

AUTOMATED APPROACH FOR ANTI-PATTERN DETECTION AND

REMOVAL WITH JAVA STRUCTURES

A Dissertation

Submitted

By

Neha Nanda

To

Department of Computer Science

In partial fulfillment of the Requirement for the

Award of the Degree of

Master of Technology in

Computer Science and Engineering

Under the guidance of

Rohitt Sharma

(April 2015)

i

PAC FORM

ii

ABSTRACT

Anti-patterns are poor design choices that are conjectured to make object oriented

systems harder to maintain. We investigate the impact of anti-patterns on classes in

object-oriented systems by studying the relation between the presence of anti-patterns and

the change- and fault-proneness of the classes. Due to increased complexities in the

software development, there is huge need of testing process to be carried on in better way.

Due to increased complexities in the software development and increasing of anti-patterns

in the software development, there is a huge need of testing process to be carried out in a

better and effective way.

iii

ACKNOWLEDGEMENT

I would like to thank everyone who has supported and guided me through my thesis

dissertation. I thank them for their faith, their criticism, and their ability to boost me up

when I got stuck. I would like to thank them for their useful advises which have brought a

difference in my approach to successfully complete my thesis.

 I would like to express my gratitude to Mr. Rohitt Sharma for his constant support,

guidance and patience through the entire course of my work. He has been a constant pillar

throughout as his blind faith has brought us to believe in ourselves and our work.

I would also like to thank my parents for always believing in me and helping me get

throughout my M.tech. It would have not been possible without their encouragement and

support .I would also like to thank my cousin for helping and guiding me, her PhD

experience really counted a lot in achieving my objectives.

iv

DECLARATION

I hereby declare that the dissertation entitled,” Automated Approach For Anti-pattern

Detection And Removal With Java Structures” submitted for the M.Tech Degree is

entirely my original work and all ideas and references have been duly acknowledged. It

does not contain any work for the award of any other degree or diploma.

Date: NEHA NANDA

Investigator Regno: 11005541

v

CERTIFICATE

This is to certify that Neha Nanda has completed M.Tech dissertation proposal titled

“AUTOMATED APPROACH FOR ANTI-PATTERN DETECTION AND REMOVAL

WITH JAVA STRUCTURES” under my guidance and supervision. To the best of my

knowledge, the present work is the result of her original investigation and study. No part

of the dissertation proposal has ever been submitted for any other degree or diploma.

The dissertation proposal is fit for the submission and the partial fulfillment of the

conditions for the award of M.Tech Computer Science & Engg.

Date: _____________________ Signature of advisor

 NAME

 UID

vi

TABLE OF CONTENTS

Chapter 1: INTRODUCTION 1

1.1 Types of Anti-patterns 3

1.1.1 Singleton Overuse 3

1.1.2Functional Decomposition 3

1.1.3Poltergeist 3

1.1.4Spaghetti 4

1.1.4Copy and Paste 4

1.1.5Code Smells 4

1.1.6Golden Hammer 4

1.1.7Blob 4

1.1.8Unused Data 4

1.1.9Cryptic Code 5

1.2Unified Modeling Language 5

1.2.1Types of diagrams 5

1.3ArgoUML 6

1.4ECLIPSE (JAVA) 7

1.5XMI (XML METADATA INTERCHANGE) 8

1.6Refactoring 9

1.7Testing Process 10

Chapter 2: REVIEW OF LITERATURE 11

Chapter 3: SCOPE OF THE STUDY 19

Chapter 4: OBJECTIVES OF THE STUDY 20

4.1 Problem Definition 20

vii

4.2 Objectives 20

Chapter 5: METHODOLOGY 21

Chapter 6: RESULTS AND DISCUSSIONS 24

6.1STEPS TO DEMONSTRATE METHODOLOGY 24

6.2MEMORY AND TIME COMPARISON 36

Chapter 7: CONCLUSIONS AND FUTURE WORK 39

Chapter 8: REFERENCES 41

Chapter 9: APPENDIX 43

viii

LIST OF FIGURES

Figure No. Figure Name Page No.

Figure 1 Design Pattern and Anti Pattern Concept 2

Figure 2 ArgoUML working environment 7

Figure 3 Eclipse Working Environment 8

Figure 4 Xmi Concept 9

Figure 5 Flowchart to depict methodology 24

Figure 6 ArgoUML interface 25

Figure 7 ArgoUML import sources 25

Figure 8 Selecting of java file 26

Figure 9 Selecting add to diagram 26

Figure 10 Creation of UML diagram 27

Figure 11 Export XMI 27

Figure 12 User detail interface 28

Figure 13 Enter a valid integer value in the textbox 28

Figure 14 Conversion from feet to inches 29

Figure 15 Conversion from inches to feet 29

Figure 16 Conversion from centimetre to inches 30

Figure 17 Source code checked window 30

Figure 18 Selecting the text file you wish to upload 31

Figure 19 After selecting click on upload 31

Figure 20 After uploading click on testing 32

Figure 21 Memory used message box 32

Figure 22 Antipattern testing tool window 33

ix

Figure 23 Un-usedcode testing 34

Figure 24 Blob testing 34

Figure 25 Cryptic code testing 35

Figure 26 Refactor unused code 35

Figure 27 Refactoring of unused code 36

Figure 28 Unused code removal file 36

Figure 29 Console showing time for manual and

automatic input

37

Figure 30 Execution time comparison 38

Figure 31 Memory usage comparison 38

1

Chapter 1

INTRODUCTION

Good guys focussing on success are known as the design patterns are known which

are problem based and well defined unlike anti-patterns that are poorly defined, focus

on failures and are solution based. Bad guys are known as the anti-patterns that seem

to be effective and are refactored solutions but may lead to unwanted consequences.

The term was coined in 1995 by Andrew Koenig, inspired by Gang of Four's book

Design Patterns, which developed the concept of design patterns in the software field

[1]
. When a problem arises during coding, sometimes due to lack of knowledge, lack

of experience or lack of time we conclude a solution to the problem that seems

effective and easy but in turn leads more adverse problems clearly describing the

concept of anti-patterns. It may not hamper the execution of the program but may

lead to other issues which may go unnoticed otherwise and the ones ignored thus

making detection of such anti-patterns difficult and time-consuming. These days’

anti-patterns are an active research area that extends the study of design patterns into

more extensive fields. There is a rising need to detect and refactor unsuccessful

behaviours and thus turning the code to a better desirable solution and in turn

enhancing the software quality and performance of the code that could be in terms of

memory consumption, time to execute the program or cost.

