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I 
 

ABSTRACT 

 

In this report, we design LCC decoders for Reed-Solomon (RS) codes. The complete Syndrome 

generator for RS(128,Kx) and RS(64,Ky) is the first effort in published research for Reed 

Solomon codes. The known decoding techniques for Reed-Solomon codes are customized to 

obtain a technique which is suitable for VLSI implementation. The chip architecture of key 

building block of VLSI RS decoder system are subsequently analyzed for its thorough 

understanding. 

In 0.18µm CMOS technology, the preferred Power and delay was analysed for all the section of 

LCC Reed-Solomon Decoder which was suitable for scalable VLSI architecture of RS decoding 

technique. The experimental work start with the design and analysis of PTL AND gate with 

power and Delay analysis. After while, all the basic circuits was designed in Cadence Virtuoso 

using the 45 nm technology library of Cadence which collaborate help in designing of main 

module of Reed-Solomon decoder. The design of RS decoder is designed for three level of 

design techniques such as CMOS, PTL and GDI techniques. The Power, delay and the PDP 

values for each and every sub-module is being analyzed and reduce the complexity of the 

hardware as move from CMOS to PTL to GDI in terms of the transistor count while there are 

several other trade-off affected with this design flow. The RS codes is constrained  to deep space 

communication, with the growth in VLSI technology, the scientific interest for incorporating RS-

decoders in large volume applications rise permanently. 
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CHAPTER 1  

INTRODUCTION 
 

In this thesis we design and implement the Low Complexity Chase (LCC) Reed-Solomon (RS) 

Decoder having its architecture designed in Cadence using 45nm CMOS technology, PTL logic 

and GDI Technique. Here we brief about the history of Reed-Solomon and LCC algorithms. 

1.1 Background: RS Code 

The central problem in the information transmission is efficient and reliable data transmission 

from source to destination. When you are using any source of information also in space 

exploration mission it is essential use of information theory. Reed-Solomon (RS) codes are a 

kind of algebraic FEC codes and it were pioneered by Irving S. Reed along with Gustave 

Solomon in 1960 [1]. Both of them explain a proficient way of making codes with the intention 

of detecting and correcting several random symbol errors. As a result of addition of‘t’ check 

symbols in the data word, the RS code can find out some arrangement of t amount of erroneous 

symbols, or rectify it up to symbols t/2. Since in the erasure code, there is limit up to‘t’ erasures 

can be able to rectify so that it can locate and also correct the pattern of errors as well as 

erasures.     

Reed-Solomon (RS) codes have established well-known applications in data accumulation and 

communication due to their straightforward decoding and their potential to fix bursts of errors. 

The first RS codes decoding algorithm develop by Peterson [2]. Afterward Berlekamp [3] and 

Massey [4] shorten the algorithm by screening that the decoding problem is corresponding to 

locate the shortest linear feedback shift register (LFSR) which generates a set of given sequence. 

The algorithm is known as Berlekamp-Massey algorithm (BMA) [1]. From the time since when 

BMA has been discovered, much effort has been done in the improvement of Reed-Solomon 

hard decision decoding algorithms. The algorithm which was mostly used for the purpose of 

error location polynomial was Euclid Algorithm [5]. Berlekamp and Welch invented an 

algorithm which precludes the syndrome computation, foremost step in the formerly proposed 

decoding algorithms. Each and every previous algorithm can rectify the errors upto half of the 



Page | 2  

 

smallest possible distance i.e. dmin of given codewords. There has not been any progress on 

decoding performance since 45 years after the beginning of RS codes. 

A RS code has been preferred by both the ESA and NASA as the external code in a coding 

scheme. The RS code is represented by RS(N, N-32) of 8-bit symbols block code capable of 

correcting 16 symbol errors. A shortened code is created when N<255 which was enviable for 

some applications. 

The first VLSI implementation of decoder has been done by Liu which used 40 VLSI chip pieces 

with [5] 100 support chips. The efficiency of communication channels has an extremely 

prominent effect of RS error correction codes [6]. RS codes are systematic codes which left the 

data unaltered instead append the parity symbols of the stream of data and they are created 

through encoding the information stream by a code generator. Also data of a n-bit symbol is 

found to be factor of every 2
n
 elements in the Galois Field (GF(2

n
)) [6]. The RS codes taken into 

account code generator polynomial such that it can reproduce codes within the encoder as well as 

to locate the error and rectify it inside the decoder. The RS(n, k) codes can determine and rectify 

errors upto (k-n)/2 error symbols inside a codeword having length of k-symbol. Afterward the 

codes are being transmitted in the communication channel for the receiver terminal. The received 

codeword are corrupted with the incursion of noise and other surrounding issues inside the 

channel. The intention of the decoder is to locate the values and locations of the errors reside in 

the received codeword. The intricacy of the RS codec lays in a decoder. Effective algorithms as 

well as VLSI architectures advancement are necessary to design a architecture of high speed 

decoder. While new algorithms with the architectures are still invent to put down the complexity 

problem of decoder section with increase in its speed [6]. 

1.2 Syndrome Generator 

It is an amount of how faraway the received code word from the one which was transmitted [5]. 

RS code block is represents as [5]: 

                                     
32( ) ( ) ( ) | ( ) |C x x M x M x G x                                                        (1)    
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 Every suitable code block is a factor of the generator polynomial which is represented as G(x) 

[5] , 

                                      
22 1

0
0

( ) ( )
tt

i j

j
i

j

G x x G x





                                                         (2)       

Where,   is Galois field primitive element. 

Galois field was defined as an algebraic field which has limited number of members. Galois 

fields include 2
m

 members are utilized in error-control and are denoted by GF(2
m

). since m is an 

integer having value lies between 1 and 16. The primitive element of the GF(2
m

) is a cyclic 

generator value of the group of some nonzero elements of GF(2
m

). It means that every nonzero 

factor of the field can be conveyed as the primitive factor raised to integer power. 

