
COMPUTATIONAL INTELLIGENCE METHODS FOR GENE 

SELECTION AND CLASSIFICATION 

 

A 

Thesis  

Submitted to 

 

For the award of 

DOCTOR OF PHILOSOPHY (Ph.D) 

in  

Computer Science and Engineering  

 

By 

Divya  

Registration Number: 41300074 

 

Supervised By            Co-Supervised By 
 

Dr. Babita Pandey nee Shukla                                     Dr. Devendra K Pandey 
Associate Professor           Assistant Professor 

 
LOVELY FACULTY OF TECHNOLOGY AND SCIENCES 

LOVELY PROFESSIONAL UNIVERSITY 
PUNJAB 

2017 
 



DECLARATION 
 

 

I hereby declare that the thesis entitled "Computational intelligence methods for gene selection 

and classification" submitted by me for the Degree of Doctor of Philosophy in Computer Science 

and Engineering is the result of my original and independent research work carried out under the 

guidance of Dr. Babita Pandey, Associate Professor, Department of Computer Applications, 

Lovely Professional University, Punjab, and Dr. Devendra K Pandey, Assistant Professor, 

Department of Biosciences, Lovely Professional University, Punjab, and it has not been 

submitted for the award of any degree, diploma, associateship, fellowship of any University or 

Institution. 

 

 

 

Place: 

Date: 

 

                  Signature of the Candidate 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



CERTIFICATE
 

 

This thesis entitled "Computational Intelligence Methods for Gene Selection and Classification" 

submitted by Divya Anand of Lovely Professional University is a record of bona fide research 

work done by her and it has not been submitted for the award of any degree, diploma, 

associateship, fellowship of any University/Institution.  

 

 

 

 

Place: 

Date: 

 

                        Signature of the Guide 

 

 

 

                                                                                                      Signature of the Co-Guide 

 

 

 

 

 
 
 
 
 
 
 
 
 
 



iii  

ACKNOWLEDGEMENT 

 
 

Firstly, I would like to express my sincere gratitude to my advisors Dr. Babita Pandey  

and Dr. Devendra K Pandey for the continuous support of my Ph.D study and the related 

research, for their patience, motivation, and immense knowledge. Their guidance helped me in 

all the time of research and writing of this thesis. I could not have imagined having better 

advisors and mentors for my Ph.D study. 

 
Besides my advisors, I would like to thank my mother for her encouragement and 

support. Your prayer for me was what sustained me thus far. My special thanks also go to Aman 

Singh, who motivated me throughout the time. Without his precious support it would not be 

possible to conduct this research. 



iv  

ABSTRACT 

 

With the advance of computational intelligence methods (CIMs) in the medical field, 

researchers are now able to select the most discriminating genes for the classification or 

diagnosis of various diseases. The DNA microarray technology enables us to examine the 

thousands of genes simultaneously in a single experiment. The number of publicly available 

samples is very less. The typical nature of gene expression data sets, i.e., a large number of gene 

expression values and a small number of samples leads to the misclassification of diseases and 

increased classification cost. It is observed that most of the genes in the data set are irrelevant, 

redundant and uninformative as they are not specific to the disease. So, the selection of 

informative genes from this huge number of genes will help us in the correct classification of 

disease which ultimately increases the classification accuracy and decreases the classification 

costs. 

 

In chapter 1, the review of literature is given where the use of CIMs is shown in solving 

the problems in various fields of bioinformatics. The research papers reviewed are shown in the 

tabular form. In chapter 2, we provide all the basic concepts used in this thesis. It includes the 

basic biological background information and the problem statement, introduction to the gene 

expression data, microarray technology, neuromuscular disorder classification problem and the 

associated issues, publicly available neuromuscular disorder data sets, feature selection and its 

models, classification methods, model selection parameters and model validation techniques. 

 

In Chapter 3, an unsupervised approach of feature selection is employed to reduce the 

issue of dimensionality reduction, which leads to the clustering of discriminating genes and 

classification of samples of binary class data sets. The holdout validation technique is employed 

to divide the data into training set and test set, i.e., the whole data are divided according to the 

rule of conventional validation, i.e., 70% training data and 30% test data. Two clustering 

methods, k-means and hierarchical clustering methods with two distance metrics, i.e., euclidean 

and cosine metrics are employed to cluster the important genes. Further three classification 

algorithms, namely linear discriminant analysis (LDA), quadratic discriminant analysis (QDA) 

and k nearest neighbor (KNN) are implemented to classify the samples. So, the nine intelligent 

integrated approaches are implemented: K-means-LDA, K-means-QDA, K-means-KNN, 
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euclidean distance metric based hierarchical clustering-LDA, euclidean distance metric based 

hierarchical clustering-QDA, euclidean distance metric based hierarchical clustering-KNN, 

cosine distance metric based hierarchical clustering-LDA, cosine distance metric based 

hierarchical clustering-QDA and cosine distance metric based hierarchical clustering-KNN. The 

facioscapulohumeral muscular dystrophy (FSHD) dataset taken to evaluate the performance of 

these intelligent integrated methods contains a total of 33,297 genes and 50 samples where 26 

samples are affected by FSHD and the rest 24 samples are healthy samples. Amongst all the nine 

intelligent integrated methods, the cosine distance metric based hierarchical clustering algorithm- 

KNN has given the best performance measures. It is observed that it is difficult to access the 

relevance of features after selecting the features using the unsupervised approach of feature 

selection. 

 

In chapter 4, the supervised approach of feature selection is employed to overcome the 

issues observed in selecting features using the unsupervised approach of feature selection. The 

whole dataset is divided into training set and test set  using 5-fold cross validation technique. 

Here two filter models of supervised feature selection, i.e., t-test and entropy are employed to 

select the important genes from a large number of genes. Two classification methods, namely 

KNN and linear support vector machine (SVM) are implemented to classify the samples using 

only the important genes selected using the filter models of supervised feature selection methods. 

So, the four intelligent integrated approaches implemented are t-test-KNN, t-test-linear SVM, 

entropy-KNN and entropy-linear SVM. Two datasets are used to access the performance of these 

integrated methods, i.e., juvenile dermatomyositis (JDM) and FSHD. The JDM dataset contains 

22,645 genes and 39 samples. From these samples, 21 samples are affected by JDM and the rest 

18 samples are healthy samples. The FSHD dataset contains 22,645 genes and 32 samples. In 

this dataset, 14 samples are affected by FSHD and 18 samples are healthy samples. From the 

above mentioned four intelligent integrated methods, the integration of entropy with KNN has 

given the best performance measures. Here, it is observed that the features are selected without 

interacting with the classifiers. So, the filter models of supervised feature selection can be 

implemented as a preprocessing step in selecting the highly relevant and important genes. 

 

In chapter 5, the preselection of genes is done by using the filter model of feature 

selection as a preprocessing step and the selection of genes is done using an embedded model of 
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feature selection. Between the filter model preselection phase and classification phase, a new 

gene selection phase is embedded which selects out the most discriminating genes from a large 

number of genes. Here, to segregate the training set and test set out of the whole data set, leave- 

one-out cross-validation (LOOCV) technique is employed. In the gene preselection or pre- 

processing phase, a filter model, i.e., t-test is implemented to remove out redundant and noisy 

genes. In the gene selection phase, an embedded model, i.e., genetic algorithm (GA) is applied to 

select the most discriminating and important genes. Here, the fitness function in GA is evaluated 

using LDA, QDA and KNN one by one with varying number of genes. Hence the classification 

of samples using the only selected genes is done by using the same three classification 

algorithms, i.e., LDA, QDA and KNN. In each experiment the number of genes is varied and the 

performance measures are calculated. So, the intelligent integrated approaches in this 

methodology are t-test-GA-LDA, t-test-GA-QDA and t-test-GA-KNN. The performance of these 

integrated methods is accessed on the FSHD dataset of 33,297 genes and 50 samples. Here the 

integrated method t-test-GA-KNN has given the best classification accuracy, i.e., 100% with just 

10 genes. The addition of embedded model in between the filter model and classification 

algorithm has enhanced its performance. 

 

In chapter 6, the problem of gene selection for multi-class classification is resolved by 

implementing a novel intelligent integrated technique. The data sets are divided into training set 

and test set using 5-fold cross validation technique. The genes are preselected using the 

bhattacharyya coefficient of all the genes in the samples. The top-valued genes are chosen and 

given as input to the next step where the most discriminating genes are selected using GA. Here 

also, the fitness function is evaluated using different classification algorithms like LDA, QDA, 

KNN, linear SVM and RBF SVM one by one. Then the samples are classified using LDA, QDA, 

KNN, linear SVM and RBF SVM uses only the selected genes. The intelligent integrated 

approaches are bhattacharyya-GA-LDA, bhattacharyya-GA-QDA, bhattacharyya-GA-KNN, 

bhattacharyya-GA-linear SVM, bhattacharyya-GA-RBF SVM. These integrated approaches are 

implemented on two data sets. The first data set contains a total of 22,645 genes, 72 samples and 

5 classes. The second data set contains 22,283 genes, 55 samples and 6 classes. Here the 

integration of bhattacharyya-GA with RBF SVM has given highest performance measures in 

both of the data sets. 
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In chapter 7, the challenge of feature selection is removed using the median matrix. The 

gene expression matrix is processed to create a median matrix for the selection of compact and 

different subsets of genes for every class. The classification algorithms use the combination of 

selected genes for prediction of the kind of neuromuscular disorder samples. The various 

classification algorithms employed are linear discriminant analysis (LDA), quadratic 

discriminant analysis (QDA), k-nearest neighbor (KNN), linear support vector machine (Linear 

SVM) and radial basis function based support vector machine (RBF SVM). The classification 

algorithms use the “one-versus-all” approach to decompose the multi-class classification 

problem into binary class classification problem. The accuracy and effectiveness of the proposed 

model are exhibited through analysis of publicly available microarray data set of 13 

neuromuscular disorders. It selects only a few biomarker and dissimilar genes for each class of 

neuromuscular disorder. It selects a minimum of 4 genes in one class and a maximum of 19 

genes in another class. The integration of the proposed method of gene selection with RBF SVM 

classification algorithm has outperformed in most of the cases. 

 

All the chapters are concluded in chapter 8. A future work of the present work is also 

given in this chapter. 
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Chapter 1 

 

Introduction 
 
 

The computational intelligence is a branch of computer science which studies and solves 

the problems for which there is no effective computational algorithm. It improves the 

intellectual behavior of machines by incorporating the elements of learning, adaptation, 

heuristic and meta-heuristic optimization. The computational intelligence methods (CIMs) 

solve the complex problems by mimicking the characteristics of human beings like logic, 

understanding, reasoning, planning, learning, solving and self-organizing. These methods are 

widely applied in various domains, i.e., computer science, data analysis, optimization, 

medicine, business, banking, economics, forensic and security and manufacturing systems. In 

computer science, CIMs are extensively employed to resolve various challenges, namely the 

dimensionality reduction, classification and regression, optimization, data mining and 

clustering of data. The CIMs encompass of artificial neural network (ANN), evolutionary 

algorithm (EA), data mining (DM), fuzzy logic (FL), swarm intelligence (SI), and many 

others.  

 

These methods have been broadly deployed for the dimensionality reduction of the 

disease data sets and their classification. Earlier the diseases were diagnosed or classified 

based on their appearances and the morphological properties. But the existing classes of a 

disease are found to be heterogeneous which follows a distinct pattern of pathogenesis. So for 

the accurate classification of these diseases, we need to consider the gene expression levels for 

which the changes in the activity of one or more genes lead to the occurrence of a disease. 

Recently the microarray technology came into the picture which analyzes the whole genome 

simultaneously. It has motivated the use of gene expression levels for the accurate diagnosis 

of diseases. But the foremost challenge arises in the diagnosis of a disease using the gene 

activity levels monitored through microarray technology is the high dimension of gene 

expression data sets of diseases.  These data sets normally contain a huge number of genes 

which pose a problem in the accurate diagnosis. The next leading challenge comes in the way 

of diagnosis is the few numbers of publicly available samples. The numbers of samples 

available are very less as compared to the number of genes which leads to the problem of 

overfitting. Another issue is the existence of redundant, noisy and irrelevant genes in the data 

set. So, in order to remove out these genes from the data set, dimensionality reduction is 



 

2 
 

usually performed so that the diseases are accurately classified. Various CIMs have been 

employed in the past for the selection of discriminating genes which helps in correct 

classification of diseases. 

 

This chapter is structured as follows: Section 1.1 gives the review of literature which 

consists of the challenges in using computational intelligence methods in bioinformatics and 

the various methods to solve these challenges. Section 1.2 presents the individual knowledge 

based methods employed in bioinformatics for solving various tasks. Section 1.3 gives the 

individual computational intelligence methods deployed in bioinformatics for resolving 

various challenges. Section 1.4 lists all the integrated methods employed to solve the 

encountered challenges. Section 1.5 presents the results and a discussion of the methods 

deployed. Section 1.6 concludes the review of the literature conducted. Section 1.7 gives the 

motivation behind the present work. Section 1.8 details all the objectives to reach the goal. 

Section 1.9 presents the plan of the thesis and gives the outline and a brief description of each 

chapter. The detailed description is as follows. 

 

1.1 Review of Literature 

 

This study includes a literature review on the application of knowledge based methods 

(KBMs) and CIMs in the field of bioinformatics from year 1992 to 2016. The term “biological 

informatics” is often abbreviated as “bioinformatics”. It is a combination of biology and 

computer science that deals with the computational methods facilitating capturing, storing, 

organizing, analyzing, retrieving and interpreting the biological data [1]. It is applied to obtain 

the biological data, maintaining the vast variety of data in the databases, developing a method 

to incorporate the allied data from different sources and building up a way to extract the 

useful information from these databases. To accelerate and boost up the biological research, 

the KBMs and CIMs are widely deployed.    

 

The three sub-fields of bioinformatics are reviewed, where KBMs and CIMs are 

employed. These are genomics (GE), transcriptomics (TR) and proteomics (PR). The branch 

GE involves the analysis of an organism’s nucleotide sequence. With the facilitation of GE, it 

is now feasible to estimate the number of genes in an organism. It identifies the cellular 

components such as proteins, rRNA, tRNA, etc., and analyzes the sequences attributed to the 

structural genes, regulatory sequences and non-coding sequences [2]. The branch of TR 
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involves the study of mRNA molecules which deals with the monitoring of expression level 

of genes between different conditions and comparing the expression levels of diseased 

samples and control samples. The branch PR deals with the final product, i.e., protein and 

their interaction. It also involves the amino acids sequencing in a protein, predicting the 

structure and function of a protein [2].  

 

KBMs and CIMs are highly deployed to solve the challenges encountered in the above 

mentioned branches. In the literature, KBMs are used to analyze and interpret the 

bioinformatics data [3] [4]. CIMs are widely deployed to select and extract the relevant 

biological knowledge from databases [5] [6], to envisage the uniqueness of biological systems 

and to present model to symbolize the biological knowledge. The first well-known application 

found in bioinformatics is based on distinguishing translation initiation sites in prokaryotic 

organisms [7], and since then, a number of applications are developed using KBMs and CIMs 

for dealing with wide range of challenges in GE, TR and PR.  

 

1.1.1 Challenges in bioinformatics 

 

The major challenges found in the literature in area of GE are interpreting genotypic 

drug resistance test to support the diagnosis of HIV, identification of intron-exon boundaries, 

normalization of cDNA microarray data, DNA sequencing and its analysis, prediction of 

DNA splice sites, alignment of nucleic acid sequences, genome wide identification of specific 

nucleotides, operons prediction, promoter recognition, genome sequence analysis, 

identification of gene regulatory networks, DNA motif discovery, optimization of multiple 

sequence alignment  and phylogenetic inference. 

 

The foremost problem or challenge noticed in the branch of TR is the microarray gene 

expression data classification. Because of the higher dimension of microarray data sets, the 

problem arises in the accurate classification. So, there is a need to reduce the dimension of 

these data sets. The procedure of classification of the microarray data set is by first reducing 

the dimension and then classifying the disease data set. This is done by first 

clustering/selection/extraction of genes and then classifying the data using only those genes. 

The first way is gene expression data clustering and classification of diseases. The second 

procedure is gene selection and disease classification, third is gene extraction and disease 
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classification. Some researchers have addressed the complex issue of microarray gene 

expression classification in three phases, i.e., gene selection, extraction and classification.  

 

The other challenges found in TR are the prediction of functionally related genes, gene 

expression ordering, identification and prediction of miRNA in viruses, miRNA classification; 

prediction of RNA predicting site, miRNA target prediction, prognosis and diagnosis of breast 

cancer. Some other tasks are to find the relationship between different genes, identification of 

genes of similar functions and mining co-regulated genes. 

 

The problems encountered in the area of PR are protein function prediction, 

classification and prediction of β-turn types in proteins, protein peptide cleavage activity 

characterization, prediction of gene ontology functions of proteins, prediction of DNA binding 

domains in proteins, prediction of MHC class II peptide binding, prediction of functional 

association between proteins, signal peptide discrimination and cleavage site identification, 

protein and nucleic acid classification, feature selection in protein function prediction, protein 

secondary structure optimization, diagnosis of disease using serum proteomic profiling, 

protein and peptide classification, prediction and classification of protein coupled receptor, 

prediction of protein cellular localization sites and prediction of bacterial virulent proteins. 

But the major problem in the area of PR is protein structure prediction. Other problems are 

protein sequence classification, prediction of the HIV protease cleavage site in protein and 

protein fold recognition.  

 

Some challenges are also found in other areas of bioinformatics like functional 

genomics and systems biology. In functional genomics, the tasks are prediction of protein-

protein interaction, gene function prediction and functional analysis of gene expression data. 

The tasks of systems biology are detection of non-linear interactions among genes in common 

human diseases, extraction of association between biomarkers for cancer classification and 

reconstruction of gene regulatory network from gene expression. 

 

1.1.2 Various methods to solve the challenges 

 

Various individual and integrated KBMs and CIMs are applied to solve these 

bioinformatics challenges. KBM includes case based reasoning (CBR) which is a knowledge 

dominant method while CIMs incorporates ANN, EA, DM, FL, SI and many others which are 

data dominant methods. These methods offer complementary advantages and disadvantages, 
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and when integrated, their advantages are explored and the disadvantages are mitigated. The 

integrated methods found in literature are artificial neural network-swarm intelligence (ANN-

SI), artificial neural network-evolutionary algorithm-random forest (ANN-EA-RF), data 

mining-linear discriminant analysis (DM-LDA), artificial neural network-principal component 

analysis-partial least square (ANN-PCA-PLS), artificial neural network-data mining-random 

forest (ANN-DM-RF), artificial neural network-data mining-fuzzy logic (ANN-DM-FL), 

artificial neural network-evolutionary algorithm-fuzzy logic-swarm intelligence (ANN-EA-

FL-SI), artificial neural network-evolutionary algorithm-fuzzy logic (ANN-EA-FL), artificial 

neural network-fuzzy logic (ANN-FL), case-based reasoning-data mining (CBR-DM), 

artificial neural network-principal component analysis (ANN-PCA), data mining-swarm 

intelligence (DM-SI), evolutionary algorithm-fuzzy logic (EA-FL), artificial neural network-

data mining (ANN-DM), artificial neural network-evolutionary algorithm (ANN-EA), 

artificial neural network-Bayesian classifier (ANN-Bayesian classifier), data mining-

evolutionary algorithm (DM-EA), evolutionary algorithm-swarm intelligence (EA-SI),  

artificial neural network-case-based reasoning-data mining (ANN-CBR-DM), artificial neural 

network-data mining-evolutionary algorithm (ANN-DM-EA), artificial neural network-data 

mining- principal component analysis (ANN-DM-PCA) and artificial neural network-

evolutionary algorithm-principal component analysis (ANN-EA-PCA). The review is done on 

all the challenges found in the different fields of bioinformatics employing KBMs and CIMs. 

Thus, this will be helpful to the novice researchers in the computer science field to choose the 

accurate and efficient KBMs, CIMs and the integrated method to solve the problems 

encountered in these areas.  

 

1.2 Individual Knowledge Based Methods in Bioinformatics 

 

KBMs are a set of programs that support explicit representation of knowledge on a 

specific domain of expertise and use it to provide the solutions to problems in that domain [8]. 

KBMs are knowledge dominant and use rules, semantic nets, frames, scripts, etc., for 

knowledge representation. It can also employ artificial intelligence (AI) methods for problem-

solving procedures to carry out human decision making, learning and action [3]. KBMs 

consist of software programs for knowledge acquisition, knowledge representation and 

inference engine.  
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1.2.1 Case based reasoning 

 

In 1977, Roger Schank introduced the concept of CBR [9]. It is also known as 

‘Reasoning by remembering’. It is a problem-solving model in which the problems are 

resolved by storing, retrieving and adapting the solutions of previously encountered problems. 

It is based on the assumption that the problems of same kind tend to reappear and similar 

problems have similar solutions. The main component in CBR is a ‘case’. A case represents 

the knowledge collected on previously experienced situations and is composed of three 

components: problem description, solution and the final state. The information stored in a case 

must be specific so that it can be used in future. A CBR cycle is composed of four phases 

which includes retrieve, reuse, revise and retain. In retrieve phase, according to the target 

problem, regain the most similar and appropriate cases from the case base. In reuse phase, 

adapt the solutions of the retrieved cases. In revise phase, alter the proposed solution, if 

necessary. In retain phase, after the successful adaptation, save the necessary information in 

the memory for future use [10]. The summary of CBR-based bioinformatics systems is given 

in table 1.1. 

 
Table 1.1: CBR based bioinformatics systems 

 

Application 

area 

Author(s) Intelligent method Machine 

learning task 

Database/ 

Databank 

GE Montani 

et al. [4] 

Case:  Sequence alignment using 

BLAST. 

 
Qualitative value Conversion: 

Temporal abstraction techniques. 

 
Retrieval: Flexible retrieval which 

makes use of multi-dimensional 

orthogonal index structures. 

Genome 

sequence 

analysis 

GMOD 

database Chado 

 

Notes: BLAST, basic local alignment search tool. 

 

In case of CBR, it needs much less domain knowledge than the statistical-based and 

rule-based methods. It possesses various advantages like naturalness, modularity, 

applicability, easy knowledge acquisition, self-updatability, learning from experiences, ability 
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to express specialized knowledge, reflection of human reasoning, handling unexpected or 

missing value and inference efficiency [11]. Generally CBR is applied in designing, planning, 

diagnosis, therapy, analysis and explanation. 

 

1.3 Individual Computational Intelligence Methods in Bioinformatics 

 

The formulation and application of CIMs have gained importance over the past few 

years. Nowadays, these are commonly applied in the various fields like business, science, 

medicine, etc. The CIMs includes methods like ANN, EA, DM, FL, SI and many others. 

 

1.3.1 Artificial neural network 

 

ANN is a biologically inspired structure of computational elements known as neurons. 

It consists of many neurons interconnected using connection links and is arranged in the form 

of layers. Various common advantages of ANN are high generalization power, graceful 

degradation ability, strong learning and non-linear transformation ability [1], high pattern 

recognition and data organization capabilities, robustness, reliability, high parallelism, high 

noise tolerance power, stronger fault tolerance ability and non-linear flexibility and non-linear 

function capability. The process of learning in ANN from its environment and advancing its 

performance through learning is the most crucial part. The various types of learning in ANN 

are: supervised, reinforcement and unsupervised learning. In supervised learning, the network 

is supplied with the output for every input pattern. In reinforcement learning, the network is 

supplied with only some analysis of the output of the input patterns, but not the correct 

outputs. In unsupervised learning, the network is not supplied with any output concerned with 

any input pattern.  

 

In the literature of ANN, in both individual and integrated methods various 

configurations are found. The most widely employed algorithm for training is back 

propagation (BP) [12]–[34]. Based on the architectures of connection pattern, ANN is 

categorized into two types, namely feed-forward (FF) and feed-backward (FB) networks. The 

applications of FF networks are found in [12], [13], [16], [18], [19], [21], [23], [25], [28]–

[33], [35]–[42]. The different types of activation functions applied in literature are linear 

function [35], logarithmic function [14], logistic function [15], tan-sig [42], non-linear 

function [22], gaussian function [43] [44], , gradient descent [18] [37] [45] [46] [47] and 

sigmoid function [14] [16] [25] [30] [35] [41] [48] [49]. 
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Bidirectional recurrent neural network (BRNN) captures local dependencies without 

any prior defined promise about the size of sliding window. It is capable of capturing at least 

partial long-ranged information without overfitting [23]. Interaction-enriched bidirectional 

recurrent neural network (IEBRNN) is an enlarged form of BRNN, which operates on 

undirected graphs whose vertices are consecutively ordered. It can effectively exploit 

relational information [25].  

 

Probabilistic neural networks (PNN) lies in the category of radial basis function 

neural network (RBFNN), which depends up on the Bayes’ decision strategy and Parzen’s 

method of density estimation [36]. PNN does not support heuristic search, and can tolerate 

erroneous samples and outliers. It is less sensitive to noise, able to handle all the 

asymmetrical misclassification costs, deal with large amount of data, have high 

generalization ability and do not need to reconfigure or retrain from the scratch when new 

training data is available but they require large amount of memory [36]. Generalized 

regression radial basis neural network (GRNN) is a type of PNN, which is capable of 

dealing with sparse and non-stationary data. It is able to converge with only few training 

samples available. Bio-basis function neural network (BBFNN) is made by replacing the 

radial basis function of RBFNN with bio-basis function. It requires less number of 

parameters and able to regulate the biological information, and is considered fast and robust 

[50]. 

 
Support vector machine (SVM) is the most widely employed method of ANN for the 

classification of data sets. It searches for a unique separating hyperplane that lies between two 

classes in the input space which maximizes the margin between the hyperplane and classes 

[51]. It provides better accuracy rate than other machine learning methods [48] [52]. SVM 

incorporates various kernels namely linear [16] [51] [53]–[59], polynomial [60] [61] and 

radial basis function (RBF) [41], [52], [58], [62]–[69]. SVM supports only binary class 

classification of the datasets. But the task of multi-class classification is also solved using 

SVM employing two approaches namely one-versus-all (OVA) and one-versus-one (OVO) 

[52] [60] [63] [70]–[72]. SVM also offers assorted advantages like ability to condense 

information, absence of local minima, good generalization capacity, high prediction ability, 

scalability, fast convergence, reliable prediction and robustness in the noisy environment, high 

accuracy, specificity and sensitivity and ability to handle high-dimensional data [51] [53] 

[58]. But it does not allow for knowledge extraction and automatic feature selection and 
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provides low comprehensibility [53]. So, to handle the crucial issue like feature selection for 

classification, we need to first reduce the dimension of the data then use it for the 

classification tasks.  

 

Multilayer perceptron (MLP) is also a type of ANN which belongs to the class of FF 

neural network with varying hidden layers and it requires preprocessing to avoid the 

overfitting of data [48]. A self-organizing map (SOM) is another admired neural network 

model which belongs to the category of competitive learning networks and it is a self-

organizing and self-adaptive model [73]. It also possess advantages like low-dimensional 

topology and stable evolving properties [73]. But the various problems associated with SOM 

are the use of predefined topology, time-dependence of number of parameters [74], lack of 

interpretability and model selection. Growing cell structure (GCS) is a variation of SOM, 

which offers various advantages over SOM like self-adaptive topology, capability to achieve 

problem-dependent error measures, ability to handle both small and high-dimensional data, 

correct evaluation of probability densities of input signals and not necessitate to a-priori 

define the time-dependent or decay schedule parameters [74]. It is an efficient, user-friendly, 

effective and inexpensive option to support diagnostic tasks [74]. The summary of various 

applications of different ANN methods is shown in table 1.2. 

 

Table 1.2: ANN based bioinformatics systems 

 

Application 

area 

Author(s) Intelligent method Machine 

learning task 

Database/ 

Databank 

GE Fu [12] 

 

Architecture: Two layered FF 

network, fully connected 

architecture with one hidden 

layer and standard BP 

algorithm. 

 
Activation function: Based on 

the certainty factor model of 

MYCIN-like expert systems. 

 
Weights: -1 to 1. 

 

DNA sequence 

analysis 

Primate splice 

junction gene 

sequence data 

set and human 

gene data set 
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Performance evaluation: 2-

fold CV technique. 

GE Beerenwinkel 

et al. [53] 

Classification: C4.5 and 

SVM. 

C4.5, a heuristic divide and 

conquer strategy, reduced error 

pruning. 

 
SVM, linear kernel, 

Langrangian dual, Joachim’s 

SVM. 

 
Performance evaluation: 

LOOCV technique. 

Interpreting 

genotypic drug 

resistance tests 

to support the 

diagnosis of 

HIV 

Clinical 

samples data 

set and first 220 

to 250 amino 

acids 

GE Yoshihara et 

al. [75] 

Architecture: A multimodal 

neural network composed of a 

multilayer neural network and 

decision module. 

Identification of 

intron-exon 

boundaries 

NCBI 

GE Deng et al. 

[35] 

Non-linear normalization 

method, Architecture: 3 

layered FF network.  

 
Transfer function:  

Output layer: Linear transfer 

function.  

Hidden layer: Sigmoid transfer 

function. 

Normalization 

of 

complementary 

DNA microarray 

data 

Gene data set of 

immune system 

diseases 

GE Frias et al. 

[13] 

Architecture: MLP, FF 

network, 8-1-1 architecture, BP 

algorithm. 

Promoter 

recognition 

EPD and 

GenBank 

GE Zhang et al.  

[51] 

Data encoding: Sparse 

encoding. 

 
Projection of data: Bayes 

Kernel, posterior probability, 

positive and negative 

encodings. 

Prediction of 

DNA splice sites 

Nucleotide 

sequences of 

splice site  
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Classification: Linear SVM. 

GE Liu et al. [14] Prediction of oligo specificity:  

Architecture: BP algorithm, 

17-4-1, 17-10-1, 17-16-1 and 

17-22-1 architectures. 

 
Training algorithm: Batch 

mode training algorithm.  

 
Activation function:  

Input and output layer: Sigmoid 

activation function. 

Hidden layer: Logarithmic 

function. 

 
Verification: BLAST. 

Genome wide 

identification of 

specific 

oligonucleotide 

Human gene 

index, unique 

marker database 

and rat gene 

index databases 

GE Knott et al. 

[48] 

Architecture: 3 layered 

architecture. 

 
Transfer function: Tangent 

sigmoid transfer function and 

Bayesian regularization. 

Identification of 

gene regulatory 

networks 

Hippocampus 

development 

dataset and 

artificial data 

set 

TR Guyon et al. 

[54] 

Feature ranking: RFE, using 

the weight magnitude as a 

ranking criterion. 

 
Classification: Linear SVM, 

training using a soft-margin 

algorithm. 

 
Performance evaluation: 

LOOCV technique. 

Gene selection 

and cancer 

classification 

Leukemia and 

colon cancer 

data sets   

TR Berrar et al. 

[36] 

Probabilistic neural network, 

a kind of RBFNN,  Bayes’ 

decision strategy and density 

estimation using Parzen’s 

method. 

Multiclass 

cancer 

classification 

Leukemia 

cancer and 

NC160 multi-

class data set 
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Architecture: FF network with 

2-1-1-1 architecture.  

 
Performance evaluation: Lift 

based scoring system and 

LOOCV technique. 

TR Gomes et al. 

[43] 

SOM, 

Synaptic weight initialization:  

At initial stage, no-of-genes/ 4 

neurons.  

 
Competitive process: 

Sequentially presented vectors 

to NN, the minimum distance 

neuron from the input vector 

wins.  

 
Cooperative process: 1-

dimensional neighborhood, 

Gaussian neighborhood 

activation function. 