Sometimes when we devise a solution to a problem it may seem useful but when

applied may leave us in a condition worse than before. Applying anti-patterns may

seem to be a solution to a problem and initially may seem to be a good idea but fall

off when implemented. Many anti-patterns come from a corrective action gone awry

[2]
.Anti-patterns are one of the main revolutionary changes in software engineering

and computer science today. But a solution not working so called the “negative

solution” has attached benefits with them, they provide us with the knowledge of

what does not work and hat will be effective and will provide us the required solution

.it serves as the software guidance much required in the evolution of a project.

2

Anti-patterns are new form of patterns that are accompanied by two solutions first is

problematic solution that has a set of negative consequences and the second is the

refactored solution which turns the anti-patterns in a healthy kind of solution.

Refactoring the code involves turning the design of external code to a more improved

version without changing its external behaviour. Developers generally introduce anti-

patterns in the system due to either lack of understanding, time pressure or

communication skills. Source code becomes intricate to understand and thus blocks

the growth and the maintenance actions. Finding anti-patterns on system’s subset can

lessen efforts, resources and cost overall. Different types of anti-patterns existing are

swiss army knife, blob, cryptic data, unused data, message chain, lazy class, the agile

charade, data last, bricks without clay etc. Various techniques are evolving that detect

anti-patterns occurring in a system. The various systems available for detecting anti-

patterns are eclipse, rhino, mylyn, argouml, décor, smurf etc. Yet there are some

limitations to these techniques like they have limited recall and accuracy which

require extensive knowledge about the anti-patterns and cannot be applied on

system’s subset. Difference between design patterns and anti-patterns are depicted in

Figure 1.

Figure 1: Design Pattern and Anti-Pattern Concept
[3]

3

In our study we focus on software quality and software testing. Software quality is

defined as a characteristic or an attribute of any entity. When we take attribute of any

item into consideration, we refer to characteristics which are things we can compare

to standards that are already known such as length, colour, malleability etc. Quality of

design for any products is a set of characteristics that identify any item or product.

These attributes are specified by the designers at design time and quality of

conformance refers to the extent to which the design characteristics specified by the

designer are followed and software testing refers to the execution of program after it

has been coded to check for any errors. It has been a costly process to be carried out

in comparison to other processes in the software life cycle. A lot of work is being

carried out these days on testing cost and the focus remains on reducing the testing

cost. Testing should be carried out in analysis and design phases in order to reduce

the testing efforts .It is actually a review of the previous processes like specification,

design and coding. A test case that discovers an undiscovered error is known as a

successful test case whereas a test case that has a high probability of finding an

undiscovered error is known as a good test case.

1.1 Types of Anti-patterns

There are different kinds of anti-patterns that act as a common vocabulary for

detecting problems and gathering knowledge for their respective solutions:

1.1.1 Singleton Overuse: -It is the easiest pattern a software engineer can understand

and is thought to be the good one but it violates information hiding. Larger the project

more the singleton patterns. It is easy to detect a singleton pattern by looking on the

class diagram and then detecting all the classes referring to themselves are the hidden

singleton anti-patterns.

1.1.2Functional Decomposition: -This anti-pattern is an old one which indicates

migration of old software into a new project. It can be detected in three ways first,

class names seem to be like function names secondly classes perform only one thing

and lastly all the attributes of a class are private but used only within a class.

1.1.3Poltergeist: -In this anti-pattern classes appear briefly for a short period of time

and then disappear. They are believed to have a very less or limited functionality

4

because of which programmers don’t even know what these classes do. We can detect

them by looking at the class names as their names end with “controller” or

“manager”.

1.1.4Spaghetti: -This anti-pattern is very long just like noodles. The longer the code

the more difficult and error prone it becomes. You can detect them by simply looking

for methods with many lines of code.

1.1.4Copy and Paste: -When you copy a code from one place to another place you

introduce copy and paste anti-pattern into your code and therefore in turn duplicating

the functionality. Their use must be avoided and can be reduced by using either

inheritance or turning the code into a method.

1.1.5Code Smells: -This is similar to anti-patterns but not that formal. The smell of a

code can be either good or it can be bad which would indicate a problem with the

code. This idea was introduced by Kent Beck in the late 1990s.different tools like

Chekstyle, FindBugs can be used to detect the bad smells and can be refactored to

remove such odours.

1.1.6Golden Hammer: -indicates the use of the same concept or technology which

has been used over and over again in many software problems. It can be resolved by

expansion of the developer’s knowledge through training, education and reading

different books that would help expand the working to use of different approaches

and technologies.

1.1.7Blob: -Also called the “God object”. The key problem here is that the majority

of the responsibilities are allocated to a single class. In simple terms single function

performs multiple functions. It results from inappropriate responsibilities allocation.

It can be removed by splitting classes into much smaller other classes.

1.1.8Unused Data: -It is the data or the part of the code included in the code but is

not useful or never accessed or used. It is the unnecessary portion of the code that

increases the program execution time. It leads to heaping the memory and increase

the complexity of the code.

5

1.1.9Cryptic Code: - Is another type of anti-patterns which defines the abbreviations

used for fields instead of proper naming. This makes hard to understand what types of

values the field is simulating and also makes it difficult to reuse or modify the code in

future.

1.2Unified Modeling Language

UML or Unified Modelling Language has now become a common standard for

software modeling and design and in turn building object oriented software. It is a

graphical language which helps in defining the visible structure of a system. It is

basically used to visualize, specify, construct and document the artefacts of a

software system.

1.2.1Types of diagrams

I. Class Diagram: - A UML class diagram is a static view of an application. Class

diagram explains the working and attributes of a class and is used to visualize,

describe and document the functionality of a system and also for building of code

which is executable in nature of any software application. The class diagram

depicts classes, interfaces, collaborations, constraints and associations and in turn

can also be known as structural diagram.

II. Component Diagram:-This diagram depicts a set of components which comprise

of classes, interfaces or collaborations and portrays the relationships among them.

These diagrams help visualize the implementation view of a system.

III. Deployment diagram:-They are used to represent the hardware of a system, the

software that is installed on that hardware and the middleware used to connect

different machines to one another. This diagram depicts a set of nodes and the

respective relationships among them. This diagram is used by the deployment

team.

IV. Object Diagram:-also known as instance diagram are used to represent real world

examples of objects and the respective relationships among them and also depict

the static view of a system. They help build a prototype of a system for practical

purposes.

