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Unit 1: Vector Space over Fields

NotesUnit 1: Vector Space over Fields
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Objectives

After studying this unit, you will be able to:

 Understand the concept of abstract sets

 Explain the concept of functions

 Discuss the abstract groups and their properties

 State the properties of rings and fields

 Understand abstract vector space. This will help you to understand sub-spaces, bases and
dimension in the next units

 Know that this unit is a prerequisite to understand the next few units.

Introduction

In this unit the idea of set theory is explained. The unit also deals with functions and mapping.

The ideas of rings and fields help us to study vector spaces and their structure. This unit briefly
explains the properties of vector spaces which are useful in understanding the vector sub-spaces,
bases dimensions and co-ordinates.

1.1 Sets

The concept of set is fundamental in all branches of mathematics. A set according to the German
mathematician George Cantor, is a collection of definite well-defined objects of perception or thought.
By a well defined collection we mean that there exists a rule with the help of which it is possible
to tell whether a given object belongs or does not belong to the given collection. The objects in
sets may be anything: numbers, people, animals etc. The objects constituting the set are called
elements or members of the set.



2 LOVELY PROFESSIONAL UNIVERSITY

Linear Algebra

Notes One should note carefully the difference between a collection and a set. Every collection is not a
set. For a collection to be a set, it must be well defined. For example the collection of “any four
natural numbers” is not a set. The members of this collection are not well defined. The natural
number 5 may belong or may not belong to this collection. But the collection of “the first four
natural numbers” is a set. Obviously, the members of the collection are well-defined. They are
1, 2, 3 and 4.

A set is usually denoted by a capital letter, such as A, B, C, X, Y, Z etc. and an element of a set by
the small letter such as a, b, c, x, y, z etc.

A set may be described by actually listing the objects belonging to it. For example, the set A of
single digit positive integers is written as

A = {1, 2, 3, 4, 5, 6, 7, 8, 9}

Here the elements are separated by commas and are enclosed in brackets { }. This is called the
tabular form of the set.

A set may also be specified by stating properties which its elements must satisfy. The set is then
described as follows:

A = {x : P(x)} and we say that A is the set consisting of the elements x such that x satisfies the
property P(x). The symbol “.” is read “such that”. Thus the set X of all real numbers is simply
written as

X = {x : x is real} = {x | x is real}.

This way of describing a set is called the set builder form of a set.

When a is an element of the set A, we write a  A. If a is not an element of A, we write a  A.

When three elements, a, b and c, belong to the set A, we usually write a, b, c  A, instead of
writing a A, b A and c A.

Two sets A and B are said to be equal iff every element of A is an element of b and also every
element of B is an element of A, i.e. when both the sets consist of identical elements. We write
“A = B” if the sets A and B are equal and “A  B” if the sets A and B are not equal.

If two sets A and B are such that every element of A is also an element of B, then A is said to be
a subset of B. We write this relationship by writing A B.

If A B, then B is called a superset of A and we write B A, which is read as ‘B’ is a super-set of
A’ or ‘B contains A’.

If A is not a subset of B, we write A B, which is read as ‘A is not a subset of B’. Similarly B A
is read as ‘B is not a superset of A’.

From the definition of subset, it is obvious that every set is a subset of itself, i.e., A A. We call
B a proper subset of A if, first, B is a subset of A and secondly, if B is not equal to A. More briefly,
B is a proper subset of A, if

B A and B A.

Another improper subset of A is the set with no element in it. Such a set is called the null set or
the empty set, and is denoted by the symbol . The null set  is a subset of every set, i.e., A.

If A is any set, then the family of all the subsets of A is called the power set of A. The power set of
A is denoted by P(A). Obviously  and A are both elements of P(A). If a finite set A has n
elements, then the power set of A has 2n elements.
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Notes
Example 1: If A = {a, b, c} then P(A) =

{ , {a}, {b}, {c}, {a, b} {b, c}, {a, c}, {a, b, c} }.

The total number of these elements of power set is 8, i.e. 23.

The sets A and B are equal if A is a subset of B and also B is a subset of A.

If U be the universal set, the set of those elements of U which are not the elements of A is
defined to be the complement of A. It is denoted by A’. Thus

A’ = {x : x  U and x  A}

Obviously, {A’}’ = A, ’ = U, U’ = .

It is easy to see that if A  B, then A’ B’.

The difference of two sets A and B in that order is the set of elements which belong to A but
which do not belong to B. We denote the difference of A and B by A ~ B or A – B, which is read
as “A difference B” or “A minus B”. Symbolically A – B = {x : x  A and x  B}. It is obvious that
A – A = , and A –  = A.

Union and Intersection

Let A and B be two sets. The union of A and B is the set of all elements which are in set A or in set
B. We denote the union of A and B by A  B, which is usually read as “A union B”.

Symbolically, A  B = {x : x  A or x B}

On the other hand, the intersection of A and B is the set of all elements which are both in A and
B. We denote the intersection of A and B by A  B, which is usually read as “A intersection B”.
Symbolically,

A  B = {x : x  A or x B}

or A  B = {x : x  A, x B}.

The union and intersection of sets have the following simple properties:

(i) and Commutative lawsA B B A
A B B A

(ii) ( ) ( ) and Associative laws( ) ( )
A B C A B C
A B C A B C

(iii) and Idempotent lawsA A A
A A A

(iv) ( ) ( ) ( ) and Distributive laws( ) ( ) ( )
A B C A B A C
A B C A B A C

(v) ( ) ( ) ( ) and De Morgan's laws( ) ( ) ( )
A B C A B A C
A B C A B A C
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Notes Two results which interrelate union and intersection of sets with their complements are as
follows:

(i) the complement of the union is intersection of the complements, i.e.,

(A  B)  = A  B , and

(ii) the complement of the intersection is the union of the complements, i.e.,

(A  B)  = A  B .

Suppose A and B are two sets. Then the set (A – B)  (B – A) is called the symmetric difference of
the set A and B and is denoted by A  B.

Since (A – B)  (B – A) = (B – A)  (A – B)

A  B = B  A.

Product Set

Let A and B be two sets, a  A and b  B. Then (a, b) denotes what we may call an ordered pair. The
element a is called the first coordinate of the ordered pair (a, b) and the element b is called its
second coordinate.

If (a, b) and (c, d) are two ordered pairs

then (a, b) = (c, d) iff a = c and b = d.

If A and B are two sets, the set of all distinct ordered pairs whose first coordinate is an element
of A and whose second coordinate is an element of B is called the Cartesian product of A and B (in
that order) and is denoted by A × B. Symbolically,

A × B = {(a, b) : a  A and b  B}.

In general A × B  B × A. If A has n elements and B has m elements, then the product set A × B has
nm elements. If either A or B is a null set, the A × B = . If either A or B is infinite and the other is
not empty, the A × B is infinite.

We may generalise the definition of the product sets. Let A1, A2, …, An be n given sets. The set of
ordered n-tuples (a1, a2, …, an) where a1  A1, a2  A2, …, an An is called the Cartesian product of
A1, A2, …, An and is denoted by A1 × A2 × A3 × … × An.

Functions or Mappings

Let A and B be two given sets. Suppose there is a correspondence, denoted by f, which associates
to each members of A, a unique member of B. Then f is called a function or a mapping from A to B.
The mapping f from A to B is denoted by

f : A  B or by A f  B.

Suppose f is a function from A to B. The set A is called the domain of the function f and B is called
the co-domain of f. The element y  B which the mapping f associates to an element x  A is
denoted by f (x) and is called the f-image of x or the value of the function f for x. The element x
may be referred to as a pre-image of f (x). Each element of A has a unique image and each
element of B need not appear as the image of an element in A. There can be more than one
element of A which have the same image in B. We define the range of f to consist of those
elements of B which appear as the image of at least one element in A. We denote the range of
f : A  B by f (A). Thus

f (A) = {f (x) : x  A}.
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NotesObviously, f (x)  B.

If A and B are any two non-empty sets, then a function f from A to B is a subset f of A × B satisfying
the following condition:

(i) a  A, (a, b)  f for some b  B;

(ii) (a, b)  f and (a, b )  f  b = b

The first condition ensures that each element in A will have image. The second condition
guarantees that the image is unique.

If the domain and co-domain of a function f are both the same set say f : A  A, then f is often
called an Operator or Transformation of A.

Two functions f and g of A  B are said to be equal iff f (x) = g (x) x  A and we write f = g. For
two unequal mappings from A to B, there must exist at least one element x  A such that
f (x)  g (x).

Types of Functions

If the function f : A  B is such that there is at least one element in B which is not the f-image of
any element in A, then we say that f is a function of A ‘into’ B. In this case the range of f is a proper
subset of the co-domain of f.

If the function f : A  B is such that each element in B is the f-image of at least one element in A,
then we say that f is a function of A ‘onto’ B. In this case the range of f is equal to the co-domain of
f, i.e., f (A) = B. Onto mapping is also sometimes known as surjection.

A function f : A  B is said to be one-one or one-to-one if different elements in A have different
f-images in B, i.e., if

f (x) = f (x )  x = x  (x and x   A).

One-to-one mapping is also sometimes known as injection.

A mapping f : A  B is said to be many-one if two (or more than two) distinct elements in A have
the same f-image in B.

If f : A  B is one-one and onto B, then f is called a one-to-one correspondence between A and B.
One-one onto mapping is also sometimes known as bijection.

Two sets A and B are said to be have the same number of elements iff a one-to-one correspondence
of A onto B exists. Such sets are said to be cardinally equivalent and we write A ~ B.

Let A be any set. Let the mapping f : A  A be defined by the formula f (x) = x, x  A, i.e. each
element of A be mapped on itself. Then f is called the identity mapping on A. We shall denote
this function by IA.

Inverse Mapping

Let f be a function from A to B and let b  B. Then the inverse image of the element b under f
denoted by f–1 (b) consists of those elements in A which have b as their f-image.

Let f : A  B be a one-one onto mapping. Then the mapping f–1 : B  A, which associates to each
element b  B, the element a  A, such that f (a) = b is called the inverse mapping of the mapping
f : A  B.

It must be noted that the inverse mapping of f : A  B is defined only when f is one-one onto, and
it is easy to see that the inverse mapping f–1 : B  A is also one-one and onto.
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Notes Product or Composite of Mappings

Let f : X  Y and g : Y  Z. Then the composite of the mappings f and g denoted by (g o f), is a
mapping from X to Z given by (g o f) : X  Z such that (g o f) (x) = g [f (x)],  x  X.

If f : X  X and g : X  X then we can find both the composite mappings g o f and f o g, but in
general f o g  g o f.

The composite mapping possesses the following properties:

(i) The composite mapping g o f is one-one onto if the mappings f and g are such.

(ii) If f : X  Y is a one-one onto mapping,

then f o f–1 = Iy and f–1 o f = Ix.

(iii) If f : X  Y and g : Y  Z are two one-one onto mappings, and f–1 : Y  X and g–1 : Z  Y
are their inverses, then the inverse of the mapping g o f : X  Z is the mapping f–1 o g–1 : Z

 X.

(iv) If f : X  Y, g : Y  Z, h : Z  U be any mappings, then h o (g o f) and (h o g) o f are equal
mappings of X into U, i.e. the composite mapping is associative.

Relation

If a and b be two elements of a set A, a relation R between them, is symbolically written as aRb,
which means a in R—related to b.

For example, if R is the relation >, the statement a R b means a is greater than b.

A relation R is said to be well defined on the set A if for each ordered pair (a, b), where a, b  A,
the statement a R b is either true or false. A relation in a set A is a subset of the product set A × A.

Inverse Relation

Let R be a relation from A to B. The inverse relation of R denoted by R–1, is a relation from B to
A defined by

1 {( , ) : , ,( , ) }R y x y B x A x y A B

Clearly, if R is a relation from A to B, then the domain of R is identical with the range of R–1 and
the range of R is identical with the domain of R–1.

Difference between Relations and Functions

Suppose A and B are two sets. Let f be a function from A to B. Then by the definition of function
f is a subset of A × B in which each a  A appears in one and only one ordered pair belonging to
f. In other words f is a subset of A × B satisfying the following two conditions:

(i) for each a  A, (a, b) f for some b B,

(ii) if (a, b) f and (a, b ) f, then b = b .

On the other hand every subset of A × B is a relation from A to B. Thus every function is a relation
but every relation is not a function. If R is a relation from A to B, then domain of R may be a subset
of A. But if f is a function from A to B, then domain of f is equal to A. In a relation from A to B an
element of A may be related to more than one element in B. Also there may be some elements
of A which may not be related to any element in B. But in a function from A to B each element of
A must be associated to one and only one element of B.
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NotesEquivalence Relation

The relation R defined on a set A is to be reflexive if aRa holds for every a belonging to A, i.e.,

(a, a)  R, for every a A.

The relation R is said to be symmetric if

a R b b R a

for every ordered pair (a, b) R, i.e.,

(a, b) R (b, a) R.

The relation R is said to be transitive if

(a R b, b R c) a R c

for every a, b, c belonging to A i.e.,

[(a, b) R, (b, c) R] (a, c) R.

A relation R defined on a set is called an equivalence relation if it is reflexive, symmetric and
transitive.

Natural Numbers

The properties of natural numbers were developed in a logical manner for the first time by the
Italian mathematician G. Peano, by starting from a minimum number of simple postulates.
These simple properties, known as the Peano’s Postulates (Axioms), may be stated as follows:

Let there exist a non-empty set N such that.

Postulate I: 1 N, that is, 1 is a natural number.

Postulate II: For each n N there exists a unique number n+ N, called the successor of n.

Postulate III: For each n N, we have n+ 1, i.e., 1 is not the successor of any natural number.

Postulate IV: If m, n N, and m+ = n+ then m = n, i.e. each natural number, if it is a successor, is the
successor of a unique natural number.

Postulate V: If K is any subset of N having the properties (i) 1 K and (ii) m K m+  K, then
K = N.

The postulate V is known as the Postulate of induction or the Axiom of induction. The Principle of
mathematical induction is just based on this axiom.

Addition Composition

In the set of natural numbers N, we define addition, which shall be denoted by the symbol ‘+’ as
follows:

(i) m + 1 = m+  m, N

(ii) m + n* = (m + n)*  m, n N.

The distinctive properties of the addition operation in N are the closure, associative, commutative
and cancellation laws, i.e., if m, n, p N, then

(A1) m + n N (closure law)

(A2) (m + n) + p = m + (n + p) (associative law)
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Notes (A3) m + n = n + m, (commutative law)

(A4) m + p = n + p m = n (cancellation law)

All these properties can be established from the foregoing postulates and definitions only.

Multiplication Composition

In the set of natural numbers N, we define multiplication which shall be denoted by the symbol
‘X’ as follows:

(i) m × 1 = m  m N

(ii) m × n+ = m × n + m,  m, n  N.

Sometimes we often find it convenient to represent m × n by m . n or simply by mn.

The following properties, which can be established from Peano’s postulates, hold for
multiplication.

(M1) m, n N, or mn N, (Closure law)

(M2) (m . n) . p = m . (n . p) or (m n) p = m (n p), (associative law)

(M3) m . n = n . m, or m n = n m (Commutative law)

(M4) m . p = n . p m = n, or m p = n p m = n. (Cancellation law)

Distributive Law

The distributive property of multiplication over addition is expressed in the following two forms:

If m, n, p N, we have

(i) m . (n + p) = m . n + n . p [Left distributive law]

(ii) (m + n) . p = m . p + n . p [Right distributive law]

The right distributive law can also be inferred from the left distributive law, since multiplication
is commutative.

Order Property

We say that a natural number m is greater than another number n(m > n), if there exists a number
u  N, such that m = n+ u.

The number m is said to be less than the number n(m < n), if there exists a number v  N, such that
n = m + v.

This order relation possesses the following property.

For any two natural numbers m and n, there exists one and only one of the following three
possibilities:

(i) m = n

(ii) m > n,

(iii) m < n.

This is known as the Trichotomy law of natural numbers.

It is evident that any set of natural numbers has a smallest number, i.e., if A is a non-empty
subset of N, there is a number m A, such that m n for every n A.
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The relations between order and addition, and order and multiplication are given by the following
results:

(i) m > n m + p > n + p,

(ii) m > n m p > n p, for all m, n, p N.

The operation of subtracting a number n from another number m is possible only when m > n, i.e.,
the subtraction operation is not defined for any two natural numbers. It is thus not a binary
composition in N.

Similarly the operation of dividing one number is also not always possible, i.e., the division
operation is also not a binary composition in N.

Integers

The set of integers is constructed from the set of natural numbers by defining a relation, denoted
by “~” (read as wave), in N × N as follows:

( , ) ~ ( , ) if , , , ,a b c d a d b c a b c d N .

Since this relation is an equivalence relation it decomposes the set N × N into disjoint equivalence
classes. We define the set of all these equivalence classes as the set of integers and denote it by Z.

The equivalence class of the pair (a, b) may be denoted by

(a, b) or (a, b)*

The addition and multiplication operations in Z are now defined as follows:

(a, b)* + (c, d)* = (a + c, b + d)*

and (a, b)* . (c, d)* = (ac + bd, ad + bc)*.

The associative and commutative laws of addition and multiplication hold as for natural numbers. The
cancellation law of addition holds in general, but the cancellation law of multiplication holds with
some restrictions. The distributive law of multiplication over addition is also valid.

The equivalence class (1, 1)* is defined as the integer zero, and is written as 0. Thus

0 = (1, 1)* = (a, a)* = (b, b)*, a, b  N.

This number 0 possesses the properties, that for any integer x,

(i) x + 0 = x and

(ii) x . 0 = 0.

If x = ( , )* is an integer other than zero, we have , i.e., either > or < . We say that the
integer ( , )* is positive if > and negative if < .

When > , , N, there exists a natural number u such that  = u + .

Therefore a positive integer x is given by

( , )*, , ( , )* ( , ) *x u u .

It is possible to identify the positive integer (u + , )* with the natural number u, and write it
as + u. Thus the set of positive integers may be written as

ZN = {+1, +2, +3, …}
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integers written as

Z–N = {–1, –2,–3, …}

We define the negative of an integer x as the integer y, such that x + y = 0. It is easy to see that every
integer has its negative. For, let

x = (a, b)*. Then if y = (b, a)*, we have

x + y = (a, b)* + (b, a)* = (a + b, b + a)*

= (a + b, a + b)* = 0

The negative of the integer x, also called the additive inverse of x, is denoted by –x. We therefore
have, for any integer x,

x + (–x) = 0

and x = (a, b)*  –x = (b, a)*.

We define subtraction of an integer if from an integer x as x + (–y), written as x – y. Thus if
x = (a, b)* and y = (c, d)*, we have

x – y = x + (–y) = (a, b) + (d, c)*

= (a + d, b + c)*

Order Relation in Integers

If x, y be the two integers, we define x = y if x – y is zero, x > y if x – y is positive and x < y if x – y
is negative.

The Trichotomy Law for integers holds as for natural numbers. Further,

x > y x + z > y + z,

and x > y, z > 0 x z > yz, x, y, z Z.

The cancellation law for multiplication states that

xz = yz, z 0 x = y.

The addition and multiplication operations on Z satisfy the laws of natural numbers with the
only modification in cancellation law of multiplication which requires p 0. Further, the addition
operation satisfies the following two properties in Z.

(i) There exists the additive identify 0 in the set, i.e., 0  Z such that a + 0 = 0 + a = a, for any
a  Z.

(ii) There exists the additive inverse of every element in Z, i.e., a  Z – a  Z such that
a + (–a) = (–a) + a = 0.

Division

A non-zero a is said to be a divisor (factor) of an integer b if there exists an integer c, such that
b = ac.

When a is divisor of b, we write “a | b”. Also we say that b is an integral multiple of a. It is
obvious that division is not everywhere defined in Z.

The relation of divisibility in the set of integers Z is reflexive, since a | a,  a  Z. It is also
transitive, since a | b and b | c  a | c. But it is not symmetric.
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|a| = a when a  0

= – a when a < 0

Thus, except when a = 0, |a|  ZN.

A non-zero integer p is called a prime if it is neither 1 nor –1 and if its only divisors are 1, –1,
p, –p.

When a = bc with |b| > 1 and |c| > 1, we call a composite. Thus every integer a  0,  1 is either a
prime or composite.

The operation of division of one integer by another is carried out in accordance with the division
algorithm, which can be stated as follows.

Given two positive integers a, b there exists uniquely two non-negative integers q, r such that

a = bq + r, 0  r < b

The number q is called the quotient, and r the remainder obtained on dividing a by b.

Two other forms of the theorem, which are successive generalisations, are as follows:

(i) Given two integers a, b with b > 0, there exist unique integers q, r, such that

a = bq + r, 0  r < b

(ii) Given two integers a, b with b  0, there exist unique integers q, r, such that

a = bq + r, 0  r < |b|.

Greatest Common Divisor

A greatest common divisor (GCD) of two integers a and b is a positive integer d such that

(i) d|a and d|b, and

(ii) if for an integer c, c|a and c|b, then c|d.

We shall use the notation (a, b) for the greatest common divisor of two integers a and b. The
greatest common divisor is sometimes also called highest common factor (HCF).

Every pair of integers a and b, not both zero, has a unique greatest common divisor (a, b) which
can be expressed in the form (a, b) = ma + nb for some integers m and n.

Rational Numbers

Let (a, b) Z × Z0, where Z0 is the set of non-zero integers. Then the equivalence class

0( , ) {( , ) : ( , ) ~ ( , ); , }a b m n m n a b m Z n Z

is called a rational number.

The set of all equivalence classes of Z × Z0 determined by the equivalence relation ~ defined as
above is called the set of rational numbers to be denoted by Q.

The addition and multiplication operations in Q are defined as follows:

( , ) ( , ) ( , )a b c d ad bc bd

and ( , ) ( , ) ( , )a b c d ac bd
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Notes The associative and commutative laws of addition and multiplication hold as for integers, and so also the
distributive law of multiplication over addition. The cancellation laws hold for addition and
multiplication, except as for integers.

The additive identity is the number (0,1) . For

( , ) (0,1) ( .1 .1) ( , )a b a b a b

The multiplicative identity is the number (1,1) . For,

( . ) (1,1) ( .1, .1) ( , )a b a b a b

The additive inverse of ( , ) is ( , )a b a b . For,

2 2( , ) ( , ) ( . , ) (0, ) (0,1)a b a b a b ba b b

The multiplicative inverse of ( , ) is ( , )a b b a  if a  0. For,

( , ) ( , ) ( , ) (1,1)a b b a ab ba

The additive identity (0,1) , is defined as the rational number zero and is written as 0.

The non-zero rational number ( , )a b  which is such that a  0, is said to be positive or negative
according as a a b is positive or negative.

The negative of a rational number z is its additive inverse; it is written as –x. Thus if x = ( , )a b

then –x = ( , )a b .

We define subtraction of a rational number y from a rational number x as x + (–y), written x – y.

Thus, if x = ( , )a b  and y = ( , )c d , we have

( ) ( , ) ( , ) ( , )x y x y a b c d ad bc bd

The reciprocal of a non-zero rational number x is its multiplicative inverse, and is written as 1/x.

Thus if x = ( , )a b , then

1/x = ( , )b a , a  0, b  0.

The division of a rational number x by a non-zero rational number y, written as x  y or x|y, is

defined as x. (1/y). Thus if x = ( , )a b , then

( , ), 0,y c d c  we have

( , ) ( , ) ( ), 0, 0x y a b d c ad bc b c .

It can be shown that subtraction is a binary composition in Q, and division is also a binary
composition, except for division by zero.

Order Relation

Let x, y be two rational numbers. We say that x is greater than, less than or equal to y, if x – y is
positive, negative or zero, and we use the usual signs to denote these relations.
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if x = ( , )a b , y = ( , )c d , we have x > y.

if x – y = ( , ) ( , ) ( , )a b c d ad bc bd > 0,

whence we find

(ad – bc) bd > 0, i.e., ad > bc, b > 0, d > 0.

Similarly, x < y if ad < bc, b > 0, d > 0.

and x = y if ad = bc.

The Trichotomy Law holds for rational numbers, as usual, i.e., given two rational numbers x, y
either x > y or x = y, or x < y.

Also the order relation is compatible with addition and multiplication. For,

x > y  x + z > y + z

and x > y, z > 0  xz > yz, x, y, z  Q.

Representation of Rational Numbers

A rational number of the form ( ,1)a  can be identified with the integer a  Z, and written simply
as a.

Further, since

( ,1) ( ,1) ( ,1) (1, ) ( ,1,1 ) ( , )a b a b a b a b

we obtain a method of representing the rational number (a, b) by means of two integers.

We have ( , )a b = ( ,1) ( ,1)a b

= a  b or a|b, b  0.

With this notation, the sum and product of two rational numbers assume the usual meaning
attached to them, viz.,

a c ad bc
b d bd

and  , 0, 0a c ac b d
b d bd

Also , 0, 0a c ad bc b d
b d

.

The system of rational numbers Q provides an extension of the system of integral Z, such that
(i) Q  Z, (ii) addition and multiplication of two integers in Q have the same meanings as they
have in Z and (iii) the subtraction and division operations are defined for any two numbers in Q,
except for division by zero.

In addition to the properties described above the system of rational numbers possesses certain
distinctive characteristics which distinguish it from the system of integers or natural numbers.
One of these is the property of denseness (the density property), which is described by saying
that between any two distinct rational numbers there lies another rational number.
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Notes Since there lies a rational number between any two rational numbers, it is clear that there lie an
infinite number of rational numbers between two given rationals. This property of rational
numbers make them dense every where. Evidently integral numbers or the natural numbers are
not dense in this sense.

Real Numbers

We know that the equation x2 = 2 has no solution in Q. Therefore if we have a square of unit length,
then there exists no rational number which will give us a measure of the length of its diagonal.
Thus we feel that our system of rational numbers is inadequate and we want to extend it.

The extension of rational numbers into real numbers is done by special methods two of which
are due to Richard Dedekind and George Cantor. We shall not describe these methods here. We
can simply say here that a real number is one which can be expressed in terms of decimals
whether the decimals terminate at some state or we have a system of infinite decimals, repeating
or non-repeating. We know that every repeating infinite decimals is a rational number, also
every terminating decimal is a rational number.

Irrational Number

A real number which cannot be put in the form p/q where p and q are integers is called an
irrational number. The set R of real numbers is the union of the set of rational numbers and the set
of irrational numbers.

If a, b, c are real numbers, then

(i) a + b = b + a, ab = ba (commutative of addition and multiplication)

(ii) ( ) ( ) ,
( ) ( )

a b c a b c
a bc ab c  Associativity of addition and multiplication

(iii) a + 0 = 0 + a = a, i.e., the real number 0 is the additive identity.

(iv) a.1 = 1.a = a, i.e., the real number 1 is the multiplicative identity.

(v) For each a  R, these corresponds – a R such that

a + (–a) = – (a) + a = 0

Thus every real number has an additive inverse.

(vi) Each non-zero real number has multiplicative inverse.

(vii) Multiplication composition distributes addition, i.e.,

a (b + c) = ab + ac

(viii) The cancellation law invariably holds good for addition. For multiplication, if a 0, then

ab = ac  b = c

(ix) The order relations satisfy the trichotomy law.

Complex Numbers

An ordered pair (a, b) of real numbers is called a complex number. The product set R × R
consisting of the ordered pairs of real numbers is called the set of complex numbers. We shall
denote the set of complex numbers by C.

Thus

C = {z : z = (a, b), a, b  R}.
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NotesTwo complex numbers (a, b) and (c, d) are equal if and only if

a = c and b = d.

The sum of two complex numbers (a, b) and (c, d) is defined to be the complex number (a + c, b + d)
and symbolically, we write

(a, b) + (c, d) = (a + c, b + d)

The addition of complex numbers is commutative, associative, admits of identity element and
every complex number possesses additive inverse.

If u and v are two complex numbers, then u – v = u + (–v).

The cancellation law for addition in C is

(a, b) + (c, d) = (a, b) + (e, f)  (c, d) = (e, f) (a, b), (c, d), (e, f)  C.

The product of the complex numbers (a, b) and (c, d) is defined to be the complex number (ac – bd,
ad + bc) and symbolically we write

(a, b) (c, d) = (ac – bd, ad + bc).

The multiplication of complex numbers is commutative, associative admits of identity element
and every non-zero complex number possesses multiplicative inverse.

Cancellation law for multiplication in C is

[(a, b) (c, d) = (a, b) (e, f) and (a, b) (0, 0)] (c, d) = (e, f)

In C multiplication distributes addition.

A complex number (a, b) is said to be divided by a complex number (c, d) if there exists a complex
number (x, y) such that (x, y) (c, d) = (a, b).

The division, except by (0, 0), is always possible in the set of complex numbers.

Usual Representation of Complex Numbers

Let (a, b) be any complex number.

We have (a, b) = (a, 0) + (0, b)

= (a, 0) + (0, 1) (b, 0)

Also, we have (0, 1) (0, 1) = (–1, 0) =–1. If we denote the complex number (0, 1) by i, we have
i2 = –1. Also we have (a, b) = a + ib, which is the usual notation for a complex number.

In the notation Z = a + ib for a complex number, a is called the real part and b is called the
imaginary parts. A complex number is said to be purely real if its imaginary part is zero, and
purely imaginary if its part is zero but its imaginary part is not zero.

For each complex number z = (a, b), we define the complex number z = (a, –b) to be the conjugate
of z. In our usual notation, if

z = a + ib

then z = a – ib

If z = (a, b) be any complex number, then the non-negative real number 2( )a b  is called the
modulus of the complex number z and is denoted by |z|.
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Notes 1.2 Groups

The theory of groups, an important part in present day mathematics, started early in nineteenth
century in connection with the solutions of algebraic equations. Originally a group was the set
of all permutations of the roots of an algebraic equation which has the property that combination
of any two of these permutations again belongs to the set. Later the idea was generalized to the
concept of an abstract group. An abstract group is essentially the study of a set with an operation
defined on it. Group theory has many useful applications both within and outside mathematics.
Group arise in a number of apparently unconnected subjects. In fact they appear in crystallography
and quantum mechanics, in geometry and topology, in analysis and algebra and even in biology.
Before we start talking of a group it will be fruitful to discuss the binary operation on a set
because these are sets on whose elements algebraic operations can be made. We can obtain a
third element of the set by combining two elements of a set. It is not true always. That is why this
concept needs attention.

Binary Operation on a Set

The concept of binary operation on a set is a generalization of the standard operations like
addition and multiplication on the set of numbers. For instance we know that the operation of
addition (+) gives for any two natural numbers m, n another natural number m + n, similarly the
multiplication operation gives for the pair m, n the number m.n in N again. These types of
operations are found to exist in many other sets. Thus we give the following definition.

Definition

A binary operation to be denoted by ‘o’ on a non-empty set G is a rule which associates to each
pair of elements a, b in G a unique element a o b of G.

Alternatively a binary operation ‘o’ on G is a mapping from G × G to G i.e. o : G × G  G where
the image of (a, b) of G × G under ‘o’, i.e., o (a, b), is denoted by a o b.

Thus in simple language we may say that a binary operation on a set tells us how to combine any
two elements of the set to get a unique element, again of the same set.

If an operation ‘o’ is binary on a set G, we say that G is closed or closure property is satisfied in G,
with respect to the operation ‘o’.

Examples:

(i) Usual addition (+) is binary operation on N, because if m, n  N then m + n N as we know
that sum of two natural numbers is again a natural number. But the usual substraction
(–) is not binary operation on N because if m, n  N then m – n may not belongs to N. For
example if m = 5 and n = 6 their m – n = 5 – 6 = –1 which does not belong to N.

(ii) Usual addition (+) and usual substraction (–) both are binary operations on Z because if
m, n Z then m + n Z and m – n Z.

(iii) Union, intersection and difference are binary operations on P(A), the power set of A.

(iv) Vector product is a binary operation on the set of all 3-dimensional Vectors but the dot
product is not a binary operation as the dot product is not a vector but a scalar.
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Binary operations have the following types:

1. Commutative Operation: A binary operation o over a set G is said to be commutative, if
for every pair of elements a, b G,

a o b = b o a

Thus addition and multiplication are commutative binary operations for natural numbers
whereas subtraction and division are not commutative because, for a – b = b – a and a  b =
b  a cannot be true for every pair of natural numbers a and b.

For example 5 – 4  4 – 5 and 5  4 = 4  5.

2. Associative Operation: A binary operation o on a set G is called associative if a o (b o c) =
(a o b) o c for all a, b, c  G.

Evidently ordinary addition and multiplication are associative binary operations on the
set of natural numbers, integers, rational numbers and real numbers. However, if we
define a o b = a – 2b , a, b R

then (a o b) oc = (a o b) – 2c = (a – 2b) – 2c = a – 2b – 2c

and a o (b o c) = a – 2(b o c) = a – 2(b – 2c)

= a – 2b + 4c.

Thus the operation defined as above is not associative.

3. Distributive Operation: Let o and o  be two binary operations defined on a set, G. Then the
operation o  is said to be left distributive with respect to operation o if

a o  (b o c) = (a o  b) o (a o  c) for all a, b, c  G

and is said to be right distributive with respect to o if,

(b o c) o  a = (b o  a) o (c o  c) for a, b, c,  G.

Whenever the operation o is left as well as right distributive, we simply say that o is
distributive with respect to o.

Identity and Inverse

Identity: A composition o in a set G is said to admit of an identity if these exists an element
e  G such that

a o e = a = e o a  a  G.

Moreover, the element e, if it exists is called an identity element and the algebraic structure
(G, o) is said to have an identity element with respect to o.

Examples:

(i) If a  R, the set of real numbers then 0 (zero) is an additive identity of R because

a + 0 = a = 0 + a  a  R

N the set of natural numbers, has no identity element with respect to addition because
0 N.
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Notes (ii) 1 is the multiplicative identity of N as

a.1 = 1.a = a  a N.

Evidently 1 is identity of multiplication for I (set of integers), Q (set of rational numbers,
R (set of real numbers).

Inverse: An element a G is said to have its inverse with respect to certain operation o if there
exists b G such that

a o b = e = b o a.

e being the identity in G with respect to o.

Such an element b, usually denoted by a–1 is called the inverse of a. Thus a–1 o a = e = a o a–1 for
a G.

In the set of integers the inverse of an integer a with respect to ordinary addition operation is
– a and in the set of non-zero rational numbers, the inverse of a with respect to multiplication is
1/a which belongs to the set.

Algebraic Structure

A non-empty set G together with at least one binary operation defined on it is called an algebraic
structure. Thus if G is a non-empty set and ‘o’ is a binary operation on G, then (G, o) is an algebraic
structure.

(n, +), (I, +), (I, –), (R, +, .)

are all algebraic structures. Since addition and multiplication are both binary operations on the
set R of real numbers, (R, +, .) is an algebraic structure equipped with two operations.

Illustrative Examples

Example 2: If the binary operation o on Q the set of rational numbers is defined by

a o b = a + b – a b, for every a, b Q

show that Q is commutative and associative.

Solution:

(i) ‘o’ is commutative in Q because if a, b Q, then

a o b = a + b – a b = b + a – b a = b o a.

(ii) ‘o’ is associative in Q because if a, b, c Q then

a o (b o c) = a o (b + c – b c)

= a + (b + c – b c) – a (b + c – b c)

= a + b – a b + c – (a + b – a b) c

= (a o b) oc.

Example 3: Given that S = {A, B, C, D} where A = , B = {a}, and C = {a, b}. D = {a, b, c} show
that S is closed under the binary operations (union of sets) and (intersection of sets) on S.
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(i) A B = {a} = {a} = B

Similarly, A C = C, A D and A A = A.

Also, B B = B, B C = {a} {a, b} = {a, b} = C,

B D = {a} {a, b, c} = {a, b, c} = D

C C = C, C D = {a, b} {a, b, c} = {a, b, c} = D

Hence is a binary operation on S.

(ii) Again, A A = A, A B = {a} = = A

A C = A, A D = A

and B B = B, B C = {a} {a, b} = {a} = B

B D = {a} {a, b, c} = {a} = B

C C = C, C D = {a, b} {a, b, c}

          = {a, b} = C.

Hence is a binary operation on S.

Self Assessment

1. Show that multiplication is a binary operation on the set A = {1, –1} but not on B = {1, 3}.

2. If A = {1, –1} and B = {1, 2}, then show that multiplication is a binary operation on A but not
on B.

3. If S = {A, B, C, D} where A = , B = {a, b}, C = {a, c}, D = {a, b, c} show that  is a binary
operation on S but  is not.

Group

Definition: An algebraic structure (G, o) where G is a non-empty set with a binary operation ‘o’ defined
on it is said to be a group, if the binary operation satisfies the following axioms (called group axioms).

(G1) Closure Axiom: G is closed under the operation o, i.e., a o b G, for all a, b G.

(G2) Associative Axiom: The binary operation o is associative, i.e.,

(a o b) o c = a o (b o c) a, b, G.

(G3) Identity Axiom: There exists an element e  G such that

e o a = a o e = a  a G.

The element e is called the identity of ‘o’ in G.

(G4) Inverse Axiom: Each element of G possesses inverse, i.e., for each element a G, there
exists an element b G such that

b o a = a o b = e.

The element b is then called the inverse of a with respect to ‘o’ and we write b = a–1. Thus a–1 is an
element of G such that

a–1 o a = a o a–1 = e.
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Notes Abelian Group of Commutative Group

A group (G, o) is said to be abelian or commutative if the composition ‘o’ is commutative, i.e., if

a o b = b o a  a, b G

A group which is not abelian is called non-abelian.

Examples:

(i) The structures (N, +) and (N, ×) are not groups i.e., the set of natural numbers considered
with the addition composition or the multiplication composition, does not form a group.
For, the postulate (G3) and (G4) in the former case, and (G4) in the latter case, are not
satisfied.

(ii) The structure (Z, +) is a group, i.e., the set of integers with the addition composition is a
group. This is so because addition in numbers is associative, the additive identity O
belongs to Z, and the inverse of every element a, viz., –a belongs to Z. This is known as
additive group of integers.

The structure (Z, ×), i.e., the set of integers with the multiplication composition does not
form a group, as the axiom (G4) is not satisfied.

(iii) The structures (Q, +), (R, +), (C, +) are all groups i.e., the sets of rational numbers, real
numbers, complex numbers, each with the additive composition, form a group.

But the same sets with the multiplication composition do not form a group, for the
multiplicative inverse of the number zero does not exist in any of them.

(iv) The structure (Q0, x) is a group, where Q0 is the set of non-zero rational numbers. This is so
because the operation is associative, the multiplicative identity 1 belongs to Q0, and the
multiplicative inverse of every element a in the set is 1/a, which also belongs to Q0. This
is known as the multiplicative group of non-zero rationals.

Obviously (R0, X) and (C0, X) are groups, where R0 and C0 are respectively the sets of non-
zero real numbers and non-zero complex numbers.

(v) The structure (Q+, ×) is a group, where Q+ is the set of positive rational numbers. It can
easily be seen that all the postulates of a group are satisfied.

Similarly, the structure (R+, ×) is a group, where R+ is the set of positive real numbers.

(vi) The groups in (ii), (iii), (iv) and (v) above are all abelian groups, since addition and
multiplication are both commutative operations in numbers.

Finite and Infinite Groups

If a group contains a finite number of distinct elements, it is called finite group otherwise an
infinite group.

In other words, a group (G, 0) is said to be finite or infinite according as the underlying set G is
finite or infinite.

Order of a Group

The number of elements in a finite group is called the order of the group. An infinite group is
said to be of infinite order.
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NotesNote: It should be noted that the smallest group for a given composition is the set {e} consisting
of the identity element e alone.

Illustrative Examples

Example 4: Show that the set of all integers ……, –4, –3, –2, –1, 0, 1, 2, 3, 4, … is an infinite
abelian group with respect to the operation of addition of integers.

Solution: Let us test all the group axioms for abelian group.

(G1) Closure Axiom: We know that the sum of any two integers is also an integer, i.e., for all
a, b  I, a + b  I. Thus I is closed with respect to addition.

(G2) Associativity: Since the addition of integers is associative, the associative—axiom is
satisfied, i.e., for a, b, c I.

a + (b + c) = (a + b) + c

(G3) Existence of Identity: We know that O is the additive identity and O I, i.e.,

O + a = a = a + O  a I

Hence additive identity exists.

(G4) Existence of Inverse: If a I, then –a I. Also,

(–a) + a = O = a + (–a)

Thus every integer possesses additive inverse.

Therefore I is a group with respect to addition.

Since addition of integers is a commutative operation, therefore a + b = b + a  a, b  I.

Hence (I, +) is an abelian group. Also, I contains an infinite number of elements. Therefore (I, +) is
an abelian group of infinite order.

Example 5: Show that the set of all even integers (including zero) with additive property
is an abelian group.

Solution: The set of all even integers (including zero) is

I = {0, ± 2, ± 4, ± 6…}

Now, we will discuss the group axioms one by one:

(G1) The sum of two even integers is always an even integer, therefore closure axiom is satisfied.

(G2) The addition is associative for even integers, hence associative axiom is satisfied.

(G3) O I, which is an additive identity in I, hence identity axiom is satisfied.

(G4) Inverse of an even integer a is the even integer –a in the set, so axiom of inverse is satisfied.

(G5) Commutative law is also satisfied for addition of even integers. Hence the set forms an
abelian group.

Example 6: Show that the set of all non-zero rational numbers with respect to binary
operation of multiplication is a group.
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(G1) We know that the product of two non-zero rational numbers is also a non-zero rational
number. Therefore Q0 is closed with respect to multiplication. Hence, closure axiom is
satisfied.

(G2) We know for rational numbers.

0( ) ( ) for all , ,a b c a b c a b c Q

Hence, associative axiom is satisfied.

(G3) Since, 1 the multiplicative identity is a rational number hence identity axiom is satisfied.

(G4) If a Q0, then obviously, 1/a Q0. Also

1/a . a = 1 = a . 1/a

so that 1/a is the multiplicative inverse of a. Thus inverse axiom is also satisfied.

Hence Q0 is a group with respect to multiplication.

Example 7: Show that C, the set of all non-zero complex numbers is a multiplicative
group.

Solution: Let C = {z : z = x + i y, x, y  R}

Hence R is the set of all real numbers are i = ( 1) .

(G1) Closure Axiom: If a + i b C and c + id c, then by definition of multiplication of complex
numbers

( ) {( ) ( ) ( ) ,a i b c i d a c b d i a d b c C

since , , , , ,a c b d a d b c R for a b c d R .

Therefore, C is closed under multiplication.

(G2) Associative Axiom:

( ) {( ) ( )} ( ) ( )a i b c i d e i f a c e a d f b c f b d e i a c f a d e b c e b d f

       = {( ) ( )} ( )a i b c i d e i f

for a, b, c, d  R.

(G3) Identity Axiom: e = 1 (= 1 + i0) is the identity in C.

(G4) Inverse Axiom: Let (a + i b) (  0)  C, then

(a + ib)–1 = 2 2

1 a ib
a ib a b

= 2 2 2 2

a bi
a b a b

= m + i n C, Where m = 2 2

a
a b

,
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n = – 2 2

b
a b

R.

Hence C is a multiplicative group.

Self Assessment

4. Show that the set of all odd integers with addition as operation is not a group.

5. Verify that the totality of all positive rationals form a group under the composition
defined by

a o b = ab/2

6. Show that the set of all numbers cos  + i sin  forms an infinite abelian group with respect
to ordinary multiplication; where runs over all rational numbers.

Composition (Operation) Table

A binary operation in a finite set can completely be described by means of a table. This table is
known as composition table. The composition table helps us to verify most of the properties
satisfied by the binary operations.

This table can be formed as follows:

(i) Write the elements of the set (which are finite in number) in a row as well as in a column.

(ii) Write the element associated to the ordered pair (ai, aj) at the intersection of the row
headed by ai and the column headed by aj. Thus (ith entry on the left). (jth entry on the top)
= entry where the ith row and jth column intersect.

For example, the composition table for the group {0, 1, 2, 3, 4} for the operation of addition is
given below:

 0 1 2 3 4 

0 0 1 2 3 4 

1 1 2 3 4 5 
2 2 3 4 5 6 

3 3 4 5 6 7 
4 4 5 6 7 8 

 
In the above example, the first element of the first row in the body of the table, 0 is obtained by
adding the first element 0 of head row and the first element 0 of the head column. Similarly the
third element of 4th row (5) is obtained by adding the third element 2 of the head row and the
fourth element of the head column and so on.

An operation represented by the composition table will be binary, if every entry of the
composition table belongs to the given set. It is to be noted that composition table contains all
possible combinations of two elements of the set will respect to the operation.

Notes:

(i) It should be noted that the elements of the set should be written in the same order both in
top border and left border of the table, while preparing the composition table.
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Notes (ii) Generally a table which defines a binary operation ‘.’ on a set is called multiplication table,
when the operation is ‘+’ the table is called an addition table.

Group Tables

The composition tables are useful in examining the following axioms in the manner explained
below:

1. Closure Property: If all the elements of the table belong to the set G (say) then G is closed
under the Composition o (say). If any of the elements of the table does not belong to the
set, the set is not closed.

2. Existence of Identity: The element (in the vertical column) to the left of the row identical
to the top row (border row) is called an identity element in the G with respect to operation ‘o’.

3. Existence of Inverse: If we mark the identity elements in the table then the element at the
top of the column passing through the identity element is the inverse of the element in the
extreme left of the row passing through the identity element and vice versa.

4. Commutativity: If the table is such that the entries in every row coincide with the
corresponding entries in the corresponding column i.e., the composition table is
symmetrical about the principal or main diagonal, the composition is said to have satisfied
the commutative axiom otherwise it is not commutative.

The process will be more clear with the help of following illustrative examples.

Illustrative Examples

Example 8: Prove that the set of cube roots of unity is an abelian finite group with respect
to multiplication.

Solution: The set of cube roots of unity is G = {1, , 2}. Let us form the composition table as given
below:

 I 2 

1 1  2 

  2 3 = 1 
2 2 3 = 1 4 =  

 
(G1) Closure Axiom: Since each element obtained in the table is a unique element of the given

set G, multiplication is a binary operation. Thus the closure axiom is satisfied.

(G2) Associative Axiom: The elements of G are all complex numbers and we know that
multiplication of complex number is always associative. Hence associative axiom is also
satisfied.

(G3) Identity Axiom: Since row 1 of the table is identical with the top border row of elements
of the set, 1 (the element to the extreme left of this row) is the identity element in G.

(G4) Inverse Axiom: The inverse of 1, , 2 are 1, 2 and  respectively.

(G5) Commutative Axiom: Multiplication is commutative in G because the elements equidistant
with the main diagonal are equal to each other.

The number of elements in G is 3. Hence (G,.) is a finite group of order 3.
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Example 9: Prove that the set {1, –1, i, –i} is abelian multiplicative finite group of order  4.

Solution: Let G = {1, –1, i, –i}. The following will be the composition table for (G,.)

 1 –1 i –i 

1 1 –1 i –i 
–1 –i 1 –i –i 
i i –i –1 1 
–i –i i 1 –1 

 
(G1) Closure Axiom: Since all the entries in the composition table are elements of the set G, the

set G is closed under the operation multiplication. Hence closure axiom is satisfied.

(G2) Associative Axiom: Multiplication for complex numbers is always associative.

(G3) Identity Axiom: Row 1 of the table is identical with that at the top border, hence the
element 1 in the extreme left column heading row 1 is the identity element.

(G4) Inverse Axiom: Inverse of 1 is 1. Inverse of –1 is –1. Inverse of i is –i and of –i is i. Hence
inverse axiom is satisfied in G.

(G5) Commutative Axiom: Since in the table the 1st row is identical with 1st column, 2nd row
is identical with the 2nd column, 3rd row is identical with the 3rd column and 4th row is
identical with the 4th column, hence the multiplication in G is commutative.

The number of elements in G is 4. Hence G is an abelian finite group of order 4 with respect to
multiplication.

General Properties of Groups

Theorem 1: The identity element of a group is unique.

Proof: Let us suppose e and e  are two identity elements of group G, with respect to operation o.

Then e o e  = e if e  is identity.

and e o e  = e  if e is identity.

But e o e  is unique element of G, therefore,

e o e  = e and e o e  = e  e = e

Hence the identity element in a group is unique.

Theorem 2: The inverse of each element of a group is unique, i.e., in a group G with operation o
for every a  G, there is only one element a–1 such that a–1 oa = a o a–1 = e, e being the identity.

Proof: Let a be any element of a group G and let e be the identity element. Suppose there exist
a–1 and a  two inverses of a in G then

a–1 o a = e = a o a–1

and a  o a = e = a  o a

Now, we have

a–1 o (a o a ) = a–1 o e (since a o a  = e)
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Notes = a–1 (because e is identity)

Also, (a–1 o a) o a = e o a  (because a–1 o a = e)

= a  (because e is identity)

But a–1 o (ao a ) = (a–1 oa) o a  as in a group composition is associative

a–1 = a .

Theorem 3: If the inverse of a is a–1 then the inverse of a–1 is a, i.e., (a–1)–1 = a.

Proof: If e is the identity element, we have

a–1 o a = e (by definition of inverse)

(a–1)1 o (a–1 o a) = (a–1)–1 o e

[because a–1  G  (a–1)–1  G]

 [(a–1)–1 o a–1] o a = (a–1)–1

[because Composition in G is associative and e is identity element]

 e o a = (a–1)–1

 a = (a–1)–1

 (a–1)–1 = a.

Theorem 4: The inverse of the product of two elements of a group G is the product of the inverse
taken in the reverse order i.e.,

(a o b)–1 = b–1 o a–1 a, b G.

Proof: Let us suppose a and b are any two elements of G. If a–1 and b–1 are inverses of a and b
respectively, then

a–1 o a = e = a o b–1 (e being the identity element)

and b–1 o b = e = b o b–1

Now, (a o b) o b–1 o a–1 = [(a o b) ob–1] o a–1 (by associativity)

= [a o (b o b–1)] o a–1 (by associativity)

= (a o e) o a–1 [because b o b–1 = e]

= a o a–1 [because a o e = a]

= e [because a o a–1 = e]

Also (b–1 o a–1) o (aob) = b–1 o [a–1 o (a o b)] (by associativity)

= b–1 o [(a–1 o a) ob]

= b–1 o (e o b) [because a–1 o a = e]

= b–1 o b [because e o b = b]

= e.

Hence, we have

(b–1 o a–1 o (a o b) = e = (a o b) o (b–1 o a–1)

Therefore, by definition of inverse, we have

(a o b)–1 = b–1 o a–1
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if a, b, c, … k, l, m  G, then

(a o b o c o … k o l o m)–1 = m–1 o l–1 o k–1 o. .c–1 o b–1 o a–1.

Theorem 5: Cancellation laws hold good in a group, i.e., if a, b, c, are any elements of G, then

a o b = a o c  b = c (left cancellation law)

and b o a = c o a  b = c (right cancellation law)

Proof: Let a G. Then

a G a–1 G such that a–1 o a = e

= a o a–1, where e is the identity element

Now, let us assume that

a o b = a o c

then a o b = a o c a–1 o (a o b) = a–1 o aoc

(a–1 oa) ob = (a–1 oa) oc (by associative law)

eob = eoc (because a–1 oa = e)

b = c.

Similarly, b o a = c o a

(boa) o a–1 = (coa) o a–1

bo (ao a–1) = co (ao a–1)

boe = coe

b = c.

Theorem 6: If G is a group with binary operation o and if a and b are any elements of G, then the
linear equations

aox = b and yoa = b

have unique solutions in G.

Proof: Now a  G a–1 G,

and a–1 G, b G a–1 ob G.

Substituting a–1 ob for x in the equation aox = b, we obtain

    a o (a–1 o b) = b

(a o a–1) o b = b

e o b = b

 b = b [because e is identity]

Thus x = a–1 ob is a solution of the equation aox = b.

To show that the solution is unique let us suppose that the equation aox = b has two solutions
given by

x = x1 and x = x2
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aox1 = aox2 = b

x1 = x2 (by left cancellation law)

In a similar manner, we can prove that the equation

y o a = b

has the unique solution

y = b o a–1.

Theorem 7: If corresponding to any element a G; there is an element Oa which satisfies one of
the conditions

a + Oa = a or Oa + a = a

then it is necessary that Oa = o, where Oa is the identity element of the group.

Proof: Since o is the identity element,

We have

a + o = a … (i)

also, it is given that

a + Oa = a … (ii)

Hence, from (i) and (ii)

a + Oa = a + O

or Oa = o (by left cancellation law)

Again, we have

o + a = a … (iii)

and Oa + a = a (given) … (iv)

Hence, from (iii) and (iv), we get

Oa + a = o + a

so that Oa = o (by right cancellation law.)

Modulo System

It is of common experience that railway time-table is fixed with the provision of 24 hours in a
day and night. When we say that a particular train is arriving at 15 hours, it implies that the train
will arrive at 3 p.m. according to our watch.

Thus all the timing starting from 12 to 23 hours correspond to one of 0, 1, 3… 11 o’clock as
indicated in watches. In other words all integers from 12 to 23 one equivalent to one or the other
of integers 0, 1, 2, 3, …, 11 with modulo 12. In saying like this the integers in question are divided
into 12 classes.

In the manner described above the integer could be divided into 2 classes, or 5 classes or m
(m being a positive integer) classes and then we would have written mod 2 or mod 5 or mod m.
This system of representing integers is called modulo system.
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We shall now define a new type of addition known as “addition modulo m” and written as
a + mb where a and b are any integers and m is a fixed positive integer.

By definition, we have

a + mb  = r,   0  r m

where r is the least non-negative remainder when a + b, i.e., the ordinary sum of the a and b, is
divided by m.

For example 5 + 63 = 2, since 5 + 3 = 8 = 1 (6) + 2, i.e., 2 is the least non-negative remainder when
5 + 3 is divided by 6.

Similarly, 5 + 72 = 0, 4 + 32 = 0; 3 + 31 = 1, 15 + 57 = 2.

Thus to find a + mb, we add a and b in the ordinary way and then from the sum, we remove
integral multiples of m in such a way that the remainder r is either 0 or a positive integer less
than m.

When a and b are two integers such that a – b is divisible by a fixed positive integer m, then we
write

a = b (mod m)

which is read as “a is concurrent to b modulo m”.

Thus a = b (mod m) if a – b is divisible by m. For example 13 = 3 (mod 5) since 13 – 3 = 10 is divisible
by 5, 5 = 5 (mod 5), 16 = 4 (mod 6); –20 = 4 (mod 6)

Multiplication Modulo p

We shall now define a new type of multiplication known as “multiplication modulo p” and
written as a × pb where a and b are any integers and p is a fixed positive integer.

a × pb = r, 0  r  p,

where r is the least non-negative remainder when ab, i.e., the ordinary product of a and b, is
divided by p. For example 4 × 72 = 1, since 4 × 2 = 8 = 1(7) + 1.

It can be easily shown that if a = b (mod p) then a × pC = b × pC.

Additive Group of Integers Modulo m

The set G = {0, 1, 2, … m – 1} of first m non-negative integers is a group, the composition being
addition reduced modulo m.

Closure Property: We have by definition of addition modulo m,

a + mb = r

where r is the least non-negative remainder when the ordinary sum a + b is divided by m.
Obviously 0  r  m – 1. Therefore for all a, b  G, we have a + mb  G and thus G is closed with
respect to the composition addition modulo m.

Associative Property: Let a, b, c be any arbitrary elements in G.

Then (a + b) + mc = (a + mb) + mc

b + mc = b + c (mod m)
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= least non-negative remainder when (a + b) + c divided by m.

since a + (b + c) = (a + b) + c

= (a + b) + mc [by definition of +m]

= (a + mb) + mc [  a + b = a + mb (mod m)]

‘+m’ is an associative composition.

Existence of Identity Element: We have 0  G. Also, if a is any element of G, then 0 + ma = a + m0.
Therefore 0 is the identity element.

Existence of Inverse: The inverse of 0 is 0 itself. If r G and r  0, then m – r  G. Also (m – r) + mr

= 0 = r + m (m – r). Therefore (m – r) is the inverse of r.

Commutative Property: The composition ‘+m’ is commutative also.

Since

a + mb = least non-negative remainder when a + b is divided by m

= least non-negative remainder when b + a is divided by m

= b + ma.

The set G contains m elements.

Hence (G, +m) is a finite abelian group of order m.

Multiplicative Group of Integers Modulo p where p is Prime

The set G of (p – 1) integers 1, 2, 3, …, p – 1, p being prime, is a finite abelian group of order
p – 1, the composition being multiplication modulo p.

Let G = {1, 2, 3, … p – 1} where p is prime.

Closure Property: Let a and b be any elements of G. Then 1 < a < p – 1, 1 < b < p – 1. Now by
definition a × pb = r where  r is the least non-negative remainder when the ordinary product a b
is divided by p. Since p is prime, therefore a b is not exactly divisible by p. Therefore r cannot  be
zero and w shall have 1  r p – 1. Thus a × pb  G  a, b  G. Hence the closure axiom is satisfied.

Associative Law: a, b, c, be any arbitrary elements of G.

Then ( )bcb ca p p a p [  b × pC = bc (mod p)]

= least non-negative remainder when a (bc) is divided by p

= least non-negative remainder when ab (c) is divided by p

= (ab) × pC

= (a × pb) × pC [  ab = a × pb (mod p)]

‘X’p is an associative composition.

Existence of left identity: We have 1  G. Also if a is any element of G, then 1 × pa = a. Therefore
1 is the left identity.

Existence of left inverse: Let s be any member of G. Then 1 < s < p – 1.
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1 × ps, 2 × ps, 3 × ps, … (p – 1) × ps.

All these are elements of G. Also no two of these can be equal as shown below:

Let i and j be two unequal integers such that

1 1, 1 1 andi p j p i j

Then p pi s j s

i s and j s leave the same least non-negative remainder when divided by p

i s – j s is divisible by p

(i – j) s is divisible by p.

Since 1 (i – j) < p – 1; 1  s  p – 1 and p is prime, therefore (i – j) s cannot be divided by p.

i × ps × j × ps.

Thus 1 × ps, 2 × ps, … (p – 1) × pS are (p – 1) distinct elements of the set G. Therefore one of these
elements must be equal to 1.

Let s  × ps = 1. The s  is the left inverse of s.

Commutative Law: The composition ‘Xp’ is commutative, since

a × pb = least non-negative remainder when ab is divisible by p

= least non-negative remainder when ba is divided by p

= b × pa

(G, Xp) is a finite abelian group of order p – 1.

Theorem 8: The residue classes modulo form a finite group with respect to addition of residue
classes

Proof: Let G be the set of residue classes (mod m), then

G = { {0}, {1}, {2}, … {r1}, … {r2}, … {m – 1} }

or G = {0, 1, 2, … {r1} … {r2} … m – 1 (mod m)}

Closure axiom: (r1) + {r2} = {r1 + r2}

= {r} G where r is the least positive integer obtained as
    remainder when r1 + r2 is divided by m (0 r m).

Thus the closure axiom is satisfied.

Associative axiom: The addition is associative.

Identity axiom: {0} G) and {0} + {r} = {r}. Hence the identity for addition is {0}.

Inverse axiom: Since {m – r} + {r} = {m} = {0}, the additive inverse of the element {r} is {m – r}.

Hence G is a finite group with respect to addition modulo m.

Theorem 9: The set of non-zero residue classes modulo p, where p is a prime, forms a group with
respect to multiplication of residue classes.

Proof: Let I = {…, –3, –2, –1, 0, 1, 2, 3, …} be the set of integers. Let a then {a} is residue class
modulo p of I,
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If p | a then {a} = {0} which is called the zero residue class. Let G be the set of non-zero residue
classes mod p (p being prime) then

G = {1, 2, 3, … (p – 1)}

Closure axiom: Let r1, r2 G then 1 2r r r  (mod p)

where r is the least non-negative integer such that 0 < r < p – 1 obtained after dividing r1, r2 by p.

Also, since p is prime, r1, r2 is not divisible by p. Hence r cannot be zero.

Hence, 1 2r r r G .

Thus closure axiom is satisfied.

Associative axiom: Multiplication of residue classes is associative.

Existence of Identity: 1 G and a. 1 = 1 a = a  a G.

Therefore 1 is the identity element in G with respect to multiplication.

Existence of Inverse: Let s G then 1 1s p . Let us consider following (p – 1) elements.

1 , 2 , 3 , ,( 1)s s s p s .

All these elements are elements of G because the closure law is true. All these elements are
distinct as otherwise if

for and ,i s j s i j i j G

the i s j s  i s j s  is divisible by p

 ( )i j s  is divisible by p

 (i – j) is divisible by p [because 1 ( 1)s p ]

 i – j which is contrary to our assumption that i  j.

Therefore above (p – 1) elements are the same as the elements of G. Hence some one of them
should be 1 also, let 1s s  where 1 1s p . Hence s’ is inverse of s. Hence inverse axiom is
also satisfied.

G is a group under multiplication mod p.

Note: Since r . s = s . r  r, s  G.

G is finite abelian group of order (p – 1).

Illustrative Examples

Example 10: Prove that the set G = {0, 1, 2, 3, 4} is a finite abelian group of order 5 with
respect to addition modulo 5.
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+ (mod 5) 0 1 2 3 4 

0 0 1 2 3 4 

1 1 2 3 4 0 
2 2 3 4 0 1 

3 3 4 0 1 2 
4 4 0 1 2 3 

 
Closure Property: All the entries in the composition table are elements of the set G. Hence G is
closed under addition modulo 5.

Associative Property: Addition modulo 5 is associative always.

Identity: 0  G is the identity element.

Inverse: It is clear from composition table.

Element — 0 1 2 3 4

Inverse — 0 4 3 2 1

Inverse exists for every element of G.

Commutative Law: The composition is commutative as the corresponding rows and columns is
G are 5.

Hence {G, + (mod 5)} is a finite abelian group of order 5.

Example 11: Prove that the set G = {1, 2, 3, 4, 5, 6} is a finite abelian group of order 5 with
respect to multiplication modulo 7.

Solution: Let us prepare the following composition table:

X7 1 2 3 4 5 6 

1 1 2 3 4 5 6 

2 2 4 6 1 3 5 
3 3 6 2 5 1 4 

4 4 1 5 2 6 3 
5 5 3 1 6 4 2 

6 6 5 4 3 2 1 

 
Closure Property: All the entries in the table are elements of G. Therefore G is closed with
respect to multiplication modulo 7.

Associative Property: Multiplication modulo 7 is associative always.

Identity: Since first row of the table is identical to the row of elements of G in the horizontal
border, the element to the left of first row in vertical border is identity element, i.e., 1 is identity
element in G with respect to multiplication modulo 7.

Inverse: From the table it is obvious that inverses of 1, 2, 3, 4, 5, 6 are 1, 4, 5, 2, 3 and 6 respectively.
Hence inverse of each element in G exists.
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from principal diagonal are equal each to each.

The set G has 6 elements. Hence (G, X7) is a finite abelian group of order 6.

Self Assessment

7. Show that the set {1, 2, 3, 4} does not form a group under ‘addition modulo 5’, but it forms
a group under ‘multiplication modulo 5’.

8. Prove that the set {0, 1, 2, 3} is a finite abelian group of order 4 under addition modulo 4 as
composition.

1.3 Rings

The concept of a group has its origin in the set of mappings or permutations, of a set onto itself.
So far we have considered sets with one binary operation only. But rings are the outcome of the
motivation which arises from the fact that integers follow a definite pattern with respect to the
addition and multiplication. Thus we now aim at studying rings which are algebraic systems with
two suitably restricted and related binary operations.

Definition: An algebraic structure (R, +,.) where R is a non-empty set and + and . are two defined
operations in R, is called a ring if for all a, b, c in R, the following axioms are satisfied:

R1 . (R, +) is an abelian group, i.e.,

(R11) a + b  R (closure law for addition)

(R12) (a + b) + c = a + (b + c) (associative law for addition)

(R13) R has an identity, to be denoted by O, with respect to addition,

i.e., a + 0 = a  a R (Existence of additive identity)

(R14) There exists an additive inverse for every element in R, i.e., there exists an element –a in R
such that

a + (–a) = 0  a R (Existence of additive inverse)

(R15) a + b = b + a (Commutative law for addition)

R2 (R, .) is a semigroup, i.e.,

(R21) a . b  R (Closure law for multiplication)

(R22) (a . b) . c = a . (b . c) (associative law for multiplication)

R3 Multiplication is left as well as right distributive over addition, i.e.,

a . (b + c) = a . b + a . c

and (b + c) . a = b . a + c . a

Elementary Properties of a Ring

Theorem 10: If R is a ring, then for all a, b R.

(a) a . 0 = 0 . a = 0

(b) a (–b) = (–a) b = – (ab)

(c) (–a) (–b) = ab
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a0 = a (0 + 0) = a0 + a0 a R (using distributive law)

Since R is a group under addition, applying right cancellation law,

a0 = a0 + a0  0 + a0 = a0 + a0 a0 = 0

Similarly, 0a = (0 + 0) a = 0a + 0a (using distributive law)

0 + 0a = 0a + 0a (because 0 + 0a = 0a)

Applying right cancellation law for addition, we get

0 = 0a i.e., 0a = 0

Thus a0 = 0a = 0.

(b) To prove that a (–b) = –ab we would show that

ab + a (–b) = 0

We know that a [b + (–b)] = a0 [because b + (–b) = 0]

= 0 (with the virtue of result (a) above)

or ab + a (–b) = 0 (by distributive law)

a (–b) = – (ab).

Similarly, to show (–a) b = – ab, we must show that

ab + (–a) b = 0

But ab + (–a) b = [a + (–a)] b = 0b = 0

– (a) b = – (ab)

Hence the result.

(c) Actually to prove (–a) (–b) = ab is a special case of foregoing article. However its proof is
given as under:

(–a) (–b) = – [a (–b)] [by result b]

= [– (ab)] [because a (–b) = –ab]

= ab

because – (–x) = x is a consequence of the fact that in a group inverse of the inverse of an
element is element itself.

Illustrative Examples

Example 12: Prove that the set of all rational numbers is a ring with respect to ordinary
addition and multiplication.

Let Q be the set of all rational numbers.

R1 (Q, +) is abelian.

(R11) Let a, b  Q then a + b Q because sum of two rational numbers is a rational number.
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(a + b) + c = a + (b + c)

because associative law for addition holds.

(R13) 0  Q and 0 + a = a + 0 = a  a Q, i.e., 0 is the additive identity in Q.

(R14)  a  Q, – a Q and a + (–a) = 0. Hence additive inverse in Q exists for each element in Q.

(R15) Let a, b  Q then a + b = b + a because addition is commutative for rationals.

R2 (Q, .) is a semi group.

(R21) Since the product of two rational numbers is a rational number, a, b  Q  a . b Q.

(R22) Multiplication in Q is associative.

R3 Multiplication is left as well as right distributive over addition in the set of rational
numbers, i.e.,

( )a b c = a b a c

( )b c a = ,b a c a

for a, b, c, Q.

Hence (Q, +, .) is a ring.

Example 13: A Gaussian integer is a complex number a + ib, where a and b are integers.
Show that the set J (i) of Gaussian integers forms a ring under ordinary addition and multiplication
of complex numbers.

Solution: Let a1 + ib1 and a2 + ib2 be any two elements of J (i) then

(a1 + ib1) + (a2 + ib2) = (a1 + a2) + i (b1 + b2)

= A + iB (say)

and (a1 + ib1) . (a2 + ib2) = (a1a2 – b1b2) + i (a1b2 + b1a2)

= C + i D (say)

These are Gaussian integers and therefore J (i) is closed under addition as well as multiplication
of complex numbers.

Addition and multiplication are both associative and commutative compositions for complex
numbers.

Also, multiplication distributes with respect to addition.

0 (= 0 + 0i) J (i) is the additive identity.

The additive inverse of a + ib , J (i) is

(–a) + (–b) i J (i) is

(a + ib) + (–a) + (–b) i

= (a – a) + (b – b) i

= 0 + 0i = 0.

The Gaussian integer 1 + 0.i is multiplicative identity.
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identity.

Example 14: Prove that the set of all real numbers of the form 2m n  where m, n are
rational numbers is a ring under the usual addition and multiplication.

Solution: Let R = { 2m n : m, n are real numbers}.

R1 (R, +) is abelian group.

(R11) Let , 1 1 2 22 , 2m n m n R  then

1 1 2 2 1 2 1 2( 2 ) ( 2 ) ( ) ( ) 2m n m n m m n n R

because sum of two real numbers is a real number.

12 1 1 2 2 1 2 1 2 1 2( ) ( 2 ) ( 2 ) ( 2 ) ( 2 ) ( 2 )R m n m n m n m n m n

because addition of real numbers is a real number

(R13) Associative law for addition of real numbers holds, i.e.,

1 1 2 2 3 3( 2 ) {( 2 ) ( 2 )}m n m n m m

1 1 2 2 3 3{( 2 ( 2 )} ( 2 )m n m n m m

for 1 2 2 3 3, , , , ,nm n m n m n  to be rational numbers.

(R14) 0 ( 0 0. 2 )  Î R is the identity of addition in R.

(R15) Let 2m n R , then – ( 2 )m n

= 2m n R  and also

( 2 ) ( 2 ) ( ) ( ) 2 0m n m n m n n n

Hence additive inverse for each element in R exists in R.

R2 (R, .) is a semi-group.

(R21) 1 1 2 2( 2 ) ( 2 )m n m n

= 1 2 1 2 1 2 2 1( 2 ) ( ) 2m m n n m n m n

= 2a b R

as a and b being the sums of products of rational numbers are rational.

(R22) Multiplication is associative in R, i.e.,

1 1 2 2 3 3( 2 ) ( 2 ) ( 2 )m n m n m n

1 1 2 2 3 3( 2 ) ( 2 ) ( 2 )m n m n m n

R3 Multiplication is left as well as right distributive over addition in R. Hence R is a ring
under usual addition and multiplication.
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Example 15: Prove that the set of residues {0, 1, 2, 3, 4} modulo 5 is using with respect to

addition and multiplication of residue classes (mod 5).

Solution: Let R = {0, 1, 2, 3, 4}.

Addition and multiplication tables for the given set R, are as under

+ mod 5 0 1 2 3 4 mod 5 0 1 2 3 4 

0 0 1 2 3 4 0 0 0 0 0 0 

1 1 2 3 4 0 1 0 1 2 3 4 
2 2 3 4 0 1 2 0 2 4 1 3 

3 3 4 0 1 2 3 0     
4 4 0 1 2 3 4      

 
From the addition composition table following is clear:

(i) Since all the elements of the table belong to the set, it is closed under addition (mod 5).

(ii) Addition (mod 5) is always associative.

(iii) 0  R is the identity of addition.

(iv) The additive inverse of the elements 0, 1, 2, 3, 4 are 0, 4, 3, 2, 1 respectively.

(v) Since the elements equidistant from the principal diagonal are equal to each other, the
addition (mod 5) is commutative.

Hence (R, +) is an abelian group.

From the multiplication composition table, we see that (R, .) is semi group, i.e., following
axioms hold good.

(vi) Since all the elements of the table are in R, the set R is closed under multiplication (mod 5).

(vii) Multiplication (mod 5) is always associative.

(viii) The multiplication (mod 5) is left as well as right distributive over addition (mod 5).

Hence (R, +, .) is a ring.

Example 16: Prove that the set of residue classes modulo the positive integer m is a ring
with respect to addition and multiplication of residue classes (mod m).

Solution: Let R = {0, 1, 2, …, r1, …, r2, … (m – 1) (mod m)}

R1 (R, +) is an abelian group.

(i) Let r1, r2  R then

where r is the remainder obtained after dividing r1 + r2 by m.

R is closed under addition (mod m).

(ii) Addition is associative.

(iii) O  R is the identity element for addition in R.

(iv) Since (m – r) + r = m = 0, the additive inverse of r R is (m – r) R.
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R2 (R, .) is a semigroup, i.e.,

(vi) r1 r2 = r  (mod m) R

r being the remainder obtained after dividing r1 r2 by m if r1 r2 m.

(vii) 1 2 3 1 2 3( ) ( )r r r r r r  1 2 3, , ,r r r R  i.e., multiplication is associative. R3 Distributive axiom
is satisfied, i.e.,

(viii) r1 (r2 + r3) = r1 r2 + r1 r3 and (r2 + r3) r1 = r2 r1 + r3 r1 for r1 r2, r3  R.

Hence (R, +, .) is a ring.

Special Types of Rings

Some special types of rings are discussed below:

1. Commutative Rings: A ring R is said to be a commutative, if the multiplication composition
in R is commutative, i.e.,

ab = ba  a, b R.

2. Rings with Unit Element: A ring R is said to be a ring with unit element if R has a
multiplicative identity, i.e., if there exists an element R denoted by 1, such that

1 . a = a . 1 = a  a  R.

The ring of all n × n matrices with elements as integers (rational, real or complex numbers)
is a ring with unity. The unity matrix

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

nI






is the unity element of the ring.

3. Rings with or without Zero Divisors: While dealing with an arbitrary ring R, we may find
elements a and b in R neither of which is zero, and their product may be zero. We call such
elements divisors of zero or zero divisors.

Definition: A ring element a (  0) is called a divisor of zero if there exists an element b (  0)
in the ring such that either

ab = 0 or ba = 0

We also say that a ring R is without zero divisors if the product of no. two non-zero elements of
same is zero, i.e., if

ab = 0  either a = 0 or b = 0 or both a = 0 and b = 0.

Cancellation Laws in a Ring

We say that cancellation laws hold in a ring R if

ab = ac (a 0)  b = c

and ba = ca (a 0) b = c where a, b, c, are in R.

Thus in a ring with zero divisors, it is impossible to define a cancellation law.
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Proof: Suppose that R has no zero divisors. Let a, b, c, be any three elements of R such that a 0,
ab = ac.

Now, ab = ac ab – ac = 0

a (b – c) = 0

b – c = 0 (because R is without zero divisors and a 0)

b = c.

Thus the left cancellation law holds in R. Similarly, it can be shown that right cancellation law
also holds in R.

Conversely, suppose that the cancellation laws hold in R.

Let a, b R and if possible let ab = 0 with a 0, b 0 then ab = a . 0 (because a . 0 = 0)

Since a 0, ab = a . 0 b = 0 (by left cancellation law)

Hence we get a contradiction to our assumption that b 0 and therefore the theorem is established.

Division Ring

A ring is called a division ring if its non-zero elements form a group under multiplication.

Pseudo ring: A non-empty set R with binary operations ‘+’ and ‘.’ satisfying all the postulates of
a ring except right and left distributive laws, is called a pseudo ring if

( ) ( ) for all , , ,a b c d a c a d b c b d a b c d R

Subrings

Definition: Let R be a ring. A non-empty subset S of the set R is said to be a subring of R if S is closed under
addition and multiplication in R and S itself is a ring, for those operations.

If R is any ring, then {0} and R are always subrings of R. These are said to be improper subrings.
The subrings of R other than these two, if any, are said to be proper subrings of R.

Evidently, if S is a subring of a ring R, it is a sub group of the additive group R.

Theorem 12: The necessary and sufficient condition for a non-empty subset S of  a ring R to be a
subring of R are

(i) a, b  S a – b S,

(ii) a, b S ab S.

Proof: To prove that the conditions are necessary let us suppose that S is a subring of R.

Obviously S is a group with respect to addition, therefore,

b S – b S

Since S is closed under addition

a S, b S a S, – b S a + (– b)  S

a – b  S.
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a S, b S ab S.

Now to prove that the conditions are sufficient suppose S is a non-empty subset of R for which
the conditions (i) and (ii) are satisfied.

From condition (i)

a S a – a S 0 S.

Hence additive identity is in S.

Now 0 S, a S – a  S

i.e., each element of S possesses additive inverse.

Let a, b S then – b S and then from condition (i)

a S, – b S a – (–b) S (a + b) S

Thus S is closed under addition. S being subset of R, associative and commutative laws hold in
S. Therefore, (S, +) is an abelian group.

From condition (ii) S is closed under multiplication.

Since S is a subset of R, the associative law for multiplication and distributive laws of
multiplication over addition hold in S. Thus S is a subring of R.

Intersection of Subrings

Theorem 13: The intersection of two subrings is a subring.

Proof: Let S1 and S2 be two subrings of ring R.

Since 0 S1 and 0 S2 at least 0 S1 S2. Therefore S1 S2 is non-empty.

Let a, b S1 S2, then

a S1 S2 a S1 and a S2

and b S1 S2 b S1 and b S2.

But S1 and S2 are subrings of R, therefore

a, b S1 a – b  S1 and a b S1.

and a, b S2 a – b S2 and a b S2.

Consequently, a, b S1 S2 a – b S1 S2 and a b S1 S2.

Hence S1 S2 is a subring of R.

Illustrative Examples

Example 17: If R is a ring with additive identity 0, then for all a, b  R, prove that

a (b – c) = ab – ac

and (b – c) a = ba – ca.

Solution: We have, a (b – c) = a [b + (–c)]

= ab + a (–c) [left distributive law]
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= ab – ac.

Also, (b – c) a = [b + (–c)] a

= ba + (–c) a (right distributive law)

= ba + [– (ca)] = ba – ca.

Example 18: Suppose M is a ring of all 2 × 2 matrices with their elements as integers, the
addition and multiplication of matrices being the two ring compositions. Then M is a ring with
left zero-divisor.

Solution: The null matrix O = 0 0
0 0  is the zero element of ring M.

A = 1 0
0 0  and B = 0 0

1 0  are two non-zero elements of M.

Now AB = 1 0 0 0 0 0
0 0 0 1 0 0  = 0.

Hence M is a ring with left zero divisor.

Example 19: Prove that the ring of integers is a ring without zero divisors.

