
VLSI IMPLEMENTATION OF LCC REED SOLMON DECODER

 DISSERTATION-II

Submitted in partial fulfillment of the

Requirement for the award of the

Degree of

MASTERS OF TECHNOLOGY

IN

Electronics & Communication Engineering

By

Remalli Dinesh

(11006538)

Under the Guidance of

Mr. Sandeep Bansal

Assistant Professor

ECE

DEPARTMENT OF ELECTRONICS AND

COMMUNICATION ENGINNERING

LOVELY PROFESSIONAL UNIVERSITY

Phagwara-144002, Punjab (India)
APRIL 2015

 PAC form

I

ABSTRACT

In this report, we design LCC decoders for Reed-Solomon (RS) codes. The complete Syndrome

generator for RS(128,Kx) and RS(64,Ky) is the first effort in published research for Reed

Solomon codes. The known decoding techniques for Reed-Solomon codes are customized to

obtain a technique which is suitable for VLSI implementation. The chip architecture of key

building block of VLSI RS decoder system are subsequently analyzed for its thorough

understanding.

In 0.18µm CMOS technology, the preferred Power and delay was analysed for all the section of

LCC Reed-Solomon Decoder which was suitable for scalable VLSI architecture of RS decoding

technique. The experimental work start with the design and analysis of PTL AND gate with

power and Delay analysis. After while, all the basic circuits was designed in Cadence Virtuoso

using the 45 nm technology library of Cadence which collaborate help in designing of main

module of Reed-Solomon decoder. The design of RS decoder is designed for three level of

design techniques such as CMOS, PTL and GDI techniques. The Power, delay and the PDP

values for each and every sub-module is being analyzed and reduce the complexity of the

hardware as move from CMOS to PTL to GDI in terms of the transistor count while there are

several other trade-off affected with this design flow. The RS codes is constrained to deep space

communication, with the growth in VLSI technology, the scientific interest for incorporating RS-

decoders in large volume applications rise permanently.

II

CERTIFICATE

This is to certify that Remalli Dinesh (11006538) has completed M.Tech dissertation titled

“VLSI Implementation of LCC Reed Solomon Decoder” under my guidance and supervision.

To the best of my knowledge, the present work is the result of his original investigation and

study. No part of the dissertation has ever been submitted for any other degree or diploma.

 The dissertation is fit for the submission and the partial fulfillment of the conditions for

the award of M.Tech Electronics and Communication Engineer.

Date: ______________ Mr. Sandeep Bansal

Assistant Professor

Department of ECE

Lovely Professional University

III

 ACKNOWLEDGEMENT

Foremost, I would like to express my sincere gratitude to Mr. Sandeep Bansal who gave his

heart whelming full support in the compilation of this dissertation-II with his valuable

suggestions and encouragement to go ahead in all the time of the dissertation-II.

I am also thankful to Prof. Bhupinder Verma, HOS, School of Electronics Engineering, School

of Electrical And Electronics Engineering for providing us with the infrastructure in carrying

more interesting the Research.

I would also like to thank other research scholars and faculty members, School of Electronics

And Communication Engineering for their kind support during this work.

At last but not the least my gratitude towards my parents, I would also like to thank my friends

for the strength that keep me standing and for the hope that keep me believing that this

dissertation will be possible.

REMALLI DINESH

11006538

IV

DECLARATION

I hereby declare that the dissertation entitled, “VLSI Implementation of LCC Reed Solomon

Decoder” submitted for the M.Tech Degree is entirely my original work and all ideas and

references have been duly acknowledged. It does not contain any work for the award of any

other degree or diploma.

Date:_______________ Remalli Dinesh

11006538

V

PUBLICATIONS

[1].Remalli Dinesh and Sandeep Bansal, “Design and Formulative Analysis of VLSI Syndrome

Generator for RS(128, Kx) and RS(64, Ky)”. IJCA - International Journal of Computer

Applications, Vol. 92, No. 8, pp. 17- 21, April 2014.

[2].Remalli Dinesh, Sandeep Bansal et al., “High Efficiency Low Complexity Chase

Architecture for Reed-Solomon Decoder of RS(255, K)”. International Journal of Engineering

Research in Electronics and Communication Engineering (IJERECE), Vol.1, No. 4, March 2015.

[3].Remalli Dinesh et al. “A Comparative Analysis of Low Power High Speed 1-Bit Full Adder

from 28 to 10 Transistor using 0.18µm Technology”. IEEE- ICKCE, (Accepted for Publication)

and submitted to IEEE-EDAS Bangalore.

VI

 TABLE OF CONTENTS

CONTENTS PAGE NO.

ABSTRACT……….. I

PUBLICATIONS……..V

LIST OF FIGUTRES……IX

LIST OF TABLES….……XI

CHAPTER 1 INTRODUCTION……………………………………………………………………01
1.1 Background: RS Code.……………………………………………………...………………..01

1.2 Syndrome Generator...……………………………………………………...………………..02

1.3 Chase Decoding…...…….………………………………………...………………………....04

1.4 LCC Algorithm……………………………………………………...……………………….05

CHAPTER 2 LITERATURE REVIEW………………………….…………………………....07

CHAPTER 3 PRESENT WORK………………..…………………………………………………10
3.1 Inference of Report…….……………………………………………………………………10

