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ABSTRACT 

Graph Theory is the branch of Mathematics and Theoretical Computer Science which has great 

contributions to Computations and many applications in the real world. Finding Maximum 

Clique from a graph is a process of extracting connected components of graph. A connected 

component is a sub-graph having path or reachability of each node to every other node in it. This 

dissertation work contains exploration of maximum number of connected components of an 

input graph. For extracting maximum number of cliques from a graph an algorithm 

MODIFIEDCLIQUE is proposed. MATLAB framework has been chosen for simulating this 

work, because MATLAB provides graph viewing functions producing real like graph structure 

for visualization unlike other frameworks producing graphs just like array of nodes. CPU elapsed 

times of my algorithm are quite good. However it performs moderately, not much well as like 

other peer algorithms. This algorithm is tested on various standard graphs like Hamming20, 

Keller6 and Brock20 etc. For Hamming20 it shows CPU elapsed time as 0.81121 milliseconds. 

Keywords: MCP, BK, ACMCP, MODIFIEDCLIQUE, Hamming20, Keller6, Brock20. 
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CHAPTER 1 
 

INTRODUCTION 
 
f 

1.1 Maximum Clique Problem 

Assume that the finite undirected simple graph G = (V ,E) is given, where V is the set of nodes, V 

ε N , E is the set of edges. The arbitrary full graph is called a clique which is a sub-graph of large 

graph. This sub-graph is fully connected with each node accessible from every other node. The 

clique, which does not contain other cliques, is called a maximal Clique. The largest maximal 

clique is called a maximum clique. To extract all maximal cliques from the graph G. Many 

algorithms have been described to solve this problem. The best solution now a days is a 

procedure where the complexity is linear to the number of maximal cliques [1,2]. The theory and 

algorithms described in this paper can solve the problem. We assume that the graph G is 

presented in the form of an adjacency matrix X : NxN, the main diagonal of which has zeros. 

Given an undirected graph G = ( V, E ), a clique S is a subset of V such that for any two 

elements u, v ε S, ( u, v ) ε E. Using the notation ES to represent the subset of edges which have 

both endpoints in clique S, the induced graph GS = ( S, ES ) is complete. Finding Maximum 

clique in a graph is an NP-hard problem, called the maximum clique problem (MCP). Cliques 

are intimately related to vertex covers and independent sets. Given a graph G, and defining E* to 

be the complement of E, S is a maximum independent set in the complementary graph G* = ( V, 

E* ) if and only if S is a maximum clique in G. That means for a complementary graph, 

maximum clique remains same as in original graph. Hence for an undirected graph maximum 

clique is represented by full matrix but for directed graph it is upper triangular or lower 

triangular matrix. It follows that V – S is a minimum vertex cover in G*.  
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                      Fig. 1.1 An Example of Clique. 

In other words a clique in an undirected graph G = (V, E) is a subset of the vertex set C ⊆ V, 

such that for every two vertices in C, there is an edge connecting the two vertices. This is 

equivalent to saying that the sub graph induced by C is complete. A maximal clique is a clique 

that cannot be extended by including one more adjacent vertex to it, means and a clique which 

does not exist exclusively within the vertex set of a larger clique. A maximum clique is a clique 

of the largest possible size in a given graph. The clique number ω(G) of a graph G is defined the 

number of vertices in a maximum clique in G. The intersection number of G denoted by T(G) is 

also termed as the smallest number of cliques that altogether cover all edges of G. The opposite 

of a clique is observed as an independent set, in the sense that every clique which corresponds to 

an independent set in the complement graph. The cliques cover problem concerns with finding as 

few cliques as possible that include every vertex in the graph. A related concept is a bi-clique, a 

complete bipartite sub graph. The bipartite dimension of a graph is the minimum number of bi-

cliques needed to cover all the edges of the graph. 

 
1.2 GENETIC ALGORITHMS 

Genetic algorithms are the computation model closest to natural evolution. Their success at 

searching complex non-linear spaces and general robustness has led to their use in a number of 

practical problems such as scheduling, financial modeling and optimization. The inventor of 

genetic algorithms, John Holland, took his inspiration for them from nature. Genetic algorithms 

contain a population of individuals, each of which has a known fitness. The population is 

evolved through successive generations; the individuals in each new generation are bred from the 
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fitter individuals of the previous generation. Unlike Natural Evolution which is continuously 

indefinite, we have to decide when to stop our GA. As with the breeding of domestic animals, we 

choose the individuals to breed from to drive the population's evolution in the direction we want 

it to go. As with domestic animals, it may take many generations to produce individuals with the 

required characteristics. Inside a computer an individual's fitness is usually calculated directly 

from its DNA and so only the DNA need to be represented. Usually genetic algorithms represent 

DNA by a fixed length vector. Where a genetic algorithm is being used for optimization, each 

individual is a point in the search space and is evaluated by the fitness function to yield a number 

indicating how much right that point is. If any point is good enough, the genetic algorithm stops 

and the solution is simply that point. If not then a new population, containing the next generation 

is bred. 

The breeding of a new generation is inspired by nature; new vectors are bred from the fitter 

vectors in the current generation, using either asexual or sexual reproduction. In asexual 

reproduction, the parent vector is simply copied. 

Chromosomes are selected from the population to be parents to crossover. The problem here is 

that how to select these chromosomes. According to Darwin's evolution theory survival of the 

fittest, the best ones should survive and create new offspring. There are many methods that how 

to select the best chromosomes, for example Roulette wheel selection, Boltzmann selection, 

Tournament selection, rank selection, steady state selection and some others. Among these 

methods Roulette Wheel Selection is widely used for selection process in genetic algorithms. 

Parents are selected according to their fitness. The better the chromosomes are, the more chances 

they have to be selected. Imagine a roulette wheel where are placed all chromosomes in the 

population, every chromosome has its place more according to its fitness function. 

 

Fig. 1.2 Roulette Wheel Selection 
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Then a marble is thrown there to select the chromosome. Chromosome with bigger fitness will 

be selected more times. Figure 3 shows a child vector being created by mutating a single gene 

where each gene is represented by a single bit. There are more chances for chromosomes with 

bigger fitness to be selected when it roulette wheel is rotated under probability distribution 

techniques. With sexual reproduction, two of the fitter vectors are chosen and the new vector is 

created by sequentially copying sequences alternately from each parent. Typically only two or 

three sequences are used, and the point(s) where the copying crosses over to the other parent is 

chosen at random. This is known as crossover. Crossing over these bit patterns are simply 

representing changing features of successors from their predecessors. Figure 4 shows a child 

being formed firstly by copying four genes from the left-hand parent then the three remaining 

genes are copied from the right-hand parent. 

