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ABSTRACT

Graph Theory is the branch of Mathematics and Téteal Computer Science which has great
contributions to Computations and many applicatiomghe real world. Finding Maximum
Clique from a graph is a process of extracting eocted components of graph. A connected
component is a sub-graph having path or reachybilieach node to every other node in it. This
dissertation work contains exploration of maximuomber of connected components of an
input graph. For extracting maximum number of dfigufrom a graph an algorithm
MODIFIEDCLIQUE is proposed. MATLAB framework has dre chosen for simulating this
work, because MATLAB provides graph viewing funaoproducing real like graph structure
for visualization unlike other frameworks producigigphs just like array of nodes. CPU elapsed
times of my algorithm are quite good. However itfpens moderately, not much well as like
other peer algorithms. This algorithm is testedvanious standard graphs like Hamming20,
Keller6 and Brock20 etc. For Hamming20 it shows Gitapsed time as 0.81121 milliseconds.
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CHAPTER 1
INTRODUCTION

1.1 Maximum Cligue Problem

Assume that the finite undirected simple gr&ph (V ,E)is given, wheré/ is the set of nodey

e N, Eis the set of edges. The arbitrary full graph igedaa clique which is a sub-graph of large
graph. This sub-graph is fully connected with eaolle accessible from every other node. The
clique, which does not contain other cliques, ibedaa maximal Clique. The largest maximal
clique is called a maximum clique. To extract abbvimal cliques from the graph G. Many
algorithms have been described to solve this prnobl€he best solution now a days is a
procedure where the complexity is linear to the benof maximal cliques [1,2]. The theory and
algorithms described in this paper can solve theblpm. We assume that the graph G is
presented in the form of an adjacency matrix X NIN#he main diagonal of which has zeros.
Given an undirected graph G = ( V, E ), a cliquésS& subset of V such that for any two
elements u, ¥ S, (u, v )¢ E. Using the notation ES to represent the sulifsetiges which have
both endpoints in clique S, the induced graph GESs ES ) is complete. Finding Maximum
clique in a graph is an NP-hard problem, calledrttaimum clique problem (MCP). Cliques
are intimately related to vertex covers and indepahsets. Given a graph G, and defining E* to
be the complement of E, S is a maximum indepensksnin the complementary graph G* = ( 1V,
E* ) if and only if S is a maximum clique in G. Tthmeans for a complementary graph,
maximum clique remains same as in original grapéndd for an undirected graph maximum
clique is represented by full matrix but for dimdtgraph it is upper triangular or lower

triangular matrix. It follows that V — S is a minum vertex cover in G*.



Graph G, with maximum clique C {blue

9?__:_-# H_ Q vartices)
l;' # \

Fig. 1.1 An Example of Clique.

In other words alique in an undirected grap® = (V, E) is a subset of the vertex feC V,
such that for every two vertices @, there is an edge connecting the two verticess T#i
equivalent to saying that the sub graph induce€ iy complete. A maximal clique is a clique
that cannot be extended by including one more adjacertex to it, means and a clique which
does not exist exclusively within the vertex seadarger clique. A maximum clique is a clique
of the largest possible size in a given graph. diltgie numbern(G) of a graphG is defined the
number of vertices in a maximum clique@a The intersection number & denoted by T(Gs
also termed as the smallest number of cliquesditagether cover all edges Gf The opposite

of a clique is observed as an independent seheisénse that every clique which corresponds to
an independent set in the complement graph. Thaedicover problem concerns with finding as
few cliques as possible that include every vertethe graph. A related concept is a bi-clique, a
complete bipartite sub graph. The bipartite dimemsif a graph is the minimum number of bi-

cligues needed to cover all the edges of the graph.

1.2 GENETIC ALGORITHMS

Genetic algorithms are the computation model closesatural evolution. Their success at
searching complex non-linear spaces and generaktoéss has led to their use in a number of
practical problems such as scheduling, financiatleling and optimization. The inventor of
genetic algorithms, John Holland, took his inspiratfor them from nature. Genetic algorithms
contain a population of individuals, each of whishs a known fitness. The population is

evolved through successive generations; the indalglin each new generation are bred from the
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fitter individuals of the previous generation. WeliNatural Evolution which is continuously
indefinite, we have to decide when to stop our @& with the breeding of domestic animals, we
choose the individuals to breed from to drive thpylation's evolution in the direction we want
it to go. As with domestic animals, it may take maenerations to produce individuals with the
required characteristics. Inside a computer anviddal's fitness is usually calculated directly
from its DNA and so only the DNA need to be repnesd. Usually genetic algorithms represent
DNA by a fixed length vector. Where a genetic alipon is being used for optimization, each
individual is a point in the search space and &wated by the fitness function to yield a number
indicating how much right that point is. If any pbis good enough, the genetic algorithm stops
and the solution is simply that point. If not theemew population, containing the next generation
is bred.

The breeding of a new generation is inspired byneatnew vectors are bred from the fitter
vectors in the current generation, using eitherxaeale or sexual reproduction. In asexual
reproduction, the parent vector is simply copied.

Chromosomes are selected from the population tpabents to crossover. The problem here is
that how to select these chromosomes. Accordingaxwin's evolution theorgurvival of the
fittest, the best ones should survive and create new oftspFhere are many methods that how
to select the best chromosomes, for example Reuletieel selection, Boltzmann selection,
Tournament selection, rank selection, steady statection and some others. Among these
methods Roulette Wheel Selection is widely usedsflection process in genetic algorithms.
Parents are selected according to their fithess.bBtter the chromosomes are, the more chances
they have to be selected. Imagine a roulette wivelre are placed all chromosomes in the

population, every chromosome has its place morerdry to its fithess function.

O Chramosome 1
| Chromosome 2
O Chramosome 3
O Chromasgome 4

Fig. 1.2Roulette Wheel Selection



Then a marble is thrown there to select the chremes Chromosome with bigger fitness will
be selected more timeSigure 3 shows a child vector being created by tmgaa single gene
where each gene is represented by a single biteTdre more chances for chromosomes with
bigger fitness to be selected when it roulette Wleeaotated under probability distribution
techniques. With sexual reproduction, two of theefivectors are chosen and the new vector is
created by sequentially copying sequences altdynaitan each parent. Typically only two or
three sequences are used, and the point(s) whemoflying crosses over to the other parent is
chosen at random. This is known as crossover. igpssver these bit patterns are simply
representing changing features of successors fhain predecessors. Figure 4 shows a child
being formed firstly by copying four genes from tle-hand parent then the three remaining

genes are copied from the right-hand parent.

Parent 1| |0 I I 0 I

Child 1ol l [ [ O l

Parents

Child

Fig. 1.4Crossover

Holland in his paper “Genetic Algorithms and theti@al Allocation of Trials" [Hol73] shows,

via his schemata theorem, that in certain circunt&a genetic algorithms make good use of
information from the search so far to guide theioh®@f new points to search. Figure 5 shows
the genetic algorithm cycle. The schemata theoersaires the vector representation and fitness
function be designed so that the required soluteombe composed of short fragments of vectors

which, if present in a vector, give it a relativéligh fithess regardless of the contents of the res



of the vector. These are known as building bloGkey can be thought of as collections of genes

which work well together.

