
i 
 

FAST AND EFFICIENT SOURCE CODE PLAGIARISM 

IDENTIFICATION BASED ON TOKENIZATION  

Dissertation submitted in fulfilment of the requirements for the Degree of 

MASTER OF TECHNOLOGY 

in 

COMPUTER SCIENCE AND ENGINEERING 

 

By 

SANDEEP KAUR 

41500022 

 

 

Supervisor 

SANDEEP KAUR 

(Assistant Professor) 

 

 

 

 

 

                        School of Computer Science and Engineering 

Lovely Professional University 

Phagwara, Punjab (India) 

November, 2017 

 



ii 
 

@ Copyright LOVELY PROFESSIONAL UNIVERSITY, Punjab (INDIA) 

Month 4 Year 2017 

ALL RIGHTS RESERVED 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

                                          ABSTRACT 

 

When a code fragment is copied by another software system for reusing purpose, this is 

known as cloning. The code that is copied called clone. Clone Detection is a process that is 

used for detecting clones in a software system. Code cloning or software cloning makes the 

work of the programmers easier by reusing existing code. But it increases the maintenance 

cost. If any error is occurred in a code fragment that is cloned, then that error have to be 

removed from all cloned modules. So the code clone detection is very indispensable part of 

software engineering. There are so many techniques have been proposed for code clone 

detection. These are like Text based, Metric based, Token based, AST-based, and PDG-

based. All these methods have some limitations. Some techniques take more time for clone 

detection like PDG and AST and some need to improve the efficiency. 

So we proposed a tokenization based method in which Needleman Wunsch algorithm will be 

used for comparison of two source files with token values. Needleman Wunsch is a global 

sequence alignment method that is used for two end to end sequence alignments. It is based 

upon dynamic programming and also an optimal matching algorithm. It takes very less time 

for comparing two sequences and also identifying sequences with gaps efficiently as 

compared to previous techniques. 

 

 

   

 

 

 

 

 

 



iv 
 

                        DECLARATION STATEMENT  

 

I hereby declare that the research work reported in the dissertation entitled "FAST AND 

EFFICIENT SOURCE CODE PLAGIARISM IDENTIFICATION BASED ON 

TOKENIZATION” in partial fulfilment of the requirement for the award of Degree for 

Master of Technology in Computer Science and Engineering at Lovely Professional 

University, Phagwara, Punjab is an authentic work carried out under supervision of my 

research supervisor Mrs. Sandeep kaur. I have not submitted this work elsewhere for any 

degree or diploma.  

I understand that the work presented herewith is in direct compliance with Lovely 

Professional University’s Policy on plagiarism, intellectual property rights, and highest 

standards of moral and ethical conduct. Therefore, to the best of my knowledge, the content 

of this dissertation represents authentic and honest research effort conducted, in its entirety, 

by me. I am fully responsible for the contents of my dissertation work.  

 

 

 

                                                                                          Signature of candidate 

             Name of the Candidate  

              R. No  

 

 

 

 

 

 

 

 

 

      

 



v 
 

                           SUPERVISOR’S CERTIFICATE  
   

 

This is to certify that the work reported in the M.Tech Dissertation entitled “FAST 

AND EFFICIENT SOURCE CODE PLAGIARISM IDENTIFICATION BASED ON 

TOKENIZATION”, submitted by Sandeep kaur at Lovely Professional University, 

Phagwara, India is a bonafide record of her original work carried out under my supervision. 

This work has not been submitted elsewhere for any other degree.  

 
                        Signature of Supervisor 

                        

                                                                                                     (Sandeep kaur) 

                         Date: 

Counter Signed by: 

1) Concerned HOD: 

HoD’s Signature: ________________ 

HoD Name: ____________________ 

            Date: ___________________ 

 

2) Neutral Examiners: 

External Examiner  

Signature: _______________ 

Name: __________________ 

Affiliation: ______________ 

Date: ___________________ 

Internal Examiner  

Signature: _______________ 

Name: __________________ 

Date: ___________________ 



vi 
 

                    

 

                            ACKNOWLEDGEMENT 

 

Inspiration, co-ordination, patience and proper guidance are few of the components that lead 

to the successful and timely completion of any job. When doing a research, these play a vital 

role. I am highly thankful to my guide Mrs Sandeep kaur School of computer science and 

technology, Lovely Professional University, Phagwara under whose supervision I have had 

the privilege to conduct this thesis. 

I would like to thanks to my teachers of department of computer science, Lovely Professional 

University, Phagwara for their continuous guidance and co-ordination during this research. 

 

 



vii 
 

                      TABLE OF CONTENTS  

 

CONTENTS                                                                                               PAGE NO. 

 

Inner first page                                 i 

PAC form          ii 

Abstract            iii 

Declaration by the Scholar        iv 

Supervisor’s Certificate        v 

Acknowledgement         vi 

Table of Contents         vii 

List of Tables                                 ix 

List of Figures           x 

CHAPTER1: INTRODUCTION                                                     1  

                             1.1 CLONE TERMINOLOGIES                                                2 

                             1.2 TYPE OF CODE CLONE                                                     2 

                             1.3 REASONS FOR CLONING                                                 4 

       1.4 WEAKNESSES OF CLONING                                           4   

                             1.5 ADVANTAGES OF CLONE DETECTION         4 

                             1.6 STEPS OF CODE CLONE DETECTION                          5 

                            1.7 TECHNIQUES/TOOLS OF CLONE DETECTION          6 

CHAPTER2: REVIEW OF LITERATURE                                   12 

CHAPTER3: PRESENT WORK                                                                  15 



viii 
 

                             TABLE OF CONTENTS  

 

CONTENTS                                                                                               PAGE NO. 

                

                            3.1 PROBLEM FORMULATION                 15   

                            3.2 OBJECTIVES OF THE STUDY                            16 

                            3.3 RESEARCH METHODOLOGY                                17 

REFERENCES                                                                                         24  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

                                 LIST OF TABLES  

 

TABLE NO.             TABLE DESCRIPTION                                    PAGE NO. 

