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ABSTRACT 

 

The nonlinear interaction of cosh-Gaussian laser beam and Hermite-cosh-

Gaussian laser beam with plasmas and clusters have been studied using WKB and 

paraxial ray approximations. In chapter-3, sensitiveness of the decentered parameter for 

relativistic self-focusing of HChG beam in the plasma has been investigated theoretically 

for mode indices 0, 1 and 2.The results obtained indicate the dependency of the self-

focusing of the laser beam on the decentered parameter. The selection of decentered 

parameter is more sensitive to self-focusing. For the mode indices m=0 & 1, self-focusing 

becomes stronger and for m=2, self-focusing becomes weaker as the diffraction term 

becomes more dominant.  

 In chapter-4, self-focusing of a Hermite-cosh-Gaussian laser beam in 

magnetoplasma in the presence of density ramp has been observed. Focusing and de-

focusing nature of the Hermite-cosh-Gaussian laser beam with decentered parameter and 

magnetic field has been studied and strong self-focusing is reported. It is investigated that 

decentered parameter ‘b’ plays a significant role for the self-focusing of the laser beam 

and is very sensitive as in case of extraordinary mode. For mode indices 2and1,0m , 

diffraction term becomes more dominant over nonlinear term for decentered parameter

0b . Also, increase in the value of magnetic field, enhances the self-focusing ability of 

the laser beam. 

 In chapter-5, relativistic self-focusing of Hermite-cosh-Gaussian laser beam in 

plasma under density transition has been studied and enhancement in self-focusing has 

been observed. It is observed that strong self-focusing occurs as the HChG beam 

propagates deeper inside the non linear medium as spot size shrinks due to highly dense 

plasmas. In this chapter, a comparative study between self-focusing of HChG beam in the 

presence and absence of plasmas density transition is reported. 

 In chapter-6, self-focusing of a cosh-Gaussian laser beam in collisionless 

magneto-plasma under plasma density ramp has been studied. The focusing and de-

focusing nature of the cosh-Gaussian laser beam with decentered parameter, intensity 
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parameter, magnetic field, and relative density parameter has been studied and strong 

self-focusing is reported. Also, a comparative study between Gaussian and cosh-Gaussian 

beam profile has been reported. 

 In chapter-7, relativistic self-focusing of cosh-Gaussian laser beam in the cold 

quantum plasma has been investigated. The comparative study between self-focusing of 

cosh-Gaussian laser beam in cold quantum case and classical relativistic case has been 

made for decentered parameter 0b  and it is observed that as the beam propagates 

deeper inside the cold quantum plasma, the self-focusing ability of the laser beam 

enhances and shifted towards lower value of normalized propagation distance due to 

quantum contribution. 

 In chapter-8, propagation of cosh-Gaussian laser beam in an argon gas embedded 

with clusters is studied. This laser beam converts the clusters to plasma balls which 

expand rapidly under Coulomb explosion and hydrodynamic expansion. The dependency 

of self-focusing on decentered parameter and normalized time has been studied. The 

present research might be very useful in the applications like the generation of inertial 

fusion energy driven by lasers, laser driven accelerators, scribing type of applications in 

electronics etc. 
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PREFACE 

 The nonlinear interaction of Hermite-cosh-Gaussian laser beam and cosh-

Gaussian laser beam with the plasmas and clusters is studied. In this work, we apply 

plasma density ramp and the affects of density transition on self-focusing are 

investigated. Self-focusing ability of an energetic beam in the nonlinear medium is 

widely studied by researchers and scientists as the converged beam have lot of energy 

focused at a point. It is very well known that a small convex lens (due to nonlinearity) 

can focuses the sun light at a point and this energy is sufficient to burn a piece of paper. 

In the present study an energetic beam gets focused as it propagates deeper into the 

nonlinear medium and one may have the idea of amount of energy generated in this 

process. In many socially useful applications like laser driven accelerators, scribing type 

of applications in electronics, the generation of inertial fusion energy driven by lasers, 

generation of x-rays etc., high energy is required and hence, self-focusing effect is very 

useful in these cases. We have focused our attention on enhancing self-focusing effect by 

the proper selection of various parameters of laser-plasma/cluster interaction. The 

enhancement in self-focusing of laser beam has been observed and reported in the present 

study. 

 I am highly thankful to Dr. Niti Kant for valuable guidance to complete this work. I 

am highly thankful to my wife and family for their co-operative attitude during the entire 

period of this work. 

 

 

Vikas Nanda 
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CHAPTER-1 

 

INTRODUCTION AND OVERVIEW 

 

1.1 INTRODUCTION 

 After the discovery of self-focusing of light by Askar’yan in 1962 [1], it become 

the most fascinating and interesting area of research. The interaction of light with plasma 

[2-4], cluster [5, 6], liquid [7] etc. has been widely studied by the researchers and 

scientist due to its socially useful applications like x-ray lasers and the laser driven 

accelerators [8], the generation of inertial fusion energy driven by laser [9-11], the 

production of quasi mono-energetic electron bunches [12], optical harmonic generation 

[13] etc. These applications need the laser pulse to propagate over several Rayleigh 

lengths in the plasma or cluster without loss of energy. Today, extremely high intensity of 

the order of 10
20

 W/cm
2 

produced by short pulse laser technology enabled various high 

energy related experiments. Investigators choose the propagation of different kind of 

laser beams profile like Gaussian beams [4], cosh-Gaussian beams [14], Hermite-

Gaussian beams [15], Hermite-cosh-Gaussian beams [16-18] etc. in the plasma. 

The non-linearity is accountable for self-focusing of light propagating through the 

non-linear medium as the velocity of light varies in the non-linear medium which causes 

the self-focusing effect. The relation between velocity of light in the medium and index 

of refraction is given as .ncv   where v
 
is velocity of light in medium, c is velocity of 

light in vacuum and n is the refractive index of the medium. As the ray of light 

propagates from rarer medium to the denser medium, it bends towards the normal to the 

surface on which ray of light incident. 

 

Figure1.1: Refraction of light  
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 Figure1.1 represents the phenomenon of refraction of light as ray of light 

propagates from rarer medium to denser medium. Similarly, a ray of light propagating 

from denser to rarer medium bends away from the normal to the surface. This is the 

fundamental law of physics and is responsible for the converging or diverging of ray of 

light propagating from rarer to denser or denser to rarer medium respectively. When an 

intense laser pulse propagates through plasma, the relativistic nonlinearities or 

ponderomotive nonlinearities or thermal nonlinearities lead to self-focusing of the laser 

beam. This happens because the plasma density is perturbed by the highly energetic laser 

beam. Self-focusing/defocusing of laser pulse also occurs in clusters. The interaction of 

lasers with plasmas, clusters and semiconductors has been a charming field of research 

for more than fifty years. 

Clusters are nanoscale solid density atomic aggregates bound by Vander Waals 

forces. Their size ranges from 10
2
-10

6
 atoms. The diameter of the clusters varies in size 

from a few angstroms to a 1000Å and their density in the gas ranges typically from 10
11

 

to 10
14

 clusters/cm
3
. Different atomic, molecular and hetero-nuclear species can clubbed 

together to form clusters. Clusters can be formed by solids, liquids or gaseous atoms, 

molecules or hetero-nuclear species.
 

 

 

Figure1.2: Atoms or molecules clubbed together by Vander Waals forces to 

form cluster 

 

Gas-atom clusters are formed when high-pressure flow of a cooled gas into 

vacuum results in adiabatic cooling and expansion of the gas and particle aggregation 

[19]. A clustered gas jet typically consists of solid density clusters and low-density 

background of un-clustered gas atoms. The characteristics of the clustered gas like the 
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size distribution, number density of clusters and the ratio of clustered to un-clustered 

atoms or molecules is determined by the backing temperature, pressure, nozzle geometry 

and other experimental factors. When clusters are irradiated by an intense laser pulse, it 

absorbs energy and explodes, leaving behind tenuous plasma. The clustered gas has low 

volume average density but the clusters themselves are at solid density. Due to this strong 

interaction of individual clusters with the incident laser beam is observed and it also 

allows the propagation of the laser beam through the clustered gas. The efficient blending 

of laser energy with the clustered gases [20] makes clustered gases as a unique medium 

for studying non-linear interaction with laser beams [21] and it can lead to numerous 

interesting applications. 

The laser-heated clusters efficiently generate x-ray [22] and extreme ultraviolet 

(EUV) radiation [23-27]. Clusters are debris-free, which is an issue with solid targets and 

the system takes much less space than the conventional synchrotron radiation source. 

Hence clusters irradiated with strong laser pulses can be used as an easily-renewable, 

debris-free tabletop radiation source for many applications like X-ray lasers, X-ray and 

EUV lithography [24] and X-ray tomography [28]. Explosion of clusters in strong laser 

fields leads to ejection of high energy electrons and energetic charged ions [29, 30]. This 

opens up the possibility of using energetic particles from laser-irradiated clusters to seed 

particle accelerators and for proton beam radiation therapy in cancer treatment [31]. 

Collisions between energetic ions from exploding clusters can produce neutrons via 

thermonuclear fusion. Laser irradiated clusters can thus be a future tabletop source of 

thermonuclear neutrons for imaging purposes. The dynamics of exploding clusters gives 

rise to interesting nonlinear optical effects such as harmonic generation [32] and self-

focusing [33]. Clustered gases are also proposed as targets for creating plasma 

waveguides and their ability of self-guiding of a laser pulse in plasma and plasma channel 

formation is the field of interest for laser-based particle acceleration schemes. 

As the clusters are formed by the combination of atoms or molecules or hetero-

nuclear species, so it become necessary and interesting to study the behaviour of these 

assemblies in strong electromagnetic field and investigating the dynamics of laser-

clusters interaction and cluster explosion is always be a problem of great interest. 

Generally, clusters strongly absorb the energy from laser beams and this property of 
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clusters makes it useful for various applications as mentioned above. Clustered gases, 

having properties in between that of solid and gas phase, makes it better absorber of laser 

beams energy and laser beams propagating through clustered gases generates wonderful 

nonlinear optical effects like self-focusing of laser beams, modulation of pulse spectrum 

and higher harmonic generation. The present work is dedicated to the study of the effect 

of self-focusing in plasmas and clusters. 

 

1.2 SELF-FOCUSING OF LASER BEAM IN PLASMA 

When a Gaussian laser beam propagates in non-linear medium, the intensity 

would be the greatest on the axis of the medium and the index of refraction would be 

greater on the axis than off the axis of medium. Due to the induced refractive index 

variations the wave front of the laser acquires a curvature and laser tends to focus. The 

process is known as self focusing of the beam in a non-linear medium. Self focusing is 

frequently observed when the radiation produced by femtosecond laser transmits through 

a number of gases, liquids and solids. 

 

Figure1.3: Observation of self-focusing effect of laser beams propagating 

deeper into the denser medium 

 

 When an intense laser beam propagates through plasma, then the refractive index 

of the plasma is modified and is composed of a linear and an intensity dependent 

nonlinear component. Self focusing in plasma can occurs through thermal, relativistic and 

ponderomotive effects and correspondingly it is called thermal self focusing, relativistic 

self focusing and ponderomotive self focusing. The availability of high power lasers 
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attracts the attention and interest of the researcher towards nonlinear laser plasma 

interactions and harmonic generation. There are certain processes which are not assumed 

to be of great importance earlier because of low available powers of electromagnetic 

beams and now, these processes become very important in plasma and cluster and are 

studied by number of researchers. As a very high power laser beam propagates through 

the plasma, the electron velocity in plasma may become quite large comparable to the 

velocity of light in free space. Thus, the effect of variation of mass must be taken in to 

account and it gives rise to the effect of relativistic self-focusing. The relativistic effect of 

an intense laser pulse propagation through the plasma leads to self-focusing because the 

dielectric constant of plasma is an increasing function of the intensity and as the intensity 

of the pulse increases, the index of refraction of the medium also increases. Also, the 

ponderomotive force of the focussed laser beam pushes the electrons out of the region of 

high intensity. It decreases the local electron density and increases the plasma dielectric 

function and it leads to more self-focusing of the laser beams. 

 Now a day’s researchers focus their attention on the medium with varying density 

profile. Such medium can be achieved by the application of plasma density ramp. The 

density of such medium can be assumed to enhance along the direction of propagation of 

the laser beam. The plasma density ramp plays a very significant role during laser-plasma 

interaction. A very high power laser beam transmitting through plasma with varying 

density profile shrinks and can attain a least spot size due to self-focusing effect. After the 

focusing of the beam, the nonlinear refraction starts dwindling and hence, the beam waist 

of the laser beam starts increasing. Thus one may observe the self-focusing and 

defocusing effect of the laser beam with the distance of propagation. In order to get rid 

from the defocusing of laser beam, one can apply localized upward plasma density ramp. 

Thus the laser beam obtains a least beam waist and maintains it till longer distance along 

the direction of propagation. The plasma density ramp could be very useful for the strong 

self-focusing of a high power laser by the proper selection of laser and plasma 

parameters. With the increase in plasma density, the self-focusing ability of laser beam 

becomes stronger because as the laser beam penetrates deeper into the density ramp 

region, it observes a slowly narrowing channel and thus, in this region, the fluctuating 

amplitude of the spot size contracts, while its energy enhances. Also, it is well known fact 
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that the equilibrium electron density is an increasing function of the distance of 

propagation of the laser beam so the plasma dielectric constant decreases quickly as the 

beam penetrates deeper inside the medium. Due to it, the self-focusing effect is enhanced 

and one may observe strong focusing of the laser beam. In case of underdense plasma, 

the minimum plasma density is chosen. The proper length of plasma density ramp is 

assumed to avoid the utmost defocusing of the laser beam. But the plasma density should 

not be considered to be much larger; otherwise, the laser beam can be reflected back and 

propagation of the laser beam become complicated. So, proper selection of plasma 

density ramp plays an significant role to make the self-focusing stronger. 

 The application of magnetic field in the plasma region can affect the self-focusing 

ability of the laser beam. Thus the study of the propagation of a high power laser beam 

through plasma with a density ramp where a magnetic field is also present becomes more 

important and interesting. The collective effect of the plasma density ramp and the 

magnetic field increases the self-focusing ability of the laser beam in plasma. The beam 

waist of the laser beam contracts as the beam propagates deeper inside the plasma due to 

the effect of the plasma density ramp.The application of magnetic field acts as a strong 

tool to enhance the self-focusing effect of the laser beam during propagation in a plasma 

density ramp. The simultaneous application of plasma density ramp and magnetic field 

converge the laser beam strongly. In this kind of experimental model, the laser beam can 

propagate over a long distance without divergence and hence, this scheme is useful in 

many laser-driven applications. 

 

1.3 SELF-FOCUSING OF LASER BEAM IN CLUSTER 

Self-focusing in clusters is also an important phenomenon to be studied 

numerically and analytically. If a gas expands out of a nozzle into vacuum, the expanding 

gas becomes supersaturated and forms condensed molecular beams or cluster beams 

where the atoms or molecules are held together by Vander Waals forces. An atomic 

cluster is an intermediate form of matter with particle densities comparable to that of bulk 

solids. As the highly intense laser beam propagates through the cluster, there occur many 

non-linear optical effects like self-focusing of laser beams, modulation of pulse spectrum 

and higher harmonic generation. Since the clusters strongly absorb the energy from laser 
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beams, so this property of cluster makes it useful for various applications. A highly 

intense laser converts the clusters into high electron density plasma balls which may 

expand quickly under hydrodynamic expansion or Coulomb explosion [34, 35]. The 

electron response to the laser increases in the expanding clusters due to decrease in 

electron density [36]. It give rise to many exciting phenomena’s like self-focusing [33], 

generation of harmonics and x-rays [22], strong absorption of energy [37], production of 

energetic neutrons [38] etc. The electrons of each cluster undergo oscillatory 

displacement and these electrons execute large excursions in the laser and spend a 

considerable part of time outside the cluster and the cluster acquires a positive charge. 

Coulomb explosion of these clusters produces energetic ions. A gas containing clusters 

may also contain free atoms. Our emphasis will be on analytical and numerical study of 

self-focusing of a short pulse laser in plasmas and clusters. 

 

1.4 TYPES OF SELF-FOCUSING 

There are three kinds of self-focusing of light namely relativistic self-focusing, 

ponderomotive self-focusing and thermal self-focusing. These are briefly defined as 

below: 

 

1.4.1 Relativistic Self-Focusing 

Relativistic self-focusing effect arises due to the variation in the electron density 

in plasmas caused by the propagating laser pulse of extremely high intensities of the 

order ranging from 10
17 

- 10
20

 W/cm
2

. The high intensity laser pulses provide sufficient 

energy to the constituents like electrons of the plasma or cluster which cause an electron 

oscillatory velocity comparable to the velocity of light. Thus the mass of electron, 

oscillating at relativistic velocities in laser field, increases by a factor given by 

221/1 cv  and give rise to non-linearity due to which the relativistic self-focusing 

effect occurs. 

 

1.4.2 Ponderomotive Self-Focusing 

This kind of self-focusing effect is caused by ponderomotive forces, 

   22
0

22 EF p   . The ponderomotive force acting on electrons takes place due to 
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the drifting of the electrons in an inhomogeneous field and the interaction of drift velocity 

of electron with the magnetic field. The electrons undergo strong repulsion from the 

region of maximum intensity to the region of minimum intensity due to the action of 

ponderomotive forces and it decreases the local concentration of electrons density in 

plasma. It increases the plasma dielectric function and laser beams become more self-

focused in plasma. 

 

1.4.3 Thermal Self-Focusing 

Thermal self-focusing occurs due to the thermal heating of the medium. It occurs 

due to collisional heating of plasma exposed to high energy laser beams. The high energy 

laser beams increases the temperature and the increased temperature causes an expansion 

which causes to an increase of refraction index of the medium. The variation in refractive 

index of the medium gives rise to nonlinear effects. Thus a laser beam propagating 

through this medium undergoes strong self-focusing. 
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CHAPTER-2 

 

REVIEW OF LITERATURE  

 

2.1 LITERATURE REVIEW 

 The interaction of electromagnetic wave with matter has been extensively studied 

by researchers due to its socially useful applications. Self focusing of laser beams in 

plasmas and clusters have many useful applications in the field of science and technology 

viz laser fusion-schemes, laser driven plasma accelerators, x-rays productions etc. So 

from past few decades laser beam becomes interesting and fascinating area of research. 