Population
Select Parents
in Proportiocn to
their Fitness

b

Calculate

Fitness

@ Create new indivuals Q

el + [o] ]
HOERN

Fig. 1.5The Genetic Algorithm Cycle.

1.3 OUTLINE OF THE BASIC GENETIC ALGORITHM

1. [Start] Generate random population of chromosomes (suitable solutions for the
problem)

2. [Fitness] Evaluate the fitned$x) of each chromosomein the population

3. [New population] Create a new population by repeating following steptil the new
population is complete

a. [Selection] Select two parent chromosomes from a populatioordarg to their
fitness (the better fitness, the bigger chanceestediected)

b. [Crossover] With a crossover probability cross over the pardntform a new
offspring (children). If no crossover was performetfspring is an exact copy of
parents.

c. [Mutation] With a mutation probability mutate new offspringg @ach locus
(position in chromosome).

d. [Accepting] Place new offspring in a new population

4. [Replace]Use new generated population for a further rual@brithm
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5. [Test] If the end condition is satisfiedtop, and return the best solution in current
population
6. [Loop] Go to ste®?

1.4 MAXIMUM CLIQUE PROBLEM IS NP HARD

Examples of difficult problems, which cannot beveal in "traditional” way, are NP problems.
There are many tasks for which we know fast (pahgiad) algorithms. There are also some
problems that are not possible to be solved algwiitally. For some problems was proved that
they are not solvable in polynomial time. But thare many important tasks, for which it is very
difficult to find a solution, but once we haveiitjs easy to check the solution. This fact led to
NP-complete problems. NP stands for nondeterministic polyndnaiad it means that it is
possible to "guess" the solution (by some nondetastic algorithm) and then check it, both in
polynomial time. If we had a machine that can guess would be able to find a solution in
some reasonable time. Studying of NP-complete problis for simplicity restricted to the
problems, where the answer can be yes or no. Bethase are tasks with complicated outputs,
a class of problems callédP-hard problems has been introduced. This class is nbtn#ed as
class of NP-complete problems. For NP-problem#&acteristic that some simple algorithm to
find a solution is obvious at a first sight - jasting all possible solutions. But this algorithm i
very slow (usually O(2*n)) and even for a bit biggestances of the problems it is not usable at
all. Today nobody knows if some faster exact atbor exists. Proving or disproving these
remains as a big task for new researchers. Today people think, that such an algorithm does
not exist and so they are looking for some altéveainethods — example of these methods are
genetic algorithms. Examples of the NP problemsMaximum Clique Problem, Travelling

Salesman Problem or Knapsack Problem.
1.5 APPLICATIONS OF MAXIMUM CLIQUE PROBLEM

The MODIFIEDCLIQUE Problem has many real world aggiions. It is encountered in many
different fields in which either the underlying ptem can be formulated as the
MODIFIEDCLIQUE problem or finding the maximum cliqus a precondition of solving the



problem. Based on those applications, a collecobrmuch diversified test graphs for the

MODIFIEDCLIQUE problem has been created for evahgathe performance of algorithms for

the MODIFIEDCLIQUE problem. They are available at
ftp://dimacs.rutgers.edu/pub/challenge/graph/

And consist of graphs derived from different probgesuch as coding theory, fault diagnosis and
printed circuit board testing.

1.5.1 Coding theory

A common problem in coding theory is to find a sinaode as large as possible that can correct
a certain number of errors for a given binary wdkdinary code is a set of binary vectors. The
Hamming distance between two binary vectors isnéefias the number of positions in which the
two vectors have different values. A maximum cligdiéi(n,d) represents the maximum number
of binary vectors of size n with Hamming distanceager than or equal to d. Therefore, if we
find the maximum clique C in H(n,d), any binary eocbnsisting of vectors represented by the
vertices in C is able to correct (d-1)/2 errors.

1.5.2 Fault diagnosis

Fault diagnosis plays a very important role in gind the reliability of large multiprocessor
systems. The goal is to identify all faulty proaass(units) in the system. In the model designed
by Berman and Pelc [1], the system is represenyednbundirected graph G = (V, E) whose
vertices are processors and where edges are cocatianilinks.

1.5.3 Printed circuit board testing

A printed circuit board tester involves placing Ipes onto a board. A probe can determine if a
portion of a board is working correctly. Since peelhave a particular size, not every component
can be checked in one pass. The problem of maxiguitie number of components checked in
one pass can be formulated as a clique problen made connects a component and an edge
represents two nodes that are not too close tdheeked simultaneously. A clique in this graph

is then a set of components that can be checkedarpass.



1.5.4 Web Communities

Consider a directed graph G = (V, A) (callwdb networkwhose vertices and arcs correspond
to web pages and their links, respectively. Kuntaale[16] regardediirectedbipartite cliques
(S1, S2) (i.e., S1 x S2 A) of G as communities of web pages, i.e., the wabes in S2 may
have similar topics and web pages in S1 may hatexests in these topics, and considered
generating directed bipartite cliques of G. Thesgtfconstruct a graph G* with about 5,000,000
arcs by removing unnecessary vertices and arcs @pand then enumerate all directed bipartite
cliques in the reduced graph G*. They show thataled bipartite cliques usually contain similar
topics by checking them by human hands. HowevergesiG* contains a great number of
bipartite cliques, they could enumerate only thosetaining at most 10 vertices. In this setting,
it is natural to regard maximal directed bipartligues as good representatives of communities.
From a directed graph G = (V, A), let us constaubipartite (undirected) graph G = (W' ,E)
such that V={Vv' | ve V} is a copy of V and (v, W € E if and only if (v, u)e A. Then there
exists a one-to-one correspondence between dirbgtadite cliques in G and bipartite cliques
in G. Hence, our algorithms are applicable to genattmaximal directed bipartite cliques in
G*.

1.5.5 Basic Algorithms

In this section, the algorithms of Tsukiyama et{B8] and Johnson et al. [17] are considered. It
is viewed that their algorithms as the enumeratitgorithms based on reverse search, where
reverse searchwas introduced by Avis and Fukuda [19] to solve rearation problems
efficiently. Note that our presentation of theigaiithms is quite different from theirs [18],
which may be of independent interest. Lep Henote the maximal clique that is the
lexicographically largest among all maximal cliquEsr a maximal clique K £ Kg), we define

a parentP(K) of K by C(K<=t1) such that i is the maximum index satisfying Cék4d) # K.
Such an index i is called thmarent indexdenoted by i(K). Note that they are well-definsithce

K # C(K<=0) holds by K# Ko,. Since P(K) is lexicographically larger than Kistiparent-child
binary relation on maximal cliques is acyclic, amdates an in-tree rooted by.K



Lemma 1.The parent-child relation constructs an in-tree e byKo.

It is called in-tree thenumeration treéor maximal cliques of a graph G. Both algorithm3][
traverse this enumeration tree. In order to tra/ersumeration tree, we have to compute a parent
and children of a given maximal clique efficientlyis not difficult to see that a parent P(K) is
computable from a maximal clique K in linear tinkwever, it is not so trivial to compute from

K its children. For a maximal clique K and an indewe define K[i] = C (K= N T['(vi)) U {vi}

)-

Lemma 2.LetK andK’ be maximal cliques is. ThenK’ is a child ofK if and only
if K" = K[i] holds for somesuch that

(@) v & K.

