

RESTful Web Service Protocol Testing Using TTCN3

Dissertation submitted in fulfilment of the requirements for the Degree of

MASTER OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

By

Prabhjot Singh Bal

Registration number

41400003

Supervisor

Dalwinder Singh

School of Computer Science and Engineering

Lovely Professional University

Phagwara, Punjab (India)

Month…May… Year …2017…

@ Copyright LOVELY PROFESSIONAL UNIVERSITY, Punjab (INDIA)

Month …May.., Year …2017..

ALL RIGHTS RESERVED

PAC COMMITTEE MEMBERS APPROVAL

i

DECLARATION STATEMENT

I hereby declare that the research work reported in the dissertation entitled

"RESTFUL WEB SERVICE PROTOCOL TESTING USING TTCN-3” in partial

fulfilment of the requirement for the award of Degree for Master of Technology in

Computer Science and Engineering at Lovely Professional University, Phagwara,

Punjab, is an authentic work carried out under supervision of my research supervisor

Prof. Dalwinder Singh. I have not submitted this work elsewhere for any degree or

diploma.

I understand that the work presented herewith is in direct compliance with

Lovely Professional University’s Policy on plagiarism, intellectual property rights,

and highest standards of moral and ethical conduct. Therefore, to the best of my

knowledge, the content of this dissertation represents authentic and honest research

effort conducted, in its entirety, by me. I am fully responsible for the contents of my

dissertation work.

 Signature of Candidate

 Prabhjot Singh Bal

 R.No 41400003

ii

SUPERVISOR’S CERTIFICATE

This is to certify that the work reported in the M.Tech Dissertation entitled

“RESTFUL WEB SERVICE PROTOCOL TESTING USING TTCN-3”, submitted

by Prabhjot Singh Bal at Lovely Professional University, Phagwara, India is a

bonafide record of his / her original work carried out under my supervision. This work

has not been submitted elsewhere for any other degree.

Signature of Supervisor

 (Prof. Dalwinder Singh)

 Date:

Counter Signed by:

1) Concerned HOD:

HoD’s Signature: ________________

HoD Name: ____________________

 Date: ___________________

2) Neutral Examiners:

External Examiner

Signature: _______________

Name: __________________

Affiliation: ______________

Date: ___________________

Internal Examiner

Signature: _______________

Name: __________________

Date: ___________________

iii

ACKNOWLEDGEMENT

 This Master of Technology Dissertation work is done for fulfilling the

requirements of the School of Computer Science and Engineering, Lovely

Professional University, Phagwara, Punjab, during the period Jan 2017 to June

2017.

I would like to thank my supervisor Prof. Dalwinder Singh mostly and also

other Computer Science Department faculty members for showing interest in this

dissertation work, and providing frequent guidance and pointing out flaws in

preparing, planning, research methodology and presentation. Without the support of

my advisor this dissertation work would not have been possible, as he kept me on the

right track of doing the right work at the right time as required.

I am very grateful to Prof. Dalwinder Singh for showing extreme patience and

inspiring persistence while guiding me through this dissertation work.

Phagwara, May 29th, 2017

Prabhjot Singh Bal

iv

TABLE OF CONTENTS

CONTENTS PAGE NO.

Inner first page – Same as cover .

PAC form .

Declaration Statement i

Supervisor’s Certificate ii

Acknowledgement iii

Table of Contents iv

List of Figures vi

List of Tables vii

List of Acronyms / Abbreviations viii

Abstract ix

CHAPTER1: INTRODUCTION 1

1.1 SOFTWARE TESTING 1

1.2 SOFTWARE TESTING TECHNIQUES 2

 1.2.1 BLACK BOX TESTING 2

 1.2.2 WHITE BOX TESTING 3

 1.2.3 MANUAL AND AUTOMATED TESTING 4

 1.2.4 STATIC AND DYNAMIC TESTING 4

 1.3 WEB SERVICES 5

 1.4 WEB SERVICES TECHNOLOGIES AREA 6

v

TABLE OF CONTENTS

CONTENTS PAGE NO.

 1.5 WEB SERVICES TESTING AREA 7

 1.6 WEB SERVICES TESTING TECHNOLOGIES

 EVALUATION 9

 1.6.1 TTCN-3 9

 1.6.2 SOAPUI 17

CHAPTER2: REVIEW OF LITERATURE 18

CHAPTER3: SCOPE OF THE STUDY 28

CHAPTER4: PRESENT WORK 29

4.1 PROBLEM FORMULATION 29

 4.2 OBJECTIVES OF THE STUDY 30

 4.3 RESEARCH METHODOLOGY 30

CHAPTER5: RESULTS AND DISCUSSION 36

5.1 EXPERIMENTAL RESULTS 39

 5.2 COMPARISION RESULTS 45

CHAPTER6: CONCLUSION AND FUTURE SCOPE 49

 6.1 CONCLUSION 49

 6.2 FUTURE SCOPE 49

REFERENCES 50

vi

LIST OF FIGURES

FIGURE NO. FIGURE DESCRIPTION PAGE NO.

Figure 1.1 Software Testing Life Cycle 1

Figure 1.2 Black-Box Testing 2

Figure 1.3 White-Box Testing 3

Figure 1.4 Using Specifications in Software Testing 5

Figure 1.5 SOAP based Web Service 5

Figure 1.6 Model for Test System 7

Figure 1.7 Classification Tree Method Of Test Data Generation 11

Figure 1.8 TTCN-3 System Adaptability 13

Figure 1.9 MSC Test Reporting View (Titan TTCN-3) 14

Figure 1.10 Distributed TTCN-3 Test System 16

Figure 2.1 Abstract Test and Execution Systems 21

Figure 2.2 TTCN-3 Test System Architecture 22

Figure 4.1 Flow of Methodology 33

Figure 5.1 Distribution of Test Development Efforts 36

Figure 5.2 Titan TTCN-3 Workspace Environment 37

Figure 5.3 SoapUI Workspace Environment 38

Figure 5.4 SoapUI Execution View with Logs View 40

Figure 5.5 Titan TTCN-3 Execution View with Summary Logs 40

Figure 5.6 Titan TTCN-3 Execution View with Detailed Logs 41

Figure 5.7 Averaged Execution Times across all runs 45

vii

LIST OF TABLES

TABLE NO. TABLE DESCRIPTION PAGE NO.

 Table 1.1 REST Service Methods 7

 Table 5.1 Test case ‘GetAllOptions’ execution times 41

 Table 5.2 Test case ‘GetAllUsers’ execution times 42

 Table 5.3 Test case ‘AddNewUsers’ execution times 43

 Table 5.4 Test case ‘RemoveSUsers’ execution times 44

viii

LIST OF ACRONYMS / ABBREVIATIONS

No. ABBREVIATION DESCRIPTION

 1. TTCN-3 Testing and Test Control Notation 3

2. SOAP Simple Object Access Protocol

3. DTD Document Type Definitions

4. REST Representational State Transfer

5. SUT System Under Test

6. UML Unified Modelling Language

7. SOA Service Oriented Architecture

8. ETSI European Telecom Standardization Institute

9. XML Extensible Markup Language

10. JSON JavaScript Object Notation

11. IDE Integrated Development Environment

12. TM TCN-3 Test Management

13 TCI TTCN-3 Test Control Interface

14 TRI TTCN-3 Test Runtime Interface

15 MSC Message Sequence Chart

ix

ABSTRACT

Web Services are considered an essential services-oriented technology on networked

application architectures due to their language and platform-independence. Their

language and platform independence also brings difficulties in testing these services.

In this dissertation, a comparative evaluation of testing techniques based on, TTCN-3

and SoapUI, for contributing towards resolving these difficulties is performed. This

dissertation's approach distributes test activities on both server and client sides to

ensure a well-organized web testing process. By specifying test suites at an abstract

level in TTCN-3 as against GUI commands of SoapUI they are programming

language and platform independent, and can be reused with testing of multiple Web

Services on the Internet and Intra-nets. The major communication protocol used in

recent past for Web Services was SOAP being mainly XML over HTTP, but more

recent trends brought RESTful Web Services, and Web-Socket enabled Services etc.

Web Service testing considers functionality, load and stress aspects to measure how a

Web Service performs for single clients and scales as the number of clients accessing

it increases. This dissertation work explores the automated testing of Web Services by

using both TTCN-3 and SoapUI. A comparative evaluation technique is attempted for

server and client side testing processes mapping RESTful service descriptions to

TTCN-3 Abstract Test Suite on server end, and RESTful client test systems with both

TTCN-3 adapters and SoapUI API, with encoding components implemented for each.

In this dissertation, it is explored how a test specification and implementation

approach with testing tools like TTCN-3 and SoapUI can be used to define test suites

for RESTful Web Services employing different levels of abstraction and

implementation. Aspects of TTCN-3 and SoapUI are demonstrated, including test

execution and a powerful mechanisms in TTCN-3 that allows a separation between

behavior and the conditions governing behavior.

1

CHAPTER 1

INTRODUCTION

1.1 Software Testing

Software testing is the process of validating and verifying a software program or

application. It involves checking for the correct functionality of the system. It also

confirms that a project meets the technical and business requirements as expected.

The testing procedure includes measurement and comparison of the expected outcome

with the actual outcome, which helps in detecting the errors which might occur during

the analysis, design and development of the project.

Any software application must not result in failures and give correct results. In order

to ensure this, defects in the software need to be identified at the earliest stages of the

software life cycle. These can become very expensive in the future or the later stages

of the software development life cycle. Hence timely testing can ensure the quality of

the software product and in turn when delivered to the customers helps in gaining

their confidence.

Figure 1.1: Software Testing Life Cycle

Two important terms needed to be clear about when considering software testing are:

Test Planning

Test Analysis

Test Design

Test Construction

Test Execution

Results Analysis

Reporting

Implementation

2

Validation: Software validation is a dynamic process. This method is used to ensure

that software satisfies all the requirements that were laid out for its construction. This

validation is usually done both during and at the end of the software development life

cycle.

Verification: Software verification is a static process. Verification tests those very

conditions which were laid out at the starting of the development cycle in order to

confirm whether they have been satisfied or not.

1.2 Software Testing Techniques

Software Testing can be classified into the following forms:

1. Black Box Testing and White Box Testing.

2. Manual Testing and Automated Testing.

3. Static Testing and Dynamic Testing.

1.2.1 Black Box Testing

Black Box method is a type of testing in which the test developer and executor need

not have any knowledge about the internal workings of the software. It is also referred

to as Functional Testing. The Tester develops test cases on the basis of functional

specifications and interfaces of the software. It does not require any knowledge of the

implementation and it can be done along with development.