 

Fig. 1.3 Mutation 

 

Fig. 1.4 Crossover 

Holland in his paper “Genetic Algorithms and the Optimal Allocation of Trials" [Hol73] shows, 

via his schemata theorem, that in certain circumstances genetic algorithms make good use of 

information from the search so far to guide the choice of new points to search. Figure 5 shows 

the genetic algorithm cycle. The schemata theorem requires the vector representation and fitness 

function be designed so that the required solution can be composed of short fragments of vectors 

which, if present in a vector, give it a relatively high fitness regardless of the contents of the rest 
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of the vector. These are known as building blocks. They can be thought of as collections of genes 

which work well together. 

 

Fig. 1.5 The Genetic Algorithm Cycle. 

1.3 OUTLINE OF THE BASIC GENETIC ALGORITHM  

1. [Start] Generate random population of n chromosomes (suitable solutions for the 

problem)  

2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the population  

3. [New population] Create a new population by repeating following steps until the new 

population is complete  

a. [Selection] Select two parent chromosomes from a population according to their 

fitness (the better fitness, the bigger chance to be selected)  

b. [Crossover] With a crossover probability cross over the parents to form a new 

offspring (children). If no crossover was performed, offspring is an exact copy of 

parents.  

c. [Mutation]  With a mutation probability mutate new offspring at each locus 

(position in chromosome).  

d. [Accepting] Place new offspring in a new population  

4. [Replace] Use new generated population for a further run of algorithm  
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5. [Test] If the end condition is satisfied, stop, and return the best solution in current 

population  

6. [Loop]  Go to step 2  

 

1.4 MAXIMUM CLIQUE PROBLEM IS NP HARD 

Examples of difficult problems, which cannot be solved in "traditional" way, are NP problems. 

There are many tasks for which we know fast (polynomial) algorithms. There are also some 

problems that are not possible to be solved algorithmically. For some problems was proved that 

they are not solvable in polynomial time. But there are many important tasks, for which it is very 

difficult to find a solution, but once we have it, it is easy to check the solution. This fact led to 

NP-complete problems. NP stands for nondeterministic polynomial and it means that it is 

possible to "guess" the solution (by some nondeterministic algorithm) and then check it, both in 

polynomial time. If we had a machine that can guess, we would be able to find a solution in 

some reasonable time. Studying of NP-complete problems is for simplicity restricted to the 

problems, where the answer can be yes or no. Because there are tasks with complicated outputs, 

a class of problems called NP-hard problems has been introduced. This class is not as limited as 

class of NP-complete problems. For NP-problems is characteristic that some simple algorithm to 

find a solution is obvious at a first sight - just trying all possible solutions. But this algorithm is 

very slow (usually O(2^n)) and even for a bit bigger instances of the problems it is not usable at 

all.  Today nobody knows if some faster exact algorithm exists. Proving or disproving these 

remains as a big task for new researchers. Today many people think, that such an algorithm does 

not exist and so they are looking for some alternative methods – example of these methods are 

genetic algorithms. Examples of the NP problems are Maximum Clique Problem, Travelling 

Salesman Problem or Knapsack Problem. 

1.5 APPLICATIONS OF MAXIMUM CLIQUE PROBLEM 

The MODIFIEDCLIQUE Problem has many real world applications. It is encountered in many 

different fields in which either the underlying problem can be formulated as the 

MODIFIEDCLIQUE problem or finding the maximum clique is a precondition of solving the 
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problem. Based on those applications, a collection of much diversified test graphs for the 

MODIFIEDCLIQUE problem has been created for evaluating the performance of algorithms for 

the MODIFIEDCLIQUE problem. They are available at 

ftp://dimacs.rutgers.edu/pub/challenge/graph/  

And consist of graphs derived from different problems such as coding theory, fault diagnosis and 

printed circuit board testing. 

 

1.5.1 Coding theory 

A common problem in coding theory is to find a binary code as large as possible that can correct 

a certain number of errors for a given binary word. A binary code is a set of binary vectors. The 

Hamming distance between two binary vectors is defined as the number of positions in which the 

two vectors have different values. A maximum clique of H(n,d) represents the maximum number 

of binary vectors of size n with Hamming distance greater than or equal to d. Therefore, if we 

find the maximum clique C in H(n,d), any binary code consisting of vectors represented by the 

vertices in C is able to correct (d-1)/2  errors. 

1.5.2 Fault diagnosis 

Fault diagnosis plays a very important role in studying the reliability of large multiprocessor 

systems. The goal is to identify all faulty processors (units) in the system. In the model designed 

by Berman and Pelc [1], the system is represented by an undirected graph G = (V, E) whose 

vertices are processors and where edges are communication links. 

1.5.3 Printed circuit board testing 

A printed circuit board tester involves placing probes onto a board. A probe can determine if a 

portion of a board is working correctly. Since probes have a particular size, not every component 

can be checked in one pass. The problem of maximizing the number of components checked in 

one pass can be formulated as a clique problem: each node connects a component and an edge 

represents two nodes that are not too close to be checked simultaneously. A clique in this graph 

is then a set of components that can be checked in one pass. 
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1.5.4 Web Communities 

Consider a directed graph G = (V, A) (called web network) whose vertices and arcs correspond 

to web pages and their links, respectively. Kumar et al. [16] regarded directed bipartite cliques 

(S1, S2) (i.e., S1 × S2 � A) of G as communities of web pages, i.e., the web pages in S2 may 

have similar topics and web pages in S1 may have interests in these topics, and considered 

generating directed bipartite cliques of G. They first construct a graph G* with about 5,000,000 

arcs by removing unnecessary vertices and arcs from G, and then enumerate all directed bipartite 

cliques in the reduced graph G*. They show that directed bipartite cliques usually contain similar 

topics by checking them by human hands. However, since G* contains a great number of 

bipartite cliques, they could enumerate only those containing at most 10 vertices. In this setting, 

it is natural to regard maximal directed bipartite cliques as good representatives of communities. 

From a directed graph G = (V , A), let us construct a bipartite (undirected) graph G = (V � VI ,E) 

such that VI = { vI | v � V} is a copy of V and (v , uI) � E if and only if (v , u) � A. Then there 

exists a one-to-one correspondence between directed bipartite cliques in G and bipartite cliques 

in GI. Hence, our algorithms are applicable to generate all maximal directed bipartite cliques in 

G*. 

1.5.5 Basic Algorithms 

In this section, the algorithms of Tsukiyama et al. [18] and Johnson et al. [17] are considered. It 

is viewed that their algorithms as the enumeration algorithms based on reverse search, where 

reverse search was introduced by Avis and Fukuda [19] to solve enumeration problems 

efficiently. Note that our presentation of their algorithms is quite different from theirs [18], 

which may be of independent interest. Let K0 denote the maximal clique that is the 

lexicographically largest among all maximal cliques. For a maximal clique K ( ≠ K0), we define 

a parent P(K) of K by C(K<=i-1) such that i is the maximum index satisfying C(K<=i-1) ≠ K. 