(b) i > i(K).

(€) K[i]<i-1 = Ke=i N T(v;).

(d) K< = C (Ke=i N T(vi))«i-

Moreover, if an indexsatisfies(a) ~ (d), theni is the parent index d{[i] .

Since C(K) can be computed from a clique K in Ofime, by Lemma 2, we can compute all
children of a given maximal clique in O(nm) timehéFefore, we can traverse the enumeration
tree efficiently. The algorithm of Tsukiyama et tihverses the enumeration tree in a depth-first
manner. Their algorithm starts with a roqj, lind find its children recursively. It is not diffilt

to see that the algorithm requires O(hm) time delag O(n + m) space. The algorithm of
Johnson et al. enumerates all maximal cliques enléixicographically decreasing order. Their
algorithm initializes a queue Q as Q = Kiteratively extracts the lexicographically lasie
element K from Q and inserts into Q all the chitdwehich are lexicographically smaller than K.
The time complexity of their algorithm is same las &lgorithm of Tsukiyama et al., however, it

needs O(nN + m) space, where N denotes the nunilbérroaximal cliques.



1.6 OTHER TECHNIQUES OF FINDING MAXIMUM CLIQUE PROB LEMS
1.6.1 Simulated Annealing

Simulated annealing is a randomized neighborhoadckealgorithm inspired by the physical
annealing process, where a solid is first heatechugpheat bath until it melts, and then cooled
down until it solidifies into a low-energy statéwas first introduced by Kirkpatrick, Gelatt and
Vecchi in 1983 [7]. This heuristic technique comsgl the solutions of a combinatorial
optimization problem corresponding to the statesthaf physical system and the cost of a
solution is equivalent to the energy of the statsimulated annealing algorithm basically works
as follows. First, a tentative solution in the stapace is generated usually at random. Then the
next state is produced from the current one. Tlre state is evaluated by a cost function f. If it
improves, the new state is accepted. If not, tve state is accepted with probabilit}/e, where

Af is the difference of the cost function betweea tiew state and the current state, amngl a
parameter usually called the temperature in analeigly physical annealing, which is varied
during the optimization process [8]. The simulagethealing heuristic has been ranked among
one of the best heuristics for the MODIFIEDCLIQUBIplem at the 1993 DIMACS challenges

[6].

1.6.2 Neural Networks

An Artificial Neural Network (ANN) is a parallel syem inspired by the densely interconnected,
parallel structure of the mammalian brain inforroati processing system [5]. Some
mathematical models of the biology nervous systemsw that the temporal evolution is
controlled by a quadratic Lyapunov function (alstlexd energy function), which is iteratively
minimized as the process evolves. This feature banapplied to many combinatorial
optimization problems. More than ten algorithms éndoeen proposed for solving the MAX-
CLIQUE problem using neural networks. They encdaedroblem in different models, but most
of them are based on the Hopfield model [5] andatsations. The problem is solved via several
discrete (deterministic and stochastic) and cootisuenergy-descent dynamics. In general,
algorithms based on neural networks can find sicamtly larger cliques than other simpler
heuristics but the running time is slightly longém the other hand, comparing to those more

10



sophisticated heuristics, they obtained signifisardmaller cligues on average but were
considerably faster [8].

1.6.3 Tabu Search

Tabu search is a modified local search algorithmwhich a prohibition-based strategy is
employed to avoid cycles in the search trajectoaied to explore new regions in the search
space [8]. A tabu list is used to store historicébrmation on the search path to prevent the
algorithm from going back to recently visited sauat. Tabu solutions are accepted if they
satisfy some aspiration level condition. Severalbutasearch algorithms for the
MODIFIEDCLIQUE problem have been developed in thstgen years. They basically have the
same structures but change the definition of tlackespace, the ways that tabu lists are used
and the aspiration mechanism. In Battiti and Prstadgorithm [3], a reactive local search
method is used so that the size of the tabu listoeaautomatically determined. Also, an explicit
restart procedure influenced by memory is activadeimitroduce diversification. The worst case
complexity per iteration of this algorithm is O(nfA4 , |E|)) where V is the vertex set and E is
the edge set of the graph. The running time ofatgerithm is better than those presented at the
Second DIMACS Implementation Challenge [6]. Thaeaso many simple heuristics that have
been used to solve the MAX-CLIQUE problem suchhassequential greedy heuristics and local
search heuristics. They usually have better runrtingges than those advanced heuristics

algorithms discussed above, but the quality ofréseilts is worse on the average.
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CHAPTER 2

LITRATURE REVIEW

This observation was first mathematically formutatey John Holland in 1975 in his paper,
"Adaptation in Natural and Artificial Systems" [3)sually the algorithm breeds a predetermined
number of generations; each generation is populai#itl a predetermined number of fixed
length binary strings. These binary strings arenth@anslated (decoded) into a format that

represents suitable parameters either for someatient or as an output.

The product resulting from evolution (whether natwr simulated) is not simply discovered by
a random search through the problem state spatbylaudirected search from random positions
in that space. In fact, according to Goldberg, $iraulated evolution of a solution through
genetic algorithms is, in some cases, more efficeemd robust than the random search,
enumerative or calculus based techniques. The measons given by Goldberg are the
probability of a multi-modal problem state spacenon-linear problems, and that random or

enumerative searches are exhaustive if the dimesisibthe state space are too great [4].

In the earliest work, BronKerbosch algorithm wasigeed by Dutch scientists Joep Kerbosch
and Coenraad Bron, who published a descriptioheif talgorithm in 1973. The basic form of
the algorithm was inefficient in the case of graphth many non-maximal cliques. It makes a
recursive call for every clique whether it is maaior not. To save time and allow the algorithm
to backtrack more quickly in branches of the sedhelt contain no maximal cliques, Bron and
Kerbosch introduced a variant of the algorithm imirgy a "pivot vertex". Any maximal clique
must include either that pivot vertex or one ofrits1-neighbors, for otherwise the cliqgue could
be augmented by adding pivot to it. Therefore, @mnipt and its non-neighbors need to be tested
as the choices for any other vertex that is addegique in each recursive call to the algorithm.
Although other algorithms for solving the cligueoplem have running times that are in theory,
better on inputs that have few maximal independetd but the BronKerbosch algorithm and
subsequent improvements to it are frequently reposs being more efficient in practice than the
alternatives. It is well-known and widely used jpphcation areas of graph algorithms such as

computational graph theory. In computer science,BhonKerbosch algorithm is an algorithm
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for finding maximal cliques in an undirected graphat is, it lists all subsets of vertices with the
two properties that each pair of vertices in ongheflisted subsets is connected by an edge, and
no listed subset can have any additional vertickded to it while preserving its complete
connectivity [11]. For sparse graphs, tighter baurade possible. In particular the vertex-
ordering version of the Bron—Kerbosch algorithm bammade to run in time O(d#3, where d

is the degeneracy of the graph, a measure of @ssspess. There exist d-degenerate graphs for

which the total number of maximal cliques is (n)3%, so this bound is close to tight.

