
An Implicit Garbage Collection Model for C++
Programing Language

A Disseration submitted

By Anubhav Arun Gupta

to

Department of

Computer Science & Engineering

in partial fulfilment of the Requirement for the

Award of the Degree of

Master of Technology

in

Computer Systems

Under the Guidance of

Er. Pushpendra Kumar Pateriya

(May, 2015)

CERTIFICATE

This is to certify that Anubhav Arun Gupta has completed

Master of Technology Dissertation titled “An Implicit

Garbage Collection Model for C++ Programing Language” un-

der my guidance and supervision. To the best of my knowledge,

the present work is the result of his original investigation and

study. No part of the Dissertation has ever been submitted for

any other degree or diploma.

The dissertation is fit for the submission and the partial fulfil-

ment of the conditions for the award of Master of Technology

Computer Science & Engineering

May, 2015

(Er. Pushpendra Kumar Pateriya)

Computer Science & Engineering Dept.

L.P.U., Phagwara

iii

Abstract

Dynamic Memory Management concept enables memory allocation and deallocation

at runtime. Beneficial as it is, but it’s not perfect. A naughty anomaly called Memory

Leak is observed whenever a program follows Dynamic Memory Management, and

that is the topic of concern for this study. The Memory Leak is relevant because its

not a logical or syntactical error rather it is a program control error. It grows as the

program code grows i.e greater the number of line of code more are the chances of

having memory leaks. It’s also relevant because few line of code can become cause

of memory leak occupying as much as 70-80% of physical memory. The worst part

about it is, the operating system doesn’t have any jurisdiction over it. The operating

system can terminate the process itself but it cannot analyse the memory consumption

of process. This study proposes a Garbage Collection Model to provide solution for

Memory Leaks. The methodology is divided into three phases where, Source Code

Instrumentation is carried out in Phase-1, Modification of compiler and Creation of

Garbage Collector is carried out in Phase-2 and finally a driver to use outcomes of

above two approaches is created in Phase-3. The result of the devised methodology on

the test cases dealing with fixed scenario, have unanimously pointed towards desired

conclusions. That is they were designed to leak over 500MiBi of memory and after

execution of Garbage Collector the memory was deallocated till 8.0 MiBi. Though, the

complete elimination of memory leak cannot be assured by any method till date. But

the results have shown that the proposed methodology is quite efficient and effective.

iv

Acknowledgment

I would like to take this opportunity to express my deep sense of gratitude to all

who helped me directly or indirectly during this thesis work.

Firstly, I would like to thank my supervisor, Er. Pushpendra Kumar Pateriya,

for being a great mentor and the best adviser I could ever have. His advise, encour-

agement and critics are source of innovative ideas, inspiration and causes behind the

successful completion of this dissertation. The confidence shown on me by him was

the biggest source of inspiration for me. It has been a privilege working with him.

I am highly obliged to all the faculty members of computer science and engineering

department for their support and encouragement.

I would like to express my sincere appreciation and gratitude towards my friends

for their encouragement, consistent support and invaluable suggestions at the time I

needed the most.

I am grateful to my family for their love, support and prayers.

-Anubhav Arun

v

Declaration

I hereby declare that the dissertation entitled, “An Implicit Garbage Collection Model

for C++ Programing Language”, submitted for the Master of Technology degree

is entirely my original work and all ideas and references have been duly acknowledged.

It does not contain any work for the award of any other degreee or diploma.

May, 2015

Anubhav Arun Gupta

Regn No. 11000527

vi

Contents

Abstract iv

Acknowledgment v

Declaration vi

List of Figures x

List of Algorithms xi

List of Program Codes xii

1 Introduction 1

1.1 What is Dynamic Memory Allocation ? 1

1.1.1 How Dynamic Memory Management is carried out in C++? . 2

1.2 Memory Leaks . 3

2 Review of Literature 5

2.1 Available Solutions to the Dynamic De-allocation problem 5

2.1.1 Implicit Approach . 5

2.1.2 Explicit Approach . 12

3 Scope of The Study 14

4 Objective Of The Study 15

5 Research Methodology 18

5.1 Phase-1 . 20

5.2 Phase-2 . 25

5.3 Phase-3 . 34

6 Results And Discussion 36

vii

7 Conclusion And Future Scope 42

7.1 Future Scope . 42

7.2 Timeline . 43

References 44

8 Publications 47

Appendix 48

viii

List of Tables

1 Memory Consumption of Sample Code with GC 41

2 Memory Consumption of Sample Code without GC 41

ix

List of Figures

2.1 Available Solutions . 6

2.2 Example of Point Class after weaving [13] 7

2.3 Experimental setup of Mtrace++ [12] 9

4.1 Memory Leak breakdown . 15

4.2 Lost Memory Due to Overwrite . 16

4.3 Lost Memory Due to function scope 16

4.4 Lost Memory Due to Inner Pointer 17

5.1 Parser Class . 21

5.2 ParserException Class . 21

5.3 FileEdit Class . 22

5.4 State Diagram Illustrating the Parser generated after Phase-1 25

5.5 GC TABLE Class . 26

5.6 Garbage Collection Class . 27

5.7 State Diagram to Illustrate Update Table Routine 34

5.9 Figure Illustrating functioning of GC driver 34

5.8 Flow Chart Illustrating the functionality of gc Worker 35

6.1 GC on Leak due to function scope Prog 8.9 36

6.2 GC on Leak due to pointer overwrite Prog 8.8 37

6.3 GC on Leak due to nester pointer Prog 8.10 37

6.4 Leak due to nester pointer Prog 8.10 39

6.5 Leak due to nester pointer Prog 8.10 39

6.6 Leak due to nester pointer Prog 8.10 40

6.7 Leak due to nester pointer Prog 8.10 40

7.1 Timeline(Gantt Chart Part-1) . 43

7.2 Timeline(Gantt Chart Part-2) . 43

8.1 Memory Occupied during Memory Leak 55

8.2 Memory Occupied without Memory Leak 55

8.3 Memory Occupied during Memory Leak (Windows Case) 56

x

List of Algorithms

1 traverse . 23

2 collect . 23

3 print decl . 24

4 new op.cc and new opnt.cc . 26

5 getInstance . 28

6 init . 28

7 gc Object Tracker . 29

8 signal New Object . 29

9 signal Delete Object . 29

10 signal new Pointer . 29

11 gc Thread . 30

12 gc Worker . 30

13 update Table . 32

xi

List of Program Codes

2.1 Example of Point Class before weaving [13] 6

2.2 delHtab Function in 300.twolf[7] . 10

2.3 addHash Function in 300.twolf[7] . 11

8.1 Relevant code for the error in gcc [7] 49

8.2 Relevant code for the first error in lighttpd[7] 50

8.3 Relevant code for the second error in lighttpd[7] 50

8.4 Relevant code for the error in transmission invokeRequest function[7] 52

8.5 Relevant code for the error in transmission tr webRun function[7] . . 52

8.6 Relevant code for the error in transmission processCompletedTasks

function[7] . 52

8.7 Relevant code for the error in transmission: onStoppedResponse function[7] 53

8.8 Memory Leak- overwriting the pointer without deallocation 54

8.9 Memory Leak- function return without object deallocation 56

8.10 Memory Leak- Not freeing the intermediate pointers 57

8.11 Memory leak when suspend/resume camera 58

xii

Chapter 1
Introduction

Dynamic Memory Management is a concept by which an object or data element of a

program is allocated or deallocated over main memory dynamically, during the execu-

tion of the program. Dynamic Memory Management concept is explored mutually by

Operating System, Compiler and Programming Languages domain. Dynamic Mem-

ory Management have helped the tech community by reducing Program executable

size dramatically. But on the flip side it also have introduce a necessary evil called

Memory Leak, which in fact is the problem this thesis report will focus on.

Before going into depths of Memory Leak and its effects, lets understand what are

the components of Dynamic Memory Management and how it’s implemented on C++

programming language.

1.1 What is Dynamic Memory Allocation ?

Dynamic Memory Allocation is a subset of Dynamic Memory Management in which an

object is allocated over main memory during the runtime of an executable program. If

the term Dynamic Memory Management is split and expressed as Dynamic + Memory

Allocation, then its easy to understand that memory is assigned to an object during

runtime i.e. Dynamically. During dynamic memory allocation, an executing program

requests the underlying system (operating system or firmware kernel) to provide a

block of main memory for an object. The object or data element is allocated over the

Heap Storage of a Process Control Block.

1

An implicit Garbage Collection Model for C++ Programming Language Introduction

1.1.1 How Dynamic Memory Management is carried out in

C++?

In C++ language the dynamic memory allocation is carried out by operators new and

new[], though function malloc(),calloc(),realloc() are also provided for back-

ward compatibility with C language. But they are not recommended to carry out

dynamic memory allocation of class objects because memory allocation functions will

not call constructor of the class and hence, the data members are not initialized. In

C++ new is a language construct that dynamically allocates memory from free store

and initializes the memory using the constructor.

If successful new attempts to allocate and initialize enough memory for the new data

over heap storage and returns the address to the newly allocated and initialize mem-

ory.

However, if new cannot allocate memory in Heap Storage then it will throw an excep-

tion of type std::bad alloc.

