
i

Modified Approach for Solving Maximum Clique Problem.

A Dissertation submitted

By Jaspreet Singh
Reg No - 41100104

Section - K2112

To

Department of Computer Science and Engineering

In partial fulfillment of the requirement for the

Award of the Degree of

Master of Technology in Computer Science and Engineering

Under the guidance of

Mr. Kiran Kumar Kaki
(Assistant Professor)

May-2014

ii

DECLARATION

I hereby declare that the dissertation entitled ― “Modified Approach for Solving Maximum

Clique Problem” submitted for the M.Tech degree is entirely my original work and all

references and ideas have been duly acknowledged. It does not contain any work for the award

of any other degree or diploma.

Date: 01/12/2013 Investigator: Jaspreet Singh

Reg no: 41100104

iii

ABSTRACT

Graph Theory is the branch of Mathematics and Theoretical Computer Science which has great

contributions to Computations and many applications in the real world. Finding Maximum

Clique from a graph is a process of extracting connected components of graph. A connected

component is a sub-graph having path or reachability of each node to every other node in it. This

dissertation work contains exploration of maximum number of connected components of an

input graph. For extracting maximum number of cliques from a graph an algorithm

MODIFIEDCLIQUE is proposed. MATLAB framework has been chosen for simulating this

work, because MATLAB provides graph viewing functions producing real like graph structure

for visualization unlike other frameworks producing graphs just like array of nodes. CPU elapsed

times of my algorithm are quite good. However it performs moderately, not much well as like

other peer algorithms. This algorithm is tested on various standard graphs like Hamming20,

Keller6 and Brock20 etc. For Hamming20 it shows CPU elapsed time as 0.81121 milliseconds.

Keywords: MCP, BK, ACMCP, MODIFIEDCLIQUE, Hamming20, Keller6, Brock20.

iv

CERTIFICATE

This is to certify that Jaspreet Singh (41100104) has completed M.Tech dissertation titled

Modified Approach for Solving Maximum Clique Problem under my guidance and

supervision. To the best of my knowledge, the present work is the result of his original

investigation and study. No part of the dissertation has ever been submitted for any other degree

or diploma.

The dissertation is fit for the submission and partial fulfilment of the conditions for the award of

M.Tech. computer science and engineering.

Date:_____________ Signature of Advisor:____________

Mr. Kiran Kumar Kaki

(Assistant Professor)

v

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to Mr. Kiran Kumar Kaki (Dissertation Mentor) and

Mrs. Harjeet Kaur for their valuable knowledge and expertise. It is only with their guidance that I

could take up the initiative of such a good topic of thesis and complete it on time. I am also very

thankful to Lovely Professional University for giving me an opportunity to propose and

implement my work.

I am gratified for the successful completion of my thesis implementation. I would also like to

convey thanks to all my friends who gave their full support and encouraged me for this thesis

work.

Jaspreet Singh

41100104

vi

TABLE OF CONTENTS

S No. Topic Page No.
Chapter 1 Introduction 1-11

1.1 Maximum Clique Problem 1

1.2 Genetic Algorithms 2

1.3 Outline of basic Genetic Algorithm 5

1.4 Maximum Clique Problem is NP Hard 6

1.5 Applications of Maximum Clique
Problems

6

1.6 Other Techniques of finding Maximum
Clique Problems.

10

Chapter 2 Literature Review 12-20

Chapter 3 Present Work 21-23

3.1 Significance 21

3.2 Objective 21

3.3 Methodology 22

3.4 Sources of Data 23

3.5 Research Design 23

Chapter 4 Dissertation Monthly Progress 24-25

4.1 Gantt Chart 24

Chapter 5 Results and Discussions 26-40

5.1 Read time and Run time of Standard
graphs of DIMACS

26

5.2 Results of HGAMC algorithm 27

5.3 Comparison of MODIFIEDCLIQUE
results with other algorithms

28

5.3.1 Comparison Graph of
MODIFIEDCLIQUE results with other
algorithms

29

5.4 Comparison of MODIFIEDCLIQUE
cputimes with other algorithms

30

5.5 Comparing Performance of various
Standard graphs

31

5.6 Generation of Adjacency Matrix in
MATLAB

32

vii

5.7 Viewing graph in Bio-Informatics 33

5.8 Realization of Input Graph 34

5.9 Designing interface for Modified Clique
finding Approach

35

5.10 Implementation of MODIFIEDCLIQUE
method

36

5.11 Result containing Maximum Cliques 37

5.12 Result showing each node’s
containability and No. of components

38

5.13 Input Vectors on Command Window 39

5.14 Command window showing S and C 40

Chapter 6 Conclusion and Future Scope 41

Chapter 7 References 42-43

Chapter 8 Appendix 44-48

8.1 Glossary of terms 44

8.2 Abbreviation 47

viii

TABLE OF FIGURES

Figure No. Description Page No.

1.1 An example of Clique. 2

1.2 Roulette Wheel Selection. 3

1.3 Mutation 4

1.4 Crossover 4

1.5 Genetic Algorithm Cycle 5

3.1 Research Design 23

5.1 Comparison of MODIFIEDCLIQUE number of cliques. 29

5.2 Performance graph of various standard graphs 31

5.3 Adjacency Matrix for input graph 32

5.4 Input graph 33

5.5 Plot of Adjacency Sparse Matrix 34

5.6 Fig file of Interface Design 35

5.7 Interface ModifiedClique 36

5.8 Maximum Cliques 37

5.9 Listing Cliques with their number 38

5.10 Vectors on Command Window 39

5.11 Results in Command Window 40

ix

TABLE OF TABLES

Table No. Description Page No.

4.1 Gantt Chart 24-25

5.1 Read time and Run time of Standard graphs 26

5.2 Results of HGAMC algorithm 27

5.3 Comparison of HGAMC results with other algorithms 28

5.4
Comparison of MODIFIEDCLIQUE cputimes with other
algorithms

30

1

CHAPTER 1

INTRODUCTION

f

1.1 Maximum Clique Problem

Assume that the finite undirected simple graph G = (V ,E) is given, where V is the set of nodes, V

ε N , E is the set of edges. The arbitrary full graph is called a clique which is a sub-graph of large

graph. This sub-graph is fully connected with each node accessible from every other node. The

clique, which does not contain other cliques, is called a maximal Clique. The largest maximal

clique is called a maximum clique. To extract all maximal cliques from the graph G. Many

algorithms have been described to solve this problem. The best solution now a days is a

procedure where the complexity is linear to the number of maximal cliques [1,2]. The theory and

algorithms described in this paper can solve the problem. We assume that the graph G is

presented in the form of an adjacency matrix X : NxN, the main diagonal of which has zeros.

Given an undirected graph G = (V, E), a clique S is a subset of V such that for any two

elements u, v ε S, (u, v) ε E. Using the notation ES to represent the subset of edges which have

both endpoints in clique S, the induced graph GS = (S, ES) is complete. Finding Maximum

clique in a graph is an NP-hard problem, called the maximum clique problem (MCP). Cliques

are intimately related to vertex covers and independent sets. Given a graph G, and defining E* to

be the complement of E, S is a maximum independent set in the complementary graph G* = (V,

E*) if and only if S is a maximum clique in G. That means for a complementary graph,

maximum clique remains same as in original graph. Hence for an undirected graph maximum

clique is represented by full matrix but for directed graph it is upper triangular or lower

triangular matrix. It follows that V – S is a minimum vertex cover in G*.

2

 Fig. 1.1 An Example of Clique.

