"Effect of Sunflower seeds on Hypercholesterolemia, Fatty liver, fasting blood glucose in Diabetes Mellitus type 2 patients"

For the award of

DOCTOR OF PHILOSOPHY (Ph.D.)

IN

(Nutrition & Dietetics)

By

Cheenam Bhatia Registration Number: 11211484

Supervised by

Dr. Leena Parihar

Co-Supervised by Dr. Vikas Kumar

FACULTY OF SCIENCE AND TECHNOLOGY LOVELY PROFESSIONAL UNIVERSITY PUNJAB 2019

DECLARATION

I hereby declare that the report entitled "Effect of Sunflower seeds on Hypercholesterolemia, Fatty liver and fasting blood glucose in Diabetes Mellitus type 2 patients" written and submitted by me to the Lovely Professional University, Phagwara in partial fulfilment of the requirements for the degree of PhD in Nutrition and Dietetics is my own and original work. The work has been conducted under the guidance of **Dr. Leena Parihar** former Assistant Professor in the School of Bioengineering at Lovely Professional University and presently working as Head of Department at Seth G.L. Bihani SD PG College, Sri Ganganagar, Rajasthan and **Dr. Vikas Kumar** Assistant Professor, Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab.

I further declare that my work has not been submitted to this or any other university for the award of any other degree, diploma or equivalent course.

Signed: Cheenam Bhatia

Student Registration Number: 11211484

Date: 22/02/2019

Certificate

This is to certify that the work reported in the Ph.D. thesis entitled "Effect of Sunflower seeds on Hypercholesterolemia, Fatty liver and fasting blood glucose in Diabetes Mellitus type 2 patients", submitted by Cheenam Bhatia at Lovely Professional University, Phagwara, India, is a bonafide record of her original work carried out under my supervision. This work has not been submitted elsewhere for any other degree or diploma.

(Signature of Supervisor) Name: Dr Leena Parihar Head of Department Dept. of Botany Seth G.L. Bihani (PG) College Sri Ganganagar, Rajasthan (Signature of Co- Supervisor) Name: Dr Vikas Kumar Asst. Professor Dept. of Food Technology & Nutrition School of Agriculture Lovely Professional University Phagwara, Punjab

Date: 22/02/2019

ACKNOWLEDGMENT:

Although on the cover of the thesis just my name appears but there are number of people that need to be thanked. I owe my deep gratitude to all those wonderful people who have made the completion of this thesis possible and it's because of them that I will forever cherish my roller coaster experience.

My deepest gratitude is to my guide and in real terms my advisor, **Dr. Leena Parihar**. I am deeply indebted to my advisor who gave me not only the immense support to fulfill my endeavors but at the same time the freedom to explore on my own. **Dr. Parihar** enlightened me on how to express ideas and question thoughts. Her motivation, immense knowledge, patience and support aided me to overpower innumerable critical situations and thus complete my thesis.

My co-advisor, **Dr. Vikas Kumar**, had always been there give an ear to all my problems and thus advice. I am immensely indebted to her for lending me her precious time for long discussions to sort out the technical issues of my study. I am also very grateful to her for carefully reading and rectifying my countless manuscript revisions.

My special thanks go to **Dr. Monica Gulati**, Dean, Lovely School of Pharmacy and pharmaceutical sciences. Her judicious remarks along with her constructive criticisms at each and every stage of my thesis preparation and research were thought-provoking and they helped me widen my perspective and always focus on my research objectives. I will always be grateful to for teaching and inculcating high research standard values in me.

My heartfelt thanks go to **Dr Joinder Singh Panwar**, who has always been very kind and helpful towards me even when my guide Dr Leena Parihar was unavailable. His valuable help always helped me get through the obstacles that came my way.

I would also like to thank my hospital staff who always gave me the right assistance, support and the platform to get through the research work. **Dr H.P. Singh**, the Medical Director of Fortis Escorts Hospital needs a big and special thanks to always support me and help me through my thesis, I will always be indebted to you Sir. **Mrs. Guljeet Dang**, Chief Dietician, Fortis Escorts Hospital Amritsar have always pushed me to work even harder for my goal, hence my heartfelt thanks to her. Also my other colleagues and friends in the hospital especially **Ms Anuradha Sharma** who helped me in my thick and thin time needs to be thanked.

Special thanks to **Dr Harpreet** Asst. Professor Statistics at Sri Guru Ram Das Institute of Health and Medical Sciences for her kind help in data analysis.

None of this however would have been possible without the love and patience of both my families; continuous support from my parents and great motivation from my sister. My father **Mr R.K. Bhatia**, who always motivated me and wanted to see me above all, my mother **Mrs Shashi Bhatia** who although is a housewife herself but taught me to excel in all fields. My elder sister **Mrs Trisha Bhatia** who herself is pursuing PhD from a University in America always believed in me. Most importantly my husband **Mr Jabar Singh Saund** who not just supported me but also made sure I never gave up, no matter how tough the situations might become. My father-in-law **Mr Shamsher Singh Saund** and my mother-in-law **Mrs Jatinder Kaur** need special and heartfelt thanks as without their cooperation this could not have been possible. They made sure that I never deviate from my goal that I had set in my mind even after my wedding.

Last but not the least, I would like to thank almighty God, who has always blessed me and given me the strength to complete my research work.

Cheenam Bhatia

Registration no. 11211484

Table of Contents:

Chapter	Title		
1.	Introduction	3	
2.	Review of literature	7	
2.1	Studies conducted on sunflower seeds	7	
2.2	Effect of food processing (roasting) on the quality attribute of sunflower seeds	10	
2.3	Antioxidant potential of sunflower seeds	11	
2.4	Relationship between diet and diseases	13	
2.5	Product development	17	
2.5.1	Cookies	17	
2.5.2	Biscuits	18	
2.5.3	Physicochemical composition of biscuits and cookies	19	
2.5.4	Phytonutrient Composition of biscuits and cookies	20	
2.5.5	Organoleptic evaluation	20	
3.	Scope of study/hypothesis	22	
4.	Objectives	23	
5.	Materials and methods	24	
5.1	Analysis of tocopherol and phenolic content of sunflower seeds	24	
5.1.1	Raw materials	24	
5.1.2	Sample preparation	24	
5.2.3	Roasting	24	
5.2	Analysis of non-roasted and roasted sunflower seeds	25	
5.2.1	Free Radical Antioxidant Scavenging Capacity	25	
5.2.2	Total phenolic content	26	
5.3	5.3 Effect of sunflower seeds on various biochemical parameters of sample patients (n=300)		
5.3.1	Design of study	28	
5.3.2	Sample selection	28	
5.3.3	Data Collection	28	
5.3.4	Pre-supplementation data collection	28	
5.3.5	Grouping and supplementation	33	

5.4	To prepare and evaluate the sunflower seeds' enriched food product	35
5.4.1	Procurement of raw materials	35
5.4.2	Flour Preparation	35
5.4.3	Experimental Plan	35
5.4.4	Evaluation of functional properties of the sunflower enriched flour	38
5.4.5	Physical evaluation of sunflower seeds enriched cookies	39
5.4.6	Physicochemical composition of cookies enriched with sunflower seeds	39
5.4.7	Total Phenolic Content	42
5.4.8	Antioxidant activity by DPPH Assay	42
5.4.9	Organoleptic evaluation	43
6.	Results and Discussions	44
6.1	Analysis of sunflower seeds	44
6.1.1	Radical Scavenging Capacity (DPPH assay)	44
6.1.2	Total Phenolic content	45
6.2	Effect of sunflower seeds on various biochemical parameters	47
6.3	Comparison of Sunflower Seeds with Regular Medication	63
6.3.1	Cost	64
6.3.2	Side effects	64
6.4	Product Formulation and development of sunflower seeds enriched cookies	65
6.4.1	Functional Analysis of Sunflower seeds enriched flour blends	65
6.4.2	Physicochemical analysis of sunflower seeds enriched flour blends	67
6.4.3	Total phenolic content of sunflower seeds enriched flour blends	69
6.4.4	Antioxidant activity of sunflower seeds enriched flour blends	70
6.5	Analysis of cookies enriched with sunflower seeds	70
6.5.1	Physical analysis of cookies enriched with sunflower seeds	70
6.5.2	Physicochemical analysis of cookies enriched with sunflower seeds	
6.5.3	Total phenolic content of cookies enriched with sunflower seeds	74
6.5.4	Antioxidant activity of cookies enriched with sunflower seeds	75
6.6	Organoleptic analysis of cookies enriched with sunflower seeds	76
6.7	Formulation of capsule with sunflower seeds powder	77

7.	Conclusions	79
8.	References	82
9.	Index	90
10.	Appendix I – General information questionnaire	91
11.	Appendix II – Dietary recall	95
12.	Appendix III – Questionnaire post capsular supplementation of sunflower seeds	97
13.	Appendix IV – Evaluation performa for hedonic rating test of the food products	98
14.	Appendix V - Reference value for the biochemical parameters	99
15.	Appendix VI – Master Sheet	100

LIST OF FIGURES

<u>Fig No.</u>	Title	Page No.	
5.1	Flowchart for preparation and analysis of the sunflower seeds	25	
5.2	Flowchart elucidating design of the study	27	
5.3	Flowchart showing classification of the Case and the Control Group	34	
5.4	Flowchart of cookies' preparation	37	
6.1	Serum cholesterol levels in control group (Group 1)	48	
6.2	Effect of sunflower seeds on serum cholesterol levels (Group 1)	48	
6.3	Serum triglyceride levels in control group (Group 1)	48	
6.4	Effect of sunflower seeds on serum triglyceride levels (Group 1)	48	
6.5	Serum LDL levels in control group (Group 1)	49	
6.6	Effect of sunflower seeds on serum LDL levels (Group 1)	49	
6.7	Serum HDL levels in control group (Group 1)	49	
6.8	Effect of sunflower seeds on serum HDL levels (Group 1)		
6.9	Serum FBS levels in control group (Group 2)	50	
6.10	Effect of sunflower seeds on serum FBS levels (Group 2)		
6.11	Serum HDL levels in control group (Group 2)	51	
6.12	Effect of sunflower seeds on serum HDL levels (Group 2)	51	
6.13	Serum SGOT levels in control group (Group 3)	52	
6.14	Effect of sunflower seeds on serum SGOT levels (Group 3)		
6.15	Serum SGPT levels in control group (Group 3)	52	
6.16	Effect of sunflower seeds on serum SGPT levels (Group 3)	52	
6.17	Serum cholesterol levels in control group (Group 4)	54	
6.18	8 Effect of sunflower seeds on serum cholesterol levels (Group 4)		
6.19	Serum triglyceride levels in control group (Group 4)	54	
6.20	Effect of sunflower seeds on serum triglyceride levels (Group 4)		
6.21	Serum LDL levels in control group (Group 4)	55	
6.22	Effect of sunflower seeds on serum LDL levels (Group 4) 5		
6.23	Serum HDL levels in control group (Group 4)	55	
6.24	Effect of sunflower seeds on serum HDL levels (Group 4)	55	
6.25	Serum FBS levels in control group (Group 4)	56	

6.27Serum SGOT level6.28Effect of sunflower6.29Serum SGPT levels6.30Effect of sunflower	 seeds on serum FBS levels (Group 4) s in control group (Group 4) s seeds on serum SGOT levels (Group 4) s in control group (Group 4) seeds on serum SGPT levels (Group 4) evels in control group (Group 5) seeds on serum cholesterol levels (Group 5) 	56 56 56 57 57 59	
6.28Effect of sunflower6.29Serum SGPT levels6.30Effect of sunflower	e seeds on serum SGOT levels (Group 4) s in control group (Group 4) e seeds on serum SGPT levels (Group 4) evels in control group (Group 5)	56 57 57 59	
6.29Serum SGPT levels6.30Effect of sunflower	s in control group (Group 4) seeds on serum SGPT levels (Group 4) evels in control group (Group 5)	57 57 59	
6.30 Effect of sunflower	evels in control group (Group 5)	57 59	
	evels in control group (Group 5)	59	
6.31 Serum cholesterol l			
	seeds on serum cholesterol levels (Group 5)		
6.32 Effect of sunflower		59	
6.33 Serum triglyceride	Serum triglyceride levels in control group (Group 5)		
6.34 Effect of sunflower	seeds on serum triglyceride levels (Group 5)	60	
6.35 Serum LDL levels	in control group (Group 5)	60	
6.36 Effect of sunflower	seeds on serum LDL levels (Group 5)	60	
6.37 Serum HDL levels	in control group (Group 5)	61	
6.38 Effect of sunflower	seeds on serum HDL levels (Group 5)	61	
6.39 Serum FBS levels i	n control group (Group 5)	61	
6.40 Effect of sunflower	seeds on serum FBS levels (Group 5)	61	
6.41 Serum SGOT level	s in control group (Group 5)	62	
6.42 Effect of sunflower	seeds on serum SGOT levels (Group 5)	62	
6.43 Serum SGPT levels	s in control group (Group 5)	62	
6.44 Effect of sunflower	seeds on serum SGPT levels (Group 5)	62	
6.45 Total Phenolic cont	tent of the flour enriched with sunflower seeds	69	
6.46 Anti-radical activity	y of flours enriched with sunflower seeds	69	
6.47 Effect of incorpora flour (WF) on weig	ation of sunflower seed flour (SSF) in wheat ht of Cookies	72	
6.48 Effect of incorpora flour (WF) on heig	ation of sunflower seed flour (SSF) in wheat the of Cookies	72	
flour (WF) on diam		72	
flour (WF) on Spre	ation of sunflower seed flour (SSF) in wheat ead Ratio of Cookies	72	
	ation of sunflower seed flour (SSF) in wheat phenolic content of Cookies	75	
	ation of sunflower seed flour (SSF) in wheat -radical activity of Cookies	75	
	the cookies prepared from sunflower seeds	77	
	nce of capsular administration of sunflower	78	

Table No.	<u>Title</u>	<u>Page No.</u>	
5.1	Ideal weight for height chart	30	
5.2	Experimental Plan for product formulation	36	
3.3	Composition of various flour blends	36	
5.4	Ingredients used in sunflower seeds enriched cookies preparation	36	
6.1	Free radical scavenging capacity of roasted and non-roasted sunflower seeds	44	
6.2	Total antioxidant and phenolic content of roasted and non-roasted sunflower Seeds	45	
6.3	Correlation coefficients amongst phenolic content and free radical scavenging activity of sunflower seeds		
6.4	Nutritional comparison of Roasted and Non Roasted Sunflower seeds	46	
6.5	Effect of sunflower seeds on cholesterol, triglyceride, LDL and HDL	47	
6.6	Effect of sunflower seeds on FBS and HDL (Group 2)	50	
6.7	Effect of sunflower seeds on SGOT and SGPT (Group 3)	51	
6.8	Effect of sunflower seeds on Cholesterol, Triglycerides, LDL, HDL, FBS, SGOT and SGPT without medicine (Group 4)		
6.9			
6.10	Comparison of natural products with regular medications	64	
6.11	6.11 Effect of sunflower seeds on functional properties of the flour blends		
6.12	Effect of sunflower seeds on proximate composition of the flour blends	68	
6.13	Effect of sunflower seeds on physical characteristics of the cookies	70	
6.14	Effect of sunflower seeds on physicochemical characteristics of the cookies		
6.15	Effect of sunflower seeds on organoleptic attributes of the cookies	76	

LIST OF TABLES

TERMINOLOGY

ABTS	=	2,2-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid)
⁰∕₀	=	Per cent
BMI	=	Body Mass Index
°C	=	Degree Celsius
Chol	=	Cholesterol
CVD	=	Cardiovascular Disease
DM-2	=	Diabetes Mellitus Type-2
DPPH	=	2, 2- Diphenyl-1-picryhydroxyl
EC 50	=	Half Maximal Effective Concentration
et al.	=	And other
FA	=	Fatty acid
FBS	=	Fasting Blood Sugar
g	=	Gram
GAE	=	Gallic acid equivalent
GC-FID	=	Gas Chromatography- Flame Ionization Detector
GC-MS	=	Gas Chromatography- Mass Spectrometry
HDL	=	High Density Lipoprotein
HPLC	=	High Performance Liquid Chromatography
IC 50	=	Half Maximal Inhibitory Concentration
<i>i</i> .e.	=	That is
IHD	=	Ischemic Heart Disease
IPD	=	In Patient Department
Kg	=	Kilogram
LDL	=	Low Density Lipoprotein
LFT	=	Liver Function Tests
mg	=	Milligram
ml	=	Millilitre
mg/100g	=	Milligram per 100 gram
mg/ml	=	Milligram per millilitre
MUFA	=	Monounsaturated Fatty Acids

MS (ESI)	=	Mass Spectrometry (Electro Spray ionization)
-3	=	Omega 3
ത-6	=	Omega 6
OAC	=	Oil Absorption Capacity
OPD	=	Out Patient Department
PUFA	=	Polyunsaturated Fatty Acids
Rpm	=	Rotation per minute
SGOT	=	Serum Glutamic Oxaloacetic Transaminase
SGPT	=	Serum Glutamic Pyruvic Transaminase
t	=	Time
Т	=	Temperature
Tgl	=	Triglycerides
TEAC	=	Trolox Equivalent Antioxidant Capacity
WAC	=	Water Absorption Capacity
yrs.	=	years

Abstract

Objective: The present study was conducted to assess and analyse the effect of sunflower seeds on Hypercholesterolemia, Fatty liver, Fasting Blood Glucose (FBS) in patients with Diabetes Mellitus Type 2

Method: The seeds of sunflower (roasted and non-roasted) were evaluated for different physico-chemical and phytochemical attributes. 300 patients (n=300) were selected for the study and equally segregated into the control and case group. Anthropometric measurements including Weight, Height, and Blood Pressure were recorded along with certain biochemical parameters (Cholesterol, Triglycerides, Low Density Lipoprotein [LDL], High Density Lipoprotein [HDL], Fasting Blood Glucose [FBS], Serum Glutamic Oxaloacetic Transaminase [SGOT], and Serum Glutamic Pyruvate Transaminase [SGPT]) for 6 months pre and post supplementation of 2 gm of roasted sunflower seeds. The seeds of sunflower were also evaluated to study and quantify the tocopherol, phenolic content and antioxidant potential. A product formulation (cookies) has been carried out for the efficient delivery of the sunflower seeds to the patients using different proportions of wheat flour and sunflower seeds.

Result: In case group where the patients were given the intervention of sunflower seeds showed a significant (P<0.01) and a faster decrease in their respective deranged levels as compared to the control group. The total Cholesterol reduced from 254.26 ± 23.40 to $183.40 \pm 3.01 \text{ mg/dl}$; LDL from 155.26 ± 8.48 to $122.70 \pm 2.94 \text{ mg/dl}$; triglyceride from 236.10 ± 23.18 to $143.20 \pm 7.30 \text{ mg/dl}$; FBS from 179.40 ± 19.36 to $109.50 \pm 5.19 \text{ mg/dl}$; SGOT from 87.33 ± 13.11 to 39.81 ± 2.10 (u/l), and SGPT from 139.90 ± 25.20 to 46.66 ± 5.24 (u/l) were significantly reduced. In addition, a good increase was also observed in the HDL (the good cholesterol) which is known to be a heart healthy lipoprotein; it increased from 34.56 ± 3.8 to $42.30\pm1.5 \text{ mg/dl}$. A formulation of 80:20 (Wheat: sunflower seeds flour) revealed good score for the physico-chemical, phtyo-chemical and organoleptic parameters.

Conclusion: The study showed that the sunflower seeds can be used as an adjuvant in treating the biochemical parameters like Lipid Profile, Liver Function tests and blood sugar levels in patients with diabetes type-2. The recipe of the developed product can be used for the effective delivering of the sunflower seeds.

Sunflower is a tall, erect, efflorescent plant gown annually. It belongs to the genus, *Helianthus* and family *Asteraceae*. Not just the flower has been put to use for the decorative or ornamental purpose since the earlier times but its' seeds also consist of an array of benefits (Albert *et al.* 1997). The head of the flower consists of numerous oils seeds which are edible and energy dense (National Sunflower Association 2011).

The crusty seeds of sunflower are an eminent source of calories, certain minerals and vitamins along with EFAs i.e. essential fatty acids. The seeds are used worldwide for the edible oil extraction. They can also be eaten as it is like tasty and delicious snack (Ensminger *et al.* 1983). The external surface of the seed i.e. hull has grey white coloured stripes on a black coat. Inside the seed is a kernel present that is edible. As a result of the presence of high oil content sunflower seeds are an opulent source polyunsaturated oil (Ensminger *et al.* 1983). The seeds are energy dense; around 584 calories are present in 100 g of the seeds. Also, they supply good quantities of various nutrients; vitamins, minerals and antioxidants.

The seeds have been known to be a great source of the fat soluble vitamins like Vitamin E that acts as a major antioxidant for the body. Vitamin E helps in preventing damage from the free radicals by neutralizing them that otherwise would damage molecules and structures containing fat, as like cell membranes, brain cell, and cholesterol (Zabaniotou *et al.* 2008). In addition to being an excellent source of some essential fatty acids like linoleic acid, the eminent seeds also provide tryptophan an essential amino acid, dietary fiber, certain B Vitamins. Additionally, they are also a rich source of certain phytosterols which are known for their cholesterol lowering action. Apart from these, the glycaemic index of the sunflower seeds have also been found out to be low, making it fit as a snack for the diabetic patients (Arcangelo *et al.* 2002).

Some of the important poly-phenols present in sunflower seeds that are supposed to be beneficial are chlorogenic acid, quinnic acid and caffeic acid. They help to remove the harmful free radicals (oxidant molecules) from the body being the natural antioxidants and hence help the body to get rid of them (Krimer *et al.* 2011). The sunflower seeds also are a

phenomenal source of certain essential minerals. Copper, Zinc, Iron, Selenium, Manganese, Calcium and Magnesium are widely present in the sunflower. Most of the minerals present in the seeds help in RBC production, bone mineralization, production of hormones, enzyme synthesis, skeletal regulation, metabolic activities of cardiac muscle (Wood *et al.* 1988).

In the relative study, the sunflower seeds' effects have been analyzed and evaluated on patients with diabetes type 2, Hypercholesterolemia and fatty liver grade I. The action of the sunflower seeds on the blood sugar levels, lipid profile, and liver function tests of the patients have been evaluated. The blood glucose evaluations include – Fasting Blood Glucose (FBS); LFT (Liver Function Test) include –Serum Glutamate Oxaloacetic Transaminase (SGOT), Glutamic Pyruvate Transaminase (SGPT). The lipid profile evaluations include – Total Cholesterol, Triglycerides, LDL (Low Density Lipoprotein), HDL (High Density Lipoprotein).

Diabetes Mellitus type-2 (non-insulin dependent diabetes; NIDDM) is one very common ailment of metabolism which has been most commonly identified by hyperglycaemia (high blood sugar) due to deficiency of insulin or insulin resistance (Kumar *et al.* 2005). The main indicators of NIDDM are Polyuria (recurrent urination), Polydipsia (excessive thirst) and Polyphagia (constant hunger). Apart from these, there also occur headache, blurring of vision, tiredness, delayed wound healings, and pruritus in this metabolic disorder. Prolonged hyperglycaemia can lead to complications like diabetic nephropathy, diabetic retinopathy, diabetic neuropathy, stroke, cardiovascular diseases etc. There are specific types of skin rash known as diabetic dermadromes occurring sometimes in diabetes. Being overweight or obesity are two major reasons that lead to Diabetes mellitus (Smyth *et al.* 2006).

According to the 2010 census there has been a massive increase in the people suffering from diabetes than as compared to the census of 1985. Very precisely around 285 million people were found diabetic in 2010 in comparison to the 30 million diabetic patients in 1985. The patients suffering from diabetes also exhibit a poor flow of blood to its extremities which in some cases result in the surgical removal of the affected area. Apart from all the above mentioned ketoacidosis is another major complication taking place in patients with diabetes (Fasanmade *et al.* 2008).

Similar to diabetes, cardiovascular disease (CVD) has now become the leading cause of mortality in India. Premature mortality in terms of years of life lost because of CVD in India has increased by 59%, from 23.2 million to (1990) to 37 million (2010). Despite wide heterogeneity in the prevalence of cardiovascular risk factors across different regions, CVD is emerged as a leading cause of death in all parts of India (Niharika 2016). CVD occur as a result of deranged serum lipid levels also known as dyslipidemia for long periods of time. Hence if the serum lipid levels are taken care of the prevalence of CVD can also be brought under check (Dorairaj *et al.* 2016).

Cholesterol: the main culprit, is a fat like substance of waxy consistency; that is not just present in certain foods (like meat, egg yolk, poultry, dairy products, fish) but also produced in the body itself. Some amount of cholesterol is required by the body to make some hormones, build membranes of cells and produce some compounds that take part in fat digestion. Accumulation of excessive amounts of cholesterol in blood leads to an increased risk of development of any cardiac disease in that person (Austin et al. 2004). The hypercholesteraemic patients pose a higher risk of suffering from any cardiac disorder or any cardiovascular disease. The accumulation of cholesterol particularly occurs in the coronary arteries that supply blood to the heart. The abnormal cholesterol build-up in the artery walls narrows and hardens the arteries as it forms clumps known as the plaque in it. With the increase in the size of the clumps, clogging occurs in the arteries restricting the blood flow to the heart leading to angina a form of acute chest pain and proceeds to a condition called myocardial infarct commonly known as the heart attack (Austin et al. 2004). The cholesterol being insoluble in water needs to be transported in the blood plasma with lipoproteins which are specific protein particles. The lipoproteins can be classified into four types by their existing density: HDL, IDL, LDL and VLDL which can be elaborated as high, lipoprotein, low and lipoprotein respectively (Wooten et al. 2004).