3.2 Problem Statement…………………………………………………………………………..11

3.2.1 Erasure Architecture………………………………………………………………….11

3.2.2 Syndrome Computation Architecture………………………………………………...11

3.2.3 Inverse Computation Architecture………………………………………….………...12

3.2.4 Polynomial Selection Architecture……………………………………….…………..12

3.2.5 Error Computation Architecture…………………………………………….………..13

3.3 Constraint Used………………………………………………………………………………13

3.4 ASD Decoding Algorithm…………………………………………………………………...13

3.5 Re-Encoded LCC Decoding Technique……………………………………………………..14

3.6 Transformed LCC Decoding with Re-Encoding…………………………………………….15

3.7 Pass-Transistor Logic………………………………………………………………………..17

3.8 Gate-Diffusion Input (GDI) Technique……………………………………………………...18

3.9 Design Using CMOS Logic Style……………………………………………………………20

3.9.1 Inverter………………………………………………………………………………...20

3.9.2 NOR gate………………………………………………………………………………20

3.9.3 NAND gate…………………………………………………………………………….21

3.9.4 AND gate……....………………………………………………………………………21

3.9.5 XOR gate………………………………………………………………………………22

3.9.6 MUX 2:1……………………………………………………………………………….22

3.10 Design Using PTL Logic Style……………………………………………………………..23

3.10.1 NOR gate……………………………………………………………………………23

VII

3.10.2 NAND gate………………………………………………………………………….23

3.10.3 AND gate………………………………………..…………………………………..24

3.10.4 XOR gate……………………………………………………………………………24

3.11 Design Using GDI Logic Style……………………………………………………………..25

3.11.1 OR gate……………………………………………………………………………..25

3.11.2 AND gate…………………………………………………………………………..25

3.11.3 NAND gate……………………………………………...………………………....26

3.11.4 XOR gate…………………………………………………………………………..26

3.11.5 MUX 2:1…………………………………………………………………………...27

3.12 Design of Components……………………………………………………………………...27

3.12.1 1-bit Multiplier……………………………………………………………………..27

3.12.2 2-bit multiplier……………………………………………………………………..28

3.12.3 Half Adder…………………………………………………………………………28

3.12.4 Full Adder…………………………………………………………………………29

3.12.5 Half Subtractor…………………………………………………………………….29

3.12.6 Full Subtractor……………………………………………………………….……30

3.12.7 D Flip-Flop………………………………………………………………………..30

3.12.8 Shift Register……………………………………………………………………...31

3.13 Sections of Reed –Solomon Decoder………………………………………………………31

3.13.1 Syndrome Computation……………………………………………………………31

3.13.2 Erasure Magnitude Computation…………………………………………………..32

3.13.3 Inverse Computation……………………………………………………………….33

3.13.4 Polynomial Selection………………………………………………………………34

3.13.5 Error Computation…………………………………………………………………35

3.14 Final Schematic of Reed-Solomon Decoder………………………………………………..36

3.15 Reed Solomon Decoder SOC using GDI…………………………………………………..37

3.16 Reed-Solomon Decoder SOC using PTL…………………………………………………..38

CHAPTER 4 RESULT AND DISCUSSION…………………………………………………39

4.1 Graphs for Power Analysis of Parts of Reed Solomon decoder…………………………………………..39

4.2 Graphs for Delay Analysis of Parts of Reed Solomon decoder…………………………………………..41

4.3 Graph for PDP Analysis of Parts of Reed Solomon decoder……………………………………………….43

4.4 Power Analysis………..45

4.4.1 CMOS Logic style……………………………………………………………………………………………………45

4.4.2 PTL Logic style………………………………………………………………………………………………………..46

4.4.3 GDI Logic style………………………………………………………………………………………………………..47

4.5 Delay Analysis………..48

4.5.1 CMOS Logic style……………………………………………………………………………………………………48

4.5.2 PTL Logic style………………………………………………………………………………………………………..49

4.5.3 GDI Logic style………………………………………………………………………………………………………..50

VIII

4.6 Power-Delay-Product (PDP) Analysis………………………………………………………………………………..51

4.6.1 CMOS Logic style……………………………………………………………………………………………………51

4.6.2 PTL Logic style…………………………………………………………………………………………………….….52

4.6.3 GDI Logic style……………………………………………………………………………………………….….…..53

4.7 Discussion…….54

CHAPTER 5 CONCLUSION AND FUTURE SCOPE………………….……………..55
5.1 Conclusion……………………………………………………………………………..……………………….………………...55

REFERENCES ….………..56

APPENDIX ………..58

IX

LIST OF FIGURES

Figure No. Name Page No.

Figure 1.1 Block diagram depicts flow from RS Encoder to Syndrome

Polynomial Generation

03

Figure 3.1 Block diagram of Erasure Magnitude Computation 11

Figure 3.2 Block Diagram of Syndrome Computation 11

Figure 3.3 Block Diagram of Inverse Computation 12

Figure 3.4 Block Diagram of Polynomial Selection 12

Figure 3.5 Block diagram for Error ei Computation 13

Figure 3.6 ASD Decoder Block 14

Figure 3.7 Block Diagram of Re-Encoded LCC Decoder 15

Figure 3.8 Block Diagram of transformed LCC Decoding 16

Figure 3.9 CPTL AND/NAND gate 17

Figure 3.10 CPTL XOR/XNOR gate 18

Figure 3.11 Basic GDI Cell 19

Figure 3.12 CMOS based Inverter 20

Figure 3.13 CMOS based NOR gate 20

Figure 3.14 CMOS based NAND gate 21

Figure 3.15 CMOS based AND gate 21

Figure 3.16 CMOS based XOR gate 22

Figure 3.17 CMOS based MUX 2:1 22

Figure 3.18 PTL based NOR gate 23

Figure 3.19 PTL based NAND gate 23

Figure 3.20 PTL based AND gate 24

Figure 3.21 PTL based XOR gate 24

Figure 3.22 GDI based OR gate 25

Figure 3.23 GDI based AND gate 25

Figure 3.24 GDI based NAND gate 26

Figure 3.25 GDI based XOR gate 26

Figure 3.26 GDI based MUX 2:1 27

X

Figure 3.27 Circuit of 1-bit Multiplier 27

Figure 3.28 Circuit of 2-bit Multiplier 28

Figure 3.29 Circuit of Half Adder 28

Figure 3.30 Circuit of Full Adder 29

Figure 3.31 Circuit of Half Subtractor 29

Figure 3.32 Circuit of Full Subtractor 30

Figure 3.33 Circuit of D-FF 30

Figure 3.34 Circuit of Shift Register 31

Figure 3.35 Schematic of Syndrome Computation 31

Figure 3.36 Schematic of Erasure Magnitude Computation 32

Figure 3.37 Schematic of Inverse Computation 33

Figure 3.38 Schematic of Polynomial Selection 34

Figure 3.39 Schematic of Error Computation 35

Figure 3.40 Schematic of Reed-Solomon Decoder 36

Figure 3.41 GDI based SOC of Reed-Solomon Decoder 37

Figure 3.42 PTL based SOC of Reed-Solomon Decoder 38

Figure 4.1 Graph for Inverse Computation for all three logic styles 39

Figure 4.2 Power Graph for Erasure Magnitude Computation for all three

logic styles

39

Figure 4.3 Power Graph for Syndrome Computation for all three logic styles 40

Figure 4.4 Power Graph for Error Computation for all three logic styles 40

Figure 4.5 Delay Graph for Inverse Computation for all three logic styles 41

Figure 4.6 Delay Graph for Erasure Magnitude Computation for all three logic

styles

41

Figure 4.7 Delay Graph for Syndrome Computation for all three logic styles 42

Figure 4.8 Delay Graph for Error Computation for all three logic styles 42

Figure 4.9 PDP Graph for Inverse Computation for all three logic styles 43

Figure 4.10 PDP Graph for Erasure Magnitude Computation for all three logic

styles

43

Figure 4.11 PDP Graph for Syndrome Computation for all three logic styles 44

Figure 4.12 PDP Graph for Error Computation for all three logic styles

44

XI

LIST OF TABELS

Table No. Name Page No.

Table 3.1 Basic functions using GDI cell 19

Table 4.1 Power values for CMOS logic Style 45

Table4.2 Power values for PTL logic Style 46

Table4.3 Power values for GDI logic Style 47

Table4.4 Delay values for CMOS logic Style 48

Table 4.5 Delay values for PTL logic Style 49

Table 4.6 Delay values for GDI logic Style 50

Table 4.7 PDP values for CMOS logic Style 51

Table 4.8 PDP values for PTL logic Style 52

Table 4.9 PDP values for GDI logic Style 53

Page | 1

CHAPTER 1

INTRODUCTION

In this thesis we design and implement the Low Complexity Chase (LCC) Reed-Solomon (RS)

Decoder having its architecture designed in Cadence using 45nm CMOS technology, PTL logic

and GDI Technique. Here we brief about the history of Reed-Solomon and LCC algorithms.

1.1 Background: RS Code

The central problem in the information transmission is efficient and reliable data transmission

from source to destination. When you are using any source of information also in space

exploration mission it is essential use of information theory. Reed-Solomon (RS) codes are a

kind of algebraic FEC codes and it were pioneered by Irving S. Reed along with Gustave

Solomon in 1960 [1]. Both of them explain a proficient way of making codes with the intention

of detecting and correcting several random symbol errors. As a result of addition of‘t’ check

symbols in the data word, the RS code can find out some arrangement of t amount of erroneous

symbols, or rectify it up to symbols t/2. Since in the erasure code, there is limit up to‘t’ erasures

can be able to rectify so that it can locate and also correct the pattern of errors as well as

erasures.

Reed-Solomon (RS) codes have established well-known applications in data accumulation and

communication due to their straightforward decoding and their potential to fix bursts of errors.

The first RS codes decoding algorithm develop by Peterson [2]. Afterward Berlekamp [3] and

Massey [4] shorten the algorithm by screening that the decoding problem is corresponding to

locate the shortest linear feedback shift register (LFSR) which generates a set of given sequence.