Figure 1.2: Black-Box Testing

Types of Black Box Testing:

Boundary Value Analysis: In this type of testing different boundary conditions are

tested. Both invalid and valid boundaries are identified first. On the basis of these

boundary conditions, the test cases are developed and executed against the software

Input Output

3

under test. It is very useful and easy to apply and provides good results in terms of

fault detection.

Equivalence Partitioning: In this method the software under test is divided into

various partitions. The division of the partitions is on the basis of similarity of data

usage or similar functionality. Valid and Invalid test cases are developed to test these

same conditions. The invalid conditions should give wrong results whereas the valid

conditions should provide the correct result.

State Transitions: State transitions testing is mainly conducted to test the transitional

changes in the system under test. When an action is taken to cause change of system

state from one to another, pre and post conditions have to be tested. It also requires a

graphical presentation to ensure consistency of state changes.

1.2.2 White Box Testing

White Box testing is also called as the structural or code based testing. In this type of

testing, the tester has good knowledge of the internal workings of the system under

test. It is also known as clear glass testing, in which all internal code, control,

conditional branches of code are known to the tester. The test cases are executed to

validate the code. It is usually done at the Unit or Integration testing level.

Figure 1.3: White-Box Testing

Different types of White Box testing techniques are:

Statement Coverage: In this type of testing the test cases are built to cover all

possible statements of code. This type of testing is usually done during Unit testing.

The aim is to cover each and every statement of code in the software under test.

If <condition>

then <statement 1>

else < statement 2>

Input Output

4

Branch Coverage: In this type of testing the goal is to ensure that each one of the

possible branches from each decision point is executed at-least once and thereby

ensuring that all reachable code is executed correctly.

Condition Coverage: It is to test all the conditions of the system under test. Test

cases are developed to test both valid and invalid conditions. Condition coverage is

also known as Predicate Coverage in which each one of the Boolean expressions have

to be evaluated to both True and False values.

Path Coverage: In this type of testing all the paths leading to the final decisions are

tested. All possible control paths are tested, including all loop paths. The test cases are

prepared based on the logical complexity measurement of a software design.

1.2.3 Manual and Automated Testing

In manual testing the system under test is tested manually, which means to say

without using any automatic tools or test scripts. In these methods, the tester plays the

role of an end user and performs the testing to identify defects and unexpected results

from the system under test. In manual testing the test cases are generated and testing

is done as per the test plan in manual mode. The drawbacks of manual testing are that

it is time consuming, less reliable, risky and can provides incomplete test coverage.

By using automated testing the testing is done with the help of automated tools and

test scripts (test suites). This technique leads to extensive tests of the software quality

in completeness. Automated testing is less laborious, much more reliable and faster to

execute. There is a test suite development phase followed by a test system execution

and subsequent results analysis phases which are partially automated also.

1.2.4 Static and Dynamic Testing

Static testing is also known as specification testing. It is performed while the software

is static and not in execution. It is used to test the requirement specifications, design

specifications, coding and complete system specifications. The tester can impersonate

the customer to check specifications of the system under test. This method is used to

check the various attributes such as completeness, correctness, consistency, relevance,

feasibility and testability. On the other hand dynamic testing is used to test software

once it is in execution. The software is tested for operating as expected and

satisfactorily working according to specifications. The actual results from the system

5

under test are compared with the expected results in order to identify and resolve

problems in the software.

Figure 1.4: Using Specifications in Software Testing

1.3 Web Services

In the last many years there has been a proliferation of web services and applications

as part of the Service Oriented Architecture (SOA) based solution offerings prevalent

for solving the modern day distributed computing problems. Web Services are

considered as a prevalent software integration technology on Internet and Intranet

platforms due to its inherent nature of language and platform-independence.

Figure 1.5: SOAP based Web Service [12]

Requirements

Specifications

System Specifications

Design Specifications

Module Specifications

6

These Software Artifacts have moved applications from a relatively small number of

large application deployments to a large number of small application deployments

throughout the internet and various enterprise networks. As Web Services adoption

keeps rising, more developers are doing more quality testing on them early and often

in the development life-cycle to ensure that all the functional modules used by

applications work correctly and efficiently all the time.

1.4 Web Services Technologies Area

The language and platform independent nature of Web Services technology brings

difficulties in testing their functional as well as non-functional behavior using a

uniform set of automated testing tools. Until some time ago the major communication

protocol used was Simple Object Access Protocol (SOAP) being mainly XML over

HTTP. The data exchanged with web services followed precise formatting rules in the

form of XML Document Type Definitions (DTD) or more recently the proposed XML

Schema. More recently after its introduction, REST which stands for Representational

State Transfer, is an architectural style for networked hypermedia applications,

primarily used to build Web Services that are lightweight, maintainable, and scalable.

A service based on REST is called a RESTful service. REST has become one of the

most important technologies for developing Web Applications. Its importance is likely

to continue growing quickly as all technologies move towards an API centric

orientation on the web.

Every major development platform now includes frameworks for building SOAP and

RESTful Web services. REST however is not dependent on any protocol, but almost

every RESTful service uses HTTP as its underlying protocol. Recent times have seen

the advent of SOAP as well as RESTful Web Service testing technologies which

evaluate functionality and load among other aspects to measure how a Web Service

performs for single clients and scales as the number of clients accessing it increases.

This dissertation applies to automated testing of Web services by usage of the Testing

and Test Control Notation (TTCN-3), as well as the popular SoapUI API, software

testing technologies and tools. This dissertation work concentrates on the various

technology aspects for the development and execution of automation test suites for

SOAP and REST based Web Services using these two toolsets.

7

Table 1.1: REST Service Methods

HTTP Methods GET POST PUT DELETE

Meaning

GET to

retrieve

information

POST to

add new

information

PUT to

update

information

DELETE to

remove an entity

Example

GET

/store/customers/

1234

POST

/store/customers

PUT

/store/customers/1

234

DELETE

/store/customers/1234

1.5 Web Services Testing Area

Web Services testing is different than other application testing methods to some

extent. In case reference is taken from the Universal Testing Method as a starting

point, in many ways testing a Web Service is no different than testing any other

software. Only some of the steps can take on bit of a different flavor in practice as

outlined below.

Modeling the Test Space: A clear understanding of the components of the Test

System (TS) and the target System Under Test (SUT) is acquired before even an

abstract test system is defined. Model-based testing has recently gained attention with

the popularization of models (including UML based) in software design and

development.

Figure 1.6: Model for Test System [18]

8

Determining Coverage and Oracles: When testing Web services, coverage becomes

important. One cares about all the same coverage cases which are cared about with

non-web service testing (scenario coverage, requirements coverage, code coverage,

and application data coverage), but now schema coverage gets added to the list also.

A schema mapping document tells what data should be stored in what element and

when it should be there.

Determining the Test Procedures: An initial problem when performing Web Service

testing is management of all the testing and data files (typically Text/XML/JSON

formats). A plan is required for handling files that need to be managed manually.

Keeping track of Requests, Expected Responses and Actual Responses is important

for the Test System. In common cases of having hundreds of test cases, and hundreds

of test data files there is a need for programmed scripts to make the management of

the test process automated and well managed.

Operating the Test System: There are a lot of great tools available for testing Web

Services. SoapUI is a good Open Source option having many technical features for

test system execution. As part of this dissertation work much time was spent to

speculate using a TTCN-3 based tool for measuring Web Service Quality. There is

always the possibility of using homegrown tools written in C/C++ and Java to

perform Web Service testing also. Trying more than one tool before settling with a

Test System is usually prudent. Once there is adequate and careful comparison

between the tools used, SoapUI and TTCN-3, it could provide for an educated

recommendation for a Test System Developer.

Evaluating and Reporting the Test Results: Evaluating the results for Web Service

tests can sometimes be really easy, and sometimes painful. There are many things

required to practice sound Test Reporting such as ensuring at least someone on the

test team knows the schema inside out and can see the entire mapping document in

their mind while looking at the response files. It’s also found that custom logging

(both in Test Execution tool and in the Web Service under test) can help capture the

results better. Other concerns that come into play can be authentication, authorization

and encryption issues. There is good amount of importance associated with the testing

9

system tools that one uses for testing Web Services, e.g. in this case, SoapUI and

TTCN-3 (Titan).

1.6 Web Services Testing Technologies Evaluation

Over the last decade or so there have been continuous improvements in the

technology area related to testing of Web Applications in general and Web Services in

particular. The primary test tool of consideration for this dissertation, TTCN-3 (Titan),

was originally designed as a telecommunications testing platform and used by

Ericsson extensively, however it has proven to be an adaptive and powerful platform

for Web Application Testing also. On the other hand SoapUI is a popular open source

Web Service testing application for Service-Oriented Architectures (SOA) and

Representational State Transfers (REST) based systems. Its functionality covers Web

Service inspection, invocation, simulation and mocking, functional testing, load and

compliance testing.

Major challenges to Web Service testing in the recent past have been integration with

existing test frameworks, service-oriented architecture, rich client interfaces, and

security vulnerabilities among others. Through careful analysis and practical

experience in industrial projects, testing tool developers have developed mechanisms

to address each of the above mentioned aspects of Web Application testing. In this

dissertation the attempt has been to understand and evaluate TTCN-3 (Titan) and

SoapUI toolsets in terms of their facilitation for Web Services Quality assessments

along-with the testing models they support. A brief introduction to both the testing

tools used in this dissertation is provided below.

1.6.1 TTCN-3

TTCN-3 is a standardized test specification and test implementation language

developed based on the experiences from previous TTCN versions used at the

European Telecommunication Standardization Institute (ETSI). It's applicable for all

kinds of black-box testing for reactive and distributed systems, e.g. Telecom systems

(ISDN, ATM); Mobile (Telecom) Systems (GSM, UMTS); Internet (has been applied

to IPv6); CORBA based systems. The TTCN-3 technology has built in constructs for,

Configuration: dynamic and concurrent test configuration with test components

https://en.wikipedia.org/wiki/Service-oriented_architecture
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Web_service
https://en.wikipedia.org/wiki/Web_service

10

(parallel and serial), Communication: various communication mechanisms

(synchronous and asynchronous, message based and procedure based), Control: test

case execution and selection mechanisms. The most important concept used is Black-

Box Testing with TTCN-3, wherein a Test System (TS) comprising of a collection of

Test Cases (TC) and Test Components (TCo) executes against a System Under Test

(SUT) or an Implementation Under Test (IUT). The Test System is composed of Test

Components (Serial and Parallel ones) along-with an interconnected network of

Communication Ports. A particular arrangement of these components in a Test System

is referred to as a Test Configuration. The Test Components and Communication Ports

support an extensive set of possible Test Configurations suitable for constructing any

possible Test System. Each Test Component has its own local verdict (state

representing testing progress status), which can be set and read during Test

executions. A Test Case finally returns a global verdict indicating the result of a Test

System execution. In this particular dissertation work the SUT comprises of

components that make up the Web Services domain. The test system interface is

towards such a SUT. Using an Automation Tester perspective in this comparison with

SoapUI tool, the attempt is to reflect on the Testing of Web Services domain

implementing TTCN-3 language constructs listed earlier. However as part of this

research work into the usage of TTCN-3 and SoapUI, there are some other aspects

from which Titan TTCN-3 is a strong toolset for Web Services Test Automation,

which are highlighted in the section below.