Fatty liver disease which is commonly known as fatty liver is a health condition that can be reversed, if in its initial stages. Fatty liver disease (NAFLD) is a distinct hepatic condition and one of the most common causes of chronic liver disease globally. Prevalence of the disease is estimated to be around 9-32% in the general Indian population, with a higher incidence rate amongst obese and diabetic patients (Kalra *et al.* 2013). In this condition molecules of triglyceride or fat get deposited in the cells of liver as a result of steatosis, a process which includes abnormal deposition of fats in the cell. The condition also relatively influences the metabolism of fat in the body (Reddy *et al.* 2006). As a result of fat deposition in the liver a condition known as steatohepatitis occurs in some patient's i.e. relative inflammation of the liver (hepatitis). In cases where fatty liver occurs as a result of alcohol intake, the health condition is known as alcoholic fatty liver disease (AFLD) or steatosis. The other forms of fatty liver are termed as Non-alcoholic steatohepatitis (NASH) (if it is not due to alcohol) or alcoholic steatohepatitis (Reddy *et al* 2006).

The early symptoms of fatty liver include: fatigue, anorexia, loss of weight, weakness, lethargy, nausea, poor concentration and confusion. If not taken care on time it may proceed to critical conditions like cirrhosis of liver, Hepatic Coma, Hepatic Encephalopathy etc. These diseases possess clusters of fatal symptoms in it as it is (Gramlich *et al.* 2004).

Talking about the general medicines which are used to treat such metabolic disorders they accompany an array of side effects. The most commonly used such medicines include Avas, Lovastatin, Glycomet etc. The side effects may include abdominal distension, gastritis, headache, sexual problems, nausea in certain cases and most importantly dependency. The word dependency can be elaborated as- the blood sugar or lipid profile remain under control till the time medicine is being consumed or otherwise the levels become deranged and hence in some cases the medicines have to be continued lifelong. Hence, countering the epidemic requires development of strategies like the formulation and effective implementation of evidence based policy, reinforcement of health system, and treatment with the use of both conventional and innovative techniques.

As per the plan of the study, using the available strategies in the nutritional sciences and a food-based approach, a product (Cookies) was formulated using sunflower seeds in combination with other integral products for its easy dispersion to the patients. Keeping in mind the nutritional attributes of sunflower seeds, different flour blends were used to design and develop healthy sunflower based cookies made from these blends. The result obtained was put to use for the nutritional therapeutic purpose. *Helianthus annus* the botanical name for sunflower seeds; it is a member of the genus *Helianthus* and family *Asteraceae* (National Sunflower Association 2011). The seeds produced by sunflower are widely considered as seeds with a good nutritive value and are easily available all over India (Philips *et al.* 2005). The metabolic disorders like diabetes, CVD, fatty liver etc. these days are creating a menace Hence, countering the epidemic requires development of strategies like the formulation and effective implementation of evidence based policy, reinforcement of health system, and treatment with the use of both conventional and innovative techniques. Many studies have been done on sunflower seeds, its health benefits, processing, and nutritive value. Thus the topic of the present study has been reviewed under the following headings

2.1 Sunflower seeds and its composition

Sunflower (*Helianthus annus* L.) with a good stability and an opulent PUFA content makes it world's leading oilseed crops. After the soybean oil it's the sunflower oil that ranks second in world in the vegetable oil production. Whole sunflower kernels can be incorporated into human food formulations (Robertson *et al.* 1975). Tocopherols are the most important compounds having antioxidant activity in sunflower seeds (Velasco *et al.* 2002). Amongst the oilseed crops sunflower has been claimed to be very important and in the world ranks amongst one of the best vegetable oils with a very novel nutritional quality. Generally about ninety percentile of fatty acids are unsaturated in the general sunflower oil composition. They are linoleic and oleic fatty acids. Palmitic, stearic and small quantities of myristoleic, myristic, arachidic, behemic, palmitoleic along with other fatty acids contribute to remaining 10%.

A research was conducted by Katherine *et al.* (2001) on the usually consumed seeds and nuts in United States regarding the quantification of phytosterols. Acid hydrolysis followed by alkaline saponification of the lipid extracts was done. With the help of capillary GC-FID and GC-MS the free sterols were analysed as trimethyl derivatives. Amongst all, the phytosterol content was found to be highest in wheat germ and sesame seeds about (400-413)

mg/100g) whereas Brazil nuts were reported with the lowest (95 mg/100 gm). Pistachios and sunflower seed kernels the most commonly consumed snack foods in US were also reported with good amounts of ranging from 270-289 mg/100gm.

The sunflower genotypes and the content of tocopherol and phenols was investigated in the same by Zilic *et al.* (2010). In this study, the tocopherol (α , β , γ) and the phenolic compound content along with the DPPH radical scavenging activity were analyzed in the seeds and kernels of 3 sunflower hybrids. With the help of HPLC method, 6 different phenolic compounds were identified. The most opulent phenol was found out to be Chlorogenic acid which showed a strong correlation with the total phenols (r=0.93). Other major phenolics found have been ferulic acid, rosmarinic acid, caffeic acid, rutin, and myriceti. Now as compared to the seeds the total tocopherols were found out to be substantially higher in the kernels (P<0.05) in all the sunflower hybrids. The concentrations of tocopherols in sunflower seeds and kernels ranged from 200.56 to 220.04µg/g and from 255.52 to 268.49µg/g respectively, where α -tocopherol had been found to be most abundant amongst the sample. Accordingly, it was deduced that sunflower kernels had a higher DPPH scavenging activity, and a higher nutritive value than sunflower seeds.

The effect of powdered safflower seed and sunflower seeds on total cholesterol level in the rats that were fed on high fat and high cholesterol diets was studied by Moon *et al.* (2001). A high cholesterol diet (1%, weight/weight) or diet high in cholesterol augmented with the powder of sunflower seeds (5% weight/weight; SSP) or extract of sunflower seeds and ethanol (0.15% weight/weight; SSE) or water extract with safflower seeds (0.5% weight/weight; SSW) were administered to male rats for a time period of about 5 weeks. It was found that all the compositions of the safflower seed considerably reduced the concentration of total cholesterol; on contrary the SSE and SSW supplementations that lowered the plasma triglyceride concentration. In the SSW group the plasma hepatic cholesterol contents were found to be considerably lesser with regard to the control group, on contrary in both the cases the triglyceride hepatic content had been found to be markedly lesser. It was also analysed that, the hepatic HMG-CoA functions had been considerably raised in the two groups SSE and SSW groups in comparison to the remaining both groups. As per the results it becomes indicative that the SSE and SSW administration had proven to be potent improvising the risk of arthrosclerosis in the rats which were administered with diets high in cholesterol.

Flaxseeds, wheat germ, sunflower seeds, buckwheat along with twenty eight plant products were selected and their total phenolic content and antioxidant activities were analysed by Veliogulu *et al.* (1998). Folin-Ciocalteu method was used to determine the phenolic content. Phenolic content was determined to be varying from 168 to 10549 mg/100 g of dry product. β -carotene bleaching method had been utilised to evaluate the antioxidant activity of the methanolic extract being expressed as AOX (log A₄₇₀/min), A4 (percent inhibition relative control), ORR (Oxidation Rate Ratio), and ACC (Antioxidant Activity Coefficient) varied from 0.05, 53.6, 0.009, and 51.7 to 0.26, 99.1, 0.46, and 969.3, respectively. Amongst the antioxidant activities and the total phenolic content the correlation coefficient came out to be statistically significant.

The outcome of intake of different types of fat on cholesterol levels in the blood serum was investigated by Bronte *et al.* (1956). 2 European men with high serum cholesterol initially along with 1 Cape Coloured man and 5 Bantu men with low serum cholesterol level initially were given diets added with several fats and oils. The diet of the 2 Europeans comprised of 50 g of fat daily mainly from the animal origin whereas the diet of the 6 Non Europeans comprised of a low fat content. The serum cholesterol and serum lipoprotein were recorded along with the cholesterol content of the faeces. It was found out that beef muscle, beef drippings, butter, and hydrogenated groundnut oil caused a raise in the serum cholesterol levels.

A cross over double-blind study was directed by Barham *et al.* (1998) to analyse the effects of sunflower seeds and whole flax seeds on the lipid profile of the post-menopausal women as a part of their diet. 38 postmenopausal women were selected with mild, moderate or severe hypercholesterolemia. They were randomly assigned the 6-week period with two regimens: flaxseeds or sunflower seeds. Either treatment provided to the subjects comprised of 38 g in breads and muffins. After six weeks of supplementation a two week washout phase was conducted. Post the washout phase the subjects were switched. The Blood samples were collected at the start and then 6, 8 and 14^{th} week of the study. For both the treatments significant reductions (p < 0.01) in total cholesterol were recorded (6.9 and 5.5% for flaxseed

and sunflower seed, respectively). The cholesterol lowering effects of the sunflower and flax seeds were attributed to the presence of α -linolenic acid or the linoleic acids, the non-protein constituents in the seeds along with total and soluble fiber.

2.2 Effect of food processing (roasting) on the quality attribute of sunflower seeds

Roasting is a common cooking method that incorporates dry heat method, usually practised at 140-400°C. This method of cooking prepares food with radiating heat and also by convicting heat through forced air (Singh *et al.* 2016). This is basically a short time and a high temperature procedure (Mayer *et al.* 1985). Roasting results into drying that further leads to a reduction in the moisture content. The moisture diffusion occurring at a high temperature causes puffing and hence a crisp texture. With the decrease in the moisture content the shelf life of food, seeds or grains increases as the water activity is also decreased. The colour, flavour and odour evolved during roasting in the food product give a characteristic appearance and taste to it (Sharma *et al.* 2011).

One appliance that is nowadays found in majority of houses is the Microwave oven. The microwaves are used widely by masses these days for reheating as well as cooking certain foods. The principle used by microwaves is heating through interaction of electric component of the electromagnetic field with the polar molecules. As and by the polar molecules strive to position in the oscillating field the heat is generated (Burfoot *et al.* 1990). The microwave provides many advantages for industrial as well as home cooking, thawing, baking, pasteurization, sterilization, tempering and blanching (Decareau *et al.* 1985). Microwave energy works instantaneously with penetration and heating of food (Mudgett *et al.* 1989; Watanabe *et al.*1998).

The roasting of sunflower seeds was performed in a study by Fozia *et al.* (2005). 10 g of sunflower seeds were placed uniformly in pyrex-petri dishes. They utilised a consumer-model microwave oven for the experiment. The roasting was conducted for 5, 10 and 15 min at 2450 MHz frequency (oven adept of generating 500 W and medium power setting). Once the roasting was completed the sunflower seeds were kept at an ambient temperature to cool, post to which they were intensively mixed before the crushing and oil extraction. In another study, Farooq *et al.* (2005) studied the impact on the sunflower seed composition of microwave heating. They also explored the oxidative stability changes, Fatty Acid distribution and

tocopherol content of the sunflower oil. Two varieties KL-39 and FH 330 of sunflower seeds were taken and extracted with n-hexane. In their experiment, a significant difference (P<0.05) in the oil content of seeds was observed. However, content of protein and fiber depicted no change in the oilseed residue. Although, a significant (P<0.05) decrease in the tocopherol amount was found but still around 76-81% of α -tocopherol was detected in it even after 15 min of roasting. Microwave heating in regard to the FA composition lead to decrease in linoleic acid 17-19% and an increase in oleic acid 16-42%, while the content of palmitic and stearic acid remained unaffected.

In an experiment Yoshida *et al.* (1999) analysed the oxidative stability and the tocopherol content in the oils prepared from soybean conducted roasting of whole soybeans. 12.0 cm diameter pyrex-petri dishes were taken. The beans were placed uniformly in a single layer. Next they covered the petri dishes, and placed them in the microwave oven on its glass rotating plate (model R-5550; Sharp, Osaka, Japan). In turntable mode, beans were roasted for six, eight, twelve and 20 minutes respectively. To prepare a full fat soy flour without any burnt odour roasting for about 6-10 min was found to be favourable. In another study– to analyse the functional and antioxidant properties of chick pea (Cicer arietinum), post to its exposure to the microwave roasting (Jogihali *et al.* 2017) performed the roasting of chickpeas seeds. The seeds were soaked in water for 45 minutes at room temperature (Ratio being; water: seeds =2:1). Post to this they were air-dried in open for 10 minutes. The treated chickpeas at different powers (450, 600 and 900W) for 5, 10 and 15 minutes were then roasted in microwave oven. Post to this the roasted and non-roasted chickpeas were converted to a flour using hammer mill.

2.3 Antioxidant potential of sunflower seeds

Antioxidants are considered to be additives in the food industry as they play a major role in reducing oxidation of food components, specifically that of lipids. The process of oxidation results in deterioration of the quality of food as well as its shelf life (St Angelo *et al.* 1996). The antioxidants are treated to be of a high importance even in the living organisms since they interfere and hence prevent the formation of excessive free radical in cells. These free radicals if present in excess may cause degradation and deterioration of the biologically important molecules and thus result in progression of various diseases. It is the oxidative processes that results in onset of various infectious diseases, diabetes, cancer, rheumatoid

diseases, arthritis, eye issues, respiratory diseases, atherosclerosis etc. (Temple *et al.* 2000). Among various plant products, the eminent sunflower seeds have been found out to possess a high antioxidant potential. In comparison to other vegetables oils, sunflower oil was found out to be rich in α -tocopherol (Schmidt *et al.* 2005).

Antioxidant activity and the phenolic compound profiles of six fractions (I-VI) of sunflower seed extract was analysed by Magdalena *et al.* (2012). The HPLC-MS (ESI) analysis method was applied for the qualitative and quantitative analysis of the fractions for its phenolic compounds profiles. In terms of their ability to scavenge DPPH and ABTS and also in terms of their ability to reduce Fe3⁺ferricyanide complex to the ferrous form which was expressed as TEAC, EC50, and the reducing power values the antioxidant activity of the fraction were studied respectively. Their experiment showed a pragmatic result as in a positive correlation was obtained between the antioxidant activity and the phenolic content of the individual fraction.

The antioxidant activities and total phenolics of 28 plant products, including sunflower seeds, flaxseeds, wheat germ, buckwheat and several fruits, vegeatbles and other medicinal plants were determined by Velioglu *et al.* (1998). The total phenolic content, determined according to the Folin-Ciocalteu method varied from 169 to 10548 mg/100g of dry product. Antioxidant activity of methanolic extract evaluated according to β -carotene bleaching method expressed as AOX ($\Delta \log A_{470}$ /min), AA (percent inhibition relative to control), ORR (Oxidation Rate Ratio) and AAC (Antioxidant Activity Coefficient) ranged from 0.05, 53.7, 0.009 and 51.7 to 0.26, 99.1, 0.46 and 969.3 respectively. The correlation coefficient between total phenolics and antioxidative activities was statistically significant. In a similar study, Bolivar *et al.* (2009) aimed to check the antioxidant activity (TAC) at different germination states (dormant, imbibed and 7d sprouts) for 13 edible seeds. Selected seeds included mungbean, alfalfa, fava, fenugreek, mustard, wheat, broccoli, sunflower, soybean, radish, kale, lentil and onion. Sunflower seed sprouts had higher TAC on a DB (40202 µg Trolox g⁻¹) compared to other seeds.

In another study conducted by Paulina *et al.* (2013) aimed at investigating the effect of germination on the phenolic acids and flavonoids profile, as well as antioxidant activity (AA), in selected edible seeds of mung beans, radish, broccoli and sunflower. Germination increased the total phenolic (TP) and flavonoid (TF) levels, as well as the AA of the seeds, and influenced the profile of free and bound phenolic compounds. Among the samples, mung bean was characterised by lowest levels of TP and TF, as well as AA, evaluated using ABTS, DPPH and FRAP assays. Sunflower and radish sprouts were the most rich in phenolic compounds.

Phenolic compound profiles and antioxidant activity of six fractions (I–VI) acquired from the extract of sunflower seeds was analyzed by Karamac *et al.* (2012). For the quantitative and qualitative estimation of phenolic content of fractions the HPLC-MS (ESI) analysis method was put to use. The evaluation of the antioxidant activity of the fractions was done in reference to their potential to scavenge ABTS and DPPH along with their ability to reduce ferricyanide complex to ferrous form. It was expressed as EC50, TEAC respectively. Good correlation was shown amongst the antioxidant activity as well as the phenolic content of the fractions.

2.4 Relationship between diet and diseases

It has been recorded during the last few years that a bad diet is directly proportional to the progression of certain metabolic disorders and chronic diseases as like cardiovascular disease, cancer, cataract, diabetes mellitus, hypertension, obesity etc. (Willet *et al.* 1998). The records depict that a daily diet regime that consists of ample vegetables, fruits, plant foods, legumes with non-processed foods in it decreases the development of such chronic diseases considerably. It was forwarded by Jacobs *et al.* (1998) in their study that vegetables, fruits and minimally processed foods form protective foods that make a shield against the progression of the various chronic diseases.

In another study Scoztek *et al.* (2013) reviewed and identified the major contributing factors of diabetes, cardiovascular disease (CVD), chronic diseases of respiratory system, malignant cancer to be unhealthy nutritional practices and adverse lifestyle. In accordance to the WHO guidelines, it was forwarded that a healthy lifestyle would require replacing saturated fatty acids (SFA) with polyunsaturated fatty acids (PUFA) along with elimination of the trans-fatty acids from diet and reducing the consumption of simple carbohydrates. Present study reviewed the current evidences and the most appropriate type of dietary fat for preventing arteriosclerosis was discussed. Increased intake of PUFA in the diet in both America and Northern Europe resulted in n-6 PUFAs being dominant in diets in comparison

to n-3 PUFAs. The resultant non-proportion led to increase in mortality due to CVD in these countries. It was analysed that in contrast to the above, the conventional Mediterranean diet that yielded a PUFA n-6/n-3 ratio of 2:1 proved to be more beneficial. Also it was added by the recent studies that the idea of replacing the SFAs with carbohydrates could not reduce the risk or arteriosclerosis. Also, substituting carbohydrates with MUFA gave ambiguous findings but only the PUFAs and that too n-3 was found to reduce the risk of IHD (Ischemic Heart Disease). Till now the debate about n6 and n3 goes on. However, its noteworthy that adopting a Mediterranean diet pattern might help reduce the risk of IHD.

In a study conducted by Nicolosi RJ et al. (2004), the diets which were higher in PUFA i.e. polyunsaturated an their relation with cholesterol in the blood serum levels was evaluated. In contrast, meal plans with elevated quantities of MUFA and saturated fats did not lead to any such decrease. The given study had been conducted to analyse the impact of meal plans with high- or mid-linoleic oil in comparison to the high-linoleic containing sunflower oil on oxidation of LDL which would lead to progression of cardiac diseases on earlier stages in the hamsters with a raised serum cholesterol levels. The hamsters were given a high cholesterol diet consisting of 10% sunflower oil (mid- oleic), or sunflower oil (high linoleic) (wt/wt), olive oil (high oleic) in addition to cholesterol 0.4% (wt/wt) for a period of 10 weeks. After completion of 10 weeks, only the animals that had been fed with first group showed considerable decrease in the serum levels of LDL (a decrease of about 17%) in comparison to the second group. Hamsters fed upon third group showed considerably raised levels of serum triglycerides (an increase of about 41%) in comparison to the fourth group. Amount of the serum LDL in the animals administered with the fourth group were significantly higher (+77%) in comparison to hamsters given either the olive oil (high-oleic) or sunflower oil (high linoleic). As per the LDL oxidation parameter measurements the animals fed on the third and second group had notably an extended lag phase (ranging from an increase of 66% to145%). With regard to the sunflower oil (high linoleic), the ester of the aortic cholesterol ester had been found to be decreased by 13% and 34% in the sunflower oil (mid oleic) and Olive oil group (high oleic).

The LDL atherogenicity was studied by Juan *et al.* (1996). For the study about 18 subjects were selected as volunteers. The subjects were given a diet with 31% of its calories coming from the sunflower oil for 3 weeks which was then changed to a diet in which 30.5% of calories were obtained from the olive oil for an additional 3 weeks. The LDL after SFO

(Sunflower oil) displayed the ratio of fatty acids as (18:2 + 18:3 + 20:4) to (16:0 + 16:1 + 18:0 + 18:1) of 1.06 ± 0.11 compared to 0.73 ± 0.06 after the OO (Olive Oil) period. The LDL levels were found to be significantly lower after SFO than as compared to after OO. Against the expectation, the LDL oxidation catalysed by copper was significantly less than period of SFO intake in comparison to the period of OO intake. The result obtained could also be contributed to the larger size of the SFO-LDL. Thus, it was found that the3 LDL properties: oxidizability, circulation, along with the intima proteoglycans affinity, alteration in the atherogenesis, was found to be directed in the favourable condition with intake of natural antioxidants and linoleic acid in the diet.

Functional foods and its properties were studied by Claire *et al.* (2002). They forwarded it to could be certain group of foods that are whole, enriched, enhanced or fortified. The functional foods have been known to consist of certain medicinal value in addition to its usual nutritional profile or they are considered to boast certain health properties apart from their nutritional abundance (e.g., vitamins and minerals), when they are consumed in adequate quantities as part of their diet on a regular basis. Correlating the intake of certain foods considered to be functional foods with health benefits should be established on some scientific evidences. The study was conducted on the normal people taken as subjects. Although many claimed to be functional foods with sufficient amount of data for back-up but still all foods available in market and claiming to be functional foods are not. The given study on the basis of certain proofs on their role categorized a number of foods that were considered to be functional. These foods have become mightily explored & broadly popular field of nutritional research these days. Nevertheless, special consideration should be given to the fact that the functional foods should not considered as a magic wand against improper lifestyle and habits.

In another study conducted by Rui *et al.* (2005) the intake of nuts on a regular basis was found to be directly lower the risk of diabetes type 2 and cardiovascular disease. The authors studied in the Multi-ethnic study of atherosclerosis the relation between the consumption of nuts and seeds along with C-reactive protein, interleukin-6, and fibrinogen. A cross-sectional study was done and it incorporated around 6080 participants from US with their age ranging from included 6,080 US participants aged 45–84 years with ample background study of their diet and biomarkers. The consumption of nuts and seeds was categorised as 5 or more times per week, 1-4 times per week, less than once a week, rare or

never. After certain adjustment in age, gender, income, education, race/ethnicity, physical activity, drinking, smoking, use of dietary supplements mean biomarkers were as follows interleukin-6—1.25, 1.24, 1.21,C-reactive protein—1.98, 1.97, 1.80, and 1.72 mg/litre and fibrinogen—343, 338, and 331 mg/dl (p < 0.01). Further changes in hypertension, lipid levels, diabetes and medication use furnished identical results. Secondary changes in the BMI mildly enhanced intensity of the union delivering statistical significance at borderline. Frequent consumption of seeds and nuts was found to be linked with lower inflammatory maker levels.

It was investigated by Kathleen et al. (2007) that diet influenced the prevailing risk factors for cardiovascular diseases (CVDs). In lieu of the study, intake cholesterol rich foods along with the total dietary fat, particularly Trans-fats and saturated fats was recommended in moderation. Dietary fats were allowed mainly from plant sources and fatty fish, providing polyunsaturated (including omega-3) and monounsaturated fatty acids. Whole grains, legumes, vegetables, fruits, and other fiber-rich sources, were used as the carbohydrate source rather than sugars. Although vitamins such as E, C, and some B vitamins have been correlated with decrease in CVD risk, data supports foods rich in these nutrients than the use of supplements. Dietary minerals such as calcium, potassium and magnesium have been found to be favourable for heart health, on contrary the risk of hypertension decreases with the reduction corresponding with reduced risk of CVD. In contrast, the data present has been quite powerful to advocate the association of healthy body weight management and cardiovascular health. In general, diets based mainly of plant origin and less processed foods, along with an active lifestyle were found to be helpful in heart health. A similar study conducted by Levya et al. (2010) demonstrated the utilisation of nutritional interventions to prevent the advent of cardiovascular diseases (CVD). One such nutritional strategy was increased usage of omega (ω)-3 fatty acids to produce considerable cardio vascular benefits. Amongst the rich sources of ω -3 fatty acids marine food products are one. Apart from marine products flaxseed is also one plant based ω -3 fatty acid source. As per the results acquired from various epidemiological investigations, experimental studies and clinical trials consumption of ALA (alpha-linolenic acid) has been found to be beneficial in CVD.

The effects of essential fatty acids on health and in chronic diseases was analysed by Artemis *et al.* (1999). It was forwarded that the diets of human beings evolved have ever since consisted of around similar quantities of n-3 and n-6 essential fatty acids, but in the last century there has been a relative increase in the intake of n-6 fatty acids. In the western diets

nowadays the proportion of n-6 to n-3 fatty acids instead of the prescribed 1-2:1 ranges from \approx 20–30:1. The high intake of n-6, as per the study's lead to a shift in the anatomical condition to prothrombotic which is designated by an increase in vasopasm, blood viscosity, decrease in bleeding time and vasoconstriction. The omega 3 Fatty acids on the other hand possess antithrombotic, anti-inflammatory, antiarrhymatic, vasodilatory and hypolipidemic properties. The n–3 fatty acids is known to prevent HTN, type 2 diabetes, coronary heart disease along with rheumatoid arthritis, renal disease, Crohn's Disease, Ulcerative Colitis in certain patients.

2.5 Product Development

2.5.1 Cookies

From a very long time cookies as snack foods have played a vital role in life of human as antiquity and are very much relished by large section of society. The percentages of its ingredients might differ but in the end the final product is always expected to be same- sweet, crunchy and nutty. Cookies have a lower moisture content and hence they are protected from microbial spoilage and provides longer shelf life. The incorporation of sunflower seeds flour may be a very good option for its easy administration due to its wide acceptability by masses

In a study conducted by Pasha *et al.* (2011) mung beans were used to develop high protein cookies (100:0, 95:5, 90:10, 85:15, 80:20, 75:25). It was found that there was an increase in the ash, crude fiber and the protein content as the percentage of mung beans was increased. Also, it was found that the thickness of the cookies along with the above parameters was increased. In a similar study Mishra *et al.* (2012) blended soybean flour and maize flour to develop the cookies in the ratio of 100:0, 90:10, 80:20, 70:30, 60:40, 50:50, 40:60, 30:70, 20:80, 10:90 and 0:100. It was found that the cookies with highest percentage of soy flour were high in crude fiber, ash, protein and fat in comparison to the cookies containing high maize flour content which showed a high carbohydrate content. The cookies containing ninety percentile of maize flour and ten percentile of soy flour attained highest in sensory quality attributes.