Such an index i is called the parent index, denoted by i(K). Note that they are well-defined, since 

K ≠ C(K<=0) holds by K ≠ K0. Since P(K) is lexicographically larger than K, this parent-child 

binary relation on maximal cliques is acyclic, and creates an in-tree rooted by K0. 
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Lemma 1. The parent-child relation constructs an in-tree rooted by K0.  

It is called in-tree the enumeration tree for maximal cliques of a graph G. Both algorithms [17] 

traverse this enumeration tree. In order to traverse enumeration tree, we have to compute a parent 

and children of a given maximal clique efficiently. It is not difficult to see that a parent P(K) is 

computable from a maximal clique K in linear time. However, it is not so trivial to compute from 

K its children. For a maximal clique K and an index i, we define K[i] = C (K<=i  �  Γ(vi)) � {v i} 

). 

Lemma 2. Let K and K’ be maximal cliques in G. Then K’ is a child of K if and only 

if K’ = K[i] holds for some i such that 

(a) vi � K. 

(b) i > i(K). 

(c) K[i] <i-1 = K<=i  �  Γ(vi). 

(d) K<i = C (K<=i  �  Γ(vi))<i. 

Moreover, if an index i satisfies (a) � (d), then i is the parent index of K[i] . 

Since C(K) can be computed from a clique K in O(m) time, by Lemma 2, we can compute all 

children of a given maximal clique in O(nm) time. Therefore, we can traverse the enumeration 

tree efficiently. The algorithm of Tsukiyama et al. traverses the enumeration tree in a depth-first 

manner. Their algorithm starts with a root K0, and find its children recursively. It is not difficult 

to see that the algorithm requires O(nm) time delay and O(n + m) space. The algorithm of 

Johnson et al. enumerates all maximal cliques in the lexicographically decreasing order. Their 

algorithm initializes a queue Q as Q = {K0}, iteratively extracts the lexicographically largest 

element K from Q and inserts into Q all the children which are lexicographically smaller than K. 

The time complexity of their algorithm is same as the algorithm of Tsukiyama et al., however, it 

needs O(nN + m) space, where N denotes the number of all maximal cliques. 
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1.6 OTHER TECHNIQUES OF FINDING MAXIMUM CLIQUE PROB LEMS 

1.6.1 Simulated Annealing 

Simulated annealing is a randomized neighborhood search algorithm inspired by the physical 

annealing process, where a solid is first heated up in a heat bath until it melts, and then cooled 

down until it solidifies into a low-energy state. It was first introduced by Kirkpatrick, Gelatt and 

Vecchi in 1983 [7]. This heuristic technique considers the solutions of a combinatorial 

optimization problem corresponding to the states of the physical system and the cost of a 

solution is equivalent to the energy of the state. A simulated annealing algorithm basically works 

as follows. First, a tentative solution in the state space is generated usually at random. Then the 

next state is produced from the current one. The new state is evaluated by a cost function f. If it 

improves, the new state is accepted. If not, the new state is accepted with probability e∆f/τ , where 

∆f is the difference of the cost function between the new state and the current state, and τ is a 

parameter usually called the temperature in analogy with physical annealing, which is varied 

during the optimization process [8]. The simulated annealing heuristic has been ranked among 

one of the best heuristics for the MODIFIEDCLIQUE problem at the 1993 DIMACS challenges 

[6]. 

 

1.6.2 Neural Networks 

An Artificial Neural Network (ANN) is a parallel system inspired by the densely interconnected, 

parallel structure of the mammalian brain information- processing system [5]. Some 

mathematical models of the biology nervous systems show that the temporal evolution is 

controlled by a quadratic Lyapunov function (also called energy function), which is iteratively 

minimized as the process evolves. This feature can be applied to many combinatorial 

optimization problems. More than ten algorithms have been proposed for solving the MAX-

CLIQUE problem using neural networks. They encode the problem in different models, but most 

of them are based on the Hopfield model [5] and its variations. The problem is solved via several 

discrete (deterministic and stochastic) and continuous energy-descent dynamics. In general, 

algorithms based on neural networks can find significantly larger cliques than other simpler 

heuristics but the running time is slightly longer. On the other hand, comparing to those more 
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sophisticated heuristics, they obtained significantly smaller cliques on average but were 

considerably faster [8]. 

 

1.6.3 Tabu Search 

Tabu search is a modified local search algorithm, in which a prohibition-based strategy is 

employed to avoid cycles in the search trajectories and to explore new regions in the search 

space [8]. A tabu list is used to store historical information on the search path to prevent the 

algorithm from going back to recently visited solutions. Tabu solutions are accepted if they 

satisfy some aspiration level condition. Several tabu search algorithms for the 

MODIFIEDCLIQUE problem have been developed in the past ten years. They basically have the 

same structures but change the definition of the search space, the ways that tabu lists are used 

and the aspiration mechanism. In Battiti and Protasi's algorithm [3], a reactive local search 

method is used so that the size of the tabu list can be automatically determined. Also, an explicit 

restart procedure influenced by memory is activated to introduce diversification. The worst case 

complexity per iteration of this algorithm is O(max(|V| , |E|)) where V is the vertex set and E is 

the edge set of the graph. The running time of the algorithm is better than those presented at the 

Second DIMACS Implementation Challenge [6]. There are also many simple heuristics that have 

been used to solve the MAX-CLIQUE problem such as the sequential greedy heuristics and local 

search heuristics. They usually have better running times than those advanced heuristics 

algorithms discussed above, but the quality of the results is worse on the average. 
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CHAPTER 2 

LITRATURE REVIEW 

 

This observation was first mathematically formulated by John Holland in 1975 in his paper, 

"Adaptation in Natural and Artificial Systems" [5]. Usually the algorithm breeds a predetermined 

number of generations; each generation is populated with a predetermined number of fixed 

length binary strings. These binary strings are then translated (decoded) into a format that 

represents suitable parameters either for some controller, or as an output.  

The product resulting from evolution (whether natural or simulated) is not simply discovered by 

a random search through the problem state space, but by a directed search from random positions 

in that space. In fact, according to Goldberg, the simulated evolution of a solution through 

genetic algorithms is, in some cases, more efficient and robust than the random search, 

enumerative or calculus based techniques. The main reasons given by Goldberg are the 

probability of a multi-modal problem state space in non-linear problems, and that random or 

enumerative searches are exhaustive if the dimensions of the state space are too great [4]. 