The algorithm is known as Berlekamp-Massey algorithm (BMA) [1]. From the time since when

BMA has been discovered, much effort has been done in the improvement of Reed-Solomon

hard decision decoding algorithms. The algorithm which was mostly used for the purpose of

error location polynomial was Euclid Algorithm [5]. Berlekamp and Welch invented an

algorithm which precludes the syndrome computation, foremost step in the formerly proposed

decoding algorithms. Each and every previous algorithm can rectify the errors upto half of the

Page | 2

smallest possible distance i.e. dmin of given codewords. There has not been any progress on

decoding performance since 45 years after the beginning of RS codes.

A RS code has been preferred by both the ESA and NASA as the external code in a coding

scheme. The RS code is represented by RS(N, N-32) of 8-bit symbols block code capable of

correcting 16 symbol errors. A shortened code is created when N<255 which was enviable for

some applications.

The first VLSI implementation of decoder has been done by Liu which used 40 VLSI chip pieces

with [5] 100 support chips. The efficiency of communication channels has an extremely

prominent effect of RS error correction codes [6]. RS codes are systematic codes which left the

data unaltered instead append the parity symbols of the stream of data and they are created

through encoding the information stream by a code generator. Also data of a n-bit symbol is

found to be factor of every 2
n
 elements in the Galois Field (GF(2

n
)) [6]. The RS codes taken into

account code generator polynomial such that it can reproduce codes within the encoder as well as

to locate the error and rectify it inside the decoder. The RS(n, k) codes can determine and rectify

errors upto (k-n)/2 error symbols inside a codeword having length of k-symbol. Afterward the

codes are being transmitted in the communication channel for the receiver terminal. The received

codeword are corrupted with the incursion of noise and other surrounding issues inside the

channel. The intention of the decoder is to locate the values and locations of the errors reside in

the received codeword. The intricacy of the RS codec lays in a decoder. Effective algorithms as

well as VLSI architectures advancement are necessary to design a architecture of high speed

decoder. While new algorithms with the architectures are still invent to put down the complexity

problem of decoder section with increase in its speed [6].

1.2 Syndrome Generator

It is an amount of how faraway the received code word from the one which was transmitted [5].

RS code block is represents as [5]:

32() () () | () |C x x M x M x G x  (1)

Page | 3

 Every suitable code block is a factor of the generator polynomial which is represented as G(x)

[5] ,

22 1

0
0

() ()
tt

i j

j
i

j

G x x G x





    (2)

Where,  is Galois field primitive element.

Galois field was defined as an algebraic field which has limited number of members. Galois

fields include 2
m

 members are utilized in error-control and are denoted by GF(2
m

). since m is an

integer having value lies between 1 and 16. The primitive element of the GF(2
m

) is a cyclic

generator value of the group of some nonzero elements of GF(2
m

). It means that every nonzero

factor of the field can be conveyed as the primitive factor raised to integer power.

Fig.1.1. Block diagram depicts flow from RS Encoder to Syndrome Polynomial Generation

RS Encoder

Determine Galois field of data, than

find the T(x) using encoding

technique

Error

Introduce error in the channel e(x)

RS code

At receiver R(x) =T(x) +

e(x)

Primitive element

α is find out using Galois

field of Transmitted code

Generator Polynomial

G(x) is find out using [3]

 
2 1

0
()

p
j

j
G x x 




  

For accurate error

correcting

 p t , 0 1 

Si  Syndrome’s are

generated using Eq. 10

S(x) Syndrome

Polynomial is generated

using Eq. 11

Page | 4

Galois field can be determined by an irreducible polynomial, P(x) [5]:

8 7 2() 1P x x x x x     (3)

And during transmission, the code undergoes changes due to noise present in the channel.

Therefore the received polynomial declared as [5]:

() () ()R x C x E x  (4)

Where, E(x) is a representation for error polynomial.

Syndrome polynomial is expressed as [5],

() ()mod ()S x R x G x (5)

We can also expressed syndrome polynomial as [5],

1
()

0

n
i k s

k i

i

S rb






 (6)

Where, 0 2 1k t  

Another expression of syndrome polynomial was [5]

2 1

0

()
t

k

k

k

S x S x




 (7)

For any RS(n, k) code, j s (0 (1)j k  ) indicate the possible error locations. We can

confirmed the received polynomial is suitable codeword only when each and every syndrome Si

(1 16i ) are zero [9].

1.3 Chase Decoding

In the year 1968, the known first decoding solution for the RS codes was invented by Berlekamp

[1]. There are algorithms such as HDD which are able to achieve decoding of a particular vector

Page | 5

and ensure that it has error not more than dmin/2, whereas dmin is considered to be the least

distance of the incoming code. As in modern communication, still different procedures of

Berlekamp real model are in operation even decades passed after its generation. Despite a bulk of

research has already done but the proficiency of RS decoding upto its limit of dmin/2 exceeds

through Sudan [10] work. Although there found to be trade off in performance gain and

complexity exponential and they are inversely proportional with respect to the decoder expansion

of radius. And the Sudan’s research was legalized by Koetter and Vardy in the year 2000 [10]

and it can be achieve with the introduction of reliability information and that helps in achieving

better coding gain with respect to favorable complexity. And all these techniques of decoding RS

codes are ahead of dmin/2, and Chase in 1972 [10] had designed a method of decoding which are

found to be the nonspecific for the type of code and that permits for any existing HDD procedure

to raise its decoding radius.

In the conventional HDD procedure, a hard decision vector known as Maximum a- Posteriori

(MAP) is utilized for providing input vector to a decoding algorithm [3]. Whereas in the Chase

method of decoding, to generate a particular set of test vector it tend to use its reliability

information. For the decoding of codes beyond the limit of dmin/2 with consideration of regular

techniques for decoding, it need to have vector which comes within the decoding radius for the

algorithm which is in presently in operation [10]. However, it will enhance the performance but

at the cost of linear advancement of complexity depends on cardinality of test-set.

In the presented work, we being consider decoding of RS codes through Chase technique of

using test-vector in sets which are same in every manner but with a small count of indices. With

the introduction of point-by-point interpolation algorithm through which a procedure is

presented to show up the similarity for the demise of complexity of an starting decoding step of

interpolation.

1.4 LCC Algorithm

In this the  unreliable positions of the code are chosen by multiplicity assignment according to

the reliability information given at the input whereas  is considered to be a positive integer.

Page | 6

Since every  positions is allocate with the two interpolation points such as: (,)j j  and

'(,)j j  , and anyone point (,)j j  is assumed to be allocate to remaining n– positions of

code. And for the determination of mapping encoding the field element
j is being used

whereas
j and

'

j symbolizes the hard decision along with symbol for jth code position which is

most likely respectively. Also the multiplicity of every interpolation point is found to be one. For

every position of code only one interpolation point is need to make the test vector while the

overall test vector is 2 and there is only two participating points for every single  most

unreliable code positions.

Page | 7

CHAPTER 2

REVIEW OF LITERATURE

Kuang Yung Liu et al. 1984 [8] endeavor to adapt for the known decoding procedures in order

to gain for a recursive along with repetitive process which was appropriate for the VLSI

implementation as well as pipelining. In this the author demonstrated about the symbol-slice

logic architecture which is apt for the VLSI implementation of RS codes.

Since the author estimated, if bit-serial as well as bit-parallel processes are work for the

syndrome generator along with for the LFSR synthesis chips respectively. After that both the

chips then utilizes almost 4000 number of MOS gates and the throughput of this decoding

system is approximately 4Mbit/s. The author claimed that because of size and power benefits in

the VLSI decoding system and the speed of decoding can easily raised up to a certain level using

distributed processing scheme.

