
Modern Programmimg Tools and
Techniques-I
DCAP501

MODERN PROGRAMMING TOOLS
AND TECHNIQUES I

Copyright © 2012 Lovely Professional University
All rights reserved

Printed by
EXCEL BOOKS PRIVATE LIMITED

A-45, Naraina, Phase-I,
New Delhi-110028

for
Lovely Professional University

Phagwara

SYLLABUS

Modern Programming Tools and Techniques I
Objectives: To learn the Java programming language fundamentals: its syntax, idioms, patterns, and styles. To learn object
oriented programming concepts. To learn the essentials of the Java class library.

Sr. No. Topics

1. Introduction to Java: Keywords, constants, variables and Data Types, Operators and

Expressions, Control constructs, Introducing classes, objects and methods: defining a class,

adding variables and methods, creating objects, constructors, class inheritance.

2. Arrays and String: Creating an array, one and two dimensional arrays, string array and

methods, Basics types, Classes and Objects: using super, Multilevel hierarchy abstract and final

classes

3. Arrays and String: Object class, Packages and interfaces, Access protection, Extending

Interfaces, packages. Nested Classes, Inner Class Example Enum Types.

4. Classes: String and String Buffer classes, Wrapper classes, Basics of Standard Java Packages

(lang, util)

5. Exception Handling: Fundamentals exception types, uncaught exceptions, throw, throw,

Final, built in exception.

6. Multithreaded Programming: Fundamentals, Java thread model: priorities, synchronization,

messaging, thread classes, Runnable interface, suspending, resuming and stopping threads.

7. Input/Output Programming: Basics, Streams, Byte and Character Stream, predefined

streams, Reading and writing from files. Using Random Access Files.

8. Applets and AWT controls: Meaning of Applet. AWT controls and Layout managers

9. Applets and AWT controls: handling Images and sound. Basics of Swing Components and

Layouts.

10. Event Handling: The Event Delegation Model, Event Classes

CONTENTS

Unit 1: Introduction to Java 1

Unit 2: Fundamentals of OOP 27

Unit 3: Control Structures 43

Unit 4: Arrays and Strings 63

Unit 5: Packages 81

Unit 6: Interfaces 97

Unit 7: Exception Handling 107

Unit 8: Multithreaded Programming I 125

Unit 9: Multithreaded Programming II 141

Unit 10: Input/output Programming 167

Unit 11: Introduction to Applets 191

Unit 12: Abstract Window Toolkit 203

Unit 13: Swings 221

Unit 14: Event Handling 251

Unit 1: Introduction to Java

LOVELY PROFESSIONAL UNIVERSITY 1

CONTENTS

Objectives

Introduction

1.1 Features of Java

1.2 Programming in Java

 1.2.1 Structure of a Java Program

 1.2.2 Compiling, Interpreting and Running the Program

1.3 Keywords

1.4 Constants

1.5 Variables

 1.5.1 Declaring and Initializing Variables

 1.5.2 Primitive Variables vs Reference Variables

1.6 Data Types

 1.6.1 Enum Types

1.7 Operators

 1.7.1 Arithmetic Operators

 1.7.2 Increment and Decrement Operators

 1.7.3 Relational Operators

 1.7.4 Logical Operators

 1.7.5 Conditional Operator ‘?:’

 1.7.6 Operator Precedence

1.8 Expressions

1.9 Summary

1.10 Keywords

1.11 Self Assessment

1.12 Review Questions

1.13 Further Readings

Unit 1: Introduction to Java

After studying this unit, you will be able to:

Objectives

• Describe the features of Java

• Explain the Java programming techniques

• List the keywords used in Java

• Discuss constants in Java

• Describe variables in Java

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

2

• Explain data types in Java

• Discuss operators in Java

• Describe expressions in Java

Sun Microsystems began the development of Java confidentially in 1991, which was later released to the
public in 1995. Java is comparatively a new and exciting technology. Interestingly, it was developed
with the aim of providing solutions for household appliances such as telephones. From there on, it has
developed into a fully functional programming language. Java can be integrated directly onto a Web
page as an applet (a Java program that can be included in an HTML page). This makes the Internet a
much more dynamic and interesting place to gather information, do business, or just have fun! In fact,
this dynamic aspect of Java is what initially sparked interest in many researchers and engineers and
therefore, resulted in its popularity.

Introduction

Did you Know?
Sun Microsystems originally wanted to name Java as “OAK”. But it could not do
so as that name was already taken by Oak Technologies. Other names that were
suggested were “Silk and “DNA”. Ultimately, the name “Java” was selected
because it gave the Web a “jolt”, and Sun intended to abstain from names that
sounded very technical.

Java is an important object-oriented programming language that is used in the software industry today.
Object Oriented Programming is also known as OOP. Objects are the basic elements of object-oriented
programming. OOPS (Object Oriented Programming System) is used to describe a computer
application that comprises multiple objects connected to each other. It is a type of programming
language in which the programmers not only define the data type of a data structure (files, arrays and
so on), but also define the behavior of the data structure. Therefore, data structure becomes an object,
which includes both data and functions.

Just like any other programming language, Java programs consist of some basic elements such as
keywords, constants, variables, data types, operators and expressions that help a programmer to create
logical programs, and some important features such as platform-independence which enables it to run
on any computer platform.

1.1
Let us understand Java better by understanding its important features. Following features of Java make
it an important programming language:

 Features of Java

1. Platform Independent

2.

: The write-once-run-anywhere approach towards programming is one of
the key features of Java that makes it a powerful programming language. The programs written on
one platform can run on any platform, irrespective of the hardware. But the hardware platform
used to execute Java programs must have the Java Virtual Machine (JVM).

Simple

3.

: There are various features that make Java a simple language, which can be easily learnt
and effectively used. Java does not use pointers explicitly, thereby making it easy to write and
debug programs. Java is capable of delivering a bug free system due to its strong memory
management. It also has an automatic memory allocation and de-allocation system in place.

Object Oriented

(a) Inheritance: It is the technique of creating new classes by making use of the behavior of the
existing classes. This is done by extending the behavior of the existing classes just by adding
additional features as required, thus bringing in reusability of existing code.

: To qualify as an object-oriented language, a language must exhibit four
characteristics:

(b) Encapsulation: It refers to the bundling of data along with the methods that act on that data.

Unit 1: Introduction to Java

LOVELY PROFESSIONAL UNIVERSITY 3

(c) Polymorphism: Polymorphism, which means one name multiple forms, is the ability of a
reference variable to change behavior according to the instance of the object that it holds.

(d) Dynamic binding: It is the method of providing maximum functionality to a program by
resolving the type of object at runtime.

Although the forerunners of Java, like Objective C and C++, fulfill the above four characteristics,
they are not completely object-oriented, because they follow structured programming as well as
object-oriented programming. However, Java is completely object-oriented since everything in
Java is an object.

4. Robust

5.

: Java supports some features such as automatic garbage collection, strong memory
allocation, powerful exception handling, and type checking mechanism. The compiler checks the
program for errors and the interpreter checks for any run time errors, thus preventing the system
crash. These features make Java robust.

Distributed

6.

: The protocols like HTTP and FTP, which are extensively used over the Internet are
developed using Java. Programmers who work on the Internet can call functions with the help of
these protocols and can secure access to the files that are present on any remote machine on the
Internet. This is made possible by writing codes on their local system itself.

Portable:

7.

 The feature ‘write-once run anywhere, anytime’ makes Java portable, provided that the
system has JVM. Java standardizes the data size, irrespective of the operating system or the
processor. These features make Java a portable language.

Dynamic:

8.

 A Java program also includes significant amount of runtime information that is used to
verify and resolve access to objects at runtime. This allows the code to link dynamically in a secure
and appropriate manner.

Secure:

9.

 Memory pointers are not explicitly used in Java. All programs in Java are run under Java
execution environment. Therefore, while downloading an applet program using the Internet, Java
does not allow any virus or other harmful code to access the system as it confines it to the Java
execution environment.

Performance:

10.

 In Java, a program is compiled into an intermediate representation, which is called
Java bytecode. This code can be executed on any system that has a JVM running on it. Earlier
attempts to achieve cross-platform operability accomplished it at the cost of performance. Java
bytecode is designed in such a manner that it is easy to directly translate the bytecode into the
native machine code by using a just-in-time compiler. This helps in achieving high performance.

Multithreaded:

11.

 The primary objective that led to the development of Java was to meet the real-
world requirement of creating interactive and networked programs. In order to accomplish this,
Java provides multithreaded programming, which permits a programmer to write programs that
can do many things simultaneously.

Interpreted:

12.

 Java programs can be directly run from the source code. The source code is read by
the interpreter program and translated into computations. The source code generated is platform
independent. As an interpreted language, Java has an error debugging facility that can trace any
error occurring in the program.

Architecture Neutral:

These features of Java have made it a popular programming language.

 Java is also known as an architectural neutral language. In this era of
networks, easy migration of applications to different computer systems having different hardware
architectures and/or operating systems is necessary. The Java compiler generates an object file
format that is architecture neutral. This permits a Java application to execute anywhere on the
network and on many different processors, given the presence of the Java runtime system.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

4

1.2
Any Java program starts with the class name and every class definition starts with an opening curly
brace ({) and ends with the corresponding curly brace (}). After the opening brace, the main line of the
program begins. For example:

public static void main (String args[])

This line defines the main method of the program. Then, the output line is added to the program.

 System.out.println (“Hello”);

This statement is used to print the output on the screen.

 Programming in Java

Program to print “Programming”.

Class ExampleProgram

{
 public static void main (String args[])
 {
 System.out.println(“I am a simple program”);
 }
}

Output:
I am a simple program.

In this example,

 (a) A class ExampleProgram is created using the keyword class.

 (b) In the class ExampleProgram, the main() method of the class is called,

 using the public static void main (String args[]) statement.

 (c) Then, in the main() method, System.out.println(“I am a simple

 program”); statement is used to print the output “I am a simple

 program” on the screen.

1.2.1 Structure of a Java Program
A Java program is divided into six sections, as given in the table 1.1.

Table 1.1: Structure of a Java Program

Comment Lines’ Section (Suggested Section)
Package Section (Optional Section)
Import Statements’ Section (Optional Section)
Interface Statements’ Section (Optional Section)
Class Definitions’ Section (Optional Section)
Main Method Class Section (Essential Section)

Unit 1: Introduction to Java

LOVELY PROFESSIONAL UNIVERSITY 5

1.

Let us understand the six sections of Java program in detail:

Comment Lines’ Section

2.

: This section consists of a collection of comment lines, which includes the
name, author and other details of the program.

Package Section

: This section consists of the first statement that is permitted in a Java file. This
first statement is called as the package statement. It gives the name of the package and provides
information to the compiler that all the classes defined in the respective program are related to this
package.

package employee;

In this statement, package is the keyword and employee is the package name.

3. Import Statements’ Section:

 This section consists of import statements, which can be used for
accessing the classes that are related to other packages.

package employee.salary;

In this statement, the interpreter is instructed to load the salary class that is
contained in the package employee.

4. Interface Statements’ Section:

5.

 This section consists of interface statements that are used only if the
multiple inheritance feature is to be implemented in the program.

Class Definitions’ Section:

6.

 This section consists of the definition of the classes used in a program.

Main Method Class Section:

After understanding the basic elements, that is, keywords, variables, constants, and data types, a
programmer can easily implement this structure while developing programs in Java.

 This section consists of the definition of the main method in the
program. The main method enables the creation of objects of different classes and the
communication between these objects.

1.2.2 Compiling, Interpreting and Running the Program
It is necessary to convert the program into a format that can be understood by the JVM, before any
computer with a JVM can interpret and run the program. The process of compiling a Java program
involves obtaining the programmer-readable text in the program file (source code) and translating it to
bytecode. Bytecode are nothing but the platform-independent instructions for the JVM.

After compiling and interpreting, a program is run. To run a program, follow the instructions given
below:

1. Go to command prompt.

2. Select the drive (and the folder) where the program file is saved.

3. Compile, Interpret, and Run the program.

To further understand these instructions, refer to the following example.

Type the following program and save it in a file with the name "FirstProgram.java"

class FirstProgram

{

 public static void main(String args[])

 {

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

6

 System.out.println("My first program in Java");
 }
}

In this example,

(a) A class FirstProgram is created using the class keyword.

(b) In the class FirstProgram, the main() method of the class is called.

(c) In this main() method, System.out.println("My first program in Java");
statement is used to print the output "My first program in Java" on the
screen.

The process to compile and run the above-given example is described in the following steps

1. In the command prompt, type the directory name, and the file name.

2. After this step is followed by the programmer, a file called as FirstProgram.class is created by the
compiler in the directory programs (check that it is there!). This class created by the compiler has
the program but in bytecode form, which is ready to run. Run the program as given in the
example below.

c:\jdk\programs>javac FirstProgram.java

Here, c:\ is the drive, wherein jdk directory is stored. The ‘programs’ is the
directory, where the program which is to be run is saved with the name
FirstProgram.java.

C:\jdk\programs > java FirstProgram

The output of this program is:

My first program in Java

These steps, if followed properly, will give the desired output to the user.

Compilation
At the command line on UNIX and DOS shell operating systems, the Java compiler for the example
provided in section 1.2 is invoked as follows:

javac ExampleProgram.java

Here, javac is the command and ExampleProgram.java is the name of the class (or program file).

In Java, the class name and the file name must be the same. Also, since Java is case
sensitive, one should always provide same case letters for both file name and class
name.

Once the program is successfully compiled into Java bytecode, it is ready to be interpreted and run on
any JVM. Interpreting and running of a Java program involves invoking the JVM bytecode interpreter.
It transforms the Java bytecode to platform-dependent machine codes so the computer can understand
and run the program.

Unit 1: Introduction to Java

LOVELY PROFESSIONAL UNIVERSITY 7

Interpretation
At the command line on UNIX and DOS shell operating systems, the Java interpreter is invoked as
follows:

java ExampleProgram

Running
At the command line, you should see the output that is given within the System.out.println statement in
the program.

I am a simple program

Write a simple Java program to print “Java”.

1.3
Keywords are predefined identifiers set aside by Java for a particular purpose. These keywords cannot
be used as names for variables, classes, methods or as identifiers or tokens. All keywords must be
written in lowercase letters. At present, there are fifty defined keywords in the Java language. Table 1.2
gives a list of the Java keywords.

 Keywords

Table 1.2: Keywords in Java

abstract Continue assert default Boolean

do Double byte else case

enum Catch extends char final

class Finally const float for

goto If implements import instanceof

int Interface long native new

package Private protected public return

short Static strictfp super switch

synchronized This throw throws transient

try Void volatile break while

The keywords in Java have a predefined meaning and they perform distinct functions. Some of the
keywords and their functions are listed below:

1. abstract

2.

: This Java keyword is used for declaring a method without providing that method’s
implementation, in a method declaration.

assert

3.

: This Java keyword is used for making a condition’s assumed value explicit.

boolean: This Java keyword is used for relating to an expression or variable, which can have only
either a true or false value.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

8

4. break

5.

: This Java keyword is used to restart the execution of a program at the statement that is just
after the current enclosing block or statement. In case this keyword has a label just after it, the
program restarts execution at the statement just after the enclosing labeled statement or block.

byte

6.

: This Java keyword is an 8-bit integer. It is used for declaring the value that a method will
return, an expression, or variable of type byte.

case

7.

: This Java keyword is used for defining a set of statements. This keyword is generally used
with the switch statement.

catch

8.

: This Java keyword is used for handling the exceptions occurring in a program above try
keyword.

char

9.

: This Java keyword is used for declaring an expression, value that a method will return, or
variable of type character.

class

10.

: This Java keyword is used for defining the implementation of an object of a particular kind.

continue

11.

: This Java keyword is used for continuing the program at the end of the body of the
current loop.

default

12.

: This Java keyword is used for defining a set of statements to begin the execution. This is to
be used in case no suitable match is found for the value that is defined by the enclosing switch
statement, among the values indicated by a case keyword in the switch statement.

do

13.

: This Java keyword is used for declaring a loop that will repeat a block of statements. The exit
condition of this loop is indicated with the while keyword. The loop’s execution will happen once,
before the evaluation of the exit condition.

double

14.

: This Java keyword is a 64-bit floating point value. This keyword is used for declaring an
expression, the value a method will return, or variable that is of type double-precision floating
point.

else

15.

: This Java keyword is used for testing the condition. If the test condition indicated by the if
keyword evaluates to false, a statement or block of statements are executed. The else keyword is
used for defining such statement or block of statements.

enum

16.

: This Java keyword is used for declaring an enumerated type.

extends

17.

: This Java keyword is used for specifying the super class in a class declaration, and also for
specifying one or more super interfaces in the declaration of an interface.

final

To know the functions of other keywords, refer http://en.wikipedia.org/wiki/List_of_Java_keywords

or http://www.cafeaulait.org/course/week2/09.html

: This Java keyword is used for defining an entity once, which cannot be changed or derived
later. Also, no class can be inherited from a final class, and all methods defined in a final class are
completely final.

Java supports some reserved words such as true, false, and null. As these are reserved
words, not keywords, they cannot be used as names for programs.

1.4
Unlike keywords that are predefined and kept aside by Java for special purpose, constants are values
that do not change during the program execution. The keyword final is used to declare the constants.

 Constants

Unit 1: Introduction to Java

LOVELY PROFESSIONAL UNIVERSITY 9

Two types of constants are provided by Java, as shown in the figure 1.1.

Figure 1.1: Types of Constants

Numeric Constants
Numeric constants refers to just the numbers used in a program. There are two types of numeric
constants:

1. Integer Constants

(a) Decimal Integer Constant: This type of integer constant comprises a collection of digits, 0
through 9, which may or may not have a minus sign before them. For example, 132, -312, 0,
54321. Spaces in between the numbers, commas, and non-digit characters are not allowed
between digits.

: Integer numeric constants consist of digits 0 through 9, which may be written
with or without a + or – sign. These constants do not contain decimal values. Integer constants can
be classified into three types:

14 250, 10,000, $500- are unacceptable numbers in Java.

(b) Octal Integer Constant: This type of integer constant comprises a combination of digits, from
the digits 0 through 7. Every such combination must be preceded by a 0.

032, 0, 0534, 0451 are octal integer constants.

(c) Hexadecimal Integer Constant: This type of integer constant has a 0x or 0X before a set of digits.
This set may also comprise alphabets, A through F, or a through f, which represents the
numbers 10 through 15.

0X3, 0x8f, 0x are hexadecimal integer constants.

 Octal and hexadecimal numbers are rarely used in programming languages.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

10

2. Real Constants

: Real numeric constants are the constants that are used for representing the
quantities that differ continuously such as temperatures, heights, distances, prices, and so on. Such
constants contain fractional parts.

0.082, -0.65, 42.31 are real numeric constants.

 It is also possible that there are no digits before the decimal point or no digits after the decimal
points.

Character Constants
Character constants refer to those constants that contain either single character or in the form of a string
of characters. We can classify character constants into the following three types:

1. Single Character Constants: Single character constant, also called as character constants, consist of
a single character that is enclosed within a pair of single quotation marks.

‘6’, ‘ ‘, ‘B’ are single character constants.

2. String Constants: String constants refer to those character constants where a series of characters
are enclosed within a pair of double quotation marks. These characters may be alphabets, digits,
blank spaces, or special characters.

“Hello World”, “1991”, “2+1”, “X” are string constants.

3. Backslash Character Constants

: Backslash constants are those character constants that are used in
the output methods. Table 1.3 shows a list of backslash character constants.

Table 1.3: Backslash Character Constants

Backslash Character
Constant

Meaning

‘\n’ New line
‘\\’ Backslash
‘\f’ Form feed
‘\b’ Back space
‘\r’ Carriage return
‘\t’ Horizontal tab
‘\’’ Single quote
‘\”’ Double quote

In table 1.3, every backslash character constant consists of two characters, but represents only one
character. Such character combinations are also referred to as escape sequences.

1.5
Just like constants, variables also play an important role in programming languages. In Java, a variable
is the basic storage unit, which stores the states of objects. A variable has a name and data type, where
the data type specifies the type of value that the variable can hold.

 Variables

1.5.1 Declaring and Initializing Variables
Before using a variable in a program, it must be declared first. Declaration involves specifying the data
type of the variable. Initializing is the process of assigning value to the variable. The value must be
compatible with the variable’s data type.

Unit 1: Introduction to Java

LOVELY PROFESSIONAL UNIVERSITY 11

The declaration of a variable is as follows:

<data type> <identifier> [= value] [, identifier[= value]….];

Here, values enclosed in < > are required values, while values enclosed in [] are optional.

A variable name may comprise digits, alphabets, dollar characters, and underscore (_), provided the
following conditions are satisfied:

1. Do not begin a variable name with a digit.

2. Use uppercase and lowercase appropriately, as they are different. For example, Sum is not similar
to sum or SUM.

3. Do not use keywords as a variable name.

4. Do not provide white spacing in between the variable name.

1.5.2 Primitive Variables vs Reference Variables
There are two types of variables in Java, namely, reference variables and primitive variables. They differ
in meaning and in function.

Primitive variables are variables with primitive data types. They store data in the actual memory
location where the variable is, whereas reference variables are variables that store the address in the
memory location. They point to the memory location where the data is actually present.

While comparing primitive variables, the actual values are compared, but while comparing reference
variables, the addresses are compared.

When a variable of a certain class is being declared, a reference variable to the object with that particular
class is actually being declared.

Suppose there are two variables with data type int and String.

 int num = 10;

 String name = "Hello";

Let the memory location of the variable num be 1001 and the memory location of
variable name be 1563. But, the data at the memory location 1563 points to another
address where the data of the variable is actually stored.

For the primitive variable num, the data is on the actual location of where the
variable is. For the reference variable name, the variable just holds the address of
the location where the actual data is present.

1.6
In any programming language, whether it is Java or C++ or any other programming language, a data
type is said to be a collection of data having values with predefined characteristics. For example,
integer, floating point number, and character string are data types.

In Java, every variable has a data type associated with it. Data types indicate the type and the size of
values that can be stored in that variable.

 Data Types

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

12

In Java, data types can be categorized into two types, as given in figure 1.2.

Figure 1.2: Data Types in Java

Primitive Data Types (Built-in Data Types)
Generally, few data types come in-built in a programming language. The range of values for a given
data type is described by the language itself. The way in which the values are processed and stored by
the computer is also specified by the language. Primitive data types are used to categorically store
information or data that may or may not be interchangeable, and that is built-in. They are predefined by
Java and are named by a reserved keyword. Each class is also considered to have its own data type (a
class also acts as a data type).

We can classify primitive data types into two types:

1. Numeric data types

2. Non-numeric data types

Numeric Data Types
Data types that contain numbers only, are called as numeric data types. These data types are of two
types:

1. Integer Data Types

: Data types that hold numbers, such as, 122, -92, and 4639, are called as integer
data types. In Java, there are four types of integers, namely, byte, short, int, and long.

Unit 1: Introduction to Java

LOVELY PROFESSIONAL UNIVERSITY 13

Table 1.4 shows the size and range of these integer types.

Table 1.4: Integer Types and their Ranges

Name or Type Range Integer Length

byte -128 to 127 8 bits

short -32,768 to 32,767 16 bits

int -2,147,483,648 to 2,147,483,647 32 bits

long -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 64 bits

The ranges given in the table 1.4 for different integral types help a programmer to limit the size of
the variable and use the appropriate data type for the variables.

2. Floating Point Data Types

(a) F or f -- float

: Data types that are used to hold the fractional parts are called as
floating point data types. There are two types of floating point data types, namely, float, and
double. Floating point types have double as default data type. A floating-point literal has either a
decimal point or one of the following:

(b) D or d – double

(c) E or e -- add exponential value

8.14 -- A simple floating-point value (a double)

5.02E24 -- A large floating-point value

6.718F -- A simple float size value

523.4E+306D -- A large double value with redundant D

In these examples, the 24 after the E in the second example is implicitly positive.
That example is equivalent to 5.02E+24.

Table 1.5 shows the size and range for the floating-point data types.

Table 1.5: Floating Point Types and their Ranges

Name or Type Range Float Length

Float 1.4e-045 to 3.4e+038 32 bits

Double -4.9e-324 to 1.8e+308 64 bits

The ranges given in the table 1.5 for different floating point types help a programmer to limit the size of
the variable and use the appropriate data type for the variables.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

14

Non-numeric Data Types
Data types that are not numeric in nature are called as non-numeric data types. There are two types of
non-numeric data types:

1. Character Data Type

2.

: Character data type is called as char, which is used for storing the character
constants in the memory.

Boolean Data Type

Non-primitive Data Types
Non-primitive data types are those data types that are not in-built and are user–defined. These data
types are also called as derived data types. We can classify these data types into the following three
types:

Classes

A class is a user-defined data type that defines the basic components of a Java program called objects.
The creation of these objects is done by the classes and communication between these objects is done
using the methods (objects use methods).

Interface

An interface is basically a type of class, which consists of methods and variables, but defines only the
abstract methods and the final fields. As there is no concept of multiple inheritance in Java, interfaces
are used to support the concept of multiple inheritance in Java.

Arrays

An array is a collection of data items that are related or contiguous and share a common name, which is
followed by a number called as index number.

: Boolean data type is used whenever any particular condition is to be tested at
the time of program execution. Boolean data type can take only two values, either true or false.
This data type is denoted by the keyword Boolean.

In salary[10], salary is the array name, and 10 is the index number.

1.6.1 Enum Types
An enum type or an enumerated type refers to a type whose fields comprise a fixed set of constants.

Days of week, Planets in solar system contains fixed set of constants.

The following example shows how to declare an enum type.

enum Week

{

 // enum constants

 MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY,
 SUNDAY
}

The keyword enum indicates that the declaration is in an enumeration type. The fields of enum need to
be given in capital letters.

Unit 1: Introduction to Java

LOVELY PROFESSIONAL UNIVERSITY 15

1.7
In real time, programs are required to perform a lot more than just simple input and output operations.
All computer languages provide tools to perform some predefined operations. To facilitate this, there
are different types of operators provided in Java. These are arithmetic operators, relational operators,
logical operators and conditional operators. These operators are assigned a certain kind of precedence,
so that the compiler evaluates the operations on the basis of their precedence. This helps when there are
multiple operators in one statement.

 Operators

1.7.1 Arithmetic Operators
Like the mathematical expressions used in algebra, Java also allows the use of arithmetic operators to be
used in mathematical expressions.

Table 1.6 shows the basic arithmetic operators that can be used while writing Java programs.

Table 1.6: Arithmetic Operators and their Functions

Operator Use Description

+ op1 + op2 Adds op1 to op2

* op1 * op2 Multiplies op1 to op2

/ op1 / op2 Divides op1 by op2

% op1 % op2 Computes the remainder after division of op1 by op2

- op1 - op2 Subtracts op2 from op1

The operations performed by the arithmetic operators shown in the table 1.6 are the same as that of the
mathematical operators.

1.7.2 Increment and Decrement Operators
In addition to the basic arithmetic operators, Java also includes a unary increment operator (++) and
unary decrement operator (--). The function of increment and decrement operators is to increase and
decrease a value stored in a number variable by 1 respectively.

For example, the expression count = count + 1; increments the value of count by 1. This is equivalent to,
count++.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

16

The increment and decrement operators can precede the operand or follow the operand as shown in
table 1.7.

Table 1.7: Increment and Decrement Operators

Operator Use Description

++ op++ Increments op by 1; evaluates to the value of op before it is
incremented

++ ++op Increments op by 1; evaluates to the value of op after it is
incremented

-- op-- Decrements op by 1; evaluates to the value of op before it is
decremented

-- --op Decrements op by 1; evaluates to the value of op after it is
decremented

When used before the operand, it increments or decrements the variable by 1, and then the new value is
used in the expression in which it appears.

int i = 15,

int j = 4;

int k = 0;

k = ++j + i; //will result to k = 5+15 = 20

When the increment and decrement operators are used after the operand, the old value of the variable
will be used in the expression, where it appears first. The next subsequent appearance of the variable
will have the incremented value.

int i = 15,

int j = 4;

int k = 0;

k = j++ + i; //will result in k = 4+15 = 19

1.7.3 Relational Operators
Relational operators compare two or more values and determine the relationship between those values.
These operators actually determine equality and ordering. The result of evaluation is the Boolean value
true or false.

Unit 1: Introduction to Java

LOVELY PROFESSIONAL UNIVERSITY 17

Table 1.8 shows the list of relational operators used in Java.

Table 1.8: Relational Operators

Operator Use Description

> op1 > op2 op1 is greater-than op2

>= op1 >= op2 op1 is greater-than or equal to op2

< op1 < op2 op1 is less than op2

<= op1 <= op2 op1 is less than or equal to op2

== op1 == op2 op1 is equal to op2

!= op1 != op2 op1 is not equal to op2

The operations performed by the relational operators such as less-than, equal-to, greater-than and so on
are shown in table 1.8. They are the same as the mathematical relational operators.

1.7.4 Logical Operators
Java also has logical operators, which act on one or two Boolean operands yielding a Boolean result.
There are six logical operators, && (short-circuit AND), & (logical AND), || (short-circuit OR), |
(logical inclusive OR), ^ (logical exclusive OR), and ! (logical NOT).

The basic syntax for a logical operation is:

a <operator> b

In the above syntax, a and b can be Boolean expressions, variables or constants and <operator> is either
&&, &, ||, | or ^ operator.

&& (short-circuit AND) and & (logical AND)
Table 1.9 gives the truth table for logical operators && and & for all the possible combinations of a and
b. A truth table is a dissection of a logical function which lists all possible values that the function can
attain. A truth table consists of many rows and columns where the top row represents the logical
variables and combinations, leading up to the final result.

Table 1.9: Truth Table for & and &&

a b Result

TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE FALSE

FALSE FALSE FALSE

Table 1.9 gives the logic identity of the logic values (a and b here).

There is a main difference between && and & operators, which states that && assists short-circuit
evaluations (or partial evaluations), while & does not.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

18

Given an expression:

 test1 && test2

In this expression, && will evaluate the expression test1 and immediately return a
false value, if test1 is false. This is because, the operator never evaluates test2, as
the result of the operator will be false, regardless of the value of test2. In contrast,
& operator always evaluates both test1 and test2 before returning an answer.

|| (short-circuit OR) and | (logical inclusive OR)
Table 1.10 gives the truth table for logical operators || and | for all the possible combinations of a and
b.

Table 1.10: Truth Table for | and ||

a b Result

TRUE TRUE TRUE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

Table 1.10 gives the logical values for the logical variables a and b, by performing ‘or’ logical operation.

The basic difference between || and | operators is that || supports short-circuit evaluations, while |
does not.

Given an expression:

 test1 || test2

In this expression, || will evaluate the expression test1 and immediately return
a true value if test1 is true. If test1 is true, the operator never evaluates test2,
because the result of the operator will be true, regardless of the value of test2. In
contrast, the | operator always evaluates both test1 and test2 before returning
an answer.

Unit 1: Introduction to Java

LOVELY PROFESSIONAL UNIVERSITY 19

^ (logical exclusive OR)
Table 1.11 gives the truth table for ^ for all the possible combinations of a and b.

Table 1.11: Truth Table for ^

a b Result

TRUE TRUE FALSE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

Table 1.11 gives the logical values for the logical variables a and b by performing ‘XOR’ logical
operation. In ‘XOR’ logical operation, if one operand is true and the other is false, then only the final
result of an exclusive OR (XOR) operation is true. Note that both operands must always be evaluated in
order to determine the result of an exclusive OR.

! (logical NOT)
The logical NOT, another logical operator, takes in one argument. This argument can be an expression,
variable or constant. Table 1.12 gives the truth table for !.

Table 1.12: Truth Table for !

a Result

TRUE FALSE

FALSE TRUE

Table 1.12 gives the logical value for the variable a by performing logical ‘NOT’ operation. This operator
is used by the programmer to reverse the value of a Boolean expression or Boolean condition.

If a is false, !b

 is true.

1.7.5 Conditional Operator ‘?:’
The conditional operator ?: is a ternary (three-way) operator. It takes three arguments that together
form a conditional expression. The syntax for an expression using a conditional operator is:

expression1? expression2: expression3

In the above syntax, expression1 is a Boolean expression whose result must either be true or false. If
expression1 is true, expression2 is the value returned. If it is false, then expression3 is returned.

1.7.6 Operator Precedence
Java operator precedence determines the precedence of operators, that is, which operator has to be
evaluated first. Just like operator precedence in algebra, Java operator precedence defines the order in
which various operators are evaluated.

Operator precedence gives the compiler’s order of evaluation of operators so as to achieve
unambiguous result. Sensible use of parenthesis (operator precedence) can make the programs easy to
read, even if the expressions are complicated. Use of parentheses also raises the precedence of the

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

20

operator of the operations that are inside those parentheses. This is often necessary to obtain the desired
result.

Table 1.13 shows the precedence of operators, where first row shows the highest precedence and last
row the lowest precedence.

Table 1.13: Operator Precedence

Highest

() [] .

++ -- ~ !

* / %

+ -

>> >>> <<

> >= < <=

== !=

&

^

|

&&

||

?:

= op=

Lowest

Consider a complicated expression:

 6%2*5+4/2+88-10

It can be re-written by placing some parenthesis based on operator precedence, as:

 ((6%2)*5)+(4/2)+88-10

Operators are used for the manipulation of primitive data types. In Java, we can categorize operators as
unary (taking one argument), binary (taking two arguments), or ternary (taking three arguments). In
Java, the use of operators enables a programmer to evaluate mathematical functions. The operator
precedence defined in Java also helps to clearly express mathematical functions and expressions.

1.8
Like operators, expressions are also an important element of programming. An expression is said to be
a piece of program code, which is used for representing or computing a value. An expression can be in
the form of a literal, a variable, a function call, or many of these things integrated together with the help
of operators such as + and >. The user can assign the expression value to a variable, use it as a
parameter in a subroutine call, or combine it with other values into an expression that is more complex.

In Java, expression has an important type, that is, arithmetic expression. When variables, constants, and
operators are combined, according to the syntax of the programming language (here, Java), an
arithmetic expression is formed.

 Expressions

Unit 1: Introduction to Java

LOVELY PROFESSIONAL UNIVERSITY 21

Java does not support any operator for exponentiation.

The user can evaluate expressions with the help of an assignment statement of the following syntax:

variable = expression;

In this syntax, variable states any valid name of a variable in Java. While evaluating any statement, the
evaluation of the expression is done first and then the previous value of the variable that is on the left-
hand side (in the syntax) is replaced by the result of this evaluation. Before the evaluation of the
expression, ensure that all the variables that are used in the expression are given values. A sample of
evaluation statement is:

 x = a/b*c;

In this sample, the variables x, a, b, and c that are used must be defined before their usage in the
expression.

If an arithmetic expression is without parentheses, its evaluation will start from left and move towards
right using the rules of the operators’ precedence. In Java, arithmetic operators have two different
priority levels:

1. High priority: * / %

2. Low priority: + -

The basic evaluation is done in two steps:

1. In the first step, the operators that are of high priority (if any) are applied whenever encountered.

2. In the second step, the operators that are of low priority (if any) are applied whenever
encountered.

Expressions Having Type Conversion
In any Java expression, the user can mix two or more distinct types of data as long as they are congruent
with each other. During evaluation of the expression, rules of type conversion must be adhered to. If
two different operands are used in an expression, automatic conversion of the lower type to the higher
type takes place before the evaluation.

If three variables of type byte, short, and int, are used in an expression, the
result is always converted to int.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

22

Table 1.14 shows the reference chart for type conversion.

Table 1.14: Automatic Type Conversion Chart

 char byte short int long float double

char int Int int int long float double

byte int Int int int long float double

short int Int int int long float double

int int Int int int long float double

long long long long long long float double

float float float float float float float double

double double double double double double double double

After the evaluation of expression, first the conversion of the result to the variable type, which exists on
the left-side of the operator sign is done, then the value is assigned to it.

Value Casting
Apart from automatic type conversions, there is one concept related to type conversion, which is casting
a value (value casting). Sometimes, a type conversion needs to be forced in a way that is different from
the automatic conversion.

Calculation of the ratio of girls to boys in a city, where the number of girls and
boys are declared as integers.

 ratio = girls_number/boys_number

As the number of girls and boys are already defined as integers, the fractional part
or the decimal part of the calculated result, or ratio, will not be visible. Thus,
correct figure will not be presented in ratio. User can solve this problem by
converting locally any one of the two given variables to float as given below:

ratio = (float) girls_number/boys_number

The girls_number is converted to floating point by using the (float) operator for
evaluating the expression. Thereafter, the automatic conversion rule is used to
perform the division operation in floating point mode. Thus, the fractional part is
also retained in the result. The (float) operator does not affect the value of the
variable girls_number and the type int of girls_number will remain same in the
other parts of the program.

This process of local conversion of a value is called as value casting.

Unit 1: Introduction to Java

LOVELY PROFESSIONAL UNIVERSITY 23

Success Story of University of Alabama Birmingham Medical
Center (UABMC)

any medical institutions depend on film-based medical images for diagnosis. One such
institution is the University of Alabama Birmingham Medical Center (UABMC). The
process that is used (film-based images) is completely manual, but inefficient and costly.

This system is inefficient and costly because of the printing costs, proper film storage costs, time that
is lost in waiting for film delivery, and re-imaging patients due to lost films. To enhance the patient
care and remove these unessential costs, UABMC made a decision. The decision was to become a "film
optional" medical center using digital medical images. Dr. Bart Guthrie, associate professor of
Neurosurgery at UABMC said, "The computer-assisted surgery needs made it necessary that we
evolve the capability for electronic image capture and distribution. Afterwards, we felt that the
delivery of care for any specialty is improved by the immediate access to medical images, not just
Neurosurgery. Now, an electronic Clinical Image Management System (CIMS) is evolved, which
makes the care provider able to make decisions that are active and informed and is altering the way
we work, by opening up new channels of answer and care. We enhance patient care and reduce costs
by shifting to the digital care." We enhance patient care and reduce costs by shifting to the digital
care."

To attain the medical images to the care-point, UABMC and ComFrame, a consulting company that
specializes in Java technology consulting and healthcare products, created an application based on the
Java platform. This application permits physicians and clinicians to see medical images on any
desktop anywhere in the medical center. By using the Java technology, this application can fetch
DICOM images from a collection that is based on the name of the patient, medical record number of
the patient, or type and date range, and shifts those images to a desktop Java software-based
application that permits the clinicians to see and maneuver the images. The enhanced imaging and
performance capabilities of the Java platform were important to build an effective application and to
assist physicians and clinicians to offer faster and better patient care.

"We used Java technology for this application for meeting some needs and specifications," says Dr.
Guthrie. "For becoming effective, we had to meet the requirements of clients using MACs, Windows,
and various distinct UNIX platforms. The application users demand high with respect to performance
requirements that we are working hard to meet on all platforms."

Dr. Gary York of ComFrame agreed and said "Java is a wonderful object-oriented platform; it
permitted us to develop a strong, scalable answer instantly with a small team and the enhancements
of the Java platform really gave energy to this application. For example, we required the enhanced
image maneuver capabilities of the Java API (Application Programming Interface – Interface used to
access an application or service from a program). As medical images are large and complicated and
with JDK 1.1.6 (Java Development Kit – Software development environment of Java), some images
maneuver operations on the client took seconds. With the Java platform, we have decreased the
maneuver time to sub-seconds - essentially real time with the new fast indexed color models. We also
use Java threads on the client for making the anticipated performance higher, as a result of which the
visual feedback is immediate. This upgrade of the performance is acknowledged by the physicians
who rely on this application for quick decision making. Many Java components were used to write the
application, so we value that these Java components are a part of Java platform's core APIs."

This electronic image management process is now used by over 120 physicians and clinicians, and
UABMC finally plans to offer access for up to 1000 users. The UABMC will achieve this target, in part
by evolving a Web-based applet version of the application to target users such as general
practitioners, who use imaging as an integrated part of their work only occasionally.

Questions

1. What is the purpose of the application developed by UABMC and ComFrame?

2. Why was only Java technology used to create this application?

M

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

24

1.9
• Java was developed by Sun Microsystems initially to offer solutions for household appliances. But,

finally it evolved as a fully functional programming language.

 Summary

• Java has many features such as platform-independence, simplicity, object-oriented capability,
portability, and so on that differentiates it from other programming languages and makes it
important.

• Structure of a Java program consists of comment lines’ section, package section, import
statements’ section, interface statements’ section, class definitions’ section, and main method class
section.

• All Java keywords have predefined meanings and distinct functions. They must be written in
lowercase letters.

• Constants refer to the values that do not change during the program execution.

• Constants are of two types, namely, numeric constants (integer constants, real constants) and
character constants (single character constants, string constants and backslash character constants).

• A variable is the basic storage unit used for storing the states of objects, which has a name and
data type.

• Every variable has a data type associated with it, which indicate the type and the size of values
that can be stored in that variable.

• Data types are of two types – primitive and non-primitive data types. Primitive data types are in-
built in any programming language and are used for categorically storing information or data that
may or may not be interchangeable. Non-primitive data types are defined by the user.

• In Java, operators such as arithmetic operators, relational operators, logical operators, and
conditional operators are used to perform some predefined operations.

• An expression is said to be a piece of program code used for representing or computing a value,
which can be in the form of a literal, a variable, a function call, or many of these things integrated
together with the help of operators such as + and >.

• As per the rule of type conversion, in case two distinct operands are used in an expression,
automatic conversion of the ‘lower’ type to the ‘higher’ type takes place before the evaluation.

1.10 Keywords
FTP: File Transfer Protocol

HTTP: Hyper Text Transfer Protocol. A networking protocol for collaborating, distributed, hypermedia
information systems developed by the Internet Engineering Task Force and the World Wide Web
consortium.

OOP: Object Oriented Programming

Operators’ Precedence:

1.11
 Order in which the operators are executed during expression evaluation

1. State whether the following statements are true or false:

 Self Assessment

(a) OOP is a type of programming language in which the programmers define the data type of
a data structure and the behavior of the data structure.

(b) OOPS is used to describe a computer application that does not comprise multiple objects that
are connected to each other.

(c) Inheritance is the technique of creating new classes by making use of the behavior of the
existing classes.

Unit 1: Introduction to Java

LOVELY PROFESSIONAL UNIVERSITY 25

(d) The feature ‘write-once run anywhere, anytime’ makes Java portable, without any other
requirement on any system.

(e) The break keyword is used to restart the execution of the program at the statement that is just
after the current enclosing block or statement.

(f) String constants are those character constants, which are used in the output methods.

(g) An array is a collection of data items that are related or contiguous and share a common
name, which is followed by a number called as index number.

(h) Relational operators actually determine equality and ordering.

(i) Decision control structures are Java statements that allow a programmer to select and execute
specific blocks of code while bypassing other sections.

(j) The constructor’s name and name of the class in which it is created are same.

2. Fill in the blanks:

(a) _______________ is the mechanism that enables us to combine the information and provide
abstraction.

(b) All keywords must be written in _____________ letters.

(c) The keyword _______ is used to declare the constants.

(d) While comparing primitive variables, the actual values are compared, but while comparing
reference variables, the ___________ are compared.

(e) ___________ data types are used to categorically store information or data that may or may
not be interchangeable, and that is built-in.

(f) When variables, constants, and operators that are arranged according to the syntax of the
programming language are combined, an _____________ ____________ is formed.

1.12
1. Analyze different features of Java, which has made Java an important programming language.

 Review Questions

2. “Structure of a Java program consists of six sections.” Justify.

3. “Keywords are predefined identifiers set aside by Java for a particular purpose, which cannot be
used as names for variables, classes or methods.” Discuss.

4. “Constant refers to the values that do not change throughout the program.” Discuss with the help
of its types.

5. “Declaration of a variable involves specifying the data type of the variable.” Discuss.

6. “Primitive variables and reference variables are different from each other.” Justify.

7. “In every Java program, different types of data are used.” Elaborate.

8. “All computer languages provide tools to perform some predefined operations.” What are these
tools and what are their types?

9. “Value casting is an important concept used in Java”. Elaborate.

10. “An interface is a type of class.” Comment.

11. “Increment and decrement operators are used to increment or decrement values.” Elaborate.

12. “To run a program in Java, the user can use command prompt.” Discuss.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

26

Answers: Self Assessment
1. (a) True (b) False (c) True (d) False (e) True

 (f) False (g) True (h) True (i) True (j) True

2. (a) Encapsulation (b) Lowercase (c) Final

 (d) Addresses (e) Primitive (f) Arithmetic Expression

1.13

 Further Readings

 Balagurusamy E. Programming with Java_A Primer 3e. New Delhi

 Schildt. H. Java 2 The Complete Reference, 5th ed. New York: McGraw-Hill/Osborne.

 www.roseindia.net/java/java-introduction/java-features.shtml

 www.tech-faq.com/java-data-types.html - United States

 http://java.sun.com/j2se/press/bama.html

Unit 2: Fundamentals of OOP

LOVELY PROFESSIONAL UNIVERSITY 27

CONTENTS

Objectives

Introduction

2.1 Introduction to Classes, Objects, and Methods

 2.1.1 Defining a Class

 2.1.2 Creating Objects

 2.1.3 Object Class

 2.1.4 Introducing Nested and Inner Classes

 2.1.5 Wrapper Class

 2.1.6 Abstract Class

 2.1.7 Final Class

 2.1.8 Using Super Class

 2.1.9 Adding Variables and Methods to a Class

2.2 Constructors

2.3 Class Inheritance

 2.3.1 Simple Inheritance

 2.3.2 Multi-level Inheritance

2.4 Summary

2.5 Keywords

2.6 Self Assessment

2.7 Review Questions

2.8 Further Readings

Unit 2: Fundamentals of OOP

After studying this unit, you will be able to:

Objectives

• Define classes, objects and methods

• Explain class inheritance

• Describe constructors

OOP (Object Oriented Programming) is a popular programming style that is chosen by almost all the
software companies. OOP, also commonly referred as OOPs, is a modern method of organizing and
developing programs. It is not necessary that every language supports the OOP concepts. Some of the
programming languages that support OOP concepts are C++, Smalltalk, Object Pascal, and Java, which
is purely object oriented. In OOP, data is a crucial element in the process of program development and
is not permitted to be used freely in the system. Unlike procedural programming, in the OOP
programming model, programs are organized around objects and data rather than actions and logic.

Introduction

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

28

Java is an object oriented programming language and therefore to understand the functionality of OOP
in Java, we first need to understand several fundamentals related to objects. These include class,
method, objects and so on.

OOP is based on classes and objects. A class is said to be a collection of objects with common behavior
(set of actions that can be performed by an object). In OOP, a problem is divided into a number of
entities, which are called as objects.

2.1 Introduction to Classes, Objects and Methods

Suppose a program is written for calculating the number of accounts in a bank. In
this program, bank can be a class, and customer and account can be two objects of
that class.

After this division, data and methods are created around these methods, as given in the figure 2.1.

Figure 2.1: Composition of an Object

A method is declared within the body of a class, and it operates on data. An object is equal to the
combination of data and methods. An object’s data is accessible only by the methods that are related to
that object.

2.1.1 Defining a Class
In object oriented programming, there is a basic structure named as a class, which is a blueprint or a
template from which objects are created. A class is a framework, which represents a general object. An
instance of a class represents an individual object. The object defines the behaviors and properties of
the class. A class contains properties and methods.

Structure of a Class
Classes contain the following three parts:

1. Class Definition:

2.

 A class is defined using the keyword class, which is followed by the name of the
class.

Instance and Class Variables’ Definition:

3.

After defining the class, variables to be used in the
program are defined (within the curly braces).

Methods’ Definition:

General Syntax of a Class

class Classname

{

Variables’ definition;

 Methods’ definition;

 }

 After defining the variables, methods (if any) to be used in the program are
defined.

Unit 2: Fundamentals of OOP

LOVELY PROFESSIONAL UNIVERSITY 29

Program to illustrate the method used to define a class.

public class MyPoint

{

public int a = 2;

public int b = 4;

void displayPoint()

{

 System.out.println (“Printing the point”);

 System.out.println (a + “ “ + b);

}

}

 In this example,

1. First, a class MyPoint is created and is declared as public.

2. In this class,

(a) Two integer variables a and b are declared, and assigned the values 2
and 4 respectively. The public keyword that is associated with these
variables indicates that any other class can access these variables.

(b) Then, the displayPoint () method of the class is called to display the
point.

(c) In this displayPoint () method,

(i) The System.out.println(“Printing the point”); statement is used
to print Printing the point on the screen.

(ii) Then, the values of a and b are printed on the screen.

2.1.2 Creating Objects
Objects are the basic elements of object oriented programming. There are many objects in the real world
around us such as cars, buses and so on. The objects are categorized based on their properties and
behaviors.

The object car has a set of properties like manufacturer and color. Its behavior
includes the speed and mileage.

General Syntax of an Object
 Classname c1 = new Classname();

In this syntax, Classname is the name of the class, c1 is the name of the new object and new is the
operator used to create the new object.

In the example class MyPoint, there is no main method because it is not a complete application. To use
the MyPoint class, another class has to be created. A MyPointDemo class creates the object of the class
MyPoint and calls its method.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

30

Program to illustrate the method to define an object.

public class MyPointDemo

{

public static void main(String args[])

{

MyPointDemo p1 = new MyPointDemo();

p1.displayPoint();

}

}

In this example,

1. First, a class MyPointDemo is created.

2. In this class,

(a) The main() method of the class is called.

(b) In this main() method,

 (i) A new object p1 of the class MyPointDemo is created by using the
 new operator.

 (ii) The displayPoint () method of the MyPoint class is called to display
 the object p1.

Finally, the new object p1 is printed on the screen.

2.1.3 Object Class
All Java classes are derived from object class, which is the base class for all the classes used in Java,
either directly or indirectly. Some important methods that are used in the object class are:

1. equals:

2.

 The equals method is used for the comparison between two objects, that is, to check for
equality. If these objects are equal, this method will return true, otherwise it will return false.

getClass:

3.

 The getClass method is used for querying the object of the class for different information
such as, name of the class, its super class, etc.

toString:

 The toString method is used to display the string representation of an object, which
completely relies on that object.

The String

2.1.4 Introducing Nested and Inner Classes
A nested class is a class that is defined within another class. Nested classes enhance the readability and
maintainability of a code.

 representation of a float object is the float value displayed as text.