6

V. Use Case Diagram:-depicts the behaviour of the target system from an external

point of view and consists of a set of use cases, actors and the relationships

among them. Use cases help represent functionality of a particular system and can

be depicted using actors associations and use cases.

VI. Sequence Diagram:-also known as an interaction diagram and represents the

sequence of messages flow from one object to another. It performs a specific

functionality and visualizes the sequence of interactions among the objects.

VII. Collaboration diagram:-it is also an interaction diagram and portrays the structure

of an organization and the messages which are sent and received. It is similar to

what a sequence diagram is like but its specific functionality is to visualize the

objects of an organization and the interactions among them.

VIII. Statechart Diagram:-the internal or external events in a system are a part of any

real time system and these events are responsible for changing of state of a

system. These diagrams represent the state change of a system depending on the

occurrence of the events.

IX. Activity Diagrams:-they describe the flow of control of the target system and

consist of activities and links which give us an idea of how the system will work

if executed. Functions of any system can be known as activities of that system

and the flow of such functions can concurrent, branched, or sequential.

1.3ArgoUML

It is a java based application and is a UML modelling tool available in the market and

is open source in nature and which includes support for all the standard UML

diagrams and is available in 10 languages.

ArgoUML support class, sequence, deployment, collaboration, use case, activity and

statechart UML diagrams. Its working environment is shown in Figure 2 below.

7

Figure 2: ArgoUML working environment

1.4ECLIPSE (JAVA)

It is an integrated environment for project development under java and other

programming languages like c, c++, PHP, ruby etc
[4]

.It was created by an open

source community and can be used by android applications or java as a development

environment.

Rich client applications, integrated development environment and some other tools

can be built using eclipse. For any programming language having a plug-in Eclipse

can work as an IDE. Its working environment is shown in Figure 3 below.

8

Figure 3: Eclipse Working Environment

1.5XMI (XML METADATA INTERCHANGE)

It is XML Metadata (data about data) interchange is a paradigm for metadata

information exchange via XML (extensible markup language).It helps the

programmers who work with UML (Unified Modeling Language) exchange their data

models with each other. Information about data warehouses can also be exchanged

among the programmers using XMI.

In short different companies which are cooperating with one another in one way or

the other exchange their data whenever required using XMI.

File created in XMI format is used for exchanging UML diagrams and storing

information about model design in a standardized XML format which is then used to

transfer design information between software programs.

Our purpose is to read the XMI which will be produced and consists of methods,

classes and variables. This XMI will be the input for eclipse testing module.XMI

concept is depicted in Figure 4 below.

9

Figure 4: XMI Concept

1.6Refactoring

Refactoring refers to changing the internal structure of the code without making any

changes to its external behaviour.

It helps in changing the code so that it performs better without any previous errors.

Benefits of Refactoring are:-

i. Highly reusable code

ii. Easy up gradation an maintenance

iii. Definitive solution for a common problem which eventually saves time

iv. Abiding to the known code standards

v. Trustworthy code

vi. Number of defect counts are low

vii. Better understand ability and readability

viii. Automated testing can be carried out easily

ix. Generation of efficient and effective code

10

1.7Testing Process

Software technologies produces software based systems to grab and involve fresh

industry needs and to provide quality, bug fixing is an important process in

development. Due to the time-to- market, lack of understanding, and the developers’

experience, developers cannot always follow standard designing and coding

techniques, i.e., design patterns
[5]

.Test suites are often simply test cases that software

engineers have previously developed, and that have been saved so that they can be

used later to perform regression testing
[6]

. Re executing all the test cases require

enormous amount of time thus make the testing process inefficient. Anti-patterns

checking is an essential process in any software development procedure. Normally it

is defined as recurring, bad designing in linking which could rise to the loose effects

in software systems because it is a big difficulty in understand ability and

maintainability of whole development. Due to these issues, testing of the systems is

increased and hence the cost increase too. In related research consider testing cost the

number of test cases that satisfy the minimal data member usage matrix (MaDUM)

and studied four Java programs, Ant 1.8.3, ArgoUML 0.20, CheckStyle 4.0, and

JFreeChart 1.0.13 which shows that unit testing increased due to availability of anti-

patterns. Previous research also introduced some refactoring actions which applied to

classes participating in anti-patterns which reduce cost of testing. In our proposed

work we are enhancing the test cases for the similar work with eclipse, Web browser

as additional Java programs. Effective testing of software is necessary to produce

reliable systems. This is true in practice since static verification techniques have their

own limitations. We are going to perform the automation testing for the Graphical

User Interface. The first phase include the connecting the path of the given GUI and

the XMI based on ArgoUML tool. Unified modeling language will be used for

creating XMI files. Our GUI will contain the event if any of the events is clicked than

the flag value will be set. Now we will convert the GUI file to the XMI code with all

the flag set value for finding of anti-pattern credentials. Automation in testing for

finding anti-pattern and automation of refactoring are the primary concerns which

could be fulfil by judging the parameters which are responsible for anti-pattern and

by providing refactoring of this anti-pattern could be avoided.

11

Chapter 2

REVIEW OF LITERATURE

Aminata Saban´e, Massimiliano Di Penta, Giuliano Antoniol, Yann-Ga¨el

Gu´eh´eneuc (2013) “A Study on the Relation between Antipatterns and the Cost

of Class Unittesting” referred the anti-patterns as poor design choices which are

recurring in nature. They affect the systems in a negative fashion in terms of

maintainability and understandablity. In this paper we study the anti-pattern effect on

testability and test cost in particular
[7]

.We consider as (upper bound) indicator of

testing cost the number of test cases that satisfy the minimal data member usage

matrix (MaDUM) criterion proposed by Bashir and Goel.A study was carried out on

four java systems which are Ant 1.8.3, ArgoUML 0.20, CheckStyle 4.0, and

JFreeChart 1.0.13.They said that unit testing requires a number of test cases a number

higher than the test cases for non-antipattern classes and that anti-pattern classes

should be thoroughly tested because there are more chances of defects in them. They

found the number of test cases required for class unit testing in anti-patterns is higher

and what is the cost benefit trade-off when we are giving priority to the testing of

classes participating in anti-patterns. Their paper has discussed the estimation of cost

of class unit testing based on the test cases generated by the (MaDUM)
[8]

 minimal

data members’ usage matrix technique. This technique does not require

documentation for design. This paper computed the number of test cases for four

types of java systems. They described MaDUM as an nf.nm matrix where nf is the

number of fields and nm is the number of methods in a class. They have discussed the

strategy to test classes using MaDUM by first categorizing the methods into

Constructors (c): class constructors; Transformers (t): methods that alter the state of

one or more fields; Reporters (r): methods that return the value of a field; others (o):

methods that do not fit in the categories above
[9]