Gary K. Maki et al. 1986 [5] presented the VLSI implementation of decoder which accepts data

at the rates of 80Mbit/s. To make it possible a total of 7 chips are used and operate using the

symbol clock while the system clock for chip is already set and nearly 1.65 billion GF

operations/sec are attained with this chip set. The author reviewed various papers from the

literature , in one such paper it required 40 VLSI design chips with 100 support chips also

operating at 2.5Mbit/s rate. It uses systolic arrays while the author presented a group of custom

architectures utilized by each module.

The author design steps followed the sequence as Syndrome generator, Euclid divide/multiply,

Polynomial solver and finally error correction. The decoder presented can be able of rectifying

the errors up to 16 symbol having 80Mbit/s data rate.

Hung-Wei Chen et al. 1995 [11] reckoned about the VLSI based architecture for RS decoder

with the erasure function and via modified Euclid’s algorithm for solving the key equation in

order to diminish the hardware. The correction ability is found to be 20bytes/block whereas

block length ranges from 96 to 255 bytes and the complexity of Hardware depends on 2t. The

author used erasure function in his system and it is defined as an error whose position is known

but not magnitude. With erasure, RS(N,K) having distance d=2t+u+1 can rectify ‘u’ erasures

Page | 8

and t errors. The author choose Euclid’s algorithm for solving key equation because it is easy to

understand than BMA, easy to execute, always congregate for a zero remainder in a limited

count of the steps, most importantly hardware complexity is not rise when t is increased.

Wolfgang Wilhelm et al. 1999 [12] presented a VLSI architecture for RS decoding technique

which is scalable w.r.t the throughput rate and it is achieved through systematic time-sharing

technique. Using this, a new multiplexed architecture has been created to produce key equation

as well as to implement the field divisions finite.

An RS(n,n-2t) is defined over a certain finite field GF(2
m

), 2t parity symbols is include in each

code of length n. By Chien search, error location is revealed which is time-domain multiplexed

along with Forney algorithm utilized to correct the code error by adding the quotient to the

received symbol. Decoder can be extended further for supporting erasures corrections, in which

correction capability can be increased by marking the position of detected erasures without

changing the parity symbols. The advantage is that erasure need one parity symbol instead of

two.

Dong-Sun Kim et al. 1999 [15] discussed about the digital coded system is used presently for

transmission of information and also for the data storage that founds to be similar in both of

them. The outcome of the storage or the channel varies from the available input as they are

sensitive for errors that produce some results from the affected transmission. Due to this, RS

codes are being used in various fields. The author of this paper shows the VLSI design of RS

decoder consist of the enhancement of architecture supporting parallel as well as pipeline way of

processing, so as to improve its speed and minimize its power through its design. He also

analyzed the decoding algorithm of RS codes for proficient pipeline and parallel architectures.

Anh Dinh et al. 2004 [6] deduce the high speed implementation of RS(255,239) decoder by

using 180nm CMOS technology with 8-error correcting capability. The decoder uses the concept

of division free algorithm and the modified BMA along with key equation solver, a terminated

process in Chien search. The complexity is low, also due to low latency of inversion circuits and

power-sum it boost-up the speed of the decoder and chip area is 1.5mm
2
 and data processing rate

is greater than 1Gbits/s.

Page | 9

Richard Huynh et al. 2009 [14] proposed that in most of the present communication system

have vastly adopted the RS codes due to its proficient performance. In this paper, author also

describes some new ways for detecting the error in syndrome block in a RS decoder. Instead of

having whether the codeword is right it is acceptable to calculate only few syndrome which was

less than the half of the available syndromes. The algorithm of error detection in the syndrome

block need not require any sort of modification for a basic implementation of hardware for the

coefficient of syndrome computation. It helps in demising of the computational complexity of a

syndrome block which results in reducing the required power.

W. Zhang et al. 2012 [13] proposed that ASD of the RS codes is able to avail efficient gain in

terms of coding as compared to the HDD along with the complexity in polynomial. When look

for the another ASD based algorithm the LCC founds to be minimum computational complexity

along with 2 test vectors and also same or a better gain. In order to minimize the interpolation

latency, number of interpolators in the pipeline manner can be recommended by the LCC

decoding but there is some trade-off in terms of power consumption as well as in area that is not

supposed to preferred in the pipeline decoder. The solution of this is to assume a serial LCC

decoder proposed by author having low complexity for the RS(458, 410) code on the GF of 2
10

.

Kunal et al. 2012 [19] present the Gate Diffusion Input (GDI) techniques. As it is fast and

suitable for low power circuits with the less amount of transistor as compared with the

conventional CMOS based design along with presently existing PTL techniques. This technique

allows reuse of proficient design algorithm which are depends on Shannon expansion method.

That results in generation of combinational circuits through this GDI in the VLSI industry

without using any sophisticated library. So this makes the GDI to be an extra benefit when

compared with CMOS as well as PTL logic.

Page | 10

CHAPTER 3

PRESENT WORK

3.1 Inference of Report

In this report, the research work has been presented for the VLSI design of the Reed-Solomon

codes which were having very significant applications in deep space telecommunications. The

authors in various papers shows a traverse approach to system design, through dealings among

the algorithm design and core architecture and circuit accomplishment, can capitulate the most

significant upgradation in design intricacy.

At the ASD algorithm level, LCC is the propose subsection that comes after various algorithms

which has been applied on the RS codes for decoding, Si like BMA, Euclid and various erasures

techniques. At VLSI level, the number of MOS chips embedded in design of system with

complexity, power and area considerations are the compensation of VLSI decoding systems with

all these speed can be raised with the advancement in CMOS technology. The data rates ascend

from 4Mbits/s to 1.28Gbits/s

Some authors support their work by showing the Verilog implementation for system design and

C coding to obtain the results of various mathematical concepts. The Cadence virtuoso designing

of the RS codes decoding system at various CMOS technology level gives various result of

improvement in the field of complexity reduction. The optimization of transistor or MOS chips is

the major concern in the growing technology in the design of various decoding systems with

applied algorithms.

The CD Player is only a startup application. The commercial market/world is apt for rising

mobile, while on the same side demanding reliable, fast access to sales, marketing, also

accounting information. Unluckily the mobile channel is revolting environment for

communication; with deep-fades has an eternal existence. RS codes are the only best solution; no

any other error control technique can match its reliability performance. The optical channel gives

another group of problems. Shot noise, dispersive, noisy medium line of sight systems,

generating noise bursts are best taken care off by RS codes. As we can see optical fibers in high-

speed multiprocessors, so RS codes are also worked here. In more advanced technology percept,

Page | 11

occasional deep-space probe, RS codes will keep on to be working for force communication

systems.

3.2 Problem Statement

The Parameters such as transistor count, power consumption, delay and power-delay product are

need to be analyzed in Cadence Virtuoso using 45nm technology with three logic styles such as

CMOS, PTL and GDI for the various segments of RS decoder separately and unite all to make a

SOC of RS decoder block. The sub- Architecture blocks of LCC based RS decoder are shown in

the following section below.

3.2.1 Erasure Architecture

Fig.3.1 Block diagram of Erasure Magnitude Computation [13]

3.2.2 Syndrome Computation Architecture

Fig.3.2. Block Diagram of Syndrome Computation [13]

Page | 12

3.2.3 Inverse Computation Architecture

Fig.3.3. Block Diagram of Inverse Computation [13]

3.2.4 Polynomial Selection Architecture

Fig.3.4. Block Diagram of Polynomial Selection [13]

Page | 13

3.2.5 Error Computation Architecture

Fig.3.5 Block diagram for Error ei Computation [13]

3.3 Constraint Used

The constraint which defines the system model used in RS code can be express with the

following constraints and notation [4]:

m the number of bits/symbol which lies in the range 3 16m  .

n  the number of symbols/codeword which lies in range 3 2^ (1)n m   .

p  the number of error correctable capability symbol errors.

w  the number of words used by the Reed Solomon Encoder to encode before transmission

 the data sequences.