In the earliest work, BronKerbosch algorithm was designed by Dutch scientists Joep Kerbosch 

and Coenraad Bron, who published a description of their algorithm in 1973. The basic form of 

the algorithm was inefficient in the case of graphs with many non-maximal cliques. It makes a 

recursive call for every clique whether it is maximal or not. To save time and allow the algorithm 

to backtrack more quickly in branches of the search that contain no maximal cliques, Bron and 

Kerbosch introduced a variant of the algorithm involving a "pivot vertex". Any maximal clique 

must include either that pivot vertex or one of its non-neighbors, for otherwise the clique could 

be augmented by adding pivot to it. Therefore, only pivot and its non-neighbors need to be tested 

as the choices for any other vertex that is added to clique in each recursive call to the algorithm. 

Although other algorithms for solving the clique problem have running times that are in theory, 

better on inputs that have few maximal independent sets but the BronKerbosch algorithm and 

subsequent improvements to it are frequently reported as being more efficient in practice than the 

alternatives. It is well-known and widely used in application areas of graph algorithms such as 

computational graph theory. In computer science, the BronKerbosch algorithm is an algorithm 
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for finding maximal cliques in an undirected graph. That is, it lists all subsets of vertices with the 

two properties that each pair of vertices in one of the listed subsets is connected by an edge, and 

no listed subset can have any additional vertices added to it while preserving its complete 

connectivity [11]. For sparse graphs, tighter bounds are possible. In particular the vertex-

ordering version of the Bron–Kerbosch algorithm can be made to run in time O(dn3d/3), where d 

is the degeneracy of the graph, a measure of its sparseness. There exist d-degenerate graphs for 

which the total number of maximal cliques is (n − d)3d/3, so this bound is close to tight. 

David R. Wood, “An Algorithm for finding maximum clique in a graph”, 1997 Elsevier Science, 

introduced a branch-and-bound algorithm for the maximum clique problem which applies 

existing clique finding and vertex coloring heuristics to determine lower and upper bounds for 

the size of a maximum clique[9]. Mr. Wood presented his algorithm which uses Fractional 

Coloring as heuristics to find upper and lower bounds. Since a color class can contain at most 

one vertex of a clique, in a fractional coloring the sum of the weights of those color classes 

intersecting a clique Q is at least |Q|. Therefore, the total weight of a fractional coloring of a 

graph G is an upper bound for ω (G). Vertex colorings provide much tighter upper bounds. A 

vertex coloring (or k-coloring) of a graph G = (V, E) is a partition of V into independent sets (C1, 

C2, …. , Ck) called color classes. Each Ci contains those vertices assigned the ith color. A k-

coloring of G must color each vertex of a clique differently, so k is an upper bound for ω (G). 

This algorithm include non-uniform random graphs with relatively large clique sizes, and graphs 

which have arisen in coding theory, the Steiner Triple Problem, tiling of hyper-cubes, vertex 

cover problems and fault diagnosis. 

Patric R. J. Ostergard, “A Fast Algorithm for the maximum clique problem”, 2002 Elsevier 

Science, given a branch-and-bound algorithm for the maximum clique problem—which is 

computationally equivalent to the maximum independent (stable) set problem—is presented with 

the vertex order taken from a coloring of the vertices and with a new pruning strategy. The 

algorithm performs successfully for many instances when applied to random graphs and 

DIMACS benchmark graphs [10]. In the maximum clique problem, one desires to ,nd one 

maximum clique of an arbitrary undirected graph. This problem is computationally equivalent to 

some other important graph problems, for example, the maximum independent (or stable) set 

problem and the minimum vertex cover problem. Since these are NP-hard problems [14], no 
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polynomial time algorithms are expected to be found. Nevertheless, as these problems have 

several important practical applications, it is of great interest to try to develop fast, exact 

algorithms for small instances. Another direction of research, which has recently been fairly 

popular, is that of using stochastic methods to find as large cliques as possible, without proving 

optimality; see the survey of Pardalos and Xue [15], which also contains an extensive 

bibliography on the maximum clique problem. 

Xinshun Xu, Jun Ma, Jingsheng Lei, “Ant Colony Optimization for the Maximum Clique 

Problem” IEEE-ICNC 2007 introduced an evolutionary approach in which main task is to search 

for maximum cost path in a graph. Artificial Ants walk through graph and looking for high 

quality paths. Better results are found as emergent result of global cooperation among ants in 

colony. 

Algorithm 1. Old algorithm. 

function clique(U, size) 

Step 1: if  |U|=0 then 

Step 2:  if  size > max then 

Step 3:   max := size 

Step 4:   New record; save it. 

Step 5:  end if 

Step 6:  return 

Step 7: end if 

Step 8: while U != ∅ do 

Step 9:  if  size + |U| < max then 

Step 10:   return 

Step 11:  end if 
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Step 12:  i:=min{j | vj �U} 

Step 13:  U:=U\{vi} 

Step 14:  clique(U ∩ N(vi), size + 1) 

Step 15: end while 

Step 16: return 

function old 

Step 17: max:=0 

Step 18: clique(V, 0) 

Step 19: return 

The set of vertices adjacent to a vertex v is denoted by N(v) and the number of vertices in the 

graph is n. The variable max, which is global, gives the size of a maximum clique when the 

algorithm terminates. The performance of the algorithm depends on the ordering the vertices, v1, 

v2, . . .  , vn. We will return to heuristic for ordering later. Each vertex taken in step 12 should be 

saved to be able to extract the whole clique whenever step 4 is reached. Without the pruning 

strategy in step 9 (in implementing the algorithm, the steps 8–11 can be combined into a for 

statement), this algorithm would go through every single clique of the graph. The pruning 

strategy is to backtrack when the set U becomes so small that even if all vertices left could be 

added to get a clique, the size of that clique would not exceed that of the largest clique 

encountered so far in the search. Moreover, if we explicitly search for a clique of a given size, 

we can modify the algorithm and use this information for pruning from the beginning of the 

search. Some speed-up can be obtained if the test in step 1 is changed so that the recursion is 

stopped whenever very few vertices are left (often 0 or 1) and corresponding calculations are 

carried out on a case-by-case basis. Although this algorithm is very simple, it is currently the best 

known algorithm for sparse graphs. Most attempts to improve on this straightforward algorithm 

are based on methods for calculating upper bounds (other than from the size of the set U in 

Algorithm 1) during the search. Almost without exceptions, such bounds are obtained from 

vertex-colorings. In vertex-coloring, adjacent vertices must be assigned different colors. If a 
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graph, or an induced subgraph, can be colored with, say, s colors, then the graph, or subgraph, 

cannot contain a clique of size s + 1. In implementing strategies based on calculating upper 

bounds, a trade-off has to be made; coloring can lead to a considerable reduction of the number 

of nodes in the search tree but is also very time-consuming. [10] 

Algorithm 2. New algorithm. 

function clique(U, size) 

Step 1: if  |U|=0 then 

Step 2:  if  size > max then 

Step 3:   max:=size 

Step 4:   New record; save it. 