. This study on this paper has been

carried out for the basic purpose of estimating the cost of class unit testing for the

classes participating in anti-patterns. The four java systems used in this paper have

different properties and each one is used for its specific feature like argoUML is used

as an open source tool for generating uml diagrams, CheckStyle is a tool used for

developing java programs, it also checks that whether the code adheres to the

12

mentioned coding standards, JFreeChart is a java class library for generating charts in

java based programs. Then they talked about refactoring and reducing the cost of

testing. They said that testing cost can be reduced by performing extract method

refactoring and for this they gave an example of sequence of statements being

repeated in four methods with only a little variation. These repeated sequences

increase the number of test cases required for testing the classes according to the

MaDUM strategy. This refactoring technique in turn reduces the number of test cases

of the class refactored. Overall their study concludes and supports the fact that classes

participating in anti-patterns require a higher cost value to test than other classes and

higher priority should be given to the classes participating in antipatterns as it is more

cost effective because of the defects they contain and even refactoring should be done

in a cost effective manner. Finally their future work included to extend the empirical

study to more programs, feasibility for automatic detection and refactoring of

antipatterns and in turn reducing the testing cost and extending the evaluation to class

integration and related test integration.

A.V.K. Shanthi1 and G. Mohan Kumar21Research Scholar, Sathyabama

University, Chennai, India.2 Principal, Park College of Engineering,

Coimbatore(2012), “Automated Test Cases Generation from UML Sequence

Diagram”, focused on testing software at early stages so that it is easier for software

testers at the stages later to come. Automated testing can be carried out by creating a

test case and this paper’s priority is to generate the test cases by use of UML

Sequence diagram using Genetic Algorithm. They used the UML sequence diagram

in this paper for specifying the design and even implemented the idea of test case

automatic generation for software. They even proposed an approach for prioritization

of test cases which were generated by the UML sequence diagrams using genetic

algorithm and sequence dependence table (SDT). This paper gave the methodology

for test case generation and described sequence diagram as an interaction kind of

diagram which illustrates how different processes communicate or operate with each

other and in what order. Sequence diagram in the arrangement of time sequence

shows the object interactions. It also shows all the objects and classes involved in a

certain program and the sequence of messages exchanged between the objects which

in turn carry out the functionality of the program. Sequence diagrams are generally

13

associated with the use case realizations in the logical view of the system which is

under development. Then they gave the idea as to how to generate the test cases using

the sequence diagrams by extracting the required information from the sequence

diagram and the extraction can be through a parser written in java which will extract

all the information required from the file. Then based on the information extracted a

(SDT) Sequence dependency table is generated. The SDT helps in generating the test

path and by applying the GA the most prioritized test case is generated. Finally the

conclusion was that in this paper they portrayed the development of test cases using

the uml sequence diagrams using genetic algorithm. Their aim was to identify the

fault in the program when implemented thus in turn reducing the testing efforts. It

works at reducing the development time, improve the quality of design and find faults

at an early stage. Their future scope mentions the generation of automatic tool using

this approach. The automatic tool can reduce the development cost and even improve

the software quality.

Benoit Baudry, Yves Le Traon, Gerson Sunyé, Testability Assessment, IWoTA

Proceedings IEEE pp-70-80 (2004), “Improving the Testability of UML Class

Diagrams” introduced the object-oriented testing efforts in their research work. By

this they aimed at recognizing the different testability anti-patterns that deteriorate the

software testability and then using uml for better testability and make implementation

testable in a better way. The basic criteria they carried out in this study was to

identify the key elements of the class diagram that make the testing of the part to be

implemented ,difficult. In the class diagram, testability anti-patterns are identified and

then worked upon for better testability and implementation. They defined all kinds of

anti-patterns that could exist in uml class diagrams and then a testing criterion was

carried out to see through the existence of the anti-patterns in the uml class diagram.

They took the example for university library management system for the same. The

class diagram they created for the same contained mainly all the features of the object

–oriented programming like inheritance, abstract classes, association and usage

dependency relationships. Their testing criterion detected the anti-patterns hard to

find in a class diagram hindering the implementation. They said that in object-

oriented systems classes are usually dependent on each other for their processing.

Thus they calculated the testing effort and complexity in testing the anti-patterns

14

deduced from the class diagram and after detecting they worked on improving the

design. They said the design can be improved in two ways .first by reducing the

number of anti-patterns in the class diagram by reducing the interdependencies

between various classes or either by reducing the complexity because of

polymorphism. They summarized their work by saying that testing cost can be

reduced by taking testing issues into account in design phase and said that doing this

reduces the testing efforts in the implementation phase. They calculated testability as

the effort required to build the test cases that in turn cover all interactions between the

objects and finally to improve the testability they introduced UML stereotypes to add

information about relationships in different class diagrams which are create, use,

use_def, use_consult.

Zoltán Ujhelyi, Ákos Horváth, Dániel Varró, Norbert István Csiszár, Gábor

Szoke, László Vidácsy, Rudolf Ferenc(2011), “Anti-pattern Detection with

Model Queries: A Comparison of Approaches” stated that program queries have

played a major role in software evolution tasks like automating the finding of anti-

patterns, analysis of impact and program comprehension. They have made use of java

using eclipse platform to represent program models which are processed by three

model query techniques. Then they carried out comparison of the three Automation in

testing for finding anti-pattern and techniques on the source code of 17 java projects

by using the refactoring operations queries located in different usage profiles .They

introduced refactoring which works with the goal of changing the source code of the

program without making any changes to the behaviour of the program. They have

conducted a detailed comparison of (1) memory usage in different ASG

representations (dedicated vs. EMF) and (2) run time performance of different

program query techniques. For the latter, we evaluate four essentially different

solutions: (i) hand-coded visitor queries (as used in Columbus), (ii) queries

implemented in native Java code over EMF models, (iii) generic model queries

following a local search strategy and (iv) incremental model queries using a caching

technique
[10]

.they built an abstract semantic graph (ASG) from the source code as a

model and then it is stored in in-memory representation. They stored the various

models used in model-driven engineering (MDE) and manipulated them with

accordance to the meta-modeling framework which was eclipse modelling

15

framework(EMF) which generated systematic API, model manipulation code, layer

which is persistent in XMI, simple viewers and editors automatically from the

domain metamodel. They captured anti-patterns as model queries using a high- level,

declarative graph pattern based query language
[11]

.they selected six types of anti-

patterns and then formalized them as model queries. They then worked out the

strategy by first managing the models of java programs then definition of model

queries using graph patterns and in the end implementing the program queries. Their

evaluation process consisted of measuring the performance using the program models

from the java based projects by description of the measurements, detailed results

usage profiles and evaluation of the results. Finally they concluded that they

evaluated different approaches of query to find the anti-patterns for refactoring the

code for java projects. They gave a way to faster implementation and a way that was

easy to experiment with the queries.