In a similar study conducted by Aziah *et al.* (2012) legume flour was incorporated to develop cookies. Three formulations had been developed (1) control with 100% wheat flour (2) wheat flour 50% + moong bean 35% + corn starch 15% (3) wheat flour 50% + chick pea

35% + corn flour 15%. Significant difference (p<0.05) were obtained in total carbohydrates, crude fiber, protein and ash content in the cookies. It was deduced that the sensory attributes of cookies incorporated with legumes were better than the control. Another study conducted by Chilungo (2013) used Cassava flour and Pigeon Pea flour in different percentage. The flours were blended in the ratio wheat flour: Cassava flour: Pigeon pea flour (90:5:5, 80:10:10, 70:15:15). 100% wheat flour cookie was used as the control. An increase in the protein as well as the fiber content was observed when the content of pigeon pea flour and highest cookie weight, diameter and spread ratio whereas the control ranked lowest in all.

2.5.2 Biscuits

Hesham *et al.* (2007) developed biscuits incorporated with germinated and nongerminated legume seed flour or mushrooms. Germinated and non-germinate legume flour along with mushroom flour was blended with wheat flour in the percentile of 5, 10 and 15 respectively. As per the results dough developing time and water absorption capacity increased whereas the dough stability and tolerance index decreased in the flour blend of 10 and 15 percentile. In a similar study, Masur *et al.* (2008) developed high protein biscuits supplemented with Bengal gram. Wheat biscuits with added Bengal gram flour with 10, 15, 20, 25 percent level along with modifications in water, fat and baking powder to improve the nutritional and textural quality of biscuits were made. The diameter (cm) and height (cm) were found to be constant with 15% incorporation of Bengal gram flour. It was found that supplementation of Bengal gram flour in about 15-20% level improved the dough texture, sensory parameters and protein quality.

A study performed by Banurekha and Mahendran (2009) developed biscuits incorporated with soybean flour as a protein supplemented cereal snack food. In the percentage of 5,10,15,20 and 25 the soybean flour and wheat flour was thoroughly blended. It was found that protein, fat and calorie of wheat-soybean biscuits increased as the per cent of soybean flour increases. But there was a decrease in the moisture and ash content of the biscuits as the soybean flour per cent was increased. Similarly, Abu-Salem and Abou- Arab (2011) prepared biscuits supplemented with Bambara groundnut. Wheat flour and the Bambara groundnut flour were blended thoroughly at a percentile 5, 10, 15, 20, 25, and 30 per cent. The biscuits made from 100 per cent were used as control. It was found that the

mean quality score of the decrease as groundnut flour increases. Thickness and diameter increases as groundnut flour increases.

2.5.3 Physicochemical Composition of Biscuits and Cookies

High protein biscuits were developed from Bengal gram in a study conducted by Masur et al. (2008). Wheat biscuits with Bengal flour tried at 10, 15, 20, and 25 per cent levels along with modifications in water, fat and baking powder were made to improve the nutritional and textural quality of biscuits. It was reported that the height of the biscuits remained constant with increasing levels of Bengal gram flour up to 20 per cent and also the diameter remains constant (58.5) at different levels up to 15 per cent of Bengal gram flour. But the spread factor and spread ratio decreased with increasing ratio of Bengal gram flour. Another study was conducted on similar lines where Mishra et al. (2012) prepared cookies from blended flour of soybean and maize flour in different proportion (100:0, 90:10, 80:20, 70:30, 60:40, 50:50, 40:60, 30:70, 20:80, 10:90 and 0:100) and the cookies were assessed for the physical and chemical attributes. It was seen that the cookies' weight reduced gradually from 16.3 to 4.9 with the rising fraction of soy flour and the spread ratio reduced significantly from 7.1 to 6.7 with increase in the concentration of maize flour. The protein content of the cookies was also found to reduce from 39.3 to 9.9 % with the increase in maize flour proportion. The fat, crude fiber and ash content reduced from 27 to 16 per cent, 4.2 per cent to 2.1 per cent and 7.08 to 4.58 per cent respectively.

The result of utilisation of protein pea isolate (decorticated) on basal baking attributes of the biscuits made from wheat was studied by Hassan *et al.* (2009). Decorticated pigeon pea isolate (DPPI) was incorporated with wheat flour at protein levels of 15, 20 and 25 per cent respectively. There was a decrease in the gluten quantity and increase in water absorption, dough development time and dough stability. Also an increase in the protein and the ash content is found along with decrease in the carbohydrate and the calorific value. Another study conducted by Kohajdova *et al.* (2013) studied the suitability of pea flour in cracker biscuits production. Refined wheat flour are substituted with different levels of pea flour (0, 10, 20 and 30%). The evaluation on rheological properties and physical characteristics found that addition of pea flour result in increased absorption of water and dough development time whereas dough stability was decreased. It was also found that there was a decrease in the

volume index, width and spread ratio and an increase in thickness. It was observed that pea flour had considerably higher protein (21.46%) and ash (3.11%) content than wheat flour.

2.5.4 Phytonutrient Composition of Biscuits and Cookies

The antioxidant activity (AOA) of frequently consumed pulses, cereals, legumes and millets in India was studied by Sreeramulu *et al.* (2009). AOA assessed by DPPH radical scavenging assay, ferric reducing antioxidant powder (FRAP) assay. It was observed that the finger millet and rajmah has highest FRAP ranged from 16.21 to 47.71 moles/g and DPPH scavenging activity 1.73 and 1.07. Finger millet and black gram dhal has the highest TPC ranged from 373 to 418 mg/100gm, respectively.

The nutrient composition of cereal (wheat) bambara and groundnut based cookies was analysed Maduke *et al.* (2013). Wheat flour and Bambara groundnut flour were used in ratio 70:30 to provide 10 per cent protein. It was observed that higher Zinc and iron (5.51 and 12.82 mg/100mg) were found in Bambara groundnut-wheat cookies as compared to the wheat cookies. Another study performed by Zhang *et al.* (2014) studied the selected dietary polyphenols in a cookie model for its antioxidant and anti-glycation activity. Five dietary polyphenols named epicatechin, naringenin, chologenic acid, quercetin and rosmaric acid were selected for the cookie fortification. The increase in the antioxidant capacity was not as per the expectations since the antioxidant capacity was considerably decreased by thermal degradation during the baking process.

2.5.5 Organoleptic Evaluation

Hemenda and Mohamad (2010) prepared a cake fortified with 5 per cent and 10 per cent of chick pea and soybean. Sensory evaluation was performed using a 5-point semi structure scale method in terms of appearance, colour, cell uniformity, firmness, odour, taste, and overall acceptability. It was found that addition of soy flour blend at 5 per cent and 10 per cent levels to wheat flour had no adverse impact on sensory attributes of the end product. In another study, Gratin *et al.* (2010) developed school children snacks based on baked fermented legumes and cereals. Cakes were prepared by substituting 20 per cent of the refined wheat flour and kidney bean flour, brownies with 30 per cent of pigeon pea flour and cookies with 30 per cent of black eyed pea flour using fermented and non-fermented

legumes. The sensory evaluation of the products using the hedonic scale of 7 points observed that the product was higher than 5 in the attribute, taste, colour and overall acceptability.

Similar study was conducted by Howard *et al.* (2011) where they analysed pasta supplemented with the peanut flour for its formulation optimisation as well as the ingredient functionality and formulation optimization. Peanut flour substituted with durum wheat flour at a level of 30 per cent, 40 per cent, and 50 per cent. And also carrageenan were added at a level of 2.4 per cent, 2.65 per cent and 2.9 per cent and the drying temperature (60, 70 and 88°C) were used respectively on final pasta product. The sensory evaluation were done where the values of colour lightness varied from 42.43 to 64.01, decreasing (becoming darker) with an increase in drying temperature along with increase in the peanut flour level. The content of moisture varied from 56.24 per cent to 68.37 per cent and the values reduced as the drying temperature increased. The pasta was found to be light in colour, softer in texture and higher in moisture when dried at 60°C with 30 % of peanut flour in it in comparison to the other relative varieties with higher percentile of peanut flour and dried at a higher temperature.

Sunflower seeds have been mainly used to extract the oil which is majorly used for cooking or other culinary purpose in various parts of the world besides its use in cosmetic industries. The seeds of sunflower are well known for its physico-chemical, phytochemical potential as required by the human body like presence of Vitamin E, B complex Vitamins, essential fatty acids, poly-phenols etc. in it. However, still lacking its identity in the pharmaceutical industries. Therefore, the present study is aimed to fulfil this gap by using sunflower seeds as a pharmaceutical weapon for curing various deranged metabolic parameters including serum cholesterol levels, blood lipid levels, Fasting blood glucose levels, SGOT, SGPT levels; and its further utilization in food product development for its efficient delivery in term of health and nutraceutical foods. Moreover preventing various metabolic disorders with nutritional intervention is therapeutic strategy that is widely being adopted.

- 1. To evaluate the tocopherol and phenolic content of sunflower seeds.
- 2. To study the effect of sunflower seeds on serum lipid levels, FBS in patients with diabetes type-2 and SGOT, SGPT levels in patients with fatty liver grade 1, with and without medication.
- 3. To compare the sunflower seeds with routine medicines of the relative metabolic disorders,
- 4. To prepare and evaluate the sunflower seeds' enriched food product.

The present investigation entitled "Effect of Sunflower seeds on Hypercholesterolemia, Fatty liver and fasting blood glucose in Diabetes Mellitus type 2 patients" was conducted under the Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab. The material used, detail of the experiments and techniques employed in the investigation have been furnished in this chapter under the following headings.

5.1 Analysis of tocopherol and phenolic content of sunflower seeds

5.1.1 Raw Material

The sunflower seeds' samples were procured from the local market at Amritsar, Punjab, India. Seed weight varied from 120–200 mg. All seed were sealed up in polythene bags and stored in airtight container until needed.

5.1.2 Sample Preparation

The sunflower seeds were cleaned manually in order to abolish damaged, broken or cracked grains along with the foreign materials if any. The cleaned seeds were then kept in sealed aluminium pouches stored till further analysis and utilisation.

5.1.3 Roasting

The sunflower seeds were positioned on the turntable plate of the oven (Model: Samsung, CE104VD, 230 V-50 Hz, 2450 MHz, 100-900 W-6 Levels) after being placed in a single uniform layer in the 12 cm diameter Pyrex petri dishes (Yoshida *et al.* 2001). The contents of the dishes were then roasted at 150°C for 5 min. Once the roasting was done the seeds were kept to cool at room temperature (Patricia *et al.* 2014).

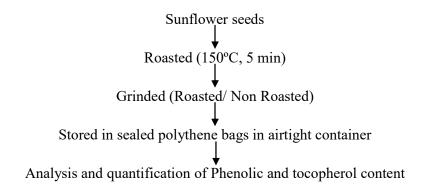


Fig 5.1 Flowchart for preparation and analysis of the sunflower seeds

5.2 Analysis of non-roasted and roasted sunflower seeds

5.2.1 Free Radical Antioxidant Scavenging Capacity:

The DPPH assay method works on the principle of the reduction of DPPH. DPPH, the free radical delivers the maximal absorption at 517 nm (purple colour) with one odd electron. When the antioxidant molecule reacts with DPPH, the stable free radical, pairing occurs in the presence of a Hydrogen donor and it's reduced to DPPHH. Resultant to this the absorbance is decreased DPPH radical to the DPPH-H, which leads to the decolourization (yellow colour). The decolourization is directly proportional to the reducing capacity.

The sunflower seeds have been reported to possess antioxidant properties. So in the present study sunflower seeds, both Roasted and Non Roasted have been evaluated for their possible potential to produce antioxidant action by the DPPH scavenging method. The extract of sunflower seeds was composed by dispersing 0.15 gm of powdered sunflower seeds in 10mlof 70% (v/v) acetone for the conduction of DPPH test. The solution was centrifuged at 20,000 g for 20 minutes after shaking for 30 min continuously at room temperature. Then the extract's aliquot (50µl) was taken and was made to blend with the acetate buffer (100 mM, pH 5.5, 0.5 ml) and ethanol DPPH solution (0.5 mM, 0.25 ml). After keeping the blend in dark for about thirty minutes, at 517 nm its absorbance was measured with absolute ethanol taken as a blank. Results obtained have been displayed as an IC50 value. It shows the total quantity of sample (in mg) that provided 50% inhibition of 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) (Zilic *et al.* 2010).

The DPPH scavenging effect percentage was calculated by the given equation:

DPPH scavenging effect (%) or percent inhibition = $\frac{A0-A1}{A0\times100}$

Where A_0 was the absorbance of the control and A_1 was the absorbance of the sample.

5.2.2 Total Phenolic Content

Total phenolic content was estimated with Singleton and Rossi method (1965). Similar extract that had been used in the test of DPPH was used. 20% of 1.25 ml sodium carbonate, Folin reagent 0.25 ml, and 0.4 ml deionized water were taken and then the extract about 0.1 ml was blended with these solutions. At 750 nm the absorbance was measured after the solution was kept at room temperature for about 40 minutes. Gallic acid equivalents (eq.) were put to use in order to analyze the total phenolic content with respect to the gallic acid the calibration curve. The solutions obtained were manifested as milligrams of gallic acid per gram of dry matter (d.m.).

5.3 Effect of sunflower seeds on the biochemical parameters of sample patients (n=300)5.3.1 Design of the Study

The present study conducted was a randomised, case controlled and a prospective study. Methodological aspects in the study have been discussed as under:

- Sample selection
- Data collection
- Pre supplementation data collection (Dietary survey, Anthropometric measurement, Biochemical testing)
- Supplementation of Sunflower seeds
- Post supplementation data collection (Biochemical testing, Dietary survey)
- Statistical analysis

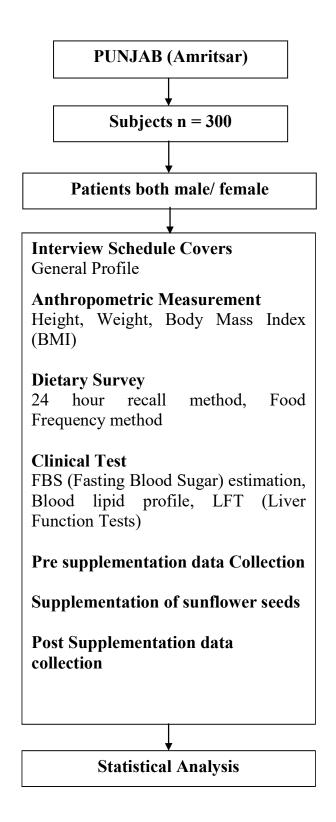


Fig 5.2 Flowchart elucidating design of the study

5.3.2 Sample Selection:

The entire sample comprising of 300 patients was selected from Punjab state (from the cities Amritsar, Batala, Jalandhar) amongst people of age ranging from 45-55 years (including both males and females) with raised blood glucose levels, deranged lipid profile or liver function tests. The subjects included in the study were selected from OPD/IPD (Out-Patients Department/ In-Patients Department) of the hospital.

5.3.3 Data Collection:

A schedule for an interview was prepared in order to collect the required information with the help of self-prepared questionnaire so that detailed information could be obtained. The interview schedule (questionnaire) consisted of both closed and open ended questions (Ivan *et al.* 2000). It was designed in such a manner so as to obtain the information related to:

- General Information
- Dietary Pattern
- History of Diabetes or any other medical problem
- Undergone any major of minor surgery

Pretesting of Interview Schedule - Before conducting the actual survey the interview schedule was tested on a few patients having same characteristic to find out the general level of understanding of some basic terms, process and questions and also to find out the need of modification in questions, if any (Richard *et al.* 1998).

5.3.4 Pre Supplementation Data Collection:

5.3.4.1 Dietary Survey:

Diet survey was carried by 24 hour recall method. The subjects were asked to provide estimates of the amount of meal they had taken during past 1 day or 24 hours. In the given method subject was asked to name the food eaten with approximate amounts during the previous day at each meal and between meals. Quantities were stated in household units such as a glass of milk etc. by providing the subjects the measuring cups or other devices to aid in recalling (Glady *et al.* 1982).

5.3.4.2 Food Frequency Method:

In this method the subjects were asked about the number of times certain foods or combination of food was consumed per day/per week/per month or any other period of time. The food frequency list is inclusive of a large number of food groups so as to get a clue to the nutritive adequacy (Walter *et al.* 1984).

5.3.4.3 Anthropometric Measurements:

The Anthropometric measurements taken were:-

- (i) Height
- (ii) Weight
- (iii) BMI (Body Mass Index)

(i) Measurement of Height:

Height is a linear measurement that reflects skeletal growth. It is a measure of chronic malnutrition or under nutrition and should be measured as accurate as possible. It is made up of the sum of component, legs, pelvis, spine and skull (Jatinder *et al.* 2004).

The equipment used for taking height of the subject was a non-stretch tape which was fixed on a flat wall.

(ii) Measurement of Weight:

Recording of weight is the most widely used measurement both for assessing under nutrition as well as for over nutrition. Weight of an individual reflects the more recent nutrition. It is a measurement of body mass. A portable platform weight beam balance was used to assess weight of the subject as it is sturdy, easily transportable and accurate to within limits required (Nisa *et al.* 2010).

Moles	Females
	Weight (Kgs)
50.6 - 54.7	50.7 - 54.3
51.8 -55.5	51.6 - 55.2
56.5-60.4	53.0 - 56.6
57.7 - 61.8	54.3 - 58.0
58.8 - 63.6	56.2 - 59.8
60.9 - 65.4	57.5 - 61.1
62.3 - 66.8	58.8-63.4
64.1 - 68.6	60.7 - 65.2
65.7 - 70.9	62.1 - 66.6
67.7 - 72.8	64.1 - 68.4
69.3 - 74.5	65.7 - 70.2
71.3 - 76.3	67.0 - 71.6
73.1 - 78.6	68.4 - 73.8
73.4 - 80.8	73.2 - 80.6
77.7 - 83.6	77.5 - 83.4
79.9 - 85.8	79.7 - 85.8
	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

Table: 5.1 Ideal Weight for Height Chart

(iii) BMI:

BMI (Body Mass Index) is the estimation of mass of the human body with respect to an individual's weight and height. It is the body fat's measure on the basis of weight and height of adults. It is also called the Quetelet index

BMI is measured with the help of a simple formula which includes a person's weight in Kg that is Kilograms to the person's height taken in meters (m).

 $BMI = \frac{Weight in Kg}{Height in meter square}$

Source: National Centre for Health Statistics in collaboration with the National Centre for Chronic Disease Prevention and Health Promotion. Ideal weight for height chart for adults (2000).

5.3.4.4 Biochemical Testing of the parameters

Biochemical testing helps in determining different parameters, and also identifying the main biological chemical compounds, by using molecular and biochemical tools. It helps to measure the amount of a substance in the body through blood or urine analysis.

(i) Fasting Blood Glucose

A sample of the blood was obtained when the person was in a fasting state and the amount of sugar was assessed. Blood sugar was measured with the help of an apparatus known as glucometer with the help of which fasting as well as random level of blood sugar were determined. First of all, a sharp edge blood lancet was used to the prick over the tip of the finger. A drop of blood from the prick area was taken and put over the specific mark, then the strip was inserted into the glucometer and count-down of time was started. When it reached zero the final value of blood sugar level appeared on screen of glucometer and noted (Kaul *et al.* 2013).

(ii) Estimation of Glycosylated Haemoglobin (HbA1c)

Hemoglobin A1c (HbA1c) test was done in order to evaluate the control of blood glucose in patients suffering from diabetes (usually type-2). The serum glucose testing on a daily basis gives a view of present control of blood sugar whereas the HbA1c gives a view of blood sugar control of the patient in the past 120 days. Because of the reason that glucose molecule stays attached to hemoglobin molecule for whole life of the red blood cell (about 120 days). This test is done to analyze the blood glucose level on an average in the patient for not just one day but also for previous 2-3 months (Kaul *et al.* 2013).

The test was performed with the help of the HPLC equipment Bio-Rad D-10, as per the DCCT referral source (i.e. Diabetes Control and Complications) in the latest issues. It is well recorded by the NGSP i.e. the National Glycohemoglobin Standardization Program. Before performing automated analysis, the sample haemosylate was prepared manually. As per the method used for testing the tetra decyltrimethyl ammonium bromide were mixed with the obtained samples consisting of the haemolysing reagent for several mins (1000 μ l haemolysing reagent + 10 μ l whole blood). The value of the Glycosylated haemoglobin was estimated and determined with the help of DDS kit (Diasis Diagnostic Systems) as per the

given instructions on its kit. A DDS calibrator was used for its calibration. The total haemoglobin that was required Glycosylated Haemoglobin's measurement was estimated in a different column of the same equipment in the DDS Kit (Fatih *et al.* 2010).

(iii) Estimation of Lipid Profile

A set of blood tests that help in identifying the range of lipid content in the blood as like cholesterol, triglycerides etc. is known as the Lipid profile. The results of this test help to identify approximate risks for disease if any as like coronary artery disease, arthrosclerosis etc. also it helps to determine certain genetic diseases. The lipid profile includes complete cholesterol, triglycerides, LDL, HDL. Here, LDL is commonly known as the bad cholesterol whereas HDL is known as the good cholesterol (Sidhu *et al.* 2012).

The lipid profile and its relative tests were estimated by enzymatic calorimetric method especially the total cholesterol (Allain *et al.* 1974). The triglycerides were estimated by Van Denmark and Jacobs enzymatic method. The High Density and Low Density Lipoprotein were analysed with the help of Gordon and Gordon method 1977 and Friedewald formula 1972. All the above mentioned tests were estimated in the blood serum. All parameters were determined in the blood of the patients and controls bringing into use special kits of the reagent which are commercially available.

(iv)Estimation of Liver Function Tests (LFT)

The LFTs are groups of laboratory assays of blood in biochemistry which have been designed to analyse the status of an individual's liver. The parameters measured in this include albumin, bilirubin (indirect, direct), globulin, SGOT (AST) and SGPT (ALT) the Liver transaminases. The LFTs prove to be a helpful screening tool in detecting hepatic dysfunction in a patient if any (Sultana *et al.* 2004).

For enzymes- SGOT/AST (Serum Glutamate Oxaloacetic Transaminase/ Aspartate Aminotranferase), SGPT/ALT (Serum Glutamic Pyruvate Transaminase/ Alanine Aminotranferase the procedure approved worldwide is used with p- nitrophenol phosphate taking part as a substrate, in an environment of basic pH. Un-haemolysed fresh blood was used as the sample for the evaluation (Thapa *et al.* 2007).

5.3.5 Grouping and Supplementation

The roasted sunflower seeds were advised to be added to hot or cold beverages or cereals (2gm).

(i) Control Group: It comprised of patients with high serum lipid levels, high blood glucose levels or high LFT levels than normal with minor medications for the same like lovastatin, glycomet, avas etc. along with the specific diet modifications. The groupings were as follows:

Group 1- Deranged lipid levels on specific medications and diet modifications.

Group2- Raised blood glucose levels on medications and diet modifications

Group3-Increased LFT levels on medications and diet modifications

Group4- Deranged lipid levels + increased blood glucose + deranged LFT levels with the medications and the diet modifications

Group5- Patients with high serum lipid levels or high blood glucose levels or high LFTs and only on diet modifications but not on any medications.

(ii) Case Group: - comprised of as follows:

Group1 (a) - Deranged lipid levels receiving 2 g of sunflower seeds in addition to the medications and the dietary modifications

Group2 (a) –Raised blood glucose levels receiving 2 g of sunflower seeds in addition to the medications and the dietary modifications

Group3 (a) - Increased LFT levels receiving 2 g of sunflower seeds in addition to the medications and the dietary modifications

Group4 (a) - Deranged lipid levels + increased blood glucose + deranged LFT levels receiving 2 gram of sunflower seeds in addition to the medications and the dietary modifications

Group5 (a) –Patients receiving 2gram of sunflower seeds including patient with high serum lipid levels or high blood glucose levels or high LFTs but not on any medications.

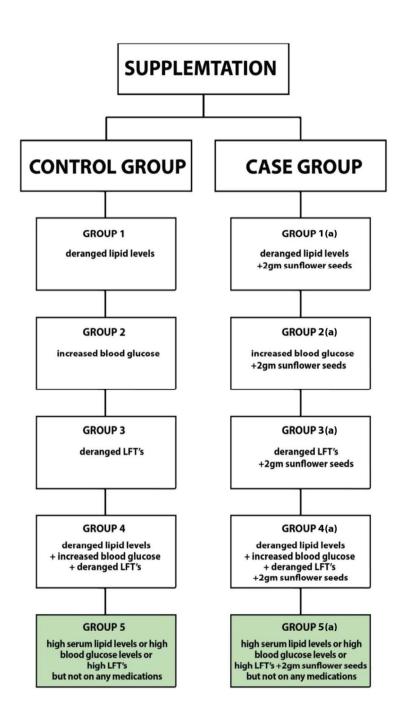


Fig 5.3 Flowchart showing the classification of the Case and the Control Group

5.4 To prepare and evaluate the sunflower seeds' enriched food product

Product formulation process is a systematic set of activities targeted at development of an acceptable product (Earle *et al.* 2007). Keeping in mind the nutritional attributes of sunflower seeds, different flour blends were used to design and develop healthy sunflower based cookies made from these blends. The result obtained was put to use for the nutritional therapeutic purpose.

Cookies are very common and well acceptable in all the countries. The percentile as discussed might differ but the final product is always expected to be same sweet, crunchy and nutty. Cookies are named variedly in different areas in accordance to the place of origin. From a very long time cookies have been served as or with a dessert and even nowadays they are a very common snack consumed at various times of the day with tea/coffee and even used as a gift item.

5.4.1 Procurement of raw material

To prepare the cookies, the materials needed were procured from the local market: sunflower seeds, wheat flour, sodium bicarbonate and white butter.