 

 

 

 

 

 

 

 

 

 

Fig.1.1. Block diagram depicts flow from RS Encoder to Syndrome Polynomial Generation 

RS Encoder 

Determine Galois field of data, than 

find the T(x) using encoding 

technique  

Error  

Introduce error in the channel  e(x) 

RS code  

At receiver R(x) =T(x) + 

e(x) 

Primitive element  

α is find out using Galois 

field of Transmitted code 

Generator Polynomial 

G(x) is find out using [3]

 
2 1

0
( )

p
j

j
G x x 




    

For accurate error 

correcting 

    p t   ,  0 1                     

Si  Syndrome’s are 

generated using Eq. 10 

S(x) Syndrome 

Polynomial is generated 

using Eq. 11 
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Galois field can be determined by an irreducible polynomial, P(x) [5]:  

8 7 2( ) 1P x x x x x                                                          (3) 

And during transmission, the code undergoes changes due to noise present in the channel. 

Therefore the received polynomial declared as [5]: 

( ) ( ) ( )R x C x E x                                                             (4) 

Where, E(x) is a representation for error polynomial. 

Syndrome polynomial is expressed as [5], 

( ) ( )mod ( )S x R x G x                                                      (5) 

We can also expressed syndrome polynomial as [5],  

1
( )

0

n
i k s

k i

i

S rb






                                                  (6) 

Where, 0 2 1k t    

Another expression of syndrome polynomial was [5] 

                      

2 1

0

( )
t

k

k

k

S x S x




                                                             (7)  

For any RS(n, k) code, j s ( 0 ( 1)j k   ) indicate the possible error locations. We can 

confirmed the received polynomial is suitable codeword only when each and every syndrome   Si 

(1 16i  ) are zero [9]. 

1.3 Chase Decoding 

In the year 1968, the known first decoding solution for the RS codes was invented by Berlekamp 

[1]. There are algorithms such as HDD which are able to achieve decoding of a particular vector 
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and ensure that it has error not more than dmin/2, whereas dmin is considered to be the least 

distance of the incoming code. As in modern communication, still different procedures of 

Berlekamp real model are in operation even decades passed after its generation. Despite a bulk of 

research has already done but the proficiency of RS decoding upto its limit of dmin/2 exceeds 

through Sudan [10] work. Although there found to be trade off in performance gain and 

complexity exponential and they are inversely proportional with respect to the decoder expansion 

of radius. And the Sudan’s research was legalized by Koetter and Vardy in the year 2000 [10] 

and it can be achieve with the introduction of reliability information and that helps in achieving 

better coding gain with respect to favorable complexity. And all these techniques of decoding RS 

codes are ahead of dmin/2, and Chase in 1972 [10] had designed a method of decoding which are 

found to be the nonspecific for the type of code and that permits for any existing HDD procedure  

to raise its decoding radius.  

 

In the conventional HDD procedure, a hard decision vector known as Maximum a- Posteriori 

(MAP) is utilized for providing input vector to a decoding algorithm [3]. Whereas in the Chase 

method of decoding, to generate a particular set of test vector it tend to use its reliability 

information. For the decoding of codes beyond the limit of dmin/2 with consideration of regular 

techniques for decoding, it need to have vector which comes within the decoding radius for the 

algorithm which is in presently in operation [10]. However, it will enhance the performance but 

at the cost of linear advancement of complexity depends on cardinality of test-set. 

 

In the presented work, we being consider decoding of RS codes through Chase technique of 

using test-vector in sets which are same in every manner but with a small count of indices. With 

the introduction of point-by-point interpolation algorithm  through which a procedure is 

presented to show up the similarity for the demise of complexity of an starting decoding step of 

interpolation.  

 

1.4 LCC Algorithm 

In this the   unreliable positions of the code are chosen by multiplicity assignment according to 

the reliability information given at the input whereas   is considered to be a positive integer. 
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Since every   positions is allocate with the two interpolation points such as: ( , )j j   and 

'( , )j j  , and anyone point ( , )j j   is assumed to be allocate to remaining n–  positions of 

code. And for the determination of mapping encoding the field element  
j  is being used 

whereas 
j and 

'

j symbolizes the hard decision along with symbol for jth code position which is 

most likely respectively. Also the multiplicity of every interpolation point is found to be one. For 

every position of code only one interpolation point is need to make the test vector while the 

overall test vector is 2 and there is only two participating points for every single   most 

unreliable code positions. 
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CHAPTER 2  

REVIEW OF LITERATURE 
 

Kuang Yung Liu et al. 1984 [8] endeavor to adapt for the known decoding procedures in order 

to gain for a recursive along with repetitive process which was appropriate for the VLSI 

implementation as well as pipelining. In this the author demonstrated about the symbol-slice 

logic architecture which is apt for the VLSI implementation of RS codes. 

Since the author estimated, if bit-serial as well as bit-parallel processes are work for the 

syndrome generator along with for the LFSR synthesis chips respectively. After that both the 

chips then utilizes almost 4000 number of MOS gates and the throughput of this decoding 

system is approximately 4Mbit/s. The author claimed that because of size and power benefits in 

the VLSI decoding system and the speed of decoding can easily raised up to a certain level using 

distributed processing scheme. 

 

Gary K. Maki et al. 1986 [5] presented the VLSI implementation of decoder which accepts data 

at the rates of 80Mbit/s. To make it possible a total of 7 chips are used and operate using the 

symbol clock while the system clock for chip is already set and nearly 1.65 billion GF 

operations/sec are attained with this chip set. The author reviewed various papers from the 

literature , in one such paper it required 40 VLSI design chips with 100 support chips also 

operating at 2.5Mbit/s rate. It uses systolic arrays while the author presented a group of custom 

architectures utilized by each module. 

The author design steps followed the sequence as Syndrome generator, Euclid divide/multiply, 

Polynomial solver and finally error correction. The decoder presented can be able of rectifying 

the errors up to 16 symbol having 80Mbit/s data rate. 

