czibula et al. 2014 proposed a novel classification approach based on relational

association rule mining, called DPRAR, to predict whether a software module is defective or

non-defective. The main focus of this approach is on binary classification problem. The

evaluation was performed on open source NASA datasets. The proposed approach followed

the idea of representing the entities of a software system as multidimensional vector, whose

elements are the values of different software metrics applied to the given entity. Training and

testing phases that reflect the principles of a supervised learning algorithm were used for this

process. Data preprocessing, training the DPRAR classifier, testing or classification was

performed for the classification of modules as defective or not. For evaluating the

performance of the DPRAR classifier, a cross-validation using a ‘‘leave-one-out’’

methodology was applied. It was found that the proposed method was efficient in predicting

the defective modules.

Guillermo Suarez-Tangil et al. 2014 introduced DENDROID, a system based on text

mining and information retrieval techniques to automatically classify smartphone malware

24

samples. The work proposed is motivated by a statistical analysis of the code structures

found in a dataset of ANDROID OS malware families. It was found that the technique is fast,

scalable and very accurate in discarding 16 out of the 49 families as they only contain one

specimen each, resulting in a final dataset of 1231 malware samples grouped into 33 families.

Hui Wang 2014 proposed software defect classification prediction based on software

development repository using the data from Eclipse version control system and bug tracking

system. The data was used to calculate the software metrics for files and packages by Eclipse

metrics plugin. The defect information in defect tracking system bug-Info was mapped to

version control system to obtain defect version location information and thus found the

relevant version of the software defect statistics. The datasets was analyzed, preprocessed

and classifier algorithm was used to build prediction model with the help of R 2.15 tool to

predict the software defects. Moreover it was stated that this model could be extended to

more software repositories.

James Walden et al. 2014 compared vulnerability prediction models based on text mining

with models using software metrics as predictors using text mining techniques and software

metrics on three open source web applications Drupal, PHPMyAdmin and Moodle which

contain 223 vulnerabilities. It was found that text mining provided better recall performance

at same cost.

Mikyeong Park et al. 2014 developed an unsupervised fault prediction model using

clustering algorithms which select the number of clusters without experts. The clustering

algorithms used are DBSCAN, OPTICS, X-means, CLOPE and the experiment was

performed on three PROMISE repositories AR3, AR4 and AR5. The performance of these

algorithms was measured in terms of precision, recall and accuracy and the experimental

results showed that X-means algorithm outperforms other clustering algorithm.

Shamila Nasreen et al. 2014 mined unknown frequent code change patterns in real world

data and presented a comparative study of Apriori algorithm, Frequent Pattern (FP) Growth

algorithm, Rapid Association Rule Mining (RARM), ECLAT algorithm and Associated

25

Sensor Pattern Mining of Data Stream (ASPMS) frequent pattern mining algorithms. The

performance of every algorithm was compared using parameters like database scan,

execution time. It was concluded that RARM and ASPMS has better performance than other

algorithms.

Umut Tekin et al. 2014 detected identical data structures in object oriented systems by using

sub graph mining approach for improving the knowledge about the software architecture.

The method was performed in three steps; abstract syntax tree and UML based design, graph

partitioning and sub graph mining algorithm. The experiment was performed on five open

source projects YARI, Zest, JUnit JFreeChart and AgroUML. It was concluded that by the

proposed algorithm we can detect many identical structures that can be classified as software

design clones, reused design structures between projects, common design patterns, domain-

specific patterns, copy–paste-modify structures or repeated design disharmonies within and

between projects.

Velmurugan T 2014 compared the performance of partitioning based clustering algorithms,

k-Means and Fuzzy C-means algorithm in terms of computational time on the

telecommunication data source. It was found that the results obtained from these algorithms

were more accurate, easy to understand and the time taken to process the data was high in

Fuzzy C-Means algorithm than the k-Means.

26

Chapter 3

PRESENT WORK
This chapter gives a brief introduction about the objectives of research work and description

of the proposed research methodology.

3.1 Objectives of Research

1. To study and analyze software engineering data and various data mining techniques

applicable for mining software engineering data.

