
i

An Efficient Resource Allocation in Grid Computing Environment

 A Dissertation

 Submitted By

 Baljit Kaur

 11000553

 To

Department of Computer Science and Engineering

 In partial fulfilment of the Requirement for the

 Award of the Degree of

Master of Technology in Computer Science and Engineering

 Under the guidance of

Harsh Bansal

Assistant Professor

(July 2015)

ii

PAC APPROVAL PAGE

iii

CERTIFICATE

This is to certify that Baljit Kaur has completed M. Tech. dissertation titled AN

EFFICIENT RESOURCE ALLOCATION IN GRID COMPUTING ENVIRONMENT

under my guidance and supervision. To the best of my knowledge, the present work is

the result of her original investigation and study. No part of the dissertation has ever

been submitted for any other degree or diploma.

The dissertation is fit for the submission and the partial fulfilment of the conditions for

the award of M. Tech. Computer Science and Engineering.

Date: Signature of Advisor

Name : Harsh Bansal

(Assistant Professor)

UID : 16866

 Lovely Professional University

iv

ABSTRACT

Grid computing is distributed computing in which resources are distributed across various

geographical locations. It aims at providing high computation power to the users to

execute their applications by collaborating and integrating grid resources. Grid aims at

utilizing distributed idle nodes so as to enhance performance, resource sharing, increase

availability and extensibility. Task scheduling and resource allocation become more

complex with the ever increase in grid size. The main problem which we face while

scheduling the job(s) in grid environment is its dynamicity. The resources are dynamic in

nature means they can join or leave at any time. Therefore it is difficult to manage those

resources. Here we are going to propose the mechanism to manage them well by using an

efficient algorithm to assign job(s) to grid resource(s) efficiently. In this mechanism, user

based scheduling will be done instead of job based scheduling to allocate the resource(s)

to the job(s). The proposed algorithm categorizes the resources into high, medium, and

low end resources based on their configuration. In this way it helps to reduce the search

time for the fittest available resource(s) on the basis of SLA type of the user(s) than the

existing technique like AHSWDG. This technique needs to find the fittest resources from

all the available resources. The proposed technique activates the services to provide fault

tolerance according to priority of user to provide the reliability and optimum solution.

The existing technique such as FIFO and AHSWDG can’t handle any failure, failed job

need to resubmit to the Grid Data Center. The job success rate of the proposed technique

is more than FIFO and AHSWDG. The proposed technique aims at providing optimal and

reliable solution, reducing search time and failure rate, and to efficiently allocating the

resources to job(s) based on the user priority.

v

ACKNOWLEDGEMENT

Foremost, I would like to express my gratitude to my advisor Mr. Harsh Bansal for

continuous support in my research, for his patience, motivation and encouragement.

Without his wise counsel, it would have been impossible to complete the dissertation

report in such a way.

I would also like to thank other faculty members of CSE/IT department of Lovely

Professional University for their intellectual support throughout the course of this work.

I am grateful to my friends who helped me a lot in searching for the information related to

research work. I also owe my gratitude to my parents who provided me with the resources

that helped me in the completion of this research work.

 Name: Baljit Kaur,

 Reg. No.: 11000553.

vi

DECLARATION

I hereby declare that the dissertation entitled, An Efficient Resource Allocation in

Grid Computing Environment, submitted for the M.Tech Degree is entirely my

original work and all ideas and references have been duly acknowledged. It does not

contain any work for the award of any other degree or diploma.