In other words a clique in an undirected graph G = (V, E) is a subset of the vertex set C ⊆ V,

such that for every two vertices in C, there is an edge connecting the two vertices. This is

equivalent to saying that the sub graph induced by C is complete. A maximal clique is a clique

that cannot be extended by including one more adjacent vertex to it, means and a clique which

does not exist exclusively within the vertex set of a larger clique. A maximum clique is a clique

of the largest possible size in a given graph. The clique number ω(G) of a graph G is defined the

number of vertices in a maximum clique in G. The intersection number of G denoted by T(G) is

also termed as the smallest number of cliques that altogether cover all edges of G. The opposite

of a clique is observed as an independent set, in the sense that every clique which corresponds to

an independent set in the complement graph. The cliques cover problem concerns with finding as

few cliques as possible that include every vertex in the graph. A related concept is a bi-clique, a

complete bipartite sub graph. The bipartite dimension of a graph is the minimum number of bi-

cliques needed to cover all the edges of the graph.

1.2 GENETIC ALGORITHMS

Genetic algorithms are the computation model closest to natural evolution. Their success at

searching complex non-linear spaces and general robustness has led to their use in a number of

practical problems such as scheduling, financial modeling and optimization. The inventor of

genetic algorithms, John Holland, took his inspiration for them from nature. Genetic algorithms

contain a population of individuals, each of which has a known fitness. The population is

evolved through successive generations; the individuals in each new generation are bred from the

3

fitter individuals of the previous generation. Unlike Natural Evolution which is continuously

indefinite, we have to decide when to stop our GA. As with the breeding of domestic animals, we

choose the individuals to breed from to drive the population's evolution in the direction we want

it to go. As with domestic animals, it may take many generations to produce individuals with the

required characteristics. Inside a computer an individual's fitness is usually calculated directly

from its DNA and so only the DNA need to be represented. Usually genetic algorithms represent

DNA by a fixed length vector. Where a genetic algorithm is being used for optimization, each

individual is a point in the search space and is evaluated by the fitness function to yield a number

indicating how much right that point is. If any point is good enough, the genetic algorithm stops

and the solution is simply that point. If not then a new population, containing the next generation

is bred.

The breeding of a new generation is inspired by nature; new vectors are bred from the fitter

vectors in the current generation, using either asexual or sexual reproduction. In asexual

reproduction, the parent vector is simply copied.

Chromosomes are selected from the population to be parents to crossover. The problem here is

that how to select these chromosomes. According to Darwin's evolution theory survival of the

fittest, the best ones should survive and create new offspring. There are many methods that how

to select the best chromosomes, for example Roulette wheel selection, Boltzmann selection,

Tournament selection, rank selection, steady state selection and some others. Among these

methods Roulette Wheel Selection is widely used for selection process in genetic algorithms.

Parents are selected according to their fitness. The better the chromosomes are, the more chances

they have to be selected. Imagine a roulette wheel where are placed all chromosomes in the

population, every chromosome has its place more according to its fitness function.

Fig. 1.2 Roulette Wheel Selection

4

Then a marble is thrown there to select the chromosome. Chromosome with bigger fitness will

be selected more times. Figure 3 shows a child vector being created by mutating a single gene

where each gene is represented by a single bit. There are more chances for chromosomes with

bigger fitness to be selected when it roulette wheel is rotated under probability distribution

techniques. With sexual reproduction, two of the fitter vectors are chosen and the new vector is

created by sequentially copying sequences alternately from each parent. Typically only two or

three sequences are used, and the point(s) where the copying crosses over to the other parent is

chosen at random. This is known as crossover. Crossing over these bit patterns are simply

representing changing features of successors from their predecessors. Figure 4 shows a child

being formed firstly by copying four genes from the left-hand parent then the three remaining

genes are copied from the right-hand parent.

Fig. 1.3 Mutation

Fig. 1.4 Crossover

Holland in his paper “Genetic Algorithms and the Optimal Allocation of Trials" [Hol73] shows,

via his schemata theorem, that in certain circumstances genetic algorithms make good use of

information from the search so far to guide the choice of new points to search. Figure 5 shows

the genetic algorithm cycle. The schemata theorem requires the vector representation and fitness

function be designed so that the required solution can be composed of short fragments of vectors

which, if present in a vector, give it a relatively high fitness regardless of the contents of the rest

5

of the vector. These are known as building blocks. They can be thought of as collections of genes

which work well together.

Fig. 1.5 The Genetic Algorithm Cycle.

1.3 OUTLINE OF THE BASIC GENETIC ALGORITHM

1. [Start] Generate random population of n chromosomes (suitable solutions for the

problem)

2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the population

3. [New population] Create a new population by repeating following steps until the new

population is complete

a. [Selection] Select two parent chromosomes from a population according to their

fitness (the better fitness, the bigger chance to be selected)

b. [Crossover] With a crossover probability cross over the parents to form a new

offspring (children). If no crossover was performed, offspring is an exact copy of

parents.

c. [Mutation] With a mutation probability mutate new offspring at each locus

(position in chromosome).

d. [Accepting] Place new offspring in a new population

4. [Replace] Use new generated population for a further run of algorithm

6

5. [Test] If the end condition is satisfied, stop, and return the best solution in current

population

6. [Loop] Go to step 2

1.4 MAXIMUM CLIQUE PROBLEM IS NP HARD

Examples of difficult problems, which cannot be solved in "traditional" way, are NP problems.

There are many tasks for which we know fast (polynomial) algorithms. There are also some

problems that are not possible to be solved algorithmically. For some problems was proved that

they are not solvable in polynomial time. But there are many important tasks, for which it is very

difficult to find a solution, but once we have it, it is easy to check the solution. This fact led to

NP-complete problems. NP stands for nondeterministic polynomial and it means that it is

possible to "guess" the solution (by some nondeterministic algorithm) and then check it, both in

polynomial time. If we had a machine that can guess, we would be able to find a solution in

some reasonable time. Studying of NP-complete problems is for simplicity restricted to the

problems, where the answer can be yes or no. Because there are tasks with complicated outputs,

a class of problems called NP-hard problems has been introduced. This class is not as limited as

class of NP-complete problems. For NP-problems is characteristic that some simple algorithm to

find a solution is obvious at a first sight - just trying all possible solutions. But this algorithm is

very slow (usually O(2^n)) and even for a bit bigger instances of the problems it is not usable at

all. Today nobody knows if some faster exact algorithm exists. Proving or disproving these

remains as a big task for new researchers. Today many people think, that such an algorithm does

not exist and so they are looking for some alternative methods – example of these methods are

genetic algorithms. Examples of the NP problems are Maximum Clique Problem, Travelling

Salesman Problem or Knapsack Problem.

1.5 APPLICATIONS OF MAXIMUM CLIQUE PROBLEM

The MODIFIEDCLIQUE Problem has many real world applications. It is encountered in many

different fields in which either the underlying problem can be formulated as the

MODIFIEDCLIQUE problem or finding the maximum clique is a precondition of solving the

7

problem. Based on those applications, a collection of much diversified test graphs for the

MODIFIEDCLIQUE problem has been created for evaluating the performance of algorithms for

the MODIFIEDCLIQUE problem. They are available at

ftp://dimacs.rutgers.edu/pub/challenge/graph/

And consist of graphs derived from different problems such as coding theory, fault diagnosis and

printed circuit board testing.