Askar’yan (1962) firstly predicted that a powerful radiation propagating through a 

medium converges or diverges due to different nonlinear processes occurring in the 

medium. Askar‟yan observes the energy momentum flux density of the laser beam at 

self-focusing. At this location the whole plasma has been expelled and the pressure is 

balanced by the plasma pressure profile acting against the centre of the laser beam. He 

compares the necessary optical intensities for compensating the gas dynamic pressure. 

Akhmanov et al. (1968) studied the self-focusing and diffraction of light in a 

nonlinear medium. They studied the concept of convergence of light and divergence of 

light in a nonlinear medium by applying geometic optics approach. Diffraction 

corrections to the self-focusing length, formation of proper optical waveguide, 

nonstationary processes, stimulated scattering in liquids, self-focusing and parametric 

amplification etc. are being studied by them in detail. 

Hora (1969) worked on the self-focusing of laser beams in plasma by 

ponderomotive forces. He treated the process of self-focusing in plasma propagated by a 

laser beam at a time when the plasma has been produced. The ponderomotive forces 

accelerate the plasma in the radial direction of the beam and this creates a lower density 

in the centre regions. They use the condition of equilibrium between the ponderomotive 

and hydrostatic forces and evaluate a minimum laser power from the conditions of total 

reflection and diffraction. For cut-off density and a plasma temperature of about 10eV, 

the focusing of radiation within the first minima of diffraction sets a lower limit to the 

laser power which is of the order of 1MW for the usual lasers. 
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Litvak (1970) studied the self-focusing of electromagnetic beams in 

magnetoactive plasma for the case of longitudinal propagation. The nonlinearity 

mechanisms for the magnetoactive plasma have been studied and expressions are 

obtained for the nonlinear corrections to the refractive index due to the striction, heating, 

and nonlinear motion of a single electron. They have obtained the necessary condition for 

self-focusing and determined the characteristic parameters for self-focusing of the beam. 

Sodha et al. (1971) studied the propagation and focusing of an electromagnetic 

wave in inhomogeneous dielectrics. They concluded that the focusing length is enhanced 

in a medium where the dielectric constant is a decreasing function of axial distance of 

propagation. Similarly, the focusing length is reduced in a medium where the dielectric 

constant is an increasing function of axial distance of propagation. 

Ashkin et al. (1973) studied radiation pressure on a free liquid surface. They 

focused laser pulse on the free surface of a transparent liquid dielectric to study the force 

of radiation pressure. It is observed that light pulse entering or leaving the liquid surface 

exerts a net outward force and this force causes strong surface lens effect, surface 

scattering and nonlinear absorption. 

Askar’yan (1973) studied the self-focusing effect of light propagating through a 

medium and reported that the self-focusing effect consists in a decrease of the divergence 

or to an increase in the convergence of powerful radiation in a medium, owing to 

different nonlinear processes. All the varieties of self-focusing are the consequences of 

such a change in the divergence or convergence. 

Sodha et al. (1973) studied that as a strong Gaussian laser beam propagates 

through the medium, then the dielectric constant of the strongly ionized plasma varies 

and it give rise to nonlinearity. They concluded that this nonlinearity arises due to the 

heating and redistribution of the electrons. This self-induced non-linearity causes self-

focusing and oscillatory waveguide propagation of the laser beam even when the non-

linear dielectric constant does not fall in the saturating range. In a typical case of a 10
10 

W 

laser, the enhancement of axial intensity by a factor of 25 has been predicted in a length 

of 0.6cm. 
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Brueckner et al. (1974) studied the laser driven fusion. The intense laser light is 

used to bring about thermonuclear reactions in plasma. They reported the detailed 

analytical and computational results which show the possibility of laser-driven fusion. 

Sodha et al. (1974) studied the self-focusing/defocusing of a laser beam in a non-

linear dielectric. In this case, they assume that the laser is operating in the TEM01 

doughnut mode. They concluded that the cylindrical symmetry of the irradiance 

distribution enhances inside the medium and the power gets concentrated around the 

points of maximum irradiance. The maximum irradiance in different directions occurs at 

different values of the distance from the z-axis. 

Sodha et al. (1974) studied the self-focusing of a cylindrically symmetric 

Gaussian electromagnetic pulse in collision-less and collisional plasmas. They assumed 

that nonlinearity arises due to the ponderomotive force and the non-uniform heating of 

the medium. They considered that the duration of pulse is larger than the characteristic 

time of non-linearity and found that the beam is focused in a moving filament. Because of 

relaxation effects the peak of the pulse is shifted to higher values in case of collisional 

plasmas and the pulse is severely distorted because of self-focusing so the shift of peak in 

the case of collision-less plasmas is not significant. 

Hora (1975) studied the theory of relativistic self-focusing of laser radiation in 

plasmas and reported that laser beam at irradiances higher than 1/500 of the relativistic 

threshold propagating through plasma undergoes self-focusing due to relativistic 

dependence of the optical constants on laser irradiance. Further, this self-focusing effect 

enhances the refractive index of the medium. In prepulsed plasmas, formed by Nd-glass 

laser pulses of
216 /103 cmW , relativistic diffraction-limited self-focusing can generate 

relativistic electron oscillation energies and hence pair production. 

Sodha et al. (1975) studied thermal self-focusing and defocusing of a laser beam 

in an absorbing dielectric. They considered that the laser is operating in the TEM01 mode 

and observed that when the refractive index decreases with increasing temperature, the 

electromagnetic energy converges in the x-direction and diverges in the y-direction. 

However reverse is the case when the refractive index increases with increasing 

temperature. Also, they observed that the energy of the beam concentrated around a 

circular ring of maximum irradiance in case of geometric-optics self-focusing of laser 
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beams operating in the doughnut mode and mixed TEM00 and TEM10 cylindrical modes 

oscillating in phase opposition.  

Siegrist (1976) studied self-focusing in plasma due to ponderomotive forces and 

relativistic effects. The propagation of intense laser pulses in a plasma discussed in terms 

of a constant shape, paraxial-ray approximation. He investigated self-focusing due to 

ponderomotive forces and relativistic effects. It is found that the stationary self-focusing 

behaviour of each mechanism treated separately similar with several orders of magnitude 

difference in critical power. In stationary self-focusing due to the combined mechanisms, 

complete saturation of ponderomotive self-focusing prevents the occurrence of 

relativistic effects. Self focusing lengths and minimum radii are given for a large range of 

beam powers. A characteristic focal spot radius is found which depends only on the 

plasma density.  

Nayyar (1978) studied the self focusing of a high power non-Gaussian laser beam 

operating in TEM01 mode in strongly ionized plasma. It is found that when the power of 

the beam exceeds the critical power, focusing effects are observed in Y-direction, 

whereas divergence of the beam takes place in the X-direction and in the reverse case the 

normalized beam width parameter f2 first increases in Y-direction, after penetrating a 

certain depth it reaches a broadened maxima and then starts decreasing with the distance 

of propagation inside the medium. The beam continues diverging in the X-direction. 

Nayyar further found that absorption brings about a reduction in the extent of self 

focusing. 

Nayyar et al. (1979) studied the self-focusing and defocusing of elliptically 

shaped Gaussian laser beams in collisional and collision-less plasmas. They found that 

the non-linear dependence of the dielectric constant inside a collision-less plasma is due 

to the ponderomotive force and inside a collisional plasma, it is due to inhomogeneous 

heating of energy carriers. Further they found that the beam gets focused at different 

points in different planes, exhibiting the effect of astigmatism. In certain power regions 

considered, the beam converges or diverges in both the directions, while in some other 

regions of the power spectrum one dimension of the beam converges while the other 

diverges. 
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Askar’yan et al. (1981) studied the nonlinear defocusing of a focused beam and 

observed a fine beam from the focus zone. They have used a single-mode, unmodulated 

neodymium laser with energy of 1J and with a millisecond pulse and a YAG-Nd laser in 

operating single and high frequency millisecond-pulse repetition modes and 

experimentally explained the defocusing nature of the beam in the weakly absorbing 

nonlinear medium. 

Hegana (1981) studied the nucleation and growth of clusters in expanding nozzle 

flows. The nozzle flows have been used for many years both as a source to obtained 

microscopic clusters of some ten to some thousand molecules and as a test bed to study 

nucleation and growth of clusters. They summarize the experimental and theoretical 

knowledge of producing cluster beams. The gas dynamics of expanding nozzle flows and 

gives detailed formulas for the axisymmetric and plane free jets and for different ratios of 

specific heats. The conventional approach of condensation theory is shown not to give a 

self-consistent description of the condensation process in expanding flows, but progress 

in the direction of a rigorous theory is to be expected at least for Vander Waals 

molecules. Finally, a discussion of the kinetics of cluster growth is used to derive scaling 

laws which correlate the available cluster beam data and allow predicting results under 

different experimental conditions for pure gases and for gas mixtures. 

Jones et al. (1982) studied density modification and energetic ion production at 

relativistic self-focusing of laser beams in plasmas. They have described a two 

dimensional time dependent laser plasma interaction code and used it to model the 

interaction between 5ps Nd glass laser beam of peak power 10
13

W and a 35 times ionized 

tin target. They have observed that the nonlinear forces modified the plasma density. 

Further, highly accelerated tin ions having maximum energy of 5GeV are observed. 

Mori et al. (1988) studied the self focusing of intense electromagnetic waves in a 

very under dense plasma in computer simulations. Mori et al. found that initially 

relativistic self focusing occurs and it is then followed by the ponderomotive blowout and 

filamentation at the edge of the channel walls. The self focusing is more intense for 

resonant double frequency than the single frequency illumination. 

Kurki et al. (1989) studied the relativistic and ponderomotive self-focusing of an 

intense optical beam in plasma. They have obtained the steady-state asymptotic solution 
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of beam propagation in a localized solitary waveform in slab geometry and also presented 

the solutions for the beam profile where it is oscillatory in nature, which correspond to 

the presence of the steady-state solution of a multiple-beamlet profile. 

Cicchitelli et al. (1990) studied the longitudinal field components for laser beams 

in vacuum. The discovery of Lax, Louisell, and Knight (LLK) that electromagnetic 

beams in vacuum do have a longitudinal component can be proved experimentally from 

the polarization independence of the energy of electrons from the focus of a laser. They 

have developed the LLK paraxial approximation to a Maxwellian exact solution for a 

Gaussian beam and included the exact longitudinal field components of the laser beam. 

Brandi et al. (1993) studied the transmission of a high-irradiance laser beam in 

plasma whose optical index depends non-linearly on the light intensity. The relativistic 

decrease of the plasma frequency and the ponderomotive expelling of the electrons are 

the nonlinear effects studied by this group. The focusing and defocusing effects of a 

beam assumed to remain cylindrical and for plasma supposed homogeneous along the 

propagation direction but radially inhomogeneous with a parabolic density profile. 

Chen et al. (1993) derived a set of three dimensional equations for the 

propagation of an intense laser pulse of arbitrary strength 
2mceAa  (where A  is the 

magnetic vector potential of the laser pulse) in cold underdense plasma. In different 

limits, these equations can be reduced to certain previous one dimensional model. Chen 

et al. found that for 1a , an approximate set of equations from the averaged Lagrangian 

is obtained. They solved the axisymmetric two dimensional model equations numerically 

to show the effect of dispersion in the self focusing process. 

Chen et al. (1993) studied the propagation of a short intense laser pulse in 

underdense cold plasma. When no electron cavitation is present, a global invariant „H‟ is 

obtained and Chen et al. studied its relation with self-focusing of laser pulse. For 

relativistic self-focusing, H<0 is a sufficient and necessary condition. For relativistic and 

ponderomotive self-focusing, H<0 is a sufficient but not necessary. Chen et al. have 

performed the numerical simulations to confirm these conditions. 

Bulanov et al. (1995) studied that an ultra-short, relativistically strong pulse can 

be self-focused in plasma with strong magnification of its amplitude and channelling in a 
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narrow channel shaped like a “bullet”. Plasma turbulence occurs in the region occupied 

by the pulse and behind it and leads to electron heating. It is found that a regular 

longitudinal electric field is produced in the wake of a wide pulse shorter than the plasma 

wave period and behind the shape edge of a long pulse. The transverse nonuniformity of 

the pulse causes the formation of horseshoe structures that can be used to focus and 

accelerate electrons and protons. Hence fast and strong modulation of the pulse occurs by 

the induced focusing of the EM radiation. 

Ditmire et al. (1995) observed the strong x-ray emission from high-temperature 

plasmas produced by intense irradiation of clusters. They observed that enhanced 

absorption of the laser light by the dense cluster results in the production of high ion 

charge states and hence it give rise to the emission of strong x-ray from the hot plasma. 

Feng et al. (1995) produced plasmas using a target consists of an in-vacuum 

flowing stream of liquid water droplets and then measured its extreme ultraviolet (EUV) 

emission spectrum. Using such kind of target, no debris related effects are observed. 

They have reported a new type of target for laser plasma x-ray generation.  

Ditmire et al. (1996) concluded that large clusters produced in expanding gas jets 

can be used to produce hot, moderate density plasmas with intense, short pulse laser. This 

group investigated that thermal plasmas created by the enlightenment of clusters by 

femtosecond pulses of 10
16

-10
17

 W/cm
2
 dominates the plasma kinetics, generating 

emission from high charge states that can last for several nanoseconds. They found that 

cluster-heated plasma acts as a source of x-ray radiation.  

Donnelly et al. (1996) studied high order harmonic generation in atom clusters. In 

this study they used high pressure gas jet to produce clusters containing about 1000 

atoms. They reported the generation of short-wavelength, high-order harmonics of 

intense laser radiation from atom clusters.  

Gibbon et al. (1996) experimentally studied the relativistic self-focusing and self-

channeling of a terawatt laser pulse  TWPTW 157.0   in underdense plasma. The 

results are obtained with picosecond  ps1  and  ps4.0  subpicosecond pulses and 

self-guiding of subpicosecond pulses is observed for ,cPP  where cP is the critical power 

for self-focusing. Using a paraxial envelope model describing the laser propagation and 

taking account the plasma response to the ponderomotive force, it is shown that a 
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maximum laser intensity of 155  times that reached in vacuum may be achieved when 

P is in the   cP 425.1 range. 

Shao et al. (1996) studied multi-keV electron generation in the interaction of 

intense laser pulses with Xe clusters. They have observed the generation of multi-keV 

electrons as intense femtosecond laser pulse propagates through the Xe clusters. They 

have also observed electron kinetic energy distribution consists of a warm peak of energy 

between 0.1 and 1keV and a hot peak of energy between 2 and 3 keV. 

Ditmire et al. (1997) studied the atomic clusters in ultrahigh intensity light fields. 

He explained the theory of laser cluster interaction and observes that the cluster starts to 

expand on the time scale of the laser. Due to this expansion, the electron density of the 

medium is supposed to decrease. Ditmire found that Xe cluster microplasma with a 

temperature of keV2  and an average charge state ,20Z will expand with a kinetic 

energy of around keV50 . This observed energy value is found to be agreeing with the 

average ion energy observed in the experiments. He also explained the generation of high 

order harmonics in gases of clusters. 

Ditmire et al. (1999) studied the nuclear fusion from explosions of femtosecond 

laser heated deuterium clusters. They have reported that interaction of intense laser 

beams with clusters can produce superheated microplasma that ejects high energy ions 

having energy of the order of 1MeV. They have observed
510 fusion neutrons per joule of 

incident laser energy. They have reported the nuclear fusion from the explosions of 

deuterium clusters heated with a laser pulse. 

Glenn et al. (1999) reported a high average power extreme UV source based on a 

laser plasma cluster jet that can be used for EUV lithography. A cooled supersonic nozzle 

expansion is used to produce a dense beam of Xe-cluster which will act as a plasma 

target. A highly intense laser beam interacts with this cluster beam.In the firet phase of 

EUV power scale-up, the continuous cluster jet has been integrated with a 200W laser 

driver operating at repetition rates upto 500Hz. In the second phase, the jet is being 

integrated with a 1700W diode-pumped solid state laser driver operating at repetition 

rates up to 6000Hz. 
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Asthana et al. (2000) studied the relativistic self-focusing of a Gaussian laser 

beam propagating through a non linear medium with intensity dependent dielectric 

constant. They have studied self-focusing of the propagated laser beam using Wentzel-

Kramers-Brillouin (WKB) approximation and Paraxial approximation and the numerical 

calculations for various parameters of laser plasma interaction suggests that self-focusing 

of the laser beam occurs strongly. 

Belafhal et al. (2000) studied the propagation properties of Hermite-cosh-

Gaussian laser beams through an aperture lens and free space. They have studied the 

relative intensity allocation of the Hermite-cosh-Gaussian beams propagating through the 

free space for different values of the decentered parameter and also reported the 

normalised intensity plots of the Hermite-cosh-Gaussian beam profiles for the 

propagation through an aperture lens for various values of the truncation parameter for 

mode indices .2and1m  

Hafizi et al. (2000) studied that a powerful laser beam focused on plasma can be 

stably guided by a combination of relativistic focusing and ponderomotive channeling 

over extended distances. Hafizi et al. described an envelope equation for the laser spot 

size that can be used to describe the axial evolution of the spot size as a function of the 

ratio of laser power P to the critical power for relativistic focusing Pc and depending on 

the initial beam spot size and divergence, the envelope or radius of a laser beam that is 

incident on a plasma will oscillate with propagation distance provided that P/Pc should be 

more than one. This envelop equation is valid for arbitrary laser intensity within the long 

pulse, quasi-static approximation and neglects instabilities. They analyzed that a 

significant contraction of the spot size is possible for laser powers exceeding the critical 

power for relativistic self-focusing and hence it leads to corresponding increase in 

intensity of laser beam. Thus ponderomotive channeling can significantly lead to 

enhancement of the focusing effect. 