5.4.2 Flour Preparation

The seeds were first graded, then sorted and finally cleaned. The seeds then were soaked for 24 hrs in water. Post to soaking the seeds were washed thoroughly and then oven dried for 24 hrs at 60°C or till the moisture content came to around 11.4%. Seeds once dried were ground with the help of a grinding machine, the ground seeds were then sieved through a 1-mm sieve. The ground and sieved seeds were then stored in airtight containers or sealed packets until further analysis at room temperature. (Morton, 1987)

5.4.3 Experimental Plan

The experimental plan is given in **Table 5.2** and **Table 5.3** shows the different composition of flour. In **Table 5.4** the different ingredients used in making the cookies were given in gm and **Fig 5.4** shows flowchart of the preparation of cookies.

Table 5.2 Experimenta	l plan for	product formulation
-----------------------	------------	---------------------

S.No	Parameter	Level	Description
1.	Product	1	Cookies
2.	Ingredient	5	sunflower seeds, white butter, wheat flour, salt and sodium bicarbonate
3.	Samples	4	$A_1, A_2, A_3 \text{ and } A_4$
4.	Analysis	4	Physical analysis, Sensory analysis, Functional Analysis, Physicochemical Analysis

Table 5.3 Composition of various flour blends

S.No	Flour Blend	Wheat Flour (WF), %	Sunflower Seeds Flour (SSF), %
1.	A ₁	100	0
2.	A ₂	80	20
3.	A ₃	70	30
4.	A ₄	60	40

Table 5.4 Ingredients for cookies' preparation

S.No	Ingredients	A ₁	A ₂	A ₃	A ₄
1.	WWF(gm)	250	200	175	150
2.	SSF (gm)	0	50	75	100
3.	White Butter (gm)	125	125	125	125
4.	Sodium Bicarbonate [Baking powder] (gm)	3.5	3.5	3.5	3.5

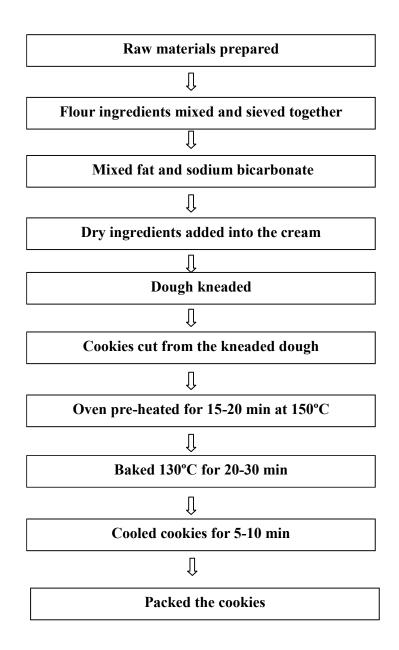


Fig 5.4 Flowchart of cookies' preparation

5.4.4 Evaluation of functional properties of the sunflower enriched flour

5.4.4.1 Bulk Density

A known amount of sample was weighed into 50 ml graduated measuring cylinder. The sample was packed by gently tapping the cylinder on the bench top 10 times from a height of 5 cm. The volume of the sample was recorded.

Bulk Density $(g/ml \text{ or } g/cm^3) =$ Weight of sample/Volume of sample after tapping.

5.4.4.2 Water Absorption Capacity

15 ml of distilled water was added in a centrifuge tube of 25 ml with 1 gm of sample in it. The centrifuge tube was agitated for two minutes on a vortex mixer. It was then centrifuged for 20 minutes at 4000 rpm. The supernatant was decanted and discarded. The adhering water drops were removed and the tube was weighed again.

WAC % = (Weight Tube + Sediment – Weight of empty tube)/ Weight of Sample × 100

5.4.4.3 Oil Absorption Capacity

10 ml of oil was added in a centrifuge tube of 25 ml with 1 gm sample in it. The centrifuge tube was agitated for 2 minutes on a vortex mixer. It was then allowed to stand for 30 minutes at room temperature.

To 1 g of the sample, 10 ml of oil was added in a 25 ml centrifuge tube and agitated on a vortex mixer for 2 minutes. It was allowed to stand at room temperature for 30 minutes. The mixture was then centrifuged for 30 minutes at 500 μ g in a high speed micro centrifuge. The supernatant was then decanted and discarded. The adhering oil drops were removed and the tube was reweighed again.

OAC % = (Weight tube + sediment – weight of empty tube)/ weight \times 100

5.4.4.4 Swelling Power

The swelling power (SP) was measured at 70°C and 80°C independently for each flour sample. 0.1 g of sample was taken and heated for 15 minutes at 70°C and 80°C in a water bath with intermittent shaking. A high speed micro centrifuge was used to centrifuge the sample. The supernatant was decanted into a test tube and the sediment was weighed. The decanted supernatant was also collected, dried and weighed.

SP % = (dry matter weight/ sediment weight) \times 100

5.4.5 Physical evaluation of sunflower seeds enriched cookies

5.4.5.1 Weight

A digital top loading balance was used to check the weight of cookies which consists of different units of weight as like gram, milligram etc.

5.4.5.2 Diameter and Height

A Vernier calliper was used to measure the cookie diameter and height.

5.4.5.3 Spread ratio

Spread ratio is calculated as diameter/height

5.4.6 Physicochemical composition of sunflower seeds enriched cookies

5.4.6.1 Protein Content

The protein content had been determined by Lowry's method. Different dilutions of BSA solutions were prepared by mixing stock BSA solution (50 mg/ 50 ml) and water in standard flask. Extraction of sample was carried out with buffers used for enzyme assay. 0.5 gm of sample was weighed and ground in a pestle mortar with 5ml of buffer. The mixture was centrifuged and supernatant was collected. 0.2, 0.4, 0.6, 0.8 and 1 ml of working standard was taken into series of test tubes. 0.1 ml of sample was taken in other test tube. 5 ml of alkaline copper solution was added in each test tube including blank (1ml distilled water). Mixture was mixed properly and was allowed to stand for 10 minute. 0.5 ml of Folin-Ciocalteau reagent was added to each test tube and kept in dark for 30 minutes. Readings

were taken at 660 nm. Standard graph was plotted and amount of protein was calculated as mg/g or 100gm of sample (Lowry *et al.* 1951).

5.4.6.2 Fat Content

Soxhlet extraction method was used to determine the fat content using petroleum ether (40-600°C) as the reagent. Dried samples (2gm) were extracted with petroleum ether in Soxhlet extraction apparatus for 6-8 hours in pre weighed round bottom flask. The extract containing fat and petroleum ether was evaporated over boiling water bath and dried in an oven at low temperature and weighed. The difference in the weight of the round bottom flask represented the ether extract (fat content) present in the sample (AOAC, 2000)

Weight of sample = W(g)

Weight of empty round bottom flask = $W_1(g)$

Weight of empty round bottom flask + Fat content = $W_2(g)$

Fat Content % = $\frac{Amount of Ether extract}{Weight of Sample (g)} \times 100$

Fat content $\% = \frac{W2 - W1}{W} \times 100$

5.4.6.3 Total Carbohydrate Content

Total carbohydrates were calculated by the given formula (Rangana, 1986)

Total CHO% = 100- (Moisture + Crude Ash + Crude Protein + Crude Fat + Crude Fiber)

5.4.6.4 Crude Fiber Content (AOAC, 2000)

In order to analyse the crude fiber content moisture and fat free sample (2g) were mixed with 200 ml of 1.25 percent H₂SO₄by gentle boiling for half an hour. The contents were filtered and the residue was washed many times with distilled hot water till it all the acid washes off. Acid free residue was then transferred to the same flask to which 200ml of 1.25 per cent of NaOH was added. The contents were mixed again for half an hour, filtered it and residue was again washed with hot distilled water till it became alkali free. The residue was dried overnight at 100°C and weighed and then placed in muffle furnace at 600°C (\pm 50°C) for 4 hours. The loss in weight after ignition of the sample represented the fiber in the sample (AOAC, 2000). The per cent crude fiber was calculated as follows:

Weight of sample = W(g)

Weight of empty crucible = $W_1(g)$

Weight of empty crucible + sample before ignition = $W_2(g)$

Weight of empty crucible + sample after ignition = $W_3(g)$

Fiber content % = $\frac{(W2-W1)-(W3-W1)}{W} \times 100$

5.4.6.5 Moisture Content (AOAC, 2000)

Moisture Content in the edible immature seeds of pulses was determined by following the oven drying method. 5g of sample was taken in a previously weighed, dried aluminium cups. These cups are kept in a hot air oven at 60°C (\pm 5°C) for 8 hours. The aluminium cups were taken out from the oven and kept in the desiccator for cooling for 30 minutes in order to attain a constant weight. After cooling, the samples were weighed with aluminium cups. The loss in the weight represented the moisture content of the sample.

Weight of empty aluminium $cup = W_1(g)$

Weight of sample = $W_2(g)$

Weight of aluminium cup + sample before drying = X (g)

Weight of aluminium cup + sample after drying = Y (g)

Moisture content % = $\frac{Loss in weight (g)}{Weight of sample (g)} \times 100 = \frac{X - Y(g)}{X(g)} \times 100$

5.4.6.5 Ash Content

The weighed amount of sample (1g) was taken and put in previously dried and weighed silica crucibles. Samples were first incinerated over an electric hot plate followed by ashing in muffle furnace at a temperature of 550°C ($\pm 25^{\circ}$ C) for 6 hours (until pale white residue was

obtained). These ashed samples were taken out from the muffle furnace and kept in desiccator for 2 hours for cooling (AOAC, 2000). After cooling samples were weighed again and per cent ash content was calculated as follows:

Weight of empty crucible =
$$W(g)$$

Weight of crucible + sample before ashing = $W_1(g)$

Weight of crucible + sample after ashing = W_2 (g)

Ash content $\% = \frac{Weight after ashing (g)}{Weight of sample} \times 100$

Ash content $\% = \frac{(W2-W1)}{(W1-W)} \times 100$

5.4.7 Total Phenolic Content

Similar to section **5.2.2**; 0.2 g of finely ground sample was weighed and taken in a beaker and 10 ml of 70 per cent acetone was added. The beaker was placed in a water bath (adjusted at 37°C for 2 hours). Frequent shaking was given for better extraction. After expiry of this period, extract was centrifuged for 20 minutes at 3000 rpm. The supernatant was collected in a test tube and was further used for the estimation of total and simple phenols. 0.1 ml of aliquot extract as obtained above was taken and volume was made 1ml with distilled water. 2.5 ml of 20 per cent sodium carbonate solution was added followed by 0.5 ml Folin-Ciocalteau reagent. Contents were left for 40 minutes for colour development (purplish blue). Absorbance was read at 725 nm after 40 minutes against a suitable bank and calculations were done for total phenols using standard curve which was prepared using gallic acid (0.1 mg/ml) (Makkar *et al.* 1997).

5.4.8 Antioxidant activity by DPPH Assay (Brand-William et al. 1997)

Similar to section **5.2.1**; the antioxidant properties were evaluated using the DPPH radical scavenging method. Ascorbic acid was used as the natural antioxidant for the antioxidant activity comparison. Each sample's antioxidant activity was expressed as IC 50, and was calculated in accordance to the standard protocol from the graph after plotting inhibition percentage against extract concentration DPPH assay. 1.5 ml of 0.1 mm DPPH

solution was mixed with 1.5 ml of various concentrations (10-500 μ g/ml) of extract. The experiment was replicated in three independent assays. Ascorbic acid was used as positive controls.

The DPPH scavenging effect percentage was calculated by the given equation:

DPPH scavenging effect (%) or percent inhibition $=\frac{A0-A1}{A0\times100}$

Where A_0 was the absorbance of the control and A_1 was the absorbance of the sample. All test were run in triplicates (n=3) and average values were calculated.

5.4.9 Organoleptic evaluation:

Nine point Hedonic scale method as given by Amerine *et al.* (1965) was followed for conducting the sensory evaluation of sunflower seeds incorporated cookies. The panel of 10 judges comprising of faculty members and post-graduate students of the Department of Food Technology and Nutrition, Lovely Professional University were selected with care to evaluate the cookies for sensory parameters such as colour, crispiness, taste, mouthfeel and overall acceptability. Efforts were made to keep the same panel for sensory evaluation throughout the entire period of study. The samples were presented to judges and plain water was given to them to rinse their mouth in between the evaluation of samples. No discussion during evaluation was allowed.

The present study on "Effect of Sunflower seeds on Hypercholesterolemia, Fatty liver and fasting blood glucose in Diabetes Mellitus type 2 patients" was undertaken to explore the possibility of control of various deranged parameters in certain metabolic disorders like dyslipidaemia, Fatty Live (grade 1), Diabetes Type 2. As per the study, the sunflower seeds were first roasted and then about 2gm of the sunflower seeds were given to the sample patients for a period of six months.

A comparative analysis of phenolic, tocopherol content and antioxidant activity was done for both roasted and non-roasted sunflower seeds to find out the effect of roasting on the sunflower seeds. The sunflower seeds both roasted and non-roasted showed a good antioxidant potential. A significant difference (p < 0.05) was observed amongst the antioxidant potential of roasted and non-roasted seeds. Although less but insignificant difference (p < 0.05) was observed amongst the total phenolic content of roasted and nonroasted seeds.

The incorporation of sunflower seeds in the diet for six months in the sample patients showed visible and significant reductions (p < 0.05) in various relative parameters. The reductions were in agreement with the statistical analysis. In this study, it has been found that the supplementation of 2 gm in the diets of sedentary men and women (age ranging from 45-55 yrs.) can lower concentrations of serum total cholesterol, triglycerides, LDL, FBS, SGOT, SGPT not only in patients who are on medications but also in ones who have not yet been advised any medication for the deranged levels respectively. Apart from these findings the HDL also known as the good cholesterol showed a good increase. It has been suggested that the consumption of up to 2 g sunflower seeds in roasted form has been considered safe. Also, in the given study it has been analysed that roasting does not hamper much of the seed's antioxidant potential and capacity as much difference was not countered amongst the roasted and non-roasted seeds as far as the antioxidant capacity, phenolic content, tocopherol content, protein, fat content etc. are concerned.

Product formulation and development was also performed considering the nutritional attributes of sunflower seeds. Different flour blends were used to design and develop healthy sunflower based cookies. The result obtained was put to use for the nutritional therapeutic purpose. The cookies made with different sunflower seeds enriched flour blends were T_1 - 100% wheat flour, T_2 - 80% wheat flour and 20% sunflower seed flour, T_3 - 70% wheat flour and 30% sunflower seed flour and T_4 - 60% wheat flour with 40% sunflower seed flour.

It was observed in functional analysis of the flour blends, T_4 (60% wheat flour with 40% sunflower seed flour) was found to have maximum water absorption capacity, bulk density and swelling power. The flour blend T_2 with 20% sunflower seed flour was found to be highest in oil absorption capacity. The results of the proximate composition analysis revealed that protein along with crude fiber and fat was also highest in T_4 with 13.95 per cent, 2.58 and 4.1 per cent respectively. The total phenolic content was found to be maximum in A_4 179.06 mg/100 g. The antioxidant activity was also found to be highest in T_4 .

In the physical analysis of the cookies made from the various flour blends, T_4 was observed to have maximum diameter whereas T_2 was found to have maximum height and T_1 was found to have maximum weight and spread ratio. The proximate analysis of the cookies showed that T_4 had maximum protein (12.95 per cent), fat (27.1 per cent) and crude fiber (2.45 per cent) whereas T_1 had maximum carbohydrate content (75.23 per cent). In antioxidant activity analysis maximum content was found in T_4 . With the addition of sunflower flour the highest improvement was found in T_4 .

The physicochemical and sensory evaluation of cookies, revealed that up to 20% substitution of wheat flour with sunflower seeds flour (T_2) produced acceptable cookies similar to the control (100% wheat flour) cookies. It showed the maximum score in colour (8.5), flavour (8.1), texture (8.1) and overall acceptability (8.3), taste (8.2). Hence, T_2 i.e. 20% sunflower seed flour was found to be most accepted in this study.

The second product formulation – the capsules also proved to be effective as about 42% of the sample patients opted to take the capsular form of the powdered seeds finding it easier to consume whereas the remaining 58% opted for the seeds in the natural form.

Thus in a nutshell, it can be concluded that sunflower seeds can be used as an adjuvant and an inordinate remedy to render control over the deranged biochemical parameters like cholesterol, triglycerides, LDL, FBS, SGOT and SGPT along with a good increase in HDL (the good cholesterol). In addition it was found that roasting did not hamper

much of its nutritional composition (as mentioned in **table 6.4**) hence it can be incorporated in light cooking and roasting recipes as well. Further, cookies enriched with sunflower seeds were developed for its efficient delivery and administration. Moreover preventing various metabolic disorders with nutritional intervention is therapeutic strategy that is widely being adopted.

- 1. Abou-Zaid AA, Ramadan MT and Al-Asklany SA (2011). Utilization of Faba Bean and Cowpea flours in gluten free cake production. *Australian Journal of Basic & Applied Science* 5(12), 441-53.
- 2. Adebowale KO, Olayinka OO and Olu-Owolabi BI (2008). Effect of heat-moisture treatment on physiochemical properties of white sorghum starch. *Food Hydrocolloids*, 22(2), 225-320.
- 3. Albert A, Schneiter ED (1997). Sunflower Technology and Production. *The American Society of Agronomy* 35, 1-19.
- 4. Allain CC, Poon LS, Chan CS, Richmond W, Fu PC (1974). Enzymatic determination of total serum cholesterol. *The Journal of Clincal Chemistry* 20 (4), 470-75.
- Anwar F, Quayyum HMA, Hussain AI and Iqbal S (2010). Antioxidant activity of 100% and 80% methanol extracts from barley seeds: stability of sunflower oil. *International Journal of Fat Oils* 61(3), 237-43.
- Aremu MO, Olaofe O and Akintayo ET (2007). Functional properties of some Nigerian varieties of legume seed flours and flour concentration effect on foaming and gelatin properties. *Journal of Food Technology* 5,109-15.
- 7. Artemis PS (1999). Essential fatty acids in health and chronic disease. *American Society for Clinical Nutrition* 3 (10), 560-69.
- Ascaso JF, Rafael C, German C, Gregoria V, Camajo EH, Josem O, Valls JM, Bergstom M, Wallin B (1996). Effect of olive and sunflower oils on low density lipoprotein level, composition, size, oxidation and interaction with arterial proteoglycans. *The Journal of Biochemistry* 125, 243-55.
- 9. Austin MA, Hutter CM, Zimmern RL, Humphries SE (2004). Familial hypercholesterolemia and coronary heart disease: a huge association review. *The American Journal of Epidemiology* 160(5), 421-29.
- 10. Awika JM, Rooney LW, Wu X, Prior RL and Cisneroszevallos L (2003). Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. *The Journal Agriculture and Food Chemistry* 51, 6657-62.
- 11. Azaih NA and Noor MA (2012). Physico-chemical and organoleptic properties of cookies incorporated with legume flour. *International Food Research Journal* 19(4), 1539-1543.
- 12. Bahram HA, Khan DA, Juma S, Drum ML, Venkatesh SV, Sohn E, Derman R (1998). Whole flaxseed consumption lowers serum LDL-cholesterol and lipoprotein concentrations in postmenopausal women. *The Journal of Clinical Nutrition* 18(7), 1203-14.
- 13. Barrett B, Kiefer D, Rabago D (1999). Assessing the risks and benefits of herbal medicine: an overview of scientific evidence. *Alternate Therapies in Health and Medicine5*, 40–49.
- 14. Bent, Stephen (2008), Herbal Medicine in the United States: Review of Efficacy, Safety, and Regulation. *Journal of General Internal Medicine* 23 (6), 854-59.

- 15. Biggerstaff KD, Wooten JS (2004). Understanding lipoproteins as transporters of cholesterol and other lipids. *The Journal of Physiological Education* 28, 105–116.
- 16. Bolívar A, Cevallos C and Luis CZ (2010). Impact of germination on phenolic content and antioxidant activity of 13 edible seed species. *Food Chemistry* 119 (4) 1485-90.
- 17. Bronte SB, Antonis A, Eales L, and Brock JF (1956). Effects of feeding different fats on serum-cholesterol level. *The Journal of Clinical Nutrition* 270, 521-26.
- 18. Burfoot D, James SJ, Foster AM, Sel KP, Wilkins TJ, Philips I (1990). *Temperature uniformity after reheating in microwave ovens, in Processing Engineering in the Food Industry*. Elsevier Applied Science, New York 2; 1-14.
- Canter PH, Ernst E (2004). Herbal supplement used by persons aged over 50 years in Britain: Frequently used herbs, concomitant use of herbs, nutritional supplements and prescription drugs, rate of informing doctors and potential for negative interactions. Drugs Aging 21, 597–605.
- 20. Carmena R, Duriez P, Fruchart (2004). Atherogenic lipoprotein particles in atherosclerosis. *Circulation* 23, 112–17.
- 21. Cauvain C (1998). Technology of bread making. Britain Thomas Publishing.
- 22. Chan MF, Mok YS, Wong SF, Tong FM, Day CC, Tang K, Wong DH (2003). Attitudes of Hong Kong Chinese to traditional Chinese medicine and Western medicine: Survey and cluster analysis. *Complementary Therapeutic Medicine* 11 (2), 103-09.
- 23. Chilungo CE and Gernah DI (2007). Physico-chemical properties and baking qualities of baked wheat products supplemented with cassava and pigeon pea flours (M.Sc.). Michigan State University, Michigan, United States.
- 24. Chinma CE and Gernah DI (2007). Physico-chemical and sensory properties of cookies produced from cassava /soybean/mango/composite flour. *Journal of Food Technology* 5, 256-60.
- 25. Clare M, Hasler G (2002). Functional Foods: Benefits, Concerns and Challenges-A Position Paper from the American Council on Science and Health. *The Journal of Nutrition*132, 3772-81.
- 26. Coates K, Alison M, Peter RC (2007). Edible nuts and metabolic health. *Current Opinion in Lipidology* 18, 25-30.
- 27. David JA, Frank B, Linda C, Tapsell S, Josse AR, Cyril W, Kendall C (2008). Possible benefit of nuts in type 2 diabetes. *The Journal of Nutrition* 138, 291-98.
- 28. Decareau RV (1985). *Microwaves in the food processing industry*. 1st edition; Orlando, FL: Acadamic Press Inc.
- 29. Delfin RL, Chantal MC, Richelle MC, Grant NP (2010). The cardiovascular effects of flaxseed and its omega-3 fatty acid, alpha-linolenic acid. *The Canadian Journal of Cardiology* 26(9), 489–96.
- 30. Dorairaj P, Panniyammakal J, Ambuj R (2016). Cardiovascular diseases in India. *Circulation* 133, 1605-20.
- 31. Durrington P (2003). Dyslipidemia. The Lancet 362, 717-31.
- 32. Earle M, Earle R, Anderson A (2007). *Food Product Development; Marketing approach*. Science and Technology Publishing House, Warsaw.

- 33. Emmons CL, Peterson DM (2001). Antioxidant Activity and Phenolic Content of Oat as Affected by Cultivar and Location. *The journal of Crop Science* 41, 1676-81.
- 34. Engle RE, Granger CWJ (1987). Co-integration and error-correction: representation, estimation, and testing. *Econometrica* 55, 251-76.
- 35. Ensminger AH, Ensminger ME, Kondale JE, Robson JRK (1983). Foods & Nutrition Encyclopedia. California: Pegus Press Publishers.
- 36. Ernst E, Schmidt K, Wider B (2005). CAM research in Britain: The last 10 years. *Complementary Therapy Clinical Practise*11, 17-20.
- 37. Everett NP, Robinson KEP, Mascarenhas D (1987). Genetic Engineering of Sunflower (Helianthus *annuus* L.). *Nature Biotechnology* 5, 1201-04.
- 38. Fasanmade OA, Odeniyi IA, Ogbera AO (2008). Diabetic Ketoacidosis: diagnosis and management. *African journal of medicine and medical sciences* 37, 99-105.
- Fatih O, Omer Y, Muhittin A, Serdar M, Ismail K, Muzaffer O, Erol A, Alev O (2010). Comparison of three methods for measurement of HbA1c. *Turkish Journal of Biochemistry* 35, 344-49.
- 40. Fiebberg SE (1979). Graphical method in statistics. *American Statistical Association* 33, 165-78
- 41. Fozia A, Farooq A, Amer J, Iqbal M (2006). Microwave roasting effects on the physiochemical composition and oxidative stability of sunflower seed oil. *Journal of the American Oil Chemists' Society*83 (9), 777–84
- 42. Frank BH, Stampfer MJ, Manson JE, Rimm EB, Colditz GA, Rosner BA, Speizer FE, Hennekens CH, Willetta WC (1998). Frequent nut consumption and risk of coronary heart disease in women: prospective cohort study. Department of Nutrition, Harvard School of Public Health, Boston 17, 241- 48.
- 43. Fraser GE (2000). Nut consumption, lipids, and risk of a coronary event. *Asia Pacific Journal of Clinical Nutrition*9, 28–32.
- 44. Fresco P, Borges F, Diniz C and Marques MPM (2006). New insights on the anti-cancer properties of dietary poly-phenols. *Medical Resource Review* 26, 747-66.
- 45. Friedewald WT, Levy RI, Fredrickson DS (1972). Estimation of the concentration of lowdensity lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. *The Journal of Clinical Chemistry* 18, 499-502.
- 46. Furruqh S, Anitha D, Venkatesh T (2004). Estimation of reference values in liver function test in health plan individuals of an urban south Indian population. *Indian Journal of Clinical Biochemistry* 19, 72-79.
- 47. Glady B (1982). A review of validations of dietary assessment methods. *The American Journal of Epidemiology* 115 (4), 492-95.
- 48. Gomez M, Oliete B, Rosell CM, Pando V and Fernanade E (2008). Studies on cake quality made of wheat-chickpea flour blends. *LWT-Food Science and Technology* 41(9), 1701-09.
- Gramlich T, Kleiner DE, McCullough AJ, Matteoni CA, Boparai N, Younossi ZM (2004). Pathologic features associated with fibrosis in non-alcoholic fatty liver disease. *The Journal of Human Pathology* 35 (2), 196–99.
- 50. Grassmann J, Hippeli S, Elstner EF (2002). Plant's defence and its benefits for animals and medicine: role of phenolics and terpenoids in avoiding oxygen stress. *Plant Physiology and Biochemistry* 40, 471–78.