 

Hung-Wei Chen et al. 1995 [11] reckoned about the VLSI based architecture for RS decoder 

with the erasure function and via modified Euclid’s algorithm for solving the key equation in 

order to diminish the hardware. The correction ability is found to be 20bytes/block whereas 

block length ranges from 96 to 255 bytes and the complexity of Hardware depends on 2t. The 

author used erasure function in his system and it is defined as an error whose position is known 

but not magnitude. With erasure,  RS(N,K) having distance d=2t+u+1 can rectify ‘u’ erasures 
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and t errors. The author choose Euclid’s algorithm for solving key equation because it is easy to 

understand than BMA, easy to execute, always congregate for a zero remainder in a limited 

count of the steps, most importantly hardware complexity is not rise when t is increased. 

 

Wolfgang Wilhelm et al. 1999 [12] presented a VLSI architecture for RS decoding technique 

which is scalable w.r.t the throughput rate and it is achieved through systematic time-sharing 

technique. Using this, a new multiplexed architecture has been created to produce key equation 

as well as to implement the field divisions finite.  

An RS(n,n-2t) is defined over a certain finite field GF(2
m

), 2t parity symbols is include in each 

code of length n. By Chien search, error location is revealed which is time-domain multiplexed 

along with Forney algorithm utilized to correct the code error by adding the quotient to the 

received symbol. Decoder can be extended further for supporting erasures corrections, in which 

correction capability can be increased by marking the position of detected erasures without 

changing the parity symbols. The advantage is that erasure need one parity symbol instead of 

two. 

 

Dong-Sun Kim et al. 1999 [15] discussed about the digital coded system is used presently for 

transmission of information and also for the data storage that founds to be similar in both of 

them. The outcome of the storage or the channel varies from the available input as they are 

sensitive for errors that produce some results from the affected transmission. Due to this, RS 

codes are being used in various fields. The author of this paper shows the VLSI design of RS 

decoder consist of the enhancement of architecture supporting parallel as well as pipeline way of 

processing, so as to improve its speed and minimize its power through its design. He also 

analyzed the decoding algorithm of RS codes for proficient pipeline and parallel architectures.    

 

Anh Dinh et al. 2004 [6] deduce the high speed implementation of RS(255,239) decoder by 

using 180nm CMOS technology with 8-error correcting capability. The decoder uses the concept 

of division free algorithm and the modified BMA along with key equation solver, a terminated 

process in Chien search. The complexity is low, also due to low latency of inversion circuits and 

power-sum it boost-up the speed of the decoder and chip area is 1.5mm
2
 and data processing rate 

is greater than 1Gbits/s.  
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Richard Huynh et al. 2009 [14] proposed that in most of the present communication system 

have vastly adopted the RS codes due to its proficient performance. In this paper, author also 

describes some new ways for detecting the error in syndrome block in a RS decoder. Instead of 

having whether the codeword is right it is acceptable to calculate only few syndrome which was 

less than the half of the available syndromes. The algorithm of error detection in the syndrome 

block need not require any sort of modification for a basic implementation of hardware for the 

coefficient of syndrome computation. It helps in demising of the computational complexity of a 

syndrome block which results in reducing the required power.   

 

W. Zhang et al. 2012 [13] proposed that ASD of the RS codes is able to avail efficient gain in 

terms of coding as compared to the HDD along with the complexity in polynomial. When look 

for the another ASD based algorithm the LCC founds to be minimum computational complexity 

along with 2  test vectors and also same or a better gain. In order to minimize the interpolation 

latency, number of interpolators in the pipeline manner can be recommended by the LCC 

decoding but there is some trade-off in terms of power consumption as well as in area that is not 

supposed to preferred in the pipeline decoder.  The solution of this is to assume a serial LCC 

decoder proposed by author having low complexity for the RS(458, 410) code on the GF of 2
10

.  

 

Kunal et al. 2012 [19] present the Gate Diffusion Input (GDI) techniques. As it is fast and 

suitable for low power circuits with the less amount of transistor as compared with the 

conventional CMOS based design along with presently existing PTL techniques. This technique 

allows reuse of proficient design algorithm which are depends on Shannon expansion method. 

That results in generation of combinational circuits through this GDI in the VLSI industry 

without using any sophisticated library. So this makes the GDI to be an extra benefit when 

compared with CMOS as well as PTL logic. 
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CHAPTER 3  

PRESENT WORK 
 

3.1 Inference of Report 

In this report, the research work has been presented for the VLSI design of the Reed-Solomon 

codes which were having very significant applications in deep space telecommunications. The 

authors in various papers shows a traverse approach to system design, through dealings among 

the algorithm design and core architecture and circuit accomplishment, can capitulate the most 

significant upgradation in design intricacy. 

At the ASD algorithm level, LCC is the propose subsection that comes after various algorithms 

which has been applied on the RS codes for decoding, Si like BMA, Euclid and various erasures 

techniques. At VLSI level, the number of MOS chips embedded in design of system with 

complexity, power and area considerations are the compensation of VLSI decoding systems with 

all these speed can be raised with the advancement in CMOS technology. The data rates ascend 

from 4Mbits/s to 1.28Gbits/s  

Some authors support their work by showing the Verilog implementation for system design and 

C coding to obtain the results of various mathematical concepts. The Cadence virtuoso designing 

of the RS codes decoding system at various CMOS technology level gives various result of 

improvement in the field of complexity reduction. The optimization of transistor or MOS chips is 

the major concern in the growing technology in the design of various decoding systems with 

applied algorithms. 

The CD Player is only a startup application. The commercial market/world is apt for rising 

mobile, while on the same side demanding reliable, fast access to sales, marketing, also 

accounting information. Unluckily the mobile channel is revolting environment for 

communication; with deep-fades has an eternal existence. RS codes are the only best solution; no 

any other error control technique can match its reliability performance. The optical channel gives 

another group of problems. Shot noise, dispersive, noisy medium line of sight systems, 

generating noise bursts are best taken care off  by RS codes. As we can see optical fibers in high-

speed multiprocessors, so RS codes are also worked here. In more advanced technology percept, 
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occasional deep-space probe, RS codes will keep on to be working for force communication 

systems. 

