

i

Process execution speedup under multiprocessor environment.

A Dissertation submitted

By Himat Singh

Reg No - 41100105

Section - K2112

To

Department of Computer Science and Engineering

In partial fulfillment of the requirement for the

Award of the Degree of

Master of Technology in Computer Science and Engineering

Under the guidance of

Mr. Kiran Kumar Kaki

(Assistant Professor)

May-2014

ii

DECLARATION

I hereby declare that the dissertation entitled ― “Process Execution Speedup under

Multiprocessor Environment” submitted for the M.Tech degree is entirely my original

work and all references and ideas have been duly acknowledged. It does not contain any

work for the award of any other degree or diploma.

Date: 01/12/2013 Investigator: Himat Singh

Reg no: 41100105

iii

ABSTRACT

The Cloud computing model leverages virtualization of computing resources allowing

customers to provision resources on-demand on a pay-as-you-go basis. Instead of

incurring high upfront costs in purchasing IT infrastructure and dealing with the

maintenance and upgrades of both software and hardware, organizations can outsource

their computational needs to the Cloud. Large-scale data centers containing thousands of

computing nodes consuming enormous amounts of electrical energy. The virtual machine

migration in the cloud computing increase the overhead which leads to the delay in the

execution of processes. This dissertation focused on minimization of virtual machines

migration and turn off the idle hosts in order to reduce the idle power consumption. To

save energy, the highest and lowest processor utilization values are provided which can

act as a threshold for the virtual machines to migrate. If utilization value of processor for

the host goes below the threshold value, all virtual machines need to be migrated from

current host and the host has to be turn off, for reduction of idle power consumption. If

the utilization value exceed over the maximum threshold value, some virtual machines

need to be migrated from the host to reduce utilization to prevent potential Service Level

Agreements violation. Further for migrating least number of virtual machines this

research rely on the initial selection of virtual machines to allocate the cloudlets. The

initial selection of Virtual machine has great impact on the overall execution process. The

research is optimizing the migration process by migrating average number of virtual

machines based on the utilization of the processors. Migration of virtual machines is to be

considered with lowest usage of processors and tasks are totally dependent on it. Process

is helpful in minimize total potential increase of the utilization and SLA violation.

Keywords: Service Level Agreements, Quality of Service, Virtual Machine, Write once

run anywhere, Java Virtual Machine

iv

CERTIFICATE

This is to certify that Himat Singh (41100105) has completed M.Tech dissertation titled

Process Execution Speedup under Multiprocessor Environment under my guidance

and supervision. To the best of my knowledge, the present work is the result of his

original investigation and study. No part of the dissertation has ever been submitted for

any other degree or diploma.

The dissertation is fit for the submission and partial fulfilment of the conditions for the

award of M.Tech. computer science and engineering.

Date:_____________ Signature of Advisor:____________

Mr. Kiran Kumar Kaki

(Assistant Professor)

v

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to Mr. Kiran Kumar Kaki (Dissertation

Mentor) and Mrs. Harjeet Kaur for their valuable knowledge and expertise. It is only with

their guidance that I could take up the initiative of such a good topic of thesis and

complete it on time. I am also very thankful to Lovely Professional University for giving

me an opportunity to propose and implement my work.

I am gratified for the successful completion of my thesis implementation. I would also

like to convey thanks to all my friends who gave their full support and encouraged me for

this thesis work.

Himat Singh

41100105

vi

TABLE OF CONTENTS

Topic No. Topic Page No.

Chapter 1 Introduction 1-5

1.1 Cloud Computing Structure 1

1.2 Virtual Machines 2

1.3 Virtual Machine Migrations 2

1.4 Reallocation Process in Cloud 5

Chapter 2 Literature Review 6-12

Chapter 3 Proposed Work and Methodology 13-15

3.1 Problem definition 13

3.2 Objective 13

3.3 Methodology 14

Chapter 4 Dissertation Monthly Progress 16

4.1 Gantt Chart 16

Chapter 5 Results and Discussions 17

5.1 Creating Virtual machines 17

5.2 Results Discussion 23

5.2.1 Result of running simulation for FCFS 24

5.2.2 Result of running simulation for greedy

Algorithm
25

5.2.3 Energy efficient cloud 27

5.2.4 Power Aware Cloud 28

5.2.5 Non Power Aware Cloud 29

5.2.6 Comparison of Efficient Cloud with

PowerAware and NonPowerAware

Cloud

30

5.3 Summary 31

Chapter 6 Conclusion and Future Scope 32

Chapter 7 References 34-35

Chapter 8 Appendix 36-45

8.1 Eclipse and java platform 36

8.2 Cloudsim 41

 8.3 Glossary of terms 42

 8.4 Abbreviation 44

vii

TABLE OF FIGURES

S No. Description Page No.

1 Supply and demand variation 3

2 Virtual Machine Creation process 18

3 Task Creation process 19

4 Basic implementation of CPU Scheduling 20

5 VM Scheduling process 21

6 VmAlgo 22

7 Cloudlets distribution 22

8 Simulation start and stop process 23

9 Result for FCFS 24

10 Result for FCFS with second iteration 25

11 Results for Greedy Algorithm 25

12 Energy Efficient Cloud 27

13 PowerAware Cloud 28

14 Non Power aware Cloud 29

15 Comparision of results 30

16 Eclipse environment for development 37

17 Running procee of eclipse 38

18 Building of a process in eclipse 39

19 Process flow of cloudsim 42

viii

TABLE OF TABLES

Figure No. Description Page No.

1 Gantt Chart 16

2 Comparison of results 30

1

CHAPTER 1

INTRODUCTION

1.1 CLOUD COMPUTING STRUCTURE

In the last few years, we have seen the emergence of a new generation of business that

operates over the Internet. The Internet has become a medium for organizations,

businesses and individuals to collaborate because of technological and economic benefits.

The complexity of these networks is increasing given their assets of the sub-networks that

provide access to services and resources. These networks serve to strengthen

businesscustomer relationships, increases profitability and customer satisfaction.

Grid/Cloud computing paradigm has quickly become to realization. However, the

integration of decentralized services and resources over the internet is still a challenge [1].

In early 2008 the term “cloud computing” was created. Many definitions exist in the

literature about cloud computing. However, the vision of both the cloud and the Grid is

the same which is to reduce the cost of computing, increase reliability, and increase

flexibility by transforming computers from something that we buy and operate ourselves

to something that is operated by a third party [Foster et al., 2008]. We view the “cloud”

term as another marketing term hype of the Grid computing as they share the same vision,

fundamental characteristics and challenges.