Solution: Since the product of two non-zero integers is never zero, it is the ring without zero
divisors.

Example 20: Prove that the ring of residue classes modulo a composite integer m possess
proper zero divisors.

Solution: Let m = ab i.e., a and b are two factors of m.

Then ab  0 (mod m)

But a  (mod m) and b  0 (mod m).

Hence the residue classes {a} and {b} are proper zero-divisors.

Example 21: Prove that the totality R of all ordered pairs (a, b) of real numbers is a ring
with zero divisors under the addition and multiplication defined as

(a, b) + (c, d) = (a + c, b + d),

(a, b) (c, d) = (ac, bd), (a, b), (c, d)  R.

Solution: First of all, we prove that R is ring. We have

(R1) : [(a, b) + (c, d)] = (a + c, b + d)  R

Hence R is closed for addition.

(R1) : [(a, b) + (c, d)] + (e, f) = (a + c, b + d) + (e, f)

= (( ) , ( ) )a c e b d f
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[addition is associative in real numbers]

= ( , ) ( , )a b c e d f

= ( , ) [( ) ( , )]a b c d e f

So the addition is associative in R

(R3) : (0, 0) + (a, b) = (0 + a, 0 + b) = (a, b) (a, b) R, so that (0, 0) is the additive identity in R.

(R4) : ( , ) ( , ) ( , ) (0,0)a b a b a a b b  so the additive inverse of (a, b), is (–a, –b) (a, b) R.

(R5) : (a, b) + (c, d) = (a + c, b + d)

= ( , )c a d b

[because addition is commutative in real numbers]

= ( , ) ( , )c d a b (a, b), (c, d) R.

(R6): [(a, b), (c, d)] [e, f]

= ( , )( , )ac bd e f

= {( ) ,( ) }ac e bd f

= { ( , , ( )}a c e b d f
[because ordinary multiplication is associative]

= ( , )( , , )a b c e d f

= ( , ) [( , )( , )]a b c d e f ( , ) ( , )( , )a b c d e f R 

(R7) : ( , ) [( , ) ( , )]a b c d e f

= ( , ) ( , )a b c e d f

= ( , )a c a e b d b f (by distributive law of reals)

= ( ),( , )a c b d a e b f

= ( ),( , ) ( , )( , )a b c d a b e f .

Similarly

[( ) ( , )]( , )c d e f a b

= ( ) ( , ) ( , ) ( , )c d a b e f a b .

Hence R is a ring.

Now, in order to show that R is a ring with zero divisors we must produce at least two non-zero
elements whose product is zero. Clearly neither (a, 0) with a  0 nor (0, b) with b  0 is the zero
element (additive identity) or R yet their product

( ,0)(0, ) ( .0,0. ) (0,0)a b a b
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Thus R is a ring with zero divisors.

It can also be verified that R is also a commutative ring with unity element (1, 1).

Example 22: Prove that M the set of all 2 × 2 matrices of the form

, 1
a bi c di

i
c di a bi

where a, b, c, d are real numbers, form a division ring.

Solution: Since I = 
1 0
0 1 M  is a ring with unity under matrix addition and multiplication.

Let A be a non-zero matrix in M, and let

a bi c di
A

c di a bi

where a, b, c, d are not all zero. Consider

2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

a bi c di
a b c d a c dB c di a bi
a b c d a b c d

Evidently B M . Also A B = B A = 
1 0
0 1 .

Thus every non-zero matrix of M is invertible. Hence M is a division ring.

Example 23: Prove that the set of integers is a subring of the ring of rational numbers.

Solution: Let I be the set of integers and Q the set of rational numbers.

Clearly I  Q and ,a b I a b I  and a b I

Therefore, I is a subring of Q.

Example 24: Show that the set of matrices 0
a b

c  is a subring of the ring of 2 × 2 matrices

with integral elements.

Solution: Let M be the set of matrices of the type 0
a b

c
Clearly M R

Let 1 1 2 2

1 2
,0 0

a b a bA B Mc c  then

1 2 1 2

1 20
a a b bA B Mc c  and



LOVELY PROFESSIONAL UNIVERSITY 45

Unit 1: Vector Space over Fields

Notesalso

1 1 2 2 1 2 1 2 2 1

1 2 1 20 0 0
a b a b a a a b b cA B Mc c c c

M is subring of R.

Self Assessment

9. Show that the set of even integers including zero is a commutative ring with zero-divisors
under the usual addition and multiplication.

10. Prove that the ring R = {0, 1, 2, 3, 4, 5, 6, 7} under the addition and multiplication modulo
8 is a commutative ring without zero divisors.

11. Prove that set I of integers is a subring of R, the set of real numbers.

12. If a, b belong to a ring R and (a + b)2 = a2 + 2ab + b2, then show that R is a commutative ring.

Ideals

Definition: Let (R, +,.) be any ring and S a subring of R, then S is said to be right ideal of R if
a  S, b  R  a b S and left ideal of R if a S, b R  b a S.

Thus a non-empty subset S or R is said to be a ideal of R if:

(i) S is a subgroup of R under addition.

(ii)  a S and b R, both a b and  ba S.

Principal Ideals: If R is a commutative ring with unity and a R, the ideal {ax : x R} is called the
principal ideal generated by a and is denoted by (a), thus (a) stands for the ideal generated by a.

Principal Ideal Ring: A commutative ring with unity for which every ideal is a principal ideal
is said to be a principal ideal ring.

Prime Ideal: Let R be a commutative ring. An ideal P of ring R is said to be a prime ideal of R if

, ,ab P a b R a P or b P .

Example 25: In the commutative ring of integers I, the ideal P = {5r : r  I} is a prime ideal
since if ab P , then 5 | ab and consequently 5 | a or 5 | b as 5 is prime.

Integral Domain

Definition: A commutative ring with unity is said to be an integral domain if it has no zero-
divisors. Alternatively a commutative ring R with unity is called an integral domain if for all  a,
b R, a b = 0 a = 0 or b = 0.

Examples:

(i) The set I of integers under usual addition and multiplication is an integral domain as for
any two integers , ; 0 0 or 0.a b ab a b

(ii) Consider a ring R = {0, 1, 2, 3, 4, 5, 6, 7} under the addition and multiplication modulo 8.
This ring is commutative but it is not integral domain because 2 , 4R R  are two
non-zero elements such that 2.4 = 0 (mod 8).
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An integral domain R is said to be a Euclidean ring if for every a  0 in R there is defined a non-
negative integer, to be denoted by d (a), such that:

(i) for all ,a b R , both non-zero, ( ) ( )d a d ab ,

(ii) for any ,a b R , both non-zero, there exists ,q r R  such that a q b r  when either

r = 0 or ( ) ( ).d r d b

Illustrative Examples

Example 26: Prove that the ring of complex numbers C is an integral domain.

Solution: Let J (i) = { : , }a bi a b I .

It is easy to prove that J (i) is a commutative ring with unity.

The zero element 0 + 0.i and unit element 1 + 0.i.

Also this ring is free from zero-divisors because the product of two non-zero complex numbers
cannot be zero. Hence J (i) is an integral domain.

Example 27: Prove that set of numbers of the form 2a b  with a and b as integers is an
integral domain with respect to ordinary addition and multiplication.

Solution: Let { 2 : , }D a b a b I

1( ) ( , )I D  is an abelian group.

11 1 1 2 2 1 1 2 2( ) Let 2 and 2 , then , , ,I a b D a b D a b a b I

Now, 1 1 2 2 1 2 1 2( 2 ) ( 2 ) ( ) ( ) 2a b a b a a b b D

as 1 2 1 2,a a b b I .

Hence D is closed under addition.

(I12) Addition is associative in the set of real numbers.

13( ) 0 (0 0 2 )I D  is the additive identity in D because 0  I.

14( ) If ( 2 )I a b D

Then ( ) ( ) 2a b D  and ( 2 ) [( ) ( ) 2 ] 0 0 2 0a b a b  the additive identity. Hence
each element in D possesses additive inverse.

(I15) Addition is commutative in the set of real numbers.

I2 (D, .) is semi-abelian group with unity.

21 1 2 2 2 1 2 1 2 1 2 2 1( )( 2 )( 2 ) ( 2 ) ( ) 2I a b a b a a b b a b a b D  as 1 2 1 2 1 12 ,a b b b a b I  for

1 1 2 2, , ,a b a b I .
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(I12) Multiplication is commutative in the set of real numbers.

(I23) Multiplication is associative in the set of real numbers.

(I24) 1 0 2 1 D  and for 2a b D , we have

(1 0 2( 2 ) ( 2 )( 0 2 ) 2a b a b I a b

1 is the multiplicative identity in D.

I3. In the set of real numbers multiplication is distributive over addition.

I4. Now, to prove that this ring is without zero divisors let 2a b  and 2c d  be two
arbitrary elements of D. Then

( 2 ) ( 2 ) 0a b c d  2 0 and 0ac bd bc ad

= either a = 0 and b = 0 or c = 0 and d = 0

= either 2a b  or 2c d  = 0.

Thus the given set is a commutative ring with unity and without zero-divisors, i.e., it is an
integral domain.

1.4 Fields

Definition: A commutative ring with unity is called a field if its every non-zero element possesses
a multiplicative inverse.

Thus a ring R in which the elements of R different from 0 form an abelian group under
multiplication is a field.

Hence, a set F, having at least two distinct elements together with two operations ‘+’ and ‘.’ is
said to form a field if the following axioms are satisfied:

(F1) (F, +) is an abelian group.

(F11) F is closed under addition, i.e., ,a b F a b F .

(F12) Addition is commutative in F i.e., ( ) ( )a b c a b c

for all , ,a b c F .

(F14) Identity element with respect to addition exists in F, i.e., , 0  F such that a + 0 = 0 + a = a
 a  F.

(F15) There exists inverse of every element of F, i.e.,  a  F, there exists an element –a in F such
that

( ) ( ) 0a a a a .

(F20) Properties of (F,.)

(F21) F is closed under multiplication, i.e.,  , ,a b F a b F .

(F22) Multiplication is commutative in F, i.e., a b b a  for all a, b, F.

(F23) Multiplication is associative in F, i.e., (a . b) . c = a . (b . c) for all a, b, c, F.
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1 1a a a   a  F.

(F25) For all a F, a 0, there exists an element a–1 (multiplicative inverse) in F such that
1 1 1a a a a .

F3. Distributive laws of multiplication over addition for all , ,a b c F ,

( )a b c a b a c

and ( )b c a b a c a

The above properties can be summarised as:

(1) (F, +) is an abelian group.

(2) (F, .) is a semi-abelian group and (F – {0}, .) is an abelian group.

(3) Multiplication is distributive over addition.

Examples:

(i) The set of real numbers is a field under usual addition and multiplication compositions.

(ii) The set of rational numbers is a field under usual addition and multiplication operations.

(iii) The set of integers is not a field.

Some Theorems

Theorem 14: The multiplicative inverse of a non-zero element of a field is unique.

Proof: Let there be two multiplicative inverse a–1 and a  for a non-zero element a  F.

Let (1) be the unity of the field F.

aa–1 = 1 and a . a  = 1 so that a . a–1 = a . a .

Since F – {0} is a multiplicative group, applying left cancellation, we get a–1 = a .

Theorem 15: A field is necessarily an integral domain.

Proof: Since a field is a commutative ring with unity, therefore, in order to show that every field
is an integral domain we only need proving that a field is without zero divisors.

Let F be any field let a, b F with a  0 such that ab = 0. Let 1 be the unity of F. Since a  0, a–1 exists
in F and therefore,

ab = 0  a–1 (ab) = a–1 0

(a–1 a) b = 0 (because a–1 a =1)

1  b = 0

b = 0 (because 1. b = b)

Similarly if b  0 then it can be shown that

ab = 0 a = 0

Thus ab = 0 a = 0 or b = 0.

Hence, a field is necessarily an integral domain.
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NotesCorollary: Since integral domain has no zero divisors and field is necessarily an integral domain,
therefore, field has no zero-divisor.

Theorem 16: If a, b are any two elements of a field F and a , there exists a unique element x such
that a . x = b.

Proof: Let 1 be the unity of F and a–1, the inverse of a in F then

1. ( )a a b = 1( ) . 1 .aa b b b

ax = 1. . ( )b a x a a b

   1x a b (by left cancellation)

Thus x = 1 .a b F

Now, suppose there are two such elements x1, x2 (say) then

a . x1 = b and 2.a x b

Hence 1 2. .a x a x

On applying left cancellation, we get

x1 = x2

Hence the uniqueness is established.

Theorem 17: Every finite integral domain is a field.

or

A finite commutative ring with no zero divisor is a field.

Proof: Let D be an integral domain with a finite number of distinct elements 1 2, ,..., .na a a  In
order to prove that D is a field, we have to prove that there exists 1 D such that
1 . a a a D and for every a ( 0) D there exists an element 1a D such that 1 1.a a

Let a 0 and  a D. Now the elements 1 2 , ..., naa aa aa  are the elements of D.

All of them are distinct because otherwise if ,i jaa aa  for i j then

aai = aaj a(ai – aj) = 0

      ai – aj = 0

(because a 0 and D is without zero divisors)

i ja a  contradicting i j.

Let one of these elements be a. Thus there exists an element, say 1 D such that

. 1 1 .a a a  (because multiplication is commutative)

Let y be any element of D then for some x D we should have

ax = y = xa

Therefore, 1y = 1 (ax) (because ax = y)

= (1a) x = ax (because 1a = a)



50 LOVELY PROFESSIONAL UNIVERSITY

Linear Algebra

Notes Thus 1 1y y y 1.y D y  (because multiplication is commutative) Therefore 1 is the unit
element of D.

Now 1 D and as such one of the elements 1 2, ,..., naa aa aa  is equal to 1, i.e.,

1s saa a  a for some s such that 1 s n.

Thus as D is the multiplicative inverse of the non-zero element a in D. Since a is arbitrary
element in D, we conclude that each non-zero element of D possesses multiplicative inverse.

Hence D is a field.

Illustrative Examples

Example 28: Prove that the set of complex numbers is a field with respect to addition and
multiplication operation.

or

Let C be the set of ordered pairs (a, b) of real numbers. Define addition and multiplication in C
by the equations

( , ) ( , )a b c d = ( , )a c b d

( , ) ( , )a b c d = ( , )ac bd bc ad

Prove that C is a field.

Solution: C is closed under addition and multiplication since a + c, b + d, ac – bd, bc + ad are all real
numbers.

Let ( , ), ( , ), ( , )a b c d e f C

then

[( , ) ( , )] ( , )a b c d e f = ( , ) ( , )a c b d e f

= [( ) ,( ) ]a c e b d f

= [ ( ), ( )]a c e b d f

= ( , ) ( , )a b c e d f

= ( , ) [( , ) ( , )]a b c d e f

Hence addition is associative

Since ( , ) ( , )a b c d = ( , )a c b d

= ( , ) ( , ) ( , )c a d b c d a b

addition is commutative in C.

(0, 0) C is additive identity in C as

(0, 0) ( , )a b = (0 , 0 ) ( , )a b a b ( , ) .a b C
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NotesIf ( , )a b C  then ( , )a b C

and also ( , ) ( , )a b a b = ( , ) (0, 0)a a b b

Hence [(–a, –b) is the additive inverse, of (a, b)]

Also [( , )( , )]( , )a b c d e f = [( , ) ( , )]ac bd bc ad e f

= [( ) ( ) ,( ) ( ) ]ac bd e bc ad f bc ad e ac bd f

= [ ( ) ( ), ( ) ( )]a ce df b de cf b ce df a de cf

= ( , )( , )a b ce df de cf

= ( , )[( , )( , )]a b c d e f

Hence multiplication is associative in C.

Distributive laws also hold in C because,

( , )[( , ) ( , )]a b c d e f = ( , )( , )a b c e d f

= [ ( ) ( ), ( ) ( )]a c e b d f b c e a d f

= [( ) ( ),( ) ( )]ac bd ac bf bf ad be af

= ( , ) ( , )ac bd bc ad ae bf be af

=  ( , ) ( , ) ( , )( , )a b c d a b e f

Similarly, it can be proved that multiplication is distributive over addition in C from right too.

Multiplication is commutative in C because

( , )( , )a b c d = ( , )ac bd bc ad

= ( )ca db cb da

= ( , )( , )c d a b

Since (1, 0) C and also (1, 0) (a, b)

= (a, b) (1, 0) is multiplicative identity in C.

Multiplicative inverse for non-zero elements in C exists because if (a, b) is non-zero elements in
C then a and b are not zero at a time.

Let (c, d) be the multiplicative inverse of (a, b) then

( , )( , )a b c d = (1, 0)

i.e. [( ),( )]ac bd bc ad = (1, 0)

so that ac – bd = 1, bc + ad = 0

i.e., c = 2 2 2 2,a bd
a b a b
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Notes Since a 0 or b 0, a2 + b2
 0, i.e., C or d or both are non-zero real numbers.

Hence C is a field.

Note: The question could have been done by assuming the elements of C as a + ib etc. also.

Example 29: Show that the set of numbers of the form 2a b  with a and b as rational
numbers is a field.

Solution: Let { 2 : , }R a b a b Q

1( , )F R  is a abelian group.

(F11) Let 1 1 2a b R  and 2 2 2 ,a b R  then 1 1 2 2, , ,a b a b  are the elements of Q, the set of
rational numbers.

Now 1 1 2 2 1 2 1 2( 2 ) ( 2 ) ( ) ( ) 2a b a b a a b b R since 1 2 1 2, .a a b b Q

Hence closure axiom for addition is satisfied.

(F12) Addition is commutative for real numbers.

(F13) Addition is associative for real numbers.

14( ) 0 0 2 0F R  as 0 Q, hence 0 is the identity of addition in R because

(0 0 2 ) ( 2 )a b = (0 ) (0 2 )a b

= 2a b , .a b Q

(F15) If 2a b R  then ( ) ( ) 2a b R  and also

[( ) ( ) 2 ] ( 2 )a b a b

= ( ) ( ) 2 0 0 2a a b b

= 0

each element of R possesses additive inverse .

(F2) Properties of field for (F,)

21 1 1 2 2( ) ( 2 )( 2 )F a b a b

1 2 1 2 1 2 2 1( 2 ) ( 2 )a a b b a b a b R

Since 1 2 1 2 1 2 2 12 ,a a b b a b a b Q  for 1 2 1 2, , , .a a b b Q

Thus R is closed under multiplication

(F22) Multiplication in R is commutative

(F23) Multiplication in R is associative

24( ) 1 0 2F  =1 R and 1 ( 2 )a b

= 2a b , .a b Q
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(F22) Let 2 0,a b  i.e., at least one of a and b is non-zero then

1
2a b = 2 2 2

2 2
2 2( 2 )( 2 )

a b a b
a b a ba b a b

= 2 ,A B R  Where A, B Q

and

A = 2 2,
2 2

a bB
a b a b

2 22 0a b  as otherwise if a = 0, b = 0 which is impossible due to our assumption for non-zero

element 2.a b

Thus at least one of A and B is non-zero. Hence inverse of 2a b  is a non-zero element
2A B  in R,  because

2 2A B a b =
1 ( 2 ) 1.

( 2 )
a b

a b

Thus every non-zero element in R possesses multiplicative inverse.

Hence R is a field.

Example 30: If the operations be addition and multiplication (mod p), prove that the set
{0, 1, 2, ..., p – 1}, (mod p) where p is prime, is a field.

Solution: Let this set be denoted by I  (p) which has already be shown a commutative ring with
unity. To prove that I  (p) is a field we will have to show that every non-zero element of I (p) is
invertible. Let r I (p) and  r 0.

Now r 0  0 (mod p)

r is not divisible by p

r and p are relatively prime.

i.e., there exist integers x, y such that rx  + py = 1 implying that

rx 1 (mod p) as 0py  (mod p).

Thus x is inverse of r in I (p).

Hence I (p)is a field.

Self Assessment

13. With addition and multiplication as operation prove that

(i) The set {0, 1} (mod 2) is a field.

(ii) The set {0, 1, 2} (mod 3) is a field.
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Notes 14. Prove that the set of all real numbers of the form 3u  where u and are of the form

2a b  in which a and b are rational numbers, is a field.

15. Prove that the set E of all even integers is a commutative ring but not a field.

16. Show that a finite commutative ring without zero divisors is a field.

1.5 Vector Spaces

Before giving a formal definition of an abstract vector space we define what is known as an
external composition in one set over another. We have already defined a binary composition in
a set A as a mapping of A × A to A. This may be referred to as an internal composition in A. Let now
A and B be two non-empty sets. Then a mapping

:f A B B

is called an external composition in B over A.

Definition: Let (F, + , .) be a field. Then a set V is called a vector space over the field F, if V is an
abelian group under an operation which is denoted by +, and if for every a F, u V there is
defined an element a u in V such that:

(i) ( ) ,a u au a  for all , , .a F u V

(ii) ( ) ,a b u au bu  for all , , .a b F u V

(iii) ( ) ( ) ,a bu ab u  for all , , .a b F u V

(iv) 1 . . 1u u  represents the unity element of F under multiplication.

The following notations will be constantly used in the forthcoming discussions.

(i) Generally F will be field whose elements shall often be referred to as scalars.

(ii) V will denote vector space over F whose elements shall be called as vectors.

Thus to test that V is a vector space over F, the following axioms should be satisfied.

V1 (V, +) is an abelian group.

(V11) Closure law: , .u V u V

(V12) Associative law: For all , , ( ) ( )u w V u w u w

(V13) Existence of identity: There exists an element of zero vector.

(V14) Existence of Inverse: For all u V, there exists a unique vector –u V such that

u + (–u) = 0

(V15) Commutative Law:

u u for ,u V

V2 scalar multiplication is distributive over addition in V, i.e.,

( ) , ,a u au a a F V

V3 distributivity of scalar multiplication over addition in F, i.e.,

( ) , , , .a b u au bu a b F u V
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NotesV4 Scalar multiplication is associative i.e.,

( ) ( )a bu ab u ,a b F  and u V

V5 Property of Unity: Let 1 F be the unity of F, then

1 |u u u u V

A vector space V over a field F is expressed by writing V(F). Sometimes writing only V is
sufficient provided the context makes it clear that which field has been considered.

If the field is R, the set of real numbers, then V is said to be real vector space. If the field is Q, the
set of rational numbers, then V is said to be a rational vector space and if the field is C, the set of
complex numbers V is called a complex vector space.

Illustrative Examples

Example 31: Show that the set of all vectors in a plane over the field of real numbers is a
vector space.

Solution: Let V be the set of all Vectors in a plane and R be the field of real numbers.

(V1) (V, +) is an abelian group.

(V11) ,u V u V (Closure axiom)

(V12) ( ) ( ),u w u w  for , ,u w V (associative axiom)

(V13) There is a null vector O V such that

0u u u V (additive identity)

(V14) If ,u V u V  and also ( ) 0u u

Hence –u is inverse of u in V, i.e., inverse axiom is satisfied for each element in V.

(V15) u u  for all , , .u V

2 ( ) , , ,V a u au a a R u V

3( ) , , , .V a b u au bu a b R u V

4 ( ) ( ) , , , .V a bu ab u a b R u V

5 1 ,V u u ,u V  where 1 is unity of R.

Hence V is a vector space over R.

Example 32: Let C be the field of complex numbers and R be the field of real numbers,
then prove that

(i) R is a vector space over R.

(ii) C is a vector space over C.
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(i) 1( , )V R  is an abelian group as (R, +) is a field.

2 ( )V a b a b R  and , .a b R

3( )V a a a , R and .a R

4 ( ) ( ) ,V a a , R and .a R

51 . . 1 , 1V a a a R  and .a R

Hence R is a vector space over R.

(ii) 1( , )V C  is an abelian group because C is a field

2 ( )V u u C  and ,u C

(using left distributive law of multiplication over addition in C.)

3. ( ) ,V u u u , C  and .u C

(using right distributive law in C)

4 ( ) ( ) ,V u u , C  and u C

(associative law of multiplication in C)

51 .V u u  for 1 C  for .u C

Hence C is a vector space over the field C.

Example 33: A field K can be regarded as a vector space over any subfield H or K.

Solution: We consider K as a set of vectors. Let us regard the elements of the satisfied H as scalars.

Let addition of vectors be the composition in the field K. Let us define the scalar multiplication
as follows:

If a H and K, a is the product of these two elements in the field K.

V1 Since K is a field, therefore (K, +) is an abelian group.

2 ( )V a a a a H and , , .K

This is a consequence of the left distributive law in K because

, ,a K (because H < K and a H)

3( )V a b a b ,a b H and .K  This is due to the right distributive law in K.

4( ) ( )V ab a b ,a b H and .K This result is due to associativity of multiplication in K.

5. 1 .V K  where 1 is the unity of the subfield H. But H K and as such 1 is also the
unity of the field K.

Hence K is a vector space over H.
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Let V be a vector space over a field F then

1. a O = O for a F, O V

2. O = O for O F, V

3. ( ) ( ) ( )a a a  for ,a F V

4. ( )a u au a  for ,a F u  and V

5. If a = 0 then either a = 0 or V = 0 for a F, V.

Proof:

1. L.H.S = a O

= a (O + O) (because O = O + O)

= a O + a O (distributive law)

Thus aO = aO + aO or aO + O = aO + aO

Hence by cancellation law we get

aO = O.

2. L.H.S. = ( )O O O (because O = 0 + 0)

= 0 0 (distributive law)

Thus 0 = 0 0

or 0 + 0 = 0 + 0

Hence by cancellation law

= 0 = 0.

3. ( )a a = ( ) 0 0a a

Therefore a  is additive inverse of a(– ).

Again ( ) ( ) 0.a a a Oa

Therefore a  is additive inverse of (– ) a.

i.e. (– v) a = – av

4. L.H.S. = ( )a u

= [ ( )]a u

= ( )au a [by property (3)]

= a u – a

= R.H.S.

5. If a = 0 then the proposition is true.

But if a 0 then a–1 exists in F.

a = 1 1 10 ( ) 0 ( )a a a a a

= 0 1 . 0 0.
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Let V be a vector space over a field F, then

(i) a b a b  for ,a b F  and , 0.V

(ii) au a u  for 0,a F a  and , .u V

Proof:

(i) L.H.S. = a b  or 0a b

or ( ) 0.a b

Since 0, therefore, we must have

0a b  or a b

(ii) L.H.S. au a

or ( ) 0a u

Since a 0, we must have

0u u

Example 34: Let F be a field and let V be the totality of all ordered n-tuples 1 2( , ,.... )n

where 1 .F  Two elements 1 2( , ,.... )n  and 1 2( , ,.... )n  of V are declared to be equal if
and only if i i  for each i = 1, 2, ..., n. We now introduce the requisite operations in V to make
of it a vector space by defining:

1. 1 2( , ,.... )n  + 1 2( , ,.... )n  = 1 1 2 2( , ,....., )n n

2. a 1 2( , ,.... )n = 1 2( , ,.... )na a a  for a F

It is easy to verify that with these operations, V is a vector space over F.

Example 35: Let F be any field and let V = F(x), the set of polynomials in x over F. We
merely choose the fact that two polynomials can be added to get again a polynomial and that a
polynomial can always be multiplied by an element of F. With these natural operations F(x) is
a vector space over F.

Example 36: The set of continuous real-valued functions on the real line is a real vector
space with addition of functions f + g and multiplication by real numbers as its laws of composition.

Example 37: The set of solution of the differential equation 
2

2
d y y
dx  is a real vector space.

Self Assessment

17. Show that the set W of  ordered tried 1 2( , , 0)a a  where 1 2,a a F  is a vector space.

18. Prove that the set ( ,2 , 4 ) : , ,W x y z x y z R is a vector space.
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Notes19. In ( )F x  let Vn be the set of all polynomials of degree less than n. Using the natural
operations for polynomials of addition and multiplication by a F, show that Vn is a
vector space over F(x).

1.6 Summary

 The concept of set is fundamental in all branches of mathematics. A set according to the
German mathematician George Cantor, is a collection of definite well-defined objects of perception
or thought. By a well defined collection we mean that there exists a rule with the help of
which it is possible to tell whether a given object belongs or does not belong to the given
collection.

 Let A and B be two sets. The union of A and B is the set of all elements which are in set A
or in set B. We denote the union of A and B by A  B, which is usually read as “A union B”.
On the other hand, the intersection of A and B is the set of all elements which are both in
A and B. We denote the intersection of A and B by A  B, which is usually read as “A
intersection B”.

 The properties of natural numbers were developed in a logical manner for the first time
by the Italian mathematician G. Peano, by starting from a minimum number of simple
postulates. These simple properties, are known as the Peano’s Postulates (Axioms).

 The system of rational numbers Q provides an extension of the system of integral Z, such
that (i) Q  Z, (ii) addition and multiplication of two integers in Q have the same meanings
as they have in Z and (iii) the subtraction and division operations are defined for any two
numbers in Q, except for division by zero.

1.7 Keywords

Complex Number: The product set R × R consisting of the ordered pairs of real numbers.

Fields: A commutative ring with unity is called a field if its every non-zero element possesses a
multiplicative inverse.

Irrational Number: A real number which cannot be put in the form p/q where p and q are
integers.

Modulus of the Complex Number z: If z = (a, b) be any complex number, then the non-negative

real number 2( )a b .

Operator or Transformation of A: If the domain and co-domain of a function f are both the same
set say f : A  A, then f is often called the operator.

Tabular form of the Set: Here the elements are separated by commas and are enclosed in
brackets { }

1.8 Review Questions

1. Let S be a set of all real numbers of the form ( 2 )m n  where m, n Q, a set of rational
number, prove that S is a multiplication or additive group, m, n not vanishing
simultaneously.
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1 0 1 0 1 0 1 0
, , ,

0 1 0 1 0 1 0 1

form a multiplicative group.

3. If addition and multiplication modulo 10 is defined on the set of integers
0, 2, 4, 6, 8 .R

Prove that the resulting system is a ring, Is it an integral domain?

4. Prove that the field has no proper ideals.

5. Show that the complex field C is a vector space over the real field R.

1.9 Further Readings

Books I.N. Herstein Topics in Algebra.

Kenneth Hoffman and Ray Kunze, Linear Algebra

Michael Artin, Algebra
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Objectives

After studying this unit, you will be able to:

 Understand the concept of a vector subspace

 Know more about subspaces by worked out examples

 See that a subspace has all the properties of a vector space.

Introduction

The unit one is the basis of the next five units. This unit is also based on the ideas of a vector
space.

The subspace idea will help us in understanding the concepts of basis and dimension as well as
how to set up the co-ordinates of a vector.

2.1 Vector Subspace

Let V be a vector space over a field F. Then a non-empty subset W of V is called a vector subspace
of V if under the operations of V, W itself, is a vector space of F. In other words, W is a subspace

of V whenever 1 2 1 2, , , .w w W F w w W

Algebra of Subspaces

Theorem 1: The intersection of any two subspaces 1w  and 2w of a vector spaceV F is also a

subspace of V F .

Proof: 1 2w w  is non-empty because at least 1 2 and  both.o w w

Let 1 2,  and ,u v w w F

Then 1 2 1 2 and u w w u w u w
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Notes and 1 2 1 2 and v w w v w v w  since 1w is subspace, hence

1 1,  and ,F u v w u v w  and with the same argument

2 2,  and , .F u v w u v w

Therefore 1 2 and .u v w u v w

1 2 .u v w w

Thus 1 2  is a subspace of .w w V F

Theorem 2: The union of two subspaces is a subspace if one is contained in the other.

Proof: Let 1 2 and W W  be two subspaces of a vector space V.

Let 1 2 2 1 or .W W W W  Then 1 2 1 or W W W  (whichever is the case). Since 1 2,W W  are subspaces
of  1 2,V W W  is also a subspace of V.

Conversely, suppose 1 2W W  is a subspace of V then we have to prove 1 2 2 1 or .W W W W
Suppose it is not so, i.e., let us assume that 1W  is not a subset of 2W  and 2W  is also not a subset

of  1W .

If 1W  is not a subset of 2W  then it implies that there exists

1 2 and W W ...(i)

Similarly if 2W  is not a subset of 1W  then there exists

 2 1 and W W ...(ii)

From (i) and (ii) we see that

1 2 1 2 1 2 and  since W W W W W W  is a subspace of 1 2,V W W

But 1 2 1 2 or .W W W W

Suppose it belongs to 1W  then since 1W  and 1W  is a subspace of 1,V W which is
contradiction. Similar contradiction is arrived by assuming 2 .W

Therefore, either 1 2 2 1 or .W W W W

2.2 Illustrative Examples

Example 1: Prove that the set W of ordered tried (a1, a2, 0) where

1 2 3,  is a subspace of ,a a F V F ,

Solution: Let 1 2 1 2, ,0  and , ,0a a a b b b  be two elements of W.

Therefore 1 2 1 2, , , . Let ,  thena a b b F a b F
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1 2 1 2, ,0 , ,0aa aa bb bb

1 1 2 2, ,0aa bb aa bb W

because 1 1 2 2, .aa bb aa bb F

Therefore, W is a subspace of V3(F).

Example 2: Let R be the field of real numbers. Show that

,2 ,3 : , ,x y z x y z R  is a subspace of V3(R).

Solution: Let ,2 ,3 : , , .W x y z x y z R

Let 1 1 1 2 2 2,2 ,3 , ,2 ,3x y z x y z  be any two elements of W then 1 1 1 2 2 2, , , , ,x y z x y z  are

obviously real numbers. If a, b are two real numbers, then

   a b  1 1 1 2 2 22 3 2 3a x y z b x y z

1 2 1 2 1 2,2 2 ,3 3ax bx ay ay az az

which belongs of 1 2 1 2 1 2, ,  and W ax bx ay by az bz  being real numbers.

Thus ,  and R b W

.a b W

i.e., W is subspace of V3(R).

Example 3: If V is any vector space, V is a subspace of V; the subset consisting of the zero
vector alone is a space of V, and is called the zero subspace.

Example 4: An n × n matrix A over the field F is symmetric if ,ij jiA A  for each i and j. The
symmetric matrices form a subspace of the square of all n × n matrices over the field F.

Example 5: The space of polynomial functions over the field F is a subspace of the space
of all functions from F into F.

Example 6: Let F be a subfield of the field C of complex numbers, and let V be the vector
space of all 2 × 2 matrices over F. Let W1 be the subset of V consisting of all matrices of the form

0
a b
c
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Notes where a, b, c are arbitrary scalars in F. Finally let W2 be the subset of V consisting of all matrices
of the form

0
0
a

b

where a, b are arbitrary scalars in F. Then W1, W2  are subspaces of V.

Example 7: The solution space of a system of homogeneous linear equations. Let us
consider the simultaneous equations involving n unknown xi’s.

11 1 12 2 1... 0n na x a x a x

21 1 22 2 2... 0n na x a x a x

. . .

. . .

. . .

. . .

. . .

1 1 2 2 ... 0m m mn na x a x a x

In matrix form we write the equation as

AX = 0

where A is a m × n matrix over the field F as all ija A for i = 1 to m and j = 1 to n. Then the set of
all n × 1 matrices X over the field such that

AX = 0

is a subspace of the space of all n × 1 matrices over F. To prove this we must show that

A(ax + y) = 0

when AX = 0 and AY = 0.

and C is an arbitrary scalar in F.

Consider a matrix A an m × n matrix over F and B and C are n × p matrices over F, then

A(a B + C) = a (AB) + AC

for each scalar a in F. Now

ij
A aB C ik kj

k

A aB C

ik kj ik kj
k

aA B A C

ik kj ik kj
k k

a A B A C

ij ija AB AC

ijaAB AC
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aB C A ,a BA CA  if the matrix sums and products are defined.

Thus 0 0 0A aX Y a AX AY a

Theorem 3: Let V be a vector space over the field F. The intersection of any collection of subspaces
of V is a subspace of V.

Proof: As shown in theorem 1, here let aW  be a collection of subspaces of V, and let aa
W W

be their intersection. Remember that W is defined as the set of all elements belonging to every
Wa. Also since each Wa is a subspace, each contains the zero vector. Thus W is a non-empty set. Let
u, v be vectors in W and , .F  Then

,u W v W

So ,  and ,u v W F

Therefore  since u v W u v is in all Wi’s. Thus aa
W W  is a subspace of V(F).

Definition: Let S1, S2, ..., Sn are subsets of a vector space V, the set of all sums

1 2 ... k

of vectors i iS  is called the sum of the subsets 1 2, ,... kS S S  and is denoted by

k

1 2
i=1

...  or by .k iS S S S

If 1 2 3, , ... kW W W W  are subspaces of V, then the sum

1 2 ... kW W W W

is easily seen to be a subspace of V which contains each of the subspaces Wi. From this it follows,
that W is a subspace spanned by the union of 1 2 3, , ... kW W W W .

Example 8: Let F be a subfield of the field c of complex numbers. Suppose

1 1,2,0,3,0

2 0,0,1,4,0

3 0,0,0,0,1

Now a vector  is in the subspace W of F5 spanned by 1 2 3, , if and only if there exist scalars

1 2 3, ,c c c in F such that

1 1 2 2 3 3c c c

Thus W consists of all vectors of the form

1 1 2 1 2 3,2 , ,3 4 ,c c c c c c
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1 2 3 4 5, , , ,x x x x x

with ix F such that

2 12x x

4 1 23 4x x x

It is clear that the vector 3, 6,1, 5,2 is in W, whereas 2,4,6,7,8  is not in W.

Self Assessment

1. Let 3 , , : , ,V R x y z x y z R  and let W be the set of all triples , ,x y z  such that

3 4 0x y z

Show that W is a subspace of V.

2. Prove that the set W of n-tuples 1 2 1, ,... ,0nx x x  where all x’s belong to F, is a subspace of the
vector space Vn(F).

3. Show that the set W of the elements of the vector space V3(R), of the form

2 , ,3 , , ,x y y y x x y R  is a subspace of V3(R).

4. Let V be the space of all polynomial functions over F. Let S be the subset of V consisting
of the polynomial functions 0 1 2, , ,...f f f  defined by

, 0,1,2,...n
nf x x n

Show that W is the subspace spanned by the set S.

5. Show that the vector 3, 1,0, 1  is not in the subspace of R4 spanned by the vectors

2, 1,3,2 , 1,1,1, 3 and 1,1,9, 5 .

2.3 Summary

 If V is any vector space, V is a subspace of V; the subset consisting of the zero vector alone
is a space of V, and is called the zero subspace.

 Let F be a subfield of the field C of complex numbers, and let V be the vector space of all
2 × 2 matrices over F. Let W1 be the subset of V consisting of all matrices of the form

0
a b
c

 Consider a matrix A an m × n matrix over F and B and C are n × p matrices over F, then

A(a B + C) = a (AB) + AC

for each scalar a in F.
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Notes Let S1, S2, ..., Sn are subsets of a vector space V, the set of all sums

1 2 ... k

of vectors i iS  is called the sum of the subsets 1 2, ,... kS S S  and is denoted by

k

1 2
i=1

...  or by .k iS S S S

2.4 Keywords

Symmetric Matrix: An n × n matrix A over the field F is symmetric if ,ij jiA A  for each i and j. The
symmetric matrices form a subspace of the square of all n × n matrices over the field F.

Vector Subspace: Let V be a vector space over a field F. Then a non-empty subset W of V is called
a vector subspace of V if under the operations of V, W itself, is a vector space of F.

2.5 Review Questions

1. Consider the three sets A,B,C such that

1 2 1 2, ;A x x x x

1 2 1 2, ; 0B x x x x

1 2 1 2, ;C x x x x

which of these sets are subspace of V(2)? Give reasons.

2. Let 3 , , ; , ,V R x y z x y z R  and Let W be the set of all triples (x, y, z) such that

2x – 3y + 4z = 0

Show that W is a subspace of V.

3. Let V be the vector space of functions from R into R let Vs be the subset of even functions

;f x f x let V0 be the subset of odd functions .f x f x  Then

(a) Prove that Vs and V0 are subspaces of V.

(b) Prove that Vs + V0 = V

(c) Prove that 0 0 null vector.sV V

4. Let 1W and 2W  be subspaces of a vector space V such that 1 2W W V and

1 2 0 .W W Prove that for each in V there are unique vectors 1 in 1W  and 2  in 2W

such that 1 2 .
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Notes 2.6 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

I. N. Herstein, Topics in Algebra

Michael Artin, Algebra
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Objectives

After studying this unit, you will be able to:

 See that in dealing with a finite dimensional vector space V over the F, we sometime
enquire whether a set of vectors is dependent or independent set.

 Understand that if you find a set of vectors as independent set in a vector space V then this
set of vectors forms the basis of the space V and the number of vectors in the sets defines
the dimension of the space V.

Introduction

In this unit we explain the concept of linear dependence and linear independence of the set of
vectors.

The number of independent set of vectors determines the dimension of the vector space and the
set of independent vectors forms the basis of the vector space.

3.1 Linear Dependence and Linear Independence of Vectors

Linear Dependence: Let V F  be a vector space and let 1 2, ,... nS u u u be a finite subset of V .

Then S is said to be linearly dependent if there exists scalars 1 2, ... ,n F not all zero, such that

1 1 2 2 ... 0.n nu u u

Linear Independence: Let V F be a vector space and let 1 2, ,... nS u u u be finite subset of V.

Then S is said to be linearly independent if

1
1

0, .
n

u i
i

a u F

holds only when 0,i 1,2,... .i n
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Notes The following are easy consequences of the definition:

1. Any set which contains a linearly dependent set is linearly dependent.

2. Any subset of linearly independent set is linearly independent.

3. Any set which contains 0 vector is linearly dependent.

4. A set S of vectors is linearly independent if and only if each finite subset of S is linearly
independent.

An infinite subset S of V is said to be linearly independent if every finite subset S is linearly
independent, otherwise it is linearly dependent.

Illustrative Examples

Example 1: Show that the system of three vectors (1, 3, 2)(1, –7, –8), (2, 1, –1) of 3V R is
linearly dependent.

Solution: For 1 2 3, , R  such that

1 2 31,3,2 1, 7, 8 2,1, 1 0

1 2 3 1 2 3 1 2 32 ,3 7 ,2 8 0

1 2 3 1 2 3 1 2 32 0,3 7 0,2 8 0

1 2 33, 1, 2.

Therefore, the given system of vectors is linearly dependent.

Example 2: Consider the vector space 3R R and the subset 1,0,0 , 0,1,0 , 0,0,1S of
R3. Prove that S is linearly independent.

Solution: For 1 2 3, , ,R

1 2 31,0,0 0,1,0 0,0,1 0,0,0

1 2 3, , 0,0,0

1 2 30, 0, 0.

This shows that if any linear combination of elements of S is zero then the coefficients must be
zero. S is linearly independent.

Example 3: Show that 21, ,1x x x  is a linearly independent set of vectors in the
vector space of all polynomials over the real number field.

Solution: Let , ,  be scalar (real numbers) such that

21 1 0x x x  then

21 0x x x

2 0x x

0, 0, 0,
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Hence the vectors 21, ,1x x x  are linear independent over the field of real numbers.

Example 4: If the set 1 2, ,... nS  of vectors ofV F is linearly independent, then

none of the vectors 1 2, ,... n  can be zero vector.

Solution: Let r  be zero vector where 1 r n then

1 20 0 ... 0 ... 1 0 0r na r

for any 0 in .a F

Since 0a  we notice that S is linearly dependent. This is contrary to what is given.

Hence none of the vectors 1 2, ,... n can be a zero vector.

3.2 Basis and Dimension of a Vector Space

A subset S of a vector space V F  is said to be a basis of V F , if

(i) S consists of linearly independent vectors, and

(ii) S generates V F  i.e. ( ) i.e.S V each vector in V is a linear combination of the finite
number of elements of S.

For example the set (1, 0, 0), (0, 1, 0), (0, 0, 1) is a basis of the vector space V3(R) over the field of
real numbers.

The set  = (v1, v2, v3, …, vn) is a basis of V if every vector w in V can be written in a unique way
as a combination w = x1v1 + x2v2 +  ……………… + xnvn.

If every vector can be uniquely written as a combination, of the vectors v1, v2, … vx of , then 
is independent and spans V, so  is a basis.

If V is a finite dimensional vector space, then it contains a finite set v1, v2, …, vn of linearly
independent elements that spans V.

If v1, v2, … vn is a basis of V over F and if w1, w2, … wm in V are linearly independent over F, then
m  n.

We also see that if V is finite-dimensional over F then any two basis of V has the same number
of elements.

Thus for a finite dimensional space V, the basis has a unique number of elements say n. This
unique integer, n; in fact, is the number of elements in any basis of V over F.

Definition: The integer n is called the dimension of the vector space over F.

The Dimension of a finite space V over F is thus the number of elements in any basis of V over
F.

A vector space V is finite-dimensional if some finite set of vectors spans V. Otherwise V is
infinite dimensional.

The dimension of V will be denoted by dim V.

If W is the subspace of a finite dimensional vector space V, then W is finite dimensional, and
dim W  dim V. Moreover, dim W = dim V if and only if W = V.
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Example 5: Show that the set

1,2,1 2,1,0 , 1, 1,2S forms a basis for V3(F).

Solution: Let 1 2 3, , .a a a F

then 1 2 31,2,1 2,1,0 1, 1,2 0a a a

1 2 3 1 2 3 1 32 ,2 , 2 0,0,0a a a a a a a a

1 2 3 1 2 3 1 32 0,2 0, 2 0a a a a a a a a

1 2 3 0.a a a

Hence the given set is linearly independent.

Now let 1,0,0  1,2,1 2,1,0 1, 1,2x y z

2 ,2 , 2x y z x y z x z

so that 2 1,2 0, 2 0x y z x y z x z

 2/9, 5/9, 1/9x y z

Thus, the unit vector (1,0,0) is a linear combination of the vectors of the given set, i.e.

(1, 0, 0) = –2/9 (1, 2, 1) + 5/9(2, 1, 0) + 1/9 (1, –1, 2)

Similarly,

(0, 1, 0) = 4/9 (1, 2, 1) – 1/9(2, 1, 0) – 2/9 (1, –1, 2) and

(0, 0, 1) = 1/3 (1, 2, 1) – 1/3(2, 1, 0) + 1/3 (1, –1, 2)

Since V3(F) is generated by the unit vectors (1,0,0), (0,1,0),(0,0,1) we see therefore that ever
elements of V3(F) is a linear combination of the given set S. Hence the vectors of this set form a
basis of V3(F).

Example 6: Prove that system S consisting n vectors

1 21,0,...0 , 0,1,...,0 ... 0,0,...1ne e e  is a basis of Vn(F).

Solution: First we shall prove that the given system S is linearly independent.

Let a1, a2, ... an be any scalars, then

a1e1 + a2e2 + ... anen = 0

1 21,0,...,0 0,1,...0 ... 0,0,...,1 0na a a

1 2, ,... 0na a a
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1 20, 0,... 0na a a

Therefore, S is linearly independent set.

Further, we must show that L(S) = Vn(F).

Let 1 2, ,... nv v v v  be any vector in Vn(F). We can write

1 2 1 2, ,... 1,0,...,0 0,1,...,0 ... 0,0,...,1n nv v v v v v

i.e., 1 1 2 2 ... .n nv v e v e v e

Hence S is a basis of Vn(F).

Example 7: Prove that the vector space F(x) of polynomials over the field F has a basis S,

such that 21, , ,... .S x x

Solution: Let a, b, c, ... be scalars such that

a(1) + b(x) + c(x2) + ... + = 0

0, 0, 0,...a b c

  the vectors 1, x, x2,... are linearly independent.

Let f(x) = a0 + a1x + a2x2 + ... + aixi be a polynomial in the given vector space then

2
0 1 21 ... i

if x a a x a x a x

f x  can be expressed as a linear combination of a finite number of elements of 21, , ,... .x x

Thus 21, , ,...x x  is a basis.

Self Assessment

1. Find the condition that the vectors 1 2,a a  and 1 2,b b  in V2(F) are linearly dependent.

[Ans: 1 2 2 1a b a b = 0]

2. Test the linear dependence or independence of the vectors:

(i) 1 2 3 30,1, 2 , 1, 1,1 , 1,2,1  in V R

(ii) 31,2,3 , 3, 2,1 2, 6,5  in R

(iii) 31,0, 1 , 2,1,3 1,0,0 1,0,1  in .V R

(iv) The set 1,2,1 , 3,1,5 3, 4,7

3. Is the vector 32, 5, 3 in ,a linear combination of vectors.V R

1 2 31, 3,2 , 2, 4, 1 , 1, 5, 7 ?

4. Prove that the number of elements in a basis of a finite dimensional vector space is unique.



74 LOVELY PROFESSIONAL UNIVERSITY

Linear Algebra

Notes 5. If 1 2 3, ,e e e  is a basis for R3, then show that

2 3 1 1 2, ,e e e e e  is also a basis.

6. Show that the set 31,0,0 1,1,0 0,1,1 , 0,1,0  spans ,S V R  but does not form a basis.

7. Show that the set 32, 1,0 3,5,1 1,1,2  forms a basis of .V R

3.3 Summary

 Let V F  be a vector space and let 1 2, ,... nS u u u be a finite subset of V . Then S is said to

be linearly dependent if there exists scalars 1 2, ... ,n F not all zero, such that

1 1 2 2 ... 0.n nu u u

 Let V F be a vector space and let 1 2, ,... nS u u u be finite subset of V. Then S is said to be

linearly independent if

1
1

0, .
n

u i
i

a u F

holds only when 0,i 1,2,... .i n

3.4 Keywords

Dimension: The Dimension of a finite space V over F is thus the number of elements in any basis
of V over F.

Linear Combination: V3(F) is generated by the unit vectors (1,0,0), (0,1,0), (0,0,1) therefore that
elements of V3(F) is a linear combination of the given set S.

3.5 Review Questions

1. Prove that a set of vectors containing null vector is a linearly dependent set.

2. Prove that the three functions 2 ,cos  and xt x e  are linearly independent.

3. Prove that the set (1,2,0)(2,1,2)(3,1,1) is a basis for R3.

4. Prove that if two vectors are linearly dependent, one of them is a scalar multiple of the
other.

3.6 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

I N Herstein, Topics in Algebra

Michael Artin, Algebra
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Objectives

After studying this unit, you will be able to:

 See that the dimension and basis of a vector space V over the field F help us in introducing
the co-ordinates of a vector.

 Understand how to go from one basis to another basis with the help of an invertible
matrix.

 See that the solved examples help you to find the invertible matrix and hence the
co-ordinates of the vector in the new basis can be found out.

Introduction

For an abstract vector space V over the field F can be spanned by a set of independent vectors
which form the basis of the vector space V.

There are more than one way of finding the basis and so it is important to know the relation
between one basis over the other.

4.1 Co-ordinates

So far we have dealt with basis and dimension in the unit 3. We also showed the linear
independence and dependence of vectors. The dimension of a vector space is the number of basis
vectors of the vector space V over the field. The standard basis for a three dimensional vector
space is taken as

1 1,0,0l

2 0,1,0l

3 0,0,1l

and they form an independent set of vectors and span the whole V3 over the field R.
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Notes Now we want to introduce co-ordinates in the vector space V analogous to the natural
co-ordinates xi of the vector

1 2, ... nx x x

in the space Fn. The co-ordinates in the three dimensional space F3 are x, y, z co-ordinates. So the
co-ordinates of a vector  in V relative to the basis will be the scalars which serve to express

 as a linear combination of the vectors in the basis. If the vectors in the basis are 1 2 3, , ,... n

then the vector is expressible in terms of its co-ordinates as well as in terms of the vectors of
basis as follows

1 2 3
1

, , ,...
n

n i i
i

x x x x x ...(1)

For another vector having co-ordinates 1 2, ,... ny y y  we have

1 2 3
1

, , ,... .
n

n i i
i

y y y y y

writing

1 2 3, , ,... nx x x x

the vector has a unique expression as a linear combination of the standard basis vectors (1), and
the ith co-ordinates xi of is the coefficient of i in the expression (1). By this way of ‘natural’
ordering of the vectors in the standard basis i.e. by writing 1 as the first vector, 2 as the second
vector etc. we define the order of the co-ordinates of the vector also. So we have the definition:

Definition: If V is a finite-dimensional space, the ordered basis for V is a finite sequence of basis

vectors 1 2 3, , ,... n  which is a linearly independent set and spans V. So we just say that

1 2 3, , ,... n ...(2)

is an ordered basis for V. Now suppose V is a finite dimensional vector space over the field F and
(2) is an ordered basis for V, there is a unique n-tuple 1 2, ,... nx x x  of scalars such that:

1

.
n

i i
i

x

The n-tuple is unique, because if we also have

1

n

i i
i

z

then
1

0
n

i i i
i

x z

Since i for each i, is an independent set, so

0i ix z

or i ix z
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1 2 3, , ,... n

If is an other vector having ordered co-ordinates 1 2, ,... ny y y , then

1 2
1

, ,... ,
n

n i i
i

y y y y

then
1 1

n n

i i i i
i i

x y

        
1

n

i i i
i

x y ...(3)

So that the ith co-ordinate of in this ordered basis is .i ix y  Similarly the ith co-ordinate
of c is icx . It is clear that every n-tuple 1 2, ,... nz z z is nV is the n-tuple of co-ordinates of some
vector z in nV namely the vector

1

n

i i
i

z z ...(4)

4.2 Change of Basis from One Ordered Basis to Another

In a three dimensional space 3V , we have 1 2 31,0,0 , 0,1,0 , 0,0,1 as three independent
set of basis vectors. We also know that by taking a certain combination of these 'i s we find
another set like

1 2 31,1,0 , 1,1,1  and 0,1,1 ...(4A)

which is again independent. The set 1 2 3, ,  is related to the set 1 2 3, ,  by the relations

and
1 1 2

2 1 2 3

3 2 3

...(4B)

So by taking 1 2 3, ,  as a new basis of V3 the vector will have new co-ordinate system

1 2 3, ,x x x  given by

3

1

,
i i

i

x ...(5)

We can now find a relation between the new co-ordinates 1 2 3, ,x x x  and old co-ordinates

1 2, ,..., nx x x  of in n dimensional space.
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1

2

n

x
x

X

x
 ...(6)

rather than the n-tuple 1 2, ,... nx x x of co-ordinates.

This notation will be particularly useful as we now proceed to describe what happens to the
co-ordinates of a vector as we change from one ordered basis to another.

Suppose that we are dealing with a space V which is n dimensional and that the basis is
changed to a new basis ' i.e.

' ' ' '
1 2 3 1 2 3
, , ,... , ' , , ,... .n n

...(7)

Let there be unique scalars ijP such that

'

1

n

ij ij i
i

P            1,2,...j n ...(8)

Let ' ' ' '
1 2 3
, , ,...

n
x x x x  be the co-ordinates of a given vector  in the basis ' , then

' ' ' ' ' '
1 21 2

... nn
x x x

' '

1

n

j j
j

x

'

1 1

n n

j ij i
j i

x P

or '

1 1

n n

i ij j
j j

P x ...(8A)

Putting

'

1

n

i ij j
j

x P x ...(9)

We have

 
1

n

i i
i

x ...(10)

where now ix  denotes the ith co-ordinate of the vector in the old .

In matrix form equation (9) becomes

'X PX ...(11)
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where

'
11
'

2 2

'

, '

n
n

X X
 

ijP P ...(12)

where P is an n × n matrix whose i,j entry is ijP  since and ' basis are independent sets, 0X is
only possible if ' 0X also. Now the transformation matrix P is such that its inverse exists.
Hence multiplying (6) by 1P  we obtain

1'X P X ...(13)

So the new set of co-ordinates ' ' ' '
1 2 3
, , ,...

n
x x x x  are related to the old set of co-ordinates

1 2, ,... nx x x of the vector by the relation (13).

Example 1: From equation (4), P matrix is given by

1 1 0
1 1 1
0 1 1

P

let
1 1 0
1 1 1 1
0 1 1

P

Thus the new basis ' ' '
21 3

' , ,  is given in terms of old basis 1 2 3, ,  by the matrix
relation

'
1 1
'
2 2
'

33

1 1 0
1 1 0
0 1 1

...(14)

Now 1
0 1 1
1 1 1
1 1 0

P ...(15)

If the co-ordinates of 1 2 3, ,x x x  in old basis then in the new basis ' they are given by

'
1 1
'
2 2
'

33

0 1 1
1 1 1
1 1 0

x x
x x

xx
...(16)

Example 2: Show that the vectors ' ' ' '
3 41 2

1,1,0,0 , 0,0,1,1 , 1,0,0,4 , 0,0,0,2
form a basis for 4 .R  Find the co-ordinates of each of the standard basis vectors in the ordered

basis ' ' ' '
2 3 41

, , , .

Solution: To prove that the set ' ' ' '
2 3 41

, , ,  form a basis, we have to show that they are independent.

So let 1 2 3 4, , ,c c c c are scalars not all of them zero such that 'i s are dependent, then

' ' ' '
1 2 2 3 3 4 41

0c c c c
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1 0c

2 0c

2 3 44 2 0c c c

So we get 1 0c

2 0c

3 0c

4 0c

Thus the four set of vectors ' ' ' '
2 3 41

, , ,  are independent. Let P be a matrix such that

 

'
1 1
'

22
'

33
'

44

P

where

1

2

3

4

1,0,0,0
0,1,0,0
0,0,1,0
0,0,0,1

So

1 1 0 0
0 0 1 1
1 0 0 4
0 0 0 2

P

Let P = –2, so, P is non-singular and invertible.

 1

0 0 1 2
1 0 1 2
0 1 0 1/2
0 0 0 1/2

P

Thus ' ' ' ' '
1 3 4 2 1 3 4– 2 , – 2

' ' '
3 2 4 /2 4 4 /2– ,  is the answer.

Example 3: Let V be the vector space over the complex numbers of all functions from R
into C i.e. the space of all complex-valued functions on the real line. Let

3 1
1 21, , .ix xf x f x e f x e

(a) Prove that 1 2 3, ,f f f are linearly independent.
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Notes(b) Let 1 2 31, cos , sin .g x g x x g x x Find an invertible 3×3 matrix P such that

3

1
j ij i

i

g P f for 1,2,3j

Solution: Let 1 2 3, ,f x f x f x be a dependent set then we can find real 1 2 3, ,c c c  not all of them

zero so that

1 1 2 2 3 3 0c f x c f x c f x

or 1 2 3.1 0ix ixc c e c e ...(1)

Taking real part we have

1 2 3cos cos 0c c x c x
...(2)

Taking imaginary part we have

2 3 0c c
...(3)

From (2) we have 1 2 30, 0c c c  for arbitrary x,

From (3) we have 2 3c c

So we get 1 2 3.c c c

which contradicts the statement that all c’s are not zero. So the set 1 2 3, ,f f f  is an independent set.

So find 1 2 3, ,g g g  in terms of 1 2 3, ,f x f x f x we see that

1 1 1g x f x

2 3
2 cos

2
f x f xg x x

2 3
3 sin

2
f x f xg x x

i

Thus
1 1

2 2

3 3

1 0 0
0 1/2 1/2
0 1/2 1/2

g x f x
g x f x

i ig x f x
...(4)

Thus
1 0 0
0 1/2 1/2
0 /2 /2

P
i i

...(5)

Also Let 2 0
4 2
i iP ...(6)

So P is invertible 3 × 3 matrix given by (5).
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1. Find the co-ordinate matrix for the vector 1,0,1 in the basis of C3 consisting of the

vectors 2 ,1,0 , 2, 1,1 , 0,1 ,1i i i in that order.

2. Let 1 2 3, ,  be the ordered basis for R3. Consisting of 1 1,0, 1 ,

2 1,1,1 , 3 1,0,0

What are the co-ordinates of the vector , ,a b c in the above ordered basis .

3. Let R be the field of the real numbers and let be a fixed real number. Let the new basis

1 2,  be given in terms of the matrix P by the relation

11

22

cos sin sin cos

Here 1 21,0  and 0,1

cos sin sin cosP

Find the co-ordinates of the vector 1 2,x x in terms of the new basis .

4. Show that the set of vectors 1 2 3, ,  given by

1 1,0,0

2 4,2,0

3 5, 3,8

form a basis of F3. Find the co-ordinates of the vector 1 2 3, ,x x x  in the basis '.

4.3 Summary

 The dimension of a vector space is the number of basis vectors of the vector space V over
the field. The standard basis for a three dimensional vector space is taken as

1 1,0,0l

2 0,1,0l

3 0,0,1l

and they form an independent set of vectors and span the whole V3 over the field R.

 The co-ordinates in the three dimensional space F3 are x, y, z co-ordinates. So the co-
ordinates of a vector  in V relative to the basis will be the scalars which serve to express

 as a linear combination of the vectors in the basis.
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Notes If V is a finite-dimensional space, the ordered basis for V is a finite sequence of basis

vectors 1 2 3, , ,... n  which is a linearly independent set and spans V. So we just say that

1 2 3, , ,... n

is an ordered basis for V.

4.4 Keywords

n-tuple 1 2, ,... nz z z : nV is the n-tuple of co-ordinates of some vector z in nV namely the vector

1

n

i i
i

z z

Unique Scalars: ijP are such that

'

1

n

ij ij i
i

P            1,2,...j n

4.5 Review Questions

1. Show that the vectors

1 2

3 4

1,1,0,0 , 1,0,0,4 ,
0,0,1,1 , 0,0,0,2

form a basis for R4. Find the co-ordinates of the standard basis vectors in the ordered basis

1 2 3 4, , , .

2. Let W be the subspace of C2 spanned by 1 21,0,  and 1 ,1, 1i i

(a) Show that 1 2 and  form basis for W.

(b) Show that the vectors 1 21,1,0  and 1, ,1i i  are in W and form an other basis
for W.

(c) What are the co-ordinates of 1 2 and  in the ordered basis 1 2,  for W?

Answers: Self Assessment

1.
1 2 31, ,

2 4
i i

2. , , 2b c b a b c

3.
'
1 1 2
'
2 1 2

cos sin
–sin cos

x x x
x x x

4. 3 2 3 3
1 2

11 32 , '
8 2 8 8
x x x xx x
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Notes 4.6 Further Readings

Books Kenneth Hoffman, Ray Kunze, Linear Algebra

Michael Artin, Algebra
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CONTENTS

Objectives

Introduction

5.1 Matrices and Elementary Row Operations

5.2 Row-reduced Echelon Matrices

5.3 Summary of Row-Equivalence

5.4 Summary

5.5 Keywords

5.6 Review Questions

5.7 Further Readings

Objectives

After studying this unit, you will be able to:

 Understand the technique of row operations on matrices of m × n type.

 Know that if B is a matrix obtained from row operations of A then B and A are called row
equivalent.

 Understand how to obtain a row reduced echelon matrix.

Introduction

In solving a system of simultaneous equations the method of row operations on m × n matrix
helps in finding the solution.

The idea of row space of a matrix helps in finding the subspace of the row space.

5.1 Matrices and Elementary Row Operations

Suppose F is a field. We consider the problem of finding x-scalars, x1, x2, ... xn which satisfy the
conditions

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

1 1 2 2 3 3

n n

n n

m m m mn n n

A x A x A x A x y
A x A x A x A x y

A x A x A x A x y




    


… (1)

where y1,...ym and Aij, l < i < m, i  j  n are given elements of F. We shall now abbreviate the
system of equations (1) by
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Where  

11 12 1

21 22 2

1 2

1 1

2 2,

n

n

m m mn

n n

AX Y
A A A
A A AA

A A A
x y
x yX Y

x y




   


 

...(2)

In solving the linear system of equations (1) we sometimes use the technique of elimination. We
can illustrate this method on the following homogeneous equations:

2x1 – x2 + x3 = 0

x1 + 3x2 + 4x3 = 0

If we add (–2) times the second equation to the first equation,

we obtain

–7x2 – 7x3 = 0

or x2 = – x3

If we add (3) times the first equation to the second equation

we obtain

7x1 + 7x3 = 0

or x1 = –x3

So we conclude that if (x1, x2, x3) is the solution then x1 = x2 = –x3. Thus the set of solutions consists
of all triples (a, a, –a).

For the general system (1), suppose we select m, scalars c1, c2,...cm, multiply the jth equation by cj

and then add, we obtain the equations

(C1A11 + ... + CmAm1)x1 + ... + (C1A1n + C2A2n + ... + CmAmn)xn = 
1

m

j j
j

C y




Such an equation is called a linear combination of the equations in (1). Evidently any solution of
the entire system of equations (1) will also be the solution of this new equation. This is the
fundamental idea of the elimination process. Thus if we have another system of linear equations

11 1 12 2 1 1

1 1 2 2

n n

K K Kn n K

B x B x B x Z

B x B x B x Z


   



    


  

...(3)

in which each of the K equations is a linear combination of the equations (1), then every solution
of (1) is a solution of the new system (2).
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NotesLet us say that two systems of linear equations are equivalent if each equation in each system is
a linear combination of the equations in the other system. We then formally state the following
theorem:

Theorem 1: Equivalent systems of linear equations have exactly the same solutions.

Consider now the system (1) as given by the system (2). We call A the matrix of coefficients of the
system. We wish now to consider operations on the rows of the matrix A which correspond to
forming linear combinations of the equations in the system AX = Y. We restrict ourselves to
three elementary row operations on m × n matrix A over the field F:

1. Multiplication of one row of A by a non-zero scalar c;

2. Replacement of the rth row of A by row r plus c times row s, c is any scalar and r  s;

3. interchange of two rows of A.

An elementary row operation is thus a special type of function (rule) e which is associated with
each m × n matrix (A). One can precisely describe e in the three cases as follows:

1. e(A)ij = Aij if i  r, e (A)rj = cArj

2. e(A)ij = Aij if i  r, e(A)rj + cArj

3. e(A)ij = Aij if i is different from r and s, e(A)rj = Asi,

e(A)sj = Arj

A particular e is defined on the class of all m rowed matrices over F. One reason that we restrict
ourselves to these simple types of row operations is that having performed such an operation e
on a matrix A, we can recapture A by performing a similar operation on e(A).

Definition: If A and B are m × n matrices over the field F, we say that B is row-equivalent to A if
B is obtained from A by a finite sequence of elementary row operations. Consider the two
systems of equations

AX = 0,

and BX = 0.

If matrix B is obtained from A by a finite sequence of elementary row operations we say that B
matrix is row equivalent to A. Hence the above two system of equations are equivalent and so
they have the same solutions.

Example 1: Consider

AX = 0

where
1

3
1 2

i
A i

 
  
 
  

so the system of equations is

–x1 + ix2 = 0

–ix1 + 3x2 = 0

x1 + 2x2 = 0
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(2) (2) (2) (2)

1 0 2 0 2 0 1 0 1
3 3 0 3 2 0 3 2 0 0

1 2 1 2 1 2 1 0 1 0

i i i
A i i i i B

           
                  
         
                  

Now BX = 0

gives us

B = 
0 1
0 0
1 0

 
 
 
  

has only the trivial solution;

x1 = 0

x2 = 0

Definition: An m × n matrix B is called row-reduced if:

(a) the first non-zero entry in each non-zero row of B is equal to 1;

(b) each column of B which contains the leading non-zero entry of some row has all its other
entries 0.

Example 2: One example of a row-reduced matrix is the n × n identity matrix I. This is the
n × n matrix defined by

1
0ij ij

if i j
I

if i j


   


Here we have introduced Kronecker delta ().

Example 3: Find a row reduced matrix which is equivalent to

2 1 3 2
1 4 0 1
2 6 1 5

A
 

 
  
  

Now

(2) (2) (1)

(2) (2)

2 1 3 2 0 9 3 4 0 9 3 4 0 9 3 4
1 4 0 1 1 4 0 1 1 4 0 1 1 4 0 1
2 6 1 5 2 6 1 5 0 2 1 7 1 70 1

2 2
15 550 00 9 3 4 2 2

1 0 2 13 1 0 2 13
1 7 1 70 1 0 1
2 2 2 2

A

 
         
      

             
                
 

  
  

  
     

  
   
  

(1)

110 0 1
3

1 0 2 13
1 70 1
2 2

  
  

  
   

  
  
  
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(2) (2)

11 110 0 1 0 0 1
3 3

17 171 0 0 1 0 0
3 3

1 7 50 1 0 1 0
2 2 3

   
    

   
    
   
   


   
      

The row-equivalence of A with the final matrix in the above sequence tells us in particular that
the solutions of

AX = 0

i.e., 2x1 – x2 + 3x3 + 2x4 = 0

x1 + 4x2 – x4 = 0

2x1 + 6x2 – x3 + 5x4 = 0

and

3 4
11
3

x x  = 0

1 4
17
3

x x  = 0

2 4
5
3

x x  = 0

are exactly the same. In the second system it is apparent that

3 4
11
3

x x

1 4
17
3

x x 

2 4
5
3

x x

Thus if x4 = C then we obtain a solution 17 5 11, , ,
3 3 3

C C C C 
  

 and also that every solution is of

this form.

Self Assessment

1. If 
3 1 2
2 1 1 ,
1 3 0

A
 

 
  
  

 find all solutions of AX = 0 by row-reducing A.

2. Find a row-reduced matrix which is row-equivalent to 
(1 ) 0

1 2 1
1 2 1

i i
A

i

  
 

  
  
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Definition: An m × n matrix R is called a row-reduced echelon matrix if:

(a) R is row-reduced;

(b) every row of R which has all its entries 0 occurs below every row which has a non-zero entry;

(c) if rows 1,..., r are the non-zero rows of R, and if the leading non-zero entry of row i occurs
is column ki, i = 1,..., r , then k1 < k2 < ... < kr.

One can also describe an m × n row-reduced echelon matrix R as follows. Either every entry in R
is 0, or there exists a positive integer r, 1  r  m, and r positive integers k1 ,..., kr with 1  ki  n and

(a) Rij = 0 for i > r, and Rij = 0 if j < ki.

(b) Riki = ij, 1  i  r, 1  j  r.

(c) k1 < ... < kr.

Example 4: Two examples of row-reduced echelon matrices are the n × n identity matrix,
and the m × n zero matrix 0m, n, in which all entries are 0. The reader should have no difficulty in
making other examples, but we should like to give one non-trivial one:

10 1 3 0
2

0 0 0 1 2
0 0 0 0 0

 
 

 
 
 
 
 

Theorem 2: Every m × n matrix A is row-equivalent to a row-reduced echelon matrix.

Proof: We know that A is row-equivalent to a row-reduced matrix. All that we need observe is
that by performing a finite number of row interchanges on a row-reduced matrix we can bring
it to row-reduced echelon form.

In Examples 1 and 3, we saw the significance of row-reduced matrices in solving homogeneous
systems of linear equations. Let us now discuss briefly the system RX = 0, when R is a
row-reduced echelon matrix. Let rows 1,..., r be the non-zero rows of R, and suppose that the
leading non-zero entry of row i occurs in column ki. The system RX = 0 then consists of r
non-trivial equations. Also the unknown xk, will occur (with non-zero coefficient) only in the
ith equation. If we let u1,...,un–r denote the (n – r) unknowns which are different from xk1,...,xkr, then
the r non-trivial equations in RX = 0 are of the form

1 1
1

1

0

0

n r

k j j
j

n r

kr rj j
j

x C u

x C u

 










  





 






...(1)

All the solutions to the system of equations RX = 0 are obtained by assigning any values
whatsoever to u1,...,un–r and then computing the corresponding values of xk1,...,xkr from (1). For
example, if R is the matrix displayed in Example 4, then r = 2, k1 = 2, k2 = 4, and the two non-trivial
equations in the system RX = 0 are

x2 – 3x3 + 5
1
2

x  = 0 or x2 = 3x3 – 5
1
2

x
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Notesx4 + 2x5 = 0 or x4 = –2x5

So we may assign any values to x1, x3, and x5, say x1 = a, x3 = b, x5 = c, and obtain the solution

(a, 3b – 1 ,
2

c  b, – 2c, c).

Let us observe one thing more in connection with the system of equations RX = 0. If the number
r of non-zero rows in R is less than n, then the system RX = 0 has a non-trivial solution, that is,
a solution (x1,...,xn) in which not every xj in 0. For, since r < n, we can choose some xj which is not
among the r unknowns xk1,...,xkr, and we can then construct a solution as above in which this xj

is 1. This observation leads us to one of the most fundamental facts concerning systems of
homogeneous linear equations.

Theorem 3: If A is an m × n matrix and m < n, then the homogeneous system of linear equations
AX = 0 has a non-trivial solution.

Proof: Let R be a row-reduced echelon matrix which is row-equivalent to A. Then the systems
AX = 0 and RX = 0 have the same solutions by Theorem 3. If r is the number of non-zero rows in
R, then certainly r  m, and since m < n, we have r < n. It follows immediately from our remarks
above that AX = 0 has a non-trivial solution.

Theorem 4: If A is an n × n (square) matrix, then A is row-equivalent to the n × n identity matrix
if and only if the system of equations AX = 0 has only the trivial solution.

Proof: If A is row-equivalent to I, then AX = 0 and IX = 0 have the same solutions. Conversely,
suppose AX = 0 has only the trivial solution X = 0. Let R be an n × n row-reduced echelon matrix
which is row-equivalent to A, and let r be the number of non-zero rows of R. Then RX = 0 has no
non-trivial solution. Thus r  n. But since R has n rows, certainly r  n, and we have r = n. Since
this means that R actually has a leading non-zero entry of 1 in each of its n rows, and since these
1’s occur each in a different one of the n columns, R must be the n × n identity matrix.

Let us now ask what elementary row operations do toward solving a system of linear equations
AX = Y which is not homogeneous. At the outset, one must observe one basic difference between
this and the homogeneous case, namely, that while the homogeneous system always has the
trivial solution x1 =   = xn = 0, an inhomogeneous system need have no solution at all.

We form the augmented matrix A’ of the system AX = Y. This is the m × (n + 1) matrix whose first
n columns are the columns of A and whose last column is Y. More precisely,

'
,

'
( 1)

ij ij

i n i

A A if j n

A y

 



Suppose we perform a sequence of elementary row operations on A arriving at a row-reduced
echelon matrix R. If we perform this same sequence of row operations on the augmented matrix
A’, we will arrive at a matrix R’ whose first n columns are the columns of R and whose last
column contains certain scalars z1,...,zm. The scalars zi are the entries of the m × 1 matrix

1

m

z
Z

z

 
 

  
  



which results from applying the sequence of row operations to the matrix Y. It should be clear
to the reader that, just as in the proof of Theorem 3 the systems AX = Y and RX = Z are equivalent
and hence have the same solutions. It is very easy to determine whether the system RX = Z has
any solutions and to determine all the solutions if any exist. For, if R has r non-zero rows, with
the leading non-zero entry of row i occurring in column ki, i = 1,...,r, then the first r equations of
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Notes RX = Z effectively express xk1,...,xkr in terms of the (n – r) remaining xj and the scalars z1,...,zr. The
last (m – r) equations are

10

0

r

m

z

z





 

and accordingly the condition for the system to have a solution is zi = 0 for i > r. If this condition
is satisfied, all solutions to the system are found just as in the homogeneous case, by assigning
arbitrary values the (n – r) of the xj and then computing xki from the ith equation.

Example 5: Let F be the field of rational numbers and

1 2 1
2 1 1
0 5 1

A
 

 
  
  

and suppose that we wish to solve the system AX = Y for some y1, y2 and y3. Let us perform a
sequence of row operations on the augmented matrix A’ which row-reduces A:

1 1
(2) (2)

2 2 1

3 3

1
1

(1) (2)
2 1 2 1

3 2 1
3 2 1

1 2 1 1 2 1
2 1 1 0 5 1 ( 2 )
0 5 1 0 5 1

1 2 11 2 1
1 10 5 1 ( 2 ) 0 1 ( 2 )
5 5

0 0 0 ( 2 ) 0 0 0 ( 2 )

y y
y y y
y y

yy
y y y y

y y y y y y

    
   

      
       

 
   

           
        

1 2

2 1

3 2 1

3 11 0 ( 2 )
5 5
1 10 1 ( 2 )
5 5

0 0 0 ( 2 )

y y

y y

y y y

 
 

 
  
 
 

 
 
  

The condition that the system AX = Y have a solution is thus

2y1 – y2 + y3 = 0

and if the given scalars yi satisfy this condition, all solutions are obtained by assigning a value
c to x3 and then computing

x1 = 1 2
3 1 ( 2 )
5 5

c y y  

x2 = 2 1
1 1 ( 2 )
5 5

c y y 

Let us observe one final thing about the system AX = Y. Suppose the entries of the matrix A and
the scalars y1,...ym happen to lie in a subfield F1 of the field F. If the system of equations AX = Y
has a solution with x1,...,xn in F, it has a solution with x1,...,xn in F1. For, over either field, the
condition for the system to have a solution is that certain relations hold between y1,...,ym in F1
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Notes(the relations zi = 0 for i > r, above). For example, if AX = Y is a system of linear equations in
which the scalars yk and Aij are real numbers, and if there is a solution in which x1,...,xn are
complex numbers, then there is a solution with x1,...,xn real numbers.

Self Assessment

3. Find all solutions to the following system of equations by row-reducing the coefficient
matrix:

1 2 3

1 3

1 2 3

1 2 3

3 2 6 0
3

4 5 0
3 6 13 0
7 82 0
3 3

x x x

x x
x x x

x x x

  

  

   

   

4. Find a row-reduced echelon matrix which is row-equivalent to

1
2 2

1

i
A

i i

 
 

  
  

What are the solutions of AX = 0?

5.3 Summary of Row-Equivalence

In this section we shall utilize some elementary facts on bases and dimension in finite-dimensional
vector spaces to complete our discussion of row-equivalence of matrices. We recall that if A is an
m × n matrix over the field F the row vectors of A are the vectors 1,...,m in Fn defined by

i = (Aij,..., Ain)

and that the row space of A is the subspace of Fn spanned by these vectors. The row rank of A is
the dimension of the row space of A.