3.2 Problem Statement 

The Parameters such as transistor count, power consumption, delay and power-delay product are 

need to be analyzed in Cadence Virtuoso using 45nm technology with three logic styles such as 

CMOS, PTL and GDI for the various segments of RS decoder separately and unite all to make a 

SOC of RS decoder block. The sub- Architecture blocks of LCC based RS decoder are shown in 

the following section below. 

 

3.2.1   Erasure Architecture 

 

Fig.3.1 Block diagram of Erasure Magnitude Computation [13] 

 

3.2.2   Syndrome Computation Architecture 

 

Fig.3.2. Block Diagram of Syndrome Computation [13] 
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3.2.3 Inverse Computation Architecture 

 

Fig.3.3. Block Diagram of Inverse Computation [13] 

 

3.2.4 Polynomial Selection Architecture 

 

Fig.3.4. Block Diagram of Polynomial Selection [13] 
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3.2.5 Error Computation Architecture 

 

Fig.3.5 Block diagram for Error ei Computation [13] 

 

3.3 Constraint Used 

The constraint which defines the system model used in RS code can be express with the 

following constraints and notation [4]:  

m the number of bits/symbol which lies in the range   3 16m  . 

n   the number of symbols/codeword which lies in range 3 2^ ( 1)n m   . 

p    the number of error correctable capability symbol errors. 

w    the number of words used by the Reed Solomon Encoder to encode before transmission     

           the data sequences. 

2p     the number of parity check symbols in the transmitted codeword. 

k    the number of symbols/message in the transmitted codeword . 

C(x)  the illustration of code block of the range of  N-1 polynomial. 

R(x)    the received polynomial received at the receiver. 

T(x)   the transmitted polynomial at the transmitter. 

G(x)    the generator polynomial. 

S(x)    the Syndrome Polynomial. 

3.4 ASD Decoding Algorithm 

It takes into account an RS (n, k) code which would create over GF ( 2q ). It is executed in three 

steps namely multiplicity assignment, interpolation and factorization. The function of 
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multiplicity assignment was to decide the interpolation points and interpolation locate a bivariate 

polynomial ( , )Q x y  having minimum (1, k -1) weighted degree crossing each interpolation 

point. After that factorization calculates all factors for ( , )Q x y  which is represented in the form 

of ( )y f x . The implementation process for ASD decoder is shown in Fig.5.1. [16]. 

 

Fig.3.6. ASD Decoder Block  

In Fig.5.1, the re-encoder is designed to locate the codeword   which has the similar symbols as 

in received word r in most consistent k  code position, which constituent a set R. Coordinate 

transformation also applies to the interpolation points. Accordingly, the decoding can be applied 

on r  and those points which have code locations in R was consider for interpolation process 

[16]. The outcome of factorization process used as syndromes in Berlekamp – Massey algorithm 

(BMA) for retrieving of errors in code position in R. Then, a new erasure decoding is making 

functional for recovering of complete codeword [16]. 

3.5 Re-Encoded LCC Decoding Technique 

The LCC algorithm of ASD has multiplicity assignment one of its feature where ( , )j j   and 

'( , )j j  are the points which are allocate to each of η least consistent code position. In this field 

element is represented as j  which was encoded in evaluation map encoding and the hard-

decision symbol is shown by j  whereas '

j  was second jth most expected symbol for code 

position. The polynomial ( , )Q x y  which was found through interpolation can be solved through 

'kotter s algorithm [17], which initiate with 
(0) ( , ) 1Q x y  and  

(1) ( , )Q x y y  for LCC decoding 

Multiplicity

Assignment
FactorizationInterpolation

Re-

Encoder
BMA

Erasure

Decoder

Channel
information

C
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having high rate codes. The Block diagram of LCC decoder is shown in Fig. 3.7 [17]. 

 

  

Fig.3.7. Block Diagram of Re-Encoded LCC Decoder 

Now, developing a Grobner  basis by allowing iteratively updating of two polynomials so that it 

can pass an additional point at a time. Then the polynomial found to be lowest weighted degree 

was considered to be the least weighted degree among all the present polynomial. Hence, lowest 

weighted degree polynomial from the most recent iteration was the required interpolation output. 

Then factorization determines all the factors related to ( , )Q x y  in the form such as ( )y f x  with 

constituent degree of ( ( ))f x k and each ( )f x in the list are equivalent to a message polynomial 

[17]. 

 

3.6 Transformed LCC Decoding with Re-Encoding 

In order to make simpler the interpolation in algebraic soft decision (ASD), the re-encoding and 

coordinate transformation algorithm can be applied on it. Let indicate the arrangement of 

majority of k  reliable code position by R in r. The erasure decoding applied in re-encoding to 

obtain the codeword . Now, the decoding is carried on [18]: 

                                                                r r                                                      (1) 

Let us assume the error vector e is being adjoin with the codeword and it can be represented as 

[18]: 

r c e                                                                         (2) 

Also, we can obtain another codeword using the similar error vector which can be represented as 

Channel 
Information

r cM ultip lic ity
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[18]: 

    r c e c e                                                                  (3) 

In addition for i R , 

  0i i ir r                                                                     (4) 

So the interpolation process can be applied on various code positions which were available in R 

and it can be applied on rest of the code position which was accessible only in n k  code 

position. Therefore, the polynomials which were pre-computed and factor of these polynomial 

can be computed as [18]: 

  ( ) ( )i R iv x x                                                            (5) 

The length of polynomial can be further decrease up to k  by taken out the factor using the 

process of coordinate transformation. 