Easy Programmability: This standardized testing language (TTCN-3) has the look

and feel of a regular programming language but without the complexity that such

languages often introduce as it concentrates exclusively on testing of systems. There

are many tutorials and courses to learn TTCN-3 for someone familiar with

fundamentals of programming. The TTCN-3 standard at ETSI itself provides

examples that demonstrate the usage of specific features of the language. The aim of

TTCN-3 is to provide a well-defined syntax for the definition of tests independent of

any application domain. The abstract nature of a TTCN-3 test system makes it

possible to adapt a test system to any test environment. This separation significantly

reduces the effort required for maintenance allowing experts to concentrate on what to

test and not on how.

11

Test Data Generation: In this time of fast testing cycles the importance of

automated test data generation is paramount. With the power and flexibility of a

programming language with a rich data type set, TTCN-3 provides all the facilities for

automated test data generation. These test data generation modules go hand in hand

with the test case modules which utilize them to perform various test case executions

against the system under test.

Figure 1.7: Classification Tree Method of Test Data Generation

With a rich collection of types built into the TTCN-3 language standard it is

convenient for test developers to write object validation modules, for instance

generating the set of possible values to test a web service method with boundary and

validation conditions. A rich set of constructs are available for manipulating bits,

bytes, numbers, characters, strings and other common objects used as arguments to

web methods. TTCN-3 modules can support both application specifications based and

program structure based test data generation for use in the test cases. In the case of

test data generation based on application specifications methods such as the

classification tree method depicted in the figure above could be used to create a

minimal set of possible data for use with test cases against a web service system under

test. Do refer to the figure above for an outline of this methods algorithmic

breakdown structure using test data classification technique.

Data Set

Size Attrib
Color Attrib Shape Attrib

Small
Large Red Green Circle

Square

12

Numerous methods and algorithms for test data generation have been and could be

utilized by the test developer using Titan TTCN-3 based on the knowledge and

preference of the tester but as far as language richness of TTCN-3 all could be

implemented using the test specifications language constructs.

Test Suite Maintenance: To measure the external attributes of a test system product,

execution of the product is usually required, whereas for measuring the internal

attributes, static analysis of the test system is sufficient. Since the attempt is to

highlight quality characteristics such as maintainability of TTCN-3 test specifications,

only internal test system attributes are considered. Internal product metrics can be

structured into size and structural metrics. Size metrics typically measure the

properties of the number of usages of programming or specification language

constructs. Structural metrics analyze the structure of a program or specification. The

most popular examples are coupling metrics and complexity metrics based on control

flows or call graphs. To assess the overall quality of software, usually averages of

metrics are applied. By additionally considering the metrics of individual language

elements, it is possible to identify locations of inappropriate usage of programming or

specification language constructs. For example, by counting the number of references

to each definition, issues like unused definitions can be identified. However, some

issues cannot be detected by simple metrics, but need a pattern-based approach. These

kinds of issues are called bad smells or code smells. Examples are duplicated code or

parameterized definitions, which are always referenced using the same actual

parameter values. The results of an issue detection approach that is based on locating

patterns of TTCN-3 code smells looks very promising [38]. The focus on quality

assessment based on metrics leads to holding the TTCN-3 test suite in good light.

Test Parameterization: TTCN-3 test development and execution system lends by its

very architecture to be flexible and adaptable to accommodate many types of testing

environments. Module parameters are commonly used to handle parameters that are

specific to the System Under for example, the IP address for use with a Domain Name

System (DNS) server that is to be tested. Module parameters allow the design of test

suites independent of a specific SUT instance. They allow using the same test system

executable in different environments, for example, against a local server in a test lab

13

scenario or somewhere out in the field where test execution against the system under

test is desired.

Figure 1.8: TTCN-3 System Adaptability [4, 5]

Test Execution: The TTCN-3 test system is specified in abstract notions and some of

the abstract behavior and state constructs need to be implemented. The Titan TTCN-3

tool translates abstract TTCN-3 specifications into executable code that is optimized

to run on various processor architectures using C/C++ Compilers and Assemblers.

The Titan TTCN-3 toolset also allows to adapt the test runtime environment to test

management allowing for pluggable modules such as for test system logging, test

execution control that could be customized to suit a test developer and executor. The

Titan TTCN-3 toolset also implements the communication and test platform aspects

that are required by the executing test system for communication with the system

under test and its underlying operating platform as depicted in figure above.

Test Reporting: When using Titan TTCN-3 there are quite a few configurable

options for test logging and reporting. It allows for artifacts to be saved to files that

could go into a test management repository. Generally, this is a repository

14

communicating and establishing transparency to the test team’s activities of the

executions during the test cycle, including both defect information and test case run

reports information. Titan TTCN-3 allows for graphical message sequence charts as

shown in the figure below to capture the execution state completely. Normally, the

test development team, test environment support team, and the wider business team

find the reports archived in the test management repositories quiet useful. The test

reports can be correlated to the test plan as well as the test design which is very useful

for quality in large testing environments.

Figure 1.9: MSC Test Reporting View (Titan TTCN-3)

The TTCN-3 language feature set comprises many more capabilities:

 A well-defined static and operational semantics through its standards.

 A rich type system with many primitive types added to the regular set.

 A powerful built-in data matching mechanism and matching expressions.

 Snapshot semantics that ensure and preserve the order of external event arrival

into the test system.

 The ability to define tests with multiple test components executing in parallel.

15

 Support for message-based as well as procedure-based communication

paradigms with synchronous and asynchronous modes.

 Support for dynamic test configurations with test components that can be

(re)created and (re)connected on-the-fly even in distributed test systems.

 The ability to specify execution parameters at runtime to ease re-targeting of

test suite execution in different testing environments.

 Support for timers which can be customized using TRI interfaces too.

 The ability to automate test execution driven by external sources using the

TTCN-3 Test Management interface (TCI-TM).

Flexibility: Prominent flexibility features of the TTCN-3 language are:

 The language is completely independent of technology, operating systems and

implementation domains.

 There are no practical limits to the extent that tests or test systems can be

adapted to users' needs:

o Test systems can be integrated easily with the most appropriate test

execution management software using TCI Test Management interface

(TCI-TM)

o Test execution traces can be visualized in many suitable formats using

the TCI Test Logging interface (TCI-TL)

o Any encoding scheme can be implemented and integrated using the TCI

Codec and value APIs provided by the TTCN-3 standard

o Test systems can be adapted to any communication mechanism using

the TTCN-3 Runtime Interface (TRI) System Adapters

o Test systems can be adapted to any timing model using the TTCN-3

Runtime Interface (TRI) Platform Adapters

 Highly Scalable Automated Testing System

o Adaptations can be configured to the current needs while the test scripts

remain unchanged and can be used in different development phases

16

o Test components can be added to existing test cases to test new

interfaces of the SUT as they appear

 Test Components can be used both to test and to emulate system interfaces

 Very Extensible Test Systems

o Standardized mappings to other external type systems available such as

ASN.1 and XML

o Integration of external functionality is possible using the TRI Platform

Adapter

o Multiple presentation formats are available - textual and graphical

Titan TTCN-3 supports a standalone as well as a distributed model of parallel test

components that is quiet missing in tools such as SoapUI. In this mode Test

Components of the TTCN-3 test system could execute in a distributed manner over a

collection of computers hosting the test system as is depicted in the following

diagram.

Figure 1.10: Distributed TTCN-3 Test System [30]

There is a central controller associated with the Main Test Component node which

communicates and coordinates with all the other Test Components that are running on

17

the remote hosts on the networked system. Such test environments are very useful for

designing and executing test systems that are used to run against current day

distributed systems under test such as Internet of Things applications.

1.6.2 SoapUI

SoapUI is a leading cross-platform API Testing tool for testing of Web Services [31].

It enables Test System developers to execute automated functional, regression,

compliance, and load tests on different kinds of Web based API's. It supports all the

standard protocols and technologies to test all kinds of Web based API's including

SOAP, REST etc. Its interface is simple and it enables both technical and non-

technical users to use it productively and seamlessly. SoapUI is not only a functional

API testing tool but also lets one perform non-functional testing such as performance

and security tests on different kinds of Web API's as required. It allows test developers

to use advanced scripting (custom code depending on the Test Scenario). It has built

in functions to perform Security Testing with the capability to perform a complete set

of vulnerability scans against Web API's. It pro-actively prevents SQL Injection to

secure the databases relied on by Web Applications. It scans for stack overflows, cross

site scripting, while performing fuzzy and boundary scans to detect and avoid erratic

behavior of the Web Services under test. It has built in support for Load Testing by

distributing the Load Tests across multiple agent components. It can simulate high

volume and real-world load testing with ease allowing advanced custom reporting to

capture various performance parameters for end-to-end System Performance

Monitoring. SoapUI has a most comprehensive Protocol Support for Web API's with

built in support for, HTTP, WSDL, SOAP, REST, JDBC, and JMS etc. Although most

of the functionality is available with the Pro version of the toolset and not the Open

Source community version. It is for the popularity reason that it is being used in this

dissertation work, as a benchmark for comparison with the TTCN-3 based Test

Systems for testing Web Services especially RESTful ones, to determine time and cost

benefits of using an open source edition of Titan TTCN-3 over SoapUI.