If P is a k × m matrix over F, then the product B = PA is a k × n matrix whose row vectors 1,...,k

are linear combinations

i = Pi11 + ... + Pimm

of the row vectors of A. Thus the row space of B is a subspace of the row space of A. If P is an
m × m invertible matrix, then B is row-equivalent to A so that the symmetry of row-equivalence,
or the equation A = P–1B, implies that the row space of A is also a subspace of the row space of B.

Theorem 5: Row-equivalent matrices have the same row space.

Thus we see that to study the row space of A we may as well study the row space of a
row-reduced echelon matrix which is row-equivalent to A. This we proceed to do.

Theorem 6: Let R be a non-zero row-reduced echelon  matrix. Then the non-zero row vectors of
R form a basis for the row space of R.

Proof: Let 1,...,r be the non-zero row vectors of R:

i = (Ri1,...,Rin)

Certainly these vectors span the row space of R; we need only prove they are linearly
independent. Since R is a row-reduced echelon matrix, there are positive integers k1,...,kr such
that, for i  r
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1

(a) 0
(b)
(c)

i

j ij

r

R(i, j) = if  j < k
R(i, k ) = 
k  < ... < k




 



...(1)

Suppose  = (b1,...,bn) is a vector in the row space of R:

 = c11 + ... + crr ...(2)

Then we claim that cj = bki. For, by

bkj =
1

( , )
r

i j
i

c R i k




=
1

r

i ij
i

c


 ...(3)

= cj

In particular, if  = 0, i.e., if c11 + ... + crr = 0, then cj must be the kjth coordinate of the zero vector
so that cj = 0, j = 1,..., r. Thus 1,...,r are linearly independent.

Theorem 7: Let m and n be positive integers and let F be a field. Suppose W is a subspace of Fn and
dim W  m. Then there is precisely one m × n row-reduced echelon matrix over F which has W as
its row space.

Proof: There is at least one m × n row-reduced echelon matrix with row space W. Since dim
W  m, we can select some m vectors 1,...,m in W which span W. Let A be the m × n matrix with
row vectors 1,...,m and let R be a row-reduced echelon matrix which is row-equivalent to A.
Then the row space of R is W.

Now let R be any row-reduced echelon matrix which has W as its row space. Let 1,...,r be the
non-zero row vectors of R and suppose that the leading non-zero entry of i occurs in column
ki, i = 1,...,r. The vectors 1,...,r form a basis for W.  In the proof of Theorem, we observed that if
 = (b1,...,bn) is in W, then

 = c11 + ... + crr,

and ci = bki ; in other words, the unique expression for  as a linear combination of 1,...,r is

 =
1

r

ki i
i

b


 ...(4)

Thus any vector  is determined if one knows the coordinates bki, i = 1,..., r. For example, s is the
unique vector in W which has ksth coordinate 1 and kith coordinate 0 for i  s.

Suppose  is in W and   0. We claim the first non-zero coordinate of  occurs in one of the
columns ks. Since

 =
1

r

ki i
i

b




and   0, we can write

 = , 0
r

ki i ks
i s

b b


  ...(5)
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NotesFrom the conditions (1) one has Rij = 0 if i > s and j  ks. Thus

 = (0,..., 0, ks,...,bn), bks  0

and the first non-zero coordinate of  occurs in column k8. Note also that for each k8, S = 1,..., r,
there exists a vector in W which has a non-zero ksth coordinate, namely s.

It is now clear that R is uniquely determined by W. The description of R in terms of W is as
follows. We consider all vectors  = (b1,...,bn) in W. If   0, then the first non-zero coordinate of
 must occur in some column t:

 = (0,...,0, bt,..., bn), bt  0

Let k1,...,kr be those positive integers t such that there is some   0 in W, the first non-zero
coordinate of which occurs in column t. Arrange k1,...,kr in the order k1 < k2 < ... < kr. For each of the
positive integers ks there will be one and only one vector s in W such that the ksth coordinate of
s is 1 and the kith coordinate of s is 0 for i  s. Then R is the m × n matrix which has row vectors
1,...,r, 0, ..., 0.

Corollary. Each m × n matrix A is row-equivalent to one and only one row-reduced echelon
matrix.

Proof: We know that A is row-equivalent to at least one row-reduced echelon matrix R. If A is
row-equivalent to another such matrix R’, then R is row-equivalent to R’; hence, R and R’ have
the same row space and must be identical.

Corollary: Let A and B be m × n matrices over the field F. Then A and B are row-equivalent if and
only if they have the same row space.

Proof: We know that if A and B are row-equivalent, then they have the same row space. So
suppose that A and B have the same row space. Now A is row-equivalent to a row-reduced
echelon matrix R and B is row-equivalent to a row-reduced echelon matrix R’. Since A and B have
the same row space, R and R’ have the same row space. Thus R = R’ and A is row-equivalent to B.

To summarize—if A and B are m × n matrices over the field F, the following statements are
equivalent:

1. A and B are row-equivalent.

2. A and B have the same row space.

3. B = PA, where P is an invertible m × m matrix.

A fourth equivalent statement is that the homogeneous systems AX = 0 and BX = 0 have the same
solutions; however, although we know that the row-equivalence of A and B implies that these
systems have the same solutions, it seems best to leave the proof of the converse until later.

5.4 Summary

 Such an equation is called a linear combination of the equations in (1). Evidently any
solution of the entire system of equations (1) will also be the solution of this new equation.
This is the fundamental idea of the elimination process.

 A particular e is defined on the class of all m rowed matrices over F. One reason that we
restrict ourselves to these simple types of row operations is that having performed such
an operation e on a matrix A, we can recapture A by performing a similar operation on
e(A).

 An m × n matrix B is called row-reduced if:

(a) the first non-zero entry in each non-zero row of B is equal to 1;
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Notes (b) each column of B which contains the leading non-zero entry of some row has all its
other entries 0.

5.5 Keywords

Equivalent: Two systems of linear equations are equivalent if each equation in each system is a
linear combination of the equations in the other system.

Row-equivalent: If A and B are m × n matrices over the field F, we say that B is row-equivalent
to A if B is obtained from A by a finite sequence of elementary row operations.

5.6 Review Questions

1. Find all solutions to the system of equations

(1 – i)x1 – ix2 = 0

2x1 + (1 – i)x2 = 0

2. Let  A = 
3 1 2
2 1 1
1 3 0

For which triples (y1, y2, y3) does this system AX = Y have a solution?

Answers: Self Assessment

1. Row-reduced matrix is 
0 1 1/4
1 0 3/8
0 0 3/8

 the solution is x1 = x2 = x3 = 0

3. Row-reduced matrix is 

640 1
24
51 0
4

0 0 0
0 0 0

 the solution is 1 2 3
67 5, ,
24 4

x C x C x C  where C is a

constant.

4. Row-reduced matrix is 
0 1
0 0
1 0

. The solution is x1 = x2 = 0

5.7 Further Readings

Books Kenneth Hoffman and Ray Kunze Linear Algebra

I.N. Herstein Topics in Algebra
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6.6 Further Readings

Objectives

After studying this unit, you will be able to:

 See that the units (3), (4) and (5) are quite suitable to find if a set of vectors1, 2,...m are
linearly independent.

 Determine whether another vector  is a linear combination of 1,...m.

 See that the detailed examples in this unit clarify most ideas covered in the last few units.

Introduction

This unit mostly summarizes the ideas of row-operations in helping to find out the basis of a
vector-subspace.

One can understand how a vector  belongs to the vector sub-space spanned by the basis vectors.

6.1 Computation Concerning Subspaces

In this unit we should like to show how elementary row operations helps us in understanding
in a concrete way the subspaces of Fn. This discussion applies to any n-dimensional vector space
over the field F, if one selects a fixed ordered basis  and describes each vector  in V by the
n-tuple (x1, x2,...,xn) which gives the co-ordinates of  in the ordered basis .

Suppose we are given m vectors 1,...,m in Fn. We consider the following questions.

1. How does one determine if the vectors 1, 2,...,m are linearly independent? How does
one find the dimension of the subspace W spanned by these vectors?

2. Given  in Fn, how does one determine whether  is a linear combination of 1,...,m, i.e.,
whether  is in the subspace W?

3. How can one give an explicit description of the subspace W?

The third question is a little vague, since it does not specify what is meant by an ‘explicit
description’; however, we shall clear up this point by giving the sort of description we have in
mind. With this description, questions (1) and (2) can be answered immediately.
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Notes Let A be the m × n matrix with row vectors i :

i = (Ai1,...,Ain)

Perform a sequence of elementary row operations, starting with A and terminating with a row-
reduced echelon matrix R. We have previously described how to do this. At this point, the
dimension of W (the row space of A) is apparent, since this dimension is simply the number of
non-zero row vectors of R. If 1,...,r are the non-zero row vectors of R, then  = {1,...,r} is a basis
for W. If the first non-zero coordinate of i is the kith one, then we have for i  r

(a) R(i, j) = 0, if j < ki

(b) R(i, kj) = ij

(c) k1 < ... < kr

The subspace W consists of all vectors

 = c11 + ... + crr

= 1
1

( ,..., )
r

i i in
i

c R R

The coordinates b1,...,bn of such a vector  are then

bj =
1

r

i ij
i

c R ...(1)

In particular, bki = cj, and so if  = (b1,...,bn) is a linear combination of the i, it must be the
particular linear combination.

 =
1

r

ki i
i

b ...(2)

The conditions on  that (2) should hold are

bj =
1

1,..., .
r

ki ij
i

b R j n ...(3)

Now (3) is the explicit description of the subspace W spanned by 1,...,m, that is, the subspace
consists of all vectors  in Fn whose coordinates satisfy (3). What kind of description is (3)? In the
first place it describes W as all solutions  = (b1,...,bn) of the system of homogeneous linear
equations (3). This system of equations is of a very special nature, because it expresses (n – r) of
the coordinates as linear combinations of the r distinguished coordinates bk1,...,bkr. One has
complete freedom of choice in the coordinates bki, that is, if c1,...,cr are any r scalars, there is one
and only one vector  in W which has ci as its kith coordinate.

The significant point here is this: Given the vectors i, row-reduction is a straightforward method
of determining the integers r, k1,...,kr and the scalars Rij which give the description of the subspace
spanned by 1,...,m. One should observe that every subspace W of Fn has a description of the type
(3). We should also point out some things about question (2). We have already stated how one
can find an invertible m × m matrix P such that R = PA. The knowledge of P enables one to find
the scalars x1,...,xm such that

 = x11 + ... + xmm

when this is possible. For the row vectors of R are given by

i =
1

m

ij j
j

P
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Notesso that if  is a linear combination of the j, we have

 =
1

r

ki i
i

b

=
1 1

r m

ki ij j
i j

b P

=
1 1

m r

ki ij j
j i

b P

and thus xj =
1

r

k i ij
i

b P

is one possible choice for the xj (there may be many).

The question of whether  = (b1,...,bn) is a linear combination of the i, and if so, what the scalars
xi are, can also be looked at by asking whether the system of equations

1

, 1,...,
m

ij i j
i

A x b j n

has a solution and what the solutions are. The coefficient matrix of this system of equations is
then n × m matrix B with column vectors 1,...,m. In unit 5, we discussed the use of elementary
row operations in solving a system of equations BX = Y. Let us consider one example in which
we adopt both points of view in answering questions about subspaces of Fn.

6.2 Illustrative Examples

Example 1: Let us pose the following problem. Let W be the subspace of R4 spanned by
the vectors

1 = (1, 2, 2, 1)

2 = (0, 2, 0, 1)

3 = (–2, 0, –4, 3)

(a) Prove that 1, 2, 3 form a basis for W, i.e., that these vectors are linearly independent.

(b) Let  = (b1, b2, b3, b4) be a vector in W. What are the coordinates of  relative to the ordered
basis {1, 2, 3}?

(c) Let

'
1  = (1, 0, 2, 0)

'
2  = (0, 2, 0, 1)

'
3  = (0, 0, 0, 3)

Show that '
1 , '

2 , '
3  form a basis for W.
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Notes (d) If  is in W, let X denote the coordinate matrix of  relative to the -basis and X’ the
coordinate matrix of  relative to the ’-basis. Find the 3 × 3 matrix P such that X = PX’ for
every such .

To answer these questions by the first method we form the matrix A with row vectors 1, 2, 3,
find the row-reduced echelon matrix R which is row-equivalent to A and simultaneously perform
the same operations on the identity to obtain the invertible matrix Q such that R = QA:

1 2 2 1
0 2 0 1
2 0 4 3

R  =
1 0 2 0
0 1 0 0
0 0 0 1

1 0 0
0 1 0
0 0 1

Q  =
6 6 01 2 5 1

6 4 4 2

(a) Clearly R has rank 3, so 1, 2 and 3 are independent.

(b) Which vectors  = (b1, b2, b3, b4) are in W? We have the basis for W given by 1, 2, 3, the row
vectors of R. One can see at a glance that the span of 1, 2, 3 consists of the vectors  for
which b3 = 2b1. For such a  we have

 = b11 + b22 + b44

= [b1, b2, b4]R

= [b1 b2 b4]QA

= x11 + x22 + x3a3

where xi = [b1 b2 b4]Qi:

1 1 2 4

2 1 2 4

3 2 4

1 2
3 3

5 2
6 3
1 1
6 3

x b b b

x b b b

x b b

... (1)

(c) The vectors 1 2 3, ,  are all of the form (y1, y2, y3, y4) with y3 = 2y1 and thus they are in W.
One can see at a glance that they are independent.

(d) The matrix P has for its columns

Pj =
'
j 

where  = {1, 2, 3}. The equations (1) tell us how to find the coordinate matrices for 1 2 3, , .

For example with  = '
1  we have b1 = 1, b2 = 0, b3 = 2, b4 = 0, and

x1 =
1 21 (0) (0) 1
3 3

  

x2 =
5 21 (0) (0) 1
6 3

    

x3 =
1 1(0) (0) 0
6 3

  
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NotesThus '
1  = 1 – 2. Similarly we obtain ' '

2 2 3and     = 21 – 22 + 3.

Hence

1 0 2
1 1 2

0 0 1
P

 
 

   
  

Now let us see how we would answer the questions by the second method which we described.
We form the 4 × 3 matrix B with column vectors 1, 2, 3:

B = 

1 0 2
2 2 0
2 0 4
1 1 3

 
 
 
 
 
 

We inquire for which y1, y2, y3, y4 the system BX = Y has a solution.

1 2 4

1 1 1

2 2 1 2 4 4 2

3 3 1 4 1

1 2 44 4 1 3 1

3 1

1 21 0 0
3 31 0 2 1 0 2 1 0 2

12 2 0 0 2 4 2 0 0 6 2 0 0 1 (2 )
62 0 4 0 0 0 2 0 1 5 5 20 1 01 1 3 0 1 5 0 0 0 2 6 3

0 0 0 2

y y y
y y y
y y y y y y y
y y y y y

y y yy y y y y

y y

Thus the condition that the system BX = Y have a solution is y3 = 2y1. So  = (b1, b2, b3, b4) is in W
if and only if b3 – 2b1. If  is in W, then the coordinates (x1, x2, x3) in the ordered basis {1, 2, 3}
can be read off from the last matrix above. We obtain once again the formulas (1) for those
coordinates

The questions (c) and (d) are now answered as before.

Example 2: We consider the 5 × 5 matrix

A = 

1 2 0 3 0
1 2 1 1 0
0 0 1 4 0
2 4 1 10 1
0 0 0 0 1

 
  
 
 
 
 
 
 

and the following problems concerning A

(a) Find an invertible matrix P such that PA is a row-reduced echelon matrix R.

(b) Find a basis for the new row space W of A.

(c) Say which vectors (b1, b2, b3, b4, b5) are in W.

(d) Find the coordinate matrix of each vector (b1, b2, b3, b4, b5) in W in the ordered basis chosen
in (b).

(e) Write each vector (b1, b2, b3, b4, b5) in W as a linear combination of the rows of A.

(f) Give an explicit description of the vector space V of all 5 × 1 column matrices X such that
AX = 0.
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(h) For what 5 × 1 column matrices Y does the equation AX = Y have solutions X?

To solve these problems we form the augmented matrix A’ of the system AX = Y and apply an
appropriate sequence of row operations to A’.

1 1

2 1 2

3 3

4 1 4

5 5

1 2 0 3 0 1 2 0 3 0
1 2 1 1 0 0 0 1 4 0
0 0 1 4 0 0 0 1 4 0
2 4 1 10 1 0 0 1 4 1 2
0 0 0 0 1 0 0 0 0 1

y y
y y y
y y
y y y
y y

   
        
   
    
   

    
   
   

1 1

1 2 1 2

1 2 3 5

1 2 4 1 2 3

5 1 2 4 5

1 2 0 3 0 1 2 0 3 0
0 0 1 4 0 0 0 1 4 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 3 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 3

y y
y y y y

y y y y
y y y y y y

y y y y y

   
    
   
      
   

        
         

(a) If

PY = 

1

1 2

5

1 2 3

1 2 4 53

y
y y

y
y y y

y y y y

 
 
 
 
 

   
     

for all Y, then

P = 

1 0 0 0 0
1 1 0 0 0
0 0 0 0 1
1 1 1 0 0
3 1 0 1 1

 
 
 
 
 
 
   

hence PA is the row-reduced echelon matrix

R = 

1 2 0 3 0
0 0 1 4 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

 
 
 
 
 
 
 
 

It should be stressed that the matrix P is not unique. There are, in fact, many invertible
matrices P (which arise from different choices for the operations used to reduce A’) such
that PA = R.

(b) As a basis for W we may take the non-zero rows

1 = (1 2 0 3 0)
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Notes2 = (0 0 1 4 0)

3 = (0 0 0 0 1)

of R

(c) The row-space W consists of all vectors of the form

 = c11 + c22 + c33

= (c1, 2c1, c2, 3c1 + 4c2, c3)

where c1, c2, c3 are arbitrary scalars. Thus (b1, b2, b3, b4, b5) is in W if and only if

(b1, b2, b3, b4, b5) = b11 + b32 + b53

which is true if and only if

b2 = 2b1

b4 = 3b1 + 4b3.

These equations are instances of the general system (3) in unit 5, and using them we may
tell at a glance whether a given vector lies in W. Thus (–5, –10, 1, –11, 20) is a linear
combination of the rows of A, but (1, 2, 3, 4, 5) is not.

(d) The coordinate matrix of the vector (b1, 2b1, b3, 3b1 + 4b3, b5) in the basis {1, 2, 3} is
evidently

1

3

5

b
b
b

 
 
 
  

(e) There are many ways to write the vectors in W as linear combinations of the rows of A.

 = (b1, 2b1, b3, 3b1 + 4b3, b5)

= [b1, b3, b5, 0, 0] . R

= [b1, b3, b5, 0, 0] . PA

= 1 3 5

1 0 0 0 0
1 1 0 0 0
0 0 0 0 1[ , , , 0, 0]
1 1 1 0 0
3 1 0 1 1

b b b A

 
 
 
 
 
 
   

= [b1 + b3, –b3, 0, 0, b5] . A

In particular, with  = (–5, –10, 1, –11, 20) we have

 =

1 2 0 3 0
1 2 1 1 0
0 0 1 4 0( 4, 1, 0, 0, 20)
2 4 1 10 1
0 0 0 0 1

 
  
 
  
 
 
 
 
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Notes (f) The equations in the system RX = 0 are

x1 + 2x2 + 3x4 = 0

x3 + 4x4 = 0

x5 = 0

Thus V consists of all columns of the form

2 4

2

4

4

2 3

4

0

x x
x

xX
x

  
 
 
 
 
 
 
 

where x2 and x4 are arbitrary.

(g) The columns

2 3
1 0
0 4
0 1
0 0

    
   
   
   
   
   
   
   

form a basis of V.

(h) The equation AX = Y has solutions X if and only if

–y1 + y2 + y3 = 0

–3y1 + y2 + y4 – y5 = 0

Self Assessment

1. In C3, let

1 = (1, 0, –i), 2 = (1 + i, 1 – i, 1), 3 = (i, i, i)

Prove that these vectors form a basis for C3. What are the co-ordinates of the vector (a, b, c)
in this basis?

2. Let 1 = (1, 1, –2, 1), 2 = (3, 0, 4, –1), 3 = (–1, 2, 5, 2)

Let

 = (4, –5, 9, –7),  = (3, 1, –4, 4),  = (–1, 1, 0, 1)

Which of the vectors , ,  are in the sub-space of R4 spanned by the i?

6.3 Summary

 In this unit it is shown how elementary row operations help us in understanding the basis
of the subspace Fn.

 The detailed examples show how to go from one basis vector to another by means of an
invertible matrix.
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Notes Given the vectors i, row-reduction is a straightforward method of determining the integers
r, k1,...,kr and the scalars Rij which give the description of the subspace spanned by 1,...,m.

 The question of whether  = (b1,...,bn) is a linear combination of the i, and if so, what the
scalars xi are, can also be looked at by asking whether the system of equations

1

, 1,...,
m

ij i j
i

A x b j n

has a solution and what the solutions are.

 The unit helps in finding an invertible matrix P such that the co-ordinates of a vector  in
the two system of basis  and ’ are related by the relation X = PX’ for every basis .

6.4 Keywords

Basis of the Subspace: The basis of the subspace W is found by the row vectors of R. So one can
test whether a vector  belongs to W or not.

Row Reduction of a Matrix: The row reduction of a matrix A helps whether a set of vectors 1,
2, 3 form a basis by forming the matrix A with row vectors and finding its rank.

6.5 Review Questions

1. Let  = (u1, u2,...,un) and ’ = (v1, v2, v3,..,vn) be two bases of a vector space V. Show that the
base change matrix P is uniquely determined by the two bases  and ’ and is an invertible
matrix.

2. Solve completely the system of equations AX = 0 and AX = B, where

1 1 0 1
1 0 1 and 1
1 1 1 1

A B
   
   

     
       

Answers: Self Assessment

1. (1 2 ), (1 2 ) (7 1) , (3 ) (6 ) (1 )
5 5 5 5 5

a b a b a bi i i ic i i c i 
           

2. , 

6.6 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

I.N. Herstein, Topics in Algebra

Michael Artin, Algebra
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Objectives

After studying this unit, you will be able to:

 Know that linear transformation on the space is quite important. It helps in understanding
the space under various transformations.

 See that the knowledge of the basis and dimension help us that the properties of linear
transformation on the basis vector is central to the ideas of matrix mechanics.

Introduction

It will be seen that in the development of the algebra linear transformation plays an important
part in understanding the properties of spaces. It is seen that the set of linear transformations
also satisfy the properties of vector spaces.

7.1 Homomorphism

Consider two vector spaces V and W over the same field F i.e.

, , , ,

, , , ,

V v F

W w F





The vectors of two different systems might have different names, and the vector operations of
two systems might be defined in different ways.

A mapping H of V into W is called a homomorphism provided that all , B  V and all a  F,

( )B H H H ...(1)

and ( ) .H a H  ...(2)

If every vector of W is in the range of H, H is said to be homomorphism of V onto W.

A one-to-one homomorphism H of V onto W is called an isomorphism. If such a mapping exists, V,
and W are said to be isomorphic.
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( ) ( ) ( . )b H a H b H       ...(3)

clearly equation 1 follows from equation (3) by selecting a = 1 = b and equation (2) follows by
choosing b = 0.

7.2 Linear Transformation

Condition (3) is the requirement of linearly and since homomorphism is a mapping we call a
homomorphism a linear transformation.

Thus a linear transformation T from a vector space V to a vector space W, both over the same
field is a mapping of V onto W such that for all ,   V and for all a, b,  F,

( ) ( ) ( )a b T a Τ b T   

Example 1: Identity transformation. If V is any vector space, then the identity
transformation I defined by I  = , is linear transformation from V into V.

The zero transformation 0, defined by 0  = 0, is a linear transformation from V into V.

Example 2: If V be the space of polynomial function f from the field F into F, given by

2
0 1 2( ) ...... n

nf x C C x C x C x

Let 2 1
1 2 3( ) 2 3 ... n

nDf x C C x C x nC x

Then D is a linear transformation from V into V the differentiation transformation.

Example 3: In two dimension space V2, the transformation

(x, y)T= (x cos  – y sin , x sin  + y cos ) is a linear transformation

Example 4: In the space V2 represented geometrically by the plane the transformation

(x, y)T = (ax, by)

Example 5: Let R be the field of real numbers and let V be the space of all functions from
into R which are continuous. Define T by

0
( ) ( ) ( ) .

x
Tf x f t dt

Then T is a linear transformation from V into V. The function Tf is not only continuous but has
a continuous first derivative. The linearity of integration is one of its fundamental properties.

Example 6: Let A being a fixed m  n matrix with entries in the field F. The function T
defined by T(X) = AX is a linear transformation from Fn × 1 into Fm × 1. The function U defined by
U( ) = A is a linear transformation from Fm into Fn.

Example 7: Let P be a fixed m  m matrix with entries in the field F and let Q be a fixed
n  m matrix over F. Define a function T from the space Fm  n  into itself by T= PAQ.
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because

T(CA + B) = P(CA+ B)Q

= (CPA + PB)Q

= C PAQ + PBQ

= CT(A) + T(B)

Example 8: The linear transformation preserves the linear combination; that is, if
1, 2, ... n are vectors in V and C1, C2, .... Cn are scalars, then

1 1 2 2 1 2 2( ... ) ( ) ( ) .... ( ).n n n nT C C C C T C T C T

This follows readily from the definition. For example

1 1 2 2 1 2 2( ) ( ) ( )T C C C T C T

Theorem 1: Let V be a finite dimensional vector space over the field F and let ( 1, 2, ... n) be an
ordered basis for V. Let W be a vector space over the same field F and let 1, 2, ... n, be a set of
any vectors in W. There is precisely one linear transformation T from V into W such that

T i = i, i = 1, 2, .... n

Proof: To prove that there is some linear transformation T with T i = i, we proceed as follows,
given  in V, there is a unique n-tuple (x1, x2, .... xn) such that

 = x1 i + x2 2 + .... + xn n

For this  we define

T  = x1 1 + x2 2 + .... + xn n.

Then T is a well define rule for associating with each vector  in V a vector T  in W. From the
definition it is clear that T j = j for each j. To see that T is linear, let

 = y1 1 + y2 2 + .... + yn n

be in V and let C be any scalar. Now

1 1 1 2 2 2( ) ( ) .... ( )n n nC Cx y Cx y Cx y

and so by definition

1 1 1 2 2 2( ) ( ) ( ) ...... ( )n n nT C Cx y Cx y Cx y

on the other hand

1 1

1

( )

( )

n n

i i i i
i i

n

i i i
i

C T T e x y

Cx y

and thus

( ) ( ) ( )T C C T T
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1

n

i i
i

x , we have

1

1

1

( )

n

i i
i

n

i i
i

n

i i
i

U U x

x U

x

So that U is exactly the rule T which we defined above. This shows that the linear transformation
T with T i = i is unique.

Relations and operations of Linear Transformations

1. Two linear transformations T1 and T2 from v to w are said to be equal if and only if

1 2 for all .T T v

2. The sum T1  T2 of linear transformation from v to w are defined, respectively, by

1 2 1 2) for all .T T T T v

3. The scalar multiple C   T1 of linear transformations from v to w are defined as

1 1) ( ), for all , .c T c T v c F

Special Linear Transformation

(a) The zero linear transformation Z is defined from v to w by

Z =  for every  v

(b) Negative transformation (–T) from v to w, is defined by

(–T) = – T for every  v

(c) Identity linear transformation I from v to v is defined by

I =  for every  v

(d) Product transformation T1  T2.

Let v, w and y be vector spaces over the field F; let T1 be a linear transformation from v to w and
T2 be a linear transformation from w to y. Then the product transformation T1  T2 is the
mapping from v to y defined by

(T1  T2) = ( T1)T2 for every   v.

Thus for every T we have

T  Z = T

T  –T = Z

T  I = I  T + T.
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Example 9: In the space V2 let T1, T2 and T3 be defined by

(x, y)T1 = (x, 0)

(x, y)T2 = (0, y)

(x, y)T3 = (y, x)

All these transformations are linear, now

(x, y)T1T2 = (x, 0)T2 = (0, 0), so T1T2 = Z

But T1  Z and T2  Z Hence a product of non-zero transformation can be the zero transformation.
Also

(x, y)T2T3 = (0, y)T3 = (y, 0)

But

(x, y)T3T2 = (y, x)T2 = (0, x). Hence

T2T3  T3 T2.

So the multiplication of transformation is not commutative. Observe that

(x, y)T1T1 = (x, 0)T1 = (x, 0) = (x, y)T1,

so that T1
2 = T1. Thus there exist idempotent transformation i.e.

T1
k = T1

for integer k, other than I and Z.

Rank and Nullity of a Linear Transformation

Consider a linear transformation from a space v into a space w. The domain of T is the space v and
the range of T is a subset RT of w, the set of all images T of the vectors of v:

RT = {  w|  = T for some  v}

Another set associated with any vector space homomorphism T is the Kernel KT of the
homomorphism, which is defined to be the set of all vectors in v which are mapped into .

KT = {  v| T = 0 }.

To see that KT is a subspace of v, let ,   KT, and C  F. Then

(  + )T = T + T =  = ,

so that  +  KT, also (C )T = C(  T) = , so c  KT,

Thus KT is a subspace of v.

These two subspaces, RT and KT, are called respectively the range space of T and the null space of
T.

The range space RT of a linear transformation T is the set of all images T  w as ranges over v.
The rank p (T) of a linear transformation T is the dimension of its range space.

The nullity v (T) of a linear transformation T is the dimension of its null space.

Consider an n dimensional vector space vn. If T is a linear transformation from vn to w, then

P(T) = v(T) = n
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NotesTheorem 2: Let { 1, 2, ... v(T)} be a basis for KT. Extend this basis to any basis { 1, 2, ... v(T), v(T)+1,
... n}  for vn.

Then { v(T) + 1 T, ..., nT} is a basis for RT.

Proof: Let { 1, 2, ... v} be any basis for vn. Any vector of RT is of the form T for some Vn. Let

1
1

;
n

i
i

T a

then

1 1 ( ) 1
) ),

n n n

i i i i i i
i i i v T

T a T a T a T

since

for 1, 2, ... ( )i T i v T

Hence ( v(T)+1 T, ..., n T)  spans RT. As the dimension of RT is not known we have to prove linear
independence of the above vectors. Suppose scalars bi, not all zero, exist such that

( ) 1 ( ) 1
b ( ) b

n n

i i i i
v T i v T

T T

Then 
( ) 1

n

i i
v T

b  KT; but { 1, ... v(T)} spans KT, so for suitable scalars ci

( )

( ) 1 1

v tn

i i i i
v T i

b c

This contradicts the linear independence of { 1, ... n} , so the vectors { v(T)+1, ... n} are linearly
independent and therefore form a basis of RT.

Theorem 3: If T is a linear transformation from Vn to w, then

p (T) + v(T) = n.

Self Assessment

1. In the space of all polynomials p(x) of all degrees define mapping M and D by:

D p(x) = 
d
dx p(x), M p(x) = x p(x)

Find

(i) DM – MD

(ii) M2D2 + MD

2. Let v be the infinite dimensional space of all real polynomials. Let D and J be the Linear
Transformation defined by

D p(x) = 
d
dx p(x)

J p(x) = 
0

( )
x

p t dt

for p(x)  v,
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(i) DJ p(x)

(ii) Is JD = DJ?

3. Which of the following functions T from R2 into R2 are linear transformations?

(i) T(x1, x2) = (1 + x1, x2);

(ii) T(x1, x2) = (x2, x1);

(iii) T(x1, x2) = (x1
2, x2);

(iv) T(x1, x2) = (x1 – x2, 0).

7.3 Algebra of Linear Transformation

In the study of linear transformation from v into w it is of fundamental importance that the set
of these transformations inherits a natural vector space structure.

Theorem 4: Let v and w be vector spaces over the field F. Let T and U be linear transformations
from v into w. The function (T + U) defined by

(T + U) ( ) = T  + U

is a linear transformation from v into w. IF c is any element of F, the function (cT) defined by

(CT) ( ) = C(T )

is a linear transformation from v into w. The set of all linear transformations from v into w,
together with the addition and scalar multiplication defined above is a vector space over the
field F.

Proof: Suppose T and U are linear transformations from v into w and that we define (T + U) as
above. Then

(T + U) (C   + ) = T(C  + ) + U (C  + )

= C(T ) + T  + C (U )+ U

= C(T  + U ) + (T  + U )

= C(T + U)  + (T + U)

which shows that T + U is a linear transformation.

Similarly

(CT) (d   + ) = C[T(d  + ]

= C[d(T ) + T ]

= Cd(T ) + C (T )

= d[c(T )] + c(T )

= d[(CT) ] + C (T )

which shows that (CT) is a linear transformation. One must directly check that the vector addition
and scalar multiplication are also satisfied along the above set of linear transformations of v
into w.

We shall denote the space of linear transformations from v into w by L(v, w). It is to be understood
that L(v, w) is defined only when v and w are vector spaces over the same field F.
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NotesTheorem 5: Let v be an n-dimensional vector space over the filed F; and let w be an m-dimensional
vector space over F. Then the space L(v, w) is finite dimensional and has dimension mn.

Thus let F be field, v and w vector spaces over F and L the set of all linear transformations from
v into w. The system

£ = {L, F, +, .; ,  }

is a vector space over F.

A special situation arises when we consider the system of all linear transformations of a vector
space v into v itself £ is then a vector space in which the “vectors” are linear mappings of v into
v. So we can define a product S  T of vectors. This vector space over F in which a suitable
product of vectors is defined is called an algebra of linear transformations over F.

A linear algebra £ over the field F is a system

£ = {L, F, +, .; ,  }

which satisfies postulates:

(a) the system {L, F, T, ..., ,  } is a vector space over F.

(b)  is a binary operation on £, which is closed, associative and bilinear

i.e.

closed T1, T2  £

Associative T1(T2T3) = (T1T2)T3

Bilinear T1(aT2 + bT3) = aT1T2 + bT1T3

(aT2 + bT3) T1 = aT2T1 + bT3T1

Also the dimension of £ is defined to be its dimension as a vector space.

Theorem 6: Let v, w and z be vector spaces over the field F. Let T be a linear transformation from
v into w and u a linear transformation from w into z. Then the composed function UT defined by
(UT) ( )  = U(T( )) is a linear transformation from v into z.

Proof:

(UT) (C   + ) = U[T(C  + )]

= U(CT  + T )

= C[U(T )] + U (T )

= C(UT)( ) + (UT)( )

we shall be primarily concerned with linear transformation of a vector space into itself. So we
from now on we write ‘T is a linear operator on V’ instead of writing ‘T is a linear transformation
from v into V’.

Definition: If v is a vector space over the field, a linear operator on v is a linear transformation
from v into v.

Lemma: Let v be a vector space over the field F; let U, T1 and T2 be linear  operators on v; let c be
an element of F.

(a) IU = UI = U;

(b) U(T1 + T2) = UT1 + UT2; (T1 + T2) U = T1U + T2U;

(c) C(UT1) = (eU) T1 = U(eT1).
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emphasis.

(b)

[U(T1 + T2) ](  ) = U[(T1 + T2) ( )]

= U(T1  + T2 )

= U(T1 )] + U (T2 )

= (UT1)( ) + (UT2)( )

so that

U(T1 + T2) = UT1 + UT2

Also [(T1 + T2) U]( ) = (T1 + T2) (U )

= T1(U )] + T2 (U )

= (T1U)( ) + (T2U)( )

so that (T1 + T2) U = T1U + T2U.

(c) It is easy to prove (c) in a simple way.

Non-singular Transformations

A linear transformation T from v and w is said to be non-singular transformation if and only if
there exists a mapping T* from RT onto v such that TT* = I, where I is the identity mapping on V.
Thus T* = T–1 . Thus TT–1 = T–1T = I, T–1 is called inverse of T.

The function T from v into w is called invertible if there exists a function U from w into v such that
UT is the identity  function on v and TU is the identity function on w. If T is invertible, the
function U is unique and is denoted by T–1. Further more T is invertible if and only if

1. T is 1:1, that is, T  = T  implies  = ;

2. T is onto, that is, the range of T is w.

Theorem 7: Let v and w be vector spaces over the field F and let T be a linear transformation from
v into w. If T is invertible, then the inverse function T–1 is a linear transformation from w onto v.

Proof: What we are proving here is that if a linear transformation T is invertible, then the
inverse T–1 is also linear.

Let 1 and 2 be vectors in w and let c be a scalar. We wish to show that

T–1 (C 1 + 2) = CT–1
1 + T–1 2

Let i = T–1
i, i = 1, 2, that is, let i be the unique vector in v such that  T i

 = i. Since T is linear,

T(C 1 + 2) = CT 1 + T 2

= C 1 + 2.

Thus C 1 + 2 is the unique vector in v which is sent by T into C 1 + 2 and so

T–1(C 1 + 2) = C 1 + 2

= CT–1
1 + T–1

2

and thus T–1 is linear.
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1. T is non-singular

2. For all ,   vn, if T = T, then  = .

3. KT = [ ]

4. v(T) = 0

5. T is onto, that is, the range of T is wn i.e. p(T) = n.

6. T maps any basis for vn onto a basis for wn.

Proof: Let n = dim v = din w. Now

rank (T) + nullity (T) = n

Since T is non-singular if and only if nullity (T) = 0 and rank (T) = n. Therefore T is non-singular
if and only if T(vn) = wn. So, if either condition (1) or (2) holds the other is satisfied as well and T
is invertible.

The above equations are also equivalent, there is some basis ( 1, 2, n) for v such that (T 1, T 2,
....,, T n) is basis for w.

Example 10: Let  F be a field and let T be the linear operator on F2 defined by

T (x1, x2) = (x1, x2, x1)

Then T is non-singular.

Proof: If T is singular than T(x1, x2) = 0, means we have

x1 + x2 = 0

x1 = 0

so the solution is x1 = 0, x2 = 0. We also see that T is onto; for let (z1, z2) be any vector in F2.
To show that (z1, z2) is in the range of T we must find scalars z1 and z2 such that

x1 + x2  = z1

x1 = z2

and the obvious solution is x1, = z2, x2 = z1 – z2. This last result gives us an explicit for T–1, namely

T–1 (x1, x2) = (z2, z1 – z2)

Self Assessment

4. If T and U be the linear operator on R2 defined by

T(x1, x2) = (x2, x1) and U(x1, x2) = (x1, 0)

give rules like the ones defining T and U for each of the transformations

(i) U + T

(ii) UT

(iii) TU
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T 1 = (1, 0, i), T 2 = (0, 1, 1,) T 3 = (i, 1, 0).

Is T invertible?

7.4 Summary

 The  properties of linear transformations are important in understanding the properties of
the vector space.

 The basis vectors play an important part in the study of linear transformations.

 It is also explained that not all transformations are linear.

 A linear transformation T from a vector space V to a vector space W, both over the same
field is a mapping of V onto W such that for all ,   V and for all a, b,  F,

( ) ( ) ( )a b T a Τ b T   

7.5 Keywords

Homomorphism: If every vector of W is in the range of H, H is said to be homomorphism of V
onto W.

Isomorphism: A one-to-one homomorphism H of V onto W is called an isomorphism. If such a
mapping exists, V, and W are said to be isomorphic.

Linear Transformation: If T1 is a linear transformation of v into w and T2 is the linear
transformation of w into z space, then T1 T2 is a linear transformation of v into z.

7.6 Review Questions

1. Let T be a linear transformation on R3 defined by

T(x1, x2, x3) = (3x1, x1 – x2, 2x1 + x2 + x3)

(a) Is T invertible? If so, find a rule for T–1 like the one which defines T.

(b) Find the value of

(T2 – I) (T – 3I) (x1, x2, x3).

2. Let C2×2 be the complex vector space of 2 × 2 matrices with complex entries. Let

 
1 1
4 4B

and let T be a linear operator on C2×2 defined by

T(A) = BA – AB

for any A C2×2. What is the rank of T?

3. A transformation T on vector 


V  of a vector space w is defined by
 

( )T V A V

where the given vector A


  W and ‘x’ means the vector product. Find


2 2( ) ( )T A T V .
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NotesAnswers: Self Assessment

1. (i) I   identity transformation

(ii) (MD)2

2. (i) DJ p(x) = I p(x)

(ii) no JD  DJ

3. (ii), (iv) are linear transformations.

4. (i) (U + T) (x1, x2) = (x1 + x2, x1)

(ii) (U + T) (x1, x2) = (x2, 0)

(iii) (TU) (x1, x2) = (0, x1)

5. Yes T is invertible as 1, 2, 3 are standard basis of C3 space.

7.7 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

I.N. Herstein, Topics in Algebra

Michael Artin, Algebra.
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Objectives

After studying this unit, you will be able to:

 Understand the linear transformation T is such that T transforms a subspace S of
independent vectors of vector space into an independent subspace T(S) of W.

 See that isomorphism is a homomorphism if the linear transformation T on V onto W is
one-one.

 Know that for finite vector space the linear transformation T is non-singular if and only if
dim V = dim W and T is isomorphism of V onto W.

Introduction

In dealing with two vector spaces over the same field, a transformation T from V into W can be
homomorphism or isomorphism.

After studying this unit one can see that a fine n-dimensional vector space and a space of n-tuple
co-ordinate space over the same field are isomorphic and so studying of one space gives all
information about the other space.

8.1 Isomorphism

If V and W are vector spaces over the field F, any one-one linear transformation T of V onto W is
called an isomorphism of V onto W. If there exists an isomorphism of V onto W, we say that V
is isomorphic to W.

Note that V is trivially isomorphic to V, the identity transformation operator being an
isomorphism of V onto V. Also, if V is isomorphic to W via an isomorphism T, then W is
isomorphic to V, because then T is invertible and so T-1 is an isomorphism of W onto V. Thus it
is easily verified that if V is isomorphic to W and W is isomorphic to Z, then V is isomorphic
to Z. Briefly, isomorphism is an equivalence relation on the class of vector spaces. If there exists
an isomorphism of V onto W, we sometimes say that V and W are isomorphic.

Theorem 1: Every n-dimensional vector space nV over the field F is isomorphic to the space Fn.

Proof: Let Vn be an n-dimensional space over the field F and let 1 2, ... n  be the ordered

basis for V. We defined a function T from V into Fn, as follows:
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If vector is V, let T  be the n-tuple 1 2, ... nx x x  of co-ordinates of  relative to the ordered

basis , i.e. the n-tuple such that

1 1 2 2 ... .n nx x x

given  in V, there is a unique n-tuple 1 2, ... nx x x of scalars. Thus n-tuple is unique, because if we

also have

1

n

i i
i

z d

then
1

0
n

i i i
i

x z d

and the linear independence of the , tells us that 0i ix z for each i. We call the ith co-ordinate

of  relative to the ordered basis

1 2, ,... n

Let another vector be given by

1

n

i i
i

y

then
1

n

i i i
i

x y

that the ith co-ordinate of  in this ordered basis is .i ix y  Similarly the ith co-ordinate
of c is .ic  One should note that every n-tuple 1 2, ,... nx x x in Fn is the n-tuple of co-ordinates
of some vector in V. Thus, there is a one-one correspondence between the set of all vectors in V
and the set of all n-tuples in Fn.

For many purposes one often regards isomorphic vector spaces as being the same, although the
vectors and operations in the spaces may be quite different, that is, one often identifies isomorphic
spaces. Let us denote the space of linear transformation from V into W by L(V,W) over the same
field F.

A Few Comments and Theorems

Suppose T is an isomorphism of V onto W. If S is a subset of V, then we have the following
theorem:

Theorem 2: Let T be a linear transformation from V into W. Then T is non-singular if and only if
T carries each linearly independent subset of V onto a linearly independent sub-set of W.

Proof: First suppose that T is non-singular. Let S be a linearly independent subset of V.

If  1 2, ,... n are vectors in S, then the vectors 1 2, ,... kT T T  are linearly independent, for if

1 1 2 2 ... 0k kc T c T c T
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then 1 1 2 2 ... 0k kT c c c

and since T is non-singular

1 1 2 2 ... 0k kc c c

from which it follows that each 0,ic  because S is an independent set. The argument shows that
the image of S under T is independent.

Suppose that T carries independent subsets onto independent subsets. Let be a non-zero
vector in V. Then the set S consisting of the one vector is independent. The image of S is the set
consisting of the one vector T , and this set is independent. Therefore 0,T because the set
consisting of the zero vector alone is dependent. This shows that the null space of T is zero
subspace i.e., T is non-singular.

Thus in deciding whether S is independent it does not matter whether we look at S or T(S). From
this one sees that an isomorphism is ‘dimension preserving’, that is any finite-dimensional
subspace of V has the same dimension as the image under T. Here is a very simple illustration
of this idea. Suppose A is an m×n matrix over the field F. We have really given two definitions
of the solution space of the matrix A. The first is the set of all n-tuples 1 2, ...  in n

nx x x F  which
satisfy each of the equations in the system AX = 0. The second is the set of all n × 1 column
matrices X such that AX = 0. The first solution space is thus a subspace of Fn and the second is a
subspace of the space of all n×1 matrices over F. Now there is a completely obvious isomorphism
between Fn and Fn+1, namely

1

2
1 2, ,... .n

n

x
xx x x

x


Under this isomorphism, the first space of A is carried onto the second solution space. These
spaces have the same dimension, and so if we want to prove a theorem about the dimension of
the solution space, it is immaterial which space we choose to discuss.

Example 1: F(n) is isomorphic F(m) if and only if n = m.

Proof: Here F(n) has, as one basis, the set of n vectors (1, 0, 0, …, 0), (0, 1, …, 0), … (0, 0, …, 1).
Likewise F(m) has a basis containing m vectors. An isomorphism maps a basis of F(n) onto a basis
of F(m). This is only possible if the dimensions of F (n) and F(m) are the same. Hence n = m.

Example 2: Prove that

(a) F(1) is not isomorphic to F(n) for n > 1.

(b) F(2) is not isomorphic to F(3).

Example 3: Let V = C be the set of complex numbers, remembering only the addition of
two elements as  +  and multiplication r  of a complex element  by a real number. Then the
linear transformation T mapping R2  C sending (a, b)  a + b i is an isomorphism.
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Example 4: Let Fn×n denote the set of n × n matrices with entries in a field F. This set is a

vector space over F and it is isomorphic to the space of column vectors of length n2.

Self Assessment

1. Show that Fm×n is isomorphic to Fmn.

2. Let V be the set of complex numbers regarded as a vector space over the field of real
numbers. Define a function T from V into the space of 2 × 2 real matrices, as follows. If

z x iy  with x and y real numbers, then

7 5 .10 7
x y yT z y x y

(a) Verify that 1 2 1 2T z z T z T z

(b) Verify that T is a one-one (real) linear transformation of V into the space of 2×2 real
matrices.

8.2 Summary

 A homomorphism is a mapping T of the space V into W over the same field F, preserving
all the algebraic structures of the system. If T, in addition is one-to-one we call the mapping
an isomorphism.

 Two spaces V and W are isomorphic only if the dim V = dim W.

8.3 Keywords

Isomorphism: T is an isomorphism of V into W over the same field F if T transforms a subset S
of independent vectors into T(S) a set of independent vectors of W.

Transformation: A transformation T of the space V into W is isomorphic if T is a non-singular
transformation.

8.4 Review Questions

1. Let U and V be finite dimensional vector space over the field F. Prove that U and V are
isomorphic if and only if dim U = dim V.

2. Let V and W be vector spaces over the field F and let T1 be an isomorphism of V onto W.

Prove that 1
2 1 2 1T T T T is an isomorphism of ,  onto , .L V V L W W

8.5 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

I.N. Herstein, Topics in Algebra



122 LOVELY PROFESSIONAL UNIVERSITY

Linear Algebra

Notes Unit 9: Representation of Transformations by Matrices

CONTENTS

Objectives

Introduction

9.1 Representation of Transformations by Matrices

9.2 Illustrative Examples

9.3 Summary
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Objectives

After studying this unit, you will be able to:

 Know that the matrix of the linear transformation depends on the basis vectors of V as
well as basis vectors of W where T is a linear transformation from V to W.

 See that the matrix of T depends upon the ordered basis relative to and ' and the matrix
of T relative to ordered basis is different from the previous matrix.

 See that when T defines a transformation from V to V then the idea of similar matrices
does come up.

 Understand how to find the matrix of T with the help of detailed solved examples.

Introduction

With the help of linear transformation one can deduce the rules for addition of matrices and
multiplication of two matrices.

One can also understand geometrically the meaning of linear transformation clearly.

9.1 Representation of Transformations by Matrices

Although we have been discussing linear transformations for some time, it has always been in
a detached way; to us a linear transformation has been a symbol (very often T) which acts in a
certain way on a vector space. When one gets right down to it, outside of the few concrete
examples encountered in the problems, we have really never come face to face with specific
linear transformations. At the same time it is clear that if one were to pursue the subject further
there would often arise the need of making a thorough and detailed study of a given linear
transformation. To mention one precise problem, presented with a linear transformation; how
does go about, in a “practical” and computable way, finding its characteristic roots?

What we seek first is a simple notation, or, perhaps more accurately, representation, for linear
transformations. We shall accomplish this by use of a particular basis of the vector space and by
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Notesuse of the action of a linear transformation on this basis. Once this much is achieved by means of
the operations in A(V), we can induce operations for the symbols created, making of them an
algebra. This new object, infused with an algebraic life of its own, can be studied as a mathematical
entity having an interest by itself. This study is what comprises the subject of matrix theory.

However to ignore the source of these matrices, that is, to investigate the set of symbol
independently of what they represent, can be costly. Instead we shall always use the interplay
between the abstract, A(V), and the concrete, the matrix algebra, to obtain information one
about the other.

Let V be an n-dimensional vector space over the field F and let W be an m-dimensional vector
space over F. Let 1 ,..., n be an ordered basis for V and 1' ,..., m an ordered basis for
W. If T is any linear transformation from V into W, then T is determined by its action on the
vectors j . Each of the n vectors jT  is uniquely expressible as a linear combination

1

m

j ij i
i

T A ...(1)

of the i the scalars ,...ij mjA A being the coordinates of jT  in the ordered basis '. Accordingly,

the transformation T is determined by the mn scalars ijA  via the formula (1). The m n matrix A

defined by , ijA i j A  is called the matrix of T relative to the pair of ordered basis  and '.  Our
immediate task is to understand explicitly how the matrix A determines the linear
transformation T.

If 1 1 ... n nx x is a vector in V, then

T
1

n

j j
j

T x

1

n

j j
j

x T

1 1

n m

j ij i
j j

x A

1 1

.
m n

ij j i
i j

A x

If X is the coordinate matrix of in the ordered basis , then the computation above shows that
AX is the coordinate matrix of the vector T in the ordered basis ’ , because the scalar

1

n

ij j
j

A x

is the entry in the ith row of the column matrix AX. Let us also observe that if A is any m n
matrix over the field F, then
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1 1 1

n m n

j j ij j i
j i j

T x A x ...(2)

defines a linear transformation T from V into W, the matrix of which is A, relative to , '.

Theorem 1: Let V be an n-dimensional vector space over the field F and W an m-dimensional
vector space over F. Let  be an ordered basis for V and '  an ordered basis for W. For each
linear transformation T from V into W, there is an m×n matrix A with entries in F such that

'=T A 

for every vector in V. Furthermore, T A  is a one-one correspondence between the set of all
linear transformations from V into W and the set of all m×n matrices over the field F.

The matrix A which is associated with T in Theorem 1 is called the matrix of T relative to the
ordered basis , '.  Note that Equation (1) says that A is the matrix whose columns 1 ,..., nA A  are
given by

',j jA T       j = 1, ..., n.

If U is another linear transformation from V into W and B 1 ,..., nB B is the matrix of U relative to
the ordered basis , '   then cA B is the matrix of cT U relative , '.  That is clear because

j jcA B ' 'j jc T U 

'j jcT U 

'.jcT U 

Theorem 2: Let V be an n-dimensional vector space over the field F and let W be an m-dimensional
vector space over F. For each pair of ordered bases , '   for V and W respectively, the function
which assigns to a linear transformation T its matrix relative to , '   is an isomorphism between
the space L(V,W) onto the set of m×n matrices over the field F.

Proof: We observed above that the function in question is linear, and as stated in Theorem 1, this
function is one-one and maps L(V, W) onto the set of m×n matrices.

We shall be particularly interested in the representation by matrices of linear transformations
of a space into itself, i.e., linear operators on a space V. In this case it is most convenient to use the
same ordered basis in each case, that is, to take = '  . We shall then call the representing matrix
simply the matrix of T relative to the ordered basis .  Since this concept will be so important to
us, we shall review its definition. If T is a linear operator on the finite-dimensional vector space
V and 1 n= ,...,  is an ordered basis for V, the matrix of T relative to  (or, the matrix of T in
the ordered basis ) is the n×n matrix A whose entries ijA are defined by the equations

1

,
n

j ij i
i

T A      j = 1, ..., n ...(3)

One must always remember that this matrix representing T depends upon the ordered basis ,
and that there is a representing matrix for T in each ordered basis for V. (For transformations of
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Notesone space into another the matrix depends upon two ordered bases, one for V and one for W). In
order that we shall not forget this dependence, we shall use the notation

T 

for the matrix of the linear operator T in the ordered basis  . The manner in which this matrix
and the ordered basis describe T is that for each  in V

.T T  

Example 1: Let V be the space of n×1 column matrices over the field F; let W be the space
of  m × 1 matrices over F; and let A be a fixed m × n matrix over F. Let T be the linear transformation
of V into W defined by T(X) = AX. Let  be the ordered basis for V analogous to the standard
basis in Fn, i.e., the ith vector in  in the n × 1 matrix Xi with a 1 in row i and all other entries 0. Let

' be the corresponding ordered basis for W, i.e. the jth vector in ' is the m×1 matrix Yi with a
1 in row j and all other entries 0. Then the matrix of T relative to the pair , '  is the matrix A
itself. This is clear because the matrix jAX  is the jth column of A.

Example 2: Let F be a field and let T be the operator of F2 defined by

1 2 1, ,0 .T x x x

It is easy to see that T is a linear operator in F2. Let  be the standard ordered basis for
2

1 2,  , .F   Now

1 1 2
1,0 1,0 1 0T T

2 1 2
0,1 0,0 0 0T T

so the matrix of T in the ordered basis  is

1 0 .0 0T 

Example 3: Let V be the space of all polynomial functions from R into R of the form

2 3
0 1 2 3f x c c x c x c x

that is, the space of polynomial functions of degree three or less. The differentiation operator D
maps V into V, since D is ‘degree’ decreasing’. Let  be the ordered basis for V consisting of the
four functions 1 2 3 4, , ,f f f f  defined by 1.i

if x x  Then

1 0,Df x 1 1 2 3 40 0 0 0Df f f f f

2 1,Df x 2 1 2 3 41 0 0 0Df f f f f

3 2 ,Df x x 3 1 2 3 40 2 0 0Df f f f f

2
4 3 ,Df x x 4 1 2 3 40 0 3 0Df f f f f
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0 1 0 0
0 0 2 0 .0 0 0 3
0 0 0 0

D 

We have seen what happens to representing matrices when transformations are added, namely,
that the matrices add. We should now like to ask what happens when we compose transformations.
More specifically, let V, W and Z be vector spaces over the field F of respective dimensions n, m
and p. Let T be a linear transformation from V into W and U a linear transformation from W into
Z. Suppose we have ordered basis

1 1 1, .., ,   ' , .., ,    '' , ..,n m p   

for the respective spaces V, W and Z. Let A be the matrix of T relative to the pair ', '  and let 
be the matrix of U relative to the pair ', ''.   It is then easy to see that the matrix C of the
transformation UT relative to the pair , ''   is the product of B and A; for, if is any vector in V.

' =T A 

'''
=U T B T 

and so ''
= UT BA 

and hence, by the definition and uniqueness of the representing matrix, we must have C = BA.
One can also see this by carrying out the computation

jUT = jU T

1

=
m

kj k
k

U A

1

=
m

kj k
k

A U

1 1

=
pm

kj ik i
k i

A B

1 1

=
p m

ik kj i
i k

B A

so that we must have

1

.
m

ij ik kj
k

C B A ...(4)
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One sees here that a very strong motivation for the definition is to be found in composing linear
transformations. Let us summarize formally.

Theorem 3: Let V, W, and Z be finite-dimensional vector spaces over the field F; let T be a linear
transformation from V into W and U a linear transformation from W into Z. If , ' and ''   are
ordered basis for the spaces V, W and Z respectively, if A is the matrix of T relative to the pair

, ' and ''   is the matrix of U relative to the pair ', '',   then the matrix of the composition UT
relative to the pair , ''   is the product matrix C = BA.

We remark that Theorem 3 gives a proof that matrix multiplication is associative – a proof
which requires no calculations.

It is important to note that if T and U are linear operators on a space V and we are representing
by a single ordered basis  , then Theorem 3 assumes the simple form UT U T   . Thus in
this case, the correspondence which  determines between operators and matrices is not only a
vector space isomorphism but also preserve products. A simple consequence of this is that the
linear operator T is invertible if and only if T  is an invertible matrix. For, the identity operator
I is represented by the identity matrix in any order basis, and thus

UT = TU = I

is equivalent to

.U T T U I   

Of course, when T is invertible

11 .T T 

Now we should like to inquire what happens to representing matrices when the ordered basis
is changed. For the sake of simplicity, we shall consider this question only for linear operators
on a space V, so that we can use a single ordered basis. The specific question is this. Let T be a
linear operator on the finite-dimensional space V, and let

' '
1 1

= ,..., and '= ,...,n n
 

be two ordered basis for V. How are the matrices T  and '
'T
  related? There is a unique

(invertible) n×n matrix P such that

'P  ...(5)

for every vector in V. It is the matrix 1 ,..., nP P P where ' .jPj


 By definition

.T T  
...(6)

Applying (5) to the vector ,T we have

' .T P T 
...(7)

Combining (5), (6) and (7), we obtain

' 'T P P T  

1
' 'P T P T  
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1
' .T P T P 

...(8)

This answers our questions.

Before stating this result formally, let us observe the following. There is a unique linear operator
U which carries  onto ',  defined by

' ,j jU      j = 1,...,n

This operator U is invertible since it carries a basis for V onto a basis for V. The matrix P (above)
is precisely the matrix of the operator U in the ordered basis .  For, P is defined by

1

'
n

j ij i
i

P

and since ' ,j j
U  this equation can be written as

 
1

.
n

j ij i
i

U P

So P = U  , by definition.

Theorem 4: Let V be a finite-dimensional vector space over the field F, and let

B = ' '
1 n 1 n

= ,...,  and ' = ,..., 

be ordered basis for V. Suppose T is linear operator on V. If P = 1 n,...,P P  is the n×n matrix with

columns -1 , thenjP P T 

1
' .T P T P 

Alternatively, if U is the invertible operator on V defined by ' , 1,...,  thenj jU j n

1
' '

.T U T U  

Self Assessment

1. Let T be the linear transformation 3 3: ,T R R  defined by

T (x,y,z) = (2y+z, x–4y, 3z)

find the matrix T, with respect to the basis

1 2 31,1,1 , 1,1,0  and 1,0,0E E E

2. A transformation T is defined by

1, = – ,
2

T x y x y x y
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Notes(i) Show that T is linear

(ii) Find the matrix M represented by T w.r.t. basis (1,0) and (0,1)

9.2 Illustrative Examples

Example 4: Let T be the linear transformation defined by

1 2, ,0 .T x x x

The matrix of T in the standard basis 1 21,0 , 0,1

is
1 0
0 0T

Let '  be the ordered basis for R2 given by ' '
21

1,1 , 2,1 .

Then ' '
1 1 2 1, 2 ,  so that  matrix isP

11 2 1 2 and 1 1 1 1P P

Thus 1
'T P T P

        
1 2 1 0 1 2

1 1 0 0 1 1

        
1 2 1 2

1 1 0 0

        
1 2

1 2

We can easily check that this is correct because

' ' '
1 1 21,0T

' ' '
2 1 22,0 2 2 .T

Example 5: Let V be the space of polynomial functions from R into R which have ‘degree’
less than or equal to 3. As in Example 3, let D be the differentiation operator on V, and let

1 2 3 4= , , ,f f f f

be the ordered basis for V defined by -1
1 .if x x  Let t be a real number and define 1

1 ,ig x x t

that is

1 1g f
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2 1 2g tf f

2
3 1 2 32g t f tf f

3 2
4 1 2 3 43 3 .g t f t f tf f

Since the matrix

2 3

2
1
0 1 2 3
0 0 1 3
0 0 0 1

t t t
t tP

t

is easily seen to be invertible with

2 3

2
1

1
0 1 2 3
0 0 1 3
0 0 0 1

t t t
t tP

t

it follows that 1 2 3 4' , , ,g g g g  is an ordered basis for V. In Example 3, we found that the

matrix of D in the ordered basis  is

0 1 0 0
0 0 2 0 .0 0 0 3
0 0 0 0

D 

The matrix of D in the ordered basis ' is thus

1P D P

2 3 2 3

2 2
0 0 1 0 0 1

0 0 2 00 1 2 3 0 1 2 3
0 0 0 30 0 1 3 0 0 1 3
0 0 0 00 0 0 1 0 0 0 1

t t t t t t
t t t t

t t

2 3 2

2
1 0 1 2 3

0 0 2 60 1 2 3
0 0 0 30 0 1 3
0 0 0 00 0 0 1

t t t t t
tt t

t

0 1 0 0
0 0 2 0 .0 0 0 3
0 0 0 0

Thus D is represented by the same matrix in the ordered basis and '.  Of course, one can see
this somewhat more directly since

1 0Dg

2 1Dg g
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3 22Dg g

4 33 .Dg g

This example illustrates a good point. If one knows the matrix of a linear operator in some
ordered basis  and wishes to find the matrix in another ordered basis ',  it is often most
convenient to perform the coordinate change using the invertible matrix P; however, it may be
a much simpler task to find the representing matrix by a direct appeal to its definition.

Definition: Let A and B be n×n (square) matrices over the field F. We say that B is similar to A

over F if there is an invertible n×n matrix P over F such that -1  .P AP

According to Theorem 4, we have the following: If V is an n-dimensional vector space over F and
and '   are two ordered bases for Vi then for each linear operator T on V the matrix

B = 'T  is similar to the matrix A = ' .T   The argument also goes in the other direction. Suppose

A and B are n×n matrices and that B is similar to A. Let V be any n-dimensional space over F and
let be an ordered basis for V. Let T be the linear operator on V which is represented in the basis
 by A. If -1  ,P AP let '  be the ordered basis for V obtained from  by P, i.e.

'

1

.
n

j ij i
i

P

Then the matrix of T in the ordered basis '  will be B.

Thus the statement that B is similar to A means that on each n-dimensional space over F the
matrices A and B represent the same linear transformation in two (possibly) different ordered
basis.

Note that each n×n matrix A is similar to itself, using P = I; if B is similar to A, then A is similar

to B, for B = P–1AP implies that 
11 1A P BP ; if B is similar to A and C is similar to B, then C is

similar to A, for B = P–1AP and C = Q–1BQ imply that C = (PQ)–1A(PQ). Thus, similarity is an
equivalence relation on the set of n×n matrices over the field F. Also note that the only matrix
similar to the identity matrix I is I itself, and that the only matrix similar to the zero matrix is the
zero matrix itself.

Self Assessment

3. Let T be the linear transformation on R3 defined by

1 2 3 1 3 1 2 1 2 3, , 3 , 2 , 2 4T x x x x x x x x x x

(i) What is the matrix of T in the standard ordered basis for R3?

(ii) What is the matrix of T in the ordered basis 1 2 3, , where

1 2 31,0,1 , 1,2,1 and 2,1,1

4. Let T be the linear transformation from R3 into R2 defined by

1 2 3 1 2 3 1, , , 2 –T x x x x x x x

If B is the standard ordered basis for R3 and ' is the standard ordered basis for R2, what is

the matrix of T relative to the pair , '?
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Notes 9.3 Summary

 One can identify the effect of linear transformation on the space and study its effects by
means of algebra of matrices.

 This way one has insight of the meaning of similar matrices.

 The linear transformation T for R3 to R2.

9.4 Keywords

Degree Decreasing: The differentiation operator D maps V into V, since D is ‘degree’ decreasing.

Linear Transformation: The statement that B is similar to A means that on each n-dimensional
space over F the matrices A and B represent the same linear transformation in two (possibly)
different ordered basis.

Unique Linear Operator: A unique linear operator U which carries  onto ',  defined by

' ,j jU   j = 1,...,n

9.5 Review Questions

1. Let T be the linear transformation on R2 defined by

1 2 2 1, ,T x x x x

(a) What is the matrix of T in the standard basis for R2?

(b) What is the matrix of T in the standard basis 1 2 1, where 1,2  and 2 1, 1 ?

2. Let 1 2 3, , be the basis for V3 and let 1 1 2 2 1 2 3 3 2 32 , , –

(a) Prove 1 2 3, ,  is a basis and express 1 2 3, ,  as a linear combination of

1 2 3,  and .

(b) If T is defined by ,     1,2,3,...i iT i

find a matrix A which represents T relative to basis.

9.6 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

I.N. Herstein, Topics in Algebra

Michael Artin, Algebra
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Objectives

After studying this unit, you will be able to:

 Understand in a better way the discussion of subspaces, linear equations and co-ordinates.

 See that a few examples of linear functional cited in this unit.

 Know the concept of dual basic vectors for the dual vector space V*.

 See that how to obtain the basis of the dual spaces which is done by examples.

Introduction

The concept of linear function is important in the study of finite dimensional spaces because the
linear functional method helps to organize and clarify the discussion of subspaces.

The method is illustrated by means of a few theorems and a few solved examples.

10.1 Linear Functionals

If V is a vector space over the field F, a linear transformation f from V into the scalar field F is also
called a linear functional on V. If we start from scratch, this means that f is a function from V into
F such that

.( ) ( ) ( )f c cf f

for all vectors  and  in V and all scalars c in F. The concept of linear functional is important in
the study of finite-dimensional spaces because it helps to organize and clarify the discussion of
subspaces, linear equations, and coordinates.

Example 1: Let F be a field and let a1, ..., an be scalars in F. Define a function f on Fn by

1 1 1( ,..., ) ...n n nf x x a x a x

Then f is a linear functional on Fn. It is the linear functional which is represented by the matrix
[a1 ... an] relative to the standard ordered basis for Fn and the basis {1} for F:
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Every linear functional on Fn is of this form, for some scalars a1, ..., an. That is immediate from the
definition of linear functional because we define aj = f( j) and use the linearity

f (x1, ...., xn) = j j
j

f x

= ( )j j
j

x f

= j j
j

a x

Example 2: Here is an important example of a linear functional. Let n be a positive
integer and F is field. If A is an n × n matrix with entries in F, the trace of A is the scalar

11 22 ... .nntr A A A A

The trace function is a linear functional on the matrix space F n × n because

( )tr cA B =
1

( )
n

ii ii
i

cA B

=
1 1

n n

ii ii
i i

c cA B

= c tr A + tr B.

Example 3: Let V be the space of all polynomial functions from the field F into itself. Let
t be an element of F. If we define

( ) ( )tL p p t

then Lt is a linear functional on V. One usually describes this by saying that, for each t, ‘evaluation
at t’ is a linear functional on the space of polynomial functions. Perhaps we should remark that
the fact that the functions are polynomials plays no role in this example. Evaluation at t is a
linear functional on the space of all functions from F into F.

Example 4: This may be the most important linear functional in mathematics. Let [a, b]
be a closed interval on the real line and let C([a, b]) be the space of continuous real-valued
functions on [a, b]. Then

L(g) = ( )
b

a
g t dt

Theorem 1: Let V be an n-dimensional vector space over the field F, and let W be an m-dimensional
vector space over F. Then the space L(V, W) is finite-dimensional and has dimension mn.

Proof: Let

1 2, ,... n  and 1 2, ,... n
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Notesbe ordered basis for V and W, respectively. For each pair of integers (p, q) with 1  p  m and
1  q  n, we define a linear transformation Ep, q from V into W by

, ( )p q
iE =

0 if
ifp

i q
i q

= iq b

According to the theorem 1 of unit 7, there is a unique linear transformation from V into W
satisfying these conditions. The claim is that the mn transformations Ep, q from a basis for L(V, W).

Let T be a linear transformation from V into W. For each j, i  j  n, let A1j, A2j, ... Amj be the
co-ordinates of the vector T j in the ordered basis , i.e.,

T j =
1

m

pj p
p

A ...(1)

we wish to show that

T = ,

1 1

m n
p q

pq
p q

A E ...(2)

Let U be the linear transformation in the right hand member of (2). Then for each j

U j = , ( )p q
pq j

p q

A E

= pq jq p
p q

A

=
1

m

pj p
p

A

= T j

and consequently U = T. Now (2) shows that the Ep, q span L(V, W); we must prove that they are
independent. But this is clear from what we did above; for, if the transformation

U = ,p q
pq

p q

A E

is the zero transformation, then U j = 0 for each j, so

1

m

j j
p

Ap = 0

and the independence of the p implies that Apj = 0 for every p and j.

If V is finite-dimensional vector space, the collection of linear functionals of V forms a vector
space in a natural way. It is the space L(V, F). We denote this space by V*. From the above
theorem we know the following about the space V* that

dim V* = dim V. ...(3)
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unique linear functional fi on V such that

fi ( i) = ij ...(4)

In this way we obtain from  a set of n distinct linear functionals f1, f2, ... fn on V. These functionals
are also linearly independent. For, suppose

f =
1

n

i i
i

c f ...(5)

Then f( j) =
1

( )
n

i i j
i

c f

=
1

n

i ij
i

c

= cj.

In particular, if f is the zero functional f( j) = 0 for each j and hence the scalars cj are all 0. Now

1 ,... nf f  are n linearly independent functionals, and since we know that V* has dimension n, it
must be that 1* { ,..., }nf f  is a basis for V*. This basis is called the dual basis of .

Theorem 2: Let V be a finite-dimensional vector space over the field F, and let 1{ ,..., }n  be

a basis for V. Then there is a unique dual basis 1* { ,..., }nf f for V* such that ( ) .i j ijf  For
each linear functional f on V we have

f =
1

( )
n

i i
i

f f ...(6)

and for each vector  in V we have

= 1
1

( ) .
n

i
i

f ...(7)

Proof: We have shown above that there is a unique basis which is ‘dual’ to . If f is a linear
functional on V, then f is some linear combination (5) of the fi, and as we observed after (5) the
scalars cj must be given by cj = f( j). Similarly, if

=
1

n

i i
i

x

is a vector in V, then

( )jf =
1

( )
n

i i i
i

x f

=
1

n

i ij
i

x

= xj
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Notesso that the unique expression for  as a linear combination of the i, is

=
1

( ) .
n

i i
i

f

Equation (7) provides us with a nice way of describing what the dual basis is. It says if

1 2, ..., n  is an ordered basis for V and 1* ,..., nf f  is the dual basis, then fi is precisely
the function which assigns to each vector  in V the ith coordinate of  relative to the ordered
basis . Thus we may also call the fi the  coordinate functions for . The formula (6), when
combined with tells us the following:

If f is in V*, and we let ( ) ,i if a  then when

= 1 1 ... n nx x

we have

f(x) = 1 1 ... .n na x a x ...(8)

In other words, if we choose an ordered basis  for V and describe each vector in V by its n-tuple
of coordinates (x1,....xn) relative to , then every linear functional on V has the form. This is the
natural generalization of Example 1, which is the special case V = Fn and  =  { 1, ..., n}.

Example 5: Let V be the vector space of all polynomial functions from R into R which
have degree less than or equal to 2. Let t1, t2 and t3 be any three distinct real numbers, and let

Li(p) = p(ti)

Then L1, L2 and L3 are linear functionals on V. These functionals are linearly independent; for,
suppose

L = 1 1 2 2 3 3c L c L c L

If L = 0, i.e., if L(p) = 0 for each p in V, then applying L to the particular polynomial ‘functions’ 1,
x, x2, we obtain

1 2 3c c c = 0

1 1 2 2 3 3t c t c t c = 0

2 2 2
1 1 2 2 3 3t c t c t c = 0

From this it follows that 1 2 3 0,c c c  because (as a short computation shows) the matrix

1 2 3
2 2 2
1 2 3

1 1 1
t t t

t t t

is invertible when t1, t2 and t3 are distinct. Now the Li are independent and since V has dimension
3, these functional from a basis for V*. What is the basis for V, of which this is the dual? Such a
basis {p1, p2, p3} for V must satisfy

Li(pi) = ij

or pj(ti) = ij.
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p1(x) = 2 3

1 2 1 3

( )( )
( )( )

x t x t
t t t t

p2(x) =
1 3

2 1 2 3

( )( )
( )( )

x t x t
t t t t

p3(x) = 1 2

3 1 3 2

( )( )
( )( )

x t x t
t t t t

The basis {p1, p2, p3} for V is interesting, because according to (7) we have to each p in V.

p = 1 1 2 2 3 3( ) ( ) ( ) .p t p p t p p t p

Thus, if c1, c2 and c3 are any real numbers, there is exactly one polynomial function p over R

which has degree at most 2 and satisfies ( ) , 1,2,3.j jp t c j  This polynomial function is
p = c1 p1 + c2 p2 + c3 p3.

Now let us discuss the relationship between linear functionals and subspaces. If f is a non-zero
linear functional, then the rank of f is 1 because the range of f  is a non-zero subspace of  the scalar
field and must (therefore) be the scalar field. If the underlying space V is finite-dimensional, the
rank plus nullity theorem tells us that the null space Nf has dimension

dim Nf = dim V – 1.

In a vector space of dimension n, a subspace of dimension n – 1 is called a hyperspace. Such
spaces are sometimes called hyperplanes or subspaces of co-dimension 1. Is every hyperspace
the null space of a linear functional? The answer is easily seem to be yes. It is not much more
difficult to show that each d-dimensional subspace of an n-dimensional space is the intersection
of the null spaces of (n – d) linear functionals (Theorem below).

Definition: If V is a vector space over the field F and S is a subset of V, the annihilator of S is the
set S° of linear functionals on V such that f( ) = 0 for every  in S.

It should be clear that S° is a subspace of V*, whether S is a subspace of V or not. If S is the set
consisting of the zero vector alone, then S° = V*. If S = V, then S° is the zero subspace of V*. (This
is easy to see when V is finite-dimensional.)

Theorem 3. Let V be a finite-dimensional vector space over the field F, and let W be a subspace of
V. Then

din W + dim W° = dim V.

Proof: Let k be the dimension of W and { 1, ..., k} a basis for W. Choose vector k + 1, ..., n, in V
such that { 1,..., n} is a basis for V. Let {f1, ..., fn} be the basis for V* which is dual to this basis for
V.

This claim is that 1{ ,... }k nf f  is a basis for the annihilator W°. Certainly fi belongs to W° for i  k
+ 1, because

( )i if = ij

and 0ij  if i  k + 1 and j  k; from this it follows that, for i  k + 1, ( ) 0if  whenever  is a
linear combination of 1 ,..., .k  The functionals 1 ,...,k nf f  are independent, so all we must show
is that they span W°. Suppose f is in V*.
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f =
1

( )
n

i i
i

f f

so that if f is in W° we have ( ) 0if  for i  k and

f =
1

( ) .
n

i i
i k

f f

We have shown that if dim W = k and dim V = n then dim W° = n – k.

Corollary: If W is a k-dimensional subspace of an n-dimensional vector space V, then W is the
intersection of (n – k) hyperspaces in V.

Proof: This is a corollary of the proof of Theorem 3 rather than its statement. In the notation of
the proof, W is exactly the set of vectors  such that ( ) 0, 1,..., .if i k n In case k = n – 1, W is the
null space of fn.

Corollary: If W1 and W2 are subspaces of a finite-dimensional vector space, then W1 = W2 if and
only if 0 0

1 2W W .

Proof: If W1 = W2, then of course 0 0
1 2 .W W  If 1 2W W , then one of then two subspaces contains

a vector which is not in the other. Suppose there is a vector  which is in W2 but not in W1. By the
previous corollaries (or the proof of Theorem 3) there is a linear functional f such that ( ) 0f
for all in W, but ( ) 0.f  Then f is in 0

1W  but not in 0
2W  and 0 0

1 2 .W W

10.2 System of Linear Equations

The first corollary says that, if we select some ordered basis for the space, each k-dimensional
subspace can be described by specifying (n – k) homogeneous linear conditions on the coordinates
relative to that basis.

Let us look briefly at system of homogeneous linear equations from the point of view of linear
functionals. Suppose we have a system of linear equations,

 
11 1 1

1 1

. . . 0

. . . 0

n n

m mn n

A x A x

A x A x

for which we wish to find the solutions. If we let , 1,..., ,if i m  be the linear functional on Fn

defined by

( ,...., ) ...i i n ix i in nf x x A x A x

then we are seeking the subspace of Fn of all  such that

( ) 0, 1,..., .if i m

In other words, we are seeking the subspace annihilated by 1 ,..., .mf f  Row-reduction of the
coefficient matrix provides us with a systematic method of finding this subspace. The n-tuple

1( ,.... )i inA A  gives the coordinates of the linear functional fi relatives to the basis which is dual to
the standard basis for Fn. The row space of the coefficient matrix may thus be regarded as the
space of linear functionals spanned by 1 ,..., .mf f  The solution space is the subspace annihilated
by this space of functionals.
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we are given m vectors in Fn.

