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Abstract

This thesis entitled “A Study of Bicomplex Space with a Topological View

Point” is being submitted in partial fulfillment for the award of degree of Doctor of

Philosophy in Mathematics to Lovely Professional University, Phagwara, Punjab.

The work done is divided into five chapters.

Chapter 1 provided a brief literature of several aspects of bicomplex algebra, nets

and filters, which will be required to understand and apprehend the work done in

the remaining parts of the thesis.

In Chapter 2, three types of order relations on the bicomplex space are defined

and studied them. Further, three order topologies on the bicomplex space namely,

C0(o)-topology, C1(o)-topology and Id(o)-topology are defined by using the order

relations defined and compared. Also, metric on the bicomplex space is defined.

In Chapter 3, deals with the study of bicomplex nets called as C2-nets. Due to

the multi-dimensionality of the bicomplex space C2, there arise different types

of tendencies called confluences. The bicomplex space, C2 equipped with C0(o)-

topology as well as Id(o)-topology exhibits interesting and challenging behaviour

of C2-nets. Different types of confluences have been characterized in terms of

convergence of the component nets.

Chapter 4, initiates the study of clustering of C2-nets. Clustering of C2-nets on

different types of zones in C2 have been defined. Clustering in Id(o)-topology and

Id(p)-topology have been compared. Relation between clustering of C2-nets and

the clustering of its component nets have been defined. Finally, investigations

have been made connecting clustering of a C2-nets and confluence of its subnets

and studied the compactness of some subsets of the bicomplex space in the Id(o)-

topology. Also given a result regarding homeomorphism in Id(o)-topology and

C1(o)-topology on C2 are given. Further, the compatibility of the C2-nets with

the filters on the bicomplex space is tested and discussed the confluence of the

filters on C2 with respect to the different types of order topologies as defined

earlier. The relations between the C2-nets and their corresponding filters on C2

and vice-versa are also established.

In Chapter 5, the compatibility of the algebraic and topological structures have

been discussed. For this purpose, the C2-sequence space and discussed their alge-

braic properties using the Orlicz functions and paranorm are considered. Further,
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Abstract

the properties of the sets of C2-nets with respect to the Id(o)-topology are also

discussed. As the last objective was on the orderability problem, therefore, the or-

derability of some of the topological structures was tested using the convex subsets

of them.

At last, we gave the conclusion of Thesis and further scope of study.
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Chapter 1

Introduction

In this chapter, a brief literature of several aspects of Bicomplex Analysis, nets

and filters, paranorm and the orderability problem which is required to understand

work done in the remaining part of thesis has been presented.

Section 1.1 contains definitions, and results related to the algebraic structure of the

bicomplex numbers. This section is divided into four subsections explaining the

historical background, algebraic structure of the bicomplex space, different types

of the conjugations of the bicomplex numbers and their properties are discussed.

Algebraic structures of the complex and bicomplex spaces are compared and the

differences between them are given in details. For details of the theory, we refer

to the monograph by Price [52] and an article by Srivastava [71] and Rochon [58].

Section 1.2 is given for the literature review of the research work done on the

algebraic and the topological structures on the bicomplex space by the researchers.

Section 1.3 contains the definitions and results related to the different types of

order relations on a non-empty set and the order topology.

In Section 1.4, we discuss about the basics of the orderability problem. The

conditions for a subspace to be orderable are discussed in the section

Section 1.5 contains the theory of the nets structure on a non - empty set. Several

results of the theory of nets and sequences are compared in the general setup.

1



Chapter 1: Introduction

In Section 1.6, the basic concepts of the filters is discussed. The structures of the

and nets and filters on a set are compared.

In Section 1.7, the concept of Orlicz functions and the paranorm structures on the

set of sequence spaces have been discussed.

In Section 1.8, some applications of the bicomplex numbers are given in physics

like signal systems, dynamics of spiral waves are discussed in details. Some of the

work done by Srivsatava and Naveen [70] on the structures of sequence spaces are

also explained in brief.
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Chapter 1: Introduction

1.1 Introduction to Bicomplex Numbers

1.1.1 Historical Background

A complex number may be viewed as a pair of real numbers. With the impor-

tance and applicability of the complex analysis, naturally attempts were made to

generalize the theory in different direction.

Euler (1707-1783) was the mathematician who introduced the symbol i with prop-

erty i2 = −1 and accordingly as a root of the equation x2 + 1 = 0. He also called

the symbol i imaginary. Also a number of the form a + ib where a, b are real

numbers is called a complex number.

Complex Analysis, is undoubtedly the most developed and most applicable branch

of Pure Mathematics. But, during the period of its infancy, the progress of this

subject was very slow. Karl Friedrich Gauss (1777-1855) had worked on this new

concept and had actually obtained very good results. Augustin-Louis Cauchy

(1789-1857) presented the theory of complex numbers and functions of complex

variable in such an organized and lucid manner that he is regarded as the effective

founder of complex analysis. In 1843, William Rowan Hamilton (1805-1865), an

Irish mathematician and astronomer-better known for his work in vector analysis

and in optics-developed an algebra of real numbers which is more or less is the

present day algebra of complex numbers. It was beginning of theory of algebra

different from the algebra of real numbers. Ten years later, Hamilton conceived

the term Quaternion.

Extensions of basic complex numbers to higher dimensions have a renewed interest

in mathematics, physics, and engineering because of fruitful applications. Quater-

nions is one of the most popular sets of tetra-numbers, however, they form a non-

commutative algebra. A couple of interesting commutative algebras of tetranum-

bers are defined by bicomplex and bihyperbolic numbers. Bicomplex numbers

are a natural extension of complex numbers, whereas bihyperbolic numbers are

a natural extension of hyperbolic numbers to four dimensions. A quaternion is a

3



Chapter 1: Introduction

hypercomplex number that can be presented as linear combination

X = x0 + ix1 + jx2 + kx3,

where xp ∈ C0; 0 ≤ x ≤ 3 and i, j, k are units, such that i2 = j2 = k2 = −1.

Also, i.j = −ji = k, jk = −kj = i and ki = −ik = j. Given two quaternions

X = x0 + ix1 + jx2 + kx3 and Y = y0 + iy1 + jy2 + ky3 of this kind we may add

them by applying component-wise addition. Formally,

X + Y = (x0 + y0) + i(x1 + y1) + j(x2 + y2) + k(x3 + y3).

Now, definition of multiplication of the quaternions is given in the following table:

× 1 i j k

1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

Table 1.1: Multiplication of Quaternions

This multiplication yields the following expression for non-commutative product:

X × Y = (x0 + ix1 + jx2 + kx3)× (y0 + iy1 + jy2 + ky3)

= (x0y0 − x1y1 − x2y2 − x3y3) + i(x0y1 + x1y0 + x2y3 − x3y2)

+ j(x0y2 + x2y0 + x3y1 − x1y3) + k(x0y3 + x3y0 + x1y2 − x2y1).

There are very cumbersome equations mean, besides other things, that multipli-

cation of quaternions loses commutativity. Thus, q1q2 6= q2q1. However, it remains

associative, i.e.,

(q1q2)q3 = q1(q2q3),

where q1, q2 and q3 are quaternions.

4



Chapter 1: Introduction

Somehow, the researchers of his time simply could not accept the notion that there

could be “fourth dimension”, especially if it was claimed to be time. They clung

tenaciously to be a primitive combination of component by component calculation

and extensive use of geometry. By late 1800’s, their calculations were accompanied

by elaborated geometrical figure that look alike the 2× 4 framing of a house.

Hamilton suggested that in the quaternion one should distinguish the scalar part

x0 from the vector part Vx = ix1 + jx2 +kx3. In this case as it is easy to check the

product of two quaternion vectors Vx = ix1 + jx2 + kx3 and Vy = iy1 + jy2 + ky3,

is a common quaternion, viz.

Vx · Vy = (−x1y1 − x2y2 − x3y3) + [i(x2y3 − x3y2) + j(x3y1 − x1y3) + k(x1y2 − x2y1)],

whose scalar part has a symmetric bilinear form and the vector part looks like

a conversions vector multiplication. As a matter of fact the terms “scalar prod-

uct” and “vector product” appeared right from here and for the first time were

introduced by Hamilton (Pavlov [49]). Gibbs in America and Heaviside in Britain

reformulated quaternion analysis so that all expressions would be constrained to

three dimensions or less. In particular, they defined the cross product of two,

3-dimensional vectors as

i× i = −1, j × j = −1, k × k = −1,

i× j = k, j × k = i, k × i = j,

i× k = −j, j × i = −k, k × j = −i,

so that result would come out as another 3-dimensional vector. The quaternion

product of two, 3-dimensional vectors a and b is

ab = a · b + a× b

which has a scalar part and 3-D vector part. Therefore, Gibbs and Heaviside

avoided quaternion product notation and used only dot (modified), and cross com-

ponent in what they cleverly renamed as vector analysis. Scientists and engineers

5



Chapter 1: Introduction

accepted this subterfuge because it met their prejudice about 3-D being invalidate

and it did not have the word “quaternion” mentioned anywhere. Nevertheless,

vector analysis is form of quaternion analysis (cf. Davenport [16]).

Every beginner of algebra has learnt about quaternion as a counter example of

division ring which is not a field, simply because multiplication of quaternion is

not commutative. This was a very big drawback in the theory and probably the

biggest hurdle in the development of the subject.

1.1.2 Certain Basics of Bicomplex Numbers

The bicomplex numbers were introduced by Segre [62] in 1892. Here some of

the basic results of the theory of bicomplex numbers are reproduced. The set of

bicomplex numbers is denoted by C2 and the sets of real and complex numbers

are denoted as C0 and C1, respectively.

A bicomplex number is defined as

ξ = x1 + i1x2 + i2x3 + i1i2x4

= z1 + i2z2 (1.1.1)

where xp ∈ C0; 1 ≤ p ≤ 4 and z1, z2 ∈ C1. Also, i1i2 = i2i1 and i21 = i22 = −1.

Study of the bicomplex numbers had been started with the work of the Italian

school of Segre [62], Spampinato [64, 65] and Scorza [66]. Their interest arose

from the fact that such numbers offer a commutative alternative to the skew

field of quaternion (both sets are real four dimensional spaces), and that in many

ways they generalize complex numbers more closely and more accurately than

quaternions do.

Corrado Segre read the work of Hamilton [24] on quaternions. Segre used some

of the Hamilton’s notation to develop his system of bicomplex numbers: Let i1

and i2 be square root of −1 that commute with each other. Then, presuming

associativity of multiplication, the product i1i2 must have +1 for its square. The

6



Chapter 1: Introduction

algebra constructed on the basis {1, i1, i2, i1i2} is then nearly the same as James’

tessarines [29].

The University of Kansas has contributed to the development of bicomplex anal-

ysis. In 1953, a Ph.D. student Riley had his thesis “Contributions to the theory of

functions of a bicomplex variable” published in the Tohoku Mathematical Journal

(2nd Ser., 5:132-165). Then, in 1991, emeritus professor Price [52] published his

book on bicomplex numbers, multicomplex numbers, and their function theory.

Another book developing bicomplex numbers and their applications is by Catoni,

Bocaletti, Cannata, Nichelatti and Zampetti (2008).

Definition 1.1.1. A bicomplex number ξ = x1 + i1x2 + i2x3 + i1i2x4 is said to

be hyperbolic number if x2 = 0 and x3 = 0. The set of all hyperbolic numbers is

denoted by H and the plane of all hyperbolic numbers is called as the H-Plane.

Algebra of Bicomplex Numbers

Let ξ = x1 + i1x2 + i2x3 + i1i2x4 and η = y1 + i1y2 + i2y3 + i1i2y4 be any two

bicomplex numbers. Define

1. Addition

ξ + η = (x1 + i1x2 + i2x3 + i1i2x4) + (y1 + i1y2 + i2y3 + i1i2y4)

= (x1 + y1) + i1(x2 + y2) + i2(x3 + y3) + i1i2(x4 + y4)

ξ + η = (z1 + i2z2) + (w1 + i2w2)

= (z1 + w1) + i2(z2 + w2).

2. Scalar Multiplication: Let α ∈ C0 be an arbitrary scalar, then

α ξ = α (x1 + i1x2 + i2x3 + i1i2x4)

= αx1 + i1αx2 + i2αx3 + i1i2αx4

α ξ = α (z1 + i2z2)

= α z1 + i2α z2.

7



Chapter 1: Introduction

3. Multiplication

ξ × η = (x1 + i1x2 + i2x3 + i1i2x4)× (y1 + i1y2 + i2y3 + i1i2y4)

= (x1y1 − x2y2 − x3y3 + x4y4) + i1(x1y2 + x2y1 − x3y4 + x4y3)

+ i2(x1y3 + x3y1 − x2y4 − x4y2) + i1i2(x1y4 + x2y3 + x3y2 + x4y1)

ξ × η = (z1 + i2z2)× (w1 + i2w2)

= (z1w1 − z2w2) + i2(z1w2 + z2w1).

With these binary compositions, the bicomplex space C2 becomes a commutative

algebra with identity .

1.1.3 Conjugations and Moduli of Bicomplex Numbers

We shall use the notation C(i1) and C(i2) for the following sets:

C(i1) = {x1 + i1x2 : x1, x2 ∈ C0},

C(i2) = {x1 + i2x2 : x1, x2 ∈ C0}.

Every bicomplex number can be represented in six different form as given below:

ξ = (x1 + i1x2) + i2(x3 + i1x4) = z1 + i2z2

= (x1 + i2x3) + i1(x2 + i2x4) = w1 + i1w2

= (x1 + i1i2x4) + i2(x3 − i1i2x2) = µ1 + i2µ2

= (x1 + i1i2x4) + i1(x2 − i1i2x3) = κ1 + i1κ2

= (x1 + i1x2) + i1i2(x4 − i1x3) = α1 + i1i2α2

= (x1 + i2x3) + i1i2(x4 − i2x2) = ν1 + i1i2ν2

where z1, z2, α1, α2 ∈ C(i1); w1, w2, ν1, ν2 ∈ C(i2) and µ1, µ2, κ1, κ2 ∈ H.

As the set of bicomplex numbers, C2 contains two imaginary units whose square

is −1 and one hyperbolic unit whose square is 1, we can define three types of
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conjugations for the bicomplex numbers as analogous to the usual conjugation of

the complex numbers:

Definition 1.1.2. The i1-conjugation of a bicomplex number ξ = z1 + i2z2 is

denoted by ξ? and is defined as ξ? = z1 + i2 z2, ∀ z1, z2 ∈ C(i1), z1 and z2 being

complex conjugate of z1 and z2, respectively.

Definition 1.1.3. The i2-conjugation of a bicomplex number ξ = z1 + i2z2 is

denoted by ξ̃ and is defined as ξ̃ = z1 − i2 z2, ∀ z1, z2 ∈ C(i1).

Definition 1.1.4. The j-conjugation of a bicomplex number ξ = z1 + i2z2 is

denoted by ξ′ and is defined as ξ′ = z1 − i2 z2, ∀ z1, z2 ∈ C(i1).

Here, some relations between the different types of conjugations of the bicomplex

numbers are given as follows:

(i) If ξ ∈ C(i1), i.e., ξ = z1 and z2 = 0, then ξ = z1 = x1 + i1x2 and

ξ? = z1 = x1 − i1x2 = ξ′ and ξ̃ = z1 = ξ.

Here we observe that the i1-conjugation and j-conjugation, restricted to

C(i1), coincide with the usual conjugation of the complex numbers in C1.

(ii) If ξ = w1 ∈ C(i2), i.e. w1 = x1+i2x2, then ξ? = w1 = ξ and ξ′ = x1 − i2x2 = ξ̃.

In this case, both the j-conjugation and i2-conjugation, restricted to C(i2),

coincide with the conjugation of the complex numbers in C1.

(iii) If ξ = x1 + i1i2x2 ∈ H, then ξ? = x1 − i1i2x2 = ξ̃ and ξ′ = ξ.

Thus, the i1-conjugation and the i2-conjugation restricted to H coincide with

the intrinsic conjugation in H. Further, every hyperbolic number is fixed to

the j-conjugation.

Properties of i1-conjugation

Some of the properties of i1 -conjugation, which are obtained by Rochon and

Shapiro [58], are listed as follows:

(i) (ξ + η)? = ξ? + η? and (ξ − η)? = ξ? − η?

(ii) (α ξ)? = α ξ?

9
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(iii) (ξ?)? = ξ

(iv) (ξ η)? = ξ?η?

(v) (ξ−1)? = (ξ?)−1, if ξ−1 exists

(vi)

(
ξ

η

)?
=
ξ?

η?
, if η−1 exists

(vii) ξ? + ξ ∈ C(i2)

(viii) ξ̃ + ξ ∈ C(i1)

(ix) ξ′ + ξ ∈ H.

They obtained analogous properties of i2 -conjugation and j -conjugation also.

Some particular bicomplex modulus can be defined with the help of each conjugate

of a bicomplex number. We explain them as follows:

|ξ|2i1 = ξ · ξ̃ = z2
1 + z2

2 ∈ C(i1)

|ξ|2i2 = ξ · ξ? = (|z1|2 − |z2|2) + 2Re(z1z2)i2 ∈ C(i2)

|ξ|2j = ξ · ξ? = (|z1|2 + |z2|2)− 2Im(z1z2)j ∈ H

Further, |ξ · η|2k = |ξ|2k · |η|2k, for all k = i1, i2, j.

1.1.4 Differences between Algebraic Structures of C1 and C2

Algebraic structure of C2 differs from that of C1 in many aspects. Few of such

differences, which are concerned with our work, are mentioned below. For details,

we refer to Price [52] and Srivastava [72].

(a) Non-invertible Elements in C2

An element which has an inverse is said to be non-singular (regular) and an element

which does not have inverse is said to be singular element. There is unique element

in C0 which does not have a multiplicative inverse, viz. the zero. Again there is

only one element in C1 which does not have an inverse, viz., the element 0 + i10.

However there are many singular elements in C2.

An element ξ = z1+i2z2 is singular if and only if |z2
1 +z2

2 | = 0 and it is non-singular

if and only if |z2
1 + z2

2 | 6= 0. Hence, there are uncountable singular elements in C2.

10
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Theorem 1.1.1 ([52]). A bicomplex number ξ = x1+i1x2+i2x3+i1i2x4 is singular

if and only if either (x1 = −x4 ; x2 = x3) or (x1 = x4 ; x2 = −x3).

Denote the set of all singular elements in C0, C1 and C2 by O0, O1 and O2,

respectively. Since C0 is isomorphic to a subset of C1 and C1 is isomorphic to

subset of C2, it is customary to say simply that C0 is a subset of C1 and C1

is a subset of C2. Then, 0 is the common element of O0, O1 and O2. Thus,

O0 = O1 ⊆ O2.

Due to the existence of singular elements, the division by a bicomplex number and

the cancellation laws are restricted to non-singular bicomplex numbers.

(b) Hyperbolic Singular Elements

The set H∩O2 is the collection of all singular numbers which are hyperbolic num-

bers. These elements are called as hyperbolic singular elements and are denoted

by Oh. Therefore, Oh = H ∩O2.

(c) Non-trivial Idempotent Elements in C2

Besides the additive and multiplicative identities 0 and 1 there are exactly two

non-trivial idempotent elements denoted by e1 and e2 defined as

e1 =
1 + i1i2

2
and e2 =

1− i1i2
2

.

Note that e1 + e2 = 0 and e1e2 = e2e1 = 0. Obviously, en1 = e1 and en2 = e2, where

n is a positive integer.

The last property says that e1 and e2 are zero divisors. Sometimes e1 and e2 called

as orthogonal idempotents because their product is zero. Moreover, a bicomplex

number ξ = z1 + i2z2 can be uniquely expressed as a complex combination of e1

and e2 as follows:

ξ = z1 + i2z2

= (z1 − i1z2)e1 + (z1 + i1z2)e2

= 1ξe1 + 2ξe2, (1.1.2)

11
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where 1ξ = z1− i1z2 and 2ξ = z1 + i1z2 (for details cf. [72]). The coefficients 1ξ and

2ξ are called idempotent components and Equation (1.1.2) is known as idempotent

representation of ξ.

Definition 1.1.5. The auxiliary spaces A1 (or first nil-plane) and A2 (or second

nil-plane) are defined as follows:

A1 = {z1 − i1z2 : z1, z2 ∈ C1} =
{

1ξ : ξ ∈ C2

}
,

A2 = {z1 + i1z2 : z1, z2 ∈ C1} =
{

2ξ : ξ ∈ C2

}
.

Both A1 and A2 are homeomorphic to C1. With the complex coefficients, e1 and

e2 form a basis for C2. Thus, any bicomplex number ξ ∈ C2 can be represented as

ξ = (z1 − i1z2)e1 + (z1 + i1z2)e2 = 1ξe1 + 2ξe2 (1.1.3)

where 1ξ = z1 − i1z2 ∈ A1 and 2ξ = z1 + i1z2 ∈ A1 and to each pair of points

(1ξ, 2ξ) ∈ A1 ×e A2, there corresponds a unique point in C2. The elements 1ξ and

2ξ, respectively called as first and second nil-factors (also known as idempotent

components). The representation ξ = 1ξe1 + 2ξe2 is called as the idempotent

representation of ξ.

Theorem 1.1.2 ([72]). Let ξ and η be two arbitrary bicomplex numbers, p and q

are real scalars and m and n are integers. Then

(i) p.ξm + q.ηn = [ p. (1ξ)m + q. (1η)n]e1 + [ p. (2ξ)m + q. (2η)n]e2

(ii) ξm × ηn = [(1ξ)m × (1η)n] e1 + [(2ξ)m × (2η)n] e2.

Proof. As e1 and e2 are two non-trivial idempotent elements of C2 and en1 = e1

and en2 = e2. So, ξm = (1ξ)me1 + (2ξ)me2 and ηn = (1η)n e1 + (2η)n e2.

Then,

(i) p ξm + q ηn = p [(1ξ)me1 + (2ξ)me2] + q [(1η)n e1 + (2η)n e2]

= [p(1ξ)me1 + p(2ξ)me2] + [q(1η)ne1 + q(2η)ne2]

= [p(1ξ)m + q(1η)n]e1 + [p(2ξ)m + q(2η)n]e2

12
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(ii) ξm × ηn = [(1ξ)me1 + (2ξ)me2]× [(1η)ne1 + (2η)ne2]

= [(1ξ)m × (1η)n]e1 + [(2ξ)m × (2η)n]e1

Hence proved.

Remark 1.1.1 ([72]). In particular, we have

(i) 1(ξ ± η) = 1ξ ± 1η and 2(ξ ± η) = 2ξ ± 2η

⇒ ξ ± η = (1ξ ± 1η)e1 + (2ξ ± 2η)e2

(ii) 1(ξ × η) = 1ξ × 1η and 2(ξ × η) = 2ξ × 2η

⇒ ξ × η = (1ξ × 1η)e1 + (2ξ × 2η)e2

(iii) 1ξm = (1ξ)m and 2ξm = (2ξ)m

⇒ ξm = (1ξ)me1 + (2ξ)me2

(iv) If η is a non-singular bicomplex number, then

1[ξ/ η] = 1ξ/ 1η and 2[ξ/ η] = 2ξ/ 2η

⇒ ξ/ η = (1ξ/ 1η)e1 + (2ξ/ 2η)e2.

Note that η is non-singular element if and only if both 1η and 2η are non–zero.

i.e., ξ/ η exists if and only if 1ξ/ 1η and 2ξ/ 2η exists.

(d) Principal Ideals

The principal ideals in C2 are determined by the idempotent elements e1 and e2

are denoted by I1 and I2, respectively and are defined as

I1 = {(z1 − i1z2)e1 : z1, z2 ∈ C1} =
{

1ξe1 : 1ξ ∈ A1

}
= {ξe1 : ξ ∈ C2}

I2 = {(z1 + i1z2)e2 : z1, z2 ∈ C1} ,=
{

2ξe2 : 2ξ ∈ A2

}
= {ξe2 : ξ ∈ C2} .

Both I1 and I2 are uniquely determined but their elements admits different repre-

sentations. Also, note that I1⊕ I2 = C2, we denote the set of all singular elements

in C2 by O2.
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(e) Non-trivial Zero Divisors in C2

The set of all complex numbers C1 forms a field but the set of all bicomplex

numbers C2 does not form a field because C2 contains non-trivial divisors of zero.

The existence of non-trivial zero divisors in the C2 is evident by the fact that

e1e2 = 0.