Abdou Maiga, Nasir Ali, Neelesh Bhattacharya, Aminata Sabané, Yann-Gaël

Guéhéneuc, Giuliano Antoniol, and Esma Aimeur (2012), “Support Vector

Machine for Anti-Pattern Detection” gave the introduction as to about what are

anti-patterns. Anti9 patterns are recurring design problems that occur when we are in

the designing phase of a program. These hinder the understand ability of the code.

Anti-patterns should be detected and removed at an early stage so that to reduce the

cost and the time in which we deliver an error free system. This paper introduced the

methods for detecting various anti-patterns in a system. They introduced an approach

called SVM-detect to detect the anti patterns which is based on machine learning.

They also compared the accuracy between SVMDetect and DETEX and that

SVMDetect can find more anti pattern occurrences than DETEX. They also

highlighted the limitations of approaches that help detect anti-pattern like they require

extensive knowledge of anti-patterns, they have limited precision and recall and they

cannot be applied on subsets of systems
[12]

.They used SVMDetect to detect four anti-

patterns: Blob, Swiss Army Knife, Spaghetti Code, and Functional Decomposition.

The first step in the process was to define a training data set (TDS).It constituted the

set of classes derived from object oriented system. The second step was training the

SVM classifier which indicated whether a class Xi is a respective anti-pattern or not.

It divided the classes into two different groups i.e. Anti-pattern or not anti-pattern e.g.

16

blob or not-blob. The third step was about construction a dataset DDS and the

occurrences of an anti-pattern. The objects they used in their study were ArgoUML

v0.19.8, Azureus v2.3.0.6, and Xerces v2.7.0 which are three open-source java

systems. Their study observed that DETEX cannot detect as many ant-patterns as

SVMdetect. According to their observations DETEX detected 25 anti-patterns and

SVMDetect detected 40 anti-patterns in ArgoUML and in total SVMdetect detected

143 blob occurrences whereas DETEX detected 102 blob occurrences
[13]

. They

concluded that anti-patterns can hinder both development as well as maintenance

activities. SVMDetect could overcome the limitations previously mentioned by a

technique based on support vector machine (SVM).Experiments have been shown

how SVMDetect is used on three systems (ArgoUML v0.19.8, Azureus v2.3.0.6 and

Xerces v2.7.0) and four anti-patterns (Blob, Swiss Army Knife, Functional

Decomposition and Spaghetti code).Their future work includes the use of SVMDetect

in real world environments and impact of the quality of feedback on SVMDetect

results.

Zhaogang Han, Peng Gong, Li Zhang, Jimin Ling, Wenqing Huang (2013),

“Definition and Detection of Control-flow Anti-Patterns in Process Models

“introduced the antipatterns as “design flaw that lead to errors for a process model”

[14]
. They also introduced an approach that dealt with detection of anti-patterns which

could be both system designed as well as user defined. Firstly they converted the

process model into a refined process structure tree (RPST) by an algorithm which is

known as cycle equivalence algorithm. Then they designed a control- flow anti-

pattern description language (CAPDL) is defined and an algorithm regarding CAPDL

is proposed. They observed that control- flow anti pattern was the most common anti-

pattern in process models which introduced errors like lack of synchronization and

deadlock. The first step they introduced in the process was “process model pre-

processing” which is further divided into two steps: The control flow structure of a

process model is converted into a workflow graph and then the cycle equivalence

algorithm is used to convert the workflow graph into RPST.Worflow graph used

BPMN
[15]

 notations like parallel branch, exclusive choice,synchronization,simple

merge etc,to represent elements in the workflow graph and symbols “AND-Split”,

“AND-Join”,”XOR-Split” and “XOR-Join” are used respectively. Then a “Refined

17

Process Structure Tree” is formed which is used to enhance the efficiency of control

flow anti-pattern detection. This approach was composed of nodes and canonical

single entrance single exit process blocks in workflow graph. Leaf nodes in RPST

corresponded to nodes in the workflow graph and non- leaf nodes corresponded to

process blocks. Then a language was introduced known as CAPDL (Control-Flow

Antipattern description language) which worked on a basic concept of predicates.

Various rules were defined which were composed of series of predicates and a

concept with a higher level than a rule was an anti-pattern because anti-pattern could

be formed from one or more rules. Concept of module was also introduced to

CAPDL so as to reuse existing definition of antipattern and rule. Therefore by using

predicate, rule, anti-pattern and module, CAPDL has introduced concise control- flow

anti-pattern definition approach. In order to verify the effectiveness of the CAPDL an

anti-pattern detection experiment based on 278 process models was initialized in

which four frequently occurring anti-patterns were detected. Finally the concluded

that researches on control- flow anti pattern is still in its preliminary stage and anti

patterns description approaches need to support more anti-patterns. Their future work

would include the extensibility of the ability of the workflow graph and CAPDL and

improvement in the existing algorithm to enhance the recall rate, search efficiency

and precision.

Abdou Maiga1,Nasir Ali1, Neelesh Bhattacharya,Aminata Saban´e,Yann-Ga¨el

Gu´eh´eneuc,and Esma Aimeur(2012), “SMURF: A SVM-based Incremental

Antipattern Detection Approach” introduced anti-pattern occurrence reason as lack

of understanding, time pressure, lack of communication or lack of skills making the

source code difficult to understand. They introduced SMURF that could be used both

in intra-system and inter system configurations.Anti-patterns are generally result of

misuse of object oriented or design patterns. They introduced spaghetti code related

to classes without object-oriented structure so they do not exploit polymorphism and

inheritance so cannot be used by developers and blob as a large class that controls

that controls the behaviour of a system. They also introduced the four limitations of

approaches used to detect anti-patterns which are they require extensive knowledge

of anti-patterns, they have limited precision and recall, they are not incremental and

they cannot be applied on subsets of a system
[16]

.This paper proposed their approach

18

SMURF to detect anti-patterns using SVM and practitioner’s feedback. They studied

four anti-patterns which are blob, spaghetti, functional decomposition and Swiss

army knife and perform more than 300 experiments to compare the results of DETEX

AND BDTEX with the results of SMURF.They observation concluded that SMURF

performed better than DETEX as DETEX could detect 102 blob occurrences whereas

SMURF detected 143 blob occurrences. Then they compared SMURF and BDTEX.

