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Abstract

Fixed point theory is a mesmerizing subject, with an immense number of applications
in various fields of Mathematics. In maximum cases, I noticed that fixed points pop up
when they are needed. Bhaskar and Laksmikantham, extend this theory to partially or-
dered metric spaces and introduce the concept of coupled fixed point for mixed-monotone
operators. There is a vast literature on this topic, which has influenced me in many ways.

This is the reason that made me decide to work on this.

The present thesis entitled “A study of coupled fixed point theorems” contained coupled
fixed point and coupled coincidence point theorems associated with metric spaces. We
have established certain coupled fixed point results using altering distances and rational
expressions. Also, new results for various types of mapping such as mixed monotone,
mixed g-monotone and mixed weakly monotone have been proved in abstract spaces
such as G-metric spaces, cone metric spaces, ordered metric spaces. We also introduced

Y-cone metric space and study some topological properties of Y-cone metric space.

The aim of this work is to establish the existence of coupled fixed points for mixed
monotone operators, coupled coincidence points and coupled common fixed points for
mixed g-monotone operators and mixed weakly monotone operators satisfying different

contractive conditions in abstract metric spaces.
The thesis is divided into eight chapters.

Chapter 1, is introductory in nature. This chapter divulges the general review of the
literature on the fixed point theorems and coupled fixed point theorems and it has given

a brief summary of each chapter towards the end of this chapter.

In chapter 2, the concepts of coupled fixed points have been discussed. The conception
of the property (mixed monotone) has been used to demonstrate the coupled fixed
point results in ordered metric spaces for the non-linear contractive condition of altering
distance functions. To illustrate these outcomes, an example has been given. The results

presented in this chapter have applied to achieve the solution of an integral equation.

The aim of chapter 3, is to show some unique coupled fixed point theorems involving
rational expression in an ordered cone metric spaces. Examples are provided to support
our results. Further, some unique coupled fixed point theorems satisfying certain rational
contractive condition have proved in an ordered cone metric space. We support these

results by giving an example.
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The motivation behind this chapter 4, is to build up some coupled coincidence point
results for a mixed g-monotone mappings satisfying a non-linear contractive condition
in the framework of partially ordered G-metric spaces. Also, we present a result on the
existence and uniqueness of coupled common fixed points. The results presented in this
chapter generalize and extend several well-known results in the literature. To illustrate

these results, an example and a solution of integral equations have also been given.

Chapter 5, is devoted to establish coupled coincidence point results for non-linear con-
tractive maps using mixed g-monotone property in ordered metric spaces by altering
distances. We provide examples and an application of integral equations to support the

usability of our results.

In chapter 6, we introduce the idea of Y-cone metric space and to study some topological
properties of Y-cone metric space. Then, some coupled common fixed point results have
been established using the property of mixed weakly monotone in ordered Y-cone metric
spaces. Finally, we give an example, which supports the main theorem we develop in

this chapter.

The objective of chapter 7, is to prove some unique coupled fixed point theorem in
ordered metric space. Also, an example in support to illustrate the effectiveness of these
results has been given. Further, some unique coupled fixed point results along with
rational contractive condition in a partially ordered metric space have been proved. We

support these results by giving some examples.

In last, we provides the conclusion which is based on the present study, also relevant

topics for future research have been suggested.
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Chapter 1

Introduction

The field of fixed point theory is critical and beneficial in Mathematics and may be recog-
nized as one of the thrust areas of exploration in nonlinear analysis. Fixed point theory
has shown a pivotal aspect in the dilemma-solving approaches of nonlinear functional

analysis.

A point is usually called fixed point when it remains invariant. For a function f:U — U,

fixed point is a point s € U, for which f(s) = s.

The study of existence and the uniqueness of coincidence points and common fixed point
of maps fulfilling some contractive conditions has been an impressive field of Mathematics
since 1922 when Banach [19] stated and demonstrated his great result. The Banach
contraction principle [19] is uncomplicated and most adaptable elementary results in
fixed point theory. According to this principle, if S is a contraction on a complete
metric space U, thus S has a unique fixed point in U. This principle provides useful
applications which occur in diverse places in the mathematical literature. An impressive
application is a differentiable function, the system of linear algebraic equations, ordinary
differential equations and implicit functions. Fractals and holomorphic mappings are
also the applications of Banach contraction principle. Various researchers enhance the
approach of Banach’s contraction principle (see [23, 28, 29, 38—40, 53, 64, 83, 98, 131,
139-143]). Jungck [79] investigated common fixed point results in metric spaces by

introducing commuting maps that have occurred in the literature.

The first time conception of provided by Opoitsev [110-112], and then Guo and Lak-
shmikantham [62] gave the perception of coupled fixed point in relation with coupled

quasi-solutions of an initial value problem for ordinary differential equations.

Several years later, an unusual research direction for the theory of coupled fixed points

in the setting of an ordered metric space was initiated by Bhaskar and Lakshmikantham.
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Chapter 1. Introduction

Bhaskar and Lakshmikantham [21] presented the interpretation of mixed monotone maps
and obtained certain coupled fixed point results. Also, they gave an application in which
they have deliberated the existence and uniqueness of solution for a boundary value
problem. Several researchers ([41, 42, 74, 93, 127, 137]) have obtained coupled fixed
point, and coupled coincidence results in ordered metric spaces, fuzzy metric spaces,

and other spaces.

In this thesis, coupled fixed point outcomes in abstract spaces like ordered metric spaces,
G-metric spaces, and cone metric spaces have been presented and many existing results

in the literature generalized.

To provide adequate background for consequent chapters. We present some basic def-
initions, notations and some classical and recent results connected to this work in this
introductory chapter. However, some basic definitions and notations will be rehashed

at times in numerous chapters for the purpose of convenience.

1.1 Preliminaries Related to Metric Fixed Point Theory

Metric spaces play a substantial role in the study of functional analysis and topol-
ogy. The term ‘metric’ is consequent from the word ‘metor’ (measure). Frechet [55]
acquainted with the conception of a metric space in 1906. Though, the definition pre-

sented by the Hausdorff [70] in 1914 is use and expressed as:

Definition 1.1. [70] Suppose U be any nonempty set. A metric on U is a real-valued

function d: U x U — R which satisfies the succeeding conditions for all uy, ug, us € U

1. d(ui,u2) >0, (Positivity)
2. d(ug,u2) =0 <= u1 = ug, (Identity)
3. d(ur,u2) = d(ug, u1), (Symmetry)

4. d(u,u2) < d(ug,us) + d(us,ug). (Triangle inequality)

A metric space is a non-empty set U equipped with a metric d on U and is denoted as
(U,d). Geometrically, d(u,us) represents distance between two points u; and us on the

real line.

Example 1.1. [70]

1. The set R of real numbers with the distance function d(ui,us) = |u; — uz| is a

meltric space.
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2. Every normed linear space is a metric space underneath the metric d(uy,us) =

| wr — w2 ||

Definition 1.2. [70] A sequence {u¢} of a metric space (U, d) it calls

1. convergent to a point u € U if lim d(u,u) = 0.
t—o0
2. Cauchy sequence if lim d(u¢, us) = 0.

t,s—00

Definition 1.3. [70] If each Cauchy sequence in (U, d) is convergent in U then a metric

space (U, d) is called complete.

In a metric space, each convergent sequence is a Cauchy sequence, but the converse is
not true. For example, Euclidean n-space with the Euclidean distance is the complete
metric space whereas the set of rational numbers with metric d(uy, ug) = |u1 — us| is not

a complete metric space.

Famous mathematician Brouwer [24] investigated the study of the fixed point theory.
The recognition of creating the fixed point theory is pragmatic and popularity extends
to mathematician Stefan Banach. In 1922, Banach proved a fixed point theorem, which
ensures the existence and uniqueness of a fixed point under suitable conditions. This

result [19] is known as the Banach contraction principle expressed as:

Theorem 1.4. [19] Suppose (U,d) is a complete metric space. Also, M be a self-map
on U and 0 < k <1 such that

d(Mu, Mv) < kd(u,v), ¥V u,v € U.

Then M has a unique fized point in U. Further for some ug € U, the sequence of iterates

{M™ug} is Cauchy and its limit is the unique fized point of M.

Banach contraction principle has many applications, but it suffers from one drawback,
it requires the mapping to be continuous at all points of its domain. In 1968, Kannan
[83] showed the existence of a fixed point for a map that can have a discontinuity
in a domain, however, the maps involved in every case were continuous at the fixed
point. Many authors started working along this direction and proved related fixed point

theorems.

Theorem 1.5. [83] Suppose (U,d) be a complete metric space and M is a self-map of
U satisfy d(Mu, Mv) < k[d(u, Mu) + d(v, Mv)], Yu,v € Uand k is any real number
such that k € [O, %) Then M has a unique fized point in U.



Chapter 1. Introduction

Dass and Gupta [46] built up an augmentation of Banach contraction principle through

rational articulation.

Theorem 1.6. [46] Let g be a mapping of U into itself, thus

d(c, g(c)[L +d(c, g(c))]
1+d(c,c)

d(g(c),9(c)) < +pd(c,d), ¥V, cel,
a>0,8>0 (B+a) <1 foranycy € U, the sequence of iterates {g™(co)} has a
subsequence {g"k(co)} with ¢ = g™k(co)

Then, Jaggi [73] generalized certain unique fixed point hypothesis which fulfil a contrac-
tive condition of rational expression. Afterwards many authors ([13, 26, 56, 67, 94, 105])

generalized this concept.

Theorem 1.7. [78] Suppose M be a continuous self-map on a complete metric space
(U,d). Assume that M gratifies:

d(z, Mz)d(z, Mx)

<
d(Mz,Mz) <« (o)

+ Bd(z, ),

each z,x € U,z # x, and for any ,a € [0,1) with (8 + «) < 1, then M has a unique
fized point in U.

Khan [89] acquaint with the usage of a control function in metric fixed point problems.
This function was referred to as altering distance function, this function and its extension
have utilized in several problems of a fixed point theory, some of these are noted in
([18, 49, 52, 66, 104, 116, 136]).

Definition 1.8. [89] If it satisfies the subsequent properties, then ¢: [0,00) — [0, 00) is
termed as an altering distance function.

1. The function ¢ is monotone increasing and continuous,

2. ¢(z) =0iff 2 =0.
Weak contraction principle is a generality of Banach’s contraction principle which was

first specified by Alber and Gurre-Delabriere [8] in Hilbert spaces and evidenced the

existence of fixed points.

Definition 1.9. [8] Suppose (U, d) be a metric space. It terms a mapping P:U — U as

weakly contractive provided that

d(Ps, Pu) < d(s,u) — ¢(d(s,u))

4



Chapter 1. Introduction

where s,u € U, ¢:]0,00) — [0, 0) is a non-decreasing and continuous function such that
o(z) =0iff z=0.

Rhoades [125] has shown that the outcome which Alber demonstrated in [8] is also
substantial in complete metric spaces. Rhoades [125] also established the subsequent
remarkable fixed point theorem which is one of the generalizations of the Banach con-
traction principle because it contains contractions as special cases ¢(z) = (1 — k)z for

some 0 < k < 1.

Theorem 1.10. [125] Suppose (U,d) be a complete metric space. Presume M:U — U
be a weakly contractive mapping. Thus M has a fized point.

Dutta and Choudhury [52] proved the succeeding theorem which generalized the Rhoades

theorem.

Theorem 1.11. [52] Suppose (U,d) be a complete metric space and M:U — U be a
self-mapping satisfy

Y(d(Mu, Mv)) < ¢(d(u,v)) = ¢(d(u, v))

where ¢, 1: [0, 00) — [0,00) are two continuous and monotone non-decreasing functions
with ¢(2) =0 =1(2) iff z=0. Then M has a fized point.

For the duration of the last few spans, several works on weakly contractions have been
published, some of these are noted in ([35, 37, 60, 65, 76, 121, 123]).

1.2 Abstract Spaces for Fixed Point

Numerous generalities of a metric space have been discussed by several prominent re-
searcher. Now, we present preliminaries related to G-metric spaces, Cone metric spaces,
partial metric spaces and partially ordered metric spaces which will be used in later

chapters.

1.2.1 (G-Metric Space

Gahler [57] presented the different approach of 2-metric spaces in 1963, later many re-
searchers demonstrated that there is no relationship among these two functions. Then,
Dhage [47], declared a distinctive theory of generalized metric space called the D-

metric spaces. But fundamental topological arrangements of such spaces were irrelevant.

5



Chapter 1. Introduction

Mustafa in association with Sims [101] presented another structure of generalized metric
spaces, are described as G-metric spaces, to establish and displayed another fixed point

hypothesis for many mappings in this new arrangement.
Definition 1.12. [101] Suppose G:U x U x U — R* be a function and assume U be a
non-empty set satisfies the following axioms for all ui, u9,us,a € U,

1. G(uy,ug,u3) =0 if uy = uy = us,

2. 0 < G(uy,u1,ug) with uy # ue,

3. G(uy,ui,u2) < G(uy,ug,ug) with ug # us,

4. G(uy,ug,u3) = Gluy,us,uz) = G(ug,ug,u1) = ...,

5. G(ui,ug,u3) < G(u1,a,a) + G(a, ug, us) ,
then G termed as Generalized metric or G-metric on U and (U, G) termed as G-metric
space.
Example 1.2. [101] Suppose (U,d) be a metric space. Define G:U x U x U — R by

du’u +du7u +du,u
G(u1,uz,u3) = (1, uz) (2;3 3) +d(ug, u1)

Then (U,d) is a G-metric space.

They have obtained lateral, several fixed point theorems on G-metric space. For more
results, we allude the peruser ([2, 78, 102, 103, 117, 126, 132, 138, 146, 147]).

1.2.2 Cone Metric Space

Huang and Zhang [69] presented the perception of cone metric spaces, supplanting the
set of the real numbers by an ordered Banach space. In that paper, they studied the
convergence in cone metric spaces, completeness, and demonstrated certain fixed point

hypotheses for contractive mappings on these spaces.

Let P a subset of £ and E be a real Banach space. They call P a cone iff

1. P # {6}, P is non-empty and closed set,
2. p,ge R, p,g>0and ,me P = ply +qly € P,

3. PN(-P) = {0}
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Given cone P C E, we represent a partial ordering < with respect to P by l; < I iff
lo — 11 € P. We shall write I; < Iy to show that I; < ly but I3 # [, while [; < [y will
hold for lo — I1 € intP, intP describes the interior of P.

The cone P is called normal if there is a constant M > 0, for each (1,1 € E,
0 <l <l then [[ Ly [<M[l].

The least positive number M satisfies this inequality is known as the normal constant of
P. Rezapour [124] demonstrated that there are no normal cones with normal constants

M < 1, for every k > 1 there are normal cones with normal constants M > k.

The cone P is termed as regular if each non-increasing (non-decreasing) sequence which
is bounded below (above) is convergent respectively. It is observed that each regular

cone is normal.

Definition 1.13. [69] Suppose U be a non-empty set. Presume the mapping d: U xU —

F gratifies the following axioms for all uy,ug,us € U,

1. 0 <d(u1,u2) and d(uy,uz) = 0 < u1 = uo,
2. d(u1,u2) = d(u2,uy),

3. d(uy,uz) < d(uy,us) + d(us, uy) -

Then d termed as a cone metric on U and (U, d) termed as a cone metric space.

Example 1.3. [69] Suppose E = R2, P = {(s,v) € E|ui,ug > 0} C R?, U =R and
d:U x U — E such that d(ui,u2) = (Jur — ual, alur — ug|), where o > 0 is a constant.

Then (U,d) is a cone metric space.

In recent years, several authors have studied, some of references are noted in ([1, 11, 77,
80-82, 88, 91, 120, 134, 144]).

1.2.3 Partial Metric Space

One of the most important concept is partial metric spaces, which is given by Matthews
[96]. In which the distance of a point from itself may not be zero. This concept has a
wide formation of applications not only in many branches of Mathematics, but also in

the field of computer domain and semantics.

Definition 1.14. [96, 97] A partial metric on a non-empty set U is a function p: U xU —

R,, for each u,us,uz € U,
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L. up =us <= p(ur,ur) = p(ur, u2) = pug,us),
2. p(ur, ur) < plug, ug),

3. p(ug,uz) = p(uz, u1),

4. p(ug,ug) < plug,us) + plus, uz) — p(us, us).

The pair (U, p) is known as partial metric space (pms).

If a partial metric p on U, then the function p*: U x U — R given by
P (u1,u2) = 2p(ur, ug) — p(ur, ur) — p(uz, uz)

is a metric on U.
Remark 1.15. If uq = ug, p(u1,u2) may not be ‘0.

Example 1.4. [97] Take into account U = [0, 00) with p(u1,uz) = max{ui,us}. Then
(U,p) be a partial metric space. It is clear that p is not a (usual) metric. Note that in

this case dp(u1,u2) = |u1 — us]

In topical years there has been a growing interest in studying the existence of fixed
points for contractive maps satisfying monotone properties in partial metric spaces, for
more details, we refer to the reader ([6, 12, 15, 72, 108, 109, 114, 145]).

1.2.4 Partially Ordered Metric Spaces

Ran and Reurings [122] have investigated another paramount direction in generalizing
the Banach contraction principle by considering a partially ordered on the metric space
and presented some applications to matrix equations. Since then several researchers have
studied the problem of the existence and uniqueness of a fixed point for contraction type

mapping on partially ordered sets (see [7, 106, 107]).
Definition 1.16. [90] A partially ordered set is a set U taken together with a binary
relation <, represented by (U, <) such that for all uj,ug,us € U,

1. uy < wuy (reflexivity),

2. ug < ug and us < uy implies u; = uy (anti-symmetry),

3. ug < ug and ug < ug implies uy < ug (transitivity).

Definition 1.17. Suppose (U, <) be a partially ordered set. Presuppose there is a

metric d on U then we call (U, <,d) a partially ordered metric space.