 
Adaptive process: Winning 

neurons gives the synaptic 

weight updates and its 

neighborhood. 

Gene expression 

ordering or 

rearrangement 

of gene 

expression data 

DLBCL and S. 

Cerevisiae data 

sets 

TR Xu and Zhang 

[76] 

Gene selection: Virtual gene, 

linear combination of genes. 

 
Classification: SVM. 

Gene selection 

and cancer 

classification 

Colon, 

leukemia and 

multi-class 

cancer data sets 

TR Ahmed [15] Architecture: FFNN with BP, 

2 to 15 hidden units.  

 
Activation function: 

Logistic activation function. 

 
Architecture: FFNN, 2 hidden 

Diagnosis and 

survival 

prediction in 

colon cancer 

Colorectal 

cancer data set 

and National 

Cancer 

database 
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layers, 1 output layer, 

sensitivity analysis method, 

and standard second order 

conjugate gradient descent 

method. 

TR Zhang and 

Deng [55] 

Gene preselection: Family 

wise error rate. 

 
Gene selection: Bhattacharyya 

distance and sequential forward 

selection algorithm. 

 
Classification: Linear SVM. 

Gene selection 

and cancer 

classification 

Colon, DLBCL, 

leukemia, 

prostate and 

lymphoma 

cancer data 

sets 

TR Yendrapalli et 

al. [77] 

Gene selection: T-test. 

 
Classification: Biased SVM 

and LIBSVM algorithm. 

 
Performance evaluation: 

LOOCV technique. 

Gene selection 

and cancer 

classification 

Leukemia, 

lymphoma, 

colon and 

prostate cancer 

data sets 

TR Chen and Lin 

[16] 

Sampling significant samples: 

Support vector sampling 

technique. 

 
Gene selection: Signal to noise 

ratio. 

 
Classification: SVM and 

BPNN.  

SVM: Binary SVM, LIBSVM 

algorithm, linear kernel 

function, simple dot-product 

kernel.  

 
BPNN: Multilayered FF, BP 

neural network, positive 

propagation, error correction 

learning rule, tan-sigmoid 

Gene selection 

and cancer 

classification 

Leukemia and 

prostate cancer 

data sets 
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transfer function, log-sigmoid 

transfer function. 

 
Performance evaluation: K-

fold CV and LOOCV 

techniques. 

TR Zheng and Liu 

[56] 

Gene selection: Least absolute 

shrinkage and selection 

operator, Dantiz selector. 

 
Classification: Linear 

regression, linear SVM, 

logistic regression. 

 
Performance evaluation: 10-

fold CV technique. 

Gene selection 

and cancer 

classification 

DLBCL, 

leukemia, 

prostate,  colon 

and lymphoma 

cancer data sets 

TR Sahu et al. 

[44] 

Gene selection: F-Score. 

 
Gene extraction: 

Autoregressive model and 

parameters are computed by 

Levinson Durbin’s Recursive 

process. 

 
Classification: RBFNN, 

Gaussian function, stochastic 

gradient approach. 

 
Performance evaluation: 

LOOCV technique. 

Gene selection, 

extraction and 

classification 

Leukemia, 

colon, prostate, 

lymphoma and 

SRBCT 

datasets 

TR Ding et al. 

[70] 

Feature extraction: n-gram. 

 
Classification: M ulticlass 

SVM, OVA strategy. 

miRNA 

classification 

miRBase,  

SNORA2 and 

SNORA33 data 

sets 

TR Chen [71] Feature ranking: Univariate 

feature ranking, RFE. 

 
Classification: Cumulative 

Cancer stage  

classification 

Bladder, 

prostate, 

cervical, lung, 
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logit model, support vector 

ordinal regression, rank SVM, 

multiclass SVM, OVA 

approach, Weston-Watkins and 

Crammer-Singer strategies. 

ovarian cancer 

data sets 

TR Gupta et al. 

[17] 

Architecture: MLP, 3 layered 

architecture and BP algorithm. 

Identification 

and prediction 

of miRNA in 

viruses 

miRBase 

TR Arunkumar 

and 

Ramakrishnan 

[57] 

Normalization: Min-max 

normalization. 

 
Gene extraction: T-test and 

absolute scoring. 

 
Classification: Linear SVM, 

proximal SVM and Newton 

SVM. 

 
Performance evaluation: K-

fold CV technique. 

Gene extraction 

and classification 

Princeton 

microarray 

database 

PR Qian and 

Sejnowski  

[18] 

Architecture: FF network, BP 

learning algorithm and 

gradient descent algorithm. 

PSSP BPD 

PR Wu et al. [19] Protein acid classification: FF 

network, BP with 462-200-

164, 462-200-180, 462-200-

192,462-200-154 unit 

architectures. 

 
Nucleic acid classification: FF 

network, BP with 1088-50-28 

unit architecture. 

Protein and 

nucleic acid 

classification 

PIR 

PR Rost and 

Sander [37] 

Architecture: 2 layered FF 

network, sigmoidal trigger 

function, and gradient descent 

method. 

PSSP PDB, HSSP 
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PR Zhang [20] 

 

Architecture: MLP, BP 

algorithm. 

PSSP BPD 

PR Rost et al. [38] Architecture: 3-levelled and 

2-layered FF neural network 

architecture. 

PSSP PDB 

PR Chandonia 

and Karplus 

[39] 

Architecture: FF network, 

fully connected and 399-2-2 

unit architecture. 

PSSP and 

structural class 

prediction 

Globular 

protein data set 

PR Wu et al. [21] Sequence encoding: n-gram 

hashing function. 

 
Size reduction: SVD, Latent 

semantic indexing approach, 

simple vector Lanczos method. 

 
Classification: 3 layered 

architecture, FF networks, BP 

and supervised learning 

algorithm. 

Full-scale 

protein sequence 

classification 

PIR 

PR 

 

Cai and Chou 

[22] 

Architecture: BP model, 

multi-layered sensory structure 

with 160-1-8 unit architecture. 

 
Activation function: Non-

linear activation function. 

 
Learning: Iterative self-

learning. 

Prediction of 

HIV protease 

cleavage    sites 

in proteins 

Oligopeptide 

data sets 

PR Cai et al. [73] SOM, 

Architecture: Input units: 80, 

output nodes form a 3014*2 

lattice, weight initialization 

with random values. 

Classification 

and prediction 

of β-turn  types 

in proteins 

BPD 

PR Hua and Sun 

[62] 

SVM, RBF kernel. PSSP RS126 

PR Baldi and 

Pollastri [23] 

Architecture: BRNN, 

probabilistic graphical model, 

Protein structure 

and function 

PDB 
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use of both forward and 

backward Markov chains of 

hidden states. FF network, 

nonlinear state transition 

functions, supervised training 

and a generalized form of 

gradient descent or BP through 

time and 1-4-1 plane 

architecture. 

prediction 

PR Nguyen and 

Rajapakse 

[72] 

SVM, OVA and OVO 

approach, direct acyclic graph. 

 

PSSP RS126 

PR Zhu et al. [24] Architecture: BP algorithm, 

315-15-1 and 45-15-3 unit 

architectures. 

PSSP Homology 

derived 

structures of the 

protein data 

bank 

PR Nakayama et 

al. [78] 

Architecture: Multimodal 

neural network, single 

multilayer neural network. 

PSSP HSSP databank 

PR Chen and 

Chaudhari 

[45] 

Architecture: Bi-directional 

segmented-memory recurrent  

neural network, extension of 

real time recurrent learning 

algorithm, forward and 

backward propagations, 

gradient based learning. 

PSSP RS126 

PR Hu et al. [63] Architecture: RBF kernel 

with OVO and OVA 

classifiers. 

PSSP RS126 

PR Wang et al. 

[64] 

Architecture: Soft margin 

SVM, RBF kernel, LIBSVM 

algorithm. 

PSSP CB513 and 

RS126 

PR Ceroni et al. 

[25] 

Architecture: IEBRNN, 

sequential supervised learning, 

PSSP PDB 



 

18 
 

forward and backward state 

transition functions, two 

directed graphs, FF neural 

network with sigmoidal 

outputs and no internal hidden 

layer,  maximum likelihood 

approach, BP algorithm. 

PR Yang et al. 

[50] 

Architecture: BBFNN, linear 

classifier, 3 layered 

architecture, pseudo inverse 

method, Bayes Rule, log-

sensitivity index as stopping 

criterion. 

Protein peptide 

cleavage activity 

characterization 

Trypsin 

Cleavage and 

Factor Xa 

Cleavage data 

sets 

PR Bi et al. [65] SVM, LIBSVM algorithm, 

RBF kernel. 

Prediction of 

gene ontology 

functions of 

proteins 

SWISS-PROT 

database, 

human 

proteome data 

set 

PR Nguyen and 

Rajapakse 

[60] 

Multi-class SVM, gaussian 

kernel, linear kernel and 

polynomial kernel functions. 

PSSP RS126, CB396, 

CASP4, EVA 

and PSIPRED 

data sets 

PR Fei  and 

Lusheng [52] 

Binary classifier, soft margin 

SVM, multiple OVA 

classifiers, voting strategy, 

RBF kernel. 

Prediction of 

DNA binding 

domains in 

proteins 

PFam data sets, 

UniqueProt 

PR Wang and Li 

[26] 

Profile encoder,  

Architecture: 3 layered and 

temporal hierarchical network 

architecture, BP algorithm, 

adaptive adjustment strategy, 

and conjugate gradient method. 

PSSP DSSP and PDB 

PR Kakumani et 

al. [27] 

Architecture: Fully connected, 

MLP neural network, the BP 

algorithm. 

PSSP RS126 
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PR Nielsen and 

Lund [28] 

Architecture: Conventional FF 

network, gradient descent BP 

algorithm, 2, 10, 20, 40 and 60 

hidden neurons. 

Prediction of 

MHC  class II 

peptide binding 

IEDB HLA- 

DR, 

SYFPEITHI, 

Wang, Lin, 

IEDB EI- 

Manzalawy- 

UPDS, SRDS1, 

SRDS2 data 

sets 

PR Tang et al. 

[79] 

Large margin method: multi-

class separation margin.  

PSSP CB513, RS126 

PR Lin and Xiao  

[29] 

Architecture: GNN, 2 layered 

architecture, FF network, BP 

algorithm. First layer: tangent 

sigmoid neurons, second layer: 

one pureline neuron. 

PSSP Uniprot 

PR Bidargaddi et 

al. [30] 

Architecture: 21-13-3 unit 

architecture, FF network and 

BP algorithm. 

 
Activation function: Tan-

sigmoid and log sigmoid 

activation functions. 

 
Constructive layer algorithm, 

scale conjugate gradient 

algorithm. 

 
Hidden Markov-Bayesian 

Segmentation: Segmental 

semi-markov model. Viterbi 

algorithm and forward- 

backward algorithm. 

PSSP PDB_SELECT, 

CB513, PDB 

data sets 

PR Thalatam et al.  

[49] 

ANN. PSSP NCBI 

PR Mathkour and Java object oriented neural PSP Microbial 
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Ahmad [31]  network,  

 
Architecture: 4 layered 

architecture, FF network and 

BP algorithm. 

genome of 2000 

to 5000 genes 

PR Kim et al. [32] Architecture: MLP, FF   

network, 3 layered architecture, 

simple weight decay 

technique and gradient descent 

BP technique. 

Prediction of 

HIV-1 protease 

cleavage site in 

proteins 

Artificial data 

set: Corral, 

Monk1, 

Monk3, Corral-

100 and XOR-

100 

PR Qu et al. [80] 

 

Encoding: PSI-BLAST, PSI-

Search, HMMER3 and AMPS. 

 
Architecture: CPM: 3 layered 

architecture. 

 
Comprehensive layer: multi-

modal BP neural network, 

mixed-modal SVM. 

Kernel Judgment layer: KDD 

process and M algorithm, 

structural association classifier. 

Assistant Judgment layer: 

Attribute association classifier. 

PSSP RCASP256, 

RS126, CB513 

and ASP256 

data sets 

PR Priyadarshini 

et al. [33] 

Architecture: Fully connected, 

FF network, BP algorithm, 3 

layered architecture, gradient 

descent method. 

 
Activation function: Log 

sigmoidal function.  

PSSP PDB 

PR Florido et al. 

[34] 

Architecture: MLP, 

interconnected processing 

neurons, BP algorithm, fully 

connected and 3 layered 

architecture. 

Prediction of 

functional 

association 

between proteins 

Yeast proteins 

from RefSeq 

database and 

Saccharomyces 

Cerevasive, 
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Baker’s Yeast, 

STRING, SGD 

and blastp 

PR Liu et al. [40] Architecture: Multilayered FF 

network with 3 hidden layers. 

PSP CB513 and 

RS126 data sets 

PR Wang et al. 

[46] 

Architecture: 3 layered 

architecture, BPNN, gradient 

descent type BP algorithm. 

Prediction of 

protease 

cleavage site of 

protein antigen 

Antigen 

PR Abbasi et al.  

[81] 

KNN, MLP, RBF and FRAN. 

 

Protein fold 

recognition 

PDB-40D 

PR Kazemian et 

al. [41] 

SVM: RBF Kernel. 

 
ANN: 2 layered architecture, 

fully connected, FF network, 

sigmoid function, regression 

based NN training. 

Signal peptide 

discrimination 

and cleavage 

site 

identification 

UniProt 

PR and TR Wang et al. 

[82] 

BAN: LN, NLN. 

 
LN: Modeled as neural 

network, fully connected, use 

of energy function. 

NLN: Non-linear BAN, 

addition of the sigmoidal 

transformation unit, winner 

takes all competition 

mechanism. 

Extraction of 

association 

between 

biomarkers for 

cancer 

classification 

Protein 

expression data 

set, 

Nasopharyngeal 

carcinoma, 

leukemia, colon 

and breast gene 

expression data 

sets 

Functional 

GE 

Urquiza et al. 

[58] 

Feature selection: Margin 

based criteria, linear, sigmoid 

and zero-one utility functions. 

SVM, linear and RBF kernel, 

negative log likelihood 

function, multi-class 

classification methodology. 

Prediction of 

protein-protein 

interaction 

Yeast extracted 

from 

SwissPfam, 

GOA, MIPS, 

3did, Hintdb 
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Notes: FF, feed-forward; BP, back propagation; CV, cross validation; SVM, support vector machine; 

LOOCV, leave-one-out cross-validation; NCBI, national center for biotechnology information; MLP, 

multi-layer perceptron; EPD, Eukaryotic promoter database; BLAST, basic local alignment search 

tool; RFE, recursive feature elimination; RBFNN, radial basis function neural network; SOM, self 

organizing map; FFNN, feed forward neural network; DLBCL, diffuse large B-cell lymphoma; 

LIBSVM, library of support vector machine; BPNN, back propagation neural network; OVA, one-

versus-all; PSSP, protein secondary structure prediction; PIR, protein information resource; HIV, 

human immunodeficiency virus; BRNN, bidirectional recurrent neural network; PDB, protein data 

bank; IEBRNN, interaction enriched bidirectional recurrent neural network; BBFNN, bio-basis 

function neural network; DSSP, database of secondary structure of proteins; GNN, gray neural 

network; CPM, compound pyramid model; FRAN, Fuzzy resource allocating network. 

 

1.3.2 Evolutionary algorithm 

 

EAs are meta-heuristic algorithms which mimic the natural evolution and are used to 

find the approximate solutions. It includes the genetic algorithm (GA), population based 

incremental learning (PBIL) and many others. GA is an iterative algorithm which keeps on 

creating the new population. The main component in GA is a chromosome. A chromosome is 

the genetic representation of the possible key to the problem. The chromosomes of the initial 

population are chosen. The fitness value of the solution is compared to other solutions. 

Reproduction is the development phase in which the individuals are evaluated as per their 

fitness function using survival of the fittest technique. The operators employed in GA are the 

selection, the crossover and the mutation. To select the best chromosomes from each 

population for evolution to the next generation is called the selection operation. The next 

operator, the crossover operator is employed to produce two new “offspring” solutions from 

two “parent” solutions. In mutation, one single parent is chosen and a mutation is done. GA 

terminates when the highest number of iterations or some fitness criterion is reached. The 

summary of the application of EAs in bioinformatics is given in table 1.3. 

 

GA is considered as a robust and efficient technique in excluding redundant features 

[88]. It is capable of classification of linked pathways and is efficient in avoiding highly 

accessible regions in the energy landscape increasing the probability of reaching the global 

minimum [93]. We do not necessitate need any preceding knowledge regarding the search 

space. It also possesses various advantages like slower convergence rate, multiple search 

points, and the ability to escape from local optima. It includes interaction and correlation 
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between features and avoids the issue of overfitting. Along with these advantages, the 

various disadvantages of GA are high complexity [86], large memory storage, poor hill 

climbing capability and high computation time [86] [89]. 

 

Table 1.3: EA based bioinformatics systems 

 

Application 

area 

Author(s) Intelligent method Machine 

learning task 

Database/ 

Databank 

GE Blazewicz 

et al. [83] 

Chromosome: Permutation of indices of 

the oligonucleotide from the spectrum; 

adjacency based encoding. 

 
Population: Randomly generated 

according to the uniform distribution. 

 
Selection: Stochastic remainder method 

without replacement. 

 
Crossover: Greedy crossover. 

 
Termination: 20 iterations. 

DNA 

sequencing 

GenBank 

GE Wang et al. 

[66] 

Multi approach guided GA,  

Chromosome:  String of Operons. 

 
Population: 20 Chromosomes. 

 
Selection: Classical roulette wheel 

selection.  

 
Crossover:  Classical single point 

crossover, rate: 0.33. 

 
Mutation: 2 steps mutation process, rate: 

0.02. 

Operons 

prediction 

GenBank, 

RegulonDB 

and ODB 

GE Kaya [84] MOGAMOD, NSGA-II algorithm. 

Three objectives: Support maximization, 

motif length and similarity. 

 

Discovery of 

optimal motifs 

from sequence 

data 

TRANSFAC 
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Chromosome: Initial location of a 

potential motif on all the target sequences. 

 
Population: 300 chromosomes. 

 
Selection: Probabilistic selection. 

 
Crossover: One-point crossover, non-

uniform arithmetical crossover method, 

probability: 0.8. 

 
Mutation: 3 mutational operators and 

generalization by genetic operators, rate: 

0.3. 

GE Vijay-

vargiya and 

Shukla [85] 

Niched Pareto GA, Objectives: Motif 

length and consensus similarity score. 

 
Chromosome: Individual is represented 

by position based representation 

approach; numerical encoding. 

 
Population: Generated using multiple 

attribute representation. 

 
Selection: Pareto domination tournament 

selection. 

 
Crossover: One-point crossover. 

 
Mutation: Mutation of randomly selected    

victim individual motif. 

 
Insertion and Evaluation: Motif length 

and consensus simulating. 

 
Termination: Stagnation and till the 

specified number of generations. 

Identification 

of variable 

length 

regulatory 

motifs 

Synthetic 

data set  and 

promoter 

sequence 

data set of 

S. 

Cerevisiae 

GE Ortuno et 

al. [86] 

Based on NSGA-II, Methodologies used:  

ClustalW, MUSCLE, Kalign, Mafft, 

Optimization of 

multiple 

BaliBASE 
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RetAlign, TCOFFEE, ProbCons and FSA. 

 
Chromosome: Multiple sequences 

encoded as a matrix of real integer 

numbers. 

 
Population: Alignments obtained from 8 

methodologies; 100 chromosomes. 

 
Selection: Pareto fronts. 

 
Crossover:  Probability: 0.8. 

 
Mutation: Only gaps are mutated in order 

to maintain the position of amino acids; 

probability: 0.2.  

 
Termination: 200 generations. 

sequence 

alignment 

TR Gesu et al. 

[87] 

 

 

GenClust, Chromosome: 32 bit string; 

binary encoding. 

 
Population: n chromosomes arranged in 

any order.  

 
Selection: Elimination of duplicates by 

keeping only the rightmost string. 

 
Crossover: Standard one-point crossover 

with probability: 0.9. 

 
Mutation: 1-bit and silent mutation with 

probability: 0.01. 

 
Termination: 500 iterations. 

Gene 

expression data 

clustering 

 

RCNS, 

YCC, 

RYCC, 

PBM, 

RPBM data 

sets 

TR Thompson 

and Gopal 

[88] 

REGAL, Chromosome: Binary encoding. 

 
Population: 50 chromosomes. 

 
Replacement: Rank replacement. 

 

Prediction of  

RNA 

predicting site 

GenBank 
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Crossover: Single-point crossover. 

 
Mutation: Probabilistic mutation. 

 
Termination: 300 generations. 

TR                                                                                                                                                                                                        To and 

Vohradsky 

[89] 

Parallel GA, Chromosome:  Real number 

and value encoding. 

 
Population: 1000 chromosomes. 

 
Selection: Chromosomes with the least 

value of fitness function. 

 
Reproduction: Probability: 0.1.  

 
Crossover: Probability: 0.9.  

 
Termination: 500 generations. 

 
For parallel scheme, Island model  

Topology: Ring topology, 

 
Migration rate: 5-10%. 

 
Migration frequency: After 10 

generations.  

 
Sub-population sizes: 500, 260.  

In a gene 

expression 

data, find genes 

of similar 

functionality 

 

 

S. 

Coelicolor 

artificial 

random 

data sets 

TR Perez et al. 

[90] 

PBIL; Chromosome:  Set of genes, 

binary encoding. 

 
Population: 1000 chromosomes. 

 
Mutation: Probability: 0.02, mutation 

shifts: 0.05. 

 
Termination: 100 generations. 

 
Learning rate: 0.1. 

 

Feature 

extraction 

3-class 

leukemia 

data set 
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Negative learning rate: 0.1. 

PR Nemati et 

al. [91] 

GA and ACO run in parallel. 

GA, Population: 50 chromosomes.  

 
Crossover: Probability: 0.7.  

 
Mutation: Probability: 0.005.  

 
Iterations: 100. 

 
ACO, Population: 50 chromosomes. 

 
Initial Pheromone: 1. 

 
Importance of pheromone level: 1. 

 
Importance of heuristic information: 0.1. 

Feature 

selection in 

protein 

function 

prediction 

GPCR-

PROSITE 

and 

ENZYME- 

PROSITE 

data sets 

from 

UniProt 

and Prosite 

database 

PR Su et al. 

[92] 

Elite based reproduction strategy-Genetic 

algorithm:  

Initialization: Candidate conformation in 

2D triangular lattice. 

 
Population: Randomly generated; 200 

chromosomes. 

 
Reproduction: Elite based reproduction 

strategy. 

 
Crossover: Two-point crossover, rate: 0.8.  

 
Mutation: Uniform mutation, rate: 0.4. 

 
Local Search: 2. 

 
Termination: 200 generations. 

 
Enhancement of exploitation capability: 

Hill climbing. 

2 D triangular 

PSP 

8 benchmark 

sequence data 

set 

PR Custodio et 

al. [93] 

Multiple minima GA, GA for PSP-HP 

problem: Chromosome: Absolute 

PSP Monomer 

sequence 
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encoding. 

 
Population: Randomly generated; 500 

chromosomes. 

 
Selection: Tournament selection of four 

randomly chosen individuals. 

 
Crossover: Standard two-point crossover,   

multi-point crossover. 

 
Mutation: Local move and loop move. 

Exhaustive search mutation and segment 

mutation.  

 
Replacement: Parental replacement with 

crowding. 

 
GA for atomistic PSP problem  

Chromosome: Structures with the same 

length of target sequences.  

 
Population: Not completely random; 500 

chromosomes.  

 
Crossover: Standard two-point crossover, 

multi-point crossover. 

 
Mutation: Incremental mutation, 

compensatory mutation and segment 

mutation, TC operator. 

 
Replacement: Parental replacement with 

crowding. 

data set 

 

Notes: ODB, OMICS data bank; MOGAMOD, Multi-objective genetic algorithm for motif discovery; 

NSGA, non-dominated sorting genetic algorithm; PBIL, population based incremental learning; ACO, 

ant colony optimization; MRMR, minimum redundancy maximum relevance. 
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1.3.3 Data mining 

 

DM is a process of analysis, interpretation and mining of information that could help 

in decision making. It includes different types of clustering methods, DT, KNN, association 

rules, a-priori algorithm and many others. The DM methods are employed for 

characterization, pattern matching, meta rule guided mining, clustering, data visualization, 

generalization, evolution, association, and classification. The summary of DM based 

bioinformatics systems is shown in table 1.4.   

 
Table 1.4: DM based bioinformatics systems 

 

Application 

area 

Author(s) Intelligent method Machine 

learning task 

Database/ 

Databank 

GE Beeren-

winkel et 

al. [53] 

Classification: C4.5 and SVM. 

C4.5, a heuristic divide and conquer 

strategy, reduced error pruning. 

 
SVM, linear decision unction, Langrangian 

dual, Joachim’s SVM. 

 
Performance evaluation: LOOCV 

technique. 

Interpreting 

genotypic HIV 

drug 

resistance tests 

Clinical 

samples 

data set and 

first 220 to 

250 amino 

acids 

TR Xu and 

Zhang 

[76] 

Gene selection: Virtual gene, linear 

combination of genes. 

 
Classification: KNN, DLD, SVM. 

Gene selection 

and cancer 

classification 

Colon, 

leukemia 

and multi-

class 

cancer data 

sets 

TR Jiang and 

Gruen-

wald 

[94] 

 

Association rule: FIS-Tree mining.  

Use of FIS-Tree and BSC-Tree as data 

structures.  

 
FIS-Tree: Value is symbolized as an 

exponent bit, fraction bit and a sign bit, 

use of logical AND operations. 

 
BSC-Tree: Used for real time 

Mining of 

microarray 

gene 

expression 

data 

Data sets 

from 

Stanford 

University    

and Harvard 

Medical 

School 
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compression for a bit string, “data mining 

ready” data structure, bottom-up model. 

TR Zhang and 

Deng [55] 

Gene preselection: Family wise error rate. 

 
Gene selection: Bhattacharyya distance, 

sequential forward selection algorithm. 

 
Classification: Linear SVM, KNN. 

Gene selection 

and cancer 

classification 

Colon, 

DLBCL, 

leukemia, 

prostate 

and 

lymphoma 

cancer data 

sets 

TR Priscilla 

and 

Swamynat

han [95] 

 

2-D hierarchical clustering, multilevel 

microarray clustering, semi-supervised, self 

clustering of each gene type in a vertical 

direction and bottom up hierarchical 

clustering in horizontal direction. 

Gene 

expression 

data clustering 

Leukemia, 

Adenocarcin

oma and 

Lymphoma 

data sets 

PR Chmielnic

ki and  

Stapor  

[96] 

Classification: SVM, RDA and SVM-RDA. 

SVM: LIBSVM, RBF kernel, OVO 

strategy with min- max voting scheme. 

 
Feature selection: Brute force algorithm, 

sequential forward selection, modified                

sequential forward selection. 

 
Model validation: Paired t-test, k-fold CV 

technique. 

Protein fold 

recognition 

and structure 

prediction 

Structural 

Classificati

on of 

Proteins 

PR Abbasi et 

al. [81] 

Classification: KNN, MLP, RBF and 

FRAN. 

Protein fold 

recognition 

PDB-40D 

data set 

 

Notes: SVM, support vector machine; LOOCV, leave-one-out cross-validation; DLD, diagonal linear 

discriminant; FIS-Tree, frequent itemset tree; BSC-Tree, bit string compression tree; KNN, k nearest 

neighbor; DLBCL; diffuse large B-cell lymphoma; LIBSVM, library of support vector machine; RBF, 

radial basis function; OVO, one-versus-all, FRAN, fuzzy resource allocating network. 

 

Different types of DM methods provide assorted advantages. DTs are efficient in 

handling discrete data [53]. KNN provides low comprehensibility. The integration of KNN 

with statistical technique provides better classification performance and evades the singularity 
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problem linked with the within-class scatter matrix [47]. Association rule mining tree such as 

Frequent Itemset Tree (FIS-Tree), apriori algorithm and FP-Growth are used to find 

correlations among items in a given data set. FIS-Tree mining shows better performance than 

Apriori algorithm and FP-Growth [94]. Apriori algorithm saves search space and execution 

time [94]. FIS- Tree mining is advantageous as it shows generality and performs 800 times 

quicker than Apriori algorithm and 2 times quicker than FP-growth [94]. 

 

1.3.4 Fuzzy logic 

 

FL uses the phenomenon of ‘more or less’ rather than ‘either–or’. FL accepts noisy 

and imprecise input and constitutes three parts: fuzzification, fuzzy inference and 

defuzzification. In fuzzification, a linguistic/fuzzy variable defines the concept of fuzzy logic. 

A process that scales and maps the real input variables to fuzzy sets is called fuzzification. 

The fuzzy inference engine consists of fuzzy if–then rules. It contains aggregation and 

composition operators. The former involves the computation of ‘IF’ part and the latter 

involves the computation of ‘THEN’ part. Finally, the defuzzification involves the conversion 

of fuzzy output values to control signals. The summary of the bioinformatics applications of 

FL is shown in table 1.5.  

 

FL can cope very well with the noisy, inexact and missing data [98]. It offers user-

friendly predictions and classification which are easily understandable by humans. It is a 

highly efficient and effective technique while dealing with uncertainty and vagueness of 

expression levels. Besides these advantages, FL is less utilized by the researchers because it 

offers poor knowledge elicitation and higher annotation ratio. It is very week in processing 

microarray data sets and quantitative indices [99]. 

 
Table 1.5: FL based bioinformatics systems 

 

Application 

area 

Author(s) Intelligent method Machine 

learning task 

Database/ 

Databank 

GE Ma and 

Chen [97] 

Quantitative gene expression data on 

linguistic variable, use of fuzzy sets, 

membership functions, n
th
 order fuzzy 

dependency relationship, standardized 

residual. 

Discovery of 

gene regulatory 

networks for 

time      series 

gene 

S. Cerevisiae 

genes, Alpha, 

CDC15 and 

CDC28 data 

sets 
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expression data  

GE Ma and 

Chen [98] 

Incremental fuzzy mining, 

 Fuzzification: Fuzzy linguistic variables, 

3 fuzzy sets. 

 
Fuzzy association pattern discovery: Use of 

standardized residual, adjusted residual. 

 
Weight assessment: Weight of evidence 

measure, probabilistic measure. 

 
Gene function prediction: Searching of 

fuzzy association patterns, weight of 

evidence supporting the assignment, merge 

all the indications granted by fuzzy 

association patterns, the calculation of 

degree of membership. 

 
Performance evaluation: 10-fold CV 

technique. 

Gene function 

prediction 

Yeast 

Genome and 

Munich 

Information 

Center for 

Protein 

sequences 

functional 

catalogue 

database   of 

52 MIPS 

functional 

classes, a 

data set of 

517 genes 

TR Maji and 

Paul [99] 

Cluster is symbolized by centroid, a 

possibilistic lower approximation and a 

probabilistic boundary, alternating 

optimization of an objective function. 

Gene 

expression data 

clustering 

14 yeast 

microarray 

data set 

PR Abbasi et 

al. [81] 

Classification: KNN, MLP, RBF and 

FRAN. 

Protein fold 

recognition 

PDB-40D 

data set 

 

Notes: CV, cross validation; KNN, k nearest neighbor; MLP, multi layered perceptron; RBF, radial 

basis function; FRAN, fuzzy resource allocating network. 

 

1.3.5 Swarm intelligence 

 

SI is the discipline that handles systems made up of a set of distributed and self-

organized individuals. It is usually dependent up on the natural phenomenon [100]. The goals 

of SI techniques are self-organizing, robustness and performance optimization. SI includes 

artificial bee colony (ABC), particle swarm optimization (PSO), artificial immune system 
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(AIS), ant colony optimization (ACO), gravitational search algorithm (GSA), and many 

others. The summary of utilization of SI techniques in bioinformatics is shown in table 1.6.  