1.5.1 Coding theory

A common problem in coding theory is to find a binary code as large as possible that can correct

a certain number of errors for a given binary word. A binary code is a set of binary vectors. The

Hamming distance between two binary vectors is defined as the number of positions in which the

two vectors have different values. A maximum clique of H(n,d) represents the maximum number

of binary vectors of size n with Hamming distance greater than or equal to d. Therefore, if we

find the maximum clique C in H(n,d), any binary code consisting of vectors represented by the

vertices in C is able to correct (d-1)/2 errors.

1.5.2 Fault diagnosis

Fault diagnosis plays a very important role in studying the reliability of large multiprocessor

systems. The goal is to identify all faulty processors (units) in the system. In the model designed

by Berman and Pelc [1], the system is represented by an undirected graph G = (V, E) whose

vertices are processors and where edges are communication links.

1.5.3 Printed circuit board testing

A printed circuit board tester involves placing probes onto a board. A probe can determine if a

portion of a board is working correctly. Since probes have a particular size, not every component

can be checked in one pass. The problem of maximizing the number of components checked in

one pass can be formulated as a clique problem: each node connects a component and an edge

represents two nodes that are not too close to be checked simultaneously. A clique in this graph

is then a set of components that can be checked in one pass.

8

1.5.4 Web Communities

Consider a directed graph G = (V, A) (called web network) whose vertices and arcs correspond

to web pages and their links, respectively. Kumar et al. [16] regarded directed bipartite cliques

(S1, S2) (i.e., S1 × S2 � A) of G as communities of web pages, i.e., the web pages in S2 may

have similar topics and web pages in S1 may have interests in these topics, and considered

generating directed bipartite cliques of G. They first construct a graph G* with about 5,000,000

arcs by removing unnecessary vertices and arcs from G, and then enumerate all directed bipartite

cliques in the reduced graph G*. They show that directed bipartite cliques usually contain similar

topics by checking them by human hands. However, since G* contains a great number of

bipartite cliques, they could enumerate only those containing at most 10 vertices. In this setting,

it is natural to regard maximal directed bipartite cliques as good representatives of communities.

From a directed graph G = (V , A), let us construct a bipartite (undirected) graph G = (V � VI ,E)

such that VI = { vI | v � V} is a copy of V and (v , uI) � E if and only if (v , u) � A. Then there

exists a one-to-one correspondence between directed bipartite cliques in G and bipartite cliques

in GI. Hence, our algorithms are applicable to generate all maximal directed bipartite cliques in

G*.

1.5.5 Basic Algorithms

In this section, the algorithms of Tsukiyama et al. [18] and Johnson et al. [17] are considered. It

is viewed that their algorithms as the enumeration algorithms based on reverse search, where

reverse search was introduced by Avis and Fukuda [19] to solve enumeration problems

efficiently. Note that our presentation of their algorithms is quite different from theirs [18],

which may be of independent interest. Let K0 denote the maximal clique that is the

lexicographically largest among all maximal cliques. For a maximal clique K (≠ K0), we define

a parent P(K) of K by C(K<=i-1) such that i is the maximum index satisfying C(K<=i-1) ≠ K.

Such an index i is called the parent index, denoted by i(K). Note that they are well-defined, since

K ≠ C(K<=0) holds by K ≠ K0. Since P(K) is lexicographically larger than K, this parent-child

binary relation on maximal cliques is acyclic, and creates an in-tree rooted by K0.

9

Lemma 1. The parent-child relation constructs an in-tree rooted by K0.

It is called in-tree the enumeration tree for maximal cliques of a graph G. Both algorithms [17]

traverse this enumeration tree. In order to traverse enumeration tree, we have to compute a parent

and children of a given maximal clique efficiently. It is not difficult to see that a parent P(K) is

computable from a maximal clique K in linear time. However, it is not so trivial to compute from

K its children. For a maximal clique K and an index i, we define K[i] = C (K<=i � Γ(vi)) � {v i}

).

Lemma 2. Let K and K’ be maximal cliques in G. Then K’ is a child of K if and only

if K’ = K[i] holds for some i such that

(a) vi � K.

(b) i > i(K).

(c) K[i] <i-1 = K<=i � Γ(vi).

(d) K<i = C (K<=i � Γ(vi))<i.

Moreover, if an index i satisfies (a) � (d), then i is the parent index of K[i] .

Since C(K) can be computed from a clique K in O(m) time, by Lemma 2, we can compute all

children of a given maximal clique in O(nm) time. Therefore, we can traverse the enumeration

tree efficiently. The algorithm of Tsukiyama et al. traverses the enumeration tree in a depth-first

manner. Their algorithm starts with a root K0, and find its children recursively. It is not difficult

to see that the algorithm requires O(nm) time delay and O(n + m) space. The algorithm of

Johnson et al. enumerates all maximal cliques in the lexicographically decreasing order. Their

algorithm initializes a queue Q as Q = {K0}, iteratively extracts the lexicographically largest

element K from Q and inserts into Q all the children which are lexicographically smaller than K.

The time complexity of their algorithm is same as the algorithm of Tsukiyama et al., however, it

needs O(nN + m) space, where N denotes the number of all maximal cliques.

10

1.6 OTHER TECHNIQUES OF FINDING MAXIMUM CLIQUE PROB LEMS

1.6.1 Simulated Annealing

Simulated annealing is a randomized neighborhood search algorithm inspired by the physical

annealing process, where a solid is first heated up in a heat bath until it melts, and then cooled

down until it solidifies into a low-energy state. It was first introduced by Kirkpatrick, Gelatt and

Vecchi in 1983 [7]. This heuristic technique considers the solutions of a combinatorial

optimization problem corresponding to the states of the physical system and the cost of a

solution is equivalent to the energy of the state. A simulated annealing algorithm basically works

as follows. First, a tentative solution in the state space is generated usually at random. Then the

next state is produced from the current one. The new state is evaluated by a cost function f. If it

improves, the new state is accepted. If not, the new state is accepted with probability e∆f/τ , where

∆f is the difference of the cost function between the new state and the current state, and τ is a

parameter usually called the temperature in analogy with physical annealing, which is varied

during the optimization process [8]. The simulated annealing heuristic has been ranked among

one of the best heuristics for the MODIFIEDCLIQUE problem at the 1993 DIMACS challenges

[6].

1.6.2 Neural Networks

An Artificial Neural Network (ANN) is a parallel system inspired by the densely interconnected,

parallel structure of the mammalian brain information- processing system [5]. Some

mathematical models of the biology nervous systems show that the temporal evolution is

controlled by a quadratic Lyapunov function (also called energy function), which is iteratively

minimized as the process evolves. This feature can be applied to many combinatorial

optimization problems. More than ten algorithms have been proposed for solving the MAX-

CLIQUE problem using neural networks. They encode the problem in different models, but most

of them are based on the Hopfield model [5] and its variations. The problem is solved via several

discrete (deterministic and stochastic) and continuous energy-descent dynamics. In general,

algorithms based on neural networks can find significantly larger cliques than other simpler

heuristics but the running time is slightly longer. On the other hand, comparing to those more

11

sophisticated heuristics, they obtained significantly smaller cliques on average but were

considerably faster [8].