Allocation via new operator

Syntax::

1 po i n t e r v a r i a b l e = new type name ;

where, pointer variable is the pointer of type type name. type name can be either

primitive data type or user-defined. If type name is a class name then the default

constructor is called to construct the object.

To initialize a new variable during dynamic allocation.

Syntax::

1 po i n t e r v a r i a b l e = new type name (i n i t i a l i z e r) ;

where, initializer is the initial value assigned to the new variable, or if type name

is of class type then initializer is the argument(s) to a constructor.

To create an array dynamically

Syntax::

1 po i n t e r v a r i a b l e = new type name [s i z e] ;

where, size is the size of the array (one-dimensional array).

2

An implicit Garbage Collection Model for C++ Programming Language Introduction

Deallocation via delete operator

In C++ programming language, the delete operator deallocates the memory allo-

cated by new operator and returns it back to heap. During deallocation the destructor

of class type object is called.

This makes clear what are the components of Dynamic Memory Management and

how its implemented in C++ Programing Language. Lets understands some basics

of Memory Leak.

1.2 Memory Leaks

Memory Leak is an anomaly exhibited when access to an dynamically allocated ob-

ject is lost during runtime of the program. More technically, a leak occurs when due

to inappropriate memory management a pointer is not deallocate at the appropriate

time[7](C++ insight at Appendix A1).

There are two types of memory leak.

1. Lost Memory :: In this case program overwrites or loses the pointer p and all

other pointers derived from it.

2. Forgotten Memory :: In this case allocated memory area m remains reachable

but is not deallocated or accessed in the rest of the execution.

Memory leaks are relevant for several reasons, some of them are defined below[7]

1. Memory leaks are difficult to detect

Memory leaks do not immidiatly produce an easily visible symptoms like a crash

or the output of the wrong value.

2. Leaks have the potential to impact not only the application that leaks

memory

Since, the amount of memory is limited. Thus, as the memory usage of leakin

program increases, less memory is available to other running applications.

Consequently, performance of every running application can be impacted that

leaks memory.

3

An implicit Garbage Collection Model for C++ Programming Language Introduction

3. Leaks are common, even in mature applications

For example, in the first half of 2009, over 100 leaks in the Firefox web-browser

were reported

The best solution to fix this is Garbage Collection (explained at Appendix A1.1)

[5][16]. Through, this study a probable Research Methodology would be proposed to

create a Garbage Collector which would have not been possible until the release of

C++11 Standards[1](briefly explained at Appendix A1.2).

4

Chapter 2
Review of Literature

A limited amount of work have been done to check memory leak and memory cor-

ruption problem faced in C++ programming language, same is the situation with

Garbage Collection. Apart from debugger, not many tools are available which thor-

oughly focuses on factors leading to memory leak and memory corruption. The current

chapter briefly discusses the research paper published in IEEE Journals or presented

in IEEE conferences from 1998 to 2013, which are relevant to the defined problem set.

2.1 Available Solutions to the Dynamic De-allocation

problem

The current approaches to fix the issues related to dynamic deallocation can be clas-

sified into implicit approach and explicit approach. The following approaches doesn’t

remove or change any pre-defined language feature, rather they are more less like an

add-on during compilation or a tool used for assistance.

2.1.1 Implicit Approach

The implicit approach defines a automatic method, to deal with Dynamic De-allocation

issues. This approach can be executed in several different ways, some one of them

will be explored in brief one by one. The implicit method are less of a tool rather

than methods which are executed as a part of executable program file [15].

5

An implicit Garbage Collection Model for C++ Programming Language Review of Literature

Figure 2.1: Available Solutions

Aspect Garbage Collector : Weaving the code during compilation

using AspectC++[13]

This approach uses Aspect Oriented Programing(AOP), to make some thing simi-

lar to garbage collector. Mcheick and Sioud [13] made two prototypes, first being

ASPECTGCRC (Aspect Garbage Collector Reference Counter) based on the ref-

erence counter algorithm of garbage collection and second being ASPECTGCMS

(Aspect Garbage Collector Mark and Sweep) based on the mark and sweep algorithm

of garbage collection.

1 c l a s s Point

2 {
3 i n t x ; i n t y ;

4 . . .

5 Point (i n t NewX=0, i n t NewY=0)

6 {
7 X=NewX; Y=NewY;

8 }

6

An implicit Garbage Collection Model for C++ Programming Language Review of Literature

9 void showInfo ()

10 {
11 std : : cout<<X<< ’ \n ’<< Y;

12 }
13 } ;

14 i n t main ()

15 {
16 Point ∗p1 = new Point (10 ,10) ;

17 p1−>showInfo () ;

18 de l e t e (p1) ;

19 Point ∗p2 = new Point (200 ,200) ;

20 p2−>showInfo () ;

21 }

Program Code 2.1: Example of Point Class before weaving [13]

Figure 2.2: Example of Point Class after weaving [13]

Reference Counter Algorithm

The object reference counter consists of maintaining a counter of the number of

objects referring to a shared object. This counter is incremented every time a new

reference to the shared object is created. Also, this counter is decremented each time

a reference to the shared object is destroyed.

The author’s implementation of AspectGCRC prototype is done in two phases.

7

An implicit Garbage Collection Model for C++ Programming Language Review of Literature

In the first phase, the prototype scans the application and retrieve all application class

definitions including user created classes. In the second phase, retrieved classes are

scanned for object creation. For each class in the prototype maintains in an object

table.

A reference counter of the number of objects created is maintained in the object

table. The reference counter is incremented when a static instantiation, a reference

assignment or a constructor call occurs. And when a call to destructor, delete or

free is encountered the reference counter is decremented. Finally, the prototype scans

the object table for reference counters having a zero value and deletes the object

associated with this reference counters.

Mark and Sweep Algorithm

Mark and Sweep technique is carried out in two phases. In the first phase, all the

reachable objects from the roots are marked with a flag. Traditionally, in this garbage

collection algorithm, garbage collector traverses a graph of objects using registers and

classes as roots, but the author have traversed the code using classes as roots. Depth

first search approach is used to traverse the graph in order to mark the reached objects.

In the second phase, the slide compact method is used and the object is copied in a

free space allocation.

Linking Code using source code instrumentation[12]

To demonstrate this approach Lee,Chang and Hasancite[12] have created a tool called

Mtrace++. This tool produces records of allocation and deallocation information.

Mtrace++ indentifies origination of allocated memories and life-spans of objects.

Mtrace++ is coded in C++ and inserts begining and ending mark for each dy-

namic memory allocation scenario. Mtrace++ is a two phase tool: execution phase

and analyzing phase. During the execution phase, it modifies original source code

and links with instrumented objects into an executing application and collects data

as the application executes. During the analyzing phase, it creates tables which con-

tain concise allocation information. After it finishes the analyzing phase it produces

another format of data file which illustrates the allocaiton tree and depth of the path.

The author have explained three approaches to trace the dynamic memory. The

first one is rewriting the compiler to handle the trace, second approach is object code

insertion which is done directly on the executable or the linking stage and the third

8

An implicit Garbage Collection Model for C++ Programming Language Review of Literature

approach is source code instrumentation. It includes parsing, analyzing, and convert-

ing the original source code into a new modified source code.

The Mtrace++ takes advantage of source code instrumentation. It inserts two

marks at the beginning and the ending of the body of the target member function. The

target member functions are constructor, copy constructor, type conversion, assign-

ment operator= overloading and user-defined member function. Each mark contains

information of a member function and a class name.

Execution Phase

During execution phase, between each beginning and ending mark of invocation

scenario, dynamic memory invocation may be occurred. To generate data, three

additional object files are needed: malloc.o, filemake.o, optrnewg.o. The allocation

size and address information comes from malloc.o. This malloc.o is a modified, inside

the malloc malloc(), calloc(), realloc() and free() functions are modified to write result

into the data file. The filemake module is used to create data file instead of standard

output.

Figure 2.3: Experimental setup of Mtrace++ [12]

The operators new is overloaded both globally and locally. The overloaded global

new operator is used to distinguish between new() and direct call of malloc(). To

collect the invocation of member data, we need to overload the operator new locally.

Analysis Phase(Stat)

For the second phase of the tracing, the analyzing tool for the Mtrace++, called

Stat creates table which contain the summarized allocation information, the table is

created for every invocation case. C++ programs allocate a significant number of

dynamic objects and furthermore allocate them at a higher rate. Thus, many of the

9

An implicit Garbage Collection Model for C++ Programming Language Review of Literature

objects can be reused. To reuse objects, a programmer needs to know whether the

objects with the same size are allocated prolifically. To investigate this, Stat provides

a table of object distribution. This table explicitly describes objects sizes, frequencies

and originations in C++ programs. With the object distribution table, programmer

can get the information of the relationship between size and frequency.

Compile Plug-in

Sean Et Al. have presented a technique similar to that of mtrace++. They have used

an approach of source code instrumentation along with object code insertion, to insert

patch code in an existing program[6]. The patch code is inserted at specific location

during transition of source code into object code. They have developed Protagoras

a new plugin architecture for GNU compiler collection which allows modification

of internal representation of the program under compilation carried out by GCC

compiler.