Liu et al. (2000) studied the laser frequency up-shift, self-defocusing and ring 

formation in tunnel ionizing gases and plasmas. In their work the collective effects of 

tunnel ionization of gases on laser frequency up-shift, defocusing and ring formation are 

considered self-consistently. A high intensity laser beam causes quick tunnel ionization 

of a gas and the plasma density is found to be enhanced. The high intensity laser beam 
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decreases the refractive index near the axis of the beam and due to this the laser beam 

gets defocused. The defocusing of the beam decreases the ionization rate and frequency 

up-shift. They found that the trailing portion of the propagating beam forms ring shape 

distribution due to stronger defocusing of the on axis part of the laser beams than the off-

axis part of the laser beams. 

Osman et al. (2000) presented the numerical programming of self-focusing at 

laser plasma interaction. They have studied the forces and optical properties causing self-

focusing of the laser beam. They have developed a numerical program in c  that 

incorporates the ponderomotive force and relativistic effects which cause self-focusing of 

the laser beam. This devolped programme has been used to explore the self-focusing over 

a wide range of parameters. 

Springate et al. (2000) studied the explosion of atomic clusters irradiated by a 

sequence of two high-intensity laser pulses. It is observed by experiments and numerical 

calculations that heating efficiency of atomic clusters can be increased by using two high 

intensity laser beams of different frequencies. They have calculated the ion energies from 

Xe clusters irradiated with two high intensity femtosecond laser beams of frequencies 

780nm and 390nm (second harmonic) respectively. 

Feit et al. (2001) studied the description of powerful beam self focusing in 

underdense plasma. They emphasized on the total electron evacuation under the effect of 

ponderomotive forces. Feit et al. demonstrated that a laser beam can be self channeled by 

underdense plasma if the laser intensity is high enough to produce electron cavitations. It 

is studied that cavitation results in suppression of filamentation and the possibility to 

channel power well above the nominal critical power of self focusing for a distance of 

many Rayleigh lengths. 

Krainov et al. (2002) studied the interaction of the super intense femtosecond 

laser beam with clusters. They investigated multiple inner and outer ionization and X-ray 

emission followed by explosion in clusters irradiated by a laser field. They have analyzed 

the increase in temperature of the electron in this process and also, of the charge of the 

ionized cluster. They have also analyzed the expansion and decay of the cluster during 

the propagation of laser beam as well as after the propagation of the laser beam. 
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Zweiback et al. (2002) studied the nuclear fusion from femtosecond laser-driven 

explosions of deuterium clusters. They irradiate deuterium clusters with a fs35 laser 

pulse and found that the fusion neutron yield is strongly dependent on such factors as 

cluster size, laser focal geometry and deuterium gas jet parameters. They found that the 

various measured scalings indicate that a Coulomb explosion model of the ion energy is a 

good description of the ion explosion. Further, from the experiments they give the 

detailed understanding of how the laser deposits its energy and heats the deuterium 

cluster plasma. 

Weaver et al. (2003) used a spectrometer to study the spatial distribution of soft 

x-ray radiation from low atomic number elements like carbon. Weaver et al. recorded the 

soft x-ray emission as a function of the target material and target orientation with respect 

to the incident laser beam and line of sight of the spectrometer. Weaver et al. found that 

inferred plasma expansion velocities are slightly higher than those previously reported. 

Zharova et al. (2003) studied analytically and numerically the self-focusing of 

laser radiation in plasma with ionized gaseous clusters and proposed an electrodynamic 

model for cluster plasma in a field of ultra-short laser pulse. It is shown that, for a laser 

power exceeding the self-focusing critical power, the wave field self-compression occurs 

in a medium with dispersion of any type (normal, anomalous, or combined). Further, due 

to the dependence of the characteristic nonlinear field on the size of ionized cluster, the 

corresponding processes occur faster than in a homogenous medium and it give rise to the 

ultra-short pulses. 

Issac et al (2004) studied the interaction of ultrashort laser pulses with krypton 

clusters at intensity up to 1.3 X 10
18

 Wcm
-2

. Intense Kα and Kβ emission from krypton at 

12.66 and 14.1 KeV, respectively, has been observed using conventional solid state x-ray 

detectors. The measured x-ray spectra have broad bremsstrahlung continuum reaching to 

photon energies up to 45 KeV, with evidence that approximately 10% of electrons that 

are heated to very high electron temperatures, which is consistent with a two-temperature 

electron distribution. This is ascribed to the presence of a hot electron population, similar 

to that found in laser–solid interactions. Issac et al. observed that the highest laser energy 

to x-ray conversion efficiency is 9.2 X 10
-7

, which is equivalent to 45 nJ x-ray pulse 

energy from the 12.66 KeV krypton Kα transition. 
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Jha et al. (2004) investigated the relativistic and ponderomotive effects on laser 

plasma interaction dynamics. They studied the combined effect of relativistic and 

ponderomotive nonlinearities on the propagation characteristics and modulation 

instability of a laser beam propagating through partially stripped plasma. Further, they 

found that the non linearity arising due to ponderomotive force tends to defocus the laser 

beam as against the nonlinear relativistic self-focusing phenomenon. Also the current 

density perturbation arising due to ponderomotive nonlinearity combined with relativistic 

nonlinearity tends to increase the modulation instability of the laser beam. 

Kant et al. (2004) studied that second harmonic in plasma is generated by a 

Gaussian laser beam in the presence of a magnetic wiggler of suitable period. The phase 

matching conditions for the process of satisfied for a specific value of the Wiggler period. 

The intensity of the second harmonic pulse is enhanced by self-focusing of the 

fundamental pulse. The harmonic undergoes periodic focusing in the plasma channel 

formed by the fundamental wave. The normalized second harmonic amplitude changes 

periodically with distance with successive maxima acquiring higher values. 

Sharma et al. (2004) studied the self-focusing of electromagnetic beams in 

collisional plasmas in the presence of nonlinear absorption. They considered the 

nonlinear absorption by the medium to observe the effect of self-focusing of 

electromagnetic waves. Further they employed a complex eikonal which does not need 

any approximation about the relative magnitudes of the real and imaginary parts of the 

dielectric constant or their dependence on the irradiance of the beam. They found that the 

nonlinearity in absorption tends to cancel the effect of divergence due to diffraction 

effect. They found that the beam-width and attenuation of the laser beam depends on 

distance of propagation of the laser beam in the medium considered. 

Kant et al. (2005) studied that a plane parallel laser beam incident on a cylindrical 

dielectric fibre perpendicular to the axis of the fibre, focuses to small dimension as it 

approaches the axis. The focusing effect is enhanced by nonlinear self-focusing in the 

dielectric. For a specific laser intensity and for given radius of the fibre, the beam focuses 

on the axis of the fibre. In the axial region however, the high intensity of the laser leads to 

tunnel ionization and optical breakdown of the dielectric which causes electron-hole pair 
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production and plasma formation in the form of capillary and the plasma tends to self-

defocus the laser. 

Prakash et al. (2005) studied the focusing of an intense Gaussian laser beam in a 

radially inhomogeneous medium and investigated the steady-state focusing and 

defocusing of the laser beam. They have discussed the nonlinear refractive index in detail 

and obtained the coupled differential equation for beam width parameter, absorption 

parameter and nonlinearity parameter. The numerical solution of these equations for a 

typical set of values of various parameters yields the dependence of the beam width and 

axial irradiance on the distance of propagation. 

Varsheney et al. (2005) studied the relativistic self-focusing of a laser beam in 

inhomogeneous plasma. The nonlinearity in the dielectric constant arises due to the 

relativistic variation of mass for an arbitrary magnitude of intensity. They have evaluated 

the variations of the beam width parameter with the propagation distance, the self-

trapping condition and the critical power of the beam. It was seen that the laser beam 

width tends to attain a constant value depending upon the plasma inhomogeneity and the 

initial laser intensity. Numerical estimates are made for typical values of the laser–plasma 

interaction applicable for underdense and overdense plasmas. 

Kumar et al. (2006) studied the self focusing of laser pulse through a tunnel 

ionizing helium gas in both relativistic and non-relativistic regimes, relaxing the near-axis 

approximation. In the non-relativistic regime, the laser pulse produces multiple ionization 

of the gas and faces strong defocusing due to the steep radial density gradient caused by 

the same. The uneven defocusing of paraxial and marginal rays leads to a beam acquiring 

a ring shaped intensity distribution. In the relativistic regime, the laser pulse produces 

fully ionized plasma within a few wave periods, subsequently the relativistic mass effect 

and the ponderomotive force induced electron cavitation cause periodic self-focusing. 

Shukla et al. (2006) studied nonlinear wave interactions in quantum 

magnetoplasma. They have considered nonlinear interactions involving electrostatic 

upper-hybrid, ion-cyclotron, lower-hybrid and Alfven waves in quantum 

magnetoplasmas. The quantum hydrodynamical equations are used to find the coupled 

equations for nonlinearity. The equations are then Fourier analyzed to obtain the 

nonlinear dispersion relations. 
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Sodha et al. (2006) studied the mutual focusing/defocusing of Gaussian 

electromagnetic beams in collisional plasma. They have considered the mutual 

focusing/defocusing of a number of coaxial Gaussian electromagnetic beams in singly 

ionized collisional plasma which is initially in thermal equilibrium. They started from the 

expression of the electron temperature in terms of the irradiance of the waves and derived 

expressions for the electron density and the dielectric function. The coupled wave 

equations corresponding to different beams have been solved in the paraxial 

approximation to obtain a system of coupled second-order differential equations for the 

beam width parameters. They also solved coupled equations for the widths of two beams 

numerically for some typical cases and correspondingly the critical curves for the two 

beams have also been obtained. They published the results for plasmas in thermal 

equilibrium and also for day-time mid-latitude ionosphere at a height of 150 km. 

Gupta et al. (2007) introduced upward density ramp in underdence plasma. It is 

found that as a result of relativistic mass nonlinearity and wake field generation, the laser 

becomes self-focused in the underdense plasma and attains a minimum spot size. If there 

is no density ramp, the laser is defocused beyond this distance due to the dominance of 

the diffraction effect. To reduce this defocusing, an upward density ramp is introduced. 

Gupta et al. (2007) studied the additional focusing of a high-intensity laser beam 

in a plasma with a density ramp and a magnetic field and investigated that the spot size of 

the beam decreases as the beam penetrates into the plasma due to the presence of density 

ramp and magnetic field. Further, they reported that density ramp and magnetic field not 

only reduce the spot size of the laser beam but also maintain it with only a mild ripple 

over several Rayleigh lengths. 

Hora (2007) studied new aspects for fusion energy using inertial con-finement. H. 

Hora has reported very high ion current density space charge neutral plasma blocks 

interacting as pistons to ignite DT may lead to a new scheme of laser fusion with low cost 

energy generation. 

Konar et al. (2007) investigated the propagation characteristics of a cosh-

Gaussian laser beam both in Kerr and cubic quintic nonlinear media. It is found that these 

beams are unstable and convert into sech/Gaussian type beam. At high power cosh-

Gaussian laser beam form flat top beam and the length of the flat top and sharpness of 
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flatness increase with the increase in power. It is observed that at very high power, the 

beam first splits into two and then again combines to form a single beam. This process 

continues repeatedly. 

Liu et al. (2007) studied the laser self-focusing and nonlinear absorption in 

expanding clusters. An intense laser beam propagating through clustered gas converts the 

clusters into plasma balls. The cluster expands under hydrodynamic pressure and it leads 

to non uniform refractive index profile. The variation in refractive index leads to self-

focusing of laser beams. 

Misra et al. (2007) studied the nonplanar ion-acoustic waves in quantum plasma. 

The nonlinear properties of ion-acoustic waves in electron–ion quantum plasma with the 

effects of quantum corrections are studied in a nonplanar spherical geometry. For this 

purpose Misra et al. have applied quantum hydrodynamic model. 

Wei et al. (2007) studied quantum ion-acoustic waves in single-walled carbon 

nanotubes applying quantum hydrodynamic model. Wei et al. have considered the 

electrons and ion components of the nanotubes as two species quantum plasma system. 

The quantum hydrodynamic model is used by Wei et al. 

Zhang et al. (2007) identified the virtual sources for a cosh-Gaussian beam. On 

the basis of superposition of beams, they have identified a group of virtual sources that 

generate a cosh-Gaussian wave. A closed-form expression is derived for this cosh-

Gaussian wave, which, in the appropriate limit, yields the paraxial approximation for the 

cosh-Gaussian beam. From this expression, the paraxial approximation and the 

nonparaxial corrections of all orders for the corresponding paraxial cosh-Gaussian beam 

are determined. 

Crouseilles et al. (2008) studied quantum hydrodynamic model for the nonlinear 

electron dynamics in thin metal films. They have applied Wigner-Poisson equations to 

derive quantum hydrodynamic model to investigate the ultrafast electron dynamics in 

thin metal films. The ultrafast nonlinear electron dynamics is investigated and the results 

so obtained are then compared to recent semiclassical results obtained with a Vlasov-

Poisson approach. 

Patil et al. (2008) studied the propagation of Hermite-cosh-Gaussian laser beams 

in a non-degenerate germanium having space charge neutrality for the first three mode 
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indices. They have obtained the differential equation for beam width parameters by 

applying parabolic wave equation approach under paraxial approximation and analytical 

solutions are obtained under the condition ,dn RR  dn RR and where  are the self-

focusing length and diffraction length respectively. They examined the behaviour of 

beam width parameter with normalized propagation distance numerically for various 

values of decentered parameter. 

Jung et al. (2009) studied the quantum effects on magnetization due to 

ponderomotive force in cold plasmas. It is shown that the ponderomotive force of the 

electromagnetic wave induces the magnetization and cyclotron motion in quantum 

plasmas and the magnetic field would not be induced without the quantum effects in 

plasmas. It is also found that the quantum effect enhances the cyclotron frequency due to 

the ponderomotive force related to the time variation of the field intensity. 

Parashar (2009) studied the effect of self-focusing on laser third harmonic 

generation in a clustered gas. The propagation of intense Gaussian laser beam through a 

gas embedded with atomic clusters produces nanoplasma medium which causes self-

focusing of laser beam. This propagating laser beam produces third harmonic due to 

nonlinear response of electron. The hydrodynamic model of cluster expansion is applied. 

It is observed that self-focusing of the laser increases the efficiency of harmonic 

generation by ten times. 

Patil et al. (2009) studied the self-focusing of cosh-Gaussian laser beams in a 

parabolic medium with linear absorption and reported the field distribution in the medium 

in terms of beam width parameter, decentered parameter and absorption coefficient. The 

differential equation for beam width parameter has been developed by using WKB 

approximation and paraxial approximation. The behaviour of beam width parameter with 

normalized propagation distance is studied at various values of decentered parameter 

with different absorption levels in the medium. 

Sadighi-Bonabi et al. (2009) introduced the ellipsoid model to describe bubble 

acceleration of electrons. In the experimental work, they have focused a 20TW power 

and 30fs laser pulse on a pulsed He-gas jet. They have focused the laser pulse in the best 

matched point above the nozzle gas to obtain a stable ellipsoid bubble. They have found 

that in the ellipsoid cavity regime, the quality of the electron beam is improved as 
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compared to other methods like plasma channel guided acceleration, periodic plasma 

wakefield, spherical cavity regime. Further, it is observed that the trajectory of electron 

motion can be hyperbola, parabola or ellipsoid and is influenced by the position and 

energy of the electrons and electrostatic potential of the cavity.  

Yazdani et al. (2009) studied the interaction of terawatt, higher power and 

picoseconds laser pulses with plasmas. They have studied, numerically, how the 

necessary nonlinear force accelerated plasma blocks may reach the highest possible 

thickness by using optimized dielectric properties of the irradiated plasma. The use of 

double Rayleigh initial density profiles results in many wavelength thick low reflectivity 

directed plasma blocks of modest temperatures. The results of computations with the 

genuine two-fluid model are presented. 

Patil et al. (2010) studied the focusing of Hermite-cosh-Gaussian laser beam in 

collisionless magnetoplasma considering the ponderomotive nonlinearity. They have 

presented the dynamics of the combined effects of nonlinearity and spatial diffraction and 

to highlight the nature of focusing, plot between beam-width parameter and 

dimensionless distance of propagation has been obtained. The effect of mode index and 

decentered parameter on the self-focusing of the beams has been discussed. 

Singh et al. (2010) studied the relativistic self-focusing and self-channeling of 

Gaussian laser beam in plasma. They have solved the non-linear differential equation for 

the beam width parameter of the main beam by using moment theory approach and 

solved it numerically by using Runge-Kutta method and reported strong self-focusing of 

laser beam for different values of intensity parameter and relative density parameter. 

Shukla et al. (2010) studied the nonlinear aspects of quantum plasma physics. 

The nonlinear aspects of wave-wave and wave-electron ineractions in dense quantum 

plasma are studied theoretically. They have studied nonlinear electrostatic electron and 

ion plasma waves, novel aspects of 3D quantum electron fluid turbulence, nonlinearly 

coupled intense electromagnetic waves, localized plasma wave structures and phase 

space kinetic structures and mechanisms that can generate quasi-stationary magnetic 

fields in dense quantum plasmas. They have discussed the influence of the external 

magnetic field and the electron angular momentum spin on the electromagnetic wave 

dynamics. 
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Thakur et al. (2010) studied self-focusing and defocusing of twisted light in non 

linear medium. A light beam carrying angular momentum is called as twisted light. The 

differential equation for beam width parameter is obtained by applying the Wentzel-

Kramers-Brillouin and the paraxial approximations. The focusing of beam and its 

dependence on beam‟s parameters is studied analytically with the help of numerical 

calculations. 

Xiong et al. (2010) studied the influence of arbitrary outside magnetic field on 

self-focusing of short intense laser pulse propagating in underdense and magnetized cold 

plasma. Xiong et al. set the outside magnetic field in yz-plane and used the angle 

between y-axis and outside magnetic field. Xiong et al. reported that larger the angle 

between y-axis and outside magnetic field, weaker is the effect of self-focusing. The 

strengthening of the outside magnetic field enhances the relevant effect of self-focusing. 

