
Minimizing Migration Time of Virtual Machines by
Serializing & Compressing Memory Pages in Xen

Hypervisor

A Dissertation Proposal
submitted

By

Deeksha Abbi

to

Department of Computer Science and Engineering

In the partial fulfillment of the Requirement for the

Award of the Degree of

Master of Technology in Computer Science and Engineering

Under the guidance of

Pushpendra Kumar Pateriya

(May 2015)

Abstract

Cloud computing is an emerging research area that builds upon the foundation of various
fields like service-oriented architecture, grid computing, utility computing, and virtual-
ization technology. It offers various service models including infrastructure-as-a-service
based on on-demand computing and pay-per-use models to the consumers. The base of
this idea lies in provisioning infrastructure resources at the data centers. This provision-
ing is time-consuming and expensive. In order to efficiently provision resources, cloud
employs two core services, namely, virtual machine provisioning service and virtual ma-
chine migration service. These are the main aspects of cloud computing explored in this
report, along with some cost models, service-level agreements and the implementation of
live migration on the Xen hypervisor.

A rule-based resource manager which allocates resources based on the priority of the in-
coming requests and a novel migration algorithm which aims to reduce the total migration
time of a virtual machine by decreasing the amount of pages that are dirtied during trans-
fer and in turn, make resource provisioning more effective and efficient. This is achieved
by serializing the contents of the main memory and also compressing them reducing the
number of dirty pages and the size of the data to be transferred over the network, leading
to better resource utilization.

i

Acknowledgement

I would like to take this opportunity to express my deep sense of gratitude to all who
helped me directly or indirectly during this dissertation work.

Firstly, I would like to thank my supervisor, Mr. Pushpendra Kumar Pateriya,
for being a great mentor and the best adviser I could ever have. His advise, encour-
agement and critics are source of innovative ideas, inspiration and causes behind the
successful completion of this dissertation. The confidence shown on me by him was the
biggest source of inspiration for me. It has been a privilege working with him this past
year.

I am highly obliged to all the faculty members of computer science and engineering
department for their support and encouragement.

I would like to express my sincere appreciation and gratitude towards my friends for
their encouragement, consistent support and invaluable suggestions at the time I needed
the most.

I am grateful to my family for their love, support and prayers.

-Deeksha Abbi

ii

Declaration

I hereby declare that the dissertation proposal entitled, “Minimizing Migration Time
of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor”,
submitted for the M.Tech degree is entirely my original work and all ideas and references
have been duly acknowledged. It does not contain any work for the award of any other
degree or diploma.

Date: May 04, 2015

(Deeksha Abbi)
Investigator Regn. No.:

11000994

iii

Certificate

Certified that the work contained in the dissertation report titled “Minimizing Migration
Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hyper-
visor”, by Deeksha Abbi, Reg.No. 11000994 has been carried out under my supervision
and that this work has not been submitted elsewhere for a degree.

Date: May 2015

(Mr. Pushpendra Kumar
Pateriya)

Computer Science Dept.
L.P.U., Phagwara

iv

Contents

Abstract i

Acknowledgement ii

Declaration iii

Certificate iv

1 Introduction 1
1.1 Theoretical Foundation & Evolution of Cloud 1

1.1.1 Service Oriented Architecture . 1
1.1.2 Grid Computing . 2
1.1.3 Utility Computing . 2
1.1.4 Hardware Virtualization . 2
1.1.5 Layers of Cloud . 3
1.1.6 Types of Cloud . 3

1.2 Dimensions . 5

2 Literature Survey 6
2.1 Virtualization and Virtual Machine Migration 6
2.2 Cost Models . 11
2.3 Service Level Agreements . 14
2.4 Xen Hypervisor . 18

3 Present Work 25
3.1 Problem Formulation . 25
3.2 Objectives . 26
3.3 Methodology . 27

3.3.1 Virtualization Tools . 27
3.3.2 Installing Xen . 28
3.3.3 Configuring Dom-0 and Dom-Us 31
3.3.4 Migrating VM Guests . 35

v

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

4 Results and Discussions 41
4.1 Results . 41
4.2 Discussions . 43
4.3 Limitations . 44

5 Conclusion and Future Scope 46

6 References 47

7 Publications 50

8 Appendix 51

Page vi of 55

List of Figures

1.1 Convergence of various advances leading to the advent of cloud computing
[Buyya, Broberg (2011)]. 2

1.2 Cloud service models. 4

2.1 A layered virtualization technology architecture [Buyya, Broberg (2011)] 6
2.2 Live VM migration procedure [Mishra et al. (2012)] 8
2.3 Load balancing and consolidation scenarios [Mishra et al. (2012)] 8
2.4 Resource Manager [Imteyaz (2010)]. 9
2.5 Deadline based resource provisioning and scheduling. 10
2.6 Architecture that supports the implementation of DEPAS [Calcavecchia

et al. (2012)]. 10
2.7 An automated negotiation mechanism [Son, Jun (2013)]. 14
2.8 The C@H system architecture [Cuomo et al. (2012)]. 16
2.9 Architecture of Xen Hypervisor. 19
2.10 Network Contention Aware VM Allocation Technique. 19
2.11 Live Migration Timeline [Buyya, Broberg (2011)]. 20
2.12 The sandpiper architecture [Wood et al. (2007)]. 22

3.1 Live VM migration procedure with modifications. 25
3.2 Proposed Solution. 27
3.3 System setup. 28
3.4 Active status of xendomains.service. 29
3.5 Entries of GRUB2. 30
3.6 Output of xl info. 30
3.7 Virtual Machine Manager. 31
3.8 Connect to localhost Xen. 32
3.9 VM Creation-I. 32
3.10 VM Creation-II. 33
3.11 VM Creation-III. 33
3.12 VM Creation-IV. 34
3.13 List of running VMs. 34
3.14 Opening port 22 for TCP & UDP connections. 36
3.15 Status of SSH service. 36
3.16 Status of NFS service. 38
3.17 Migration command. 38

vii

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

3.18 Output of hexdump command, showing contents of primary memory. . . 39

4.1 Comparision of downtime of adative memory compression with serializing
& compressing approach. 41

4.2 Page dirty rate of serializing & compression approach. 42
4.3 Output of xentop command. 42
4.4 Screenshot showing network utilizaton. 43
4.5 VM Creation-I. 45

Page viii of 55

List of Tables

2.1 Comparison of Resource Provisioning Techniques employing Virtualization
& VM Migration. 12

2.2 Comparison of various cost models. 15
2.3 Comparison of SLA techniques. 17
2.4 Comparison of various allocation techniques for the Xen hypervisor. . . . 24

3.1 Configuration of physical machines . 29

4.1 Comparison of our proposed approach with the original downtime. 41

ix

Listings

3.1 Installation of Xen . 28
3.2 Check status of service (active or dead). 28
3.3 Verify if Xen is running. 29
3.4 Install virt-manager. 31
3.5 Connect to Xen. 31
3.6 Connect to Xen. 32
3.7 Vm list in Xen. 34
3.8 OpenSSH Installation. 35
3.9 Command to check status of OpenSSH. 35
3.10 Remote login command. 35
3.11 NFS configuration. 37
3.12 Edit exports file. 37
3.13 Initiate migration. 38
3.14 hexdump command(i) . 39
3.15 hexdump command(ii) . 39
3.16 Automating the migration process . 40
4.1 xentop command . 42
4.2 Command to display network utilization 42
4.3 Error on migration. 44

x

List of Algorithms

1 Modified Rule-Based Resource Manager 51

xi

Chapter 1
Introduction

1.1 Theoretical Foundation & Evolution of Cloud

Cloud computing aims at allowing access to a large number of resources on-demand
using a virtualized single system view. [Buyya, Broberg (2011)] define it as,“a parallel
and distributed computing system that consists of a collection of inter-connected and
virtualized computers that are dynamically provisioned and presented as one or more
unified resources based on service level agreements.” The important characteristics of a
cloud-based service are:

• On-demand self-service: Cloud services can be used without any human intervention
with the service provider, through a self-service interface.

• Flexible resource provisioning : Resources are dynamically assigned and reassigned on
user demand. They can be scaled up or down accordingly.

• Metered service: Cloud uses the pay-per-use model where the users are billed in ac-
cordance with the usage of the service and don’t have any long-term commitment
with the provider.

Cloud computing arose from the growth in several other technologies that converged
and contributed to the advent of cloud. The technologies that form the base of cloud
computing are explained below.