LEAKPOINT: Pinpointing the cause of Memory Leak[7]

Clause and Orso have explained that memory leaks are type of unintented memory

consumption which can adversly affect the correctness and performance of a program.

Clause Et Orso have used real leaks that they found in 300.twolf application during

their evaluation. 300.twolf is a computer-aided-design program that calculates the

routing and placement of transistors for microchip design.

The following code snippet shows an example of leak in application while it was

executing its test-input sets, which are provided with the application

14 delHtab () {
15 i n t i ;

16 HASHPTR hptr , zapptr ;

17 f o r (i =0; i <3001 ; i++){
18 hptr=hashtab [i] ;

19 i f (hptr !=(HASHPTR)NULL) {
20 zapptr=hptr ;

21 whi le (hptr−>hnext != (HASHPTR)NULL) {
22 hptr=hptr−>hnext ;

23 f r e e (zapptr) ;

24 zapptr=hptr ;

25 }
26 f r e e (hptr) ;

10

An implicit Garbage Collection Model for C++ Programming Language Review of Literature

27 }
28 }
29 f r e e (hashtab) ;

30 re turn ;

31 }

Program Code 2.2: delHtab Function in 300.twolf[7]

34 addhash (char hname []) {
35 i n t i ;

36 HASHPTR hptr ;

37 unsigned i n t hsum=0;

38 f o r (i =0; i<s t r l e n (hname) ; ++i) {
39 sum+=(unsigned i n t) hname [i] ;

40 }
41 hsum %= 3001 ;

42 i f ((hptr=hashtab [hsum])==(HASHPTR) NULL) {
43 hptr=hashtab [hsum]=(HASHPTR) mal loc (s i z e o f (HASHBOX)) ;

44 hptr−>hnext=(HASHPTR) NULL;

45 hptr−>hnum=++net c t r ;

46 hptr−>hname=(char ∗) mal loc ((s t r l e n (hname) + 1) ∗ s i z e o f (char)) ;

47 s p r i n t f (hptr−>hname , ”%s” ,hname) ;

48 re turn (1) ;

49 }
50 e l s e

51 {
52 . . .

53 }
54 }

Program Code 2.3: addHash Function in 300.twolf[7]

Clause Et Orso claims that most existing leak detection tools provides information

for location where leaked memory was allocated i.e. in at line 45 in function addhash.

While the memory leak is actually occurs at line 26 in function delHtab.

The above algorithms provides a good example for types of leak to be expected in

practice while dealing with real programs. It illustrates following facts[7].

1. It is a real leak that occurs in a released, commosnly used application.

2. It is caused by common programming error i.e. forgetting to deallocate a com-

ponent of an object before deallocating the object itself.

11

An implicit Garbage Collection Model for C++ Programming Language Review of Literature

3. It occurence doesn’t noticeably impact the application; even though it leak

memory. 300.twolf runs to completion and produces the correct output.

4. The leaky memory allocation site and the location where the error may be fixed

are far apart in the code, they are in two seperate functions.

Clause Et Orso, have provided examples of memory leak using popularly used subjects

like gcc 3.0, lighttpd 1.4.19, transmission 1.20 where gcc 3.0 is a popular Compiler,

lighttpd 1.4.19 is a webserver and tansmission 1.20 is Bittorent client (Explained in

Appendix A2.1).

2.1.2 Explicit Approach

The explicit approach defines a method to check the deallocation using tools, which

may or may not run along the execution, they can be used as a testing tool as well

as can be used during development of application.

Acacia, an reverse engineering tool based on data model made using

software repository[18]

Chen,Gansner and Koutsofios have made a tool Acacia, which is basically a tool build

using reverse engineering approach. They have described a method, which uses a

Data Model made using software repository (here from software repository they mean

library) of C++, to perform reachability analysis[18]. Thus, detecting deadcode.

They have explained that Software repository is needed in building reverse engineering

tools and to re-engineer the software code. A data model is needed to buils a Software

repository. A data model is the backbone of software repositoy, the data model

design directly affects the effectiveness of software repository ability to support various

analysis tools. So, by using this approach a data model is build for C++ software

repository which supports reachability analysis and dead code detection at declaration

level. The data model is designed in a manner such that it catches all the necessary

dependency needed for reachability analysis.

12

An implicit Garbage Collection Model for C++ Programming Language Review of Literature

ACRE: An Automated Aspect Creator for Testing C++Applications[9]

Etienne Duclos Et Al have presented ACRE(Automated aspeCt cREator) a tool

purely based on AspectC++ technique defined in implicit approach defined is Sec-

tion 2.1.1 . But instead of using aspect-oriented programming(AOP) as an Garbage

Collection tool they have used AOP as an testers tool [9]. In conjugation with domain-

specific language ACRE allows tester to add or remove test aspect easily.

13

Chapter 3
Scope of The Study

This study would be applicable to any C++ Compiler and as a result every source

code compiled from it. But the major impact would be observed in C++ application

running over firmware. This is so because unlike operating system which run over PC

or Server, firmware run over small devices like routers. And small devices have very

small amount of memory, which if abused impacts other operation related to it.

For example, if memory leak is exhibited over routers then it will effect the number

of buffer it can allocate which would in turn impact negatively over total network

performance. Appendix A2.3[3] provides an example of memory leak in Android

Operating System. Which occurs because in Android for each application an instance

Dalvik machine is created and if their is a leak in that instance of Dalvik it propagates

to the whole system. Like Java Virtual Machine, Dalvik is written in C and C++.

Thus, there is no cure to fix memory leak on run-time. In this, kind of scenario a

Garbage Collector for C++ application would help a lot.

14

Chapter 4
Objective Of The Study

The main objective of this study is to propose and implement a Garbage Collection

Model to deal with Memory Leak issue in C++ Programming Language.

The Memory Leak problem can be broken down broadly into two sub problem.

Figure 4.1: Memory Leak breakdown

1. Lost Memory

Which can be further broken down as (sample code are provided in Appendix

A2.2)

(a) Lost Memory due to pointer overwrite. Illustrated in Figure 4.2

(b) Lost Memory due to function return. Illustrated in Figure 4.3

15

An implicit Garbage Collection Model for C++ Programming Language Objective of The Study

(c) Lost Memory due to inner pointer. Illustrated in Figure 4.4

2. Forgotten Memory : Its a NP-hard problem, thus, the solution for it is not

in scope of this study.

Figure 4.2: Lost Memory Due to Overwrite

Figure 4.3: Lost Memory Due to function scope

The Garbage Collection Model can be broken down into following sub objectives.

1. A method to grab an object address

2. A method to create and maintain Object Maintenance Table

3. A method to update Object Maintenance Table whenever their is a change in

object reference state

4. A method to create Garbage Collector Thread

(a) A method to choose appropriate garbage collection algorithm

16

An implicit Garbage Collection Model for C++ Programming Language Objective of The Study

Figure 4.4: Lost Memory Due to Inner Pointer

17

Chapter 5
Research Methodology

The latest version of C++ i.e C++11 have provided a generic method of creating and

managing threads[1], by providing a standardised memory model for multithreaded

abstract machine. Thus, by taking inspiration from Java, a method is devised such

that a light weight garbage collection thread is attached to application during compi-

lation of source code. The garbage collector thread is automatically generated. Which

is achieved by using existing implicit solutions techniques viz. `Source Code instru-

mentation` and `Rewriting/Modifying the compiler` defined in mtrace++[12].

The methodology follows three phases subsequently to achieve desired garbage collec-

tor. The first phase of methodology i.e. Phase-1 employs Source Code Instrumen-

tation by using gcc compiler plugin. This phases involves static analysis of source

code. The second phase i.e. Phase-2 modifies the source of GCC compiler to solicit

in creation of implicit garbage collection thread. This phase is also responsible

for Creation of Garbage Collection logic whose class interface is added to the GCC

compiler’s Standard C++ library source code. This phase creates logic for dynamic

analysis of source code. The third phase i.e Phase-3 involves creation of custom

driver, which first compiles source code with GCC plugin created in Phase-1

then compiles the modified source without GCC plugin but with GarbageCollec-

tion Library. Thus, enabling GarbageCollection thread to run along with

application. It involves dynamic analysis of memory heap.

The following procedure is an abstract of devised methodology to fix Memory Leak

due to Lost Memory.

1. Phase-1

(a) The source code instrumentation is carried out by analysing GCC Abstract

18

An implicit Garbage Collection Model for C++ Programming Language Research Methodology

Syntax Tree (AST) of the input Source Code.

(b) This is achieved by creating a Parser plugin for GCC compiler. Such

that it terminates the compilation process as soon as complete AST is

formed.

(c) The obtained AST is parsed for pointer declarations along with their line

number[19].

(d) A copy of orignal source is made for carrying out source code instrumen-

tation.

(e) The GarbageCollection::gc.signal New Pointer method is appended

after the pointer declaration line such that the address of pointer is given

as the input to the method.

(f) Then, this modified source code is compiled without plugin in Phase-3.

2. Phase-2

(a) The source code of new header file is defined at location ./gcc-4.9.2/

libstdc++-v3/libsupc++

(b) The GC Table class (Figure 5.5) is made inside new header file such that it

assist the Garbage Collection by intimating creation of new object. Which

it keeps in a queue.