 

Table 1.1                   Type 1 clone                      2 

Table 1.2                   Type 2 clone           3 

Table 1.3                    Type 3 clone                                                                     3 

Table 1.4                    Type 4 clone                                                                     3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 
 

 

 

                                LIST OF FIGURES  

 

FIGURE NO.          FIGURE DESCRIPTION                                         PAGE NO. 

 

Figure1.1                Clone detection operations                        7  

Figure3.1                Table initialization           18   

Figure3.2                 Scoring matrix                                                                     18 

Figure3.3                 Trace backing                                                                      19 

Figure3.4                 Paces of proposed method                                                   20 

Figure3.5                  Example of proposed method                                             21 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 
 

 



 
  

1 
 

                                                                                                                                                                                                                                                                                    

                                                                                                                         CHAPTER 1                                                                                               

                                                                                                                      INTRODUCTION   

 
 When a programmer or developer uses the existing software code (by minor or extensive 

editing) for his software development, this procedure is known cloning and the code piece 

that is copied or reuse is called clone of real code[1]. The code fragments which are similar in 

their variables, literals or functions, are called clone pairs[2]. More than one pairs make a 

clone class. In post development phase, it is difficult to identify which codes are clones. Only 

the similarity or equality of their contents proved them as clones.  Several studies of software 

clone detection represent the software with code clones are burdensome to handle as 

compared to without code clone. The tendency of code cloning not only produce maintenance 

issues, But also produce subtle errors.  Because, if any error is introduced in one code 

segment then the entire identical fragments have to be changed. That is very time consuming 

and costly process in big software projects. It is also increases protection cost. The open 

source software and its variation also enhanced code reuse. There is no clear definition exist 

exactly what is clone till now. There are so many definitions according to different authors. 

Clone is also known as a duplicate. But not every identical code is a clone. Sometimes, two 

code segments can be same by chance. They are not copied by each other. According to 

Baxter et al. “Clones are portions of code which are identical according to some definition of 

sameness” [3]. According to this definition similarity is to be based on text, lexical, syntax or 

semantic representation.  

Software clone detection is appears as a vital research area. These studies are suggested that  

20-30% of large software systems consist of cloned code.  Kamiya et al.[5] has reported 29% 

cloned code  in JDK .Code clone detection can be useful in clone maintenance , copyright 

infringement detection, plagiarism  detection, code  simplification  and  detection of bug 

report[1]. 

 

 

 

 

 

 

 



 
  

2 
 

1.1 CLONE TERMINOLOGIES 

Clone detection process output clones in the sort of clone pair, clone classes or both. Exactly 

what is the meaning of these terminologies in clone detection process? Now we discuss here: 

Clone fragment (CF): A code fragment is a method or function or sequence of statements 

that are needed to run a program. 

Clone pair (CP): when two fragments are similar in syntactically or semantically or both are 

clones of each other then called them clone pair[1]. 

Clone class (CC): Many code fragments that contain two clone pairs are called clone class. 

 

1.2 TYPES OF CODE CLONES 

Types of code clone available in software systems are based upon their similarity between 

textual representation and functionality. So we can categorize them into following four types. 

First three types like Type1, Type2 and Type3 are textually or syntactically similar and 

Type4 is similar in its functionality  [2][4][3][1]. 

Type1 (Exact clone): Program fragments which are similar but slight different in white 

spaces and comments as shown in Table 1.1 

                                           Table 1.1 Type 1 clone 

FRAGMENT 1 FRAGMENT 2 

//printing 

for(h=1;h<=4;h++) { 

print h;} 

for(h=1;h<=4;h++) 

{ 

Print h; 

} 

        

Type 2(Renamed clone): When two code fragments are syntactically identical but different 

in comments, layout, literals and identifiers. Reserved words and sentence formation are 

identical like real source code as shown in Table 1.2. We can see two code fragments are 

changed in their appearance, variables name and values.  

                         

 

 

 

                                                        

                                                   

 

 

 

 



 
  

3 
 

                                               

                                                      Table 1.2 Type 2 clone 

FRAGMENT 1 FRAGMENT 2 

if(m>= n){ 

q= n+m; 

else 

q= n-m; 

 

if(n>=o) 

z=n+o; 

else 

z=n-o; 

  

Type 3(Near Miss clone or Gapped clone): In this type of clone, there is a insertion and 

deletion gap between similar statements within two code fragments as shown in below Table 

1.3 

                                                           Table 1.3 Type 3 clone           

 

 

 

 

 

 

Type 4 (Semantic clone): Semantic code clones are two segments that are similar in their 

functionality or semantically not syntactically or textually. As shown in below Table 1.4. 

                                                            Table 1.4 Type 4 clone 

 

 

 

                       

 

 

 

 

 

FRAGMENT1 FRAGMENT 2 

If(k>l) 

{ 

l++; 

k=1; 

} 

if(o>p) 

{ 

o=o/2; //statement inserted 

o++; 

} 

 

FRAGMENT1 FRAGMENT 2 

If(s>l) 

{ 

u=s*l;} 

else 

u=s/l; 

 

switch(true) 

{ 

case s>l: 

u=s*l; 

case  s!=l; 

u=s/l; 

} 

 



 
  

4 
 

1.3 REASONS FOR CLONING 

There are so many reasons for copying the code by programmers. Some of the reasons have 

been listed below [4] : 

1. A programmer reuses the existing code, logic and design of a system by copy and paste 

operations. It is called code cloning or duplication. 

2. When a programmer merges two similar systems to make a new system. 

3.  Clones are frequently occurred in the financial products. Because companies do not wants 

to take risks of new product’s high rate of errors. So they reuse the already existed well tested 

codes for adapting to the new product [6]. 

4. Cloned fragments in the systems may improve maintenance. If all fragments will be 

independent, then we have to maintain them separately. This process will take more time. 

5. Complexity of code: Programmer sometime find hard to understand large and complex 

code so they just copy the code. 

6. Time limit: Time limit that is assigned to programmers to complete a product is very less. 

So they have to copy the existing clone. 