8



Chapter 1. Introduction

Definition 1.18. [44] Suppose (U, <) be partially ordered set. Any elements uq,us € U,

is known to be comparable if either u; < ug or ug < uy.

Other topical works in this area are noted in ([10, 20, 43, 50, 54, 63, 65, 68, 71, 119]).
Also, these results have been studied in partially ordered cone metric spaces [9, 11, 17]
and ordered G-metric spaces [16, 25, 27, 115].

1.2.5 Coupled Fixed Point Theory

One of the significant and imperative ideas, a coupled fixed point result, was present
by Lakshmikantham and Bhaskar [21] and considered some results in ordered metric

spaces. This concept is fundamental for many scientific works.

Definition 1.19. [21] An element (u,v) € U x U is called coupled fixed point of the
mapping T:U x U — U if T(u,v) = u, T(v,u) = v.

Definition 1.20. [21] Suppose (U, <) be a partially ordered set and a mapping T: U X
U — U. Then the map T has the property of mixed monotone if T'(u,v) is monotone

non-decreasing in u and is monotone non-increasing in v, that is, for some u,v € U,

IA

ut,ug € Uyup Sug = T(uq,v) < T(ug,v),
T(u, v2).

)

vi,v9 € Uyv1 < vg = T(u,vq)

\Y

Theorem 1.21. [21] Suppose (U, <) be a partially ordered set. Presuppose there exists
a metricd on U, (U, d) is a complete metric space. Presume T:U xU — U be a mapping

having the mized monotone property on U. Suppose that there exists, k € [0,1) with

N |

d(T(s,v),T(u,t)) < =[d(s,u) + d(v,1)]

for each s,v,u,t € U with u < s, v < t. Presume either T is continuous or U has the

following properties:

1. if a non-decreasing sequence s, — s, then s, < s, for alln,

2. if a non-increasing sequence v, — v , then v, > v, for all n.

If there exist sp,vg € U with sy < T(so,v9) and T(vo,s0) < vy, then T has a coupled
fized point.

Lakshmikantham and Ciric [42] established a new conception of mixed g-monotone prop-

erty and coupled coincidence point.
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Definition 1.22. [42] An element (s,v) € U x U is called coupled coincidence point of
the mappings ¢: U — U and T:U x U — U if T(s,v) = gs, T(v,s) = gv.

Definition 1.23. [42] Suppose U be a non-empty set. Then the mappings ¢: U — U,
T:U x U — U are commutative if T'(gs, gv) = gT(s,v), for all s,v € U.

Definition 1.24. [42] Suppose (U, <) be a partially ordered set. The mappings g: U —
U, T:U x U — U is said to have mixed g-monotone property if T'(u,v) is monotone

g-non-decreasing in v and is monotone g-non-increasing in v, for some u,v € U,

IN

ur,ug € Uy gur < gus = T(u1,v) < T(ug,v),
T(u,vq

(u, v1).

IN

vy,vg € U, gu; < guy = T(u,v2)

Sabetghadam [127] presented this concept in cone metric spaces. Abbas [3] presented a
new concept of w-compatible mapping and employed this conception to get a uniqueness

result of coupled coincidence point in G-metric space.

Definition 1.25. [3] The mappings g: U — U and T: U xU — U are called w-compatible
if g(T'(s,v)) = T(gs, gv) whenever gs = T(s,v) and gv = T'(v, s).
Aydi [14] proved results on partial metric spaces in 2011.

Theorem 1.26. [14] Suppose (U, p) be a complete partial metric space. Presuppose that
the mapping H:U x U — U satisfy,

p(H(s,v), H(u,t)) < kp(s,u) +1p(v,t)

for each s,u,t,v € U, where I,k are positive constants with (I +k) < 1. Thus H has a

unique coupled fized point.

In 2012, Gordji et.al [59] established a new notion of mixed weakly monotone property

as follows.

Definition 1.27. [59] Suppose (U, <) be a partially ordered set and Fy, Fo: U x U — U
be mappings. Then a pair (F, F») has the mixed weakly monotone property on U, for

some uj,ug € U,

ur < Fi(ur,u2), us > Fi(ug,u)

= Fi(u1,u2) < Fo(Fi(u1,u2), Fi(ug,ur)), Fi(ug,ur) > Fo(Fi(ug,u1), Fi(ui,u2)),
and

ug < Fa(uy,uz), ug > Fo(ug,uy)

= Fy(u1,uz) < F1(Fa(ut,ug), Fo(ug, ur)), Fo(uz,ur) > Fi(Fo(ug, ur), Fo(uy, uz)).

10



Chapter 1. Introduction

After that several authors extended these concepts for different contractive conditions
in abstract spaces. For this direction, we refer works of [3-5, 14, 16, 22, 25, 27, 30—
32, 34, 36, 48, 51, 58, 59, 61, 75, 84-87, 92, 95, 99, 100, 113, 118, 128, 133-135, 148].

1.3 Objectives of The Study

In precise terms, the objectives of this study are as follows:

1. To improve and extend the known results considering new contractive conditions.

2. To obtain coupled fixed point theorems for an operator with the property of mixed

monotone.

3. To obtain coupled coincidence point theorems with the property of mixed g-

monotone.
4. To study related coupled fixed point theorems in abstract spaces.
5. To study the applications of coupled fixed points theorems.
We have established some results in abstract spaces such as partially ordered G-metric

space, partially ordered cone metric spaces and ordered metric spaces by using rational

expression and altering distances.

1.4 Thesis Organization

The thesis is divided into eight chapters.

Chapter 1 is introductory in nature. It reveals the general review of the literature on the

fixed point and coupled fixed point and also the summary of the subsequent chapters.

In chapter 2, the concepts of coupled fixed points have been discussed. The conception
of the property (mixed monotone) has been used to demonstrate the coupled fixed
point results in ordered metric spaces for the non-linear contractive condition of altering
distance functions. To illustrate these outcomes, an example has been given. The
results presented in this chapter have been applied to achieve the solution of an integral

equation.

The aim of chapter 3, is to show some unique coupled fixed point results involving

rational expression in an ordered cone metric spaces. Illustrations are presented to

11



Chapter 1. Introduction

support our results. Further, some unique coupled fixed point theorems satisfying certain
rational contractive condition have been proved in an ordered cone metric space. We

support these results by giving an example.

The purpose of chapter 4, is to establish some coupled coincidence point results for maps
possesses the property (mixed g-monotone) adequate a non-linear contractive condition
in the structure of ordered G-metric spaces. Also, we show a result on the existence
and uniqueness of coupled common fixed points. The results produced in this chapter
generalize and expand many acclaimed results in the literature. To illustrate these

results, it has also given an example and a solution of integral equations.

Chapter 5, is devoted to establishing coupled coincidence point theorems for non-linear
contractive maps using mixed g-monotone property in ordered metric spaces by altering
distances. We provide illustrations and an application to integral equations to help the

ease of use of these outcomes.

In chapter 6, we introduce the concept of Y-cone metric space and study some topological
properties of Y-cone metric space. Then, some coupled common fixed point theorems
have been established utilizing the property of mixed weakly monotone map in ordered
Y-cone metric spaces. Finally, we gave an illustration, which constitutes the main

theorem we develop in this chapter.

The objective of chapter 7, is to demonstrate a certain unique coupled fixed point result
in ordered metric space. Also, examples in support to interpret the efficacy of these
results have been given. Further, some unique coupled fixed point results along with
rational contractive condition in a partially ordered metric space have proved. We

support these results by giving examples.

In the last, we provides the conclusion which is based on the present study, also relevant

topics for future research have been suggested.

12



Chapter 2

Coupled Fixed Point Results
Associated with Altering
Distances in Partially Ordered
Metric Spaces

In this chapter, some unique coupled fixed point theorems along with the property of
mixed monotone including altering distance functions have been proved. This chapter
has been divided into various sections. In section 2.1, the concept of coupled fixed point
and altering distance function have been discussed. In section 2.2, some coupled fixed
point theorem has been proved by using the concept of altering distance function. In
section 2.3, applications to the solution of integral equation have been given by using

the results proved in the section 2.2.

2.1 Introduction

Khan [89] started the use of a control function that alters distance among two points in
a metric space. They call such mappings an altering distances. Altering distance has
been applied in metric fixed point theory by many researchers (perceive [49, 52, 104]).
It has also been expanded in fuzzy and multivalued maps. In Menger spaces [33], the
perception of altering distance function has also been presented. Recently, utilizing these
functions Harjani and Sadarangani [66] demonstrated certain fixed point hypotheses in

partially ordered metric spaces.

Bhaskar and Lakshmikantham [21] started an investigation of a coupled fixed point result

13



Chapter 2. Coupled Fized Point Results Associated with Altering Distances

in ordered metric spaces and connected the outcomes to demonstrate the existence and
uniqueness of results for a boundary value problem. Using this concept many researchers
have obtained their results for maps underneath numerous contractive conditions [34,
41, 42, 128, 135].

At first we need the following definitions and results.

Definition 2.1. [89]. If it satisfy subsequent axioms, then ¢: [0, 00) — [0, 00) is termed

as altering distance function:

1. The function ¢ is monotone increasing and continuous.
2. ¢(z) =0iff z =0.

Definition 2.2. [21]. An element (s,v) € U x U is termed as coupled fixed point of the
mapping F: U x U — U if F(s,v) = s,F(v,s) = v.

Definition 2.3. [21]. Suppose (U, <) be a partially ordered set and a mapping F:
UxU — U. Then the map F has the property of mixed monotone if F'(s, v) is monotone

non decreasing in s and is monotone non-increasing in v, for some s,v € U,

s1,82 € Uy s1 < s9 = F(s1,v)

IA

F(SQ,U),
F(S, 'UQ).

Y]

vi,v9 € Uy <wvg = F(s,01)

2.2 Coupled Fixed Point Theorems Including Altering Dis-

tance Functions

In this section, certain coupled fixed point theorem has been established by utilizing the

concept of altering distance function in complete metric space.

Theorem 2.4. Suppose (U, <) be a partially ordered set equipped with a metric d in U
so that (U,d) be a complete space. Presume F: U x U — U be a continuous mapping on

U possesses the property of mized monotone satisfy

Pd(F(r,5), F(w,0)) < @(M((r ). (w,0)) = $(M((r.s), (w,0))  (2.1)
where,

M((r,5), (w,v)) = maz{d(r,w),d(s,v), d(F(r, s),r), d(F(w,v),w)}

vV or,w,v,s € U with r > w and v > s, here ¢ and ¢ are altering distance functions.
Suppose that there exists ro, so € U such that ro < F(rg,s0), so > F(s0,70), then F has
a coupled fized point.

14
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Proof. Take rg,s9 € U. Set r1 = F(rg,s0) and sy = F(sg,79). Repeating this process,
set ri41 = F(ry,s¢) and sgp1 = F(s¢, 7). Then by (2.1), we get

o(d(regr,7t)) = @(d(F(re, 5¢), F(re-1,5¢-1)))
< @(M((rt, 5t), (11-1,5t-1))) — Q(M((7t, 5t), (Tt-1, 5t-1)))s

and

(d(str1,5t) = @(d(F (st,71), F(s1-1,71-1)))
< (M ((st,7), (8t-1,71-1))) — S(M((s¢,7¢), (8t—1,7t-1)))s

where,

M((re, s¢), (re—1, se-1)) = max{d(re, re—1), d(s¢, $e-1),
d(F(Th 8t)7 rt)v d(F(rlf—la St—1)7 Tt—l)}
= max{d(r,re—1), d(st, 8t—1), d(t41,7¢), d(re,74-1) }
= max{d(ry,r—1),d(st, $¢—1), d(re41,7¢) -
Now, let us consider two cases.
Case 1: If M((ry, s¢), (re—1, 5t—1)) = max{d(ry, ri—1), d(s¢, s¢—1)}-

We get

p(d(reg1,11)) < p(maz{d(re,re—1), d(st, st-1)})
— ¢(max{d(ry, ri—1),d(st, $1-1)}), (2.2)

and

p(d(st+1, 5t)) < p(max{d(st, si—1),d(re,71-1)})
— d(maz{d(sy, s—1),d(re, mi-1)})- (2.3)

Case 2: If M((r¢,8t), (re—1,8t-1)) = d(r141,71)-
We claim that M ((r, s¢), (re—1,8t-1)) = d(re41,7¢) = 0.

In fact if d(rey1,7¢) # 0, then

o(d(reg1,7m1)) < p(d(resr, ) — ¢(d(rivr, 7)) < p(d(rer, 1)) as ¢ > 0.

This implies d(riy1,7¢) < d(r¢+1,7¢), which is a contradiction.
Since M ((ry, 8¢), (ri—1, 8t—1)) = 0. Then it is obvious that (2.2) and (2.3) hold.

Now, by (2.2) and (2.3), we obtain
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e(d(rig1,m)) < w(max{d(ry,ri—1),d(ss, s1-1)}) — d(mazx{d(ry, ri—1),d(st, $1-1)}).
(2.4)

As 0 < ¢. w(d(ri+1,7)) < @(max{d(r,,ri—1),d(s;, si—1)}) and utilizing the way that ¢

is non decreasing, we get
d(riy1,re) < mazx{d(ry,ri—1), d(s¢, $—1) }- (2.5)
Similarly,

o(d(st+1,81)) < p(maz{d(st, st-1),d(re, 1e-1)}) — ¢(max{d(st, si-1),d(re,74-1)})
< p(max{d(s, st—1),d(re, 1i-1)}), (2.6)

and consequently
d(st41, s¢) < maz{d(st, si—1),d(re, m-1)}, (2.7)
by (2.5) and (2.7), we have
maz{d(rii1,7e), d(siv1,50)} < max{d(ry,ri-1),d(se, 86-1)},

thus, max{d(riy1,7¢),d(s1+1,$¢)} is non-negative non-increasing sequence. This indi-

cates that there is & > 0,

lim max{d(ris1,7¢), d(se41, 1)} = k. (2.8)

t—o0

It is effortlessly observed that if ¢ : [0,00) — [0, 00) is non-decreasing, w(maz(p,q)) =
maz(p(p), ¢(q)) for p,q € [0,00). Considering this and (2.4) and (2.6), we have

maz{e(d(ri+1,7t)), p(d(st41, 8t))} = p(maz{d(ret1,e), d(st41, 8¢)})
< p(max{d(ry,ri—1),d(st, $1-1)}) (2.9)
— ¢(max{d(ry, r¢—1),d(st, St—1)})-

Letting t — oo in (2.9) and using (2.8), we have
p(k) < (k) — o(k) < p(k) = ¢(k) =0.
As, function ¢ is an altering distance, k = 0, this implies

li}m max{d(ris1,7¢), d(se41,5¢)} = 0.

- tll)rglo d(TH_l, ’f‘t) = tll)I?o d(SH_l, St) =0. (210)

16



Chapter 2. Coupled Fized Point Results Associated with Altering Distances

Next, we claim that {r:}, {s;} are Cauchy sequences.

We will establish that for each 0 < g, there is a natural number ¢, if t,m > ¢,

mam{d(rm(c% Tt(c))a d(sm(c)7 St(c))} <e.

Presuppose the above statement is not true.

At that point, there exists a ¢ > 0 for which we can discover sequence {r,, ()}, {7}

with ¢ < m(c) < t(¢) such that

maz{d(rim(c) Ti(c))s ASm(e) St(e)) } = € (2.11)

Furthermore, we can take ¢(¢) comparing to m(c) in such a manner that it should be

least integer with ¢(c¢) > m(c) and satisfy (2.11). Thus
€ > max{d(Tim(ce)s To(e)—1)s ASim(e)s Se(e)-1) }- (2.12)
Using triangle inequality
d(T4(e)s Tm(e)) < d(Te(e)s Tee)=1) + ATi(e) =1 Tim(e))- (2.13)
Similarly,
d(4(c)s Sm(e)) < A(S1(e)» Ste)—1) + d(St(c)=15 Sm(e))- (2.14)
From (2.13) and (2.14), we have

maz{d(ry(c), Tm(e))s ASi(c)s Sm(e))} < max{d(Ty(c)s Ti(e)—1)> A(St(c)» St(e)—1) } (2.15)

+ maz{d(ry(c)-1, "m(e))s A(St(c)=15 Sm(c)) }-

From (2.11), (2.12) and (2.15), we get

€< max{d(rt(c)a rm(c))’ d(st(c)» Sm(c))} < max{d(rt(c)a rt(c)—l)a d(st(c)a St(c)—l)} + .

(2.16)
Letting ¢ — oo in (2.16) and using (2.10), we have
Jim maz{d(ryc), Tm(c))s d(St(c)s Sm(e))} = € (2.17)
Again, the triangle inequality, we obtain
A(The)=1,Tm(e)=1) < A(Te(e)—15Tm(e)) + ATm(e)s Tm(e)—1); (2.18)

17



Chapter 2. Coupled Fized Point Results Associated with Altering Distances

and

d(st(c)—b Sm(c)—l) < d(st(c)—lv Sm(c)) + d(sm(c)> Sm(c)—l)'
From, (2.18) and (2.19), we get
maz{d(Ty(c)—1, Tm(e)—1)-d(St(c)—1> Sm(c)—1) }

< max{d(rt(c)—la rm(c))7 d(St (c)=1>Sm c))}

+ ma${d(rnz(c)v m(c)— ) d(sm(c Sm(c)— 1)}
From, (2.12), we have
max{d(Ty(c)—1, Tm(e)—1):4(St(e) =1 Sm(c)—1) }
< maw{d(rm(c)v rm(c)—l)» d(sm(c)v Sm(c)— )} +e.