2. To study various frequent pattern mining approaches to mine software engineering data.

3. To propose an algorithm using evolutionary techniques for mining software engineering

data.

4. To implement the proposed data mining algorithm to mine usage patterns from processed

data of revision histories and validate the performance by comparing with existing

algorithms.

3.2 Research Plan

The main aim of this research is to prove that the proposed approach is better in mining the

usage patterns from revision histories than the existing traditional approach.

Step 1: The raw data will be collected in the form of source code check-ins and method calls

of revision histories of some known applications like jEdit/Eclipse. The data is preprocessed

and cleaned by including only method pairs and discard the remaining data.

Step 2: The data collected is mined for likely usage patterns and error patterns by applying

the proposed algorithm in which the concepts of Association rule Mining and heuristic

concept of Ant Colony Optimization algorithm has been used.

 Association rule and frequent pattern mining:

Association rule and frequent pattern mining technique was proposed by Agrawal et

al. [6] in 1994. It is the method of achieving the relationship between the variables. It

extracts association rules with the help of the frequent patterns mined. Let T

transaction contains an item x if xT. Let an itemset X occurs in a transaction T if X

T. Let a dataset D of transactions and itemset X be given. The dataset cardinality is

denoted by |D|. The count of X in D is denoted by  Xcount D
. It is the number of

27

transactions in D that contains X. The support of X in D is denoted by  Xport Dsup .

It is the percentage of transactions in D that contain X.

Dportsup (X) =

 
D

TXDT 

 …(i)

An association rule is a pair as, YX  where X and Y are two item sets and

 YX . The item set X is called the antecedent of the rule. The item set Y is

called the consequent of the rule.

 Support: Support can be defined as,    YXportYXport DD supsup 

 Confidence: Confidence of the rule is defined as percentage of transactions in D

containing X that also contain Y.

  
 
 

 
 Xcount

YXcount

Xport

YXport
YXconfidence

D

D

D

D

D 


sup

sup

 …(ii)

The advantages of Apriori algorithm is that it is easily parallelized and it is easy to

implement.

On the other hand, there are many disadvantages also:

The major weakness of Apriori algorithm is producing large number of candidate

itemsets. Apriori algorithm requires multiple database scans which is equal to

maximum length of frequent itemset and the mining becomes slow and expensive.

 Ant colony optimization:

Ant colony optimization is a metaheuristic approach that is derived from the behavior

of real ant colonies and which is used to solve complex optimization problems. ACO

is a class of algorithms, whose first member, called Ant System, was proposed by

Colorni, Dorigo and Maniezzo. The main idea of the algorithm is based on the

behavior of real ants that make a parallel search over several tours based on local

problem data and on a dynamic memory structure containing information on the

quality of previously. The ants move through states of problem by making

28

probabilistic decisions. This decision policy depends on two factors: heuristic value

and trail.

Heuristic value: heuristic value (i) indicates the apriori desirability of the move.

Pheromone Trail: Trail value (i) indicates how proficient it has been in the past to

make that particular move. It represents a-posteriori indication of desirability of that

move. When all ants have completed a solution, the pheromone trail is updated by:

   
k

k

xyxyxy  1

Proposed algorithm is the improvement of Apriori algorithm which uses the heuristic

approach for data mining. The proposed algorithms observe the pattern of the mined

data and update the support vector over time to time.

Pseudo code of Mining Algorithm:

Begin

//Initialization Step

 Support=20%

 If(transactionID > Support)

 Select item in mining frequent item set in DB

//Transformation Step

 For k=i to n //mining in vertical data

 If(transactionID <support)

 Learn item sets

//Final Reduction

 Total result & o/p

End

29

Step 3: The patterns that are mined will be ranked and validated by applying various ranking

strategies (finding support and confidence/association rules, dynamic count). Support count

and confidence level values will be taken with a proper ratio, so that error pattern can be

generated by applying the algorithm on datasets. After the insertion of support count and

confidence values, patterns will be ranked using ranking approach.

Step 4: The performance of the algorithm and the existing standard algorithms is compared

in terms of execution time and memory acquired.