7. Accidently: Sometime unintentionally code may be copied by the programmers for the 

solution of similar types of problems. 

 

1.4 WEAKNESSES OF CLONING 

Software cloning is widely used by all programmers. But it has so many adverse effects on 

software engineering. Some harmful effects of cloning are listed below [3] : 

1. More maintenance cost: Software cloning increases the efforts of maintenance by 

duplicating multiple fragments. 

2. Bug propagation: When an error is presented in a one code fragment that is copied at 

multiple places in a system. Thus the code cloning elevate the bug propagation. 

3. Difficult to understand by maintainer: Because the maintainers have no information 

regarding duplicate fragments. 

 

1.5 ADVANTAGES OF CLONE DETECTION 

As there are so many flaws in code clone, yet so many benefits are existed. Some of the 

advantages of software cloning are discussed below [4] : 

1. Helps in maintenance of software system by detecting code clones. 

2. Detects Library functions by detecting codes that are reused again and again. 

3. Detects plagiarism and copyright infringement. 



 
  

5 
 

4. Helps in code compactness by reducing the size of source code 

 

1.6 STEPS OF CODE CLONE DETECTION 

The task of clone detector is to search code fragments which have high sameness in a 

software real code. The major problem is searching of code segments that are duplicated. So 

the detector has to compare every code segment with every other possible segment. Such 

activity to estimate the similarities and dissimilarities is very costly from computation view. 

So before performing the actual comparisons, there are so many calculations are used to 

lessen the domain of comparison. In this section, this report provides a net summary of 

fundamental paces in a clone detection procedure. The following figure 1.1 [2] shows the all 

paces that a classic clone detector may follow. These steps are [2][4] 

Preprocessing: 

In this step, the source code is filtered by removing uninteresting parts and then subdivided 

and the field of the comparison is fixed. 

Remove uninteresting source code fragment: In this step, the unwanted code which have 

no importance in comparison process are to be removed. 

Fix comparison unit: In this pace, the Source code is to be separated into small scale units 

based upon the detection method. Source unit may be begin-end blocks, classes, files, 

functions or statements. This step determines the source units of code. 

Transformation: 

Transformation in clone detection process is a step that used to transformed source code into 

a suitable middle delineation for comparison. This is also called extraction. This extraction 

transformed target code to the form appropriate for the resource to the actual clone detection 

algorithm. Depending upon the technique, it can have following steps: 

Token or lexical form: Here, each line of target code is chopped up into token values 

according to the lexical guidelines of the programming language of heed. The whitespaces 

and comments are detached from the sequences of tokens. CC-Finder and Dup are the prime 

techniques that utilize this kind of tokenization. 

AST (Abstract syntax tree) form: In this, the entire source code is converted or parsed into 

Abstract syntax tree. The source units to be compared are then shown as sub-trees of the AST 

and comparison algorithm look for similar sub-trees to mark as clones. 

Program dependence graph (PDG) analysis: Semantic based methods induce program 

dependence graph from the source file. The vertices of a PDG act as a substitute for the lines 



 
  

6 
 

and conditions of codes, edges indicate data and control dependencies. Source units are 

represented as sub-graphs of these PDG. 

Normalization: This step is a voluntary pace knowing to remove specious difference such as 

removal of whitespaces, comments, formatting or structural transformation. 

Clone Detection 

After transformation, code is then input into a comparison function. Then it is differentiate to 

other code fragments employing a comparison tool to identify equal code portions. 

Formatting 

In this step of clone detection process, the clone code obtained as a result of previous step is 

converted into its original source code. 

Filtering 

This step is not performed by all clone detectors. Here, code clone are took out and a human 

specialist refine out the false positives clones. This manual analysis process is to be defined 

based on length, range or frequency. 

Aggregation  

           While some tool results clone pairs not classes. Then to decrease the bulk of data, the clone 

pairs can be collected into mass, bunches or clone classes. 

 

1.7 TECHNIQUES/TOOLS OF CLONE DETECTION 

Today, so many clone identification methods are available. Some are based upon string based 

methods or some others are token based, PDG or AST based. Now we will discuss all these 

types of techniques and tools briefly. 

TEXTUAL BASED METHODS 

In this type of clone detection techniques, the source file code is first converted into sequence 

of lines or words. Then comparison is to be performed on them. If the contents of more than 

two code segments are similar in their maximum possible extent, are announced as pairs of 

clone or clone class by that detection method. These techniques returned a small number of 

false positives, are effortless in appliance and are language independent. The textual methods 

are mostly detects only type 1 clone. Here, we will discuss several well-known textual 

approaches as follows:[1][3][2] 

Dup: Dup is a text based tool by Baker. This tool, first, transformed or normalized source 

code by removing comments, whitespaces and deals with identifier naming. It hashes each 

line of target files and then compared them with suffix-tree algorithm. This tool extracts only 

exact and near-miss clones. Accuracy of Dup is less. 



 
  

7 
 

                                                                             CLONE BASE 

 

 

 

                                                                          PREPROCESSED CODE 

 

 

                                                                         TRANSFORMED CODE 

 

 

                                                                                       CLONES 

 

 

                                                                     

                                                                         CLONE PAIRS/CLASSES          

 

 

 

                                                                FILTERED CLONE PAIRS/CLONES 

 

 

 

 

                                                                          FILTERED CLONE  

                                                          Figure 1.1 Clone Detection operations 

 

 

                                                  PREPROCESSING             

 determine source and comparison unit, removing  useless code 

 

Clones are detected from the source, visualized with tools 

 

                                        POST PROCESSING: FILTERING 

 

            Conversion of clone pairs into original source code 

 

                                                      FORMATTING 

 

Obtained the intermediate representation of the code 

                                        TRANSFORMATION 

 

                                                     CLONE DETECTION 

 Comparison of transformed code is performed to find similar code 

 

 for the depletion of data or for easiness of analysis  

 

                                              AGGREGATION 

 



 
  

8 
 

             

Duploc: Duploc by Ducesse et al. is used two steps for clone detection. 1) First performs 

normalization by removing extra whitespaces, comments and change all characters to 

lowercase. This process decreases false positive and false negative by removing common 

constructs and insignificant difference between code clones respectively. 2) In the second 

step, string matching algorithm is to be used for comparing code line by line. The results of 

comparison are represented as a dotplot. That is too expensive in computational complexity. 