Unit 2: Fundamentals of OOP

LOVELY PROFESSIONAL UNIVERSITY 31

An example of nested class is as follows:

Program to show a nested class.

class MainClass // this is the main class

{

 int a= 50; // variable of type int is declared and is assigned a value of 50

 void display() // a method display of type void is declared

 {

 // A new instance of NestedClass is created

 NestedClass nest = new NestedClass();

/* the object of the nested class calls the method present in the NestedClass class
*/

 nest.showData();

 }

 class NestedClass

 {

 void showData() // a method display of type void is declared

 {

 System.out.println("The value stored in variable a of main class is:" +a);

 }

 }

}

class SampleNestedClass

{

 public static void main(String args[])

 {

 // A new instance of MainClass is created

 MainClass mc = new MainClass();

/* the object of MainClass calls the display method present in the class MainClass
*/

 mc.display();

 }

}

Output:

The value stored in variable a of main class is: 50

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

32

In this example,

The MainClass is the outer class and the NestedClass is the inner class. The inner
class accesses the instance variable of the outer class and displays the value that it
holds. In the main() method, the mc object of the MainClass is created to invoke
the method display(). The display() method invokes the showData() method
present in the NestedClass class and outputs 50.

Nested classes are of two types as shown in the figure 2.2.

Figure 2.2: Nested Classes

1. Static Nested Classes:

2.

 Static nested classes are those nested classes, which are declared static using
the keyword static. Such classes can access the instance variables indirectly, with the help of an
object of the encapsulating class.

Non-Static Nested Classes:

Nested classes and inner classes are commonly used in Java programs.

2.1.5 Wrapper Class
A wrapper class is a class that envelops the value of every primitive data type. This class represents
primitive data types in their equivalent class instances.

 Non-static nested classes, also called as inner classes, are those nested
classes that are declared without using the static keyword. Such classes can directly access the
instance variables.

An integer data type can be represented as an Integer Class instance.

The user cannot create any subclass of a wrapper class, as this class is always declared
final.

Features of Wrapper Classes
Wrapper classes have the following features:

1. Methods defined within wrapper classes are static.

2. Wrapper classes are immutable, that is, we cannot change any value after assigning it to a wrapper
class.

Unit 2: Fundamentals of OOP

LOVELY PROFESSIONAL UNIVERSITY 33

Table 2.1 shows the list of primitive data types and their equivalent wrapper classes.

 Table 2.1: Primitive Data Types and their Equivalent
Wrapper Classes

Primitive Data Type Wrapper Class
Boolean java.lang.Boolean
byte java.lang.Byte
char java.lang.Character
double java.lang.Double
float java.lang.Float
int java.lang.Integer
long java.lang.Long
short java.lang.Short

In table 2.1, wrapper classes include the name of the wrapper library and the wrapper name.

In java.lang.Integer, java.lang is the name of the wrapper library, and Integer is
the wrapper name.

2.1.6 Abstract Class
An abstract class refers to a class that is declared by using the abstract keyword. It helps to organize
classes based on common methods. It helps to put the common method names in one abstract class
without having to write the actual implementation code.
Abstract class cannot be instantiated. However, they can be extended into sub classes. These sub classes
usually provide implementations for all of the abstract methods included in the abstract class. The
abstract classes may or may not comprise abstract methods.

public abstract class GrapObj

{

 abstract void draw(); //declaration of abstract method

}

2.1.7 Final Class
A class can be declared as a final class, by using the final keyword, which means that the class cannot
have a subclass.

final class Test

Here, final is the keyword that is used to declare the class Test as a final class.

In a final class, all the methods are completely declared as final, but it is not necessary that all the data
types are also final.

 Do not try to create subclasses of final classes, as it will cause an error and will not
be permitted by the compiler.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

34

2.1.8 Using Super Class
A super class is defined as a class that can be extended into subclasses. The concept of super classes is
used in inheritance, where a new class (a subclass) is created by deriving some existing behavior and
states of another class (super class), using the extends keyword. This method is usually used to enhance
code reusability.

public class dog extends animal

Here, dog is the subclass of super class animal.

2.1.9 Adding Variables and Methods to a Class
In a program, first a class is defined and then the variables to be used in that program are defined
within that class. In a Java program, the static keyword is used to specify that the variable is a class
variable. This indicates that this variable has only one copy and it is associated with a particular class.
Variables that are not declared static are called as instance variables.

 Did you know? Variables must be initialized before being used in a program.

In any program, methods are used for the manipulation of data used in that program. For adding a
method to any class, specify that method within that class’ declaration. A method can be declared with
or without parameters.

Program to find out the square root of a number.

import java.lang.Math

class Squroot

{

 public static void main (String args[])

 {

 double a = 4;

 double b;

 b = Math.sqrt (a);

 System.out.println (“Square root is: “ +b);

 }

}

Output:

Square root is: 2.0

In this example,

1. First, the java.lang.Math package is imported, which consists of methods to
perform mathematical operations.

2. Then, a class Squroot is created.

Unit 2: Fundamentals of OOP

LOVELY PROFESSIONAL UNIVERSITY 35

3. In this class Squroot,

(a) The main() method of the class is called.

(b) In the main() method,

 (i) Two variables a and b, of type double are declared. Also, variable a is
 assigned a value of 4.

 (ii) A method Math.sqrt (); is called for calculating the square root of
 value assigned to variable a. The result is then assigned to b.

 (iii) Finally, System.out.println (“Square root is: “ +b); statement is used
 to print the value of b on screen.

Constructor is a special type of method, by which an object can initialize itself on its creation. The
constructor’s name and name of the class in which it is created are same. No return type (not even void)
is given by a constructor because the instance of the class itself is returned by the constructor. Generally,
a constructor is used for providing initial values to the instance variables that are defined by the class,
or for carrying out procedures (if any) needed for creating a fully formed object. In Java, all classes
consist of constructors, whether they are defined or not. This is because a default constructor is
automatically provided for the initialization of all the member variables to zero. However, after the
definition of a new constructor, the default constructor is not used.

Some constructors require one or more parameters to be added to them in the same way that they are
added to a method. Such constructors are called as parameterized constructors. To add parameters to a
constructor, declare the parameters inside the parentheses after the name of the constructor.

2.2 Constructors

Program to illustrate the use of a simple constructor in a program.

class DemoClass

{

 int a;

 DemoClass()

 {

 a = 20;

 }

}

class DemoConstr

{

 public static void main(String args[])

 {

 DemoClass c1 = new DemoClass();

 DemoClass c2 = new DemoClass();

 System.out.println(c1.a + " " + c2.a);

 }

}

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

36

Output:

20 20

 In this example,

1. First, a class DemoClass is created.

2. In the DemoClass,

(a) An integer a is declared.

(b) Then, the constructor for DemoClass, that is, DemoClass() is called. In
this constructor DemoClass(), the instance variable a of DemoClass is
assigned a value of 20.

3. A new class DemoConstr is created.

4. In the class DemoConstr,

(a) The main() method of the class is called.

(b) In the main() method,

 (i) Two new objects c1 and c2 of DemoClass are created by calling the
 constructor DemoClass(), and by using the new keyword.

 (ii) Finally, the value of a is called for the object c1, and is printed on the
 screen.

Inheritance is one of the object-oriented concepts. It is a process, where one object inherits the properties
of another. Similarly, class inheritance means that a class derives a set of properties and methods of a
parent class or base class.

To inherit a base class to its subclass, a keyword extends is used in the subclass definition.

Java provides two types of inheritance. They are:

2.3 Class Inheritance

1. Simple Inheritance

2. Multi-level Inheritance

2.3.1 Simple Inheritance
When a subclass is derived directly from its parent class or super class, it is known as simple
inheritance. In simple inheritance, there is only a subclass and its super class. It is also referred to as
single inheritance or one-level inheritance.

Program to illustrate the use of simple inheritance in a program.

public class Super class

{

 public void A()

 {

 System.out.println("Print the super class method");

 }

}

Unit 2: Fundamentals of OOP

LOVELY PROFESSIONAL UNIVERSITY 37

class Subclass extends Super class

{

 public static void main(String args[])

 {

 Subclass s1 = new Subclass();

 s1.A(); }

}

Output:

Print the super class method

In this example,

1. First, a parent class or base class Super class is created.

2. In the Super class, A() method is called.

3. In the A() method, System.out.println("Print the super class method");
statement is used to print the super class method statement on the screen.

This application cannot be run, as it does not have main method. So, further
additions are made to the program:

1. A class Subclass is the inherited from the class Super class by using the
extends keyword.

2. In the class Subclass,

(a) The main() method of the class is called.

(b) In the main() method,

 (i) The Subclass s1 = new Subclass(); statement is used to create a new
 object s1 of class Subclass using the new operator.

 (ii) Then, s1.A(); statement is used to call the method of the Super class
 is called with the Subclass object s1.

 Finally, the program prints the method of the super class.

Write a simple inheritance program to show one subclass manager and its super class
employee.

2.3.2 Multi-level Inheritance
Multi-level inheritance was introduced to enhance the concept of inheritance. When a subclass is
derived from another subclass or derived class, it is known as the multi-level inheritance. In multi-level
inheritance, the subclass is the child class for its super class and this super class is the subclass for
another super class. Multi-level inheritance can go up to any number of levels.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

38

Program to illustrate the use of multi-level inheritance in a program.

class P

{

 int e;

 int f;

 int get(int a, int b)

 {

 e=a; f=b;

 return(0);

 }

 void Show()

 {

 System.out.println(e);

 }

}

class Q extends P

{

 void Showq()

 {

 System.out.println("Q");

 }

}

class R extends Q

{

 void display()

 {

 System.out.println("R");

 }

 public static void main(String args[])

 {

 P p = new P();

 p.get(7,10);

 p.Show();

 }

}

Unit 2: Fundamentals of OOP

LOVELY PROFESSIONAL UNIVERSITY 39

Output:

7

In this example,

1. First, a class P is created, wherein integers e and f are declared.

2. In the class P,

 (a) The get() method is called to get the values of integers a and b.

 (b) In the get() method,

 (i) The values of a and b are assigned to e and f respectively.

 (ii) Then, return(0); statement is used to return the value of 0.

 (iii) The Show() method is then called, wherein e is printed on the screen.

3. A new class Q is created as a subclass of the class P using the extends
keyword.

4. In the class Q, void Showq() method is called, wherein Q is printed on the
screen.

5. A new class R is created as a subclass of the class Q using the extends
keyword.

6. In the class R,

(a) The display() method is called, wherein R is printed on the screen.

(b) Then, the main() method of the class is called.

(c) In the main() method,

 (i) A new object p of the class P is created using the new keyword.

 (ii) Then, the int get() method of the class P is called with the values for
 the variables in the parameter list, that is, 7 and 10.

 (iii) At last, Show() method is called to show the value of p.

 (iv) Finally, the output 7 is displayed on the screen.

Java does not support multiple inheritance. That is, we cannot inherit from more than one class. This is
because multiple inheritance has many drawbacks.

Let us consider an example.

class X

{

 int p = 10;

}

class Y extends X

{

 int p;

}

class Z extends X

{

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

40

 int p = 30;

}

// Now in case java support multiple inheritance (which it does not)

class D extends Y, Z

{

 public static void main(String [] args)

 {

 D q = new D();

 System.out.println(q.p);

 }

}

In this example,

If two classes are inherited, which p will be printed? The value of p in class Z or
the value of p in class Y. This is the problem with multiple inheritance. This is
known as a diamond problem. This is why Java does not support multiple
inheritance.

The above example is only one main drawback of multiple inheritance.

The main reason for omitting multiple inheritance from the Java language is to keep the language as
simple as possible. The creators of Java wanted a language that most developers could learn without
extensive training. Therefore, they worked to make the language as similar to C++ as possible without
carrying over C++'s unnecessary complexity. The designers were of the opinion that multiple
inheritance causes more problems and confusion than it solves.

However, at times we may want to derive from two or more classes. Therefore, the designers of Java
chose to allow multiple interface inheritance through the use of interfaces. We shall learn more about
Interfaces in Unit no 6.

Write a program to find out the square root of 16.

• OOP is a famous programming style consisting of object-oriented concepts such as classes and
objects.

2.4 Summary

• The structure of a class comprises three sections, namely, class definition section, instance and
class variables’ definition section, and methods’ definition section.

• Object class is the main class in any Java program.

• When a class consists of class or classes created within that class, it is called as a nested class.

• A wrapper class encases the values of all the primitive data types, by creating a wrapper for every
type.

• A final class is a class with no subclasses and declared with the keyword final.

• A super class is the main class from which subclasses are derived or inherited.

• Variables and methods are added to a class right after the definition of a class in a program.

Unit 2: Fundamentals of OOP

LOVELY PROFESSIONAL UNIVERSITY 41

• Class inheritance is defined as a process in which, a class derives a set of properties and methods
of a parent class or base class. To inherit a base class to its subclass, a keyword extends is used in
the subclass definition. It can either be simple or multi-level.

• Constructor is a method that is used to construct a new object in a class, whose name is same as of
the class it is created in. If the constructor has parameters too, then it is called as a parameterized
constructor.

2.5 Keywords
Initialize: Allocate an initial value to a java program.

Instance Variable: A variable that is relevant to a single instance (an object belonging to a class is an
instance of that class) of a class.

Primitive Data Types: Special group of data types that represents a single value such as numbers,
characters, or Boolean values.

Wrapper Library: Library of wrappers of all the primitive data types.

1. State whether the following statements are true or false.

2.6 Self Assessment

 (a) Data is not a crucial element in the process of program development.

 (b) An object is a collection of classes with common behavior.

 (c) In a program, after the class definition, variables to be used in the program are defined.

 (d) Object class is the foundation class for all the classes.

 (e) Classes created within other classes are called as nested classes.

 (f) The user can create subclasses of a wrapper class.

2. Fill in the blanks:

 (a) The ________ keyword is used to declare a class as a final class.

 (b) Class inheritance means that a class derives a set of _________ and methods of a parent class
 or base class.

 (c) For adding _________ to a constructor, they are declared inside the parentheses after the name

 of the constructor.

3. Select a suitable choice for every question.

 (a) Which keyword is used to create a subclass of a super class?

 (i) implements

 (ii) extends

 (iii) new

 (iv) getClass

 (b) The primitive data type Boolean comes under the ________________________ wrapper class.

 (i) java.lang.Boolean

 (ii) java.lang.Byte

 (iii) java.lang.Character

 (iv) java.lang.Double

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

42

 (c) Which keyword is used to create a new object of any class?

 (i) equals

 (ii) new

 (iii) getClass

 (iv) toString

1. “In OOP, a problem is divided into a number of entities”. Discuss.

2.7 Review Questions

2. “Structure of a class consists of three parts”. Justify with an example.

3. “All Java classes are derived from object class, which is the base class for all the classes used in
Java, either directly or indirectly”. Discuss the methods associated with the object class.

4. “Nested classes enhance the readability and maintainability of code”. Comment.

5. “A wrapper class is a class that envelops the value of every primitive data type.” Discuss.

6. “A super class is defined as a class that can be extended into subclasses” Justify with an example.

7. “In any program, methods are used for the manipulation of data used in that program”. Discuss.

8. “To inherit a base class to its subclass, a keyword extends is used in the subclass definition”.
Discuss.

Answers: Self Assessment
1. (a) False (b) False (c) True (d) True (e) True (f) False

2. (a) final (b) Properties (c) Parameters

3. (a) extends (b) java.lang.Boolean (c) new

2.8 Further Readings

 Balagurusamy E. Programming with Java 3e Primer. New Delhi: Tata McGraw

Publishers.

 http://docstore.mik.ua/orelly/java/javanut/ch03_01.htm

 http://www.roseindia.net/help/java/s/super-class.shtml

 http://www.java-tips.org/java-se-tips/java.lang/what-is-a-final-class.html

Unit 3: Control Structures

LOVELY PROFESSIONAL UNIVERSITY 43

CONTENTS

Objectives

Introduction

3.1 Decision Control Structures

3.2 Repetition Control Structures

3.3 Branching Statements

3.4 Summary

3.5 Keywords

3.6 Self Assessment

3.7 Review Questions

3.8 Further Readings

Unit 3: Control Structures

After studying this unit, you will be able to:

Objectives

• Explain the use of decision control structures

• Illustrate the repetition control structures

• Describe the different branching statements

The process of program development requires thorough understanding of the control structures that are
used for the proper execution of programs. We know that the execution of statements in a program
flows from top to bottom, in the order of their appearance in the program. Control structures however,
break up the execution flow by implementing decision making, looping, and branching, making your
program to conditionally execute particular code-blocks.

OOP concepts and control structures when combined together lead to effective and executable
programs.

A program can manipulate its execution sequence and make choices during the execution of the
program code. In Java, these choices are made with the help of execution control statements. The
execution control statements allow a programmer to change the order in which the statements in the
program are executed.

A program is said to be a group of statements, which is executed in the same sequential order in which
they appear. Control statements, control structures, or control constructs refer to the statements that
control the execution of these statements. These control structures in Java are categorized into three
parts, that is, decision control structures, repetition control structures and branching statements.

These three control structures comprise various statements and loops that control the execution of the
statements in a program.

Introduction

3.1 Decision Control Structures
Decision control structures are Java statements that allow a programmer to select and execute specific
blocks of code while bypassing other sections. These structures are also called as conditional statements.

All conditional statements evaluate to true or false for a conditional expression to determine their
execution path.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

44

Consider an example of an expression, a == b. In this example, the conditional
operator == is used to find out if the value of a is equivalent to the value of b. The
expression returns either true or false. Any relational operator can be used in a
conditional statement.

Java does not allow a number/integer to be used as a Boolean unlike C and C++
(where a non-zero value is assigned to ‘true’ and zero is assigned to ‘false’). In order
to use a non-Boolean variable in a Boolean condition such as if (a), the variable must
first be converted into a Boolean value by using a conditional expression such as if(a
!= 0).

Decision control structures can be classified into four parts as given in the figure 3.1.

Figure 3.1: Decision Control Structures

‘if’ Statement
In Java, if statement is one of the decision control constructs. The if statement indicates that a statement
or a set of statements will be executed, if and only if a certain Boolean expression/condition is true.

Syntax of ‘if’ Statement:

 if (condition/Boolean expression)

 statement1;

 or

if(condition/Boolean expression)

{

 statement1;

 statement2;

 . . .

}

As given in the syntax, each statement may be a single statement or a compound statement. The
condition/Boolean expression is an expression that returns a Boolean value. The if statement signifies
that the execution of a statement (or a block of code) depends on the evaluation result of the Boolean
expression, that is, a statement (or a block of code) will be executed, if and only if a certain Boolean
statement is true.

Unit 3: Control Structures

LOVELY PROFESSIONAL UNIVERSITY 45

Program to illustrate the use of if statement in Java.

class If1

{

 public static void main (String args[])

 {

 int grade = 68;

 if(grade > 60)

 {

 System.out.println("Grade is greater than 60!");

 }

 System.out.println(“Grade is less than 60!”);

 }

}

Output:

Grade is greater than 60!

In this example,

1. First, a class If1 is created.

2. In this class,

 (a) The main() method of the class is called.

 (b) In this main() method,

 (i) An integer constant grade is declared, and is assigned a value of

 68.

 (ii) Then, an if condition (grade>60) is evaluated.

 (iii) If grade is greater than 60, then the statement Grade is greater
 than 60! is executed, otherwise the statement outside the if block
 “Grade is less than 60!” is executed.

 Here, the statement Grade is greater than 60! is executed, as the value of
 grade is 68 (> 60).

The condition part of a statement must evaluate to a Boolean value. It implies that the
execution of the condition should either result to true or false.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

46

‘if-else’ Statement
The if-else statement is used, when the execution depends on the evaluation result of a condition or
Boolean expression. It means that if the condition is true, a certain statement is executed, but if the
condition is false a different statement is executed.

Syntax of ‘if-else’ Statement:

if (condition)

 statement 1;

else

 statement 2;

or

if (condition)

{

 statement 1;

 statement 2;

 . . .

 }

else

{

 Statement 1;

 Statement 2;

 . . .

}

As per the above syntax, a condition is checked, if it is true, then the statements within the if block are
executed, else the statements within the else block are executed.

Program to illustrate the use of if-else statement in Java.

class Test1

{

 public static void main (String args[])

 {

 int grade = 68;

 if(grade > 60)

 {

 System.out.println("First Division");

 }

 else

 {

Unit 3: Control Structures

LOVELY PROFESSIONAL UNIVERSITY 47

 System.out.println("Not first division");

 }

 }

}

Output:

First division

In this example,

1. First, a class Test1 is created.

2. In this class,

 (a) The main() method of the class is called.

 (b) In this main() method,

 (i) An integer constant grade is declared, and is assigned a value of

 68.

 (ii) Then, an if condition (grade > 60) is evaluated.

 (iii) If grade is greater than 60, then the statement in the if block
 First division is executed, otherwise the statement in the else
 block Not first division is executed.

 Here, the statement First division is executed, as the value of grade is 68
 (> 60).

Write a program to accept the marks of a student and then print the result of a student, that
is, pass or fail.

‘if-else-if’ Statement
The statement that is present in the if or else clause of an if-else statement, can be another if or if-else
statement. This process is called nesting. An if or if-else statement that includes another if or if-else
statement is called a nested if statement. This cascading of statements enables a programmer to make
more complex selections. It becomes necessary to use more than one if-else statement in nested form for
writing a program having a series of decisions or conditions.

Nested if-else statements are very common in programming. An important thing to remember while
nesting if-else statements is that an else statement always belongs to the nearest if statement that is
within the same block as the else and that which is not already associated with an else.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

48

Syntax of if-else-if Statement:

if (condition1)

{

 if (condition2)

 {

 statement1;

 }

 else

 {

 statement2;

 }

 }

 else

 {

 if (condition3)

 {

 statement3;

 }

 else

 {

 statement4;

 }

 }

As per the above syntax, in nested if-else statement, condition1 is the first condition to be evaluated. If
it evaluates to true, then condition2 is evaluated. If condition2 is true, then statement1 is executed, but,
if it is not true, statement2 is executed. If condition1 is false, then condition3 is evaluated. If condition3
is true, then statement3 is executed, but if it is not true, statement4 is executed.

The if statement that come within another if statement is called an inner if statement, and an if
statement that contains another if statement is called an outer if statement. Thus, in the above syntax,
the if statement that tests condition1 is an outer if statement, and the if statement that tests condition2
and condition3 is an inner if statement.

There can be many else-if blocks after an if-statement. The else-block is optional and can
be excluded.

Unit 3: Control Structures

LOVELY PROFESSIONAL UNIVERSITY 49

Program to illustrate the use of if-else statement in Java.

class Grade

{

 public static void main (String args[])

 {

 int grade = 68;

 if(grade > 90)

 {

 System.out.println("Excellent");

 }

 else

 {

 if(grade > 60)

 {

 System.out.println("Very good");

 }

 else

 {

 System.out.println("Sorry you failed");

 }

 }

 }

 }

Output:

Excellent

In this example,

1. First, a class Grade is created.

2. In this class,

 (a) The main() method of the class is called.

 (b) In this main() method,

 (i) An integer constant grade is declared, and is assigned a value of

 68.

 (ii) Then, an if condition (grade > 90) is evaluated.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

50

 (iii) If the condition is true, then the statement in the first if block
 Excellent is executed, otherwise the condition grade > 60 in the
 else
 block is evaluated.
 (iv) If the grade > 60 condition is true, statement in the if block
 Very good is executed, otherwise the statement in the else
 block Sorry you failed is executed.

Here, the statement within the first if block “Excellent” is executed.

Errors Made While Using the “if-else” Statement

While writing programs, programmers may commit a few common mistakes while using if-else
statements. Few errors that occur while using if-else statements are:

1. The condition inside the if statement does not directly evaluate to a Boolean value. Therefore, we
must give only an expression that evaluates to a Boolean value.

 //CORRECT

int number=0;

if(number >= 0)

{

//some statements here

}

//INCORRECT

int number = 0;

if(number)

{

//some statements here

}

In this example, the variable number in the above example does not hold a
Boolean value. Thus, it is incorrect to use a number like this, that is, no condition
is being checked in the if block.

2. Sometimes, programmers use = instead of == for comparing two variables, values, and so on.

 //INCORRECT

int number = 0;

if(number = 0)

{

 //some statements here

}

//CORRECT

int number = 0;

Unit 3: Control Structures

LOVELY PROFESSIONAL UNIVERSITY 51

if(number == 0)

{

 //some statements here

}

3. Sometimes, programmers write elseif instead of else if by mistake. Both are different, so they must
 be used carefully.

Switch Statement
In Java, the switch statement is a multi-way branching statement. It provides an easy way to forward
the execution process to different parts of the program based on the value of an expression.

When one of the many alternatives is to be selected, the program can be designed using a large series of
if-else-if statements to control the selection. However, the complexity of such a program increases with
the number of alternatives. It becomes difficult to read, understand and follow the program. At times, it
may baffle even the designer of the program. Thus, the switch statement often provides a better
alternative than a large series of if-else-if statements.

The switch statement is sometimes called as a selection statement. The switch statement selects one
option from among sections of code based on the value of an integral expression.

Integral expression is an expression that produces an integer value. The switch statement compares the
result of integral expression to each integral value. If a match is found, the corresponding statement or
statements are executed. If no match is found, the default statement is executed.

Syntax of ‘switch’ Statement:

switch (expression)

 {

 case value1:

 // statement sequence

 break;

 case value2:

 // statement sequence

 break;

 ...

 case valueN:

 // statement sequence

 break;

 default:

 // default statement sequence

 }

In the above syntax, the value of the expression is compared with each of the constant values in the case
statements. If a match occurs, the code sequence following that case statement is executed else the
default statement is executed. However, the default statement is optional. No further action is taken if
no case matches and no default is present. Here, the expression must be of type byte, short, int, or char.
The values specified in the case statements must be compatible with the type of the expression. Each
value in the case statement must be a constant, not a variable. Duplicate case values are not permitted.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

52

In the syntax, each case ends with a break. The break keyword results in transferring the execution to
the end of the switch body. The break statement terminates a statement sequence. This is like “jumping
out” of the switch body. Using break inside switch is optional.

Program to illustrate the use of switch statement in Java.

class SwitchTest

{

 public static void main(String args[])

 {

 int month = 6;

 switch(month)

 {

 case 1: System.out.println("January");

 break;

 case 2: System.out.println("February");

 break;

 case 3: System.out.println("March");

 break;

 case 4: System.out.println("April");

 break;

 case 5: System.out.println("May");

 break;

 case 6: System.out.println("June");

 break;

 case 7: System.out.println("July");

 break;

 case 8: System.out.println("August");

 break;

 case 9: System.out.println("September");

 break;

 case 10: System.out.println("October");

 break;

 case 11: System.out.println("November");

 break;

 case 12: System.out.println("December");

 break;

 default: System.out.println("Month not valid.");

Unit 3: Control Structures

LOVELY PROFESSIONAL UNIVERSITY 53

 break;

 }

 }

}

Output:

June

In this example,

1. First, a class SwitchTest is created.

2. In this class,

 (a) The main () method of the class is called.

 (b) In the main () method,

 (i) An integer month is declared and assigned a value of 6.

 (ii) The value of month, that is, 6 is then compared with all the cases,

 one-by-one.

 (iii) Finally, the relevant case block, that is, case 6 block is executed.

3.2 Repetition Control Structures
In Java, repetition control structures or iteration statements are statements that allow a programmer to
execute specific blocks of code a specific number of times. These statements are commonly called as
looping statements. Java has three types of repetition control structures - the while, do-while and for
loops, as given in the figure 3.2.

Figure 3.2: Repetition Control Structures

“while” Loop
Java’s most basic looping statement is the while statement. This statement is an entry-controlled loop
statement, which repeats a statement or block until the expression evaluates to true.

Syntax of ‘while’ Loop:

while(condition)

{

 // body of loop }

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

54

In this syntax, while keyword is followed by a condition that is enclosed in parentheses and then a
block of statements. This condition can be any Boolean expression. All the statements within the body of
the loop will be executed as long as the conditional statement evaluates to true. The loop terminates,
when the condition evaluates to false and then the control passes to the next line of code present
immediately after the loop. If the condition evaluates to false, the loop is not at all executed. The curly
braces are not required if only a single statement is repeated.

Program to print the table of 2 using while loop.

public class TableTest

{
 public static void main(String args[])

 {

 int a = 2;
 int j = 1;
 System.out.println("The table of "+a+" = ");
 while(j<=10)
 {

 int t = a * j;
 System.out.println(t);
 j++;

 }

 }

}

Output:

2

2

4

6

8

10

12

14

16

18

20

In this example,

1. First, a class TableTest is created.

2. In this class,

 (a) The main() method of the class is called.

Unit 3: Control Structures

LOVELY PROFESSIONAL UNIVERSITY 55

 (b) In the main() method,

 (i) Integer constants a and j are declared and are assigned the
 values of 2 and 1, respectively.
 (ii) Then, the value of a, that is, 2 is printed.
 (iii) Thereafter, the while loop starts with the condition j<=10. This
 condition is first checked. If it evaluates to true, the statements
 within the while loop are executed. Then, in the loop, for
 printing the table of 2, values of a and j are multiplied, and
 stored in the variable t. After multiplying, value of t is printed.
 Then, the value of j is incremented by 1to continue printing the
 multiplication table

 Again, the condition is checked and the same
 process is followed till the condition evaluates to true.

 Finally, the table of 2 is printed on the screen.

“do-while” Loop
The do-while loop is similar to the while loop, except that it also executes backwards. In do-while, the
statements of the loop come before the condition, so even if the initial condition is false, the loop will
execute at least once. This is the main difference between a while and do-while loop. Like the function
of a while statement, the statements inside a do-while loop are executed many times as long as the
condition is satisfied. The do-while loop is usually used, when a programmer wants to test the
termination expression at the end of the loop rather than at the beginning.

Syntax of “do-while” Loop:

do

{

 //body of loop

}

while (condition);

As per the above syntax, for all the iterations of the do-while loop, the body of the loop first gets
executed and then the conditional expression gets evaluated. If the condition evaluates to true, the loop
will repeat, else the loop terminates.

Program to print numbers from 0 to 5, using do-while loop.

public class DoWhileDemo

{

 public static void main(String args[])

 {

 int a =0;

 do

 {

 System.out.println("a is : " + a);

 a++;

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

56

 } while(a < 6);

 }

}

Output:

a is : 0

a is : 1

a is : 2

a is : 3

a is : 4

a is : 5

In this example,

1. First, a class DoWhileDemo is created.

2. In this class,

 (a) The main() method of the class is called.

 (b) In the main() method,

 (i) An integer a is declared, and assigned the value 0.

 (ii) Then, the do-while loop starts. In the loop, first the given value

 of a is printed, that is, 0. Thereafter, a’s value is incremented by 1.

 This process is repeated till the condition given within the while
 braces is true, that is, this process is repeated till the value of a is
 less than 6.

 Finally, the program gives all the values from 0 to 6 as the output.

“for” Loop
Like the previous loops, for loop also allows execution of the same code a set number of times. It is
opposite to a while loop as it facilitates counting the number of iterations and stopping the loop based
on this count.

Syntax of “for” Loop

for(initialization; condition; iteration)

{

 // body of the loop

}

As per the given syntax, first the initialization portion of the loop is executed. This portion of the loop
includes an expression that helps in setting the value of the loop control variable. Such a variable acts as
a counter, which controls the loop. The execution of this initialization expression happens only once in a
program. Next, condition is evaluated, which must be a Boolean expression. This expression generally
checks the loop control variable against a target value. If the result of this test is true, then the execution
of the body of the loop takes place, otherwise, the loop terminates. Thereafter, the iteration portion of
the loop is executed. This portion of the loop is generally an expression, which increases or decreases
(increments or decrements) the loop control variable. Later, the loop iteration takes place. First the
conditional expression is evaluated, then the body of the loop is executed, and then the iteration

Unit 3: Control Structures

LOVELY PROFESSIONAL UNIVERSITY 57

expression is executed with each pass. This process is repeated until the controlling expression
evaluates to false.

Program to print a list of odd numbers up to 20, using for loop.

public class TestListOddNumbers

{

 public static void main(String args[])

 {

 int listlimit = 20;

 System.out.println("Odd numbers between 1 and " + listlimit);

 for(int a=1; a <= listlimit; a++)

 {

 if(a % 2 != 0)

 {

 System.out.print(a + " ");

 }

 }

 }

}

Output:

1 3 5 7 9 11 13 15 17 19

In this example,

1. First a class TestListOddNumbers is created.

2. In this class,

 (a) The main() method of the class is called.

 (b) In the main() method,

 (i) First the limit of the list is defined, that is, the value till which

 this list search will proceed. For this, value 20 is assigned to

 listlimit. It means that odd numbers till 20 should be printed.

 (ii) Next, a statement “Odd numbers between 1 and 20” is printed.

 (iii) Then, for loop begins with the initialization of a variable a to 1.

 After initialization, a condition a <= listlimit is checked. Then,

 within for loop, if statement is used to check that the number is

 not divisible by 2. If this condition evaluates to true, the number

 is printed.

 Finally, the list of all the odd numbers between 1 and 20 are

 displayed on the screen as output.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

58

3.3 Branching Statements
Just like repetition control structures, branching statements are used in Java programs. Branching
statements allow the user to redirect the flow of program execution. Java offers three branching
statements, as shown in the figure 3.3.

Figure 3.3: Branching Statements

“break” Statement
Break statement is one of the branching statements provided by Java, which is also used to control the
flow of the program. Break statement is used to exit from a running loop program on a condition that is
predefined, before the loop completion. Whenever break statement is used in any loop, that loop is
terminated. Java programs use this to terminate the while loop, do - while loop, for loop and also in the
switch statement.

Program to illustrate the use of break statement in Java.

public class JavaBreakDemo

{

 public static void main(String args[])

 {

 int intArray[] = new int[]{1,2,3,4,5,6};

 System.out.println("Elements less than 5 are: ");

 for(int a=0; a < intArray.length ; a ++)

 {

 if(intArray[a] == 5)

 break;

 else

 System.out.println(intArray[a]);

 }

 }

}

Unit 3: Control Structures

LOVELY PROFESSIONAL UNIVERSITY 59

Output:

Elements less than 5 are:

1

2

3

4

In this example,

1. First, a class JavaBreakDemo is created.

2. In this class,

 (a) The main() method of the class is called.

 (b) In the main() method,

 (i) Six elements are signed to an array intArray. These six elements

 are 1, 2, 3, 4, 5, and 6.

 (ii) After this, the statement Elements less than 5 are: is printed on

 the screen.

3. Next, for loop starts with the initialization of the array element a, and

 proceeds with checking the condition a < intArray.length.

4. Then, if statement is used to check the condition intArray[a]==5. If it

 evaluates to true, the break statement breaks the loop, else the statement

 within the else block is executed.

This program finally gives array elements less than 5.

“continue” Statement
Just like break statement, continue statement is also a branching statement. Continue statement is used
for stopping the execution of some statements within the loop. When continue statement is used, the
normal flow of control is stopped, and the control returns to the loop without the execution of
statements that are written after the continue statement. Continue statement can be used for skipping
the present repetition of for, while or do-while loop, and begin the next repetition.

Program to illustrate the use of continue statement in Java.

public class JavaContinueDemo

{

 public static void main(String args[])

 {

 int intArray[] = new int[]{1,2,3,4};

 System.out.println("Elements except 2 are: ");

 for(int a=0; a < intArray.length ; a ++)

 {

 if(intArray[a] == 2)

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

60

 continue;

 else

 System.out.println(intArray[a]);

 }

 }

}

Output:

Elements except 2 are:

1

3

4

In this example,

1. First, a class JavaContinueDemo is created.

2. In this class,

 (a) The main() method of the class is called.

 (b) In the main() method,

 (i) An array is declared with four elements (1, 2, 3, and 4).

 (ii) After declaring the array, the statement Elements except 2 are: is

 printed on the screen.

3. Next, for loop starts with the initialization of the array element a, and

 proceeds with checking the condition a<intArray.length.

4. Then, if statement is used to check the condition intArray[a]==2. If it

 evaluates to true, the continue statement skips the current iteration of the

 loop, else the statement within the else block is executed.

This program finally gives array elements except 2.

“return” Statement
This statement is used in the method definition, for setting the value returned by the method and for
terminating the execution of the method. This means that this statement transfers the control of the
program back to the caller of the method. It is also referred to as a jump statement. There are two forms
of return statement, which are, one that returns a value, and one that does not return any value.

If a value is to be returned by the method, the value (or an expression that does the value calculation) is
put after the return keyword.

return “Java”;

The method (in which this statement is used) returns the value Java.

If no value is to be returned by the method, that is, the method is declared void, the form of return that
does not return a value is used.

Unit 3: Control Structures

LOVELY PROFESSIONAL UNIVERSITY 61

return;

The method does not return any value.

1. Write a program to check whether a given number is even or odd.

2. Write a program to print Fibonacci series.

• A program is defined as a group of statements, which execute in the same sequential order in
which they appear, and this execution is controlled by the control constructs.

3.4 Summary

• In Java, there are three types of control constructs, namely, decision control structures, repetition
control structures and branching statements.

• The decision control structures such as if, if-else, if-else-if, switch permit a programmer to select
and execute particular code-blocks while bypassing other sections.

• The repetition control structures such as while, do-while, and for permit a programmer to execute
particular code-blocks a number of times.

• The branching statements such as break, continue, and return permit the user to redirect the flow
of program execution.

3.5 Keywords
Compound Statement: A block of statements

Constant Value: Value that does not change

Looping Statements: Executes a sequence of statements multiple times

Terminate: Come to an end

1. State whether the following statements are true or false.

 (a) The return statement is used in the method definition, for setting the value returned by the

 method and for terminating the execution of the method.

 (b) The break statement can be used for skipping the present repetition of for, while or do-while

 loop, and begin the next repetition.

 (c) In do-while, the statements of the loop come before the condition, so even if the initial condition

 is false, the loop will execute at least once.

2. Fill in the blanks:

 (a) All ___________ statements evaluate to true or false for a conditional expression, to determine

 their execution path.

 (b) ___________ control structures or iteration statements are Java statements that allow a

 programmer to execute specific blocks of code a number of times.

 (c) Branching statements allow the user to _________ the flow of program execution.

3.6 Self Assessment

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

62

3. Select a suitable choice for every question.

 (a) Which of the following is a decision control construct?

 (i) if statement (ii) while loop (iii) break statement (iv) continue statement

 (b) Which of the following is a branching statement?

(i) if-else statement (ii) return statement (iii) for loop (iv) switch statement

1. “All conditional statements evaluate to true or false for a conditional expression, to determine their

 execution path”. Justify with an example.

2. “The if-statement indicates that a statement or a set of statements will be executed, if and only if a

 certain Boolean expression/condition is true”. Discuss.

3. “When writing programs, programmers may commit few common mistakes while using the if- else
 statements”. Discuss these mistakes.

4. “The do-while loop is usually used, when a programmer wants to test the termination expression at
 the end of the loop rather than at the beginning”. Justify.

Answers: Self Assessment
1. (a) True (b) False (c) True

2. (a) Conditional (b) Repetition (c) Redirect

3. (a) if statement (b) return statement

3.7 Review Questions

3.8 Further Readings

Balagurusamy E. Programming with Java 3e Primer. New Delhi: Tata McGraw
Publishers.

 http://www.studiesinn.com/learn/Programming-Languages/Java-Language/Control-
Structure.html

 http://www.cs.rit.edu/~afb/20012/cs1/slides/javacontrol.html

 http://cnx.org/content/m31246/latest/

 http://tutorial-pemograman.blogspot.com/2009/06/strukur-control-for-java.html

Unit 4: Arrays and Strings

LOVELY PROFESSIONAL UNIVERSITY 63

CONTENTS

Objectives

Introduction

4.1 Arrays

 4.1.1 Declaring, Creating and Initializing an Array

 4.2 Types of Arrays

 4.2.1 One-dimensional (1D) Arrays

 4.2.2 Two-dimensional (2D) Arrays

4.3 Strings

 4.3.1 String Array

 4.3.2 String Methods

 4.3.3 String Operators

 4.3.4 String Tokenizer

 4.3.5 Exploring the String Class

4.4 Summary

4.5 Keywords

4.6 Self Assessment

4.7 Review Questions

4.8 Further Readings

Unit 4: Arrays and Strings

After studying this unit, you will be able to:

Objectives

• Define arrays

• Explain the types of arrays

• Describe strings

Every programming language has some important concepts that make programming more easy and
effective. Arrays and strings are such important concepts and are available in Java. The concept of
arrays is used in a program, when similar types of values for a large number of data items are to be
stored by the user. Arrays can be used for many applications such as performing calculations on
statistical data and representing the state of a game.

Introduction

To store the salaries of all the employees of a company, declaration of thousands
of variables will be required. Also, the name of every variable must be unique. In
such situations, arrays can be used for simple and easy storage.

Array is an object that contains a fixed number of values of a single data type and an array object
consists of a number of variables. These variables are called as array elements. In Java, arrays can be
created dynamically. The number of variables can be even zero; in such cases, the array is said to be

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

64

empty. Once the array is declared, continuous space is allocated in the memory for storing these
variables. The elements in the array are accessed by referring to their index value.

We can define a string as a collection of characters. Java handles character strings by using two final
classes, namely, String class and StringBuffer class. The String class is used to implement character
strings that are immutable and read-only after the creation and initialization of the string. The
StringBuffer class is used to implement dynamic character strings.

In an array, the memory is allocated for the same data type sequentially and is given a common name.

4.1 Arrays

int salary[] = new int[50];

In this example, an array is created to store the salaries of 50 employees, with an
array size of 50. This array is given a common name for the salaries of these 50
employees, that is, salary.

Since arrays are considered as objects in Java, the user must declare and instantiate them. Java arrays
are of reference types. Therefore, declaration of a reference and its assignment to an available array does
not mean that two objects are created, actually two references that point to the same array are created.

Do not try to manipulate any of these objects which are created using arrays, as
any one object’s manipulation will affect the other object.

4.1.1 Declaring, Creating, and Initializing an Array
Just like variables, arrays must also be declared, created, and initialized in a program, before their usage
in the program.

Declaring an Array
As variables are declared before their usage in the program, so are arrays. For declaring an array, write
the type of array (data type), add square brackets after the type, followed by the name of the identifier.

int [] salary;

 or

int salary[];

Syntax of Declaring Arrays

array_var = new type[size];

In this syntax, array_var is the array variable that is linked to the array, type specifies the data type of
the array, and size specifies the number of elements in the array.

arrayint = new int [5]; // creates an array of integers.

In this example, an array named arrayint is created, which stores 5 integer values
in it.

An array can also be created without using the new operator as Java supports dynamic array allocation.

int[] arrayint = {1, 2, 3, 4, 5};

In this example, the elements of the array can be directly written within the
braces. All the elements within the braces need to be of the same type.

Unit 4: Arrays and Strings

LOVELY PROFESSIONAL UNIVERSITY 65

Creating an Array
We create arrays after declaring them. We have to specify the length of the array by using a constructor
that is called for the creation of a particular object. The new keyword is used for creating an array,
which is followed by number of elements to be contained in that array (in square brackets). In any
program, the array length is fixed when the array is created. We know that an array is used to represent
a group of entities with the same data type in adjacent memory locations and these data items are given
a common name.

students[5];

Here, the name of the array is students, which is of size (index value) 5. This
complete group of values is known as an array, and the individual values are
called as the array elements.

int salary[] // Array declaration

salary = new int[50] // Array creation / Array instantiation

Initializing an Array
After the creation of an array, we need to initialize it and give a value. This means memory is allocated
to that array, and this is done with the help of new operator, or simply at the time of declaration. If an
array of integers is not initialized in the program, it will start the index numbers from 0 as it is
automatically initialized to 0 at the time of creation.

Accessing an Array Element
Once the array is created and the elements are allocated in the array, a specific element of the array can
be accessed by specifying its index in the square brackets. An index number is assigned to each element
of the array, which allows the program and the programmer to access the individual values of the array.
Index numbers are integers. These index numbers always start with zero and progress sequentially till
the end of the array.

int[] arrayint = {1, 2, 3, 4, 5};

arrayint [1] = 2;

As the array index always starts from zero, the value at the index 1 of the array
arrayint is 2.

Array Length
The Array class implicitly extends java.lang.Object package. Therefore, an array is an instance of Object
class. An array has a named instance variable, which is called as length. The length field of an array
gives the number of elements in the array. The size of the array is returned by the length field of an
array.

Syntax of Array Length

arrayName.length

In this syntax, arrayName specifies the name of the array and length specifies the length of the array.

Did you know? We cannot resize an array after it has been declared.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

66

Java supports different types of arrays such as one-dimensional arrays and two-dimensional arrays.

4.2.1 One-dimensional (1D) Arrays
1D array can be defined as a variables’ list containing the data of similar type.

4.2 Types of Arrays

A one-dimensional array can be used for storing the account numbers of the
active network users.

A one-dimensional array is said to be the perfect sorting data structure because in a one-dimensional
array, data is organized into an indexable linear list.

Syntax to Declare a 1D Array
type array_name [] = new type [size];

In this syntax, type specifies the type (data type) of an array, the array_name specifies the name of the
array and size indicates the number of elements an array can store.

int salary[] = new int[5];

In this example, a new array of 5 elements is created using the new keyword,
which is linked to a reference variable salary of an array.

Generally, a one-dimensional array can be initialized as given below:

type array-name[] = { val1, val2, val3, ... , valN };

In this syntax, type specifies the array type, array-name specifies the name of the array and val1
through valN specifies the initial values assigned to the array. These initial values are assigned
sequentially, moving from left to right, in the order of the array indexes.

Program to illustrate the concept of 1D Array.

class OneDimArray

{
 public static void main(String args[])

 {
 int month_days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
 System.out.println("March has " + month_days[2] + " days.");
 }
}

In this example,

1. A class OneDimArray is created using the class keyword.

2. In this class, the main() method of the class is called.

3. In this method,

(a) An array month_days of type int is defined and assigned the values { 31,
28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }.

(b) Then, System.out.println("March has " + month_days[2] + " days.");
statement is used to print March has 31 days.

Unit 4: Arrays and Strings

LOVELY PROFESSIONAL UNIVERSITY 67

When this program is executed, the number of days in March is printed. We
know that indexes of Java arrays initiates with zero, so the number of days in
March is month_days[2] or 31.

Control structures such as, if statement, while loop, and so on can be used in an array program to
reduce the complexity of that program.

Write a program to find the maximum and minimum values in an array.

4.2.2 Two-dimensional (2D) Arrays
In Java, multi-dimensional arrays are also referred to as arrays of arrays. 2D array is the commonly
used and simplest multi-dimensional array. Generally, 2D arrays are referred to as one-dimensional
arrays’ lists. 2D arrays are represented in a row-column form on paper, and the terms "rows" and
"columns" are used in computing.

Syntax to Declare 2D Array
type array_name = new type[rows][cols];

In this syntax, type specifies the type (data type) of an array, the array_name specifies the name of the
array, rows and cols specifies the number of rows and columns in the array.

In a 2D array, memory needs to be allocated for the first dimension only and the remaining dimensions
can be allocated separately.

Two-dimensional arrays can be created in two ways:

1. Reserving a block of memory that has enough space for holding all the array elements.

2. Building a multi-dimensional array from many one-dimensional arrays. (This is followed in Java).

int two-dimensional [] [] = new int [2] [3];

This statement allocates a 2 by 3 dimensional array and assigns it to two-
dimensional. This 2D array is implemented as an int array of int arrays.

We can use different control structures in a 2D array program, for reducing the complexity of the
program, and making it easier to read and understand.

Program to illustrate the concept of 2D Array.

class TwoDimArray

{

 public static void main(String args[])

 {

 int a, b, i;

 int table[][] = new int[4][5];

 for(a=0; a < 4; ++a)

 {

 for(b=0; b < 5; ++b)

 {

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

68

 table[a][b] = (a*5)+i+1;

 System.out.print(table[a][b] + " ");

 }

 System.out.println();

 }

 }

}

In this example,

1. A class TwoDimArray is created using the class keyword.

2. In the class TwoDimArray, the main() method of the class is called.

 Further steps are carried out in this main() method.

3. In this main() method, three integer variables a, b and i are declared, where a
and b are used for the two dimensions of the array and i is used further in the
program to run for loops.

4. Then, a two-dimensional array is created new int [4] [5], which is linked to a
reference variable table of the array.

5. After this, first for loop is used, wherein variable a is initialized to 0, and a
condition a<4 is checked.

6. If the condition a< 4 is true, second for loop starts.

7. In this for loop,

(a) First, the value of b is initialized to 0.

(b) Then, the condition b<5 is checked.

(c) If the condition b<5 is true, table[a][b] is assigned a value that comes as a
result of (a*5)+i+1; .

(d) Then, the System.out.print(table[a][b] + " "); statement is used to print
the value that is assigned to table[a][b].

(e) Steps (a) to (d) are repeated until the condition b < 5 is true.

8. After the termination of the second for loop, System.out.println(); statement
is used to print nothing, but to shift the cursor to the next line.

9. Steps 6 to 8 are repeated until the condition a< 4 is true.

10. Finally, the value of table[4][5] will be 22 and this value is printed on screen as
the output.

Write a program to multiply two matrices and print the product.

Unit 4: Arrays and Strings

LOVELY PROFESSIONAL UNIVERSITY 69

Java extensively uses strings. Strings are sequence of characters or a character array. In Java, strings are
objects. The Java platform uses the String class for the creation and manipulation of strings. The String
class is found in the java.lang package, which is automatically imported.

Creating Strings
One simple form, in which the string can be created by using the String class is just by typing the text
within the double quotes. This is called a String literal.

4.3 Strings

“Hello, This is Java programming.”

Just like any other object, a string object can also be created using the new keyword and a constructor of
the String class. The String class has various constructors that can be used for providing the initial
value of the string using various sources like an array of characters.

Char [] arraychar= {J, a, v, a}; // using the character array

String arrayofchar = new String(arraychar); // using the string object

String Length
We can calculate the length of the string by using the length method, which returns the number of
characters in the string.

Syntax of String Length:

String1.length();

In this syntax, String1 is the name of the string in which the length() method is called.

Program to count the number of characters in the string.

import java.lang.*;

public class StringLen

{

 public static void main(String args[])

 {

 String str = "Programming";

 int length = str.length();

 System.out.println("String length is: " + length);

 }

}

Output:

The length of the string is: 11

In this example,

1. First the java.lang.* package is imported, using the import keyword, for
strings.

2. Then, a class StringLen is created and declared public with the public
keyword.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

70

3. In the class StringLen, main() method of the class is called, using the
public static void main(String args[]) statement.

4. In this method,

(a) First, a String str is declared for holding the string and is assigned a
string Welcome.

(b) Then, integer length is assigned the str.length(); method.

(c) Finally, the System.out.println("The length of the string is: " +
length); statement is used to print the length of the string, that is, the
number of characters in a string. As Programming consists of 11
characters, the output will be:

String length is:11

4.3.1 String Array
As the name suggests, string array is an array containing strings. We can declare string arrays in the
following two ways:

1. With an initial size

2. Without an initial size

1. With an Initial Size:

 In Java, we can declare string arrays and assign an initial size to them.

public class JavaStringArrayDemo

{

 private String[] fruits = new String[10];

 // more to the class here ...

