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Topology

Objectives: For some time now, topology has been firmly established as one of basic disciplines of pure mathematics. It's ideas
and methods have transformed large parts of geometry and analysis almost beyond recognition. In this course we will study
not only introduce to new concept and the theorem but also put into old ones like continuous functions. Its influence is evident
in almost every other branch of mathematics.In this course we study an axiomatic development of point set topology,
connectivity, compactness, separability, metrizability and function spaces.
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Objectives

After studying this unit, you will be able to:

Describe the concept of topological spaces;
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) Explain the different kinds of topologies

° Solve the problems on intersection and union of topologies;

) Define open set and closed set;

° Describe the neighborhood of a point and solve related problems;

° Explain the dense set, separable space and related theorems and problems;
) Know the concept of limit point and derived set;

) Define interior and exterior of a set.

Introduction

Topology is that branch of mathematics which deals with the study of those properties of certain
objects that remain invariant under certain kind of transformations as bending or stretching. In
simple words, topology is the study of continuity and connectivity.

Topology, like other branches of pure mathematics, is an axiomatic subject. In this, we use a set
of axioms to prove propositions and theorems.

This unit starts with the definition of a topology and moves on to the topics like stronger and
weaker topologies, discrete and indiscrete topologies, cofinite topology, intersection and union
of topologies, open set and closed set, neighborhood, dense set, etc.

1.1 Topology and Different Kinds of Topologies

1.1.1 Topology
Definition 1: Let X be a non-empty set. A collection T of subsets of X is said to be a topology on
Xif
(i) XeT ¢eT
(ii) the intersection of any two sets in T belongs to Ti.e. A e T, Be T=AnNBeT
(iii) the union of any (finite or infinite) no. of sets in T belongs to T.
ie. A eT v a € A= UA e Twhere Ais an arbitrary set.

The pair (X, T) is called a Topological space.

' Example 1: Let X ={p, q, 1,5, t, ufand T, = {X, ¢, {p}, {r, s}, {p, 1, s}, {q, 1, s, t, u}}

Then T, is a topology on X as it satisfies conditions (i), (i) and (iii) of definition 1.

' Example 2: Let X={a, b, ¢, d, e} and T, = {X, ¢, {a}, {c, d}, {a, ¢, €}, {b, ¢, d}}
Then T, is not a topology on X as the union of two members of T, does not belong to T,.

{c,d}uf{a, c,e}={a,cd e}

So, T, does not satisfy condition (iii) of definition 1.
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Unit 1: Topological Spaces

1.1.2 Different Kinds of Topologies

Stronger and Weaker Topologies

Let X be a set and let T, and T, be two topologies defined on X. If T, = T, then T, is called smaller
or weaker topology than T,.

If T,  T,, then we also say that T, is longer or stronger topology than T,.
Comparable and Non-comparable Topologies

Definitions: The topologies T, and T, are said to be comparable if T, c T,or T,c T,.

The topologies T, and T, are said to be non-comparable if T, # T,and T, T,.

' Example 3: 1f X = {s, t} then T, = {¢, {s, X}} and T, = {9, {t}, X} are non-comparableas T, z T,
and T,z T,.

Discrete and Indiscrete Topology
Let X be any non-empty set and T be the collection of all subsets of X. Then T is called the discrete
topology on the set X. The topological space (X, T) is called a discrete space.

It may be noted that T in above definition satisfy the conditions of definition 1 and so is a
topology.

Let X be any non-empty set and T = {X, ¢}. Then T is called the indiscrete topology and (X, T) is
said to be an indiscrete space.

Again, it may be checked that T satisfies the conditions of definition 1 and so is also a topology.

' Example 4:1f X = {a, b, ¢} and T is a topology on X with {a} € T, {b} € T, {c} € T, prove that
T is the discrete topology.

Solution: The subsets of X are:
={b}, X

X, =¢, X, ={a}, X ={c}, X;=1{a, b}, X, =1{a,c}, X,=1{b,c}, X, ={a,b,c} = X

3 4

In order to prove that T is the discrete topology, we need to prove that each of these subsets
belongs to T. As T is a topology, so X and ¢ belongs to T.

ie. Xl eT, X8 eT.

Clearly, X, e T, X, e T, X, e T

Now X, = {a, b} = {a} U {b}

since {a} € T, {b} € T (Given)

and T is a topology and so by definition 1, their union is also in Ti.e. X, ={a, b} € T
similarly, X, = {a,c} ={a}j U {c} e Tand X, = {b,c} = {bju{c} e T

Hence, T is the discrete topology.
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Cofinite Topology

Let X be a non-empty set, and let T be a collection of subsets of X whose complements are finite
along with ¢, forms a topology on X and is called cofinite topology.

Example 5: Let X = {I, m, n} with topology
T ={¢, {l}, {m}, {n}, {I, m}, {m, n}, {I, n}, X}

is a cofinite topology since the compliments of all the subsets of X are finite.

=7

Note 1f X is finite, then topology T is discrete.

Theorem 1: Let X be an infinite set and T be the collection of subsets of X consisting of empty set
¢ and all those whose complements are finite. Show that T is a topology on X.

Proof:
(i) Since X' = ¢, which is finite, so X € T.
Also ¢ € T (by definition of T)
(ii) LetG,G,eT
= (', G, are finite
= G, UG, is finite
= (G, nG) is finite (by De-Morgan’s law (G', U G/, = (G, N G))")
= G nG,eT
(iii) If{G_:a € A}is an arbitrary collection of sets in T, then
G’ is finite va € A
= |G :a e A}is finite
= [V {G,:a e A}] is finite (by De-Morgan’s law)
= uUlG:iaeA}eT

Hence T is a topology for X.
Co-countable Topology

Let X be a non-empty set. Let T be the collection of subsets of X whose complements are countable
along with ¢, forms a topology on X and is called co-countable topology.

Theorem 2: Let X be a non-empty set. Let T be the collection of all subsets of X, whose complements
are countable together with empty set ¢. Show that T is a topology on X.

Proof:

(i)  Since X' = ¢, which is countable
so,XeT
Also, by definition, ¢ € T

LOVELY PROFESSIONAL UNIVERSITY
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(ii) LetG,G,eT
= (', G, are countable
= (', v, is countable
= (G, nG)) is countable (by De-Morgan's law)
= GNnG,eT
(iii) Let {G, : o € A} be an arbitrary collection of members of sets in T.
= (' iscountable v o € A
= N {G :a e A}is countable
= [U{G,:a e A} is countable (by De-Morgan’s law)
= UG, :aeAleT

Hence, T is a topology for X.
Self Assessment

1. Construct three topologies T,, T,, T, onaset X ={a, b,c} s.t. T, c T, c T..
2. Let X={a, b, c}and T = {9, X, {b}, {a, b}. Is T is a topology for X?

1.2 Intersection and Union of Topologies

Intersection of any two topologies on a non-empty set is always topology on that set. While the
union of two topologies may not be a topology on that set.

' Example 6: Let X ={1, 2, 3, 4}

T, ={¢, X, {1}, {2}, {1, 2}}

T,={¢, X, {1}, {3}, {1, 3}}

T, nT, = {4, X, {1}} is a topology on X.

T, UT,={¢, X, {1}, {2}, {3}, {1, 2}, {1, 3}} is not a topology on X.

' Example 7: If T, and T, are two topologies defined on the same set X, then T, N T, is also
a topology on X but T, U T, is not a topology on X.

Solution: Part I: Let T, T, be two topologies on the same set X.
We are to prove that T, N T, is a topology on X.
By assumption,
(i XeT,XeT,
¢0eT,0eT,
(ii) ABeT,=AnBeT,
ABeT,»ANBeT,
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(i) G, eT, vaeA=U{G, :aeAleT,

(iv)

G eT,vaeA=U{G :aeA}eT,

Then ()X e T, T, ¢ e T,NT,

IHAeT N"T,BeT, nT,=>ANnBeT NT,

ForAeT nT,BeT nT,

= AeT,AeT,andBeT,BeT,

= AnBeT,AnBeT,

= AnBeT nT,

G, eT NnT,vaecA
=>uU{G,:aeAeT NT,

ForG eT NT, v aecA

= G, eT, vaeAandG, eT, v aecA
= UG eT anduG €T,

Thus, T, T, is topology on X.

Part1l: Let X = {a, b, c}. Then T, = {X, ¢ {a}} and T, = {X, ¢, {b}} are topologies on X.

LetG, ={a} e T, G,={b} € T,
ThenG, UG,={a,b} ¢ T, UT,

Consequently T, U T, is not a topology on X.

Self Assessment

1.3 Open Set, Closed Set and Closure of a Set

by (i)

by (i)

by (i)

Prove that the intersection of an arbitrary collection of topologies for a set X is a topology

for X.

Let T beatopology onaset X v n € A, Abeing anindex set. Then N {T :r € A}is atopology

on X.

1.3.1 Definition of Open Set and Closed Set

Let (X, T) be a topological space. Any set A € T is called an open set and X-A is a closed set.

' Example 8: If T = {9, {a}, X} be a topology on X = {a, b} then ¢, X and {a} are T-open sets.

' Example 9: Let X ={a, b, c} and T = {¢, {a}, {b, c}, X} be a topology on X.

Since X - {a} = {b, ¢}

X -{b, c} = {a}

Therefore, T-closed sets are ¢, {b, ¢} and X, which are the complements of T-open sets X, {b, c}, {a}
and ¢ respectively.
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Note In every topological space, X and ¢ are open as well as closed.

1.3.2 Door Space

A topological space (X, T) is said to be a door space if every subset of X is either T-open or
T-closed.

' Example 10: Let X ={1,2,3) and T = {9, {1, 2}, {2, 3}, {2}, X}
Then, T-closed sets are X, {3}, {1}, {1, 3}, ¢.

This shows that every subset of X is either T-open or T-closed.

1.3.3 Closure of a Set

Let (X, T) be a topological space and A is a subset of X, then the closure of A is denoted by A or
Cl (A) is the intersection of all closed sets containing A or all closed superset of A.

' Example 11: If T = {9, {a}, {a, b}, {a, ¢, d}, {a, b, ¢}, {a, b, ¢, d}, X} be a topology on X = {a, b,
¢, d, e} then find the closure of the sets {a}, {b}

Solution: Closed subset of X are
¢, {a}’, {a, b}, {a, ¢, d}, (a, b, e}, {a, b, ¢, d}, X' =X, {b, ¢, d, e}, {c, d, e}, {b, e}, {c, d}, {e}, ¢
then{a}=X
{b}=Xn{b,c,d e} n{b,e}=1{b, e}
Theorem 3: A is closed iff A= A
Proof: Let us suppose that A is closed
Ac A (by definition of closure)
Now also A < A (A is common in all supersets of A)
A=A
Conversely, let us suppose that A = A
Since we know that A is closed. (by definition of closure of A)
A= A isclosed

=  Aisclosed
1.3.4 Properties of Closure of Sets

Theorem 4: Let (X, T) be a topological space and let A, B be any two subsets of X. Then
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(iv) (M) =AUB

v) (AUB)CAGE
o) A%
Proof:

(i)  Since ¢ and X are open as well as closed.

So, ¢, X being closed, we have

b=¢ X=X

(i) Since we know that A is the smallest T-closed set containing A so A ¢ A

(iii) LetAcB

ThenAcBc B

N
ol

i.e. B is a closed superset of A. (B
But A is the smallest closed superset of A.
AcB

Thus, AcB= AcB.

(iv) Wehave AcAUB= Ac AUB by (iii)

andBcAUB= Bc AUB by (iii)
Hence Auﬁg(m) .. (D
Since A, B are closed sets, A U B is also closed.

= AUBCAUB .. (1)

From (1) & (2), we have AUB=A UB.

(v) We have
(ANB)cA= ANnBcA by (iii)
and (ANB)cB= AnBcB by (iii)

Hence ANBcANB.

(vi) We know that if A is a T-closed subset then A = A by the theorem: In a topological space
(X, T) if A is subset of X then A is closed iff A = A.

But A is also a T-closed subset.

>l

=A.

LOVELY PROFESSIONAL UNIVERSITY
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Theorem 5: In a topological space, an arbitrary union of open sets is open and a finite intersection
of open sets is open. Prove it.

Proof: Let (X, T) be a topological space

Let G eTVieN

Let G=QG“ H= NG
We are to prove that G and H are open subsets of X. By definition of topology,
() GeTvieN= UG cT=GeT

(ii) GeTVieN=G NG, eT
G NnG,eT, G, eT
=>G nG,nNGeT

By induction, it follows that

NG =HeT

i=1
Hence proved.

Theorem 6: In a topological space (X, T), prove that an arbitrary intersection of closed sets is
closed and finite union of closed sets is closed.

Proof: Let (X, T) be a topological space,

Let F, c X be closed v i e N
LetH = ﬁFi ,F= _L.JlFi
i=1 i=
We are to prove that F and H are closed sets F, is closed v i € N
= X-Fisopen v ieN

Also, we know, Loj (X-F) and (n] (X—FE) are open sets

i=1 i=1

[+ An arbitrary union of open sets is open and a finite intersection of open sets is open]

= X-NEF and X- G F, are open sets (by De Morgan’s Law)

i=1

LDs

E

i

e

F, are closed sets (by definition of closed sets)

U
LDs

i.e. H, F are closed sets.

Hence, proved.
Self Assessment

5. Give two examples of a proper non-empty subset of a topological space such that it is both
open and closed and prove your assertion.
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6. On the real line show that every open interval is an open but every open set need not be
an open interval.

7. Let (Y, U) be a subspace of a topological space (X, T). Then every U-open set is also T-open
iff Y is T-open.

1.4 Neighborhood

Let (X, T) be a topological space. A c X is called a neighbourhood of a pointx € Xif 3 G € T with
x € G such that G ¢ A. The word neighborhood is, in short, written as ‘nhd’.

Let G be any open set such that G — X with x € G is also nhd of a point x € X.

' Example12: Let T = {¢, X, {b}, {a, b}, {a, b, d}}, be a topology on X = {a, b, ¢, d}. Find T-nhds
of ()a, (ii)band (iii) c.

Solution:
(i) T-open sets containing ‘a” are X, {a, b}, {a, b, d}.
super set of X is X
supersets of {a, b} are {a, b}, {a, b, ¢}, {a, b, d}, X
supersets of {a, b, d} are {a, b, d}, X.
T-nhds of ‘a’ are {a, b}, {a, b, ¢}, {a, b, d}, X
(ii) T-open sets containing b are
{b}, {a, b}, {a, b, d}, X
supersets of {a, b} are {a, b}, {a, b, ¢}, {a, b, d}, X
supersets of {a, b, d} are {a, b, d}, X
supersets of {b} are {b}, {a, b}, {b, ¢}, {b, d}, {a, b, ¢}, {b, ¢, d}, {a, b, d}, X
T-nhds of ‘b” are {b}, {a, b}, {b, ¢}, {b, d}, {a, b, ¢}, {a, b, d}, {b, ¢, d}, X
(iii) T-open set containing ‘¢’ is X.
Hence T-nhd of ‘¢’ is X.

Theorem 7: Let (X, T) be a topological space and A c X. Then A is T-open < A contains T-nhds of
each of its points.

Proof: Let (X, T) be a topological space and A — X.
Step I: Given A is an open set.

To show: A contains T-nhd of each of its points. Clearly x € Ac A V x € A and A is an open set.
This shows that A contains T-nhd of each of its points.

Step II: Given A contains T-nhd of each of its point, then any x € A = 3 nhd N_c X such that
xeN cA (1)
To show: A is an open set
By definition of nhd, 3 open set G_s.t.
xe G c N .2

LOVELY PROFESSIONAL UNIVERSITY
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From (1) and (2), we get Notes
xeG cN cA -(3)
= xeGcA

whichistrue V x e A

UG,cA ..(4)

LetG = XLEJAGX and an arbitrary union of open sets is open and so G is an open set.

GcA ...(5) [Using (4)]
for any xeA=>xeG cG=xeG=>AcCG ...(6)
from (5) & (6), we get

A=G

= A is an open set.

Theorem 8: Let X be a topological space. Then the intersection of two nhds of x € X is also a nhd
of x.

Proof: Let N, and N, be two nhds of x € X then 3 open sets G, and G, such that
x € G, cN, and
X € G2 c N2
xeG NG,cN NN,
. G, N G, is an open set containing x and contained in N, N N...
This shows that N, N N, is also a nhd of x.

Theorem 9: Let (y, U) be a subspace of a topological space (X, T). A subset of Y is U-nhd of a point
y € Y iff it is the intersection of Y with a T-nhd of the pointy € Y.

Proof: Let (y, U) < (X, T) and y € Y be arbitrary, then y € X.
Step I: Let N, be a U-nhd of y, then
IVelUstyeVcN, ...(1)
To show: N, = N, nY for some T-nhd N, of y.
yeVelU=>GeTstV=GnY

>yeGnNnY=>yeGyeY .. (2
Let N,=N,UG
Then N,cN,GcN, ...(3)

From (2) and (3),y e GE N, where G e T
This shows that N, is a T-nhd of y.
N,NnY=(N,uUGnY=N,NnY)u (GnNY)
=(N,nY)uV=N uV=N, [by (1)]
N,cYand VUN,

LOVELY PROFESSIONAL UNIVERSITY 11
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50, N, has the following properties
N, =N,nYand N, isaU-nhd of y.
This completes the proof.

Step 1I: Conversely Let N, be a T-nhd of y so that

JAeTstyeAcN, ...(4)

To show: N, " Yis a U-nhd of y.
yeY,yeA=yeYnA [by (4)]
=>yeAnYcN,NnY [by (3)]

AeT=>AnYelU
Thus, wehavey e ANYcN,NY, where AnY e U.
This shows that N, nY is a U-nhd of y.

Self Assessment

8. Let T={X, ¢ {p} {p, a} {p, q t}, {p, 4 1, s}, {p, 1, s}} be the topology on
X=1{p,q 15t}
List the nhds of the points r, t.

9.  Prove that a set G in a topological space X is open iff G is a nhd of each of its points.

1.5 Dense Set and Boundary Set

1.5.1 Dense Set and No where Dense

Let (X, T) be a topological space and A c X then A is said to be dense or everywhere dense in X
if A =X

' Example 13: Consider the set of rational number Q c R, then only closed set containing
Qin R, which shows that Q = R.

Hence, Q is dense in R.

=7

Note Rational are dense in R and countable but irrational numbers are also dense in R
but not countable.

' Example 14: Prove that A set is always dense in its subset
Solution: Let Ac Bthen AcBc B

=>AcB
= BoA

= Bis densein A.
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Example 15: If T = {¢, {a}, {a, b}, {a, ¢, d}, {a, b, €}, {a, b, ¢, d}, X} be a topology on
X ={a, b, ¢, d, e} then which of the set {a}, {b}, {c, e} are dense in X.
Solution: A is called dense in X if A =X (By definition)

{a}=n{F:Fisclosed subsets.t. F o {a}} = X.

{b}=Xn{b,c, d eni{b e}={b,e}

{ce}=Xn{bcden{cd el ={cd e}
This shows that {a} is the only dense set in X.
Definition
° A is said to be dense in itself if A = D (A).
° A is said to be nowhere dense set in X if int (A ) = ¢ i.e., if the interior of the closure of A
is an empty set.

1.5.2 Boundary Set

The Boundary set of A is the set of all those points which belong neither to the interior of A nor
to the interior of its complement and is denoted by b(A).

Symbolically, b(A) = X - A° U (X - A)°.

Elements of b(A) are called bounding points of A. Boundary points are, sometimes called frontier
points.

' Example 16: Define nowhere dense set and give an example of it.
Solution: ~ DIN)=¢

For if a is any real number, then consider a real number € > o, so small that open set (a - €, a + €)
does not contain any point of N.

Z={n:neN}u{l}u{n:neN}
DZ)=D{n:neN}uD{0}uD{n:neN}
=dvoud
=¢cZ
D(Z) ¢ Z= Z s closed.
= Z=1Z
Int(Z)=Int(Z)=uU{GcR:Gisopen, GcZ}
=¢

. An open subset of R will be an open interval, say G = (a,, a,). This open interval contains all
real numbers (rationals and irrationals) x s.t. a, < x < a, and therefore G ¢ Z.

Int (Z) =¢

This proves that Z is nowhere dense set in R.

LOVELY PROFESSIONAL UNIVERSITY 13



Topology

Notes
Example 17: Prove that every non-empty subset of an indiscrete space is dense in X.
Solution: Let (X, T) be an indiscrete space.
Let A — X be non-empty set.
To show: A is dense in X.
For this, we are to prove A =X
By definition of an indiscrete topology,
T=1{p X}
T-open sets are ¢, X
T-closed sets are X - ¢, X i.e. X, ¢.
Since A # ¢ by assumption.
.. The only closed superset of A is X,
sothat A =X.

' Example 18: Let T ={X, ¢, {p}, {p, a}, {p, . t}, {p, q, t, s}, {p, 1, s}} be the topology on X = {p,
q15st

Determine boundary of the following sets

@) B = {q}

c=u{d)=¢
X-B)°={p, 1,5 t}]°=U{f, {p} {p, 1, s}}
={p 1,5}

b(B) = X - B® U (X - B)°
=X-¢uip 1, s}
={q t}

Self Assessment

10. In a topological space, prove that:
(i) Ais dense < it intersects every non-empty open set.
(i) Aisclosed < A contains its boundary.

11. In any topological space, prove that

b(A) = ¢ & A is open as well as closed.

1.6 Separable Space, Limit Point and Derived Set

1.6.1 Separable Space

Let X be a topological space and A be subset of X, then X is said to be separable if
(i A =X

(i) A is countable

14 LOVELY PROFESSIONAL UNIVERSITY
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' Example 19: Let X ={1, 2, 3, 4, 5} be a non-empty setand T = {¢, X, {3}, {3, 4}, {2, 3}, {2, 3, 4}}
is a topology defined on X. Suppose a subset A = {1, 3, 5}  X. The closed set are:

X, ¢,{1,2,4,5},{1,2,5},{1,4, 5}, {1, 5}
So, we have A = X. Since A is finite and dense in X. So X is a separable space.
Theorem 10: Show that the cofinite topological space (X, T) is separable.
Solution: Let (X, T) be a cofinite topological space.
(i)  When X is countable.
Then X c Xand X = X
This shows that X is separable.
(i) Let A < Xs.t. A is finite.
By definition of cofinite topological space A’ = X - A is open so that A is closed.
= every finite set A is T-closed and so A = X.
Now A =X, A is countable.

This shows that (X, T) is separable.

' Example 20: A discrete space X is separable iff X is countable.

Solution: As we know that every subset of a discrete space (X, T) is both open and closed. Also, A
is said to be everywhere dense in X if A = X.

Also, X is separable if 3 A = X s.t. A =X and A is countable.
So, the only everywhere dense subset of X is X itself.
= X can have a countable dense subset iff X is countable.

Hence, X is separable iff X is countable.
1.6.2 Limit Point or Accumulation Point or Cluster Point

Let (X, T) be a topological space and A — X. A point x € X is said to be the limit point or accumulation
point or cluster point of A if each open set containing ‘x” contains at least one point of A different
from x.

Thus, it is clear from the above definition that the limit point of a set A may or may not be the
point of A.

' Example 21: Let X = {a, b, c} with topology
T=1{¢, {a, b}, {c}, X} and A = {a}, then b is the only limit point of A, because the open sets containing

b namely {a, b} and X also contains a point of A.

Whereas, ‘a’ and ‘b" are not limit point of C = {c}, because the open set {a, b} containing these
points do not contain any point of C. The point c is also not a limit point of C, since then open set
{c} containing ‘c” does not contain any other point of C different from c. Thus, the set C = {c} has
no limit points.
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' Example 22: Prove that every real number is a limit point of R.

Solution: Let x € R then every nhd of x contains at least one point of R other than x
x is a limit point of R.
But x was arbitrary.

every real number is a limit point of R.

' Example 23: Prove that every real number is a limit point of R - Q.

Solution: Let x be any real number, then every nhd of X contains at least one point of R - Q other
than x

x is a limit point of R - Q.
But x was arbitrary.

every real number is a limit point of R - Q.
1.6.3 Derived Set

Definition: The set of all limit points of A is called the derived set of A and is represented by
D(A).

' Example 24: Every derived set in a topological space is a closed.
Solution: Let (X, T) be a topological space and A c X.

To show: D(A) is a closed set.

As we know that B is a closed set if D(B) — B.

Hence, D(A) is closed iff D[D(A)] « D(A).

Let x € D[D(A)] be arbitrary, then x is a limit point of D(A) so that
G-{x}) "DA)#¢p VG eTwithx e G
= G-{xhpnA=¢d
= x e D(A)

Hence proved.

[For every nhd of an element of D(A) has at least one point of A].

' Example 25: In any topological space, prove that A U D(A) is closed.
Solution: Let (X, T) be a topological space and A c X.

To prove: A U D(A) is a closed set.
Let x € X - A U D(A) be arbitrary then x ¢ A U D(A) so that x ¢ A, x ¢ D(A)
x¢DA)=>3IGeTwithxe G st
G-thnA=9¢
=>GnNnA=¢ (v xeA) (1)
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For this G, we also claim Notes
GNnDA)=¢
Let y € G be arbitrary.
Now G is an open set containing ‘y” s.t.
Gn A= ¢,showing thaty ¢ D(A).
anyy e G=vy ¢ D(A)
This shows GND(A)=¢
GNnA=¢,GNnDA)=¢
Now, Gn[AUD(A)]=(GnA)U[GNDA)]
=ovo=0
= GcX-AuD(A)
any x € X-AUD(A)
= GeTwithxeGst.GcX-AUD(A)
This proves that x is an interior point of X - A U D(A).
Since x is arbitrary point of X - A U D(A).
Hence, every point of X - A U D(A) is an interior point of X - A U D(A).
X -AUD(A) is open.
ie, A UD(A)is closed.

Theorem 11: Let (X, T) be a topological space and A c X, then A is closed iff A’ ¢ A or A > D(A).
A subset A of X in a topological space (X, T) is closed iff A contains each of its limit points.

Proof: Let A be closed = A€ is open.
Letx € A©

then A€ is open set containing x but containing no point of A other than x. This shows that x is not
a limit point of A.

Thus, no point of A€ is a limit point of A. Consequently, every limit point of A is in A and
therefore A’ c A.

Conversely, Let A’ c A.

To show: A is closed.

Let x be an arbitrary point of A€,

Then xeA°=x¢A =xeAandxe A (A CA)
= x & A and x is not a limit point of A.

= 3JanopensetGsuchthatx e GandGnA=¢ = GcAS

= xeGcA°

= ACis the nhd of each of its points and therefore A€ is open.

Hence A is closed.
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Theorem 12: In any topological space, prove that
A = AUD(A)
Proof: Let (X, T) be a topological space and A c X.
To show: A = AUD(A)
Since A U D(A) is closed and hence
AUD(A) =AUD(A)
AcAUD(A)
Ac AUD(A)=AUD(A)
AcAUD(A)
Now, We are to prove that
AUDA)c A
But, Ac A
To prove (3), we are to prove
D(A)c A
i.e,, to show that
D(A) c n {F,c X: F,is closed F, o A}
Let x € D(A) be arbitrary.
x € D(A) = x is a limit point of A

= x is a limit point of all those sets which contain A.

= x is a limit point of all those F, appearing on R.H.S. of (6).

= xeD()cF, (~ F,is closed)
= xeF, foreachi

= xen{F, cX:F, is closed}

= xe A

Thus any xeDA)=xe A
D(A) < A
Hence the result (5) proved.
From (4) & (5), we get
AUDA)c AUA=A
ie., AUuDA)c A
Hence the result (3) proved.

Combining (2) & (3), we get the required result.

Self Assessment

12. LetX={a, b,c}and let T = {¢, X, {b}, {c}}, find the set of all cluster points of set {a, b}.
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13. LetX={a b,clandlet T ={¢, X, {a}, {b}, {a, b}}, show that D({a}) = {c}, D({c}) = ¢ and find Notes
derived sets of other subsets of X.

1.7 Interior and Exterior

1.7.1 Interior Point and Exterior Point

Interior Point: Let X be a topological space and let A < X.
A point x € A is called an interior point of A iff 3 an open set G such that x e G c A.

The set of all interior points of A is known as the interior of A and is denoted by Int (A) or A°.
Symbolically,

°=Int(A)=u{GeT:GcA}

Example 26: Let T = {¢, {a}, {b, c}, {a, b}, {a, b, ¢}, X} be a topology on X = {a, b, ¢, d} then

Int (A) = Union of all open subsets of X which are contained in A.

Int [{a}] = ¢ v {a} = {a}
Int [{a, b}] = ¢ U {a} U {a, b} ={a, b}
Exterior Point: Let X be a topological space and let A — X.
A point x € A is called an exterior point of A iff it is an interior point of A€ or X - A.
The set of all exterior points of A is called the exterior of A and is denoted by ext (A).
Symbolically,
ext (A) = (X - A)° or (A9°.

' Example 27: Let T = {X, ¢, {p}, {p, a}, {p, 4. t}, {p, 9, 1, s}, {p, 1, s}} be the topology on X =
{p.q 1t}

Determine exterior of (i)

B = {q}
Solution: ext(B)= (X-B)°={p, 1,5, t}°
=ui{Q ph {p 1 s
={p 15}

1.7.2 Interior Operator and Exterior Operator

Interior Operator: Let X be a non-empty set and P(X) be its power set. Then, an interior operator
‘i’ on X is a mapping i : P(X) — P(X) which satisfies the following four axioms:

@ X=X

(i) (A)cA

(iii) i(A n B) =i(A) ni(B)

(iv) i(i(A) =1i(A), where A and B are subsets of X.
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Exterior Operator: Let X be a topological space. Then, an exterior operator on X is a mapping
e : P(X) > P(X) satisfying the following postulates:

i) e =Xe()=b
(ii) e(A)cA’
(i) elfe(A))] = e(A)
(iv) e(A uB)=e(A)e(B) where A and B are subsets of X.
Theorem 13: Prove that int(A) = U {G : G is open, G c A}.
or
Let X be a topological space and let A = X. Then, A° is the union of all open subsets of A.
Proof: Let x € A° <> x is an interior point of A.
<> Aisanhd of x.

Then 3 an open set G such that x € G < A and hence x € U {G : G is an open subset of A}
Now let x € U {G:Gisopen, G c A} ..(1)
= x € some T-open set G which is contained in A
= x € A° by definition of A°

U {G:Gisopen, GC A} c A° ...(2)
Thus from (1) and (2), we get

A°=U{G:Gisopen G c A}

Theorem 14: Let X be a topological space and let A be a subset of X. Then int (A) is an open set.
Proof: Let x be any arbitrary point of int (A). Then x is an interior point of A.
This implies that A is a nhd. of x i.e.,, 3 an open G such that x € G c A.
Since G contains a nhd of each of its points, it follows that A is a nhd of each of the point of G.
Thus, each point of G is a interior point of A.
Therefore, x € G c int (A).
Thus, it is shown that to each x € A®, these exists an open set G such that x € G c int (a).
Hence A° is a nhd of each of its point and consequently int (A) is open.

Theorem 15: Let X be a topological space and let A — X. Then A° is the largest open set contained
in A.

Proof: Let G be any open subset of A and let x be an arbitrary element of Gie. x € Gc A.
Thus A is a nhd of x i.e., x is an interior point of A.
Hence x e A°
xeG=>xe A°.
Thus Gc A°c A.
Hence A° contains every open subset of A and it is, therefore, the largest open subset of A.
Theorem 16: Let X be a topological space and let A — X. Then A is open iff A° = A.
Proof: Let A be a T-open set.
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Since every T-open set is a T-nhd of each of its point, therefore every point of A is a T-interior Notes
point of A. Consequently A — A°,

Again, since each T-interior point of A belongs to A therefore A° c A.
Hence, A = A°

Consequently, if A = A°, then A must be a T-open set for A° is a T-open set.
1.7.3 Properties of Interior

Theorem 17: Let (X, T) be a topological space and A, B = X. Then
@ ¢°=9¢
(i) X°=X
(ili) AcB=A°cB°
(iv) (A°)°=A° or A°°=A°
Proof: Let (X, T) be a topological space and A, B = X.
(i) & (ii), By definition of T, ¢, X € T, consequently.
¢°=9 X=X
For Ais open < A°= A,
(iii) Suppose Ac B
any x € A° = x is an interior point of A.
= Jopenset Gst.x e GC A
=>xeGcAcB=xeGcB&Gisopen.
= x e B°
A° € B°.
(iv) We Know that A° is open
Also Gis open & G° =G ...(1)
In view of this, we get
(A°)°=A° or A°°=A° (on putting G = A® in (1))

Theorem 18: Let i be an interior operator defined on a set X. Then these exists a unique topology
Ton Xs.t. foreach A c X.

i(A) = T-interior of A.
Proof: Let i be an interior operator on X. Then a map
i:P(X) > P(X) s.t.
i)  iX)=X
ii) i(A)cA
iii) i(A nB) =i(A) ni(B)
iv) i[i(A)] =i(A), where A, B c X

P(X) being power set of X.
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To prove that 3 unique topology T on X s.t. i(A) = A°, where A° = T-interior of A.
Write T = {A = X : i(A) = A}
1) XeT,  fori(X)=X

(2) To prove oeT
i = ¢ by (i)
But o < i(9)
i(p) cd Sothat¢eT
3) G,G,eT=>GnG,eT

For G,G,eT=iG)= G,iG)=G

=1i(G, nG)=iG

1

1 2

) Ni@G,) by (iii)
=G, NG,
=1iG,nG) =G, NG,
=>G nG,eT
(4) ToproveG, eTVaeA=>uU{G :aecA}eT
Firstly we shall prove that
AcB=i(A)ci(B),
where A, B, cX ...(1)
AcB=AnB=A
= i(A) =i(A N B)
=1i(A) ni(B), by (iii)
c I(B)
= i(A) < i(B). Hence the result (1).
LetG, e TV a € Aso that
i(G) =G, -2
Also let U {G :aeA}=G.
Then G, cG=iG) ci(G), by (1)
= G, ci(G), by (2)
= U (G, :a e Al ci(G)
= Gci(G)
But i(G) c G, by (ii).

Consequently i(G) = G so that G € T. Hence the result (4). From (1), (2), (3) and (4), it follows that
T is a topology on X.

Remains to prove that
i(A) = A°.
By (iv), ifi(A)] = i(A)
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By construction of T, = i(A) € T. Notes
Thus, i(A) is T-open set s.t. i(A) c A.
Let B be an open sets.t. B c A.
BeT, Bc A= i(B)=(B),i(B) ci(A)
= Bci(A)
Thus i(A) contains any open set B s.t. B — A. It follows that i(A) is the largest open subset of A.
Consequently i(A) = A°.

1.7.4 Properties of Exterior

Theorem 19: Let (X, T) be a topological space and A, B = X. Then
i) ext(X)=¢

ii)  ext(p)=X

iii) ext (A) c A’

v) A cB= ext(B)cext(A)

(

(

(

(iv) ext(A) = ext[(ext (A))]
(

(vi) A°cext[ext (A)]

(

vii) ext (A U B) = ext (A) next (B).

Proof:

(i) ext (X)=(X-X)°= ¢ as we know that ext (A) = (X - A)°

(i) ext(§)=(X-§)°= X°=X

(iil) ext(A)=(X-A)°cX-A=A" or ext(A)cA' forB°cB
(iv) [ext (A)] = [(X- A)°] =X - (X - A)°

or ext [{ext (A)}] = ext [X - (X - A)°]
= [X-{X-(X-A)}°
= [(X - A)O]O = (X - A)OO
= (X-A)° [As B = B° V B]

= ext (A)
ext [(ext (A))']

= ext (A)
(v AcB=X-BcX-A
= (X-B)°c (X-A)°
= ext (B) cext (A)
(vi) ext(A)=(X-A)lcX-A
= ext(A)cX-A
As A c B = ext (B) cext (A), we get
ext (X - A) c ext [ext (A)] ...(1)
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(vii)

Butext (X-A)=ext(A)=(X-A")°=[X-(X-A)]°
= A°

Now (1) becomes A° c ext [ext (A)]

ext(AUB) =[X-(AuB)]°=[X-A)nNX-B)°
= (A'nB)°
= (A)° N (B)°
= ext (A) N ext (B).

Theorem 20: Exterior Operator: The exterior, by definition of interior function ‘e’ on X is a
function

(1)
(i)

(iii)
(iv)
(

v)

e: PX) > P(X) s.t.

e(AuB)=e(A)ne(B)

For any sets A, B c X. Then there exists a unique topology T on X s.t. e (A) = T-exterior of A.

Proof: Write T={G c X : e (G') = G}

We are to show that T is a topology on X.

(1)

(iii)

e(@)=eX)=¢ by (i)
e(X)=e (=X by (i)
Nowe (¢)=¢, eX)=X = ¢ XeT

LetG,G,eT

Then e(G)=G, e(G)=G

1 1 2 2

But G, nG) =G UG,
e[(G,nG)1=e (G, UG)
=e(G)ne(Gy by (v)
=>G nG,eT
Firstly, we shall show that
AcB=e(B)ce(A) ~..(1)
AcB=>AuUB=B=e(B)=e(AUB)
=e(A)ne((B)ce(A)
= e(B)ce(A)
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Let G=u {Gu to e A} Notes
Then G =n{G :aecA} (By De Morgan’s law)
By (iii), e(G)cG"'=G or e(G)c ...(3)
G, cG=>CGcG =e(G)ce(Q) by (1)
= G, ce(Q) by (2)
= UG, ce(G)
= Gce(G) ..(4)

From (3) & (4),
e(G)=GsothatGeT
So, G eT=>uU{G,:aecAleT
This shows that T is a topology on X.

It remains to prove that

e (A) = T-exterior of A.

By (iv), e (A)=el(e (A)]

= e (A) [By (iii)],
e(A)c A

Thus, e (A) is an open set contained in A'.
Also, e (A) is the largest open set contained in A'.
T-interior of A’ = e (A)

or T-exterior of A = e (A)
Self Assessment

14. LetX=1{a, b, c}andlet T ={¢, X, {b}, {a, c}}, find the interior of the set {a, b}.

15. IfT={4,{a}, {a, b}, {a,c,d}, {a b, e}, {a b,c d}, X} beatopology on X = {a, b, ¢, d, e} then find
the interior points of the subset A = {a, b, ¢} on X.

1.8 Summary

° Topology deals with the study of those properties of certain objects that remain invariant
by stretching or bending,.

° Let X be any non-empty set and T be the collection of all subsets of X. Then T is called
discrete topology.

. Let X be any non-empty set and T = {X, ¢}, then T is called indiscrete topology.

° Let T be a collection of subset of X where complements are finite along with ¢, forms a
topology on X is called cofinite topology.

° Let (X, T) be a topological space. Any set A € T is called an open set and X - A is called
closed set.

° Closure of a set is the intersection of all closed sets containing A where A is subset of X.
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° Let (X, T) be a topological space. A < X is called a neighbourhood of a point x € X if
3G e T with x € Gsuch that G c A.

° Let (X, T) be a topological space. A < X is said to be dense or everywhere dense in X if
A =X

) If A said to be nowhere dense set in X if int (A ) = ¢.

o Let {X, T} be a topological space and A c X then X is said to be separable if
i) A =X (ii) A is countable

o Let (X, T) be a topological space and A c X.

A point x € Xis said to be the limit point if each open set containing x contains at least one
point of A different form x.

o The set of all limit point of A is called derived set of A.

o Let (X, T) be a topological space and A c X. A point x € A is called a interior point of A iff
there exists an open set G such that x € G c A. It is denoted by Int (A) or A°.

° A point x € X is called an exterior point of A iff it is an interior point of A“or X - A. It is
denoted by ext (A).

1.9 Keywords

Complement: The complement of a set A w.r.t. the universal set X is defined as the set X-A and is
denoted by A°.

symbolically, A°=X-A={x e X:x ¢ A}.
Intersection: The intersection of two sets A and B, denoted by A N B, is
ANnB={x:xe Aand x € B}

Subset: If every element of set A is also an element of set B, then A is called a subset of B. It is
denoted by the symbol A c B.

Superset: A c B is also expressed by writing, B o A.
Union: The union of two sets A and B, denoted by A U B, is
AuUB={x:xeA or xeB}

1.10 Review Questions

1. Let X = {a, b, ¢, d, e, f}, which of the following collections of subsets of X is a topology on
X? (Justify your answers).

@ T, ={X ¢ {c}, {b,d, e} {b c d e}, {b}};
(b) T,={X ¢ {a}, {b,d, e}, {a, b, d}, {a b, d, e}};
© T,={X, ¢ {b}, {a,b,c} {d, c 1}, {b d e f}}.

2. If X=1{a, b, ¢, d, e, f} and T is the discrete topology on X, which of the following statements

are true?

(@ XeT (b) {X}eT
© f{BeT @ ¢eT
(€ {ofeX ) aeT
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10.

11.

12.

13.

14.
15.

16.
17.
18.

19.

Let (X, T) be any topological space. Verify that the intersection of any finite number of
member of T is a member of T.

List all possible topologies on the following sets:
(@ X={a b} (b) Y={ab,c}

Let X be an infinite set and T a topology on X. If every infinite subset of X is in T, prove that
T is the discrete topology.

Let (X, T) be a topological space with the property that every subset is closed. Prove that it
is a discrete space.

Consider the topological space (X, T) where the set X = {a, b, ¢, d, e}, the topology T = {X, ¢,
{a}, {c,d}, {a,c,d}, {b,c,d, e}},and A ={a, b, c}. Then b, d, and e are limit points of A buta and
¢ are not limit points of A.

LetX={a,b,c,d,e}and T={X, ¢, {a}, {c, d}, {a, ¢, d}, {b, ¢, d, e}} show that { b} = {b, ¢}, {a, c }
=X,and {b,d}={b,c, d, e}

Let X={a,b,c d, e f} and
T,=1{X ¢, {a}, {c,d}, {a,c,d}, {b,c, d, e f}},

(a)  Find all the limit points of the following set:

(i)

a},

{
(i) {b,c},
(iii) {fa,c d},
(iv) {bd, e f},

(b) Hence, find the closure of each of the above sets.

(@) Let A and B be subsets of a topological space (X, T). Prove carefully that AnB <
ANB.

(b) Give an example in which ANB = A NB.
Let S be a dense subset of a topological space (X, T). Prove that for every open subset U of
X, Snu = U .

Let E be a non-empty subset of a topological space (X, T). Show that E = E U d (E), where
d (E) is derived set of E.

Define interior operator. Explain how can this operator be used to define a topology on a
set X.

Prove that A subset of topological space is open iff it is nhd of each of its points.

(@) Show that A° is the largest open set contained in A.

(b)  Show that the set of all cluster points of set in a topological space is closed.
The union of two topologies for a set X is not necessarily a topology for X. Prove it.
Let X be a topological space. Let A — X. Then prove that A U A’ is closed set.

Show that A U D(A) is a closed set. Also show that A U D(A) is the smallest closed subset
of X containing A.

In a topological space, prove that (X - A)° = X - A. Int A’ = (A)'. Hence deduce, that
A°=(A).
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20.

21.

22.

Let (X, T) be a topological space and A < X. A point x of A is an interior point of A iff it is
not a limit point of X - A.

Let T={X, ¢, {p}, {p, a4}, {P, 9, t}, {p, @ 1, s}, {p, 1, s}} be the topology on X = {p, q, 1, s, t}.
Determine limit points, closure, interior, exterior and boundary of the following sets:

@ A={rst (b)  B={p}

It T = {¢, {a}, {a, b}, {a, ¢, d}, {a, b, €}, {a, b, ¢, d}, X} be a topology on X = {a, b, ¢, d, e} then
a) Point out T-open subsets of X.

b)  Point out T-closed subsets of X.

(

(

(c)  Find the closure of the sets {a}, {b}, {c}.

(d) Find the interior points of the subset A = {a, b, c} on X.
(

e)  Which of the sets {a}, {b}, {c, e} are dense in X?

Answers: Self Assessment

12.
13.

T, =14, X}, T, = {¢, X, {b}, {a, b}, T, = {4, X, {a}, {b}, {a, b}}.
Yes

nhd of rare {p, 1, s}, {p, q, 1, s}

nhd of tis {p, q, t}

D(A) = {c}

D ({b}) = D (fa, b}) = D({b, ¢}) = D({c, a}) = {c}

1.11 Further Readings

N

Books J. L. Kelley, General Topology, Van Nostrand, Reinhold Co., New York.

S. Willard, General Topology, Addison-Wesley, Mass. 1970.
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Unit 2: Basis for Topology Notes

CONTENTS
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2.2 Sub-base
2.3 Standard Topology and Lower Limit Topology
231 Standard Topology
232 Lower Limit Topology
24  Summary
2.5 Keywords
2.6 Review Questions

2.7  Further Readings

Objectives

After studying this unit, you will be able to:

o Define the term basis for topology;
o Solve the questions related to basis for topology;
° Describe the sub-base and related theorems;

o State the standard topology.
Introduction

In mathematics, a base or basis B for a topological space X with topology T is a collection of open
sets in T such that every open set in T can be written as a union of elements of 5. We say that the
base generates the topology T. Bases are useful because many properties of topologies can be
reduced to statements about a base generating that topology.

In this unit, we shall study about basis, sub-base, standard topology and lower limit topology.

2.1 Basis for a Topology

Definition: Basis
A collection of subsets B of X is called a basis or a base for a topology if:
1.  The union of the elements of B is X.

2. If x e B, B, B, B,, € B, then there exists a B of B such that x e Bc B, n B,.

v Y
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Another Definition:
B is said to be a base for the topology Ton Xifx e Ge T=3B e Bst.xe BcG.

The elements of 5 are referred to as basic open sets.

Example 1:

(1) S, the standard topology on R, is generated by the basis of open intervals (a,b) where
a<b.

(2) A basis for another topology on R is given by half open intervals [a,b), a < b. It generated
the lower limit topology L.

(3) The Open intervals (a,b), a < b with a & b rational is a countable basis. It generates the same
topology as S.

' Example 2: Let X = {1, 2, 3, 4}. Let A = {{1, 2}, {2, 4}, {3}}. Determine the topology on X
generated by the elements of A and hence determine the base for this topology.

Solution:
Let X=1{1,2,3,4} and
A={{1,2} {24}, {3}}.
Finite intersections of the members of A form the class B given by
B={{1,2},{3}, {2, 4}, ¢, {2}, X}.
The unions of the members of B form the class T given by
T={{1,2}, {3}, {2 4}, ¢, {2}, X, {1, 2,3}, {1, 2, 4}, {3, 2, 4}, {3, 2}}.
It can be easily verified that B is a base for the topology T on X.
2.1.1 Topology Generated by Basis
Lemma 1: Let B be a basis for a topology T on a set X. Then T equals the collection of all unions

of elements of B.

Proof: Each element of B is open, so arbitrary unions of elements in B are open i.e., in T. We
must show any U € T equals a union of basis elements. For each x € U, choose a set B,_c U that
contains x.

What does the union U, B, of these basis elements equal? All of U i.e. U_ a union of basis
elements. How to find a basis for your topology.

Lemma 2: Let (X, T) be a topological space. Suppose B is a collection of open sets of X s.t. V open
sets U and V x e U, there exists an element B € Bs.t. x € B U. Then B is a basis for T.

Proof: We show the two basis conditions:

1.  Since X itself is open in the topology, our hypothesis tells us that V x € X, there exists B € B
containing x.

2. Letx e B, n B,. Since B, B, are open, so is B, n B,; by our hypothesis, there exists B € B
containing x with B < B, N B,
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So, B is a basis and generates a topology T'; we must show T' = T. Notes

Take U e T; by hypothesis, there is a set B € B with x € B < U; this is the definition of U being an
open set in topology T'.

Conversely, take V open in topology T'. Then by the previous lemma, V equals a union of
elements of sets in B.

By hypothesis, each set in B is open in topology T; thus V is a union of open sets from T, so it is
openin T.

Lemma 3: Let Band B’ be basis for the topologies T and T’, respectively, on X. Then the following
are equivalent:

1. T’ is finer than T.

2. For each x € X and each basis element B € B containing x, there is a basis element B’ € 5’
such that x € B’ B.

Proof: (2) = (1)
Given any element U of T,
We are to show that U € T".
Letx e U.
Since B generates T, there is an element B € B such that x € B < U.
Condition (2) tells us 3 an element B’ € 55’ such that x € B’ ¢ B. Then
xeB, cl,
so, U € T', by definition
0= @
Givenx € X and B € B, with x € B.
Now B belongs to T by definition
and T < T’ by condition (1)
BeT.
Since T is generated by B,
there is an element B’ € B such that x € B’ = B.
2.1.2 A Characterisation of a Base for a Topology
Theorem 1: Let (X, T) be a topological space. A sub-collection B of T is a base for T iff every T-open
set can be expressed as union of members of B.
or
If T be a topology on X and B c T, show that following conditions are equivalent:
(i) Each G e T is the union of members of 5.
(i) For any x belonging to an open set G, 3B € Bwithx e Bc G.
Proof: Let B be a base for the topological space (X, T) so that x € G € T.
= dBeBstxeBeBstxeBcG ...(1)
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To show: G=u{B:Be Band Bc G} ..(2)
From (1), the statement (2) at once follows.
Conversely, suppose that B € T s.t. (2) holds.
Also, suppose that (X, T) is a topological space.
To prove: statement (1).
Let x € X be arbitrary and G be an open set s.t. x € G.
Thenx e G e T.
Now (2) suggests that
dBeBst.xeBcG.

Hence the result (1).
Self Assessment
1. Let X ={a, b, ¢, d} and A = {{a, b}, {b, c}, {d}}. Determine a base B (generated by A) for a

unique topology T on X.

2. Let Bbe abase for the topology T on X. Let B* c T s.t. B < B*. Show that 5* is a base for the
topology T on X.

3. What is necessary and sufficient condition for a family to become a base for a topology?

4. Let B be a base for X and let Y be a subspace of X. Then if we intersect each element of B with
Y, the resulting collection of sets is a base for the subspace Y. Prove it.

2.2 Sub-base

Definition: Let (X, T) be a topological space. Let ScTs.t.S#¢.

S is said to be sub, base or open sub-base or semi bases for the topology T on X if finite
intersections of the members of S form a base for the topology T on X i.e. the unions of the
members of S give all the members of T. The elements of S are referred to as sub-basic open sets.

' Example 3: Let a, b € R be arbitrary s.t. a <b. Clearly (-, b) n (a, ©) = (a, b)

The open intervals (a, b) form a base for the usual topology on R. Hence, by definition, the
family of infinite open intervals forms a sub-base for the usual topology on R.

Theorem 2: Let S be a non-empty collection of subsets of a non empty set X. Then Sis a sub-base
for a unique topology T for X, i.e., finite intersections of members of S form a base for T.

Proof: Let B be the collection of all finite intersections of members of S. Then we have to show
that B is a base for a unique topology on X.

For this, we have to show that B satisfies conditions (1) and (2).
(1) Since X is the intersection of empty collection of members of S, it follows that
XeBandsoX=U{B:B e B}.

(2) LetB,B, € Band x € B, n B,. Then B,, B, are finite intersections of members of S. Hence,
B, m B, is also a finite intersection of members of S and so B, N B, € B.

Hence, B is a base for a unique topology on X for which S is sub-base.
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' Example 4: Find out a sub-base S for the discrete topology T on X = {a, b, ¢} s.t. S does not
contain any singleton set.

Solution: Let X = {a, b, c}. Let T be the discrete topology on X.
If we write B = {{x} : x € X}, then by the theorem:

“Let X be an arbitrary set and 13 a non empty subset of the power set P(X) of X. Bis a base for some
topology on X iff

(i U{B:BeB=X

(i) xeB,B,andB,B, e B= 3B e Bst.xeBcB nB,

B is a base for the topology T on X.”

Any family B* of subsets of X. S does not contain any singleton set. Hence, S is the required
sub-base.

Self Assessment

5. Let Sbe a sub-base for the topologies T and T, on X. Show that T =T,.

6. Let (Y, U) be a sub-base of (X, T) and S a sub-base for T on X. Show that the family {Y N S:
S e S} is a sub-base for U on Y.

7. Given a non empty family S of subsets of a set X, show that 3 weakest topology T on X in
which all the members of S are open sets and S is a sub-base for T.