NICAD: NICAD by Roy and James is a hybrid type clone detection technique used for 

detecting type 3 (near miss clone). It is mixer of two techniques of clone detection textual and 

AST. NICAD detects type 1, 2 and 3 code clones. There are three phases in it1) First, a parser 

extricates procedures and divides the separate fragments into lines. 

2) In the second phase, normalization is to be performed using modification rules. 

3) LCS algorithm is used to matching two code fragments. Each possible code fragment has 

to be compared with every other fragment. So it is very costly tool. 

SDD: SDD by Seunghak and Jeong is a textual clone detection technique known as similar 

Data detection (SDD). This method is beneficial in matching in big size system for 

recognizing clones. Here, the index and inverted index for code segments and their locations 

are produced and then a n neighbor distance algorithm is used for detecting clone fragments 

[3]. 

LEXICAL APPROACH 

Lexical approach is a token based approach in which the whole source code is parsed to a 

series of token values. Then the examination of sequence is to be performed for detecting 

duplicated subsequence of tokens and ultimately converts the resulted code clone into 

original code portions. As compared to text based approach, it is more durable averse to code 

variations such as formation and arrangement. The leading token-based approaches are: 

CC-Finder: CC-Finder by Kamiya et al., a tool in which first the source codes are 

transformed into tokens by a lexer or parser and then all files of token values are merged into 

a single sequence of tokens. After that, the transformation laws of the language considered 

are applied. In the next step, the identifier related to variables, constants and types is 

substitute with a unique token. Then the suffix tree matching is to be used for identifying 

equivalent clone pairs or classes. At last phase clone pair is converted in the original source 

files. CC-Finder can handle page break relocation, name changes which cannot handle by 



 
  

9 
 

line-by-line approach. But it takes more CPU time and memory and it cannot detect type 3 

clones. 

CP-Miner: CP-Miner by Li et al. is token based technique that is used for detection of clones 

and bugs in large software system. CP-Miner uses frequent subsequence mining for copy-

pasting code blocks. It performs two functions:1)Detecting copy-pasted code fragment  2) 

Finding software bugs. It detects gapped clone with the help of enhanced version of Clospan 

algorithm. 

FRISC: FRISC by Murakami et al. is also a token-based technique which follows five steps: 

1) It first normalizes the source files into token values and replaced all identifiers with an 

exceptional token. 

2) Then the hash values are generated against every statement between”;”,”{“ and “}” with 

every token included in a statement. Then the numbers of repeated subsequence added to 

their first repeated subsequence and all repeated subsequence are removed. 

4) Then detects similar subsequence from the wrapped hash sequence. If the minimum token 

length is larger than the number of tokens identified, they are not accepted as clone. 

5) Then, transforms detected subsequence to the original target code. FRISC support java 

and c only. 

Limitations of token based approach: 

1) It based on the structure of program lines. If organization is changed in repeated fragment 

then code will not be recognized. 

2) This approach cannot detect type 3 or gapped clone. 

3) These techniques are very expensive in time and space complexity. 

 SYANTACTIC APPROACH 

Syntactical techniques are categorized into two ways: 

1 Tree Based Techniques: A program or source code is parsed to AST (abstract syntax tree) 

with a parser of the language which considered in tree based approach. Then by using same 

matching techniques, identical sub-trees are detected as clone classes or pairs. There are 

several tree based techniques are recently available. Here we will discuss only two types of 

tools: 



 
  

10 
 

i) CloneDR: CloneDR by Baxter et al is one of the pioneers AST based clone technique. In 

which a compiler generator is first used to convert source code into parse tree and then 

compared its sub-trees by depicting metrics based on a hash method through tree 

equalization. Then similar sub-trees source code is resulted as clone. 

ii) Wahler et al: This technique detects clones by converting AST into XML with frequent 

itemset mining. Frequent itemset mining is used for searching sequence of actions or events 

that performed regularly. 

2 Clone Detection Based On Metrics: Here, numbers of metrics are considered for 

comparison purpose instead of AST. The following seven metrics are mostly used by 

different authors: 

1) Parameters 

2)  Function calls 

3) Return statements 

4) Executable statements 

5) Conditional statements 

6) Loop statements 

7) Declaration statements 

There are many metrics based techniques purposed. But here we explain only two in brief as 

follow: 

Mayrand et al: It computes metrics from names, layouts, control flow of functions and 

expressions. When metrics of two functions are same, that functions are to be considered as 

clones.  

Kodhai et al: It is combination of metric approach with a textual method to identify 

procedural clones in C language code. This method has five steps: 

i) In first step, the source code is to be normalized by removing comments, whitespaces and 

preprocessed statements. 

ii) Arrangement transformation is used in the textual comparison of potential clone. It 

changes the name of variables, data types and functions. 

iii) Clone detection detects each function and recognize it. 

iv)  Acme calculations.  

v) exact clone and renamed clone detection. 

Limitation of syntactic approach: 

1) AST tools are unable to deal with identifiers and literal values. 

2) They cannot handle rearranged statement clone. 



 
  

11 
 

3) Metrics based methods require a parse or PDG producer to get metrics value. 

SEMANTIC APPROACH 

In this approach, semantically different fragments which execute same function are detected. 

This approach further of two types: 

1) PDG (Program Dependency graph) Based 

PDG based approaches uses semantic information of the source for getting a source code 

representation of big abstraction than other approaches. It contains control flow and data flow 

information of a source program and also keeps semantic information. The isomorphic sub-

graph methods are used for comparing a set of PDG. PDG based clone detection techniques 

are as follows: 

Komondoor and Horwitz’sPDG-DUP: Which proposed isomorphic PDG sub-graph using 

program slicing. There are three steps its follows: 

1) First the pairs of clones are searched by dividing all PDG vertices into identical classes. 

The matching nodes are vertices existed in the same class. 