Bergamin et al. (2011) studied the kerr nonlinearity in detail and the concept of 

transformation optics is applied to solve the problem in nonlinear electrodynamics. The 

transformation optics based engineering of self-interaction effects is studied in detail by 

Bergamin et al. They applied the transformation optics on self-focusing effect of laser 

beam. 

Gill et al. (2011) studied the propagation characteristics of cosh-Gaussian laser 

beam in magnetoplasma using relativistic nonlinearity and expressed the field distribution 

in the medium in terms of beam width parameter and decentered parameter. They have 

studied the self-phase modulation and self-trapping of the laser beam under variety of 

parameters. Further, effect of magnetic field on the self-focusing of the laser has also 

been reported. 

Kant et al. (2011) studied the ponderomotive self-focusing of a short pulse in 

underdense plasma under a plasma density ramp. The pulse may acquire a minimum spot 

size due to the ponderomotive self-focusing and then defocusing of the beam starts. They 

have applied the upward plasma density ramp to overcome the defocusing of the beam 

and so that the minimum spot size may be maintained to longer distance of propagation 

of the laser beam.  

Kim et al. (2011) studied the effect of the density ramp structure on the electron 

energy in laser wakefield acceleration. They have reported that with a downward density 
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ramp, the electron energy decreased due to a lag in the acceleration region and to the 

acceleration field strength being lower than that with a uniform density, but with an 

upward ramp, the energy increased because of the higher acceleration field and the 

position of the acceleration region. These effects were studied by using simulations with 

a 2-dimensional particle-in-cell code and by experiments using a 20TW laser. 

Patil et al. (2011) studied the relativistic self-focusing of cosh-Gaussian laser 

beams in a plasma. The differential equation for beam width parameter is obtained by 

using WKB and paraxial approximations. They have studied the effect of decentered 

parameter of the laser pulse on self-focusing of the beam and reported strong self-

focusing of the laser beam. 

Yang et al. (2011) studied the energy enhancement for deuteron beam driven fast 

ignition of a precompressed inertial confinement fusion target. The deuteron beam driven 

fast ignition is considered by Yang et al. because it provides hot spot ignition spark and 

also provides bonus fusion energy through reactions in the targets. It is observed that 

30% of extra energy can be obtained from deuterons with 1MeV initial energy and 12% 

from deuterons with 3MeV initial energy. The focused beam helps in energy gain. 

 Habibi et al. (2012) applied density ramp profile in the medium and study 

stationary self-focusing of intense laser beam in cold plasma. They have found that 

presence of upward ramp density profile and quantum effects causes better focusing of 

laser beam in cold plasma than that of for classical relativistic case. It is observed that 

after initial focusing of laser beam, the relativistic effect and quantum effect becomes 

more dominant in the medium of increasing density and enhances the self-focusing 

effect.  

Kant et al. (2012) studied the self-focusing of Hermite-Gaussian laser beams in 

plasma. They have applied the plasma density ramp to overcome the defocusing and to 

enhance the self-focusing of the laser beam and reported stronger self-focusing of the 

laser beam with propagation distance by choosing the appropriate laser and plasma 

parameters. Further, the laser beam attains a minimum spot size and maintains it with 

only a mild ripple. 

Nanda et al. (2013) studied the sensitiveness of decentered parameter for 

relativistic self-focusing of Hermite-cosh Gaussian laser beam in plasma and reported 
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that the selection of decentered parameter is very sensitive as small change in its value 

greatly changes the self-focusing ability of the laser beam. Further, self-focusing of laser 

beam is found to be stronger for mode indices 1and0m than that of for 2m due to the 

dominance of diffraction term over focusing term in the beam width parameter equation. 

Nanda et al. (2013) applied density ramp to study the self-focusing of Hermite-

cosh Gaussian laser beam in the presence of magnetic field. The application of density 

ramp profile in the medium and presence of magnetic field increases the self-focusing 

ability of the laser beam greatly. Also, they have reported that decentered parameter plays 

a vital role to enhance the self-focusing effect of the laser beam. 

Patil et al. (2013) studied the self-focusing of Gaussian laser beam in relativistic 

cold quantum plasma. The beam width parameter equation is obtained by applying WKB 

and paraxial approximation. In the present case, expression for dielectric constant is taken 

to be   212 //11 


 qp . It is observed from the results reported by them that 

quantum effect enhances the self-focusing ability of the laser beam significantly than 

classical relativistic case. 
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CHAPTER-3 

 

SENSITIVENESS OF DECENTERED PARAMETER FOR RELATIVISTIC 

SELF-FOCUSING OF HERMITE-COSH-GAUSSIAN LASER BEAM IN 

PLASMA 

 

3.1 INTRODUCTION 

The interaction of light with matter is one of the basic phenomena in nature. The 

advancement in the short pulse laser technology have enabled experiments using laser 

pulses focused to extremely high intensity of the order of 10
20

 W/cm
2
. Self-focusing of 

laser beams in plasmas [2, 3, 16, 58, 61, 88] becomes one of the most interesting and 

fascinating field of research for several decades due to its various applications like the 

generation of inertial fusion energy driven by lasers [9, 10, 11], optical harmonic 

generation [13], the production of quasi mono-energetic electron bunches [12], x-ray 

lasers and the laser driven accelerators [8]. These applications need the laser pulse to 

propagate over several Rayleigh lengths in the plasmas without loss of energy. 

 In the plasma three types of self-focusing mechanism occur namely Relativistic, 

ponderomotive and thermal self-focusing as the laser pulse propagate through it. The 

dielectric constant of plasma changes greatly with the increase in intensity of the laser 

beam and it leads to the self-focusing of the beam [15, 85]. The variation in the electron 

density [89] in plasmas is caused by the propagating laser pulse of extremely high 

intensities of the order ranging from 10
17 

- 10
20

 W/cm
2

. These high intensity laser pulses 

provide sufficient energy to the constituents like ions, electrons etc. of the plasmas which 

causes an electron oscillatory velocity comparable to the velocity of light. Thus the mass 

of electron, oscillating at relativistic velocities in laser field, increases and give rise to 

non-linearity due to which the relativistic self-focusing effect occurs. The theory of 

relativistic self-focusing of laser radiation in plasmas has been studied by Hora [88]. Self-

focusing in a plasma due to ponderomotive forces and relativistic effects has been studied 

by Siegrist [3]. Relativistic self-focusing and self-channeling of Gaussian laser beam has 

been, recently, reported by Singh et al. by applying moment theory approach to solve the 
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non-linear differential equation for beam width parameter and then solved it numerically 

by Runge-Kutta method [82].  

Recently, theoretical investigators focus their attention on paraxial wave family of 

laser beams. Hermite-cosh-Gaussian beam is one of the solutions of paraxial wave 

equation and such HChG beam can be obtained in the laboratory by the superposition of 

two decentered Hermite-Gaussian beams as Cosh-Gaussian ones. Propagation of 

Hermite-cosh-Gaussian beams in plasmas has been studied theoretically earlier by 

Belafhal et al. [16]; Patil et al. [17, 18]. The focusing of HChG laser beams in magneto-

plasma by considering ponderomotive nonlinearity has been theoretically examined by 

Patil et al. [81] and reported the effect of mode index and decentered parameter on the 

self-focusing of the beams.  

The present work is dedicated to the study of the sensitiveness of decentered 

parameter for relativistic self-focusing of HChG beams in plasmas. We derive the 

equations for beam width parameter for HChG beam and solve them numerically by 

applying Wentzel-Kramers-Brillouin (WKB) approximation and Paraxial approximation 

[4, 90] for mode index 0, 1 and 2 and observed the enhancement in the self-focusing of 

the laser beams as the beam width parameter decreases with the normalized distance for 

the optimum sensitive values of decentered parameter. For the sake of simplicity only the 

transversal components of laser field are evaluated and longitudinal components are not 

taken in to consideration in the present paper. However, longitudinal components should 

be taken for an exact formulation, while dealing with nonlinear phenomenon [52]. 

 

3.2 FIELD DISTRIBUTION OF HCHG LASER BEAMS 

The field distribution of HChG laser beams propagating in the plasma along z-

axis is of the following form: 
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Here  zrE ,  is the amplitude of HChG laser beam for the central position at .0 zr

 zf  is the dimensionless beam width parameters, mH  is the Hermite polynomial of 

thm order, 0r  is the spot size of the beam and b is the decentered parameter of the beam. 

 

3.3 NON-LINEAR DIELECTRIC CONSTANT 

The dielectric constant for the non-linear medium (collision-less plasma) is 

obtained by applying the approach given by Sodha et al. [4]: 

  EE 0         … (3.2) 
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here '' 0  and ''  represent the linear and non-linear parts of the dielectric constant 

respectively, '' 0P  is the plasma frequency, ''e  is the electronic charge, ''m  is the rest 

mass of the electron, ''  is the frequency of the incidents laser beam and '' 0n  is the 

equilibrium electron density. 

In case of collision-less plasma, ponderomotive force causes the non-linearity in the 

dielectric constant and hence non-linear part of the dielectric constant can be written as 

[4]: 
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With ,6 0
222

0
2

1 TkmMe b   here ''M  is the mass of the scatterer in the plasma, '' bk  

is the Boltzmann constant and '' 0T  is the equilibrium plasma temperature. 

 

3.4 EVOLUTION OF BEAM WIDTH PARAMETER 

For isotropic, non-conducting and non-absorbing medium with ,1  Maxwell’s 

equation are: 
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Taking curl of equation (3.4b), 
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From equation (3.4c), 
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Consider a plane polarized wave with electric field vector along y-axis, propagating in 

the z-direction, the solution of equation (3.6) is given by, 
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where ĵ is the unit vector along y-direction. 

Differentiating equation (3.7) twice, w. r. t. ''t , we get 
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Thus equation (3.6) becomes, 
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In cylindrical co-ordinate system, we can write this equation as 
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For slowly converging or diverging cylindrically symmetric beam, the solution of 

equation (3.10) is of the following form, 
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Substituting these values in equation (3.10), we get 

       
 

  
 

  
 

  
    

     0,

,1,

,,
2,

2

2

02

2

2

2
2



























kztiExpzrA
c

AA
r

zrA
kztiExp

rr

zrA
kztiExp

z

zrA
kztiExp

z

zrA
kztiikExpkztiExpzrAk








 



35 

 
       

 

    0,

,
,1,,,

2,

2

2

2

2

02

2

2

2
2
























 zrA
c

AA

zrA
cr

zrA

rr

zrA

z

zrA

z

zrA
ikzrAk







  

 

 
       

 

    0,

,
,1,,,

2,

2

2

2

2

2

2

2
2
























 zrA
c

AA

zrAk
r

zrA

rr

zrA

z

zrA

z

zrA
ikzrAk




  

 

Neglecting
 
2

2 ,

z

zrA




, we get 

       
  0,

,1,,
2 2

0
2

2



















zrAk
AA

r

zrA

rr

zrA

z

zrA
ik




  … (3.12) 

To solve equation (3.12), we express 
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Here pA0 and S are the real functions of z'.'and''r  
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Comparing real and imaginary parts of equation (3.14), we get  
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Imaginary part equation is 
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Multiplying by pA0  
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For initially Hermite-cosh-Gaussian beam, the solution of equation (3.15) and (3.16) are 

of the form 
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          … (3.17) 
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Differentiating equation (3.18) w. r. t. ''and'' rz respectively, 
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Differentiating equation (3.19) twice w. r. t. ''r , we get 
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Substituting the values of   ,, zzrS     ,, rzrS   ,2
0 rA p   22

0
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0 pA  in 

equation (3.15) and solving, we get 
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Differentiating equation (3.21) twice w. r. t. ''r , we get 
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0
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Substituting the value of equation (3.18) and (3.23) in equation (3.15), we get 
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where ξ = z/Rd, similarly Eq. (3.16) gives the condition, 𝜕f/𝜕ξ =0, f =constant. 

 

3.5 RESULTS AND DISCUSSION 

We have solved the Eqs. (3.20), (3.22) and (3.24) numerically and analyze the 

sensitiveness of decentered parameter for relativistic self-focusing of HChG beams in 

plasmas for first three mode indices. The variation of beam width parameter  f  with      

the normalized propagation distance ξ for mode indices m = 0, 1 & 2, for different 

intensity parameters 7and5,32
0 E

 
(corresponding intensities are 

217 /102.2 cmW , 

217 /107.3 cmW  and 
217 /102.5 cmW respectively) has been analyzed for different 

parameters given as 3/0 cr , mr 6
0 103  , srad /103 14 , 02.00 Mm and

4.00  p . From figure 3.1(a), it is clear that with the little increase in the value of the 

decentered parameter b, the beam width parameter f decreases greatly for 32
0 E . Hence 

self-focusing of laser beam becomes more and more strong and it is obvious from the 

figure that small decimal change in the value of the decentered parameter greatly affects 

the beam width parameter. Moreover, decentered parameter is very sensitive and its 

proper selection decides the focusing or the defocusing effect at different intensities. In 

figure 3.1(b) and 3.1(c), the variation of beam width parameter f with normalized 
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propagation distance ξ for intensity parameters 7,52
0 E  has been observed for various 

parameters taken to be similar as that in figure 3.1(a). The plot obtained clarifies that for 

mode index, m=0, the beam gets more and more focused due to the dominance of the 

non-linear self-focusing term. For the values of the intensity parameters 7and5,32
0 E , 

self-focusing becomes stronger for decentered parameter b=0.92, 0.74 and 0.52 

respectively. Hence, for the laser of high intensity, self-focusing occurs at low values of 

the decentered parameter.  

Figure 3.2 represents the variation of the beam width parameter f with the 

normalized propagation distance ξ, for mode index m=1, at different values of various 

parameter taken similar to previous values as taken in case of mode index m=0. From fig. 

3.2(a), it is concluded that for certain values of the decentered parameter b, focusing of 

laser beam occurs. These selected values of decentered parameter depend on initial 

intensity of laser beam. From figure 3.1 & 3.2, it is clear that in case of mode index m=0, 

for intensity parameter 32
0 E , self-focusing is stronger at b=0.92, however, in case of 

mode index m=1, for intensity parameter 32
0 E , self-focusing of beam becomes stronger 

at b =1.287. In comparison with the results obtained for m=0 & 1, it is clear that for m=1, 

self-focusing occurs at higher values of decentered parameter. From figure 3.1 & 3.2, one 

can clearly see the sensitiveness of the decentered parameter on self-focusing. Thus, self-

focusing of Hermite-cosh-Gaussian laser beam can be controlled by mode indices and 

decentered parameter as the decentered parameter is more sensitive to self-focusing. 

These results support the results obtained by Patil et al. [18, 81]. For m=1, with the 

increase in value of decentered parameter b, focusing term becomes dominant for all 

taken values of intensity. It would be quite interesting to see the effect of decentered 

parameter on the focusing/de-focusing nature of HChG beam for higher values of mode 

indices.  

Figure 3.3, represents the variation of beam width parameter f with the normalized 

propagation distance ξ for m=2 and other parameters are same as taken previously. From 

the plot it is concluded that for mode index m=2, self-focusing effect of laser beam 

reduces greatly with the increase in the value of the decentered parameter and the 

defocusing term in Eq. (3.24) becomes dominant over non-linear self-focusing term. 
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Again the selection of values of the decentered parameter plays a very crucial role by 

virtue of which at least weak self-focusing effect is observed and thereafter beam get 

defocused. Here, we observed that for m=2, self-focusing is weak for intensity 

parameters 7and5,32
0 E  as compared to that in case of mode indices m=0 & 1 for the 

same parameters. 

 

3.6 CONCLUSION 

In the present investigation we have studied the sensitivity of decentered 

parameter for relativistic self-focusing of HChG laser beam in plasma. We have derived 

the equation of beam width parameter using paraxial ray approach and investigated the 

sensitiveness of the decentered parameter on the self-focusing. The focusing/ defocusing 

phenomena of HChG laser beam in plasma for mode indices m=0, 1 and 2, can be 

controlled and made stronger with the decentered parameter b, as the value of b is more 

sensitive to self-focusing. Moreover, self-focusing becomes stronger with the increase in 

selected values of the decentered parameter at a particular intensity for mode indices m=0 

& 1. For m=2, we observe opposite results indicating that self-focusing effect becomes 

weaker. Thus for m=2, Hermite-Cosh-Gaussian beam exhibits diffraction effect and self-

focusing effect is weaker for all taken values of laser intensity. The results obtained in 

this study add to the sensitiveness of decentered parameter to self-focusing. We report the 

selection of decentered parameter as decentered parameter is more sensitive to self-

focusing. The present study helps the investigators to choose the intensity parameter as 

per their requirement by the proper selection of the decentered parameter leads to 

substantial improvement in the focusing quality which may be useful in inertial fusion 

energy driven by lasers. 
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Figure 3.1: Variation of beam width parameter  '' f  with normalized propagation 

distance ''  for different values of dcentered parameters. The other parameters are 

taken as ,0m ,30 cr 02.00 Mm and .4.00 P  
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                              (a)                                                               (b) 

 

(c)  

 

Figure 3.2: Variation of beam width parameter (f) with normalized propagation 

distance (ξ) for different values of decentered parameter. The other parameters are 

taken as ,1m ,30 cr 02.00 Mm and .4.00 P  
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                             (a)                                                                     (b)  

 

(c) 

 

Figure 3.3: Variation of beam width parameter (f) with normalized propagation 

distance (ξ) for different values of decentered parameter. The other parameters are 

taken as ,2m ,30 cr 02.00 Mm and .4.00 P  
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CHAPTER-4 

 

SELF-FOCUSING OF A HERMITE-COSH GAUSSIAN LASER BEAM IN A 

MAGNETOPLASMA WITH RAMP DENSITY PROFILE 

 

4.1 INTRODUCTION 

The interaction of light with solids, liquids, gases and plasmas occurs very 

frequently in nature. For over more than four decades, the nonlinear interaction of laser 

beams with matter has been studied intensively by researchers. Development of short-

pulse high intensity lasers of the order of 10
20

 W/cm
2
 make it possible to investigate the 

nonlinear interaction of strong electromagnetic waves with plasmas. A series of 

applications of self-focusing of laser beams in plasmas [2, 3] like optical harmonic 

generation
 
[13], laser driven fusion [11], x-ray lasers and the laser driven accelerators [8], 

the production of quasi mono-energetic electron bunches [8] etc. creates a center of 

attention of many researchers and scientists. These applications need the laser beams to 

propagate over several Rayleigh lengths in the plasmas without loss of the energy. The 

propagation of different kind of laser beams profile like Gaussian beams [4], Cosh-

Gaussian beams [14, 84, 91], Hermite-cosh-Gaussian beams [16], Elliptic Gaussian 

beams [92], Bessel beams [93], Leguerre-Gaussiaon beams [94]
 
etc. in the plasmas 

attracts the attention of the researchers.  