Date: Investigator

 Reg. No.: 11000553

vii

TABLE OF CONTENTS

1 INTRODUCTION ... 1

1.1 Grid Resource .. 1

1.1.1 Types of Grid resources ... 1

1.2 Resource Allocation .. 1

1.2.1 Resource Scheduling .. 2

1.2.2 Code Transfer... 3

1.2.3 Data Transmission ... 3

1.2.4 Monitoring ... 3

1.3 Resource Management .. 3

1.3.1 Centralized organization .. 4

1.3.2 Hierarchical organization ... 4

1.3.3 Decentralized organization .. 4

1.3.4 Comparison of resource Management Organization 5

1.4 Types of grid ... 5

1.5 Resource Discovery Techniques ... 6

1.5.1 Query based resource discovery .. 6

1.5.2 Agent based resource discovery... 6

2 REVIEW OF LITERATURE .. 7

3 PRESENT WORK .. 25

3.1 Scope of the study ... 25

3.2 Problem Formulation... 25

3.3 Objectives: ... 27

3.4 Research Methodology .. 27

4 RESULTS AND DISCUSSION .. 32

4.1 Implementation.. 32

4.2 Experimental Results 1.. 32

4.2.1 Client Interface: - ... 32

4.2.2 Grid Master Module ... 34

4.2.3 Resource Joining Module .. 37

4.2.4 Resource Allocation Module ... 41

4.3 Experimental Results 2.. 42

viii

4.3.1 Client.csv ... 42

4.3.2 Resources.csv ... 43

4.3.3 Jobtrace.csv .. 43

4.3.4 Resourceshigh.csv .. 44

4.3.5 Resourcesaverage.csv .. 45

4.3.6 Resourceslow.csv ... 45

4.4 Experimental Results 4.. 46

4.5 Experimental Results 5.. 53

4.5.1 Resource Utilization Comparison .. 53

4.5.2 Job Success Comparison .. 54

4.5.3 Job Failure Comparison ... 55

4.5.4 Search Time Comparison ... 56

4.5.5 Execution Time Comparison ... 58

4.5.6 Cost Comparison .. 59

5 CONCLUSION AND FUTURE WORK .. 61

6 LIST OF REFERENCES ... 62

ix

LIST OF FIGURES

Figure 1.1 Types of Grid Resources …………………………………………...………… 2

Figure 1.2 Taxonomy of Resource Allocation Mechanism……………………………… 3

Figure 1.3 Taxonomy of Resource Discovery Techniques……………….……………… 6

Figure 2.1 Types of Resource Discovery Techniques……………………………………10

Figure 2.2 Basic Grid Model…………………………………..…………………………14

Figure 2.3 Distributed Clustering Algorithm…………………………………………….17

Figure 2.4 Heterogeneous Earliest Finish Time………………………………………….18

Figure 2.5 Four different states of Grid Systems……………………………………….19

Figure 2.6 Proposed SS-GA algorithm for Resource Allocation...………………………23

Figure 3.1 Flow chart of AHSDWG……………………………………………………..26

Figure 3.2 Flowchart of proposed algorithm……………………………………………..31

Figure 4.1 Netbeans IDE…………………………………………………………………32

Figure 4.2 Client Interface Window……………………………………………………...33

Figure 4.3 Unsuccessful Login Output…………………………………………………...33

Figure 4.4 Interface for Type A user……………………………………………………..34

Figure 4.5 Output for Type A after successfully login…………………………..……….34

Figure 4.6 Interface for Type B user……………………………………………………..35

Figure 4.7 Output for Type B after successfully login…………………………………...35

Figure 4.8 Interface for Type C user……………………………………………………..36

Figure 4.9 Output for Type C after successfully login…………………………………...36

Figure 4.10 Interface for adding resources……………………………………………….37

Figure 4.11 Output after clicking ADD VM button……………………………………...37

x

Figure 4.12 Interface after adding configuration of resource…………………………...38

Figure 4.13 Resource.csv file before adding new resource………………………………39

Figure 4.14 Output after adding resource………………………………………………...39

Figure 4.15 Resource.csv file after adding new resource………………………………...40

Figure 4.16 Resourceaverge.csv file after adding new resource…………………………40

Figure 4.17 Resource Allocation Interface………………………………………………41

Figure 4.18 Client.csv file ……………………………………………………………….42

Figure 4.19 Resource.csv file……………………………………………………………43

Figure 4.20 JobTrace.csv file……………………………………………………………44

Figure 4.21 Resourcehigh.csv file………………………………………………………..44

Figure 4.22 Resourceaverage.csv file…………………………………………………….45

Figure 4.23 Resourcelow.csv file……………………………………………………….45

Figure 4.24 Output 1 for FIFO technique………………………………………………...46

Figure 4.25 Output2 for FIFO technique…………………………………………………47

Figure 4.26 Output for Type A user with FIFO technique……………………………….47

Figure 4.27 Output for Type B user with FIFO technique……………………………….48

Figure 4.28 Output for Type C user with FIFO technique……………………………….48

Figure 4.29 Output 1 for AHSWDG technique…………………………………………..49

Figure 4.30 Output 2 for AHSWDG technique…………………………………………..49

Figure 4.31 Output for Type A user with AHSWDG technique…………………………49

Figure 4.32 Output for Type B user with AHSWDG technique…………………………50

Figure 4.33 Output for Type C user with AHSWDG technique…………………………50

Figure 4.34 Output 1 for EFFICIENT technique………………………………………...51

Figure 4.35 Output 2 for EFFICIENT technique………………………………………...52

Figure 4.36 Output for Type A user with EFFICIENT technique……………………….52

xi

Figure 4.37 Output for Type B user with EFFICIENT technique………………………..52

Figure 4.38 Output for Type C user with EFFICIENT technique………………………..53

Figure 4.39 Comparison graph of Resource Utilization………………………………….54

Figure 4.40 Comparison graph of Job Success…………………………………………..55

Figure 4.41 Comparison graph of Job Failure…………………………………………....56

Figure 4.42 Comparison graph of Search Time (in nanoseconds)……………………….58

Figure 4.43 Comparison graph of Execution Time (in millisecond)…………………….59

Figure 4.44 Comparison graph of Cost (in Rs)……………………………………….....60

xii

LIST OF TABLES

Table 1.1 Comparison of Resource Management Organization…………………………. 5

Table 4.1 Comparison Table of Resource Utilization……………………………………53

Table 4.2 Comparison Table of Job Success……………………………………………..55

Table 4.3 Comparison Table of Job Failure…………………….………………………..56

Table 4.4 Comparison Table of Search Time…………………………………………….57

Table 4.5 Comparison Table of Execution Time……...…………………………………59

Table 4.6 Comparison Table of Cost……………………………………………………..60

1

 Chapter 1

1 INTRODUCTION

As scientific applications need large amount of resources for computational purpose that

can’t be provided by single workstation. The need of high and reliable computing power

and simultaneous access to multiple distributed resources forces to focus on low cost and

intelligent methodologies to share data and resources. Grid computing presents a solution

for these types of problems or applications. Grid computing was introduced in 1990s. It

provides a platform for virtual organizations to share their owned services. Grid

computing is distributed computing which offers high performance by collaborating and

integrating various resources like computing, communication, and storage distributed at

different geographical locations. These resources are shared by resource-intensive user

tasks to satisfy user requirements and to achieve high throughput. The development of

various types of grid systems had inspired by these requirements.

1.1 Grid Resource

Grid resource is an entity which is supposed to carry out an operation by an application.

A resource can carry out one or more tasks based upon its capability.

1.1.1 Types of Grid resources

Grid resources include various types of computing, communication, and storage

resources. These resources include computers, network bandwidth, storage space, sensors,

software applications, data etc. The common types of grid resources are shown in Figure

1.1.

1.2 Resource Allocation

As the size of grid technology keeps on increasing, resource allocation and scheduling has

become more complex and challenging. This area has gained more attention of

researchers from last few years. There are four main functions in grid resource allocation

process:

a) Resource Scheduling,

b) Code Transfer,

2

c) Data Transmission,

d) Monitoring.

Figure 1.1 Types of Grid Resources

1.2.1 Resource Scheduling

In this process, applications are mapped to resources. An efficient resource is allocated to

particular task so that it can perform the task in efficient manner to minimize its

completion time. Hence improves the overall performance of grid. Three main phases of

this process are as follows:

a) Resource discovery ,

b) Resource selection,

c) Job execution.

1.2.1.1 Resource Discovery

In this process, all the available resources are searched. Based on the result of this

search, a list of available resources is generated.

1.2.1.2 Resource Selection

In this process, best matched resource is selected from list that is generated in previous

step. This matching is done on the basis of QoS criteria.

3

1.2.1.3 Job Execution

In this process, job is submitted to the best selected resource(s) for execution. The

execution of job(s) is also monitored in this step.

1.2.2 Code Transfer

To execute each task, code of that task is needed by the resource. This process includes

transfer of code of each task to the allocated resource so as to execute the task.

1.2.3 Data Transmission

In this process, whatever data is needed by the task that data is transferred for executing

the task. When required data is transferred, then only execution of the task takes place.

1.2.4 Monitoring

In this step, availability, future reservations, usage, and capability of the resource are

checked continuously. Monitoring is also defined as the process in which status

information and characteristics of resources are collected. Resources are reserved in

advance for the future use due to time availability of capable resources at specific time.

The taxonomy of resource allocation mechanism is shown in Figure 1.2.

 Figure 1.2 Taxonomy of Resource Allocation Mechanism

1.3 Resource Management

Resource Management is a process in which all the processes of resource allocation i.e.

resource discovery, resource selection, resource scheduling, and system workloads are

4

managed. The process of authentication, accounting, authorization, fault tolerance is

managed by Resource Management. The grid service which controls all the resource

management processes is known as Resource Management System. Due to heterogeneity

of grid resources, varying loads, dynamicity of resources, extensibility of grid, resource

management (RM) becomes complex and challenging area.

To manage grid resources, various models are developed. Based upon the organization of

components, Resource Management is of three types:

a) Centralized organization,

b) Hierarchical organization,

c) Decentralized organization.

1.3.1 Centralized organization

In this organization, there is one central server which manages the processes of resource

management i.e. resource scheduling and allocation. The advantage of this organization is

that it is easy to deploy. But there is no fault tolerance because central server is single

point of failure and it also lacks scalability.

1.3.2 Hierarchical organization

In this organization, resource managers are organized in tree like structure. There is one

central manager and various low level schedulers. The central manager splits an

application into various tasks and these tasks are further assign to low level schedulers.

Now these low level schedulers further map these tasks to various grid resources. The

central manager is responsible for the complete execution of an application. If the

resources reside at same level, these resources can communicate directly without any

need of intermediate node. The advantage of this organization is that it is more scalable

and fault tolerable than centralized organization. But if central manager get fail then

whole system fails. It also lacks site autonomy.

1.3.3 Decentralized organization

In this organization, the managerial control is given to various nodes. Each managerial

node can take its own independent decision. There is no any node which acts as central

manager and having full-fledged information about the system. The advantage of this

5

organization is that it is more scalable, robust, and fault tolerable than both previously

discussed organizations.

1.3.4 Comparison of resource Management Organization

The comparison of all three resource management organization is shown in Table 1.1

Table 1.1 Comparison of Resource Management Organizations

1.4 Types of grid

Grid can be classified into following types based upon the services offered by grid:

a) Access Grid,

b) Application Service Grid,

c) Computational Grid,

d) Data Grid,

e) Data Centric Grid,

f) Interaction Grid,

g) Knowledge Grid and,

h) Utility Grid

6

Based upon operating system, memory space, number of resources, CPU speed,

architecture types, and so on, Grid can be classified into heterogeneous and homogeneous

grid.

1.5 Resource Discovery Techniques

There are mainly two types of techniques for resource discovery. These are as follows:

a) Query based resource discovery,

b) Agent based resource discovery.

1.5.1 Query based resource discovery

A query is generated and sends toward the database to check the availability of

resource(s). To take discovery decision, it makes use of fixed query engine.

1.5.2 Agent based resource discovery

This technique makes use of agents for query process. Agents are intelligent and

autonomous software entities. Agent works on user’s behalf and interacts with its

surroundings to carry user requests. Agents send code fragment to various nodes for local

process, and take discovery decision with the help of internal logic.

Figure 1.3 Taxonomy of resource discovery techniques

7

Chapter 2

2 REVIEW OF LITERATURE

Muhammad Bilal Qureshi et al., (2014), [1], discussed about various Resource

Allocation mechanisms. Firstly, they discussed the whole process of Resource Allocation

that it consists of resource discovery, resource searching, and job execution, code transfer,

data transmission, and monitoring phases. They discussed about resource management

strategy to overcome scalability, manageability as well as availability issues. In this

strategy, nodes are arranged in peer-to-peer grid organization. Each peer can act as server

as well as client at the same time. These nodes (peers) are having logical connection

between them in addition to the physical links at underlying network. The resources are

discovered by using name lookup strategies. There are two cases to locate resources:

1. If peer knows routing information to locate other peer, then this peer can

communicate with other peer directly,

2. Otherwise, information propagation strategy is used. In this case, resources are

located by using two main strategies:

a) Indexing

b) Flooding

Indexing is used in unstructured peer-to-peer grid organization. It makes use of

Distributed Hash Table (DHT). In this table, hash function is used for indexing purpose.

Flooding is used in structured peer-to-peer grid organization. In this strategy, each node

propagates information of its local resources. Each node matches user query with its local

resources. If user query is matched with local resources, then this information is returned

back to the user who initiates this process. Otherwise, query is forwarded to next peer.

The authors also discussed about resource allocation problem that it is represented as

quadruple(R, A, X, O). Here R is the set of m available resources, A is the set of n tasks

competing for resources, X is m × n matrix in which each entry represents the portion of

ith resources allocated to jth task, and O is the objective function.