2) Discard subsumed clones. 

3) The clone pairs are clustered into larger groups using transitive closure. 

GPLAG: It is proposed by Li et al. and used to detect plagiarism by mining PDGs. 

2) Hybrid Based: Compounding of more than two techniques are called hybrid techniques. 

A hybrid technique is used for removing weaknesses arised by individual tools or techniques. 

For example: 

Funare et al: It is a hybrid tool that is combination of AST and Text based methods. It 

follows three steps: 

a) Formation of AST. 

b) Serializing the AST and cryptograph into a sequence of strings with an inverse mapping 

procedure. 

c) Then detecting clones. 

d) Reconstructing clones. 

Limitations of Semantic Approach 

1) PDG tools cannot extendable to large system. 

2) Need a PDG generator. 

 

 

 

 



 
  

12 
 

                                                                                                                                      CHAPTER 2 

                                                                                                            REVIEW OF LITERATURE

 
 

 The clone detection in coding has become a very major concept of research these days. So 

many techniques have been proposed for code clone detection by different researchers. In this 

chapter, the literature review about papers or topics related to software cloning will be given. 

 Chanchal kumar roy and James R.Cordy(2007)[4]: In this survey of code clone detection, 

the terms of clone commonly used in the literature like clone pairs, clone class and clone 

fragment are described. It is also discussed clone types which are commonly used. Second, 

this paper provides a review of detection techniques, different clone taxonomies and 

experimental evaluations of different tools of detections. 

 Roy, James and Rainer Koschke(2009)[2]:This paper gives us the very basic information 

regarding code cloning like clone types, clone detection steps and all-inclusive of recent 

techniques and tools. There are two different dimensions used for comparing, classifying and 

evaluating all tools and techniques. First, it divide and compare methods based on a number 

of aspects based on usages, interaction, language, clone ,technical, adjustment etc. and second 

a predictive scenario-based approach is followed that estimate maximal potential of each 

clone detection technique. 

  Dhavleesh Rattan et al.(2013)[3]: This survey is a systematic literature review of software 

clone detection that is based on 213 articles, 37 premier conferences and workshops. In this 

review, 9 different types of clone, model based and semantic clone detection description, 13 

intermediate representations are reported. 

 Abdullah sheneamer, Jugal kalita(2016)[1]:This study gives us the benefits and flaws of all 

available clone detection techniques and tools by employing measurement based on 

precision, F-measure and recall metrics, scalability and portability. The goal of this study is 

to compare the recent status of the tools and techniques and highlight the future scope of 

them. 

 Toshihiro kamiya et al. (2002)[5]:In this paper, Kamiya et al. has proposed a tool named cc-

finder which detects code clone in so many languages like java, c++, COBAL and other 

source files. It first transform the input source text files into token sequences and applies rule-

based transformation to the sequence and then perform token by token comparison with 



 
  

13 
 

suffix tree matching algorithm for extracting clones. 

 Rainer Koschke et. al(2006)[7]: In this paper, the author has proposed a method for finding 

syntactic clones in linear time and space by using combined approach of tokenization and 

AST(Abstract syntax tree). Here, first source files are parsed and formed AST. Then serialize 

AST and employ Suffix tree method for detection of syntactic clones. 

 Hamid Abdul Basit(2007)[8]: In this research, author has proposed a clone detection tool 

called RTF(Repeated Tokens Finder). The working of this tool is as:                                                                         

1 First the source program is transformed into a string of token values. 2. A suffix array based 

algorithm is used for computing clones in the string of tokens 3 Then, to get rid of the 

probable false positive, the pruning that is based upon a heuristic is used [8]. 

Warren Toomey(2012)[9]: The author has developed a tool called CT-Compare. It uses a 

noval tokenization approach. Each source code file is first parsed into tokens with lexical 

analyzer and then divided into tuples of N successive tokens. The tuples are then hashed and 

the hashed sequences are used to detect type 1 and type 2 clone pairs[9].  

 Yang Yuan and Yao Guo [10]:In this report, Boreas, a scalable and accurate token based 

approach for detecting code clone[10]. Here, variables are used instead of matching 

sequences or structures. Using Counting-Based characteristics matrix, the similarity of two 

code fragments is identified by using the characteristics of proportion variables. 

 Rajnish kumar [11]: This research paper has proposed a clone detection technique using 

program slicing with a token based matching algorithm. This method detects type1, 2 and 

type 3 code clone and also best for detecting non contiguous code clone. 

 Benjamin Hummel et al. [12]: The author has proposed a index based method for detection 

of exact and renamed clones. This method is both scalable and incremental to very big code 

base and deal with real-time detection in large system. 

 Kodhai et al.(2014) [13]:In this paper, author has proposed a clone manager named tool 

based upon metrics and textual analysis for detection of procedure level semantic and 

syntactic clones in c and java projects. 

 Vera Wahler et al.[14]:In this paper, first the source files from java, c++ or prolog are 

parsed into XML and then frequent data mining technique is applied for extraction of clones. 



 
  

14 
 

  Zhenmin Li et al(2006)[15]:The author gives us a tool called CP-miner. It uses “clospan” 

frequent sub sequence mining algorithm for code clone detection. The procedure of this tool 

as: 

1) First parse the source code into tokens. 2) Then do mining for basic duplicate segments. 3) 

Then prune false positive. 4)  Then compose larger copy-pasted segments. 

 Hamid Abdul Basit(2009)[16]:In this method, the author has represented a technique that is 

used for structural or higher level clone detection with the application of data mining 

techniques. 

 Hiroaki Murakami(2016)[17]:In this dissertation, the author has proposed two clone 

detection techniques that upgrade the existing weaknesses. The first technique is a token 

based technique that folds every repeated instruction for reducing uninteresting clones and 

then apply token based detection techniques. This tool is called FRISC. Second technique 

detects gapped clone applying a local sequence alignment method named Smith Waterman 

(SW). This algorithm is faster and more accurate than previous algorithms like LCS, suffix-

tree, suffix-array, PDG-based etc. 