- 51. Hassan HA, Mustafa AI, and Ahmed AR (2013). Effect of incorporation of decorticated pigeon pea protein isolate on functional, baking and sensory characteristics of wheat biscuits. *Advance Journal of Food Science and Technology*, 5(8), 979-81.
- 52. Heiser CB (1981). The Sunflower. University of Oklahoma Press.
- 53. Hesaham EA, Hussein AS and Mostafa BE (2007). Rheological properties and quality evaluation of Egyptian balady bread and biscuits supplemented with flours of nongerminated and germinated legume seeds or mushrooms. *Polish Journal of Food Science and Nutrition Sciences* 57(4), 487-96.
- 54. Hoojjat P and Zabik ME (1984). Sugar-snap cookies prepared with wheat navy beansesame seed flour blends. *Cereal Chemistry* 61(1), 41-44.
- 55. Hoseney RC, Wadaw P and Finley JW (1998). Soft wheat products. *Wheat Chemistry and Technology*, 407-56.
- 56. Ideal weight for height chart for adults (2000). National Centre for Health Statistics in collaboration with the National Centre for Chronic Disease Prevention and Health Promotion.
- 57. Iannuzzi A, Celentano E, Panico S, Galasso R, Covetti G, Sacchetti L, Zarrilli F, Michele MD, Rubba P (2002). Dietary and circulating antioxidant vitamins in relation to carotid plaques in middle-aged women. *American Journal of Clinical Nutrition* 76, 582-87.
- 58. Jack NL, Darryl LH, John WF, Roy JM, Jennifer CR, Ying Y, Frank L (2009). Greenway Fenugreek Bread: A Treatment for Diabetes Mellitus. Food Science Department, Louisiana State University Agricultural Center, Louisiana, USA.
- 59. Junyong I and Sangseok L (2017). Statistical data presentation. *Korean Journal of Anestheliogy* 70(3), 267-76.
- 60. Kalra S, Vithalani M, Gulati G, Kulkarni CM, Kadam Y, Pallivathukkal J, Das B, Sahay R, Modi KD (2013). Study of prevalence of non-alcoholic fatty liver disease (NAFLD) in type 2 diabetes patients in India. *Journal of Association of Physicians India* 61(7), 448-53.
- 61. Karamac M, Agnieszka K, Estrella I, Teresa H, Montserrat D (2012). Antioxidant activity of phenolic compounds identified in sunflower seeds. *European Food Resource Technology* 235, 221–30.
- 62. Kassaian N, Azadbakht L, Forghani B, Amini M (2009). Effect of fenugreek seeds on blood glucose and lipid profiles in type 2 diabetic patients. The *International Journal on Vitamin and Nutrition Research* 79(1), 34-39.
- 63. Katherine M, David M, Mehdi AK (2005). Phytosterol Composition of Nuts and Seeds Commonly Consumed in the United States. *The Journal of Agriculture and Food Chemistry* 53 (24), 9436-445.
- 64. Kaul S, Ahmad SI, Akiki GI, Alqahtani A, Herrera SA, Azzi J, Bansal V, Bascones A, Bascones C, Bascones J, Batal I (2013). *Introduction to Diabetes Advances in Experimental Medicine and Biology*. Springer Science, Business media LLC; 1-11.
- 65. Kontush A, Chapman MJ (2006). Antiatherogenic small, dense HDL-guardian angel of the arterial wall. *Natural Clinical Practise Cardiovascular Medicine* 3, 144-53.
- 66. Krimer MV, Madarev PS, Vastag Z, Preedy V, Patel V, Ronald W (2011). *Nuts and Seeds in Health and Disease Prevention*. 1st edition, Elsevier Publications.

- 67. Kumar K, Vinay S, Fausto N, Abbas AK, Cotran C, Ramzi S, Robbins C (2005). *Pathologic Basis of Disease*. 7th edition, Philadelphia, Pa: Saunders Publishers.
- 68. Kumar RP, Anuradha CV (1999). Effect of fenugreek seeds on blood lipid peroxidation and antioxidants in diabetic rats. *The Phytotherapy Research* 13(3), 197-201.
- 69. Kumar J, Pal V, Paliwal PK (2004). Estimation of Height from Measurements of Foot Length in Haryana Region. *The Journal of Indian Academic Forensic Medicine*, 32(3), 231-33.
- Leonardis AD, Macciola V, Domenico ND (2005). A first pilot study to produce a food antioxidant from sunflower seed shells (*Helianthus annuus*). European Journal of Lipid Science and Technology 107, 220-27.
- Maguire LS, O'Sullivan SM, Galvin K, O'Connor TP, O'Brien NM (2004). Fatty acid profile, tocopherol, squalene and phytosterol content of walnuts, almonds, peanuts, hazelnuts and the macadamia nut. *International Journal of Food Science & Nutrition* 3, 171-78.
- 72. Malinow MR, McLaughlin P, Stafford S, Livingston AL, Kohler GO (1980). Dietary effects in cholesterol-fed rabbits. *Atherosclerosis* 37, 433-38.
- 73. Masur SB, Tarachand KC and Kulkarni UN (2008). Development of high protein biscuits from Bengal gram flour. *Karnataka Journal of Agricultural Science* 22(4), 862-64.
- 74. Melanson KJ (2007). Dietary Factors in Reducing Risk of Cardiovascular Diseases. *American Journal of Lifestyle Medicine*1, 24-28.
- 75. Messina MJ (1999). Legumes and beans: overview of their nutritional profits and health effects. *American Society of Clinical Nutrition*, 70(3), 439-50.
- 76. Miller RA, Hoseney RC and Morries CF (1997). Effect of formula water content on the spread of sugar snap cookies. *Cereal Chemistry* 74(5), 669-71.
- Moon KD, Back SS, Kim JH, Jeon SM, Lee MK, Choi MS (2001). Safflower seed extract lowers plasma and hepatic lipids in rats fed high-cholesterol diet. *Nutrition Research* 21, 895-904.
- 78. Mudgett RE (1989). Microwave food processing: A scientific status summary by the Institute of Food Technologists' expert panel on food safety & nutrition. *Food Technology* 43(1), 117–26.
- 79. Mukuddem J, Oosthuizen W, Jerling JC (2005). A Systematic Review of the effects of nuts on blood lipid profiles in humans. *The Journal of Nutrition* 135, 2082-89.
- 80. Niharika V (2016). Introduction to hyperlipidaemia and its treatment: a review. *International Journal of Current Pharmaceutical Research* 9(1), 6-14.
- 81. Nisa M, Maruthur J, William M, Jeanne MC, Gerald J, Jerome LF, Catherine ML, Lawrence JA (2010). Measurement of Weight in the Clinical Trials. *The Journal of Obesity*, 334-37.
- 82. Nwokocha LM, Williams PA, Aviara NA and Senan C (2008). Comparative study of some properties of cassava and cocoyam starches. *Carbohydrate Polymers* 73(3), 361-67.
- 83. Nyklicek K, Ivan F (2000). Review of Research methods in health. *Journal of Psychophysiology* 14(2), 126-28.
- 84. Okpala L, Okoli E and Udensi E (2012). Physiochemical and sensory properties of cookies made from blends of germinated pigeon pea, fermented sorghum and cocoyam flour. *Food and Nutrition Wiley Periodicals* 1(1), 8-14.

- 85. Parr AJ, Bolwell GP (2000). Phenols in the plant and in man: The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. *Journal of Food and Agriculture Sciences* 80(7), 985-1012.
- 86. Paulina P, Robert S, Dorota G, Jacek R and Teresa F (2014). Phenolic profile and antioxidant activity in selected seeds and sprouts. *Food Chemistry* 143, 300-06.
- 87. Phillips KM, Ruggio DM, Ashraf KM (2005). Phytosterol composition of nuts and seeds commonly consumed in the United States. *The Journal of Agriculture and Food Chemistry*; 30 (24): 9436-45.
- 88. Prasad K (1997). Dietary flax seed in prevention of hypercholesterolemic atherosclerosis. *Atherosclerosis* 132, 69–76.
- 89. Prior RL and Cao G (2000). Antioxidants phytochemicals in fruits and vegetables; dietary and health implications. *Journal of Horticulture Science* 35, 588-92.
- 90. Qato DM, Alexander GC, Conti RM, Johnson M, Schumm P, Lindau ST (2008). Use of prescription and over-the-counter medications and dietary supplements among older adults in the United States. *Journal of American Medical Association* 300, 2867–78.
- 91. Reddy JK, Rao MS (2006). Lipid metabolism and liver inflammation, Fatty liver disease and fatty acid oxidation. *The American Journal of Physiology* 5, 852–58.
- 92. Richard RH (1998). Interactive-engagement versus traditional methods: A six-thousandstudent survey of mechanics test data for introductory physics courses. *The American Journal of Physiology*, 64-66.
- 93. Robertson JA and Burns EE (1975). Use of sunflower seed in food products. C R C Critical Reviews in Food Science and Nutrition 6(2), 201-40.
- Ruggio DM, Phillips KM, Ashraf KM (2005). Phytosterol composition of nuts and seeds commonly consumed in the United States. *Journal of Agricultural Food Chemistry* 24, 9436-45.
- 95. Rui J, David R, Jacobs J, Davis EM, Szklo M, Herrington D, Jenny NS, Kronmal R, Graham BR (2005). Nut and Seed Consumption and Inflammatory Markers in the Multi-Ethnic Study of Atherosclerosis. *American Journal of Epidemiology* 163, 222-31.
- 96. Sargi SC, Silva BC, Celestino HM, Montanher PF, Boeing JS, Santos OO, Souza NE, Visentainer JV (2013). Antioxidant capacity and chemical composition in seeds rich in omega-3: chia, flax, and perilla. Department of Food Technology, University of Parana.
- 97. Sarkar A, Sharma RD, Hazra DK, Misra B, Singh JB, Maheshwari BB, Sharma SK (1996). Hypolipidaemic effect of fenugreek seeds: a chronic study in non-insulin dependent diabetic patients. *The phytotherapy* 10 (4) 332–34.
- 98. Schmid CF (1954). Handbook of Graphic Presentation. Ronald Press, New York.
- 99. Sharma P, Gujral HS (2015). Effect of sand roasting and microwave cooking on antioxidant activity of barley. *Food Research International* 44, 235-40.
- 100. Sharma RD (1986). Effect of fenugreek seeds and leaves on blood glucose and serum insulin responses in human subjects. *The Journal on Nutrition Research* 6(12), 1353-64.
- 101. Sidhu D, Naugler C (2012). Fasting Time and Lipid Levels in a Community-Based Population, a Cross-sectional Study. *Archives of Internal Medicine* 10, 1-4.
- 102. Singh U (2001). Functional properties of grain legume flour. *Journal of Food Science* 38, 191-99.

- 103. Singh L, Varshney JG, Aggarwal T (2016). Polycyclic aromatic hydrocarbons' formation and occurrence in processed food. *Food Chemistry* 199, 768-81.
- 104. Smyth S, Heron A (2006). Diabetes and obesity: the twin epidemics. *Nature Medicine* 12, 75–80.
- 105. Soutar AK, Naoumova RP (2004). Autosomal recessive hypercholesterolemia. Seminarin Vascular Medicine 4(3), 241-48.
- StAngelo AJ (1996). Lipid oxidation in foods. Critical Review Food Science 36,175– 224
- 107. Steel RGD, Torrie JH and Dickey DA (1997). *Principles and Procedures of Statistics* - *a biometrical approach*. 3rd Edition, McGraw Hill Book Co. Inc, New York, USA.
- 108. Tapiero H, Tew KD, Ba GN and Mathe G (2002). Polyphenols: Do they play a role in prevention of human pathologies. *Biomedical Pharmacotherapy* 56, 200-07.
- 109. Temple NJ (2000). Antioxidants and disease: more questions than answers. *Nutritional Resource* 20, 449–59
- 110. Thapa BR, Walia A (2007). Liver function tests and their interpretation. *The Indian Journal of Paediatrics* 74, 663-71.
- 111. Torabian S, Haddad S, Rajaram S, Banta J, Sabate J (2009). Acute effect of nut consumption on plasma total polyphenols, antioxidant capacity and lipid peroxidation. *Journal of Human Nutrition and Dietetics* 22, 64-71.
- 112. Ubbor SC and Akobundu ENT (2009). Quality characteristics of cookies from composite of watermelon seeds, cassava and wheat. *Pakistan Journal of Nutrition* 8, 1097-102.
- 113. Ugwu BO and Ukabi UJ (2002). Potential of soy cassava flour processing to sustain increasing cassava production in Nigeria. *Outlook of Agriculture*, 31(2), 129-33.
- 114. Velioglu YS, Mazza G, Gao L and Oomah BD (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain Products. *The Journal of Agriculture and Food Chemistry* 46 (10), 4113–17.
- 115. Vita JA (2005). Polyphenols and cardiovascular disease: effects on endothelial and platelet function. *American Journal of Clinical Nutrition* 81, 292-97.
- Watanabe F, Abe K, Fujita T, Goto M, Hiemori M and Nakano Y (1998). Effects of microwave heating on the loss of vitamin B₁₂ in food. *Journal of Agricultural and Food Chemistry*, 46, 206–10.
- 117. Wien MA, Sabate JM, Ikle DN, Cole SE, Kandeel FR (2003). Almonds vs complex carbohydrates in a weight reduction program. *International Journal of Obesity*27, 1365–72.
- 118. Willett WC (1999) Goals for nutrition in the year 2000. CA. *Cancer Journal of Clinical Sciences* 49, 331–52.
- 119. Wood C and Rebecca S (1988). *The Whole Foods Encyclopedia*. New York, NY: Prentice-Hall Press.
- 120. Yahya MN (2004). Physico-chemical and shelf life studies reduced fat legume based cookies using sago flour as fat replacer (M.Sc.).Malaysian Agriculture Research and Development Institute. Malaysia
- 121. Yamazaki WT (2004). The application of heat in testing of flours for cookies quality. *Cereal Chemistry* 46, 59-69.

- 122. Yoshida H, Takagi S and Mitsuhashi S (1999).Tocopherol distribution and oxidative stability of oils prepared from the hypocotyl of soybeans roasted in a microwave oven. *Journal of the American Oil Chemists Society*, 76 (8), 915–20
- 123. Zabaniotou AA, Kantarelis W, Theodoropoulos F (2008). Sunflower shells utilization for energetic purposes in an integrated approach of energy crops: Laboratory study pyrolysis and kinetics. *Bioresource Technology* 8, 3174–81.
- 124. Zilic S, Maksimovic D, Maksimovic V, Maksimovic M, Basic Z, Crevar M and Stankovic G (2010). The content of antioxidants in sunflower seed and kernel. *HELIA* 52, 75-84.
- 125. Zucco F, Borsuk Y and Arntfield SD (2011). Physical and nutritional evaluation of wheat cookies supplemented with pulse flours of different particle sizes. *LWT-Food Science and Technology* 22, 331-37.

CHAPTERS	TOPICS	PAGE NO.
1.	Introduction	3-6
2.	Review of literature	7-21
3.	Hypothesis	22
4.	Research Objectives	23
5.	Materials and Research Methodology	24-43
6.	Result and Discussion	44-78
7.	Conclusion	79-81
8.	References	82-89

INDEX

Appendix I

GENERAL INFORMATION QUESTIONNAIRE

Date:
Q: 1 Name:
Q: 2 Sex:
Male Female
Q: 3 Age (Tick as appropriate):
Under 45 yrs 46–55 yrs 56–65 yrs Over 65 yrs
Q: 4 Height:FtFt
Q: 5 Weight:Kg
Q: 6 Occupation:
Q: 7 Annual Income:
Q: 8Does anyone from your immediate family member or other relative been diagnosed with any health issue (Tick the appropriate)
: grandparent, aunt, uncle or first cousin (but no own parent, brother, sister or child)
: parent, brother, sister or own child
Q: 9 Are you suffering from any below mentioned ailment?
a) Heart problem b) Hypertension c) High Cholesterol d) Diabetes e) Fatty liver
f) Any other
Q: 11 When did you last visited your physician?

.....

Q:13	Approximately how often you visit doctor?
	5 or more times a year
	3 to 4 times a year
	1 or 2 times a year
	Once every 2 to 3 years
	Once every 5 years
	Never
Q: 14	4 Are you taking any dietary precautions?
	Yes
	No
	Occasionally
Q: 21	l Have you ever been referred to a dietitian /nutritionist to consult regarding your diet? Yes No Was told, but didn't go
Q: 16	6Are you currently being treated or taking prescription/ medication for any health issue?
YES	NO
If yes	s, please mention the name of the medication
Q: 17	7 How frequently you take any medications/pills??
	I do not take pills
	Occasionally as needed
	Once per day
	Twice per day
	Three or more times per day

Q: 22 How many times in a month you eat outside?

	Once a month
	Twice a month
Ee	to four times or more
	Never
0.24	How often do you get your blood peremeters abacked?
Q. 24	How often do you get your blood parameters checked?

Never
Yearly
After 6 months
Quarterly

Q: 26 How active are you in terms of physical activity resultant of housework, garden work, other daily activity?

Very inactive
Inactive
A little activity
A moderate amount of activity
Active

Q: 27 How active are you in terms of physical activity resultant from cycling, walking, going to gym, running?

I never exercise
A couple times a month
1 or 2 times a week
3 to 4 times a week
5 to 6 times a week
Once a day
More than once a day

Q: 29 Have you	ever had an admission to he	ospital?		
YES		NO		
Q: 31 Do you ha	we allergies with any food s	substanc	ce?	
YES		NO		
If yes, please specify				
Q: 31Undergone any surgery in past?				
YES		NO		
If yes, please spo	ecify			

Appendix II

DIETARY RECALL

1. What is first thing in the morning you take after getting up?

2. In Breakfast what do you take usually and at what time?

3. Between Breakfast and Lunch anything to eat?

4. Lunch at what time and what do you take ususally?

5. Tea or coffee in evening if any?

6. Dinner at what time and what do you have?

7. Anything you take before sleeping?

8. How many cups of tea or coffee in a day do you take?

] One Cup

Two-three cups

☐ Four-five cups

More than five cups

None

9. How many glasses of water in a aday?

Two-four glasses
Four to six glasses
Six to eight glasses
Eight to ten glasses
More than then glasses


10. How much sugar you take in your tea/coffee or milk?

Appendix III

QUESTIONNARE POST CAPSULAR SUPPLEMENTATION OF SUNFLOWER SEEDS

	Date:
Q1 Name:	
Q2 Sex:	
Male Female	
Q3 Age (Tick as appropriate):	
Under 45 yrs 46–55 yrs 55–64 yrs	over 64 yrs
Q4 Did you take the sunflower seeds as advised to you?	
Yes No taken sometimes	missed sometimes
Q5 Did you take the capsules which consisted the powdered sunf	lower seeds?
a) Yes b) No	
Q6 Taking sunflower seeds was easier than taking the capsules. F	Please tick:
a) Strongly disagree	
b) Disagree	
c) Neutral	
d) Agree	
e) Strongly Agree	
Q7 Taking capsules was easier than taking the sunflower seeds. F	Please tick:
a) Strongly disagree	
b) Disagree	
c) Neutral	
d) Agree	
e) Strongly Agree	

Q8 Did consumption of the sunflower seeds prove to be beneficial for you?

Appendix IV

EVALUATION PERFORMA FOR HEDONIC RATING TEST OF THE FOOD PRODUCTS

Name of the Product:

Name of the Evaluator:

Dated:

Sample	Color	Flavor	Taste	Texture	Overall	Remarks
Code					Acceptability	(if any)

Signature _____

Hedonic Scale

Expression	Points to be assigned
Dislike extremely	1
Disliked very much	2
Disliked moderately	3
Disliked slightly	4
Neither liked nor disliked	5
Liked slightly	6
Liked moderately	7
Liked very much	8
Liked extremely	9

Appendix V

REFERENCE VALUES FOR ALL THE REQUIRED PARAMETER

Parameter	Satisfactory	Satisfactory
Cholesterol (mg/dl)	<200	>200
Triglycerides (mg/dl)	<150	>150
LDL (mg/dl)	<140	>140
HDL (mg/dl)	<40	>40
FBS (mg/dl)	70-100	>100
SGOT (U/L)	5-40	>40
SGPT (U/L)	7-56	>56

Appendix VI Master-sheet

Group: 1 Control				Visit 1				Visit2	╞		É	Visit 3	-	\vdash		Visit 4		-	╞	Visit5				Visit6			
Patient's Name	Ht	Wt	BMI	Chol	Tgl	LDL	HDL	Chol	Tgl	LDL I	HDL (Chol	Tgl	LDL I	HDL C	Chol	Tgl	LDL 1	HDL	Chol	Tgl	LDL	HDL	Chol	Tgl	LDL	HDL
1. Lakhwinder Kaur (45yrs)	154	67	30.4	207	168	127	59	192	155	125	55	188	142	128	51	180	140	121	50	175	137	119	48	177	138	123	49
2. Surjit Singh (51 yrs)	168	81	28.9	196	178	92	34	185	163	94	37	180	155	97	38	183	147	95	40	172	140	100	40	170	136	66	41
3. Shamsher Singh (53yrs)	177	89	28.4	219	163	16	37	203	152	95	38	190	139	100	39	183	136	86	39	185	138	67	40	178	135	101	40
4. Sarjit Singh (46yrs)	162	85	32.6	231	190	83	41	212	177	86	40	198	154	6	41	190	146	92	41	192	141	90	42	183	135	95	42
5. Mohinder Kaur (53 yrs)	150	71	32.2	193	271	68	38	183	252	90	38	180	214	68	39	185	185	92	40	181	162	85	40	183	149	87	41
6.Nainder Kaur (52 yrs)	165	68	25.1	246	318	164	34	220	260	152	37	201	219	136	38	194	181	130	40	187	165	132	41	189	142	135	41
7.Ranjit Singh (45yrs)	181	89	27.8	220	271	135	33	202	248	122	38	190	222	120	38	192	181	124	40	186	166	118	40	188	152	121	41
8.Rajni Sehgal (48yrs)	155	67	30.4	249	190	178	42	223	174	162	41	198	161	153	41	190	155	145	41	193	142	146	43	189	140	145	43
9.Anju Kumari (50yrs)	152	70	31.8	243	187	178	37	218	167	155	38	200	159	143	38	192	142	135	40	185	140	132	40	177	143	137	41
10.Sarabjeet Singh (46 yrs)	178	86	26.1	191	236	111	46	186	209	100	45	183	191	97	42	185	175	66	43	181	163	101	43	179	152	103	42
11.Amrish Khosla (54yrs)	169	91	31.1	167	232	86	43	165	217	97	43	166	195	96	42	162	179	100	42	163	161	66	42	169	149	101	42
12.Surinder Kaur (56yrs)	151	82	32.5	178	223	169	33	170	205	154	37	174	188	140	39	175	172	138	40	177	158	135	40	174	145	137	41
13. Jhirmal Singh (52yrs)	170	85	30.5	255	189	154	37	226	176	148	38	203	162	131	39	191	150	133	39	185	143	135	40	188	139	127	41
14. Jaspal Singh (51 yrs)	178	84	27.9	227	210	168	42	204	189	151	41	191	165	140	41	195	151	136	42	190	144	132	42	193	141	135	42
15. Mukhtar Singh (47yrs)	172	93	32.6	235	198	154	39	210	177	142	39	192	162	135	40	188	150	131	41	185	145	130	41	181	138	128	42
16. Kuldeep Kaur (45 yrs)	167	72	26.6	202	236	190	40	191	212	168	41	187	189	157	41	185	166	142	41	183	151	135	42	185	146	138	42
17. Sharanpal Kaur (52 yrs)	160	98	39.2	198	219	182	36	189	196	170	38	185	171	155	39	180	166	142	40	182	152	140	41	187	143	141	4

192 190 185 185 202
39 190 42 185 42 185 42 185 43 202
123 42 122 42 122 42 162 43
186 142 184 143 217 141
118 42 125 43 1 125 43 2
188 155 125 231 147 187
235 44 2
2 157
320 17
10/7 1 /01
200 102