 

 

Fig.3.8. Block Diagram of transformed LCC Decoding 

One approach can be applied using 1( )q x  and 0 ( )q x  such that errors can be locate in code 

position of R while using Chien search and Forney’s algorithm. After the errors in R are rectified 

so to avoid the complexity originate from factorization, the erasure decoding procedure can be 

applied to retrieve the n k symbols in R . Instead to gain the message polynomial ( )f x  of c  
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proceed with the multiplication of ( )v x back to the interpolation output. 

3.7 Pass-Transistor Logic 

Primary inputs able to drive gate terminals along with source-drain terminals. It requires lower 

switching energy to charge up a node and it is due to reduced voltage swing.  

The output terminal/node get charge from 0 to Vdd – Vth while the energy require for this to 

charge from the power supply source is given by ( )L dd dd thC V V V  . When the consumed 

switching power is getting lower, it may try to consume static power when the output terminal is 

HIGH. 

Since there are circuits that can be differential with complementary inputs as well as outputs are 

available. And these type of logics need extra circuitry to work on and those can be complex 

gates like XOR gates, MUX as well as ADDERS. We use Complementary Pass Transistor Logic 

(CPL) which is a static gate and it is because output can be connected to Vdd or Gnd with a path 

having low-resistance. 

 

Fig.3.9. CPTL AND/ NAND gate 
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Fig.3.10. CPTL XOR/ XNOR gate 

Advantage of PTL in contrast to CMOS design: 

 Due to the small node capacitances, it has high speed. 

 When look into account the number of transistor than the power dissipation is found to be 

low. 

 Due to low area, the interconnection effects are also lower. 

3.8 Gate-Diffusion Input (GDI) Technique 

The GDI cell consists of three inputs namely: 

 G  means common gate input of nMOS and pMOS. 

 P means input to source/drain of pMOS. 

 N means input to source/drain of nMOS.  

 In this the bulk of nMOS is connected to input N while bulk of  pMOS is connected to input P 

such that it will randomly biased in contrast with the CMOS inverter [19]. 
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Fig.3.11. Basic GDI Cell [19] 

It can be observed that a number of functions can be implemented using this GDI technique. 

TABLE 3.1 Basic functions using GDI cell 

N P G OUT FUNCTION 

0 1 A A’ INVERTER 

0 B A A’B F1 

B 1 A A’+B F2 

1 B A A+B OR 

B 0 A AB AND 

C B A A’B+AC MUX 

B’ B A A’B+B’A XOR 

B B’ A AB+A’B’ XNOR 

 

As for an example, MUX design is consider as complex design needs 8-12 transistors when 

using conventional CMOS but that can be designed with GDI using only two transistors. 

 



Page | 20  

 

3.9 Design Using CMOS Logic Style 

3.9.1 Inverter  

 
 

Fig.3.12 CMOS based Inverter 

3.9.2 NOR gate  

 
 

Fig.3.13 CMOS based NOR gate 
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3.9.3 NAND gate  

 
 

Fig.3.14 CMOS based NAND gate 

 

3.9.4 AND gate  

 
 

Fig.3.15 CMOS based AND gate 
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3.9.5 XOR gate  

 
 

Fig.3.16 CMOS based XOR gate 

 

3.9.6 MUX 2:1  

 

Fig.3.17 CMOS based MUX 2:1 
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3.10 Design Using PTL Logic Style 

3.10.1 NOR gate 

 

Fig.3.18 PTL based NOR gate 

 

3.10.2 NAND gate 

 
 

Fig.3.19 PTL based NAND gate 
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3.10.3 AND gate 

 
 

Fig.3.20 PTL based AND gate 

 

3.10.4 XOR gate 

 

Fig.3.21 PTL based XOR gate 
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3.11 Design Using GDI Logic Style 

3.11.1 OR gate 

 

Fig.3.22 GDI based OR gate 

3.11.2 AND gate 

 
 

Fig.3.23 GDI based AND gate 
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3.11.3 NAND gate 

 
 

Fig.3.24 GDI based NAND gate 

 

 

 

 

3.11.4 XOR gate 

 

 

 
 

Fig.3.25 GDI based XOR gate 
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3.11.5 MUX 2:1 

 
 

Fig.3.26 GDI based MUX 2:1 

 

3.12 Design of Components 

In this section number of components was designed using the symbols of various gates and 

combinational circuits of the above Logic styles.  

3.12.1 1-bit Multiplier 

 
 

Fig.3.27 Circuit of 1-bit Multiplier 
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3.12.2 2-bit Multiplier 

 
 

Fig.3.28 Circuit of 2-bit Multiplier 

3.12.3 Half Adder 

 
 

Fig.3.29 Circuit of Half Adder 
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3.12.4 Full Adder 

 

Fig.3.30 Circuit of Full Adder 

3.12.5 Half Subtractor 

 

Fig.3.31 Circuit of Half Subtractor 
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3.12.6 Full Subtractor 

 

Fig.3.32 Circuit of Full Subtractor 

3.12.7 D Flip-Flop 

 

Fig.3.33 Circuit of D-FF 
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3.12.8 Shift Register 

 

Fig.3.34 Circuit of Shift Register 

 

3.13 Sections of Reed-Solomon Decoder 

3.13.1 Syndrome Computation 

 
Fig.3.35 Schematic of Syndrome Computation 
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3.13.2 Erasure Magnitude Computation 

 
 

Fig.3.36 Schematic of Erasure Magnitude Computation 
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3.13.3  Inverse Computation 

 

Fig.3.37 Schematic of Inverse Computation 
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3.13.4 Polynomial Selection 

 
Fig.3.38 Schematic of Polynomial Selection 
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3.13.5 Error Computation 

 

 

Fig.3.39 Schematic of Error Computation 
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3.14 Final Schematic of Reed-Solomon Decoder 

 

 

Fig.3.40 Schematic of Reed-Solomon Decoder 
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3.15 Reed-Solomon Decoder SOC using GDI 

 

Fig.3.41 GDI based SOC of Reed-Solomon Decoder 
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3.16 Reed-Solomon Decoder SOC using PTL 