8. Let X = {a, b, ¢, d, e}. Find a sub-base S for the discrete topology T on X which does not
contain any singleton set.

2.3 Standard Topology and Lower Limit Topology

2.3.1 Standard Topology

If B={(a, b):a, b e Rs.t a<b}ie. Bisa collection of open intervals on real line, the topology
generated by B is called standard topology on R.

2.3.2 Lower Limit Topology

If B,={(a b]:a beRanda <b}ie B, is a collection of semi-open intervals, the topology
generated by B, is called lower limit topology on R.

When R is given the lower limit topology, we denote it by R,.

Finally let K denote the set of all numbers of the form +, for n € Z, and let 3, be the collection

of all open intervals (a, b) along with all sets of the form (a, b) -K. The topology generated by B,
will be called the K-topology on R. When R is given this topology, we denote it by R,.

Lemma: The topologies of R, and R, are strictly finer than the standard topology on R, but are
not comparable with one another.

Proof: Let T, T' and T" be the topologies or R, R, and R, respectively. Given a basis elements
(a, b) for T and a point x of (a, b), the basis element [x, b) for T’ contains x and lies in (a, b). On the
other hand, given the basis element [x, b) for T’, there is no open interval (a, b) that contains x and
lies in [x, d). Thus T’ is strictly finer than T.
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A similar argument applies to R . Given a basis element (a, b) for T and a point x of (a, b), this
same interval is a basis element for T” that contains x. On the other hand, given the basis element
B = (-1, 1) -K for T" and the point O of B, there is no open interval that contains O and lies in B.

Now, it can be easily shown that the topologies of R, and R, are not comparable.
Self Assessment

9.  Consider the following topologies on R:
T, = the standard topology,
T, = the topology of R,
T, = the finite complement topology,
T, = the upper limit topology, having all sets (a, b) as basis,
T, = the topology having all sets (-, a) = {x : x < a} as basis

Determine, for each of these topologies, which of the others it contains.

2.4 Summary

° A base (or basis) B for a topological space X with topology T is a collection of open sets in
T such that every open set in T can be written as a union of elements of 5.

° Sub-base: Let X be any set and S a collection of subsets of X. Then S is a sub-base if a base
of X can be formed by a finite intersection of elements of S.

° Standard Topology: If B is the collection of all open intervals in the real line (a, b) = {x : a
< x < b}, the topology generated by B is called standard topology on the real line.

° Lower Limit Topology: If B is the collection of all half-open intervals of the form
[a,b)={X:a<x<b}

where a< b, the topology generated by B’ is called the lower limit topology on R.

2.5 Keywords

Finer: If T, c T,, then we say that T, is longer or finer than T,.

Subset: If A and B are sets and every element of A is also an element of B then, A is subset of B
denoted by A c B.

Topological Space: It is a set X together with T, a collection of subsets of X, satisfying the
following axioms.

(1) The empty set and X arein T.
(2) T is closed under arbitrary union.

(3) T is closed under finite intersection.

2.6 Review Questions

1.  Let Bbeabasis for a topology on a non empty set X. It 3, is a collection of subsets of X such
that T 2 B, © B, prove that B, is also a basis for T.
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2. Show that the collection B = {(a, b) : a, b € R, a < b} of all open intervals in R is a base for Notes
a topology on R.

3. Show that the collection C = {[a, b] : a, b € R, a < b} of all closed intervals in R is not a base
for a topology on R.

4. Show that the collection £ = {(a, b] : a, b € R, a < b} of half-open intervals is a base for a
topology on R.

5. Show that the collection S = {[a, b) : a, b € R, a < b} of half-open intervals is a base for a
topology on R.

6.  Show that if A is a basis for a topology on X, then the topology generated by A equals the
intersection of all topologies on X that contain A. Prove the same if A is a sub-basis.

7. If Sis a sub-base for the topology T on X, then S = {X, ¢} is also a sub-base for T on X.
Answers: Self Assessment

B ={{a, b}, {b, c}, {d}, {b}, ¢, X}
T={8B{ab,d}, b c d}, {b d},{ab,cl.
S={{a, b}, {b,c}, {c, d}, {d, e}, {e, a}}.

2.7 Further Readings

N

Books Engelking, Ryszard (1977), General Topology, PWN, Warsaw.

Willard, Stephen (1970), General Topology, Addison-Wesley. Reprinted 2004, Dover
Publications.
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Objectives

After studying this unit, you will be able to:

Understand the order topology;
Solve the problems on order topology;

Describe the open intervals, closed intervals and half-open intervals.

Introduction

If X is a simply ordered set, there is a standard topology for X, defined using the order relation.
It is called the order topology; in this unit, we consider it and study some of its properties.

3.1 The Order Topology

3.1.1 Intervals

Suppose that X is a set having a simple order relation <. Given elements a and b of X such that
a <b, there are four subsets of X that are called the intervals determined by a and b. They are the
following:

36

(a,b) = {x|a<x<b}
(a, bl = {x]a<x<b}
[a,b) = {x]a<x<b}
[a, b] = {x]a<x<b}
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The notation used here is familiar to you already in the case where X is the real line, but these are Notes
intervals in an arbitrary ordered set.

° A set of the first type is called an open interval in X.
° A set of the last type is called a closed interval in X.

° Sets of the second and third types are called half-open intervals.

=7

Note  The use of the term “open” in this connection suggests that open intervals in X
should turn out to be open sets when we put a topology on X and so they will.

3.1.2 Order Topology

Definition: Let X be a set with a simple order relation; assume X has more than one element. Let
B be the collection of all sets of the following types:

(1)  All open intervals (a, b) in X.

(2)  Allintervals of the form [a , b), where a_ is the smallest element (if any) of X.

(3)  All intervals of the form (a , b ], where b is the largest element (if any) of X.

The collection B is a basis for a topology on X, which is called the order topology. If X has no
smallest element, there are no sets of type (2), and if X has no largest element, there are no sets

of type (3).

—]]

Notes One has to check that B satisfies the requirements for a basis.

(A) First, note that every element x of X lies in at least one element of B : The smallest
element (if any) lies in all sets of type (2), the largest element (if any) lies in all sets
of type (3), and every other element lies in a set of type (1).

(B)  Second, note that the intersection of any two sets of the preceding types is again a set
of one of these types, or is empty.

' Example 1: The standard topology on R is just the order topology derived from the
usual order on R.

Example 2: Consider the set R x R in the dictionary order; we shall denote the general
element of R x R by x Xy, to avoid difficulty with notation. The set R x R has neither a largest
nor a smallest element, so the order topology on R x R has as basis the collection of all open
intervals of the form (a X b, ¢ x d) for a < ¢, and for a = c and b < d. The subcollection consisting
of only intervals of the second type is also a basis for the order topology on R x R, as you can
check.

' Example 3: The positive integers Z, form an ordered set with a smallest element. The
order topology on Z, is the discrete topology, for every one-point set is open : If n > 1, then the
one-point set {n} = {n-1, n+1} is a basis element; and if n=1, the one-point set {1} = [1, 2) is a basis
element.
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' Example 4: The set X = {1, 2} x Z__ in the dictionary order is another example of an ordered
set with a smallest element. Denoting 1 x n by a_and 2 X n by b , we can represent X by

a,a,...; b,b

17 Qs 7 Oor eeee

The order topology on X is not the discrete topology. Most one-point sets are open, but there is
an exception the one-point set {b,}. Any open set containing b, must contain a basis element
about b, (by definition), and any basis element containing b, contains points of the a, sequence.

3.1.3 Rays

Definition: If X is an ordered set, and a is an element of X, there are four subsets of X that are
called the rays determined by a. They are the following:

(@, + ) = {x|x>a}
(-0, a) = {x|x<a},
[a, + ) = {x[x=>a},
(- a] = {x|x<a}.

sets of first two types are called open rays; and sets of the last two types are called closed rays.

|

Notes

(1)  The use of the term “open” suggests that open rays in X are open sets in the order
topology. And so they are (consider, for example, the ray (a, + «). If X has a largest
element b, then (a, + «) equals the basis element (a, b ]. If X has no largest element,
then (a, + «) equals the union of all basis elements of the form (a, x), for x > a. In
either case, (a, + ) is open. A similar argument applies to the ray (-, a).

(2)  Theopenrays, in fact, form a sub-basis for the order topology on X, as we now show.
Because the open rays are open in the order topology, the topology they generate is
contained in the order topology. On the other hand, every basis element for the
order topology equals a finite intersection of open rays; the interval (a, b) equals the
intersection of (-o0, b) and (a, + «©), while [a , b) and (a, b ], if they exist, are themselves
open rays. Hence the topology generated by the open rays contains the order
topology.

3.1.4 Order Topology on the Linearly Ordered Set

The order topology T on the linearly ordered set X is the topology generated by all open rays.
A linearly ordered space is a linearly ordered set with the order topology.

3.1.5 Lemma (Basis for the Order Topology)

Let (X, <) be a linearly ordered set.
(1)  The union of all open rays and all open intervals is a basis for the order topology T _.

(2)  If X has no smallest and no largest element, then the set {(a, b) |a, b € X, a < b} of all open
intervals is a basis for the order topology.
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Proof: As we know Notes
B, = {Finite intersections of S-sets}

=Su{(a,b)| a,b € X, a <b} is a basis for the topology generated by the
sub-basis S._.

If X has a smallest element a_ then (-0, b) = [a_, b) is open. If X has no smallest element, then the
openray (-, b) =U___(a, c) is a union of open intervals and we do not need this open ray in the
basis. Similar remarks apply to the greatest element when it exists.

3.2 Summary

° Open interval : (a, b) ={x|a<x<Db}
Closed interval : [a, b] = {x]|a <x < b}
° Half open intervals : (a, b] ={x|a<x<b}
[a, b) ={x|a<x<Db}

o The order topology T_ on the linearly ordered set X is the topology generated by all open
rays. A linearly ordered space is a linearly ordered set with the order topology.

o Openrays : (a, +©)={x|x>a}
(-0, a) = {x[x <a}
° Closed rays : (-, a] ={x|x<a}

[a, + 0) = {x|x>a}

3.3 Keywords

Basis: A basis B for a topological space X with topology T is a collection of open sets in T such
that every open set in T can be written as a union of elements of B.

Discrete Space: Let X be any non empty set and T be the collection of all subsets of X. Then T is
called the discrete topology on the set X. The topological space (X, T) is called a discrete space.

Open and Closed Set: Any set A € T is called an open subset of X or simply a open set and X - A
is a closed subset of X.

3.4 Review Questions

1.  Let X be an ordered set. If Y is a proper subset of X that is convex in X, does it follow that
Y is an interval or a ray in X?

2. Show that the dictionary order topology on the set R x R is the same as the product
topology R, x R, where R, denotes R in the discrete topology. Compare this topology with
the standard topology on R%
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3.5 Further Readings

N

Books Baker, Introduction to Topology (1991).

Dixmier, General Topology (1984).
A
v. L,
Online links  http:/ /mathforum.org/isaac/problems/bridgesl.html

http:/ /www .britannica.com

mathworld.wolfram.com/ordertopology.html
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Objectives

After studying this unit, you will be able to:
o Describe the product topology;

o Solve the problems on product topology;

o Define projection mappings;
o Discuss the problems on projection mappings.
Introduction

A product space is the Cartesian product of a family of topological space equipped with a natural
topology called the product topology. This topology differs from another, perhaps more obvious,
topology called the box topology, which can also be given to a product space and which agrees
with the product topology when the product is over only finitely many spaces. However the
product topology is 'correct' in that it makes the product space a categorical product of its
factors, whereas the box topology is too fine, this is the sense in which the product topology is
natural.

4.1 Product Topology

Given two sets X and Y, their product is the set X x Y = {(x, y) : x € Xand y € Y}.
For example, R? = R x R, and more generally R™ x R* = R™*,

If X and Y are topological spaces, we can define a topology on X X Y by saying that a basis
consists of the subsets U x V as U ranges over open sets in X and V ranges over open sets in Y.

The criterion for a collection of subsets to be a basis for a topology is satisfied since
(U x V)N (U, x V) = (U, NUy) x (V,N1V)

This is called the product topology on X x Y.
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' Example 1: A basis for the product topology on R x R consists of the open rectangles
(a, b)) x (a, b,). This is also a basis for the usual topology on R? so the product topology

coincides with the usual topology.

' Example 2: Take the topology T = {¢, {a, b}, {a}} on X = {a, b}.
Then the product topology on X x X is

{6, X x X, {(a, a)}, {(a, a), (a, b)}, {(a, a), (b, @)}, {(a, ), (a, b), (b, a)}} where the last open set in the list
is not in the basis.

Theorem 1: If (X,, T)) and (X,, T,) are any two topological spaces, then the collection
B={G,xG,:G eT,G,e T}
is a base for some topology on X = X, x X..
Proof: Suppose, (X,, T,) and (X,, T,) be any two topological spaces.
Write X = X x X,,
B={U,xU,:U,eT,UeT,}
To show: B is a base for some topology on X.
(i) Toprove:U{B:Be B}=X.
X eT,X,eT, =X xX,eB
=XeB
=X=U{B:Be B}
(ii) LetU xU,V xV,e Band let
(x, %) € (U, xU)N(V,*xV)
To prove: 3W, x W, € B s.t.
(x, %) € W, xW, (U xU)N(V,xV)
(x, %) € (U, xU)N(V,*xV)
= (x,x,)e U xU,and (x, x,) € V, xV,
=xelU,x,elU;x €eV,x,eV,
=x,eUNV,;x,eUNYV,
=x,€ W ;x,e W,
On taking W, =U NV,
w,=U,NV,
= (x, X,) € W, xW,
U xU,e BV xV,eB
=UeT,U,eT,;V,eT,V,eT,
=>UNV,eT,U,NV,eT,
=W eT,W,eT,
=W, xW,e B
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So, we have proved that

AW, xW,e B st (x,x,) € W, xW,

Now, it remains to prove that

W, xW,c (U, xU)N(V,*xV,)

Let (y,, y,) € W, x W, be arbitrary.

(Y y,) € W, xW, =y, eW,y,eW,
=y, e UNV,y,e UNV,
=y,elU,y,eV,andy,e U,y, eV,
=(y,y,)eUxUand (y,y,) e V,xV,
= y,) € (U xU)N(V,xV)

Finally, any (y,, y,) € W, x W,

= (ry)e U xU)N(v,xV)

This proves that

W, xW,c (U, xU)N(V,*xV,)

Notes

It immediately follows from (i) and (ii) that B is a base for some topology, say, T on X.

Theorem 2: Let (X, T) and (X,, T,) be two topological spaces and let B,, B, be bases for T, and T,

respectively.
Let X =X, x X,
Then B={B, x B,: B, € B, B, € B,} is a base for the product topology T on X.
Proof: Let C={G, xG,:G, e T, G,e T,}.
Then C is a base for the topology T on X (refer theorem 1)
We are to prove that B is a base for T on X.
By definition of base,
for (x, x,)e Ge T
=3G, xG,e Cs.t. (x,x,) € G, xG,cG
Again (x,, x,) € G, xG, e C
=x,€GeT, x, € G,e T,
Applying definition of base,
x, € G eT =3B € B,stx € B cCG,
x,€ G,e T,=3B,e B,stx,e B,cG,
B, € B,B,e B,= B, xB,e B.
Now (2)and (3) =3B, xB,e B s.t.
(x,x,)€ B xB,cG, xG,cG

or (x,x,)€B xB,cG
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Thus, we have shown that
(x,x)eGeT
= 3B, xB,eB s.t. (x,x,)€ B, xB,cG
By definition,
This proves that 3 is base for T on X.
Remark: From the theorems (1) and (2), it is clear that
B={B, xB,:B € B,B,ec B),
C={G,xG,:G eT,G,e T}
both are bases for the same topology T on X.

Theorem 3: Let (X, T) and (Y, V) be any two topological spaces and let L and M be sub-bases for T,
and Vrespectively. Then the collection A of all subsets of the form L x Y and X x M, is a sub-base
for the product topology T on X X Y, where L € £, M € M.

Proof: Now in order to prove that A is a sub-base for T on X x Y, we are to prove that: the
collection G of finite intersections of members of A form a base for T on X x Y.

Since the intersection of empty sub collection of Ais X x Y and so X x Y € G.

Nextlet {L, xY,L,xY,.., Lp xYIU{XxM,, XxM,, ..., Xx Mq} be a non empty finite sub-collection
of A. This intersection of these elements belong to G, by construction of G. This element of G is

(L, ¥ Y) N (L, % Y) N (L, X )N X M) N (XNMY) N (XX M)
=[(L,NLN.NL) x YN [Xx (M, NM,N ... AM,)]
[For A x (BNC) = (A xB)N (AN C)]
= [(L, ML, N LY NX] X [(M, MM, N ... TM) N Y]
[For (A x B)N (C x D) = (ANC) x (BN D)]
= (L,NLN . NL)x (M,NM,N..NM,)

[ForL cXand M, CY V n]

- mL}[ﬁ]M} (1)

We suppose that B is base for T, on X generated by the elements of £ and C is a base for Von Y
generated by the elements of M.

As we know that the finite intersections of sub-base form the base for that topology.
In view of the above statements,
P q
ﬂLr eB ﬂMr eC
r=1 r=1
From (i), it follows that G is expressible as
G={BxC:Be B,Ce(}

Then G is a base for the product topology T on X x Y. (Refer Theorem 2).
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But G is obtained from the finite intersections of members of A. Notes
It follows that A is a sub-base for the product topology T on X x Y.
Theorem 4: The product of two second axiom spaces is a second axiom space.
Proof: Let (X, T,) and (Y, T,) be two second countable spaces.
Let (X x Y x T) be the product topological space.
To prove that (X x Y x T) is second countable.
Our assumption implies that 3 countable bases.

B,={B,:ie N}and {C,:i e N}
for X and Y respectively. Recall that

B={G, xG,;G, eT,G,eTy}
is a base for the topology T on X x Y.
Write

C={BxCijeN}=B xB,
B, and B, are countable = B, x B, are countable

= C is countable
By definition of base B
any (x,y) e NeT=3GxHeBst (x,y) eGXxHcN ...(1)
>xeGeT,yeHEeT,
:>EIBieBl,Cjest.t.xeBicG,ye Cch

This = (xy)eB,xCcGxHcN.

Thus any (x,y) € Ne T=3 B, x C € Cs.t. (x, y) € B, x B, N. By definition this proves that Cis
a base for the topology T on X x Y. Also C has been shown to be countable. Hence (X x Y, T) is
second countable.

Theorein 5: The product space of two Hausdorff space is Hausdorff space.
Proof: Let (X, T) be a product topological space of two Hausdorff space (X,, T,) and (X,, T,).
To prove that (X, T) is Hausdorff space.
Consider a pair of distinct elements (x,, x,) and (y,, y,) in X.
Case I. When X, =Yy,
then X, Y,y o (X X)) # (Y Yy
By the Hausdorff space property, given a pair of elements
X,, ¥, € X, s.t. x, # y,, there are disjoint open sets
Gz, H2 # X2 s.t.x, € Gz, y, € H2
Then X, x G, and X x H, are disjoint open sets in X. for
x, € X, x, € G, = (x,, x,) € X, xG,

v, €X,y, e H,=(y,y, € X, x H,.
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- Given a pair of distinct elements (x,, x,), (v,, y,) € X there are disjoint open subsets X, x G,,
X, x H, of Xs.t. (x, X)) € X, xG,, (y,, ¥, € X, X H,.

The leads to the conclusion that (X, T) is a Hausdorff space.

' Example 3: Let T, = {9, {1}, X,} be a topology on X, = {1, 2,3} and T, = {¢, X,, {a}, {b} {a, b},
{c,d}, {a, ¢, d}, {b, ¢, d}} be a topology for X, = {a, b, ¢, d}.

Find a base for the product topology T.

Solution: Let B, be a base for T, and B, be a base for T,. Then B = {B, x B,: B, € B,, B, € B,} is a base
for the product topology T.

We can take B, = {{1}, X}

B, = {{a}, {b}, {c, d}}.
The elements of B are
{1} x{a}, {1} x{b}, {1} x{c, d}, {1, 2, 3} x{a}, {1, 2, 3} x{b}, {1, 2, 3} x{c, d}.
That is to say

(L)), (L b)), (L0, (L))
B= {{(La),(2,a),(3,)}, {(1,b),(2,d),(3,b))
(1L,0),(2,0),(3,0),(Ld), (2,d), (3,d))

is a base for T.
Self Assessment

1.  Let X and X’ denote a single set in the topologies T and T’ respectively let Y and Y’ denote
a single set in the topologies U and U’ respectively. Assume these sets are non-empty.

(@) Show thatif T"> T and U’ © U, then the product topology on X’ x Y” is finer than the
product topology on X x Y.

(b)  Does the converse of (a) hold? Justify your answer.

4.2 Projection Mappings

Definition:

The mappings,

T :XXY—=X st T(x,y)=xV (x,y)e X*xY
n:XXY—=Y st T y)=y V (xy)e XxY

are called projection maps of X x Y onto X and Y spaces respectively.

Theorem 6: 1f (X, T) is the product space of topological spaces (X,, T,) and (X,, T,), then the
projection maps 7, and 7, are continuous and open.

Proof: Let (X, T) be a product topological space of topological spaces (X,, T,) and (X,, T,). Then
X=X xX.
1 2

Define maps
o X=X, s.t. (X, X)) =%, ¥V (x,%x,) € X

m,: X=X, s.t. (X, X)) =%, ¥V (x,X,) € X.
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Then 7, and 7, both are called projection maps on the first and second coordinate spaces Notes
respectively.

Step (i): To prove: projection maps are continuous maps.
Firstly, we shall show that , is continuous.

Let G c X| be an arbitrary open set.
' (G) ={(x, x,) € X:m(x, x,) € G}
={(x, x,) € X:x, € G}
={(x, x,) € X, x X, :x, € G}
=G x X2
= An open set in X.
For G is open in X, X, is open in X,
= G x X, is open in X.
= 7;'(G) is open in X.
Thus, we have prove that
any open set G ¢ X, = n;'[G] is open in X.
= 7, is continuous.

Similarly, we can prove that 7, is continuous map. Consequently, projection maps are continuous
maps.

Step (ii): To prove that projection maps are open maps. We shall first show that 7, is an open map.

Let G ¢ X be an arbitrary open set.

Let x, € m,[G] be arbitrary.

x, € I,[G] = 3(u,, u,) € G s.t. m,(u, u,) = X

=1u,=X, [ my(u, u) = u]

Now (u,, x,) € G

Let B be the base for the topology T on X.

By definition of base,

(u,x)eGeT=3U xU,e B st (u,x)eUxU,cG

= 7,(u, x,) € T,(U, x U,) C 1(G)

=x, e m,(U, x U,)) cn,(G)

=x,e U, cn,(G).

For m,(U, x U,) = {m,(x,, x,) : (x, x,) € U, x U}

={x:x,eU,x,elU}=U,

Given any x, € 7,[G] = Jopen set U, C X, s.t. x, € U, c ,[G].

This proves that x, is an interior point of 7,[G]. But x, is an arbitrary point of =,[G].
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This proves that 7,[G] is open in X,.
Any open set G c X
= 7,(G) is open in X,

This proves that the map n, : X — X, is an open map. Similarly, we can show that 7, is an open
map. Consequently, projection maps are open maps.

This completes the proof of the theorem.

Theorem 7: Let (X, T) be the product topological space of (X, T,) and (X,, T,).
Letn : X—> X, m,: X=X,

be the projection maps on the first and second co-ordinate spaces respectively.

Let f : Y — X be another map, where Y is another topological space. Show that f is continuous iff
n, o f and 7, o f are continuous maps.

Proof: Let X =X x X,
Let (X, T) be the product topological space of (X,, T)) and (X,, T,).
Let (Y, U) be another topological space.
Let B be the base for the topology T on X.
Let m:X—>X,
n, : X — X, be projection maps.
Let £:Y — X be another map.
Thenm of: Y — X
nof:Y—X, are also maps.
Let f be continuous.
To prove that 7, o f and =, o f are continuous maps.
By theorem 6, projection maps are continuous, i.e. 7, and m, are continuous maps.
Also f is given to be continuous.

This means that 7, o f, 7, o f are continuous maps. Conversely, suppose that 7, o f, n, o f are
continuous maps.

To show that f is continuous.
Let G c X be an arbitrary open set.
If we prove that f(G) is open in Y, the result will follow.
Let y € £(G) be an arbitrary, then f(y) € G.
f(y) is an element of X = X, x X, and hence it can be taken as f(y) = (x,, x,) € G
By definition of base,
(x,x)€eGeT=3U xU,eB s.t. (x,x)e U xU,cG

= m(x,x)e n(U, xU)cn(G)and
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(X, X,) € T,(U, x U)) C 1,(G) Notes
= x,e U cn(G)andx, e U, cn(G) (1)
For (U, x U,) = {m,(x,, x,) : (x,, x,) € U, x U}
={x:xelU,x,e U}
=U,
Similarly, (U, xU,)=U

(m, 0 £)(y)

2

m,(£(y)

7, (X, X,)

X

Similarly, (r, o f) (y) = x,
Thus, (1, 0 f)(y) = x,, (T, 0 f)(y) = X,
In this event (1) takes the form
(m, o f)(y) € U, Cnl(G)}
(m, 0f)(y) € U, cmy(G)
This y € (n, o f)* (U)) and
ye (m,o0f)" (U)
= ye[mof) (U)IN[(r,o0f)" (U] (3

7, o f, m, o f are given to be continuous and hence (r, o f) (U,) and (=, o f)™ (U,) are open
inY.

= [(mof)* (U)N[(m,of)*(U,)]is openin.
On taking (m, o f)"' (U)) =V, [r,0 f)" (U) = V,.
We have V, 1V, as an open set in Y.
According to (3), y € V,NV, =V (say)
anyve V=ve V,andveV,
= ve(mof)y'(U), v=(mof)'(U,)
= @of)(v)e U, [mo f)(v)e [,
= (@of)(v)e U cn(G)and
(m,0f) (v) e U,cn,(G) [from (2)]
= ve (mof)y'[n(G)andve (m,o0f)" [1,(G)]

= ve(flon')[n(G)]and

ve (flo n,') [n,(G)]
= vef(G)and Ve f(G)
anyve V=ve f1(G)

=V cf(G)
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Thus we have shown that
anyy € f1(G) = Janopenset VCYstye VcfiQ).

=  yis an interior point of f(G) and hence every point of {(G) is an interior point, showing
thereby f(G) is open in Y.

Theorem 8: The product topology is the coarser (weak) topology for which projections are
continuous.

Proof: Let (X x Y, T) be product topological space of (X, T,) and (Y, T,).

Let B be a base for T. Then

B={G, xG,:G eT,G,eTy}

The mappings, = :XxY—>X s.t. (X, y) =X

and XYY s.t. (X y)=y

are called projection maps.

These maps are continuous. [Refer theorem (4)]
Let T* be any topology on X x Y for which n_and n_are continuous.

To prove: T is the coarest (weakest) topology for which projections are continuous, we have to
show that T < T*.

For this, we have to show that
anyGe T=Ge T*
Let G € T, by definition of base,
GeT=B,cB s.t. G=U{B:Be B}
= G=U[G,*xG,:G,*xG,e B}
G, cX=G NX=G
G,cX=G,NX=G,
Then G=U{G,NX)x(G,NY):G,xG,e B}
=UlG, x G)N(XxY): G, x G, € B}
[For @axb)N(cxd)=(aNc)*x (bNd)]
or G={n(G)Nn'(G,):G,xG,eB} .. (1)
n :X*xY =X, G, €T, n is continuous
= 1 (G,) € T*

Similarly, n,'(G,) € T*

This implies n'(G,) N 7,'(G,) e T* be definition of topology.

In this event (1) declares that G is an arbitrary union of T* open sets and hence G is T* open set
and so G € T*.

anyGe T=Ge T*
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Notes

' Example 4: Let B be a member of the defining base for the product space X = x X, show
that the projection of B into any coordinate space is open.

or
Each projection is a continuous map.

Solution: Let B be a member of the defining base for the product space X = x X, so that B is
expressible as

B =x{X ti#],jy s j} X G],‘ x...xG,

Jm
where G, is an open subset of X; .

The projection map = is defined as

X=X,

X, if oa#j,dsjm
n,(B) = ” T
G, if aelji jrrjm}
In either case, T (B) is an open set.

Theorem 9: Let y_ be a fixed element of Y and let A = X x {y }. Then the restriction f or n_to A is
a homeomorphism of the subspace A of X x Y onto X. Also the restriction f of = to B={x} x Y
into Y is a homeomorphism, where x_ € X.

Proof: Let (X x Y, T) be the product topological space of (X, T,) and (X, T,). Letx € Xand y € Y be
arbitrary. Then the projection maps are defined as

nXXY > Xstm (x,y)=x
and 7 :XxY—>Xstw (Xy)=y.
Let x, e Xand y_ € Y be fixed elements.
Let f_be the restriction of #_to A so thatf isamaps.t.f : A—> X
st. f(xy)=x
To prove that f_is a homeomorphism, we have to prove that
(i) f is one-one onto
(if) f is continuous
(iii) f;' is continuous

f (x,y,) =1 (x,,¥) = x, =x,, by definition of f

= Xy ¥, = (X ¥,)-

Hence f_is one-one.

Givenanyx € X,3(x,y ) € As.t.f (x,y)=x

This proves that f is onto. Hence the result (i).

n_is a projection map = x_is continuous.

Also f_is its restriction = f_is continuous. Hence (ii).

LOVELY PROFESSIONAL UNIVERSITY 51



Topology

52

Notes

(iv) To prove f! : X = A is continuous. We have to prove: given any V open subset of A.

[£']7 (V) = £ (V) is open in X.
Now V is expressible as V = A (1B, where B € T.
Let B be a base for T. Then

B={GxH:GeT,HeT}
By definition of base,

BeT=3B cBst

B=U{GxHeT xT,:GxHeB}
Then ANB=U{AN(GxH):GxHeB}

=U{Xx{yhN(GxH):GxHeB}

[ U{Gx{y,):GxHeB,} ify,eH
"~ lorU{Gx¢ :GxHeB,} ify, ¢H

_ U{Gxy,}:GxHeB,} ify eH
- or ¢ : ify, eH

Moreover ¢ is an open set and an arbitrary union of open sets is open.

In either case, f (A B)isopeninX, ie., f (V)is openin X.
Self Assessment
2. Prove that the collection

S= {TCIl(U) | U open in X} U {n;l (V)| V openin Y}

is a sub basis for the product topology on X x Y.

3. A map f: X — Y is said to be an open map if for every open set U of X, the set f(U) is open
inY, show that m, : X XY — Xand m,: X x Y — Y are open maps.

4.3 Summary

o If X and Y are topological spaces, the product topology on X x Y is the topology whose
basisis{AxB:Ae T, Be T}

o Given any product of sets X x Y, there are projections maps n_and r, from X x Y to X and
toY given by (x, y) = xand (x, y) = y.

o If (X, Y) is the product space if topological spaces (X,, T,) and (X,, T,), then the projection
maps 7, and 7, are continuous and open.

4.4 Keywords

Basis: A collection B of open sets in a topological space X is called a basis for the topology if
every open set in X is a union of sets in B.
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Coarser: Let T and T” are two topologies on a given set X. If T" © T, we say that T is coarser Notes
thanT".

Hausdorff space: A topological space (X, T) is called a Hausdorff space if a given pair of distinct
pointsx,y e X,3G HeTst.xeG, YeH GNH=4¢.

Interior point: Let (X, T) be a topological space and A c X. A point x € A is called an interior
point of A iff 3 an open set G such that x € G C A.

4.5 Review Questions

1. Let B, B, ..., B, be the bases for topological spaces (X,, T,), (X,, T,), ..., (X, T ) respectively.
Then prove that the family {O, x O, x ... xO_:0,€ B,i=1,2, ..., n}is a basis for the product
topology on X, x X, x ... x X .

2. Prove that the product of any finite number of indiscrete spaces is an indiscrete space.

3. Let X, and X, be infinite sets and T, and T, the finite-closed topology on X, and X,
respectively. Show that the product topology, T on X, x X, is not the finite-closed topology.

4. Let (X,, T,), (X,, T,) and (X,, T,) be topological spaces. Prove that
(X, T) x (X, TYI x (X, Ty) = (X, T)) * (X, T,) * (X, Ty)
5. (@) Let(X,T,)and (X, T,) be topological spaces. Prove that
X, T)x (X, T)=(X, T,)x X, T)

(b)  Generalise the above result to products of any finite number of topological spaces.

4.6 Further Readings

N

Books H.F. Cullen, Introduction to General Topology, Boston, MA: Heath.

K.D. Joshi, Introduction to General Topology, New Delhi, Wiley.
S. Willard, General Topology, MA: Addison-Wesley.
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5.5 Further Readings

Objectives

After studying this unit, you will be able to:

o Describe the concept of subspace of topological space;

o Explain the problems related to subspace topology;

o Derive the theorems on subspace topology.

Introduction

We shall describe a method of constructing new topologies from the given ones. If (X, T) is a
topological space and Y < X is any subset, there is a natural way in which Y can “inherit” a

topology from parent set X. It is easy to verify that the set U n'Y, as U runs through T, is a
topology on Y. This prompts the definition of subspace or relative topology.

5.1 Subspace of a Topological Space

Definition: Let (X, T) be a topological space, V be a non empty subset of X and T, be the class of
all intersections of Y with open subsets of X i.e.

T,={YnU:U T}

Then T, is a topology on Y is called the subspace topology (or the relative topology induced on
Y by T. The topological space (Y, T,) is said to be a subspace of (X, T).

]

Note LetAcYcX

(1) ItAisopeninY,Y isopeninX, then A is open in X.

(@) TItAisclosedin, Y is closed in X, then A is closed in X.
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Remark: Consider the usual topology T on R and the relative topology U on Y = [0, 1]. Then Notes

(O, %) is U-open as well as T-open [%, 1} = [%, 2] ~[0,1] =G~ [0,1]

where G= [%, 2] eT

(%, 1:|=GOY.

This shows that (%, 1} is U-open but not T-open

(4332 oo
=GnNnY

where G= (1 2] eT
2°3

(l,g) e U and also (l,g) eT.
2°3 2°3

Similarly, (0, ;} is not U-open as well as it is not T-open.

5.1.1 Solved Examples on Subspace Topology

' Example 1: LetX = {a, b, ¢, d, e, f}

={X, ¢, {a}, {c,d}, {a,c,d}, {b,c,d, e f}}
and Y ={b, c, e}.
Then the subspace topology on Y is
T, = {Y, ¢, {c}.

' Example 2: Consider the topology

¢, {1}, {2, 3}, X} on

= {
={1,2,3}and a subset Y = {1, 2} of X.
Then Ynd=0¢
N {1} ={1},
Y n{2,3}={2}and

YNnX=V.

{
{

Hence, the relative topology on Y is

T, ={¢, {1}, {2}, V}.
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Theorem 1: A subspace of a topological space is itself a topological space.
Proof:
i ¢eT and ¢nY=¢ = ¢eT,
XeT and XNnY=Y = YeT,
(ii) Let{H, : o € A} be any family of setsin T..
ThenVa e A3asetG e TsuchthatH =G, nY
U{H, :aeA=U{G, NnY:aeA}
=[U{G,:aeAlnYeT,
sinceU{G, :aeAleT
(iii) LetH, and H, be any two sets in T,
ThenH, =G, nYand H,=G,nY forsome G,, G, € T.
H nH, =G nY)N(G,NY)
=G NG)NnYeT,sinceG NG, eT

Hence, T, is a topology for Y.

' Example 3: Let (Y, V) be a subspace of a topological space (X, T) and let (Z, W) be a
subspace of (Y, V). Then prove that (Z, W) is a subspace of (X, T).

Solution: Given that X, Vyc(X,T) ...(1
and (Z,W)yc (Y, V) .2
We are to prove that (Z,W)yc (X,T)

NN

From (1) and (2), we get

ZcYcX ...(3)
From (1), V={GNY:GeT} ...(4)
and (2), W={HnNnZ:H eV} ...(5)
From (4) and (5), we get H=GnY
= HNnZ=GnY)nZ
=Gn(YNn2Z)
=GnZ [Using (3)]
50, HnZ=GnZ ...(6)

Using (6) in (5), we get
W={GNZ:GeT}
= Z,W)c (X, T)
Hence, (Z, W) is a subspace of (X, T).

' Example 4: If T is usual topology on R, then find relative topology U on N 'c R.

Solution: Every open interval on R is T-open set.

Let G=(n71,n+lj,ne/\/.
2 2
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Then G € T. Now U={GNN:GeT} Notes
If G=(nfl,n+1)
2 2

1 1
then GNnN= (nf—,n+—) NN

2 2

= {n}

Or U={{n}:neM

Every singleton set of Ais U-open set.

As an arbitrary subset of N is an arbitrary union of singleton sets and so every subset of N is
U-open.

Consequently, U is a discrete topology on N.

' Example 5: Define relative topology. Consider the topology : T = {¢, {a}, {b, ¢}, {a, b, ¢}, X}
onX={a,b,c, d}. If Y ={b, c, d} is a subset of X, then find relative topology on Y.

Solution: If U is relative topology on ), then

U={GNY,GeT)
N U={pnY, {a}nY,{b,cdnY, {abcnY, XY}
= U= 1o, ¢, {b, c}, {b, c}, Y}
= U=1{d,Y, {b,c}}

' Example 6: Let X be a topological space and let Y and Z be subspaces of X such that
Y c Z. Show that the topology which Y has a subspace of X is the same as that which it has as a
subspace of Z.

Solution: Let (X, T) be a topological space and Y, Z be subspaces of X such that

YcZcX
Further assume Y, T) c(ZT)c(X,T) ...(1)
(Y, T,) c(X,T) ...(2)
We are to show that T, =T,

By definition (1) declares that
1 ={GNnY:GeT} ..(3)

—~
N
=

T
T,={HNZ:HeT)
T,={PNZ:PeT} .5

~

Using (4) in (3), we get
GNnY=HnZ)nY=HnNn(YNnZ)=HnNnY
Now, (3) becomes
T,=HNnY:HeT} ...(6)
From (5) and (6), we get T, = T..
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Theorem 2: Let (Y, U) be a subspace of a topological space (X, T). A subset of Y is U-nhd. of a point
y €Y iff it is the intersection of Y with a T-nhd. of the pointy € Y.

Proof: Let (Y, U) < (X, T) and y € Y be arbitrary, theny € X.

(0

(ID)

Let N, be a U-nhd of y, then
3 Vel st. yeVcN,
To prove : N, = N, nY for some T-nhd N, of y.
yeVeU=3GeTst.V=GnY
>yeGnY=yeGyeY
Write N,=N, uG.
Then N, cN, Gc N,
s0, (2) impliesy € G N,, where G € T
This shows that N, is a T-nhd of y.

N,nY=(N,uG)nY
=(N,N"Y)u(GnY)
=(N,nY)uV
=N,uV
=N, w Ny,cY and VcN,

Finally, N, has the following properties
N,=N,nY and N,isaT-nhdofy.
This completes the proof.
Conversely, Let N, be a T-nhd. of y so that
3 AeT st yeAcN,

We are to prove that N, N Y is a U-nhd of y.

yeY,yeA=>yeYnA

>yeAnYcN,nY

AeT=>AnYelU

Thus, wehavey e ANYcN,nY, where AnY e U.
=N, uYisalUnhdofy.

[by (1]

[by (3]
[by ()]

' Example 7: Let (Y, U) be a subspace of a topological space (X, T). Then every U-open set
is also T-open iff Y is T-open.

Solution: Let (Y, U) = (X, T) and let

any

GeU=>GeT

i.e. every U-open set is also T-open set.

To show: Y is T-open, it is enough to prove thaty € T.
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Let G € U be arbitrary, then G € T, by (1). Notes
We can write G =H N 'Y for some T-open set H.
Now,G=HnNnY,GeT=>HnYeT
AgainHNYeT HeTandYcX=YeT
Conversely, let (Y, U)c (X, T)and letY e TforanyGe U=>G e T
GeU=>3FAeT st. G=ANY
Again AecT, YeT=AnNnYeT=GeT

Finally,anyG e U =G e T.

5.1.2 Basis for the Subspace Topology

' Example 8: Consider the subset Y = [0, 1] of the real line R, in the subspace topology. The
subspace topology has as basis all sets of the form (a, b) 'Y, where (a, b) is an open interval in
R, such a set is of one of the following types:

(a,b) ifaandbareinY,
[0,b) ifonlybisinY,

(@ b)ny= a1l ifonlyaisin,
y

Yor¢ if neitheranorbisin.

By definition, each of these sets is open in Y. But sets of the second and third types are not open
in the larger space R.

Note that these sets form a basis for the order topology on Y. Thus, we see that in the case of the
set Y = [0, 1], its subspace topology (as a subspace of R) and its order topology are the same.

' Example 9: Let Y be the subset [0, 1) U {2} of R. In the subspace topology on Y the one-
point set {2} is open, because it is the intersection of the open set (3,3) with Y. But in the order

topology on Y, the set {2} is not open. Any basis element for the order topology on Y that
contains 2 is of the form

{x|xeYanda<x<2}
for some a € Y; such a set necessarily contains points of Y less than 2.

Lemma 1: If B is a basis for the topology of X, then the collection B, = {BN Y : B € B} is a basis for
the subspace topology on Y.

Proof: Given U-open in X and giveny € U N'Y, we can choose an element B of 55 such that
yeBcU ThenyeBnYcUnNnY
Now as we know

“If X is a topological space and C is a collection of open sets of X such that for each open set U of
X and each x in U, there is an element c of C such that x € C = U. The C s a basis for the topology
of X.”

Thus, we can say that B, is a basis for the subspace topology on Y.
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Lemmna 2: Let Y be a subspace of X. If U is openin Y and Y is open in X, then U is open in X.
Proof: Since U is open in Y,

U=YNV for some setV open in X.
Since Y and V are both open in X,

soisY N V.
5.1.3 Subspace of Product Topology
Theorem 3: If A is a subspace of X and B is a subspace of Y, then the product topology on A x B is

the same as the topology A x B inherits as a subspace of X x Y.

Proof: The set U x V is the general basis element for X x Y, where U is open in X and V is open
inY.

2., (Ux V) n (A x B) is the general basis element for the subspace topology on A x B.
Now, (Ux V)N (AxB)=(UnA)x(VNB).

Since U m A and V N B are the general open sets for the subspace topologies on A and B,
respectively, the set (U N A) x (V n B) is the general basis element for the product topology on
A x B.

So, we can say that the bases for the subspace topology on A x B and for the product topology on
A x B are the same.

Hence, the topologies are the same.

5.2 Summary

o A subspace of a topological space is itself a topology space.

o If Bis a basis for the topology of X, then the collection B, = {B Y : B € B} is a basis for the
subspace topology on Y.

o Let Y be a subspace of X. If U is openin Y and Y is open in X, then U is open in X.
o If A is a subspace of X and B is a subspace of Y then the product topology on A x B is the

same as the topology A x B inherits as a subspace of X x Y.

5.3 Keywords

Basis: Let X be a topological space A set B of open set is called a basis for the topology if every
open set is a union of sets in B.

Closed Set: Let (X, T) be a topological space. Let set A € T. Then X-A is a closed set.
Intersection: The intersection of A and B is written A "B.x e ANB < x e Aand x € B.

Neighborhood: Let (X, T) be a topological space. A — X is called a neighborhood of a point x € X
if 3G e Twithx e Gs.t. GC A.

Open set: Let (X, T) be a topological space. Any set A € T is called an open set.

Product Topology: Let X and Y be topological space. The product topology on X x Y is the
topology having as basis the collection B of all sets of the form U x V, where U is an open subset
of X and V is an open subset of Y.
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Subset: If A and B are sets and every element of A is also an element of B, then A is subset of B Notes
denoted by A c B.

Subspace: Given a topological space (X, T) and a subset S of X, the subspace topology on S is
defined by

T={SnU: UeT}

Topological Space: It is a set X together with T, a collection of subsets of X, satisfying the
following axioms. (1) The empty set and X are in T; (2) T is closed under arbitrary union and
(3) T is closed under finite intersection. Then collection T is called a topology on X.

5.4 Review Questions

1. Let X=1{1,2,3,4,5}, A={1,2,3} c Xand
T={o X, {1}, {2}, {1, 2}, {1, 4,5}, {1, 2, 4, 5}}.
Find relative topology T, on A.

2. Let (X, T) be a topological space and X* — X. Let T* be the collection of all sets which are
intersections of X* with members of T. Prove that T* is a topology on X*.

3. Show thatif Y is a subspace of X, and A Y, then the topology A inherits as a subspace of
Y is the same as the topology it inherits as a subspace of X.

4. If Tand T’ are topologies on X and T’ is strictly finer than T, what do you say about the
corresponding subspace topologies on the subset Y of X?

5. Let A be a subset of X. If B is a base for the topology of X, then the collection
B,={BNA:Be B}
is a base for the subspace topology on A.
6. Let (Y, U) be a subspace of (X, T). If F and F, are the collections of all closed subsets of (X, T)
and (Y, U) respectively, then F, cF < Y € F.

5.5 Further Readings

N

Books Willard, Stephen. General Topology, Dover Publication (2004).

Bourbaki, Nicolas, Elements of Mathematics: General Topology, Addison-Wesley
(1966).

Simmons. Introduction to Topology and Modern Analysis.

James & James. Mathematics Dictionary.
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Unit 6: Closed Sets and Limit Point

CONTENTS
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6.3 Summary
6.4 Keywords
6.5 Review Questions

6.6  Further Readings

Objectives

After studying this unit, you will be able to:

° Define closed sets;

° Solve the problems related to closed sets;

° Understand the limit points and derived set;
o Solve the problems on limit points.
Introduction

On the real number line we have a notion of ‘closeness’. For example each point in the sequence
1..01..001..0001..00001.. is closer to O than the previous one. Indeed, in some sense 0 is a limit
point of this sequence. So the interval (0, 1] is not closed as it does not contain the limit point 0.
In a general topological space me do not have a ‘distance function’, so we must proceed differently.
We shall define the notion of limit point without resorting to distance. Even with our new
definition of limit point, the point 0 will still be a limit point of (0, 1]. The introduction of the
notion of limit point will lead us to a much better understanding of the notion of closed set.

6.1 Closed Sets

A subset A of a topological space X is said to be closed if the set X-A is open.

' Example 1: The subset [a, b] of R is closed because its complement

R —[a, b] = (-0, @) U (b, + ) is open.

Similarly, [a, + «) is closed, because its complement (-, a) is open. These facts justify our use of
the terms “closed interval” and “closed ray”. The subset [a, b) of R is neither open nor closed.
' Example 2: In the discrete topology on the set X, every set is open; it follows that every

set is closed as well.
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Theorem 1: Let X be a topological space. Then the following conditions hold: Notes
(@) ¢ and X are closed.

(b)  Arbitrary intersections of closed sets are closed.

()  Finite unions of closed sets are closed.

Proof:

(@) ¢ and X are closed because they are the complements of the open sets X and ¢, respectively.

(b)  Given a collection of closed sets {Aa}m , we apply De Morgan's law,

X-NA,=U(X-A,).

ae] ae]

Since the sets X—A_ are open by definition, the right side of this equation represents an

arbitrary union of open sets, and is thus open. Therefore, N A_ is closed.

()  Similarly, if A, is closed fori =1, ..., n, consider the equation

s

X-NA, =

1 i

(X_Ai)~

-

i

The set on the right side of this equation is a finite intersection of open sets and is therefore
open. Hence U A is closed.

Theorem 2: Let Y be a subspace of X. Then a set A is closed in Y if and only if it equals the
intersection of a closed set of X with Y.

Proof: Assume that A = C N Y, where C is closed in X. Then X — C is open in X, so that
(X=C)nYisopeninY, by definition of the subspace topology. But (X -C) nY =Y — A. Hence
Y - Aisopenin, so that A is closed in Y. Conversely, assume that A is closed in Y. Then Y — A
is open in Y, so that by definition it equals the intersection of an open set U of X with Y. The set
X-Uisclosed in X and A =Y n (X - U), so that A equals the intersection of a closed set of X with
Y, as desired.

Example 3: Let (Y, U)c (X, T)and AcCY.
Then A is U-closed iff A =F n'Y for some T closed set F.
or
A is U-closed iff A is the intersection of Y and a T-closed F.
Solution: Let (Y, U) = (X, T)and A c Y, i.e. (Y, U) is subspace of (X, T).
To prove that A is U-closed iff
A =FnNY for some T-closed set F.
A is U-closed < Y — A is U-open.
Then Y — A can be expressed as:
Y-A=GnNY for some T-open set G.
From which A=Y-GNnY=XNY-GNnY
=X-G)nY
=FNY, where F = X - G is a T-closed set.

This completes the proof.
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Self Assessment

1. Show that if A is closed in Y and Y is closed in X, then A is closed in X.
2. Show that if A is closed in X and B is closed in Y, then A x B is closed in X x Y.

6.2 Limit Point

Let (X, T) be a topological space and A — X. A point x € X is said to be the limit point or
accumulation point of A if each open set containing x contains at least one point of A different
from x.

Thus it is clear from the above definition that the limit point of a set A may or may not be the
point of A.

=7

Note Limit point is also known as accumulation point or cluster point.

' Example 4: Let X = {a, b, ¢} with topology T = {d), {a,b}, {c}, X} and A = {a}, then b is the
only limit point of A, because the open sets containing b namely {a, b} and X also contains a point
of A.

Where as “a’ and ‘b’ are not limit point of C = {c}, because the open set {a, b} containing these
points do not contain any point of C. The point ‘c’ is also not a limit point of C, since then open
set {c} containing ‘c’ does not contain any other point of C different from C. Thus, the set C = {c}
has no limit points.

Example 5: Prove that every real number is a limit point of R.
Solution: Let x € R

then every nhd of x contains at least one point of R other than x.

. x is a limit point of R.

But x was arbitrary.

. every real number is a limit point of R.

' Example 6: Prove that every real number is a limit point of R — Q.

Solution: Let x be any real number, the every nhd of x contains at least one point of R - Q other
than x.

x is a limit point of R - Q
But x was arbitrary

every real number is a limit point of R - Q.
6.2.1 Derived Set

The set of all limit points of A is called the derived set of A and is denoted by D(A).
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T Notes

Notes 1. In terms of derived set, the closure of a set A — Xis defined as A = A + D(A)
=AUD(A).
2. If every point of A is an isolated point of A, then A is known as isolated set.

Example 7: Every derived set in a topological space is a closed.
Solution: Let (X, T) be a topological space and A — X.

Aim: D(A) is a closed set.

Recall that B is a closed set if D(B)  B.

Hence D(A) is closed iff D[D(A)] = D(A).

Let x€D[D(A)] be arbitrary, then x is a limit point of D(A) so that (G —{x})"D(A)# ¢VG €T
with x € G.

= (G-{x})nA # 9= xeD(A).
Hence the result.

[For every nhd of an element of D(T) has at least one point of A].

' Example 8: Let (X, T) be a topological space and A c X, then A is closed iff A" c A or
ADD(A).

Solution: Let A be closed.

=  A“isopen.

Letx € A,

Then A is an open set containing x but containing no point of A other than x.
This shows that x is not a limit point of A.

Thus, no point of A°is a limit point of A.

Consequently, every limit point of A is in A and therefore
A'cA

Conversely, Let A’ c A

we have to show that A is closed.

Let x be arbitrary point of Ac.

Then x € A°

= xgA

= xgAandxeA

=  x ¢ A and x not a limit point of A.

=

Jan openset Gsuchthatx e GandGnA=¢

LOVELY PROFESSIONAL UNIVERSITY 65



Topology

66

Notes

= x e Gc A
=  Ac°is the nhd of each of its point and therefore A¢ is open.

Hence A is closed.

' Example 9: Let (X, T) be a topological space and A — X. A point x of A is an interior point
of A iff it is not a limit point of X — A.

Solution: Let (X, T) be a topological space and A — X. Suppose a point x of A is an interior point of
Asothatx € A, x € A°.

To prove that x is not a limit point of X — A i.e,, x ¢ D(X - A)
xe A=31GeTwithxeGstGc A
=>GnNnX-A)=¢
= (G-{x})n(X-A)=¢ [ xe(X-A)]
G is an open set containing set.
(G-{x})n(X-A)=¢
This immediately shows that x ¢ D(X — A).

Conversely suppose that (X, T) is topological space and A c X s.t. a point x of A is not a limit
point of (X — A).