8

Then they discussed about various resource allocation mechanisms. Resource Allocation

mechanisms play very important role in allocating most appropriate resources to the

applications. These mechanisms allocate tasks to the resources to ensure QoS of the

application. Different QoS parameters are storage capacity, network bandwidth, and

processor utilization. Sometimes, resources are allocated dynamically means resources

are allocated to tasks as soon as they discovered. These types of resource allocation

mechanisms are known as dynamic resource allocation mechanisms. The authors classify

resource allocation mechanisms into three main categories:

1. Centralized Mechanisms,

2. Distributed Mechanisms,

3. Hybrid Mechanisms.

The grid services that are provided by resource allocation mechanisms are:

1. Resource Monitoring,

2. Resource Scheduling.

Mohammed Bakri Bashir et al., (2011), [2] discussed about various resource discovery

techniques for grid computing. They defined resource discovery as a process of locating

and seeking suitable resources to execute given tasks in reasonable time regardless of

dynamicity and heterogeneity of grid resources. They also discussed that success of other

functions of resource allocation highly depends upon the success of resource discovery.

There are basically two essential criteria for designing competitive schemes for resource

discovery:

1. Scalability: - The technique should be scalable with increase in the number of

grid resources and users. The performance of static techniques decreases with

increase in size of grid.

2. Reliability: - This factor is important to consider when failure rate is high. The

failure can be server failure, or false positive errors due to TTL (Time to Live)

limitation.

3. Dynamicity: - The dynamic behavior of central server has great effect on

reliability of system, if central server is single point of failure.

9

They classify the resource discovery techniques in four main categories. These are as

follows:

1. Centralized Technique: - In this technique, centralized database is used to store

the status information of all grid resources. This technique is easy to implement

and cost effective. But there is single point of failure and can create bottleneck

when large number of user queries are there.

2. Hierarchical Technique: - The information services are distributed at various

levels. There is control database server at each level which handles update

requests from resources. It is more scalable than centralized technique and also

reduce bottleneck problem. But having a single point of failure point.

3. Peer-to-Peer Technique: - It is the form of decentralized organization. Each peer

can act as client as well as server at one time. Large number of nodes can

participate.

4. Agent Based Technique: - Due to autonomy property of agents, this technique is

highly used in grid. To locate other migration site, agents use their own migration

policies.

10

The taxonomy of resource discovery techniques is following Figure 2.1:

 Figure 2.1 Types of Resource Discovery Techniques

Saeid Saryazdi et al., (2009), [3] discussed that classical optimization algorithms are

failed to solve optimization problems which are having high dimensional search space.

Therefore, they proposed a new optimization algorithm which is based on law of gravity.

They named it as ‘Gravitational Search Algorithm’. It is based on Newton law of gravity

which states that ‘Every particle attracts every other particle with a force which is directly

proportional to the product of their masses and inversely proportional to the distance

between them’. This algorithm comes under the category of population based algorithms.

The two common aspects of these algorithms are:

11

1. Exploration: - It is defined as the ability to expand the search space

2. Exploitation: - It is defined as the ability to find optimum solution from the list of

good solutions.

As the time proceeds, Exploitation fades in and Exploration fades out. During iteration,

algorithm passes the following three phases:-

1. Self-Adaptation

2. Cooperation

3. Competition

In proposed algorithm, objects are agents and their masses are used to measure the

performance of agents. These objects attract each other with the help of gravitational

force and this force causes movement of objects towards the heavier objects. The heavier

objects are other objects which are having heavier mass and these masses provide good

solutions. The heavier masses move slowly than the lighter masses. This thing

corresponds to the exploitation step. In GSA algorithm, each agent is specified by four

specifications: position, active gravitational mass, passive mass, and inertia mass. These

masses are calculated by using fitness function and position represents the solution. Each

mass (agent) provide solution. As time proceeds, algorithm navigates by adjusting

gravitational and inertia masses. Therefore, lighter masses will attract toward the heaviest

mass. Thus this mass presents the optimum solution.

Amirreza Zarrabi et al., (2013), [4] proposed one of the population based metaheuristic

algorithm i.e. GSA (Gravitational Algorithm) to schedule task(s) in computational grids.

They used GSA algorithm to obtain better solutions than other metaheuristic algorithms

like genetic algorithm (GA) and particle swarm optimization (PSO) algorithm by

minimizing makespan and flowtime of grid. In this paper, ETC matrix is used to represent

execution time of different task(s) on different machine(s). It is m×n matrix where m is

the number of tasks and n is the number of machines. Each entry (i, j) represents the

expected execution time of task i on machine j. Two main criteria that are used to

evaluate the performance of algorithm are:

1. Makespan: - It is defines as the time when grid finishes the latest task

2. Flowtime: - It is defined as the average response time of the task.

12

Minimizing makespan means average task should be finish as soon as possible so that

long tasks can take more time. Whereas, minimizing flowtime means no task will take too

long time to finish. In this paper, authors use one of the criteria based upon the value of λ.

Fitness function is used to update masses of agents.

 Fitness = λ × makespan + (1-λ) × flowtime/ m

Better solutions will gain mass and worst solutions will loss mass. Heavier masses pull

other masses because they are having higher attraction force. Each agent represents the

solution in the form of m×n matrix where m is number of machines and n is number of

tasks. Each entry (i, j) represents whether the task j is allocated to machine i. They used

min-min heuristic to generate one agent and others are generated randomly. Then they

calculate fitness function by considering makespan as their objective. The agent which is

having least value for fitness function will be selected as final candidate.

Belabbas Yagoubi et al., (2011), [5] examined static and dynamic task assignment

methodologies for dependent tasks. Their objectives are: minimizing average response

time of task(s), reducing communication costs by using static and dynamic methods for

task placement. They discussed that task assignment problem involve the issue of

utilizing idle nodes that are scattered across different geographical regions. The main

goals of task assignment problem are:

a) Enhancing performance,

b) Resource sharing

c) Extensibility,

d) Increase availability.

Then they discussed various assignment algorithms. The assignment algorithms are

categorized in two main categories: single factor assignment algorithms and multiple

factor assignment algorithms. They discussed that dependent tasks can be represented by

DAG (Directed Acyclic Graph). In their proposed strategy, they used hybrid approach to

schedule tasks. In static task assignment, task is assigned to appropriate computing

element, whereas in dynamic case, system will be adjusted dynamically by considering

clusters workload. Firstly, they divide the DAG in n connected components in static

assignment phase and assign these to various cluster managers which further schedule

13

them to computing element by using round robin or other strategy. Then in dynamic task

placement strategy, each computing element runs the first entry task and updates the

connected component. Also computing element executed the connected component

algorithm to determine new entry task and computes its execution time. Then this

information is propagated to cluster manager and other computing nodes. If CE examined

that it is more loaded, some of the connected components shifted to other computing

elements. Also the information of this transfer will send to cluster manager.

Manvi S.S et al., (2005), [6] discussed that there are three types of agents which will

work in resource allocation mechanisms:

1. Resource Brokering Agents,

2. Job Agents,

3. Resource Monitoring Agents.

Resource Brokering Agents are used to schedule resources. Resource Brokering Agents

act as resource scheduler. They also act as broker for submitting unscheduled jobs to

resources. RBAs allow users to submit their jobs with the help of Job Agents. The basic

grid model is shown in Figure 2.2

Job Agents are used to search resources by sending code fragment to all the resources.

Then, the decision is made on the basis of internal logic. Resource Monitoring Agents

reside inside each node of the cluster. These agents will inform the cluster manager about

the status of resources.

14

 Figure 2.2 Basic Grid model

K. Somasundaram et al., (2009), [7] proposed a new dynamic scheduling algorithm

known as Swift Scheduler. This algorithm is the combination of heuristic algorithm and

traditional Shortest Job First algorithm. They will consider memory requirement of task,

CPU requirement as well as priority of the task. Their main objective is to reduce the

waiting time of the task(s) in job queue as well as to reduce overall computational time.

The proposed algorithm works in the following steps: Different users give tasks and these

incoming tasks are collected and stored in job list. The available resources are collected

and stored in resource list. By running the swift scheduling algorithm, tasks in job list are

mapped to resources in resource list. These resources are selected by using some heuristic

function. The function selects the optimized resource for executing particular task which

completes the task in minimum time. The authors use the swift scheduler of GridSim and

compare its performance against the other algorithms like First Come First Serve (FCFS),

Shortest Job First (SJF) etc. They proved that Swift Scheduler completed all the tasks

with minimum completion time and minimize cost by utilizing all the resources in

efficient manner as compared to the other schedulers.