	HDL	4	39	43	45	40	46	47	41	43	46	40	43	40	45	43	4	41	42	40
	LDL H	148 ,	130	130	137 4	147	133 4	146 4	143 4	, 147	, 121	, 147	134 4	140 4	143 4	, 139	141 4	142	145 4	134 4
	Tgl L		153 1	144 1	139 1	136 1	146 1	140 1	146 1	151 1	109 1	152 1	165 1	170 1	149 1	143 1	145 1	150 1	141 1	148 1
Visit6	Chol 7	197 1	185 1	189 1	201 1	183 1	186 1	193 1	186 1	191	188 1	195 1	185 1	190	197 1	190 1	189 1	190	198 1	203 1
V	L	39	38	39]	38	39	38	46]	40	40]	45]	38	40	38	40	40	40]	37]	39]	39 2
	DL HD	152 3	134 3	126 3	138 3	142 3	136 3	150 2	144	150 2	120 4	155 3	135 4	145 3	150 4	141 2	143 4	139	148 3	131 3
	Tgl LDI		1 11	150 12	156 11	144 1/	160 13	145 1:	152 14	161 1:	103 12	157 11:	213 13	261 1/	158 1:	154 14	148 14	164	149 14	156 13
Visit5	Chol]	215 1	191 1	207 1	227 1	210 1	193 1	198 1	195 1	197 1	210 1	210 1	202 2	194 2	211 1	198 1	202 1	192 1	221 1	222 1
V	L	38	36 1	38	36 2	39 2	35 1	4	39 1	40 1	47 2	37 2	39 2	36 1	39 2	40 1	38 2	36 1	37 2	38
	DL HD	159 3	138 3	128 3	134 3	146 3	135 3	154 4	142 3	153 4	128 4	162 3	136 3		156 3	143 4	142 3		152 3	133 3
	Tgl LDL		201 13	157 12	162 13	152 14	176 13	142 15	158 12	189 15	106 12	169 16	264 13	303 151	165 15	166 12	153 14	187 141	155 15	174 13
Visit4		228 16	195 2(219 15	242 10	229 15	192 13	209 1-	51 661	200 18	222 1(221 16	208 20	192 3(225 10	205 16	213 15	196 18	243 15	241 13
Vi	DL Chol		35 1	36 2	33 2			45 2	38 1	39 2		36 2	38 2	34 1		39 2			36 2	36 2
	L HD	0 37				0 37	8 32				3 47				2 37	-	.6 37	8 34		
	g LDI	97 160	30 133	52 126	77 135	55 150	91 138	48 156	50 147	12 156	105 123	36 166)2 135	54 154	176 162	72 147	166 146)4 138	53 155	97 138
it3	ol Tgl		9 230	162	177	11 165	161 70	148	160	3 212		186	6 302	96 354		9 172		9 204	5 163	8 197
Visit3	L Cho	249	199	222	265	241	197	222	202	203	241	235	216	196	241	219	224	199	265	258
	HD	37	34	35	32	36	31	47	38	39	49	35	38	33	36	39	35	30	33	35
	I LDI) 168	5 135	5 130) 137	155	140	55 160	5 155	3 158	1 122	0 171	2 133	162) 161) 145	151	3 140	86 159	3 137
12	I Tgl		2 265	7 165	5 189	5 171	2 221	11	0 165	3 243	101 2	21	2 352	4 411	5 200	1 180	1 181	5 223	18	5 223
Visit2)	267	202	237	286	265	202	236	210	208	267	241	222	204	265	231	251	205	298	266
	HDL	36	30	33	29	34	28	51	37	38	51	33	38	30	35	38	33	27	29	33
	LDL	172	139	131	143	161	143	166	153	161	121	185	131	167	174	152	159	144	168	135
	Tgl	245	288	176	218	189	256	162	168	276	95	236	414	490	231	187	190	245	245	201
Visit1	Chol	284	213	253	321	298	212	242	222	216	290	253	234	212	289	252	276	211	284	321
	BMI	30.7	32.4	31.7	29	32.27	39.4	28.2	26.8	34.1	31.6	31.1	28.2	30.3	34.4	28.2	28.8	25	29.2	30.2
	Wt	86	81	68	64	71	75	79	75	75	62	87	79	85	86	62	72	55	82	88
	Ht V	171	168	173	150	153	145	177	170	155	165	178	172	178	165	156	165	150	170	168
Group 1 (Case)			Narinder Singh (47yrs)	Sohan Singh (52yrs)	Surjit Kaur (53 yrs)	Sushila Devi (55yrs)	Krishna (51yrs)	Jasvir Singh (46yrs)	Saroop Chand (50yrs)	Hajit Kaur (44 yrs)	Harwant Singh (56yrs)	Suresh Gupta (49yrs)	Pratap Singh (49yrs)	Swaran Singh (50yrs)	Roop Kumar (53yrs)	Neeta Kaushik (52yrs)	Sarabjeet khullar (51 yrs)	Naresh Kumari (46yrs)	Mahesh Vij (46yrs)	Sukhwinder Kaur (53yrs)
	S.No	-	7	ŝ	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19

		Tgi LDL HDL	151 148 39	158 142 39	143 146 38	142 148 40	140 153 41	139 138 41	158 141 44	142 138 40	148 121 38	151 143 41
41 183	Visit6	HDL Chol	38 192	39 195	38 189	39 199	40 202	39 197	44 183	39 195	37 190	40 201
154		TDL	152	140	148	152	155	140	146	145	119	149
206 147	Visit5	Chol Tgl	195 162	202 186	211 152	213 146	215 142	210 150	195 186	197 144	198 152	222 162
40		HDL	38	38	36	39	39	37	43	39	37	38
152 158		Tgl LDL	79 155	211 145	164 150	144 158	147 159	159 146	211 158	149 148	165 120	187 156
213 1	Visit4		1 861	207 2	223 1	226 1	221 1	219 1	199 2	202 1	202 1	231 1
1 40		T HDF	6 37	1 36	7 35	2 38	1 37	3 36	1 42	3 37	7 35	1 37
156 161		Tgl LDL	198 156	243 141	179 157	147 172	150 161	167 143	254 171	151 153	178 127	210 161
220	Visit3	Chol	205	213	245	241	229	233	205	214	210	265
39		T HDF	3 37	35	33	1 38	9 36	33	7 43	5 37	32	5 35
161 165		Tgl LDL	223 168	287 140	182 160	149 181	155 169	174 145	282 177	156 165	199 130	243 176
226	Visit2	•	210	218	261	252	244	240	211	222	211	289
179 39		TDF HDF	189 36	143 32	164 28	195 36	186 34	148 29	181 43	177 35	132 30	187 32
254 17		Tgl LI		256 1-	311 10	196 15	154 18	168 1	187 18	333 1'	162 13	221 18
285	Visit1	Chol	234	226	222	273	269	251	247	217	238	244
27.8		BMI	30.9	26.8	29.1	28.6	26.6	26.5	31.9	25.4	28.8	31.7
88		Wt	20	64	82	75	75	96	99	85	75	86
152		Ht	165	170	170	177	152	181	165	171	178	180
Nirmala Deci (52 yrs)		Patient's Name	Javed Iqbal (46 yrs)	Dilbagh Singh (49 yrs)	Gurpreet Singh (44 yrs)	Satwant Kaur (52 yrs)	Sardool Singh (55yrs)	Punjab Kaur (46 yrs)	Sarup Singh (53 yrs)	Rachpal Singh (52 yrs)	Darshan Singh(47 yrs)	Ramesh Handa (50 yrs)
20		$S.N_0$	21	22	23	24	25	26	27	28	29	30

	Group 2 (Control)				Visit1		Visit2		Visit3		Visit4		Visit5		Visit6	
S.No	Patient's Name	Ht	Wt	IMB	FBS	HDL	FBS	HDL	FBS	HDL	FBS	HDL	FBS	TOH	FBS	HDL
1	Sarla devi (52 yrs)	151	67	30.4	212	38	186	39	163	39	140	40	129	41	118	41

41	40	40	39	39	40	40.5	40	39	41	41	39	40	38	39	41	42	38	41	Visit1	HDL	41
122	127	116	117	120	124	118	123	133	123	129	122	110	120	112	119	110	121	125	Visit6	FBS	123
42	40	38.5	39	39	38	40	40	38	40	41	38	39	36	39	40	41	36	39		HDL	40
131	141	120	120	126	141	121	148	141	136	138	143	118	129	122	128	119	129	136	Visit5	FBS	131
41	40	37	37	37.5	37	39	39	38	40	40.5	37	39	36	36	40	41	36	39		HDL	39
143	158	126	137	132	158	128	162	163	144	143	158	125	133	136	141	124	138	151	Visit4	FBS	145
41	40	36	36	37	36.5	40	39	37	39	40	37	38	35	36	40	40	34	38		TOH	39
152	166	130	152	140	163	133	176	189	151	156	171	131	140	148	159	131	145	168	Visit3	FBS	158
40	40	33	35	37	36	40	39	36	39	40	35	38	33	35	39	40	29	36		HDL	38
169	179	138	165	153	170	140	198	224	158	169	188	138	148	155	176	136	159	189	Visit2	FBS	171
40	39	29	33	36	35	40	38	34	39	40	32	37	29	33	39	40	26	34		HDL	38
186	192	146	178	166	189	149	234	276	162	187	203	142	156	162	193	141	167	210	Visit1	FBS	188
27.8	30.7	27.5	27	33.2	25	28.8	30.7	29.5	31.4	25.7	31.8	25.9	25.2	26.4	26.9	24.5	27.7	24.8		BMI	37.2
89	86	77	65	93	55	72	83	71	88	67	70	83	62	99	70	59	61	<i>LL</i>		Wt	82
180	172	168	158	170	150	165	166	155	172	162	152	181	177	159	164	155	152	178		Ht	150
Narinder Singh (47 yrs)	Suraj Parkash (46 yrs)	Manohar lal (50 yrs)	Rajwant Kaur (53 yrs)	Davinder Singh (45 yrs)	Kiran Kumari (49 yrs)	Mohan Lal (52 yrs)	Rajinder Krishan (48 yrs)	Lachhi Kaur (48 yrs)	Parveen Sharma (55 yrs)	Parkash Kaur (50 yrs)	Asha (51 yrs)	Sarabjeet Singh (46 yrs)	Ravinder Singh (49 yrs)	Maninder Kaur (53 yrs)	Krishan Kapoor ((55 yrs)	Sudha Mehta (48 yrs)	Rashmi Khanna (46 yrs)	Shiv Kumar (54 yrs)		Patient's Name	Davinder Kaur (51 yrs)
2	3	4	5	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20		$S.N_0$	21

		1	r	r	r	r	r	r	r		r	r	1		1	r		
	HDL	44	40	43	42	41	39.5	44	42	46	47	43	45	44	48	43	46	42.5
Visit6	FBS	103	118	112	107	114	117	109	105	102	112	103	104	119	104	101	104	103
	HDL	43	37	41	39	39	37	40	40	42	42	41	41	40	42	40	45	40
Visit5	FBS	104	121	116	111	121	124	114	110	109	121	106	108	120	109	106	114	102
	HDL	42	36	40	38	38	35	41	41	41	41	40	40	40	41	40	45	40
Visit4	FBS	107	129	119	122	129	133	116	114	120	133	105	120	131	111	112	127	108
	HDL	41	36	40	39	36	32	41	120	41	41	40	39.5	40	41	40	45	40
Visit3	FBS	111	140	123	138	138	149	126	106	131	151	120	141	148	122	117	143	112
	HDL	40	38	35	28	40	40	40	42	41	38	38	40	39	46	39	34	40
Visit2	FBS	121	165	162	159	159	177	151	139	154	641	137	162	161	145	123	161	124
	HDL	38	33	37	32	31	21	39	36	40	38	39	36	37	38	34	42	38
Visit1	FBS	134	211	197	182	203	225	186	160	178	220	157	188	196	166	146	197	148
	BMI	36.3	28.6	25.9	29.54	28.8	32.14	29.2	27.2	27.3	28.12	28.2	36.07	34.4	34.37	25	28	28.6
	Wt	80	63	83	65	72	90	73	68	60	06	62	101	86	110	70	70	63
	Ht	152	155	180	153	167	171	168	165	156	180	154	170	166	180	171	162	158
Group 2 (Case)	Patient's Name	Sawinder Kaur (50yrs)	Darshan Kaur (50yrs)	Narinder Singh (52yrs)	Harjit Kaur (55yrs)	Santa Singh (56yrs)	Rattan Lal (46yrs)	Sarjit Singh (47yrs)	Rajwant Kaur (46 yrs)	Jeevan Lata (52yrs)	Sarjit Singh (51yrs)	Kanta Devi (46yrs)	Vijay Kumar (53yrs)	Om Prakash (55yrs)	Sukhdeep Singh (45 yrs)	Prabhjeet Singh (50yrs)	Rupinder Kaur (46yrs)	Suvidha Chadda (48yrs)
	S.No	1	2	ε	4	5	9	7	×	6	10	11	12	13	14	15	16	17

18	Krishan Bhalla (52yrs)	171	79	28.2	129	29	120	40	116	38	117	39	112	41	107	43
19	Mangal Singh (48yrs)	184	86	26.8	169	38	145	39	122	40	119	41	114	42	110	46
					Visit1		Visit2		Visit3		Visit4		Visit5		Visit6	
$S.N_0$	Patient's Name	Ht	Wt	BMI	FBS	HDL	FBS	HDL	FBS	HDL	FBS	HDL	FBS	HDL	FBS	HDL
20	Sanjeev Mahajan (48yrs)	170	77	27.5	149	38	120	39	116	39	115	39	114	41	109	42
21	Sarabjeet Kaur (50yrs)	185	83	25.9	258	38	214	39	179	39	155	40	114	40	110	44
22	Pripal Singh	152	50	22.7	194	40	172	40	156	40	139	41	131	40	116	45
23	Kuljeet Kaur(55yrs)	171	85	30.3	160	45	142	47	130	49	126	50	122	41	108	50
24	Nirmaljeet Kaur (46 yrs)	158	69	31.3	184	35	160	40	141	40	137	40	116	51	115	45
25	Kanta Devi (47 yrs)	160	72	28.8	237	37	201	42	172	41.5	149	42	125	40.5	114	46
26	Jaswant Singh (51 yrs)	153	80	36.3	157	35	139	37	128	38	120	38.5	123	42	112	42
27	Rashpal Singh (45 yrs)	168	80	28.5	204	39	173	40	151	40	134	40	116	40	115	46
28	Satwant Kaur (49 yrs)	173	89	30.6	185	36	165	38	141	39	129	40	122	41	102	42
29	Poonam Kumari (53 yrs)	156	67	30.4	173	38	155	39	143	39	135	39	111	40	116	45
30	Mangal Singh (48yrs)	152	71	32.2	192	32	169	37	154	41	141	41	123	41	113	44

	Ţ															_				
	SGPT	53	55	50	57	65	58	57	60	51	59	65	62	55	64	09	56	54	50	58
Visit6	SGOT	42	41	37	45	41	42	40	43	38	39	4	45	47	45	47	43	38	38	48
	SGPT	57	61	55	09	82	63	65	74	56	65	92	71	89	72	71	63	61	54	64
Visit5	SGOT	44	45	38	53	43	45	44	46	41	40	45	48	51	49	50	47	39	38	50
	SGPT	09	68	59	71	100	75	79	16	60	11	88	94	76	83	87	70	65	60	71
Visit4	SGOT	48	48	38	62	52	50	52	53	43	42	48	58	55	52	55	52	42	41	55
	SGPT	69	73	62	86	121	66	111	125	67	91	101	122	86	67	103	81	73	66	86
Visit3	SGOT	50	54	42	70	67	61	60	61	47	53	56	71	61	57	61	57	45	43	67
	SGPT	75	88	69	122	149	120	143	151	75	100	119	155	121	129	134	95	80	71	122
Visit2	SGOT	55	61	45	78	86	67	72	76	51	65	65	68	69	65	75	60	48	45	82
	SGPT	84	101	76	156	185	153	171	189	68	130	141	180	158	161	167	123	87	78	153
Visit1	SGOT	58	65	48	68	103	71	83	94	55	68	74	111	85	70	93	64	51	46	95
	BMI	30	28.3	25.9	27.8	29.3	32.5	25	27.8	28.4	25.3	28.6	30.7	29.2	26.8	22.9	27.1	35.6	27.8	30.4
	Wt	84	89	57	68	91	88	09	78	71	92	87	83	82	09	55	92	82	78	67
	Ht	171	155	151	181	177	167	157	171	161	174	179	165	170	153	157	172	155	169	150
Group 3 (Control)	Patient's Name	Manvinder Singh (46yrs)	Sarabjeet Kaur (52yrs)	Sheela Devi (50yrs)	Maksudan Singh (48yrs)	Surinder Kumar (51yrs)	Raman Kumar (55yrs)	Loveject Kaur (49yrs)	Narinder Chawla (53yrs)	Parvinder Kaur (45yrs)	Sewa Singh (48yrs)	Mukhtar Singh (56yrs)	Raunaki Ram (54yrs)	Mohan Lal (52yrs)	Paramjit Kaur (49yrs)	Shashi Bala (45yrs)	Mithun Das (46yrs)	Rita Khanna (52yrs)	Parminder Singh (55yrs)	Jatinder Kaur (47yrs)
	S.No	1	2	ŝ	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19

	SGPT	54	59	58	52	60	54	58	56	65	55	62	53
Visit6	SGOT	47	48	42	41	48	49	50	48	49	4	43	42
	SGPT	62	70	64	58	11	65	09	64	<i>L</i> 9	64	71	57
Visit5	SGOT	51	52	47	42	51	53	56	51	55	45	46	44
	SGPT	73	81	73	61	68	73	65	71	84	71	80	09
Visit4	SGOT	54	56	50	4	58	59	62	59	59	49	48	48
	SGPT	91	95	87	65	113	89	73	26	100	84	87	69
Visit3	SGOT	63	61	52	47	89	61	69	67	73	52	53	50
	SGPT	115	111	101	73	149	105	81	129	134	26	66	75
Visit2	SGOT	71	65	57	49	87	65	80	81	98	58	60	55
	SGPT	145	135	123	86	182	134	156	167	172	129	121	84
Visit1	SGOT	82	62	61	50	105	72	68	93	001	64	69	58
	BMI	28.7	26.4	27.1	30.7	28.2	30.3	30.4	24.3	28.8	30	28.6	30
	Wt	92	99	81	86	6L	82	67	78	72	75	83	84
	Ht	182	158	176	172	168	167	151	180	161	160	175	171
	Patient's Name	Surat Singh (51 yrs)	Harinder Kaur (45yrs)	Partap Singh (49yrs)	Hardev Singh (50yrs)	Ranjit Chawla (55yrs)	Harish Arora (56yrs)	Sarita Rani (51yrs)	Gul Ahmed (46yrs)	Asha Kumari (48yrs)	Surjit Khurana (54yrs)	Manjit Singh (45yrs)	Manvinder Singh (46yrs)
	S.No	20	21	14	22	23	24	25	26	27	28	29	30

1	Group 3 (Case)				Visit1		Visit2		Visit3		Visit4		Visit5		Visit6	
_	Patient's Name	Ht	Wt	BMI	SGOT	SGPT										
	Mohinder Kaur (48yrs) 23 Sep	160	52	30	117	127	93	101	75	86	56	72	38	56	33	51
	Suraj Maini (55yrs)	177	81	28.9	88	124	72	112	99	103	58	68	47	71	40	54
	Babli (54yrs)	160	62	24.8	86	98	75	91	60	83	48	71	41	58	37	50
	Ahmed Singh (53yrs)	180	81	25.3	06	111	82	96	68	84	55	68	42	51	39	44
	Prakash Kaur (48yrs)	153	69	31.4	97	126	89	112	78	100	65	87	52	62	46	45
	Simarjeet Singh (44yrs)	182	96	30	85	130	79	116	71	86	56	76	48	59	41	48
	Gulshan Kaur (48yrs)	145	57	30	86	121	84	103	71	91	58	77	51	61	44	47
	Amarjeet Singh (51 yrs)	178	84	30	80	112	65	86	52	83	48	88	41	55	38	49
	Boota Singh (53yrs)	170	92	27.1	69	26	59	81	46	64	41	52	37	49	33	47
	Amar Singh (51 yrs)	170	58	30.3	108	132	16	117	62	102	64	86	55	69	43	51
	Punjab Singh (51yrs)	173	83	29.6	110	132	91	119	82	101	68	83	53	67	42	52
	Surjit Kaur (47yrs)	154	61	27.7	61	88	55	72	47	59	41	51	36	48	34	46
	Neelam Saini (48yrs)	152	85	26.3	75	101	69	88	58	73	51	58	43	45	38	47
	Varsha (55 yrs)	149	56	29.5	103	129	88	106	71	83	58	69	42	52	39	45
	Dhanwant Singh (47yrs)	171	58	30.3	99	92	58	62	51	63	45	51	41	48	35	45
	S.M.Verma (50yrs)	167	06	36	59	85	50	71	43	59	39	52	35	45	34	42
	Ramesh Kumar (55yrs)	178	109	35.1	118	178	103	132	87	101	68	83	54	65	41	52
	Harjot Singh (51 yrs)	168	85	30.3	127	189	100	156	82	118	71	89	59	61	42	49
	Harjinder Kaur (48yrs)	160	<i>21</i>	28.8	79	152	65	123	59	105	52	87	41	09	38	52
									1		•					

			1		1	1	1			1	1	1	
	SGPT	54	56	51	48	56	51	52	48	51	48	51	51
Visit6	SGOT	35	41	36	39	38	40	38	39	38	37	35	33
	SGPT	26	62	63	54	72	63	65	55	59	53	57	56
Visit5	SGOT	42	46	38	43	40	45	42	41	42	39	38	38
	SGPT	94	100	81	65	16	84	81	72	77	69	67	72
Visit4	SGOT	56	53	43	47	46	51	48	48	49	41	41	56
	SGPT	117	121	86	83	123	101	117	<i>L</i> 6	110	16	93	86
Visit3	SGOT	61	65	53	52	53	67	61	65	61	53	55	75
	SGPT	143	155	122	104	149	130	156	129	149	110	121	101
Visit2	SGOT	92	62	61	57	65	88	85	74	86	69	63	93
	SGPT	175	189	158	137	181	169	194	165	188	154	163	127
Visit1	SGOT	88	94	72	69	78	105	118	93	102	81	76	117
	BMI	30.4	27.8	25.4	26.8	30.9	27.8	31.2	26.1	30.3	25.6	25.8	30
	Wt	92	78	61	86	68	68	78	81	91	59	80	75
	Ht	160	171	155	181	150	178	160	179	174	152	178	160
	Patient's Name	Rabinder Singh (45 yrs)	Pawan Singh (46yrs)	Rajwant Kaur (52yrs)	Gurbhej Singh (54yrs)	Kanta devi (50yrs)	Amrit Singh (47yrs)	Gursharan Kaur (52yrs)	Irfaan Ahmed (44yrs)	Naresh Kumar (49yrs)	Amrik Kaur (53yrs)	Rajeev Kundra (56yrs)	Mohinder Kaur (48yrs)
	S.No	20	21	14	22	23	24	25	26	27	28	29	30

Group 4 (Control)				Visit1						Visit2	6						Vist3						Visit4						
Patient's Name	Ħ	Wt	BMI (Chol	Tgl	LDL H	HDL F	FBS 0	OT PT			I FDF	HDL	FBS	OT	PT	Chol		LDL I	HDL F	FBS 0	OT PT	r Chol	Tgl	TDL	HDL	FBS	OT	PT
1.Kamal Kumar (48yrs)	177			194							85 161		38	118	66	101	181	154								42	108	55	72
2.Kulwinder Singh (45yrs)	165	78	31.2	244	180	81	38	140	69 105		220 166	5 79	39	123	63	96	203	150	78	40	110	55 8	89 199	9 148	85	41	103	51	81
3.Nirmal Singh (50yrs)	171	93	33.2	179	220	70	41 1	161	90 131		170 203	3 76	42	160	83	112	172	186	79	42	143	81 9	99 175	5 171	82	44	132	69	81
4.Balwinder Singh (49yrs)	177	89	31.7	208	191	96	37 2	201	75 121		197 178	8 100	39	162	63	66	190	161	93	40	134	58 9	90 188	8 154	95	41	121	51	79
5.Mangwinder (46yrs)	168	72	28.8	197	231	81	39 1	183	59 98		183 211	1 92	40	152	47	86	179	187	95	40	130	50 7	79 181	1 162	93	41	121	48	71
6.Harinder Kaur (53yrs)	155	68	30.9	215	217	150	30 1	108	77 111		191 182	2 138	34	102	69	104	190	171	126	37	76	62 9	91 193	3 162	129	39	95	55	76
7.Neelam Kumari (56yrs)	152	61	27.7	258	232	192	41 1	136	66 134		232 208	8 178	40	124	56	109	211	181	160	40	113	55 9.	93 203	3 170	152	41	106	51	81
8.Harjinder Singh (48yrs)	181	96	30	250	213	180	43 1	112	79 129		222 189	9 162	43	110	77	112	216	178	155	4	106	67 100	0 199	9 162	151	44	102	60	88
9.Bachan Singh (46yrs)	165	68	27.2	129	110	93	33 1	116	70 86		133 105	5 94	35	110	61	74	135	111	95	35	106	56 7	71 133	3 106	26	36	105	50	63
10.Sadhu Singh (49yrs)	171	78	27.8	201	228	183	41 1	152	83 145		190 205	5 166	41	131	70	121	178	189	151	41	119	62 103	3 185	5 171	145	42	111	55	16
11.Lalita Sharma (45yrs)	152	81	36.8	231	187	121	35 1	185	98 122		212 169	611 6	38	166	83	100	192	153	120	39	141	71 8	86 195	5 150	122	40	130	09	72
12.Jaswinder Kaur (51yrs)	160	61	24.4	214	187	142	37 1	128 1	101 147		194 162	2 135	39	114	06	121	190	155	128	40	110	74 102	2 188	3 151	129	41	106	63	88
13.Amanpal Singh (53yrs)	165	78	31.2	197	204	180	33 1	129	81 141		188 189	9 162	38	121	11	119	185	172	157	39	118	6 09	98 189	9 164	146	40	114	52	82
14.Balkar Singh (48yrs)	177	79	28.2	222	179	150	41 1	157	72 133		213 160	0 133	40	138	61	108	207	156	136	41	121	52 9.	93 198	3 150	138	41	115	44	80
15.Asha Khanna (50yrs)	160	84	33.6	245	170	108	45 1	133	82 111		225 159	9 110	43	125	70	98	211	152	114	43	116	62 91	1 197	7 146	115	43	111	48	78
16.Kashmir Singh (46yrs)	177	84	35	198	217	158	42 1	135	80 132		180 198	8 142	43	123	74	112	183	191	140	43	119	68 101	1 186	5 182	138	42	112	54	88
17.Manjeet Singh (49yrs)	168	16	36.4	255	189	166	32 1	180	70 109		228 171	1 157	38	164	63	82	212	156	151	38	151	55 7	71 205	5 144	147	39	138	47	60
18.Kashmir Kaur (55yrs)	162	74	29.6	231	201	156	39 1	151	58 94		209 188	8 140	39	124	56	87	197	165	138	40	118	50 7	72 195	5 159	135	41	111	46	65
19.Balwant Singh (51 yrs)	167	81	32.4	227	96	179	42 1	175	47 61		212 100	0 161	55	155	40	55	202	103	155	51	139	38 5	51 198	899	148	48	123	35	47