BDTEX is a probabilistic approach which provides that a class is an occurrence of

anti-pattern
[17]

. This comparison concluded that BDTEX contains a high level of

uncertainty thus BDTEX has high recall but bad precision. SMURF overcame all the

four limitations of previous approaches used to detect anti-patterns. They also showed

that accuracy of SMURF was greater than that of DETEX and BDTEX when

detecting anti-patterns on a set of classes or on the entire system. Finally they said

that SMURF accuracy improves when using practitioner’s feedback. Their future

work included using SMURF in real world environments and further they would use

other systems and anti-patterns. Another study would include evaluation of the

impact of feedback on SMURF results.

19

Chapter 3

SCOPE OF THE STUDY

This study aims at automatic detection of anti-patterns which are recurring design

problems which deteriorate the quality of the system .They increase the overall cost

of the system and in our study we work at reducing the overall cost and time of the

execution of a system.Antipattern detection has been a major concern in the

programming world because it directly affects the cost and the time of the execution

process and various techniques have been devised for detecting and removing the

anti-patterns. This study helps in investigating the impact of anti-patterns on classes

in object-oriented systems and as a result helps in carrying out the testing process in a

better way. The study also helps in bug fixing, provide quality product, cost cutting,

automate testing for GUI and carrying out faster execution of code.

20

Chapter 4

OBJECTIVES OF THE STUDY

4.1 Problem Definition

Our concept is based on the automatic detection of anti-patterns in the given code.

Anti-patterns are wrong design patterns that deteriorate the quality of the software.

Detection and removal of anti-patterns can enhance the software quality and will

decrease the chances of the bug in the software. If we may automate the process of

anti-patterns detection in the code it will reduce the time and cost of anti-pattern

detection. So our goal is to automate the process of anti-pattern detection and aims at

optimized unit testing for anti-pattern detection.

4.2 Objectives

Our research will start with study of anti pattern detection mechanisms like smurf and

decor. We have processed detection systems to find techniques with better accuracy

and quality. Some of the objectives which need to be fulfilled are given below.

1.) Find optimized testing technique for detection of anti patterns.

2.) Providing solution for anti pattern by testing approaches.

3.) Detecting the anti-pattern using testing approaches.

4.) Refactoring the code and making it anti-pattern free.

21

Chapter 5

METHODOLOGY

In our research, we focused on the automatic testing for finding of anti-patterns.

Whole process is divided in two parts. Part one consists of XMI read and collects

required information from it and second part is used to collect information and a java

based tool will use this information to test given code for anti-patterns. An additional

feature added to the program is uploading a text file and converting the values in it.

First of all UML diagram is created for the program, which is created using Argo

UML. The created UML is transformed into XMI; eclipse testing module uses this

XMI as an input. Then we give file path to XMI. We run our program when we have

finally provided the required input. XMI file is read by the program from the

particular location. A DOM Parser object is created in order to read XMI which is

used to parse the file. After the file is parsed, the file is stored in a Document object

in the structure of a document.

Once we get the required knowledge from the XMI, eclipse (java) testing module

goes through the major code and locates the anti-patterns in it. Different types of anti-

patterns exist, and in our study we have tried to discover some most familiar anti-

patterns which are unused data, blob and cryptic code anti-patterns that deteriorate

the quality of the code. We created a tool that will automate the process of finding the

mentioned anti-patterns. The information we got from XMI file is used for the

detection of unused code and cryptic code.

When the code is executed there are certain fields which were defined but not used,

these types of anti-patterns are well-known as unused code anti-patterns. This ant-

pattern exceeds the program execution time limit and in turn consumes needless

memory space which may deteriorate the quality of the code. XMI file’s data supplies

us with the information about the fields defined in the class. Our program looks up

these fields to locate their values, if the field is found idle during the execution of

program, that field is striked as unused. The program searches the whole code and

provides the entire list of unused fields in the program.

22

When multiple functions are performed by a single function or multiple

responsibilities are assigned to single function, blob anti-patterns are identified. It is

also famous as God object. Method call stack is printed to locate blob anti-pattern.

Method call stack displays the calling situation in the program. It is expected that a

single function performs one single task. If some method is called time and again, it

is most probably a blob pattern. Inspection of the call stack is necessary to detect blob

kind of anti-patterns.

Cryptic code is a type of anti-pattern which uses abbreviations for declarations or

fields instead of suitable naming. This makes intricate to identify what types of values

the field is referring to and makes it complex to modify or reuse the code in future.

This makes it hard and burdensome to reuse the code or alter the code in future. To

locate cryptic code our program describes the least length required for an ideal

naming of the field. The fields having characters in a lesser limit than the precise

given length are considered as cryptic code anti-patterns and after searching the

whole program the detected anti-patterns are added to the list which will print them.

After locating the anti-patterns, code is refactored to eliminate the anti-patterns from

the code. This makes the operation of the code faster and will enhance quality of the

code. Refactoring of the code is carried out in three different stages. During each

stage one of the anti-patterns is isolated from the code.

After the refactoring process is complete, refactored code again goes through the

testing tool to ensure that there are no anti-patterns present. Now we compare the

implementation time and memory usage of refactored and non-refactored code. The

following flowchart in Figure 5 depicts the methodology briefly.

23

Figure 5: Flowchart to depict methodology

24

Chapter 6

RESULTS AND DISCUSSIONS

6.1STEPS TO DEMONSTRATE METHODOLOGY

i. First of all we will install ArgoUML and open it as shown in Figure 6.

Figure 6: ArgoUML interface

ii. Go to file menu and click on import sources option as shown in Figure 7.

Figure 7: ArgoUML import sources

25

iii. Import sources window appears. Browse the xmi.java file from the location

where your java xml metadata exchange file exists as depicted in Figure 8.