1.1.1 Service Oriented Architecture

A service can be defined as a self-contained unit of functionality, which can exchange
information with other services without the need of any human interaction. In a Service
Oriented Architecture (SOA), software resources are packaged as services, which are
well-defined, self-contained modules that provide functionality and are independent of
the state or context of other services.

1

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

1.1.2 Grid Computing

Grid is a form of distributed computing in which each node is assigned a specific task.
It uses middleware to divide and distribute pieces of a program among its nodes.

1.1.3 Utility Computing

Commonly referred to as the ‘pay-per-use ’model, it is a service provisioning model in
which users provide a utility value to their jobs based on various Quality of Service (QoS)
constraints (deadline, satisfaction, importance) and are willing to pay a service provider
to fulfill their demands [Buyya, Broberg (2011)]. Utility computing offers resources as a
metered service. The main feature of this model is the fact that there is low or no initial
cost to acquire the resources, as they are rented and after the fulfillment of the service
of one user, can be provisioned to other users.

Figure 1.1: Convergence of various advances leading to the advent of cloud computing
[Buyya, Broberg (2011)].

1.1.4 Hardware Virtualization

Virtualization is the abstraction of computing resources, mainly, storage, processing
power, memory, and, network or I/O. It is similar to emulation but not the same as,

Page 2 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

in emulation, a system pretends to be another system, whereas in virtualization it pre-
tends to be two or more of the same system. Hardware virtualization allows multiple OS
and software stacks to run on a single physical platform, increasing resource utilization
from 20%, in traditional servers to 70% in virtualized servers as mentioned in [Imteyaz
(2010)].

1.1.5 Layers of Cloud

Cloud services are divided into the following three layers, according to the levels of
abstraction provided - Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS),
and Software-as-a-Service (SaaS).

1.1.5.1 Infrastructure as a Service (IaaS)

Offering virtualized resources (computation, storage, network) on demand is know as
Infrastructure as a Service. Example, Amazon Elastic Compute Cloud (EC2) and Rackspace
provide resizable resources on a pay-per-use basis.

1.1.5.2 Platform as a Service (PaaS)

A cloud platform offers an environment to the developers on which they can create and
deploy applications without needing to know how much memory or how many processors
the application will be using. Google App Engine (GAE) and Microsoft Azure offer
scalable environments for developing and hosting applications.

1.1.5.3 Software as a Service (SaaS)

Applications reside on top of the cloud stack. Users can access services provided by this
layer via web browsers. This model reduces the burden of software maintenance for cus-
tomers and makes development and testing easy for the service providers. That is why,
majority of the consumers are shifting from locally installed programs to online soft-
ware services. Example, Microsoft Office 365, Salesforce.com is a Software-as-a-Service
solution for Customer-Relationship-Management (CRM) applications.

1.1.6 Types of Cloud

A cloud can be classified as public, private, hybrid or community, based on the model of
development,

Page 3 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

(a) IaaS (b) PaaS

(c) SaaS

Figure 1.2: Cloud service models.

1.1.6.1 Public cloud

A cloud made available in a pay-as-you go manner to the general public. It is available
on a subscription basis (pay as you go).

1.1.6.2 Private cloud

An internal data center of a business or other organization, not made available to the
general public.

1.1.6.3 Hybrid cloud

A hybrid cloud is formed when a private cloud is scaled up by using resources from the
public clouds. This is usually done to handle the increase in load, a phenomenon know
as ”cloud bursting”.

Page 4 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

1.1.6.4 Community cloud

In a community cloud, infrastructure is shared between organizations with a common
interest, which can be managed internally or externally. The size is less than that of a
public cloud, but more than that of private.

1.2 Dimensions

As a research area, cloud computing presents numerous fields to work upon, some of
them being: resource provisioning, load balancing, quality management, security and
privacy, and green cloud computing. Cloud aims at providing services on-demand to the
consumers. These services utilize the underlying system resources which use virtualiza-
tion so that they can be transparently accessed by multiple application users at the same
time. Thus, the core functionality of cloud computing lies in the efficient allocation of
resources.

This report focuses on the research done till date in the field of dynamic resource
provisioning in cloud computing, with focus on four parameters. First, virtualization of
resources and live migration of Virtual Machine (VM) which lets us allocate resources on
the servers and overcome resource under-utilization and over-utilization problems, helps
balance the load, and save energy by server consolidation.

Second, the various approaches for calculating the charges incurred by the consumer
for using cloud services are examined. Cloud, being a utility-based computing, users
only need to pay for the time they spend accessing the service, needs better revenue
approaches so that users can also benefit.

Third, resource provisioning should be done keeping in mind the service level agree-
ments. The user will be compensated for any additional time the service is down as
mentioned in the SLAs.

Finally, we explore the Xen hypervisor, an open-source bare-metal Virtual Machine
Monitor (VMM), responsible for the creation and management of VM and the present
techniques for live migration support in Xen. Our work is focussed on improving the
migartion time in Xen and providing faster resource allocation.

Page 5 of 55

Chapter 2
Literature Survey

The related work is divided into four subcategories as follows: first section explores vir-
tualization and virtual machine migration techniques for resource provisioning, second
section is for the cost model, third section discusses approaches for Service Level Agree-
ments (SLA) and finally, the fourth section follows the work done on Xen hypervisor.

2.1 Virtualization and Virtual Machine Migration

A key challenge faced by IaaS providers when building a cloud infrastructure is managing
the physical and virtual resources and to provision them rapidly and dynamically as per
the demand. Extensive research has been done in this field with various ways to improve
provisioning. The following paragraphs provide a survey of the work done with regards
to migration of VM and resource provisioning in cloud computing.

Figure 2.1: A layered virtualization technology architecture [Buyya, Broberg (2011)]

The core services which help the users get the best out of any cloud computing model
are the VM provisioning services and migration services. The whole concept of allocating
resources in cloud revolves around virtualization. When a user needs a resource, namely
computation, storage, network, or any other, it is done so by provisioning a virtual server
through a self-service interface. To start off, we begin with understanding the concept of

6

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

virtualization. Virtualization is defined as the abstraction of the four computing resources
namely, computation (CPU), storage (HDD), memory (RAM) and network or I/O.

The VMM or Hypervisor, partitions the physical resources of a machine into multiple
VM which are used to fulfill the allocation request of the users. They are also easy to
manage and the resources are utilized efficiently. Changes in the workload conditions of
a VM lead to the migration of VM by the hypervisor (depending on certain conditions)
as described by [Mishra et al. (2012)]. There are two models of migration present - live
migration (pre-copy and post-copy memory migration) and cold migration, but the one
that is most generally preferred is Iterative/Pre-copy Live Migration [Buyya, Broberg
(2011),Clark et al. (2005)]. Live Migration is preferred over cold migration because the
memory pages are copied first and then the VM is stopped on the source and restarted
at the destination with an overall downtime (time between stopping the VM on original
host and resuming it on the destination) ranging from milliseconds to seconds. Whereas
in cold migration, the VM is powered off firstly and then copied to the destination host,
increasing the downtime to a significantly noticeable levels. Pre-copy is preferred over
post-copy migration because of the following reasons,

(i) The memory pages are transferred while the VM is still running. If some pages
become dirty, they are recopied in the successive iterations as shown in Fig.2.2.
Whereas, post-copy memory migration is initiated by suspending the VM at the
source. A minimal subset of the execution state is transferred and then the VM is
resumed. When the clients access the service, page faults occur which are trapped
at the target and redirected to the source.

(ii) Pre-copy retains up-to-date state of the VM at the source during migration but the
state is distributed over both the source and destination machines in post-copy. If
the destination machine happens to fail, VM can’t be recovered in case of post-copy.

VM migration has three major goals as mentioned by [Mishra et al. (2012)], namely:

• Server consolidation : Consolidation is done to reduce the server sprawl. Many
times the Physical Machine (PM) have underallocated resources, i.e., they are not
efficiently utilized - know as coldspots. To avoid this problem, VM migration is
done and all VMs from various PMs are hosted onto one or more PMs such that
resources are fully utilized. The freed PMs can be switched off to save power.

• Load balancing : The goal here is to avoid a situation where there is large difference
in the resource utilization levels of PMs. We balance the VMs such that the residual
resource capacity on each PM is the same.