Step 5:   found:=true 

Step 6:  end if 

Step 7:  return  

Step 8: end if 

Step 9: while U !=∅  do 

Step 10:  if  size + |U| <= max then 

Step 11:   return  

Step 12:  end if 

Step 13:  i:=min{j | vj �U}  

Step 14:  if  size + c[i] <= max then 

Step 15:   return  

Step 16:  end if 
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Step 17:  U := U\{vi} 

Step 18:  clique(U ∩ N(vi); size + 1) 

Step 19:  if  found=true then 

Step 20:   return  

Step 21:  end if 

Step 22: end while 

Step 23: return  

function new 

Step 24: max:=0 

Step 25:  for  i:=n down to 1 do 

Step 26:   found:=false 

Step 27:   clique(Si ∩ N(vi), 1) 

Step 28:   c[i]:=max 

Step 29:  end for 

Step 30:  return 

The function c(i) gives the largest clique in Si. Obviously, for any 1<= i <=n−1, we have that 

c(i)=c(i+1) or c(i)=c(i+1)+1. Moreover, we have c(i)=c(i+1)+1 iff there is a clique in Si of size 

c(i+1)+1 that includes the vertex vi. So, starting from c(n)=1, we search for such cliques. If a 

clique is found, c(i)=c(i+1)+1, otherwise c(i)=c(i + 1). The size of a maximum clique is given by 

c(1). Old values of the function c(i) enables the new pruning strategy (in step 14). Namely, if we 

search for a clique of size greater than s, then we can prune the search if we consider vi to 

become the (j + 1)-th vertex and j + c(i) <= s. 
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Li Lu, Yunhong Gu, Robert Grossman, “dMaximalCliques: A Distributed Algorithm for 

Enumerating All Maximal Cliques and Maximal Clique Distribution” IEEE- ICDMW-2010 

presents a distributed algorithm which can obtain clique information from million-node graphs. 

It has used distribution of size of maximal cliques in a graph as a new measure for measuring 

structural properties of a graph. The main reason for this algorithm to make the problem solvable 

in a distributed fashion is the locality property of the clique that is the information for finding all 

maximal cliques including v only depends on the neighbors of v. Experimental experience shows 

that this distributed method for finding maximum cliques takes more time for listing maximal 

cliques from the one which is generated by using the BFS method compared with that by using 

the random method. The basic concept is that, usually a vertex and its neighbors share similar 

characteristics, such as the degree. When they are grouped in the same surroundings, if the vertex 

has a large degree, so do its neighbors, the average size of sub-graph containing that vertex is 

large and further results in the unbalanced load when processing it. In contrast, the random 

method does not have this problem. The average size of this kind of sub-graph is approximately 

the same. 

R.Rama, Suresh Badarla and Kamala krithivasan, “Clique-detection algorithm using clique-self-

assembly”, IEEE BIC-TA.2011, proposed a brute force algorithm where a large graph is being 

decomposed and these decomposed parts are cliques [12]. Self-assembly is the process in which 

relatively simple components brought into contact with each other experience local interactions 

guided by basic rules, and combine to form increasingly complex structures. This process is quite 

useful in making determination of large molecules of protein as per the behavior of small 

molecules of which they are made.  There is no externally guiding force or direction, just the 

summation of the undirected local interactions. The progress in science has experienced many of 

the naturally occurring self-assembling systems. These molecular structures are to be shown by 

using graph data structures and many graphs searching algorithm yielding fruitful results these 

days. Modeling molecules as labeled graphs has a long tradition and is a prerequisite for most 

modern Cheminformatic methods. The representation of molecules by graphs has two major 

advantages: Graphs are a very intuitive molecular representation close to our elementary 

chemical understanding, and they form a solid theoretical basis for computer –aided processing. 

Furthermore, graphs enable a database retrieval via graph isomorphism technique, i.e., 

comparing molecules becomes equivalent to comparing labeled graphs. The structural formula is 
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a graph-like representation of molecules commonly used to formulate and exchange chemical 

knowledge. 

Hakan Yildiz, Christopher Kruegel, “Detecting Social Cliques for Automated Privacy Control in 

Online Social Networks”, Fourth International Workshop on Security and Social Networking, 

Lugano (19 March 2012) proposed a privacy control approach that addresses this problem by 

automatically detecting social cliques among the friends of a user. To find cliques, given a small 

number of friends (seed), uses the structure of the social graph to generate an approximate clique 

that contains this seed. [22] The cliques found by the algorithm can be transformed directly into 

friend lists, making sure that a piece of sensitive data is exposed only to the members of a 

particular clique. A social clique is a group of people having significant social interaction with 

each other due to a particular cause e.g., families, classmates, colleagues. A piece of data is often 

of concern only to a particular social clique. One can attempt to identify this clique by examining 

the data itself. Most data shared on social networking sites contains some information that 

identifies the users who are directly related to or who contribute to this data. Thus, each piece of 

data is associated with a possibly empty group of users. We call this group the participating 

group of the data. Intuitively, in most cases, the social clique concerned with a piece of data is 

the one that contains its participating group. As an example, consider a family photograph being 

shared on a social network. There are a number of family members who appear in it, and these 

members form the participating group of the photograph. This photograph is most likely of 

concern only to the members of the family, where the family is a social clique that contains the 

participating group of those members that appear in the picture. 

Harsh Bhasin, Rohan Mahajan, “Genetic Algorithms Based Solution To Maximum Clique 

Problem”, ISSN: 0975-3397 Vol. 4 No. 08 Aug 2013, suggests the solution of above problem 

with the help of Genetic Algorithms (GAs). The work also takes into consideration, the various 

attempts that have been made to solve this problem and other such problems [13]. The present 

problem is to find out a clique with maximum cardinality. Common understanding is that it is an 

NP Complete problem. The point can be proved with the following example. For example, if 

there are 50 vertices in a graph and the number of fully connected sub graph are to be found then 

the total number of such graph will be 
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nC2 + nC3+ nC4+ nC5+ ………………… nC47+ nC48 +
nC49 

Which is equal to 250 -1 ~ 250 

Now, a very fast computer if processes 106 instructions in 1 sec then it will take 35.7 years to 

elucidate all the sub-graphs and find out the maximum cliques. If the graph contains more 

vertices then the complexity will increase as per the problem. In such cases GAs comes to our 

rescue. They are known to perform efficiently if sample space is huge. Genetic algorithms 

imitate the process of natural selection. A population is generated which consist of 

chromosomes. Chromosomes are further made up of cells. In our case the cells are binary that is 

0 or 1. In the implementation the pseudo random number generator of the language generates a 

number up to 100. If the number is less than 50 then the cell of that chromosome become 0 and if 

number is greater than 50 then the cell becomes 1. The numbers of cells in a chromosome 

depend on the problem at hand. In our case the number of cells in a chromosome is equal to 

number of vertices in a graph. The number of chromosome can be an optimal number large 

enough to contain a feasible solution. 
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CHAPTER 3 

PRESENT WORK 

 
 

3.1 Significance 

Since the MODIFIEDCLIQUE problem has important applications, designing an algorithm with 

good performance becomes necessary and important. A lot of algorithms for solving the 

MODIFIEDCLIQUE problem have been proposed in the literature since the 1990's. The early 

work focused on the exact algorithms. Some of them achieved success on small graphs (less than 

400 vertices). For example, Balas and Yu [2] improved the implicit enumeration algorithm by 

reducing the number of sub-problems generated from each node of the search tree, which in turn, 

reduced the size of the whole search tree. But still, the running time of exact algorithms increases 

exponentially with the size of graphs. So it is not practical to solve large problems by exact 

algorithms. The next step is to approximate the maximum clique size to be within a certain factor 

of the optimal solution. Therefore, it is necessary to solve the problem using heuristic algorithms. 