 Hiroaki Murakami(2013)[18]:In this paper, author has proposed a tool named CDSW. This 

tokenized based tool uses the smith waterman algorithm for clone detection.  This is very 

efficient algorithm and takes less time as compared to previous algorithms.  

 Abhilash CB [19]: This is a comparative study on global and local alignment. This study puts 

light on all concepts related to pair wise sequence alignment that are of further two types: 

Global sequence alignment algorithm like Needleman Wunsch algorithm and Local sequence 

alignment algorithm like Smith Waterman algorithm. 

 Shakuntala Baichoo(2017)[20]: This paper is a review of sequence analysis method’s time 

and space complexity and put light on their properties in a inclusive way[20]. Here, the 

memory capacity and time complexity of Needleman wunsch and Smith Waterman algorithm 

is compared in which Needleman wunsch algorithm proved better in time and both are equal 

in space complexity.   

                                                                                                                     

 

 



 
  

15 
 

                                                                                                                     CHAPTER 3 

                                                                                                            PRESENT WORK 

 

3.1 PROBLEM FORMULATION 

           Code clone detection is major area of research for developers recently. So many techniques 

and tools have been proposed for clone detection. Some tools detects type1 (exact clone), 

type 2(renamed clone) and some detects all types including gap clone. All these techniques 

are based on Text-based, Metric-based, Token-based, PDG (Program dependency graph) 

based or AST (Abstract Syntax Tree) based techniques. Each of these tools has its own 

strengths and weaknesses according to their way of represented code, granularity and 

matching algorithms. There are so many matching algorithms have been proposed before like 

LCS, Suffix-tree, Suffix-array, Smith waterman, PDG-based and AST-based etc. 

           The Smith Waterman algorithm is a tokenized based local Sequence alignment algorithm that 

detects the region of highest similarity including gaps between two sequences[18]. But this 

does not align the edges of similar sequences. The SW makes more comparisons when 

matching the score to 0 and when searching the largest value score during the trace back [20]. 

To alleviate the above problems in SW algorithm, the proposed technique in this research 

work is used tokenized based technique in which clones are detected by using Needleman 

Wunsch algorithm. NW is a global sequence alignment method which performs end to end 

comparisons between two potentially equivalent sequences and identifies the equivalent 

alignments even if they contain some gaps. 

Comparisons of time and space complexity between Smith Waterman and Needleman 

Wunsch(NW) 

Time complexity of NW algorithm: Following step by step approach is to be followed for 

analyzing time complexity: 

1. Determine the first row and column: O(r + s) 

2. Scoring in the table with all the values T (i,j) where i ranges from 1…r and j ranges from 

1…s computing the scoring function : O(r x s)  

3 The trace back : O(r + s) 



 
  

16 
 

4 Finding a final path, suppose s>r. so max(r, s): O(s) 

This overall time complexity is  

O(r + s) + O(rs) + O(r + s) + O(s) 

When r and s are very large, the lower order terms are discarded and thus the total time 

complexity is in the O(rs) [20].    

Time complexity of Smith Waterman: Same procedure is followed for analyzing 

complexity of SW: 

1.  Determine the first row and column: O(r + s) 

2. Filling in the table : O(r x s)  

3 The trace back takes: O(r x s) 

4 Finding a final path, if suppose s > r this step can take max(r, s): O(s) 

This overall time complexity is  

O(r + s) + O(rs) + O(rs) + O(s) 

When r and s are very large, the lower order terms are ignored , So the total time complexity 

is in the O(2rs) [20] . 

Thus whole running time of SW  is lesser than that of Needleman [20]. 

Space complexity of both: Space consumed by both algorithms is equal O(rs). Because both 

use same matrix and same quantity of space is required for trace back [20].  

Accuracy: Accuracy of NW algorithm is better than SW when the sequence being aligned 

might be quite diverse[20]. 

3.2 OBJECTIVE OF THE STUDY 

1) To propose a fast and efficient source code plagiarism identification technique based on 

tokenization 

1.1 To perform preprocessing of input files. 

1.2 To perform lexical analysis and normalization on preprocessed files for generating token 



 
  

17 
 

sequence. 

1.3 To calculate hash value for every statement. 

1.4 To identify same hash sequence using Needleman Wunsch algorithm. 

1.5 To identifying gapped tokens. 

1.6 To map identical subsequence to the source code. 

2) To perform empirical comparison of proposed approach with the existing base paper 

approach in terms of recall, F-measure and precision. 

3.3 RESEARCH METHODOLOGY 

Our proposed method is a fast and efficient source code plagiarism identification technique. 

First of all source code files are transformed into tokenized form and then compared by 

Needleman Wunsch algorithm. 

Introduction to Needleman Wunsch(NW) 

The NW algorithm[21] is a global sequence alignment method that is an example of dynamic 

programming. NW provides a mechanism of acquiring the best global alignment of two 

sequences including gaps by dividing the problem into several sub parts. There are following 

steps that to be followed by NW: 

1 Initialized a Matrix: First the initial matrix is created with M+2columns and N+2rows 

(where M & N are length of two sequences). Extra row and column is given, so as to align 

with gap at the starting of matrix as shown in below figure 3.1. 

Suppose mismatch, match and gap are chosed as -2, 2, and -1 and the two sequences are 

            DLIMDIILD 

            DLMLDILD 

2 Scoring the Matrix: In second step, matrix filling is performed from the upper left hand  

 

 



 
  

18 
 

 

                                                       Figure 3.1 Table initialization 

Corner. Scores of each cell in matrix are calculated by using following formula: 

                                         M(i, j) = (Max(M i-1,j-1 + S(Ai , Bj) 

                                                        Mi-1, j + gap, Mi, j-1 + gap) 

                       S(Ai, Bj)={ match (ai = bj) ,mismatch (ai != bj) 