18

CHAPTER 2

REVIEW OF LITERATURE

Atkinson Colin, Barth Florian, Brenner Daniel, and Schumacher Marcus [6], present a

new approach to software services testing which combines tabular tests specification

techniques like Framework for Integrated Test (FIT) with programmatic techniques

like xUnit and TTCN-3. This concept is that of ‘Test Sheets’ and two types are

described, input test sheets and result test sheets. They contain state conscious inputs

to the web service interface and the results generated by the calls to the services

respectively. The authors describe a neat method of creating higher level test sheets

from lower level sheets using programming concepts of conditions, branching, and

parameterization of the sheet elements. In order to apply a test sheet against a SUT,

the language independent test definition needs to be transformed into executable code,

which can be generated in the form of stubs based on the service description

languages such as WSDL. Future work is suggested for extension to test sheets that

extends the normal qualitative test results by the measures of quantitative properties

of the SUT. This allows to measure timing, deviations and other key characteristics of

web services to be measured. Also information could be used to validate the constraint

characteristics for commercial third-party web-service providers. It’s suggested that

these measures may be combined with a service registry in order to create a QoS-

Aware Service Repository.

Huang Teng, Ding Zhizhong, Duan Younan, Chen Yin, and Ding Lu [7], are

concerned with the design of a reasonable adapter model for RRC (Radio Resource

Control) testing using TTCN-3, which satisfies the requirements of ETSI RRC

specifications. After elaborating its mechanism and main functionality in the general

structure, an implementation model as running parts of the RRC test case is described.

The proposed adapter implements the functionality using reduced resource

consumption. By using only a few real machine ports, it has better performance

because of system load reduction and has better control of the transmission timing. It

enables multi-protocol communication between Test Execution (TE) and System

Simulator. Further suggestions are for improving the performance and functionality of

the adapter using real time TTCN-3, released as TTCN extensions, to enhance the

19

capability of synchronization of multiple logical channels for the complete LTE RRC

Test Suite.

Katara, Mika [8], neatly elaborates the TTCN-3 Control interfaces and the TTCN-3

Run time interfaces and components of the TTCN-3 test system that are controlled

and managed by the same, such as Test Management, Encoder/Decoder, Logging

System and Platform adapters. The author proposes a neat Communications

Management System that bridges the TTCN-3 Test System with a diverse set of

Systems Under Test. The architecture of the CMS system is formulated and suggested

for implementation and adaptation. Further work suggestions are for improving the

performance and functionality of the Connection Management System by providing

support for a wide variety of end-to-end protocols in the adaptation layer.

Kumar Dinesh [9], has given a conceptual insight on operator action validation using

a validation slice created independent of the real system interfaces, i.e. Web Services.

The V Model of test driven parallel development is elaborated in the context of Web

Services testing. Web Applications testing approached from Functional, Browser

Compatibility, Performance, Transactions, Compatibility & Security aspects is

suggestively reviewed. TTCN-3 is compared as a Web Testing tool against PureTest,

highlighting the use of recent TTCN-3 HTML related extensions, which lead to more

extensive and accurate Web Testing using TTCN-3. However PureTest is upheld as a

better Web Testing tool as of writing of the paper. Future Work implicitly

recommended is that developments and research is welcome in the area of fast HTML

(web protocols) parsing and robustness in the Web Testing components of TTCN-3.

Liu Yang and Hang Bei [10], highlight that dependencies among the abstract test

case/suite, the codec entities and adapters (SA and PA) are rigidly configured in Test

Systems. There is no explicit semantic definition of these dependencies in the TTCN-

3 standards so far. The Solution suggested: Using a Capability Description Language

for specifying the dependencies among the abstract test case/suite, Codec entities,

Adapters (SA and PA), and a Test Adapter Framework, to automatically map, select,

and load the Adapter which complies with the requirements of test cases. This is

based on the Capability Description Language and is transparent to the test system.

The Test System Interface (TSI), Codec (CD), System Adapter (SA) and Platform

20

Adapter (PA) entities have associated capability description language files describing

the communication, data and external functionality attributes of the same. Using these

as part of configuration management, the selector component queries the TE for

attributes, based upon which it acquires references to objects through a mapper, which

is brought in by the loader from CD, TA, or SA jars. Further work is suggested on the

lines of better implementations for CDL based Test development and execution tools.

Rentea Cosmin, Schieferdecker Ina, and Cristea Valentin [11], state the utility of

TTCN-3 as representing a Test Design with its Abstract Test System (ATS) and

leaving the Test Implementation specifics with the Codecs & System Adaptation

modules. Testing user experience with TTCN-3 is considered at the end-user level

with server content that the general HTTP protocol supports. The concept of Mapping

Repository for storing Web Target Test Data is specified to automate the process of

web data extraction. The other significant concept is that of the TWeb module of

TTCN-3 which is researched in relation to the Mapping Repository and the

TWebCodec as well as TWebAdapter components. One of the next things suggested

to be done is the actual integration of WebTestGUI (Mapping Repository) with

extensions suggested, and TWeb (Web Testing Implementation components) as

Eclipse plug-ins. Suggestion is that distributed test setups for efficient load,

performance, scalability tests are possible using the TTCN-3 test platform. Also

similar implementations with SOAP based and other Web Services is suggested.

Schieferdecker Ina and Stepien Bernard [12], consider both functionality and load

aspects for testing how a Web Service performs for single clients and scales as the

number of clients accessing it increases. This paper discusses the Automated Testing

of Web Services by use of the Testing and Test Control Notation (TTCN-3). A

mapping between XML data descriptions to TTCN-3 data is presented to enable the

automated derivation of test data. This is the basis for functional and load tests of

XML interfaces in TTCN-3. The mapping rules and prototypical tools for the

development and execution of TTCN-3 tests for XML/SOAP based Web Services are

elaborated. A further key element of the test framework is the automated translation

of XML data to TTCN-3, so that test skeletons can be generated directly from the

specification of the Web service. The conversion tool together with the TTCN-3

compiler and execution environment TTthree provides us a complete tool chain for

21

test data type generation, test development, implementation and execution. The test

framework has already been used successfully for selected Web services. Future work

involves furthering elaborate methods for test data generation. In particular, the

classification tree method could be investigated for potential extension towards the

generation of templates for SOAP responses. In addition, the test framework can be

enhanced to deal with further elements of Web Services like the specifics of WSDL

and UDDI.

Schieferdecker Ina and Vassiliou-Gioles Theofanis [13], layout the transition from

closed box testing systems to open ones driven by nature of current systems to be

tested. Clearly stated is openness of specification in terms of Data Types,

Configuration, Behavior, and Control in a Test System.

Figure 2.1: Abstract Test and Execution Systems [13]

Introduced to the TTCN-3 reader is the concept of a test pattern which is used as a

building block for extensions and frameworks which are reusable with appropriate

parametrization. The GPRS target device, G20, related test scenarios, explain adding

a new device to the Test System and also adapting existing TTCN modules to TTCN-

3 with tool support (in this case TTwb, TTspec). Interesting reference is the use of

CORBA based API to run the test system against the G20 device. A Case Study

Description based (Test Framework) is suggested and further work is advised along

the lines of developing, extending, or using TTCN-3 test frameworks that are

accepted, and which tool vendors can integrate for required built-in support.

Schieferdecker Ina, Din George, and Apostolidis Dimitrios [14], elaborately present a

flexible Test Framework for Web Service verification realized using TTCN-3. The

techniques and methods used for this test framework elaborate on usage of a TTCN-3

22

compiler, an XML-TTCN-3 conversion tool, and a Test Adapter for XML/SOAP

interfaces to Web Services. The adapter explained is generic and thus enables testing

of any Web Service using XML/SOAP interfaces. The paper concentrates on

functional and load tests against multiple interfaces of a Web Service, giving an

elaborate example of a distributed load test with distributed test components.

Figure 2.2: TTCN-3 Test System Architecture [14]

Future work suggestions: Test Patterns beyond the presented functional, service

interaction, and load tests are suggested to be investigated using a similar framework.

Further collaborative and exploratory methods for test-data and test-behavior

generation, in particular, the classification tree method is suggested to be investigated

for potential extension to the generation of TTCN-3 templates. Also automated test

generation from UML Test Models is suggested.

Schulz Stephan [15], provides very useful insights into the area of TTCN-3 library

development with the objective of code reuse and improving the quality of testing

code artefacts. The author introduces a methodology for TTCN-3 library development

based on a layered approach, wherein closest to a TTCN-3 test suite is the TTCN-3

Test Suite library, followed by TTCN-3 Interface Libraries & other Common TTCN-3

Libraries forming layers respectively. The insightful examples given on client &

server component synchronization methods, and reuse of test behaviour inspire a test

developer to use these methods for implementing quality TTCN-3 library modules.

Further work is suggested along the lines of exploring TTCN-3 language construct

enhancements, such as intermediate verdicts for test components, that would make

reuse of TTCN-3 state and behaviour more feasible for TTCN-3 developers.

23

Stepien Bernard and Peyton Liam [16], give an insightful introduction to the

application of TTCN-3 in the area of Web Application Testing, as per functional,

quality of service, and performance testing’s. Clarity is provided on the mechanisms

and utility of Test System Abstraction for Web Testing using tools such as

HTMLUnit and JUnit for adapted implementations with a Web based SUT. Secondly,

the practical mechanisms of testing a Service Oriented Architecture (SOA)

application along with its component services is exhibited using TTCN-3. Thirdly,

Web Security testing methods are explored using TTCN-3 examples of penetration

testing for Web Sites, emulating both genuine user behaviours and attacker

behaviours in TTCN-3 test components. Further work is recommended along two

lines: Implementation work, one area is of exploring use of test agents’ architecture to

address quality of service issues related to response times. The root cause could

potentially be with any of the components in a SOA Web Application. Narrowing

down this problem using a TTCN-3 test suite is recommended. Architectural work

(Standards Change also), Recommendation is for TTCN-3 standard to adapt to needs

of Distributed Systems Under Test (in context of multiple Web Sites or Web

Applications being tested by a single test-suite concurrently).

Stepien Bernard, Peyton Liam, and Xiong Pulei [17], introduce the reader gently to

their TTCN-3 Web Testing architecture as comprising of, a) Abstract Test Suite: with

functional, integration testing logic, b) Implementation: with Codecs & Adapters,

which utilize frameworks such as HTMLUnit, HTTPUnit, JUnit, ServletUnit, etc., to

map the abstract test system with an actual web application System Under Test

(SUT). They present the concept of parallel coding and testing process, in which both

paths are progressing on the same functional specifications for the web application.

The abstract test suite (ATS) acts independently from the coding/decoding,

communication and presentation details using templates and pattern-matching to

capture relevant presentation and communication details. TTCN-3’s data types and

set-based operations are demonstrated to serve as powerful constructs for tracking and

verifying the information management done by a web application independent of

implementation details. Further work is recommended towards the extra level of

sophistication and skill required from test developers who wish to use this approach

(with specific web applications and test frameworks), with the benefits gained in

24

productivity (reuse) and effectiveness making this approach worthwhile for other test

development.