 

 
 

 

 

Fig.3.42 PTL based SOC of Reed-Solomon Decoder 
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CHAPTER 4  

RESULT AND DISCUSSION 
 

4.1 Graphs for Power Analysis of Parts of Reed Solomon decoder 

 

 
Fig.4.1 Power Graph for Inverse Computation for all three logic styles 

 

 
Fig.4.2 Power Graph for Erasure Magnitude Computation for all three logic styles 
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Fig.4.3 Power Graph for Syndrome Computation for all three logic styles 

 

 
 

Fig.4.4 Power Graph for Error Computation for all three logic styles 
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4.2 Graphs for Delay Analysis of Parts of Reed Solomon decoder 

 
 

Fig.4.5 Delay Graph for Inverse Computation for all three logic styles 

 

 
 

Fig.4.6 Delay Graph for Erasure Magnitude Computation for all three logic styles 
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Fig.4.7 Delay Graph for Syndrome Computation for all three logic styles 

 

 
Fig.4.8 Delay Graph for Error Computation for all three logic styles 
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4.3 Graphs for PDP Analysis of Parts of Reed Solomon decoder 

 
 

Fig.4.9 PDP Graph for Inverse Computation for all three logic styles 

 

 
 

Fig.4.10 PDP Graph for Erasure Magnitude Computation for all three logic styles 
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Fig.4.11 PDP Graph for Syndrome Computation for all three logic styles 

 

 
 

Fig.4.12 PDP Graph for Error Computation for all three logic styles 
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4.4 Power Analysis 

4.4.1 CMOS Logic style 

TABLE 4.1 Power values for CMOS logic Style 

Sub-Circuits 2V 1.5V 1V 

INV 2.90E-07 4.05E-08 4.78E-09 

NOR 1.46E-07 3.80E-08 1.52E-08 

NAND 3.92E-07 4.91E-08 2.89E-08 

XOR 9.58E-07 1.82E-07 4.98E-08 

AND 5.45E-07 1.49E-07 5.66E-08 

HALF_ADDER 1.61E-06 5.75E-07 2.22E-07 

FULL_ADDER 3.36E-06 1.36E-06 5.40E-07 

HALF_SUBTRACTOR 1.58E-06 4.25E-07 1.50E-07 

FULL_SUBTRACTOR 3.44E-06 9.67E-07 3.60E-07 

D_FF 1.04E-06 3.44E-07 1.36E-07 

MUL_1B 5.45E-07 1.49E-07 5.66E-08 

MUL_2B 3.37E-06 1.25E-06 4.87E-07 

MUX_2:1 3.63E-07 2.71E-07 5.25E-05 

SHIFT_REGISTER 3.25E-06 1.19E-09 4.82E-07 

ARCH_INV_COMP 3.26E-04 1.50E-04 4.93E-05 

ERASURE_MAG 1.75E-04 9.37E-05 1.41E-04 

SYNDROME_COMP 1.69E-04 4.88E-05 1.09E-05 

ERROR 1.14E-06 4.72E-07 4.07E-05 
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4.4.2 PTL Logic style 

TABLE 4.2 Power values for PTL logic Style 

Sub-Circuits 2V 1.5V 1V 

INV 2.90E-07 4.05E-08 4.78E-09 

NOR 5.10E-06 9.91E-08 4.23E-08 

NAND 5.41E-06 1.39E-07 4.18E-08 

XOR 4.62E-07 1.23E-07 3.75E-08 

AND 3.74E-07 8.32E-08 3.27E-08 

HALF_ADDER 1.46E-05 1.51E-06 3.80E-07 

FULL_ADDER 2.61E-05 3.37E-06 8.64E-07 

HALF_SUBTRACTOR 1.04E-06 1.71E-07 3.98E-08 

FULL_SUBTRACTOR 3.26E-05 8.99E-06 4.38E-07 

D_FF 4.57E-06 8.71E-07 2.66E-07 

MUL_1B 5.66E-06 2.17E-07 8.23E-08 

MUL_2B 1.83E-04 4.03E-06 4.97E-07 

MUX_2:1 9.17E-06 4.26E-07 5.26E-05 

SHIFT_REGISTER 2.55E-05 3.13E-06 4.71E-07 

ARCH_INV_COMP 3.56E-04 1.43E-04 5.82E-05 

ERASURE_MAG 1.28E-04 1.43E-04 1.22E-04 

SYNDROME_COMP 1.05E-04 1.47E-05 5.60E-06 

ERROR 2.15E-05 1.18E-06 4.09E-05 
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4.4.3 GDI Logic style 

TABLE 4.3 Power values for GDI logic Style 

Sub-Circuits 2V 1.5V 1V 

INV 2.90E-07 4.05E-08 4.78E-09 

NOR 1.46E-07 3.80E-08 1.52E-08 

NAND 5.71E-06 2.16E-07 5.89E-08 

XOR 4.21E-07 2.07E-07 1.43E-05 

AND 3.78E-09 4.66E-09 4.20E-09 

HALF_ADDER 1.71E-05 1.82E-06 3.53E-07 

FULL_ADDER 2.22E-05 4.69E-06 8.67E-07 

HALF_SUBTRACTOR 4.49E-07 1.72E-07 1.47E-05 

FULL_SUBTRACTOR 2.16E-05 1.02E-06 3.15E-05 

D_FF 1.19E-05 4.77E-07 2.39E-07 

MUL_1B 5.66E-06 2.17E-07 8.23E-08 

MUL_2B 8.44E-05 1.04E-08 5.49E-07 

MUX_2:1 4.05E-08 5.47E-08 1.46E-05 

SHIFT_REGISTER 2.51E-05 2.91E-06 4.62E-07 

ARCH_INV_COMP 3.59E-04 1.17E-04 1.47E-04 

ERASURE_MAG 1.57E-04 4.84E-05 3.17E-05 

SYNDROME_COMP 4.37E-05 1.05E-05 1.84E-06 

ERROR 4.82E-05 4.22E-07 1.45E-05 
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4.5 Delay Analysis 