The Cloud systems can be classified depending on the type of usage. Similar to traditional

computation model, those computation elements are the main elements in the Cloud

system. However, instead of the traditional centralized node that does all the computation,

the Cloud has different nodes that are distributed. The Cloud computing systems can be

classified into:

 Computational: denotes a system that has a high aggregate capacity of distributed

processors. It harnesses machines in “cycle-stealing” mode to have higher

computational capacity than the capacity of any constituent machine in the

system.

 Data: provides an infrastructure for creating information from data repositories

such as data warehouses.

2

 Service: refers to systems that provide services that are not provided by any single

local machine. An aggregate of services can compose a new service.

This thesis focuses on the Cloud systems virtual machine migration problem, minimum

virtual machine migration policy is implemented.

The Cloud computing model leverages virtualization of computing resources allowing

customers to provision resources on-demand on a pay-as-you-go basis [1]. Instead of

incurring high upfront costs in purchasing IT infrastructure and dealing with the

maintenance and upgrades of both software and hardware, organizations can outsource

their computational needs to the Cloud. The proliferation of Cloud computing has

resulted in the establishment of large-scale data centers containing thousands of

computing nodes and consuming enormous amounts of electrical energy.

1.2 VIRTUAL MACHINES

Virtual machines are separated into two different categories based on their use and the

extent up to which they correspond to physical machine. A system virtual machine

provides a complete system platform which supports the execution of complete operating

system.

Where as a Process virtual machine is designed to rum single program that means it

supports a single process. An essential characteristic of virtual machine is that the

software running inside is limited to the resources and abstractions provided by the virtual

machine

Standby state of the network in virtual environment is good option when utilization of

servers is less. This process for providing good concept for green computing and in this

particular work green algorithm is used for this purpose. Cloud and virtualization not only

accelerate the data center building but also brings the possibility of green energy.

If the workload size could allocated in different resource depend time and space, it could

improve the energy efficiency and avoiding waste resources.

1.3 VIRTUAL MACHINE MIGRATION

Market-based resource allocation systems rely on consumers to set values on resources

that they require. Market mechanism is to provide an allocation that is optimal. The

3

fundamental principle is that resources are priced based on the aggregated supply and

demand. Consumers seek a quantity of resource that maximizes their utility given the

current market price. Trade occurs at a clearing price that balances supply and demand as

shown in Figure 1. Such allocations are economically efficient. This means no

reallocation can make one better off without making another worse. Applying the

economic-based framework offers an effective way to solve the issues of scheduling

problems in the Grid/Cloud environment such as decentralization, autonomy, resource

sharing, heterogeneity, and quality of solution.

Fig. 1.1 Demonstartion of supply and demand variation in curvic form [2]

One of the ways to address the energy inefficiency is to leverage the capabilities of the

virtualization technology. The virtualization technology allows Cloud providers to create

multiple Virtual Machine (VMs) instances on a single physical server, thus improving the

utilization of resources and increasing the Return On Investment (ROI). The reduction in

energy consumption can be achieved by switching idle nodes to low-power modes (i.e.,

sleep, hibernation), thus eliminating the idle power consumption. Moreover, by using live

migration [3] the VMs can be dynamically consolidated to the minimal number of

physical nodes according to their current resource requirements. However, efficient

resource management in Clouds is not trivial, as modern service applications often

experience highly variable workloads causing dynamic resource usage patterns.

Therefore, aggressive consolidation of VMs can lead to performance degradation when an

application encounters an increasing demand resulting in an unexpected rise of the

4

resource usage. If the resource requirements of an application are not fulfilled, the

application can face increased response times, time-outs or failures. Ensuring reliable

Quality of Service (QoS) defined via Service Level Agreements (SLAs) established

between Cloud providers and their customers is essential for Cloud computing

environments; therefore, Cloud providers have to deal with the energy-performance trade-

off – the minimization of energy consumption, while meeting the SLAs.

One of the ways to address the energy inefficiency is to leverage the capabilities of the

virtualization technology. The virtualization technology allows Cloud providers to create

multiple Virtual Machine (VMs) instances on a single physical server, thus improving the

utilization of resources and increasing the Return On Investment (ROI). The reduction in

energy consumption can be achieved by switching idle nodes to low-power modes (i.e.,

sleep, hibernation), thus eliminating the idle power consumption (Figure 1). Moreover, by

using live migration [3] the VMs can be dynamically consolidated to the minimal number

of physical nodes according to their current resource requirements. However, efficient

resource management in Clouds is not trivial, as modern service applications often

experience highly variable workloads causing dynamic resource usage patterns.

Therefore, aggressive consolidation of VMs can lead to performance degradation when an

application encounters an increasing demand resulting in an unexpected rise of the

resource usage. If the resource requirements of an application are not fulfilled, the

application can face increased response times, time-outs or failures. Ensuring reliable

Quality of Service (QoS) defined via Service Level Agreements (SLAs) established

between Cloud providers and their customers is essential for Cloud computing

environments; therefore, Cloud providers have to deal with the energy-performance trade-

off – the minimization of energy consumption, while meeting the SLAs.

We wil present a decentralized architecture of the resource management system for Cloud

data centers and propose the development of the following policies for continuous

optimization of VM placement: [4]

 Optimization over multiple system resources – at each time frame VMs are

reallocated according to current CPU, RAM and network bandwidth utilization.

 Network optimization – optimization of virtual network topologies created by

intercommunicating VMs. Network communication between VMs should be

5

observed and considered in reallocation decisions in order to reduce data transfer

overhead and network devices load. [4]

 Thermal optimization – current temperature of physical nodes is considered in

reallocation decisions. The aim is to avoid “hot spots” by reducing workload of

the overheated nodes and thus decrease error-proneness and cooling system load.

The prediction algorithm used in related study [3], explains that it is very essential to find

the early prediction process for different requirements of the virtual machines. In this

research, we will be focusing in online available applications and this request need

complete solution for statistics and requests. Modification of the virtual machines are

never be fully possible. Various algorithm is used for providing details of the hot spots

available while communication and thresholds have been proposed for finding cold spots

and hot spots with threshold such as 80 percent to 90 percent for particular process.

Standby state of the network in virtual environment is good option when utilization of

servers are less. This process for providing good concept for green computing and in this

particular work green algorithm is used for this purpose.