Recently, theoretical investigators focus their attention on paraxial wave family of 

laser beams. Hermite-cosh-Gaussian beam is one of the solutions of paraxial wave 

equation and such HChG beam can be obtained in the laboratory by the superposition of 

two decentered Hermite-Gaussian beams as Cosh-Gaussian ones. Propagation of 

Hermite-cosh-Gaussian beams in plasmas has been studied theoretically earlier by 

Belafhal et al. [19], and Patil et al. [17, 18]. The focusing of HChG laser beams in 

magneto-plasma by considering ponderomotive nonlinearity has been theoretically 

examined by Patil et al. [81] and reported the effect of mode index and decentered 

parameter on the self-focusing of the beams. Gill et al. [84] has recently studied the 

relativistic self-focusing and self-phase modulation of cosh-Gaussian laser beam in 

magnetoplasma in the absence of plasma density ramp and reported strong self-focusing 
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of the laser beams. Gupta et al. [78] in 2007, has investigated the addition focusing of a 

high intensity laser beams in a plasma with a density ramp and a magnetic field and 

reported the strong self-focusing of the laser beams. Again density ramp has also been 

applied by Kant et al. [85, 87] to study the Ponderomotive self-focusing of a short laser 

pulse and self-focusing of Hermite-Gaussian laser beams in plasma. In both the cases 

Kant et al. [85, 87] reported strong self-focusing of the laser beams. 

The present work is dedicated to the study of self-focusing of Hermite-cosh-

Gaussian laser beams in collisionless magneto-plasma under plasma density ramp in 

applied magnetic field. We derive the equations for beam width parameter for Hermite-

cosh-Gaussian beam profile propagating in the plasmas in the presence of magnetic field 

and plasma density ramp, by applying Wentzel-Kramers-Brillouin (WKB) approximation 

and Paraxial approximation [4, 90] and hence, solve them numerically by using 

Mathematica software. The sensitiveness of decentered parameter [95] is observed and 

small increase in its value enhances greatly the self-focusing ability of the beam. In order 

to simplify mathematical calculation, only the transversal components of laser field are 

evaluated and longitudinal components are not taken in to consideration in the present 

paper. However, while dealing with nonlinear phenomenon, longitudinal components 

should be considered for an exact formulation [52]. 

 

4.2 NON-LINEAR DIELECTRIC CONSTANT 

The dielectric constant for the non-linear medium (collisionless magnetoplasma) with 

density ramp profile is obtained by applying the approach as applied by Sodha et al. [4]: 

)(0
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)(andhere 0



 EE  represent the linear and non-linear parts of the dielectric constant 

respectively. cP  and are the plasma frequency and electron cyclotron frequency 

respectively. 0and nme,  are the magnitude of the electronic charge, mass and electron 
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density, ‘ M ’ is the mass of scatterer in the plasma, ‘ ’ is the frequency of laser used, ‘

dRz ’ is the normalized propagation distance, ‘ dR ’ is the diffraction length, ‘ d ’ is a 

dimensionless adjustable parameter, ‘ Bk ’ is the Boltzmann constant and ‘ 0T ’ is the 

equilibrium plasma temperature. 

 

4.3 SELF-FOCUSING EQUATIONS 

Consider the Hermite-cosh-Gaussian laser beam is propagating along the z-direction 

with the field distribution in the following form: 
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          … (4.2) 

‘E0’ is the amplitude of Hermite-cosh-Gaussian laser beam for the central position at 

)'(',0 zfzr   is the dimensionless beam width parameter, Hm is the Hermite 

polynomial and ‘m’ is the mode index associated with Hermite polynomial, ‘ 0r ’ is the 

initial spot size of the laser beam. 

 The general form of wave equation for exponentially varying field obtained from 

Maxwell’s equation is given by 

E
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In the present case, the variation of magnetic field ( kBB ˆ
0


) is assumed to be very 

strong along z-direction of the co-ordinate system than x-y plane. Thus the propagating 
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wave is considered to be transverse in nature in zero order approximation. This 

assumption gives rise to the condition 0. D


 or,  







































y

E

y

E

x

E

x

E

z

E y
yy

x
yx

y
xy

x
xx

zz

z 


1
   … (4.5) 

The equations (4.4a), (4.4b) & (4.4c) are coupled and one cannot define the propagation 

vectors which describe the independent propagation of zyx EEE and, . 

To investigate the independent modes of propagation, we multiply equation (4.4b) by ‘i’ 

and adding so obtained equation to equation (4.4a), we get,  
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Solving this equation and using xyyxyyxx   and , we get, 
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Similarly for ordinary mode of propagation, 
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The functions 1A and 2A , having propagation vectors k
 

and k
 
respectively, 

represent the extraordinary and ordinary modes of propagation of a magnetoplasma. The 

variation of equation (4.6) and (4.7) is very slow along x and y-direction as compared to 

z-direction. It indicates the weak coupling of these two equations. In order to study the 

behavior of one of the mode other mode can be considered to be zero. Let us assume

02 A , then equation (4.6) becomes, 
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Similarly for considering ,01 A equation (4.7) becomes, 
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The solution of equation (a) is of the form 
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Differentiating eq. (4.9) twice w. r. t. x, we get, 
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Similarly, differentiating eq. (4.9) twice w. r. t. y, we get, 
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Now, differentiating eq. (4.9) twice w. r. t. z, we get, 
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Substituting these values in equation (4.8a) and neglecting 022  zA , we get 
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The solution of this equation is of the form 

      zyxSzikExpzyxAA ,,,,0       … (4.10) 

Substituting this value in equation, we get 

0

1

1
2

1

4

2

222

1
24

tan

2

02

2
0

22

2

2

0
22

2
02

0
22

2
0

0

0

2242

4242
0

2

22
0

2243

424
0

2

22
0

2

22
0

2
0

0

2

2

0
0

2

2

0

0

00

2

22

2243

424
0

222

22
0

0

2

22
0













































































































































































































































































































A
A

cy

A

y

S
kA

x

A

x

S
kA

Rdck

dR

z
SeczA

dRc

dR

z
SeczA

Rdck

dR

z
SecSzA

z

S

dRc

dR

z
SeczA

dRc

dR

z
SecSA

z

S
kA

y

A

y

S
k

y

S
kA

x

A

x

S
k

x

S
kA

i

z

A

dRck

dR

z
Secz

i
Rdck

dR

z
SeczA

i

i
Rdck

dR

z

dR

z
SeczA

z

A
iki

dRck

dR

z
SecA

c

zzd

d

s

d

d

s

d

d

s

d

d

s

d

d

s

zzd

d

s

d

d

s

d

dd

s

d

d

s






















Now separating real and imaginary parts, we get 
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The solution of equation (4.11) & (4.12) for initially Hermite-cosh-Gaussian beam is of 
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and 
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where   ,)(1)(2)( 00 zzfzfz zz     is the curvature of the wave front and 

 .222 yxr   '' 0E is the amplitude of Hermite-cosh-Gaussian laser beam for the 

central position at ,0 zr  )'(' zf  is the dimensionless beam width parameter; ‘ 0r ’ is 

the spot size of the beam. 
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Substituting this value in equation (4.11) and simplifying the equation, we get 

 

 

)15.4(...01

tan18

22

tan11

1

tan1sec2

1

tan1sec2

1

sec

1

sec
1

sec

tan12

sec

0

0

32
1

2

2
02

2

2
1

2

3

2

2
0

2

0

0

0

0
0

2

0

02
0

2

0
2

0
2

0

0
0

2

42

0

02
0

22

0
2

0
4

2
2

2

2
2




































































































































































































































































































































zznl

P

b

d

P

zz

zz

zz

ss

zz

zz

Ps

zz

zz

s

zz

zz

Pss

s

s

fR

d
eR

b
f

df

d

dd

f

d

ddf

d

d

f

d

df

fd

df

dd

d


















































































 



55 

    2
01

2
020

2
0

22
1 and1where rkRErR dcnl     

For m=1 

2
0

2

2
2

0
1

)(

8

)(

2

rzf

r

zfr

r
H





























 




















































































































2)(

2
2

2)(
2

2)(
2

)(

8

)(

2

0

2

0

2

0

2
0

2

2

2

2

2

2
02

0

b

rzf

r
Exp

b

rzf

r
Exp

b

rzf

r
Exp

rzf

r
e

zf

E
A

b

 

Substituting this value in equation (4.11) and simplifying the equation, we get 
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Substituting this value in equation (4.11) and simplifying the equation, we get 
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Equation (4.15), (4.16) & (4.17) are the required equations for beam width parameter for 

extraordinary modes of propagation of magnetoplasma. Similarly the equations for beam 

width parameter for ordinary mode of propagation can be obtained by replacing c by 

c and +ve sign by –ve sign in the subscript of .f       

Similarly on solving imaginary part we get the condition 0  zf and f = Constant, 

for extraordinary and ordinary modes. 

 

4.4 RESULTS AND DISCUSSION 

 The various parameters taken for numerical calculation are: 
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m/s103,Kg101.9,C106.1,μm253,rad/s10778.1 83119
0

14 XcXmXerX  
 

The value of the intensity in the present case is 214
0 1084.1 cmWXI  .

 

Figure 4.1 represents the variation of beam width parameter  f  with the 

normalized propagation distance ( ) for different values of decentered parameter, 

00.4and95.3,90.3,00.0b  for m=0. The sensitiveness of decentered parameter is also 

observed in the present case and it supports the previous work of Nanda et al. [95]. It is 

clear from the plot that for extraordinary mode, Fig 4.1(a), beam width parameter 

decreases with increase in the values of decentered parameter. For 00.4b , beam width 

parameter falls abruptly at normalized propagation distance, 10.0 and hence self-

focusing become strong. In case of ordinary mode same patterns are observed but self-

focusing is weak as compare to extraordinary mode of propagation. Gill et al. [14] has 

studied self-focusing and self-phase modulation as well as self-trapping of cosh-Gaussian 

beam at various values of decentered parameter ( b ) and concluded that self-focusing 

become sharper for 2b and occurs at 45.1  and the value of beam width parameter 

is nearly 91.0 (approximately). In another work Gill et al. [84] reported strong self-

focusing effect nearly at 65.0 . Patil et al. [18] has reported strong self-focusing for 

2,0  bm nearly at 21.0 . In the present work, in the presence of density ramp, we 

report very strong self-focusing which occurs at 10.0  for 00.4b . In case of 

ordinary mode, Fig 4.1(b), the self-focusing of beam occurs for

00.4and95.3,90.3,00.0b . For 00.4b , self-focusing effect is very strong; however, it 

is weaker as compared to extraordinary mode. In the absence of decentered parameter no 

self-focusing is observed in both the cases. 

Figure 4.2 represents the variation of beam width parameter  f  with the 

normalized propagation distance ( ) for different values of decentered parameter, 

14.3and09.3,04.3,00.0b  for m=1. It is clear from the plot fig. 4.2(a), that with the 

increase in the values of decentered parameter beam width parameter decreases and 

hence self-focusing effect is observed. However, for ,0b  diffraction term become 

more dominant over focusing term and causes the defocusing of beam. Fig. 4.2(b), 

describes the same pattern as that in fig. 4.2(a), however; self-focusing is weaker in this  
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case. Patil et al. [81] has reported strong self-focusing for 2,1  bm  nearly at 9.1

(approximately) and for 1and0b , diffraction effect becomes dominant, both for 

extraordinary and ordinary modes of propagation. In the present work, in the presence of 

density ramp, we report very strong self-focusing which occurs at 10.0  for 14.3b

and only for 0b  defocusing of beam occurs while for 3and2,1b , self-focusing of 

beam occurs and is very strong for 14.3b . 

Figure 4.3, represents the variation of beam width parameter with the normalized 

propagation distance for different values of decentered parameter, 

05.2and00.2,95.1,00.0b for m=2 for extraordinary mode of propagation. In this case 

for 05.2and00.2,95.1b , beam exhibit self-focusing effect for both extraordinary and 

ordinary modes, however, relatively self-focusing is weaker in case of ordinary mode as 

compared to that in case of extraordinary mode of propagation. While for 00.0b  beam 

gets defocused both for extraordinary and ordinary mode of propagation. Patil et al. [81] 

has reported strong self-focusing for 1and0,2  bm  nearly at 3.2 (approximately) 

and for 2b , diffraction effect becomes dominant, both for extraordinary and ordinary 

modes of propagation. In the present work, in the presence of density ramp, we report 

very strong self-focusing which occurs at 10.0  for 05.2b , in case of extraordinary 

mode, fig. 4.3(a) and for 049.2b , in case of ordinary mode of propagation, fig. 4.3(b). 

Figure 4.4, represents the variation of beam width parameter with the normalized 

propagation distance for mode indices 2,1,0m  and decentered parameter 29.3b , 

both for extraordinary, fig. 4.4(a) and ordinary mode of propagation of beam, fig. 4.4(b). 

It is reported that in case of extraordinary mode, for 2m , self-focusing occurs earlier at

07.0 . While for mode indices 1and0m , self-focusing occurs at 11.0and16.0  

respectively. In case of ordinary mode, self-focusing is strong for 29.3,2  bm and 

occurs at 08.0 and thereafter beams starts defocusing for higher values of decentered 

parameter. 

Figure 4.5(a), represents the variation of beam width parameter with normalised 

propagation distance for extraordinary mode for different values of magnetic field 

parameter given as 15.0and10.0,05.0/ c . It is investigated that for 0m  and 
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95.3b , with the increase in the values of magnetic field parameter, beam width 

parameter decreases and hence self-focusing ability of beam enhances to greater extent. 

For 15.0/ c , strong self-focusing is observed than for 05.0/ c , and  0.10. 

Gupta et al. [78] has investigated the addition focusing of a high intensity laser beam in a 

plasma with density ramp and a magnetic field and reported strong focusing which occur 

at 8.0  for magnetic field 45MG. However, in our case self-focusing occurs at 1.0  

for 15.0/ c . Similar patterns are observed in case of mode indices 2and1m , for 

optimized values of other parameter as taken in case of 0m . Whereas, in case of 

ordinary mode of propagation, fig. 4.5(b), beam width parameter increases with the 

increase in the value of magnetic field parameter and hence decreases self-focusing of 

laser beams. 

 

4.5 CONCLUSION 

From the above results, we conclude that the presence of density ramp enhances the self-

focusing effect to greater extent and also it occurs earlier with normalized propagation 

distance. For mode indices 2and1,0m , self-focusing is more commonly observed for 

higher values of decentered parameter b viz. 4.00, 3.14 and 2.05 respectively both for 

ordinary and extraordinary mode of propagation of laser beams. However, for ordinary 

mode, self-focusing is a little bit weaker than extraordinary mode. Decentered parameter 

decides the focusing/ defocusing nature of Hermite-cosh-Gaussian beam as for b=0, 

defocusing of beam occurs and for 1m , weaker self-focusing effect is observed. The 

dependence of beam width parameter on decentered parameter is previously also 

investigated by Patil et al. [81]. For 29.3b , self-focusing of Hermite-cosh-Gaussian 

laser beam is found to be occurs earlier at 07.0 for mode index 2m  for both modes 

of propagation. Further, sensitiveness of decentered parameter is observed which strongly 

supports our previous work [95]. Also with the increase in the value of magnetic field 

parameter, self-focusing ability of the laser beam increases abruptly. All this happens due 

to the presence of plasma density ramp and magnetic field. Thus plasma density ramp 

plays a very vital role to the self-focusing of the Hermite-cosh-Gaussian laser beam and it 

enhances the self-focusing effect. Present study may be useful for the scientist working 

on laser-induced fusion. 
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Figure 4.1: Variation of beam width parameter with normalised propagation 

distance for (a) extraordinary and (b) ordinary mode for different values of 

decentered parameter. The other various values are taken as 0m , 5d , 

150/0 cr  0102

0 .αE  , 10.0/ c , 45.0/0 P and 01.00 Mm .
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(a) 

 
(b) 

 

Figure 4.2: Variation of beam width parameter with normalised propagation 

distance for (a) extraordinary and (b) ordinary mode for different values of 

decentered parameter. The other various values are taken as 1m , 5d , 

150/0 cr  0102

0 .αE  , 10.0/ c , 45.0/0 P and 01.00 Mm .
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Figure 4.3: Variation of beam width parameter with normalised propagation 

distance for (a) extraordinary and (b) ordinary mode for different values of 

decentered parameter. The other various values are taken as 2m , 5d , 

150/0 cr  0102

0 .αE  , 10.0/ c , 45.0/0 P and 01.00 Mm .
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 (a) 

 
 

Figure 4.4: Variation of beam width parameter with normalised propagation 

distance for (a) extraordinary and (b) ordinary mode for mode indices 2 and1,0m . 