In fact, two bicomplex numbers are divisors of zero if and only if one of them is

complex multiple of e1 and other is the complex multiple of e2. In other words, two

elements of C2 are non-trivial divisors of zero if and only if one of them belongs

to I1 − {0} and other element belongs to I2 − {0}. An element ξ ∈ C2 will be a

singular element if and only if ξ ∈ I1 ∪ I2 and it will be non-singular iff ξ /∈ I1∪ I2.

Hence, we can say that O2 = I1 ∪ I2.

The norm in C2 is defined as follows:

‖ξ‖ =
√
x2

1 + x2
2 + x2

3 + x2
4

=
√
|z1|2 + |z2|2 (1.1.4)

=

√
|1ξ|2 + |2ξ|2

2

It can be verified that the functional ||.|| defined as above satisfies the four required

postulates, viz.

(i) ‖ξ‖ ≥ 0, ∀ ξ ∈ C2,

(ii) ‖ξ‖ = 0 ⇐⇒ ξ = 0,

(iii) ‖α ξ‖ = |α| ‖ξ‖, ∀ξ ∈ C2, α ∈ C0,

(iv) ‖ξ + η‖ ≤ ‖ξ‖+ ‖η‖, ∀ ξ, η ∈ C2.

Equipped with this norm, C2 is a Banach space. Also, C2 is a commutative algebra.

Further, the norm of the product of two bicomplex numbers and the product of

their norms are connected by means of the following inequality:

‖ξ . η‖ ≤
√

2 ‖ξ‖ . ‖η‖ (1.1.5)
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Definition 1.1.6 ([72]). An inequality (and inclusion relation) is said to be best

possible if the slightest reduction of any parameter of the greater value (superset)

disturbs the inequality (inclusion).

The inequality given in (1.1.5) is the best possible. For this reason, we call C2 as

modified complex Banach algebra [52].

Remark 1.1.2. From the above inequality we obtain the following identities:

‖ep · ep‖ = ‖ep‖ ≤
√

2

2
=
√

2 ‖ep‖ ‖ep‖, p = 1, 2. (1.1.6)

Corollary 1.1.1. If ξ ∈ C2, z ∈ C(i1) or C(i2). Then

‖z ξ‖ = |z| ‖ξ‖.

Also, note that if ξ is in a nil-plane (A1 or A2), then ‖ξ‖ = (1/
√

2) |kξ|, k = 1, 2.

Thus, the distance in a nil-plane, measured by the absolute value of the complex

number kξ, (k = 1, 2), differs from the distance in the bicomplex space by a

constant value of 1/
√

2. If ξ is a complex number, then ‖ξ‖ = |kξ|.

1.2 Literature Review

In this section, a brief literature of the analysis of the set of bicomplex numbers

done by the researchers from different aspects are given.

Alpay et al. [1] and Luna-Elizarraras et al. [42] provide some elementary functions,

viz., polynomials, exponentials and trigonometric functions of bicomplex numbers

in algebra. They also defined the inverse functions for these function which are

not possible in quaternions. They have shown that any two holomorphic functions

admit derivative in the form of the bicomplex numbers. The analysis of bicomplex

holomorphic functions were developed with bicomplex scalars and to compare with

the quaternionic scalars which were studied by Teichmuller [75].
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The theory of bicomplex numbers is relatively very much young and in particular

in the field of bicomplex functional analysis. The concept of bicomplex functional

analysis was given by Gervais et. al. [21, 22]. Finite-dimensional modules on

bicomplex space was studied by them and proved some results on this concept

by using square matrices with bicomplex entries, linear operators, self-adjoint

operators and orthogonal bases, based on the spectral decomposition theorem.

In recent study of the bicomplex space, people are working in many areas of

analysis and applications, viz., complex dynamics, functional analysis, polynomials

with bicomplex variables, bicomplex sequence spaces, fractals, matrices, bicomplex

Riemann zeta function, bicomplex hyperfunctions, bicomplex gamma and beta

functions, etc.

In 2006, Goyal et. al. [23] introduced the bicomplex version of the gamma and

beta functions. They studied the properties of the gamma and beta functions for

the bicomplex variable. They studied the Legendre duplication formula, Gauss

multiplication theorem and Binomial theorem along with the holomorphicity of

these functions. In the same year, Javtokas [30] have also studied the Hurwitz

zeta functions satisfying the complexified Cauchy-Riemann equations.

In 2007, Srivastava and Srivastava [70] have started the work on the sequences

spaces in the bicomplex numbers. Nigam [47] investigated a particular class de-

noted as B′ of bicomplex holomorphic functions. The class of B′ is the subclass

of the class defined by Srivastava and Srivastava [70]. This class of functions

have been shown as an Gelfand algebra and also studied the invertible and quasi-

invertible elements. Kumar and Srivastava [38] have studied the poles of Riemann

zeta function. They investigate the properties of the poles of the Riemann zeta

function in the bicomplex variable using its idempotent components.

In 2011, Kumar et. al. [36] had generalize the fundamental theorems of func-

tional analysis in the framework of bicomplex modules. Colombo et. al. [12, 13]

had studied the singularities of the holomorphic functions of the bicomplex space.

Junliang and Pingping [32] introduced a series of bicomplex representation meth-

ods of quaternion division algebra. They gave a new multiplication method of
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quaternion matrices. Under this new concept, many quaternion algebra problems

can be solved using complex algebra. Kumar and Srivastava [40] investigated the

entireness of the Dirichlet series and obtained the conditions for the representation

of the Dirichlet series by the entire function of bicomplex variable.

In 2012, Shapiro et. al. [42] have discussed about the elementary functions of the

bicomplex variables and their properties. They have studied the function f from

C2 to C2 and the complexified Cauchy-Riemann system of equations. Vajiac and

Vajiac [76] have extended their previous work on the hyperfunction theory. They

worked upon space of analytic functions of one or several bicomplex variables to

multicomplex scene of Cn.

The study of multicomplex dynamics was started by Pelletier and Rochon [50] in

2009. They have developed the hypercomplex 3D fractals generated from mul-

ticomplex dynamics. They gave the generalization of the Mandelbrot and Julia

sets for the multicomplex numbers, particulary for bicomplex numbers. Further

they studied the multicomplex version of the so-called Fatou-Julia theorem. In

2013, Wang and Song [77] had studied the generalized Mandlebrot-Julia sets (M-J

sets) for the bicomplex space. They studied the connectedness of the general-

ized Mandlebrot-Julia sets, the properties of the generalized Tetrabrot, and the

connection between the generalized Mandlebrot sets and its corresponding gener-

alized Julia sets for bicomplex numbers. Campos and Kravchenko [6] introduced

the bicomplex analogue for the pseudo-analytic (or generalized analytic) functions.

They developed the theory of bicomplex pseudoanalytic formal powers. Further.

they provide the fundamental solutions for the Darboux Schrodinger operators.

In 2014, Struppa et. al. [73] had interpreted the different aspects of derivative

and holomorphy of the bicomplex function. Charak and Sharma [10] studied the

Zalcman lemma for the bicomplex numbers. They focused on the dynamics of

the bicomplex meromorphic functions. They explained the theory to see whether

the results from one variable theory: normal families of meromorphic functions on

plane-hold for the families of bicomplex meromorphic functions. They obtained
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the bicomplex analogue of Zalcman principle and proved the Lappan’s five-point

theorem in bicomplex variable.

Kumar [39] investigated a class T of entire functions which are represented by the

Dirichlet series on the modified Banach algebra structure on the bicomplex space.

He has proved that T is neither a division algebra nor a B∗-algebra and found

that invertible and quasi-invertible elements of class T . Colombo et. al. [14] have

introduced the functional calculus for bicomplex linear bounded operators. It is

based on the decomposition of bicomplex numbers and of the linear operators by

using the idempotent elements.

In 2015, Kumar and Singh [41] have studied the hyperbolic norm (D-valued) norm

on bicomplex module (BC-module). They have studied the homomorphism in the

ring BC and hence the maximal ideals in BC by using the fundamental theorem

of ring homomorphism. They have also studied the spectrum of an element of bi-

complex C∗-algebra. They have proved that the spectrum of a bicomplex bounded

linear operator T on a bicomplex Banach module X is unbounded.

In 2016, Kumar et. al. [37] have studied bicomplex version of weighted Hardy

spaces. They have generalized the results which holds for the classical weighted

Hardy spaces. Kim and Shon [35] used the different forms of conjugations of the

bicomplex numbers to study the properties of them. Saini and Kumar [61] have

studied some of the fundamental theorem on the functional analysis with bicom-

plex and hyperbolic scalars. They verified some properties of linear functionals

on topological hyperbolic and topological bicomplex modules. The hyperbolic and

bicomplex analogues of the uniform boundedness principle, the open mapping the-

orem, the closed graph theorem and the Hahn Banach separation theorem are also

discussed in detail. In 2017, Choi et.al. [11] elaborated the fixed point theorems

with the weakly compatible mappings in the bicomplex valued metric spaces.
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1.3 Order Relations and Order Topology

Definition 1.3.1 (Partially Ordered Set). Let P be a non–empty set. A partial

order relation ≤ in P is a relation which satisfies the following properties:

(i) x ≤ x, ∀ ∈ P (Reflexive)

(ii) x ≤ y and y ≤ x ⇒ x = y (Anti-symmetry)

(iii) x ≤ y and y ≤ z ⇒ x ≤ z. (Transitivity)

The non-empty set P with partial order relation is called as a partially order set,

(or poset).

Example 1.3.1. The set N of all positive integers is partially ordered with respect

to ordering ( < ) defined as “m < n, if m divides n”.

Example 1.3.2. Set inclusion is a partial ordering in any class of sets.

Definition 1.3.2. Two elements x and y of a poset are called comparable if one

of them is less than or equal to the other with respect to the partial ordering. In

other words, x and y are comparable if either x ≤ y or y ≤ x.

Definition 1.3.3. A partially ordered set P is said to be totally ordered set if

any two elements of P are comparable. Total ordered set is also known as linearly

ordered set or a chain.

Example 1.3.3. Consider the relation ≤ on the real line defined as “x ≤ y if x is

less than or equal to y”. It is a total order, known as usual ordering on R.

Remark 1.3.1. The ordering in Example 1.3.1 is in fact total ordering, where as

the ordering in Example 1.3.2 is not a total ordering. If every chain in a poset has

an upper bound then the poset contains a maximal element. Also, the restriction

on the total order relation is a total order relation.

Definition 1.3.4 (Dictionary Order Relation). Assume that A and B are two

sets with order relations ≤A and ≤B respectively. Define an order relation � on

A×B as: a1 × b1 � a2 × b2.
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if either (i) a1 <A a2

or (ii) a1 =A a2 and b1 ≤B b2.

It is called dictionary order relation or lexicographical order relation on A×B.

Definition 1.3.5 (The Order Topology). Let X be a set with suitably defined

ordering. Suppose that X has more than one element. Let B be the collection of

all sets of the following types:

(i) All open intervals (a, b) in X.

(ii) All intervals of type [a0, b), where a0 is the smallest element (if exists) of X.

(iii) All intervals of type (a, b0], where b0 is the largest element (if exists) of X.

The collection B is a basis for the order topology on X.

Example 1.3.4. The order topology on N is the discrete topology, for which

{1} = {n ∈ N : n < 2} = (−∞, 2) and for n > 1 {n} = (n− 1, n+ 1).

Example 1.3.5. Let X1 denote the topological space C0 with discrete topology

and let X2 be C0 with usual topology. Then the product topology on X1 ×X2 is

same as the lexicographic order topology on C2
0.

Definition 1.3.6. A space X is first countable at x ∈ X if there is a countable

base at x. A space is first countable if it is first countable at each point of X.

Theorem 1.3.1 ([45]). Metric spaces are first countable.

Definition 1.3.7 (Hausdorff Space). A non empty space X is said to be Haus-

dorff space if for any two elements x, y ∈ X, there exists two disjoint open subsets

U and V such that x ∈ U and y ∈ V .

Theorem 1.3.2. A first countable space in which each sequence converges to at

most one point is Hausdorff.

Theorem 1.3.3. Let {xn} be a sequence in a first countable space. Then

(i) x is a limit point of the sequence.

(ii) there exists a subsequence converging to x.

Theorem 1.3.4 ([45]). Every order topology is Hausdorff.
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Remark 1.3.2. A1 and A2 are Hausdorff space with respect to the order topology

generated by lexicographic order relation ≺.

The topological study of the bicomplex space was initiated by Srivastava [72] and

developed three topologies on the bicomplex space with the help of certain known

topologies on the component spaces. He has also compared these topologies. here

we are discussing the work done by Srivastava in detail.

Definition 1.3.8 (Topological Space). Let X be a non-empty set. A class τ of

subsets of X is called a topology on X if it satisfies the following conditions:

(i) X, ∅ ∈ τ .

(ii) The union of every class of sets in τ is a set in τ .

(iii) The intersection of every finite class of sets in τ is a set in τ .

A topological space consists of two objects: a non-empty set X and a topology τ

on X.

Definition 1.3.9. The idempotent parts of a set S of bicomplex numbers are

denoted as 1S and 2S, and are defined as

1S = { 1ξ : ξ ∈ C2} and 2S = { 2ξ : ξ ∈ C2}.

The idempotent parts are nothing but the auxiliary complex spaces A1 and A2,

(for details cf. [52]) which are defined by in the Equation (1.1.3).

Definition 1.3.10. Cartesian idempotent set D (say) determined by the sets S

and T of complex numbers is the set of bicomplex numbers denoted by S ×e T

and is defined as

S ×e T = {ξ = w1e1 + w2e2 : w1 ∈ A1, w2 ∈ A2}.

For convenience, we can denoted the element w1e1+w2e2 by w1×ew2, the Cartesian

product of the elements of the complex sets of the Cartesian idempotent set.
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Definition 1.3.11. Cartesian complex set of bicomplex numbers, determined by

the sets S and T of complex numbers is denoted by S × T and is defined as

S × T = {ξ = z1 + i2z2 : z1 ∈ S, z2 ∈ T}.

In particular, C1 × C1 = C2.

Definition 1.3.12. An open circular disc in C1 with centre at z and the radius r

is denoted by S(z ; r) and is defined as

S(z ; r) = {w : w ∈ C1, | z − w | < r}.

Definition 1.3.13 (Norm Topology on C2). The topology generated by the

norm defined in the Equation (1.1.4) is called as norm topology and is denoted by

τ1 (cf. [72]).

A basis element of the norm topology is the set B1 of all open balls, where an open

ball in C2 with centre at ξ and radius r is denoted by B(ξ; r) and is defined as

B(ξ; r) = {η : η ∈ C2, || ξ − η || < r}. (1.3.1)

Definition 1.3.14 ([72]). An open complex discus (or C-discus) with centre at

ξ = z1 + i2z2 and associated radii r1, r2 is denoted as C(ξ ; r1, r2) and is defined

as

C(ξ; r1, r2) = {η = w1 + i2w2 : η ∈ C2 ; | z1 − w1 | < r1 , | z2 − w2 | < r2}

It may be noted C(ξ ; r1, r2) is the Cartesian complex set by the open circular

discs S(z1; r1) and S(z2; r2). The family of C–discuses is denoted by B2.

Definition 1.3.15 (Complex Topology on C2). The topology generated by B2

on C2 is called as complex topology and is denoted by τ2 (cf. [72]).

Definition 1.3.16. An open idempotent discus (or D-discus) with centre at ξ

and associated radii r1 and r2 is denoted by D(ξ; r1, r2) and is denoted as the
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Cartesian idempotent set determined by open circular discs S(1ξ; r1) in A1 and

S(2ξ; r2) in A2. Thus,

D(ξ; r1, r2) = {η : η ∈ C2, | 1ξ − 1η | < r1, | 2ξ − 2η | < r2}

Denote the family of all D–discuses in C2 by B3.

Definition 1.3.17 (Idempotent Topology on C2). The topology generated by

B3 on C2 is called as idempotent topology and is denoted by τ2 (cf. [72]).

Definition 1.3.18. A proper inclusion relation is said to be best possible if the

slightest reduction of any parameter of the superset disturb the inclusion.

Remark 1.3.3. For some statements and theorems, we shall denote root square

mean and arithmetic mean of non-negative numbers r1 and r2 by r? and r′′, wher-

ever it will be required. Further, the case 0 < r1 ≤ r2 will be discussed (the result

can be proved for other possible cases).

Theorem 1.3.5 ([72]). For given ξ ∈ C2

(i) B(ξ ; r) ⊂ C(ξ ; r, r),

(ii) C(ξ; r1, r2) ⊂ B(ξ;
√

2 r?).

The inclusion relations are best possible.

Remark 1.3.4. Note that if η is a point in the discus C(ξ; r1, r2) (or is the ball

B(ξ; r)) one can always find a C–discus C(ξ; s1, s2) (or ball B(η; s)) centered at

η and sufficiently small size so as to contain original discus (or original ball).

Therefore, from the Theorem 1.3.5, we can conclude that for every point η of a

C–discus, there corresponds a ball containing η and contained in the C–discus and

vice-versa. In other words, For every point belong to the basis element B of τ1

such that B is containing that point and contained in C2. This implies that

Theorem 1.3.6 ([72]). Norm topology and complex topology on C2 are equivalent.

Theorem 1.3.7 ([72]). For every ξ ∈ C2

(i) D(ξ; r1, r2) ⊂ C(ξ; r?, r?),

(ii) C(ξ; r1, r2) ⊂ D(ξ; 2r?, 2r?).
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These inclusions are proper.

Theorem 1.3.8 ([72]). For every ξ ∈ C2

(i) D(ξ; r1, r2) ⊂ C(ξ; r′′, r′′),

(ii) C(ξ; r1, r2) ⊂ D(ξ; 2r′′, 2r′′).

These inclusions are proper.

Remark 1.3.5. The inclusion relations obtained above are important at their

places. However, as r′′ < r?, so it can be directly obtained that

C(ξ; r′′, r′′) ⊂ C(ξ; r?, r?) and D(ξ; r′′, r′′) ⊂ D(ξ; r?, r?). (1.3.2)

Further, note that these two inclusions are best possible.

Theorem 1.3.9 ([72]). The inclusions

(i) D(ξ; r1, r2) ⊂ C(ξ; r′′, r′′),

(ii) C(ξ; r1, r2) ⊂ D(ξ; 2r′′, 2r′′)

are best possible.

Theorem 1.3.10 ([72]). The complex topology and idempotent topology are same.

Remark 1.3.6 ([52]). In the bicomplex space we know that

B

(
ξ;

r√
2

)
⊂ D(ξ; r1, r2) ⊂ B(ξ; r?). (1.3.3)

In particular, if r1 = r2, the inclusion relation (1.3.3) becomes

B

(
ξ;

r√
2

)
⊂ D(ξ; r, r) ⊂ B(ξ; r). (1.3.4)

Remark 1.3.7. The first part of the inclusion (1.3.3), B(ξ; r1/
√

2) ⊂ D(ξ; r1, r2)

or equivalently B(ξ; r1) ⊂ D(ξ;
√

2 r1,
√

2 r2), 0 < r1 ≤ r2 is not the best possible

inclusion of a given ball in a D-discus, but if r1 − r2 = 2k. Then

B(ξ; r1) ⊂ D(ξ;
√

2 r1,
√

2(r2 − k)) ⊂ D(ξ;
√

2 r1,
√

2 r2) (1.3.5)

is a better inclusion.
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Note that, η ∈ B(ξ; r1)

⇒ || ξ − η || < r1

⇒ | 1ξ − 1η |2 + | 2ξ − 2η |2 < 2 r2
1 (from the Equation (1.1.4))

Therefore, B(ξ; r1) ⊂ D(ξ;
√

2 r1,
√

2 r1) is much better result. In fact, this is a

best possible inclusion. Again as

D(ξ; r1, r2) ⊂ C(ξ; r′′, r′′) ⊂ B(ξ;
√

2 r′′)

Note that these inclusions are best possible, yet D(ξ; r1, r2) ⊂ B(ξ;
√

2 r′′) is not

best possible inclusion.

1.4 Orderability of Topological Spaces

Order is a concept as old as the idea of numbers, and much of early mathematics

was devoted to construct and study various subsets of the real line.

The class of linearly ordered topological spaces, (i.e. spaces equipped with a

topology generated by a linear order) contains many important spaces, like the

set of real numbers, the set of rational numbers, the set of bicomplex numbers,

the ordinals, etc. The orderability of topological spaces is a very important topic,

as defined on whether a topological space admits a linear order which generates a

topology equal to the topology of the space. A general solution for this problem

was first given by Dalen and Wattel [15] in 1973.

For a subset A of a set X, it is possible that the relative topology τ(<)|A on A is

not coinciding with the open interval topology τ(< |A) induced on A by restricted

ordering. Cech [9] had introduced the concept of generalized ordered spaces or

GO-spaces. He also introduced the study of subspaces of LOTS.

In the survey paper by Purisch [53], one can find the problems on topological

spaces which deal, with orderability problem i.e., orderable spaces and the prob-

lems dealing with the sub-orderability problem, i.e., the GO-spaces. The concept

25



Chapter 1: Introduction

of orderability theorem for compact connected spaces in [27] explains that any

compact connected space is orderable iff it has exactly two no-cut points.

The metrization theory for the linearly ordered topological spaces is simple by

some means: Lutzer [43] have shown that a linearly ordered topological space is

metrizable if and only if it has a Gδ-diagonal. This theorem does not hold for

GO-spaces, as the examples of the Sorhenfrey and Micheal lines.

1.5 Nets and Subnets

In metric spaces, properties such as continuity, closure, and compactness can be

stated completely in terms of sequences. This breaks down in general topological

spaces, where sequences can’t even tell whether a set is closed. Sequences suffice to

handle all convergence problems in space that satisfies first axiom of countability,

in particular all metric spaces.

Certain spaces (e.g. Hilbert spaces in the weak topology) require the more gen-

eral notions of nets, and some complicated convergence arguments (refinement of

sequences by Cantor’s diagonal principle) are effectively trivialized by the use of

universal nets. Nets are also called as generalized sequences in the literature.

Modern general topology, and in particular its manifestations in the so-called

weak topologies of certain function spaces, taught us that limits of sequences are

no longer a strong enough tool for analysis. In classical analysis we learn that a set

is closed if and only if it contains the limits of all convergent sequences in it, but

there are many important and useful topological spaces for which that statement

is not true.

If, however, sequences are replaced by “generalized sequences” (the streamlined

word is “nets”), and correspondingly, ordinary limits of sequences are replaced by

Moore -Smith limits of nets, the classical proofs work again, often with no changes

except terminological ones, and they yield results just as useful as the classical
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ones. (Example: a set is closed if and only if it contains the Moore-Smith limits

of all convergent nets in it.).

The Moore of the seminal 1922 Moore-Smith paper is the great Moore [46] (one

of the teachers of Moore) and the Smith is the otherwise largely forgotten H. L.

Smith. The theory of nets was further developed by Birkhoff [4]. Hence nets at

first were called Moore-Smith sequences. The word “net” was first used by Kelley

[33] in 1950. This was followed by Cartan’s discovery of filters in 1937 [7], which,

while they look nothing similar to sequences, can also be used to describe those

concepts.

Definition 1.5.1 (Directed Set). A directed set is a pair (D, ≥) where D is a

non - empty set and ≥ a binary relation on D satisfying (for details cf. [3]):

(i) m ≥ n and n ≥ p ⇒ m ≥ p, ∀ m,n, p ∈ D,

(ii) n ≥ n, ∀ n ∈ D,

(iii) ∀ m, n ∈ D, ∃ p ∈ D such that p ≥ m and p ≥ n.

In other words, we can say that A directed set is a set D with a pre-order relation

(i.e. a reflexive and transitive binary relation) such that pair of every two elements

have an upper bound.

Remark 1.5.1. The composition of finite number of directed sets is a directed set.

Remark 1.5.2. We don’t require that a pair of elements has a least upper bound,

we just require that some upper bound exists.

Example 1.5.1. Every linearly ordered set (such as the N, the set of natural

numbers with the usual order) is a directed set.

Example 1.5.2. Any collection of sets that is closed under binary intersections

is a directed set when ordered by reverse inclusion, i.e., X ≤ Y iff Y ⊆ X.

In particular, given any point of a topological space, the collection of all neigh-

bourhoods of x ordered by reverse inclusion is a directed set, which we write as

N (x).
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Example 1.5.3. If (D, E) and (E, ∝) are directed sets, then so is their product

D × E ordered by 4 as (d1, c1) 4 (d2, c2) if and only if d1 E d2 in D and c1 ∝ c2

in E.

Definition 1.5.2 (Net). A net in a set X is a function S : D −→ X, where D is

a directed set.

Theorem 1.5.1. A net in a Hausdorff topological space has at most one limit.