 

Table 1.6: SI based bioinformatics systems 

 

Application 

area 

Author(s) Intelligent method Machine 

learning task 

Database/ 

Databank 

GE Gonzalez-

Alvarez     

et al. 

[100] 

 

Individual: Initial location of the potential 

motif on all the sequences, motif length. 

 
MO ABC,  

Population: 200 individuals, ranking 

using non-dominated sort and crowding 

distance.  

 
Selection: Greedy selection with the 

dominance concept. 

 
Mutation: P robability 0.8.  

 
Scout bees: 1. 

 
MO GSA, use of Newtonian Physics 

Theory.  

Population: 200 individuals, ranking 

using non- dominated sorting and linear 

bias. 

 
GO: 100. 

DNA motif 

discovery, i.e., 

motif length, 

support and 

similarity 

TRANSFAC 

GE Santander

-Jimenez  

and Vega- 

Rodriguez 

[101] 

 

MOABC,  

Individual: Phylogenetic topology, 

branch length value and parameters of 

evolutionary model. 

 
Initialization: Combination of employed 

bees and onlooker bees. 

 
Swarm size: 100. 

 

Phylogenetic 

Inference 

8 real 

nucleotides 

data sets and 

a  real data 

set of 

salamander 

mitochond-

rial DNA 
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Maximum generations: 100. 

 
Mutation: 5%. 

 
Limit: 15. 

TR Mohamad 

et al. 

[102] 

 

EPSO,  

Particle: A binary string of length of total 

no of genes. Use of scalar quantity, i.e., 

particle speed and modified sigmoid 

function. 

 
Performance evaluation: LOOCV 

technique. 

Gene selection Leukemia 

and mixed 

lineage 

leukemia 

cancer data 

sets 

TR Wei et al. 

[103] 

 

BPSO,  

Particle: Has position and velocity, shifts 

in a state space limited to 0 or 1 in each 

bit.  

 
Initialization: Random. 

 
Population: 50 particles. 

 
Termination: 2 0 0  iterations. 

Identification 

of SNPs 

associated with 

Graves’ disease 

Human 

DNA 

sequence 

data set 

containing 

the genes 

CD28, 

CTLA4 

and ICOS 

PR Nemati et 

al. [91] 

Feature selection: GA and ACO runs in 

parallel. 

GA,  

Population: 50 chromosomes.  

 
Crossover: Probability, 0.7.  

 
Mutation: Probability, 0.005.  

 
Iterations: 100. 

 
ACO,  

Population: 50 chromosomes. 

 
Initial Pheromone: 1. 

 

Feature 

selection in 

protein 

function 

prediction 

GPCR-

PROSITE 

and 

ENZYME- 

PROSITE 

data sets 

from 

UniProt 

and  

Prosite 

database 
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Importance of pheromone level: 1. 

 
Importance of heuristic information: 0.1. 

PR Li et al. 

[104] 

IF-ABC,  

Selection: Replacement of roulette 

selection strategy by the parameter trial. 

 
Crossover and mutation: Variable number 

of coordinates and multi-point crossover.  

 
Exploitation: Enhanced by introducing a 

convergence factor in the crossover 

process. 

Protein 

secondary 

structure 

optimization 

Artificial 

fibonacci 

sequences 

and natural 

sequences 

from PDB 

 
Notes: MO, Multi-objective; ABC, artificial bee colony; GSA, gravitational search algorithm; 

TRANSFAC, transcription factor database; EPSO, enhancement of binary particle swarm 

optimization; BPSO, binary particle swarm optimization; TLC, two-layer linear classifier; IF-

ABC, internal feedback based on artificial bee colony. 

 

ACO is an efficient, adaptive and robust search process method. It is easy to implement 

in less computation time and provides local searching, quick convergence and intelligent 

background [91]. Gravitational search algorithm (GSA) offers good scaling capability [100]. 

ABC works sound in exploration and privileged in exploitation [104]. PSO considers both 

global and local search capabilities and provides premature convergence [104]. AIS gives 

advantages when only the normal data is on hand [105]. 

 

1.4 Integrated Methods in Bioinformatics 

 

The integration of various methods has been found in literature for solving various 

problems in hand. These integrated methods provide various advantages as compared to the 

individual methods. The integrated methods exploit the advantages and mitigate the 

disadvantages of each other. The applications of various integrations, i.e., ANN-SI, ANN-EA-

RF, DM-LDA, ANN-PCA-PLS,ANN-DM-RF,ANN-DM-FL, ANN-EA-FL-SI, ANN-EA-FL, 

ANN-FL, CBR-DM, ANN-PCA, DM-SI, EA-FL, ANN-DM, ANN-EA, ANN-Bayesian 

classifier, DM-EA, EA-SI, ANN-CBR-DM, ANN-DM-EA, ANN-DM-PCA and ANN-EA-

PCA are shown in tables 1.7 to 1.28 respectively.  
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Table 1.7: ANN-SI based bioinformatics systems 

 

Application 

area 

Author(s) Intelligent method Machine 

learning task 

Database/ 

Databank 

PR Abbasi et al. 

[81] 

 

Classification: KNN, MLP, RBF 

and FRAN. 

MLP, 3 layered perceptron, 

nonlinear activation function and 

max operator. 

 

Tuning of parameters of RBF: 

PSO.  

Protein fold 

recognition 

PDB-40D 

data set 

 
Notes: KNN, k nearest neighbor; MLP, multi layered perceptron; RBF, radial basis function; FRAN, 

fuzzy resource allocating network; PSO, particle swarm optimization, PDB, protein data bank. 

 

Table 1.8: ANN-EA-RF based bioinformatics systems 

 

Application 

area 

Author(s) Intelligent method Machine 

learning task 

Database/ 

Databank 

TR Tong and 

Schierz et al. 

[42] 

Feature extraction: GA, 

Chromosome: 10 genes; real number 

representation. 

 
Population: 300 chromosomes. 

 
Fitness computation: 3 layered FF 

MLP, 10-5-2, 10-5-3, 10-5-4 

architecture. 67-79 nodes, where 7-9 

nodes are bias nodes. Hyperbolic 

tangent activation function. 

 
Selection: Tournament selection, 

tournament size: 2. 

 
Crossover: Single point crossover, 

probability: 0.2. 

 

Feature 

extraction for 

cancer 

classification 

ALL/ AML 

and 

SRBCTs 

datasets 
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Mutation: Probability: 0.1.  

 
Replacement: Elitism scheme.  

 
Termination: Evaluation size: 30000 

and whole cycle repeat: 5000. 

 
Classification: MLP, SVM and RF. 

 
Performance evaluation: 10-fold CV 

technique. 

 

Notes: GA, genetic algorithm; FF, feed-forward; MLP, multi layered perceptron; SVM, support vector 

machine; RF, random forest; CV, cross validation. 

 

Table 1.9: DM-LDA based bioinformatics systems 

 

Application 

area 

Author(s) Intelligent method Machine 

learning task 

Database/ 

Databank 

TR Sharma and 

Paliwal [47] 

 

Gene extraction: GLDA operates in 

supervised mode, gradient descent 

algorithm, and an iterative algorithm. 

 
Classification: KNN. 

Gene extraction 

and cancer 

classification 

Acute 

leukemia, 

SRBCT and 

lung 

adenocarcin

oma cancer 

data sets 

 

Notes: GLDA, gradient linear discriminant analysis; KNN, k nearest neighbor. 

 

Table 1.10: ANN-PCA-PLS based bioinformatics systems 

 

Application 

area 

Author(s) Intelligent method Machine 

learning task 

Database/ 

Databank 

TR Zeng et al. 

[59] 

Feature selection: REDISC, 

supervised method. 

 
Feature extraction: PCA and PLS. 

 
Classification: Linear SVM, 2-norm 

Gene selection, 

extraction and 

classification 

Colon and 

Leukemia 

cancer data 

sets 
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soft margin SVM. 

 
Performance evaluation: 10-fold CV 

technique. 

 

Notes: REDISC, redundancy elimination based on discriminative contribution; PCA, principal 

component analysis, PLS, partial least square, SVM, support vector machine, CV, cross validation. 

 

Table 1.11: ANN-DM-RF based bioinformatics systems 

 

Application 

area 

Author(s) Intelligent method Machine 

learning task 

Database/ 

Databank 

PR Aram and 

Charkari 

[61] 

 

Individual method: Two-layered 

classification framework. 

1st layer: Classification employing 

RF, ordinary MLP and polynomial 

kernel SVM. 

2nd layer: Instances into 27 folds. 

Fusion method: Two-layered 

classification framework and 

hierarchical learning architecture. 

 
Classification: KNN, MLP, RBFN, 

NB. 

Protein fold 

recognition 

Protein 

database 

 

Notes: RF, random forest; MLP, multi layered perceptron; SVM, support vector machine; KNN, k 

nearest neighbor; RBFN, radial basis function network; NB, naïve bayes. 

 

Table 1.12: ANN-DM-FL based bioinformatics systems 

 

Application 

area 

Author(s) Intelligent method Machine 

learning task 

Database/ 

Databank 

TR Wang et al. 

[66] 

Feature ranking: T-test and class 

seperability. 

 
Classification: FNN and SVM. 

FNN, rule-base simplification, 4 

layered architecture.  

Cancer 

classification 

Lymphoma, 

SRBCT, liver 

and GCM 

data sets 
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Group of C-SVMs with RBF.  

 
Filling of missing value:  K NN.  

 
Performance evaluation: 5-fold 

CV technique. 

 

Notes: FNN, fuzzy neural network; SVM, support vector machine; KNN, k nearest neighbor.  

 

Table 1.13: ANN-EA-FL-SI based bioinformatics systems 

 

Application 

area 

Author(s) Intelligent method Machine 

learning task 

Database/ 

Databank 

TR Lee [67] 

 

Gene selection: Regression 

analysis. 

 
Selection of gene markers: 

SVM, GA and PSO.  

SVM,  

RBF kernel function. 

 
GA,  

Chromosome: Human cDNA 

clones, binary encoding. 

 
Population: Randomly generated 

20 chromosomes. 

 
Selection: Roulette wheel 

selection employing elitism 

strategy. 

 
Crossover: Two-point crossover, 

rate:  0.7. 

 
Mutation: Probability: 0.02. 

 
Termination: 100 generations. 

 

Gene selection 

and cancer 

classification 

Ovarian and 

breast cancer 

data sets 
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PSO,  

Particle: Human cDNA clones. 

 
Population: Randomly generated 

20 particles. 

 
Selection: Use of sigmoid 

function and inertia weights.  

 
Termination: 100 generations.   

 
Extraction of gene markers: 

ANOVA.  

 
Classification: Fuzzy if-then 

rules, Gaussian membership 

functions. 

 
Notes: SVM, support vector machine; GA, genetic algorithm; PSO, particle swarm optimization; 

cDNA, complementary DNA; ANOVA, analysis of variance. 

 

Table 1.14: ANN-EA-FL based bioinformatics systems 

 

Application 

area 

Author(s) Intelligent method Machine 

learning task 

Database/ 

Databank 

TR Korfiati et 

al. [69] 

Filtering: miRanda 

 
Classification: SVM and GA. 

SVM,  

LIBSVM library, RBF kernel. 

 
GA,  

Chromosome: Feature genes and 

parameter genes. 

 
Population: 50 chromosomes. 

 
Selection: Rank-based roulette 

wheel selection. 

miRNA target 

prediction 

miRBase, 

TarBase and 

miRecords 

datasets 
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Crossover: 2-point crossover; 

probability: 0.9. 

 
Mutation: Dynamic control of 

mutation parameters. 

 
Maximum number of generations: 

200. 

 
Extraction of interpretable 

fuzzy rules: Evolutionary support 

vector fuzzy inference system, if-

then rules, RBF kernel, 

optimization of parameters using 

GA (500 generations and 30 

population size). 

 
Performance evaluation: 5-fold 

CV technique. 

 

Notes: SVM, support vector machine; GA, genetic algorithm; LIBSVM, library of support vector 

machine; RBF, radial basis function.  

 

Table 1.15: ANN-FL based bioinformatics systems 

 

Application 

area 

Author(s) Intelligent method Machine 

learning task 

Database/ 

Databank 

TR Azujae [74] Classification: Supervised SFAM, 

2 layered network architecture,  

 
Learning process: Fuzzy logic 

operations.  

 
Performance evaluation: 

LOOCV technique. 

Prediction and 

discovery of 

classes of cancer 

LLMPP 

data sets 

TR Anandakumar 

and Punithavalli  

[106] 

Gene importance ranking: 

ANOVA. 

 

Gene selection 

and cancer 

classification 

Lymphoma 

and liver 

cancer data 
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Minimum gene subset: Two 

fuzzy if-then rules, 5 layered 

architecture, Learning using 

modified Levenberg-Marquardt 

algorithm. 

 
Classification: Fast adaptive 

neuro-fuzzy inference system. 

sets 

Functional 

Genomics 

Neague and 

Palade [107] 

 

Fuzzy if-then rules. Multilayered 

neural structure, 3 layered FF 

network, MLP. 

 
Integration of FEMF, UGN, SGN. 

FEMF, UGN, SGN uses max 

fuzzy operator, softmax 

transformation, supervised training 

neural network, respectively. 

Functional 

analysis of gene 

expression data 

E. Coli 

data set 

 

Notes: SFAM, simplified fuzzy art map; LOOCV, leave-one-out cross validation; ANOVA, analysis 

of variance; FF, feed-forward; MLP, multi-layered perceptron. 

 

Table 1.16: CBR-DM based bioinformatics systems 

 

Application 

area 

Author(s) Intelligent method Machine 

learning task 

Database/ 

Databank 

TR Yao and Li [108] Gene preselection: Nonparametric 

scoring algorithm.  

 
Sample clustering: Hierarchical 

clustering. 

 
Gene selection: ANMM, nearest 

between-class distance maximization 

and furthest within cluster distance 

minimization, nonparametric 

discriminant analysis. 

 
Classification: CBR,  

Gene selection 

and 

classification 

Simulated 

data set 

and real 

data set 

composed 

of  

leukemia, 

colon, 

SRBCT 

and  GCM 

Cancer 
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Rule: Define the domain 

knowledge. 

 
Retrieve: Small distant cases from 

m- Dimensional vector will be 

retrieved. 

 
Reuse: Minimum distance between 

m- Dimensional vector and case 

base. 

 

Notes: ANNM, Additive Nonparametric Margin Maximum; CBR, Case-Based Reasoning. 

 

Table 1.17: ANN-PCA based bioinformatics systems 

 

Application 

area 

Author(s) Intelligent method Machine 

learning task 

Database/ 

Databank 

GE Nikolova et al.  

[109] 

Preprocessing: PCA. 

 
Prediction: ANN,  

 
ANN architecture: 70-105-2 

architecture, FF networks. 

 
Learning: Supervised learning 

approach. 

 
Activation function: Sigmoidal 

non linearity hyperbolic tangent 

activation function,  

Hidden layer: tan-sigmoid 

activation function 

Output layer: Pureline. 

DNA sequence 

prediction 

Protease     

gene of 

HIV-1 

virus data 

set 

TR Peterson and 

Ringer [110]  

Preprocessing: Apply cuts on 

intensities and spot areas. 

 
Dimension reduction: PCA. 

 
Classification: MLP; supervised 

Tumor 

classification 

 SRBCT 

and breast 

cancer 

data sets 
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learning, and 8-4-1 unit 

architecture. 

 
Performance evaluation: 3–fold 

CV technique. 

TR Ao and Ng [111] 

 

Feature extraction: PCA. 

 
Prediction: ANN,  

 
Architecture: 3 layered 

architecture, one hidden layer with 

10, 5 and 20 hidden neurons and 

AIC method. 

 
Activation function: Tan-sigmoid 

activation function.  

Modelling of 

gene expression 

time series 

Yeast gene 

expression 

levels and 

other 

genes data 

set 

TR Ziaei [112] Gene ranking: Signal to noise 

ratio. 

 
Dimension reduction: PCA. 

 
Classification:  LP, 10-1unit 

architecture. 

Cancer 

classification 

and  prediction 

of a class of 

Lymphoma 

40 patients 

and 4026          

gene 

expression 

level 

dataset 

TR Chen et al. [113] Normalization and computation: 

MAS5 function. 

 
Preprocessing: Correlation 

coefficient, RankProd and PCA. 

 
Feature selection: Chi-square test. 

 
Prediction: ANN, 

Architecture: Standard FF, fully 

connected, BP MLP, 3 layered 

architecture and supervised 

training. 

 
Evaluation: Kaplan-Meier survival 

Cancer patient 

survival 

prediction 

NSCLC 

data and 

NCI 

caArray 
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analysis and log-rank test. 

 
Notes: PCA, principal component analysis, ANN, artificial neural network; FF, feed-forward; MLP, 

multi-layered perceptron; CV, cross validation; FF, feed-forward; BP, back propagation; MLP, multi-

layered perceptron.  

 

Table 1.18: DM-SI based bioinformatics systems 

 

Application 

area 

Author(s) Intelligent method Machine 

learning task 

Database/ 

Databank 

TR Chen et al. [114] Gene selection: PSO,  

Particle: binary encoding. 

 
Initialization: Random. 

 
Fitness Function: Calculated using 

C4.5. 

Gene selection 

and cancer 

identification 

11 cancer 

data sets 

TR Kar  et al. [115] 

 

Gene selection: PSO,  

Initial positions: Random;  

 
Fitness function: Calculated using 

KNN. 

 
Classification: SVM and K NN 

with K=3 to 20 with the help of a 

heuristic approach. 

 
Performance evaluation: 3-fold 

CV technique. 

Gene selection 

and cancer 

classification 

SRBCT, 

ALL-

AML and 

MLL 

cancer 

data sets 

PR Turkoglu and 

Kaymaz [116] 

 

Reduction of data dimension: 

AIS, aiNET algorithm in supervised 

manner, euclidean distance, affinity 

maturation process.  

Classification: KNN with K=7, 

lazy learning process. 

Prediction of 

protein cellular 

localization 

sites 

E. Coli 

datasets 

 

Notes: PSO, particle swarm optimization; KNN, k nearest neighbor; SVM, support vector machine; 

CV, cross validation; AIS, artificial immune system. 
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Table 1.19: EA-FL based bioinformatics systems 

 

Application 

area 

Author(s) Intelligent method Machine 

learning task 

Database/ 

Databank 

GE and TR Jacob et al. 

[117] 

FGA: GA-Fuzzy fitness finder. 

Fuzzy fitness finder, 

Fuzzification: Set of values. 

 
Fuzzy membership functions: 

Triangular sets. 

 
Fuzzy inference: Fuzzy if-then 

rules. 

 
Defuzzification: Root sum 

squares method. 

 
GA,  

Selection: Roulette wheel 

selection.  

 
Population: 10 chromosomes, 

not random, probability: 1. 

 
Mutation: Local search method, 

probability: 0.1. 

 
Iterations: 50. 

Sequence 

segmentation 

and prediction 

of functionally 

related genes 

E. Coli, 

bacillus 

subtilis and 

mycobacterium 

tuberculosis 

dataset 

TR Schaefer and 

Nakashima 

[118] 

 

Classification: Fuzzy if-then 

rules, triangular fuzzy sets and 

linguistic rules. 

 
Hybrid fuzzy classification: 

Fuzzy if then rules-GA. 

Fuzzy if-then rules: A-priori 

defined number of rules which 

are randomly generated as an 

initial population. 

Analysis of 

gene 

expression data 

Colon, 

leukemia and 

lymphoma 

cancer data 

sets 
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GA, Michigan style algorithm,  

Chromosome: S tring.  

 
Population: 20 chromosomes. 

 
Selection: Binary tournament 

selection with replacement. 

 
Crossover: Uniform crossover, 

probability: 0.9. 

 
Mutation: Probability: 0.1.  

 
Generation update: Elitist 

strategy.  

 
Generations: 30000. 

 
The selection probability of 

don’t care attributes: 0.5. 

TR Wang and 

Palade [119] 

Gene selection: FCCEGS, 

weighted fuzzy if-then rules, 15 

fuzzy sets. 

 
Selection of small set of 

rules: MOEA,  

Chromosome: Binary encoding.  

 
Population: Three objectives: 

weight vector, no of selected 

fuzzy rules, total no of 

antecedent conditions.  

 
Crossover: Simple 2-point 

crossover.  

 
Mutation: Biased mutation, 

probability from 1 to 0 and from 

0 to 1. 

Gene selection 

and cancer 

classification 

Lung, ovarian 

and colon 

cancer data 

sets 
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TR Zibakhsh and 

Abadeh [120] 

 

Pattern classification: Fuzzy 

if-then rules coded as a string, 

set of linguistic values, use of 6 

linguistic variables. 

 
Classification: Memetic 

algorithm,  

Chromosome: Fuzzy if-then 

rule.  

 
Population: Randomly created 

50 fuzzy if-then rules. 

 
Fitness function: Global fitness 

function and local fitness 

function. 

 
Selection: Roulette wheel 

selection.  

 
Crossover: Uniform crossover; 

probability: 0.9.  

 
Mutation: Random mutation 

method; probability: 0.1. 

 
Replacement: 20%.  

Gene selection 

and cancer/ 

tumor detection 

Tumor datasets 

PR Mansoori et al.  

[121] 

Feature reduction: Feature 

ranking algorithm. 

 
Generation of rules:  SGERD, 

fuzzy if- then rules, triangular 

membership functions, use of 

product operator. 

Protein 

sequence 

classification 

UniProt 

 
Notes: GA, genetic algorithm; FCCEGS, Fuzzy C-Mean Clustering based Enhanced Gene Selection 

method; MOEA, multi-objective evolutionary algorithm; SGERD, Steady-state genetic algorithm for 

extracting fuzzy classification rules from data.  
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Table 1.20: ANN-DM based bioinformatics systems 

 

Application 

area 

Author(s) Intelligent method Machine 

learning task 

Database/ 

Databank 

GE Kasabov and 

Pang [122] 

 

 

Search: Motif search engine. 

 
Judgment: KNN. 

 
Classification: Ensemble of 

SVM based on majority voting 

and transductive SVM. 

 
Performance evaluation: 3-

fold CV technique. 

Promoter 

recognition 

EPD and 

GenBank 

TR Simek et al. 

[123] 

Preselection: Sebestyen 

criterion and correlation 

coefficient. 

 
Gene selection: SVD and RFR. 

 
Clustering: Hierarchical 

complete linkage clustering 

algorithm. 

 
Classification: Linear SVM. 

 
Performance evaluation: 

LOOCV technique. 

Clustering, 

classification, 

feature selection 

and modelling 

of the dynamics 

of gene 

expression data 

Tumor/ 

normal 

thyroid 

microarray 

dataset and 

Yeast CDC-

15 data set 

TR Zheng et al. 

[124] 

Preselection: T-statistics. 

 
Clustering: IVGA principle, 

heuristic combinatorial 

optimization method and 

variational Bayesian learning. 

 
Classification: SVM with RBF 

kernel.  

 
Performance evaluation: 

Gene selection 

and tumor 

classification 

Colon, acute 

leukemia and 

prostate 

cancer data 

sets 
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LOOCV technique. 

TR Bose et al. [125] Object selection: MRMR. 

 
Gene extraction: Partition 

based attribute clustering 

algorithm, supervised way. 

 
Classification: NB, SVM and 

KNN. 

Gene extraction 

and 

classification 

Colon, lung 

and leukemia 

cancer data 

sets 

PR He et al. [126] Preprocessing and training: 

SVM, 3 OVA binary classifiers. 

 
Extraction of rules: C4.5. 

PSSP RS126 

 

Notes: KNN, k nearest neighbor; SVM, support vector machine; CV, cross validation; SVD, singular 

value decomposition; RFR, recursive feature replacement; LOOCV, leave-one-out cross-validation; 

IVGA, independent value group analysis; RBF, radial basis function; MRMR, minimum redundancy 

maximum relevance; NB, naïve bayes. 

 

Table 1.21: ANN-EA based bioinformatics system 

 

Application 

area 

Author(s) Intelligent method Machine 

learning task 

Database/ 

Databank 

TR Shanthi et al. 

[127] 

Feature selection: G A,  

Chromosome: A sequence of 

consecutive genes. 

 
Population: 20 chromosomes. 

 
Selection: Roulette wheel 

selection.  

Crossover: Arithmetic crossover; 

probability: 0.6. 

 
Mutation: Non-uniform mutation; 

rate: 0.033. 

 
Number of generations: 20. 

Feature selection 

for diagnosis of 

stroke diseases 

150 patient 

data set 
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Relationship between input and 

output: ANN,  

Architecture: 14-7-10 unit 

architecture, backward stepwise 

algorithm, BP algorithm, sigmoidal 

function, output activation 

function. 

TR Chen and Hsu 

[128] 

Gene selection: Signal to noise 

ratio and GAGS. 

Chromosome: Consists of 25, 50, 

100 and 150 genes. 

 
Population: 40 chromosomes.  

 
Reproduction: Reproduction rate 

at 40% in primary stage and at 

20% in last stage.  

 
Crossover: Single-point crossover, 

random generation, two 

chromosomes are randomly 

selected. 

 
Mutation: Optimal solution, high 

mutation possibility in primary 

stage and low mutation possibility 

in last stage.  

 
MTSVSL 

MTL: Inductive transfer 

mechanism, shared p erception, 

BP network, l earning in both 

main task and shared task. 

SVS: Hyperplane. 

 
Performance evaluation: 

Random average 3-fold CV 

Gene selection 

and cancer 

classification 

Leukemia 

and 

prostate 

cancer 

data sets 
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technique. 

TR Akadi et al. 

[129] 

Feature selection: MRMR, 

preprocessing of high-dimensional 

microarray data. 

 
GA,  

Chromosome: Gene encoding. 

 
Population: 100 chromosomes; 

randomly chosen. 

 
Crossover: Probability 0.8.  

 
Mutation: Probability 0.1.  

 
Termination: 20 generations. 

 
Classification: SVM and NB. 

 
Performance evaluation: LOOCV 

technique. 

Feature selection NCI, 

lymphoma, 

lung, 

leukemia 

and   colon 

cancer data 

sets 

PR Otwani et al. 

[130] 

Optimization of topology of 

ANN: GA. 

 
Prediction: Fully connected 

FFBPN. 

PSSP PDB 

PR Li et al. [131] Feature selection: Statistical 

testing, GA. 

GALOPPS:     

Chromosome: Vector    of integers 

with range 0-9999. 

Population: 200 chromosomes.  

 
Selection: Stochastic universal 

sampling. 

 
Crossover:   2-point crossover, 

probability 0.5. 

 

Gene selection 

and cancer 

classification 

 

3 Serum 

SELDI 

MS data 

sets 
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Mutation: Multi-field mutation, 

probability 0.02. 

 
Generations: 8000. 

 
Termination: T il l  the maximum 

no of generations or value of 

fitness function has reached 1. 

 
Classification: SVM, polynomial 

kernel function with d=1.  

 
Performance evaluation: 

LOOCV technique. 

PR Reyaz-Ahmed 

[132] 

Encoding: Orthogonal encoding 

with BLOSUM62 matrix. 

 
SVM,  

OVA and OVO binary classifiers, 

RBF kernel. 

 
GA,  

Chromosome: binary encoding.  

 
ANN,  

Architecture: 4 layered 

architecture. 

PSSP RS126 

PR Nanni and 

Lumini [133] 

Generation of reduced 

alphabets: GA, 

Chromosome: A string of amino 

acid of length 20. 

 
Population: Initial population is 

randomly generated; Population 

size=10. 

 
Selection: Cross-generational 

strategy.  

Protein and 

peptide 

classification 

HIV, 

peptide 

and 

vaccine 

datasets 
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Crossover: Uniform crossover; 

probability 0.96. 

 
Mutation: Probability 0.02. 

 
Number of generations: 5.  

 
Classification: Linear SVM, and 

RBF SVM. 

PR Li et al. [134] Preselection of features: MRMR. 

 
Optimization of feature sets: GA,  

Chromosome: Binary and decimal 

coded genes. 

 
Population: 30 chromosomes. 

 
Selection: Elitist strategy. 

 
Crossover: Random positions. 

 
Mutation: Part of decimal coding.  

 
Termination: 10000 generation.  

 
Classification: SVM with RBF 

kernel, OVO strategy.  

 
Performance evaluation: 10-fold 

CV technique. 

Prediction and 

classification of   

G-protein 

coupled 

receptors 

Protein 

sequence 

data set 

System 

Biology 

Ritchie et al. 

[135] 

Optimization of ANN architecture: 

Use of the binary expression tree, 

GP operators, set of rules. 

 
Chromosome: Binary expression 

tree encoded representation. 

 
Population: Initial random set of 

chromosomes. 

 

Detection of 

nonlinear 

interactions 

among genes in 

common human 

diseases 

Simulated 

data set 
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Selection: Fitness proportionate 

selection and Roulette wheel 

selection techniques. 

 
Crossover: As per the rule of 

network construction.  

 
Termination: Till the maximum 

number of generations or 

classification accuracy 100%. 

System 

Biology 

Noman et al. 

[136] 

Capture the interaction among 

genes: Decoupled version of 

RNN, canonical RNN with delayed 

feedbacks, tightly coupled system, 

sigmoid function. 

 
Identification of interactions: 

DE, reverse engineering algorithm,  

Chromosome: Parameters for 

genes.  

 
Initialization: Random. 

 
Mutation: Random individuals 

selected. 

 
Crossover: Randomly inherited. 

 
Replacement:  If find with better 

or the same fitness value. 

DE uses random restart strategy. 

Reconstruction   

of gene 

regulatory 

network from 

gene expression 

SOS DNA 

repair 

network of 

E. Coli 

 

Notes: GA, genetic algorithm, ANN, artificial neural network, BP, back propagation; GAGS, genetic 

algorithm gene selection; MTSVSL, multitask support vector sample learning; MTL, multitask 

learning, CV, cross validation; MRMR, minimum redundancy maximum relevance; SVM, support 

vector machine; NB, naïve bayes; LOOCV, leave-one-out cross-validation; FFBPN, feed-forward back 

propagation network; RBF, radial basis function; OVO, one-versus-one; GP, genetic programming; 

RNN, recurrent neural network; DE, differential equation.  
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Table 1.22: ANN-Bayesian classifier based bioinformatics systems 

 

Application 

area 

Author(s) Intelligent method Machine 

learning task 

Database/ 

Databank 

TR Maglogiannis et 

al. [137] 

Diagnosis using the probabilistic 

neural network. 

Prognosis using the generalized 

regression radial basis neural 

network 

 
Classification: SVM, Wolfe-Dual 

form, Gaussian RBF and 

polynomial kernel, OVA strategy, 

bayesian classifiers. 

 
Performance evaluation: 10-fold 

CV technique. 

Prognosis and 

diagnosis of 

breast cancer 

WDBC 

and 

WPBC 

data sets 

 

Notes: SVM, support vector machine, RBF, radial basis function; CV, cross validation. 

 

Table 1.23: DM-EA based bioinformatics systems 

 

Application 

area 

Author(s) Intelligent method Machine 

learning task 

Database/ 

Databank 

TR Lu et al. [138] IGKA: Chromosome: Cluster 

number. 

 
Population: A set of Z coded 

solutions; 50. 

Selection: Proportional selection. 

 
Mutation: Mutates each allele to a 

new value; 0<MP<1. 

 
To speed up the convergence 

process: Classical k-means 

algorithm. 

 

Gene expression 

data clustering 

fig2data 

and cho 

data sets 
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No of generation: 100. 