}

void populateStringArray()

{

 fruits[0] = "Apple";

 fruits[1] = "Mango";

 fruits[2] = "Banana";

 // ...

}

In this example,

1. A class JavaStringArrayDemo is created, and declared public using the public
keyword.

2. In the class JavaStringArrayDemo, a String array named as fruits is created,
where the fruits array has been given an initial size of 10 elements.

3. Then, the elements in the String array are assigned by the
populateStringArray() method in the class:

(a) fruits[0] is assigned a string Apple.

(b) fruits[1] is assigned a string Mango.

(c) fruits[1] is assigned a string Banana.

Unit 4: Arrays and Strings

LOVELY PROFESSIONAL UNIVERSITY 71

Did you know? A String array in Java begins with an element numbered zero.

2. Without an Initial Size:

 We can also declare a Java String array without giving it an initial size.

public class JavaStringArrayDemo

{

 private String[] toppings;

 // more to the class here ...

}

After this, Java array can be given a size in the program code, and populated as
desired, like this:

void populateStringArray()

{

 fruits[0] = "Apple";

 fruits[1] = "Mango";

 fruits[2] = "Banana";

 // ...

}

This method of declaring an array is very similar to the first method. However, in this method, the
string array is not given any size until the populateStringArray method is called.

4.3.2 String Methods
A number of methods are defined in the String class. These methods are called as String methods,
which are used for different tasks of string manipulation. These string methods and the manipulation
tasks performed by them are as follows:

1. str2 = str1.toLowerCase; :

2.

 This method is used to change the string str1 to all lowercase and
assigns the value to str2.

str2 = str1.toUpperCase; :

3.

 This method is used to change the string str1 to all uppercase and
assigns the value to str2.

str1.concat (str2) :

4.

 This method is used to concatenate str1 and str2.

a.toString() :

5.

 This method is used to create object a’s string representation.

str1.length() :

6.

 This method is used to get the length of str1.

str1.substring (n): This method is used to get a substring that begins from the nth

7.

 character.

str1.substring(n, m) : This method is used to get a substring that begins from the nth character till
the mth

8.

 character.

str2 = str1.replace(‘a’, ‘b’); :

9.

 This method is used to replace all the appearances of a with b.

str2 = str1.trim (); :

10.

 This method is used to remove the white spaces (if any) from the starting and
the end of the str1.

str1.equals (str2) : This method is used to return true, when str1 is equal to str2.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

72

11. str1.compareTo(str2) :

12.

 This method is used for comparing two strings. If str1 < str2, it returns
negative, and if str1 > str2, it returns positive. If str1 = str2, then it returns 0 (zero).

str1.append (str2) :

13.

 This method is used to append str1 to str2 at the end.

str1.setLength(a) :

14.

 This method is used for setting the length of str1 to a.

str1.insert (a, str2) :

 This method is used for inserting the str2 at position a of str1.

Program to illustrate the concatenation of strings using the concat() method.

import Java.lang.*;

public class Stringconcat

{

 public static void main(String args[])

 {

 String str1 = "Good";

 String str2 = "Morning";

 System.out.println(str1.concat(str2));

 }

}

Output:

Good Morning

In this example,

1. A class Stringconcat is created, and declared public with the public
keyword.

2. In the Stringconcat class, the main() method of the class is called using the
public static void main(String args[]) statement.

3. In the main() method,

(a) Two string variables str1 and str2 are declared, and assigned the
 strings Good and Morning respectively.

 (b) Then, in the System.out.println(str1.concat(str2)); statement,
 concat() method is called for the concatenation of both str2 and
 str2 and print the output: Good Morning

4.3.3 String Operators
As arithmetic operators are used in arithmetic expressions, string operators are used for string
operations. Let us next discuss the different types of string operators.

== Operator
This operator is used for comparing the references to string objects. This comparison returns true, only
if these two string variables indicate the same object in the memory, else it returns false.

Unit 4: Arrays and Strings

LOVELY PROFESSIONAL UNIVERSITY 73

 The == operator cannot be used for the comparison between the content of the
text present in the string objects, as it only compares the references that the two
strings are pointing to.

Program to illustrate the use of == operator to compare two strings.

public class CompareStrings

{

 public static void main(String args[])

 {

 String cellphonename1 = "Nokia";

 String cellphonename2 = "Nokia";

// 1st case

 if (cellphonename1.equals(cellphonename2))

 {

 System.out.println("Equal Strings");

 }

 else

 {

 System.out.println("Unequal Strings");

 }

 // 2nd case

 if (cellphonename1.==cellphonename2)

 {

 System.out.println("Equal Strings");

 }

 else

 {

 System.out.println("Unequal Strings");

 }

 }

}

Output:

Equal Strings

Unequal Strings

In this example,

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

74

1. A class CompareStrings is created and declared public with the public
keyword.

2. In the CompareStrings class, main() method of the class is called in the
public static void main(String args[]) statement.

3. In this method,

(a) A String cellphonename1 is declared and assigned the string Nokia.

(b) Then, one more string String cellphonename2 is declared and is also
assigned the string Nokia.

//For 1st

(a) The if statement is used to compare cellphonename1 and
cellphonename2 to check whether they are equal or not, using the if
(cellphonename1.equals(cellphonename2)) statement.

 Case

(b) If the condition (cellphonename1.equals(cellphonename2)) is true,
Equal Strings is printed on the screen as the output, but if the condition
is false, Unequal Strings is printed on the screen as the output. As the
contents of cellphonename1 and cellphonename2 are the same, Equal
Strings is printed on the screen as the output.

//For 2nd

(a) The if statement is used to compare the references of cellphonename1
and cellphonename2 to check whether they are equal or not, using the
if (cellphonename1 == cellphonename2) statement.

 Case

(b) If the condition (cellphonename1==cellphonename2) is true, Equal
Strings is printed on the screen as the output, but if the condition is
false, Unequal Strings is printed on the screen as the output. As the
references of cellphonename1 and cellphonename2 are not the same,
Unequal Strings is printed on the screen as the output.

+ Operator
This operator can be used to concatenate two strings.

Syntax for Using + Operator

string 3 = string 1 + string 2;

Program to illustrate the concatenation of strings using + operator.

import java.lang.*;

public class ConcatStringDemo

{

 public static void main(String args[])

 {

 String str1 = "My name is";

 String str2 = "John";

 String str3 = str1 + " " + str2;

Unit 4: Arrays and Strings

LOVELY PROFESSIONAL UNIVERSITY 75

 System.out.println(str3);

 }

}

Output:

My name is John

In this example,

1. A class ConcatStringDemo is created, and declared public using the public
keyword.

2. In the class ConcatStringDemo, the main() method of the class is called
using the public static void main(String args[]) statement.

3. In this method,

(a) Two strings str1, and str2 are declared and assigned the strings My
name is and John respectively.

(b) A third string str3 is declared, which will store the output of
concatenation of str1 and str2. This concatenation is done using the +
operator.

4. Finally, the System.out.println(str3); is used to print the value stored in str3,
that is, My name is John.

4.3.4 StringTokenizer
Java packages consist of many classes. StringTokenizer class is one such class, which exists in
java.util.package. This class is mainly used for parsing a string into tokens by certain delimiters.

The objects which are created from the StringTokenizer class represent the StringTokenizers. Any of
the following three constructors of StringTokenizer class is called to create these objects.

1. StringTokenizer st = new StringTokenizer(s); :

2.

 This constructor is used to construct a
StringTokenizer st for the string s, in which, whitespaces are used as delimiters.

StringTokenizer st = new StringTokenizer(s, a); :

3.

 This constructor is used to construct a
StringTokenizer st for the string s using delimiters from the string a.

StringTokenizer st = new StringTokenizer(s, a, b); :

 This constructor is used to construct a
StringTokenizer st for the string s using delimiters from the string a. If the Boolean b is true, each
delimiter character will also be returned as a token.

The constructor returning false specifies that tokens are not returned.

All these constructors take argument(s), that is, a reference to a string. This argument specifies the string
that has to be tokenized.

After the creation of the tokenizer objects, different methods of StringTokenizer class can be called for
counting the number of tokens, checking whether more tokens are available or not, and returning a
token. These methods are described below.

1. StringTokenizer.hasMoreTokens(): This method returns true if there are more tokens available in
the string.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

76

2. StringTokenizer.nextToken():

3.

 This method returns the token that comes immediately after the
present token, as a String.

StringTokenizer.countTokens():

4.3.5 Exploring the String Class
There are many classes in the class library of Java. String class is the most widely used class in this
library, because strings are very important in Java programming. Every string that is created by the user
is a String type object. In Java, String constants are handled in the same manner as the normal strings
are handled.

String Class Constructors
The String class consists of various constructors to create objects of String type. These constructors are:

 This method returns the total number of tokens.

1. String():

2.

This constructor is the default constructor of the String class, which is used to create a
String object without any value or an empty object of String type.

String(char arr[]):

 This constructor is used to initialize the object of the String class by assigning a
value to it.

char arr[] = {‘J’, ‘A’, ‘V’, ‘A’}

String obj = new String(arr);

In this example, the array arr is passed as an argument to the constructor. The
object obj of the String class is assigned an initial value, that is, the string
“JAVA”.

3. String(char arr[], int start, int length):

 This constructor is used to assign a string to an array
containing only the array’s sub-array.

char arr[] = {‘J’, ‘A’, ‘V’, ‘A’}

String obj = new String(arr, 1, 2);

In this example, the array arr is passed as an argument to the constructor along
with the starting position of the array and the number of elements. The object obj
of the String class is assigned an initial value, that is, the first two characters of
the string “JAVA”, which is ‘AV’.

4. String(String obj):

Once a String object is created, the user cannot change its contents. This could seem to be a serious
restriction, but it is not, because:

 This constructor is used to assign the same string value to the new string object,
as the String object obj has.

1. If a string needs to be changed, the user can create a new string containing the alterations.

2. In Java, a peer class of string is defined, which is called as StringBuffer. This class permits the
alteration of strings.

String Buffer Constructors
The StringBuffer class provides three types of constructors.

1. StringBuffer():

 This constructor is the default constructor of the StringBuffer class, which does
not contain any parameters. This constructor first constructs an object and then does its
initialization with no character sequence. It has the capacity to store 16 characters.

Unit 4: Arrays and Strings

LOVELY PROFESSIONAL UNIVERSITY 77

StringBuffer sb1 = new StringBuffer();

In this example, StringBuffer is the name of the class, and sb1 is an object of that
class, which is initialized with no character sequence. The object sb1 has the
capacity to store 16 characters.

2. StringBuffer(int val):

 This constructor takes an argument of integer type, which is used to set the
buffer size. This constructor first constructs an object and then does its initialization with no
character sequence. It has the capacity to store the number of characters that is specified by the
value of variable val.

StringBuffer sb1 = new StringBuffer(10);

In this example, StringBuffer is the name of the class and sb1 is an object of that
class, which is initialized with no character sequence. The object sb1 has the
capacity to store 10 (this value is passed as an argument) characters.

3. StringBuffer(String obj):

 This constructor accepts the string object obj as an argument. This
constructor first constructs an object and then does its initialization with the character sequence
which is similar to the character sequence of string object obj. It has the capacity to store the
number of characters of the string object obj and 16 more characters additionally.

StringBuffer sb1 = new StringBuffer(“Java”);

In this example, StringBuffer is the name of the class and sb1 is an object of that
class, which is initialized with the Java character sequence. The object has the
capacity to store the number of characters of the string Java and 16 characters
additionally.

StringBuffer Methods
The StringBuffer class has some methods that can be used to manipulate the objects of that class.

1. length():

 This method is used to return the length of an object, that is, the number of characters
that are contained in an object.

StringBuffer sb1 = new StringBuffer(“Java”);

int a = sb1.length();

In this example, StringBuffer is the name of the class and sb1 is an object of that
class, which is initialized with the Java character sequence. Then, an integer
variable a is declared, which stores the length of the object. The length() method
is used to find the length of the string sb1, which gives 4 as output.

2. capacity():

int capacity()

 This method is used to return the number of characters that an object can store without
any increase in the object’s capacity. Syntax of this method:

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

78

StringBuffer sb1 = new StringBuffer(“Java”);

int a = sb1.capacity();

In this example, StringBuffer is the name of the class, and sb1 is an object of that
class, which is initialized with the Java character sequence. Then, an integer
variable a is declared, which stores the capacity of the object. The capacity()
method is used to find out the capacity of the object sb1, which finally gives 20 as
output. Out of these 20 characters, 4 characters are of Java, and remaining 16 are
already reserved.

These methods help in the manipulation of the objects of the StringBuffer class.

1. Write a program to print the sum of two matrices.

2. Write a program to swap the values of two arrays, and print the output.

• A Java array is an object containing fixed number of values of a single data type, which can be
created dynamically and is given a common name.

4.4 Summary

• In a Java program, the length of an array is fixed and it starts with zero (0).

• An array can be created with or without using the new operator.

• Initialization of an array can be done at the time of array declaration, or after the array creation.

• Array length specifies the number of array elements in an array.

• One-dimensional arrays are defined as a variables’ list comprising the data of same type.

• Generally, two dimensional or 2D arrays are referred to as one-dimensional arrays’ lists. 2D arrays
are represented in a row-column form

• A string is a sequence of characters which is created using the String class.

• The length of a string refers to the number of characters in a string.

• An array that contains strings is a string array.

• String class consists of some methods for creating string objects. These methods are called as
String methods.

• Two operators are used for String operations, = = operator, and + operator.

• The java.util.package consists of a class named as StringTokenizer class, which is mainly used for
parsing a string into tokens by certain delimiters.

• The StringBuffer class is a peer class of String, which is used for strings’ alteration.

4.5 Keywords
Arguments: A value that is passed to a function, procedure, subroutine, command, or program.

Delimiters: Strings that point to the separation between tokens.

Memory Location: A memory address where data in a computer program is stored.

Parsing:

 Division of string text into different parts, which are known as tokens, used to convey a
semantic meaning.

Unit 4: Arrays and Strings

LOVELY PROFESSIONAL UNIVERSITY 79

1. State whether the following statements are true or false:

4.6 Self Assessment

(a) Java arrays can be created dynamically.

(b) The elements in the array are accessed by referring to their index value.

(c) The == operator is used for the comparison between the content of the text present in the
String objects.

(d) The StringTokenizer class is mainly used for parsing a string into tokens by certain
delimiters.

(e) An array cannot be created without using the new operator.

(f) A String array in Java begins with an element numbered zero.

2. Fill in the blanks:

(a) The Array class implicitly extends __________________ package.

(b) _________________________ method is used to return true, if there are more tokens available
in the string.

(c) _________________ method is used to append str1 to str2 at the end.

(d) The length of the string can be calculated by using the length method, which returns the
number of ___________ in the string.

(e) The Java platform uses the String class for the creation and manipulation of __________.

3. Select a suitable choice for every question.

(a) Which of the following methods is used to create object a’s string representation?

(i) a.toString()

(ii) StringTokenizer.countTokens()

(iii) str1.append (str2)

(iv) str2 = str1.replace(‘a’, ‘b’);

(b) Which of the following methods is used to return the token that comes immediately after the
present token, as a String?

(i) StringTokenizer.countTokens()

(ii) StringTokenizer.nextToken()

(iii) StringTokenizer st = new StringTokenizer(s, a, b);

(iv) StringTokenizer st = new StringTokenizer(s, a);

(c) Which constructor is used for initializing the object of the String class by assigning value to it?

(i) String(char arr[])

(ii) StringBuffer(String obj)

(iii) StringBuffer()

(iv) String(char arr[], int start, int length)

(d) Which method is used to return true, if there are more tokens available in the string?

(i) StringTokenizer.hasMoreTokens() (ii) StringTokenizer.countTokens()

(iii) capacity() (iv) str1.length()

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

80

(e) Which method is used to remove the white spaces (if any) from the starting and the end of the
str1?

 (i) str1.append (str2) (ii) str2 = str1.trim(); (iii) str1.insert (a, str2) (iv) a.toString()

1. “In an array, the memory is allocated for the same data type sequentially and is given a common
name.” Justify.

4.7 Review Questions

2. “An array can also be created without using the new operator as Java supports dynamic array
allocation.” Justify with an example.

3. “In any program, the array length is fixed, when the array is created.” Comment.

4. “After the creation of an array, it should be initialized and given a value.” Discuss.

5. “Size of the array is returned by the length field of an array.” Discuss.

6. “2-dimensional arrays can be created in two ways.” Justify.

7. “String arrays can be declared with an initial size, and without an initial size.” Do you agree?
Justify with examples.

8. “Various string methods are used for different tasks of string manipulation.” Discuss these
methods.

9. “As arithmetic operators are used in arithmetic expressions, similarly string operators are used for
string operations.” Discuss these string operators.

10. “After the creation of the tokenizer objects, different methods of StringTokenizer class can be
called for counting the number of tokens, checking whether more tokens are available or not, and
returning a token.” Elaborate.

11. “The StringBuffer class consists of some methods that can be used for the manipulation of the
objects of that class.” Elaborate.

12. “Once a String object is created, the user cannot change its contents. This seems to be a serious
restriction, but it is not so.” Why?

Answers: Self Assessment
1. (a) True (b) True (c) False (d) True (e) False (f) True

2. (a) java.lang.Object (b) StringTokenizer.hasMoreTokens() (c) str1.append(str2)

(d) Characters (e) Strings

3. (a) a.toString() (b) StringTokenizer.nextToken() (c) String(char arr[])

 (d) StringTokenizer.hasMoreTokens() (e) str2 = str1.trim();

4.8 Further Readings

 Balagurusamy E. Programming with Java 3e Primer. New Delhi: Tata McGraw

Publishers.

 Schildt H. Java A Beginner’s Guide, 3rd ed. New York: Mc-Graw Hill

 http://www.javabeginner.com/learn-java/java-string-comparison

 http://www.leepoint.net/notes-
java/data/strings/55stringTokenizer/10stringtokenizer.html

 http://admashmc.com/main/images/Lec_Notes/javaarray.pdf

Unit 5: Packages

LOVELY PROFESSIONAL UNIVERSITY 81

CONTENTS

Objectives

Introduction

5.1 Defining a Package

5.2 Finding Packages and CLASSPATH

5.3 Access Protection

5.4 Importing a Package

5.5 Basics of Standard Java Packages

5.6 Summary

5.7 Keywords

5.8 Self Assessment

5.9 Review Questions

5.10 Further Readings

Unit 5: Packages

After studying this unit, you will be able to:

Objectives

• Describe packages

• Discuss the importance of access protection

• Explain the method used to import packages

• Identify the standard Java packages

Introduction
Java OOP has one important feature which states that the code that is already created can be reused by
extending the classes and implementing the interfaces. This ability to reuse the code is limited only to
the classes that exist within a program. To use the classes that are present in other programs, we can use
Java packages. While using Java packages, the classes are not copied physically into the program being
developed. In Java, a method, by which the class name space can be partitioned into more manageable
chunks, is known as a package.

Packages are similar to the header files used in C and C++. Packages are the library files in Java. They
are a collection of similar classes and interfaces. Java has many in-built packages. Package provides both
naming and visibility control mechanism. Code outside a package cannot access classes that are defined
within the package. We can define class members in such a way that these class members are exposed
only to other members of the same package. This property of packages allows the classes to have
knowledge of each other, but not share the knowledge.

Java allows you to create a class named Test, which can be stored in your own
package. This Test package will not collide with any other class named Test
stored elsewhere.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

82

The two main reasons for using packages are:

1. To avoid conflicts among classes

2. To facilitate reusability of code

If there are some applications that need the same code or method, then it is better to have the common
code in a separate file, and just use it in the application, wherever needed. Reusability of code is
possible in interface and inheritance as well, but putting the code separately in a package makes it easy
to manage the reusability of code in the classes.

Usually, packages are stored in a corresponding folder in the file system, but packages can also be
stored in a database. The name of the folder in the file system must have the same name as that of the
package. The folder has all the classes which belong to the package.

5.1 Defining a Package
Defining a package is simple. Just include a package command in the first statement in a Java source
file. All the classes declared within that file belong only to the specified package. The package statement
basically describes a name space that contains all the classes. The package statement specifies the
package, to which, the classes defined in a file belong. Suppose package statement is not used, all the
class names will be put into the default package, which has no name. Default packages suffice for short
and simple programs, but for real applications, it is inadequate. It is a good practice to define a package
for your code.

General form of the package statement:

package pkg;

Here, package is the keyword, and pkg is the name of the package.

package ExamplePackage;

In this example, package is the keyword, and ExamplePackage is the name of the
package that is created.

In Java, packages are stored in file system directories.

The class files for any classes that are declared as a part of ExamplePackage must be
stored in a directory called ExamplePackage.

Multiple files can include the same package statement.

Java is case-sensitive. Hence, the directory name must match the package name
exactly.

It is possible to create a hierarchy of packages. It is done by using a period in between the names of
packages.

General form of a hierarchical package statement:

package pkg1[.pkg2[.pkg3]];

The standard Java packages are best examples for hierarchical packages. One
such package is java.util.

A hierarchical package must be added in the file system of the Java development system.

Unit 5: Packages

LOVELY PROFESSIONAL UNIVERSITY 83

A package called package java.awt.font must be stored in java/awt/font,
java\awt\font, or java:awt:font on the UNIX, Windows, or Macintosh file
system, respectively.

The two basic requirements for creating a package are:

1. There should be one or more interfaces or classes in a package. This means that the package
cannot be empty.

2. The source code of the interfaces or classes that the package contains should be in the same
directory structure, as named in the package.

Having packages in a programming language is important, as it makes the work of the programmer
easy by holding all the related files in the same package. There are many library files or packages that
are in-built or predefined in Java. On the other hand, the users can create their own packages, which are
called as the user-defined packages. Thus, it can be said that there are two types of packages in Java,
which are:

1. Predefined Packages

2. User-defined Packages

Predefined Packages
As the name suggests, predefined packages are the packages that are already defined. They are the in-
built packages or the library files. There are many predefined classes and interfaces in Java that are used
while developing an application. These classes and interfaces are arranged in groups, and added to a
folder in the library files. Thus, they are called as predefined packages.

The classes that are needed for the input/output operations, are put inside the
java.io package. Similarly, the classes that are required for creating applets are
put under the java.applet package, and so on. This helps the java compiler to
search for the class in that particular package. Suppose an application is written
to demonstrate the use of input/output operations, then the java.io package is
imported in the application. This helps the java compiler to search for the input
/output streams in a particular class in the java.io package.

Whenever there is a need for any package in a class, it can be imported to the class by just using the
import keyword.

import java.io.*

If the input/output files are needed in an application, then it can be imported by
mentioning import java.io.* at the beginning of the application. This imports all
the classes in the io package.

General form of predefined packages:

import java.[package name].*;

import java.string.*;

The above code imports all the classes in the string class, which has all the string
operations.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

84

User-defined Packages
Another type of package supported by Java is the user-defined package. In Java, programmers can
define their own packages, if there are similar classes and the classes are needed in more than one
application.

Creating a User-defined Package
When a package is created, you have to first identify the classes and interfaces which can be included
that package.

While creating a package, first create a folder in the name of the package.

If the name of the package is Mypack, then name the folder as Mypack and copy
all the files, which belong to the Mypack package to this folder.

While importing the package in any file, add the package name at the top of the class file.

Naming Packages
While naming a package, first specify the domain name (if there is one) and then add the project name.
If there is no domain name, then the common way of naming the package is used, which is same as
discussed earlier. Even a user-defined package is created using the syntax as given below.

The general form of naming a package (or user-defined package) is:

package pkg;

As per this syntax, while naming a package first write the keyword package and then the name of the
package.

Program to illustrate the usage of packages in Java.

package MyPack;

class Emp

{

String name;

int employeeid;

Emp(String n, int empid)

{

name = n;

employeeid = empid;

}

public void display()

{

System.out.println("Employee: " + name);

System.out.println("Employee Id: " + employeeid);

}

Unit 5: Packages

LOVELY PROFESSIONAL UNIVERSITY 85

}

class EmployeeDetails

{

public static void main(String args[])

{

 int p;

EMP e = new EMP(4);

e[0] = new EMP("Ax”, 101);

e[1] = new EMP("By”, 102);

e[2] = new EMP("Cz”, 103);

e[3] = new EMP("Dk”, 104);

for(p = 0, p < 4, p++) e[p].display();

}

}

Output:

Employee: Ax

Employee Id: 101

Employee: By

Employee Id: 102

Employee: Cz

Employee Id: 103

Employee: Dk

Employee Id: 104

In this example,

1. First a user-defined package Mypack is defined.

2. Then, a class Emp is declared.

3. In this class Emp,

(a) A string name, and an integer employeeid are declared.

(b) Then, a constructor Emp(String n, int empid) is called, wherein:

 (i) String n is assigned to name.

 (ii) Integer empid is assigned to employeeid.

 (iii) Then, the display() method is called for displaying the below-given
 output on the screen.

 (iv) First, System.out.println("Employee: " + name); statement is used to
 print the name of the employee on the screen.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

86

 (v) Then, System.out.println("Employee Id: " + employeeid); statement
 is used to print the employee id on the screen.

4. A new class EmployeeDetails is created.

5. In this class EmployeeDetails,

(a) The main() method of the class is called.

(b) In this main() method,

 (i) An integer p is declared.

 (ii) A new employee EMP is created with the parameter 4, by using the
 new keyword, and is linked to EMP e.

 (iii) Then, new employees EMP are created with parameters name and
 employeeid, and are linked to employees e[0] to e[3], respectively.

 (iv) In for loop, value of p is initialized with 0, and p < 4 condition is
 checked. If this condition is true, then the respective employee’s
 name and id e[0] will be displayed, that is, e[p].display(); After
 printing this, the value of p is incremented by 1. This process
 continues till the condition is true.

Note: In this example, the employee names are given as Ax, By, Cz, Dk, and the
employee IDs are 101, 102, 103, and 104.

Did you know? Many Java packages work with Really Simple Syndication (RSS). RSS is a
method by which regularly changing Web content is delivered to the user’s
browser or desktop.

Adding Class to a Package

After the package is created, it is stored in the folder with the name of the package. Then, classes and
interfaces are added into that folder.

Adding a class to an already existing package is done by adding the statement with the classname.java
source file in the first line of the application.

General Form of Adding a Class to a Package:

[Class name].java;

package [package name];

In this syntax of adding a class to a package, the first statement specifies the class, which has to be
added to the package. This statement will be the first statement in the application. In the second
statement, the keyword package is used along with the name of the package, to define the package.

One.java;

package Mypack;

In this example, a class One is added to the package Mypack. To add the class
One.java, a statement with the class name.java that is ‘One.java’ is added as the
first statement.

Classes can be hidden in such a way that some important part of the code is blocked, so that the client
cannot access it.

Unit 5: Packages

LOVELY PROFESSIONAL UNIVERSITY 87

1. Java run-time system always uses the current working directory as its starting point. Therefore, if
the user-defined package is present in the current directory or the sub-directory of the current
directory, it will be found.

5.2 Finding Packages and CLASSPATH
From the above explanation, it is quite clear that packages are known with their respective directories.
This raises a question. How does Java run-time system know where to look for a package that was
created by a user and is used in a program?

This question has two answers:

2. The user can also specify a directory path or paths by setting the CLASSPATH environmental
variable.

Consider the following package specification.

package ExPack;

If a program has to find ExPack, either of the two things must be true – the
program is executed from a directory which is just above ExPack or CLASSPATH
must be set to include the path to ExPack.

The first alternative provided in the above example is easier as it does not require a change in the
CLASSPATH. However, the second alternative allows your program to find ExPack, whichever
directory the program is placed in. Ultimately, the programmer decides the method to be used in the
program.

Program to illustrate the usage of CLASSPATH.

package AccountPack;

class MyBalance

{

 String name;

 double balance;

 MyBalance(String n, double b)

 {

 name = n;

 balance = b;

 }

 void show()

 {

 if(balance<0)

 System.out.print("--> ");

 System.out.println(name + ": $" + balance);

 }

}

class MyAccountBalance

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

88

{

 public static void main(String args[])

 {

 MyBalance current[] = new MyBalance[3];

 current[0] = new MyBalance("Sanjay", 333.45);

 current[1] = new MyBalance("Sharath", 138.91);

 current[2] = new MyBalance("Asha", 245.67);

 for(int i=0; i<3; i++) current[i].show();

 }

}

Name this file as MyAccountBalance.java and put it in a directory called
AccountPack.

The next step is to compile the file. While compiling, make sure that the resulting
.class file is also in the AccountPack directory. Then execute the
MyAccountBalance class, using the following command line:

java AccountPack.MyAccountBalance

It is essential that you are in the directory above AccountPack when you execute
this command, or you have your CLASSPATH environmental variable set
appropriately. As explained, MyAccountBalance is now part of the package
AccountPack. Hence, it cannot be executed by itself. Therefore,
MyAccountBalance must be qualified with its package name.

Advantages of Using a Package
The advantages of using a package are:

1. It helps in finding the classes and interfaces easily, as they are grouped together in a single and
specific package.

2. It helps in having more than one class with the same name when their functionality is same, but
they should be in different package.

Did you know? Java packages are stored in a file called Java Archive (JAR) file. Packages stored
in a JAR file can be optionally sealed in such a manner that the package can
implement version consistency.

We know that hiding of classes is possible in Java. It is done using the access control keywords - public,
private and protected.

5.3 Access Protection

1. Public Modifier: When a class, a method and the variables are declared as public, these methods,
classes and variables are visible from the subclasses in the same package, subclasses in the other
packages, non-subclass in the same package and non-subclass in the other packages.

2. Protected Modifier: When a class, a method and the variables are declared as protected, these
methods, classes and variables are visible from the subclasses in the same package, subclasses in
the other packages, non-subclass in the same package and are not visible from the non-subclass in
the other packages.

Unit 5: Packages

LOVELY PROFESSIONAL UNIVERSITY 89

3. Default Modifier: When there is no access modifier specified for a class, a method, or variable,
then the methods, classes and variables are considered as default. These methods, classes and
variables are visible from the subclasses in the same package and non-subclass in the same
package, whereas they are not visible from the subclasses in the other packages and the non-
subclass in the other packages.

4. Private Modifier: When a class, a method and the variables are declared as private, these methods,
classes and variables are not visible from any class or subclass outside the class.

Packages add a different dimension to access control. Java provides multiple levels of protection, which
facilitates fine-grained control over the visibility of variables and methods within packages. The main
purpose of access protection is to protect variables from external modification.

Access modifiers that are used in classes, block some important part of the code in such a manner that
this block becomes invisible to the users. Similarly, there are some access modifiers in packages also,
which are used to hide some classes of the package in the main application.

Classes and packages are used to encapsulate the variables and methods of the classes, and limit the
scope of the variables. Packages are containers for classes, and classes are containers for data and code.
As the packages and classes have some kind of inter–relationship, the packages in Java are categorized
into four different types based on their relationship with each other. These categories are:

1. Subclasses that are in the same package

2. Subclasses that are in different packages

3. Non–subclasses that are in the same package

4. Classes that are neither found in the same package nor in the subclasses

Table 5.1 illustrates the access specification in packages.

 Table 5.1: Access Modifiers in Packages

Categories of the
package

Public Protected Default Private

Subclasses that are in
the same package

Yes Yes Yes No

Subclasses that are in
different packages

Yes Yes No No

Non–subclasses that are
in the same package

Yes Yes Yes No

Non–subclasses that are
in different packages

Yes No No No

Benefits of Access Protection
Access protection provides the following benefits:

1. It permits the enforcement of constraints on an object's state.

2. It provides a simpler client interface. Client programmers do not need to know everything that is
present within the class. It is sufficient if they know what is present in the public parts of a class.

3. It separates interface from implementation, allowing them to vary independently.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

90

For instance consider making the licensePlate field of Car an instance of a new
LicensePlate class instead of a String.

Once the package is created and executed, it can be used in different classes. To use a package in any
class, the package has to be imported in the class, which has to use it. Importing the package can be
done in three ways, which are:

5.4 Importing a Package

1. Using the fully qualified name of a package

2. Importing the package and the class

3. Importing the package completely

Using the Fully Qualified Name of a Package
In this method of importing a package, the package is imported till the method level.

General Form of Fully Qualified Name of a Package

Package [package name].[class name].[method];

In the syntax, package is the keyword and the package name is the name of the package to which the
method is being imported, class name is the name of the class to which the method belongs, and the
method is the name of the method that is being imported.

package Mypack.EMP.display();

In this example, the package Mypack is imported till the method level. Here, the
package Mypack has a class EMP, which has a method display(). The package
Mypack is imported till the method display() of the class EMP.

When packages are imported in this way, only the specified method (of the package) will be available to
the class.

Importing the Package and the Class
In this method of importing a package, the package is imported till the class level.

General Form of Importing the Class of a Package

package [package name].[class name];

In the syntax, package is the keyword, package name is the name of the package to which the class is
being imported and the class name is the name of the class which is being imported.

package Mypack.EMP;

In this example, the package Mypack is imported till the class EMP level.

Importing the Package Completely
In this method of importing a package, the package is imported till the package level, that is, all the
classes and interfaces of the package are imported to the class, which uses the package.

General Form of Importing a Package Completely

package [package name].*;

Here, package is the keyword and package name is the name of the package that has to be imported. In
the above syntax, the * at the end indicates that all the classes and interfaces of the package are
imported into the class, which imports it.

Unit 5: Packages

LOVELY PROFESSIONAL UNIVERSITY 91

package Mypack.*;

In this example the package Mypack is imported with all its classes and
interfaces till the package level.

The * used in the above syntax may increase the compilation time. This happens
most of the time, in those cases, where several large packages are imported. In
such cases, it is better to explicitly name the classes that you use, instead of
importing whole packages. However, it is important to note that the * has no effect
on the run-time performance or size of the classes in a program.

Java Application Programming Interface (API) facilitates the grouping of a large number of classes into
different packages. These classes are grouped into packages based on their functionality. Mostly,
programmers use the packages that are available with the Java API.

Figure 5.1 illustrates some of the packages that are frequently used in Java.

5.5 Basics of Standard Java Packages

 Figure 5.1: Frequently used Packages in Java

Table 5.2 illustrates the functionality of these frequently used packages.

Table 5.2: Functionality of Frequently used Packages

Packages Functions

java.lang Contains language support classes. These packages are
automatically imported as these classes are used by the Java
compiler itself. The java.lang package includes classes for
primitive types, strings, math, functions, exception and
threads.

java.util Contains the language utility class such as vectors, hash tables,
random numbers, date, and so on.

java.io Contains the input/output support classes. These packages
provide facilities for the input/output of data.

Cont..

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

92

java.awt Contains a set of classes that are used for implementing
graphical user interface. This package includes classes for
buttons, windows, menus, lists, and so on.

java.net Contains the classes that are required for networking. This
package includes classes that are required for communicating
with the local computers and also with the Internet servers.

java.applet Contains the classes that are required to create and implement
applets.

The two most widely used Java API packages are java.lang and java.util.

java.lang
As depicted in table 5.3, java.lang package is automatically imported by the Java compiler. It contains
all the classes that are the basis for almost all the programs written in Java.

Table 5.3 shows the classes that are included in java.lang package.

Table 5.3: Classes Included in java.lang Package

Boolean Byte Character Class System

ClassLoader Compiler Double Float Thread

InheritableThreadLocal Integer Long Math ThreadGroup

Number Object Package Process ThreadLocal

Runtime RuntimePermission SecurityManager Short Throwable

StackTraceElement StrictMath String StringBuffer Void

The following are the interfaces that are defined by java.lang package:

1. Cloneable

2. Comparable

3. Runnable

4. CharSequence

The Comparable interface was added by Java 2 and the CharSequence interface was added by Java 2,
version 1.4.

Most of the classes that are included in the java.lang package are deprecated methods.
These methods were included to be implemented in Java 1.0, but are still provided by
Java 2 to support the pool of legacy code. However, these deprecated methods are not
used in new codes.

Java 2 added quite a lot of new classes and methods to the java.lang package.

Unit 5: Packages

LOVELY PROFESSIONAL UNIVERSITY 93

To know the list of java.lang interfaces, classes and their functionalities, refer “Schildt, H. (2008). The
Complete Reference, 7th

 ed. Tata McGraw-Hill.”

java.util
One of the most powerful subsystems of Java is collections. The java.util package contains this
subsystem – collections. A collection is nothing, but a group of objects. Collections were introduced in
Java 2 and later enhanced by Java 2, version 1.4.

Apart from collections, java.util contains a variety of classes and interfaces that support various
functionalities. These classes and interfaces are mostly used throughout the Java packages and in the
Java codes written by programmers. Since java.util has several features, it is one of the most widely
used Java packages.

Table 5.4 shows all the classes that are included in java.util package.

Table 5.4: Classes Included in java.util Package

AbstractCollection Calendar HashMap Locale

AbstractList Collections HashSet Observable

AbstractMap Currency HashTable Properties

AbstractSequentialList Date IdentityHashMap PropertyPermission

AbstractSet Dictionary LinkedHashMap PropertyResourceBundle

ArrayList EventListenetProxy LinkedHashSet Random

Arrays EventObject LinkedList ResourceBundle

BitSet GregorianCalendar ListResourceBundle SimpleTimeZone

Stack StringTokenizer Timer TimerTask

TimeZone TreeMap TreeSet Vector

WeakHashMap

Just like the java.lang package, java.util package also defined few interfaces. These interfaces are
depicted in the table 5.5.

Table 5.5: Interfaces Included in java.util Package

Collection Comparator Enumeration EventListener Iterator

List ListIterator Map Map.Entry Observer

RandomAccess Set SortedMap SortedSet

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

94

The ResourceBundle, ListResourceBundle, and PropertyResourceBundle classes are useful in the
internationalization of large programs with many locale-specific resources. PropertyPermission allows
you to grant read/write permission to a system property.

Most of the java.util interfaces were added by Java 2.

To know the list of java.util interfaces, classes and their functionalities, refer “Schildt, H. (2008). The
Complete Reference, 7th ed. Tata McGraw-Hill.”

Write a program to create and import a user defined package.

• Packages are similar to header files that are used in C and C++.

5.6 Summary

• Packages are mainly used for avoiding class conflicts and for facilitating the code reusability.

• A package can be created by using the package command as the first statement in a Java source
file.

• Hierarchy of packages can be created using a period in between the names of packages.

• Packages can be classified as predefined packages or user-defined packages. Predefined packages
are packages that are already defined. User-defined packages are packages that are created by
users.

• Packages are identified with their respective directories.

• Access protection is done to protect variables from external modification.

• A package can be imported by using the fully qualified name of the package, importing the
package and the class, or importing the package completely.

• Java API facilitates the grouping of several packages into different packages according to their
functionality.

• The two most widely used Java API packages are java.lang and java.util.

5.7 Keywords
API: A set of rules and specifications that a software program can follow to access and use the services
and resources provided by another particular software program that implements the same API.

Case-sensitive: Computer command that specifies that every letter in a word must be typed exactly as
required, that is, in upper-case or lower-case.

Deprecate: Software features that are outdated and must be avoided.

Domain Name: Represents the symbolic depiction of numerical Internet address.

1. State whether the following statements are true or false:

5.8 Self Assessment

(a) Packages are often stored in a corresponding folder in the file system, but packages can be
stored in a database.

(b) Reusability of code is possible only in inheritance.

Unit 5: Packages

LOVELY PROFESSIONAL UNIVERSITY 95

(c) Java run-time system always uses the current working directory as its starting point.

2. Fill in the blanks:

(a) ___________ defined within a package cannot be accessed by code outside that package.

(b) While naming a package, first the __________ has to be specified.

(c) The user can also specify a directory path or paths by setting the ___________ environmental
variable.

3. Select a suitable choice for every question:

(a) Packages are mainly used to:

 (i) Facilitate reusability of code.

 (ii) Create hierarchy of packages.

 (iii) Manage library files.

 (iv) Specify a directory path.

(b) Which of the following are the elements that a package encapsulates?

 (i) Data and code

 (ii) Variables and methods

 (iii) Classes and interfaces

 (iv) Classes and objects.

(c) Identify which of the following packages are not declared as protected.

 (i) Subclasses that are in the same package.

 (ii) Subclasses that are in different packages.

 (iii) Non-subclasses that are in the same package.

 (iv) Non-subclasses that are in different packages.

(d) Identify which of the following classes are included in java.util.

 (i) SecurityManager

 (ii) Throwable

 (iii) StackTraceElement

 (iv) Dictionary

(e) Which of the following are useful in the internationalization of large programs with many
locale-specific resources?

 (i) SortedSet

 (ii) RandomAccess

 (iii) ListIterator

 (iv) ListResourceBundle

1. "In Java, programmers can define their own packages, if there are similar classes and the classes
are needed in more than one application". Explain how this can be achieved.

5.9 Review Questions

2. "Java run-time system knows where to look for a package that was created by a user and is used in
a program". Comment.

3. "Packages add a different dimension to access control". Elaborate.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

96

4. "To use a package in any class, the package has to be imported in the class which has to use it".
Discuss.

5. "Java Application Programming Interface (API) facilitates the grouping of a large number of
classes into different packages". Do you agree? Justify your answer.

6. "The java.lang package is automatically imported by the Java compiler". What are the classes and
interfaces that are contained in this package?

7. "Packages are the library files in java". Justify.

8. "Creating a package is simple". Explain the method that supports this statement.

9. Explain the different packages that are supported by Java and also the methods of creating them.

10. "Adding a class to an already existing package is done by adding the statement with the
classname.java source file". Elaborate.

Answers: Self Assessment
1. (a) True

 (b) False

 (c) True

2. (a) Classes

 (b) Domain name

 (c) CLASSPATH

3. (a) Facilitate reusability of code

 (b) Variables and methods

 (c) Non-subclasses that are in different packages

 (d) Dictionary

 (e) ListResourceBundle

5.10 Further Readings

Balagurusamy, E, Programming with Java 3e Primer, Tata McGraw Publishers, New
Delhi

Schildt Herbert, Java A Beginner’s Guide, Third Edition

http://java.sun.com/docs/books/jls/third_edition/html/packages.html

http://download.oracle.com/javase/1.4.2/docs/api/java/util/package-
summary.html

Unit 6: Interfaces

LOVELY PROFESSIONAL UNIVERSITY 97

CONTENTS

Objectives

Introduction

6.1 Defining Interfaces

6.2 Implementing Interfaces

6.3 Extending Interfaces

6.4 Difference between Packages and Interface

6.5 Summary

6.6 Keywords

6.7 Self Assessment

6.8 Review Questions

6.9 Further Readings

Unit 6: Interfaces

After studying this unit, you will be able to:

Objectives

• Define interfaces

• Describe the implementation of interfaces

• Explain the use of extends keyword to extend interfaces

Introduction
In software engineering, we come across several situations where groups of programmers find it
necessary to come to a common ‘agreement’ that indicates how their software interacts. Each group
must be in a position to develop a code without having any knowledge on the code that is being
developed by the other group. In Java, interfaces are such ‘agreements’. The concept of interface was
introduced to achieve multiple inheritance, hierarchical inheritance, and dynamic polymorphism.

An interface is a unique code in Java, which contains method signatures (includes the method name and
the parameter list), and some constant values. Interfaces are like abstract classes, but, the major
difference between inheritance and abstract classes is that, in interfaces, all the methods are abstract,
whereas abstract class can also contain methods that have its implementation in the same class other
than the abstract methods. Interface looks like a class, but without instance variables, and its methods
are declared without any coding in the body of the method. The implementations of these methods are
given in the class that implements this interface.

Interfaces specify the structure of the class by declaring the methods with their signatures. The keyword
implements is used in the class, while declaring the class name, that is, at the time of class definition.
When a class implements an interface, it must give the definition for all the methods that are defined in
the interface. If any method of the interface is not defined in the class, then the compiler gives an error
message while compiling the class; in such cases, the class must be declared as an abstract class.

A single interface can be implemented in more than one class. Similarly, a class can implement more
than one interface. Objects or instances of an interface cannot be created. Moreover, interfaces do not
have their own behavior. The methods of an interface are always public, even if not declared public.
The constant variables that are declared in the interface are always final, even if not declared final.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

98

6.1 Defining Interfaces
An interface is defined just the same way as a class is defined.

General Form of Defining an Interface
 access specifier interface [interface name]

{

 //Body of the interface

 type final var a = value;

 type final var b = value;

 return type method nameA(Parameter list);

 return type method nameB(Parameter list);

}

In this syntax, an access specifier such as public, private or protected must be used. If the access
specifier is not declared, then the interface takes the default access specifier (public), and is available to
the other classes or interfaces, which are only within the same package. After the access specifier, the
keyword interface is given followed by the name of the interface. The body of the interface is written
within the braces, and it consists of the constant variables and the method declaration.

public interface Int1

{

 public void exam();

}

In this example of a simple interface, the interface Int 1 has only one method, that
is, public void exam(); . This method is implemented in the class of classes that
implement the interface Int 1.

It is important to define an interface, so that it can be used in more than one class that has similar
methods.

6.2 Implementing Interfaces
Once defined, interfaces are implemented. Implementing interfaces helps to access the methods and
variables of the interface in a class. When a class implements an interface, all the methods in the
interface have to be implemented in that class. If there is any method that has not been implemented,
then the Java compiler gives an error message while compiling the program.

Once the interfaces are defined, they can be implemented by one or more classes. For implementing an
interface in any class, a keyword implements is used in the definition of the class. The keyword
implements indicates that the methods that are defined in the interface are implemented in the class.
The class that implements the interface must be declared as public, and it is free to have its own
variables and methods.

General Form of Implementing an Interface
access modifiers class [class name] implements [Interface name]

{

 Type final var = value;

 Return type method name(Parameter list);

}

Unit 6: Interfaces

LOVELY PROFESSIONAL UNIVERSITY 99

The above syntax is of a class implementing an interface. An access modifier must be specified in the
syntax, along with the class name, followed by the keyword implements and the name of the interface
that has to be implemented. Within the braces, the methods and constant variables are declared.

Program to illustrate the implementation of an interface.

public class Interfaceexample implements Int1

{

public void exam()

{

System.out.println("Example of an interface");

}

public static void main(String args[])

{

Interfaceexample intex = new Interfaceexample();

intex.exam();

}

}

Output:

Example of an interface

In this example,

1. First, a class Interfaceexample implements the interface Int1.

2. Then, the method exam() of the interface Int1 is implemented in the class

 Interfaceexample.

3. The main() method of the class is then called.

4. In this main() method,

 (a) A new object intex of the class Interfaceexample is created, by using

 the new keyword.

 (b) Then, exam() method of the object intex is called.

Finally, the program is tested and executed. The output of the application prints
the implementation given in the class Interfaceexample for the method of the
interface Int1.

A class can implement more than one interface.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

100

Write a program to implement an interface in the class.

6.3 Extending Interfaces
An interface can extend another interface just like how a class can extend another class. As an extend
keyword is used to extend classes, interfaces also use extends keyword to extend interfaces.

General Form of Extending an Interface
 access modifier interface [interface name] extends interface 1, interface 2, …..

{

 Type final var = value;

 Return type method name(parameter list);

}

In the above syntax, first the access modifier is specified along with the keyword interface and the
name of the interface to which the other interfaces are inherited. This is followed by the keyword
extends and the name of interfaces which are being inherited. Within the braces, the methods and
constant variables are declared.

public interface One

{

public void extend1();

}

The above code is an example of an interface, which has a single method extend1(
); .

public interface Two extends One

{

public void extend2();

}

The above code is an example of an interface, which extends another interface.
Here, interface Two is the interface, which inherits interface One. Hence, the
keyword extends is used in the definition of the interface.

Unit 6: Interfaces

LOVELY PROFESSIONAL UNIVERSITY 101

Combining the previous two examples:

public class Intextend implements Two

{

public void extend1()

{

System.out.println("Implementing from interface One");

}

public void extend2()

{

System.out.println("Implementing from interface Two");

}

public static void main(String args[])

{

Intextend ie = new Intextend();

ie.extend1();

ie.extend2();

}

}

Output:

Implementing from interface One

Implementing from interface Two

In this example,

1. First, a class Intextend implements another class Two.

2. In this class,

 (a) The extend1() method is called. In this method,

 System.out.println("Implementing form interface One"); statement is

 used to print Implementing form interface One on the screen.

 (b) Then, the extend2() method is called. In this method,

 System.out.println("Implementing form interface Two"); statement is

 used to print Implementing form interface Two on the screen.

 (c) The main() method of the class is then called.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

102

 (d) In this main() method,

 (i) A new object ie of the class Intextend is created, by using the new

 keyword.

 (ii) Then, the methods extend1() and extend2() are called for the new

 object.

Finally, the output of the application prints the implementation given in the class
Intextend for the method of the interfaces One and Two.

Classes cannot extend interfaces and interfaces cannot extend classes.

Write a program to extend interfaces and implement it in the class.

Accessing Interface Variables
The variables of an interface are always declared as final. Final variables are those variables, whose
values are constant and cannot be changed. The class that implements the interface can use the variables
as declared in the interface and cannot modify or change the value of the variable.

Program to illustrate the concept of accessing interface variables.

public interface Selectcolor

{

 int blue = 4;

 int yellow = 5;

 int pink = 6;

 public void choose(int color);

}

In the above code, an interface named as Selectcolor is given. The interface has
three variables; all are integer variables. It has a method void choose, which takes
an integer type parameter.

class SelectImp implements Selectcolor

{

 public void choose(int color)

 {

 switch(color)

 {

 case blue: System.out.println("The color selected is blue");

Unit 6: Interfaces

LOVELY PROFESSIONAL UNIVERSITY 103

 break;

 case yellow: System.out.println("The color selected is yellow");

 break;

 case pink: System.out.println("The color selected is brown");

 break;

 }

 }

 public static void main(String args[])

 {

 SelectImp si = new SelectImp();

 si.choose(4);

 si.choose(5);

 si.choose(6);

 }

}

Output:

The color selected is blue

The color selected is yellow

The color selected is brown

In the above example,

1. First an interface Selectcolor is created and the values for the integers

 blue, yellow and brown are set as 4, 5 and 6 respectively.

2. Then a method choose() which takes in an integer parameter is

 declared.

3. A class SelectImp is created, which implements the interface

 Selectcolor.

4. Then the method choose() of the interface Selectcolor is implemented
 using the switch case statements.
5. Then there is a main() method which creates the object of the class
 SelectImp and call the choose() method of the SelectImp class with
 different parameters or argument.

 Then the program is tested and executed.

If the integer value that is passed as an argument to the choose() method is ‘4’
which is the value for the color ‘blue’ then the first case is executed and the
statement “The color selected is blue” is printed. If the value passed as an
argument to the choose() method is ‘5’ then the second case statement is
executed and thus the output will be "The color selected is yellow," and so on.