				Visit1						-	Visit2						Vi	Visit3						Visit4						
20.Gurwinder Singh (46yrs)	181	87	27.1	173	338	92	36	114	60	95	175	301	100	38	110	51 8	82 1	172 27	276 10	102	39 10	108 46	5 70	170	0 241	103	3 39	9 105	5 42	61
21.Daljit Kaur (54yrs)	157	68	30.9	164	186	166	34	160	11	106	165	169	165	35	146	63 5	91 1	168 15	155 10	164	35 13	132 58	8 79	164	4 150	159	9 37	7 120	0 50	65
22.Amanpreet Singh (52yrs)	182	88	27.5	319	369	220	38	171	48	81	275	310	197	39	159	46	72 2	248 20	269 10	162	39 13	136 45	5 64	221	1 234	t 158	8 40	0 122	2 43	55
23.Kuldeep Singh (47yrs)	178	89	31.7	213	129	162	27	266	93	114	206	133	157	31	188	74 9	90 2	202 13	130 13	155	34 16	162 58	8 79	197	7 134	150	0 37	7 148	8 42	89
24.Sanjeev Kumar (56yrs)	171	78	27.8	141	308	59	39	123	38	78	145	271	76	40	120	37 6	64 1	149 25	253	. 62	40 11	117 38	8 61	147	7 222	2 75	5 41	1 109	9 35	58
25.Uttam Singh (54yrs)	181	90	28.4	177	222	116	27	200	45	67	178	200	120	30	178	44 6	62 1	180 18	187 11	121	34 15	152 43	3 58	182	2 169	0 126	5 36	5 139	9 40	53
26.Vijay Kaur(51yrs)	165	71	28.4	236	109	145	44	172	89	128	219	111	140	45	159	71 10	00	211 11	114 13	138	44 14	145 62	2 86	203	3 115	5 139	9 43	3 130	54	63
27.Gurjeet Singh (45yrs)	170	77	27.5	181	239	122	27	327	74	130	189	202	125	31	285	61 10	109	186 18	181 12	127	35 23	237 58	8 92	183	3 168	3 130	37	7 198	3 51	62
28.Paramjeet Kaur (48yrs)	151	64	29	233	185	113	32	208	46	89	218	168	121	35	181	41 8	80 2	212 15	151 12	122	37 16	165 38	8 65	206	5 149	611 0	38	8 141	1 36	52
29.Pawan Bhanot (55yrs)	165	79	35.9	198	204	154	39	253	78	124	195	190	150	40	201	59 1(101	31 161	186 1/	145	40 18	80 51	1 85	194	4 165	5 147	7 41	1 158	3 42	72
30.Savrajdeep Singh (49yrs)	176	80	28.5	233	198	132	40	153	88	137	210	182	135	40	145	68 11	110 2	202 16	168 14	140	41 13	131 61	1 95	196	5 157	7 138	41	1 128	3 52	80

	Group 4 (Control) Continued				Visit5							Visit6						
S.No	Patient's Name	Ht	Wt	BMI	Chol	Tgl	LDL	HDL	FBS	OT	PT	Chol	Tgl	LDL	HDL	FBS	oT	ΡT
1	Kamal Kumar (48 yrs)	165	68	35.6	180	140	80	42	102	44	59	178	141	80	44	103	42	50

																						_
57	49	58	54	57	65	62	53	61	54	63	58	60	51	64	46	51	42	48		50	45	
44	49	39	41	48	45	51	35	42	39	42	42	38	38	45	39	41	33	35		45	33	
100	107	108	103	94	66	66	102	103	II	101	102	101	66	105	110	101	108	98		107	106	
42	45	42	42	40	42	45	39	43	41	42	41	42	43	43	41	42	47	41		38	42	
88	80	90	88	133	146	148	101	143	117	133	145	134	118	130	148	134	143	66		151	145	
147	150	145	150	148	154	146	103	150	145	143	153	145	140	160	145	152	100	174		145	169	
187	173	189	180	184	195	190	136	186	186	189	182	196	198	184	192	190	195	176	Visit6	167	205	
69	64	67	63	65	74	76	60	76	60	75	69	11	65	75	52	58	40	52		57	48	
48	56	45	45	52	48	54	39	48	55	48	46	40	41	52	42	44	36	40		48	39	
66	119	116	111	98	101	103	101	105	119	105	108	107	109	110	121	106	111	102		112	110	
41	44	42	41	40	41	44	42	42	40	41	41	42	44	43	40	41	47	40		38	41	117
87	83	94	90	132	147	147	100	142	120	130	142	135	112	132	145	137	145	98		156	149	
145	155	147	157	155	166	150	108	156	148	147	158	149	145	169	148	156	96	209		147	201	
191	176	193	177	188	198	194	131	182	189	192	185	195	195	182	197	194	196	178	Visit5	169	213	
27.2	28.9	28.9	33.2	27.8	31.4	25	31.6	31.4	32.7	27.8	30.4	30.6	26	26.8	34.4	27.6	43.2	28.5		31.4	23.2	
68	81	81	83	78	88	70	62	69	72	78	76	98	65	59	86	89	95	80		69	58	
162	178	178	171	170	170	177	168	156	154	173	168	188	160	150	168	180	155	172		152	160	
Kulwinder Singh (45yrs)	Nirmal Singh (50yrs)	Balwinder Singh (49yrs)	Mangwinder Singh (46yrs)	Harinder Kaur (53yrs)	Neelam Kumari (56yrs)	Harjinder Singh (48yrs)	Bachan Singh (46yrs)	Sadhu Singh (49yrs)	Lalita Sharma (45yrs)	Jaswinder Kaur (51 yrs)	Amanpal Singh (53 yrs)	Balkar Singh (48yrs)	Asha Khanna (50yrs)	Kashmir Singh (46yrs)	Manjeet Singh (49yrs)	Kashmir Kaur (55 yrs)	Balwant Singh (51 yrs)	Gurwinder Singh (46yrs)		Daljit Kaur (54yrs)	Amanpreet Singh (52yrs)	
2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20		21	22	

	36 48	34 44	40 46	42 58	35 44	3 52	42 58
<u> </u>						33	
c21	100	111	137	145	116	120	104
39	42	39	42	40	41	42	42
143	81	125	140	133	120	142	133
135	163	152	110	143	147	149	148
196	145	179	195	182	193	195	193
55	50	49	55	65	49	99	71
37	35	36	42	45	34	35	47
130	104	122	133	161	127	131	115
38	41	38	43	39	39	41	42
149	62	124	142	129	123	143	137
132	187	155	112	151	145	154	150
195	143	183	198	188	195	193	191
27.8	28.1	30	26.7	36.8	27.7	26.8	32.2
78	06	75	75	92	98	67	71
178	180	160	173	168	177	160	153
23 Kuldeep Singh (47yrs)	Sanjeev Kumar (5 6yrs)	Uttam Singh (54yrs)	Vijay Kaur(51yrs)	Gurjeet Singh (45yrs)	Paramjeet Kaur (48 yrs)	29 Pawan Bhanot (55yrs)	Savrajdeep Singh (49yrs)
23	24	25	26	27	28	29	30

	Pt	72	81	81	79	71	76	81	89	63	16	72	88	82	80	78	88	60	65	47	61
	OT	55	51	69	51	48	55	51	60	50	55	60	63	52	44	48	54	47	46	35	42
	FBS	108	103	132	121	121	95	106	102	105	111	130	106	114	115	111	112	138	111	123	105
	HDL	42	41	44	41	41	39	41	44	36	42	40	41	40	41	43	42	39	41	48	39
	LDL	78	85	82	95	93	129	152	151	97	145	122	129	146	138	115	138	147	135	148	103
	Tgl	146	148	171	154	162	162	170	162	106	171	150	151	164	150	146	182	144	159	66	241
Visit4	Chol	185	199	175	188	181	193	203	199	133	185	195	188	189	198	197	186	205	195	198	170
_	PT (86	89	66	06	62	16	93	100	71	103	86	102	86	93	91	101	71	72	51	70
	OT	60	55	81	58	50	62	55	67	56	62	71	74	60	52	62	68	55	50	38	46
	FBS	111	110	143	134	130	76	113	106	106	119	141	110	118	121	116	119	151	118	139	108
	HDL	40	40	42	40	40	37	40	44	35	41	39	40	39	41	43	43	38	40	51	39
	LDL	81	78	79	93	95	126	160	155	95	151	120	128	157	136	114	140	151	138	155	102
		154	150	186	161	187	171	181	178	111	189	153	155	172	156	152	191	156	165	103	276
Vist3	Chol	181	203	172	190	179	190	211	216	135	178	192	190	185	207	211	183	212	197	202	172
	ΡT	101	96	112	66	86	104	109	112	74	121	100	121	119	108	98	112	82	87	55	82
	OT	66	63	83	63	47	69	56	77	61	02	83	06	71	61	70	74	63	56	40	51
	FBS	118	123	160	162	152	102	124	110	110	131	166	114	121	138	125	123	164	124	155	110
	HDL	38	39	42	39	40	34	40	43	35	41	38	39	38	40	43	43	38	39	55	38
	LDL	17	79	76	100	92	138	178	162	94	166	119	135	162	133	110	142	157	140	161	100
	Tgl	161	166	203	178	211	182	208	189	105	205	169	162	189	160	159	198	171	188	100	301
Visit2	Chol	185	220	170	197	183	191	232	222	133	190	212	194	188	213	225	180	228	209	212	175
	PT	124	105	131	121	86	111	134	129	86	145	122	147	141	133	111	132	109	94	61	95
	OT	82	69	06	75	59	<i>LL</i>	66	<i>6L</i>	02	83	86	101	81	72	82	80	70	58	47	60
	FBS	123	140	191	201	183	108	136	112	116	152	185	128	129	157	133	135	180	151	175	114
	HDL	37	38	41	37	39	30	41	43	33	41	35	37	33	41	45	42	32	39	42	36
	LDL	72	81	70	96	81	150	192	180	93	183	121	142	180	150	108	158	166	156	179	92
	Tgl	172	180	220	161	231	217	232	213	110	228	187	187	204	179	170	217	189	201	96	338
Visit1	Chol	194	244	179	208	197	215	258	250	129	201	231	214	197	222	245	198	255	231	227	173
	BMI	35.6	27.2	28.9	28.9	33.2	27.8	31.4	25	31.6	31.4	32.7	27.8	30.4	30.6	26	26.8	34.4	27.6	43.2	28.5
	Wt	68	68	81	81	83	78	88	70	62	69	72	78	76	86	65	59	86	68	95	80
	Ht	165	162	178	178	171	170	170	177	168	156	154	173	168	188	160	150	168	180	155	172
t (Case)	Vame	Mohinder Singh (51yrs)	aur (49 yrs)	gh (56 yrs)	h (48yrs)	gh (54 yrs)	ngh (48yrs)	8yrs)	Ankush Sharma (45yrs)	Sukhdeep Singh (50yrs)	aur (47yrs)	Kulwinder Kaur (55yrs)	ngh(45yrs)	ı (55yrs)	·(49yrs)	aur (50yrs)	(52yrs)	nd (51yrs)	ı (48yrs)	ni (48yrs)	(56yrs)
Group 4 (Case)	Patient's I	Mohinder S	Harjindee Kaur (49 yrs)	Baldev Singh (56 yrs)	Hadial Singh (48yrs)	Raunak Singh (54 yrs)	Sarabjeet Singh (48yrs)	Varinder (48yrs)	Ankush Sha	Sukhdeep S	Davinder Kaur (47yrs)	Kulwinder J	Surinder Singh(45yrs)	Sewa Singh (55yrs)	Anil Kumar (49yrs)	Mohinder Kaur (50yrs)	Amba Devi (52yrs)	Punjab Chand (51yrs)	Jugraj singh (48yrs)	Santosh Rani (48yrs)	Vaneet Vij (56yrs)
	S.No	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20

	65	55	68	58	53	63	62	52	72	80
	50	43	42	35	40	54	51	36	42	52
	120	122	148	109	139	130	198	141	158	128
	37	40	37	41	36	43	37	38	41	41
	159	158	150	75	126	139	130	119	147	138
	150	234	134	222	169	115	168	149	165	157
Visit4	164	221	197	147	182	203	183	206	194	196
	62	64	62	61	58	86	92	65	85	95
	58	45	58	38	43	62	58	38	51	61
	132	136	162	117	152	145	237	165	180	131
	35	39	34	40	34	44	35	37	40	41
	164	162	155	62	121	138	127	122	145	140
	155	269	130	253	187	114	181	151	186	168
Visit3	168	248	202	149	180	211	186	212	197	202
	91	72	06	64	62	100	109	80	101	110
	63	46	74	37	44	71	61	41	59	68
	146	159	188	120	178	159	285	181	201	145
	35	39	31	40	30	45	31	35	40	40
	165	197	157	76	120	140	125	121	150	135
	169	310	133	271	200	111	202	168	190	182
Visit2	165	275	206	145	178	219	189	218	195	210
	106	81	114	78	67	128	130	89	124	137
	77	48	93	38	45	68	74	46	78	88
	160	171	266	123	200	172	327	208	253	153
	34	38	27	39	27	4	27	32	39	40
	166	220	162	59	116	145	122	113	154	132
	186	369	129	308	222	109	239	185	204	198
Visit1	164	319	213	141	177	236	181	233	198	233
	31.4	23.2	27.8	28.1	30	26.7	36.8	27.7	26.8	32.2
	69	58	78	6	75	75	92	86	67	71
	152	160	178	180	160	173	168	177	160	153
	Kusum chopra (56yrs)	Sawinder Kaur (50 yrs)	Sarabjeet Singh (46yrs)	Munish Talwar (54 yrs)	Surender Singh (51 yrs)	Deepak (45 yrs)	Kewal Krishan (54 yrs)	Annrik Singh (52 yrs)	Navdeep kaur (49 yrs)	Sarup Rani (55 yrs)
	21	22	23	24	25	26	27	28	29	30

	Group 4 (Case) Continued				Visit5							Visit6						
$S.N_0$	Patient's Name	Ht	Wt	BMI Chol		Tgl	LDL	HDL	HDL FBS OT	OT	ΡT	Chol	Tgl	LDL	HDL	FBS	OT	ΡT
1	Mohinder Singh (51yrs)	165	68	35.6	180	140	80	42	102	44	59	178	141	80	44	103	42	50

	_																					
57	49	58	54	57	65	62	53	61	54	63	58	60	51	64	46	51	42	48	50	45	49	
44	49	39	41	48	45	51	35	42	39	42	42	38	38	45	39	41	33	35	45	33	35	
100	107	108	103	94	66	66	102	103	111	101	102	101	66	105	110	101	108	86	107	106	125	
42	45	42	42	40	42	45	39	43	41	42	41	42	43	43	41	42	47	41	38	42	39	
88	80	96	88	133	146	148	101	143	117	133	145	134	118	130	148	134	143	66	151	145	143	
147	150	145	150	148	154	146	103	150	145	143	153	145	140	160	145	152	100	174	145	169	135	
187	173	189	180	184	195	190	136	186	186	189	182	196	198	184	192	190	195	176	167	205	196	
69	64	67	63	65	74	76	60	76	60	75	69	11	65	75	52	58	40	52	57	48	55	
48	56	45	45	52	48	54	39	48	55	48	46	40	41	52	42	44	36	40	48	39	37	
66	119	116	111	98	101	103	101	105	119	105	108	107	109	110	121	106	111	102	112	110	130	
41	44	42	41	40	41	44	42	42	40	41	41	42	44	43	40	41	47	40	38	41	38	122
87	83	94	6	132	147	147	100	142	120	130	142	135	112	132	145	137	145	98	156	149	149	
145	155	147	157	155	166	150	108	156	148	147	158	149	145	169	148	156	96	209	147	201	132	
191	176	193	177	188	198	194	131	182	189	192	185	195	195	182	197	194	196	178	169	213	195	
27.2	28.9	28.9	33.2	27.8	31.4	25	31.6	31.4	32.7	27.8	30.4	30.6	26	26.8	34.4	27.6	43.2	28.5	31.4	23.2	27.8	
68	81	81	83	78	88	70	79	69	72	78	76	98	65	59	86	89	95	80	69	58	78	
162	178	178	171	170	170	177	168	156	154	173	168	188	160	150	168	180	155	172	152	160	178	
Harjindee Kaur (49yrs)	Baldev Singh (56yrs)	Hadial Singh (48yrs)	Raunak Singh (54yrs)	Sarabjeet Singh (48yrs)	Varinder (48yrs)	Ankush Sharma (45yrs)	Sukhdeep Singh (50yrs)	Davinder Kaur (47yrs)	Kulwinder Kaur (55yrs)	Surinder Singh(45yrs)	Sewa Singh (55yrs)	Anil Kumar (49 yrs)	Mohinder Kaur (50yrs)	Amba Devi (52yrs)	Punjab Chand (51 yrs)	Jugraj singh (48yrs)	Santosh Rani (48yrs)	Vaneet Vij (56yrs)	Kusum chopra (56yrs)	Sawinder Kaur (50 yrs)	Sarabjeet Singh (46yrs)	
2	3	4	2	9	7	∞	6	10	Ξ	12	13	14	15	16	17	18	19	20	21	22	23	

	44	46	58	44	52	58
36	34	40	42	35	33	42
100	111	137	145	116	120	104
42	39	42	40	41	42	42
81	125	140	133	120	142	133
163	152	110	143	147	149	148
145	179	195	182	193	195	193
50	49	55	65	49	99	71
35	36	42	45	34	35	47
104	122	133	161	127	131	115
41	38	43	39	39	41	42
79	124	142	129	123	143	137
187	155	112	151	145	154	150
143	183	198	188	195	193	161
28.1	30	26.7	36.8	7.72	26.8	32.2
90	75	75	92	86	67	11
180	160	173	168	<i>LL</i> 1	160	153
24 Munish Talwar (54 yrs)	25 Surender Singh (51 yrs)	26 Deepak (45 yrs)	Kewal Krishan (54 yrs)	²⁸ Amrik Singh (52 yrs)	29 Navdeep kaur (49 yrs)	Sarup Rani (55 yrs)
24	25	26	27	28	29	30

	· · · · · · · · · · · · · · · · · · ·
Ny Ny<	· · · · · · · · · · · · · · · · · · ·
Image Image <th< th=""><th>· /01 · · · · · · · · · · · · · · · · · · ·</th></th<>	· /01 · · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
	- · · ·
	· · ·
	, ,
IDL IDL FBS OT Visit2 N N N 1 LDL HDL FBS OT PT Chol TF LDL HDL FBS OT PT Chol TS	, ,
IDL HDL FSS OT Visit2 Nisit2 HDL FSS OT Visit2 HDL HDL FSS OT Visit2 HDL	
IDI. HDI. FBS OT \mathbf{Y} \mathbf{Y} \mathbf{H}	
LDL HDL FBS OT $Visit2$ IDI HDL HDL HDL HDL HDL HDL IDI HDL IDI HDL IDI HDL IDI <th< th=""><th></th></th<>	
LDL HDL FBS OT Visit2 LDL HDL HDL<	102
LDL HDL FBS OT Visit2 T Visit2 L 1 82 39 \cdot \cdot \cdot 170 RS T L 2 124 HD \cdot \cdot \cdot \cdot 135 L 2 124 42 \cdot \cdot \cdot 202 133 8 163 35 \cdot \cdot \cdot 202 133 1 144 35 \cdot \cdot 213 80 172 1 144 35 \cdot \cdot 213 80 172 1 144 35 \cdot \cdot 203 123 80 171 1 122 43 \cdot \cdot 203 124 125 124 1 123 \cdot \cdot 203 121 121 121 121 121 121 121 121 <th></th>	
LDL HDL FBS OT Yr $Visit2$ 1 82 39 - - 100 2 124 42 - - 202 8 163 35 - - 202 1 144 35 - - 203 1 144 35 - - 213 1 144 35 - - 203 1 144 35 - - 203 1 144 35 - - 203 1 144 35 - - 203 1 144 35 - - 203 1 128 41 - - 203 1 128 41 - - 203 1 128 41 - - 203 1 128 11 -	
LDL HDL FBS OT Yi 1 82 39 - - Y 2 124 42 - - - 3 5 - - - - 1 82 35 - - - 2 124 42 - - - 1 144 35 - - - 1 144 35 - - - 1 128 41 - - - 1 72 43 - - - - 1 72 43 - - - - - 1 72 43 - - - - - 1 72 - - - - - - - - 1 72 - - - -	
$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $	
LDL HDL FBS 1 82 39 - 2 124 42 - 8 163 35 - 8 163 35 - 11 144 35 - 11 124 42 - 11 12 43 - 11 12 43 - 11 72 43 - 11 72 43 - 11 72 43 - 11 72 43 - 119 36 - 115 12 - 119 36 - 16 - - 116 - 12 - - 106 - 13 - - 106 - 14 - - 106 - 13 - - - -	
LDL HDL I 1 82 39 2 124 42 2 124 42 35 89 36 1 144 35 1 128 41 1 144 35 1 128 41 1 128 41 1 128 41 1 128 41 1 128 41 1 128 41 1 136 - 1 128 41 1 138 36 1 138 36 1 138 41 1 138 41 1 136 - 1 139 5 1 - - 1 - - 1 - - 1 - - <	
LDL H 1 82 2 12 2 12 3 8 5 163 66 164 11 144 12 12 11 128 9 119 9 119 1 2 1 1 1 128 1 128 1 128 1 12 1 12 1 128 1 128 1 128 1 128 1 128 1 128 1 128 1 128 1 128 1 128 1 1 1 1 1 1 1 1 1 1 1 1	112
Visit1 Visit1 183 183 183 210 240 226 204 204 204 204 204 204 205 206 206 207 207 207 207 207 207 207 207 200 200	
BMI 24.8 24.8 24.8 32.5 32.5 32.5 27.5 27.5 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 31.6	2.0c 25.7
Wr S 62 62 63 64 64 64 67 64 68 64 69 63 68 68 68 68 68 83 88 83 88 83 88 83	so 27
Ht 150 150 172 172 172 172 176 176 176 176 176 176 176 176 176 177 178 151 151 151 151 153 154 155 156 157 158 151 153 154 155 155 156 157 158 158 158 158 158 158 158 158 158 158 158 159 150 150 150 150 <	170
Group5 (Control) Patient's Name Kashnir Kaur (45yrs) Parninder Singh (49yrs) Kanwal Balraj (46yrs) Amarjeet Singh (53yrs) Amar kuur (48yrs) Madhu Tuli (44yrs) Amar Kaur (55yrs) Amar Kaur (55yrs) Amar Kaur (55yrs) Amar Kaura (60yrs) Bhushan Kumar (50 yrs) Neelam (46yrs) Bharat Lal (56yrs) Rajinder Singh (53yrs) Raushalya Devi (53yrs) Raunak Singh (50yrs) Kashmir Singh (50yrs) A.P. Chatha (50yrs)	Vinod Kumar (51yrs)
S.No 1 1 1 2 2 3 3 6 6 6 6 9 9 9 9 11 11 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 14 14 15 15 16 16 16 16 177 177	18