Applying the triangle inequality, we obtain

A(Tee)s Tmie)) < d(Tee)s Te)=1) + A(Tee)=15 Tm(e)=1) + ATm(e)—15 Tm(e))s

and

d(st(c)v Sm(c)> < d(st(c)v 5t(c)—1) + d(st(c)—b Sm(c)—l) + d(sm(c)—lv 5m(c))'
From (2.11), (2.22), and (2.23), we get

e < maz{d(ryc), Ti(e)-1), ASe(e)s See)—1)}
+ max{d(rt(c) 1 P'm(e)— ) d(st(c) 1> Sm(c)— 1)}
+ max{d(rm(c)—lv Tm(c))v (Sm(c)—lv Sm(c))}

From, (2.21) and (2.24), we have

e — max{d(Ty(c), Te(c)=1)> A(St(c)» St(e)—1) }
- max{d(rm(( -1 rm(r:))v d(Sm(c)—b Sm((z))}

< mam{d Tt(c)— 1»Tm(c)—1)»d(8t(c)—1', Sm(c)—l)}

(
< max{d(Tm(c) 15 Tm(c)) d(sm(c)—la Sm(c))} +e.

Letting ¢ — oo in (2.25) and using (2.10), we get

Cllglo mam{d(rt(c)—la rm(c)—l)» d(st(c)—lv Sm(c)—l)} =¢&.

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.26)

Since ry(e)—1 = Tin(e)—1 and Sy(e)—1 < Spy(c)—1, utilize the contractive condition (2.1), we
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can acquire

0(d(re(ey, Tm(e))) = CAF(Te(e)=15 St(c)=1)s F (Tim(e)=1> Sm(e)—-1)))
< QC(AI((Tt((:)fl? St(c)fl)? (rm((z)fla Sm(c)fl))) <2'27)
- Qb(M((Tt(c)—lv St(c)—l)v (Tm(c)—l? é"m(c)—l)))a

where,

M((r(e)—1551(0)=1) (Pm(e) =15 Sm(e)=1)) = Mmaz{d(Tye)—1, Tm(e)=1)s A(St(e) =15 Sm(e)—1);
d(F(T(c)=15 St(c)=1)s Tt(e)=1),
A(F(Tm(e)=15 Sm(c)—1)s Tm(e)=1)
= maz{d(T(c)—1, Tm(c)-1)s A(Si(e)—15 Sm(c)—1)

d(rt(c)v Tt(c)—l)? d(/"m(c)» Tm(c)—l)}'

Similarly,

@(d(st(c), Sm(c))) = @(d(F(St(n)fla rt(rz)71)7 d(F(Sm((‘)flv rm((z)fl)))
O(M((84(6)=15Te(c)=1)s (Sm(e)=1> Tm(e)—1))) (2.28)

IA

= (M ((Yr(e)—15Tt(c)=1)s (Sm(e)=1> Tm(e)=1)))s

where

M((8t(c)=1>Tt(e)=1) (Sm(c)=15 Tm(c)—1) = Maz{d(S¢(c)—1, Sm(c)=1)s ATt(c)=1> Tm(c)=1)
A(F(S4(c)=15Tt(c)=1)» St(c)—1)>
A(F(Sp(e)—15Tm(c)=1)» Sm(c)—1) }
= maz{d(T ()1, Tm(c)—1)s A(St(c) =15 Sm(c)=1)s

d(8¢(c) St(c)=1)» ASm(c)s Sm(e)=1)}-

From (2.27) and (2.28), we have

maz{e(d(T(c), Tm(e)), A(St(e)s Smie)))} < 0(2t) — d(2¢),
where
2 = max{d(ry(c)—1, Tm(c)—1)> ASt(c)=1> Sm(c)=1)>
d(T4(c)> Tt(e)—1)5 A(St(c)» St(e)—1);
d(Tm(c)v rm(c)—l)v d(sm(c)a Sm(c)—l)}'

Finally letting ¢ — oo in last two inequalities and using (2.10), (2.17) and (2.26). Also

the continuity of ¢ and ¢, we have

p(e) < p(maz(e, 0,0)) — p(maz(e, 0,0)) < p(e)
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as a result, ¢(¢) = 0. As ¢ be an altering distance function, then ¢ = 0, a contradiction.
This verifies our claim.
As U is complete, we find r, s € U then
lim r = r and lim sy = s.
t—o0 t—o0
We now establish that F' possesses a coupled fixed point (r, s). Since, we have
e = Jim Flrns) < F( i i) < £
s = lim s;41 = lim F(sy, 1) = F( lim sy, lim rt) = F(s,r).
t—o0 t—o0 t—o00 t—o00
Then, F has a coupled fixed point (7, s).

Theorem 2.5. Presume all the presumptions of Theorem 2.4 are satisfied . Further-

more, assume that U has the accompanying properties

(a) if an increasing sequence {ri} — r, then ry <r, Vi,

(b) if a decreasing sequence {s;} — s, then sy > s, V t.
Thus the Theorem 2.4 hold the same result.

Proof. Succeeding the evidence of Theorem 2.4, we demonstrate that (r, s) is a coupled

fixed point of F.

In fact, since {r;} is increasing and r; — r and {s;} is decreasing and s; — s, by our

hypothesis, ry < r and s; > s, V £.

Utilizing the condition (2.1), we get

W(d(F(n 5)7 F(rtv St))) < @(M((Ta 8)7 (rh St))) - ¢(M((T 5)7 (rtv St)))

< @(M((r,5), (r1,5))), (229
and as ¢ is non-decreasing, we have
d(F(r,5), F(ry,51)) < M((r,s), (i, 1),
where
M((r,s), (ry,8¢)) = max{d(r,ry),d(s, s;),d(F(r,s),r),d(F(ry, s¢), )} (2.30)

Letting ¢ — oo in (2.29) and (2.30), we obtain d(r, F(r,s)) = 0, and consequently
F(r,s) =r.
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Utilizing a comparative contention it can be demonstrated that s = F(s,r) and this

completes the verification.

To guarantee the uniqueness of the coupled fixed point in Theorem 2.4 and 2.5, we give

the condition. That is

for (r,s), (t,v) € U x U we can find (z,u) € U x U comparable to (r,s) and (¢, v).
(2.31)

In U x U consider the partial order relation as follow
(r,s) < (t,v) < r<tands>w.

Theorem 2.6. Including the condition (2.31) to the assumptions of Theorem 2.4 (re-

spectively Theorem 2.5) we acquire the unique coupled fixed point of F'.
Proof. Let (r,s) and (#,$) are coupled fixed points of F, then, F(r,s) =r, F(s,r) =
s, F(¥,8) =7 and F(4,7) = §. We shall prove that r = #,s = §.

Let (r,s) and (#,$) are not comparable. By assumption there exist (z,u) € U x U

comparable with both of them. Suppose that (r,s) > (z,u).

We define sequences {z}, {u;} as follows
20 =2, Up =u, 241 = F(z,w) and w41 = Flu, 2z,) Vi

Since (z,u) is comparable with (r,s). We claim that (r,s) > (2, u;) for every t € N.
Now, by utilizing the induction.

For n = 0, (r,s) > (z,u), therefore zp = z < r and s > u = wo and consequently,

(r,5) > (20, uo).

Suppose that (r,s) > (z:,uz); by applying the property of mixed monotone of F', we get

zi41 = F(z,w) < F(ryu) < F(r,s) =,
upyr = Fug, 2) > F(s,2) > F(s,r) = s,
and this confirms our claim.
Now, since z; < r and uy > s, using (2.1), we have
Sp(d(rv Zt-l-l)) = Lp(d(F(T‘, 3)» F(zh ut)))
< o(M((r,s), (2t,ut))) — S(M((r, 5), (21, ut))), (2.32)
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where

M((r7 8)7 (Zta ut)) = max{d(r, Zt)v d(37 ut)7 d(F(T‘, 8)» T)» d(F(Zta Ut)v Zt)}
= maz{d(r, z),d(s,u)}.

Therefore

< w(max{d(r, z),d(s,ut)}) — p(maz{d(r, zt),d(s, ut)}) (2.33)
< p(maz{d(r, z,),d(s,u,)}), '

p(d(r, z41))

and analogously
w(d(s,ui1)) < @(maz{d(s,uy),d(r, z)}). (2.34)
From (2.33) and (2.34) and utilizing the way that ¢ is non decreasing, we attain

(p(max{d(r, Zt+1)7 d(é‘7 ut+1)}) - YTL(LLL‘{(/D((Z(T‘, Zt+1)7 Qp(d(bv ut+1))}
< p(mazx{d(r, z;),d(s,u)}) — ¢p(max{d(r, z;),d(s,u;)})
< p(maz{d(r, z;),d(s,u)}). (2.35)

This implies that
maz{d(r, z.4+1),d(s, u+1)} < max{d(r, z;),d(s,u)},

and consequently the sequence maz{d(r, z;4+1), d(s, u;+1)} is non-negative and decreasing

and thus,
lim maz{d(r, z41),d(s, us+1)} = a, (2.36)
t—o0
for certain @ > 0. Using (2.36) and letting ¢ — oo in (2.35), we attain
pla) < pla) - ¢la) < p(a),

and as a result ¢(a) = 0. Therefore a = 0.

Finally, as
tlim max{d(r, z+1),d(s,us+1)} = 0. (2.37)
— 00

This implies
tli)rglo d(?”, Z?H—l) = tlig.lo d(S, ut—i—l) =0. (238)
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Similarly
tliglo d(f, zi41) = tliglod(s,utﬂ) =0. (2.39)

From (2.38) and (2.39), we have r = ¥, s = §. The proof is complete.

Theorem 2.7. In extension to the assumptions of Theorem 2.4 (respectively Theorem

2.5), suppose that ro and sg in U are comparable, then r = s.
Proof. Suppose that ry < sg. We claim that
re <s,VteN (2.40)
As F' possesses the property of mixed monotone, we get
r1 = F(ro, s0) < F(so,80) < F(s0,70) = s1.
Assume that r; < s, for some t. Now,
rie1 = F(ry, s¢) < Fsg, s0) < F(sg,11) = Si41.

Hence, this confirms our claim.
Now, applying (2.40) and (2.1), we have
o(d(re41, 5t41)) = ©(d(8t41,Te41)) = ©(d(F (s¢,71), F'(11, 8¢)))

< @(M((st,71), (11, 5¢))) — (M ((5t,71), (11, 5¢))) (2.41)
< @(M((st,71), (1, 5¢))),

and as ¢ is nondecreasing,

d(rir1, siv1) < M((se,710), (res51)),

where

M((St, T‘t), F('I't, St)) = maw{d(st, T't), d(V't, St), d(F(St, T‘t), St), d(F(’f‘t, .St), T‘t)}
= maz{d(s;, ), d(si+1, 50), d(ri41,71)} (2.42)

Thus, lim d(r, s¢) = a for certain a > 0.
t—o0

Taking ¢t — oo in (2.41) and hence (2.42), and utilizing the concept of continuity of ¢

and ¢, we attain
pla) < pla) = ¢la) < p(a),
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this provides a = 0.
Asry —r, sg = sand lim d(ry, s¢) = 0.
t—o0
We have, lim d(ry, s¢) = d(lim ry, lim s;) = d(r,s) = 0 and thus r = s.
t—r00 t—o00 t—o0
This finishes the proof.

Example 2.1. Presume U = R with usual metric and order. Define F: U x U — U as
F(r,s) = 4—1(7“2 —3s2%) for allr,s € U.

Let ¢, ¢: [0,00) — [0,00) be defined by o(z) = z and ¢(z) = 5(2). Clearly, ¢, ¢ are

altering distance functions.
Now, suppose r < w and s > v. Thus, we obtain
e(d(F(r,s), F(w,v))) = d(F(r, s), F(w,v))

1 1
= Z(r2 —3s%) — Z—l(w2 — 30?)

Lo 2

= 10? —w?) = 3(s* =Y
< %L[d(r, w) + 3d(s,v)]

IA

2 maz{d(r, w), d(s, v), d(F(r,5),r), d(Fw, v), w)}
= maz{d(r,w), d(s, ), d(F(r, 8), ), d(F(w, v),w)}
— Smaa{d(r, w), d(s, v), d(F(r,s),r), d(F(w, ), )}
= p(maz{d(r,w), d(s,v), d(F(r,s),r), d(F(w,v), w)})
— (maz{d(r,w), d(s, ), d(F(r, 5),r), d(E(w, ), 0)}).
Thus, all the assumptions of Theorem 2.4 hold. Moreover, (0,0) is the coupled fized
point of F.

Corollary 2.8. Suppose (U, <) be a partially ordered set equipped with a metric d in U
such that (U,d) be a complete space. Presume F: U x U — U is a continuous mapping

on U possesses the property of mized monotone, there exists I € [0,1) satisfy

Vor.s,w,v e U withr > w and s < v. Assume either F is continuous or U has the
subsequent properties
(a) if an increasing sequence {r,} — U, thenr, <r, Vi,

(b) if a decreasing sequence {s;} — U, then s, > s, V' t.
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Furthermore for each ro,so € U with ro < F(ro, s0) and sog > F(so,r0), then F has a

coupled fixed point.

Proof. Take ¢ = I (identity) and ¢ = (1 — l)¢, we acquire the result.

2.3 Application to Integral Equations

In, this segment we discuss the existence and the uniqueness of solutions of a non-linear

integral equation by utilizing the outcome demonstrated in section 2.2.

Consider an equation of an integral of the following type:

1
r(q) = / (k1(g; a) + k2(q,a))(f(a,7(a)) + g(a.r(a)))da + c(q), ¢ € [0,1].  (2.43)
0
We will analyze (2.43) under the subsequent hypothesis:
(1) kj:[0,1] x [0,1] = R(j = 1,2) be continuous and k1(g,w) > 0 and ka(g, w) < 0.
(2) ce C0,1].
(3) ¢,f:10,1] x R — R be two continuous functions.

(4) There are constants p, A > 0, for every r,s € R, r > s

AMin[(s —r)? +1] > f(q,7) — f(g,5) >0,
02>g(q,r) —glg.s) = —py/In[(s —r)? +1].

(5) There are 3, € C10, 1] satisfy
1
alg) < /0 F1(g, a)(f(a, (@) + g(a, B(a)))da
-1
+ /O ko, ) (/ (a, 5(a)) + g(a, a(a)))da + c(g)
1
< / k1(g, ) ( (@ B(a)) + 9(a a(a)))da
0
1
+ /O ka(g, 0)(f(a, a(a))) + gla. B(a)))da + c(g) < Blq).
(6) 2.max(\, 1) || k1 — k2 o< 1, where

| k1 — ka2 [Joo= sup{(Fk1(q,a) — ka(q,a)): q,a € [0,1]}.
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Let U = C]0,1] be the space of continuous functions defined on [0, 1] with the usual

metric provided by

d(r,s) = sup |r(q)—s(q) | forr s e C[0,1].
q€[0,1

It can endow this space with a partial order as follows

r,s € C[0,1], r <s <= r(q) < s(q), for some g € [0,1].
If U x U consider the order as follow

(r,8), (w,v) €U x U, (r,s) < (w,v) < r<w,s>v,

for some r, s € U we have that maz(r,s), min(r,s) € U, condition (2.31) is fulfilled.

In [106] it is demonstrated that (C[0, 1], <) fulfills hypothesis (1).

Now, we formulate our outcome.

Theorem 2.9. Under hypothesis (1)-(6), equation (2.43) possesses a unique solution in
o, 1].

Proof. Consider the mapping F: U x U — U given by

1
F(?"vs)(Q)Z/O k1(q, a)(f(a,7(a)) + g(a, s(a)))da
1
) ka(q,a)(f(a; s(a)) + g(a,r(a)))da + c(q), for ¢ € [0, 1].

By virtuousness of our hypothesis, F is a well-defined (that for r, s € U then F(r,s) € U).

We show that F satisfies the property of mixed monotone.

For r; < ry and ¢ € [0, 1], we have
1
F(r1,5)(q) = F(ra,s)(q) = /O ki(g, a)(f(a,r1(a)) + g(a, s(a)))da

1
+ /( Fag, @) ( (@, 5(a)) + g(a, r1(a)))da + c(q)
1

k1(g, a)(f(a,r2(a)) + g(a, s(a)))da

1
ka(q,a)(f(a, s(a)) + g(a, r2(a)))da — c(q)

J
J

1
- /0 ki(g, a)(f(a,r1(a)) = f(a,r2(a)))da
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1
4 / ka(g, a)(g(a, r1(a)) — g(a, ra(a)))da. (2.44)
0

Consider that r; < r9 and our hypothesis,

fla;r(a)) = f(a,r2(a))
g(a,r1(a)) = g(a,r2(a))

IN

)

0
0,

vV

and from (2.44) we obtain F(r1,s)(q) — F(r2,$)(q) <0
and this shows that F(rq,s) < F(re, s).

Similarly, if s1 > s2 and ¢ € [0, 1], we have

1
F(r s1)(q) — F(r,53)(q) = /0 F1(g,0)(f(a, (@) + g(a, 51(a)))da

1
+ [ g )(r(a51(0) + g0, r(@)da+ o)

0

1
- /0 Fi(g.a)(f(a.7(a)) + gla, s2(a)))da
1
- /0 Fa(g. a)(f(a. 52(0)) + g(a r(a)))da — c(q)
1
_ /0 (g, a)(g(a, 51(a)) — g(a, 52(a)))da
1
" / Fag. @) ( (@, 51(a)) — f(a, 52(a)))da,

0

and by our assumptions, as s; > sg,

g(a, s1(a)) — g(a, s2(a)) <0, f(a,s1(a)) = f(a, s2(a)) > 0,

and thus,
B(r,s1)(q) — F(r,s2)(q) <0,
or, equivalently,

F('/',Sl) < F(Ta 52)'
Thus, F possesses the property of mixed monotone.
In what follows, we estimate d(F(r, s), F(w,v)) for r > w, s < v.