Figure 3.1 Flowchart of Research Methodology

3.3 Tools Used

Eclipse IDE:

Eclipse is an integrated development environment provides users with a base workspace and

plug-in system for modifying the environment. Eclipse jee includes an official support of

java 8 in java development tools, object teams, eclipse communication framework, wed tools

platform, plugin development tools, memory analyzer etc.

Collect raw data

Preprocess the data

Apply the mining algorithm

Validate

patterns

Compare the performance

30

Chapter 4

RESULTS AND DISCUSSIONS

This chapter gives the results obtained after the simulation of the proposed approach.

Step 1: The data for the research is taken as the source code of the open source java project,

jEdit. The source code of the two versions of jEdit, jEdit 4.3pre and jEdit 5.0 is collected and

analyzed. The java source code files of both versions are preprocessed and a single source

file is prepared for mining purpose from which all the methods in the source code will be

mined.

Step 2: The new mining algorithm is applied on both the versions of jEdit and the algorithm

resulted in number of methods and all the frequent methods in both the versions. The jEdit

versions contain java source code files which are mined by both Apriori algorithm and the

new proposed algorithm.

Figure 4.1 represents the interface for mining the jEdit files by browsing the files from the

system. Figure 4.2 represents the dialog box appearing when the mining of files is successful

and shows the status of mining.

Figure 4.1: Browsing the jEdit Version Files

31

Figure 4.2: Mining Status Dialog Box Appeared

Results: The methods mined from jEdit files are:

Figure 4.3 shows the frequent methods mined by Apriori algorithm from jEdit4.3 pre version

file. Figure 4.4 shows the frequent methods mined by New proposed algorithm from jEdit4.3

pre version file and shows the methods under different category.

Fig 4.3: Methods mined by Apriori algorithm

32

Figure 4.4: Methods mined by new algorithm

Figure 4.5 represents the frequent methods mined from jEdit5.0 version file using the Apriori

algorithm. Figure 4.6(a) and Figure 4.6(b) represents the frequent methods mined from

jEdit5.0 file using the proposed algorithm.

Figure 4.5: Methods mined by Apriori algorithm

33

Figure 4.6(a) Methods Mined by New Algorithm from jEdit 5.0 Version file

Figure 4.6(b): Methods mined by New algorithm

34

Table 4.1: Number of methods mined by Apriori Algorithm from jEdit4.3pre file

Methods Number

Methods too big 17

Methods having too many parameters 4

Types too big 99

Types with too many methods 12

Table 4.2: Number of methods mined by New Algorithm of jEdit4.3 pre file

Methods Number

Methods too big 45

Methods having too many parameters 2

Types too big 100

Types with too many methods 9

Figure 4.7 shows the number of frequent methods mined by new Algorithm from jEdit 5.0

version file. The methods of different categories are mined such as methods too big, methods

having too many parameters, methods with types too big.

Figure 4.7: Number of methods mined by New Algorithm

35

Table 4.3: Number of methods mined by Apriori Algorithm from jEdit 5.0 file

Methods Number

Methods too big 5

Methods having too many paramaters 4

Types too big 45

Types with too many methods 2

Table 4.4: Number of methods mined by New Algorithm from jEdit 5.0 version file

Methods Number

Methods too big 30

Methods having too many parameters 1

Types too big 45

Types with too many methods 2

Step 3: The patterns extracted are ranked by calculating the support count using heuristic

approach in which the support count is modified every time the patterns are mined by

considering the last support count and update the support vector.

Step 4: The different values which we get by mining using the new algorithm and Apriori is

used to generate the comparison table for the consumption of space and time.

Figure 4.9: Comparison in terms of Time

36

Figure 4.9 shows the time taken to mine the jEdit version file by both Apriori algorithm and

new algorithm and shows that new algorithm takes less time in mining. Figure 4.10 shows

the graphical representation of comparison of time taken for mining by both Apriori

algorithm and new proposed algorithm. Figure 4.11 shows the graphical representation of

comparison of memory used for mining jEdit files by both Apriori algorithm and new

proposed algorithm and shows that new algorithm used less memory as compared to Apriori

algorithm.