In this application, the choose() method is called three times in the main()
method with different values so all the three cases are executed.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

104

The output of the application prints the implementation given in the class
SelectImp for the method of the interface Selectcolor.

Table 6.1 shows the differences between packages and interfaces.

6.4 Differences between Packages and Interfaces

Table 6.1: Differences between Packages and Interfaces

Packages Interfaces

A package is a method used to group objects;
it is very similar to grouping items within a
folder or directory on a file system.

An interface is a .java file that is
implemented by another class to tell the
outside world that it corresponds to a certain
specification.

A class is present within a package, but this
does not have an impact on the behavior of
the class.

Interfaces basically refer to the visible
methods of an object.

Interfaces are more similar to abstract classes than packages. An interface does not contain any
implemented methods. On the other hand, an abstract class can define few methods and allow few
methods to be implemented by a subclass. Another difference between interfaces and abstract class is
that, a class can implement multiple interfaces, but a class can extend only one abstract class.

Write a program to access an interface variable.

• Interfaces are unique codes that contain method signatures and few constant values.

6.5 Summary

• It is possible to implement a single interface in multiple classes. A class can also implement
multiple interfaces.

• The methods of an interface are always public.

• An interface can extend another interface.

• Extends keyword is used to extend interfaces.

• Interfaces are more similar to abstract classes.

6.6 Keywords
Access Specifier: Controls the access to the names that follow it, up to the next access specifier or the
end of the class declaration.

Dynamic Polymorphism: Polymorphism exhibited at runtime.

Hierarchical Inheritance: Multiple classes being derived from a single class.

Polymorphism:

Ability of an object to take on many forms.

Unit 6: Interfaces

LOVELY PROFESSIONAL UNIVERSITY 105

1. State whether the following statements are true or false:

 (a) Implementing interfaces helps to access the methods and variables of the interface in the class.

 (b) Cloneable is an interface that is included in java.util.

 (c) The class that implements the interface can use the variables as declared in the interface and can
 modify or change the value of the variable.

2. Fill in the blanks:

 (a) The variables of an interface are always declared as ___________.
 (b) An __________ is a java file that is implemented by another class to tell the outside world that it
 corresponds to a certain specification.
 (c) Interfaces use __________ keyword to extend interfaces.

3. Select a suitable choice for every question:

 (a) Which of the following keyword is used in the class while declaring the class name?

 (i) Implements

 (ii) Extends

 (iii) Abstract

 (iv) Final

 (b) The class that implements the interface must be declared as _________.

 (i) private

 (ii) public

 (iii) protected

 (iv) default

6.7 Self Assessment

1. “Interfaces are like abstract classes”. Comment.

2. “Once the interfaces are defined, it can be implemented by one or more classes”. How can this be

 achieved?

3. “An interface can extend another interface just like how a class can extend another class”. Explain

 the methods to achieve this.

4. “Interfaces are similar to abstract classes than packages”. Discuss.

5. “An interface is defined just the same way as class is defined”. Justify.

6. “The class that implements the interface can use the variables as declared in the interface and cannot

 modify or change the value of the variable”. Discuss.

Answers: Self Assessment
1. (a) True (b) False (c) False

2. (a) final (b) Interface (c) extends

3. (a) Implements (b) public

6.8 Review Questions

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

106

6.9 Further Readings

Balagurusamy, E, Programming with Java 3e Primer, Tata McGraw Publishers, New
Delhi

Schildt Herbert, Java A Beginner’s Guide, Third Edition

http://www.learn-java-tutorial.com/Java-Interfaces.cfm

http://download.oracle.com/javase/tutorial/java/IandI/createinterface.html

Unit 7: Exception Handling

LOVELY PROFESSIONAL UNIVERSITY 107

CONTENTS

Objectives

Introduction

7.1 Meaning of Exception Handling

 7.1.1 Exception Types

7.2 Uncaught Exception

7.3 Throw

7.4 Throws

7.5 Finally

7.6 Creating Exception Subclasses

7.7 Summary

7.8 Keywords

7.9 Self Assessment

7.10 Review Questions

7.11 Further Readings

Unit 7: Exception Handling

After studying this unit, you will be able to:

Objectives

• Explain the fundamentals of exception

• Describe uncaught exception

• Discuss throw, throws and finally keywords

• Explain the creation of exception subclasses

A program rarely runs successfully in its first attempt. This is because of the errors that are present in
the program code. In many programming languages, the errors that occur in programs must be
identified and corrected manually. This is a troublesome process. But, Java has such a mechanism of
exception handling that helps the programmers to catch the exceptions easily and handle these
exceptions carefully, so that it does not affect the programs during execution.

According to Bruce Eckel, “The reason exception handling systems were developed is because the
approach of dealing with each possible error condition produced by each function call was too onerous,
and programmers simply weren’t doing it. As a result, they were ignoring the errors. It is worth
observing that the issue of programmer convenience in handling errors was a prime motivation for
exceptions in the first place”.

Exception handling mechanism has one main advantage, that is, much of the error handling code that
previously had to be entered manually, can now be automated into any large program.

Introduction

In some programming languages, error codes are returned on the failure of a
method, and these error codes must be checked manually, whenever the method
is called. This methodology is both difficult and error-prone.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

108

The problem that comes up during the execution of a program is denoted as an exception. This problem
can arise due to several reasons, which includes:

7.1 Meaning of Exception Handling

1. Supply of invalid data by user

2. Unavailability of the file required to be accessed

3. Loss of network connection in the middle of communications

4. Shortage of memory in the JVM

Some exceptions occur due to the error generated by the user and the programmer, whereas some other
exceptions occur due to the failure of physical resources.

An exception can be considered as an object that includes information about the type of error that has
occurred.

Whenever any problem occurs while accessing a disk file, Java generates an exception in the form of an
object specifying the details of the problem. Thus, whenever a network related problem is identified,
Java wraps up the details of the problem into an object in the form of an exception.

Whenever an error occurs, an object that represents the exception created and is thrown to the method
in which the error occurred. The exception that occurred has to be handled in the same method or can
be passed on further in the application, but it has to be caught in the application at some point and
processed, so that the application does not give any error during run time. The exception object can be
generated by the run time system or can be created manually. When an exception object is created and
handed over to the run time system, it is called as throwing an exception.

Apart from generating exceptions for the identification of errors that are external to a program, Java
also generates exceptions for irregular code within the program.

Java produces an exception whenever an invalid array of index is accessed or an
illegal class-cast is attempted.

Exception handling follows the concept of universal error processing, wherein the error correction code
is taken out from the main body of code and is supplied to several exception handlers.

It can also be said that exceptions are necessary to interrupt the flow of control, when something
important or unpredicted (generally an error) occurs. Basically, whenever an exception is raised, the
control is transferred to some other part of the program that can try to deal with that exception/error,
or at least terminate it completely.

Once an exception occurs, the program is automatically terminated. This exception must be handled
properly to run that program. Exception handlers are used to handle these exceptions. Java uses the
following keywords to handle exceptions:

1. try

2. catch

3. finally

4. throws

5. throw

When only try and catch are used in a program, their combination is called as the try-catch block. This
block is used to catch a Java exception. Only one exception type can be handled by every catch block,
and more than one catch clause can be used in a single try block. In the try-catch block, the try block
surrounds a statement that may cause the occurrence of the exception, and the catch block follows the
try block. On the occurrence of the exception, a code (that should be executed) is specified in this catch
block.

Unit 7: Exception Handling

LOVELY PROFESSIONAL UNIVERSITY 109

Some of the terminologies used within exception handling are:

1. Throwing:

2.

 A process through which an exception is generated and thrown to the program.

Catching:

3.

 Capturing a currently occurred exception and also executing statements that may help
in resolving those exceptions.

Catch Clause, or Catch Block:

4.

 The block of code that tries to handle the exception.

Stack Trace:

An exception handler comprises two core sections, namely:

 A series of method calls that brings back the control to the point where the exception
had occurred.

1. The Try Block:

2.

 It includes some code, which might throw an exception (generate an error).

The Catch Block:

Thus, exception handling provides a method to separate error handling from the code that may result in
errors. It is beneficial in several cases, as it produces clean executable code.

 It includes the error handling code. It means that it determines the strategy to be
implemented, when an error is detected.

Factors to be Considered for Exception Handling

1. Exception handling does not reduce the amount of work required while handling errors of small
 programs.

2. The main advantages of exception handling can be observed in a program of considerable size.

When to Use Exception Handling

Exception handling can be implemented to process exceptions occurring at many points, such as:

1. For processing exceptional situations and errors that cannot be expected logically, that is,
situations, which are rarely expected to occur.

2. For processing exceptions from libraries and classes that cannot be expected to handle exceptions
on their own like, network connections.

3. For managing error handling in a consistent manner throughout the project, in case of large
projects. This could be achieved by using global exception handlers.

Local Exception Handlers: The catch blocks that are employed immediately after the try block in which
the exception was thrown are referred to as local exception handlers.

Global Exception Handlers:

1. Exception handling must not be used in situations, where it is not much applicable. Moreover, we
can only implement exception handling for exceptional events, that is, for errors that rarely occur.

The catch blocks employed at the higher level of the call hierarchy,
projected to achieve universal error handling are referred to as global exception handlers.

When Not to Use Exception Handling

After requesting the user to supply input value between 6 and 12, it would not be
appropriate to employ exception handlers to process any errors that are out-of-
range; rather a more traditional error checking technique should be used.

2. Similarly, we must not employ exception handlers to handle errors related to key presses, mouse
clicks, network messages, and so on, since these are better restricted to event or interrupt
processing.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

110

7.1.1 Exception Types
Classification of exceptions in Java is based on the way the Java compiler handles it. In Java, exceptions
are categorized into two types, as shown in figure 7.1.

Figure 7.1: Categories of Java Exceptions

As shown in the figure 7.1, there are two categories of Java exceptions, namely, built-in exceptions, and
user-defined exceptions, where, built-in exceptions are further classified into checked exceptions and
unchecked exceptions.

Built-in Exceptions
As the name suggests, built-in exceptions are those exceptions that are already built-in in a
programming language (like Java). Java runtime system throws such exceptions for describing the
condition of exceptions. In Java, there are two types of built-in exceptions, which are checked exceptions
and unchecked exceptions.

Checked Exceptions

Checked exceptions are those built-in exceptions that occur at the time of compilation of a program. At
the time of compilation, the compiler verifies if the checked exception handlers are contained in the
program or not. These exceptions are not inherited from RuntimeException class, but from
java.lang.Exception class. These exceptions must be handled properly by the programmer, for avoiding
any compile-time error. Examples of checked exceptions are:

1. NoSuchFieldException:

2.

 This exception is thrown when the user tries to use any field or variable in
a class that does not exist.

ClassNotFoundException:

3.

This exception is thrown when the user tries to access a class that is not
defined in the program.

IllegalAccessException:

4.

 This exception is thrown when the access to a class is denied.

Interrupted Exception:

5.

 This exception is thrown when a thread is interrupted in processing,
waiting, or sleeping state.

NoSuchMethodException:

Unchecked Exceptions

 This exception is thrown when the user tries to access a method that
does not exist in the program.

Unchecked exceptions, also called as runtime exceptions, are those built-in exceptions that occur during
the program runtime, and are internal to the application. Such exceptions are derived from the
java.lang.RuntimeException, which is inherited from the java.lang.Exception class. The user cannot
predict and recover from these exceptions. Usual causes of such exceptions are data errors like
arithmetic overflow, division by zero, and so on.

Unit 7: Exception Handling

LOVELY PROFESSIONAL UNIVERSITY 111

Examples of unchecked exceptions are:

1. StringIndexOutOfBoundsException:

2.

 This exception is thrown when a program tries to access a
character at an index of the string that does not exist.

ArrayIndexOutOfBoundsException:

3.

 This exception is thrown when the user tries to access an
array index that does not exist.

ArithmeticException:

4.

 This exception is thrown when the user tries to divide a number by zero.

NullPointerException:

User-defined Exceptions
Just like built-in exceptions, user-defined exceptions also exist in Java. As the name suggests, user-
defined exceptions are those exceptions that are defined by the user of the program. For creating an
exception type, the user has to extend the Exception class and create their own subclass exception class.
To do so, the user has to inherit the Exception class. Exception classes follow a hierarchy, where
Throwable class is the parent class for an entire family of exception classes, which is declared in
java.lang package as java.lang.Throwable. This throwable class can be divided into two types, namely,
exceptions, and errors (exceptions defined by the user).

 This exception is thrown when the Java Virtual Machine (JVM) tries to
execute some operation on an object which points to a null data or no data.

The exception class defined by the user must be a subclass of Exception class.

The toString() method must be superseded in the user-defined exception class, for
displaying meaningful information about the exception.

Handling and Creating User-defined Exception

Keywords such as try, catch and finally are used in implementing user-defined exceptions. This
Exception class inherits all the methods from Throwable class. These methods are depicted in the table
7.1.

Table 7.1: Methods in Throwable Class

Methods Explanation
String toString() Provides description of the exception and

returns a String object.
String getMessage() Describes the exception in program.

Throwable fillInStackTrace() Returns a Throwable object that includes a
stack trace.

void print StackTrace() Returns the stack trace.
void printStackTrace(PrintStream stream) Returns the stack trace to the stream defined.

String getLocalizedMessage Returns the localized definition of the
exception.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

112

Program to create a user defined exception.

class UDefExcept extends Exception

{
 String note = "";
 int marks;
 public UDefExcept ()

 {

 }
 public UDefExcept (String s1)

 {
 super(s1);
 }
 public String toString()

 {
 if (marks <= 40)
 note = "You need to improve";

 if (marks > 40)

 note = "You are the winner";
 return note;
 }
}
public class test

{
 public static void main(String args[])

 {
 test t = new test();
 t.tm();
 }
 public void tm()

 {
 try

 {
 int j=0;

 if(j < 40)
 throw new MyExcept();

 }
 catch(MyExcept ee1)

 {
 System.out.println("my ex"+ee1);
 }
 }
}

Unit 7: Exception Handling

LOVELY PROFESSIONAL UNIVERSITY 113

Output:

On the command prompt –

C:\ >javac test.java

C:\ >java test
my ex You need to improve

In this example,

1. First, a class UDefExcept is created from the Exception class using the
extends keyword.

2. In the class UDefExcept,

(a) A String note is declared with no value assigned to it.

(b) Then, an integer marks is declared.

(c) The UDefExcept() constructor is then called without any parameters,
and no method within.

(d) The UDefExcept (String s1) constructor is again called, but with a
String s1. In this constructor, the super() method is called on the
String s1.

(e) Then, String toString() method is called to provide description of the
exception and return a String object. In this method,

(i) The if statement is used to check the marks <= 40 condition. If this
 condition is true, note is assigned a string You need to improve.

 (ii) Another if statement is used to check the marks > 40 condition. If this
 condition is true, note is assigned a string You are a winner, and
 this string is returned using the return statement.

3. Another class test is created.

4. In the class test,

(a) The main() method of the class is called.

(b) In the main() method,

 (i) A new object t of the class test is created using the new keyword.

 (ii) Then, t.tm(); statement is used to call the method tm() on the object t.

(c) Then, the tm() constructor is called and declared void.

(d) In this constructor, try-catch mechanism is used, wherein

 (i) In the try block, first, an integer j is declared and assigned the value of
 0. Then, the if statement is used to check the condition j<40. If this
 condition is true, a new exception MyExcept(); using the throw and
 new keywords is thrown.

 (ii) Then, the catch block is used to catch the exception MyExcept ee1. In
 the catch block, the System.out.println("my ex"+ee1); statement is
 used to print my ex and the value of ee1 is printed on the screen.

In this example, the exception is thrown when the value of marks is less than 50.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

114

7.2 Uncaught Exception
The main logic that we have been discussing so far applies to checked exceptions, or exceptions, whose
flow is explicitly controlled. As per this logic, a method can throw a given exception, and the caller to
that method must explicitly handle the exception or throw it to the next caller.

Occurrence of an Unchecked Exception
An uncaught exception that is also referred to as an unchecked exception, cannot be caught in a try or
catch block. Whenever an unchecked exception occurs (such as, in a simple single-threaded program),
Java prints out the stack trace of the exception and then terminates the program.

Program to illustrate what happens when an unchecked exception occurs.

public class TestExceptions

{

 public static void main(String args[])

 {

 String str = null;

 int length = str.length();

 }

}

Output:

Exception in thread "main" java.lang.NullPointerException

at test.TestExceptions.main(TestExceptions.java:4)

In this example,

1. First, a class TestExceptions is created and is declared public, by using the
public keyword.

2. In this class TestExceptions,

 (a) The main() method of the class is called. In this main() method,

 (b) A string str is assigned a null value.

 (i) A method str.length(); is called to check the length of the string,
 and this value is assigned to integer length.

 (ii) An integer int

Note: This example shows the NullPointerException.

Unit 7: Exception Handling

LOVELY PROFESSIONAL UNIVERSITY 115

Handling Uncaught Exceptions
Unchecked exceptions are not caught in a try/catch block. It can often be observed that Java prints the
exception stack trace and then terminate the program. But, actually this is a general view of what
happens.

Whenever an uncaught exception originates in a particular thread, Java looks for what is called an
uncaught exception handler, which is mainly an implementation of the interface
UncaughtExceptionHandler. This interface has a method handleException(), which the implementer
dominates to take suitable action, such as printing the stack trace to the console. It is also possible to
install your own instance of UncaughtExceptionHandler to deal with the uncaught exceptions of a
particular thread, or even for the whole system.

Did you know? Java mainly deals with uncaught exceptions according to the thread in which they
arise.

Whenever an uncaught exception arises, the JVM (Java Virtual Machine) does the following tasks:

1. A special private method dispatchUncaughtException() is called on the Thread class, in which
the exception occurs, and then the thread in which the exception occurred is terminated.

2. In turn, the dispatchUncaughtException() method calls the thread's
getUncaughtExceptionHandler() method to search for a proper uncaught exception handler to
use. Generally, this would be the thread's parent ThreadGroup, whose handleException()
method will print the stack trace by default.

Though, this process can be overridden for a particular thread, for a ThreadGroup, or for all threads, as
shown in the table 7.2.

Table 7.2: Thread Handlers and Implementation

Thread
Handler to Set

How to Set Notes

All threads Thread.setDefaultUncaughtExceptionHandler
()

Relies on a ThreadGroup's
uncaughtException() method not
being overridden, or on any
overriding implementation
searching for the default handler.

All threads of
a particular
thread group

Override ThreadGroup.uncaughtException() Means a ThreadGroup subclass
has to be provided.

Particular
thread Thread.setUncaughtExceptionHandler()

You can also override
getUncaughtExceptionHandler(),
if using your own Thread
subclass.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

116

The process that determines which uncaught exception handler to call is shown in the figure 7.2.

Figure 7.2: Process Flowchart

The figure 7.2 describes a process which decides on which uncaught exception handler to call for a
given thread.

Care should be taken to stop uncaught exceptions from terminating essential threads
or compensating for thread termination.

Preference Given to Uncaught Exceptions
Uncaught exceptions behave differently from other exceptions. They are preferred for the following
reasons:

1. They need not be caught explicitly. Whenever an uncaught exception, such as
NullPointerException, ClassCastException, OutOfMemoryError occurs, Java handles them
automatically.

2. Methods and constructors need not be specified explicitly as they can throw an unchecked
exception since it is taken for granted that any method or constructor can throw them.

3. Moreover, certain Java byte-code instructions such as accessing an array, invoking a method on an
object, division of integers, can also throw an unchecked exception.

Do not suppress or ignore exceptions.

Unit 7: Exception Handling

LOVELY PROFESSIONAL UNIVERSITY 117

In Java programs, an exception is forced by using the throw keyword. This keyword can also be used
for passing a custom message to the exception handling module. It is possible for any program to throw
an exception explicitly, using the keyword ‘throw’.

General Syntax of Throw
 throw ThrowableInstance;

In this syntax, throw is the keyword, and the ThrowableInstance must be a Throwable object or a
Throwable subclass. Some simple types, such as int or char, as well as non-Throwable classes, such as
string and object, cannot be employed as exceptions. A Throwable object can be obtained by two ways,
either by using a parameter into a catch clause, or by creating one with the new operator.

Once the throw statement is encountered, the flow of execution stops immediately and none of the
consequent statements are executed. The closest enclosing try block is examined to find out if it has a
catch statement that matches the type of the exception. If the match is found, control is transferred to
that statement. If no match is found, the next enclosing try statement is examined, and so on. If no
matching catch is obtained, the default exception handler stops further processing of the program and
prints the stack trace.

7.3 Throw

Program to illustrate the concept of creation and throwing an exception. The
handler that catches the exception re-throws it to the outer handler.

// Demonstrate throw.
class ThrowDemo

{
 static void demoproc()

 {
 try

 {
 throw new NullPointerException("demo");
 } catch(NullPointerException e)

 {
 System.out.println("Caught inside demoproc.");
 throw e; // rethrow the exception
 }
 }
 public static void main(String args[]) {
 try

 {
 demoproc();
 } catch(NullPointerException e)

 {
 System.out.println("Recaught: " + e);
 }
 }
}

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

118

Output:

Caught inside demoproc.
Recaught: java.lang.NullPointerException: demo

This program deals with the same error twice.

1. First, a class ThrowDemo is created.

2. In the class ThrowDemo,

(a) The demoproc() constructor is called, which is declared static and void.

(b) In the demoproc() constructor,

(i) In the try block, throw new NullPointerException("demo"); is
 used to throw a NullPointerException.

 (ii) Then, the catch block is used to catch the NullPointerException e.
 (iii) In the catch block, the Caught inside demoproc statement is printed
 on the screen. Also, the exception e is rethrown.

(c) Then, the main() method of the class is called.

(d) In the main() method,

(i) In the try block, demoproc() method is called.

 (ii) Then, catch block is used to catch the NullPointerException e.

 (iii) In the catch block, the Recaught: statement with the value of
 exception e is printed on the screen.

Choosing the Type of Exception to be Thrown
When you have to choose among the type of exception to be thrown, you can choose anyone from the
two provided below:

1. Use the one designed by someone else. The Java development environment offers a lot of
exception classes that can be easily used.

2. Design one for your own use.

Apart from try-catch and finally clause, there is another way to handle an exception, which is, using the
throws clause. Whenever a method, which throws a checked exception, is called from the Java API, the
exception must be either thrown or caught. If it is not possible to handle the exception properly, then
the declaration of the exception to the method header is done using the throws keyword, which
is followed by the exception’s class name.

In Java, the keyword throws signifies that the method raises a particular type of exception while being
processed and it is applicable to that method only. The keyword throws in Java programming language
takes a list of the objects as arguments of type java.lang.Throwables class.When the keyword throws is
used along with a method, it is called as ducking. The method, which is calling another method along
with a throws clause, is required to be enclosed within the try catch blocks.

7.4 Throws

Unit 7: Exception Handling

LOVELY PROFESSIONAL UNIVERSITY 119

Sample code to illustrate the use of the throws keyword in a class.

import java.io.IOException;

public class Class1

{

 public method readingFile(String file) throws IOException

 {

 <statements>

 if (error)

 {

 throw new IOException("error reading file");
 }
 }
}

In this example,

1. First, the java.io.IOException package is imported.

2. Then, a class Class1 is created.

3. In the class Class1,

(a) The readingFile(String file) method is called, which throws
IOException.

(b) In this method,

 (i) First, the statements within that method are executed.

 (ii) Then, the if statement is used to check the error condition. If this
 error condition is true, a new IOException is thrown.

Note: This is not a complete program, rather a sample code from a program
showing the use of throws keyword.

Factors to be Considered while Using Throws

1. Sometimes, a method generates an exception that cannot be handled; the method must state this
 fact using a throws clause.

2. We do not need throws clause for any unchecked exceptions.

3. A throws clause is required only when the method is not able to handle the exception.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

120

Finally blocks are executed once the try block exits. This block executes even after the unexpected
exceptions has occurred. Irrespective of the try block, the expression in finally block is always executed.
This block is in-built with the capability of recovering loss and preventing leak of resources. On closing
and recovery of a file, the expression should be placed in the finally block.

The success of the finally block depends upon the existence of the try block and will execute only when
an unexpected exception arises in the code.

7.5 Finally

import java.io.*;

public class FinallyException

{

 public static FileInputStream inputStream(String fileName)
 throws FileNotFoundException

 {
 FileInputStream fis = new FileInputStream(fileName);
 System.out.println("f1: File input stream created");
 return fis;
 }
 public static void main(String args[])

 {
 FileInputStream fis1 = null;
 String fileName = "saurabh.txt";
 try

 {
 fis1 = inputStream(fileName);
 } catch (FileNotFoundException ex)

 {
 System.out.println("FileNotFoundException occurred");
 } catch (Exception ex)

 {
 System.out.println("General exception occurred");
 }
 System.out.println(FinallyException.class.getName() + " ended");
 }
}

Output:

FileNotFoundException occurred
FinallyException ended

In this example,

1. First, java.io.* package is imported.

2. Then, a class FinallyException class is created.

Unit 7: Exception Handling

LOVELY PROFESSIONAL UNIVERSITY 121

3. In the class FinallyException,

(a) The FileInputStream inputStream(String fileName) method is called
with the string fileName in it, and is declared public and static.

(b) The FileNotFoundException exception is thrown using the throws
keyword. In this exception,

(i) A new FileInputStream object fis is created.

 (ii) Then, the f1: File input stream created statement is printed on the
 screen.

 (iii) Also, the value of fis is returned using the return statement.

(c) The main() method of the class is called. In the main() method,

(i) The FileInputStream fis1 is assigned the value null.

 (ii) The, String fileName is assigned the string saurabh.txt.

 (iii) In the try block, fis1 is assigned the value in inputStream, that is,
 filename.

 (iv)Then, the catch block is used to catch the
 FileNotFoundException ex exception. In the catch block, the
 FileNotFoundException occurred statement is printed on the screen.

Second catch block is used to catch Exception ex exception. In this catch block,
the General exception occurred statement is printed on the screen.

At last, the getName() method is called to get the name of FinallyException, and
prints it on the screen.

Write a program to illustrate the use of try and catch and finally keywords.

Sometimes a plan is made to develop a package of Java classes working together. This plan is made to
offer some useful functions to the users. A lot of efforts are put into it to ensure that the classes interact
well with each other and that their interfaces are easy to recognize and use. Time is also spent on
thinking about the design of the exceptions thrown by the classes.

Though most of the regular errors are processed by Java’s built-in exceptions, the exception handling
mechanism of Java is not restricted only to these errors. Generally, a fraction of the power of Java’s
approach to exceptions is its capability to handle exceptions created by the user, and which
communicates with errors through the code specified. Creating an exception is very simple; just define a
subclass of Exception, which is a subclass of Throwable. These subclasses do not require
implementation of anything, since their existence in the type system permits them to be used as
exceptions. The Exception class does not define any of its own methods, but it does inherit the methods
provided by Throwable. Thus, the methods defined by Throwable are available for every exception,
including those methods too, which are created by the user. It is also possible to override any of these
methods in exception subclasses that you create.

7.6 Creating Exception Subclasses

Never use exceptions for flow control.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

122

Naming Conventions
It is a good practice to attach the word Exception to the end of all classes that inherit either directly or
indirectly from the Exception class. Likewise, classes that inherit from the Error class should be attached
with the string Error.

Create a user defined exception class that throws an exception string when compiled.

1. Write a program to divide a number with zero without raising any

error.
2. Write a program to catch and process an error three times.

• An exception is an object that includes information about the type of error occurred.

7.7 Summary

• Exception handling is based on the concept of universal error processing, wherein the error
correction code is separated out from the main body of code and is fed to several exception
handlers.

• A checked exception is thrown whenever there is a probability of error in input-output processing.

• Unchecked exception is thrown due to the invalid argument supplied to a method. These
exceptions originate at run-time.

• Keywords such as try, catch, and finally are used for implementing user-defined exceptions.

• An uncaught exception that is also referred to as an unchecked exception cannot be caught in a try
or catch block.

• Once the throw statement is processed, the flow of execution stops immediately, and none of the
consequent statements are executed.

• When the keyword throws is implemented along with a method, it is identified as ducking.

• The expressions in the finally block are always executed at run time.

• For creating an exception, just define a subclass of Exception, which is actually a subclass of
Throwable.

7.8 Keywords
ClassCastException: Exception that is thrown to indicate that the code has attempted to cast an object of
one data type to another.

Compilation: The translation of source code by a compiler into a lower level form.

JVM: Java Virtual Machine.

Methodology: The system of methods that is followed in a particular discipline.

OutOfMemoryError: Exception that is thrown when the JVM cannot allocate an object, since it is out of
memory and no more memory can be made available by the garbage collector.

1. State whether the following statements are true or false:

7.9 Self Assessment

(a) When an exception object is created and handed over to the run time system, then it is called
catching an exception.

Unit 7: Exception Handling

LOVELY PROFESSIONAL UNIVERSITY 123

(b) Errors are usually ignored in program coding as hardly anything is done about an error.

(c) It is very much essential to avoid error-handling for creating a constraint application.

(d) Once the throw statement is encountered, the flow of execution stops immediately and none
of the consequent statement executes further.

(e) The method, which is calling another method along with a throws clause, is required to be
enclosed within the try/catch blocks.

(f) On closing and recovery of a file, it is essential to place the expression in the try block.

2. Fill in the blanks:

(a) A ___________ is an exception that can be possibly avoided by the programmer.

(b) The ___________ block holds some code, which might produce error.

(c) The ___________ block includes the error handling code, which processes error declaring it as
exception.

(d) The catch blocks that are employed immediately after the try block in which the exception
was thrown, are denoted as ___________.

(e) The catch blocks employed at the higher level of the call hierarchy, projected to achieve
universal error handling are denoted as ___________________.

3. Select a suitable option for every question.

(a) When the keyword throws is used along with a method, it is called as ____________.

 (i) Ducking

 (ii) Throwable

 (iii) Threads

 (iv) Uncaught exception

(b) Which of the following methods describes the exception in program?

 (i) String toString()

 (ii) String getMessage()

 (iii) Throwable fillInStackTrace()

 (iv) void print StackTrace()

 (c) Which exception is thrown, when an array that is not compatible with the data type of that
array is declared?

 (i) Arithmetic Exception

 (ii) Class Cast Exception

 (iii) Array Index Out Of Bounds Exception

 (iv) Number Format Exception

(d) Which of the following is not an exception?

 (i) Array Store Exception

 (ii) Null Pointer Exception

 (iii) String getLocalizedMessage

 (iv) Negative ArraySizeException

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

124

(e) Which of the following is not a method?

 (i) String getLocalizedMessage

 (ii) Negative ArraySizeException

 (iii) void printStackTrace(PrintStream stream)

 (iv) void print StackTrace()

1. “The Exception class does not define any of its own methods, but it does inherit the methods
provided by Throwable“. Comment.

7.10 Review Questions

2. “Inclusion of try block in your exception class is necessary”. Elaborate.

3. “The checked exceptions cannot be thrown at a point where the error is unpredictable”. Justify.

4. “The unchecked exception cannot be thrown at the time of compilation” Justify.

5. “When a throw statement is encountered, the further execution stops automatically”. Discuss.

6. “There is difference between the functionalities of throw and throws”. Comment.

7. Give the significance of the String toString() method.

8. “Once the throw statement is encountered, the flow of execution stops immediately and none of
the consequent statements are executed”. Discuss.

9. “Finally blocks are executed once the try block exits”. Justify?

10. “JVM (Java Virtual Machine) performs several tasks whenever an uncaught exception arises”.
Discuss.

11. “On closing and recovery of a file, the expression should be placed in the finally block”. Justify?

Answers: Self Assessment
1. (a) False (b) True (c) False (d) True (e) True (f) False

2. (a) Runtime Exception (b) try (c) catch (d) Local exception handlers
(e) Global exception handlers

3. (a) Ducking (b) String toString() (c) Array Index Out Of Bounds Exception
(d) String getLocalizedMessage (e) Negative ArraySizeException

7.11 Further Readings

Osborne McGraw-Hill, Java A Beginners Guide, 3rd Edition, Mar 2005.

Schildt. H. Java 2 The Complete Reference, 5th ed. New York: McGraw-Hill/Osborne.

http://www.cs.qub.ac.uk/~P.Hanna/JavaProgramming/Lecture8/Java%20-
%20Lecture%208%20-%20Exceptions.pdf

http://www.roseindia.net/java/java-exception/listofjavaexception.shtml

http://www.javamex.com/tutorials/exceptions/exceptions_uncaught_gui.shtml

http://www.java-samples.com/showtutorial.php?tutorialid=294

http://www.roseindia.net/help/java/t/throws-java-keyword.shtml

http://www.roseindia.net/java/java-exception/finally-exception.shtml

Unit 8: Multithreaded Programming I

LOVELY PROFESSIONAL UNIVERSITY 125

CONTENTS

Objectives

Introduction

8.1 Threads

8.2 Life Cycle of Thread

8.3 Creating a Thread

8.4 Creating Multiple Threads

8.5 Summary

8.6 Keywords

8.7 Self Assessment

8.8 Review Questions

8.9 Further Readings

Unit 8: Multithreaded Programming I

After studying this unit, you will be able to:

Objectives

• Analyze the life cycle of threads

• Describe the creation of threads

• Discuss the creation of multiple threads

Java programming language has many important and useful concepts. One such concept is the Thread.
A thread can be referred to as a single sequential flow of control within a program or the unit of
execution within a process. A process is normally broken down into tasks and these tasks are further
broken down into threads.

Introduction

Consider the modern operating system, which allows multiple programs to run
at once. While typing a document in a system, one can simultaneously listen to
music and browse the net. This indicates that the operating system installed in
the computer allows multitasking. Similarly, the execution of several processes in
a program can also be done simultaneously. Hot Java web browser is an example
of such an application, which allows the user to browse a Web page while
downloading an image, or playing animations or audio files at the same time.

Java has a built-in support for threads. A larger portion of Java architecture is based on multi-threading.
Threads in Java are used to allow an applet for accepting the input from user and simultaneously
display the animations on the screen.

A thread has a beginning, a sequence of steps for execution, and an end. A thread is not considered as a
program, but it runs within a program. Each and every program contains at least one thread called as
primary thread. In Java, the main() method is an example of a primary thread.

The memory for processes being executed is allocated by the microprocessor. Each and every process
occupies its own memory or address space. And, all the threads in the process share the same address
space. The thread is also called as a lightweight process. Threads run in the same process space as the
main program. Figure 8.1 shows the relationship between a thread and a process.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

126

 Figure 8.1: Relationship between a Thread and a
Process

We know that in modern operating systems, we can execute multiple tasks under the interrupt driven
operating system. This ability to handle more than one task at the same time is known as multitasking.
In the system’s terminology, it is referred to as multithreading.

A process made up of only one thread is called as a single-threaded process. Single threaded process
performs only one task at a time whereas, a process having more than one thread, called as a multi-
threaded process, performs different tasks and interacts with other processes at the same time. Figure
8.2 is the schematic representation of a single-threaded and a multi-threaded process.

8.1 Threads

 Figure 8.2: Single-threaded and Multi-threaded
Process

In Java, java.lang.Thread class creates and controls each and every thread. A Java program has many
threads, and these threads run either asynchronously or synchronously.

Multithreaded programming requires a different way of looking at the software. In this programming,
many tasks are executed concurrently, that is, many tasks are performed at the same time. It is possible
in multithreaded programming to start a new task even when the current task is not completed.
Multithreading is a conceptual programming, where a program is divided into two or more
subprograms, which can be implemented at the same time in parallel. Multithreading is also known as
multiple-threads of execution. If the application performs many different tasks concurrently, then the
threads may access shared data variables to work collaboratively.

Unit 8: Multithreaded Programming I

LOVELY PROFESSIONAL UNIVERSITY 127

8.2 Life Cycle of a Thread
Understanding the life cycle of a thread is very important, especially at the time of developing codes
using threads. When a thread is alive, it indicates it is in one of its several states. However, invoking
start() method does not mean that the thread can access CPU and start executing immediately. There
are several factors that determine this execution.

The life cycle of a thread is depicted in figure 8.3. This figure is not a complete diagram, but rather is an
overview of the common phases of a thread's life.

Figure 8.3: Single-threaded and Multi-threaded Process

As per the figure 8.3, the four possible states/phases of a thread’s life cycle are:

1. New thread

2. Runnable

3. Not runnable

4. Dead

New Thread
When the Thread class is created at any instance, a thread enters into a new thread state.

Syntax of Creating a New Thread:

Thread newThread1 = new thread(this);

As per the above syntax, no resources are allocated for the new thread, and this keyword denotes that
the run() method of the current object needs to be invoked.

Hence, it is an empty object. However, the start() method needs to be invoked, to start the thread as
given below:

 newThread.start();

Runnable
In the Runnable phase of a thread’s life cycle, the start() method, which is responsible for starting the
thread, allocates the system resources necessary for thread, schedules and plans the thread to run, and
calls run() method for the thread.

As soon as the start() method of a thread in invoked; it causes the thread to move into the Runnable
state. All the activities of the thread are carried out in the body of the thread, that is, the run() method.
As a single processor cannot perform the execution of more than one thread at a time; it maintains a
thread queue. As soon as the threads are started, a thread queue is created for processor time, and the
thread waits for its turn for execution. Therefore, for a given time, a thread waits for the processor’s
attention. Hence, the state of thread is defined as runnable.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

128

Not Runnable
A thread is considered as not runnable, if its state is:

1. Sleeping

2. Waiting

3. Being blocked by another thread

The sleep() method is used to put the thread into sleeping mode. A sleeping thread can enter into its
runnable state, only after some specified time. Until and unless the specified time has elapsed, the
thread will not be executed.

Syntax to Put a Thread into Sleeping Mode:

sleep(long s);

In the above syntax, s is the number of milliseconds for making a thread inactive.

Dead
The thread enters the dead state when the run() method is complete, when an interrupt does not kill
the thread, or when a destroy() method kills the thread but does not release the object locks of the
thread.

If the loop in run() method has fifty iterations, then the life of the thread
will be fifty iterations of the loop.

A thread can be killed by assigning null to the thread object. The isAlive() method in the Thread class
determines whether the thread is started or stopped.

1. Implementing the Runnable Interface (java.lang.Runnable).

8.3 Creating a Thread
A thread that is created, must be bound to the run() method of an object. At the start of a thread, it
invokes the object’s run() method.

In Java, there are two ways (as given in the figure 8.4) to create threads, that is, by:

2. Extending the Thread Class (java.lang.Thread).

Figure 8.4 shows the methods used for creation of threads.

Figure 8.4: Methods Used for Creation of Threads

Unit 8: Multithreaded Programming I

LOVELY PROFESSIONAL UNIVERSITY 129

Implementing the Runnable Interface
The easiest way to create a thread in Java, is by implementing the runnable interface, and then
instantiating an object of that class. Using run() method in the class, is the only method that is used for
implementing the runnable interface, as this contains the logic of the thread.
Threads based on the runnable interface can be created by following the below steps:

1. The runnable interface is implemented by a class, providing the run() method, which will be
executed by the thread. An object of this class type is a runnable object.

2. The object of the Thread class is developed by passing a runnable object as an argument to the
Thread constructor. Therefore, the Thread object now having a runnable object implements the
run() method.

3. The start() method is now invoked on the Thread object, which is created in the previous step.
And, the start() method returns immediately after a thread has been produced.

4. The thread ends at the same time, when the run() method ends.

Program to demonstrate the creation of new thread, by implementing the
Runnable interface, and starting it to run.

//Create a second thread.

class MyNewThread2 implements Runnable

{

 Thread a;

 MyNewThread2()

 {

 //Create a new, second thread

 a=new Thread(this, "A Thread");

 System.out.println("Demo thread:"+a);

 a.start(); //Start the thread

 }

 //This is the entry point for the second thread.

public void run()

{

 try

 {

 for(int j=5; j>0; j--)

 {

 System.out.println("Demo thread:"+j);

 Thread.sleep(1000);

 }

 } catch(InterruptedException e)

 {

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

130

 System.out.println("Demo interrupted.");

 }

 System.out.println("Exiting Demo thread.");

 }

}

class ThreadA

{

 public static void main(String args[])

 {

 new MyNewThread2(); //create a new thread

 try

 {

 for(int j=5; j>0; j--)

 {

 System.out.println("The Main Thread:"+j);

 Thread.sleep(1500);

 }

 } catch(InterruptedException e)

 {

 System.out.println("The Main Thread interrupted.");

 }

System.out.println("The Main Thread exiting.");

}

}

Output:

Demo thread: Thread[A Thread, 5, main]

The Main Thread: 5

Demo Thread: 5

Demo Thread: 4

The Main Thread: 4

Demo Thread: 3

Demo Thread: 2

The Main Thread: 3

Demo Thread: 1

Exiting Demo Thread.

The Main Thread: 2

Unit 8: Multithreaded Programming I

LOVELY PROFESSIONAL UNIVERSITY 131

The Main Thread: 1

The Main Thread exiting

In this example,

1. First, a class MyNewThread2 is created with Runnable interface using the
implement keyword.

2. In this class, a thread a is declared.

3. Then, a constructor MyNewThread2() of this class is called. In this
constructor, a new thread is created by using the new keyword, and with
the parameters this and A Thread. This new thread is linked to a. Then, the
demo thread a is printed on the screen. Also, the start() method of a is
called.

4. The run() method of the class is then called to move the thread into running
state. In this method, try-catch mechanism is used.

(a) In the try block,

 (i) A for loop is used, wherein the value of integer j is initialized to 5
 and the condition j>0 is checked.

 (ii) If the condition is true, then the statement System.out.println
 ("Demo thread:"+j) is used to print the Demo thread j. The thread is
 made to sleep using the Thread.sleep(1000) statement.

 (iii) Then the value of j is decremented by 1.

 (iv) Steps (i) to (iii) are repeated till the condition in step (i) is true.

(b) In the catch, e is declared as the InterruptedException. In the catch
block, System.out.println("Demo thread:"+j) is used to print Demo
interrupted.

(c) After the catch block, System.out.println("Exiting Demo thread.")
statement is used to print Exiting Demo thread.

5. A new class ThreadA is defined, wherein the main() method of the class is
called. In this main() method,

(a) The constructor MyNewThread2() is called using the new operator.

(b) In the try block,

 (i) A for loop is used, wherein the value of integer j is initialized to 5
 and the condition j>0 is checked.

 (ii) If the condition is true, then the statement System.out.println("The
 Main Thread:"+j) is used to print the Demo thread j. The thread is
 made to sleep using the Thread.sleep(1500) statement.

 (iii) Then the value of j is decremented by 1.

 (iv) Steps (i) to (iii) are repeated till the condition j > 0is true.

(c) In the catch block, e is declared as the InterruptedException. In the
catch block, System.out.println("The Main Thread interrupted.") is used
to print Demo thread.

(d) After the catch block, System.out.println("The Main Thread
exiting.") statement is used to print Exiting Demo thread.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

132

Extending the Thread Class
The second way used to create a thread is by creating a new class that extends Thread, and then
creating an instance of that class. The extending class overrides the run() method, acting as an entry
point for creating a new thread.

New threads based on extending the Thread class can be created by following the below given steps:

1. A class being extended from the Thread class overrides the run() method from that Thread, for
defining the code to be executed by the thread.

2. This subclass further calls a Thread constructor in its constructors, for initializing the thread. This
is done by using the super() call.

3. In order to make the thread eligible for running, the start() method is invoked on the object of the
class.

Program to illustrate the instantiation and running of threads by extending the
Thread class.

class NewThreadY extends Thread

{

 NewThreadY()

{

 super("DemoA Thread");

 System.out.println("ChildC thread:"+this);

 start();

}

public void run()

{

 try

 {

 for(int j=5; j>0; j--)

 {

 System.out.println("ChildC Thread:"+j);

 Thread.sleep(400);

 }

 }catch(InterruptedException e)

{

 System.out.println("ChildC interrupted.");

 }

 System.out.println("Exiting ChildC thread.");

 }

}

class ExtendThread

Unit 8: Multithreaded Programming I

LOVELY PROFESSIONAL UNIVERSITY 133

{

 public static void main(String args[])

 {

 new NewThreadY();

 try

 {

 for(int j=5; j>0; j--)

 {

 System.out.println("The Main Thread:"+j);

 Thread.sleep(1500);

 }

 } catch(InterruptedException e)

 {

 System.out.println("The Main Thread interrupted.");

 }

 System.out.println("The Main Thread exiting.");

 }

}

Output:

ChildC Thread: Thread[DemoA Thread, 5, main]

The Main Thread: 5

ChildC Thread: 5

ChildC Thread: 4

The Main Thread: 4

ChildC Thread: 3

ChildC Thread: 2

The Main Thread: 3

ChildC Thread: 1

Exiting ChildC Thread.

The Main Thread: 2

The Main Thread: 1

The Main thread exiting.

In this example,

1. First, a class MyNewThread2 is created using the keyword extends.

(a) Then the constructor NewThreadY() is declared.

(b) The call to super() inside NewThreadY invokes the Thread constructor

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

134

in the following form:

 public Thread(String threadName)

 Here, threadName is used to specify the name of the thread.

(c) The statement System.out.println("ChildC thread:"+this) prints ChildC
thread pointed by this keyword.

(d) Then the start() method is called to start the thread.

2. The run() method of the class is then called to move the thread into running
 state. In this method, the try-catch mechanism is used.

(a) In the try block,

 (i) A for loop is used, wherein the value of integer j is initialized to 5
 and the condition j>0 is checked.

 (ii) If the condition is true, then the statement System.out.println("ChildC
 Thread:"+j) is used to print the Demo thread j. The thread is made to
 sleep using the Thread.sleep(400) statement.

 (iii) Then the value of j is decremented by 1.

 (iv) Steps (i) to (iii) are repeated till the condition j>0 is true.

(b) In the catch block, e is declared as the InterruptedException. In the
catch block, System.out.println("ChildC interrupted.") is used to print
Demo interrupted.

(c) After the catch block, System.out.println("Exiting ChildC thread.”)
statement is used to print Exiting Demo thread.

2. A new class ExtendThread is defined, wherein the main() method of the
 class is called. In this main() method,

(a) A constructor MyNewThreadY() is called using the new operator.

(b) In the try block,

 (i) A for loop is used, wherein the value of integer j is initialized to 5
 and the condition j > 0 is checked.

 (ii) If the condition is true, then the statement System.out.println("The
 Main Thread:"+j) is used to print the Demo thread j. The thread is
 made to sleep using the Thread.sleep(1500) statement.

 (iii) Then, the value of j is decremented by 1.

 (iv) Steps (i) to (iii) are repeated till the condition is true.

(c) In the catch block, e is declared as InterruptedException. In the catch
block, System.out.println("The Main Thread interrupted.") is used to
print Demo thread.

(d) After the catch block, System.out.println("The Main Thread exiting.")
statement is used to print Exiting Demo thread.

Unit 8: Multithreaded Programming I

LOVELY PROFESSIONAL UNIVERSITY 135

8.4 Creating Multiple Threads
So far, we have been using only two threads, namely, one main thread and one child thread. Let us see
an example that uses multiple threads.

Program to illustrate the concept of multiple threads.

//create multiple threads

class NewThread implements Runnable

{

String name; //name of thread

Thread t;

NewThread (String threadname)

{

name= threadname;

t=new Thread (this, name)

{

System.out.println(“New thread:”+t);

t.start(); //start the new thread

}

//this is the entry point for thread

public void main()

{

try{

for(int i=5; i>0; i--)

{

System.out.println(name + “: “+i);

Thread.sleep(1000);

}

}

catch (InterruptedException e)

{

System.out.println(name + “Interrrupted”);

}

System.out.println(name + “exiting”);

}

}

class MultiThreadDemo

{

public static void main(String args [])

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

136

{

new NewThread(“One”);

new NewThread(“Two”);

new NewThread(“Three”);

try

{

//wait for other threads to end

Thread.sleep(10000);

}

catch (InterruptedException e)

{

System.out.println(“Main thread Interrrupted”);

}

System.out.println(“Main thread exiting”);

}

}

Output:

New thread: Thread[One, 5, main]

New thread: Thread[Two, 5, main]

New thread: Thread[Three, 5, main]

One:5

Two:5

Three:5

One:4

Two:4

Three:4

One:3

Two:3

Three:3

One:2

Two:2

Three:2

One:1

Two:1

Three:1

One exiting

Unit 8: Multithreaded Programming I

LOVELY PROFESSIONAL UNIVERSITY 137

Two exiting

Three exiting

Main Thread exiting

In this example,

1. First, a class MyNewThread2 is created with Runnable interface using the
implements keyword. In this class,

(a) A string name, and thread t are declared.

(b) Then, a constructor NewThread() of this class is called for the
threadname. This constructor is used for linking the threadname to
name.

(c) A constructor new Thread() is called with the parameters this and
name. This is linked to thread t. Thereafter, the statement
System.out.println(“New thread:”+t) prints the New thread t. Also,
the start() method is called to start the thread t.

2. In the main() method, try-catch mechanism is used.

(a) In try block,

 (i) A for loop is used, wherein the value of integer i is initialized to 5
 and the condition i>0 is checked.

 (ii) If the condition is true, then the statement System.out.println(name +
 “: “+i) is used to print the Demo thread i. The thread is made to sleep
 using the Thread.sleep(1000) statement.

 (iii) Then, the value of i is decremented by 1.

 (iv) Steps (i) to (iii) are repeated till the condition i>0 is true.

(b) In the catch block, e is declared as the InterruptedException. In the
catch block, System.out.println(name + “Interrrupted”) is used to
print name, that is, Interrupted.

(c) After the catch block, System.out.println(name + “exiting”) statement
is used to print the name of the thread that is exiting.

3. A class MultiThreadDemo is defined.

(a) Three child threads One, Two and Three are created.

(b) After this try-catch block mechanism is used.

 (i) In try block, the thread is made to sleep using Thread.sleep(10000).

 (ii) In the catch block, e is declared as the InterruptedException. In the
 catch block, System.out.println(“Main thread Interrrupted") is used
 to print Main thread Interrrupted.

 (iii) After the catch block, System.out.println(“Main thread exiting")
 statement is used to print Main thread exiting.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

138

• A thread can be referred to as a sequential flow of control within a program or the unit of
execution within a process.

8.5 Summary

• The Thread class is defined in the pre-defined package java.lang, which needs to be imported in
the program code, so that our classes are aware of their definition.

• Multithreading is the ability of an operating system to execute different parts of a program
simultaneously.

• There are four possible states in the life cycle of a thread, namely, the new thread state, the
runnable state, the not runnable state and the dead state.

• There are two ways to create a thread. First, by implementing the Runnable interface and second,
by extending the Thread class.

8.6 Keywords
CPU: Central Processing Unit.

Java Messaging System: Provides a consistent API set that gives developers access to the common
features of many messaging systems products.