David R. Wood, “An Algorithm for finding maximumigue in a graph”, 1997 Elsevier Science,
introduced a branch-and-bound algorithm for the imar clique problem which applies
existing clique finding and vertex coloring heudstto determine lower and upper bounds for
the size of a maximum clique[9]. Mr. Wood presentesd algorithm which uses Fractional
Coloring as heuristics to find upper and lower sunSince a color class can contain at most
one vertex of a clique, in a fractional coloringe teum of the weights of those color classes
intersecting a clique Q is at least |Q|. Therefthe, total weight of a fractional coloring of a
graph G is an upper bound fer (G). Vertex colorings provide much tighter uppeubds. A
vertex coloring (or k-coloring) of a graph G = (&) is a partition of V into independent sets,(C
Co, ..., G) called color classes. Each ntains those vertices assigned thedlor. A k-
coloring of G must color each vertex of a cliquéedently, so k is an upper bound fer(G).
This algorithm include non-uniform random graphshwelatively large clique sizes, and graphs
which have arisen in coding theory, the Steinepl&riProblem, tiling of hyper-cubes, vertex
cover problems and fault diagnosis.

Patric R. J. Ostergard, “A Fast Algorithm for theviimum clique problem”, 2002 Elsevier

Science, given a branch-and-bound algorithm for mieximum clique problem—which is

computationally equivalent to the maximum independstable) set problem—is presented with
the vertex order taken from a coloring of the o&di and with a new pruning strategy. The
algorithm performs successfully for many instanedsen applied to random graphs and
DIMACS benchmark graphs [10]. In the maximum cligomblem, one desires to ,nd one
maximum clique of an arbitrary undirected graphisTgroblem is computationally equivalent to
some other important graph problems, for exampile, haximum independent (or stable) set

problem and the minimum vertex cover problem. Sitieese are NP-hard problems [14], no
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polynomial time algorithms are expected to be fouNdvertheless, as these problems have
several important practical applications, it is great interest to try to develop fast, exact
algorithms for small instances. Another directidnresearch, which has recently been fairly
popular, is that of using stochastic methods td &8s large cliques as possible, without proving
optimality; see the survey of Pardalos and Xue ,[Mhich also contains an extensive

bibliography on the maximum clique problem.

Xinshun Xu, Jun Ma, Jingsheng Lei, “Ant Colony Opization for the Maximum Clique

Problem” IEEE-ICNC 2007 introduced an evolutionapproach in which main task is to search
for maximum cost path in a graph. Artificial Antsalk through graph and looking for high
quality paths. Better results are found as emergeslt of global cooperation among ants in

colony.
Algorithm 1. Old algorithm.
function clique(U, size)

Step 1if |U|=0then

Step 2: if size > maxhen

Step 3: max := size

Step 4: New record; save it.
Step 5: end if

Step 6: return

Step 7:end if

Step 8while U =@ do
Step 9: if size + |U| < mathen
Step 10: return

Step 11: end if
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Step 12: iz=min{j | yeU}

Step 13: U:=U\{v}

Step 14: clique(W N(vi), size + 1)
Step 15end while

Step 16return

function old

Step 17: max:=0

Step 18: clique(V, 0)

Step 19return

The set of vertices adjacent to a vertex v is d=hay N(v) and the number of vertices in the
graph is n. The variable max, which is global, gitke size of a maximum clique when the
algorithm terminates. The performance of the atboridepends on the ordering the vertices, v
Vo, ... , . We will return to heuristic for ordering lateraéh vertex taken in step 12 should be
saved to be able to extract the whole clique whenstep 4 is reached. Without the pruning
strategy in step 9 (in implementing the algoritiihe steps 8—11 can be combined into a for
statement), this algorithm would go through eveingle clique of the graph. The pruning
strategy is to backtrack when the set U becomesrsall that even if all vertices left could be
added to get a clique, the size of that clique woobt exceed that of the largest clique
encountered so far in the search. Moreover, if wdiatly search for a clique of a given size,
we can modify the algorithm and use this informatfor pruning from the beginning of the
search. Some speed-up can be obtained if thertedep 1 is changed so that the recursion is
stopped whenever very few vertices are left (ofteor 1) and corresponding calculations are
carried out on a case-by-case basis. Althoughatbsrithm is very simple, it is currently the best
known algorithm for sparse graphs. Most attemptisnfarove on this straightforward algorithm
are based on methods for calculating upper bouatter than from the size of the set U in
Algorithm 1) during the search. Almost without egtiens, such bounds are obtained from

vertex-colorings. In vertex-coloring, adjacent we@$ must be assigned different colors. If a
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graph, or an induced subgraph, can be colored wéy, s colors, then the graph, or subgraph,
cannot contain a cliqgue of size s + 1. In implenmentstrategies based on calculating upper
bounds, a trade-off has to be made; coloring cad te a considerable reduction of the number

of nodes in the search tree but is also very tioresaming. [10]
Algorithm 2. New algorithm.
function clique(U, size)

Step 1if |U|=0then

Step 2: if size > maxhen

Step 3: max:=size

Step 4: New record; save it.
Step 5: found:=true

Step 6: end if

Step 7: return

Step 8end if

Step 9while U =g do
Step 10: if size +|U| <= maxthen
Step 11: return

Step 12: end if

Step 13: iz=min{j | yeU}
Step 14: if size + c[i] <= maxhen
Step 15: return

Step 16: end if
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Step 17: U := UYvi}

Step 18: clique(W N(vi); size + 1)
Step 19: if found=truethen
Step 20: return

Step 21: end if
Step 22end while
Step 23return
function new

Step 24: max:=0

Step 25: for i:=n down to 1do

Step 26: found:=false
Step 27: clique(Sh N(vi), 1)
Step 28: c[il:=max

Step 29: end for
Step 30: return

The function c(i) gives the largest clique in Sbvidusly, for any 1<= i <=Al, we have that
c(i)=c(i+1) or c(i)=c(i+1)+1. Moreover, we have {c(i+1)+1 iff there is a clique in Si of size
c(i+1)+1 that includes the vertex vi. So, startingm c(n)=1, we search for such cliques. If a
clique is found, c(i)=c(i+1)+1, otherwise c(i)=a&(i1). The size of a maximum clique is given by
c(1). Old values of the function c(i) enables tlegvrpruning strategy (in step 14). Namely, if we
search for a clique of size greater than s, thencave prune the search if we consider vi to

become the (j + 1)-th vertex and j + c(i) <= s.
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Li Lu, Yunhong Gu, Robert Grossman, “dMaximalCligueA Distributed Algorithm for
Enumerating All Maximal Cliqgues and Maximal Cliqu@stribution” IEEE- ICDMW-2010
presents a distributed algorithm which can obtdigue information from million-node graphs.

It has used distribution of size of maximal cliquesa graph as a new measure for measuring
structural properties of a graph. The main reasothis algorithm to make the problem solvable
in a distributed fashion is the locality properfytioe clique that is the information for finding al
maximal cliques including only depends on the neighborsvoExperimental experience shows
that this distributed method for finding maximuniqales takes more time for listing maximal
cliques from the one which is generated by usimgBRS method compared with that by using
the random method. The basic concept is that, lysaalertex and its neighbors share similar
characteristics, such as the degree. When theyrauped in the same surroundings, if the vertex
has a large degree, so do its neighbors, the awvesiag of sub-graph containing that vertex is
large and further results in the unbalanced loaénvprocessing it. In contrast, the random
method does not have this problem. The averageo$ittes kind of sub-graph is approximately

the same.