Figure 4.10: Graphical Representation of Time

Figure 4.11: Graphical Representation in terms of Memory Required

37

Chapter 5

CONCLUSION AND FUTURE SCOPE

5.1 Conclusion

The overview of software engineering data and various data mining techniques has been

given in this report. It is widely described how the data mining techniques are used in

software engineering for mining software engineering data to achieve software of good

quality and high reliability.

A brief literature survey of the data mining techniques used to mine various software

repositories has been provided. The report concludes with the brief objectives and

methodology used to mine likely usage patterns by using an efficient data mining approach

that has less execution time and requires less memory.

The new proposed algorithm used heuristic approach for mining usage patterns from code

revision files and it was found that the number of methods mined by new algorithm is more

as compared to Apriori algorithm. The new algorithm required less time and less memory for

mining.

5.2 Future Work

 The work can be extended by using other pattern mining algorithms.

 Source code files of many open software revision histories in different languages can be

mined for frequent usage methods.

38

REFERENCES

Agrawal, R., & Srikant, R. (1994, September). Fast algorithms for mining association rules.

In Proc. 20th int. conf. very large data bases, VLDB (Vol. 1215, pp. 487-499).

Couto, C., Montandon, J. E., Silva, C., & Valente, M. T. (2013). Static correspondence and

correlation between field defects and warnings reported by a bug finding tool. Software

Quality Journal, 21(2), 241-257.

Czibula, G., Marian, Z., & Czibula, I. G. (2014). Software defect prediction using relational

association rule mining. Information Sciences, 264, 260-278.

Hassan, A. E. (2006, September). Mining software repositories to assist developers and

support managers. In Software Maintenance, 2006. ICSM'06. 22nd IEEE International

Conference on (pp. 339-342). IEEE

Hassan, A. E. (2008, September). The road ahead for mining software repositories.

In Frontiers of Software Maintenance, 2008. FoSM 2008. (pp. 48-57). IEEE.

Kim, S., Whitehead, E. J., & Zhang, Y. (2008). Classifying software changes: Clean or

buggy? Software Engineering, IEEE Transactions on, 34(2), 181-196.

Koçak, G., Turhan, B., & Bener, A. B. (2008). Predicting Defects in a Large

Telecommunication System. In ICSOFT (SE/MUSE/GSDCA) (pp. 284-288).

Livshits, B., & Zimmermann, T. (2006). DynaMine: Finding Common Error Patterns by

Mining Software Revision Histories. ACM Transactions on Programming Languages and

Systems, 2(3), 09.

Madhavan, J. T., & Whitehead Jr, E. J. (2007, October). Predicting buggy changes inside an

integrated development environment. In Proceedings of the 2007 OOPSLA workshop on

eclipse technology eXchange (pp. 36-40). ACM.

Mishra, B., & Shukla, K. K. (2012). Defect Prediction for Object Oriented Software using

Support Vector based Fuzzy Classification Model. International Journal of Computer

Applications, 60(15).

Mu, X. D., Chang, R. H., & Zhang, L. (2012). Software Defect Prediction Based on

Competitive Organization CoEvolutionary Algorithm. Journal of Convergence Information

Technology, AICIT, 7(5), 325-332

Najadat, H., & Alsmadi, I. (2012). Enhance Rule Based Detection for Software Fault Prone

Modules. International Journal of Software Engineering and Its Applications, 6(1), 75-86.

39

Negara, S., Codoban, M., Dig, D., & Johnson, R. E. (2013). Mining fine-grained code

changes to detect unknown change patterns.

Nasreen, S., Azam, M. A., Shehzad, K., Naeem, U., & Ghazanfar, M. A. (2014). Frequent

Pattern Mining Algorithms for Finding Associated Frequent Patterns for Data Streams: A

Survey. Procedia Computer Science, 37, 109-116.

Pelayo, L., & Dick, S. (2009). Predicting Object-Oriented Software Quality: A Case Study

International Journal of Intelligent Control and Systems

Prasad, A. K., & Krishna, S. R. (2010). Data Mining for Secure Software Engineering-

Source Code Management Tool Case Study. International Journal of Engineering Science

and Technology (IJEST) ISSN, 0975-5462.

Park, M., & Hong, E. (2014). Software Fault Prediction Model using Clustering Algorithms

Determining the Number of Clusters Automatically. International Journal of Software

Engineering & Its Applications, 8(7).