4.5.1 CMOS Logic style 

TABLE 4.4 Delay values for CMOS logic Style 

Sub-Circuits 2V 1.5V 1V 

INV 1.14E-11 1.19E-11 2.67E-11 

NOR 2.00E-08 2.00E-08 2.00E-08 

NAND 2.00E-08 2.00E-08 2.00E-08 

XOR 9.66E-09 9.59E-09 2.01E-08 

AND 2.41E-10 2.94E-10 3.60E-10 

HALF_ADDER 4.13E-11 4.75E-11 4.52E-11 

FULL_ADDER 9.90E-09 9.88E-09 9.84E-09 

HALF_SUBTRACTOR 2.20E-11 2.20E-11 1.02E-08 

FULL_SUBTRACTOR 9.88E-09 3.98E-08 3.96E-08 

D_FF 3.01E-08 3.02E-08 9.77E-09 

MUL_1B 1.98E-08 1.97E-08 1.97E-08 

MUL_2B 3.96E-08 3.95E-08 3.94E-08 

MUX_2:1 2.97E-08 2.96E-08 2.95E-08 

SHIFT_REGISTER 2.03E-08 2.04E-08 2.07E-08 

ARCH_INV_COMP 9.51E-08 9.51E-08 9.52E-08 

ERASURE_MAG 8.79E-08 8.88E-08 8.91E-08 

SYNDROME_COMP 4.11E-08 4.81E-08 4.82E-08 

ERROR 3.52E-08 3.53E-08 3.53E-08 
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4.5.2 PTL Logic style 

TABLE 4.5 Delay values for PTL logic Style 

Sub-Circuits 2V 1.5V 1V 

INV 3.24E-13 5.06E-12 2.17E-11 

NOR 9.86E-09 9.86E-09 9.80E-09 

NAND 9.83E-09 9.81E-09 4.00E-08 

XOR 2.00E-08 2.00E-08 5.01E-08 

AND 1.01E-08 4.02E-08 4.03E-08 

HALF_ADDER 1.99E-08 1.99E-08 2.05E-08 

FULL_ADDER 1.00E-08 1.00E-08 1.01E-08 

HALF_SUBTRACTOR 4.01E-08 4.00E-08 4.00E-08 

FULL_SUBTRACTOR 3.00E-08 4.03E-08 4.03E-08 

D_FF 1.00E-08 1.01E-08 1.01E-08 

MUL_1B 2.41E-10 2.94E-10 3.60E-10 

MUL_2B 3.96E-08 3.95E-08 3.94E-08 

MUX_2:1 3.01E-08 3.02E-08 3.02E-08 

SHIFT_REGISTER 2.00E-08 5.00E-11 5.97E-11 

ARCH_INV_COMP 1.45E-07 1.21E-07 8.09E-08 

ERASURE_MAG 8.91E-08 8.22E-08 8.11E-08 

SYNDROME_COMP 4.00E-08 5.99E-08 5.99E-08 

ERROR 3.51E-08 3.23E-08 3.23E-08 
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4.5.3 GDI Logic style 

TABLE 4.6 Delay values for GDI logic Style 

Sub-Circuits 2V 1.5V 1V 

INV 3.24E-13 5.06E-12 2.17E-11 

NOR 2.00E-08 2.00E-08 2.00E-08 

NAND 9.84E-09 9.83E-09 9.80E-09 

XOR 5.01E-08 5.01E-08 5.02E-08 

AND 4.02E-08 4.03E-08 4.03E-08 

HALF_ADDER 5.01E-08 5.01E-08 3.87E-08 

FULL_ADDER 9.00E-08 9.00E-08 4.00E-08 

HALF_SUBTRACTOR 9.04E-08 9.05E-08 9.05E-08 

FULL_SUBTRACTOR 4.03E-08 4.04E-08 4.05E-08 

D_FF 9.98E-09 1.00E-08 1.02E-08 

MUL_1B 4.02E-08 4.02E-08 4.03E-08 

MUL_2B 8.05E-08 8.06E-08 8.06E-08 

MUX_2:1 4.98E-08 4.99E-08 5.00E-08 

SHIFT_REGISTER 2.02E-08 2.63E-10 1.45E-07 

ARCH_INV_COMP 1.20E-07 1.23E-07 1.27E-07 

ERASURE_MAG 4.41E-08 8.79E-08 4.27E-08 

SYNDROME_COMP 1.00E-07 1.01E-07 4.09E-08 

ERROR 3.51E-08 3.52E-08 3.53E-08 
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4.6 Power-Delay-Product (PDP) Analysis 

4.6.1 CMOS Logic style 

TABLE 4.7 PDP values for CMOS logic Style 

Sub-Circuits 2V 1.5V 1V 

INV 3.30E-18 4.80E-19 1.81E-19 

NOR 2.92E-15 4.60E-16 3.04E-16 

NAND 4.85E-15 1.58E-15 5.77E-16 

XOR 9.25E-15 1.75E-15 1.00E-15 

AND 1.31E-16 4.39E-17 2.04E-17 

HALF_ADDER 4.65E-17 2.73E-17 1.66E-17 

FULL_ADDER 3.33E-14 1.34E-14 5.32E-15 

HALF_SUBTRACTOR 3.46E-17 9.32E-18 1.52E-15 

FULL_SUBTRACTOR 3.39E-14 3.84E-14 1.43E-14 

D_FF 3.14E-14 1.04E-14 1.32E-15 

MUL_1B 1.08E-14 2.95E-15 1.11E-15 

MUL_2B 1.34E-13 4.95E-14 1.92E-14 

MUX_2:1 1.08E-14 8.04E-15 1.55E-12 

SHIFT_REGISTER 4.61E-14 2.43E-17 9.95E-15 

ARCH_INV_COMP 3.10E-11 1.43E-11 4.59E-12 

ERASURE_MAG 1.54E-11 8.32E-12 1.26E-11 

SYNDROME_COMP 1.20E-11 4.16E-12 8.49E-13 

ERROR 4.02E-14 2.73E-14 2.50E-12 
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4.6.2 PTL Logic style 