Definition 1.5.3 (Subnet). The subnet of a net S : D → X is the composition

S · φ : M → D is an increasing cofinal function from some directed set M to D.

That is

(i) φ(a1) ≤D φ(a2) when a1 ≤M a2

(ii) for each k ∈ D, there is some p ∈M such that φ(p) ≤D k.

Theorem 1.5.2. Let (X, T ) be a topological space and suppose that M ⊆ X. Then

M is closed if and only if limx∈A xα ∈M for all the convergent nets {xα} ⊆M .

Theorem 1.5.3. A topological space X is compact if and only if every net in X

has a convergent subnet.

1.6 Filters and Ultrafilters

In order to study the convergence in general topological spaces, the concept of

sequences (i.e., the functions defined on the natural numbers N), are too restrictive.

There are two generalizations, one is the concept of a filter introduced by Cartan

[7, 8] and the other is the concept of net introduced by Moore and Smith [46]. In

this section, we have given some introduction to the concept of filters.

Filters have applications beyond just generalizing the notion of convergent se-

quences: in completions and compactifications, in Boolean algebra and in math-

ematical logic, where ultrafilters are arguably the single most important (and

certainly the most elegant) single technical tool.
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Definition 1.6.1 (Filter). A filter F on a set X is the subset of the power set

P (X) satisfying the conditions:

(i) ∅ /∈ F and ∅ 6= F ,

(ii) If A ∈ F and B ∈ F , then A ∩B ∈ F ,

(iii) If A ∈ F and A ⊆ B, then B ∈ F .

Remark 1.6.1. If F1 and F2 are filters on a set X, we say that F2 is finer than

F1 if F1 ⊆ F2.

The set of all filters on a set X with inclusion relation is a partially ordered set.

Definition 1.6.2. For any non-empty subset Y of the set X, the collection FY =

{A |Y ⊂ A} of all subsets containing Y is a filter on X. This type of filter is called

as principal filter .

Example 1.6.1. Every filter on a finite set is principal filter.

Definition 1.6.3 (Filter Basis). A basis B for a filter on a set X is a subset of

P (X), satisfying the conditions:

(i) ∅ /∈ B and ∅ 6= B

(ii) If A ∈ B and B ∈ B, there is a set C ∈ B such that C ⊆ A ∩B.

Definition 1.6.4 (Ultrafilter). A filter F on a set X is an ultrafilter if for every

S ⊂ X, either S ∈ F or X \ S ∈ F . Further, A filter F on X is maximal if there

is no filter F ′ on X such that F ⊂ F ′ and F 6= F ′.

Remark 1.6.2. Let x a point in X. Consider a collection as follows:

Ux = {U \X : x ∈ U}. (1.6.1)

Clearly, Ux is an ultrafilter in X. This is called as constant ultrafilter at x. If

(X, T ) is a topological space, then Ux is convergent to x.

Remark 1.6.3. The ultrafilters are not always convergent.
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Example 1.6.2. Let N be the set of non-negative integers. Suppose that N is

equipped with discrete topology (in which every subset is open). Consider the

collection F as follows:

F = {F : F ⊂ N, N \ F is finite} (1.6.2)

Obviously, F is a filter.

Let U be any ultrafilter such that U ⊃ F . Since N is equipped with discrete

topology. Therefore, the only convergent ultrafilters are the constant ultrafilters

on N.

Now as N \ {n} ∈ F , n ∈ N (from Equation (1.6.2))

⇒ N \ {n} ∈ U

⇒ {n} /∈ U .

Therefore, U cannot be a constant ultrafilter.

Definition 1.6.5 (Fréchet Filter). For any infinite set X, the family of all

cofinite subsets of X is a filter on the finite set X and is called as Fréchet Filter .

Definition 1.6.6. A filter F on a non-empty set is said to be free if

⋂
A∈F

A = ∅.

Lemma 1.6.1. Every filter is contained in an ultrafilter.

Theorem 1.6.1. For a filter F of X, the following are equivalent:

(i) For every subset Y on X, F contains exactly one of Y or X \ Y .

(ii) F is an ultrafilter.

Remark 1.6.4. Condition (ii), of Theorem 1.6.1 says that a filter basis with the

relation ⊇ is a directed set.

Lemma 1.6.2. If f : X → Y is a function and F is a filter on X, then A ∈ f(F)

if and only if f−1(A) ∈ F
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Definition 1.6.7 (Accumulation Point of a Filter). A point x is said to be

accumulation point of filter F if every neighborhood of x meets every set in F .

The set of all accumulation points of the filter F is denoted by F

Definition 1.6.8 (Limit Point). A point x is said to be limit point of filter F if

every neighborhood of x is member of F .

Theorem 1.6.2. In a Hausdorff space, every convergent filter has exactly one

limit point.

Theorem 1.6.3. A function f : X → Y is continuous if and only if for every

filter F and every limit point x ∈ X, f(x) is a limit point of f(F).

Theorem 1.6.4. A filter F on a product space Y =
∏

i∈I Xi converges to x, if

and only if each filter Fi = πi(F) converges to xi = πi(x).

1.7 Paranorm and Orlicz Function

The concept of paranormed sequences was studied in detail by Maddox [44]. The

notion of difference sequence spaces was introduced by Kizmaz [34] as follows:

X∆ = {x = (xn) : (∆xn) ∈ X}, (1.7.1)

where X = c, c0, `
∞ and ∆xn = xn − xn+1.

The Orlicz function M is defined as M : [0,∞) → [0,∞). It is continuous, non-

decreasing and M(0) = 0,M(x) > 0 for x > 0. Also, for λ ∈ (0, 1) it satisfies the

condition

M(λx+ (1− λ)y) ≤ λM(x) + (1− λ)M(y), (1.7.2)

and if the condition of convexity of Orlicz functionM is replaced by the condition

M(x+ y) ≤M(x) +M(y), then the function M is called modulus function.
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The Orlicz function M satisfies the ∆2-condition for all values of x ≥ 0 if there

exists a constant P > 0 such that

M(2x) ≤ PM(x). (1.7.3)

Definition 1.7.1. A sequence space S is said to be solid if {αnξn} ∈ S, for some

{ξn} ∈ S and for all {αn} sequences of complex numbers such that |αn| ≤ 1,

∀n ∈ N. The sequence space S is said to be symmetric if every rearrangement of

every sequence in S is in S.

Suppose that h = sup{pn} and k = max{1, 2h−1}, then

‖ξn + ηn‖pn ≤ k(‖ξn‖pn + ‖ηn‖pn)

Remark 1.7.1. Let M be an Orlicz function and µ ∈ (0, 1), then M(µx) ≤

µM(x), ∀x > 0.

1.8 Applications of Theory of Bicomplex Numbers

In this section, we have given some brief review of the applications of the bicomplex

numbers.

1.8.1 Several Complex Variables

The best beneficiary of the development of the theory of bicomplex numbers and

functions of a bicomplex variable is the theory of functions of several complex

variables. The theory of functions of a complex variable is, in many ways, ad-

vantageous over the theory of functions of several real variables. In the similar

fashion, bicomplex variable techniques have come to the rescue of many problems

in the theory of functions of several complex variables.
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(a) Complex Signal Systems

These systems have been found useful in manipulating analytic and complex sig-

nals. In 1998, Toyoshima [74] and Hashimoto [26] employed bicomplex numbers

and proposed an all - pass filter structure with bicomplex coefficients. With the

help of this structure a power complementary filter pair with complex coefficients

can be realized with a single bicomplex filter.

(b) Sequences Spaces and Series of Bicomplex Numbers

The study of certain sequences and series of complex numbers has played an im-

portant role in the development of complex analysis. In analogy, the study of

bicomplex certain sequence and series was initiated.

In 2002, Srivastava and Srivastava [70] have defined a class B of bicomplex sequences as

B = {f : f = {ξn} , ξn ∈ C2, sup n! ||ξn|| <∞} . (1.8.1)

They have furnished B with a modified Banach algebraic structure. They have

succeeded in defining an involution on B equipped with which, B becomes (modi-

fied) Banach ?-algebra, which is not a B?-algebra. The class P of bicomplex series,

defined as

P =
{
f : f = {ξn} , ξn ∈ C2,

∑
n! ||ξn|| <∞

}
. (1.8.2)

By defining suitable binary compositions and norms, P has been provided a two

norm space structure, which is γ-complete. The closed unit ball of P shown to be

a Saks space.
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In 2002, Srivastava & Srivastava [70] have studied the class of entire bicomplex

sequences defined as

B =

{
f : f = {ξk} , ξk = (ak − i1bk)e1 + (ak + i1bk)e2; sup kk|ak − i1bk| <∞,

sup kk|ak + i1bk| <∞
}

(1.8.3)

After providing a suitable functional analytic structure to B, invertible elements

and zero divisors in B have been characterized. Topological zero divisors and

Quasi invertible elements in B have also been investigated.

1.8.2 Signal Processing

Blind source separation is a signal-processing problem concerned with the recovery

of a set of unobservable source signals or random variables from the only obser-

vation. In 2001, the Signal Processing and Communication group at the Depart-

ment of Electrical Engineering and Electronics, University of Liverpool, headed

by Zarzoso and Nandi [79] focused their research on Blind Source Separation.

In 2002, they defined a bicomplex formalism, which enables an elegant extension

of analytical Blind Source Separation solutions from the real valued signal case to

the complex valued signal case. A number of closed - form estimated ideas in real

mixture scenario have been extended to the complex mixture case, including the

concept of scatter diagram and centroids.

1.8.3 Electromagnetic Fields Appearing in Scattering and

Diffraction Problems

In 1997, Hashimoto [25] has used a bicomplex representation for time harmonic

electromagnetic fields appearing in Scattering and Diffraction problems and has

been able to obtain new relations between high frequency diffraction.
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1.8.4 Dynamics of Spiral Waves

Spiral waves are observed in various physical, chemical and biological systems. In

2001, Biktasheva and Biktashev [2] studied the response functions of Spiral wave

solutions of the Complex Ginzburg – Landau Equation, using bicomplex numbers

and functions of bicomplex variable. They have concluded that the response func-

tions may be used to predict new qualitative features in behavior of spiral waves.

� � �
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Certain Bicomplex Dictionary

Order Topologies

In this chapter, we introduce central notion of this thesis, order topologies and

initiated the study of certain order topologies on bicomplex space C2. Srivastava

[72] has defined three topologies on C2 such as norm topology τ1, complex topology

τ2 and idempotent topology τ3, and shown that all three topologies are equivalent.

In Section 2.1, three types of order relations on C2, viz. `(C0)-order, `(C1)-order

and `Id-order using the concept of dictionary order relation are defined and have

shown that `(C0)-order and `(C1)-order are equivalent in some sense, whereas the

third ordering `Id-order is different from the other two.

Section 2.2 deals with the topologies, viz. C0(o)-topology, C1(o)-topology and

Id(o)-topology generated by these three order relations. All these topologies are

compared in this section.

Section 2.3, discusses two interesting topologies namely, Id(p)-topology and Id(m)-

topology on C2 which are different from the earlier topologies.
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2.1 Order Topology on C3
0

We have extended the topological study of the bicomplex space which was initiated

by Srivastava [71]. Firstly, we have defined the dictionary order relation on C3
0.

With the help of this order relation, a dictionary order topology on C3
0.

Consider that C3
0 is dictionary ordered topological space. We denote the element

(x, y, z) of C3
0 as x× y× z. The order topology on C3

0 is generated by a basis B as

the collection of all open intervals of the forms:

(i) (a× b× c, r × s× t) when a < r.

(ii) (a× b× c, a× s× t) when b < s.

(iii) (a× b× c, a× b× t) when c < t.

Since bicomplex space, C2 is investigated, so we constructed only the shapes of

the basis elements of order topology on C3
0 was constructed. For all three possible

types of open intervals, three types of figures of the open sets in the order topology

on C3
0 are defined.

In Figure 2.1, an arrow drawn between the two planes represents an open interval

which contains all the points on the other planes that lies between these two planes.
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Figure 2.1: Collection of Planes

Figure 2.2: Collection of Infinite Strips
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Figure 2.3: Vertical Interval
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2.2 Certain Types of Order Relations in C2

In this section, on the bicomplex space C2, three types of dictionary order relation

on C2, namely `(C0)-order, `(C1)-order and `Id-order relation are defined. Some

new topological structures on C2 are also developed and compared these order

relations.

Throughout, ξ and η will denote bicomplex numbers defined by

ξ = a1 + i1a2 + i2a3 + i1i2a4 = z1 + i2z2 = 1ξe1 + 2ξe2 and

η = b1 + i1b2 + i2b3 + i1i2b4 = w1 + i2w2 = 1ηe1 + 2ηe2.

Definition 2.2.1 (`(C0)-Order). We say ξ ≺C0 η, if ak ≤ bk, for some k ∈ N,

1 ≤ k ≤ 4 and xp = yp, for p ∈ N, 1 ≤ p < k.

Definition 2.2.2 (`(C1)-Order). We say ξ ≺C1 η. if z1 ≺ w1 or z1 = w1, z2 ≺ w2.

Where the symbol “≺” denotes the lexicographic order relation in the complex

space.

Definition 2.2.3 (`Id-Order). We say ξ ≺Id η, if 1ξ ≺ 1η or 1ξ = 1η, 2ξ ≺ 2η.

Remark 2.2.1. The `(C0)-order and `(C1)-order are equivalent, i.e.,

ξ ≺C0 η ⇐⇒ xk < yk and xp = yp, p < k, 1 ≤ k ≤ 4

⇐⇒ z1 ≺ w1 or if z1 = w1, z2 ≺ w2

⇐⇒ ξ ≺C η

Remark 2.2.2. The `(C1)-order is different from `Id-order, which can be proved

by means of two examples.

Example 2.2.1. Let ξ = (x1 + i1x2) + i2(x3 + i1x4) = (2 + 2i1) + i2(3 + 4i1)

and η = (y1 + i1y2) + i2(y3 + i1y4) = (1 + 2i1) + i2(4 + 7i1).

As (1 + 2i1) ≺ (2 + 2i1), by Definition 2.2.2, η ≺C1 ξ.
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Now, we have

ξ = 1ξe1 + 2ξe2 = [(2 + 2i1)− i1(3 + 4i1)]e1 + [(2 + 2i1) + i1(3 + 4i1)]e2

= (6− 11)e1 + (−2 + 5i1)e2

η = 1ηe1 + 2ηe2 = [(1 + 2i1)− i1(4 + 7i1)]e1 + [(1 + 2i1) + i1(4 + 7i1)]e2

= (8− 2i1)e1 + (−6 + 6i1)e2

Since, 1ξ ≺ 1η, so by Definition 2.2.3, we have ξ ≺Id η.

Thus, there exists ξ, η ∈ C2 for which η ≺C ξ although ξ ≺ID η.

Example 2.2.2. Let ξ = 1ξe1 + 2ξe2, where 1ξ = 7 + 5i1 and 2ξ = 1 + 3i1 and

η = 1ηe1 + 2ηe2, where 1η = 6 + 4i1 and 2η = 4 + 8i1. Now as, 1η ≺ 1ξ, so by

Definition 2.2.3, η ≺Id ξ. However,

ξ = 1ξe1 + 2ξe2 = (7 + 5i1)e1 + (1 + 3i1)e2

= (7 + 5i1)

(
1 + i1i2

2

)
+ (1 + 3i1)

(
1− i1i2

2

)
= (4 + 4i1) + i2(−1 + 3i1),

η = 1ηe1 + 2ηe2 = (6 + 4i1)e1 + (4 + 8i1)e2

= (6 + 4i1)

(
1 + i1i2

2

)
+(4 + 8i1)

(
1− i1i2

2

)
= (5 + 6i1) + i2(2 + i1)

Therefore, by the Definition 2.2.2, we have ξ ≺C1 η.

Thus, there exist ξ, η ∈ C2 for which ξ ≺C1 η although η ≺Id ξ.

2.3 Certain Order Topologies on C2

In this section, with the help of the order relations defined in the last section,

some order topologies have been developed on C2. These order topologies are also

compared with each other.
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The reverse order of `(C0)-order is also a linear order. The notation of open

intervals (ξ, η)C0 denote a basis element of order topology on C2 w.r.t the `(C0)-

order. Now we have

(ξ,→)C0 = {ζ ∈ C2 : ξ ≺C0 ζ},

(←, ξ)C0 = {ζ ∈ C2 : ζ ≺C0 ξ},

(ξ, η)C0 = {ζ ∈ C2 : ξ ≺C0 ζ ≺C0 η}.

In the similar manner, the intervals [ξ,→)C0 , (←, ξ]C0 , [ξ, η)C0 , (ξ, η]C0 and [ξ, η]C0

can be defined.

Definition 2.3.1 (C0(o)-topology). Let ξ = x1 + i1x2 + i2x3 + i1i2x4, η = y1 +

i1y2 + i2y3 + i1i2y4 be two bicomplex numbers such that ξ ≺C0 η. The families of

open intervals in C2 for `(C0)-order type are defined as follows:

(i) G1 = {(a1 + i1a2 + i2a3 + i1i2a4, b1 + i1b2 + i2b3 + i1i2b4)C0 : a1 < b1},

(ii) G2 = {(a1 + i1a2 + i2a3 + i1i2a4, a1 + i1b2 + i2b3 + i1bi2b4)C0 : a2 < b2},

(iii) G3 = {(a1 + i1a2 + i2a3 + i1i2a4, a1 + i1a2 + i2b3 + i1i2b4)C0 : a3 < b3},

(iv) G4 = {(a1 + i1a2 + i2a3 + i1i2a4, a1 + i1a2 + i2a3 + i1i2b4)C0 : a4 < b4}.

Lemma 2.3.1. The collection B1 =
4⋃

k=1

Gk construct a basis for a topology on C2.

Proof. Let ξ = x1 + i1x2 + i2x3 + i1i2x4 be an arbitrary element of C2.

Then there exist a member (y1 + i1y2 + i2y3 + i1i2y4, r1 + i1r2 + i2r3 + i1i2r4)C0 in

the collection B4 such that

x1 + i1x2 + i2x3 + i1i2x4 ∈ (y1 + i1y2 + i2y3 + i1i2y4, r1 + i1r2 + i2r3 + i1i2r4)C0 .

Hence, B4 covers C2. Now, Suppose that

S1 = (y1 + i1y2 + i2y3 + i1i2y4, r1 + i1r2 + i2r3 + i1i2r4)C0 = (ξ1, η1)C0 and

S2 = (c1 + i1c2 + i2c3 + i1i2c4, d1 + i1d2 + i2d3 + i1i2d4)C0 = (ξ2, η2)C0

are any two elements from the collection B4.
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Let ζ = x1 + i1x2 + i2x3 + i1i2x4 be a arbitrary bicomplex number such that

ζ ∈ S1 ∩ S2.

⇒ ζ ∈ S1 as well as ζ ∈ S2.

⇒ ξ1 ≺C0 ζ ≺C0 η1 as well as ξ2 ≺C0 ζ ≺C0 η2.

Define ξ = max {ξ1, ξ2}, η = min {η1, η2} and S = (ξ, η)C0 .

Obviously, S ∈ B4 such that ζ ∈ (ξ, η)C0 .

We claim that S ⊂ S1 ∩ S2. Let α = k1 + i1k2 + i2k3 + i1i2k4 be an arbitrary

element of S, then ξ ≺C0 α and α ≺C0 η.

Now, if ξ ≺C0 α. Then ξ1 ≺C0 α as well as ξ2 ≺C0 α

and α ≺C0 η. Then α ≺C0 η1 as well as α ≺C0 η2

⇒ ξ1 ≺C0 α ≺C0 η1 and ξ2 ≺C0 α ≺C0 η2

⇒ α ∈ S1 and α ∈ S2.

Thus, we have shown that all pairs S1 and S2 of members of B4 and for every

element ζ in their intersection, we have member S of B4 such that ζ ∈ S ⊂ S1∩S2.

So that B4 forms a basis for some topology on C2.

Remark 2.3.1. The topology generated by B4 as C0(o)-topology are defined and it

is denoted as τ4. Further, the collection {(ξ,→)C0 : ξ ∈ C2} ∪ {(←, ξ)C0 : ξ ∈ C2}

forms a sub-basis for this topology. The interval (ξ, η)C0 = (a1 + i1a2 + i2a3 +

i1i2a4, b1 + i1b2 + i2b3 + i1i2b4)C0 is called as C0-open set in τ4. It may be a C0-

frame, C0-plane, C0-line segment or C0-interval depends upon the order of the

elements of the intervals.

Definition 2.3.2 (C1(o)-topology). Let ξ ≺C η. Two types of open intervals in

C2 can be defined, viz.,

(i) K1 = {(z1 + i2z2, w1 + i2w2)C1 : z1 ≺ w1},

(ii) K2 = {(z1 + i2z2, z1 + i2w2)C1 : z2 ≺ w2}.
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Define B5 = K1 ∪K2. In the similar lines of Lemma 2.3.1, it can be prove that B5

forms a basis for some topology on C2, we shall call this topology as C1(o)-topology

and denote it as τ5.

Remark 2.3.2. Now for α = z1 + i2z2 and β = w1 + i2w2, the following families

are constructed as:

(i) M1 = {(α, β)C1 : Re z1 < Rew1},

(ii) M2 = {(α, β)C1 : Re z1 = Rew1, Im z1 < Imw1},

(iii) M3 = {(α, β)C1 : Re z2 < Rew2},

(iv) M4 = {(α, β)C1 : Re z2 = Rew2, Im z2 < Imw2}.

Note that, for z1 ≺ w1, z2 ≺ w2, K1 and K2 can are described as K1 = M1 ∪M2

and K2 = M3 ∪ M4. Therefore, B5 = K1 ∪ K2 =
⋃4
p=1 Mp. Note further M1,

M2, M3 and M4 are in fact, families of C1-space-segments, C1-frame-segments,

C1-plane-segments and C1-line segments, respectively.

Definition 2.3.3 (Id(o)-topology). Let ξ ≺Id η. Two families of open intervals

in C2 with respect to `Id-order are defined as

(i) L1 = {(1ξe1 + 2ξe2,
1ηe1 + 2ηe2)Id : 1ξ ≺ 1η}.

(ii) L1 = {(1ξe1 + 2ξe2,
1ξe1 + 2ηe2)Id : 2ξ ≺ 2η}.

Define B6 = L1 ∩ L2. It can be proved that collection B6 forms a basis for some

topology on C2. This topology is known as Id(o)-topology and denoted by τ6.

Remark 2.3.3. So far the basis elements of the idempotent order topology clas-

sified as the classes L1 and L2. As a matter of fact, the idempotent components of

a bicomplex number are themselves complex numbers, the ordering of 1ξ and 1η

can be further split into orderings of the real parts or - in the case real parts are

same their imaginary parts. In this sense, L1 can be considered as the union of

two classes, say N1 and N2, and L2 can be considered as the union of two classes,

say N3 and N4 defined as

(i) N1 = {(ζ, θ)Id : Re 1ζ < Re 1θ}

(ii) N2 = {(ζ, θ)Id : Re 1ζ = Re 1θ, Im 1ζ < Im 1θ}

44



Chapter 2: Certain Bicomplex Dictionary. . .

(iii) N3 = {(ζ, θ)Id : Re 2ζ < Re 2θ}

(iv) N4 = {(ζ, θ)Id : Re 2ζ = Re 2θ, Im 2ζ < Im 2θ}.

Theorem 2.3.1. C0(o)-topology and C1(o)-topology are same.

Proof. Since the C0-order and C1-order are equivalent, so any basis element of the

C0(o)-topology is equal to some basis element of the C1(o)-topology. Therefore,

the C0(o)-topology and the C1(o)-topology are same.

Theorem 2.3.2. C1(o)-topology and Id(o)-topology are not comparable.

To prove this assertion, we gave two examples are given as follows:

Example 2.3.1. Let (ξ, η)C1 be a basis element of the complex order topology,

where ξ = (1 + 2i1) + i2(4 + 3i1) and η = (7 + 4i1) + i2(2 + 5i1).