1.4 REALLOCATION PROCESS IN CLOUD

Allocation of VMs can be divided in two: the first part is admission of new requests for

VM provisioning and placement VMs on hosts, whereas the second part is optimization

of current allocation of VMs. The first part can be considered as a bin packing problem

with variable bin sizes and prices. To solve it we apply modification of the Best Fit

Decreasing (BFD) algorithm. In our modification (MBFD) we sort all VMs in decreasing

order of current utilization and allocate each VM to a host that provides the least increase

of power consumption due to this allocation. This allows to leverage heterogeneity of the

nodes by choosing the most powerefficient ones. The complexity of the allocation part of

the algorithm is nm, where n is the number of VMs that have to be allocated and m is the

number of hosts.

6

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

In this present chapter, a brief account has been put forth of the available literature that

has been studied extensively.

2.2 LITERATURE SURVEY

Zhen Xiao in 2013 [3] explained that cloud computing allows business customers to

scale up and down their resource usage based on needs. Many of the touted gains in the

cloud model come from resource multiplexing through virtualization technology. In this

paper, authors present a system that uses virtualization technology to allocate data center

resources dynamically based on application demands and support green computing by

optimizing the number of servers in use. We introduce the concept of “skewness” to

measure the unevenness in the multidimensional resource utilization of a server. By

minimizing skewness, we can combine different types of workloads nicely and improve

the overall utilization of server resources. We develop a set of heuristics that prevent

overload in the system effectively while saving energy used. Trace driven simulation and

experiment results demonstrate that our algorithm achieves good performance.

Anton Beloglazov in 2010 [5] explains that Rapid growth of the demand for

computational power has led to the creation of large-scale data centers. They consume

enormous amounts of electrical power resulting in high operational costs and carbon

dioxide emissions. Moreover, modern Cloud computing environments have to provide

high Quality of Service (QoS) for their customers resulting in the necessity to deal with

power-performance trade-off. We propose an efficient resource management policy for

virtualized Cloud data centers. The objective is to continuously consolidate VMs

leveraging live migration and switch off idle nodes to minimize power consumption,

while providing required Quality of Service. We present evaluation results showing that

dynamic reallocation of VMs brings substantial energy savings, thus justifying further

development of the proposed policy.

7

Jyothi Sekhar in 2012 [6] In this paper, authors consider the problem of VM migration

policies and elaborated that virtualization technologies which are heavily relied on by the

cloud computing environments provide the ability to transfer virtual machines (VM)

between the physical systems using the technique of live migration mainly for improving

the energy efficiency. Dynamic server consolidation through live migration is an efficient

way towards energy conservation in Cloud data centers. The main objective is to keep the

number of power-on systems as low as possible and thus reduce the excessive power used

to run idle servers. This technique of VM live migration is being used widely for various

system-related issues like load balancing, online system maintenance, fault tolerance and

resource distribution. Energy efficient VM migration becomes a main concern as the data

centers are trying to reduce the power consumption. Aggressive consolidation may even

lead to performance degradation and hence can result in Service Level Agreement (SLA)

violation. Thus there is a trade-off between energy and performance. Various protocols,

heuristics and architectures have been proposed for the energy aware server consolidation

via live migration of VMs and are the main area for this survey.

Pablo Graubner in 2011 [8] explains an approach for improving the energy efficiency of

infrastructure-as-a-service clouds is presented. The approach is based on performing live

migrations of virtual machines to save energy. In contrast to related work, the energy

costs of live migrations including their pre- and post-processing phases are taken into

account, and the approach has been implemented in the Eucalyptus open-source cloud

computing system by efficiently combining a multi-layered file system and distributed

replication block devices. To evaluate the proposed approach, several short- and long-

term tests based on virtual machine workloads produced with common operating system

benchmarks, web-server emulations as well as different MapReduce applications have

been conducted. The results indicate that energy savings of up to 16 percent can be

achieved in a productive Eucalyptus environment.

Kyong Hoon Kim in 2010 [9] explains that reducing power consumption has been an

essential requirement for Cloud resource providers not only to decrease operating costs,

8

but also to improve the system reliability. As Cloud computing becomes emergent for the

Anything as a Service (XaaS) paradigm, modern real-time services also become available

through Cloud computing. In this work, authors investigate power-aware provisioning of

virtual machines for real-time services. This approach is (i) to model a real-time service

as a real-time virtual machine request; and (ii) to provision virtual machines in Cloud data

centers using Dynamic Voltage Frequency Scaling (DVFS) schemes. VM migration

needs less power consumption for provide green computing environment and hence this

research is very useful in discussed manner.

Corentin Dupont in 2012 [10] explained that data centres are powerful ICT facilities

which constantly evolve in size, complexity, and power consumption. At the same time

users‟ and operators‟ requirements become more and more complex. However, existing

data centre frameworks do not typically take energy consumption into account as a key

parameter of the data centre‟s configuration. To lower the power consumption while

fulfilling performance requirements authors propose a flexible and energy-aware

framework for the (re)allocation of virtual machines in a data centre. The framework,

being independent from the data centre management system, computes and enacts the

best possible placement of virtual machines based on constraints expressed through

service level agreements. The framework‟s flexibility is achieved by decoupling the

expressed constraints from the algorithms using the Constraint Programming (CP)

paradigm and programming language, basing ourselves on a cluster management library

called Entropy. Finally, the experimental and simulation results demonstrate the

effectiveness of this approach in achieving the pursued energy optimization goals.

Christopher Clark in 2005 [11] explained that migrating operating system instances

across distinct physical hosts is a useful tool for administrators of data centers and

clusters: It allows a clean separation between hardware and software, and facilitates fault

management, load balancing, and low-level system maintenance. By carrying out the

majority of migration while OSes continue to run, we achieve impressive performance

with minimal service downtimes; we demonstrate the migration of entire OS instances on

a commodity cluster, recording service downtimes as low as 60ms. Work show that that

our performance is sufficient to make live migration a practical tool even for servers

9

running interactive loads. In this paper authors consider the design options for migrating

OSes running services with liveness constraints, focusing on data center and cluster

environments.

Anju Mohan in 2013 [12] presented a survey for live migration of virtual machines

techniques and explained that virtual machines refers to the software implementation of a

computer that runs its own OS and applications as if it was a physical machine. Live

migration of VMs allows a server administrator to move a running virtual machine or

application among different physical machines without disconnecting the client or

application. Total migration time and downtime are two key performance metrics that the

clients of a VM service care about the most, because they are concerned about service

degradation and the duration that the service is completely unavailable. When a VM is

migrating, it is important that this transfer occurs in a manner that balances the

requirements of minimizing both the downtime and the total migration time.