The other various values are taken as 29.3b , 5d , 150/0 cr  0102

0 .αE  , 

10.0/ c , 45.0/0 P  and 01.00 Mm .
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4.5: Variation of beam width parameter with normalised propagation distance for 

(a) extraordinary and (b) ordinary mode of propagation for different values of

 /c . The other various values are taken as 0m , 95.3b , 5d , 150/0 cr  

0102

0 .αE  , 45.0/0 P  and 01.00 Mm . 
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CHAPTER-5 

ENHANCED RELATIVISTIC SELF-FOCUSING OF HERMITE-COSH-

GAUSSIAN LASER BEAM IN PLASMA UNDER DENSITY TRANSITION 

 

5.1 INTRODUCTION 

 After the discovery of the self-focusing of light in 1962 by Askar'yan [1], self-

focusing of light becomes the most fascinating and interesting field of research. The 

propagation of Gaussian beam [2-4], Hermite-Gaussian beam [87], Cosh-Gaussian beam 

[14], Hermite cosh-Gaussian beam [16-18] etc. are widely studied by researchers for 

several decades due to its socially useful applications like generation of inertial fusion 

energy driven by lasers [9-11], the production of quasi mono-energetic electron bunches 

[12], optical harmonic generation [13], x-rays lasers and laser driven accelerators [8] 

arising due to self-focusing effect [1-4, 61, 87]. These applications need the laser pulse to 

propagate over several Rayleigh lengths in the plasmas without loss of energy. Today, 

extremely high intensity of the order of 10
20

 W/cm
2 

produced by short pulse laser 

technology enabled various high energy related experiments.  

As the laser pulse propagates through the plasma, the dielectric constant of 

plasma changes significantly with the increase in intensity of the laser beam and it leads 

to the self-focusing of the laser beam [85, 87] which may be relativistic or ponderomotive 

or thermal self-focusing in nature. The combined effect of relativistic self-focusing and 

axial nonlinear force results in the acceleration of tin ions up to 5 GeV energy [89]. The 

high intensity laser pulses provide sufficient energy to the constituents like electrons of 

the plasma which cause an electron oscillatory velocity comparable to the velocity of 

light. Thus the mass of electron, oscillating at relativistic velocities in laser field, 

increases by a factor given by 221/1 cv  and give rise to non-linearity due to 

which the relativistic self-focusing effect occurs. Earlier, the relativistic self-focusing of 

laser beam in plasma has been studied by Hora [88]. Relativistic self-focusing and self-

channeling of an intense laser pulse in an underdense plasma has been experimentally 

studied by Gibbon et al. [57]. Relativistic self-focusing of an intense laser under plasma 

density ramp has been theoretically investigated by Gupta et al. [77]. Self-focusing in a 

plasma due to ponderomotive forces and relativistic effects has been studied by Siegrist  
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[3], Relativistic self-focusing and self-channeling of Gaussian laser beam has been 

studied by Singh et al. [88]. Relativistic focusing and ponderomotive channelling of 

intense laser beam has been investigated theoretically by Hafizi et al. [59]. 

In the present study, propagation of Hermite cosh-Gaussian beam in plasma under 

density transition has been studied. Hermite-cosh-Gaussian beam is one of the solutions 

of paraxial wave equation and such HChG beam can be obtained in the laboratory by the 

superposition of two decentered Hermite-Gaussian beams as Cosh-Gaussian ones. 

Propagation of Hermite-cosh-Gaussian beam in plasma [16-18] and in magneto-plasma 

[81, 95, 96] has been studied earlier.  

In the present work, enhanced relativistic self-focusing of Hermite-cosh-Gaussian 

laser beam in plasma under density transition has been reported theoretically. Application 

of plasma density ramp profile to the medium is not new to researcher as earlier it has 

been applied by Kant et al. [85, 87], Gupta et al. [77] etc. under various beam profiles 

and conditions. We develop the equations for beam width parameter for HChG beam in 

the presence of plasmas density ramp and solve them numerically by applying Wentzel-

Kramers-Brillouin (WKB) approximation and Paraxial approximation [4, 90] for mode 

indices ,2and1,0m  and observed the enhancement of self-focusing of the laser 

beam. In this work, for the sake of simplicity, we have not assumed the longitudinal 

components of laser field and only the transversal components of laser field are 

evaluated, but for exact formulation, one should consider the longitudinal components 

during dealing with non linearity [52]. 

 

5.2 EVOLUTION OF BEAM WIDTH PARAMETER 

The field distribution of HChG laser beam propagating in the plasma along z-axis is 

of the following form: 
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here E0 is the amplitude of HChG laser beam for the central position at )'(',0 zfzr   

is the dimensionless beam width parameters, '' mH is the Hermite polynomial of '' thm

order, '' 0r  is the spot size of the beam and ''b is the decentered parameter of the beam. 

This propagating beam imparts an oscillatory velocity, ,0meEv   to the electrons. 

Here and, 0me  are the charge on electron, rest mass of electron and angular frequency 

of incident laser beam respectively, and ,1  EE is the intensity dependent 

relativistic factor with 
222

0

2 cme   , here c is the speed of light in vacuum. The 

intensity dependent dielectric constant for the non-linear medium is obtained by applying 

the approach given by Sodha et al. [4]: 

)(0

 EE         … (5.2) 

where ,/1 22

0  P  is linear part of the dielectric constant with P is plasma 

frequency. In the absence of density transition and considering relativistic mass of 

electron 0mme  , therefore, dielectric constant of the plasma is modified to the form, 

22

0rel /1  P  with   21

00

2

0 /4 mneP    is the equilibrium plasma frequency.  

The intensity dependent non-linear part of the dielectric constant is given by 
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Now, in the presence of plasma density ramp given by relation, ),/tan()( 00 dnnn    

and using 0mme  , the dielectric constant of the plasma is modified to the form given 

by  22

0

22

0 /)/tan(1)(  dz PP  , where ,/ dRz is the normalized 

propagation distance, dR  is the diffraction length and d is adjustable constant. 

Thus, intensity dependent non-linear part of the dielectric constant is given by 
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The value of )( EE is obtained by applying Taylor expansion in terms of 2r  and 

neglecting terms containing higher powers of .r  

For isotropic, non conducting and non absorbing medium ( 0,0valuesofsetfor  J ) 

with 1 , Maxwell’s equations give the following wave equation 
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We know that the solution of Eq. (5.5) is of the form,  

 )(exp),( kztizrAE  


       … (5.6) 

  ,/where
21

rel ck  in the absence of density transition and   ,/)(
21

czk   in the 

presence of density transition. Substituting this value in Eq. (5) and neglecting
22 zA  , 

we get a complex differential equation with real and imaginary parts which are separated 

by introducing an additional eikonal  ,),(exp),(),( 0 zrikSzrAzrA  here ''and'' 0 SA

are the real functions of ''and'' zr  respectively. Following calculations are given, here, 

in the presence of density transition and by applying similar approach; we obtained the 

equations for beam width parameter in the absence of density transition.  
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Imaginary part is 
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The solution of equation (7) & (8) are of the form, 
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  ./)(/1)(,with dzdfzfz   where )'(' z is an arbitrary function of '' z . 

Using these values in Eq. (5.7), we obtain the equation governing the evolution of beam 

with parameter,  
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In the presence of density transition 
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Similarly, in the absence of density transition 
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Similarly, in the absence of density transition 
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          … (5.13a) 

Similarly, in the absence of density transition 
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 Similarly Eq. (5.8) gives the boundary conditions, 1,0  f and 0ddf . 
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5.3 RESULTS AND DISCUSSION 

 Numerical simulation has been done by taking the frequency and spot size of incident 

laser beam as srad/10778.1 15 and μm82.800 r  respectively. Equations (5.11a, 

5.11b), (5.12a, 5.12b) and (5.13a, 5.13b) have been solved numerically using above 

mentioned values of physical quantities to analyze the effect of density transition and 

decentered parameter on self-focusing of HChG beam for mode indices 2and1,0m . In 

the present study, we assume the plasmas density ramp profile given by the relation

))/tan(()( 000 dnnn   with initial electron density
321

0 10503.0  cmn and 

.05.0d  Figure 1 depicts the comparative study of variation of beam width parameter (f) 

with the normalized propagation distance (ξ) for mode indices 2and1,0m  in the 

presence and absence of density transition and the intensity of incident laser beam is 

taken to be ./1023.1 217 cmWI   For ,0m  from figure 5.1(a), one can, clearly see 

the influence of density transition on the propagating HChG beam through the plasma as 

the beam propagates deep into the plasma, its converging tendency shifted towards lower 

value of normalized propagation distance. In the absence of density transition self-

focusing of beam occurs at higher values of normalized propagation distance; however, 

initially two curves follows the same track. This happens because, initially, there is 

infinitesimal change in the density of the medium at smaller values of normalized 

propagation distance. But as the normalized propagation distance increase, the density of 

the medium rises and beam propagating through it converge earlier than a beam 

propagating in plasma of uniform density. Plasma density ramp for relativistic self-

focusing of an intense laser has been studied by Gupta et al. [77] and reported strong self-

focusing which occurs nearly at .5.0  In the present case, strong self-focusing of HChG 

beam occurs at 005.0  Similarly for ,1m figure 5.1(b), it is observable that beam 

propagating in the plasma with and without density transition gets diffracted. In case of 

,2m figure 5.1(c), beam converges strongly and hence self-focusing effect becomes 

stronger. It is observable that presence of density transition enhances the self-focusing 

tendency of the laser beam. It is noticed that for ,2&0m HChG beam converges 

strongly due to the dominance of focusing term over diffraction term in equations (5.11a) 

and (5.13a) respectively. Previously, Kant et al. [85] have studied ponderomotive self-
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focusing of a short laser pulse under plasma density ramp and reported strong self-

focusing for ,08.022

0  p which occurs nearly at .5.0  In the present case, 

enhancement in self-focusing is observed for smaller values of normalized propagation 

distance.
 

Figure 5.2 depicts the variation of the beam width parameter (f) with the normalized 

propagation distance (ξ) at different values of decentered parameters in the presence of 

density transition for mode index .2and1,0m  For ,8.1and0  bm figure 5.2(a), 

stronger self-focusing of beams is observed at .003.0  It is clear from the figure 5.2(a) 

that with the increase in the value of decentered parameter ,''b self-focusing of HChG 

beam enhanced and shifted towards lower values of normalized propagation distance. 

Patil et al. [81] has studied focusing of Hermite-cosh-Gaussian laser beams in 

collisionless magnetoplasma and reported strong self-focusing. In the present case, HChG 

beam converges earlier than results reported by Patil et al. [81]. Figure 5.2(b) depicts that 

for 1m and ,9.0&0b diffraction term dominates over focusing term; however, for 

,8.1b  strong self-focusing is observed. The trends followed by curves supports the 

previous work of Patil et al. [81] in which strong self-focusing is reported nearly at 

,002.0 for ;2b however, in the present case self-focusing occurs at 001.0  for 

.8.1b  This happens due to the plasmas density transition. From figure 5.2(c), it is clear 

that for ,2m  self-focusing is observed for ;9.0and0b  however, for higher values of 

decentered parameter diffraction term in equation (5.13a) becomes dominant. Similar plot 

trends are followed in the present case for ,7.2&8.1b as that reported by Patil et al. 

[81]. In another works Patil et al. [17, 18] reported the similar behavior of HChG beam at 

different values of decentered parameter for .2and1,0m  A comparative study between 

the results reported by Patil et al. [17, 18] and the results reported in the present case at 

different values of decentered parameter for ,2and1,0m  indicates the enhancement 

in the self-focusing which occur at smaller values of normalized propagation distance. 

Thus, we report that the spot size of the HChG beam shrinks as it propagates deeper 

inside the non linear medium with density transition in order to avoid the violation of 

basic laws of physics.  
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5.4 CONCLUSION 

In the present investigation we have studied the relativistic self-focusing of HChG 

laser beam in plasma under density transition. We have derived the equation of beam 

width parameter using WKB approximation and paraxial ray approach and reported 

enhancement of self-focusing of HChG beam. The self-focusing of HChG laser beam in 

plasma for mode indices 2and1,0m  is investigated and it is observed that as the beam 

propagates deeper inside the plasma under density transition, the self-focusing ability of 

the beam enhances and occurs earlier than the beam propagating in the plasma with 

uniform density. Moreover, self-focusing becomes stronger with the increase in values of 

the decentered parameter at a particular intensity for mode indices 1and0m . We 

conclude that spot size of the HChG beam shrinks greatly as it propagates deeper inside 

the plasma with density transition. The present study may help the investigators to choose 

the intensity parameter as per their requirement by the proper selection of the decentered 

parameter leads to substantial improvement in the focusing quality which may be useful 

in inertial fusion energy driven by lasers. 
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       (c) 

 

Figure 5.1: Variation of beam width parameter (f) with normalized propagation 

distance (ξ) for 0m , (a), 1m , (b) and 2m , (c) with and without density ramp. 

The various parameters are taken as ,1.02
0 E ,75.00 P ,9.0b

,4790 cr .05.0d  
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(a)                                                              (b) 

 
(c) 

 

Figure 5.2: Variation of beam width parameter (f) with normalized propagation 

distance (ξ) at different values of decentered parameter for 0m , (a), 1m , (b) and 

2m , (c) in the presence of density transition. The other parameters are taken as 

.05.0and479/,75.0/,1.0 00

2
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CHAPTER-6 

 

STRONG SELF-FOCUSING OF A COSH-GAUSSIAN LASER BEAM IN 

COLLISIONLESS MAGNETO-PLASMA UNDER PLASMA DENSITY RAMP 

 

6.1 INTRODUCTION 

The nonlinear interactions of laser beams with plasmas have been studied 

intensively for over more than 40 years. Short-pulse high intensity lasers of the order of 

22010 cmW make it possible to investigate the nonlinear interaction of strong 

electromagnetic waves with plasmas. The various applications of self-focusing of laser 

beam in plasmas [2, 3] like optical harmonic generation [13], laser driven fusion [11], x-

ray lasers and the laser driven accelerators [8], the production of quasi mono-energetic 

electron bunches [12], the generation of inertial fusion energy driven by lasers [97] etc. 

attract the attention of researchers and make self-focusing of laser beams in plasmas as 

most interesting and fascinating field of research for several decades. These applications 

need the laser beams to propagate over several Rayleigh lengths in the plasmas without 

loss of the energy. Investigators chooses the propagation of different kind of laser beams 

profile like Gaussian beams [4], cosh-Gaussian beams [84, 91], Hermite-cosh-Gaussian 

beams [16] etc. in the plasmas. Recently, theoretical investigators focus their attention on 

paraxial wave family of laser beams. Propagation of Hermite-cosh-Gaussian beams in 

plasmas has been studied theoretically earlier by Belafhal et al. [16], Nanda et al. [95, 98] 

and Patil et al. [17, 18]. The focusing of HChG laser beam in magneto-plasma by 

considering ponderomotive nonlinearity has been theoretically examined by Patil et al. 

[81] and reported the effect of mode index and decentered parameter on the self-focusing 

of the beams. 

In collisionless plasmas, ponderomotive force on electrons acting in an 

inhomogeneous electromagnetic field causes self-focusing. This force arises due to the 

drift of electrons in an inhomogeneous field and the interaction of drift velocity of 

electron with magnetic field. The ponderomotive force of the incident laser beam pushes 

the electron out of the region of high intensity and reduces the local concentration of 

electrons density in plasma. It increases the plasma dielectric function and laser beams 
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become more self-focused in plasma. Gill et al. [84] have recently studied the relativistic 

self-focusing and self-phase modulation of cosh-Gaussian laser beam in magnetoplasma 

in the absence of plasma density ramp and reported strong self-focusing of the laser 

beams. Gupta et al. [78] have investigated the additional focusing of a high intensity laser 

beams in a plasma with a density ramp and a magnetic field and reported the strong self-

focusing of the laser beams. Again plasma density ramp has also been applied by Kant et 

al. [85, 87] to study the Ponderomotive self-focusing of a short laser pulse and self-

focusing of Hermite-Gaussian laser beams in plasma. In both the cases Kant et al. [85, 

87] reported strong self-focusing of the laser beams in the presence of plasma density 

ramp profile. 

The present work is dedicated to the study of self focusing of cosh-Gaussian laser 

beams in collisionless magneto-plasma under plasma density ramp in applied magnetic 

field. The cosh-Gaussian beam has the ability to focus earlier than Gaussian beam as it is 

obvious from figure 2. Moreover, a cosh-Gaussian laser beam possesses more power than 

that of Gaussian laser beams having high intensity near the axis of propagation and 

hence, generates flat top beam profiles [99] which is useful for scribing type of 

applications in electronics where same intensity of laser beams for long time is required. 

On the basis of superposition of beams, a group of virtual sources that generate a cosh-

Gaussian wave is identified by Zhang et al. [100]. Belafhal et al. [16] have investigated 

that for 0b , the intensity profile of the HChG beam is similar to a Hermite-Gaussian 

distribution and with increasing b , the cosh function acts to concentrate the energy in 

the outer lobes of the beam. Moreover, previous works by Gupta et al. [78] and Kant et 

al. [85, 87] indicates the enhancement of self-focusing of laser beams due to the presence 

of plasmas density ramp profile. So, it is quite interested to apply plasmas density ramp 

profile in the medium in which cosh-Gaussian laser beam is propagating. 

In the present paper we investigate the self-focusing of a cosh-Gaussian laser 

beam in collisionless magneto-plasma under plasma density ramp. We derive the 

equations for beam width parameter for cosh-Gaussian beam profile propagating in the 

plasmas in the presence of magnetic field and plasma density ramp, by applying WKB 

and paraxial approximation [4, 90] and solve them numerically by applying initial 

conditions. We observe the enhancement in the self-focusing of the laser beam as the 
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beam width parameter decreases with the normalized distance for the change in various 

parameters like intensity of laser beam, relative plasma density, decentered parameter and 

magnetic field. The presence of plasma density ramp plays a vital role to affect the self-

focusing nature of propagating laser beams in the plasmas. To make the mathematical 

calculation simpler, only the transversal components of laser field are evaluated and 

longitudinal components are not taken in to consideration in the present paper. However, 

while dealing with nonlinear phenomenon, longitudinal components should be considered 

for an exact formulation [52].  

 

6.2 BASIC FORMULATION 

The field distribution of cosh-Gaussian laser beam propagating in the plasma along z-axis 

is of the following form: 
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    … (6.1) 

here 0E is the amplitude of cosh-Gaussian laser beam for the central position at 

,0 zr  )(zf is the dimensionless beam width parameters for extraordinary (+ sign) 

and ordinary (- sign) mode of propagation of magnetoplasma, 0r  is the spot size of the 

beam and b  is the decentered parameter of the beam. 