TR Shah and Kusiak 

[139] 

Feature extraction: WDTGS, 

GAGS, and feature set intersection 

approach. 

WDTGS: Production of rules, 

multiple users defined weighting 

schemes, 32 runs of DT.  

 
GAGS: GA-CFS, GA-DTW. 

GA-CFS:  

Chromosome: n genes. 

 
Population: 100 individuals. 

 
Selection: Threshold frequency of 

60% was set for selection.  

 
Crossover: Crossover rate: 0.6.  

 
Mutation: Rate: 0.033.  

 
GA runs: 100. 

 
GA-DTW: Chromosome: n genes. 

 
Population: 100 individuals. 

 
GA runs: 100. 

Decision Tree: Building of 50000 

decision trees. 

Feature sets intersection approach: 

Combination of feature set. 

 
Performance evaluation: 10-fold 

CV technique. 

Gene/ SNP 

selection 

Drug and 

Placebo 

data sets 

TR Han and Rao 

[140] 

Mining co-regulated clusters: 

Association Rules,  

Item: Represented by 1, 0 or -1.  

 

Mining co-

regulated genes 

SMD 
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Reduction of running time:  

Hash-Tree, itemset in a unit hash 

tree. 

 
Node: Information includes a gene 

name, hash-table, support and 

pointers to the child node and 

increasing/ decreasing tendency. 

 
Generation of rules: GA,  

Chromosome: k-length sequence 

composed of 0 and 1.  

 
Population: 12 chromosomes.  

 
Selection: According to their 

arrangement of fitness. 

 
Crossover: Selected 2 positions 

randomly to crossover. 

 
Mutation: Selected random 

positions to mutate. 

TR Wu [141] Clustering: Genetic weighted k-

means algorithm.   

 
Chromosome: A partitional string 

encoded by centers of clusters.  

 
Population: A set of partitional 

string; population size=21. 

 
Selection: Selection of individuals 

from the previous population.  

 
Crossover: Single point crossover.  

 
Mutation: Uniform replacement; 

probability 0.10. 

Gene expression 

data clustering 

Synthetic 

dataset 

and two 

real life 

gene 

expression 

data sets 
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WKM Operator: k- means 

operators are employed. 

TR Aljahdali and El- 

telbany [142] 

 

Informative gene set searching: 

GA, steady state model.  

 
Chromosome: A set of 20 genes 

indices. 

 
Population: 50 random set of genes.  

 
Crossover: Probability 0.8.  

 
Mutation: Probability: 0.01.  

 
Population: Replacement of 25%. 

 
Classification: C 4.5. 

Gene selection 

and cancer 

classification 

NC160 

 

Notes: IGKA, incremental genetic k-means algorithm; CV, cross-validation; GA, genetic algorithm. 

 

Table 1.24: EA-SI based bioinformatics systems 

 

Application 

area 

Author(s) Intelligent method Machine 

learning task 

Database/ 

Databank 

GE Jangam and  

Chakraborti 

[143] 

 

Obtain a set of alignments: 

ACO, Individual: Sequence Pair.  

 
Population: Even number of 

sequence pairs. 

 
Selection: Roulette wheel 

selection strategy. 

 
Generation of accurate 

alignments: GA,  

 
Individual: Alignment of 

nucleotide pair.  

 
Population: Alignments obtained 

Alignment of 

two nucleic acid 

sequences 

Nucleic acid 

sequence data 

set 
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from ACO. 

 
Selection: Roulette wheel 

selection. 

 
Crossover: Multi-point crossover.  

 
Mutation: Random insertion or 

deletion of gaps.  

 
Termination: Repeated till 

convergence. 

 

Notes: ACO, artificial colony optimization; GA, genetic algorithm. 

 

Table 1.25: ANN-CBR-DM based bioinformatics systems 

 

Application 

area 

Author(s) Intelligent method Machine 

learning task 

Database/ 

Databank 

TR Paz et al. [144] Case: Information about the 

patient, rules, classification and 

probes marked as irrelevant or 

important. 

 
Retrieve: Preprocessing is done 

using RMA.  

 
Reuse: ESOINN, Competitive 

Hebbian Learning. PAM 

algorithm runs in parallel of 

ESOINN. 

 
Revise: Knowledge extraction 

using J48 algorithm. 

 
Retain: Correct and relevant 

decision rules generated. 

Classification of 

microarray data 

CLL patient 

data set 

 
Notes: ESOINN, enhanced self-organized incremental neural network. 
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Table 1.26: ANN-DM-EA based bioinformatics systems 

 

Application 

area 

Author(s) Intelligent method Machine 

learning task 

Database/ 

Databank 

TR Anekboon et al. 

[145] 

  

Feature preselection: Supervised 

neural network, MLP. 

 
Best feature selection: GA,  

Chromosome: A set of allele; 

variable length. 

 
Selection: A stochastic universal 

sampling with elitism strategy. 

 
Population: 2 sets. 

 
Crossover: Variable length 

crossover operation, rate: 0.5. 

 
Mutation: For short range 

chromosome, rate: 0.3. 

 
Termination: Number of 

iterations.  

 
Classification: MLP, SVM and 

DT.  

 
Performance evaluation: 

LOOCV and 5-fold CV 

technique. 

Extracting 

predictive SNPs          

in Crohn’s 

disease 

Crohn’s 

disease 

dataset 

PR Doong and Yeh 

[146] 

 

Data Encoding: DSSP. 

 
Clustering: Partitional methods, 

GA. 

 
Performance measure: k-means. 

 
Aligning the sequences: 

PSSP CB513 and 

PDB 
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Dynamic programming. 

 
Classification: RBF kernel and 

soft margin SVM. 

PR Nanni and 

Lumini [147] 

 

Feature selection: Sequential 

forward floating selection. 

 
Clustering: k-means. 

 
GA, 

Chromosome: A string of amino 

acid of length 20. 

 
Population: Randomly generated 

set of chromosome. 

 
Selection: Cross generational. 

 
Crossover:  Uniform crossover, 

probability: 0.96. 

 
Mutation: Probability: 0.02.  

 
Classification: SVM with RBF 

kernel. 

Prediction   of 

bacterial 

virulent 

proteins 

SWISS-

PROT and 

VFDB 

datasets 

Notes: MLP, multilayer perceptron; SVM, support vector machine; GA, genetic algorithm; DT, 

decision tree; LOOCV, leave-one-out cross-validation; CV, cross validation; RBF, radial basis 

function; SVM, support vector machine; RBF, radial basis function. 

 

Table 1.27: ANN-DM-PCA based bioinformatics systems 

 

Application 

area 

Author(s) Intelligent method Machine 

learning task 

Database/ 

Databank 

TR Liu et al. [148] 

 

Resampling: Bootstrap 

mechanism. 

 
Feature extraction and 

selection: Mann Whitney test, 

PCA, masked out clustering and 

Feature, 

extraction, 

selection and 

cancer 

classification 

Leukemia, 

lung, 

prostate, 

DLBCL, 

ovarian, 
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t-test. 

 
Classification: 3 NN, 1 hidden 

layer FF networks, 10 hidden 

units and 1 output unit, soft 

voting mechanism. 

 
Performance evaluation: 

LOOCV and 10-fold CV 

technique. 

colon and          

l eukemia 

cancer data 

set 

TR Naplitano et al. 

[149] 

Preprocessing: Noisy data 

rejection. 

 
Feature extraction: PCANN 

Based on STIMA algorithm, 1 

layered FF, Hebbian type learning 

rules. 

 
Clustering: PPS, nonlinear and 

parametric mapping, hierarchical 

agglomerative clustering 

algorithm, uses Fisher’s linear 

discriminant and Negetropy 

information. 

Feature 

extraction and 

clustering 

Human 

Cancer Cell 

Line 

 

Notes: PCA, principal component analysis, NN, neural network; FF, feed-forward; LOOCV, leave-

one-out cross-validation; CV, cross validation.  

 

Table 1.28: ANN-EA-PCA based bioinformatics systems 

 

Application 

area 

Author(s) Intelligent method Machine 

learning task 

Database/ 

Databank 

TR Karimi and 

Farrokhnia 

[150] 

Variable clustering: SOM. 

 
Dimension reduction: PCA. 

 
Variable selection and 

classification: GA-LDA. 

Selection, 

clustering and 

classification 

Leukemia 

and SRBCT 

data set 
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GA,  

Population size: 150.  

 
Selection: Roulette wheel 

selection. 

 
Crossover: 50%. 

 
Mutation: 1%. 

 
Number of generations: 200. 

 
Performance evaluation: 

LMOCV technique. 

 
Notes: SOM, self organizing map; PCA, principal component analysis; GA, genetic algorithm; LDA, 

linear discriminant analysis, LMOCV, leave-many-out cross-validation. 

 

The integrated method ANN-DM works faster than individual linear SVM and  

polynomial SVM [51]. The integrated method ANN-EA-FL-SI provides superior 

classification performance and higher accuracy [67]. This integrated method is more 

statistically significant and efficient [42] [74]. The integrated method ANN-FL provides 

effective and efficient prediction results [74]. The integrated CBR-DM method provides 

robustness and performs better than SVM and KNN, when there is condition of highly noisy 

data [108]. The integrated method ANN-DM-SI is a simplified method for the easy diagnosis 

of cancer [115]. The integrated method DM-SI offers low complexity but it consumes more 

time for large datasets and the number of memory cells affects the classification performance 

[116]. The integrated method EA-FL provides higher interpretability, high search ability, less 

complexity and simple, smaller and more understandable rules, but it increases the 

computational overhead and their classification accuracy is lower than the alignment based 

approaches [118]. 

 
The integrated method ANN-EA increases the classification accuracy and improves 

the success rate [127]. The integration converges to global optimum faster than other methods 

[138] and sensitive to initial partitions and leads to high computational overhead [139] [141]. 

The integrated DM-EA method superior than k-means for the cluster quality and cluster 

sensitivity to primary partitions [141]. It can effectively create comprehensive trees and have 
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high predictive power [142]. The integrated method ANN-CBR-DM facilitates detection, 

classification and reliable diagnosis [144]. The integrated method EA-SI possesses strong 

searching capability, ability to converge quickly and performs better than BLAST and 

ClustalW while aligning short and medium sized sequences. But it leads to higher time 

complexity when it deals with large sequences [91] [143]. The integrated method ANN-DM-

EA tries to fill the performance gap between the amino acid sequences based feature and the 

evolutionary information based feature [147]. The integrated method ANN-DM-FL can find 

minimum gene subsets. This integration is simple, effective and offers high predictive 

accuracy [151]. The summary of the utilization of the integrated techniques is shown above. 

 

1.5 Results and Discussion 

 

The results are shown year wise, deployment of individual and integrated methods in 

the areas of GE, TR and PR, utilization of methods for solving challenges in GE, TR and PR 

one by one. In figure 1.1, the %age use of all the individual and integrated methods for all the 

biological problems considered in the areas, i.e., GE, TR and PR are demonstrated from year 

1988-2015. From the figure it is observed that the use of KBMs and ICMs is 4% in 1992-

1995. The year range 1988-1991 shows the minimum use, i.e., 1%. The maximum use (36%) 

of KBS and ICT in bioinformatics is in the year 2008-2011 and the minimum use 

(approximately 4%) is in the year 1988-1999 whereas in moderation it is used (approximately 

11%) in the year 2000-2003.  

 

Figure 1.1: Year wise use 
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In figure 1.2, the %age deployment of individual KBMs and CIMs in GE, PR and TR 

areas are shown. It is observed that ANN is the most widely used methods in these areas 

because of its ease of implementation and less computational overhead. The application of 

ANN in GE is 9%, in TR is 16% and in PR is 42%, whereas the usability of EA in GE is 5%, 

TR is 4% and PR is 3%. DM is equally employed as an EA in case of TR, i.e., 4%, but less in 

GE and PR, i.e., 1% and2%. But very few literatures were found on employment of CBR, FL 

and SI.  

 

Figure 1.2: Comparative views of utilization of individual KBMs and CIMs on Genomics, 

Transcriptomics and Proteomics 

 

 

  

In figure 1.3, the % age uses of integration of various KBMs and CIMs for solving 

GE, TR and PR areas problems are illustrated. From the figure, it can be observed that the 

maximum number of applications deploys the integration EA-ANN. It was found to be 5% in 
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In the area of TR, the integrated methods, namely ANN-EA-RF, DM-LDA, ANN-

PCA-PLS, ANN-DM-FL, ANN-EA-FL-SI, ANN-EA-FL, CBR-DM, ANN-Bayesian 

classifier, ANN-CBR-DM, ANN-DM-EA and ANN-EA-PCA contributed just 2% in solving 

the challenges, and methods like ANN-FL, DM-SI and ANN-DM-PCA contributed 4% 

whereas the methods like ANN-PCA and EA-FL, both shows 8% and the best contribution is 

given by the integrated method DM-EA, i.e., 10%. The integrated methods ANN-SI, ANN-

DM-RF and EA-SI were not implemented in area of TR. In case of PR, the best results are 

shown by ANN-EA and the methods like ANN-SI, ANN-DM-RF, DM-SI, EA-FL, ANN-DM, 

ANN-DM-EA also shows some contribution. Rest other methods does not show anything in 

the area of PR.  

 

Figure 1.3: Comparative views of utilization of integrated KBMs and CIMs on Genomics, and 

Transcriptomics and Proteomics 
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multiple sequence alignment and phylogenetic inference are also solved equally using these 

methods, i.e., 5%. In case of TR, the intricate task of gene selection and classification is 

solved using these methods and it shows a higher percentage of 47%. The other similar 

problems like gene extraction and classification; and gene expression data clustering and 

classification are solved 12% and 14% respectively. Sometimes, the task, i.e., dimension 

reduction and classification is solved in three phases for complex databases, it shows 5 %. 

 

Figure 1.4: Comparative views of utilization of KBMs and CIMs for biological tasks in 

Genomics 
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Figure 1.5: Comparative views of utilization of KBMs and CIMs for biological tasks in 

Transcriptomics 
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Figure 1.6: Comparative views of utilization of integrated KBMs and CIMs for biological 

tasks in Proteomics 
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extraction and automatic feature selection and provides low comprehensibility [53]. So, in 

order to deal with high dimensional data, we need to first reduce the dimension of the data set 

by incorporating any one of the mechanism of dimensionality reduction, then the 

classification of data will be done. 

 

1.6 Conclusions  

 

From the review, it is observed that the CIMs are extensively employed in 

bioinformatics. As compared to them, the applications of KBMs are least found because the 

computational intelligence methods are highly advantageous in solving the problems. The 

individual methods like ANN and EA are broadly employed, whereas DM is moderately used; 

and FL and SI are less used methods. The integrated methods, namely ANN-EA, DM-EA and 

EA-FL are also very widely applied in bioinformatics. The problems in these areas need to be 

resolved in different phases, such as the error occurred in the first phase is cumulated in 

second phase such as if proper feature selection method is not used, then error will be 

cumulated in classification, the error occurred in the conversion of sequence into multiple 

alignment or pairwise alignment, will be cumulated in encoding the sequence, the error 

encountered in filtering and classification steps will be cumulated in the extraction of the 

rules. Therefore, it is desired for an accurate prediction/classification that the errors should be 

removed at the initial phases itself. Otherwise the result will get the cumulative error at all the 

steps (from beginning to end). This study will help the novice researchers to choose 

appropriate KBMs and CIMs to deal with the challenges occurred in the representation, 

integration, analysis, interpretation and management of biological data.  

 

1.7 Motivation 

 

According to the report of “The Cooperative International Neuromuscular Research 

Group”, duchene muscular dystrophy occurs in 1/3500 people, spinal muscular atrophy occurs 

in 1/6000 people, cerebral palsy occurs in 6/1000 male births, myotonic muscular dystrophy 

occurs in 1/8,000 people, myasthenia gravis occurs in 1/10,000 people, becker muscular 

dystrophy occurs in 1/18,450 people, facioscapulohumeral muscular dystrophy occurs in 

1/20,000 people, amyotrophic lateral sclerosis occurs in 7/100,000 people and more than 

400,000 individuals are affected by cerebrovascular disorders. The earlier methods of 

diagnosis are highly complex, which leads to a great level of difficulty in understanding the 
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severity of disease occurred. These disorders follow a heterogeneous pattern of pathogenesis. 

So, in order to correctly diagnose a disease, we need to consider the gene expression levels 

through microarray experiment. But the extremely high dimension of NMD gene expression 

data sets poses a great challenge in successful diagnosis of the diseases. So, the need of 

monitoring of gene expression levels in the occurrence of a disease has motivated the 

development of an intelligent integrated method which first reduces the dimension of the data 

set by selecting the most important genes for diagnosis of the disease. The developed 

intelligent integrated method takes into account various parameters which show its success, 

such as accuracy, sensitivity, specificity, positive predicted value and negative predicted 

value. This thesis develops an integrated intelligent method with the ultimate aim of helping 

biologists in gene selection and accurate classification of various NMD disorders.       

 

1.8 Objectives of Thesis 

 

As observed from the literature review, the high throughput microarray technologies 

lead to the complex high dimensional and noisy gene expression data, and a limited number of 

observations as compared to the large number of gene expression values. These characteristics 

badly affect the analysis of microarray datasets and pose a challenge for building an efficient 

diagnostic model. Hence, there is a critical need to apply data-mining and computational 

intelligence methods to analyze these datasets efficiently. Therefore, the objectives of our 

thesis are 

 

1)  To apply computational intelligence method to remove noisy and redundant genes. 

2)  To apply computational intelligence method for extraction of discriminative genes. 

3)  To apply computational intelligence method for classification of gene expression data.  

 

Steps to achieve objectives: 

 

Step 1: To study all the individual CIMs applied to the microarray gene expression data for 

dimensionality reduction. 

Step 3: To study all the integrated CIMs applied to the gene selection from gene expression 

data sets. 

Step 4: To study all the methods applied for the diagnosis or classification of samples of 

diseases. 
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Step 5: To develop a new integrated method for preprocessing of data, for dimensionality 

reduction of data, for the classification of gene expression data and thus for the diagnosis of 

disease. 

Step 6: To implement the proposed method on the publicly available data sets. 

Step 7: To calculate the performance measures used to evaluate the quality of the proposed 

model. 

 

1.9 Outline of the Thesis 

 

The thesis is structured into eight chapters, in which the first chapter is all about the 

introduction and a comprehensive review of literature. The literature review is divided into 

two parts, i.e., individual methods and integrated methods. The individual methods are 

artificial neural network (ANN), fuzzy logic (FL), etc. The integrated methods are artificial 

neural network-swarm intelligence (ANN-SI), artificial neural network-evolutionary 

algorithm-random forest (ANN-EA-RF). The %age employment of all the methods is shown 

graphically in each area considered. Then it contains the motivation of the work and 

objectives of the thesis. At the end of chapter 1, a brief plan of all the chapters in the thesis is 

given.  

 

In chapter 2, we provide all the basic concepts used in this thesis. It includes the basic 

biological background information and problem statement, introduction to gene expression 

data, microarray technology, neuromuscular disorder classification problem and the associated 

issues, publicly available neuromuscular disorder data sets, feature selection and methods, 

classification and its methods, model selection parameters and model validation techniques.  

 

In chapter 3, we describe the proposed methodology “Diagnosis of 

facioscapulohumeral muscular dystrophy using cosine distance metric based hierarchical 

clustering and k-nearest neighbor”. In this, firstly cosine distance metric-hierarchical 

clustering method is applied to cluster the genes in the data set. The K nearest neighbor 

method is used to classify the samples using the clustered genes. The model proposed is  

cosine distance metric based hierarchical clustering-KNN and is compared with k-means-

LDA, k-means-QDA, k-means-KNN, euclidean distance metric based hierarchical clustering-

LDA, euclidean distance metric based hierarchical clustering-QDA, euclidean distance metric 

based hierarchical clustering-KNN, cosine distance metric based hierarchical clustering-LDA,  
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cosine distance metric based hierarchical clustering-QDA. The proposed model results are 

compared with other models in terms of accuracy, sensitivity, specificity, positive predicted 

value and negative predicted value.  

 

Chapter 4 is about “An integrated algorithm for dimension reduction and classification 

applied to microarray data of neuromuscular dystrophies”. In this chapter, supervised 

techniques are applied for dimensionality reduction. First, entropy filter feature selection 

method is employed to rank and sort the genes according to their importance. The highly 

discriminating genes are selected from all the genes. Then classification of samples is 

performed using the linear SVM by using only the selected genes. The proposed model 

entropy-linear SVM is compared with t-test-KNN, t-test-linear SVM, entropy-KNN. Again, 

the results are compared in terms of accuracy, sensitivity, specificity, positive predicted value 

and negative predicted value.  

 

Chapter 5 presents the proposed methodology “Building an intelligent integrated 

method of gene selection for facioscapulohumeral muscular dystrophy diagnosis”. In this 

chapter, the task of feature selection is done in three phases where the gene selection is done 

in the first two phases. In the first phase, a filter method, t-test is employed for the 

preselection of genes. In the second phase, an embedded method, genetic algorithm is 

deployed for the selection of genes. The first phase and second phase collectively selects the 

genes. Then, using those selected genes, the classification of samples is done using KNN. The 

proposed model, i.e., t-test-genetic algorithm-KNN is compared with t-test-genetic algorithm-

LDA and t-test-genetic algorithm-QDA. Here also, the results are compared using the same 

parameters, i.e., accuracy, sensitivity, specificity, positive predicted value and negative 

predicted value.   

 

Chapter 6 discusses the proposed methodology “A novel hybrid feature selection 

model for classification of NMDs using Bhattacharyya coefficient, genetic algorithm and 

radial basis function based support vector machine”. Here also, the task of feature selection is 

done in two phases. In the first phase, the Bhattacharyya coefficient is employed for gene 

ranking and preselection. In the second phase, the genetic algorithm is used for selection of 

genes. Then at the last, classification is done using radial basis function support vector 

machine (RBF SVM) using the only selected genes after the second phase of gene selection. 
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Other classification methods applied after the second phase are LDA, QDA, KNN and linear 

SVM. The performance parameter taken for comparison is the accuracy.  

 

 Chapter 7 presents the proposed methodology “A novel approach for gene selection 

and multi-class classification of neuromuscular disorders”. In this methodology, the task of 

gene selection is done using a median matrix which is created after processing gene 

expression matrix. Highly compact subsets of genes are selected using the matrix and these 

genes are used for the classification of samples using the RBF SVM method. Few other 

classification methods are also used for classification of samples, i.e., LDA, QDA, KNN and 

linear SVM. The model selection parameter is again accuracy. Leave-one-out cross validation 

technique is used to validate the model.    

 

 Chapter 8 presents the conclusion of the all the chapters of the thesis. The future work 

is also given at the end of this chapter.   

 
 

The detailed literature review presented in this chapter has been published in International  

Journal of Computational Biology and Drug Design, Vol. 9, No. 3, pp. 173-227, 2017, 

Inderscience Publishers, United kingdom, DOI: 10.1504/IJCBDD.2016.078277, mentioned under 

list of publications after chapter 8. 
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Chapter 2 

 

Basic Concepts 
 

 

In this chapter, we give information about the biological background, the problem 

statement, microarray data sets; various feature selection methods, classification methods, 

performance measures and the model evaluation methods. Section 2.2 gives the detailed 

information about the background, the problem statement and the various issues related to it. 

Section 2.3 details all the NMDs data sets used in this thesis. Section 2.4 introduces the 

feature selection methods and its categorization. Section 2.5 gives the various classification 

algorithms employed to classify the samples using to their respective classes. The 

performance measures employed to access the performance of various models and a selection 

of models is given in section 2.6. Section 2.7 gives a variety of the model validation 

techniques used in the work to validate the model.   

 

2.1 Introduction 

 

The diagnosis of NMDs is an active research area in bioinformatics. The correct 

classification of NMDs has great impact in providing the best treatment options to the 

patients. Earlier the diseases were diagnosed by considering the morphological appearances of 

the diseases. But these types of diagnostic methods have several restrictions in their diagnostic 

capability. The particularity of treatment specific to the kind of NMD distinguished by the 

pathogenic blueprint may increase the efficiency of the patients. To better understand the 

NMD classification problem, the diagnostic approaches based on the analysis of gene 

expression data have been given. As, the gene expression level is known to solve the 

fundamental issues relating to the prevention, diagnosis, biological evolution mechanism and 

drug discovery for a cure. The modern progress in microarray technology has provided us a 

way to monitor thousands of genes simultaneously, which affected the development in NMD 

classification procedures using gene expression data.  

 

The various issues related to the gene expression data are: first, the gene expression 

data usually have very high dimension, i.e., tens of thousands of genes; second, the number of 

samples is very less and third most of the genes in the dataset are irrelevant to the NMD 

classification. Thus, in order to accurately classify the NMD dataset, we need to reduce the 
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dimension of the dataset by removing the irrelevant genes from it. The dimensionality 

reduction techniques were introduced to remove out the noise, irrelevant and redundant 

features from the dataset. The several goals of dimensionality reduction techniques are 

lowering the computational complexity of the system, improving the learning performance, 

building the better generalization model, decreasing the cost of classification and the required 

storage. Some researchers proposed to reduce the dimension of the NMD dataset before the 

classification task. It helps to remove out the noise, redundant and irrelevant genes which 

further increases the classification accuracy and reduces the running time.  

 

2.2 Background Information and Problem Statement 

 

2.2.1 Biological background information 

 

During the process of reproduction, individuals transmit some particles known as 

genotype to their offspring. The public display of the genotype is called the phenotype. In 

every living system, cells are the fundamental working units. Of the two different types of 

cells, each organism is made up of one type, i.e., prokaryotic cells and eukaryotic cells. Inside 

the eukaryotic cells, there is a nucleus. The cells contain proteins whose behavior, 

concentration and shape represents the attributes of a cell. For example, fat cells and hair cells 

are varied because they are consisting of different proteins. The instructions required to direct 

the activity of a cell are contained within the deoxyribonucleic acid (DNA). The ribonucleic 

acid (RNA) works as a mediator for these activities.  

 

DNA is the genetic material which is transmitted over generations. It is also known as 

the blueprint of all living organisms because the genetic information needed for building and 

maintaining the life in a cell is encoded by DNA. The DNA holds the information on how a 

cell works. The organization of a DNA molecule consists of a double helix structure which 

includes phosphate group, sugar molecule and a nitrogen base. The bases are adenine (A), 

guanine (G), cytosine (C) and thymine (T). Hence, every nucleotide is made up of a 

deoxyribose sugar, a phosphate group and one of the four nitrogen bases. The arrangement of 

base pairs in a DNA strand actually tells the instructions required to do a particular activity. 

The genome encodes for the whole DNA sequence that code for a living thing. The full set of 

DNA in an organism is called the genome. The genome breaks down into a set of genes where 

each and every gene is defined for some unique and specific purpose. The proteins become 



 

78 
 

active in the presence of a third molecule, i.e., RNA whose structure is similar to DNA. A 

chromosome is the configuration where the genetic material is organized into several 

separated DNA molecules.      

 

2.2.2 Gene expression  

 

The formulation of an organism and the properties of cells are determined by the 

sequence of four nucleotides which are tied along the DNA chain. Genes which further 

produce proteins are represented by the sequence of nucleotides in the DNA chain. The 

expression of genetic information stored in the DNA molecule occurs in two phases: (i) 

transcription stage (ii) translation stage. In the transcription phase, the mRNA is transcribed 

from the DNA molecule and in the translation stage, amino acid sequences of proteins are 

translated from mRNA that performs various cellular functions. At a given time, a gene can be 

highly active, moderately active or inactive. The activity level of a gene is used to indicate the 

rate at which the corresponding protein is produced by means of RNA. The gene expression is 

defined as the procedure of transcribing a gene’s DNA sequence into RNA. The level of gene 

expression shows the amount of mRNA produced during the process of transcription. The 

various biological states such as embryogenesis, cell development, etc. are associated with the 

occurrence of specific patterns of gene expression data. So, the gene expression level indicates 

the activity or functionality of a gene under some biochemical conditions.  

 

When some changes occur in the DNA molecules during the process of replication, 

they cause some serious diseases in the human body. The mutation or error in a gene(s) 

changes the normal cells to malignant cells when replicating, which ultimately causes the 

disease. This mutation can be due to the substitution, insertion, deletion, inversion or 

recombination in the DNA molecule. The substitution mutation occurs when a nucleotide 

change into another nucleotide, e.g. from C to A or from C to A. During inversion mutation, 

the nucleotide inverts by 180 degrees. Another type of mutation, i.e., recombination mutation 

influences part of nucleotides between homologous sequences of homologous chromosomes. 

Another type of mutation is insertion mutation in which a long sequence of nucleotide is 

inserted into a DNA sequence. In deletion mutation, a long sequence of nucleotide is deleted 

from a DNA sequence. If a mutation in a DNA sequence does not affect the process means the 

production of amino acids after the mutation is same as amino acid before the mutation, then 

the mutation is known as silent or synonymous. If both are not same, then it is known as non-
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synonymous. The gene expression analysis involves examining the gene expression levels of a 

large number of genes simultaneously under the condition of interest. The microarray 

technology is effectively used to examine a large number of genes of an organism 

simultaneously under some condition.  

 

2.2.3 Microarray technology 

 

The microarray technology is used to monitor the expression level of genes of a whole 

organism simultaneously under the given conditions of interest, which is called the gene 

expression analysis or the gene expression profiling. There are two technologies which 

analyze the entire genome simultaneously (i) microarrays (ii) Serial analysis of gene 

expression (SAGE). The microarrays are most popular technology which is further of two 

types: complementary DNA microarrays and high density oligonucleotide arrays which 

compute the relative level of mRNA produced between different samples. The SAGE 

technology measures the absolute level of mRNA produced between different samples. The 

most common application of microarray technology is to compare the gene expression set 

maintained in two conditions, i.e., normal condition and a particular condition, e.g. to 

compare the expression profiles for diseased cells and normal cells to identify the diseased 

genes and to discover the drug by comparing these expression profiles.  

 

The expression ratio of a gene represents the expression differences between two 

conditions. Usually normalization is done to remove out the variability of cDNA microarray 

data and to process the data which can then be shown in the structure of gene expression 

matrix.  

 

2.2.4 Neuromuscular disorder classification problem 

 

The NMD classification problem is defined as to identify to which of the class labels, 

a new sample belongs based on the training data set. This problem is addressed by employing 

gene expression profiling. Various studies have revealed that the diseases are related to some 

mutations in genes or change in their expression levels. The present work solves the two types 

of classification problems, i.e., gene selection for classification of binary class datasets and 

gene selection for classification of multi-class datasets. There is no single classification 

algorithm that is superior over the rest. Some classification algorithms work only on the 

binary classes and are not extensible to the multi-class problem, while some classification 
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algorithms are more broad and flexible. The problem of classification of NMDs using gene 

expression levels is different from other classification problems due to its distinct ive nature 

and the application area.     

 

2.2.5 Various issues 

 

There are a few issues related to the challenge of classification of microarray gene 

expression datasets. The first issue is arrived due to the uniqueness in gene expression data 

sets. The sample size of publicly available gene expression datasets is very small. But on the 

other hand, with the help of microarray technology, it is now doable to monitor the dataset 

containing tens of thousands of genes. This nasty situation of small sample size and the high 

dimensional gene dataset is a very big challenge for classification algorithms for NMD 

classification. Most of the classification algorithms were not developed by keeping these 

features of data set in the mind. So, most of the dataset with such a high dimension and sparse 

samples tends to overfit which is really a very big issue. The huge number of genes in a 

sample increases the computational overhead and training time. 