Page 7 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

Figure 2.2: Live VM migration procedure [Mishra et al. (2012)]

• Hotspot mitigation : Hotspot is a condition in which there are not enough resources
present on a PM to fulfill the incoming request for allocation. In such cases, more
resources can be provisioned or the VMs are migrated to other hosts to make the
required resources available.

Figure 2.3: Load balancing and consolidation scenarios [Mishra et al. (2012)]

[Imteyaz (2010)] mentions the scaling up of a private cloud by using resources from
the public cloud using a rule-based resource manager technique. The resources are allo-
cated based on the priority of incoming requests. A request which performs critical data
processing is high priority and one which doesn’t is low priority. High priority requests
should never leave the private cloud as it may have confidential information. If the pri-
vate cloud has sufficient resources to fulfill the request, it provides the resources, else any
incoming high priority request will cause a VM migration of a low priority request from
private to public cloud. The proposed resource manager is shown in fig. 2.4.

Page 8 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

Figure 2.4: Resource Manager [Imteyaz (2010)].

[Rodriguez, Buyya (2014)] present the execution of workflow in cloud to be composed
of two steps,

(i) Resource provisioning phase

(ii) Scheduling phase, where each task is mapped to a best-suited resource.

The problem is defined as finding a schedule to execute a workflow such that, the
execution cost is minimized and the deadline is met, which can be formally written as,

Minimize TEC
subject to TET ≤ δW .

where TEC = Total execution cost, TET = Total execution time, and δW = deadline of
work.

The proposed model, a meta-heuristic optimization technique based on particle swarm
optimization (PSO), the workflow application is modeled as a directed acyclic graph
(DAG) such that the nodes represent the tasks (T = {t1, t2, ..., tn}) and the edges (E)
represent the data dependency between two tasks, shown in figure 2.5a. This dependency
is presented in the form of a parent-child relationship i.e.,

if ti and tj are dependent (an edge exists) then,
ti ← parent task
tj ← child task

Page 9 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

(a) A sample workflow.
(b) Example of a schedule generation.

Figure 2.5: Deadline based resource provisioning and scheduling.

Applications hosted on the cloud can automatically increase or decrease the amount
of resources used by them. This process, known as auto-scaling, is possible because of
the virtual nature of the resources offered to the applications. This concept is very useful
during peak hours, when the amount of users suddenly increases (cloud bursting), and the
resources need to be scaled up to keep up with the demand. [Calcavecchia et al. (2012)]
proposed a self-organizing, self-adapting and fully decentralized solution known as DE-
PAS (DEcentralized Probabilistic Algorithm for Auto-Scaling), where the dependency on
the central cloud provider is removed. The proposed architecture consists of the elements
shown in figure 2.6,

Figure 2.6: Architecture that supports the implementation of DEPAS [Calcavecchia et
al. (2012)].

[Wuhib et al. (2013)] present a distributed middleware architecture and use gossip
protocol to dynamically adapt the allocation to changes in load, ensure fair allocation
among sites and scale the number of physical machines and sites. The work focuses on

Page 10 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

the resource manager component with only two types of resources - CPU and memory,
assuming that all machines belong to a single cluster. The problem involves placing
identical instance of modules on machines and allocating resources to these modules
such that the cloud utility is maximized. The protocol for distributed resource allocation
works as follows,

(a) A round-based gossip protocol is executed, in which each node selects a subset of
nodes to interact with.

(b) The nodes interact via small messages which are processed and trigger state changes.

The node interaction follows a push-pull paradigm, wherein the updates are sent to
other nodes without them asking for it (push) and updates are pulled or requested by a
client [Tanenbaum, Steen (2007)].

[Ramachandran et al. (2012)] explored the concept of dynamic provisioning in multi-
tenant service clouds by proposing an overall system architecture called User Interface-
Tenant Selector-Customizer (UTC), which enables cloud-based services to be provisioned
as a variation of the existing service tenants in the cloud. Multitenancy is an important
feature of cloud computing. Tenants are a group of users sharing the same view of the
software they use, but in cloud, the user applications are run on separate VMs. Multi-
tenancy helps providers save cost but incurs high reconfiguration costs. The proposed
model aims to reduce this cost by reconstructing new tenants from the existing configu-
rations by letting the clients exactly specify their requirements instead of searching and
opting for a service from a catalogue provided by the service provider.

2.2 Cost Models

The resources in cloud computing environments are rented for a specific period of time
and the user needs to pay for only that specified period. Calculating cost on a per-use
basis is an important aspect in cloud and various models have been proposed on how
to effectively calculate this cost, minimize it for user benefit and maximize it for service
provider benefit.

[Zaman, Grosu (2011)] proposed a Combinatorial Auction-Based Mechanism for dy-
namic VM provisioning in the cloud. The proposed mechanism, called CA-PROVISION,
treats the set of resources as liquid resources which can be configured as per the user
request into various types of VM instances. The users bid on one of such bundles.
The problem is called Dynamic Virtual Machine Provisioning and Allocation Problem
(DVMPA), which states that m different types of VM instances are there which offer

Page 11 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

Table 2.1: Comparison of Resource Provisioning Techniques employing Virtualization &
VM Migration.

Parameters
[Mishra

et
al. (2012)]

[Imteyaz
(2010)]

[Ro-
driguez,
Buyya
(2014)]

[Cal-
cavec-
chia et

al. (2012)]

[Wuhib
et

al. (2013)]

[Ra-
machan-
dran et

al. (2012)]

Objective
migration
heuristics

scale up
private

cloud by
using
public
cloud

resources

minimize
workflow
execution
cost while
meeting

deadlines

auto-
scaling of
services

make a
middle-

ware layer
which

adapts and
scales

provisioning
by recon-
figuring
already
present
tenants

Migration
Feature

present present
not

mentioned
present

not
mentioned

not
mentioned

Provisioning
Steps

allocate,
migrate if

needed

check
priority of

request
and

allocate
accord-
ingly

resource
provision-
ing phase

and
schedule

generation
phase

uses au-
tonomic
services

for
allocation

gossip to
select
nodes

model
client

require-
ments, use
customizer
to improve
matching

Features

reduce
hotspots,
coldspots
and server

sprawl,
load

balancing

security,
scaling

cost mini-
mization,
meeting

deadlines
and het-
erogenity

of
hardware

load bal-
ancing,
overlay

manage-
ment

scalable,
maximize

utility

reduction
in

matching
time

Page 12 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

computing resources (CPU) to the user. The user bids and specifies how many number
of each VM resources he’d like and also tells the price he is willing to pay for the same.
The CA-PROVISION algorithm then calculates a reserve price, which is the minimum
amount of price every user has to pay for the resources to be allocated to him by cre-
ating a dummy user who is requesting VM instance one. If the price mentioned in the
user’s bid is lower than this reserve price, the user is not allocated anything, else the
resources are allocated and the payment is calculated. The payment is equal to the bid
density multiplied by the size of the bundle. The cloud provider’s profit is calculated by
subtracting the running cost of allocated VMs and cost of remaining idle resources from
the revenue generated. The algorithm focuses on maximizing this profit but does not
guarantee as to whether it will be maximized and if the allocation will be efficient.

[Jiang et al. (2013)] explored effective cloud capacity planning and instant VM pro-
visioning. The goal of the problem is to reduce the prediction error.

E =
∑
t

f(vt, v̂t) (2.1)

where E is the prediction error to be minimized, f(.,.) represents an arbitrary cost
function that is used to quantify the prediction error, v is the future resource at a future
time t in terms of VM units and v̂ is the prepared resource at present time t. The proposed
solution to this is a Cloud Prediction Cost (CPC) model which is an asymmetric and
heterogeneous measure that models the prediction error of two different types of costs:
the cost of SLA penalty (caused by underestimation of resources) and the cost of idle
resources (caused by overestimation of resources). The total cost is represented as,

C = βP (vt, v̂t) + (1− β)R(vt, v̂t) (2.2)

where P is the cost of SLA penalty, R is the cost of idle resources and β is used to
tune the importance between the two costs.

Another technique for benefit-aware on-demand provisioning approach for multi-tier
applications. [Wu at al. (2013)] considers two types of costs,

• Transition cost - the transition latency caused in the VM by reconfiguration actions
which ranges from 21 seconds to 105 seconds.

• Infrastructure cost - the rental cost of VM resources for tenants to host applications.