1.6.3 Tabu Search

Tabu search is a modified local search algorithm, in which a prohibition-based strategy is

employed to avoid cycles in the search trajectories and to explore new regions in the search

space [8]. A tabu list is used to store historical information on the search path to prevent the

algorithm from going back to recently visited solutions. Tabu solutions are accepted if they

satisfy some aspiration level condition. Several tabu search algorithms for the

MODIFIEDCLIQUE problem have been developed in the past ten years. They basically have the

same structures but change the definition of the search space, the ways that tabu lists are used

and the aspiration mechanism. In Battiti and Protasi's algorithm [3], a reactive local search

method is used so that the size of the tabu list can be automatically determined. Also, an explicit

restart procedure influenced by memory is activated to introduce diversification. The worst case

complexity per iteration of this algorithm is O(max(|V| , |E|)) where V is the vertex set and E is

the edge set of the graph. The running time of the algorithm is better than those presented at the

Second DIMACS Implementation Challenge [6]. There are also many simple heuristics that have

been used to solve the MAX-CLIQUE problem such as the sequential greedy heuristics and local

search heuristics. They usually have better running times than those advanced heuristics

algorithms discussed above, but the quality of the results is worse on the average.

12

CHAPTER 2

LITRATURE REVIEW

This observation was first mathematically formulated by John Holland in 1975 in his paper,

"Adaptation in Natural and Artificial Systems" [5]. Usually the algorithm breeds a predetermined

number of generations; each generation is populated with a predetermined number of fixed

length binary strings. These binary strings are then translated (decoded) into a format that

represents suitable parameters either for some controller, or as an output.

The product resulting from evolution (whether natural or simulated) is not simply discovered by

a random search through the problem state space, but by a directed search from random positions

in that space. In fact, according to Goldberg, the simulated evolution of a solution through

genetic algorithms is, in some cases, more efficient and robust than the random search,

enumerative or calculus based techniques. The main reasons given by Goldberg are the

probability of a multi-modal problem state space in non-linear problems, and that random or

enumerative searches are exhaustive if the dimensions of the state space are too great [4].

In the earliest work, BronKerbosch algorithm was designed by Dutch scientists Joep Kerbosch

and Coenraad Bron, who published a description of their algorithm in 1973. The basic form of

the algorithm was inefficient in the case of graphs with many non-maximal cliques. It makes a

recursive call for every clique whether it is maximal or not. To save time and allow the algorithm

to backtrack more quickly in branches of the search that contain no maximal cliques, Bron and

Kerbosch introduced a variant of the algorithm involving a "pivot vertex". Any maximal clique

must include either that pivot vertex or one of its non-neighbors, for otherwise the clique could

be augmented by adding pivot to it. Therefore, only pivot and its non-neighbors need to be tested

as the choices for any other vertex that is added to clique in each recursive call to the algorithm.

Although other algorithms for solving the clique problem have running times that are in theory,

better on inputs that have few maximal independent sets but the BronKerbosch algorithm and

subsequent improvements to it are frequently reported as being more efficient in practice than the

alternatives. It is well-known and widely used in application areas of graph algorithms such as

computational graph theory. In computer science, the BronKerbosch algorithm is an algorithm

13

for finding maximal cliques in an undirected graph. That is, it lists all subsets of vertices with the

two properties that each pair of vertices in one of the listed subsets is connected by an edge, and

no listed subset can have any additional vertices added to it while preserving its complete

connectivity [11]. For sparse graphs, tighter bounds are possible. In particular the vertex-

ordering version of the Bron–Kerbosch algorithm can be made to run in time O(dn3d/3), where d

is the degeneracy of the graph, a measure of its sparseness. There exist d-degenerate graphs for

which the total number of maximal cliques is (n − d)3d/3, so this bound is close to tight.

David R. Wood, “An Algorithm for finding maximum clique in a graph”, 1997 Elsevier Science,

introduced a branch-and-bound algorithm for the maximum clique problem which applies

existing clique finding and vertex coloring heuristics to determine lower and upper bounds for

the size of a maximum clique[9]. Mr. Wood presented his algorithm which uses Fractional

Coloring as heuristics to find upper and lower bounds. Since a color class can contain at most

one vertex of a clique, in a fractional coloring the sum of the weights of those color classes

intersecting a clique Q is at least |Q|. Therefore, the total weight of a fractional coloring of a

graph G is an upper bound for ω (G). Vertex colorings provide much tighter upper bounds. A

vertex coloring (or k-coloring) of a graph G = (V, E) is a partition of V into independent sets (C1,

C2, …. , Ck) called color classes. Each Ci contains those vertices assigned the ith color. A k-

coloring of G must color each vertex of a clique differently, so k is an upper bound for ω (G).

This algorithm include non-uniform random graphs with relatively large clique sizes, and graphs

which have arisen in coding theory, the Steiner Triple Problem, tiling of hyper-cubes, vertex

cover problems and fault diagnosis.

Patric R. J. Ostergard, “A Fast Algorithm for the maximum clique problem”, 2002 Elsevier

Science, given a branch-and-bound algorithm for the maximum clique problem—which is

computationally equivalent to the maximum independent (stable) set problem—is presented with

the vertex order taken from a coloring of the vertices and with a new pruning strategy. The

algorithm performs successfully for many instances when applied to random graphs and

DIMACS benchmark graphs [10]. In the maximum clique problem, one desires to ,nd one

maximum clique of an arbitrary undirected graph. This problem is computationally equivalent to

some other important graph problems, for example, the maximum independent (or stable) set

problem and the minimum vertex cover problem. Since these are NP-hard problems [14], no

14

polynomial time algorithms are expected to be found. Nevertheless, as these problems have

several important practical applications, it is of great interest to try to develop fast, exact

algorithms for small instances. Another direction of research, which has recently been fairly

popular, is that of using stochastic methods to find as large cliques as possible, without proving

optimality; see the survey of Pardalos and Xue [15], which also contains an extensive

bibliography on the maximum clique problem.

Xinshun Xu, Jun Ma, Jingsheng Lei, “Ant Colony Optimization for the Maximum Clique

Problem” IEEE-ICNC 2007 introduced an evolutionary approach in which main task is to search

for maximum cost path in a graph. Artificial Ants walk through graph and looking for high

quality paths. Better results are found as emergent result of global cooperation among ants in

colony.

Algorithm 1. Old algorithm.

function clique(U, size)

Step 1: if |U|=0 then

Step 2: if size > max then

Step 3: max := size

Step 4: New record; save it.

Step 5: end if

Step 6: return

Step 7: end if

Step 8: while U != ∅ do

Step 9: if size + |U| < max then

Step 10: return

Step 11: end if

15

Step 12: i:=min{j | vj �U}

Step 13: U:=U\{vi}

Step 14: clique(U ∩ N(vi), size + 1)

Step 15: end while

Step 16: return

function old

Step 17: max:=0

Step 18: clique(V, 0)

Step 19: return

The set of vertices adjacent to a vertex v is denoted by N(v) and the number of vertices in the

graph is n. The variable max, which is global, gives the size of a maximum clique when the

algorithm terminates. The performance of the algorithm depends on the ordering the vertices, v1,

v2, . . . , vn. We will return to heuristic for ordering later. Each vertex taken in step 12 should be

saved to be able to extract the whole clique whenever step 4 is reached. Without the pruning

strategy in step 9 (in implementing the algorithm, the steps 8–11 can be combined into a for

statement), this algorithm would go through every single clique of the graph. The pruning

strategy is to backtrack when the set U becomes so small that even if all vertices left could be

added to get a clique, the size of that clique would not exceed that of the largest clique

encountered so far in the search. Moreover, if we explicitly search for a clique of a given size,

we can modify the algorithm and use this information for pruning from the beginning of the

search. Some speed-up can be obtained if the test in step 1 is changed so that the recursion is

stopped whenever very few vertices are left (often 0 or 1) and corresponding calculations are

carried out on a case-by-case basis. Although this algorithm is very simple, it is currently the best

known algorithm for sparse graphs. Most attempts to improve on this straightforward algorithm

are based on methods for calculating upper bounds (other than from the size of the set U in

Algorithm 1) during the search. Almost without exceptions, such bounds are obtained from

vertex-colorings. In vertex-coloring, adjacent vertices must be assigned different colors. If a

16

graph, or an induced subgraph, can be colored with, say, s colors, then the graph, or subgraph,

cannot contain a clique of size s + 1. In implementing strategies based on calculating upper

bounds, a trade-off has to be made; coloring can lead to a considerable reduction of the number

of nodes in the search tree but is also very time-consuming. [10]

Algorithm 2. New algorithm.

function clique(U, size)

Step 1: if |U|=0 then

Step 2: if size > max then

Step 3: max:=size

Step 4: New record; save it.