15

D.Maruthanayagam et al., (2011) [8] proposed an Improved Ant Colony Scheduling

technique by combining Ant Colony Optimization with the concept of Resource Aware

Scheduling Algorithm (RASA). According to the proposed technique, the first thing need

to do is to select a set of computers and network connection for an application. To

estimate the completion time of the tasks on each of the available grid resources, they

used a task algorithm of Resource Aware Scheduling Algorithm. Then they decided to

apply the Max-Min and Min-Min algorithms. The expected execution time of each task

on each machine is represented by Expected Time calculation. The Min-Min algorithm

starts with the unmapped set of tasks. It computes the minimum completion time for each

unmapped task. Then it selects the task with overall minimum completion time and

assigns it to the corresponding resource. This process repeats until all the tasks are

mapped. The Max-Min algorithm starts with the unmapped set of tasks. It computes the

minimum completion time for each unmapped task. Then it selects the task with overall

maximum completion time from minimum completion time and assigns it to the

corresponding resource. This process repeats until all the tasks are mapped. The Ant

Colony Optimization technique is used to find the shortest path between the nest and the

food. In RASA, if number of available resources is odd, it allocates the resource to first

task by Min-Min or Max-Min. The remaining tasks are assigned by using one of these

techniques alternatively. This alternative interchange of these two techniques results in

consecutive execution of small and large task(s). The Ant Colony Optimization (ACO)

and Resource Aware Scheduling Algorithm (RASA) are combined to optimize workflow

execution time. The scheduling algorithm is executed periodically. To form the ET matrix

and to start scheduling, the algorithm finds all the available resources at run time. When

all jobs are dispatched, the scheduler starts scheduling the unscheduled task(s). This

guarantees that all machines are fully loaded at maximum times. They compared the

proposed technique with existing ACO and results showed that proposed technique is

better than existing ACO in terms of minimum makespan time.

T. Stutzle et. al., (1997), [10] proposed MMAS i.e. Max Min Ant System technique. It is

also a heuristic based technique. It is a hybrid technique in which MMAS and local search

method were combined together. Local search method is used in quadratic assignment

problem. Max Min Ant System used greedier search approach than Ant System. It

strongly exploits the search space. It adds the pheromone to the best solutions when

16

updating the pheromone trail. Weak solutions are discarded to be updated. By adding the

local search algorithms, MMAS can be easily extended. To exploit best solutions during

iteration, it considers that only one ant will add the pheromone during pheromone update.

This ant may be the one which found best solution from beginning or in the current

iteration. To achieve higher exploitation, it initializes the pheromone to max interval. By

depending upon the instance type, it strongly impacts the performance. It was noticed that

MMAS gives good results than Ant System for quadratic assignment, travelling salesman

problem, and resource allocation in grid.

Meriem Meddeber et al., (2011) [11] proposed a Static Task Assignment technique for

dependent jobs. Their goal is to first reduce average response time of tasks whenever

possible. Then to reduce transfer cost by taking into consideration the dependency

constraints. In static task assignment technique, simple information of system is used to

distribute tasks. These tasks are distributed by making use of mathematical formulas or

other methods. The tasks are distributed in such a way that every node or resource can

process the task(s) until completed. According to the proposed technique, they first need

to form clusters of initially collected nodes by using distributed clustering algorithm

(DCA). DCA uses two types of messages: - Ch (v) and Join (v; u). Every node starts the

execution of algorithm at same time by executing Init procedure. The working of

Distributed Clustering Algorithm (DCA) is shown in Figure 2.3.

The next step is scheduling of tasks. Each clusterhead uses Heterogeneous Earliest Finish

Time (HEFT) algorithm. According to this algorithm, each clusterhead uses static

assignment of dependent tasks on a heterogeneous platform. In this way all dependent

tasks of whole application is assigned to heterogeneous resources. The advantage of this

technique is its simplicity and to make good schedules by minimizing makespan. HEFT

first creates list of tasks based on their priority and then it makes local optimum decisions

for each tasks on the basis of estimated finish time. Heft algorithm works in three phases:

-

i. Weighting: - In this phase, the weights are assigned to nodes based on the

expected execution times of the tasks. The weights to the edges are assigned

based on the expected data transfer times between the resources. HEFT assumes

that these times are known. Various methods can be used to predict these times

17

but the most common method is to take average of the times on all resources for

each task.

ii. Ranking: - In this phase, rank value is assigned to each task by traversing the

graph in backward direction. The higher rank value means the higher priority.

The rank value of a task is equal to the task’s weight by adding it with maximum

successive weight. Then the tasks are sorted in decreasing order based on the rank

values.

iii. Mapping: - In this phase, tasks is mapped to the resource which minimize the

task’s earliest expected finish time. All the tasks are mapped in this way to their

corresponding fitted resource.

The working of HEFT algorithm is shown in Figure 2.4. Then they compare the results of

proposed technique with random strategy, HEFT strategy (without using DCA) and

strategy based on Meta tasks.

 Figure 2.3 Distributed Clustering Algorithm

18

Figure 2.4 Heterogeneous Earliest Finish Time

H. Yan et al., (2005). [12] proposed Improved Ant Algorithm which takes the idea from

basic Ant Colony Optimization (ACO) for scheduling jobs. To update pheromone values,

it uses encouragement, punishment coefficient and load balancing factor. These

coefficients are defined by the user itself. When pheromone value is calculated, we need

to consider the status of each resource. The job(s) is allocated to the resource having the

highest value of the pheromone. If the assigned job is completed successfully by the

resource, then the encouragement coefficient to added to the pheromone value. In this

way, pheromone value of the resource is increased to assign the next job. If the assigned

job is not completed successfully by the resource, then it will be punished. It decreases

19

pheromone value of that resource by adding punishment coefficient. The balancing factor

is used to change the pheromone values by considering the load on each resource.

Sunita Bansal et al., (2011) [13] proposed a novel scheduling technique to schedule

tasks dynamically and adaptively without having need of prior information of incoming

tasks. The proposed approach considers the grid environment as state transition diagram.

Then a prioritized round robin algorithm with task replication is used to schedule the

tasks. It makes use of prediction information on processor utilization for each individual

node. They represent their approach by considering that grid can occupy one of four

states (shown in figure 2.5) at any given interval of time. They used two types of queues

in their simulation: -

 Figure 2.5 Four different states of grid systems

20

1. The waiting queue consists of the tasks which are waiting to be mapped to their

corresponding machines. This queue is implemented by First in First out (FIFO).

The task which arrives first is the head of queue and is mapped before all other

tasks in the queue.

2. The execution queue consists of the tasks which are currently executing. It is

implemented as a circular queue. In this queue each task has some specific order

which is not similar to the order of other tasks. It uses three pointers to scan the

circular list:-

a) Current Pointer: - It is used to point a task with the highest priority at

current instance of time,

b) Next Pointer: - It is used to point the task having second highest priority.

It is placed next to the current task in clockwise direction.

c) Last Pointer: - It is used to point to task having least priority and this task

is placed besides to the current task in the anti- clockwise direction.

In State 1, idle scheduler waits for tasks. Both queues are empty initially. When number

of incoming tasks crosses the threshold value, transition shifts to state 2. In State 2,

execution queue is initially empty but waiting queue contains the incoming tasks. The

tasks are mapped to resources in idle list one by one starting from the header task in the

waiting queue. As we allocate the resource from idle list, that resource will be removed

from idle list. The mapped task moves from waiting queue to the execution queue. They

implement the logic to give highest priority to a task which was mapped to the slowest

processor and vice versa. This is the task which will be replicated. So by replicating this

task there would be the high probability that the new machine will complete this task

before the already assigned resource. In State 3, the execution queue comprises of tasks

currently executed and the waiting queue is initially empty. If task will be completed by

the machine, the processors and all the machines those were assigned to the completed

task would be released. This task will be removed from the execution queue. Here is the

need of updating processing power of the released machine. The processing power

depends upon the number of instructions executed by this machine for previously

completed task and the time it took to complete the task. If it is greater than

maxProcSpeed of the task which is pointed by the current pointer, then this machine

21

needs to execute the replica of current task. If number of tasks in waiting queue exceeds

threshold before completing the execution of all the tasks in execution queue, then

transition shifts to state 4. In State 4, both queues are non-empty. There are two scenarios

at this stage: -

1. The number of machines which execute replicas is less than the number of the

tasks in the Waiting Queue.

2. The number of machines which execute replicas is more than the number of the

tasks in the Waiting Queue.

The tasks are traversed in an anticlockwise manner, starting from task which is pointed by

last pointer. If this task has more than one machine to be allocated then the processor

which is at the tail end will be freed and assigned the task at the head of waiting queue. In

Case 1, we stop the traversal if all the tasks in execution queue one and only one machine

and transition shifts to State 2. In Case2, we stop the traversal if machine(s) is assigned to

all the tasks in waiting queue and transition shifts to State 3. They compare the results of

proposed prioritized round robin algorithm with round robin technique.