Heuristic algorithms cannot guarantee the quality of solutions but in practice they have been 

observed to produce very good solutions. 

Area of research concentrates on solution of Maximum Clique Problem using a genetic 

algorithm and Tarjan’s Algorithm which is a parallel search procedure utilizing BFS and is 

inspired by the mechanisms of evolution in natural systems and the scenarios under which the 

solutions are applicable, the various qualitative parameters satisfied by the solutions and their 

associated costs in order to meet the current and future resource pool of a dynamic requirements 

in the most efficient way based on various qualitative and quantifiable parameters, so that 

virtualization or multi-tenancy can be easily deployed for providing various search services.  

 

3.2 Objective 

1. To identify various qualitative and quantifiable parameters for the fitness function to 

make intelligent decisions regarding fitness evaluation of chromosomes in a given 

population.  

2. To design better clique extraction method for finding Maximum Cliques.  
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3. To explore various Clique finding algorithms and their solutions for helping 

MODIFIEDCLIQUE based solution to Maximum Clique Problem.  

  

3.3 Methodology 

In order to build the Genetic Algorithm based solution to Maximum Clique Problem the 

following methodology is followed:- 

 
1. Identification  

In this step the requirement analysis is done. This requires a task analysis to be done to 

determine the requirements, the inputs and outputs the prospective users. 

2. Conceptualization  

In this the proposed program is designed to understand and define the specific 

relationships and interactions in the problem domain. The key concepts, the relationships, 

processes and control mechanisms are determined. This is the initial stage of knowledge 

acquisition. 

3. Formalization  

This involves organizing the key concepts and information into formal representations 

i.e. rules for the Encoding and Crossover. It involves deciding the attributes to be 

determined to solve the problem and to build the initial mutated result. 

4. Implementation  

This involves mapping of the formalized population into a framework of the development 

tool (MATLAB) to build a working Matrix. The contents of matrix structures, inference 

rules and control strategies established in the previous stages are organized into suitable 

format. 

 

  



 

3.4 Sources of Data 

The first population for the matrix computation

journals, books, white papers etc. as well as experts in the field of 

Heuristic Searching Techniques and Evolutionary Search Strategies

 

3.5 Research Design 

 

 

1

• To identify various clique finding algorithm and their solutions at 
infrastructure and architectural level for standard graphs.

2

• To identify various selection processes for candidate selection of sub
first generation and various mutation operations of selected candidates for next 
generation.

3
• To identify various fitness parameters for identifying Clique Property. 

4 
• Design of clique finding algorithm using Genetics and Tarjan’s method of 

finding clique from a graph.

5
• Formulation of graph using sparse matrix concept for providing it as an input 

parameter.

6
• Implementation of MCP in MATLAB.
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matrix computation will be developed through extensive study of 

journals, books, white papers etc. as well as experts in the field of Advanced Data Structures, 

Heuristic Searching Techniques and Evolutionary Search Strategies etc. 

Fig. 3.1 Research Design 

 

To identify various clique finding algorithm and their solutions at 
infrastructure and architectural level for standard graphs.

To identify various selection processes for candidate selection of sub
first generation and various mutation operations of selected candidates for next 

To identify various fitness parameters for identifying Clique Property. 

Design of clique finding algorithm using Genetics and Tarjan’s method of 
finding clique from a graph.

Formulation of graph using sparse matrix concept for providing it as an input 

Implementation of MCP in MATLAB.

will be developed through extensive study of 

Advanced Data Structures, 

 

To identify various clique finding algorithm and their solutions at 

To identify various selection processes for candidate selection of sub-graph for 
first generation and various mutation operations of selected candidates for next 

To identify various fitness parameters for identifying Clique Property. 

Design of clique finding algorithm using Genetics and Tarjan’s method of 

Formulation of graph using sparse matrix concept for providing it as an input 
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CHAPTER 4 

DISSERTATION MONTHLY PROGRESS 

 

4.1 GANTT CHART 

Task Start End Duration 
2014 

Jan Feb Mar Apr May 

1. To Identify various 

clique finding algorithm 

and their solutions at 

infrastructure and 

architectural level. 

05/1/14 30/1/14 25  

2. To identify various 

selection processes for 

candidate selection of sub-

graph for first generation 

and various mutation 

operations of selected 

candidates for next 

generation. 

24/1/14 16/2/14 22  

3. To identify various 

fitness parameters for 

identifying Clique 

Property.  

17/2/14 22/3/14 32  

4. Design of clique 

finding algorithm using 

Genetics and Tarjan’s 

method of finding clique 

from a graph. 

23/3/14 12/4/14 18  

5. Formulation of graph 

using sparse matrix 
03/4/14 27/4/14 24  
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concept for providing it as 

an input parameter. 

6. Implementation of 

MCP in MATLAB. 
16/4/14 10/5/14 24  

 

Table 4.1 Gantt chart 
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CHAPTER 5  

RESULTS AND DISCUSSIONS 

 

5.1 Read time and Run time of Standard graphs of DIMACS 

Graph Name No. of Nodes Edges Read_Time (ms) Run_Time (ms) 

brock200 50 80 0.05 26.56 

brock400 100 50 0.18 629.72 

brock800 100 200 0.72 411.89 

c-fat200 100 50 0.05 20.35 

c-fat500 100 100 0.25 408.46 

hamming6 30 16 0.08 5.36 

hamming8 50 50 0.07 29.02 

johnson8 30 50 0.02 5.89 

johnson16 30 50 0.05 9.87 

johnson32 50 50 0.28 116.85 

keller6 50 400 17.65 11366.83 

MANN_a27 30 75 0.2 667.85 

MANN_a45 30 250 1.53 20452.38 

p_hat300 75 75 0.1 33.59 

p_hat500 100 100 0.3 690.07 

p_hat700 50 150 0.63 758.36 

p_hat1000 100 200 1.1 434.81 

san200 30 50 0.05 57 

san400 100 100 0.17 130.29 

 