Processor: Circuit that executes computer programs.

run(): Method used to implement the code that needs to be executed by our thread.

start(): Method that causes the thread to move into the Runnable state.

1. State whether the following statements are true or false:

8.7 Self Assessment

(a) A thread moves to the running state once it has been started.

(b) Threads can be created by either extending the Thread class or by implementing the Runnable
interface.

(c) The start() method can be called only once in the life cycle of a thread.

2. Fill in the blanks:

(a) You can create a new thread by extending the class _________.

(b) The extending class overrides the _________ method.

(c) The easiest way to create a thread in Java, is by implementing the __________ interface, and
then instantiating an object of that class

3. Select a suitable option in the following questions.

(a) What does sleep in Thread class do?

 (i) Causes the thread, which sleep is invoked on, to sleep (temporarily cease execution) for
 the specified number of milliseconds

 (ii) Causes the currently executing thread to sleep (temporarily cease execution) for the
 specified number of milliseconds

 (iii) Causes the main() thread to sleep for the specified number of milliseconds

 (iv) Causes the currently executing thread to wait (temporarily cease execution) for

Unit 8: Multithreaded Programming I

LOVELY PROFESSIONAL UNIVERSITY 139

 (b) Which state does the thread enter, when a thread class is created at any instance?

 (i) New thread

 (ii) Runnable

 (iii) Not Runnable

 (iv) Dead

8.8 Review Questions
1. “A thread that is created, must be bound to the run() method of an object”. Comment.

2. “When a thread is alive, it indicates it is in one of its several states”. Justify.

3. “The second way that is used to create a thread is, by creating a new class that extends Thread, and
 then creating an instance of that class”. Elaborate.

4. “Understanding the life cycle of a thread is very important, especially at the time of developing
 codes using threads”. Elaborate.

Answers: Self Assessment

1. (a) False

 (b) True

 (c) True

2. (a) Thread

 (b) run()

 (c) runnable

3. (a) Causes the currently executing thread to sleep (temporarily cease execution) for the specified

 number of milliseconds.

 (b) New Thread

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

140

8.9 Further Readings
 �

�
�

E Balagurusamy, Programming with Java_A Primer 3e, New Delhi

Herbert Schildt, The Complete Reference, 7th edition, Tata McGraw Hill

 �

�
�

http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp?topic=/com.ibm.ci
cs.ts31.doc/dfhpj/topics/dfhpj_thread.htm

http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html

Unit 9: Multithreaded Programming II

LOVELY PROFESSIONAL UNIVERSITY 141

CONTENTS

Objectives

Introduction

9.1 The Java Thread Model

 9.1.1 Thread Priorities

 9.1.2 Synchronization

 9.1.3 Messaging

 9.1.4 Thread Class and Runnable Interface

9.2 Stopping and Blocking a Thread

9.3 Inter-thread Communication

9.4 Suspending, Resuming and Stopping the Thread

9.5 Summary

9.6 Keywords

9.7 Self Assessment

9.8 Review Questions

9.9 Further Readings

Unit 9: Multithreaded Programming II

After studying this unit, you will be able to:

Objectives

• Explain the Java thread model

• Describe stopping and blocking a thread

• Describe inter-thread communication

• Explain suspending, resuming and stopping a thread

A multithreaded application delivers its potent power by concurrently running several threads in a
single program. Logically, multithreading refers to the execution of multiple lines of a single program at
the same time. However, it is not the same as starting a program twice and saying that there are
multiple lines of a program being executed at the same time. Here, the operating system is treating the
programs as two separate and distinct processes.

Multithreaded programming requires a different method of dealing with software. That is, instead of
executing a series of steps sequentially, tasks are executed concurrently, rather than waiting for one task
to finish before starting another. In the previous unit, we learnt the different stages involved in the life
cycle of a thread. We also learnt to create a single thread and to create multiple threads. In this unit we
shall learn more about multithreaded programming.

Introduction

In Java runtime machine, all the class libraries are designed with multithreading in mind. The Java
runtime machine depends on threads for many things like sharing the memory space and code. Java
uses threads to enable the entire Java runtime environment to be asynchronous. This reduces

9.1 The Java Thread Model

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

142

inefficiencies like consumption of more CPU cycles or wastage of CPU time by preventing the wastage
of CPU cycles.

The value of multithreaded environment is best understood in contrast to its counterpart (Single
threaded environment). The single thread systems use the event loop approach with polling. In Java
thread model, a single thread polls a single event queue to decide what to do next. If the polling
mechanism returns with a signal that a network file is ready to be read, then the event loop dispatches
control to the appropriate event handler. Any other action cannot be performed, until this event handler
returns. This wastes CPU time. This can also appear only in one part of the program dominating the
system and preventing any other events from being processed. In a single threaded environment, if a
thread is blocked, it means that it is waiting for some resources. During this polling mechanism, the
entire program is stopped. Hence, this polling mechanism is eliminated in Java's multithreading. Here,
one thread can pause without stopping other parts of your program.

The idle time that arises when a thread reads data from a network or waits for
user input can be used elsewhere.

In animation programs, multithreading allows the loops to sleep for a second between each frame
without causing the complete system to pause. If a thread is blocked, only the single thread, that is
blocked, pauses. The remaining threads continue to run.

Thread exists in many states. A thread can exist in running state. A running thread can be resumed,
suspended or blocked. At any point of time, the thread can also be terminated, which stops its execution
immediately. A thread cannot be resumed, once it is terminated.

9.1.1 Thread Priorities
As discussed earlier, multithreading is achieved by switching between one thread and another to create
concurrent execution of code. If the program execution has to happen with multiple CPUs, then the
operating system will move between one thread and another based on the arbitrary algorithm. So, this
makes it impossible to predict the order in which threads will be executed. The best way to predict the
execution of thread is assigning the relative priority for threads. This enables the operating system to
determine which thread is important.

Thread priorities are integer values that indicate the relative priority of one thread to another. But,
when the thread priority is considered as an absolute value, it is meaningless. The thread with higher
priority does not mean it runs faster than the thread with lower priority. Instead, the thread priority
helps to decide when to switch from one running thread to the next. This is referred to as a context
switch. The rules of context switch are:

1. A thread can voluntarily surrender control. This can be achieved by yielding, sleeping, or
blocking on pending I/O. In this situation, all the other threads are examined, and the thread with
higher priority is given the CPU time.

2. A thread can be preempted by a higher priority thread. In this situation, a lower priority thread
does not yield the processor but is simply preempted. Always the thread with higher priority runs
first. This process is called preemptive multitasking.

Assigning a Thread Priority
In Java, numerical ranking symbolizes the thread priority, where 10 is the highest priority and 1 is the
lowest priority. Some thread priorities are defined as static member variables of the java.lang. The
method Thread.SetPriorityMehtod(int) is used to set the thread priority.

Unit 9: Multithreaded Programming II

LOVELY PROFESSIONAL UNIVERSITY 143

Thread t=new Thread (runnable);

t.setPriority (Thread.MIN_PRIORITY);

t.start ();

This example is used to set the minimum priority level.

Table 9.1 depicts the thread priorities.

Table 9.1: Thread Priorities

10 Thread.MAX_PRIORITY

9

8

7

6

5 Thread.NORM_PRIORITY

4

3

2

1 Thread.MIN_PRIORITY

Obtaining the Current Thread Priority
If the thread wishes to determine its current thread priority, then it can do so, by invoking the
Thread.getPriority() method. An int value is returned, which indicates the priority of the thread.

Thread t = Thread.currentThread();
System.out.println ("Priority:"+t.getPriority());

In this example, Thread.currentThread() method is used to get the priority of the
currently running thread.

Limiting Thread Priority
Sometimes it becomes necessary to limit the maximum priority of a thread. This can be made possible
by installing a custom security manager, which throws a SecurityException. But, this process of
installing a custom security manager involves a significant amount of effort. An easier approach is to
create a ThreadGroup and assign a maximum priority level to this group. Thread group is specified
while creating a thread. ThreadGroup.setMaxPriority(int) method is used to assign maximum thread
priority for a group.

ThreadGroup group = new ThreadGroup ("mygroup");
group.setMaximumPriority(8);

In this example, the thread priority is set to 8.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

144

Program to illustrate thread priorities.

/* class Clicker is declared with Runnable interface using implement keyword */

class clicker implements Runnable

{

int clicker = 0; //clicker is assigned value of 0

Thread t; //thread t is created

private volatile Boolean running = true;

public clicker (int p) //Clicker method is called with integer p

{

t=new Thread(this); //a new thread is created and linked to t

t.setPriority(p); //Priority of the thread is set

}

public void run() //run() method is invoked

{

while(running) //value of running is examined using while loop

{

click++;

}

}

public void stop() //stop() method is invoked

{

running = false;

}

public void start() //start() method is called

{

t.start(); //thread t is started

}

}

class ThePrioDemo //class ThePrioDemo is declared

{

public static void main(String args[])

{

Thread.currentThread().setPriority(Thread.MAX_PRIORITY);

//priority is set two values above the normal priority

clicker the = new clicker(Thread.NORM_PRIORITY+2);

//priority is set two values below the normal priority

Unit 9: Multithreaded Programming II

LOVELY PROFESSIONAL UNIVERSITY 145

clicker pri = new clicker(Thread.NORM_PRIORITY-2);

the.start(); //thread is started

pri.start(); //thread is started

try

{

Thread.sleep(10000); //thread is made to sleep for ten seconds

}

catch(InterruptedException e)

{

System.out.println("Main thread interrupted");

}

the.stop(); //thread is stopped

pri.stop(); //thread is stopped

try

{

the.t.join(); //threads are joined

pri.t.join(); //threads are joined

}

catch(InterruptedException e)

{

System.out.println("InterruptedException caught");

}

System.out.println("Low priority thread:"+the.click);

System.out.println("High priority thread:"+pri.click);

}

}

Output:

Low priority thread: 4408112

High priority thread: 589626904

In this example, two threads at different priorities run on the same platform.

One thread is set to normal priority, as defined by Thread.NORM_PRIORITY,
and the other thread is set to two levels below it. Then the run() method is called,
which starts the thread and allows it to run for ten seconds. Each thread executes
a loop, counting the number of iterations. Here, running is preceded by the
keyword volatile. This keyword ensures that the value of running is examined
each time the following loop iterates:

while(running)

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

146

{

click++;

}

This keyword optimizes the loop such that a local copy of running is created.

The exact output produced by the above program depends upon the speed of
your CPU. The output also depends on the number of other tasks running in the
system.

9.1.2 Synchronization
Threads run concurrently and are independent of each other. This indicates that the threads run in their
own space, without being concerned about the status and activities of the other threads that are running
concurrently. During this process, threads do not require any method or outside resources, and as a
result, threads do not communicate with each other. These types of threads are generally called as
asynchronous threads. Sharing the same resource (variable/method) by two or more threads is the
major problem suffered by asynchronous threads, as only one thread can access a resource at a time.

Let us assume that two threads Thread1 and Thread2 are the producer and the consumer processes
respectively. These two threads share the same data. A situation can arise in which either the producer
produces the data faster than it is consumed or the consumer retrieves the data faster than it is
produced. This problem is schematically represented in figure 9.1.

 Figure 9.1: Problem of Sharing the Same Program’s
Data

To avoid and to solve the above problem, Java uses a monitor, which is commonly known as a
semaphore. This prevents the data from being corrupted by multiple threads. We can implement a
monitor by using the keyword synchronized to synchronize threads so that they can intercommunicate
with each other. This mechanism allows two or more threads to share the resources in a sequential
manner. Java's synchronized keyword ensures that only one thread at a time is in a critical region. This
region is a locked area, where only one thread at a time is run (or locked). Therefore, once the thread is
in its critical region, no other thread can enter into that critical region, and the thread has to wait until
and unless the current thread leaves its critical region.

Unit 9: Multithreaded Programming II

LOVELY PROFESSIONAL UNIVERSITY 147

Syntax for Synchronized Statement

 synchronized (object)

 {

 //statements to be synchronized

 }

Locking an Object
The term lock refers to the access granted or approved to a particular thread to access the shared
resources. To ensure that only one thread can access a method, Java locks an object, including its
methods. When an object is in the monitor, it makes sure that no other thread can access the same
object. Java object has a built-in lock system, which is enabled only when the object has synchronized
method code. An object acts as a guard in ensuring the synchronized access to the resource, by
associating the shared resource with a Java object and its lock. Therefore, only one thread can access the
shared resource guarded by the object lock at a time. There is only one lock per object, and if one thread
acquires the lock, no other thread can acquire it until the first thread releases the lock.

Syntax for Synchronizing an Object

synchronized (<object>)

{

//statements to be synchronized

}

By using the above syntax, the methods of the object can only be invoked by one thread at a time.

There are two ways, in which, the synchronization of the execution of code can be done. These two
ways are:

1. Synchronized Methods

2. Synchronized Blocks (Statements)

Synchronized Methods
If any method is specified with the keyword synchronized, it will be executed by only one thread at a
time. For any thread to execute the synchronized method, first, it has to obtain the objects lock.
However, if the lock is held by another thread, then the calling thread has to wait. These methods are
useful in situations where different methods need to be executed concurrently, so that these methods
can intercommunicate and manipulate the state of an object.

Program to illustrate synchronized method.

class share extends Thread //class share is declared using keyword extends

{

 static String msg[]={"Following", "is", "a", "synchronized", "variable"}; //msg is
declared as static

 share(String threadname)

//share is called with the parameter threadname

 {

 super(threadname); //super class is declared

 }

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

148

public void run() //run() method is invoked

{

 display(getName()); //displays the name of the thread

}

public synchronized void display(String threadN)

{

 for(int k=0; k<=4; k++)

 System.out.println(threadN+msg[k]);

 try

 {

 this.sleep(1500); //thread is made to sleep

 } catch(Exception e) { }

}

}

}

public class SynchroThread1

{

 public static void main(String[] args)

{

 share T1=new share("Thread 1:"); //a new thread is created

 T1.start(); //thread is started

 share T2=new share("Thread 2:"); //a new thread is created

T2.start();//thread is started

}

}

Output:

SynchroThread1

Thread 1: Following

Thread 1: is

Thread 1: a

Thread 1: synchronized

Thread 1: variable

Thread 2: Following

Thread 2: is

Thread 2: a

Thread 2: synchronized

Thread 2: variable

Unit 9: Multithreaded Programming II

LOVELY PROFESSIONAL UNIVERSITY 149

In this program, the display() method is synchronized, and is shared by both the
thread's objects at the same time during program execution. Therefore, only one
thread is able to access the method and to process it until that method’s
statements are executed.

The following program illustrates the synchronization of the print method in TwoString class.

Program to illustrate synchronization of the print method.

class TwoStrings //class TwoString is declared

{

 //the print method is declared with two parameters that are of type String

 synchronized static void print(String strg1, String strg2)

 {

 System.out.print(strg1);

 try

 {

 Thread.sleep(400); //thread is made to sleep

 } catch (InterruptedException e) {}

 System.out.println(strg2);

 }

}

class PrintStringsThread implements Runnable

{

Thread thread;

String strg1, strg2;

PrintStringsThread(String strg1, String strg2)

 {

 this.strg1 = strg1; // this keyword is used to refer to an instance of the class
from its method

 this.strg2 = strg2; // this.strg1 and this.strg2 refers to the instance variable
strg1 and strg2, were strg1 and strg2 refers to the arguments passed in the
method PrintStringsThread

 thread = new Thread(this);

 thread.start();

 }

 public void run()

 {

 TwoStrings.print(strg1, strg2);

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

150

 }

}

class TestThread

{

 public static void main(String args[])

 {

 new PrintStringsThread("Hello ", "Ma’am.");

 new PrintStringsThread("How do ", "you do?");

 new PrintStringsThread("Nice ", "meeting you.");

 }

}

Output:

Hello Ma’am.

How do you do?

Nice meeting you.

In this program, the “TwoStrings.print(strg1, strg2)" is synchronized with
“PrintStringsThread(String strg1, String strg2)”. Different values are passed as
the string parameters and the program calls the Twostrings.print() method to
print the output in the desired format.

Write a program to illustrate the synchronization of the print method that displays the
following output:

My name is John

I am a student of Lovely Professional University.

Synchronized Blocks (Statements)
An alternative way of handling synchronization is by using Synchronized Blocks (Statements).

 Syntax for Synchronized Block

synchronized (object reference expression)

{

//statements to be synchronized

}

These synchronized statements must specify the object providing the native lock.

Unit 9: Multithreaded Programming II

LOVELY PROFESSIONAL UNIVERSITY 151

Program to illustrate a synchronized object.

class Share extends Thread

//class Share is declared using keyword extends

{

static String msg[]={"Following", "is", "a", "synchronized", "variable"}; //msg is
declared static

Share(String threadname) //share is called with parameter threadname

{

 super(threadname); //super class is declared

}

 public void run() //run() method is invoked

 {

 display(getName()); //displays the name of the thread

 }

 public void display(String threadN)

 {

 synchronized(this) //synchronized block is declared

 {

 for(int j=0; j<=4; j++)

 System.out.println(threadN+msg[j]);

 try

 {

 this.sleep(500); //thread is made to sleep for 500 milliseconds

 } catch(Exception e) { }

 }

 }

 }

public class SynchroStatement //class SynchroStatement is declared

{

 public static void main(String[]args)

 {

 Share T1=new Share("Thread 1:"); //new thread is created

 T1.start(); //thread is started

 Share T2=new Share("Thread 2:"); //new thread is created

 T2.start(); //thread is started

 }

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

152

}

Output:

SynchroStatement

Thread 1: Following

Thread 1: is

Thread 1: a

Thread 1: synchronized

Thread 1: variable

Thread 2: Following

Thread 2: is

Thread 2: a

Thread 2: synchronized

Thread 2: variable

In this program, the synchronized (this) is synchronized, and is shared by both
the thread's objects at the same time during program execution. And, only one
thread has the criteria to access the method and to process it until that method’s
statements are executed.

9.1.3 Messaging
After the division of a program into different threads, we need to define how they will communicate
with each other. Java provides a clean and low cost platform for two or more threads to communicate
with each other. This can be performed through the medium of calls to predefined methods that all
objects have. Java's messaging system first allows a thread to enter a synchronized method on an object.
Then, it waits there until some other thread explicitly notifies it to come out.

9.1.4 Thread Class and Runnable Interface
The Thread class in Java (java.lang.Thread class) is used for constructing and accessing individual
threads in a multi-threaded application. Thread class supports a number of methods that includes
information about all the activities of a thread; it sets and checks the properties of the thread, and it
causes a thread to wait, be interrupted or be destroyed. By extending the Thread class, the applications
and classes can be made to run in separate threads.

Syntax of Thread Class

public class <class_name> extends Thread

public class DemoThread extends Thread
{ ………………………
}

In this example, a thread class DemoThread is created from the class Thread, and
is declared public.

Unit 9: Multithreaded Programming II

LOVELY PROFESSIONAL UNIVERSITY 153

Many constructors are used in the Thread class; some of the important constructors are given in table
9.2.

Table 9.2: Thread Constructors

Thread Constructor Description

Thread() Used to create a new Thread object.

Thread(String name) Used to create a new Thread object with a specified
name.

Thread(Runnable target) Used to create a new Thread object on the basis of
Runnable object. Target refers to the object whose
run method is called.

Thread(Runnable target, String name) Used to create a new Thread object with a specified
name on the basis of a Runnable object.

Methods are as important as constructors in a Thread class. Some important methods provided by the
Thread class are given in table 9.3.

Table 9.3: Methods Used in java.lang.Thread

Method Return Type Description

currentThread() Thread Returns an object with reference to the thread in which it is
invoked.

getName() String Retrieves the name of the thread object or instance.

start() void Calls run() method to initiate the thread. Starts the thread by
calling its run() method.

run() void Is the entry point for thread execution.

sleep() void Suspends a thread for a specified time period (in milliseconds).

isAlive() Boolean Determines whether the thread is running or not.

activeCount() int Returns the active threads to its thread group and all its
subgroups.

interrupt() void Interrupts the thread on which it is being invoked.

yield() void Allows the current thread’s execution to pause temporarily and
allows the other threads to execute.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

154

Runnable Interface
We know that the runnable interface defines the method run() that must be implemented. This method
is implemented by classes to show that they are capable of being run as a separate thread of execution.

Syntax for run() Method:

public void run()

In this syntax, run() method is called, and is declared public and void.

There are many advantages of using the runnable interface. These advantages are:

1. Object can be inherited from a different class.

2. The same runnable object can be passed to more than one thread (many threads can use the same
code and also act on the same data).

3. Some applications can minimize the overhead, because some new thread instances require
valuable memory and CPU time.

Program to create new threads with the Thread class and runnable objects by
using classes that implement the Runnable interface.

class SampleRunnable implements Runnable

{

 public static void main(String[] args)

 {

 SampleRunnable SRun = new SampleRunnable();

 Thread thr = new Thread(SRun);

 thr.start();

 System.out.println("Hello world >> from the main program");

 }

 public void run()

 {

 System.out.println("Hello world >> from a thread");

 try

 {

 Thread.sleep(1000*50*50);

 }

 catch (InterruptedException e)

 {

 System.out.println("Thread Interrupted");

 }

Unit 9: Multithreaded Programming II

LOVELY PROFESSIONAL UNIVERSITY 155

 }

}

Output:

Hello world >> from the main program

Hello world >> from a thread

In the above program:

1. The Runnable interface is implemented in the class SampleRunnable.

2. A runnable object is instantiated.

3. A thread object of the Thread class is instantiated with the specified

 runnable object.

4. The start() method is called on the new object.

5. The run() method is implemented by defining it in the Runnable interface.

Note: The Thread object thr is created using the special Thread constructor,
which takes a Runnable object as input. If a Thread object is created in this way,
the run() method of the Runnable object is executed as a new thread.

The sleep() method has to be called explicitly by prefixing the class name:
Thread, because the class is not extending the Thread class.

Write a program to illustrate a multi-threaded application that uses the runnable
interface rather than a subclass of the Thread class.

Analyze the following code segment and find out what will happen when this code is
executed?

Thread t =new Thread();

t.start();

t = null();

At a certain point of time, it is necessary to terminate a thread before its task has been completed.

9.2 Stopping and Blocking a Thread

If the network client wants to send a message to a mail server in the second
thread, then the thread in the execution state should be stopped immediately.

Thread can be stopped by another thread by invoking the Thread.stop() method. But this requires a
controlling thread to maintain a reference to the thread that it wants to shut down.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

156

Program to illustrate the concept of stopping a thread.

//class StopMe is declared using keyword extends

public class StopMe extends Thread

{

public void run() //Run method is executed when thread first started

{

int count=1; //count is assigned to 1

System.out.println("I can count");

for(;;) //for loop is iterated

{

//Print count and increment it

System.out.print(count++ +" ");

try

{

Thread.sleep(500); //Sleep for half a second

}

catch(InterruptedException ie)

{ }

}

//Main method to create and start threads

public static void main(String args[]) throws java.io.IOException

{

//Create and start counting thread

Thread counter = new StopMe();

counter.start();

//Prompt user and wait for input

System.out.println("Press any enter to stop the thread counting");

System.in.read():

//Interrupt the thread

counter.stop;

}

In this example,

The thread will display an incrementing count, which will go on indefinitely
without terminating. The run() method is executed initially, when the thread is
first started. Then the count gets incremented and also gets printed. Then the
thread is made to sleep for half a second. After this, the main() method creates

Unit 9: Multithreaded Programming II

LOVELY PROFESSIONAL UNIVERSITY 157

and starts the thread. This starts counting the thread. Finally, the Thread.stop() is
used to stop the thread.

Thread can be blocked or suspended from getting into the runnable and next running states, by using
either of the following thread methods:

sleep() //blocked for a specified time

suspend() //blocked until further orders

wait() //blocked until certain conditions occur

These methods affect the threads to go into the blocked state. In case of sleep() method, the thread
method will return to the runnable state when the time is elapsed; in case of suspend() method,
resume() method is invoked; in case of wait() method, notify() method is called.

There are three ways for the threads to communicate with each other.

In the first way, all the threads share the same memory space. If the threads share the same object, then
these threads share access to that object's data member and thus communicate with each other.

In the second way, threads communicate by using thread control methods. The second way includes the
following three methods by which threads communicate with each other:

9.3 Inter-thread Communication

1. suspend():

2.

 By using this method, a thread can suspend itself and wait till another thread resumes
it.

resume():

3.

 By using this method, a thread can wake up another waiting thread through its
resume() method and then run concurrently.

join():

In the third way, threads communicate by using the following three methods:

By using this method, the caller thread can wait for the completion of the called thread.

1. wait():

2.

 This method tells the calling thread to examine and make the calling thread wait until
another calls the same thread's notify() or notifyAll() or a timeout occurs.

notify()

3.

: This method wakes only the first waiting thread on the same object.

notifyAll():

 This method wakes up all the threads that have been called by wait() on the same
object.

Program to illustrate the implementation of wait(), notify() and notifyAll()
methods.

class Sort //class Sort is created

{

int num=0;//interger value num is assigned 0

Boolean value = false; //The variable value is assigned false

synchronized int get() //synchronized block is declared

{

 if (value==false) //checking if value is false

 try {

 wait(); //thread is made to wait

 }

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

158

 catch (InterruptedException e) {

 System.out.println("InterruptedException caught");

 }

System.out.println("consume: " + num);

value=false;

notify(); //notify method is invoked

return num; //returns num value

}

synchronized void put(int num)

{

 if (value==true) // checking if value is true

 try {

 wait(); //thread is made to wait

 }

 catch (InterruptedException e) {

 System.out.println("InterruptedException caught");

 }

 this.num=num; //num value points to the current class object

 System.out.println("Produce: " + num);

 value=false;

 notify(); //notify method is invoked

 }

 }

//class Construct is declared using keyword extends

class Construct extends Thread

 {

 Sort s; //sort is declared with object s (Synchronized method)

 Construct(Sort s)

{

 this.s=s; //s points to the current class objects

 this.start();

 }

 public void run() //run() method is invoked

{

 int i=0; //integer i is assigned to value 0

 s.put(++i); //increments the value num

Unit 9: Multithreaded Programming II

LOVELY PROFESSIONAL UNIVERSITY 159

 }

}

class User extends Thread //class User is declared using extends keyword

{

 Sort s; //sort is declared with object

 User(Sort s) //constructor is called with Sort s (Synchronized method)

{

 this.s = s; //s points to the current class objects

 this.start();

 }

 public void run() {

 s.get(); //retrieves the produced number and returns it to the output

 }

}

public class InterThread //class InterThread is declared

{

 public static void main(String[] args)

 {

 Sort s=new Sort();

 new Construct(s);

 new User(s);

 }

}

Output:

C:\nisha>javac InterThread.java

C:\nisha>java InterThread

Produce: 1

consume: 1

In this program, two threads Construct and User share the synchronized
methods of the class Sort. At time of program execution, the put() method of the
Construct class is invoked, which increments the variable num by 1. After
producing 1 by the Construct, the method get() is invoked by the User class,
which retrieves the produced number and returns it to the output. Thus, the User
cannot retrieve the number without producing of it.

The three methods wait(), notify(), and notifyAll() must only be called from the
synchronized methods.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

160

Deadlock
Deadlock is a special type of error that needs to be avoided in multitasking. This mainly occurs, when
two threads have interdependency on a pair of synchronized objects.

One thread enters the monitor on object A, and another thread enters the monitor
on object B. If the thread in A tries to call any synchronized method on B, it
becomes blocked. But, if the thread in B tries to access any synchronized method
on A, then the thread waits for a while, since it should release its own lock on B,
so that the first thread can complete.

Deadlock is considered as an error, which is difficult to debug because of two reasons:

1. It occurs rarely, when two threads time-slice in the correct way.

2. It may have more than two synchronized objects and two threads.

Program that creates a deadlock situation in which two threads attempt to
acquire locks on two different resources.

public class DLock

{

 public static void main(String[] args)

 {

 // The two resource objects for which we need to get locks are declared

 final Object res1 = "First Resource";

 final Object res2 = "Second Resource";

 //This is the first thread. It first tries to lock resource1 then resource2

 Thread thr1 = new Thread()

 {

 public void run()

 {

 // Lock resource1

 synchronized(res1)

 {

 System.out.println("First Thread: locked first resource");

 // Forcing deadlock to happen by pausing a bit

 try

 {

 Thread.sleep(100);

Unit 9: Multithreaded Programming II

LOVELY PROFESSIONAL UNIVERSITY 161

 }

 catch(InterruptedException e)

 { }

 // Wait till we get a lock on resource 2

 synchronized(res2)

 {

 System.out.println("First Thread: locked second resource");

 }

 }

 }

 }

 // The second thread tries to lock resource2 then resource1

 Thread thr2 = new Thread()

 {

 public void run()

 {

 // This thread locks resource2 without any delay

 synchronized(res2)

 {

 System.out.println("Second Thread: locked second resource");

 // Pauses like the first thread

 try

 {

 Thread.sleep(100);

 }

 catch(InterruptedException e)

 { }

 /* The program freezes when the thread tries to lock resource 1, as thread1
has locked resource1 and shall not release it till it gets a lock on resource2. This
thread holds lock on resource2 and shall not release it till it gets resource1 */

 synchronized(res1)

 {

 System.out.println("Second Thread: locked first resource");

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

162

 }

 }

 }

 };

 // Starts the two threads. Deadlock occurs, and the program never exits.

 thr1.start();

 thr2.start();

 }

 }

In this example,

A deadlock is created between two threads that are trying to acquire locks on two
different resources. In order to avoid this type of deadlock when locking multiple
resources, all the threads should acquire locks in the same order.

Write a program that displays the name of the thread that executes the main method.

In Java, a simple program may contain many threads. Each thread may perform different tasks.
Sometimes, it becomes necessary to suspend the execution of a thread for a period of time. This can be
done by using suspend() method of the class Thread. The time period needs to be specified till the
thread remains suspended and then we can restart the thread by using resume() method of the class
Thread. If a thread is suspended, it can be restarted. But if a thread is stopped by using stop() method,
it cannot be restarted again.

These methods were used in the earlier systems of Java, but they are not used in the latest version
because sometimes suspend() and stop() methods of the class Thread causes system failure. Therefore,
run() method is used in the latest version of Java instead of the above mentioned methods. So, the run(
) method checks when a thread should be suspended, resumed, or stopped.

9.4 Suspending, Resuming and Stopping the Thread

Program to illustrate the concept of suspending and resuming thread.

class Suspenddemo //class Suspenddemo is declared

{

public static void main(String args[])

{

Thread thrd1 = new Thread(); //new thread is created

Thread thrd2 = new Thread(); //new thread is created

try

Unit 9: Multithreaded Programming II

LOVELY PROFESSIONAL UNIVERSITY 163

{

Thread.sleep(1000); //thread is made to sleep

System.out.println("Suspending: First");

thrd1.suspend(); //current thread execution is suspended

Thread.sleep(1000); //thread is made to sleep

System.out.println("Resuming: First");

thrd1.resume(); //suspended thread is resumed

System.out.println("Suspending: Second");

thrd2.suspend(); //current thread execution is suspended

Thread.sleep(1000); //thread is made to sleep

System.out.println("Resuming: Second");

thrd2.resume(); //suspended thread is resumed

}

catch(InterruptedException e)

{

System.out.println("The main thread is interrupted");

}

try

{

System.out.println("Applying joins");

thrd1.join(); //thread is joined

thrd2.join(); //thread is joined

}

catch(InterruptedException e)

{

System.out.println("The main thread is interrupted");

}

System.out.println("Exiting main");

}

}

Output:

Suspending: First

Resuming: First

Suspending: Second

Resuming: Second

Applying joins

Exiting main

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

164

In this example:

1. The class Suspenddemo is declared.

2. Then, inside the main method a new instance of thread is created.

3. Then inside the try block, the first thread is put to sleep for 1000
miliseconds, after which the System.out.println statement prints the
statement "Suspending: First".

4. Then, the current execution of the first thread is suspended using the
method suspend().

5. The thread is again put to sleep, after which the System.out.println
statement prints the statement "Resuming: First".

6. Now the first thread that was suspended is resumed with the method
resume().

7. Then, the System.out.println statement prints the statement "Suspending:
Second".

8. Now the current execution of the second thread is suspended using method
suspend().

9. The second thread is put to sleep, after which the System.out.println
statement prints the statement "Resuming: Second".

10. The second thread that was suspended is resumed using the method
resume().

11. The catch method prints statement "The main thread is interrupted" if it
encounters an error.

12. Then, the two threads are joined using method join() before which a
System.out.println prints the statement "Applying joins".

13. If an error occurs while joining the threads, the catch throws an exception
with the statement "The main thread is interrupted".

Finally, the System.out.println statement prints a message "Exiting main".

Do not create too many threads, as it may consume more CPU time than executing the
program.

1. Write a program to create multiple threads.

2. Write a program that checks whether a given number is a prime using both
 the Thread class and Runnable Interface.

Unit 9: Multithreaded Programming II

LOVELY PROFESSIONAL UNIVERSITY 165

• A thread in running state can be resumed, suspended or blocked. Thread priorities are integer
values that help to switch between threads and enable concurrent execution of code.

9.5 Summary

• The Thread class in Java is used for constructing and accessing individual thread information in a
multithreaded application.

• Sometimes, it is necessary to suspend the execution of a thread. This can be done by suspend()
method.

• Thread can be restarted by using resume() method. Thread can be stopped by using stop()
method.

9.6 Keywords
Class Libraries: This is a collection of classes, which provides related facilities that can be used in the
program. It is a set of classes that is stored in sets of files.

Frame: A frame is used to store data and partial results, as well as to perform dynamic linking, return
values for methods, and dispatch exceptions.

Network Client: General users of the network.

Polling: This is a single queue event to determine what to do next.

1. State whether the following statements are true or false:

 (a) The method Thread.SetPriorityMehtod(int) is used to set the thread priority.

 (b) Java's Thread keyword ensures that only one thread at a time is in a critical region.

 (c) The term lock refers to the access granted or approved to a particular thread to access the

 shared resources.

 (d) A single target object can be used only to create single threads in a program.

 (e) Invocation of the wait(), sleep(), or join() method moves the current thread to the running

 state.

2. Fill in the blanks:

 (a) The normal priority of a thread is _________.

 (b) The _________ method of the class Thread is used to create reference of the current thread.

 (c) The _________ method is used to pause the execution of a thread for a specified period of time.

 (d) The ____________ method is used to check the thread (on which it is called) whether still

 running or not.

3. Select a suitable option in the following questions.

 (a) Which of the following methods is used to return the name of the thread group?

 (i) getName() (ii) getCount() (iii) setName() (iv) getMaxPriority()

 (b) A monitor has five threads with the same priority. One of the threads is thread1. How can you

 notify thread1 so that it alone moves from waiting state to Ready state?

 (i) Execute notify(thread1); (ii) Execute thread1.notify();

 (iii) Execute notify(); (iv) You cannot specify which thread will get notified.

9.7 Self Assessment

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

166

1. “The getPriority() method is used to retrieve the priority of a thread”. Explain this with a suitable

 example.

2. “Deadlock is a special type of error that needs to be avoided in multitasking”. Elaborate.

3. “Thread priorities are integer values that indicate the relative priority of one thread to another”.

 Elaborate.

4. “Java's synchronized keyword ensures that only one thread at a time is in a critical region”.

 Comment.

5. “When a thread is alive, it indicates it is in one of its several states”. Justify.

6. “A process having more than one thread is called as a multi-threaded process”. Comment.

7. “The Thread class in Java (java.lang.Thread class) is used for constructing and accessing individual

 threads in a multi-threaded application”. Elaborate.

8. “There are three ways for the threads to communicate with each other”. Elaborate.

9. “An alternative way of handling synchronization is by using Synchronized Blocks”. Comment.

10. “Each thread may perform different tasks. Sometimes, it becomes necessary to suspend the

 execution of a thread for a period of time”. Comment.

11. “At certain point of time, it is necessary to terminate a thread before its task has been completed”.

 Justify.

Answers: Self Assessment
1. (a) True (b) False (c) True (d) False (e) False

2. (a) 5 (b) currentThread() (c) sleep() (d) isAlive()

3. (a) getName() (b) You cannot specify which thread will get notified

9.8 Review Questions

9.9 Further Readings

Herbert Schildt, The Complete Reference, 7th edition, Tata McGraw Hill

D. Samanta, Object-Oriented Programming with C++ and Java

http://www.herongyang.com/Java/Deadlock-What-Is-Deadlock.html

http://java.sun.com/docs/books/jls/second_edition/html/memory.doc.html

http://tim.oreilly.com/pub/a/onjava/excerpt/jthreads3_ch6/index1.html

Unit 10: Input/Output Programming

LOVELY PROFESSIONAL UNIVERSITY 167

CONTENTS

Objectives

Introduction

10.1 I/O Basics

 10.1.1 Concept of Stream

 10.1.2 The Predefined Streams

10.2 The File Class

 10.2.1 Creating a File

 10.2.2 Reading and Writing Characters

 10.2.3 Reading and Writing Bytes

10.3 Random Access Files

10.4 Summary

10.5 Keywords

10.6 Self Assessment

10.7 Review Questions

10.8 Further Readings

Unit 10: Input/Output Programming

After studying this unit, you will be able to:

Objectives

• Describe the I/O basics

• Explain the file class

• Discuss about random access files

Any software application requires data as input. This data can be a user application, a file, or any other
application. The given input is processed and the final output is produced by the software application.
We know that a file is a set of records that are stored on the disk. These files can be used for storing and
managing data, which is referred to as file processing. File processing comprises different operations on
files, such as creating files, updating files, and so on.

In Java, all input and output operations of data using files are handled in the form of streams. A stream
can be defined as a continuous series of bytes traveling from a source to a destination, through a
communication path. The streams through the communication path can be linked with physical devices
like computer screen or hard disk using I/O system in Java.

Introduction

Java offers a simple model for Input/Output (I/O) operations. The model for I/O operations states that
data is received from a source such as a keyboard and is displayed onto the console or file. The input or
the output operations are performed by writing to or reading from a stream of data. This data can be
present in a file or an array, or can come from another systems’ port, or can be piped from another
stream.

10.1 I/O Basics

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

168

Java provides strong and flexible assistance for I/O as it corresponds to files and networks. Most of the
classes used for the I/O operations are present in the java.io.* package, which supports the basic I/O
operations such as reading/writing data into a file. The I/O system of Java contains various classes,
interfaces and methods. The I/O system of Java is cohesive and consistent. It is easy for a programmer
to master the I/O system after the easy understanding of the fundamentals of this system.

10.1.1 Concept of Stream
All the applications created in Java perform I/O operations through streams. A stream is a
communication path through which the data travels in a program. When a stream is sending the data, it
is said to be written, and when the stream is receiving the data, it is said to be read. Data in a stream can
flow only in one direction. A stream such as a file, a socket, or memory is opened by a program on an
information source to get in the information and this stream is read by the program in a sequential
order. Similarly, the program opens a stream to a destination by sending the written information
sequentially. This is depicted in figure 10.1.

Figure 10.1: Relationship between Program and Source

As per the figure 10.1, one end of the stream must be connected to an application and the other end
must be connected to the data input/output devices.

Figure 10.2: Relationship between Program and Destination

According to figure 10.1 and figure 10.2, no matter what type of information is being transferred and
where the information is coming from or going to, the algorithm for reading and writing the data
remains the same. Following steps are followed in these algorithms:

1. Create an object of I/O stream associated with the data source or data destination.

2. Read/write the data using the object’s read()/write() methods.

3. At the end, close the stream by calling the object’s close() method.

Source

Stream
reads Program

Program

Stream
writes Destination

Unit 10: Input/Output Programming

LOVELY PROFESSIONAL UNIVERSITY 169

Stream Classes
The java.io package comprises numerous stream classes. The stream classes in Java provide capabilities
to process different types of data. Figure 10.3 depicts the categorization of stream classes.

Figure 10.3: Categorization of Java Stream Classes

As depicted in figure 10.3, stream classes in Java are broadly classified into the following categories on
the basis of the data type on which they operate:

1. Byte stream classes

2. Character stream classes

Byte Stream Classes
Byte stream classes are one of the categories of the Java stream classes. These stream classes handle I/O
operations on bytes. There are a number of byte stream classes in java.io package to enable reading and
writing of data as a stream of bytes. These streams act as an interface between the application and a data
source or a destination. In Java, the byte stream classes are classified into two categories based on the
direction of flow of data through the stream. The classes under these categories are arranged in two
separate hierarchies, namely, input stream hierarchy and output stream hierarchy. These hierarchies are
derived from the abstract classes as mentioned below:

1. Input Stream Class:

2.

 It is the super class for the input stream classes.

Output Stream Class:

These abstract classes are inherited by other subclasses to provide a variety of I/O capabilities. Each of
these abstract classes comprises various subclasses such as network connections, disk files, memory
buffers, and so on.

 It is the super class for the output stream classes.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

170

Table 10.1 depicts different byte stream classes available in Java.

Table 10.1: Different Byte Stream Classes in Java

BufferedInputStream BufferedOutputStrea
m

ByteArrayInputStrea
m

ByteArrayOutputStrea
m

DataInputStream DataOutputStream FileInputStream FileOutputStream

FilterInputStream FilterOutputStream InputStream ObjectInputStream

ObjectOutputStream OutputStream PipedInputStream PipedOutputStream

PrintStream PushbackInputStream RandomAccessFile SequenceInputStream

To know the meaning of the byte stream classes shown in the figure 10.1, refer "Schildt, H. (2008). The
Complete Reference, 7th ed. Tata McGraw-Hill."

Character Stream Classes
The byte stream classes provide sufficient functionalities to handle any type of input and output
operations in Java. However, byte streams are not capable of handling Unicode characters. The major
purpose of creating Java is to enable platform independent applications. This purpose cannot be met if
the streams are unable to read/write Unicode characters. Due to this disadvantage, the character stream
classes were developed. These streams can read/write characters from and to streams.

There are a number of character stream classes enabling us to read/write data as a stream of Unicode
characters in java.io package. Character stream classes can be used to perform I/O operations on
various sources or destinations of data. These streams abstract the I/O details and provide the
functionalities to handle characters.

Based on the direction of flow of data in streams, the character stream classes are classified into two
categories. The classes under these categories are arranged in two separate hierarchies, namely, input
stream hierarchy and output stream hierarchy. These hierarchies are derived from the abstract classes as
mentioned below:

1. Reader Class:

2.

 The Reader class sets the foundation for the Reader inheritance hierarchy.

Writer Class:

The Reader class and the Writer class handle Unicode character streams. Table 10.2 depicts different
character stream classes available in Java.

 The Writer class sets the foundation for the Writer inheritance class.

Table 10.2: Different Character Stream Classes in Java

BufferedReader BufferedWriter CharArrayReader CharArrayWriter

FileReader FileWriter FilterReader FilterWriter

InputStreamReader LineNumberReader OutputStreamWriter PipedReader

PipedWriter PrintWriter PushbackReader Reader

StringReader StringWriter Writer

Unit 10: Input/Output Programming

LOVELY PROFESSIONAL UNIVERSITY 171

To know the meaning of the character stream classes shown in table 10.2, refer "Schildt, H. (2008). The
Complete Reference, 7th ed. Tata McGraw-Hill."

As depicted in figure 10.3, it is possible to cross-group streams depending on the type of sources they
read from or write to.

Sources - memory, pipe or file.

The byte stream and character stream classes comprise specialized classes to
independently handle input and output operations. The stream classes are grouped
according to their functions.

10.1.2 The Predefined Streams
Java comprises many packages, and the java.lang package is the package that is imported by all Java
programs automatically. This package consists of a class known as System. The System class
encapsulates various aspects of the run-time environment.

The System class comprises three predefined stream variable such as in, out and err. Within the System
class these stream variables are declared as public and static.

The stream variables are declared as public and static in a program, so that they can
be used by the other parts of the program and without giving reference to a particular
System object.

System.in pertains to the standard input stream such as the keyboard, which is the default input device.
It is an object of InputStream class.

The System.in is generally not used, as data is usually passed to a command line Java
application through command line arguments. The data can also be passed through
configuration files.

System.out pertains to the standard output stream. It is an object of PrintStream class. By default, the
System.out outputs the data written to the console. It is generally used to print a program’s debug
statements.

System.err pertains to the standard error stream. It is an object of the PrintStream class. It is usually
used to output error tasks.

Did you know? Eclipse, which is an IDE for running Java programs, displays the output to
System.err in red text to help us understand easily that there is an error in the
program being compiled.

System.out and System.err are mainly used to read characters and write characters
from and to the console. Even though they operate on characters, they fall under byte
streams. However, it is also possible to wrap these within the character based streams
if required.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

172

A File class is an object used to create files, access files and directory objects, and manipulate the
information of a file.

10.2 The File Class

The File class can be used to check whether a file is hidden or not, list the
directory's content, set the date of a file or set a file to read only.

As the File class is abstract, it represents the actual files and directory pathnames. Hence, the File class
affords a computer independent interface for the underlying operating system.

The File class is also used to encapsulate information about a file. Thus, the File class helps us to control
the file system and as such is considered as the most important class in the I/O system of the Java
language.

Facts About File Class

1. The File class is present in the java.io package.

2. The java.io.File class is used to access and manipulate files and directories.

Did you know? The input and output to files is not provided by the File class. The File class just
provides an identifier/path of the files and directories.

The File class uses the file-naming conventions of the host operating system. The constructors of the
File class take file and directory names as well as file paths. The constructor creates a new instance of
the File class. After creating an instance of the file, the methods available for the File class can be used
to:

1. Create files.

2. Delete and rename files.

3. Delete, rename and list directories.

Some constructors are used to create an object of the File class. These constructors are:

1. File(String DirectoryPath):

2.

This constructor creates a new instance of the File class, by specifying
the path name of the file as a string parameter. This parameter includes a complete path name or a
path name relative to the current working directory.

File(String DirectoryPath, String Filename):

3.

This constructor creates a new instance of a File class,
by specifying the path name as the first parameter, and file name as the second parameter.

File(String DirObj, String Filename):

 This constructor creates a new instance of a File class in a
specified directory. Here, the directory is specified as the first parameter, and the filename is
specified as the second parameter. File object will be created in the current working directory only
if the first parameter is NULL.

Unit 10: Input/Output Programming

LOVELY PROFESSIONAL UNIVERSITY 173

File fileObj;

// Constructor with the file name provided as input

fileObj = new File(“JavaBooks”);

/* Constructor with the parent directory’s path and the file name provided as
inputs */

fileObj = new File(“\\”, “JavaBooks”);

/* Constructor with the file object and file name provided as inputs. The file object
represents the path to the parent directory of the file. */

File dirObj = new File(“\\”);

fileObj = new File(dirObj, “JavaBooks”);

Note: In these examples, it is assumed that the file JavaBooks is present under the
current directory.

The File class defines a wide range of methods to manage files and directories. Table 10.3 shows some
of the most commonly used methods in the File class.

Table 10.3: Methods in File Class

Methods Description

Boolean isFileQ Returns Boolean value, specifying whether the File object being
invoked represents a File or a directory.

String getName() Returns the name of the File object that is being invoked,
eliminating the path name.

Boolean isHidden() Returns Boolean value true, indicating that invoked File is hidden.

String getPathQ Returns the path name of the File object that is being invoked.

Boolean canWrite() The application can write to the file, if the return value is true.

Boolean canRead() The application can read from the file, if the return value is true.

Boolean delete Deletes the file or directory being invoked. The directory must be
empty before it is deleted.

BooleanrenameTo(Fil
e directoryPath)

Used to rename the File object being invoked. The new pathname is
specified to the constructor as a parameter.

longlength() Used to return the size of the file in bytes.

String[]list(FileFilter
option)

Returns the file lists as an array of String objects by specifying the
filter option as a parameter to the method.

File[]list(FileFilter
option)

Returns the Files list in the Directory object being invoked. These
files in the directory are returned as array of File objects.

Boolean mkdir() Creates a new directory if the path name of the new directory has
already been specified in the File object.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

174

The methods given in Table 10.3 are useful in creating, deleting and renaming files and directories in a
file class.

10.2.1 Creating a File
The creation and utilization of a disk file involve various decisions to be made, such as an appropriate
naming for the file, data type to be used, purpose of creating the file and method used in the creation of
file.

A filename refers to a unique string of characters that facilitates easy identification of files on the disk. A
filename consists of two parts that includes the primary name and a period with an extension.

book.txt
In this example, book is the primary name and txt is the extension.

It is important to decide the data type to be used and the type of the file stream classes that have to be
used to handle the data.

Decision needs to be made if data to be handled should be of type character, byte
or a non-primitive type.

The purpose of creating a file must also be decided before using the file.

The purpose of creating the file could be any, such as read only, write only or both.

In order to use a file, first it has to be opened. This is accomplished by creating a file stream and then
linking it to the filename. The Reader/InputStream class or Writer/OutputStream class is created to
define a file stream. The Reader/InputStream class is used to read data. The Writer/OutputStream class
is used to write data. Table 10.4 and table 10.5 display the common stream classes that are used for
input or output operations of bytes and characters respectively.

 Table 10.4: Stream Classes Used for I/O Operations of
Bytes

 Read Write

File FileInputStream FileOutputStream

Memory ByteArrayInputStream ByteArrayOutputStream

Pipe PipedInputStream PipedOutputStream

 Table 10.5: Stream Classes Used for I/O Operations of
Characters

 Read Write

File FileReader FileWriter

Memory CharArrayReader CharArrayWriter

Pipe PipedReader PipedWriter

Unit 10: Input/Output Programming

LOVELY PROFESSIONAL UNIVERSITY 175

To assign a filename to the file stream objects, we can use the constructors of the
stream classes.

The file stream object can be instantiated in two ways. One way is by providing the name of the file
directly to the constructor as a literal string or variable. The other is by providing the name of the file
indirectly to the constructor by specifying a file object that has been assigned a filename. The following
code segment depicts the use of direct and indirect method of initializing the file stream object.

Sample code to illustrate the direct method of initializing the file stream object,
where the filename is specified directly inside the constructor.

FileInputStream fileInpStr;

try

{

 fileInptStr = new FileInputStream(“BookDetails.txt”);

 …

}

catch(IOException e)

…

…

In this example,

1. First, a file stream object fileInpStr is declared.

2. Then, in the try block, the file stream object is initialized using the direct

 method. That is, a filename is assigned to the file stream object directly.

3. The catch block then takes care of the IOExceptions if any.

Sample code to illustrate the indirect method of initializing the file stream object,
where the file object is initialized with the filename.