Pradip D. Patel in 2014 [13] explained that cloud computing is a service where storage

and computing resources accessed on subscription basis. Cloud computing is powered by

virtualization technology. Live migration is the process of moving a running virtual

machine or an application between different physical machines without disconnecting the

client , memory, network connectivity and storage of the virtual machine are transferred

from the original host machine to the destination. This capability is being increasingly

utilized in today‟s enterprise environments to provide efficient online system

maintenance, reconfiguration, load balancing and fault tolerance. This paper presents a

detailed survey on Live Migration of Virtual machines in cloud computing.

M.Tarighi in 2010 [14] In this paper, authors show that performance of the virtualized

cluster servers could be improved through intelligent decision over migration time of

Virtual Machines across heterogeneous physical nodes of a cluster server. The cluster

serves a variety range of services from Web Service to File Service. Some of them are

CPU-Intensive while others are RAM-Intensive and so on. Virtualization has many

advantages such as less hardware cost, cooling cost, more manageability.

10

Sheng Di in 2013 [15] explains that With virtual machine (VM) technology being

increasingly mature, compute resources in cloud systems can be partitioned in fine

granularity and allocated on demand. Author make three contributions in this paper: 1) It

formulate a deadline-driven resource allocation problem based on the cloud environment

facilitated with VM resource isolation technology, and also propose a novel solution with

polynomial time, which could minimize users‟ payment in terms of their expected

deadlines. 2) By analyzing the upper bound of task execution length based on the possibly

inaccurate workload prediction, we further propose an error-tolerant method to guarantee

task‟s completion within its deadline. 3) It validate its effectiveness over a real VM-

facilitated cluster environment under different levels of competition. In our experiment,

by tuning algorithmic input deadline based on our derived bound, task execution length

can always be limited within its deadline in the sufficient-supply situation; the mean

execution length still keeps 70 percent as high as user specified deadline under the severe

competition. Under the original-deadline-based solution, about 52.5 percent of tasks are

completed within 0.95-1.0 as high as their deadlines, which still conform to the deadline-

guaranteed requirement. Only 20 percent of tasks violate deadlines, yet most (17.5

percent) are still finished within 1.05 times of deadlines.

Olivier Beaumont in 2013 [16] In this paper, authors consider the problem of assigning a

set of clients with demands to a set of servers with capacities and degree constraints. The

goal is to find an allocation such that the number of clients assigned to a server is smaller

than the server‟s degree and their overall demand is smaller than the server‟s capacity,

while maximizing the overall throughput. This problem has several natural applications in

the context of independent tasks scheduling or virtual machines allocation. We consider

both the offline (when clients are known beforehand) and the online (when clients can

join and leave the system at any time) versions of the problem. It first show that the

degree constraint on the maximal number of clients that a server can handle is realistic in

many contexts. Then, our main contribution is to prove that even if it makes the allocation

problem more difficult (NP-Complete), a very small additive resource augmentation on

the servers degree is enough to find in polynomial time a solution that achieves at least

the optimal throughput. After a set of theoretical results on the complexity of the offline

and online versions of the problem, we propose several other greedy heuristics to solve

11

the online problem and we compare the performance (in terms of throughput) and the cost

(in terms of disconnections and reconnections) of all proposed algorithms through a set of

extensive simulation results.

Rongxing Lu in 2013 [17] explains that With the pervasiveness of smart phones and the

advance of wireless body sensor networks (BSNs), mobile Healthcare (m-Healthcare),

which extends the operation of Healthcare provider into a pervasive environment for

better health monitoring, has attracted considerable interest recently. However, the

flourish of m-Healthcare still faces many challenges including information security and

privacy preservation. In this paper, we propose a secure and privacy-preserving

opportunistic computing framework, called SPOC, for m-Healthcare emergency. With

SPOC, smart phone resources including computing power and energy can be

opportunistically gathered to process the computing-intensive personal health information

(PHI) during m-Healthcare emergency with minimal privacy disclosure. In specific, to

leverage the PHI privacy disclosure and the high reliability of PHI process and

transmission in m-Healthcare emergency, we introduce an efficient user-centric privacy

access control in SPOC framework, which is based on an attribute-based access control

and a new privacy-preserving scalar product computation (PPSPC) technique, and allows

a medical user to decide who can participate in the opportunistic computing to assist in

processing his overwhelming PHI data. Detailed security analysis shows that the

proposed SPOC framework can efficiently achieve user-centric privacy access control in

m-Healthcare emergency. In addition, performance evaluations via extensive simulations

demonstrate the SPOC‟s effectiveness in term of providing high-reliable-PHI process and

transmission while minimizing the privacy disclosure during m-Healthcare emergency.

Anton Beloglazov in 2012 [17] explained that dynamic consolidation of Virtual

Machines (VMs) is an effective way to improve the utilization of resources and energy

efficiency in Cloud data centers. Determining when it is best to reallocate VMs from an

overloaded host is an aspect of dynamic VM consolidation that directly influences the

resource utilization and Quality of Service (QoS) delivered by the system. The influence

on the QoS is explained by the fact that server overloads cause resource shortages and

performance degradation of applications. Current solutions to the problem of host

overload detection are generally heuristic-based, or rely on statistical analysis of historical

12

data. The limitations of these approaches are that they lead to sub-optimal results and do

not allow explicit specification of a QoS goal. Authors propose a novel approach that for

any known stationary workload and a given state configuration optimally solves the

problem of host overload detection by maximizing the mean inter-migration time under

the specified QoS goal based on a Markov chain model. Authors heuristically adapt the

algorithm to handle unknown non-stationary workloads using the Multisize Sliding

Window workload estimation technique. Through simulations with real-world workload

traces from more than a thousand PlanetLab VMs, we show that our approach

outperforms the best benchmark algorithm and provides approximately 88% of the

performance of the optimal offline algorithm.

2.2 INFERENCES DRAWN OUT OF LITERATURE REVIEW

In the recent past, most of the work is done to migration of virtual machines based on

fixed thresholds and these processes make it more static in nature. Some of the

interference drawn from literature survey is given below.

 After reviewing many papers we found that virtualization is the solution of

expanding industrial needs and cloud computing the answer for many issues like

scalability and availability to fulfil.