Table 5.1 Read and Run Times of Standard graphs 
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5.2 Results of HGAMC algorithm 

Graph Nodes Edges Max. 
Clique 

HGMCA 
Best 

Avg. Size Avg. CPU 
Times 

c-fat200-1  
c-fat500-1   

200 
500 

1534 
4459 

12 
14 

12 
14 

12 
14 

0.02 
0.12 

Johnson16-2-4 
Johnson32-2-4 

120 
496 

5460 
107880 

8 
16 

8 
16 

8 
16 

0.04 
0.32 

Keller-4 
Keller-5 
Keller-6 

171 
776 
3361 

9435 
225990 
4619898 

11 
27 
59 

11 
27 
54 

11 
26.1 
53.2 

0.05 
2.32 
103.4 

Hamming10-2 
Hamming8-2 

1024 
256 

518656 
31616 

512 
128 

512 
128 

512 
128 

67.69 
3.54 

San200-0.7-1 
San400-0.5-1 
San400-0.9-1 

200 
400 
400 

13930 
39900 
71820 

30 
13 
100 

30 
13 
100 

22.0 
8.6 
98.6 

0.1 
0.2 
0.96 

Sanr200-0.7 
Sanr400-0.5 
San1000 

200 
400 
1000 

13868 
39900 
250500 

18 
13 
15 

18 
13 
10 

16.7 
12.4 
9.3 

0.08 
0.22 
1.02 

Brock200-1 
Brock400-1 
Brock800-1 

200 
400 
800 

14834 
59723 
207505 

21 
27 
23 

21 
25 
21 

18.2 
22.7 
20.3 

0.1 
0.24 
1.68 

p-hat300-1 
p-hat500-1 
p-hat700-1 
p-hat1000-1 
p-hat1500-1 

300 
500 
700 
1000 
1500 

10933 
31569 
60999 
122253 
284923 

8 
9 
11 
10 
12 

8 
9 
11 
10 
12 

8.0 
8.8 
9.5 
9.6 
10.2 

0.12 
0.34 
0.54 
1.00 
2.78 

MANN-a27 
MANN-a45 

378 
1035 

70551 
533115 

126 
345 

126 
339 

123.4 
336.2 

0.70 
5.48 

 

Table 5.2 Avg. CPU Elapsed times of Standard graphs 
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5.3 Comparison of MODIFIEDCLIQUE results with other  algorithms 

        Algorithm 
Graph 

HGAMC  BK 
(Best) 

ACMCP GAMC MODIFIEDCLIQUE 

c-fat200-1  
c-fat500-1   

12 
14 

12 
14 

12 
14 

12 
14 

12 
14 

Johnson16-2-4 
Johnson32-2-4 

8 
16 

8 
16 

8 
16 

8 
16 

8 
16 

Keller-4 
Keller-5 
Keller-6 

11 
27 
54 

11 
26.4 
51.88 

11 
27 
53 

11 
26.3 
51.4 

11 
27 
59 

Hamming10-2 
Hamming8-2 

512 
128 

512 
128 

512 
128 

512 
128 

512 
128 

San200-0.7-1 
San400-0.5-1 
San400-0.9-1 

30 
13 
100 

29.6 
8.6 
100 

30 
7 
50 

30 
9.8 
100 

30 
13 
100 

Sanr200-0.7 
Sanr400-0.5 
San1000 

18 
13 
10 

18 
12.9 
9.3 

17 
12 
8 

17.4 
11.9 
10.5 

18 
13 
15 

Brock200-1 
Brock400-1 
Brock800-1 

21 
25 
21 

20.3 
24.2 
20.3 

20 
20 
18 

18.2 
23.6 
19.2 

21 
27 
23 

p-hat300-1 
p-hat500-1 
p-hat700-1 
p-hat1000-1 
p-hat1500-1 

8 
9 
11 
10 
12 

8 
9 

10.4 
9.6 
11.1 

8 
9 
11 
10 
11 

8 
9 

10.3 
9.9 
10.4 

8 
9 
11 
10 
12 

MANN-a27 
MANN-a45 

126 
339 

123.5 
336.2 

125 
337 

125 
342 

126 
345 

 

Table 5.3 Comparison of Number of Cliques found 
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5.3.1 Comparison Graph of MODIFIEDCLIQUE results with oth er algorithms 

All algorithms (HGAMC, BK, ACMCP and GAMC) show almost same results of maximum 

number of cliques excepting HGAMC which is an optimization of GAMC. Horizontal axis 

shows standard graphs and vertical axis shows Maximum Number of cliques. 

 

Fig. 5.1 Comparison of MODIFIEDCLIQUE number of cliques. 
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5.4 Comparison of MODIFIEDCLIQUE cputimes with other algorithms 

       Algorithm 

Graph 

HGAMC BK 
(Best) 

ACMCP GAMC MODIFIEDCLIQUE 

brock200 9.72 9.13 9.62 8.99 16.5315 

brock400 17.63 17.63 17.63 17.63 119.1723 

brock800 25.34 25.34 25.34 25.34 96.4398 

c-fat200 11.22 11.22 11.22 11.22 120.8724 

c-fat500 19.55 19.55 19.55 19.55 108.4654 

hamming6 6.78 6.16 8.78 6.78 65.1356 

hamming8 10.13 10.93 11.13 10.13 29.0122 

johnson8 14.15 14.15 14.15 14.15 152.89 

johnson16 21.33 21.33 21.33 21.33 99.1874 

johnson32 26.87 27.87 27.87 27.87 96.1985 

keller6 14.15 14.95 14.35 14.95 166.1083 

MANN_a27 56.23 56.23 56.23 56.23 67.8512 

MANN_a45 66.76 66.76 66.76 66.76 52.1038 

p_hat300 41.38 43.38 43.48 43.38 133.2509 

p_hat500 72.15 76.15 76.15 76.15 90.1037 

p_hat700 81.37 88.29 88.29 88.29 148.0316 

p_hat1000 132.31 122.13 122.30 122.39 154.1081 

san200 29.14 31.70 31.70 31.70 143.4521 

san400 51.16 55.69 55.69 55.69 131.9219 
 

Table 5.4 Comparison of cputimes 
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5.5 Comparing Performance of various Standard graphs 

Various standard graphs given under DIMACS benchmark has experimentally tested for finding 
maximum number of cliques in them. Standard results of all algorithms differ from results of 
MODIFIEDCLIQUE algorithm. Other algorithms like HGAMC, BK, ACMCP and GAMC 
shows almost same results of number of cliques and their CPU elapsed times excepting HGAMC 
which is an optimization of GAMC. MODIFIEDCLIQUE algorithm shows quite deviations in 
respects, CPU elapsed time as well as maximum number of cliques. Horizontal axis shows 
standard graphs and vertical axis shows CPU elapsed time in milliseconds. 