Step 5: found:=true

Step 6: end if

Step 7: return

Step 8: end if

Step 9: while U !=∅ do

Step 10: if size + |U| <= max then

Step 11: return

Step 12: end if

Step 13: i:=min{j | vj �U}

Step 14: if size + c[i] <= max then

Step 15: return

Step 16: end if

17

Step 17: U := U\{vi}

Step 18: clique(U ∩ N(vi); size + 1)

Step 19: if found=true then

Step 20: return

Step 21: end if

Step 22: end while

Step 23: return

function new

Step 24: max:=0

Step 25: for i:=n down to 1 do

Step 26: found:=false

Step 27: clique(Si ∩ N(vi), 1)

Step 28: c[i]:=max

Step 29: end for

Step 30: return

The function c(i) gives the largest clique in Si. Obviously, for any 1<= i <=n−1, we have that

c(i)=c(i+1) or c(i)=c(i+1)+1. Moreover, we have c(i)=c(i+1)+1 iff there is a clique in Si of size

c(i+1)+1 that includes the vertex vi. So, starting from c(n)=1, we search for such cliques. If a

clique is found, c(i)=c(i+1)+1, otherwise c(i)=c(i + 1). The size of a maximum clique is given by

c(1). Old values of the function c(i) enables the new pruning strategy (in step 14). Namely, if we

search for a clique of size greater than s, then we can prune the search if we consider vi to

become the (j + 1)-th vertex and j + c(i) <= s.

18

Li Lu, Yunhong Gu, Robert Grossman, “dMaximalCliques: A Distributed Algorithm for

Enumerating All Maximal Cliques and Maximal Clique Distribution” IEEE- ICDMW-2010

presents a distributed algorithm which can obtain clique information from million-node graphs.

It has used distribution of size of maximal cliques in a graph as a new measure for measuring

structural properties of a graph. The main reason for this algorithm to make the problem solvable

in a distributed fashion is the locality property of the clique that is the information for finding all

maximal cliques including v only depends on the neighbors of v. Experimental experience shows

that this distributed method for finding maximum cliques takes more time for listing maximal

cliques from the one which is generated by using the BFS method compared with that by using

the random method. The basic concept is that, usually a vertex and its neighbors share similar

characteristics, such as the degree. When they are grouped in the same surroundings, if the vertex

has a large degree, so do its neighbors, the average size of sub-graph containing that vertex is

large and further results in the unbalanced load when processing it. In contrast, the random

method does not have this problem. The average size of this kind of sub-graph is approximately

the same.

R.Rama, Suresh Badarla and Kamala krithivasan, “Clique-detection algorithm using clique-self-

assembly”, IEEE BIC-TA.2011, proposed a brute force algorithm where a large graph is being

decomposed and these decomposed parts are cliques [12]. Self-assembly is the process in which

relatively simple components brought into contact with each other experience local interactions

guided by basic rules, and combine to form increasingly complex structures. This process is quite

useful in making determination of large molecules of protein as per the behavior of small

molecules of which they are made. There is no externally guiding force or direction, just the

summation of the undirected local interactions. The progress in science has experienced many of

the naturally occurring self-assembling systems. These molecular structures are to be shown by

using graph data structures and many graphs searching algorithm yielding fruitful results these

days. Modeling molecules as labeled graphs has a long tradition and is a prerequisite for most

modern Cheminformatic methods. The representation of molecules by graphs has two major

advantages: Graphs are a very intuitive molecular representation close to our elementary

chemical understanding, and they form a solid theoretical basis for computer –aided processing.

Furthermore, graphs enable a database retrieval via graph isomorphism technique, i.e.,

comparing molecules becomes equivalent to comparing labeled graphs. The structural formula is

19

a graph-like representation of molecules commonly used to formulate and exchange chemical

knowledge.

Hakan Yildiz, Christopher Kruegel, “Detecting Social Cliques for Automated Privacy Control in

Online Social Networks”, Fourth International Workshop on Security and Social Networking,

Lugano (19 March 2012) proposed a privacy control approach that addresses this problem by

automatically detecting social cliques among the friends of a user. To find cliques, given a small

number of friends (seed), uses the structure of the social graph to generate an approximate clique

that contains this seed. [22] The cliques found by the algorithm can be transformed directly into

friend lists, making sure that a piece of sensitive data is exposed only to the members of a

particular clique. A social clique is a group of people having significant social interaction with

each other due to a particular cause e.g., families, classmates, colleagues. A piece of data is often

of concern only to a particular social clique. One can attempt to identify this clique by examining

the data itself. Most data shared on social networking sites contains some information that

identifies the users who are directly related to or who contribute to this data. Thus, each piece of

data is associated with a possibly empty group of users. We call this group the participating

group of the data. Intuitively, in most cases, the social clique concerned with a piece of data is

the one that contains its participating group. As an example, consider a family photograph being

shared on a social network. There are a number of family members who appear in it, and these

members form the participating group of the photograph. This photograph is most likely of

concern only to the members of the family, where the family is a social clique that contains the

participating group of those members that appear in the picture.

Harsh Bhasin, Rohan Mahajan, “Genetic Algorithms Based Solution To Maximum Clique

Problem”, ISSN: 0975-3397 Vol. 4 No. 08 Aug 2013, suggests the solution of above problem

with the help of Genetic Algorithms (GAs). The work also takes into consideration, the various

attempts that have been made to solve this problem and other such problems [13]. The present

problem is to find out a clique with maximum cardinality. Common understanding is that it is an

NP Complete problem. The point can be proved with the following example. For example, if

there are 50 vertices in a graph and the number of fully connected sub graph are to be found then

the total number of such graph will be

20

nC2 + nC3+ nC4+ nC5+ ………………… nC47+ nC48 +
nC49

Which is equal to 250 -1 ~ 250

Now, a very fast computer if processes 106 instructions in 1 sec then it will take 35.7 years to

elucidate all the sub-graphs and find out the maximum cliques. If the graph contains more

vertices then the complexity will increase as per the problem. In such cases GAs comes to our

rescue. They are known to perform efficiently if sample space is huge. Genetic algorithms

imitate the process of natural selection. A population is generated which consist of

chromosomes. Chromosomes are further made up of cells. In our case the cells are binary that is

0 or 1. In the implementation the pseudo random number generator of the language generates a

number up to 100. If the number is less than 50 then the cell of that chromosome become 0 and if

number is greater than 50 then the cell becomes 1. The numbers of cells in a chromosome

depend on the problem at hand. In our case the number of cells in a chromosome is equal to

number of vertices in a graph. The number of chromosome can be an optimal number large

enough to contain a feasible solution.