R.Rama, Suresh Badarla and Kamala krithivasangt@hdetection algorithm using clique-self-
assembly”, IEEE BIC-TA.2011, proposed a brute faatgorithm where a large graph is being
decomposed and these decomposed parts are clitRleSElf-assembly is the process in which
relatively simple components brought into contatthveach other experience local interactions
guided by basic rules, and combine to form increglgicomplex structures. This process is quite
useful in making determination of large moleculdspmtein as per the behavior of small
molecules of which they are made. There is noreatly guiding force or direction, just the
summation of the undirected local interactions. pregress in science has experienced many of
the naturally occurring self-assembling systemssehmolecular structures are to be shown by
using graph data structures and many graphs sagrelgorithm yielding fruitful results these
days. Modeling molecules as labeled graphs has@tl@adition and is a prerequisite for most
modern Cheminformatic methods. The representatiomaecules by graphs has two major
advantages: Graphs are a very intuitive molecudgoresentation close to our elementary
chemical understanding, and they form a solid thigeal basis for computer —aided processing.
Furthermore, graphs enable a database retrieval gwagh isomorphism technique, i.e.,

comparing molecules becomes equivalent to compdeaivejed graphs. The structural formula is
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a graph-like representation of molecules commomsgduto formulate and exchange chemical

knowledge.

Hakan Yildiz, Christopher Kruegel, “Detecting Sddidiques for Automated Privacy Control in
Online Social Networks”, Fourth International Wadnke on Security and Social Networking,
Lugano (19 March 2012) proposed a privacy contpgreach that addresses this problem by
automatically detecting social cliques among tienfis of a user. To find cliques, given a small
number of friends (seed), uses the structure o$ticeal graph to generate an approximate clique
that contains this seed. [22] The cliques foundhgyalgorithm can be transformed directly into
friend lists, making sure that a piece of sensitiaa is exposed only to the members of a
particular clique. A social clique is a group ofopke having significant social interaction with
each other due to a particular cause e.g., fami#lassmates, colleagues. A piece of data is often
of concern only to a particular social cligue. @a@ attempt to identify this clique by examining
the data itself. Most data shared on social netimgrisites contains some information that
identifies the users who are directly related tovbo contribute to this data. Thus, each piece of
data is associated with a possibly empty groupsefrsi We call this group the participating
group of the data. Intuitively, in most cases, sbeial clique concerned with a piece of data is
the one that contains its participating group. A®aample, consider a family photograph being
shared on a social network. There are a numbearoilf members who appear in it, and these
members form the participating group of the phapbr This photograph is most likely of
concern only to the members of the family, where fdmily is a social clique that contains the

participating group of those members that apped#rérpicture.

Harsh Bhasin, Rohan Mahajan, “Genetic Algorithmssdgh Solution To Maximum Clique

Problem”, ISSN: 0975-3397 Vol. 4 No. 08 Aug 2018ggests the solution of above problem
with the help of Genetic Algorithms (GAs). The walso takes into consideration, the various
attempts that have been made to solve this problsinother such problems [13]. The present
problem is to find out a clique with maximum camity. Common understanding is that it is an
NP Complete problem. The point can be proved vhth following example. For example, if

there are 50 vertices in a graph and the numbtilgfconnected sub graph are to be found then

the total number of such graph will be
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nCz + nC3+ nC4+ nC5+ ..................... nC47+ nC48 +nC49
Which is equal to 2 -1 ~ 2°

Now, a very fast computer if processes 106 inswostin 1 sec then it will take 35.7 years to
elucidate all the sub-graphs and find out the marmcliques. If the graph contains more
vertices then the complexity will increase as er problem. In such cases GAs comes to our
rescue. They are known to perform efficiently iimgde space is huge. Genetic algorithms
imitate the process of natural selection. A popaoitatis generated which consist of
chromosomes. Chromosomes are further made uplef bebur case the cells are binary that is
0 or 1. In the implementation the pseudo randomberngenerator of the language generates a
number up to 100. If the number is less than 50 the cell of that chromosome become 0 and if
number is greater than 50 then the cell becomeBhé&. numbers of cells in a chromosome
depend on the problem at hand. In our case the ewuwifbcells in a chromosome is equal to
number of vertices in a graph. The number of chisonee can be an optimal number large

enough to contain a feasible solution.
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CHAPTER 3

PRESENT WORK

3.1 Significance

Since the MODIFIEDCLIQUE problem has important apgions, designing an algorithm with
good performance becomes necessary and importariat Af algorithms for solving the
MODIFIEDCLIQUE problem have been proposed in theréiture since the 1990's. The early
work focused on the exact algorithms. Some of taemeved success on small graphs (less than
400 vertices). For example, Balas and Yu [2] impeb¥he implicit enumeration algorithm by
reducing the number of sub-problems generated &aoh node of the search tree, which in turn,
reduced the size of the whole search tree. Blittstd running time of exact algorithms increases
exponentially with the size of graphs. So it is poéctical to solve large problems by exact
algorithms. The next step is to approximate theimam clique size to be within a certain factor
of the optimal solution. Therefore, it is necesgargolve the problem using heuristic algorithms.
Heuristic algorithms cannot guarantee the qualitysautions but in practice they have been
observed to produce very good solutions.

Area of research concentrates on solution of Marim@Glique Problem using a genetic
algorithm and Tarjan’s Algorithm which is a paralkearch procedure utilizing BFS and is
inspired by the mechanisms of evolution in natgsydtems and the scenarios under which the
solutions are applicable, the various qualitatieeameters satisfied by the solutions and their
associated costs in order to meet the current atdef resource pool of a dynamic requirements
in the most efficient way based on various qualitatand quantifiable parameters, so that

virtualization or multi-tenancy can be easily dga for providing various search services.

3.2 Objective

1. To identify various qualitative and quantifiablergmeters for the fitness function to
make intelligent decisions regarding fitness euadumaof chromosomes in a given
population.

2. To design better clique extraction method for filgdMaximum Cliques.
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3. To explore various Clique finding algorithms andeith solutions for helping

MODIFIEDCLIQUE based solution to Maximum Clique Blem.

3.3 Methodology

In order to build the Genetic Algorithm based solntto Maximum Clique Problem the

following methodology is followed:-

1.

Identification

In this step the requirement analysis is done. Téuglires a task analysis to be done to
determine the requirements, the inputs and outpatprospective users.

Conceptualization

In this the proposed program is designed to unaledstand define the specific
relationships and interactions in the problem demahe key concepts, the relationships,
processes and control mechanisms are determinéglisTtine initial stage of knowledge
acquisition.

Formalization

This involves organizing the key concepts and mmi@iion into formal representations
i.e. rules for the Encoding and Crossover. It imesl deciding the attributes to be
determined to solve the problem and to build thgairmutated result.

Implementation

This involves mapping of the formalized populatioto a framework of the development
tool (MATLAB) to build a working Matrix. The contés of matrix structures, inference
rules and control strategies established in theipus stages are organized into suitable

format.
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3.4 Sources of Data

The first population for thenatrix computatio will be developed through extensive study
journals, books, white papers etc. as well as ¢xperthe field ofAdvanced Data Structure

Heuristic Searching Techniques and Evolutionary@e&trategie etc.