Let ζ = (1 + 2i1) + i2(4 + 4i1). Clearly, ζ ∈ (ξ, η)C1 . Firstly, define

ξ = (1 + 2i1) + i2(4 + 3i1)

= [(1 + 2i1)− i1(4 + 3i1)]e1 + [(1 + 2i1) + i1(4 + 3i1)]e2

= (4− 2i1)e1 + (−2 + 6i1)e2,

η = (7 + 4i1) + i2(2 + 5i1)

= [(7 + 4i1)− i1(2 + 5i1)]e1 + [(7 + 4i1) + i1(2 + 5i1)]e2

= (12 + 2i1)e1 + (2 + 6i1)e2

and

ζ = (1 + 2i1) + i2(4 + 4i1)

= [(1 + 2i1)− i1(4 + 4i1)]e1 + [(1 + 2i1) + i1(4 + 4i1)]e2

= (5− 2i1)e1 + (−3 + 6i1)e2
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Now, given ε > 0, an interval (α, β)Id, where α = (5− 2i1)e1 + (−3 + (6− ε)i1)e2

and β = (5− 2i1)e1 + (−3 + (6 + ε)i1)e2. Then

α = (5− 2i1)e1 + (−3 + (6− ε)i1)e2

= (5− 2i1)

(
1 + i1i2

2

)
+ (−3 + (6− ε)i1)

(
1− i1i2

2

)
=

(
1 +

(
2− ε

2

)
i1

)
+ i2

((
4− ε

2

)
+ 4i1

)
and

β = (5− 2i1)e1 + (−3 + (6 + ε)i1)e2

= (5− 2i1)

(
1 + i1i2

2

)
+ (−3 + (6− ε)i1)

(
1− i1i2

2

)
=

(
1 +

(
2 +

ε

2

)
i1

)
+ i2

((
4 +

ε

2

)
+ 4i1

)
Clearly, ζ ∈ (α, β)Id but α ≺C1 ξ, which implies that α ∈ (α, β)Id * (ξ, η)C1 .

Thus, no basis element around ζ in Id(o)-topology is contained in the basis element

(ξ, η)C1 around ζ in C1(o)-topology.

Example 2.3.2. Let (ξ, η)Id be an arbitrary element of B6, where

ξ = (6 + 4i1)e1 + (2 + 6i1)e2 and η = (7 + 5i1)e1 + (3 + 4i1)e2.

Suppose that ζ = (6 + 4i1)e1 + (2 + 7i1)e2. Obviously, ζ ∈ (ξ, η)Id.

Now, ξ = (6 + 4i1)e1 + (2 + 6i1)e2 = (4 + 5i1) + i2(1 + 2i1),

η = (7 + 5i1)e1 + (3 + 4i1)e2 = (5 + 9
2
i1) + i2(−1

2
+ 2i1)

and ζ = (6 + 4i1)e1 + (2 + 7i1)e2 = (4 + 11
2
i1) + i2(3

2
+ 2i1).

Given any ε > 0, consider an element (α, β)C1 ∈ B6 containing ζ, where

α = 4 + 11
2
i1 + i2(3

2
+ (2− ε)i1) and β = 4 + 11

2
i1 + i2(3

2
+ (2 + ε)i1).

Then, α = 4 + 11
2
i1 + i2(3

2
+ (2− ε)i1) = ((6− ε) + 4i1)e1 + ((2 + ε) + 7i1)e2

and β = 4 + 11
2
i1 + i2(3

2
+ (2 + ε)i1) = ((6 + ε) + 4i1)e1 + ((2− ε) + 7i1)e2.

Clearly, ζ ∈ (α, β)C1 but α ≺Id ξ. Hence, ζ ∈ (α, β)C1 * (ξ, η)Id.
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From Example 2.3.1 and Example 2.3.2, we conclude that C1(o)-topology and

Id(o)-topology are not comparable.

Corollary 2.3.1. C0(o)-topology and the Id(o)-topology are not comparable.

2.4 Some Other Topologies on C2

In this section, we have defined a product topology and a metric topology on the

bicomplex space are defined and studied.

Definition 2.4.1 (Id(p)-topology). A topology on C2 is constructed by treating

it as C2 = A1 ×e A2. This topology is called as Id(p)-topology and denoted as τ4.

The Id(p)-topology have basis B4 as the collection of the basis elements of the

type (1α, 1β)×e (2α, 2β), where (1ξ, 1η) and (2ξ, 2η) are the basis elements of the

order topologies on auxiliary complex spaces A1 and A2, respectively.

Theorem 2.4.1. The Id(o)-topology is strictly finer than the Id(p)-topology.

Proof. Let (1ξ, 1η)×e (2ξ, 2η) be an arbitrary basis element of the Id(p)-topology

and ζ = 1ζe1 + 2ζe2 be any bicomplex number such that ζ ∈ (1ξ, 1η)×e (2ξ, 2η).

So 1ζ ∈ (1ξ, 1η) and 2ζ ∈ (2ξ, 2η). For 2ζ ∈ (2ξ, 2η), ∃ a, b ∈ A2 such that

1ζ = (a, b) ⊂ (2ξ, 2η). In particular, consider (1ζe1 + ae2,
1ζe1 + be2)Id ∈ B6.

Note that ζ ∈ (1ζe1 + ae2,
1ζe1 + be2)Id ⊂ (1ξ, 1η) ×e (2ξ, 2η). Hence, Id(o)-

topology is finer than Id(p)-topology.

Conversely, to show that Id(p)-topology is not finer than Id(o)-topology, consider

an element (ξ, η)Id ∈ B6 such that 1ξ = 1η. Note that, if ζ is any point belonging

to (ξ, η)Id, then 1ζ = 1ξ = 1η. Let (z1, w1)× (z2, w2) be any basis element of the

Id(p)-topology containing. Note that z1 6= w1 and z2 6= w2, since singleton sets

are not treated as open sets.

Now, ζ ∈ (z1, w1)×e (z2, w2) ⇒ 1ζ ∈ (z1, w1) and 2ζ ∈ (z2, w2).
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Let u be any point in the interval (z1, w1), u 6= 1ζ. We find that the bicomplex

number α = ue1 + 2ζe2 belongs to ζ ∈ (z1, w1)×e (z2, w2). However,

1α = u 6= 1ζ(= 1ξ = 1η). So, α ∈ (ξ, η)Id. Hence proved.

The mechanism behind the failure of the equivalence of two topologies is elaborated

in the following remark.

Remark 2.4.1. Let (1ξe1 + 2ξe2,
1ηe1 + 2ηe2)ID be an arbitrary basis element of

the Id(o)-topology and γ be any bicomplex number such that

γ = 1γe1 + 2γe2 ∈ (1ξe1 + 2ξe2,
1ηe1 + 2ηe2)Id. (2.4.1)

If 1ξ 6= 1η, three cases arise as follows:

(i) 1ξ = 1γ and 1γ ≺ 1η.

(ii) 1ξ ≺ 1γ and 1γ ≺ 1η.

(iii) 1γ = 1η and 2γ ≺ 2η.

Case (i): When 1ξ = 1γ and 1γ ≺ 1η. Then, 1γ ∈ (1ξ, 1η).

Since, (1ξ, 1η) is open in the order topology on A1 space, therefore there exists a

basis element (1α, 1β) of the basis element of the order topology on A1 such that

1γ ∈ (1α, 1β) ⊂ (1ξ, 1η).

Also, 2γ ∈ A2 and A2 is order topological (auxiliary complex) space, so that

there must exist a basis element (2α, 2β) of the order topology on A2 such that

1γ ∈ (1α, 1β) ⊂ (1ξ, 1η). Therefore,

1γe1 + 2γe2 ∈ (1α, 1β)×e (2α, 2β) ⊂ (1ξe1 + 2ξe2,
1ηe1 + 2ηe2)Id

Case (ii): When 1ξ ≺ 1γ and 1γ ≺ 1η.

If there exists a basis element (1α, 1β) of the order topology on A1 such that

1γ ∈ (1α, 1β), then 1α ≺ 1γ(= 1ξ) and 1γ ≺ 1β.
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Therefore,

1αe1 + ze2 ≺ID 1ξe1 + 2ξe2, ∀ z ∈ A2 (2.4.2)

⇒ 1αe1 + ze2 /∈ (1ξe1 + 2ξe2,
1ηe1 + 2ηe2)Id.

By adopting the same method for 2γ, one can find a basis element (2α, 2β) of the

order topology on A2 such that γ = 1γe1 + 2γe2 ∈ (1α, 1β)×e (2α, 2β).

But from the Equation (2.4.2), we have

γ = 1γe1 + 2γe2 ∈ (1α, 1β)×e (2α, 2β) * (1ξe1 + 2ξe2,
1ηe1 + 2ηe2)Id.

Case (iii): Similar situation arises. Therefore, one cannot necessarily find a basis

element of the idempotent product topology, which contains the given bicomplex

number and contained in some basis element of the Id(o)-topology. Hence, the

Id(o)-topology is strictly finer than the Id(p)-topology.

Definition 2.4.2 (Idempotent Metric on C2). Let us define a metric on C2 as

follows:

dId(ξ, η) = max
{
|1ξ − 1η|, |2ξ − 2η|

}
.

That dId is actually a metric which can be verified easily. We shall call this metric

as the idempotent metric on C2.

Definition 2.4.3 (Id(m)-topology). The topology generated by the idempotent

metric will be called as the Id(m)-topology on C2 and will be denoted by τ5. The

basis elements of this topology will be denoted by BId(ξ; r), where

BId(ξ; r) = {η : η ∈ C2, dId(ξ, η) < r} (2.4.3)

where r is a real number.

Remark 2.4.2. The set BId(ξ; r) is same as the set D(ξ; r, r).

We know that BId(ξ; r) = {η : η ∈ C2, dId(ξ, η) < r}. Let η ∈ BId(ξ; r).
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Then dId(ξ, η) < r ⇔ max {|1ξ − 1η|, |2ξ − 2η|} < r

⇔ |1ξ − 1η| < r as well as |2ξ − 2η| < r ⇔ η ∈ D(ξ; r, r).

Remark 2.4.3. The idempotent metric dId on C2 satisfies the condition of homo-

geneity, i.e., dId(αξ, αη) = |α| dId(ξ, η), ∀α ∈ C1.

Let ξ, η ∈ C2 and α ∈ C1.

dId(αξ, αη) = max
{
|α 1ξ − α 1η |, |α 2ξ − α 2η |

}
= max

{
|α | |1ξ − 1η |, |α | |2ξ − 2η |

}
= |α | max

{
| 1ξ − 1η |, | 2ξ − 2η |

}
= |α| dID(ξ, η)

So that the idempotent metric satisfies the condition of homogeneity and hence

this metric defines a norm on C2 defined as

||ξ ||? = max
{
| 1ξ|, | 2ξ|

}
.

Also, the norm || . ||? is equivalent to the norm defined in the Equation (1.1.4).

Theorem 2.4.2. Id(p)-topology and Id(m)-topology are same.

Proof. Let (1ξ, 1η) ×e (2ξ, 2η) be any basis elements of the Id(p)-topology and ζ

be an arbitrary bicomplex number such that

ζ ∈ (1ξ, 1η)×e (2ξ, 2η),

1ζ ∈ (1ξ, 1η) and 2ζ ∈ (2ξ, 2η).

Note that (1ξ, 1η) is a basis element of the order topology on A1. Then there exists

a basis element B( 1α; r); r > 0 of the metric topology on A1 such that

1ζ ∈ B( 1α; r) ⊂ ( 1ξ, 1η).
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Similarly, there exists a basis element B( 2α; r); r > 0 of the metric topology on

A2 such that 2ζ ∈ B( 2α; r) ⊂ ( 2ξ, 2η). Then

ζ = 1ζe1 + 2ζe2 ∈ D(α; r, r) ⊂ ( 1ξ, 1η)×e ( 2ξ, 2η) (2.4.4)

(∵ B( 1α; r)×e B( 2α; r) = D(α; r, r))

By Remark 2.4.2, the Equation (2.4.4) implies that

ζ ∈ BId(α; r) ⊂ ( 1ξ, 1η)×e ( 2ξ, 2η).

Therefore, Id(m)-topology is finer than Id(p)-topology.

Conversely, let η ∈ BId(ξ; r). By Remark 2.4.2, we have η ∈ D(ξ; r, r)

⇒ | 1ξ − 1η | < r and | 2ξ − 2η | < r

⇒ 1η ∈ B( 1ξ; r) = 1B (say) and 2η ∈ B( 2ξ; r) = 2B (say)

Let 1η = x1+i1y1 and 2η = x2+i1y2. Then there exists 1D = (x1+i1c1, x1+i1d1),

where c1 < y1 < d1 of order topology on C1 such that

1η ∈ 1D ⊂ 1B. (2.4.5)

Also, we can find a basis element 2D = (x2 + i1c2, x2 + i1d2), where c2 < y2 < d2

of order topology corresponding to 2B such that

2η ∈ 2D ⊂ 2B. (2.4.6)

From the Equation (2.4.5) and Equation (2.4.6), we have

η ∈ 1D ×e 2D ⊂ 1B ×e 2B

⇒ η ∈ 1D ×e 2D ⊂ D(ξ; r, r)

Therefore, Id(p)-topology is finer than Id(m)-topology. So that Id(p)-topology

and Id(m)-topology are same.
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Theorem 2.4.1 and Theorem 2.4.2 together gives the following Corollary.

Corollary 2.4.1. Id(o)-topology is strictly finer than Id(m)-topology.

Conclusion

In this chapter, some topological structures on the bicomplex space and their prop-

erties are developed. Also, the basis elements of the order topology on the three

dimensional space, C3
0 are constructed with the concept of lexicographic order.

Three ordered topological structures, namely C0(o)-topology, C1(o)-topology and

Id(o)-topology are framed and compared on the bicomplex space.

� � �
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Chapter 3

C2-Nets and their Confluences

In this chapter, the properties of the C2-nets are defined and discussed. Also, the

convergence (or confluence) of the C2-nets in the C0(o)-topology as well as Id(o)-

topology is defined. Due to distinct forms of the bicomplex numbers their are

different types of different types of tendencies called confluences. In this chapter,

we concentrated on the confluence of the C2-nets in the C0(o)-topology and Id(o)-

topology.

In section 3.1, the C2-net and C2-subnet are defined. The concept of different

types of amplitudes in terms of convergence called C0-confluences are given and

studied in the different forms of confluences which have been described in terms

of C0(o)-topology.

In section 3.2, the confluences of the C2-nets have been discussed with respect to

the Id(o)-topology. The confluences of the C2-nets along with their component

nets are also explained in detail.

In section 3.3, the confluence of the C2-net is discussed in the Id(p)-topology. The

ID(p)-topology is defined on the C2 space as the product of two lexicographical

order topological spaces as A1 and A2. The convergence of the components nets

in the C2-net is also studied in this section.
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3.1 Confluences of C2-nets in C0(o)-topology

In this section, we constructed the C2-nets and also defined the various types of

confluences of these nets w.r.t the C0(o)-topology, τ4. In this section some results

on the C0-confluences of the C2-nets have been discussed.The results of C2-subnets

and Cauchy C2-net have been defined and studied thoroughly.

Definition 3.1.1 (C2-Net). Let D be any arbitrary directed set, then a C2-net

Φ : D → C2 is defined as

Φ(α) = x1α + i1x2α + i2x3α + i1i2x4α

= z1α + i2z2α

= 1ξαe1 + 2ξαe2 ∀α ∈ D. (3.1.1)

We denote the C2-net Φ(α) as {ξα}α∈D or {ξα} where D denotes the directed set.

Also, a tail in the directed set (D,≥) is the set Tα = {β : β ≥ α}.

Definition 3.1.2 (C2-Subnet). A C2-net {ηβ}β∈E is a C2-subnet of a C2-net

{ξα}α∈D if for each tail Tα of elements of D, there is a tail Tβ of elements of E

such that {ηδ : δ ∈ Tβ} ⊂ {ξγ : γ ∈ Tα}.

We have studied the concept of C2-nets in the order topologies defined on C2. In

this section, the C2-net will be considered as {ξα} = {x1α + i1x2α + i2x3α + i1i2x4α}.

In this context, we gave concept of convergence of C2-nets in the sense of conflu-

ence. Certain types of confluences in C0(o)-topology, τ4 are defined as follows:

Definition 3.1.3 (C0(F)-Confluence). A C2-net {ξα} is said to be C0(F)-

confluence to [x1 = a]C0 , if for every β ∈ D, ∃N ∈ G1 such that ξα ∈ N ,

∀α ≥ β and [x1 = a]C0 ⊂ N .

Definition 3.1.4 (C0(P)-Confluence). A C2-net {ξα} is said to be C0(P)-

confluence to [x1 = a, x2 = b]C0 , if for every β ∈ D, ∃N ∈ G2 such that ξα ∈ N ,

∀α ≥ β and [x1 = a, x2 = b]C0 ⊂ N .
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Definition 3.1.5 (C0(L)-Confluence). A C2-net {ξα} is said to be C0(L)-confluence

to [x1 = a, x2 = b, x3 = c]C0 of for every β ∈ D, ∃N ∈ G3 such that ξα ∈ N ,

∀α ≥ β and [x1 = a, x2 = b, x3 = c]C0 ⊂ N .

Definition 3.1.6 (C0-Point Confluence). A C2-net {ξα} is said to be C0-Point

confluence to ξ, if for every β ∈ D, ∃N ∈ G4 such that ξα ∈ N , α ≥ β. This type

of confluence is denoted as C0-lim
α∈D

ξα = ξ

Remark 3.1.1. Let {ξα} be a C2-net on the directed set D and A be a subset

of C2. If there is a β ∈ D such that ξα ∈ A, α > β, ∀α ∈ D then {ξα} is called

finally in A. If {ξα} is finally in every neighbourhood of ξ, then we say {ξα} is

converges to ξ. Further, {ξα} is stable on ξ if ξα = ξ, ∀α ∈ D. It is finally stable

on ξ if ∃ β ∈ D such that ξα = ξ, ∀α ≥ β.

Remark 3.1.2. Note that if a C2-net {ξα} is C0(F )-confluence to [x1 = a]C0 it

will not be finally in any K ∈ G2 unless {x1α} is finally stable at ‘a’. Analogous

cases will be explored with the other types of C2-nets in the real form.

Remark 3.1.3. The C0-Point confluence of a C2-net {ξα} is a necessary but not

sufficient condition for the usual convergence of {ξα} in norm topology τ1 induced

by the Euclidean norm. Clearly, every finally stable net {xkα} , 1 ≤ k ≤ 4,

converges and thus, C0-Point confluence of {ξα} to ξ implies convergence of {ξα}

to ξ in τ1.

Example 3.1.1. For the verification of the insufficiency condition, consider the

C2-net {ξα} on the directed set (Q+, ≥) defined as ξα = x1α+i1x2α+i2x3α+i1i2x4α,

∀α ∈ D, where xkα = 1 + 1/(α2 + k2), 1 ≤ k ≤ 4. The net converges to ξ =

1 + i1 + i2 + i1i2 in τ1 but not C0-Point confluence to ξ. Because for any ε > 0,

ξα /∈ (1 + i1 + i2 + (1− ε)i1i2, 1 + i1 + i2 + (1 + ε)i1i2)C0 , ∀a ∈ D.

Theorem 3.1.1. A C2-net {ξα} is C0(F)-confluence to [x1 = k]C0 if and only if

{Re z1α} converges to k in C1.
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Proof. Consider that {Re z1α} converges to k. For some given ε > 0, consider a

set as follows:

Bε = {ξ : ξ = x1 + i1x2 + i2x3 + i1i2x4 ; k − ε < x1 < k + ε} . (3.1.2)

Obviously, Bδ ∈ G1 and [x1 = k]C0 ⊂ Bδ. Since, {Re z1α} converges to k, then

∃ γ ∈ D such that

Re z1α ∈ (k − ε, k + ε) ⇒ k − ε < x1α < k + ε, ∀α ≥ γ

⇒ (k − ε) + i1x2 + i2x3 + i1i2x4 ≺C0 Re z1α + i1x2α + i2x3α + i1i2x4α

and Re z1α + i1x2α + i2x3α + i1i2x4α ≺C0 (k + ε) + i1y2 + i2y3 + i1i2y4,

∀xp, yp ∈ C0, 2 ≤ p ≤ 4 and ∀α ≥ γ. Therefore,

ξα ∈ ((k − ε) + i1x2 + i2x3 + i1i2x4, (k + ε) + i1y2 + i2y3 + i1i2y4)C0 ,

∀xp, yp ∈ C0, 2 ≤ p ≤ 4 and ∀α ≥ γ.

Hence, {ξα} is finally in Bε. Since, ε > 0 is arbitrary and each element of G1

contains a set Bε (for some ε > 0), then {ξα} is C0(F )-confluence to [x1 = k]C0 .

Conversely, let the C2-net {ξα} be C0(F )-confluence to [x1 = k]C0 . Then C2-net

{ξα} is finally in every member of G1 containing the R-frame [x1 = k]C0 . In

particular, {ξα} is finally in Bε (ε > 0) defined by the Equation (3.1.2). Thus,

∃ β ∈ D such that ξα ∈ Bε , ∀α ≥ β

⇒ a− ε < Re z1α < a+ ε, ∀α ≥ β

⇒ Re z1α → a.

Theorem 3.1.2. A C2-net {ξα} is C0(F)-confluence to [x1 = k, x2 = `]C0 if and

only if {Re z1α} is finally stable at k and {Im z1α} converges to `.

Proof. Suppose that {Re z1α} be finally stable on k and {Im z1α} converge to `.

Since {Re z1α} is finally stable on k, ∃ β ∈ D such that ∀α ≥ β, x1α = k. For a
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given ε > 0, construct a set as follows:

Uε = {ξ : ξ = k + i1x2 + i2x3 + i1i2x4 ; `− ε < x2 < `+ ε}. (3.1.3)

Then, Uε ∈ G2 and [x1 = k, x2 = `]C0 ⊂ Uε. Since, the net {Im z1α} converges to

`, then there exists some γ ∈ D such that

Im z1α ∈ (`− ε, `+ ε), ∀α ≥ γ

Also, for β, γ ∈ D, there exists some δ ∈ D such that δ ≥ β and δ ≥ γ.

Therefore, Re z1α = k and Im z1α ∈ (`− ε, `+ ε), ∀α ≥ δ.

⇒ `− ε < Imz1α < `+ ε, ∀α ≥ δ

⇒ ξα ∈ (k + i1(`− ε) + i2x3 + i1i2x4, k + i1(`+ ε) + i2y3 + i1i2y4)C0 ,

∀x3, x4, y3, y4 ∈ C0, ∀α ≥ δ.

So that the net {ξα} is finally in Uε(ε > 0). Since every member of G2 contains an

Uε, the C2-net {ξα} is C0(P)-confluence to [x1 = k, x2 = `]C0 .

Conversely, suppose that the C2-net {ξα} is C0(P)-confluence to the R-plane [x1 =

k, x2 = `]C0 . Then, it is finally in every member of the type Uε > 0 defined by the

Equation (3.1.3) of the family G2 containing the plane [x1 = k, x2 = `]C0 . So for

given ε > 0, there exists some β ∈ D such that ξα ∈ Uε, ∀α ≥ β.

⇒ Re z1α = k and Im z1α ∈ (`− ε, `+ ε), ∀α ≥ β.

Hence, the net {Re z1α} is finally stable on k and {Im z1α} converges to `.

On the similar lines, the following theorems can be proved.

Theorem 3.1.3. A C2-net {ξα} is C0(L)-confluence to [x1 = k, x2 = `, x3 = m]C2

if and only if the net {Re z1α} is finally stable at k, {Im z1α} is finally stable at `

and {Re z2α} converges to m.
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Theorem 3.1.4. A C2-net {ξα} is C0-Point confluence to a+ bi1 + ci2 + di1i2 if

and only if the net {Re z1α} is finally stable at a, {Im z1α} is finally stable at b,

{Re z2α} is finally stable at c and {Im z2α} is converges to d.

Theorem 3.1.5. The following inferences can be proved:

(i) Every C0-Point confluence C2-net is C0(L)-confluence.

(ii) Every C0(L)-confluence C2-net is C0(P)-confluence.

(iii) Every C0(P)-confluence C2-net is C0(F)-confluence.

The converses of these implications are not true, in general.

Proof. In fact, if a C2-net, we conclude that {ξα} is C0-Point confluence to a +

bi1 + c i2 + di1i2, then it is C0(L)-confluence to R-line [x1 = a, , x2 = b, x3 = c]C0 .

Similarly, a C2-net which is C0(L)-confluence to R-line [x1 = a, , x2 = b, x3 = c]C0

is C0(P)-confluence to R-plane [x1 = a, , x2 = b]C0 and a C2-net which is C0(P)-

confluence to R-plane [x1 = a, , x2 = b]C0 is C0(F )-confluence to [x1 = a]C0 .

The converse is not true, in general.