1 1( ,..., )i inA A

and we wish to find the annihilator of the subspace spanned by these vectors. Since a typical
linear functional on Fn has the form

1 1 1( ,... ) ...n n nf x x c x c x

the condition that f be in this annihilator is that

1

0, 1,...,
n

ij j
j

A c i m

that is, that 1( ,...., )nc c be a solution of the system AX = 0. From this point of view, row-reduction
gives us a systematic method of finding the annihilator of the subspace spanned by a given finite
set of vectors in Fn.

Example 6: Here are three linear functionals on R4:

1 1 2 3 4( , , , )f x x x x = 1 2 3 42 2x x x x

2 1 2 3 4( , , , )f x x x x = 2 42x x

3 1 2 3 4( , , , )f x x x x = 1 2 42 4 3 .x x x

The subspace which they annihilate may be found explicitly by finding the row-reduced echelon
form of the matrix

A =
1 2 2 1
0 2 0 1
2 0 4 3

A short calculation, shows that A goes over 2R as

R =
1 0 2 0
0 1 0 0
0 0 0 1

Therefore, the linear functionals

1 1 2 3 4( , , , )g x x x x = 1 32x x

2 1 2 3 4( , , , )g x x x x = 2x

3 1 2 3 4( , , , )g x x x x = 4x

span the same subspace of (R4)* and annihilate the same subspace of R4 as do 1 2 3, , .f f f  The
subspace annihilated consists of the vectors with

x1 = –2x3

x2 = x4 = 0
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Example 7: Let W be the subspace of R4 which is spanned by the vectors

1 = (2,  –2, 3, 4, –1) 3 = (0, 0, –1, –2, 3)

2 = (–1, 1, 2, 5, 2) 4 = (1, –1, 2, 3, 0).

How does one describe W0, the annihilator of W? Let us form the 4 × 5 matrix A with row vectors
1, 2, 3, 4, and find the row-reduced echelon matrix R which is row-equivalent of A:

2 2 3 4 1 1 1 0 1 0
1 1 2 5 2 0 0 1 2 0

0 0 1 2 3 0 0 0 0 1
1 1 2 3 0 0 0 0 0 0

A R

If f is a linear functional on R5:

1 5( ,...., )f x x =
5

1
j j

j

c x

then f is in W° if and only if ( ) 0, 1, 2, 3, 4,if i  i.e., if and only if

5

1
ij j

j

A c = 0, 1 4.i

This is equivalent to

5

1
ij j

j

R c = 0, 1 3i

or

c1 – c2 – c4 = 0

c3 + 2c4 = 0

c5 = 0

We obtain all such linear functionals f by assigning arbitrary values to c2 and c4, say c2 = a and
c4 = b, and then finding the corresponding c1 = a + b, c3 = – 2b, c5 = 0. So W° consists of all linear
functionals f of the form

1 2 3 4 5 1 2 3 4( , , , , ) ( ) 2f x x x x x a b x ax bx bx

The dimension of W* is 2 the basis (f1, f2) for W* can be found by first taking a = 1, b = 0 and then
a = 0 and b = 1:

1 1 2 3 4 5( , , , , )f x x x x x = 1 2x x

2 1 2 3 4 5( , , , , )f x x x x x = 1 3 42x x x

The above general f in W* is 1 2 .f a f b f
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1. Let W be the subspace of R5 which is spanned by the vectors

1 1 2 3 2 2 3 4 5

3 1 2 3 4 5

2 , 3 3
4 6 4

Find a basis for W*.

2. Let W be the subspace spanned by R5, which is spanned by the vectors

1 2

3 4

5

(1, 2, 0, 3, 0), (1, 2, 1, 1, 0)
(0, 0, 1, 4, 0), (2, 4, 1, 10, 1)
(0, 0, 0, 0, 1)

How does one describe W*, the annihilator of W.

10.3 Summary

 The concept of linear functional helps us to clarify the discussion of subspaces, linear
equations and co-ordinates.

 In this unit the idea of dual basis for V* is obtained i.e. if 1 2( , ,... )nB  be the basis of
V then there is a unique dual basis 1* ( , ... )nf f  for V*.

 The concept of linear functional is important in the study of finite-dimensional spaces
because it helps to organize and clarify the discussion of subspaces, linear equations, and
coordinates.

 Let V be the space of all polynomial functions from the field F into itself. Let t be an
element of F. If we define

( ) ( )tL p p t

then Lt is a linear functional on V. One usually describes this by saying that, for each t,
‘evaluation at t’ is a linear functional on the space of polynomial functions.

10.4 Keywords

Dual Basis: In particular, if f is the zero functional f( j) = 0 for each j and hence the scalars cj are
all 0. Now 1 ,... nf f  are n linearly independent functionals, and since we know that V* has
dimension n, it must be that 1* { ,..., }nf f  is a basis for V*. This basis is called the dual basis
of .

Linear Functional: If V is a vector space over the field F, a linear transformation f from V into the
scalar field F is also called a linear functional on V.

Trace: If A is an n × n matrix with entries in F, the trace of A is the scalar 11 22 ... .nntr A A A A

10.5 Review Questions

1. In 3
1 2 3, (1, 0, 1) (0, 1, – 2), (–1, 1, 0)R

If f is a linear functional on R3 such that
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1 2 3( ) 1, ( ) 1, ( ) 3f f f

and if ( , , ),a b c  find f( ).

2. Let 1 2 3( , , )  be the basis for C3 defined by

1 2 3(1, 0, 1), (1, 1, 1), (2, 2, 0).

Find the dual basis of .

Answers: Self Assessment

1. The dimension of W* is 2 and the basis 1 2( , )f f  for W* is given by

1 1 2 5 1 2 3 4

2 1 2 5 1 2 3 5

( , , ... ) 4 3 2
( , , ... ) 5 2

f x x x x x x x
f x x x x x x x

2. The dimension of W* is 2 and the basis 1 2( , )f f  for W* is given by

1 1 2 3 4 5 1 2

2 1 2 3 4 5 1 3 4

( , , , , ) 2
( , , , , ) 3 4

f x x x x x x x
f x x x x x x x x

10.6 Further Readings

Books Ervin Kreyszig, Introductory Functional Analysis with Applications

Kenneth Hoffman and Ray Kunze, Linear Algebra
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Objectives

After studying this unit, you will be able to:

 Understand the meanings of *V  and * *V  and their corresponding basis * and * *.

 Know that the mapping L is an isomorphism of V onto * *V  .

 See that if S is any subset of a finite dimensional vector space then 00S   is the subspace

spanned by S.

 Understand that the ',T the transpose of the linear transformation T is often called the
adjoint of T; however in this unit we use only the word transpose.

 See that if A be the matrix of T relative to basis , ' and  be the matrix of ',T  relative to

dual basis '* and  then .ij jiB A

Introduction

In this unit the idea of dual and double dual finite dimensional spaces and their basis vectors are
explained.

Also the transpose 'T  of the linear transformation is introduced. The alternate name of the
transpose transformation is word adjoint transformation.

11.1 The Double Dual

One question about dual bases which we did not answer in the last section was whether every
basis for V* is the dual of some basis for V. One way to answer that question is to consider V**,
the dual space of V*.
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NotesIf is a vector in V, then includes a linear functional L on *V defined by

,     in * .L f f f V ...(1)

The fact that L is linear is just a reformulation of the definition of linear operations in *V :

L cf g cf g

cf g

cf g

.cL f L g ...(2)

If V is finite-dimensional and 0, then 0;L in other words, there exists a linear functional f

such that 0.f  The proof is very simple. Choose an ordered basis 1 n= ,..., for V such
that 1=  and let f be the linear functional which assigns to each vector in V its first coordinate

in the ordered basis  .

Theorem 1: Let V be a finite-dimensional vector space over the field F. For each vector in V
define

,      in * .L f f f V

The mapping L  is then an isomorphism of V onto V**.

Proof: We showed that for each the function L is linear. Suppose and are in V and c is in

F, and let .c  Then for each f in V*.

L f f

f c

cf f

and so cL f L f

L CL L

This shows that the mapping L  is a linear transformation from V into V**. This
transformation is non-singular; for, according to the remarks above 0L  if and only if 0.
Now L  is a non-singular linear transformation from V into V**, and since

dim V** = dim V* = dim V ...(3)

Therefore this transformation is invertible, and is therefore an isomorphism of V onto V**.

Corollary: Let V be a finite-dimensional vector space over the field F. If L is a linear functional
on the dual space V* of  V, then there is a unique vector in V such that

 L f f ...(4)

for every f in V*.
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dual of some basis for V.

Proof: Let 1 n*= ,...,f f be a basis for V*. By Theorem 2 of unit 10 there is a basis 1 n,...,L L for

V** such that

.i i ijL f ...(5)

Using the corollary above, for each i there is a vector , in V such that

Li(f) = f(i)

for every f in V*, i.e., such that .i iL L  It follows immediately that 1 ,..., n is a basis for V and

that * is the dual of this basis.

In view of Theorem 1, we usually identify with L and say that V ‘is’ the dual space of V* or

that the spaces V, V* are naturally in duality with one another. Each is the dual space of the other.
In the last corollary we have an illustration of how that can be useful. Here is a further illustration.

If E is a subset of V*, then the annihilator E0 is (technically) a subset of V**. If we choose to
identify V and V** as in Theorem (1), then E0 is a subspace of V, namely, the set of all in V such

that f = 0 for all f in E. In a corollary of Theorem 3 of unit 10 we noted that each subspace W

is determined by its annihilator W°. How is it determined? The answer is that W is the subspace
annihilated by all f in W°, that is, the intersection of the null spaces of all f’s in W°. In our present
notation for annihilators, the answer may be phrased very simply: W = (W°)°.

Theorem 2: If S is any subset of a finite-dimensional vector space V, then (S°)° is the subspace
spanned by S.

Proof: Let W be the subspace spanned by S. Clearly W° = S°. Therefore, what we are to prove is
that W = W°°. We have given one proof. Here is another. By Theorem 3 of unit 10.

dim dim dim
dim dim dim *

W W V
W W V ...(6)

and since dim dim *V V  we have

dim dim .W W

Since W is a subspace of W°°, we see that W = W°°.

The results of this section hold for arbitrary vector spaces; however the proofs require the use of
the so-called Axiom of Choice. Here we shall not tackle annihilators for general vector spaces.
But, there are two results about linear functionals on arbitrary vector spaces which are so
fundamental that we should include them.

Let V be a vector space. We want to define hyperspaces in V. Unless V is finite-dimensional, we
cannot do that with the dimension of the hyperspace. But, we can express the idea that a space N
falls just one dimension short of filling out V, in the following way:

1. N is a proper subspace of V;

2. If W is a subspace of V which contains N, then either W = N or W = V.

Conditions (1) and (2) together say that N is a proper subspace and there is no larger proper
subspace, in short, N is a maximal proper subspace.
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Theorem 3. If f is a non-zero linear functional on the vector space V, then the null space of f is a
hyperspace in V. Conversely, every hyperspace in V is the null space of a (not unique) non-zero
linear functional on V.

Proof: Let f be a non-zero linear functional on V and Nf its null space. Let be a vector in V which

is not in Nf, i.e., a vector such that 0.f We shall show that every vector in V is in the

subspace spanned by Nf and . That subspace consists of all vectors

,         in ,  in .fc N c F

Let  be in V. Define

fc
f

which makes sense because 0.f  Then the vector c is in Nf since

f f c

f cf

0. ...(7)

So is in the subspace spanned by Nf and .

Now let N be a hyperspace in V. Fix some vector which is not in N. Since N is a maximal proper
subspace, the subspace spanned by N and is the entire space V. Therefore each vector in V
has the form

,         in ,  in  .c N c F

The vector and the scalar c are uniquely determined by . If we have also

' ' ,        '  in , '  in  .c N c F ...(8)

then ( ' ) 'c c

If ' 0,c c  then would be in N; hence, '  and ' = .c c Another way to phrase our conclusion is

this: If is in V, there is a unique scalar c such that c is in N. Call that scalar .g It is easy

to see that g is a linear functional on V and that N is the null space of g.

Lemma: If f and g are linear functionals on a vector space V, then g is a scalar multiple of f if and
only if the null space of g contains the null space of f, that is, if and only if 0 implies 0.f g

Proof: If f = 0 then g = 0 as well and g is trivially a scalar multiple of f. Suppose 0f  so that the

null space fN is a hyperspace in V. Choose some vector in V with 0f  and let

.gc
f ...(9)

The linear functional h g cf is 0 on fN since both f and g are 0 there, and 0.h g cf
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0,h i.e. that .g cf

Theorem 4: Let 1, ,..., rg f f be linear functionals on a vector space V with respective null space

1, ,..., .rN N N Then g is a linear combination of 1 ,..., rf f if and only if N contains the intersection

1 ... .rN N 

Proof: If 1 1 ... r rg c f c f and 0if for each i, then clearly 0.g Therefore, N contains

1 ... .rN N 

We shall prove the converse (the ‘if’ half of the theorem) by induction on the number r. The

preceding lemma handles the case r = 1. Suppose we know the result for r = k – 1, and let 1 ,..., rf f

be linear functionals with null spaces 1 ,..., kN N  such that 1 ... kN N   is contained in N, the pull

space of g. Let ' '
1 1

', ,...,
k

g f f be the restrictions of 1 1, ,..., kg f f to the subspace Nk. Then

' '
1 1

', ,...,
k

g f f are linear functionals on the vector space Nk. Furthermore, if is a vector in Nk  and

' 0,  1,..., 1,if i k  then is in 1 ... kN N   and so ' 0.g  By the induction hypothesis

(the case 1r k ), there are scalars ci such that

' '
1 1 1 1' ... .k kg c f c f

Now let

1

1

.
k

i i
i

h g c f ...(10)

Then h is a linear functional on V and (10) tells us that 0h for every in Nk. By the preceding

leema, h is a scalar multiple of fk. If ,k kh c f then

1

.
k

i i
i

g c f

Self Assessment

1. Let n be a positive integer and F a field. Let W be the set of all vectors 1 ,..., nx x

1in  such that ... 0.n
nF x x

(a) Prove that 0W  consists of all linear functionals f of the form

1
1

,..., .
n

n j
j

f x x c x
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functionals

1 1 1,..., ...n n nf x x c x c x

on Fn which satisfy 1 ... 0.nc c

2. Use Theorem 4 to prove the following. If W is a subspace of a finite-dimensional vector

space V and if 1 ,..., rg g  is any basis for W°, then

1
.

r

gi
W N

11.2 The Transpose of a Linear Transformation

Suppose that we have two vector spaces over the field F, V and W, and a linear transformation T
from V into W. Then T induces a linear transformation from W* into V*, as follows. Suppose g is
a linear functional on W, and let

f g T ...(11)

for each in V. Then (11) defines a function f from V into F, namely the composition of T, a
function from V into W, with g, a function from W into F. Since both T and g are linear, Theorem
5 of unit 7 tells us that f is also linear, i.e., f is a linear functional on V. Thus T provides us with a
rule Tt which associates with each linear functional g on W a linear functional f = Ttg on V, defined
by (11). Note also that Tt is actually a linear transformation from W* into V*; for, if g1 and g2 are
in W* and c is a scalar

1 2
tT cg g 1 2cg g T

1 2cg T g T

1 2
t tc T g T g ...(12)

so that 1 2 1 2 .t t tT cg g cT g T g Let us summarize.

Theorem 5: Let V and W be vector spaces over the field F. For each linear transformation T from
V into W, there is a unique linear transformation Tt from W* into V* such that

tT g g T ...(13)

for every g in W* and in V.

We shall call Tt the transpose of T. This transformation Tt is often called the adjoint of T; however,
we shall not use this terminology.

Theorem 6: Let V and W be vector spaces over the field F, and let T be a linear transformation
from V into W. The null space of Tt is the annihilator of the range of T. If V and W are finite-
dimensional, then

(i) rank Tt = rank (T)

(ii) the range of Tt is the annihilator of the null space T. ...(14)
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tT g g T

for each in V. The statement that g is in the null space of tT means that 0g T for every

in V. Thus the null space of tT is precisely the annihilator of the range of T.

Suppose that V and W are finite-dimensional, say dim V = n and dim W  = m. For (i): Let r be the
rank of T, i.e., the dimension of the range of T. By Theorem 3 of unit 10, the annihilator of the
range of T then has dimension .m r  By the first statement of this theorem, the nullity of Tt

must be .m r But then since Tt is a linear transformation on an m-dimensional space, the rank
of tT is ,m m r r and so T and Tt  have the same rank. For (ii): Let N be the null space of T.
Every functional in the range of Tt is in the annihilator of N; for suppose f = Ttg for some g in W*;
then, if is in N

0 0.tf T g g T g

Now the range of Tt is a subspace of the space N0, and

dim N0 = n –dim N = rank(T) = rank (Tt) ...(15)

so that the range of Tt must be exactly N0.

Theorem 7: Let V and W be finite-dimensional vector spaces over the field F. Let  be an ordered

basis for V with dual basis *, and let ' be an ordered basis for W with dual basis '*.  Let T be

a linear transformation from V into W; let A be the matrix of T relative to , '  and let B be the

matrix of Tt relative to '*, *.   Then .ij jiB A

Proof: Let

1 n 1

1 n 1

= ,..., , '= ,..., ,

*= ,..., , '*= ,..., .
m

mf f g g

 

 

By definition,

1

1

    1,...,

    1,...,

m

j ij i
i

n
t

j ij i
i

T A i j n

T g B f j j m
...(16)

On the other hand,

t
j iT g j ig T

1

m

j ki k
k

g A
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1

m

ki j k
k

A g

1

m

ki j k
k

A

.jiA

For any linear functional f on V

f 
1

.
m

i i
i

f f ...(17)

If we apply this formula to the functional t
jf T g and use the fact that ,t

j i jiT g A we have

1

.
n

t
j ji i

i

T g A f ...(18)

from which it immediately follow that .ij jiB A

Definition: If A is an m × n matrix over the field F, the transpose of A is n × m matrix At defined

by .t
ij jiA A

Theorem 8: Thus states that if T is a linear transformation from V into W, the matrix of which in
some pair of bases is A, then the transpose transformation Tt is represented in the dual pair of
bases by the transpose matrix At.

Theorem 9: Let A be any m × n matrix over the field F. Then the row rank of A is equal to the
column rank of A.

Proof: Let be the standard ordered basis for Fn and '  the standard ordered basis for Fm. Let T

be the linear transformation from Fn into Fm such that the matrix of T relative to the pair , '  is
A, i.e.,

1 1

1

.                     ,..., ,...,

where          .

n m

n

i ij j
j

T x x y y

y A x ...(19)

The column rank of A is the rank of transformation T, because the range of T consists of all
m-tuples which are linear combinations of the column vectors of A.

Relative to the dual bases '*  and *, the transpose mapping tT  is represented by the matrix At.
Since the columns of At are the rows of A, we see by the same reasoning that the row rank of A
(the column rank of At) is equal to the rank of Tt. By Theorem 7, T and Tt  have the same rank, and
hence the row rank of A is equal to the column rank of A.
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defined above, then

rank (T) = row rank (A) = column rank (A) ...(20)

and we shall call this number simply the rank of A.

Example 1: This example will be of a general nature – more discussion than example. Let
V be an n-dimensional vector space over the field F, and let T be a linear operator on V. Suppose

1 n= ,..., is an ordered basis for V. The matrix of T in the ordered basis   is defined to be the

n × n matrix A such that

1

n

j ij i
j

T A ...(21)

in other words, ijA is the ith coordinate of the vector jT in the ordered basis . If 1 ,..., nf f  is

the dual basis of , this can be stated simply

ij i jA f T ...(22)

Let us see what happens when we change basis. Suppose

' '
1 n'= ,...,

is another ordered basis for V, with dual basis ' '
1 n
,..., .f f  If B is the matrix of T  in the ordered

basis ', then

' ' .ij i jB f T ...(23)

Let U be the invertible linear operator such that ' .j jU Then the transpose of U is given by

' .t
t iU f f It is easy to verify that since U is invertible, so is Ut and (Ut)–1 = (U–1)t. Thus

' –1 , 1,..., .
t

t if U f i n Therefore,

Bij
1 't

i jU f T

1 '
i jf U T

1 .i jf U TU ...(24)

Now what does this say? Well, 1
i jf U TU  is the i, j entry of the matrix of 1U TU  in the ordered

basis  . Our computation above shows that this scalar is also the i, j entry of the matrix of T in

the ordered basis '. In other words
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–1

'

–1

–1

    = U

            = U

            = U

T TU

T U

T U

 

 

  

...(25)

and this is precisely the change-of-basis formula which we derived earlier.

Self Assessment

3. Let V be a finite dimensional vector space over the field F and let T be a linear operator on
V. Let C be a scalar and suppose there is a non-zero vector in V such that .T c Prove

that there is a non-zero linear functional F on V such that ' .T f cf

4. For all A, B matrices in Fm, prove that–

(a) ' 'A A

(b) ' ' 'A B A B

(c) ' ' 'AB B A

11.3 Summary

 A vector induces a linear functional in V* and the mapping L  is an isomorphism

of V and V**.

 If T is the linear transformation from V into W then it also induces a transformation from
W* into V* through its transpose.

 The alternate name of the transpose transformation is word adjoint transformation.

11.4 Keywords

Adjoint: Tt is the transpose of T. This transformation Tt is often called the adjoint of T.

Transpose: If A is an m × n matrix over the field F, the transpose of A is n × m matrix At defined

by .t
ij jiA A

11.5 Review Questions

1. Let S be a set, F a field and V(S,F) the space of all functions from S into F:

.

f g x f x g x

cf x cf x

Let W be any n-dimensional space of , .V S F  Show that there exists points 1 ,..., nx x in S

and functions 1 2, ,..., nf f f in W such that .i j ijf x S
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Notes 2. Let F be a field and let f be the linear functional on F2 defined by 1 2 1 2, .f x x ax bx For

each of the following operations T, let 'g T f  and find 1 2,g x x

(a) 1 2 2 1( , ) , ;T x x x x

(b) 1 2 1 2 1 2( , ) , .T x x x x x x

11.6 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

I N Herstein, Topics in Algebra.
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Objectives

After studying this unit, you will be able to:

 Know that when the matrix of the linear transformation is in the diagonal form for some
ordered basis the properties of the transformation can be seen at a glance.

 See that a matrix A of a linear operator T can be cast into a diagonal form under similarity
transformations.

 See that a matrix A and P–1 AP where P is an invertible have the same characteristic values.

Introduction

In this unit it is shown how a matrix has a diagonal form.

For this purpose the characteristic values and characteristic vectors are worked out and an
invertible matrix is worked out of the characteristic vectors that can diagonalize the given
matrix.

12.1 Overview

One of our primary aim in these units is to study linear transformation on finite dimensional
vector spaces. So far we have studied many specific properties of linear transformations. In
terms of ordered basis vectors we have represented such types of matrices by matrices. In terms
of matrices we see lots of insight of the linear transformation. We also explored the linear
algebra L(V, V) consisting of the linear transformations of a space into itself.

In the next few units we shall concentrate ourselves with linear operators on a finite dimensional
vector space. If we consider the ordered basis  = ( 1, 2,... n) then the effect of T on i is

1

n

i ji j
j

T A i = 1, 2, ... n

where the new ordered basis is  = ( 1, 2, ... n) . If we now choose the basis  = ( 1, 2, ... n) in
such a way that
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i i iT c … (1)

for i = 1 to n then the matrix of the linear transformation is given by

D = 

1

2

3

0 0 0 0 ... 0
0 0 0 0 ... 0
0 0 0 0 ... 0

0 0 0 ... ... ... n

C
C

C

C
      

...(2)

with the help of equation (2) we would gain considerable information about T. Simple numbers
associated with T, such as the rank of T or the determinant of T, would be determined with little
more than a glance. The range of T would be the subspace spanned by those i s for which ci  0,
and the null space would be spanned by the remaining  i s. Indeed, it seems fair to say that, if we
knew a basis  and a diagonal matrix D such that [T] = D, we could answer readily any question
about T which might arise.

In the following we are interested in finding out if a linear operator can be represented by a
diagonal matrix. How can we find the basis for such type of linear operator and what are the
values of ci s.

12.2 Characteristic Values

Guided by the equation (1) we should study vectors which on application of linear operator T
transformed into the scalar multiples of themselves.

Let V be a vector space over the field F and T be a linear operator on V. A characteristic value of
T is a scalar C in F such that there is a non-zero vector  in V with T  = c . If c is a characteristic
value of T, then

(a) Any  such that T  = c , is called characteristic vector of T.

(b) The collection of all  such that T  = c , is called the characteristic space associated with c.

If T is any linear operator and c is any scalar, the set of vectors , such that T  = c  is a sub-space
of V. It is null space of linear transformation (T– cI). We call c a characteristic value of T if this
subspace is different from the zero subspace, i.e., if (T – cI) fails to be 1:1. If the underlying space
V is finite-dimensional, (T – cI ) fails to be 1:1 precisely when its determinant is different from 0.

Theorem 1: Let T be a linear operator on a finite-dimensional space V and let c be a scalar. The
following are equivalent:

(i) c is a characteristic value of T.

(ii) The operator (T – cI) is singular (not invertible)

(iii) det (T – cI) = 0.

The  determinant criterion (iii) is very important because it tells us where to look for the
characteristic values of T. Since det (T – cI) is a polynomial of degree n in the variable c, we will
find the characteristic values as the roots of that polynomial.

If  is any ordered basis of V and A= [T] , then (T – cI) is invertible if and only if the matrix
(A – cI) is invertible. Accordingly, we make the following definition.

Definition: If A is an n  n matrix over the field F, a characteristic value of A in F is a scalar c in
F such that the matrix (A – cI) is singular (not invertible).
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NotesSince c is a characteristic value of A if and only if det (A – cI) = 0, we form the matrix (xI – A) with
polynomial entries, and consider the polynomial f = det (xI –  A). Clearly the characteristic
values of A in F are just the scalars c in F such that f(c) = 0. For this reason f is called the
characteristic polynomial of A. It is important to note that f is a monic polynomial which has
degree exactly n. This is easily seen from the formula for the determinant of a matrix in terms of
its entries.

Lemma: Similar matrices have the same characteristic polynomial.

Proof: If B = P–1 AP, then

det (xI – B) = det (xI – P–1PA)

= det (P–1(xI – A)P)

= det P–1. det (xI – A) . det P

= det (xI – A)

This lemma enables us to define sensibly the characteristic polynomial of the operator T as the
characteristic polynomial of any n × n matrix which represents T in some ordered basis for V.
Just as for matrices, the characteristic values of T will be the roots of the characteristic polynomial
for T. In particular, this shows us that T cannot have more than n distinct characteristic values. It
is important to point out that T may not have any characteristic values.

Example 1: Let T be the linear operator on R2 which is represented in the standard
ordered basis by the matrix

A = 
0 1
1 0

The characteristic polynomial for T (or for A) is

det (xI – A) = 
1

1
x

x  = x2 + 1.

Since this polynomial has no real roots, T has no characteristic values. If U is the linear operator
on C2 which is represented by A in the standard ordered basis, then U has two characteristic
value, i and –i. Here we see a subtle point. In discussing the characteristic values of a matrix A, we
must be careful to stipulate the field involved. The matrix A above has no characteristic values
in R, but has the two characteristic values, i and –i in C.

Example 2: Let A be the (real) 3 × 3 matrix

3 1 1
2 2 1
2 2 0

Then the characteristic polynomial for A is

3 2 2
3 1 1

2 2 1 5 8 4 ( 1) ( 2) .
2 2

x
x x x x x x

x

Thus the characteristic values of A are 1 and 2.



158 LOVELY PROFESSIONAL UNIVERSITY

Linear Algebra

Notes Suppose that T is the linear operator on R3 which is represented by A in the standard basis. Let
us find the characteristic vectors of T associated with the characteristic values, 1 and 2. Now

2 1 1
2 1 1
2 2 1

A I

It is obvious at a glance that A–I has rank equal to 2 (and hence T – I  has nullity equal to 1). So the
space of characteristic vectors associated with the characteristic value 1 is one-dimensional. The
vector 1 = (1, 0, 2) spans the null space of T – I . Thus T  =  if and only if  is a scalar multiple
of 1. Now consider

1 1 1
2 2 0 1

2 2 2
A I

Evidently A – 2I also has rank 2, so that the space of characteristic vectors associated with value
2 has dimension 1. T  = 2   is possible if  is a scalar multiple of 2 = (1, 1, 2).

Example 3: Find the characteristic values and associated characteristic vector for the
matrix

8 6 2
6 7 4

2 4 3
A

Solution: We know that the characteristic equation is |A – I| = 0, i.e.,

8 6 2
6 7 4 0

2 4 3

or {(8 – )} (7 – ) (3 – ) – 16} + 6{3 – } (–6) + 8} + 2 {24 – 2(7 – )} = 0

or – 3 + 18 2 – 45  = 0

or ( 2 + 18  + 45) = 0

or (  – 3) (  – 15) = 0

 = 0, 3, 15.

Hence the characteristic roots are 1 = 0, 2 = 3, 3 = 15. The characteristic vector associated with
is 1 = 0 is given by

1

2

3

8 6 2 0
6 7 4 0

2 4 3 0

x
x
x

This gives 8x1 – 6x2 + 2x3 = 0

–6x1 + 7x2 – 4x3 = 0

2x1 – 4x2 + 3x3 = 0
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1 2 3
1 (say)

1 2 2
x x x k

Hence the required characteristic vector corresponding to the characteristic root 1, = 0, is

1 1

2 1

3 1

2
2

x k
X x k

x k

The characteristic vector corresponding to the root 2 = 3 is given by

1

2

3

8 3 6 2 0
6 7 3 4 0

2 4 3 3 0

x
x
x

or

1

2

3

5 6 2 0
6 4 4 0

2 4 0 0

x
x
x

This gives 5x1 – 6x2 + 2x3 = 0

6x1 + 4x2 – 4x3 = 0

2x1 – 4x2 = 0

On solving these equations, we get

1 2 3
2 2(say) 0

2 1 2
x x x k k

Thus x = 
1 2

2 2

3 2

2

2

x k
x k
x k

 is the required characteristic vector for  = 3.

Similarly, for  = 15, the characteristic vector will be

1

2

3

8 15 6 2 0
6 7 15 4 0

2 43 3 15 0

x
x
x

or

1

2

3

7 6 2 0
6 8 4 0

2 4 12 0

x
x
x

which give 7x1 + 6x2 – 2x3 = 0

3x1 + 4x2 + 2x3 = 0

x1 – 2x2 – 6x3 = 0

On solving these, we get

1 2 3
3 3(say) 0

2 2 1
x x x k k
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x = 
1 3

2 3

3 3

2
2

x k
x k
x k

Example 4: If a + b + c = 0, find the characteristic values of the matrix

a c b
c b a
b a c

Solution: We have the characteristic equation of A

|A – I| = 0

or

a c b a b c c b
c b a a b c b a
b a c a b c a c

On replacing C1 by C1 + C2 + C3.

= 

c b
b a

a c
[  a + b + c = 0]

= 0
0

c b
b c c b

a c c b

On operating R2 – R1 and R3 – R1

=  [(a2 + b2 + c2 – ab – bc – ca) – 2]

But a + b + c = 0, i.e., (a + b + c)2 = 0

or a2 + b2 + c2 + 2ab + 2bc + 2ca = 0

or 2 2 21( ) ( )
2

ab bc ca a b c

 Characteristic equation becomes

2 2 2 2 2 2 21( ( ) 0
2

a b c a b c

or 2 2 2 23 ( ) 0
2

a b c

which gives  = 0 or 
1/2

2 2 23 ( )
2

a b c

Example 5: If A be a square matrix, show that the characteristic values of the matrix A are
the same as those of its transpose A’.
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|A – I| = 0

Similarly the characteristic equation of the matrix

A’ is (A’ – I| = 0

Now, we have to prove that the characteristic roots of |A – I| = 0 and |A’ – I| = 0 identical.

Since interchange of row and column does not change the value of the determinant, hence we
have

|A – I| = |A’ – I|

Hence the roots of the equations |A – I| = 0 and |A’ – I| = 0 are same.

Lemma: If F is a characteristic value of T, then for any polynomial q(x) F(x), q( ) is a
characteristic value of q(T).

Proof: Suppose F and T  =  for non-zero vector  in V. Now T2  = T(T ) = T( ) = T  =
2 , continuing in this way we obtain T3  = 3 , T4 , T4  = 4  , ... Tk  = k , for all positive

integers k. If

q(x) = a0 xm = a1 xm–1 + ... + am F, then

q(T) = a0 Tm = a1 Tm–1 + ... + am,

hence q(T)  = a0
m  + a1

m–1  + ... + am

           = q( )d.

Thus [q(T) – q( )I]  = 0, since  0 so q( ) is characteristic value of q(T).

Definition: Let T be a linear operator on the finite dimensional space V. We say that T is
diagonalizable if there is a basis for V each vector of which is a characteristic vector of T.

The reason for the name should be apparent; for, if there is an ordered basis  = {1, ..., n} for V
in which each i is a characteristic vector of T, then the matrix of T in the ordered basis  is
diagonal. If Ti = ci i, then

  

1

2

0 ... 0
0 ... 0

[ ]

0 0 ... n

c
c

T

c



We certainly do not require that the scalars c1, ... cn be distinct; indeed, they may all be the same
scalar (when T is a scalar multiple of the identity operator).

One could also define T to be diagonalizable when the characteristic vectors of T span V. This is
only superficially different from our definition, since we can select a basis out of any spanning
set of vectors.

For Examples 1 and 2 we purposely chose linear operators T on Rn which are not diagonalizable.
In Example 1, we have a linear operator on R2 which is not diagonalizable, because it has no
characteristic values. In Example 2, the operator T has characteristic values; in fact, the characteristic
polynomial for T factors completely over the real number field: f = (x – 1) (x – 2)2. Nevertheless
T fails to be diagonalizable. There is only  a one-dimensional space of characteristic vectors
associated with each of the two characteristic values of T. Hence, we cannot possibly form a basis
for R3 which consists of characteristic vectors of T.

Suppose that T is a diagonalizable linear operator. Let c1, ... ck be the distinct characteristic values
of T. Then there is an ordered basis  in which T is represented by a diagonal matrix which has
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Notes for its diagonal entries the scalars ci, each repeated a certain number of times. If ci is repeated di

times, then (we may arrange that) the matrix has the block form

  

1 1

2 2

0 ... 0
0 ... 0

[ ]

0 0 ... k k

c I
c I

T

c I



where Ij is the dj × dj identity matrix. From that matrix we see two things. First, the characteristic
polynomial for T is the product of (possibly repeated) linear factors:

f = (x – c1)d1 ... (x – ck)dk

If the scalar field F is algebraically closed, e.g., the field of complex numbers, every polynomial
over F can be so factored; however, if F is not algebraically closed, we are citing a special
property of T when we say that its characteristic polynomial has such a factorization. The second
thing we see that di, the number of times which ci is repeated as root of f, is equal to the
dimension of the space of characteristic vectors associated with the characteristic value ci. That is
because the nullity of a diagonal matrix is equal to the number of zeros which it has on its main
diagonal, and the matrix [T – ciI] has di zeros on its main diagonal. This relation between the
dimension of the characteristic space and the multiplicity of the characteristic value as a root of
f does not seem exciting at first; however, it will provide us with a simpler way of determining
whether a given operator is diagonalizable.

Lemma: Let T be a linear operator on the finite dimensional space V. Let c1, ..., ck be the distinct
characteristic values of T and let Wi be the space of characteristic vectors associated with the
characteristic value ci. If W = Wi + ... + Wk, then

dim W = dim W1 + ... + dim Wk.

In fact if Bi is an ordered basis for Wi, then  = (1, ..., k) is an ordered basis for W.

Proof: The space W = Wi + ... + Wk is the subspace spanned by all of the characteristic vectors of T.
Usually when one forms the sum W of subspaces Wi, one expects that dim W < dim Wi + ... + dim
Wk because of linear relations which may exist between vectors in the various spaces. This
lemma states that the characteristic spaces associated with different characteristic values are
independent of one another.

Suppose that (for each i) we have a vector i in Wi, and assume that i + ... + k = 0. We shall show
that i = 0 for each i. Let f be any polynomial. Since T i = ci i, the preceding lemma tells us that

0 = f(T)0 = f(T) 1 + ... + f(T) k

= f(c1) 1 + ... + f(ck) k

Choose polynomial f1, ..., fk such that

fi (cj) =
1,
0, .ij

i j
i j

Then

0 = fi(T) = ij j
j

= i.

Now, let i be an ordered basis for Wi, and let  be the sequence  = ( 1, ..., k). Then  spans the
subspace W = W1 + ... + Wk. Also,  is a linearly independent sequence of vectors, for the following
reason. Any linear relation between the vectors in  will have the form 1 + ... + k = 0, where i
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Notesis some linear combination of the vectors in i. From what we just did, we know that i = 0 for
each i. Since each i is linearly independent, we see that we have only the trivial linear relation
between the vectors in .

Theorem 2: Let T be a linear operator on a finite-dimensional space V. Let c1, ..., ck be the distinct
characteristic values of T and let Wi be the null space of (T – ciI). The following are equivalent:

(i) T is diagonalizable

(ii) The characteristic polynomial for T is

f = (x – ci)di ... (x – ck)dk)

and dim Wi = di, i = 1, ... k.

(iii) dim Wi + ... + dim Wk = dim V.

Proof: We have observed that (i) implies (ii). If the characteristic polynomial f is the product of
linear factors, as in (ii), then di + .. + dk = dim V. For, the sum of the di’s is the degree of the
characteristic polynomial, and that degree is dim V. Therefore (ii) implies (iii). Suppose (iii)
holds. By the lemma, we must have V = W1 + ... + Wk, i.e., the characteristic vectors of T span V.

The matrix analogue of Theorem 2 may be formulated as follows. Let A be an n × n matrix with
entries in a field F, and let c1, ... ck be the distinct characteristic values of A in F. For each i, let Wi

be the space of column matrices X (with entries in F) such that

(A – ciI)X = 0,

and let i be an ordered basis for Wi. The bases 1, ..., k collectively string together to form the
sequence of columns of a matrix P:

P = [P1, P2, ...] = ( 1, ..., k)

The matrix A is similar over F to a diagonal matrix if and only if P is a square matrix. When P is
square, P is invertible and P–1 AP is diagonal.

Example 6: Let T be the linear operator on R3 which is represented in the standard
ordered basis by the matrix.

5 6 6
1 4 2

3 6 4
A

Let us indicate how one might compute the characteristic polynomial, using various row and
column operations:

5 6 6
1 4 2
3 6 4

x
x

x
=

5 0 6
1 2 2
3 2 4

x
x

x x

=
5 0 6

( 2) 1 1 2
3 1 4

x
x

x

=

5 0 6
( 2) 1 1 2

2 0 2

x
x

x
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=

5 6
( 2)

2 2
x

x
x

= (x – 2) (x2 – 3x + 2)

= (x – 2)2 (x – 1).

What are the dimensions of the spaces of characteristic vectors associated with the two
characteristic values? We have

A – I =

4 6 6
1 3 2

3 6 5

A – 2I =
3 6 6
1 2 2

3 6 6

We know that A – I is singular and obviously rank (A – I)  2. Therefore, rank (A – I) = 2. It is
evident that rank (A – 2I) = 1.

Let W1, W2 be the spaces of characteristic vectors associated with the characteristic values 1, 2. We
know that dim W1 = 1 and dim W2 = 2. By Theorem 2, T is diagonalizable. It is easy to exhibit a
basis for R3 in which T is represented by a diagonal matrix. The null space of (T – I) is spanned by
the vector 1 = (3, –1, 3) and so { 1} is a basis for W1. The null space of T – 2I (i.e., the space W2)
consists of the vectors (x1, x2, x3) with x1 = 2x2 + 2x3. Thus, one example of a basis for W2 is

2 = (2, 1, 0)

3 = (2, 0, 1).

If   = ( 1, 2, 3), then [T]  is the diagonal matrix

D =
1 0 0
0 2 0
0 0 2

The fact that T is diagonalizable means that the original matrix A is similar (over R) to the
diagonal matrix D. The matrix P which enables us to change coordinates from the basis  to the
standard basis is (of course) the matrix which has the transposes of 1, 2, 3 as its column
vectors:

P =
3 2 2
1 1 0

3 0 1

Furthermore, AP = PD, so that

P–1AP = D.

Self Assessment

1. In each of the following cases, let T be the linear operator on R2 which is represented by the
matrix A in the standard ordered basis for R2, and let U be the linear operator on C2

represented by A in the standard ordered basis. Find the characteristic polynomial for T
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value c find a basis for the corresponding space of characteristic vectors.

A = 
1 4
2 3 , A = 

1 1
1 1

2. Let T be the linear operator on R3 which is represented in the standard ordered basis by the
matrix

4 2 2
5 3 2
2 4 1

Prove that T is diagonalizable by exhibiting a basis for R3, each vector of which is a
characteristic vector of T.

3. Let A = 

3 0 0
0 2 5
0 1 2

Is A similar over the field R to a diagonal matrix? Is A similar over the field C to a diagonal
matrix?

12.3 Summary

 When a matrix of a linear operator under a certain ordered basis is in the diagonal form
then some properties of the linear operator can be real at a glance on this matrix.

 In this unit the characteristic values and the corresponding characteristic vectors of a
matrix are found which help us in answering the question whether the given matrix is
diagonalizable over the F or not.

12.4 Keywords

Invertible Matrix: The invertible matrix P formed out of the characteristic vectors of a vector A
shows that A and PAP–1 are similar and also PAP–1 is in the diagonal form.

Null Space: If T is any linear operator and c is any scalar, the set of vectors , such that T  = c  is
a sub-space of V. It is null space of linear transformation (T– cI).

12.5 Review Questions

1. If T be the linear operator on C3 which is represented in the ordered basis by the matrix

A = 

1 1
0 0

1 0 0

i
i

Prove that T is diagonalizable by exhibiting a basis for C3, each vector of which is a
characteristic vector of T.
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A = 
5 6 6
1 4 2

3 6 4

Prove that T is diagonalizable. Find the diagonalizable matrix P that PAP–1 is diagonal.

Answers: Self Assessment

1. For A = 
1 4
2 3 , characteristic polynomial for T is T2 – 4t – 5I = 0

1 = 5, 1 = (1, 1) 1 = –1, 2 = (2, –1)

For A = 
1 1
1 1 , the characteristic polynomial for T is T2 – 2T = 0 the characteristic roots

are

1 = 0, 1 = (1, 1)

2 = 2, 2 = (1, –1)

2. In the matrix is diagonalizable has the characteristic values 1, 2, 5 with the characteristic
vectors (2, 1, 4), (1, 1, 0), (0, 1, 1) respectively. The diagonalizing matrix is

2 1 0
1 1 1
4 2 1

3. A is not similar over the real field F to a diagonal matrix. But A is similar over the field C
to a diagonal matrix

3 0 0
0 0
0 0

i
i

12.6 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

I.N. Herstein, Topics in Algebra
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Objectives

After studying this unit, you will be able to:

 Know about the polynomials over the field F, the degree of polynomial, monic polynomial,
annihilating polynomials as well as minimal polynomials.

 Understand that the linear operator is annihilated by its characteristic polynomial.

 Understand that we consider all monic polynomials with coefficients in F and the degree
of the minimal polynomial is the least positive integer such that a linear relation is
obtained annihilated.

Introduction

In this unit we investigate more properties of a linear transformation.

We define certain terms like monic polynomial, minimal polynomial as well as annihilating
polynomial and characteristic polynomial.

It is seen that the theorem of Cayley-Hamilton in this unit helps us in narrowing down the reach
for the minimal polynomials of various operators.

13.1 Overview

Polynomial Over F. Let F(x) be the subspace of Fn spanned by vectors 1, x, x2..... An element of
F(x) is called a polynomial over F.

Degree of a Polynomial: F(x) consists of all (finite) linear combinations of x and its powers. If f is
a non-zero polynomial of the form

0 2
0 1 2

n
nf f x f x f x f x

such that 0 and 0 and 0n nf n f for all integers k > n;  this integer is obviously unique and is
called the degree of f.

The scalars 0 1 2, , , , nf f f f are sometimes called the coefficients of f in the field F.
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Notes Monic Polynomial: A polynomial f(x) over a field F is called monic polynomial if the coefficient
of highest degree term in it is unity i.e 0nf

Annihilating Polynomials: Let A be n n matrix over a field F and f(x) be a polynomial over F.
Then if f(A) = 0. Then we say that the polynomial f(x) annihilates the matrix A.

13.2 Annihilating Polynomials

It is important to know the class of polynomials that Annihilate T.

Suppose T is a linear operator on V, a vector space over the field F. If p is a polynomial over F,
then p(T) is again a linear operator on V. If q is another polynomial over F, then

( )( )p q T = ( ) ( )p T q T

( )( )pq T = ( ) ( )p T q T

Therefore, the collection of polynomials p which annihilate T, in the sense that

( )p T = 0,

is an ideal in the polynomial algebra F[x]. It may be the zero ideal, i.e., it may be that T is not
annihilated by any non-zero polynomial. But, that cannot happen if the space V is finite-
dimensional.

Suppose T is a linear operator on the n-dimensional space V. Look at the first (n2 + 1) powers of T:

2 2, , , .nI T T T

This is a sequence of n2 + 1 operators in L(V, V), the space of linear operators on V. The space
L(V, V,) has dimension n2. Therefore, that sequence of n2 + 1 operators must be linearly dependent.
i.e., we have

2
0 1 2 0n

nc I c T c T

for some scalars ci not all zero. So, the ideal of polynomials which annihilate T contains a non-
zero polynomial of degree n2 or less.

Definition. Let T be a linear operator on a finite-dimensional vector space V over the field F. The
minimal polynomial for T is the (unique) monic generator of the ideal of polynomials over F
which annihilate T.

The name ‘minimal polynomial’ stems from the fact that generator of a polynomial ideal is
characterized by being the monic polynomial of minimum degree in the ideal. That means that
the minimal polynomial p for the linear operator T is uniquely determined by these three
properties:

1. p is a monic polynomial over the scalar field F.

2. p(T) = 0

3. No polynomial over F which annihilates T has smaller degree than p has.

If A an n n matrix over F, we define the minimal polynomial for A in an analogous way, as the
unique monic generator of the ideal of all polynomials over F which annihilate A. If the operator
T is represented in some ordered basis by the matrix A, then T and A have the same minimal
polynomial. That is because f(T) is represented in the basis by the matrix f(A) so that f(T) = 0 if and
only if f(A) = 0.



LOVELY PROFESSIONAL UNIVERSITY 169

Unit 13: Annihilating Polynomials

NotesFrom the last remark about operators and matrices it follows that similar matrices have the
same minimal polynomial. That fact is also clear from the definitions because

–1( )f P AP = –1 ( )P f A P

for every polynomial f.

There is another basic remark which we should make about minimal polynomials of matrices.
Suppose that A is an n n  matrix with entries in the field F. Suppose that F1 is a field which
contains F as a subfield. (For example, A might be a matrix with rational entries, while F1 is the
field of real numbers. Or, A might be a matrix with real entries, while F1 is the field of complex
numbers.) We may regard A either as an n n  matrix over F or as an n n  matrix over F1. On
the surface, it might appear that we obtain two different minimal polynomials for A. Fortunately
that is not the case; and we must see why. What is the definition of the minimal polynomial for
A, regarded as an n n matrix over the field F? We consider all monic polynomials with
coefficients in F which annihilate A, and we choose the one of least degree. If f is a monic
polynomial over F:

f = 
1

0

k
k i

j
j

x a x … (1)

then f(A) = 0 merely says that we have a linear relation between the powers of A:

1
1 1 0 0k k

kA a A a A a I … (2)

The degree of the minimal polynomial is the least positive integer k such that there is a linear
relation of the form (2) between the powers I, , , .kA A Furthermore, by the uniqueness of the
minimal polynomial, there is for that k one and only one relation of the form (2); i.e., once the
minimal k is determined, there are unique scalars 0 1, , ka a in F such that (2) holds. They are the
coefficients of minimal polynomial.

Now (for each k) we have in (2) a system of n2 linear equations for the ‘unknowns’ 0 1, , .ka a Since
the entries of A lie in F, the coefficients of the system of equations (2) are in F. Therefore, if the
system has a solution with 0 1, , ka a in F1 it has a solution with 0 1, , ka a  in F. It should now be
clear that the two minimal polynomials are the same.

What do we know thus far about the minimal polynomial for a linear operator on an n-dimensional
space? Only that its degree does not exceed n2. That turns out to be a rather poor estimate, since
the degree cannot exceed n. We shall prove shortly that the operator is annihilated by its
characteristic polynomial. First, let us observe a more elementary fact.

Theorem 1: Let T be a linear operator on an n-dimensional vector space V [or, let A be an
n n matrix]. The characteristic and minimal polynomials for T [for A] have the same roots,
except for multiplicities.

Proof. Let p be the minimal polynomial for T. Let c be a scalar. What we want to show is that
p(c) = 0 if and only if c is a characteristic value of T.

First, suppose p(c) = 0. Then

p = (x – c)q

where q is a polynomial. Since deg q < deg p, the definition of the minimal polynomial p tells us
that ( ) 0.q T  Choose a vector  such that q(T) 0.  Let ( ) .q T  Then

0 = p(T)

= (T – cI)q(T)
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and thus, c is a characteristic value of T.

Now, suppose that c is a characteristic value of T, say T = c with 0.  So

( )p T = ( ) .p c

Since p(T) = 0 and 0, we have p(c) 0.

Let T be a diagonalizable linear operator and let 1 , , kc c be the distinct characteristic values of
T. Then it is easy to see that the minimal polynomial for T is the polynomial.

p = (x – c1)  (x – ck).

If  is a characteristic vector, then one of the operators T – c1I,  , T – ckI sends  into 0. Therefore

1( ) ( ) 0kT c I T c I

for every characteristic vector . There is a basis for the underlying space which consists of
characteristic vectors of T; hence

1( ) ( ) ( ) 0.kp T T c I T c I

What we have concluded is this. If T is a diagonalizable linear operator, then the minimal
polynomial for T is a product of distinct linear factors. As we shall soon see, that property
characterizes diagonalizable operators.

Example 1: Let’s try to find the minimal polynomials for the operators in Example 1, 2,
and 6 in unit 12. We shall discuss them in reverse order. The operator in Example 6 was found to
be diagonalizable with characteristic polynomial.

From the preceding paragraph we know that the minimal polynomial for T is.

( 1)( ).p x x x

The reader might find it reassuring to verify directly that

( )( 2 ) 0.A I A I

In Example 2, the operator T also had the characteristic polynomial 2( 1)( 2) .f x x But, this T
is not diagonalizable, so we don’t know that the minimal polynomial is (x – 1) (x – 2). What do
be know about the minimal polynomial in this case? We know that its roots are 1 and 2, with
some multiplicities allowed. Thus we search for p among polynomials of the form (x – 1)k

( 2) , 1, 1.lx k l  Try (x – 1) (x – 2):

(A – I) (A – 2I) = 
2 1 1 1 1 1
2 1 1 2 0 1
2 2 1 2 2 2

= 
2 0 1
2 0 1
4 0 2

Thus, the minimal polynomial has degree at least 3. So, next we should try either (x – 1)2 (x – 2)
or (x – 1) (x – 2)2. The second being the characteristic polynomial, would seem a less random
choice. One can readily compute that (A – I) (A – 2I)2 = 0. Thus the minimal polynomial for T is
its characteristic polynomial.
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NotesIn Example 1 in unit 12 we discussed the linear operator T on R2 which is represented in the
standard basis by the matrix.

A =
0 1
1 0 .

The characteristic polynomial is x2 + 1, which has no real roots. To determine the minimal
polynomial, forget about T and concentrate on A. As a complex 2  2 matrix, A has the characteristic
values i and –i. Both roots must appear in the minimal polynomial. Thus the minimal polynomial
is divisible by x2 + 1. It is trivial to verify that A2 + I = 0. So the minimal polynomial is x2 + 1.

Theorem 2 (Cayley-Hamilton): Let T be a linear operator on a finite dimensional vector space V.
If f is the characteristic polynomial for T, then f(T) = 0; in other words, the minimal polynomial
divides the characteristic polynomial for T.

Proof: The proof, although short, may be difficult to understand. Aside from brevity, it has the
virtue of providing an illuminating and far from trivial application of the general theory of
determinants.

Let K be the commutative ring with identity  consisting of all polynomials in T. Of course, K is
actually a commutative algebra with identity over the scalar field. Choose an ordered basis

1{ , , }n for V, and let A be the matrix which represents T in the given basis. Then

, 1
n

i ji j
i j

T A j n

These equations may be written in the equivalent form

1

( ) 0, 1 .
n

ij ji j
j

T A I i n

Let B denote the element of Knn with entries

.ij ij jiB T A I

When n = 2

11 21

12 22

T A I A IB A I T A I

and

det B = 11 22 12 21( – )( )–T A I T A I A A I

= 2
11 22 11 12 12 21( ) ( )T A A T A A A A I

= f(T)

where f is the characteristic polynomial:

2 (trace ) det .f x A x A

For the case n > 2, it is also clear that

det B = f(T)
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Notes since f is the determinant of the matrix xI – A whose entries are the polynomials

( ) .ij ij jixI A x A

We wish to show that f(T) = 0. In order that f(T) be the zero operator, it is necessary and sufficient
that (det B)

k = 0 for k = 1, , n. By the definition of B, the vectors 1,  n satisfy the equations

1

0, 1 .
n

ij j
j

B i n … (3)

When n = 2, it is suggestive to write (3)  in the form

11 21 1

12 22 2

0 .0
T A I A I

A I T A I

In this case, the classical adjoint, adj B is the matrix

22 21

12 11

T A I A IB A I T A I


and

det 0 .0 det
BBB B



Hence, we have

1

2
(det )B =  1

2
( )BB

=  1

2
B B

= 
0 .0

In the general case, let B = adj B. Then by (3)

1

0
n

ki ij j
j

B B

for each pair k, i, and summing on i, we have

0 = 


1 1

n n

ki ij i
i j

B B

= 
1 1

.
n n

ki ij j
j i

B B
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NotesNow B B = (det B)I, so that

1

det .
n

ki ij kj
i

B B B

Therefore

0 = 
1

det
n

ki j
j

B

= ,(det ) 1 .kB k n

The Cayley-Hamilton theorem is useful to us at this point primarily because it narrows down
the search for the minimal polynomials of various operators. If we know the matrix A which
represents T in some ordered basis, then we can compute the characteristic polynomial f. We
know that the minimal polynomial p divides f and that the two polynomials have the same
roots. There is no method for computing precisely the roots of a polynomial (unless its degree
is small); however, if f factors

1
1 11( ) ( ) , , , distinct, 1d dk

k k if x c x c C C d  ....  (4)

then

1
1( ) ( ) , 1r rk

k j jp x c x c r d ....  (5)

That is all we can say in general. If f is the polynomial (4) and has degree n, then for every
polynomial p as in (5) we can find an n n matrix which has f as its characteristic polynomial and
p as its minimal polynomial. We shall not prove this now. But, we want to emphasize the fact
that the knowledge that the characteristic polynomial has the form (4) tells us that the minimal
polynomial has the form (5), and it tells us nothing else about p.

Example 2: Let A be the 4 4 (rational) matrix

A = 

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

The powers of A are easy to compute

A2 = 

2 0 2 0
0 2 0 2
2 0 2 0
0 2 0 2

A3 = 

0 4 0 4
4 0 4 0
0 4 0 4
4 0 4 0

Thus A3 = 4A, i.e., if p = x3 – 4x = x(x + 2) (x – 2), then p(A) = 0. The minimal polynomial for A must
divide p. That minimal polynomial is obviously not of degree 1, since that would mean that
A was a scalar multiple of the identity. Hence, the candidates for the minimal polynomial are:
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Notes p, x(x + 2), x(x – 2), x2 – 4. The three quadratic polynomials can be eliminated because it is obvious
at a glance that 2 2 22 , 2 , 4 .A A A A A I Therefore p is the minimal polynomial for A. In
particular 0, 2, and – 2 are the characteristic values of A. One of the factors x, x – 2, x + 2 must be
repeated twice in the characteristic polynomial. Evidently, rank (A) = 2. Consequently there is a
two-dimensional space of characteristic vectors associated with the characteristic value 0. From
Theorem 2, it should now be clear that the characteristic polynomial is x2 (x2 – 4) and that A is
similar over the field of rational numbers to the matrix

0 0 0 0
0 0 0 0 .0 0 2 0
0 0 0 2

Example 3: Verify Cayley-Hamilton’s theorem for the linear transformation T represented
by the matrix A.

A = 
0 0 1
3 1 0
2 1 4

Solution: The characteristic polynomial  is given by

A x I = 
0 0 1

3 1 0
2 1 4

x
x

x

= – 1 4 3 2 2x x x x

= 24 5 5 2x x x x

= 3 25 6 5 0x x x

or f(x) = 3 25 6 5 0x x x

Now

A2 = 
0 0 1 0 0 1 2 1 4
3 1 0 3 1 0 3 1 3
2 1 4 2 1 4 5 5 14

A3 = 
2 1 4 0 0 1 5 5 14

3 1 3 3 1 0 3 4 15
5 5 14 2 1 4 13 19 51

So

f(A) = A3 – 5A2 + 6A – 5I

= 
5 5 14 10 5 20 0 0 6 5 0 0
3 4 15 15 5 15 18 6 0 0 5 0

13 19 51 25 25 14 12 6 24 0 0 5

= 
0 0 0
0 0 0 0
0 0 0

where 0 being null matrix. So f(A) = 0
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NotesSelf Assessment

1. Let A be the following 3 3 matrix over F;

A = 
2 1 1
2 2 1

1 1 2

Find the characteristic polynomial for A and also the minimal polynomial for A.

2. Let A be the following 3 3 matrix over F;

A = 
1 3 7
4 2 3
1 2 1

Find the characteristic polynomial for A and also find the minimal polynomial for A.

13.3 Summary

 In this unit certain terms related to linear operator T are defined, i.e., the monic polynomial,
annihilating polynomials, minimal polynomials as well as characteristic polynomials.

 With the help of Cayley-Hamilton theorem it becomes easier to search for the minimal
polynomials of various operators.

13.4 Keywords

Annihilating Polynomial: Annihilating polynomial f(x) over the field F is such that for a matrix
A of n n  matrix over the field f(A) = 0, then we say that the polynomial annihilates the matrix.
If a linear operator T is represented by the matrix then f(T) = 0 gives us the annihilating polynomial
for the linear operator T.

Monic Polynomial: The monic polynomial is a polynomial f(x) whose coefficient of the highest
degree in it is unity.

13.5 Review Questions

1. Let A be the following 3 3 matrix over F;

A = 
2 4 3
0 1 1
2 2 1

Find the characteristic polynomial and minimal polynomial for A.

2. Let A be the following 3 3 matrix over F;

A = 
1 2 0
2 1 0
0 0 1

Find the characteristic polynomial and minimal polynomial for A.
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Notes Answers: Self Assessment

1. The characteristic polynomial is given by

f(x) = x3 – 6x2 + 9x – 4 = 0

and that this is also the minimal polynomial for A.

2. The characteristic polynomial for A is

f(x) = x3 – 4x2 - 20x – 35 = 0,

and that this is also the minimal polynomial for A.

13.6 Further Readings

Books Kenneth Hoffman and Ray Kunze Linear Algebra

I.N Herstein Topics in Algebra
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Objectives

After studying this unit, you will be able to:

 Know about few concepts which are useful in analysing further properties of the linear
operator T.

 Understand concepts like invariant subspace, the restriction operator Tw, the T-conductor
of a vector  into subspace W.

 See that all these concepts help us in understanding the structure of minimal polynomial
of linear operator.

 Understand the restriction operator Tw helps in writing the matrix A of the linear operator
in a block form and so the characteristic polynomial for Tw divides the characteristic
polynomial for T.

Introduction

In this unit we are still studying the properties of a linear operator on the vector space V. The
concept of invariant subspace, the restriction operator Tw help us in finding the characteristic
polynomial of T as well as its annihilator and so it helps in diagonalization of the matrix A of the
linear operator T.

14.1 Invariant Subspaces: Definitions

In this unit, we shall introduce a few concepts which are useful in analysing further the properties
of a linear operator. We shall use these concepts to obtain characterizations of diagonalizable
(and triangulable) operators in terms of their minimal polynomials.

Invariant Subspace

A subspace W of the vector space V is invariant of more precisely T-invariant if for each vector
 in W the vector T is in W, i.e., T(w) is contained in W. When this is so T induces a linear
operator on W, called restriction to W. We often denote the restriction by Tw. The linear operator
Tw is defined by Tw() = T(), for  in W, but Tw is quite a different object from T since its
domain is W and not V.
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Notes The T-conductor of  into W

Let W be an invariant subspace for T and let  be a vector in V. The T-conductor of  into W is the
set ST(; W), which consists of all polynomials g (over the scalar field), such that g(T) is in W.
Some authors call that collection of polynomials the ‘stuffer’. In the special case W = {0}, the
conductor is called T-annihilator of .

14.2 Theorems and Examples

Example 1: If T is any linear operator on V, then V is invariant under T, as is the zero
subspace. The range of T and the null space of T are also invariant under T.

Example 2: Let F be a field and let D be the differentiation operator on the space F[x] of
polynomials over F. Let n be a positive integer and let W be the subspace of polynomials of
degree not greater than n. Then W is invariant under D. This is just another way of saying that D
is ‘degree decreasing’.

Example 3: Here is a very useful generalization of Example 1. Let T be a linear operator
on V. Let U be any linear operator on V which commutes with T, i.e., TU = UT. Let W be the range
of U and let N be the null space of U. Both W and N are invariant under T. If  is in the range
of U, say  = U, then T = T(U) = U(T) so that T is in the range of U. If  is in N, then U(T)
= T(U) = T(0) = 0; hence T is in N.

A particular type of operator which commutes with T is an operator U = g(T), where g is a
polynomial. For instance, we might have U = T – cI, where c is a characteristic value of T. The null
space of U is familiar to us. We see that this example includes the (obvious) fact that the space of
characteristic vectors of T associated with the characteristic value c is invariant under T.

Example 4: Let T be the linear operator on R2 which is represented in the standard
ordered basis by the matrix

0 1
.

1 0
A

 
  
 

Then the only subspaces of R2 which are invariant under T are R2 and the zero subspace. Any
other invariant subspace would necessarily have dimension 1. But, if W is the subspace spanned
by some non-zero vector , the fact that W is invariant under T means that  is a characteristic
vector, but A has no real characteristic values.

When V is finite-dimensional, the invariance of W under T has a simple matrix interpretation,
and perhaps we should mention it at this point. Suppose we choose an ordered basis  = {1,...,n}
for V such that ’ = {1,...,r} is an ordered basis for W (r = dim W). Let A = [T] so that

Tj =
1

n

ij i
i

A


 ...(1)

Since W is invariant under T, the vector Tj belongs to W for j  r. This means that

Tj =
1

r

ij i
i

A


 , j  r ...(2)
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NotesIn other words, Aij = 0 if j  r and i  r.

Schematically, A has the block form

A =
0
B C

D
 
 
 

...(3)

where B is an r × r matrix, C is an r × (n – r) matrix, and D is an (n – r) × (n – r) matrix. The reader
should note that according to (2) the matrix B is precisely the matrix of the induced operator Tw
in the ordered basis ’.

Most often, we shall carry out arguments about T and Tw without making use of the block form
of the matrix A in (3). But we should note how certain relations between Tw and T are apparent
from that block form.

Lemma: Let W be an invariant subspace for T, the characteristic polynomial for the restriction
operator Tw divides the characteristic polynomial for T. The minimal polynomial for Tw divides
the minimal polynomial for T.

Proof: We have

0
B C

A
D

 
  
 

where A = [T] and B = [Tw]’. Because of the block form of the matrix

det (xI – A) = det (xI – B) det (xI – D)

That proves the statement about characteristic polynomials. Notice that we used I to represent
identity matrices of three different sizes.

The kth power of the matrix A has the block form

0

k
kk
k

B C
A

D
 

  
 

where Ck is some r × (n – r) matrix. Therefore, any polynomial which annihilates A also annihilates
B (and D too). So, the minimal polynomial for B divides the minimal polynomial for A.

Example 5: Let T be any linear operator on a finite-dimensional space V. Let W be the
subspace spanned by all of the characteristic vectors of T. Let c1,...,ck be the distinct characteristic
values of T. For each i, let Wi be the space of characteristic vectors associated with the characteristic
value ci, and let i be an ordered basis for Wi. The lemma before Theorem 2 of unit 12 tells us that
’ = (1,...,k) is an ordered basis for W. In particular,

dim W = dim W1 + ... + dim Wk.

Let ’ = {1,...,r} so that the first few ’s form the basis 1, the next few 2, and so on. Then

Ti = tii,         i = 1,...,r

where (t1,..., tr) = (c1, c1,..., c1,..., ck, ck,..., ck) with ci repeated dim Wi times.

Now W is invariant under T, since for each  in W we have

 = x11 + ... + xrr

T

 = t1x11 + ... + trxrr
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relative to  has the block form (3), and the matrix of the restriction operator Tw relative to the
basis ’ is

1

2

0 0
0 0

0 0 r

t
t

B

t

 
 
 
 
 
 




  


The characteristic polynomial of B (i.e., of Tw) is

g = (x – c1)e1 ... (x – ck)ek

where ei = dim Wi. Furthermore, g divides f, the characteristic polynomial for T. Therefore, the
multiplicity of ci as a root of f is at least dim Wi.

All of this should make Theorem 2 of unit 12 transparent. It merely says that T is diagonalizable
if and only if r = n, if and only if e1 + ... + ek = n. It does not help us too much with the
non-diagonalizable case, since we don’t know the matrices C and D of (3).

Lemma: If W is an invariant subspace for T, then W is invariant under every polynomial in T.
Thus, for each  in V, the conductor ST(; W) is an ideal in the polynomial algebra F[x].

Proof: If  is in W, then T is in W. Consequently, T(T) = T2 is in W. By induction, Tk is in W for
each k. Take linear combinations to see that f(T) is in W for every polynomial f.

The definition of ST(; W) makes sense if W is any subset of V. If W is a subspace, then ST(; W) is
a subspace of F[x], because

(cf + g)(T) = cf(T) + g(T)

If W is also invariant under T, let g be a polynomial in ST(; W), i.e., let g(T) be in W. If f is any
polynomial, then f(T)[g(T)] will be in W. Since

(fg)(T) = f(T)g(T)

fg is in ST(; W). Thus the conductor absorbs multiplication by any polynomial.

The unique monic generator of the ideal ST(; W) is also called the T-conductor of  into W
(the T-annihilator in case W = {0}). The T-conductor of  into W is the monic polynomial g of least
degree such that g(T) is in W. A polynomial f is in ST(; W) if and only if g divides f. Note that
the conductor ST(; W) always contains the minimal polynomial for T; hence, every T-conductor
divides the minimal polynomial for T.

As the first illustration of how to use the conductor ST(; W), we shall characterize triangulable
operators. The linear operator T is called triangulable if there is an ordered basis in which T is
represented by a triangular matrix.

Lemma. Let V be a finite-dimensional vector space over the field F. Let T be a linear operator on
V such that the minimal polynomial for T is a product of linear factors

p = (x – c1)r1 ... (x – ck)rk,   ci in F

Let W be a proper (W  V) subspace of V which is invariant under T. There exists a vector  in V
such that

(a)  is not in W;

(b) (T – cI)  is in W, for some characteristic value c of the operator T.



LOVELY PROFESSIONAL UNIVERSITY 181

Unit 14: Invariant Subspaces

NotesProof: What (a) and (b) say is that the T-conductor of  into W is a linear polynomial. Let  be any
vector in V which is not in W. Let g be the T-conductor of  into W. Then g divides p, the minimal
polynomial for T. Since  is not in W, the polynomial g is not constant. Therefore,

g = (x – c1)e1 ... (x – ck)ek

where at least one of the integers ei is positive. Choose j so that ej > 0.

Then (x – cj) divides g:

g = (x – cj)h

By the definition of g, the vector  = h(T) cannot be in W. But

(T – cjI) = (T – cjI)h(T)

= g(T)

is in W.

Theorem 1: Let V be a finite-dimensional vector space over the field F and let T be a linear
operator on V. Then T is triangulable if and only if the minimal polynomial for T is a product of
linear polynomials over F.

Proof: Suppose that the minimal polynomial factors

p = (x – c1)r1 ... (x – ck)rk

By repeated application of the lemma above, we shall arrive at an ordered basis  = {1,...,n} in
which the matrix representing T is upper triangular:

11 12 13 1

22 23 2

33 3

0
0 0[ ] =

0 0 0

n

n

n

nn

a a a a
a a a

a aT

a

 
 
 
 
 
 
 
 





   


 ...(4)

Now (4) merely says that

Tj = 1j1 + ... + jjj,      1  j  n ...(5)

that is, Tj is in the subspace spanned by 1,...,j. To find 1,...,n, we start by applying the lemma
to the subspace W = {0}, to obtain the vector 1. Then apply the lemma to W1, the space spanned
by 1, and we obtain 2. Next apply the lemma to W2, the space spanned by 1 and 2. Continue
in that way. One point deserves comment. After 1,..., i have been found, it is the triangular-
type relations (5) for j = 1,..., i which ensure that the subspace spanned by 1,..., i is invariant
under T.

If T is triangulable, it is evident that the characteristic polynomial for T has the form

f = (x – c1)d1 ... (x – ck)dk,     ci in F

Just look at the triangular matrix (4). The diagonal entries a11,..., a1n are the characteristic values,
with ci repeated di times. But, if f can be so factored, so can the minimal polynomial p, because it
divides f.

Corollary: Let F be an algebraically closed field, e.g., the complex number field. Every n × n
matrix over F is similar over F to a triangular matrix.

Theorem 2: Let V be a finite-dimensional vector space over the field F and let T be a linear
operator on V. Then T is diagonalizable if and only if the minimal polynomial for T has the form
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where c1,..., ck are distinct elements of F.

Proof: We have noted earlier that, if T is diagonalizable, its minimal polynomial is a product of
distinct linear factors. To prove the converse, let W be the subspace spanned by all of the
characteristic vectors of T, and suppose W  V. By the lemma used in the proof of Theorem 1,
there is a vector  not in W and a characteristic value cj of T such that the vector

 = (T – cjI)

lies in W. Since  is in W,

 = 1 + ... + k

where Ti = cii, 1  i  k, and therefore the vector

h(T) = h(c1)1 + ... + h(ck)k

is in W, for every polynomial h.

Now p = (x – cj)q, for some polynomial q. Also

q – q(cj) = (x – cj)h

We have

q(T) – q(cj) = h(T)(T – cjI) = h(T’)

But h(T) is in W and, since

0 = p(T) = (T – cjI)q(T)

the vector q(T) is in W. Therefore, q(cj) is in W. Since  is not in W, we have q(cj) = 0. That
contradicts the fact that p has distinct roots.

In addition to being an elegant result, Theorem 2 is useful in a computational way. Suppose we
have a linear operator T, represented by the matrix A in some ordered basis, and we wish to
know if T is diagonalizable. We compute the characteristic polynomial f. If we can factor f:

1
1( ) ( ) kdd

kf x c x c  

we have two different methods for determining whether or not T is diagonalizable. One method
is to see whether (for each i) we can find di independent characteristic vectors associated with the
characteristic value ci. The other method is to check whether or not (T – c1I)  (T – ckI) is the zero
operator.

Theorem 1 provides a different proof of the Cayley-Hamilton theorem. That theorem is easy for
a triangular matrix. Hence, via Theorem 1, we obtain the result for any matrix over an
algebraically closed field. Any field is a subfield of an algebraically closed field. If one knows
that result, one obtains a proof of the Cayley-Hamilton theorem for matrices over any field. If
we at least admit into our discussion the Fundamental Theorem of Algebra (the complex number
field is algebraically closed), then Theorem 1 provides a proof of the Cayley-Hamilton theorem
for complex matrices, and that proof is independent of the one which we gave earlier.

Self Assessment

1. Let T be the linear operator on R2, the matrix of which in the standard ordered basis is

1 1
2 2

A
 

  
 
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Notes(a) Prove that the only subspaces of R2 invariant under T are R2 and the zero subspace.

(b) If U is the linear operator on C2, the matrix of which in the standard ordered basis
is A, show that U has 1-dimensional invariant subspaces.

2. Let W be an invariant subspace for T. Prove that the minimal polynomial for the restriction
operator TW divides the minimal polynomial for T, without referring to matrices.

14.3 Summary

 In this unit the idea of invariant subspace of a linear operator T on the n dimension space
helps in introducing a restriction operator Tw as well as a conductor of a vector   V into
the subspace W.

 These concepts generally help us in the diagonalizing of the matrix of the linear
operator T.

 These concepts also lead to triangular form of the matrix A of the linear operator T if A is
diagonalizable.

14.4 Keywords

Invariant: If T is any linear operator on V, then V is invariant under T, as is the zero subspace.
The range of T and the null space of T are also invariant under T.

Restriction Operator: By introducing the concepts of the restriction operator Tw and the conductor
of a vector into the invariant sub-space the characteristic polynomial of the linear operator is
cast into a form where the matrix of T can be seen to be diagonalizable or not.

Restriction: T induces a linear operator on W, called restriction to W.

14.5 Review Questions

1. Show that for the matrix A

2 2 4
1 3 4

1 2 3
A

  
 

  
   

A2 = A.

Find the characteristic values of A.

2. Show that every matrix A such that A2 = A is similar to a diagonal matrix.

14.6 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

Michael Artin, Algebra
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Objectives

After studying this unit, you will be able to:

 Know the structure of the triangular form of a matrix of a linear operator T on a space V
over the field F.

 Understand that we can diagonalize two or more commuting matrices simultaneously.

 Know that the matrix of a linear operator T commutes with that of a polynomial of a linear
operator T.

Introduction

In this unit we are again exploring the properties of a linear operator on the space V over the field F.

In an upper triangular or lower triangular matrix the elements in the diagonal are the
characteristic values.

15.1 Simultaneous Triangulation and Simultaneous Diagonalization

Let V be a finite-dimensional space and let  be a family of linear operators on V. We ask when
we can simultaneously triangulate or diagonalize the operators in , i.e., find one basis  such
that all of the matrices [T], T in , are triangular (or diagonal). In the case of diagonalization,
it is necessary that  be a commuting family of operators: UT = TU for all T, U in . That follows
from the fact that all diagonal matrices commute. Of course, it is also necessary that each operator
in  be a diagonalizable operator. In order to simultaneously triangulate, each operator in 
must be triangulable. It is not necessary that  be a commuting family; however that condition
is sufficient for simultaneous triangulation (if each T can be individually triangulated). These
results follow from minor variations of the proofs of Theorems 1 and 2 of unit 14.

The subspace W is invariant under (the family of operators)  if W is invariant under each
operator in .

Lemma: Let  be a commuting family of triangulable linear operator on V. Let W be a proper
subspace of V which is invariant under . There exists a vector  in V such that

(a)  is not in W;

(b) for each T in , the vector T is in the subspace spanned by  and W.



LOVELY PROFESSIONAL UNIVERSITY 185

Unit 15: Simultaneous Triangulation and Simultaneous Diagonalization

NotesProof: It is no loss of generality to assume that  contains only a finite number of operators,
because of this observation. Let {T1,...,Tn) be a maximal linearly independent subset of , i.e., a
basis for the subspace spanned by . If  is a vector such that (b) holds for each Ti, then (b) will
hold for every operator which is a linear combination of T1,..., Tr.

By the lemma before Theorem 1 of unit 14 (this lemma for a single operator), we can find a
vector 1 (not in W) and a scalar c1 such that (T1 – c1I)1 is in W. Let V1 be the collection of all
vectors  in V such that (T1 – c1I) is in W. Then V1 is a subspace of V which is properly larger
than W. Furthermore, V1 is invariant under , for this reason. If T commutes with T1, then

(T1 – c1I)(T) = T(T1 – c1I)

If  is in V1, then (T1 – c1I) is in W. Since W is invariant under each T in , we have T(T1 – c1I)
in W, i.e., T in V1, for all  in V1 and all T in .

Now W is a proper subspace of V1. Let U2 be the linear operator on V1 obtained by restricting T2

to the subspace V1. The minimal polynomial for U2 divides the minimal polynomial for T2.
Therefore, we may apply the lemma before Theorem 1 of unit 14 to that operator and the
invariant subspace W. We obtain a vector 2 in V1 (not in W) and a scalar c2 such that (T2 – c2I) 2

is in W. Note that

(a) 2 is not in W;

(b) (T1 – c1I)2 is in W;

(c) (T2 – c2I)2 is in W.

Let V2 be the set of all vectors  in V1 such that (T2 – c2I) is in W. Then V2 is invariant under .
Apply the lemma before Theorem 1 of unit 14 to U3, the restriction of T3 to V2. If we continue in
this way, we shall reach a vector  = r (not in W) such that (Tj – cjI) is in W, j = 1,..., r.

Theorem 1: Let V be a finite-dimensional vector space over the field F. Let  be a commuting
family of triangulable linear operators on V. There exists an ordered basis for V such that every
operator in  is represented by a triangular matrix in that basis.

Proof: Given the lemma which we just proved, this theorem has the same proof as does
Theorem 1 of unit 14, if one replaces T by .

Corollary: Let  be a commuting family of n × n matrices over an algebraically closed field F.
There exists a non-singular n × n matrix P with entries in F such that P–1AP is upper-triangular,
for every matrix A in .

Theorem 2: Let F be a commuting family of diagonalizable linear operators on the finite-
dimensional vector space V. There exists an ordered basis for V such that every operator in  is
represented in that basis by a diagonal matrix.