 To fulfill the industrial and commeicial needs, huge number of resources are

required and virtual machines migration process become more reliable to ful fil

this process.

13

CHAPTER 3

PROPOSED WORK AND METHODOLOGY

3.1 PROBLEM DEFINITION

In related study, a scheme for selecting energy efficient allocation of virtual machines in

cloud data center. Proposed scheme consider the maximum and minimum utilization

threshold value. If the utilization of CPU for a host falls below the minimum threshold,

all VMs have to be migrated from this host and the host has to be switched off in order to

eliminate idle power consumption. If the utilization goes over the maximum threshold,

some VMs have to be migrated from the host to reduce utilization to prevent potential

Service Level Agreements violation. Further for migrating, it uses minimization of

migrations to reduce migration overhead. Our research is followed similar line of

implementation by using a Task scheduling algorithm that scheduled the task to the

virtual machines according to CPU power. According to our concept if tasks is scheduled

to the virtual machines earlier, load is managed in a better way and this resulted in less

number of virtual machine migration. Further migration of virtual machines is considered

with lowest usage of processor and tasks are totally dependent on it. This process is

helpful to minimize total potential increase of the utilization and SLA violation. For

validation of our proposed work, we have simulated Non Power Aware policy,

Comparison is done with these two schemes.

3.2OBJECTIVES

In our study for various literature studies, we found that virtual machine migration is

widely used and applied to current cloud infrastructure and needs healthy amount of

resource usage accuracy duration the processing migration in various applications based

on scheduling assigned to data center. The focused objective which can be considered for

our experimentation is as follows.

To find optimal virtual machine resource management policy that provide reduction of

the migration of virtual machines and which can provide virtual machine migration based

on low utilization of processors. Simulation migrate the VM to other hosts that has lowest

14

CPU load or that has highest CPU load. The concept is to manage the energy

consumption of the cloud by transferring VM to the other hosts and switching off the

ideal hosts. Moreover by reducing the VM migration the speeup can be achieved.

we will target our objectives given below:

 To find the better virtual machine resource management policy that will reduce the

migration of virtual machines.

 Find the solution for better scheme based on virtual machine migration based on low

utilization of CPU

3.3 METHODOLOGY

This research starts with study of parallel computing management in virtual cloud

environment based on cloud computing for virtualization in following steps.

1
st
 Phase: This is the initial stage for the whole process and it contains the basic

functionality along with the collection of information (virtual simulation, basic

virtualization functions etc).

2
nd

 Phase: This stage implements the basic scenario for parallel processing structure

based on resources allocation scheme.

3
rd

 Phase: This stage creates the migration instructions for the virtual machines.

4
th

 Phase: This stage consists of the experimentation in which the resource utilization of

the complete process is computed based on the threshold value of the utilization of the

multiprocessor environment in parallel communication. The basic function of the

selection of the threshold is done by the selection engine which is deciding the minimum

threshold according to the requirement of the system. Maximum threshold value is fixed

to 90% CPU Utilization. The host needs to switch off in case of migration to save the

power consumption of the server which in turns provides less heating effect. In case the

value crosses the upper bound then engine need to migrate the partial processes to other

host server. Further for better execution time, migration of the virtual machine is on lesser

side which in turns decreases the overall overhead.

15

5
th

 Phase: Final stage is the comparison of the proposed work with already existing work.

16

CHAPTER 4

4.1 Dissertation Monthly Progress

GANTT CHART

The overall work is divided according to various tasks involved in research as well as the

available time limits.

Task Start End Duration

2014

Jan Feb Mar Apr May

1. Identification

of initial load

distribution

policies

07/01/14 02/02/14 25

2. Identification

of migration

techniques

26/01/14 18/02/14 22

3. Design layout

for migration

17/02/14 25/03/14 35

4.

Implementation

using cloudsim

24/03/14 15/04/14 20

5. Comparison 15/04/14 05/05/14 20

Table 4.1 Gantt Chart

17

CHAPTER 5

SIMULATION RESULTS AND DISCUSSIONS

5.1 Creating Virtual Machines

In this work scheduling of the jobs on the multiple resources in a gird-system is

considered. We have used java platform for the development and implementation of the

system. We have use cloudsim to simulate the cloud environment which consist of 100

physical nodes which are heterogenous in nature with 2000 MIPS and 6 GB of RAM with

limited storage. Simulation is configured to show our environment. To create our

environment we have created 5 resources with different configuration.

18

Fig. 5.1 Virtual Machine creation and allocation process

Each resource had 1 cpu. In cloudsim environment cpu power is measured by

mips(million instructions per second). Mips is a measure that how many instruction cpu

can process in one second. Higher the mips, higher will be the cpu power.

 To simulate tasks we have created 11 cloudlets in the simulation. Each task had different

length. Cloudlet length is the measure of the size of task, length means number of

instructions in the task.

19

 Fig. 5.2 Task creation process

5.2 Distributing cloudlet to virtual machines at initial stage

The basic scheduling approach we follow is a kind of greedy alogithm. In this algoritm

we just sort the list of available vm list and cloudlet list. The vm list is sorted on the basis

of mips and for the cloudletsthe basis is length. After sorting process the new list are

created. Then the actual process of allocation takes place in a serial fashion. In below

Figure, basic scheduling is shown.

Fig. 5.3 Basic implementation of the CPU Scheduling

20

In below Figure, basic process of virtual machine scheduling is explained. CPU

scheduling time and Cloudlet which are used is explained.

 Fig. 5.4 VM Scheduling process

VmAlgo

VmAglo(List<Vm> vmlist, List<Cloudlet> clist)

1. If vmaxcount of vmlist =0 //NO vm is available

Show wait

2. If cmaxcount of cist =0 //NO cloudlet is available

Show wait

3. Repeat steps 4 and 5 for i=1 to vmaxcount-1

4. Repeat step 5 for j= 1 to vmaxcount-i

5. if vmlist<j>.getmips()>vmlist<j+1>

then temp= vmlist<j+1>, vmlist<j+1>=vmlist<j>, vmlist<j>=temp

21

6. Repeat steps 7 and 8 for i=1 to cmaxcount-1

7. Repeat step 8 for j= 1 to cmaxcount-i

8. if clist<j>.getcloudletLength() > clist<j+1>.getcloudletLength()

then temp= clist<j+1>, clist<j+1>=clist<j>, clist<j>=temp

9. Assign cloudlets to vm by selecting each from the list

Fig.5.5 VmAlgo

First simulation has to be initialized, than all the resources and tasks is created by the

simulation. After that tasks are assigned according to scheduling policy, after assigning

the task to the resources, simulation start processing. In processing mode simulation

actually perform all the processing and calculate results. After processing simulation

stops and results are produced to the user.