3.5 Research Design

* To identify various clique finding algorithm ancethsolutions a
infrastructure and architectural level for standguaphs

v

* To identify various selection processes for carteidalection of st-graph for
first generation and various mutation operationsatécted candidates for ne
generation.

* To identify various fitness parameters for identify Clique Property

» Design of clique finding algorithm using Geneticgl&arjan’s method ¢
finding clique from a grap

» Formulation of graph using sparse matrix conceppfoviding it as an inpt
parameter.

| —

* Implementation of MCP in MATLAE

Fig. 3.1Research Design
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CHAPTER 4

DISSERTATION MONTHLY PROGRESS

4.1 GANTT CHART

_ 2014
Task Start End Duration

Jan | Feb| Mar | Apr |May

1. To Identify various
clique finding algorithm
and their solutions ato05/1/14 | 30/1/14 25 —
infrastructure and

architectural level.

2. To identify various
selection processes for

candidate selection of sup-

L

graph for first generatio
_ | 24/1/14 | 16/2/14 22
and various mutatio

=)

operations of selected
candidates for next

generation.

3. To identify various

fitness parameters for

dentifying Clique 1712114 | 22/3/14 32
Property.
4. Design of clique
finding algorithm using
Genetics and Tarjan’s23/3/14 | 12/4/14 18
—

method of finding clique

from a graph.

5. Formulation of grapk

—

_ | 03/4/114 | 27/4/114 24
using  sparse  matrix s
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concept for providing it a

1"

an input parameter.

6. Implementation of
MCP in MATLAB.

16/4/14 | 10/5/14 24

Table 4.1Gantt chart
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CHAPTER 5

RESULTS AND DISCUSSIONS

5.1 Read time and Run time of Standard graphs of IMACS

Graph Name | No. of Nodeg Edges Read_Time (ms) Run_Time (ms)
brock200 50 80 0.05 26.56
brock400 100 50 0.18 629.72
brock800 100 200 0.72 411.89
c-fat200 100 50 0.05 20.35
c-fat500 100 100 0.25 408.46

hamming6 30 16 0.08 5.36
hamming8 50 50 0.07 29.02
johnson8 30 50 0.02 5.89
johnsonl6 30 50 0.05 9.87
johnson32 50 50 0.28 116.85
keller6 50 400 17.65 11366.83

MANN_aZ27 30 75 0.2 667.85

MANN_a45 30 250 1.53 20452.38
p_hat300 75 75 0.1 33.59
p_hat500 100 100 0.3 690.07
p_hat700 50 150 0.63 758.36

p_hat1000 100 200 1.1 434.81
san200 30 50 0.05 57
san400 100 100 0.17 130.29

Table 5.1Read and Run Times of Standard graphs
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5.2 Results of HGAMC algorithm

Graph Nodes Edges Max. HGMCA Avg. Size | Avg. CPU
Clique Best Times

c-fat200-1 200 1534 12 12 12 0.02
c-fat500-1 500 4459 14 14 14 0.12
Johnson16-2-4| 120 5460 8 8 8 0.04
Johnson32-2-4| 496 107880 16 16 16 0.32
Keller-4 171 9435 11 11 11 0.05
Keller-5 776 225990 27 27 26.1 2.32
Keller-6 3361 4619898 | 59 54 53.2 103.4
Hammingl10-2 | 1024 518656 512 512 512 67.69
Hamming8-2 | 256 31616 128 128 128 3.54
San200-0.7-1 | 200 13930 30 30 22.0 0.1
San400-0.5-1 | 400 39900 13 13 8.6 0.2
San400-0.9-1 | 400 71820 100 100 98.6 0.96
Sanr200-0.7 | 200 13868 18 18 16.7 0.08
Sanr400-0.5 | 400 39900 13 13 12.4 0.22
San1000 1000 250500 15 10 9.3 1.02
Brock200-1 200 14834 21 21 18.2 0.1
Brock400-1 400 59723 27 25 22.7 0.24
Brock800-1 800 207505 23 21 20.3 1.68
p-hat300-1 300 10933 8 8 8.0 0.12
p-hat500-1 500 31569 9 9 8.8 0.34
p-hat700-1 700 60999 11 11 9.5 0.54
p-hat1000-1 | 1000 122253 10 10 9.6 1.00
p-hat1500-1 | 1500 284923 12 12 10.2 2.78
MANN-a27 378 70551 126 126 123.4 0.70
MANN-a45 1035 533115 345 339 336.2 5.48

Table 5.2Avg. CPU Elapsed times of Standard graphs
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5.3 Comparison of MODIFIEDCLIQUE results with other algorithms

Algorithm | HGAMC BK ACMCP GAMC MODIFIEDCLIQUE
Graph (Best)
c-fat200-1 12 12 12 12 12
c-fat500-1 14 14 14 14 14
Johnsonl16-2-4 8 8 8 8 8
Johnson32-2-4 16 16 16 16 16
Keller-4 11 11 11 11 11
Keller-5 27 26.4 27 26.3 27
Keller-6 54 51.88 53 51.4 59
Hamming10-2 512 512 512 512 512
Hamming8-2 128 128 128 128 128
San200-0.7-1 30 29.6 30 30 30
San400-0.5-1 13 8.6 7 9.8 13
San400-0.9-1 100 100 50 100 100
Sanr200-0.7 18 18 17 17.4 18
Sanr400-0.5 13 12.9 12 11.9 13
San1000 10 9.3 8 10.5 15
Brock200-1 21 20.3 20 18.2 21
Brock400-1 25 24.2 20 23.6 27
Brock800-1 21 20.3 18 19.2 23
p-hat300-1 8 8 8 8 8
p-hat500-1 9 9 9 9 9
p-hat700-1 11 10.4 11 10.3 11
p-hat1000-1 10 9.6 10 9.9 10
p-hat1500-1 12 111 11 10.4 12
MANN-a27 126 123.5 125 125 126
MANN-a45 339 336.2 337 342 345

Table 5.3Comparison of Number of Cliques found
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5.3.1Comparison Graph of MODIFIEDCLIQUE results with oth er algorithms

All algorithms (HGAMC, BK, ACMCP and GAMC) show abmst same results of maximum
number of cliques excepting HGAMC which is an optimtion of GAMC. Horizontal axis

shows standard graphs and vertical axis shows Maxitdumber of cliques.
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300 1! ——HGAMC
/ —fli— BK (Best)

ACMCP

200
=>=GAMC
* ==ie=MODIFIEDCLIQUE
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Fig. 5.1Comparison of MODIFIEDCLIQUE number of cliques.
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5.4 Comparison of MODIFIEDCLIQUE cputimes with othegafithms