To prove that x € A°.
By hypothesis x € A, x ¢ D(X - A)
xgD(X-A)=3GeTwithx e Gs.t. (G-{x})n(X-A)=¢
= GNnX-A)=¢ [ xegX-A]
= GcA.
x € A=3G e Twithx € Gs.t. G c A. This proves that x € A°.

Self Assessment

3. Let x be a topological space and let A, B be subset of x. Then.

@ ¢'=¢orD(@)=¢
(b)) AcB=A'cB orAcB= D(A)cD(B);

(©) xeA’:xe(Gf{x})l;

6.3 Summary

o A subset A of a topological space X is said to be closed if the set X - A is open.

o Let (X, T) be a topological space and A c X. A point x € X is said to be the limit point of A
if each open set containing x contains at least one point of A different from x.

o The set of all limit points of A is called the derived set of A and is denoted by D(A).
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6.4 Keywords Notes

Discrete Topology: Let X be any non-empty set and T be the collection of all subsets of X. Then T
is called discrete topology on the set X.

Open and Closed Set: Let (X, T) be a topological space. Any set A € T is called an open set and
X —Ais aclosed set.

Subspace: Let (X, T) be a topological space and a subset S of X, the subspace topology on S is
defined by T, ={SNU|UeT}.

6.5 Review Questions

1. Let X be a topological space and A be a subset of X. Then prove that A is the smallest
closed set containing A.

2. Prove that A is closed iff A =A.

3. Let(Y,U)c (X, S)and A c Y. Prove that A point y € Y is U-limit point of A iff y is a T-limit
point of A.

4. Show that every closed set in a topological space is the disjoint union of its set of isolated
points and its set of limit points, in the sense that it contains these sets.

5. Show that if U is open in X and A is closed in X, then U — A is openin X, and A — U is closed
in X.

6.6 Further Readings

N

Books J. L. Kelley, General Topology, Van Nostrand, Reinhold Co., New York.
S. Willard, General Topology, Addison-Wesley, Mass. 1970.
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Objectives

After studying this unit, you will be able to:

o Understand the concept of continuity;

° Define Homeomorphism;

o Define open and closed map;

o Understand the theorems and problems on continuity.
Introduction

The concept of continuous functions is basic to much of mathematics. Continuous functions on
the real line appear in the first pages of any calculus look, and continuous functions in the plane
and in space follow not far behind. More general kinds of continuous functions arise as one goes
further in mathematics. In this unit, we shall formulate a definition of continuity that will
include all these as special cases and we shall study various properties of continuous functions.

7.1 Continuity

7.1.1 Continuous Map and Continuity on a Set

Definition: Let (X, T) and (Y, U) be any two topological spaces.
Letf: (X, T) — (Y, U) be a map.

The map f of said to be continuous at x, € X is given any U-open set H containing f(x ), 3a T-open
set G containing x, s.t. f{(G)  H.

If the map in continuous at each x € X then the map is called a continuous map.
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Definition: Continuity on a set. A function Notes
£:(X, T)=(Y,U)

is said to be continuous on a set A c X if it is continuous at each point of A.

—]]

Notes The following have the same meaning:
(a) fisacontinuous map.
(b) fisa continuous relative to T and U

(¢) fis T—U continuous map.

' Example 1: Let R denote the set of real numbers in its usual topology, and let R, denote
the same set in the lower limit topology. Let

f:R->R,
be the identity function;
f(x) = x for every real number x.

then f is not a continuous function; the inverse image of the open set [a, b) of R, equals itself,
which is not open in R. On the other hand, the identity function.

g:R,—>R

is continuous, because the inverse image of (a, b) is itself, which is open in R,.
7.1.2 Homeomorphism

Definition: A map f: (X, T) — (Y, U) is said to be homeomorphism or topological mapping if
(a) fis one-one onto.
(b) fand f' are continuous.

In this case, the spaces X and Y are said to be homeomorphic or topological equivalent to one
another and Y is called the homeomorphic image of X.

' Example 2: Let T denote the usual topology on R and a any non-zero real number. Then
each of the following maps is a homeomorphism

@ f:RT)>RT)stf(x)=a+x

(b) f:(R T)> (R T)s.t f(x) = ax

(© f:(RT)—> (R T)s.t f(x) =x* where x € R.

' Example 3: Show that (R, U) and (R, D) are not homeomorphic.

Solution: Every singleton is D-open and image of a singleton is again singleton which is not
U-open. Consequently no one-one D — U continuous map of R onto R can be homeomorphism.
From this the required result follows.
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7.1.3 Open and Closed Map

Definition: Open Map

A map f: (X, T) > (Y, U) is called an open or interior map if it maps open sets onto open sets i.e.
if

any G e T=f(G) e U.
Definition: Closed Map
Amapf: (X, T) —> (Y, U) is called a closed map if

any T-closed set f = f(F) is U-closed set.

' Example 4: (i) Let T denote the usual topology on R. Let a be any non-zero real number,
Then each of the following map is open as well as closed.

@ f:RT->RTstf(x)=a+x

(b) f: R T)—> R T)s.tf(x)=ax

In this case if a = 0, then this map is closed but not open.

(i) The identity map f: (X, T) = (X, T) is open and as well as closed.

(iii) A map from an indiscrete space into a topological space is open as well as closed.

(iv) A map from a topological space into a discrete space is open as well as closed.

=7

Note Proof of (i) b,
Leta#0and A = (b, c) € T arbitrary.
Then f£(b) = ab, f(c) = ac.

f(A) = (ab, ac) €]

i.e., image of an open set is an open set under the map f(x) = ax, a # 0. Hence this map is
open.

Similarly f([b,c])=[ab,bc], i.e. image of a closed set is closed.
.. fis aclosed map
Consider the case in which a =0
Then f(x) =ax=0,VxeR
f(x) =0V x e R

Now £([b,c])={0} = A Finite set = A closed set for a finite set is a T-closed set.
Now the image of a closed set is closed and hence f is a closed map.
Again f (5, 6) = {0} # an open set.

.. image of an open set is not open.

Consequently, f is not open.
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7.1.4 Theorems and Solved Examples Notes

Theorem 1: The function f: (X, J) = (Y, U) is continuous iff f* (V) is open in X for every open set
VinY.

Proof: Let f: (X, J) = (Y, U) be a map.

(i) Suppose f is continuous. Let G be an open subset of Y.

To prove that {*(G) is open in X.

If £(G) = ¢, then ' (G) € J.

If £ (G) # ¢, then Ix € {7 (G) so that f(x) € G.

Continuity of f = f is continuous at x.

=>3He]Jst xeHand f(H) cG.
=>xeHcf!'(G),Hc].

Thus we have shown that £(G) is a nhd of each of its points and so f(G) is J-open.

Conversely, suppose that f : (X, J) = (Y, U) is a map such that f*(V) is open in X for each open set
vcy.

To prove that f is continuous.

Let V € U be arbitrary.

Then, by assumption, f* (V) is open in X.

Take U=f"(V),sothatU e ].

ie FU =f(f"(V))cV,orf (U)c V.

givenany VeU, 3 U e Js.t. f(U) c V.

This proves that f is a continuous map.

Theoremn 2: A map f: X — Y is continuous iff £1(C) is closed in X for every closed set C c Y.

A map f: (X, d) = (Y, p) be continuous iff f*(F) is closed in X V F c Y is closed where (X, d) and
(Y, p) are metric spaces.

Proof: Let f : X > Y be a continuous map.

To prove that f(c) is closed in X for each closed set C c Y.

Let C c Y be an arbitrary closed set.

Continuity of f implies that f(Y — C) is open in X. (Refer theorem (1))
ie. fYY)-f1(C) is open in X.

ie. X-fYC)isopenin X.

or fYC)is closed in X.

Conversely, suppose that f : (X, T) — (Y, U) is a map such that f*(C) is closed for each closed set
ccy.

To prove that f is continuous.
Let G c Y be an arbitrary open set, then Y — G is closed in Y.
By hypothesis, (Y — G) is closed in X.
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ie, fYY)-fY(G) is closed in X,
ie, X-fY(G) is closed in X,
ie. fYG) is open in X,

any G C Y is open = f!(G) is open in X
This proves that f is continuous map.

Theorem 3: Let f : (X, T) = (Y, U) be a map, Let S be a sub-base for the topology U on Y. Then f is
continuous iff £1(S) is open in X whenever S € S

or
f is continuous < the inverse image of each sub-basic open set is open.

Proof: Let f : (X, T) = (Y, U) be continuous map. Let S be a sub-base for the topology U on Y. Let
S € S be arbitrary.

To prove that f1(S) is open in X.
SeS=SeU(+w ScU=SisopeninY)
= f1(S) is open in X, (by Theorem 1).

Conversely, suppose that f : (X, T) = (Y, U) is a map such that f*(S) is open in X whenever S € S,
S being a sub-base for the topology U on Y. Let B be a base for Uon Y.

To prove that f is continuous.
Let G c Y be an open set, then G € U.
By definition of base,
GeU=3B,cBst.G=U{B:BeB} ...(1)

By the definition of sub-base, any B € B can be expressed as

B= Q S; for same choice of S, S,, ... S € S

n

r%B)sz[f1&}=£y4(a) )

By hypothesis, f'(S) is open in X, Being a finite intersection of open sets in X, q £7(S,) is open

i

in X, i.e. f(B) is open in X

ie. f1(G) = f'[U{B:Be B }]

u[f'(B):BeB, |
= An arbitrary union subsets of X
= open subset of X.
f1(G) is open in X.
Thus we have shown that
any G c Y = f!(G) is open in X.

This proves that f is continuous.
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Theorem 4: Let (X, T) and (Y, U) be topological spaces. Notes

Letf: (X, T) > (Y, U) be amap. Then f is continuous iff f*(B) is open for every B € B, Bbeing a base
forUonY.

or
f is continuous iff the inverse image of each basic open set is open.
Proof: Let (X, T) and (Y, U) be topological spaces.
Let B be a base for Uon Y. Let f : X = Y be a continuous map.
To prove that f*(B) is open in X for every B € B

BeB=BeU

( BcU=BisopeninY.)
=  f!(B) is open in X. Then f is continuous.

Conversely, suppose that f : X — Y is map such that {'(B) is open in X for each B € B, B being a
base for the topology U on Y. Let G € U be arbitrary. Then, by definition of base,

B, cBst.G=uU{B:BeB,}
f1(G)=f"u{B:BeB,}
=u{f"(B):BeB,}

= An arbitrary union of open subsets of X
[+ f'(B) is open in X, by assumption]
=  An open subset of X.
f1(G) is open in X

Starting from an arbitrary open subset G of Y we are able to show that f{*(G) is open in X,
showing thereby f is continuous.

Theorem 5: To show that a one-one onto continuous map f : X — X' is a homeomorphism if f is
either open or closed.

Proof: For the sake of convenience, we take X' =Y.

Suppose f: (X, T) = (Y, V) is one-one onto and continuous map. Also suppose that f is either open
or closed.

To prove that f is a homeomorphism, it is enough to show that f* is continuous. For this we have
to show that.

f'(B)c £ (B). Forany setBc Y.

BcY=f"(B)c X is closed set

Also f is a closed map.

= f[f‘l(B)]:[f(f‘l(B))}
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£1(B) <f(B)
= f{f7(B)} ct{f(B)}
= [£{i®)}] c[f{f’l(B)}]
= [{i'®)}] ' (B)}
= ff(B) cf[f(B)]
= f1(B) cf(B)
= f1is continuous.

Similarly we can show that if f is open, that f is continuous

Theorem 6: A map f: (X, T) — (Y, V) is closed iff

f(A)C f(A) for every A c X.

Proof: Let (X, T) = (Y, V) be closed map and A < X arbitrary.

To prove f(A)Cf(A)

A is closed subset of X, f is closed.

=  f(A) is closed subset of Y.

= f(A)=f(A)

But AcA

= f(A)cf(A)

= f(A)cf(A)

= f(A)cf(A)=f(A),By (1)

U

(A

cf(A),

Conversely, suppose f(A)c f(A)V A cX.

To prove that f is closed.

Let F be a closed subset of X so that F=F

F=F = {(F) = {(F)

74
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Also, by (2), f(F) c £(F) Notes

Combining this with (3),

(F

-
~

c {(F)

But f(F)cf(F) [For C = C is true for any set C]

Combining the last two.

(F) = £(F).

=  f(F) is closed.

[

Thus F is closed. = {(F) is closed.
f is closed map.

Theorem 7: A function f : (X, T) — (Y, V) is continuous iff
[£'(B)] >f'(B°), B Y.
or  f1(B)c[f(B)]

Proof: Let f : (X, T) — (Y, V) be a topological map. Let B — Y be arbitrary.

(i)  Suppose f is continuous.
To prove that [f*(B)]o > f7(B°)

BcY=B%isopeninY.

=  f!(B°) is open in X. For f is continuous.

= [£'B)] ='(8°) (1)
B° < B = f1(B°) c £(B)
= f1(B) > £1(B°)
= [£1®)°]=[f1(B)]°=£(B°), [by (1)]
= [f'(B)°|2f7(BY)
Proved.
(i) Suppose [f’l(B)"} > f7(B°) .(2)
To prove f is continuous.

Let G be an open subset of Y and hence G = G°

If we show that f(G) in open in X, the result will follow:

[F(G)]° oG, [by (2)]

= (G)
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[£(G)]°2f(G)

But [f’l (G)}° <f(G) isalways [for C°cCV C]|

Combining the last two, [ (G)]° = {(G)
f(G) is open in X.

Example 5: Let f : R — R be a constant map.
Prove that f is continuous.
Solution: Let f : R — R be a map given by
f(x) =cVxeR. ..(1)
Then evidently f is a constant map.
To show that f is continuous.

Let G c R be an arbitrary open set.

By definition, f1(G) = [xeR:f(x) e G] ..(2)
. Dand ). £4(G)= RifceG,
rom (1) and (2, £'(G)=| 1"~

¢ and R both are open sets in R and hence f*(G) is open in R.

Given any open set G in R, we are able to show that f*(G) is open in R. This proves that f is a
continuous map.

Example 6: Let T and U be any two topologies on R. Let
f:RT)—> R 1)
be a map given by f(x) =1V x € R.
Then show that f is continuous.
Hint: take C = 1. Instead of writing
“Let G < R be an open set”, write
“GeUandf{(G) e T".

Do these changes in the preceding solution.

7.2 Summary

° Letf: (X, T) — (Y, U) be a map.

The map f is said to be continuous at x, € X is given any U open set H containing f(x ), 3a
T-open set G containing x, s.t. f(G) < H.

If map is continuous at each x € X, then the map is called a continuous map.

° A functionf: (X, T) - (Y, U) is said to be continuous on a set A < X if it is continuous at each
point of A.
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° A map f: (X, T) = (Y, U) is said to be homeomorphism or topological mapping if Notes
(a) fis one-one onto.
(b) fand f' are continuous.

o Amap f: (X, T) - (Y, U) is called an open map if it maps open sets onto open sets i.e. if any
GeT=fG) eU.

° A map f: (X, T) - (Y, U) is called a closed map if any T-closed set F
= f(F) is U-closed set.

7.3 Keywords

Discrete Space: Let X be any non empty set and T be the collection of all subsets of X. Then T is
called the discrete topology on the set X. The topological space (X, T) is called a discrete space.

Indiscrete Space: Let X be any non empty set and T = {X, ¢}. Then T is called the indiscrete
topology and (X, T) is said to be an indiscrete space.

Open and Closed set: Let (X, T) be a topological space. Any set A e T is called an open set and
X - Ais aclosed set.

7.4 Review Questions

1.  Inany topological space, prove that f and g are continuous maps = gof is continuous map.
Let A, B, C be metric spaces if f : A — B is continuous and g : B — C is continuous, then
gof : A — C is continuous.

2. Show that characteristic function of A c X is continuous on X iff A is both open and closed
in X.

3. Suppose (X, T) is a discrete topological space and (Y, U) is any topological space. Then
show that any map

f:X,T)-> (Y, U)
is continuous.

4. Let T be the cofinite topology on R. Let U denote the usual topology on R. Show that the
identity map

f: (R, T)-> (R, U)
is discontinuous, where as the identity map
g:RU)->RT
is a continuous map.
5. Show that the map
f: (R, U) > (R, U) given by
f(x) = x* ¥V x € R is not open

U-denotes usual topology.

7.5 Further Readings

N

Books J. L. Kelley, General Topology, Van Nostrand, Reinhold Co., New York.
S. Willard, General Topology, Addison-Wesley, Mass. 1970.
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Unit 8: The Product Topology

CONTENTS
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8.1.1 The Product Topology: Finite Products
8.1.2 The Product Topology: Infinite Products
813 Cartesian Product
8.1.4 Box Topology

8.2  Summary

8.3 Keywords

8.4 Review Questions

8.5  Further Readings

Objectives

After studying this unit, you will be able to:
o Understand the product topology;
o Define Cartesian product and box topology;

o Solve the problems on the product topology.
Introduction

There are two main techniques for making new topological spaces out of old ones. The first of
these, and the simplest, is to form subspaces of some given space. The second is to multiply
together a number of given spaces. Our purpose in this unit is to describe the way in which the
latter process is carried out.

Previously, we defined a topology on the product X x Y of two topological spaces. In present
unit, we generalize this definition to more general cartesian products. So, let us consider the
cartesian products

X, %..xX and X xX, X..,

where each X is a topological space. There are two possible ways to proceed. One way is to take
as basis all sets of the form U, x ... x U_in the first case, and of the form U, x U, % ... in the second
case, where U, is an open set of X, for each i.

8.1 The Product Topology

8.1.1 The Product Topology: Finite Products

Definition: Let (X, T)), (X,, T,), ..., (X, T) be topological spaces. Then the product topology T on
the set X, x X, x ... x X_is the topology having the family {O, x O,x...x0O_,0,eT,i=1, ..., n}
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as a basis. The set X, x X, x ... x X with the topology T is said to be the product of the spaces Notes
X, T), (X, T),...,(X,T)and is denoted by (X, x X, x ..., X , T) or (X, T,) x (X,, T,) x ... x (X, T ).

Proposition: Let B, B,, ..., B_ be bases for topological spaces (X,, T,), (X,, T,), ..., (X, T)),
respectively. Then the family {O, x O, x ... x O_: O, € B, i=1, ..., n} is a basis for the product
topology on X, x X, x ... x X .

1

' Example 1: Let C,, C,, ..., C_be closed subsets of the topological spaces (X,, T,), (X,, T,),
., (X, T), respectively. Then C x C, x ... x C_is a closed subset of the product space (X, x X, x ...
x X, T).

Solution: Observe that
X x X, x L x XO\(C, xC,x...xC)

=[OG\C) X X, % o x X JU X, X OG\C) XX, X oo X X JU o U[X, XX, % . XX %
X\C) ]

which is a union of open sets (as a product of open sets is open) and so is an open set in (X,, T,) x
(X, T,)) x ... x (X, T,). Therefore, its complement, C, x C, x ... x C, is a closed set, as required.

(i) Wenow see that the euclidean topology on R", n > 2, is just the product topology on
theset R xR x...R=R"

(i)  Any product of open sets is an open set or more precisely: if O,, O,, ..., O, are open
subsets of topological spaces (X, T,), (X, T,) ..., (X, T ), respectively, then O, x O, x ...
O, is an open subset of (X,, T,) x (X, T,) x ... x (X, T ).

(iii) Any product of closed sets is a closed set.

8.1.2 The Product Topology: Infinite Products

Let (X, T)), (X,, T,), ..., (X, T), ... be a countably infinite family of topological spaces. Then the
product, [[;Z,X;, of the sets X, i € N consists of all the infinite sequences (x,, X,, X, ..., X, -..),
where x, € X for alli. (The infinite sequence (x,, x,, ..., X , ...) is sometimes written as [];Z,x; ). The
product space, [1;2,(X;,T;), consists of the product []-,X; with the topology T having as its basis
the family

B= ﬁ O,:0, €T, and O, =X, for all but a finite number of i.
i=1

The topology T is called the product topology. So a basic open set is of the form
O, x0,x...x0O *xX , *xX X%..

=7

Note Tt should be obvious that a product of open sets need not be open in the product
topology T. In particular, if O,, O,,O,, ..., O,, ... are such that O, € T,and O, # X for all i, then

12, O, cannot be expressed as a union of members of B and so is not open in the product

space (]‘[L X, T) .
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' Example 2: Let (X, T)), ..., (X, T ), ... be a countably infinite family of topological spaces.
Then the box topology T’ on the product [, X, is that topology having as its basis the family

B = {loc_[Oi : O, eTi}
i=1

It is readily seen that if each (X, T) is a discrete space, then the box product (Hi“i1 X, T’) isa

discrete space. So if each (X, T) is a finite set with the discrete topology, then (l_[f:] Xi, T') is an

infinite discrete space, which is certainly not compact. So, we have a box product of the compact
spaces (X, T)) being a non-compact space.

' Example 3: Let (X, T), ..., (Y, T!), i € N, be countably infinite families of topological
spaces having product spaces (]_[;i1 X, T) and (Hiw:l Y, T') respectively. If the mapping h;: (X, T)
— (Y, T)) is continuous for each i € N, then so is the mapping h: (l_[f:] X, T) - (]_Lw:] Y, T') given

by h: (17 x ) =17 hy(x,) ; thatis, h ((x,, Xy, .. X,y -.2) = (B, (%), By(x,), o (X)), 0.

Solution: It suffices to show that if O is a basic open set in (HL Y, T’), then h’(O) is open in

(]‘[;i1 X, T). Consider the basic opensetU, x U, x...U xY__ xY .. whereU T, fori=1,
...,n. Then
ht (U x..oxU xY XY, x..)

=h (U) % ... x h (U)x b (Y, ) x b (X ) % ...

n+2)

and the set on the right hand side is in T, since the continuity of each h, implies h;* (U) € T, for
i=1, ..., n. So his continuous.

8.1.3 Cartesian Product

Definition: Let {A }
index family, denoted by []A,, is defined to be the set of all J-tuples (x ), _, of elements of X such

ac ae]

that x, € A for each a € J. That is, it is the set of all functions

be an indexed family of sets; let X = U__, A . The cartesian product of this

ae]

x:J—> UA,

ae]

such that x(a) € A for eacha €.
8.1.4 Box Topology

Let {X,}, ., beanindexed family of topological spaces. Let us take as a basis for a topology on the

product space [T X, the collection of all sets of the for [TU,, where U, is open in X , for each o € J.

ae] o€l

The topology generated by this basis is called the box topology.
' Example 4: Consider euclidean n-space R". A basis for R consists of all open intervals in

R; hence a basis for the topology of R consists of all products of the form

(a,b) % (a,b)x...x(a,b,)
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Since R" is a finite product, the box and product topologies agree. Whenever we consider R", we Notes
will assume that it is given this topology, unless we specifically state otherwise.

' Example 5: Consider R¥, the countably infinite product of R with itself. Recall that

Rv= I X,,,

nez,
where X = R for each n. Let us define a function f : R — R" by the equation
f)=(@ttt..);
the n" coordinate function of f is the function £ _(t) = t. Each of the coordinate functions f*: R — R
is continuous; therefore, the function f is continuous if R" is given the product topology. But f is
not continuous if R" is given the box topology. Consider, for example, the basic element.

B= (-1, 1) x (~4,4) x (=3,4) x ..

for the box topology. We assert that f(B) is not open in R. If {*(B) were open in R, it would
contain some interval (-3, 8) about the point 0. This would mean that f((-3, 8)) B so that,
applying n_ to both sides of the inclusion.

£,((-8,8) = (-3, 8) = (=)
for all n, a contradiction.
Theorem 1: Let {X } be an indexed family of spaces; Let A < X_ for each o. If TTX  is given either
the product or the box topology, then
A, = IIA,.
Proof: Let x = (x) be a point of [T A_; we show that x € [TA,.

Let U =T1U, be a basis element for either the box or product topology that contains x. Since x_ €
A, we can choose a pointy, € U, " A foreach a. Theny = (y,) belongs to both U and TTA . Since
U is arbitrary, it follows that x belongs to the closure of TIA .

Conversely, suppose x = (x ) lies in the closure of [1A , in either topology. We show that for any
givenindex B, we havex, e Aﬁ .Let V, be an arbitrary open set of X containing x,. Since 1 (V,)
is open in ITX , in either topology, it contains a point y = (y ) of [TA . Then y belongs to V, " A.

It follows that X, € Aﬁ .

Theorem 2: Letf : A > T1 _ X be given by the equation
f(@) = (£,(@)), ./

wheref : A — X foreacha.LetTIX have the producttopology. Then the function f is continuous
if and only if each function f_ is continuous.

Proof: Let m; be the projection of the product onto its Bth factor. The function m is continuous, for

B
if U, is open in X, the set ;' (U,) is a sub basis element for the product topology on X . Now
suppose that f : A — IIX_ is continuous. The function f; equals the composite , of; being the
composite of two continuous functions, it is continuous.

Conversely suppose that each co-ordinate function f_ is continuous. To prove that f is continuous,
it suffices to prove that the inverse image under f of each sub-basis element is open in A; we
remarked on this fact when we defined continuous functions. A typical sub-basis element for the
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product topology on ITX_ is a set of the form =;'(U,), where B is some index and U, is open X,.
Now

£ (m' (Up) = §1(Uy),

because f, = 7, of. Since f, is continuous, this set is open in A, as desired.

8.2 Summary

° Let (X, T), (X, T,), ..., (X, T ) be topological spaces. Then the product topology T on the set
X, x X, % ...x X is the topology having the family {O, x O, x ... xO_,0,e T,i=1, ...,n} as
a basis. The set X, x X, x ... x X with the topology T is said to be the product of the space
X, T), (X, T, ..., (X, T,) and is denoted by (X, x X, x ..., X , T).

° The product space, [1Z; (X, T,), consists of the product [, X; with the topology T having
as its basis the family

B= ﬁ 0O,:0, €T, and O, eX, for all but a finite number of i.
i=1

The topology T is called the product topology.
o The cartesian product of this index family, denoted by [] A, is defined to be the set of all
ae]

J-tuples (x,),, of elements of X such that x, € A foreach o € J.

° Let {X }, ., be anindexed family of topological spaces. Let us take as a basis for a topology

on the product space [T X, the collection of all sets of the for [TU,, where U, is open in X ,

ae] el

for each a € ]. The topology generated by this basis is called the box topology.

8.3 Keywords

Discrete Space: Let X be any non empty set and T be the collection of all subsets of X. Then T is
called the discrete topology on the set X. The topological space (X, T) is called a discrete space.

Indiscrete Space: Let X be any non empty set and T = {X, ¢}. Then T is called the indiscrete
topology and (X, T) is said to be an indiscrete space.

Open & Closed Set: Any set A e T is called an open subset of X or simply a open set and X - A is
a closed subset of X.

Topological Space: Let X be a non empty set. A collection T of subsets of X is said to be a topology
on X if

(i) XeT ¢eT
(ii) AeT, BeT=AnNnBeT

(iii) A,eTVaeA=UA_ eTwhereAisan arbitrary set.

8.4 Review Questions

1. X, T),X,T,), ..., (X,T)are discrete spaces, prove that the product space (X, T,) x (X,, T,)
x...x (X, T)is also a discrete space.

2. Let X and X, be infinite sets and T, and T, the finite-closed topology on X, and X,,
respectively. Show that the product topology, T, on X, x X, is not the finite-closed topology.
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3. Prove that the product of any finite number of indiscrete spaces is an indiscrete space. Notes

4, For eachi e N, let C, be a closed subset of a topological space (X, T). Prove that [];Z,C, is
a closed subset of []7Z, (X, T)).

5. Let(X,T,),ie N, bea countably infinite family of topological spaces. Prove that each
(X, T)) is homeomorphic to a subspace of []7Z; (X, T)).

8.5 Further Readings

N

Books Dixmier, General Topology (1984).

James R. Munkres, Topology, Second Edition, Pearson Prentice Hall.
A
Y.
Online links  mathworld.wolfram.com/product topology.html

www.history.mcs.st-and.ac.uk/~john/MT4522 /Lectures/L1.5.html
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Objectives

After studying this unit, you will be able to:

o Define metric space and pseudo metric space;

o Understand the definitions of open and closed spheres, boundary set, open and closed set;

o Define convergence of a sequence in a metric space and interior, closure and boundary of
a point;

o Define neighborhood and limit point;

o Solve the problems on metric topology.

Introduction

The most important class of topological spaces is the class of metric spaces. Metric spaces provide
a rich source of examples in topology. But more than this, most of the applications of topology
to analysis are via metric spaces. The notion of metric space was introduced in 1906 by Maurice
Frechet and developed and named by Felix Hausdorff in 1914.

One of the most important and frequently used ways of imposing a topology on a set is to define
the topology in terms of a metric on the set. Topologies given in this way lie at the heart of

84 LOVELY PROFESSIONAL UNIVERSITY



Unit 9: The Metric Topology

modern analysis. For example, In this section, we shall define the metric topology and shall give Notes
a number of examples. In the next section, we shall consider some of the properties that metric
topologies satisfy.

9.1 The Metric Topology

9.1.1 Metric Space

Let X # ¢ be any given space.
Let x, y, z € X be arbitrary.

A function d : X x X = R having the properties listed below:

(@ dxy)=0

(i) d(x,y)=0iffx=y

(iii) d(x,y)=d(y, x)

(iv) d(x,y)+d(y, z)=2d(x z) (triangle inequality)

is called a distance function or a metric for X. Instead of saying, “Let X be a non-empty set with
a metric d defined on it”. We always say, “Let (X, d) be a metric space”.

Evidently, d is a real valued map and d denotes the distance between x and y. A set X, together
with a metric defined on it, is called metric space.

Example 1:

(1) LetX=Randp(x,y)= |x-y| Vx,y € X. Then p is a metric on X. This metric is defined as
usual metric on R.

(2) Letx,y € R be arbitrary

0 iff x=y
Let PO Y)= 01 iff xzy

Then p is a metric on R.

This metric is defined as trivial metric or discrete metric on R.
9.1.2 Pseudo Metric Space

Let X # ¢ be any given space. Let x, y, z € X be arbitrary. A function d : X x X — R having the
properties listed below:

) deoy)=0,

(i) dxy)=0ifx=y,

(iii) d(x,y) =d(y, x),

(iv) d(x,y)+d(y, z) = d(x, z),

Where x,y, z € X

is called pseudo metric on x. The set X together with the pseudo metric d is called pseudo metric
space. Pseudo metric differs from metric in the sense that.

d(x,y)=0evenif x#y
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Thus for a pseudo metric
x=y=d(x,y)=0
but not conversely.

Remark: Thus every metric space is a pseudo metric space but every pseudo metric space is not
necessarily metric space.

' Example 2: Consideramapd:R xR — Rs.t.
d(x,y) = ‘xz —yz‘ VxyeR

Evidently d(x,y)=0 = x=+y.

It can be shown that d is a pseudo metric but not metric.
9.1.3 Open and Closed Sphere

Let (X, p) be a metric space.

Letx € Xand r € R*. Then set { x € X: p (x,, X) <r } is defined as open sphere (or simply sphere)
with centre x_ and radius r.

The following have the same meaning:
Open sphere, closed sphere, open ball and open disc.

We denote this open sphere by the symbol S(x, r) or by S (x ) or by B (x, d) or B(x, r). This open
sphere is also called as Spherical neighborhood of the point x  or r-nhd of the point x .
We denote closed sphere by S [x ] and is defined as

SIx]={xeX:p(xx)<r}

The following have the same meaning;:

Closed sphere, closed ball, closed cell and disc.
Examples on Open Sphere

In case of usual metric, we see that
(i) IfX=R, thenS(x)=(x, -1, x, +1)=open interval with x_as centre.
(ii) If X=R? then S(x ) = open circle with centre x and radius r.

(iif) If X =R® then S (x ) = open sphere with centre x and radius r.
9.1.4 Boundary Set, Open Set, Limit Point and Closed Set
Boundary Set

Let (X, d) be a metric space and A — X. A point x in X is called a boundary point of A if each open
sphere centered at x intersects A and A’. The boundary of A is the set of all its boundary points
and is denoted by b(A). It has following properties.

(1) Db(A)is a closed set
(2 bA)=ANA

(3) Adisclosed < A contains its boundary.
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Open Set Notes

Let (X, p) be a metric space.

A non-empty set G c Xis called an open set if any x e G=3r € R*s.t. 5 (x) c G.
Limit Point

Let (X, p) be a metric space and A — X. A point x € X is called a limit point or limiting point or
accumulation point or cluster point if every open sphere centered on x contains a point of A
other than x, i.e, x € Xis called limit point of A if (S, - {x}) " A=¢,r e R".

The set of all limiting points of a set A is called derived set of A and is denoted by D(A).
Closed Set

Let (X, p) be a metric space and A c X. A is called a closed set if the derived set of Ai.e, D(A) c A
i.e, if every limit point of A belongs to the set itself.

9.1.5 Convergence of a Sequence in a Metric Space

Let <x > be a sequence in a metric space (X, p). This sequence is said to coverage to x, € X, if given
anye>0,3n € Nst.nzn = p(x, , X,) <¢orequivalently, given any ¢ >0,3n € Nst.n>n,
=X €5, (x,)

9.1.6 Theorems on Closed Sets and Open Sets

Theorem 1: In a metric space (X, p) , ¢ and X are closed sets.
Proof: Let (X, p) be a metric space.
To prove that ¢ and X are closed sets.

D) = ¢c¢

D) < ¢
= ¢ is a closed set.
All the limiting points of X belong to X. For X is the universal set.
ie., any xeD((x) = xe X

D(X) c X
= X s a closed set.
Theorem 2: Let (X, d) be a metric space. Show that F c X, F is closed < F’ is open.
Proof: Let (X, d) be a metric space.
Let F be a closed subset of X, so that D(F) C F.
To prove that F’ is open in X.
Let x € F" be arbitrary. Then x ¢ F.

DF)cF,xe F = x¢ D (F)
= (S

.~ X)) N F = ¢ for somer>0
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=5 ,nF=0 [+ xe F]
= SI(X)CX—F
= Sr(x)cF’.

- Given x € F/, 3 any open sphere S, s.t.
Se © F
By definition, this proves that F” is open.
Conversely suppose that F’ is open in X.
To prove that F is closed in X.
Let x € F’ be arbitrary, then x ¢ F.
w Flisopen, 3 cR'st, S CF
S, wNE=9¢
(S0~ ) NF=0
x e D (F).
x ¢ D (F)
xe X-D (F)
X-FcX-D(F)orD (F)cF

Thus, any xe F

ie. any xe X-F

L

F is closed.

Theorem 3: In any metric space (X, d), each open sphere is an open set.
Proof: Let (X, d) be a metric space. Let S, (x,) be an open sphere in X.
To prove that Srﬂ(xo ) is an open set.

Letx € S;(y,) be arbitrary, then d(x, x,) <y,

Write r = r,-d(x %) (1)
By definition Sy = lye X:d(y, X,) < T}

S = lyeX:d(y, x)<rh
We claim S c Sr(“)(x“)

Lety € S, be arbitrary
Then dx,y) <r
d(y,x) = d(y,x)+dxx)

IN

< r+d(x x) =1, [on using (1)]

A

d(y, %) < 1,
=Y€ Sro(xo))

and YES, = Y€ Syx)
= Sr (x) c S"o(’%)

Thus we have shown that for given any x € S, (), 3r > 0s.t. Sy € St (x) -

By definition, this proves that Srn(xo) is an open set.
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Theorem 4: In any metric space, any closed sphere is a closed set. Notes
Proof: Let Si[x,] denote a closed sphere in a metric space (X, d).

To prove that Sy [x,] is a closed set.

For this we must show that S’y [x,] is open in X.

Let x€5'; [, be arbitrary,

x€S8 ] = XS

ro[xo ro[xo]

= d(x,x,)>r1, [ Sy vl ={y eX:d(y,xq) Sro} ]
= d(x,x)-1,>0
= r>0,ontakingr =d (x, x,) - 1, (1)
We claim S C S/r“[x“] .
Lety € S, be arbitrary, so that, d (y, x) <r.
d(x, x) < d(x,y)+d(y, x).
d(y,x) = d(xx)-d(xy)>d(xx)-1r=1, [on using (1)]

d(y,x) > r,=yeS

ro[xo]
Thus, any yesS A = Y€ S/ro[xo]

= S CS

Tolxo]

- Given any xe€ S’ 3r>0 s.t. 5, S

1o[X0]” rolxo]

This prove that S’y [x,] is open in x.

Example 3: Give an example to show that the union of an infinite collection of closed sets
in a metric space is not necessarily closed.

Solution: Let {[%, 1] ‘ne N} be the infinite collection for the usual metric space (R, d).

Now each member of this collection is a closed set, being a closed interval.

But U{[L,1]:neN}={1} V[, 1]U[5 1]u... =]o,1].

Since ]0, 1] is not closed, it follows that the union of an infinite collection of closed sets is not
closed.

' Example 4: Show that every closed interval is a closed set for the usual metric on R.
Solution: Let x, y € R where x <y. We shall show that [x, y] is closed.

Now R-[xy] = facR:a<xora>y}

facR:a<xjufaeR:a>y}

J-oo, x [W]y, o
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which is open, being a union of two open sets.

Hence [x, y] is closed.

' Example 5: Give an example of two closed subsets A and B of the real line R such that
d(A,By=0but AnB=¢.

Solution: Let A

12,3,4,5,...}

B = {2,3%,41,..},

Clearly AN B =¢.
d(A,B) =inf{d (x,y) : x € A,y € B}

IfneAand n+1eB

d(A,B) = limd(n,n+1)

n—ee

lim + [ d is usual metric for R]

n—eo

=0
9.1.7 Interior, Closure and Boundary of a Point
Interior

Let (X, d) be a metric space and A c X.
A point x € A is called an interior point of Aif IreR"s.t. S, CA.
The set of all interior point of A is called the interior of A and is denoted by A°, or by Int. (A).
Thus A° = int. (A)={xe A:S  CAforsomer)
Alternatively, we define
A° = UGS, S yCA).

Evidently
(i) A°isan open set.

For an arbitrary union of open sets is open.

(ii) A°is the largest open subset of A.
Closure

Let (X, d) be a metric space and A c X.

The closure of A, denoted by A , is defined as the intersection of all closed sets that contain A.
Symbolically

A = Nn{FcX:Fisclosed, Fo A} (1)
Evidently
(i) A isclosed set

For an arbitrary intersection of closed sets is closed.
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(i) A DA Notes
(iii) A is the smallest closed set which contain A.
Alternatively we define
A = AUuD(A) -(2)
A pointx € A is called a point of closure of A.

Alternatively, a point x € X is called a point of closure of A iff x € A or x € D (A).
Boundary of a Point

Let (X, d) be a metric space. Let A c X
(i)  Boundary or Frontier of a set A is denoted by b(A) or F, (A) and is defined as
b(A) = F (A)=X-A°uU (X-A)°.

Elements of b(A) are called boundary points of A.
(i)  The exterior of A is defied as the set (X - A)° and is denoted by ext (A).

Symbolically ext (A) = (X - A)°.
(iii) A is said to be dense or everywhere dense in X if A=X.
(iv) A is said to be somewhere dense if (A’ # 0 ie., if closure of A contains some open set.
(v) A is said to be nowhere dense (or non where dense set) if (A)° = ¢.
(vi) A metric space (X, d) is said to be separable if 3 A c X s.t. A is countable and A =X .
(vii) A is said to be dense in itself of A C D (A).

Example 6:

(1)  To find the boundary of set of integers Z and set of rationals Q.
Z° = U{GcR:Gisopenad GcZ}=¢
For every sub set of R contains fractions also.
Similarly (R - Z)° = ¢
b(Z) = R-Z°U[R-Z)°=R-0uU0=R
b(Z) = R

Similarly b(Q) R.

(2) Give two examples of limit points

@ If A={1+1;neN},
n

i

ie. A= {2,§,
2

|
| O

,....}, then

[6;R e

1 is limit point of A. For lim(l +lj =1.
n

n—eo
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(i) IfA={1,1,1,1,....}={1:neN}
2'3'4 n

then 0 is the limit point of A

For lim 1 =0
n—o N

9.1.8 Neighborhood

Let (X, d) be a metric space and x € X, A c X

A subset A of Xis called a neighborhood (nbd) of x if 3 open sphere S, st. 5 C A
This means that A is nbd of a point x iff x is an interior point of A.

From the definition of nbd, it is clear that:

(1)  Every superset of a nbd of a point is also a nbd.

(2)  Every opensphere S isanbd of x.

(3)  Every closed sphere S is a nbd of x.

(4) Intersection of two nbds of the same point is given a nbd of that point.

(5) A setis open if it contains a nbd of each of its points.

(6) Nbd of a point need not be an open set.
9.1.9 Theorems and Solved Examples

Theorem 5: A subset of a metric space is open iff it is a nbd of each of its point.
Proof: Let A be a subset of a metric space (X, d).

Step I: Given A is a nbd of each of its points.

Aim: A is an open set

Recall that a set N is called nbd of a point x € X if 3 open set G € X s.t. xe G N.

Let p € A be arbitrary, then by assumption, A is a nbd of p. By definition of nbd, 3 open set
G,cXstpe G CA.

It is true VpeA

Take

>
It

U {GJD ‘pEe Gp, Gp is an open set, GPCA}

An arbitrary union of open sets

open set
- A'is an open set.

Step II: Let A be an open subset of X.

Aim: A is a nbd of each of its points. By assumption, we can writep € AC A VpeA.
= A is a nbd of each of its points.

Problem: Every set of discrete metric space is open.
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Solution: Let (X, d) be a discrete metric space. Let X, y € X be arbitrary. By definition of discrete Notes
metric,
d T ox o=y
Coy) = 0 if x =y

Let r be any positive real number s.t. r < 1.

Then S = fyeX:d(y,x)<r<1j
- yeX:dy <1
= {ye X:d(y,x)=0} (by definition of d)
= {ye X:y=x}={0}

or S = {0}

T (x)

But every open sphere is an open set.

-~ {x}is an opensetis X v x e X.

If A = {x,x, .. x} = finite set € X, then
A = LHJ{ x,} = finite union of open sets.
r=1
= open set.
Hence every finite subset of X is open set. (1)
If B = {x,x,x, ...} ©X, then

B is an infinite subset of X.

Now B = U{Xr}

Arbitrary union of open sets

Open set,

. Bis an open set. (2
From (1) and (2), it follows that every subset (finite or infinite) is an open set in X.

Problem: A finite set in any metric space has no limit point.

Solution: Let A be a finite subset of a metric space (X, d). We know that “x € X is a limit point of
any set B if every open sphere S,  contains an infinite number of points of B other than x.”

This condition can not be satisfied here as A is finite set.

Hence A has no limit point.

Theorem 6: Let (X, d) be a metric space. A subset A of X is closed if givenany xe X-A, d (x, A) #0.
Proof: Let (X, d) be a metric space and A X be an arbitrary closed set.

To prove that

Givenanyxe X-A,d (x, A)#0
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Ais closed = X - A is open.
By definition of open set,
any xe X-A = 3 eR'st 5, cX-A=5 NA=0
= dX A)zr=d(x, A)#0.
Conversely let A be any subset of a metric space (X, d).
Let any xeX-A = d(x, A)=#0.
To prove that A is closed.
Let x € X - A be arbitrary so that, by assumption
d(x,A) = r20= S,,MA=0=5, cX-A
xe X-A = 3JreR'st 5 eX-A.
By definition, this implies X - A is open
= Ais closed

Proved.

Problem: In any metric space, show that
X-A = X-A)

or Ay = (A

Solution: (AY = X-A

= X - Intersection of all closed super sets of A

= X —(]Fi where F, is closed and F, 5 A

= U(X—Fi) where X - F isopenand X -F, c X - A

= Union of open subsets of X - A = A’
= (A"
Proved.
Problem: In any metric space (X, d), prove that A is open < A° = A.
Solution: Let A be a subset of a metric space (X, d). By definition of interior,

A° = UIS Y :Srch}

it
since every open sphere is an open set and arbitrary union of open sets is open.
Consequently,

A° is an open set.
By (1), it is clear that A° C A

and A° is largest open subset of A.
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(i) Given A =A° ...(5) Notes
Aim: A is an open set
(2) and (5) = A is an open set.
(i) Given A is an open set. ..(6)
Aim: A = A°
(4) and (6) = A = A°.
9.1.10 Uniform Convergence
A sequence defined on a metric space (X, d) is said to be uniformly convergent if given € > 0, 3

n € Nstnzn =d(f (x),f(x)<eVeX

Theorem 7: Let <f_(x) > be a sequence of continuous functions defined on a metric space (X, d). Let
this sequence converge uniformly to f on X. Then f(x) is continuous on X.

OR
Uniform limit of a sequence of continuous function is continuous.

Proof: Since < f (x)> converges uniformly to f on (X, d). Hence given € > 0, 3n € N independent
ofxe Nst.nzn,

= d(f (%), f(x) <e/3 (1)

Let a € X be arbitrary. To prove that f is continuous on X, we have to prove that f is continuous
at x = a, for this we have to show that given € >0,38>0s.t. d (x,a) <&

= d(f(x), f (a)) <e. (2
Continuity of f ata e X

= d(£(x) f () < % ford (x, a) <8 -0)

By (1), d (£ (a), f(a)) < %v n>n, .(4)

If d (x,a) <9, then
d (f(x), f(a)) = d[f(x), f,()] +d[f, (%), £, (@] +d [£ (), f(a)]

< §+§+§=eby(1),(3)and(4)

or d (f(x), f(a) < € for d (x, a) < 3. Hence the result (2).
Theorem 8: Frechet space. Let F be the set of infinite sequences of real numbers.
Letx, y, z € F, then
X = <xn> = <x1, X, >y = <yn>, z= <Zn>
wherex ,y_,z € R
we define a map

d:FxF: - Rs.t.

i Xn_yn
12" [1+ xn—yn]

Mg

d(xy) =

n

LOVELY PROFESSIONAL UNIVERSITY 95



Topology

Notes
(i)
(i)

To show that d is metric on F.

d(x,y)=0.For |x -y | =0 Vn

dx,y)=0e=x=y
For dxy)=0« ili‘xn_yn‘ =0
2" 1+[x, — v,
= i.i‘xn_}’n‘ =0Vn
2" 1+‘xn—yn‘
= xn—yn‘=0vn<:>xn=ynVn
& x=y
dixy) = d(y,x)
For [x -y, = ly,-x|I
dix,y) 2 d(x,z)+d(zy)
Here we use the fact that
Bl ol , B
T+oa+p| = 1+]o 1+
In view of this, we have
- ‘Xn_Yn‘ 1
d (x, = —_—
0 y) ;1+‘xn—yn‘2
= ii ‘Xn (Zn_Yn)‘
n=12n 1+ ‘(Xn Zn) (Zn_Yn)‘
o 1 |a-za| 1 |z,
2 —_ R
S S
= d(xz)+d(zy)

Thus d is metric on F. The fair (F, d) is a metric space and this metric space is called Frechet space.

' Example 7: In a metric space (X, d), prove that

Fisclosed & D (F) cF.

Prove that a subset F of a metric space X contains all its limit points iff X - F is open.

Solution: Let (X, d) be a metric space and F c X.

We know that F is closed & X - F is open.

Step I: Let X - F be open so that F is closed,

Aim: D (F) c F.

96
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Let x € X - F be arbitrary. Then X - F is an open set containing x s.t. (X -F) N F = ¢. Notes
= x is not a limit point of F
= x¢ D (F)=xe X-D(F)
Thus, V xe X-F = xe X-D (F)
X-F c X-D(F)

or, D@F) c F
Step II: Given D (F) c F. ..(1)
To prove F is closed.
Letye X-F, theny ¢ F

yeE,D{F)cF = yeD(F)
J open set G withy € Gs.t.

G-tyhnF =9

L/

= GNnF=¢asy¢F
= GcX-F
Thus we have show that
anyye X-F = JopensetGwithye Gst. GcX-F

= X -Fis open = F is closed.

9.2 Summary

o Let X # ¢ be any given space. Let X, y, z, € X be arbitrary. A function d : X x X — R having
the properties listed below:

H dix
i) d(x,
i) d (x,

d(x,

iv)

iff X=y

d (y, %)

(
(
(
( +d(y,2) 2d (x 2)

y) 2
y) =
y)=
y)
is called a distance function or a metric for X.

o Let X # ¢ be any given space. Let X, y, z € X be arbitrary. A function d : X x X = R having
the properties listed below:

) d(x
i)  d(x,
iii) d(x,
iv) d(x

° Let (X, p) be a metric space. Let x, € Xand r € R*. Then set {x € X: p (x,, x) <t} is defined as
open sphere with centre x and radius r.

if X=y
d (y, x)

+d (y, z) 2d (x, z), where x, y, z € X is called pseudo metric on X.

( y) 2
( y) =
( y)=
( y)

o Closed sphere:
S, [x,] = (x & X:p (x, x) <}
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° Let (X, p) be a metric space. A non empty set G C X is called an open set if any x € G =3
re R'st.5  cG.

° Let (X, p) be a metric space and A c X. A point x € X is called a limit point if every open
sphere centered on x contains a point of A other than x, i.e. x € X is called the limit point

of A if (s -{x})mA¢¢,reR+.

Tx)

° Let (X, p) be a metric space and A c X. A is called a closed set if the derived set of A i.e.
D (A) c A i.e. if every limit point of A belongs to the set itself.

o Set <x > be a sequence in a metric space (X, p). This sequence is said to converge to x, € X,
if givenany € >0,3n € Nstnzn = p(x, x)) <€.

° A point x € A is called an interior point of A if 3r € R* s.t. S, CA.
° The closure of A, denoted by A, is defined as the intersection of all closed sets that
contain A.

° Boundary of a set A is denoted by b(A) is defined as b(A) =X - A° U (X - A)°.

° The exterior of A is defined as the set (X - A)° and is denoted by ext (A).

o A is said to be dense or everywhere dense in X if A = X.

) A is said to be nowhere dense if (A)°=¢.

° A metric space (X, d) is said to be separable if 3 A c X s.t. A is countable and A =X,

° A sequence defined on a metric space (X, d) is said to be uniformly convergent if given
€>0,3n,€ Nst.nzn,

=d(fX), fx)<e VY xeX

9.3 Keywords

Frechet Space: A topology space (X, T) is said to satisfy the T, - axiom of separation if given a pair
of distinct point x, y € X.

3G HeTstxeGyegGye H xe H.
In this case the space (X, T) is called Frechet Space.

Intersection: The intersection of two sets A and B, denoted by A N B, is defined as the set
containing those elements which belong to A and B both. Symbolically

ANB={x:x€ Aand x e B}

Union: The union of two sets A ad B, denoted by A U B, is defined as the set of those elements
which either belong to A or to B. Symbolically

AUB={x:xe Aorx:B}

9.4 Review Questions

1. In any metric space (X, d), show that
(@) an arbitrary intersection of closed sets is closed.

(b) any finite union of closed sets is closed.
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2. Let R be the set of all real numbers and let Notes

_ =yl
d(x,y)= 1+‘X—y‘ forall x, yeR.

Prove that d is a metric for R.
3. Every derived set in a metric space is a closed set.

4. Let A and B is disjoint closed set in a metric space (X, d). Then 3 disjoint open sets G, H s.t.
AcG,BcH.

5. LetX# ¢ and let d be a real function of ordered pairs of X which satisfies the following two
conditions:

dx,y)=0=x=y
and d(x,y)<d (x,z) +d (z,y).
Show that d is a metric on X.
6. Give an example of a pseudo metric which is not metric.

7. Let X be a metric space. Show that every subset of X is open < each subset of X which
consists of single point is open.
8. In a metric space prove that

@ (B)=Int(A),

(b) A={x:d(x,A)=0}.

9.5 Further Readings

N

Books B. Mendelson, Introduction to Topology, Dover Publication.
J. L. Kelly, General Topology, Van Nostrand, Reinhold Co., New York.
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10.1.2 Quotient Topology
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10.4 Review Questions
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Objectives

After studying this unit, you will be able to:
o Understand the quotient map, open map and closed map;
o Explain the quotient topology;

o Solve the theorems and questions on quotient topology.
Introduction

The quotient topology is not a natural generalization of something. You have already studied in
analysis. Nevertheless, it is easy enough to motivate. One motivation comes from geometry,
where one often has occasion to use ‘cut-and-paste” techniques to construct such geometric
objects as surfaces. The torus (surface of a doughnut), for example can be constructed by taking
a rectangle and ‘pasting’ its edges together appropriately in Figure 10.1.