22

Fig. 5.6 Cloudlets Distribution

The above figure shows the process assignment of cloudlets to vms. Once the VMs and

cloudlets are created, they are arranged as per the initial greedy algorithm. The cloudlets

are arranged in the ascending order of their lengths. The length of individual cloudlet is

find out with the help of getlength() function. The Vms are also arranged in ascending

order of their mips(million instruction per second). Mips is the mesure to rate the virtual

machine. After arranging the cloudlets and Vm list the assignment process is initiated.

The cloudlets are assigned in a serial order.

23

 Fig. 5.7 Simulation Start and Stop Process

Cloudsim is the simulation that is developed in java and it is used to implement our

proposed work. First simulation is initialized that includes all the configuration, after

simulation is ready to run it is started that is the phase where simulation performs all the

executions. After that simulation is stopped.

5.2 Result Discussions

Results obtained after running simulation for different scheduling algorithm are discussed

and compared here in the following sections.

24

5.2.1 Result Of Running Simulation For Fcfs

FCFS is also a well-known cpu scheduling technique. This technique is very simple and

according to it tasks should be given priority on the basis of their arrival that means task

that came first should be selected first. But our results shows this criteria of selecting

results does not assure to give good results every time. As we are selection resources on

the basis of their arrival order in this case we have executed simulation 10 time to

simulate different arrival order for the task. Sometime we got very good results and

sometime our result was poor. So this technique of task selection can-not be considered a

much reliable technique.

 Fig. 5.8 Results for First Come First Serve

This is a snapshot from running the simulation one time for FCFS. Here we can see we

are getting an overall make-span of 1156.12 ms. That is better than SJF, but still poor as

compare to our proposed priority based technique.

We have mentioned above that in FCFS jobs arrival order decide how job will be picked

and this may affect the schedule and may give different results for different run of

simulation. Therefore we cannot consider it a very reliable technique.

25

 Fig. 5.9 Results for First Come First Serve with Second Iteration

To prove our point here is another snapshot, these are the results that we have got on the

second run of simulation. Here we can see that make-span is 1623.57 ms which is much

higher than both SJF and our priority based technique.

5.2.2 Results Of Simulation For Greedy Algorithm

Greedy is an old resource scheduling technique which is based on the idea that assign any

resource to the task that may perform our work. Greedy do not consider any factor before

assigning the task to the resource, the only thing is that if resource execute the task then

assign it to the resource.

Fig. 5.10 Results for Greedy Algorithm

Greedy is also an unreliable technique which may produce some good results sometime.

But most of the time results are not good as greedy pick resources randomly without

using a proper criteria. Here we can see that overall make-span on running simulation for

greedy give 1666.77 ms.

26

Comparison of energy efficient cloud with other clouds. In our program we are using a

task scheduling algorithm in the beginning for better load management. The concept is

that if the resources will be managed in the beginning that means load will be evenly

distributed over the Vms. Then number of over utilized and under-utilized hosts will be

less. This will result in less number of Vms migration from one host to another host.

Moreover we are using Minimum CPU utilization selection policy that means when a VM

has to be selected for migration simulation will select the VM which has minimum

utilization. This approach will further help in reducing the number of VM migration.

Because we are transferring some load from over-utilized host to another host this will

bring the utilization of that host below threshold limit and as we are moving minimum

utilization Vm to another host, therefore other host will also not get over-utilized by

migrated VM.

As a proof of our concept we are showing simulation result snapshots and a comparison

table that is showing our results are much better than base paper based power aware

cloud, and non power aware cloud.

Snapshots and comparison tables are below.

27

5.2.3 ENERGY EFFICIENT CLOUD.

Fig. 5.11 Results of Energy efficienct cloud

28

5.2.4 POWER AWARE CLOUD

Fig. 5.9 Results Power Aware Cloud

29

5.2.5 NON POWER AWARE CLOUD

Fig. 5.10 Results of Non Power Aware Cloud

30

5.2.6 COMPARISON OF RESULTS.

Parametrs Efficient Cloud
PowerAware

Cloud

NonPowerAware

Cloud

Number of Hosts 5 5 5

Total Simulation

Time (in sec)
10 10 10

Energy

Consumption (in

kwh)

1440 1440 1440

Number of Vm

Migrations
2 13 13

SLA (in

percentage)
0.002 0.01127 0.2618

SLA degradation

due to migration

(in percentage)

0.07 0.16 0.85

SLA Time per

active Host
3 7.07 30.68

Overall SLA

violation (in

percentage)

0.07 0.16 0.85

Number of Hosts

shutdown(in

percentage)

4 4 4

Table. 5.1 Comparisons of results

31

5.3 SUMMARY

The overall work is to find a scheduling technique that may schedule virtual machine

migration over multiple resources by picking the best allocation scheme for the job in

such a way that overall performance of executing the jobs will be higher and less number

of migration are done. This work is useful in the cloud computing environments or

similar environments where we have to choose a resource from a number of available

resources. Proposed work assign threshold values to the jobs on a hybrid technique that

assign resources initially and process the migration of jobs in term of machines according

to the requirement of the cloud structure accuracy and robustness. Our approach uses a

combination of small and big task to run on the machines. This approach distribute load

on the machines in better way. After assigning tasks are scheduled to the resources by

choosing best performing task for the resource. And in the proposed technique each

resource maintain a list that store the information for all the tasks assigned to the resource

along with number of virtual machines which are migrated.

32

CHAPTER 6

CONCLUSIONS AND FUTURE SCOPE

6.1. CONCLUSION

In this research finding a best allocation scheme for decreasing number of virtual machine

migrations is considered by applying efficient resources judgement method and finding

the threshold boundries for assigning the resources and migration of virtual machines for

better performance of cloud compuitng structure.

Our research proposed a solution that will provide a less number of virtual machine

migration under suitable applications. Proposed scheme consider the maximum and

minimum utilization threshold value. If the utilization of CPU for a host falls below the

minimum threshold, all VMs have to be migrated from this host and the host has to be

switched off in order to eliminate idle power consumption. If the utilization goes over the

maximum threshold, some VMs have to be migrated from the host to reduce utilization to

prevent potential Service Level Agreements violation.