Algorithm| HGAMC BK ACMCP GAMC MODIFIEDCLIQUE
Graph (Best)
brock200 9.72 9.13 9.62 8.99 16.5315
brock400 17.63 17.68 17.63 17.63 119.1723
brock800 25.34 25.34 25.34 25.34 96.4398
c-fat200 11.22 11.2p 11.22 11.22 120.8724
c-fat500 19.55 19.55 19.55 19.55 108.4654
hamming6 6.78 6.16 8.78 6.78 65.1356
hamming8 10.13 10.93 11.13 10.13 29.0122
johnson8 14.15 14.15 14.15 14.15 152.89
johnson16 21.33 21.33 21.33 21.33 99.1874
johnson32 26.87 27.87 27.87 27.87 96.1985
keller6 14.15 1495 14.35 14.95 166.1083
MANN_aZ27 56.23 56.283 56.23 56.23 67.8512
MANN_a45 66.76 66.76 66.76 66.76 52.1038
p_hat300 41.38 43.38 43.48 43.38 133.2509
p_hat500 72.15 76.15 76.15 76.15 90.1037
p_hat700 81.37 88.29 88.29 88.29 148.0316
p_hat1000 132.31 122.13 122.30 122.39 154.1081
san200 29.14 31.70 31.70 31.70 143.4521
san400 51.16 55.69 55.69 55.69 131.9219

Table 5.4Comparison of cputimes
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5.5 Comparing Performance of various Standard graps

Various standard graphs given under DIMACS benckrhas experimentally tested for finding
maximum number of cliques in them. Standard resfitall algorithms differ from results of
MODIFIEDCLIQUE algorithm. Other algorithms like HGAC, BK, ACMCP and GAMC
shows almost same results of number of cliquestasid CPU elapsed times excepting HGAMC
which is an optimization of GAMC. MODIFIEDCLIQUE gdrithm shows quite deviations in
respects, CPU elapsed time as well as maximum numibeliques. Horizontal axis shows

standard graphs and vertical axis shows CPU elapsedn milliseconds.
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Fig. 5.2Performance graph of various standard graphs
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5.5 Generation of Adjacency Matrix in MATLAB

The implementation of the MODIFIEDCLIQUE algorithosing Bio-Informatics Toolbox in
MATLAB.

The implementation was done in 4 phases:-

1. Definition of Inputs and Outputs

2. Creating the bio-graph using view bio-informatiool

3. Defining input vectors and size of graph

4. Simulation of result by assigning different adio each clique.

The following are some snapshots of the inputgrerfice engine and output on the editor:-

A\ WIATLAB 7.7.0 (R20GEE) J SR =5
(File Edit Debug Parallel Desktop Window Help B

e &$%RlB9 o | §rf E | @ | CurentDirectary:| CAUsers\tashiba\Documents\MATLAB ~ [ B
Shortcuts 2] Howto Add (2] What's New

Current Directory W a X CommandWindow #L0 A X || Workspace HOa X
«MATLAB » v e i | T F el B B
[ Name Date Modified "= Marme « WValue
htrnl 4/3/14 8:23 PM [ 6 <20x20 logica
L] clique.asv 4725/14 1138 A, Columns 1 through 11 vl H <20x20 logica
| controlsuite.asv  4/25/14 L24PM 33 ans <10x10 doubl
| jasprestasv 4/24/14 335 PM ] o o ] o o il 1 i [u} o h <Ix1 handlex
| modifiedclique... 4/26/14 2242 PM o 0 o 0 u] o 1 u] o u] o
|| untitled.asv 4726714 12:26 PM o u] o 1 a o u] a 1 a a
ﬁ changeme_dial.., 4/23/14 3:50 PM [u a [u a a o a a 5 o u]
B clique.fig 4/25/14 11:33 AL o o o o o 1 o o 1 o o
ﬁ controlsuite fig  4/26/14 234 PM o D o D o o o] o o o o
B Jjaspreet.fig 4725/14 11:26 A... o u] a [u] o a o o o a o
| modifiedclique... 5/3/14 1.03 PM o o E 1 a o 1 a a a o
£ untitled.fig 4/26/14 1.57 PM o o o o a o o a a a o
#) changeme dial.. 4/25/143:50 PM 0 0 o 1 0 o 0 ¥ 0 0 o <] n ] r
£ clique.m 4f25/14 1143 A, o o o o ] o o a o a o s s |
f} controlsuitern 4/26/14 2:20 PM o L o o o o b o o o o %
£ jasprestim 4f25/1411:37 A, o 0 o 1 o o 0 o o il o e LS
%) maximalClique., 4/17/14 8:46 PM 0 0 1 1 1 o 0 1 0 o i) TELLIN -
%} maximalClique... 4/3/14 8:02 PM o 0 o 0 o o D o o o 1 el
%] modifiedclique... 4/26/143:02 PM i} [u} a [u} o a [u} o i} o 1 bar (&) ;
ﬁ showthegraph.an  4/24/14 10:36 A... o o o a a o o a o 1 o ~Scatter (&) ;
ﬂ sim 4723/14 9:23 &AM o 0 E o 1 0 0 u] o a o ~oomet (&) ;
ﬂ untitled.m 4/26/14 1:46 PM o u] o u] a o o a a a a stairs(A):
Bﬂ mep.mat 43714 T:35 PM a o a o a a o a a a a peolor (A) ;
1 vgplot (4 ;
Columns 12 through 20 =
= gplot
0 o o o o o o o 0 = i
o il o ol il o il o 8Py A 2
o 6 s o o o o o o o - modifiedeligque B
Details ~ [ + ~guide >

@ . O R Q| 4]|a] " racwo

Fig. 5.3Adjacency Matrix for input graph
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5.6 Viewing graph in Bio-Informatics

Input Sparse matrix is acting as an input paranfetebiograph function. Viewing biograph in

MATLAB by providing Sparse Matrix produces intenget output showing nodes with directed
edges.

:  Viewerl = [T
File Tools Window Help £n
O]
o — i i r > [
s J . .y 1:46 PM
Ble - 9 H[8|4]a] e

Fig. 5.4Input graph
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5.7 Realization of Input Graph

Realizing sparse matrix in MATLAB shows scatteredsdrepresenting nodes. This plot is also
interactive one. Edit tools on this fig file can beed to edit this plot. Corresponding data set at
the backend will be changed by performing somewedik on fig file.

Baus s canoby Ao

@ Note new toalbar buttans: data brushing & |

Fig. 5.5Plot of Adjacency Sparse Matrix
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5.8 Designing interface for Modified Clique findingApproach

Interface for simulating MODIFIEDCLIQUE method cairis three input parameters. Two input
vectors and one size of sparse matrix. These timme vectors are represented with white
colored text boxes. Another three are output pararseepresented with different color (pink) in

this interface. One output parameter gives CPUseldpime for finding Maximum Cliques using

MODIFIEDCLIQUE algorithm. Second output parametéreg status of each node that each
node is a part of some Clique. While third outpatameter gives Maximum Number of Cliques
found in the input Graph.

=) maodifiedcliquefig ‘i“i”&‘

File Edit View La_yout Toaols Help . ) o
DEME | sB20 2 E6d 829 b
‘
Maodified Approach for Solving Maximum Clique Problem
[ == Sider Registration # - 41100104
® Radio Button § § .