The dielectric constant for the non-linear medium due to ponderomotive non-linearity 

(collision-less magnetoplasma) is obtained by applying the approach as applied by Sodha 

et al. [4]: 

)(0


  EE         … (6.2) 

As relative displacements between ions and electrons of plasma set up a restoring electric 

field ,4 0ednE   which returns the electrons to equilibrium position and hence in this 

fashion, motion of each electron becomes simple harmonic with plasma frequency

mneP 0

22 4  . Here mden and,,0  are the electron density, electronic charge, 

displacement of charge layer from original position and rest mass of electron 

respectively. Figure 6.1 shows a layer of negative charge per unit area on one side of the 
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plasma slab with the stationary ions producing a layer of positive charge on the other side 

for (a) constant electron density and (b) varying electron density respectively. 

 
 

(a) (b) 

Figure 6.1: Generation of restoring electric field inside the plasma due to relative 

displacements between ions and electrons for (a) constant electron density and (b) 

varying electron density. 
 

 

In figure 6.1(a), each electron experiences electric force ,4 2denF o in the direction 

of its equilibrium position. The equation of motion of electron is of the form, 

  ,4 2
0 dendm   with index of refraction given by  221 P . If the value of '' is 

less than plasma frequency ,'' P then the refractive index is purely imaginary which 

gives rise to attenuation and if the value of '' is greater than ,'' P then the refractive 

index is real. We consider the plasma density ramp profile ),tan()( 00 dnn    as 

previously taken by various authors [78, 85, 87, 96], dRz /where   is the normalized 

propagation distance, 0d  is a dimensionless adjustable parameter and dR  is the 

diffraction length. Now, each electron experiences an electric force ,)(4 2denF  in 

the direction of its equilibrium position as depicted in figure 6.1(b). The equation of 

motion of electron, in this case, is of the form,  dendm 2)(4  . So, in the present 

study, application of plasma density ramp and external static magnetic field modify the 

index of refraction to, )()(1 2

0 cP   , where ,0 mceBc  is the electron 

cyclotron frequency,   2/12 )(4)( mneP   is the plasma frequency which varies 
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along z-axis. This Plasma frequency can also be written in terms of 0P  as

.)tan()tan(4)(
0

2
000

22 dmdne PP    

The non-linear part of dielectric constant is given by 
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here M is the 

mass of scatterer in the plasma,   is the frequency of incident laser, Bk  is the 

Boltzmann constant and 0T  is the equilibrium plasma temperature. '' 2

0A will be defined 

later on in equation (6.13). 

The general form of wave equation for exponentially varying field obtained from 

Maxwell’s equation by applying the approach as applied by Sodha et al. [4] and is given 

by  
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In components form this equation can be written as  
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In the present case, the variation of magnetic field is assumed to be very strong along     

z-direction of the co-ordinate system than x-y plane. This gives the condition 0. D


. 

or,  
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The equations (6.4a), (6.4b) & (6.4c) are coupled and one cannot define the propagation 

vectors which describe the independent propagation of zyx EEE and, . 

To investigate the independent modes of propagation, we multiply equation (6.4b) by ‘i’ 

and adding so obtained equation to equation (6.4a), we get,  
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Solving this equation and using xyyxyyxx   and , we get, 
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          … (6.6) 

Similarly for ordinary mode of propagation,
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The functions 1A and 2A , having propagation vectors k and k respectively, 

represent the extraordinary and ordinary modes of propagation of a magnetoplasma. The 

variation of equation (6.6) and (6.7) is very slow along x and y-direction as compared to 

z-direction. It indicates the weak coupling of these two equations. In order to study the 
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behaviour of one of the mode other mode can be considered to be zero. Let us assume

02 A , then equation (6.6) becomes, 
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Similarly for considering ,01 A equation (6.7) becomes, 
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The solution of equation (6.8a) is of the form 

  zktiAExpA  1        …(6.9) 
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Now, differentiating eq. (6.9) twice w. r. t. z, we get, 
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Substituting these values in equation (6.8a) and neglecting 022  zA , we get 
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The solution of this equation is of the form 
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Substituting this value in equation, we get 
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Separating real and imaginary parts, 

Real part is  
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The solution of equation (6.11) & (6.12) for initially cosh-Gaussian beam are of the 

following form, 
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       ,1)(/)(2)(where 00 zzzfzzfz    is the curvature of the wave front, (z)

is an arbitrary function of ‘z’ and .222 yxr   

Thus equation (6.11) becomes, 
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Equation (6.15) is the required equation for beam width parameter for extraordinary 

modes of propagation of magnetoplasma. Similarly equation for beam width parameter 

for ordinary mode can be obtained by replacing cc  by  and + sign by – sign in the 

subscript of .f  
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the beam 

width parameter comes out to be 
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The initial boundary conditions are 0)(and1)(,0   dzzdfzf  for extraordinary 

and ordinary modes. 

 

6.3 RESULTS AND DISCUSSION 

 In the present case, we assume the plasmas density ramp profile given by the 

relation )/tan()( 00 dnn   with initial electron density
320

0 105  cmn , angular 

frequency of incident laser μm44.49,rad/s10778.1 0
15  r . The variation of beam 
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width parameter f with normalized propagation distance    is depicted in figure 6.2 for 

the parameters taken as 77.0and0006.0,293,3.0 000   Pc Mmcr

9.0,5.0 0
2
0  dE . From figure 6.2(a), it is obvious that strong self-focusing occurs at 

normalized distance, 12.0  for cosh-Gaussian beam while for Gaussian beam, strong 

self-focusing occurs at 5.0 for extraordinary mode of propagation. Figure 6.2(b) 

depicts the diffraction tendency of Gaussian beam and converging tendency of cosh-

Gaussian beam with normalized propagation distance for ordinary mode of propagation; 

however extraordinary mode is more prominent toward self-focusing than ordinary mode. 

The propensity of cosh-Gaussian beam to converge earlier than Gaussian beam leads us 

to choose the cosh-Gaussian laser beam profile.
 

Figure 6.3 represents the variation of beam width parameter  f  with the 

normalized propagation distance    for different values of decentered parameter, 

12.2and2,1,0b . It is clear from Fig 6.3(a), that for extraordinary mode, beam width 

parameter decreases earlier with increase in the values of decentered parameter. For

12.2b , beam width parameter falls abruptly at normalized propagation distance, 

12.0  and hence self-focusing becomes stronger. In the absence of decentered 

parameter, strong self-focusing effect is observed at certain higher value of normalized 

distance, 3.0 . However, for other two values of decentered parameter, ,2and1b

strong self-focusing effect is reported at 13.0and23.0 . Gill et al. [14] have studied 

self-focusing and self-phase modulation as well as self-trapping of cosh-Gaussian beam 

at various values of decentered parameter (b) and reported sharper self-focusing for 2b  

at 45.1 and the value of beam width parameter is nearly 0.91 (approximately). 

However, for ,1b  strong self-focusing occurs at nearly 5.2 . In another work Gill et 

al. [84] reported strong self-focusing effect nearly at ,65.0  however, for ,2b they 

reported self-focusing which occur at ,07.0  but the value of beam width parameter at 

this normalized distance is very less and is nearly .995.0f  In the present work, strong 

converging of cosh-Gaussian beam occurs at 12.2for12.0  b due to the presence of 

plasma density ramp. In case of ordinary mode, Fig 6.3(b), the self-focusing of laser 
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beam occurs for 12.2and2,1,0b  and in the absence of decentered parameter self-

focusing effect occurs at longer normalized propagation distance. For 12.2b , self-

focusing effect is less strong in this case than in case of extraordinary mode. 

Figure 6.4 represents the variation of beam width parameter with the normalized 

propagation distance for different values of intensity parameter, 5.0and3.0,1.02
0 E  

corresponding to intensity values 217 /1023.1 cmW , 217 /1067.3 cmW and 

217 /1012.6 cmW respectively, for .12.2b  It is obvious from figure 6.4(a), that with 

the increase in the value of intensity parameter, beam width parameter decreases. For 

extraordinary mode, 5.02
0 E , the beam width parameter decreases up to its minimum 

value 09.0f at 12.0 . Hence self-focusing becomes very strong. This happens 

because at high intensities of incident laser beam, more electrons contribute to self-

focusing. Gill et al. [84] have studied relativistic self-focusing and self-phase modulation 

of cosh-Gaussian laser beam in magnetoplasma in the absence of plasma density ramp 

and reported strong self-focusing, for 5.0
2

0 A which occur nearly at 3.0 . In the 

present work, the self-focusing of beam is strong and occurs earlier due to the presence of 

plasma density ramp than the results reported by Gill et al. [84] in uniform density profile 

of the plasma. In case of ordinary mode, figure 6.4(b), self-focusing occurs for all taken 

values of intensity parameter and is strong and occurs earlier for higher value of intensity 

parameter. However, for extraordinary mode self-focusing occurs earlier than that of 

ordinary mode for same values of intensity parameter.  

Figure 6.5, represents the variation of beam width parameter with the normalized 

propagation distance for different values of magnetic field parameter  c viz. 0.1, 0.2 

and 0.3 for extraordinary mode, figure 6.5(a) and ordinary mode, figure 6.5(b) for 12.2b . 

It is found that with the increase in the value of magnetic field parameter,  ,c  beam 

width parameter decreases and occurs earlier and hence self-focusing becomes strong. 

However, in case of ordinary mode, beam width parameter decreases with the increase in 

the value of magnetic field parameter but conversing tendency of cosh-Gaussian beam is 

shifted towards longer normalized propagation distance. Gill et al.[84]
 
have studied 

relativistic self-focusing and self-phase modulation of cosh-Gaussian laser beam in 
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magnetoplasma in the absence of plasma density ramp and reported strong self-focusing, 

for ,06.0/ c  which occur nearly at 6.0 . In present case, strong self-focusing 

occurs at 12.0  for extraordinary mode at magnetic field parameter, c =0.3 for 

12.2b , in the presence of plasma density ramp. Hence present results in the presence 

of plasma density ramp may be more useful. 

Figure 6.6, represents the variation of beam width parameter with the normalized 

propagation distance for different values of relative plasma densities,  0P = 0.65, 0.70, 

0.75 and 0.77 at 12.2b  for extraordinary mode, figure 6.6(a) and ordinary mode, figure 

6.6(b). It is obvious that for higher value of relative plasma density, the beam width 

parameter reaches its minimum value 09.0f at 12.0 and hence self-focusing effect 

enhanced. However, for ordinary mode, self-focusing trends are similar to extraordinary 

mode but occurs at higher value of normalized propagation distance. Singh et al. [82] 

have studied the self-focusing of a laser beam in relativistic plasma and reported the 

strong self-focusing for relative plasma density, 7.0at7.00  P (approximately). 

In another work, Kant et al. [85], analyzed the ponderomotive self-focusing of a short 

pulse laser in an underdense plasma under density ramp and reported strong self-focusing 

for 5.0at08.022

0  P . In our case, the strong self-focusing of beam occurs earlier 

than the results reported by [14, 81] due to the presence of plasma density ramp and cosh-

Gaussian beam profile. 

 

6.4 CONCLUSION 

From the above results, we conclude that with the increase in the value of magnetic 

field for decentered parameter 12.2b , self-focusing of cosh-Gaussian laser beam 

becomes stronger for extraordinary mode while for ordinary mode, it becomes somewhat 

weaker and occurs at higher values of normalized propagation distance. Decentered 

parameter also plays a significant role to decide the early and strong focusing ability of 

cosh-Gaussian beam as for 0b , focusing of beam occurs at higher value of '' for 

extraordinary and ordinary modes. The self-focusing of the cosh-Gaussian laser beam is 

found to be very strong and occurs earlier at 12.0 . This happens due to the presence 
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of plasma density ramp and chosen beam profile. Thus plasma density ramp plays a very 

vital role to the self-focusing of the cosh-Gaussian laser beam. Also self-focusing 

becomes stronger with the increase in value of intensity and magnetic field parameter 

under the application of plasma density ramp. It is concluded that extraordinary mode is 

more prominent toward self-focusing rather than ordinary mode of propagation and 

density ramp enhances the self-focusing effect. Our investigation may be useful for laser 

induced fusion as well as for scribing type of applications in electronics. 
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Fig.6.2(a) 

 
 Fig. 6.2(b) 

 

Figure 6.2: Variation of beam width parameter  f  with normalized propagation 

distance    for cosh-Gaussian and Gaussian beam for (a) extraordinary and (b) 

ordinary mode of propagation. The various parameters are taken as 
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Fig. 6.3(a) 

 

 Fig. 6.3(b) 

 

Figure 6.3: Variation of beam width parameter  f with normalized propagation 

distance   for different values of decentered parameter for (a) extraordinary and 

(b) ordinary mode of propagation. The other parameters are taken as 
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Figure 6.4: Variation of beam width parameter  f  with normalized propagation 

distance   for different values of intensity parameter for (a) extraordinary and (b) 

ordinary mode of propagation. The other parameters are taken as 

.77.0and0006.0,293,3.0,9.0 0000   Pc Mmcrd  
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Figure 6.5: Variation of beam width parameter  f with normalized propagation 

distance   for different values of magnetic field parameter for (a) extraordinary 

and (b) ordinary mode of propagation. The other parameters are taken as
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Figure 6.6: Variation of beam width parameter (  f with normalized propagation 

distance (ξ) for different values of relative plasma density parameter for (a) 

extraordinary and (b) ordinary mode of propagation. The other parameters are 

taken as .0006.0and293,3.0,9.0,5.0 000
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CHAPTER 7 

 

OBSERVATION OF EARLY AND STRONG RELATIVISTIC SELF-FOCUSING 

OF COSH-GAUSSIAN LASER BEAM IN COLD QUANTUM PLASMA 

 

7.1 INTRODUCTION 

 In the year 1962, Askar'yan [1] discovered the self-focusing effect of light. Hora 

[2], Siegrist [3] etc. have the remarkable contribution in the field of relativistic self-

focusing of light. Thereafter, it attracts the attention of researcher and turn out to be most 

charming field of research. Lot of work has been done on self-focusing of laser beam in 

plasma[2-4], cluster[5, 6], liquid [7] etc. using various beam profiles like Gaussian beam 

[4], Hermite-Gaussian beam [15], cosh-Gaussian beam [14], Hermite-cosh-Gaussian 

beam [16-18, 95, 96, 98] etc. Self-focusing of light has many socially useful applications 

like x-ray lasers and the laser driven accelerators [8], the generation of inertial fusion 

energy driven by lasers [9-11] etc. which makes the life of human being quite easier. 

Short pulse laser having extremely high intensity of the order of 
22017 1010 cmW

enabled various high energy related experiments in the field of science and technology. 

Self-focusing phenomenon in plasma arises as the laser light propagates through 

the plasma and modifies the dielectric constant of the plasma. It may be relativistic or 

ponderomotive or thermal self-focusing in nature. Now a day, propagation of laser beam 

through cold plasma is widely studied by researcher because the quantum plasma systems 

have many useful applications. Shukla [101], Misra [102], Bergamin [103] and many 

other researchers has studied nonlinear interaction in quantum plasma. Quantum plasma 

has high density and low temperature and now it is possible to produce plasmas with 

densities near to solid state density. Moreover, quantum plasma systems become more 

significant because of their relevance to laser-solid interactions, quantum dots [104], 

astrophysical and cosmological environments [105, 106], nanotechnology [107-109] and 

fusion-science [110, 111]. In classical plasmas, Boltzmann-Maxwell statistical 

distribution is widely used while in the quantum plasmas, Fermi-Dirac statistical 

distribution is used and Wigner formalism is employed rather than classical Vlasov 

equation [112]. In classical regimes, the de-Broglie wavelength is very small and all 
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particles are considered as point-like particles, however; if the de-Broglie wavelength 

becomes of the order of the average interparticle distance, then quantum effect can be 

considered [113].  

In the present case, relativistic self-focusing effect in cold plasma is analyzed. The 

high intensity laser pulses provide sufficient energy to the constituents like electrons of 

the plasma which cause an electron oscillatory velocity comparable to the velocity of 

light. Thus the mass of electron, oscillating at relativistic velocities in laser field, 

increases by a factor given by   212211 cv  and give rise to non-linearity due to 

which the relativistic self-focusing effect occurs. Earlier, self-focusing in cold plasma has 

been studied by Jung et al. [79]. The self-focusing of Gaussian laser beam in relativistic 

cold quantum plasma has been studied by Patil et al. [114] and reported strong self-

focusing of the beam with the increase in the value of intensity parameter and relative 

density parameter due to the generation of quasi-stationary magnetic field. Habibi et al. 

[115] has studied stationary self-focusing of intense laser beam in cold quantum plasma 

using ramp density profile. 

In the present work, propagation of cosh-Gaussian beam in cold plasma has been 

studied. We have choose the cosh-Gaussian laser beam profile as cosh-Gaussian laser 

beam possesses more power than that of Gaussian laser beams having high intensity near 

the axis of propagation and hence, generates flat top beam profiles [99] which is useful 

for scribing type of applications in electronics where same intensity of laser beams for 

long time is required. Zhang et al. [100] has identified a group of virtual sources that 

generate a cosh-Gaussian wave. Previously, cosh-Gaussian profile has been studied by 

various authors viz. Gill et al. [14], Nanda et al. [116]
 
etc.

 
We develop the equations for 

beam width parameter for cosh-Gaussian beam and solve them numerically by applying 

Wentzel-Kramers-Brillouin (WKB) approximation and Paraxial approximation [4, 90] 

and observed the early enhancement of self-focusing of the laser beam with normalized 

propagation distance. This paper is planned as follows: we find the beam width parameter 

equation in section II, result is discussed in section III and a brief conclusion is given in 

section IV. 
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7.2 EVOLUTION OF BEAM WIDTH PARAMETER 

The field distribution of cosh-Gaussian laser beam propagating in the plasma along z-

axis is of the following form: 
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here E0 is the amplitude of cosh-Gaussian laser beam for the central position at 

)'(',0 zfzr   is the dimensionless beam width parameters, '' 0r  is the spot size of the 

beam and ''b is the decentered parameter of the beam. 