Certainly, as F' possesses the property of mixed monotone, F(r,s) > F(w,v). We have

d(F(r,s), F(w,v)) = sup | F(r,s)(q) = F(w,v)(q) [= sup (F(r,s)(q) — F(w,v)(q))

q€[0,1] q€[0,1]
1
— [ / kg, @) (f(a,7(a)) + g(a, s(a)))da
qE[O,l] 0
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1
+ [ g (7@ 5(0)) + glar@))da + (o)
0
1
- [ B0 w(@) + gtasola))da

1
= sup [/ k1(q, a)[(f(a,7(a)) — f(a,w(a))) — (g(a, v(a)) — g(a, s(a)))]

qE[O 1]

1
—/O ka(q, a)[(f(a,v(a)) = f(a,s(a))) = (9(a,7(a)) = g(a, w(a)))lda|.  (2.45)

Using our hypothesis ( notice that r > w, s < v)

f(a,r(a)) = fla,w(a)) < A\/ln[(?°(<1) —w(a))? +1]

g(a,v(a)) = g(a, s(a)) > —p\/In| (’ —v(a))? +1]

f(a,v(a)) = f(a,5(a)) < M/in[(v(a) — s(a))? +1]

g(a,r(a)) — gla, w(a)) > —p\/In (T‘(G w(a))? +1].

Conusider these last inequalities, ko < 0 and (2.45), we have
d(F(r,s), F(w,v))
< sup [/ E1(q,a)[M\/In](r (a))? + 1] + p/In[(s(a) — v(a))? + 1]]ds
q€[0,1]

+ /0 (—k2(q,a)[AVIn[(v(a) — 5(a))? + 1] + p+/In[(r(a) — w(a))? + 1]Jds

1
— maz(A 1) sup [ | 1(00) — s )@ — wia)? + s

(16[071]

1
+ /0 (k1(q,a) — ka(q, a))\/ln[(s(a) —v(a))? + 1)ds]|. (2.46)

Defining

(A) = [ (ki(g,a) — ka(q,a))/In[(r(a) — w(a))? + 1]da.

— [ (k1(q, @) — ka(g, a))y/In[(s (@)% 1 1]da.

and utilizing the inequality of Cauchy-Schwartz in (A), we get

(A)S(Al(kl(q, a) — ka(q,a ) (/ (a))” +1)d >é (2.47)

<|| k1 — ke ||oo.<zn||r—w|\2+1>>%=||k1 k2 [l -(In(d(r, w)? +1))7.

In similar way, we can attain the subsequent estimate for (B):
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(B) <l k1 — k2 [l -(In(d(s,v)? + 1))2. (2.48)
From (2.46)-(2.48), we get

d(F(r,s), F(w,v)) < maz(\ ) || ki = ky e [(n(d(r,w)? +1)F + (n(d(s,0)? +1))3]
<max(A,pw) || k1 — k2 |loo [(ln(max(d(nw),d(& v),d(F(r,s),7),d(F(w,v), w))? + 1))%
+ (In(max(d(r,w), d(s,v),d(F(r,s),r),d(F(w,v) 241) 5]

=2mazx(\ 1) || k1 — k2 ||oo [(ln(maw(d(r, w),d(s,v),d(F(r,s),r),d(F(w,v),w))? + 1)) 5} .
(2.49)

From (2.49) and hypothesis (6) provide us

d(F(r,s), F(w,v)) < (In(maxz(d(r,w),d(s, v), d(F(r, s),r), d(F(w,v), w))? + 1))%,
— d(F(r,s), F(w,v))? < (In(max(d(r,w), d(s,v),d(F(r,s),r),d(F(w,v),w))? + 1)),

or,

d(F(r,s), F(w,v))? < (max(d(r,w),d(s,v), d(F(r,s),r),d(F(w,v), w))?
— [(maz(d(r,w),d(s,v),d(F(r,s),r),d(F(w,v), w))2
— In(max(d(r,w), d(s,v), d(F(r, s),r), d(F(w,v),w))? 4+ 1))].
(2.50)

Put o(r) = 72 and ¢(r) = 2 — In(r?> + 1). Clearly, ¢ and ¢ are altering distance

functions. From (2.50) we have

e(d(F(r,s), F(w,v)) < o(mazx(d(r,w),d(s,v),d(F(r,s),r), d(F(w,v),w))
— ¢(max(d(r,w),d(s,v),d(F(r,s),r),d(F(w,v),w)))

This demonstrates that it fulfills the contractive condition (2.1).

Lastly, suppose §, a be the functions appeared in hypothesis (5); then, by (5), we have

5> F(B,a) > Fla,) > .

Theorem 2.6 provides us that F' has a unique coupled fixed point (r,s) € U x U. As
B > «, Theorem 2.7 states us that » = s and this indicates r = F(r,r) and r is the

unique solution of equation (2.43).

This completes the proof.
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Chapter 3

Coupled Fixed Point Theorems
Involving Rational Expression in

Partially Ordered Cone Metric

Spaces

In this chapter, certain unique coupled fixed point theorems using the property of mixed
monotone involving rational expression have been proved in an ordered cone metric
space. In section 3.1, the conception of cone metric space have been discussed. In section
3.2, a coupled fixed point theorem has been established by using rational expression in
a partially ordered cone metric space. Section 3.3, provides a necessary and suflicient
condition for the existence of coupled fixed points of contractive condition with rational
expression in complete cone metric space. Also, an example is provided to illustrate our
results. Coupled fixed point results for rational contraction have been given in section
3.4. The results presented in this chapter have improved and generalize many known

coupled fixed point theorems in the existing literature.

3.1 Introduction

Dass and Gupta [46] introduced the new idea of rational expression in complete metric
spaces. Later on, Jaggi [73] generalized certain unique fixed point hypothesis which fulfil
a contractive condition of a rational sort. Afterwards many authors [67, 94] generalized

this concept.

Huang [69] introduced cone metric spaces by supplanting an ordered Banach space for
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the real numbers. After that, many researchers generalized the fixed point theorems in
different ways (perceive [84, 85, 127, 133]).

Let P a subset of I/ and F be a real Banach space. P is called a cone iff

(a) P # {6}, P is non-empty and closed set ,
(b) PN (~P) = {0},

(c) pt+quv € P for every p,g € R, p, ¢ >0 and t, v € P.

Given cone P C F, the partial ordering < with respect to P by t <wv iff v —t € P. The
notation t < v will stand for v — t € intP where intP denotes the interior of P. Also,

we will use ¢ < v to indicate that t < v and t # v.

Definition 3.1. [69] Suppose U be a non empty set. Presuppose the mapping d: U x
U — F gratifies the subsequent conditions for all uy, us, us € U

(d1) 0 < d(u1,u2) and d(uj,ug) =0 <= uy = ug,
(dQ) d(u17u2) = d(UQ,U]),

(d3) d(u1,u) < d(ui,us) + d(us, uz).

Then d is termed as a cone metric on U and (U, d) is said to be a cone metric space.

3.2 Coupled Fixed Point Theorem Involving Rational Ex-

pression

In this section, the following result on complete cone metric space has been established:

Theorem 3.2. Suppose (U, <) be a partially ordered set endowed with a cone metric d
in U then cone metric (U,d) is complete. Presume H: U xU — U possesses the property

of mized monotone on U satisfy
d(H(r,s), Hw,v)) < « <ma3: {d(T’H(T’ 2();1(5;’ H(w’v)),d(r, w)})

L5 (max { d(r, H(r, 5(3():15011;, H(w,v)) d(r w)}) (3.1)

+ (M((r, 5), (w,v)))

where,

31



Chapter 3. Coupled Fized Point Theorems Involving Rational Expression

Y (o o)) — e oy 2 d(w, H(w,v)) + d(v, H (v, w))
M((r,s), (w,v)) = min <d(7,H(7,b)) 2+ d(rw) + d(s,0) .

2 +d(r,H(r, s)) + d(s, H(s, r)))
2+ d(r,w) +d(s,v)

d(w, H(w,v))

Vo, s,w,v € X with r > w,s < v and there exist positive real numbers o, 3,7 € [0,1)

and a+ B+ < 1. Presume either H is continuous or U has the subsequent properties,

(a) if an increasing sequence {r,} in U converges to some point r € U, then r, <r,
vp,

(b) if a decreasing sequence {s,} in U converges to some point s € U, then s, > s,
v p.

Then H has a coupled fized point.

Proof. Take rg,s9 € U, set 11 = H(ro,s0) and s1 = H(sg,r0). Repeating this process,

set rpr1 = H(rp, sp) and spy1 = H(sp,rp). Therefore, from (3.1), we get

d(rp, mp+1) = d(H (rp-1, sp-1), H(rp, 8p))

< o (s { oo Hteso D B0y, )1

43 <max {d(T'p—l»H(”'p—l,f"p—l))d(Tp»H(”'p’sp)),d(rp_hrp)}>

d(rp—l’ Tp)
+ (M((Tp—lv Sp—l))v (Tp, SP)))
= a(maz{d(ry, rpt1), d(rp-1,7p)}) + B (maz{d(rp, rp11), d(rp-1,7p)})

2+d(rp—1, H(rp—1,8p-1) + d(sp—1, H(Sp—1,7p—1)
H
T (d(rp, (rp: 5p)) 2+ d(rp—1,7p) + d(sp, Sp—1)

= a(max{d(ry, rps1), d(rp—1,7p)}) + B (maz{d(ry, rps1), d(rp-1,7p)})
+ 7 (d(rp, Tp+1))- (3.2)

Similarly, by (3.1), also we attain

d(sp, sp1) = d(H(sp-1,7p-1), H(sp. 1))
= a (maz{d(sp. spt1), d(sp-1,5p)}) + B (maz{d(sp, sp+1), d(sp—1,5p)})
+ 7 (d(sp, 5p11))- (3.3)

Suppose that max{d(rp,rp+1),d(rp—1,7p)} = d(rp,7p41) for some n > 1. Then the
inequality turns into d(rp, rp+1) < o (d(rp, 7p41)) + B (d(rp, rps1)) +v (d(rp, 7ps1)) which

is a contradiction. Thus maz{d(ry, rp+1),d(rp—1,7p)} = d(rp—1,7p) for some p > 1.
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Therefore, the inequality yields
d(rp, rps1) < ad(rp-1,1p) + Bd(rp-1,7p) + 7 d(rp, ps1) (3.4)

d(sp, Spt1) < ad(sp-1,sp) + Bd(sp-1,5p) + 7 d(sp, 5p+1) (3.5)

Which implies that
(=) d(rp,rp1) < (a+ B) d(rp-1,7p) (3.6)

(1 =) d(sp, sp+1) < (a+ B) d(sp-1, $p)- (3.7)

By adding (3.6) and (3.7), we have

(a+8
dp < r,y)) dp—1. (3.8)
Let d,, = d(rp, rp41) + d(sp, spr1). Subsequently, if we set A = (((f j 5)) , then we have
dy < Adyp_y < -+ < NP dy. (3.9)

If dg = 0, then H possesses a coupled fixed point (rg, o).

Presume that dy > 0. Then, for each a € N, the repeated application of triangle

inequality, we acquire

d(rps rp+a) + d(8p, Spra) < [d(rp, Tpt1) + d(rp+1,mp+2) + .o+ d(rpra—1,Tp+a)]
+ [d(sp, sp+1) + d(Sp1, Spr2) + .. + d(Spra—t1, Spta)]
= [d(rp, rp+1) + d(Sp, sp+1)] + [d(rps1,Tpr2)
+ d(sp+1, spr2)] + - + [d(rpra—1,Tpta)
+ d(Spta—1, Spta)]

<dptdp1+... +dpias

AP(1— %)
< ——dy. 3.1
ST 0 (3.10)
) AP(1— A%
Let 0 < ¢ be given. Choose a natural number K such that ————=dy < ¢ for

all m > K. Thus d(rp, rptr) + d(Sp, Spyr) < ¢. Therefore {r,} and {s,} are Cauchy

sequences.

As U is complete, 3 r,s € U then lim 7, = r, lim s, = s. Now, we show that if H is
pP—00 pP—00

continuous, then (7, s) is coupled fixed point of H.
As, we have

r= lim r = lim H(ry,s,) =H | lim r,, lim s, | = H(r, s
oo p+1 oo (p7 p) p—yoo pap_mcp (7 )7
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5= phﬁr{)lo Spp1 = 7»113010 H(sp,rp) = H (phﬁrrolc (9]9,10152O rp> = H(s,r).
Therefore, (r,s) is coupled fixed point of H.

Now, presume that the assumption (a) and (b) of the theorem satisfy.

The sequence {rp} =, {sp} = s

d(H(r,s), H(rp, 5)) < <ma:z {d(’“’ A, S()Z)(il(j;)H 50D g, m})

L5 <mam{d(r,H(r, sc)l)(if:i,)H(rp, sp))’d(n Tp)})

2 +d(rp, H(rp, sp)) + d(sp, H(sp, rp)))
24d(r,rp) +d(s, sp) ’

+ v (d(r, H(r,s))

Letting p— oo, we have d(H(r,s),r) < 0. Thus, H(r,s) = r. In similar way, we can

prove that H(s,r) = s. This completes the theorem.

Theorem 3.3. Let the presumptions of Theorem 3.2 hold. We acquire the uniqueness
of the coupled fixed point of H.

Proof. Presume (r,s) and (r*,s*) are coupled fixed points of H, thus, H(r,s) =
r,H(s,r) = s, H(r*,s*) =r* and H(s* r*) = s*. We shall prove that r = r* s = s*.

Consider the following cases:

Case 1: If (r, s) and (r*, s*) are comparable. We get

d(r,r*) = d(H(r,s), H(r",s"))

BASRELY (G LX)

d(r,H(r,s))d(r*, H(r*, s*)) .
—l—ﬁ(max{ ) ,d(r,r )})
24 d(r*, H(r*, s%)) + d(s*, H(s*,r*)
2+d(r,r*) +d(s, s*) )

+ (d(r,H(r,s))

Which gives d(r,r7*) < 0, (o + 8 4+ v) < 1(a contradiction). Thus r = r*. Similarly,
d(s,s*) = d(H(s,r),H(s*,7*)) < 0. Hence, s = s*. Thercfore, H acquire a unique
coupled fixed point (r, s).

Case 2: Presume (r, s) and (r*, s*) are not comparable.
Presume that there exist (z,u) € U x U, comparable with both of them.
We define sequences {z,}, {uy} as follows

20 =2, up = U, Zpr1 = H(zp,up) and upr1 = H(uy, 2,) ¥ p.
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Since (z,u) is comparable with (r, s), we may presume that (r,s) > (z,u) = (20, ug).
Using mathematical induction, we can easily prove that
(rys) > (2p, tp) YV p. (3.11)
From (3.1) and (3.11), we have
d(H (). H(zp, 1)) < a (max {d(hH(ra 8))d(2’p»H(2p»Up))7d(r’ zp)})

d(r, Zp)

LB (max{d(r,H(r, si)(ifzzBH(zp,up)))d(r7 zp)})

2+ d(zp, H(2zp, up)) + d(up, H(up, zp))>
2+ d(r, zp) + d(s, up) ’

+7 (d(r, H(r,s))

or

d(r, zpy1) < (a+ B) d(r, zp). (3.12)

Similarly, we also have
dtps1,s) < (@ + B) d(up, ). (3.13)
Adding (3.12) and (3.13), we get

d(r, zp+1) + d(upt1,8) < (a+ B) [d(r, 2p) + d(up, s)]
(+ B)? [d(r, zp-1) + d(up-1,5)]

IA

< (a+ B d(r, 20) + d(ug, s)] = 0 as p — oo.

Thus,

pli_}rgo a(r, zp+1) = pli_}ngo d(ups1,s) = 0. (3.14)

In similar way, we can show that

T)ILH;O d(r*, zps1) = pan;c d(upt1,5") =0. (3.15)

From (3.14) and (3.15), we obtain r = r* and s = s*.

3.3 A Necessary and Sufficient Condition For the Exis-
tence of Coupled Fixed Points

Theorem 3.4. Suppose (U, <) be a partially ordered set endowed with a cone metric d

in U then cone metric (U,d) be complete. Presume a mapping H: U x U — U possess
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the property of mized monotone on U satisfy

d(H(r,s), H(w,v)) < a (max {d(”’ A, ‘2)():(;”)’ Aw.v) i, w)})

(3.16)

Vo s,w,v€ X withr >w,s <v and there exist positive real numbers B, € [0,1) with

B+ a < 1. Presume either H is continuous or U has the subsequent properties,

(a) if an increasing sequence {rp} — r, then r, <r, Vp,

(b) if a decreasing sequence {s,} — s, then s, > s, V p.
Then H has a coupled fized point.

Proof. Take 1, sg € U. Set ry = H(ro, s0) and s1 = H(sg,ro). Repeating this process,
set rpr1 = H(rp,sp) and sp+1 = H(sp,rp). Then by (3.16), we have

d(rp, Tp1) = d(H (rp—1, 8p—1), H(rp, 5p))
<a (mam { d(rp—1, H(rp—1,8p—1))d(rp, H(p, 8p)) L d(rp1, rp)})

d(rp—b rp)
+ (ma:z; { d(rp-1, H(rp—i(a::_—llj)zj)(rp? H(rp, sp)) L d(rp—1,7p) })
= a(maz{d(rp, rps1),d(rp—1,7p)}) + B (maz{d(rp, rps1), d(rp—1,7p)}) -
(3.17)

Similarly, from (3.16), we obtain
d(sp, sp+1) = d(H (sp—1,1p-1), H(p, Tp))

= a (max{d(sp, Sp+1), d(sp—1, 5p)}) (3.18)
+ B (maz{d(sp, sp+1), d(sp-1,5p)})-

Suppose that max{d(rp,rp+1),d(rp—1,7p)} = d(rp,rp+1) for some p > 1. Then the
inequality turns into d(rp, rp+1) < o (d(rp, 7p+1)) + B (d(rp, 7p+1)), which is a contradic-
tion. Thus max{d(rp, rp41), d(rp—1,7p)} = d(rp—1,7p) for some p > 1. Therefore, the

inequality yields

d(rp,rpt1) < (@ + B) d(rp-1,7p), (3.19)
d(sp, spt1) < (a4 B) d(sp-1, sp)- (3-20)

By adding (3.19) and (3.20), we have
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dp < (a+ ) dp—1. (3.21)
Let d,, = d(rp, rp+1) + d(sp, Sp+1). Subsequently, if we set A = (« + ), then we have
dp < )\dp_l < ... < M\Pdy. (3.22)

If dy = 0, then H acquire a coupled fixed point (rg, o).