Figure 10.1
a
b 4 Ab —» b b —»
a a

Formalizing these constructions involves the concept of quotient topology.

100 LOVELY PROFESSIONAL UNIVERSITY



Unit 10: The Quotient Topology

10.1 The Quotient Topology Notes

10.1.1 Quotient Map, Open and Closed Map
Quotient Map
Let X and Y be topological spaces; let p : X = Y be a surjective map. The map p is said to be a

quotient map provided a subset U of Y is open in Y if and only if p~(U) is open in X.

The condition is stronger than continuity, some mathematicians call it ‘strong continuity’. An
equivalent condition is to require that a subset A of Y be closed in Y if and only if p(A) is closed
in X. Equivalence of the two conditions follow from equation

f1(Y - B) = X - f1(B).
Open map: A map f : X — Y is said to be an open map if for each open set U of X, the set f(U) is

openin.

Closed Map: A map f : X — Y is said to be a closed map if for each closed set A of X, the set f(A)
is closed in Y.

' Example 1: Let X be the subspace [0, 1] U [2, 3] of R and let Y be the subspace [0, 2] of R.

The map p : X = Y defined by

_x for xe[0,1],
PO = x—1 for xe[2,3]

is readily seen to be surjective, continuous and closed. Therefore, it is a quotient map. It is not,
however, an open map; the image of the open set [0, 1] of X is not open in Y.

=7

Note 1f A is the subspace [0, 1] U [2, 3] of X, then the map q : A — Y obtained by restricting
p is continuous with surjective but it is not a quotient map. For the set [2, 3] is open in A
and is saturated w.r.t g, but its image is not open in Y.

'I Example 2: Letm : R X R — R be projection onto the first coordinate, then m, is continuous
and surjective. Furthermore, m, is an open map. For if U x V is a non-empty basis element for

R x R, then 7 (U x V) = U is open in R; it follows that m, carries open sets of R x R to open sets
of R. However, m, is not a closed map. The subset

C=f{xxy|xy=1}
of R x R is closed, but 7,(C) = R - {0}, which is not closed in R.

=7

Note 1f A is the subspace of R x R that is the union of C and the origin {0}, then the map
q: A — R obtained by restricting 7, is continuous and surjective, but it is not a quotient
map. For the one-point set {0} is open in A and is saturated with respect to q. But its image
is not open in R.
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10.1.2 Quotient Topology

If X is a space and A is a set and if p : X — A is a surjective map, than there exists exactly one
topology T on A relative to which p is a quotient map; it is called the quotient topology induced

by p.
The topology T is of course defined by letting it consists of those subsets U of A such that p~(U)

is open in X. It is easy to check that T is a topology. The sets ¢ and A are open because p™(¢) = ¢
and p7(A) = X. The other two conditions follow from the equations

pl[ qu -Ur'(u.)

i=1

p[ UiJ:ﬁpl(Ui)

' Example 3: Let p be the map of the real line R onto the three point set A = {a, b, c} defined
by

a if x>0
p(x)=<b if x<O0
c if x=0

You can check that the quotient topology on A induced by p is the one indicated in figure (10.2)
below

Figure 10.2

10.1.3 Quotient Space

Let X be a topological space and let X* be a partition of X into disjoint subsets whose union is X.
Let p : X — X* be the surjective map that carries each point of X to the element of X* containing
it. In the quotient topology induced by p, the space X* is called a quotient space of X.

Given X*, there is an equivalence relation on X of which the elements of X* are the equivalence
classes. One can think of X* as having been obtained by ‘identifying” each pair of equivalent
points. For this reason, the quotient space X* is often called an identification space, or a
decomposition space of the space X.

We can describe the topology of X* in another way. A subset U of X* is a collection of equivalence
classes, and the set p7'(U) is just the union of the equivalence classes belonging to U. Thus the
typical open set of X* is a collection of equivalence classes whose union is an open set of X.
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' Example 4: Let X be the closed unitball {x Xy | x*+ y*<1} in R? and let X* be the partition
of X consisting of all the one-point sets {x x y} for which x? + y? < 1, along with the set

St={x xy} | x* + y? =1}. One can show that X* is homeomorphic with the subspace of R* called
the unit 2-sphere, defined by

S={(xy z) | x¥*+y*+z2=1}

Theorem 1: Let p : X =Y be a quotient map; let A be a subspace of X that is saturated with respect
to p; let q : A — p(A) be the map obtained by restricting p.

(1) If A is either open or closed in X, then q is a quotient map.
(2)  If pis either an open map or a closed map, then q is a quotient map.
Proof: Step (1): We verify first the following two equations:

q'(V) = p(V) if V. p(A);

p(UNA)=pU)NpA) ifUcX

To check the first equation, we note that since V c p(A) and A is saturated, p(V) is contained in
A. It follows that both p(V) and q*(V) equal all points of A that are mapped by p into V. To
check the second equation, we note that for any two subsets U and A of X, we have the inclusion

p(UNA)cpU)NpA)

To prove the reverse inclusion, suppose y = p(u) = p(a), foru € U and a € A. Since A is saturated,
A contains the set p™(p(a)), so that in particular A contains u. They y = p(u), whereu € U A.

Step (2): Now suppose A is open or p is open. Given the subset V of p(A), we assume that q(V)
is open in A and show that V is open in p(A).

Suppose first that A is open. Since q*(V) is open in A and A is open in X, the set q7}(V) is open
in X. Since q (V) = p(V), the latter set is open in X, so that V is open in Y because p is a quotient
map. In particular, V is open in p(A).

Now suppose p is open. Since q'(V) = p(V) and q'(V) is open in A, we have p~'(V) = U A for
some set U open in X.

Now p(p™(V) =V because p is surjective, then
V=ppE'(V)) =pUNA)=pU)Np(A)
The set p(U) is open in Y because p is an open map; hence V is open in p(A).

Step (3): The proof when A or p is closed is obtained by replacing the word ‘open’ by the word
‘closed’ throughout step 2.

Theorem 2: Let p : X — Y be a quotient map. Let Z be a space and let g : X — Z be a map that is
constant on each set p™({y}), for y € y. Then g induces amap f: Y — Z such that f o p = g. The
induced map f is continuous if and only if g is continuous; f is a quotient map if and only if g is
a quotient map.
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Proof: For each y € Y, the set g(p™({y}) is a one-point set in Z (since g is constant on p~({y}). If we
let f(y) denote this point, then we have defined a map f : Y — Z such that for each x € X,
f(p(x)) = g(x). If f is continuous, then g = f o p is continuous. Conversely, suppose g is continuous.
Given an open set V of Z, g”(V) is open in X. But g*(V) = p(F(V)); because p is a quotient map,
it follows that f(V) is open in Y. Hence f is continuous. If f is a quotient map, then g is the
composite of two quotient maps and is thus a quotient map. Conversely, suppose that g is a
quotient map. Since g is subjective, so is f.

Let V be a subset of Z; we show that U is open in Z if (V) is open in Y. Now the set p(f*(V))
is open in X because p is continuous. Since this set equals g™(V), the latter is open in X. Then
because g is a quotient map, V is open in Z.

Corollary (1): Let g : X = Z be a surjective continuous map. Let X* be the following collection of
subsets of X:

X ={g'(lz}) | ze Z}
Give X* the quotient topology.

(@) The map g induces a bijective continuous map f : X* — Z, which is a homeomorphism if
and only if g is a quotient map.

(b) If Zis Hausdorff, so is X*.

Proof: By the preceding theorem, g induces a continuous map f : X* — Z; it is clear that f is
bijective. Suppose that f is a homeomorphism. Then both f and the projection map p : X — X* are
quotient map. So that their composite q is a quotient map. Conversely, suppose that g is a
quotient map. Then it follows from the preceding theorem that f is a quotient map. Being
bijective, f is thus a homeomorphism.

Suppose Z is Hausdorff. Given distinct points of X*, their images under f are distinct and thus
possess disjoint neighbourhoods U and V. Then {-!(U) and (V) are disjoint neighbourhoods of
the two given points of X*.

10.2 Summary

o Let X and Y be topological spaces; let p : X — Y be a surjective map. The map p is said to be
a quotient map provided a subset U of Y is open in y if and only if p~*(U) is open in X.

o A map f: X = Y is said to be an open map if for each open set U of X, the set f(U) is open
inY.

o A map f: X — Y is said to be a closed map if for each closed set A of X, the set f(A) is closed
inY.

o If X is a space and A is a set and if p : X — A is a surjective map, then there exists exactly one
topology T on A relative to which p is a quotient map; it is called the quotient topology
induced by p.
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° Let X be a topological space and let X* be a partition of X into disjoint subsets whose union Notes
is X. Let p : X = X* be the surjective map that carries each point of X to the element of X*
containing it. In the quotient topology induced by p, the space X* is called a quotient space
of X.

10.3 Keywords

Equivalence relation: A relation R in set A is an equivalence relation iff it is reflexive, symmetric
and transitive.

Homeomorphism: A map f: (X, T) = (Y, U) is said to be homeomorphism if (i) f is one-one onto
(ii) f and ' are continuous.

10.4 Review Questions

1. Prove that the product of two quotient maps needs not be a quotient map.

2. Letp:X—Y beacontinuous map. Show that if there is a continuous map f: Y — X such that
p o f equals the identify map of Y, then p is a quotient map.

3. Show that a subset G of Y is open in the quotient topology (relative to f : X — Y) iff {(G)
is an open subset of X.

4. Show that if f is a continuous, open mapping of the topological space X onto the topological
space Y, then the topology for Y must be the quotient topology.

5. Show that Y, with the quotient topology, is a T,-space iff f'(y) is closed in X for every
yevy.

6. Show that if X is a countably compact T,-space, then Y is countably compact with the
quotient topology.

7. Show that if f is a continuous, closed mapping of X onto Y, then the topology for Y must be
the quotient topology.

8. Show that a subset F of Y is closed in the quotient topology (relative to f : X — Y) iff {'(F)
is a closed subset of X.

10.5 Further Readings

N

Books J.L. Kelley, General Topology, Van Nostrand, Reinhold Co., New York.
S. Willard, General Topology, Addison-Wesley, Mass. 1970.
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11.6 Further Readings

Objectives

After studying this unit, you will be able to:

° Define connected spaces;

o Solve the questions on connected spaces;

o Understand the theorems and problems on connected subspaces of the real line.
Introduction

The definition of connectedness for a topological space is a quite natural one. One says that a
space can be “separated” if it can be broken up into two “globs” - disjoint open sets. Otherwise,
one says that it is connected. Connectedness is obviously a topological property, since it is
formulated entirely in terms of the collection of open sets of X. Said differently, if X is connected,
so is any space homeomorphic to X.

Now how to construct new connected spaces out of given ones. But where can we find some
connected spaces to start with? The best place to begin is the real line. We shall prove that R is
connected, and so are the intervals.

11.1 Connected Spaces

Definition: A topological space X is said to be disconnected iff there exists two non-empty
separated sets A and B such that E= AU B.

In this case, we say that A and B form a partition or separation of E and we write, E= A |B.

A topological space X is said to be connected if it cannot be written as the union of two disjoint
non-empty open sets.

A subspace Y of a topological space X is said to be connected if it is connected as a topological
space it its own right.
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T Notes

Note A set is said to be connected iff it has no separation

Example 1:

(1)  Let X be an indiscrete topological space. Then X is connected since the indiscrete topology
consists of the empty set ¢ and the whole space X only.

(2) Let X be a discrete topological space with at least two elements. Then X is disconnected
since if A is any non-empty proper subset of X, then A and A are disjoint non-empty open
subsets of X such that X = AU A“.

(3) ¢ is connected. Since ¢ cannot be expressed as the union of two non-empty separated sets.
So ¢ has no separation and is therefore connected.

Theorem 1: In a topological space X the following statements are equivalent:
(i)  Xis connected;

(ii) The empty set ¢ and the whose space X are the only subsets of X that are both open and
closed in X i.e. X has no non-trivial subset that is both open and closed in X;

(iii) X cannot be represented as the union of two non-empty disjoint closed sets.
(iv) X cannot be represented as the union of two non-empty separated sets.
Proof: We shall prove the theorem by showing that

(i) = (ii) = (iil)) = (iv) = (i)

(i) = (i)

Let X be connected.

Suppose A is a non-trivial subset of X that is simultaneously open and closed in X. Then B = A¢is
non-empty, openand X=AUB, A(1B=¢

This is contrary to the given hypothesis that X is connected and accordingly (ii) must be true
(ii) = (iii)

Let (ii) be true.

Suppose X = A U B, where A and B are two disjoint non-empty closed sets.

Then A = B¢ is a non-trivial subset of X that is open as well as closed in X. This contradicts the
given hypothesis (ii) and thus (ii) must be true.

(ii) = (iv)
Let (iii) be true.

Suppose X=AUB

where Az, B0, AN B =0=A NB.
Then clearly X= A U B

where A and B are non-empty closed sets.

AlsoAN B =¢
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B cBNAS=BUA)=X=¢
ie, ANB=¢
Thus X can be represented as the union of two disjoint non-empty closed sets.
This contradicts the given hypothesis (iii) and thus (iv) must be true.
(iv) = (i)
Let (iv) be true
Suppose that X is disconnected.
Then there exist disjoint non-empty open sets G and H such that X =G U H.
Since G and H are open and G N H = ¢, is follows G H=¢and G NH = ¢.
This contradicts the given hypothesis (iv) and thus (i) must be true.
Hence the proof of the theorem.
Theorem 2: The closure of a connected set is connected
OR
If A is connected subset then show that A is also connected.

Proof: Let (X, T) be a topological space and A be a subset of X.
If A is connected, then we have to show that A is also connected.
If A is not connected then it has a separation.

Let A =G| H

So by theorem, Let (X, T) be a topological space and let E be a connected subset of (X, T). If E has
a separation X = A | B, then either E c A or E ¢ B, we have

A cGor A cH

= ANH=¢ ("~ G and H are separated.) ..(1)
Also A =GUH .2
=SHc A
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Now from (1) and (2), we get Notes
H=¢,

which contradicts the given fact that H is non-empty.

Hence A is also a connected set.

Theorem 3: 1If every two points of a set E are contained in same connected subset of E, then E is
connected.

Proof: Let us suppose that E is not connected.

Then, it must a separation E= A | B

i.e. E is the union of non-empty separated sets A and B.

Since A and B are non-empty, leta € Aand b € B.

Then, A and B being disjoint

= a, b are two distinct points of E.

So, by given hypothesis there exists a connected subset C of E such thata, b € ¢

But, C being a connected subset of a disconnected set E with the separation E = A | B,
we have Cc Aor CCB.

This is not possible, since A and B are disjoint and C contains at least one point of A and one that
of B, which leads to a contradiction.

Hence E is connected.

Theorem 4: A topological space (X, T) is connected iff the only non-empty subset of X which is
open and closed is X itself.

Proof: Let (X, T) be a connected space.
Let A be a non-empty subset of X that is both open and closed. Then A¢ is both open and closed.

A =Aand AS = AC
Thus AN AS=¢

= A NA°=¢and AN A° =¢
Also X=AU A€
Therefore A and A€ are two separated sets whose union in X.

Now if A # ¢ and A“ # ¢, then we have separation X = A | AS, which leads to the contradiction as
X is connected.

So either A = por A= ¢

ButA=¢or A=¢

ButA#0¢

So AC=¢
X=AUA“=AUo=A

This shows that the only non-empty subset of X that is both open and closed is X itself. Conversely,
let the only subset of X which is both open and closed be X itself.

Then, there exists no non-empty proper subset of X which is both open and closed.

Hence (X, T) is not disconnected and therefore, it is connected.
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Theorem 5: A continuous image of connected space is connected.

Proof: Let f : X = Y be a continuous mapping of a connected space X into an arbitrary topological
space Y.

We shall show that f[X] is connected as a subspace of Y.
Let us suppose f[X] is disconnected.
Then there exists G and H both open in Y such that
GNX]#o, HNLX] =0
GNIXHNHNLX]) =6
and (G N f[X]) U (HN £[X]) = f[X]
It follows that
o= £[¢]
= UGN X)) N HNEX])]
= (G N H) NLX])
= £[G] N £1H] N £1(EX])
=[Gl NFH]N X
= £1[G] N £[H]
and X = £1(f[X])
= F1[(G N £X]) U (H N X])]
= F1[(G U H) N X])]
= 1[G U H] N £(f[X])
= f[GJU ' [H] N X
= £1[G] U f[H]
Since f is continuous and G and H are open in Y both intersecting f[X].
If follows that £'[G] and f'[H] are both non-empty open subsets of X.

Thus X has been expressed as union of two disjoint open subsets of X and consequently X is
disconnected, which is a contradiction.

Hence f[X] must be connected.

' Example 2: Show that (X, T) is connected space if X ={a, b, ¢, d} and T = {X, ¢, {a, b}}.

Solution: T-open sets are X, ¢, {a, b}.
T-closed sets are ¢, X, {c, d}
For X-{a, b} = {c, d}

Thus 3 non-proper subset of X which is both open and closed. Consequently (X, T) is not
disconnected. It follows that (X, T) is connected.

LOVELY PROFESSIONAL UNIVERSITY



Unit 11: Connected Spaces, Connected Subspaces of Real Line

Notes
Example 3: Show that every indiscrete space is connected.

Solution: Let (X, T) be an indiscrete space so that T = {¢, X}. Then T-open sets are ¢, X. T-closed sets
are X, ¢. Hence the only non-empty subset of X which is both open and closed is X.

X is connected, by theorem (4).

Self Assessment

1.  Prove that the closure of connected set is connected.
2. Prove that a continuous image of a connected space is a connected set.
3. Prove that connectedness is preserved under continuous map.

11.2 Connected Subspaces of Real Line

Theorem 6: The set of real numbers with the usual metric is a connected space.

Proof: Let if possible (R, U) be a disconnected space. Then there most exist non-empty closed
subsets A and B of R such that

AUB=Rand ANB=0¢

Since A and B are non-empty, 3a pointa€ Aandbe B
Since ANB=¢

azb
Thusa<bora>Db
Leta<b
We have [a, b] c p
=[a,b]c AUB
Thusx e [a,b] =x€ Aorxe B
Let p = sup([a, b]N A)
Thena<p<b
Since A is closed, p € A
Again ANB=¢andpe B
=p<b
Also by definition of p
pteeBve>0

p+e<b
Again since B is closed, p € B.
Thus, we get
peAandpe B=pe ANB
ButANB=0¢

Thus we get a contradiction. Hence R is connected.
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Theorem 7: A subspace of the real line R is connected iff it is an interval. In particular, R is
connected.

Proof: Let E be a subspace of R.

We first prove that if E is connected, then it is an interval. Let us suppose that E is not an interval.
Then there exists real numbers a, b, c with a <c <b such thata,b € Ebutc ¢ E.

Let A = ]-o0, C[ and B=]c, oo|.

Then A and B are open subset of R such thata € Aand b € B.

Now, ENA#pand ENB=#¢,sinceae E[{Aandbe ENB.

Also, ENA)NENB)=ENANB)=¢ (- ANB=¢)

and ENA)UENB)=ENAUB)=ENR-{c}=E

Thus, A U B forms a disconnection of E i.e., E is disconnected, a contradiction.
Hence E must be an interval.

Conversely, Let E be an interval and if possible let E is disconnected.

Then E is the union of two non-empty disjoint sets G and H, both closed in E, i.e. E=G U H.
Letac Gandbe H

Since GNH = ¢, we havea #b

So eithera<borb<a

Without any loss of generality we may assume that a <b.

Since a, b € E and E is an interval, we have [a, b] cE=GU H.

Let p =sup{G [a, b]}, then clearlya<p <b

Consequently, p € E.

But, G being closed in E, the definition of p shows that p € G and therefore, p # b.
Consequently, p <b

Moreover, the definition of p shows that p + € € H for each € > 0 for which p + e<b.

This shows that every nhd. of p contains at least one point of H, other than p. So, p is a limit point
of H. But H being closed, we have p € H.

Thus, p € G H and therefore G 1 H # ¢, which is a contradiction.
Hence E must be connected
Theorem 8: Prove that the real line is connected.

Proof: Let R be an interval and if possible let R is disconnected. Then R is the union of two
non-empty disjoint sets G and H, both closed in R, i.e. R=G U H.

Letae Gandbe H.

Since GNH = ¢, we havea #b

So eithera<borb<a

Without any loss of generality, we may assume that a <b.

Since a, b € R and R is an interval, we have [a, b cCR=GUH
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Let p =sup{G( [a, b]}, thenclearlya<p<b Notes
Consequently p € R

But G being closed in R, the definition of p shows that p € G and therefore p #b.

Consequently, p <b

Moreover the definition of p shows that p + € € H for each € > 0 for whichp + € <b.

This shows that every nhd. of p contains at least one point of H other than p. So p is a limit point
of H.

But H being closed, we have p e H
Thus p € G H and therefore G (1 H # ¢, which is a contradiction.

Hence R must be connected.

'I Example 4: Show that if X is a connected topological space and f is a non-constant
continuous real function defined on X then X is uncountably infinite.

Solution: f : X — R is continuous and X is connected, so f (X) is a connected subspace of R.

Suppose that f (X) is not connected, there exists a non-empty proper subset E of f (X) such that E
is both open and closed in f (X).

As f is continuous

= f* (E) is non-empty proper subset of X which is both open and closed in X.

This contradicts the fact that X is connected. Hence f (X) must be a connected subspace of R.
Also f is non-constant, there exist x, y € X such that f (x) # f (y)

Leta=f(x)and b =f (y).

Without any loss of generality we may suppose thata <b. Now a, b € f (X), f (x) is a connected
subspace of R

= [a, b] = f (X).

[+ a subspace E of real line R is connected iff E is an interval
ie.ifa,b € Eand a<c <bthenc € E. In particular R is connected.]

Since [a, b] is uncountably infinite, it follows that f (X) is uncountably infinite and consequently
X must be uncountably infinite.

' Example 5: Show that the graph of a continuous real function defined on an interval is a
connected subspace of the Euclidean plane.

Solution: Let f : 1 — R be continuous and let G be the graph of {.
ThenG=1xf(I)c R~

Now since I is connected by the theorem “A subspace E of the real line R is connected iff E is an
interval.”

Also, f is continuous, it follows that f (I) is a connected subspace of R since continuous image of
a connected space is connected. Also we know that connectedness is a product invariant property,
hence G is connected.
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' Example 6: The spaces R™ and C" are connected.

Solution: We know that R" is a topological space can be regarded as the product of n replicas of
the real line R. But R is connected therefore R is connected since the product of any non-empty
class of connected spaces is connected.

We next prove that C" and R are essentially the same as topological spaces by taking a
homomorphism f of C* onto R*.

Let z = (z, z,, ..., z,) be an arbitrary element in C".
Let us suppose that each coordinate z, is of the form

z, = a, +ib,
where a, and b, are its real and imaginary parts.
Let us define f by

f(z)y=(@,b,a,b,..,a,b).
f is clearly a one-to-one mapping of C" onto R* and if we observe that ||f (z)|| = ||z||, then fis a
homeomorphism which shows that R* is connected. Hence C" is also connected.

Self Assessment

4. Show that if f is continuous map of a connected space X into R, then £(X) is an interval.

5. Show that a subset A of the real line that contains at least two distinct points is connected
if and only if it is an interval.

11.3 Summary

o A topological space X is said to be connected if it cannot be written as the union of two
disjoint non-empty open sets.

. The closure of a connected set is connected.

o If every two points of a set E are contained in some connected subset of E, then E is
connected.

o A continuous image of connected space is connected.

o The set of real numbers with the usual metric is a connected space.

o A subspace of the real line R is connected iff it is an interval. In particular, R is connected.

11.4 Keyword

Separated set: Let A, B be subsets of a topological space (X, T). Then the set A and B are said to be
separated iff

i A=#¢0,B=z0

(i) ANB=¢, ANB=¢
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11.5 Review Questions Notes

1. Let {A } be a sequence of connected subspaces of X, such that A N A_,, # ¢ for all n. Show
that UA_is connected.

2. Letp: X — Y be a quotient map. Show that if each set p7({y}) is connected and if Y is
connected, then X is connected.

3. LetY c X ;let X and Y be connected. Show that if A and B form a separation of X - Y, then
Y U A and Y U B are connected.

4. Let (X, T) be a topological space and let E be a connected subset of (X, T). If E has a
separation X = A | B, then either E c A or E C B.

5. Prove that if a connected space has a non-constant continuous real map defined on it, then
it is uncountably infinite.

Show that a set is connected iff A is not the union of two separated sets.
Letf:S" — R be a continuous map. Show there exists a point x of S’ such that f(x) = f(-x).

Prove that connectedness is a topological property.

o X N o

Prove that the space R" and C" are connected.

11.6 Further Readings

N

Books William W. Fairchild, Cassius Ionescu Tulcea, Topology, W.B. Saunders Company.

B. Mendelson, Introduction to Topology, Dover Publication.

)

Online links  www.mathsforum.org

www.history.mcs.st/andrews.ac.uk/HistTopics/topology/in/ mathematics.htm
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Objectives

After studying this unit, you will be able to:

o Understand the term components of a topological space;

° Solve the problems on components of a topological space;
) Define locally connectedness;

° Solve the problems on locally connectedness.
Introduction

Given an arbitrary space X, there is a natural way to break it up into piece that are connected. We
consider that process now. Given X, define an equivalence relation on X by setting x ~ y if there
is a connected subspace of X containing both x and y. The equivalence classes are called the
components or the “connected components” of X.

Connectedness is a useful property for a space to possess. But for some purposes, it is more
important that the space satisfy a connectedness condition locally. Roughly speaking, local
connectedness means that each point has “arbitrary small” neighbourhoods that are connected.
So, in this unit, we shall deal with two important topics components and local connectedness.

12.1 Components of a Topological Space

Definition: A subset E of a topological space X is said to be a component of X if
1. E is a connected set and

2. Eis not a proper subset of any connected subspace of X i.e. if E is a maximal connected
subspace of X.
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Notes

(i)  Let(X,]) be a topological space and E be a subset of X. If x € E, then the union of all
connected sets containing x and contained in E, is called component of E with respect
to x and is denoted by C (E, x).

(ii)  Since the union of any family of connected sets having a non-empty intersection is
a connected set, therefore the component of E with respect of x i.e. C (E, x) is a
connected set.

(iii) If E is a component of X, the E # ¢.

Example 1:

(i) If Xis a connected topological space, then X has only one component, namely X itself.

(ii) If X is a discrete topological space, then each singleton subset of X is its component.

Theorem 1: In a topological space (X, T) each point in X is contained in exactly one component
of X.

Proof: Let x be any point of X
Let A = {A} be the class of all connected subspaces of X which contains x

A # das{x} € A

Also (i) A, # ¢ since xeﬂAi

Therefore by theorem, Let X be a topological space and {A } be a non-empty class of connected
subspaces of X such that ﬂAi #¢ then A=U; A, is connected subspace of X,LJAi =C, (say)
is connected subspace of X.

Further, x € C, and if B is any connected subspace of X containing x, then B€ A, andso B C,.

Therefore C_is a maximal connected subspace i.e. a component of X containing x.

Now we shall prove that C_is the only component which contains x.

Let C, be any other component of X which contain x. The C,, is one of the A}s and is therefore

contained in C . But Ci is maximal as a connected sub-space of X, therefore we must have

C,=C, ie.C_is unique in the sense that each point x € X is contained in exactly one component
C_of X.

Theorem 2: In a topological space each components is closed.

Proof: Let (X, T) be a topological space and let C be a component of X.

By the definition of component, C is the largest connected set containing x. Then, C is also a
connected set containing x.

Thus Cc c C
Also Cc C
Therefore C = C

Hence C is closed.
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Theorem 3: In a topological space X each connected sub space of X is contained in a component
of X.

Proof: Let E be any connected subspace of X.

If E=¢, then E is contained in every component of X.

Let E#¢,andletxe E

Then x € X

Let E_be the union of all connected subsets of X containing x. Then, E_is a component of X
containing x.

Now, E is a connected set containing x and E_is the largest connected set containing x. SoECE .

Theorem 4: In a topological space (X, T), a connected subspace of X which is both open and closed,
in a component of X.

Proof: Let G be a connected subspace of X which is both open and closed.
If G = ¢, then G is contained in every component.

If G # ¢, then G contains a point x, € X and so
GcC(X,x;) = C
We shall show that G = C
In order to show that G = C, let us assume that G is a proper subset of C, so that
GNC#¢ and G NnC#¢ where G'=X-C.

Since G is both open and closed, G’ is also both open and closed.

Also GNO)N(G'NC) = (GNG)n
= 0nC=9¢
and GNQuUGENC) = (GUGE)NC=XNC=X

which shows that C is disconnected, which is a contradiction of the given fact that C is connected
Hence G = C.

Theorem 5: The product of any non-empty class of connected topological spaces is connected i.e.
connectedness is a product invariant property.

Proof: Let {x} be a non-empty connected topological spaces and X =I1; X; be the product space.
Let a=<a; >€ X and E be a component of a.

We claim that XcE=E (. Eis closed)

Let x = <x; > be any point of X and let G=TI{X; :i #i;,..i,} XG; X...XG;
be any basic open set containing x.

Now H=TI{{a;};i#iy,is,wmrip | X X;; XX X....xX;  is homeomorphic to X;; XX, x..X; and is
therefore connected

(- connectedness is a topological property)
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Further a € H, H connected and E a component of a implies that H is a subset of E. But G H # ¢, Notes
so that G contains a point of H and hence of E.

Thus we have shown that every basic nhd of x contains a point of E.

Consequently every nhd of x will contain a point of E and therefore x € E.

Thus xe X = x€E=E, sothat XcE But Ec X.
Hence X = E and is therefore connected.

Theorem 6: The component of a topological space X form a position of Xi.e. any two components
of X are either disjoint or identical and the union of all the components is X.

Proof: For each x € X, let C (X, x) the union of all connected sets containing x.
Then C (X, x) is a component of X.

Clearly, the family {C_: x € X} consists of all components of X and X = U {C_:x € X}. Now let
C (X, x,) and C (X, x,) be the components of X with respect of x, and x, respectively, x, # x,

If C(X, x,) N C (X, x,) = ¢, we are done
so, let C(X, x) " C (X, x,) = 0
LetxeC (X, x,) n C (X, x,)

them x € C (X, x,) and x eC (X, x,)

Now C (X, x,) and C (X, x,) are connected sets containing x and C (X, x) is a component containing
x, therefore

C(X,x)cC (X x)
and CX x)c (X %)

But C (X, x,) and C (X, x,) being components, they cannot be contained in a larger connected
subset of X.

Therefore C (X, x,) = C (X, x,) = C (X, x)
Thus, any two components of X one either disjoint or identical.

Hence, the components of X form a partition of X.
Self Assessment

1.  Prove that the components of E corresponding to different points of E are either equal or
disjoint.

12.2 Local Connectedness

12.2.1 Locally Connected Spaces

A topological space X is said to locally connected at a point x € X if every nhd. of x contains a
connected nhd. of x i.e. if N is any open set containing x then there exists a connected open set G
containing x such that G ¢ N

or

A topological space (X, T) is said to be locally connected iff for every point x € X and every nhd.
G of x, there exists a connected nhd. H such that x € H c G. Thus the space (X, T) is locally
connected iff the family of all open connected sets is a base for T.
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' Example 2: Each interval and each ray in the real line in both connected and locally
connected. The subspace [-1, 0) U (0, 1] of R is not connected, but it is locally connected.

12.2.2 Locally Connected Subset

Let (X, T) be a topological space and let (Y, T ) be a sub-space of (X, T)

The subset Y € X is said to be locally connected if (Y, T ) is a locally connected space.
12.2.3 Theorems and Solved Examples

Theorem 7: Every discrete space is locally connected.

Solution: Let x be an arbitrary point of a discrete space X. We know that every subset of a
discrete space is open and that every singleton set is connected. Hence {x} is a connected open
nhd. of x. Also every open nhd. of x must contain {x}.

Hence X is locally connected.

Example 3: Give two examples of locally connected space which are not connected.
Or

Is locally connected space always connected? Justify.

Solution:

1.  Let X be a discrete space containing more than one point.

Let x € X. Then {x} is an open connected set and is obtained in every open set containing x.
So, Xis locally connected at each point of X. Also, every singleton subset of X is a non-empty
proper subset of X which is both open and closed. So X is disconnected.

2. Consider the usually topological space (R, U)
Let A ¢ R, which is the union of two disjoint open intervals.
Then A is not a interval and therefore it is not connected.
To show that A is locally connected.

Let x be an arbitrary point of A and G_be a set open in A such that x € G,. Then there exists
an open interval I such that x € I c G_. But I being an interval, it is connected in R and
therefore in A.

Thus every open nhd. of x in A contains a connected open nhd. of x in A.

Hence A is locally connected.

' Example 4: Give example of a space which is connected but not locally connected.

Solution: Consider the subspace A U B of the Euclidean Plane R? where

{0 y):-1<y<T1}

{(x,y) y= sinG),o <x< 1}

The A N B = ¢ and each point of A is a limit point of B and so A and B are not separated.
Consequently, A U B is connected.

A

and B
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But A U B is not locally connected at (0, 1), since the open disc with centre (0, 1) and radius Notes

1
(Z) does not contain any connected open subset of R? containing (0, 1).

Hence A U B is connected but not locally connected.

Theorem 8: Every component of a locally connected space is open.
Proof: Let (X, T) be a locally connected space and E be a component of X.
We shall show that E is an open set.

Let x be any element of E.

Since X is locally connected, there exists a connected space set G_which contains x. Since E is a
component, we have x € G C E clearly, E=uU {G_:x € E}.

Therefore E, being a union of open sets, is an open set.

Theorem 9: A topological space X is locally connected iff the components of every open subspace
of X are open in X.

Proof: Let X be locally connected and Y be an open subspace of X.
Let E be a component of Y.

We are to show that E is open in X i.e. if x is any element of E then there exists a nhd. G of x such
that G c E.

Now E G, Y, Y open in X, x € Y and X is locally connected implies that there exists a connected
open set G containing x such that G C Y.

Since the topology which G has as a subspace of Y is the same as that it has as a subspace of X,
therefore G is also connected as a subspace of Y and consequently G c E as E is a component of Y.

Conversely, let the components of every open subspace of X be open in X, Let x € X and Y an
open subset of X containing x. Let E_be a component of Y containing x. Then by hypothesis, E_
is open and connected in Y and therefore in X.

Example 5: Give an example of locally connected space which is totally disconnected.
Solution: Every discrete space is locally connected as well as totally disconnected.

Let x be an arbitrary point of a discrete space X.

We know that every subset of a discrete space is open and that every singleton set is connected.
Hence {x} is a connected open nhd. of x. Also every open nhd. of x must contain {x}.

Hence X is locally connected.

To prove X is totally disconnected.

Let x, y be any two distinct points of a discrete space X.

The G = {x} and H = X - {x} are both non-empty open disjoint sets whose union is X such thatx € G
and y € H. It follows that X is totally disconnected.

Theorem 10: Local connectedness neither implies nor is implied by connectedness.

Proof: The union of two disjoint open intervals on the real line forms a space which is locally
connected but not connected. Example of a space which is connected but not locally connected.

Let X be the subspace of Euclidean plane defined by
X =AU B where
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A={(x,y):x=0,y e[-1,1]}
and B={(x,y):0£x£1andy=sin1}.
X

Since B is the image of (0, 1] under a continuous mapping f give by

1
f(x)= (x,sinfj

X

So B is connected.

("~ Continuous image of a connected space is connected).

Since X = B, therefore X is connected. But it is not locally connected because each point x € A has

a nhd. which does not contain any connected nhd. of x.

Theorem 11: The image of a locally connected space under a mapping which is both open and
continuous is locally connected. Hence locally connectedness is a topological property.

Proof: Let X be a locally connected space and Y be an arbitrary topological space.

Letf:X —Y be a map which is both open and continuous. Without any loss of generality we may
assume that f is onto. We shall show that Y = f (X) is locally connected.

Lety =f (x), x € X, be any point of Y and G be any nhd. of y. Since f is continuous.

= f* (G) is open in X containing f (y) = x.

Thus, ! (G) is open, nhd. of x.

Now X being locally connected, these exists a connected open set H such that x e Hc f* (G).
Ly=f() e f(H) cf[F G)] G,

where f (H) is open, since f is open.

Moreover, the continuous image of a connected set is connected, it follows that f (H) is connected.
This shows that f (X) is locally connected at each point.

Hence, f (X) is locally connected.
Self Assessment

2. Show that a connected subspace of a locally connected space has a finite number of
components.

3 Show that the product X x Y of locally connected sets X and Y is locally connected.

12.3 Summary

o A subset of E of a topological space X is said to be a component of X if
(i) Eisaconnected set &

(ii) Eisnota proper subset of any connected subspace of Xi.e. if E is a maximal connected
subspace of X.

° A topological space X is said to locally connected at a point x € X if every nhd of x contains
a connected nhd. of x i.e. if N is any open set containing x then there exists a connected
open set G containing x such that G ¢ N.

° Let (X, T) be a topological space and let (Y, T,) be a subspace of (X, T). The subset y X is
said to be locally connected if (y, T,) is a locally connected space.
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12.4 Keywords Notes

Connected: A topological space X is said to be connected if it cannot be written as the union of
two disjoint non-empty open sets.

Discrete Space: Let X be any non empty set of T be the collection of all subsets of X. Then T is
called the discrete topology on the set X. The topological space (X, T) is called a discrete space.

Open Set: Let (X, T) be a topological space. Any set A € T is called an open set.

Partition: A topological space X is said to be disconnected if there exists two non-empty separated

sets A and B such that E = A U B. In this case, we say that A and B form a partition of E and we write
E=A/B.

12.5 Review Questions

1. Let p : X = Y be a quotient map. Show that if X is locally connected, then Y is locally
connected.

2. A space X is said to be weakly locally connected at x if for every neighbourhood U of x,
there is a connected subspace of X contained in U that contains a neighbourhood of x. Show
that if X is weakly locally connected at each of its points, then X is locally connected.

3. Prove that a space X is locally connected if and only if for every open set U of X and each
component of U is open in X.

4. Prove that the components of X are connected disjoint subspaces of X whose union is X,
such that each non-empty connected subspace of X intersects only one of them.

12.6 Further Readings
Books J.L. Kelly, General Topology, Van Nostrand, Reinhold Co., New York.

S. Willard, General Topology, Addison-Wesley, Mass. 1970.
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Objectives

After studying this unit, you will be able to:

o Define open covering of a topological space;

o Understand the definition of a compact space;

o Solve the problems on compact spaces and compact subspace on real line.
Introduction

The notion of compactness is not nearly so natural as that of connectedness. From the beginning
of topology, it was clear that the closed interval [a, b] of the real line had a certain property that
was crucial for proving such theorems as the maximum value theorem and the uniform continuity
theorem. But for a long time, it was not clear how this property should be formulated for an
arbitrary topological space. It used to be thought that the crucial property of [a, b] was the fact
that every infinite subset of [a, b] has a limit point, and this property was the one dignified with
the name of compactness. Later, mathematicians realized that this formulation does not lie at
the heart of the matter, but rather that a stranger formulation, in terms of open coverings of the
space, is more central. The latter formulation is what we now call compactness. It is not as
natural of intuitive as the former; some familiarity with it is needed before its usefulness
becomes apparent.

13.1 Compact Spaces

Definition: A collection A of subsets of a space X is said to cover X, or to be a covering of X, if the
union of the elements of A is equal to X. It is called an open covering of X if its elements are open
subsets of X.

Definition: A space X is said to be compact if every open covering A of X contains a finite
sub-collection that also covers X.
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Notes
' Example 1: The real line R is not compact, for the covering of R by open intervals

A = {n,n+2)/ne 7z}

contains no finite sub-collection that covers R.

' Example 2: The following subspace of R is compact
X = {0}u{l/neZ}.

Given an open covering A of X, there is an element U of A containing O. The set U contains all
but finitely many of the point 1/n; choose, for each point of X not in U, an element of A
containing it. The collection consisting of these elements of .4, along with the element U, is a
finite sub-collection of A that covers X.

Lemma (i): Let Y be a subspace of X. Then Y is compact if and only if every covering of Y by sets
open in X contains a finite sub-collection covering Y.

Proof: Suppose that Y is compactand A={A } _ isa covering of Y by sets open in X. Then the
collection

[AnYl|ae]}
is a covering of Y by sets open in Y; hence a finite sub-collection

{Am1 NY,...,A, NnY}

covers Y. Then {Aal, ey A%} is a sub-collection of A that covers Y.

Conversely, suppose the given condition holds; we wish to prove Y compact. Let A" = {A’ } be a
covering of Y by sets open in Y. For each o, choose a set A open in X such that

A=A NY
The collection A = {A } is a covering of Y by sets open in X. By hypothesis, some finite

sub-collection {A_,...., Aan} covers Y. Then {A/oq’ ..., A’ }1is a sub-collection of A’ that covers Y.

o' Opy

Theorem 1: Every closed subspace of a compact space is compact.

Proof: Let Y be a closed subspace of the compact space X. Given a covering A of Y by sets open
in X, let us form an open covering B of X by A joining to A the single open set X - Y that is

B=AU{X-Y}

Some finite sub-collection of BB covers X. If this sub-collection contains the set X - Y, discard X -Y;
otherwise, leave the sub-collection alone. The resulting collection is a finite sub-collection of A
that cover Y.

Theoremn 2: Every compact subspace of a Hausdorff space is closed.

Proof: Let Y be a compact subspace of the Hausdorff space X. We shall prove that X - Y is open.
So that Y is closed. Let x, be a point of X - Y. We show there is a neighborhood of x that is disjoint
from'Y. For each point y of Y, let us choose disjoint neighborhoods U and V of the points x; and
¥, respectively (using the Hausdorff condition). The collection {V /y €Y} is a covering of Y by
sets in X; therefore, finitely many of them V_ , ..., V| cover Y. The open set

V=V, U..UV,
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contains Y, and it is disjoint from the open set
U=U n..nU
y yn

formed by taking the intersection of the corresponding neighborhoods of x. For if z is a point
of V,thenz e Vyi for some i, hence z ¢ in and so z ¢ U. Then U is a neighbourhood of x,, disjoint
from Y, as desired.

Theorem 3: The image of a compact space under a continuous map is compact.

Proof: Let f : X = Y be continuous; let X be compact. Let A be a covering of the set f(X) by sets
open in Y. The collection

{f1(A) | AcA}

is a collection of sets covering X; these sets are open in X because f is continuous. Hence finitely
many of them. Say

f1(A), ... ' (A), cover X, then the sets A ..., A cover f(X)

=7

Note Use of the proceeding theorem is as a tool for verifying that a map is a
homeomorphism

Theorem 4: Let f: X — Y be a bijective function. If X is compact and Y is Hausdorff, then f is a
homeomorphism.

Proof: We shall prove that images of closed sets of X under f are closed in Y; this will prove
continuity of the map f. If A is closed in X, then A is compact by theorem (1). Therefore by the
theorem just proved f(A) is compact. Since Y is Hausdorff, f(A) is closed in Y by theorem (2)

' Example 3: Show by means of an example that a compact subset of a topological space
need not be closed.

Solution: Suppose (X, I) is an indiscrete topological space such that X contains more than one
element. Let A be a proper subset of X and let (A, 1) be a subspace of (X, I). Here, we have
L, = {0, A}. For I = {¢, X}. Hence, the only I, - open cover of A is {A} which is finite. Hence A is
compact. But A is not I-closed. For the only I-closed sets are ¢, X. Thus A is compact but not
closed.

Theorem 5: A closed subset of a countably compact space is countably compact.
Proof: Let Y be a closed subset of a countably compact space (X, T).
Let {G, : n € N} be a countable T-open cover of Y, then

YcuG,.

But X=YuUY
Hence X=Y U {G :ne N}

This shows that the family consisting of open sets Y, G,, G,, G,,.... forms an open countable cover
of X which is known to be countably compact. Hence this cover must be reducible to a finite
subcover, say

Y, G,G, ..G,sothat X=Y"U Lk:Jl G }

n
= Yc ulGi
iz
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It means that {G, : 1 <i < n} is finite subcover of the countable cover Notes
{G,:neNj}

Hence Y is countably compact
Self Assessment

1. Prove that a topological space is compact if every basic open cover has a finite sub-cover.
2. Show that every cofinite topological space (X, T) is compact.

3. Show that if (Y, T,) is a compact subspace of a Hausdorff space (X, T), then Y is T-closed.

13.2 Compact Subspaces of the Real Line

The theorems of the preceding section enable is to construct new compact spaces from existing
ones, but in order to get very far we have to find some compact spaces to start with. The natural
place to begin is the real line.

Application include the extreme value theorem and the uniform continuity theorem of calculus,
suitably generalised.

Theorem 6: Extreme Value Theorem

Let f: X — Y be continuous, where Y is an ordered set in the order topology. If X is compact, then
there exist points ¢ and d in X such that f(c) < f(x) < f(d) for every x € X.

The extreme value theorem of calculus is the special case of this theorem that occurs when we
take X to be a closed interval in R and Y to be R.

Proof: Since f is continuous and X is compact, the set A = f(X) is compact. We show that A has a
largest element M and a smallest element m. Then since m and M belong to A, we must have
m = f(c) and M = F(d) for some points c and d of X.

If A has no largest element, then the collection
(= a)lac A)
forms an open covering of A. Since A is compact, some finite subcollection
(o2, a), s (o2, a))

covers A. If a, is the largest of the elements a,,..., a , then a, belongs to none of these sets, contrary
to the fact that they cover A.

A similar argument shows that A has a smallest element.

Definition: Let (X, d) be a metric space; let A be a non-empty subset of X. For each x € X, we
define the distance from x to A by the equation

d(x, A)=inf{d (x,a) | ae A}
It is easy to show that for fixed A, the function d (x, A) is continuous function of x.
Given x, y € X, one has the inequalities
d(x, A)<d(x,a)=d(x, y) + d(y, a),
for each a € A. It follows that
d(x, A) -d(x, y) <inf d (y, a) = d(y, A),
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so that
d(x, A) - d(y, A)<d(x, y).
The same inequality holds with x and y interchanged, continuity of the function d(x, A) follows.

Now we introduce the notion of Lebesgue number. Recall that the diameter of a bounded subset
A of a metric space (X, d) is the number

sup {d(a,, a,) | a,, a,€ A}

Lemma (1) (The Lebesgue number Lemma): Let A be an open covering of the metric space (X, d). If
Xis compact, there is a § > 0 such that for each subset of X having diameter less than §, there exists
an element of A containing it.

The number § is called a Lebesgue number for the covering A.

Proof: Let A be an open covering of X. If X itself is an element of 4, then any positive number is
a Lebesgue number of A. So assume X is not an element of A.

Choose a finite subcollection {A,, ..., A } of A that covers X. For each i, set C, = X - A, and define
f: X > R be letting f(x) be the average of the numbers d(x, C)). That is,

1 n
9= ~3%xc)

We show that f(x) > 0 for all x. Given x € X, choose i so that x € A,. Then choose € so
€-neighborhood of x lies in A,. Then d(x, ¢,) 2 €, so that f(x) > € /n.

Since f is continuous, it has a minimum value 8, we show that § is our required Lebesgue
number. Let B be a subset of X of diameter less that 8. Choose a point x, of B; then B lies in the
d-neighborhood of x,. Now

§<f(x)<d(x, C),

where d(x, C, ) is the largest of the number d(x,, C,). Then the §-neighborhood of x is contained
in the element A - X - C_ of one covering A.

Definition: Uniformly Continuous

A function F from the metric space (X, d,) to the metric (Y, d,) is said to be uniformly continuous
if given € > 0, there is a § > 0 such that for every pair of points x, x, of X,

d (x, x) <d = d,(f(x,), f(x) <e.
Theorem 7: Uniform Continuity Theorem

Let f: X — Y be a continuous map of the compact metric space (X, d,) to be metric space (Y, d,).
Then f is uniformly continuous.

Proof: Given € > 0, take the open covering of Y by balls B (y, € /2) of radius € /2. Let A be the
open covering of X by the inverse images of these balls under f. Choose & to be a Lebesgue
number for the covering A. Then if x, and x, are two points of X such that dx(x,, x,) <9, the two
point set {x,, x,} has diameter less than 8. So that its image {f(x,), f(x,)} lies in some ball B (y, € /2).
Then dy (f(x,), f(x,) < €, as desired.

Finally, we prove that the real numbers are uncountable. The interesting thing about this proof
is that it involves no algebra at all-no decimal or binary expansions of real numbers or the
like-just the other properties of R.
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Theorem 8: Every closed and bounded interval on the real line is compact. Notes

Proof: Let 1, =[a, b] be a closed and bounded interval on R. If possible, let I, be not compact. Then
there exists an open covering C = {G} of 1, having no finite sub covering.

i

Let us write I, =[a, b] = {a,a;b}u[a;b,b} ...(1)

Since I, is not covered by a finite sub-class of C and therefore at least one of the intervals of the
union in (1) cannot be covered by any finite sub-class of C.

Let us denote such an interval by I, = [a,, b,].

Now writing I, =[a, b]= {al, al;bl } U {%bl, bl} (2

As argued before, at least one of the intervals in the union of (2) cannot be covered by a finite
sub-class of C.

Let us denote such an interval by I, = [a,, b,].

On continuing this process we obtain a nested sequence (I, ) of closed intervals such that none of
these intervals I can be covered by a finite sub-class of C.

Clearly the length of the inverval.

I = a-b
n 2\1
Thus lim |L | = 0.

Hence, by the nested closed interval property, N1 # ¢.
LetpenI, thenpel VneN.

In particular p € L.

Now since C is an open covering of I, there exists some A, in Csuch thatpe A, .

Since A, is open there exists an open interval (p - ¢, p +g)such thatp e (p-¢,p+e) cA,.

Since /(I ) — 0 as n — oo, there exists some

L,clp-&ptecA,.

This contradicts our assumption that no I_is covered by a finite number of members of C.

Hence [a, b] is compact.

' Example 4: The real line is not compact.

Solution: LetC={] -n,n[:n e N}.

Then each member of C is clearly an open interval and therefore, a U-open set.

Also if p is any real number, then there exists a positive integer n_such thatn_> [p].
Thenclearlyp € ]-n,n [€C.

Thus each point of R is contained in some member of C and therefore C is an open covering of R.
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Now if C" is a fanily of finite numbr of sets in C, say
C={]=n,n[]n,nl[..,]=n,n/}
and if n" = max {n, n,, ..., n.}, then

n*e_

i

LCw

(] -, n; [)
Thus it follows that no finite sub-family of C cover R.
Hence (R, U) is not compact.

Theorem 9: A closed and bounded subset (subspace) of R is compact.

Proof: Let I, = [a,, b,] be a closed and bounded subset of R. Let G = {(c, d,) : i € A} be an open
covering of L.

To prove that 3 finite subcover of the original cover G.
Suppose the contrary.
Then 3 no finite subcover of the cover G.

Divide I, into two equal closed intervals.

{al,%b]} and {a] ;b1 ,bl]

Then, by assumption, at least one of these two intervals will not be covered by any finite
subclass of the cover G. Call that interval by the name I,

Write I, = [a,, b,]

Then [a, b] = {al,a1+bl} or {aﬁ_bl,bl]

27 72 2 2

a,+b
Divide I, into two equal closed intervals {az, : 2 : } and [ 2 2, b2:|. Again by assumption, at

least one of these two intervals will not be covered by any finite sub-family of the cover G. Call
that interval by the name L.

Write 1, = [a,, b,].

Repeating this process an infinite number of times, we get a sequence of intervals I, I, I, ... with
the properties.

i I>oIl, VneN.
(ii) I isclosed Vn e N.
(iii) I is not covered by any finite sub-family of G.

(iv) 1t [I] =0, where |I | denotes the length of the interval I and similar is the meaning of
l[a, bI.

Evidently the sequence of intervals (I ) satisfies all the conditions of nested closed interval

property.

This= N 1, #¢

n=1

So that 3 a number p, € N L.
n=1
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Self Assessment Notes

4. Prove that if X is an ordered set in which every closed interval is compact, the X has the
least upper bound property.