The problem is to decide the best resource provisioning strategy, taking into consid-
eration the above two costs. This is done by the Investment decision problem, whereby
the best candidate for selection is the one which maximizes the earnings to cost ratio.
For this purpose, a balloon cloud platform is proposed whose provisioning engine consists
of four components: monitoring & forecaster, evaluator, planner, executor. Using these,

Page 13 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

benefit and cost functions for all possible reconfigurations are constructed. The cost and
benefit are balanced and the action which minimizes the cost with maximum benefit is
chosen. This approach was effective enough in reducing both, cost and SLA violations.

2.3 Service Level Agreements

SLA management is also an area of research in cloud. It provides a framework within
which both buyer and seller can have a profitable service business relationship. The two
types of SLA - infrastructure and application guarantee the availability of infrastructure
like server, network connectivity and response time and the penalty incurred by the
provider in case the agreement is not met because of any circumstances.

[Son, Jun (2013)] present an automated SLA negotiation mechanism and a work-
load and location aware allocation scheme (WLARA). The SLA negotiation mechanism
is designed for the service price and response time issues. It allows the agents to make
counter-offers (as shown in fig.2.7) to their opponents in alternating rounds until an
agreement is reached or an agent’s negotiation deadline is reached. The resource alloca-
tion strategy works as follows: a provider receives user requests and forwards them to the
reservation manager which finds appropriate data center by using the utility function in
equation 2.3. Then, the manager asks the coordinator agent, who manages the PMs in
the DC, to allocate the request to the lightly loaded PM near the user. This guarantees
a reasonable response time to the user.

Um = α.UUL
m + β.URTm (2.3)

There are two terms in the utility function: (1) the machine workload α.UUL
m , and (2)

the expected response time β.URTm. Each term is multiplied by the preference weight.
If α = 1, then β = 0, the provider emphasizes workload in placing the VM and vice
versa.

Figure 2.7: An automated negotiation mechanism [Son, Jun (2013)].

Page 14 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

Table 2.2: Comparison of various cost models.

Parameters
[Zaman,

Grosu (2011)]
[Jiang et

al. (2013)]
[Wu at

al. (2013)]

Objective

maximizing user
utility by

bidding and
dynamic VM

allocation.

capacity
planning,

instant VM
provisioning,

predicting
future demands.

best resource
allocation
strategy

considering
infrastructure
and transition

costs.

Resource
Type

bundles of VM
instances

VM unit
VM (multi-tier
application host

environment)

Allocation
Type

one bundle or
none

one one

Resource
Provision-

ing
Parts

allocated if
auction won,
else bid again

plan capacity,
instant

provisioning

capacity
resizing,

add/remove VM
replicas, live

migration

Type of
Cost

cost of running
and idle VMs

cost of SLA
penalty and

resource
wastage

transition and
infrastructure

costs

Page 15 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

The idea of volunteer Clouds is explored by [Cuomo et al. (2012)] in their project
Cloud@Home which aims at building an IaaS service provider by using resources from
volunteer contributors. This model is effective from a cost perspective as the resources
are borrowed from users not currently needing them, and not purchased. The system
architecture is shown in figure 2.8. The main actors in the C@H management are users,

Figure 2.8: The C@H system architecture [Cuomo et al. (2012)].

admins and resource owners. The users interact with the provider and request resources
and negotiate desired QoS. The admin manages the infrastructure and decides which
services should be activated/deactivated. A resource owner shares its resources with the
C@H system. It can be a public or volunteer contributor. The Resource Abstraction
module provides an abstraction layer by hiding the heterogeneity of the resources from
the users. The SLA Management module makes sure the SLA are not violated. Currently,
C@H addresses only one QoS parameter of resource availability since most of the resources
are from volunteer contributors. The core of the system is the Resource Management
module which is in-charge or provisioning the resources. Lastly, the Frontend acts as an
interface for the C@H actors. The resource provisioning process is carried out by the
RQMCore (Resource and QoS Manager) component. It is an asynchronous event-based
system which is responsible for acquiring resources from the providers and ensuring that
the negotiated QoS is being met. It has two main tasks,

(1) Request Management

(1.1) Provider Selection: Retrieves a list of subscribed providers.

(2.2) Resource Acquisition: After finding a suitable provider, the drivers are set up
for resource allocation.

Page 16 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

Table 2.3: Comparison of SLA techniques.

Parameters [Son, Jun (2013)]
[Cuomo et
al. (2012)]

Objective

SLA-based framework
considering workload

and geographical
location of DCs.

providing QoS and
SLA on unreliable,
intermittent cloud

Type of SLA
Provided

service price and
response time

only service
availability

Resource
Availability

stable, till deallocated
unstable, depends on
volunteer customers

offering resources

SLA
Guarantee

proper working
guarantee

no guarantee of
fulfillment

SLA Choosing
Scheme

negotiation no user choice

(3.3) Logging: All the operations are logged.

(2) SLA Enforcement

(2.1) Availability Guarantees: The availability of a resource can be described as,

ProviderAvailability = MTBF
MTBF+MTTR

;MTTR = Tfd + Tboot
where MTBF is mean time between failure,
MTTR is mean time to repair a single resource,
Tfd is the time to detect a resource failure and,
RTboot is the time to boot up a new VM as a substitute for the failed one.

(2.2) Alert Reaction: Heartbeat messages are used to verify if a node is alive. The
variables HBfail, representing the number of failures and HBsuccess, represent-
ing the number of consecutive successful heartbeats, are used.

(2.3) Performance Guarantee

Page 17 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

2.4 Xen Hypervisor

[Yu et al. (2014)] proposed a self-adaptive VM allocation technique that takes into
account the network resource contention between physical nodes in the Xen virtualization
environment. Xen primarily consists of three components,

1. Xen Hypervisor

(a) It has direct access to hardware resources.

(b) It schedules virtual CPUs onto physical CPUs.

(c) It allocates and releases physical memory to/from VMs.

(d) It supports isolated execution of VMs by executing hyper-call based trap han-
dler codes.

2. Domain-U (Dom-U)

(a) It is a VM running a guest Operating System (OS) and user applications.

(b) It has no direct control over resources. The access is only permitted by ex-
ported hypercalls from Xen.

3. Domain-0 (Dom-0)

(a) It is a control VM that supports network and disk I/O operations in Dom-Us.

(b) Xen uses a split driver approach, where the front end driver lies in Dom-U and
the back-end in Dom-0. The back-end driver forwards the requests from the
front-end to the native driver and also relay the response back to the front-end.

(c) Since Dom-0 is the critical path for all I/O requests, it is subject to performance
bottleneck.

To overcome the bottleneck problem, a network contention aware job management
framework was proposed, which works as follows,

• As new jobs arrive, they are input to the job parser, which analyzes their specifications
based on the computing resource (e.g., number of nodes, memory size) needed to
fulfill the request and puts them in a job queue.

• The jobs are passed onto the scheduler, which allows the implementation of allocation
algorithms. It provides a {host:VMs} map.

• The host manager keeps the information about the I/O degree of Dom-0 for each host.
It also collects and manages the network contention information, defined as follows,

NETCONTk = (ω × CPUk) + ((1− ω)× 1
IDLEk

)

Page 18 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

Figure 2.9: Architecture of Xen Hypervisor.

• Upon receiving provisioning request, the VM scheduler who is aware of the NETCONT,
greedily selects physical hosts based on it.

• The allocation and booting of VMs is handled by the VM Manager, and the appli-
cations are executed on the dynamically allocated virtual clusters with minimum
contention. This whole process can be represented as in Figure 2.10,

Figure 2.10: Network Contention Aware VM Allocation Technique.

[Akoush et al. (2010)] discuss the parameters that can be used to predict migration
times with focus on the Xen virtualization platform. Xen employes the pre-copy memory
migration technique in which we iterate through multiple rounds of copying and any
memory pages that get modified (dirtied) in the process are copied in the next iteration
again until the dirty rate becomes small enough for the VM to be halted and restarted
at the destination host. This design minimizes total migration time as well as downtime.

Page 19 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

Figure 2.11: Live Migration Timeline [Buyya, Broberg (2011)].

Page 20 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

Pre-copy migration involves 6 stages, [Clark et al. (2005)], as shown in the figure 2.11.
The iterative pre-copy will continue indefinitely unless stopping conditions are present.
Xen has three stopping conditions as follows,

1) Less than 50 pages were dirtied during the last pre-copy iteration.

2) 29 pre-copy iterations have been carried out.

3) More than 3 times the total amount of RAM allocated to the VM has been copied to
the destination host.