21

CHAPTER 3

PRESENT WORK

3.1 Significance

Since the MODIFIEDCLIQUE problem has important applications, designing an algorithm with

good performance becomes necessary and important. A lot of algorithms for solving the

MODIFIEDCLIQUE problem have been proposed in the literature since the 1990's. The early

work focused on the exact algorithms. Some of them achieved success on small graphs (less than

400 vertices). For example, Balas and Yu [2] improved the implicit enumeration algorithm by

reducing the number of sub-problems generated from each node of the search tree, which in turn,

reduced the size of the whole search tree. But still, the running time of exact algorithms increases

exponentially with the size of graphs. So it is not practical to solve large problems by exact

algorithms. The next step is to approximate the maximum clique size to be within a certain factor

of the optimal solution. Therefore, it is necessary to solve the problem using heuristic algorithms.

Heuristic algorithms cannot guarantee the quality of solutions but in practice they have been

observed to produce very good solutions.

Area of research concentrates on solution of Maximum Clique Problem using a genetic

algorithm and Tarjan’s Algorithm which is a parallel search procedure utilizing BFS and is

inspired by the mechanisms of evolution in natural systems and the scenarios under which the

solutions are applicable, the various qualitative parameters satisfied by the solutions and their

associated costs in order to meet the current and future resource pool of a dynamic requirements

in the most efficient way based on various qualitative and quantifiable parameters, so that

virtualization or multi-tenancy can be easily deployed for providing various search services.

3.2 Objective

1. To identify various qualitative and quantifiable parameters for the fitness function to

make intelligent decisions regarding fitness evaluation of chromosomes in a given

population.

2. To design better clique extraction method for finding Maximum Cliques.

22

3. To explore various Clique finding algorithms and their solutions for helping

MODIFIEDCLIQUE based solution to Maximum Clique Problem.

3.3 Methodology

In order to build the Genetic Algorithm based solution to Maximum Clique Problem the

following methodology is followed:-

1. Identification

In this step the requirement analysis is done. This requires a task analysis to be done to

determine the requirements, the inputs and outputs the prospective users.

2. Conceptualization

In this the proposed program is designed to understand and define the specific

relationships and interactions in the problem domain. The key concepts, the relationships,

processes and control mechanisms are determined. This is the initial stage of knowledge

acquisition.

3. Formalization

This involves organizing the key concepts and information into formal representations

i.e. rules for the Encoding and Crossover. It involves deciding the attributes to be

determined to solve the problem and to build the initial mutated result.

4. Implementation

This involves mapping of the formalized population into a framework of the development

tool (MATLAB) to build a working Matrix. The contents of matrix structures, inference

rules and control strategies established in the previous stages are organized into suitable

format.

3.4 Sources of Data

The first population for the matrix computation

journals, books, white papers etc. as well as experts in the field of

Heuristic Searching Techniques and Evolutionary Search Strategies

3.5 Research Design

1

• To identify various clique finding algorithm and their solutions at
infrastructure and architectural level for standard graphs.

2

• To identify various selection processes for candidate selection of sub
first generation and various mutation operations of selected candidates for next
generation.

3
• To identify various fitness parameters for identifying Clique Property.

4
• Design of clique finding algorithm using Genetics and Tarjan’s method of

finding clique from a graph.

5
• Formulation of graph using sparse matrix concept for providing it as an input

parameter.

6
• Implementation of MCP in MATLAB.

23

matrix computation will be developed through extensive study of

journals, books, white papers etc. as well as experts in the field of Advanced Data Structures,

Heuristic Searching Techniques and Evolutionary Search Strategies etc.

Fig. 3.1 Research Design

To identify various clique finding algorithm and their solutions at
infrastructure and architectural level for standard graphs.

To identify various selection processes for candidate selection of sub
first generation and various mutation operations of selected candidates for next

To identify various fitness parameters for identifying Clique Property.

Design of clique finding algorithm using Genetics and Tarjan’s method of
finding clique from a graph.

Formulation of graph using sparse matrix concept for providing it as an input

Implementation of MCP in MATLAB.

will be developed through extensive study of

Advanced Data Structures,

To identify various clique finding algorithm and their solutions at

To identify various selection processes for candidate selection of sub-graph for
first generation and various mutation operations of selected candidates for next

To identify various fitness parameters for identifying Clique Property.

Design of clique finding algorithm using Genetics and Tarjan’s method of

Formulation of graph using sparse matrix concept for providing it as an input

24

CHAPTER 4

DISSERTATION MONTHLY PROGRESS

4.1 GANTT CHART

Task Start End Duration
2014

Jan Feb Mar Apr May

1. To Identify various

clique finding algorithm

and their solutions at

infrastructure and

architectural level.

05/1/14 30/1/14 25

2. To identify various

selection processes for

candidate selection of sub-

graph for first generation

and various mutation

operations of selected

candidates for next

generation.

24/1/14 16/2/14 22

3. To identify various

fitness parameters for

identifying Clique

Property.

17/2/14 22/3/14 32

4. Design of clique

finding algorithm using

Genetics and Tarjan’s

method of finding clique

from a graph.

23/3/14 12/4/14 18

5. Formulation of graph

using sparse matrix
03/4/14 27/4/14 24

25

concept for providing it as

an input parameter.

6. Implementation of

MCP in MATLAB.
16/4/14 10/5/14 24

Table 4.1 Gantt chart

26

CHAPTER 5

RESULTS AND DISCUSSIONS

5.1 Read time and Run time of Standard graphs of DIMACS

Graph Name No. of Nodes Edges Read_Time (ms) Run_Time (ms)

brock200 50 80 0.05 26.56

brock400 100 50 0.18 629.72

brock800 100 200 0.72 411.89

c-fat200 100 50 0.05 20.35

c-fat500 100 100 0.25 408.46

hamming6 30 16 0.08 5.36

hamming8 50 50 0.07 29.02

johnson8 30 50 0.02 5.89

johnson16 30 50 0.05 9.87

johnson32 50 50 0.28 116.85

keller6 50 400 17.65 11366.83

MANN_a27 30 75 0.2 667.85

MANN_a45 30 250 1.53 20452.38

p_hat300 75 75 0.1 33.59

p_hat500 100 100 0.3 690.07

p_hat700 50 150 0.63 758.36

p_hat1000 100 200 1.1 434.81

san200 30 50 0.05 57

san400 100 100 0.17 130.29

Table 5.1 Read and Run Times of Standard graphs

27

5.2 Results of HGAMC algorithm

Graph Nodes Edges Max.
Clique

HGMCA
Best

Avg. Size Avg. CPU
Times

c-fat200-1
c-fat500-1

200
500

1534
4459

12
14

12
14

12
14

0.02
0.12

Johnson16-2-4
Johnson32-2-4

120
496

5460
107880

8
16

8
16

8
16

0.04
0.32

Keller-4
Keller-5
Keller-6

171
776
3361

9435
225990
4619898

11
27
59

11
27
54

11
26.1
53.2

0.05
2.32
103.4

Hamming10-2
Hamming8-2

1024
256

518656
31616

512
128

512
128

512
128

67.69
3.54

San200-0.7-1
San400-0.5-1
San400-0.9-1

200
400
400

13930
39900
71820

30
13
100

30
13
100

22.0
8.6
98.6

0.1
0.2
0.96

Sanr200-0.7
Sanr400-0.5
San1000

200
400
1000

13868
39900
250500

18
13
15

18
13
10

16.7
12.4
9.3

0.08
0.22
1.02

Brock200-1
Brock400-1
Brock800-1

200
400
800

14834
59723
207505

21
27
23

21
25
21

18.2
22.7
20.3

0.1
0.24
1.68

p-hat300-1
p-hat500-1
p-hat700-1
p-hat1000-1
p-hat1500-1

300
500
700
1000
1500

10933
31569
60999
122253
284923

8
9
11
10
12

8
9
11
10
12

8.0
8.8
9.5
9.6
10.2

0.12
0.34
0.54
1.00
2.78

MANN-a27
MANN-a45

378
1035

70551
533115

126
345

126
339

123.4
336.2

0.70
5.48

Table 5.2 Avg. CPU Elapsed times of Standard graphs

28

5.3 Comparison of MODIFIEDCLIQUE results with other algorithms

 Algorithm
Graph

HGAMC BK
(Best)