 
 

Fig. 5.2 Performance graph of various standard graphs  
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5.5 Generation of Adjacency Matrix in MATLAB 

The implementation of the MODIFIEDCLIQUE algorithm using Bio-Informatics Toolbox in 

MATLAB.  

The implementation was done in 4 phases:-  

1. Definition of Inputs and Outputs  

2. Creating the bio-graph using view bio-informatics tool  

3. Defining input vectors and size of graph 

4. Simulation of result by assigning different color to each clique. 

The following are some snapshots of the inputs, inference engine and output on the editor:- 

 

Fig. 5.3 Adjacency Matrix for input graph 
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5.6 Viewing graph in Bio-Informatics 

Input Sparse matrix is acting as an input parameter for biograph function. Viewing biograph in 

MATLAB by providing Sparse Matrix produces interactive output showing nodes with directed 

edges. 

 

Fig. 5.4 Input graph 
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5.7 Realization of Input Graph 

Realizing sparse matrix in MATLAB shows scattered dots representing nodes. This plot is also 

interactive one. Edit tools on this fig file can be used to edit this plot. Corresponding data set at 

the backend will be changed by performing some edit work on fig file. 

 

Fig. 5.5 Plot of Adjacency Sparse Matrix 
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5.8 Designing interface for Modified Clique finding Approach 

Interface for simulating MODIFIEDCLIQUE method contains three input parameters. Two input 

vectors and one size of sparse matrix. These three input vectors are represented with white 

colored text boxes. Another three are output parameters represented with different color (pink) in 

this interface. One output parameter gives CPU elapsed time for finding Maximum Cliques using 

MODIFIEDCLIQUE algorithm. Second output parameter gives status of each node that each 

node is a part of some Clique. While third output parameter gives Maximum Number of Cliques 

found in the input Graph. 

 

Fig. 5.6 Fig file of Interface Design 
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5.9 Implementation of MODIFIEDCLIQUE method 

Two input vectors gives connectivity of vertices of graph. Means first elements of input vector 1 

and vector 2 represents an edge. Here in interface first element of input vector 1 is 14th node and 

first element of input vector 2 is 4th node of graph. This represents an edge between 14th and 4th 

node that is reflected in Fig. 12. Third input parameter that is size of input matrix is making 

MATLAB to squeeze this input matrix 20x20 to its corresponding sparse matrix. 

 

Fig. 5.7 Interface MODIFIEDCLIQUE 
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5.10 Result containing Maximum Cliques 

Output graph is directed graph representing cliques with different color codes. Here in Fig. 12 

MODIFIEDCLIQUE algorithm has found Maximum 10 cliques. Largest clique is coded with 

light green color. 

 

Fig. 5.8 Maximum Cliques 

 

  



38 

 

5.11 Result showing each node’s containability, No. of components and CPU elapsed time 

Results of standard graph Hamming20 are shown here in Fig. 13. CPU elapsed time of 

MODIFIEDCLIQUE algorithm is quite close to results of other algorithms. Second output 

parameter shows “Each Node is a part of some Clique” contains first element as 8 which means 

that first node is a part of 8th Clique out of total 10 Cliques found. 

 

Fig. 5.9 Listing Cliques with their number 
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5.12 Input Vectors on Command Window 

 

Fig. 5.10 Vectors on Command Window 
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5.13 Command window showing S and C 

 

Fig. 5.11 Results in Command window 
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CHAPTER 6 

CONCLUSION AND FUTURE SCOPE 

 

The method MODIFIEDCLIQUE has performed well only on standard graphs like brock-20 and 

keller-6. The main feature which is stressed in MODIFIEDCLIQUE is graph preprocessing. 

Algorithm MODIFIEDCLIQUE is tested on DIMACS benchmark graphs and it performs 

moderately, not that much well like ACMCP, BK and HGAMC. MODIFIEDCLIQUE has 

performed relatively poor on hamming-20 graph as compared to HGAMC. HGAMC is 

optimization of GAMC. Its standard results are equivalently good as GAMC. 

Future work could consider changing the termination condition in MODIFIEDCLIQUE method. 

If the method reaches stagnancy, then it can reallocate vectors for exploration of new cliques that 

can be extended from already calculated ones. For exploration of maximum number of cliques in 

input graph MODIFIEDCLIQUE can drop existing vectors and restart new search for more 

cliques in the new start. In this way the algorithm has a chance to escape from local optimization 

and explore more of search space. However one needs to find a good reallocation method.  
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CHAPTER 8 

APPENDIX 

 

8.1 Glossary of Terms 

A 

ACMCP Ant Colonization technique for Maximum Clique Problems 

ANN Artificial Neural Networks 

B 

Bipartite cliques 

BK Bron Kerbosch algorithm’ 

Boltzmann selection 

brock200 

brock400 

brock800 

C 

c-fat200 

c-fat500 

Chromosomes 

Clique 

Crossover 

D 

DIMACS 
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DIMACS Discrete Mathematics and theoretical Computer Science 

DNA 

F 

Fitness Function 

G 

GA Genetic Algorithm 

GAMC Genetic Algorithm for finding Maximum Cliques 

Genetic Algorithm 

GS Graph Structure with Clique 

H 

hamming6 

hamming8 

HGAMC Hybrid Genetic Algorithm for finding Maximum Cliques 

J 

johnson16 

johnson32 

johnson8 

K 

keller6 

KP Knapsack Problem 

M 
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MANN_a27 

MANN_a45 

MCP 

MCP Maximum Clique Problem 

MODIFIEDCLIQUE 

Mutation 

N 

Natural Evolution 

NP Complete 

NP Hard 

NP Non Polynomial complexity 

P 

p_hat1000 

p_hat300 

p_hat500 

p_hat700 

Population 

R 

Rank selection 

Reverse Search 

Roulette wheel selection 
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S 

san200 

san400 

Simulated annealing 

Steady state selection 

T 

Tabu Search 

Tarjan’s Algorithm 

Tournament selection 

TSP Travelling Salesmen Problem 

 

8.2 Abbreviation 

ACMCP Ant Colonization technique for Maximum Clique Problems 

ANN Artificial Neural Networks 

BK Bron Kerbosch algorithm’ 

DIMACS Discrete Mathematics and theoretical Computer Science 

GA Genetic Algorithm 

GAMC Genetic Algorithm for finding Maximum Cliques 

GS Graph Structure with Clique 

HGAMC Hybrid Genetic Algorithm for finding Maximum Cliques 

KP Knapsack Problem 
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MCP Maximum Clique Problem 

NP Non Polynomial complexity 

TSP Travelling Salesmen Problem 