The first condition gives a smaller downtime as compared to the other two, which force
the migration into the stop-and-copy phase even when there may be a large number of
dirty pages left to be copied.

2.4.0.4.1 Migration link bandwidth influences migration more than any other
parameter. Link capacity is inversely proportional to total migration time and total
downtime. If the link speed is high, the transfer rate for the pages will be faster.

2.4.0.4.2 Page dirty rate is the rate at which the memory pages are modified.
Higher the page dirty rate, more the number of pages that need to be transferred per
iteration and hence, more the total migration time. It also increases the total downtime as
the number of pages that need to be transferred during the stop-and-copy phase increase.

2.4.0.4.3 Pre-migration and Post-migration overheads refer to the operations
that are not part of the actual transfer process and can be either static or dynamic over-
heads. Static overheads are operations related to initializing a container on destination,
mirroring block devices, maintaining free resources, advertising moved IP address. These
overheads are unavoidable. There are two proposed solutions for predicting migration as
described by [Akoush et al. (2010)],

(a) The AVG Simulation Model assumes a constant or average page dirty rate, which is
sufficient as an approximation only and fails if the page dirty rate is a function of
time.

(b) The HIST Simulation Model is a specialization of the AVG Model. It works on the
idea that the page dirty rate for deterministic processes will approximately be the
same as the previous runs of the same workload running in a similar environment.

[Wood et al. (2007)] address the problem of manual hotspot detection and migration
by proposing automated strategies for the same. The proposed black-box technique makes
decisions by observing VMs from the outside and the gray-box strategy assumes access

Page 21 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

to a small amount of OS-level statistics for better migration. The proposed model,
Sandpiper 2.12, is a system for automated migration of virtual servers. It assumes that
there is a cluster of heterogeneous servers whose hardware configuration is known to it.
Each PM runs a virtual machine monitor (Xen Hypervisor) and one or more VMs. Each
VM runs an application and is allocated a slice of the physical resources as follows,

• CPU: A weight is assigned to the VMs and the underlying Xen scheduler allocates
CPU bandwidth proportionally to the allocated weight.

• Network Interface: Best effort FIFO scheduler is used.

• Memory: A certain amount of RAM is allocated to each VM.

• Storage: There is no need to move disk state during migration as all the storage is on
a storage area network (SAN).

Figure 2.12: The sandpiper architecture [Wood et al. (2007)].

Sandpiper runs a nucleus on each server, which runs inside Dom-0 of the Xen hyper-
visor and gathers resource usage statistics using a monitoring service. For the gray-box
approach, a daemon is implemented inside each VM to get OS-level statistics. The nuclei
sends these statistics to the sandpiper control pane which consists of three components, a
profiling engine which constructs resource usage profiles for each VM, a hotspot detector
which monitors the profiles for hotspots and invokes the migration managers when the
need arises. The migration manager determines what to migrate, where to and how much
of a resource to allocate.

[Liu et al. (2011)] estimate the live migration cost in terms of performance and en-
ergy. The performance model tries to determine which VM should be migrated with the

Page 22 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

minimum cost. It considers various migration performance factors - size of VM memory,
memory dirtying rate, network transmission rate amd migration algorithm. This model
states that a VM with small size of memory image an small memory dirtying by transmis-
sion ratio is the better candidate for migration, as it will generate lesser network traffic
and will have shorter migration latency. A second scenario considers that the memory
dirtying rate is larger than the memory transmission rate i.e., the workload consists of
a set of hot pages that are updated extremely frequently, known as Writable Working
Set (WWS) as described by [Clark et al. (2005)]. These pages are used to store stack
and local variables of running processes. As these pages are dirtied the fastest, they
are transferred during the stop-and-copy phase of pre-copy migration. For the energy
model, the power drawn by the physical server consists of a static portion - stable power
consumption even if the server is idle, and dynamic portion- consumption my resources
working on behalf of VM. The power drawn by VM migration is determined by the data
transmission rate, which in turn has effect on the migration latency. Therefore, the en-
ergy cost equals the energy drawn at the source and destination hosts.
The final cost comes down to,

C(VMi) = aTdown + bTmig + cVmig + dEmig (2.4)

where a, b, c, d are the cost metrics, and a+ b+ c+ d = 1.

Tdown is the application downtime, Tmig is the total migration time, Vmig is the total
network traffic during migration and Emig is the energy consumption by the migration
process.

Page 23 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

Table 2.4: Comparison of various allocation techniques for the Xen hypervisor.

Parameters
[Liu et

al. (2011)]
[Yu et

al. (2014)]
[Akoush et

al. (2010)]
[Wood et

al. (2007)]

Objective

VM
migration
cost
(performance
and energy)

self-adaptive
VM alloca-
tion

workload
specific
prediction
of service
interruption

automated
VM
migration

Run as/in-
side

inside host
process

inside host
manager

as host
process

as a daemon

Component
being moni-
tored

memory ac-
cess pattern
of running
workload

I/O degree of
Dom-0

page dirty
rate

Dom-0 re-
source usage
statistics

Performance
evaluation

reduced
migration
latency
(72.9%),
reduced
downtime
(93.5%)

reduction
of average
response
time (37%),
average exe-
cution time
(20%)

migration
time pre-
dicted with
90% accuracy

singe server
hotspot
resolution in
20s

Page 24 of 55

Chapter 3
Present Work

3.1 Problem Formulation

Resources are allocated to the users transparently and on-demand, in the form of VMs
which exist as independent entities on top of a host operating system. The virtual ma-
chines make it easy to allocate, deallocate, scale up and scale down the resources. Many
of these operations require the virtual machine to be transferred (migrated) to a different
host on the network. Our aim is to decrease the live migration time of these VMs running
specifically on the Xen hypervisor to decrease the allocation delay.

Figure 3.1: Live VM migration procedure with modifications.

Xen hypervisor is an open-source bare-metal VMM. Its current stable version is 4.4.2
and unstable release is 4.5. The code for migration of the VMs is contained in the
xen/tools/libxc/xc domain save.c and xen/tools/libxc/xc domain restore.c. The current

25

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

technique of migration involves selecting and making a batch of 1024 pages of memory
and transferring it to the destination host. The further iterations repeat this process by
resending the pages dirtied in the earlier rounds. Xen supports remus compression, also
known as checkpoint compression, which live migrates a copy of the running VM to a
backup server which loads in case the VM running on our local system fails. This is done
to restore the VM in case of any unknown error or crash.

Our problem can be defined as a problem of fast resource provisioning which involves
live migration of virtual machines in the Xen hypervisor. Time involved in the live
migration depends on the page dirty rate. More the number of pages dirtied, more
number of iterations will be there, increasing the time for transfer of all the pages. Xen
automatically stops the iterative pre-copy phase of migration and forces the VM to shut
down and go into the post copy phase on meeting any one or more of the given conditions,

1) Less than 50 pages were dirtied during the last pre-copy iteration.

2) 29 pre-copy iterations have been carried out.

3) More than 3 times the total amount of RAM allocated to the VM has been copied to
the destination host.

Problem Definition: The problem is to reduce the amount of dirty pages or dirty
bits of the VM memory during transfer and reduce the size of data being sent over the
network to reduce migration latency in case of Xen hypervisor, shown in fig.3.2. This has
been achieved by serializing the bits and compressing a batch of pages before transfer
over the network. This work is an extension from [Imteyaz (2010)].

3.2 Objectives

1. To scale up our private cloud by using resources from the public cloud during peak
workload hours.

2. To increase the performance of resource provisioning process by reducing the migration
latency (decrease of total migration time and total downtime).

3. To reduce the cost incurred by the users for using resources of the private cloud, in
comparison to the public cloud.

4. To make sure that service-level agreements for a user are not violated by the allo-
cation of resources to another user.

Page 26 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

Figure 3.2: Proposed Solution.

3.3 Methodology

In order to perform live migration of virtual machines, the setup shown in fig. 3.3 was
used. Our setup consisted of two physical machines with configuration described in table
3.1.

Both machines were connected through DLink DSL-2730U router and also through a
100 Mbps CAT.5 UTP cable to estalish a wired LAN connection for fast migration. Each
machine acted as a Network File System (NFS) server for sharing the virtual machine
saved image file. The creation, destruction, and migration of virtual machines was done
via both, graphical interfaces and command-line interfaces.