Example 3.1.2. Consider a C2-net {ξα} on the directed set (Q+, ≥) as follows:

{ξα} = (k − xα) + (1/α)i1 + (α + 1)i2 + αi1i2, ∀α ∈ Q+, (3.1.4)

where the net {xα} is finally stable at 0. Then, the net {x1α} is finally stable at

‘k’ and the net {x2α} converges on 0. So that the bicomplex net {ξα} is C0(P)-

confluence to the R-plane [x1 = k, x2 = `]C0 . Since, the net {x1α} is finally

stable on ‘k’. Then, for each M ∈ G1, ∃ β ∈ D such that ξα ∈ M , ∀α ≥ β and

[x1 = k]C0 ⊂M . Hence, the net {ξα} is C0(F )-confluence to the frame [x1 = k]C0 .

Example 3.1.3. Consider a C2-net {ηα} on the directed set (Q+, ≥) as follows:

{ηα} = k − (1/α) + (α + 1)i1 + (α + 2)i2 + (α + 3)i1i2, ∀α ∈ Q+.
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This C2-net is C0(F)-confluence to the R-frame [x1 = k]C0 . Then the component

net {x1α} converges to ‘k’ but {x2α} is not convergent. Therefore, the C2-net {ηα}

is not C0(P)-confluence to any R-plane contained in the R-frame [x1 = k]C0 .

3.2 Confluences of C2-Nets in Id(o)-topology

We assume the bicomplex space, C2 to be furnished with the Id(o)-topology, τ6

(cf. [72]). Now, rewriting the bicomplex net {ξα} as { 1ξαe1 + 2ξαe2}, where

1ξαe1 + 2ξαe2 = [(x1α + x4α) + i1(x2α − x3α)]e1 + [(x1α − x4α) + i1(x2α + x3α)]e2.

(3.2.1)

For the convenience, we represent the numbers x1 + x4 and x2 − x3 as Re 1ξ and

Im 1ξ, respectively. Thus [Re 1ξ = a]Id denote the frame x1 + x4 = a, whereas

{Re 1ξα} denote the net {x1α+x4α} and so on. Under these notations, the Equation

(3.2.1) can be rewritten as

1ξαe1 + 2ξαe2 = (Re 1ξα + i1 Im
1ξα)e1 + (Re 2ξα + i1 Im

2ξα)e2. (3.2.2)

Note that for the net {Re 1ξα} to be convergent, {x1α + x4α} must be convergent.

The conditions for the convergence of the nets {Im 1ξα}, {Re 2ξα} and {Im 2ξα}

can be similarly interpreted.

Definition 3.2.1 (Id(F)-Confluence). The C2-net {ξα} is said to be Id(F)-

confluence to [Re 1ξ = a]Id if for every K ∈ N1, ∃α ∈ D such that ξβ ∈ K, ∀β ≥ α

and [Re 1ξ = a]Id ⊂ K.

Definition 3.2.2 (Id(P)-Confluence). The C2-net {ξα} is said to be Id(P)-

confluence to [Re 1ξ = a, Im 1ξ = b]Id if for every K ∈ N2, ∃α ∈ D such that

ξβ ∈ K, ∀β ≥ α and [Re 1ξ = a, Im 1ξ = b]Id ⊂ K.

Definition 3.2.3 (Id(L)-Confluence). The C2-net {ξα} is said to be Id(L)-

confluence to [Re 1ξ = a, Im 1ξ = b, Re 1ξ = c]Id if for every K ∈ N3, ∃α ∈ D

such that ξβ ∈ K, ∀β ≥ α and [Re 1ξ = a, Im 1ξ = b, Re 1ξ = c]Id ⊂ K.
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Definition 3.2.4 (Id-Point Confluence). The C2-net {ξα} is said to be Id-Point

confluence to the point ξ = 1ξe1 + 2ξe2 if it is finally in each K ∈ N4 containing ξ.

Remark 3.2.1. If a C2-net {ξα} defined by the Equation (3.2.2) is Id(F)-confluence

to [Re 1ξ = a]Id, it cannot be finally in any member of the family N2 unless

{Re 1ξα} is finally static on ‘a’. Similar cases will arise with the other types of

the confluences of the C2-nets with respect to the Id(o)-topology.

Theorem 3.2.1. A C2-net {ξα} is Id(F)-confluence to [Re 1ξ = a]Id if and only

if the net {Re 1ξα} converges to ‘a’.

Proof. Assume that the net {Re 1ξα} converges to ‘a’. Given ε > 0, let

Sε = {ξ : a− ε < Re 1ξ < a+ ε}, (3.2.3)

be a member of N1 such that [Re 1ξ = a]Id ⊂ Sε. Since, the net {Re 1ξα} is

converging to a, then there exists a β ∈ D such that

a− ε < Re 1ξα < a+ ε, ∀α ≥ β

Hence, by the definition of ≺, we have ∀α ≥ β and ∀x2, y2 ∈ C2

a− ε+ i1x2 ≺ (Re 1ξα) + i1(Im 1ξα),

and

(Re 1ξα) + i1(Im 1ξα) ≺ a+ ε+ i1y2.

Therefore,

1ξαe1 + 2ξαe2 ∈ ((a− ε+ i1x2)e1 + (x3 + i1x4)e2, (a+ ε+ i1x2)e1 + (y3 + i1y4)e2)Id,

∀x3, x4, y3, y4 ∈ C0 and ∀α ≥ β.

So the C2-net {ξα} is finally in Sε. Since, ε > 0 is arbitrary and every S in N1

contains Sε for some ε > 0, by Definition (3.2.1), {ξα} is Id(F)-confluence to the

ID-frame [Re 1ξ = a]Id.
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Conversely, let the C2-net {ξα} be Id(F)-confluence to the ID-frame [Re 1ξ = a]Id.

By definition, it is finally in every member Sε (for ε > 0, by Equation (3.2.3))

containing [Re 1ξ = a]Id. Then, ∃ β ∈ D such that

ξα ∈ Sε, ∀α ≥ β

⇒ ξα ∈ ((a− ε+ i1x2)e1 + (x3 + i1x4)e2, (a+ ε+ i1y2)e1 + (y3 + i1y4)e2)ID

∀xp, yp ∈ C0, 2 ≤ p ≤ 4 and ∀α ≥ β.

By definition of N1 and Sε, we infer

a− ε < Re 1ξα < a+ ε

⇒ Re 1ξα ∈ (a− ε, a+ ε), ∀α ≥ β

⇒ {Re ξα} → a.

Hence proved.

Theorem 3.2.2. The C2-net {ξα} is Id(P)-confluence to [Re 1ξ = a, Im 1ξ = b]Id

if and only if {Re 1ξα} is finally stable on ‘a’ and {Im 1ξα} converges to ‘b’.

Proof. Suppose that the net {Re 1ξα} is finally stable at a and {Im 1ξα} converges

to b. Since {Re 1ξα} is finally stable on a. Then, ∃ β ∈ D such that

Re 1ξα = a, ∀α ≥ β.

Let ε > 0 be given, suppose that

Fε = {ξ : Re 1ξ = a, b− ε < Im 1ξ < b+ ε}, (3.2.4)

is a member of N2 containing the ID-plane [Re 1ξ = a, Im 1ξ = b]Id.

Since, the net {Im ξα} converges to b, ∃ γ ∈ D such that

Im 1ξα ∈ (b− ε, b+ ε), ∀α ≥ γ.
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As β, γ ∈ D. Then, there exists some δ ∈ D such that δ ≥ β and δ ≥ γ.

Therefore,

Re 1ξα = a and Im 1ξα ∈ (b− ε, b+ ε), ∀α ≥ δ (3.2.5)

⇒ ξα ∈ ((a+ i1(b− ε))e1 + (x3 + i1x4)e2, (a+ i1(b+ ε))e1 + (y3 + i1y4)e2)Id,

∀x3, x4, y3, y4 ∈ C0, ∀α ≥ δ.

Thus, {ξα} is finally in Fε. Since ε > 0 is arbitrary and every member of N2

contains an Fε (for some ε > 0), by the definition, the C2-net {ξα} is Id(P)-

confluence to the ID-plane [Re 1ξ = a, Im 1ξ = b]Id.

Conversely, suppose that the C2-net {ξα} is Id(P)-confluence to the ID-plane

[Re 1ξ = a, Im 1ξ = b]Id. Therefore, {ξα} is finally in every member of the

family N2 containing the ID-plane [Re 1ξ = a, Im 1ξ = b]Id. In particular, the

net is finally in every open ID-frame segment Fε (ε > 0) defined by the Equation

(3.2.4) containing the ID-plane [Re 1ξ = a, Im 1ξ = b]Id. For given ε > 0, there

exists some β ∈ D such that ξα ∈ Fε, α ≥ β. Then, by the Equation (3.2.4)

x1α = a and x2α ∈ (b− ε, b+ ε), ∀α ≥ β

Hence the theorem.

On similar lines, the following theorems can be proved.

Theorem 3.2.3. A C2-net {ξα} is Id(L)confluence to the ID-line [Re 1ξ = a, Im 1ξ =

b, Re 2ξ = c]Id if the net {Re 1ξα} is finally stable on ‘a’, the net {Im 1ξα} is fi-

nally stable on ‘b’ and {Re 2ξα} converges to ‘c’.

Theorem 3.2.4. A C2-net {ξα} is Id-Point confluence to the point ξ = (a +

i1b)e1 + (c+ i1d)e2, if the net {Re 1ξα} is finally stable on ‘a’, the net {Im 1ξα} is

finally stable on ‘b’, the net {Re 2ξα} is finally stable on ‘c’ and the net {Im 2ξα}

converges to ‘d’.
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Theorem 3.2.5. The following implications can be proved:

(i) Every Id-Point confluence C2-net is Id(L)-confluence.

(ii) Every Id(L)-confluence C2-net is Id(P)-confluence.

(iii) Every Id(P)-confluence C2-net is Id(F)-confluence.

The converses of these implications are not true, in general.

Proof. In fact, if a C2-net {ξα} is Id-Point confluence to the point ξ = (a +

i1b)e1 + (c + i1d)e2, say, then it is Id(L)-confluence to the ID-line [Re 1ξ =

a, Im 1ξ = b, Re 2ξ = c]Id. Further, a C2-net which is Id(L)-confluence to

[Re 1ξ = a, Im 1ξ = b, Re 2ξ = c]Id is Id(P)-confluence to the ID-plane [Re 1ξ =

a, Im 1ξ = b]Id. Furthermore, a C2-net which is Id(P)-confluence to the ID-plane

[Re 1ξ = a, Im 1ξ = b]Id is Id(F)-confluence to ID-frame [Re 1ξ = a]Id.

an example is discussed below for which Id(F)-confluence C2-net is also Id(P)-

confluence and an example for Id(F)-confluence C2-net which is not Id(P)-confluence.

Example 3.2.1. Consider the directed set (Q+, ≥). Define the C2-net

{ξα} = {(a− xα + α2) + i1(a− (1/α) + α3) + i2(α3 − (1/α)− a) + i1i2(a− xα − α2)},

where {xα} is finally stable on 0, ∀α ∈ Q+.

By the Equation (3.2.1), the net {Re 1ξα} is finally stable on 2a and then converg-

ing to 2a, the C2-net {ξα} is finally in every element of N1 containing the ID-frame

[Re 1ξ = 2a]Id. Thus the net is Id(F)-confluence to the ID-frame [Re 1ξ = 2a]Id.

Also the net {Re 1ξα} is finally stable on 2a and the net {Im 1ξα} is converging

to 2a. So, C2-net {ξα} is Id(P)-confluence to [Re 1ξ = 2a, Im 1ξ = 2b]Id.

Example 3.2.2. Consider the C2-net

{ξα} = {(a− xα + α) + i1((1/α) + α2) + i2(−(1/α) + α2) + i1i2(a− xα − α)},

where ∀α ∈ Q+. By Equation (3.2.1), the net {Re 1ξα} is finally stable on 2a

and {Im 1ξα} converges to 0. Therefore, the C2-net {ξα} is Id(F)-confluence to
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the ID-frame [Re 1ξ = 2a]Id. Note that whilst {Re 1ξα} is converging to 2a, it is

not finally stable on 2a. Thus, C2-net {ξα} is not Id(P)-confluence to any of the

ID-plane contained in the ID-frame [Re 1ξ = 2a]Id.

Definition 3.2.5 (Cauchy C2-Net). A C2-net {ξα}α∈D is said to be a Cauchy

C2-net if the C2-net {ξα−ξβ}(α,β)∈D×D is finally in every neighbourhood U(0) of 0.

Remark 3.2.2. As for Cauchy C2-net {ξα}α∈D, the net {ξα − ξβ}(α,β)∈D×D is

finally stable in every neighbourhood of zero, hence ID-point confluence to zero.

Then the nets {1ξα− 1ξβ}(α,β)∈D×D and {Re (2ξα− 2ξβ)}(α,β)∈D×D are both finally

stable at 0 and the net {Im (2ξα − 2ξβ)}(α,β)∈D×D is converging to zero.

Theorem 3.2.6. A C2-net {ξα}α∈D is a Cauchy C2-net if and only if the net

{ξα − ξβ}(α,β)∈D×D is ID-point confluence at 0.

Proof. Let the C2-net {ξα − ξβ}(α,β)∈D×D be ID-point confluence at 0. Then the

nets {Re (1ξα−1ξβ)}, {Im (1ξα−1ξβ)}, {Re (2ξα−2ξβ)} are finally stable at 0 and

the net {Im (2ξα− 2ξβ)} converges to 0. Since the net {Im (2ξα− 2ξβ)} converges

to 0 in C0 and C0 is a Banach space. Thus, the net {Im (2ξα − 2ξβ)} is a Cauchy

net in C0. Therefore, for each neighbourhood U(0), there exists (γ, δ) ∈ D × D

such that ξα − ξβ ∈ U(0), ∀(α, β) > (γ, δ). The converse is straight forward.

Corollary 3.2.1. Every ID-point confluence C2-net is a Cauchy C2-net.

3.3 C2-Nets and their Projection Nets

This section is dedicated to the study of correspondence between confluence of

C2-nets and the convergence of their projection nets (cf. [78]) in Id(p)-topology.

Theorem 3.3.1. A C2-net {ξα} converges to ξ in Id(p)-topology iff {kξα} is con-

fluence to kξ in Ak, for k = 1, 2.

Proof. If the C2-net {ξα} converges to ξ, then it is finally in every neighbourhood

of ξ with respect to the Id(p)-topology. Note that πk(ξα) = {kξα} in Ak is finally
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in every neighbourhood of πk(ξ), k = 1, 2. Hence the net {ξα} in Ak is confluence

to Ak, k = 1, 2.

The converse is straight forward.

Remark 3.3.1. The related results are not true for any type of ID-confluence

(except Id-Point confluence) of the C2-nets w.r.t. Id(o)-topology on C2. Moreover,

there is a characteristic difference between the confluence of the C2-nets in the

Id(p)-topology and the confluence in the Id(o)-topology in the sense that for any

type of confluence (except Id-Point confluence) of a C2-net with respect to the

Id(o)-topology is not necessarily to have all component nets to be convergent. We

are giving the following results in this frame of reference.

Theorem 3.3.2. If the C2-net {ξα} is Id(F)-confluence to [Re 1ξ = a]Id, then the

net {1ξα} is confluence to the line x = a in A1.

Proof. Assume that the C2-net defined by the Equation (3.2.2) is Id(F)-confluence

to [Re 1ξ = a]Id. Then, the C2-net {ξα} is finally in each element of N1 containing

[Re 1ξ = a]Id. Now, the projection of every K ∈ N1 on A1 is a plane segment

in A1 and then it is a basis element of the lexicographical order topology on A1.

So, {1ξα} is finally in every basis element of lexicographical order topology on A1

containing the line x = a in A1. Hence {1ξα} is confluence to line x = a in A1.

Theorem 3.3.3. If C2-net {ξα} is Id(P)-confluence to the ID-plane [Re 1ξ =

a, Im 1ξ = b]Id, then {1ξα} is confluence to a+ i1 b in A1.

Proof. Suppose that the C2-net {ξα} defined by the Equation (3.2.2), is Id(P)

confluence to [Re 1ξ = a, Im 1ξ = b]Id. Therefore, the C2-net {ξα} is finally in

every member of the family N2 containing [Re 1ξ = a, Im 1ξ = b]Id. Note that the

projection of every member of the family N2 on the auxiliary space A1 is a basis

element of lexicographical order topology on A1 containing the point a + i1 b. So

the projection net {1ξα} is finally in every basis element of lexicographical order

topology on the auxiliary complex space A1 containing a + i1 b. Thus, the net

{1ξα} confluence to a+ i1 b in A1.
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Theorem 3.3.4. If the C2-net {ξα} is Id(L) confluence to the ID-line [Re 1ξ =

a, Im 1ξ = b, Re 2ξ = c]Id, then the projection net {1ξα} converges to a + i1b in

A1 and {2ξα} is confluence to the line x = c in A2.

Proof. Let the C2-net {ξα}, given by the Equation (3.2.2) be Id(L) confluence to

[Re 1ξ = a, Im 1ξ = b, Re 2ξ = c]Id. Then, the C2-net {ξα} is finally in every

member of the family N3 containing [Re 1ξ = a, Im 1ξ = b, Re 2ξ = c]Id. Since,

the projection of every member of the family N3 on A1 is a point a + i1 b. Then,

the projection net {1ξα} in A1 is finally stable at a+ i1 b in A1, so it converges to

the point a + i1 b in A1. The projection on A2 of every member of N3 is a plane

segment in A2, which is a basis element of the lexicographical order topology on

A2. Therefore, the projection net {2ξα} in A2 is finally in every basis element of

the lexicographical order topology on A2 containing the line x = c in A2 . Thus,

the component net {2ξα} in A2 is confluence to line x = c in A2.

Theorem 3.3.5. If the C2-net {ξα} is Id-Point confluence to (a + i1b)e1 + (c +

i1d)e2, then the net {1ξα} converge to a+ i1 b in A1 and the net {2ξα} confluence

to c+ i1 d in A2.

Proof. Let the C2-net {ξα} be Id-Point confluence to the point (a+i1b)e1(c+i1d)e2.

Then, it is finally in every member of the family N4 containing (a+i1b)e1(c+i1d)e2.

So that the projection net {1ξα} in A1 is confluence to the point a+ i1 b in A1 and

the projection net {2ξα} in A2 is confluence to the point c+ i1 d.

Example 3.3.1. Consider the C2-net {ξα} as defined in the Example 3.2.1.

The net {Re 1ξα} converges to 2a and the net {Im 1ξα} converges to 2a but

the nets {Re 2ξα} and {Im 2ξα} are not convergent. Since, the component nets

{Re 2ξα} and {Im 2ξα} are not convergent. Therefore, the projection net {2ξα}

in A2 is not confluence in A2. So the C2-net {ξα} does not converge in the Id(p)-

topology. But the projection net {1ξα} in A1 is confluence to the point 2a+ 2a i1

in A2. Hence the C2-net is I(P) confluence to [Re 1ξ = 2a, Im 1ξ = 2a]Id.
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Example 3.3.2. Define a C2-net {ξα} on the directed set (Q+, ≥) as follows:

ξα = (a− kα) + i1(b− hα + (1/α)) + i2(−b+ hα + (1/α)) + i1i2kα,∀α ∈ Q+,

where {hα} and {kα} are finally stable at 0, ∀α ∈ Q+. The projection net {1ξα}

in A1 is confluence to the point a+2b i1 in A1 and the projection net {2ξα} in A2 is

confluence to the point a+ 0 i1 in A2. Therefore, the C2-net is Id-Point confluence

to the point (a+ 2b i1)e1 + (a+ 0 i1)e2. As, all of the component nets of the C2-net

are convergent. Thus, the C2-net converges to the point (a+ 2b i1)e1 + (a+ 0 i1)e2

in the norm topology, τ1.

Conclusion

The concept of nets is considered as generalization of sequences. By using the

different representations of the bicomplex numbers, three distinct types of nets

known as C2-nets are developed on the bicomplex numbers. The convergence

called confluence in the C0(o)-topology and Id(o)-topology is studied. The product

topological space with the Id(p)topology is constructed as the product of the two

order topological spaces as C2 = A1 ×e A2. The convergence of the C2-nets in

the Id(p)-topology has been studied using the convergence of the components in

C0 space.

� � �
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C2-Nets, C2-Filters and their

Zones of Clustering

This chapter emphasis on the concept of clustering of C2-nets. The clustering

on different types of zones in the bicomplex space have been defined. The main

focus is on C2 equipped with Id(o)-topology, τ6. Further the chapter is divided

into four sections. In section 4.1, the concept of clustering of the C2-nets in the

Id(o)-topology. The conditions for the clustering of C2-nets in different Id-zones

in the Id(o)-topology are discussed in detail. In section 4.2, the Id-confluence and

the clustering of C2-nets, and their C2-subnets is discussed. In this section, the

C2-subnets are defined on the cofinal subsets of the directed sets of C2-nets.

In section 4.3, the topological properties such as compactness, countability and

the homeomorphism of some subsets of the bicomplex space are discussed. It have

been shown that the principal ideals I1 and I2 are nowhere dense subsets of C2 in

the Id(o)-topology. The investigations have been made connecting the clustering

and Id-confluence of the C2-nets, and their C2-subnets. In section 4.4, the concept

of C2-filter is discussed in brief. The Id-confluence of the C2-filters is analogous to

the concept of Id-confluence of C2-nets. Some properties of the C2-filters are also

discussed in detail.

68



Chapter 4: C2-Nets, C2-Filters and their Zones of Clustering

4.1 Clustering of C2-nets in Id(o)-topology

In this section, the concept of clustering of C2-nets and their confluences on various

types of zones in C2 are studied. In this section, the clustering of a C2-net in

different types of zones is defined and investigate the conditions required for the

clustering of the C2-net. One can refer the Definition 3.1.1 for C2-net. Some

definitions about clustering of the C2-nets are as follows:

Definition 4.1.1 (Cofinal Set). A subset K of directed set P is said to be

cofinal in P , if for each α ∈ P , there exists some γ ∈ K such that γ ≥ α

(for details cf. [78]).

Example 4.1.1. The set of integers, Z is a cofinal subset of the set of rational

numbers, Q.

Definition 4.1.2. Let {ξα} be a C2-net. Then

(i) {ξα} cluster on [Re 1ξα = a]Id if for every K ∈ N1 and α ∈ D, ∃ β ∈ D with

β ≥ α such that ξβ ∈ K, and [Re 1ξα = a]Id ⊂ K.

(ii) {ξα} cluster on [Re 1ξ = a, Im 1ξ = b]Id if for every K ∈ N2 and α ∈ D,

∃ β ∈ D with β ≥ α such that ξβ ∈ K and [Re 1ξ = a, Im 1ξ = b]Id ⊂ K.

(iii) {ξα} cluster on [Re 1ξ = a, Im 1ξ = b, Re 2ξ = c]Id if for every K ∈ N3 and

α ∈ D, ∃ β ∈ D with β ≥ α such that ξβ ∈ K and [Re 1ξ = a, Im 1ξ =

b, Re 2ξ = c]Id ⊂ K.

(iv) {ξα} cluster on the point ξ if for every K ∈ N4 and α ∈ D, ∃ β ∈ D with

β ≥ α such that ξβ ∈ K and ξ ∈ K.

Remark 4.1.1. If any C2-net {ξα} is frequently in every member of the family

N4 containing ξ, then it is frequently in every member of the basis B6 of the

Id(o)-topology containing ξ.

Theorem 4.1.1. If the C2-net {ξα} clusters on ξ in the Id(o)-topology, then it

clusters on ξ in the Id(p)-topology.
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Proof. Consider that the C2-net {ξα} cluster on the point ξ = (a+i1b)e1+(c+i1d)e2

in the Id(o)-topology. Let P = ( 1ζ, 1η) ×e ( 2ζ, 2η) be an arbitrary basis element

of the Id(p)-topology containing the bicomplex point ξ = (a+ i1b)e1 + (c+ i1d)e2.

Thus, a+ i1b ∈ (1ζ, 1η) and c+ i1d ∈ (2ζ, 2η). Then for some ε > 0, we have

(c+ i1d− ε, c+ i1d+ ε) ⊂ (2ζ, 2η)

Hence,

K = ((a+ i1b)e1 + (c+ i1(d− ε))e2, (a+ i1b)e1 + (c+ i1(d+ ε))e2)ID ⊂ P

Clearly, K ∈ N4, ξ ∈ K and K ⊂ P . Now as {ξα} clusters on ξ = (a+ i1b)e1 +(c+

i1d)e2 in the Id(o)-topology, it is frequently in every member of N4 containing ξ.