ACMCP GAMC MODIFIEDCLIQUE

c-fat200-1
c-fat500-1

12
14

12
14

12
14

12
14

12
14

Johnson16-2-4
Johnson32-2-4

8
16

8
16

8
16

8
16

8
16

Keller-4
Keller-5
Keller-6

11
27
54

11
26.4
51.88

11
27
53

11
26.3
51.4

11
27
59

Hamming10-2
Hamming8-2

512
128

512
128

512
128

512
128

512
128

San200-0.7-1
San400-0.5-1
San400-0.9-1

30
13
100

29.6
8.6
100

30
7
50

30
9.8
100

30
13
100

Sanr200-0.7
Sanr400-0.5
San1000

18
13
10

18
12.9
9.3

17
12
8

17.4
11.9
10.5

18
13
15

Brock200-1
Brock400-1
Brock800-1

21
25
21

20.3
24.2
20.3

20
20
18

18.2
23.6
19.2

21
27
23

p-hat300-1
p-hat500-1
p-hat700-1
p-hat1000-1
p-hat1500-1

8
9
11
10
12

8
9

10.4
9.6
11.1

8
9
11
10
11

8
9

10.3
9.9
10.4

8
9
11
10
12

MANN-a27
MANN-a45

126
339

123.5
336.2

125
337

125
342

126
345

Table 5.3 Comparison of Number of Cliques found

29

5.3.1 Comparison Graph of MODIFIEDCLIQUE results with oth er algorithms

All algorithms (HGAMC, BK, ACMCP and GAMC) show almost same results of maximum

number of cliques excepting HGAMC which is an optimization of GAMC. Horizontal axis

shows standard graphs and vertical axis shows Maximum Number of cliques.

Fig. 5.1 Comparison of MODIFIEDCLIQUE number of cliques.

0

100

200

300

400

500

600

HGAMC

BK (Best)

ACMCP

GAMC

MODIFIEDCLIQUE

30

5.4 Comparison of MODIFIEDCLIQUE cputimes with other algorithms

 Algorithm

Graph

HGAMC BK
(Best)

ACMCP GAMC MODIFIEDCLIQUE

brock200 9.72 9.13 9.62 8.99 16.5315

brock400 17.63 17.63 17.63 17.63 119.1723

brock800 25.34 25.34 25.34 25.34 96.4398

c-fat200 11.22 11.22 11.22 11.22 120.8724

c-fat500 19.55 19.55 19.55 19.55 108.4654

hamming6 6.78 6.16 8.78 6.78 65.1356

hamming8 10.13 10.93 11.13 10.13 29.0122

johnson8 14.15 14.15 14.15 14.15 152.89

johnson16 21.33 21.33 21.33 21.33 99.1874

johnson32 26.87 27.87 27.87 27.87 96.1985

keller6 14.15 14.95 14.35 14.95 166.1083

MANN_a27 56.23 56.23 56.23 56.23 67.8512

MANN_a45 66.76 66.76 66.76 66.76 52.1038

p_hat300 41.38 43.38 43.48 43.38 133.2509

p_hat500 72.15 76.15 76.15 76.15 90.1037

p_hat700 81.37 88.29 88.29 88.29 148.0316

p_hat1000 132.31 122.13 122.30 122.39 154.1081

san200 29.14 31.70 31.70 31.70 143.4521

san400 51.16 55.69 55.69 55.69 131.9219

Table 5.4 Comparison of cputimes

31

5.5 Comparing Performance of various Standard graphs

Various standard graphs given under DIMACS benchmark has experimentally tested for finding
maximum number of cliques in them. Standard results of all algorithms differ from results of
MODIFIEDCLIQUE algorithm. Other algorithms like HGAMC, BK, ACMCP and GAMC
shows almost same results of number of cliques and their CPU elapsed times excepting HGAMC
which is an optimization of GAMC. MODIFIEDCLIQUE algorithm shows quite deviations in
respects, CPU elapsed time as well as maximum number of cliques. Horizontal axis shows
standard graphs and vertical axis shows CPU elapsed time in milliseconds.

Fig. 5.2 Performance graph of various standard graphs

0

20

40

60

80

100

120

140

160

180

HGAMC

BK (Best)

ACMCP

GAMC

MODIFIEDCLIQUE

32

5.5 Generation of Adjacency Matrix in MATLAB

The implementation of the MODIFIEDCLIQUE algorithm using Bio-Informatics Toolbox in

MATLAB.

The implementation was done in 4 phases:-

1. Definition of Inputs and Outputs

2. Creating the bio-graph using view bio-informatics tool

3. Defining input vectors and size of graph

4. Simulation of result by assigning different color to each clique.

The following are some snapshots of the inputs, inference engine and output on the editor:-

Fig. 5.3 Adjacency Matrix for input graph

33

5.6 Viewing graph in Bio-Informatics

Input Sparse matrix is acting as an input parameter for biograph function. Viewing biograph in

MATLAB by providing Sparse Matrix produces interactive output showing nodes with directed

edges.

Fig. 5.4 Input graph

34

5.7 Realization of Input Graph

Realizing sparse matrix in MATLAB shows scattered dots representing nodes. This plot is also

interactive one. Edit tools on this fig file can be used to edit this plot. Corresponding data set at

the backend will be changed by performing some edit work on fig file.

Fig. 5.5 Plot of Adjacency Sparse Matrix

35

5.8 Designing interface for Modified Clique finding Approach

Interface for simulating MODIFIEDCLIQUE method contains three input parameters. Two input

vectors and one size of sparse matrix. These three input vectors are represented with white

colored text boxes. Another three are output parameters represented with different color (pink) in

this interface. One output parameter gives CPU elapsed time for finding Maximum Cliques using

MODIFIEDCLIQUE algorithm. Second output parameter gives status of each node that each

node is a part of some Clique. While third output parameter gives Maximum Number of Cliques

found in the input Graph.

Fig. 5.6 Fig file of Interface Design

36

5.9 Implementation of MODIFIEDCLIQUE method

Two input vectors gives connectivity of vertices of graph. Means first elements of input vector 1

and vector 2 represents an edge. Here in interface first element of input vector 1 is 14th node and

first element of input vector 2 is 4th node of graph. This represents an edge between 14th and 4th

node that is reflected in Fig. 12. Third input parameter that is size of input matrix is making

MATLAB to squeeze this input matrix 20x20 to its corresponding sparse matrix.

Fig. 5.7 Interface MODIFIEDCLIQUE

37

5.10 Result containing Maximum Cliques

Output graph is directed graph representing cliques with different color codes. Here in Fig. 12

MODIFIEDCLIQUE algorithm has found Maximum 10 cliques. Largest clique is coded with

light green color.