3.3.1 Virtualization Tools

Virtualization and VM migration using Xen hypervisor was tested in the following tools,

1. Console Tools

1.1 libvirt: A toolkit for management of VM guests, storage and virtual networks.
It provides an API, a daemon and a shell (virsh).

Page 27 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

Figure 3.3: System setup.

2.2 virt-install: Supports both text-based and graphical installations.

2. GUI Tools

2.1 virt-manager: A graphical management tool which is most commonly used on
workstations.

2.2 virt-viewer: An X viewer client for VM guests with TLS/SSL encryption.

3.3.2 Installing Xen

Installion of Xen can be done by executing the given commands in the sudo mode,

Listing 3.1: Installation of Xen

yum -y install xen xen -hypervisor xen -runtime xen -libs

systemctl enable xendomains.service

The status of a service can be checked by executing,

Listing 3.2: Check status of service (active or dead).

systemctl status xendomains.service

Installing these packages creates new entries in the GRUB2 as showin in fig.3.5. We
need to boot into the ‘Fedora, with Xen hypervisor’ option to work with Xen.

Page 28 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

Table 3.1: Configuration of physical machines

PM1 PM2

Machine Dell Inspiron N4010 Dell XPSl501X

Operating system Fedora 21 Fedora 21

Linux kernel release 3.18.7-200.fc21.x86 64 3.17.4-301.fc21.x86 64

Processor Intel Core i3 Intel Core i5

RAM 2GB 4GB

Xen hypervisor version 4.4.2 4.4.1

Figure 3.4: Active status of xendomains.service.

Reboot and verify that Xen is running:

Listing 3.3: Verify if Xen is running.

xl info

The output shows the system architecture and installed hypervisor versions as shown
in fig.3.6.

Page 29 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

Figure 3.5: Entries of GRUB2.

Figure 3.6: Output of xl info.

Page 30 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

Install virt-manager to manage the VMs.

Listing 3.4: Install virt-manager.

yum -y install virt -manager dejavu* xorg -x11 -xauth

yum -y instal libvirt -daemon -driver -network

libvirt -daemon -driver -storage libvirt -daemon -xen

systemctl enable libvirtd.service

systemctl start libvirtd.service

This completes the Xen hypervisor installation. TheVMM should now be installed
and can be accessed graphically as shown in fig.3.7.

Figure 3.7: Virtual Machine Manager.

3.3.3 Configuring Dom-0 and Dom-Us

To install guest VMs in Xen, we first need to add a connection to the required hypervisor
for the localhost - Xen, Quick EMUlator (QEMU)-Kernel Virtual Machine (KVM) and
LinuX Containers (LXC) are the hypervisors which can be configured.

Equivalent command in virsh,

Listing 3.5: Connect to Xen.

virsh connect xen :///

Page 31 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

Figure 3.8: Connect to localhost Xen.

Now we can create a new VM as explained in figures (3.9a) - (3.12b),

(a) Click on create a new VM.

(b) Choose the hypervisor on which
VM should be created.

Figure 3.9: VM Creation-I.

VMs can also be created via command line as follows,

Listing 3.6: Connect to Xen.

virt -install --connect xen :// --virt -type xen

--name testvm --memory 1024 --disk -size=5

--cdrom /dev/cdrom --os-variant Ubuntu12 .10

Page 32 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

(a) Choose an ISO file of the OS to
install on the Dom-U. (b) Choose the size of RAM and num-

ber of vCPUs required.

Figure 3.10: VM Creation-II.

(a) Select space to allocate for VM.

(b) Verify all the settings.

Figure 3.11: VM Creation-III.

Page 33 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

(a) VM in the process of creation.

(b) VM starts running after creation and shows CPU & memory usage in VMM.

Figure 3.12: VM Creation-IV.

The list of currently running VMs can be checked as,

Listing 3.7: Vm list in Xen.

xl list

Figure 3.13: List of running VMs.

Page 34 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

3.3.4 Migrating VM Guests

In order to migrate VMs from one host to another, the following prerequistes should be
fulfilled.

1. There should be an Secure Shell (SSH) connection between the two hosts, for
remote login.

2. The two hosts need a shared storage: Network File Storage (NFS), Storage Area
Network (SAN) or Internet Small Computer System Interface (iSCSI), for the sharing
of the VM image file.

3.3.4.1 OpenSSH Configuration

Listing 3.8: OpenSSH Installation.

yum -y install openssh -server

/sbin/service sshd status

/sbin/service sshd start

By default, SSH listens to incoming connections on port 22, unless another port is
explicity specified. Port 22 is blocked by the firewall and needs to be opened or we
need to accept connections on port numbers between 1025-65535.

Listing 3.9: Command to check status of OpenSSH.

/sbin/service sshd status

Checking the status of SSH shows the port number it is listening on in fig.3.15.

Listing 3.10: Remote login command.

ssh -p 22 169.254.11.115

Page 35 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

Figure 3.14: Opening port 22 for TCP & UDP connections.

Figure 3.15: Status of SSH service.

Page 36 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

3.3.4.2 NFS Configuration

One of the two hosts needs to act as an NFS server, and the other one as an NFS
client. For VM migration to succeed, the directory used for storing disk images has
to be mounted from the shared storage from both hosts .

Listing 3.11: NFS configuration.

yum -y install sshfs

rpcinfo -p | grep nfs

100003 3 tcp 2049 nfs

100003 4 tcp 2049 nfs

100227 3 tcp 2049 nfs_acl

100003 3 udp 2049 nfs

100003 4 udp 2049 nfs

100227 3 udp 2049 nfs_acl

cat /proc/filesystems | grep nfs

nodev xenfs

nodev nfsd

nodev nfs

nodev nfs4

rpcinfo -p | grep portmapper

100000 4 tcp 111 portmapper

100000 3 tcp 111 portmapper

100000 2 tcp 111 portmapper

100000 4 udp 111 portmapper

100000 3 udp 111 portmapper

100000 2 udp 111 portmapper

Listing 3.12: Edit exports file.

vim /etc/exports

add line /var/lib/libvirt/images *(rw ,sync ,no_root_squash)

systemctl restart nfs

reboot system

mount -v 169.254.11.115:/ var/lib/libvirt/images

/var/lib/libvirt/images

NFS service needs to be started on every system boot as it it inactive by default.

Page 37 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

Figure 3.16: Status of NFS service.

3.3.4.3 Start Migration

The guest VM or Dom-U needs to be running before migration can be initiated.

Listing 3.13: Initiate migration.

virsh migrate --live centos6 .5

xen+ssh ://192.168.43.55/ system

The system prompts for a password and migrates the VM.

Figure 3.17: Migration command.

Our technique involved serializing and compressing (lossless) the memory pages of
the VM, which involved being able to peek at the contents of the primary memory. This
can be done in a number of ways. Linux has support for hexdump commands which print
the binary, hexadcimal , canonical forms of data of a file with the ASCII representation.
We can dump the contents of the memory using the given commands,

Page 38 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

Listing 3.14: hexdump command(i)

dd if = /dev/mem | hexdump -d

Input offset is in hexadecimal; 16 space-seperated two-column hex bytes; same 16 bytes
in % p format enclosed in ‘ | ’.

Listing 3.15: hexdump command(ii)

xxd -b \dev\mem

In virsh we can use the dump command to achieve the same effect for Dom-Us. The
output appears as in fig.3.18.

Figure 3.18: Output of hexdump command, showing contents of primary memory.

The library used for serialization is an open-source library named tpl by [Troy D.
Hanson] and the lossless compression algorithm is also open-source by [Rich Geldreich].

Page 39 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

In oreder to automate the migration process, we can write a BASH script to create
and migrate VMs every minute or so.

Listing 3.16: Automating the migration process

!/bin/sh

while true

do

virsh migrate --live <domain -id >

xen+ssh ://192.168.43.55/ system

sh MyScript.sh

sleep 10

done

Page 40 of 55

Chapter 4
Results and Discussions

4.1 Results

Table 4.1: Comparison of our proposed approach with the original downtime.

0.5GB VM 1GB VM 1.5GB VM 2GB VM

Downtime (ms) proposed approach 20 25 29 33

Downtime (ms) non-adaptive approach 23 28 28 33

Figure 4.1: Comparision of downtime of adative memory compression with serializing &
compressing approach.

41

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

Figure 4.2: Page dirty rate of serializing & compression approach.

The CPU utilization of the Dom-0 can be seen using the xentop command in Linux.