C. Blum et al., (2005) [15] proposed a heuristic based approach known as Ant Colony

Optimization (ACO). It is population based technique. It is inspired from the behavior of

ants while they search for their food. When ants need to search for their food, they start

moving randomly by laying pheromone trail in their path. Then the remaining ants in ant

colony works together by following pheromone trail(s) laid by the fellow ant(s) to find

the shortest path from their nest to food. The pheromone trail is chemical substance which

is released by ants when they move. The path having high pheromone value is considered

to be the shortest path. Over the time, the pheromones will start evaporating. This

evaporation process reduces attractive strength of the path. Thus the density of

pheromones is higher on the shorter path than the longer path. This algorithm is effective

algorithm to use in resource allocation in grid computing. It starts by computing the initial

pheromone value for all the resources. Then pheromone value will be updated for each

resource. Then probability will be computed to choose the resource. The resource with

the highest probability will be considered as fittest resource to be allocated to new

incoming job.

22

K. Satish et al., (2013) [16] proposed a technique named as SS-GA by collaborating

Swift Scheduler and Genetic Algorithm based resource allocation. The main objective to

propose this technique is to allocate fittest resources to proper jobs to meet the QoS

(Quality of Service) requirements i.e. to minimize job completion time, resource

utilization, cost minimization and economy. They proposed this new technique to make

the process of resource allocation more proficient than other methods. In their

methodology, they take resources and jobs to be processed as input data sets. A resource

pool consists of number of resources with their ids, capacity, and cost to execute

particular job(s). A job pool consists of number of jobs with their ids, length and priority

of job. The Swift Scheduler (SS) collects the job(s) from different users and then swift

them either by their priority or by their length. Then it allocates the resources to jobs

based on their swift according to their priority in the job pool. The Genetic Algorithm

(GA) is a population-based technique. It allocates the resources to the jobs by evaluating

the fitness function. In their methodology, they considered that there are n number of jobs

to be processed, and there are m number of resources which needs to process these jobs

(n>m). They also consider some assumptions to make their resource allocation technique

as the finest technique. These assumptions are as follows: -

i. Every job is independent to each other,

ii. Every job is assigned priority among them,

iii. The jobs can’t migrate,

iv. At early stage, every resource and job can be simultaneously available,

v. Every job and resource has its unique id to uniquely identify and to avoid

conflictions while processing,

vi. In job and resource input data sets, each attribute such as job priority, job length,

resource capacity and cost should need to be specified to make resource allocation

effective,

vii. Each resource can process only one job at a time and no interruption is permitted

before the completion of job.

In the proposed SS-GA algorithm, they combine priority based job scheduling which is

offered by Swift Scheduler (SS), and powerful accurateness finding ability which is

23

offered by the Genetic Algorithm (GA). In this way, they made full use of advantages of

both techniques. Figure 2.6 shows the proposed SS-GA algorithm for Resource

Allocation.

Figure 2.6 Proposed SS-GA Algorithm for Resource Allocation

K. Mahamud et. al., (2010) [17] proposed hybrid approach for scheduling jobs to grid

resources. It combines the Ant System and Min-Max Ant System. It uses the local

24

pheromone trial update. To set the restriction on pheromone evaporation it limits trial

values. To calculate the pheromones it focuses on the status of grid resources. Therefore

to store the status of available resources, it makes use of a matrix. Agents are used to

update the resource table.

R. Saxena et.al., (2015) [18] proposed a heuristic technique named as AHSWDG(An Ant

Based Heuristic Approach to Scheduling and Workload Distribution in Computational

Grids) which is based on Ant Colony optimization for balanced distribution of workloads.

Firstly it computes initial computational capacity of all available resources, and then it

computes the probability for all the resources to allocate incoming job(s). The resource

with highest probability is the one to allocate to incoming job. After this most optimal

resource will find by the algorithm which is the one which successfully completed the

job. If found job will be assigned to it and resume the job on this resource. But here the

one problem is that if the job failed on no optimal resource would be found then this

failed job again put into the actual job queue. No technique is used to recover the failed

job(s). It is better than the random approach in utilizing the resources.

25

Chapter 3

3 PRESENT WORK

3.1 Scope of the study

Dynamism of the jobs and the resources is a major concern in Grid, so a good

scheduling algorithm will lead to efficiently allocating the resources to the jobs. The

proposed algorithm schedules the job(s) to the resource(s) in efficient and reliable

manner by considering the following factors:

1. Dynamicity of the resources to handle them efficiently as they enter and leave the

grid environment,

2. Because of large number of resources, finding the best resource becomes difficult

and time consuming. According to the type of user (primarily classified as Type

A, B, and C), the resources are handled,

3. Resource properties such as CPU, RAM, Hard drive, Bandwidth are primarily

taken for scheduling the jobs on the resources,

4. Based upon the above mentioned properties, we will classify the resources into

three clusters high, medium and low and then map the users to the respective

resource clusters.

5. For fault tolerance a copy of the job will also be scheduled at resources of low

cluster.

The proposed algorithm has a great scope in dynamic environment and for doing user

based scheduling.

3.2 Problem Formulation

1. My problem definition is “An efficient resource allocation in grid computing

environment”.

2. The problem of existing techniques is that to find the fittest resource to execute

the new incoming job, we need to search from all the available resources in grid.

To overcome this problem, I decide to categorize the resources according to their

configuration.

3. Another problem of the existing techniques is that all the users are considered to

be of same level. All the users can use same level of services which may again

lead to over utilization of resources where it is not needed and may give low

performance where it is highly expected. So to overcome this problem, I decide to

categorize the users according to their SLA (Service Level Agreement) type.

26

4. In this way, services will be given to the users according to their type and

optimized results can be achieved.

5. Another flaw in existing technique like AHSWDG (shown in figure 3.1) is that it

directly sends the failed job to job queue again. Algorithm again needs to load the

job, perform computations and to do resource allocation. The proposed technique

will cut down this overhead.

6. Firstly the proposed technique will find the reason of failure and then provide

fault tolerance by activating the services according to the user priority. In this

way, optimized results and reliability can be achieved. Also failure rate can be

decreased when comparing with AHSWDG.

Figure 3.1 Flowchart of AHSDWG

27

3.3 Objectives:

The main objective is to develop scheduling algorithm which can optimize resource

allocation process in grid environment, and allocating the job(s) to the machine(s) in

efficient manner.

1. To improve scheduling of job(s) in grid, algorithm will check which particular

machine is to be considered for scheduling the job(s) by considering resource

configurations, the user type, and dynamicity of the resources as they can leave or

join grid at any time,

2. The resources are handled dynamically according to the user type (primarily

classified as platinum, gold, and silver),

3. Resource properties such as CPU, RAM, Hard drive, and Bandwidth are primarily

taken as the factors for giving priority to the resources, and accordingly they will

be classified into three categories: High, Medium, and Low end cluster.

4. Then we map the users to respective resource cluster.

5. To increase the efficiency, search time of resources will be decreased by

clustering resources efficiently, and by dividing the users into different categories.

6. To provide fault tolerance, a copy of the job will be scheduled at the resource(s) of

the low cluster

3.4 Research Methodology

The main motive of proposed technique is to schedule job(s) in grid environment

efficiently and to provide fault tolerance to handle different types of failures. How?

1. To increase the efficiency of the proposed technique, I decide to make clusters of

resources in efficient manner so that the search time of resources can be

decreased.

2. Three types of logical clusters should be made and are as follows:-

i. High end resources,

ii. Medium end resources,

iii. Low end resources.

3. These clusters will be formed on the basis of the following characteristics of

resources:

i. CPU (MIPS rating),

ii. Memory,

28

iii. Bandwidth,

iv. HDD.

4. Let’s suppose we have 1000 resources out them some are clustered as high,

medium or low configuration resources. If the job is submitted by the high

category user, then instead of searching for the best resource out of 1000

resources, the algorithm will search for the resources in highly configured cluster

which in turn will help to reduce the search time.

5. For doing user based scheduling, users will be categorized into three categories:

i. Type A users,

ii. Type B users,

iii. Type C users.

6. The factor which needs to be considered to categorize the users is charges; they

paid to use grid resources.

7. How it works?

i. When the request for the resources will come from platinum user, we don’t

need to search fittest node from all resources. We just need to search from

high end resources which lead to minimize the search time, hence increase

the efficiency.

ii. In case, if no high end resource is free or available then only we need to

search from medium or low end resources.

8. To handle the failure, firstly consider three types of failures:-

i. VM failure: - Job(s) will fail due to some failure in VM. On one host

multiple Virtual Machines (VMs) can run.

ii. Host failure: - Job(s) will fail because host will fail.

iii. Network failure: - Job(s) will fail because there will be some problem in

network connection.