& checkBor_|

IMM:EH| — Enter Vector 1:-

| T Static Text

[ =popupenu |

EHlitbox

[ P Toggle Butron ! Enter Vector 2:-

[ ETable

P J . CPU Elapsed

|5| Button Group | — Enter Size of Sparse Matrix(NxN):- : Time:-

[ D¢ A contral |
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Fig. 5.6Fig file of Interface Design
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5.9 Implementation of MODIFIEDCLIQUE method

Two input vectors gives connectivity of verticesgpéph. Means first elements of input vector 1
and vector 2 represents an edge. Here in inteffisteslement of input vector 1 is 1hode and
first element of input vector 2 i€"fhode of graph. This represents an edge betweBrrd 4"
node that is reflected in Fig. 12. Third input paeder that is size of input matrix is making
MATLAB to squeeze this input matrix 20x20 to itsr@sponding sparse matrix.

|l modifiedelique E=RE =]
1 Modified Approach for Solving Maximum Clique Problem
7] Registration # - 41100104
Eriter Viector 1: 14143313 2712101815148 1118888101017 171717 8451353514 181515161621212
1
i1
Enter Vector 2:- 4349171919164312820128716348161019182017994131365511191119772
17
Fi E
) } . CPU Elapsed
Enter Size of Sparse Matrix{NxN):- 20 Time::
‘4 Each MNode is a part
19 of some Clique:-
Get Cliques
Number of
Cligques:-

62325291111 121212815917 53311112233 F44dF4F4553888999 00T 313311157 716271
02828282612415102179173257265163698581213767121410148101514131819202121.

4

o CAEIRC N BT TEIRY PR o —" - o

Fig. 5.7 Interface MODIFIEDCLIQUE
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5.10 Result containing Maximum Cliques

Output graph is directed graph representing cliguigls different color codes. Here in Fig. 12
MODIFIEDCLIQUE algorithm has found Maximum 10 cliggl Largest clique is coded with
light green color.

T: .:ogrywm-daw Help =
P /ﬂ
</

m ._E;I @]IL El@“‘“”-ﬂl . m = gl ;’fﬂm'f

Fig. 5.8 Maximum Cliques
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5.11 Result showing each node’s containability, Nof components and CPU elapsed time

Results of standard graph Hamming20 are shown herBig. 13. CPU elapsed time of

MODIFIEDCLIQUE algorithm is quite close to results other algorithms. Second output

parameter shows “Each Node is a part of some Cligoitains first element as 8 which means

that first node is a part of"&Clique out of total 10 Cliques found.

I EA madifiedclique

i

Modified Approach for Solving Maximum Clique Problem
Registration # - 41100104

14143313271210181514611188881010171717179451353514181515161621212

Enter Vector 1:-
Enter Vector 2:- 4349171919164312820125716346161019182017994131365511191119772
oE 2
. . CPU Elapsed
Enter Size of Sparse Matrix{NxN):- 20 Time:-
8 37 776 2777447
Each Node is a part 10 4 7 7 1 5
of some Clique:-
Get Cliques
Number of 10
Cliques:-

9

6232529 1T ITIZIZ 128159175333 111122333FFFF5383Yy99I0WIVITII33IT1I>o7710271
02828282612415102179173257265163698581213767121410148101514131819202121.

4

e | ]o A e

EYFI -

Fig. 5.9Listing Cliques with their number
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5.12 Input Vectors on Command Window

File Edit Debug Parallel Desktop Window Help
TG & W9 o | 8 rf B | @ | CurrentDirectory:| CiUsers\toshiba\Documents\MATLAB - ®
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1« MATLAB » v e s> guide EEEsS |- -]
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) controlsuite.m  4/26/14 2:20 PM
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] jaspreetm 4f25/1411:37 A,
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E modifiedclique... 4/26/143:02 PM ~eye (G)
] showthegraph.m 4/24714 10:36 A... ~H=full () ;
) sim 4/23/149:23 &AM eye (H) ;
| ®) untitled.m 4/26/14 146 PM cwpisw (H)
EB mecp.mat 473714 735 PM H
viewibiographiG)):
~8PY(G) ;
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EF%-- 5/3/14 2:2% PN —_
~eguide -
Details -~ < 1 v i F

ovR
:

Fig. 5.10Vectors on Command Window
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5.13 Command window showing S and C

File' Edit Debug Parallel Desktop Window Help
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a showthegraph.m 4/24/14 10:36 A... ~H=full (G} ;
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() untitled.m 4/26/14 146 PM view (H)
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Fig. 5.11Results in Command window
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CHAPTER 6

CONCLUSION AND FUTURE SCOPE

The method MODIFIEDCLIQUE has performed well only standard graphs like brock-20 and
keller-6. The main feature which is stressed in MEIEDCLIQUE is graph preprocessing.
Algorithm MODIFIEDCLIQUE is tested on DIMACS benclank graphs and it performs
moderately, not that much well like ACMCP, BK andsAMC. MODIFIEDCLIQUE has
performed relatively poor on hamming-20 graph asngared to HGAMC. HGAMC is
optimization of GAMC. Its standard results are @glently good as GAMC.

Future work could consider changing the terminationdition in MODIFIEDCLIQUE method.

If the method reaches stagnancy, then it can ilovectors for exploration of new cliques that
can be extended from already calculated ones.omtion of maximum number of cliques in
input graph MODIFIEDCLIQUE can drop existing vedoand restart new search for more
cliques in the new start. In this way the algorithas a chance to escape from local optimization

and explore more of search space. However one neditsl a good reallocation method.
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CHAPTER 8

APPENDIX

8.1 Glossary of Terms

A

ACMCP Ant Colonization technique for Maximum CligBeoblems
ANN Atrtificial Neural Networks
B

Bipartite cliques

BK Bron Kerbosch algorithm’
Boltzmann selection

brock200

brock400

brock800

C

c-fat200

c-fat500

Chromosomes

Clique

Crossover

D

DIMACS
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DIMACS Discrete Mathematics and theoretical Comp&@ence
DNA

F

Fitness Function

G

GA Genetic Algorithm

GAMC Genetic Algorithm for finding Maximum Cliques
Genetic Algorithm

GS Graph Structure with Clique

H

hamming6

hamming8

HGAMC Hybrid Genetic Algorithm for finding Maximur@liques
J

johnsonl6

johnson32

johnson8

K

keller6

KP Knapsack Problem

M
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MANN_a27

MANN_a45

MCP

MCP Maximum Cligue Problem
MODIFIEDCLIQUE

Mutation

N

Natural Evolution

NP Complete

NP Hard

NP Non Polynomial complexity
P

p_hat1000

p_hat300

p_hat500

p_hat700

Population

R

Rank selection

Reverse Search

Roulette wheel selection
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S

san200

san400

Simulated annealing
Steady state selection
T

Tabu Search

Tarjan’s Algorithm
Tournament selection

TSP Travelling Salesmen Problem

8.2 Abbreviation

ACMCP Ant Colonization technique for Maximum CligBeoblems
ANN Artificial Neural Networks

BK Bron Kerbosch algorithm’

DIMACS Discrete Mathematics and theoretical Comp&&ence
GA Genetic Algorithm

GAMC Genetic Algorithm for finding Maximum Cliques

GS Graph Structure with Clique

HGAMC Hybrid Genetic Algorithm for finding Maximur@liques

KP Knapsack Problem
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MCP Maximum Cligue Problem
NP Non Polynomial complexity

TSP Travelling Salesmen Problem
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