Fig. 5.8 Maximum Cliques

38

5.11 Result showing each node’s containability, No. of components and CPU elapsed time

Results of standard graph Hamming20 are shown here in Fig. 13. CPU elapsed time of

MODIFIEDCLIQUE algorithm is quite close to results of other algorithms. Second output

parameter shows “Each Node is a part of some Clique” contains first element as 8 which means

that first node is a part of 8th Clique out of total 10 Cliques found.

Fig. 5.9 Listing Cliques with their number

39

5.12 Input Vectors on Command Window

Fig. 5.10 Vectors on Command Window

40

5.13 Command window showing S and C

Fig. 5.11 Results in Command window

41

CHAPTER 6

CONCLUSION AND FUTURE SCOPE

The method MODIFIEDCLIQUE has performed well only on standard graphs like brock-20 and

keller-6. The main feature which is stressed in MODIFIEDCLIQUE is graph preprocessing.

Algorithm MODIFIEDCLIQUE is tested on DIMACS benchmark graphs and it performs

moderately, not that much well like ACMCP, BK and HGAMC. MODIFIEDCLIQUE has

performed relatively poor on hamming-20 graph as compared to HGAMC. HGAMC is

optimization of GAMC. Its standard results are equivalently good as GAMC.

Future work could consider changing the termination condition in MODIFIEDCLIQUE method.

If the method reaches stagnancy, then it can reallocate vectors for exploration of new cliques that

can be extended from already calculated ones. For exploration of maximum number of cliques in

input graph MODIFIEDCLIQUE can drop existing vectors and restart new search for more

cliques in the new start. In this way the algorithm has a chance to escape from local optimization

and explore more of search space. However one needs to find a good reallocation method.

42

CHAPTER 7

REFERENCES

[1] Tsukiyama S., Ide M., Ariyoshi H. and Shirakawa I., “A new algorithm for generating all the

maximal independent sets” SIAM J. Comput., 6 (1977) 505–517.

[2] M.R. Garey, D.S. Johnson, Computers and Intractability. “A Guide to the Theory of NP-

completeness” Freeman, New York, 1979.

[3] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, “Optimization by Simulated Annealing”

Science, 220, 1983, pp. 671-680.

[4] E. Balas and C. S. Yu, “Finding a Maximum Clique in an Arbitrary Graph" SIAM J.

Comput., 14, 1986, pp. 1054-1068.

[5] D. E. Goldberg, “Genetic Algorithms in Search, Optimization and Machine Learning”

Addison-Wesley, Boston, MA, 1989.

[6] P. Berman and A. Pelc, “Distributed Fault Diagnosis for Multiprocessor Systems” Proc. of

the 20th Annual Int. Symp. On Fault-Tolerant Computing (Newcastle, UK), 1990, pp. 340-346.

[7] J.Hertz, A. Krogh and R. G. Palmer, “Introduction to the Theory of Neural Computation”

Assison-Wesley, Redwood City, CA, 1991.

[8] P. M. Pardalos and J. Xue. “The Maximum Clique Problem” Journal of Global Optimization,

4, 1994, pp. 301-328.

[9] P.M. Pardalos, J. Xue, “The maximum clique problem” J. Glob. Optim. 4 (1994) 301–328.

[10] R. Battiti and M. Protasi, “Reactive Local Search for the Maximum Clique Problem”

Technical Report TR-95-052, International Computer Science Institute, Berkeley, CA, 1995.

[11] D. S. Johnson and M. A. Trick (eds.), “Cliques Coloring and Satisfiability, Second

DIMACS Implementation Challenge” DIMACS 26, American Mathematical Society, 1996 (see

also http://dimacs.rutgers.edu/Volumes/Vol26.html).

43

[12] Avis D. and Fukuda K., “Reverse search for enumeration” Discrete App. Math., 65 (1996)

21–46.

[13] David R. Wood, “An algorithm for Finding a maximum clique in a graph” 1997 Elsevier

Science B.V. PII S0167-6377(97)00054-0

[14] Johnson D. S., Yanakakis M. and Papadimitriou C. H., “On generating all maximal

independent sets” Info. Proc. Lett., 27 (1998) 119–123.

[15] Kumar S. R, Raghavan P., Rajagopalan S., and Tomkins A., “Trawling the web for

emerging cyber-communities” Proc. the Eighth International World Wide Web Conference,

Toronto, Canada, 1999.

[16] Patric R. J. Ostergard, “A Fast Algorithm for the maximum clique problem”, 2002 Elsevier

Science B.V. PII: S0166-218X (01)00290-6

[17] Dominic W. and Beate D. “A graph model for unsupervised lexical acquisition”.

Proceedings of the 19th International Conference on Computational linguistics(2002). ACL:

Morristown, USA.

[18] Volker S. “Finding All Maximal Cliques in Dynamic Graphs”. Computational Optimization

and Applications (2004) Vol. 7, Issue 2. Kluwer Academic Publishers: Norwell, USA.

[19] R.Rama, Suresh Badarla and Kamala krithivasan, “Clique-detection algorithm using clique-

self-assembly”, IEEE DOI 10.1109/BIC-TA.2011.32

[20] Hakan Y. and Christopher K. “Detecting Social Cliques for Automated Privacy Control in

Online Social Networks”, Fourth International Workshop on Security and Social Networking,

Lugano (19 March 2012).

[21] C. Bron and J Kerbosch, “Bron Kerbosch Algorithm” PopulPublishing ©2012 Page-96,

ISBN-6136404559 9786136404554

[22] Harsh Bhasin, Rohan Mahajan, “Genetic Algorithms Based Solution To Maximum Clique

Problem”, ISSN: 0975-3397 Vol. 4 No. 08 Aug 2013

44

CHAPTER 8

APPENDIX

8.1 Glossary of Terms

A

ACMCP Ant Colonization technique for Maximum Clique Problems

ANN Artificial Neural Networks

B

Bipartite cliques

BK Bron Kerbosch algorithm’

Boltzmann selection

brock200

brock400

brock800

C

c-fat200

c-fat500

Chromosomes

Clique

Crossover

D

DIMACS

45

DIMACS Discrete Mathematics and theoretical Computer Science

DNA

F

Fitness Function

G

GA Genetic Algorithm

GAMC Genetic Algorithm for finding Maximum Cliques

Genetic Algorithm

GS Graph Structure with Clique

H

hamming6

hamming8

HGAMC Hybrid Genetic Algorithm for finding Maximum Cliques

J

johnson16

johnson32

johnson8

K

keller6

KP Knapsack Problem

M

46

MANN_a27

MANN_a45

MCP

MCP Maximum Clique Problem

MODIFIEDCLIQUE

Mutation

N

Natural Evolution

NP Complete

NP Hard

NP Non Polynomial complexity

P

p_hat1000

p_hat300

p_hat500

p_hat700

Population

R

Rank selection

Reverse Search

Roulette wheel selection

47

S

san200

san400

Simulated annealing

Steady state selection

T

Tabu Search

Tarjan’s Algorithm

Tournament selection

TSP Travelling Salesmen Problem

8.2 Abbreviation

ACMCP Ant Colonization technique for Maximum Clique Problems

ANN Artificial Neural Networks

BK Bron Kerbosch algorithm’

DIMACS Discrete Mathematics and theoretical Computer Science

GA Genetic Algorithm

GAMC Genetic Algorithm for finding Maximum Cliques

GS Graph Structure with Clique

HGAMC Hybrid Genetic Algorithm for finding Maximum Cliques

KP Knapsack Problem

48

MCP Maximum Clique Problem

NP Non Polynomial complexity

TSP Travelling Salesmen Problem