File fileObj;

fileObj = new File(“BookDetails.txt”);

FileInputStream fileInpStr;

try

{

 fileInptStr = new FileInputStream(fileObj);

 …

}

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

176

catch(IOException e)

…

…

In this example,

1. First, a file object fileObj is declared.

2. Then, the filename BookDetails.txt is assigned to the file object.

3. After this, a file stream object fileInpStr is declared.

4. In the try block, the value of the file object is assigned to the file stream object.

5. The catch block then takes care of the IOExceptions if any.

In some programs, the File.createNewFile() method is used to create a new file. If the file is created,
this method returns a Boolean value true, otherwise it returns false.

Program to create a file.

import java.io.*;

class CreateNewFile

{

 public static void main(String args[])

 {

 try

 {

 File fileObj;

 fileObj = new File("BookDetails.txt");

 if(!fileObj.exists())

 {

 fileObj.createNewFile();

 System.out.println("A new file \"BookDetails.txt\" has been

 created in the current directory");

 }

 }

 catch (Exception e)

 {

 System.err.println("Error: " + e.getMessage());

 }

 }

}

Unit 10: Input/Output Programming

LOVELY PROFESSIONAL UNIVERSITY 177

Output:

A new file "BookDetails.txt" has been created in the current directory.

In this example,

1. First, the java.io package is imported as it supports the I/O functions.

2. Then, a class CreateNewFile is created.

3. In the class CreateNewFile,

(a) The main() method of the class is called.

(b) In the main() method,

 (i) The try-catch mechanism is used. In the try block, a File object fileObj
 is declared. Then, a new instance of the File class is created and is
 assigned the file name BookDetails.txt. The if statement is then used
 to find if the file name BookDetails already exists in the current
 directory. If the file does not exist, then a new file is created using the
 createNewFile() method. Then, the A new file \"BookDetails.txt\"
 has been created in the current directory statement is printed on the
 screen.

 (ii) After the try block, catch block is used to handle exceptions and
 display the error messages if any.

Note: In this program, if the file name that is specified exists, the createNewFile()
method returns false. If the file name does not exist, the method returns true and
creates the specified file in the current directory.

Write a program to create a file and display the message "File Created" when a new file
is created. In case the file already exists, the program should display the message "File
Already Exists".

10.2.2 Reading and Writing Characters
The Java input/output classes facilitate to read and write characters from different sources.

The Reader and Writer class comprises various subclasses. These sub classes implement streams that
can handle characters. The sub classes used to handle characters in files are FileReader and FileWriter.
FileReader is used for reading characters from the file and FileWriter is used for writing characters to
the file.

In the following program, these two file stream classes are used to copy the contents of a file called
source.txt into a file named destination.txt.

Program to copy character from one file to another file.

import java.io.*;

class ReadWriteCharacters

{

 public static void main(String args[])

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

178

{

 public static void main(String args[])

 {

 File sourceFile = new File("source.txt");

 File destFile = new File("destination.txt");

 FileReader fileinpstr = null;

 FileWriter fileoutstr = null;

 try

 {

 fileinpstr = new FileReader(sourceFile);

 fileoutstr = new FileWriter(destFile);

 int cha;

 while((cha = fileinpstr.read()) != -1)

 {

 fileoutstr.write(cha);

 }

 }

 catch(IOException e)

 {

 System.out.println(e);

 System.exit(-1);

 }

 finally

 {

 try

 {

 fileinpstr.close();

 fileoutstr.close();

 }

 catch(IOException e)

 { }

 }

 }

}

Output:

Content in “source.txt” file is copied to “destination.txt” file.

Unit 10: Input/Output Programming

LOVELY PROFESSIONAL UNIVERSITY 179

In this example,

1. First, the java.io package is imported, as it supports the I/O functions.

2. Then, a class ReadWriteCharacters is created.

3. In the ReadWriteCharacters class,

(a) The main() method of the class is called.

 (b) In the main() method,

 (i) Two File objects, sourceFile and destFile are declared and assigned
 the file names source.txt and destination.txt, respectively.

 (ii) Then, two file stream objects fileinpstr and fileoutstr are created
 and assigned the value null.

 (iii) Two try and catch blocks are then used.

 (iv) In the first try block, the two file stream objects are connected to the
 named files using the statements:

 fileinpstr = new FileReader(sourceFile);

 fileoutstr = new FileWriter(destFile);

 (This connects sourceFile to FileReader stream fileinpstr and also
 destFile to FileWriter stream fileoutstr.)

 Then, an integer object cha is declared. After this, the while
 statement is used to check the ((cha = fileinpstr.read()) != -1)
 condition. This condition means that the reading of characters from
 source file should happen until there is no character to be read in
 the source file. Here, the character -1 indicates the end of the file. If
 this condition is true, the value of cha is written to fileoutstr. This
 will be done until the condition is true.

 (v) Then, in the catch block, the value of e is printed on the screen.
 Also, the exit() method is used to exit the System class.

 (vi) After the catch block, the finally block is used. The finally block is
 executed when the try-catch block exits. In the finally block, a try
 block is used, wherein close() method is used to close both the
 files created for reading and writing, that is, fileinpstr and
 fileoutstr. The catch block is then used to handle exceptions if any.

10.2.3 Reading and Writing Bytes
We know that the FileReader and FileWriter classes are used to read and write 16 bit characters.
However, many file systems use 8 bit bytes. The I/O system of Java provides numerous classes to
handle 8 bit bytes. The FileInputStream and FileOutputStream are the most frequently used classes to
handle bytes.

The FileInputStream and FileOutputStream classes can be used in place of the
FileReader and FileWriter classes.

In some programs, the FileOutputStream class is used to write bytes to a file.

Program to write bytes to a file.

import java.io.*;

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

180

class AddBytes

{

 public static void main(String args[])

 {

 byte progNames[] = {'J', 'a', 'v', 'a', '\n', 'D', 'o', 't', 'N', 'e', 't', '\n', 'C', '\n',
'C++', '\n', 'C#', '\n'};

 FileOutputStream fOutStr = null;

 try

 {

 foutStr = new FileOutputStream("progLang.txt");

 foutStr.write(progNames);

 foutStr.close();

 }

 catch(IOException e)

 {

 System.out.println(e);

 System.exit(-1);

 }

 }

}

Output:

Java

DotNet

C

C++

In this example,

1. First, the java.io package is imported as it supports the I/O functions.

2. Then, a class AddBytes is created.

3. In the AddBytes class,

(a) The main() method of the class is called.

(b) In the main method(),

 (i) The following piece of code is used to declare and initialize a byte
 array:

 byte progNames[] = {'J', 'a', 'v', 'a', '\n', 'D', 'o', 't', 'N', 'e', 't', '\n', 'C',

Unit 10: Input/Output Programming

LOVELY PROFESSIONAL UNIVERSITY 181

 '\n', 'C++', '\n', 'C#', '\n'};

 (ii) Then, an output file stream is created and assigned the value null.

 (iii) After this, a try-catch block is used.

 (iv) In the try block, the following piece of code is used to instantiate the
 object of FileOutputStream with the name of the file:

 foutStr = new FileOutputStream("progLang.txt");

 (This creates and opens the file.)

 (v) The foutStr.write(progNames) code is used to write data to the entire
 byte array to file.

 (vi) Then, the file that was opened for writing is closed.

 (vii) The catch block is used to identify and display the errors if any and to
 exit when there are no more characters in the source file to be read.

Write a program to write the names of your friends into a file named "friends.txt".

The FileInputStream class is used to read bytes from an existing file.

Program to read bytes from the file progLang.txt.

import java.io.*;

class GetBytes

{

 public static void main(String args[])

 {

 FileInputStream finpStr = null;

 int a;

 try

 {

 finpStr = new FileInputStream(args[0]);

 while((a = finpStr.read()) != -1)

 {

 System.out.println((char)a);

 }

 finpStr.close();

 }

 catch(IOException e)

 {

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

182

 System.out.println(e);

 }

 }

}

Output:

Java

DotNet

C

C++

In this example,

1. First, the java.io package is imported, as it supports the I/O functions.

2. Then, a class GetBytes is created.

3. In the class GetBytes,

(a) The main() method of the class is called.

(b) In the main() method,

 (i) A file input stream object finpStr is created and assigned the value
 null.

 (ii) Then, and integer a is declared.

 (iii) The try-catch mechanism is then used. In the try block, the finpStr =
 new FileInputStream(args[0]); statement is used to connect finpStr to
 the required file. Then, the while statement is used to check the ((a =
 finpStr.read()) != -1) condition. This condition means that characters
 from the source file must be read until there are no characters to be
 read in the source file. Here, the character -1 indicates the end of the
 file. If this condition is true, the value of char a is printed on the
 screen. The close() method is then called to close the finpStr file.

 (iv) After the try block, the catch block is used to catch the IOException e
 exception. In this block, the exception e is printed on the screen.

The name of the file from which data needs to be read has to be given in the
command line argument as follows:

 java GetBytes progLang.txt

Unit 10: Input/Output Programming

LOVELY PROFESSIONAL UNIVERSITY 183

10.3 Random Access Files
Random access means that the data can be read from or written to random location in a file. In the File
class, data is read from and written sequentially as continuous streams of data. The java.io package
comprises a class known as RandomAccessFile that allows performing input/output operations to any
location within a file. This class also provides support for permissions such as read and write,
permitting files to be accessed in read-only or read-write modes.

Two methods can be used to create a random access file. These methods are:

1. Using the pathname as a string.

 RandomAccesFile(String pathname, String mode)

In the above syntax the RandomAccessFile class takes two parameters, one is the pathname of the
location where the file is stored, and the other is the mode that specifies the required access
permissions, such as rw for providing read and write permission for the file, or r for providing only
read permission for the file.

RandomAccessFile randomFileObj = new RandomAccesFile(“test.txt”, “rw”);

In this example, a new instance randomFileObj of the RandomAccessFile is
created and is assigned two arguments, one is the filename test.txt and the other is
the access permission rw to the file specified in the path.

2. Using an object of the File class.

 RandomAccessFile(File name, String mode)

 In the above syntax, RandomAccessFile class takes two parameters, one is the file object that consists
of the file name, and the other is the mode that specifies the required access permissions such as rw for
providing read and write permission for the file, or r for providing only read permission for the file.

File fObj = new File(“test.txt”);

RandomAccessFile randomFileObj = new RandomAccesFile(fObj, “rw”);

In this example,

1. An object fObj of the File class is created using the new keyword, and is
assigned the filename test.txt.

2. A new instance randomFileObj of the RandomAccessFile class is created
with two arguments, one is the file object fObj that comprises the file name
and the other is the read/write (rw) permission for the file.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

184

The RandomAccesFile class offers various methods to randomly access locations inside a file. Table 10.6
provides a list of such methods along with their usage.

Table 10.6 Methods of RandomAccessFile Class

Methods Usage

int writeBytes(String) Writes the String i.e. specifies as bytes to a file.

void seek(long loc) Sets the file pointer to a specified location within the file.

Byte [] readBytes(long) Reads specified number of bytes from a file to a byte array.

long getFilePointer() Returns the current location of a file pointer.

long length() Returns length of a file in bytes.

As per the table 10.6, various reading and writing operations can be performed using a random access
file class. In some programs, a file pointer supported by the random access files is used. This file pointer
is moved to arbitrary positions in the file before reading or writing. The seek() method of the
RandomAccessFile class is used to move the file pointer.

Program to read and write using random access file.

import java.io.*;

class RandReadWrite

{

 public static void main(String args[])

 {

 RandomAccessFile raFile = null;

 try

 {

 raFile = new RandomAccessFile("random.txt", "rw");

 raFile.writeChar('Java');

 raFile.writeDouble(6.0);

 raFile.writeInt(2011);

 raFile.seek(0);

 System.out.println(raFile.readChar());

 System.out.println(raFile.readDouble());

 System.out.println(raFile.readInt());

 raFile.seek(2);

 System.out.println(raFile.readDouble());

Unit 10: Input/Output Programming

LOVELY PROFESSIONAL UNIVERSITY 185

 raFile.seek(file.length());

 raFile.writeBoolean(false);

 raFile.seek(4);

 System.out.println(file.readBoolean());

 file.close();

 }

 catch(IOException e)

 {

 System.out.println(e);

 }

 }

}

Output:

Java

6.0

2011

6.0

false

In this example,

1. First, the java.io package is imported, as it supports the I/O functions in a
program.

2. Then, a class RandReadWrite is created.

3. In the class RandReadWrite,

(a) The main() method of the class is called.

(b) In the main() method,

 (i) An object of the RandomAccessFile class (raFile) is created and is
 assigned the value null.

 (ii) Then, in the try block, the raFile = new
 RandomAccessFile("random.txt", "rw"); statement is used to open the
 specified file random.txt.

 (iii) The raFile.writeChar('Java'); statement is used to write the value of
 Char data type Java into raFile.

 (iv) Then, raFile.writeDouble(6.0); statement is used to write the values of
 Double data type 6 and 0 into raFile.

 (v) The raFile.writeInt(2011); is then used to write the value of Int data
 type 2011 into raFile.

 (vi) Then, the seek() method of raFile is called with the value of 0, which
 is used to is used to bring the file pointer to the beginning of the file.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

186

 (vii) The value of Char data type in raFile is then read and printed on the
 screen.

 (viii) Then, the value of Double data type in raFile is read and printed on
 the screen.

 (ix) The value of Int data type in raFile is then read and printed on the
 screen.

 (x) The seek() method of raFile class is again called but with the value of
 2, which is used to bring the file pointer to the second position of the
 file.

 (xi) Again, the value of Double data type in raFile is read and printed on
 the screen.

 (xii) The seek() method of raFile is then called along with the call to the
 length() method to find the length of the file.

 (xiii) After this call, raFile.writeBoolean(false); statement is used write
 the Boolean value false into the raFile.

 (xiv) The seek() method of raFile is again called, but with the value of 4,
 which is used bring the file pointer to the fourth position of the file.

 (xv) Then, the Boolean value is read and printed on the screen.

 (xvi) The close(); method is used to close the file.

4. After the try block, catch block is used to catch the IOException e exception.
In the catch block, the value of exception e is printed on the screen.

Note: In this example, the RandomAccessFile class constructor assumes that the
file that is specified as parameters exits in the current directory. Therefore, an
empty file named as random.txt has to be created if you are executing the program
for the first time.

1. Write a program to append data items to an existing file on your system.

2. Write a program to insert the name of any five hardware components of a
computer into a .txt file by using the FileOutputStream class.

10.4 Summary

 The I/O operation refers to the receiving and displaying of data from or to a file.

 The classes used for the I/O operations are present in the java.io.* package.

 A stream refers to a communication path, using which the data travels in a program.

 The algorithm for reading and writing data includes creating an object of I/O stream, reading or
writing the data using the read() or write() methods and closing the stream by calling the close()
method.

 When a stream sends data, it is said to be written; when the stream receives data, it is said to be
read.

 Stream classes are of two types, namely, byte stream classes and character stream classes. Byte
stream classes handle I/O operations in bytes.

 Based on the direction of flow, byte streams classes are classified into two types, that is, input
stream class and output stream class.

Unit 10: Input/Output Programming

LOVELY PROFESSIONAL UNIVERSITY 187

 Character stream classes are used to handle reading or writing of Unicode characters from and to
streams.

 Based on the direction of flow, character stream classes are classified into two types, that is, reader
class and output stream class.

 The three predefined stream variables present in the System class are in, out and err.

 The File class is used to create, access, and manipulate the files and directory objects.

 Creation of a file involves decisions to be taken regarding the appropriate naming of the file, using
data types, purpose of creating the file and method used to create the file.

 The sub classes of the Reader and Writer classes are used to read and write characters into a file,
respectively.

 FileReader and FileWriter classes are used to handle characters.

 FileInputStream and FileOutputStream classes are used to handle bytes.

 The RandomAccessFile class is used to perform input/output operations to any location within a
file.

10.5 Keywords
Algorithm: It refers to a set of rules specifying the method to solve some problem.

Console: An output device.

IDE: Integrated Development Environment

Socket: One end point of a two way communication link between two programs that are running on a
network.

Unicode: It is a 16-bit character set standard, designed to include characters appearing in most
languages.

10.6 Self Assessment
1. State whether the following statements are true or false:

(a) When a stream is receiving the data, it is said to be written, and when the stream is sending
the data, it is said to be read.

(b) The byte stream classes provide sufficient functionalities to handle any type of input and
output operations in Java.

(c) The FileInputStream class encapsulates various aspects of the run-time environment.

(d) System.out is an object of PrintStream.

(e) FileReader is used for reading characters from the file.

(f) The System class is used to read bytes from an existing file.

2. Fill in the blanks:

(a) A _______ is a communication path, through which the data travels in a program.

(b) The _______ classes are those stream classes that handle I/O operations on bytes.

(c) Most of the classes used for the I/O operations are present in the _______ package.

(d) The _______ classes can be used to perform I/O operations on various sources or
destinations of data.

(e) In the File class, data is read from and written sequentially as continuous streams of data
and thus are known as _______ files.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

188

3. Select a suitable choice in every question.

(a) Which of the following is the super class for the input stream classes?

 (i) Reader class

 (ii) Writer class

 (iii) Output stream class

 (iv) Input stream class

(b) Which of the following is a class under the character stream class?

 (i) PrintWriter

 (ii) PipedReader

 (iii) FileWriter

 (iv) PipedOutputStream

(c) Which of the following is the stream class used for I/O operations of bytes?

 (i) CharArrayReader

 (ii) ByteArrayInputStream

 (iii) CharArrayWriter

 (iv) PipedWriter

(d) Which of the following classes is used to handle bytes?

 (i) FileWriter

 (ii) StringReader

 (iii) FileOutputStream

 (iv) BufferedReader

(e) Which of the following classes can be used to read from or write to any location in a file?

 (i) PrintWriter

 (ii) RandomAccessFile

 (iii) Reader

 (iv) Writer

10.7 Review Questions
1. "Java offers I/O operations for input or output of data”. Elaborate.

2. "No matter what type of information is being transferred and where the information is coming
from or going to, the algorithm for reading and writing the data remains the same.” Write the
steps followed in these algorithms.

3. "All the applications created in Java perform I/O operations through the functionality of streams.”
Justify.

4. "The java.io package comprises numerous stream classes.” Elaborate.

5. "There are a number of byte stream classes in java.io package to enable reading and writing of
data as a stream of bytes.” Justify.

6. "Based on the direction of flow of data in streams, the character stream classes are classified into
two categories.” Justify.

Unit 10: Input/Output Programming

LOVELY PROFESSIONAL UNIVERSITY 189

7. "There are a number of character stream classes enabling us to read/write data as a stream of
Unicode characters in java.io package.” Justify.

8. "Java comprises java.lang package, which consists of a class known as System.” Elaborate.

9. Analyze the usefulness of the File class of the java.io package.

10. “RandomAccessFile class takes two parameters, one is the file object and the other is the mode.”
Comment.

11. “Two file stream classes can be used to copy the contents of one file to another.” Discuss.

12. "Random access means that the data can be read from or written to random location in a file.”
Justify using a program.

Answers: Self Assessment

1. (a) False

 (b) True

 (c) False

 (d) True

 (e) True

 (f) False

2. (a) Stream

 (b) Byte stream

 (c) java.io.*

 (d) Character stream

 (e) Sequential

3. (a) PipedOutputStream

 (b) PrintWriter

 (c) ByteArrayInputStream

 (d) FileOutputStream

 (e) RandomAccessFile

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

190

10.8 Further Readings
 �

�

Schildt. H. (2002), Java 2 The Complete Reference, 5th ed. New York: McGraw-
Hill/Osborne.

Pravin Jain M. (2011), The Class of Java. India: Dorling Kindersley (India) Pvt. Ltd.

 �

�

http://home.cogeco.ca/~ve3ll/jatutor9.htm

http://www.hostitwise.com/java/java_io.html

http://tutorials.jenkov.com/java-io/index.html

Unit 11: Introduction to Applets

LOVELY PROFESSIONAL UNIVERSITY 191

CONTENTS

Objectives

Introduction

11.1 Fundamentals of Applets

11.2 Applet Life Cycle

11.3 Applet Tag

11.4 Running the Applet

11.5 Handling Images and Sound

 11.5.1 Images

 11.5.2 Sound

11.6 Summary

11.7 Keywords

11.8 Self Assessment

11.9 Review Questions

11.10 Further Readings

Unit 11: Introduction to Applets

After studying this unit, you will be able to:

Objectives

• Describe the fundamentals of applets

• Discuss the life cycle of applets

• Describe applet tags

• Illustrate the method to run applets

• Explain the handling of images and sound

Java is programming language that is widely used in the development of numerous software and
applications, such as the creation of interactive Web pages. The creation of Web pages is related to Java
applets. An applet is an Internet based Java program that can be included in an HTML page and can be
downloaded on any computer. Applet is also popularly known as a programming language for the
Web.

Introduction

Did you know? Netscape Communications (formerly known as Netscape Communications
Corporation), a computer services company in the USA, added Java support to its
popular Navigator in 1996. After this the Web changed from static Web pages to
exciting Web pages with the use of applets.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

192

11.1 Fundamentals of Applets
Applets are special Java programs that are embedded in Web pages. They can be transmitted over the
Internet and automatically executed by using a Java-compatible Web browser present in the user’s
system.

When a user opens a Web page, the applet also gets executed automatically. The
user need not install any special software in order to run an applet on the Web
page.

Applets are not just used in media files or animations. They can also be used for performing
calculations, displaying graphics, creating animations, playing sounds and running interactive games as
application programs. Application programs are the programs that can react to user’s inputs.

Did you know? Applets can access remote databases or operate on complicated data on the user’s
system.

With the use of applets, Java has changed the way in which the Internet users retrieve and use
documents on the World Wide Web (WWW). It facilitates the users to create and use completely
interactive multimedia Web documents.

Basically, an applet is a Java class defined in JDK's java.applet package. This package provides all
facilities to control the execution of applets.

There are two methods of embedding applets into Web pages. They are:

1. By Writing Our Own Applets and Embedding Them into Web Pages:

2.

 An applet that is developed
and stored in a local system is termed as local applet. In case a Web page has to access a local
applet, it has to merely search the directories in local system, and identify and load the specified
applet. Hence, this process does not need an Internet connection.

By Downloading Applets from a Remote system and Embedding Them into Web Pages:

 An applet
that is developed and stored on a remote system is termed as remote applet. If a user’s system is
connected to the Internet, the remote applet could be downloaded and run on the user’s system. It
is important for the user to know the location or address of the remote applet on the Web to access
it. The location or address of the remote applet is known as Uniform Resource Locator (URL).

The URL of the remote applet is specified in the applet's HTML document as a value
for the attribute CODEBASE.

CODEBASE = http://www.remoteservices.com/applets

While accessing a local applet CODEBASE, attributes can be used to specify the path of
the local applet on the system. However, it is not mandatory to use the CODEBASE
attribute to access a local applet.

Types of Applets
Applets can be classified into two types. These types are:

1. Based on the Applet Class:

 The first type of applets is based directly on the Applet class. These
applets utilize the Abstract Window Toolkit (AWT) to provide Graphical User Interface (GUI).

Unit 11: Introduction to Applets

LOVELY PROFESSIONAL UNIVERSITY 193

The java.applet package contains the Applet class.

2. Based on Swing Class JApplet:

 The second type of applet is based on the Swing class JApplet.
These applets utilize Swing classes to provide GUI. When compared to AWT, Swing often
provides an easy-to-use user interface. Therefore, the Swing-based applets are very popular.
However, people still prefer to use AWT-based applets to create simple user interfaces.

JApplets inherits all the properties of the Applet class.

Applet Architecture
Applets share a common architecture and have the same life cycle, whether they are based on Applet or
on JApplet, and resemble a window-based GUI program. Thus, it can be said that they are not
organized as a console-based program. The execution of an applet does not begin with the main()
method. However, some applets have the main() method.

Console-based programs refer to command line programs that do not require a GUI to
run.

The execution of an applet is controlled by the life cycle methods. System.out.println() is not used to
get the output for an applet's window and readLine() method is not used for input operations. Instead,
numerous controls offered by the Swing or AWT components are used to handle user interactions. We
can write an output directly to an applet window using methods such as drawString() instead of
println().

Java applets are event-driven. This means that an applet waits for an event to occur.

Selecting an item from a list or clicking of the mouse button by the user.

The applet gets notification from the runtime system about the event by calling an event handler
provided by the applet. After this, the applets have to take appropriate actions in response to the events
and return the control to the runtime system.

1. Initialize

11.2 Applet Life Cycle
As mentioned earlier, applets are executed within a Web browser or in an applet window. When an
applet is executed, it undergoes four phases; these four phases are known as the life cycle of an applet.
The four phases present in the life cycle of an applet are:

2. Running

3. Stop

4. Dead

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

194

Figure 11.1 depicts the life cycle of an applet and the different methods used in the phases of this life
cycle.

Figure 11.1: Life Cycle of an Applet

As depicted in the figure 11.1, the phases in the life cycle of an applet are:

1. Initialize:

2.

When an applet is first loaded, it enters the initialization phase. The init() method of
the Applet class is used to initialize the applet code. This method is called only the first time an
applet is loaded in the computer’s memory. The init() method is used to initialize variables, load
images or fonts, and add components such as buttons and text fields to the applet.

Running: When an applet calls the start() method of an Applet class, it enters the running phase.
This happens automatically after the applet is initialized and every time it receives focus.

When a user leaves a Web page containing an applet and returns back to the same
page after some time, the applet starts running again. That is, the applet will return
back to the running phase.

Hence, the start() method is used to restart a process every time a user visits a Web page. The
start() method can be called any number of times unlike the init() method that is called only once.

3. Stop: When an applet is stopped from running, it enters the stopped phase. This happens
automatically when the user leaves a Web page containing an applet. It is also possible to
explicitly call the stop() method.

If a thread is used to run an applet, then the stop() method has to be used to
suspend the thread.

The stop() method is used to reset variables and stop the threads that are running.

4. Destroy:

 When an applet is removed from the computer’s memory, it enters the destroy phase.
This happens automatically when the destroy() method is invoked or when a user quits the Web
browser. The destroy() method can be used to perform clean-up operations such as closing a file.
The destroy phase also occurs only once like the initialize phase.

Unit 11: Introduction to Applets

LOVELY PROFESSIONAL UNIVERSITY 195

It is not always necessary for the applet to override the destroy() method, since the
stop() method performs all tasks required to shut down the applet's execution.
However, the destroy() method has to be used for applets that need to release
additional resources.

It is not an obligation to use any or all of the above methods of an applet. The Java environment calls the
above methods automatically. Therefore, we must declare these methods as public.

We must not add parameters to any of the above methods, as these methods do not
accept parameters.

1. <APPLET> </APPLET> is the applet tag.

11.3 Applet Tag
In Java, two types of tags can be used, that is, a parameter tag and an applet tag. A parameter tag is a
tag, which names a parameter that needs to be run by the Java applet, along with the parameter’s value.
An applet tag is the tag used to add Java applets in the HTML documents. The applet tag is written
within the BODY tag of an HTML document.

Syntax of the Java Applet Tag:
<APPLET

 CODE = “name of the .class file”

 CODEBASE = “path of the .class file”

 HEIGHT = “maximum height of the applet, in pixels”

 WIDTH = “maximum width of the applet, in pixels”

 VSPACE = “vertical space between the applet and the rest of the HTML, in pixels”

 HSPACE = “horizontal space between the applet and the rest of the HTML, in pixels”

 ALIGN = “alignment of the applet with respect to the rest of the Web page”

 ALT = “alternate text to be displayed if the browser does not support applets”>

 <PARAM NAME = “parameter_name” VALUE = “value_of_parameter”>

 <PARAM NAME = “parameter_name” VALUE = “value_of_parameter”>

…

</APPLET>

In this syntax,

2. CODE, CODEBASE, HEIGHT, WIDTH, VSPACE, HSPACE, ALIGN, ALT included within the
applet tag are known as attributes of the applet tag. These are the most commonly used attributes
of the APPLET tag.

3. Parameters are supplied to the applet through the <PARAM> tag. The PARAM tag must be
written between <APPLET> and </APPLET>.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

196

The HTML code for placing the applet named as DisplayApp on a Web page:
<HTML>
 <HEAD>
 </HEAD>
 <BODY>
 <APPLET
 CODE = “DisplayApp.class”
 HEIGHT = 300
 WIDTH = 500
 >
 </APPLET>
 </BODY>
</HTML>

In this code,

1. <HTML> </HTML>: This HTML tag indicates the start and end of a HTML
file.

2. <HEAD> </HEAD>: This tag may include details about the Web page, that is,
it can contain the <TITLE> tag used to add text that has to be displayed on
the title bar of the browser.

3. <BODY> </BODY>: This tag includes the main text of the Web page. The
<APPLET> tag has to be declared within this <BODY> tag.

A pair of applet tags is included in the body section of the HTML (Hyper Text
Mark-up Language) code. These applet tags specify the name of the applet to be
loaded using the CODE attribute. The CODE attribute informs the browser to load
the DisplayApp.class applet on the Web page. The applet tag also informs the
browser about the display area for the applet output using the HEIGHT and
WIDTH attribute. Here, the height and width of the applet is assigned a value of
300 and 500 pixels respectively.

It is essential to store this HTML file in the same directory as the DisplayApp.class
applet.

11.4 Running the Applet
It is necessary to create an executable applet before we learn to run it.

Creation of an executable applet refers to the creation of a .class file. The .class file can be obtained by
compiling the source code of the applet program. The method of compiling an applet is same as
compiling an application in Java. Hence, the Java compiler is used to compile the applet.

Program to create and compile a simple Java applet code.

import java.awt.*;

import java.applet.*;

public class DisplayApp extends Applet

{

Unit 11: Introduction to Applets

LOVELY PROFESSIONAL UNIVERSITY 197

 public void paint (Graphics a)

 {

 a.drawString(“My First Applet Program”, 15, 100);

 }

}

Output:

In this example,

1. First, import.java.awt.* package is imported for using the Graphics class in
the program. (We need the Graphics class, as it contains all the methods
required to perform the output operations.)

2. Then, import.java.applet.* package is imported for using the Applet class.
(We need the Applet class, as it contains methods that provide life and
behavior to applets such as init(), start(), stop() and destroy()).

3. After importing the necessary packages, a class DisplayApp is created that
extends the Applet class. This is the main class for the applet.

4. In the class DisplayApp,

(a) The paint() method of the Applet class is called to display the output of
the applet code. This paint() method has taken a Graphics object a as an
argument.

(b) In the paint() method, the a.drawString(“My First Applet Program”, 15,
100) statement is used to draw the string My First Applet Program at
the position 15, 100 (pixels), when the applet is executed.

To execute the applet code, first go to the command prompt and move to the directory that contains the
applet code and type the javac DisplayApp.java command. Then, the compiled output file
DisplayApp.class is placed in the same directory as the source.

In order to run an applet, either a Java-enabled Web browser such as Internet Explorer, Netscape
Navigator, or an appletviewer is required.

If the applet is run using a Web browser, open the browser window and insert the path where the
HTML file is stored in the system.

If the applet is run using an appletviewer, type the following command in the command prompt:

 appletviewer DisplayApp.html

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

198

1. If a Java enabled browser is used to run the applet code, then the entire Web page
containing the applet is seen.

2. If the appletviewer tool is used to run the applet code, then only the applet output
is seen.

Applets can be used to handle images and sounds. This means that we can either display an image or
play sounds using applets.

11.5.1 Images
Images are generally used to build a professional-looking user interface. They are important
components of Web design. Images can be displayed using GIF and/or JPEG format in Java.

The java.awt package consists of all the classes required to manipulate images. The images are objects
of the Image class. To add an image to an applet, one needs to import the java.awt.images package.

11.5 Handling Images and Sounds

Did you know? CompuServe, which was the first major commercial online service provider in the
USA, created the GIF image format in the year 1987 to make it possible to view
online images. However, GIF images supported only up to 256 colors in each image.
To overcome this limitation, a group of photographic experts created the JPEG
format. This format stores full-color-spectrum and continuous-tone images.

There are three operations to be considered while working with images. These operations are:

1. Creating an image object

2. Loading an image

3. Displaying an image

Creating an Image Object
To create an image object, the createImage() method of the Component class in the java.awt package is
used.

Syntax of Creating an Object

Image createImage(int width, int height)

In this syntax, Image is the class wherein createImage method is used to create an off-screen drawable
image with specified width and height. These parameters, that is, width and height are of integer type.

Canvas cnv = new Canvas();
Image i = cnv.createImage(300, 200);

In this example, first an instance of Canvas class is created using the new keyword.
Then, an image object i is created by calling the createImage() method with width
300 and height 200.

Loading an Image
It is also possible to load an image using the getImage() method of the Applet class. An image can be
loaded in two ways:

1. Image getImage(URL u): This method returns an Image object that encapsulates the image that is
present in the location specified by the URL (Uniform Resource Locator).

Unit 11: Introduction to Applets

LOVELY PROFESSIONAL UNIVERSITY 199

2. Image getImage(URL u, String imgNm):

Displaying an Image
After loading an image, it can be displayed by using the drawImage() method of the Graphics class.

This method returns an Image object that encapsulates the
image that is present in the location specified by the URL and also has the name specified by the
imgNm.

Program to load and display an image named javacup.gif.

import java.awt.*;

import java.applet.*;

public class DisplayImage extends Applet

{

 Image i;

 public void init()

 {

 i = getImage(getDocumentBase(), "javacup.gif");

 }

 public void paint(Graphics gra)

 {

 gra.drawImage(i, 0, 0, this);

 } }

Output:

In this example,

1. First, the two packages java.awt.* and java.applet.* are imported using the
import keyword.

2. Then, a class DisplayImage is created that extends the Applet class.

3. In the DisplayImage class,

(a) An Image object i is declared.

(b) Then, the init() method is called.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

200

(c) In the init() method, i = getImage(getDocumentBase(), "javacup.gif");
statement is used. In this statement, getImage() method is called with
two parameters, that is, the getCodeBase() and the filename of the
image. The output of the getImage() method is assigned to i. Then, the
paint() method is called to draw the graphics object gra of the applet in
the drawing area.

(d) In the paint() method, gra.drawImage(i, 0, 0, this); statement is used to
draw the graphics object gra with the image input i, the top left location
0 and 0.

11.5.2 Sound
Apart from images, sounds can also be used to make Web pages more interesting and entertaining.
Similar to images, sound files can also be added to an applet.

Playing a Sound File
Using a sound file in an applet is quite simple.

Program to play a sound file when an applet is downloaded.

import java.applet.*;

public class AppletSound extends Applet

{

 public void init()

 {

 super.init();

 resize(0,0);

 AudioClip song = getAudioClip(getDocumentBase(), "song.au");

 song.play();

 }

}

In this example,

1. First, the java.applet.* package is imported.

2. Then, a class AppletSound is created, which extends Applet class.

3. In the AppletSound class, the init() method is called.

4. In the init() method,

(a) First, the super.init(); statement is used to call the init() method on the
super class.

(b) Then, the applet size is set to zero pixels to hide the applet on the Web
page.

(c) The AudioClip song = getAudioClip(getDocumentBase(), "song.au");
statement is then used to load the sound file into the AudioClip object
song.

(d) Then, song.play(); statement is used to play the sound file song that is
present under the AudioClip class.

Unit 11: Introduction to Applets

LOVELY PROFESSIONAL UNIVERSITY 201

Note: While compiling the above code, the sound file should be stored in the same
directory as the class file. In case the sound file is stored in a different directory, the
complete path must be specified.

Write an applet program to display as well as play a sound track.

• Applets are Java programs embedded in Web pages and can be transferred over the Internet and
executed automatically using the applet viewer.

11.6 Summary

• Applet is a Java class that is defined in the JDK’s java.applet package.

• We can embed applets within Web pages by either writing our own applets and embedding them
into Web pages or by downloading an applet from a remote system and embedding them into
Web pages.

• Applets that are developed and stored in local systems are known as local applets and applets that
are developed by another person and stored on a remote system are known as remote applets.

• There are two types of applets. One is based on the Applet class and the other is based on the
Swing class JApplet. The execution of an applet is controlled by the life cycle of applets. Applet
tags are used to include Java applets.

• The four phases of the applet life cycle are initialize, run, stop and dead.

• To run an applet program a .class file of the applet program has to be created. Applet programs
can be run either by using an HTML file or an appletviewer.

• Images can be loaded and displayed using applets in a Web page. Sound can also be played using
applets.

11.7 Key words
Canvas Class: Provides a display area upon which graphical output can be produced, or a specialized
user interface component can be produced.

GIF: Graphic Interchange Format.

HTML: Hyper Text Mark-up Language.

JPEG: Joint Photographic Experts Group.

Tags: A sequence of characters in a mark-up language to provide information specific to formatting or
display of text on a Web browser.

1. State whether the following statements are true or false:

11.8 Self Assessment

(a) The concept of applet is used by the programmers for creating Graphical User Interface (GUI)
objects, such as scroll bars, buttons, and windows.

(b) An applet that is developed and stored in a stand alone system is termed as local applet.

(c) Applets that are based on the swing class JApplet, utilize the Abstract Window Toolkit
(AWT) to provide Graphical User Interface (GUI).

(d) When an applet calls the start() method of an Applet class, it enters the running phase.

2. Fill in the blanks:

(a) The location or address of the remote applet is known as _______.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

202

(b) The _______ attribute can be used to specify the path of the local applet on the system.

(c) When an applet is first loaded it enters the _______ phase.

(d) Creation of an executable applet refers to the creation of a _______ file of the applet that is got
by the compilation of the source code of the applet.

3. Select a suitable choice in every question.

(a) When an applet is removed from the computer’s memory it enters which of the following
phases?

 (i) Destroy (ii) Initialize (iii) Run (iv) Stop

(b) Which of the following methods are used to display the output of the applet code?

 (i) drawString() (ii) paint() (iii) drawImage() (iv) getImage()

(c) Which of the following methods will return an Image object that encapsulates the image that
is present in the location specified by the URL?

 (i) Image getImage(URL u, String imgNm) (ii) getDocumentBase()

 (iii) drawImage() (iv) Image getImage(URL u)

1. "Applets are of two types". Discuss.

11.9 Review Questions

2. Analyse the architecture of Java applets.

3. "When an applet is executed, it undergoes four phases ". Justify.

4. "An applet tag is used to add Java applets". Elaborate.

5. Assume you have created a simple applet program named FirstApplet. What is the procedure to
be followed to run the applet using Internet Explorer?

6. "There are three operations to be considered while working with images". Elaborate.

Answers: Self Assessment
1. (a) False (b) True (c) False (d) True

2. (a) Uniform Resource Locator (URL) (b) CODEBASE (c) Initialization (d) .class

3. (a) Destroy (b) paint() (c) Image getImage(URL u)

11.10 Further Readings

Balagurusamy E. Programming with Java_A Primer 3e. New Delhi

Schildt. H. Java 2 The Complete Reference, 5th ed. New York: McGraw-Hill/Osborne.

http://www.dgp.toronto.edu/~mjmcguff/learn/java/

http://www.realapplets.com/tutorial/index.html

http://www.realapplets.com/tutorial/index.html�

Unit 12: Abstract Window Toolkit

LOVELY PROFESSIONAL UNIVERSITY 203

CONTENTS

Objectives

Introduction

12.1 AWT Control Fundamentals

 12.1.1 Labels

 12.1.2 Buttons

 12.1.3 Check Boxes

 12.1.4 Choice Lists

 12.1.5 Lists

 12.1.6 Scroll Bars

 12.1.7 Text Fields

12.2 Layout Managers

 12.2.1 Flow Layout

 12.2.2 Border Layout

 12.2.3 Grid Layout

 12.2.4 GridBag Layout

 12.2.5 Card Layout

12.3 Summary

12.4 Keywords

12.5 Self Assessment

12.6 Review Questions

12.7 Further Readings

Unit 12: Abstract Window Toolkit

After studying this unit, you will be able to:

Objectives

• Discuss the fundamentals of AWT controls

• Explain AWT layout managers

• Illustrate the use of various layout managers

One of the important components of Java is AWT (Abstract Window Toolkit). AWT is a single window
interface, which can work on multiple platforms. The concept of AWT is used by the programmers to
create Graphical User Interface (GUI) objects such as scroll bars, buttons, and windows. AWT is a part
of Java Foundation Class (JFC), which is a broad set of GUI class libraries. The GUI class libraries enable
the user to develop the user interface part of an application program.

Introduction

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

204

AWT refers to a class library provided by the Java programming language. AWT comprises many
graphical widgets that can be used in the display area with a layout manager.

AWT is platform-independent like the Java programming language. AWT offers a common set of tools
to facilitate programmers to design the GUIs, which work the same way on different platforms. The
user interface elements offered by the AWT are implemented by using the platform's native GUI toolkit,
which helps to preserve the look and feel of each platform.

A GUI is built using graphical elements known as components. Component class is the super class of all
GUI objects such as buttons, scrollbars, and text fields. In the AWT, all the user interface components
are instances of the Component class or one of its subtypes. AWT facilitates user interaction with the
program.

Components are not stand alone. They are placed within containers. Containers control the components
of the layout. Containers can also be placed inside other containers as they themselves can be
considered as components. All containers in AWT are instances of the class Container or one of its
subtypes.

12.1 AWT Control Fundamentals

Did you know? Components are known as Java's building blocks for creating GUIs.

Characteristics of AWT are:

1. It consists of a set of user interface components.

2. It is a robust event-handling model.

3. It has tools for graphics and imaging, which includes shape, color, and font classes.

4. It comprises layout managers, for flexible window layouts that are independent of a particular
window size or screen resolution.

5. It includes data transfer classes for cut-and-paste through the native platform clipboard.

The java.awt.* is an AWT package that is used to develop the user interface objects such
as buttons, radio buttons, list box, menus, and so on. This package comprises various
classes and interfaces helpful in the development of GUI applications.

Adding and Removing Controls
To include a control in a window, the control needs to be first added to the window. This is done by
creating an instance of the desired control and then adding it to a window by calling the add() method.
The add() method is defined by the Container.

Component add(Component compObj);

In this example, compObj is an instance of the control that needs to be added.
Hence, a reference to compObj is returned.

Once a control has been added, it is visible whenever its parent window is displayed.

Unit 12: Abstract Window Toolkit

LOVELY PROFESSIONAL UNIVERSITY 205

Responding to Controls
There may be times when a control from a window needs to be removed. This is generally the case
when the control is no longer in use. Under such circumstances, we call the remove() method. The
remove() method too is defined by the Container. The syntax for this is:

void remove(Component Obj)

In this syntax, Obj is the reference to the control that needs to be removed. All controls can be removed
by calling removeAll() method.

All controls, when accessed by the user, generate events. This means, the program implements the
appropriate interface and then registers an event listener for each control that needs to be monitored.

When a user clicks on a push button, an event that identifies the push button is
sent.

AWT has a collection of basic user interface components and it allows the user to create their own
components. Modern user interfaces are built on the concept of components. The various components
of AWT are discussed in the following sub-sections.

12.1.1 Labels
A label is a simple component of Java AWT. Labels are used to show the text or string on a user’s
application and do not perform any type of action.

The following piece of code illustrates how to create a label control.

Label label_name = new Label ("This is the label text.");

The following piece of code creates a label control and aligns it in the center.

 Label label_name = new Label ("This is the label text." Label.CENTER);

The alignment of label can be left, right or centered. In the syntax provided above, center justification of
the label is represented using the name Label.CENTER.

12.1.2 Buttons
A button is used to trigger actions and other events required for user’s application.

The following piece of code illustrates how to create a button control.

 Button button_name = new Button("This is the label of the button");

Buttons are added to its container using add(button_name) method.

12.1.3 Check Boxes
This component of Java AWT allows users to create check boxes in their applications.

The syntax for defining a Checkbox is given below:

 CheckBox checkbox_name = new Checkbox("Optional check box 1", false);

In the syntax given above, the code is used to construct an unchecked checkbox. This is done by passing
a Boolean value argument, either true or false, with the checkbox label.

12.1.4 Choice Lists
A choice list is used to create a pop-up menu from which a user can choose only a single item. The
current item that is selected by the user is displayed as the title of the choice menu.

An instance of the Choice class must be created to work with choice list.

Choice theoptions = new Choice();

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

206

After creating the choice, the addItem method is used to add new entries.

theoptions.addItem ("White");

theoptions.addItem ("Black");

The user can change the currently selected item by name or index.

theoption.select ("Red");

theoption.select (0);

The position and string name of the selected item are returned by the getSelectedIndex() and
getSelectedItem() methods respectively.

Whenever a selection is made, the Choice class calls the action method irrespective of whether it is a
new selection or not. The name of the selected item is contained in the parameter whatAction.

12.1.5 Lists
A List box permits a user to create a scrolling list of values, from which a user can either select a single
item or multiple items.

If the user wants to create a list that does not allow multiple selections, then the following command
line can be used.

List thelist = new List();

In this command line, thelist is an instance of the list class.

Once the list has been created, the addItem method given below enables the user to add new entries.

thelist.addItem("Coffee");

thelist.addItem("Tea");

The user can also add an item in a specific location in the list.

thelist.addItem("Coffee", 0);

In this example, the item Coffee is added to the first position(0) in thelist.

12.1.6 Scroll Bars
A scrollbar offers a user interface to scroll through a range of values. These values can then be
connected with a variety of other uses. The scrollbar's maximum and minimum values can be initialized
along with its minor changes such as the line increments, and major changes such as page increments.

The following statement can be used to create a horizontal scrollbar.

Scrollbar colorscroll = new Scrollbar(Scrollbar. HORIZONTAL);

Scrollbar colorscroll = new Scrollbar(Scrollbar. VERTICAL, 0, 10, 2, 256);

In this example, the line will create a vertical scrollbar with a starting position of 0,
page size 10, minimum value 2, and maximum value of 256.

There are three different parts of a scrollbar that allow the user to select a value between the maximum
and minimum. The increment or decrement value of the arrow can be set to a small unit. The default
value is 1. The arrows increment or decrement with the line update can be set to a small unit and by
default the value is 1. Clicking between the arrow and scroll box increases or decreases the value and
the default value is 10. The box in the middle allows the user to click and drag to cross the scroll bar
quickly from end to end.

Unit 12: Abstract Window Toolkit

LOVELY PROFESSIONAL UNIVERSITY 207

12.1.7 Text Field
Text field is also a text container component of java.awt package. The text field component contains
single line and limited text information.

The text field is declared as:

TextField txtfield = new TextField(20);

The number of columns in the text field can be fixed by specifying the number in the constructor. In the
above syntax, the number of columns is fixed to 20.

Layouts are used to format components on the screen, which is platform-independent. This means that
the programs can be executed in multiple platforms. Layout managers give programs a reliable and
practical appearance, regardless of the platform, the screen size, or actions the user might take.

The java development kit offers five classes and these classes implement the layout manager interface.
Figure 12.1 illustrates these five classes.

12.2 Layout Managers

 Figure 12.1 The Five Classes of the Java Development
Kit

12.2.1 Flow Layout
Flow Layout is the default layout of the Panel class. When components are added to the screen, they
flow from left to right based on the order added and the width of the applet. If there are many
components that have to be placed in a window, then they wrap to a new row.

Program to illustrate the flow layout manager in Java.

import java.awt.*;

import javax. swing.*;

public class TestFlowLayout extends JApplet

{

 JButton a1, a2, a3;

 FlowLayout F;

 public void init()

 {

 F= new FlowLayout(FlowLayout.LEFT);

 JPanel P = new JPanel();

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

208

 getContentPane().add(P);

 P.setLayout (F);

 a1= new JButton (“A”);

 a2= new JButton (“B”);

 a3= new JButton (“C”);

 P.add (a1);

 P.add (a2);

 P.add (a3);

 }

}

HTML Coding:

<html>

<head></head>

<title></title>

<body>

<p>

<applet code="TestFlowLayout.class" width=250 height=250>

</applet>

</p>

</body>

</html>

Output:

In this example,

1. First, java.awt.* and javax. swing.* packages are imported.

2. Then, a class TestFlowLayout is created that extends the JApplet class
 present in the swing package.

Unit 12: Abstract Window Toolkit

LOVELY PROFESSIONAL UNIVERSITY 209

3. In the class TestFlowLayout,

 (a) Variables a1, a2 and a3 are declared for the JButton class.
 (b) Then, a variable F is declared for the FlowLayout class.
 (c) The init() method is then called.
 (d) In the init() method,
 (i) The flow layout manager F is assigned the flow layout with the
 left alignment.
 (ii) A new instance P of the JPanel class is created.
 (iii) Then, the getContentPane() method is called to get a reference
 to the panel P.
 (iv) The setLayout() method is then called for the container P to
 specify that F layout is to be used to place components.
 (v) The variables a1, a2 and a3 are assigned the values of A, B and
 C.
 (vi) Then, these buttons a1, a2 and a3 are added to the panel P using
 add() method.

Write a program to illustrate a flow layout manager in Java AWT. Drag the sides or
corners of the displayed frame to demonstrate the working of the layout manager.

12.2.2 Border Layout
Border Layout is the default layout for Window, along with its children, Frame and Dialog Border
Layout. Border layout offers five different areas to hold components. These five areas are named after
the four borders of the screen, namely North, South, East and West. The remaining space is placed in
the center area. Border Layout has one button in each area, before and after resizing.

Program to illustrate the border layout manager in Java.

import java.awt.*;

import javax.swing.*;

public class TestBorderLayout extends JApplet

{

 JButton button1, button2, button3, button4, button5;

 BorderLayout bl;

 public void init()

 {

 bl = new BorderLayout();

 JPanel pan = new JPanel();

 getContentPane().add(pan);

 pan.setLayout(bl);

 button1 = new JButton(“North”);

 button2 = new JButton(“South”);

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

210

 button3 = new JButton(“East”);

 button4 = new JButton(“West”);

 button5 = new JButton(“Center”);

 pan.add(“North”, button1);

 pan.add(“South”, button2);

 pan.add(“East”, button3);

 pan.add(“West”, button4);

 pan.add(“Center”, button5);

 }

}

HTML Coding:

<html>

<head></head>

<title></title>

<body>

<p>

<applet code="TestBorderLayout.class" width=400 height=200>

</applet>

</p>

</body>

</html>

Output:

In this example,

1. First, the java.awt.* and javax.swing.* packages are imported.
2. Then, a class TestBorderLayout is created, which extends JApplet class.

Unit 12: Abstract Window Toolkit

LOVELY PROFESSIONAL UNIVERSITY 211

3. In the class TestBorderLayout,
 (a) Five Jbuttons, namely, button1, button2, button3, button4, and
 button5 are declared.
 (b) A variable b1 is declared for BorderLayout.
 (c) Then, the init() method is called.
 (d) In the init() method,
 (i) A new BorderLayout is created and assigned to b1.
 (ii) Then, a new JPanel is created and assigned to the panel pan.
 (iii) The getContentPane() method is then called to get a reference to
 the panel pan.
 (iv) The setLayout() method is called to set the layout b1 for the
 panel pan.
 (v) Then, a new JButton is created with the string North and is
 assigned to button1.
 (vi) A new JButton is created with the string South and is assigned to
 button2.
 (vii) Then, a new JButton is created with the string East and is
 assigned to button3.
 (viii) A new JButton is then created with the string West and is
 assigned to button4.
 (ix) Then, a new JButton is created with the string Center and is
 assigned to button5.
 (x) Finally, the JButtons button1, button2, button3, button4 and
 button5 are added to the panel pan using the add() method.