Proof: We could prove this theorem by adapting the lemma before Theorem 1 to the
diagonalizable case, just as we adapted the lemma before Theorem 1 of unit 14 to the
diagonalizable case in order to prove Theorem 2 of unit 14. However, at this point it is easier to
proceed by induction on the dimension of V.

If dim V = 1, there is nothing to prove. Assume the theorem for vector spaces of dimension less
than n, and let V be an n-dimensional space. Choose any T in  which is not a scalar multiple of
the identity. Let c1,..., ck be the distinct characteristic values of T, and (for each i) let Wi be the null
space of T – ciI. Fix an index i. Then Wi is invariant under every operator which commutes
with T. Let i be the family of linear operators on Wi obtained by restricting the operators in 
to the (invariant) subspace Wi. Each operator in i is diagonalizable, because its minimal
polynomial divides the minimal polynomial for the corresponding operator in . Since dim
Wi < dim V, the operators in i can be simultaneously diagonalized. In other words, Wi has a
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Notes basis i which consists of vectors which are simultaneously characteristic vectors for every
operator in i.

Since T is diagonalizable, the lemma before Theorem 2 of unit 12 tells us that  = (1,..., k) is a
basis for V. That is the basis we seek.

If we consider finite dimensional vector space V over a complex field F, then there is a basis such
that the matrix of the linear operator T is diagonal. This is due to the key fact that every complex
polynomial of positive degree has a root. This tells us that every linear operator has at least one
eigenvector.

From the theorem above we now have that every complex n × n matrix A is similar to an upper
triangular matrix i.e. there is a matrix P, such that P–1 AP is upper triangular.

Equally we also state that for a linear operator T on a finite dimensional complex vector space V,
there is a basis  of V such that the matrix of T with respect to that basis is upper triangular.

Let V contain an eigenvector of A, call it v1. Let  be its eigenvalue. We extend (v1) to a Basis
 = (v1, v2, …, vn) for V. There will be a matrix P for which the new matrix A  = P–1 A P has the block

form

 
   

  

*
A O D

where D is an (n – 1) × (n – 1) matrix,  is a 1 × 1 matrix of the restriction of T to W (v1). Here O
denotes n – 1 zeros below  in the first column. By induction on n, we may assume that there
exists a matrix Q such that Q–1 D Q is upper triangular. If we denote Q1 by the relation

 
  
  

1

1 O
Q O Q

then




 
    

  

1
11 1

*
A Q A Q O Q DQ

is the upper triangular and thus

A  = (P Q1)–1A (P Q1).

Knowing one vector v corresponding to the characteristic value  we can find a linear operator
P and then Q1 to find A .

Self Assessment

1. Find an invertible real matrix P such that P–1AP and P–1BP are both diagonal, where A and
B are the real matrices

(a)
1 2 3 8

,
0 2 0 1

A B
   

       

(b)
1 1 1

,
1 1 1

a
A B

a
   

    
   
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Notes2. Let  be a commuting family of 3 × 3 complex matrices. How many linearly independent
matrices can  contain? What about the n × n case?

15.2 Summary

 In this unit we are dealing with matrices that commute with each other.

 In a triangular matrix the main diagonal has the entries of the characteristic values and it
has not zero entries in the upper part of the diagonal only or non-zero entries in the lower
of the main diagonal.

 If two or more matrices commute then we can diagonalize them simultaneously.

15.3 Keywords

Diagonalizable: Each operator in i is diagonalizable, because its minimal polynomial divides
the minimal polynomial for the corresponding operator in .

Ordered Basis: There exists an ordered basis for V such that every operator in  is represented
by a triangular matrix in that basis.

15.4 Review Question

1. Let T be a linear operator on a n-dimension space and suppose that T has n distinct
characteristic values. Prove that any linear operator which commutes with T is a polynomial
in T.

Answers: Self Assessment

1. (a)  
  
 

1 2
,

0 1
P (b)  

   

1 1
1 1

P

2. 3, n

15.5 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

I.N. Herstein, Topics in Algebra
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Objectives

After studying this unit, you will be able to:

 Understand the meanings of invariant subspaces as well as decomposition of a vector
space into the invariant direct sums of the independent subspaces.

 Know the projection operators and their properties

 See that there is less emphasis is on matrices and more attention is given to subspaces.

Introduction

This unit and the next units are slightly more complicated than the other previous units.
The ideas of invariant subspaces and their relations with the vector space V is obtained.

The ideas of projection operators and their properties are introduced. These ideas will help in
expressing the given linear operator T in terms of the direct sums of the operators T1j TK as seen
in the next unit.

16.1 Overview

We are again going to analyse a single linear operator on a finite dimensional space V over the
field F. In the next three units we shall stress less in terms of matrices and stress more on the
subspaces, in order to find an ordered basis in which the matrix of T assumes an especially a
simple form. Our aim in three units will be as follows: To decompose the underlying space V
into a sum of invariant subspaces for T such that the restriction operators on these subspaces are
simple. These subspaces will be taken as independent subspaces of the vector space V and after
finding the independent basis of each independent subspace the ordered basis of the whole
space will be constructed. Given such a decomposition of the vector space we then see that T
induces a linear operator Ti on each subspace Wi, by restriction. We shall describe this situation
by saying that the linear operator is the invariant direct sum of the operators T1, T2,..., Tk. Once
the space is decomposed in terms of invariant subspaces, we shall introduce the concepts of
projection operators on V.
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Notes16.2 Direct-sum Decompositions

Definition: Let W1,..., Wk be subspaces of the vector space V. We say that W1,..., Wk are independent
if

1 + ... + k = 0, i in Wi

implies that each i is 0.

For k = 2, the meaning of independence is {0} intersection, i.e., W1 and W2 are independent if and
only if W1  W2 = {0}. If k > 2, the independence of W1,..., Wk says much more than W1  ...  Wk = {0}.
It says that each Wj intersects the sum of the other subspaces Wi only in the zero vector.

The significance of independence is this. Let W = W1 + ... + Wk be the subspace spanned by W1,...,
Wk. Each vector  in W can be expressed as a sum

 = 1 + ... + k, i in Wi.

If W1,..., Wk are independent, then that expression for  is unique; for if

 = 1 + ... + k, i in Wi

then 0 = (1 – 1) + ... + (k – k), hence i – i = 0, i = 1,..., k. Thus, when W1,..., Wk are independent,
we can operate with the vectors in W as k-tuples (1,..., k), i in Wi, in the same way as we operate
with vectors in Rk as k-tuples of numbers.

Lemma: Let V be a finite-dimensional vector space. Let W1,..., Wk be subspaces of V and let
W = W1 + ... + Wk. The following are equivalent.

(a) W1,..., Wk are independent.

(b) For each j, 2  j  k, we have

Wj  (W1 + ... + Wj–1) = {0}

(c) If i is an ordered basis for Wi, 1  i  k, then the sequence  = (1,..., k) is an ordered basis
for W.

Proof: Assume (a). Let  be a vector in the intersection Wj  (W1 + ... + Wj–1). Then there are vectors
1,..., j–1 with i in Wi such that  = 1 + ... + j–1. Since

1 + ... + j–1 + (–) + 0 + ... + 0 = 0

and since W1, ..., Wk are independent, it must be that 1 = 2 = ... = j–1 =  = 0.

Now, let us observe that (b) implies (a). Suppose

0 = 1 + ... + k, i in Wi

Let j be the largest integer i such that i  0. Then

0 = 1 + ... + j, j  0.

Thus j = –1 – ... – j–1 is a non-zero vector in Wj  (W1 + ... + Wj–1).

Now that we know (a) and (b) are the same, let us see why (a) is equivalent to (c). Assume (a). Let
i be basis for Wi, 1  i  k, and let  = (1,..., k). Any linear relation between the vectors in  will
have the form

1 + ... + k = 0

where i is some linear combination of the vectors in i. Since W1,.., Wk are independent, each
i is 0. Since each i is independent, the relation we have between the vectors in  is the trivial
relation.
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Notes If any (and hence all) of the conditions of the last lemma hold, we say that the sum W = W1 + ...
+ Wk is direct or that W is the direct sum of W1,..., Wk and we write

W = W1    Wk

In the literature, the reader may find this direct sum referred to as an independent sum or the
interior direct sum of W1,..., Wk.

Example 1: Let V be a finite-dimensional vector space over the field F and let {1,..., n}
be any basis for V. If Wi is the one-dimensional subspace spanned by i, then V = W1    Wn.

Example 2: Let n be a positive integer and F a subfield of the complex numbers, and let
V be the space of all n × n matrices over F. Let W1 be the subspace of all symmetric matrices, i.e.,
matrices A such that At = A. Let W2 be the subspace of all skew-symmetric matrices, i.e., matrices
A such that At = –A. Then V = W1  W2. If A is any matrix in V, the unique expression for A as a
sum of matrices, one in W1 and the other in W2, is

A = A1 + A2

A1 =
1 ( )
2

tA A

A2 =
1 ( – )
2

tA A

Example 3: Let T be any linear operator on a finite-dimensional space V. Let c1,.., ck be the
distinct characteristic values of T, and let Wi be the space of characteristic vectors associated with
the characteristic value ci. Then W1,..., Wk are independent. In particular, if T is diagonalizable,
then V = W1    Wk.

Definition: If V is a vector space, a projection of V is a linear operator E on V such that E2 = E.

Suppose that E is a projection. Let R be the range of E and let N be the null space of E.

1. The vector  is in the range R if and only if E = . If  = E, then E = E2 = E = .
Conversely, if  = E, then (of course)  is in the range of E.

2. V = R  N.

3. The unique expression for  as a sum of vectors in R and N is  = E + ( – E).

From (1), (2), (3) it is easy to see the following. If R and N are subspaces of V such that V = R  N,
there is one and only one projection operator E which has range R and null space N. That
operator is called the projection on R along N.

Any projection E is (trivially) diagonalizable. If {1,..., r} is a basis for R and {r+1,..., n} a basis
for N, then the basis  = {1,..., n} diagonalizes E.

0
[ ]

0 0
I

E
 

  
 



where I is the r × r identity matrix. That should help explain some of the terminology connected
with projections. The reader should look at various cases in the plane R2 (or 3-space, R3), to
convince himself that the projection on R along N sends each vector into R by projecting it
parallel to N.
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NotesProjections can be used to describe direct-sum decompositions of the space V. For, suppose
V = W1    Wk. For each j we shall define an operator Ej on V. Let  be in V, say  = 1 + 
+ k with i in Wi. Define Ej = j. Then Ej is a well-defined rule. It is easy to see that Ej is linear,
that the range of Ej is Wj, and that 2

jE  = Ej. The null space of Ej is the subspace

(W1 +   + Wj–1 + Wj+1 +   + Wk)

for, the statement that Ej = 0 simply means j = 0, i.e., that  is actually a sum of vectors from the
spaces Wi with i  j. In terms of the projection Ej we have

 = E1 +   + Ek

for each  in V. What (1) says is that

I = E1 +   + Ek

Note also that if i  j, then EiEj = 0, because the range of Ej is the subspace Wj which is contained
in the null space of Ei. We shall now summarize our findings and state and prove a converse.

Theorem 1: If V = W1    Wk, then there exist k linear operators E1,..., Ek on V such that

(i) each Ei is a projection 2
1( );iE E

(ii) EiEj = 0, if i  j;

(iii) I = E1 +   + Ek;

(iv) the range of Ei is Wi.

Conversely, if E1,..., Ek are k linear operators on V which satisfy conditions (i), (ii) and (iii), and
if we let Wi be the range of Ei, then V = Wi    Wk.

Proof: We have only to prove the converse statement. Suppose E1,..., Ek are linear operators on V
which satisfy the first three conditions, and let Wi be the range of Ei. Then certainly

V = W1 +   + Wk;

for, by condition (iii) we have

 = E1 +   + Ek

for each  in V, and Ei is in Wi. This expression for  is unique, because if

 = 1 +   + k

with i in Wi, say i = Eii, then using (i) and (ii) we have

Ej =
1

k

j i
i

E




=
1

k

j i i
i

E E




= 2
j jE 

= Ejj

=  j

This shows that V is the direct sum of the Wi.
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Notes Self Assessment

1. Let V be a finite dimensional vector space and W1 is any subspace of V. Prove that there is
a subspace W2 of V such that V = W1  W2.

2. True or false? If a diagonalizable operator has only the characteristic values 0 and 1, it is a
projection.

3. Let E1, E2, ... EK be linear operators on the space V such that E1 + E2 + ... + EK = I. Prove that

if EiEj = 0 for i  j, then 2
i iE E  for each i.

4. Let V be a finite dimensional vector space and let W1,... WK be subspaces of V such that

V = W1 + W2 + ... + WK and dim V = dim W1 + ... + WK

Prove that V = W1  W2  ...  WK.

16.3 Summary

 In this unit the importance is given to the ideas of invariant subspaces of a vector space V
for a linear operator T.

 The vector space V is decomposed into a set of linear invariant subspaces.

 The sum of the bases vectors of the invariant subspaces defines the basis vectors of the
vector space V.

16.4 Keywords

Skew-symmetric Matrices: Skew-symmetric matrices, i.e., matrices A such that At = –A.

Subspaces: These subspaces will be taken as independent subspaces of the vector space V and
after finding the independent basis of each independent subspace the ordered basis of the whole
space will be constructed.

16.5 Review Questions

1. If E1, E2 are projections onto independent subspaces, then E1 + E2 is a projection. True or
false?

2. Let E1, E2 be linear operators on the space V such that E1 + E2 = I, and 2
1 1E E  and 2

2 2 ,E E

then prove that E1E2 = 0.

Answer: Self Assessment

2. Yes, true

16.6 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

I.N. Herstein, Topics in Algebra
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Objectives

After studying this unit, you will be able to:

 See that the vector space V is decomposed as a direct sum of the invariant subspaces under
some linear operator T.

 Understand that the linear operator induces a linear operator Ti on each invariant subspaces
Wi by restriction.

 Know that if i is the vector in the invariant subspace Wi then the vector  in the finite
vector space V is obtained as a linear combinations of its projections i in the subspace Wi.

Introduction

In this unit we again consider a linear transformation T on the finite vector space. Here the
vector space is decomposed as the direct sum of the invariant subspaces Wi. The linear operator
induces a linear operator Ti for each invariant subspaces Wi.

The method of finding the projection operators and their properties is discussed.

17.1 Overview

In this unit we are primarily interested in the direct sum decomposition V = W1  W2  + ... + WK,
where each of the subspaces Wi is invariant under some linear operator T. Given such a
decomposition of V, T induces a linear operator Ti on each Wi by restriction. If i is the vector in
Wi then the vector  in V can be given as a linear combinations of its projection i in the invariant
subspace Wi. Thus the action of T is then understood as follows:

If  is a vector in V, we have unique vectors 1,..., k with i in Wi such that

 = 1 + ... + k

and then

T = T11 + ... + Tkk

We shall describe this situation by saying that T is the direct sum of the operators T1,..., Tk. It must
be remembered in using this terminology that the Ti are not linear operators on the space V but
on the various subspaces Wi. The fact that V = W1  ...  Wk enables us to associate with each  in
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Notes V a unique k-tuple (1,..., k) of vectors i in Wi (by  = 1 + ... + k) in such a way that we can carry
out the linear operations in V by working in the individual subspaces Wi. The fact that each Wi is
invariant under T enables us to view the action of T as the independent action of the operators Ti

on the subspaces Wi. Our purpose is to study T by finding invariant direct-sum decompositions
in which the Ti are operators of an elementary nature.

Before looking at an example, let us note the matrix analogue of this situation. Suppose we select
an ordered basis i for each Wi, and let it be the ordered basis for V consisting of the union of the
i arranged in the order 1,..., k, so that  is a basis for V. From our discussion concerning the
matrix analogue for a single invariant subspace, it is easy to see that if A = [T] and Ai = [Ti], then
A has the block form

1

2

0 0
0 0

0 0 k

A
A

A

A

 
 
 
 
 
 




  


...(1)

In (1), Ai is a di × di matrix (di = dim Wi), and the 0’s are symbols for rectangular blocks of scalar
0’s of various sizes. It also seems appropriate to describe (1) by saying that A is the direct sum of
the matrices A1,..., Ak.

Most often, we shall describe the subspace Wi by means of the associated projections Ei (Theorem
1 of unit 16). Therefore, we need to be able to phrase the invariance of the subspaces Wi in terms
of the Ei.

17.2 Some Theorems

Theorem 1: Let T be a linear operator on the space V, and W1,..., Wk and E1,..., Ek be as in Theorem
1 of unit 16. Then a necessary and sufficient condition that each subspace Wi be invariant under
T is that T commutes with each of the projections Ei, i.e.,

TEi = EiT, i = 1,..., k

Proof: Suppose T commutes with each Ei. Let  be in Wj. Then Ej = , and

T = T(Ej)

= Ej(T)

which shows that T is in the range of Ej, i.e., that Wj is invariant under T.

Assume now that each Wi is invariant under T. We shall show that TEj = EjT. Let  be any vector
in V. Then

 = E1 + ... + Ek

T = TE1 + ... + TEk

Since Ei is in Wi, which is invariant under T, we must have T(Ei) = Eii for some vector i. Then

EjTEi = EjEii

=
0, if

, ifj j

i j
E i j




 

Thus

EjT = EjTE1 + ... + EjTEk

= Ejj
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This holds for each  in V, so EjT = TEj.

We shall now describe a diagonalizable operator T in the language of invariant direct sum
decompositions (projections which commute with T). This will be a great help to us in
understanding some deeper decomposition theorems later. The description which we are about
to give is rather complicated, in comparison to the matrix formulation or to the simple statement
that the characteristic vectors of T span the underlying space. But, we should bear in mind that
this is our first glimpse at a very effective method, by means of which various problems concerned
with subspaces, bases, matrices, and the like can be reduced to algebraic calculations with linear
operators. With a little experience, the efficiency and elegance of this method of reasoning
should become apparent.

Theorem 2: Let T be a linear operator on a finite-dimensional space V. If T is diagonalizable and
if c1,..., ck are the distinct characteristic values of T, then there exist linear operators E1,..., Ek on V
such that

(i) T = c1E1 + ... + ckEk;

(ii) I = ‘E1 + ... + Ek;

(iii) EiEj = 0, i  j;

(iv) 2
1 iE E  (Ei is a projection);

(v) the range of Ei is the characteristic space for T associated with ci.

Conversely, if there exist k distinct scalars c1,..., ck and k non-zero linear operators E1,..., Ek which
satisfy conditions (i), (ii), and (iii), then T is diagonalizable, c1,..., ck are the distinct characteristic
values of T, and conditions (iv) and (v) are satisfied also.

Proof: Suppose that T is diagonalizable, with distinct characteristic values c1,..., ck. Let Wi be the
space of characteristic vectors associated with the characteristic value ci. As we have seen,

V = W1  ...  Wk

Let E1,...,Ek be the projections associated with this decomposition, as in Theorem 1 of unit 16.
Then (ii), (iii), (iv) and (v) are satisfied. To verify (i), proceed as follows. For each  in V,

 = E1 + ... + Ek

and so

T = TE1 + ... + TEk

= c1E1 + ... + ckEk

In other words, T = c1E1 + ... + ckEk.

Now suppose that we are given a linear operator T along with distinct scalars ci and non-zero
operators Ei which satisfy (i), (ii) and (iii). Since EiEj = 0 when i  j, we multiply both sides of

I = E1 + ... + Ek by Ei and obtain immediately 2 .i iE E  Multiplying T = c1E1 + ... + ckEk by Ei, we then
have TEi = ciEi, which shows that any vector in the range of Ei is in the null space of (T – ciI). Since
we have assumed that Ei  0, this proves that there is a non-zero vector in the null space of
(T – ciI), i.e., that ci is a characteristic value of T. Furthermore, the ci are all of the characteristic
values of T; for, if c is any scalar, then

T – cI = (c1 – c)E1 + ... + (ck – c)Ek

so if (T – cI) = 0, we must have (ci – c)Ei = 0. If  is not the zero vector, then Ei  0 for some i,
so that for this i we have ci – c = 0.
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is a characteristic vector of T, and the fact that I = E1 + ... + Ek shows that these characteristic vectors
span V. All that remains to be demonstrated is that the null space of (T – ciI) is exactly the range
of Ei. But this is clear, because if T = ci, then

1
( ) 0

k

j i j
j

c c E


  

hence

(cj – ci)Ej = 0 for each j

and then

Ej = 0 j  i

Since  = E1 + ... + Ek, and Ej = 0 for j  i, we have  = Ei, which proves that  is in the range
of Ei.

One part of Theorem 1 of unit 16 says that for a diagonalizable operator T, the scalars c1,..., ck and
the operators E1,..., Ek are uniquely determined by conditions (i), (ii), (iii), the fact that the ci are
distinct, and the fact that the Ei are non-zero. One of the pleasant features of the decomposition
T = c1E1 + ... + ckEk is that if g is any polynomial over the field F, then

g(T) = g(c1)E1 + ... + g(ck)Ek.

To see how it is proved one need only compute Tr for each positive integer r. For example,

T2 =
1 1

k k

i i j j
i j

c E c E
 

 

=
1 1

k k

i j i j
i j

c c E E
 



= 2 2

1

k

i i
i

c E




= 2

1

k

i i
i

c E




The reader should compare this with g(A) where A is a diagonal matrix; for then g(A) is simply
the diagonal matrix with diagonal entries g(A11), ..., g(Ann).

We should like in particular to note what happens when one applies the Lagrange polynomials
corresponding to the scalars c1,..., ck:

pj =
( )
( )

i

i j j i

x c
c c






We have pj(ci) = ij, which means that

pj(T) =
1

k

ij i
i

E




= Ej

Thus the projections Ej not only commute with T but are polynomials in T.

Such calculations with polynomials in T can be used to give an alternative proof of Theorem 2 of
unit 14, which characterized diagonalizable operators in terms of their minimal polynomials.
The proof is entirely independent of our earlier proof.
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g(T) = g(c1)E1 + ... + g(ck)Ek

for every polynomial g. Thus g(T) = 0 if and only if g(ci) = 0 for each i. In particular, the minimal
polynomial for T is

p = (x – c1) ... (x – ck)

Now suppose T is a linear operator with minimal polynomial p = (x – c1) ... (x – ck), where c1,..., ck

are distinct elements of the scalar field. We form the Lagrange polynomials

pj = ( )
( )

i

i j j i

x c
c c






So that pj(ci) = ij and for any polynomial g of degree less than or equal to (k – 1) we have

g = g(c1)p1 + ... + g(ck)pk

Taking g to be the scalar polynomial 1 and then the polynomial x, we have

1

1 1

1 k

k k

p p
x c p c p
   


   




...(2)

You will note that the application to x may not be valid because k may be 1. But if k = 1, T is a
scalar multiple of the identity and hence diagonalizable). Now let Ej = pj(T). From (2) we have

1

1 1

k

k k

I E E
T c E c E




   


   
...(3)

Observe that if i  j, then pi pj is divisible by the minimal polynomial p, because pi pj contains
every (x – cr) as a factor. Thus

EiEj = 0, i  j ...(4)

We must note one further thing, namely, that Ei  0 for each i. This is because p is the minimal
polynomial for T and so we cannot have pi(T) = 0 since pi has degree less than the degree of p. This
last comment, together with (3), (4), and the fact that the ci are distinct enables us to apply
Theorem 2 to conclude that T is diagonalizable.

Self Assessment

1. Let T be the diagonalizable linear operator on R3 which is represented by the matrix
5 6 6
1 4 2

3 6 4
A

  
 

  
   

use the Lagrange polynomials to write the representing matrix A in the form A = E1 + 2E2,
E1 + E2 = I, E1E2 = 0. Where I is a unit matrix and 0 is zero matrix.

2. Let T be the linear operator on R4 which is represented by the 4 × 4 matrix

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

A

 
 
 
 
 
 

Find the matrices E1, E2, E3 such that

A = C1E1 + C2E2 + C3E3, E1 + E2 + E3 = I and EiEj = 0 for i  j
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 In this unit the finite dimensional vector space is decomposed into a direct sum of the
invariant subspaces.

 The linear operator induces a linear operator Ti on each invariant subspace Wi by restriction.

 The projection operators can be obtained from the Lagrange polynomials once we know
the characteristic values.

17.4 Keywords

Projection Operator: The projection operator E has the property that E2 = E so its characteristic
values can be equal to 0 and unit.

Restriction: When the finite space V is decomposed into the direct sum of the invariant subspaces
the linear operator induces a linear operator by the process known as restriction.

The Lagrange Polynomials: Help us to find the projection operators for any linear operator T in
terms of the matrix representing T and its characteristic values.

17.5 Review Questions

1. Let T be a linear operator on V. Suppose V = W1  ...  Wk, where each Wi is invariant
under T. Let Ti be the induced (restriction) operator on Wi. Prove that the characteristic
polynomial for f is the product of the characteristic polynomials f1, f2,..., fk.

2. Let T be a linear operator on three dimensional space which is represented by the matrix

4 2 2
5 3 2 ,
2 4 1

A
 

 
  
  

Find the matrices E1, E2, E3 such that A = C1E1 + C2E2 + C3E3

E1 + E2 + E3  = I, EiEj = 0 for i  j

Answers: Self Assessment

1. E1 = 2I – A, E2 = A – I, Here E1 + E2 = I, A = E1 + 2E2 and E1E2 = 0

2. Here c1 = 0, c2 = –2, c3 = 2

E1 = I – A2/4

E2 = 1 ( 2 )
8

A I A

E3 = ( 2 )
8
A A I

17.6 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

I.N. Herstein, Topics in Algebra

Michael Artin, Algebra
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CONTENTS

Objectives

Introduction

18.1 Overview

18.2 Primary Decomposition Theorem

18.3 Summary

18.4 Keywords

18.5 Review Questions

18.6 Further Readings

Objectives

After studying this unit, you will be able to:

 See that in considering a linear operator T on a finite dimensional space the minimal
polynomial for the linear operator is a product of a number of irreducible monic

polynomials ir
ip  over the field F where ri are positive integers.

 Know that this structure of the minimal polynomial helps in decomposing the space V as
the direct sum of the invariant subspaces Wi.

 Understand that the general linear operator T induces a linear operator Ti on Wi by restriction

and the minimal polynomial for Ti is the irreducible ir
ip .

Introduction

In this unit the idea of the direct sum decomposition of the vector space V for a linear operator
T in terms of invariant subspaces.

The general linear operator T induces a linear operator Ti on the invariant subspace, the minimal

polynomial of Ti is the ir
ip .

This structure of the induced linear operator helps in introducing the projection operators Ei.

These projections associated with the primary decomposition of T, then are polynomials in T,
and they commute each will an operator that commutes with T.

18.1 Overview

We continue our study of a linear operator T on the finite dimension space. In this unit we are
interested in decomposing T into a direct sum of operators which are in some sense elementary.
We had already found the characteristic values of the operator and also studied invariant
subspaces. The vector space V was shown to be direct sum of the invariant subspaces. We can
decompose T into a direct sum of operators through the characteristic values and vectors of T in
certain special cases i.e., when the minimal polynomial for T factors over the scalar field F into
a product of distinct monic polynomials of degree 1. In dealing with the general T we come
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of the scalar field. Second, even if the characteristic polynomial factors completely over F into a
product of polynomials of degree 1, there may not be enough characteristic vectors for T to span
the space V; which is clearly a deficiency in T. The second situation is illustrated by the operator
T on F3 (F any field) represented in the standard basis by

2 0 0
1 2 0
0 0 1

A
 
 

  
  

The characteristic polynomial for A is (x – 2)2 (x + 1) and this is plainly also the minimal polynomial
for A (or for T). Thus T is not diagonalizable. One sees that this happens because the null space
of (T – 2I) has dimension 1 only. On the other hand, the null space of (T + I) and the null space of
(T – 2I)2 together span V, the former being the subspace spanned by 3 and the latter the subspace
spanned by 1 and 2.

This will be more or less our general method for the second problem. If (remember this is an
assumption) the minimal polynomial for T decomposes

p = (x – c1)r1 ... (x – ck)r2

where c1,..., ck are distinct elements of F, then we shall show that the space V is the direct sum of
the null spaces of (T – ciI)ri, i = 1,..., k. The hypothesis about p is equivalent to the fact that T is
triangulable (Theorem 1 of unit 14); however, that knowledge will not help us.

The theorem which we prove is more general than what we have described, since it works with
the primary decomposition of the minimal polynomial, whether or not the primes which enter
are all of first degree. The reader will find it helpful to think of the special case when the primes
are of degree 1, and even more particularly, to think of the projection-type proof of Theorem 2
of unit 14, a special case of this theorem.

18.2 Primary Decomposition Theorem

Theorem 1 (Primary Decomposition Theorem): Let T be a linear operator on the finite-dimensional
vector space V over the field F. Let p be the minimal polynomial for T,

p = 1
1
r r

kp p

where the pi are distinct irreducible monic polynomials over F and the ri are positive integers.
Let Wi be the null space of pi(T)ri, i = 1,..., k. Then

(i) V = W1  ...  Wk;

(ii) each Wi is invariant under T;

(iii) if Ti is the operator induced on Wi by T, then the minimal polynomial for Ti is 1
1 .rp

Proof: The idea of the proof is this. If the direct-sum decomposition (i) is valid, how can we get
hold of the projections E1,..., Ek associated with the decomposition? The projection Ei will be the
identity on Wi and zero on the other Wj. We shall find a polynomial hi such that hi(T) is the
identity on Wi and is zero on the other Wj, and so that h1(T) + ... + hk(T) = I, etc.

For each i, let

.i

i

r
i jr

j ii

pf p
p 

 
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there are polynomials g1,..., gk such that

1
1

n

i i
i

f g




Note also that if i  j, then fi fj is divisible by the polynomial p, because fi  fj contains each mr
mp  as a

factor. We shall show that the polynomials hi = fi gi behave in the manner described in the first
paragraph of the proof.

Let Ei = hi(T) = fi(T)gi(T). Since h1 + ... + hk = 1 and p divides fi  fj for i  j, we have

E1 + ... + Ek = I

EiEj = 0,      if i  j

Thus the Ei are projections which correspond to some direct sum decomposition of the space V.
We wish to show that the range of Ei is exactly the subspace Wi. It is clear that each vector in the
range of Ei is in Wi, for if  is in the range of Ei, then  = Ei and so

pi(T)ri  = pi(T)riEi

= pi(T)ri fi(T)g
i
(T)

= 0

because prifi gi is divisible by the minimal polynomial p. Conversely, suppose that  is in the null

space of pi(T)ri. If j  i, then fj  gj is divisible by ir
ip  and so fj(T)gj(T) = 0, i.e., Ej = 0 for j  i. But then

it is immediate that Ei = , i.e., that  is in the range of Ei. This completes the proof of statement (i).

It is certainly clear that the subspaces Wi are invariant under T. If Ti is the operator induced on Wi

by T, then evidently pi(Ti)ri = 0, because by definition pi(T)ri is 0 on the subspace Wi. This shows

that the minimal polynomial for Ti divides ir
ip . Conversely, let g be any polynomial such that

g(Ti) = 0. Then g(T)fi(T) = 0. Thus gfi is divisible by the minimal polynomial p of T, i.e., ir
i ip f

divides gfi. It is easily seen that ir
ip  divides g. Hence the minimal polynomial for Ti is .ir

ip

Corollary: If E1,..., Ek are the projections associated with the primary decomposition of T, then
each Ei is a polynomial in T, and accordingly if a linear operator U commutes with T then U
commutes with each of the Ei, i.e., each subspace Wi is invariant under U.

In the notation of the proof of Theorem 1, let us take a look at the special case in which the
minimal polynomial for T is a product of first degree polynomials, i.e., the case in which each pi

is of the form pi = x – ci. Now the range of Ei is the null space Wi of (T – ciI)ri. Let us put D = c1E1 +
... + ckEk . By Theorem 2 of unit 17, D is a diagonalizable operator which we shall call the
diagonalizable part of T. Let us look at the operator N = T – D. Now

T = TE1 + ... + TEk

D = c1E1 + ... + ckEk

so

N = (T – c1I)E1 + ... + (T – ckI)Ek

The reader should be familiar enough with projections by now so that he sees that

N2 = (T – c1I)2E1 + ... + (T – ckI)2Ek
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Nr = (T – c1I)rE1 + ... + (T – ckI)rEk .

When r  ri for each i, we shall have Nr = 0, because the operator (T – ciI)r will then be 0 on the
range of Ei.

Definition: Let N be a linear operator on the vector space V. We say that N is nilpotent if there is
some positive integer r such that Nr = 0.

Theorem 2: Let T be a linear operator on the finite-dimensional vector space V over the field F.
Suppose that the minimal polynomial for T decomposes over F into a product of linear polynomials.
Then there is a diagonalizable operator D on V and a nilpotent operator N on V such that

(i) T = D + N,

(ii) DN = ND

The diagonalizable operator D and the nilpotent operator N are uniquely determined by (i) and
(ii) and each of them is a polynomial in T.

Proof: We have just observed that we can write T = D + N where D is diagonalizable and N is
nilpotent, and where D and N not only commute but are polynomials in T. Now suppose that we
also have T = D’ + N’ where D’ is diagonalizable, N’ is nilpotent, and D’N’ = N’D’. We shall prove
that D = D’ and N = N’.

Since D’ and N’ commute with one another and T = D’ + N’, we see that D’ and N’ commute with
T. Thus D’ and N’ commute with any polynomial in T; hence they commute with D and with N.
Now we have

D + N  = D’ + N’

or

D – D’  = N’ – N

and all four of these operators commute with one another. Since D and D’ are both diagonalizable
and they commute, they are simultaneously diagonalizable, and D – D’ is diagonalizable. Since
N and N’ are both nilpotent and they commute, the operator (N’ – N) is nilpotent; for, using the
fact that N and N’ commute

0
( ' ) ( ') ( )

r
r j jr

j

r
N N N N

j




 
    



and so when r is sufficiently large every term in this expression for (N’ – N)r will be 0. (Actually,
a nilpotent operator on an n-dimensional space must have its nth power 0; if we take r = 2n
above, that will be large enough. It then follows that r = n is large enough, but this is not obvious
from the above expression.) Now D – D’ is a diagonalizable operator which is also nilpotent.
Such an operator is obviously the zero operator; for since it is nilpotent, the minimal polynomial
for this operator is of the form xr for some r  m; but then since the operator is diagonalizable, the
minimal polynomial cannot have a repeated root; hence r = 1 and the minimal polynomial is
simply x, which says the operator is 0. Thus we see that D = D’ and N = N’.

Corollary: Let V be a finite-dimensional vector space over an algebraically closed field F, e.g.,
the field of complex numbers. Then every linear operator T on V can be written as the sum of a
diagonalizable operator D and a nilpotent operator N which commute. These operators D and N’
are unique and each is a polynomial in T.

From these results, one sees that the study of linear operators on vector spaces over an
algebraically closed field is essentially reduced to the study of nilpotent operators. For vector
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Notesspaces over non-algebraically closed fields, we still need to find some substitute for characteristic
values and vectors. It is a very interesting fact that these two problems can be handled
simultaneously and this is what we shall do in the next units.

In concluding this section, we should like to give examples, which illustrate some of the ideas of
the primary decomposition theorem. We have chosen to give it at the end of the section since it
deals with differential equations and thus is not purely linear algebra.

Example 1: In the primary decomposition theorem, it is not necessary that the vector
space V be finite dimensional, nor is it necessary for parts (i) and (ii) that p be the minimal
polynomial for T. If T is a linear operator on an arbitrary vector space and if there is a monic
polynomial p such that p(T) = 0, then parts (i) and (ii) of Theorem 1 are valid for T with the proof
which we gave.

Let n be a positive integer and let V be the space of all n times continuously differentiable
functions f on the real line which satisfy the differential equation.

1

1 1 01 0
n n

j
nn n

dd f d fa a a f
dt dt dt



 
     ...(1)

where a0,..., an–1 are some fixed constants. If Cn denotes the space of n times continuously
differentiable functions, then the space V of solutions of this differential equation is a subspace
of Cn. If D denotes the differentiation operator and p is the polynomial

p = xn + an–1xn–1 + ... + a1x + a0

then V is the null space of the operator p(D), because (1) simply says p(D)f = 0. Therefore, V is
invariant under D. Let us now regard D as a linear operator on the subspace V. Then p(D) = 0.

If we are discussing differentiable complex-valued functions, then Cn and V are complex vector
spaces, and a0,..., an–1 may be any complex numbers. We now write

p = (x – c1)r1 ... (x – ck)rk

where c1,..., ck are distinct complex numbers. If Wj is the null space of (*D – cjI)ri, then Theorem 1
says that

V = W1  ...  Wk

In other words, if f satisfies the differential equation (1), then f is uniquely expressible in the
form

f = f1 + ... + fk

where fj satisfies the differential equation (D – cjI)rj fj = 0. Thus, the study of the solutions to the
equation (1) is reduced to the study of the space of solutions of a differential equation of the form

(D – cI)r f = 0 ...(2)

This reduction has been accomplished by the general methods of linear algebra, i.e., by the
primary decomposition theorem.

To describe the space of solutions to (2), one must know something about differential equations,
that is, one must know something about D other than the fact that it is a linear operator.
However, one does not need to know very much. It is very easy to establish by induction on r
that if f is in Cr then

(D – cI)r f = ectDr(e–ctf )
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( ) ( ), etc.ct ctdf dcf t e e f
dt dt

 

Thus (D – cI)r f = 0 if and only if Dr(e–ct f) = 0. A function g such that Drg = 0, i.e., drg/dtr = 0, must be
a polynomial function of degree (r – 1) or less:

g(t) = b0 + b1t + ... + br–1tr–1

Thus f satisfies (2) if and only if f has the form

f(t) = ect(b0 + b1t + ... + br–1tr–1)

Accordingly, ‘the functions’ ect, tect, ..., tr–1ect span the space of solutions of (2). Since 1, t,..., tr–1 are
linearly independent functions and the exponential function has no zeros, these r functions tject,
0  j  r – 1, form a basis for the space of solutions.

Returning to the differential equation (1), which is

p(D)f = 0

p = (x – c1)r1 ... (x – ck)rk

we see that the n functions tmecjt, 0  m  rj – 1, 1  j  k, form a basis for the space of solutions
to (1). In particular, the space of solutions is finite-dimensional and has dimension equal to the
degree of the polynomial p.

Example 2: Prove that the matrix A

1 1 1
1 1 1

1 1 0
A

 
 

    
  

is nilpotent. Find its index of nilpotency.

Proof:

2

1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 0

1 1 0 1 1 0 0 0 0
A

     
     

              
          

3

1 1 0 1 1 1 0 0 0
1 1 0 1 1 1 0 0 0

0 0 0 1 1 0 0 0 0
A

     
     

           
          

So A3 = 0. Hence A is nilpotent of the index of nilpotence 3. Notice that A2  0. (matrix)

Also the characteristic polynomial of A is p(x) = x3.

Self Assessment

1. If V is the space of all polynomials of degree less than or equal to n over a field F, prove
that the differentiation operator on V is nilpotent. Show that its characteristic polynomial
is xn.
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Notes2. If N is a nilpotent operator on an n-dimensional vector space V, show that the characteristic
polynomial for N is xn.

18.3 Summary

 The primary decomposition theorem is based on the fact that the minimal polynomial of
the linear operator is the product of the irreducible.

 This helps in finding the projection operates which are polynomials in T.

 The direct decomposition of the vector space V in terms of the invariant subspaces helps in
inducing linear operators Ti on these subspaces Wi.

 The induced operator Ti on Wi by T has the minimal polynomial as well as due to the
factorisation of the minimal polynomial of T.

18.4 Keywords

Invariant Sub-spaces: If a vector  in V is such that  and T are in the subspace W of V then W
is invariant subspace of V over the field F.

Nilpotent Transformation: A nilpotent transformation N on the vector space V represented by
a matrix A is such that AK = 0 for some integer K and AK–1  0. Here K is the index of nilpotency.

Projection Operators: The projection operator Ei acting on the vector i gives Ei = i for the

subspace Wi and gives zero for other. Also 2
i iE E  and EiEj = 0 for i  j

18.5 Review Questions

1. Let T be the linear operator on R3 which is represented by the matrix

3 1 1
2 2 1
2 2 0

A
 

 
  
  

in the standard ordered basis. Show that T = D + N where D is a diagonalizable operator
and N a nilpotent vector.

2. Show that the linear operator T on R3 represented by the matrix

1 1 1
2 2 2
1 1 1

A
 

 
  
   

is nilpotent.

18.6 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

I.N. Herstein, Topics in Algebra
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Objectives

After studying this unit, you will be able to:

 Understand clearly the meaning of cyclic vector, cyclic-vector subspace and T-annihilator
of .

 See that in the case of a nilpotent linear operator one finds out the basis of the vectors ,
T, T2,... as the basis that spans the space of the linear transformation T.

 Know that closely related to the idea of cyclic vector  one understands the T-annihilator
of  i.e., finds a polynomial g in F such that g(T = 0

 See that with the help of these ideas one can understand the rational forms as well as the
Jordan forms.

Introduction

The cyclic subspaces, the cyclic vector  and the T annihilators of  help us in the factoring of a
linear operator T on the finite dimensional space to give a simple and elementary form.

In this unit the nilpotent transformation helps us in finding the basis vectors , T, T2,... that
spans the space and this will help us in introducing the rational and the Jordan forms.

19.1 Cyclic Subspaces

We are considering an arbitrary but fixed linear operator on V, a finite-dimension vector space
over the field F. If  is any vector in V, there is a smallest subspace of V which is invariant under
T and contains . This subspace can be defined as the intersection of all, T-invariant subspaces
which contains , if W is any subspace of V which is invariant under T and contains , then W
must also contain the vector T; hence W must contain T2, T3, etc. In other words, W must
contain g(T) for every polynomial g over F. The set of all vectors of the form g(T), with g in
F(x), is clearly invariant under T, and is thus the smallest T-invariant subspace which contains .
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If  is any vector in V, the T-cyclic subspace generated by  is the subspace Z(; T) of all vectors
of the form g(T), g in F[x]. If Z(; T) = V, then  is called a cyclic vector for T.

In other words, the subspace Z(; T) is the subspace spanned by the vectors TK, K  0 and thus
 is a cyclic vector for T if and only if these vectors span V.

Example 1: For any T, the T-cyclic subspace generated by the zero vector is the zero
space.

If the vector  is a characteristic vector for T the space Z(; T) is one dimensional.

For the identity operator, every non-zero vector generates a one dimension cyclic subspace,
thus, if dim V > 1, the identity operator has no cyclic vector.

Example 2: Consider the linear operator T on F2 which is represented in the standard
basis by the matrix

0 0
1 0

A
 

  
 

Here the cyclic vector is 1 = (1, 0); for

A1 = 2

So that for any vector  given by

(a, b)

We have (a, b)  = a1 + b2,

so = a1 + bA1

= (a + bA)1

Thus the polynomial g in F2(x) can be taken as

g  = a + bx

For the same operator T, the cyclic subspace generated by 2 = (0, 1) is the one dimensional space
spanned by 2, because 2 is a characteristic vector of T.

Example 3: Consider the linear operator T on F3, which is represented by A;

0 1 0
1 0 1
0 1 0

A
 
 

  
  

Here A3 = 0, but A2  0. So if  is a vector such that A2  0 i.e.,  = 1 = (1,0,0), then the basic
vectors will be (, T, T2) and space generated by 1 is a cyclic subspace.

19.2 Annihilators

For any T and , we shall be interested in linear relations

c0 + c1T + ... + ckTk = 0
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which have the property that g(T) = 0. The set of all g in F[x] such that g(T) = 0 is clearly an ideal
in F[x]. It is also a non-zero ideal, because it contains the minimal polynomial p of the operator
T(p)(T) = 0 for every  in V).

Definition: If  is any vector in V, the T-annihilator of  is the ideal M(; T) in F[x] consisting of
all polynomials g over F such that g(T) = 0. The unique monic polynomial p


 which generates

this ideal will also be called the T-annihilator of .

As we pointed out above, the T-annihilator p

 divides the minimal polynomial of the

operator T. Please note that deg(p

) > 0 unless  is the zero vector.

Theorem 1: Let  be any non-zero vector in V and let p

 be the T-annihilator of .

(i) The degree of p

 is equal to the dimension of the cyclic subspace Z(; T).

(ii) If the degree of p

 is k, then the vectors , T, T2, ..., Tk–1 form a basis for Z(; T).

(iii) If U is the linear operator on Z(; T) induced by T, then the minimal polynomial for U
is p


.

Proof: Let g be any polynomial over the field F. Write

g = p

q + r

where either r = 0 or deg (r) < deg (p

) = k. The polynomial p


q is in the T-annihilator of , and so

g(T) = r(T)

Since r = 0 or deg (r) < k, the vector r(T) is a linear combination of the vectors , T, ..., Tk–1, and
since g(T) is a typical vector in Z(; T), this shows that these k vectors span Z(; T). These vectors
are certainly linearly independent, because any non-trivial linear relation between them would
give us a non-zero polynomial g such that g(T) = 0 and deg(g) < deg(p


), which is absurd. This

proves (i) and (ii).

Let U be the linear operator on Z(; T) obtained by restricting T to that subspace. If g is any
polynomial over F, then

p

(U)g(T)  = p


(U)g(T)

= g(T)p

(U)

= g(T)0

= 0

Thus the operator p

(U) sends every vector in Z(; T) into 0 and is the zero operator on Z(, T).

Furthermore, if h is a polynomial of degree less than k, we cannot have h(U) = 0, for then h(U) =
h(T) = 0, contradicting the definition of p


. This shows that p


 is the minimal polynomial for U.

A particular consequence of this theorem is the following: If  happens to be a cyclic vector for
T, then the minimal polynomial for T must have degree equal to the dimension of the space V;
hence, the Cayley-Hamilton theorem tells us that the minimal polynomial for T is the
characteristic polynomial for T. We shall prove later that for any T there is a vector  in V which
has the minimal polynomial of T for its annihilator. It will then follow that T has a cyclic vector
if and only if the minimal and characteristic polynomials for T are identical. But it will take a
little work for us to see this.

Our plan is to study the general T by using operators which have a cyclic vector. So, let us take a
look at a linear operator U on a space W of dimension k which has a cyclic vector . By Theorem 1,
the vectors , ..., Uk–1 form a basis for the space W, and the annihilator p


 of  is the minimal
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1,..., k, then the action of U on the ordered basis  = {1,..., k} is

1

0 1 1 2 1

, 1,..., 1
...

i i

k k k

U i k
U c c c





     


         
... (1)

where p

 = c0 + c1x + ... + ck–1xk–1 + xk. The expression for Uk follows from the fact that p


(U) = 0,

i.e.,

Uk + ck–1Uk–1 + ... + c1U + c0 = 0

This says that the matrix of U in the ordered basis  is

0

1

2

1

0 0 0 0
1 0 0 0
0 1 0 0

0 0 0 1 k

c
c
c

c 

 
 
 
 
 
 
  





    


The matrix (2) is called the companion matrix of the monic polynomial p

.

Theorem 2: If U is a linear operator on the finite-dimensional space W, then U has a cyclic vector
if and only if there is some ordered basis for W in which U is represented by the companion
matrix of the minimal polynomial for U.

Proof: We have just observed that if U has a cyclic vector, then there is such an ordered basis for
W. Conversely, if we have some ordered basis {1,..., k} for W in which U is represented by the
companion matrix of its minimal polynomial, it is obvious that 1 is a cyclic vector for U.

Corollary: If A is the companion matrix of a monic polynomial p, then p is both the minimal and
the characteristic polynomial of A.

Proof: One way to see this is to let U be the linear operator on Fk which is represented by A in the
standard ordered basis, and to apply Theorem 1 together with the Cayley-Hamilton theorem.
Another method is to use Theorem 1 to see that p is the minimal polynomial for A and to verify
by a direct calculation that p is the characteristic polynomial for A.

One last comment—if T is any linear operator on the space V and  is any vector in V, then the
operator U which T induces on the cyclic subspace Z(; T) has a cyclic vector, namely, . Thus
Z(; T) has an ordered basis in which U is represented by the companion matrix of p


, the

T-annihilator of .

Self Assessment

1. Consider the linear operator T represented by the matrix

1 1 1
1 1 1

1 1 0
A

 
 

    
  

Show that A is nilpotent. Find the basis vectors that will span the space of the linear
operator T.

2. Let T be a linear operator on the finite dimensional vector space V. Suppose T has a cyclic
vector. Prove that if U is any linear operator which commutes with T, then U is a
polynomial in T.
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 Know what is a cyclic vector, cyclic subspaces of a linear operator T acting on a finite
dimension vector space.

 See that if the cyclic vector is found then the basis vectors of the sub-space of the linear
transformation can be found that span the space of the linear operator.

 Understand how to find the T-annihilator of a vector and also find out that the monic
polynomial which generates it has a degree equal to the dimension of the cyclic subspace.

19.4 Keywords

A Cyclic Vector: If the T-cyclic subspace generated by the vector  spans the whole finite
dimensional space V then  is called a cyclic vector for the linear T.

Cyclic Subspace: If  is a vector in a finite dimensional space V of a linear operator T, then the
invariant subspace W which contains all g(T) for every polynomial g over F is called T-cyclic
subspace generated by .

T-annihilator of a Vector:  consisting of all polynomials g over F such that g(T) = 0 is called
T-annihilator of . The unique monic polynomial which generates this set will also be called the
T-annihilator of .

19.5 Review Questions

1. Let T be a linear operator on the finite dimensional space Vn. Suppose that T is
diagonalizable. If T has a cyclic vector, then show that T has n-distinct characteristic values.

2. If S and T are nilpotent linear transformation which commute, prove that ST and S + T are
nilpotent linear transformations.

19.6 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

I.N. Herstein, Topics in Algebra

Michael Artin, Algebra
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Objectives

After studying this unit, you will be able to:

 Understand that if T is any linear operator on a finite dimensional space V, then there
exists vectors 1, 2, ... n in V such that the space V is a direct sum of the T-cyclic subspaces
Z( i ; T) for i = 1, 2, ... n.

 See that if W is any subspace of V, then there exists a subspace W , called complementary to
W, such that V = W W .

 Know that if W is T-invariant and W  complementary to W is also T-invariant then W is
also T-admissible.

 Understand that the Cyclic decomposition theorem says that there exist non-zero vectors
1, 2, ... n in V with respective T-annihilators p1, p2, ... pr such that, V is a direct sum of

T-invariant subspaces along with a proper T-admissible subspace W.

Introduction

In this unit certain concepts like invariant cyclic subspaces, complimentary subspaces and
T-admissible proper subspaces are introduced.

The Cyclic decomposition theorem helps us in decomposing the n-dimensional vector space as
a direct sum of T-invariant cyclic subspaces.

The matrix analogue of the Cyclic Decomposition theorem is that for the cyclic ordered basis
( , T , 2 , ... Tk–1 ) the matrix of induced operator Ti is the companion matrix Ai if the polynomial
pi, the matrix

1

2

0 ... 0
0 ... 0

... 0
0 0 ... n

A
A

A

A
 

having a rational form.
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In this unit we are interested in dealing with a linear operator T on a finite-dimensional space V,
and dealing with the cyclic subspaces Z ( 1; T) where the vectors 1, 2, ... r in V. In this case the
finite dimensional space V can be decomposed as the direct sum, i.e.,

V = Z ( 1; T) .... Z ( r; T)

This will also show that T is the direct sum of a finite number of linear operators each of which
has a cyclic vector. The effect of this will be to reduce many questions about the general linear
operator.

Let us consider T-invariant subspaces W and W such that V = W W . Here for any invariant
subspace W, W  is complementary to W. We are interested in those W  which are also T-invariant.

T-admissible invariant subspace W

Let T be a linear operator on a vector space V and let W be a subspace of V. We say that W is
T-admissible if W is invariant under T and if f(T)  is in W where f is a polynomial, and there exists
a vector Y in W such that

f(T) = f(T) 

our method for arriving at a decomposition

V = Z ( i; T) ... Z ( r; T)

will be to inductively select the vectors 1, 2, ... r. Suppose that by some process or another
we have selected 1, 2, .... j and the sub-space

Wj = Z ( i; T) Z ( 2; T) + ... + Z ( j; T)

is proper. We would like to find a non-zero vector j + 1 such that

Wj Z ( j + 1; T) = {0}.

Thus W will be a proper T-invariant subspace if there is a non-zero vector  such that

W Z (  ; T) = {0} ...(1)

Thus the subspace Z ( ; T) and W are independent if (1) is satisfied and the polynomial f is the
T-annihilator of  i.e. f(T) = 0.

20.2 Cyclic Decomposition

With the above definition we arrive at the following theorem for the cyclic decomposition of
the finite vector space.

Theorem 1 (Cyclic Decomposition Theorem). Let T be a linear operator on a finite-dimensional
vector space V and let W0 be a proper T-admissible subspace of V. There exist non-zero vectors

1, ...., r in V with respective T- annihilators p1,...., pr such that

(i) V = W0 Z ( 1; T) ...  Z ( r; T);

(ii) pk divides pk–1, k = 2, ..., r.

Furthermore, the integer r and the annihilators p1, ...., pr are uniquely determined by (i), (ii), and
the fact that no k is 0.

Proof: The proof is rather long; hence, we shall divide it into four steps. For the  first reading it
may seem easier to take W0 = {0}, although it does not produce any substantial simplification.
Throughout the proof, we shall abbreviate f(T) to f .
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(a) V = W0 + Z ( 1; T) + ... + Z( r; T);

(b) if 1 k r and

Wk = W0 + Z ( 1; T) + ... + Z( k; T)

then the conductor pk = s( k; Wk – 1) has maximum degree among all T-conductors into the subspace
Wk–1, i.e., for every k

deg pk = 1max deg ( ; )kin V
s W

This step depends only upon the fact that W0 is an invariant subspace. If W is a proper T-invariant
subspace, then

0 max deg ( ; ) dims W V

and we can choose a vector  so that deg s ( ; W) attains that maximum. The subspace W + Z
( ; T) is then T-invariant and has dimension larger than dim W. Apply this process to W = W0 to
obtain 1. If W1 = W0 + Z( 1; T) is still proper, then apply the process to W1 to obtain 2. Continue
is that manner. Since dim Wk > dim Wk – 1, we must reach Wr = V is not more than dim V steps.

Step 2: Let 1, .... r be non-zero vectors which satisfy conditions (a) and (b) of Step 1. Fix k, 1 k
r. Let  be any vector in V and let f = s ( ; Wk–1). If

0 1
,i i i ii k

f g in W

then f divides each polynomial gi  and 0 = f 0, where 0 is in W0.

If k = 1, this is just the statement that W0 is T-admissible. In order to prove the assertion for k > 1,
apply the division algorithm:

, 0 or deg deg .i i i i ig fh r r r f ...(2)

We wish to show that ri = 0 for each i, Let

1

1

.
k

i ih ...(3)

Since  –  is in Wk – 1,

1 1( ; ) ( ; ) .k ks W s W f

Furthermore

1

0
1

.
k

i if r ...(4)

Suppose that some ri is different from 0. We shall deduce a contradiction. Let j be the largest
index i for which ri 0. Then

0
1

, 0 and deg deg .
j

i i j jf r r r f ...(5)

Let p = s ( ; Wj – 1). Since Wk  1 contains Wj  1 , the conductor f = s ( ; Wk 1) must divide p:

p = fg.
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0
1

j j i i
i j

p gf gr g gr ...(6)

By definition p  is i Wj 1, and the last two terms on the right side of (6) are in Wj 1. Therefore, grj j

is in Wj  1. Now we use condition (b) on Step 1:

deg (grj) 1deg ( ; )j js W

= deg jp

= 1deg ( ; )js W

= deg p

= deg (fg).

Thus deg deg ,jr f  and that contradicts the choice of j. We now know that f divides each gi and

hence that 0 .f  Since W0 is T-admissible, 0 0f where 0 is in W0. We remark in passing
that Step 2 is a strengthened form of the assertion that each of the subspaces 1 2, , ... rW W W  is
T-admissible.

Step 3: There exist non-zero vectors 1 ,.... r  in V which satisfy conditions (i) and (ii) of
Theorem 1.

Start with vectors 1 ,....., r  as in Step 1. Fix , 1 .k k r  We apply Step 2 to the vector k  and
the T-conductor f = pk. We obtain

0
1

k k k k i i
i k

p p p h ...(7)

where 0 is in W0 and 1,....,i kh h  are polynomials. Let

0
1

.k k i i
i k

h ...(8)

Since k k is in Wk – 1,

1 1( ; ) ( ; )k k k k ks W s W p ...(9)

and since 0,k kp  we have

1 ( ; ) {0}.k kW Z T ...(10)

Because each k satisfies (9) and (10), it follows that

0 1( ; ) ... ( ; )k kW W Z T Z T

and that pk is the T-annihilator of k. In other words, the vectors 1, ...., r define the same
sequence of subspaces W1, W2, ... as do the vectors 1, ..., r and the T-conductors pk = s ( k, Wk–1)
have the same maximality properties (condition (b) of Step 1). The vectors 1, ...., r have the
additional property that the subspaces W0, Z ( 1; T), Z( 2; T), ... are independent. It is therefore
easy to verify condition (ii) in Theorem 1. Since pi i = 0 for each i, we have the trivial relation

1 1 1 10 ... .k k k kp p p
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NotesApply Step 2  with 1 ,...., k  replaced by 1 ,....., k  and with .k

Conclusion: pk divides each pi with i < k.

Step 4: The number r and the polynomials p1, ... , pr are uniquely determined by the conditions
of Theorem 1.

Suppose that in addition to the vectors 1 ,...., r  in Theorem 1 we  have non-zero vectors

1 ,...., r  with respective T-annihilators 1 ,...., rg g  such that

0 ( ; ) ... ( ; )i iV W Z T Z T ...(11)

gk divides gk – 1, k = 2, ..... , s.

We shall show that r = s and pi = gi for each i.

It is very easy to see that p1 = g1. The polynomial g1 is determined from (11) as the T-conductor of
V into W0. Let S(V; W0) be the collection of polynomials f such that f  is in W0 for each  in V, i.e.,
polynomials f such that the range of f(T) is contained in W0. Then S(V; W0) is a non-zero ideal in
the polynomial algebra. The polynomial g1 is the monic generator of that ideal, for this reason.
Each  in V has the form

0 1 1 ... s sf f

and so

01 11
1

.
s

i ig g g f

Since each gi divides g1, we have g1 i = 0 for all i and g1  = g1 0 is in W0. Thus g1 is in S(V; W0). Since
g1 is the monic polynomial of least degree which sends 1 into W0 we see that g1 is the monic
polynomial of least degree in the ideal S(V; W0). By the same argument, p1 is the generator of
that ideal, so p1 = g1.

If f is a polynomial and W is a subspace of V, we shall employ the shorthand fW for the set of all
vectors f  with in W. We have left to the exercises the proofs of the following three facts.

1. ( ; ) ( ; ).f Z T Z f T

2. If 1 ... ,kV V V  where each Vi is invariant under T, then 1 ... .kfV fV fV

3. If and  have the same T-annihilator, then f  and f  have the same T-annihilator and
(therefore)

dim ( ; ) dim ( ; ).Z f T Z f T

Now, we proceed by induction to show that r = s and pi = gi for i = 2, ...., r. The argument consists
of counting dimensions in the right way. We shall give the proof that if r 2 the p2 = g2, and from
that the induction should be clear. Suppose that r 2. Then

0 1dim dim ( ; ) dim .W Z T V

Since we know that p1 = g1, we know that Z(1; T) and Z(1; T) have the same dimension.
Therefore,

0 1dim dim ( ; ) dim .W Z T V
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Notes which shows that s 2. Now it makes sense to ask whether or not p2 = g2. From the two
decompositions of V, we obtain two decompositions of the subspace p2V:

2 2 0 2 1

2 2 0 2 1 2

( ; )
( ; ) ... ( ; ).s

p V p W Z p T
p V p W Z p T Z p T ...(12)

We have made use of facts (1) and (2) above and we have used the fact that 2 0, 2.ip i  Since
we know that p1 = g1, fact (3) above tells us that 2 1( ; )Z p T  and 2 1( ; )Z p T  have the same
dimension. Hence, it is apparent from (12) that

2dim ( ; ) 0, 2.iZ p T i

We conclude that p2 2 = 0 and g2 divides p2. The argument can be reversed to show that p2 divides
g2. Therefore p2 = g2.

Corollary: If T is a linear operator on a finite-dimensional vector space, then every T-admissible
subspace has a complementary subspace which is also invariant under T.

Proof: Let W0 be an admissible subspace of V. If W0 = V, the complement we seek is {0}. If W0 is
proper, apply Theorem 1 and let

0 1( ; ) ... ( ; ).rW Z T Z T

Then 0W  is invariant under T and V = W0  0W .

Corollary: Let T be a linear operator on a finite-dimensional vector space V.

(a) There exists a vector in V such that the T-annihilator of is the minimal polynomial for T.

(b) T has a cyclic vector if and only if the characteristic and minimal polynomials for T are
identical.

Proof: If V = {0}, the results are trivially true. If V {0}, let

1( ; ) ... ( ; )rV Z T Z T ...(13)

where the T-annihilators 1 ,...., rp p  are such that 1kp  divides , 1 1.kp k r  As we noted in the
proof of Theorem 1, it follows easily that p1 is the minimal polynomial for T, i.e., the T-conductor
of V into {0}. We have proved (a).

We saw in unit 19 that, if T has a cyclic vector, the minimal polynomial for T coincides with the
characteristic polynomial. The content of (b) is in the converse. Choose any  as in (a). If the
degree of the minimal polynomial is dim V, then V = Z ( ; T).

Theorem 2 (Generalized Cayley-Hamilton Theorem):  Let T be a linear operator on a finite-
dimensional vector space V. Let p and f be the minimal and characteristic polynomials for T,
respectively.

1. p divides f.

2. p and f have the same prime factors, except for multiplication.

3. If

1
1 1.... kTTp f f ...(14)

is the prime factorization of p, then

1
1 .... kdd

kf f f ...(15)

where di is the nullity of fi (T)n divided by the degree of fi.
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NotesProof: We disregard the trivial case V = {0}. To prove (i) and (ii), consider a cyclic decomposition
(13) of V obtained from Theorem 1. As we noted in the proof of the second corollary, p1 = p. Let
Ui be the restriction of T to Z( i; T). Then Ui has a cyclic vector and so pi is both the minimal
polynomial and the characteristic polynomial for Ui. Therefore, the characteristic polynomial f
is  the product f = p1 .... pr. That is evident from the block form (1) of unit 17 which the matrix of
T assumes in a suitable basis. Clearly p1 = p divides f, and this proves (i). Obviously any prime
divisor of p is a prime divisor of f. Conversely, a prime divisor of f = p1 .... pr must divide one of
the factors pi, which in turn divides p1.

Let (14) be the prime factorization of p. We employ the primary decomposition theorem
(Theorem 1 of unit 18). It tells us that, if V1 is the null space of ( ) ,ir

if T  then

1 ... kV V V ...(16)

and 1
rif  is the minimal polynomial of the operator Ti, obtained by restricting T to the (invariant)

subspace Vi . Apply part (ii) of the present theorem to the operator Ti. Since its minimal polynomial
is a power of the prime fi, the characteristic polynomial for Ti has the form id

if , where .i id r
Obviously

dim
deg

i
i

i

Vd
f

and (almost by definition) dim Vi = nullity ( ) .ir
if T  Since T is the direct sum of the operators

T1, ..., Tk, the characteristic polynomial f is the product

1
1 ...... .kdd

kf f f

Corollary: If T is a nilpotent linear operator on a vector space of dimension n, then the
characteristic polynomial for T is xn.

20.3 The Rational Form

Now let us look at the matrix analogue of the cyclic decomposition theorem. If we have the
operator T and the direct-sum decomposition of Theorem 1, let i be the ‘cyclic ordered basis’

1{ , ,....., }ik
i i iT T

for ( ; ).iZ T  Hence ki  denotes the dimension of ( ; ),iZ T  that is, the degree of the annihilator
pi. The matrix of the induced operator Ti in the ordered basis i is the companion matrix of the
polynomial pi. Thus, if we let  be the ordered basis for V which is the union of the i arranged
in the order 1, ......, r, then the matrix of T in the ordered basis will be

1

2

0 ... 0
0 ... 0

0 0 ... r

A
A

A

A
  

...(17)

where Ai is the i ik k  companion matrix of pi. An n × n matrix A, which is the direct sum (17) of
companion matrices of non-scalar monic polynomials p1,....., pr such that pi + 1 divides pi for i = 1,
..., r 1, will be said to be in rational form. The cyclic decomposition theorem tells us the
following concerning matrices.

Theorem 3: Let F be a field and let B be an n × n matrix over F. The B is similar over the field F to
one and only one matrix which is in rational form.
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Notes Proof: Let T be the linear operator on Fn which is represented by B in the standard ordered basis.
As we have just observed, there is some ordered basis for Fn in which T is represented by a
matrix A in rational form. Then B is similar to this matrix A. Suppose B is similar over F to
another matrix C which is in rational form. This means simply that there is some ordered basis
for Fn in which  the operator T is  represented by the matrix C.  If C is the direct sum of companion
matrices Ci of monic polynomials g1, ...., gs such that gi + 1 divides gi for i = 1, ..., s 1, then it is
apparent that we shall have non-zero vectors 1, ....., s in V with T-annihilators g1, ...., gs such that

1( ; ) ... ( ; ).sV Z T Z T

But then by the uniqueness statement in the cyclic decomposition theorem, the polynomials gi,
are identical with the polynomials pi which define the matrix A. Thus C = A.

The polynomials p1, ...., pr are called the invariant factors for the matrix B. We shall describe an
algorithm for calculating the invariant factors of a given matrix B. The fact that it is possible to
compute these polynomials by means of a finite number of rational operations on the entries of
B is what gives the rational form its name.

Example 1: Suppose that V is a two-dimensional vector space over the field F and T is a
linear operator on V. The possibilities for the cyclic subspace decomposition for T are very
limited. For, if the minimal polynomial for T has degree 2, it is equal to the characteristic
polynomial for T and T has a cyclic vector. Thus there is some ordered basis for V in which T is
represented by the companion matrix of its characteristic polynomial. If, on the other hand, the
minimal polynomial for T has degree 1, then T is a scalar multiple of the identity operator.
If T = cI, then for any two linear independent vectors 1 and 2 in V we have

1 2( ; ) ( ; )V Z T Z T

1 2 .p p x c

For matrices, this analysis says that every 2 × 2 matrix over the field F is similar over F to exactly
one matrix of the types

0

1

0 0
,

0 1
c c

c c

Example 2: Let T be the linear operator on R3 which is represented by the matrix.

5 6 6
1 4 2

3 6 4
A

in the standard ordered basis. We have computed earlier that the characteristic polynomial for
T is 2( 1)( 2)f x x  and minimal polynomial for T is ( 1)( 2).p x x  Thus we know that in
the cyclic decomposition for T the first vector 1 will have p as its T-annihilator.

Since we are operating in a three-dimensional space, there can be only one further vector, 2.
It must generate a cyclic subspace of dimension I, i.e., it must be a characteristic vector for T.
T-annihilator p2 must be (x 2), because we must have pp2 = f. Notice that this tells us immediately
that the matrix A is similar to the matrix

0 2 0
1 3 0
0 0 2

B
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Notesthat is, that T is represented by B in some ordered basis. How can we find suitable vectors 1 and
2? Well, we know that any vector which generates a T-cyclic subspace of dimension 2 is a

suitable 1. So let’s just try 1. We have

T 1 = (5, –1, 3)

which is not a scalar multiple of 1; hence Z( 1; T) has dimension 2. This space consists of all
vectors a 1 + b (T 1):

(1,0,0) (5, 1,3) ( 5 , ,3 )a b a b b b

or, all vectors (x1, x2, x3) satisfying x3 = –3x2. Now what we want is a vector 2 such that T 2 = 2 2

and Z( 2; T) is disjoint from Z( 1; T). Since 2 is to be a characteristic vector for T,  the space Z( 2;
T) will simply by the one-dimensional space spanned by 2, and so what we require is that 2 not
be in Z( 1; T). If  = (x1, x2, x3), one can easily compute that T  = 2  if and only if x1 = 2x2 + 2x3. Thus

2 = (2, 1, 0) satisfies T 2 = 2 2 and generates a T-cyclic subspace disjoint from Z( 1; T). The reader
should verify directly that the matrix of T is the ordered basis.

{(1, 0, 0) , (5, –1, 3), (2, 1, 0)}

is the matrix B above.

Example 3: Suppose that T is a diagonalizable linear operator on V. It is interesting to
relate a cyclic decomposition for T to a basis which diagonalizes the matrix of T. Let c1, ... ck be the
distinct characteristic values of T and let Vi be the space of characteristic vectors associated with
the characteristic value ci. Then

...i kV V V

and if di = dim Vi then

1
1( ) ....( ) kdd

kf x c x c

is the characteristic polynomial for T. If  is a vector in V, it is easy to relate the cyclic subspace
Z( ; T) to the subspaces V1, ..., Vk. There are unique vectors 1, ..., k such that i is in Vi and

1 .... .k

Since T 1 = ci i, we have

1 1( ) ( ) ... ( )k kf T f c f c ...(18)

for every polynomial f. Given any scalars t1, ...., tk there exists a polynomial f such that f(ci) = ti,
1 i k. Therefore Z( ; T) is just the subspace spanned by the vectors 1, ...., k. What is the
annihilator of ? According to (18), we have f(T)  = 0 if and only if f(ci) i = 0 for each i. In other
words, f(T) = 0 provided f(ci) = 0 for each i such that i 0. Accordingly, the annihilator of  is the
product

0

( ).
i

ix c ...(19)

Now, let 1{ ,....., }
i

t t
i d  be an ordered basis for Vi. Let

max .iu
r d

We define vectors 1, ..., r by

, 1 .
i

t
j j

d j

j r ...(20)
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j as i runs over those indices

for which di j. The T-annihilator of j is

( ).
i

j i
d j

p x c ...(21)

We have

1( ; ) ... ( ; )rV Z T Z T

because each t
j  belongs to one and only one of the subspaces Z( 1; T); ...., Z( r; T) and

 = ( 1, ...., k) is a basis for V. By (21) pj + 1 divides pj.

Self Assessment

1. Let T be the linear operator on R3 which is represented in the standard ordered basis by

1 3 3
3 1 3
3 3 5

Find the characteristic polynomial for T. What is the minimal polynomial?
2. Show that if T is a diagonalizable linear operator then every T-invariant subspace has a

complementary T-invariant subspace.

20.4 Summary

 In this unit the theorem 1 (derived) helps us in finding non-zero vectors 1, ...., r in V with
respect to T-annihilators p1, p2, ....pr such that the vector space is a direct sum of T-invariant
subspaces along with a proper T-admissible subspace W0.

 Certain concepts like complementary subspace T-admissible subspace, proper T-invariant
subspaces are explained.

 If T is a nilpotent linear operator on a vector space of dimension n, then the characteristic
polynomial for T is xn.

 It is shown that if there is direct sum decomposition theorem 1 the cyclic ordered basis
1( , ,.... )k

i i iTd T  for Z ( i; T) then with the help of companion matrices, A representing T
can be put in Jordan Form.

20.5 Keywords

Complementary Subspace: T-invariant subspace W has the property that there exists a subspace
W , such that V = W W , where W  is called a complementary subspace of W. W  can also be
T-invariant.

Rational Form: An n × n matrix A

1

2

0 0 ... 0
0 0 ... 0
0 0 ... 0

0
0 0 ... n

A
A

A

A
 

which is direct sum of companion matrices Ai has a rational form.
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NotesT-admissible Subspace: An invariant subspace W with another T-invariant subspace W , such that

V = W W

is called T-admissible subspace.

20.6 Review Questions

1. Let T be the linear operator on R3
 which is represented in the standard ordered basis by

3 4 4
1 3 3

2 4 3

Find non-zero 1, 2, 3 satisfying the conditions of theorem 1.

2. Find the minimal polynomial and the rational forms of the following real matrices

0 1 1 0 1
1 0 0 , 0 1
1 0 0 1 1

C
C

C

Answer: Self Assessment

1. The characteristic polynomial is

2( 1)( 2)f x x

The minimal polynomial is

( 1)( 2)p x x

20.7 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

Michael Artin, Algebra
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21.5 Review Questions

21.6 Further Readings

Objectives

After studying this unit, you will be able to:

 Understand the finite vector space V for a linear operator T can be written as a direct sum
of the cyclic invariant subspaces Z(i, T).

 Know that the characteristic polynomial f of T decomposes as the product of the individual
characteristic polynomial pi = xki for the r annihilators such that k1 k2  ...  kr. The minimal
polynomial also has the form

p = (x – c1)r1 ... (x – ck)rk

 See that with the help of the companion matrix the linear operator represented by the
matrix can be put into the Jordan form.

Introduction

In this unit the findings of the unit 20 are used to put any matrix A representing the linear
operator into the Jordan form.

It is seen that by using the idea of the direct decomposition of the vector space into the sum of the
cyclic subspaces the given matrix A can be shown to be similar to a Jordan matrix.

21.1 Overview

Suppose that N is a nilpotent linear operator on a finite-dimensional space. From Theorem 1 of
the last unit we find that with N-annihilators p1, p2, ..., pr for r non-zero vectors 1, 2,...,r, V is
decomposed as follows:

V = Z(1, N) ... Z(r, N)

Here pi+1 divides for i = 1,..., r–1. As N is nilpotent the minimal polynomial is xK for K  n, thus
each pi = xki, such that

K1 = K1  K2  ... Kr
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NotesThe companion matrix of xKi is the Ki × Ki matrix

0 0 0 0
1 0 0 0
0 1 0 0

0 0 0 1 0

iA

 
 
 
 
 
 
 
 

 
 
 

     
 ...(1)

Thus Theorem 1 of unit 20 gives us an ordered basis for V in which the matrix of N is the direct
sum of the elementary nilpotent matrices (1). Thus with a nilpotent n × n matrix we associate an
integer r such that k1 + k2 + ... + kr = n and ki  ki+1 and which determines the rational form of matrix.
The positive integer is precisely the nullity of N, as the null space has a basis the r vectors

Nki–1 i ...(2)

For, let  be in the null space of N, we write  as

 = f11 + ... + frr

where fi is a polynomial, the degree of fi is assumed to be less than ki. Since N = 0 for each i we
have

0  = N(fii)

= Nfi(N)i,

= (xfi) i

Thus x fi is divisible by xk and since deg (fi) < ki, this means that

fi = cixki–1

where ci is some scalar. But then

 = c1(xk1–1 1) + ... + cr(xkr–1 r)

which shows that the vectors (2) form a basis for the null space of N.

21.2 Jordan Form

Now we combine our findings about nilpotent operators or matrices with the primary
decomposition theorem of unit 18. Suppose that T is a linear operator on V and that the
characteristic polynomials for T factors over F as follows:

f = (x – c1)d1 ... (x – ck)dk

where c1,..., ck are distinct elements of F and di  1. Then the minimal polynomial for T will be

p = (x – c1)r1 ... (x – ck)rk

where 1  ri  di. If Wi is the null space of (T – ciI)ri, then the primary decomposition theorem tells
us that

V = W1  ...  Wk

and that the operator Ti induced on Wi by T has minimal polynomial (x – ci)ri. Let Ni be the linear
operator on Wi defined by Ni = T – ciI. Then Ni is nilpotent and has minimal polynomial xri. On Wi,
T acts like Ni plus the scalar ci times the identity operator. Suppose we choose a basis for the
subspace Wi corresponding to the cyclic decomposition for the nilpotent operator Ni. Then the
matrix of Ti in this ordered basis will be the direct sum of matrices



224 LOVELY PROFESSIONAL UNIVERSITY

Linear Algebra

Notes
0 0 0

1 0 0

0 0 1

c
c

c
c

 
 
 
 
 
 
 
 




   



...(3)

each with c = ci. Furthermore, the sizes of these matrices will decrease as one reads from left to
right. A matrix of the form (3) is called an elementary Jordan matrix with characteristic value c.
Now if we put all the bases for the Wi together, we obtain an ordered basis for V. Let us describe
the matrix A of T in this ordered basis.

The matrix A is the direct sum

1

2

0 0
0 0

0 0 k

A
A

A

A

 
 
 
 
 
 




  


...(4)

of matrices A1,..., Ak. Each Ai is of the form

( )
1

( )
2

( )

0 0
0 0

0 0
i

i

i

i

l
n

J
J

A

J

 
 
 
 
 
  




  


where each ( )i
jJ  is an elementary Jordan matrix with characteristic value ci. Also, within each Ai,

the sizes of the matrices ( )i
jJ  decrease as j increases. An n × n matrix A which satisfies all the

conditions described so far in this paragraph (for some distinct scalars c1,..., ck) will be said to be
in Jordan form.

We have just pointed out that if T is a linear operator for which the characteristic polynomial
factors completely over the scalar field, then there is an ordered basis for V in which T is
represented by a matrix which is in Jordan form. We should like to show now that this matrix is
something uniquely associated with T, up to the order in which the characteristic values of T are
written down.

The uniqueness we see as follows. Suppose there is some ordered basis for V in which T is
represented by the Jordan matrix A described in the previous paragraph. If Ai is a di × di matrix,
then di is clearly the multiplicity of ci as a root of the characteristic polynomial for A, or for T. In
other words, the characteristic polynomial for T is

f = (x – c1)d1 ... (x – ck)dk

This shows that cj, ..., ck and d1, ..., dk are unique, up to the order in which we write them. The fact
that A is the direct sum of the matrices Ai gives us a direct sum decomposition V = W1  ...  Wk

invariant under T. Now note that Wi must be the null space of (T – ciI)n, where n = dim V; for,
Ai – ciI is clearly nilpotent and Aj – ciI is non-singular for j  i. So we see that the subspaces Wi are
unique. If Ti is the operator induced on Wi by T, then the matrix Ai is uniquely determined as the
rational form for (Ti ... ciI).
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NotesNow we wish to make some further observations about the operator T and the Jordan matrix A
which represents T in some ordered basis. We shall list a string of observations:

(1) Every entry of A not on or immediately below the main diagonal is 0. On the diagonal of
A occur the k distinct characteristic values c1,..., ck of T. Also, ci is repeated di times, where di

is the multiplicity of ci as a root of the characteristic polynomial, i.e., di = dim Wi.