5. Let X be a metric space with metric d; let A < X be non-empty. Show that d(x, A) =0 if and
only if x€A.

13.3 Summary

° A collection A of subsets of a space X is said to cover X, or to be a covering of X, if the union
of the elements of A is equal to X. It is called an open covering of X if its element are ope
subsets of X.

o A space X is said to be compact if every open covering A of X contains a finite subcollection
that also cover X.

° Let A be an open covering of the metric space (X, d). If X is compact, there is a § > 0 such that
for each subset of X having diameter less than §, there exists an element of A continuing it.
The number § is called a Lebesgue number for the covering A.

13.4 Keywords

Closed Open Set: Let (X, T) be a topological space. Any set A € T is called an open setand X - A
is a closed set.

Countably Compact: A topological space (X, T) is said to be countably compact iff every countable
T-open cover of X has a finite subcover.

Homeomorphism: A map f: (X, T) = (Y, U) is said to be homeomorphism if (i) f is one-one onto
(ii) f and ™ are continuous.

Indiscrete Topology: Let X be any non-empty set ad T = {X, ¢}. Then T is called the indiscrete
topology.

13.5 Review Questions

1. Let T and T’ be two topologies on the set X; suppose that T” 5 T. What does compactness of
X under one of these topologies imply about compactness under the other?

2. Show that if X is compact Hausdorff under both T and T’, then either T and T’ are equal or
they are not comparable.

3. Show that a finite union of compact subspaces of X is compact.

4. Let A and B be disjoint compact subspace of the Hausdorff space X. Show that there exist
disjoint open sets U and V containing A and B, respectively.

5. LetY be a subspace of X. If Z Y, then show that Z is compact as a subspace of Y & it is
compact as a subspace of X.

6.  Prove that a closed subset of a compact space is compact.
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Notes 13.6 Further Readings
Books J.L. Kelly, General Topology, Van Nostrand, Reinhold Co., New York

S. Willard, General Topology, Addison-Wesley Mass. 1970.
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Unit 14: Limit Point Compactness Notes

CONTENTS
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14.1 Limit Point Compactness and Sequentially Compact
1411 Limit Point Compactness
14.1.2  Sequentially Compact

14.2 Summary

14.3 Keywords

14.4 Review Questions

14.5 Further Readings

Objectives

After studying this unit, you will be able to:

o Define limit-point compactness and solve related problems;
o Define the term sequentially compact and solve questions on it.
Introduction

In this unit, we introduce limit point compactness. In some ways, this property is more natural
and intuitive than that of compactness. In the early days of topology, it was given the name
“compactness”, while the open covering formulation was called “bicompactness”. Later, the
word “compact” was shifted to apply the open covering definition, leaving this one to search for
a new name. It still has not found a name on which everyone agrees. On historical grounds,
some call it “Frechet compactness” others call it the “Bolzano-Weierstrass property”. We have
invented the term “limit point compactness”. It seems as good a term as any at least it describes
what the property is about.

14.1 Limit Point Compactness and Sequentially Compact

14.1.1 Limit Point Compactness

A space X is said to be limit point compact if every infinite subset of X has a limit point.
Theoremn 1: Compactness implies limit point compactness, but not conversely.

Proof: Let X be a compact space. Given a subset A of X, we wish to prove that if A is infinite, then
A has a limit point. We prove the contra positive - if A has no limit point, then A must be finite.

So suppose A has no limit point. Then A contains all its limit points, so that A is closed. Further
more, for each a € A, we can choose a neighborhood U, of a such that U_ intersects A in the point
a alone. The space of X is covered by the open set X - A and the open sets U ; being compact, it can
be covered by finitely many of these sets. Since X - A does not intersect A, and each set U,
contains only one point of A, the set A must be finite.
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Example 1: Let Y consist of two points; give Y the topology consisting of Y and the empty
set. Then the space X = Z, x Y is limit point compact, for every non-empty subset of X has a limit
point. It is not compact, for the covering of X by the open sets U_ = {n} x Y has no finite
subcollection covering X.

14.1.2 Sequentially Compact

Let X be a topological space. If (x ) is a sequence of points of X, and if
n<n<..<n<..

is an increasing sequence of positive integers, then the sequence (y,) defined by setting y, = x ; is

called a subsequence of the sequence (x ). The space X is said t, be sequentially compact if every
sequence of points of X has a convergent subsequence.

Theorem 2: Let X be a metrizable space. Then the following are equivalent:

1. Xis compact
2. X is limit point compact
3. Xis sequentially compact

Proof: We have already proved that (1) = (2). To show that (2) = (3), assume that X is limit point
compact. Given a sequence (x ) of points of X, consider the set A = {x n € Z }. If the set A is finite,
then there is a point x such that x = x _for infinitely many values of n. In this case, the sequence
(x,) has a subsequence that is constant, and therefore converges trivially. On the other hand, if A
is infinite, then A has a limit point of x. We define a subsequence of (x ) converging to x as
follows.

First choose n, so that
x, € B(x, 1)

Then suppose that the positive integer n, _, is given. Because the ball B (x, 1/i) intersects A in
infinitely many points, we an choose an index n, > n, _, such that

x, € B (x, 1/i)

Then the subsequence x_,, x_,, ..., converges to x.

n2’

Finally, we show that (3) = (1). This is the hardest part of the proof.

First, we show that if X is sequentially compact, then the Lebesgue number lemma holds for X.
(This would follow from compactness, but compactness is what we are trying to prove.) Let A be
an open covering of X. We assume that there is no & > 0 such that each set of diameter less than
d has an element of A containing it, and derive a contradiction.

Our assumption implies in particular that for each positive integer n, there exists a set of diameter
less than 1/n that is not contained in any element of A; let C_be such a set. Choose a point x_€C,
for each n. By hypothesis, some subsequence (x_,) of the sequence (x ) converges, say to the point
a. Now a belongs to some element A of the collection A; because A is open, we may choose an
€> 0 such that B (a, €) c A. If i is large enough that 1/n, < € /2, then the set C  lies in the %
neighborhood of x ; if i is also chosen large enough that d (x_, a) < €/2, then C_ lies in the
€-neighborhood of a. But this means that C_, C A, contrary to hypothesis.

Second, we show that if X is sequentially compact, then given €> 0, there exists a finite covering
of X by open e-balls. Once again, we proceed by contradiction. Assume that there exists ane> 0
such that X cannot be covered by finitely many e -balls. Construct a sequence of points x_of X as
follows: First, choose x, to be any point of X. Noting that the ball B (x,, €) is not all of X
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(Otherwise X could be covered by a single €-ball), choose x, to be a point of X not in B(x,, €). In Notes
general, given x,, ..., X, choose x_,, to be a point in the union

B(x, €)U..UB(x, €)

using the fact that these balls do not cover X. Note that by constructiond (x ,,, x) = €fori=1, ..., n.
Therefore, the sequence (x ) can have no convergent subsequence; in fact, any ball of radius € /2
can contain x_for at most one value of n.

Finally, we show that if X is sequentially compact, then X is compact. Let A be an open covering of
X. Because X is sequentially compact, the open covering.A has a Lebesgue number d. Lete=§/3; use
sequential compactness of X to find a finite covering of X by open €- balls. Each of these balls has
diameter at most 28/3, so it lies in an element of .A. Choosing one such element of A for each of
these e -balls, we obtain a finite subcollection of .4 that covers X.

'i Example 2: Prove that a continuous image of a sequentially compact set is sequentially
compact.

Solution: Let (X, T) be a sequentially compact topological space so that every sequence (x ) in X
has a convergent subsequence (x; :Ke€N) and let this subsequence converge to x; , i.e.,
X, =X €X.
Let f: (X, T) = (Y, U) be a continuous map.
To prove that f (X) is sequentially compact set.
f is continuous map = f is sequentially continuous

Furthermore x; — x, .
This implies that f(xiK ) — f(xiO )

Showing thereby f (X) is sequentially compact.

' Example 3: A finite subset of a topological space is necessarily sequentially compact.

Solution: Let (X, T) be a topological space and A c X be finite and (x ) be a sequene in A so that
x, € AV n. Also {x ) contains infinite number of terms. It follows that at least one element of A,
say X, must appear infinite number of times in (x ). Thus (x, X, X, ...) is a subsequence of (x ) and
this subsequence converges to x, € A, showing thereby A is a sequentially compact.

Theorem 3: A metric space is sequentially compact iff it has the Bolzano Weierstrass Property.

Proof I: Let (X, d) be a sequentially compact metric space. To prove that (X, d) has Bolzano
Weierstrass Property,

Let A c X be an infinite set.
If we show that A has a limit point in X, the result will follow.
A is an infinite set = A contains an enumerable set, say {x_:n € N}
= (x, € A, n € N) is a sequence with infinitely many distinct points.

By the assumption of sequential compactness, the sequence (x ) has a convergent subsequence
(x,, : n € N) (say). Let this convergent sequence (x, : n € N) converge to x,. Then x, € X and (x,)
also converges to x,, i.e., x, = x,. Consequently x, is a limit point of the set {x :n € N}.

Evidently {x_:n e N} c A.
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So that D({x :n € N}) c D(A).

But x, € D{x_:n € N} and hence x, € D(A), i.e., A has a limit point x, € X.

Proof II: Conversely, suppose that the metric space (X, d) has Bolzano Weierstrass property.
To prove that X is sequentially compact.

By the assumption of Bolzano Weierstrass property, every infinite subset of X has a limit point
in X. Let {(x ) be an asbitrary sequence in X.

Case (i): If the sequence (x ) has an element x which is infinitely repeated, then it has a constant
subsequence (X, X, ..., X, ...) which certainly converges to x.

Case (ii): If the sequence (x ) has infinitely many distinct points then by assumption, the set
{x, : x € N} has a limit point, say x, € X. Consequently x, is a limit of the sequence (x_:n € N)
with infinitely many distinct points so that this sequence contains a subsequence (x,_:n e N}
which also converges to X|.

.. In either case, we have shown that every sequence in X contains a convergent subsequence so
that X is sequentially compact.

Hence the result.

14.2 Summary

° A space X is said to be limit point compact if every infinite subset of X has a limit point.
o Compactness implies limit point compactness, but not conversely.

o A topological space X is said to be sequentially compact if every sequence of points of X

has a convergent subsequence.

14.3 Keywords

BWP: A topological space (X, T) is said to have Bolzano Weierstrass Property denoted by BWP
if every infinite subset has a limit point.

Compact Space: A space X is said to be compact if every open covering A of X contains a finite
subcollection that also covers X.

Lebesgue Covering Lemma: Every open covering of a sequentially compact space has a Lebesgue
number.

Lebesgue Number: Let {G, :i € A} be an open cover for a metric space (X, d), a real number & > 0
is called a Lebesgue number for the cover if any A € X s.t. d(A) <8 = A c G, for at least one index
i€ A.

Metrizable: Any topological space (X, T), if it is possible to find a metric on p on X which induces

the topology T i.e. the open sets determined by the metric p are precisely the members of §, then
X is said to the metrizable.

Open Cover: Let (X, T) be a topological space and A c X. Let G denote a family of subsets of X.
Gis called a cover of A if Ac U {G: G e G}. If every member of G is a open set, then the cover G
is called an open cover.
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14.4 Review Questions Notes

1. Show that [0, 1] is not limit point compact as a subspace of R,.
2. Let X be limit point compact.
(@) Iff:X—Y is continuous, does it follow that f(X) is limit point compact?
(b) If Ais aclosed subset of X, does it follow that A is limit point compact?
(¢) If Xis a subspace of the Hausdorff space Z, does it follow that X is closed in Z?

3. A space X is said to be countably compact if every countable open covering of X contains
a finite subcollection that covers X. Show that for a T, space X, countable compactness is
equivalent to limit point compactness.

[Hint: If no finite subcollection of U_ covers X, choose x, ¢ U; U...UU,, for each n.]

14.5 Further Readings

N

Books J.L. Kelly, General Topology, Van Nostrand, Reinhold Co., New York.
S. Willard, General Topology, Addison-Wesley Mass. 1970.
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Unit 15: Local Compactness
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Objectives

After studying this unit, you will be able to:

° Describe the local compactness;

o Solve the problems on local compactness;
o Explain the theorems on local compactness.
Introduction

In this unit, we study the notion of local compactness and we prove the theorems that every
continuous image of a locally compact space is locally compact and many other theorems.

15.1 Locally Compact

Let (X, T) be a topological space and let x € X be arbitrary. Then X is said to be locally compact
at x if the closure of any neighborhood of x is compact.

Xis called locally compact if it is compact at each of its points, but need not be compact as whole.

Alternative definition: A topological space (X, T) is locally compact if each element x € X has a
compact neighborhood.

' Example 1: Show that R is locally compact.
Solution: Let x € R be arbitrary.
Evidently, S (x) =S[x]

S [x] is compact, being closed and bounded subset of R. Thus the closure of the neighborhood
S,(x) of x is compact and hence the result.

' Example 2: Show that compactness = locally compact.
Solution: Let (X, T) be a compact topological space. To prove that X is locally compact.

For this, we must show that the closure of any neighborhood of any point x € Xis compact. This
follow from the fact that X is the neighborhood of each of its points and X =X, X is compact.
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Theorem 1: Let (X, T) and (Y, U) be topological spaces and f: (X, T) ™ (Y, U) be a continuous open Notes
map. Then if X is locally compact, then Y is also.
Or

Every open continuous image of a locally compact space is locally compact.

Proof: Let f : (X, T) — (Y, U) be a continuous open map and X a locally compact space.
We claim Y is locally compact.

Lety € Y be arbitrary and U Cc Y a nbd of y.

yeY, f:X—>Yisonto=3xe Xs.t.f(x) =y

f is continuous

Given any nbd U of y, 3anbd V c X of x s.t. f(V) < U. X is locally compact.

Xis locally compact at x and V is a nbd of x.

Jiscompact set Ast.xe A°cAcCV

f(x) € f(A°) cf(A) cf(V)cU

ye f(A°) cf(A)cU (1)

LI

Now, f is open, A° C X is open.

= f(A°) CYisopen

= (A% =[f(AY)]° (2

From (1), f(A°) c f(A)

Thus [£(A)]° € [((A)]°

= {(A°) C[f(A)]° (on using (2))

= f(A%) C[f(A)]°cf(A)

Using this in (1),
y € f(A°) C [f(A)]°cf(A)cU

or yel[f(A)°cf(A)cU

Taking B = f(A) = continuous image of compact set A
= compact set

We obtainy € B° € B c U, B is compact.

Finally, we have shown that given any y € Y and a nbd U of y, 3 a compact set B C Y, s.t.
ycB°cBcU.

Hence Y is locally compact at y so that Y is locally compact.
Theorem 2: Every locally compact T,-space is a regular space.

Proof: Let (X, T) be a locally compact T,-space. To prove that (X, T) is a regular space. Let x € X be
arbitrary and G a nbd of x.

By definition of locally compact space,
Jacompactset AcXst.xe A°’cAcG.

A is compact, X is T,-space = A is closed.
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= (A°)cA=A

= (A% cA (1)
xe A°cAcG
xe A°C (A°)cAcG, [by ()]
Taking A°=U

xeUc U cG

Thus we have shown that given any nbd G of x, 3anbd U of x s.t.

xeUc U cG
Consequently X is regular.
Theorem 3: Any open subspace of a locally compact space is a locally compact.
Proof: Let (Y, U) be an open subspace of a locally compact space (X, T) so that Y is open in X.
To prove that Y is locally compact.
Let x € Y c X be arbitrary and G a U-nbd of xin Y, thenx € X, G CY.
Xis locally compact = X is locally compact at x.
GisaUnbdof xinY =3G, e Ust.xe G, cG
= G, e€Tst.xe G cG. ForY isopeninX.
= GisaT-nbd of xin X.
Also X is locally compact = 3 a compact set Ac Xs.t. xe A°cAcG.ButGcY.
= xeA°cAcGcY
Thus (i) A C Y, A is U-compact.
For A is T-compact = A is U-compact.
(i) GisanbdofxinYst. xe A°c AcG.
This proves that Y is locally compact at any y € Y and hence the result follows. Proved.
Theorem 4: Every closed subspace of a locally compact space is locally compact.

Proof: Let (Y, U) be a closed subspace of a locally compact space (X, T), then Y is T-closed set. Let
y € Y c X be arbitrary.

To prove that Y is locally compact, we have to prove that Y is locally compact at y.

X is locally compact = X is locally compact at y

= 3 T-opennbd N of xs.t. N is T-compact.

= NNYis U-opennbd of y.

NNYcN= NNYcN.
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Thus NNY is a closed subset of a compact set N. Hence NY is compact. Notes

Y is T-closed = T-closure of N ()Y = U-closure of N Y.

Thus NN Y is U-open nbd of y s.t. N1Y is compact, showing thereby Y is locally compact at y.

15.2 Summary

° A topological space (X, T) is locally compact if each element x € X has a compact
neighborhood.

° Any open subspace of a locally compact space is a locally compact.

° Every locally compact T,-space is a regular space.

o Every closed subspace of a locally compact space is locally compact.

15.3 Keywords

Closure: Let (X, T) be a topological space and A c X. The closure of A is defined as the intersection

of all closed sets which contain A and is denoted by the symbol A.

Compact set: Let (X, T) be a topological space and A  X. A is said to be a compact set if every
open covering of A is reducible to finite sub-covering.

Interior point: A point x € A is called an interior point of A if 3r € R*s.t. S (x) C A.

Neighborhood: Let € > 0 be any real number. Let x, be any point on the real line. Then the set
{xe R: | x-x, | <¢}is defined as the e-neighborhood of the point x,.

Regular space: A regular space is a topological space in which every nbd of a point contains a
closed neighborhood of the same point.

T,-space: A T -space is a topological space (X, T) fulfilling the T,-axiom: every two points x,
y € X have disjoint neighborhoods.

15.4 Review Questions

1. Show that the rationals Q are not locally compact.

2. Let X bealocally compact space. If f : X — Y is continuous, does it follow that f(x) is locally
compact? What if f is both continuous and open? Justify your answer.

3.  Iff: X, — X, is a homeomorphism of locally compact Hausdorff spaces, show f extends to
a homeomorphism of their one-point compactifications.

4. Is every open subspace of a locally compact space is locally compact? Give reasons in
support of your answer.

5. Show by means of an example that locally compact space need not be compact.
6. Show that local compactness is a closed hereditary property.

7. X,, X, are L-compact if and only if X, x X, is L-compact.
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Books Kelley, John (1975), General Topology, Springer.

Sbeen, Lynn Arthur, Seebach, J. Arthur Jr. (1995), Counter examples in Topology
(Dover reprint of 1978 ed.) Berlin, New York.

Willard, Stephan (1970), General Topology, Addison-Wesley (Dover Edition).
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Unit 16: The Countability Axioms Notes

CONTENTS

Objectives
Introduction
16.1 Countability Axioms
16.1.1 First Axiom of Countability
16.1.2 Second Axiom of Countability
16.1.3 Hereditary Property
16.1.4 Theorems and Solved Examples on Countability Axioms
16.1.5 Theorems Related to Metric Spaces
16.2 Summary
16.3 Keywords
16.4 Review Questions

16.5 Further Readings

Objectives

After studying this unit, you will be able to:

° Define countability axioms;

° Understand and describe the theorems on countability axioms;

o Discuss the theorems on countability axioms related to the metric spaces.
Introduction

The concept we are going to introduce now, unlike compactness and connectedness, do not arise
naturally from the study of calculus and analysis. They arise instead from a deeper study of
topology itself. Such problems as imbedding a given space in a metric space or in a compact
Hausdorff space are basically problems of topology rather than analysis. These particular
problems have solutions that involve the countability and separation axioms. In this unit, we
shall introduce countability axioms and explore some of their consequences.

16.1 Countability Axioms

16.1.1 First Axiom of Countability

Let (X, T) be a topological space. The space X is said to satisfy the first axiom of countability if X
has a countable local base at each x € X. The space X, in this case, is called first countable or first
axiom space.

' Example 1: Consider x € R

A = (x—l,x+ljv xeN
n n n
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Take B, = {A :ne N}

Evidently, B_is a local base at x € X for the usually topology on R.
Clearly, B_~ N under the map A — n.

Therefore, B is a countable local base at x € X. But x € X is arbitrary.

Hence R with usual topology is first countable.
16.1.2 Second Axiom of Countability

Let (X, T) be a topological space. The space X is said to satisfy the second axiom of countability
if 3 a countable base for T on X.

In this case, the space X is called second countable or second axiom space.

=7

Note A second countable space is also called completely separable space.

' Example 2: The set of all open intervals (r, s) and r with s as rational numbers forms a
base, say B for the usual topology U of R. Since Q, Q x Q are countable sets and so B is a countable
base for U on R.

(R, U) is second countable.
16.1.3 Hereditary Property
Let (X, T) be a topological space. A property P of X is said to be hereditary if the property is
possessed by every subspace of X.
E.g. first countable, second countable are hereditary properties, where as closed sets, open sets,
are not hereditary properties.
16.1.4 Theorems and Solved Examples on Countability Axioms
Theorem 1: Let (X, T) be a second axiom space and let C be any collection of disjoint open subsets
of X. Then C is a countable collection.
Proof: Let (X, T) be a second countable space, then 3 a countable base

B={B, :ne€ A} for topology T on X.

Let C be a collection of disjoint open subsets of X.
Let A € C be arbitrary, then A € T.
By definition of base, 3B € Bst. B, C A.
We associate with A, a least positive integer ns.t. B, C A.
Members of C are disjoint
=  distinct integers will be associated with distinct member of C.

If we now order the members of C according to the order of associated integers, then we shall
get a sequence containing all the members of C. Hence, C is a countable collection.

Theorem 2: Let (X, T) be a first axiom space. Then 3 is a nested (monotone decreasing) local base
at every point of X.
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Proof: Let (X, T) be first axiom space, then 3 is a countable local base Notes

B (x)

{B, : n € N} at every point x € X.
Write ¢, =B,B,=BnB,C,=B nB,NB, ...,

1

D)

C = B

i
n .
i=1

ThenC 5C,5C,5..0C.
xeB,eB vn =xeC,eT v n.

It follows that C(x) = {C_:n € N} is a nested local base at x.

Theorem 3: A second countable space is always first countable space.
Or

Prove that second axiom of countability = first axiom of countability.

Proof: Let (X, T) be a topological space which satisfies the second axiom of countability so that
(X, T) is second countable.

To prove that (X, T) also satisfies the first axiom of countability.
i.e,, to prove that (X, T) is first countable.
By hypothesis, 3 a countable base B for topology T on X.
B is countable = 5 ~ N
This show that B can be expressed as
B = {B :ne N}
Let x € X be arbitrary.
Write L = {B, e B:xeB}
(i) L, being a subset of a countable set 3, is countable.
(if)  Since members of B are T open sets and hence the members of L . For L_c B.
(iii) Any Ge L = x € G, according to the construction of L.
(iv) LetG e T for arbitrary s.t. x € G.
Then, by definition of base,
xeGe] = BeB st.xe B, CG,
= 3B el stBCG,
For B, € Bwithxe B, =B € L.
Finally xeGeT = 3B e L st B cG. (1)

From (i), (ii), (iii), (iv) and (1), it follows that L_is a countable local base at x € X. Hence, by
definition, X is first countable.

Theorem 4: To prove that first countable space does not imply second countable space. Give an
example of a first countable space which does not imply second countable space.

Proof: We need only give an example of a space which does satisfy the first axiom of countability
but not the second axiom of countability.
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Let T be a discrete topology on an infinite set X so that every subset of X is open in X and hence
in, particular, each singleton set {x} is open in X for each x € X.

Write B = {{x}:xe X}

Then it is easy to verify that B is a base for the topology T on X and B is not countable. For X is
not countable. Hence X is not second countable.

If we take L_= {x} then evidently L_is a countable local base at x € X as it has only one number.

For any G € T with x € G, 3{x} s.t. x € {x} € G. From what has been done, it follows that X is first
countable but not second countable.

Theorem 5: Show that the property of a space being first countable is hereditary.
Proof: Let (Y, U) be a subspace of a first countable space (X, T).

If we show that (Y, U) is first countable, we can conclude the required result.
Lety € Y be arbitrary, then y € X. [+ YcX]

X s first countable = 3 a countable local base at each x € X and hence, in particular, 3 a countable
local base Baty e X.

Members of 5 can be enumerated as B,, B,, B,, B,, ...

ie. B, = {B :ne N}

Evidently, y € B vneN.

Write B, = {YnB, :ne N} (1)

yeY,yeB vneN =yeYnB vneN -2
BeByneN=BeT=YnBelU .(3)

We claim B, is a countable local base at y for U on Y.

(i)  Evidently N ~ B, under the map n — Y n B . Hence B, is countable. ..(4)
(i) anyGe B=yeG (5
(iii) B, is family of all U - open sets. ..(6)

(iv) let G € U be arbitrary s.t.
ye G, thenIHe Tst G=HNY.
ye HForye G=HNY.
By definition of local base.
yeHeT = 3B, € Bstye B cH
or yeHNnYelU = 3B NnYeBstBNnYCHNY
or yeGelU =3B NnYeBstyeB nNnYcCG -(7)

The result (1), (4), (5), (6) and (7) taken together imply that B, is a local base at y € Y for the
topology U on Y and hence (Y, U) is first countable.

Theorem 6: Show that the property of a space being second countable is hereditary.
or

Prove that every subspace of a second countable space is second countable.

LOVELY PROFESSIONAL UNIVERSITY



Unit 16: The Countability Axioms

Proof: Let (Y, U) be a sub-space of a topological space (X, T) which is second countable so that Notes
there exists a countable base B for the topology T.

If we show that (Y, U) is second countable, the result will follow
B is countable = B~N
= Bis expressible as
B={B :NeNj}

Write
(i)  Evidently B, ~ N under the map Y N B, — n.

. B, is countable.
(ii) B, is a family of all U-open sets.

For B eB= B eT,

~BcT=YnB el

(iiiy anyye Ge u=3B nYe B,

stye YnB cG.
For proving this let G € U
s.t. ye G, thendHe Tst. G=HANY.

yeEG=yeHnY=yeHandyeY.
By definition of base,
any yeHeT = 3B e Bst.ye BcH
from whichanyye HnYe U
= 3IYNB cB styeYnBeG

i.e. any yeGeu = 3IYNB €B
st.ye YNnB cG.

Thus it follows that B, is a countable base for the topology U and Y. Consequently, (Y, U) is
second countable.

Theorem 7: A second countable space is always separable.
Proof: Let (X, T) be a second countable space.
To prove: (X, T) is separable.

Since X is second countable and hence 3 a countable base 1 for the topology T on X. Members of
B may be enumerated as B, B, B, ... .

Choose an element x, from each B, and take A as the collection of all these x/’s.

That is to say, x;eB.eB VieN ..(1)
and A={x;:ieN} -(2)
Evidently N~A under the mapi— x

Therefore, A is enumerable.
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Clearly, AcX
We claim A=X.
Suppose not, then X-A#¢ ..(3)

Let ye X—A be arbitrary. A is closed and hence X—A is open. It amounts to saying that
yeX-AeT.

By definition of base
yeX-AeT=3B,eBstyeB, Cc X-A.

In particular =

x, EX-AeT
= EIBnOeBs.t.xnocX—A.
Now X, EX-A = x, ¢ADA

= Xy, ¢A -(4)

Xn, €Bn = x, €A, according to (1) and (2), Contrary to (4).

n,

Hence our assumption X-A # ¢ is wrong.

Consequently X-A=¢ie. X=A

Thus, we have shown that

JAcX st. A=X and Xis enumerable set. By definition, this proves that X is separable.
Theorem 8: Every second axion space is hereditarily separable.

Proof: Let (Y, L) be a subspace of second axion, i.e. second countable space (X, T).

To prove the required result, we have to show that (Y, U) is second countable and separable since
every second countable space is separable. [Refer theorem (7)].

Now it remains to show that (Y, V) is second countable. Now write the proof of Theorem (6).

' Example 3: Prove that (R, U) is a second axiom space (Second countable.).
Solution: We know that Q is a countable subset of R. If we write
B={(a,b):a<banda, be Q}

Then B forms a countable base for the usual topology U and R so that R is second countable.

' Example 4: Prove that (R? U) is second countable.
Solution: If we write
B=1{S (x):x,re Q}

then B forms a countable base for the usual topology U on R%. Hence (R? V) is second countable
space.
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16.1.5 Theorems Related to Metric Spaces Notes

Theorem 9: A metric space is second countable iff it is separable.
Proof:

(i)  Let(x, p) be a metric space. Let T be the metric topology on X corresponding to the metric
p. Let (X, T) be second countable. To prove that X is separable.

Here write the complete proof of the theorem (6).

(ii) Conversely, suppose that (x, p) is a metric space and T is a metric topology on X
corresponding to the metric p. Also, suppose that X is separable, so that

JAcXs.t. A=X and A is countable.

A is countable = A is expressible as
A={a :ne N}
To prove that X is second countable.
We know that each open sphere forms an open set.
Let a e A be arbitrary.
Write B=1{S, (a,):r€ Q" ,ne N}.
Q is an enumerable set
= Q%is an enumerable set
Q' cQ
Then B is a countable base for the topology T on X.
X is second countable.
Let G € T be arbitrary s.t. x € G.
x being an arbitrary point of X.
By definition of open set in a metric space,
3 a positive real number € st. S, G (1)

)
Since A is dense in X and so there will exist a pointa € A s.t.

p(a,x) <§ (2

Since Q is dense in R for the usual topology on R and hence its subset Q" is also dense in R
with usual topology so that 3r e Q' s.t.

€ 2e
—<r<—
3 3
Aim: Sr(a) C SG(X) cG.
Also let y €S, ,, be arbitrary so that p(y,a)<r ..(3)

p(x,y) < p(x,a)+p(a,y)

. €., €,2¢€ from (3
3 3t 3 rom (3)
= P(xy)<€ = YESyq
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Finally, any y €S, ,) = Yy €Sy
S(a, 1) < S(x, €)
From (2) and (3), p(a,x)<r, so that x€ S, ,,.

Thus, we have shown that

X€S5(; 1) ©Sxe) CG.
from which x€S, ,, cG.

Thus, xeGeT:>3reQ+s.t.xeS(

a,r)
ie. xeGeT=135,,eBst.xe5,,cG

This proves that B is a base for the topology T on X. From what has been done, it follows
that B is enumerable base for the topology T on X and hence X is second countable.

' Example 5: Every separable metric space is second countable.
Solution: Refer second part of the above theorem.
Theorem 10: A metric space is first countable.

Proof: Let (X, p) be a metric space. Let T be metric topology on X, corresponding to the metric p
on X. Let p € X be arbitrary.

To prove that (X, T) is first countable, it suffices to show that 3 a countable local base at p for the
topology T on X.

Write Lp = {S(p, yiTE Q.

Q is enumerable and hence its subset Q*,

Q" is enumerable = Lp is enumerable.

Let G € T be arbitrary s.t. p € G.

Then, by definition of an open set.
dseR'st.S5 G

5)

Choose a positive rational number r s.t. r <s.

Then  Spr CSps G

or Spn <G

Givenany G € Twithp € G.
dre Q*s.t. S(py »C G.
Now L has the following properties:
(i)  every member of L is an open set containing p.

"+ each open sphere forms an open set.

(ii) L, is enumerable set.
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(iii) Givenany Ge Twithpe G,3re Q*s.t. Notes
Sen € G

(2
From what has been done, it follows that L is an enumerable local base at p of the topology

T on X.

16.2 Summary

° Let (X, T) be a topological space. The space X is said to satisfy the first axiom of countability
if X has a countable local base at each x € X.

° Let (X, T) be a topological space. The space X is said to satisfy the second axiom of
countability if 3 a countable base for T on X.

° Let (X, T) be a topological space. A property P of X is said to be hereditary if the property
is possessed by every subspace of X.

16.3 Keywords

Base: B is said to be a base for the topology Ton Xif x€e Ge T=3Be Bs.t. xe BcG.

Local Base: A family B_of open subsets of X is said to be a local base at x € X for the topology
T on X if

(i) anyBe B =xeB
(ii) anyGe Twithye G=3Be B st.ye BcG.

Open Sphere: Let (X, p) be a metric space. Let x, € Xand r € R*. Then set {x € X: p (x, x) <1} is
defined as open sphere with centre x, and radius r.

Separable: Let X be a topological space and A be a subset of X, then X is said to be separable if
i A=X

(i) A is countable.

16.4 Review Questions

1.  Prove that the property of being a first axiom space is a topological property.

2. For each point x in a first axiom T, - space,

{X} = ﬂ neNBn (X)

3. Prove that the property of being a second axiom space is a topological property.

4.  Inasecond axiom T, - space, a set is compact iff it is countable compact.

5. Show that in a second axiom space, every collection of non empty disjoint open sets is
countable.

6. Give an example of a separable space which is not second countable.

7. Show that every separable metric space is second countable. Is a separable topological

space is second countable? Justify your answer.

8.  Every sub-space of a second countable space is second countable and hence show that it is
also separable.
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17.3 Summary
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17.6 Further Readings

Objectives

After studying this unit, you will be able to:

° Define T -axiom and solve related problems;

° Explain the T,-axiom and related theorems;

o Describe the T,-axiom and discuss problems and theorems related to it.
Introduction

The topological spaces we have been studying thus far have been generalizations of the real
number system. We have obtained some interesting results, yet because of the degree of
generalization many intuitive properties of the real numbers have been lost. We will now
consider topological spaces which satisfy additional axioms that are motivated by elementary
properties of the real numbers.

17.1 T -Axiom or Kolmogorov Spaces

A topological space X is said to be a T -space if for any pair of distinct points of X, there exist at
least one open set which contains one of them but not the other.

In other words, a topological space X is said to be a T -space if it satisfy following axiom for any
X,y € X, x #y, there exist an open set I/ such that x e Ubuty ¢ U.

' Example 1: Let X = {a, b, c} with topology T = {¢, X, {a}, {b}, {a, b}} defined on X, then (X, T)
is a T -space because

(i)  for aand b, there exist an open set {a} such thata € {a} and b ¢ {a}

(i) for a and c, there exist an open set {b} and b € {b} and c ¢ {b}
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Examples of T -space

(i)  Every metric space is T -space.
(if) If (X, T) is cofinite topological space, then it is T -space.

(iii) Every discrete space is T -space.

(iv) An indiscrete space containing only one point is a T -space.

17.1.1 T,-Axiom of Separation or Frechet Space

A topological space (X, T) is said to satisfy the T,-Axiom of separation if given a pair of distinct
points x, y € x

dG,He Tst.xe G y¢g G ye H,x¢ H

In this case the space (X, T) is called T,-space or Frechet space.

Example 2: Let X = {a, b, ¢} with topology T = {¢, X, {a}, {b}, {a, b}} defined on X is not a
T,-space because for a, c € X, we have open sets {a} and X such thata € {a}, c ¢ {a}. This shows that
we cannot find an open set which contains c but not a, so (X, T) is not a T -space. But we have
already showed that (X, T) is a T -space. This shows that a T -space may not be a T,-space. But the
converse is always true.

Theorem 1: A topological space (X, T) is a T,-space if f(x) is closed for each x € X. In a topological
space, show that T,-space < each point is a closed set.

Proof: (i) Let (X, T) be a topological space s.t. {x} is closed Vv x € X.
To prove that X is T -space.
Consider x, y € Xs.t. x 2y.

Then, by hypothesis, {x} and {y} are disjoint closed sets. This means that X-{x} and X-{y} are
T-open sets.

Write G = X-{y}, H=X - {x},
ThenG, He Tst.xe G ye G ye H,x¢ H.
This proves that (X, T) is a T,-space.
(i) Conversely, suppose that (X, T) is a T,-space.
To prove that {x} is closed V¥ x € X.
Since X is a T -space.
Given a pair of distinct points x, y € X,3G, He T.
st. xeG,ygGandye H,x¢ H.
Evidently, Gc X - {y}, Hc X - {x}.
Givenanyxe X-{y}=3Ge Tst.xe Gcx-{y}.

This proves that every point x of X - {y} is an interior point of X - {y}, meaning thereby X - {y} is
open, i.e., {y} is closed. Furthermore, givenanyy € X - {x} = 3He Tst. ye Hc X - {x}.

This implies that every point y of X - {x} is an interior point of X - {x}. Hence X - {x} is open, i.e.,

{x} is closed.
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Finally {x}, {y} are closed sets in X. Notes

Generalising this result.

{x}is closed V x € X.

Example 3: Prove that in a T,-space all finite sets are closed.
Solution: Let (X, T) be a T,-space.

To prove that {x} is closed V x € X.

Now write (ii) part of the proof of the theorem 1

Let A be an arbitrary finite subset of X.

Then A=u {{x}}: xe A}

= finite union of closed sets = closed set.

A is a closed set.

' Example 4: A topological space (X, T) is a T -space iff T contains the cofinite topology
on X.

Solution: Let (X, T) be a T,-space.

To prove that T contains cofinite topology on X, we have to show that T contains subsets A of X
s.t. X - A is finite.

Here we shall make use of the fact that

Xis T,-space = {x} is closed V x € X

= X-{x}isopensubsetof X=X-{x}e T

Thus X - {x} e T = X - (X - {x}) = {x} = finite set.

This is true vV x € X.

Hence by definition T contains cofinite topology on X.
Conversely, suppose that T contains cofinite topology on X.
To prove that (X, T) is T,-space.

{x} is a finite subset of X.

Also T contains cofinite topology.

Consequently X - {x} € T so that

{x}isclosed V¥ xe X

= (X, T) is T,-space.

Theorem 2: A topological space X is a T,-space of X iff every singleton subset {x} of X is closed.
Proof: Let X be a T,-space and x € X.

By the T,-axiom, we know that if y # x € X, than there exists an open set G which contain y but
not x i.e.

y= Gyg {x}e

LOVELY PROFESSIONAL UNIVERSITY 155



Topology

156

Notes

Then {x}*=uU{y:y #x} g{Gy:y;ﬁx} c {x}e.

Therefore {x}c=u {Gy 1y #x).

Thus {x}° being the union of open sets is an open set. Hence {x} is a closed set.
Conversely, let us suppose that {x} is closed.

We have to prove that X is a T,-space.

Let x and y be two distinct points of X.

Since {x} is a closed set, {x}°is an open set which contains y but not x.
Similarly {y}°is an open set which contains x but not y.

Hence X'is a T, -space.

Theorem 3: The property of being a T, -space is preserved by one-to-one onto, open mappings
and hence is a topological property.

Proof: Let (X, T) be a T,-space and let (Y, V) be a space homomorphic to the topological space
X, 7).

Let f be a one-one open mapping of (X, T) onto (Y, V).
We shall prove that (Y, V) is also a T,-space.
Lety,, y, be any two distinct points of y.
Since the mapping f is one-one onto, there exist, points x, and x, in X such that
x, # X, and f(x,) =y, and f(x,) =y,
Since (X, T) is a T,-space, there exists T-open sets G and H such that
x, € Gbutx, e G
x, € Hbutx, € H
Again, since f is an open mapping, f{[G] and f[H] are V-open subsets such that
f(x) € f[G] but f(x,) ¢ f[G]
and f(x,) € f[H] but f(x)) € f[x]
Hence (Y, V) is also a T,-space.
Thus, the property of being a T -space is preserved under one-one onto, open mappings.
Hence it is a topological property.
Theorem 4: Every subspace of T,-space is a T -space i.e. the property being a T,-space is hereditary.
Proof: Let (X, T) be a T,-space and let (X*, T*) be a subspace of (X, T).

Let x, and x, be two distinct point of X*. Since X* € X, x, and x, are also distinct points of X. But
(X, T) is a T -space, therefore there exist T-open sets G and H such that

x, € Gbutx, ¢ G

and x,€ Hbutx ¢ H

Then G, =GN X*

and H, = HM X* are T*-open sets such that
X, € G, butx, ¢ G,
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and x,€ H,butx ¢ H Notes

Hence (X*, T¥) is a T,-space.
Self Assessment

1. Show that any finite T -space is a discrete space. Is a discrete space T, space? Justify your
answer.

2. If (X, T)isa T space and T, is finer than T, then (X, T,) is also T -space.

3. A finite subset of a T -space has no cluster point.

4.  If (X, T)is a T -space and T* > T, then (X, T*) is also a T -space.

17.2 T,-Axiom of Separation or Hausdorff Space

A topological space (X, T) is said to satisfy the T,-axiom or separation if given a pair of distinct
points x, y € X.

1G, HeTst.xe G ye H GnNnx=¢

In this case the space (X, T) is called a T -space or Hausdorff space or separated space.

' Example 5: Let X = {1, 2, 3} be a non-empty set with topology T = P(X) (all the subsets of
X, powers set or discrete topology). Hence

For1,2 le{l},2¢ {1

{1}, 2 e {1}
For2,3 2€{2},3¢ {2}
For3,1 3e {3},1¢ {3} and (X, T) is a T -space
Forl,2 1e{l1},2e{2}={1}n{2}=¢
For2,3 2e€{2},3e{3}={2}n{3}=¢
For3,1 3e{3,1e{l}=8In{l}=¢

' Example 6: Show that every T,-space is a T,-space.
Solution: Let (X, T) be a T,-space.

Let x, y be any two distinct points of X. Since the space is T, then there exist open nhd. G and H
of x and y respectively such that G N H = ¢.

Thus G and H are open sets such that
xe Gbutye¢ G
andye Hbutx¢ H

Hence the space is T,.

' Example 7: Prove that every T,-space is a T,-space but converse is not true. Justify.
Solution: Let (X, T) be a T,-space.
Let x, y be any two distinct points of X.

Since the space is T,, 3 open nhds G and H of x and y respectively such that GV H = ¢
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xe Gbutye G
andy € Hbutx¢ H
Hence, the space (X, T) is a T,-space.
Conversely, let us consider the cofinite topology T on an infinite set X.
Let x be an arbitrary point of X.
by definition of T,
X - {x} is open, for {x} is finite set and so {x} is T-closed.
Thus, every singleton subset of X is closed.

It follows that the space (X, T) is a T,-space. Now we shall show that the space (X, T) is not a
T, -space.
2

For this topology, no two open subsets of X can be disjoint.
Let if possible G and H be two open disjoint subsets of X, then
GNH=¢
=  (GNHY=¢
= GUH =X (by De-Morgan’s law)
Here G’ U H’' being the union of two finite sets is finite, where as X is infinite.

Hence for this topology no two open sets can be disjoint i.e. no two distinct points can be
separated by open sets.

Hence, (X, T) is not T ,-space.
Theorem 5: Every subspace of a T,-space is a T,-space
or

Prove that every subspace of a Hausdorff space is also Hausdorff.

Proof: Let (X, T) be a Hausdorff space and (Y, T ) be a subspace of it.

Let x and y be any two distinct points of Y.

Then x and y are distinct points of X.

But (X, T) is a Hausdorff space, 3 T-open nhds. G and H of x and y respectively such that
GNH=¢

Consequently, Y (1 G and Y (1 H are T -open nhds of x and y respectively.

Also xe G,xe Y=xe YNG

and yeH yey=yeYNH

and since G H = ¢, we have

YNGONYNH)=YNGNH=YN¢=¢

This shows that (Y, T ) is also a T,-space. Hence, every subspace of a Hausdorff space is also a
Hausdorff space.
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Theorem 6: The property of being a Hausdorff space is a topological invariant. Notes
or

The property of being a Hausdorff space is preserved by one-one onto open mapping and hence
is a topological property.

Proof: Let (X, T) be a T-space and let (Y, T ) be any topological space.

Let f be a one-one open mapping of X onto Y. Let y,, y, be two distinct elements of Y. Since f is
one-one onto map, there exists distinct elements x, and x, of X such that y, = f(x,) and y, = f(x,).

Since (X, T) is a T,-space, 3 T-open nhds. G and H of x, and x, such that G H = ¢
Now, f being open, it follows that f(G) and f(H) are open subsets of Y such that
y, = f(x) € £(G)
y, = f(x,) € f(H)
and f(G) N f(H) = f(GNH) =£(¢) = ¢
This shows that (Y, T ) is also a T,-space.

Since a property being a T,-space is preserved under one-one, onto, open maps, it is preserved
under homeomorphism.

Hence, it is a topological property.

Theorem 7: Prove that every compact subset of Hausdorff space is closed.

Proof: Let (Y, T*) be a compact subset of Hausdorff space (X, T).

In order to prove that Y is T-closed, we have to show that X - Y is T-open.

Let x be an arbitrary element of X - Y.

Since (X, T) is a T,-space, then for each y € Y, 3 T-open sets G and H such that
X € Gy,ye HyandeﬂHy=q)

Now consider the class

C={HyﬂY:ye Y}

Clearly, C is T*-open cover of Y.

Since (Y, T*) is a compact subset of (X, T), there must exist a finite sub cover of C i.e. 3 n points
Yy Yy -+ ¥, in Y such that

{Hyi NY:ie T }is afinite sub cover of C.

Thus Y < | J{H, }

i=1

i

Let N = [|{G,;}, then N is T-nhd of x, and NN { {H,, }} =¢.
=1

i=1
Thus, NNY=0=>NcX-Y
i.e. X - Y contains a T-nhd of each of its points.

Hence, X - Y is T-open i.e. Y is T-closed.
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' Example 8: Show that every convergent sequence in Hausdorff space has a unique limit.
Solution: Let (X, T) be a Hausdorff space.

Let <x_> be a sequence of points of Hausdorff space X.

Let Lt x =x

Suppose, if possible,

Lt x =y, wherex#y.

Since X is a Hausdorff space, 3 open sets G and Hsuch thatx e G,y e H

and GNH=¢ (1)
Since x, = xand x —y

and G, H are nhds of x and y respectively, 3 positive integers n, and n, such that

x, € GV n2n and

x € HV n2n,

Letn, = max (n, n,), thenx € GNH Vn2n,

This contradicts (1).

Hence, the limit of the sequence must be unique.

=7

Note Converse of the above theorem is not true.

' Example 9: Show that each singleton subset of a Hausdorff space is closed.

Solution: Let X be a Hausdorff space and let x € X.
Let y € X be any arbitrary point of X other than xi.e. x #y.
Since X is a T,-space, 3 a nhd of y which does not contain x.

It follows that y is not a limit point of {x} and consequently D({x}) = ¢
Hence {;} =X.

This shows that {x} is T-closed.

' Example 10: Show that every finite T,-space is discrete.

Solution: Let (X, T) be a finite T,-space. We know that every singleton subset of X is T-closed. Also
a finite union of closed sets is closed. It follows that every finite subset of X is closed.

Hence, the space is discrete.

Theorem 8: A first countable space in which every convergent sequence has a unique limit is a
Hausdorff space.
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Proof: Let (X, T) be a first countable space in which every convergent sequence has a unique Notes
limit. If possible, let (X, T) be not a Hausdorff space.

Then given x, y € X, x #y, 3 open sets G and H
suchthatxe G,ye H GNH=#¢
Now (X, T) being first countable, there exists monotone decreasing local bases
B ={B (x):xe N}and
B, ={B,(y) :n € N} at x and y respectively.
Clearly, B (x) N B_(y) # ¢ vV neN
[~ B,(x) and B, (y) are open nhds. of x and y respectively]
Let x e B (x)NB.(y) vV neN

But B, (x) and B, (y) being monotone decreasing local bases at x and y respectively, 3 a positive
integer n, such that

n>n = B (x)cG and
B.(y)cH
= x € B (x) € Gand
x,€ B(y)c H

= x,eGandx eH

x,—~xand x —y
But, this contradicts the fact that every convergent sequence in X has a unique limit.
Hence, (X, T) must be a Hausdorff space.
Theorem 9: The product space of two Hausdorff spaces is Hausdorff.
Proof: Let X and Y be two Hausdorff spaces. We shall prove that X x Y is also a Hausdorff spaces.
Let (x,, y,) and (x,, y,) be any two distinct points of X x Y.
Then either x, # x, ory, #y,
Let us take x, # x,

Since X is a Hausdorff space, 3 T open nhds. G and H of x, and x, respectively such that x, € G, x,
eHandGNH=¢

Then G x Y and H x Y are open subsets of X x Y such that

(x,y,)e GxY,

(xyy,) € HxYand

GxY)NHxY)=(GNH)xY
=pxY=0

Thus, in this case, distinct points (x,, y,) and (x,, y,) of X x Y have disjoint open nhds.
Similarly, when y, # y, 3 disjoint open nhds of (x,, y,) and (x,, y,)
Hence X x Y is Hausdorff.
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Self Assessment

5. Show that one-to-one continuous mapping of a compact topological space onto a Hausdorff
space is a homeomorphism.

6.  The product of any non-empty class of Hausdorff spaces is a Hausdorff space. Prove it.

7. Show that if (X, T) is a Hausdorff space and T* is finer than T, then (X, T*) is a T ,-space.

8. Show that every finite Hausdorff space is discrete.

17.3 Summary

° T,-axiom of separation:
A topological space (X, T) is said to satisfy the T -axiom
If forx,y € X, either 3G e Tst.xe G,y¢ G
or dHe Tst.ye H x¢g H

° T,-axiom:
A topological space (X, T) is said to satisfy the T -axiom if
forx,ye X3G He T
stxeGyeGyeH x¢gH

° T,-axiom:
A topological space (X, T) is said to satisfy the T,-axiom if for x, y € X
3G HeTstxeGyeH GNH=¢

17.4 Keywords

Cofinite topology: Let X be a non-empty set, and let T be a collection of subsets of X whose
complements are finite along with ¢, forms a topology on X and is called cofinite topology.

Compact: A compact space is a topological space in which every open cover has a finite sub
cover.

Discrete: Let X be any non-empty set and T be the collection of all subsets of X. Then T is called
the discrete topology on the set X.

Indiscrete space: Let X be any non-empty set and T = {X, ¢}. Then T is called the indiscrete
topology and (X, T) is said to be an indiscrete space.

Limit point: A point x € X is said to be the limit point of A X if each open set containing x
contains at least one point of A different from x.

17.5 Review Questions

Show that A finite subset of a T,-space has no limit point.
Prove that for any set X there exists a unique smallest T such that (X, T) is a T,-space.

(X, T) is a T,-space iff the intersection of the nhds of an arbitrary point of X is a singleton.

Ll e

Show that a topological space X is a T -space iff each point of X is the intersection of all
open sets containing it.
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For any set X, there exists a unique smallest topology T such that (X, T) is a T,-space. Notes
A T -space is countably compact iff every infinite open covering has a proper subcover.

If (X, T) is a T,-space and T* = T, then (X, T¥) is also a T,-space.

If (X, T,) is a Hausdorff space, (X, T,) is compactand T, < T, than T, = T,.

o X N o O

If f and g are continuous mappings of a topological space X into a Hausdorff space, then the
set of points at which f and g are equal is a closed subset of X.

10.  If f is a continuous mapping of a Hausdorff space X into itself, show that the set of fixed
points; i.e. {x : f(x) = x}, is closed.

11.  Show that every infinite Hausdorff space contains an infinite isolated set.

12. If (X, T)is a T,-space and T* > T, then prove that (X, T*) is also a T ,-space.

17.6 Further Readings

N

Books Eric Schechter (1997), Handbook of Analysis and its Foundations, Academic Press.

Stephen Willard, General Topology, Addison Wesley, 1970 reprinted by Dover
Publications, New York, 2004.
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Objectives

After studying this unit, you will be able to:

° Define normal space;

o Solve the problems on normal space;

o Discuss the regular space;

o Describe the completely regular space;

o Solve the problems on regular and completely regular space.
Introduction

Now we turn to a more through study of spaces satisfying the normality axiom. In one sense, the
term “normal” is something of a misnomer, for normal spaces are not as well-behaved as one
might wish. On the other hand, most of the spaces with which we are familiar do satisfy this
axiom, as we shall see. Its importance comes from the fact that the results one can prove under
the hypothesis of normality are central to much of topology. The Urysohn metrization theorem
and the Tietze extension theorem are two such results; we shall deal with them later. We shall
study about regular spaces and completely regular spaces.

18.1 Normal Space

A topological space (X, T) is said to be normal space if given a pair of disjoint closed sets C,
C,cX

3 disjoint open sets G,, G, c Xs.t. C, = G,, C, c G,

' Example 1: Metric spaces are normal.