 To provide fault tolerance, algorithm will use two types of services:-

29

i. Replication Service: - This is the service which is used to replicate job(s)

of logging user to two or more resources (VMs). Replication will be done

on the resource (VM) of other host not on the same host. Each host is

divided into 2 or more VMs. Therefore when job will come, copy of this

job should also be run on VM of other host. This service is used to handle

VM as well as Host failure. In this service, double resources would be

consumed which is wastage of resources.

ii. Input Buffered Service: - In this service, buffer (a part of memory) is

used to store the incoming jobs at each host before allocating them

resources (VMs of host). Input buffer is working as a cache memory and

stores the job (i.e. job id and job itself) before processing it at one of

resource. Buffer should be implemented at each host to store only jobs that

comes to that host. It tackles the job failure due to VM failure.

9. Activation of these services totally depends upon the category of user (i.e. Type

A, B or C), because not all the users pays equal amount to use grid resource then

why to provide all the services to all the users? And why to wastage extra

resources for all category of users? How to activate?

i. If the user is Type A user, then both services will be activated to handle

VM as well as Host failure. As I discuss before that to replicate the job(s),

double resources will be used. Therefore replication service will only be

activated for Type A users because they pay very high amount to use the

resources. Jobs of this category of users will be considered as crucial jobs.

ii. If the user is Type B user, then input buffer service will be activated to

handle VM failure only.

iii. If the user is Type C user, the minimum share service would be assured. I

am considering that user will be given 70% success ratio when he/she

submits the job(s). If this ratio will degrade from 70%, then only input

buffer service will be activated for this category of user.

10. As we know grid is dynamic in nature, so machine can leave and join the cluster

at any time. To reduce the overhead of grid manager, when new resource wants to

30

join, it will automatically adjust into one of the cluster (high end, medium end,

low end) according to its characteristics.

11. The flowchart of proposed technique is shown in figure 3.2

31

 Figure 3.2 Flowchart of proposed algorithm

32

Chapter 4

4 RESULTS AND DISCUSSION

4.1 Implementation

The proposed methodology is simulated with the help of Java based Simulation and

‘Netbeans IDE 7.2’. Netbeans is a platform where applications are developed using

segments called software modules. Fig 4.1 depicts NetBeans development environment.

Figure 4.1 Netbeans IDE

4.2 Experimental Results 1

The first phase in my simulation is Client Login phase. Here the user will login by

entering his/her username and password. Then SLA type of user will be recognized. And

accordingly activation of services and resource allocation will be done. The whole steps

are explained below: -

4.2.1 Client Interface: -

When we run the project, client interface window will be displayed (shown in figure 4.2).

33

Figure 4.2 Client Interface Window

i. Here user needs to enter the username and password.

ii. When user will click on LOGIN button, username and password will be verified

from the database at Grid Data Centre to determine the SLA type of user. In this

project, these are stored in client.csv file.

iii. If the username or password is incorrect then following output (shown in figure

4.3) will be displayed and project will stop to proceed.

Figure 4.3 Unsuccessful Login Output

iv. If matched, the project will proceed by determining the SLA type of current user.

34

4.2.2 Grid Master Module

As I already discuss that there are three types of users according to the SLA i.e. Type A,

Type B, and Type C. Grid Master activates the services according to the SLA type. To

provide the fault tolerance and utilize the resources in efficient manner, algorithm will

activate the services according to the category of user.

i. If user is Type A user, The window shown in figure 4.4 will be displayed. As we

can see that both replication service and Input buffer service will be activated for

this category of user(shown in figure 4.5). This category of users paid high

amount to use grid resource. The jobs of this category are considered to be crucial

ones. Therefore, both VM and Host failure will be handled.

Figure 4.4 Interface for Type A user

Figure 4.5 Output for Type A after successfully login

35

ii. If user is Type B user, the window shown in figure 4.6 will be displayed. As we

can see in figure 4.7 that only Reloading Service (Input Buffer Service) will be

activated for this category of user. Replication Service will not be activated

because double resources would be consumed which is the wastage of resources.

These are the users which paid medium amount, therefore no need to use double

resources for this category. For this category of user, VM failure will be handled.

Figure 4.6 Interface for Type B user

Figure 4.7 Output for Type B after successfully login

36

iii. If user is Type C user, the window shown in figure 4.8 will be displayed. No any

service will be activated for this category as shown in figure 4.9. This category of

users paid no or very less amount to use resources. Therefore we provide

minimum share service i.e. 70% success rate. If this percentage will degrade, then

we can activate reloading i.e. buffer service. This thing will help to gain 70%

success rate by handling VM failure.

Figure 4.8 Interface for Type C user

Figure 4.9 Output for Type C after successfully login

37

iv. In this simulation, network failure will not be handled because of security

concerns. I assume that user needs to expire the session and reconnect to the grid

again in case network failure, because the job or data of each user is very crucial.

If user doesn’t expire the session, it may be possible that untrusted or third person

may resubmit the job(s) of the authorized user on the behalf of him or her.

Therefore if there is some network failure, user need to establish new connection

to ensure the security.

4.2.3 Resource Joining Module

i. After clicking on ADD VM button, the window shown in figure 4.10 will be

displayed. The resources can be added to the grid at run time and can adjust into

one of the logical cluster (i.e. high end, medium end, or low end resources)

according to their configuration (CPU, RAM, Network Bandwidth, and HDD).

The output shown in figure 4.11 will be displayed when click on ADD VM

button.

Figure 4.10 Interface for adding resources

Figure 4.11 Output after clicking ADD VM button

38

ii. Now, we have to enter configuration of resources as shown in figure 4.12

 Figure 4.12 Interface after adding configuration of resource

iii. By clicking on ADD button, developed logic will compute mean vectors for each

configuration that is CPU, RAM, HD, and Bandwidth as defined bellow:

Meanvector_CPU = Cpu_value (e) / Cpu_centroid_value

 Meanvector_RAM = RAM_ value (e) / RAM_ centroid_value

 Meanvector_HD = HD_ value (e) / HD_ centroid_value

MeanVector_NB = NB _ value (e) / NB_ centroid_value

Where (e) denotes entered values and centroid values of each configuration are

constant values taken as central values to be compared with.

iv. By adding all mean vectors, logic will compute the total value which is compared

with the threshold values of each cluster.

TOTAL = Meanvector_CPU + Meanvector_RAM + Meanvector_HD +

MeanVector_NB

39

v. The cluster having maximum TOTAL value is defined as high cluster, medium

TOTAL value is defined as medium cluster, and having low TOTAL value is

defined as low cluster.

vi. As we can see in figure 4.13, there are total of 40 resources already added. When

we try to add new resource in grid (as shown in figure 4.12), it will be added into

two databases: one where all resources are stored and other in appropriate

database according to its configuration.

Figure 4.13 Resource.csv file before adding new resource

vii. When click on ADD button, the output shown in figure 4.14 will be displayed.

Figure 4.14 Output after adding resource

40

viii. The resource is added in resource.csv file as shown in figure 4.15. Also as its

TOTAL value is 5.18 (shown in figure 4.14), it lies in medium range. So, the

resource will also be added into the database where average availability

resources are stored as shown in figure 4.16

Figure 4.15 Resource.csv file after adding new resource

Figure 4.16 Resourceaverge.csv file after adding new resource

41

ix. In this way we can handle the dynamicity of resources by using this

methodology which is used in our simulation.

4.2.4 Resource Allocation Module

In this simulation, choose one of the technique and click on Simulation button. The

resources will be allocated to incoming jobs according to the chosen technique. As shown

in the following figure 4.17, I choose efficient technique, and then click on Simulation

button to allocate jobs according to the proposed technique.

Figure 4.17 Resource Allocation Interface.

i. FIFO: - It allocates the first resource in the list to the first job in the job list and

then so on. No failure handling in case of job failure will be provided by this

technique. Each time resources and users would be treated as same. It may

happen that when the job will come from high user, it would be given low

configured resource due to which execution time may effect. Similarly for

other category of user, sometimes they get benefit sometimes loss in case of

performance. It doesn’t need to compute anything to find good resource.

42

ii. AHSWDG: - It first computes the computational capacity of all the resources.

Then the resource having maximum computational capacity is allocated to the

incoming job. This means it needs to search best resource from all available

resources. It doesn’t handle failure when job failed during its execution. But it

treats all the users equally.

iii. Efficient Technique: - It allocates the resources according to the priority of users.

The highly configured resource(s) is allocated to job(s) of user(s) who paid

maximum charges. It clusters the resources into three categories to reduce

search time for best resource. It also handles the failures to reduce the job

failure rate.

4.3 Experimental Results 2

To set up the experimental set up for the jobs and to store the information about the

clients and resources, I used the following .csv (Comma Separated Values) files. The

column values are separated by the comma to store the information.