Figure 8: Selecting of java file

iv. Click on Untitled model on the left side of the window in the configuration

section and right click on xmi data class type.

v. Click on add to diagram option as shown in Figure 9.

Figure 9: Selecting add to diagram

26

vi. Move the cursor to the right where UML diagrams are created a black cross

sign appears.

vii. Left click once and the UML class diagram for xmi data is created as shown

in Figure 10.

Figure 10: Creation of Uml diagram

viii. Now again go to the file menu and click on export xmi option.

ix. Save the xmi file created at any location you desire for further access as

shown in Figure 11.

Figure 11: Export XMI

27

x. Now we finally implement our methodology and run our program in

eclipse.

xi. First of all a user interface appears which asks for an input number for

conversion from either feet to inches, inches to feet or centimetre to inches as

shown in the Figure 12.

Figure 12: User detail interface

xii. We can enter any numeral we wish to enter in the text box provided and

choose any of the three radio buttons according to the type of conversion we

want as shown in Figure 13.

Figure 13: enter a valid integer value in the textbox

28

xiii. Feet to inches conversion. This is depicted below in Figure 14.

Figure 14: Conversion from feet to inches

xiv. Inches to feet conversion. This is shown below in Figure 15.

Figure 15: Conversion from inches to feet

29

xv. Centimetre to inches conversion. This is depicted below in Figure 16.

Figure 16: Conversion from centimetre to inches

xvi. When we click on Automate testing for input command button a new dialog

box appears “Source Code Checked” as shown in Figure 17.

Figure 17: Source code checked window

xvii. We can upload any text file containing the numeral you want to test the

conversion for. In this program a file named “upload” is created which is

located on the desktop containing the numeral for conversion.

xviii. By clicking on Upload combo box a window appears named open where we

can select the file we want to test i.e. upload file located on the desktop.

30

xix. After selecting the file click on open as shown in Figure 18.

Figure 18: Select the text file you wish to upload

xx. When we click on open the path of the file selected appears in the empty text

box on the source code checked dialog box as shown in Figure 19.

Figure 19: After selecting click on upload

31

xxi. Next click on testing to automatically generate the three conversions done

previously as shown in Figure 20.

.

Figure 20: After uploading click on testing

xxii. Now close the source code checked dialog box and on the “user detail” dialog

box click on Anti-pattern testing combo box.

xxiii. A message box will appear which will tell you about the memory used by the

entire conversion program containing anti-patterns as demonstrated in Figure

21.

Figure 21: Memory Used massage box.

32

xxiv. When we click on ok a new window “Antipattern testing tool” appears as

shown in Figure 22.

Figure 22: Antipattern testing tool window

xxv. Now we can individually check for each type of anti-patterns among the three

anti-patterns namely blob, unused code and cryptic code.

xxvi. When we click on UN-USEDCODE TESTING, all the unused variables and

parameters get listed along with the ones used as shown in Figure 23. The

listed data includes:-

a) Used variables in listener class

b) Unused variables in listener class

c) Used variables in GUI class

d) Unused variables in GUI class

e) Used variables in GUI Interface class

f) Unused variables in GUI Interface class

33

Figure 23: Un-usedcode testing

xxvii. By clicking Blob Testing combo Box all the classes having more than 3

responsibilities or a single function performing multiple functions is depicted.

All the classes and the number of responsibilities they perform are shown in

the blank text box alongside as shown in Figure 24.

Figure 24: Blob testing

34

xxviii. Then by clicking on cryptic code testing combo box the variables names using

abbreviations not understandable by the user are highlighted as shown in

Figure 25.

Figure 25: Cryptic code testing

xxix. Once the anti-pattern detection is over we can move on to refactoring of code

by clicking on the refactor combo box.

xxx. Left click on refactor code combo box.

xxxi. A new window appears where we can refactor and improve our code design

as shown in Figure 26.

35

Figure 26: Refactor unused code

xxxii. Click on Refactor unused code combo box.

xxxiii. Automatic refactoring of unused code is done.

xxxiv. On the left side of the window unused code is shown and on the right side of

the window automatic refactoring of unused code is shown in Figure 27.

Figure 27: Refactoring of unused code

36

xxxv. Click on save button and a copy of the refactored code is saved in the location

specified in your code as shown in Figure 28.

Figure 28: Unused code removal file

xxxvi. However the refactoring of cryptic code and blob anti-patterns has to be done

manually.

xxxvii. In case of cryptic code anti-pattern we have to replace the detected

abbreviations with proper, easily understandable names.

xxxviii. In case of blob anti-pattern we have to manually allocate or distribute

responsibilities of functions or classes having more than 3 responsibilities to

other classes or functions with less number of responsibilities to maintain a

balance.

6.2MEMORY AND TIME COMPARISON

i. After completion of the implementation we can compare memory and time

consumption before and after the removal of the anti-patterns.

ii. Time comparison as depicted on the eclipse console is shown in Figure 29 for

input value 12.

37

Figure 29: Console showing time for manual and automatic input

iii. The graph in Figure 30 shows how the execution time decreases after the

removal of anti-patterns.

Figure 30: Execution time comparison

38

iv. Comparison for memory before and after the anti-pattern removal in depicted

in graph Figure 31.

Figure 31: Memory usage comparison

39

Chapter 7

CONCLUSIONS AND FUTURE WORK

Poor design choices that are induced to make object oriented systems harder to

maintain are identified as anti-patterns which amplify the programming cost, increase

the execution time and diminish the understanding of any program. It makes the

source code complicated to understand and hamper the progress and the maintenance

activities. Detecting anti-patterns on system’s subset can lessen cost, labour and

assets to be used. Various techniques are budding that discover anti-patterns stirring

in a system. Locating and elimination of anti-patterns is a vital process in any

software development system.

In related research consider testing cost the number of test cases that satisfy the

minimal data member usage matrix (MaDUM) and studied four Java programs, Ant

1.8.3, ArgoUML 0.20, CheckStyle 4.0, and JFreeChart 1.0.13 which shows that unit

testing increased due to availability of anti-patterns. Previous research also

introduced some refactoring actions which applied to classes participating in anti-

patterns which reduce cost of testing. In our proposed work we are enhancing the test

cases for the similar work with eclipse, Web browser as additional Java programs.

We aim at removal of anti-patterns which can enhance the software quality and will

decrease the chances of the bug in the software. Automation in testing for finding

anti-pattern is the primary concerns of our study. The main objective is to find testing

technique for detection of anti patterns and providing solution for anti pattern by

testing approaches. We concentrated on finding three types of anti-patterns which are

blob, cryptic code and unused data anti-patterns.