2p  the number of parity check symbols in the transmitted codeword.

k  the number of symbols/message in the transmitted codeword .

C(x)  the illustration of code block of the range of N-1 polynomial.

R(x)  the received polynomial received at the receiver.

T(x)  the transmitted polynomial at the transmitter.

G(x)  the generator polynomial.

S(x)  the Syndrome Polynomial.

3.4 ASD Decoding Algorithm

It takes into account an RS (n, k) code which would create over GF (2q). It is executed in three

steps namely multiplicity assignment, interpolation and factorization. The function of

Page | 14

multiplicity assignment was to decide the interpolation points and interpolation locate a bivariate

polynomial (,)Q x y having minimum (1, k -1) weighted degree crossing each interpolation

point. After that factorization calculates all factors for (,)Q x y which is represented in the form

of ()y f x . The implementation process for ASD decoder is shown in Fig.5.1. [16].

Fig.3.6. ASD Decoder Block

In Fig.5.1, the re-encoder is designed to locate the codeword  which has the similar symbols as

in received word r in most consistent k code position, which constituent a set R. Coordinate

transformation also applies to the interpolation points. Accordingly, the decoding can be applied

on r  and those points which have code locations in R was consider for interpolation process

[16]. The outcome of factorization process used as syndromes in Berlekamp – Massey algorithm

(BMA) for retrieving of errors in code position in R. Then, a new erasure decoding is making

functional for recovering of complete codeword [16].

3.5 Re-Encoded LCC Decoding Technique

The LCC algorithm of ASD has multiplicity assignment one of its feature where (,)j j  and

'(,)j j  are the points which are allocate to each of η least consistent code position. In this field

element is represented as j which was encoded in evaluation map encoding and the hard-

decision symbol is shown by j whereas '

j was second jth most expected symbol for code

position. The polynomial (,)Q x y which was found through interpolation can be solved through

'kotter s algorithm [17], which initiate with
(0) (,) 1Q x y  and

(1) (,)Q x y y for LCC decoding

Multiplicity

Assignment
FactorizationInterpolation

Re-

Encoder
BMA

Erasure

Decoder

Channel
information

C

Page | 15

having high rate codes. The Block diagram of LCC decoder is shown in Fig. 3.7 [17].

Fig.3.7. Block Diagram of Re-Encoded LCC Decoder

Now, developing a Grobner basis by allowing iteratively updating of two polynomials so that it

can pass an additional point at a time. Then the polynomial found to be lowest weighted degree

was considered to be the least weighted degree among all the present polynomial. Hence, lowest

weighted degree polynomial from the most recent iteration was the required interpolation output.

Then factorization determines all the factors related to (,)Q x y in the form such as ()y f x with

constituent degree of (())f x k and each ()f x in the list are equivalent to a message polynomial

[17].

3.6 Transformed LCC Decoding with Re-Encoding

In order to make simpler the interpolation in algebraic soft decision (ASD), the re-encoding and

coordinate transformation algorithm can be applied on it. Let indicate the arrangement of

majority of k reliable code position by R in r. The erasure decoding applied in re-encoding to

obtain the codeword . Now, the decoding is carried on [18]:

 r r   (1)

Let us assume the error vector e is being adjoin with the codeword and it can be represented as

[18]:

r c e  (2)

Also, we can obtain another codeword using the similar error vector which can be represented as

Channel
Information

r cM ultip lic ity

Assignm ent

Polynom ial

Selection
Interpolation

R e-

Encoder

C odew ord

R ecovery

Page | 16

[18]:

 r c e c e     (3)

In addition for i R ,

 0i i ir r    (4)

So the interpolation process can be applied on various code positions which were available in R

and it can be applied on rest of the code position which was accessible only in n k code

position. Therefore, the polynomials which were pre-computed and factor of these polynomial

can be computed as [18]:

 () ()i R iv x x   (5)

The length of polynomial can be further decrease up to k by taken out the factor using the

process of coordinate transformation.

Fig.3.8. Block Diagram of transformed LCC Decoding

One approach can be applied using 1()q x and 0 ()q x such that errors can be locate in code

position of R while using Chien search and Forney’s algorithm. After the errors in R are rectified

so to avoid the complexity originate from factorization, the erasure decoding procedure can be

applied to retrieve the n k symbols in R . Instead to gain the message polynomial ()f x of c

Channel
Information

rMultiplicity

Assignment

Polynomial

Selection
Interpolation

Re-

Encoder

Evaluation value

Computation

Page | 17

proceed with the multiplication of ()v x back to the interpolation output.

3.7 Pass-Transistor Logic

Primary inputs able to drive gate terminals along with source-drain terminals. It requires lower

switching energy to charge up a node and it is due to reduced voltage swing.

The output terminal/node get charge from 0 to Vdd – Vth while the energy require for this to

charge from the power supply source is given by ()L dd dd thC V V V  . When the consumed

switching power is getting lower, it may try to consume static power when the output terminal is

HIGH.

Since there are circuits that can be differential with complementary inputs as well as outputs are

available. And these type of logics need extra circuitry to work on and those can be complex

gates like XOR gates, MUX as well as ADDERS. We use Complementary Pass Transistor Logic

(CPL) which is a static gate and it is because output can be connected to Vdd or Gnd with a path

having low-resistance.

Fig.3.9. CPTL AND/ NAND gate

Page | 18

Fig.3.10. CPTL XOR/ XNOR gate

Advantage of PTL in contrast to CMOS design:

 Due to the small node capacitances, it has high speed.

 When look into account the number of transistor than the power dissipation is found to be

low.

 Due to low area, the interconnection effects are also lower.

3.8 Gate-Diffusion Input (GDI) Technique

The GDI cell consists of three inputs namely:

 G means common gate input of nMOS and pMOS.

 P means input to source/drain of pMOS.

 N means input to source/drain of nMOS.

 In this the bulk of nMOS is connected to input N while bulk of pMOS is connected to input P

such that it will randomly biased in contrast with the CMOS inverter [19].

Page | 19

Fig.3.11. Basic GDI Cell [19]

It can be observed that a number of functions can be implemented using this GDI technique.

TABLE 3.1 Basic functions using GDI cell

N P G OUT FUNCTION

0 1 A A’ INVERTER

0 B A A’B F1

B 1 A A’+B F2

1 B A A+B OR

B 0 A AB AND

C B A A’B+AC MUX

B’ B A A’B+B’A XOR

B B’ A AB+A’B’ XNOR

As for an example, MUX design is consider as complex design needs 8-12 transistors when

using conventional CMOS but that can be designed with GDI using only two transistors.

Page | 20

3.9 Design Using CMOS Logic Style

3.9.1 Inverter

Fig.3.12 CMOS based Inverter

3.9.2 NOR gate

Fig.3.13 CMOS based NOR gate

Page | 21

3.9.3 NAND gate

Fig.3.14 CMOS based NAND gate

3.9.4 AND gate

Fig.3.15 CMOS based AND gate

Page | 22

3.9.5 XOR gate

Fig.3.16 CMOS based XOR gate

3.9.6 MUX 2:1

Fig.3.17 CMOS based MUX 2:1

Page | 23

3.10 Design Using PTL Logic Style

3.10.1 NOR gate

Fig.3.18 PTL based NOR gate

3.10.2 NAND gate

Fig.3.19 PTL based NAND gate

Page | 24

3.10.3 AND gate

Fig.3.20 PTL based AND gate

3.10.4 XOR gate

Fig.3.21 PTL based XOR gate

Page | 25

3.11 Design Using GDI Logic Style

3.11.1 OR gate

Fig.3.22 GDI based OR gate

3.11.2 AND gate

Fig.3.23 GDI based AND gate

Page | 26

3.11.3 NAND gate

Fig.3.24 GDI based NAND gate

3.11.4 XOR gate

Fig.3.25 GDI based XOR gate

Page | 27

3.11.5 MUX 2:1

Fig.3.26 GDI based MUX 2:1

3.12 Design of Components

In this section number of components was designed using the symbols of various gates and

combinational circuits of the above Logic styles.