4.3.1 Client.csv

This file contains the username and password of all the clients as well as SLA (Service

Level Agreement) type as shown in figure 4.18

Figure 4.18 Client.csv file

43

4.3.2 Resources.csv

This file contains the information about all available resources. In my simulation, I

consider that there are 10 hosts. Each host is having 4 VMs. This means total 40 VMs are

there to execute the jobs of the clients. In this file, resources are stored by storing the

information regarding id, host id, VM id, status, CPU (in MIPS), RAM (in MB), HD (in

GB), and Network Bandwidth i.e. NB (Mbits/s) as shown in figure 4.19

Figure 4.19 Resource.csv file

4.3.3 Jobtrace.csv

To simulate the environment and to build the base case scenario, we need the job trace

file as shown in figure 4.20. Here 100 jobs will be considered. Each job is having unique

id, status (success or fail), and reason of failure. 0 is used for non-occurrence and 1 is

used to indicate the occurrence of failure. I am considering that there are three reasons of

failure: Host, VM, and Network failure. To set up experimental set up, I consider that

normally if user will submit 100 jobs to Grid Data Center, 60 jobs will be executed

44

successfully and 40 jobs will be failed. 20 jobs will be failed due to VM failure, 12 due to

Host failure, and 8 due to Network failure.

Figure 4.20 JobTrace.csv file

4.3.4 Resourceshigh.csv

This file contains all the highly configured resources which are having maximum TOTAL

value as shown in figure 4.21

Figure 4.21 Resourcehigh.csv file

45

4.3.5 Resourcesaverage.csv

This file contains all the average configured resources which are having medium TOTAL

value as shown in figure 4.22

Figure 4.22 Resourceaverage.csv file

4.3.6 Resourceslow.csv

This file contains all the low configured resources which are having low TOTAL value as

shown in figure 4.23

Figure 4.23 Resourcelow.csv file

46

4.4 Experimental Results 4

In this simulation, I compare my proposed technique with two techniques i.e. FIFO and

AHSWDG. In this section, I am going to present the outputs of all techniques.

1. Outputs of FIFO technique: - According to the base case scenario, there are

total 40 resources to allocate to 100 jobs submitted by the user. When the user

submits the job, FIFO will allocate the first resource to the first job in the list

and so on. It treats all the users and resources in similar way. It doesn’t assign

any priority. So, resource of any configuration will be allocated to any job. No

matter whether the job needs high or low configured resource. It doesn’t

handle the failure of jobs. As shown in figure 4.24, there are total 40 resources

which FIFO can use to run the jobs and all are idle initially. FIFO will use first

13 resources to run 100 jobs submitted by user, as I use threshold of 8 jobs

that can be run by 1 VM or resource.

Figure 4.24 Output 1 for FIFO technique

As I already discussed that FIFO doesn’t handle the failure of job. Therefore when

the job will run on resource and if it failed due to any failure i.e. VM, Host, or

network, FIFO will give status as fail as shown in figure 4.25. As we can see that

47

if Fail Component is VM, Host, or Network, FIFO can’t handle that failure and

give status as fail.

Figure 4.25 Output2 for FIFO

Figure 4.26 Output for Type A user with FIFO technique

48

Figure 4.27 Output for Type B user with FIFO technique

Figure 4.28 Output for Type C user with FIFO technique

2. Outputs of AHSWDG technique: - It also finds the best resource from all the

available resources. It computes the computational capacity and then selects the

resource with maximum capacity to assign the incoming job(s). Here the thing is

that we can benefit the users who need the high computational power which is the

drawback of FIFO. But again it is not beneficial to use this technique to allocate

the best resource to low category users. This is the drawback of this technique as it

also treats all the users at same level. Also it doesn’t handle the failures due to

which it gives high failure rate than the proposed technique. It computes

computational capacity of all the resources each time the job will come and then

by sorting, it selects the best resource. Therefore its search time is more than that

of FIFO. Again it also needs 13 resources to run 100 jobs of the user (as a base

case scenario). It also needs to find best resource each time out of 40 resources

according to experimental set up as shown in figure 4.29.

49

Figure 4.29 Output 1 for AHSWDG technique

As it doesn’t handle the failure of the jobs, it also gives the status as fail when job

failed due to VM, Host, or Network failure as shown in figure 4.30

Figure 4.30 Output 2 for AHSWDG technique

Figure 4.31 Output for Type A user with AHSWDG technique

50

Figure 4.32 Output for Type B user with AHSWDG technique

Figure 4.33 Output for Type C user with AHSWDG technique

3. Efficient Technique: - It allocates the resources according to the SLA type of

user. The highly configured resource(s) to highly paid user(s). Similarly medium

configured to medium paid and low configured to the low paid users. In this way,

when the request comes from any type of user, it searches resource only from

appropriate cluster. In this way, it doesn’t need to search fittest resource from all

available resources. Hence it reduces the search time as compared to AHSWDG

technique. It also handles the failure when job failed due to VM or Host. But this

activation is also done on the basis of the user type, so that no extra resources will

be wasted for the medium or low end users. In this way, job failure rate will be

decreased as compare to FIFO and AHSWDG. As a base case scenario, to run 100

jobs of highly paid user, algorithm need to search from 20 resources as shown in

figure 4.34 which are stored in resourcehigh.csv file as shown in figure 4.21.

51

Figure 4.34 Output 1 for EFFICIENT technique

As we can see in figure 4.35, when job failed due to VM or Host failure for type A

user, it can be handled by replicating it on other resource on same host or other

host. It gives the status as success because it handles the failure successfully. In

this way it gives more success rate. It first sorts list of the appropriate resources,

then choose the first best resource to allocate to incoming job.

Also to balance the usage of one machine, algorithm will decrease the total value

according to which resources are sorted by 1. Whenever resource is allocated to

the incoming job, its total value is decreased by 1 due to which it moves down in

this list. The lower resources moves upward in the sorted list and upper resources

moves down in the list as their values are decreased.

52

Figure 4.35 Output 2 for EFFICIENT technique

Figure 4.36 Output for Type A user with EFFICIENT technique

Figure 4.37 Output for Type B user with EFFICIENT technique

53

Figure 4.38 Output for Type C user with EFFICIENT technique

4.5 Experimental Results 5

In this section, the results are shown with the help of graphs. The comparisons are done

on the basis of SLA type of users and various resource allocation techniques. The

proposed technique aims to reduce the failure rate, search time as compared to

AHSWDG, increase success rate, to optimize the results on the basis of execution time

and cost.

4.5.1 Resource Utilization Comparison

Comparison on the basis of total number of resource used as per base case scenario and

threshold assumed is shown in the following bar graph (shown in figure 4.39). As I

assumed that one VM can run 8 jobs. To run 100 jobs of a user, all the technique need 13

resources except user A for proposed technique. This is because, for Type A user

algorithm will activate Replication Service due to which one job will run on two

resources. The comparison is shown in table 4.1.

Table 4.1 Comparison Table of Resource Utilization

54

Figure 4.39 Comparison graph of Resource Utilization

4.5.2 Job Success Comparison

Comparison on the basis of number of job executed successfully is shown in the

following bar graph (shown in figure 4.40). This comparison is shown in table 4.2. It is

noticed that by providing fault tolerance in the proposed technique, number of successful

jobs is more than both the techniques. FIFO and AHSWDG don’t provide fault tolerance.

Failed jobs need to resubmit in both techniques. As per base case scenario, it is assumed

that when user will submit 100 jobs to run 60 jobs will run successfully, 40 will fail. Out

of 40, 20 will fail due to VM failure, 12 due to Host failure, and 8 due to Network failure.

Therefore, proposed technique will handle the VM failure for Type B user, VM and Host

failure for Type A user as already discussed in previous section. Also it provides 70 %

success rate to Type C users. Therefore it gives high success rate than other two

techniques which do not provide fault tolerance.

55

Table 4.2 Comparison Table of Job Success

Figure 4.40 Comparison graph of Job Success

4.5.3 Job Failure Comparison

Comparison on the basis of number of job failed during execution is shown in the

following bar chart (shown in Figure 4.41). This comparison is shown in table 4.3. It is

noticed that number of jobs failed in proposed technique is less than that of FIFO and

AHSWDG. The reason for this is fault tolerance provided by the proposed technique.

56

Table 4.3 Comparison Table of Job failure

Figure 4.41 Comparison graph of Job Failure

4.5.4 Search Time Comparison

Comparison on the basis of search time is shown in the following bar chart (shown in

Figure 4.42). This comparison is shown in table 4.4. In simulation, I consider search time

in nanoseconds. It is noticed that proposed technique takes less time as compared to

AHSWDG technique. Because proposed technique takes into the consideration both the

SLA type of the user and the resource availability (i.e. high, medium or low). It needs to

search from fewer resources as compared to AHSWDG.

57

Search time also considers computational time of techniques. For example: To search

fittest resource, AHSWDG needs to compute the computational capacity for all the

resources each time the new job will come and also then it performs sorting to allocate the

resource having the maximum computational capacity.

The proposed technique only needs to sort the resources of the appropriate cluster having

less number of resources as compared to the all available resources in grid. Then it

allocates the best resource at the top to incoming job. Therefore its search time is less

than AHSWDG.