(c) As standard library insures that their wouldn’t be any memory leaks in

its own source code. Thus, all the source file in ./gcc-4.9.2/libstdc++

having call to new operator is encapsulated with GC STATE STOP flag to

intimate Garbage Collector of dynamic allocation carried out by standard

library.

(d) Which provides following advantages

i. It prevent Garbage Collector to accidentally deleting any object being

used by standard library.

ii. Keeps Object Maintenance Table light.

iii. Enables Garbage Collector to use STL container classes

(e) A GarbageCollection class (Figure 5.6) is created whose interface is added

to the system header iostream

(f) The GarbageCollection class the class responsible for creation of Garbage

Collection Thread. And it contains main garbage collection logic.

19

./gcc-4.9.2/libstdc++-v3/libsupc++
./gcc-4.9.2/libstdc++-v3/libsupc++
./gcc-4.9.2/libstdc++

An implicit Garbage Collection Model for C++ Programming Language Research Methodology

3. Phase-3

(a) A program/driver is built such that it compiles the input Source Code and

associates GarbageCollection thread in the final executable of input Source

Code.

(b) The program/driver follows following steps

i. The input Source Code is compiled using g++ with Parser plugin

built in Phase-1

ii. The modified code obtained is then compiled again with modified

g++ compiler [6].

iii. The GarbageCollection class’s library, whose interface was added to

iostream header, is compiled along with modified source.

(c) Thus, we obtain an executable having Garbage Collection Thread associ-

ated with it.

(d) When the executable is executed the GarbageCollection class executes two

thread i.e. gc Object Tracker and gc Thread.

(e) The gc Object Tracker is responsible to update Object Maintenance Table

whenever an object is created using a new operator.

(f) The gc Thread is responsible to call gc Worker method after a fixed inter-

val time.

(g) The gc Worker is responsible to employ garbage collection logic.

5.1 Phase-1

During Phase-1 of implementation, a plugin for GCC Compiler is created. Which

when compiled with any source code parses the code for Pointer declarations[19] and

then encapsulate them in signal New Pointer method of GarbageCollection Class

formed in Phase-2 (Refer Section 5.2) .

Parsing of input source code is carried out using GCC Abstract Syntax Tree(AST),

which is formed during compilation of input source code. The Parser plugin interrupt

the compilation process using gate-callback as soon as the AST is created. The

obtained AST is traversed, in order to get the pointer location and name. This

Parsing process is implemented as Parser class which is illustrated in the Figure 5.1.

20

An implicit Garbage Collection Model for C++ Programming Language Research Methodology

Parser
nameSpace:tree
declaration:tree
numberOfObject:static int
object:static Parser*
declaration_comparator
line_comparator
PointerLocation
pointerList:std::list<PointerLocation>
collect(tree,declaration_set&):void
Parser(tree)
~Parser()
print_decl(tree):void
decl_namespace(tree): std::string
print_function(tree):void
print_class(tree):void
getParserObject(tree):static Parser*
traverse():void
updateSource():void

ParserException FileEdit

declaration_comparator

operator()(tree x, tree y)const:bool

line_comparator

operator()(tree x, tree y)const:bool

PointerLocation
pointerName: std::string
lineNumer:unsigned int
PointerLocation(std::string,unsigned int)

std::list
PointerLocation

std::multiset
tree,declaration_comparator

std::multiset
tree,line_comparator

declaration_set: typedef std::multiset<tree,declaration_comparator>

line_set: typedef std::multiset<tree,line_comparator>

pointerList: std::list<PointerLocation>

Figure 5.1: Parser Class

ParserException
state:int
ErrorStates
ParserException()
ParserException(ErrorStates)
what() const noexcept: virtual const char*
~ParserException() noexcept: virtual

std::exception

enum ErrorStates
emptyNameSpace

Figure 5.2: ParserException Class

The Parser Class is implemented as singleton class i.e. only one instance of class is

allowed. This design pattern is chosen to make sure the complete operation is carried

out by a unique object. The Parser Class inherits an custom Exception Class viz.

21

An implicit Garbage Collection Model for C++ Programming Language Research Methodology

FileEdit
count:long
line: std::string
fileName: std::string
file: std::fstream
tempFile: std::fstream
FileEdit()
~FileEdit(): virtual
updateSource()=0: virtual void

Figure 5.3: FileEdit Class

ParserException Class (defined in UML 5.2) which is present for future extension of

Parser Class. It handles/notify logical error related to Parsing the input Source Code.

The Parser Class also inherits an Abstract Class viz. FileEdit (defined in UML 5.3)

which acts an interface for file related operation. Its abstract method updateSource is

implemented in Parser Class. Its responsible to carry out updation of input Source

Code on the basis of information collected during parsing. The Parsing of input Source

Code starts with traverse method of Parser Class. It is described in Algorithm 1.

The traverse algorithm uses collect algorithm as described in Algorithm 2, to get

global declaration (which can be either function, record or any other primitive decla-

ration) as well as namespaces in the order of their appearances.

Collect Algorithm collects all the declaration and saves them in a set object of

declaration set which is multiset defined in Parser Class. Refer UML 5.1.

For each value of set, print decl Algorithm (Algorithm 3) is called by traverse

Algorithm.

The print decl algorithm checks whether the given declaration is of type type. If

it is then print class or print function methods are called depending upon their

type code tc.

22

An implicit Garbage Collection Model for C++ Programming Language Research Methodology

Algorithm 1 traverse

\∗ This method is responsible to traverse whole source for global declara-

tions,function declarations and class declarations ∗\
function traverse

collect(nameSpace,set)

for all Items i in set set do

print decl(i)

end for

end function

Algorithm 2 collect

\∗ This method is responsible to find and arrange all the namespaces and decla-

rations in a source code in the order they appear ∗\
function collect(tree ns, declaration set& set)

level← NAMESPACE(ns)

for all Declaration decl in list level do

if decl 6= built− in then

set.insert(decl)

end if

end for

for all Namespaces decl in list level do

if decl 6= built− in then

collect(decl,set)

end if

end for

end function

23

An implicit Garbage Collection Model for C++ Programming Language Research Methodology

Algorithm 3 print decl

\∗ This method is responsible for collecting all pointer declaration in source code

in set lineset ∗\
function print decl(tree decl)

Define type of type tree

type← TREE TYPE(decl)

Define dc and tc of type tree code

dc← TREE CODE(decl)

if type = true then

tc← TREE CODE(type)

if dc = TY PE DECL AND tc = RECORD TY PE then

\∗ If DECL ARTIFICIAL is true this is a class declaration. Otherwise

this is a typedef ∗\
if decl = DECLARTIFICIAL then

print class(type)

return

end if

end if

if tc = FUNCTION TY PE then

print function(decl)

return

end if

end if

end function

24

An implicit Garbage Collection Model for C++ Programming Language Research Methodology

Figure 5.4: State Diagram Illustrating the Parser generated after Phase-1

The State Diagram illustrated in Figure 5.4. Describes the states followed during

print Class and print function methods. As well as it provides the mechanism

followed by the parser after execution of traverse method.

5.2 Phase-2

To implement implicit garbage collection and to provide a method to grab an object.

There is a need to edit new operator code. To do so a helper class called GC TABLE is

to be created in new header file (located at ./gcc-4.9.2/libstdc++-v3/libsupc++).

Figure 5.5 illustrates UML of GC TABLE class.

The GC TABLE class is a singleton class. It is designed as singleton to make its object

viz. gc Table globally accessible and to deny existence of more than one object of

the class. The GC TABLE class is responsible to maintain a queue of addresses of new

object. Whenever, a successful call to new is made and if that call is not made by sys-

tem library i.e. GC STATE STATUS flag is set as GC STATE RUN. Then, the address of

new object is pushed into local queue maintained by GC TABLE and GC LIST STATE

flag is set to GC LIST FILL.

Algorithm 4 illustrates the modification which are to be carried out in new op.cc and

new opnt.cc.

The Garbage Collector is made in accordance with Garbage Collection Class illus-

trated in Figure 5.6, such that an object Maintenance Table is made and main-

tained by GarbageColletion Class. The Algorithms 7,10,8 and 13 describes creation

25

./gcc-4.9.2/libstdc++-v3/libsupc++

An implicit Garbage Collection Model for C++ Programming Language Research Methodology

_GC_TABLE
_GC_OBJECT_RECORD
_GC_LIST_START:_GC_OBJECT_RECORD*
_GC_LIST_END:_GC_OBJECT_RECORD*
_GC_LIST_TEMP:_GC_OBJECT_RECORD*
_GC_LIST_FLAG
gc_Table:static _GC_TABLE&
_GC_LIST_STATUS:_GC_LIST_FLAG
_GC_STATE_FLAG
_GC_STATE_STATUS:_GC_STATE_FLAG
_GC_TABLE()
_GC_TABLE(const _GC_TABLE&)
operator=(const _GC_TABLE&):_GC_TABLE&
getInstance():static _GC_TABLE&
push_GC_OBJECT_RECORD(void *):int
pop_GC_OBJECT_RECORD():void*

_GC_OBJECT_RECORD
object_Address:void *
next:_GC_OBJECT_RECORD*
previous:_GC_OBJECT_RECORD*

enum _GC_LIST_FLAG
_GC_LIST_EMPTY
_GC_LIST_FILL

enum _GC_STATE_FLAG
_GC_STATE_RUN
_GC_STATE_STOP

Figure 5.5: GC TABLE Class

Algorithm 4 new op.cc and new opnt.cc

\∗ Modifed new op.cc and new opnt.cc such that new object address is inti-

mated to GarbageCollection Class. For simplicity, the static object gc Table of

class GC TABLE is used as gc Table instead of using GC TABLE :: gc Table

∗\
function operator new(SIZE STD)

.