Stepien Bernard, Peyton Liam, and Xiong Pulei [18], evaluate the usage-suitability of

TTCN-3 as a modelling language for Web Penetration Testing. It’s demonstrated that

the inherent abstraction features in TTCN-3 make the process of generating Web

Penetration test campaigns simpler. Especially, the ability of combining separate

models for relevant web vulnerabilities and web application functions into a generic

web abstraction model and a TTCN-3 test framework is explored. The process of

generating web penetration tests is differentiated from functional testing by basing the

web penetration test model on the layout-foundations of the functional test model

once it’s formulated and specified. The web penetration test cases are derived from a

combination of the observed behaviour of a fully functioning web application and a

model of web vulnerabilities. Two models are built around TTCN-3 in order to enable

implementation of the model test cases. The TTCN-3 language as a testing language

has its own model that is based on the concepts of separation of concerns between an

abstract and concrete layer and within the abstract layer there is also a separation of

concern between behaviour and conditions governing behaviour revolving around the

TTCN-3 concept of a template. Also a specific abstraction model is constructed using

the TTCN-3 language to describe web tests using abstract data types separating

application data at an abstract level from HTML implementation and encoding details.

Further work, addresses two types of penetration test cases: SQL Injection and XSS

attacks. The author’s suggestion is to use the shown concepts and techniques for other

types of penetration tests, as well as addressing other classes of security attacks and

vulnerabilities.

Sun M, Zou J, and Ma Shi H [19], stress that complexity of modern

telecommunication systems leads to the need for thorough and systematic software

testing. Software testing is an expensive and time-consuming task involving

specification of what and how to test, and preparation of test descriptions in a format

that is accepted by the test equipment. In order to cut down the cost of manual testing

and to increase its reliability, steps are taken to automate the whole test case

preparation process. In this paper, they describe a model for automatic test generation,

and description of an implemented solution for automatic generation of TTCN-3 test

25

scripts based on parsing SIP call traces. The implemented solution is tested using

TITAN, a TTCN-3 test execution environment developed by Ericsson. Future work is

suggested to implement codecs with support for more protocols such as the data

transmission ones used around the SIP protocol.

Werner Edith, Grabowski Jens, Troschütz Stefan, and Zeiss Benjamin [20],

emphasize increased use of Web Services for critical applications introducing a need

for efficient testing approaches to assure their quality. The TTCN-3 testing language

is emphasized as well suited for black-box testing of such distributed systems. Also

due to its abstract test specification methodology, it allows easy adaptation to

different Web Service frameworks or platforms (e.g. Java, .NET). This paper

primarily presents a mapping mechanism from the Web Service Description

Language (WSDL) to TTCN-3 and guidelines for a corresponding automated

translator. By using the WSDL description of a Web service, it is possible to derive an

Abstract Test Suite (ATS) in TTCN-3 which provides the necessary abstraction from

the implementation, platform and the communication details. Author’s goal is to make

Web Service testing in TTCN-3 become more reliable, comprehensible, consistent

and efficient. Automated translation modules would enable the test developer to

concentrate on actual Web Service Test Development and avoid possible human

errors. Future work can be an attempt to couple the existing test case composer

(WSDL to TTCN-3) with a process description like the Business Process Execution

Language (BPEL) to automatically generate more advanced test cases.

Yanwu Tang [21], has focused on using TTCN-3 Codec interface implementation to

convert abstract data format (TTCN-3 Test System) to SUT (System Under Test)

specific binary data formats. Codec development significance is stressed as a major

part of all real test system development. Research focus is on improving the efficiency

of Codec development for test and tool developers. The VCL system tries to

overcome the limitations of the TTCN-3 Control Interface by providing a richer

Intermediate Data Type Representation building over the TTCN-3 standard

primitives. Future work is suggested to implement compiling, executing, controlling,

logging functions of TTCN-3 test system as Web Services. Also suggested is work for

easy-to-use system adapter with high configurability to make writing system adapters

much easier in Loong Testing (a TTCN-3 tool set from USTC).

26

Zhao Huiqun, Sun Jing, and Liu Xiaodong [22], guide on usage of Business Process

Execution Language (BPEL) for composing the structure of Web Services and their

work-flow. BPEL is introduced as a standard for Web Service Architecture with

particular attention to utilizing the same for Quality Control of these services. Another

tool introduced is, Labelled Transition System (LTS), for representing the BPEL

model. The model checking for logical correctness is done with the help of a

commercial toolbox CADP which is described in brief. A facility is introduced to

generated TTCN-3 Behaviour Trees (BT: using TTCN-3 ALT constructs) from the

BPEL-LTS systems. So logical model testing can be done prior to using TTCN-3 to

test the web-service systems represented by BPEL-LTS constructs. Authors attempt to

list step by step, the equivalence between LTS and BT for generating test case from

model checking counter-examples. For further work, the suggested direction is to

investigate and develop an approach to improving the reliability during web service

evolution cycle, finding the possible methods of how to generate traces based on the

clues where cooperation protocols are changed.

Malik Vinita, Gahlan Mamta [23], familiarize some of the popular Web Testing tools

such as Quick Test Professional (QTP), Selenium, Test Complete, SoapUI etc.

Providing clear advantages and disadvantages of using these in the context of Web

Application and Services testing. The authors compare the Test Systems along with

their host toolsets based on practical parameters of measurement such as capability of

tests scripts generation, script reusability, cost, execution, test result report, easy

learnability, and execution speed. The architecture of the Test Systems is suggested to

the reader for implementation and adaptation. Further work suggestions are for

performance and functionality based tool comparisons to provide support for a wider

variety of Web Testing scenarios.

Kumar Ravi, Singh AJ [24] describe the features of popular Web Application Testing

tools such as Apache J Meter, SoapUI Pro, WCF Storm, Soap Sonar etc. for functional

and load testing, listing some advantages of using each in the context of Web Services

testing. The authors compare the Test Systems based on these tools on practical

parameters of measurement such as response time, throughput, and average response

time. It is concluded that for the test web service the test tools SoapUI Pro and

27

Apache J Meter perform best with SOAPSonar following close by. Further work

suggestions are for performance and functionality based tool comparisons to provide

support for a wider variety of Web Testing tools and scenarios.

Wala Tanuj, Sharma Kumar Aman [25], describe features of Web Application Testing

tools such as Apache J Meter, SoapUI Pro, WCF Storm, Wizdl, Web Inject etc., listing

features of using these in the context of Web Services testing. The authors have

compared the Test Systems based on practical parameters of measurement such as

response time, throughput, average response time and input-output validity. It is

concluded that for the test web service the test tool Apache Jmeter performs best with

SoapUI Pro following close by. Further work suggestions are for performance and

functionality based tool comparisons to provide support for a wider variety of Web

Testing tools and scenarios.

28

CHAPTER 3

SCOPE OF THE STUDY

The work described in this dissertation is performed to explore and evaluate the

possibilities of utilizing alternative testing technologies such as TTCN-3, along-with

analysis of alternate techniques for Web Service Testing such as of functional, and

performance nature. For over a decade, qualitative and quantitative Web Testing

measurements have been performed with a variety of tools in the industry. In recent

years, TTCN-3 technology, which was a golden standard for telecommunication

standards testing at European Telecommunication Standards Institute (ETSI) has also

been gaining popularity for the quantitative measurement of Web Applications and

Services. One of the reasons for this trend is the possibility to use modern TTCN-3

technology with add-on implementations for testing Web based interfaces which

improves the precision and accuracy of the testing results. The well-established

techniques and principles used for functional and performance testing, are already

commonly used with SoapUI in the area of Web Services testing where it is firmly

established as a very popular tool. However, the analysis in this dissertation is of a

qualitative or semi-quantitative nature to allow successful adaptation of TTCN-3

technology for high quality standards of regulated Web Services testing, exploring the

needs for further innovation of approaches used in this area. In this dissertation work,

the main goal is to address several Web Service Testing challenges commonly faced

with functional and performance aspects of the testing process in order to help extend

the possibilities of utilizing TTCN-3 in this field as a real alternative for tools such as

SoapUI. Since SoapUI is currently much more popular than TTCN-3 for Web

Services Testing, the possibilities to improve the testing area with the use of alternate

methods is investigated and proposed with functional and performance viewpoints as

an aide to practicing Test Suite Developers. Since TTCN-3 is a multi-platform

technology addressing a wide range of black-box testing systems its multi-

dimensional usage is intended to be highlighted.

29

CHAPTER 4

PRESENT WORK

Test automation is an attempt to automate the development and execution of test

artifacts for measuring the quality of a system under test. It is used to verify that the

functions of a system under test are functioning correctly in normal circumstances and

behaving soberly in abnormal conditions. Test automation is a very essential part of

modern day testing life cycles and is becoming a regular part of the product

development cycle. As the software development market becomes more complex and

competitive along with more demanding consumers, the time to market for products is

becoming shorter. Software testing can be very time consuming and can take up lot of

cost in a project. In order to make software testing more effective and efficient there is

an ever-growing need for automation in testing processes. Implementing automated

testing with effective test case development and execution against the system under

test and subsequent automated analysis of results provides a higher rate of fault

detection, thereby leading to higher software quality. With automation methods test

development can resume earlier in the product development cycle and improve the

chances of faults being detected in the early phases of the development. This leads to

higher quality of software products and higher levels of satisfaction among the

customers. In order to provide automated test development and execution of Web

Service Testing Suites tools such as SoapUI and Titan TTCN-3 are used. SoapUI is a

well-established player in this area, but our attempt is to bring forth the benefits of

using TTCN-3 (Titan) in the area of Web Services testing.

4.1 Problem Formulation

In the recent past of software development much research has been done on

improving the software engineering process. Automated Software Testing is one of

the important areas of research in the software engineering space. It is required by the

software industry as it moves towards agile software development methods. Large and

complex software projects involve a large inventory of testing artifacts, their

development, their test data, their execution results and reports which need to be

maintained throughout the software life cycle. Such test suites provide functional,

regression, performance, load, stress and other types of testing against the system

30

being developed. Hence there is a need for increased test automation across

organizations, industries, and software technologies. Following this thought process it

was found to be interesting to follow test automation in the area of Web Services. Web

Services are fundamental to many of today’s software solutions and much research

has been done by various researchers on automated testing of Web Services. A

common problem encountered is the close association of the test cases with the

system under test. This lead to exploring technologies like TTCN-3 which provide the

capability to write abstract test suites making the test artifacts reusable over different

TTCN-3 implementations. To overcome the problem of tight binding between test

cases and systems under test, I explore the testing of RESTful Web Services using the

TTCN-3 implementation from Ericsson. I used a leading open source toolset SoapUI

as performance benchmark for measuring effectiveness of using TTCN-3.