 

The second issue with the classification of a NMD dataset is the presence of noise due 

to the biological and logical reasons. The noise arises due to biological reasons causes 

problems because it is found that most of the genes in the dataset are not relevant for the 

predicting the classes of NMDs. The logical noise occurs during the processing of data at 

different stages. Due to these kinds of noise in the data, it is extremely difficult to do the 

proper classification of NMDs. 

 

The third issue is the existence of a huge number of irrelevant genes in the dataset. 

Most of the genes in the dataset are not particularly related to the class of NMD; hence a large 

number of genes are irrelevant to the class. The discriminatory power of the most relevant 

genes gets decreased due to the existence of a huge number of irrelevant genes. It also 

increases the computation time while increasing the difficulty in the classification.        

 

 So to avoid these nasty issues, we need to select a few genes which lead to the 

accurate classification. This would help in making an efficient and accurate classification 

algorithm by using those genes in the training phase.   
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2.3 Publicly Available Microarray Neuromuscular Disorder Data Sets 

 

The NMD data sets are taken from Gene Expression Omnibus (GEO) and National 

Centre for Biotechnology Information (NCBI).   

 

2.3.1 DST-1 

  

The first dataset (named as DST-1) taken is of Facioscapulohumeral muscular dystrophy 

(FSHD) dataset entitled “Transcriptional profiling in facioscapulohumeral muscular dystrophy 

to identify candidate biomarkers” with accession id GSE36398. The data set contains the 

expression level of 50 samples and 33,297 genes in which 24 samples are healthy and 26 

samples are affected by FSHD. The dataset contains the samples of RNA extracted from 

biceps and deltoids. The experiment was run on the platform GPL6244 Affymetrix Human 

Gene 1.0 ST Array [152].  

 

2.3.2 DST-2 

 

The second dataset (named as DST-2) taken is of again FSHD from NCBI. The data is a small 

part of the accession id E-GEOD-3307 entitled “Transcriptional profiling by array of 12 

human muscle diseases”. The experiment was run on arrays A-AFFY-33 – Affymetrix 

GeneChip Human Genome HG-U133A and A-AFFY-34 - Affymetrix GeneChip Human 

Genome HG-U133B. The dataset taken for this experiment was run on A-AFFY-33 – 

Affymetrix GeneChip Human Genome HG-U133A. The complete dataset contains the 13 data 

sets of profiling of human skeletal muscles and a total of 242 samples. From the whole 

dataset, the small part of the data is taken which consists of 14 samples affected by FSHD and 

18 normal samples. The dataset contains the expression level of 22,645 genes [153].  

 

2.3.3 DST-3 

 

The third dataset (named as DST-3) is of Juvenile Dermatomyositis (JDM) with accession id 

E-GEOD-3307 entitled “Transcriptional profiling by array of 12 human muscle diseases”.  It 

contains 21 samples affected by JDM and 18 healthy or control samples. Again, the whole 

dataset contains the expression level of 22,645 genes [153].  
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2.3.4 DST-4  

 

The fourth dataset (named as DST-4) is again from E-GEOD-3307. This dataset differentiates 

between Amyotrophic Lateral Sclerosis (ALS), Fascioscapulohumeral Muscular Dystrophy 

(FSHD), Juvenile Dermatomyositis (JD), Duchenne Muscular Dystrophy (DMD) and healthy 

(normal) samples. It involves a total of 72 samples, where 9 samples belong to ALS, 14 

samples to FSHD, 21 samples to JD, 10 samples to DMD and rest 18 samples to healthy class. 

The expression levels of 22,645 features were monitored in each sample [153].  

 

2.3.5 DST-5 

 

The fifth dataset (named as DST-5) involves Acute Quadriplegic Myopathy (AQM), Becker 

Muscular Dystrophy (BMD), Limb Girdle Muscular Dystrophy 2A (LGMD-2A), Limb Girdle 

Muscular Dystrophy 2B (LGMD-2B), Limb Girdle Muscular Dystrophy 2I (LGMD-2I) and 

healthy samples. The dataset contains total 55 samples which include 5 samples of AQM, 5 

samples of BMD, 10 samples of LGMD-2A, 10 samples of LGMD-2B, 7 samples of LGMD-

2I and 18 healthy samples. In this dataset, a total of 22,283 features were represented in each 

sample [153].    

 

2.3.6 DST-6 

 

The sixth dataset (named as DST-6) was taken from EMBL-EBI which differentiates between 

various kinds of muscular dystrophies; there are total 121 RNA samples of 13 classes of 

human skeletal muscles under the experiment array. The classes are acute quadriplegic 

myopathy (AQM), amyotophic lateral sclerosis (ALS), becker muscular dystrophy (BMD), 

facioscapulohumeral muscular dystrophy (FSHD), juvenile dermatomyositis (JD), duchene 

muscular dystrophy (DMD), hereditary spastic paraplegia (SPG4), autosomal dominant 

Emery-Dreifuss muscular dystrophy (AD-EDMD), X-linked recessive Emery-Dreifuss 

muscular dystrophy (X-Linked-EDMD), limb girdle muscular dystrophy 2 A (Caplain-3), 

limb girdle muscular dystrophy 2 B (Dysferlin), limb girdle muscular dystrophy 2 I (FKRP) 

and normal human skeletal muscles (NHSM) which have 5, 9, 5, 14, 21, 10, 4, 5, 3, 10, 10, 7 

and 18 samples respectively. The expression levels of 22,645 genes were reported in each 

sample in the entire dataset [153]. 
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2.4 Feature Selection 

 

There are two types of dimensionality reduction methods, i.e., feature extraction and 

feature selection. Feature extraction methods transform the data into new feature space with 

lower dimensionality by combining the original features to form new constructed features. 

The various examples of feature extraction approaches are PCA, LDA, and canonical 

correlation analysis. Feature selection methods, particularly selects a small feature subset that 

minimizes redundancy and maximize significance to the class labels in classification. The 

feature selection techniques are considered better than the feature extraction techniques 

because feature extraction techniques transform the original feature space to a new feature 

space with lower dimension by combining the original features. It is extremely difficult to link 

the features from original feature space to new transformed feature space and the further 

analysis of new features is problematic since the transformed features bear no physical 

meaning. But feature selection techniques select a subset of features from the original feature 

set without any transformation which preserves the physical mapping and the meaning of the 

original features. So the features selected using feature selection techniques are more 

interpretable and more readable.  

 

For the task of classification, the feature selection techniques should select only those 

features which are capable of discriminating samples that belong to different classes. The 

feature selection techniques aim to select a feature subset which avoids the issue of 

overfitting, reduces the cost of classification; provides higher classification accuracy, 

classifier independence, compactness and biological relevance. Besides these benefits, feature 

selection techniques also add an extra layer of complication to the system. The feature 

selection algorithms can serve to both supervised and unsupervised learning. Supervised 

learning is applied when the class labels are known a-priori. The unsupervised feature 

selection models, search for the feature subset when the class labels are unknown, always 

depending upon the clustering quality measures. The supervised feature selection techniques 

are considered better because they assesses the relevance of features guided by the label 

information, but a good selector needs enough data which are very time consuming. While the 

unsupervised feature selection works with unlabeled data, so it is very difficult to assess the 

significance of features. The supervised feature selection techniques can be further 

categorized into three types, focusing on how they embed the feature selection search with the 

classification model shown in figure 2.1. 
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Figure 2.1: Categorization of feature selection methods 

 

 
          

Filter models  
 

The filter model assesses the significance of features by taking a glance only at the 

intrinsic characteristics of the data and without utilizing any particular classification 

algorithms. The general features of the data are distance, consistency, information, correlation 

and dependency. The feature selection process is separated from the classifier learning so that 

the bias of a learning algorithm does not interact with the bias of a feature selection algorithm. 

A filter model is usually made up of two steps: first a relevance score is calculated based on 

some feature evaluation criteria. This feature evaluation can be either univariate or 

multivariate. In the former way of feature evaluation, each feature is ranked independent of 

the other features without considering the correlation among genes and in the latter way of 

feature evaluation, features are ranked while considering the correlation among them. Second, 

the features with the high relevance score are given as input to the classification method and 

the rest of the features are discarded. The various advantages of using univariate filter feature 

selection methods are they are fast, independent of any specific classifier and are easily 

scalable. Besides these advantages, univariate filter methods ignore the feature dependencies 

and the interactions with the classifier. But on the other hand, the multivariate feature 

selection model benefits us by considering the feature dependencies, and they are also 

independent of the classifier. The disadvantages are time-consumption and less scalability in 

comparison of the univariate models. Likewise, they also pay no attention to the interaction 

with the classifier. The filter models are usually applied as a pre-processing step in feature 

selection for classification.  

 

 
 

 

Feature selection methods 

Filter Models Wrapper Models Embedded Models 
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Wrapper models 

 

Wrapper models use the classification accuracy of a specific learning algorithm to 

calculate the excellence of chosen features. They choose a feature subset by evaluating a 

specific classifier and they keep on searching and evaluating the subsets of features until the 

desired quality is achieved. The architecture of a wrapper model of feature selection consists 

of two main steps: first it contains a feature selection search component which searches the 

subsets of features from all the possible feature subsets. Secondly, it has a feature evaluation 

component which evaluates the subsets of features utilizing a specific classifier. In the next 

iteration, it goes back to the feature search component for the next feature subset for which the 

quality is estimated using that particular classifier. They keep on iterating until the desired 

quality is reached. The subset of features with highest accuracy is chosen as the final subset to 

learn the classifier. A number of search strategies can be used: hill climbing, best-first, 

branch-and-bound and GA. These models often obtain better classification accuracies as 

compared to filter models. But these models are very expensive to run for data with a large 

number of features, highly computationally expensive, often prone to overfitting and they can 

perform only classifier dependent selection.   

 

Embedded models  

 

These models were introduced to bridge the gap between filter models and wrapper 

models. The embedded models of feature selection, selects a subset of features while 

incorporating the feature selection procedure in the learning algorithm itself. It takes the 

advantages of both filter models and wrapper models. First, it incorporates the statistical 

criteria as filter models to select the several candidate feature subsets with a given cardinality. 

Second, it chooses the subset with highest classification accuracy. So the embedded models 

are comparatively efficient as filter models and comparatively accurate as wrapper model. But 

as compared to wrapper model, these embedded models are less computationally expensive. 

These models achieve both model fitting and feature selection simultaneously.   

 

2.5 Classification  
 

For the classification of samples, different linear and nonlinear classification methods 

are used. From the former category, LDA is used and from the latter category, QDA, KNN, 

SVM are used to classify the samples. 
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2.5.1 Linear discriminant analysis 
 

LDA was developed by R.A. Fisher in 1936. It is a joint probability model. It is known 

as the generalization of Fisher’s linear discriminant [154]. It is a linear classifier used to locate 

the linear combination of features to separate the objects of two or more classes. LDA works 

on the concept of covariance matrices which tries to provide more class seperability by 

drawing a decision region between the given classes. It assumes that the covariance of each of 

the classes is identical. Here, it uses the “class-independent-transformation” approach which 

considers each class as a separate class against all the other classes. It maximizes the ratio of 

the overall variance of the within class variances which guarantees the maximal seperability. 

This technique can also be used as a preprocessing step in pattern classification and 

dimensionality reduction. The benefit of LDA is its simplicity and it requires no parameter 

tuning.  

 

LDA works as follows: Compute the mean of the entire data set and the both data sets. 

Let    be the mean of the entire data set,    and    denotes the mean of dataset1 and dataset2 

respectively. The mean of the entire data set and within class scatter is computed in equations 

2.1 and 2.2 respectively. For a two class classification problem, the apriori probabilities are 

assumed to be 0.5, so the within class scatter is shown in equation 2.3. The between class 

scatter and the optimizing criteria are shown in equations 2.4 and 2.5 respectively. 

  

                                                                                                                                           

 

      

 

                                                                                                                                        

 

                                                                                                                                     

 

                   
 

 

                                                                                                           

 

                                                                                                                                           

 
 

 



 

87 
 

2.5.2 Quadratic discriminant analysis 
 

QDA is a generalized version of LDA. It is a nonlinear classifier used to assign data to 

one or more classes. The possibility of an observation being in a sample is determined by the 

quadric surface. A new sample is classified into that class which has the smallest squared 

distance. Like LDA, it is useful when class labels are known beforehand. QDA is known to 

have more predictability power than LDA. Unlike LDA, there is no assumption that the 

covariance of each of the classes is identical.  

 

2.5.3 K-nearest neighbor 

 

KNN is a non-parametric method which can be employed for both regression as well 

as classification tasks  [156]. It is a type of supervised and lazy learning [155], and is a non-

generalizing method. KNN is also known as an instance based learner which works on the 

“similarity based approach” or “learning by analogy”. It is based on the minimum distance 

measure between the test samples and training samples. KNN is a bit more computationally 

expensive as compared to other learners. They need high storage requirement and efficient 

algorithms to process them. 

 

The input to the algorithm is given in the form of vectors as a training data set with 

their selectors which must reside in the memory at the run time. It stores all the training cases 

in memory, based on which it classifies the testing cases by searching k-most similar cases 

from training data. In lazy learning, a classifier in its learning phase does not construct any 

model for the classification of any test tuple. It simply stores the training tuples in the 

memory. When it encounters the test tuple for classification, it performs generalization and 

constructs a model so that it can classify the test tuples based on the similarity of the stored 

training tuples. The lazy learners perform a huge amount of work when presenting the 

classification of test tuples. That is why it is called memory-based classification. The tuples 

will be defined as the “nearest neighbors” of the unknown tuple. The word “nearest” is 

defined in the term of “closeness” which is a distance metric. The various distance metrics are 

“euclidean”, “cosine”, “hamming”, “Manhattan” and “correlation”.  

 

2.5.4 Support vector machine 
 

SVM was introduced in COLT-92 by Boser, Guyon and Vapnik [157]. These are a set 

of supervised learning algorithm used for both classification as well as regression tasks. It is 



 

88 
 

used to classify both linear and non-linear data. SVM uses two notions to solve any problem, 

i.e., large-margin separation and kernel functions. SVM transforms the original data to higher 

dimension by the means of non-linear mapping. It searches for a decision boundary, i.e., a 

linear separating hyperplane in the higher dimension which differentiates the tuples of one 

class from another class.  

 

For binary class classification problem where the classes are linearly separable, let us 

assume that we have   given in equation 2.6. In equation 2.6,    is the set of training tuples 

with associated class labels  . The value of    can be either of these two, +1 or -1, which 

corresponds to the classes                 and                respectively. There are 

a number of separating hyperplanes shown by the dashed lines. The task here is to find the 

separating hyperplane which gives the minimum classification error for the classification of 

test data, that hyperplane will be considered as the “best” hyperplane. The maximum marginal 

hyperplane is necessary for accurately classifying the data. We assume that the hyperplane 

with the maximum margin is more accurate than the hyperplanes with smaller margins for 

classifying the tuples of test data. That is why, SVM always search for the maximum marginal 

hyperplane. A separating hyperplane is defined in equation 2.7, W is the weight vector and b 

is bias. The tuples in the training data are 2-D where x1 and x2 are the values of attributes A1 

and A2 respectively. If b is considered as an additional weight than the equation 2.7 is 

rewritten as equation 2.8. Any point which lies above the separating hyperplane should satisfy 

the equation 2.9 and any point which lies below the separating hyperplane should satisfy the 

equation 2.10. The hyperplanes which defines the sides of the margin are given in equations 

2.11 and 2.12. Any tuples in the test data set which lies on or above H1 is associated with the 

class +1 and any tuples which lies on or below H2 is associated with class -1. Joining the 

equations 2.11 and 2.12, we get equation 2.13. 
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The support vectors are the data points or tuples which lie on H1 or H2 satisfy the 

above equations. The vectors give the most important information for classification and are 

very difficult to find. These are shown in figure 2.2. In figure 2.2, the support vectors are 

shown with the darker color. We can also calculate the size of the maximal margin. The 

distance from the separating hyperplane to any point on H1 is 
 

   
 where    the euclidean 

norm of W, i.e., is     . So, the maximal margin is
 

   
. The linear SVM classifier is defined 

as the inner product between two vectors, which is given in equation 2.14. The decision 

function  (y) decides how to classify the data and assigns a score for the input y. The decision 

function for linear classifier is of the form of equation 2.15. Here z is weight vector and b is 

bias. It should satisfy the set of inequalities given in equation 2.16. The RBF kernel is given in 

equation 2.17. 

 

Figure 2.2: Support vectors 
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Class 1, y = +1, diseased 

Class 2, y = -1, healthy 
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2.6 Model Selection  

 

Model selection is defined as the process of choosing one “best” classifier from all 

classifiers if we have more than one classifier. There are some metrics which help in model 

selection by evaluating the performance of classifiers.  

 

2.6.1 Metrics for model selection 

 

The various metrics for model selection or evaluating the performance of a classifier 

are: accuracy (ACC), sensitivity (SNS), specificity (SPC), positive predicted value (PPV) and 

negative predicted value (NPV). For the problem of classification, we take two classes, i.e., 

positive class and negative class. Let us suppose, there are two classes of any disease 

diagnostic problem, namely diseased class and healthy class. According to the condition of 

interest, the samples in positive class are diagnostic_result = positive, while the samples in 

negative class are diagnostic_result = negative. Suppose we have trained our classifiers on the 

training data and now we are testing the classifier’s prediction ability on the test set. Here are 

some terminologies which we are using: P defines the numeral of samples in the positive class 

and N represents the numeral of samples in the negative class. 

 

The four building blocks which are needed for the evaluation of a classifier’s class 

prediction ability are true positive (TP), true negative (TN), false positive (FP) and false 

negative (FN). TP is defined as the numeral representing the positive samples which are 

correctly classified by the classifier. TN is defined as the number of negative samples which 

are correctly classified by the classifier. FP is the number of negative samples which are 

incorrectly classified as positive. The actual class for these samples is diagnostic_result = 

negative, but the predicted class by the classifier is diagnostic_result = positive. FN is the 

number of positive samples which are incorrectly classified as negative. The actual class for 

these samples is diagnostic_result = positive, but the predicted class by the classifier is 
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diagnostic_result = negative. All these measures are placed in a useful tool which analyses the 

classifier’s performance, confusion matrix. It is a table which represents the number of correct 

and number of incorrect predictions. P’ defines the total number of samples either correctly or 

incorrectly classified as positive. N’ defines the total number of samples either correctly or 

incorrectly classified as negative.   

 

Table 2.1: Confusion matrix 

 

Predicted class 

 

 Actual class                

 

 
 

The total number of samples in the dataset is calculated by the equation 2.18  

 

                                                                                                                                 
 
                                                                                                                                                       

The performance metrics are calculated from the confusion matrix. ACC is defined as 

the classifier’s ability to accurately classify the samples. It represents the percentage of 

samples that are correctly classified by the classification algorithms. It is given in equation 

2.19. The misclassification rate (MCR) is also calculated which is shown in equation 2.20. 

SNS represents the classifier’s ability to correctly predict the positive samples. It is the ratio 

of true positive and total number of samples and is given in equation 2.21. SPC defines the 

classifier’s ability to correctly predict the negative samples. It is the ratio of true negatives and 

total number of samples and is given in equation 2.22. PPV represents the ratio of true 

positives and the total number of samples predicted to be true either correctly or incorrectly. It 

is also called precision and defined in equation 2.23. NPV represents the ratio of false 

positives and the total number of samples predicted to be false either correctly or incorrectly. 

It is defined in equation 2.24. 
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Besides these performance metrics, there are a few other aspects on which the 

performance of a classifier is evaluated. These are: robustness, scalability and speed. 

Robustness is defined as the classifier’s ability to correct predicts the samples given the data 

contain missing value and noise. A classifier is said to be robust if the performance of a 

classifier does not degrade when dealing with the noisy data. Scalability represents the 

classifier’s ability to correctly predict the samples given a huge dimensional data. A classifier 

is said to be scalable if its performance does not get reduced when dealing with large amount 

of data. Speed is defined using the term computational cost involved when classifying the 

data.      

 

2.7 Model Validation 

 

2.7.1 Holdout validation 

 
In holdout validation, the dataset is divided into two parts: training data set and test 

data set. According to the conventional rule of validation, the dataset is divided in the ratio of 

70-30, i.e., 70 % training data set and 30 % test data set. The training dataset is used by the 

function approximator to fit the function and derive the model. The function approximator 

predicts the output values for the data in the testing dataset.  

 

2.7.2 Cross validation  

 

It is a model validation technique for evaluating how the results of a statistical analysis 

will generalize to an independent data set. When the aim is to perform prediction, it is used to 
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evaluate how a predictive model will perform in general. In any problem, a model is usually 

given a dataset of known data on which training is run (training dataset) and a dataset of 

unknown data on which the model is tested (test dataset). It consists of dividing the dataset 

into complementary subsets, performing the analysis of training subset and validating the 

analysis of test data set. The various types of cross validation techniques are: 

 

2.7.2.1 Leave-one-out cross-validation (LOOCV) 

 

It is a special case of K-fold cross validation technique in which the whole dataset is 

divided into N number of datasets where N = K. Each time all the N-1 datasets are used as 

training datasets while leaving 1 different data set for the prediction. The error rate is 

computed by averaging the error rates from all the test datasets [16] [36] [44] [53] [54] [74]  

[77] [102] [124] [129] [131] [145] [148] [150]. 

 

2.7.2.2 K-Fold cross validation 

 

In this type of cross validation, the data set is divided into K equal sized parts. The 

function approximator fits the values for K-1 parts of the data set and predicts the output value 

of the K
th

 part. Every time all the K-1 parts are treated as a training data set and a different K
th 

part is treated as test data set. The average error rate of testing dataset is calculated from all 

the iterations of K
th

 part. The general choices of K are 3, 5 and 10 [12] [16] [56] [57] [59] [69] 

[96] [110] [115] [122] [128] [134] [137] [139] [145] [148] [159]. 
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Chapter 3 

 

Diagnosis of Facioscapulohumeral Muscular Dystrophy using Cosine 

Distance Metric based Hierarchical Clustering and K Nearest Neighbor  
 

 

In this chapter, a gene clustering model is designed using an unsupervised approach of 

feature selection to overcome the nasty issue of dimensionality reduction, thus leading to an 

accurate classification of NMD dataset. The designed model emphasizes the accurate 

classification by clustering the significant genes using the cosine distance metric based 

hierarchical clustering method. The whole chapter is organized in the following sections: 

Section 3.1 presents the introduction. Section 3.2 gives the methodology for gene selection 

and classification of FSHD. Section 3.3 presents the experimental results and their 

comparison. Section 3.4 concludes the chapter.       

 

3.1 Introduction 

 

The genetic diagnosis of NMD is an active area of research. The microarrays are used to 

examine the changes in the activity or expression level of genes for the accurate diagnosis. As 

the problem discussed in chapter 2, the dimension of the gene expression matrix is very large 

as compared to the number of publicly available samples. Hence, the dimensionality of the 

gene expression matrix needs to be reduced for the correct diagnosis. So, in the present 

chapter, we have made an intelligent integrated model for reducing the gene expression matrix 

dimension which further leads to the accurate classification of NMD datasets. An 

unsupervised approach of feature selection is implemented by the means of clustering 

methods.  

 

The NMD chosen for the evaluation of the proposed integrated model is 

facioscapulohumeral muscular dystrophy (FSHD). It is an inherited, autosomal dominant 

NMD [161] [162]. The term ‘facioscapulohumeral’ is comprised of the name of muscles of 

the body, i.e., face (face), scapula (shoulder) and humeral (upper arm). This disease generally 

affects the upper body and causes the weakness in the muscles. It is caused due to the 

narrowing of polymorphic macrosattelite repeat D4Z4 on chromosome 4q35 [162]. According 

to the FSHD Global Research Foundation, a new estimate says that FSHD affects 1 out of the 

7500 people. The symptoms of the disease are more prone in men than women.  
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For the diagnosis of any NMD, first a neurologist sees the pattern of the muscles, 

which is usually done using electromyography (EMG). EMG depicts that the person is 

suffering from the disease, but not able to differentiate its kind. A physician always prefers the 

genetic testing for the diagnosis of any NMD. This is done by monitoring the gene expression 

levels using the microarray technology. In the genetic diagnosis of FSHD using microarrays, 

usually the blood samples are monitored. The smallest genetic changes are detected using the 

microarray technology by considering those blood samples.  

 

Because of the typical nature of the FSHD microarray data sets, i.e., tens of thousands 

of genes, but a very few number of samples; which simply directs to the issue of overfitting. 

This typical nature of the data sets, poses a challenge in the correct diagnosis of the disease. 

The informative genes existing in the data set that are particularly related to the disease are 

very less. As a very less number of genes have different level of activity under the condition 

of interest, whereas a large numbers of the genes exhibit a similar expression profile, so they 

are not relevant to the classification task. Hence, to correctly diagnose the disease, there is a 

need to reduce the number of genes. This challenge is similar to the problem of feature 

selection in computer science where the main aim is to increase the classification accuracy. As 

stated earlier by employing the data reduction methods, we can increase the performance of 

classifiers by decreasing its computational burden. In addition to that we can reduce the 

training time, execution time, cost of classification and the risk of overfitting which will help 

in the efficient classification of the data set. So, an intelligent integrated model is proposed 

which first reduces the dimension of gene expression matrix and then does the accurate 

classification of the data set.  

 

3.2 Methodology 

 

The block diagram of the proposed model is shown in figure 3.1. In this chapter, we 

have implemented an unsupervised approach of gene selection, i.e., two types of clustering 

methods, namely, k-means and hierarchical clustering algorithm (with euclidean and cosine 

distance metrics) are deployed to cluster the informative genes. Before implementing 

clustering methods, Wilcoxon signed rank test is employed to rank the genes. To the ranked 

genes, clustering is applied. Followed by the clustering algorithms, three classification 

algorithms, LDA, QDA and KNN are implemented one at a time. So, the nine intelligent 

integrated approaches are implemented on the FSHD dataset DST-1 are: K-means-LDA, K-
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means-QDA, K-means-KNN, euclidean distance metric hierarchical clustering-LDA, 

euclidean distance metric hierarchical clustering-QDA, euclidean distance metric hierarchical 

clustering-KNN, cosine distance metric hierarchical clustering-LDA, cosine distance metric 

hierarchical clustering-QDA and cosine distance metric hierarchical clustering-KNN.  

  

Figure 3.1: Block diagram of the proposed model 

 

 

 

Clustering is the procedure of combining a number of data objects into multiple 

groups, subsets or clusters. While the data objects in a cluster are alike to each other and 

different to data objects in other clusters. That is why; sometimes it is called an automatic 

classification. The main component in a clustering algorithm is the distance between the 

attribute values which is used to assess the similarity and dissimilarity between the clusters. It 

is useful to discover the previous unknown groups within the data. Clustering is a form of 

learning from observations.  

 

The clustering methods can be divided into two types: partition based clustering and 

connectivity based clustering. In this step, we have implemented both types of clustering 

methods on genes and the results are compared. From the former type, k-means clustering 

method is employed and from the latter type, hierarchical clustering is employed. Assume we 

have a set of n objects; the partitioning based clustering methods partitions the objects into k 
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clusters. Here each cluster is represented by a partition with the condition k≤ n. The condition 

for making cluster is that the each cluster must contain at least one object. These clustering 

methods follow the simple rule of “restricted cluster separation” which means one object just 

belongs to one cluster. One type of partition based clustering method is k-means clustering 

algorithm. In the k-means clustering, the number of clusters needs to be prior defined. The 

criterion for making k clusters in k-means clustering algorithm is that the intra-cluster objects 

are more similar and inter-cluster objects are more dissimilar. The working of k-means 

algorithm is as follows: In the first step, k objects out of objects in D are randomly selected, 

initially these k objects represent the center or cluster head or cluster mean. For the 

outstanding objects in D, find out the most similar cluster for each object and the similarity is 

found based on the “Euclidean” distance between the cluster mean and the object. It keeps on 

iterating until it improves the similarity within the cluster. In every iteration, for every cluster 

it calculates the new mean of the objects in a cluster. The objects are reassigned according to 

the new mean of the clusters. The algorithm will stop iterating when the clusters formed in 

previous iteration is same as the clusters formed in the current iteration. The algorithm for k-

means is given below. 

 

Algorithm: K-means. For partitioning, while every cluster’s head is presented by the 

mean value of objects in the cluster.    

 

Input: 

 k: number of clusters 

 B: n objects in a data set. 

 

Output: Data set is divided into the set of k clusters 

 

Method:  

(1) The initial cluster centers are chosen randomly by choosing k objects from D; 

(2) Repeat 

(3) (Re) assignment of each object to the latest cluster to which the object is most alike, based 

on the mean value of the objects in the cluster; 

(4) Revise the cluster means. 

(5) Until no change;   
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As we have seen that K-means clustering algorithm is based on centroid and develops 

in an iterative manner. Its main aim is to separate the n number of observations into k number 

of clusters, in which each observation lies in the cluster which is having the nearest mean. The 

clusters are made in such a way that the intra cluster distance is less and the inter-cluster 

distance is more. The centroid value of the cluster is adjusted in an iterative fashion every 

time, it means when a new gene is introduced, the distance between genes in intra cluster is 

less. The distance measure employed to measure the distance is “Squared Euclidean 

Distance”. The default method “sample” is employed to pick the seeds, i.e., the initial cluster 

centroid position.   

 

The hierarchical clustering method arranges the data objects in a tree or hierarchy 

fashion. It builds the tree of clusters in a hierarchy according to the distance metric which is 

called a dendrogram. In dendrogram, the entire data set is represented using the root node, 

whereas the leaf node is referred as a sample. There are two types of hierarchical method 

based on the procedure that how the hierarchical decomposition is created: agglomerative and 

divisive. In an agglomerative approach, it follows the bottom-up procedure. It initiates by 

creating a different cluster of each object. Then it starts merging the clusters into clusters and 

keeps on doing until it forms one cluster or a termination stage comes. That one cluster will be 

considered as the hierarchy’s root. Two clusters which are found to be closer to each other are 

merged into one cluster. The divisive approach follows the top-down approach which initiates 

with one cluster having all the objects in it. In each iteration, it keeps on splitting the cluster in 

different smaller clusters until each object is only in one cluster. In both of the approaches, it 

is very difficult to find out the merge or split point. Here, the agglomerative approach is 

employed. A metric for distance function and a linkage criterion to specify the dissimilarity of 

sets is chosen. We have employed “euclidean” and “cosine” distance metrics for computing 

the distance between the objects and linkage clustering criterion used is “Unweighted average 

distance”. The cluster tree formed using agglomerative clustering method is consistent as the 

cophenetic correlation coefficient given by the combination of euclidean distance metric and 

average linkage criterion is 0.7356 and the cosine distance metric and average linkage 

criterion is 0.9797. This extremely high value shows that the tree seems to be reasonably good 

fit to the distances. The challenge with both approaches of hierarchical clustering methods, we 

cannot undo anything or we cannot change anything of the previous step. The distance 
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between two clusters is computed. The various distance metrics can be euclidean distance or 

cosine distance which is shown in equations 3.1 and 3.2 respectively.         

 

   
                 

                                                                                                                       

 

      
    

 

      
       

  
                                                                                                                        

                                                                                           

 

The genes are clustered from the training data set only. Our goal is to identify the class 

of new samples (in the test data) based on the training data. It is considered as only a two-

class classification problem as defined in chapter 2, as our classification task is to identify 

whether the person has FSHD (diseased) or not (healthy). For this experimentation task, three 

efficient classifiers are selected, namely, LDA, QDA and KNN which classifies the samples 

after clustering the genes. The detailed description of these classification algorithms is given 

in chapter 2.  