Solution: Before proving this, we need a preliminary fact. Let X be a metric space with metric d.
Given a subset A c X define the distance d(x, A) from a point x € X to A to the greatest lower
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bound of the set of distances d(x, a) from x to points a € A. Note that d(x, A) >0, and d(x, A) =0 Notes
iff x is in the closure of A since d(X, A) = 0 is equivalent to saying that every ball B (x) contains
points of A.

' Example 2: A compact Hausdorff space is normal.

Solution: Let A and B be disjoint closed sets in a compact Hausdorff space X. In particular, this
implies that A and B are compact since they are closed subsets of a compact space. By the
argument in the proof of the preceding example we know that for each x € A, 3 disjoint open sets
U,and V_withx e U and B c V.. Letting x very over A, we have an open cover of A by the sets U..

So, there is a finite subcover. Let U be the union of the sets _in this finite subcover and let V be
the intersection of the corresponding sets V. Then U and V are disjoint open nhds. of A and B.

' Example 3: A closed sub-space of a normal space is a normal space.

Solution: Let (X, T) be a topological space which is normal and (Y, U) a closed sub-space of (X, T)
so that Y is closed in X. To prove that Y is a normal space.

Let F, F, c Y be disjoint sets which are closed in Y. Y is closed in X, a subset F of Y is closed in Y

iff F is closed in X.
. F, and F, are disjoint closed sets in X.
By the property of normal space (X, T).
3G, G,eTst.F,cG,F,cG,GNG,=¢
FcG =2FnYcGnNnY=F=FnYcGcY
=>FcGnY.
Similarly F,c G, = F,cG,c Y.
By definition of relative topology,
G,G,eT=YnG,YnG,eU
Also (G,NY) N (G,nY)=(YNY)n (G NG)=YNnd=4¢.
Finally given a pair of disjoint closed sets F, F, in Y, 3 disjoint sets.
G NnY,GnNnYeUstFcGnY,FcG,nY.

This proves that (Y, U) is a normal space.
Self Assessment

1.  Show that if X is normal, every pair of disjoint closed sets have neighborhoods whose
closures are disjoint.

2. Give an example of a normal space with a subspace that is not normal.

3. Show that paracompact space (X, T) is normal.

18.2 Regular Space

A topological space (X, T) is said to be regular space if: given an element x € X and closed set
Fc X st x ¢ F, 3 disjoint open sets G, G,c Xs.t. x e G, Fc G,
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Notes A regular T,-space is called a T,-space.

A normal T -space is called a T -space.

Examples of Regular Space

1.  Every discrete space is regular.

2. Every indiscrete space is regular.

' Example 4: Give an example to prove that a regular space is not necessarily a T,-space.
Solution: Let X = {a, b, c} and let T = {T¢, X, {c}, {a, b}} be a topology on X.

The closed subsets of X are ¢, X, {c}, {a, b). Clearly this space (X, T) satisfies the R-axiom and it is
aregular space. But it is not a T -space, for the singleton subset {b} is not a closed set.

Thus, this space (X, T) is a regular but not a T,-space.

' Example 5: Give an example of T,-space which is not a T,-space.
Solution: Consider a topology T on the set R of all real numbers such that the T-nhd. of every

non-zero real number is the same as its [J-nhd but T-nhd. of 0 are of the form

G—{lzneN}
n

where G is a U-nhd. of 0.
Then T is finer than U.
Now, (R, U) is Hausdorff and U = T, so (R, T) is Hausdorff.

1
But {f ‘n eN} being T-closed, cannot be separated from 0 by disjoint open sets.
n

Hence, (R, T) is not a regular space.
Thus, (R, T) is T, but not T,.

Theorem 1: A topological space (X, T) is a regular space iff each nhd. of an element x € X contains
the closure of another nhd. of x.

Proof: Let (X, T) be a regular space.

Then for a given closed set F and x € X such that x ¢ F there exist disjoint open sets G, H such that
x € Gand FcH.

Now x € G = Gisanhd. of x (*+ G is open)

Again, GNH=¢

=>GcX-H

= Gc(X-H)=X-H (Since H is open and so X-H is closed)
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= GcX-H

= GcX-F

= G c X-F=M (say)

= GcM.

Since F is a closed set, M is an open set and
xegF=>xeX-F

= x € M, thus M is a nhd. of x.
Hence, if M is a nhd. of x, there exists a nhd. G of x such that

xeGcGcM.
Conversely, Let N, and N, be the nhds. of x € X.

If N, c N, then we have to show that (X, T) is a regular space.

Let F be a closed subset of X and let x be an element of X such that x ¢ F.
Now F is closed and x ¢ F.

= x € X-Fand X - F is open.

= X -Fisanhd. of x.

Let X - F = N,, then by hypothesis

xeNch72cX—F (" N,cN)

Let us write N, = G, and

X-N, =G,

Then G,NG,=N,n (X-N,)
=(N,nX)-(N,nN,)
=N2_N2
=¢.

~G,NG,=6.

Alsox e N,=x € G,
and N,cX-F=FcX-N,
orFcG,

Since N, is a closed set, therefore G, is open.

Thus, we have proved that for a given closed subset F of X and x € X such that x ¢ F there exist

disjoint open subsets G,, G, such that
xeG,andFcG,

Hence X is a regular space.
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Notes Theorem 2: Prove that a normal space is a regular spacei.e. to say, Xisa T -space = Xis a T,-space.

Proof: Let (X, T) be a T,-space so that

(i) XisaT,-space

(i) Xis a regular space

To prove that X is a T,-space. For this we must show that

(iii) Xisa T -space

(iv) Xis aregular space

Evidently (i) = (iii)

If we show that (ii) = (iv), the result will follow. Let F X be a closed set and x € X s.t. x ¢ F.
Xis a T,-space = {x} is closed in X.

By normality, given a pair of disjoint closed sets {x} and F in X, 3 disjoint open sets G, Hin X s.t.
{x} =G, FcX,ie. givenaclosed set F c Xand x € X s.t. x ¢ F. 3 disjoint open sets G, H in X s.t.
{x} = G, F c H. This proves that (X, T) is a regular space.

' Example 6: Show that the property of a space being regular is hereditary property.

Solution: Let (Y, U) be a subspace of a regular space (X, T). We claim that the property of regularity
is hereditary property. If we show that (Y, U) is regular, the result will follow.

Let Fbea U-closed setand p € Ys.t.p ¢ F.

Let F' = closure of F w.r.t. the topology T. and F" = closure of F w.r.t. the topology U we know
that F*=F' N Y.

Since Fisa U-closedset = F= F* = F=F' nY.
peFope FFnY=peg ForpeY
=>pe Fforpe.

F'is a T-closed set.

"+ closure of any set is always closed.

By the regularity of (X, T), given a closed set F' and a pointp € X.s.t. p ¢ F'; 3 disjoint sets G,
He TwithpeG, F'cH.

Consequently, F= F'nYcHNY,peGnY
GCAY)nHnY)=GnHnNnYNnY)=¢nY=9¢

Thus, we have shown that given a U-closed set F and a point p € Y s.t. p ¢ F, we are able to find
out the disjoint opensetsGNY, HNYinYst.peGnNnY,FcHNY.

This proves that (Y, U) is regular. Hence proved.
Self Assessment

4. Show that the usual topological space (R, U) is regular.

5. Show that every T,-space is a T -space.
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6.  Give an example to show that a normal space need not be a regular. Notes

7. Prove that regularity is a topological property.

18.3 Completely Regular Space

A topological space (X, T) is called a completely regular space if given a closed set F — X and a
point x € X s.t. x ¢ F, 3 a continuous map f : X — [0, 1] with the property,

f(x) = 0, £(F) = {1}

' Example 7: Every metric space is a completely regular space.
Solution: Let (X, d) be a metric space.
Let a € X and F be a closed set in X not containing a.

Define F : X — R by

f(x) = __dixa) vVxelX
d(x,a) + d(x,F)
where d(x,F) = inf{d(x, y) : y € F},

d(x,F)=0<xeF=F,
Consequently d(x, a) + d(x, Ff)#0asa ¢ F.
Thus we see that f € C (X, R), 0 < f(x) <1 for every x € X, f(a) =0 and f(F) = {1}.

Theorem 3: Every subspace of a completely regular space is completely regular i.e. complete
regularity is hereditary property.

Proof: Let (Y, T,) be a subspace of a completely regular space (X, T).

Let F be a T ~closed subset of Y and y € Y - F. Since F is a T -closed, there exists a T-closed subset
F* of X such that

F=YnF*
Alsoy ¢ F=>yeYNnF*
= yePF* (vyey)
andy e Y=yeX
It follows that F* is a T-closed subset of X and y € X - F*.

Since X is completely regular, there exists a continuous real valved function f : X — [0, 1], such
that

f(y) = 0 and f(F*) = {1}.
Let g denote the restriction of f to Y. Then g is a continuous mapping of Y into [0, 1].
Now by the definition of g.
gx)=f(x) VxeY.
Hence f(y) =0 = g(y) =0
and f(x) =1V x € F*
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andFcF* = g(x)=f(x)=1VxeF
- g(F) = {1}

Hence for every T -closed subset F of Y and for each point y € Y - F, there exists a continuous
mapping g of Y into [0, 1] such that

g(y)=0 and g(F)={1}.
Hence (Y, T,) is also completely regular.
Theorem 4: A completely regular space is regular.

Proof: Let (X, T) be a completely regular space, then given any closed set F — X and p € X s.t.
p ¢ F; 3 continuous map f : X — [0, 1] with the property that

f(p) =0, f(F)={1}
To prove that (X, T) is a regular space.

Consider the set [0, 1] with usual topology. It is easy to verity that [0, 1] is a T -space, then we can
find out disjoint open sets G, Hin [0, 1] s.t. 0 € G, 1 € H.

By hypothesis, f is continuous, hence f7(G), f'(H) are open in X.

F(G) A FI(H) = FI(H N G) = £1(9), = b
£1(G) = {x € X : f(x) € G}.
Furthermore, f(p)=0eG=f(p) e G=p e £(G)
f(F)=1ecH=fF)={1}cH
=f(F)cH
=F  £(H).

Given any closed set F — Xand p € Xs.t. p ¢ F; 3 disjoint open sets f(G), f'(H) in X s.t. p € f(G),
F c f'(H), in X s.t. p € £(G), F c f'(H), showing thereby X is regular.

Theorem 5: A Tychonoff space is a T,-space. Or Completely regular space = regular space.
Proof: Let (X, T) be a Tychonoff space, then
(i) XisaT,-space
(i) X is a completely regular space.
To prove that (X, T) is a T,-space, it suffices to show that
(iii) Xisa T -space.
(iv) Xis aregular space
Evidently (i) = (iii)
Prove as in Theorem (1)

Hence the result.
' Example 8: Prove that a topological space (X, T) is completely regular iff for every x € X

and every open set G containing x there exists a continuous mapping f of X into [0, 1] such that

f(x)=0 and f(Y)=1VyeX-G.
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Solution: Let (X, T) be a topological space for which the given conditions hold. Let F be a T-closed Notes
subset of X and let x be a point of X such that x ¢ F. Then X - F is a T-open set containing x. By the
given condition there exits a continuous mapping f : X — [0, 1] such that

f(x)=0 and f(Y)=1VyeX-(X-F)ie.yeF.
Hence the space is completely regular.
Conversely, Let (X, T) be a completely regular space and let G be an open subset of X containing x.

Then X - G is a closed subset of X such that x ¢ X - G. Since X is completely regular there exists
a continuous mapping f : X — [0, 1] such that

fx)=0 and f(X-G)={1}
Self Assessment

8. Let F be a closed subset of a completely regular space (X, T) and x, € F’, then prove that
there exists a continuous map f : X — [0, 1] s.t. f(x,) = 1, {(F) = {0}.

9.  Prove that a normal space is completely regular iff it is regular.

18.4 Summary

° A topological space (X, T) is said to be normal space if: given a pair of disjoint closed sets
C,, C, c X. 3 disjoint open sets G,, G, c X s.t. C, c G,, C, c G,

. Matric spaces are normal.
o A closed subspace of a normal space is a normal space.
o A topological space (X, T) is said to be regular space if: given an element x € X and closed

set F c Xs.t. x ¢ F, 3 disjoint open sets G,, G, c X s.t. x € G, F c G,.

o A regular T,-space is called a T,-space.

o A normal T,-space is called a T,-space.

o A normal space is a regular.

o A topological space (X, T) is called a completely regular space if : given a closed set F — X
and a point x € X s.t. x ¢ F, 3 a continuous map f : X < [0, 1] with the property, f(x) =0,
f(F) = {1}.

o Every metric space is a completely regular space.

° Complete regularity is hereditary property.

° A completely regular space is regular.

18.5 Keywords

Compact: A topological space (X, T) is called compact if every open cover of X has a finite sub
cover.

Hausdorff Space: It is a topological space in which each pair of distinct points can be separated
by disjoint neighbourhoods.

Metric Space: Any metric space is a topological space, the topology being the set of all open sets.

Tychonoff Space: Tychonoff space is a Hausdorff space (X, T) in which any closed set A and any
x ¢ A are functionally separated.
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18.6 Review Questions

Ll e

® N o o

Prove that regularity is a hereditary property.
Prove that normality is a topological property.
Prove that complete regularity is a topological property.

Show that if X is completely regular, then every pair of disjoint subsets A and B such that
A is compact and B is closed, there exists a real valued continuous mapping F of X such that
f(A) = {0} and £(B) = {1}.

Show that a closed subspace of a normal space is normal.
Show that a completely regular space is regular and hence a Tychonoff space is a T,-space.
Give an example of Hausdorff space which is not normal.

Show that a topological space X is normal iff for any closed set F and an open set G
containing F there exists an open set H such that

FcH HcGie.FcHc HcG.

18.7 Further Readings

N

Books A.V. Arkhangel’skii, V.I. Ponomarev, Fundamentals of General Topology: Problems

and Exercises, Reidel (1984).
J.L. Kelly, General Topology, Springer (1975).
Stephen Willard (1970), General Topology.
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Unit 19: The Urysohn Lemma Notes

CONTENTS

Objectives

Introduction

19.1 Urysohn’s Lemma
19.1.1 Proof of Urysohn’s Lemma
19.1.2 Solved Examples

19.2 Summary

19.3 Keywords

19.4 Review Questions

19.5 Further Readings

Objectives

After studying this unit, you will be able to:

° State Urysohn’s lemma;

o Understand the proof of Urysohn’s lemma;
o Solve the problems on Urysohn’s lemma.
Introduction

Saying that a space X is normal turns out to be a very strong assumption. In particular, normal
spaces admit a lot of continuous functions. Urysohn’s lemma is sometimes called “the first
non-trivial fact of point set topology” and is commonly used to construct continuous functions
with various properties on normal spaces. It is widely applicable since all metric spaces and all
compact Hausdorff spaces are normal. The lemma is generalized by (and usually used in the
proof of) the Tietze Extension Theorem.

19.1 Urysohn’s Lemma

In topology, Urysohn’s lemma is a lemma that states that a topological space is normal iff any
two disjoint closed subsets can be separated by a function.

This lemma is named after the mathematician Pavel Samuilovich Urysohn.
19.1.1 Proof of Urysohn’s Lemma

Urysohn’s Lemmna: Consider the set R with usual topology where R = {x € R: 0 <x <1}

A topological space (X, T) is normal iff given a pair of disjoint closed sets A, B X, there is a
continuous functions.

f: X— Rs.t. f(A) = {0} and £(B) = {1}.
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Proof:

(1) Let R denote the set of all real numbers lying in the closed interval [0, 1] with usual topology.
Let (X, T) be a topological space and let given a pair of disjoint closed sets A, B c X; 3 a
continuous map f: X - R s.t.

£(A) = {0), £(B) = (1).
To prove that (X, T) is a normal space.
Leta, b € R be arbitrary s.t. a<b
write G =[0, a), H= (b, 1].
Then G and H are disjoint open sets in R.
Continuity of f implies that {(G) and f*(H) are open in X.
Then our assumption says that
£(A) = {0), £(B) = (1)
£(A) = (0} = £1({0} = F1(E(A)) > A
=f1({0}) > A= Acf'({0})
Similarly B c f*{1}.
Evidently
{0} = [0, 2) = £({0}) < £7([0, a))
= A cf'({0}) < ([0, a)]
= Acf’([0,a)=Acf(G)
{1} c (b, 1] = B < f({1}) < £((b, 1])
= Bcf((b,1]) = B cf'(H)
F(G) NEH) = F(GNH) =(¢) =0
Given a pair of disjoint closed sets A, B c X, we are able to discover a pair of disjoint open sets,
f1(G), f1(H) c X s.t. A c f(G), B c f'(H).
This proves that (X, T) is a normal space.

(2) Conversely, suppose that R is a set of real numbers lying in the interval [0, 1] with usual
topology. Also suppose that A, B are disjoint closed subsets of a normal space (X, T).

To prove that 3 a continuous map.

f: (X, T) = Rs.t. f(A) = {0}, £(B) = {1}.
Step (i): Firstly, we shall prove that 3 a map

f: (X, T) = Rs.t. f(A) = {0}, £(B) = {1}.

Write T = {t = zgn,where m,neNstm<2"

Throughout the discussion we treat t € T.

Making use of the fact that m takes 2" values for a given value of n, we have

n

sup(T) =sup(t) = sup[;n—n) = ;—nsup(m) = ;—n =1sup(T)=1
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1, forn=1

23 4

— forn=2

1
Py

ANB=¢=>AcX-B

X - B is an open set containing a closed set A. Using the normality, we can find an open set

GcXsit.
AcGc G cX-B (1)
Writing G = Hl/Z’ X-B= Hy we get

AcH,,c Hi,» cH,
This is the first stage of our construction
Consider the pairs of sets (A, H, ), (Hi2, H)

Using normality, we obtain open sets, H, , H, , € X s.t.

1/4

AcH, ,c His cH,,
ﬁuz CH3/4C ﬁ3/4 cH,
Combining the last two relations, we have
AcH, ,c Hi/s cH,, cHuy2 cH,, cHsucH,
This is the second stage of our construction.
If we continue this process of each dyadic rational m of the function t = m/2", where
n=1,2,..andm=1,2..2"-1,
Then open sets H, will have the following properties:
(i) AcHcH cH VteT
(i) Givent,t, e Tsit.
t<t,= AcH, cH, cH, cH, cH,
Construct a function f : X — Rs.t. f(x) =0 V x e H,
and f(x) = {t: x ¢ H} otherwise
In both cases x € X.
f(x) = supft: x € H} = sup{t} = sup(T) = 1
Thus f(x) =0 V x € H,
and f(x) =1 V x ¢ H, otherwise
fx)=0VxeH,AcH VteT=f(x)=0 Vxe A= f(A)={0}

fx)=1VxegH HcH VteT=f(x)=1V x¢ H,
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Notes =f(x)=1VY xe X-B (= X-B=H,)
=f(x)=1V xeB
= {(B) = {1}
Thus we have shown that f(A) = {0}, f(B) = {1}.

Step (ii): Secondly, we shall prove that f is continuous. Let a € R be arbitrary then [0, a) and (a, 1]
are open sets in R with usual topology.

Write G, = £([0, a)), G, = f((a, 1]).
Then G,, G, can also be expressed as
G, = {xe X:f(x) € [0, a)}
={xe X:0<f(x)<a}
= {xe X:f(x) <a}
According to the construction of f
0<f(x)<1V xeX
x € X:f(x) € (a, 1)}
x€ X:ra<f(x)<1}

{
{

= {x e X:a <{f(x)}
{x e X:{(x) >a}
)

We claim G, =UH, G,={J(H)

t<a t>a

Anyx e G, = f(x) <ae xe H, forsomet<a

This proves that G, =|_JH,

t<a

x € G,= f(x) > a & xis out side of H: fort>a

o xe U(ﬁt)l

t>a

Hence we get G, = U(ﬁt)‘
ta
Since an arbitrary union of open sets is an open set and hence
UH, U(H) <X
t<a ta
are open i.e., G,, G, C X are open, i.e,,
£1([0, a)), £'((a, 1]) are open in X.

f is continuous
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19.1.2 Solved Examples Notes

' Example 1: If F, and F, are T-closed disjoint subsets of a normal space (x, T), then there
exist a continuous map g of X into [0, 1] such that

_ |0 if xeF
809711 if xer,

£(F) = {0} and g(F,) = {1).

Solution: Here write the proof of step II of the Urysohn’s Theorem.

' Example 2: If F, and F, are T-closed disjoint subsets of a normal space (X, T) and [a, b] is
any closed interval on the real line, then there exists a continuous map f of X into [a, b] such that

) = {a '%f xeF,
b if xeF,

ie, f(F)={a}, {(F, = {b}
This problem in known as general form of Urysohn’s lemma.
Solution: Let F, and F, be disjoint closed subset of (X, T).
To prove that 3 a continuous map

f:X —[a, b] s.t. f(F)) = {a}, f(F,) = {b}
By Urysohn’s lemma, 3 a continuous map

g: X—[0,1] s.t. g(F,) = {0}, g(F,) = {1}.
Defineamap h: [0, 1] — [a, b] s.t.

h(x) = (PZx

1-0

ie, h(x)=x(b-a)+a

[This is obtained by writing the equation of the straight line joining (0, a) and (1, b) and then
putting y = h(x)].

Evidently h(0) =a, h(1)=b-a+a=b

Also h is continuous

Write f = hg

g:X—[0,1], h:[0,1] — [a, b]
=hg:X—>[ab]=f:X—[a, b]

Product of continuous functions is continuous
Therefore £(F,) = (hg)(F,) = h[g(F,)] = h({0}) = fa)
f(F,) = (hg)(F,) = h[g(F,)] = h({1}) = {b}
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Thus 3 a continuous map.

£:X > [a,b] s.t. f(F,) = {a}, f(F,) = {b}

19.2 Summary

° Urysohn’s lemma is a lemma that states that a topological space is normal iff any two
disjoint closed subsets can be separated by a function.

° Urysohn’s lemma is sometimes called “the first non-trivial fact of point set topology.”

° Urysohn’s lemma: If A and B are disjoint closed sets in a normal space X, then there exists
a continuous function f : X — [0, 1] such that V a€ A, f(a)=0and V be B, f(b) = 1.

19.3 Keywords

Continuous map: A continuous map is a continuous function between two topological spaces.
Disjoint: A and B are disjoint if their intersection is the empty set.

Normal: A topological space X is a normal space if, given any disjoint closed sets E and F, there
are open neighbourhoods U of E and V of F that are also disjoint.

Separated sets: A and B are separated in X if each is disjoint from the other’s closure. The closures
themselves do not have to be disjoint from each other.

19.4 Review Questions

1.  Prove that every continuous image of a separable space is separable.
2. (@) Prove that the set of all isolated points of a second countable space is countable.

(b) Show that any uncountable subset A of a second countable space contains at least
one point which is a limit point of A.

3. (@) Letf be a continuous mapping of a Hausdorff non-separable space (X, T) onto itself.
Prove that there exists a proper non-empty closed subset A of X such that f(A) = A.

(b) Is the above result true if (X, T) is separable?

4. Examine the proof of the Urysohn lemma, and show that for given r,
)=, -Ju,,
p>r q<r

p, q rational.

5. Give a direct proof of the Urysohn lemma for a metric space (X, d) by setting

B d(x,A)
9= 3 A)+d(x B)

6.  Show that every locally compact Hausdorff space is completely regular.

7. Let X be completely regular, let A and B be disjoint closed subsets of X. Show that if A is
compact, there is a continuous function f : X — [0, 1] such that f(A) = {0} and £(B) = {1}.
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19.5 Further Readings Notes
Books G. F. Simmons, Introduction to Topology and Modern Analysis, McGraw Hill.

J. L. Kelly, General Topology, Van Nostrand, Reinhold Co., New York.

A
.o,
Online links ~ www .planetmath.org.

www.amazon.ca/lemmas-pumping...urysohns
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Unit 20: The Urysohn Metrization Theorem

CONTENTS

Objectives

Introduction

20.1 Metrization

20.2 Summary

20.3 Keywords

20.4 Review Questions

20.5 Further Readings

Objectives

After studying this unit, you will be able to:

° Describe the Metrization;

o Explain the Urysohn Metrization Theorem;
o Solve the problems on Metrizability;

o Solve the problems on Urysohn Metrization Theorem.
Introduction

With Urysohn’s lemma, we now want to prove a theorem regarding the metrizability of
topological space. The idea of this proof is to construct a sequence of functions using Urysohn’s
lemma, then use these functions as component functions to embed our topological space in the
metrizable space.

20.1 Metrization

Given any topological space (X, T), if it is possible to find a metric p on X which induces the
topology T i.e. the open sets determined by the metric p are precisely the members of T, then X
is said to the metrizable.

' Example 1: The set R with usual topology is metrizable. For the usual metric on R
induces the usual topology on R. Similarly R? with usual topology is metrizable.

' Example 2: A discrete space (X, T) is metrizable. For the trivial metric induces the discrete
topology T on X.

'F Example 3: Prove that if a set is metrizable, then it is metrizable in an infinite number of
different ways.

Solution: Let X be a metrizable space with metric d.

Then 3 a metric d on X which defines a topology T on X.
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d(x, Notes
write d,(x, y) = #(z)y) Vx,yeX

Then d, is a metric on X.

d, (x,
Again dy(xy) = ﬁ Txevex
1 7

Then d, is also a metric on X.

Continuing like this, we can define an infinite number of metrics on X.
Urysohn Metrization Theorem

Statement: Every regular second countable T,-space is metrizable.
or

Every second countable normal space is metrizable.

Proof: Let (X, T) be regular second countable T,-space.

To prove: (X, T) is metrizable.

X is regular and second countable.

= X is normal.

Since (X, T) is second countable and hence there exists countable base B for the topology T on X.
The elements of B can be enumerated as B, B,, B,,..., where ¢ # B_ € T. Let x € X be arbitrary and
xe Ue B.

By normality of X,

3Ve Bst.xe UcV

Write C={(U,V):UxVe BxBst. VcV}
B is countable. = B x B is countable.
= every subset of B x B is countable.

= (C is countable.

ForCcBxB
UcV=UNX-V)=¢

Also U and X - V are closed in the normal space (X, T).
Hence, by Urysohn’s lemma,

3 continuous map f: X — [0, 1] =L, s.t.

f(U) = {0}, (X - V) ={1}

This implies f(x)=0 iff
and fx)=1 iff

xe U

xe X-V
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Since continuous map f can be determined corresponding to every element (U, V) of C. Take F as
the collection of all such continuous maps.

C is countable = F is countable.

To prove that F distinguishes points and closed sets. For this, let H is closed subset of X and
xe X-H.

Now X - H is a nhd of x so that
ElBje Bst.xe BjCX—H
Regularity of X=3Ge Bst.xe G G B,
By definition of base, we can choose Bj € Bs.t.xe B}. cG
Thus, x € B, B: cB.c X-H
or x € Bi CBiCX—H
This implies (B, B)  C
If f be corresponding member of 7, then
£(Bi) ={0}, f(X-B) ={1)
Bj cX-H
>HcX- Bi
= f(H) c{(X - Bi) = {1}
= fH) c {1}

= f(H) < {1} = {1}.

{For {1} is closed in I = [0, 1] for the usual topology on I and so (1} = {1}].

This implies f(H) < {1} = f(H) = {1}
Also f(X - B) = {1}.

Hence, £(X - B) = {1} =£(H)
Also f(B,) = {0}

f(x)=0¢ {1} = (X - B) = f(H)

= f(x)e f(H) (1)

f(H) is closed subset of X.

Equation (1) shows that F distinguishes points and closed sets. Also, we have seen that F is
countable family of continuous maps f: X — [0, 1].

If follows that X can be embedded as a subspace of the Hilbert Cube IN which is metrizable.
Also, every subspace of metrizable space is metrizable.

This proves that (X, T) is metrizable.
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Notes
' Example 4: A compact Hausdorff space is separable and metrizable if it is second countable.

Solution: Let (X, T) be a compact Hausdorff space which is second countable.
To prove that X is separable and metrizable.

Firstly, we shall show that X is regular.

Xis a Hausdorff space. = X is a T,-space.

= Xis also a T -space.

= {x}isclosed V x € X.

Let F c X be closed and x € Xs.t. x¢ F.

Then F and {x} are disjoint closed subsets of X.

X is a compact Hausdorff space.

= X is a normal space.

As we know that “A compact Hausdorff space is normal”.
By definition of normality,

We can find a pair of open set G,, G, © X
st.{x}cG,FcG,GNG,=9¢
iexeG,FcG,GNG,=¢

Given a closed set f and a point x € X s.t. x ¢ F implies that 3 disjoint open sets G,, G, c X
st.xe G, FcG,

This implies X is a regular space. -(2)
X is a second countable. [A second countable space is always separable ] ...(3)
= X is separable.

From (1), (2) and (3), it follows that (X, T) is a regular second countable T,-space.

And so by Urysohn’s theorem, it will follow that X is metrizable. (4)
From (3) and (4), it follows that X is separable and metrizable.

Hence the result.

Theorem 1: Every metrizable space is a normal Frechet space.

Proof: Let X be a metrizable space so that 3 a metric d on X which defines a topology T on X.
Step (i): To prove that (X, T) is a Frechet space i.e. T, space.

Let (X, d) be a metric space. Let x, y € X be arbitrary s.t. d(x, y) = 2r. Let T be a metric topology.

We know that every open sphere is T open. Then S, S, are open sets s.t.

x)
X e Sr(x)’ y & Sr(x)
X €Sy X & Sy

Hence (x, d) is a T,-space.
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Step (ii): To prove (X, T) is a normal space.
It follows by the theorem.

“Every metric space is normal space” proved in Unit -17.

Example 5: Every subspace of a metrizable is metrizable.

Solution: Let (Y, p) be a subspace of a metric space (X, d) which is metrizable so that

(i) 3Jatopology T on X defined by the metric d on X.

(i) YcXandp(x,y)=d(xy) v xyeX

Then the map p is a restriction of the map ‘d” of Y. Consequently p defines the relative topology

U on Y, showing thereby Y is metrizable.

20.2 Summary

° Given any topological space (X, T), if it is possible to find a metric p on X which induces the
topology T then X is said to be the metrizable.

) The set R with usual topology is metrizable.
° Urysohn metrization theorem: Every second countable normal space is metrizable.
) Every metrizable space is a normal Frechet space.

20.3 Keywords

Compact: X is compact iff every open cover of X has a finite subcover.

Hausdorff: A topological space (X, T) is a Hausdorff space if given any two points x, y € X, 3G,
HeTst.xe G ye H GNH=4¢.

Normal: Let X be a topological space where one-point sets are closed. Then X is normal if two
disjoint sets can be separated by open sets.

Regular: Let X be a topological space where one-point sets are closed. Then X is regular if a point
and a disjoint closed set can be separated by open sets.

T, space: A topological space X is a T, if given any two points x, y € X, x # y, there exists
neighbourhoods U of x such that y ¢ Ux.

20.4 Review Questions

1.  Give an example showing that a Hausdorff space with a countable basis need not be
metrizable.

2. Let X be a compact Hausdorff space. Show that X is metrizable if and only if X has a
countable basis.

3. Let X be a locally compact Hausdorff space. Let Y be the one-point compactification of X.
Is it true that if X has a countable basis, then Y is metrizable? Is it true that if Y is metrizable,
then X has a countable basis?

4. Let X be a compact Hausdorff space that is the union of the closed subspaces X, and X..
If X, and X, are metrizable, show that X is metrizable.

LOVELY PROFESSIONAL UNIVERSITY



Unit 20: The Urysohn Metrization Theorem

5. A space X is locally metrizable if each point x of X has a neighbourhood that is metrizable Notes
in the subspace topology. Show that a compact Hausdorff space X is metrizable if it is
locally metrizable.

6.  Let X be alocally compact Hausdorff space. Is it true that if X has a countable basis, then X
is metrizable? Is it true that if X is metrizable, then X has a countable basis?

7. Prove that the topological product of a finite family of metrizable spaces is metrizable.

8. Prove that every metrizable space is first countable.

20.5 Further Readings

N

Books Robert Canover, A first Course in Topology, The Williams and Wilkins Company
1975.

Michael Gemignani, Elementary Topology, Dover Publications 1990.
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Unit 21: The Tietze Extension Theorem

CONTENTS

Objectives

Introduction

21.1 Tietze Extension Theorem
21.2 Summary

21.3 Keywords

21.4 Review Questions

21.5 Further Readings

Objectives

After studying this unit, you will be able to:
° State the Tietze Extension Theorem;

o Understand the proof of Tietze Extension Theorem.

Introduction

One immediate consequence of the Urysohn lemma is the useful theorem called the Tietze
extension theorem. It deals with the problem of extending a continuous real-valued function
that is defined on a subspace of a space X to a continuous function defined on all of X. This
theorem is important in many of the applications of topology.

21.1 Tietze Extension Theorem

Suppose (X, T) is a topological space. The space X is normal iff every continuous real function of
defined point a closed subspace F of X into a closed interval [a, b] has a continuous extension.

f*: X — [a, b]
Proof:

(i) Suppose (X, T) is a topological space s.t. Every continuous real valued function f : F— [a, b]
has a continuous extended function g : X — [a, b] where F is a closed subset of X, [a, b] being
closed interval.

To prove X is a normal space.

Let F, and F, be two closed disjoint subsets of X.
Defineamap f: F, UF, — [a, b]
s.t.f(x)=aifxe F and f(x) =bisx € F,.

This map f is certainly continuous over the subspace F, U F,. By assumption, f can be
extended to a continuous map

g:X — [a b]s.t

a ifxel

809 = {b if xeF,

The map g satisfies Urysohn’s lemma and hence (X, T) is normal.
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(i) Conversely, suppose that (X, T) is a normal space. Notes
Let f: F — [a, b] be a continuous map. F being a closed subset of X.
To prove that 3 a continuous extension of f over X. For convenience, we takea=-1,b=1
Now we definea map f,=F — [-1, 1] s.t.
f,(x) = f(x) VxeF.
Suppose A and B, are two subsets of F. s.t.

A, = {x:fo(x) < —%} B, ={x:f0(x) >

}

For F is closed in X. Applying general from of Urysohn’s lemma, 3 a continuous function

W[~

Then A and B are closed in X.

11 1 1
gO:X%[—g,g}s.t.go(Ao) = _glgO(B0)=§

Write f, = f,-g

1

Then 6091 = [ -80) 9] =00 -80(] < 3

- (23]

12
Bl = {X:fl(X)ZE,E},

>
[

Then A, B, are non-empty disjoint closed sets in X and hence 3 a continuous function s.t.

1212
:X TR AT AT A
&2 7 { 333 3}

Again we define a function f, and F s.t.

f, = fi-g1=f-80-81=fH—(8+81)

Then ‘fz(x)‘

2\2
609~z + )= 2
Continuing this process, we get a sequence of function.

(forfi fore o)

5

defined on Fs.t. I£, ()|

IN

and a sequence (gg, gl,gz,....>

IA
[SRE

defined on X s.t. ‘gn(x)‘
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f = f—(80+81 ++8wm1)
Write S

Now S, can be regarded as partial sums bounded continuous function defined on X. Since the
space of bounded real valued function is complete and

1(2Y" o 1/2Y)
n < | = d» - =| =1,
5 3 (3) n 23(3)
the sequence (S ) converges confirmly on X to g (say) when |g(x)| < 1.

I£,(x)| < (%) = (S, converges uniformly on F to f; say

Hence g=fonF.

Thus g is a continuous extension of f to X which satisfies the given conditions.

21.2 Summary

° Tietze extension theorem:

Suppose (X, p) is a topological space. The space X is normal iff every continuous real
function f defined on a closed subspace F of X into a closed interval [a, b] has a continuous
extension f* X — [a, b]

21.3 Keywords

Closed Set: A subset A of a topological space X is said to be closed if the set X - A is open.

Continuous Map: A function f : R — R s said to be continuous if for each a € R and each positive
real number €, there exists a positive real number § such that |x—a| <8 = \f(x) - f(a)\ <€E.

Normal Space: A topological space (X, T) is said to be a normal space iff it satisfies the following
axioms of Urysohn: If F, ad F, are disjoint closed subsets of X then there exists a two disjoint
subsets one containing F, and the other containing F,.

21.4 Review Questions

1.  Show that the Tietze extension theorem implies the Urysohn lemma.
2. Let X be metrizable. Show that the following are equivalent:
(@) Xis bounded under every metric that gives the topology of X.
(b) Every continuous function ¢ : X — R is bounded.

(¢  Xis limit point compact.
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21.5 Further Readings Notes
Books J.E. Simmons, Introduction to Topology and Modern Analysis. McGraw Hill

International Book Company, New York 1963.

A.V. Arkhangel’skii, V.I. Ponomarev, Fundamentals of General Topology: Problems
and Exercises, Reidel (1984).

A
Y.,
Online links  www.mathword. wolfram.com

http:/ /www.answers.com/ topic/planetmath
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CONTENTS

Objectives

Introduction

221 Finite Intersection Property
22.2 Summary

22.3 Keywords

22.4 Review Questions

22.5 Further Readings

Objectives

After studying this unit, you will be able to:
o Define finite intersection property;
° Solve the problems on finite intersection;

o Understand the proof of Tychonoff’s theorem.
Introduction

Like the Urysohn Lemma, the Tychonoff theorem is what we call a “deep” theorem. Its proof
involves not one but several original ideas; it is anything but straightforward. We shall prove
the Tychonoff theorem, to the effect that arbitrary products of compact spaces are compact. The
proof makes use of Zorn’s lemma. The Tychonoff theorem is of great usefulness to analysts we
apply it to construct the Stone-Cech compactification of a completely regular space and in
proving the general version of Ascoli’s theorem.

22.1 Finite Intersection Property

Let X be a set and f a family of subsets of X. Then f is said to have the finite intersection property
if for any finite number F, F,, ..., F_ of members of f.

v oY
FnE,n..F #¢

Proposition: Let (X, T) be a topological space. Then (X, T) is compact if any only if every family
[ of closed subsets of X with the finite intersection property satisfies N, _ F = ¢.

Proof: Assume that every family f of closed subsets of X with the finite intersection property

satisfies N _ . F # ¢. Let U be any open covering of X. Put f equal to the family of complements

of members of U. So each F € f is closed in (X, f). As U/ is an open covering of X, n._, F = ¢. By our
assumption, then, f does not have the finite intersection property. So for some F , F,,..F_in f,
FnE,n.,NnF =0

Thus U, wU, U ...uU, =X, where
U, =X\F,i=1,..,n.
So U has a finite subcovering. Hence, (X, T) is compact.

The converse statement is proved similarly.
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' Notes
% Example 1: Let X be a topological space and let B be a closed sub-base for X and let {B } be

its generated closed base i.e. the class of all finite union of members of B if every class of B,'s with
the finite intersection property (FIP) has a non-empty intersection then X is compact.

Solution: Under the given hypothesis, we shall prove that X is compact. In order to prove the
required result it is sufficient to show that every basic cover of X has a finite sub-cover.

Let {O} be any basic open cover of X. Then X = JO;.

i
Now, {B{} being an open base for X implies that each O, is a union of certain B{’s and the
totality of all such B{’s that arise in this way is a basic open cover of X. By De-Morgan’s law, the

totality of corresponding B,'s has empty intersection and therefore by the given hupothesis this
totality does not have FIP. This implies that there exist finitely many B/s, say,

B. ,Bi2 "'Bi,, such that ﬁBif‘l’ .
K=1

Iy

Taking complements on both sides, we set

U B =X. (By De-Morgan’s Law)

K=

-

For each BicK (K=1,2,...,n)wecanfinda O, such that Bf c O, .
Thus X = 0 OjK.
K=1

Thus, we have shown that every basic open cover of X has a finite sub-cover.

' Example 2: Let X be a non-empty set. Then every class {B} of subsets of X with the FIP is
contained in some maximal class with the FIP.

Solution: Let {B}.} be a class of subsets of X with the FIP and let P be the family of all classes of
subsets of X that contains {Bj} and have the FIP.

For any F,, F’l € P, define F, < Fp so that F, Fp.

Then (P, <) is a partially ordered set. Let T be any totally ordered subset of (P, <). Then, the union
of all classes in T has an upper bound for T in P.

Thus (P, <) is a partially ordered set in which every totally ordered subset has an upper bound.

Hence by Zern’s lemma, P possesses a maximal element i.e., there exist a class {B,} of subsets of
X such that {Bj} c {B,}, {B,} has the FIP and any class of subsets of X which properly contains {B,}
does not have the FIP.

Tychonoff’s Theorem

Before proving Tychonoff’s theorem, we shall prove two important lemmas.

Lemma 1: Let X be a set; Let A be a collection of subsets of X having the finite intersection
property. Then there is a collection D of subsets of X such that D contains A and D has the finite
intersection property, and no collection of subsets of X that properly contains D has this property.

We often say that a collection D satisfying the conclusion of this theorem is maximal with
respect to the finite intersection property.
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Proof: As you might expect, we construct D by using Zorn’s lemma. It states that, given a set A
that is strictly partially ordered, in which every simply ordered subset has an upper bound, A
itself has a maximal element.

The set A to which we shall apply Zorn’s lemma is not a subset of X, nor even a collection of
subsets of X, but a set whose elements are collections of subsets of X. For purpose of this proof,
we shall call a set whose elements are collections of subsets of X a “superset” and shall denote it
by an outline letter. To summarize the notation:

c is an element of X.

C is a subset of X.

C is collection of subset of X.

C is a superset whose elements are collections of subsets of X.

Now by hypothesis, we have a collection A of subsets of X that has the finite intersection
property. Let A denote the superset consisting of all collections B of subsets of X such that B> .4
and B has the finite intersection property. We use proper inclusion & as our strict partial order
of A. To prove our lemma, we need to show that A has a maximal element D.

In order to apply Zorn’s lemma, we must show that if B is a “sub-superset” of A that is simply
ordered by proper inclusion, then B has a upper bound in A. We shall show in fact that the
collection
Cc= U B,
BeB
which is the union of the collections belonging to B, is an element of A; the it is the required
upper bound on B.

To show that C is an element of A, we must show that C € A and the C has the finite intersection
property. Certainly C contains .4, since each element of B contains .A. To show that C has the finite
intersection property, let C,, ..., C_be elements of C. Because C is the union of the elements of B,
there is, for each i, an element B, of B such that C, € B.. The superset {B,...., B } is contained in B.
So it has a largest element; that is, there is an index K such that B, € B, fori =1, .., n. then all the
sets C,...., C_ are elements of B,. Since B, has the finite intersection property, the intersection of
the sets C, ..., C_is non-empty, as desired.

Lemma 2: Let X be a set; Let D be a collection of subsets of X that is maximal with respect to the
finite intersection property. Then:

(@)  Any finite intersection of elements of D is a element of D.
(b) If Ais a subset of X that intersects every element of D, then A is an element of D.
Proof:

(@) Let B equal the intersection of finitely many elements of D. Define a collection of E by
adjoining B to D, so that E = D U {B}. We show that E has the finite intersection property;
then maximality of D implied that E = D, so that B € D as desired.

Take finitely many elements of E. If none of them is the set B, then their intersection is
non-empty because D has the finite intersection property. If one of them is the set B, then
their intersection is of the form

Dl .. Dm N B.
Since B equals a finite intersection of elements of D, this set is non-empty.

(b) Given A, define E = D n {A}. We show that E has the finite intersection property from
which we conclude that A belongs to D. Take finitely many elements of E. If none of them
is the set A, their intersection is automatically non-empty. Otherwise, it is of the form

D n.nD nA
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Now D, n ... n D, belongs to D, by (a); therefore this intersection is non-empty, by Notes
hypothesis.

Theorem 1: (Tychonoff theorem): An arbitrary product of compact spaces is compact is the product
topology:
Proof: Let

X=[1Xe

a€e]

where each space X  is compact. Let A be a collection of subsets of X having the finite intersection
property. We prove that the intersection

Na

AecA

is non-empty. Compactness of X follows:

Applying Lemma 1, choose a collection D of subsets of X such that D > A and D is maximal with

respect to the finite intersection property. It will suffice to show that the intersection Mp.pD is
non-empty.

Givena € ], let m_ : X — X_be the projection map, as usual. Consider the collection
{n,(D)| De D}

of subset of X . This collection has the finite intersection property because D does. By compactness
of X, we can for each o choose a point x, of X such that

Let x be the point (x), € J of X. We shall show that for xe D for every D € D; then our proof will
be finished.

First we show that if 7, (Uy) is any sub-basis element (for the product topology on X) containing

x, then ;" (U,) intersects every element of D. The set U, is a neighbourhood of x, in X;. Since

Xg € (D) by definition, U, intersects 7, (D) in some point m, (y), where y € D. Then it follows
thaty e n;" (Uy) N D.

It follows from (b) of Lemma 2, that every sub-basis element containing x belongs to D. And
then it follows (a) of the same lemma that every basis element containing x belongs to D. Since

D has the finite intersection property, this means that every basis element containing x intersects
every element of D; hence x e D for every D € D as desired.

22.2 Summary

° Let X be a set and f a family of subsets of X. Then f is said to have the finite intersection
property if for any finite number F, F,, ... F_ of members of f. FNF,N..NF_#¢.

o Let (X, T) be a topology space. Then (X, T) is compact iff every family f of closed subsets of
X with the finite intersection property satisfies N, _ F # ¢.

o An arbitrary product of compact spaces is compact in the product topology.

LOVELY PROFESSIONAL UNIVERSITY 193



Topology

194

Notes

22.3 Keywords

Compact Set: Let (X, T) be a topological space and A  X. A is said to be a compact set if every
open covering of A is reducible to finite sub-covering.

Maximal: Let (A, <) be a partially ordered set. An element a € A is called a maximal element of
A if 3 no element in A which strictly dominates a, i.e.

x < a for every comparable element x € A.
Projection Mappings: The mappings
T, XXY = Xst.m (x,y)=xY(x,y)e XxY
T, XXY > Ystn (x,y)=y V(x,y) e XXY
are called projection maps of X x Y onto X and Y space respectively.

Tychonoff Space: It is a completely regular space which is also a T -space i.e. T, =[CR]+T,-

1
2

Upper bound: Let A C R be any given set. A real number b is called an upper bound for theset A
if.

x<bVxeA.

22.4 Review Questions

1.  Let X be a space. Let D be a collection of subsets of X that is maximal with respect to the
finite intersection property.

(@) Show that x€D for every D € D if any only if every neighbourhood of x belongs to
D. Which implication uses maximality of D?

(b) LetDe D.Show thatif ADD,then Ae D.

()  Show that if X satisfies the T, axion, there is at most one point belonging to Mp.,D.

2. A collection A of subsets of X has the countable intersection property if every countable
intersection of elements of A is non-empty. Show that X is a Lindelof space if any only if
for every collection A of subsets of X having the countable intersection property,

N A
AeA
is non-empty.
22.5 Further Readings
Books Bimmons, Introduction to Topology and Modern Analysis.

Nicolas Bourbaki, Elements of Mathematics.

1A

Online links ~ www .planetmath.org

www jstor.org
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Unit 23: The Stone-Cech Compactification Notes

CONTENTS

Objectives

Introduction

23.1 Compactification
23.1.1 One Point Compactification
23.1.2 Stone-Cech Compactification

23.2 Summary

23.3 Keywords

23.4 Review Questions

23.5 Further Readings

Objectives

After studying this unit, you will be able to:

° Describe the compactification;

° Define the Stone-Cech compactification;
o Explain the related theorems.
Introduction

We have already studied one way of compactifying a topological space X, the one-point
compactification; it is in some sense the minimal compactification of X. The Stone-Cech
compactification of X, which we study now, is in some sense the maximal compactification of X.
It was constructed by M. Stone and E. Cech, independently, in 1937. It has a number of applications
in modern analysis. The Stone-Cech compactification is defined for all Tychonoff Spaces and has
an important extension property.

23.1 Compactification

A compactification of a space X is a compact Hausdorff space Y containing X as a subspace such

that X =Y. Two compactifications Y, and Y, of X are said to be equivalent if there is a
homeomorphism h : Y, = Y, such that h(x) = x for every x € X.

Remark: If X has a compactification Y, then X must be completely regular, being a subspace of
completely regular space Y. Conversely, if X is completely regular, then X has a compactification.

Lemma 1: Let X be a space; suppose that h : X — X is an imbedding of X in the compact Hausdorff
space Z. Then there exists a corresponding compactification Y of X; it has the property that there
is an imbedding H : Y — Z that equals h on X. The compactification Y is uniquely determined up
to equivalence.

We call Y the compactification induced by the imbedding h.

Proof: Given h, let X, denote the subspace h(X) of Z, and let Y denote its closure of Z.
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Then Y, is a compact Hausdorff space and X, = Y,; therefore, Y, is a compactification of X,.

We now construct a space Y containing X such that the pair (X, Y) is homeomorphic to the pair
(X, Y,)- Let us choose a set A disjoint from X that is in bijective correspondence with set Y - X,
under map K: A - Y, - X

Define Y = XU A, and define a bijective correspondence H:Y — Y by the rule

H(x) =h(x) forxeX,

H(a) = k(a) fora e A.
Then topologize Y by declaring U to be open in Y if and only if H(U) is open in Y,. The map H is
automatically a homeomorphism; and the space X is a subspace of Y because H equals the

homeomorphism ‘h” when restricted to the subspace X of Y. By expanding the range of H, we
obtain the required imbedding of Y into Z.

Now suppose Y, is a compactification of X and that H, : Y, = Z is an imbedding that is an
extension of h, for i =1, 2. Now H, maps X onto h(X) = X. Because H; is continuous, it must map

Y, into X, ; because H,(Y,) contains X, and is closed (being compact), it contains X, . Hence, H(Y,) =
X, and H,' o H, defines a homeomorphism of Y, with Y, that equals the identity on X.
Theorem 1: The collection of all compactifications of a topological space is partially ordered by 2.
If (f, Y) and (g, Z) are Hausdorff compactifications of a space and (f, Y) = (g, Z) = (£, Y), then (£, Y)
and (g, Z) are topologically equivalent.

Proof: If (f, Y) 2 (g, Z) = (h, U), where these are compactification of a space X, then there are
continuous functions jon Y to Z and K on Z to U such that g =j o f and h = k o g and hence
h=kojofand(f,Y)= (h U). Consequently = partially orders the collection of all compactifications
of X. If (f, Y) and (g, Z) are Hausdorff compactifications each of which follows the other relative
to the ordering 2, then both f 0 g and g o f! have continuous extensions j and k to all of Z and
Y respectively.

Since k o0 j is the identity map on the dense subset g [X] of Z and Z is Hausdorff k o j is the identity
map of Z onto itself and similarly j o k is the identity map of Y onto Y. Consequently (f, Y) and
(g, Z) are topologically equivalent.

23.1.1 One Point Compactification

Definition: Let X be a locally compact Hausdorff space.

Take some objects outside X, denoted by the symbol « for convenience and adjoin it to X,
forming the set

Y =X U {oo}.
Define topology U on Y as follows:
() GeuifT
(i) Y- C e uif Cisacompact subset of X.
The space Y is called one point compactification of X.

Theorem 2: Let X be a locally compact Hausdorff space which is not compact. Let Y be one point
compactification of X. Then Y is compact Hausdorff space : X is a subspace of Y : the set Y - X
consists of a single pointand X =Y.
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Proof:

1. To show that X is a subspace of Y and X =Y.
Let U be a topology on Y. Let H € U, then
HnX=H
andsoHeT. Also(Y-C)nX=X-C

and so X - C e T. Conversely any open set in X is of the type (1) and therefore open in Y.
Since X is not compact, each open set Y - C containing oo intersects X, meaning thereby

is a limit point of X, so that X =Y.
2. Toshow thatY is compact.

Let G be an U-open covering of Y. The collection G must contain an open set of the type
Y - C. Also G contains set of the type G, where G € T, each of these sets does not contain the
point o. Take all such sets of G different from Y - C, intersect them with X, they form a
collection of open sets in X covering C.

As C is compact, hence a finite number of these members will cover C; the corresponding
finite collection of elements of G along with the elements of Y - C cover all of Y.

Hence Y is compact.

3. To show that y is Hausdorff.

Letx,y €Y.
If both of them lie in X and X is known to be compact so that 3 disjoint open sets U, V
in X
s.t. xeu,yeV.
On the other hand if
xeX
and y = oo

We can chose compact set C and X containing a nbd U of x.
The U and Y - C are disjoint nbds of x and o respectively in Y.

Theorem 3: If (X', T") be a one point compactification of a non-compact topological space (X, T),
then (X', T) is a Hausdorff space iff (X, T) is locally compact.