(2) For each i, the matrix Ai is the direct sum of ni elementary Jordan matrices ( )i
jJ  with

characteristic values ci. The number ni is precisely the dimension of the space of characteristic
vectors associated with the characteristic value ci. For, ni is the number of elementary
nilpotent blocks in the rational form for (Ti – ciI), and is thus equal to the dimension of the
null space of (T – ciI). In particular notice that T is diagonalizable if and only if ni = di for
each i.

(3) For each i, the first block ( )
1
tJ  in the matrix A, is an ri × ri matrix, where ri is the multiplicity

of ci as a root of the minimal polynomial for T. This follows from the fact that the minimal
polynomial for the nilpotent operator (Ti – ciI) is xri.

Of course we have as usual the straight matrix result. If B is an n × n matrix over the field F and
if the characteristic polynomial for B factors completely over F, then B is similar over F to an
n × n matrix A in Jordan form, and A is unique up to a rearrangement of the order of its
characteristic values. We call A the Jordan form of B.

Also, note that if F is an algebraically closed field, then the above remarks apply to every linear
operator on a finite-dimensional space over F, or to every n × n matrix over F. Thus, for example,
every n × n matrix over the field of complex numbers is similar to an essentially unique matrix
in Jordan form.

If the linear transformation T is nilpotent then 1 0nT  where n1 is the index of nilpotency. If
1 1 0nT  we can find a vector v in the space V such that 11 0nT . Then we can form the vectors

v1 = v, v2 = T v, v3 = T2v, … 11
1

n
nv T v  vectors which are claimed to be linearly independent over

the field F.

Let V1 be the subspace of V spanned by v1 = v, v2 = Tv, … 11
1

n
nv T v , V1 is invariant under T, and

in the basis above, the linear transformation induced by T on V1 has a matrix 1nA  of the form (1).

Let the vector space V is of the form V = V1  W where W is invariant under T. Using the basis

v1, v2, … 1nv  of V1 and any basis of W as a basis of V, the matrix of T in this basis has the form

1

2

0
0

n

n

A
A

where A2 is the matrix of T2, the linear transformation induced on W by T. Since 1 /21
20, 0nT T

for some n2  n1.

Let T is a linear operator on C2. The characteristic polynomial for T is either (x – C1) (x – C2) where
C1 and C2 are distinct or is (x – C)2. In the former case T is diagonalizable and is represented in
some ordered basis by the matrix

1

2

0
0

C
C .

In the later case, the minimal polynomial for T may be (x – C), in which case T = C I, or may be
(x – C)2, in which case T is represented in some order basis by the matrix
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C

C

Thus every 2 × 2 matrix over the field of complex numbers is similar to a matrix of one of the two
types displayed above, possibly with C1 = C2.

Example 1: Let T be represented in ordered basis by the matrix

3

0 1 1
0 0 0
0 0 0

A F

The ordered basis is 1 = (1, 0, 0), 2 = (0, 1, 0), 3 = (0, 0, 1)

Let 1 = 1, 2 = A1 = 2 + 3, 3 = 3. In this basis

(1, 2, 3) the matrix A becomes

A’ = PAP–1

where P =
1 0 0
0 1 1 ,
0 0 1

A straight forward method gives

P–1 =
1 0 0
0 1 1 ,
0 0 1

then A’ =
0 1 0
0 0 0
0 0 0

which is in Jordan form. Thus A is similar to A’.

Example 2: Let A be a complex 3 × 3 matrix

2 0 0
2 0

1
A a

b c

The characteristic polynomial for A is obviously (x – 2)2 (x + 1). Either this is the minimal
polynomial, in which case A is similar to

2 0 0
1 2 0
0 0 1

or the minimal polynomial is (x – 2) (x + 1), in which case A is similar to

2 0 0
0 2 0
0 0 1
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0 0 0
( 2 )( ) 3 0 0

0 0
A I A I a

ac

and thus A is similar to a diagonal matrix if and only if a = 0.

Example 3: Let

2 0 0 0
1 2 0 0
0 0 2 0
0 0 2

A

a

The characteristic polynomial for A is (x – 2)4. Since A is the direct sum of two 2 × 2 matrices, it
is clear that the minimal polynomial for A is (x – 2)2. Now if a = 0 or if a = 1, then the matrix A is
in Jordan form. Notice that the two matrices we obtain for a = 0 and a = 1 have the same
characteristic polynomial and the same minimal polynomial, but are not similar. They are not
similar because for the first matrix the solution space of (A – 2I) has dimension 3, while for the
second matrix it has dimension 2.

Example 4: Linear differential equations with constant coefficients provide a nice
illustration of the Jordan form. Let a0,..., an–1 be complex numbers and let V be the space of all n
times differentiable functions f on an interval of the real line which satisfy the differential
equation

1

1 1 01 0
n n

nn n

d f d f dfa a a f
dx dx dx



 
    

Let D be the differentiation operator. Then V is invariant under D, because V is the null space of
p(D), where

p = xn + ... + a1x + a0

What is the Jordan form for the differentiation operator on V?

Let c1,..., ck be the distinct complex roots of p:

p = (x – c1)r1f ... (x – ck)rk

Let Vi be the null space of (D – ciI)ri, that is, the set of solutions to the differential equation

(D – ciI)ri f = 0

Then the primary decomposition theorem tells us that

V = V1  ...  Vk

Let Ni be the restriction of D – ciI to Vi. The Jordan form for the operator D (on V) is then
determined by the rational forms for the nilpotent operators N1,..., Nk on the spaces V1,..., Vk.

So, what we must know (for various values of c) is the rational form for the operator N = (D – cI)
on the space Vc, which consists of the solutions of the equation

(D – cI)r f = 0
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will be the nullity of N, i.e., the dimension of the characteristic space associated with the
characteristic value c. That dimension is 1, because any function which satisfies the differential
equation

Df = cf

is a scalar multiple of the exponential function h(x) = ecx. Therefore, the operator N (on the
space Vc) has a cyclic vector. A good choice for a cyclic vector is g = xr–1h:

g(x) = xr–1ecx

This gives

2

1

( 1)

( 1)!

r

r

Ng r x h

N g r h





 

 

 

2

1

( 1)

( 1)!

r

r

Ng r x h

N g r h





 

 

 

2

1

( 1)

( 1)!

r

r

Ng r x h

N g r h





 

 

 

The preceding paragraph shows us that the Jordan form for D (on the space V) is the direct sum
of k elementary Jordan matrices, one for each root ci.

Self Assessment

1. If A is an n × n matrix over the field F with characteristic polynomials

f = (x – c1)d1 (x – c2)d2 ... (x – ck)dk

What is the trace of A?

2. Show that the matrix

0 1 0
1 0 1
0 1 0

A
 
 

  
  

is nilpotent. Show also that the Jordan form of A consists of a single 3 × 3 matrix.

21.3 Summary

 The findings of the theorem 1 of the last unit helps us to see that the finite vector space V
for a linear nilpotent operator is decomposed as the direct sum of its cyclic invariant
subspaces Z(i; N) with N annihilators p1, p2, ..., pr.

 Since N is nilpotent, the minimal polynomial is xk where k  n, and thus each pi is also of the
form pi = xki.

 Theorem 1 of the last unit also helps us to write N as the direct sum of the elementary
nilpotent matrices known as companion matrices.

21.4 Keywords

Companion Matrix: is such an n × n matrix whose elements are zeros every where except
immediately below the diagonal line has 1s.

Nilpotent Matrix: A matrix A such that Ak = 0, is called nilpotent matrix of index k. Provided
ak-1  0.
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1. The differentiation operator on the space of the polynomials of degree less than or equal
to 3 is represented by the matrix

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 
 
 
 
 
 

What is the Jordan form of the matrix?

2. If A is a complex 5 × 5 matrix with the characteristic polynomial

f = (x – 2)3 (x + 7)2

and the minimal polynomial p = (x – 2)2 (x + 7), what is the Jordan form for A?

Answer: Self Assessment

1. Trace of A = c1d1 + c2d2 + ... + ckdk

21.6 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

I.N. Herstein, Topics in Algebra
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22.4 Keywords

22.5 Review Question

22.6 Further Readings

Objectives

After studying this unit, you will be able to:

 Understand how to obtain the characteristic polynomial for a matrix of large size with the
help of the elementary row and column operations.

 See that this unit gives a detailed method which can be used by computation of invariant
factors as the matrix involved depends upon the polynomials in the field Fn(x).

 See that with method of elementary row and column operations a matrix can be put into
the Jordan form.

 Understand that if P is an m × m matrix with entries in the polynomial algebra F(x) then P
is invertible means that P is row equivalent to the m × m identity matrix and P is a product
of elementary matrices.

Introduction

In this unit a method for computing the invariant factors p1, ... pr is given where p1, p2, ... pr define
the rational form for the n  n matrix A.

The elementary row operations and column operations are to be used to reduce (xI – A) into an
row equivalent matrix.

It is also shown that if N is row equivalent to M then N = PM, where P an m  m matrix is a product
of elementary matrices.

22.1 Overview

We wish to find a method for computing the invariant factors p1,  p2, ... pr which define the
rational form for an n  n matrix A with entries in the field F. To begin with a very simple case
in which A is the companion matrix (2) of unit 9 of a monic polynomial

p = xn + Cn–1 xn–1 + ... + C1x + C0.

In unit (19) we saw that p is both the minimal and the characteristic polynomial for the companion
matrix A. Now, we want to give a direct calculation which shows that p is the characteristic
polynomial for A.
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xI – A = 

0

1

2

2

1

0 0 0
1 0 0

0 1 0

0 0 0
0 0 0 1

n

n

x C
x C

x C

C
x C





     
 


In the row-operation, let us add x times row n to row (n – 1). This will remove the x in the (n – 1,
n – 1) place and still the determinant of [xI – A] does not change. To continue, add x times the new
row (n – 1) to row (n – 2). Continuing successively unit all of the x’s on the main diagonal have
been removed by that process, the result is the matrix

1 0
1

2 1
2

3 2

2
1 2

1

0 0 0 0 ...

1 0 0 0 ...

0 1 0 0 ...

0 0 0 0
0 0 0 01

n

n

n

n n

n

x C x C

x C x C

x C x C

x C x C
x C






          




which has the same determinant as xI – A. The upper right-hand entry of this matrix is the
polynomial p. Now we use column operations to clean up the last columns. We do so by adding
to last column appropriate multiples of the other columns:

0 0 0 0
1 0 0 0 0

0 1 0 0 0

0 0 0 0 0
0 0 0 1 0

p



   



Multiply each of the first (n – 1) columns by –1 and then perform (n – 1) interchanges of adjacent
columns to bring the present nth column to the first position. The total effect of the 2n – 2 sign
changes is to have the determinant unaltered. We obtain the matrix

1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 1





   


...(1)

It is then clear that p = det (xI – A).

22.2 Computation of Invariant Factors

We are going to show that for any n  n matrix A, there is a succession of row and column
operations which will transform xI – A into a matrix, in which the invariant factors of A appear
down the main diagonal.
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We will be concerned with ( )

m n
F x , the collection of m  n matrices with entries which are

polynomials over the field F. If M is such a matrix, an elementary row operation on M is one of
the following:

1. multiplications of one row of M by a non-zero scalar in F;

2. replacement of the rth row of M by row r plus f times row s, where f is any polynomial
over F and r = s;

3. interchange of two rows of M.

The inverse operation of an elementary row operation is an elementary row operation of the
same type. Notice that we could not make such an assertion if we allowed non-scalar polynomials
in (1). An m × m elementary matrix, that is, an elementary matrix in F[x]m  m, is one which can be
obtained from the m  m identity matrix by means of a single elementary row operation. Clearly
each elementary row operation on M can be effected by multiplying M on the left by a suitable
m  m elementary matrix; in fact, if e is the operation, then

e(M) = e(I)M.

Let M, N be matrices in F[x]m  n. We say that N is row-equivalent to M if N can be obtained from
M by a finite succession of elementary row operations:

M = M0  M1  ...  Mk = N.

Evidently N is row-equivalent to M if and only if M is row-equivalent to N, so that we may use
the terminology 'M and N are row-equivalent.' If N is row-equivalent to M, then

N = PM

where the m  m matrix P is a product of elementary matrices:

P = E1 ... Ek.

In particular, P is an invertible matrix with inverse

P–l = Ek
–l ... E1

–1.

Of course, the inverse of E, comes from the inverse elementary row operation.

All of this is just as it is in the case of matrices with entries in F. Thus, the next problem which
suggests itself is to introduce a row-reduced echelon form for polynomial matrices. Here, we
meet a new obstacle. How do we row-reduce a matrix? The first step is to single out the leading
non-zero entry of row 1 and to divide every entry of row 1 by that entry. We cannot (necessarily)
do that when the matrix has polynomial entries. As we shall see in the next theorem, we can
circumvent this difficulty in certain cases; however, there is not any entirely suitable
row-reduced form for the general matrix in F[x]m  n. If we introduce column operations as well
and study the type of equivalence which results from allowing the use of both types of operations,
we can obtain a very useful standard form for each matrix. The basic tool is the following.

Lemma: Let M be a matrix in F[x]m n which has some non-zero entry in its first column, and let p
be the greatest common divisor of the entries in column 1 of M. Then M is row-equivalent to a
matrix N which has

0

0

p



as its first column.
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NotesProof: We shall prove something more than we have stated. We shall show that there is an
algorithm for finding N, i.e., a prescription which a machine could use to calculate N in a finite
number of steps. First, we need some notation.

Let M be any m  n matrix with entries in F[x] which has a non-zero first column

M1 = 
1

m

f

f


Define

I(M1) = 
0

min
fi

 deg fi

p(M1) = g.c.d. (f1, ... fm) ...(2)

Let j be some index such that deg fj, = l(M1). To be specific, let j be the smallest index i for which
deg fi, = I(M1). Attempt to divide each f, by fj:

fi = fjgi, + ri, ri = 0 or deg ri < deg fj  ...(3)

For each i different from j, replace row i of M by row i minus gi times row j. Multiply row j by the
reciprocal of the leading coefficient of fj and then interchange rows j and 1. The result of all these
operations is a matrix M' which has for its first column

M’1 = 

2

1

1

1

ˆ
j

j

j

m

f

r

r

r
r

r





...(4)

where ˆ
jf  is the monic polynomial obtained by normalizing fj to have leading coefficient 1. We

have given a well-defined procedure for associating with each M a matrix M' with these properties.

(a) M' is row-equivalent to M.

(b) p(M’1) = p(M1).

(c) Either l(M’1) < l(M1) or

M’1 = 

1( )
0

0

p M


...(4A)

It is easy to verify (b) and (c) from (3) and (4). Property (c) is just another way of stating that either
there is some i such that r,  0 and deg ri, < deg fj, or else ri, = 0 for all i and ˆ

jf  is (therefore) the
greatest common divisor of f1, ..., fm.

The proof of the lemma is now quite simple. We start with the matrix M and apply the above
procedure to obtain M'. Property (c) tells us that either M' will serve as the matrix N in the
lemma or l(M’1) < l(M1). In the latter case, we apply the procedure to M' to obtain the matrix
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Notes M(2) = (M')'. If M(2) is not a suitable N, we form M(3) = M(2))', and so on. The point is that the strict
inequalities

l(Mi) > l(M’1) > l(M1
(2) > ...

cannot continue for very long. After not more than l(M1) iterations of our procedure, we must
arrive at a matrix M(k) which has the properties we seek.

Theorem 1: Let P be an m  m matrix with entries in the polynomial algebra F[x]. The following
are equivalent.

(i) P is invertible.

(ii) The determinant of P is a non-zero scalar polynomial.

(iii) P is row-equivalent to the m  m identity matrix.

(iv) P is a product of elementary matrices.

Proof: Certainly (i) implies (ii) because the determinant function is multiplicative and the only
polynomials invertible in F[x] are the non-zero scalar ones. Our argument here provides a proof
that (i) follows from (ii). We shall complete the merry-go-round

(i)   (ii)
   

(iv)  (iii).

The only implication which is not obvious is that (iii) follows from (ii).

Assume (ii) and consider the first column of P. It contains certain polynomials p1, ... , pm, and

g.c.d. (p1, ..., pm) = 1

because any common divisor of p1, ..., pm. must divide (the scalar) det P. Apply the previous
lemma to P to obtain a matrix

Q = 

21
0

0

ma a

B




...(5)

which is row-equivalent to P. An elementary row operation changes the determinant of a matrix
by (at most) a non-zero scalar factor. Thus det Q is a non-zero scalar polynomial. Evidently the
(m – 1)  (m – 1) matrix B in ( 5) has the same determinant as does Q. Therefore, we may apply the
last lemma to B. If we continue this way for m steps, we obtain an upper-triangular matrix

R = 

21
0 1

0 0 1

m

m

a a
b




  


which is row-equivalent to R. Obviously R is row-equivalent to the m  m identity matrix.

Corollary: Let M and N be m  n matrices with entries in the polynomial algebra F]x]. Then N is
row-equivalent to M if and only if

N = PM

where P is an invertible m  m matrix with entries in F[x].
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to row operations and row-equivalence. We do not need a new concept of elementary matrix
because the class of matrices which can be obtained by performing one elementary column
operation on the identity matrix is the same as the class obtained by using a single elementary
row operation.

Definition: The matrix N is equivalent to the matrix M if we can pass from M to N by means of
a sequence of operations

M = M0  M1  ...  Mk = N

each of which is an elementary row operation or an elementary column operation.

Theorem 2: Let M and N be m  n matrices with entries in the polynomial algebra F[x ]. Then N
is equivalent to M if and only if

N = PMQ

where P is an invertible matrix in F[x]m  m and Q is an invertible matrix in F[x]n  n.

Theorem 3: Let A be an n  n matrix with entries in the field F, and let p1, ... , pr be the invariant
factors for A. The matrix x I – A is equivalent to the n  n diagonal matrix with diagonal entries
p1, ... , pr, 1, 1, ... , 1.

Proof: There exists an invertible n  n matrix P, with entries in F, such that PAP–1 is in rational
form, that is, has the block form

PAP–1 = 

1

2

0 0
0 0

0 0 r

A
A

A




   


where Ai is the companion matrix of the polynomial pi. According to Theorem 2, the matrix

P(xI – A)P–1 = xI – PAP–1 ...(6)

is equivalent to xI – A. Now

xI – PAP–1 = 

1

2

0 0
0 0

0 0 r

xI A
xI A

xI A




  


...(7)

where the various I's we have used are identity matrices of appropriate sizes. At the beginning
of this section, we showed that xl – A, is equivalent to the matrix

0 0
0 1 0

0 0 1

ip 


  


.

From (6) and (7) it is then clear that xl – A is equivalent to a diagonal matrix which has the
polynomials pi, and (n – r) 1's on its main diagonal. By a succession of row and column
interchanges, we can arrange those diagonal entries in any order we choose. For example: p1, ...,
pr, 1, ... ,1.

Theorem 3 does not give us an effective way of calculating the elementary divisors p1, ... , pr

because our proof depends upon the cyclic decomposition theorem. We shall now give an



236 LOVELY PROFESSIONAL UNIVERSITY

Linear Algebra

Notes explicit algorithm for reducing a polynomial matrix to diagonal form. Theorem 3 suggests that
we may also arrange that successive elements on the main diagonal divide one another.

Definition: Let N be a matrix in F[xJm  n. We say that N is in (Smith) normal form if

(a) every entry off the main diagonal of N is 0;

(b) on the main diagonal of N there appear (in order) polynomials f1, ... , fl such that fk divides
fk + j, 1  k  l – 1.

In the definition, the number l is l = min (m, n). The main diagonal entries are fk = Nkk, k = 1, ..., l.

Theorem 4: Let M be an m  n matrix with entries in the polynomial algebra F[x]. Then M is
equivalent to a matrix N which is in normal form.

Proof: If M = 0, there is nothing to prove. If M  0, we shall give an algorithm for finding a matrix
M' which is equivalent to M and which has the form

M’ = 

1 0 0
0

0

f

R



 ...(8)

where R is an (m – 1)  (n – 1) matrix and f1 divides every entry of R. We shall then be finished,
because we can apply the same procedure to R and obtain f2, etc.

Let l(M) be the minimum of the degrees of the non-zero entries of M. Find the first column which
contains an entry with degree l(M) and interchange that column with column 1. Call the resulting
matrix M(0). We describe a procedure for finding a matrix of the form

0 0
0

0

g

S



 ...(9)

which is equivalent to M(0). We begin by applying to the matrix M(0) the procedure of the lemma
before Theorem 1, a procedure which we shall call PL6. There results a matrix

M(1) = 
0

0

p a b
c d

e f




  


...(10)

If the entries a, ... , b are all 0, fine. If not, we use the analogue of PL6  for the first row, a procedure
which we might call PL6'. The result is a matrix

M(2) = 

0 0
' ' '

' ' '

q
a c e

b d f




  


...(11)

where q is the greatest common divisor of p, a, ... , b. In producing M(2), we may or may not have
disturbed the nice form of column 1. If we did, we can apply PL6 once again. Here is the point.
In not more than l(M) steps:

PL6 PL6 PL6(0) (1) (2) ( )... tM M M M
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Noteswe must arrive at a matrix M(t) which has the form (9): because at each successive step we have
l(M(k + 1) < l(M(k). We name the process which we have just defined P7-36.

PL-36(0) ( )tM M

In (9), the polynomial g may or may not divide every entry of S. If it does not, find the first
column which has an entry not divisible by g and add that column to column 1. The new first
column contains both g and an entry gh + r where r  0 and deg r < deg g. Apply process P7-36 and
the result will be another matrix of the form (9), where the degree of the corresponding g has
decreased.

It should now be obvious that in a finite number of steps we will obtain (8), i.e., we will reach a
matrix of the form (9) where the degree of g cannot be further reduced.

We want to show that the normal form associated with a matrix M is unique. Two things we
have seen provide clues as to how the polynomials fl ..., f1 in Theorem 4 are uniquely determined
by M. First, elementary row and column operations do not change the determinant of a square
matrix by more than a non-zero scalar factor. Second, elementary row and column operations
do not change the greatest common divisor of the entries of a matrix.

Definition: Let M be an m  n matrix with entries in F[x]. If 1  k  min (m, n), we define k(M) to
be the greatest common divisor of the determinants of all k  k submatrices of M.

Recall that a k  k submatrix of M is one obtained by deleting some m – k rows and some n – k
columns of M. In other words, we select certain k-tuples

I = (i1, ..., ik), 1  i1 < ... < ik  m

J = (j1, ..., jk), 1  j1, < ... < jk  n

and look at the matrix formed using those rows and columns of M. We are interested in the
determinants

DI, J(M) = det 
1 1 1

1

k

k k k

i j i j

i j i j

M M

M M



 


...(12)

The polynomial k(M) is the greatest common divisor of the polynomials DI, j(M), as I and J range
over the possible k-tuples.

Theorem 5: If M and N are equivalent m  n matrices with entries in F[x], then

k(M) = k(N), 1  k  min (m, n) ...(13)

Proof: It will suffice to show that a single elementary row operation e does not change k. Since
the inverse of e is also an elementary row operation, it will suffice to show this: If a polynomial
f divides every DI, J(M) , then f divides DI, J(e(M)) for all k-tuples I and J.

Since we are considering a row operation, let 1, ..., m be the rows of M and let us employ the
notation

DJ( i1 ..., ik) = DI, J(M).

Given I and J, what is the relation between DI, J(M) and DI, J(e(M))? Consider the three types of
operations e:

(a) multiplication of row r by a non-zero scalar c;

(b) replacement of row r by row r plus g times row s, r  s;

(c) interchange of rows r and s, r  s.
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Notes Forget about type (c) operations for the moment, and concentrate on types (a) and (b), which
change only row r. If r is not one of the indices i1, ... , ik, then

DI, J(e(M)) = DI, J(M).

If r is among the indices i1, ..., ik, then in the two cases we have

(a) DI, J(e(M)) = DJ( i1, ..., c r, ..., ik)

= cDJ( i1, ..., r, ..., ik)

= cDI, J(M);

(b) DI, J(e(M)) = DJ( i1, ..., r + g s, ..., ik)

= DI, J(M) +gDJ( i1, ..., s, ..., ik)

For type (a) operations, it is clear that any f which divides DI,J(M) also divides DI,J(e(M)). For the
case of a type (c) operation, notice that

DJ( i1, ..., s, ..., ik) = 0, if s = i, for some j

DJ( i1, ..., s ..., ik) = ± DI’. J(M), if s  i, for all j.

The I’ in the last equation is the k-tuple (i1, ... , s, ... , ik) arranged in increasing order. It should now
be apparent that, if f divides every DI.J(M), then f divides every DI.J(e(M)).

Operations of type (c) can be taken care of by roughly the same argument or by using the fact
that such an operation can be effected by a sequence of operations of types (a) and (b).

Corollary: Each matrix M in F[x]m n is equivalent to precisely one matrix N which is in normal
form. The polynomials f1, ... , fk which occur on the main diagonal of N are

fk =  
1

( ) ,
( )

k

k

M
M 1  k  min (m, n)

where, for convenience, we define 0(M) = l.

Proof: If N is in normal form with diagonal entries f1, ..., fk; it is quite easy to see that

k(N) =  f1f2 ... fk.

Of course, we call the matrix N in the last corollary the normal form of M. The polynomials f1, ...,
fk are often called the invariant factors of M.

Suppose that A is an n  n matrix with entries in F, and let p1, ... , pr be the invariant factors for A.
We now see that the normal form of the matrix xI – A has diagonal entries 1, 1, ... , 1, pr, ..., pl. The
last corollary tells us what p1, ... , pr are, in terms of submatrices of xI – A.  The number n – r is the
largest k such that k(xI – A) = 1. The minimal polynomial p1 is the characteristic polynomial for
A divided by the greatest common divisor of the determinants of all (n – 1)  (n – 1) submatrices
of xI – A, etc.

Self Assessment

1. True or false? Every matrix in Fn × n is row-equivalent to an upper-triangular matrix.

2. T be a linear operator on a finite dimensional vector space and let A be the matrix of T in
some ordered basis. Show that T has a cyclic vector if and only if the determinants of the
(n – 1) (n – 1) sub-matrices of (xI – A) are relatively prime.
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Notes22.3 Summary

 In this unit a method for computing the invariant factors p1 ... pr which define the rational
form of the matrix, is given. It is shown that by elementary row and column operations it
can be achieved.

 It is shown that if N is row-equivalent to a matrix M then N = PM where p is a product of
elementary matrices.

 By this method one can show that

P(xI – A) P–1 = xI – PAP–1 = 

1

2

0 0
0 0

0 r

xI A
xI A

xI A





 

where Ai is companion matrix.

22.4 Keywords

An Elementary Matrix in ( )
n n

F x   is one which can be obtained from n  n identity matrix by
means of a single elementary operation.

An Elementary Row Operation: An elementary row operation on a matrix M whose determinant
has to be found, will not change the determinant of M if this row operation is one of the
following: (i) multiplication of one row of M by a non-zero scalar in F; (ii) replacement of the rth
row of M by the row r plus f times row s, where f is any polynomial over F and r  s; (iii)
interchange of two rows of M.

Row equivalent: Let M, N be matrices in ( )
m m

F x . We say that N is row equivalent to M if N can
be obtained from M by a finite succession of elementary row operations.

22.5 Review Question

1. Let T be the linear operator on R8 which is represented in the standard basis by the matrix

A = 

1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 1
0 0 0 1 1 0 0 0
0 1 1 1 1 1 0 1
0 1 1 1 1 0 1 1
0 0 0 0 0 0 0 0

(a) Find the characteristic polynomial and the invariant factors.

(b) Find the Jordan form of A.

(c) Find a direct sum decomposition of R8 into T-cyclic subspaces as in theorem 1 of
unit 20.
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Notes Answer: Self Assessment

1. True

22.6 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

I.N. Herstein, Topics in Algebra
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23.4 Keywords
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Objectives

After studying this unit, you will be able to:

 Understand the meaning of semi-simple linear operator T by means of a few lemma stated
in this unit.

 See that if T is a linear operator on V and the minimal polynomial for T is irreducible over
the scalar field then T is semi-simple.

 Know that T, a linear operator on a finite-dimensional space is semi-simple if and only if
T is diagonalizable.

 Understand that if T is a linear operator on V, a finite dimensional vector space over F a
subfield of the field of complex numbers, then there is a semi-simple operator S and a
nilpotent operator N on V such that T = S + N and SN = NS.

Introduction

In this unit the outcome of the last few units is reviewed and a few lemmas based on these ideas
are proved.

The criteria for an operator to be semi-simple are given. It is shown that a linear operator on
finite dimensional space having minimal polynomial to be irreducible is semi-simple.

It is also shown that for a linear operator T on a finite dimensional vector space V over the field
F which is subfield of the field of complex numbers, the operator is the sum of a semi-simple
operator S on V and a nilpotent operator N on V such that T = S + N and SN = NS.

23.1 Overview

In the last couple of units we have been dealing with a single linear operator T on a finite
dimensional vector space V. The aim has been to decompose T into a direct sum of linear
operators of an elementary nature.

We first of all studied the characteristic values and characteristic vectors and also constructed
diagonalizable operators. It was observed then that the characteristic vectors of T need not space
the space.
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Notes Then the cyclic decomposition theorem help us in expressing any linear operator as a direct sum
of operators with a cyclic vector. If U is a linear operator with a cyclic vector, there is a basis
( 1, 2, ..., n) with

U i = i + 1 i = 1, .... n – 1,

U n = –c0 1 – c1 1, .... –cn–1 n.

This means that action of U on this basis is to shift each i to the next vector j + 1, except that U n

is some prescribed linear combination of the vectors in the basis. The general operator T is the
direct sum of a finite number of such operators U and got reasonably elementary description of
the action of T. Then cyclic decomposition theorem to nilpotent operators is applied and with
the help of the primary decomposition theorem Jordan form is obtained.

The importance of the rational form or the Jordan form is obtained from the fact that these forms
can be computed in specific cases. Of course, if one is given a specific linear operator T and if its
cyclic or Jordan form can be computed, one can obtain vast amounts of information about T.
However there are some difficulties in this method. At first the computation may be lengthy.
The other difficulty is there may not be any method for doing computations. In the case of
rational form the difficulty may be due to lengthy calculation. It is also worthwhile to mention
a theorem which states that if T is a linear operator on a finite-dimensional vector space over an
algebraically closed field then T is uniquely expressible as the sum of a diagonalizable operator
and a nilpotent operate which commute.

In this unit we shall prose analogous theorem without assuming that the scalar field is
algebraically closed. We begin by defining the operators which will play the role of the
diagonalizable operators.

23.2 Semi-simple Operators

We say that T a linear operator on a finite dimensional space V over the field F, is semi-simple
if every T-invariant subspace has a complementary T-invariant subspace.

We are going to characterize semi-simple operators by means of their minimal polynomials,
and this characterization will show us, that, when F is algebraically closed, an operator is semi-
simple if and only it is diagonalizable.

Lemma: Let T be a linear operator on the finite dimensional vector space V and let

V = W1  ... + Wk

be the primary decomposition for T. In other words, if p is the minimal polynomial for T and
1

1 ... krr
kp p p is the prime factorization of p, then Wj is the null space of ( )rj

jp T . Let W be any
subspace of V which is invariant under T. Then

W = (W   W1)  ...  (W  Wk)

Proof: If E1, E2, ..... Ek the projections associated with the decomposition V = WI  ...  Wk, then
each Ej is a polynomial in T. That is, there are polynomials h1, ..., hk such that Ej = hj(T).

Now let W be a subspace which is invariant under T. If  is any vector in W, then  = l + ... + k,
where j is in Wj. Now j = Ej  = hj(T) , and since W is invariant under T, each j is also in W. Thus
each vector  in W is of the form  = 1 + ... + k, where j is in the intersection W·  Wj. This
expression is unique, since V = W1  ...  Wk. Therefore

W = (W   W1)  ...  (W  Wk)

Lemma: Let T be a linear operator on V, and suppose that the minimal polynomial for T is
irreducible over the scalar field F. Then T is semi-simple.
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NotesProof: Let W be a subspace of V which is invariant under T. We must prove that W has a
complementary T-invariant subspace. According to corollary of Theorem 1 of unit 20 it will
suffice to prove that if f is a polynomial and  is a vector in V such that f(T)  is in W, then there
is a vector  in W with f(T)  = f(T) . So suppose  is in V and f is a polynomial such that f(T)  is
in W. If f(T)  = 0, we let  = 0 and then  is a vector in W with f(T)  = f(T) . If f(T)   0, the
polynomial f is not divisible by the minimal polynomial p of the operator T. Since p is prime,
this means that f and p are relatively prime, and there exist polynomials g and h such that fg + ph
= l. Because p(T) = 0, we then have f(T)g(T) = I. From this it follows that the vector  must itself be
in the subspace W; for

= g(T)f(T)

= g(T)(f(T) )

while f(T)  is in W and W is invariant under T. Take  = .

Theorem 1: Let T be a linear operator on the finite-dimensional vector space V. A necessary and
sufficient condition that T be semi-simple is that the minimal polynomial p for T be of the form
p = p1 ... pk, where pI, ... , pk are distinct irreducible polynomials over the scalar field F.

Proof: Suppose T is semi-simple. We shall show that no irreducible polynomial is repeated in
the prime factorization of the minimal polynomial p. Suppose the contrary. Then there is some
non-scalar monic polynomial g such that g2 divides p. Let W be the null space of the operator g(T).
Then W is invariant under T. Now p = g2h for some polynomial h. Since g is not a scalar polynomial,
the operator g(T)h(T) is not the zero operator, and there is some vector  in V such that g(T)h(T)

 0, i.e., (gh)   0. Now (gh)  is in the subspace W, since g(gh ) = g2h  = p  = 0. But there is no
vector  in W such that gh  = qh ; for, if  is ill W

(gh) = (hg)  = h(g ) = h(0) = 0.

Thus, W cannot have a complementary T-invariant subspace, contradicting the hypothesis that T
is semi-simple.

Now suppose the prime factorization of p is p = p1 ... pk, where p1, ... , pk are distinct irreducible
(non-scalar) monic polynomials. Let W be a subspace of V which is invariant under T. We shall
prove that W has a complementary T-invariant subspace. Let V = WI  ...  Wk be the primary
decomposition for T, i.e., let Wj be the null space of pj(T). Let Tj be the linear operator induced on
Wj by T, so that the minimal polynomial for Tj is the prime pj. Now W  Wj is a subspace of Wj

which is invariant under Tj (or under T). By the last lemma, there is a subspace Vj of Wj such that
Wj = (W  Wj)  Vj and Vj is invariant under Tj (and hence under T). Then we have

V = W1  ...  Wk

= (W  W1)  V1  ...  (W  Wk)  Vk

= (W  W1) + ... + (W  Wk)  V1  ...  Vk.

By the first lemma above, W = (W  W1)  ...  (W  Wk) so that if W’ = V1  ...  Vk, then V = W
 W’ and W’ is invariant under T.

Corollary: If T is a linear operator on a finite-dimensional vector space over an algebraically
closed field, then T is semi-simple if and only if T is diagonalizable.

Proof: If the scalar field F is algebraically closed, the monic primes over F are the polynomials
x – c. In this case, T is semi-simple if and only if the minimal polynomial for T is p = (x – c1) ...
(x – ck), where c1, ... , ck are distinct elements of F. This is precisely the criterion for T to be
diagonalizable.

We turn now to expressing a linear operator as the sum of a semi-simple operator and a nilpotent
operator which commute. In this, we shall restrict the scalar field to a subfield of the complex
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Notes numbers. We will see that what is important is that the field F be a field of characteristic zero,
that is, that for each positive integer n the sum 1 + ... + 1 (n times) in F should not be 0. For a
polynomial f over F, we denote by f(k) the kth formal derivative of f. In other words, f(k) = Dkf, where
D is the differentiation operator on the space of polynomials. If g is another polynomial, f(g)
denotes the result of substituting g in f, i.e., the polynomial obtained by applying f to the
element g in the linear algebra F[x].

Lemma (Taylor's Formula): Let F be a field of characteristic zero and let g and h be polynomials
over F. If f is any polynomial over F with deg f  n, then

f(g) = f(h) + f(1)(h)(g – h) + 
(2)( )
2!

f h  (g – h)2 + ... + 
( )( )

!

nf h
n

 (g – h)n,

Proof: What we are proving is a generalized Taylor formula. The reader is probably used to
seeing the special case in which h = c, a scalar polynomial, and g = x. Then the formula says

f = f(x) = f(c) + f(1)(c) (x – c) + 
(2)( )
2!

f c
(x – c)2  + ... + 

( )( )
!

nf c
n

(x – c)n

The proof of the general formula is just an application of the binomial theorem

(a + b)k = ak + kak-1b + 2 2( 1)
2!

kk k a b  + ... + bk.

Since substitution and differentiation are linear processes, one need only prove the formula

when f = xk. The formula for f = 
0

n
k

k
k

c x  follows by a linear combination. In the case f = xk with

k  n, the formula says

gk = hk + khk–l(g – h) + 
( 1)

2!
k k

hk–2 (g – h)2 + ... + (g – h)k

which is just the binomial expansion of

gk = [h + (g – h)]k.

Lemma: Let F be a subfield of the complex numbers, let f be a polynomial over F, and let f' be the
derivative of f. The following are equivalent:

(a) f is the product of distinct polynomials irreducible over F.

(b) f and f' are relatively prime.

(c) As a polynomial with complex coefficients, f has no repeated root.

Proof: Let us first prove that (a) and (b) are equivalent statements about f. Suppose in the prime
factorization of f over the field F that some (non-scalar) prime polynomial p is repeated. Then f
= p2h for some h in F[x]. Then

f' = p2h' + 2pp'h

and p is also a divisor of f'. Hence f and f' are not relatively prime. We conclude that (b) implies (a).

Now suppose f = p1 ... pk, where pI, ... , pk are distinct non-scalar irreducible polynomials over F.
Let fj = f /pj. Then

f' = P’1 f1 + P’2 f2 + ... + P’k fk

Let p be a prime polynomial which divides both f and f '. Then p = pi, for some i. Now pi divides
fj for j  i, and since pi also divides



LOVELY PROFESSIONAL UNIVERSITY 245

Unit 23: Semi-simple Operators

Notes
f' = 

1

n

j j
j

p f

we see that pi must divide p’i fi. Therefore pi divides either fi or p’i. But pi does not divide fi, since p1,
... , pk are distinct. So pi divides p'i. This is not possible, since p’i has degree one less than the degree
of pi. We conclude that no prime divides both f and f', or that (f, f') = 1.

To see that statement (c) is equivalent to (a) and (b), we need only observe the following:
Suppose f and g are polynomials over F, a subfield of the complex numbers. We may also regard
f and g as polynomials with complex coefficients. The statement that f and g are relatively prime
as polynomials over F is equivalent to the statement that f and g are relatively prime as
polynomials over the field of complex numbers. We use this fact with g = f'. Note that (c) is just
(a) when f is regarded as a polynomial over the field of complex numbers. Thus (b) and (c) are
equivalent, by the same argument that we used above.

Theorem 2: Let F be a subfield of the field of complex numbers, let V be a finite-dimensional
vector space over F, and let T be a linear operator on V. Let  be an ordered basis for V and let
A be the matrix of T in the ordered basis . Then T is semi-simple if and only if the matrix A is
similar over the field of complex numbers to a diagonal matrix.

Proof: Let p be the minimal polynomial for T. According to Theorem 1, T is semi-simple if and
only if p = p1 ... pk where p1, ... , pk, are distinct irreducible polynomials over F. By the last lemma,
we see that T is semi-simple if and only if p has no repeated complex root.

Now p is also the minimal polynomial for the matrix A. We know that A is similar over the field
of complex numbers to a diagonal matrix if and only if its minimal polynomial has no repeated
complex root. This proves the theorem.

Theorem 3: Let F be a subfield of the field of complex numbers, let V be a finite-dimensional
vector space over F, and let T be a linear operator on V. There is a semi-simple operator S on V
and a nilpotent operator N on V such that

(i) T = S + N;

(ii) SN = NS.

Furthermore, the semi-simple S and nilpotent N satisfying (i) and (ii) are unique, and each is a
polynomial in T.

Proof: Let 1
1 ... krr

kp p  be the prime factorization of the minimal polynomial for T, and let f = p1 ...
pk· Let r be the greatest of the positive integers r1, ... , rk, Then the polynomial f is a product of
distinct primes, f' is divisible by the minimal polynomial for T, and so

f(T)r = 0.

We are going to construct a sequence of polynomials: g0, g1, g2, ... such that

0

n
j

j
j

f x g f

is divisible by fn+1, n = 0, 1,2, .... We take g0 = 0 and then f(x – g0f0 = f(x) = f is divisible by f. Suppose
we have chosen g0, ... , gn–1. Let

h = 
1

0

n
j

j
j

x g f
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Notes so that, by assumption, f(h) is divisible by fn. We want to choose gn so that f(h) is divisible by fn+1.
We apply the general Taylor formula and obtain

f(h – gnfn) = f(h) – gnfnf'(h) + fn+lb

where b is some polynomial. By assumption f(h) = qfn. Thus, we see that to have f(h – gnfn) divisible
by fn+1 we need only choose gn in such a way that (q – gnf’) is divisible by f. This can be done,
because f has no repeated prime factors and so f and f’ are relatively prime. If a and e are
polynomials such that af + ef' = 1, and if we let gn = eq, then q – gnf’ is divisible by f.

Now we have a sequence g0, g1, .. , such that fn+1 divides 
0

n
i

j
j

f x g f . Let us take n = r – 1 and

then since f(T)r = 0

1

0
( ) ( )

r
i

j
j

f T g T f T = 0.

Let

N = 
1 1

0 0
( ) ( ) ( ) ( )

r r
j j

j j
j j

g T f T g T f T

Since 
1

n
i

j
j

g f  is divisible by f, we see that Nr = 0 and N is nilpotent. Let S = T – N. Then f(S) =

f(T – N) = 0. Since f has distinct prime factors, S is semi-simple.

Now we have T = S + N where S is semi-simple, N is nilpotent, and each is a polynomial in T. To
prove the uniqueness statement, we shall pass from the scalar field F to the field of complex
numbers. Let  be some ordered basis for the space V. Then we have

[T] = [S]  + [N]

while [S]  is diagonalizable over the complex numbers and [N]  is nilpotent. This diagonalizable
matrix and nilpotent matrix which commute are uniquely determined.

Self Assessment

1. If N is a nilpotent linear operator on V, show that for any polynomial f the semi-simple
part of f(N) is a scalar multiple of the identity operator (F a subfield of C).

2. Let T be a linear operator on R3 which is represented by the matrix

3 1 1
2 2 1
2 2 0

in the standard ordered basis. Show that there is a semi-simple operator S on R3 and a
nilpotent operator N on V such that T = S + N and SN = NS.

23.3 Summary

 In this unit the idea of semi-simple linear operator is explored after a brief review of the
outcome of the previous few units.

 It is shown that a linear operator is semi-simple if every T-invariant subspace W of the
finite dimensional space V, has a complementary T-invariant subspace W’ such that
V = W   W’.
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Notes It is seen that for a linear operator T on V, a finite dimensional vector space over a field of
complex numbers has a semi-simple operator S on V and a nilpotent operator N on V such
that T = S + N, SN = NS.

23.4 Keywords

Complementary T-invariant subspace:  Let T a linear operator has a T-invariant sub-space W
such that V = W  W’ then W’ is a subspace which is complementary to W. However if W’ is also
T-invariant then W’ is known as complementary T-invariant subspace.

Semi-simple operator: Let T be a linear operator on V, and suppose that the minimal polynomial
for T is irreducible over the scalar field F, then T is called a semi-simple operator.

23.5 Review Questions

1. Let T be a linear operator on a finite dimensional space over a subfield of C. Prove that T
is semi-simple and only if the following is true. If f is a polynomial and f(T) is nilpotent,
then f(T) = 0.

2. Let T a linear operator on V is represented by the matrix

A = 
4 2 2
5 3 2
2 4 1

Show that T is diagonalizable.

23.6 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

Michael Artin, Algebra
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Objectives

After studying this unit, you will be able to:

 See that there is some similarity between the scalar product in vector analysis and the
concept of inner product.

 Understand that an inner product on a vector space V is a function which assigns to each
ordered pair of vectors ,  in V a scalar ( / ) in the field F such a way that for all , , 
in V and all scalars C

( / ) ( | ) ( | )c c

 Know the importance of the construction known as Gram–Schmidt orthogonalization
process to convert a set of independent vector ( 1, 2, … n) into an orthogonal set of
vectors ( 1, 2, … n).

 Understand orthogonal projection operators and their importance.

Introduction

In this unit the concept of inner product and inner product space is introduced and a similarity
is shown with the scalar product of dot product in vector analysis.

The Cauchy-Schwarz inequality is introduced.

With the help of examples it is shown how to obtain a set of orthogonal vectors ( 1, 2, … n)
from a set of independent  vectors ( 1, 2, … n) by means of a construction known as Gram-
Schmidt orthogonalization process.

By introducing orthogonal projection, E of V on W, it is seen that E is an idempotent linear
transformation of V onto W, W is the null space of F and V =  W W .

24.1 Inner Product

In this unit we consider the vector space V over a field of real or complex numbers. In the first
case V is called a real vector space, in the second, a complex vector field. We have had some
experience of a real vector space in fact both analytic geometry and the subject matter of vector
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Notesanalysis deal with these spaces. In these concrete examples, we had the idea of length, secondly
we had the idea of the angle between two vectors. These became special cases of the notion of a
dot product (often called a scalar or inner product.) of vectors in R3. Given the vectors v = (x1, x2,
x3) and w = (y1, y2, y3) in R3 the dot product of v and w is defined as

v.w = x1 y1 + x2 y2 + x3 y3.

Note that the length of the vector v is given by .v v  and the angle  between v and w is given by

cos =
. .

. .
v w

v v w w

We list a few of the properties of a dot product:

1. . 0v v

2. . .v w w v

3. .( ) . .v aw bw a v w b v w

for any vectors v, w and real numbers a, b. If now include the complex field we slightly modify
the above relations and list them as follows:

1. . .v w w v

2. . 0 and . 0 if and only if 0;v v v v v

3. (au + bw).v = au.v + bw.v

4. ( ) ( . ) .u av bw a u v b u w

for all complex numbers a, b and all complex vectors u, v, w.

Definition. Let F be the field of real numbers or the field of complex numbers, and V a vector
over F. An inner product on V is a function which assigns to each ordered pair of vectors ,  in
V a scalar ( | ) in F in such a way that for all , ,  in V and all scalars C.

(a) ( | ) ( | ) ( | );

(b) ( | ) ( | )c c

(c) ( | ) ( | ),  the bar denoting complex conjugation;

(d) ( | ) 0 if 0.

It should be observed that conditions (a), (b) and (c) imply that

(e) ( | ) ( | ) ( | ).c c

In the examples that follow and throughout the unit F is either the field of real numbers or the
field of complex numbers.

Example 1: In F(n) define, for  = (x1, x2, ... xn) and 1 2 1 2 2= ( ... ), ( | ) , + ...ny y y x y x y

n nx y we call ( | ) the Standard Inner Product.

Example 2: In F(2) define for  = (x1, x2) and  = (y1, y2),

( | ) = 1 1 1 2 2 1 2 22 , .x y x y x y x y
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( | ) = 2 2
1 1 2 22 2x x y x

= 2
1 1 2 1 2( )( )x x x x x

It follows that ( | ) 0 if 0.  Conditions (a), (b), and (c) of the definition are easily verified.
So ( | ) defines an inner product on F(2).

Example 3: Let V be Fn n, the space of all n × n matrices over F. Then V is isomorphic to
Fn2 in a natural way. It follows from Example 1 that the equation

(A|B) = ,
,

j k j k
j k

A B

defines an inner product on V. Furthermore, if we introduce the conjugate transpose matrix B*,

where B*jk = j kB  we may express this inner product of Fnn in terms of the trace function:

(A|B) = tr (A|B*) = tr (B* A).

For tr (AB*) = ( *) jj
j

AB

= *jk kj
j k

A B

= .jk jk
j k

A B

Example 4: Let Fn1 be the space of n  1 (column matrices over F, and let Q be an n  n
invertible matrix over F. For X, Y in Fn1 set

(X|Y) = Y*Q*QX.

We are identifying the 1  1 matrix on the right with its single entry. When Q is the identity
matrix, this inner product is essentially the same as that in Example 1; we call it the standard
inner product on Fn 1. The reader should note that the terminology ‘standard inner product’ is
used in two special contexts. For a general finite-dimensional vector space over F, there is no
obvious inner product that one may call standard.

Example 5: Let V be the vector space of all continuous complex-valued functions on the
unit interval, 0 1.t Let

(f|g) = 
1

0
( ) ( ) .f t g t dt

The reader is probably more familiar with the space of real-valued continuous functions on the
unit interval, and for this space the complex conjugate on g may be omitted.

Example 6: This is really a whole class of examples. One may construct new inner
products from a given one by the following method. Let V and W be vector spaces over F and
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Notessuppose (|) is an inner product on W. If T is a non-singular linear transformation from V into W,
then the equation

pr ( , ) = (T |T )

defines an inner product pr on V. The inner product in Example 4 is a special case of this
situation. The following are also special cases.

(a) Let V be a finite-dimensional vector space, and let,

 =  { 1 ..., n)

be an ordered basis for V. Let 1, ..., n be the standard basis vectors in Fn, and let T be the
linear transformation from V into Fn such that T j = j, j = 1, ..., n. In other words, let T be
the ‘natural’ isomorphism of V onto Fn that is determined by . If we take the standard
inner product on Fn, then

1

, .
n

j j k k j j
j k j

pr x y x y

Thus, for any basis for V there is an inner product on V with the property ( j| k) = jk; in
fact, it is easy to show that there is exactly one such inner product. Later we shall show that
every inner product on V is determined by some basis  in the above manner.

(b) We look again at Example 5 and take V = W, the space of continuous functions on the unit
interval. Let T be the linear operator ‘multiplication by t,’ that is, (Tf) (t) = tf(t), 0 t 1. It
is easy to see that T is linear. Also T is non-singular; for suppose Tf = 0. Then tf(t) = 0 for
0  t  1; hence f(t) = 0 for t > 0. Since f is continuous, we have f(0) = 0 as well, or f = 0. Now
using the inner product of Example 5, we construct a new inner product on V by setting

pr(f,g) = 
1

0
( )( )( )( )Tf t Tg t dt

= 
1

2

0
( ) ( ) .f t g t t dt

We turn now to some general observations about inner products. Suppose V is complex vector
space with an inner product. Then for all ,  in V

( | ) = Re ( | ) + i Im ( | ) ... (1)

where Re ( | ) and Im ( | ) are the real and imaginary parts of the complex number ( | ). If
z is a complex number, then Im (z) = Re (– iz). It follows that

Im ( | ) = Re [– i( | )] = Re ( |i ).

Thus the inner product is completely determined by its ‘real part’ in accordance with

( | ) = Re ( | ) + i Re ( |i ) ... (2)

Occasionally it is very useful to know that an inner product on a real or complex vector space is
determined by another function, the so-called quadratic form determined by the inner product.
To define it, we first denote the positive square root of ( | ) by|| ||; || || is called the norm
of  with respect to the inner product. By looking at the standard inner products in R1, C1, R2, and
R3, the reader, should be able to convince himself that it is appropriate to think of the norm of 
as the ‘length’ or ‘magnitude’ of . The quadratic form determined by the inner product is the
function that assigns to reach vector  the scalar|| ||2. It follows from the properties of the
inner product that

2( ) = 22 2 Re ( | )
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( | ) = 2 21 1
4 4

... (3)

In the complex case we use (2) to obtain the more complicated expression

( | ) = 
2 2 2 21 1

4 4 4 4
i ii i ... (4)

Equations (3) and (4) are called the polarization identities. Note that (4) may also be written as
follows:

( | ) = 
4

2

1

1 .
4

n n

n

i i

The properties obtained above hold for any inner product on a real or complex vector space V,
regardless of its dimension. We turn now to the case in which V is finite-dimensional. As one
might guess, an inner product on a finite-dimensional space may always be described in terms
of an ordered basis by means of a matrix.

Suppose that V is finite-dimensional, that

= {1, ..., n}

is an ordered basis for V, and that we are given a particular inner product on V; we shall show
that the inner product is completely determined by the values

Gjk = ( k| j)  ... (5)

it assumes on pairs of vectors in B. If  = k k
k

x and  = ,j j
j

y then

( | ) = |n k
k

x

= ( | )k k
k

x

= ( | )k j k j
k j

x y

= 
,

j jk k
j k

y G x

= Y*GX

where X, Y are the coordinate matrices of ,  in ordered basis , and G is the matrix with entries
Gjk = ( k|aj). We call G the matrix of the inner product in the ordered basis . It follows from (5)
that G is Hermitian i.e., that G = G*; however, G is a rather special kind of Hermitian matrix. For
G must satisfy the additional condition

X*GX > 0, X  0. … (6)

In particular, G must be invertible. For otherwise there exists an X  0 such that GX = 0, and for
any such X, (6) is impossible. More explicitly, (6) says that for any scalars x1, ..., xn not all of which
are 0.
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,

0j jk k
j k

x G x  .... (7)

From this we see immediately that each diagonal entry of G must be positive; however, this
condition on the diagonal entries is by no means sufficient to insure the validity of (6). Sufficient
conditions for the validity of (6) will be given later.

The above process is reversible; that is, if G is any n  n matrix over F which satisfies (6) and the
condition G = G*, then G is the matrix in the ordered basis  of an inner product on V. This inner
product is given by the equation

( | ) = Y*GX

where X and Y are the coordinate matrices of  and  in the ordered basis .

Self Assessment

1. Let V be a vector space (|) an inner product on V.

(a) Show that (o| ) = 0 for all  in V.

(b) Show that if ( | ) = 0 for all  in V, then  = 0.

2. Let (|) be the standard inner product on R2.

(a) Let  = (1, 2),  = (– 1, 1). If  is a vector such that ( | ) = –1 and ( | ) = 3, find .

(b) Show that for any in R2 we have

= ( | 2) 1 + ( | 2) 2

Where 1 = (1, 0) and 2 = (0,1).

24.2 Inner Product Space

After gaining some insight about an inner product we want to see how to combine a vector space
to some particular inner product in it. We shall thereby establish the basic properties of the
concept of length and orthogonality which are imposed on the space by the inner product.

Definition: An Inner Product space is a real or complex vector space together with a specified
inner product on that space.

A finite-dimensional real inner product space is often called a Euclidean Space. A complex inner
product space is often referred to as a unitary space.

We now introduce the theorem:

Theorem 1. If V is an inner product space, then for any ,  in V and any scalar

(i) ;c c

(ii) 0 for 0;

(iii) ( | )

(iv)

Proof: Statements (i), (ii) can be proved from various definitions. The inequality in (iii) is valid
for   = 0. If   0, put
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= 2

( | ) , so ( | ) 0 and

20 = 2 2
( | ) ( | )

= 
2

2
2 2

( | )( | )( | )( | )

Hence 
2 22( | ) . Now using (iv) we find that

2
= 22 ( | ) ( | )

= 22 2 Re( | )

22 2

= 2 .

Thus, .

The inequality in (iii) is called the Cauchy-Schwarz inequality. It has a wide variety of applications.

The proof shows that if (for example)  is non-zero, then ( | unless

= 2
( | ) .

Thus, equality occurs in (iii) if and only if  and  are linearly dependent.

Example 7: If we apply the Cauchy-Schwarz inequality to the inner products given in
Examples 1, 3, and 5, we obtain the following:

(a)
1/2 1/222

k k k kx y x y

(b) 1/2 1/2tr ( *) (tr ( *)) (tr ( *))AB AA BB

(c)
1/2 1/21 1 1

2 2

0 0 0
( ) ( ) ( ) ( ) .f x g x dx f x dx g x dx

Definitions: Let  and  be vectors in an inner product space V. Then  is orthogonal to  if ( | )
= 0; since this implies  is orthogonal to , we often simply say that  and  are orthogonal. If S
is a set of vectors in V, S is called an orthogonal set provided all pairs of distinct vectors in S are
orthogonal. An orthonormal set is an orthogonal set S with the additional property that 1 for
every  in S.

The zero vector is orthogonal to every vector in V and is the only vector with this property. It is
appropriate to think of an orthonormal set as a set of mutually perpendicular vectors, each
having length 1.
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Example 8: The standard basis of either Rn or Cn is an orthonormal set with respect to the

standard inner product.

Example 9: The vector (x, y) in R2 is orthogonal to (–y, x) with respect to standard inner
product, for

(( , )|( , ))x y y x = 0.xy yx

However if R2 is equipped with the inner product of Example 2, then (x, y) and (– y, x) are
orthogonal if and only if

y =  x

Example 10: Let V be Cn  n, the space of complex n  n matrices, and let Epq be the matrix
whose only non-zero entry is a 1 in row p and column q. Then the set of all such matrices Epq is
orthonormal with respect to the inner product given in Example 3. For

( | )pq rsE E = tr( ) tr( ) .pq prsr
qs qs prE E E

Example 11: Let V be the space of continuous complex-valued (or real-valued) functions
on the interval 0 1x  with the inner product

(f|g) =
1

0
( ) ( ) .f x g x dx

Suppose ( ) 2 cos 2nf x nx and that ( ) 2 sin 2 .ng x nx Then {1, f1, g1, f2, g2, ...} is an infinite
orthonormal set. In the complex case, we may also form the linear combinations

1 ( ), 1, 2 . . . .
2 n nf ig n

In this way we get a new orthonormal set S which consists of all functions of the form

2( ) , 1, 2, . . . .inx
nh x e n

The set S’ obtained from S by adjoining the constant function 1 is also orthonormal. We assume
here that the reader is familiar with the calculation of the integrals in equation.

The orthonormal sets given in the examples above are all linearly independent. We show now
that this is necessarily the case.

Theorem 2: An orthogonal set of non-zero vectors in linearly independent.

Proof: Let S be a finite or infinite orthogonal set of non-zero vectors in a given inner product
space. Suppose 1 2 . . . , m are distinct vectors in S and that

1 1 2 2 . . . .m mc c c

Then

( | )k = |j j k
j

c
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= ( | )j j k

j

c

= ( | ).k k kc

Since ( | ) 0,k k it follows that

ck = 2
( | ) , 1 .k

k

k m

Thus, when  = 0, each ck = 0; so S is an independent set.

Corollary: If  vector  is a linear combination of an orthogonal sequence of non-zero vectors
1, . . ., m, then  is the particular linear combination

= 1
1

( | ) .
m

k
k

kk

… (8)

This corollary follows from the proof of the theorem. There is another corollary which although
obvious, should be mentioned. If { 2 . . . , m} is an orthogonal set of non-zero vectors in a finite-
dimensional inner product space V, then m  dim V. This says that the number of mutually
orthogonal directions in V cannot exceed the algebraically define dimension of V. The maximum
number of mutually orthogonal directions in V is what one would intuitively regard as the
geometric dimension of V, and we have just seen that this is not greater than the algebraic
dimension. The fact that these two dimensions are equal is a particular corollary of the next
result.

Theorem 3: Let V be an inner product space and let 1 . . . , n be any independent vectors in V.
Then one may construct orthogonal vectors 1, . . ., n in V such that for each k = 1, 2, . . . , n the set

{ 1, . . . , k}

is a basis for the subspace spanned by 1, . . . , k.

Proof: The vectors 1 . . . , n will be obtained by means of a construction known as the
Gram-Schmidt orthogonalization process. First let 1 = 1. The other vectors are then given
inductively as follows:

Suppose 1, . . . , m (1 m < n) have been chosen so that for every k

1{ , . . . , }, 1k k m

is an orthogonal basis for the subspace of V that is spanned by 1, . . . , k. To construct the next
vector m+1, let

1m = 1
1 2

1

( | )
.

m
m k

m k
kk

… (9)

Then 1 0.m For otherwise m+1 is a linear combination of 1, . . . , m and hence a linear

combination of 1, . . . , m. Futhermore, if 1 ,j m then

1( | )m j = 1
1 2

1

( | )( | ) ( | )
m

m k
m j k j

kk

b
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= 0.

Therefore { 1, . . . , m+1} is an orthogonal set consisting of m + 1 non-zero vectors in the subspace
spanned by 1, . . . , m+1. By theorem 2, it is a basis for this subspace. Thus the vectors 1, . . . , n

may be constructed one after the other in accordance with (9). In particular, when n = 4, we have

1 = 1

2 =
2 1

2 2 1
1

( | ) … (10)

3 =
3 1 3 2

3 2 1 2 2
1 2

( | ) ( | )

4 =
4 1 4 2 4 3

4 2 1 2 2 2 3
1 2 3

( | ) ( | ) ( | ) . … (11)

Corollary: Every finite-dimensional inner product space has an orthonormal basis.

Proof: Let V be a finite-dimensional inner product space and { 1, . . . , n} a basis for V. Apply the
Gram-Schmidt process to construct an orthogonal basis { 1, . . . , n}. Then to obtain an orthonormal
basis, simply replace each vector k by / .k k

One of the main advantages which orthonormal bases have over arbitrary bases is that
computations involving coordinates are simpler. To indicate in general terms why this is true,
suppose that V is a finite-dimensional inner product space. Then, as in the last section, we may
use Equation (5) to associate a matrix G with every ordered basis  = { 1, . . . , n} of V. Using this
matrix

Gjk = ( k| j)

we may compute inner products in terms of coordinates, If  is an orthonormal basis, then G is
the identity matrix, and for any scalars xj and yk

.j j k k j j
j k j

x y x y

Thus in terms of an orthonormal basis, the inner product in V looks like the standard inner
product in Fn.

Although it is of limited practical use for computations, it is interesting to note that the
Gram-Schmidt process may also be used to test for linear dependence. For suppose 1, …, n are
linearly dependent vectors in an inner product space V. To exclude a trivial case, assume that

1 0. Let m be the largest integer for which 1, …, m are independent. Then 1  m < n. Let

1, …, m be the vectors obtained by applying the orthogonalization process to 1 …, m. Then
the vector m+1 given by (9) is necessarily 0. For m+1 is in the subspace spanned by 1, 2, …, n

and orthogonal to each of these vectors; hence it is 0 by (6). Conversely it 1, …, n are different
from 0 and m+1 = 0, then 1

, 2, …, m+1 are linearly dependent.

Example 12: Consider the vectors

1 = (4, 0, 3)
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2 = (7, 0, –1)

3 = (1, 5, 4)

in R3 equipped with the standard inner product. Applying the Gram-Schmidt process to 1, 2, 3,
we obtain the following vectors.

1 = (4, 0, 3)

2 = (7, 0, –1) – (7, 0, 1|4, 0, 3) (4, 0, 3)
25

= (7, 0, – 1) – (4, 0, 3) = (3, 0, – 4)

3 =  (1, 5, 4) – 
(1, 5, 4|3, 0, 4) (1, 5, 4|4, 0, 3)(3, 0, 4) (4, 0, 3)

25 25

= (1, 5, 4) + 13 16(3, 0, 4) (4, 0, 3)
25 25

= (0, 5, 0)

These vectors are evidently non-zero and mutually orthogonal. Hence ( 1, 2, 3) is an orthogonal
basis for R3. To express an arbitrary vector (x1, x2, x3,) in R3 as a linear combination of 1, 2, 3,
it is not necessary to solve any linear equation. For it suffices to use (8).

Thus

(x1, x2, x3) = 3 1 1 3 2
1 2 3

3 4 (3 4 )
25 25 5

x x x x x

as is readily verified. In particular,

(1, 2, 3) = 
13 9 2(4, 0, 3) (3, 0, 4) (0, 5, 0)
25 25 5

To put this point in another way, what we have shown in the following: The basis ( f1, f2, f3) of (R3)
which is dual to basis ( 1, 2, 3) is defined explicitly by the equations

f1(x1, x2, x3) = 1 34 3
25

x x

f2(x1, x2, x3)  = 1 33 4
25

x x

f3(x1, x2, x3) = 2 ,
5
x

and these equations may be written more generally in the form

fj (x1, x2 x3) = 
1 2 3

2

( , , | )j

j

x x x
 .

Finally, note that from 1, 2, 3 we get the orthonormal basis

1 1(4, 0, 3), (3, 0, 4), (0, 1, 0).
5 5
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Example 13: If F be the real field and V be the set of polynomials, in a variable x over F

of degree 2 or less. In V we define an inner product by: If p(x), q(x) V, then

(p(x), q(x)) = 
1

1
( ) ( )p x q x dx

Let us start with the basis 1 = 1, 2 = x, 3 = x2 of V and obtain orthogonal set by applying Gram-
Schmidt process. Let

1 = 
1

1

1
2

as 2
1 = 

1

1
1. 2.dx

’2 = 2 2 1 1( , )

= 
121

1 1

1 1.1
22 2
xx x dx x

So the orthonormal 2 is given by

2 = 1/2, 1
2 2

1

3
2

x x x
x dx

Finally

,
3 = 3 3 2 2 3 1 1( , ) ( , )

= 2 2 23 3 1 1, , ,
2 2 2 2

x x x x x

Now

2 3,
2

x x = 
141

2

1
1

3 3, 0
2 2 4

xx x dx

and

2 1,
2

x = 
131

2

1 1

1 1 2,1
3 32 2
xx dx

Thus

,
3 = 2 1

3
x

and normalized 3 is given by

3 = 

2 21 1
3 3 2

1/2, 21
3 2

1

10 (3 1)
41

3

x x x
x dx

.



260 LOVELY PROFESSIONAL UNIVERSITY

Linear Algebra

Notes Thus 1, 2 and 3 are orthornormal set of polynomials in V.

In essence, the Gram-Schmidt process consists of repeated applications of a basic geometric
operation called orthogonal projection, and it is best understood from this point of view. The
method of orthogonal projection also arises naturally in the solution of an important
approximation problem.

Suppose W is a subspace of an inner product space V, and let  be an arbitrary vector in V. The
problem is to find a best possible approximation to  by vectors in W. This means we want to
find a vector  for which is as small as possible subject to the restriction that  should
belong to W. Let us make our language precise.

A best approximation to  by vectors in W is a vector  in W such that

for every vector  in W.

By looking at this problem in R2 or in R3, one sees intuitively that a best approximation to  by
vectors in W ought to be a vector  in W such that  –  is perpendicular (orthogonal) to W and
that there ought to be exactly one such . These intuitive ideas are correct for finite-dimensional
subspace and for some, but not all, indefinite-dimensional subspaces. Since the precise situation
is too complicated to treat here, we shall only prove the following result.

Theorem 4: Let W be a subspace of an inner product space V and let  be a vector in V.

1. The vector  in W is a best approximation to  by vectors in W if and only if  –  is
orthogonal to every vector in W.

2. If a best approximation to  by vectors in W exists, it is unique.

3. If W is finite-dimensional and { 1 . . . , n} is orthonormal basis for W, then the vector

= 2
( | )k

k
kk

is the (unique) best approximation to  by vectors in W.

Proof: First note that if  is any vector in V, then  –  = (  – ) + (  – ), and

2 22 2 Re ( | ) .

Now suppose  –  is orthogonal to every vector in W, that  is in W and that . Then, since
–  is in W, it follows that

2 =
2 2

> 2 .

Conversely, suppose that  for every  in W. Then from the first equation above it
follows that

22 Re( | ) 0

for all  in W. Since every vector in W may be expressed in the form  –  with  in W, we see that

22 Re ( | ) 0
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= 2
( | ) ( ),

Then the inequality reduces to the statement

2 2

2 2

( | ) ( | )
2 0.

This holds if and only if (  – |  – ) = 0. Therefore,  –  is orthogonal to every vector in W. This
completes the proof of the equivalence of the two conditions on a given in (i). This orthogonality
condition is evidently satisfied by at most one vector in W, which proves (ii).

Now suppose that W is a finite-dimensional subspace of V. Then we know, as a corollary of
Theorem 3, that W has an orthogonal basis. Let { 1, . . . , n} be any orthogonal basis for W and
define  by (11). Then, by the computation in the proof of Theorem 3,  –  is orthogonal to each
of the vectors k(  –  is vector obtained at the last stage when the orthogonalization process is
applied to 1, . . . , n, ). Thus –  is orthogonal to every linear combination of 1, . . . , n, i.e,
to every vector in W. If  is in W and , it follows that . Therfore,  is the best
approximation to  that lies in W.

Definition: Let V be an inner product space and S any set of vectors in V. The orthogonal
complement of S is the set S of all vectors in V which are orthogonal to every vector in S.

The orthogonal complement of V is the zero subspace, and conversely {0} .V If S is any subset
of V, its orthogonal complement S (S perp) is always a subspace of V. For S is non-empty, since
it contains 0; and whenever  and  are in S and c is any scalar,

( | )c = ( | ) ( | )c

= c0 + 0

= 0

for every  in S, thus c  +  also lies in S. In Theorem 4 the characteristic property of the vector
 is that it is the only vector in W such that –  belongs to .W

Definition: Whenever the vector  in Theorem 4 exists it is called the orthogonal projection of 
on W. If every vector in V has an orthogonal projection on W, the mapping that assigns to each
vector in V its orthogonal projection on W is called the orthogonal projection of V on W.

By Theorem 4, the orthogonal projection of an inner product space on a finite-dimensional
subspace always exists. But Theorem 4 also implies the following result.

Corollary: Let V be an inner product space, W a finite-dimensional subspace, and E the orthogonal
projection of V on W. Then the mapping

E

is the orthogonal projection of V on .W

Proof: Let  be an arbitrary vector in V. Then  – E  is in ,W and for any  in W ,  –  = E  +
(  – E  – ) . Since E  is in W and  – E  –  is in ,W it follows that
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= 

22E E

 
2( )E

with strict inequality when    – E . Therefore,  – E  is the best approximation to  by vectors
in .W

Example 14: Given R3 the standard inner product. Then the orthogonal projection of
(– 10, 2, 8) on the subspace W that is spanned by (3, 12, –1) is vector

 = (( 10, 2, 8)|(3, 12, 1)) (3, 12, 1)
9 144 1

= 14 (3, 12, 1).
154

The orthogonal projection of R3 on W is the linear transformation E defined by

1 2 3
1 2 3

3 12( , ) (3, 12, 1).
154

x x xx x x

The rank of E is clearly 1; hence its nullity is 2. On the other hand,

1 2 3( , , ) (0, 0, 0)E x x x

if and only if 3x1 + 12x2 – x3 = 0. This is the case if and only if (x1, x2, x3, is in .W Therefore, .W
is the null space of E, and dim 2.W Computing

1 2 3
1 2 3

3 12, 3, 12, 1
154

x x xx x x

we see that the orthogonal projection of R3 on W is the linear transformation I – E that maps the
vector (x1, x2, x3) onto the vector

1 2 3 1 2 3 1 2 3
1 145 36 3 36 10 12 , 3 12 153 .

154
x x x x x x x x x

The observations made in Example 14 generalize in the following fashion.

Theorem 5: Let W be a finite-dimensional subspace of an inner product space V let E be the
orthogonal projection of V on W. Then E is an idempotent linear transformation of V onto W,

W  is the null space of E, and

V = .W W

Proof: Let  be an arbitrary vector in V. Then E  is the best approximation to  that lies in W. In
particular, E  =  when  is in W. Therefore, E(E ) = E  for every  in V; that is, E is idempotent:
E2 = E. To prove, that E is a linear transformation, let  and  be any vectors in V and c an
arbitrary scalar. Then, by Theorem 4,  – E  and  – E  are each orthogonal to every vector in W.
Hence the vector

( ) ( ) ( ) ( )c E E c cE E
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Notesalso belongs to W . Since cE  + E  is a vector in W, it follows from Theorem 4 that

E(c  + ) = cE  +E .

Of course, one may also prove the linearity of E by using (11) . Again let  be any vector in V.
Then E  is the unique vector in W such that  – E  is in .W Thus E  = 0 when  is in .W
Conversely,  is in W when E  = 0. Thus W is the null space of E. The equation

 = E  +  – E

show that V = W + W ; moreover, M W = {0}. For if  is vector in M W , then ( | ) = 0.
Therefore,  = 0, and V is the direct sum of W and .W

Corollary: Under the conditions of the theorem, I – E is orthogonal projection of V on .W  It is

an idempotent linear transformation of V onto W with null space W.

Proof: We have already seen that the mapping E is the orthogonal projection of V on

.W Since E is a linear transformation, this projection on W is the linear transformation I – E.
From its geometric properties one sees that I – E is an idempotent transformation of V onto W.
This also follows from the computation

(I – E) (I – E) = I – E – E + E2

= I – E.

Moreover, (I – E)  = 0 if and only if  = E , and this is the case if and only if  is in W. Therefore
W is the null space of I – E.

The Gram-Schmidt process may now be described geometrically in the following way. Given an
inner product space V and vectors 1, . . . , n in V, let Pk (k > 1) be the orthogonal projection of V
on the orthogonal complement of the subspace spanned by 1, . . . , k – 1, and set P1 = I. Then the
vectors one obtains by applying the orthogonalization process to 1, . . . , n, are defined by the
equations

k = Pk k,       1 .k n

Theorem 5 implies another result known as Bessel’s inequality.

Corollary: Let { 1, . . ., n} be an orthogonal set of non-zero vectors in an inner product space V.
If  is any vector in V, then

2
2

2

( | )k

kk

and equality holds if and only if

= 2
( | ) .k

k
kk

Proof: Let  = 2| / .k k k
k

 Then  =  +  where ( / ) = 0. Hence

2 = 22 .

It now suffices to prove that

2 = 
2

2

( | )
.k

kk
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In the special case in which { 1 . . . , n} is an orthonormal set, Bessel’s inequality says that

2 2( | ) .k
k

The corollary also tells us in this case that  is in the subspace spanned by 1, . . ., n if and only
if

=  ( | )k k
k

or if and only if Bessel’s inequality is actually an equality. Of course, in the event that V is finite
dimensional and { 1, . . . , n} is an orthogonal basis for V, the above formula holds for every
vector  in V. In other words, if { 1, . . . , n} is an orthonormal basis for V, the kth coordinate of

 in the ordered basis { 1, . . . , n} is ( | k).

Example 15: We shall apply the last corollary to the orthogonal sets described in Example
11. We find that

(a)
21 1

2–2

0 0
( ) ( )

n
ikt

k n

f t e dt f t dt

(b)
2

1
22

0

n n
ikt

k k
k n k n

c e dt c

(c)
1 2

0
2 cos 2 2 sin 4 1 1 2.t t dt

Self Assessment

3. Apply the Gram-Schmidt process to the vectors 1 = (1, 0, 1), 2 (1, 0, –1), 3 = (0, 3, 4) to
obtain an orthonormal basis for R3 with the standard inner product.

4. Let V be an inner product space. The distance between two vectors  and  in V is defined
by

( , ) ,d

so that

(a) d( , ) 0;

(b) d ( , ) = d ( , );

(c) d( , ) d( , ) + ( , ).

24.3 Summary

 The idea of an inner product is somewhat similar to the scalar product in the vector
calculus.
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Notes With the help of a few examples the concept of inner product is illustrated.

 The inner product is also related to the polarization identities.

 The relation between the vector space and the inner product is established.

 The Cauchy-Schwarz inequality is established.

 The Gram-Schmidt orthogonalization process help us to find a set of orthogonal vectors as
a bases of the vector space V.

24.4 Keywords

An Inner Product Space is a real or complex vector space, together with a specified inner product
on that space.

An Orthogonal Set: If S is a set of vectors in V, S is called an orthogonal set provided all pairs of
distinct vectors in S are orthogonal. An orthonormal set is an orthogonal set S with the additional

property that 1 for every d in S.

Bessel’s Inequality: Let ( 1, 2, . . . , n) be an orthogonal set of non-zero vectors in an inner

product space V. If  is any vector in V, then the Bessel Inequality is given by 
22

2
2

( | )
.k

kk

Cauchy-Schwarz Inequality: If V is an inner product space, then for any vectors ,  in V,

( | ) ,

is called the Cauchy-Schwarz inequality and the above equality occurs if and only if  and  are

linearly dependent.

Conjugate Transpose Matrix: The conjugate transpose matrix B* is defined by the relation

* ,Kj jKB B  where B  is complex conjugate of the matrix B.

Gram-Schmidt Orthogonalization Process: Let V be an inner product space and let 1, 2, . . . n
be any independent set of vectors in V, then one may construct orthogonal vectors 1, 2, . . . n
in V by means of a construction known as Gram-Schmidt orthogonalization process.

Linearly Independent: An orthogonal set of non-zero vectors is linearly independent.

Polarization Identities: For the real vector space polarization identities are defined by

2 21 1( | ) .
4 4

Standard Inner Product: If  = (x1, x2, . . . xn),  = (y1, y2, . . . yn) are vectors in Fn, there is an inner
product which we call the standard inner product, defined by the relation

1

( | ) .
n

i i
i

x y

The Orthogonal Complement: Let V be an inner product space and S any set of vectors in V. The
orthogonal complement of S is the set S of all vectors in V which are orthogonal to every vector
in S.
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Notes 24.5 Review Questions

1. Verify that the standard inner product on Fn is an inner product.

2. Consider R4 with the standard inner product. Let W be the subspace of R4 consisting of all
vectors which are orthogonal to both  = (1, 0, – 1, 1) and  = (2, 3, – 1, 2). Find the basis for
W.