In our proposed work we have worked on two important problems that is job selection

and resource scheduling along with virtual machine migration slection policy. Our

research proves that selection of jobs also effects the overall performance of cloud

network. For validation of our proposed work, we have used power aware cloud and non

power aware clouds so that we can show the difference.

So in our proposed work has proved that virtual machine migration selection affect the

overall performance of cloud and better execution of the jobs. Picking resources on the

basis of defined thresholds while considering the better resource allocation could be a

good solution.

In nutshell the proposed work provide a good scheduling technique for virtual machine

migration in cloud computing structure.

33

6.2 FUTURE SCOPE

In future, this research can be enhanced by implementing on the real cloud systems on

live environment. This proposed work is implemented on a simulation platform that was

developed and implemented in java. Running this work on the real environment and

comparing them with simulation results may help us to further enhance this proposed

work.

Further research can be done to implement this work on the grid environment. Cloud and

grid environment has lots of similarities and with little modification proposed work can

be implemented to the grid compuitng. It will be interesting to run this proposed work for

grids and analyzing its performance for grid that is technology in demand now a days for

research purposes.

34

CHAPTER7

REFERENCES

[1] Czajkowski K., Fitzgerald S., Foster I., and Kesselman C, “Grid Information Services

for Distributed Resource Sharing”, in Proceeding the 10th IEEE International Symposium

on High- Performance Distributed Computing (HPDC-10), pp. 181-194, San Francisco,

California, August 2001, USA.

[2] Economic blog, http://enthusiasm.cozy.org/.

[3] Zhen Xiao, „„Dynamic Resource Allocation Using Virtual Machines for Cloud

Computing Environment‟‟, IEEE Transactions on Parallel and Distributed Systems, Vol.

24, No. 6, June 2013.

[4] Siegele, “Let It Rise Around: A Special Report on Corporate IT,” Magazine of

Economist Time, Vol.389, pp.13-16, October, 2008.

[5] Anton Beloglazov and Rajkumar Buyya, “Energy Efficient Allocation of Virtual

Machines in Cloud Data Centers”, IEEE/ACM International Conference on Cluster,

Cloud and Grid Computing, pp.129-134, June 2010.

[6] Jyothi Sekhar, Getzi Jeba, S. Durga, “A Survey on Energy Efficient Server

Consolidation Through VM Live Migration,” International Journal of Advances in

Engineering & Technology, pp. 342- 362, Nov. 2012.

[7] Amzon Process, “Amazon elastic compute cloud ” http://aws.amazon.com/ec2/, last

accessed on Decmebr 6, 2013.

[8] Pablo Graubner, Matthias Schmidt, Bernd Freisleben, “Energy-efficient Management

of Virtual Machines in Eucalyptus”, IEEE Conference on Parallel Computing, June 2011.

[9] Kyong Hoon Kim, Anton Beloglazov, “Power-Aware Provisioning of Virtual

Machines for Real-Time Cloud Services”, CLOUDS Lab, The University of Melbourne,

Parkville, Victoria 3010, Australia, John Wiley & Sons, Ltd., 30 December 2010.

[10] Corentin Dupont,” An Energy Aware Framework for Virtual Machine Placement in

Cloud Federated Data Centres”, ACM Publications, Madrid, Spain, May 9-11 2012.

35

[11] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, “Live Migration

of Virtual Machines,” NSDI, 2nd Symposium on Networked Systems Design &

Implementation, USENIX Association, pp. 22- 31, August 2005.

[12] Anju Mohan, Shine S,“Survey on Live VM Migration Techniques”, International

Journal of Advanced Research in Computer Engineering & Technology, Vol. 2, Issue. 1,

January 2013.

[13] Pradip D. Patel, “Live Virtual Machine Migration Techniques in Cloud Computing:

A Survey”, International Journal of Computer Applications,Vol. 86, No. 16, January

2014.

[14] M.Tarighi, S.A.Motamedi, S.Sharifian, “A new model for virtual machine migration

in virtualized cluster server based on Fuzzy Decision Making”, Journal of

Telecommunications, Vol. 1, Issue. 1, February 2010..

[15] Sheng Di, “Error-Tolerant Resource Allocation and Payment Minimization for

Cloud System”, IEEE Transactions on Parallel and Distributed Systems, Vol. 24, No. 6,

June 2013.

[16] Olivier Beaumont, Lionel Eyraud-Dubois, Christopher Thraves Caro, and Hejer

Rejeb, “Heterogeneous Resource Allocation under Degree Constraints”, IEEE

Transactions on Parallel and Distributed Systems, Vol. 24, No. 5, May 2013.

[17] Anton Beloglazov and Rajkumar Buyya,” Managing Overloaded Hosts for Dynamic

Consolidation of Virtual Machines in Cloud Data Centers Under Quality of Service

Constraints”, IEEE Transactions on Parallel and Distributed Systems , Vol. 23, No. 4,

pp.19-23, 2012.

36

CHAPTER 8

APPENDIX

8.1 ECLIPSE AND JAVA PLATFORM

In computer programming, Eclipse is a multi-language software development

environment comprising a base workspace and an extensible plug-in system for

customizing the environment. It is written mostly in Java. It can be used to develop

applications in Java and, by means of various plugins, other programming languages

including Ada, C, C++, COBOL, Fortran, Haskell, JavaScript, Perl, PHP, Python, R,

Ruby (including Ruby on Rails framework), Scala, Clojure, Groovy, Scheme, and Erlang.

It can also be used to develop packages for the software Mathematica. Development

environments include the Eclipse Java development tools (JDT) for Java and Scala,

Eclipse CDT for C/C++ and Eclipse PDT for PHP, among others.

The initial codebase originated from IBM VisualAge. The Eclipse software development

kit (SDK), which includes the Java development tools, is meant for Java developers.

Users can extend its abilities by installing plug-ins written for the Eclipse Platform, such

as development toolkits for other programming languages, and can write and contribute

their own plug-in modules. Released under the terms of the Eclipse Public License,

Eclipse SDK is free and open source software (although it is incompatible with the GNU

General Public License). It was one of the first IDEs to run under GNU Classpath and it

runs without problems under IcedTea. Following are the ways to create the project in this

IDE.