Listing 4.1: xentop command

xentop

Figure 4.3: Output of xentop command.

The network utilization - number of packets sent and received, is captured in the
/proc/net/dev file.

Listing 4.2: Command to display network utilization

cat /proc/net/dev

Page 42 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

Figure 4.4: Screenshot showing network utilizaton.

4.2 Discussions

Xen uses the pseudo-physical memory model in which applications on an OS with pro-
tected memory have their own address space and have access to the entire memory space
from their perspective. For x86 platforms, their exists a concept of segmented virtual
address space. In this, addresses are resolved to a segment and offset which are further
mapped to a linear address i.e., virtual address. A page is typically of 4KB in size, al-
though superpages can be as big as 2MB. Page table size varies with the machine. For our
Dell Inspiron system with 2GB primary memory, page table size was calculated as follows,

page size = 4KB
address apce = 48− bit
physical memory = 2GB = 2, 097, 152KB
number of pages = 2048M

4K
= 512K pages

19 bits to represent each page + 4 reserved bits (valid bits, protection
bits, dirty bits, use bits) = 23 bits

number of page table entries = virtual address space
page size

= 248

240
= 28 entries = 256

entries

number of frames = 512∗1024∗1024
4∗1024 = 217

17 bits to represent each page + 4 reserved bits (valid bits, protection bits,
dirty bits, use bits) = 21 bits = 2.625 bytes

size of page table = 28 ∗ 2.675 = 672 bytes = 0.65KB

Table 4.1 shows the downtime of VMs of various sizes and compares it with the
results of a non-adaptive compression technique. The results show that as the size of VM
increases, the downtime also increases. This happens because the size of primary memory
for each VM is different and it has more number of pages to transfer. Compared to the

Page 43 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

non-adaptive compression approach, the proposed approach performs better. However,
the dip in the curve at the 1.5GB VM has occured because of uneven network bandwidth,
during which the number of pages being migrated were very less, increasing the downtime.

Fig.4.2 shows the page dirty rate of the proposed approach. The total number of
pages are 512x103. The amount of pages dirtied are: 10K for 0.5GB, 10K for 1GB,
13K for 1.5GB, 17K for 2GB VM. The page dirty rate is directly proportional to the
network bandwidth. If the link speed of the network is low or unsteady, the page dirty
rate increases.

4.3 Limitations

The limitations arise while trying to migrate VM using GUI tools such as Virtual Machine
Monitor of libvirt. The tool has bugs and even though it shows a migrate option on right-
click, it fails to migrate any and all Dom-Us with the following error:

Listing 4.3: Error on migration.

Unable to migrate guest: this function is not supported by

the connection driver: virDomainMigrate

This error arises because of a bug in the coding of the tool, in the function named
virDomainMigrate and is currently under consideration for a patch. We have to manually
migrate VMs using command-line tools only. Also, migration cannot be invoked without
a shared storage, else it results in an error.

Page 44 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

(a) Starting migration to a
remote host.

(b) Error pops up during
migration.

Figure 4.5: VM Creation-I.

Page 45 of 55

Chapter 5
Conclusion and Future Scope

The critical tasks in virtualized systems today are the virtual machine provisioning and
migration services. They help us service the requests of end users with ease, help in
maintenance of servers by migrating virtual machines to a completely different server in
a short amount of time, help in workload balancing and other needs.

We have proposed an algorithmic approach to provisioning virtual machines on a private
cloud and efficiently migrating them to a public server for scaling purpose by reducing
the time it takes for the virtual machines to migrate on the Xen hypervisor. The resulting
migration times is reduced as comapred to the original scheme of simply clustering and
sending the pages to the destination.

The work can further be expanded on other hypervisors like QEMU, KVM to improve
their migration times. A new resource allocation scheme named Dockers or Linux Con-
tainers has recently been proposed in October 2014 and can prove to be a fruitful alter-
native for virtualization as the size of allocation in dockers is very less as compared to
VMs whose sizes are in GBs.

46

Chapter 6
References

[Buyya, Broberg (2011)] Buyya, R., Broberg, J., Goscinski, A.,(2011) Cloud Computing:
Principles and Paradigms, Wiley Series on Parallel and Distributed Computing.

[Chaganti (2007)] Chaganti, P.,(2007) Xen Virtualization: A Practical handbook, Packt
Publishing.

[Chisnall (2008)] Chisnall, D.,(2008) The Definitive Guide to the Xen Hypervisor, Pren-
tice Hall.

[Hagen (2008)] Hagen, W.,(2008) Professional Xen Virtualization, Wiley Publishing,
Inc.

[Tanenbaum, Steen (2007)] Tanenbaum, A.S., Steen, M.V.,(2007) Distributed Systems:
Principles and Paradigms, Pearson Prentice Hall.

[Akoush et al. (2010)] Akoush, S., Sohan, R., Rice, A., Moore, A.W., Hopper, A., “Pre-
dicting the Performance of Virtual Machine Migration,” Modeling, Analysis & Sim-
ulation of Computer and Telecommunication Systems (MASCOTS), 2010 IEEE In-
ternational Symposium on, pp. 37 - 46, August 2010.

[Barham et al. (2003)] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A.,
Neugebauer, R., Pratt, I., Warfield, A., “Xen and the Art of Virtualization,” SOSP
’03 Proceedings of the nineteenth ACM symposium on Operating systems principles,
pp. 164 - 177, October 2003.

[Calcavecchia et al. (2012)] Calcavecchia, N.M., Caprarescu, B.A., Nitto, E.D., Dubois,
D.J., Petcu, D., “DEPAS: A Decentralized Probabilistic Algorithm for Auto-
Scaling,” Journal of Computing, Springer Vienna,Volume 94, Issue 8 - 10, pp. 701 -
730, September 2012.

[Clark et al. (2005)] Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C.,
Pratt, I., Warfield, A., “Live Migration of Virtual Machines,” Proceeding NSDI’05
Proceedings of the 2nd conference on Symposium on Networked Systems Design and
Implementation - Volume 2, pp. 273-286, 2005.

47

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

[Cuomo et al. (2012)] Cuomo, A., Modica, G.D., Distefano, S., Puliafito, A., Rak, M.,
Tomarchio, O., Venticinque, S., Villano, U., “An SLA-based Broker for Cloud
Infrastructure,” Journal of Grid Computing, Volume: 11, Issue: 1, pp. 1 - 25, Octo-
ber 2012.

[Hu et al. (2013)] Hu, L., Zhao, J., Xu, G., Ding, Y., Chu, J., “HMDC: Live Virtual
Machine Migration Based on Hybrid Memory Copy and Delta Compression,” Applied
Mathematics & Information Sciences, Volume: 7, Issue: 1, pp. 639 - 646, January
2013.

[Imteyaz (2010)] Imteyaz, Y., “On-demand Resource Provisioning in Hybrid Cloud Envi-
ronment,” International Conference on Advances in Communication, Network, and
Computing – CNC, 2010.

[Jiang et al. (2013)] Jiang, Y., Perng, C.S., Li, T., Chang, R.N., “Cloud Analytics for
Capacity Planning and Instant VM Provisioning,” Network and Service Manage-
ment, IEEE Transactions on, Volume: 10, Issue: 3, pp. 312 - 325, September 2013.

[Jin et al. (2009)] Jin, H., Deng, L., Wu, S., Shi, X., Chen, H., Pan, X., “Live Migration
of Virtual Machines with Adaptive Memory Compression,” IEEE Int. Conf. Cluster
Computing and Workshops, 2009, pp. 1 - 10.

[Liu et al. (2011)] Liu, H., Jin,H., Xu, C.X., Liao, X., “Performance and Energy Mod-
eling for Live Migration of Virtual Machines,” HPDC’11 Proceedings of the 20th
International Symposium on High Performance Distributed Computing, December
2011.

[Mishra et al. (2012)] Mishra, M., Das, A., Kulkarni, P., Sahoo, A., “Dynamic Resource
Management Using Virtual Machine Migration,” Communications Magazine, IEEE,
Volume:50, Issue: 9, pp. 34 - 40, September 2012.

[Ramachandran et al. (2012)] Ramachandran, L., Narendra, N.C., Ponnalagu, K., “Dy-
namic Provisioning in Multi-tenant Service Clouds,” Service Oriented Computing
and Applications, Volume: 6, Issue: 4, pp. 283 - 302, July 2012.