4.2 Objectives of the Study

The objectives of this dissertation work arose from discussions, considerable literature

survey along with exploration of the contemporary technologies in the Web Services

testing area. The dissertation objectives are primarily focused on:

1. To apply TTCN-3 technology to testing of Web Services, and compare to

determine the effectiveness of using it over existing techniques prevalent with

SoapUI.

2. To determine the effectiveness of using TTCN-3 over SoapUI for reducing

Test Suite development cycle in terms of time spent and cost incurred by Test

Developers.

4.3 Research Methodology

Test Automation using the TTCN-3 development and execution techniques is used to

make the Web Services testing process efficient. The main aim has been to present

methods of developing an extensive and rich test suite to enable the tester to find out

maximum number of faults in the least amount of time i.e. as early in the software

development life cycle as possible. At the same time the testing budget has to be

considered also as organizations attempt to strike a balance between the extent of

31

testing on products and the quality of those products. Hence the attempt to illustrate a

method of testing Web Services using TTCN-3. This leads to using newer techniques

which are more efficient as compared to the other alternatives (such as SoapUI). The

methodology that is followed for this comparison of Web Service testing techniques is

concisely elaborated in the following steps:

Developing the Research Problem: As stated earlier the objective is to compare and

determine the effectiveness of using TTCN-3 over SoapUI for functional and

performance testing of Web Services. The clear intention is to explore gains in

efficiency with test development cycles, test coverage, and simplification of the test

framework, leading towards a more effective Web Services testing process. It is this

dissertation's direction to use open source tools, TTCN-3 (Titan) [30] and SoapUI

[31], in a test development environment setup consisting of a uniform platform on a

personal PC. The system used was a Windows 7 64bit pc system with 4GB of RAM

as a platform to run both toolsets, Titan TTCN-3 and SoapUI. While performing

literature survey related to software testing in general and web services testing in

particular, it was realized that automated testing tools satisfy the test requirements of

current software. In an automated test environment there is an ever-growing need to

create, organize, and manage a collection of test artefacts against a particular system

under test. Following this line of thought I explored the possibility of using open

source tools for fulfilling this need. During this attempt at exploring I came across the

use of TTCN-3 in a diverse set of testing areas and its consequent capability to adapt

to various testing requirements. There was interest to explore the Web Services

testing area, and found much literature related to testing of SOAP based web services

with TTCN-3. Interest evolved in exploring the application of TTCN-3 to the testing

of RESTful web services. At this point it was decided to explore TTCN-3 for

RESTful services testing and especially to use SoapUI as a benchmark to compare.

After review of research papers on testing of SOAP based Web Services using TTCN-

3 and the techniques used by TTCN-3 to separate the test case design and coding from

the implementation and bindings with the system under test. It came to light that such

a technology could be applied quiet efficiently to automated testing of RESTful Web

Services. Upon review of certain recent research papers on comparison of Web

Service testing tools it came to light that SoapUI was a prominent player in this area

32

and could be a great scale to compare TTCN-3 performance against. There came a

belief that the testing technique with TTCN-3 would provide a better result than the

SoapUI toolset.

The Basic Research Execution Plan: The approach followed is to develop common

Systems Under Test. Started by using certain public Systems Under Test (target set of

Web Services) on cloud based platforms to emulate Web Services on Web Servers in

a real world environment. In order to perform equivalent tests on the system under

test from two separate test environments such as those of TTCN-3 and SoapUI, both

the toolsets were installed over the common platform which was Windows 7. The

Test Systems (both for TTCN-3 and SoapUI) were setup on the local student PC with

TCP/IP access to a Tomcat Web Server. The test scenario case studies were designed

and developed first, followed by the coding of test suites using both the client tools

being used for comparison, TTCN-3 and SoapUI. The developed testing artefacts

would be executed against the target SUT (the common set of web services) to

generate and record the required test reports for detailed analysis and interpretation of

test execution. It was my intention to focus on the functional and performance aspects

of both the toolsets, along-with their scalability, simplicity, extendibility and

flexibility for a test developer and executor. A User Management RESTful web

service is used as a model system under test, with a minimal database to maintain a

set of users. I have developed and executed common test cases in both the

environments to determine the development and execution advantages that come to

light with the use of TTCN-3 over SoapUI. There was an attempt to differentiate

development methods used with both tools, focus on the performance gains with a

C++ implementation of TTCN-3 as with the Titan toolset. Other aspects such as

scalability, extendibility, and flexibility in implementing automated test systems is

also considered during comparison of the TTCN-3 and SoapUI toolset.

Collecting Relevant Test Reports: After the development of Web Service system

under test case studies and subsequent coding of test cases based on them, and upon

their subsequent execution in the respective tool environments there was an earnest

attempt to capture execution parameters in the test reports obtained, relevant to test

coverage, performance parameters etc.. I primarily obtained individual test case and

overall test suite execution times in terms of milliseconds spent during execution of

33

similar test systems on both toolsets. Also prior to this there was some theoretical

measure of development time devoted to development of the Test Suites using each

tool prior to setup of the execution environment using measures such as Lines of Code

(LOC) and man days of development time, and count of functional modules

developed. The primary test reports are in the form of log records from the execution

of the test cases in both the toolsets against the common system under test.

Analysis of Comparative Test Results: In this stage the activity was to perform a

comparative evaluation of development cycle results and execution cycle results for

both the client tools. The development cycle comparisons would be based on

theoretical models of man day efforts and lines of code among other parameters,

while the execution parameters would be compared on more granular terms based on

machine performance cycles and resources consumed by test execution. I attempt to

highlight the strengths of the TTCN-3 toolset and present its utility in terms of a test

automation toolset on grounds of better execution time and richer development

environment for test systems.

Figure 4.1: Flow of Methodology

Developing the Comparison Problem

Preparing Basic Test Suite Execution Plan

Collecting Relevant Test Data and Reports

Comparison Summary and Interpretation

Analyzing and Comparing Test Results

34

Comparison Summary and Interpretation: In this stage there was an attempt to be

impartial in efforts to get and report accurate measures from the previous steps. But

since TTCN-3 toolset from Titan is expected to give better runtime results it puts it in

good light against SoapUI as an alternative test system development environment.

Reporting on these matters is to be followed by usage of simple comparison models

for comparing development cycle time and costs for the developed test suites using

both the client tools. Following this are present measures of the effectiveness of

TTCN-3 over SoapUI in terms of the development and execution results for

functional and performance tests on the target Web Services.

At this point in this dissertation work using the outlined research plan and methods

above, the theoretical basis of Test Systems to be developed relies on Web Services

related research papers especially by Ina Schieferdecker and Bernard Stepien and

other literature on TTCN-3 supporting their advice. Some of the testing methods are

'tried and tested' but some of the areas in this dissertation involved much experimental

work, to see if some anticipated assumptions work in real circumstances such as the

application of TTCN-3 to testing of RESTful Web Services. But a careful recording of

results and subsequent analysis is aimed for reliability on quality of the dissertation

results. The primary research methods used are of test system design and

development, followed by execution of such a system against a target System Under

Test (SUT). The key challenge that was faced related to capturing and/or obtaining

reliable measurements of development and execution parameters. I mostly relied on

the execution time result logs for performance timings of test suites.

There is a need to find out more on the characteristics and behaviour of Web Service

Testing Systems through the application of more data type rich and abstract test

development tools such as TTCN-3, which are platform independent, having a rich set

of constructs most suitable for efficient testing of multiple target systems including

Web Services. There is a growing trend for seeking reliable standards based test

systems that exhibit abilities for testing in multiple system domains. Most testing

technology systems in use today are based on a tight binding between the Test System

and the Systems Under Test including popularly available Web Service testing tools

such as SoapUI, which is compared to the more recently emerging field of Testing

35

and Test Control Notation (TTCN-3) based test systems. The expected outcome is to

quiet gladly highlight on the utility and usefulness of using TTCN-3 for testing of

Web Services especially in an Enterprise Applications scenario. It would enable an

organization to benefit from a standards based system which could be applied to

multiple test domains thereby saving test developer efforts as well as providing cost

savings to the IT departments of these organizations.

36

CHAPTER 5

RESULTS AND DISCUSSION

In the previous studies it has been reported that, different tools and techniques are

utilized to provide reliable Web Service testing and hence quality of functionality and

performance. In light of shorter test development cycles due to time to market

limitations it becomes very important to utilize tools that find faults in the shortest

period of time. The higher the number of faults detected in unit time the greater the

quality of the product to market. It is very useful for a test developer and executor to

be able to use a rich toolset for performing the required Web Services testing.

TTCN-3 was initially designed as a telecommunications testing language but several

aspects of its framework are very relevant to Web Application testing, and provide

significant advantages over more traditional approaches to Web Application testing

today. The most significant aspect of TTCN-3 is its architecture in which there is a

separation of concerns between the abstract TTCN-3 specification languages where

test logic is specified (based on test design) and the implementation layer (test

runtime) where adapters and codecs formulate test messages and parse responses to

and from a System Under Test (SUT).

Figure 5.1: Distribution of Test Development Efforts

37

This allows TTCN-3 to be flexibly integrated with specialized unit testing

frameworks and also addresses many of the challenges associated with sophisticated

Web Applications testing. This architecture provides significant reuse and

dramatically reduces the size and complexity of test logic. Typical Web Service

testing applications spend roughly 80% of the code on parsing and formulating of test

messages and responses. In TTCN-3 much of the constructs (adapters and codecs) are

reusable thus reducing this coding effort, while separating out the 20% of the code

that is test logic making tests easier to maintain and understand (as shown in the

above pie chart). In this dissertation work the attempt is to display this effectiveness

of TTCN-3 by comparison with a well-established open source testing tool, SoapUI,

used currently in the industry for Web Service-Oriented testing.

The aim of this dissertation work is to demonstrate the objectives listed earlier by

applying a Web Service development model based on TTCN-3. This model of Web

Service (especially RESTful) testing environment would help practicing test

developers in selection of TTCN-3, based upon its merits and functional value for test

planning, design, development, and execution and reporting in their projects.