.

.

if gc Table. GC STATE STATUS = gc Table. GC STATE RUN then

gc Table.push GC OBJECT RECORD(p)

else

gc Table. GC STATE STATUS ← gc Table. GC STATE RUN

end if

return address

end function

26

An implicit Garbage Collection Model for C++ Programming Language Research Methodology

GarbageCollection
gc:static GarbageCollection&
Tuple
object_Maintenance_Table: std::list<Tuple>
emptyPointer: std::list<void *>
sigType
t1: std::thread
t2: std::thread
_gc_mutex: std::mutex
get_Instance():static GarbageCollection&
signal_New_Object(objectAddress:void *):virtual void
signal_New_Pointer(pointerAddress:void *):virtual void
signal_Delete_Object(objectAddress:void *):virtual void
init():void
GarbageCollection()
~GarbageCollection()
gc_Object_Tracker():void
gc_Thread():void
gc_Worker():void
update_Table(tuple:Tuple,sig:sigType):void

Tuple
pointer_Address:void *
object_Address:void *
markerList: std::list<void*>
Tuple()
Tuple(alias:T,obj_Address:long_int)

_GC_TABLE

std::list

std::list

std::list

table: std::list<Tuple>

emptyList: std::list<void*>

markedList: std::list<void*>

Tuple

void*

void*

enum sigType
objectCreated
foundPointer
objectMapped
objectNotMapped

Figure 5.6: Garbage Collection Class

and maintenance of object Maintenance Table by GarbageCollector in C++11 en-

vironment. While garbage collection algorithm is described in Algorithm 12.

The UML Class diagram in Figure 5.6, illustrates the the GarbageCollection class.

Where, Tuple and object Maintenance Table are its attributes and get Instance,

signal New Object(), signal New Pointer(), update Table(), gc Object Tracker(),

gc Thread() and gc Worker() are its methods. The GarbageCollection class is a

singleton class.

Tuple is a class defined in the GarbageCollection class. It have two attributes

pointer Address which is of void * type and object Address of void * type as

well. The attribute pointer Address would be initialized with base address of pointer

and object Address would store the object’s address. The object Address would

hold the address of object pointed by the value of pointer Address. The objects of

this class serve as a records in Object Maintenance table.

27

An implicit Garbage Collection Model for C++ Programming Language Research Methodology

The object Maintenance Table is the data structure of list<> type where each

node is of Tuple type. The object Maintenance Table as the name suggest would

store total number of pointers as an alias and the address of the objects pointed by

them.

Since, GarbageCollection class is a singleton class thus get Instance is used to

return GarbageCollection class object.

Algorithm 5 getInstance

\∗ This method is responsible to return a static refernce of GarbageCollection

class, this play a key role in making GarbageCollection class singleton ∗\
function getInstance

Define static GarbageCollection object

return object

end function

Algorithm 6 init

\∗ This method is called as soon as main method starts. It is responsible to

instantiate gc Thread thread and gc Object Tracker thread. ∗\
function init

Instantiate thread gc Object Tracker

Instantiate thread gc Thread

end function

The method signal New Object is defined in algorithm 8. It is called before return

statement of new operator. It intimates garbage collector that a new object have

been allocated and garbage collector in turn updated is Object Maintenance Table by

mapping object address with corresponding pointer Address.

The update Table method is defined in Algorithm 13. It takes Tuple and sig-

Type variable as input. As its name suggest it maps the pointer Address with

object Address. The Figure 5.7 illustrates the State Diagram followed to update

object Maintenance Table.

The methods gc Thread and gc Worker are methods meant for creation of garbage

collection thread. The thread gc Thread is initiated by init() method, it contains a

timer which initiate worker method gc Worker whenever timer time-out. The worker

method contains custom garbage collection algorithm. The Figure 5.8 illustrate a

flowchart of gc Worker algorithm.

28

An implicit Garbage Collection Model for C++ Programming Language Research Methodology

Algorithm 7 gc Object Tracker

\∗ This method checks the GC LIST STATUS flag status, which if set triggers

signal New Object method. It is set if an object is created by new operator. ∗\
function gc Object Tracker

while 1 do

if gc Table. GC LIST STATUS = gc Table. GC LIST FLAG ::

GC LIST FILL then

object← gc Table.pop GC OBJECT RECORD()

if object 6= 0 then

signal New Object(object)

end if

end if

end while

end function

Algorithm 8 signal New Object

\∗ This method is responsible to encapsulate the new objectAddress into Tuple

object and then call update Table method ∗\
function signal New Object(objectAddress)

update Table(Tuple(nullptr,objectAddress),objectCreated)

end function

Algorithm 9 signal Delete Object

\∗ This method is responsible to encapsulate the deleted objectAddress into

Tuple object and then call update Table method ∗\
function signal Delete Object(objectAddress)

update Table(Tuple(nullptr,objectAddress),objectDeleted)

end function

Algorithm 10 signal new Pointer

\∗ This method is responsible to extract value out of pointerAddress to en-

capsulate the new pointerAddress and pointer V alue into Tuple object and then

instantiate a thread of update Table method ∗\
function signal New Pointer(pointerAddress)

∗pointer value← (unsignedlong ∗&)(∗((unsignedlong∗)(pointerAddress)))
Instantiate thread update Table(Tuple(pointerAddress, pointer V alue), foundPointer)

end function

29

An implicit Garbage Collection Model for C++ Programming Language Research Methodology

Algorithm 11 gc Thread

\∗ This algorithm is a thread. This method is responsible to call gc Worker

method after a fixed interval of time. ∗\
function gc Thread

while 1 do

Sleep Thread for Time seconds

gc Worker()

end while

end function

Algorithm 12 gc Worker

\∗ This method employs core garbage collection logic which is responsible to free

unused memory ∗\
function gc Worker

Define mutex lock

Define list check of type void∗
Define enum sig of type sigType

sig ← objectNotMapped

Define pointer V alue of type void∗

for all Values i in list object Maintenance Table do

pointer V alue← (unsignedlong∗&)(∗((unsignedlong∗)((∗i).pointer Address)))

if (∗i).markedList.empty() = true then

if (∗i).object Address 6= nullptr && pointer V alue 6=
(∗i).object Addresss then

check.push back((∗i).object Address)s
(∗i).object Address← nullptr

end if

else

check.insert(check.end(),(*i).markedList.begin(),(*i).markedList.end())

(*i).markedList.clear()

end if

end for

30

An implicit Garbage Collection Model for C++ Programming Language Research Methodology

for all Values checkIndex in list check do

for all Values i in list object Maintenance Table do

pointer V alue← (unsignedlong∗&)(∗((unsignedlong∗)((∗i).pointer Address)))

if pointer V alue = (∗checkIndex) then

sig ← foundPointer

break

end if

end for

if sig 6= foundPointer then

delete(∗checkIndex)

else

sig ← objectNotMapped

end if

end for

for all Values emptyIndex in list emptyPointer do

for all Values i in list object Maintenance Table do

pointer V alue← (unsignedlong∗&)(∗((unsignedlong∗)((∗i).pointer Address)))

if pointer V alue = (∗checkIndex) then

sig ← foundPointer

break

end if

end for

if sig 6= foundPointer then

delete (∗emptyIndex)

emptyIndex← emptyPointer.erase(emptyIndex)

else

emptyIndex← emptyIndex + 1

sig ← objectNotMapped

end if

end for

check.clear()

mutex unlock

end function

31

An implicit Garbage Collection Model for C++ Programming Language Research Methodology

Algorithm 13 update Table

\∗ This method update the objectMaintenanceTable by mapping the object Ad-

dress in the table with corresponding pointer Address. ∗\
function update table(Tuple record, sigType sig)

Define mutex lock

Define enum objectStatus of type sigType

objectStatus← objectNotMapped

if sig = foundPointer then

for all Values i in list object Maintenance Table do

if (∗i).pointer Address = record.pointer Address then

return

end if

end for

for all Values i in list emptyPointer do

if (∗i) = record.object Address then

i← emptyPointer.erase(i)

table.push back(record)

objectStatus← objectMapped

else

i = i + 1

end if

end for

if objectStatus = objectNotMapped then

record.object Address← nullptr

table.push back(record)

else

objectStatus← objectNotMapped

end if

32

An implicit Garbage Collection Model for C++ Programming Language Research Methodology

else if sig = objectCreated then

Define pointer V alue of type void∗
for all Values i in list object Maintenance Table do

pointer V alue = (unsignedlong∗&)(∗((unsignedlong∗)((∗i).pointer Address)))

if pointer V alue = record.object Address then

objectStatus← objectMapped

if (∗i).object Address 6= nullptr then

(*i).markedList.push back((*i).object Address)

(∗i).object Address← record.object Address

else

(∗i).object Address← record.object Address

end if

end if

end for

if objectStatus = objectNotMapped then

emptyPointer.push back(record.object Address)

else

objectStatus← objectNotMapped

end if

end if

mutex.unlock()

end function

33

An implicit Garbage Collection Model for C++ Programming Language Research Methodology

Figure 5.7: State Diagram to Illustrate Update Table Routine

5.3 Phase-3

The Phase-3 is responsible to create a driver viz. GC which contains plugin and carries

out parsing followed by compilation with modified GCC Compiler. It functionality is

illustrated in Figure 5.9.