When less than five components are placed in a container and BorderLayout is used,
the empty component regions disappear. The remaining components then expand to
fill the available space.

12.2.3 Grid Layout
Grid Layout helps in the arrangement of components in rows and columns. This process of
arrangement of components starts at the first row and column, then moves across the row until it is full,
and then continues on to the next row. Grid Layout Manager allows the user to reposition or resize
objects after adding or removing components.

Program to illustrate the grid layout manager in Java.

import java.awt.*;

import javax.swing.*;

public class TestGridLayout extends JApplet

{

 JButton a1, a2, a3, a4, a5, a6;

 GridLayout G;

 public void init()

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

212

 {

 G=new GridLayout(3, 3);

 JPanel J = new JPanel ();

 getContentPane().add(J);

 J.setLayout(G);

 a1=new JButton("A");

 a2=new JButton("B");

 a3=new JButton("C");

 a4=new JButton("D");

 a5=new JButton("E");

 a6=new JButton("F");

 J.add(a1);

 J.add(a2);

 J.add(a3);

 J.add(a4);

 J.add(a5);

 J.add(a6);

 }

}

HTML Coding:

<html>

<head></head>

<title></title>

<body>

<p>

<applet code="TestGridLayout.class" width=250 height=250>

</applet>

</p>

</body>

</html>

Unit 12: Abstract Window Toolkit

LOVELY PROFESSIONAL UNIVERSITY 213

Output:

In this example,

1. First, java.awt.* and javax.swing.* packages are imported.

2. Then, a class TestGridLayout is created, which extends the JApplet class
 present in the swing package.

3. In the class TestGridLayout,

 (a) Six JButtons, namely, a1, a2, a3, a4, a5 and a6 are declared.

 (b) Then, a GridLayout G is declared.

 (c) The init() method is then called.

 (d) In the init() method,

 (i) A new GridLayout with dimensions 3, 3 is created and
 assigned to G.
 (ii) Then, a new JPanel instance is created and assigned to J.
 (iii) The getContentPane() method is then called to get a reference
 to the panel J.
 (iv) The setLayout() method is called to set the layout G
 for the panel J.
 (v) Then, the JButtons a1, a2, a3, a4, a5 and a6 are assigned values
 of A, B, C, D, E and F, respectively.
 (vi) Finally, these buttons are added to the panel J using the add()
 method.

12.2.4 GridBag Layout
GridBag Layout is complex when compared to the other layouts provided in the AWT. GridBag Layout
allows the user to organize components in multiple rows and columns, stretch specific rows or columns
when space is available, and anchor objects in different corners.

Program to illustrate the GridBag layout manager in Java.

import java.awt.*;

import javax.swing.*;

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

214

public class TestGridBag extends JApplet

{

JPanel panelObj;

GridBagLayout gbObj;

GridBagConstraints gbCons;

public void init()

{

 gbObj = new GridBagLayout();

 gbCons = new GridBagConstraints();

 panelObj = (JPanel)getContentPane();

 panelObj.setLayout(gbObj);

 JButton button1 = new JButton("Button 1");

 JButton button2 = new JButton("Button 2");

 JButton button3 = new JButton("Button 3");

 JButton button4 = new JButton("Button 4");

 gbCons.fill = GridBagConstraints.BOTH;

 gbCons.anchor = GridBagConstraints.CENTER;

 gbCons.gridwidth = 1;

 gbCons.weightx = 1.0;

 gbObj.setConstraints(button1, gbCons);

 panelObj.add(button1);

 gbCons.gridwidth = GridBagConstraints.REMAINDER;

 gbObj.setConstraints(button2, gbCons);

 panelObj.add(button2);

 gbCons.gridwidth = GridBagConstraints.REMAINDER;

 gbObj.setConstraints(button3, gbCons);

 panelObj.add(button3);

 gbCons.fill = GridBagConstraints.BOTH;

 gbCons.anchor = GridBagConstraints.CENTER;

 gbCons.gridwidth = 1;

 gbCons.weightx = 1.0;

 gbObj.setConstraints(button4, gbCons);

 panelObj.add(button4);

 }

}

Unit 12: Abstract Window Toolkit

LOVELY PROFESSIONAL UNIVERSITY 215

HTML Coding:

<html>

<head></head>

<title></title>

<body bgcolor=pink>

<p>

<h2>

Applet

<applet code="TestGridBag.class" width=250 height=250>

</applet>

</p>

</body>

</html>

Output:

In this example,

1. First, java.awt.* and javax.swing.* packages are imported.

2. Then, a class TestGridBag is created, which extends JApplet class.

3. In the class TestGridBag,

 (a) A JPanel object panelObj is declared.

 (b) Then, GridBagLayout object gbObj is declared.

 (c) The GridBagConstraints are then declared by using gbCons.

 (d) The init() method is then called.

 (e) In the init() method,

 (i) A new instance of the GridBag layout manager is created and
 assigned to gbObj.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

216

 (ii) A new instance of the GridBagConstraints layout manager is
 created and assigned to gbCons.
 (iii) Then, panelObj = (JPanel)getContentPane(); statement is used to
 get the contentpane value and assign it to panelObj.
 (iv) The setLayout() method is called to set the layout gbObj for the
 panel panelObj.
 (v) Then, new instances of JButtons are created with values Button 1,
 Button 2, Button 3 and Button 4. These values are assigned to
 button1, button2, button3, and button4 respectively.
 (vi) The fill attribute is used when a component is smaller than its
 display area for ascertaining whether the component needs to
 be stretched within its display area. The GridBagConstraints.BOTH
 fills the display area completely.
 (vii) The anchor attribute is used when a component is smaller than
 its display area. It is used for determining where the component
 has to be placed in the display area. GridBagConstraints.CENTER
 is the default value.
 (viii) The gridwidth and weightx of gbCons are assigned values of 1
 and 1.0, respectively. The gridwidth attribute specifies the
 number of columns to be used as the display area of the
 component. The attribute weightx specifies whether the
 components stretch horizontally to fill the display area of the
 applet.
 (ix) The setConstraints() method of the GridBagLayout class is used for
 associating the constraints with the component.
 (x) Then, the button1 is added to the panelObj using the add()
 method.
 (xi) The remainder value of GridBagConstraints is assigned to the
 gridwidth of gbCons.
 (xii) Then, setConstraints() method is called to set the constraints
 button2 and gbCons of the object gbObj.
 (xiii) The button2 is then added to panelObj using the add() method.
 (xiv) The remainder value of GridBagConstraints is assigned to the
 gridwidth of gbCons.
 (xv) Then, setConstraints() method is called to set the constraints
 button3 and gbCons, of the object gbObj.
 (xvi) The button3 is then added to panelObj using the add() method.
 (xvii) The GridBagConstraints.BOTH fills the display area completely
 and assigns the result to gbCons.fill.
 (xviii) Then, GridBagConstraints.CENTER anchor attribute is used as the
 default value of gbCons.
 (xix) The gridwidth and weightx of gbCons are assigned the values of 1
 and 1.0, respectively.
 (xx) Then, setConstraints() method is called to set the constraints
 button4 and gbCons of the object gbObj.

Unit 12: Abstract Window Toolkit

LOVELY PROFESSIONAL UNIVERSITY 217

 (xxi) Finally, the button4 is then added to panelObj using the add()
 method.

12.2.5 Card Layout
A card layout is used to manage several components. All the components are provided the same size.
The card layout is used to manage a group of panels and these panels have their own components.

Program to illustrate the card layout manager in Java.

import java.awt.*;

import javax.swing.*;

public class TestCardLayout extends JApplet

{

 JButton a1, a2, a3;

 CardLayout C;

 JPanel p;

 public void init()

 {

 p=new JPanel();

 C=new CardLayout();

 p.setLayout(C);

 getContentPane().add (p);

 a1=new JButton("a");

 a2=new JButton("b");

 a3=new JButton("c");

 p.add("a",a1);

 p.add("b",a2);

 p.add("c",a3);

 }

}

HTML Coding:

<html>

<head></head>

<title></title>

<body>

<p>

<applet code="TestCardLayout.class" width=400 height=250>

</applet>

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

218

</p>

</body>

</html>

Output:

In this example,

1. First, java.awt.* and javax.swing.* packages are imported.

2. Then, a class TestCardLayout is created that extends the JApplet class.

3. In the class TestCardLayout,

 (a) Three JButtons, namely, a1, a2 and a3 are declared.

 (b) Then, an object C is declared for the CardLayout class.

 (c) A variable p is used to declare a JPanel object.

 (d) Then, the init() method is called.

 (e) In the init() method,

 (i) A new instance of the JPanel class is created and assigned to p.
 (ii) A new instance of the CardLayout class is created and assigned to C.
 (iii) Then, the setLayout() method is called to set the layout C for panel
 p.
 (iv) The getContentPane() method is then called to get a reference to
 the panel p.
 (v) Then, new instances of JButtons are created with values a, b and c,
 and are assigned to a1, a2 and a3, respectively.
 (vi) Finally, these buttons and their values are then added to the panel p
 using the add() method.

Write a program to illustrate a grid layout manager in Java AWT. The grid
layout must contain five grids with different names.

Unit 12: Abstract Window Toolkit

LOVELY PROFESSIONAL UNIVERSITY 219

• AWT is a class library offered by Java programming language, which provides a common set of
tools to design GUIs that is platform-independent.

12.3 Summary

• The java.awt.* package is used to develop the user interface objects such as check boxes and radio
buttons.

• Layouts are used to format components on the screen.

• A good appearance, regardless of the platform, screen size, or actions the user might take is given
by the layout managers.

• The different types of layout managers are flow layout, border layout, grid layout, gridbag layout
and card layout.

12.4 Key words
Class Library: A large body of code that applications can call at runtime.

Container: A component that contains other components within it.

Panel: Simplest container class that provides space in an application to attach other components, which
may also include other panels.

Super Class: A class that provides a method or methods to a Java subclass.

1. State whether the following statements are true or false:

 (a) A label is a simple component of java AWT.

 (b) Card Layout is the default layout of the Panel class.

 (c) GridBag Layout allows the user to manage a group of Panels and these panels have their own
 components.

2. Fill in the blanks:

 (a) Text field is a text container component of _______ package.
 (b) The _______ layout helps in the arrangement of components in rows and columns.
 (c) A _________ layout is used to manage several components.

3. Select a suitable choice in every question.

 (a) Which of the following classes permits a user to create a scrolling list of values that can be
 selected alone or together?
 (i) Scrollbar class
 (ii) Choice class
 (iii) List class
 (iv) Checkbox class
 (b) Which of the following is the default layout for Window?
 (i) Border layout
 (ii) Flow layout
 (iii) Grid layout
 (iv) Card layout

12.5 Self Assessment

1. "AWT has a collection of basic user interface components". Justify.
2. "The Java development kit offers five classes and these classes implement the layout manager

12.6 Review Questions

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

220

 interface". Discuss.
3. "When components are added to the screen, they flow from left to right in flow layout". Illustrate
 this using a program.
4. "GridBag Layout allows the user to organize components in multiple rows and columns, stretch
 specific rows or columns when space is available, and anchor objects in different corners". Illustrate
 this using a program.
5. "The Card layout is used to manage a group of panels and these panels have their own components".
 Illustrate this using a program.

Answers: Self Assessment
1. (a) True (b) False (c) False

2. (a) java.awt (b) Grid (c) Card

3. (a) List class (b) Border layout

12.7 Further Readings

Balagurusamy E. Programming with Java_A Primer 3e. New Delhi

Schildt. H. Java 2 The Complete Reference, 5th ed. New York: McGraw-Hill/Osborne.

http://www.roseindia.net/java/example/java/awt/AwtComponents.shtml

http://www.jhlabs.com/java/layout/index.html

http://www.jhlabs.com/java/layout/index.html�

Unit 13: Swings

LOVELY PROFESSIONAL UNIVERSITY 221

CONTENTS

Objectives

Introduction

13.1 Features of Swings

13.2 Swing Components

13.3 Summary

13.4 Keywords

13.5 Self Assessment

13.6 Review Questions

13.7 Further Readings

Unit 13: Swings

After studying this unit, you will be able to:

Objectives

• Explain swing components

• Discuss various GUI components

• Compare the model of buttons, checkboxes and radio buttons

• Use combo box and lists in Java

• Analyze the concept of menus in Java

Swing is an important component of Java language, which is provided in the javax.swing package. The
concept of swings came into existence for the purpose of providing a more advanced collection of GUI
(Graphical User Interface) components to Java as compared to the AWT.

Introduction

Did you know? The Swing library was introduced by Sun Microsystems to create a GUI, which is
elegant, object-oriented and easy to work with. Swing library is contained in
javax.swing and java.awt packages.

A Swing is a graphical user interface library of Java. It provides the multiple platform independent API
interfaces. These interfaces are used for interacting between the users and GUI components. Swing is a
part of Java Foundation Class (JFC) and it includes the graphical widgets like checkboxes, radio buttons,
menus, and so on. The Java Swing can handle all the AWT flexible components. Swing and its
components are commonly used in Java because windows’ appearance can be changed easily using an
important feature of Swings, that is, pluggable look and feel. The pluggable look and feel of Java
Swing is a mechanism that permits the modification in the look and feel of the GUI at runtime.

The Java Abstract Window Toolkit (AWT) provides a platform-specific code. However, Swing is written
in Java and hence is platform independent. Unlike the AWT, Swing has more sophisticated interface
capabilities. Swing offers features like tabbed panes. It also has the ability to change images on buttons.

13.1 Features of Swings

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

222

Swing and AWT are incompatible. These cannot be mixed. Only one can be used at a
time.

Few advantages of Swings that make them user friendly are their extensibility, customizability and
configurability. Swing components are lightweight, and hence provide a better user interface.

The names of the components of Swings start with the letter J.

JButton, JLabel, and JSlider.

The JComponent (a Swing component), which is derived directly from container, is the foundation class
for most of the user interface components of a Swing. The container class is a class in Java which is used
to add components in the container and laying them.

Did you know? In Java, there are 250 new classes and 75 interfaces in Swing.

Javax.swing.SwingWorker class is the generic solution to the issues of updating the
GUI from worker threads and giving users the ability to control the background
tasks.

1. This class provides a means of returning intermediate results from the background task.

2. This class provides a method for updating the interface with the intermediate results.

3. This class solves memory inconsistency errors.

Unit 13: Swings

LOVELY PROFESSIONAL UNIVERSITY 223

Figure 13.1 depicts the swing class hierarchy, which comprises a group of swing components.

Figure 13.1: Swing Class Hierarchy

In the figure 13.1, JComponent class is derived from the container class of AWT. Therefore, the swing
class properties are inherited from the component class and container class. The component class is a
Java class, which offers the layout hints and assists the painting and event hints. The JComponent class
consists of JButton, JComboBox, JLabel, JList, JMenuBar, JToggleButton and the JMenuItem component.
These components are further classified into various other components.

Fields must be created only if necessary. If a particular element is created, wired into
the GUI, and then no longer referenced anywhere else in the class, then it should
probably not exist as a field, but rather as a simple local variable. This style will allow
the more important GUI elements (fields) to stand out from the less important ones
(local variables).

Swings have 18 public packages.

Program to illustrate the concept of swing in Java.

import javax.swing.*;

import java.awt.*;

public class Sample extends JApplet

{

 public void init()

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

224

 {

 Container contentPane = getContentPane();

 JLabel j= new JLabel ("Sample");

 contentPane.add(j);

 }

}

HTML Coding:

<html>

<head></head>

<title></title>

<body >

<p>

<applet code="Sample.class" width=250 height=250>

</applet>

</p>

</body>

</html>

Output:

In this example,

1. First, a class Sample is created from the JApplet class, by using the extends
keyword, and is declared public by using the public keyword.

2. In the class Sample,

(a) The init() method is called, which is declared public and void.

(b) In this init() method,

 (i) The Container contentPane = getContentPane(); statement is used for
 adding the component to the container's content pane.

Unit 13: Swings

LOVELY PROFESSIONAL UNIVERSITY 225

 (ii) Then, a new JLabel Sample is created, and is assigned to JLabel j.

 (iii) Finally, the statement contentPane.add(j); is used for adding the
 JLabel j to the content pane.

Note: Finally, the code is executed in the command prompt, and for acquiring the
output, an HTML code is written. The result is shown as an applet window with a
label Sample on it.

As the concept of Swings is important in Java, so are their components, which are considered to be the
basic building blocks of an application using Swings. These components are contained in the Swing
packages. Swing packages are similar to the AWT packages and are used to provide classes for creating
GUI applications. The javax.swing package contains all the Swing components. The only difference
between the AWT and Swing packages is that the Swing packages are completely written in Java,
whereas the AWT packages are not completely written in Java. As a result, the GUI programs, which
are written using classes from the Swing package, have a similar appearance when executed on
different platforms.

Table 13.1 describes the different Swing components.

13.2 Swing Components

Table 13.1: Swing Components

Swing Component Description

JComponent This component is the root class for all Swing components, but not
for the top-level containers.

JButton This component is known as a push button, which resembles the
Button class in the AWT package.

JCheckBox

This component is used to create a code, where the user can select or
deselect an item. This component looks like the Checkbox class in the
AWT package.

JFileChooser This component permits the user to select a file, and it resembles the
FileChooser class in the AWT package.

JTextField This component permits the single-line text editing, and corresponds
to TextField class in the AWT package.

JFrame

This component extends and matches the Frame class in the AWT
package. Though, the two are marginally mismatched in terms of
adding components to this container.

JPanel This component extends JComponent and resembles the Panel class
in the AWT package.

JApplet This component extends and matches the Applet class in the AWT
package. But, it is not completely compatible with the Applet class in
terms of adding components to this container.

JOptionPane This swing component extends JComponent. It is used to display a
pop-up dialog box.

Cont..

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

226

JDialog

This component extends and resembles the dialog class in the AWT
package. It is used to inform the user of something or prompt the
user for an input.

JColorChooser This component extends JComponent and allows the user to select a
color.

Let us next discuss some of the main swing components given in the table 13.1.

Frames, Panels and Applets
Frames, panels, and applets are the components of Swing class.

1. JFrame:

2.

 Frames use the content pane (class) to add all the components. A user can change the
properties of JFrame (a Swing component), such as, changing the layout manager, background
color, and so on. These changes have an effect on the content pane. Frames can be closed by just
clicking on the close button. This would mean that only the window is closed, not the program. A
user can use the setDefaultCloseOperation (EXIT_ON_CLOSE) method, which allows the user to
close the JFrame.

JPanel:

3.

 The JPanel component is an intermediate container, and a Swing component that is used
to group the lightweight swing components. The JPanel works in the same way as the content
pane does. A FlowLayout is the default layout for a JPanel.

JApplet:

Labels
As frame, panels, and applets are Swing components, similarly labels are also Swing components. The
idea behind using a JLabel is to display an area for a short text string or an image, or both. Labels do
not respond to input events; hence, JLabel does not receive the keyboard focus. The label can be aligned
by setting the label's contents using the vertical and horizontal alignment.

The JApplet is a Swing component and contains a content pane. The components can be
added in this content pane. The layout, background color and several other properties of JApplet
can be changed, and these changes also apply to the content pane. The default layout manager for
JApplet is the BorderLayout.

Labels are vertically centered in their display area, by default. The labels, which
contain only text, are aligned at the leading edge, by default; and the labels, which
contain only images, are horizontally centered. But generally, the text is on the
trailing edge of the image, where the text and image are vertically aligned.

Some pixels must be given between the label text and the image, and for specifying these pixels, the
setIconTextGap method is used. The default pixel is 4.

Program to illustrate the concept of labels in Java.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class JLabelDemo extends JApplet

{

Unit 13: Swings

LOVELY PROFESSIONAL UNIVERSITY 227

private Container Panel;

private LayoutManager Layout;

private JLabel Label1;

private JLabel Label2;

private JLabel Label3;

private JLabel Label4;

private JLabel Label5;

private JLabel Label6;

private JLabel Label7;

public JLabelDemo()

{

Layout = new GridLayout (7, 1);

Label1 = new JLabel ("A Simple Label");

Label2 = new JLabel ("A Label with LEFT alignment", JLabel.LEFT);

Label3 = new JLabel ("A Label with CENTER alignment", JLabel.CENTER);

Label4 = new JLabel ("A Label with RIGHT alignment", JLabel.RIGHT);

Label5 = new JLabel ("A Label with LEADING alignment",
JLabel.LEADING);

Label6 = new JLabel ("A Label with TRAILING alignment", JLabel.TRAILING);

Label7 = new JLabel();

Panel = getContentPane();

Panel.setLayout (Layout);

Panel.add (Label1);

Panel.add (Label2);

Panel.add (Label3);

Panel.add (Label4);

Panel.add (Label5);

Panel.add (Label6);

Panel.add (Label7);

Panel.setBackground (Color.gray);

Label7.setHorizontalAlignment(JLabel.CENTER);

Label7.setForeground(Color.blue);

Label7.setText("Text added with setText");

}

}

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

228

HTML Coding:

<html>

<head></head>

<title></title>

<body>

<p>

<applet code="JLabelDemo.class" width=250 height=250>

</applet>

</p>

</body>

</html>

Output:

In this example,

1. First, a class JLabelDemo is created from the class JApplet, by using the
extends keyword.

2. In the class JLabelDemo,

a. First, a container panel, a layout manager Layout, and seven labels
from Label1 to Label7 are declared as JLabel.

b. Then, the JLabelDemo() constructor is called. In this constructor,

 (i) The Layout = new GridLayout (7, 1); statement, GridLayout is
 created by using the new keyword, and is linked to Layout.

 (ii) Different JLabels are created by using the new keyword, and are

Unit 13: Swings

LOVELY PROFESSIONAL UNIVERSITY 229

 linked from Label 1 to Label 7, respectively.

 (iii) The Panel = getContentPane(); statement is used to get the
 content pane and link it to Panel.

 (iv) Then, the layout (here, GridLayout) of the panel is set using the
 setLayout() method in the Panel.setLayout (Layout); statement.

 (v) All the labels that were created in the program are then added to
 Panel, by using the add() method.

 (vi) Then, the background color of Panel is set to gray color, by using
 the setBackground() method, in the Panel.setBackground
 (Color.gray); statement.

 (vii) Finally, the horizontal alignment, foreground, and text of Label7
 are set, by using the setHorizontalAlignment(), setForeground(),
 and setText() methods, respectively.

Note: Finally, the code is executed in the command prompt, and for acquiring the
output, an HTML code is written. The result is shown as an applet window and
labels with different names on it.

Text Components
Text components are also Swing components. The Swing text components are used to display text. The
text components permit the editing of the text, to the user. Java Swings contain six text components,
supporting classes and interfaces, which can be used to write complex codes. All the swing text
components have different uses and are inherited from the super class JTextComponent.
JTextComponent helps the user in making the foundation for text manipulation highly-configurable
and powerful.

Figure 13.2 depicts the JTextComponent hierarchy, which contains different text components, like
JTextField, JtextArea and JEditorPane.

Figure 13.2: JTextComponent Hierarchy

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

230

As given in the figure 13.2, JTextComponents can be classified into three sections, namely, Text
Controls, Plain Text Areas, and Styled Text Areas.

1. Text controls:

(a) JTextField: This is a swing text component. This component is known as a lightweight
component and allows the user to edit a single line of text.

(b) JFormattedTextField: This component allows the user to format arbitrary values. It is also used to
retrieve objects after the text has been edited.

(c) JPasswordField: This component is known as a lightweight component in Swings. This
component allows the user to edit a single line of text, where the view specifies the typed text
not the original text.

 The Text control section is one of the sections of the JTextComponent. The text
controls contain three components, namely, JTextField, JFormattedTextField and JPasswordField.

2. Plain Text Areas:

(a) JtextArea: This is a swing text component. The JtextArea component is used to display plain
text and is a multi-line text area. It is known as a lightweight component for working with
text. This text component does not handle scrolling, and for this reason JScrollPane
component is used.

 The plain text area is another section of the JTextComponent. It includes the
component named as JTextArea.

3. Styled Text Area:

(a) JTextPane Component: The JTextPane component is an advanced component that is used for
working with text. This component is used to write codes, which contain complex formatting
operations. JTextPane can also exhibit HTML documents.

 The styled text area is the third section of the JTextComponent, which contains
the component JTextPane.

All the above components have their own importance in handling the Swing text.

Program to illustrate JTextArea component in Java.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class TextArea extends JApplet implements ActionListener

{

 JTextField Sample;

 JTextArea e1;

 JTextArea e2;

 Container Panel;

 LayoutManager Layout;

 public TextArea()

 {

 Sample = new JTextField ("Sample ", 20);

 e1 = new JTextArea (5, 20);

 e2 = new JTextArea (5, 20);

Unit 13: Swings

LOVELY PROFESSIONAL UNIVERSITY 231

 Layout = new FlowLayout();

 Panel = getContentPane();

 Sample.addActionListener (this);

 e1.setEditable (false);

 e1.setBackground (Color.white);

 e1.setLineWrap (true);

 Panel.setLayout (Layout);

 Panel.add (Sample);

 Panel.add (e1);

 Panel.add (e2);

 Panel.setBackground(Color.pink);

 }

 public void actionPerformed(ActionEvent e)

 {

 String Reply;

 Reply = "The text which was entered into the JTextField was \"" +

 Sample.getText() + "\", and this is the echo with text wrap.";

 e1.setText (Reply);

 Reply = "The text which was entered\ninto the JTextField was\n\""

 + Sample.getText()

 + "\", \and this is the echo with returns";

 e2.setText (Reply);

 }

}

HTML Coding:

<html>

<head></head>

<title></title>

<body>

<p>

<applet code="TextArea.class" width=225 height=200>

</applet>

</p>

</body>

</html>

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

232

Output:

In this example,

1. First, a class TextArea is created, which extends the class JApplet and
implements the class ActionListener.

2. In this class,

(a) A JTextField Sample, two JTextAreas e1 and e2, Container Panel, and
LayoutManager Layout, are declared.

(b) Then, the TextArea() constructor is called. In this constructor,

 (i) A new JTextField is created, and is linked to the Sample.

 (ii) Two new JTextAreas are created and linked to e1 and e2, respectively.

 (iii) A new FlowLayout is created, and is linked to the Layout.

 (iv) Then, getContentPane() method is called to get the content pane,
 and is linked to the Panel.

 (v) Afterwards, the addActionListener (this) method is added to the
 Sample.

 (vi) The editable field, background, and the line wrap of the text area e1
 are set, by using the respective methods.

 (vii) Then, SetLayout method is called to set the layout of the Panel.

 (viii) The Sample, e1, and e2 are then added to Panel, by using the add()
 method.

 (ix) Then, the background of the Panel is set to pink color, by using the
 setBackground() method.

(c) Then, the ActionEvent e of the actionPerformed() method is called.

(d) In this method,

 (i) First, a String Reply is declared.

 (ii) Then, the string Reply is assigned a string value.

 (iii) The text assigned to string Reply of e1 is then set, by using the
 setText() method.

Unit 13: Swings

LOVELY PROFESSIONAL UNIVERSITY 233

 (iv) Then, again the string Reply is assigned a new string value.

 (v) The text assigned to string Reply of e2 is then set, by using the setText(
) method.

Note: Finally, the code is executed in the command prompt. For acquiring the
output, an HTML code is written. The result is shown as an applet window, and
the text area and text field on it.

Buttons, Checkboxes and Radio Buttons
Apart from the Swing components discussed above, there are few more Swing components, which are
the buttons, checkboxes and radio buttons. The buttons are the classes derived from the AbstractButton
class. The AbstractButton class is a class, which contains different methods that control the behavior of
buttons, checkboxes and radio buttons.

1. Buttons:

 Buttons are simple buttons, on which a user can click and perform the desired
operations. JButtons are She swing components which extend the JComponent. The button class
in Swings is similar to the button class found in java.awt.Button package. The buttons can be
arranged and organized by Actions. Swing buttons are used to display both the text and an image.
The letter that is underlined in the text of each button is the keyboard alternative for each button.
The appearance of the button is auto-generated with the button's disabled appearance. The user
can provide an image as a substitute for the normal image.

A user must implement an action listener while creating buttons.

 The following example will clarify the concept of buttons in Java.

Program to illustrate button component in Java.

import java.awt.*;

import javax.swing.*;

import java.awt.event.*;

public class ButtonSample extends JApplet implements ActionListener

{

 JTextField g;

 public void init()

 {

 Container contentPane = getContentPane();

 contentPane.setLayout(new FlowLayout());

 JButton b = new JButton("Rose");

 b.setActionCommand("Rose") ;

 b.addActionListener(this);

 contentPane.add(b);

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

234

 b = new JButton("Lily");

 b.setActionCommand("Lily") ;

 b.addActionListener(this);

 contentPane.add(b);

 b = new JButton("Lotus");

 b.setActionCommand("Lotus");

 b.addActionListener(this);

 contentPane.add(b);

 g = new JTextField(20);

 contentPane.add(g);

 }

 public void actionPerformed(ActionEvent e)

 {

 g.setText(e.getActionCommand());

 }

}

HTML Coding:

<html>

<head></head>

<title></title>

<body>

<p>

<applet code="ButtonSample.class" width=225 height=200>

</applet>

</p>

</body>

</html>

Output:

Unit 13: Swings

LOVELY PROFESSIONAL UNIVERSITY 235

In this example,

1. First, a class ButtonSample is created, which extends the class JApplet, and
implements the class ActionListener.

2. In this class,

(a) A JTextField object g is declared, and the init() method is called.

(b) In this method,

 (i) The getContentPane() method is called to get the content pane; this
 content pane is linked to the container contentPane.

 (ii) A new FlowLayout is created while setting the layout of the content
 pane with the help of the setLayout() method.

 (iii) Then, a new JButton is created with the string Rose, and is linked to
 the JButton b.

 (iv) The setActionCommand() method is called to set the content of b.

 (v) Then, the addActionListener() method is called to on the JButton b.

 (vi) The string in b is then added to the content pane, by using the add()
 method.

 (vii) Another new JButton with string Lily is created, and is linked to b.

 (viii) Repeat steps (iv) to (vi) for the new value stored in b.

 (ix) Another new JButton with string Lotus is created, and is linked to b.

 (x) Repeat steps (iv) to (vi) for the new value stored in b.

 (xi) A new JTextField of value 20 is created, and is linked to g.

 (xii) Then, actionPerformed() method for ActionEvent e, is called, and
 g.setText(e.getActionCommand()); method is also called within this
 method.

Note: Finally, the code is executed in the command prompt. For acquiring the
output, an HTML code is written. The result is shown as an applet window with
the text area and text field in the applet.

Write a simple Java program to illustrate the concept of JButtons, and JTextFields.

2. CheckBox: Just like Buttons, CheckBoxes are also Swing components. A Checkbox is defined as an
item which a user can select or deselect with a single click. The checkbox item gives the user, the
privilege to select a number of checkboxes from a group or the user may select all of them. The
JCheckBox is a component of swing. The JCheckBox class assists the checkbox buttons. JCheckBox
is a control that allows the user to select more than one attribute at a time by checking, that is
ticking selections in a list. This is beneficial when multiple choices are involved.

All the CheckBoxes are created in such a way, that they are either selected or deselected. The
checkboxes can also be included in menus. For this, the JCheckBoxMenuItem class (discussed
later) is used. Swing checkboxes have common button characteristics, since JCheckBox and
JCheckBoxMenuItem are inherited from Abstract Button class. Any number of checkboxes can be
selected in a group, or all can be selected at once. On every click on the check box, it creates one
item event and one action event.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

236

Program to illustrate the checkbox component in Java.

import java.awt.*;

import javax.swing.*;

import java.awt.event.*;

public class CheckBoxDemo extends JApplet implements ActionListener

{

 JTextField g;

 public void init()

 {

 Container contentPane = getContentPane();

 contentPane.setLayout(new FlowLayout());

 JCheckBox c = new JCheckBox("Movies");

 c .setActionCommand("Movies") ;

 c.addActionListener(this);

 contentPane.add(c);

 c = new JCheckBox("Sports");

 c.setActionCommand("Sports") ;

 c.addActionListener(this);

 contentPane.add(c);

 c = new JCheckBox("Politics");

 c.setActionCommand("Politics") ;

 c.addActionListener(this);

 contentPane.add(c);

 g = new JTextField(20);

 contentPane.add(g);

 }

 public void actionPerformed(ActionEvent e)

 {

 g.setText(e.getActionCommand());

 }

}

HTML Coding:

<html>

<head></head>

<title></title>

<body>

Unit 13: Swings

LOVELY PROFESSIONAL UNIVERSITY 237

<p>

<applet code="CheckBoxDemo.class" width=225 height=200>

</applet>

</p>

</body>

</html>

Output:

In this example,

1. First, a class CheckBoxDemo is created, which extends the class JApplet, and
implements the class ActionListener.

2. In this class,

(a) A JTextField object g is declared, and the init() method is called.

(b) In this method,

 (i) The getContentPane() method is called to get the content pane; this
 content pane is linked to the container contentPane.

 (ii) A new FlowLayout is created while setting the layout of the content
 pane with the help of setLayout() method.

 (iii) Then, a new JCheckBox is created with the string Movies, and is
 linked to the JCheckBox c.

 (iv) The setActionCommand() method is called to set the content of c.

 (v) Then, the addActionListener() method is called on the JCheckBox c.

 (vi) The string in c is then added to the content pane, by using the add()
 method.

 (vii) Another new JCheckBox with string Sports is created, and is linked to
 c.

 (viii) Repeat steps (iv) to (vi) for the new value stored in c.

 (ix) Another new JCheckBox with string Sports is created, and is linked to
 c.

 (x) Repeat steps (iv) to (vi) for the new value stored in c.

 (xi) A new JTextField of value 20 is created, and is linked to g.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

238

 (xii) Then, actionPerformed() method for ActionEvent e, is called, and
 g.setText(e.getActionCommand()); method is also called within this
 method.

Note: Finally, the code is executed in the command prompt. For acquiring the
output, an HTML code is written. The result is shown as an applet window with
the text area and text field in the applet.

3. Radio Buttons:

(a) JRadioButton()

A Radio button is also a Swing component, which is defined as an item that a user
 can select or deselect with a single click. From a group of radio buttons, only one can be selected
 per click unlike check boxes. Prior to creation of any radio buttons, the user must create an instance
 of that button, the ButtonGroup object. Then, the user must add the radio buttons in the
 ButtonGroup object.

 As a Swing component, a radio button is written as JRadioButton. A JRadioButton object can be
created using many constructors. Some of these constructors are:

(b) JRadioButton (Icon icon)

(c) JRadioButton (Icon icon, Boolean selected)

(d) JRadioButton (String text)

(e) JRadioButton(String text, Boolean selected)

(f) JRadioButton (String text, Icon icon)

(g) JRadioButton (String text, Icon icon, Boolean selected)

ComboBoxes and Lists
1. ComboBoxes:

 A Swing component, which brings a button or editable field and a drop-down list together, from
which, the user can select any value, is referred to as a ComboBox. The ComboBox can be made
editable also. For doing this, an editable field is added into the ComboBox, in which, the user can
type a value.

 A ComboBox contains three components, namely, a text field, a button, and a list. These
components together perform some functions. They help in:

 The combobox and list box are Swing components which provide the user an option
to select a number of item from a large list.

(a) Displaying the selected text field on the screen.

(b) Exhibiting the display of the list box that is controlled by the button that is present on the right
side of the text field.

(c) Editing the selected text field.

(d) Displaying icons along with or in the place of the text.

Program to illustrate the combobox component in Java.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class ComboBoxExample extends JApplet implements ItemListener

{

Unit 13: Swings

LOVELY PROFESSIONAL UNIVERSITY 239

 JLabel j;

 ImageIcon ROSE, LILY, LOTUS, CARNATION, MARIGOLD;

 public void init()

 {

 Container contentPane = getContentPane();

 contentPane.setLayout(new FlowLayout());

 JComboBox c= new JComboBox();

 c.addItem("ROSE");

 c.addItem("LILY");

 c.addItem("LOTUS");

 c.addItem("CARNATION");

 c.addItem("MARIGOLD");

 contentPane.add(c);

 j=new JLabel(new ImageIcon("ROSE.gif"));

 contentPane.add(j);

 }

 public void itemStateChanged(ItemEvent e)

 {

 String s=(String)e.getItem();

 j.setIcon(new ImageIcon(s+".gif"));

 }

}

HTML Coding:

<html>

<head></head>

<title></title>

<body>

<p>

<applet code="ComboBoxExample.class" width=225 height=200>

</applet>

</p>

</body>

</html>

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

240

Output:

In this example,

1. First, a class ComboBoxExample is created, which extends the class JApplet,
and implements the class ItemListener.

2. In this class,

(a) A JLabel object j is declared,

(b) The ImageIcon objects ROSE, LILY, LOTUS, CARNATION,
MARIGOLD are declared and the init() method is called.

(c) In this method,

 (i) The getContentPane() method is called to get the content pane; this
 content pane is linked to the container contentPane.

 (ii) A new FlowLayout is created while setting the layout of the content
 pane with the help of the setLayout() method.Then, a new
 JComboBox is created, and is linked to the JComboBox c.

 (iii) The string ROSE is added to c by using the addItem() method.

 (iv) The string LILY is added to c by using the addItem() method.

 (v) The string LOTUS is added to c by using the addItem() method.

 (vi) The string CARNATION is added to c by using the addItem()
 method.

 (vii) The string MARIGOLD is added to c by using the addItem() method.

 (viii) The string in c is then added to the content pane, by using the add()
 method.

 (ix) A new JLabel is created with the ImageIcon ("ROSE.gif"), and is
 linked to j.

 (x) The string in j is then added to the content pane, by using the add()
 method.

 (xi) The itemStateChanged() method is called where itemevent e is
 defined.

Unit 13: Swings

LOVELY PROFESSIONAL UNIVERSITY 241

Note: Finally, the code is executed in the command prompt. For acquiring the
output, an HTML code is written. The result is shown as an applet window with
the text area and text field in the applet.

2. Lists: A list is a simple presentation of choices, which are large in number. As a Swing component,
list is written as JList. The JList component is defined as a component, which provides a set of
items that are scrollable, from which, one or more items may be selected. For creating a JList
component, the user must associate the list component with the scroll pane, since the JList does not
support scrolling directly. The Jlist actions are handled by ListSelectionListener class.

 The JList component can be created by using the below-given constructors:

(a) public JList(): This constructor creates a JList with an empty model.

(b) public JList (ListModel dataModel): This constructor creates a JList with specified elements and in
a non-null model.

(c) public JList (object [] listData): This constructor creates a JList, which displays elements of the
array “ListData”.

The above mentioned constructors help the user to create a JList component in different forms.

Program to illustrate the list box component in Java.

import javax.swing.*;

import javax.swing.event.ListSelectionEvent;

import javax.swing.event.ListSelectionListener;

import java.awt.*;

import java.applet.*;

import java.awt.event.*;

public class JListDemo extends JApplet

{

 JList list;

 String[] listColorNames = { "black", "blue", "pink", "gray","white" };

 Color[] listColorValues = { Color.BLACK, Color.BLUE,

 Color.PINK,Color.GRAY, Color.WHITE};

 Container contentpane;

 public JListDemo()

 {

 super();

 contentpane = getContentPane();

 contentpane.setLayout(new FlowLayout());

 list = new JList(listColorNames);

 list.setSelectedIndex(0);

 list.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

 contentpane.add(new JScrollPane(list));

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

242

 list.addListSelectionListener(new ListSelectionListener()

 {

 public void valueChanged(ListSelectionEvent e)

 {

 contentpane.setBackground(listColorValues[list.getSelectedIndex()]);

 }

 }

 setSize(200, 200);

 setVisible(true);

 }

 public static void main(String[] args)

 {

 JListDemo test = new JListDemo();

 }

}

HTML Coding:

<html>

<head></head>

<title></title>

<body>

<p>

<applet code="JListDemo.class" width=225 height=200>

</applet>

</p>

</body>

</html>

Unit 13: Swings

LOVELY PROFESSIONAL UNIVERSITY 243

Output:

In this example,

1. First, a class JListDemo is created, which extends the class JApplet.

2. In this class,

(a) A JList object list is declared, the listColorNames and listColorValues
objects are defined, the container contentpane is declared, and the
JListDemo method is called.

(b) In this method,

 (i) The getContentPane() method is called to get the content pane; this
 content pane is linked to the container contentPane.

 (ii) A new FlowLayout is created while setting the layout of the content
 pane with the help of setLayout() method.

 (iii) Then, a new JList is created with the string listColorNames, and is
 linked to the list.

 (iv) The first element of the list is set as selected using the setSelectedIndex
 method.

 (v) The selection mode of the list is set to SINGLE_SELECTION using the
 setSelectionMode method.

 (vi) The list is then added to the content pane, by using the add() method.

 (vii) A list selection listener method ListSelectionListener is added to the list
 using the method addListSelectionListener. The ListSelectionListener
 method will now be called when a different entry in the list is selected.

 (viii) The ListSelectionListener method calls the valueChanged method,
 passing the ListSelectionEvent as a parameter.

 (ix) The valueChanged method sets the background color of the container
 to the color mentioned in the selected index of the object
 listColorValues.

 (x) The setSize and setVisible methods are called to set the size and make

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

244

 the container visible.

 (xi) Finally, the JListDemo method is invoked from the main program.

Note: Finally, the code is executed in the command prompt. For acquiring the
output, an HTML code is written. The result is shown as an applet window.

Compile a list of constructors used in the swing class, along with their description.

Menus
Menu is a part of GUI, which is used to display a list of items indicating various options that can be
used by a user. The user can click on any option and a sub-menu, if present, appears on the screen.
Every menu item has an action associated with it. Similarly, the Swing menu contains menubar,
menuitems and menu. Menubar is regarded as the root of all menus and menuitems.

A Swing menu has many components, namely, JMenuBar, JPopUpMenu, JAbstractButton and
JSeparator. The JAbstractButton further has one component, namely, JMenuItem component. The
JMenuItem component contains other components like JMenu, JCheckBoxMenuItem and
JRadioButtonMenuItem.

1. JMenuBar:

JMenuBar is defined as a swing component, which can be added to a container only
through JFrame, JWindow and JInternalRootFrame’s root pane.. JMenuBar contains various
JMenus, and every JMenu depicts the string within the JMenubar. When the user clicks on any
string, the menu associated with it appears on the screen displaying different menu items.

A JFrame is a swing component, which is used as a support for the swing component
architecture. The JRootPane is contained in a JFrame. The JRootPane is the only child of
JFrame. The content pane, which the root pane provides must include all the non-menu
components that are displayed by the JFrame. A container, which can be displayed on
a user’s desktop, is called as JWindow. The title bar, window-management buttons, or
other trimmings which are associated with a JFrame, are not present in a JWindow.

Program to illustrate the JMenuBar component in Java.

import java.awt.*;

import javax.swing.*;

public class MenuBar extends JApplet

{

 public void init()

 {

 JMenuBar m = new JMenuBar();

 JMenu fileMenu = new JMenu("Display");

 JMenu pullRightMenu = new JMenu("pull right");

 fileMenu.add("welcome");

 //fileMenu.addSeparator;

 fileMenu.add(pullRightMenu);

Unit 13: Swings

LOVELY PROFESSIONAL UNIVERSITY 245

 fileMenu.add("Exit");

 pullRightMenu.add(new JCheckBoxMenuItem("Hi"));

 pullRightMenu.add(new JCheckBoxMenuItem("Hello"));

 pullRightMenu.add(new JCheckBoxMenuItem("How are you?"));

 m.add(fileMenu);

 setJMenuBar(m);

 }

}

HTML Coding:

<html>

<head></head>

<title></title>

<body>

<p>

<applet code="MenuBar.class" width=225 height=200>

</applet>

</p>

</body>

</html>

Output:

In this example,

1. First, a class MenuBar is created, which extends the class JApplet.

2. In this class, the init() method is called.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

246

In this method,

(a) A new JMenuBar is created, and is linked to the JMenuBar m.

(b) The string Display is linked to JMenuFileMenu using the new keyword.

(c) The string pullright is linked to JMenu pullRightMenu using the new
keyword.

(d) The pullRightMenu is added to the fileMenu using the add() method.

(e) The string Exit is then added to the fileMenu, by using the add()
method.

(f) The string Hi is added to the pullRightMenu using the add() method
and linked to JCheckBoxMenuItem using the keyword new.

(g) The string Hello is added to the pullRightMenu using the add() method
and linked to JCheckBoxMenuItem using the keyword new.

(h) The string How are you? is added to the pullRightMenu using the add(
) method and linked to JCheckBoxMenuItem using the keyword new.

(i) The fileMenu is then added to m, by using the add() method.

(j) The JMenuBar is added to the container.

Note: Finally, the code is executed in the command prompt. For acquiring the
output, an HTML code is written. The result is shown as an applet window with
the text area and text field in the applet.

2. JMenu:

(a) First, when the user clicks it, a text string appears on the screen.

 JMenu is also a Swing menu component. JMenu is a component of the JMenuItem and
comes under JMenuBar. This component serves two purposes.

(b) Second, when the user clicks on the string, a popup menu appears.

 JMenu contains JMenuItem, JCheckBoxItem, JRadioButtonItem and JSeparator.

3. JPopUpMenu:

(a) Firstly, the pull-right menu appears on the screen, when the user clicks a menu item.

 The JPopUpMenu is another Swing menu component. The JPopUpMenu
component is used to display the expanded form of the menu. This component can be used in two
ways:

(b) Secondly, it can be used as a shortcut menu, which gets activated when a user right clicks on
the mouse.

 A JPopUpMenu can be created using two constructors, which are:

(a) public JPopUpMenu(): This constructor creates a JPopUpMenu.

(b) public JPopupMenu(String label): This constructor creates a JPopUpMenu with a specified title.

 The constructors mentioned above help the user to create a JPopUpMenu component, with a title
or without a title.

4. JMenuItem:

5.

JMenuItem is defined as a Swing menu component, which appears on the screen in a
string format with an icon. A menu is contained in the JmenuItem component. When a user clicks
and releases the mouse on a JMenuItem, the menu which contains the item disappears. Then, a
dialog box appears, which is displayed for that menu item. The attributes of a JMenuItem like font,
color, background, and border can be changed.

JCheckBoxMenuItem: The JCheckBoxMenuItem, a Swing menu component, consists of
checkboxes as the menu items. These checkboxes can be created using the JCheckBox class. The
attributes of a JCheckBoxMenuItem like the appearance, background color and the icon
associated with the checkbox, can be changed.

Unit 13: Swings

LOVELY PROFESSIONAL UNIVERSITY 247

6. JRadioButtonMenuItem:

(a) If the item is selected before, then the state does not change.

 The JRadioButtonMenuItem is a swing menu component, which can be
selected only one at a time. It is similar to the checkbox component. If a user clicks on the radio
button, then the following possibilities occur:

(b) If the item was not selected initially, the selected item is deselected and the clicked item is
selected.

If a JRadioButtonMenuItem changes its state, then the JRadioButtonMenuItem creates an
ItemEvent and distributes it to the registered ItemListeners.

1. Write a program to illustrate the concept of checkboxes in Java. Consider
four checkboxes with different names.

2. Write a program to illustrate the usage of buttons with background color as
pink.

3. Write a program to illustrate a menu in Java. The words file and help must
appear on the menu screen.

Success Story of ProSeco Project

 roSeco was intended for the TV-broadcasting planning. It involved all the planning tasks
that could possibly arise in a broadcasting industry. It involved tasks from strategic
program planning, through broadcasting planning up to broadcasting operations.

ProSeco was a very large project that was developed by two teams. These two teams included both
the in-house as well as the offshore teams. This project tried a new model of interaction between the
two development teams. It was decided that the in-house team would design the project, while the
offshore team would perform programming.
The in-house team comprised system analysts, an architect and a designer. The designer was
responsible for all the communication that took place with the offshore team. It was the designer who
transformed the design team requirements into technical solutions, documented and then passed on
the data to the team. Initially, the technical solution had been specified at a low level, that is, in terms
of classes and methods. However, as the offshore team gained experience and knowledge of the
system, tasks description became less detailed. Although the volume of communication decreased, the
efficiency of work of the team grew.
The team specialists had to study the original components and then employ them during the
development of the complicated server application. One of the major contributing factors to the
success of this project was the implementation of Juice, which is a Swing extension envelope intended
for the development of XML-driven GUI.
Questions:

1. What is the purpose of the ProSeco Project?

2. How was this project different from other projects in terms of interaction among the team
members?

3. Implementation of which tool led to the success of this project?

Source: http://www.soft-product.com/index.php?id=130

• The concept of Swings in Java uses AWT’s component. The architecture of the Swing components
modifies the program’s appearance and behavior.

13.3 Summary

P

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

248

• AWT package javax.swing contains all the Swing components; namely: JComponent , JButton,

 JCheckBox, JFileChooser, JTextField, JFrame, JPanel, JApplet, JOptionPane, JDialog and

 JColorChooser.

• JLabel is used to display an area for a short text string or an image, or both, and they do not
respond to input events.

• The text components are Swing components, which are used to display text, and allow the user to
edit the text.

• Six text components are present in Swing namely, JTextField, JFormattedTextField,
JPasswordField, JTextArea, JTextPane and JEditorPane.

• Checkbox is a Swing component, which is used to select or deselect an item in a list with a single
click.

• A radio button is a Swing component, which is similar to the checkbox component. But in a group
of radio buttons, only one radio button can be selected per click, unlike check boxes.

• Menus are a part of Swing components and are used to display a list of items, which indicates
various options that can be used by a user.

• In Swings, menu consists of MenuBar, MenuItems and Menus. The MenuBar is known as the root
of all menus and menu items.

13.4 Keywords
GUI: Graphical User Interface

java.awt: A user interface toolkit called the Abstract Windowing Toolkit, or the AWT, which is
provided by the Java programming language class library.

java.awt.event: A package in Java that provides interfaces and classes, which are used to deal with
various events that are fired by the AWT components.

javax.swing: A package in Java that provides a collection of lightweight components, that is, the
components working similarly on all platforms.

JFC: Java Foundation Class

JSeparator: A Swing component that provides a general purpose component, which is used to
implement divider lines that are generally used as a divider between menu items. This divider divides
these menu items into logical groups.

Tabbed Panes: A stack of components in selectable layers

1. State whether the following statements are true or false:

13.5 Self Assessment

(a) Although the Swing components are not lightweight, they provide a better user interface.

(b) Swing provides the multiple platform independent API interfaces.