In particular, the C2-net {ξα} frequently in every open ID-line segment containing

ξ. Hence it is frequently in K. So it is frequently in P . Since P is an arbitrary

basis element of the Id(p)- topology containing ξ, then {ξα} is frequently in every

basis element of the Id(p)-topology containing ξ. Therefore, {ξα} clusters on ξ in

the Id(p)-topology.

Remark 4.1.2. The converse for this theorem is not true, in general, i.e. if C2-net

{ξα} clusters on a point ξ in the Id(p)-topology, then it may or may not cluster

on ξ in the Id(o)-topology.

Example 4.1.2. Consider the directed set (Q+, ≥). Define the C2-net

{ξα} =
{
a+ i1(1/α2)− i2(2/α2) + i1i20

}
,∀α ∈ Q+.

Since, both the nets {1ξα} and {2ξα} cluster on a. Then, the C2-net {ξα} clusters

on the point a ∈ C0 with respect to the Id(p)-topology. However, although the net

{Re 1ξα} is stable at a, the net {Im 1ξα} does not attain the value ‘0’, frequently.

Therefore, {ξα} is not frequently in any member of the family N4 containing the

point ‘a’. Hence, it does not cluster on a in the Id(o)-topology.

Theorem 4.1.2. A C2-net {ξα} clusters on an ID- frame [Re 1ξ = k]Id if and

only if k is a cluster point of {Re 1ξα}.
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Proof. Consider that the C2-net {ξα} clusters on an ID-frame [Re 1ξ = k]Id. Then

it is frequently in each P ∈ N1 such that [Re 1ξ = k]Id ⊂ P . Therefore, for given

ε > 0 and ∀ β ∈ D, ∃α ∈ D, α ≥ β such that ∀xp, yp ∈ C0, p = 2, 3, 4, we have

ξα ∈ ((k − ε+ i1x2)e1 + (x3 + i1x4)e2, (k + ε+ i1y2)e1 + (y3 + i1y4)e2)Id,

⇒ k − ε < Re 1ξα < k + ε.

Then, for each β ∈ D, there is some α ∈ D such that

k − ε < Re 1ξα < k + ε.

Hence, a is the cluster point of {Re 1ξα}.

Conversely, let a be a cluster point of the net {Re 1ξα}. Let ε > 0 be given. Then

for each β ∈ D, there exists some α ∈ D, α ≥ β such that

Re 1ξα ∈ (k − ε, k + ε) (4.1.1)

⇒ k − ε < Re 1ξα < k + ε

⇒ (k − ε+ i1x2)e1 + (x3 + i1x4)e2 ≺Id 1ξα e1 + 2ξα e2

and 1ξα e1 + 2ξα e2 ≺ID (k + ε+ i1y2) e1 + (y3 + i1y4) e2

⇒ ξα ∈ ((k − ε+ i1x2)e1 + (x3 + i1x4)e2, (k + ε+ i1y2)e1 + (y3 + i1y4)e2)ID,

∀xp, yp ∈ C0, 2 ≤ p ≤ 4.

Therefore, the C2-net {ξα} clusters on [Re 1ξ = k]Id.

Remark 4.1.3. In view of the above theorem one may intuitively infer its analogue

for clustering on an ID-plane viz., a C2-net {ξα} clusters on the ID-plane [Re 1ξ =

k, Im 1ξ = `]Id if the net {Re 1ξα} attains the value k frequently and ` is the

cluster point of {Im 1ξα}.

However, this result does not hold good in the general setup.
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Example 4.1.3. Let D′ and D′′ be two infinite and disjoint cofinal subsets of D.

Define {ξα} as follows:

(i) Re 1ξα = k, ∀α ∈ D′ and nowhere else.

(ii) Given ε > 0 and given β ∈ D, ∃γ ∈ D′′, γ ≥ β such that Im 1ξγ ∈ (`−ε, `+ε).

Note that D′ and D′′ are disjoint. In particular, this implies there is no member of

D for which both the conditions (i) and (ii) are attained, simultaneously. There-

fore, the C2-net {ξα} cannot cluster on the ID-plane [Re 1ξ = k, Im 1ξ = `]Id.

Theorem 4.1.3. The C2-net {ξα} clusters on [Re 1ξ = k, Im 1ξ = `]Id only if for a

cofinal subset D′ of D such that {Re 1ξα}D′ is stable at k and the net {Im 1ξα}α∈D′

clusters on the point `.

Proof. Suppose that C2-net {ξα} clusters on an ID-plane [Re 1ξ = k, Im 1ξ = `]Id.

Then, the C2-net {ξα} is frequently in every member of N2 containing [Re 1ξ =

k, Im 1ξ = `]Id.

Let ε > 0 be given. Consider a set Fε ∈ N2 defined as

Fε =
{
ξ : Re 1ξ = k, `− ε < Im 1ξ < `+ ε

}
.

Since {ξα} is frequently in Fε, given ε > 0 and given β ∈ D, there ∃α ∈ D, α ≥ β

such that ∀x3, x4, y3, y4 ∈ C0

ξα ∈ ((k + i1(`− ε))e1 + (x3 + i1x4)e2, (k + i1(`+ ε))e1 + (y3 + i1y4)e2)Id,

⇒ Re 1ξα = k and `− ε < Im 1ξ < `+ ε.

Define a subset D′ of D as follows:

D′ =
{
α : α ∈ D,Re 1ξα = k

}
.

Then, D′ is the desired cofinal subset of D.
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If we define a C2-net {ηβ} on D′ as ηβ = ξβ, ∀ β ∈ D′, we see that {ηβ} is a

C2-subnet of {ξα}α∈D. Now, if {ξα}α∈D clusters on [Re 1ξ = k, Im 1ξ = `]Id, then

{Re 1ηβ}D′ is stable at k and the net {Im 1ηβ}D′ clusters on `.

Hence, the above theorem can be reworded as:

Theorem 4.1.4. A C2-net {ξα} clusters on [Re 1ξ = k, Im 1ξ = `]Id only if there

exists a C2-subnet {ηβ} of {ξα} such that {Re 1ηβ} is stable at k and {Im 1ηβ}

clusters on `.

On the similar lines, we can prove the following theorems:

Theorem 4.1.5. A C2-net {ξα} cluster on [Re 1ξ = k, Im 1ξ = `, Re 2ξ = m]Id

only if there is a C2-subnet {ηβ}β∈D′ of {ξα} such that {Re 1ηβ} is stable at k and

there is a C2-subnet {ζγ}γ∈D′′ of {ηβ}β∈D′, for which {Im 1ζγ} is stable at ` and

{Im 2ζγ} clusters on m.

Theorem 4.1.6. A C2-net {ξα} cluster on ξ = (a + i1b)e1 + (c + i1d)e2 only if

there is a C2-subnet {ηβ}β∈D′ of {ξα}α∈D a C2-subnet {ζγ}γ∈D′′ of {ηβ}β∈D′ and

a C2-subnet {ψδ}δ∈D′′′ such that {Re 1ηβ} is stable at a, {Im 1ζγ} is stable at b,

{Re 2ψδ} is stable at c and {Im 2ψδ} clusters on d.

Remark 4.1.4. If a C2-net is confluence to a particular ID-zone (ID-frame, ID-

plane, ID-line or ID-point), then it clusters on that particular ID-zone. The con-

verse of this is not true in the general set up.

Example 4.1.4. Define a C2-net {ξα} on the directed set (Q+, ≥) as follows:

{ξα} =
{

(a+ i1xα)e1 + (b+ i1(1/α2))e2

}
, ∀α ∈ Q+,

where the net {Im 1ξα} = {xα} attains the value 0, frequently. Therefore, the

net {ξα} clusters on the bicomplex point ξ = a e1 + b e2 with respect to the Id(o)-

topology. But as the net {Im 1ξα} is not finally stable at 0, so the C2-net {ξα} is

not ID-Point confluence to ξ .

Remark 4.1.5. For the clustering of the C2-net on different Id-zones, one can

have
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(i) If a C2-net {ξα} clusters on a point (a+ i1b)e1 + (c+ i1d)e2, then it clusters

on the ID-line [Re 1ξ = k, Im 1ξ = `, Re 2ξ = m]Id.

(ii) If a C2-net {ξα} clusters on an ID-line (Re 1ξ = k, Im 1ξ = `, Re 2ξ = c),

then it clusters on the ID-plane [Re 1ξ = k, Im 1ξ = `]Id.

(iii) If a C2-net {ξα} clusters on an ID-plane [Re 1ξ = k, Im 1ξ = `]Id, then it

clusters on the ID-frame (Re 1ξ = k).

Converses of these implications are not true, in general, for obvious reasons.

For any C2-net {ηα}, let L(ηα), ∆(ηα) and ∇(ηα) denote the set

{ζ ∈ C2 : for each neighbourhood V of ζ, the set {α ∈ D : ηα ∈ V } is infinite},

all confluence zones and the set of all cluster zones of {ηα}, respectively. Then

∆(ηα) ⊂ L(ηα) and ∇(ηα) ⊂ L(ηα).

Remark 4.1.6. For any C2-net {ηα}, we have ∆(ηα) ⊂ ∇(ηα)

Theorem 4.1.7. For any C2-net {ηα}, the set ∇(ηα) is closed.

Proof. Let ξ ∈ ∇(ηα), for any neighbourhood U of ξ, we have U ∩ ∇(ηα) 6= ∅.

Assume that ζ ∈ U ∩ ∇(ηα). Select a neighbourhood V of ζ. Then {α ∈ D :

ηαInU} ⊃ {α : ηα ∈ V }. Therefore, ξ ∈ ∇(ηα). Hence proved.

4.2 Confluence and Clustering of C2-nets and their

C2-subnets

In this section, the ID-confluence and clustering of subnets of C2-nets is investi-

gated. Note that various types of C2-subnets may be formed depending upon its

domain. The domains of the C2-net and C2-subnet may be disjoint directed sets

or domain of the C2-subnet may be subset of the domain of the C2-net. In the

later case, there are two possibilities. Either domain of the C2-subnet is cofinal

subset of domain of the C2-net or a proper subset of domain of the C2-net.
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Theorem 4.2.1. If a C2-net {ξα} is ID-Point confluence to ξ, then every cofinal

C2-subnet of {ξα} is also ID-Point confluence to ξ.

Proof. Let {ξα} be a C2-net on the directed set (D, ≥) which is ID-Point conflu-

ence to point ξ. Now, suppose that D′ is a cofinal subset of D. Thus, for every

α ∈ D there exists some λ ∈ D′ such that λ ≥ α. Define a C2-net {ηλ} on the

directed set D′. Clearly, {ηλ} is a cofinal subnet of {ξα}. Therefore, for each tail

Tα of D there is a Tλ of D′ such that for each γ ∈ Tλ there is a δ ∈ Tα such that

{ηλ : λ ≥ γ} ⊂ {ξα : α ≥ δ} . (4.2.1)

Now as the C2-net {ξα} is ID-Point confluence to ξ, the C2-net {ξα} is eventually

in every member of N4 containing ξ. From Equation (4.2.1) we have obtained

that every tail of points of the C2-net {ξα} contains some tail of the points of the

C2-subnet {ηλ} and also D′ is a cofinal subset of D. Therefore, it can be concluded

that the C2-subnet {ηλ} lies eventually in every member of N4 containing the point

ξ. Hence, {ηλ} is ID-Point confluence to ξ.

Theorem 4.2.2. A C2-net {ξα}α∈D clusters on a bicomplex point ξ if there exists

a C2-subnet of {ξα}α∈D which is Id-point confluence to ξ.

Proof. Let {ηβ}β∈E be a C2-subnet of the C2-net {ξα}α∈D, which is Id-point con-

fluence to ξ = (a + i1b)e1 + (c + i1d)e2. We have to show that the net {ξα}α∈D
clusters on ξ. Let U be an arbitrary neighbourhood of ξ and α ∈ D be given. Now

for {ηβ}β∈E as a C2-subnet of {ξα}α∈D, there exists a tail Tβ of E such that (cf.

Definition 3.1.1)

{ηδ : δ ∈ Tβ ⊂ E} ⊂ {ξγ : γ ∈ Tα ⊂ D} (4.2.2)

Since the net {ηβ} is Id-point confluence to the point ξ, there exists a λ ∈ E such

that ∀ δ ≥ λ, ηδ ∈ U . Now consider some µ ∈ E where µ ≥ β and µ ≥ λ. Then

clearly, ηµ ∈ U. Due to Equation (4.2.2), there exists ν ∈ Tα such that ξν = ηµ.
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Thus there corresponds some ν ∈ D such that ξν ∈ U . Since α ∈ D and U are

arbitrary. Then, C2-net {ξα} clusters on the point ξ.

Remark 4.2.1. The converse of this theorem is not true, in general. An example

to explain it as follows.

Example 4.2.1. Let S be a non-empty subset of Q+. Define a set D as follows:

D := {(α, β) : α, β ∈ S} ⊆ Q+ ×c Q+.

Define an order relation as: (α, β) / (γ, δ) if and only if α ≤ γ and β ≤ δ. Then,

D is a directed set. Now, define a C2-net Φ : D −→ C2 as follows:

Φ(α, β) =
1

2

([
1

α

]
+

[
1

β

])
+
i1i2
2

([
1

α

]
−
[

1

β

])
,∀ (α, β) ∈ D,

where [ 1
α

] and [ 1
β
] are integral parts of 1

α
and 1

β
, respectively. This C2-net Φ is

ID-point confluence to ‘0’. Further, define a subset D′ as follows:

D′ =
{

(α, 1) : α ∈ Q+
}
⊂ D

Clearly, D′ is a directed set under the order relation of D. Now, consider δ > 1.

Then for any (λ, δ) ∈ D, there does not exist any element (γ, 1) ∈ D′ such that

(λ, δ) / (γ, 1). Therefore, D′ is not a cofinal subset of D. Now, define a C2-subnet

Φ′ = Φ|D′ of the net Φ as follows:

Φ′(λ, 1) =
1

2

([
1

λ

]
+ 1

)
+
i1i2
2
, ∀ (λ, 1) ∈ D′

Since the net {Re 1ξθ}θ∈D′ is not finally stable on 0. Then, Φ′ is not Id-point

confluence to 0. Also as the C2-net {Re 1ξθ}θ∈D′ does not attain the value 0

frequently, C2-subnet Φ′ of given net Φ does not cluster on 0.

Remark 4.2.2. If the domain of the C2-subnet of given C2-net is not a cofinal

subset of domain of the C2-net, then it is possible that the C2-subnet does not

cluster on the Id-zone even when the C2-net is Id-confluence to that Id-zone.
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Remark 4.2.3. It can be easily verified that the Remark 4.2.2 holds good for

every type of Id-confinement of the C2-net.

4.3 Topological Aspects of Some Subsets of the

Bicomplex Space

In this section, the compactness, countability and the homeomorphism of some

subsets of the bicomplex space is discussed with respect to the Id(o)-topology. We

have also given a result regarding homeomorphism in the Id(o)-topology and the

C1(o)-topology on the bicomplex space. It is proved that the principal ideals I1

and I2 of the bicomplex algebra are nowhere dense and O2 is uncountable subset

of C2 of first category.

Theorem 4.3.1. The principal ideals I1 and I2 of C2 are nowhere dense in the

Id(o)-topology.

Proof. Let ξ be an arbitrary limit point of I1. Then, there exists a C2-net {ξα}α∈D
in I1 which is Id-point confluence to ξ, where D is a directed set. Since, ξα ∈

I1,∀α ∈ D, then 2ξα = 0, ∀α ∈ D. Now, by the Id-point confluence of {ξα}, the net

{Re 1ξα} is finally stable at Re 1ξ, {Im 1ξα} is finally stable at Im 1ξ and {2ξα} is

stable at 0. Then, {ξα} is Id-point confluence to ξ = ((Re 1ξ) + i1(Im 1ξ))e1 ∈ I1.

Hence,

ξ ∈ I1.

Therefore, we have

I1 = I1. (4.3.1)

Now, let ξ = ξe1 be an arbitrary element of I1 and (1ζe1 + 2ζe2,
1ηe1 + 2ηe2)Id be

an arbitrary basis element around ξ. So 1ζ ≺ 1ξ ≺ 1η. If 2ζ and/or 2η are non zero.
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Then, the neighbourhood (1ζe1 + 2ζe2,
1ηe1 + 2ηe2)Id contains some non-singular

bicomplex numbers. But all elements of I1 are singular elements. Therefore,

ξ ∈ (1ζe1 + 2ζe2,
1ηe1 + 2ηe2)ID 6⊂ I1. (4.3.2)

Thus,

(I1)o = ∅. (4.3.3)

The Equation (4.3.2) and Equation (4.3.3) together implies that

(I1)o = ∅. (4.3.4)

Hence, I1 is a nowhere dense subset of C2 in Id(o)-topology. Similarly, it can be

proved that I2 is a nowhere dense subset of C2 in the Id(o)-topology.

Corollary 4.3.1. From the above theorem, the following results are established

in the Id(o)-topology, τ6:

(i) I1, I2 and O2 are closed but not open subsets of C2.

(ii) O2 is uncountable set of first category.

(iii) The set C2 \O2 of regular elements is uncountable dense subset of C2.

Proof. Following assertions are proved .

(i) The Equation (4.3.1) guarantees the closedness of I1. Equation (4.3.3) assures

that the interior of I1 is empty, so is not equal to I1. Hence, I1 is not an open

set. Similarly, I2 and O2 can be shown to be closed but not open sets.

(ii) As O2 is the union of two disjoint nowhere dense sets, so it is of first category.

(iii) Since, no point of O2 is an interior point of O2. Then every point of O2 is a

frontier point of O2 and also frontier a frontier point of C2 \O2. This makes

C2 \O2 an uncountable dense subset of C2 in the Id(o)-topology.

Hence, the proof.
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Lemma 4.3.1. Suppose that S = {ζ = ze1 + we2 : z ∈ A1, w = z−1, 0 ≺ z ≺ 1}.

Any subset of the type (z0e1 +w1e2, z0e1 +w2e2)Id, for 0 ≺ z0 ≺ 1 in C2 contains

at most one point of S.

Proof. We have S = {ζ = ze1 + we2 : z ∈ A1, w = z−1, 0 ≺ z ≺ 1}. Let z0 ∈ C1,

with 0 ≺ z0 ≺ 1. As z0 6= 0, there exists a w ∈ C1 such that z−1
0 = w. Thus, there

exists some ζ = z0e1 + we2 ∈ C2 such that

ζ ∈ (z0e1 + w1e2, z0e1 + w2e2)Id, (4.3.5)

where w1, w2 ∈ A2 and w1 ≺ w ≺ w2. Further, if (z0e1 + w1e2, z0e1 + w2e2)Id is a

subset of C2 such that w ≺ w1, where w = z−1
0 , then

(z0e1 + w1e2, z0e1 + w2e2)Id ∩ S = φ.

Hence proved.

Theorem 4.3.2. The set S = {ζ = ze1 + we2 : z ∈ A1, w = z−1, 0 ≺ z ≺ 1} is a

compact subset of C2 in Id(o)-topology.

Proof. It is sufficient to prove that the set S is closed and bounded subset of on

C2 in the Id(o)-topology. Let

S1 = {z : ζ = ze1 + we2 ∈ S}

Clearly, S is bounded by 0 and 1. Thus, for each w1 in A2, the set S is bounded by

w1e2 and e1 + w1e2 as lower and upper bounds, respectively, i.e., ζ ∈ (w1e2, e1 +

w1e2)Id, where 0 ≺ Re 1ζ ≺ 1. Hence, S is bounded. Now to prove that S is

closed, it is sufficient to prove that Sc is open in C2. For any ξ = z0e1 +w0e2 ∈ Sc,

there are three options given as follows:

(1) z−1
0 6= w0 and z0 ∈ (0, 1).

(2) z−1
0 = w0 and z0 /∈ (0, 1).

(3) z−1
0 6= w0 and z0 /∈ (0, 1).
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Case (1): z−1
0 6= w0 and z0 ∈ (0, 1).

Since both z−1
0 and w0 are elements of A2 (where A2 is a Hausdorff space in

the lexicographic order topology). Then, ∃u1, u2 ∈ A2 such that z−1
0 ∈ (u1, u2).

Similarly, ∃ v1, v2 ∈ A2 such that w0 ∈ (v1, v2) and

(u1, u2) ∩ (v1, v2) = φ. (4.3.6)

So, we have

z0e1 + w0e2 ∈ (z0e1 + v1e2, z0e1 + v2e2)Id.

Now if possible, suppose that (z0e1 + v1e2, z0e1 + v2e2)Id ∩S 6= ∅, then their exists

some ξ = z0e1 + z−1
0 e2 ∈ S such that ξ is contained in (z0e1 + v1e2, z0e1 + v2e2)Id.

But for z−1
0 6= w0 and z0 ∈ (0, 1), we have

ξ = z0e1 + z−1
0 e2 /∈ (z0e1 + v1e2, z0e1 + v2e2)Id.

So, there is a contradiction, hence

(z0e1 + v1e2, z0e1 + v2e2)Id ∩ S = φ.

⇒ z0e1 + w0e2 ∈ (z0e1 + v1e2, z0e1 + v2e2)Id ⊂ Sc.

So that Sc is open subset of C2. Therefore, S is closed subset of C2.

Case (2): When z−1
0 = w0 and z0 /∈ (0, 1). Two sub cases arise as follows:

Either z0 � 0 or z0 � 1.

Sub-case (2.1): Let z0 � 0. If z0 = 0. Then ξ = z0e1 + w0e2 does not exist. So,

z0 6= 0. Now assume that z0 ≺ 0, then for z0(6= 0) ∈ A1, there exist a1, a2 ∈ A1

such that 0 ∈ (a1, a2) and similarly, there exists some w1, w2 ∈ A1 such that

z0 ∈ (w1, w2) and (a1, a2) ∩ (w1, w2) = φ. Also, (0, 1) ∩ (w1, w2) = φ. Therefore,
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w1 ≺ 0 as well as w2 ≺ 0. Hence, for b1, b2 ∈ A2, we have

z0e1 + w0e2 ∈ (w1e1 + b1e2, w2e1 + b2e2)Id ⊂ Sc.

Sub-case (2.2): Let z0 � 1, then either z0 = 1 or z0 � 1. If z0 = 1, then ξ = 1.

So there exists η = e1 + (1/2)e2 and ζ = e1 + (3/2)e2 such that ξ ∈ (η, ζ)Id ⊂ Sc.

If z0 � 1, then z−1
0 (= w0) ≺ 1. Since z0( 6= 1) ∈ A1 and as w0 and 1 ∈ A2. Also, A2

is Hausdorff under dictionary order topology. So, there exists, u1, u2 ∈ A2 such

that w0 ∈ (u1, u2) and similarly, ∃ v1, v2 ∈ A2 such that

1 ∈ (v1, v2) and (u1, u2) ∩ (v1, v2) = φ.

Therefore, we get

z0e1 + w0e2 ∈ (z0e1 + u1e2, z0e1 + u2e2)Id,

and

(z0e1 + u1e2, z0e1 + u2e2)Id ∩ S = φ.

This implies that

(z0e1 + u1e2, z0e1 + u2e2)Id ⊂ Sc.

Case (3): When z−1
0 6= w0 and z0 /∈ (0, 1). As z−1

0 6= w0 and z−1
0 , w0 ∈ A2. Then,

there exists some c1, c2 ∈ A2 such that z−1
0 ∈ (c1, c2). Similarly ∃ d1, d2 ∈ A2 such

that w0 ∈ (d1, d2) and (c1, c2) ∩ (d1, d2) = φ. Therefore one obtains an interval

(z0e1 + d1e2, z0e1 + d2e2)ID such that z0e1 + w0e2 ∈ (z0e1 + d1e2, z0e1 + d2e2)ID

and (z0e1 + d1e2, z0e1 + d2e2)Id ⊂ Sc.

Thus, S is a closed and bounded set. Hence, S is a compact subset of C2.

Theorem 4.3.3. The set S = {(z, sin z−1) : z ∈ (0, 1)} is a compact subset of C2

in Id(o)-topology.
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Proof. We have S = {(z, sin z−1) : z ∈ (0, 1)}.

⇒ S = {(z, sinw) : z ∈ (0, 1), w = z−1}

⇒ S = {ze1 + (sinw)e2 : z ∈ (0, 1), w = z−1}

Since, z ∈ (0, 1). Hence, S is bounded subset of C2 with respect to the `Id-order

relation with lower and upper bounds as w1e1 and e1 + w2e2, respectively . Now

to show S is a closed set. Let ξ = u e1 + v e2 ∈ Sc. Then there are three different

possibilities as follows:

(i) u /∈ (0, 1) and v = sinu−1,

(ii) u ∈ (0, 1) and v 6= sinu−1,

(iii) u /∈ (0, 1) and v 6= sinu−1.