Presume dy > 0. Then, for each a € N, by the repeated application of triangle inequality,

we acquire

d(rp; p+a) + d(Sp; Spra) < [d(rp, Tpi1) + d(rpr1,Tps2) + o+ d(Tpra—1, Tpta)]
+ [d(sp, sp+1) + d(Spt1, Spt2) + - -« + d(Spra—1, Sp+a)]
= [d(rp, rp1) + d(sp; sp1)] + [d(rp41,7p42)
+ d(sp+1; Spt2)] + - 4 [A(Tpra—15 Tpta) + d(Spra—1, Sp+a))]

<dp+dpy1+ ...+ dpraa

AP(1— )9
< ———dp. 3.2:
<—T (3.23)
) AP(1— A9
Let 0 < ¢ be given. Choose a natural number M such that ——— = dy < ¢ for

all m > M. Thus d(rp, 7pta) + d(Sp, Sp+a) < ¢. Therefore {r,} and {s,} are Cauchy

sequences.

As U is complete, 3 r,s € U then lim 7, = r, lim s, = s. Now, we show that if H is
pP—0o0 p—0o0

continuous, then (r, s) is coupled fixed point of H.

As, we have

r= lgn rp+1 = lim H(rp,sp) = H < lim rp, lim sp> = H(r,s),
p—roo

p—o0 p—0 p—o0
p—o0 p—roo p—oo © p—0o

s= lim s,y = lim H(sp,7mp) = H (hm sp, lim rp> = H(s,r).

Therefore, (r,s) is coupled fixed point of H.
Now, presume that the assumption (a) and (b) of the theorem holds.

The sequence {r,} —= 7, {sp} = s

d(H(r,s),H(Tp,Sp))Sa(max{( H(r, ;)(r(:z) (Tp’sp)),d(r,rp)}>

L3 (max {d(r, H(’r-’ b;)(if;z;H(Tp, Sp)) 7 d(T', T'p)}> .

Letting p— oo, we have d(H(r,s),r) < 0. Thus, H(r,s) = r. Similarly, we can produce
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H(s,r) = s. This concludes the theorem.

Theorem 3.5. Let the assumptions of Theorem 3.4 hold. We acquire the uniqueness of

the coupled fixed point of H.

Proof. Presume (r,s) and (r*, s*) are coupled fixed points of H, thus, H(r,s) =
r, H(s,r) =s, H(r*,s*) = r* and H(s*,r*) = s*. We shall prove that r = r*, s = s*.

Examine the succeeding cases:

Case 1: If (r,s) and (r*, s*) are comparable. We have

d(r,r*) =d(H(r,s), H(r*,s"))

o o D )

. )

which gives d(r,7*) <0, (o + ) < 1(a contradiction). Thus r = r*.

Similarly,
d(s,s*) =d(H(s,r), H(s*,7*)) <0.

Hence, s = s*. Therefore, (r, s) is a unique coupled fixed point of H.
Case 2: Presume (r,s) and (r*, s*) are not comparable.

Presume that there exist (z,u) € X x X, comparable with both of them.

We define sequences {z,}, {u,} as follows
20 = 2, Up = U, Zpr1 = H(2p,up) and upy1 = H(up, zp) V p.

Since (z,u) is comparable with (r, s), we may presume that (r,s) > (z,u) = (20, uo).

Using mathematical induction, we can easily prove that
(r,s) = (2p, up) Vp. (3.24)

From (3.16) and (3.24), we have

() 1) < o (e { AEFC ) )} )

L8 <max{d(r,H(r, szl)(i(?:)H(zp,up))’d(r, zp)})

d(r, zp+1) < (a+ B)d(r, zp). (3.25)
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Similarly, we also have

d(up+1,8) < (a + B)d(up, s).

Adding (3.25) and (3.26), we get

d(r, zps1) + d(upy1.s) < (a+ B)[d(r, zp) + d(up, s)]
(+ B)%[d(r, 2zp-1) + d(up1,5)]

IN

< (a+ B d(r, 20) + d(uo, s)] — 0 as p — oo.

Thus,

pli{go d(’f‘, zp—i-l) = pll{& d(up-i-la S) =0.

In similar way, we can prove that

Jim " 2p12) = Jim Ay, 57) =0

From (3.27) and (3.28), we obtain r = r* and s = s*.

(3.26)

(3.27)

(3.28)

Example 3.1. Let E = R?, the Euclidean plane and P = {(r,s) ¢ R% r,s > 0} a
normal cone in P. Let r = {(r,0) € R% 0 < r < 1}U{(0,7) €R%: 0 < r < 1}. The

mapping d: U x U — F is defined by

(100, (5.00) = (31 =l 1r o).
(0., 09) = (I, 5 o).

4((r,0), (0, ) = d((0, 8), (r,0)) = (g ror+ g) |

Thus (U,d) is complete cone metric space.

Consider the operator H: U x U — U given by

r

H((r,0),(0,7)) = (Z’O) L H((0,7), (r,0)) = (o, g) .

U satisfies the properties (i) and (i) of Theorem 3.4. Clearly H is continuous and

possesses the property of mired monotone. There are rg = 05590 = 0 in U, rp = 0 <

H(0,0) = H(rg, s0) and so =0 > H(0,0) = H(sg,70).

We claim that (3.16) holds for each r > w, s < v.
Case 1:

r

d(H((r,0), (0,7)), H((0, ), (5,0)) = d ((1,0) , (0, g))
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s | < 5r+sr+2s
—\12 "2 3

Hence, inequality (3.16) holds.

Case 2:
d(H((0,r), (r,0), H((0, s), (5,0)) = d ((o g) , (0, g))
- (5-3-25-5) <3 (-3e-)

Hence, inequality (3.16) holds.

Case 3:
A(H((r,0), (0,)), H((,0), (0,5)) = d (($.0) . (3,0))
- (B30 -30) <3 -]

Hence, inequality (3.16) holds.

)

Case 4:
ACH((0,7), (r.0), H((5,0). (0.)) = ((0.5). (5.0))
(312 3) <3

Hence, inequality (3.16) holds.

We deduce that all the assumptions of Theorem 3.4 are fulfilled with (o + 8) < 1 where
a, B are such that a = 8 = % . Here, H possesses the unique coupled fized point (0,0).

3.4 Coupled Fixed Point Theorems for Rational Contrac-

tions

Theorem 3.6. Suppose (U, <,d) be a partially ordered complete cone metric space.
Presume a mapping H: U x U — U possesses the property of mized monotone on U
satisfy

d(r,H(r,s))d(w, H(w,v))

d(r, w) + B (d(r,w) +d(s,v))

p(d(H(r;s), H(w,v))) < p|a

+y(d(r,H(r,s)) +d(s,H(s,r)))
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(r, H(r,s))d(w, H(w,v))
d(r,w)

- ad + B (d(r,w) + d(s,v))

+oy(d(r, H(r, ) +d(s, H(s, 7))

+ Lmin {d(r, H(r,s)),d(w, H(w,v)),
d(w, H(r,s)),d(r, H(w,v))}. (3.29)

YV or, s,w,v €U withr > w,s < v and where p, ¢ : [0,00) — [0,00) are continuous and
nondecreasing function. Also, there exist positive real numbers 3, a,y € [0,1) and L > 0
with (o + 26 + 27) < 1. Presuppose either H is continuous or U has the subsequent

properties,

(a) if an increasing sequence {ry} in U converges to some point o € U, then ry < o,
Vt,

(b) if a decreasing sequence {s;} in U converges to some point o € U, then sy > ¢,
Vit

Then H has a coupled fized point.

Proof. Take rg,s9 € U. Set r1 = H(rg, so) and s1 = H(sp,r0). Repeating this process,

set rep1 = H(ry, 8¢) and sgp1 = H(St, 7).

Then by (3.29), we have

o(d(re, re41)) = p(d(H (r1—1, 8t-1), H (71, 5¢)))
d(?"t_l, H(’/’t_l, St_l))d(?"t, H(Tt, St))
= Sp[a d(re—1,7t)

+ v (d(?"t_l, H(Tt_l, St—l)) + d(St_l, H(St_l, 7”,5_1))):|

. d(rt_l,H(rt_l,st_l))d(rt,H(rt,st))
¢ [a d(re—1,7t)

+ vy (d(ri—1, H(ri—1,5¢-1))) + d(se—1, H(s¢—1, Tt—1)))]

+ B (d(ri—1,7¢) + d(st-1, 5¢))

+ Bd(ri—1,7¢) + d(si-1, 8¢))

+ Lmin {d(ri—1, H(re—1,50-1)), d(re, H(r1, 5¢)),
d(ry, H(ry—1,8t-1)), d(re—1, H(r¢, s¢))
= plad(ry, ree) + B (d(ri—1,me) + d(se—1,5)) + v (d(re—1,7¢) + d(s1-1,5¢)))]
= @lad(ry, resr) + B (d(ri—1, 7)) + d(se—1. 5¢)) + v (d(ri—1.7¢) + d(s1-1, 5¢)))]
< lad(re, ree1) + B (d(re—1,m1) + d(st—1,8¢)) + v (d(re—1,7¢) + d(st-1, 5¢)))]. (3.30)

Similarly, from (3.29), we also have
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o(d(st, st41)) = @(d(H(St—l,Tt—l)» H(Su 7))
< plad(st, sev1) + B (d(st-1,8¢) + d(re-1,7¢)) + 7 (d(st-1, 8¢) + d(r-1,71)))].

(3.31)
Consequently, since ¢ is non-decreasing, using (3.30) and (3.31), we get
d(re, me41) < sz d(re—1,7¢), (3.32)
d@h&ﬂ)gfjgdgﬁh&y (3.33)
By adding (3.32) and (3.33), we have
d; < % di—1 (3.34)
Let dy = d(r¢, me41) + d(8t, St+1). Consequently, if we set A\ = QTj 27, then we have
dy < Xdp_q < ... < \dy. (3.35)

If dy = 0, then (rg, sg) is a coupled fixed point of H.

Presuppose that dy > 0. Then, for each k € N | by the repeated application of triangle

inequality, we acquire

d(re, Terk) + d(se, Sek) < [d(re, regr) + d(regn, meg2) + o+ d(Pegk—1, k)]
+[d(st; 8¢41) + d(Sp41, 5e42) + -+ d(Sepr—1, Se4k)]
= [d(re, res1) + d(st, se11)] + [d(re41. Te42)
+d(st+1. se42)] + oo+ [d(resk—1,Te0k) + A(Stk—1, St4k)]
<dp+digr + .o dipr
- M1 — AF)

. 3.36
ST b (3.36)

(1= AF)

t > M. Thus d(r, rek)+d(se, sgrk) < . Therefore {r;} and {s;} are Cauchy sequences.

Let 0 < ¢ be given. Choose a natural number M such that dy < c for all

As U is complete, J o, o’ € U, lim r; = o, lim s; = ¢’. Now, we show that if H is
t—o0 t—o0

continuous, then (g, ¢') is coupled fixed point of H.

As, we have

0= lim ry = lim F(ry,8:) = F (lim 7, lim st) = F(o,0),
t—ro0 t—o00 t—ro0 t—o0

/AT T - . . - /
0= tliglo Sty1 = th_glo F(sy,r) =F (tlun st,tliglo rt) = F(J,0).

— 00
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Therefore, (o, ¢) is coupled fixed point of H.

Now, presuppose that the assumptions (I) and (IT) of the theorem holds.
The sequence {r;} — o, {si} — ¢

d(o, H (o, Q/))d(rt«, H(ry, 5¢))
d(Q, Tt)

T4 (o, Hle, ) +d(e H(d o))
s [a dle, (g, 0))d(ri, Hire,s0))

S(d(H (0. &), Hlre, s))) < ¢ [a T 8 (d(or)) +d(d 51))

d(o,7¢) + B (d(o,m1) +d(¢, st))

+ 7 (d(o, H(o,¢")) +d(¢', H(d, 9)))-

+ Lmin {d('(—)? H(Q? QI))7 d(rh H(rta 52&))7
d(ry, H(0,0')),d(0, H(rt, 8¢))}-

Letting t— oo, we have

e(d(H(o,0'),0)) <¢ly(d(o,H(o,¢)) +d(d,H(¢,0)))]
oy (d(o, H(e, &) +d(d, H(d, 0)))]
@y (d(e, H(o,0')) +d(d, H(d, 0)))]- (3.37)

In similar way, we have

e(d(H(, 0),0") <ely(d(d, H(d, 0) +d(e, H(e, ¢)))]
— ¢y (d(d', H(¢'. 0)) + d(o, H(o,¢")))]
< (v(d(d,H(d, 0)) +d(o,H(o,0"))) (3.38)

As @ is non-decreasing, utilizing (3.37) and (3.38), we get

d(H(o,¢),0) <v(d(e,H(o,0")) +d(¢, H(d, 0))) (3.39)
d(H(¢', 0),0") <~ (d(d',H(d', 0)) +d(o, H(0,¢))) (3.40)

Adding (3.39) and (3.40), we have

d(H(p,0'),0) +d(H(, 0).0") <27 (d(o,H(0,0")) +d(d, H(d, 0)))

a contraction, we acquire H (o, ¢') = 0 and H(¢', 0) = ¢’. This completes the theorem.

Corollary 3.7. Suppose (U,<,d) be a partially ordered complete cone metric space.
Presume H: U x U — U be a mapping possesses the property of mized monotone on U

satisfy
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d(r, H(r,s))d(w, H(w,v))
d(r,w)

+y(d(r, H(r,s)) +d(s, H(s,7))).

d(H(r,s), Hw,v)) < « + B(d(r,w) + d(s,v))

Vo, s,w,v € U withr > w, s < v and there exist positive real numbers «, 3,y € [0,1)
with 1 > o + 28 + 2. Presuppose either H is continuous or U has the subsequent

properties,
(a) if an increasing sequence {ry} in U converges to some point r € U, then ry < o,
Vt,
(b) if a decreasing sequence {s;} in U converges to some point s € U, then s, > ¢,
Vt.
Then H has a coupled fized point.
Proof. For a + 28 + 2y < 1, taking ¢(2) = z and ¢(z) = 0 = L in Theorem 3.6, we
acquire Corollary 3.7.
Theorem 3.8. Let the hypotheses of Theorem 5.6 hold. We acquire the uniqueness of
the coupled fixed point of H.
Proof. Suppose (g, 0') and ((,¢’) are coupled fixed points of H, that is, H(p, o) =
0. H(d',0) = o', H((, (") = Cand H((',¢) = ¢'. We shall prove that o = ¢, ¢ = (.
Consider the subsequent cases:

Case 1: If (o, ¢') and ((,¢’) are comparable. We have

p(d(e,¢)) = pld(H (e, ¢), H(C, ()]
[ d(o. H(e, ¢))d(¢, H(¢, ("))
d(

<ol 2.0 + B(d(0.¢)) +d(d, ("))
Ty (dlo. Hlo, ) +d(e (2, o))
- oo AL EIETEON | 5a(o.0) 1 (g,

+ v (d(o. H(o,0")) +d(d', H(d, @)))-

+ Lmin {d(o, H(0, ")), d(¢, H(¢,¢)),d(¢, H o, '), d(e, H(¢,¢))}
< (B (d(e,¢) +d(d',¢")) — o(Bd(o,¢) +d(d,¢)))
< (B (d(e,¢) +d(¢',¢")))-

As @ is non-decreasing, therefore we obtain
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d(o,¢) < B(d(e,¢) +d(d,¢)) (3.41)
d(¢',¢") < B(d(d,¢") +d(e, ) (3.42)

Adding up (3.41) and (3.42), we get

d(o,¢) +d(d',¢") <28(d(e.¢) +d(¢, ("))

a contradiction. Thus ¢ = ¢ and ¢’ = (’. Therefore, (g, ¢') is a unique coupled fixed
point of H.

Case 2: Presuppose (0, 0') and ((,¢’) are not comparable. Assume that there exist

(z,u) € U x U, comparable with both of them.
We define sequences {z}, {u,} as follows
20 =2, up = u, 241 = H(z,uy) and uyr1 = H(ug, 2) V t.
Since (z,u) is comparable with (g, ¢'), we may presume that (g, o) > (z,u) = (20, uo)-
Using mathematical induction, we can easily prove that
(0,0") > (24, u) V t. (3.43)

From (3.29) and (3.43), we have

d(Q7 H(@ Q/))d(zt7 H(zt7 Ut))

o) + Bdlo, =) +d(ew))

A(d(H (0, d), H =1, u))) < @[a

-y (dlo Hle. ) +d(e, H(d, g>>>]

oo e D H 1)
d(97 Zt)

+7(d(o,H(o,¢")) +d(d',H(¢, 9)))]

+Bd(e, ) +d(d w))

+ Lmin{d(o, H(0,0)),d(zt, H(zi,u)),

(2, H(0, ), d(0, H (21, ur))}
d(gv H(Q7 Q,))d(zt> H(Ztv ut))
d(Q? Zt)

oy (d(e, H(o, o)) +d(d, H(d, g>>>]. (3.44)

e od(o21)) < w[a T Bd(o,2)) +d(¢ur))

Similarly, we have

d(ug, H(uy, 2))d(¢', H(0', 0))
d(ug, o)

(ddus)) < [a 1 Bdlu, d)) + d(o, )
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+7(d(d, H(d' 0)) + d(e, H(e. 0)))|- (3.45)
Since ¢ is non-decreasing, from (3.44) and (3.45), we have
(o, z141) < B (d(o, 2t) +d(¢,ur)), (3.46)

(¢ 1) < B (d(o, ) + d(d, wr)). (3.47)
Adding (3.46) and (3.47), we get

d(0, zt41) + d(ugs1, 0') < 2B[d(0, 2¢) + d(0', )]
< (28)% [d(g, zt-1) + d(ur—1, 0')]

S (2B)t+1 [d(@, ZO) + d(u07 Q/)] — 0ast — oc.