Figure 5.9: Figure Illustrating functioning of GC driver

34

An implicit Garbage Collection Model for C++ Programming Language Research Methodology

Figure 5.8: Flow Chart Illustrating the functionality of gc Worker

35

Chapter 6
Results And Discussion

In a C++ environment,at an average it takes more than 40% programmer’s time to

debug errors related to memory[13]. Which in worse cases can lead to 80% [8][10][11].

The implementation seems successful because when the driver obtained after Phase-

3 compiles the Test Cases mentioned in Appendix A2.2 i.e. Program Code 8.8,8.9

and 8.10, following outcomes were produced. The Test Cases are designed to leak

memory higher than 500MiBi which is approximately 13% of total system memory

(4.0 GB).

Figure 6.1: GC on Leak due to function scope Prog 8.9

36

An implicit Garbage Collection Model for C++ Programming Language Expected Outcomes

Figure 6.2: GC on Leak due to pointer overwrite Prog 8.8

Figure 6.3: GC on Leak due to nester pointer Prog 8.10

37

An implicit Garbage Collection Model for C++ Programming Language Expected Outcomes

Notice the graph being plot at Memory and Swap history section of illustrations.

The graphs illustrates overall the memory consumption by the system. The rise in

graph denotes high memory consumption by the system which is due to execution of

the Test Cases. One can notice the fall in graph at Memory and Swap history

after few seconds of execution. Which is due to the execution of Garbage Collection

thread. As mentioned before Garbage Collection thread deallocates leaked memory

and returns it back to the system. Thus, bringing down the graph, to an optimum

state.

This behaviour is not observed when the same Test Cases are compiled with standard

GCC C++ Compiler and executed after compilation (As illustrated by the Figure 6.4

and 6.5). The illustration in Figure 6.6 and 6.7 shows that the Program Code 8.8

keeps leaking around 500MiBi of memory for around 60 min. The Appendix A2.2

provides memory leak illustration for the remaining cases.

Thus, if a table is to be piloted for memory consumed from initial state to x state of

Test Case execution. The loss due to memory leak as well as advantage and success

of the Garbage Collection Model is clearly observed. The Table 1 illustrates the leak

memory being claimed within the first minute of program execution while Table 2

illustrate the memory being continued to leak till x State.

38

An implicit Garbage Collection Model for C++ Programming Language Expected Outcomes

Figure 6.4: Leak due to nester pointer Prog 8.10

Figure 6.5: Leak due to nester pointer Prog 8.10

39

An implicit Garbage Collection Model for C++ Programming Language Expected Outcomes

Figure 6.6: Leak due to nester pointer Prog 8.10

Figure 6.7: Leak due to nester pointer Prog 8.10

40

An implicit Garbage Collection Model for C++ Programming Language Expected Outcomes

Table 1: Memory Consumption of Sample Code with GC

Sample Code
Inital State x State

Memory CPU Time Memory CPU Time

Sample 1 (Prog 8.8) 1.1 GiBi 05.00th sec 4.0 MiBi 08.74th sec

Sample 2 (Prog 8.9) 2.0 GiBi 07.32th sec 7.9 MiBi 10.44th sec

Sample 3 (Prog 8.10) 1.4 GiBi 06.10th sec 4.0 MiBi 09.50th sec

Table 2: Memory Consumption of Sample Code without GC

Sample Code
Inital State x State

Memory CPU Time Memory CPU Time

Sample 1 (Prog 8.8) 1.1 GiBi 05.00th sec 1.1 GiBi 61st min

Sample 2 (Prog 8.9) 2.0 GiBi 07.32th sec 2.0 GiBi 61st min

Sample 3 (Prog 8.10) 1.4 GiBi 06.10th sec 1.4 GiBi 61st min

41

Chapter 7
Conclusion And Future Scope

This Study briefly explained the concept of Dynamic Memory Management and its

side-effect Memory Leak and its consequence. Severe negative impact of Memory Leak

could be observed with practical examples provided in literature survey(Section 2.1.1

and in Appendix A2.2). The related work over the same provided some techniques to

deal with it which were either implict or explicit in nature.

The Implicit Approach solutions were designed such that they change the source code

as minimal as possible, or rather apart from source code a new intermediate file is

generated[12]. But by doing so, they devoid programmer from fully utilizing the

features of Garbage Collector(GC). Plus, this also limited the possibility to extend

features of garbage collector. In our methodology we proposed a GarbageCollection

Model, which contains Object Maintenance Table and custom Garbage Collection

Algorithm. Our model achieved its goal in three Phases, where Phase-1 dealt with

static analysis, Phase-2 dealt with Dynamic Analysis and Phase-3 made a driver to

execute the outcomes of Phase-1 and Phase-2. Here by, attaching a GC Thread to

executable which invoke GC worker thread manually after a fixed interval of time.

The result obtained claimed the success of the Garbage Collection Model. Thus,

concluding the objective of this study being achieved. By eliminating or reducing the

overhead of memory management by programmer to a certain desirable extend.

7.1 Future Scope

The study only provides a Model and prototyped implementation of Model. Their

are still certain remaining open for Future Analysis. The Model depends upon static

analysis of source code thus, limiting garbage collection to work just for sources not for

libraries the source includes. The reverse engineering of the object file obtained after

assembling could be a key solution to this limitation and could be used in future to

42

An implicit Garbage Collection Model for C++ Programming Language Summary And Conclusions

extend this model. Currently, the model doesn’t enforces low level mutex over new and

delete operators [17], this could be carried out in future as well. Lastly, the current

model give undefined behaviour if source code uses multi-threaded environment. Thus,

the above given limitation could be cured in by extending the current model in future.

7.2 Timeline

The Figure 7.1 and 7.2 illustrates the timeline followed throughout the study.

Figure 7.1: Timeline(Gantt Chart Part-1)

Figure 7.2: Timeline(Gantt Chart Part-2)

43

References

[1] The standard on the programing language c++, 2011.

[2] Alfred V. Aho, Lam, Sethi, and Jeffrey D. Ullman. Compilers Princi-

ples,Techniques and Tools. Pearson Education, London, 2nd edition edition,

2007.

[3] Cyanogenmod Android. Camera2 application pack-

age(src/com/android/camera/piecontroller.java. https://github.

com/CyanogenMod/android packages apps Camera2/commit/

0b9bae7b23b2d95ab7d8c62e591198080bb8c437?diff=split.

[4] Daniil Berezun and Dmitri Boulytchev. Precise garbage collection for c. In

CEE-SECR ’14 Proceedings of the 10th Central and Eastern European Software

Engineering Conference in Russia, number 15, 2014, 2014. ACM.

[5] Hans-J. Boehm and Mike Spertus. Garbage collection in the next c++ stan-

dard. In ISMM ’09 Proceedings of the 2009 international symposium on Memory

management, pages 39–48, Dublin, Ireland, March 2009. ACM.

[6] Sean Callanan, Radu Grosu, Xiaowan Huang, Scott A. Smolka, and Erez Zadok.

Compiler-assisted software verification using plug-ins. In 20th International Par-

allel and Distributed Processing Symposium, 2006. IPDPS 2006., Rhodes Island,

USA, April 2006. IEEE.

[7] James Clause and Alessandro Orso. Leakpoint: Pinpointing the cause of mem-

ory leak. In Proceedings of the 32nd ACM/IEEE International Conference on

Software Engineering, volume 1, pages 515–524, Cape Town, South Africa, May

2010. ACM.

[8] Ziying Dai and Xiaoguang Mao. Light-weight resource leak testing based on

finalisers. IET Software, pages 308–316.

44

https://github.com/CyanogenMod/android_packages_apps_Camera2/commit/0b9bae7b23b2d95ab7d8c62e591198080bb8c437?diff=split
https://github.com/CyanogenMod/android_packages_apps_Camera2/commit/0b9bae7b23b2d95ab7d8c62e591198080bb8c437?diff=split
https://github.com/CyanogenMod/android_packages_apps_Camera2/commit/0b9bae7b23b2d95ab7d8c62e591198080bb8c437?diff=split

An implicit Garbage Collection Model for C++ Programming Language Referrences

[9] Etienne Duclos, Sebastien Le Digabel, Yann-Gael, and Bram Adams. Acre:

An automated aspect creator for testing c++ applications. In 17th European

Conference on Software Maintenance and Reengineering (CSMR), 2013, pages

121–130, Genova, March 2013. IEEE.