You will want to create a new project for each assignment in CS108. This will let you

separate the files for each HW into different folders. Before you start, make sure you're

using the Java 1.5 environment. Go to Window->Preferences. On the left pane, click

Java->Editor->Installed JREs. Make sure that the 1.5 JRE is added and checked.

1. Create a new project from starter files. Bring up the New Project Dialog by

selecting File->New->Project.... Click Java and over on the right you should see

Java Project appear. Click on Java Project.

37

 Fig. 8.1 Eclipse environment for project creation

2. Then click Next. Now, give your project a name. Click "Create project from

existing source" and add then add the directory in which your project lives. We

want to use Java 5 (also known as Java 1.5), so you can either specifically select

it, or set 5.0 to as the default. Also, click on "Use project folder as root for sources

and class files."

3. Now, just click Finish and you're done creating the project! If it asks you to switch

to the Java Perspective, say yes. Another thing you want to do is make sure the

project is using the correct JRE. Right click on your project in the Package

Explorer on the left and click on Properties. Select Java Build Path and Choose

the Libraries Tab. If the JRE is 1.5, you're fine.

If this isn't the case, you need to set a different JRE for the project. Click on "JRE System

Library", and then click Edit. Select Alternative JRE and select the JRE you want from

the drop down box.

4. Adding existing files to the project. If you had a Hello World directory with all

your source files, an easy way to add these files to your Hello World is probably

to just Import the Hello World directory. After adding the Hello World project,

38

you should now see it in the main window. Expand the 'Hello World' node and

you should see a folder for your sources, 'src'. You will also see a node for the

Java libraries, but you can ignore that. Right click on the 'src' directory and click

Import.... Select File System as the input source and then click Next. Enter the

CS108 HelloWorld directory as the directory of files to import. You should see

the directory and its contents in the tree view. Click on the files you wish to

import, or click Select All... to import all the files from that directory. Make sure

that you also select Create Selected Folders Only. This way it will put all the files

in the 'src' directory. Otherwise it would make a '/usr/class/cs108/HelloWorld/'

directory in your 'src' directory, and everything would be in there, and it wouldn't

be pretty. And finally, click Finish and you're done! Alternatively, you can just

create a project from existing source, as mentioned above.

5. Adding new classes/files to the project. To add a new class to the project click

File->New->Class. This will bring up the New Class Dialog. In this dialog, you

can set a bunch of properties for the class. In my example, I've created a

HelloWorld class in the default package, and I clicked on the option to create a

main() stub, so I wouldn't have to type it out myself. Once you are done filling in

the info for your class, hit Finish and you're done! The Java Perspective should

look something like this:

39

Fig. 8.2 Running process of eclipse

6. Building the project. To compile the .java files into .class files select Project-

>Build All. (from then on you can do Build Project which will only compile those

.java files that haven't been compiled yet).

7. Running your program. To run your program once it has compiled without errors,

either click Run->Run... or click the button that looks like 'Play'. Select Java

Application and then click New. Then you will have a chance to select which

class's main() you want to use as a starting point. Eclipse will automatically filter

out classes that don't have a main(). You also get to specify any arguments you

want to pass to main().

Once you're ready, hit the Run button, and you're off and running!

Fig 8.3 Building of project in eclipse

40

8. Debugging your program. To debug your program click Run->Debug.... This will

pop up a dialog similar to the one used to Run the program. Click Debug (or the

icon of the bug) and two things will happen. First, this will change your

perspective to the Debug perspective. Secondly it will start running your program.

JAVA: Java is a general-purpose, class-based, object Oriented computer programming

language that is specifically designed to have as few implementation dependencies as

possible. It provides us the magical byte code. It is intended to let application developers

"write once, run anywhere" (WORA), meaning that code that runs on one platform does

not need to be recompiled to run on another. Java applications are typically compiled to

byte code (class file) that can run on any Java virtual machine (JVM) regardless of

computer architecture . Java is, as of 2012, one of the most popular programming

languages in use, particularly for client-server web applications, with a reported 10

million users.[10][11] Java was originally developed by James Gosling at Sun

Microsystems (which has since merged into Oracle Corporation) and released in 1995 as

a core component of Sun Microsystems' Java platform. The language derives much of its

syntax from C and C++, but it has fewer low-level facilities than either of them. While

java was designed there was five principal in the mind of the James Gosling.

Principles

There were five primary goals in the creation of the Java language

1. It should be "simple, object-oriented and familiar"

2. It should be "robust and secure"

3. It should be "architecture-neutral and portable"

4. It should execute with "high performance"

5. It should be "interpreted, threaded, and dynamic

One characteristic of Java is portability, which means that computer programs written in

the Java language must run similarly on any hardware/operating-system platform. This is

achieved by compiling the Java language code to an intermediate representation called

Java byte code, instead of directly to platform-specific machine code. Java byte code

instructions are analogous to machine code, but they are intended to be interpreted by a

virtual machine (VM) written specifically for the host hardware. End-users commonly use

41

a Java Runtime Environment (JRE) installed on their own machine for standalone Java

applications, or in a Web browser for Java applets.

8.2 CLOUDSIM

Features & Advantages

 Discrete Time Event-Driven

 Support modeling and simulation of large scale Cloud computing environments,

including data centers

 Support simulation of network connections among simulated elements

Advantages

 Time effectiveness

 Flexibility and applicability

 Test policies in repeatable and controllable environment

 Tune system bottlenecks before deploying on real clouds

42

Fig. 8.4 Process flow of Cloudsim

8.3 Glossary

A

Augmentation

Autonomy

C

Cloudlet

Constraint programming

Consumption

CPU intensive

43

Cycle-stealing

D

Datacenter

Decentralization

E

Eclipse

Entropy

Eucalyptus environment

G

General Public license

Granularity

Green computing

L

Leverage

Load balancing

M

Migration

Multi-language

Multi-layered

Multiplexing

N

NP complete

O

44

Optimization

P

Pay-as-you-go

Pervasiveness

R

Reallocation

Return on investment

S

Service level agreement

Simulation

T

Threshold

Trade-off

V

Virtual machine

Virtualization

8.4 Abbrivations

SLA- Service Level Agreements

QoS- Quality of Service

VM- Virtual Machine

WORA- Write once, run anywhere

JVM- Java Virtual Machine

45

ROI- Return On Investment

BFDA- Best Fit Decreasing Algorithm

CP- Constraint Programming

Mips- million instruction per Second

SDK- Software Development Kit

	NewProject
	AddExistingFiles
	AddNewFiles
	Building
	Running
	Debugging