 

3.3 Results and Discussion 

 

Initially, we run holdout validation technique to assess the performance of the model 

made for clustering of genes and thus for the classification of samples. This method is very 

fast, easy and is considered to give unbiased results. Its working is explained in section 2.7. 

The data set used for the evaluation of the proposed technique is DST-1 which is detailed in 

section 2.3. For the data set DST-1, the performance of two clustering algorithms with 

different parameters and various classifiers are shown in tables 3.1, 3.2 and 3.3. Various 

performance measures listed in section 2.5 are calculated for the nine implemented intelligent 

integrated methods. Table 3.1 indicates the performance measures of using k-means clustering 

method with LDA, QDA and KNN. Table 3.2 represents the performance measures of using 

euclidean distance metric hierarchical clustering method with LDA, QDA and KNN. Table 

3.3 shows the performance measures of using a cosine distance metric hierarchical clustering 

method with LDA, QDA and KNN. The linkage criteria employed in both cases of 

hierarchical clustering method are “average linkage criterion”. 

 

For the k-means clustering algorithm, the value of k is chosen to be 25. The clusters 

are made with k-means clustering method and the samples are first classified using LDA. 
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Here, the training data set shows the performance measures as ACC (59.68%), SNS (58.43%), 

SPC (60.82%), PPV (57.78%) and NPV (61.46%) whereas the results on test data set are 

ACC (61%), SNS (60.42%), SPC (61.54%), PPV (59.18%) and NPV (62.75%). The 

performance measures of this integrated method are found to be unsatisfactory. So, the next 

classification algorithm employed is QDA, i.e., k-means-QDA for the clustered genes. The 

results of this integration were also not up to the mark as the performance on the training data 

set is ACC (60.42%), SNS (55.28%), SPS (65.14%), PPV (59.33%) and NPV (61.29%). The 

result of the test data set is ACC (60.86%), SNS (55.95%), SPS (65.38%), PPV (59.87%) and 

NPV (61.66%). So for the further improvement, the KNN is employed for the classification of 

the samples. The training data set leaves us with ACC (65.71%), SNS (56.25%), SPC 

(73.68%), PPV (64.29%), and NPV (66.67%). The performance of test data set is ACC (62%), 

SNS (45.83%), SPC (76.92%), PPV (64.71%) and NPV (60.61%). Table 3.1 shows all the 

results of using k-means clustering and three different classifiers LDA, QDA and KNN.   

 

Table 3.1: Performance measures of k-means clustering algorithm with LDA, QDA and KNN. 

 

Integrated method Data set ACC SNS SPC PPV NPV 

K-means-LDA 
Training 59.68% 58.43% 60.82% 57.78% 61.46% 

Test 61% 60.42% 61.54% 59.18% 62.75% 

K-means-QDA 
Training 60.42% 55.28% 65.14% 59.33% 61.29% 

Test 60.86% 55.95% 65.38% 59.87% 61.66% 

K-means-KNN 
Training 65.71% 56.25% 73.68% 64.29% 66.67% 

Test 62% 45.83% 76.92% 64.71% 60.61% 

 
 

After that, another clustering algorithm, i.e., hierarchical clustering algorithm is 

employed. The distance metrics used for measuring the distance of the observations are 

“cosine” and “euclidean”. First euclidean distance metric based hierarchical clustering method 

with three classification algorithms are employed, from that it was found that the results are 

not acceptable for these integrations too. When euclidean distance metric hierarchical 

clustering algorithm is employed with LDA, the performance of the training data set is ACC 

(50%), SNS (52.94%), SPC (47.37%), PPV (47.37%) and NPV (52.94%) and of the test data 

set is ACC (54%), SNS (58.33%), SPC (50%), PPV (51.85%) and NPV (56.52%). Then in the 

same order as mentioned above QDA is used; this integration leaves us with poor results as on 

the training data set, it is ACC (52.33%), SNS (56.10%), SPC (48.89%), PPV (50%) and NPV 
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(55%). The results of the test data set are ACC (54%), SNS (58.33%), SPC (50%), PPV 

(51.85%) and NPV (56.52%). A little better results are found when KNN is integrated with 

the euclidean hierarchical clustering algorithm as in the training data set and test data set are 

ACC (56%), SNS (53.85%), SPC (57.75%), PPV (53.85%), NPV (57.75%) and ACC (56%), 

SNS (52.78%), SPC (58.97%), PPV (54.29%) and NPV (57.50%) respectively. The 

summarization of the results of this integration is shown below in table 3.2. 

 

Table 3.2: Performance measures of euclidean distance metric based hierarchical clustering 

algorithm with LDA, QDA and KNN. 

 

Integrated method Data set ACC SNS SPC PPV NPV 

Euclidean distance 

metric based 

hierarchical 

clustering – LDA 

Training 50% 52.94% 47.37% 47.37% 52.94% 

Test 54% 58.33% 50% 51.85% 56.52% 

Euclidean distance 

metric based 

hierarchical 

clustering – QDA 

Training 52.33% 56.10% 48.89% 50.00% 55.00% 

Test 54% 58.33% 50% 51.85% 56.52% 

Euclidean distance 

metric based 

hierarchical 

clustering – KNN 

Training 56% 53.85% 57.75% 53.85% 57.75% 

Test 56% 52.78% 58.97% 54.29% 57.50% 

 
 

In another case of hierarchical clustering algorithms, i.e., the use of cosine distance 

metric with average linkage criterion, the results given by KNN is the most superior, whereas 

the performance of LDA and QDA is found to be unsatisfactory. When LDA is used, the 

results of the training data set and test data set is ACC (47.22%), SNS (70.59%), SPC 

(26.32%), PPV (46.15%), NPV (50%) and ACC (52%), SNS (79.17%), SPC (26.92%), PPV 

(50%) and NPV (58.33%) respectively. The lowest specificity is given by this integrated 

method. Next, the QDA is integrated with the cosine distance metric based hierarchical 

clustering algorithm, the outcome of this on the training data set and test data set is ACC 

(54.65%), SNS (58.54%), SPC (51.11%), PPV (52.17%), NPV (57.50%) and ACC (54%), 

SNS (54.17%), SPC (53.85%), PPV (52%) and NPV (56%) correspondingly. The best results 

are given by the integration of cosine distance metric based hierarchical clustering algorithm 

with KNN as on the training data set; the performance is ACC (87.93%), SNS (87.68%), SPC 

(88.15%), PPV (87%), and NPV (88.78%) and on a test data set is ACC (87.39%), SNS 
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(87.19%), SPC (87.57%), PPV (86.39%), and NPV (88.39%). The result of this integration is 

presented in table 3.3. The difference in performance of cosine distance metric based 

hierarchical clustering algorithm with LDA, QDA and KNN is shown in figure 3.2. 

 

Table 3.3: Performance measures of cosine distance metric based hierarchical clustering 

algorithm with LDA, QDA and KNN. 

 

Integrated method Data set ACC SNS SPC PPV NPV 

Cosine distance 

metric based 

hierarchical 

clustering – LDA 

Training 47.22% 70.59% 26.32% 46.15% 50% 

Test 52% 79.17% 26.92% 50% 58.33% 

Cosine distance 

metric based 

hierarchical 

clustering – QDA 

Training 54.65% 58.54% 51.11% 52.17% 57.50% 

Test 54% 54.17% 53.85% 52% 56% 

Cosine distance 

metric based 

hierarchical 

clustering – KNN 

Training 87.93% 87.68% 88.15% 87.00% 88.78% 

Test 87.39% 87.19% 87.57% 86.39% 88.31% 

 

 

Figure 3.2: Graphical illustrations of performance measures of intelligent integrated method 

cosine distance metric based hierarchical clustering method – three classifiers  
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i.e., the number of clusters necessitates being priory defined. We have tried different values of 

0% 
10% 
20% 
30% 
40% 
50% 
60% 
70% 
80% 
90% 

100% 

Cosine distance metric-
hierarchical clustering method-

LDA 

Cosine distance metric-
hierarchical clustering method-

QDA 

Cosine distance metric-
hierarchical clustering method-

KNN 

ACC SNS SPC PPV NPV 



 

103 
 

k in the k-means, the optimum results were given by K=25 only. K-means algorithm also 

shows the problem when the size of clusters are different. The results of k-means algorithm 

are also prone to local minima. A hierarchical clustering algorithm is always preferred 

because it is not necessitate to specify the number of clusters and it usually gives higher 

performance [163]. As we can see that the cophenetic correlation coefficient using cosine 

distance metric is found to be better as compared to the euclidean distance metric. The 

hierarchical clustering algorithm with cosine distance metric is giving high performance 

because it considers the relative sizes rather than the absolute sizes of observations.  

 

3.4 Conclusions 

 

The process of clustering the genes in a high dimensional dataset is a very crucial step 

for the diagnosis of a disease. In this chapter, two clustering methods are employed, namely k-

means and hierarchical clustering algorithm for clustering the genes and LDA, QDA and 

KNN are deployed for the classification task for the genetic diagnosis of an NMD, i.e., FSHD. 

The results of the various integrations indicate that the best performance is given by cosine 

distance metric based hierarchical clustering algorithm-KNN. The proposed integrated model 

effectively clusters the genes, this shows that the data clustering with the proper parameters 

for such a high dimensional data play a vital role in achieving good classification results. 

Hence, these unsupervised methods can be used for the clustering the genes which can be 

further used for the classification of samples of other NMDs.  

 

Though this integrated technique has given high performance measures, still it is 

difficult to assess the significance of the features. This problem can be resolved with the use 

of supervised methods of feature selection techniques. Because supervised feature selection 

techniques assesses the relevance of features guided by the label information. While the 

unsupervised feature selection works with unlabeled data, so it is very difficult to assess the 

significance of features.  

 

The work presented in this chapter has been published in International Journal of E-Health 

and Medical Communications, Vol. 8, No. 2, pp. 33-46, 2017, IGI Global Publishing, United 

States, DOI: 10.4018/IJEHMC.2017040103, mentioned under the list of publications at the 

end of chapter 8. 
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Chapter 4 

 

An Intelligent Integrated Method for Dimension Reduction and 

Classification Applied to the Microarray Data of Neuromuscular 

Dystrophies 

 
 

As observed in the previous chapter, the unsupervised feature selection methods have 

limitation in accessing the significance of data. This problem can be resolved by using the 

supervised feature selection methods. Therefore, in this chapter, a gene selection model is 

designed using the supervised approach of feature selection to overcome the issue of 

dimensionality reduction, and thus leading to the accurate classification of NMDs. Here, the 

filter models of feature selection are employed to select the significant genes. This chapter is 

structured as follows: Section 4.1 presents the introduction. Section 4.2 gives the 

methodology for gene selection and classification of NMDs. Section 4.3 presents the 

experimental results and their comparison. Section 4.4 concludes the chapter.       

 

4.1 Introduction    

 

The microarray technology allows the NMD to be predicted using gene expression 

activity, i.e., it is used to monitor the whole genome of a given organism simultaneously. 

They provide us a path to obtain the expression level of a large number of genes at a single 

time under a particular condition in an experiment [164]. In microarrays, gene expression 

matrix is formed where samples are represented in columns and genes are represented in rows. 

Each cell in a gene expression matrix signifies the expression value of a gene in a sample. 

These days, the microarrays are used to diagnose the diseases using these gene expression 

values [47]. As also stated earlier, the classification of NMDs using the microarray data is a 

bit complex task because of the following reasons. Firstly, the microarray data is high 

dimensional as it contains a huge number of genes, i.e., tens of thousands of genes. Secondly, 

it contains very less samples, i.e., a very few number of patients. Thirdly, from all these genes, 

only a few genes are related to the diseases, rest other genes are noisy [165].  

 

So, we need to decrease the number of genes in order to properly diagnosis the disease 

and to get the accurate diagnosis results. In this chapter, we have implemented two supervised 

methods for gene selection as the unsupervised methods implemented in the last chapter did 
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not give the satisfactory results [166]. As also stated earlier, the supervised feature selection 

methods are considered better because they assess the relevance of features guided by the 

label information. While the unsupervised feature selection methods work with unlabeled 

data, so it is very complicated to evaluate the significance of features. The supervised feature 

selection methods can be further categorized into three types depending upon how the feature 

selection search is combined with the classification model: filter models, wrapper models and 

embedded models as discussed in section 2.4. From the above three categories, in this chapter 

we have implemented the filter models to reduce the gene expression data dimension. Two 

filter models, namely t-test and entropy; and two classification algorithms, i.e., KNN and 

linear SVM are employed for the feature selection and classification of NMDs data sets. 

 

Two NMDs Juvenile Dermatomyositis (JDM) and FSHD are used for employing the 

integration of these techniques. JDM is an autoimmune disease which generally affects 

children. It usually affects 3000-5000 children in United States each year. It is a genetic 

disease which tends to run in the families of patients. In this, the muscle weakness may results 

in dysphonia, fatigue, weight loss, clumsiness and other issues. FSHD is also an autosomal 

dominant NMD. The muscle weakness mostly occurs in the muscles of face, shoulder, arms 

and stomach. As such, there is no cure for these diseases. But a proper and accurate diagnosis 

of the disease could help the patient in many ways. Both the data sets are very dimensional 

and their detailed description is given in sections 2.3. 

  

4.2 Methodology 

 

Classification is the process of identification of categories of test observations, i.e., 

unseen data on the basis of the training observations, i.e., seen data. Feature selection for 

classification selects the subset of highly discriminating features from the training data. The 

overall framework of the integrated model is illustrated in figure 4.1. Two supervised filter 

gene selection methods, namely t-test and entropy are deployed on the training data set. Two 

classification methods KNN and linear SVM are implemented to classify the NMD data sets 

after the selection of genes. The integrated methods employed are t-test-KNN, t-test-linear 

SVM, entropy-KNN and entropy-linear SVM. The performance of these integrated algorithms 

is evaluated using various performance measures as discussed in chapter 2.  
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For ranking and selection of genes, t-test is applied and the p-value is calculated. The 

procedure for calculating p-value using t-test is:  

 

1) Compute the mean (M) of the gene expression value of the diseased samples for the first 

gene.  

2) Compute the M of gene expression value of the non-diseased or normal samples for the 

first gene.  

3) Calculate the difference between the average of diseased samples and non-diseased 

samples. 

4) Calculate the standard deviation (S.D.) of gene expression value of the diseased samples 

for the first gene. 

5) Calculate the S.D. of gene expression value of the non-diseased or normal samples for the 

first gene.  

6) Use the standard deviation to calculate the p-value for the first gene.  

7) Calculate for all the remaining genes in the samples. The p-value is calculated using the 

formula given in equation 4.1 

 
 

             
        

     
                                                                                                        

  
 

where pij refers to the gene expression value of gene i in sample j,       is the mean gene 

expression value of gene i in sample j,     
 is the general gene expression value of gene i, si 

refers to the within class S.D. of gene i. The p-value of all the genes is computed and all the 

genes are rearranged according to their p-value in descending order. Some of the top genes are 

chosen and given as an input to the classification algorithms.  

 

Another gene selection method employed is entropy. It is also known as information 

divergence or Kullback-Leibler divergence or relative entropy. It is employed to quantify the 

divergence between two probability distributions [167]. Suppose the probability functions of 

two discrete distributions A and B are Ak and Bk respectively. Then the distance of A with 

respect to B is given in equation 4.2. 
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       Figure 4.1: Overall framework 
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The relative entropies of all the genes are calculated. The genes are arranged in the 

descending order of their value. From them, some top genes are selected and are further used 

for classification using KNN and linear SVM. The detailed description of KNN and linear 

SVM are given in subsections 2.5.3 and 2.5.4 respectively. 

 

4.3   Results and Discussion 

 

The proposed integrated methods are evaluated on the data sets, i.e., DST-2 and DST-3 

given in subsections 2.3.2 and 2.3.3 respectively. We conduct fivefold cross validation 

experiments on the data sets. The description of fivefold cross validation is given in section 

2.7. The performance measures of various integrations which are implemented like t-test–

linear SVM, t-test–KNN, entropy–linear SVM and entropy–KNN on DST-2 and DST-3 data 

sets are calculated as shown in section 2.6 and compared. Table 4.1 and figure 4.2 illustrate 

the results of the integrations t-test–linear SVM and t-test–KNN on DST-2 data set. Table 4.2 

and figure 4.3 shows the results of integrations entropy-linear SVM and entropy-KNN on 

DST-2 data set. Table 4.3 and figure 4.4 depict the results of using t-test–linear SVM and t-

test–KNN on DST-3 data set. Table 4.4 and figure 4.5 represent the results of integrations 

entropy-linear SVM and entropy-KNN on DST-3 data set.  

 

Table 4.1: Performance measures of integration of t-test–linear SVM and t-test–KNN on 

DST-2 

 

Integrated 

method 
Data Accuracy Sensitivity Specificity PPV NPV 

T-test-Linear 

SVM 

Training 78.87% 78.95% 78.79% 81.80% 76.47% 

Test 74.36% 76.19% 72.22% 76.19% 72.22% 

T-test-KNN 
Training 100% 100% 100% 100% 100% 

Test 89.74% 90.48% 88.89% 90.48% 88.89% 

 

 

In case of other integrated algorithms, namely entropy–linear SVM and entropy–KNN, 

the classifiers have shown different performance after ranking and selecting the genes using 

entropy. The classifier KNN has shown the superior performance than linear SVM. It has 

given 100% performance measures in the training data set and better accuracy, i.e., 92.31% in 

the test data set as compared to the previous integrated algorithm.  
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Figure 4.2: Integration of t-test–linear SVM and t-test–KNN on DST-2 

 

 

 

Table 4.2: Performance measures of integration of entropy–linear SVM and entropy–KNN on 

DST-2 

 

Integrated 

method 
Data Accuracy Sensitivity Specificity PPV NPV 

Entropy-

Linear SVM 

Training 76.06% 86.84% 63.64% 73.33% 80.77% 

Test 74.36% 88.10% 58.33% 71.15% 80.77% 

Entropy-KNN 
Training 100% 100% 100% 100% 100% 

Test 92.31% 90.48% 94.44% 95% 89.47% 

 
 

Figure 4.3: Integration of entropy–linear SVM and entropy–KNN on DST-2 
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Table 4.3: Performance measures of integration of t-test–linear SVM and t-test–KNN on 

DST-3 

 

Integrated 

Method 
Data Accuracy Sensitivity Specificity PPV NPV 

T-test-Linear 

SVM 

Training 72.41% 81.82% 60% 72.97% 71.43% 

Test 68.75% 77.78% 57.14% 70% 66.67% 

T-test-KNN 
Training 100% 100% 100% 100% 100% 

Test 84.38% 88.89% 78.57% 84.21% 84.62% 

 
 

Figure 4.4: Integration of t-test–linear SVM and t-test–KNN on DST-3 

 

 

 

Here also, the integrated algorithm t-test-KNN has outperformed t-test–linear SVM. 

The training data set has given 100% of all the performance measures, whereas the accuracy 

of test data set is 84.38%. The best results on both datasets were found when the entropy is 

integrated with KNN. Like the previous integration, the training data set has given 100% of all 

the performance measures and test data set has given 96.88% accuracy.    

 

Table 4.4: Performance measures of integration of entropy–linear SVM and entropy–KNN on 

DST-3 

 

Integrated 

method 
Data Accuracy Sensitivity Specificity PPV NPV 

Entropy- Training 81.03% 90.91% 68% 78.95% 85% 
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Linear SVM Test 79.69% 91.67% 64.29% 76.74% 85.71% 

Entropy-KNN 
Training 100% 100% 100% 100% 100% 

Test 96.88% 100% 92.86% 94.74% 100% 

 

Figure 4.5: Integration of entropy–linear SVM and entropy–KNN on DST-3 

 

 

 

 

We observe that the classifiers do not result same after ranking and selecting the genes 

using t-test. The integration t-test–KNN is found to be more efficient as it is giving 100% 

accuracy in the training data set and 89.74% accuracy in the test data set.    

 

4.4 Conclusions 

 

In case of NMDs, it is a complex task to find disease specific genes which assists in 

accurately diagnosing the diseases. In the present chapter, the proposed integrated algorithm 

selects genes and classifies the microarray data of FSHD and JDM. The genes are ranked and 

selected using t-test and entropy based supervised gene selection methods, which can 

successfully classify the samples using KNN and linear SVM. The integration of entropy with 

KNN has given the best performance measures for gene selection and classification of both 

the data sets and it can also be applied for the diagnosis of other NMDs using microarray data.  

 

Despite the fact that filter models of supervised feature selection techniques have given 

the better performance than the unsupervised techniques, but still it ignores the feature 

independencies and the interaction with the classifiers. This problem can be resolved by using 
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the embedded models of the feature selection techniques because they interact with the 

classifiers and improves the value of performance measures. 

 

The work presented in this chapter has been published in Indian Journal of Science and 

Technology, Vol. 9, No. 28, pp. 1-6, 2016, India, DOI:  10.17485/ijst/2016/v9i28/98378, mentioned 

under the list of publications at the end of chapter 8. 
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Chapter 5 

 

Building an Intelligent Integrated Method of Gene Selection for 

Facioscapulohumeral Muscular Dystrophy Diagnosis 

 
 

In this chapter, a gene selection model is designed by integrating the filter and 

embedded models of supervised feature selection. From the filter model, t-test is chosen and 

from the embedded model, GA is used for the optimization of features. The integration of t-

test and GA leads to the accurate classification of NMD datasets. Here we are selecting the 

genes for the binary class classification problem. So, this chapter is structured as follows: 

Section 5.1 presents the introduction. Section 5.2 gives the methodology for gene selection 

and classification of NMDs. Section 5.3 presents the experimental results and their 

comparisons. Section 5.4 concludes the chapter.       

 

5.1 Introduction 

 

An NMD affects the neuromuscular system of a human body. According to the 

Muscular Dystrophy Association, in US more than a million people are affected by some kind 

of NMD. In the present chapter, we have chosen the same genetic NMD of the previous 

chapters, i.e., FSHD for the evaluation of the methods. This disease is formed due to the 

contraction of polymorphic macrosattelite repeat D4Z4 on chromosome 4q35 [162]. This 

disease mostly affects the muscles of face, shoulder and an upper arm as the name facio-

scapulo-humeral signifies. It is caused due to the mutation in one or more genes. These 

diseases are very progressive in nature. Till date, we do not have any cure for most of the 

NMDs. Therefore, there is a need to diagnose these diseases in the early stages. These days, 

the genetic testing is considered as the most preferred way for the diagnosis of NMD [162]. 

The genetic testing is done by examining the expression levels of genes using microarrays. 

The microarray technology helps in detecting the smaller changes in DNA or chromosomes in 

human body [115].  

 

Generally, the microarray data of FSHD are high dimensional as already discussed in 

chapter 2. The management and extraction of this large amount of data has become a 

challenge as it contains a huge number of genes but a very less number of samples. In a gene 

expression matrix, a sample is represented in the column and a gene is represented in row. 
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The expression values in these microarrays are represented through gene expression matrix. 

The gene expression value in a gene expression matrix is defined as         . The value 

    represents the expression value of gene b at sample c. From these large numbers of genes, 

a very few genes are particularly related to the disease and rest other genes are uninformative. 

So, for the accurate diagnosis of these diseases, there is a need to diminish the number of 

uninformative genes. Hence, dimensionality reduction or choosing a smaller subset of genes is 

an important task in the diagnosis of such diseases. In diagnosing a disease using microarray 

data, the gene selection is usually performed. The gene selection methods reduce the 

computational complexity and increase the value of performance measures. These methods 

will help us to speed up the algorithm execution and to increase the prediction accuracy [128].  

 

In the last chapter, we have implemented two filter models of feature selection, but the 

results provided by those methods were not up to the mark [168]. So, in the present chapter, 

the diagnosis of FSHD is done in three stages. The system design employed in the present 

chapter is illustrated in Figure 5.1. In the first stage, a filter model, namely t-test is 

implemented to preselect the genes by removing the most uninformative and redundant genes. 

In the second stage, GA is implemented as an embedded model. Here, three experiments are 

done on GA, wherein the fitness function is evaluated using LDA, QDA and KNN one after 

the other with varying number of genes to choose the most informative gene subset, the 

general idea of stage 2 is demonstrated in figure 5.2. In the third stage, the classification is 

done using the above mentioned classifiers. The experimental results of the implementation of 

these integrated algorithms on the FSHD dataset enable us to select a small subset of genes 

and get appreciable performance measures. The result shows that the integration of GA with 

KNN is found to be the best for gene selection and diagnosis of FSHD.       

 

5.2 Methodology 

 

The FSHD data set for the evaluation of these integrated methods is DST-1 which is 

taken from Gene Expression Omnibus (GEO) with id (GEO accession GSE36398) entitled 

“Transcriptional profiling in facioscapulohumeral muscular dystrophy to identify candidate 

biomarkers” [152]. The detailed description is given in section 2.3.1. The system design 

employed in the present chapter is demonstrated in figure 5.1. The task of feature selection is 

accomplished in two stages, i.e., stage 1 and stage 2. In stage 1, a filter model is implemented 

on the data set to remove out the most uninformative and redundant genes. In stage 2, GA is 
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deployed wherein the fitness function is evaluated using three different classification 

algorithms, one at a time on the varying number of genes. In each experiment, the fitness 

function is evaluated using LDA, QDA and KNN is used in first, second and third experiment 

respectively which is shown in figure 5.2. After that in Stage 3, three classifiers mentioned 

above are employed to classify the FSHD data. The values of all performance measures of all 

three experiments with varying number of genes are given in table 5.2. 

 

Stage 1: Preselection of genes 

 

In stage 1, a filter technique, namely t-test is applied to preselect or to remove out the 

redundant and uninformative genes. This process evaluates each and every gene in the dataset 

and sorts them according to their relevance. From that, the candidate set is formed by 

selecting first p genes. Then these genes are passed on to the subsequent stage, i.e., the 

selection of genes. The procedure for calculating p-value using t-test is given in section 4.2. 

 

Stage 2: Selection of genes 

 

At this stage, to choose the highly informative and discriminatory genes from the candidate 

set generated from stage 1, GA is deployed as an embedded model. GA was first described by 

John Holland in 1960 [169]. GA belongs to the class of evolutionary computation which uses 

the computational model of evolutionary processes for solving any problem.  

 

It is an iterative, non-traditional optimization technique and belongs to the category of 

EAs. They imitate the process of natural development and replicate the survival of the fittest 

among individuals over repeated generations for solving a problem because the most 

important goal of GA is continuous improvement in small steps. The main component in GA 

is a chromosome. The various genetic operators in GA are: reproduction, crossover and 

mutation. The GA parameters used in the present chapter are given in table 5.1. 

 

Chromosome and initial population 

 

The chromosomes are the candidate solution to the problem. In GA, each feature is 

encoded as a gene and can be symbolized in the form of 1s and 0s. The value 1 indicates the 

inclusion in the gene subset, else it will be excluded. A chromosome is defined as the set of 

genes. In the present chapter, the number of genes is varying as N=5, N=10, N=15, N=20 and 
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N=25. The population is referred as a collection of chromosomes. GA searches for a 

population of chromosomes not a single chromosome. The population size varies according to 

the nature of the problem and determines the number of chromosomes in each generation. The 

population size is chosen to be 100. The initial population of chromosomes is randomly 

generated.  The number of genes was varied till 25 because it was found that there was just a 

slight difference between the values of performance measures and we have also found that the 

best accuracy was achieved when the number of genes was taken to be 10 only.   

 

Fitness function 

 

An objective function or fitness function improves the population, with each 

generation. The designing of fitness function is the most crucial task in using GA. In many 

cases, the fitness function is accessed by the classification performance of the classifier. In 

this chapter, firstly LOOCV is applied to calculate the average of performance measures. Its 

detailed description is given in section 2.7. We use the combination of error rate and 

conditional probability of the classifier as the fitness function calculated using LOOCV. 

Higher the value of the fitness function, more are chances to move to the next generation. This 

is shown in figure 5.2.  

 

Reproduction (Selection) 

 

To move to the next generation, selection is made from a portion of existing or current 

population, which becomes parent to the next generation. This is done on the basis of 

evaluation of fitness function as among all the parents, the fittest will survive and reproduce. 

The more the value of the fitness function, the more likely it is moving to the next generation. 

The various selection functions are roulette wheel selection, stochastic universal sampling, 

truncation selection and tournament selection. Here, we have chosen stochastic universal 

sampling because it uses evenly spaced intervals to sample all the solutions and to select a 

single random value [170].   
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Figure 5.1: System design 
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Figure 5.2: Structure of GA method 
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another parent are combined and forms a new child. The various types of crossover operators 

are scattered crossover, single-point crossover, two point crossover, intermediate crossover, 
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chapter, we have chosen scattered crossover function with a crossover probability of 0.7.  
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mutation, gene value is changed from 0 to 1 and 1 to 0. The various types of mutation 

operator are gaussian mutation, bit string mutation, uniform mutation, non-uniform mutation, 

boundary mutation and flip bit mutation. In the present chapter, uniform mutation is used in 
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which the chosen gene is replaced with the uniform random value. The mutation probability 

was taken to be 0.1.  

 

Stopping criterion 

 

The GA algorithm will work till a predefined number of iterations is reached or value 

of the objective function is reached to 100%. The stopping criterion here is 20 generations or 

till the classification performance has reached 100%.  

 

Table 5.1: GA parameters 

 

Parameter Name Value 

Chromosome A bit string of 1s and 0s 

Number of genes 5,10,15,20,25 

Population Size 100 

Selection Operator Stochastic universal sampling 

Fitness function Calculated using LDA, QDA and KNN 

Crossover Fraction 0.7 

Mutation Operator Uniform mutation 

Mutation Rate 0.1 

Stopping Criteria 20 generations 

 

 

Stage 3: Classification 

 

The subset of the most discriminatory genes is formed after stage 2. It is used to 

diagnose the disease which will classify whether the sample is diseased or not. The 

classification is done using LDA, QDA and KNN. The complete description of these 

classification algorithms is given in section 2.5. For KNN, the default value, i.e., K=1 is 

chosen with euclidean distance metric and nearest rule to classify the data. 

 

5.3 Results and Discussion 

 

In this section, we present broad experiments performed on the FSHD dataset. Here, we 

can consider the diagnostic test as a binary classification problem in which the output can be 

either true or false. The method will be considered accurate if a diseased sample is diagnosed 
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true and a healthy sample is diagnosed false. The performance measures of these experiments 

calculated are given in section 2.6. 

 

Table 5.2: Performance measures 

 

Experiment Number of 

genes 

selected 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

PPV 

(%) 

NPV 

(%) 

Experiment-1 

(The fitness 

function is 

calculated 

using LDA) 

5 98 100 95.83 96.30 100 

10 99 100 97.92 98.11 100 

15 96.86 97.25 96.43 96.72 97.01 

20 97.80 98.08 97.5 97.70 97.91 

25 98.31 98.52 98.08 98.23 98.39 

Experiment-2 

(The fitness 

function is 

calculated 

using QDA) 

5 98 100 95.83 96.30 100 

10 99.20 100 98.33 98.48 100 

15 97.25 97.60 96.88 97.13 97.38 

20 98 98.25 97.73 97.91 98.10 

25 98.43 98.63 98.21 98.36 98.51 

Experiment-3 

(The fitness 

function is 

calculated 

using KNN) 

5 98.67 100 97.22 97.50 100 

10 100 100 100 100 100 

15 97.56 97.86 97.22 97.45 97.67 

20 98.17 98.40 97.92 98.08 98.26 

25 98.53 98.72 98.33 98.47 98.61 

 
 

To better visualize the comparison of results, we have graphically represented the 

results of experiment 1, experiment 2 and experiment 3 in the figures 5.3, 5.4 and 5.5 

respectively. In the first case of experiment 1, when the number of genes is chosen as 5, the 

value of performance measures are accuracy (98%), sensitivity (100%), specificity (95.83%), 

PPV (96.30%) and NPV (100%). In the second case, the number of genes chosen is 10; the 

experiment leaves us with values as accuracy (99%), sensitivity (100%), specificity (97.92%), 

PPV (98.11%) and NPV (100%). In case 3, after changing the number of genes to 15, the 

statistics found are accuracy (96.86%), sensitivity (97.25%), specificity (96.43%), PPV 

(96.72%) and NPV (97.01%). In the fourth case, when we change the number of genes to 20, 

the value of performance measures is accuracy (97.80%), sensitivity (98.08%), specificity 

(97.5%), PPV (97.70%) and NPV (97.91%). In last case when the number of genes is 25, the 
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value of performance measures are accuracy (98.31%), sensitivity (98.52%), specificity 

(98.08%), PPV (98.23%) and NPV (98.39%). Among all the varying number of genes, the 

best performance is given by case 2 when the number of genes is taken to be 10. The results 

of experiment 1 are demonstrated in figure 5.3. 