As it is also noticed that FIFO takes less search time than both techniques, this is because

it allocate the first resource in the queue to first incoming jobs and so on. No any

computations need to be done to choose best resource. But it is not beneficial to use FIFO

technique because it may be possible that it allocates low configured resource to job

which require high configured resource. It may also be possible that it allocates very high

configured resource to job which doesn’t require that much capacity or configuration.

The AHSWDG is better than FIFO in this aspect, because it allocates the resource with

maximum computational capacity to incoming job(s). If the job which requires high

computations will always assigns to high configured resource. This is the drawback of

FIFO as discussed above. But in case of job which requires low configured resource,

AHSWDG will allocate again high configured resource to this job. The proposed

technique tackles all these problems in addition to fault tolerance.

Table 4.4 Comparison Table of Search Time (in nanoseconds)

58

Figure 4.42 Comparison graph of Search Time

4.5.5 Execution Time Comparison

Comparison on the basis of execution time is shown in the following bar chart (shown in

Figure 4.43). This comparison is shown in table 4.5. The aim of the proposed technique is

to optimize the performance of the grid not to reduce or to increase the performance. In

case of replication service to recover the failure, it needs to execute the job on more than

one resource, which may lead to the more execution time than the other technique. So the

proposed technique provides the optimized results. According to the SLA agreement type

and services need to provide to the users to benefit the users accordingly, the proposed

technique gives the optimized results.

As already discussed that FIFO may allocates low configured resources to jobs of Type A

user because it never differentiate between users and resources. AHSWDG is better than

FIFO in most cases.

59

Table 4.5 Comparison Table of Execution Time (in milliseconds)

Figure 4.43 Comparison graph of Execution Time

4.5.6 Cost Comparison

Comparison on the basis of total cost is shown in the following bar chart (shown in Figure

4.44). This comparison is shown in table 4.6. As I already discussed that aim of the

proposed technique is not to reduce or to increase the cost, the aim is to optimize it. As it

is noticed that for type A user, cost of proposed technique is more than that of others. It is

due to the usage of multiple resources when providing the replication service only to this

category of users.

60

Table 4.6 Comparison Table of Cost (in Rs)

Figure 4.44 Comparison graph of Cost

61

Chapter 5

 CONCLUSION AND FUTURE WORK

Resource Allocation is the process of allocating the resources to the tasks in efficient

manner so that throughput of the system will increase and user requirements will be

satisfy. In static scheduling, state of all system resources and tasks are known in advance.

These states can’t be changed. This limits such type of schedulers to specific problems

and systems. Therefore I conclude that dynamic scheduling will give us better solutions in

dynamic environment. As we know that grid environment is dynamic in nature, so

handling the dynamic resources is the big challenge for researchers. The proposed

mechanism can handle these resources in better way. The mechanism will be used to

allocate the resource(s) to the incoming job(s) efficiently by reducing the search time.

The algorithm will be based on user based scheduling instead of job based scheduling. So

by using this technique, we can prioritize the users on the basis of their SLA (Service

Level Agreement) type. If the user is of high priority, highly configured resources would

be allocated to assign his/her jobs. Similarly, medium configured for medium and low

configured resources will be used for low priority users.

The algorithm also provides the capability of handling the failures which can’t be handled

in existing technique such as AHSWDG. In this way, the proposed algorithm gives the

high success rate of jobs by handling VM and Host failure. In this way, the reliability can

also be achieved.

The future plan is to extend the work so as to provide more reliable and efficient

performance in case of network failure also.

62

Chapter 6

 LIST OF REFERENCES

I. Books

Joshy Joseph, Craig Fellenstein, “Grid Computing”, Published by Prentice Hall

Professional, 2004

II. Research Papers

[1] Albert Y. Zomaya, Cheng-Zhong Xu, Hameed Hussain, Ilias Rentifis, Muhammad

Bilal Qureshi, Muhammad Shuaib Qureshi, Maryam Mehri Dehnavi, Nasro Min-

Allah, Nikos Tziritas, Samee U. Khan, Thanasis Loukopoulos (2014), “Survey on

Grid Resource Allocation Mechanisms”, Springer Science+Business Media

Dordrecht , pp. 399-441 .

[2] Aboamama Atahar Ahmed, Abdul Hanan Abdullah, Adil Yousif, Mohammed

Bakri Bashir, Muhammad Shafie Bin Abd Latiff, Yahaya Coulibaly (2011), “A

HYBRID RESOURCE DISCOVERY MODEL FOR GRID COMPUTING”,

International Journal of Grid Computing & Applications (IJGCA) Vol.2, No.3.

[3] Esmat Rashedi, Hossein Nezamabadi-pour, Saeid Saryazdi (2009), “GSA: A

Gravitational Search Algorithm”, Springer Science+.

[4] Amirreza Zarrabi, Khairulmizam Samsudin (2013), “Task scheduling on

computational Grids using Gravitational Search Algorithm”, Springer

Science+Business Media New York, pp. 1001-1011

[5] Belabbas Yagoubi, Meriem Meddeber (2011), “Towards Hybrid Dependent Tasks

Assignment for Grid Computing”,

[6] Birje M.N, Manvi S.S, (2005), “An agent based resource allocation on model for

grid computing”, Services Computing, 2005 IEEE International Conference

on (Volume: 1), pp. 311-314

[7] K. Somasundaram, S. Radhakrishnan, (2009), “Task Resource Allocation in Grid

using Swift Scheduler” Int. J. of Computers, Communications & Control, ISSN

1841-9836, E-ISSN 1841-9844 Vol. IV , pp. 158-166

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10249
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10249

63

[8] D.Maruthanayagam, Dr. R.Uma Rani, (2011),”Improved Ant Colony Optimization

for Grid Scheduling” IJCSET, Vol. 1, Issue 10, pp. 596-604

[9] Rose Al Qasim, Taisir Eldos, (2013), “On The Performance of the Gravitational

Search Algorithm”, International Journal of Advanced Computer Science and

Applications (IJACSA), Vol.4, No. 8

[10] H.H. Hoos, T. Stutzle, (2000) “Max-Min Ant System”, Future Generation Computer

Systems, pp. 889-914

[11] Belabbas Yagoubi, Meriem Meddeber, Walid Kadri, (2011),”A Static Tasks

Assignment for Grid Computing”, IJACSA, Vol.4

[12] Hui Yan, Ming- Hui Wu, Xing Li, Xue-Qin, (2005), “An Improved Ant Algorithm

for Job Scheduling in Grid Computing”, International Conference on Machine

Learning and Cybernetics, Volume 5, pp. 2957-2961.

[13] Bhavik Kothari, Chittaranjan Hota, Sunita Bansal, (2011),” Dynamic Task-

Scheduling in Grid Computing using Prioritized Round Robin Algorithm”,

International Journals of Computer Science Issues, Vol.8, Issue 2

[14] Chun-Yan LIU, Cheng-Ming ZOU, Pei WU, (2014), “A task scheduling algorithm

based on genetic algorithm and ant colony optimization in cloud computing”, 13th

International Symposium on Distributed Computing and Applications to Business,

Engineering and Science.

[15] C. Blum, M. Dorigo, (2005), “Ant Colony Optimization Theory: A Survey”

Theoretical Computer Science, Volume 344, Issue 2-3, pp. 243-278.

[16] A. Rama Mohan Reddy, K. Sathish, (2013), “Maximizing Computational Profit in

Grid Resource Allocation using Dynamic Algorithm”, Global Journals of Computer

Science and Technology, Volume 13, Issue 2, Version 1.0

[17] Husna Jarnal Abdul Nasir, Ku. Mahamud, Ku. Ruhana, (2010), “Ant Colony

Algorithm for Job Scheduling in Grid Computing”, Fourth Asia International

Conference on Mathematical/Analytical Modelling and Computer Simulation, pp.

40-44.

64

[18] Ankur Kumar, Anuj Kumar, Rohit Saxena, Shailesh Saxena, (2015) “AHSWDG: An

Ant Based Heuristic Approach to Scheduling & Workload Distribution in

Computational Grids”, IEEE International Conference on Computational

Intelligence & Communication Technology, pp. 569-574.

[19] Babita Pandey, Harsh Bansal, Kewal Krishan, (2012) “Intelligent Methods for

Resource Allocation in Grid Computing”, International Journals of Computer

Applications (IJCA), Volume 47-No. 6.

[20] Abdul Hanan Abdullah, Chai Chompoo-inwai, Mohd Noor Sap, Siriluck

Lorpunmanee, (2007) “An Ant Colony Optimization for Dynamic Job Scheduling in

Grid Environment”, International Journals of Computer and Information

Engineering, pp. 469-476

III. Websites

 en.m.wikipedia.org/wiki/Grid_computing

 www.gridcomputing.com

 www.redbooks.com