3. Consider C3, with the standard inner product. Find an orthonormal basis for the subspace
spanned by 1 = (1, 0, i) and 2 = (2, 1, 1+ i).

Answers: Self Assessment

2. (a)  = 
7 2,
3 3

3. 1 1(1, 0, 1), (1, 0, 1), (0, 1, 0)
2 2

24.6 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

I N. Herstein, Topics in Algebra
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25.2 Adjoint of Linear Operators

25.3 Summary

25.4 Keywords

25.5 Review Questions

25.6 Further Readings

Objectives

After studying this unit, you will be able to:

 Understand that any linear functional f on a finite-dimensional inner product space is
‘inner product with a  fixed vector in the space’.

 Prove the existence of the ‘adjoint’ of a linear operator T on V, this being a linear operator
T* such that (T ) = ( T* )  for all and in V.

 A linear operator T such that T = T* is called self-adjoint (or Hermitian). If  is an
orthonormal basis for V, then [T*]B = [T] .

Introduction

The idea of the linear functional helps in understanding the nature of the inner product.

The concept of adjoint of a linear transformation with the help of the inner product helps in
understanding the self-adjoint operators or Hermitian operators.

This unit also makes a beginning to the understanding of unitary operators and normal operators.
The normal operator T has the property that T*T = TT*.

25.1 Linear Functional

In this section we treat linear functionals on inner product space and their relation to the inner
product. Basically any linear functional f on a finite dimensional inner product space is ‘inner
product with a fixed vector in the space’, i.e. that such an f has the form f( ) = ( ) for some fixed

 in V. We use this result to prove the existence of the ‘adjoint’ of a linear operator T on V, this
being a linear operator T* such that (T ) = ( T* ) for all and in V. Through the use of an
orthonormal basis, this adjoint operation on linear operators (passing from T to T*) is identified
with the operation of forming the conjugate transpose of a matrix.

We define a function f  from V, any inner product space into the scalar field by

f  ( ) = ( ).
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Notes This function f  is a linear functional on V, because by its very definition, ( ) is linear as a function
of . If V is finite-dimensional, every linear functional on V arises in this way from some .

Theorem 1: Let V be a finite-dimensional inner product space, and f a linear functional on V. Then
there exists a unique vector in V such that f( ) = ( ) for all in V.

Proof: Let { 1, 2, ...., n} be an orthonormal basis for V. Put

=
1

( )
n

j j
j

f ...(1)

and let f  be the linear functional defined by

f ( ) = ( ).

Then

f ( k) = ( ) ( )k j j k
j

f f

Since this is true for each k, is follows that f = f . Now suppose  is a vector in V such that ( )
= ( ) for all . Then ( ) = 0 and . Thus there is exactly one vector  determining
the linear functional f in the stated manner.

The proof of this theorem can be reworded slightly, in terms of the representation of linear
functionals in a basis. If we choose on orthonormal basis { 1, ...., n) for V, the inner product of

= x1 1 + ... + xn n and  = y1 1 + ...+ yn n will be

( ) = 1 1 ... .n nx y x y

If f is any linear functional on V, then f has the form

f( ) = c1x1 + ... +cnxn

for some fixed scalars c1, ...., cn determined by the basis. Of course cj = f ( j). If we wish to find a
vector  in V such that ( ) = f ( ) for all , then clearly the coordinates yj of  must satisfy

i jy c  or ( ).i jy f Accordingly,

= 1 1( ) ... ( )n nf f

is the desired vector.

Some further comments are in order. The proof of Theorem 1 that we have given is admirably
brief, but it fails to emphasize the essential geometric fact that  lies in the orthogonal complement
of the null space of f. Let W be the null space of f. Then V = W + W , and f is completely determined
by its values on W . In fact, if P is the orthogonal projection of V on W , then

f( ) = f (P )

for all  in V. Suppose f 0. Then f is of rank 1 and dim (W ) = 1. If  is any non-zero vector in W ,
it follows that

P = 2
( )

for all  in V. Thus

f( ) = 2
( )( ). f
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Example 1: We should give one example showing that Theorem 1 is not true without the
assumption that V is finite dimensional. Let V be the vector space of polynomials over the field
of complex numbers, with the inner product

(f  g) =
1

0
( ) ( ) .f t g t dt

This inner product can also be defined algebraically. If f = akxk and g = bkxk, then

(f  g) =
.

.
1 j k

j k

j a b
j k

Let z be a fixed complex number, and let L be the linear functional ‘evaluation at z’:

L(f) = f(z).

Is there a polynomial g such that (f  g) = L(f) for every f? The answer is no; for suppose we have

f(z) =
1

0
( ) ( )f t g t dt

for every f. Let h = x z, so that for any f we have (hf) (z) = 0. Then

0 =
1

0
( ) ( ) ( )h t f t g t dt

for all f. In particular this holds when f hg  so that

1 2 2

0
( ) ( )h t g t dt = 0

and so hg = 0. Since h 0, it must be that g = 0. But L is not the zero functional; hence, no such g
exists.

One can generalize the example somewhat, to the case where L is a linear combination of point
evaluations. Suppose we select fixed complex numbers z1, ...., zn and scalars c1, ...., cn and let

L(f) = c1 f(z1) + ... +cn f (zn).

Then L is a linear functional on V, but there is no g with L(f) = (f  g), unless c1 = c2 = .... = cn = 0. Just
repeat the above argument with h = (x z1) ... (x zn) in the Example 1.

We turn now to the concept of the adjoint of a linear operator.

25.2 Adjoint of Linear Operators

Theorem 2: For any linear operator T on a finite-dimensional inner product space V, there exists
a unique linear operator T* on V such that

(T ) = (  T* ) ...(2)

for all  in V.

Proof: Let  be any vector in V. Then (T ) is a linear functional on V. By Theorem 1 there
is a unique vector  in V such that (T ) = ( ) for every  in V. Let T* denote the mapping



270 LOVELY PROFESSIONAL UNIVERSITY

Linear Algebra

Notes :

= T* .

We have (2), but we must verify that T* is a linear operator. Let ,  be in V and let c be a scalar.
Then for any ,

( T* (c )) = (T c )

= (T c ) + (T )

= ( ) ( )c T T

= ( * ) ( * )c T T

= ( cT* ) + ( T* )

= ( c T*  + T* ).

Thus T* (c ) = cT*  + T*  and T* is linear operator.

The uniqueness of T* is clear. For any  in V, the vector T*  is uniquely determined as the vector
 such that (T ) = ( ) for every .

Theorem 3: Let V be a finite-dimensional inner product space and let  = { 1, ...., n} be an
(ordered) orthonormal basis for V. Let T be a linear operator on V and let A be the matrix of T in
the ordered basis . Then Akj = (T j k).

Proof: Since  is an orthonormal basis, we have

=
1

( ) .
n

k k
k

The matrix A is defined by

T j =
1

j

n

k k
k

A

and since

T j =
1

( )
n

j k k
k

T

we have ( ).
jk j kA T

Corollary: Let V be a finite-dimensional inner product space, and let T be a linear operator on V.
In any orthonormal basis for V, the matrix of T* is the conjugate transpose of the matrix of T.

Proof: Let  = { 1, ...., n} be an orthonormal basis for V, let A = [T] and B = [T*]. According to
Theorem 3,

Akj = (T j k)

Bkj = (T* j k).

By the definition of T* we then have

Bkj = (T* j k)

= ( * )k jT
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= .jkA

Example 2: Let V be a finite-dimensional inner product space and E the orthogonal
projection of V on a subspace W. The for any vectors  and  in V.

(E ) = (E E + (1 – E) )

= (E E )

= (E + (1 – E) E )

= ( E )

From the uniqueness of the operator E* it follows that E* =  E. Now consider the projection E
described in Example 14 of unit 24. Then

A =
9 36 3

1 36 144 12
154

3 12 1

is the matrix of E in the standard orthonormal basis. Since E = E*, A is also the matrix of E*, and
because A = A*, this does not contradict the preceding corollary. On the other hand, suppose

1 = (154, 0, 0)

2 = (145, –36, 3)

3 = (–36, 10, 12)

Then { 1, 2, 3} is a basis, and

E 1 = (9, 36, –3)

E 2 = (0, 0, 0)

E 3 = (0, 0, 0)

Since (9, 36, –3) = –(154, 0, 0) – (145, –36, 3), the matrix B of E in the basis { 1, 2, 3} is defined by
the equation

B =
1 0 0
1 0 0

0 0 0

In this case B  B*, and B* is not the matrix of E* = E in the basis { 1, 2, 3}. Applying the corollary,
we conclude that { 1, 2, 3} is not an orthonormal basis. Of course this is quite obvious anyway.

Definition: Let T be a linear operator on an inner product space V. Then we say that T has an
adjoint on V if there exists a linear operator T* on V such that (T ) = ( T* ) for all  and  in V.

By Theorem 2 every linear operator on a finite-dimensional inner product space V has an adjoint
on V. In the finite-dimensional case this is not always true. But in any case there is at most one
such operator T*; when it exists, we call it the adjoint of T.

Two comments should be made about the finite-dimensional case.

1. The adjoint of T depends not only on T but on the inner product as well.



272 LOVELY PROFESSIONAL UNIVERSITY

Linear Algebra

Notes 2. As shown by example 2, in an arbitrary ordered basis , the relation between [T] and [T*]
is more complicated than that given in the corollary above.

Example 3: Let V be Cn×1, the space of complex n × 1 matrices, with inner product (X/Y) =
Y * X. If A is an n × n matrix with complex entries, the adjoint of the linear operator X AX is
the operator X A * X. For

(AX Y) = Y*AX = (A*Y)*X = (X A*Y)

Example 4: This is similar to Example 3. Let V be Cn × n with the inner product (A B) =
tr (B*A). Let M be a fixed n × n matrix over C. The adjoint of left multiplication by M is left
multiplication by M*. Of course, ‘left multiplication by M’ is the linear operator LM defined by
LM (A) = MA.

(LM(A) B) = tr (B* (MA))

= tr (MAB*)

= tr (AB*M)

= tr (A(M*B)*)

= (A LM* (B)).

Thus (LM)* = LM*. In the computation above, we twice used the characteristic property of the trace
function: tr (AB) = tr (BA).

Example 5: Let V be the space of polynomials over the field of complex numbers, with
the inner product.

(f g) =
1

0
( ) ( ) .f t g t dt

If f is a polynomial, f = akxk, we let .k
kf a x  That is, f  is the polynomial whose associated

polynomial function is the complex conjugate of that for f:

( )f t = ( ), realf t t

Consider the operator ‘multiplication by f,’ that is, the linear operator Mf defined by Mf(g) = fg.
Then this operator has an adjoint, namely, multiplication by .f  For

(Mf(g) h) = (fg h)

=
1

0
( ) ( ) ( )f t g t h t dt

=
1

0
( )[ ( ) ( )]g t f t h t dt

= ( )g fh

= ( ( ))fg M h

and so ( )* .ffM M
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Example 6: In Example 5, we saw that some linear operators on an infinite-dimensional

inner product space do have an adjoint. As we commented earlier, some do not. Let V be the
inner product space of Example 6, and let D be the differentiation operator on C[x]. Integration
by parts shows that

(Df g) = f(1)g(1) f(0) g(0) (f Dg).

Let us fix g and inquire when there is a polynomial D*g such that (Df g) = (f D*g) for all f. If such
a D*g exists, we shall have

(f D*g) = f (1) g(1) f (0) g(0) (f Dg)

or

(f D*g + Dg) = f (1) g(1) f (0) g(0).

With g fixed, L(f) = f(1) g(1) f(0) g(0) is a linear functional of the type considered in Example 1 and
cannot be of the form L( f ) = (f h) unless L = 0. If D*g exists, then with h = D*g + Dg we do have L( f )
= (f h), and so g(0) = g(1) = 0. The existence of a suitable polynomial D*g implies g(0) = g(1) = 0.
Conversely, if g(0) = g(1) = 0, the polynomial D*g = – Dg satisfies (Df g) = (f D*g) for all f. If we
choose any g for which g(0) 0 or g(1) 0, we cannot suitable define D*g, and so we conclude that
D has no adjoint.

We hope that these examples enhance the reader’s understanding of the adjoint of a linear
operator. We see that the adjoint operation, passing from T to T*, behaves somewhat like
conjugation on complex numbers. The following theorem strengthens the analogy.

Theorem 4: Let V be a finite-dimensional inner product space. If T and U are linear operators on
V and c is a scalar,

(i) (T + U)* = T* + U*;

(ii) (cT)* = *;c T

(iii) (TU)* = U*T*;

(iv) (T*) = T.

Proof: To prove (i), let  and  be any vectors in V.

Then

((T + U) ) = (T + U )

= (T ) + (U )

= ( T* ) + ( U* )

= ( T*  + U* )

= (  (T* + U*) )

From the uniqueness of the adjoint we have (T + U)* = T* + U*. We leave the proof of (ii) to the
reader. We obtain (iii) and (iv) from the relations

(TU ) = (U T* ) = ( U*T* )

(T* ) = ( * ) ( / ) ( ).T T T

Theorem 4 is often phrased as follows: the mapping T T* is a conjugate-linear anti-isomorphism
of period 2. The analogy with complex conjugation which we mentioned above is, of course,
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= 1 2 ,z z z  = z. One must be careful to observe the reversal of order in a product, which the adjoint
operation imposes: (UT)* = T*U*. We shall mention extensions of this analogy as we continue
our study of linear operators on an inner product space. We might mention something along
these lines now. A complex number z is real if the only if .z z  One might expect that the linear
operators T such that T = T* behave in some way like the real numbers. This is in fact the case. For
example, if T is a linear operator on a finite-dimensional complex inner product space, then

T = U1 + iU2

where U1 = U*1 and U2 = U*2. Thus, in some sense, T has a ‘real part’ and an ‘imaginary part.’ The
operators U1 and U2 satisfying U1 = U*1, and U2 = U*2, and are unique, and are given by

U1 =
1 ( *)
2

T T

U2 =
1 ( *).
2

T T
i

A linear operator T such that T = T* is called self-adjoint (for Hermitian). If  is an orthonormal
basis for V, then

[T*] = [T]*
and so T is self-adjoint if and only if its matrix in every orthonormal basis is a self-adjoint
matrix. Self-adjoint operators are important, not simply because they provide us with some sort
of real and imaginary part for the general linear operator, but for the following reasons:
(1) Self-adjoint operators have many special properties. For example, for such an operator there
is an orthonormal basis of characteristic vectors. (2) Many operators which arise in practice are
self-adjoint. We shall consider the special properties of self-adjoint operators later.

Self Assessment

1. Let V be a finite-dimensional inner product space T a linear operator on V. If T is invertible,
show that T* is invertible and (T*)–1 = (T–1)*.

2. Show that the product of two self-adjoint operators is self-adjoint if any only if the two
operators commute.

25.3 Summary

 The linear functional f concept is also a form of inner product on a finite-dimensional
inner product space.

 The fact that f has the form f( ) = ( ) for some  in V helps us to prove the existence of the
‘adjoint’ of a linear operator T on V.

 A linear operator T such that T = T* is called self-adjoint (or Hermitian) and so T is
self- adjoint if and only if its matrix in every orthonormal basis is a self-adjoint matrix.

25.4 Keywords

A linear functional f on a finite dimensional inner product space is ‘inner-product with a fixed
vector in the space’. Let  be some fixed vector in any inner product space V, we then define a
function f  from V into the scalar field by
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A linear operator T* is an adjoint of T on V, such that (T ) = ( T* ) for all  and  in V.

Self-adjoint (or Hermitian): A linear operator T such that T = T* is called self-adjoint
(or Hermitian). If  is an orthonormal basis for V, then [T*] = [T]* and so a self-adjoint if and only
if its matrix in every orthonormal basis is a self-adjoint matrix.

25.5 Review Questions

1. Let T be the linear operator on C2 defined by T 1 = (1 + i, 2), T 2 = (i, i). Using the standard
inner product, find the matrix of T* in the standard ordered basis.

2. Let V be a finite-dimensional inner product space and T a linear operator V. Show that the
range of T* is the orthogonal complement of the null space of T.

25.6 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

I N. Herstein, Topics in Algebra

Michael Artin, Algebra
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Objectives

After studying this unit, you will be able to:

 Understand the meaning of unitary operators, i.e. a unitary operator on an inner product
space is an isomorphism of the space onto itself.

 See that unitary and orthogonal matrices are explained with the help of some examples.

 Understand that for each invertible n × n matrix B in the general linear group GL (n) there
exist unique unitary matrix U and lower triangular matrix M such that U = MB.

 Know that the linear operator T is normal if it commutes with its adjoint TT* = T*T.

 Understand that for every normal matrix A there is a unitary matrix P such that P–1AP is a
diagonal matrix.

Introduction

In this unit there are two sections – one dealing with unitary operators on finite dimensional
inner product spaces and other dealing with the normal operators.

It is shown that if an n × n matrix B belongs to GL (n) then there exist unique matrices N and U
such that N is in T+ (n), U is in U (n), and B = N.U.

In the second section properties of normal operators are studied. It is seen that a complex n × n
matrix A is said to be normal if A*A = AA*.

With the help of some theorems it is shown that for a normal operator T on V, a finite dimensional
complex inner product space, V has an orthonormal basis consisting of characteristic vectors
for T.

26.1 Unitary Operators

In this unit we first of all consider the concept of an isomorphism between two inner product
spaces. An isomorphism of two vector spaces V onto W is a one-one linear transformation from
V onto W. Now an inner product space consists of a vector space and a specified inner product on
that space. Thus, when V and W are inner product spaces, we shall require an isomorphism from
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isomorphism of an inner product space onto itself is called a ‘unitary operator’ on that space. Some
of the basic properties of unitary operators are being established in the section along with some
examples.

Definition: Let V and W be inner product spaces over the same field and let T be a linear
transformation from V onto W. We say that T-preserves inner products if (T \T ) = ( \ ) for all

,  in V. An isomorphism of V onto W is a vector space isomorphism T of V onto W which also
preserves inner products.

If T preserves inner products then  T   =    and so T is non-singular. Thus if T is an isomorphism
of V onto W, then T–1 is an isomorphism of W onto V; hence, when such a T exists, we shall simply
say V and W are isomorphic. Of course, isomorphism of inner product spaces is an equivalence
relation.

Theorem 1: Let V and W be finite-dimensional inner product spaces over the same field, having
the same dimension. If T is a linear transformation from V into W, the following are equivalent.

(i) T preserves inner products.

(ii) T is an (inner product space) isomorphism.

(iii) T carries every orthonormal basis for V onto an orthonormal basis for W.

(iv) T carries some orthonormal basis for V onto an orthonormal basis for W.

Proof: (i)  (ii) If T preserves inner products, then  T   =    for all  in V. Thus T is non-
singular, and since dim V = dim W, we know that T is a vector space isomorphism.

(ii)  (iii) Suppose T is an isomorphism. Let { 1, …, n} be an orthonormal basis for V. Since T is
a vector space isomorphism and dim W = dim V, it follows that {T 1, …, T n} is a basis for W.
Since T also preserves inner products, {T 1|T k} = ( j| k) = jk.

(iii) (iv) This requires no comment.

(iv) (i) Let { 1, …, n} be an orthonormal basis for V such that {T 1, …, T n} is an orthonormal
basis for W. Then

(T j|T k) = ( j| k) = jk.

For any  = x1 1 + … + xn n and  = y1 1 + … + yn n in V, we have

( | ) = 
1

n

j j
j

x y

(T |T ) = j j k k
j k

x T y T

= ( | )j k j k
j k

x y T T

= 
1

n

j j
j

x y

and so T preserves inner products.
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Example 1: If V is an n-dimensional inner product space, then each ordered orthonormal

basis  = { 1, …, n} determines an isomorphism of V onto Fn with the standard inner product.
The isomorphism is simply

T (x1 1 + … + xn n) = (x1, …, xn).

There is the superficially different isomorphism which  determines of V onto the space Fn×1

with (X|Y) = Y*X as inner product. The isomorphism is

  [ ]
i.e., the transformation sending  into its coordinate matrix in the ordered basis . For any
ordered basis , this is a vector space isomorphism; however, it is an isomorphism of the two
inner product spaces if and only if is orthonormal.

Example 2: Here is a slightly less superficial isomorphism. Let W be the space of all
3 × 3 matrices A over R which are skew-symmetric, i.e., At = –A. We equip W with the inner

product (A|B) = 1
2 tr (ABt), the 1

2  being put in as a matter of convenience. Let V be the space R3

with the standard inner product. Let T be the linear transformation from V into W defined by

T (x1, x2, x3) = 
3 2

3 1

2 1

0
0

0

x x
x x
x x

Then T maps V onto W, and putting

A = 
3 2

3 1

2 1

0
0

0

x x
x x
x x

, B = 
3 2

3 1

2 1

0
0

0

y y
y y
y y

we have

tr (ABt) = x3y3 + x2y2 + x3y3 + x2y2 + x1y1

= 2 (x1y1 + x2y2 + x3y3).

Thus ( | ) = (T |T ) and T is a vector space isomorphism. Note that T carries the standard basis
( 1, 2, 3) onto the orthonormal basis consisting of the three matrices

0 0 0 0 0 1 0 1 0
0 0 1 , 0 0 0 , 1 0 0
0 1 0 1 0 0 0 0 0

.

Example 3: It is not always particularly convenient to describe an isomorphism in terms
of orthonormal bases. For example, suppose G = P*P where P is an invertible n × n matrix with
complex entries. Let V be the space of complex n × 1 matrices, with the inner product [X|Y] =
Y*GX.

Let W be the same vector space, with the standard inner product (X|Y) = Y*X. We know that V
and W are isomorphic inner product spaces. It would seem that the most convenient way to
describe an isomorphism between V and W is the following: Let T be the linear transformation
from V into W defined by T(X) = PX. Then

(TX|TY) = (PX|PY)
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= Y*P*PX

= Y*GX

= [X|Y].

Hence T is an isomorphism.

Example 4: Let V be the space of all continuous real-valued functions on the unit interval,
0  t  1, with the inner product

[f|g] = 
1

2

0
( ) ( )f t g t t dt .

Let W be the same vector space with the inner product

(f|g) = 
1

0
( ) ( )f t g t dt .

Let T be the linear transformation from V into W given by

(Tf) (t) = tf(t).

Then (Tf|Tg) = [f|g], and so T preserves inner products; however, T is not an isomorphism of V
onto W, because the range of T is not all of W. Of course, this happens because the underlying
vector space is not finite dimensional.

Theorem 2: Let V and W be inner product spaces over the same field, and let T be a linear
transformation from V into W. Then T preserves inner products if and only if  T   =    for
every  in V.

Proof: If T preserves inner products, T ‘preserves norms’. Suppose  T   =     for every  in V.
Then  T  2 =   2. Now using the appropriate polarization identity and the fact that T is linear,
one easily obtains ( | ) = (T |T ) for all ,  in V.

Definition: A unitary operator on an inner product space is an isomorphism of the space onto
itself.

The product of two unitary operators is unitary. For, if U1 and U2 are unitary, then U2U1 is
invertible and  U2U1   =  U1   =    for each . Also, the inverse of a unitary operator is
unitary, since  U   =     says  U–1   =   , where  = U . Since the identity operator is clearly
unitary, we see that the set of all unitary operators on an inner product space is a group, under
the operation of composition.

If V is a finite-dimensional inner product space and U is a linear operator on V, Theorem 1 tells
us that U is unitary if and only if (U |U ) = ( | ) for each ,  in V; or, if and only if for some
(every) orthonormal basis { 1, …, n} it is true that {U 1, …, U n} is an orthonormal basis.

Theorem 3: Let U be a linear operator on an inner product space V. Then U is unitary if and only
if the adjoint U* of U exists and UU* = U*U = I.

Proof: Suppose U is unitary. Then U is invertible and

(U | ) = (U |UU–1 ) = ( |U–1 )

for all , . Hence U–1 is the adjoint of U.

Conversely, suppose U* exists and UU* = U*U = I. Then U is invertible, with U–1 = U*. So, we need
only show that U preserves inner products.
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(U |U ) = ( |U*U )

= ( |I )

= ( | )

for all , .

Example 5: Consider Cn×1 with the inner product (X|Y) = Y*X. Let A be an n × n matrix
over C, and let U be the linear operator defined by U(X) = AX. Then

(UX|UY) = (AX|AY) = Y*A*AX

for all X, Y. Hence, U is unitary if and only if A*A = I.

Definition: A complex n × n matrix A is called unitary, if A*A = I.

Theorem 4: Let V be a finite-dimensional inner product space and let U be a linear operator on V.
Then U is unitary if and only if the matrix of U in some (or every) ordered orthonormal basis is
a unitary matrix.

Proof: At this point, this is not much of a theorem, and we state it largely for emphasis. If  = { 1,
…, n} is an ordered orthonormal basis for V and A is the matrix of U relative to , then A*A =
I if and only if U*U = I. The result now follows from Theorem 3.

Let A be an n × n matrix. The statement that A is unitary simply means

(A*A)jk = jk

or
1

n

rj rk
r

A A = jk

In other words, it means that the columns of A form an orthonormal set of column matrices,
with respect to the standard inner product (X|Y) = Y*X. Since A*A = I if and only if AA* = I, we
see that A is unitary exactly when the rows of A comprise an orthonormal set of n-tuples in Cn

(with the standard inner product). So, using standard inner products, A is unitary if and only if
the rows and columns of A are orthonormal sets. One sees here an example of the power of the
theorem which states that a one-sided inverse for a matrix is a two-sided inverse. Applying this
theorem as we did above, say to real matrices, we have the following: Suppose we have a square
array of real numbers such that the sum of the squares of the entries in each row is 1 and distinct
rows are orthogonal. Then the sum of the squares of the entries in each column is 1 and distinct
columns are orthogonal. Write down the proof of this for a 3 × 3 array, without using any
knowledge of matrices, and you should be reasonably impressed.

Definition: A real or complex n × n matrix A is said to be orthogonal, if AtA = I.

A real orthogonal matrix is unitary; and, a unitary matrix is orthogonal if and only if each of its
entries is real.

Example 6: We give some examples of unitary and orthogonal matrices.

(a) A 1 × 1 matrix [c] is orthogonal if and only if c = ± 1, and unitary if and only if cc  = 1. The
latter condition means (of course) that |c| = 1, or c = ei , where  is real.

(b) Let

A = 
a b
c d .
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At = A–1 = 
1 d b

c aad bc .

The determinant of any orthogonal matrix is easily seen to be  1. Thus A is orthogonal if
and only if

A = 
a b
b a

or A = 
a b
b a

where a2 + b2 = 1. The two cases are distinguished by the value of det A.

(c) The well-known relations between the trigonometric functions show that the matrix

A = 
cos sin
sin cos

is orthogonal. If is a real number, then A  is the matrix in the standard ordered basis for
R2 of the linear operator U , rotation through the angle . The statement that A  is a real
orthogonal matrix (hence unitary) simply means that U  is a unitary operator, i.e., preserves
dot products.

(d) Let

A = 
a b
c d

Then A is unitary if and only if

a c
b d = 

1 d b
c aad bc .

The determinant of a unitary matrix has absolute value 1, and is thus a complex number of
the form ei ,  real. Thus A is unitary if and only if

A = 
1 0
0 ii i

a b a b
ee b e a b a

where  is a real number, and a, b are complex numbers such that |a|2 + |b|2 = 1.

As noted earlier, the unitary operators on an inner product space form a group. From this and
Theorem 4 it follows that the set U (n) of all n × n unitary matrices is also a group. Thus the
inverse of a unitary matrix and the product of two unitary matrices are again unitary. Of course
this is easy to see directly. An n × n matrix A with complex entries is unitary if and only if A–1 =
A*. Thus, if A is unitary, we have (A–1)–1 = A = (A*)–1 = (A–1)*. If A and B are n × n unitary matrices,
then (AB)–1 = B–1A–1 = B*A* = (AB)*.

The Gram-Schmidt process in Cn has an interesting corollary for matrices that involves the
group U (n).

Theorem 5: For every invertible complex n × n matrix B there exists a unique lower-triangular
matrix M with positive entries on the main diagonal such that MB is unitary.
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…, n by the Gram-Schmidt process. Then, for 1  k  n, { 1, …, k} is an orthogonal basis for the
subspace spanned by { 1, …, k}, and

k = 2

( | )k j
k j

j k j

.

Hence, for each k there exist unique scalars 
k j

C  such that

k = k k jj
j k

C .

Let U be the unitary matrix with rows

1

1

, , n

n

and M the matrix defined by

k j
M = 

,
1 if

1 , if

0, if

k j
k

k

C j k

j k

j k

Then M is lower-triangular, in the sense that its entries above the main diagonal are 0. The
entries Mkk of M on the main diagonal are all > 0, and

k

k
= 

1

, 1
n

kj j
j

M k n .

Now these equations simply say that

U = MB.

To prove the uniqueness of M, let T+(n) denote the set of all complex n × n lower-triangular
matrices with positive on the main diagonal. Suppose M1 and M2 are elements of T+(n) such that
MiB is in U(n) for i = 1, 2. Then because U(n) is a group

(M1B) (M2B)–1 = M1M2
–1

lies in U(n). On the other hand, although it is not entirely obvious, T+(n) is also a group under
matrix multiplication. One way to see this is to consider the geometric properties of the linear
transformations

X  MX, (M in T+(n))

on the space of column matrices. Thus M2
–1, M1M2

–1, and (M1M2
–1)–1 are all in T+(n). But, since

M1M2
–1 is in U(n), (M1M2

–1)–1 = (M1M2
–1)*. The transpose or conjugate transpose of any lower-

triangular matrix is an upper-triangular matrix. Therefore, M1M2
–1 is simultaneously upper and

lower-triangular, i.e., diagonal. A diagonal matrix is unitary if and only if each of its entries on
the main diagonal has absolute value 1; if the diagonal entries are all positive, they must
equal 1. Hence M1M2

–1 = I and M1 = M2.
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under matrix multiplication. This group is called the general linear group. Theorem 5 is
equivalent to the following result.

Corollary: For each B in GL(n) there exist unique matrices N and U such that N is in T+(n), U is in
U(n), and

B = N . U.

Proof: By the theorem there is a unique matrix M in T+(n) such that MB is in U(n). Let MB = U and
N = M–1. Then N is in T+(n) and B = N . U. On the other hand, if we are given any elements N and
U such that N is in T+(n), U is in U(n), and B = N . U, then N–1B is in U(n) and N–1 is the unique
matrix M which is characterized by the theorem; furthermore U is necessarily N–1B.

Example 7: Let x1 and x2 be real numbers such that 2 2
1 2x x  = 1 and x1  0. Let

B = 
1 2 0

0 1 0
0 0 1

x x
.

Applying the Gram-Schmidt process to the rows of B, we obtain the vectors

1 = (x1, x2, 0)

2 = (0, 1, 0) – x2 (x1, x2, 0)

= x1 (– x2, x1, 0)

3 = (0, 0, 1).

Let U be the matrix with rows 1, ( 2/x1), 3. Then U is unitary, and

U = 
1 2 1 2

2
2 1

1 1

1 0 00 010 0 0 1 0
0 0 1 0 0 1

0 0 1

x x x xxx x
x x

Now multiplying by the inverse of

M = 2

1 1

1 0 0
1 0

0 0 1

x
x x

we find that

1 2 0
0 1 0
0 0 1

x x
= 

1 2

2 1 2 1

1 0 0 0
0 0

0 0 1 0 0 1

x x
x x x x

Let us now consider briefly change of coordinates in an inner product space. Suppose V is a
finite-dimensional inner product space and that  = { 1, …, n} and  = { 1,, …, n} are two
ordered orthonormal bases for V. There is a unique (necessarily invertible) n × n matrix P such
that

[ ] = P–1[ ]
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of U in the ordered basis B:

k = 
1

n

jk j
j

P .

Since and  are orthonormal bases, U is a unitary operator and P is a unitary matrix. If T is any
linear operator on V, then

[T] = P–1[T] P = P*[T] P.

Definition: Let A and B be complex n × n matrices. We say that B is unitarily equivalent to A if
there is an n × n unitary matrix P such that B = P–1AP. We say that B is orthogonally equivalent
to A if there is an n × n orthogonal matrix P such that B = P–1AP.

With this definition, what we observed above may be stated as follows: If  and  are two
ordered orthonormal bases for V, then, for each linear operator T on V, the matrix [T]  is
unitarily equivalent to the matrix [T]. In case V is a real inner product space, these matrices are
orthogonally equivalent, via a real orthogonal matrix.

Self Assessment

1. Let B given by

B = 
3 0 4
1 0 7
2 9 11

is 3 × 3 invertible matrix. Show that there exists a unique lower triangular matrix M with
positive entries on the main diagonal such that MB is unitary. Find M and MB.

2. Let V be a complex inner product space and T a self-adjoint linear operator on V. Show that

(i) I + i T is non-singular

(ii) I – i T is non-singular

(iii) (I – i T) (I + i T)–1 is unitary.

26.2 Normal Operators

In this section we are interested in finding out the fact that there is an orthonormal basis  for V
such that the matrix of the linear operator T on a finite dimensional inner product space V, in the
basis  is diagonal.

We shall begin by deriving some conditions on T which will be subsequently shown to be
sufficient. Suppose  = ( 1, …, n) is an orthonormal basis for V with the property

T j = Cjaj, j = 1, 2, … n … (1)

This simply says that T in this ordered basis is a diagonal matrix with diagonal entries c1, c2, …
cn. If V is a real inner product space, the scalars c1, …, cn are (of course) real, and so it must be that
T = T*. In other words, if V is a finite-dimensional real inner product space and T is a linear
operator for which there is an orthonormal basis of characteristic vectors, then T must be
self-adjoint. If V is a complex inner product space, the scalars c1, …, cn need not be real, i.e., T need
not be self-adjoint. But notice that T must satisfy

TT* = T*T. … (2)
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matrices in the ordered basis , we have (2). It is a rather remarkable fact that in the complex case
this condition is also sufficient to imply the existence of an orthonormal basis of characteristic
vectors.

Definition: Let V be a finite-dimensional inner product space and T a linear operator on V. We
say that T is normal if it commutes with its adjoint i.e., TT* = T*T.

Any self-adjoint operator is normal, as is any unitary operator. Any scalar multiple of a normal,
operator is normal; however, sums and products of normal operators are not generally normal.
Although it is by no means necessary, we shall begin our study of normal operators by considering
self-adjoint operators.

Theorem 6: Let V be an inner product space and T a self-adjoint linear operator on V. Then each
characteristic value of T is real, and characteristic vectors of T associated with distinct characteristic
values are orthogonal.

Proof: Suppose c is a characteristic value of T, i.e., that T = c for some non-zero vector . Then

c(|) = (c|)

= (T|)

= (|T)

= (|c)

= ( | )c

Since (|)  0, we must have .c c  Suppose we also have T = d with   0. Then

c(|) = (T|)

= (|T)

= (|d)

= ( | )d

= d(|)

If c  d, then (|) = 0.

It should be pointed out that Theorem 6 says nothing about the existence of characteristic values
or characteristic vectors.

Theorem 7: On a finite-dimensional inner product space of positive dimension, every self-adjoint
operator has a (non-zero) characteristic vector.

Proof: Let V be an inner product space of dimension n, where n > 0, and let T be a self-adjoint
operator on V. Choose an orthonormal basis  for V and let A = [T]. Since T = T*, we have
A = A*. Now let W be the space of n  1 matrices over C, with inner product (X|Y) = Y*X. Then
U(X) = AX defines a self-adjoint linear operator U on W. The characteristic polynomial, det
(xI – A), is a polynomial of degree n over the complex numbers; every polynomial over C of
positive degree has a root. Thus, there is a complex number c such that det (cI – A) = 0. This means
that A – cI is singular, or that there exists a non-zero X such that AX = cX. Since the operator U
(multiplication by A) is self-adjoint, it follows from Theorem 6 that c is real. If V is a real vector
space, we may choose X to have real entries. For then A and A – cI have real entries, and since
A – cI is singular, the system (A – cI)X = 0 has a non-zero real solution X. It follows that there is
a non-zero vector  in V such that T = c.
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1. The proof of the existence of a non-zero X such that AX = cX had nothing to do with the fact
that A was Hermitian (self-adjoint). It shows that any linear operator on a finite-dimensional
complex vector space has a characteristic vector. In the case of a real inner product space,
the self-adjointness of A is used very heavily, to tell us that each characteristic value of A
is real and hence that we can find a suitable X with real entries.

2. The argument shows that the characteristic polynomial of a self-adjoint matrix has real
coefficients, in spite of the fact that the matrix may not have real entries.

3. The assumption that V is finite-dimensional is necessary for the theorem; a self-adjoint
operator on an infinite-dimensional inner product space need not have a characteristic
value.

Example 8: Let V be the vector space of continuous complex-valued (or real-valued)
continuous functions on the unit interval, 0  t  1, with the inner product

(f|g) = 
1

0
( ) ( )f t g t dt .

The operator ‘multiplication by t,’ (Tf)(t), is self-adjoint. Let us suppose that Tf = cf. Then

(t – c) f(t) = 0, 0  t  1

and so f(t) = 0 for t  c. Since f is continuous, f = 0. Hence T has no characteristic values (vectors).

Theorem 8: Let V be a finite-dimensional inner product space, and let T be any linear operator on
V. Suppose W is a subspace of V which is invariant under T. Then the orthogonal complement of
W is invariant under T*.

Proof: We recall that the fact that W is invariant under T does not mean that each vector in W is
left fixed by T; it means that if  is in W then T is in W. Let  be in W . We must show that T*
is in W , that is, that ( |(T* ) = 0 for every  in W. If  is in W, then T  is in W, so (T | ) = 0. But
(T | ) = ( |T* ).

Theorem 9: Let V be a finite-dimensional inner product space, and let T be a self-adjoint linear
operator on V. Then there is an orthonormal basis for V, each vector of which is a characteristic
vector for T.

Proof: We are assuming dim V > 0. By Theorem 7, T has a characteristic vector . Let 1 = /
so that 1 is also a characteristic vector for T and 1  = 1. If dim V = 1, we are done. Now we
proceed by induction on the dimension of V. Suppose the theorem is true for inner product
spaces of dimension less than dim V. Let W be the one-dimensional subspace spanned by the
vector 1. The statement that 1 is a characteristic vector for T simply means that W is invariant
under T. By Theorem 8,  the orthogonal complement W  is invariant under T* = T. Now W , with
the inner product from V, is an inner product space of dimension one less than the dimension of
V. Let U be the linear operator induced on W  by T, that is the restriction of T to W . Then U is
self-adjoint and by induction hypothesis, W  has an orthonormal basis { 2, . . ., n} consisting of
characteristic vectors for U. Now each of these vectors is also a characteristic vector for T, and
since V = W  W , we conclude that { 1, . . ., n} is the desired basis for V.

Corollary: Let A be an n  n Hermitian (self-adjoint) matrix. Then there is a unitary matrix P such
that P–1AP is diagonal (A is unitary equivalent to a diagonal matrix). If A is real symmetric
matrix, there is a real orthogonal matrix P such that P–1AP is diagonal.

Proof: Let V be Cn 1, with the standard inner product, and let T be the linear operator on V which
is represented by A in the standard ordered basis. Since A = A*, we have T = T*. Let  = { 1, ..., n}
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diagonal matrix with diagonal entries c1, …, cn. Let P be the matrix with column vectors 1,
…, n. Then D = P–1AP.

In case each entry of A is real, we can take V to be Rn, with the standard inner product, and repeat
the argument. In this case, P will be a unitary matrix with real entries, i.e., a real orthogonal
matrix.

Combining Theorem 9 with our comments at the beginning of this section, we have the following:
If V is a finite-dimensional real inner product space and T is a linear operator on V, then V has
an orthonormal basis of characteristic vectors for T if and only it T is self-adjoint. Equivalently,
if A is an n  n matrix with real entries, there is a real orthogonal matrix P such that PtAP is
diagonal if and only if A = At. There is no such result for complex symmetric matrices. In other
words, for complex matrices there is a significant difference between the conditions A = At and
A = A*.

Having disposed of the self-adjoint case, we now return to the study of normal operators in
general. We shall prove the analogue of Theorem 9 for normal operators, in the complex case.
There is a reason for this restriction. A normal operator on a real inner product space may not
have any non-zero characteristic vectors. This is true, for example, of all but two rotations in R2.

Theorem 10: Let V be a finite-dimensional inner product space and T a normal operator on V.
Suppose   is a vector in V. Then  is a characteristic vector for T with characteristic value c if and
only if  is a characteristic vector for T* with characteristic value c .

Proof: Suppose U is any normal operator on V. Then  U  =  U* . For using the condition
UU* = U*U one sees that

 U 2 = (U |U ) = ( |U*U )

= ( |UU* ) = (U* |U* ) =  U* 2.

If c is any scalar, the operator U = T – cI is normal. For (T– cI)* = T* – c I, and it is easy to check that
UU* = U*U. Thus

(T – cI) = (T* – cI)

so that (T – cI) = 0 if and only if (T* – c I)  = 0.

Definition: A complex n x n matrix A is called normal if AA* = A*A.

It is not so easy to understand what normality of matrices or operators really means; however,
in trying to develop some feeling for the  concept, the reader might find it helpful to know that
a triangular matrix is normal if and only if it is diagonal.

Theorem 11: Let V be a finite-dimensional inner product space, T a linear operator on V, and  on
orthonormal basis for V. Suppose that the matrix A of T in the basis  is upper triangular. Then
T is normal if and only if A is a diagonal matrix.

Proof: Since  is an orthonormal basis, A* is the matrix of T* in . If A is diagonal, then AA* =
A*A, and this implies TT* = T*T. Conversely, suppose T is normal, and let  = { 1, . . ., n}. Then,
since A is upper-triangular, T 1 = A11 1. By Theorem 10 this implies, T* 1 = A 11 1. On the other
hand,

T* 1 = 1
( *) j j

j

A

= 1 jj
j

A
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Notes Therefore, A1j = 0 for every j > 1. In particular, A12 = 0, and since A is upper-triangular, it follows
that

T 2 = A22 2.

Thus T* 2 = A 22 2 and A2j = 0 for all j  2. Continuing in this fashion, we find that A is diagonal.

Theorem 12: Let V be a finite-dimensional  complex inner product space and let T be any linear
operator on V. Then there is an orthonormal basis for V in which the matrix of T is upper
triangular.

Proof: Let n be the dimension of V. The theorem is true when n = 1, and we proceed by induction
on n, assuming the result is true for linear operators on complex inner product spaces of dimension
n – 1. Since V is a finite-dimensional complex inner product space, there is a unit vector  in V
and a scalar c such that

T* = c .

Let W be the orthogonal complement of the subspace spanned by  and let S be the restriction of
T to W. By Theorem 10, W is invariant under T. Thus S is a linear operator on W. Since W has
dimension n – 1, our inductive assumption implies the existence of an orthonormal basis { 1, . .
., n–1} for W in which the matrix of S is upper-triangular; let n = . Then { 1, . . ., n} is an
orthonormal basis of V in which the matrix of T is upper-triangular.

This theorem implies the following result for matrices.

Corollary: For every complex n  n matrix A there is unitary matrix U such that U–1AU is upper-
triangular.

Now combining Theorem 12 and Theorem 11, we immediately obtain the following analogue
of Theorem 9 for normal operators.

Theorem 13: Let V be a finite-dimensional complex inner product space and T a normal operator
on V. Then V has an orthonormal basis consisting of characteristic vectors for T.

Also for every normal matrix A, there is a unitary matrix P such that P–1AP is a diagonal matrix.

Self Assessment

3. For each of the following real symmetric matrices A, find a real orthogonal matrix P such
that P–1AP is diagonal

(i) A = 1 1
1 1

(ii) A = 4/3 2 /3
2 /3 5/3

(iii) A = 0 1
1 0

4. Prove that T is normal if T = T1 + i T2, where T1 and T2 are self-adjoint operators which
commute.

26.3 Summary

 In this unit we have studied unitary operators and normal operators.
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Notes With the help of a few theorems and examples the properties of unitary operators are
explained.

 The distinction between unitary operators, orthogonal operators and normal operators is
established.

 With the help of a few theorem it is shown that for every normal matrix A, there is a
unitary matrix P such that P–1AP is a diagonal matrix.

26.4 Keywords

General Linear Group: A general linear group denotes the set of all invertible complex n  n
matrices and is denoted by GL(n).

Isomorphism: An isomorphism of inner product spaces V onto W is a vector space isomorphism
of the linear operator T of V onto W which also preserves inner products.

Orthogonal: A real or complex n  n matrix A is said to be orthogonal if AtA = I.

Unitary: A complex n  n matrix A is called unitary if A*A = 1.

Unitary Operator: A unitary operator on an inner product space is isomorphism of the space
onto itself.

26.5 Review Questions

1. For A = 
1 2 3
2 3 4
3 4 5

there is a real orthogonal matrix P such that P–1AP = D is diagonal. Find such a diagonal
matrix D.

2. If T is a normal operator. Prove that characteristic vectors for T which are associated with
distinct characteristic values are orthogonal.

26.6 Further Readings

Books Michael Artin Algebra

I N. Herstein Topics in Algebra

Kenneth Hoffman and Ray Kunze Linear Algebra



290 LOVELY PROFESSIONAL UNIVERSITY

Linear Algebra

Notes Unit 27: Introduction and Forms on Inner Product Spaces

CONTENTS

Objectives

Introduction

27.1 Overview

27.2 Forms on Inner Product Spaces

27.3 Summary

27.4 Keywords

27.5 Review Questions

27.6 Further Readings

Objectives

After studying this unit, you will be able to:

 See that the material covered in this unit on inner product spaces is more sophisticated and
generally more involved technically

 Understand more clearly sesquilinear form as well as bilinear forms

 See that the map f  T isomorphism of the space of forms onto L(V, V) is understood well

 Know how to obtain the matrix of f in the ordered basis .

Introduction

In this unit the topics covered in the units 24, 25 and unit 26 are reviewed.

It is seen that these ideas can further be elaborated on an advanced stage.

It is shown that the section devotes to the relation between forms and linear operators.

One can see that for every Hermitian form f on a finite dimensional inner product space V, there
is an orthonormal basis of V in which f is represented by a diagonal matrix with real entries.

27.1 Overview

In the units 24, 25, 26 we have covered topics which are quite fundamental in nature. It covered
basically a lot of topics like inner products, inner product spaces, adjoint operators, unitary
operators and linear functionals. However, in the next few units we shall deal with inner product
spaces and spectral theory, forms on inner product spaces, positive forms and properties of the
normal operators. Apart from the formulation of the principal axis theorem or the orthogonal
diagonalization of self-adjoint operators the material covered in these units is sophisticated and
generally more technically involved. In these units the arguments and proofs are written in a
more condensed forms. Units 27 and 28 are devoted to results concerning forms on inner product
spaces and the relations between forms and linear operators. Unit 2 deals with spectral theory,
i.e. with the implication of the ideas of units 24, 25 and 26 concerning the diagonalization of self-
adjoint and normal operators.
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If T is a linear operator on a finite-dimensional inner product space V the function f defined on
V  × V by

f( , ) = (T | )

may be regarded as a kind of substitute of T. Many questions about T are equivalent to questions
concerning f. In fact, it is easy to see that f determines T. For if  = { 1, ..., n} is an orthonormal
basis for V, then the entries of the matrix of T in  are given by

Ajk = f( k, j)

It is important to understand why f determines T from a more abstract point of view. The crucial
properties of f are described in the following definition.

Definition: A (sesquilinear) form on a real or complex vector space V is a function f on V  V with
values in the field of scalars such that

(a) f(c  + , ) = cf( , ) + f( , )

(b) f(  + c , ) = c f( , ) + f( , )

for all , ,   in V and all scalars c.

Thus, a sesquilinear form is a function on V  V such that f( , ) is a linear function of  for fixed
 and a conjugate-linear function of  for fixed . In the real case, f( , ) is linear as a function of

each argument; in other words, f is a bilinear form. In the complex case, the sesquilinear form f
is not bilinear unless f = 0. In the remainder of this chapter, we shall omit the adjective ‘sesquilinear’
unless it seems important to include it.

If f and g are forms on V and c is a scalar, it is easy to check that cf + g is also a form. From this it
follows that any linear combination of forms on V is again a form. Thus the set of all forms on
V is a subspace of the vector space of all scalar-valued functions on V  V.

Theorem 1: Let V be a finite-dimensional inner product space and f a form on V. Then there is a
unique linear operator T on V such that

f( , ) = (T | )

for all , , in  V and the map f  T is an isomorphism of the space of forms onto L(V, V).

Proof: Fix a vector  in V. Then a  f( , ) is a linear function on V. By theorem 6 in unit 26 there
is a unique vector  in V such that f( , ) = ( | ) for every . We define a function U from V into
V by setting U  = . Then

f( |c  + ) = ( |U(c  + ))

= ( , ) ( , )cf f

= ( | ) ( | )c U U

= ( | )c U U

for all , ,  in V and all scalars c. Thus U is a linear operator on V and T = U* is an operator such
that f( , ) = (T | ) for all  and . If we also have f( , ) = (T’ | ), then

(T  – T’ | ) = 0

for all  and ; so T  = T’   for all . Thus for each form f there is a unique linear operator Tf such
that

f( , ) = (Tj | )
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(cf + g) ( , ) = (Tcf + g | )

= cf( , ) + g( , )

= c(Tf | ) + (Tg | )

= (cTf + Tg| | )

for all  and  in V. Therefore,

Tcf + g = cT1 + Tg

so f  Tf is a linear map. For each T in L(V, V) the equation

f( , ) = (T | )

defines a form such that Tf = T, and Tf = 0 if and only if f = 0. Thus f  Tf is an isomorphism.

Corollary: The equation

(f|g) = tr(TfT*g)

defines an inner product on the space of forms with the property that

(f|g) = 
,

( , ) ( , )k j k j
j k

f g

for every orthonormal basis { 1, ..., n} of V.

Proof: It follows easily from Example 3 of unit 24 that (T, U)  tr (TU*) is an inner product on
L(V, V). Since f  Tf is an isomorphism, Example 6 of unit 24 shows that

(f|g) = tr (TfT*g)

is an inner product. Now suppose that A and B are the matrices of Tf and Tg in the orthonormal
basis  = { 1, ..., n}. Then

Ajk = (Tf k| j) = f( k, j)

and Bjk = (Tg k| j) = g( k, j). Since AB* is the matrix of TfT*g in the basis , it follows that

(f|g) = tr (AB*) = 
,

jk jk
j k

A B

Definition: If f is a form and  = { 1, ..., n} an arbitrary ordered basis of V, the matrix A with
entries

Ajk = f( k, j)

is called the matrix of f in the ordered basis .

When  is an orthonormal basis, the matrix of f in  is also the matrix of the linear transformation
Tf, but in general this is not the case.

If A is the matrix of f in the ordered basis  = ( 1, ... n), if follows that

s s r r
s r

f x y = ,
r rs s

r s
y A x

...(1)

for all scalars x, and y (1  r, s  n). In other words, the matrix A has the property that

f( , ) = Y*AX

where X and Y are the respective coordinate matrices of  and  in the ordered basis .
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j = 
1

n

ij i
i

P ,  (1  j  n)

is given by the equation

A = P*AP. (2)

For

A jk = f( k, j)

= ,sk s rj r
s r

f P P

= 
,

rj rs sk
r s

P A P

= (P*AP)jk.

Since P *= P–1 for unitary matrices, it follows from (2) that results concerning unitary equivalence
may be applied to the study of forms.

Theorem 2: Let f be a form on a finite-dimensional complex inner product space V. Then there is
an orthonormal basis for V in which the matrix of f is upper-triangular.

Proof: Let T be the linear operator on V such that f( , ) = (T | ) for all  and . By Theorem 12
of unit 26 there is an orthonormal basis ( 1, ..., n) in which the matrix of T is upper-triangular.
Hence.

f( k, j) = (T k| j) = 0

when j > k.

Definition: A form f on a real or complex vector space V is called Hermitian if

f( , ) = ( , )f

for all  and  in V.

If T is a linear operator on a finite-dimensional inner product space V and f is the form

f( , ) = (T | )

then ( , ) ( | ) ( * | )f T T b ; so f is Hermitian if and only if T is self-adjoint.

When f is Hermitian f( , ) is real for every , and on complex spaces this property characterizes
Hermitian forms.

Theorem 3: Let V be a complex vector space and f a form on V such that f( , ) is real for every .
Then f is Hermitian.

Proof: Let  and  be vectors in V. We must show that f( , ) =  ( , )f . Now

f(  + ,  + ) = f( , ) + f( , ) + f( , ) + f( , ).

Since f(  + ,  + ) = f( , ), and f( , ) are real, the number f( , ) + f( , ) is real. Looking at the
same argument with  + i  instead of  + , we see that – if ( , ) + if ( , ) is real. Having
concluded that two numbers are real, we set them equal to their complex conjugates and obtain

f( , ) + f( , ) = ( , )f  + ( , )f

–if( , ) + if ( , ) = ( , )if  – ( , )if
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2f( , ) = 2f( , ).

Corollary: Let T be a linear operator on a complex finite-dimensional inner product space V.
Then T is self-adjoint if and only if (T | ) is real for every  in V.

Theorem 4 (Principal Axis Theorem): For every Hermitian form f on a finite-dimensional inner
product space V, there is an orthonormal basis of V in which f is represented by a diagonal
matrix with real entries.

Proof: Let T be the linear operator such that f( , ) = (T | ) for all  and  in V. Then, since
f( , ) = ( , )f  and ( | ) ( | )T T , it follows that

(T | ) = ( , ) ( | )f T

for all  and ; hence T = T*. By Theorem 5 of unit 24, there is an orthonormal basis of V which
consists of characteristic vectors for T. Suppose { 1, ..., n} is an orthonormal basis and that

T j = cj j

for 1  j  n. Then

f( k, j) = (T k| j) = kjck

and by Theorem 2 of unit 24 each ck is real.

Corollary: Under the above conditions

( , )j j k k
j k

f x y = j j j
j

c x y

Self Assessment

1. Which of the following functions f, defined on vectors  = (x1, x2) and  (y1, y2) = in c2, are
sesquilinear forms on c2

(a) f( , ) = (x1 – y 1)2 + x2 y 2

(b) f( , ) = x y 2 – x 2y1

(c) f( , ) = x1 y 1

2. Let f be a non-degenerate form on a finite-dimensional space V. Show that each linear
operator S has an ‘adjoint’ relative to f’, i.e., an operator S’ such that f(S , ) = f( , S’ ) for
all , .

27.3 Summary

 In the introduction a review of the last units 24, 25, 26 is done. It is stated that the ideas
covered in these units are fundamental.

 In this unit forms on inner product space are studied and the relation between the forms
and the linear operator is established.

 A sesquilinear form is introduced and explained for all , ,  in the finite vector space V
and its relation with the linear operators.

 When the basis  is an orthonormal basis, the matrix of the form f in  is also matrix of the
linear transformation Tfi.
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A Sesquilinear Form: A sesquilinear form on a real or complex vector space V is a function f on
V  V with values in the field of scalars such that

f(c + , ) = cf(, ) + f(, )

f( + c, ) = cf(, ) + f(, )

for all ,   in V and all scalars c.

Hermitian: A form f on a real or complex vector space V is called Hermitian if

f(, ) = ( , )f

for all  and  in V.

Self-adjoint: The  linear operator T is self-adjoint on a complex finite-dimensional inner product
space V, if and only if (T|) is real for every  in V.

27.5 Review Questions

1. Let

A = 
1

2
i

i

and let g be the form (on the space of 2 × 1 complex matrices) defined by g(X, Y) = Y*AX.
Is g an inner product?

2. Let f be the form on R2 defined by

f [(x1, y1), (y2, y2)] = x1y1 + x2y2

Find the matrix of f in each of the following bases:

{(1, –1), (1, 1)}, {(1, 2), (3, 4)}

Answer: Self Assessment

1. (b), (c)

27.6 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

Michael Artin, Algebra
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Objectives

After studying this unit, you will be able to:

 Understand when a form f on a real or complex vector space v is non-negative. If the form
f is Hermitian and f( , ) > 0 for every  in v, the form f is positive.

 Know that f is a positive form if and only if A = A* and the principal minors of the matrix
A of f are all positive.

 See that if A is the matrix of the form f in the ordered basis { 1, ..., n} of v and the principal
minors of A are all different from 0, then there is a unique upper triangular matrix P with
Pkk = 1(1  k  n) such that P*AP is upper triangular.

Introduction

In this unit the form f on a real or complex vector space is studied and seen under what conditions
the form f is positive.

On the basis of the principal minors of A being all different from 0, the positive form f, it is seen
that there is an upper-triangular matrix P with Pkk = 1 (1  k  n) such that B = AP is lower
triangular.

28.1 Positive Forms

In this unit we study non-negative (sesqui) forms and their relation to a given inner product on
the given finite vector space.

A form f on a real or complex vector space v is non-negative if it is Hermitian and f( , )  0 for
every  in v. The form f is positive if it is Hermitian and f( , ) > 0 for all   0.

A positive form on v is simply an inner production v. Let f be a form on the finite dimensional
space. Let  = ( 1, 2, ... n) be an ordered basis of v, and let A be the matrix of f on the basis , i.e.,
Ajk = f( k, j). If  = x1 1 + ...... + xn n, then

f( , ) = ( , )j j k k
j k

f x xa a
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Notes= ( ( , )j k j k
j k

x x f

= ( )kj j k
j k

A x x ...(1)

So we see that f is non-negative if and only if

and

A = A*

0kj j k
j k

A x x  for all scalars x1, x2, ... xn ..(2)

For positive f, the relation should be true for all (x1, x2, ... xn)  0. The above conditions on positive
f form are true if

g(X, Y) = Y*AX ...(3)

is a positive form on the space of n × 1 column matrices over the scalar field.

Theorem 1: Let F be the field of real number or the field of complex numbers. Let A be an n × n
matrix over F. The function g defined by

g(X, Y) = Y*AX ...(4)

is a positive form on the space Fn×1 if and only if there exists an invertible n × n matrix P with
entries in F such that A = P*P.

Proof: For any n × n matrix A, the function g in (4) is a form on the space of column matrices. We
are trying to prove that g is positive if and only if A = P*P. First, suppose A = P*P. Then g is
Hermitian and

g(X, X) = X*P*PX

= (PX)*PX

    0.

If P is invertible and X  0, then (PX)*PX > 0.

Now, suppose that g is a positive form on the space of column matrices. Then it is an inner
product and hence there exist column matrices Q1, ..., Qn such that

jk = g(Q1, Qk)

= Q*
kAQj.

But this just says that, if Q is the matrix with columns Q1, ..., Qn, then A*AQ = I. Since {Q1, ..., Qn}
is a basis, Q is invertible. Let P = Q–1 and we have A = P*P.

In practice, it is not easy to verify that a given matrix A satisfies the criteria for positivity which
we have given thus far. One consequence of the last theorem is that if g is positive then det
A > 0, because det A = det (P*P) = det P* det P  = |det P|2. The fact that det A > 0 is by no means
sufficient to guarantee that g is positive; however, there are n determinants associated with A
which have this property: If A = A* and if each of those determinants is positive, then g is a
positive form.

Definition: Let A be an n × n matrix over field F. The principal minors of A are the scalars k(A)
defined by
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( ) det , 1 .
n k

k

k kk

A A
A k n

A A


 



Lemma: Let A be an invertible n × n matrix with entries in a field F. The following two statements
are equivalent:

(a) There is an upper triangular matrix P with Pkk = 1 (1  k  n) such that the matrix B = AP is
lower-triangular.

(b) The principal minors of A are all different from 0.

Proof: Let P be any n  n matrix and set B = AP. Then

Bjk = ,jr rk
r

A P

If P is upper-triangular and Pkk = 1 for every k, then

1

1

k

jr rk
r

A P = Bjk – Akk, k > 1

Now B is lower-triangular provided Bjk = 0 for j < k. Thus B will be lower-triangular if and only
if

1

1

k

jr rk
r

A P = – Akk, 1  j  k – 1

2  k  n. ...(5)

So, we see that statement (a) in the lemma is equivalent to the statement that there exist scalars
Prk, 1  r  k, 1  k  n, which satisfy (5) and Pkk = 1, 1  k  n.

In (5) for each k > 1 we have a system of k – 1 linear equations for the unknowns P1k, P2k, ..., Pk–1, k.
The coefficient matrix of that system is

1, 1

1 1, 1

n k

k k k

A A

A A



 


and its determinant is the principal minor k–1(A). If each k–1(A)  0, the systems (5) have unique
solutions. We have shown that statement (b) implies statement (a) and that the matrix P is
unique.

Now suppose that (a) holds. Then, as we shall see,

k(A) = k(B)

= B11B22... Bkk, k = 1, ..., n. ...(6)

To verify (6), let A1, ..., An and B1, ... Bn be the columns of A and B, respectively. Then

B1 = A1

Br = 
1

1
,

r

jr j r
j

P A A r > 1. ...(7)

Fix k, 1  k  n. From (7) we see that the rth column of the matrix

11

1

kk

k kk

B B

B B


 


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Notesis obtained by adding to the rth column of

11 1

1

k

k kk

A A

A A


 



a linear combination of its other columns. Such operations do not change determinants. That
proves (6), except for the trivial observation that because B is triangular k(B) = B11 ... Bkk. Since A
and P are invertible, B is invertible. Therefore

(B) = B11 ... Bnn  0

and so k(A)  0, k = 1, ..., n.

Theorem 2: Let f be a form on a finite dimensional vector space V and let A be the matrix of f in
an ordered basis B. Then f is a positive form if and only if A = A* and the principal minors of A
are all positive.

Proof: Suppose that A = A* and k(A)  k  n. By the lemma, there exists an (unique) upper-
triangular matrix P with Pkk = 1 such that B = AP is lower triangular. The matrix P* is lower-
triangular, so that P*B = P*AP is also lower triangular. Since A is self-adjoint, the matrix
D = P*AP is self-adjoint. A self-adjoint triangular matrix is necessarily a diagonal matrix. By the
same reasoning which led to (6),

k(D) = k(P*B)

= k(B)

= k(A).

Since D is diagonal, its principal minors are

k(D) = D11 ... Dkk.

From k(D) > 0, 1  k  n, we obtain Dkk > 0 for each k.

If A is the matrix of the form f in the ordered basis B = { 1, ..., n}, then D = P*AP is the matrix of
f in the basis { 1, ..., n} defined by

j = 
1

n

ij i
i

P

Since D is diagonal with positive entries on its diagonal, it is obvious that

X*DX > 0. X  0

from which it follows that f is a positive form.

Now, suppose we start with a positive form f. We know that A = A*. How do we show that
k(A) > 0, 1  k  n? Let Vk be the subspace spanned by 1, ..., k and let fk be the restriction of f to

Vk  Vk. Evidently fk is a positive form on Vk and, in the basis { 1, ..., k} it is represented by the
matrix.

11 1

1

k

k kk

A A

A A


 



As a consequence of Theorem 1, we noted that the positivity of a form implies that the determinant
of any representing matrix is positive.

There are some comments we should make, in order to complete our discussion of the relation
between positive forms and matrices. What is it that characterizes the matrices which represent
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basis, then f will be positive if and only if A = A* and

                                       X *AX > 0 for all complex X  0                                                           ....(8)

It follows from Theorem 3 of unit 27 that the condition A = A* is redundant, i.e., that (8) implies
A = A*. One the other hand, if we are dealing with a real vector space the form f will be positive
if and only if A = At and

                                             X *AX > 0 for all real X  0                                                             ....(9)

We want to emphasize that if a real matrix A satisfies (9), it does not follow that A = At. One thing
which is true is that, if A = At and (9) holds, then (8) holds as well. That is because

(X + iY)*A(X + iY) = (Xt – iYt)A(X + iY)

= XtAX + YtAY + i[XtAY – YtAX]

and if A = At then YtAX = XtAY.

If A is an n  n matrix with complex entries and if A satisfies (9), we shall call A a positive matrix.

Now suppose that V is a finite-dimensional inner product space. Let f be a non-negative form on
V. There is a unique self-adjoint linear operator T on V such that

f( , ) = (T | ) ...(10)

and T has the additional property that (T | )  0

Definition: A linear operator T on a finite-dimensional inner product space V is non-negative if
T = T* and (T | )  0 for all  in V. A positive linear operator is one such that T = T* and
(T | ) > 0 for all  0.

If V is a finite-dimensional (real or complex) vector space and if (.|.) is an inner product on V,
there is an associated class of positive linear operators on V. Via (10) there is a one-one
correspondence between that class of positive operators and the collection of all positive forms
on V. Let us summarise as:

If A is an n  n matrix over the field of complex numbers, the following are equivalent:

1. A is positive, i.e. 0kj j k
j k

A x x  whenever x1, ..., xn are complex numbers, not all 0.

2. (X|Y) = Y*AX is an inner product on the space of n  1 complex matrices.

3. Relative to the standard inner product (X|Y) = Y*X on n  1  matrices, the linear operator
X  AX is positive.

4. A = P*P for some invertible n  n matrix P over C.

5. A = A*, and the principal minors of A are positive.

If each entry of A is real, these are equivalent to:

1. A = At, and 0kj j k
j k

A x x  whenever x1, ..., xn are real numbers, not all 0.

2. (X|Y) = YtAX is an inner product on the space of n  1 real matrices.

3. Relative to the standard inner product (X|Y) = YtX on n  1 real matrices, the linear
operator X  AX is positive.

4. There is an invertible n  n matrix P, with real entries, such that A = PtP.



LOVELY PROFESSIONAL UNIVERSITY 301

Unit 28: Positive Forms and More on Forms

Notes28.2 More on Forms

Theorem 3: Let f be a form on a real or complex vector space V and { 1, ..., r} a basis for the finite
dimensional subspace W of V. Let M be the r  r matrix with entries

Mjk = f( k, j)

and W ’ the set of all vectors  in V such that f( , ) for all  in W. Then W’ is subspace of V, and
W  W’ = {0} if and only if M is invertible. When this is the case, V = W + W’.

Proof: If  and  are vectors in W’ and c is a scalar, then for every  in W

f( , c  + ) =  c f( , ) + f( , )

= 0.

Hence, W’ is a subspace of V.

Now suppose  = 
1

r

x k
k

x  and that  = 
1

r

j j
j

y . Then

f( , ) = 
,

,
r

jk k
j k

y M x

= .j jk k
k j

y M x

It follows from this that W  W’  {0} if and only if the homogeneous system

1

r

j jk
j

y M = 0, 1  k  r

has a non-trivial solution (y1 ..., yr). Hence W  W ‘ {0} if and only if M* is invertible. But the
invertibility of M* is equivalent to the invertibility of M.

Suppose that M is invertible and let

A = (M*)–1 = (M–1)*

gj( ) = 
1

( , )
r

jk k
k

A f

Then

gj(c  + ) = ( , )kn k
k

f c

= ( , ) ( , )jk k jk k
k k

c A f A f

= cgj( ) + gj( )

Hence, each gj is a linear function on V. Thus we may define a linear operator E on V by setting

E = 
1

( )
r

j j
j

g
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gj( n) = ( , )jk k n
k

A f

= ( *)jk kn
k

A M

= jn

it follows that E( n) = n for 1  n  r. This implies E  =  for every   in W. Therefore, E maps V
onto W and E2 = E. If  is an arbitrary vector in V, then

f( n, E ) = f ( )n j j
j

g

= ( ) ( , )j n j
j

g f a

= ( , ) ( , )jk k n j
j k

A f f

Since A* = M–1, it follows that

f( n, E ) = 
1( ) ( , )kj jn k

k j
M M f

= ( , )kn k
k

f

= f( n , ).

This implies f( , E ) = f( , ) for every  in W. Hence

f( ,  – E ) = 0

for all  in W and  in V. Thus 1 – E maps V into W’. The equation

= E  + (1 – E)

shows that V = W + W’. One final point should be mentioned. Since W   W’ = {0}, every vector
in V is uniquely the sum of a vector in W  and a vector in W’. If  is in W’, it follows that E  = 0.
Hence I – E maps V onto W’.

The projection E constructed in the proof may be characterized as follows: E  =  if and only if
 is in W and  —  belongs to W’. Thus E is independent of the basis of W that was used in its

construction. Hence we may refer to E as the projection of V on W that is determined by the
direct sum decomposition

V = W   W’.

Note that E is an orthogonal projection if and only if W’ = W .

Theorem 4: Let f be a form on a real or complex vector space V and A the matrix of f in the ordered
basis { 1, ..., n} of V. Suppose the principal minors of A are all different from 0. Then there is a
unique upper triangular matrix P with Pkk = 1 (1  k  n ) such that

P*AP

is upper-triangular.
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NotesProof: Since k(A*) = ( )k A  (1  k  n ), the principal minors of A are all different from 0. Hence,
by the lemma used in the proof of Theorem 2, there exists an upper-triangular matrix P with
Pkk = 1 such that A*P is lower-triangular. Therefore, P*A = (A*P)* is upper-triangular. Since the
product of two upper-triangular matrices is again upper triangular, it follows that P*AP is
upper-triangular. This shows the existence but not the uniqueness of P. However, there is another
more geometric argument which may be used to prove both the existence and uniqueness of P.

Let Wk be the subspace spanned by 1, ..., k and W’k the set of all  in V such that f( , ) = 0 for
every  in Wk. Since k(A)  0, the k  k matrix M with entries

Mij = f( j, i) = Aij

(1  i, j  k) is invertible. By Theorem 3

V = Wk  W’k.

Let Ek be the projection of V on Wk which is determined by this decomposition, and set E0 = 0. Let

k = k – Ek –1 k, (1  k  n)

Then 1 = 1, and Ek–1 k belongs to Wk–1 for k > 1. Thus when k > 1, there exist unique scalars Pjk such
that

 Ek –1 k = –
1

1

k

jk j
j

P

Setting Pkk = 1 and Pjk = 0 for j < k, we then have an  n × n upper triangular matrix P with Pkk = 1 and

Bk = 
1

k

jk j
j

P

for k =1, ..., n. Suppose 1   i  k. Then Bk is in Wi  Wk–1 since Bk belongs to W’k –1, it follows that
f( i, k) = 0. Let B denote the matrix of f in the ordered basis ( 1, ... n). Then

Bki = f( i, k)

so Bki = 0 when k > i. Thus B is upper-triangular. On the other hand,

B = P*AP.

Self Assessment

1. Which of the following matrices are positive?

1 1 1 1 1 2 1 3
1 2 1 1

, , 2 1 1 , 1 2 1 2 1 4
3 4 1 3

3 1 1 1 3 1 4 1 5

i
i

2. Prove that the product of two positive linear operators is positive if and only if they
commute.

3. Let S and T be positive operators. Prove that every characteristic value of ST is positive.

28.3 Summary

 In this unit we are studying the form f on a finite vector space being non-negative.

 We obtain certain equivalent properties and show that when the matrix A of linear operator
is Hermitian i.e. A + A* as well as the principal minors of the matrix A are all positive.
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principal minors are all different from zero, then there exists a unique upper-triangular
matrix P with Pkk =1 (1  k  n) such that P*AP is upper triangular.

28.4 Keywords

Non-negative Form: A form f on  real or complex vector space V is non-negative if it is Hermitian
and f( , )  0.

Positive Form: A form f is positive if it is Hermitian and f( , ) > 0

Upper Triangular Matrix: A matrix P is upper triangular one if its elements Pij satisfy the
relations: Pkk = 1, 1  k  n and Pij = 0 for j > k.

28.5 Review Questions

1. Let

A = 
1 1 2

1 2 1 4

(a) Show that A is positive

(b) Find an invertible real matrix P such that

A = PtP.

2. Does

1 2 1 2 1 1 2 1 1 2 2 2( , )|( , ) 2 2x x y y x y x y x y x y  define an inner product on c2?

28.6 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

I N. Herstein, Topics in Algebra
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29.4 Keywords

29.5 Review Questions

29.6 Further Readings

Objectives

After studying this unit, you will be able to:

 Understand that Theorems 9 and 13 of unit 26 are pursued further concerning the
diagonalization of self-adjoint and normal operators.

 See that if T is a normal operator or a self-adjoint operator on a finite dimensional inner
product space V. Let C1, Ck be the distinct characteristic values of T and Wi be the
characteristic space associated with Ci and Ei be the orthogonal projection of V on Wi, then
V is the direct sum of W1, W2, ... Wk and T = C1E1 + C2E2 + ... + Ck Ek which is called spectral
resolution of T.

 See that if A is a normal matrix with real (complex) entries, then there is a real orthogonal
(unitary) matrix P such that P–1AP is in rational canonical form.

Introduction

In this unit the properties of the normal operators or the self-adjoint operator are studied
further.

The spectral resolution of the linear operator T is given by the decomposition T = C1E1 + C2E2 +
Ek Ck, where C1, C2 ... Ck are the distinct characteristic values of T and E1, E2 ... Ek are the orthogonal
projections of V on W1, W2 ... Wk.

If T is a diagonalizable normal operator on a finite dimensional inner product space V, then T is
self-adjoint, non-negative or unitary according as each characteristic value of T is real,
non-negative or of absolute value 1.

The family of orthogonal projections (P1, P2, ... Pk) is called the resolution of the identity determined

bF, and T = ( )j j
j

r T P  is the spectral resolution of T in terms of this family.
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In this unit we try to implement the findings of the Theorems 9 and 13 of unit 26 regarding the
diagonalization of self-adjoint and normal operators.

We start with the following spectral theorem:

Theorem 1 (Spectral Theorem): Let T be a normal operator on a finite dimensional complex inner
product space V or a self-adjoint operator on a finite dimensional real inner product space. Let
C1, ... Ck be the distinct characteristic values of T. Let Wj be the characteristic space associated with
Cj and Ej, the orthogonal projection of V on Wj. Then Wi is orthogonal to W*j when i  j, V is the
direct sum of W1, W2, ... Wk and

T = C1E1 + C2E2 + ... + Ck Ek ...(1)

Proof:  Let  be a vector in Wj, a vector in Wi, and suppose i  j. Then c,( | ) = (T | ) =

( |T* ) = ( | ).ic  Hence (cj – ci)( | ) = 0, and since. cj – ci  0, it follows that ( | ) = 0. Thus Wj

is orthogonal to Wi, when i  j. From the fact that V has an orthonormal basis consisting of
characteristic vectors (cf. Theorems 9 and 13 of  unit 26), it follows that V = W1 + ... + Wk. If j

belongs to Vj (1  j  k) and 1 + ... + k = 0, then

0 = ( | ) ( | )i j i j
j j

= 2
i

for every i, so that V is the direct sum of W1, ... , Wk. Therefore E1 + ... + Ek = I and

T = TE1 + ... + TEk.

= c1E1 + ... + ckEk

The decomposition (1) is called the spectral resolution of T. This terminology arose in part from
physical applications which caused the spectrum of a linear operator on a finite-dimensional
vector space to be defined as the set of characteristic values for the operator. It is important to
note that the orthogonal projections E1, ... , Ek are canonically associated with T; in fact, they are
polynomials in T.

Corollary: If ej =  II i
i j j i

x c
c c , then Ej = ej(T) for 1  j  k.

Proof: Since EiEj = 0 when i  j, it follows that

T2 = c2
1E1 + ... + c2

kEk

and by all easy induction argument that

Tn = cn
1E1 + ... + cn

kEk

for every integer n  0. For an arbitrary polynomial

f = 
0

r
n

n
n

x

we have

f(T) = 
0

r
n

n
n

T
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= 

0 1

r k
n

n j j
n j

c E

= 
1 0

k r
n

n j
j n

c Ej

= 
1

( )
r

j j
j

f c E

Since ej(cm) = jm, it follows that ej(T) = Ej.

Because E1,. ., Ek are canonically associated with T and

I = E1 + ... + Ek

the family of projections (E1, ..., Ek) is called the resolution of the identity defined by T.

There is a comment that should be made about the proof of the spectral theorem. We derived the
theorem using Theorems 9 and 13 of  unit 26 on the diagonalization of self-adjoint and normal
operators. There is another, more algebraic, proof in which it must first be shown that the
minimal polynomial of a normal operator is a product of distinct prime factors. Then one
proceeds as in the proof of the primary decomposition theorem (Theorem 1) unit 18.

In various applications it is necessary to know whether one may compute certain functions of
operators or matrices, e.g., square roots. This may be done rather simply for diagonalizable
normal operators.

Definition: Let T be a diagonalizable normal operator on a finite-dimensional inner product
space and

T =  
1

k

j j
j

c E

its spectral resolution. Suppose f is a function whose domain includes the spectrum of T that has
values in the field of scalars. Then the linear operator f(T) is defined by the equation

f(T) = 
1

( ) .
k

j j
j

f c E ...(2)

Theorem 2: Let T be a diagonalizable normal operator with spectrum S on a finite-dimensional
inner product space V. Suppose f is a function whose domain contains S that has values in the
field of scalars. Then f(T) is a diagonalizable normal operator with spectrum f(S). If U is a unitary
map of V onto V' and T' = UTU–1, then S is the spectrum of T' and

f(T) = Uf(T)U–1.

Proof: The normality of f(T) follows by a simple computation from (2) and the fact that

f(T)* = ( )j j
j

f c E

Moreover, it is clear that for every  in Ej(V)

f(T) = f(cj) .