 

Figure 5.3: Fitness function is evaluated using LDA 

 

 
 
 

In both experiments, namely experiment 1 and experiment 2, when the number of 

genes is chosen to be 5, the performance measures are exactly same. Here also, we have got 

the values as accuracy (98%), sensitivity (100%), specificity (95.83%), PPV (96.30%) and 

NPV (100%). In the second case, the number of genes is changed to 10; the results are 

accuracy (99.20%), sensitivity (100%), specificity (98.33%), PPV (98.48%) and NPV (100%). 

In the third case, when the number of genes is varied to 15; the outcome of this is accuracy 

(97.25%), sensitivity (97.60%), specificity (96.88%), PPV (97.13%) and NPV (97.38%). In 

the fourth case, where we have taken the number of genes to be 20, the performance measures 

are accuracy (98%), sensitivity (98.25%), specificity (97.73%), PPV (97.91%) and NPV 

(98.10%). In the last case, we change the number of genes to 25; the values are accuracy 

(98.43%), sensitivity (98.63%), specificity (98.21%), PPV (98.36%) and NPV (98.51%). Here 

also, among all the cases with varying number of genes, the value of performance measures 

are found to be best when the number of genes is taken 10. The results of experiment 2 are 

illustrated in figure 5.4.  
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In experiment 3, for the first case when the number of genes is 5, the performance 

measures are accuracy (98.67%), sensitivity (100%), specificity (97.22%), PPV (97.50%) and 

NPV (100%). In the second case, the value of all performance measures is found to be 100% 

when we have taken the number of genes is 10. In the third case, the number of genes is 

changed to 15, the result of performance measures are accuracy (97.56%), sensitivity 

(97.86%), specificity (97.22%), PPV (97.45%) and NPV (97.67%). In the fourth case, the 

experiment leaves us with values of performance measures as accuracy (98.17%), sensitivity 

(98.40%), specificity (97.92%), PPV (98.08%) and NPV (98.26%). In the last case, the 

number of genes is changed to 25; the results are accuracy (98.53%), sensitivity (98.72%), 

specificity (98.33%), PPV (98.47%) and NPV (98.61%). The results of experiment 3 are 

shown in figure 5.5. 

 

Figure 5.4: Fitness function is evaluated using QDA 

 

 
 

 

In all three experiments, among all the varying number of genes, the best performance 

measures are found when the fitness function is calculated using KNN and the number of 

genes is taken to be 10. We have made an intelligent integrated method of gene selection for 

diagnosis of FSHD. The integrated technique selects a small subset of genes which will help 

in better diagnosis of FSHD and other NMDs also. Ultimately, the proper diagnosis will help 

in taking the accurate treatment option. 
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Figure 5.5: Fitness function is evaluated using KNN 

 

 
 

 

5.4 Conclusions 

 

The process of selecting the subset of discriminating genes for the genetic testing of 

NMDs is a crucial task. In this chapter, we have developed an integrated technique for gene 

selection and classification of FSHD. In the present work, a filter model, i.e., t-test is used to 

preselect the genes in the first stage and then in the second stage, GA as an embedded model 

with varying number of genes is used to select the most informative gene subset wherein the 

fitness function is calculated using LDA, QDA and KNN one-after-another. In the third stage, 

classification task is performed using the above mentioned classifiers. The comparison of 

results demonstrates that using KNN for evaluating the fitness function with 10 numbers of 

genes is found to be better as compared to the LDA and QDA with different number of genes. 

This method not only selects a small number of genes, but also improves the performance 

measures. We also intend to apply this integrated technique for gene selection and 

classification of other NMDs. Hence, the problem of gene selection for binary class 

classification is completely resolved as the proposed intelligent integrated approach has given 

the 100% accuracy with only a few numbers of genes. But the issue of gene selection for 

multi-class classification is still remains challenging.    

 

The work presented in this chapter has been published in International Journal of Biomedical 

Engineering and Technology, Vol. 24, No. 3, pp. 285-296, 2017, Inderscience Publishers, United 

Kingdom, DOI: 10.1504/IJBET.2017.085144 mentioned under list of publications at the end of 

Chapter 8. 
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Chapter 6 

 

A Novel Hybrid Feature Selection Model for Classification of 

Neuromuscular Dystrophies using Bhattacharyya Coefficient, Genetic 

Algorithm and Support Vector Machine 

 
 

In this chapter, a multi-class classification of an NMD dataset is performed. A gene 

selection model is designed using the filter and embedded models of feature selection to 

overcome the issue of dimensionality reduction, and thus leading to the accurate classification 

of multi-class NMD datasets. From the filter models, bhattacharyya coefficient is chosen and 

GA as an embedded model is chosen and both of these are integrated. The results of integrated 

technique bhattacharyya-GA are compared with the individual techniques, i.e., bhattacharyya 

and GA. So, the chapter is structured as follows: Section 6.1 presents the introduction. Section 

6.2 gives the methodology for gene selection and classification of NMDs. Section 6.3 presents 

the experimental results and their comparison. Section 6.4 concludes the chapter.       

 

6.1 Introduction 

 

The neuromuscular system in human body provides the vital forces to perform various 

actions [171]. The NMD occurs due to the mutation in the gene(s) that affects the motor unit. 

The symptoms of these diseases are progressive in nature. According to Muscular Dystrophy 

Foundation Australia, the genetic testing is used for diagnosis, which involves the direct 

examination of DNA associated with a particular kind of NMD. Usually, blood tests are used 

for genetic testing, which measures the level of certain enzymes in the blood. An accurate 

classification of NMDs is important in providing proper treatment facilities to the patients. 

These days, the microarray technology is used to analyze the whole genome simultaneously 

which monitor the level of activity or expression of a large number of genes [15] [120]. But 

the gene expression data derived from the microarray experiment usually involves a large 

number of genes, but only a very few number of samples [108]. Most of the genes in the 

samples do not contain useful information as they are redundant, not differentially expressed 

and are not specific to the disease. There is a need to reduce the dimension of gene expression 

data which intends to find a small set of discriminating genes that accurately classifies the 

samples of various kinds of diseases. Thus, reducing the dimension, i.e., number of genes 

(acting as features in machine learning) prior to the classification task will be helpful in 
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accurately diagnosing a disease. It does not only increase the classification accuracy, but also 

decreases the computational burden [108]. So, our goal is to find a small subset of genes 

which ensures the accurate classification of NMDs.  

 

The major aim of using feature selection procedure prior to diagnosis of any disease is 

to develop a diagnostic model based on the least possible number of genes. In the previous 

chapters, we have used feature selection methods for selection of genes for binary class 

classification datasets [166] [168] [175]. But, in this chapter, we propose a simple integrated 

model which first selects the features, and then classifies the samples of multi-class NMD 

datasets. Here, the process of feature selection is done in two phases by integrating 

Bhattacharyya coefficient and GA. In the first phase, Bhattacharyya coefficient forms a 

candidate feature subset which excludes the uninformative, redundant and noisy features. In 

the second phase, GA as an embedded model is deployed to find out the target feature subset 

which best discriminates the biological samples of different NMDs. The fitness function of 

the GA is calculated using the RBF SVM classifier. The results of the proposed integrated 

technique are compared with two individual techniques of feature selection, namely the 

Bhattacharyya coefficient and GA, and one integrated technique, i.e., Bhattacharyya-GA 

wherein the fitness function of GA is calculated using LDA, QDA, KNN and linear SVM. 

These individual and integrated techniques are applied on two different datasets of NMDs. 

The results show that the integrated technique Bhattacharyya-GA is found to be very effective 

for the classification of NMDs.        

 

6.2 Methodology 

 

In this section, we describe the methodology of the proposed integrated technique 

Bhattacharyya-GA for feature selection and classification of NMDs. The aim of this 

integrated technique is to select a small subset of informative features which best 

discriminates the biological samples of various diseases. Our proposed integrated method 

involves three steps. In step 1, the data is partitioned using the K-fold cross-validation 

technique into a training set and test set. The value of K is chosen to be 5. The detailed 

description of K-fold cross validation is given in section 2.7.  

 

Step 2 consists of the two phases where we select the most discriminating features to 

make the target feature subset. In phase 1 of step 2, the Bhattacharyya coefficient is calculated 
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from each feature and the top valued features forms the candidate gene subset. In phase 2 of 

step 2, the candidate feature subset is given as an input to GA to select the highly disease 

related features to form a target feature subset. In step 3, we input the selected target feature 

subset into our classification algorithms. In this methodology, different classification 

algorithms implemented are LDA, QDA, KNN, linear SVM and RBF SVM. The whole 

sequence of the overall process is shown in figure 6.1.   

 

The process of feature selection selects a small subset of informative features which 

are highly related to the disease and are most important for their classification. Hence, the 

primary goal of feature selection is to identify important features responsible for 

classification. Bhattacharyya coefficient is used to determine the relative closeness of two 

samples. It is self-consistent, unbiased and applicable to any distribution [176]. It measures 

the amount of overlap between two samples and the seperability of classes in the classification 

[177]. Let us assume that Cm and Dm are number of members of samples C and D in the m
th 

partition and N is the total number of partitions. The probability distribution is defined in 

equation 6.1. 

 

   

 

   

     

 

   

                                                                                                                                             

                                                                      
 
The Bhattacharyya coefficient is calculated by equation 6.2 

 

              

 

   

                                                                                                                                     

  

 

GA imitates the process of natural selection and belongs to the class of bio-inspired 

and evolutionary algorithms. The most important goal of GA is the continuous improvement 

in small steps for solving a problem by keeping the fittest amongst individuals over the 

repeated generations. The detailed description of GA is given in section 5.3. The GA 

parameters used in the present chapter are given in table 6.1. 
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Figure 6.1: Proposed Methodology 

 

 

 

  

Table 6.1: GA Parameters 

 

Parameter Value 

Chromosome 20 genes 

Population Size 100 chromosomes 

Selection Function Stochastic Uniform Selection 

Crossover Function Scattered Crossover Function 

Mutation Function Gaussian Mutation Function 

Termination Criteria Value of fitness function is 100% 

 

Steps Methods Input/ Output 

 

Data 

Step 1: 

Data Division 

Step 2:  Phase 1: 

Feature Preselection 

Step 2:  Phase 2: 

Feature Selection 

Step 3:             

Classification 

Analysis/ Evaluation 

Observations 

and samples 

Training and 

test data 

Candidate 

feature subset 

Target  

feature subset 

Classified 

samples 

Five-fold cross- 

Validation 

Bhattacharyya 

Coefficient 

Genetic 

Algorithm 

LDA 

QDA 

KNN 

Linear SVM 

RBF SVM 

Accuracy 
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Now consider a NMD classification problem in which the gene expression value of z 

number of genes is given in the vector in equation 6.3 and the selector variables which label 

the class of NMD of tissue samples are given in equation 6.4. 

 
                                                                                                                                             

                                                                                                                                      

                                                                                                                                           

                                                                                                                                                                    

For the classification of samples, five classification algorithms namely LDA, QDA, 

KNN, linear SVM and RBF SVM are used given in subsections 2.5.1-2.5.4. SVM supports 

only binary class classification problem. In case of multiclass classification problem, i.e., 

more than two classes in the dataset, binary SVM are not sufficient for classification of 

samples of whole dataset. So, we have to reduce the single multi-class (K classes) problem 

into K binary classification problems. In the present chapter, the OVA approach with linear 

SVM and RBF SVM is used for classification of NMDs. In this case, if there are K numbers 

of classes in the whole dataset, then K binary classifiers are built where each binary classifier 

picks out one class from all the other classes. 

                                                                                    

6.3 Results and Discussion 

 

We evaluated the performance of our proposed hybrid model on two publicly available 

datasets of NMDs. The datasets are taken from experiment E-GEOD-3307 and we named 

these datasets as DST-4 and DST-5 and are detailed in subsections 2.3.4 and 2.3.5 

respectively [153]. Both of the datasets contain a small number of samples and a large number 

of features due to which it is very difficult to accurately classify the samples of these datasets. 

The accuracies of all the individual and integrated techniques on two microarray datasets of 

NMDs DST-4 and DST-5 are tested and compared. The result of the experiment 1 is shown in 

table 6.2 which gives the classification accuracies of both the data sets using LDA, QDA, 

KNN, Linear SVM and RBF SVM classifiers calculated when individual technique 

Bhattacharyya coefficient is employed for feature selection. From this, it is observed that the 

classification accuracies are not so good, especially from LDA, QDA and KNN classifiers. 

The linear and RBF kernels of SVM have given slightly better classification accuracies as 

compared to other classifiers.  
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Table 6.2: Percentage classification accuracy with first 100 selected genes using 

Bhattacharyya 

 

Data LDA QDA KNN Linear SVM RBF SVM 

DST-4 36.11 50 61.11 73.61 74.88 

DST-5 41.82 56.97 65.45 77.54 82.54 

 
 

Experiment 2 is conducted in which the first 100 genes are selected using GA and the 

classification accuracies are calculated using LDA, QDA, KNN, linear SVM and RBF SVM. 

The results of this experiment are shown in table 6.3. In the first phase of experiment 3, 

Bhattacharyya coefficient is used to form the candidate gene subset. In the second phase, GA 

is employed to find the target gene subset and the classification is done using LDA, QDA, 

KNN, linear SVM and RBF SVM. Table 6.4 demonstrates the results of experiment 3. To 

summarize, the proposed integrated technique Bhattacharyya-GA, wherein the fitness function 

of the GA is calculated using RBF SVM exhibits better performance on both of the data sets.  

 

Table 6.3 Percentage classification accuracy with first 100 selected genes using GA 

 

Data LDA QDA KNN Linear SVM RBF SVM 

DST-4 59.72 60.69 71.48 88.61 90.92 

DST-5 68.78 69.39 78.38 89.45 89.84 

 

Table 6.4 Percentage classification accuracy with first 100 selected genes using 

Bhattacharyya-GA 

 

Data LDA QDA KNN Linear SVM RBF SVM 

DST-4 82.11 86.69 93.498 97.988 98.464 

DST-5 81.13 86.21 93.47 98.1 98.48 

 

 

Due to the curse of a large number of genes in microarrays as compared to a small 

number of samples, the classification algorithms endure the high dimensional input space 

problem. This high dimensionality of microarray data degrades the classification accuracy and 

increases the computational complexity. Thus, an optimal subset of genes, i.e., 100 genes, is 

required for the classification of these diseases while maintaining the good classification 
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accuracy. Besides of choosing this less number of genes for higher accuracy, it is also possible 

to interpret their gene expression profile for further drug discovery. The proposed integrated 

technique not only maximizes the classification performance, but also maintains the 

computational complexity. It selects the less number  of genes required for the accurate 

classification which leads to less computational time for processing and less computational 

cost.   

 

6.4 Conclusions 

 

In the past decade, microarray technology has led a huge impact on the cancer research 

and has given great results in prediction of cancer classes. So, in the present chapter, we use 

this technology for feature selection and classification of NMD datasets. We made an 

intelligent integrated technique Bhattacharyya-GA for feature selection. Bhattacharyya 

coefficient is calculated to make a candidate gene subset by excluding redundant and 

uninformative genes in the first phase. In the second phase, GA is applied to find out the most 

informative gene subset to form target gene subsets. The fitness function of the GA is 

computed using different classification algorithms, namely LDA, QDA, KNN, linear SVM 

and RBF SVM. The novel hybrid feature selection model Bhattacharyya-GA is applied on 

two huge microarray datasets and the performance is compared with Bhattacharyya and GA 

alone. The experimental results show that the proposed technique Bhattacharyya-GA, when 

the fitness function is calculated using RBF SVM has outperformed on both data sets.  

 

We have shown that the proposed integrated technique gives highly encouraging 

classification accuracies and hence it can be applied for classification of other NMDs also. 

Even if the proposed integrated technique has given the high value of performance measures, 

still we can try some other methods which not only increase the classification accuracy but 

also decreases the number of genes required to achieve that classification accuracy.       

 

The work presented in this chapter has been published in Interdisciplinary Sciences: 

Computational life Sciences, Vol. 10, No. 2, 244-250, Springer Berlin Heidelberg, Germany, 

DOI: 10.1007/s12539-016-0183-6.  
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Chapter 7 

 

A Novel Approach for Dissimilar Gene Selection and Multi-Class 

Classification of Neuromuscular Disorders 

 
 

In this chapter, we try to select very less number of dissimilar genes for every class 

which helps in getting the high classification accuracy. The genes are selected using the 

median matrix formed by the processing of gene expression matrix. The details are given in 

this chapter. So, the chapter is structured as follows: Section 7.1 presents the introduction. 

Section 7.2 gives the methodology for selection of compact subsets of genes and multi-class 

classification of NMDs. Section 7.3 presents the experimental results and their comparison. 

Section 7.4 concludes the chapter.       

 

7.1 Introduction 

 

The neuromuscular system consisting of the nervous system and muscular system 

provides the vital forces to perform various actions. The mutation in one or more genes 

damages the DNA, which changes the mechanism of cell replication and causes the NMD. 

These disorders affect the peripheral nervous system and muscles which  leads to different 

levels of severity varying from minor loss of strength or numbness to muscle death or 

paralysis [171]. A person suffering from NMD is not able to perform the voluntary 

movements. So, an accurate prediction of the kind of NMDs is fundamental for choosing the 

optimal treatment for patients. The monitoring of gene expression data through microarrays 

leads to the proper classification [179]. 

 

Thus, for the accurate diagnosis of these disorders, the microarray technology came into 

the picture. The microarray technology focuses on finding the gene expression level of a large 

number of genes simultaneously in an experiment. The design of microarray chip contains a 

microscopic ordered array which holds the genotype of all the genes. This technology is 

powerful for providing the useful diagnostic information by investigating and comparing the 

differences between gene expression profiles of healthy and diseased samples under a 

particular condition. It is used to identify the subsets of differentially expressed biomarker 

genes responsible for some kind of disorder development. It gives a more reliable and 

accurate way of diagnosing the disorders.  
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Unfortunately, the microarray data of NMDs are cursed from high dimensionality as it 

contains the expression profiles of tens of thousands of genes. From all these examined genes, 

only a few genes are significantly appropriate under a particular condition which can be 

considered as a subset of biomarker genes. Rest all the genes are inappropriate, irrelevant, 

redundant and noisy, which deteriorates the classification performance and increases the 

experimental cost. Thus, there is a need to select a few biomarker genes to accurately classify 

these diseases. The objectives of gene selection are fourfold: 1) enhancing classification 

performance by removing redundant genes, 2) reducing the computational burden of the 

classifier by excluding noisy genes, 3) cutting down the cost of genetic testing of NMDs by 

selecting only informative genes and 4) providing a path to further investigate the 

relationships between selected genes and treatment of these diseases. Then the patient will be 

in a better position to prevent or cure these diseases. Here we intend to select the most 

compact subsets of dissimilar and discriminating genes from thousands of genes that can 

successfully classify the various kinds of NMDs. 

 

But it is extremely difficult to select these genes from thousands of genes due to the 

presence of only few samples of each type of NMDs. In order to confirm the validity of these 

selected biomarker genes, biologically associated with a particular kind is to check the 

classification accuracy of the sample classifier built using these selected genes. Thus, we 

propose a new integrated model for gene selection and multi-class classification of NMDs. 

The gene expression matrix is processed to create a median matrix for the selection of 

compact and different subsets of genes for every class. The classification algorithms use the 

combination of these selected genes for prediction of the kind of NMD samples. The various 

classification algorithms employed are LDA, QDA, KNN, linear SVM and RBF SVM. Our 

technique uses the OVA approach to decompose the multi-class classification problem into 

binary class classification problem. The accuracy and effectiveness of the proposed model are 

exhibited through analysis of publicly available microarray dataset of 13 NMDs. It selects 

only a few biomarker genes for each class of NMD. It selects a minimum of 4 genes in one 

class and a maximum of 19 genes in another class. The integration of the proposed method of 

gene selection with RBF SVM classification algorithm has outperformed in most of the cases. 

The results confirm the ability of the proposed gene selection and classification model for 

identifying the subsets of most discriminating and non-redundant genes which helps the 

classifier to give a high classification performance. 
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 From the literature, it was observed that a huge amount of work has been done on gene 

selection and classification of cancer and tumor data sets. But almost negligible amount of 

work has been found in the gene selection in NMDs data sets. So, the selection of 

discriminating genes for accurate classification of NMDs into different kinds is highly needed 

for choosing the optimal treatment option for patients. The challenge here is that almost all the 

gene selection and classification methods work on the data sets which contains only two 

classes. But the task of selecting biomarker genes for classification of multi-class datasets is 

still restricted. Thus, in the present chapter, we propose an integrated model for gene selection 

and multi-class classification of NMDs which selects only a few genes for each class to give 

higher classification accuracies. Here, the genes are selected using a median matrix which is 

created using gene expression matrix. Further, the combination of selected genes is used to 

construct classifiers. The data set consists of 13 classes of NMDs is taken from The European 

Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI). The genes 

selected using the proposed model has significantly increased the classification accuracies. 

Thus, this leads to the accurate classification by considering the gene expression levels of only 

few selected genes. In the previous chapter, the classification of multi-class NMD data sets is 

done by selecting 100 genes [180].  

 

7.2 Methodology 

 

We sought to develop an integrated method for the classification of NMDs based on 

those selected genes whose expression is particular to each kind of NMD. For the evaluation, 

the data set DST-6 was taken from EMBL-EBI and the detailed description is given in section 

2.3. The overall structure of the proposed methodology is given in figure 7.1. We have a 

multi-class NMDs microarray dataset which contains A classes and B samples of C genes. The 

gene expression matrix signifies the expression levels of genes in samples where each row 

represents a gene and each column represents a sample. The value def represents the 

expression value of gene e in sample f. The task here is to categorize the samples into their 

respective classes based upon the gene expression values in the samples. The overall 

procedure encompasses of four steps which are discussed below.  

 

1. Data preprocessing 2. Creation of a median matrix 3. Gene ranking and selection 4. 

Building the classifier. 
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Data preprocessing 

 

The data set contains 13 classes which need to be preprocessed before presenting to 

the algorithm. Here, each instance must be represented in the form of a real number. So the 

categorical values of the classes should be converted into a real number. Hence, class AQM is 

assigned a value 1, ALS is assigned a value 2 and so on. The classes are represented by 

number 1 to 13.  

 

Creation of a median matrix 

 

After preprocessing the data, the median matrix from the gene expression matrix is 

created [181]. The samples of each class are separated from each other. For all e
th
 genes and 

g
th
 classes, the median of expression levels is calculated and represented as Meg, for e = 1, 2, 3 

…. 22645 and g = 1, 2, 3…13. For the e
th
 gene, the differences of medians of expression 

levels of each class from every other class are calculated. It is given in equation 7.1 

 

Me = Me1-Me2, Me1-Me3, Me1-Me4……….Me1-Me13, Me2-Me3, Me2-Me4, Me2-Me5............Me2-

Me13, Me3-Me4, Me3-Me5, Me3-Me6……….Me3-Me13, Me4-Me5, Me4-Me6, Me4-Me7……….Me4-

Me13, Me5-Me6, Me5-Me7, Me5-Me8……….Me5-Me13, Me6-Me7, Me6-Me8, Me6-Me9……….Me6-

Me13, Me7-Me8, Me7-Me9, Me7-Me10……….Me7-Me13, Me8-Me9, Me8-Me10, Me8-

Me11……….Me9-Me10, Me9-Me11, Me9-Me12, Me9-Me13, Me10-Me11, Me10-Me12, Me10-Me13, Me11-

Me12, Me12-Me13.                                                                                                                  (7.1)  

 

We have taken the absolute value of all the differences of medians. The total number 

of columns is equal to the g (g-1)/2 for g classes. Next is to place all the 0s at the end of the 

matrix to make it equal to the size of gene expression matrix. The size of median matrix and 

the gene expression matrix must be equal in order to classify the samples to their classes.     

 

Gene ranking and selection 

 

We assign a rank to each gene in the training data set which describes its capability of 

classifying a class from the rest of the class. We run a ranking method for all the genes of a 

class which ranks and then sorts the genes in descending order of their ranks. The gene with 

the highest rank is assigned as Gene 1; the gene with the second highest rank is assigned as 

Gene 2 and so on. In the present chapter, the ranking algorithm employed is the t-test 
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explained in section 4.2. The genes are selected from the training data set with the following 

procedure: While moving through the ordered genes in first run, we selected only one gene 

from the list with the highest score labeled as Gene 1 in table 1(a), 1(b) and put that to 

biomarker gene subset. We use only this gene, i.e., Gene 1 to classify a single class from all 

other classes in every case using various classification algorithms. During the first run, we 

added only one selected gene with the highest rank (labeled as Gene 1 in Table 1(a), 1(b)) to 

the biomarker gene subset and then used this only gene for classification. The PMs are 

calculated using all classification algorithms under the LOOCV scheme. If we did not find the 

satisfactory classification accuracy, then the algorithm moves to the second run, where it adds 

the next gene with the second highest score (labeled as Gene 2 in Table 1(a), 1(b)) to the 

biomarker gene subset for classification. Now we have two genes in our biomarker gene 

subset and we keep on adding one gene to the subset in every run till we got the excellent 

classification performance. Here, we have chosen different biomarker genes for every class.  

 

Building the classifier 

 

The quality of selected genes is evaluated by using them in building the classifiers. The 

selected genes of every class are fed into classification algorithms one-by-one. For the 

classification of multi-class datasets, the binary classifiers are not sufficient. So, the idea of 

binary class classification is extended to multi-class classification using OVA approach. The 

whole problem is divided into n binary classification problems [182], where each binary 

classifier picks out one particular class from rest of the classes. It considers the samples of that 

class as positive and the samples of rest of the classes as negative. To categorize a sample to 

its respective class, all the binary classifiers are used. The one who receives the strongest 

prediction or maximizes the decision function, the sample will be assigned to that class. The 

decision function used is given in equation 7.2 

 

            

   
                                                                                                                                                    

 
 

We have employed five classification algorithms, namely LDA, QDA, KNN, linear 

SVM and RBF SVM one-by-one to classify the samples into their respective classes explained 

in section 2.5.  
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Figure 7.1: Overall Structure 
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7.3 Experimental Results and Discussion 

 

In this section, we present the evaluation method used to evaluate the performance of 

the proposed integrated technique. Here, LOOCV technique is used to estimate the 

generalization performance of the model. LOOCV technique’s complete description is given 

in section 2.7. The quantitative performance measure (PM) calculated is ACC of the 

classifiers according to the chosen number of genes as mentioned in section 2.6.  

 

The process of selecting biomarker genes from a large data set specific to the kind of 

NMD reflects a high level of difficulty. The gene selection procedure employed in the present 

chapter gives the subsets of important genes for every class which guarantees the accurate 

classification of various kinds of NMDs. The biomarker subsets are empty at the initial stage. 

The final subsets of biomarker genes of every class contain only those informative genes 

which benefit the classifiers in accurately classifying the dataset. Under the LOOCV scheme, 

the minimum number of genes chosen was 4 in one class and maximum number of genes 

chosen was 19 in another class, from 22,645 genes. The IDs of important genes of every class 

are given in tables 7.1 (a) and 7.1 (b).    

 

Table 7.1 (a): Biomarker genes 

 

 

Genes 

Class 

AQM ALS BMD FSHD JD DMD SPG4 

Gene 1 20648 3379 9346 10490 17991 4557 13394 

Gene 2 4399 9675 4847 10752 10055 16958 11153 

Gene 3 1037 19368 9319 21244 11195 15206 9053 

Gene 4 18808 12414 12964 13514 5885 6431 17140 

Gene 5 NA 10188 8730 10980 2324 20050 2693 

Gene 6 NA 1549 12666 13675 9222 219 195 

Gene 7 NA 16539 2048 12314 21448 16141 10313 

Gene 8 NA 21618 671 8195 4334 17041 18504 

Gene 9 NA 2705 16513 7400 6757 13466 21278 

Gene10 NA 17364 4284 11147 6656 8628 21602 

Gene11 NA NA 1549 17648 8773 2529 9072 

Gene12 NA NA 5637 15419 19060 4124 11973 

Gene13 NA NA 4649 17237 10580 NA 6639 
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Gene14 NA NA 16504 8512 3184 NA 5897 

Gene15 NA NA 7784 NA 3304 NA NA 

 

Table 7.1 (b): Biomarker genes 

 

 

Genes 

Class 

AD-EDMD X-Linked –

EDMD 

 Caplain-3  Dysferlin FKRP NHSM 

Gene 1  13124 13624 1839 9754 9754 9754 

Gene 2  19000 20457 2673 12915 12915 12915 

Gene 3  21695 11702 4293 12780 12780 12780 

Gene 4 20818 6115 12240 18869 18869 18869 

Gene 5 4662 13855 NA 15000 15000 15000 

Gene 6  322 20733 NA 22561 22561 22561 

Gene 7  5786 11420 NA 14207 14207 14207 

Gene 8  14286 1578 NA 14090 14090 14090 

Gene 9  13819 12196 NA NA 2319 2319 

Gene10  NA 14285 NA NA 16849 16849 

Gene11  NA 20295 NA NA 7122 7122 

Gene12  NA 10347 NA NA 2196 2196 

Gene13 NA 5408 NA NA 17597 17597 

Gene14 NA 13152 NA NA 9497 9497 

Gene15  NA 12217 NA NA 14738 14738 

Gene16  NA 4834 NA NA 4684 4648 

Gene17  NA 13447 NA NA NA 2951 

Gene18  NA   NA NA NA NA 18671 

Gene19  NA   NA NA NA NA 6983 

 

 

The best LOOCV classification accuracies using only those genes in both training and 

test data sets are also calculated. Tables 7.2-7.14 show the performance measure of all the 

experiments of every class. As shown in table 7.2, which illustrates the experiment with the 

AQM dataset, LDA achieves the best classification accuracy in the training data set (100%) 

and in the test data set (98.35%) using only 4 genes. On the other hand, other classifiers have 

also performed well. The ALS dataset has 10 selected genes. Here also, LDA achieved the 

highest classification accuracies of the training data set (97.22%) and of the test data set 
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(95.87%) which is illustrated in table 7.3. In case of BMD data set, RBF SVM achieved the 

highest classification accuracies in both training data set (90.54%) and test data set (90.58%) 

with only 15 genes which is demonstrated in table 7.4. While LDA and QDA achieved very 

less accuracy in this data set. The FSHD data set has 14 genes selected. As seen in table 7.5, 

here also RBF SVM achieved highest classification accuracies in both training data set 

(84.80%) and test data set (84.96%). However, linear SVM has also performed well as 

compared to LDA, QDA and KNN with the same number of genes.  