3.12.1 1-bit Multiplier

Fig.3.27 Circuit of 1-bit Multiplier

Page | 28

3.12.2 2-bit Multiplier

Fig.3.28 Circuit of 2-bit Multiplier

3.12.3 Half Adder

Fig.3.29 Circuit of Half Adder

Page | 29

3.12.4 Full Adder

Fig.3.30 Circuit of Full Adder

3.12.5 Half Subtractor

Fig.3.31 Circuit of Half Subtractor

Page | 30

3.12.6 Full Subtractor

Fig.3.32 Circuit of Full Subtractor

3.12.7 D Flip-Flop

Fig.3.33 Circuit of D-FF

Page | 31

3.12.8 Shift Register

Fig.3.34 Circuit of Shift Register

3.13 Sections of Reed-Solomon Decoder

3.13.1 Syndrome Computation

Fig.3.35 Schematic of Syndrome Computation

Page | 32

3.13.2 Erasure Magnitude Computation

Fig.3.36 Schematic of Erasure Magnitude Computation

Page | 33

3.13.3 Inverse Computation

Fig.3.37 Schematic of Inverse Computation

Page | 34

3.13.4 Polynomial Selection

Fig.3.38 Schematic of Polynomial Selection

Page | 35

3.13.5 Error Computation

Fig.3.39 Schematic of Error Computation

Page | 36

3.14 Final Schematic of Reed-Solomon Decoder

Fig.3.40 Schematic of Reed-Solomon Decoder

Page | 37

3.15 Reed-Solomon Decoder SOC using GDI

Fig.3.41 GDI based SOC of Reed-Solomon Decoder

Page | 38

3.16 Reed-Solomon Decoder SOC using PTL

Fig.3.42 PTL based SOC of Reed-Solomon Decoder

Page | 39

CHAPTER 4

RESULT AND DISCUSSION

4.1 Graphs for Power Analysis of Parts of Reed Solomon decoder

Fig.4.1 Power Graph for Inverse Computation for all three logic styles

Fig.4.2 Power Graph for Erasure Magnitude Computation for all three logic styles

Page | 40

Fig.4.3 Power Graph for Syndrome Computation for all three logic styles

Fig.4.4 Power Graph for Error Computation for all three logic styles

Page | 41

4.2 Graphs for Delay Analysis of Parts of Reed Solomon decoder

Fig.4.5 Delay Graph for Inverse Computation for all three logic styles

Fig.4.6 Delay Graph for Erasure Magnitude Computation for all three logic styles

Page | 42

Fig.4.7 Delay Graph for Syndrome Computation for all three logic styles

Fig.4.8 Delay Graph for Error Computation for all three logic styles

Page | 43

4.3 Graphs for PDP Analysis of Parts of Reed Solomon decoder

Fig.4.9 PDP Graph for Inverse Computation for all three logic styles

Fig.4.10 PDP Graph for Erasure Magnitude Computation for all three logic styles

Page | 44

Fig.4.11 PDP Graph for Syndrome Computation for all three logic styles

Fig.4.12 PDP Graph for Error Computation for all three logic styles

Page | 45

4.4 Power Analysis

4.4.1 CMOS Logic style

TABLE 4.1 Power values for CMOS logic Style

Sub-Circuits 2V 1.5V 1V

INV 2.90E-07 4.05E-08 4.78E-09

NOR 1.46E-07 3.80E-08 1.52E-08

NAND 3.92E-07 4.91E-08 2.89E-08

XOR 9.58E-07 1.82E-07 4.98E-08

AND 5.45E-07 1.49E-07 5.66E-08

HALF_ADDER 1.61E-06 5.75E-07 2.22E-07

FULL_ADDER 3.36E-06 1.36E-06 5.40E-07

HALF_SUBTRACTOR 1.58E-06 4.25E-07 1.50E-07

FULL_SUBTRACTOR 3.44E-06 9.67E-07 3.60E-07

D_FF 1.04E-06 3.44E-07 1.36E-07

MUL_1B 5.45E-07 1.49E-07 5.66E-08

MUL_2B 3.37E-06 1.25E-06 4.87E-07

MUX_2:1 3.63E-07 2.71E-07 5.25E-05

SHIFT_REGISTER 3.25E-06 1.19E-09 4.82E-07

ARCH_INV_COMP 3.26E-04 1.50E-04 4.93E-05

ERASURE_MAG 1.75E-04 9.37E-05 1.41E-04

SYNDROME_COMP 1.69E-04 4.88E-05 1.09E-05

ERROR 1.14E-06 4.72E-07 4.07E-05

Page | 46

4.4.2 PTL Logic style

TABLE 4.2 Power values for PTL logic Style

Sub-Circuits 2V 1.5V 1V

INV 2.90E-07 4.05E-08 4.78E-09

NOR 5.10E-06 9.91E-08 4.23E-08

NAND 5.41E-06 1.39E-07 4.18E-08

XOR 4.62E-07 1.23E-07 3.75E-08

AND 3.74E-07 8.32E-08 3.27E-08

HALF_ADDER 1.46E-05 1.51E-06 3.80E-07

FULL_ADDER 2.61E-05 3.37E-06 8.64E-07

HALF_SUBTRACTOR 1.04E-06 1.71E-07 3.98E-08

FULL_SUBTRACTOR 3.26E-05 8.99E-06 4.38E-07

D_FF 4.57E-06 8.71E-07 2.66E-07

MUL_1B 5.66E-06 2.17E-07 8.23E-08

MUL_2B 1.83E-04 4.03E-06 4.97E-07

MUX_2:1 9.17E-06 4.26E-07 5.26E-05

SHIFT_REGISTER 2.55E-05 3.13E-06 4.71E-07

ARCH_INV_COMP 3.56E-04 1.43E-04 5.82E-05

ERASURE_MAG 1.28E-04 1.43E-04 1.22E-04

SYNDROME_COMP 1.05E-04 1.47E-05 5.60E-06

ERROR 2.15E-05 1.18E-06 4.09E-05

Page | 47

4.4.3 GDI Logic style

TABLE 4.3 Power values for GDI logic Style

Sub-Circuits 2V 1.5V 1V

INV 2.90E-07 4.05E-08 4.78E-09

NOR 1.46E-07 3.80E-08 1.52E-08

NAND 5.71E-06 2.16E-07 5.89E-08

XOR 4.21E-07 2.07E-07 1.43E-05

AND 3.78E-09 4.66E-09 4.20E-09

HALF_ADDER 1.71E-05 1.82E-06 3.53E-07

FULL_ADDER 2.22E-05 4.69E-06 8.67E-07

HALF_SUBTRACTOR 4.49E-07 1.72E-07 1.47E-05

FULL_SUBTRACTOR 2.16E-05 1.02E-06 3.15E-05

D_FF 1.19E-05 4.77E-07 2.39E-07

MUL_1B 5.66E-06 2.17E-07 8.23E-08

MUL_2B 8.44E-05 1.04E-08 5.49E-07

MUX_2:1 4.05E-08 5.47E-08 1.46E-05

SHIFT_REGISTER 2.51E-05 2.91E-06 4.62E-07

ARCH_INV_COMP 3.59E-04 1.17E-04 1.47E-04

ERASURE_MAG 1.57E-04 4.84E-05 3.17E-05

SYNDROME_COMP 4.37E-05 1.05E-05 1.84E-06

ERROR 4.82E-05 4.22E-07 1.45E-05

Page | 48

4.5 Delay Analysis

4.5.1 CMOS Logic style

TABLE 4.4 Delay values for CMOS logic Style

Sub-Circuits 2V 1.5V 1V

INV 1.14E-11 1.19E-11 2.67E-11

NOR 2.00E-08 2.00E-08 2.00E-08

NAND 2.00E-08 2.00E-08 2.00E-08

XOR 9.66E-09 9.59E-09 2.01E-08

AND 2.41E-10 2.94E-10 3.60E-10

HALF_ADDER 4.13E-11 4.75E-11 4.52E-11