Figure 5.2: Titan TTCN-3 Workspace Environment

38

The attempt has been to perform the comparison between the toolsets on a

common platform keeping other things constant and trying to determine the merits

of using TTCN-3 to test suite development and testing as an alternative to the use of

SoapUI. The same XML or JSON HTTP request messages are used by both the

toolsets and similar HTTP responses are processed by both tools. Titan TTCN-3 is an

implementation of the ETSI TTCN-3 standards by Ericsson, which it has recently

released into the public domain as an open source Eclipse project and still used

extensively by Ericsson for its telecommunications related testing. Titan TTCN-3 is a

native Linux toolset. Since I used a Windows 7 PC system for this dissertation, there

was a need to install a Unix/Linux emulation environment, Cygwin, over which the

Titan toolset has been installed. This toolset plugs into the Eclipse IDE framework to

provide a seamless development and execution environment to a test developer.

Titan TTCN-3 has been used in this dissertation in a minimalistic mode, however it

has many additional packages and plugins which provide graphical reports, message

sequence diagrams, a whole range of pre-built adapters for a wide range of testing

needs. This tool provides all the powers of a full-fledged test specification language.

The SoapUI environment is developed by Smart Bear and its minimal version is

released in open source community edition, whereas for more scalable and

advanced features a Pro version is available in commercial form.

Figure 5.3: SoapUI Workspace Environment

39

This environment is more command driven than programming driven and therefore

less flexible than the Titan TTCN-3 environment. It provides the user with a set of

Web Service request templates which can be used to draft specific RESTful client

requests for instance, but these templates also do constraint the tester with bounds of

flexibility whereas the TTCN-3 specification language is more of a test programming

language in which rich RESTful requests can be formulated by the test developer as

per their requirements, making their test cases and therefore test suites much richer.

5.1 EXPERIMENTAL RESULTS

The first set of experiments performed after the development of a common test suite

in both Titan TTCN-3 and SoapUI against a common User Management RESTful

Web Service (System Under Test), was to perform a comparison of the test execution

performance using both the toolsets. In order to collect the execution performance

timings of test cases the following detailed method was used:

Ti (<test case>) = Time taken for executing the i’th run of <test case>

The Ti value indicates the time taken by the i’th run of the test case being considered.

For each test case executed against the system under test a record of the end time

timestamp and the start time timestamp for the test case is made from the execution

logs of the respective toolset used and using the difference between the end time and

the start time the time taken for executing each run i.e. Ti (<test case>) is derived.

Ti (<test case>) = End Timestamp of Ti – Start Timestamp of Ti

In order to get a measure of the average execution performance of a test case with a

particular toolset the following method was used to arrive at the average test case

execution timings.

Tavg (<test case>) = Sum (T1(<test case), T2(<test case), T3(<test case), T4(<test

case>), T5(<test case)) / 5

 As seen above the average is arrived at in this case by taking into consideration 5 test

execution runs of each test case using both the tools. The Ti values are added together

and divided by the total test runs performed for the test case which was usually five.

In the following two figures images of the execution logs of both the toolsets are

displayed in order to clarify the collection method for timestamp data related to the

execution of test cases using both the toolsets.

40

Figure 5.4: SoapUI Execution View with Logs View

In the above image one can notice the test case execution duration as being 178ms for

the GetAllOptions() test case executed with SoapUI. These timings are reported in the

bottom right window panel of the interface with log records related to the current test

case execution.

Figure 5.5: Titan TTCN-3 Execution View with Summary Logs

41

Figure 5.6: Titan TTCN-3 Execution View with Detailed Logs

In the two figures above are shown the test execution logs view of the Titan TTCN-3

tool, both the summary view and the detailed logs view. The execution time in this

case for the GetAllOptions() test case is 25ms (end time – start time). In this manner

is calculated the execution timing values of each text execution of a test case or a set

of test cases from the readings that the Titan TTCN-3 and SoapUI toolsets provide in

their test execution logging mechanisms. I used this same method in all of the test

results that are reported in the following sections using a tabular format.

Table 5.1: Test case ‘GetAllOptions’ execution times

Input Output

SoapUI Time

Taken

Titan TTCN-3 Time

Taken (End-Start)=

GetAllOptions

<operations>GET, PUT,

POST,

DELETE</operations> 170 (200-172)=28

 58 (424-405)=19

 52 (363-346)=17

 34 (546-529)=17

 30 (942-926)=16

Average Time In

Milliseconds 68.8 19.4

42

In the above and these following paragraphs the execution performance results are

presented for both toolsets for other common test cases developed on both. The first

test case was a simple ‘GetAllOptions’ call on a RESTful Web Service for getting the

list of all methods (‘OPTIONS’) supported by the same. It is clearly noticed that the

Titan TTCN-3 test case executes faster than the SoapUI test case in all the test runs

executed (from Table 5.1).

The second common test case used was that of ‘GetAllUsers’. This method would

return a collection of users in XML or JSON (as requested) format containing all the

users (along with their attributes) as currently being maintained by the User

Management RESTful system under test. As shown in the comparison below the

Titan TTCN-3 tool executes the test case in smaller amounts of time than SoapUI

does. The difference between the two grows upon adding more users to be listed by

the test case i.e. increasing the number of total users in the User Management module.

Table 5.2: Test case ‘GetAllUsers’ execution times

Input Output

SoapUI Time

Taken

Titan TTCN-3 Time

Taken (End-Start)=

GetAllUsers

<List of System Users in

XML/JSON> 999 (7.641-6.741)=900

 567 (7.321-6.935)=386

 492 (376-005)=371

 1987 (4.535-3.916)=619

 707 (3.360-2.860)=500

 Average Time In Milliseconds 950.4 555.2

The common test cases developed in Titan TTCN-3 and SoapUI were executed using

the same platform under similar conditions within a short period of time using random

ordering between the test cases being selected for execution. The third set of test cases

deal with adding new users to the User Management REST system under test using

list of users either drafted in XML or JSON format. The SoapUI toolset allows the

user to submit the list of users in both XML and JSON format. The Titan TTCN-3

toolset lets the user submit requests in XML, JSON and other formats also. One can

43

write and use custom encoders and decoders also in Titan TTCN-3 to support any

other data format required for communicating with a RESTful Web Service. It is

observed that in these test case executions also the Titan TTCN-3 toolset performs

better as shown in the table below. It is also observed that as the set of users to add

grows (i.e. the input data set) the Titan TTCN-3 toolset gets better at doing the job

than SoapUI. This indicates better scalability potential in the Titan TTCN-3 toolset

when it comes to increasing the size of test data. It can be used for a variety of

scenarios such as

 Valid, invalid and inopportune testing

 Software module, unit, layer, protocol, integration and laboratory testing,

 Functional, load, distributed and testing

 Regression, certification and approval testing

Table 5.3: Test case ‘AddNewUsers’ execution times

Input Output

SoapUI Time

Taken

Titan TTCN-

3 Time

Taken

AddNewUsers

<Status Code

SUCCESS/FAILURE in

XML/JSON> 5433

(3.221-

2.973)=248

<List of Users

in

XML/JSON> 461

(237-

106)=131

 1008

(849-

205)=644

 288 (905-812)=93

 230 (971-921)=50

 Average Time In Milliseconds 1484 233.2

These results indicate a clear advantage of using Titan TTCN-3 especially for

intermediate or large scaled test systems. Titan TTCN-3 provides a distributed test

execution environment which can be developed in the central IDE and then executed

44

using a distributed components mechanism. This gives Titan TTCN-3 a very clear

advantage when performing scalability tests using distributed test components. The

next set of common test cases used for performance comparison check the agility of

the tools while executing calls to delete existing set of users from the RESTful system

under test. The fourth set of common test cases involved removing a list of users (in

XML or JSON format) from the User Management RESTful system under test. As

expected the TTCN-3 toolset performs better in terms of shorter time to execute the

removal test cases. Titan TTCN-3 has the added advantage of programmatically

generating test users and generating XML or JSON on the fly rather than editing that

is required with the SoapUI interface. This is a point that really differentiates the

capabilities of Titan TTCN-3 from the SoapUI toolset which would be usable only for

small test suites. While Titan TTCN-3 can scale to a large set of auto-generated test

data that could be used for testing either from a single node or multiple nodes against

a common system under test.

Table 5.4: Test case ‘RemoveSpecificUsers’ execution times

Input Output SoapUI Time

Taken

Titan TTCN-3 Time

Taken

RemoveUsers <Status Code

SUCCESS/FAILURE in

XML/JSON>

123 (132-83)=49

<List of

Users in

XML/JSON>

 301 (212-170)=42

 72 (811-774)=37

 98 (680-580)=100

 125 (781-695)=86

 Average Time In

Milliseconds

143.8 62.8

45

The test cases were composed in various combinations giving results similar to what

is shared in the earlier performance comparison tables.

5.2 Comparison Results

These results lead to a confirmation of one of the dissertation objectives in terms of

saving time in test execution so as to enable shorter testing cycles and quicker ready

to market timelines especially for intermediate or large scale Web Service product

testing environments. In commercial settings with a large scale system there are

potentially hundreds and thousands of test cases to be executed in order to determine

the current status of a system under test. It is apparent what a test developer can gain

by writing their test system using Titan TTCN-3 so that they get the development

strength of an internationally standardized testing language along with fast execution

of their test systems against the SUT. When drawing average execution speed figures

the averages from all test runs was compiled for Titan TTCN-3 and SoapUI

respectively, for the test cases I developed and executed with, using the computation

below:

SoapUI: Tavg (661.75) = Sum (T1avg(68.8), T2avg(950.4), T3avg(1484), T4avg(143.8)) / 4

TTCN-3: Tavg (217.65) = Sum (T1avg(19.4), T2avg(555.2), T3avg(233.2), T4avg(62.8)) / 4

Giving the following results in graphical form:

Figure 5.7: Averaged Execution Times across all runs

46

From the above bar graph it is clear that for our comparative test suites the TTCN-3

test cases take almost less than half the time that the corresponding SoapUI test cases

take to execute against the common set of RESTful service methods. I have looked at

results of test execution for both the open source tools and Titan TTCN-3 performs

better and faster when executing a test system against an SUT than SoapUI.

Now in order to consider the other aspect of the comparison which involves the cost

benefits of using Titan TTCN-3 over popular tools such as SoapUI, it is brought to

notice that Titan TTCN-3 is free software in public domain whose wide set of

capabilities with all bells and whistles potentially provide scalability and performance

gains over expensive commercial toolsets such as SoapUI Pro, especially in

technically savvy test environments, with test developers skilled to undertake the task

of developing powerful and robust test systems and suites for the complex systems

under test in their test environments.