When multiple functions are performed by a single function or multiple

responsibilities are assigned to single function, blob anti-patterns are identified.

Method call stack is printed to locate blob anti-pattern. Method call stack displays the

calling situation in the program.

Cryptic code is a type of anti-pattern which uses abbreviations for declarations or

fields instead of suitable naming. This makes intricate to identify what types of values

the field is referring to. To locate cryptic code our program describes the least length

40

required for an ideal naming of the field. The fields having characters in a lesser limit

than the precise given length will be considered as cryptic code anti-pattern.

When the code is executed there are certain fields which were defined but not used,

these types of anti-patterns are well-known as unused code anti-patterns. XMI file’s

data supplies us information about the fields defined in the class. Our program looks

up these fields to locate their values, if the field is found idle during the execution of

program, that field is striked as unused. The program searches the whole code and

will provide the entire list of unused fields in the program.

After locating the anti-patterns, code is refactored to eliminate the anti-patterns from

the code. This makes the operation of the code faster and enhances quality of the

code. Refactoring of the code is carried out in three different stages. During each

stage one of the anti-patterns is isolated from the code.

After the refactoring process is complete, refactored code again goes through the

testing tool to ensure that there are no anti-patterns present. Then we have compared

the implementation time and memory usage of refactored and non-refactored code.

Future work can include repeating the same research using different anti-patterns,

automatic refactoring of cryptic code and blob anti-patterns or we can implement the

same work on some other platform and compare as to which tool is better.

41

Chapter 8

REFERENCES

[1] www.omg.org/technology/readingroom/Anti-Pattern.htm

[2] www.antipatterns.com/EdJs_Paper/Antipatterns.html

[3] www.ijcse.net/docs/IJCSE15-04-02-036.pdf

[4] www.tutorialspoint.com/eclipse/

[5]M. Fowler,” Refactoring – Improving the Design of Existing Code”, 1st ed. Addison-

Wesley, June 1999.

[6] Aminata Sabane, “A Study on the Relation between Antipatterns and the Cost of Class

Unit Testing”, European Conference on Software Maintenance and Reengineering, July

2013.

[7] Li Bao-Lin, Li Zhi-shu, Li Qing, Chen Yan Hong , ” Test Case automate Generation

from UML Sequence diagram and OCL Expression”, International Conference on

Computational Intelligence and Security 2007, pp 1048-52

[8] I. Bashir and A. L. Goel, Testing Object-Oriented Software: Life-Cycle Solutions, 1st

ed.Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2000.

[9] A Study on the Relation between Antipatterns and the Cost of Class Unit Testing

Aminata Saban´e1, 2, Massimiliano Di Penta3, Giuliano Antoniol2, Yann-Ga¨el

Gu´eh´eneuc1.

[10]Abdou Maiga1, Nasir Ali1, Neelesh Bhattacharya1, Aminata Saban´e1, Yann-Ga¨el

Gu´eh´eneuc, and Esma Aimeur“SMURF: A SVM-based Incremental Anti-pattern

Detection Approach”, 2012 19th Working Conference on Reverse Engineering, pp-466-

475.

http://www.omg.org/technology/readingroom/Anti-Pattern.htm
http://www.antipatterns.com/EdJs_Paper/Antipatterns.html
http://www.ijcse.net/docs/IJCSE15-04-02-036.pdf
http://www.tutorialspoint.com/eclipse/

42

[11]Abdou Maiga, Nasir Ali, Neelesh Bhattacharya, Aminata Sabané,Yann-Gaël

Guéhéneuc,Giuliano Antoniol, and Esma Aimeur (2012), “Support Vector Machine For

Anti Pattern Detection”, pp 1-4.

[12] Zhaogang Han, Peng Gong, Li Zhang, Jimin Ling, Wenqing Huang “Definition and

Detection of Control- flow Anti-Patterns in Process Models”, 2013 IEEE 37th Annual

Computer Software and Applications Conference Workshops, pp-433-438.

[13] S. R. Chidamber, “A metrics suite for object oriented design,” IEEE Trans. Softw. Eng.,

1994.

[14] Zoltán Ujhelyi, Ákos Horváth, Dániel Varró, Norbert István Csiszár, Gábor Szoke,

László Vidácsy, Rudolf Ferenc(2011)” Anti-pattern Detection with Model Queries: A

Comparison of Approaches”

[15] G. Bergmann, Z. Ujhelyi, I. Ráth, and D. Varró, “A graph query language for EMF

models,” in Theory and Practice of Model Transformations,ser. Lecture Notes in

Computer Science, J. Cabot and E. Visser, Eds.Springer Berlin / Heidelberg, 2011, vol.

6707, pp. 167–182.

[16] Abdou Maiga1, Nasir Ali1, Neelesh Bhattacharya1, Aminata Saban´e1, Yann-Ga¨el

Gu´eh´eneuc, and Esma Aimeur“SMURF: A SVM-based Incremental Anti-pattern

Detection Approach”, 2012 19th Working Conference on Reverse Engineering, pp-466-

475.

 [17] Brown, W. J., Malveau, R. C., McCormick, H.W., and Mowbray, T.J.; Anti-patterns:

Refactoring Software, Architectures, and Projects in Crisis, New York, John Wiley and

Sons, Inc., 1998.

[18] www.medium.com/things-developers-care-about/what-is-quality-code-4c07a0a3653

[19] www.blog.codeclimate.com/blog/2014/04/01/launching-today-automated-refactoring/

[20]www.thinkandgrowentrepreneur.com/2014/09/refactoring-and-building-next-big-

thing.html

http://www.medium.com/things-developers-care-about/what-is-quality-code-4c07a0a3653
http://www.blog.codeclimate.com/blog/2014/04/01/launching-today-automated-refactoring/

43

Chapter 9

APPENDIX

GUI Graphical User Interface

XMI Extensible Markup Language

MaDUM Minimum Data Members’ Usage Matrix

UML Unified Modelling Language

SDT Sequence Dependence Table

GA Genetic algorithm

SVM Support vector machine

TDS Training data set

CAPDL Control-Flow Anti-pattern Description

Language

DOM Document Object Model

RPST Refined Process Structure Tree

ASG Abstract Semantic Graph

EMF Eclipse Modelling Framework

MDE Model-Driven Engineering

API Application Programming Interface