Puri, A., & Singh, H. (2014). Genetic Algorithm Based Approach For Finding Faulty

Modules In Open Source Software Systems. International Journal of Computer Science &

Engineering Survey,5(3).

Qu, W., Jia, Y., & Jiang, M. (2010). Pattern mining of cloned codes in software

systems. Information Sciences.

Rodriguez, D., Herraiz Tabernero, I., & Harrison, R. (2012). On software engineering

repositories and their open problems.

Selvaraj, P. A., & Thangaraj, P.(2013) Support Vector Machine for Software Defect

Prediction.

Singh, A. K., Goel, R., Kumar, P., & NIET, G. N. Fault Prediction using Hybrid Fuzzy C-

Means with Genetic Algorithm and KNN Classifier.

Suarez-Tangil, G., Tapiador, J. E., Peris-Lopez, P., & Blasco, J. (2014). Dendroid: A text

mining approach to analyzing and classifying code structures in android malware

families. Expert Systems with Applications, 41(4), 1104-1117.

Sun, C., Zhang, H., Lou, J. G., Zhang, H., Wang, Q., Zhang, D., & Khoo, S. C. (2014,

November). Querying sequential software engineering data. In Proceedings of the 22nd ACM

SIGSOFT International Symposium on Foundations of Software Engineering (pp. 700-710).

ACM.

Tarvo, A. (2008, November). Using statistical models to predict software regressions.

In Software Reliability Engineering, 2008. ISSRE 2008. 19th International Symposium

on (pp. 259-264). IEEE

40

Taylor, Q., Giraud-Carrier, C., & Knutson, C. D. (2010). Applications of data mining in

software engineering. International Journal of Data Analysis Techniques and

Strategies, 2(3), 243-257.

Tan, L., Liu, C., Li, Z., Wang, X., Zhou, Y., & Zhai, C. (2013). Bug characteristics in open

source software. Empirical Software Engineering, 1-41.

Tekin, U., & Buzluca, F. (2013). A graph mining approach for detecting identical design

structures in object-oriented design models. Science of Computer Programming.

Thomas, S. W., Adams, B., Hassan, A. E., & Blostein, D. (2014). Studying software

evolution using topic models. Science of Computer Programming, 80, 457-479.’

Toor, A. (2014). An Advanced Clustering Algorithm (ACA) for Clustering Large Data Set to

Achieve High Dimensionality. Global Journal of Computer Science and Technology, 14(2).

Velmurugan, T. (2014). Performance based analysis between k-Means and Fuzzy C-Means

clustering algorithms for connection oriented telecommunication data. Applied Soft

Computing, 19, 134-146.

Verma, A., & Kumar, A (2014).Performance Enhancement of K-Means Clustering

Algorithms for High Dimensional Data sets. International Journal of Advanced Research in

Computer Science and Software Engineering 4(1), pp. 791-796

Walden, J., Stuckman, J., & Scandariato, R. (2014). Predicting Vulnerable Components:

Software Metrics vs Text Mining. status: accepted.

Wang, H. (2014). Software Defects Classification Prediction Based On Mining Software

Repository.

Xie, T., Pei, J., & Hassan, A. E. (2007, May). Mining software engineering data. In Software

Engineering-Companion, 2007. ICSE 2007 Companion. 29th International Conference

on (pp. 172-173). IEEE.

Yousef, A. H. (2014). Extracting software static defect models using data mining. Ain Shams

Engineering Journal.

Zhong, N., Li, Y., & Wu, S. T. (2012). Effective pattern discovery for text

mining. Knowledge and Data Engineering, IEEE Transactions on, 24(1), 30-44.

Zimmermann, T., Zeller, A., Weissgerber, P., & Diehl, S. (2005). Mining version histories to

guide software changes. Software Engineering, IEEE Transactions on, 31(6), 429-445.

41

LIST OF PAPERS

Meghna Soni, Harshpreet Singh and Nisha Sethi. Article: A state of the art survey of Data

mining techniques for Software Engineering Data. International Journal of Applied

Engineering and Research (IJAER). (Accepted)