[Rodriguez, Buyya (2014)] Rodriguez, M.A., Buyya, R., “Deadline Based Resource Pro-
visioning and Scheduling Algorithm for Scientific Workflow on Clouds,” Cloud
Computing, IEEE Transactions on, Volume: 2, Issue: 2, pp. 222 - 235, April 2014.

[Son, Jun (2013)] Son, S., Jun, S.C., “An SLA-based Cloud Computing That Facilitates
Resource Allocation in the Distributed Data Centers of a Cloud Provider,” The
Journal of Supercomputing, Volume: 64, Issue: 2, pp. 606 - 637, May 2013.

Page 48 of 55

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

[Wood et al. (2007)] Wood, T., Shenoy, P., Venkataramani, A., Yousif, M., “Black-box
and Gray-box Strategies for Virtual Machine Migration,” NSDI’07 Proceedings of
the 4th USENIX Conference on Networked Systems Design & Implementation, April
2007.

[Wu at al. (2013)] Wu, H., Zhang, W., Zhang, J., Wei, J., Huang T., “A Benefit-
aware On-demand Provisioning Approach for Multi-tier Applications in Cloud
Computing,” Frontiers of Computer Science, Volume: 7, Issue: 4, pp. 459 - 474,
July 2013.

[Wuhib et al. (2013)] Wuhib, F., Stadler, R., Spreitzer, M., “A Gossip Protocol for Dy-
namic Resource Management in Large Cloud Environments,” Network and Service
Management, IEEE Transactions on, Volume: 9, Issue: 2, pp. 213 - 225, June 2012.

[Yu et al. (2014)] Yu, J.L., Choi, C.H., Jin, D.S., Lee, J.R., Byun, H.J., “A Dynamic
Virtual Machine Allocation Technique Using Network Resource Contention for a
High-performance Virtualized Computing Cloud,” International Journal of Software
Engineering and Its Applications, Volume: 8, Issue: 9, pp. 17 - 28, 2014.

[Zaman, Grosu (2011)] Zaman, S., Grosu, D., “Combinatorial Auction-Based Mecha-
nisms for VM Provisioning and Allocation in Clouds,” Cloud Computing Technology
and Science (CloudCom), 2011 IEEE Third International Conference on , pp. 107
- 114, 2011.

[Rich Geldreich] Rich Geldreich, miniz: Single C source file Deflate/Inflate compression
library with zlib-compatible API, ZIP archive reading/writing, PNG writing , http:
//code.google.com/p/miniz/, Last accessed on 04/05/15.

[Troy D. Hanson] Troy D. Hanson, Easily store and retrieve binary data in C, http:

//tpl.sourceforge.net/, Last accessed on 04/05/15.

[Xen] Xen 4.5.0, http://fossies.org/dox/xen-4.5.0/index.html, Last accessed on
04/05/15.

Page 49 of 55

http://code.google.com/p/miniz/
http://code.google.com/p/miniz/
http://tpl.sourceforge.net/
http://tpl.sourceforge.net/
http://fossies.org/dox/xen-4.5.0/index.html

Chapter 7
Publications

Paper communicated in Thomson Reuters indexed journal:
Abbi, D., Pateriya, P.K., “Minimizing Migration Time of Virtual Machines by Serializing
& Compressing Memory Pages in Xen Hypervisor,” Sustainable Computing: Informatics
and Systems, Volume: 5, Issue: 2, 2015 (communicated).

50

Chapter 8
Appendix

Algorithm 1 Modified Rule-Based Resource Manager

1: Rule Based RM(New VM Requestc+s)
2: this
3: loop
4: if (New VM Req (c+ s) ≤ Available(c+s)) then
5: Allocate on Private Cloud
6: end if
7: if (New VM Req(c+s)) > Available(c+s)ANDHigh Priority Request then
8: for δT do
9: Check Low Priority Request Count on Private Cloud

10: end for
11: if (Low Priority Request Count = 0) then
12: Choose y such that (Priorityy < Priority New VM Request(c+s))
13: AND (y(c+s) ≥ New VM Request(c+s))
14: AND (Deadliney ≥ 2DeadlineNew VM Request)
15: Put y(c+s) at the front of queue
16: Allocate New VM Request (c+ s) on Private Cloud
17: end if
18: if IsComplete(New VM Request(c+s) = true) then
19: Re-allocate y(c+s) on Private Cloud
20: end if
21: Choose r from waiting queue such that . To prevent starvation of low

priority requests
22: Priorityr = 4 AND Threshold < Waiting time in queue < Deadliner
23: while Priority ≥ 1 do
24: Priorityr = Priority − 1 . Increase priority
25: end while

51

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

26: else if Low Priority Request Count > 0 then
27: Choose x such that x(c+s) ≥ New VM request(c+s)

28: To Minimum (σx Relocation Cost on Public Cloud)
29: if (x = φ) then
30: count = 0
31: Choose x such that (x(c+s) ≥ 1

2
New VM Request(c+s))

32: count = count + 1
33: if Elapsed Time of x(c+s) < 50 then
34: Migrate x to Public Cloud
35: if (Available(c+s) ≥ Need(c+s)byNewVMRequest) then
36: Allocate New VM Request(c+s) on Private Cloud
37: else
38: Repeat
39: end if
40: end if
41: end if
42: else if Elapsed Time of x(c+s) > 50 then . Let it complete on private cloud
43: Additional waiting time x(c+s) = (Estimated completion time −

Elapsed time)
44: if Additional waiting time ≥ ∆T then
45: Migrate New VM Request(c+s) to Public Cloud
46: end if
47: end if
48: end loop

Page 52 of 55

Glossary

Cloud computing

a parallel and distributed computing system that consists of a collection of inter-
connected and virtualized computers that are dynamically provisioned and pre-
sented as one or more unified resources based on service level agreements. 1

Hypervisor

a piece of computer software-hardware or firmware that creates and runs virtual
machines. 7

Live Migration

the process of transferring memory pages before the virtual machine which involves
very less downtime. 7

SLA

a legal agreement an enterprise enters into with the infrastructure service providers
to guarantee a minimum quality of service. 14

Virtualization

abstraction of the four computing resources: computation (CPU)- storage (HDD)-
memory (RAM) and network or I/O. 6

Xen

a bare-metal hypervisor which runs directly on hardware to control the resources
and manage guest operating system. 17

53

Acronyms

CRM

Customer-Relationship-Management. 3

Dom-0

Domain-0. 18, 22, 23, 41

Dom-U

Domain-U. 18, 37, 39, 44

EC2

Elastic Compute Cloud. 3

GAE

Google App Engine. 3

IaaS

Infrastructure-as-a-Service. 3

iSCSI

Internet Small Computer System Interface. 35

KVM

Kernel Virtual Machine. 31, 46

LXC

LinuX Containers. 31

NFS

Network File Storage. 35, 36, 37

OS

Operating System. 18, 42

54

Minimizing Migration Time of Virtual Machines by Serializing & Compressing Memory Pages in Xen Hypervisor

PaaS

Platform-as-a-Service. 3

PM

Physical Machine. 7, 14, 21

QEMU

Quick EMUlator. 31, 46

QoS

Quality of Service. 2

SaaS

Software-as-a-Service. 3

SAN

Storage Area Network. 35

SLA

Service Level Agreements. 6, 14

SOA

Service Oriented Architecture. 1

SSH

Secure Shell. 35

VM

Virtual Machine. 5, 6, 7, 8, 11, 13, 14, 17, 18, 19, 21, 22, 23, 25, 26, 27, 28, 29, 31,
32, 34, 35, 36, 37, 38, 39, 43, 44, 46

VMM

Virtual Machine Monitor. 5, 7, 25, 29

WWS

Writable Working Set. 22

Page 55 of 55

	Abstract
	Acknowledgement
	Declaration
	Certificate
	Introduction
	Theoretical Foundation & Evolution of Cloud
	Service Oriented Architecture
	Grid Computing
	Utility Computing
	Hardware Virtualization
	Layers of Cloud
	Types of Cloud

	Dimensions

	Literature Survey
	Virtualization and Virtual Machine Migration
	Cost Models
	Service Level Agreements
	Xen Hypervisor

	Present Work
	Problem Formulation
	Objectives
	Methodology
	Virtualization Tools
	Installing Xen
	Configuring Dom-0 and Dom-Us
	Migrating VM Guests

	Results and Discussions
	Results
	Discussions
	Limitations

	Conclusion and Future Scope
	References
	Publications
	Appendix