Proof: Assuming that X is a Hausdorff space, each pair of distinct points in X", all of which belong
to X can be separated by open subsets of X. Thus it is sufficient to show that any pair (x, «) € X,
can be separated by open subsets of X". Now X is locally compact

= any x € X, has a nbd N whose closure N in X is compact
= Nand N’ are disjoint open subsets of X s.t. x € N and o € N’
= distinct points x, co of X" have disjoint nbds
= (X', T") is Hausdorff.
Conversely if (X, T") is Hausdorff, then

X is a subspace of X" = X is Hausdorff, since Hausdorffness is hereditary.
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Now we claim that X is locally compact. It will be so if every point of it has a nbd whose closure
is compact.

x € Xis fixed and distinct x, o0 € X" (Hausdorff) = 3 disjoint open sets A}, A} in X' s.t. x € A] and
we Al
2

But an open set containing co must be of the form
Al ={ojUA
where A is an open set in X containing x s.t. its complement is compact.
Also © € A|= A is an open set in X containing x, whose closure is contained in A
= A is compact
= every point of X has a nbd whose closure is compact

= X is locally compact.

23.1.2 Stone-Cech Compactification

The pair (e, B(X)), where X is a Tychonoff space and B(X) (: e(x)) is called Stone-Cech
compactification of X. e is a map from X into B(X).

For each completely regular space X, let us choose, once and for all, a compactification of X
satisfying the extension condition i.e. For a completely regular space X, 3 a compactification Y
of X having the property that every bounded continuous map f : X — R extends uniquely to a
continuous map of Y into R.

We will denote this compactification of X by B(X) and call it the Stone-Cech compactification of
X. Itis characterized by the fact that any continuous map f : X — C of X into a compact Hausdorff
space C extends uniquely to a continuous map g : B(X) - C.

Theorem 4: Let X be a Tychonoff space, (e, B(X)) its stone-cech compactification and suppose
f: X — [0, 1] is continuous. Then there exists a map g : B(X) — [0, 1] such that go e =f, i.e. gis an
extension of f to B(X), if we identify X with e(X).

Proof: Let 3 be the family of all continuous functions from X into [0, 1]. Then B(X) < [0, 1]° we
define g on the entire cube [0, 1]° by g(X) = A(f) for A € [0, 1]°.

This is well defined because an element of [0, 1]? is a function from 3 into [0, 1] and can be
evaluated at f since f € 3. Equivalently, g is nothing but the projection f from [0, 1] onto [0, 1],
and hence is continuous. Now if x € X then, by definition of the evaluation map, e(x) € [0, 1]*is
the function e(x) : 3 — [0, 1] such that

goe(x)(h)=h(x) forhe3.
Now goe(x)=gle(x) =e(x) (f)=f(x) VxeX
So goe=f.

Thus, we extended f not only to B(x) but to the entire cube [0, 1]7. Its restriction to B(X) proves the
theorem.

Theorem 5: A continuous function from a Tychonoff space into a compact Hausdorff space can be
extended continuously over the stone-cech compactification of the domain. Moreover such an
extension is unique.

Proof: Let X be a Tychonoff space, B(X) its stone-cech compactification and f : X — Y a map where
Y is a compact Hausdorff space.
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Let 3,, 3, be respectively the families of all continuous functions from X, Y respectively to the Notes
unit interval [0, 1] and let e, e’ be the embedding of X, Y into [0,1]" and [0,1]™ respectively. For
any g € 3, let ng : [0,1]* — [0, 1] be the corresponding projection.
Then m o ¢ of is a map from X into [0, 1] and so it has an extension say 6, to B(X). Then
0 oen oe of.
g g
Now consider the family {6g =g € 3,} of maps from B(X) into [0, 1]. Let 6 : B(X) — [0, 1]° be the
evaluation map determined by this family. We claim that 6 o e = €’ o f. Let x € X. Them 6(e(x)) is

an element of [0,1]” given by

0(e(x))(g) = Bg(e(x)) [by the definition of the evaluation functions]
But 6, (e(x)) = m (e’f(x)) = €'(E(x))(8)
Thus for all ged,

[0.()](8) = [e;f(x))8) and so
Bog= e, f asclaimed.
Now 0(e(x)) = €' (f (X)) c e'(Y).

Since Y is compact, e'(Y) compact and hence a closed subset of [0,1].

So 0(e(X)) < e'(Y).

But since 6 is continuous,

0(B(X)) = 0(e(X)) = 6(e(X))

Thus we see that 0 maps B(X) into €'(Y). Since e’ is an embedding, there exists amap e : e'(Y) > Y
which is an inverse to e’ regarded as a map from Y onto e’(Y). Thene oe’ of =f.

Uniqueness of the extension is immediate in view of the fact that Y is a Hausdorff space and e(X)
is dense in B(X).

23.2 Summary

° A compactification of a space X is a compact Hausdorff space Y containing X as a subspace
such that X =Y.

° Two compactifications Y, and Y, of X are said to be equivalent if there is a homeomorphism
h:Y, =Y, such that h(x) = x for every x € X.

° If X has a compactification Y, then X must be completely regular, being a subspace of
completely regular space Y.

° If X is completely regular, then X has a compactification.

° The pair (e, B(X)), where X is a Tychonoff space and B(X) (: @) is called Stone-Cech
compactification of X, e is a map from X into f(x).

o The Stone-Cech compactification is defined for all Tychonoff spaces.
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23.3 Keywords

Connected Spaces: A space X is connected if and only if the only subsets of X that are both open
and closed in X are the empty set and X itself.

Hausdorff Space: 1t is a topological space in which each pair of distinct points can be separated
by disjoint neighbourhoods.

Homeomorphism: A map f: (X, T) > (Y, V) is said to be homeomorphism if:
(i) fis one-one onto.

(i) fand f! are continuous.

23.4 Review Questions

=

Let (X, T) be a Tychonoff space and (BX, T') its stone-cech compactification. Prove that (X, T)
is connected if and only if (BX, T') is connected.

[Hint: Firstly verify that providing (X, T) has at least 2 points it is connected if and only if
there does not exist a continuous map of (X, T) onto the discrete space {0, 1}.]

2. Let (X, T) be a Tychonoff space and (BX, T") its stone-cech compactification. If (A, T,) is a
subspace of (BX, T') and A o X, prove that (BX, T’) is also the stone-cech compactification of
(A, T).

3. Let (X, T) be a dense subspace of a compact Hausdorff space (Z, T,). If every continuous
mapping of (X, T) into [0, 1] can be extended to a continuous mapping of (Z, T,) into [0, 1],
prove that (Z, T)) is the Stone-Cech compactification of (X, T).

4. Let Y be an arbitrary compactification of X; let B(X) be the Stone-Cech compactification.
Show that there is a continuous surjective closed map g : B(X) — Y that equals the identity
on X.

5. Under what conditions does a metrizable space have a metrizable compactification?

23.5 Further Readings

Books S. Lang, Algebra (Second Edition), Addison-Wesley, Menlo Park, California 1984.
S. Willard, General Topology, MA : Addison-Wesley.

o

Online links ~ www .planetmath.org

www jstor.org
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24.6 Further Readings

Objectives

After studying this unit, you will be able to:

° Define local finiteness and solve problems on it;

o Define countably locally finite, open refinement and closed refinement;
o Understand the paracompactness and theorems on it.

Introduction

In this unit we prove some elementary properties of locally finite collections and a crucial
lemma about metrizable spaces.

The concept of paracompactness is one of the most useful generalization of compactness that has
been discovered in recent years. It is particularly useful for applications in topology and
differential geometry. Many of the spaces that are familiar to us already are paracompact. For
instance, every compact space is paracompact; this will be an immediate consequence of the
definition. It is also true that every metrizable space is paracompact; this is a theorem due to
A H. Stone, which we shall prove. Thus the class of paracompact space includes the two most
important classes of spaces we have studied. It includes many other spaces as well.

24.1 Local Finiteness

Definition: Let X be a topological space. A collection A of subsets of X is said to be a locally finite
in X if every point of X has a neighbourhood that intersects only finitely many elements of A.

' Example 1: The collection of intervals
A = {n,n+2)| ne Z)}
is locally finite in the topological space R, on the other hand, the collection

B = {0,1/n} | ne Z,}
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is locally finite in (0, 1) but not in R, as in the collection
C = {(1/(n+1),1/n) | ne Z,).
Lemma 1: Let A be a locally finite collection of subsets of X. Then:

(@)  Any sub collection of A is locally finite.

(b)  The collection B={A},_, of the closures of the elements of A is locally finite.

(C) UAEAA = UAE.AA'

Proof: Statement (a) is trivial. To prove (b), note that any open set U that intersects the set A
necessarily intersects A. Therefore, if U is a neighbourhood of x that intersects only finitely
many elements A of 4, then U can intersect at most the same number of sets of the collection B.
(It might intersect fewer sets of B, A; and A, can be equal even though A, and A, are not).

To prove (c), let Y denote the union of the elements of A:

U A=Y.
AeA
In general, UACY; we prove the reverse inclusion, under the assumption of local finiteness.
Let xeY; let U be a neighbourhood of x that intersects only finitely many elements of .4, say
A,,..., A,. We assert that x belongs to one of the sets A, ..., A, and hence belongs to UA. For
otherwise, the set U— A, -...- A, would be a neighbourhood of x that intersect no element of A
and hence does not intersect Y, contrary to the assumption that x€Y.

24.1.1 Countably Locally Finite

Definition: A collection B of subsets of X is said to be countably locally finite of 1B can be written
as the countable union of collections B, each of which is locally finite.

24.1.2 Open Refinement and Closed Refinement

Definition: Let A be a collection of subsets of the space X. A collection B of subsets of X is said to
be a refinemet of A (or is said to refine .A) if for each element B of B, there is an element A of A
containing B. If the elements of B are open sets, we call B an open refinement of 4; if they are
closed sets, we call B a closed refinement.

Lemma 2: Let X be a metrizable space. If A is an open covering of X, then there is an open
covering E of X refining A that is countably locally finite.

Proof: We shall use the well-ordering theorem in proving this theorem. Choose a well-ordering,
< for collection A. Let us denote the elements of A generically by the letters U, V, W,.... .

Choose a metric for X. Let n be a positive integer, fixed for the moment. Given an element U of
A, let us define S_ (U) to be the subset of U obtained by “shrinking” U a distance of 1/n. More
precisely, let

S,U) = {xIB(x,1/n)cU)}.

n

(It happens that S (U) is a closed set, but that is not important for our purposes.) Now we use the
well-ordering < of A to pass to a still smaller set. For each U in A, define

T = S,(U)- U V.

n v<U
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The situation where A consists of the three sets U < V < W. The sets we have formed are disjoint. Notes
In fact, they are separated by a distance of at least 1/n. This means that if V and W are distinct
elements of 4, then d(x, y) 21/nwheneverx € T (V)andy e T_(W).

To prove this fact, assume the notation has been so chosen that V < W. Since x is in T (V), then x
is in S (V), so the 1/n-neighbourhood of x lies in V. On the other hand since V < W and y is in
T (W), the definition of the latter set tells us that y is not in V. If follows that y is not in the 1/n-
neighbourhood of x.

The sets T _(U) are not yet the ones we want, for we do not know that they are open sets. (In fact,
they are closed.) So let us expand each of them slightly to obtain an open set E _(U). Specifically,
let E (U) be the 1/3 n-neighbourhood of T (U); that is, let E (U) be the union of the open balls
B(x, 1/3n), for x e T (U).

In case U <V <W, we have the situation. The sets we have formed are disjoint. Indeed, if V and
W are distinct elements of A, we assert that d(x, y) 21/3n whenever x € E (V) and y € E_(W); this
fact follows at once from the triangle inequality. Note that for each V € A, the set E (V) is
contained in V.

Now let us define
e, ={E (U)|ue AL

We claim that E_is a locally finite collection of open sets that refines .A. The fact that E_refines A
comes from the fact that E (V) C V for each V € A. The fact E_is locally finite comes from the fact
that for any x in X, the 1/6n - neighbourhood of x can intersect at most one element of E .

Of course, the collection ¢ , will not cover X. But we assert that the collection

does cover X.

Let x be a point of X. The collection A with which we began covers X; let us choose U to be the
first element of A (in the well-ordering <) that contains x. Since U is open, we can choose n so that
B (x, 1/n) cU. The, by definition, x € S (). Now because U is the first element of A that contains
x, the point x belongs to T (U). Then x also belongs to the element E (U) of E , as desired.

Self Assessment

1. Many spaces have countable bases; but no T, space has a locally finite basis unless it is
discrete. Prove this fact.

2. Find a non-discrete space that has a countably locally finite basis but does not have a
countable basis.

24.2 Paracompactness

Definition: A space X is paracompact if every open covering A of X has a locally finite open
refinement B that covers X.

' Example 2: The Space R" is paracompact. Let X = R™. Let .A be an open covering of X. Let
B, = ¢, and for each positive integer m, let B, denote the open ball of radius m centered at the
origin. Given m, choose finitely many elements of A that cover B, and intersect each one with

the open set X-B let this finite collection of open sets be denoted C_. Then the collection

m-1 ;
C=uC,_ is a refinement of A. It is clearly locally finite, for the open set B_ intersects only finitely

many elements of C, namely those elements belonging to the collection C, L...uC, . Finally,
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Notes C covers X. For, given x let m be the smallest integer such that x€B,,. Then x belongs to a
element of C_, by definition.

Note  Some of the properties of a paracompact space are similar to those of a compact
space. For instance, a subspace of a paracompact space is not necessarily paracompact; but
a closed subspace is paracompact. Also, a paracompact Hausdorff space is normal. In other
ways, a paracompact space is not similar to a compact space; in particular, the product of
two paracompact spaces need not be paracompact.

Theorem 1: Every paracompact Hausdorff space X is normal.

Proof: The proof is somewhat similar to the proof that a compact Hausdorff space is normal.
First one proves regularity. Let a be a point of X and let B be a closed set of X disjoint from a. The
Hausdorff condition enables is to choose for each b in B, an open set U, about b whose closure is
disjoint from a. Cover X by the open sets U,, along with the open set X - B; take a locally finite
open refinement C that covers X. Form the subcollection D of C consisting of every element of C
that intersects B. The D covers B. Furthermore, if D € D, then D is disjoint from a. For D intersect
B, so it lies in some set U, whose closure is disjoint from a. Let

V = u D;
DeD

then V is an open set in X containing B. Because D is locally finite,

vV = uD,
DeD

so that V is disjoint from a. Thus regularity is proved.

To prove normality, one merely repeats the same argument, replacing a by the closed set A
throughout and replacing the Hausdorff condition by regularity.

Theorem 2: Every closed subspace of a paracompact space is paracompact.

Proof: Let Y be a closed subspace of the paracompact space X; let A be a covering of Y by sets
openinY.

For each A € A, choose an open set A’ of X such that A’ "'Y = A. Cover X by the open sets A,
along with the open set X - Y.

Let B be a locally finite open refinement of this covering that covers X.
The collectionC={BnY:Be B}

is the required locally finite open refinement of A.

' Example 3: A paracompact subspace of a Hausdorff space X need not be closed in X.

Solution: Indeed, the open interval (0, 1) is pracompact, being homeomorphic to R, but it is not
closed in R.

Lemma 3: Let X be regular. Then the following conditions on X are equivalent:
Every open covering of X has a refinement that is:
1. An open covering of X and countably locally finite.

2. A covering of X and locally finite.
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3. A closed covering of X and locally finite. Notes
4. An open covering of X and locally finite.

Proof: 1t is trivial that (4) = (1).

What we need to prove our theorem is the converse. In order to prove the converse, we must go

through the steps (1) = (2) = 3) = (4)

anyway, so we have for convenience listed there conditions in the statement of the lemma.

1) =@

Let A be an open covering of X. Let B be an open refinement of .4 that covers X and is countably
locally finite; let

B=uB

n

where each B_ is locally finite.

Now we apply essentially the same sort of shrinking trick, we have used before to make sets
from different B’ disjoint. Given i, let

v,=JU

UeB;

Then for each n € Z, and each element U of B, define

.U =U-{JV

[Note that S, (U) is not necessarily open, nor closed.]
LetC ={S, (U :Ue B}
Then C = UC . We assert that C is the required locally finite refinement of A, covering X.

Let x be a point of X. We wish to prove that x lies in an element of C, and that x has a neighbourhood
intersecting only finitely many elements of C. Consider the covering B = UB; let N be the
smallest integer such that x lies in an element of B, . Let U be an element of B containing x. First,
note that since x lies in no element of 3, for i <N, the point x lies in the element S (U) of C. Second,
note that since each collection B, is locally finite, we can choose for eachn =1, .., N a
neighbourhood W _of x that intersects only finitely many elements of B, . Now if W _intersects
the element S (V) of C, it must intersect the element V of B, since S (V) c V. Therefore, W_
intersects only finitely many elements of C_. Furthermore, because U is in B, U intersects no
element of C_ for n > N. As a result, the neighbourhood

WAW,Nn.nW nu
of x intersects only finitely many elements of C.

(2) = (3). Let A be an open covering of X. Let B be the collection of all open sets U of X such that
| is contained in an element of A. By regularity, B covers X. Using (2), we can find a refinement
C of B that covers X and is locally finite. Let

D={C:CeC}
Then D also covers X; it is locally finite by lemma (1) and it refines A.

(3) = (4): Let Abe an open covering of X. Using (3), choose B to be a refinement of A that covers
X and is locally finite. (We can take B to be closed refinement if we like, but that is irrelevant.)
We seek to expand each element B of B slightly to an open set, making the expansion slight
enough that the resulting collection of open sets will still be locally finite and will still refine A.
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This step involve a new trick. The previous trick, used several times, consisted of ordering the
sets in some way and forming a new set by subtracting off all the previous ones. That trick
shrinks the sets; to expand them we need something different. We shall introduce an auxiliary
locally finite closed covering C of X and use it to expand the element of B.

For each point x of X, there is a neighbourhood of x that intersects only finitely many elements
of B. The collection of all open sets that intersect only finitely many element of 5 is thus an open
covering of X. Using (3) again, let C be a closed refinement of this covering that covers X and is
locally finite. Each element of C intersect only finitely many elements of B.

For each element B of B, let

C(B) = {C:CeCadCcX-B}

Then define EB)X = X- U C
)

CeC(B

Because C is locally finite collection of closed sets, the union of the elements of any subcollection
of Cis closed by lemma, therefore the set E(B) is an open set. Furthermore, E(B) © B by definition.

Now we may have expanded each B too much; the collection {E(B)} may not be a refinemet of A.
This is easily remedied. For each B € B, choose an element F(B) of A containing B. Then define

D = {E(B)NF(B)| Be B}

The collection D is a refinement of A. Because B c (E(B) n F(B)) and B covers X, the collection D
also covers X.

We have finally to prove that D is locally finite. Given a point x of X, choose a neighbourhood
W of x that intersects only finitely may elements of C, say C,, ..., C,. We show that W intersects
only finitely many elements of D. Because C covers X, the set W is covered by C,,...C,. thus, it
suffices to show that each element C of C. Now if C intersects the set E (B) n F(B), then it intersects
E(B), so by definition of E(B) it is not contained in X-B; hence C must intersect B. Since C
intersects, only finitely many elements of B, it can intersect at most the same number of elements
of the collection D.

Theorem 3: Every metrizable space is paracompact.

Proof: Let X be a metrizable space. We already know from Lemma 2 that, given an open covering
A of X, it has an open refinement that covers X and is countably locally finite. The preceding
lemma then implies that A has an open refinement that covers X and is locally finite.

' Example 4: The product of two paracompact spaces need not be paracompact. The space
R, is paracompact, for it is regular and Lindelof. However, R, x R, is not paracompact, for it is
Hausdorff but not normal.

Self Assessment

3. Show that Paracompactness is a topological property.

4. If every open subset of a paracompact space is paracompact, then every subset is
paracompact. Prove it.

24.3 Summary

° Let X be a topological space. A collection A of subsets of X is said to be locally finite in X
if every point of X has a neighbourhood that intersects only finitely many elements of A.
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° A collection B of subsets of X is said to be countably locally finite is B can be written as the Notes
countable union of collections B, each of which is locally finite.

. Let A be a collection of subsets of space X. A collection B of subsets of X is said to be a
refinement of A if for each element B of B, there is an element A of A containing B. If the
elements of 3 are open sets, we call B an open refinement of 4; if they are closed sets, we
call B a closed refinement.

. A space X is paracompact if every open covering A of X has a locally finite open refinement
B that covers X.

24.4 Keywords

Metrizable: Any topological space (X, T) if it a possible to find a metric p on X which induces the
topology T i.e. the open sets determined by the metric p are precisely the members of T, then X
is said to the metrizable.

Open Cover: Let (X, T) be a topological space and A c X let G denote a family of subsets of X. G
is called a coverof Aif AcU{G:Ge G}

24.5 Review Questions

1. Give an example to show that if X is paracompact, it does not follow that for every open
covering A of X, there is a locally finite subcollection of A that covers X.

2. (a) Show that the product of a paracompact space and a compact space is paracompact.
[Hint: Use the tube lemma.]

(b)  Conclude that S, is not paracompact.
3. Isevery locally compact Hausdorff space paracompact?
4. (a) Show that if X has the discrete topology, then X is paracompact.

(b)  Show thatif f: X =Y is continuous and X is paracompact, the subspace f(X) of Y need
not be paracompact.

5. (a) LetXbearegular space. If X is a countable union of compact subspace of X, then X is
Pparacompact.

(b) Show R=is paracompact as a subspace of R* in the box topology.
6.  Let X be a regular space.

(a) Show that if X is a finite union of closed paracompact subspaces of X, then X is
paracompact.

(b) If Xis a countable union of closed paracompact subspaces of X whose interiors cover
X, show X is paracompact.

7. Find a point-finite open covering .4 of R that is not locally finite (The collection A is point
finite if each point of R lies in only finitely many elements of A).

8. Give an example of a collection of sets A that is not locally finite, such that the collection

B= {A/Ae A)is locally finite.

9.  Show that if X has a countable basis, a collection A of subsets of X is countably locally
finite if and only if it is countable.

10.  Consider R" in the uniform topology. Given n, let B, be the collection of all subsets of R™
of the form ITA; where A, = R for i <n and A, equals either {0} or {1} otherwise. Show that
collection B = B, is countably locally finite, but neither countable nor locally finite.
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Notes 24.6 Further Readings
Books J.L.. Kelly, General Topology, Van Nostrand, Reinhold Co., New York.

S. Willard, General Topology, Addison-Wesley, Mass. 1970.
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CONTENTS
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25.1.2 Nagata-Smirnov Metrization Theorem

25.2 Summary

253 Keywords

25.4 Review Questions

25.5 Further Readings

Objectives

After studying this unit, you will be able to:

° Define G; set;

° State “The Nagata-Smirnov Metrization Theorem”;

o Understand the proof of “The Nagata Smirnov Metrization Theorem”.
Introduction

Although Urysohn solved the metrization problem for separable metric spaces in 1924, the
general metrization problem was not solved until 1950. Three mathematicians, J. Nagata, Yu. M.
Smirnov, and R.H. Bing, gave independent solutions to this problem. The characterizations of
Nagata and Smirnov are based on the existence of locally finite base, while that of Bing requires
a discrete base for the topology.

We will prove the regularity of X and the existence of a countably locally finite basis for X are
equivalent to metrizability of X.

25.1 The Nagata Smirnov Metrization Theorem

25.1.1 G, Set

A subset A of a space X is called a G; set in X if it equals the intersection of a countable collection
of open subsets of X.

' Example 1: In a metric space X, each closed set is a G, set- Given A c X, let U(A, €) denote
the € - neighbourhood of A. If A is closed, you can check that

A= () U(A,1/n)

neZ,

LOVELY PROFESSIONAL UNIVERSITY 209



Topology

210

Notes

Lemma 1: Let X be a regular space with a basis B that is countably locally finite. Then X is normal,
and every closed set in X is a G set in X.

Proof: Step I: Let W be open in X. We show there is a countable collection {U } of open sets of X
such that

w=UU,=UU,

since the basis B for X is countable locally finite, we can write B =UB_, where each collection B,

is locally finite. Let C_ be the collection of those basis elements 55 such that B € B, and BcW.

Then C_ is locally finite, being a subcollection of 3.

Define U, = U B

Bed(,

Then U is an open set, and by Lemma “Let A be a locally finite collection of subsets of X. Then:

(@)  Any subcollection of A is locally finite.

(b)  The collection B ={A}, , of the closures of the elements of A is locally finite.

cC

AeAA = UAeA X'

n= U E
BeC,

©

Cl

Therefore, U, = W, so that

UUnCUﬁncW.

We assert that equality holds. Given x € W, there is by regularity a basis element B € B such that

x€ Band Bc W. Now B e B, for some n. Then B € C_ by definition, so that xe U_. Thus W cUU,
as desired.

Step II: We show that every closed set Cin Xis a G set in X. Given C, let W = X - C, by Step I, there
are sets U_in X such that W = | J Us,. Then

C=N(X-Uy),
so that C equals a countable intersection of open sets of X.
Step III: We show X is normal. Let C and D be disjoint closed sets in X. Applying step I to the open

set X - D, we construct a countable collection {U, } of open sets such that U U, = U ﬁn =X-D.

Then {U } covers C and each set U, is disjoint from D. Similarly there is a countable covering
{V,} of D by open sets whose closures are disjoint from C.

Now we are back in the situation that arose in the proof that a regular space with a countable
basis is normal. We can repeat that proof. Define

U, =U,-UViand V. =V, - UT;
i=1

i=1
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Then the sets Notes

U=y U,andV'= U V/

nez, neZ,
are disjoint open sets about C and D, respectively.

Lemma 2: Let X be normal, let A be a closed G; set in X. Then there is a continuous function f : X
— [0, 1] such that f(x) = 0 for x € A and f(x) > 0 for x ¢ A.

Proof: Write A as the intersection of the open sets U , for n € Z,. For each n, choose a continuous
function f_: X — [0, 1] such that f(x) = 0 for x € A and f(x) =1 for x € X - U,. Define
f(x) = Zf (x)/2". The series converges uniformly, by comparison with ¥1/2" so that f is continuous.
Also, f vanishes on A and is positive on X - A.

25.1.2 Nagata-Smirnov Metrization Theorem
Statement: A space X is metrizable if and only if X is regular and has a basis that is countably

locally finite.

Proof: Step I: Assume X is regular with a countably locally finite basis B. Then X is normal, and
every closed set in X is a G; set in X. We shall show that X is metrizable by imbedding X in the

metric space (R, P ) for some J.

Let B=UB,, where each collection B, is locally finite. For each positive integer n, and each basis
element B € B, choose a continuous function

f o :X— {O,l}
' n

such that f_,(x) > 0 for x € Band f_,(x) = 0 for x ¢ B. The collection [f, ] separates points from
closed sets in X: Given a point x, and a neighbourhood U of x,, there is basis element B such that
x,€ Bc U.Then B € B, for some n, so that f_,(x)) >0 and f_; vanishes outside U.

Let ] be the subset of Z, x B consisting of all pairs (n, B) such that B is an element of B .
Define F: X — [0, 1]

by the equation F(x) = (f, ;(X)) ;. s

Relative to the product topology on [0, 1], the map F is an imbedding.

Now we give [0, 1]’ the topology induced by the uniform metric and show that F is an imbedding

1
relative to this topology as well. Here is where the condition f_, < , comes in. The uniform

topology is finer (larger) than the product topology. Therefore, relative to the uniform metric,
the map Fis injective and carries open sets of X onto open sets of the image space Z = F(x). We
must give a separate proof that F is continuous.

Note that on the subspace [0, 1] of R/, the uniform metric equals the metric

P((x,) (v,) = sup{|x, -y, I}

To prove continuity, we take a point x, of X and a number € > 0, and find a neighbourhood W of
x, such that

xe W= p(F(x), F(x,) <€
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Let n be fixed for the moment. Choose a neighbourhood U of x, that intersects only finitely
many elements of the collection B_. This means that as B ranges over B, all but finitely many of
the functions f_; are identically equal to zero on U, . Because each function f_; is continuous, we
can now choose a neighbourhood V  of x; contained in U on which each of the remaining
functions f_, for B € B, varies by at most € /2.

1
Choose such a neighbourhood V| of x, for eachn € Z,. Then choose N so that N < g, and define
W=V, N..NV,_.Weassert that W is the desired neighbourhood of x,. Letxe W.Ifn< N, then
[£,500 = 5(x) | <€/2
because the function f_, either vanishes identically or varies by at most € /2 on W. If n > N, then

[£,500 = 50) | <Y, <€/2
because f_, maps X into {O,l}. Therefore,
' n

p(F(), F(x)) S€/2 <€,

as desired.

Step II: Now we prove the converse.

Assume X is metrizable. We know X is regular; let us show that X has a basis that is countably

locally finite.

1
Choose a metric for X. Given m, let A_ be the covering of X by all open balls of radius o There

is an open covering B, of X refining A _such that B_is countably locally finite. Note that each

2
element of B_ has diameter at most o Let B be the union of the collections B, form € Z,.
Because each collection B_ is countably locally finite, so is 5. We show that B is a basis for X.

Given x € X and given € > 0, we show that there is an element B of B containing x that is

. . . 1 e
contained in B(x, €). First choose m so that — < > Then, because B, covers X, we can choose an
m

2
element B of B that contains x. Since B contains x and has diameter at most — <¢, it is contained
m

in B(x, €), as desired.

25.2 Summary

o A subset A of a space X is called a G; set in X if it equals the intersection of a countable
collection of open subsets of X.

o Let X be a regular space with a basis B that is countably locally finite. Then X is normal,
and every closed set in X is a G set in X.

o A space X is metrizable iff X is regular and has a basis that is countably locally finite.

25.3 Keywords

Basis: A collection of subsets B of X is called a basis for a topology if:
(1)  The union of the elements of B is X.

(2) Ifxe B,NB, B, B, e B, then there exists a B, of B such thatx € B, B, N B,.
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Metrizable: A topological X is metrizable if there exists a metric d on set X that induces the Notes
topology of X.

Neighbourhood: An open set containing x is called a neighbourhood of x.

Product topology: Let X, Y be sets with topologies T _and T . We define a topology T,,, on
X %Y called the product topology by taking as basis all sets of the form U x W where U € T, and
WeT.,.

Y

25.4 Review Questions

1. Many spaces have countable bases; but no T, space has a locally finite basis unless it is
discrete. Prove this fact.

2. Find anon-discrete space that has a countably locally finite basis does not have a countable
basis.

3. A collection A of subsets of X is said to be locally discrete if each point of X has a
neighbourhood that intersects at most one elements of A. A collection B is countably
locally discrete if it equals a countable union of locally discrete collections. Prove the
following;:

Theorem (Being Metrization Theorem):

A space X is metrizable if and only if it is regular and has a basis that is countably locally
discrete.

4. A topological space is called locally metrizable iff every point is contained in an open set
which is metrizable. Prove that if a normal space has a locally finite covering by metrizable
subsets, then the entire space is metrizable.

25.5 Further Readings

N

Books Lawson, Terry, Topology: A Geometric Approach, New York, NY: Oxford University
Press, 2003.

Patty. C. Wayne (2009), Foundations of Topology (2nd Edition) Jones and Barlett.

Robert Canover, A First Course in Topology, The Willams and Wilkins Company
1975.
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Unit 26: The Smirnov Metrization Theorem
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26.3 Keywords

26.4 Review Questions

26.5 Further Readings

Objectives

After studying this unit, you will be able to:

o Understand the locally metrizable space;
o Explain the Smirnov Metrization theorem.
Introduction

The Nagata-Smirnov metrization theorem gives one set of necessary and sufficient conditions
for metrizability of a space. In this, unit we prove a theorem that gives another such set of
conditions. It is a corollary of the Nagata-Smirnov theorem and was first proved by Smirnov.
This unit starts with the definitions of paracompact and locally metrizable space. After explaining
these terms, proof of “The Smirnov Metrization Theorem” is given.

26.1 Locally Metrizable Space

A space X is locally metrizable if every point x of X has a neighborhood U that is metrizable in
the subspace topology.

The Smirnov Metrization Theorem

Statement: A space X is metrizable if and only if it is a paracompact Hausdorff space that is
locally metrizable.

Proof: Suppose that X is metrizable.

Then X is locally metrizable; it is also paracompact. [Every metrizable space is paracompact].
Conversely, suppose that X is a paracompact Hausdorff space that is locally metrizable.

We shall show that X has a basis that is countably locally finite. Since X is regular, it will then
follow from the Nagata - Smirnov theorem that X is metrizable.

Cover X by open sets that are metrizable; then choose a locally finite open refinement C of this
covering that covers X. Each element C of C is metrizable, let the function d_: C x C — R be a
metric that gives the topology of C. Given x € C, let B_ (x, €) denote the set of all points y of C
such that d_ (x, y) < €. Being open in C, the set B_ (x, €) is also open in X.
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Givenm € Z,, let A be the covering of X by all these open balls of radius x ; that is, let
m

Am={BC(x,lj:xeC and CEC}
m

Let D_ be a locally finite open refinement of A _ that covers X. (Here we use paracompactness).
Let D be the union of the collections D .

Then D is countably locally finite.

We assert that D is a basis for X; our theorem follows.

Let x be a point of X and let U be a neighbourhood of x. We seek to find an element D of D such
thatx e Dcu.

Now x belongs to only finitely many elements of C say to C,, ..., C,. Then U n C, is a
neighbourhood of x in the set C, so there is an €, > 0 such that

B (x, €) = (UN Q).

Choose m so that 2. min{ e, ..., €/}
m

Because the collection D_ covers X, there must be an element D of D, containing x.

1
Because D _ refines A_, there must be an element B_ (y, —j of A, for some C e C and some
m

y € C that contains D. Because x € D < B_ [y, l) , the point x € C, so that C must be one of the
m
sets C, ..., C,. Say C = C.. Since B_ [y, lj has diameter at most 3 < g, it follows that
m m

x e D e B, [y, ij < B, (x, €) €U, as desired.
i m 1

26.2 Summary

° A space X is locally metrizable if every point x of X has a neighbourhood U that is metrizable
in the subspace topology.

° A space X is metrizable iff it is a paracompact Hausdorff space that is locally metrizable.

26.3 Keywords

Hausdorff Space: A topological space X is a Hausdorff space if given any two points x, y € X,
x #y, there exists neighbourhoods U of x, U, of y such that U nU,_ # ¢.

Metrizable: A topological X is metrizable if there exists a metric d on set X that induces the
topology of X.

Paracompact: A space X is paracompact if every open covering A of X has a locally finite open
refinement 3 that covers X.
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Regular: Let X be a topological space where one-point sets are closed. Then X is regular if a point
and a disjoint closed set can be separated by open sets.

26.4 Review Questions

1.  If a separable space is also metrizable, then prove that the space has a countable base.
2. Show that any finite subset of metrizable space is always discrete.
3. Show that a topological space X is metrizable < there exists a homeomorphism of X onto

a subspace of some metric space Y.

4. A compact Hausdorff space is separable and metrizable if it is:
(@) second countable (b) not second countable
(c) first countable (d) none

26.5 Further Readings

N

Books Lawson, Terry, Topology : A Geometric Approach. New York, NY: Oxford University
Press, 2003.

Robert Canover, A first course in topology. The Williams and Wilkins Company,
1975.
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Objectives

After studying this unit, you will be able to:

o Define Cauchy’s sequence;

o Solve the problems on Cauchy’s sequence;

o Define complete metric space;

o Solve the problems on complete metric spaces.
Introduction

The concept of completeness for a metric space is basic for all aspects of analysis. Although

completeness is a metric property rather than a topological one, there are a number of theorems

involving complete metric spaces that are topological in character. In this unit, we shall study

the most important examples of complete metric spaces and shall prove some of these problems.

27.1 Cauchy’s Sequence

A sequence <x_>in a metric space X is said to be a Cauchy sequence in Xif given € >0 there exists
a positive integer n_such that

d(x ,x)<e wherem,n2n.
m’ n (o)

Alternative definition: A sequence <x > is Cauchy if given € > (, there exists a positive integer
n_such that

Theorem 1: Every convergent sequence in a metric space is a Cauchy sequence.

d(x,,,x) <e foralln>n_ andforall p>1.

n+p

Proof: Let (X, d) be a metric space.

Let <x_> be a convergent sequence in X.

Suppose 1t x =x.
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€ € €
< Ex Therefore, m,n>n = d(x_, x ) <d(x,x) +d(x, x ) < > +< 5 =€

Hence, <x > is a Cauchy sequence.

=7

Note The converse of this theorem is not true i.e., Cauchy sequence need not be
convergent.

To prove this, consider the following example.
Let X=7R-{0}.

Let d(x,y)= |x-y]|
. 1
Consider the sequence x, = —, ne N
n

We shall show that

<x_>is a Cauchy sequence but it does not converge in X. Let € > 0 be given and n_ be a positive

. 2
integer such thatn > —.
€

Now d(x,, X)) = [Xn =X,
= ‘Xm +(7Xn)‘
= x|+l
_ 1 1
7+7
m n
fm>n = m> 2 and so l<5
S m 2

Similarly, l < £
n 2

+

Il
m

d(x_,x )<

m’ n

=R
A
N m
N m

1
m
Thusd(x ,x )< €.

Hence <x_>is a Cauchy sequence.

Clearly, the limit of this sequence is 0 (zero) which does not belong to X.

Thus x_ does not converge in X.

' Example 1: Let <a > be a Cauchy sequence in a metric space (X, p) and let <b_> be any

sequence in X s.t. p(a, b ) < 1 vnelN.
n
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Show that Notes
(i)  <b,>is a Cauchy sequence.
(if) <a, > converges to a point p € X iff <b > converges in p.
Solution: Let <a > be a Cauchy sequence in a metric space (X, p) so that
given €, K>0 3dn eNst

n,mxn = pa,a )<ekK ...(1)
Also let <b > be a sequence in X s.t.

pla,b)< L vneN e
n

Step (i): To prove that <b > is a Cauchy sequence.
Let &, K> 0 any given real numbers.

Then dm, e Ns.t. 1. ek. ...(3)
m

Set K, = max. (n, m).

Then K >n, m, so that

. 1rt1 )
KO nO mO
i<gK,iSi:>i£i<&al<:>i<al<. ...(5)
mO o mO KO mO KO
1 1
Ifn>K,then p(a,b)< — < — <¢K,
o n n n KO
ie., p(@,b)<eKVn m=2K, ...(6)

Forn, m > K, we have

p(b, b)) <p(b,a)+pa,a)+pa,b,)
<gK+eK+eK=3¢K.

Choosing initially K = %, we get

p(b,b,)<evVnz=K.
This proves that <b > is a Cauchy sequence.
Step (ii): Leta, »>p e X.
To prove that b, — p.
a >p=giveng, K>0,3m e Nsit
n>m = p(a, p) <eK
We have seen that <a _>and <b_> are Cauchy Sequences and therefore given ¢, K>0,3n_e Ns.t.

vVm,nxn = p,a)<eK pb, b )<eK
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Choose K, = max. (n, m )

p(b, p)<p(b,b,)+pb,a)+p@,p)
<eK+eK+eK=3¢K Vm,n>K.

Choosing initially K = %, we get

p(b, p) <eVn=K,
This b, — p.

Conversely if b, — p, then by making parallel arguments, we can show that a, — p. Hence the
result.

Self Assessment

1.  In any metric space, prove that every Cauchy sequence is totally bounded.
2. Let a subsequence of a sequence <a_> converge to a point p. Prove that <a > also converges
to p.

27.2 Complete Metric Space

A metric space X is said to be complete if every Cauchy sequence of points in X converges to a
point in X.

' Example 2: The complex plane C is complete.
Solution: Let <z > be a Cauchy sequence of complex numbers, where Z =x_+iy,.

Here <x > and <y > are themselves Cauchy sequences of real numbers,
‘xm —xn‘ < ‘Zm —zn‘

and ‘ymfyn‘s ‘Zm—Zn‘

But the real line being a complete metric space, there exists real numbers x and y such that x, — x
andy —y.

Thus, taking z = x + iy, we find z, > z as
|2, —7|= |(x, +iy,) — (x +iy)|
= |(x, =x) +i(y, ~y)|
< |xo =X+ |y, -y
—>0asn—>w

|z, -2|=0=2 >z

Hence if the real line is a complete metric space, then the complex plane is also a complete metric
space.
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27.3 Theorems and Solved Examples Notes

Theorem 2: Let X be a complete metric space and Y be a subspace of X. Show that Y is closed iff it
is complete.

Proof: Let Y be closed.

Let <x > be a Cauchy sequence in Y. This implies that it is a Cauchy sequence in X.
Since X is complete, <x > converges to some point x € X.

Let A be the range of <x >.

If A is finite, then x is that term of <x > which is infinitely repeated and therefore x € X. If A is
infinite, then x, being limit of <x >, is a limit point of its range A. Since A C Y, so, x is a limit point
of Y. But Y is closed, therefore, x € Y.

This implies that <x > is convergent in Y. Hence Y is complete.
Conversely, let Y be complete.
Here we are to prove that Y is closed.

Let x be a limit point of Y.

1
Then, for each positive integer n, 3 an open sphere S(x, —) containing at least one point x_of Y,
n

other than x.
Let € > 0 be given.

e 1
3 a positive integer n_such that — < €. We have 1 <e foralln>n,.
n, n

Since x_ € S[x, 1) ,
n

d(x, %) <+
n
Therefore d(x , x) < e Vnxn,_

This implies that <x > converges to x in X. Therefore <x_> is a Cauchy sequence in X, So it is a
Cauchy sequence in Y.

But Y is complete.

Therefore <x > is convergent in Y.

This implies that x € Y, because limit of convergent sequence is unique. Hence, Y is closed.
Theorem 3: Cantor’s Intersection Theorem.

Let X be a complete metric space. Let {F } be a decreasing sequence of non-empty closed subsets

of X such that d(F ) — 0 as n — . Then ﬁ F, contains exactly one point.

n=1
Proof: Let F = ﬁ F.
n=1

Forn e N, let x_ € F, we prove that <x > is a Cauchy sequence.
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Let € > 0 be given.

d(F,) — 0, therefore there exists a positive integer n_ of such that d(F ) < e.
Since <F > is a decreasing sequence,

m,nZnosz,anFno

=X, X € Fno
=d(x,, x) <d(F )
=d(x,,x)<e [ d(F,)<e€]
= <x_>is a Cauchy sequence.
Since the space X is complete, <x_> must converge to some point, say x in Xi.e.x — x € X.

We shall prove that
X € ﬁ E.
n=1

If possible, let x ¢ ﬁ F..
n=1

= x ¢F forsomek e N.

Since each F is a closed set, F, is also a closed set, therefore x cannot be a cluster point of F,, and
sod(x, F,)#0.

Let d(x, F) = r > o so that
dix,y)2rVvyekF.

This shows that F, S(x, % rj =¢.

Now, n>k=F cF
=x €F, (wx,eF cF)
=X eS[x 1r) [+ F mS(x 1rj=<|)]
n ’2 t Tk '2

This contradicts the fact that x, — x.

Therefore x ﬁ F, and hence ﬁ F #¢.
n=1 n=1

' Example 3: Show that every compact metric is complete.

Solution: Let (X, d) be a compact metric space.

To prove : X is complete.

Let <a > be an arbitrary Cauchy sequence in X. If we show that <a_> converges to a pointin X, the
result will follow.

X is compact = X is sequentially compact.

= Every sequence in X has a convergent subsequence.

= In particular, every Cauchy sequence in X has a convergent subsequence.
= <a_> has a subsequence <a,_ : n € N> which converges to a pointa,_ € X

= <a_> also converges to the point a, € X.
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Theorem 4: A metric space is compact iff it is totally bounded and complete. Notes
Proof: Let (X, d) be a compact metric space.
To prove that X is complete and totally bounded.
X is compact. = X is sequentially compact. ...(1)
= X is totally bounded. ...(2)
X is sequentially compact. = every sequence in X has convergent subsequence.
= In particular, every Cauchy sequence in X has a convergent subsequence
=  Every Cauchy sequence in X converges to some point in X.
=  Xis complete. ...(3)
From (2) & (3) the required result follows.
Conversely, suppose that a metric space (X, d) is complete and totally bounded.
To prove that X is compact.
Consider an arbitrary sequence
S1 = <Xy Xy Xpgr +ee>
X is totally bounded = 3 finite class of open spheres, each of radius 1, whose union is X.
From this we can deduce that S, has a subsequence
>

=<
S, Xo1r Xopr Xy oo

all of whose points be in some open sphere of radius % .

Similarly we can construct a subsequence S, of S, s.t.

S, = <X, Xgp Xy -+->
. . |
all of whose points be in some open sphere of radius 3

We continue this process to from successive subsequences. Now we suppose that
S = <Xy Xopr Xagr -2

Then S is a diagonal subsequence to form successive subsequence. Now we suppose that
S = <X,;; X, Xg;...>. Then S is a diagonal subsequence of S,. By nature of this construction, S is
clearly Cauchy subsequence of S,.

X is complete = every Cauchy sequence in X is convergent.
= in particular, the Cauchy sequence S is convergent.

Finally, the sequence, S, has a convergent subsequence S. Since the sequence S, in X is arbitrary
and hence every sequence in X has a convergent subsequence, meaning thereby X is sequentially
compact and hence X is compact.

Theorem 5: Let A be a subset of a complete metric space (X, d). Prove that A is compact < A is
closed and totally bounded.

Proof: Let A be a compact subset of complete metric space (X, d).

To prove that A is closed and totally bounded.
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X is a metric space = X is a Hausdroff space w.r.t. the metric topology.
Being a compact subset of a Hausdroff space, A is closed.

A is compact. = A is sequentially compact.

= A is totally bounded.

Finally, we have shown that A is closed and totally bounded.
Conversely, suppose that A is closed and totally bounded subset of complete metric space (X, d).
To prove that A is compact.
A is complete, being a closed subset of a complete metric space (X, d). Thus A is complete and
totally bounded.

Self Assessment

3.  Let X be a metric space and Y is a complete metric space, and let A be dense subspace of X.
If f is a uniformly continuous mapping of A into Y, then f can be extended uniquely to a
uniformly continuous map of X into Y.

4. Let A be subspace of a complete metric space and show that A is compact < A is totally
founded.
5. If <A >is a sequence of nowhere dense sets in a complete metric space X, then there exist

a point in X which is not in any of the A ’s.

27.4 Summary

o A sequence <x > is Cauchy if given € >0, 3 a positive integer n_such that
d(x,,x)<e foralln>n andforallp>1.

o A metric space X is said to be complete if every Cauchy sequence of points in X converges
to a point in X.

o A metric space is compact iff it is totally bounded and complete.

27.5 Keywords

Closed Set: A set A is said to be closed if every limiting point of A belongs to the set A itself.

Cluster Point: Let (X, T) be a topological space and A — X. A point x € X is said to be the cluster
point if each open set containing x contains at least one point of A different from x.

Convergent Sequence: A sequence <a > is said to converge to a,if ¢ >0,3n e N,st.n>n =
\a - an\ <e.
Sequentially Compact: A metric space (X, d) is said to be sequentially compact if every sequence

in X has a convergent subsequence.

27.6 Review Questions

1.  If a Cauchy sequence has a convergent subsequence, then prove that it is itself convergent.

2. Show that every compact metric space is complete.
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Show that the metric space (R, d) is complete, where d is usual metric on R. Notes
Show that the set C of complex numbers with usual metric is complete metric space.
Prove that every closed subset of a complete metric space is complete.

Prove that Frechet space is complete.

N o g k@

Show that a metric space is complete iff every infinite totally bounded subset has a limit
point.

27.7 Further Readings

N

Books Dmitre Burago, Yu D Burago, Sergei Ivanov, A Course in Metric Geometry, American
Mathematical Society, 2004.

Victor Bryant, Metric Spaces; Iteration and Application, Cambridge University Press,
1985.
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Unit 28: Compactness in Metric Spaces

CONTENTS

Objectives

Introduction

28.1 Bolzano Weierstrass Theorem
28.1.1 Sequentially Compact
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28.1.3 Totally Bounded Set
28.14 Compactness in Metric Spaces

28.2 Theorems and Solved Examples

28.3 Summary

284 Keywords

28.5 Review Questions

28.6 Further Readings

Objectives

After studying this unit, you will be able to:

° Know the Bolzano Weierstrass theorem and BWP;
o Define sequentially compact and lebesgul measure;
° Define totally bounded set;

) Describe the compactness in metric spaces;

° Solve the related problems.

Introduction

We have already shown that compactness, limit point compactness and sequentially compact
are equivalent for metric spaces. There is still another formulation of compactness for metric
spaces, one that involves the notion of completeness. We study it in this unit. As an application,
we shall prove a theorem characterizing those subspaces of C(X, R"), that are compact in the

uniform topology.

28.1 Bolzano Weierstrass Theorem

A closed and bounded infinite subset of R contains a limit point.

Bolzano Weierstrass Property: A metric space (X, d) is said to have the Bolzano weierstrass

property if every infinite subset of X has a limit point.

In brief, ‘Bolzano Weierstrass Property” is written as B.W.P. A space with B.W.P. is also called

Frechet compact space.
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28.1.1 Sequentially Compact Notes

A metric space (X, d) is said to be sequentially compact if every sequence in X has a convergent
sub-sequence.

' Example 1: The set of all real numbers in (0, 1) is not sequentially compact.

111 . . .
For the sequence 532" in (0, 1) converges to 0 ¢ (0, 1), on the other hand [0, 1] is sequentially
compact.

28.1.2 Lebesgue Number

Let {G, :i € A} be an open cover for a metric space (X, d). A real number d > 0 is called a Lebesgue

number for the cover if any A € Xs.t. d(A) <d= A c G, for at least one index i, € A.

Lebesgue Covering Lemma

Every open covering of a sequentially compact space has a lebesgue number.
28.1.3 Totally Bounded Set

Let (X, d) be a metric space. Let € > 0 be any given real number. A set A c X is called an € - net
if

(i)  Ais finite set

(i) X=US,,:ac A}

The metric space (X, d) is said to be topology bounded if it contains an € - net for every € > 0.
Here (ii) = given any point p € X, 3 at least one pointa € As.t. d(p, a) <e.

28.1.4 Compactness in Metric Spaces

If (X, d) be a metric space and A c X, then the statement that A is compact, A is countably compact
and A is sequentially compact are equivalent.

28.2 Theorems and Solved Examples

Theorem 1: A metric space is sequentially compact iff it has the Bolzano Weierstrass Property.
Proof: Let X be a metric space.

Let us suppose that it is sequentially compact.

Let A be an infinite subset of X.

Since A is infinite so let (x ) be any sequence of distinct points of A. Since X is sequentially
compact, so there exists a convergent subsequence(x, ) of (x ). Let x be its limit and B be its

range.
Since (x,) is a sequence of distinct points, B is infinite.

We know that if the range of a convergent sequence is infinite then its limit point is the limit
point of the range.
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Thus, x is the limit point of B.
= x is a limit point of A, as B C A.
Hence X has the Bolzano Weierstrass Property.

Conversely, let X has the Bolzano Weierstrass Property. Let (x ) be a sequence in X. Let A be the
range of (x ). If A is infinite, then there is some term of (x ) which is infinitely repeated and that
gives us a convergent subsequence of (x ). If A is infinite then by our assumption the set A has a
limit point, say x.

Since A is infinite and x is a limit point of A, therefore there exists a subsequence (x, ) of (x )

such that x, —x.

Thus proves that X is sequentially compact.

Theorem 2: Every compact metric space has the Bolzano Weierstrass Property.
Proof: Let X be a compact metric space.

To prove: X has Bolzano Weierstrass Property.

Let A be an infinite subset of X. Suppose that A has no limit point. Then to each x € X, there exists
an open sphere S which contains no other point of A other than its centre x.

Thus, the class {S } of all such open spheres is an open cover of X.
But X is compact, therefore its open cover is reducible to a finite subcover say
{S ‘ :i=1,2,...,n}, so that

X;

Each S,, contains no point of A other than its centre x, i =1,2,...n
A= {x, XX, }

= Ais finite.

This contradicts the fact that A is infinite.

Hence A must have a limit point.

Thus, the compact metric space X has BWP.

Theorem 3: A compact metric space is separable.

Proof: Let (X, d) be a compact metric space.