Thus,
. T no_
Jim d(e, z+1) = lim d(ug1, 07) = 0. (3.48)

Correspondingly, we can show that
. BT N o
Jim d(C, 20+1) = lim d(ugir, C) = 0. (3.49)

From (3.48) and (3.49), we obtain o = ¢ and ¢’ = (.

Example 3.2. Let E = R% P = {(t,v) € R% t,v > 0} C R?, and U = [0,1]. Define
d:UxU — U by d(s,v) = (s —v|,|s—v]),Vs,veU. Then (U,d) be a complete cone

metric space.
Consider the operator H: U x U — U given by H(r,s) = g

1
U satisfies the properties (i) and (i) in Theorem 3.6. Take 8 = = Then, for any

a,y €10,1) with a4+ 28 + 2y < 1. We claim that (3.29) holds for each t <r, v > s.

(5 - (5255

(r — w], [r — w]) = %d(r, w) < ~(d(r, w) + d(s,v))

7
oA Hr )d(w, Hw,v) g0 ais )
= d(r,w) , |

+ y(d(r, H(r,s)) + d(d(s, H(s,1)))).

d(H(r,s), H(w,v))

—

<

~|

We deduce that all the assumptions of Theorem 3.6 are satisfied with taking ¢(z) = z
and ¢(z) =0 = L. Here, H possesses the unique coupled fized point (0,0).
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Chapter 4

Coupled Coincidence Point
Results in Ordered (G-Metric

Spaces

The persistence of this chapter is to demonstrate certain coupled coincidence point
outcomes for non-linear contraction maps in ordered G-metric spaces with a property
of mixed g-monotone. This chapter has been divided into three sections. In section 4.1,
the concepts of G-metric space has been discussed. In section 4.2, some new coupled
fixed point theorems for weak contractions have been proved. Also, an example is given
to illustrate our result. Section 4.3, application to the solution of the integral equation

have been given by using the result proved in the section 4.2.

4.1 Introduction

Mustafa and Sims [101] presented another structure of generalized metric spaces, which
are termed as G-metric spaces, to create and present another fixed point theory for
numerous mappings in this new structure. Later, several fixed point theorems on G-
metric spaces have been obtained. For more results, we refer to the reader [102, 103, 126].
In recent times, coupled fixed point and coupled coincidence point theory has been
established in partially ordered G-metric space. Many researchers have studied, coupled

fixed point idea in ordered G-metric space(perceive [16, 18, 32, 36, 61, 95, 135]).

The notion of w and w*-compatible mappings was initially introduced Abbas et.al [3].
Abbas et.al [4] used this idea to prove uniqueness theorem of coupled fixed point in

G-metric spaces.
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For more information on the subsequent definitions and results, see Mustafa and Sims
[101].

Definition 4.1. [101] Suppose G: U x U x U — R™ be a function and suppose U be a
nonempty set persuade the following axioms for all uj,ug,u3,a € U
(G1) G(u1,ug,u3) =0 if ug = us = ug,
(G2) 0 < G(u1,u1,u2) with uy # ug,
(G3) G(u1,u1,us) < G(ur,ug,us) with ug # us,
(G4) G(uy,u2,u3) = G(u1,u3,uz) = Glug,ug,u1) = ...... ,
(G5) G(ulv uz, u3) < G(uh a, a’) + G(av u2, U3),
then G is termed as a Generalized metric, or a G-metric on U and (U, G) is said to be
G-metric space.
The concept of an altering distance function has been presented by Khan [89].
Definition 4.2. [89]. If it satisfies the subsequent properties, then ¢: [0, 00) — [0, 00)
is termed as an altering distance function.

1. The function ¢ is monotone increasing and continuous.

2. ¢(2) =0 < 2z=0.
Abbas [3] initiated the innovative idea of w and w*-compatible mappings and employed

this conception to get a uniqueness theorem of coupled coincidence point for mapping g

and F in G-metric space.

Definition 4.3. [3] Mappings g: U — U and F: U x U — U are called

(1) w-compatible if F(gs, gv) = g(F(s,v)), whenever gs = F(s,v) and gv = F (v, s);

(2) w*-compatible if F(gs,gs) = g(F (s, s)), whenever gs = F(s, s).

4.2 Coupled Fixed Point Theorems for (¢, a, f)-Weak Con-

tractions

Now we establish the following theorem concerning (1), c, 3)-weak contractions in or-

dered G-metric spaces.
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Theorem 4.4. Suppose (U, <, G) be a partially ordered complete G-metric space. Pre-
suppose g: U — U and F: U x U — U be continuous mappings and F possess the

property of mixed g-monotone and g commutes with F, satisfy

Y(G(F(r,s), F(t,v), F(z,w))) < a(M((r,s), (t,v), (z,w))) = B (M((r, s), (t, ), (2, w))),
(4.1)

where,

M((r, s), (t,0), (2, w)) = maz{G(gr, gt, gw), G(gs, gv, 92), G(gr, F(r, ), F(r, )),
G(gt, F(t,v), F'(t,0)), Glgz, F(z,w), F(z,w)),
G(gs, F(s,r), F(s,r)),G(gv, F(v,1), F(v,1)),
Glgw, F(w,z), F(w, 2))},

for all ry s, t,v,w,z € U with gz < gt < gr and gs < gv < gw, where ¥, a, 3: [0,00) —
[0,00) and ¢ is an altering distance function, B is lower semi-continuous, & is continu-

ous,

8(0) = a(0)

—0, (4.2)
Y(u) —a(u) + B (u) >0 for each 0 < u. (4.3)

Assume that F(U x U) C g(U). Furthermore for each ro,so € U with gro < F(rg, So)
and gso > F(so,70), then g and F have a coupled coincidence point, there existr,s € U,
g(r) = F(r,s) and g(s) = F(s,r).

Proof. Assume rg, s € U then grg < F(rg,so) and gsg > F(sp, o). Utilizing the way
that F(U x U) C g(U), take r1,s1 € U then gr; = F(ro, so) and gs1 = F (s, r0).

By similar contentions, F(U x U) C g(U), take r9,s9 € U such that gro = F(r1,s1) ,
gse = F(s1,71). As I possesses the property of mixed g-monotone, we get grg < gry <
gro and gse < gs1 < gsg. Proceeding with this procedure, we can create two sequences
{rn} and {s,} in U, such that

grn = F(Tn—h Sn—l) S grp+1 = F(rru 5n)7

9Snt+1 = F(sn,rn) < gsn = F(Sp—1,Tn-1).

If, for some integer n, we have (grni1,9Snr+1) = (97n,gSn), then F(ry,s,) = gr, and
F(sy, 1) = g8n, that is; (r,, s,) is a coincidence point of g and F. Thus, we presume

that (grnt1, gSnt1) # (g, 9sn) for all n € N All the more accurately, we expect that

either grp1+1 # grn O gSp+1 7 GSn.

For every n € N, utilizing the inequality (4.1), we have
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Y(G(9rn, gTna1, 9rnr1) = V(G(F(rn—1,8n-1), F(Tn, sn), F (T, $n)))
<o (M((rn—lv Sn—l)v (rn» 5n)7 (rm Sn)))
- 6 (M((rn—la Sn—l)a (Tna Sn)a (T‘nv Sn)))»

and
P(G (950, gSn+1, g5nt1) = Y(G(F(sp—1,mn-1), F(sn,7n), F(sn,70)))
< & (M((sn-1,mn-1), (8n,7n), (Sn,1m)))
= B(M((sn-1,7n-1), ($n,70), ($n,7n))),
where,

M((rn—1, $n-1), (rn: $n), (Tn, 5n)) = M ((Sn—1,7n-1), ($n,70), (Sn, 7))
= maz{G(grn—1,97n, grn), G(gSn—1, 95, g5n),
G(g9rn—1, F(rn—1, 8n-1), F(rn-1, 5n-1)),
G(98n—1, F(sn—1.1n-1), F(8pn-1,7n-1)),

G(grn, F(rn, $n), F(rn, sn)),

C}

9Sn, (Sn»rn) (Sn»rn )
Sn

(
(
(:
(9rn, F(rn, sn), F(rn, sn)
(
(
(

Q

)

}

= mafv{G 9rn—1,9Tn, (JTn) G(gsn—h 9Sn, gSn),

)
)
)
)

)
9Sn, ( Sny Tn) (San)

G

G(grn, 9rn+1, grn-i-l) G(gsn)gsn-‘rlvgsn-i-l)}'

Now, let us consider three cases.

Case 1: M((rn—1,5n-1); (Tn; 8n), (*n, sn)) = maz{G(grn—1, grn, grn), G(gSn—1, g5n, gsn)}-
‘We have

Y(G(9rn, 9Tns1. 9rns1) < a(maz{G(grn—1,97n, 97n), G(9Sn—1, 95n, 95n)})
— B(max{G(grn—1,9mn,97n), G(gSn—1,95n, 95n)}),  (4.4)

and

Y(G(gsn, gsn+1, 9Sn+1) < o (maz{G(grn—1, grn. grn), G(gSn—1, 9Sn, gsn)})
- ﬁ (mail?{G(ng—h 9Tn, 97‘7,,), G(gsn—ly 9Sn, gsn)})- (45)

Case 2: M (Tn—1,Sn—1, Tns Sns Tny Sn) = G(gTn, gTn+1, 9Tn+1)-
We claim that

M(rn—1,8n—1,Tns Sns Tns '5n) = G(9rn, 9rn+1,9rne1) = 0.
In faCta if G(grm grn+1;grn+1) 7é 07 then
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Chapter 4. Coupled Coincidence Point Results

Y(G(9Tns 9Tnt1, 9Tnt1) < o (G(grn, 9Tnt1: 97nt1)) — B(G(9Tns 9Tn41, 9Tn+1)),

By (4.2), which is contradiction. Thus, we have G(gry, g7n+1,9rn+1) = 0. Then, it is
obvious that (4.4) and (4.5) hold.

Case 3: M (Tn—1,Sn—1, Tns Sns Tns Sn) = G(gSn, GSn+1, §Sn+1)-

Similar to the proof of Case 2, one can also show that (4.4) and (4.5) hold.

Let 6, = maz{G(grn—1,97n, 9mn), G(9Sn—1,9Sn, gsn)}. So for n > 1, 6, = 0, then the

deduction of the theorem follows. Thus, we presume that
0n #0,Vn > 1. (4.6)

Suppose, for any n, d,—1 < d,. Thus, from (4.4) and (4.5), as ¢ is non decreasing, we

obtain

Y(maz{G(grn—1,97n, gn), G(95n—1,95n: gsn)})
< Y(max{G(grn, grn+1, 9rn+1); G(95n, 9Sn+1, gSn+1)})
= maz{ (G (grn, grn+1, 9Tn+1), V(G (g5n, gSn+1, 95n+1))} (4.7)
< a(maz{G(grn-1,97n, g7n), G(98n—1, gSn, gsn)})
— B (maz{G(grn—1,97n, grn), G(g8n—1, g5n, g5n)}),

that is, ¥(6,) — a(d,) + B (dn) < 0. By our hypothesis, we have &, = 0, which is a

contradiction (4.6). So, for every n > 1 we conclude that
5n+1 < 51“ (48)

thus, {d,,} is a non increasing sequence of non-negative real numbers. Then, we can find

k > 0 such that lim,,_ 0, = k.

Taking n — oo in equation (4.7) and using the the continuity of ) and « and lower
semi-continuity of 3, we acquire (k) < « (k) — 8 (k), which implies & = 0, as of our
hypothesis about 1, 8, a. Thus,

Jim maz{G(grn-1, grn, grn); G(g8n—1, 95n, gsn)} = 0. (4.9)

Next, we claim that {gr,} and {gs,} are G-Cauchy sequences.

We will prove that for each € > 0, we can find ¢ € N, if n,m > a,
max{G(grm(a), 9Tn(a)—1» grn(a)—l)» G(gsm(a) »98n(a)—1> gsn(a)—l)} <e. (4'10)

Presuppose the above statement is not true.
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Then, for some £ > 0 there exists subsequences of integers {m(a)} and {n(a)} with

n(a) > m(a) > a such that
maz{G(9rm(a)> 97n(a)s 97n(a))s G(95m(a) I5n(a)s 95n(a))} = €- (4.11)
Now, from (G5), we have
G(9Tm(a) 9Tn(a)> ITn(a)) < G(9Tm(a)s 9Tn(a)=15 9Tn(a)—1) T G(ITn(a)=15 9Tn(a): ITn(a))-

Then, from (4.10), we get

G(9Tm(a) 9"n(a)s 9Tn(a)) < G(9Tn(a)=1>9Tn(a): ITn(a)) + &- (4.12)
Similarly, from (G5) and (4.10), we have

G(95m(a), I5n(a)s I5n(a)) < G(95n(a)—1ISn(a)s ISn(a)) + & (4.13)

From (4.11), (4.12) and (4.13), we get

€< max{G(grm(a%grn(a y9Tn a))? G(gsm(a 7gsn(a)7gsn(a))}
< ma${G(gT7z(a) 15 9Tn(a)s 97n( ) G(gsn(a -1 gsn(a)vgsn(a))} +e. (414)

Letting, a — oo in (4.14) and using (4.9), we get

1iIIOlO max{G(grm(a,)7 9Tn(a)s grn(a))v G(9577,,(a), 98n(a)s gsn(a))} =&. (415)

a—r

Again, from (G5) and (4.10), we get

G(97m(a)=15 9"n(a)=1> ITn(a)=1) < G(9Tm(a)y—1> ITm(a)s 9m(a)) + G(9Tm(a)> ITn(a)=15 9Tn(a)—1)
< G(9Tm(a)—1,9Tm(a)> 9m(a)) T & (4.16)

G(9Sm(a)—1595n(a)—15 I5n(a)—1) < G(ISm(a)—159Sm(a): I5m(a)) T G(95m(a)> 95n(a)—1> I5n(a)—1)
< G(98m(a)—195m(a)» I5m(a)) T+ & (4.17)

From (4.16) and (4.17), we have

max{G(grm(a)—b 9Tn(a)—1s grn(a)—l)a G(gsm(a)—la 95n(a)—1, gsn(a)—l)}
< mam{G(grm(a)—lv 9Tm(a)> grm(a))» G(gsm(a)—b 9Sm(a)s gsm(a))} TE. (4'18)

Using (G5), we get

G(ng(a), 9Tn(a)> grn(a)) < G(grm(a)» 9Tn(a)-1> grn(a)—l) + G(grn(a)—ly 9Tn(a)> grn(a))
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< G(grm(a% 9Tm(a)—-1> grm(a)—l) + G(grm(a)—la 9Tn(a)—1» grn(a)—l)
+ G(grn(a)—lv 9Tn(a)> grn(a))'

From Proposition, G(u,v,v) < 2 G(v,u,u), we have

G(grm(a)vgrn(a%grn(a)) <2 G(grm(a)—lvgrm(a)>grm(a)) + G(grm(a)—bgrn(a)—lvgrn(a)—l)
+ G(grn(a)—ly 9Tn(a)> grn(a))' (4'19)

Similarly, we get

G(gsm(a)?gsn(a)a gsn(a)) <2 G(gsm(a)—lv 9Sm(a)s gsm(a)) + G(gsm(a)—la gsn(a)—l»gsn(a)—l)
+ G(gsn(a)—lygsn(a)a gsn(a))' (4'20)

So, from (4.11), (4.19) and (4.20), we obtain

£ <max{G(gTm(a)> 9"n(a)> I"n(a))s G(I5m(a)> I5n(a)s I5n(a)) }
< 2 mar{G(gTm(a)-1: 9"m(a), I"m(a))» G(95m(a)—1> I5m(a)s I5m(a))}
+maz{G (g7 (a)—159Tn(a)~1> I"n(a)-1)> G(ISm(a)—15 95n(a)—15 ISn(a)—1) }
+ max{G(97n(a)y—1, 9"n(a)s 97n(a)))s G(95n(a)—15 I5n(a)s 95n(a))) }- (4.21)

From (4.18) and (4.21), we get

e—2 maa?{G(grm(a)_l, 9Tm(a)> grm(a))v G(gsm(a)—la 95m(a)s gsm(a))}
- max{G(grn(a)—lv 9Tn(a)> grn(a)))7 G(gsn(a)—b 95n(a)> gsn(a)))} (4 22)
< max{G(grm(a)—la 9Tn(a)-1> grn(a)—1)7 G(gsm(a)—b 9Sn(a)-1> gsn(a)—l)}

< mam{G(ng(a)—lv 9Tm(a)> grm(a))a G(gsm(a)—b 95m(a)» gsm(a)) +e.