           In above example of sequences match= 2, mismatch= -2, gap= -1 

                                                        Figure 3.2 scoring matrix 

 - D L I M D I I L D 

- 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 

D -1          

L -2          

M -3          

L -4          

D -5          

I -6          

L -7          

D -8          

 - D L I M D I I L D 

- 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 

D -1 2 1 0 -1 -2 -3 -4 -5 -6 

L -2 1 4 3 2 1 0 -1 -2 -3 

M -3 0 3 2 5 4 3 2 1 0 

L -4 -1 2 1 4 3 2 1 4 3 

D -5 -2 1 0 3 6 5 4 3 6 

I -6 -3 0 3 2 5 8 7 6 5 

L -7 -4 -1 2 1 4 7 6 9 8 

D -8 -3 -2 1 0 3 6 5 8 10 



 
  

19 
 

       3. Trace back the matrix: The diagonal movements during trace backing indicate a match and 

vertical and horizontal movements show gaps. The figure 3.3 is example of trace back step of 

above example: 

                                                               Figure 3.3 Trace backing 

This analysis results the following sequence: 

D L I  M  – D  I  I  L  D 

D L – M  L D  I  – L  D 

Procedure of research methodology 

The proposed method will be able to detect code clone of Type 1(exact clone), Type 2(Syntactic 

clone) and type 3(gapped clone). This method consists of following procedure: 

          1. First, it takes following inputs 

a) Source files 

b)  Total Number of tokens 

c) Maximum gap rate 

d) Score parameters (match, mismatch, gap) 

2.  Performing Parsing and Transformation 

3. Statement hash 

4.  Recognizing identical hash sequences 

5. Discovering tokens with gaps 

- - D L I M D I I L D 

- 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 

D -1 2 1 0 -1 -2 -3 -4 -5 -6 

L -2 1 4 3 2 1 0 -1 -2 -3 

M -3 0 3 2 5 4 3 2 1 0 

L -4 -1 2 1 4 3 2 1 4 3 

D -5 -2 1 0 3 6 5 4 3 6 

I -6 -3 0 3 2 5 8 7 6 5 

L -7 -4 -1 2 1 4 7 6 9 8 

D -8 -3 -2 1 0 3 6 5 8 10 



 
  

20 
 

6.  Mapping to the original code 

The following Figure 3.4 Shows the procedure of proposed method. 

2) Performing Parsing and Transformations 

          The input target files are parsed into token values. The special tokens are used instead of user 

defined identifiers. So that code clones can be find which have exactly not same variables. 

3) Statement hashing 

In statement hashing, every statement that is between “;”, opening brace (“{“) and closing 

brace (“}”) has been assigned a hash value. A number of tokens in every statement are 

attached to its hash value. 

                               

                                        

Step 1: 

 

 

 

 

 

          

 

 

 

 

       Clone pairs 

 

  

                                                     Figure 3.4 Paces of proposed method 

4) Recognizing identical hash sequences 

The Needleman Wunsch algorithm is used for recognizing similar hash sequences. Trace 

back is done from lower right corner towards upward by following maximal values and end 

at 0 value. 

 

Step 2: Performing Parsing and Transformations 

Source 

files 

30 
Minimal 

clone 

length 

0.5 
Maximal 

gap rate 

 

(2,-2,-1) 
Score 

parameter

s 

Step 3: Statement hashing 

Step 4: Recognizing identical hash sequences 

Step 5: Discovering tokens with gap 

Step 6: Mapping to the original code 



 
  

21 
 

 

 Step 5: Discovering tokens with gaps 

The LCS algorithm is used to identify token-level gaps. 

Step 6: Mapping to the source code 

This step is used for mapping of code clone detected in step 4 and 5 into original source code. 

A EXAMPLE SHOWS PROPOSED METHOD 

 First take following two source files code as input: 

     

 

                                       After lexical analysis and normalization 

                         

 

 

 

                                           Generating statement hash 

         

        

                                      

 

    

1 if(flag){ 

2 for( int m = 0; m< str . length; m++) { 

3 buff. append(token[i]);} 

4 str res = buff. tostring ( );} 

1 strbuff buff = new stringbuffer( ); 

2 for(int m = 0; m < tok . length; m++) { 

3 buff. append(tok[i]);} 

4 buff. append(getcomma( )); 

5 str res = buffer. tostring( ); 

1 if($){ 

2 for($$ = $ ; $<$.$ ; $++ ) { 

3 $.$( $ [$]) ; ) 

4 $$= $.$( ) ; } 

1 $$=new$( ) ; 

2 for($$=$ ; $<$.$ ; $++){ 

3 $.$($[$]) ; } 

4 $.$($( )) ; 

5 $$=$. $( ) ;  

1 60(7) ; 

2 10(6) ; 20(5) ; 30(4) ; { 

3 40(9) ; } 

4 65(8) ; 

5 50(8) ; 

1 0(4) { 

2 10(6) ; 20(5) ; 30(4) { 

3  40(9) ; } 

4 50(8) ; 



 
  

22 
 

                                            Generating hash sequences 

 

   

                                                                               Creating and initializing table and scoring 

 

  

 

                                                          

                                                                                    Trace backing 

 

 

 

 

 

 

                   

                                                                                           Similar hash sequences 

                                                                                                                   gap 

0 10 20 30 40 - 50 60 10 20 30 40 65 50 

 

60 10 20 30 40 65 50 0 10 20 30 40 50 

_  _ 60 10 20 30 40 65 50 

  _ 0 -1 -2 -3 -4 -5 -6 -7 

0 -1        

10 -2        

20 -3        

30 -4        

40 -5        

50 -6        

_  _ 60 10 20 30 40 65 50 

_ 0 -1 -2 -3 -4 -5 -6 -7 

0 -1 -2 -3 -4 -5 -6 -7 -8 

10 -2 -3 0 -1 -2 -3 -4 -5 

20 -3 -4 -1 2 1 0 -1 -2 

30 -4 -5 -2 1 4 3 2 1 

40 -5 -6 -3 0 3 6 5 4 

50 -6 -7 -4 -1 2 5 4 7 

_  _ 60 10 20 30 40 65 50 

_ 0 -1 -2 -3 -4 -5 -6 -7 

0 -1 -2 -3 -4 -5 -6 -7 -8 

10 -2 -3 0 -1 -2 -3 -4 -5 

20 -3 -4 -1 2 1 0 -1 -2 

30 -4 -5 -2 1 4 3 2 1 

40 -5 -6 -3 0 3 6 5 4 

50 -6 -7 -4 -1 2 5 4 7 



 
  

23 
 

                                                                                 Mapping  to source code 

                                                                                  

         

   

                                                                                                                           Gapped tokens 

                               Figure3.5 Example of proposed method 

EXPERIMENTAL DESIGN 

         we will used freely available data set called Bellon’s benchmark for comparing the F-

measure, recall and precision of proposed method. This data set contains eight software 

systems information. We compute precision , recall and F-measure for evaluating proposed 

method. These three parameters are shown below: 

           

                   Recall =|SR| / |Srefs |  

 

                 Precision =|SR| / |R|     

 

               F-measure = 2 × Recall × Precision / Recall + Precision. 