Using reference of comparisons by organizations [30, 33, and 34], the following

benefits for use of TTCN-3 testing technology are listed:

Less Time and Costs

 Reduction of development time for new testing platforms by 20 to 30 percent

 Savings of 30 to 50 percent in the adaptation and maintenance of test suites

 Low investments for training and knowledge transfer

Quality

 Testing in early design stages of system development

 Systematic, automated test methods with tool support

Well Established on the Market

 Broad range of vendor-independent TTCN-3 tools available

 Manufacturers - Motorola, Siemens, Nokia, and many others

 Carriers - Vodafone, O2, and many others globally

 Test Devices - Tektronix, Agilent, Aeroflex, Rohde & Schwarz, ...

47

Secure Investments

 Repeatability and continuous development

 Wide area of application test support and common methodology on a

standardized level (ETSI)

Multi-Purpose Testing Language

 All kinds of black-box testing (conformance, performance, interoperability

etc.)

 Development of technology-independent test suites

 Suited for a wide range of application areas and domains

User-Friendly Handling

 Easy graphical specification of test cases with TM standards

 Full test execution control on test case and test suite level

 Clear visualization of complex test scenarios with MSC’s etc.

 Clearly structured test documentation with automation

Highest Flexibility in Designing and Maintaining Test Software

 Specification in various presentation formats (textual, graphical, tabular)

 Support of automated and distributed testing

 Creation of dynamic test configurations, even when distributed

 Same set of test functionalities usable in different contexts

 Reusability of existing code structure

 Easy enhancement of test data and customizations

Simple Test Adaptation

 Easy adaptation of existing test suites to newer SUT’s

 Easy implementation into existing systems via standardized interfaces

(TRI/TCI)

 Adaptation of generated code can be reused with SUT’s

48

Global Standard

 The only internationally standardized test technology (ETSI MTS)

 Specifically designed for testing and used for testing

 Maintenance and continuous enhancements guaranteed

 Fast access to already standardized TTCN-2/TTCN-3 test suites

49

CHAPTER 6

CONCLUSION AND FUTURE SCOPE

6.1 Conclusion

Over the past few years many Web Services testing techniques have been developed

and used, each having its own set of advantages and disadvantages. The practicing

test developer is on the lookout for ways to make his job easier through automation of

the testing process, so as to make the test developer focus on writing the test logic

rather than worrying about the toolset limitations. In this dissertation work a test

automation technique using Titan TTCN-3 is proposed which makes the Web

Services testing job more effective and efficient for a test developer in the market

today. The comparison methods used have brought out the strengths of TTCN-3 as a

wider scoped testing language which has the ability to adapt to a diverse set of testing

needs. The scope of customization that a test developer gains with TTCN-3 is quiet

astounding for their testing environment. All this power is available in the open

source edition of Titan TTCN-3. The comparison with SoapUI really served as a

benchmark for TTCN-3 to prove itself useful for testing of RESTful web services and

gladly TTCN-3 lived up to the expectations drawn from the research papers of earlier

authors.

6.2 Future Scope

In this dissertation work study and observations were focused on many aspects of

Web Services testing, as well as on the features of TTCN-3, which would be topics in

themselves for further exploration into test techniques. For example, if one considers

the details of the data template matching mechanism in TTCN-3 and how it could be

well utilized for parsing and analysing web responses, which is another focus of

research. The TTCN-3 toolset features could be applied in a richer manner to pursue

security testing of Web Services, in fact a whole network of web services. In the near

future the intention is to examine the efficiency of using Titan TTCN-3 in a scalable

distributed mode with parallel executing components for testing a distributed system

of Web Services. The addition of test data generation and reporting toolsets is another

area of study. Test Automation with TTCN-3 is a growing area of study.

50

REFERENCES

[1] Willcock Colin, Deiß Thomas, Tobies Stephan, Keil Stefan, Engler Federico,

Schulz Stephan, and Wiles Anthony (2011) “An Introduction to TTCN-3”, John

Wiley and Sons, Germany.

[2] ETSI (2014) “TTCN-3: Core Language Specifications”, ETSI Document Number

ES 201 873-14.8.1, ETSI Version 7.0, Sophia Antipolis, France.

[3] ETSI (2014) “TTCN-3: Operational Semantics Specifications”, ETSI Document

Number ES 201 873-44.5.1, ETSI Version 7.0, Sophia Antipolis, France.

[4] ETSI (2014) “TTCN-3: Runtime Interface Specifications”, ETSI Document

Number ES 201 873-54.7.1, ETSI Version 7.0, Sophia Antipolis, France.

[5] ETSI (2014) “TTCN-3: Control Interface Specifications”, ETSI Document

Number ES 201 873-64.8.1, ETSI Version 7.0, Sophia Antipolis, France.

[6] Atkinson Colin, Barth Florian, Brenner Daniel, and Schumacher Marcus (2010)

“Testing Web-Services Using Test Sheets”, Chair of Software Engineering,

University of Mannheim.

[7] Huang Teng, Ding Zhizhong, Duan Younan, Chen Yin, and Ding Lu (2010) “A

Simplified and Efficient LTE RRC Conformance Testing Adapter”, Institute of

Communications and Information Systems, Department of Communication

Engineering, University of Technology, Hefei, China.

[8] Katara, Mika (2008) “General Purpose SUT Adapter for TTCN-3”, Tampere

University Of Technology, Department of Information Technology, Florida.

[9] Kumar Dinesh (2012) “Validation of Internet Application: Study, Analysis and

Evaluation”, Shri Siddhi Vinayak Institute of Technology, Bareilly, Int.Journal

Advanced Networking and Applications.

[10] Liu Yang and Hang Bei (2009) “TTCN-3 Test Adapter Framework with

capability Description”, University of China, China.

[11] Rentea Cosmin, Schieferdecker Ina, and Cristea Valentin (2011) “Ensuring

Quality of Web Applications by Client-Side Testing Using TTCN-3”,

Fraunhofer FOKUS Institute, Berlin, Politechnica University, Bucharest.

[12] Schieferdecker Ina and Stepien Bernard (2008) “ Automated Testing of

XML/SOAP based Web Services”, FOKUS, Berlin, Germany, University of

51

Ottawa, Canada.

[13] Schieferdecker Ina and Vassiliou-Gioles Theofanis (2004) “Tool Supported Test

Frameworks in TTCN-3”, Fraunhofer Research Institute for Open

Communication Systems (FOKUS), Testing Technologies IST GmbH, Berlin,

Germany.

[14] Schieferdecker Ina, Din George, and Apostolidis Dimitrios (2005)

“Distributed Functional and Load Tests for Web Services”, Technical

University Berlin/Fraunhofer FOKUS/Testing Technologies, Berlin, Germany.

[15] Schulz Stephan (2011) “Test Suite Development with TTCN-3 libraries”,

European Telecommunication Standards Institute, Published by Springer-Verlag

2008.

[16] Stepien Bernard and Peyton Liam (2014) “Innovation and evolution in

integrated Web Application Testing with TTCN-3”, European

Telecommunication Standards Institute, Published by Springer-Verlag.

[17] Stepien Bernard, Peyton Liam, and Xiong Pulei (2008) “Framework Testing of

Web Applications using TTCN-3”, European Telecommunication Standards

Institute, Springer-Verlag.

[18] Stepien Bernard, Peyton Liam, and Xiong Pulei (2012) “Using TTCN-3 as a

Modeling Language for Web Penetration Testing”, University of Ottawa.

[19] Sun M, Zou J, and Ma Shi H (2010) “Automatic generation of Codec's for a

TTCN-3 Test Suite”, Communication Software and Networks, ICCSN'10.

[20] Werner Edith, Grabowski Jens, Troschz Stefan, and Zeiss Benjamin (2008) “A

TTCN-3 based Web Service Test Framework”, Software Engineering for

Distributed Systems Group, Institute for Computer Science, University of

Gottingen, Germany.

[21] Yanwu Tang (2010) “A Versatile Codec Library (VCL) for TTCN-3”,

University of Science and Technology, Hefei, China.

[22] Zhao Huiqun, Sun Jing, and Liu Xiaodong (2012) “A Model Checking Based

Approach to Automatic Test Suite Generation for Testing Web Services and BPEL”,

North China University of Technology, Beijing, China, Edinburgh Napier

University, Edinburgh, United Kingdom.

[23] Malik Vinita, Gahlan Mamta (2013) “Comparative Study of Automated Web

Testing Tools”, International Journal of Latest Trends in Engineering and

Technology.

52

[24] Kumar Ravi, Singh AJ (2015) “A Comparative Study and Analysis of Web

Service Testing Tools”, International Journal of Computer Science and Mobile

Technology.

[25] Wala Tanuj, Sharma Kumar Aman (2015) “A Comparative Study of Web Service

Testing Tools”, International Journal of Advanced Research in Computer Science

and Software Engineering.

[26] Glenford J Myers, Badgett, Todd M Thomas, and Crey Sandler. The Art of

Software Testing, Second Edition, John Wiley and Sons, Inc., 2004.

[27] Dai, Z. R., Deussen, P. H. (2005) Automatic Test Data Generation with TTCN-3

Using Classification Tree Method.

[28] Web Service Basics: ‘ https://en.wikipedia.org/wiki/Web_service ’

[29] Model Based Testing: ‘https://en.wikipedia.org/wiki/Model-based_testing’

[30] Eclipse Project for Titan TTCN-3: ‘https://projects.eclipse.org/proposals/titan’

[31] The SoapUI Testing Tool: ‘https://www.soapui.org/’

[32] The VirtualBox: ‘https://www.virtualbox.org/’

[33] TTCN-3 ETSI: ‘http://www.ttcn-3.org/’

[34] TTCN-3 at Spirent: https://www.spirent.com/go/TTCN-3/

[35] User Guide for TITAN TTCN-3 Test Executor, Ericsson 2016.

[36] Installation Guide for the TITAN TTCN-3 Test Executor, Ericsson 2016.

[37] API Technical Reference for TITAN TTCN-3 Test Executor, Ericsson 2016.

[38] Programmers’ Technical Reference Guide for the TITAN TTCN-3 Toolset,

Ericsson 2016.

[39] Users Reference Guide for SoapUI Community Edition, SmartBear 2016.

https://en.wikipedia.org/wiki/Web_service
https://en.wikipedia.org/wiki/Model-based_testing
https://projects.eclipse.org/proposals/titan
https://www.soapui.org/
https://www.virtualbox.org/
http://www.ttcn-3.org/
https://www.spirent.com/go/TTCN-3/