(c) Swing library is used to create graphical user interfaces in java.

(d) The JMenuItem is defined as a component, which appears on the screen in a button format
with an icon.

(e) Menus are used to display a list of items, which indicates various operations that can be used
by a user.

(f) Checkbox is defined as a component, which combines a button or editable field and a drop-
down list.

Unit 13: Swings

LOVELY PROFESSIONAL UNIVERSITY 249

2. Fill in the blanks:

(a) __________ provides the multiple platform independent API interfaces.

(b) Swing is a __________ package.

(c) Swings have ________ public packages.

(d) JtextArea is known as a lightweight component for working with ________ .

(e) JTextPane can exhibit __________ documents.

3. Select the suitable choice for every question.

(a) Which of the following components extends and matches the Frame class in the AWT
package?

 (i) JFrame

 (ii) JPanel

 (iii) JApplet

 (iv) JDialog

(b) JCheckBox and JCheckBoxMenuItem are inherited from which component’s class?

 (i) ComboBoxes

 (ii) Lists

 (iii) Menu

 (iv) Button

(c) Identify which of the following constructors is not used to create the JList component?

 (i) public JList()

 (ii) public JList (ListModel dataModel)

 (iii) public JList (ListSelectionListener)

 (iv) public JList (object [] listData)

(d) Which of the following components does the JCheckBox class support?

 (i) Combo box

 (ii) Check box

 (iii) List

 (iv) Radio button

(e) Which of the following objects are created by using the JRadioButton() and
JRadioButton(Icon icon) constructors?

 (i) JRadioButton

 (ii) JButton

 (iii) JTextBox

 (iv) JCheckBox

1. “A Swing is the graphical user interface library of Java.” Justify this statement.

13.6 Review Questions

2. “The Java Abstract Window Toolkit (AWT) provides a platform-specific code.” How is a swing
different from an AWT?

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

250

3. “The javax.swing.SwingWorker class is the generic solution to the issues of updating the GUI
from worker threads and giving users the ability to control the background tasks.” Discuss.

4. “JComponent class is derived from the container class of AWT”. Elaborate.

5. “Swing packages are completely written in Java, whereas AWT are not completely written in
Java.” Comment.

6. “Frames can be closed by just clicking on the close button.” Discuss.

7. “The label can be aligned by setting the label's contents using the vertical and horizontal
alignment.” Justify this statement with the help of an example.

8. “Swing buttons are used to display both text and an image.” Discuss.

9. “A JRadioButton object can be created using many constructors.” Discuss these constructors.

10. “A JFrame is a swing component, which is used as a support for the swing component
architecture.” Do you agree? Justify.

11. “Swing checkboxes have common button characteristics.” Explain.

12. “A ComboBox contains three components.” Discuss these components.

Answers: Self Assessment
1. (a) False (b) True (c) True (d) False

 (e) True (f) False

2. (a) Swing (b) Java (c) 18 (d) Text

 (e) HTML

3. (a) JFrame (b) Button (c) public JList(ListSelectionListener)

 (d) CheckBox (e) JRadioButton

13.7 Further Readings

Er. R. Kabilan, (2009), Secrets of JAVA, Firewall Media

Kim Topley , (2000), Core Swing: advanced programming, Prentice Hall PTR

http://java.comsci.us/examples/swing/JTextArea.html

http://www.javabeginner.com/java-swing/java-swing-tutorial

http://zetcode.com/tutorials/javaswingtutorial/basicswingcomponentsII

http://www.devx.com/tips/Tip/12812

http://www.beginner-java-tutorial.com/jbutton.html

 Unit 14: Event Handling

LOVELY PROFESSIONAL UNIVERSITY

251

CONTENTS

Objectives

Introduction

14.1 Meaning of Event Handling

14.2 The Event Delegation Model

 14.2.1 Events

 14.2.2 Event Sources

 14.2.3 Event Listeners

14.3 Event Classes

 14.3.1 The ActionEvent Class

 14.3.2 The AdjustmentEvent Class

 14.3.3 The ComponentEvent Class

 14.3.4 The ContainerEvent Class

 14.3.5 The FocusEvent Class

 14.3.6 The InputEvent Class

 14.3.7 The ItemEvent Class

 14.3.8 The KeyEvent Class

 14.3.9 The MouseEvent Class

 14.3.10 The MouseWheelEvent Class

 14.3.11 The TextEvent Class

 14.3.12 The WindowEvent Class

14.4 Summary

14.5 Keywords

14.6 Self Assessment

14.7 Review Questions

14.8 Further Readings

Unit 14: Event Handling

After studying this unit, you will be able to:

Objectives

• Describe the event delegation model

• Explain the event classes

• Illustrate the use of various event classes

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

252

As applets are important elements of Java programming, similarly the concept of event handling is the
key to programming in applets. An event is an object which elaborates the change of a state in a source.
Since Java has the mechanism to handle events occurring in any program or application, Java is
sometimes called as event-driven programming language.

Sometimes events occur in programs which must be handled with utmost care for the program’s proper
execution. It is necessary for many programs to be responsive to the commands given by the user. For
this purpose, Java programs depend on events that specify user actions. Just like exception handlers,
event handlers are also inherently called whenever something (an event) occurs. These events are
generated by external actions, such as interactions of the user through a GUI.

Introduction

Did you know? Event handling helps in making web applications more dynamic and interactive.

The concept of event handling covers many important elements, such as events, events listeners, event
source, and so on. All these elements together make event handling successful.

Event handling is an important aspect that relates to applets in Java. An event is known as the core of
applet programming. The java.awt.event package comprises these events. The events to which the
applets respond are generated by the user. These events are passed to the applets in several ways.

In a program, two methods action() or handleEvent() are used for catching and processing GUI
events. But to do so, it must subclass GUI components and override the action() or handleEvent()
methods. If this method returns a true value, then the event is not handled further. In case, a true value
is not returned, then the event is spread sequentially up the GUI hierarchy until it reaches the root of
the hierarchy. This model returning true or false values results in providing the user two choices to give
a structure to the event handling code:

14.1 Meaning of Event Handling

1. The individual component can be sub-classed to explicitly handle its target events.

2. Every event of the GUI hierarchy can be handled by a particular container. Then, the container’s
overridden methods like the action() or handleEvent() should contain a complex conditional
statement to process the events.

As exceptions are handled in Java, so are events. In Java, event models are used for handling events.
One such model is the event delegation model.

The

14.2 The Event Delegation Model

event delegation model is considered as a modern approach to handle events. This model
introduced the concept of listeners. It defines standard and consistent mechanism to generate and
process events. The bases of an event model are event source and event listeners. An event source

 refers
to an object generating these events, whereas an event listener refers to the object interested in receiving
these events. In this system, the listener just waits until it receives an event. Once an event is received,
the listener processes the event and then returns.

The advantage of this design is that the application logic that processes events is cleanly separated from
the user interface logic that generates the events, wherein delegation of the event processing to a unique
segment of code can be done by a user interface element.

In the event delegation model, the listeners must register with a source for receiving an event
notification. This is advantageous where the notifications are sent merely to listeners, who are willing to
receive them. This way of handling events is more effective. The basic idea behind creating such a
model is to provide a robust framework to the Java programs.

 Unit 14: Event Handling

LOVELY PROFESSIONAL UNIVERSITY 253

Some of the basic goals for creating the delegation model are as follows:

• The delegation model is simple and easy to learn.

• The model supports a separation between application and GUI code.

• The model eases the creation of robust event handling code.

• The delegation model is flexible and enables varied application models for event flow and
propagation.

• This model supports the backward binary compatibility with the old model.

The event delegation model can be used easily. Steps to use this model are:

1. Execute the appropriate interface in the listener so that it will receive the type of event desired.

2. Implement code to register and unregister listener as a recipient for the event notification.

In Java, processing of events without the help of delegation event model is permitted.
An AWT component is extended to do so.

Program to illustrate the concept of mouse event handlers.

import java.awt.*;
import java.awt.event.*;
import java.applet.*;

/*
<applet code= “MouseEvents” width=200 height=100 >
</applet>
*/

public class MouseEvents extends Applet
implements MouseListener, MouseMotionListener
{
String msg = “” ;
int mouseX = 0, mouseY = 0; //coordinates of mouse
public void init()
{
addMouseListener (this);
addMouseMotionListener(this);
}

//Handle mouse clicked.
public void mouseClicked(MouseEvent me)
{
//save coordinates
mouseX = 0;
mouseY = 10;
msg = “Mouse clicked.”;
repaint();
}

//Handle mouse entered.
public void mouseEntered(MouseEvent me)
{
//save coordinates

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

254

mouseX = 0;
mouseY = 10;
msg = “Mouse entered.”;
repaint();
}

//Handle mouse exited.
public void mouseExited(MouseEvent me)
{
//save coordinates
mouseX = 0;
mouseY = 10;
msg = “Mouse exited.”;
repaint();
}

//Handle button pressed.
public void mousePressed(MouseEvent me)
{
//save coordinates
mouseX = me.getX();
mouseY = me.getY();
msg = “Down.”;
repaint();
}

//Handle button released.
public void mouseReleased(MouseEvent me)
{
//save coordinates
mouseX = me.getX();
mouseY = me.getY();
msg = “Up. ”;
repaint();
}

//Handle mouse dragged.
public void mouseDragged(MouseEvent me)
{
//save coordinates
mouseX = me.getX();
mouseY = me.getY();
msg = “*. ”;
showStatus(“Dragging mouse at “ + mouseX + ” , “ + mouseY);
repaint();
}

//Handle mouse moved.
public void mouseMoved(MouseEvent me)
{
//show status
showStatus(“ Moving mouse at “ + me.getX() + “, “ + me.getY());
}

//Display msg in applet window at current X, Y location.
public void paint (Graphic g)
{

 Unit 14: Event Handling

LOVELY PROFESSIONAL UNIVERSITY 255

g.drawString(msg, mouseX, mouseY);
}
}

Output:

(We get the above output when we click the mouse button inside the applet)

In this example,

1. First, the MouseEvents class extends the Applet class and implements both
the MouseListener and MouseMotionListener interfaces. These two interfaces
comprise methods used for receiving and processing different types of
mouse events. Notice that the applet is both the source and the listener for
events. This is a common situation for applets.

2. In the init() method of the MouseEvents class, the applet registers itself as a
listener for mouse events. This is done by using addMouseListener() and
addMouseMotionListener(), which are the members of Component class.
Their general forms are:

 void addMouseListener(MouseListener ml)
 void addMouseMotionListener(MouseMotionListener mml)
 Here, ml is a reference to the object receiving mouse event, and mml is
 reference to the object receiving mouse motion events. In the above
 program, the same object is used for both.

3. Then, the applet implements all the methods that are specified by the two
interfaces, MouseListener and MouseMotionListener. These are event
handlers which handles different types of mouse events. Every method
handles the events associated with them and finally gives the appropriate
output.

Demonstrate some virtual key codes.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

256

14.2.1 Events
In the event delegation model, an event refers to an object, which elaborates the change of a state in a
source. Some of the activities that cause the generation of events are entering a character via the
keyboard, a button press, opting for a list item, and mouse click.

Sometimes events may also arise because of interactions with a user interface. You are free to define
events that are appropriate to your application.

An event may be generated when a timer terminates, a counter exceeds a value,
software or hardware failure occurs, or an operation is completed.

1. First, the GUI component is associated a listener object class with the component by calling a
addXListener method.

The following steps are followed to set up the processing of events:

2. Then, the listener object used is defined. The object must implement the corresponding interface
whose name is of type EventListener.

3. Finally, all the methods must be defined by the object. This must be done in the interface the object
is implementing.

14.2.2 Event Sources
In the event delegation model, a source event occurs when there is a modification in the object’s internal
state, in some way. Event sources may produce more than one type of events. Sources may generate
more than one type of event. For the listeners to receive notifications about a specific event, it must
register with the source. Each type of event has its own registration method. The general form of event
source:

public void addTypeListener (TypeListener el)

Here, the Type is the name of the event, and el

 is a reference to the event listener.

The addKeyListener() method is used for registering keyboard event listeners,
whereas the addMouseMotionListener() method is used for registering mouse
motion listeners.

When an event takes place, all registered listeners are notified and receive a copy of the event object.

The process of notifying the registered listeners and providing them a copy of the event
object on the occurrence of an event is called as multicasting an event.

Some of the event sources permit the registration of only one listener. The general form of these event
sources is:

 public void addTypeListener (TypeListener el)

 throws java.util.TooManyListenerException

Here, Type is the name of the event, and el

 is a reference to the event listener.

The removeKeyListener() method is called to remove a keyboard listener.

Sometimes, on the occurrence of any event, only the registered user is notified. This type of casting is
called as unicasting

the event.

 Unit 14: Event Handling

LOVELY PROFESSIONAL UNIVERSITY 257

A source must also provide a method that allows a listener to un-register an interest in a specific type of
event. The general form of this event source is:

public void removeTypeListener(TypeListener el)

Here, Type is the event name, and el

1. First, the event must be registered with one or more sources for receiving notifications about
certain events on their occurrence.

 is a reference to the event listener, and the removeKeyListener()
method is called to remove a keyboard listener.

The methods that add or remove listeners are given by the source that generates events. For example,
the Component class provides methods to add and remove keyboard and mouse event listeners.

14.2.3 Event Listeners
Event Listeners are objects and are used to handle a particular task of a component. The Listener
implements the interface which contains event-handling code for a particular component. Event
listeners have two main requirements.

2. Second, the event must execute methods for receiving and processing these notifications.

The methods that receive and route events are defined in a set of interfaces found in the java.awt.event
package.

The MouseMotionListener interface defines two methods to receive notifications
when the mouse is dragged or moved. Any object may receive and process one or
both of these events if it provides an execution of this interface.

The listeners are registered by an event source, and to handle an ActionEvent, a Button may register an
object, by calling addActionListener. This object would then implement the listener interface
corresponding to ActionEvent, which is ActionListener.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

258

Table 14.1 lists the commonly used listener interfaces and provides a brief description of the methods
that they define.

Table 14.1: Commonly Used Event Listener Interfaces

Interface Description

ActionListener Specifies one method for receiving action events.

AdjustmentListener Specifies one method for receiving adjustment events.

ItemListener Specifies one method for checking when the state of an item gets modified.

TextListener Specifies one method to find out when a text value changes.

ComponentListener Specifies four methods to find out when a component is moved, hidden, shown or
resized.

ContainerListener Specifies two methods to find out when a component is added to or removed from a
container.

FocusListener Specifies two methods to find out when a component gains or loses keyboard focus.

KeyListener Specifies three methods to find out when a key is pressed, released or typed.

MouseListener Specifies five methods to find out when the mouse is clicked, enters a component,
leaves a component, is pressed or is released.

MouseMotionListener Specifies two methods to find out when the mouse is dragged or moved.

MouseWheelListener Specifies one method to find out when the mouse wheel is moved.

WindowListener Specifies seven methods to find out when a window is activated, closed,
deactivated, iconified, deiconified, opened or quit.

WindowFocusListener Specifies two methods to find out when a window gains or loses input focus.

The ActionListener Interface
This interface specifies the actionPerformed() method that is invoked when an action event occurs.
Syntax of the ActionListener interface:

 void actionPerformed(ActionEvent ae)

The AdjustmentEventListener Interface
This interface specifies the adjustmentValueChanged() method that is invoked when an adjustment
event occurs. Syntax of the AdjustmentEventListener interface:

void adjustmentValueChanged(AdjustmentEvent ae)

 Unit 14: Event Handling

LOVELY PROFESSIONAL UNIVERSITY 259

The ComponentListener Interface
The interface specifies four methods that are invoked when a component is resized, moved, shown or
hidden.

1. void componentResized(ComponentEvent ce):

2.

 This method is invoked when a component is
resized.

void componentMoved (ComponentEvent ce):

3.

 This method is invoked when a component is
moved.

void componentShown(ComponentEvent ce):

4.

 This method is invoked when a component is
shown.

void componentHidden(ComponentEvent ce):

The ContainerListener Interface
This interface contains two methods.

 This method is invoked when a component is
hidden.

1. componentAdded():

 void componentAdded(ContainerEvent ce)

 This method is called when a component’s addition is made to a container. Its
syntax is:

2. componentRemoved():

 void componentRemoved(ContainerEvent ce)

The FocusListener Interface
This interface specifies two methods.

This method is called when a component’s removal is done from a
container. Its syntax is:

1. focusGained():

 void focusGained(FocusEvent fe)

 This method is called when a component obtains a keyboard focus. Its syntax is:

2. focusLost():

 void focusLost(FocusEvent fe)

 The ItemListener Interface
This interface specifies the itemStateChanged() method that is invoked when the state of an item
changes. Its syntax is:

 void itemStateChanged(ItemEvent ie)

The KeyListener Interface
This interface specifies three methods.

 This method is called when a component loses keyboard focus. Its general form is as
follows:

1. keyPressed():

 void keyPressed(KeyEvent ke)

 This method is called when a key is pressed. Its syntax is:

2. keyReleased():

 void keyReleased(KeyEvent ke)

 This method is called when a key is released. Its syntax is:

3. keyTyped():

 void keyTyped(KeyEvent ke)

 This method is called on the entry of a character. Its syntax is:

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

260

If a user presses and releases the A Key, three events are generated in a sequence:
Key pressed
Key typed
Key released
If a user presses and release the HOME key, two key events are generated in a
sequence:
Key pressed
Key released

The MouseListener Interface
This interface specifies five methods.

1. mouseClicked():

 void mouseClicked(MouseEvent me)

 This method is called when the mouse is pressed and at the same time is
released. Its syntax is:

2. mouseEntered():

 void mouseEntered(MouseEvent me)

 This method is invoked when an entry is made by the mouse into a component.
Its syntax is:

3. mouseExited():

 void mouseExited(MouseEvent me)

 This method is called when the component is left by the mouse. Its syntax is:

4. mousePressed():

 void mousePressed(MouseEvent me)

 The MouseListener interface calls this method when the mouse is pressed. Its
syntax is:

5. mouseReleased():

 void mouseReleased(MouseEvent me)

The MouseMotionListener Interface
This interface specifies two methods.

 The MouseListener interface calls this method when the mouse is released. Its
syntax is:

1. mouseDragged():

 void mouseDragged(MouseEvent me)

 This method is invoked more than once whenever the mouse is dragged. Its
syntax is:

2. mouseMoved():

 void mouseMoved(MouseEvent me)

The MouseWheelListener Interface
This interface specifies the mouseWheelMoved() method that is invoked when the mouse wheel is
moved. Its syntax is:

void mouseWheelMoved(MouseWheelEvent mwe)

The TextListener Interface
This interface specifies the textChanged() method that is called when a change occurs in a text area or a
text field. Its syntax is:

void textChanged(TextEvent te)

 This method is called more once whenever the mouse is moved. Its syntax is:

 Unit 14: Event Handling

LOVELY PROFESSIONAL UNIVERSITY 261

The WindowFocusListener Interface
This interface specifies two methods.

1. windowGainedFocus():

 void windowGainedFocus(WindowEvent we)

 This method is called when a window gains input focus. Its syntax is:

2. windowLostFocus():

 void windowLostFocus(WindowEvent we)

The WindowListener Interface
This interface specifies seven methods.

 This method is called when a window loses input focus. Its syntax is:

1. windowActivated():

 void windowActivated(WindowEvent we)

 This method is invoked on the activation of a window. Its syntax is:

2. windowDeactivated():

 void windowDeactivated(WindowEvent we)

 This method is invoked on the deactivation of a window. Its syntax is:

3. windowIconified():

 void windowIconified(WindowEvent we)

This method is invoked whenever a window is iconified. Its syntax is:

4. windowDeiconified():

 void windowDeiconified(WindowEvent we)

 This method is invoked whenever a window is deiconified. Its syntax is:

5. windowOpened():

 void windowOpened(WindowEvent we)

This method is invoked whenever a window is opened. Its syntax is:

6. windowClosed():

 void windowClosed(WindowEvent we)

 This method is invoked whenever a window is closed. Its syntax is:

7. windowClosing():

 void windowClosing(WindowEvent we)

All these interfaces are very important in the event handling, as they are some of the vital elements of
the event delegation model.

 This method is invoked whenever a window is being closed. Its syntax is:

In Java, an event class is a class of events. An event is generated when the user interacts with a GUI
application.

14.3 Event Classes

Few examples of user events are clicking a button, selecting an item or closing a
window.

Events are represented as Objects in Java. The java.util.EventObject is the super class of all event
classes. At the root of the Java event hierarchy is EventObject, which is available in java.util package. It
is the super class for all events.

Constructor Used to Create an Event Class Object:
EventObject(Object src)

Here, EventObject is the name of the object of the event class, src

1.

 is the object that produces this event.
An event object contains two methods, getSource() and toString().

getSource():

Object getSource()

 The getSource() method is used to get the event source. Its general form is:

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

262

2. toString():

 Object toString ()

The EventObject class has a subclass AWTEvent, which is defined within the java.awt package. This
subclass is the super class of all AWT-based events used by the delegation event model. Its getID()
method is used to determine the type of the event. Syntax of this method:

int getID()

Here, int refers to the integer data type and getID() is the method name.

The subclasses of AWT Event class can be categorized into two groups.

 The toString() method is used to get the string equivalent of the event. Its general
form is:

1. Semantic events:

 Events, which directly correspond to high-level user interactions with any GUI
component.

Clicking of a button is a semantic event.

Some of the semantic event classes are:

(a) ActionEvent

(b) AdjustmentEvent

(c) ItemEvent

(d) TextEvent

2. Low-level events:

(a) ComponentEvent

Multiple low-level events may be produced for all the high-level user events.
Some of the low level event classes are:

(b) ContainerEvent

(c) FocusEvent

(d) InputEvent

(e) KeyEvent

(f) MouseEvent

(g) MouseWheelEvent

(h) PaintEvent

(i) WindowEvent

 Unit 14: Event Handling

LOVELY PROFESSIONAL UNIVERSITY 263

The main event classes are listed in table 14.2.

 Table 14.2: Main Event Classes in java.awt.event
Package

Event Class Description

ActionEvent Produced whenever any button is pressed, an
item is double-clicked in a list item or an item is
selected in a menu.

AdjustmentEvent Produced on the manipulation of a scroll bar.

ComponentEvent Produced whenever any component is hidden,
resized, moved, or becomes visible.

FocusEvent Produced when a component gains or loses
keyboard focus.

ItemEvent Produced whenever any check box or list item
is clicked, a choice is made, or an item in a
checkable menu is selected or deselected.

KeyEvent Produced when the keyboard receives the
input.

MouseEvent Produced whenever the mouse is dragged,
moved, clicked, pressed or released, enters or
exits a component.

MouseWheelEvent Produced whenever the mouse wheel is moved.

TextEvent Produced whenever the value of a text area or
text field is modified.

WindowEvent Produced whenever a window is activated,
closed, deactivated, deiconified, iconified,
opened or quit.

14.3.1 The ActionEvent Class
We know that the ActionEvent class is a semantic event class. The ActionEvent takes place, whenever
any button is pressed, an item in a list is clicked twice, or an item is selected in a menu. The
ActionEvent class defines four integer constants that can be used to identify an action event, and
modifiers associated with an action event, ALT_MASK, CTRL_MASK, META_MASK and
SHIFT_MASK. Apart from these constants, there is one more integer constant, ACTION_PERFORMED,
which can be used in the action event’s identification.

Constructors of the ActionEvent Class
1. ActionEvent(Object src, int type, String cmd)

2. ActionEvent(Object src, int type, String cmd, int modifiers)

3. ActionEvent(Object src, int type, long when, String cmd)

In these three constructors, src is a reference to the object by which this event (ActionEvent) was
generated. The type of the event is specified by type and its command string is specified by cmd. The

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

264

argument modifier indicates which modifier keys (CTRL, ALT, META, and SHIFT) were pressed, when
the event was generated; the when

1.

 parameter is used for specifying when the event occurred.

Methods Used in the ActionEvent Class
getActionCommand():

String getActionCommand()

 This method can be used to obtain the command name for invoking
ActionEvent object. Syntax of this method:

When a button is pushed, an action event is created that has a command name
similar to the label on that button.

2. getModifiers():

int getModifiers()

This method is used to return/obtain a value that shows which modifier keys
(CTRL, ALT, META and SHIFT) were pressed, when the event was created. Syntax of this method:

3. getWhen(): This method is used to return the time when the event occurred. This is called event’s
timestamp

 long getWhen()

14.3.2 The AdjustmentEvent Class
Just like ActionEvent class, the AdjustmentEvent class is also a semantic event class, wherein a scroll
bar generates an AdjustmentEvent. The AdjustmentEvent class defines the constants of integer type that
can be used to identify these events. These constants are depicted in the table 14.3.

. Syntax of this method:

Table 14.3: Constants and their Meaning

Constants Meaning

BLOCK_DECREMENT The value of the scrollbar decreases, when the user
clicks inside it.

BLOCK_INCREMENT The value of the scrollbar increases, when the user
clicks inside it.

TRACK The slider is dragged.

UNIT_DECREMENT The button at the end of the scroll bar is clicked for
decrementing its value.

UNIT_INCREMENT The button at the end of the scroll bar wasis clicked for
incrementing its value.

In addition to the above constants, there is one more integer constant,
ADJUSTMENT_VALUE_CHANGED, which specifies that a change has occurred.

Constructor of the AdjustmentEvent Class
AdjustmentEvent(Adjustable src, int id, int type, int data)

In this constructor, src is a reference to the object that generates the event. The id specifies the event.
The type of the adjustment is specified by type, and its associated data is data.

 Unit 14: Event Handling

LOVELY PROFESSIONAL UNIVERSITY 265

Methods Used in AdjustmentEvent Class
1. getAdjustable():

Adjustable getAdjustable()

 This method is used to get the object that generates the event. The syntax of this
method is:

2. getAdjustableType():

int getAdjustment Type()

This method is used to get the type of the adjustment event. It returns one of
the constants defined by the AdjustmentEvent. The syntax of this method is:

3. getValue():

int getValue()

 This method is used to get the amount of the adjustment. The syntax of this method is:

When a scroll bar is manipulated, the method returns the value represented by
that change.

14.3.3 The ComponentEvent Class
The ComponentEvent class is a low-level event class, wherein a ComponentEvent is produced when a
component’s size, position or visibility is modified. The ComponentEvent class specifies constants of
integer type that can be used for identifying these events. These constants are shown in the table 14.4.

Table 14. 4: Constants and their Meaning

COMPONENT_HIDDEN The component was hidden.

COMPONENT_MOVED The component was moved.

COMPONENT_RESIZED The component was resized.

COMPONENT_SHOWN The component became visible.

Constructor of the ComponentEvent Class
ComponentEvent(Component src, int type)

In this constructor, src is a reference to the object that generates this event. The type of the event is
specified in type.

ComponentEvent class is the parent class of the ContainerEvent class, FocusEvent class, KeyEvent
class, MouseEvent class and WindowEvent class either directly or indirectly.

Method Used in the ComponentEvent Class
getComponent():

1. COMPONENT_ADDED

This method is used to obtain the component that generates the event. Syntax of this
method:

Component getContainer()

14.3.4 The ContainerEvent Class
The ContainerEvent class is a low-level event class, wherein a ContainerEvent is created, when a
component is added to or removed from a container. The ContainerEvent class defines int constants
that can be used to identify the events of the class as:

2. COMPONENT_REMOVED

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

266

These integer constants specify that a component has been added to or removed from the container. The
ComponentEvent class is the parent class of the ContainerEvent class.

Constructor of the ContainerEvent Class
ContainerEvent(Component src, int type, Component comp)

In this constructor, src is a reference to the container by which this event was produced. The type of the
event is passed in the parameter type, and the component that has been added to or removed from the
container is comp

1.

.

Methods Used in the ContainerEvent Class
getContainer():

Container getContainer()

This method is used to get a reference to the container that generated this event.
The syntax of this method is:

2. getChild():

Component getChild()

14.3.5 The FocusEvent Class
The FocusEvent class is also a low-level event class, wherein a FocusEvent is generated when a
component gains or loses input focus. Integer constants such as FOCUS_GAINED and FOCUS_LOST
are used to identify these events. FocusEvent class is a subclass of ComponentEvent class.

Constructors of the FocusEvent Class

This method is used to get a reference to the component’s reference that was added to
or removed from the container. The syntax of this method is:

1. FocusEvent(Component src, int type

2. FocusEvent(Component

)

src, int type, Boolean temporary Flag

3. FocusEvent(Component

)

src, int type, Boolean temporary Flag, Component other

In these three constructors,

)

src is a reference to the component by which the event was produced, and
type specifies the type of the event. The argument temporaryFlag

is set to true, if the focus event is
temporary, else it is set to false.

Suppose that the focus event is in a text field. If the user moves the mouse to adjust
a scroll bar, the focus is temporarily lost.

The other component involved in the focus change is called the opposite component, which is passed in
other. Therefore, if a FOCUS_GAINED event occurs, other will refer to the component that lost focus.
Conversely, if a FOCUS_LOST event occurs, other

1.

 will refer to the component that gains focus.

Methods Used in the FocusEvent Class
getOppositeComponent():

Component getOppositeComponent()

 This method can be used to determine the other/opposite component.
The syntax of this method is:

2. isTemporary():

Boolean isTemporary()

 This method returns true, if the change is temporary, else it returns false.

 This method is used to specify whether the focus change is temporary or not. The
syntax of this method is:

 Unit 14: Event Handling

LOVELY PROFESSIONAL UNIVERSITY 267

14.3.6 The InputEvent Class
The abstract class InputEvent is a subclass of a ComponentEvent class and is the superclass for
component input events. Its superclasses are KeyEvent and MouseEvent.

InputEvent defines several integer constants that represent modifiers, such as the control key being
pressed and that might be associated with the event. The InputEvent class defines eight values to
represent the modifiers as shown in table 14.5.

Table 14.5: Values to Represent Modifiers

ALT_MASK BUTTON2_MASK

ALT_GRAPH_MASK BUTTON3_MASK

CTRL_MASK BUTTON1_MASK

META_MASK SHIFT_MASK

However, because of possible conflicts between the modifiers used by the keyboard events and mouse
events and other issues, few extended modifier values were added. These extended values are shown in
table 14.6.

Table 14.6: Extended Values to Represent Modifiers

ALT_DOWN_MASK BUTTON2_DOWN_MASK

ALT_GRAPH_DOWN_MASK BUTTON3_DOWN_MASK

CTRL_DOWN_MASK BUTTON1_DOWN_MASK

META_DOWN_MASK SHIFT_DOWN_MASK

To test if a modifier was pressed at the time an event is generated, isAltDown(), isAltGraphDown(),
isControlDown(), isMetaDown() and isShiftDown() methods are used. The forms of the methods
are:

Boolean isAltDown()

Boolean isAltGraphDown()

Boolean isControlDown()

Boolean isMetaDown()

Boolean isShiftDown()

A value containing all the original modifier flags can be obtained by calling the getModifiers() method.
Syntax of this method:

int getModifiers()

The extended modifiers can be obtained by calling getModifiersEx(), which is shown as:

int getModifiersEx()

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

268

14.3.7 The ItemEvent Class
An ItemEvent class is created when a list item or a check box is clicked or a checkable menu item is
selected or deselected even once. Item events are of two types that are identified by the integer
constants as shown in table 14.7.

Table 14.7: Integer Constants for ItemEvent Class

DESELECTED The user deselected an item

SELECTED The user selected an item.

In addition, ItemEvent identifies an integer constant ITEM_STATE_CHANGED, that indicates a
change of state.

Constructor of an ItemEvent Class
ItemEvent(ItemSelectable src, int type, Object entry, int state)

In this constructor, src is a reference to the component that generates the event, type specifies the type
of the event. The specific item that created the item event is passed in entry

1.

 and state specifies the
current state of that item.

Methods Used in the ItemEvent Class
getItem():

 Object getItem()

This method can be used to obtain a reference to the item that generated an event. Its
syntax is:

2. getItemSelectable():

 ItemSelectable getItemSelectable()

 This method is used to get a reference to the ItemSelectable object that
produced an event. Its syntax is:

Some of the examples of user interface essentials that implement the
ItemSelectable interface are lists and choices.

3. getStateChange():

 int getStateChange()

14.3.8 The KeyEvent Class
A KeyEvent is generated when a keyboard input occurs. There are three types of key events that are
identified by these integer constants

This method is used to get the state change that is, SELECTED or
DESELECTED for the event. Its syntax is:

1. KEY_PRESSED

2. KEY_RELEASED

3. KEY_TYPED

When any key is pressed or released, the first two events are produced. The third event occurs when a
character is typed.

 Unit 14: Event Handling

LOVELY PROFESSIONAL UNIVERSITY 269

It is not necessary that all keypresses produce characters. For example, pressing SHIFT
does not generate a character.

There are many other integer constants that are defined by KeyEvent class. Table 14.8 shows some of
them.

Table 14.8: ASCII Equivalents of Numbers and Letters

VK_ALT VK_CANCEL

VK_DOWN VK_LEFT

VK_RIGHT VK_ENTER

VK_PAGE_DOWN VK_SHIFT

VK_CONTROL VK_ESCAPE

VK_PAGE_UP VK_UP

VK_0 through VK_9 and VK_A through VK_Z define the ASCII equivalents of the
numbers and letters.

The VK constants indicate virtual key codes and are free from any modifiers, such as control, shift, or
alt.

KeyEvent is a subclass of the InputEvent class. Its syntax is:

KeyEvent(Component src, int type, long when, int modifiers, int code, char ch)

In this syntax, src is a reference to the component that generates the event. The type of the event is
specified by the type. The system time at which the key was pressed is passed in when. The modifiers
argument indicates which modifiers were pressed when the key event occurred. In code, the virtual key
codes, such as VK_UP, VK_A and so on are considered. The character equivalent is passed in ch. If
there is no existing valid character, then ch

1.

 contains CHAR_UNDEFINED. The code contains
VK_UNDEFINED in case of KEY_TYPED events.

Methods Used in the KeyEvent Class
getKeyChar():

 char getKeyChar()

 This method is used to get the character that was entered. Its syntax is:

2. getKeyCode():

 int getKeyCode()

This method is used to get the key code. Its syntax is:

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

270

14.3.9 The MouseEvent Class
The MouseEvent class comprises eight types of mouse events. This class specifies integer constants that
can be used to identify the event types shown in table 14.9.

 Table 14.9: Integer Constants to Define the
MouseEvent Class

MOUSE_CLICKED The user clicked the mouse.

MOUSE_DRAGGED The user dragged the mouse.

MOUSE_ENTERED The mouse entered a component.

MOUSE_EXITED The mouse exited from a component.

MOUSE_MOVED The mouse moved.

MOUSE_PRESSED The mouse was pressed.

MOUSE_RELEASED The mouse was released.

MOUSE_WHEEL The mouse wheel was moved.

MouseEvent class is a child class of the InputEvent class. Its general form is as follows:

MouseEvent(Component src, int type, long when, int modifiers, int x, int y, int clicks, Boolean
triggersPopup

1.

)

Here, src is a reference to the component that generates the event; type specifies the type of the event.
The system at which the mouse event occurred is passed in when. The modifiers argument specifies
which modifiers were passed when a mouse event occurred. The x and y are the two coordinates for the
movement of mouse. The clicks specify the number of times a mouse is clicked and the triggersPoPup
flag specifies whether this event leads to the occurrence of a pop-up menu, which appears on this
platform.

Methods Used in the MouseEvent Class
getX():

 int getX()

This method is used to get the X coordinate of the mouse within the component when the
event occurred. Its syntax is:

2. getY():

 int getY()

This method is used to get the Y coordinate of the mouse within the component when the
event occurred. Its syntax is:

3. getPoint():

 Point getPoint()

 In the getPoint() method, a Point object is returned, that contains the X and Y coordinates in its
integer members, x and y.

 The getPoint() method can be used to get the coordinates of the mouse. Its syntax is:

4. translatePoint():

 void translatePoint(int x, int y)

 Here, the arguments x and y are the coordinates that are added to the event.

 This method is used to modify the event location. Its syntax is:

 Unit 14: Event Handling

LOVELY PROFESSIONAL UNIVERSITY 271

5. getClickCount():

 int getClickCount()

This method is used to get the number of mouse clicks for this event. Its syntax
is:

6. isPopupTriggers():

 Boolean isPopupTrigger()

 This method is used to check whether this event causes a pop-up menu to
appear on this platform or not. Its syntax is:

7. getButton():

 int getButton()

The MouseEvent class defines the following constants:

This method is used to get a value that represents the button causing the event. Its
syntax is:

1. NOBUTTON

2. BUTTON1

3. BUTTON2

4. BUTTON3

The NOBUTTON value shows that no button was pressed or released.

14.3.10 The MouseWheelEvent Class
The MouseWheelEvent class encloses mouse wheel events and is a child class of the MouseEvent class.
Not all mice have wheels. If a mouse has a wheel, its (wheel’s) location will be between the left and
right buttons. Scrolling is done with the help of mouse wheels. The MouseWheelEvent class defines
two integer constants, which are shown in the table 14.10.

Table 14.10: Integer Constants for MouseWheelEvent

WHEEL_BLOCK_SCROLL A page-up or page-down scroll event occurred.

WHEEL_UNIT_SCROLL A line-up or line-down scroll event occurred.

Constructor of MouseWheelEvent Class
MouseWheelEvent (Component src, int type, long when, int modifiers, int x, int y, int clicks, Boolean
triggersPopup, int scrollHow, int amount, int count)

In this constructor, src is a reference to the object that generates the event; type specifies the type of the
event. The system at which the mouse event occurred is passed in when. The modifiers argument
specifies which modifiers were passed when the event occurred. The x and y are the coordinates of the
mouse that are passed. The clicks specify the number of times a mouse is clicked and the triggersPoPup
flag specifies whether this event leads to the occurrence of a pop-up menu, which appears on this
platform. The scrollHow values have to be either WHEEL_UNIT_SCROLL or
WHEEL_BLOCK_SCROLL. The amount is a parameter, where the number of units to scroll is passed.
The count

1.

 parameter specifies the number of rotational units that the wheel moved.

Methods Used in the MouseWheelEvent Class
getWheelRotation():

 int getWheelRotation()

 A positive return value specifies the counterclockwise movement of the wheel, whereas a negative
 return value specifies the clockwise movement of the wheel.

This method is used to get the number of rotational units. Its syntax is:

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

272

2. getScrollType():

 int getScrollType()

 This method can either return WHEEL_UNIT_SCROLL or WHEEL_BLOCK_SCROLL.

 This method is used to get the scroll type. Its syntax is:

3. getScrollAmount():

 int getScrollAmount()

14.3.11 The TextEvent Class
Every instance of the TextEvent class specifies text events. When a user or a program enters a character,
these text events are created by text fields and text areas. TextEvent class identifies the integer constant
TEXT_VALUE_CHANGED.

Constructor of the TextEvent Class
TextEvent (Object

 This method is used to get the number of units to scroll. Its syntax is:

src, int type)

In this constructor, src is a reference to the object that generates this event. The type of the event is
specified in the parameter type

.

The TextEvent object does not consist of the characters present in the text component that created the
event. The object that executes the TextListener interface gets this TextEvent when the event arises. The
details of handling individual mouse movements and key strokes are not done by the listener. But the
listener can process a semantic event like text changed.

14.3.12 The WindowEvent Class
The WindowEvent class comprises ten types of window events. The WindowEvent class specifies
integer constants that can be used for the identification of these events/this class. These constants are
shown in the table 14.11.

Table 14.11 : Constants and their Meanings

WINDOW_ACTIVATED The window was activated.

WINDOW_CLOSED The window has been closed.

WINDOW_CLOSING The window is requested (by the user) to be closed.

WINDOW_DEACTIVATED The window was deactivated.

WINDOW_DEICONIFIED The window was deiconified.

WINDOW_GAINED_FOCUS The window gained input focus.

WINDOW_ICONIFIED The window was iconified.

WINDOW_LOST_FOCUS The window lost input focus.

WINDOW_OPENED The window was opened.

WINDOW_STATE_CHANGED The window’s state was modified.

 Unit 14: Event Handling

LOVELY PROFESSIONAL UNIVERSITY 273

WindowEvent class is a child class of the ComponentEvent class. Its form is as follows:

WindowEvent(Window src, int type)

Here, src

1. WindowEvent (Window

 is a reference to the object that generates this event, and the type specifies the type of the
event.

Constructors of the WindowEvent Class
src, int type, Window other

2. WindowEvent (Window

)

src, int type, int fromState, int toState

3. WindowEvent(Window

)

src, int type, Window other, int fromState, int toState

In these constructors,

)

other specifies the opposite window, when a focus or activation event occurs. The
fromState indicates the window’s prior state, and toState indicates the new state that the window will
have when a window state change takes place.

Methods Used in the WindowEvent Class
getWindow():

1. Window getOppositeWindow()

 This method is one of the frequently used methods in this class, which is used to get the
Window object that generated the event. Its syntax is:

 Window getWindow()

WindowEvent also defines methods that return the opposite window (when a focus or activation event
has occurred), the previous window state, and the current window state. These methods are:

2. int getOldState()

3. int getNewState()

Write a simple program implementing the above mentioned event classes.

• Event models are an effective way of event handling in Java.

14.4 Summary

• The event delegation model is considered as a modern approach to handle events.

• In the event delegation model, an event refers to an object specifying a source’s state change, and
the source is an object generating that event.

• An event listener is defined as an object that receives notification of the occurrence of an event..

• An event is generated when the user interacts with a GUI application.

• The subclasses of the AWT event can be categorized into two groups - semantic and low-level
events.

• Semantic events are defined as the events which directly correspond to high level user interactions
with a GUI component. These events are ActionEvent, AdjustmentEvent, ItemEvent and
TextEvent.

• Every high-level user event may lead to multiple low-level events. Multiple low-level events are
ComponentEvent, ContainerEvent, FocusEvent, InputEvent, KeyEvent, MouseEvent,
MouseWheelEvent, PaintEvent and WindowEvent.

• Event Listeners are objects and are used to handle a particular task of a component.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

274

• Event delegation model can be used by following two simple steps. Firstly, execute the
appropriate interface in the listener, and secondly, implement code to register and unregister the
listener.

14.5 Keywords
ContainerEvent Class: A low level event that indicates that a container's content has changed after
adding or removing a component.

FocusEvent Class: A low level event that indicates that a component has gained or lost the input focus.

KeyEvent Class: An event that indicates that a keystroke has occurred in a component.

MouseEvent Class: An event that indicates that a mouse action has occurred in a component.

Timestamp: The time of an event as recorded by a computer.

WindowEvent Class: A low level event which indicates that the status of a window has changed.

1. State whether the following statements are true or false:

14.6 Self Assessment

(a) Event handling is an important aspect that relates to applets in Java.

(b) At the root of the Java event hierarchy is EventObject, which is in java.util.

(c) MouseWheelEvent is a Semantic event.

(d) A ComponentEvent is generated when the size, position or visibility of a container is
modified.

(e) The advantage of the delegation event model is that the application logic that processes
events is cleanly separated from the user interface logic that generates the events.

(f) An Event listener is defined as an object that sends notification of the occurrence of an event.

(g) The Listener implements the interface which contains event-handling code for a particular
component.

2. Fill in the blanks:

(a) In the event delegation model, the __________ generates an event and sends it to one or more
listeners.

(b) The method that registers a mouse motion listener is called ______________.

(c) The _______________ class encapsulates a mouse wheel event.

(d) The listeners are registered by an event source and are done by calling the __________
method.

(e) A ___________ is generated by a scroll bar.

3. Select a suitable choice in every question.

(a) In the delegation event model, in order to receive an event notification the listeners must
register with a source

 (i) source

 (ii) listener

 (iii) component

 (iv) event

 Unit 14: Event Handling

LOVELY PROFESSIONAL UNIVERSITY 275

(b) Which one of the event is a semantic event?

 (i) FocusEvent

 (ii) ItemEvent

 (iii) PaintEvent

 (iv) ContainerEvent

(c) Which one of the following is an integer constant for MouseWheelEvent?

 (i) WHEEL_BLOCK_SCROLL

 (ii) MOUSE_WHEEL

 (iii) WHEEL_BUTTON_SCROLL

 (iv) MOUSE_WHEELCLICKED

(d) void mouseExited(MouseEvent me) is a constructor of which Interface?

 (i) The MouseMotionListener Interface

 (ii) The MouseWheelListener Interface

 (iii) The MouseListener Interface

 (iv) The MouseWheelEvent Class

(e) The ____________method can be used to obtain a reference to the item that generated an
event.

 (i) itemPoint()

 (ii) itemEvent()

 (iii) getStateChange()

 (iv) getItem()

1. "In Java, event models are used for handling events”. Explain.

14.7 Review Questions

2. "The delegation event model is considered as a modern approach to handle events". Discuss.

3. "An event source is an object that generates an event”. Comment.

4. "The subclasses of AWT events can be categorized into two groups". Elaborate.

5. "A ComponentEvent is generated, when the size, position or visibility of a component is
changed". Explain.

6. "FocusEvent is a subclass of ComponentEvent and has three constructors". Discuss.

7. "There are eight types of mouse events". Elaborate.

8. "There are ten types of window events". Discuss.

9. "Event Listeners are objects used to handle a particular task of a component”. Discuss.

10. "The interface specifies four methods that are invoked when a component is resized, moved,
shown or hidden". Justify.

11. "The mousePressed() and mouseReleased() methods are invoked when the mouse is pressed
and released, respectively". Comment.

12. "The WindowListener Interface specifies seven methods". Discuss.

Modern Programming Tools and Techniques I

LOVELY PROFESSIONAL UNIVERSITY

276

Answers: Self Assessment
a. (a) True (b) True (c) False

 (d) False (e) True (f) False (g) True

b. (a) Source (b) addMouseMotionListener() (c) MouseWheelEvent

 (d) addXListener (e) AdjustmentEvent.

c. (a) Source (b) ItemEvent (c) WHEEL_BLOCK_SCROLL

 (d) The MouseListener Interface (e) getItem()

14.8 Further Readings

Schildt. Herbert, The Complete Reference Java, Tata McGraw-Hill

Balagurusamy E. Programming with Java_A Primer 3e. New Delhi

http://notes.corewebprogramming.com/instructor/Java-Events.pdf

http://download.oracle.com/javase/1.4.2/docs/api/java/awt/event/package-
tree.html

Jalandhar-Delhi G.T. Road (NH-1)
Phagwara, Punjab (India)-144411
For Enquiry: +91-1824-300360
Fax.: +91-1824-506111
Email: odl@lpu.co.in

LOVELY PROFESSIONAL UNIVERSITY

	UObjectives
	UIntroduction
	U Features of Java
	U Programming in Java
	Structure of a Java Program
	Compiling, Interpreting and Running the Program

	U Keywords
	U Constants
	U Variables
	Declaring and Initializing Variables
	Primitive Variables vs Reference Variables

	U Data Types
	Enum Types

	U Operators
	Arithmetic Operators
	Increment and Decrement Operators
	Relational Operators
	Logical Operators
	Conditional Operator ‘?:’
	Operator Precedence

	U Expressions
	U Summary
	U Keywords
	U Self Assessment
	U Review Questions
	U Further Readings

	UObjectives
	UIntroduction
	U2.1 Introduction to Classes, Objects and Methods
	U2.2 Constructors
	U2.3 Class Inheritance
	U2.4 Summary
	U2.5 Keywords
	U2.6 Self Assessment
	U2.7 Review Questions
	U2.8 Further Readings
	UObjectives
	UIntroduction
	U3.4 Summary
	U3.5 Keywords
	U3.6 Self Assessment
	U3.7 Review Questions
	U3.8 Further Readings
	UObjectives
	UIntroduction
	U4.1 Arrays
	U4.2 Types of Arrays
	U4.3 Strings
	U4.4 Summary
	U4.5 Keywords
	U4.6 Self Assessment
	U4.7 Review Questions
	U4.8 Further Readings
	UObjectives
	UIntroduction
	U5.3 Access Protection
	U5.4 Importing a Package
	U5.5 Basics of Standard Java Packages
	U5.6 Summary
	U5.7 Keywords
	U5.8 Self Assessment
	U5.9 Review Questions
	U5.10 Further Readings
	UObjectives
	UIntroduction
	U6.4 Differences between Packages and Interfaces
	U6.5 Summary
	U6.6 Keywords
	U6.7 Self Assessment
	U6.8 Review Questions
	U6.9 Further Readings
	UObjectives
	UIntroduction
	U7.1 Meaning of Exception Handling
	U7.2 Uncaught Exception
	U7.3 Throw
	U7.4 Throws
	U7.5 Finally
	U7.6 Creating Exception Subclasses
	U7.7 Summary
	U7.8 Keywords
	U7.9 Self Assessment
	U7.10 Review Questions
	U7.11 Further Readings
	UObjectives
	UIntroduction
	U8.1 Threads
	U8.5 Summary
	U8.6 Keywords
	U8.7 Self Assessment
	U8.8 Review Questions
	U8.9 Further Readings
	UObjectives
	UIntroduction
	U9.1 The Java Thread Model
	U9.2 Stopping and Blocking a Thread
	U9.3 Inter-thread Communication
	U9.4 Suspending, Resuming and Stopping the Thread
	U9.5 Summary
	U9.6 Keywords
	U9.7 Self Assessment
	U9.8 Review Questions
	U9.9 Further Readings
	UObjectives
	UIntroduction
	U10.1 I/O Basics
	U10.2 The File Class
	U10.3 Random Access Files
	U10.4 Summary
	U10.5 Keywords
	U10.6 Self Assessment
	U10.7 Review Questions
	U10.8 Further Readings
	UObjectives
	UIntroduction
	U11.5 Handling Images and Sounds
	U11.6 Summary
	U11.7 Key words
	U11.8 Self Assessment
	U11.9 Review Questions
	UObjectives
	UIntroduction
	U12.1 AWT Control Fundamentals
	U12.2 Layout Managers
	U12.3 Summary
	U12.4 Key words
	U12.5 Self Assessment
	U12.6 Review Questions
	UObjectives
	UIntroduction
	U13.1 Features of Swings
	U13.2 Swing Components
	U13.3 Summary
	U13.4 Keywords
	U13.5 Self Assessment
	U13.6 Review Questions
	U13.7 Further Readings
	UObjectives
	UIntroduction
	U14.1 Meaning of Event Handling
	U14.2 The Event Delegation Model
	U14.3 Event Classes
	U14.4 Summary
	U14.5 Keywords
	U14.6 Self Assessment
	U14.7 Review Questions
	U14.8 Further Readings
	Letter blank.pdf
	Project.pdf
	Chapter_01.pdf
	Chapter_02.pdf
	Chapter_03.pdf
	Chapter_04.pdf
	Chapter_05.pdf
	Chapter_06.pdf
	Statistical Table.pdf