 

CONCLUSION 

         The proposed method is a technique which detects code clone in fast and efficient way. 

Here, we are tried to find a better comparison algorithm. Needleman Wunsch algorithm is 

used instead of Smith Waterman. Needleman Wunsch algorithm is better in speed and 

efficiency than Smith Waterman. It is a global sequence alignment method which performs 

end to end comparison and more accurate also. 

 

                                                                                                                       

1 if(flag){ 

2 for( int m = 0; m< str . length; m++) { 

3 buff. append(token[i]);}  

4 str res = buff. tostring ( );} 

1 stringbuffer buffer = new stringbuffer( ); 

2 for(int m = 0; m < tok . length; m++) { 

3 buff. append(tok[i]);}  

4 buff. append(getcomma( )); 

5 str res = buff. tostring( ); 



 
  

24 
 

                                                                                                                      REFERENCES 

 

[1] A. Sheneamer and J. Kalita, “A Survey of Software Clone Detection Techniques,” Int. 

J. Comput. Appl., vol. 137, no. 10, pp. 975–8887, 2016. 

[2] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation of code clone 

detection techniques and tools: A qualitative approach,” Sci. Comput. Program., vol. 

74, pp. 470–495, 2009. 

[3] D. Rattan, R. Bhatia, and M. Singh, Software clone detection: A systematic review, 

vol. 55, no. 7. Elsevier B.V., 2013. 

[4] C. K. Roy and J. R. Cordy, “A Survey on Software Clone Detection Research,” 

Queen’s Sch. Comput. TR, vol. 115, p. 115, 2007. 

[5] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A Multilinguistic Token-Based 

Code Clone Detection System for Large Scale Source Code. IEEE Trans Softw Eng,” 

IEEE Trans. Softw. Eng., vol. 28, no. 7, pp. 654–670, 2002. 

[6] J. R. Cordy, “Comprehending Reality: Practical Challenges to Software Maintenance 

Automation,” Int. Work. Progr. Compr., pp. 196–206, 2003. 

[7] R. Koschke, R. Falke, and P. Frenzel, “Clone detection using abstract syntax suffix 

trees,” Proc. - Work. Conf. Reverse Eng. WCRE, pp. 253–262, 2006. 

[8] H. A. Basit, S. J. Puglisi, W. F. Smyth, A. Turpin, and S. Jarzabek, “Efficient token 

based clone detection with flexible tokenization,” 6th Jt. Meet. Eur. Softw. Eng. Conf. 

ACM SIGSOFT Symp. Found. Softw. Eng. companion Pap. - ESEC-FSE companion 

’07, p. 513, 2007. 

[9] W. Toomey, “Ctcompare: Code clone detection using hashed token sequences,” 2012 

6th Int. Work. Softw. Clones, IWSC 2012 - Proc., pp. 92–93, 2012. 

[10] Y. Yuan and Y. Guo, “Boreas: an accurate and scalable token-based approach to code 

clone detection,” Proc. 27th IEEE/ACM Int. Conf. Autom. Softw. Eng. - ASE 2012, p. 

286, 2012. 

[11] R. Kumar, “Token based clone detection using program slicing,” vol. 5, no. August, 

pp. 1537–1541, 2014. 



 
  

25 
 

[12] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt, “Index-based code clone 

detection: incremental, distributed, scalable,” Softw. Maint. (ICSM), 2010 IEEE Int. 

Conf., pp. 1–9, 2010. 

[13] E. Kodhai and S. Kanmani, “Method-level code clone detection through LWH (Light 

Weight Hybrid) approach,” J. Softw. Eng. Res. Dev., vol. 2, no. 1, p. 12, 2014. 

[14] V. Wahler, D. Seipel, J. Wolff, and G. Fischer, “Clone Detection in Source Code by 

Frequent Itemset Techniques.” 

[15] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner : Finding Copy-Paste and Related 

Bugs in Large-Scale Software Code,” vol. 32, no. 3, pp. 176–192, 2006. 

[16] H. A. Basit, S. Jarzabek, and I. C. Society, “A Data Mining Approach for Detecting 

Higher-Level Clones in Software,” vol. 35, no. 4, pp. 497–514, 2009. 

[17] I. Science, “Fast and Precise Token-Based Code Clone Detection January 2016 

Hiroaki Murakami.” 

[18] H. Murakami, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto, “Gapped code clone 

detection with lightweight source code analysis,” IEEE Int. Conf. Progr. Compr., pp. 

93–102, 2013. 

[19] A. C. B, “A Comparative Study on Global and Local Alignment Algorithm Methods,” 

Int. J. Emerg. Technol. Adv. Eng. Website www.ijetae.com ISO Certif. J., vol. 9001, 

no. 1, pp. 34–43, 2250. 

[20] S. Baichoo and C. A. Ouzounis, “Computational complexity of algorithms for 

sequence comparison, short-read assembly and genome alignment,” BioSystems, vol. 

156–157, pp. 72–85, 2017. 

[21] S. B. Needleman and C. D. Wunsch, “A general method applicable to the search for 

similarities in the amino acid sequence of two proteins,” J. Mol. Biol., vol. 48, no. 3, 

pp. 443–453, 1970. 

                                             