 

Table 7.2: LOOCV Performance measures for AQM data set during different runs 

 

 

Run 

Classification algorithms 

LDA QDA KNN Linear SVM RBF SVM 

TR TS TR TS TR TS TR TS TR TS 

1 93.52 91.74 92.14 91.32 94 93.66 94.27 94.21 94.59 94.55 

2 98.15 96.69 94.76 94.21 96 95.59 96.18 96.07 96.45 96.36 

3 98.15 97.52 96.51 95.87 97.14 96.97 97.45 97.31 97.8 97.69 

4 100 98.35 97.38 96.69 97.71 97.52 98.08 97.73 98.14 98.02 

 

Table 7.3: LOOCV Performance measures for ALS data set during different runs 

 

 

Run 

 

Classification algorithms 

LDA QDA KNN Linear SVM RBF SVM 

TR TS TR TS TR TS TR TS TR TS 

1 87.96 88.43 89.08 89.26 92.57 92.56 92.36 92.36 92.91 92.89 

2 87.96 88.43 86.03 85.95 90.29 90.63 90.87 90.91 91.89 91.9 

3 87.96 88.43 86.03 85.54 90 90.36 90.87 90.91 91.89 91.9 

4 86.11 86.78 85.59 85.12 89.71 90.08 90.66 90.7 91.72 91.74 

5 86.11 85.95 85.59 85.12 89.71 90.08 90.87 90.91 91.89 91.9 

6 92.59 91.74 88.65 84.62 92 92.01 92.99 92.77 93.41 93.22 

7 92.59 91.74 90.39 90.08 93.14 92.84 93.42 93.18 94.26 94.21 

8 92.59 91.74 90.83 90.5 93.43 93.39 94.06 93.8 94.76 94.71 

9 96.3 94.21 92.14 91.74 94.29 94.21 94.9 94.63 95.61 95.54 

10 97.22 95.87 93.01 92.98 95.14 95.04 95.54 95.45 95.78 95.7 
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Table 7.4: LOOCV Performance measures for BMD data set during different runs 

 

 

Run 

 

Classification algorithms 

LDA QDA KNN Linear SVM RBF SVM 

TR TS TR TS TR TS TR TS TR TS 

1 38.89 38.84 48.03 47.93 64 65.01 72.19 72.73 77.03 77.36 

2 43.52 42.98 55.9 56.2 69.71 70.25 76.22 76.65 80.24 80.5 

3 51.85 49.59 61.57 61.98 73.71 74.1 79.19 79.55 82.6 82.81 

4 53.7 52.07 59.39 59.5 72 72.45 77.92 78.31 81.59 81.82 

5 57.41 55.37 62.01 61.98 73.71 74.38 79.41 79.75 82.77 82.98 

6 74.07 73.55 71.62 71.49 80.29 80.44 84.08 84.3 86.49 86.61 

7 76.85 76.03 71.18 71.49 80.29 80.44 84.08 84.3 86.49 86.61 

8 75 73.55 69.87 70.25 79.43 79.61 83.44 83.68 85.98 86.12 

9 75 76.03 70.74 71.49 80.29 80.44 84.08 84.3 86.49 86.61 

10 75.93 76.86 71.62 72.31 80.86 81.27 84.71 84.92 86.99 87.11 

11 76.85 77.69 72.49 73.14 81.43 81.82 85.14 85.33 87.33 87.44 

12 76.85 77.69 72.49 73.14 81.43 81.82 85.14 85.33 87.33 87.44 

13 81.48 79.34 77.73 78.1 84.86 85.12 87.69 87.81 89.7 89.75 

14 75 75.21 76.42 76.86 84 84.3 87.26 87.19 89.19 89.26 

15 83.33 80.99 79.48 79.75 86 86.23 88.96 88.84 90.54 90.58 

 

Table 7.5: LOOCV Performance measures for FSHD data set during different runs 

 

 

Run 

 

Classification algorithms 

LDA QDA KNN Linear SVM RBF SVM 

TR TS TR TS TR TS TR TS TR TS 

1 59.26 57.85 52.84 52.48 67.14 67.77 72.4 72.93 75.68 76.03 

2 56.48 57.02 55.9 54.96 68.86 69.7 73.89 74.38 76.86 77.19 

3 59.26 58.68 48.47 46.69 63.14 63.91 69.43 70.04 73.31 73.72 

4 56.48 56.2 51.53 50.41 65.71 66.39 71.34 71.9 74.83 75.21 

5 65.74 65.29 57.21 55.79 69.43 69.97 74.1 74.59 77.03 77.36 

6 62.96 62.81 56.33 54.55 68.57 69.15 73.46 73.97 77.03 77.36 

7 65.74 65.29 58.95 57.44 70.57 71.35 75.16 75.62 79.05 79.34 

8 68.52 66.94 63.76 61.98 73.71 74.38 77.49 77.89 80.91 81.16 

9 65.74 65.29 62.88 61.57 73.43 74.1 77.28 77.69 81.08 81.32 

10 71.3 68.6 65.5 64.05 75.14 75.48 78.34 78.72 82.43 82.64 
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11 74.07 71.07 67.69 66.12 76.57 76.86 79.41 79.75 83.45 83.64 

12 79.63 77.69 71.62 69.83 79.14 79.34 81.32 81.4 84.8 84.96 

13 78.7 76.86 71.62 70.25 79.43 79.61 81.53 81.61 84.97 85.12 

14 78.7 76.86 70.74 69.42 78.86 79.34 81.32 81.4 84.8 84.96 

 
 

Table 7.6 shows the results of JD dataset. The best classification accuracy is achieved 

in the training data set (97.13%) and test dataset (97.02%) with RBF SVM using only 15 

genes. Here, QDA, KNN and linear SVM have performed equally well. But LDA has 

performed worse in case of this dataset. The DMD data set has 12 genes selected; here again 

RBF SVM has achieved the best classification accuracy in the training data set (97.13%) as 

well as in the test dataset (97.02%) as seen in table 7.7. Table 7.8 demonstrates the results of 

SPG4 dataset achieved using 14 genes; the maximum classification accuracy is accomplished 

using RBF SVM in the training data set (97.13%) and test dataset (97.02%). For AD-EDMD 

dataset, the results are shown in table 7.9. The best classification accuracy in the training data 

set (94.26%) and test dataset (94.21%) is achieved using 9 genes by employing RBF SVM. 

Here LDA has performed slightly worse as compared to QDA, KNN and linear SVM 

classification algorithms.  

 

Table 7.6: LOOCV Performance measures for JD data set during different runs 

 

 

Run 

 

Classification algorithms 

LDA QDA KNN Linear SVM RBF SVM 

TR TS TR TS TR TS TR TS TR TS 

1 77.78 77.69 76.42 76.45 83.71 84.02 83.86 84.09 83.78 83.8 

2 78.7 79.34 79.48 79.75 86 85.95 85.77 85.74 85.98 86.12 

3 79.63 80.17 80.35 80.58 86.57 86.5 86.41 86.36 86.82 86.94 

4 82.41 82.64 82.1 82.23 87.71 87.6 87.69 87.6 88.18 88.1 

5 83.33 83.47 83.84 83.88 88.86 88.98 88.96 88.84 89.7 89.75 

6 88.89 89.26 89.96 90.08 93.14 93.11 92.36 92.56 93.58 93.55 

7 87.04 87.6 88.21 88.43 92 92.01 92.14 92.36 93.58 93.55 

8 84.26 85.12 88.21 88.43 92 92.01 91.72 91.94 93.41 93.39 

9 84.26 85.12 88.65 88.84 92.29 92.01 91.72 91.94 93.41 93.39 

10 84.26 85.12 89.96 90.8 93.14 93.11 92.78 92.98 94.26 94.17 

11 87.96 88.43 91.7 91.74 94.29 94.21 93.63 93.8 94.93 94.88 
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12 88.89 89.26 92.58 92.56 94.86 94.77 94.48 94.63 95.61 95.54 

13 90.74 90.91 94.32 94.21 96 95.59 95.12 95.25 96.11 96.03 

14 91.67 92.56 95.63 95.45 96.86 96.42 95.97 95.87 96.62 96.53 

15 91.67 92.56 96.07 95.87 97.14 96.97 96.6 96.49 97.13 97.02 

 

Table 7.7: LOOCV Performance measures for DMD data set during different runs 

 

 

Run 

 

Classification algorithms 

LDA QDA KNN Linear SVM RBF SVM 

TR TS TR TS TR TS TR TS TR TS 

1 83.33 83.47 83.41 83.47 88.57 88.71 89.17 89.26 89.7 89.75 

2 84.26 85.12 84.28 84.3 89.14 89.26 90.02 90.08 90.88 90.91 

3 81.48 82.64 84.72 85.12 89.71 89.81 90.87 90.91 91.89 91.9 

4 91.67 91.74 92.58 92.98 95.14 94.77 94.48 94.42 94.93 94.88 

5 89.81 90.08 93.01 92.98 95.14 95.04 94.69 94.63 95.27 95.21 

6 91.67 91.74 94.32 94.21 96 95.87 95.75 95.87 96.45 96.36 

7 91.67 91.74 94.32 94.21 96 95.87 95.97 96.07 96.79 96.69 

8 91.67 91.74 95.2 94.63 96.29 96.14 96.18 96.28 96.96 96.86 

9 90.74 90.91 93.01 93.39 95.43 95.32 95.75 95.87 96.62 96.53 

10 89.81 90.08 91.27 91.47 94.29 94.21 95.12 95.25 96.11 96.03 

11 91.67 91.74 92.58 92.98 95.14 95.04 95.97 96.07 96.79 96.69 

12 93.52 93.39 93.45 93.8 95.71 95.59 96.39 96.49 97.13 97.02 

 

Table 7.8: LOOCV Performance measures for SPG4 data set during different runs 

 

 

Run 

 

Classification algorithms 

LDA QDA KNN Linear SVM RBF SVM 

TR TS TR TS TR TS TR TS TR TS 

1 41.67 42.98 35.81 35.54 55.43 56.75 66.03 66.74 72.3 72.73 

2 47.22 48.76 49.78 50.83 66 66.94 73.89 74.38 78.55 78.84 

3 53.7 55.37 58.95 59.92 72.29 73 78.56 78.93 82.26 82.48 

4 89.81 88.43 78.17 78.1 84.86 84.85 87.69 87.81 89.53 89.59 

5 88.89 87.6 76.86 76.86 84 84.02 87.05 87.19 89.02 89.09 

6 88.89 87.6 85.59 85.95 90.29 90.08 91.72 91.74 92.74 92.73 

7 82.41 80.99 85.59 85.95 90.29 90.36 91.93 91.94 92.91 92.89 

8 84.26 84.3 87.34 87.6 91.43 91.46 92.78 92.77 93.58 93.55 
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9 83.33 83.47 86.9 87.19 91.14 91.18 92.57 92.56 93.58 93.55 

10 89.81 87.6 90.39 90.5 93.43 93.39 94.48 94.42 95.27 95.21 

11 90.74 88.43 91.27 91.32 94 93.94 95.12 95.04 95.78 95.7 

12 94.44 91.74 93.89 93.8 95.71 95.59 96.18 96.07 96.79 96.69 

13 94.44 91.74 93.89 93.8 95.71 95.59 96.39 96.28 96.96 96.86 

14 95.37 92.56 94.3 94.21 96 95.59 96.6 96.49 97.13 97.02 

 

Table 7.9: LOOCV Performance measures for AD-EDMD data set during different runs 

 

 

Run 

 

Classification algorithms 

LDA QDA KNN Linear SVM RBF SVM 

TR TS TR TS TR TS TR TS TR TS 

1 80.56 80.17 82.53 82.23 87.71 87.88 89.81 89.88 91.05 91.07 

2 77.78 76.86 79.91 79.75 86 85.95 88.32 88.43 89.86 89.92 

3 78.7 77.69 82.1 81.82 87.43 87.6 89.6 89.67 90.88 90.91 

4 78.7 77.69 80.79 80.58 86.57 86.78 88.96 89.05 90.37 90.41 

5 82.41 81.82 83.84 83.47 88.57 88.15 90.02 90.08 91.22 91.24 

6 81.48 80.17 86.03 85.54 90 90.08 91.51 91.53 92.91 92.89 

7 86.11 85.95 89.08 88.43 92 92.01 92.99 92.98 93.92 93.88 

8 85.19 82.64 86.9 86.36 90.57 90.63 91.93 91.94 93.07 93.06 

9 86.11 85.12 89.52 89.26 92.57 92.56 93.21 92.98 94.26 94.21 

 

Table 7.10: LOOCV Performance measures for X-Linked-EDMD data set during different 

runs 

 

 

Run 

 

Classification algorithms 

LDA QDA KNN Linear SVM RBF SVM 

TR TS TR TS TR TS TR TS TR TS 

1 54.63 53.37 55.46 55.79 69.43 70.25 76.65 77.07 80.91 81.16 

2 53.7 54.55 57.64 57.85 70.86 71.63 77.71 78.1 81.76 81.98 

3 56.48 57.85 61.14 61.57 73.43 74.1 79.62 79.96 83.28 83.47 

4 55.56 57.02 62.45 63.64 74.86 75.48 80.68 80.99 84.12 84.3 

5 56.48 57.85 69.87 70.25 79.43 79.89 84.08 84.3 86.82 86.94 

6 74.07 75.21 79.91 79.75 86 86.23 88.96 89.05 90.71 90.74 

7 82.41 82.64 84.28 83.88 88.86 88.98 91.08 91.12 92.4 92.4 

8 77.78 77.69 85.15 85.54 90 90.08 91.93 91.94 93.07 93.06 
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9 80.56 80.99 87.34 87.19 91.14 91.18 92.78 92.77 93.75 93.72 

10 92.59 91.74 94.32 94.21 96 95.87 96.6 96.28 96.79 96.69 

11 91.67 90.91 93.89 93.8 95.71 95.32 96.18 96.07 96.62 96.53 

12 89.81 89.26 93.45 93.39 95.43 95.04 95.97 95.87 96.62 96.53 

13 91.67 90.91 94.32 94.21 96 95.87 96.6 96.49 97.13 97.02 

14 93.52 91.74 94.76 94.63 96.29 96.14 96.82 96.69 97.3 97.19 

15 93.52 92.56 95.2 95.04 96.57 96.42 97.03 96.9 97.47 97.36 

16 93.52 91.74 95.2 95.04 96.57 96.42 97.24 97.11 97.64 97.52 

17 94.44 91.74 95.63 95.45 96.86 96.69 97.45 97.31 97.8 97.69 

 
 

Table 7.10 illustrates the results of X-Linked-EDMD data set, the highest 

classification accuracy in the training data set (97.80%) and test data set (97.69%) is obtained 

using RBF SVM. This data set has only 17 genes selected. In case of the Caplain-3 data set, 

again RBF SVM has outperformed which is demonstrated in table 7.11. The maximum 

classification accuracy attained in the training data set (94.44%) and test data set (92.31%) 

using only 4 selected genes are very high. The Dysferlin data set has 8 genes selected and the 

results of using them are shown in table 7.12. The best classification accuracy is achieved in 

the training data set (92.57%) and test data set (92.56%) using RBF SVM. Table 7.13 shows 

the results of using different classification algorithms on FKRP dataset. The best classification 

accuracy is obtained in the training data set (95.44%) and test data set (95.37%) using RBF 

SVM. In case of NHSM data set, the outperformer classification algorithm RBF SVM has 

given the highest classification algorithm in the training data set (92.36%) and test data set 

(92.36%) using only the 19 selected genes. The results on this data set are shown in table 7.14. 

 

Table 7.11: LOOCV Performance measures for Caplain-3 data set during different runs 

 

 

Run 

 

Classification algorithms 

LDA QDA KNN Linear SVM RBF SVM 

TR TS TR TS TR TS TR TS TR TS 

1 58.33 58.68 65.5 66.12 76.57 76.86 80.25 80.58 82.6 82.81 

2 66.67 66.12 65.07 64.88 75.71 75.76 79.41 79.75 81.93 82.15 

3 63.89 63.64 65.07 64.88 75.71 75.48 79.19 79.55 82.09 82.31 

4 67.59 53.85 75 84.62 100 76.92 91.67 92.31 94.44 92.31 
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Table 7.12: LOOCV Performance measures for Dysferlin data set during different runs 

 

 

Run 

 

Classification algorithms 

LDA QDA KNN Linear SVM RBF SVM 

TR TS TR TS TR TS TR TS TR TS 

1 69.44 70.25 70.31 70.66 79.71 79.89 82.59 82.85 84.46 84.63 

2 70.37 71.07 74.67 74.38 82.29 82.64 84.71 84.92 86.15 86.28 

3 73.15 73.55 76.86 77.69 84.57 84.85 86.41 86.57 87.5 87.6 

4 70.37 71.07 77.29 78.1 84.86 85.12 86.62 86.78 87.67 87.77 

5 78.7 77.69 81.66 82.23 87.71 87.88 88.75 88.84 90.03 90.08 

6 78.7 77.69 84.72 84.71 89.43 89.53 90.02 90.08 91.05 91.07 

7 76.85 76.03 84.72 84.71 89.43 89.53 90.02 90.08 91.39 91.4 

8 77.78 76.86 87.34 87.6 91.43 91.46 91.51 91.53 92.57 92.56 

 

Table 7.13: LOOCV Performance measures for FKRP data set during different runs 

 

 

Run 

 

Classification algorithms 

LDA QDA KNN Linear SVM RBF SVM 

TR TS TR TS TR TS TR TS TR TS 

1 56.48 56.2 49.78 49.59 65.14 66.12 72.61 73.14 77.03 77.36 

2 81.48 80.17 86.46 86.78 90.86 90.63 91.51 91.53 92.4 92.4 

3 79.63 79.34 85.59 85.95 90.29 90.36 91.3 91.32 92.23 92.23 

4 77.78 77.69 83.41 83.47 88.57 88.71 90.02 90.08 91.22 91.24 

5 77.78 77.69 84.28 84.3 89.14 89.26 90.45 90.5 91.55 91.57 

6 83.33 82.64 84.72 84.3 89.14 89.26 90.45 90.5 91.55 91.57 

7 84.26 83.47 83.84 83.88 88.86 88.98 90.23 90.29 91.39 91.4 

8 86.11 85.95 86.03 85.54 90 90.08 91.51 91.53 92.4 92.4 

9 86.11 85.12 86.46 87.19 91.14 90.91 92.14 92.15 93.24 93.22 

10 86.11 85.12 86.9 86.78 90.86 90.91 92.14 92.15 93.41 93.39 

11 83.33 80.17 86.9 85.95 90.29 90.08 91.51 91.53 93.07 93.06 

12 85.19 81.82 87.34 86.36 90.57 90.36 91.72 91.74 93.24 93.22 

13 87.96 85.12 90.39 90.08 93.14 92.84 93.63 93.6 94.76 94.71 

14 87.04 84.3 89.52 88.84 92.29 92.29 93.21 93.18 94.43 94.38 

15 89.81 87.6 92.14 90.91 93.71 93.66 94.27 94.21 95.27 95.21 

16 89.81 87.6 92.58 91.74 94.29 93.94 94.48 94.42 95.44 95.37 
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Table 7.14: LOOCV Performance measures for NHSM data set during different runs 

 

 

Run 

 

Classification algorithms 

LDA QDA KNN Linear SVM RBF SVM 

TR TS TR TS TR TS TR TS TR TS 

1 56.48 56.2 52.4 52.89 67.43 68.04 71.76 72.31 74.49 74.88 

2 53.7 53.72 48.91 47.93 64 64.46 69 69.63 72.3 72.73 

3 57.41 57.85 55.46 55.37 69.14 69.7 73.04 73.55 75.51 75.87 

4 66.67 66.94 60.26 59.92 72.29 73 75.58 76.03 77.7 78.02 

5 63.89 64.46 59.83 59.5 72 73 75.58 76.03 78.72 79.01 

6 63.89 64.46 59.83 59.5 72 72.18 74.95 75.41 78.72 79.01 

7 65.74 66.12 62.45 62.4 74 74.38 76.65 77.07 80.41 80.66 

8 65.74 66.12 62.88 62.81 74.29 74.38 76.65 77.07 80.91 81.16 

9 72.22 71.9 78.17 78.93 85.43 85.4 84.93 85.12 87.67 87.77 

10 72.22 71.9 79.48 80.17 86.29 85.95 85.56 85.74 88.34 88.43 

11 74.07 74.38 83.84 84.3 89.14 88.43 87.47 87.6 89.86 89.92 

12 71.3 72.73 83.41 83.47 88.57 88.43 87.47 87.6 89.86 89.92 

13 73.15 73.55 85.15 85.54 90 89.81 88.11 88.22 90.37 90.41 

14 73.15 73.55 86.03 86.36 90.57 90.36 89.17 89.05 91.05 91.07 

15 79.63 79.34 89.08 89.26 92.57 91.74 90.45 90.29 92.06 92.07 

16 75 75.21 86.9 87.19 91.14 90.36 89.38 89.26 91.22 91.24 

17 80.56 80.17 78.6 78.93 85.43 85.12 86.62 86.57 89.02 89.09 

18 76.85 76.03 76.86 76.86 84 83.75 85.35 85.54 88.18 88.26 

19 80.56 79.34 78.17 78.1 89.08 88.43 90 90.08 92.36 92.36 

 
 

The other important highlights of the proposed integrated gene selection and 

classification model are listed. It includes only those predicted genes in the biomarker gene 

subsets whose expression is representative of the specific type of NMD. It reduces the 

misclassification rates by selecting only discriminating genes for each class of NMD. It can be 

effectively used by novice researchers as it does not require much domain knowledge. As the 

integrated model is classifier independent so it can be easily combined with any of the 

classification algorithms. We need not to specify the classification algorithm beforehand. But 

from the results, it is clear that the integration of RBF SVM with our gene selection method 

has outperformed all other integrations. It also provides flexibility for data division as the 
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prior knowledge of gene expression profiles is not required. Our model has very simple 

computational steps and is very easy to implement.  

 

7.4. Conclusions 

 

The microarray data set of NMDs is cursed from high dimensionality as it contains 

tens of thousands of genes. The dimension of these data sets needs to be reduced in order to 

find out the compact subsets of biomarker genes that correctly classify these diseases. This 

will benefit the classifier by increasing classification performance, decreasing computational 

load and complexity. So in the present chapter, our motive is to search for the smallest gene 

subsets for every class which guarantee the accurate classification of diseases. We propose an 

integrated model for gene selection and multi-class classification of NMDs employing OVA 

approach. The proposed method is applied to the huge microarray data set of the NMD data 

set which contains 22,645 genes and 121 samples. The prominent conclusion of the present 

work is that we could identify those biomarker genes which are only needed to accurately 

classify the kinds of NMDs. Our method has significantly reduced the misclassification rates 

by using only those genes for classification. It has selected a minimum of 4 genes in one class 

and a maximum of 19 genes in another class. It is worth pointing out that by using only 1 gene 

per class, we could predict the kind of NMD of samples up to 94.59% and 94.55% in training 

and test datasets respectively under the LOOCV scheme. The integration of the proposed 

method of gene selection with RBF SVM has given highest classification accuracies amongst 

all. 

 

The further investigation of these biomarker gene subsets is required as the 

classification accuracies obtained by the combination of these genes is very high. The medical 

relevance of these genes will be useful in discovering the drugs for the treatment of these 

diseases. It will be easier for the future researchers give better treatment options by visualizing 

the expression profiles of these genes.   

 
 

The work mentioned in this chapter has been accepted for publication in International Journal of 

Computational Biology and Drug Design [Forthcoming issue]. 
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Chapter 8 
 

Conclusions and Future Work 
 

 

In this chapter, the conclusions and the future scope of the proposed work are given. This 

chapter is structured as follows: Section 8.1 presents the conclusions. Section 8.2 gives the 

future work of the thesis.  

 

8.1 Conclusions 
 

For the last few years, it has been known that with the help of gene expression data it 

is possible to accurately diagnose any disease. The microarray technology has made it feasible 

to check the activity of gene expressions of a whole organism. This thesis presents a 

computational intelligent method for gene selection and classification of NMDs. The method 

selects only a few genes for the accurate classification.   

 

In chapter 1 we begin with the introduction of computational intelligence methods and 

the use of these methods for gene selection and classification. This is followed by a detailed 

literature review on the use of individual and integrated knowledge based methods and 

computational intelligence methods for solving various challenges in bioinformatics. The 

chapter ends, presenting the motivation, plan of the thesis and its summary. From the 

literature review, it was found that the gene selection and classification of binary-class and 

multi-class datasets is a primary concern for the accurate and correct diagnosis of NMDs in 

medical field. This necessitates the development of an integrated method utilizing 

computational intelligence methods for gene selection and classification which selects only 

few genes from a large datasets and does the correct classification. As a result, the proposed 

work has been conceded out giving extraordinary attention to selection of only few or optimal 

genes which provides us with the highest accuracy. 

 

Chapter 2 presents the basic concepts of gene selection and classification. It includes 

the biological background information with the problem statement of NMD classification, 

issues of disease classification, publicly available datasets, gene selection and its categories, 

various techniques of gene selection, classification algorithms and model validation 

techniques. 
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Chapter 3 provides an unsupervised approach for the diagnosis of facioscapulohumeral 

muscular dystrophy using cosine distance metric-hierarchical clustering algorithm and k-

nearest neighbor based methodology where the former was used for feature selection and the 

latter was used for classification. The proposed method is evaluated on a dataset consisting of 

50 samples and 33,297 genes. The genes in the dataset were ranked using Wilcoxon rank sum 

test. Followed by that, the clustering of genes and classification of dataset has been done. The 

experimental results shows that the integrated methods, i.e., k-means-LDA, k-means-QDA, k-

means-KNN, euclidean distance metric-hierarchical clustering algorithm-LDA, euclidean 

distance metric-hierarchical clustering algorithm-QDA, euclidean distance metric-hierarchical 

clustering algorithm-KNN, cosine distance metric-hierarchical clustering algorithm-LDA and 

cosine distance metric-hierarchical clustering algorithm-QDA have not worked well for gene 

selection and clustering of NMD. The results were compared in terms of accuracy, sensitivity, 

specificity, positive predicted value and negative predicted value employing holdout 

validation technique and are shown in tables 3.1 to 3.3. The proposed method selects only few 

genes, i.e., 500 genes out of 33,297 genes and gives the classification accuracy of 87.39% 

which is much higher as compared to other reported integrated approaches. This is due to the 

fact that in hierarchical clustering method, there is no need to define the number of clusters 

beforehand. The cophenetic correlation coefficient using cosine distance metric is found to be 

better as compared to the euclidean distance metric. The hierarchical clustering algorithm with 

cosine distance metric is giving high performance because it takes into account the relative 

sizes rather than the absolute sizes of observations.          

 

Chapter 4 deals with an integrated method for dimension reduction and classification 

applied to microarray data of NMDs employing entropy based feature selection technique and 

linear SVM for classification. The proposed integrated method was evaluated on two datasets, 

i.e., juvenile dermatomyositis and facioscapulohumeral muscular dystrophy containing 39 and 

32 samples respectively.  Both of the datasets contain a total of 22,645 genes. The experiment 

of the proposed method was run in MATLAB. Two filter techniques, namely t-test and 

entropy are used for gene selection and followed by that two classification algorithms linear 

SVM and KNN are deployed for classification. The results show that the integrated methods 

like t-test-linear SVM, entropy-linear SVM did not perform well, whereas t-test-KNN showed 

much better performance comparatively. But the best performance measures were given by 

the integrated method, i.e., entropy-KNN. Again, the performance measures were accuracy, 
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sensitivity, specificity, positive predicted value and negative predicted value employing five- 

fold cross-validation technique and are depicted in tables 4.1 to 4.4. The proposed method 

selects 500 genes out of total 22,645 genes from both the datasets and has shown the accuracy 

of 92.31% in JDM and 96.88% in FSHD dataset.  

 

Chapter 5 presents a novel intelligent integrated method of gene selection for 

facioscapulohumeral muscular dystrophy diagnosis deploying genetic algorithm and KNN. 

The proposed integrated method was evaluated on a dataset of facioscapulohumeral muscular 

dystrophy containing 33,297 genes and 50 samples. The genes are filtered and ranked using t-

test. Genetic algorithm was employed to select the most discriminating genes where the 

fitness function was calculated using LDA, QDA and KNN one after the other. The 

experimentations were taking different numbers of genes every time. In the genetic algorithm, 

when the fitness function is evaluated using KNN, it gave the best performance measures. 

Other two integrations namely genetic algorithm-LDA and genetic algorithm-QDA did not 

perform much well comparatively. Again, the performance measures were accuracy, 

sensitivity, specificity, positive predicted value and negative predicted value and the model if 

validated using leave-one-out cross-validation techniques whose results are shown in table 

5.2. The proposed integrated method, genetic algorithm-KNN gave 100% classification 

accuracy by selecting just 10 top most genes out of 33,297 genes. The model is validated 

using the leave-one-out cross-validation technique.  

  

 Chapter 6 presents a novel hybrid feature selection model employing Bhattacharyya 

coefficient, genetic algorithm and radial basis function based support vector machine for 

classification of NMDs. The proposed integrated method was evaluated on two multi-class 

datasets of NMDs. First dataset consisted of 22,645 genes, 5 classes and 72 numbers of 

samples, whereas second dataset consisted of 22,645 genes, 6 classes and 55 numbers of 

samples. The genes in both of the datasets are ranked and filtered using Bhattacharyya 

technique and then selected using genetic algorithm where the fitness function is calculated 

using LDA, QDA, KNN, linear SVM and RBF SVM. The proposed hybrid approach GA-

RBF SVM performed best as compared to other implemented approaches. The hybridization 

of GA with LDA, QDA, and KNN has given satisfactory performance and linear SVM has 

also performed better. The performance measure, i.e., accuracy was calculated for all the 

hybridized methods, the model is validated using five-fold cross-validation technique and the 

results are shown in table 6.5. The hybridization of GA with RBF SVM has given 98.464% 
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and 98.48% in first and second data sets respectively, and it has selected only 100 genes out of 

22,645 genes.   

 

Chapter 7 presents a novel approach for the dissimilar gene selection and multi-class 

classification of NMDs by combining median matrix and radial basis function based support 

vector machine. The proposed novel intelligent method was evaluated on the dataset of 22,645 

genes, 13 classes and 121 number of samples. Here the gene expression matrix is 

preprocessed in such a way that it creates a median matrix for the selection of few compact 

subsets of genes. After selection of gene subsets, the samples are classified using LDA, QDA, 

KNN, linear SVM and RBF SVM. Here also RBF SVM performed best as compared to other 

classifiers. The very few genes are selected for each class, i.e., 4 of class AQM, 10 for class 

ALS, 15 for class BMD, 14 for class FSHD, 15 for class JD, 12 for class DMD, 14 for class 

SPG4, 9 for class AD-EDMD, 17 for class X-Linked-EDMD, 4 for class Caplain-3, 8 for class 

Dysferlin, 16 for FKRP and 19 for NHSM out of 22,645 genes. The performance measure, 

i.e., classification accuracy is calculated in a different way by combining the genes. Here, in 

the first iteration, first selected gene is used for classification and if we do not get the 

satisfactory classification performance, then in the next iteration, we added next gene to the 

subset and so on till we get the satisfactory classification performance. 

 

Chapter 8 discusses the conclusions of all the chapters and presents the future work of 

the thesis. 

 

8.2 Future Works 

 

The accurate diagnosis of NMDs employing computational intelligence methods 

provides a path for the future researchers to discover its evolution mechanism, prevention, 

cure and drug discovery for the treatment. Due to these computational intelligence methods, it 

will be possible for them to find out the interacting genes related to NMD development.  
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