To prove that (X, d) is separable.

Fix a positive integer n.

Each open sphere forms an open set.

Consider the family {S_ ,  :x € X}

Clearly it is an open cover of X which is known to be compact.

Hence this cover must be reducible to a finite sub cover, say

{(Sx,,, ,1/n):r=1,2,...K_}

n
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Write A = {(x, :1=1,2,...., K }. Notes

The set A can be constructed for eachn € N.
A_ has the following properties:

(i) A, is a finite set,
. . 1
(ii) givenxe X; Ix, €A, st.d(x, x,,)<—
n

Write A= U A,

neN
Being a countable union of countable sets, A is enumerable

Clearly A c X

Taking closure of both sides, Ac X=X i.e.

A cX [+ Xis closed in X]
We claim A =X

For this it is enough to show that X c A .
Let x € X be arbitrary and let G c X be an open sets.t. x € G.

By the property (ii) of A,

Given, x e X, 3 x,, € A C As.t. d(x, x) <€ on taking % < €. By the definition of open set in a
metric space.

X e G, G is open = 3 positive real number r, S(X,r) cG

= in particular S, <G

dix,x ) <e=x €S, _ cG
X, €)

=x,€G

= G contains some points of A other than x.
=>G-xhNA%0

=xeDA)cC A

=xe A

Thus we have shown that

anyxe X=x€ A

This proves that X ¢ A

Finally we have shown that

3 A cXs.t. Aisenumerable and A = X.

This proves that X is separable.
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' Example 2: If a metric space (X, d) is totally bounded, then X is bounded.

Solution: Let (X, d) be a totally bounded metric space so that it contains an ¢ - net for every € > 0.
Let A X be an € - net then:

(i) A is finite

(i) X=U{S,(a):ac A}

(i) = Aisbounded = d(A) is finite.

(i) = d(X) <d(A) + 2¢e = a finite quantity.
= d(X) < a finite quantity

= X is a bounded set. Hence proved.

Example 3: Every totally bounded metric space is separable.

Solution: Let (X, d) be totally bounded metric space so that X contains an € -net A_ v ¢ > 0.

To prove that X is separable.

A ise-net= A is finiteand X =U{S(a, £ ) :a€ A }.

Write A =U{A :ne N}

Being an enumerable union of finite sets A is enumerable.

AcX= AcX=X=>AcX (1)
Let x € X be arbitrary and let G be an open sets.t. x € G.

By definition of open set

5 (2
AlsoA N S

Gc S(X'e

) # 0. For A ise-net.

(¢ eq
This S,., NA#0

= GNA=#0 [by (2)]

= Xx€ A
Anyxe X=x¢€ A
Consequently X ¢ A

In view of (1), this X = A
This leads to the conclusion that X is separable.

Theorem 4: Lebesgue covering lemma: Every open cover of sequentially compact metric space has
a Lebesgue number.

Proof: Let {G, : i € A} be an open cover for a metric space (X, d). A real number 8 > 0 is called a
Lebesgue number for the cover if any A c Xs.t. d(A) <d=AC Gio for at least one index i, € A.

Let {G, : i € A} be an open cover of a sequentially compact metric space (X, d).

To prove that the cover {G}, _, has a Lebesgue number.

ie A
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Suppose the contrary. Notes

Then 3 no Lebesgue number for the cover {G}, . .. Then for eachn € N, 3 a set B, © X with the

ie

1
property that 0 <d (B,) < o
andB, ¢ G Vie A e

Choose a pointb € B, V ne N and consider the sequence <b_>. By the assumption of sequential
compactness, the sequence <b_:n e N> contains a subsequence <b, :n e N> which converges to
be X

But {G} is an open cover of X so that

i

3 open set Gio st.be Gio' By definition of open set

S C Gio (2)
b —b
Givenany €>0,3n,e Ns.t. Vi 2n =b, € S%(b). -(3)

Choosing a positive integer K, (= n;) such that

1
— £ (@)
K, 2

From (3),i, 2 K,=b, €85, ,(b)

= In particular bK; € S, ,(b) ...(5)

In accordance with (1)

bKU 6Bk0,0<d(BKU)<i ..(6)
KU

On using (4)

0< d(BKU) <g/2 (7)

From (5) and (6), if follows that
B, NS,,([0)#0 (8

From (7) and (8), if follows that BKO is a set of diameter < % and it intersects S%.Z. (b), Showing

thereby
€
By, © 55-2.(b)

ie, B, cS,(b).

In view of (2), this gives B, <G, ..(9)
In accordance with (1), BKO o Gio, i,€A

In particular, BKO C Gio’ i,€ A

Contrary to (9).

Hence the required results follows.
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Theorem 5: Every compact subset of a metric space is closed and bounded.

Proof: Let Y be a compact subset of a metric space (X, d). If f is finite, then it is certainly bounded
and closed.

Consider the case in which Y is not finite.
Y is compact = Y is sequentially compact.

To prove that Y is bounded. Suppose not. Then Y is not bounded. Then it is possible to find a pair
of points of Y at large distance apart. Let y, € Y be arbitrary.

Then we takey, € Y
s.t.d(y, y,) >1

Now we can select a point y, s.t.
d(y,, y) > 1+d (v, y))
Continuing this process, we get a sequence
yyeyY
with the property that d(y,, y, ) >1+d(y,y,,) v n€ N
d(y, y,) >1+d(y,y,) form>n 1)

This d(y,, y,) > [d(y, y.) - dys )| >1

Above relation shows that (y ) has no convergent subsequence contrary to the fact that Y is
sequentially compact. Hence Y is bounded.

Aim: Y is closed.
Let y be a limit point of Y, 3 sequence

{(y)€ Ystlimy =y

Every sequence of (y,) converges to y. For Y is sequentially compact and so every sequence in Y
must converge in Y.

Hencey e 'Y
Thusye D(Y)=yeY
or D(Y) c Y or Y is closed.
Theorem 6: Every sequentially compact metric space is compact.
Proof: Let (X, d) be a sequentially compact metric space. To prove that X is compact.
Since X is sequentially compact metric space.
Xis totally bounded. Let € > 0 be an arbitrary real number fixed.
Xis totally bounded = X has ¢ - net.
Let us denote the set € net by A.
Then A is finite subset of X with the property
X=US,, ac A} (1)
Since A is finite and hence we can write

A =X, X,y Xgpeoens X}
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In this event (1) takes the form Notes
X=JS.) -(2)
i=1

Let {G, : i € A} be an open cover of X which is known to be sequentially compact so that, by
theorem (lebesgue covering lemma), 3 a Lebesgue number, say, 8 for the cover {G}, _,. Set § = 3¢.

The diameter of an open sphere of radius r is less than 2r.
. )
ie, d(S(x)) <2e= 2.5 <d

d(s,(x,) <o
By definition of Lebesgue number, 3 an open set

G,e {G:ie A}st.5(x)cG, for1<k<n.

From which we get Usu(m c UGik
k=1 k=1

On using (2), X< UGik ..(3)
k=1
But X is a universal set,

UG, X (4

k=1
Combining (3) and (4), we get X = UGik.
k=1
This implies that the family {G, : 1<K <n} is an open cover of X.

Thus the open cover {G, : i € A} of X is reducible to a finite the subcover {G, : 1 < K <n} showing
thereby X is compact.

Sequentially compact = compact = Countably compact
Theorem 7: A metric space (X, d) is compact iff it is complete and totally bounded.

Proof: If X is a compact metric space then X is complete. The fact that X is totally bounded is a
consequence of the fact that the covering of X by all open € - balls must contain a finite
subcovering.

Conversely, Let X be complete and totally bounded.
To prove: X is sequentially compact.

Let <x > be sequence of points of X. We shall construct a subsequence of <x > i.e. a Cauchy
sequence, so that it necessarily converges.

First cover X by finitely many balls of radius 1. At least one of these balls, say B,, contains x_ for
infinitely many values of n. Let ], be the subset of Z, consisting of those indices n for which
x € B,.

LOVELY PROFESSIONAL UNIVERSITY 233



Topology

234

Notes

1
Next, cover X by finitely many balls of radius > Because ], is infinite, at least one of these balls,

say B,, must contain x_ for infinitely many values of nin J,. Choose J, to be the set of those indices
n for which n € |, and x_€ B,. In general, given on infinite set ], of positive integers, choose J,,,

1
that contains x_ for all
k+1 n

to be an infinite subset of ], such that there is a ball B, of radius

ne ]k+1'

Choose n, € J,. Given n,, choose n,,, € ] ,, such that n ,, > n,_; this we can do because ], ,, is an

infinite set. Now for i, j > k, the indices n, and n, both belong to ], (because J, O], O ... is nested

sequence of sets). Therefore, for all i, j 2 k, the points Xy, and X, are contained in a ball B, of
1
radius PR It follows that the sequence (x,, } is a Cauchy sequence, as desired.

Theorem 8: Let X be a space; let (Y, d) be a metric space. If the subset F of C(X, Y) is totally bounded
under the uniform metric corresponding to d, then F is equicontinuous under d.

Proof: Assume Fis totally bounded. Give 0 <€ <1, and given x, we find a nhd U of x, such that
d(f(x), f(x,)) <€ forxe Uand f € F.

Set d = ¢/3 ; Cover F by finitely many open § - balls.

B(f,, ), ..., B(f,, 8) in C(X, Y). Each function f, is continuous; therefore, we can choose a nhd of x
such thatfori=1,., n.
d(f,(x), f(x,)) <o

whenever x € U.

Let f be an arbitrary element of F. Then f belongs to at least one of the above § balls say to
B(f, 8). Then for x € U, we have

d(F(x),£(0) <3,

d (f(x), f(x,) <.
The first and third inequalities hold because p(f,f,) <8, and the second holds because x € U.

Since & > 1, the first and third also hold if d is replaced by d; then the triangle inequality implies
that for all x € U, we have d(f(x)), f(x0) < ¢, as desired.

' Example 4: Let E be a subspace of a metric space X. Show that E is totally bounded < E
is totally bounded.

Solution: Let E be totally bounded and € > 0 be given.

LetA={a,a,...,a}bean % net for E so that

EQLHJS(ai,E) (1)
i=1 2
Let y be any element of E.
Then there exists x € E such that
d(x, y) < % .(2)
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e Notes
xeE=x eS(ai,E)forsome i,1<i<nby (1)

3d(x,ai)<§(1SiSn) ..(3)

Hence d(y,a)<d(y,x)+d(x a)

€, €

< Z+Z =¢by (2) and (3).

555 y (2) ©)
=yeS(,e(1<i<n)
ThusyeE:yeS(ai,a)forsomei,lsiSn.

= E c US(a, &)

T

= A={a,a,..,a}isan e-net for E
= E is totally bounded.

Conversely, let E be totally bounded. Then since E c E, E is totally bounded since every
subspace of a totally bounded metric space is totally bounded.

' Example 5: Let A be a compact subset of a metric space (X, d). Show that for any B < X
there is a point p € A such that

d (p, B) =d (A, B).
Solution: By the definition, we have
d(A,B)=inf{d (a,b):a € A, b e B}.
Letd (A, B) =«.
~e=inf{d (a,b):ae A beB}<d(ab),
a € A, b € B being arbitrary which follows that
vVneN,a e Aandb, e Bsuch that

ged(a,b)<e++.

Since A is compact, it is also sequentially compact and so the sequence (a ) has a subsequence

(a,) which converges to a point p € A.

We claim thatd (p, B)=¢
Let, if possible, d (p, B) > ¢
Letd (p, B) =€+ ¢ where &' >0

Since (a,) converges to p there must exist a natural number n, such that
8/
d(p,a < —
(Pan,) <5

and d(anu, bno) <e+ b
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’

<e+—
2

d(p,an0)+d(anu,bnu) < %E,+8+%8’
<g+¢ =d(p B)

< d(p, bno) sinceb, €B.

or d(p, a,, ) + d(anU /b, ) < d(p, b, )

This contradicts the triangle inequality.

Thus d(p, B) =d(A, B).

28.3 Summary

° A closed and bounded infinite subset of R contains a limit point.

° A metric space (X, d) is said to have the BWP if every infinite subset of X has a limit point.

° A metric space (X, d) is said to sequentially compact if every sequence in X has a convergent
subsequence.
° Let {G, : i € A} be an open cover for a metric space (X, d). A real number § > 0 is called a

Lebesgue number for the cover if any A ¢ Xs.t. d(A) <d = A c G, for at least one index
i€ A

° Every open covering of a sequentially compact space has a lebesgue number.

° If (X, d) be a metric space and A c X, then the statement that A is compact, A is countably

compact and A is sequentially compact are equivalent.

28.4 Keywords

Cauchy sequence: Let <x > be a sequence in a metric space (X, d). Then <x > is called a cauchy
sequence if given € >0,3n; € Nsit. m,n>n = d(x_, x ) <e.

Compact: Let (X, T) be a topological space and A  X. A is said to be a compact set if every open
covering of A is reducible to finite sub covering.

Complete metric space: Let (X, d) a metric space then (X, d) is complete if cauchy sequence of
elements of X converges to some elements (belonging to X).

Equicontinuous: A collection of real valued functions.

A={f :f : X— R} defined on a metric space (X, d) is said to be equicontinuous if
givene >0,38=3(c) > 0s.t.

d(x, x,)<d=| f(x) -f(x) | <e V fe A

Finite subcover: If 3 G, € G s.t. G, is a finite set and that {G : G € G} is a cover of A, then G, is
called a finite subcover of the original cover.

Open cover: If every member of G is an open set, then the cover G is called an open cover.
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28.5 Review Questions Notes
1. A finite subset of a topological space is necessarily sequentially compact. Prove it.
2. Prove that if X is sequentially compact, then it is countably compact.

3. Let A be a compact subset of a metric space (X, d). Show that for every BC X, 3p e As.t.
d(p, B) =d(A, B).

4. Let A be a compact subset of a metric space (X, d) and let B c X, be closed. Show that
d(A,B)>0if ANB = .

28.6 Further Readings

N

Books John Kelley (1955), General Topology, Graduate Texts in Mathematics, Springer-Verlag.

Dmitre Burago, Yu D Burgao, Sergei Ivanov, A course in Metric Geometry, American
Mathematical Society, 2004.
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Objectives

After studying this unit, you will be able to:

o Define pointwise convergence and solve related problems;

° Understand the concept of compact convergence and solve problems on it;
) Discuss the compact open topology.

Introduction

There are other useful topologies on the spaces Y* and C(X, Y), in addition to the uniform
topology. We shall consider three of them here: they are called the topology of pointwise
convergence, the topology of compact convergence, and the compact-open topology.

29.1 Pointwise and Compact Convergence

29.1.1 Pointwise Convergence

Definition: Given a point x of the set X and an open set U of the space Y, let
S(x, U)={f | fe Y*and f(x) € U}

The sets S(x, U) are a sub-basis for topology on Y, which is called the topology of pointwise
convergence (or the point open topology).

' Example 1: Consider the space R', where I = [0, 1]. The sequence (f ) of continuous
functions given by f (x) = x" converges in the topology of pointwise convergence to the function f

defined by

£ = 0 forO<x<1
(9 lforx=1
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This example shows that the subspace C(I, R) of continuous functions is not closed in R' in the Notes
topology of pointwise convergence.

29.1.2 Compact Convergence

Definition: Let (Y, d) be a metric space; let X be a topological space. Given an element f of Y*, a
compact subspace C of X, and a number € > 0, let B_(f, €) denote the set of all those elements g
of Y* for which

sup {d(f(x), g(x)) [x € C} <€

The sets B_(f, €) form a basis for a topology on Y*. Itis called the topology of compact convergence
(or sometimes the “topology of uniform convergence on compact sets”).

It is easy to show that the sets B_(f, € ) satisfy the conditions for a basis. The crucial step is to note
that if g € B (f, €), then for

4 =€ -sup{d(f(x), g(x)) | x € C},
we have B_(g, §) c B_(f, €)

=7

Note The topology of compact convergence differs from the topology of pointwise
convergence in that the general basis element containing f consists of functions that are
“close” to f not just at finitely many points, but at all points of some compact set.

29.1.3 Compactly Generated

Definition: A space X is said to be compactly generated if it satisfies the following condition. A
set A is open in X if A () Cis open in C for each compact subspace C of X.

This condition is equivalent to requiring that a set B be closed in X if B/ C is closed in C for each
compact C. It is a fairly mild restriction on the space; many familiar spaces are compactly
generated.

Lemma 1: If X is locally compact, or if X satisfies the first countability axiom, then X is compactly
generated.

Proof: Suppose that X is locally compact. Let A (1 C be open in C for every compact subspace C
of X. We show A is open in X. Given x € A, choose a neighbourhood U of x that lies in a compact
subspace C of X. Since A C is open in C by hypothesis, A (1 U is open in U, and hence open
in X. Then A (1 U is a neighbourhood of x contained in A, so that A is open in X.

Suppose that X satisfies the first countability axiom. If B ) C is closed in C for each compact

subspace C of X, we show that B is closed in X. Let x be a point of B; we show that x € B. Since

X'has a countable basis at x, there is a sequence (x_) of points of B converging to x. The subspace
C={JUix,Inez]

is compact, so that B (] C is by assumption closed in C. Since B (1 C contains x_ for every n, it
contains x as well. Therefore, x € B, as desired.

Lemma 2: If X is compactly generated, then a function f : X — Y is continuous if for each compact
subspace C of X, the restricted function f | C is continuous.

Proof: Let V be an open subset of Y; we show that £!(V) is open in X. Given any subspace C of X.
FV)NC=(E] V)
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If C is compact, this set is open in C because f | C is continuous. Since X is compactly generated,
it follows that f7(V) is open in X.

Theorem 1: Let X be a compactly generated space. Let (Y, d) be a metric space. Then C(X, Y) is
closed in Y* in the topology of compact convergence.

Proof: Let f € Y* be a limit point of C(X, Y); we wish to show f is continuous. It suffices to show
that f | Cis continuous for each compact subspace C of X. For each n, consider the neighbourhood
B.(f, 1/n) of f; it intersects C(X, Y), so we can choose a function f € C(X, Y) lying in this
neighbourhood. The sequence of functions f | C: C — Y converges uniformly to the function
f|C, so that by the uniform limit theorem, f | C is continuous.

29.1.4 Compact-open Topology

Definition: Let X and Y be topological spaces. If C is a compact subspace of X and U is an open
subset of Y, define

S(C,U)={f | fe C (X, Y)and {(C) c U}
The sets S(C, U) form a sub-basis for a topology on C(X, Y) that is called the compact-open
topology.

Theorem 2: Let X be a space and let (Y, d) be a metric space. On the setC(X, Y), the compact-open
topology and the topology of compact convergence coincide.

Proof: If A is a subset of Y and € > 0, let U(A, €) be the € - neighbourhood of A. If A is compact
and V is an open set containing A, then there is an € > 0 such that U(A, €). Indeed, the minimum
value of the function d(a, X - V) is the required €.

We first prove that the topology of compact convergence is finer than the compact-open topology.
Let S(C, U) be a sub-basis element for the compact-open topology, and let f be an element of
S(C, U). Because f is continuous, f(C) is a compact subset of the open set U. Therefore, we can
choose € so that € - neighbourhood of f(C) lies in U. Then, as desired.

B.(f, €) cS(C, U)

Now we prove that the compact-open topology is finer than the topology of compact convergence.
Let f € C(X, Y). Given an open set about f in the topology of compact convergence, it contains a
basis element of the form B_(f, €). We shall find a basis element for the compact-open topology
that contains f and lies in B_(f, €).

Each point x of X has a neighbourhood V _such that F(V ) lies in an open set U_of Y having
diameter less than €. [For example, choose V_ so that f(V ) lies in the € /4-neighbourhood of f(x).
Then f(V ) lies in the € /3-neighbourhood of f(x), which has diameter at most 2€ /3]. Cover C by
finitely many such sets V , say for x = x,...,x,. Let C =V _[1 C. Then C is compact, and the basis
element.

S(C, .U, )N..NS(C, .U, )
Theorem 3: Let X be locally compact Hausdorff; let e (X, Y) have the compact-open topology.
Then the map
e:Xxe(X,Y)>Y
defined by the equation
e(x f)=1f(x)
is continuous.

The map e is called the evaluation map.
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Proof: Given a point (X, f) of X x e (X, Y) and an open set V in Y about the image point e (x, f) = Notes
f (x), we wish to find an open set about (x, f) that e maps into V. First, using the continuity of f and
the fact that X is locally compact Hausdorff, we can choose an open set U about x having compact

closure U, such that f carries U into V. Then consider the opensetU xS (U, VyinX xe (X, Y). It
is an open set containing (x, f). And if (x’, f') belongs to this set, then e (x', f') =f' (x') belongs to V,
as defined.

Theorem 4: Let X and Y be spaces, give e (X, Y) the compact-open topology. If f : X x Z — Y is
continuous, then so is the induced function F : Z — e (X, Y). The coverse holds if X is locally
compact Hausdorff.

Proof: Suppose first that F is continuous and that X is locally compact Hausdorff. It follows that
f is continuous, since f equals the composite.

XxY 205 Xxe(XxY)—=Y,
where i_is the identity map of X.

Now suppose that f is continuous. To prove continuity of F, we take a point Z of Z and a sub-basic
element S (e, U) for C (X, Y) containing F (Z ) and find a neighborhood W of Z that is mapped by
Finto S (C, U). This will suffice.

The stalement that F (Z ) lies in S (C, U) means simply that (F (Z,)) (x) = f (x, Z,) is in U for all
x € C. That is, f (C x Z) c U. Continuity of f implies that f* (U) is an open set in X x Z containing
CxZ,. Then

1 U)N(Cx2)
is an open set in the subspace C x Z containing the slice C x Z.
The tube lemma implies that there is a neighborhood W of Z  in Z such that the entire tube C x W
lies in £ (). Then for Z € W and x € C, we have f (x, z) € U. Hence F (W) = S (C, U), as desired.

29.2 Summary

° Give a point x of the set X and an open set U of the space Y, let
S(x, U)={f | fe Y*and f(x) € U}

The sets S(x, U) are a sub-basis for topology on Y, which is called the topology of pointwise
convergence.

° Let (Y, d) be a metric space; let X be a topological space. Given an element f of Y*, a compact
subspace C of X, and a number € >0, let B_(f, €) denote the set of all those elements g of Y*
for which

sup{d(f(x), g(x)) [x € C} <€

The sets B.(f, €) form a basis for a topology of Y*. It is called the topology of compact
convergence.

° A space X is said to be compactly generated if it satisfies the following condition. A set A
is open in X if A (1 C is open in C for each compact subspace C of X. This condition
is equivalent to requiring that a set B be closed in X if B | C is closed in C for each
compact C. It is a fairly mild restriction on the space; many familiar spaces are compactly
generated.

° Let X and Y be topological spaces if C is a compact subspace of X and U is an open subset
of Y, define S(C, U) = {f | f € C(x, y) and £{(C) c U}.
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29.3 Keywords

Compact set: Let (X, T) be a topological space and A c X. A is said to be a compact set if every
open covering of A is reducible to fine sub-covering.

Locally compact: Let (X, T) be a topological space and let x € X be arbitrary. Then X is said to be
locally compact at x if the closure of any neighbourhood of x is compact.

Subbase: Let (X, T) be a topological space. LetSc T s.t. S# ¢

S is said to be a sub-base or open sub-base for the topology T on X if finite intersections of the
members of S form a base for the topology T on X i.e. the unions of the members of S give all the
members of T. The elements of S are referred to as sub-basic open sets.

29.4 Review Questions

1.  Show that the set B(R, R) of founded functions f : R — R is closed in R¥ in the uniform
topology, but not in the topology of compact convergence.

2. Consider the sequence of functions

f :(-1,1) - R, defined by

f (x) = zn:ka
k=1

(@)  Show that (f,) converges in the topology of compact convergence, conclude that the
limit function is continuous.

(b) Show that (f ) does not converge in the uniform topology.

3. Show that in the compact-open topology, C(X, Y) is Hausdorff if Y is Hausdorff, and
regular if Y is regular.

[Hint: 1f U cV, then S(C,U) cS(U, V)]

4. Show that if Y is locally compact Hausdorff then composition of maps
CX,Y)xC(Y, Z) - C(X, Z)

is continuous, provided the compact open topology is used throughout.

29.5 Further Readings

N

Books J.L. Kelly, General Topology, Van Nostrand, Reinhold Co., New York.
J. Dugundji, Topology, Prentice Hall of India, New Delhi, 1975.
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Objectives

After studying this unit, you will be able to:

o Define equicontinuous and uniformly equicontinuous;
° Understand the proof of Ascoli’s theorem;

o Solve the problems on Ascoli’s theorem.
Introduction

Ascoli’s theorem deals with continuous functions and states that the space of bounded,
equicontinuous functions is compact. The space of bounded “equimeasurable functions,” is
compact and it contains the bounded equicontinuous functions as a subset. Giulio Ascoli is an
Italian Jewish mathematician. He introduced the notion of equicontinuity in 1884 to add to
closedness and boundedness for the equivalence of compactness of a function space. This is what

is called Ascoli’s theorem.

30.1 Ascoli’s Theorem

30.1.1 Equicontinuous

A family F of functions on a metric space (X, d) is called equicontinuous if

VxeX,Ve>0,386>0 st.VyeX with d(x,y) <8 wehave ‘f(x)ff(y)‘<eforallfeF.

30.1.2 Uniformly Equicontinuous

A family F of functions on a metric space (X, d) is called uniformly equicontinuous if V € > 0,

338>0s.t VX, ye Xwithd(x, y) <3. We have ‘f(x) 7f(y)‘ <e forallf eF.
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Theorem 1: Let f_be an equicontinuous sequence of functions on (X, d). Suppose that f (x) — f(x)
pointwise. Then f(x) is continuous.

Proof: Let x € Xand € >0, choose § > 0 so that d(x, y) <& =

f.(x)— fn(y)‘ < % for any n.

Then  Jf)-f()] = 1t [,(9-£,(v)
< Stnlp\fn(X)—Q(y)\
< <e

N m

30.1.3 Statement and Proof of Ascoli’s Theorem
Statement: Let A be a closed subset of the function space C [0, 1]. Then A is compact iff A is
uniformly bounded and equicontinuous.
Proof: Let A be closed subset of the function space C [0, 1].
Step I: Let A be compact.
To prove : A is uniformly bounded and equicontinuous.
A is compact = A is totally bounded
= Ais bounded.

Now A is a bounded subset of C [0, 1] and each member of C [0, 1] is uniformly continuous. It
means that 4 is uniformly bounded as a set of functions. Remains to show that.4 is equicontinuous.

By definition of totally bounded, A has an e-net Denote this e-net by B. We can take
B={f,f, ..., f } st forany

1 2

feA 3 fio € Bs.t. Hf—fio < ek, wherek>0

where Hf -f |[= sup{‘f(x) -f (x)‘ iX e[O,l]}
= ()~ £, (%) < ek ¥V x e [0,1]. (1)
Letx, y € [0, 1] and f € A be arbitrary.

00— £(y)| = [f)— £ () +£ ()= f_(y)+£ (¥)~£(y))

< [f() = £, (9| +]f, ) — £, )|+ [f, (1) ~ ()
Using (1),  [f(x) - f(y)] < ek+ [f, ()£ (y) + ek (2)
f e B=f{_ e A=f{_isuniformly continuous on [0, 1].
38,>0 st [x-y|<3 = [£(x)-£(y) <ek -(3)

Take 6 =min{3,3d, ..., 8 }. Then, by (3), we get

i e’

x=y|<8 = |f, (9~ f, (y)|<ek,  Using thisin (2),
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or |f(x)-f(y) <€k, for|x-y|<8, fe Awherek=

@ =

This proves that A is equicontinuous.
Step II: Suppose A is uniformly bounded and equicontinuous.
To prove: A is compact.

Since C [0, 1] is complete and A is a closed subset of it and so A is complete. Hence we need only
to show that A is totally bounded.

[As we know that “A metric space is compact iff it is totally bounded and complete.”]

Given € > 0, 3 positive integer n_ s.t.
1 €
oyl = (i) -f) <5 e a

for each f € A, we can construct a polygon arc p, s.t. |f - p¢| < eand p, connects points belonging

to

P= {(x,y) X = O,L,i,...,l,y = %,n is an integer}.

nO nO

Write B= {p;:feA}

We want to show that B is finite and hence an e-net for A.
A is uniformly bounded.
= B is uniformly bounded.

Hence a finite number of points in .4 will appear in the polygonal arcs in B. It means that there
can only be a finite number of arcs in B, showing thereby B is an €-net for A and so A is totally
bounded. Also A is complete. Consequently A is compact.

Remark: Ascoli’s theorem is also sometimes called Arzela-Ascoli’s theorem.
Theorem 2: Every compact metric space is separable.
Proof: Let (X, d) be a compact metric space.

Let m be a fixed positive number.
LetC= {S(x,i] X € X} be a collection of open spheres.
m

(*+ each open sphere forms an open set.)

Then C is clearly an open cover of X. Since X is compact and hence its open cover is reducible to

a finite sub cover say
C= {S[xm ,lj :i=1,2, ...,k}
'm

Let A, = {xn1i=1,2,..,k}.

Thus for each m € N, we can construct A _in above defined manner.
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Also, each such set is finite and for each x € X, there isan element x,, € A, such that d (x, X ) <—
' ' m

Then A = U A, c Xis countable as it is the union of countable sets.
meN

Now AcX= A cX
= A cXsince Xisclosed = X =X.

In order to show that (X, d) is separable, it is sufficient to show that A = X, for which it is
sufficient to show that each point of X is an adherent point of A.

So, let x be an arbitrary point of X and G be any open nhd. of x, 3 an open sphere S(x,l) for
m

some positive integer m such that,
1
xe S|x,—| <G (1)
m
But for each x € X, 3 x,, €A, < A such that d(x, X, ) < L
: ) m
1
or Xm € S| X,— ...(2)

m

Then from (1) and (2), we get
X, € S(x,l) c G
' m

Thus, every open nhd. of x contains at least one point of A and therefore, x is an adherent point
of A.

This shows that every point of X is an adherent point of A.
X cA and therefore
A =X

which follows that A is countable dense subset of X and hence X is separable.

30.2 Summary

° A family F of functions on a metric space (X, d) is called equicontinuous if Vx e X,V € >
0,3 6>0s.t. Vy e Xwithd(x,y) <6, wehave

|f(x)—f(y)| < € forall f € F.

° A family F of functions on a metric space (X, d) is called uniformly equicontinuous if
Vv e>0,35>0,s.t.x, y € Xwith d(x, y) < §, we have

|f(x) - f(y)| < € forall f € F.

° Ascoli’s Theorem: Let A be a closed subset of the function space C [0, 1]. Then A is compact
iff A is uniformly bounded and continuous.
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30.3 Keywords Notes

Adherent Point: A point x € X is called an adherent point of A iff every nhd of x contains at least
one point of A.

Compact Metric Space: If (X, d) be a metric space and A c X, then the statement that A is compact,
A is countably compact and A is sequentially compact are equivalent.

Complete Metric Space: A metric space X is said to be complete if every Cauchy sequence of
points in X converges to a point in X.

Open Sphere: Let (X, p) be a metric space. Let x, € Xand r € R*. Then set {x € X: p (x, x) <1} is
defined a open sphere with centre x_ and radius r.

Separable Space: Let X be a topological space and A c X, then X is said to be separable if
i A=X (i) A is countable
Totally Bounded: A metric space (X, d) is said to be totally bounded if for every € >0, thereis a

finite covering of X by e-balls.

30.4 Review Questions

1. Prove that A subset T of C (X) is compact if and only if it is closed, bounded and
equicontinuous.

2. Prove the following;:

Theorem: If X is locally compact Hausdorff space, then a subspace T of C (X, R") in the
topology of compact convergence has compact closure if and only if T is pointwise bounded
and equicontinuous under either of the standard metric on R".

3. Let (Y, d) be a metric space; letf : X =Y be a sequence of continuous functions; let f : X —[Y
be a function (not necessarily continuous). Suppose f converges to f in the topology of
pointwise convergence. Show that if {f } is equicontinuous, then f is continuous and f_
converges to f in the topology of compact convergence.

4. Prove the following;:

Theorem (Arzela’s theorem, general version). Let X be a Hausdorff space that is c-compact;
let f_be a sequence of functions f_: X — R*. If the collection {f } is pointwise bounded and
equicontinuous, then the sequence f_has a subsequence that converges, in the topology of
compact convergence, to a continuous function.

30.5 Further Readings

N

Books H.F. Cullen, Introduction to General Topology, Boston, M.A.
Stephen Willard, General Topology, (1970).
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CONTENTS
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31.1 Baire Spaces
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Objectives

After studying this unit, you will be able to:
° Know about the Baire spaces;
° Understand the Baire’s category theory;

° Understand the Baire’s category theorem.
Introduction

In this unit, we introduce a class of topological spaces called the Baire spaces. The defining
condition for a Baire space is a bit complicated to state, but it is often useful in the applications,
in both analysis and topology. Most of the spaces we have been studying are Baire spaces. For
instance, a Hausdorff space is a Baire space if it is compact, or ever locally compact. And a
metrizable space X is a Baire space if it is topologically complete, that is, if there is a metric for
X relative to which X is complete.

Then we shall give some applications, which ever if they do not make the Baire condition seem
any more natural, will at least show what a useful tool it can be in feet, it turns out to be a very
useful and fairly sophisticated tool in both analysis and topology.

31.1 Baire Spaces

31.1.1 Definition - Baire Space

A space X is said to be a Baire space of the following condition holds. Given any countable
collection {A } of closed sets of X each of which has empty interior in X, their union U A_also has
empty interior in X.

'i Example 1: The space Q of rationals is not a Baire space. For each one-point set in Q
is closed and has empty interior in Q; and Q is the countable union of its one-point subsets.
The space Z, on the other hand, does form a Baire space. Every subset of Z  is open, so that there
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exist no subsets of Z, having empty interior, except for the empty set. Therefore Z, satisfies the
Baire condition vacuously.

Lemma 1: X is a Baire space iff gives any countable collection { U_} of open sets in X, each of which
is dense in X their intersection NU, is also dense in X.

Proof: Recall that a set C is dense in X if C=X. The theorem now follows at once from the two
remarks.

1. A is closed in X iff X-A is open in X.

2. B has empty interior in X if and only if X-B is dense in X.

Lemma 2: Any open subspace Y of a Baire space X is itself a Baire space.

Proof: Let A_be a countable collection of closed set of Y that have empty interiors in Y. We show
that UA_has empty interior in Y.

Let A, be the closure of A_in X; then A, NY = A . The set A has empty interior in X. For it U

is a non empty open set of X contained in A, , then U must intersect A . Then U N Y is a
non-empty open set of Y contained in A , contrary to hypothesis.

If the union of the sets A contains the non empty open set W of Y, then the union of the sets
A, also contains the set W, which is open in X because Y is open in X. But each set A has empty
interior in X, contradicting the fact that X is a Baire space.

31.1.2 Baire’s Category Theory

Let (X, d) be a metric space and A = X. The set A is called of the first category if it can be expressed
as a countable union of non dense sets. The set A is called of the second category if it is not of the
first category.

Definition: A metric space is said to be totally of second category if every non empty closed
subset of X is of the second category.

' Example 2: Let q € Q be arbitrary.

{q}={a} v D (q}), [+ A=AuUD()]
={gvo=idg
int {q) = int {q)

=U{GcR:Gisopen G c{q}} =¢.
For every subset of R contains rational as well irrational numbers.
Thus, int{q} = ¢.
This proves that {q} is a non-dense subset of Q.

Q=u{igt:ae Q)

Furthermore Q is enumerable.
. @ is an enumerable union of non-dense sets.

From what has been done it follows that Q is of the first category.

' Example 3: Consider a sequence <f (x)> of continuous functions defined from I = [0, 1]
intoRs.t.f (x)=x VxeN.
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Then <f > converges pointwise to g: Z — R s.t.

[0 if 0sx<1
809= 11 i x=1

Evidently g is not continuous.
31.1.3 Baire Category Theorem

Theorem 1: Every complete metric space is of second category.
Proof: Let (X, d) be a complete metric space.
To prove that X is of second category.

Suppose not. Then X is not of second category so that X is of first category. By def., X is expressible
as a countable union of nowhere dense sets arranged in a sequence <A >. Since A, is non-dense

and so J a closed sphere K, of radius r, <% st. K, nA =¢.

Let the open sphere with same centre and radius as r, be denoted by S,. In S,, we can find a closed
2
sphere K, of radius 1, < (%) s.t.

KnA,=¢ andsoK,nA =¢

Continuing like this we construct a nested sequence <K > of closed spheres having the following
properties:

(i)  For each positive integer n, K does not intersect

AL A, . A,
.. . 1
(ii) The radius of K_tends to zero as n — . For o —>0asn— oo,

Since (X, d) is complete and so by Cantor’s intersection theorem, MK contains a single point x_.

XoeﬁanxoeKnVn

n=1

= x, & A_V n (according to (i))

=x¢ UA =X
n=1

= x, ¢ X. A contradiction
For X is universal set.
Hence X is not of first category. A contradiction. Hence the required result follows.
Remarks: The theorem 1 can also be expressed in the following ways:

1. If <A >is a sequence of nowhere dense sets in a complete metric space (X, d), then 3 a point
in X, which is not in A ’s.

2. If a complete metric space is the union of a sequence of its subsets, then the closure of at
least one set in the sequence must have non-empty interior.

Theorem 2: Let X be a space; let (Y, d) be a metric space. Let f_: X — Y be a sequence of continuous
functions such that f_(x) — f (x) for all x € X, where f : X — Y. If X is a Baire space, the set of points
at which f is continuous is dense in X.
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Proof: Given a positive integer N and given € > 0, define Notes
A (g) = {x]d(f (x), f,_(x)) <& for alln, m > N}.

Note that A (¢) is closed in X. For the set of those x for which d (f_(x), f _(x)) <eis closed in X, by
continuity of f and f and A (€) is the intersection of these sets for all n, m > N.

For fixed €, consider the sets A, (¢) c A, (€) < .... The union of these sets is all of X. For, given
X, € X, the fact that f_(x,) — f (x,) implies that the sequence f_(x,) is a Cauchy sequence; hence
X, € Ay (€) for some N.

Now let

U(e) = U IntAy(e).

Nez,
We shall prove two things:
(1) U (e)is open and dense in X.
(2)  The function f is continuous at each point of the set
c=umnu@a/2anua/s3n...

Our theorem then follows from the fact that X is a Baire space. To show that U (€) is dense in X,
it suffices to show that for any non-empty open set V of X, there is an N such that the set V ] Int
A (€) is non-empty. For this purpose, we note first that for each N, the set V. A (&) is closed
in V. Because V is a Baire space by the preceding lemma, at least one of these sets, say V (1 A, (€),
must contain a non-empty open set W of V. Because V is open in X, the set W is open in X;
therefore, it is contained in Int A, (g).

Now we show that if x;, € C, then f is continuous at x,. Given & > 0, we shall find a neighborhood
W of x, such that d (f (x), f (x,)) <eforx e W.

First, choose K so that 1/K <&/3. Since x; € C, we have x, € U (1/K) therefore, there is an N such
that x, € Int A (1/K). Finally, continuity of the function f_ enables us to choose a neighborhood
W of x,, contained in A (1/K), such that

*  df,x),f (x)) <e/3forx e W.
The fact that W < A (1/K) implies that
(**) d(f, () f,(x)<1/Kforn>Nandx e W.
Letting n — oo, we obtain the inequality
(***) d(f(x),fy,(x)<1/K<g/3forx e W.
In particular, since x, € W, we have
d (f (x,), £ (x,) <¢/3
Applying the triangle inequality (*), (**) and (***) gives us our desired result.

Theorem 3: If Y is a first category subset of a Baire space (X, T) then the interior of Y is empty.

Proof: As Y is first category, Y = G Y, ,where each Y , n € N is nowhere dense.
n=1

LetU € Tbe such that U cY. ThenU c GYn c
n=1

pCs

Y,. SoX\U=> N (X\'Y,), and each of the sets
n=1

X\Y, is open and dense in (X, T). As (X, T) is Baire. N (X\Y,) is dense in (X, T). So the closed set
n=1
X\U is dense in (X, T). This implies X\U = X' . Hence U = ¢. This completes the proof.
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31.2 Summary

° A space X is said to be a Baire space if the following condition holds: Given any countable
collection {A } of closed sets of X each of which has empty interior in X, their union UA
also has empty interior in X.

o Let (X, d) be a metric space and A — X. The set A is called of the first category if it can be
expressed as a countable union of non dense sets. The set A is called of the second category
if it is not of the first category.

31.3 Keywords

Complete Metric Space: A metric space X is said to be complete if every Cauchy sequence of
points in X converges to a point in X.

Dense: A said to be dense in X if A = X.

Nowhere Dense: A is said to be nowhere dense if ( A )° = ¢.

31.4 Review Questions

1.  Show that if every point x of X has a neighborhood that is a Baire space, then X is a Baire
space.

[Hint: Use the open set formulation of the Baire Condition].
2. Show that every locally compact Hausdorff space is a Baire space.
3. Show that the irrationals are a Baire space.

4. A point xin a topological space (X, T) is said to be an isolated point if {x} € T. Prove if (X, T)
is a countable T,-space with no isolated points. Then it is not a Baire space.

5. Let (X, T) be any topological space and Y and S dense subsets of X. If S is also open in (X, T),
prove that S MY is dense in both X and Y.

6. Let (X, T) and (Y, T,) be topological space and f : (X, T) — (Y, T,) be a continuous open
mapping. If (X, T) is a Baire space. Show that an open continuous image of a Baire space is
a Baire space.

7. Let (Y, T,) be an open subspace of the Baire space (X, T). Prove that (Y, T) is a Baire space.
So an open subspace of a Baire space is a Baire space.

8. Let B be a Banach space where the dimension of the underlying vector space is countable.
Using the Baire Category Theorem, prove that the dimension of the underlying vector
space is, in fact, finite.

31.5 Further Readings

N

Books A.V. Arkhangal’skii, V.I. Ponomarev, Fundamentals of General Topology: Problems
and Exercises, Reidel (1984).

J. Dugundji, Topology, Prentice Hall of India, New Delhi.

A
Y.

Online link  www .springer.com/978-3642-00233-5
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Objectives

After studying this unit, you will be able to:

° Know about the dimensional theory;

° Define Hausdorff dimension of measures;

° Define pointwise dimension;

o Solve the problems on the dimensional theory.
Introduction

For many familiar objects there is a perfectly reasonable intuitive definition of dimension: A
space is d-dimensional if locally it looks like a patch R¢. This immediately allows us to say: The
dimension of a point is zero; the dimension of a line is 1; the dimension of a plane is 2; the
dimension of R¥is d.

There are several different notions of dimension for more general sets, some more easy to
compute and others more convenient in applications. We shall concentrate on Hausdorff
dimension. Hausdorff introduced his definition of dimension in 1919. Further contributions and
applications, particularly to number theory, were made by Besicovitch.

Hausdorff’s idea was to find the value at which the measurement changes from infinite to zero.
Dimension is at the heart of all fractal geometry, and provides a reasonable basis for an invariant
between different fractal objects.

32.1 Introduction to Dimension Theory

Before we begin defining Hausdorff and other dimensions, it is a good idea to clearly state our
objectives. What should be the features of a good definition of dimension? Based on intuition,
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we would expect that the dimension of an object would be related to its measurement at a certain
scale. For example, when an object is scaled by a factor of 2.

) for a line segment, its measure will increase by 2! = 2
) for a rectangle, its measures will increase by 2% = 4
) for a parallelepiped, its measures will increase by 2° = 8

In each case, we extract the exponent and consider this to be the dimension. More precisely, dim
F =log Ap(F)/log 1/p where p is the precision (1/p is the scaling factor) and Ap(F) is the change
in the “measure’ of F when scaled by 1/p. Falconer suggests that most of following criteria also
be net [Falc?], by any thing called a dimension:

1.  Smooth manifolds: If F is any smooth, n-dimensional manifold, dim F = n.
2 Open Sets: For an open subset F c R", dim F = n.
3 Countable Sets: dim F = 0 if F is finite or countable.
4. Monotonicity: Ec F = dim E<dim F.
5 Stability: dim (E U F) = max (dim E, dim F).
6. Countable Stability: dim (U7, )= sup {dimF).
7. Lipschitz Mapping: If f : E — R™ is lipschitz, then dim f(E) < dim (E).
8. Bi-lipschitz Mapping: If f : E — R™ is Bi-lipschitz, then dim f(E) = dim (E).
9. Geometric Invariance: dim f(F) = dim F, if f is a similarity or affine transformation.
Recall that f : E — R™is Lipschitz iff 3 ¢ such that

1) -f(y)| <clx-y| VxyeE;
and that f is Bi-lipschitz iff 3 c,, c, such that

GQlIx-yl < [f(x)-fy)|<cIx-yl VxyeE

and f is a Similarity iff 3 ¢ such that

[f(x) -f(y)| =c|x-y| Vx y € E;
32.1.1 Hausdorff Dimension of Measures

Let p denote a probability measure on a set of X. We can define the Hausdorff dimension p in
terms of the Hausdorff dimension of subsets of A.

Definition: For a given probability measure p we define the Hausdorff dimension of the measure
by
dim,, (u) = inf {dim, (X) : p (X) = 1}.

We next want to define a local notion of dimension for a measure p at a typical point x € X.
32.1.2 Pointwise Dimension

Definition: The upper and lower pointwise dimensions of a measure p are measurable functions,

log (BT L4 4 () = i inf 281 (BOST)

d,, d, :X—>RuU{w} defined by d, (x)= lim sup log T ) log r

where B(x, r) is a ball of radius r > 0 about x.
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The pointwise dimensions describe how the measure p is distributed. We compare the measure
of a ball about x to its radius r, as r tends to zero.

These are interesting connections between these different notions of dimension for measure.

Theorem 1: If d (x)2d for a.e.(u) x € X then din () > d.

Proof: We can choose a set of full pmeasure X < X (i.e. w(X ) =1). Such that d,(x) > d forallx € X .
In particular for any € > 0 and x € X we have lim sup, , u (B(x, 1)) /r* " Fix C>0and § >0, and

let us denote

X. = {xeX; :u(B(x,1) < C°,V0<r<§}.

3

Let {U} be any §-cover for X. Then if x € U, w(U) < C diam (U)**. In particular

i i

uX) < X pU)<Cxdiam(U,)" "

u;nXs

Thus, taking the infimum over all such cover we have uX; < CH* < (X,) <CH® © (X). Now letting

8 — 0 we have that 1 =p (X)) < CH* © (X). Since C > 0 can be chosen arbitrarily large we deduce
that H%-<(X) = +co. In particular dim(X) > d-< for all € > 0. Since € > 0 is arbitrary, we conclude
that dim,,(X) > d.

We have the following simple corollary, which is immediate from the definition of dim ,(u).

Corollary: Given a set X € R, assume that there is a probability measure p with p(X) =1 and
d,(x)>d fora. e (u) x € X. Then dim,,(X) > d.

In the opposite direction we have that a uniform bound on pointwise dimensions leads to an
upper on the Hausdorff Dimension.

Theorem 2: 1f au(x) <dfor a. € (u) x € X then dim,,(u) < d. Moreover, if there is a probability
measure p with u(X) =1 and a“(x) <d for every x € X then dim, (X) < d.

Proof: We begin with the second statement. For any >0 and x € Xwe have lim sup,_ u(B(x, r))/
rd*< = oo, Fix C > 0. Given 3 > 0, consider the cover p for X by the balls

{B(x,r):0<r<d& and p(B(x,r))>Cd*<}.

We recall the following classical result.
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32.1.3 Besicovitch Covering Lemma
There exists N = N(d) > 1 such that for any cover by balls we can choose a sub-cover {U}, such that
any point x lies in at most N balls.

Thus we can bound

HI*5(X) < Tdiam U,)* < %;H(Bi) < %

Letting 8 — 0 we have that H**5(X) <

Nz

. Since C > 0 can be chosen arbitrarily large we deduce
d

that H'"*(X) = 0. In particular, dim, (X
that dim,(X) < d.

<

Ny

+ € for all € > 0. Since € > 0 is arbitrary, we deduce

The proof of the first statement is similar, except that a replace X by a set of full measure for

which d, (x) <d.

' Example 1: If L : X, — X, is a surjective Lipschitz map i.e. C > 0 such that

ILX) -Ly) [ = Clx-yl,
then dim,,(X) < dim,,(X,).

' Example 2: If L : X, — X, is a bijective bi-Lipschitz map i.e. 3 C > 0 such that

(%) 1x=y1 < 1L - L) | <Clx-yl,

then dim,,(X,) = dim,,(X,).

Solution: For part 1, consider an open cover U for X, with dim (U) < € for all U, € U. Then the

i

images U’ = {L(U) : U € U} are a cover for X, with dim (L(U,)) < L_for allU € U'. Thus, from the
definitions, H; (X,)>HZ(X,).In particular, letting € — 0 we see that H*(X)) > H*(X,). Finally,

from the definitions dim, (X)) < dim,,(X,).

For part 2, we can apply the first part a second time with £ replaced by L.

32.1.4 Bernoulli’s Measures

' Example 3: For an iterated function scheme T, ...... , T, :U— U we can denote as before

2= {x=(Xp)aco X €{1.. K}

with the Tychonoff product topology. The shift map ¢ : £ — X is a local homeomorphism defined
by (ox),, = X,,,- The kth level cylinder is defined by,

[XO/"'/Xk—l] = {(im)2=0 eX:i, =x, forOSmSkfl}

(i.e., all sequence which begin with x, ..., x, ). We denote by W, = {(x,, ..., x,_,]} the set of all kth
level cylinders (of which there are precisely k).

Notation: For a sequence i € X and a symbol r €{1, ..., k} we denote by k (i) = card{0 <m < k-1:

i = r} the number of occurrences of r in the first k terms of i.
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Consider a probability vector p= (p,, ..., p, ;) and define the Bernoulli measure of any level Notes
cylinder to be,
m(liprdia]) = P @@ py

A probability measure y on o is said to be invariant under the shift map if for any Borel set
B <X, u(B)=p(c'(B)). We say that p is ergodic if any Borel set B — X such that 7'(X) = X satisfies
pu(X) = 0 or u(X) = 1. A Bernoulli measure is both invariant and ergodic.

32.2 Summary

o Criteria for defining a dimension

(i)  When X is a manifold then the value of the dimension is an integer which coincides
with the usual notion of dimension;

(ii) For more general sets X we can have “fractional” dimensional; and
(iii) Points and countable unions of points, have zero dimension.
o For a given probability measure p, we define the Hausdorff dimension of the measure by
dim,(n) = inf {dim,(X) : p(X) = 1}.

o The upper and lower pointwise dimensions of a measure i are measurable functions, d,,,
d, : X = R v {»} defined by

_ log u(B(x,
d,(9 = lim sup% and

log u(B(x,
d,(x) = lim inf —eL%) 'ifg(rx ),

32.3 Keywords

Countable Set: A set is countable if it is non-empty and finite or if it is countably infinite.

Hausdorff Space: A topological space (X, T) is called Hausdorff space if given a pair of distinct
points x, y € X,

dG,HeT st xeGyeH GnH=¢.

Iterated Function Scheme: An iterated function scheme on an open set U < R? consists of a family
of contractions T, ..., T, : U = U.

Open Set: Any set A e T is called an open set.

Subcover: Let (X, T) be a topological space and A c X. Let G denote a family of subsets of X. If 3
G, cGs.t. G, is a finite set and that {G : G € G,} is a cover of A then G, is called a finite subcover
of the original cover.

32.4 Review Questions

1. Write a short note on Dimension Theory.

2. State Besicovitch covering lemma.
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Notes 3. If dim,(X) < d then show that the (d-dimensional) Lebesgue measure of X is zero.
4. LetA,A,cRandlet
A+A={+h M eA, e}
then prove that dim, (A, + A)) < dim(A,) + dim(A,).
5. If we can find a probability measure p satisfying the above hypothesis then prove that
dim,,(X) > d.

32.5 Further Readings

N

Books Rogers, M. (1998), Hausdorff Measures, Cambridge University Press.
Lapidus, M. (1999), Math 209A - Real Analysis Mid-term, UCR Reprographics.

A
Y.L,
Online links ~ en.wikipedia.org/wiki/E8-mathematics

en.wikipedia.org/wiki/M-theory
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