Case (i): u /∈ (0, 1) and v = sinu−1. Now as u /∈ (0, 1). Therefore, either u � 0 or

1 � u. If u = 0, then sinu−1 is not defined. So that u 6= 0. Now consider that u <

0. Since u 6= 0 in A1. Then, ∃ u1, u2 ∈ A1 such that u ∈ (u1, u2). Similarly, there

exists v1, v2 ∈ A1 such that 0 ∈ (v1, v2) and also (u1, u2) ∩ (v1, v2) = φ. Thus,

u e1 + v e2 ∈ (u1 e1 + v1 e2, u2 e1 + v2 e2)Id, (4.3.7)

and

1 + v1 e2, u2 e1 + v2 e2)Id ∩ S = φ. (4.3.8)

Therefore, from Equation (4.3.7) and Equation (4.3.8), we obtain that

ue1 + ve2 ∈ (u1e1 + v1e2, u2e1 + v2e2)Id ⊂ Sc.

Thus, Sc is an open set in C2. So, S is a closed set.

Similarly, we can prove that S is closed if 1 ≺ u.

Case (ii): If u ∈ (0, 1) and v 6= sin u−1. Then, there exists v1, v2 ∈ A2 such

that v ∈ (v1, v2). Similarly, ∃w1, w2 ∈ A2 such that sin u−1 ∈ (w1, w2) and
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(v1, v2) ∩ (w1, w2) = φ. Therefore,

u e1 + v e2 ∈ (u1 e1 + v1 e2, u2 e1 + v2 e2)Id. (4.3.9)

and

(u1e1 + v1e2, u2e1 + v2e2)Id ∩ S = φ. (4.3.10)

Therefore, from Equation (4.3.9) and Equation (4.3.10), we obtain that

u e1 + v e2 ∈ (u1 e1 + v1 e2, u2 e1 + v2 e2)Id ⊂ Sc.

So that Sc is open subset of C2. Hence, S is a closed subset of C2.

Case (iii): If u /∈ (0, 1) and v 6= sin u−1. By the method of case (i), S is a closed

subset of C2. Hence we can conclude that S is a closed and bounded subset of C2.

So, S is a compact subset of C2.

Theorem 4.3.4. The space (C2; τ5) is not homeomorphic to space (C2; τ6).

Proof. If possible, suppose that f is homeomorphism between (C2, τ5) and (C2, τ6).

Case (1): If f is an identity function. Then topologies τ5 and τ6 on C2 are same.

This is a contradiction, as C1(o)-topology and Id(o)-topology are not comparable.

Case (2): If f is a non-identity homeomorphism between (C2, τ5) and (C2, τ6).

Therefore, f is bijective and order preserving functions, i.e., f is one-one, onto

and ξ ≺C1 η. This implies that f(ξ) �Id f(η). This means the space (C2, τ5)

and (C2, τ6) have same topological structures, which is not possible because the

topologies τ5 and τ6 on C2 are not same (cf. [? ]). Hence, the spaces (C2, τ5) and

(C2, τ6) cannot be homeomorphic.

Example 4.3.1. Define a function f : (C2, τ5)→ (C2, τ6) as f(ξ) = ξ, ∀ ξ ∈ C2.

This is an onto function for obvious reasons. Let ξ = (3 + 2i1) + i2(3 + 4i1)

and η = (1 + 2i1) + i2(9 + 7i1). Now, f(ξ) = (7 − i1) e1 + (−1 + 5i1) e2 and

f(η) = (8− 7i1) e1 + (−6 + 11i1) e2. Then, η ≺C1 ξ but f(ξ) ≺Id f(η). So, this is

not an order preserving map. Hence, f is not a homeomorphism.
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4.4 C2-filters and Order Topologies on C2

In this section, the analogous concept C2-filters of C2-nets is studied. The results

of confluence and clustering of the C2-nets and C2-filters are similar. We studied

some new members of the filters and developed the algebraic structure on the set

of all filters on C2.

Definition 4.4.1 (Convergence of a C2-filter). A filter ℘ is said to converge

to a point x if every neighborhood of x contains some member of the filter.

As in Id(o)-topology, we have studied the convergence of the C2-nets with the

concept of ID-confinements. Therefore, in this topology, we shall define the con-

vergence as follows:

Definition 4.4.2 (Id(F)-confinement of C2-filter ). A C2-filter ℘ is said to ID-

frame confined to [Re 1ξ = a]Id if every ID-space segment containing the ID-frame

[Re 1ξ = a]Id contains some member of C2-filter ℘.

In the similar manner, we can define the ID-confinement of the C2-filters to the

ID-plane, ID-line and to a point.

Remark 4.4.1. If F and F ′ are two C2-filters on the same set M, and if F is

a subclass of F ′, then F is said to be coarser than F ′. If τ ′ is finer topology on

M than τ , then neighborhood filter of a point ξ0 relative to τ ′ is finer than then

neighborhood filter of the point ξ0 relative to topology τ .

Definition 4.4.3 (Cluster Point of a C2-filter). A point ξ is said to be cluster

point of a filter ℘ if it is contained in the closure of every member of the filter.

Theorem 4.4.1. A bicomplex point ξ = (a+ i1b)e1 + (c+ i1d)e2 is a cluster point

of the filter F if F is Id-point confluence to the point ξ.

Proof. Consider that the filter F is Id-point confined to the bicomplex number

ξ = (a+ i1b)e1 + (c+ i1d)e2.
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Therefore, every member of the filter containing ξ is contained in some member of

N4 containing the point ξ. So one can say that the point ξ is contained in every

member of the filter F . Therefore, the point ξ is contained in every closure of

every member of filter F . Hence, the point ξ is the cluster point of filter F .

Remark 4.4.2. The converse of the above theorem is not true, in general.

Remark 4.4.3. Let S be the set of all cluster points of the C2-net {ξα}. Then the

collection of all supersets of the set S forms a filter on C2, i.e., the set of all cluster

points of a C2-net is a basis of some C2-filter as the C2-net {ξα} is frequently in

every member of the family containing the elements of the set S.

Remark 4.4.4. Since C0(o)-topology and C1(o)-topology are same. Thus, the

neighbourhood filters of any bicomplex point with respect to these two topologies

are same. As the C0(o)-topology is not comparable to the Id(o)-topology on C2.

Then, the neighbourhood filters of any bicomplex point with respect to these two

topologies are not comparable.

Further, the Id(o)-topology is strictly finer than the Id(p)-topology on C2. So the

neighbourhood filter of any bicomplex point, ξ with respect to the Id(o)- topology

is strictly finer than the neighbourhood filter of the same bicomplex point with

respect to Id(p)-topology.

We define some particular type of subsets of the C2-filters and also give their

properties. We define the product of C2-filters using these subsets.

Definition 4.4.4. Let S be a non-empty subset of C2 and F be a filter on C2.

Then we define some sets as follows:

(i) ξS := {η ∈ C2 : ξη ∈ S}

(ii) SF := {ξ ∈ C2 : ξS ∈ F}

(iii) S?(F) := S ∩ SF .

Note ξ ∈ S if and only if η = 1. Then, S ⊆ ξS.

Lemma 4.4.1. Let S be a non-empty subset of the set of bicomplex numbers, C2

and F , G be any two filters on C2. Then
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(i) ξ η S = η ξ S

(ii) ξ SF = (ξ A)F

(iii) (ξS)?(F) = ξS?(F)

(iv) (SG)F = SGF

Proof. (i) Let S ⊆ C2 and F be a filter on C2.

ξ η S = {ζ ∈ C2 : ξ ζ ∈ ηS}

= {ζ ∈ C2 : η(ξ ζ) ∈ S}

= {ζ ∈ C2 : (η ξ) ζ ∈ S}

= (η ξ)S.

(ii) One can calculate

ξ SF = {ζ : ξ ζ ∈ SF}

= {ζ : (ξ ζ)S ∈ F}

= {ζ : ξ (ζ S) ∈ F}

= {ζ : ζ ∈ (ξ S)F}}

= (ξ S)F

(iii) One can calculate

(ξS)?(F) = ξS ∩ (ξS)F

= ξS ∩ (ξSF)

= ξ(S ∩ SF)

= ξS?(F)
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(iv) One can calculate

(SG)F = {ξ : ξSG ∈ F}

= {ξ : (ξ S)G ∈ F}

= {ξ : ξ S ∈ FG}

= SFG.

Hence the results.

Example 4.4.1. There are some particular examples for the sets given as follows:

(i) e1 I1 = {η ∈ C2 : e1η ∈ I1} = C2

(ii) e2 I2 = {η ∈ C2 : e2η ∈ I2} = C2

(iii) e1 I2 = {η ∈ C2 : e1η ∈ I2} = {0}

(iv) e2 I1 = {η ∈ C2 : e2η ∈ I1} = {0}

(v) e1 A1 = {η ∈ C2 : e1η ∈ A1} = {0}

(vi) e2 A2 = {η ∈ C2 : e2η ∈ A2} = {0}

(vii) e1 A2 = {η ∈ C2 : e1η ∈ A2} = {0}

(viii) e2 A1 = {η ∈ C2 : e2η ∈ A1} = {0}.

Example 4.4.2. Let F = {N4}, be a filter generated by the family N1. Let

S ⊆ I1, then ξS /∈ SF , ∀ ξ( 6= 0) ∈ C2 and SF = {0} if for some ξ, η ∈ C2, with

ξ ≺Id 0 ≺Id η such that (ξ, η)Id ∈ N4.

Conclusion

In this chapter, the concept of clustering of the C2-nets have been developed for the

different Id-zones with respect to the Id(o)-topology. The C2-subnets are defined
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on cofinal subsets of the directed sets. The confluence of these C2-subnets is used

to study the clustering of the C2-nets. The topological properties, particularly

the countability, compactness, denseness and the homeomorphism is studies and

found that the principal ideals I1 and I1 are uncountable nowhere dense subsets

of the bicomplex space in the Id(o)-topology. Further, it has been proved that the

set of singular elements in C2 is a uncountable subset of C2 of the first category.

Also, it is proved that the topological space (C2; τ5) is not homeomorphic to the

topological space (C2; τ6). In the last part of the chapter, the concept of C2-

filter is developed and discussed in detail. Some particular type of subsets of

the bicomplex space are defined using the C2-filters and are explored with some

examples.

� � �
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Chapter 5

Topological-Algebraic Structures

on the Bicomplex Space

In this chapter, the compatibility of the algebraic and topological structures on

the bicomplex space as well as the orderability problem are studied. This chapter

is mainly divided into three sections.

In section 5.1, a space of all bounded C2-sequences, `MC2
is defined by using the

Orlicz function. It is shown that `MC2
is a Banach space. Further, four other

C2-sequence spaces are defined by using the concept of Orlicz function and the

paranorm. The completeness, symmetry and the solidness of these spaces are

discussed in detail. In section 5.2, the concept of summability via C2-nets have

been explored. Some sets of C2-nets are defined, viz., F as set of all bounded C2-

nets, F1 as the set of all convergent C2-nets in the norm topology, F2 as the set of all

Id-confluence C2-nets in the Id(o)-topology, F3 as the set of all Id-point confluence

C2-nets and F4 be the set of all null C2-nets. In particular, we focused on properties

of F. In section 5.3, we studied the orderability condition for convex subspaces of

the topological spaces on C2. Properties for the equivalence of subspace topology

and the induced order topology are also verified in this section.

89



Chapter 5: Compatibility of Topological and Algebraic Structures. . .

5.1 Paranormed C2-Sequence Spaces

Throughout the chapter the notations ω4, c, c0 and `∞C2
are denoting the spaces of

all C2-sequences, convergent C2-sequences, null C2-sequences and all bounded C2-

sequences, respectively. We denote the zero sequence (0, 0, 0, . . . , 0, . . .) by π and

s = {sk} is a sequence of strictly positive real numbers, {s−1
k } = {tk}. By using

the concept of Orlicz functionM, we define the sequence spaces on the bicomplex

space as follows:

`MC2
=

{
{ξn} ∈ ω4 :

∞∑
n=1

M
(
‖ξn‖
K

)
<∞, for someK > 0

}
. (5.1.1)

Lemma 5.1.1. The set `MC2
is a linear space over C1.

Proof. Let {ξα}, {ηα} be two arbitrary C2-sequences in `MC2
. Then for some K1 > 0

and K2 > 0, we have

∞∑
n=1

M
(
‖ξn‖
K1

)
<∞ and

∞∑
n=1

M
(
‖ηn‖
K2

)
<∞. (5.1.2)

Let a, b ∈ `MC2
and K = max{2|a|K1, 2|b|K2}. Then,

∞∑
n=1

M
(
‖a ξn + b ηn‖

K

)
≤ K

∞∑
n=1

M
(
‖ξn‖
K1

)
+K

∞∑
n=1

M
(
‖ηn‖
K2

)
.

Thus, {a ξn + b ηn} ∈ `MC2
. Hence, `MC2

is linear over C1.

Lemma 5.1.2. The function ‖.‖M defined as

‖ξn‖M = inf

{
K > 0 :

∞∑
n=1

M
(
‖ξn‖
K

)
≤ 1

}
(5.1.3)

is the norm on `MC2
.

Proof. Let θ be the null sequence in C2, then M
(
‖θn‖
K

)
= 0, for any K > 0.

Thus, ‖θn‖M = 0. Since, ‖ξn‖ = ‖ − ξn‖, then ‖ξn‖M = ‖ − ξn‖M.
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Let ξ = {ξn}, η = {ηn} ∈ `MC2
. Then there exists K1 > 0, K2 > 0 such that

∞∑
n=1

M
(
‖ξn‖
K1

)
≤ 1 and

∞∑
n=1

M
(
‖ξn‖
K2

)
≤ 1

Assume that K = K1 +K2. Then,

∞∑
n=1

M
(
‖ξn + ηn‖

K

)
≤ K1

K

∞∑
n=1

M
(
‖ξn‖
K

)
+
K2

K

∞∑
n=1

M
(
‖ηn‖
K

)
≤ 1

Then

‖ξ + η‖M = inf

{
K > 0 :

∞∑
n=1

M
(
‖ξn + ηn‖

K

)
≤ 1

}
≤ inf

{
K1 > 0 :

∞∑
n=1

M
(
‖ξn‖
K1

)
≤ 1

}
+ inf

{
K2 > 0 :

∞∑
n=1

M
(
‖ηn‖
K2

)
≤ 1

}
≤ ‖ξn‖M + ‖ηn‖M

Now, let α ∈ C2 \O2. Then

‖α ξn‖M = inf

{
K > 0 :

∞∑
n=1

M
(
‖α ξn‖
K

)
≤ 1

}
= inf

{
K > 0 :

∞∑
n=1

M
(√

2 ‖α‖ ‖ξn‖
K

)
≤ 1

}
= inf

{
‖α‖H > 0 :

∞∑
n=1

M
(
‖ξn‖
H

)
≤ 1

}
= ‖α‖ inf

{
H > 0 :

∞∑
n=1

M
(
‖ξn‖
H

)
≤ 1

}
= ‖α‖ ‖ξ‖M

where H = K/(‖α‖
√

2). Hence proved

Theorem 5.1.1. The space `MC2
is Banach space in the norm ‖.‖M.
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Proof. Let {ξmn } be a Cauchy sequence in `MC2
. Then for all n ∈ N,

‖ξin − ξjn‖M → 0, (5.1.4)

as i, j → ∞. Let for given ε > 0, there exists H > 0 and some k > 0 such that
ε

kH
> 0. Now, by the Equation (5.1.4), there exists some n0 ∈ N such that

‖ξin − ξjn‖M <
ε

kH
, ∀ i, j ≥ n0, ∀n ∈ N.

inf

{
K > 0 :

∞∑
n=1

M
(
‖ξin − ξjn‖

K

)
≤ 1

}
<

ε

kH
.

Therefore, we have

M
(
‖ξin − ξjn‖

K

)
≤ 1.

This implies that

M
(
‖ξin − ξjn‖

K

)
<M

(
kH

2

)

Thus,

‖ξin − ξjn‖ <
kH

2
· ε

kH
<
ε

2
.

Therefore, the sequence {ξmn } is a Cauchy sequence in C2 for all m ∈ N. As we

know that C2 is a modified Banach space, thus the sequence {ξmn } converges in C2.

Suppose that lim
i→∞

ξin = ξn. Thus, by continuity of the Orlicz function, we have

lim
j→∞

∞∑
n=1

M
(
‖ξin − ξjn‖

K

)
≤ 1.

This implies that

∞∑
n=1

M
(
‖ξin − ξn‖

K

)
≤ 1. (5.1.5)
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Then for all i > n0, we have

inf

{
K > 0 :

∞∑
n=1

M
(
‖ξin − ξjn‖

K

)
≤ 1

}
< ε.

Thus, ‖ξin − ξn‖M < ε. So, {ξin − ξn} ∈ `MC2
. Hence {ξn} ∈ `MC2

. This implies that

`MC2
is a complete space. So it is a Banach space.

Note that (C2, ‖.‖) is a normed space by the norm ‖.‖ defined in Equation (1.1.4).

Let M be an Orlicz functions. We define the following Orlicz difference C2-

sequence spaces:

`(C2,M,∆, s, ‖.‖) =

{
{ξn} ∈ ω4 :

∞∑
n=1

[
M
(
‖∆ξn‖
K

)]sn
<∞, K > 0

}
,

c(C2,M,∆, s, ‖.‖) =

{
{ξn} ∈ ω4 :

[
M
(
‖∆ξn − L‖

K

)]sn
→ 0, L ∈ C2, K > 0

}
,

c0(C2,M,∆, s, ‖.‖) =

{
{ξn} ∈ ω4 :

[
M
(
‖∆ξn‖
K

)]sn
→ 0, K > 0

}
,

`∞(C2,M,∆, s, ‖.‖) =

{
{ξn} ∈ ω4 : sup

n

[
M
(
‖∆ξn‖
K

)]sn
<∞, K > 0

}
.

Theorem 5.1.2. The set `∞(C2,M,∆, s, ‖.‖) is linear space over C1 for some

sequence s = {sn} of positive numbers.

Proof. Let {ξn}, {ηn} ∈ `∞(C2,M,∆, s, ‖.‖). Then there exists K1 > 0, K2 > 0

such that

sup
n

[
M
(
‖∆ξn‖
K1

)]sn
<∞ and sup

n

[
M
(
‖∆ηn‖
K2

)]sn
<∞

Let a, b ∈ (C2 \O2) and K = max{2‖a‖K1, 2‖b‖K2}. Then

sup
n

[
M
(
‖a(∆ξn) + b(∆ηn)‖

K

)]sn
≤ k sup

n

[
M
(
‖∆ξn‖
K1

)]sn
+ k sup

n

[
M
(
‖∆ηn‖
K2

)]sn
< ∞
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for some k > |a| and k > |b|. Therefore, {aξn + bηn} ∈ `∞(C2,M,∆, s, q, ‖.‖).

Hence, `∞(C2,M,∆, s, ‖.‖) is a linear space over C2 \O2.

Theorem 5.1.3. For every sequence s = {sn} of strictly positive numbers, the sets

`(C2,M,∆, s, ‖.‖), c(C2,M,∆, s, ‖.‖) and c0(C2,M,∆, s, ‖.‖) are linear spaces.

Proof. The proof is analogous to the previous theorem, hence omitted.

Theorem 5.1.4. The space `∞(C2,M,∆, s, ‖.‖) is paranormed by

p(ξ) = ‖ξ1‖+ inf

{
K

sn
P : sup

n

{
M
(
‖∆ξn‖
K

)
(tn)1/sn

}
≤ 1, K > 0

}
,

where P = max{1, sup sn}.

Proof. For the null C2-sequence θ, we have q(θ1) = 0 and M
(
‖∆θn‖
K

)
= 0 for

any K > 0. Therefore, p(θ) = 0.

Also, p(−ξ) = p(ξ), ∀ ξ ∈ `∞(C2,M,∆, s, ‖.‖).

Now, let ξ, η ∈ `∞(C2,M,∆, s, ‖.‖). Then there exist K1 > 0, K2 > 0 such that

M
(
‖∆ξn‖
K1

)
(tn)1/sn ≤ 1 and M

(
‖∆ηn‖
K2

)
(tn)1/sn ≤ 1

Suppose K = K1 +K2. Then

sup
n

{
M
(
‖∆ξn + ∆ηn‖

K

)
(tn)1/sn

}

≤ K1

K
sup
n

{
M
(
‖∆ξn‖
K

)
(tn)1/sn

}
+
K2

K
sup
n

{
M
(
‖∆ηn‖
K

)
(tn)1/sn

}
≤ 1
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Further,

p(ξ + η) = ‖ξ1 + η1‖+ inf

{
(K)

sn
P : sup

n

{
M
(
‖∆ξn + ∆ηn‖

K

)
(tn)1/sn

}
≤ 1

}
≤ ‖ξ1‖+ inf

{
K

sn
P

1 : sup
n

{
M
(
‖∆ξn‖
K1

)
(tn)1/sn

}
≤ 1

}
+ ‖η1‖+ inf

{
K

sn
P

2 : sup
n

{
M
(
‖∆ηn‖
K2

)
(tn)1/sn

}
≤ 1

}
≤ p(ξ) + p(η)

Let a ∈ (C2 \O2). Then

p(a ξ) = ‖a ξ1‖+ inf

{
K

sn
P : sup

n

{
M
(
a ‖∆ξn‖
K

)
t

1
sn
n

}
≤ 1, K > 0

}
≤
√

2 ‖a‖ ‖ξ1‖+ inf

{
‖a‖(
√

2H)
sn
P : sup

n

{
M
(
a ‖∆ξn‖
K

)
t

1
sn
n

}
≤ 1, H > 0

}

where H = K/‖a‖.

Theorem 5.1.5. `∞(C2,M,∆, s, ‖.‖) is a complete paranormed space for s ∈ `∞(C0).

Proof. Let {ξmn } be a Cauchy sequence in `∞(C2,M,∆, s, ‖.‖). Then for all n ∈ N,

p(ξin − ξjn)→ 0 as i, j →∞.

Let for given ε > 0, there exists H > 0 and some x > 0 such that ε
xH

> 0 and

sup
n

(sn)tn ≤M(xH
2

).

Now for p(ξin − ξjn)→ 0 as i, j →∞, there exists some k0 ∈ N such that

p(ξin − ξjn) <
ε

xH
, ∀ i, j ≥ k0, ∀n ∈ N.

Therefore,

‖ξi1 − ξ
j
1‖+ inf

{
K

sn
P : sup

n

{
M
(
‖∆ξin −∆ξjn‖

K

)
(tn)1/sn

}
≤ 1, K > 0

}
<

ε

xH
,
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⇒ ‖ξi1 − ξ
j
1‖ < ε

xH
and

inf

{
K

sn
P : sup

n

{
M
(
‖∆ξin −∆ξjn‖

K

)
(tn)1/sn

}
≤ 1, K > 0

}
<

ε

xH
. (5.1.6)

This implies that {ξi1} is a Cauchy sequence in C2. Since C2 is a modified Banach

Algebra, then {ξi1} converges in C2. Let lim
n→∞

ξi1 = ξ1. Thus

‖ξi1 − ξ1‖ <
ε

xH
as j →∞.

Now, from the Equation (5.1.6), we have

M
(
‖∆ξin −∆ξjn‖
p(ξin − ξ

j
n)

)
(tn)1/sn ≤ 1.

This implies that

M
(
‖∆ξin −∆ξjn‖
p(ξin − ξ

j
n)

)
≤ (pn)1/tn ≤M

(
xH

2

)
.

Therefore,

‖∆ξin −∆ξjn‖ <
xH

2
· ε

xH
<
ε

2
.

Thus, {∆ξin} is a Cauchy sequence in C2, ∀k ∈ N. Hence, {∆ξin} converges in

C2. Suppose lim
i→∞

∆ξin = ∆ηn, ∀n ∈ N. So, lim
i→∞

∆ξi2 = ∆η1 − ξ1 and in general,

we have lim
i→∞

∆ξin+1 = ηn − ξn, ∀n ∈ N. Hence, by the continuity of the Orlicz

function M, we have

lim
j→∞

sup
n

{
M
(
‖∆ξin −∆ξjn‖

K

)
(tn)1/sn

}
≤ 1,

this implies that

sup
n

{
M
(
‖∆ξin −∆ξn‖

K

)
(tn)1/sn

}
≤ 1,

Let i ≥ k0 and by taking infimum for the values of K > 0, we obtain
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p(ξi−ξ) < ε. So, {ξi−ξ} ∈ `∞(C2,M,∆, s, ‖.‖). Hence, ξ ∈ `∞(C2,M,∆, s, ‖.‖).