Letting, a — oo in (4.22) and using (4.9), we get

ah_)ngomax{G(grm(a)—lvgrn(a)—lvgrn(a)—l)vG(gsm(a)—lvgsn(a)—l»gsn(a)—l)} =e. (4.23)

From using the inequality (4.1), we get

U(G(9Tm(a)> ITn(a): ITn(a)))
= Y (G(F(Fr(a)-15 Sm(a)-1)» F(Fnt@)=1> Sn(a)=1)s F (Pn(a) =15 Sn(a)-1)))
< & (M((m(a)—15 Sm(a)=1)s ("n(a)—1> Sn(@)=1) (Pn(a)—1> Sn(a)-1)))
— B (M((Fp(a)-15 Sm(a)—1)s ("n(a) =15 Sn(a)—=1)» (Pn(a)=1> Sn(a)=1))) (4.24)
V(G (9Sm(a)> ISn(a)» I5n(a)))
= P (G(F(Sm(a)-1: "m(a)—1)s F (Sn(a)=1> Tn(@)=1)> F (Sn(a)=1: Tn(a)-1)))
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« (]\/[((Sm(a)—la Tm(a)—l)a (Sn(a)—ly Tn(a)—l)v (Sn(a)—l-, rn(a)—l)))
—pB (M((Sm(a)—lv rm(a)—l)v (Sn(a)—la 7"n(a)—l)a (Sn(a)—la rn(a)—l))) . (4'25)

Where,
A{((Sm(a)—l» 7am(a)—l)» (Sn(a)—h rn(a)—l)v (Sn(a)—la rn(a)—l))

= M((rm(a)—lv 5m(a)—1)7 (Tn(a)—b Sn(a)—l)v (Tn(a)—la Sn(a)—l))
= mal'{G(ng(a)—la 9Tn(a)-1> grn(a)—l)» G(gsm(a)—lv 98n(a)-1> gsn(a)—l)a

G(9Tm(a)—1s F ("ma)—15 Sm(a)y—=1)s F(Tm(a) =15 Sm(a)=1))5
G(95m(a)-1> F (8m(a)—1,Tm(a)=1)s F (Sm(a)=1, Tm(a)-1))>
G(97n(a)y—1> F(Tn(a)=15 Sn(a)=1)s F(Tn(a)y—15 Sn(a)—1))s
G(95n(a)-1> F(Sn(a)=15 Tn(a)=1)s F (Sn(a)=1> Tn(a)-1))>
G(97n(a)-1> F("n(@)—15 Sn(a)=1)s F(Tn(a)=1> Sn(a)—1));
G(95n(a)-1> F(Snta)—15Tn(@)=1)s F(Sn(a)=1> Tn(ay—1)) }
= maz{G(9rm(a)-1, 9"n(a)—15 In(a)—1)> G(ISm(a)—1> 95n(a)—1> ISn(a)—1);

G(97m(a)—1>9"m(a)> 9"m(a))> G(ISm(a)=1> I5m(a)s ISm(a))s
G(97n(a)y—1>9"n(a)s 9Tn(a))s G(I8n(a)=15 9Sn(a)> ISn(a)) }-

Now, by (4.24) and (4.25), we have

77/)(777&37{6;(grm(a)» 9Tn(a)> grn(a))» G(gsm(a)7 95n(a)> gsn(a))})
= mafﬂ{?/f(G(grm(a)» 9Tn(a)> grn(a)))v ¢(G(95m(a): 95n(a)> gsn(a)))}
< a(Zn) — B(Zn), (4.26)

where,

Zn, :mam{G(ng(a)_l, 9Tn(a)-1> grn(a)—l)» G(gsm(a)—lv 98n(a)-1> gsn(a)—1)7
G(grm(a)—l»grm(a)vgrm(a))v G(gsm(a)—lv gsm(a)»gsm(a))v
G(grn(a)—la 9Tn(a)> grn(a))v G(gsn(a)—lv 95n(a)> gsn(a))' (4'27)

Finally, Letting a — oo in (4.26) ((4.27))and using (4.9), (4.15) and (4.23), we get
Y(e) < a(max(e,0,0)) — 8 (max(g,0,0)). (4.28)

Therefore, ¥(e)—a (¢)+ (¢) < 0 and therefore ¢ = 0, a contradiction. As a result, {gr, }
and {gs,} are G-Cauchy sequences in the G-metric space (U, G), which is complete.

Then, we can find r,s € U, {gr,} and {gs,} are respectively G-convergent to r and s.
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From Proposition , we have

lim G(gry,grn,r) = lim G(gry,r,r) =0, (4.29)
n—oo n—oo
li_}In G(gsn, gSn,S) = li_>m G(gsn,s,8) =0. (4.30)

From (4.29) and (4.30), the continuity of g, we obtain

lim G(g(g7n), 9(g7n), gr) = lim G(g(grn),gr,gr) =0, (4.31)
n—r00 Nn—r 00
lim G(g(gsn), 9(g9sn), gs) = lim G(g(gsn),gs,gs) = 0. (4.32)
n—o0 n—00

Since grp+1 = F(rn, sn) and gspy1 = F(sp, ) , the commutativity of g and F provides
that

9(grns1) = g(F(rn, 50)) = F(grn, gsn), (4.33)
9(gsn+1) = g(F(sn,mn)) = F(gsn, grn)- (4.34)

By using (4.33) and (4.34) and the continuity of F', we get {g(grn+1)} is G-convergent
to F(r,s) and {g(gsn+1)} is G-convergent to F(s,r). By the uniqueness of limit, we get
F(r,s) = gr and F(s,r) = gs, and this ends the proof.

Theorem 4.5. Suppose all the assumptions of Theorem 4.4 are satisfied. Moreover,

presume that U has the subsequent properties

(a) if an increasing sequence {rp} — r, then r, <r, Vn,

(b) if a decreasing sequence {sn} — s, then s, > s, V n.
Then the conclusion of Theorem 4.4 also hold.

Proof. Succeeding the proof of Theorem 4.4, we have that {gr,,} and {gs, } are Cauchy
sequences in the complete G-metric space (g(U),G). Then, we can find r,s € U such

that gr, — gr and gs,, — gs.

Since {gr,} is increasing and {gs,} is decreasing, using the regularity of (U, G, <). We
have gr, < gr and gs, > gs for all n > 0. If gr, = gr and gs, = gs for some n > 0.
Then gr = grn, < grpt1 < gr = grp and gs < gspt1 < gsn, = gs. Which implies that
grn = grny1 = F(rp,sp) and gry, = grpe1 = F(rp,sy), that is (ry,, s,) is a coupled
coincidence point of ¢ and F. Then, we presuppose that (gry,gsn) # (gr,gs) for all
n > 0. By inequality (4.1), we have

w(G(ng_H,F(T, 3)7F(7’75))) = ﬂ)(G(F(Tn,Sn),F(’I’,S),F(T,S)))
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< (M((Tm sn), (1,8), (7, 5))) - (M((Tm sn), (1,8), (7, 3)))7
(4.35)

(G(gsnt1, F(s,1), F(s,7))) = (G(F(sp, ), F(s,7), F(s,7)))
< a(M((sn,7n),(5,7),(5,7))) = B(M((8n,70), (5,7), (5,7))),
(4.36)

where,

M((rn,sn), (1, 8), (1, 8)) = M((sn,7n), (5,7), (s,7))
= maz{G(grn, gr,g7), G(grn, F(rn, $n), F(n, $1)),
G(gr,F(r,s), F(r,s)),G(gr, F(r, s), F'(r, 5)),
G(95n, 98, 95); G(g5n, F(sp,1n), F(8n,70)),
G(gs, F(s,r), F(s,1)). G(gs, F(s,r), F(s,7))}

T,

(
);

= max{G(grn, gr, gT), G(QSTM gs, gs)v G(grna 9Tn+1, grnJrl)v
G(gT’F(T»S)aF(T?S))’G(gsnvgsn-‘rlagsn-i-l)a
G(gs, F'(s,r), F(s,r))}.

Now, we claim that
max{G(gr, F(r,s), F(r,s)),G(gs, F(s,7), F(s,7))} = 0. (4.37)

If this not true, then maxz{G(gr, F(r,s), F(r,s)),G(gs, F(s,r),F(s,r))} > 0. Since
lim gr, = gr, lim gs, = gs, there exists N € N such that for all n > N,
n—oo n—oo

]W((Tn, Sn)» (7", 5)7 (T’ 5)) = M((Sna 7”n)a (57 T‘), (87 r))
= maz{G(gr, F(r,s), F(r,s)),G(gs, F(s,7), F(s,7))}.

Combining this with (4.35) and (4.36), we get for all n > N,

P (maz{G(grn1, F(r,s), F(r,s)), G(gsni1, F(s,r), F(s,7)))})
= max{y(G(gras1, F(r,8), F(r,s))), ¢(G(95n+1,F(8,T)»F(S 7))}
< a(max{G(gr,F(r, s), F(r,s)),G(gs, F(s,r) ))})

)

- B (max{G(gr,F(r,s),F(r,s)),G’(gs F(s, r) F(s,r) })

Letting n — oo it follows that
w(max{G(gr, F(r,s),F(r,s)),G(gs, F(s,r), F(s, r)))})
<a (maa:{G’(gr, F(r,s), F(r,s)),G(gs, F(s,r), F(s, r))})
— B (maz{G(gr,F(r,s), F(r,s)),G(gs, F(s,r), F(s,r))}).
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From our assumptions about ), a, 8, which is a contradiction. So (4.37) hold. Then, it

follows that gr = F(r,s) and gs = F(s,r).

Example 4.1. Presume U = [0,1]. Define G: U x U x U — R™ by
G(s,v,w) =|s—v|+|v—w|+|w—s],Vs,v,wel.

Then (U, G) is a complete G-metric space.
Presuppose the mapping F: U x U — U defined by

1 1.
F(r,s)zar—?@z ifr>s

for allr,s € U. Also define g: U — U by gr =7 forr e U.

1
Let ¢, a, B: [0,00) — [0,00) be given by ¥(u) = a(u) = u and B (u) = U Clearly,
P be an altering distance function, B is lower semicontinuous, a is continuous, 3 (0) =
a(0)=0, ¢Y(u) —a(u)+ 5 (u) = g > 0 for each u > 0.

Now, we have following possibility for value of (r,s), (t,v) and (z,w) such thatr >t > z,

s<v < w.

e (1) - (-5 - (- 32) - (-39

+ 1z—1w2 — 1r—152
5 3 5 3

<

Since, (s* —v?) < (s —v). Similarly, (v* —w?) < (v —w) and (w? — s?) < (w — s).
Thus, we obtain
G(F(r, ), F(t,0). Flzyw)) < £ (= )] + |t — 2] +]2 = rl)
1

+§(|s—v|+|v—w|+|w—s|)

< £ (Glr,gt,92)) + 5(Glgs. g0, gw))
< %max{G(gn gt 92), G(gs, gv, gw) }
< EM((r,5), 1, 0), (2, )
= M((r,s), (t,v), (z,w)) — éM((r, s), (t,v), (z,w))
= a(M((r,s), (t,v), (z,w))) = B(M((r, 5), (£,0), (z,w))),

where,
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M((r,s), (t,v), (z,w)) = max{G(gr, gt, g2), G(gs, gv, gw), G(gr, F(r,s), F(r, 5)),
Glgt, F(t,v), F(t,v)), G(gz, F(z, w), F(z,w)),
G(gs, F(s,r), F(s,7)), G(gv, F(v, 1), F(v, 1)),
Glgw, F(w, z), F(w, 2))}.

Therefore, all the assumptions of Theorem 4.4 hold. Furthermore, (0,0) is the unique
coupled coincidence point of g and F'.
Now, putting g = Iy (the identity map of U) in the equation (4.1), we obtain

Corollary 4.6. Suppose (U, <) be a partially ordered set and G be a G-metric on U.
Presume F: UxU — U be a function satisfy (4.1) (with g = Iyy) for allr, s, t,v,z,w € U
with r >t > z and s < v < w. Assume that (U, G) is complete and F' possesses the

property of mized monotone. Presuppose either F is continuous or U has the subsequent:
(a) if an increasing sequence {rp,} — r, then r, <r, Vn,
(b) if a decreasing sequence {sn} — s, then s, > s, V n.

Furthermore for each ro, so € U with ro < F(ro, S0), S0 > F(s0,70), then F has a coupled

fized point.

Corollary 4.7. Suppose (U, <) be a partially ordered set and G be a G-metric on U.
Presuppose F: U xU — U and g: U — U be two mappings such that F(U x U) C g(U)

and F has the property of mized g-monotone. Presume there exists 1 € [0,1) satisfy

G(F(r,s), F(t,v), F(z,w)) <l max{G(gr,gt, g2),G(gs, gv, gw),
G(gr, F(r,s),F(r,s)), G(gt, F(t,v), F(t,v)),
G(gz, F(z,w), F(z,w)),G(gs, F(s,r), F(s,7)),
G(gv, F(v,t), F(v,t)), G(gw, F(w, z), F(w, z))}
(4.38)

forallr, s, t,v,w,z € U with gr > gt > gz and gs < gv < gw. Presume either

1. F and g are continuous, (U, G) is complete and g commutes with F, or
2. (g(U),G) is complete and U has the subsequent:

(a) if an increasing sequence {rp,} — r, then r, <r, Vn,

(b) if a decreasing sequence {sn} — s, then s, > s, V n.
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Furthermore for each ro,so € U with gro < F(ro,so), gso > F(so,70), then g and F

have a coupled coincidence point.

Proof. Define ¢, o, 5: [0,00) — [0,00), ¥(2) = 2 = a(z) , 8(2) = (1 — 1)z where
1 €[0,1). Then (4.38) holds. Hence the result follows from Theorem 4.4 or Theorem
4.5.

Theorem 4.8. Under the hypothesis of Theorem 4.5, suppose that gsg < grg. Then, it
follows gr = F(r,s) = F(s,r) = gs. Furthermore, if g and F are w- compatible, then g

and F have a coupled coincidence point of the form (u, u).

Proof. If gsg < grg, then gs < gs, < gsg < gro < grn, < gr for all n € N. Thus, if
gr # gs (and then G(gr,gr,gs) # 0 and G(gs, gs, gr) # 0), hence by inequality (4.1),

we have

1/)(G(957gr7 gr)) = ZZJ(G(F(S,T),F(T,S),F(T,S)))
< a(M((s,r),(r,s).(r,s))) = B(M((s,7), (r, 8), (r,5))),

where,

M((s,7), (r,s), (r,s)) = max{G(gs, gr,gr), G(gs, F(s,r), F(s, 7)),
G(gr,F(r,s), F(r,s)),G(gr, F(r,s), F(r,s)),
G(gs, F(s,r),F(s,r)),G(gs, F(s,r), F(s,r))
G(gr,gs, gs), G(gr, F(r,s), F(r,5))}

= max{G(gs, gr,gr),G(gr.gs,gs)}.

Hence

Y(G(gs, gr,gr)) < a(max{G(gs,gr,gr),G(gr, gs,9s)})
— B (max{G(gs, gr,gr),G(gr, gs,9s)})- (4.39)

Since gs < gr, hence using the same idea we have

Y(G(gr,gs,gs)) < a(maz{G(gs, gr,gr), G(gr, gs, gs)})
— B (max{G(gs, gr,gr),G(gr,gs,gs)}). (4.40)

From (4.39) and (4.40), we have

Y(max{G(gs,gr,gr),G(gr, gs, 9s)) = max{y)(G(gs, gr,gr)),v(G(gr, gs,9s))}
< a(maz{G(gs, gr,gr),G(gr,gs.gs)})
— B (max{G(gs, gr.gr).G(gr, gs,gs)})-
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Therefore, from properties of functions v, 5, «, a contradiction. Thus, we acquire
G(gs, gr,gr) =0 and G(gr, gs,gs) = 0. Hence gr = gs, that is, gr = F(r,s) = F(s,r) =

gs. Now, let u = gr = gs. Since g and F' are w-compatible, then

gu=g(gr) = g(F(r,s)) = F(gr,gs) = F(u,u).
Thus, g and F have a coupled coincidence point of the form (u,u).

To guarantee the unique ness of coupled coincidence point. Let (U, <) is a partially
ordered set, we endow the product U x U with we need the subsequent idea of the

partial order relation:
for each (t,v), (w,2) e U x U, (t,v) < (w,2) <= t<w, v>z. (4.41)

Theorem 4.9. Under the hypothesis of Theorem 4.4, assume that, for each (r,s), (¥, $) €
U x U, we can find (t,v) € U x U that is comparable to (r,s) and (¥,$). Then g and F

have a unique common coupled fixed point.

Proof. From Theorem 4.4, the set of coupled coincidence point is non empty. We will

prove that if (r,s) and (¥, §) are coupled coincidence points, that is,

then
gr = g7 and gs = g$. (4.42)

Choose an element (¢,v) € U x U comparable with both of them.

Let tg = t,v9 = v and choose t1,v1 € U so that gt; = F(tg,vo) and gv; = F (v, to).
Then, in similar manner as in the proof of Theorem 4.4, we can define sequences {gt,}

and {gv,} as follows
gtnt1 = F(tn, vy) and gupy1 = F(vn, ty).

Further, set rg = r, sg = s, %9 = 7, $§o = $ and on the same way, define the sequences
{grn}, {gsn} and {grn}, {gdn}.

Since (gr, gs) = (F(r,s), F(s,r)) = (g1, gs1) and (F(t,v), F(v,t)) = (gt1,gv1) are com-
parable, then gr < gt; and gs > gv;. Using mathematical induction, we can easily prove

this gr < gt,,, gy > gv,, Vn € N.
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Let v, = maz{G(gr,gr,gtn),G(gs, gs,guv,)}. We will show that lim ~, = 0. First,

n—oo
assume that v, =0, for an n > 1.