Methic Shifted (5 yr) Used Valid Valid </th <th></th> <th>_</th> <th>·</th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		_	·	1								
		1	<i>LL</i>	65	74	67	<i>LL</i>	78	64	57	60	LL
		•	58	48	51	49	45	51	52	51	46	58
Model National (45 yrs)		108								•	•	
Rehin Sharma (46 yrs) 12 8 7.84 Vaid Vaid <th></th>												
Montroluting (45) (5) Image: 1 and												
Robin Sharma (65 yr) 19 Veirl			i.		1		1	1		1	1	
Robin Shamma (46 yrs) 12 8 Vsiil	Visit4						ı					
Robin Sharma (46 yrs) 12 8 7 yrsit Visit			81	88	62	73	81	82	68	61	67	81
Robin Sharma (46 yrs) 12 N sint V sint			60	51	55	51	48	55	54	53	51	60
Robin Sharma (46 yrs) 132 8 27.8 Vsiri		111										
Robin Sharma (46 yrs) 152 88 27.8 Vail - 120 - Vail - Vail - Vail												
Robin Sharma (46 yrs) 12 N sid N sid <th></th>												
Robin Sharma (46 yrs) 152 88 27.8 • Vsit Vsit Vsit Vsit · Vsit · 115 · 115 · 115 · 115 · 115 · 115 · 115 · 115 · 115 · 115 · 115 · 115 · · 115 · · 115 · · 115 · · · 120 · · · · 115 ·			1					1				
Robin Sharma (46 yrs) 152 88 27.8 visit	Visit3		1									
Mobin Sharma (46 yrs) 12 8 27.8 visit visit visits visit			85	71	84	78	86	90	69	65	72	85
Robin Sharma (46 yrs) 152 88 27.8 · V sid1 · V sid2 ·			62	55	58	55	51	58	54	56	55	62
Mobin Sharma (46 yrs) 122 88 27.8 - V sirl Visit		115	I		1	1	ı	1	1	1	ı	
Robin Sharma (46 yrs) 122 88 27.8 - - - - Visit2 - <			i.									
Mobin Sharma (46 yrs) 152 88 27.8 - - 120 - - visid Ashish Parkash (45 yrs) 152 88 27.8 - - 120 - <th></th>												
Robin Sharma (46 yrs) 122 88 27.8 - - 120 - - Ashish Parkash (45 yrs) 132 88 27.8 - - 120 - 5 5 28 - - - - - - - - 5 9 -					1	1					ı	
Robin Sharma (46 yrs) 152 88 27.8 ·<	Visit2											
Robin Sharma (46 yrs) 152 88 27.8 - - - 120 Ashish Parkash (45 yrs) 152 88 27.8 - - - 120 Ashish Parkash (45 yrs) 170 77 27.5 - - - 120 Kuldeep Singh (50yrs) 181 95 29.6 -			88	74	90	81	92	93	72	73	80	88
Robin Sharma (46 yrs) 152 88 27.8 ·<			65	59	62	59	53	61	56	59	61	65
Robin Sharma (46 yrs) 152 88 27.8 Visit1 Ashish Parkash (45 yrs) 152 88 27.5 - - Ashish Parkash (45 yrs) 170 77 27.5 - - - Kuldeep Singh (50yrs) 181 95 29.6 - - - Rajwant Singh (50yrs) 175 82 27.3 - - - Rajwant Singh (50yrs) 177 82 28.2 - - - - Ravinder Singh (52yrs) 177 90 29 - - - - Ravinder Singh (52yrs) 177 90 29 - - - - Rajwinder Singh (52yrs) 170 83 29.6 - - - - Rajwinder Singh (52yrs) 170 83 29.6 - - - - - Rajwinder Singh (48yrs) 180 87 27.1 - - - -		120										
Robin Sharma (46 yrs) 152 88 27.8 Visit1 Ashish Parkash (45 yrs) 152 88 27.8 - - Ashish Parkash (45 yrs) 170 77 27.5 - - - Kuldeep Singh (50yrs) 181 95 29.6 - - - Rajwant Singh (50yrs) 175 82 27.3 - - - Rajwant Singh (50yrs) 177 82 28.2 - - - Ravinder Singh (52yrs) 177 90 29 - - - Ravinder Singh (52yrs) 177 90 29.6 - - - Ravinder Singh (52yrs) 177 90 29.6 - - - Rajwinder Singh (52yrs) 180 87 27.1 - - - Rajwinder Singh (48yrs) 180 87 27.1 - - - Sarabjeet Kaur (45yrs) 164 81 31.1 - <th></th> <th></th> <th>,</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1</th> <th></th> <th></th>			,							1		
Robin Sharma (46 yrs) 152 88 27.8 - Ashish Parkash (45 yrs) 170 77 27.5 - Ashish Parkash (45 yrs) 170 77 27.5 - Kuldeep Singh (50yrs) 181 95 29.6 - Rajwant Singh (50yrs) 175 82 27.3 - Ravinder Singh (50yrs) 175 82 27.3 - Ravinder Singh (52yrs) 177 90 29 - Raivinder Singh (52yrs) 177 90 29 - Raivinder Singh (52yrs) 180 87 27.1 - Raivinder Singh (52yrs) 180 87 27.1 - Raivinder Singh (52yrs) 180 87 27.1 - Raivinder Singh (48yrs) 180 87 27.1 - Raivinder Singh (49yrs) 170 79 28.2 - Antil Vohra (49yrs) 170 79 28.2 - Antil Vohra (49yrs) 170 77 27.5 -												
Robin Sharma (46 yrs) 152 88 27.8 Ashish Parkash (45 yrs) 170 77 27.5 Ashish Parkash (45 yrs) 170 77 27.5 Kuldeep Singh (50yrs) 181 95 29.6 Rajwant Singh (50yrs) 175 82 27.3 Ravinder Singh (50yrs) 175 82 27.3 Ravinder Singh (52yrs) 177 90 29 Ourvinder Singh (52yrs) 177 90 29 Rajwinder Singh (52yrs) 177 90 29 Rajwinder Singh (48yrs) 180 87 27.1 Sarabjeet Kaur (45yrs) 164 81 31.1 Anil Volua (49yrs) 164 81 31.1 Anil Volua (49yrs) 170 79 28.2 Ashish Parkash (45 yrs) 170 77 27.5	Visit1											
Robin Sharma (46 yrs) 152 88 Ashish Parkash (45 yrs) 170 77 Ashish Parkash (45 yrs) 170 77 Kuldeep Singh (50yrs) 181 95 Rajwant Singh (56yrs) 175 82 Rajwant Singh (50yrs) 175 82 Ravinder Singh (50yrs) 172 82 Ravinder Singh (50yrs) 172 82 Curvinder Singh (52yrs) 170 83 Rajwinder Singh (52yrs) 170 83 Rajwinder Singh (48yrs) 170 83 Chanan Singh (48yrs) 164 81 Anil Vohra (49yrs) 164 81 Anil Vohra (49yrs) 170 79 Ashish Parkash (45 yrs) 170 79												
Robin Sharma (46 yrs)152Robin Sharma (46 yrs)152Ashish Parkash (45 yrs)170Kuldeep Singh (50yrs)181Rajwant Singh (50yrs)175Ravinder Singh (52yrs)177Qurvinder Singh (52yrs)177Rajwinder Singh (52yrs)177Rajwinder Singh (52yrs)177Rajwinder Singh (52yrs)170Rajwinder Singh (48yrs)180Chanan Singh (48yrs)164Sarabjeet Kaur (45yrs)164Anil Vohra (49yrs)170Ashish Parkash (45 yrs)170		27.8	27.5	29.6	27.3	28.2	29	29.6	27.1	31.1	28.2	27.5
Robin Sharma (46 yrs) Ashish Parkash (45 yrs) Kuldeep Singh (50yrs) Rajwant Singh (56yrs) Ravinder Singh (52yrs) Gurvinder Singh (52yrs) Rajwinder Singh (52yrs) Chanan Singh (48yrs) Sarabjeet Kaur (45yrs) Anil Vohra (49yrs) Anil Vohra (49yrs)		88	11	95	82	82	06	83	87	81	79	11
		152	170	181	175	172	177	170	180	164	170	170
20 21 23 23 24 26 26 26 28 27 28 29 28		Robin Sharma (46 yrs)	Ashish Parkash (45 yrs)	Kuldeep Singh (50yrs)	Rajwant Singh (56yrs)	Ravinder Singh (52yrs)	Gurvinder Singh (50yrs)	Rajwinder Singh (52yrs)	Chanan Singh (48yrs)	Sarabjeet Kaur (45yrs)	Anil Vohra (49 yrs)	Ashish Parkash (45 yrs)
		20	21	22	23	24	25	26	27	28	29	30

	Group 5 (Control) Continued				Visit5						r	Visit6						
$S.N_0$	S.No Patient's Name	Ht	Wt	BMI	Chol	Tgl	LDL	Tah	FBS	OT	PT Chol	Chol	Tgl	LDL	HDL	FBS	OT	Τq
1	Kashmir Kaur (45yrs)	150	62	24.8	160	160	96	40			,	177	156	92	41	'	'	1

1 Immunelsame/(n/ym) 12		_				· · · · ·																	
Transfer Slight (4)yo) 11 01 12 01 12 01 12<												•								68	54	64	
Immunder Single (Open) 12 13<	,											,	ı							51	40	42	
Immune Sign (49)(9) 17 9 32 19 13 10 43 13 10 13 10 13 10 13 10 13 10			ı	1	ı	1	ı			36	38	34	37	39	37	34	36	36	40	1			
Deminder Single (49/69) 173 184 183 183 184	42	36	37	36	41	43	39	40	37														
Imminder Singh (45)(s) 1/2 91 32.5 193 132 133 133 134 135 135 136 13 13 135 136 136 137 136 136 Ammider Singh (57)(s) 186 213 206 133 136 136 137 137 137 136 Ammider Singh (57)(s) 129 136 136 136 136 136 136 137 137 137 139 139 Amm Vaun (45)(s) 120 123 136 136 136 136 136 136 137 136 137 136 139 136 137 136 139 136 136 136 136 131 136	116	142	105	139	143	98	136	132	120														
Parninder Singh (49yer) (12) (1) (2) <td>135</td> <td>143</td> <td>151</td> <td>98</td> <td>146</td> <td>130</td> <td>128</td> <td>125</td> <td>152</td> <td></td>	135	143	151	98	146	130	128	125	152														
Partinder Singh (49ys) 112 01 32.5 105 132 133 133 143 1 1 Kanwal Balmi (49ys) 176 08 28.5 233 133 133 143 136 1 1 1 Annujeret Singh (53ys) 176 08 28.3 123 193 133 93 1 <th1< th=""> 1 1 <th1< td=""><td>193</td><td>202</td><td>131</td><td>193</td><td>197</td><td>196</td><td>161</td><td>187</td><td>138</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td></td></th1<></th1<>	193	202	131	193	197	196	161	187	138							-	-				-		
Parminder Singh (4)yrs) 1/2 9 3.25 195 132 113 43 - Kanwal Bihul (4)yrs) 198 88 275 206 123 133 163 36 - - Annujert Singh (4)yrs) 196 68 273 128 132 103 36 - - - Annujert Singh (5)yrs) 170 67 239 192 193 149 141 -																				72	60	71	
Parminder Singh (49ys) 172 91 325 195 192 118 43 Kanwal Bahin (46ys) 180 88 275 206 142 143 36 Kanwal Bahin (46ys) 176 88 273 203 123 143 36 Amojoe Singh (53ys) 170 67 233 193 143 36 Amojoe Kimur (48yrs) 132 64 23 193 143 44 Madhu Tuli (44ys) 132 64 23 193 123 97 44 Amur (45yrs) 132 64 23 193 123 133 44 Amur (45yrs) 151 67 304 123 123 34 Amur (45yrs) 153 74 123 123 34 44 Madhu Tuli (45yrs) 158 36 313 121 133 44 Mathu Venner (50 yes) 153 75 72 72 72 72<																				55	45	47	
Parminder Singh (49yrs) 172 91 325 195 132 118 Anwaljeer Singh (53yrs) 176 88 27.5 206 142 143 Anwaljeer Singh (53yrs) 176 80 28.5 128 138 100 Anduk Kumur (48yrs) 170 67 239 193 149 145 Anduk Tuli (44yrs) 152 66 23 193 113 91 145 Anduk Verma (46yrs) 161 62 24.8 199 123 97 3 Ashu Verma (46yrs) 161 62 24.8 199 123 97 3 Madhu Tuli (44yrs) 151 67 30.4 193 137 138 121 138 Matur (50 yrs) 163 67 30.4 137 138 121 139 Matur (50 yrs) 163 67 30.4 137 138 121 Matur (50 yrs) 163 75 30.4										101	102	66	100	100	98	66	102	100	106				
Parminder Singh (49yrs) 172 91 32.5 195 132 Kanval Balraj (46yrs) 180 88 27.5 206 142 Anavjeet Singh (53yrs) 170 67 2.39 193 133 Anavjeet Singh (53yrs) 170 67 2.39 193 149 Modhu Tuli (44yrs) 152 68 27.3 198 149 Machu Tuli (44yrs) 152 64 29 193 123 Anav Kuuru (45yrs) 151 67 30.4 190 123 Anar Kuur (55yrs) 151 67 30.4 193 123 Atu Verma (46yrs) 151 67 30.4 193 123 Machu Tuli (45yrs) 153 68 31.3 1.32 1.33 Matu Verma (46yrs) 158 68 31.3 1.32 1.33 Matu Verma (45yrs) 158 68 31.3 1.23 1.23 Buarat Lal (50yrs) 158 88 27.3 <td>43</td> <td>36</td> <td>37</td> <td>36</td> <td>41</td> <td>43</td> <td>38.5</td> <td>41</td> <td>37</td> <td></td> <td>127</td>	43	36	37	36	41	43	38.5	41	37														127
Parminder Singh (49yrs) 172 91 32.5 195 Kanwal Balnaj (46yrs) 180 88 27.5 206 Annarjeet Singh (53yrs) 170 67 23.9 192 Annarjeet Singh (53yrs) 170 67 23.9 193 Annarjeet Singh (53yrs) 152 60 27.3 198 Madhu Tuli (44yrs) 152 60 27.3 198 Ashu Verma (46yrs) 161 67 24.8 190 Ashu Verma (46yrs) 161 67 24.8 190 Madhu Tuli (44yrs) 151 64 29 137 Ashu Verma (46yrs) 161 67 24.8 190 Ashu Verma (46yrs) 163 67 31.6 137 Mathu Tuli (44yrs) 173 67 24.8 190 Mathu Tuli (45yrs) 163 67 31.6 137 Mathu Verma (50yrs) 173 67 24.8 190 Mashan Kumar (50yrs) 158	118	143	100	138	145	26	138	129	121														
Parminder Singh (49yrs) 172 91 325 Kanwal Balraj (46yrs) 180 88 27.5 Kanwal Balraj (46yrs) 176 80 28.5 Amarjeet Singh (53yrs) 170 67 23.9 Ashok Kurmar (48yrs) 172 60 27.3 Madhu Tuli (44yrs) 152 60 27.3 Madhu Tuli (44yrs) 152 64 29 Ashu Verma (46yrs) 161 62 24.8 Mashu Verma (46yrs) 161 67 30.4 Kiran Jolly (52 yrs) 163 67 31.6 Mushah Kumar (50 yrs) 163 75 31.6 Neelam (46yrs) 163 75 31.6 Bhushah Kumar (50 yrs) 168 69 31.3 Neelam (46yrs) 168 69 31.3 Bhushah Kumar (50 yrs) 173 70 25 Bhushah Kumar (50 yrs) 178 69 31.3 Neelam (46yrs) 178 88 27.5 27	132	142	153	90	149	132	123	127	158														
Parminder Singh (49yrs) 172 91 Kanwal Balni (46yrs) 180 88 Amarjeet Singh (53yrs) 176 80 Ashok Kumar (48yrs) 170 67 Madhu Tuli (44yrs) 152 60 Ashu Vermar (48yrs) 152 60 Madhu Tuli (44yrs) 152 64 Annar Kaur (55yrs) 151 67 Ashu Verma (46yrs) 161 62 Ashu Verma (46yrs) 161 62 Bhushan Kumar (50 yrs) 163 75 Bhushan Kumar (50 yrs) 163 75 Bhushan Kumar (50 yrs) 168 68 Kiran Jolly (52 yrs) 163 75 Bhushan Kumar (50 yrs) 165 75 Bhushan Kumar (50 yrs) 168 68 Rainder Singh (50yrs) 173 70 Bharat Lal (56yrs) 178 88 Kashmir Singh (50yrs) 178 88 A.P. Chatha (50yrs) 180 88 A.P. Chatha (50yrs) 170 72<	195	206	128	192	198	193	190	192	137														
Parminder Singh (49yrs)172Kanwal Balraj (46yrs)180Annarjeet Singh (53yrs)176Ashok Kumar (48yrs)170Madhu Tuli (44yrs)152Madhu Tuli (44yrs)152Madhu Tuli (44yrs)152Annar Kaur (55yrs)151Annar Kaur (55yrs)151Annar Kaur (55yrs)161Mathu Verma (46yrs)161Bhushan Kumar (50 yrs)161Bhushan Kumar (50 yrs)165Bhushan Kumar (50 yrs)168Kiran Jolly (52 yrs)168Bharat Lal (55yrs)168Rajinder Singh (53yrs)168Rajinder Singh (53yrs)168Raunak Singh (50yrs)170Raunak Singh (50yrs)170Nathanial Singh (55yrs)170Nathanial Singh (55yrs)170Robin Sharma (46 yrs)170Kalideep Singh (50yrs)181Kalideep Singh (50yrs)181Kajwant Singh (55yrs)181Kajwant Singh (55yrs)175Kajwant Singh (55yrs)175	32.5	27.5	28.5	23.9	27.3	29	24.8	30.4	31.6	31.3	25	27.2	31	28.6	27.5	33.2	30.3	25.7	27.8	27.5	29.6	27.3	
Parminder Singh (49yrs) Kanwal Baltaj (46yrs) Anarjeet Singh (53yrs) Ashok Kumar (48yrs) Ashok Kumar (48yrs) Madhu Tuli (44yrs) Amar Kaur (55yrs) Amar Kaur (55yrs) Anar Kaur (50 yrs) Bhushan Kumar (50 yrs) Bhushan Kumar (50 yrs) Bhushan Kumar (50 yrs) Bharat Lal (55yrs) Bharat Lal (55yrs) Bharat Lal (55yrs) Rajinder Singh (53yrs) Rajinder Singh (53yrs) Raunak Singh (50yrs) Raunak Singh (50yrs) Nathanial Singh (55yrs) Anthanial Singh (55yrs) Nathanial Singh (50yrs) Nathanial Singh (50yrs) Nathanial Singh (50yrs) Ashish Parkash (45 yrs) Robin Sharma (46 yrs) Yinod Kumar (51yrs) Robin Sharma (46 yrs) Ashish Parkash (45 yrs) Rajiwant Singh (50yrs) Rajiwant Singh (50yrs)	91	88	80	67	60	64	62	67	75	69	70	89	89	80	88	83	85	72	88	17	95	83	
	172	180	176	170	152	152	161	151	165	158	173	168	155	178	180	169	178	170	152	170	181	175	
2 3 5 6 6 6 7 7 7 7 11 11 11 13 13 13 13 13 13 13																							
	2	ŝ	4	5	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	

58	65	67	58	50	53	68
41	38	46	49	45	39	51
						·
	-	-	-	-	-	
	-	-	-	-	-	
1	-	-	-	•	-	
,						
62	73	75	61	54	58	72
47	41	49	20	49	42	55
	-	-	-	-	-	
1	-	-	-	-	-	I
	-	-	-	-	-	
	1				1	1
28.2	29	29.6	27.1	31.1	28.2	27.5
82	06	83	87	81	6L	11
172	177	170	180	164	170	170
24 Ravinder Singh (52yrs)	25 Gurvinder Singh (50yrs)	26 Rajwinder Singh (52yrs)	27 Chanan Singh (48yrs)	28 Sarabjeet Kaur (45yrs)	29 Anil Vohra (49 yrs)	Ashish Parkash (45 yrs)
24	25	26	27	28	29	30
						-

					r	1						r			1	1	1	r —	n	1	
	PT	'	'	'	•	•			'		'		•	•				'			'
	OT	1			•	•		1	'			1	1	•				•			•
	FBS				•								106	109	114	113	111	111	103	111	101
	HDL	37	35	37	36	38	41	38	39	38	39	39									
	LDL	135	150	123	130	151	124	108	141	142	96	137									1
	TgI	143	118	148	171	152	140	151	162	163	129	161				1	1		1	1	
Visit4	Chol	195	217	201	194	171	205	206	182	152	208	178									ı
	PT					1							1			1	1		1	1	1
	OT				1									,							
	FBS												108	112	117	116	114	115	105	114	104
	HDL	37	35	36	35	37	41	37	38	37	38	39									
	LDL	129	152	122	132	156	121	104	138	145	94	138									
	Tgl	141	115	151	176	154	138	152	165	166	126	165									
Vist3	Chol	199	225	206	195	177	211	210	184	151	212	172									
	PT				,																
	OT												1	1							
	FBS	-	-		,			-	-			-	110	115	122	120	117	118	108	118	107
	HDL	37	34	35	35	37	41	36	38	36	38	39				1	1		1	1	
	LDL	130	155	120	133	159	120	101	139	147	68	140									1
	Tgl	142	111	154	180	155	141	157	171	171	125	168									1
Visit2	Chol	200	233	210	196	185	218	215	188	154	217	175									
	ΡT				,																
	oT				,																
	FBS	-	-					-				-	114	118	127	123	119	121	110	121	109
	HDL	36	32	35	34	37	41	36	38	36	38	39									
	LDL	133	157	147	135	162	113	86	142	151	83	142									
	Tgl	145	109	157	188	158	145	159	176	177	128	173									
Visit1	Chol	207	244	217	201	192	223	219	187	156	222	179		,							
	BMI	167	167	180	175	175	150	168	178	152	158	155	30.9	28.4	28.3	26.5	27.2	25	25.6	28.5	28.1
	Wt	74	70	83	76	88	67	81	84	86	65	78	89	71	89	<i>LL</i>	89	60	<i>LL</i>	80	76
	Ht	167	167	180	175	175	150	168	178	152	158	155	154	160	157	172	160	156	176	171	165
Group5 (Case)	Patient's Name	Deepak Sharma (46 yrs)	Munish Gupta (48yrs)	Ishwar Singh (53 yrs)	Makhan Singh (47yrs)	Resham Singh (52yrs)	Veena Kasra (54yrs)	Joginder Kumar (50yrs)	Niranjan Singh (51 yrs)	Simmarjeet Kaur (47 yrs)	Daljit Kaur (45 yrs)	Paramjeet Kaur (47yrs)	Palwinder Kaur (52yrs)	Kulwant Kaur (54yrs)	Madhu Sharma (46yrs)	Yadvinder Singh (51 yrs)	Manjeet Kaur (46yrs)	Kavita Sharma (48yrs)	J.S. Chaudhary (48yrs)	Raman Grover (49yrs)	Amarjeet Singh (53yrs)
	S.No	1	2	3	4	5	6	7	8	6	10	11	12	13	14	15	16	17	18	19	20

		1							 1
	67	41	72	60	64	69	. 64	57	60
	55	59	61	51	43	51	44	41	46
108	1	1	1	1	1	1	1	1	•
		•	•			•	•	•	•
	1		1	1	1	1	1		•
'		'	,	'		,	,	'	
								•	
	70	78	80	67	12	75	89	61	67
	58	64	99	55	47	55	49	47	51
111					1				
	1				i.			•	
	1		1		1	1	1		
			1		1	1	1	1	
								•	
	71	85	88	75	78	83	69	75	88
	62	70	72	59	52	58	51	55	55
114									
	1				1				
	1	1	1		i.	1	1	1	
	62	86	96	83	85	96	62	06	100
	99	81	62	65	59	68	55	62	73
115								•	
	1		1	1	1	1	1		
								•	
28.3	28.6	30.9	30.3	34.2	29.5	26	28.8	28.6	28.7
68	80	68	85	96	65	65	72	63	63
155	178	152	178	173	150	168	169	156	152
21 Asha Khosla (55yrs)	Raunak Singh (50yrs)	Balwinder Kaur (52yrs)	Nathanial Singh (48 yrs)	Ramesh (44 yrs)	Anju Bala (45 yrs)	Gurinder Singh (53 yrs)	Sajjan Singh (52 yrs)	Radha Rani (47 yrs)	Jatinder Kaur (50yrs)
21	22	23	24	25	26	27	28	29	30

	Group 5 (Case) Continued				Visit5							Visit6						
S.No	Patient's Name	Ht	Wt	IMB	Chol	Tgl	LDL	LDL HDL FBS OT PT	FBS	$\mathbf{0T}$	ΡT	Chol	Tgl	TDL	HDL	FBS	OT	ΡŢ
-	Deepak Sharma (46 yrs)	167	74	167	194	147	133	38		ı		194	140	131	39	'	,	

_ · · · · · · · · · · · · · · · · · · ·		
	59 59	56
· · · · · · · · · · · · · · · · · · ·	46	50
- - - - - - - - - - - - 101 - - 103 - - 103 - - 103 - - 103 - - 103 - - 103 - - 103 - - 103 - - 103 - - 103 - -	, ,	
38 39 39 39 39 39 39 39 30 <		
145 122 122 123 123 135 135 135 135 135	, ,	
115 140 140 141 133 133 151 151 153 153 150 150 150 150	, ,	
200 195 195 173 177 177 177 177 177 177 177		
	65	63
· · · · · · · · · · · · · · · · · · ·	50 53	56
36		
148 120 120 122 137 137 137 137 137 139 130 130 131 131 132 133 134 135 136 137 138 139 139 130 130 131 131 132 133 </td <td></td> <td></td>		
121 145 165 167 168 137 137 138 139 139 130 131 131 132 133 134 135 135 136 137 138 139 139 130 131 131 132 133 134 135 135 136 137 138 139 139 139 </td <td></td> <td>,</td>		,
209 194 194 194 198 202 200 200 204 180 180 180 173 		
167 180 175 175 175 168 158 158 158 158 158 158 158 155 28.3 28.3 28.4 28.4 28.4 28.4 28.3 28.3 28.5 27.2 28.3 28.5 28.5 27.2 28.3 28.5 27.2 28.5 27.2 28.3 28.5 27.2 28.5 27.2 28.5 27.2 28.5 27.2 28.5 27.2 28.5 27.2 28.5 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27	28.6 30.9	30.3
70 83<	80	85
167 180 175 175 176 150 151 152 153 154 155 156 157 158 158 158 158 158 158 158 158 158 158 158 157 158 150 150 151 151 151 152 154 155 156 156 157 158 157 158 159 150 151 151 151 151 151 151 152 153 154 155 155 156 157 158 158 158 158 158 158 158 158 158 </td <td>178</td> <td>178</td>	178	178
	(50yrs) ar (52yrs)	Nathanial Singh (48 yrs)
2 Munish Gupta (48yrs) 3 Ishwar Singh (47yrs) 4 Makhan Singh (47yrs) 5 Reshann Singh (47yrs) 6 Veena Kasra (54yrs) 7 Joginder Kumar (50yrs) 8 Niranjan Singh (51yrs) 9 Simmarject Kaur (47yrs) 10 Dajit Kaur (45yrs) 11 Paramject Kaur (47yrs) 12 Palwinder Kaur (50yrs) 13 Kulwart Kaur (54yrs) 14 Madhu Sharma (46yrs) 15 Yadvinder Singh (51yrs) 16 Manjeet Kaur (54yrs) 17 Kavita Sharma (46yrs) 18 J.S. Chaudhary (48yrs) 17 Kavita Sharma (46yrs) 18 J.S. Chaudhary (48yrs) 19 Raman Grover (49yrs) 10 Palwinder Singh (51yrs) 11 Paramject Kaur (55yrs) 12 Yadvinder Singh (51yrs) 13 J.S. Chaudhary (48yrs) 14 Mashe Grover (49yrs) 15 Anarject Singh (53yrs)	22 Raunak Singh (50yrs) 23 Balwinder Kaur (52yrs)	24 Nathanial

51	52	58	58	50	53
42	22	46	66	25	39
,	-	-			
	-	-	-	-	
58	59	62	61	54	58
46	39	49	40	42	42
	-	-			
	-	-	-	-	-
,	-	-	-	-	
34.2	29.5	26	28.8	28.6	28.7
96	65	65	72	63	63
173	150	168	691	156	152
25 Ramesh (44yrs)	26 Anju Bala (45 yrs)	27 Gurinder Singh (53 yrs)	28 Sajjan Singh (52 yrs)	29 Radha Rani (47 yrs)	30 Jatinder Kaur (50yrs)
25	26	27	28	29	30