[10] Guangyan Huang, Guangmei Zhang, Xiaowei Li, and Yunzhan Gong. A state

machine for detecting c/c++ memory faults. In 14th Asian Test Symposium,

2005. Proceedings., pages 82–87, Calcutta, USA, Dec 2005. IEEE.

[11] Ashish Kundu and Elisa Bertino. A new class of buffer overflow attacks. In 31st

International Conference on Distributed Computing Systems (ICDCS), 2011,

pages 730–739, Minneapolis, MN, June 2011. IEEE.

[12] Woo Hyong Lee, J. Morris Chang, and Yusuf Hasan. A dynamic memory measur-

ing tool for c++ programs. In Proceedings. 3rd IEEE Symposium on Application-

Specific Systems and Software Engineering Technology, 2000., pages 155–159,

Richardson, TX, March 2000. IEEE.

[13] Hamid Mcheick and Aymen Sioud. Comparison of garbage collector prototypes

for c++ applications. In IEEE/ACS International Conference on Computer Sys-

tems and Applications, 2009. AICCSA 2009., pages 668–674, Rabat, May 2009.

IEEE.

[14] Jon Rafkind, Adam Wick, John Regehr, and Matthew Flatt. Precise garbage

collection for c. In ISMM ’09 Proceedings of the 2009 international symposium

on Memory management, pages 39–48, Dublin, Ireland, March 2009. ACM.

[15] Yulei Sui, Ding Ye, and Jingling Xue. Detecting memory leaks statically with full-

sparse value-flow analysis. IEEE Transactions on Software Engineering, pages

107–122.

[16] L. Veiga and P. Ferreira. Complete distributed garbage collection: an experience

with rotor. IEE Proceedings - Software, pages 283–290.

[17] Farn Wang, Karsten Schmidt, Fang Yu Geng-Dian Huang, and Bow-Yaw Wang.

Bdd-based safety-analysis of concurrent software with pointer data structures

using graph automorphism symmetry reduction. IEEE Transactions on Software

Engineering, pages 403–417.

45

An implicit Garbage Collection Model for C++ Programming Language Referrences

[18] Yih-Farn, Emden R. Gansner, and Eleftherios Koutsofios. A c++ data model

supporting reachability analysis and dead code detection. IEEE Transactions on

Software Engineering, pages 682–694.

[19] Jianwen Zhu and Silvian Calman. Context sensitive symbolic pointer analysis.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, pages 516–531.

46

Chapter 8
Publications

Communicated Paper in Thomson Reuters indexed International Journal

Anubhav Arun Gupta and Pushpendra Kumar Pateriya, An Implicit Garbage Collection

Model for C++ Programming Language, ACM Transaction on Programming Lan-

guages and Systems, Current Issue: Volume 37 Issue 2, April 2015. (Communicated)

47

Appendix

Appendix A1

Appendix A1.1

What is Garbage Collecion?

Data that cannot be referenced is generally known as garbage. Garbage collection

is a form of automatic memory management. Garbage collector can be a program,

method or thread which attempts to reclaim objects that are no longer in use by the

program or simply deallocates unreachable data.

Garbage collector was initially implemented in Lisp programming language in 1958[2].

Since, then it is provided by languages like Java, Perl, ML, Modula-3, Prolog, Smalltalk

etc. The main design goal of garbage collection is to automatically reclaim the chunks

of storage holding objects that can no longer be accessed by a program[14],[4].

Appendix A1.2

What is new in ISO C++11 standards?

There is lot new offering by C++11 standards, like initialization of data member

during definition, extending exception handling feature, some new member functions

added into existing classes of standard library and introduction some new classes.

But the most definitive or the one which would interest us the most is thread library.

Now on every compiler supporting C++11 will be able to create and manage thread

in standardized manner, allowing programmer to write generic multi-threaded code

without relying on third party solutions (here, by generic we mean portable).

48

An implicit Garbage Collection Model for C++ Programming Language Appendix

Appendix A1.3

Insight on Allocation Vs. Deallocation in C++

Allocation mechanism in C++ language, which is carried out by the new operator

is not much prone to bugs, as an exception of type std::bad alloc is thrown by the

application and can be caught and rectified by the programmer[?]

Whereas, while carrying out deallocation using delete operator, there is no mecha-

nism to verify that operating system carried out delete operation without any fault.

Though, language standards[1] enforces execution shouldn’t be continued until object

is deleted properly.

Thus, if delete is not called before the object gets out of scope then the memory

pointed by the object’s reference pointer is totally at the mercy of underlying system.

Appendix A2

Appendix A2.1

Memory Leak Examples Provided by Clause Et Orso [7]

Clause Et Orso, have provided examples of memory leak using popularly used subjects

like gcc 3.0, lighttpd 1.4.19, transmission 1.20 where gcc 3.0 is a popular Compiler,

lighttpd 1.4.19 is a webserver and tansmission 1.20 is Bittorent client.

4537 s t a t i c s t r u c t s p e l l i n g ∗ s p e l l i n g b a s e ;

4538 s t a t i c void push s t r i ng (char ∗ s t r i n g) {
. . .

4540 s p e l l i n g b a s e=xmalloc (s p e l l i n g s i z e ∗ s i z e o f (s t r u c t s p e l l i n g)) ;

. . .

}

void f i n i s h i n i t () {
. . .

5179 // f r e e (s p e l l i n g b a s e) ;

5180 c on s t r u c t o r d e c l = p−>dec l ;

. . .

5187 s p e l l i n g b a s e = p−>s p e l l i n g b a s e ;

49

An implicit Garbage Collection Model for C++ Programming Language Appendix

. . .

}

Program Code 8.1: Relevant code for the error in gcc [7]

In Program Code 8.1 memory allocated at line 4540 in function push string is leaked

when gcc’s type verifier switches from an inner-context to an outer-context. The leak

occurs at line 5187, where spelling base is overwritten bt the memory area it points

to is not deallocated. The commented code in the Algorithm 1.3 shows the code that

was addded by the developers to fix this error: a call to free was added at line 5179

to deallocate the memory area before spelling base is overwritten.

lighttpd version 1.4.19, contains two memory management errors. The first error in

lighttpd causes a memory leak if the option url.rewrite-repeat is set in web server’s

configuration file.

URIHANDLER FUNC(mod rewr i t e u r i hand l e r) {
. . .

428 // i f (con−>p lug i n c tx [p−>id] == NULL) {
429 hctx = hand l e r c t x i n i t () ;

430 con−>p lug i n c tx [p−>id] = hctx ;

431 // } e l s e {
432 // hctx = con−>p lug in c tx [p−>id] ;

433 // }
. . .

}

Program Code 8.2: Relevant code for the first error in lighttpd[7]

In Program Code 8.2 memory allocated at line 429 in mod rewrite uri handler is

leaked if this section of code is executed twice. The leak occurs at line 430. In the

first execution, the only pointed to the allocated memory area is stored in the plugin

context array at line 430. During the second execution, this pointer is overwritten

and, because the area of memeory it points to is not deallocated, a leak occurs.The

commented code in the Algorithm 1.4 shows the code that was added by the developers

to fix this memory management error: the code now checks whether memory was

already allocated.

The second error in lighttpd causes a leak when the web server parses a request with

duplicate http header.

50

An implicit Garbage Collection Model for C++ Programming Language Appendix

i n t h t tp r equ e s t pa r s e (s e r v e r ∗ srv , connect ion ∗con) {

. . .

774 i f (NULL == (ds = (da t a s t r i n g ∗) a r ray ge t unused e l ement (con−>r eque s t .

header , TYPE STRING))) {

775 ds = d a t a s t r i n g i n i t () ;

}
. . .

812 e l s e i f (cmp > 0 && 0 ==(cmp = bu f f e r c a s e l e s s c ompa r e (CONST BUF LEN(

ds−>key) ,CONST STR LEN(”Content−Length”))) {

814 char ∗ e r r ;
815 unsigned long i n t r ;

816 s i z e t j ;

817 i f (c on l e n g th s e t) {
818 con−>h t tp s t a tu s = 400 ;

819 con−>k e ep a l i v e = 0 ;

820 i f (srv−>s rvcon f . l o g r e qu e s t h e ad e r on e r r o r) {
821 l o g e r r o r w r i t e (srv , FILE , LINE , ” s ” , ” dup l i c a t e . . . ”) ;

822 l o n g e r r o r w r i t e (src , FILE , LINE , ”Sb” , ” request−header :\n” ,

con−>r eque s t . r eque s t) ;

823 }
824 // a r r a y i n s e r t un i qu e (con−>r eque s t . headers , (data unset ∗) ds) ;

825 re turn 0 ;

}
. . .

}
. . .

}

Program Code 8.3: Relevant code for the second error in lighttpd[7]

In Program Code 8.3 memory allocated at line 775 in http request parse is leaked

because the function returns wihtout deallocating it. The leak occurs at line 825.

Since, lighttpd is concerned with performance, it maintains a list of allocated request

headers that it reuses to save the overhead of memory allocation. The inserted call

fixes the error by adding the allocated memory area to the pool of request headers.