TABLE 4.8 PDP values for PTL logic Style 

Sub-circuits 2V 1.5V 1V 

INV 9.39E-20 2.05E-19 1.47E-19 

NOR 5.03E-14 9.77E-16 4.15E-16 

NAND 5.32E-14 1.37E-15 1.67E-15 

XOR 1.32E-14 2.45E-15 1.88E-15 

AND 3.76E-15 3.35E-15 1.32E-15 

HALF_ADDER 2.92E-13 3.00E-14 4.81E-15 

FULL_ADDER 2.61E-13 3.38E-14 8.68E-15 

HALF_SUBTRACTOR 4.26E-14 4.82E-15 1.59E-15 

FULL_SUBTRACTOR 9.76E-13 3.62E-13 2.57E-14 

D_FF 4.60E-14 8.79E-15 2.68E-15 

MUL_1B 1.36E-15 4.39E-17 2.96E-17 

MUL_2B 4.26E-12 2.38E-13 2.74E-14 

MUX_2:1 2.76E-13 1.28E-14 1.59E-12 

SHIFT_REGISTER 5.11E-13 1.56E-16 4.01E-17 

ARCH_INV_COMP 5.15E-11 1.72E-11 4.71E-12 

ERASURE_MAG 1.14E-11 1.18E-11 9.87E-12 

SYNDROME_COMP 4.32E-12 8.80E-13 3.35E-13 

ERROR 4.54E-13 3.82E-14 2.29E-12 
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4.6.3 GDI Logic style 

TABLE 4.9 PDP values for GDI logic Style 

Sub-Circuits 2V 1.5V 1V 

INV 9.39E-20 2.05E-19 1.47E-19 

NOR 2.92E-15 4.60E-16 3.04E-16 

NAND 5.62E-14 2.12E-15 5.77E-16 

XOR 2.11E-14 1.04E-14 4.16E-13 

AND 1.52E-16 1.88E-16 2.50E-16 

HALF_ADDER 8.55E-13 9.14E-14 1.37E-14 

FULL_ADDER 1.99E-12 4.22E-13 4.07E-14 

HALF_SUBTRACTOR 5.87E-14 1.55E-14 1.33E-12 

FULL_SUBTRACTOR 1.52E-12 4.20E-14 2.22E-12 

D_FF 1.19E-13 4.80E-15 2.44E-15 

MUL_1B 2.27E-13 8.74E-15 3.31E-15 

MUL_2B 4.79E-12 8.39E-16 4.43E-14 

MUX_2:1 2.02E-15 2.73E-15 4.31E-13 

SHIFT_REGISTER 5.06E-13 4.65E-16 4.86E-14 

ARCH_INV_COMP 4.31E-11 1.44E-11 1.86E-11 

ERASURE_MAG 1.17E-11 4.25E-12 1.35E-12 

SYNDROME_COMP 4.39E-12 1.06E-12 1.12E-13 

ERROR 1.69E-12 2.54E-14 5.10E-13 
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4.7 Discussion 

After all the work and analysis the power consumption using GDI technology was found to be 

less than the CMOS and PTL Logic styles while the delay found higher in PTL as compared to 

CMOS and GDI. The transistor count was found less in GDI as compared to CMOS and PTL. 

Thus, VLSI Design using GDI Logic level was found efficient in the designing of Reed Solomon 

Decoder.  
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CHAPTER 5  

CONCLUSION  
 

5.1 Conclusion 

 

Since various architectures for the LCC have been depicted, therefore there is not an exact 

solution to a question that which LCC decoding technique was more proficient with the 

alteration of various decoding parameters. The diverse   along with code rates simultaneously 

resolve error rectification capability. In LCC decoder, combination of enhanced rate RS code 

with smaller   may consist of the related performance as in larger   along with lower code rate. 

Also, the lesser t will minimize the complexity in hardware whereas the greater   raise the 

amount of the test vectors in a vividly manner. Since if we increase   by 1, it will cause the test 

vectors to be doubled and in return which may cause to twice the hardware in order to maintain 

them and trigger more latency. Conversely, gain in the t will amounts to restricted hardware. 

A detailed and reviewed work on LCC implementation of RS decoder has been seen through 

different forms of decoder designs; selection of test vectors and after the interpolation is applied 

only on the specific selected test vector. In addition proficient architecture of interpolation, 

polynomial selection and evaluation, erasure computation was developed. Although the 

reduction in various technology parameters was observed with an increase in . Compared to 

past approaches, considerable area reduction and efficiency enhancement has been achieved 

without any loss of throughput. The latency of the RS decoder can be reduced with the help of 

pipelining and syndrome computation. Future work will concentrate on further advancement in 

technology and improvement  in code recovery through various technology based parameters. 
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APPENDIX 
 

LIST OF ABBREVATIONS 

 

B: 

       BMA: Berlekamp-Massey Algorithm 

C: 

        CMOS: Complementary Metal Oxide Semiconductor 

        CD: Compact Disc 

D: 

        DRAM: Dynamic Random Access Memory 

E: 

         ESA: European Space Agency 

F: 

         FEC:  Forward Error Correction 

         FH: Frequency Hopping 

G: 

         GF: Galois Field 

I: 

         IEEE: Institute of Electrical and Electronics Engineers 

L: 

         LFSR: Linear Feedback Shift Register 

         LCC: Low Complexity Chase 

M: 

         MOS: Metal Oxide Semiconductor 

N: 

       NASA: National Aeronautic Space Agency 

R: 

       RS: Reed-Solomon 
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S: 

        SS: Spread Spectrum 

 

V: 

        VLSI: Very Large Scale Integration 

 

 

 