FULL_ADDER 9.90E-09 9.88E-09 9.84E-09

HALF_SUBTRACTOR 2.20E-11 2.20E-11 1.02E-08

FULL_SUBTRACTOR 9.88E-09 3.98E-08 3.96E-08

D_FF 3.01E-08 3.02E-08 9.77E-09

MUL_1B 1.98E-08 1.97E-08 1.97E-08

MUL_2B 3.96E-08 3.95E-08 3.94E-08

MUX_2:1 2.97E-08 2.96E-08 2.95E-08

SHIFT_REGISTER 2.03E-08 2.04E-08 2.07E-08

ARCH_INV_COMP 9.51E-08 9.51E-08 9.52E-08

ERASURE_MAG 8.79E-08 8.88E-08 8.91E-08

SYNDROME_COMP 4.11E-08 4.81E-08 4.82E-08

ERROR 3.52E-08 3.53E-08 3.53E-08

Page | 49

4.5.2 PTL Logic style

TABLE 4.5 Delay values for PTL logic Style

Sub-Circuits 2V 1.5V 1V

INV 3.24E-13 5.06E-12 2.17E-11

NOR 9.86E-09 9.86E-09 9.80E-09

NAND 9.83E-09 9.81E-09 4.00E-08

XOR 2.00E-08 2.00E-08 5.01E-08

AND 1.01E-08 4.02E-08 4.03E-08

HALF_ADDER 1.99E-08 1.99E-08 2.05E-08

FULL_ADDER 1.00E-08 1.00E-08 1.01E-08

HALF_SUBTRACTOR 4.01E-08 4.00E-08 4.00E-08

FULL_SUBTRACTOR 3.00E-08 4.03E-08 4.03E-08

D_FF 1.00E-08 1.01E-08 1.01E-08

MUL_1B 2.41E-10 2.94E-10 3.60E-10

MUL_2B 3.96E-08 3.95E-08 3.94E-08

MUX_2:1 3.01E-08 3.02E-08 3.02E-08

SHIFT_REGISTER 2.00E-08 5.00E-11 5.97E-11

ARCH_INV_COMP 1.45E-07 1.21E-07 8.09E-08

ERASURE_MAG 8.91E-08 8.22E-08 8.11E-08

SYNDROME_COMP 4.00E-08 5.99E-08 5.99E-08

ERROR 3.51E-08 3.23E-08 3.23E-08

Page | 50

4.5.3 GDI Logic style

TABLE 4.6 Delay values for GDI logic Style

Sub-Circuits 2V 1.5V 1V

INV 3.24E-13 5.06E-12 2.17E-11

NOR 2.00E-08 2.00E-08 2.00E-08

NAND 9.84E-09 9.83E-09 9.80E-09

XOR 5.01E-08 5.01E-08 5.02E-08

AND 4.02E-08 4.03E-08 4.03E-08

HALF_ADDER 5.01E-08 5.01E-08 3.87E-08

FULL_ADDER 9.00E-08 9.00E-08 4.00E-08

HALF_SUBTRACTOR 9.04E-08 9.05E-08 9.05E-08

FULL_SUBTRACTOR 4.03E-08 4.04E-08 4.05E-08

D_FF 9.98E-09 1.00E-08 1.02E-08

MUL_1B 4.02E-08 4.02E-08 4.03E-08

MUL_2B 8.05E-08 8.06E-08 8.06E-08

MUX_2:1 4.98E-08 4.99E-08 5.00E-08

SHIFT_REGISTER 2.02E-08 2.63E-10 1.45E-07

ARCH_INV_COMP 1.20E-07 1.23E-07 1.27E-07

ERASURE_MAG 4.41E-08 8.79E-08 4.27E-08

SYNDROME_COMP 1.00E-07 1.01E-07 4.09E-08

ERROR 3.51E-08 3.52E-08 3.53E-08

Page | 51

4.6 Power-Delay-Product (PDP) Analysis

4.6.1 CMOS Logic style

TABLE 4.7 PDP values for CMOS logic Style

Sub-Circuits 2V 1.5V 1V

INV 3.30E-18 4.80E-19 1.81E-19

NOR 2.92E-15 4.60E-16 3.04E-16

NAND 4.85E-15 1.58E-15 5.77E-16

XOR 9.25E-15 1.75E-15 1.00E-15

AND 1.31E-16 4.39E-17 2.04E-17

HALF_ADDER 4.65E-17 2.73E-17 1.66E-17

FULL_ADDER 3.33E-14 1.34E-14 5.32E-15

HALF_SUBTRACTOR 3.46E-17 9.32E-18 1.52E-15

FULL_SUBTRACTOR 3.39E-14 3.84E-14 1.43E-14

D_FF 3.14E-14 1.04E-14 1.32E-15

MUL_1B 1.08E-14 2.95E-15 1.11E-15

MUL_2B 1.34E-13 4.95E-14 1.92E-14

MUX_2:1 1.08E-14 8.04E-15 1.55E-12

SHIFT_REGISTER 4.61E-14 2.43E-17 9.95E-15

ARCH_INV_COMP 3.10E-11 1.43E-11 4.59E-12

ERASURE_MAG 1.54E-11 8.32E-12 1.26E-11

SYNDROME_COMP 1.20E-11 4.16E-12 8.49E-13

ERROR 4.02E-14 2.73E-14 2.50E-12

Page | 52

4.6.2 PTL Logic style

TABLE 4.8 PDP values for PTL logic Style

Sub-circuits 2V 1.5V 1V

INV 9.39E-20 2.05E-19 1.47E-19

NOR 5.03E-14 9.77E-16 4.15E-16

NAND 5.32E-14 1.37E-15 1.67E-15

XOR 1.32E-14 2.45E-15 1.88E-15

AND 3.76E-15 3.35E-15 1.32E-15

HALF_ADDER 2.92E-13 3.00E-14 4.81E-15

FULL_ADDER 2.61E-13 3.38E-14 8.68E-15

HALF_SUBTRACTOR 4.26E-14 4.82E-15 1.59E-15

FULL_SUBTRACTOR 9.76E-13 3.62E-13 2.57E-14

D_FF 4.60E-14 8.79E-15 2.68E-15

MUL_1B 1.36E-15 4.39E-17 2.96E-17

MUL_2B 4.26E-12 2.38E-13 2.74E-14

MUX_2:1 2.76E-13 1.28E-14 1.59E-12

SHIFT_REGISTER 5.11E-13 1.56E-16 4.01E-17

ARCH_INV_COMP 5.15E-11 1.72E-11 4.71E-12

ERASURE_MAG 1.14E-11 1.18E-11 9.87E-12

SYNDROME_COMP 4.32E-12 8.80E-13 3.35E-13

ERROR 4.54E-13 3.82E-14 2.29E-12

Page | 53

4.6.3 GDI Logic style

TABLE 4.9 PDP values for GDI logic Style

Sub-Circuits 2V 1.5V 1V

INV 9.39E-20 2.05E-19 1.47E-19

NOR 2.92E-15 4.60E-16 3.04E-16

NAND 5.62E-14 2.12E-15 5.77E-16

XOR 2.11E-14 1.04E-14 4.16E-13

AND 1.52E-16 1.88E-16 2.50E-16

HALF_ADDER 8.55E-13 9.14E-14 1.37E-14

FULL_ADDER 1.99E-12 4.22E-13 4.07E-14

HALF_SUBTRACTOR 5.87E-14 1.55E-14 1.33E-12

FULL_SUBTRACTOR 1.52E-12 4.20E-14 2.22E-12

D_FF 1.19E-13 4.80E-15 2.44E-15

MUL_1B 2.27E-13 8.74E-15 3.31E-15

MUL_2B 4.79E-12 8.39E-16 4.43E-14

MUX_2:1 2.02E-15 2.73E-15 4.31E-13

SHIFT_REGISTER 5.06E-13 4.65E-16 4.86E-14

ARCH_INV_COMP 4.31E-11 1.44E-11 1.86E-11

ERASURE_MAG 1.17E-11 4.25E-12 1.35E-12

SYNDROME_COMP 4.39E-12 1.06E-12 1.12E-13

ERROR 1.69E-12 2.54E-14 5.10E-13

Page | 54

4.7 Discussion

After all the work and analysis the power consumption using GDI technology was found to be

less than the CMOS and PTL Logic styles while the delay found higher in PTL as compared to

CMOS and GDI. The transistor count was found less in GDI as compared to CMOS and PTL.

Thus, VLSI Design using GDI Logic level was found efficient in the designing of Reed Solomon

Decoder.

Page | 55

CHAPTER 5

CONCLUSION

5.1 Conclusion

Since various architectures for the LCC have been depicted, therefore there is not an exact

solution to a question that which LCC decoding technique was more proficient with the

alteration of various decoding parameters. The diverse  along with code rates simultaneously