In transmission version 1.20 the leak occurs when the corresponding torrent file is

51

An implicit Garbage Collection Model for C++ Programming Language Appendix

stopped.

s t a t i c void invokeRequest (void ∗vreq) {
. . .

718 hash = tr new (u int8 t ,SHA DIGEST LENGHT) ;

719 memcpy(hash , req−>to r rent hash , SHA DIGEST LENGTH) ;

720 tr webRun (rq−>s e s s i on , req−>ur l , req−>done func , hash) ;

721 f r e eReques t (req) ;

722 }

Program Code 8.4: Relevant code for the error in transmission invokeRequest

function[7]

In Program Code 8.4 memory allocated at line 718 in invokeRequest is leaked.

void tr webRun (t r s e s s i o n ∗ s e s s i on , . . . , void ∗ done fucn use r da ta) {
169 s t r u c t t r web task ∗ task ;

. . .

174 task−>done func use r da ta=done func use r da ta ;

. . .

177 tr runInEventThread (s e s s i on , addTask , task) ;

. . .

175 }

Program Code 8.5: Relevant code for the error in transmission tr webRun function[7]

The leak occurs at line 82 in Program Code 8.5 i.e. processCompleteTasks

s t a t i c void processCompletedTasks (tr web ∗web) {
. . .

77 task−>done func (web−>s e s s i on , . . . task−>done func use r da ta) ;

. . .

80 e v b u f f e r f r e e (task−>re sponse) ;

81 t v f r e e (task−>u r l) ;

82 t r f r e e (task) ;

. . .

83 }

Program Code 8.6: Relevant code for the error in transmission

processCompletedTasks function[7]

52

An implicit Garbage Collection Model for C++ Programming Language Appendix

This error is fixed by inserting a call to a deallocation function at line in onStoppe-

dResponse, which is called at line 77 in processCompletedTasks.

s t a t i c void onStoppedResponse (t r s e s s i o n ∗ s e s s i on , . . . void ∗
t o r r en t ha sh) {

294 dbgmsg (NULL, ” got a response . . . message”) ;

295 // t r f r e e (t o r r en t ha sh) ;

296 onReqDone (s e s s i o n) ;

297 }

Program Code 8.7: Relevant code for the error in transmission: onStoppedResponse

function[7]

The above algorithms of transmission application is a good example of how an

memory allocated in one function/Class can be leaked at completed different function

during its execution. This also raises a question, what could a programmer do if the

memory is leaked in some private library being used in current code.

This example illustrates how memory leak can propagate from one function to an-

other.

1. Here, memory is allocated to hash at line 718 of invokeRequest is passed to

function tr webRun as the formal parameter.

2. In function tr webRun the actual parameter is a generic pointer done fucn user data

storing same address as hash.

3. The address stored in done func user data is assigned to task->done func user data

where task is a pointer to structure tr web task.

4. The task pointer is passed to running Thread. On thread completion pro-

cessCompletedTasks function is called which in-turn calls onStoppedResponse

function.

5. The memory is leaked when task is freed at line 82 of processCompletedTasks

function without freeing object pointed by task->done func user data.

53

An implicit Garbage Collection Model for C++ Programming Language Appendix

Appendix A2.2

Sample Code to create Memory leak Situations

The following programs provides a working example of memory leak.

1 #inc lude<iostream>

2 us ing std : : c in ;

3 us ing std : : cout ;

4 us ing std : : endl ;

5 i n t main ()

6 {
7 const long SIZE=1024∗1024;
8 char ∗ l e ak= new char [SIZE] , ∗ t e s t ;

9 f o r (long i =0; i<SIZE ; ++i)

10 {
11 l e ak [i]= ’ a ’ ;

12 }

13 f o r (i n t i =0; i <1000;++ i)

14 {
15 t e s t = new char [SIZE] ;

16 f o r (long i =0; i<SIZE ; ++i)

17 {
18 t e s t [i]= ’b ’ ;

19 }
20 // d e l e t e l eak ;

21 l e ak=t e s t ;

22 /∗
23 .

24 .

25 Do something with t e s t

26 .

27 .

28 ∗/
29 }

30 // d e l e t e t e s t ;

31 de l e t e l eak ;

32 cout<<endl<<”Okay ! ! ” ;

33 c in . get () ;

54

An implicit Garbage Collection Model for C++ Programming Language Appendix

34 re turn 0 ;

35 }

Program Code 8.8: Memory Leak- overwriting the pointer without deallocation

In Program Code 8.8 memory allocated at line 8 is leaked. The leak occurs at line

21, where leak is overwritten but the memory area it points to is not deallocated.

To understand it more clearly, suppose leak points to an object obj stored in mem-

ory location m. If programmer have forgotten to write delete leak; statement at

line 20 of Program Code 8.8, then, the object obj pointed by pointer leak will not be

removed from memory. Instead the address stored in leak will be replaced by address

stored in test. And there will be no way to access that object obj and the object is

lost until the end of program execution. Hence, we have encountered memory leak.

Figure 8.1: Memory Occupied during Memory Leak

Figure 8.1 illustrate that over 1000 MiB of memory is occupied by the executable of

Program Code 8.8 until the process was terminated by user. The program was under

execution for around 60 min. But if delete leak; statement at line 20 is called, then

there is no memory leak and executable of Program Code 8.8 occupies only 2.2 MiB

of memory, illustrated in Figure 8.2.

Figure 8.2: Memory Occupied without Memory Leak

Similar case over Microsoft Windows Operating System. Here for loop is called till

500 so, around 500 MiB of memory is consumed. Illustrated in Figure 8.3.

55

An implicit Garbage Collection Model for C++ Programming Language Appendix

Figure 8.3: Memory Occupied during Memory Leak (Windows Case)

1 #inc lude<iostream>

2 us ing std : : c in ;

3 us ing std : : cout ;

4 us ing std : : endl ;

5 void leakyFunct ion ()

6 {
7 const long SIZE=1024∗1024;
8 char ∗ l e ak= new char [SIZE] ;

9 f o r (long i =0; i<SIZE ; ++i)

10 {
11 l e ak [i]= ’ a ’ ;

12 }

13 // d e l e t e l eak ;

14 }
15 i n t main ()

16 {

17 f o r (i n t i =0; i<100;++ i)

18 {
19 l eakyFunct ion () ;

20 }

21 cout<<endl<<”Okay ! ! ” ;

22 c in . get () ;

23 re turn 0 ;

Program Code 8.9: Memory Leak- function return without object deallocation

56

An implicit Garbage Collection Model for C++ Programming Language Appendix

In Program Code 8.9 memory allocation at line 8 is leaked. The leak occurs at line

13,where leak is not deallocated before the termination of function leakyFunction

1 #inc lude<iostream>

2 us ing std : : c in ;

3 us ing std : : cout ;

4 us ing std : : endl ;

5 const long SIZE=1024∗1024;

6 s t r u c t Leak

7 {
8 char ∗ l e ak ;

9 } ;
10 // Main Function

11 i n t main ()

12 {

13 f o r (i n t i =0; i<500;++ i)

14 {
15 Leak ∗ l e ak = new Leak ;

16 leak−>l e ak= new char [SIZE] ;

17 f o r (long i =0; i<SIZE ; ++i)

18 {
19 leak−>l e ak [i]= ’ a ’ ;

20 }
21 /∗
22 .

23 .

24 Do something with l eak

25 .

26 .

27 ∗/
28 // d e l e t e leak−>l e ak ;

29 de l e t e l eak ;

30 }

31 cout<<endl<<”Okay ! ! ” ;

32 c in . get () ;

57

An implicit Garbage Collection Model for C++ Programming Language Appendix

33 re turn 0 ;

34 }

Program Code 8.10: Memory Leak- Not freeing the intermediate pointers

Program Code 8.10 illustrates the memory leak due to non de-allocation of pointer

present inside the structure

Appendix A2.3

Cyanogenmod Memory Leak [3]

Source: android packages apps Camera2 /src/com/android/camera/PieController.java

Change-Id: Iaca466f91fb7dc6273b03c2f148439fb1795b1d6

1 pub l i c void i n i t i a l i z e (PreferenceGroup group) {
2 mRenderer . c l e a r I t ems () ;

3 mPreferenceMap . c l e a r () ;

4 mListPreferenceMap . c l e a r () ;

5 setPre ferenceGroup (group) ;

6 // Clear Overr ides Map when i n i t , to prevent memory l eak .

7 // mPreferences . c l e a r () ;

8 // mOverrides . c l e a r () ;

9 }

Program Code 8.11: Memory leak when suspend/resume camera

58

	Abstract
	Acknowledgment
	Declaration
	Contents
	List of Figures
	List of Algorithms
	List of Program Codes
	Introduction
	What is Dynamic Memory Allocation ?
	How Dynamic Memory Management is carried out in C++?

	Memory Leaks

	Review of Literature
	Available Solutions to the Dynamic De-allocation problem
	Implicit Approach
	Explicit Approach

	Scope of The Study
	Objective Of The Study
	Research Methodology
	Phase-1
	Phase-2
	Phase-3

	Results And Discussion
	Conclusion And Future Scope
	Future Scope
	Timeline

	References
	Publications
	Appendix