Therefore, `∞(C2,M,∆, s, ‖.‖) is complete.

Corollary 5.1.1. `∞(C2,M,∆, s, ‖.‖) is a Banach space for s ∈ `∞(C0).

In the similar manner, we can prove the following theorem:

Theorem 5.1.6. The sequence spaces `(C2,M,∆, s, ‖.‖), c(C2,M,∆, s, ‖.‖) and

c0(C2,M,∆, s, ‖.‖) are Banach Spaces.

Theorem 5.1.7. The Banach spaces c(C2,M,∆, s, ‖.‖), c0(C2,M,∆, s, ‖.‖) and

`∞(C2,M,∆, s, ‖.‖) are not solid.

An example for this theorem is as follows:

Example 5.1.1. Suppose that the Orlicz functionM is an identity function and

sn = 1,∀n ∈ N, K = 1. Consider a sequence {ξ(m)
n } ∈ ω4 given as

ξn = {ξ(m)
n } = {2, 2, 2, . . . . . .}.

Then {αnξ(m)
n } ∈ c0(C2,M,∆, s, ‖.‖). Now let {αn} = {(−1)n}, ∀n ∈ N. Then

{αnξ(m)
n } /∈ c0(C2,M,∆, s, ‖.‖). Thus, c0(C2,M,∆, s, ‖.‖) is not solid. Let

{ξn} ∈ ω4, defined as ξn = {ξ(m)
n } = {n2, n2 + 1, n2 + 2, . . . , }, ∀n ∈ N. Then

{ξ(m)
n } ∈ c(C2,M,∆, s, ‖.‖) as well as {ξ(m)

n } ∈ `∞(C2,M,∆, s, ‖.‖). Now let

αn = (−1)n,∀n ∈ N. Then {αn ξ(m)
n } /∈ c(C2,M,∆, s, ‖.‖) as well as {αn ξ(m)

n } /∈

`∞(C2,M,∆, s, ‖.‖). Also, it is clear that {αn ξ(m)
n } /∈ c0(C2,M,∆, s, ‖.‖). Hence,

spaces c(C2,M,∆, s, ‖.‖), c0(C2,M,∆, s, ‖.‖) and `∞(C2,M,∆, s, ‖.‖) are not solid.

Theorem 5.1.8. The Banach spaces c(C2,M,∆, s, ‖.‖), c0(C2,M,∆, s, ‖.‖) and

`∞(C2,M,∆, s, ‖.‖) are not symmetric, in general.

We gave an example for this theorem as follows:

Example 5.1.2. Let M(x) = x and sn = 2, ∀n ∈ N. Suppose {ξn} = {ξkn}

defined as ξkn = {n, n+1, n+2, }, for all n ∈ N. Then {ξn} is in c(C2,M,∆, s, ‖.‖)

and `∞(C2,M,∆, s, ‖.‖). Consider an rearrangement {ηn} of {ξn} defined as

{ξn} = {ξk1 , ξk8 , ξk2 , ξk27, ξ
k
3 , ξ

k
64, ξ

k
4 , . . . , . . .}
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Then {ξn} /∈ c(C2,M,∆, s, ‖.‖) as well as {ξn} /∈ `∞(C2,M,∆, s, ‖.‖). Hence

c(C2,M,∆, s, ‖.‖) and `∞(C2,M,∆, s, ‖.‖) are not symmetric space. Similarly,

the space c0(C2,M,∆, s, ‖.‖) is not symmetric.

Theorem 5.1.9. Let M1 and M2 be two Orlicz functions with ∆2-condition and

s = {sn} be a bounded sequence of real numbers, then

c0(C2,M2,∆, s, ‖.‖) ⊂ c0(C2,M1 ∗M2,∆, s, ‖.‖)

Proof. Let {ξn} ∈ c(C2,M2,∆, s, ‖.‖). Then there exists some K > 0 such that

[
M2

(
‖∆ξn‖
K

)]sn
tn → 0, as k →∞

Suppose that ηn = M2

(
‖∆ξn‖
K

)
, ∀n ∈ N. Also, M1 satisfies the ∆2-condition,

Then for some 0 < δ < 1, there exists some P ≥ 1 such that

M1(ηn) ≤ P
ηn
δ
M1(2). (5.1.7)

Therefore,

[
(M1 ∗M2)

(
‖∆ξn‖
K

)]sn
tn =

[
M1

(
M2

(
‖∆ξn‖
K

))]sn
tn

= [M1(ηn)]sntn

= max

{
sup
n

([M1(1)]sn), sup
n

([PM1(2)(1/δ)]sn)

}
[ηn]sntn

= → 0, as n→∞

Hence, {ξn} ∈ c0(C2,M1 ∗M2,∆, s, ‖.‖).

Theorem 5.1.10. LetM1 andM2 be two Orlicz functions with ∆2-condition and

s = {sn} ∈ `∞, then

c(C2,M1,∆, s, ‖.‖) ∩ c(C2,M2,∆, s, ‖.‖) ⊂ c(C2,M1 +M2,∆, s, ‖.‖)
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Proof. Let {ξn} ∈ c(C2,M1,∆, s, ‖.‖) ∩ c(C2,M2,∆, s, ‖.‖). Then there exists

some L ∈ C2, K1 > 0 and K1 > 0 such that

[
M1

(
‖∆ξn − L‖

K1

)]sn
tn → 0 and

[
M2

(
‖∆ξn − L‖

K1

)]sn
tn → 0 (5.1.8)

Let K = max{K1, K2}. Then

{[
(M1 +M2)

(
‖∆ξn − L‖

K1

)]sn
tn

}
≤ D

[
M1

(
‖∆ξn − L‖

K1

)]sn
tn

+ D

[
M2

(
‖∆ξn − L‖

K1

)]sn
tn

From the Equation (5.1.8), we obtain, {ξn} ∈ c(C2,M1 +M2,∆, s, ‖.‖). Hence,

c(C2,M1,∆, s, ‖.‖) ∩ c(C2,M2,∆, s, ‖.‖) ⊂ c(C2,M1 +M2,∆, s, ‖.‖)

Analogously, result can be proved for the C2-sequence spaces c0(C2,M1,∆, s, ‖.‖)

and `∞(C2,M1,∆, s, ‖.‖).

5.2 Some Classes of C2-nets and Id(o)-topology

In this section, some classes of C2-nets on the bicomplex space are constructed

and discuss about the summability by the C2-nets in the Id(o)-topology.

Definition 5.2.1 (Bounded C2-net). A C2-net {ξα}D is said to be bounded in

Id(o)-topology, τ7, if there exist some η and ζ such that η ≺Id ξα ≺Id ζ, ∀α ∈ D.

Let us assume that ∆ be a family of directed sets. Let D ∈ ∆ with Card(D) <

Card(C0) be a given directed set. Define some sets of C2-net as follows:

(i) F be the set of all bounded C2-nets.

(ii) F1 be the set of all convergent C2-nets.

(iii) F2 be the set of all Id-confluence C2-nets.

(iv) F3 be the set of all Id-point confluence C2-nets.

(v) F4 be the set of all null C2-nets.
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Remark 5.2.1. The set F2 contains all the Id(F )-confluence, Id(P)-confluence,

Id(L)-confluence an Id-point confluence C2-nets. The C2-nets which are Id(F )-

confluence, Id(P)-confluence and Id(L)-confluence may or may not be bounded.

Example 5.2.1. Consider a C2-net {ξα} on (Q+,≥) as ξα = 2e1 + (1/α + α)e2,

∀α ∈ Q+. Then, C2 is Id(L)-confluence to [Re 1ξ = 2, Im 1ξ = 2, Re 2ξ = 0]Id but

is unbounded as the net {Im 2ξα} is unbounded.

Remark 5.2.2. Every convergent C2-net in norm topology (cf. [72]) and as well

as Id-point confluence C2-net in Id(o)-topology is bounded. Thus, F4 ⊂ F1 ⊂ F

and F3 ⊂ F.

Theorem 5.2.1. The set F is linear space with the algebraic operations:

(i) {ξα}+ {ηα} = {ξα + ηα}, ∀α ∈ D.

(ii) k{ξα} = {k ξα}, ∀α ∈ D and k ∈ C1.

Proof. The proof is straight forward, hence omitted.

Definition 5.2.2. Define a function || . ||F on F as follows:

||ξα||F = max{sup{|1ξα| : α ∈ D}, sup{|2ξα| : α ∈ D}}

Lemma 5.2.1. The function || . ||F on F is a norm.

Proof. We shall verify all the properties of a norm on F. Let us assume that the

C2-net {ξα} = {1ξαe1 + 2ξαe2} ∈ F be a bounded C2-net.

(1) Suppose |1ξα| ≥ 0 and |2ξα| ≥ 0.

⇒ sup{|1ξα| : α ∈ D} ≥ 0 and sup{|2ξα| : α ∈ D} ≥ 0

⇒ max{sup{|1ξα| : α ∈ D}, sup{|2ξα| : α ∈ D}} ≥ 0

⇒ ||ξα||F ≥ 0.

(2) Let max{sup{|1ξα| : α ∈ D}, sup{|2ξα| : α ∈ D}} = 0
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⇔ sup{|1ξα| : α ∈ D} = 0 and sup{|2ξα| : α ∈ D} = 0

⇔ |1ξα| = 0 and |2ξα| = 0, ∀α ∈ D

⇔ 1ξα = 0 and 2ξα = 0, ∀α ∈ D

⇔ ξα = 0, ∀α ∈ D.

(3) Let {ξα}α∈D ∈ F be a bounded C2-net and k ∈ C1. Then

||k ξα||F = max{sup{|k 1ξα| : α ∈ D}, sup{|k 2ξα| : α ∈ D}}

= max{sup{|k| |1ξα| : α ∈ D}, sup{|k| |2ξα| : α ∈ D}}

= |k| max{sup{|1ξα| : α ∈ D}, sup{|2ξα| : α ∈ D}}

= |k| ||ξα||F

Hence the proof.

Theorem 5.2.2. The space (F, || . ||F) is a Banach space.

Proof. Let D be a directed set with card(D) < card(C0). Consider C2-net {ξβα} ∈

F be an arbitrary Cauchy C2-net. Then, there exists some α′ ∈ D such that

‖ξβα − ξγα‖F → 0, ∀ β, γ ≥ α′,∀α ∈ D,

⇒ max{sup{|1ξα − 1ξγα| : α ∈ D}, sup{|2ξα − 2ξγα| : α ∈ D}} → 0,

⇒ sup{|1ξα − 1ξγα| : α ∈ D} → 0 and sup{|2ξα − 2ξγα| : α ∈ D} → 0,

Thus, the nets {1ξβα} and {2ξβα} are Cauchy nets in A1 and A2, respectively. The

spaces A1 and A2 are Banach spaces. Therefore, the nets {1ξβα} and {2ξβα} converges

in A1 and A2, respectively. Assume 1ξα ∈ A1 and 2ξα ∈ A2, ∀α ∈ D such that {1ξβα}

converges to 1ξα and {2ξβα} converges to 2ξα, for β ≥ α′ and ∀α ∈ D. Therefore,

the C2-net {ξβα} converges to 1ξαe1+2ξαe2. Hence, (F, || . ||F) is a Banach space.

Definition 5.2.3. Let D be a directed set. A C2-net {ξα} on D is said to be

monotonically increasing, if α � β implies ξα � ξβ. Similarly, the C2-net {ξα} on

D is said to be monotonically decreasing, if ξα � ξβ when α � β.
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Definition 5.2.4 (Summable C2-net). A C2-net {ξα} in F is said to be summable

if and only if the C2-net {ηα} defined as ηα =
∑
β≥α

ξβ is convergent.

Theorem 5.2.3. Let {ξα} be a C2-net. The following statements are equivalent:

(a) {ξα} is summable.

(b) {1ξα} and {2ξα} are summable.

Proof. Let {ξα} be a summable C2-net. Thus, the net ηα =
∑
β≥α

ξβ is convergent

to η (say) in C2. Then, for given ε > 0, there exists γ ∈ D such that

‖ηα − η‖F < ε

Thus,

max{sup{|1ηα − 1η|}, sup{|2ηα − 2η|}} < ε, ∀α ≥ γ

This implies that

sup{|1ηα − 1η| : α ∈ D} < ε as well as sup{|2ηα − 2η| : α ∈ D} < ε, ∀α ≥ γ

This implies that

{|1ηα − 1η|} < ε as well as {|2ηα − 2η|} < ε, ∀α ≥ γ

Hence the nets {1ηα} and {2ηα} are converging to 1η and 2η, respectively. Also,

ηα = 1ηαe1 + 2ηαe2 =
∑
β≥α

ξβ

=
∑
β≥α

1ξβ e1 +
∑
β≥α

2ξβ e2

Therefore, the nets {1ξα} and {2ξα} are summable in A1 and A2, respectively.

Theorem 5.2.4. If {ξα} and {ηα} are summable C2-nets. Then {ξα + ηα} is

summable C2-net.
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Proof. Let {ξα} and {ηα} be two summable C2-nets, then the C2-nets given by

ξα =
∑
β≥α

γβ and ηα =
∑
β≥α

δβ, ∀α ∈ D,

are convergent. Since ξα = 1ξα e1 + 2ξα e2 and ηα = 1ηα e1 + 2ηα e2, ∀α ∈ D. Thus,

1ξα e1 + 2ξα e2 =
∑
β≥α

1γβ e1 +
∑
β≥α

2γβ e2,

and

1ηα e1 + 2ηα e2 =
∑
β≥α

1δβ e1 +
∑
β≥α

2δβ e2.

Therefore,

(1ξα + 1ηα) e1 + (2ξα + 2ηα) e2 =
∑
β≥α

(1γβ + 1δβ) e1 +
∑
β≥α

(2γβ + 2δβ) e2.

Since, the sum of two convergent nets in Ai, (i = 1, 2) is a convergent net. Hence

by the Theorem 5.2.3, the result can be obtained.

Theorem 5.2.5. If {ξα} is summable C2-net and λ ∈ C1, then {λ ξα} is summable

C2-net.

Proof. Assume that the C2-net {ξα} in F is summable. Then, the C2-net {ηα},

with ηα =
∑
β≥α

ξβ is convergent. Now,

∑
β≥α

λ ξβ = λ ηα = λ 1ηα e1 + λ 2ηα e2. (5.2.1)

Since the nets {1ηα} and {1ηα} are convergent, then the nets {λ 1ηα} and {λ 1ηα}

are convergent in A1 and A2, respectively. Thus, the nets {λ 1ξα} and {λ 2ξα} are

summable in A1 and A2, respectively. Hence, {λ ξα} is summable in C2.
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5.3 Orderability of Topological Structures on C2

In this section, the orderability problem on the bicomplex space is obtained. To

study the orderability problem in the bicomplex space with respect to the topolo-

gies defined by in Section 2.3.

Remark 5.3.1. Since the Id(o)-topology is strictly coarser than the Id(p)-topology

on C2. Then, the Id(p)-topology is not orderable in the interval topology (Id(o)-

topology) on C2.

Remark 5.3.2. The norm topology, complex topology and the idempotent topol-

ogy are all coarser that the Id(o)-topology, so none of these topologies is orderable

in the interval topology (Id(o)-topology) on C2.

We shall now focus on the convex subsets of the bicomplex space for the order-

ability of the subspace space topologies.

Definition 5.3.1 (Convex set). Let < be the linear order on set X. The subset

P is called a convex set in X if (a, b) ⊆ P for every a, b ∈ P with a < b.

Definition 5.3.2. Let Y be a subset of the space X, Then Lim(Y ) denotes the

set of all cluster points of Y .

Also, for G = Lim(Y ) \ Y , we define a set I(ξ) = X ∩ [sup(G ∩ (←, ξ), ξ)]. Note

that for each ξ ∈ X, the set I(ξ) is a convex set in (X,<).

Remark 5.3.3. If P is a convex set in X, and r be any point in X such that

P ∩ (←, r) 6= ∅ and P ∩ (r,→) 6= ∅, then r ∈ P .

Lemma 5.3.1. Let Y be a subset of C2. Suppose that for every ξ ∈ C2 \ Y such

that Y ∩ (←, ξ)Id 6= ∅, Y ∩ (ξ,→)Id 6= ∅ and Y ∩ (←, ξ)Id has maximum element

if and only if Y ∩ (ξ,→)Id has minimum element. Then the subspace topology

τ(C2,≺Id)|Y coincides with the order topology τ(Y,≺Id).

Lemma 5.3.2. Let Y be a convex subset of C2, then the subspace topology

τ(C2,≺Id)|Y coincides with order topology τ(Y,≺Id).
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Proof. Given that Y is convex in C2. Then for every pair of elements ξ, η ∈ C2,

(ξ, η)Id ⊆ Y . And for every ζ ∈ C2 with Y ∩ (←, ζ)Id 6= ∅ and Y ∩ (ζ,→)Id 6= ∅,

ζ ∈ Y . Then Y ∩ (ζ,→)Id has minimal element if and only if Y ∩ (→, ζ)Id has

maximal element. Therefore, the space τ(C2,≺Id)|Y coincides with τ(Y,≺Id).

Example 5.3.1. Since the set I2 is a convex subset of C2 under ≺Id. Thus, the

Lemma 5.3.2 holds good for I2 in Id(o)-topology.

Lemma 5.3.3. Let Y be a subset of C2 such that Y ⊂ lim(Y ) and lim(Y ) \ Y ⊂

(←, supY ). Then τ(C2,≺Id)|Y coincides with the order topology τ(Y,≺Id).

Proof. Let ξ ∈ C2 \ Y . Then Y ∩ (←, ξ)Id 6= ∅ and Y ∩ (ξ,→)Id 6= ∅. As

Y ∩ (ξ,→)Id has a minimal element. Then we claim that Y ∩ (←, ξ)Id has a

maximal element. If possible, suppose that Y ∩ (←, ξ)Id does not have a maximal

element. Therefore, sup{Y ∩(←, ξ)Id} /∈ Y ∩(←, ξ)Id. Let α = sup{Y ∩(←, ξ)Id}.

Then α /∈ Y ∩(←, ξ)Id and α ∈ Lim(Y ). Also α ≺Id ξ. Therefore, α /∈ Y ∩(←, ξ)Id
and α ≺Id ξ, where ξ /∈ Y . So α /∈ Y . This is a contradiction. Hence the proof.

Theorem 5.3.1. Let τ and τ ′ be topologies on C2. Then following properties hold:

(i) If K ⊆ C2, τ |K = τ ′|K and ξ ∈ int(C2,τ)(K) ∩ int(C2,τ ′)(K), then for every

subset V of C2, V is a neighbourhood of ξ in (C2, τ) if and only if it is a

neighbourhood of ξ in (C2, τ
′).

(ii) If there a set S ⊂ C2 and a cover {I(η) : η ∈ S} such that for each η ∈

S, τ |I(η) = τ ′|I(η) and int(C2,τ)(K) = int(C2,τ ′)(K), for every ξ ∈ I(η)intC2,τ

and for every subset V of C2, V is a neighbourhood of ξ in (C2, τ) if and

only if it is a neighbourhood of ξ in (C2, τ
′).

Proof. (i) Suppose thatN is a neighbourhood of ξ in (C2, τ). LetK1 = int(C2,τ)(K).

Then ξ ∈ K1 ⊂ K and N ∩ K1 is a neighbourhood of ξ in τ |K1. As

τ |K1 = (τ |K)|K1 = (τ ′|K)|K1 = τ ′|K1 holds and K1 is open in (C2, τ
′)

and N ∩K1 is a neighbourhood of ξ in (C2, τ
′).
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(ii) It is sufficient to show that both topologies τ and τ ′ are same. For τ ⊆ τ ′, let

V be a neighbourhood of η in τ . Select an element ξ ∈ S and η ∈ I(ξ). By

the given conditions, we suppose that η ∈ I(ξ) \ int(C2,τ)(I(ξ)). Then by the

the assumption, V is a neighbourhood of η in τ ′. Similarly, we have τ ′ ⊆ τ .

Hence the proof.

Conclusion

In this chapter, some C2-sequence spaces are defined using the Orlicz functions.

The properties as linear structures, completeness, solidness of these C2-sequence

spaces are discussed. In particular, the `∞(C2,M,∆, s, ‖.‖) space is analyzed

under the paranorm defined on it. It has been proved that `∞(C2,M,∆, s, ‖.‖) is

Banach space, not solid and not symmetric space. The condition of containment

between different C2-sequence space have also been discussed. The problem of

summability is discussed for different spaces of C2-nets. Further, the concept of

orderability is also analyzed for norm topology, real topology, complex topology

and the idempotent topology. The orderability condition for some convex subsets

of C2 has been discussed in the subspace topology and the induced order topology.

� � �
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In this thesis, the main focus is to study the order topological structures and their

compatibility with algebraic structures on the bicomplex space.

In Chapter 1, the introduction to the quaternions and the bicomplex numbers is

given. The literature of bicomplex numbers have been given in brief. The basic

concepts of the nets, filters and orderability problem are also discussed in this

chapter. Work done by various authors is also reviewed in this chapter.

In Chapter 2, the order topological structures are defined and studied. Firstly,

an order topology on the three dimensional space, C3
0 is defined by using the

lexicographical order relation on it and three order relation namely `(C0)-order,

`(C1)-order and `Id-order are defined using the lexicographical order relation on the

bicomplex numbers in the real, complex and idempotent forms, which are defined

on C2. The order topologies, namely C0(o)-topology, C1(o)-topology and Id(o)-

topology are defined on the bicomplex space by using the order relations. It is also

proved that the C0(o)-topology and the C1(o)-topology are same but the C0(o)-

topology and the Id(o)-topology are not comparable. Two more topologies namely

Id(p)topology and Id(m)-topology are defined and compared with order topologies

and concluded that Id(o)topology is strictly finer than the Id(p)-topology.

In Chapter 3, the net of bicomplex numbers called as C2-net is defined and

the concept of convergence called as C0(F)-confluence, C0(P)-confluence, C0(L)-

confluence and C0-Point confluence are defined. It has been proved that every

C2-net, which is C0-Point confluence is also C0(L)-confluence and every C0(L)-

confluence C2-net is C0(P)-confluence. Also every C0(P)-confluence C2-net is

C0(F)-confluence, but the converse is not true. Id(F)-confluence, Id(P)-confluence,

Id(L)-confluence and the Id-Point confluence are defined in the Id(o)-topology. It
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is also proved that any C2-net {ξα}D is a Cauchy C2-net iff the net {ξα − ξβ}D×D
is Id-point confluence to zero.

In Chapter 4, the different possibilities of the clustering of the C2-nets has been

given with respect to the Id(o)-topology. It is proved that any C2-net cluster on

a point with respect to the Id(o)-topology is also cluster with respect to Id(p)-

topology. But the converse of this implication is not true in some cases. It has

been proved that if any C2-net is Id-point confluence to a point ξ, then every

cofinal C2-subnet of the C2-net is Id-point confluence to ξ. Also, it is proved that

the principal ideals I1 and I2 are nowhere dense subsets of C2 and the set of all

bicomplex singular elements is uncountable set of first category.

In Chapter 5, the compatibility of the algebraic and topological structures have

been discussed. The paranormed C2-sequence spaces such as `(C2,M,∆, s, ‖.‖),
c(C2,M,∆, s, ‖.‖), c0(C2,M,∆, s, ‖.‖) and the space `∞(C2,M,∆, s, ‖.‖) are de-

fined on the bicomplex space. It has been shown that all these spaces are Banach

spaces. It is also proved that the spaces c(C2,M,∆, s, ‖.‖), c0(C2,M,∆, s, ‖.‖)
and `∞(C2,M,∆, s, ‖.‖) are not solid as well as not symmetric. Some classes such

as F, F1, F2, F3, F4 of C2-nets are defined and their respective results are proved for

F. It is proved that C2-net is summable iff both of its idempotent component nets

are summable. In last, orderability problem on C2 was discussed and proved that

real topology, complex and idempotent topology are not orderable in `Id-order.

Future Work

For future work, one can study about the analysis of order topologies, summabil-

ity theory via C2-nets as well as the orderability problem on the bicomplex space.

The summability theory is a very intensive area for research. An idea about the

concept of summability of the C2-nets in the Id(o)-topology was derived. There-

fore, different classes of C2-nets can be studied in the future. The conditions for

the equivalence of different topologies with the lexicographical order topologies

on C2 can be developed. Also, the concept of convex subsets for the orderability

condition in the subspace topologies on subsets of C2 is studied. Therefore, the

general conditions for the orderability of subsets can be developed.
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