Thus, the set f(S) of all f(c) with c in S is contained in the spectrum of f(T). Conversely, suppose
 0 and that

f(T) = b .
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j

E  and

f(T) = ( ) j
j

f T E

= ( )j j
j

f c E

= j
j

bE

Hence,
2

( ( ) )j j
j

f c b E = 
2 2

( )j j
j

f c b E

= 0.

Therefore, f(cj) = b or Ej  = 0. By assumption,  0, so there exists an index i such that Ei   0. It
follows that f(ci) = b and hence that f(S) is the spectrum of f(T). Suppose, in fact, that

f(S) = {b1, ... , br}

where bm  bn when m  n. Let Xm be the set of indices i such that 1  i  k and f(ci) = bm. Let Pm = i
j

E

the sum being extended over the indices i in Xm. Then Pm is the orthogonal projection of V on the
subspace of characteristic vectors belonging to the characteristic value bm of f(T), and

f(T) =  
1

r

m m
m

b P

is the spectral resolution of f(T).

Now suppose U is a unitary transformation of V onto V' and that T’ = UTU–1. Then the equation

T = C

holds if and only if

T'U = cU .

Thus S is; the spectrum of T', and U maps each characteristic subspace for T onto the corresponding
subspace for T'. In fact, using (2), we see that

T' = ,j j
j

c E 1
j jE UE U

is the spectral resolution of T'. Hence

f(T’) = ( )j j
j

f c E

= 1( )j j
j

f c UE U

= U 1( ) )j j
j

f c E U

= Uf(T)–1
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spectrum of the normal operator T is the set

S ={c1, ... , ck}

of distinct characteristic values. When T is represented by a diagonal matrix in a basis of
characteristic vectors, it is necessary to repeat each value cj as many times as the dimension of the
corresponding space of characteristic vectors. This is the reason for the change of notation in the
following result.

Corollary: With the assumptions of Theorem 2, suppose that T is represented in the ordered
basis  = { 1, ... , n} by the diagonal matrix D with entries d1, ... , dn. Then, in the basis , f(T) is
represented by the diagonal matrix f(D) with entries f(d1), ... , f(dn). If ’ = { 1, ... , n} is any other
ordered basis and P the matrix such that

j = ij i
j

P

then P–1 f(D)P is the matrix of f(T) in the basis '.

Proof: For each index i, there is a unique j such that 1  j  k, i belongs to Ej(V), and di = cj. Hence
f(T) i = f(di) i for every i, and

f(T) j = ( )ij i
j

P f T

= i ij i
j

d P

= ( )ij i
j

DP

= 
1( )ij ki k

j k
DP P

= 
1( ) .kj k

k
P DP

It follows from this result that one may form certain functions of a normal matrix. For suppose
A is a normal matrix. Then there is an invertible matrix P, in fact a unitary P, such that PAP–1 is
a diagonal matrix, say D with entries d1, ..., dn; Let f be a complex-valued function which can be
applied to d1, ... dn, and let f(D) be the diagonal matrix with entries f(d1) .....f(dn). Then P–1f(D)P is
independent of D and just a function of A in the following sense. If Q is another invertible matrix
such that QAQ–1 is a diagonal matrix D’, then f may be applied to the diagonal entries of D’ and

P–1 f(D)P = Q–1 f(D’)Q.

Definition: Under the above conditions, f(A) is defined as P–1 f(D)P.

Theorem 3: Let A be a normal matrix and c1, ..., ck, the distinct complex roots of det (xl – A). Let

ei = II j

j i i j

x c
c c

and Ei = ei(A) (1  i  k). Then EiEj = 0 when i  j, E2
1 = Ei, E*i = Ei,

and

I = E1 + ... + Ek.
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f(A) = f(c1)E1 + ... + f(ck)Ek;

in particular, A = c1E1 + ... + ckEk.

We recall that an operator on an inner product space V is non-negative if T is self-adjoint and
(T | )  0 for every  in V.

Theorem 4: Let T be a diagonalizable normal operator on a finite-dimensional inner product
space V. Then T is self-adjoint, non-negative, or unitary according as each characteristic value of
T is real, non-negative, or of absolute value 1.

Proof: Suppose T has the spectral resolution T = c1E1 + ... + ckEk, then T* = c1E1 + ... + c kEk. To say
T is self-adjoint is to say T = T*, or

(c1 – c 1)E1 + ... + (ck – c k)Ek = 0.

Using the fact that EiEj = 0 for i  j, and the fact that no Ej, is the zero operator, we see that T is
self-adjoint if and only if cj = c j, j = 1, ... , k. To distinguish the normal operators which are
non-negative, let us look at

(T | ) = 
1 1

|
k k

j j i
j i

c E E

= ( | )j j i
i j

c E E

= 
2

j j
j

c E

We have used the fact that (Ej |Ei ) = 0 for i  j. From this it is clear that the condition (T | ) 0
is satisfied if and only if cj  0 for each j. To distinguish the unitary operators, observe that

TT* = c1c1E1 + ... + ckckEk.

= c1
2E1 + ... + ck

2Ek.

If TT* = I, then I = |c1|2E1 + ... + ck
2Ek, and operating with Ej

Ej = cj
2Ej.

Since Ej  0, we have cj
2 = 1 or cj  = l. Conversely, if cj

2 = 1 for  each j it is clear that TT* = I.

It is important to note that this is a theorem about normal operators. If T is a general linear
operator on V which has real characteristic values, it does not follow that T is self-adjoint. The
theorem states that if T has real characteristic values, and if T is diagonalizable and normal, then
T is self-adjoint. A theorem of this type serves to strengthen the analogy between the adjoint
operation and the process of forming the conjugate of a complex number. A complex number z
is real or of absolute value 1 according as z = z , or z z = 1. An operator T is self-adjoint or unitary
according as T = T* or T*T = I.

We are going to prove two theorems now, which are the analogues of these two statements:

1. Every non-negative number has a unique non-negative square root.

2. Every complex number is expressible in the form ru, where r is non-negative and u  = 1.
This is the polar decomposition z = rei  for complex numbers.
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V. Then T has a unique non-negative square root, that is, there is one and only one non-negative
operator N on V such that N2 = T.

Proof: Let T = c1E1 + ... + ckEk be the spectral resolution of T. By Theorem 4, each cj  0. If c is any
non-negative real number, let c  denote the non-negative square root of c. Then according to
Theorem 3 and (2) N = T  is a well-defined diagonalizable normal operator on V. It is non-
negative by Theorem 4, and, by an obvious computation, N2 = T.

Now let P be a non-negative operator on V such that P2 = T. We shall prove that P = N. Let

P = d1F1 + ... + drFr

be the spectral resolution of P. Then dj   0 for each j, since P is non-negative. From P2 = T we have

T = d2
1F1 + ... + d2

rFr.

Now F1, ..., Fr satisfy the conditions I = F1 + ... + Fr, FiFj = 0 for i  j, and no Fj is 0. The numbers
d2

1 ..., d2
r are distinct, because distinct non-negative numbers have distinct squares. By the

uniqueness of the spectral resolution of T, we must have r = k, and (perhaps reordering) Fj, = Ej,
d2

j = cj. Thus P = N.

Theorem 6: Let V be a finite-dimensional inner product space and let T be any linear operator on
V. Then there exist a unitary operator U on V and a non-negative operator N on V such that
T = UN. The non-negative operator N is unique. If T is invertible, the operator U is also unique.

Proof: Suppose we have T = UN, where U is unitary and N is non-negative. Then T* = (UN)* =
N*U* = NU*. Thus T*T = NU*UN = N2. This shows that N is uniquely determined as the non-
negative square root of the non-negative operator T*T.

So, to begin the proof of the existence of U and N, we use Theorem 5 to define N as the unique
non-negative square root of T*T. If T is invertible, then so is N because

(N N ) = (N2 ) = (T*T ) = (T T ).

In this case, we define U = TN–1 and prove that U is unitary. Now U* = (TN–1)* = (N–l)*T* =
(N*)–1T* = N–1T*. Thus

UU* = TN–1N–1T*

= T(N–1)2T*

= T(N2)–1T*

= T(T*T)–1T*

= TT–1(T*)–1T*

= I

and C is unitary.

If T is not invertible, we shall have to do a bit more work to define U. We first define U on the
range of N. Let  be a vector in the range of N say  = N . We define U  = T , motivated by the
fact that we want UB  = T . We must verify that U is well-defined on the range of N in other
words, if N  = N  then T  = T . We verified above that N 2 = T 2 for every  in V. Thus, with
 =  – , we see that N (  – ) = 0 if and only if T(  – ) = 0. So U is well-defined on the range

of N and is clearly linear where defined. Now if W is the range of N, we are going to define U on
W . To do this, we need the following observation. Since T and N have the same null space, their
ranges have the same dimension. Thus W  has the same dimension as the orthogonal complement
of the range of T. Therefore, there exists an (inner product space) isomorphism U0 of W  onto
T(V) . Now we have defined U on W, and we define U on W  to be U0.
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form  = N  + , where N  is in the range W of N, and  is in W . We define

U = T  + U0 .

This U is clearly linear, and we verified above that it is well-defined. Also

(U U ) (T  + U0 T  + U0 )

= (T T ) + (U0 U0 )

= (N N ) + ( )

= ( )

and so U is unitary. We also have UN  = T  for each .

We call T = UN a polar decomposition for T. We certainly cannot call it the polar decomposition,
since U is not unique. Even when T is invertible, so that U is unique, we have the difficulty that
U and N may not commute. Indeed, they commute if and only if T is normal. For example, if
T = UN = NU, with N non-negative and U unitary, then

TT* = (NU)(NU)* = NUU*N = N2 = T*T.

The general operator T will also have a decomposition T = N1U1, with N1 non-negative and U1

unitary. Here, N1 will be the non-negative square root of TT*. We can obtain this result by
applying the theorem just proved to the operator T*, and then taking adjoints.

We turn now to the problem of what can be said about the simultaneous diagonalization of
commuting families of normal operators. For this purpose the following terminology is
appropriate.

Definition: Let  be a family of operators on an inner product space V. A function r on  with
values in the field  of scalars will be called a root of  if there is a non-zero  in V such that

T = r(T)

for all T in . For any function r from  to , let V(r) be the set of all  in V such that T  = r(T)
for every T in .

Then V(r) is a subspace of V, and r is a root of  if and only if V(r)  {0}. Each non-zero  in V(r)
is simultaneously a characteristic vector for every T in .

Theorem 7: Let  be a commuting family of diagonalizable normal operators on a finite-
dimensional inner product space V. Then  has only a finite number of roots. If r1, ... , rk are the
distinct roots of , then

(i) V(ri) is orthogonal to V(rj) when i  j, and

(ii) V = V(r1)  ...  V(rk).

Proof: Suppose r and s are distinct roots of . Then there is an operator T in  such that r(T)  s(T).
Since characteristic vectors belonging to distinct characteristic values of T are necessarily
orthogonal, it follows that V(r) is orthogonal to V(s). Because V is finite-dimensional, this
implies  has at most a finite number of roots. Let r1,..., rk, be the roots of F. Suppose {T1, ..., Tm}
is a maximal linearly independent subset of , and let

{Ei1, Ei2, ... }

be the resolution of the identity defined by Ti, (1  i  m). Then the projections Eij form a
commutative family. For each Eij is a polynomial in Ti and T1, ... , Tm, commute with one another.
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I = 
1 2

21 2 mji j mj
j j jm

E E E

each vector  in V may be written in the form

= 1 2
1

1 2
...,

... .mj j mj
j jm

E E E … (3)

Suppose j1, ..., jm, are indices for which  = E1j1E2j2, ... Emjm  0. Let

i = II nnj
n i

E .

Then  = Eij i; hence there is a scalar ci such that

T1 = ci , 1  i  m.

For each T in , there exist unique scalars bi such that

T = 
1

m

i i
i

b T

Thus

T = i i
i

b T

= .i i
i

b c

The function T   i i
i

b c , is evidently one of the roots, say ri or , and  lies in V(ri). Therefore,

each non-zero term in (3) belongs to one of the spaces V(r1), ..., V(rk). It follows that V is the
orthogonal direct sum of V(rl), ...,V(rk).

Corollary: Under the assumptions of the theorem, let Pj be the orthogonal projection of V on
V(rj) (1  j  k). Then PiPj = 0 when i  j,

I = P1 + ... + Pk,

and every T in  may be written in the form

T = ( ) .j j
i

r T P … (4)

Definition: The family of orthogonal projections {P1, ..., Pk} is called the resolution of the identity
determined by , and (4) is the spectral resolution of T in terms of this family.

Although the projections P1, ..., Pk, in the preceding corollary are canonically associated with the
family , they are generally not in  nor even linear combinations of operators in ; however,
we shall show that they may be obtained by forming certain products of polynomials in elements
of .

In the study of any family of linear operators on an inner product space, it is usually profitable
to consider the self-adjoint algebra generated by the family.

Definition: A self-adjoint algebra of operators on an inner product space V is a linear
sub-algebra of L(V, V) which contains the adjoint of each of its members.
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self-adjoint algebras is again a self-adjoint algebra, the following terminology is meaningful.

Definition: If  is a family of linear operators on a finite-dimensional inner product space, the
self-adjoint algebra generated by  is the smallest self-adjoint algebra which contains .

Theorem 8: Let  be a commuting family of diagonalizable normal operators on a finite-
dimensional inner product space V, and let  be the self-adjoint algebra generated by  and the
identity operator. Let {P1,..., Pk} be the resolution of the identity defined by . Then  is the set
of all operators on V of the form

T = 
1

k

j j
j

c P … (15)

where c1, ..., ck are arbitrary scalars.

Proof: Let  denote the set of all operators on V of the form (15). Then  contains the identity
operator and the adjoint

T* = j j
j

c P

of each of its members. If T = j j
j

c P  and U = ,j j
j

d P then for every scalar a

aT + U = ( )j j
j

ac d P

and

TU =  
,

i j i j
i j

c d P P

= i j j
j

c d P

= UT.

Thus  is a self-adjoint commutative algebra containing  and the identity operator. Therefore
 contains .

Now let r1, ..., rk be all the roots of . Then for each pair of indices (i, n) with i  n, there is an
operator Tin in  such that ri(Tin)  rn(Tin). Let ain = ri(Tin) – rn(Tin) and bin = rn(Tin). Then the linear
operator

Qi =  1II in
n i

a  (Tin – binI)

is an element of the algebra . We will show that Qi = Pi (1  i  k). For this, suppose j  i and that
 is an arbitrary vector in V(rj). Then

Tij = rj(Tij)

= bij

so that (Tij – bijI)  = 0. Since the factors in Qi all commute, it follows that Q1  = 0. Hence Qi agrees
with Pi on V(rj) whenever j  i. Now suppose  is a vector in V(ri). Then Tin  = ri(Tin) j and

ain
–1(Tin – binI)  = ain

–1[ri(Tin) – rn(Tin)]  = .

Thus Qi  =  and Qi agrees with Pi on V(ri); therefore, Qi = Pi for -i = 1, ... , k. From this it follows
that  = .
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diagonalizable normal operator. We show next that  has a single generator.

Corollary: Under the assumptions of the theorem, there is an operator T in  such that every
member of  is a polynomial in T.

Proof: Let T = 
1

k

j j
j

t P  where t1, . . . , tk are distinct scalars. Then

Tn = 
1

k
n
j j

j

t P

for n = 1, 2, . . . If

f = 
8

1

n
n

n

a x

it follows that

f(T) = 
8 8

1 1 1

k
n n

n n j j
n n j

a T a t P

= 
8

1 1

k
n

n j j
j n

a t P

= 
1

( )
k

j j
j

f t P

Given an arbitrary

U = 
1

k

j j
j

c P

in , there is a polynomial f such that f(tj) = cj (1  j  k), and for any such f, U = f(T).

29.2 Properties of Normal Operators

In unit 26 we developed the basic properties of self-adjoint and normal operators, using the
simplest and most direct methods possible. In last section we considered various aspects of
spectral theory. Here we prove some results of a more technical nature which are mainly about
normal operators on real spaces.

We shall begin by proving a sharper version of the primary decomposition theorem of unit 18
for normal operators. It applies to both the real and complex cases.

Theorem 9: Let T be a normal operator on a finite-dimensional inner product space V. Let p be the
minimal polynomial for T and p1, . . ., pk its distinct monic prime factors. Then each pj occurs with
multiplicity 1 in the factorization of p and has degree 1 or 2. Suppose Wj is the null space of pj(T).
Then

(i) Wj is orthogonal to Wi when i  j;

(ii) V = W1  . . .   Wk;

(iii) Wj is invariant under T, and pj is the minimal polynomial for the restriction of T to Wj;
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orthogonal projection of V on Wj.

In the proof we use certain basic facts which we state as lemmas.

Lemma 1: Let N be a normal operator on an inner product space W. Then the null space of N is the
orthogonal complement of its range.

Proof: Suppose ( |N ) = 0 for all  in W. Then (N* | ) = 0 for all ; hence N*  = 0. By Theorem
10 of unit 26, this implies N  = 0. Conversely, if N  = 0, then N*  = 0, and

(N* | ) = ( |N ) = 0

for all  in W.

Lemma 2: If N is a normal operator and  is a vector such that N2  = 0, then N  = 0.

Proof: Suppose N is normal and that N2  = 0. Then N  lies in the range of N and also lies in the
null space of N. By Lemma 1, this implies N  = 0.

Lemma 3: Let T be a normal operator and f any polynomial with coefficients in the  scalar field.
Then f(T) is also normal.

Proof: Suppose f = a0 + a1x + . . . + anxn. Then

f(T) = a0I + a1T + . . . + anTn

and f(T)* = 0 1 * ( *) .n
na I a T a T

Since T*T = TT*, it follows that f(T) commutes with f(T)*.

Lemma 4: Let T be a normal operator and f, g relatively prime polynomials with coefficients in
the scalar field. Suppose  and  are vectors such that f(T)  = 0 and g(T)  = 0. Then ( | ) = 0.

Proof: There are polynomials a and b with coefficients in the scalar field such that af + bg = 1. Thus

a(T) f(T) + b(T) g(T) = I

and  = g(T) b(T) . It follows that

( | ) = (g(T) b(T) | ) = (b(T) |g(T)* )

By assumption g(T)  = 0. By Lemma 3, g(T) is normal. Therefore, by Theorem 10 of unit 26,
g(T)*  = 0; hence ( | ) = 0.

Proof of Theorem 9: Recall that the minimal polynomial for T is the monic polynomial of least
degree among all polynomials f such that f(T) = 0. The existence of such polynomials follows
from the assumption that V is finite-dimensional. Suppose some prime factor pj of p is repeated.
Then p = p2

j g for some polynomial g. Since p(T) = 0, it follows that

(pj(T))2 g(T) = 0

for every  in V. By Lemma 3, pj(T) is normal. Thus Lemma 2 implies

pj(T)g(T) = 0

for every  in V. But this contradicts the assumption that p has least degree among all f such that
f(T) = 0. Therefore, p = p1 . . . pk. If V is a complex inner product space each pj is necessarily of the
form

pj = x – cj

with cj real or complex. On the other hand, if V is a real inner product space, then pj = xj – cj with
cj in R or
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where c is a non-real complex number.

Now let fj = p/pj. Then, since f1, . . ., fk are relatively prime, there exist polynomials gj with
coefficients in the scalar field such that

1 = .j j
j

f g … (6)

We briefly indicate how such gj may be constructed. If pj = x – cj, then fj(cj)  0, and for gj we take
the scalar polynomial 1/fj(cj). When every pj is of this form, the fj gj are the familiar Lagrange
polynomials associated with c1, . . ., ck, and (6) is clearly valid. Suppose some pj = (x – c)(x – c )
with c a non-real complex number. Then V is a real inner product space, and we take

gj = x c x c
s s

where s = (c – c ) fj(c). Then

gj = ( ) ( )s s x cs cs
ss

so that gj is a polynomial with real coefficients. If p has degree n, then

1 – j j
j

f g

is a polynomial with real coefficients of degree at almost n – 1; moreover, it vanishes at each of
the n (complex) roots of p, and hence is identically 0.

Now let  be an arbitrary vector in V. Then by (16)

= ( ) ( )j j
j

f T g T

and since pj(T) fj(T) = 0, it follows that fj(T) gj(T)  is in Wj for every j. By Lemma 4, Wj is orthogonal
to Wj whenever i j. Therefore, V is the orthogonal direct sum of W1, . . ., Wk. If  is any vector in
Wj, then

pj(T) T = Tpj (T)  = 0;

thus Wj is invariant under T. Let Tj be the restriction of T to Wj. Then pj(Tj) = 0, so that pj is divisible
by the minimal polynomial for Tj. Since pj is irreducible over the scalar field, it follows that pj is
the minimal polynomial for Tj.

Next, let ej = fj gj and Ej = ej(T). Then for every vector  in V, Ej  is in Wj, and

= j
j

E

Thus  – Ej  = j
j i

E  since Wj is orthogonal to Wj when j  i, this implies that  – Ej  is in Wi . It

now follows from Theorem 4 of unit 24 that Ei is the orthogonal projection of V on Wi.

Definition: We call the subspaces Wj (1  j  k) the primary components of V under T.

Corollary: Let T be a normal operator on a finite-dimensional inner product space V and W1,
…, Wk the primary components of V under T. Suppose W is a subspace of V which is invariant
under T.
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W = j
j

W W

Proof: Clearly W contains j
j

W W . On the other hand, Wj being invariant under Tj is invariant

under every polynomial in T. In particular, W is invariant under the orthogonal projection Ej of

V on Wj. If  is in Wj it follows that Ej  is in jW W , and, at the same time,  = j
j

E .

Therefore, W is contained in j
j

W W .

Theorem 9 shows that every normal operator T on a finite-dimensional inner product space is
canonically specified by a finite number of normal operators Tj, defined on the primary
components Wj of V under T, each of whose minimal polynomials is irreducible over the field of
scalars. To complete our understanding of normal operators it is necessary to study normal
operators of this special type.

A normal operator whose minimal polynomial is of degree 1 is clearly just a scalar multiple of
the identity. On the other hand, when the minimal polynomial is irreducible and of degree 2 the
situation is more complicated.

Example 1: Suppose r > 0 and that  is a real number which is not an integral multiple
of . Let T be the linear operator on R2 whose matrix in the standard orthonormal basis is

A = cos sin
sin cosr

Then T is a scalar multiple of an orthogonal transformation and hence normal. Let p be the
characteristic polynomial of T. Then

p = det (xI – A)

= (x – r cos )2 + r2 sin2 

= x – 2r cos x + r2.

Let a = r cos , b = r sin , and c = a + ib. Then b  0, c = re 
i

A = a b
b a

and p = (x – c)(x – c ). Hence p is irreducible over R. Since p is divisible by the minimal polynomial
for T, it follows that p is the minimal polynomial.

This example suggests the following converse.

Theorem 10: Let T be a normal operator on a finite-dimensional real inner product space V and p
its minimal polynomial. Suppose

p = (x – a)2 + b2

where a and b are real and b  0. Then there is an integer s > 0 such that p8 is the characteristic
polynomial for T, and there exist subspaces V1, …, Vs of V such that

(i) Vj is orthogonal to Vi when i  j;

(ii) V = V1  …  Vs;
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T j = a j + b j

T j = – b j + a j.

In other words, if r = 2 2a b  and  is chosen so that a = r cos  and b = r sin , then V is an
orthogonal direct sum of two-dimensional subspaces Vj on each of which T acts as ‘r times
rotation through the angle .

The proof of Theorem 10 will be based on the following result.

Lemma: Let V be a real inner product space and S a normal operator on V such that S2 + I = 0. Let
 be any vector in V and  = S . Then

*
*

S
S … (1)

( | ) = 0, and    =   .

Proof: We have S  =  and S  = S2  = – . Therefore 0 =  S  –  2 +  S  +  2 =  S  2 – 2(S | )
+   2 +  S  2 + 2(S | ) + 2.

Since S is normal, it follows that

0 =  S*  2 – 2(S* | ) +   2 +  S*  2 + 2(S* | ) +   2 =  S*  +  2 +  S*  –  2.

This implies (1); hence

( | ) = (S* | ) = ( |S )

= ( | – )

= – ( | )

and ( | ) = 0. Similarly

  2 = (S* | ) = ( |S ) =   2.

Proof of Theorem 10: Let V1, …, Vs be a maximal collection of two-dimensional subspaces
satisfying (i) and (ii), and the additional conditions.

T* j = a j – b j,

1  j  s. … (2)

T* j = b j – a j

Let W  = V1 + … + Vs. Then W is the orthogonal direct sum of V1, …, Vs. We shall show that
W = V. Suppose that this is not the case. Then W   {0}. Moreover, since (iii) and (2) imply that W
is invariant under T and T*, it follows that W  is invariant under T* and T = T**. Let S = b–1(T – aI).
Then S* = b–1(T* – aI), S*S = SS*, and W  is invariant under S and S*. Since (T – aI)2 + b2I = 0, it
follows that S2 + I = 0. Let  be any vector of norm 1 in W  and set  = S . Then  is in W  and
S  = – . Since T = aI + bS, this implies

T = a  + b

T = – b  + a .

By the lemma, S*  = – , S*  = , ( | ) = 0, and    = 1. Because T* = aI + bS*, it follows that

T* = a  – b

T* = b  + a .
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and (2). Therefore, W = V, and since

det x a b
b x a = (x – a)2 + b2

it follows from (i), (ii) and (iii) that

det (xI – T) = [(x – a)2 + b2]s.

Corollary: Under the conditions of the theorem, T is invertible, and

T* = (a2 + b2) T–1.

Proof: Since

a b a b
b a b a = 

2 2

2 2
0

0
a b

a b

it follows from (iii) and (2) that TT* = (a2 + b2)I. Hence T is invertible and T* = (a2 + b2)T–1.

Theorem 11: Let T be a normal operator on a finite-dimensional inner product space V. Then any
linear operator that commutes with T also commutes with T*. Moreover, every subspace invariant
under T is also invariant under T*.

Proof: Suppose U is a linear operator on V that commutes with T. Let E, be the orthogonal
projection of V on the primary component Wj (1  j  k) of V under T. Then Ej is a polynomial in
T and hence commutes with U. Thus

EjUEj = UEj
2 = UEj.

Thus U(Wj) is a subset of Wj. Let Tj and Uj denote the restrictions of T and U to Wj. Suppose Ij is the
identity operator on Wj. Then Uj commutes with Tj, and if Tj = cjIj, it is clear that Uj also commutes

with *
jT  = j jc I . On the other hand, if Tj is not a scalar multiple of Ij, then Tj is invertible and there

exist real numbers aj and bj such that

*
jT = 2 2 1

j j ja b T .

Since UjTj = TjUj, it follows that 1 1
j j j jT U U T . Therefore Uj commutes with *jT  in both cases.

Now T* also commutes with Ej, and hence Wj is invariant under T*. Moreover for every  and 
in Wj

(Tj | ) = (T | ) = ( |T* ) = ( | *jT ).

Since T*(Wj) is contained in Wj, this implies *jT  is the restriction of T* to Wj. Thus

UT* j = T*U j

for every j in Wj. Since V is the sum of W1, …, Wk, it follows that

UT* = T*U

for every  in V and hence that U commutes with T*.

Now suppose W is a subspace of V that is invariant under T, and let Zj = W  Wj. By the corollary

to Theorem 9, W = j
j

Z . Thus it suffices to show that each Zj is invariant under *lT . This is clear
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1( ) ,j j jT Z Z  and since

*jT = 2 2 1
j j ja b T

it follows that T*(Zj) is contained in Zj, for every j.

Suppose T is a normal operator on a finite-dimensional inner product space V. Let W be a
subspace invariant under T. Then the preceding corollary shows that W is invariant under T*.
From this it follows that W  is invariant under T** = T (and hence under T* as well). Using this
fact one can easily prove the following strengthened version of the cyclic decomposition theorem.

Theorem 12: Let T be a normal linear operator on a finite-dimensional inner product space V
(dim V  1). Then there exist r non-zero vectors 1, …, r in V with respective T-annihilators e1,
…, er such that

(i) V = Z ( 1; T)  …  Z( r; T);

(ii) if 1  k  r – 1, then ek+1 divides ek;

(iii) Z( j; T) is orthogonal to Z( k; T) when j k. Furthermore, the integer r and the annihilators
e1, …, er are uniquely determined by conditions (i) and (ii) and the fact that no k is 0.

Corollary: If A is a normal matrix with real (complex) entries, then there is a real orthogonal
(unitary) matrix P such that P–1AP is in rational canonical form.

It follows that two normal matrices A and B are unitarily equivalent if and only if they have the
same rational form; A and B are orthogonally equivalent if they have real entries and the same
rational form.

On the other hand, there is a simpler criterion for the unitary equivalence of normal matrices
and normal operators.

Definition: Let V and V  be inner product spaces over the same field. A linear transformation

U : V  V

is called a unitary transformation if it maps V onto V  and preserves inner products. If T is a
linear operator on V and T  a linear operator on V , then T is unitarily equivalent to T  if there
exists a unitary transformation U of V onto V  such that

UTU–1 = T .

Lemma: Let V and V  be finite-dimensional inner product spaces over the same field. Suppose T
is a linear operator on V and that T  is a linear operator on V . Then T is unitarily equivalent to
T  if and only  if there is an orthonormal basis  of V and an orthonormal basis   of V  such that

[T] = [T ] .

Proof: Suppose there is a unitary transformation U of V onto V  such that UTU–1 = T . Let  =
{ 1, …, n} be any (ordered) orthonormal basis for V. Let j = U j (1  j  n). Then   = { 1, …, n}
is an orthonormal basis for V  and setting

T j = 
1

n

kj k
k

A

we see that

T j = UT j
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= kj k

k

A U

= kj k
k

A

Hence [T]
B
 = A = [T ]

B
.

Conversely, suppose there is an orthonormal basis  of V and an orthonormal basis   of V  such
that

[T] = {T }
and let A = [T]. Suppose  = { 1, …, n} and that   = { 1, …, n}. Let U be the linear transformation
of V into V  such that U j = j (1  j  n). Then U is a unitary transformation of V onto V , and

UTU–1
j = UT j

= kj k
k

U A

= kj k
k

A .

Therefore, UTU–1
j = T j (1  j  n), and this implies UTU–1 = T .

It follows immediately from the lemma that unitarily equivalent operators on finite-dimensional
spaces have the same characteristic polynomial. For normal operators the converse is valid.

Theorem 13: Let V and V  be finite-dimensional inner product spaces over the same field. Suppose
T is a normal operator on V and that T  is a normal operator on V . Then T is unitarily equivalent
to T  if and only if T and T  have the same characteristic polynomial.

Proof: Suppose T and T  have the same characteristic polynomial f. Let Wj (1  j  k) be the
primary components of V under T and Tj the restriction of T to Wj. Suppose Ij is the identity
operator on Wj. Then

f = 31
det ( )

k

jj
xI T

Let pj be the minimal polynomial for Tj. If pj = x – cj it is clear that

det (xIj – Tj) = ( )s j
jx c

where sj is the dimension of Wj. On the other hand, if pj = (x – aj)2 + 2
jb  with aj, bj real and bj  0, then

it follows from Theorem 10 that

det (xIj – Tj) = 
s j
jp

where in this case 2sj is the dimension of Wj. Therefore f = .s j
jj

p  Now we can also compute f by

the same method using the primary components of V  under t . Since p1, …, pk are distinct primes,
if follows from the uniqueness of the prime factorization of f that there are exactly k primary
components W j (1  j  k) of V  under T  and that these may be indexed in such a way that pj is the
minimal polynomial for the restriction T j of T  to W j. If pj = x – cj, then Tj = cjIj and T j = cjI j where
I j is the identity operator on W j. In this case it is evident that Tj is unitarily equivalent to T j. If
pj = (x – aj)2 + b2

j as above, then using the lemma and theorem 12, we again see that Tj is unitarily
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Notesequivalent to T j. Thus for each j there are orthonormal bases Bj and B j of Wj and W j, respectively
such that

[ ] [ ] .j B j Bj j
T T

Now let U be the linear transformation of V into V  that maps each Bj onto B j. Then U is a unitary
transformation of V onto V  such that UTU–1 = T .

Self Assessment

1. If U and T are normal operators which commute, prove that U + T and UT are normal.

2. Let A be an n × n matrix with complex entries such that A* = –A and let B = eA. Show that

(a) det B = etr A;

(b) B* = e–A;

(c) B is unitary.

3. For

A = 
1 2 3
2 3 4
3 4 5

there is a real orthogonal matrix p such that P–1AP = D is diagonal. Find such a diagonal
matrix D.

29.3 Summary

 The properties of unitary operators, normal operators or self-adjoint operators are studied
further. This study is an improvement of the results of unit 26.

 It is seen that a diagonalizable normal operator T on a finite dimensional inner product
space is either a self-adjoint, non-negative or unitary according as each characteristic
value of T is real, non-negative or of absolute value 1.

 If A is a normal matrix with real (complex) entries, then there is a real orthogonal (unitary)
matrix P such that P–1AP is in rational canonical form.

29.4 Keywords

A Unitary Transformation: Let V and V’ be inner product spaces over the same field. A linear
transformation U: V  V’ is called a unitary transformation if it preserves inner product.

Polar Decomposition: We call T = UN a polar decomposition for T on a finite dimensional inner
product space where U is a unitary operator and a unique non-negative linear operator on V.

The Non-negative: The non-negative operator T on an inner product space is self-adjoint and
(T | )  0 for every   in V.

The Spectral Resolution: The decomposition of the linear operator T as the sum of orthogonal
projections, i.e.

1

k

i i
i

T C E .
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Notes 29.5 Review Questions

1. If T is a normal operator, prove that characteristic vectors for T which are associated with
distinct characteristic values are orthogonal.

2. Let T be a linear operator on the finite dimensional complex inner product space V. Prove
that the following statements about T are equivalent.

(a) T is normal

(b)  T  =  T*  for every  in V

(c) If  is a vector and c a scalar such that T  = c , then T*  = c .

(d) There is an orthonormal basis  such that [T]  is diagonal.

Answer: Self Assessment

3. D = 
9 57

2
9 57

2

1 0 0

0 0

0 0

29.6 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

Michael Artin, Algebra
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Objectives

After studying this unit, you will be able to:

 Understand that the bilinear forms and inner products discussed in earlier units have a
strong relation.

 See the isomorphism between the space of bilinear forms and the space of n  n matrices
is established.

 Know that the linear transformations from V into V* defined by (Lf ) ( ) = f( , ) = (Rf )
( ) (where f is a bilinear form) are such that rank (Lf) = rank (Rf).

Introduction

In this unit we are interested in studying a bilinear form f on a finite vector space of dimension n.

With the help of a number of examples it is shown how to get various forms of bilinear forms
including linear functionals, bilinear forms involving n  1 matrices.

It is also established that the rank of a bilinear form is equal to the rank of the matrix of the form
in any ordered basis.

30.1 Bilinear Forms

In this unit we treat bilinear forms on finite dimensional vector spaces. There are a few similarities
between the bilinear forms and the inner product spaces. Let V be a real inner product space and
suppose that A is a real symmetric linear transformation on V. The real valued function f(v)
defined on V by f(v) = (v, A, v) can also be called the quadratic form i.e. bilinear form associated
with A. If we assume A to be a real, n  n symmetric matrix (aij) acting on F(n) and for an arbitrary
vector v = (x1, x2 ..., xn) in F(n), then

f(v) = (v, A, v) = a11x1
2 + a22x2

2 + ... + annxn
2 + 2 ij j j

iLj
a x x

In real n-dimensional Euclidean space such quadratic functions serve to define the quadratic
surfaces.
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A Bilinear Form:  Let V be a vector space over the field F, a bilinear form is a function f, which
assigns to each ordered pair of vectors ,  in V a scalar f( , ) in F, and which satisfies

1 2 1 2

1 1 2 1 1 2 2

( , ) ( , ) ( , )
( , ) ( , ) ( , )

f c cf f
f c cf f ...(1)

Thus a bilinear form on V is a function f from V  V into F which is linear as a function of either
of its arguments when the other is fixed. The zero function from V  V into F is clearly a bilinear
form. Also any linear combination of bilinear forms on V is again a bilinear form is f and g are
bilinear on V, so is cf + g where c is a scalar in F. So we may conclude that the set of all bilinear
forms on V is a subspace of the space of all functions from V  V  into F. Let us denote the space
of bilinear forms on V by L(V, V, F).

Example 1: Let m, n be positive integers and F a field. Let V be the vector space of all
m  n matrices over F. Let A be a fixed m  m matrix over F. Define

fA (X, Y) = tr (X*AY)

then fA is a bilinear form on V. For, if x, y, z are m  n matrices over F,

fA (CX, Z, Y) = tr [(CX + Z)+ AY]

= tr [cXtAY] + tr [ZtAY]

= cfA(X, Y) + fA(Z, Y)

If we take n = 1, we have

fA(X, Y) = XtAY + ij i j
i j

A x y

So every bilinear form fA for some A is of this form on a space of m × 1.

Example 2: Let F be a field. Let us find all bilinear forms on the space F2. Suppose f is such
a bilinear form. If  = (x1, x2) and  = (y1, y2) are vectors in F2, then

f( , ) = f(x1 1 + x2 2, )

= x1f( 1, ) + x2f( 2, )

= x1f( 1, y1 1 + y2 2) + x2f( 2, y1 1 + y2 2)

= x1y1f( 1, 1) + x1y2f( 1, 2) + x2y1f( 2, 1) + x2y2f( 2, 2).

Thus f is completely determined by the four scalars Aij = f( i, j) by

f( , ) = A11x1y1 + A12x1y2 + A21x2y1
 + A22x2y2

= 
,

ij i j
i j

A x y

If X and Y are the coordinate matrices of  and , and if A is the 2  2 matrix with entries A(i, j) =
Aij = f( i, j), then

f( , ) = XtAY. … (2)

We observed in Example 1 that if A is any 2 × 2 matrix over F, then (2) defines a bilinear form on
F2. We see that the bilinear forms on F2 are precisely those obtained from a 2 × 2 matrix as in (2).
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dimensional vector space. Let V be a finite-dimensional vector space over the field F and let

 = { 1, ..., n} be an ordered basis for V. Suppose f is a bilinear form on V. If

 = x1 1 + ... + xn n and  = y1 1 + ... + yn n

are vectors in V, then

f( , ) = ,i i
i

f x

= ( , )i i
i

x f

= ,i i j j
i j

x f y a

= ( , )i i i j
i i

x y f

If we let Aij = f( i, j), then

f( , ) =  ij i i
i i

A x y

= XtAY

where X and Y are the coordinate matrices of  and  in the ordered basis . Thus every bilinear
form on V is of the type

f( , ) = [ ]t A[ ] … (3)

for some n  n matrix A over F. Conversely, if we are given any n  n matrix A, it is easy to see
that (3) defines a bilinear form f on V, such that Aij = f( i, j).

Definition: Let V be a finite-dimensional vector space, and let  = { 1, ..., n} be an ordered basis
for V. If f is a bilinear form on V, the matrix of f in the ordered basis  is the n  n matrix A with
entries Aij = f( i, j). At times, we shall denote this matrix by [f] .

Theorem 1: Let V be a finite-dimensional vector space over the field F. For each ordered basis 
of V, the function which associates with each bilinear form on V its matrix in the ordered basis

 is an isomorphism of the space L(V, V, F) onto the space of n  n matrices over the field F.

Proof: We observed above that f  [f]  is a one-one correspondence between the set of bilinear
forms on V and the set of all n  n matrices over F. That this is linear transformation is easy to
see, because

(cf + g) ( i, j) = cf( i, j) + g( i, j)

for each i and j. This simply says that

[cf + g] = c[f]  + [g] .

Corollary: If  = { 1, ..., n} is an ordered basis of V, and * = {L1, ... Ln} is the dual basis for V*, then
the n2 bilinear forms

fij( , ) = Li( ) Lj( ), 1  i  n, 1  j  n

form a basis for the space L(V, V, F). In particular, the dimension of L(V, V, F) is n2.

Proof: The dual basis {L1, ... Ln} is essentially defined by the fact that Li( ) is the ith coordinate of
 in the ordered basis  (for any  in V).
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fij( , ) = Li( )Lj( )

are bilinear forms. If

 = x1 1 + ... + xn n and  = y1 1 + ... + yn n

then

fij( , ) = xiyj

Let f be any bilinear form on V and let A be the matrix of f in the ordered basis . Then

f( , ) = 
,

ij i j
i j

A x y

which simply says that

f = 
,

ij ij
i j

A f

It is now clear that the n2 forms fij comprise a basis for L(V, V, F).

One can rephrase the proof of the corollary as follows. The bilinear from fij has as its matrix in the
ordered basis  the matrix ‘unit’ Ei,j, whose only non-zero entry is a 1 in now i and column j. Since
these matrix units comprise a basis for the space of n  n matrices, the forms fij comprise a basis
for the space of bilinear forms.

The concept of the matrix of a bilinear form in an ordered basis is similar to that of the matrix of
a linear operator in an ordered basis. Just as for linear operators, we shall be interested in what
happens to the matrix representing a bilinear form, as we change from one ordered basis to
another. So, suppose  = { 1, ... n} and  = { 1, ..., n} are two ordered bases for V and that f is
a bilinear form on V. How are the matrices [f]  and [f] , related? Well, let P be the (invertible)
n  n matrix such that

[ ] = P[ ]

for all  in V. In other words, define P by

j = 
1

n

ij i
i

P

For any vectors ,  in V

f( , ) = [ ]t [ f ] [ ]

= (P[ ] )t [ f ] P[ ]

= [ ]t (Pt[ f ] P)[ ] .

By the definition and uniqueness of the matrix representing f in the ordered basis , we must
have

[f] = Pt[f] P. ...(4)

Example 3:  Let V be the vector space R2. Let f be the bilinear form defined on  = (x1, x2)
and  = (y1, y2) by

f( , ) = x1y1 + x1y2 + x2y1 + x2y2
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f( , ) = [x1, x2] 
1

2

1 1
1 1

y
y

and so the matrix of f in the standard ordered basis  = { 1, 2} is

[f] = 
1 1
1 1

Let  = { 1, 2} be the ordered basis defined by 1 = (1, –1), 2 = (1, 1). In this case, the matrix P
which changes coordinates from  to  is

P = 
1 1
1 1

Thus

[f] = Pt[f] P

= 
1 1 1 1 1 1
1 1 1 1 1 1

= 
1 1 0 2
1 1 0 2

= 
0 0
0 4

What this means is that if we express the vectors  and  by means of their coordinates in the
basis , say

= x 1 1 + x 2 2,  = y 1 1 + x 2 2

then

f( , ) = 4x2y 2

One consequence of the change of basis formula (4) is the following: If A and B are n × n matrices
which represent the same bilinear form on V in (possibly) different ordered bases, then A and B
have the same rank. For, if P is an invertible n  n matrix and B = PtAP, it is evident that A and B
have the same rank. This makes it possible to define the rank of a bilinear form on V as the rank
of any matrix which represents the form in an ordered basis for V.

It is desirable to give a more intrinsic definition of the rank of a bilinear form. This can be done
as follows: Suppose F is a bilinear form on the vector space V. If we fix a vector  in V, then
f( , ) is linear as a function of . In this way, each fixed  determines a linear functional on V;
let us denote this linear functional by Lf( ). To repeat, if  is a vector in V, then Lf( ) is the linear
functional on V whose value on any vector  is f( , ). This gives us a transformation   Lf( )
form V into the dual space V*. Since

f(c 1, + 2, ) = cf( 1, ) + f( 2, )

we see that

Lf(c 1, + 2) = cLf( 1) + Lf( 2)

that is Lf is a linear transformation from V into V*.
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V, f( , ) is linear as a function of . We define Rf( ) to be the linear functional on V whose value
on the vector  is f( , ).

Theorem 2: Let f be a bilinear form on the finite-dimensional vector space V. Let Lf and Rf be a
linear transformation from V into V* defined by (Lf )( ) = f( , ) = (Rf )( ). Then rank (Lf) = rank
(Rf).

Proof: One can give a ‘coordinate free’ proof of this theorem. Such a proof is similar to the proof
that the row-rank of a matrix is equal to its column-rank. Some here we shall give a proof which
proceeds by choosing a coordinate system (basis) and then using the ‘row-rank equals column-
rank’ theorem.

To prove rank (Lf) = rank (Rf), it will suffice to prove that Lf and Rf have the same nullity. Let  be
an ordered basis for V, and let A = [f] . If  and  are vectors in V, with coordinate matrices X and
Y in the ordered basis , then f( , ) = XtAY. Now Rf( ) = 0 means that f( , ) = 0 for every  in
V, i.e., that XtAY = 0 for every n 1 matrix X. The latter condition simply says that AY =  0. The
nullity of Rf is therefore equal to the dimension of the space of solutions of AY = 0.

Similarly, Lf( ) = 0 if and only if XtAY = 0 for every n  1 matrix Y. Thus  is in the null space of
Lf if and only if XtA = 0, i.e. AtX = 0. The nullity of Lf is therefore equal to the dimension of the
space of solutions of AtX = 0. Since the matrices A and At have the same column-rank, we see that

nullity (Lf) = nullity (Rf).

Definition: If f is a bilinear form on the finite-dimensional space V, the rank of f is the integer
r = rank (Lf) = rank (Rt).

Corollary 1: The rank of a bilinear form is equal to the rank of matrix of the form in any ordered
basis.

Corollary 2: If f is a bilinear form on the n-dimensional vector space V, the following are
equivalent:

(a) rank (f) = n

(b) For each non-zero  in V, there is  in V such that f( , )  0.

(c) For each non-zero  in V, there is an  in V such that f( , )  0.

Proof: Statement (b) simply says that the null space of Lf is the zero subspace. Statement (c) says
that the null space of Rf is the zero subspace. The linear transformations Lf and Rf have nullity 0
if and only if they have rank n, i.e., if and only if rank (f) = n.

Definition: A bilinear form f on a vector space V is called non-degenerate (or non-singular) if it
satisfies conditions (b) and (c) of Corollary 2.

If V is finite-dimensional, then f is non-degenerate provided f satisfies any one of the three
conditions of Corollary 2. In particular, f is non-degenerate (non-singular) if and only if its
matrix in some (every) ordered basis for V is a non-singular matrix.

Example 4: Let V = Rn, and let f be the bilinear form defined on  = (x1, ..., xn) and  =
(y1 ..., yn) by

f( , ) = x1y1 + ... + xnyn.

Then f is a non-degenerate bilinear form on Rn. The matrix of f in the standard basis is the n  n
identity matrix.

f(x, y) = XtY.



LOVELY PROFESSIONAL UNIVERSITY 331

Unit 30: Bilinear Forms and Symmetric Bilinear Forms

NotesSelf Assessment

1. Which of the following functions f, defined on vectors  = (x1, x2) and (y1, y2) in R2, are
bilinear forms?

(a) f( , ) = (x1 – yI)2 + x2y2

(b) f( , ) = (x1 + yI)2 + (x1 – y1)2

(c) f( , ) = x1y2 – x2y1

2. Let f be any bilinear form on a finite-dimensional space V. Let W be the subspace of all 
such that f( , ) = 0 for every . Show that

rank f = dim V – dim W.

30.2 Symmetric Bilinear Forms

In dealing with a bilinear form sometimes it is asked when is there an ordered basis  for V in
which f is represented by a diagonal matrix. It will be seen in this part of the unit that if f is a
symmetric bilinear form, i.e., f( , ) = f( , ) then f will be represented by a diagonal matrix in
an ordered basis of the space V.

If V is a finite-dimensional, the bilinear form f is symmetric if and only if the matrix A in some
ordered basis is symmetric, At = A.

To see this, one enquires when the bilinear form

f(X, Y) = XtAY

is symmetric.

This happens if and only if XtAY = YtAX for all column matrices X and Y. Since XtAY is a 1  1
matrix, we have XtAY = YtAtX. Thus f is symmetric if and only if YtAtX = YtAX for all X, Y. Clearly
this just means that A = At. In particular, one should note that if there is an ordered basis for V in
which f is represented by a diagonal matrix, then f is symmetric, for any diagonal matrix is a
symmetric matrix.

If f is a symmetric bilinear form, the quadratic form associated with f is the function q from V into
F defined by

q( ) = f( , )

If F is a subfield of the complex numbers, the symmetric bilinear form f is completely determined
by its associated quadratic form, according to the polarization identity

f( , ) = 1
4 q(  + ) – 1

4 q(  – ) ...(5)

If f is the bilinear form of Example 4, the dot product, the associated quadratic form is

1( , ... )nq x x = x2
1 + ... + x2

n

In other words, q( ) is the square of the length of . For the bilinear form fA(X, Y) = XtAY, the
associated quadratic form is

qA(X) = XtAX = 
,

ij i j
i j

A x x



332 LOVELY PROFESSIONAL UNIVERSITY

Linear Algebra

Notes One important class of symmetric bilinear forms consists of the inner products on real vector
spaces discussed earlier. If V is a real vector space, an inner product on V is a symmetric bilinear
form f on V which satisfies

f( , ) > 0 if   0. ...(6)

A bilinear form satisfying (6) is called positive definite. Thus, an inner product on a real vector
space is a positive definite, symmetric bilinear form on that space. Note that an inner product is
non-degenerate. Two vectors ,  are called orthogonal with respect to the inner product f if
f( , ) = 0 . The quadratic form q( ) = f( , ) takes only non-negative values, and q( ) is usually
thought of as the square of the length of . Of course, these concepts of length and orthogonality
stem from the most important example of an inner product – the dot product.

If f is any symmetric bilinear form on a vector space V, it is convenient to apply some of the
terminology of inner products to f. It is especially convenient to say that  and  are orthogonal
with respect to f if f( , ) = 0. It is not advisable to think of f( , ) as the square of the length of ;
for example if V is a complex vector space, we may have f( , ) = 1  or on a real vector space,
f( , ) = –2.

Theorem 3: Let V be n finite-dimensional vector space over a field of characteristic zero, i.e. if n
is a positive integer the sum 1 + 1 + ... + 1 (n times) in F is not zero, and let f be a symmetric
bilinear form on V. Then there is an ordered basis for V in which f is represented by a diagonal
matrix.

Proof: What we must find is an ordered basis

= { 1, ..., n}

such that f( i, j) = 0 for i  j. If f = 0 or n = 1, the theorem is obviously true. Thus we may suppose
f  0 and n > 1. If f( , ) = 0 for every  in V, the associated quadratic form q is identically 0, and
the polarization identity (5) shows that f = 0. Thus there is a vector  in V such that f( , ) =
q( )  0. Let W be the one-dimensional subspace of V which is spanned by , and let W  be the set
of all vectors  in V such that f( , ) = 0. Now we claim that V = W  W . Certainly the subspaces
W and W  are independent. A typical vector in W is c , where c is a scalar. If c  is also in W , then
f(c , c ) = c2f( , ) = 0. But f( , )  0, thus c = 0. Also, each vector in V is the sum of a vector in W
and a vector in W . For, Let  be any vector in V, and put

=  –
( , )
( , )

f
f

.

Then

( , ) = f( , ) –
( , )
( , )

f
f

f( , )

and since f is symmetric, f( , )  = 0. Thus  is in the subspace W . The expression

= 
( , )
( , )

f
f

  + 

shows us that V = W + W .

The restriction of f to W  is a symmetric bilinear form on W . Since W  has dimension (n – 1), we
may assume by induction that W  has a basis { 2, ..., n} such that

f( i, j) = 0, i  j (i,  2, j  2)

Putting 1 = , we obtain a basis { 1, ..., n} for V such that f( i, j) = 0 for i  j.
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over F. Then there is an invertible n  n matrix P over F such that PtAP is diagonal.

In case F is the field of real numbers, the invertible matrix P in this corollary can be chosen to be
an orthogonal matrix, i.e., Pt = P–1. In other words, if A is a real symmetric n  n matrix, there is
a real orthogonal matrix P such that PtAP is diagonal.

Theorem 4: Let V be a finite-dimensional vector space over the field of complex numbers. Let f be
a symmetric bilinear form on V which has rank r. Then there is an ordered basis  = { 1, ..., n} for
V such that

(i) the matrix of f in the ordered basis  is diagonal

(ii) f( j, j) = 
1, 1, ...,
0, .

j r
j r

Proof: By Theorem 3, there is an ordered basis ( 1, ..., n) for V such that

f( i, j) = 0 for i  j.

Since f has rank r, so does its matrix is the ordered basis { 1, ... , n}. Thus we must have
f( j, j)  0  for precisely r values of j. By reordering the vectors j, we may assume that

f( j, j)  0, j = 1, ..., r.

Now we use the fact that the scalar field is the field of complex numbers. If ,( )j jf  denotes
any complex square root of f( j, j), and if we put

j = ,

1 , 1, ...,
( )

,

j
j j

j

j r
f

j r

the basis { 1, ..., n} satisfies conditions (i) and (ii).

Of course, Theorem 4 is valid if the scalar field is any subfield of the complex numbers in which
each element has a square root. It is not valid, for example, when the scalar field is the field of
real numbers. Over the field of real numbers, we have the following substitute for Theorem 4.

Theorem 5: Let V an n-dimensional vector space over the field of real numbers, and let f be a
symmetric bilinear form on V which has rank r. Then there is an ordered basis { 1, 2, ..., n} for
V in which the matrix of f is diagonal and such that

f( j, j) = 1, j = 1, ... r.

Furthermore, the number of basis vectors j for f( j, j) = 1 is independent of the choice of basis.

Proof: There is a basis { 1, ..., n} for V such that

f( i, j) = 0, i  j

f( j, j)  0, 1  j  r

f( j, j) = 0, j > r.

Let

j = |f( j, j)|–1/2 j, 1  j  r

j = j, j  > r.

Then ( 1, ..., n) is a basis with the stated properties.
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Notes Let p be the number of basis vectors, j for which f( j, j) = 1; we must show that the number p is
independent of the particular basis we have, satisfying the stated conditions. Let V+ be the
subspace of V spanned by the basis vectors j for which f( j, j) = 1, and let V’ be the subspace
spanned by the basis vectors j for which f( j, j) = –1. Now p = dim V+, so it is the uniqueness of
the dimension of V+ which we must demonstrate. It is easy to see that if  is a non-zero vector in
V+ then f( , ) > 0; in other words, f is positive definite on the subspace V+. Similarly, if  is a non-
zero vector in V–, then f( , ) < 0, i.e., f is negative definite on the subspace V–. Now let V  be the
subspace spanned by the basis vectors j for which f( j, j) = 0. If  is in V , then f( , ) = 0 for all

 in V.

Since { 1, ..., n} is a basis for V, we have

V = V+  V– V .

Furthermore, we claim that if W is any subspace of V on which f is positive definite, then the
subspaces W, V–, and V  are independent. For, suppose  is in W,  is in V–,  is in V , and  + 
+  = 0. Then

0 = f( ,  +  + ) = f( , ) + f( , ) + f( , )

0 = f( ,  +  + ) = f( , ) + f( , ) + f( , )

Since  is in V , f( , ) = f( , ) = 0; and since f is symmetric, we obtain

0 = f( , ) + f( , )

0 = f( , ) + f( , )

hence f( , ) = f( , ). Since f( , )  0 and f( , )  0, it follows that

f( , ) = f( , ) = 0

But f is positive definite on W and negative definite on V–. We conclude that  =  = 0, and hence
that  = 0 as well.

Since

V = V+  V–  V

and W, V–, V  are independent, we see that dim W   dim V+. That is, if W is any subspace of V on
which f is positive definite, the dimension of W cannot exceed the dimension of V+. If 1 is
another ordered basis for V which satisfies the conditions of the theorem, we shall have
corresponding subspaces V+

1, V–
1, and V 1 and, the argument above shows that dim V+

1  dim V+.
Reversing the argument, we obtain dim V+  dim V+

1, and consequently

dim V+ = dim V+
1.

There are several comments we should make about the basis ( 1, ..., n} of Theorem 5 and the
associated subspaces V+, V–, and V  First, note that V  is exactly the subspace of vectors which are
'orthogonal' to all of V. We noted above that V  is contained in this subspace; but,

dim V  = dim V – (dim V+ + dim V–) = dim V – rank f

so every vector a such that f( , ) = 0 for all  must be in V . Thus, the subspace V  is unique. The
subspaces V+ and V– are not unique; however, their dimensions are unique. The proof of Theorem
5 shows us that dim V+ is the largest possible dimension of any subspace on which f is positive
definite. Similarly, dim V– is the largest dimension of any subspace on which f is negative
definite.

Of course

dim V+ + dim V– = rank f.
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NotesThe number

dim V+ – dim V–

is often called the signature of f. It is introduced because the dimensions of V+ and V– are easily
determined from the rank of f and the signature of f.

Perhaps we should make one final comment about the relation of symmetric bilinear forms on
real vector spaces to inner products. Suppose V is a finite-dimensional real vector space and that
V1, V2, V3 are subspaces of V such that

V = V1  V2  V3

Suppose that f1 is an inner product on VI, and f2 is an inner product on V2. We can then define a
symmetric bilinear form f on V as follows: If ,  are vectors in V, then we can write

 = l + 2 + 3 and  = 1 + 2 + 3

with j. and j in Vj. Let

f( , ) = fl( 1 + 1) – f2( 2 + 2)

The subspace V  for f will be V3, V1 is a suitable V+ for f, and V2 is a suitable V–. One part of the
statement of Theorem 5 is that every symmetric bilinear form on V arises in this way. The
additional content of the theorem is that an inner product is represented in some ordered basis
by the identity matrix.

Self Assessment

3. Let V be a finite-dimensional vector space over a subfield F of the complex numbers and
let S be the set of all symmetric bilinear forms in V. Show that S is a subspace of L(V, V, F).

4. The following expressions define quadratic forms q on R2. Find the symmetric bilinear
form f corresponding to each q.

(a) ax1
2

(b) x1
2 + 9x2

2

(c) bx1x2

30.3 Summary

 In this unit concept of bilinear form is introduced.

 It is seen that there a strong relation between bilinear forms and inner products.

 The isomorphism between the space of bilinear forms and the space of n × n matrices is
established.

 The rank of a bilinear form is defined and non-degenerate bilinear forms are introduced.

30.4 Keywords

A Bilinear Form: A bilinear form on V is a function f, which assigns to each pair of vectors, , 
in V a scalar f( , ) in F, and satisfies linear relations.

A non-degenerate bilinear form on a vector space V is a bilinear form if for each non-zero  in
V, there is  in V such that f( , )  0 as well as for each non-zero  in V, there is and  in V such
that f( , )  0.
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Notes The polarization Identity helps in determining the symmetric bilinear form by its associated
quadratic form.

30.5 Review Questions

1. Let V be a finite-dimensional vector space over a subfield F of the complex numbers, and
let S be the set of all symmetric bilinear forms on V.

(a) Show that S is a subspace of L(V, V, F)

(b) Find Dim S’

2. Let q be the quadratic form on R2 given by

q(x1, x2) = 2bx1x2

Find an  invertible linear operator V on R2 such that

(V+q) (x1, x2) = 2bx1
2 – 2bx2

2.

Answers: Self Assessment

1. (b) and (c)

4. (a) f( , ) = ax1y1

(b) f( , ) = x1y1 + 9x2y2

(c) f( , ) = 2
b

(x1y2 + y1x2)

Here  = (x1, x2)

 = (y1, y2)

30.6 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

Michael Artin, Algebra
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NotesUnit 31: Skew-symmetric Bilinear Forms

CONTENTS

Objectives

Introduction

31.1 Skew-symmetric Bilinear Forms

31.2 Summary

31.3 Keywords

31.4 Review Questions

31.5 Further Readings

Objectives

After studying this unit, you will be able to:

 See that skew-symmetric bilinear form is studied in a similar way as the symmetric
bilinear form was studied.

 Know that here the quadratic form is given by the difference h( , ) = 
1
2  [f( , ) –f[ , ]]

 Understand that the space L(V, V, F) is the direct sum of the subspace of symmetric forms
and the subspace of skew-symmetric forms.

Introduction

In this unit a bilinear form f on V called skew-symmetric form i.e. f( , ) = –f( , ) is studied.
Close on the steps of symmetric bilinear form of the unit 30 the skew-symmetric form is developed.
It is seen that in the case of a skew-symmetric form, its matrix A in some (or every) ordered basis
is skew-symmetric, At = –A.

31.1 Skew-symmetric Bilinear Forms

After discussing symmetric bilinear forms we can deal with the skew-symmetric forms with
ease. Here again we are dealing wth finite vector space over a subfield F of the field of complex
numbers.

A bilinear form f on V is called skew-symmetric if f( , ), –f( , ) for all , and  in V. It means
that f( , ) = 0. So we now need to introduce two different quadratic forms as follows:

If we let

g( , ) = 
1
2 [f( , ) + f( , )]

h( , ) = 
1
2 [f( , ) + f( , )]

So it is seen that g is a symmetric bilinear form on V and h is a skew-symmetric form on V. Also
f = g + h. These expressions for V, as the symmetric and skew-symmetric form is unique. So the
space L(V, V, F) is the direct sum of the subspace of symmetric forms and the subspace of
skew-symmetric forms.
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Notes Thus a bilinear form f is skew-symmetric if and only if its matrix A is equal to –At in some
ordered basis.

When f is skew-symmetric, the matrix of f in any ordered basis will have all its diagonal entries
0. This just corresponds to the observation that f( , ) = 0 for every  in V, since f( , ) = –f( , ).

Let us suppose f is a non-zero skew-symmetric bilinear form on V. Since f  0, there are vectors
,  in V such that f( , )  0. Multiplying  by a suitable scalar, we may assume that f( , ) = 1.

Let  be any vector in the subspace spanned by  and , say  = c  + d . Then

f( , ) = f(c  + d , ) = df( , ) = –d

f( , ) = f(c  + d , ) = cf( , ) = c

and so

= f( , )  – f( , ) ...(1)

In particular, note that  and  are necessarily linearly independent; for, if  = 0, then f( , ) =
f( , ) = 0.

Let W be the two-dimensional subspace spanned by  and . Let W  be the set of all vectors  in
V such that f( , ) = f( , ) = 0, that is, the set of all  such that f( , ) = 0 for every  in the subspace
W. We claim that V = W  W . For, let  be any vector in V, and

= f( , )  – f( , )

=  – 

Then  is in W, and  is in W , for

f( , ) = f(  – f( , )  + f( , ) , )

= f( , ) + f( , )f( , )

= 0

and similarly f( , ) = 0. Thus every  in V is of the form  =  + , with  in W and  in W . From
(1) it is clear that W  W  = {0}, and so V = W  W .

Now the restriction of f to W  is a skew-symmetric bilinear form on W . This restriction may be
the zero form. If it is not, there are vectors ' and ' in W  such that f( ', ') = 1. If we let W' be the
two-dimensional subspace spanned by ' and ', then we shall have

V = W  W'  W0

where W0 is the set of all vectors  in W  such that f( ', ) = f( ', ) = 0. If the restriction of f to W0

is not the zero form, we may select vectors ", " in W0 such that f( ", ") = 1, and continue.

In the finite-dimensional case it should be clear that we obtain a finite sequence of pairs of
vectors,

( 1, 1), ( 2, 2), ... , ( k, k)

with the following properties:

(a) f( j, j) = 1, j = 1, ... , k.

(b) f( i, j) = f( i, j) = f[ i, j) = 0, i  j.

(c) If Wj is the two-dimensional subspace spanned by j and j, then

V = W1  ...  Wk  W0

where every vector in W0 is 'orthogonal' to all j, and j, and the restriction of f to W0 is the zero
form.
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NotesTheorem 1: Let V be an n-dimensional vector space over a subfield of the complex numbers, and
let f be a skew-symmetric bilinear form on V. Then the rank r of f is even, and if r = 2k there is an
ordered basis for V in which the matrix of f is the direct sum of the (n – r)  (n – r) zero matrix and
k copies of the 2  2 matrix

0 1
1 0

Proof: Let 1, 1, ... k, k be vectors satisfying conditions (a), (b), and (c) above. Let { i, ..., s} be
any ordered basis for the subspace W0. Then

= { 1, 1, 2, 2, ..., k k, 1, ..., s}

is an ordered basis for V. From (a), (b), and (c) it is clear that the matrix of f in the ordered basis
 is the direct sum of the (n – 2k)  (n – 2k) zero matrix and k copies of the 2  2 matrix

0 1
1 0 ...(2)

Furthermore, it is clear that the rank of this matrix, and hence the rank of f, is 2k.

One consequence of the above is that if f is a non-degenerate, skew-symmetric bilinear form on
V, then the dimension of V must be even. If dim V = 2k, there will be an ordered basis { 1, 1, ...,

k, k} for V such that

f( i, j ) = 
1,
1,

i j
i j

f( i, j ) = f( i, j) = 0

The matrix of f in this ordered basis is the direct sum of k copies of the 2  2 skew-symmetric
matrix (2).

Self Assessment

1. Let f be a symmetric bilinear form on cn and g a skew symmetric bilinear form on cn.
Suppose f + g = 0. Show that f = 0, g = 0.

2. Let V be an n-dimensional vector space over a subfield F of C. Prove that

(a) The equation

(Pf) ( , ) =  
1
2 f( , ) – 

1
2 f( , ) defines

a linear operator P on L (V, V, F)

(b) P2 = P, i.e. P is a projection

31.2 Summary

 A bilinear form f on V is called skew-symmetric if f( , ) = –f( , )

 The space L(V, V, F) of the bilinear forms is the direct sum of the sub-space of symmetric
forms and the subspace of skew-symmetric forms.

 In an n-dimensional vector space over a subfield of the complex numbers, the skew
symmetric bilinear form f has an even rank r = 2k, k being an integer.
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Notes 31.3 Keywords

Skew Symmetric Bilinear Form: A bilinear form f on V is called skew symmetric if f( , ) –f( , )
for all vectors, ,  in V.

Skew-symmetric matrix: A matrix A in some (or every) ordered basis is skew-symmetric, if
A+ = –A, i.e. the two by two matrix

0 1
1 0

is a skew-symmetric matrix.

A non-degenerate skew-symmetric bilinear form f is such that

f( i, j) = 
0,
1,

i j
i j

f( i, i) = f( i, i) = 0

the dimension of the space must be even i.e. n = 2k.

31.4 Review Questions

1. Let V be a vector space over a field F. Show that the set of all skew-symmetric bilinear
forms on V a sub-space of L(V, V, F)

2. Let V be a finite dimensional vector space and L1, L2 linear functional on V. Show that the
equation

f( , ) = L1( ) L2( ) – L1( ) L2( )

denotes a skew symmetric bilinear form on V. Also show that f = 0 if and only if L1, L2 are
linearly dependent.

31.5 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

Michael Artin, Algebra
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NotesUnit 32: Groups Preserving Bilinear Forms

CONTENTS

Objectives

Introduction

32.1 Overview

32.2 Groups Preserving Bilinear Forms

32.3 Summary

32.4 Keywords

32.5 Review Questions

32.6 Further Readings

Objectives

After studying this unit, you will be able to:

 Understand that there are certain classes of linear transformations including the identity
transformation that preserve the form f of bilinear forms.

 See that the collection of linear operators which preserve f, is closed under the formation
of operator products.

 Know that a linear operator T preserves the bilinear form f if and only if T preserves the
quadratic form

q( ) = f( , )

 See that the group preserving a non-degenerate symmetric bilinear form f on V is
isomorphism to an n  n pseudo-orthogonal group.

Introduction

In this unit the groups preserving certain types of bilinear forms is studied.

It is seen that orthogonal groups preserve the length of a vector.

For non-degenerate symmetric bilinear form on V the group preserving f is isomorphic to n  n
pseudo-orthogonal group.

For the symmetric bilinear form f on R4 with quadratic form

g(x, y, z, t) = t2 – x2 – y2 – z2

a linear operator T on R4 preserving this particular bilinear form is called Lorentz transformation
and the group preserving f is called the Lorentz Group.

32.1 Overview

Here we shall be concerned with some groups of transformations which preserve the form of
the bilinear forms. Let T be a linear operator on V. We say that T preserves f if f(T , T ) = f( , ) for
all  and  in V. Consider a function g( , ) = f(T , T ). If T preserves f it simply means g = f. The
identity operator preserves every bilinear form. If S and T are two linear operators which
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Notes preserve f, the product ST also preserves f; for f(ST , ST ) = f(T , T ) = f( , ). In other words the
collection of linear operators which preserve f, is closed under the formation of operator products.

Consider a bilinear form given by

= 
, 1

n

ij i j
i j

a x y

If we introduce

X = 

1 1

2 2,

n n

x y
x y

Y

x y
 

then

B = XtAY

where n rowed square matrix A is

A = [aij]

In case Y = X then we have a quadratic form

Q = 
1 1

n n

ij i j
i j

a x x

In matrix form

Q = XTAX

We now consider certain transformation operator P such that

X = PX’

where P is non-singular (or invertible), then

Xt = (PX’)t = X’tPt

So

Q = X’tPtAPX’

Defining

A’ = PtAP

We have

Q = X’tA’X’

If A is symmetric then

At’ = (PtAP)t = PtAtP = PtAP = A’

Thus symmetry of the matrix is maintained. Now if Q represents the length of the vector (x1, x2,
... xn) then preservation of length means;

XtX = Xt’PtPX’ = Xt’X’, if

PtP = I

which means that P is an orthogonal matrix.

One of the examples of the orthogonal transformation the rotation of co-ordinate system.
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Notes
Example 1: Consider a three dimensional co-ordinates (x, y, z). Let us give a rotation

along z-direction by an angle Q so that the new co-ordinates are x’, y’, z’

then

x’ = x cos  = y sin 

y’ = x sin  + y cos 

z’ = z

We see that the square of the length becomes

x’2 + y’2 + z’2 = (x cos  – y sin )2 + (x sin  + y cos )2 + z2

= x2 + y2 + z2.

So the rotation is a transformation that preserves the bilinear form of the length. For more
details see the next section.

32.2 Groups Preserving Bilinear Forms

We start this section with a few theorems and examples.

Theorem 1: Let f be a non-degenerate bilinear form on a finite-dimensional vector space V. The
set of all linear operators on V which preserve f is a group under the operation of composition.

Proof: Let G be the set of linear operators preserving f. We observed that the identity operator
is in G and that whenever S and T are in G the composition ST is also in G. From the fact that f is
non-degenerate, we shall prove that any operator T in G is invertible, and T–1 is also in G.
Suppose T preserves f. Let  be a vector in the null space of T. Then for any  in V we have

f( , ) = f(T , T ) = f(0, T ) = 0.

Since f is non-degenerate,  = 0. Thus T is invertible. Clearly T–1 also preserves f; for

f(T–I , T–1 ) = f(TT–1 , TT–1 ) = f( , )

If f is a non-degenerate bilinear form on the finite-dimensional space V, then each ordered basis
 for V determines a group of matrices 'preserving' f. The set of all matrices [T] , where T is a

linear operator preserving f, will be a group under matrix multiplication. There is an alternative
description of this group of matrices, as follows. Let A = [f] , so that if  and  are vectors in V
with respective coordinate matrices X and Y relative to , we shall have

f( , ) = X’AY.

Let T be any linear operator on V and M = [T] . Then

f(T , T ) = (MX)t A (MY)

= Xt (MtAM)Y.

Accordingly, T preserves f if and only if MtA M = A. In matrix language then, Theorem 1 says the
following: If A is an invertible n  n matrix, the set of all n  n matrices M such that MtAM = A is
a group under matrix multiplication. If A = [f] , then M is in this group of matrices if and only if
M = [T] , where T is a linear operator which preserves f.

Let f be a bilinear form which is symmetric. A linear operator T preserves f If and only if T
preserves the quadratic form

g( ) = f( , )

associated with f. If T preserves f, we certainly have

q(T ) = f(T , T ) = f( , ) = q( )
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Notes for every  in V. Conversely, since f is symmetric, the polarization identity

f( , ) = 1
4 q(  + ) – 1

4 q(  – )

shows us that T preserves f provided that q( T ) = q( ) for each  in V.  (We are assuming here that
the scalar field is a subfield of the complex numbers.)

Example 2: Let V be either the space Rn or the space Cn. Let f be the bilinear form

f( , ) = 
1

n

i i
j

x y

where  = (xl, ... , xn) and  = (y1, ... , yn). The group preserving f is called the n-dimensional (real
or complex) orthogonal group. The name 'orthogonal group' is more commonly applied to the
associated group of matrices in the standard ordered basis. Since the matrix of f in the standard
basis is I, this group consists of the matrices M which satisfy MtM = I. Such a matrix M is called an
n  n (real or complex) orthogonal matrix. The two n  n orthogonal groups are usually denoted
O(n, R) and O(n, C). Of course, the orthogonal group is also the group which preserves the
quadratic form

q(x1, ... , xn) = x1
2 + ... + x2n.

Example 3: Let f be the symmetric bilinear form on Rn with quadratic form

q(x1 ..., xn) = 2 2

1 1

p n

j j
j j p

x x

Then f is non-degenerate and has signature 2p – n. The group of matrices preserving a form of
this type is called a pseudo-orthogonal group. When p = n, we obtain the orthogonal group
O( n, R) as a particular type of pseudo-orthogonal group. For each of the n + 1 values
p = 0, 1, 2, ... n, we obtain different bilinear forms f; however, for p = k and p = n – k the forms are
negatives of one another and hence have the same associated group. Thus, when n is odd, we
have (n + 1)/2 pseudo-orthogonal groups of n  n matrices, and when n is even, we have
(n + 2)/2 such groups.

Theorem 2: Let V be an n-dimensional vector space over the field of complex numbers, and let f
be a non-degenerate symmetric bilinear form on V. Then the group preserving f is isomorphic
to the complex orthogonal group O(n, C).

Proof: Of course, by an isomorphism between two groups, we mean a one-one correspondence
between their elements which 'preserves' the group operation. Let G be the group of linear
operators on V which preserve the bilinear form f. Since f is both symmetric and non-degenerate,
Theorem 4 of unit 30 tells us that there is an ordered basis  for V in which f is represented by the
n  n identity matrix. Therefore, a linear operator T preserves f if and only if its matrix in the
ordered basis  is a complex orthogonal matrix. Hence

T    [T]

is an isomorphism of G onto O(n, C).

Theorem 3: Let V be an n-dimensional vector space over the field of real numbers, and let f be a
non-degenerate symmetric bilinear form on V. Then the group preserving f is isomorphic to an
n  n pseudo-orthogonal group.

Proof: Repeat the proof of Theorem 2, using Theorem 5 of unit 30 instead of Theorem 4 of
unit 30.
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Notes
Example 4: Let f be the symmetric bilinear form on Rn with quadratic form

q(x, y, z, t) = t2 – x2 – y2 – z2.

A linear operator T on R4 which preserves this particular bilinear (or quadratic) form is called a
Lorentz transformation, and the group preserving f is called the Lorentz group. We should like
to give one method of describing some Lorentz transformations.

Let H be the real vector space of all 2  2 complex matrices A which are Hermitian, A = A*. It is
easy to verify that

(x, y, z, t) = 
t x y iz
y iz t x

defines an isomorphism  of R4 onto the space H. Under this isomorphism, the quadratic form q
is carried onto the determinant function, that is

q(x, y, z, t) = det
t x y iz
y iz t x

or

q( ) = det  ( ).

This suggests that we might study Lorentz transformations on R4 by studying linear operators
on H which preserve determinants.

Let M be any complex 2  2 matrix and for a Hermitian matrix A define

UM(A) = MAM*.

Now MAM* is also Hermitian. From this it is easy to see that UM is a (real) linear operator on H.
Let us ask when it is true that UM 'preserves' determinants, i.e., det [UM(A)] = det A for each A
in H. Since the determinant of M* is the complex conjugate of the determinant of M, we see that

det [UM(A)] = [det M|2 det A.

Thus UM preserves determinants exactly when del M has absolute value 1.

So now let us select any 2  2 complex matrix M for which [det M| = 1. Then UM is a linear
operator on H which preserves determinants. Define

TM = –1 UM .

Since  is an isomorphism, TM is a linear operator on R4. Also, TM is a Lorentz transformation; for

q(TM ) = q( –1UM )

= det ( –1UM )

= det (UM )

= det ( )

= q( )

and so TM preserves the quadratic form q.

By using specific 2  2 matrices M, one can use the method above to compute specific Lorentz
transformations.

Self Assessment

1. Suppose M belongs O(n, C). Let

yi = 
1

n

ik k
k

M x
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Notes Show that

2

1

n

i
i

y = 
2

1

n

j
j

x

2. If M be an n  n matrix over C with columns M1, M2, ... Mn. Show that M belongs to O(n, c)
if and only if

M+j Mk = jk.

32.3 Summary

 In this unit certain groups preserving the bilinear forms is studied and seen that these set
of groups is isomorphic to the n × n pseudo orthogonal group when the bilinear form is
non-degenerate.

 The examples of rotation and Lorentz transformations that preserve certain bilinear forms
are studied.

32.4 Keywords

Orthogonal group: The group preserving f given by

f( , ) = 
1

n

i i
i

x y

for  = (x1, x2, ... xn),  = (y1, y2, ... yn), is called the n-dimensional (real or complex) orthogonal
group.

Pseudo-orthogonal Group: For a non-degenerate bilinear form f on R4 with quadratic form

q(x1, x2, ... xn) = 2 2

1 1

p n

j i
j i p

x x

the group of matrices preserving a form of this type is called pseudo-orthogonal group.

32.5 Review Questions

1. Let f be the bilinear form on C2 defined by f[(x1, x2), (y1, y2)] = x1y2 – x2y1

show that

(a) if T is a linear operator on C2, then f(T , T ) = (det T) f( , ) for ,  in C2

(b) T preserves f if and only if det T = +1.

2. Let T be a linear operator C2 which preserves the quadratic form x1
2 – x2

2 Show that

det T = 1.

32.6 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

Michael, Artin Algebra
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