resolve error rectification capability. In LCC decoder, combination of enhanced rate RS code

with smaller  may consist of the related performance as in larger  along with lower code rate.

Also, the lesser t will minimize the complexity in hardware whereas the greater  raise the

amount of the test vectors in a vividly manner. Since if we increase  by 1, it will cause the test

vectors to be doubled and in return which may cause to twice the hardware in order to maintain

them and trigger more latency. Conversely, gain in the t will amounts to restricted hardware.

A detailed and reviewed work on LCC implementation of RS decoder has been seen through

different forms of decoder designs; selection of test vectors and after the interpolation is applied

only on the specific selected test vector. In addition proficient architecture of interpolation,

polynomial selection and evaluation, erasure computation was developed. Although the

reduction in various technology parameters was observed with an increase in . Compared to

past approaches, considerable area reduction and efficiency enhancement has been achieved

without any loss of throughput. The latency of the RS decoder can be reduced with the help of

pipelining and syndrome computation. Future work will concentrate on further advancement in

technology and improvement in code recovery through various technology based parameters.

Page | 56

REFERENCES

[1] G.Reed and I. Solomon, (1960)“Polynomial codes over certain finite fields”. Journal of the

society for Industrial and Applied Mathematics, VOL.8, pp.300-304.

[2] W.Peterson, (1960) “Encoding and error correction procedures for bose-chaudhuri codes”.

IRE transactions on Information theory, pp.459-470.

[3] E. Berlekamp and L.welch, (1986) “Error correction for algebrain block codes”. US patent 4

633 470.

[4] J. Massey, (1968) “Shift register synthesis and bch decoding”. IEEE Transaction on

Information Theory, pp.122-127.

[5] Gary K. Maki, Patrick A. Owsley, Kelly B. Cameron and Jack Venbrux, (1986), “VLSI

REED SOLOMON DECODER DESIGN”. University of Idaho, Moscow.

[6] Anh Dinh and Daniel Tang, (2004) “Design of High-Speed (255,239) RS Decoder using 0.18

M CMOS”. IEEE, May, pp.2171-2174.

[7] Wolfgang Wilhelm, Andre Kaufmann and Tobias G. Noll, (1998) “A New Scalable VLSI

Architecture for Reed Solomon Decoders”. IEEE CUSTOM INTEGRATED CIRCUITS

CONFERENCE, pp.13-16.

[8] KUANG YUNG LIU, (1984) “Architecture for VLSI Design of Reed – Solomon Decoders ”.

IEEE Transactions on Computers, Feb, VOl. C-33.

[9] Hanho Lee, Meng-Lin yu and Leilei Song, (2000) “VLSI DESIGN OF REED -SOLOMON

DECODER ARCHITECTURES ” . IEEE International Symposium on Circuits and Systems,

May.

[10] Jason Bellorado and Aleksander Kavcic, (2006) “A Low – Complexity Method for Chase

Type Decoding of Reed-Solomon Codes”. IEEE, ISIT, July, pp. 2037-2041.

[11] Hung-Wei Chen, Jiin-Chuan Wu, Gwo-Sheng Huang, Ji-Chien Lee and Shin-Shi Chang,

(1995), “A New Vlsi Architecture of Reed-Solomon Decoder with Erasure Function”. IEEE.

[12] Wolfgang Wilhelm, (1999) “A new scalable VLSI architecture for Reed-Solomon

Decoders”. IEEE Journal of Solid-State Circuits, March, Vol. 34, No. 3.

Page | 57

[13] W. Zhang, J. Wang, H. Wang, Y.Y.Liu, Z. Jiang, and S.Q. Wu. (2012) “Low-power high-

efficiency architecture for low-complexity chase soft-decision Reed-solomon decoding”. IET

Communication; Vol. 6, No. 17, August, pp. 3046-3052.

[14] Richard Huynh, GE Ning and YANG HuaZhong, (2009) “A Low Power Error Detection in

the Syndrome Calculator Block for Reed-Solomon Codes : RS(204,188)”. Aug, Vol.14, No.

4.

[15] Dong-Sun Kim, Jong-Chan Choi and Duck-Jin Chung, (1999) “Implementation of High

Speed Reed-Solomon Decoder”. IEEE.

[16] Xinmiao Zhang, “High-Speed VLSI Architecture for Low-Complexity Chase Soft-decision

Reed-Solomon Decoding”. IEEE.

[17] Xinmiao Zhang, and Yu Zheng. (2012) “Systematically Re-encoded Algebraic Soft-Decision

Reed-Solomon Decoder”. IEEE TRANSACTIONS on Circuits and Systems; Vol. 59, No.6,

June, pp. 376-380.

[18] Xinmiao Zhang, and Yu Zheng. (2011) “Efficient Codeword Recovery Architecture for Low-

Complexity Chase Reed-Solomon Decoding”. National Science Foundation, IEEE, May,

pp.497-499.

[19] Kunal and Nidhi Kedia, (2012), “GDI Technique: A Power-Efficient Method for Digital

Circuits”. International Journal of Advanced Electrical and Electronics Engineering, Vol. 1,

No. 3, pp.87-93.

Page | 58

APPENDIX

LIST OF ABBREVATIONS

B:

 BMA: Berlekamp-Massey Algorithm

C:

 CMOS: Complementary Metal Oxide Semiconductor

 CD: Compact Disc

D:

 DRAM: Dynamic Random Access Memory

E:

 ESA: European Space Agency

F:

 FEC: Forward Error Correction

 FH: Frequency Hopping

G:

 GF: Galois Field

I:

 IEEE: Institute of Electrical and Electronics Engineers

L:

 LFSR: Linear Feedback Shift Register

 LCC: Low Complexity Chase

M:

 MOS: Metal Oxide Semiconductor

N:

 NASA: National Aeronautic Space Agency

R:

 RS: Reed-Solomon

Page | 59

S:

 SS: Spread Spectrum

V:

 VLSI: Very Large Scale Integration