The propagating beam imparts an oscillatory velocity, ,0meEv   to the 

electrons. Here and, 0me  are the charge on electron, rest mass of electron and angular 

frequency of incident laser beam respectively, and   21
1  EE is the intensity 

dependent relativistic factor with 
222

0

2 cme   , here c is the speed of light in vacuum. 

The intensity dependent dielectric constant for the non-linear medium is obtained by 

applying the approach given by Sodha et al. [4]: 

)(0
 EE         … (7.2) 

where ,/1 22
00  P  is linear part of the dielectric constant with 0P  as plasma 

frequency. For cold plasma the dielectric constant is obtained by applying the approach 

as applied by Jung and Murakami [79], 
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with ,/4 42224  mhq   where h is Planck’s constant,   is the wavelength of 

incident laser beam. The classical relativistic dielectric constant can be obtained easily by 

ignoring the quantum effect by setting the value of q  as zero. 

For isotropic, non-conducting and non absorbing medium, Maxwell’s equations give the 

following wave equation 
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1)(ln)/1(For 22  K , we get, 
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The solution of Eq. (7.5) is of the form  ,)(exp),( kztizrAE  


  ./with
21

rel ck   

Substituting this value in Eq. (7.5) and neglecting
22 zA  , we get a complex differential 

equation with real and imaginary parts. The real and imaginary parts of this equation are 

separated by introducing an additional eikonal  ,),(exp),(),( 0 zrikSzrAzrA  here 

''and'' 0 SA are the real functions of ''and'' zr  respectively. 
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Imaginary part is 

0
2
0

2

2
2
0

2
0

2
0 
























r

A

r

S

r

S
A

r

S

r

A

z

A
      … 

(7.7) 

The solution of equation (7.6) & (7.7) are of the form, 
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with   dzdfzfz )(1)(   where  )'(' z  is an arbitrary function of '' z . 

Using these values in Eq. (7.6), we obtain the equation governing the evolution of beam 

width parameter,  
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Similarly Eq. (7.7) gives the boundary conditions, 1,0  f  and 0ddf . 

 

7.3 RESULTS AND DISCUSSION 

 In the present study numerical calculations has been done by taking the frequency, 

plasma electron density and spot size of incident laser beam similar as taken by Patil et. 

al.[114]
 
and are given by srad /10778.1 20 , 

319104  cmne and mr 200 

respectively. In order to study classical relativistic case, we assume that .0q  

 Figure 7.1 depicts the variation of beam width parameter (f) with the normalized 

propagation distance (ξ) for classical relativistic and cold quantum cases for decentered 

parameter 0b . From the figure, it is observed that in classical relativistic case the laser 

beam converges strongly at normalized propagation distance 2.0  while in case of 

cold quantum plasma, it converges strongly earlier at normalized propagation distance 

12.0 . Thus, the focusing length decreases greatly in case of cold quantum plasma 

than classical relativistic case and hence converging tendency of the laser beam, in the 

cold quantum case, shifted towards lower value of normalized propagation distance as 

compared to classical relativistic case. This happens because the quantum contribution 

adds additional self-focusing effect which is missing in classical relativistic case. The 

results observed in the present study are in agreement with the previously reported results 

by Patil et. al.[114]. 

Figure 7.2 depicts the variation of the beam width parameter (f) with the normalized 

propagation distance (ξ) at different values of relative density parameter for .0b  For 

relative density parameter, 6
0 101 P , the laser beam converses strongly at 

normalized propagation distance 12.0 . However; the conversing tendency of the laser 

beam shifted towards lower value of normalized propagation distance with the increase in 

the value of relative density parameter. At higher value of relative density parameter, 

6
0 102 P , earlier and strong self-focusing of laser beam is observed at 

normalized propagation distance 06.0 . Further, at certain higher value of relative 

density parameter, 6
0 103 P  strong self-focusing of laser beam is observed at 

normalized propagation distance 04.0 . It is obvious from the figure 2 that with the 
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increase in the value of relative density parameter   0P ,
 

self-focusing of cosh-

Gaussian beam enhanced and shifted towards lower values of normalized propagation 

distance. The basic physics behind this is that as the density of the medium enhances, the 

propagating laser beam in the medium creates more and more relativistic electrons and 

which results stronger self-focusing effect. Patil et al.[114] has reported strong self-

focusing of Gaussian beam at 05.0  for 
6103 P . We have reported strong 

self-focusing of the laser beam at 04.0  for 6
0 103 P . In the present study, we 

observe early and strong self-focusing of cosh-Gaussian laser beam for higher values of 

relative density parameters. 

Figure 7.3 depicts the variation of the beam width parameter (f) with the normalized 

propagation distance (ξ) at different values of decentered parameters. It is obvious from 

the plot that for decentered parameter 0.0b , cosh-Gaussian laser beam converges 

strongly at normalized propagation distance 12.0 . Similarly, for decentered parameter

9.0b , cosh-Gaussian laser beam converges strongly at normalized propagation 

distance 10.0 . The early and strong converging of laser beam is observed for 

decentered parameter 8.1b , for which cosh-Gaussian laser beam converges strongly at 

normalized propagation distance 05.0 . Thus it is quite obvious from the result 

obtained that the converging tendency of the cosh-Gaussian laser beam shifted towards 

lower values of normalized propagation distance for higher values of decentered 

parameter. 

  

7.4 CONCLUSION 

In the present investigation we have studied the relativistic self-focusing of cosh-

Gaussian laser beam in cold quantum plasma. We have derived the equation for beam 

width parameter using WKB approximation and paraxial ray approach. We report early 

enhancement of self-focusing of cosh-Gaussian laser beam in cold quantum plasma. The 

comparative study between self-focusing of cosh-Gaussian laser beam in cold quantum 

case and classical relativistic case has been made for decentered parameter 0b  and it is 

observed that as the beam propagates deeper inside the cold quantum plasma, the self-

focusing ability of the laser beam enhances and occurs earlier with normalized 
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propagation distance due to quantum contribution. Moreover, early and strong self-

focusing is observed with the increase in values of the relative density parameter. We 

conclude that spot size of the cosh-Gaussian laser beam contracts significantly as it 

propagates deeper inside the cold quantum plasma due to quantum contribution. Also 

early and strong self-focusing of the laser beam is observed for higher values of 

decentered parameter. The present study may be helpful to the researchers to select the 

value of relative density parameter as per their choice to obtained considerable 

improvement in the focusing quality which may be useful in inertial fusion energy driven 

by lasers, scribing type of applications in electronics etc. 
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Figure 7.1: Variation of beam width parameter (f) with normalized propagation 

distance (ξ) for cold quantum case and classical relativistic case. The various 

parameters are taken as
26

0
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Figure 7.2: Variation of beam width parameter (f) with normalized propagation 

distance (ξ) at different values of relative density parameter for .0b  The other 

parameters are taken as .20and1000517.0,1.0 0
22
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Figure 7.3: Variation of beam width parameter (f) with normalized propagation 

distance (ξ) at different values of decentered parameter. The other parameters are 

taken as .20and1000517.0,1.0 0
22

0 mrqE    

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

f



 b=0.0

 b=0.9

 b=1.8



109 

CHAPTER-8 

 

SELF-FOCUSING OF COSH-GAUSSIAN LASER BEAM IN A  

CLUSTERED GAS 

 

8.1 INTRODUCTION 

The nonlinear interactions of laser beams with plasmas and clusters have been 

studied intensively for over more than four decades. Interaction of high power laser 

beams with the atomic cluster is one of the interesting areas of research and attracts the 

attention of the scientists and researchers. It is well known now that an intense short pulse 

laser quickly converts atomic clusters into plasma balls which expand rapidly under 

hydrodynamic expansion or Coulomb explosion [34, 35]. Due to this expansion the 

electron density inside the expanding cluster falls rapidly and approaches thrice the 

critical density. Thus electron response to the laser enhances which give rise to various 

phenomenon of great interest like strong absorption of laser energy [37], self-focusing of 

laser beam [6, 98, 116], production of energetic neutrons [38], generation of harmonics 

and x-rays [22] etc. This happens because under the action of intense laser pulse, the 

effective permittivity of the medium changes abruptly and thus gives rise to nonlinearity. 

The Coulomb explosion of the cluster produces energetic ions. Zweiback et al. [34] have 

developed a model for Coulomb explosion. Liu and Tripathi [35] have also developed a 

collsionless model of Coulomb explosion of clusters by the Gaussian laser beams. The 

first experimental and theoretical study of self-focusing of laser beams in cluster has been 

given by Alexeev et al. [33] They interacts psfsWcmnm 4.180,105.3,800 216  
laser 

pulse of spot size of the order of ,10 m with the argon cluster of average radius Å300 . 

They have observed that after propagating a distance of mm3  through the gas jet, the 

beam radius decreases as pulse length varied from fsfs 350to80 and then rises mildly. 

Liu et al. [119] have studied the self-focusing of laser beam and nonlinear 

absorption in expanding cluster and employed collisionless model of Coulomb explosion 

for small size clusters and hydrodynamic model for large size of clusters. They have 

studied self-focusing of laser beam with and without absorption and evaluated 
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transmission energy lose during the propagation of laser beam into the gas containing 

clusters. The effect of self-focusing on laser third harmonic generation in clustered gas 

has been studied by Parashar [117] by employing a nm800 laser of spot size m10  in argon 

gas with Å300 clusters. Zharova et al. [118] studied analytically and numerically the 

self-focusing of laser radiation in plasma with ionized gaseous clusters and proposed an 

electro-dynamic model for cluster plasma in a field of ultra-short laser pulse. Further, it is 

shown that, for a laser power exceeding the self-focusing critical power, the wave-field 

self-compression occurs in a medium with dispersion of any type (normal, anomalous, or 

combined). In this work we have studied the self-focusing of cosh-Gaussian laser beam in 

clustered gas. In section II, the equation for beam width parameter has been developed by 

using WKB and paraxial approximation. In section III, results obtained have been 

discussed and in section IV, we have concluded the outcomings of the presented work.  

 

8.2 EVOLUTION OF BEAM WIDTH PARAMETER 

A cosh-Gaussian laser beam is propagating through a gas of atomic number 
iZ

comprising of 
cn clusters per unit volume. Let 

0cr is the initial radius of the cluster. This 

gas also contains free atoms outside the cluster and the density of these free atoms is
0n . 

The field distribution of the cosh-Gaussian beam is 
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where ),,(0 tzrE  is the initial amplitude of cosh-Gaussian laser beam, ),( tzf is the 

dimensionless beam width parameters, 0r  is the spot size of the laser beam and b  is the 

decentered parameter of the beam. The laser beam quickly ionises the atoms of the 

clusters and converting them into plasma balls. In the present study these balls are 

considered as spherical and have uniform electron density .en  Initially the electron 

density is ,0ee nn   and as the cluster expands this electron density falls down with the 

radial location of the cluster as well as time. The electrons of each cluster undergo 

oscillatory displacement x  governed by the equation of motion
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  meExtx pe  3222  , where me and are the electronic charge and rest mass of 

the electron,   2/124 menepe    is the plasma frequency inside the cluster. 

The effective dielectric constant for the non-linear medium is obtained by applying the 

approach as applied by Liu et al. [119]: 
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where   2/12
04 menppp   is the plasma frequency outside the cluster and the term

22  pp is the dielectric constant contributed by the free electron provided by the free 

atoms outside the cluster. 0pn  is the electron density provided by the free atoms outside 

the cluster and  is the frequency of the incident laser beam. Initially at ,0r the 

dielectric constant is maximum interior the cluster and as the radius of the cluster 

increases, the dielectric constant falls. The intensity of the laser beam affects the 

dielectric constant of the argon gas embedded with clusters and hence the free electrons 

outside the clusters vary with laser intensity. Thus the effective dielectric constant of the 

medium can be written as 
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The free electron reduces the value of  and hence contributes for the defocusing of the 

laser beam. This means that initially self-focusing is strong. Applying hydrodynamic 

model of cluster expansion and following Liu et al. [35], we obtained  
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And 
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where   is the collision frequency and is given by  
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here  is the pulse duration and im  is the mass of the ion. 

The general form of wave equation for exponentially varying field obtained from 

Maxwell’s equation is given by 
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In cylindrical co-ordinate system, we can write this equation as 
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For slowly converging or diverging cylindrically symmetric beam, the solution of 

equation (8.5b) is of the following form, 
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       … (8.6) 
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Differentiating equation (8.6) twice w. r. t. z''and''r , we get 
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Substituting these values in equation (8.5b), we get 
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To solve equation (8.7), we express 
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Here pA0 and S are the real functions of z'.'and''r  

Differentiating equation (8.8) twice, w. r. t. ,''r we get 

 
   

 
  

r

A
zrikSExp

r

zrS
ikzrikSExpA

r

zrA p
p













 0
0 ,

,
,

,
 



114 

 
  

 
  

 

  
 

  
2

0
2

0

2

0
2

2

2

02

2

,
,

,2

,
,

,
,

,

r

A
zrikSExp

r

A

r

zrS
zrikSikExp

r

zrS
zrikSExpAk

r

zrS
zrikSExpikA

r

zrA

pp

pp






































 

Now differentiating equation (8.8) w. r. t. '' z , 
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Thus equation (8.7) becomes, 
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Comparing real and imaginary parts of equation (8.9), we get  

Real part equation is 
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Imaginary part equation is 
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Multiplying by pA0  
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For initially cosh-Gaussian beam, the solution of equation (8.10) and (8.11) are of the 

form 
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And 
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  ./)(/1)(,with dzdfzfz   where )'(' z is an arbitrary function of '' z . 

Substituting these values in equation (8.10), we get the equation for beam width 

parameter given as,  
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Similarly Eq. (8.11) gives the boundary conditions,   .0and1,0   ddff  

 

8.3 RESULTS AND DISCUSSION 

The numerical calculations has been done by assuming the following values of 

various parameters taken as   tmmZT peii 0
21
 , 10iZ , 

2105  , 

    5.034
2

0
3
0 crrn cc      130

2
0  crmeA and 60  pe . Figure 8.1 represents 

the variation of beam width parameter with normalized propagation distance at different 

values of decentered parameter in clusters with normalized time 60T  for argon 

clusters with 10iZ . From figure 8.1, it is clear that for higher values of decentered 

parameter the focusing ability of the laser beam is enhanced. For ,0b the cosh-Gaussian 

laser beam propagating through a gas embedded with clusters diverges at normalized 

time ,60T corresponds to fst 400 . Thus cosh-Gaussian laser beam defocuses in the 

absence of decentered parameter. For ,1b the cosh-Gaussian laser beam propagating 

through a chosen medium converges at normalized time 60T  and for ,2b  there is 

strong and early self-focusing of cosh-Gaussian laser beam propagating through a gas 

embedded with clusters at normalized time 60T . The result obtained indicates that 

early and strong self-focusing of laser beam occurs for 2b at normalized time 60T .  

Figure 8.2 represents the variation of beam width parameter with normalized 

propagation distance at decentered parameter ,1b  for normalized time 

60and45,30T corresponding to fsfsfst 400and300,200  respectively in clusters 

with other parameters taken as in Figure 8.1. It is clear from the plot that early in time the 

cosh-Gaussian beam converges feebly and later in time it converges strongly earlier with 

normalized propagation distance. For ,400 fst   the beam width parameter ( f ) decreases 

due to dominance of self-focusing term over the diffraction term in Eq. (14). Previously, 

Liu and Parashar [119] and Parashar [117] have studied the variation of beam width 

parameter with normalized distance for 60and20,0T . The result presented in this 

paper agrees the results reported earlier by Liu and Parashar [119] and Parashar [117]. 
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 Figure 8.3 depicts the variation of beam width parameter with normalized 

propagation distance for different values of relative density parameter (  0pe ) for 

decentered parameter 1b at 60T . The other parameters are taken to be same as that 

in Figure 8.1. It is obvious from Figure 8.3 that for relative density parameter 

0.50 pe , cosh-Gaussian beam converges at normalized propagation distance 

24.0 , but in this case there is only about 10% reduction in the spot size of the 

incident laser beam. However, for 0.60 pe , cosh-Gaussian beam converges strongly 

at normalized propagation distance 12.1  and in this case there is about 51% 

reduction in the spot size of the incident laser beam is seen. Thus with the increase in 

value of relative density parameter spot size shrinks and self-focusing becomes strong. 

 

8.4 CONCLUSION 

The cosh-Gaussian laser beam propagating through a gas embedded with clusters 

converts the clusters into plasma balls. These plasma balls expand rapidly under 

Coulomb explosion and hydrodynamic expansion and due to this expansion various 

processes occur like self-focusing of laser beam, production of energetic neutrons etc. We 

have studied the self-focusing effect by applying Wentzel-Kramers-Brillouin (WKB) 

approximation and Paraxial approximation. It is observed that cosh-Gaussian laser beam 

propagating into the selected medium converges strongly for ,2b at normalized time 

60T . However, in the absence of decentered parameter, laser beam diverges. Further, 

it is observed that for early in time diffraction term dominates over self-focusing at 

decentered parameter 1b . However, for ,400 fst  strong self- focusing of cosh-

Gaussian laser beam has been observed due to dominance of self-focusing effect over 

diffraction. The present study might be very useful in the applications like the generation 

of inertial fusion energy driven by lasers, laser driven accelerators etc.  
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Figure 8.1: Variation of beam width parameter with normalized propagation 

distance at different values of decentered parameter. The other parameters are 

taken as 60  pe , 
2105  , 10iZ , ,60T     5.034

2
0

3
0 crrn cc  , 

    130
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Figure 8.2: Variation of beam width parameter with normalized propagation 

distance at different values of normalized timeT . The other parameters are 

taken as
2105  , 10iZ ,     5.034
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Figure 8.3: Variation of beam width parameter with normalized propagation 

distance at different values of relative density parameter (  0pe ). The other 

parameters are taken as T=60,
2105  , 10iZ ,     5.034

2
0

3
0 crrn cc 

and     130
2

0  crmeA . 

 

 

 

 

 

 

 

 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 
0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

f 

 

   pe0 /  =5.0 

   pe0 /  =5.5 

   pe0 /  =6.0 

 For b=1 



121 

CHAPTER-9 
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