By inequality (4.1), we have
P(G(gr, g, gtnt1)) = (G(F(r,s), F(r,5), F(tn, vn)))
< a(M((r,8), (r,8), (tn; vn))) = B(M((r, 5), (1, 8), (n, vn))),

where,

M((r, ), (7, 8), (tn, vn)) = maz{G(gr, gr, gtn), G(95, g5, gvn),
G(gr,F(r,s), F(r,s)),G(gr, F(r,s), F(r,s))
G(gtn, F(tn, vn), F(tn, vn)), G(gs, F(s,), F(s, 7))
Glgs, F(s,7), F(s,7)), G(gun, F(vn; tn), F(vn, tn))}

= maz{G(gr, gr, gtn), G(gs, g, gvn)}.
Therefore, we obtain

Y(G(gr, gr, gtn+1)) < a(max{G(gr, gr, gtn), G(gs, 95, gvn)})
— B (max{G(gr,gr, gtn), G(gs,95,9vn)}). (4.43)

Similarly, we have

V(G(gs, 98, gun+1)) < a(maz{G(gr, gr, gtn), G(9s, 95, gvn)})
— B (maz{G(gr,gr, gtn), G(gs, gs,gvn)}). (4.44)

Therefore, from (4.43) and (4.44), we get

V(Yn+1) = Y(maz{G(gr, gr, gtn+1)), G(98, 95, gvn+1)}
= maz{y(G(gr, g7, gtn+1))), Y(G(gs, gs, gvn+1))}
< a(maz{G(gr,gr, gtn), G(gs, 95, 9vn)})
— B (max{G(gr, g, gtn), G(g5, 95, gvn)})
= a () — B () =a(0) — B(0). (4.45)

As, from the assumptions of ¥, and «a, we can deduce v,+1 = 0. Reiterating this

procedure, we can prove that ~,, = 0, for each n < m. So, h_}m Y = 0.
n o0
Now, let v, # 0, for all n and let v,, < ¥,,11, for any n.

Since 9 is an altering distance function, from (4.45)
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Y(vn) = Y(maz{G(gr, gr, gun), G(gs, gs. gun)})

A

o(
Y(Ynt1)
Y(max{G(gr, gr, gun+1)), G(gs, g5, gvn+1)}

max{y(G(gr. gr, guni1))), ¥(G(gs, gs, gvn+1))}
< a(maz{G(gr,gr, gun), G(gs, 95, gvn)})

— B (max{G(gr, gr, gun), G(gs, gs, gvn)})
=a(v) = B(m)

Thus, v, = 0, a contraction.

Therefore, V4,41 < vy, for each n > 1. Now, if we continue as in Theorem 4.4, we can

prove that
lim maz{G(gr, gr, gun), G(gs, gs, gvn)} = 0. (4.46)
n—oo

So, {gun} — gr and {gv,} — gs.

In similar argument, we can prove that
lim max{G (g7, g7, gun), G(95, g, gvn)} = 0 (4.47)
n—oo

That is, {gu,} — ¢7 and {gv,} — g$. Finally, as the limit is unique, gr = g7 and

gs = gs.
As gr = F(r,s) and gs = F(s,r), by commutativity of g and F, we get
g(gr) = g(F(r,s)) = F(gr, gs) and g(gs) = g(F(s,7)) = F(gs, gr) (4.48)
Denote gr = x and gs = w. Then, from(4.48), it follows that
gt = F(z,w) and gw = F(w, ). (4.49)

Therefore, (z,w) is a coupled coincidence point of F' and g. Then, from (4.42) with

7 =x and $§ = w, it follows that g = gr and gw = gs, that is,
gr =z and gw = w (4.50)

Thus, from (4.49) and (4.50), we get z = gz = F(z,w) and w = gw = F(w,z).

Therefore, (2, w) is a coupled common fixed point of g and F.

To show the uniqueness, presume that (h,t) is another coupled common fixed point of
gand F. Then h = gh = F(h,t) and t = gt = F(t,h). As (h,t) is a coupled coincidence
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point of F' and g, we get gh = gr = « and gt = gs = w. Thus, h = gh = gz = z and

t = gt = gw = w. Therefore, the coupled fixed point is unique, this completes the proof.

4.3 Application to Integral Equations

In this segment, a useful application of Corollary 4.6 is presented. By utilizing the
Corollary 4.6, the existence and uniqueness of solutions of a non-linear integral equation

has been presented.

Consider an integral equation of the following type:

1
r(m) = / (k1(m, b) + ka(m, 0))(f (b, 7(b)) + g(b,7(D)))db + a(m), m € [0,1].  (4.51)
0
We will analyze equation (4.51) under the following accompanying presumptions:
(1) k4 [0,1] x [0,1] = R(¢ = 1,2) are continuous and ki(m,b) > 0 and kz(m,b) < 0.
(2) a € C[0,1].

(3) ¢, f: [0,1] x R — R be two continuous functions.

(4) There are constants A, p > 0, for all m € [0,1], ,s € R and r > s,

0< f(mvT) - f(m,s) < )‘(T - 8)7 _:U’(T - 8) < g(m,r) - g(m7 S) <0.
(5) There exist 7,9 € C|0, 1], then

1
() < /0 Ky (m. B) (£ (b.~()) + g(b, 5(8)))db
1
4 /0 Fa(m, B)(F (b, 6(b)) + g(b.~(6)))db + a(m),
5(m) > /0 o (m. B)(F (b, 6(0)) + g(b,4(5)))db

1
+ [ Ralm D) 0A0) + 0. 50)ab +alm).
(6) 3.maz(\, p) || k1 — k2 [[«< 3, we have
| k1 — k2 |loo= sup{(k1(m,b) — ka(m,b)): m,b € [0, 1]}.

Let U = C[0, 1] be a space of continuous functions defined on [0, 1]. Define G: U x U x
U - R by
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G(u1,ug,u3) = sup |ui(m)—uz(m) |+ sup |uz(m)—us(m)|
mel0,1] me[0,1]

+ sup |ug(m)—ui(m) |,
me|(0,1]

for each w1, ug,u3 € U. Then (U, Q) is a G-complete metric space.

This space can be endowed with a partial order as follow

r,s € C[0,1], r <s <= r(m) < s(m), for any m € [0, 1].
Evidently, if U x U we consider the order as follow

(r,s),(w,2) e U x U, (r,s) < (w,z) <= r<wands > z,

Therefore, for some r,s € U we have that maz(r, s), min(r,s) € U, condition (4.41) is
fulfilled.

Furthermore, in [106] it is demonstrated that (C[0, 1], <) fulfills hypothesis (1).

We now formulate our outcome.

Theorem 4.10. Under hypothesis (1)-(6), equation (4.51) has a unique solution in
10, 1].

Proof. Presume F: U x U — U be a mapping given by
F(r,s)(m) = /01 ki(m, b)(f (b, r(b)) + g(b, s(b)))db
+ /01 ka(m, b)(f (b, s(b)) + g(b,7(b)))db + a(m), for m € [0,1].
By virtuousness of our hypothesis, F is well defined ( for r,s € U then F(r,s) € U).

Initially, we show that F' possesses the property of mixed monotone.

For ry < 7 and m € [0, 1], we get
P(r1.s)(m) = Plras)(m) = [ (b)) + g0, 5(0)db
- . B)(7 (b, 5(0) -+ g6, (8)))db + a(om)
-/ " m,B) (b ra (1)) + 90, (6) b
-/ b, B)( (B, 5(8)) + (b, ()b — a(rm)
-/ s, B)(F by ra(9) — F(Byra(8))) e
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1
+ /0 Fa(m, ) (g(b, 71 (b)) — g(b, ra(b)))db. (4.52)

Consider r; < r9 and our hypothesis,

and from (4.52) we obtain
F(r1,s)(m) — F(rg,s)(m) <0

and this shows that F(r1,s) < F(re,s).

Similarly, if s1 > s9 and m € [0, 1], we have F(r,s1) < F(r,s2). Thus, F possesses the

property of mixed monotone.

In what follows, we estimate the quantity G(F'(r, s), F(t,v), F(z,w)) for all r, s, t, v, z,w €
U,withr>t>zand s <v < w.

Indeed, as F possesses the property of mixed monotone, F(r,s) > F(t,v) > F(z,w) and
we can attain
G(F(r,s), F(t,v), F(z,w)) = sup | F(r,s)(m) — F(t,v)(m) |

mel[0,1]

+ sup | F(t,v)(m) — F(z,w)(m) |
mel0,1]

+ sup | F(z,w)(m)— F(r,s)(m) |
mel0,1]

= sup (F(r,s)(m) — F(t,v)(m))

me|0,1]
+ swp (F(t0)(m) ~ F(zw)(m))

me[0,1]
+ sup (F(r,s)(m) — F(zw)(m))

me(0,1]

1
= sup [ [ k(70 0) + 90050

me0,1] -J0

1
+/O ka(m, b)(f (b, s(b)) + g(b,7(b)))db + a(m)

-1
- /O a(m, B)(F(b, 1(5)) + g(b, v(b)))db

+ sup
mel(0,1]

1

- /0 Ea(m, B)(F(b,v(1) + (b, #(5)))db — a(m)]
1

[/0 By (m, ) (£ (b, £(8)) + g(b, v(b)))db
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1
+[;mmumuwww»+gwawn%+amw
1
—K;MWLMUwJ®D+gww®DMb
—AQWWW%W@HﬂWAWWFMW
1
+ sup [ / By (m, B)(F(b.r(8)) + 9 (b, s(b)))db

mel0,1]
+/0 ka(m )+ g(b,r(b)))db + a(m)
1
/ Fy(m ) + g(b, w(b)))db
0
/O ko (m, b)( 1) + g(b, 2(5)))db — a(m)

= sup [ Olkl(m,b)[(f(bw(b))—f(b,t(b)))—(g(b,v(b))—g(b,S(b)))]db
- /01 ka(m, b)[(f (b, v(b)) — £ (b, 5(b))) — (9(b, (b)) — g(bat(b)))]db]
+ sup [/01 k1 (m, D)[(f (b, £(b)) — f(b, 2(b))) — (9(b, w(b)) — g(b, v(b)))]db
- /01 ka(m, D)[(f (b, w (b)) — f(b,v(b))) — (g(b, £(b)) — g(b, Z(b)))]db]
+ sup [/01 k1 (m, D)[(f (b, 7(b)) — f(b, 2(b))) — (9(b, w(b)) — g(b, 5(b)))]db

F(b, () = £(b,£(b)) < A(r(b) —t()), g(b,v(b)) — g(b,s(b)) = —p (v(b) — s(b)),
f(b,0(b)) = f(b,5(b)) < A(v(b) —5(b)), g(b,7(b)) — g(b, (b)) = —pu (r(b) — £(b)),
f(0,8(b)) = f(b,2(b)) < A(E(b) — 2(b)), g(b, w(b)) — g(b,v(b)) = —p (w(b) — (b)),
F(b,2(b)) = f(b,v(b)) < A(2(b) — (b)), g(b,t(b)) — g(b. 2(b)) > —p (£(b) — 2(b)),
f(0,7(b)) = f(b,2(b)) < A(r(b) = 2(b)),  g(b,w(b)) — g(b,s(b)) = —p(w(b) — (b)),
f(b,w(b)) = f(b,5(b)) < A(w(b) — s(b), g(b,7(b)) — g(b, 2(b)) = —pu (r(b) — 2(b))-

Consider these last inequalities and (4.53), we have

G(F(r,s), F(t,v), F ) < sup [/ k1 (m, b)[A — (b)) + p(v(b) — s(b))]db

mel0,1]

+ / (—Ea(m, D)) A(w(B) — (b)) + pu(r(b) — £(b))] b

0
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1
+ sup [ / a(m, B)ACHD) — (b)) + pu(aw(b) — v(b))]db
me(0,1] 0

1
+ /0 (—k2(m, b)) [Mw(b) — v(b)) + pu(t(b) — Z(b))]db]
1
+ sup [/ k1 (m, b)[A(r(b) — 2(b)) + p(w(b) — s(b))]db
mel0,1] LJo
1
+ / (—k2(m, b)) [Mw(b) — s(b)) + u(r(b) — Z(b))]db]

0 )
— maz(\ ) sup [ [ ) = a0 0 0) — e
me[0,1] 0
1
+ /0 (ka(m,b) — kam, b)) (u(b) — s(b))db
1
+/O (k1(m,b) — ka(m, b)) (t(b) — z(b))db
1
n /( (ko (m, b) — ko, ) (w(b) — v(b))db
1
" /0 (kn(m,b) — ko, b)) (r(b) — =(b))db
1
- <k1<m,b>—kQ(m,b»(w(b)—s(b))db]. (4.54)
Defining
1 1
(1) = /0 (ky(m, b) — Ea(m. ) (r(b) — t())db, (2) = /O (ka(m, b) — ha(m. b)) (v(b) — s(b))db,
1 1
(3) = / (k (m,B) — ka(m, B))(4(b) — =(b))db, (4) = / (ka2 B) — ka(m, B)) (w(B) — v(b))db,
0 0
1 1
() = [ (ha(m.0) ~ ko, )((8) — 20ty (©) = [ (bam. ) = haom, ) ) — s(8)).
0 0

and applying the Cauchy-Schwartz inequality in (1), we acquire

0 < ([ atm0) -~ atm2a) ([ 00) - 07m)’ <ol G012,

(4.55)
In similar way, we can attain the subsequent estimate for:
(2) <l k1 = k2 oo - G(s,v.w), (3) <[ k1 — k2 [loo - G(r. ¢, 2), (4.56)
(4) SH kl - kQ ||OO .G(S,’U,UJ), (5) SH kl - k2 ||OO . G(T,t,Z), (457)
(6) <[[ k1 = k2 [loo - G(s, 0, w). (4.58)

from (4.54)-(4.58), we have
G(F(r,s), F(t.v), F(z,w)) <maz(X p) || k1 = k2 [loo [G(r, T, 2) + G(s,v,w)
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+ G(rt, 2) + G(s,v,w) + G(r,t,z) + G(s,v,w)]
= 3.mazx(\, 1) || k1 — k2 || [G(r,t, 2) + G(s,v,w)]
< 3max(\ p) || k1 — k2 oo [(M((r,5), (t,v), (z,w))]. (4.59)

from (4.59) and hypothesis (6.), we get
G(F(r,s), F(t,v), F(z,w)) < %(M(( s). (t,v), (2, w))),

where,

M((r,s), (t,0), (z,w)) = maz{G(r, 1, 2), G(s,v,w), G(r, F(r, s), F(r, 5)),

G(t, F(t,v), F(t,v)),G(w, F(w, z), F(w, 2)),
G(s, F(s,r), F(s,1)), G(v, F(v,t), F(v, 1)),
Gz, F(z,w), F(z,w))}

or, equivalently,
G(F(r,s), F(t,v), F(z,w)) < (M((r, ), (t,v), (z,w))?
- [(M((Tv S), (tv ’U)v (Zv w))z (460)
(M((r,s), (t,v), (z,w)))].

N | —

1
Put ¢ (r) =7, a(r) = r? and 3(r) = 7> — 5" Obviously, ¥, o and (8 are satistying
conditions of Corollary 4.6 and from (4.60) we get

Y(G(F(r,s), F(t,v, F(z,w))) < a(M((r, ), (t,v), (2,0)))
- 6 (M((T', 5)7 (t7 ’U), (Z?w))))
where,
M((r,s), (t,v), (z,w)) = maz{G(r,t, 2), G(s,v,w),G(r, F(r,s), F(r,s)),
G(t, F(t,v), F(t,v)),G(w, F(w, 2), F(w, 2)),
G(s,F(s,1),F(s,r)),G(v, F(v,t), F(v,t)),
G(z, F(z,w), F'(z,w))}

This shows that the mapping F' fulfill the contractive condition arising in Corollary 4.6.

Lastly, let 7,0 be the functions appearing in hypothesis (5); then, by (5), we have
Y < F(v,0),0 = F(6,7).

Applying Corollary 4.6, we deduce the existence of (r,s) € U x U such that r = F(r, s)
and s = F(s,r), that is, (r, s) is a solution of the system (4.51).
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Chapter 5

Coupled Coincidence Point
Results in Partially Ordered
Metric Spaces by Altering

Distances

In this chapter, certain coupled coincidence point theorems have been obtained for map-
pings possesses the property of mixed g-monotone in partially ordered metric spaces
involving altering distance functions. This chapter has been divided into various sec-
tions. Section 5.1 deals with the preliminaries related to coupled coincidence points.
In section 5.2, some coupled coincidence results have been established by using altering

distance function. In section 5.3 we present an application to integral equations.

5.1 Introduction

Bhaskar and Lakshmikantham [21] presented an idea of mixed monotone mappings and
coupled fixed points and showed the certain coupled fixed point and fixed point results.
Further, they studied their results on a first-order differential equation with periodic
boundary value problems. Later on, Ciric and Lakshmikantham [42] presented a new
notion of a mixed g-monotone mapping and coupled coincidence point. They established
certain coupled coincidence results by utilizing the property of a mixed g-monotone in
a partially ordered complete metric space. In recent years, numerous researchers have
attained coupled fixed point and coupled coincidence point results for different classes
of mappings on abstract metric spaces such as complete metric spaces, partially ordered

metric spaces, cone metric spaces and G-metric spaces (see [18, 34, 41, 93, 127, 135]).
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In 2010, Abbas [3] presented a new perception of w and w*-compatible mappings. Abbas
[4] used this idea to show an uniqueness theorem of coupled fixed point for contractive

maps in G-metric spaces.
Ciric and Lakshmikantham gave the succeeding definition in [42].

Definition 5.1. [42] Suppose (U, <) be a partially ordered set and a mapping F: U X
U — U is said to have the property of mixed g-monotone if F(s,v) is monotone g-

nondecreasing in s and is monotone g-nonincreasing in v, that is, for any s,v € U,

81,82 € U,gs1 < gso = F(s1,v)

IN

F(s2,v),
F(s,vy).

vy, v € U, gu; < gug = F(s,v3)

IN

Definition 5.2. [42] An element (s,v) € U x U is said to be coupled coincidence point
of the mappings F: U x U — U and g: U — U if F(s,v) = gs, F(v,s) = gv.

Definition 5.3. [42] Suppose U be a non-empty set. We say that the mappings g: U —
Uand F: U x U — U are commutative if gF(s,v) = F(gs, gv), for all s,v € U.
Khan [89] presented the conception of an altering distance function as follows.
Definition 5.4. [89]. A function ¢: [0,00) — [0,00) is termed as an altering distance
function if it satisfy following axioms:

1. ¢ is nondecreasing and continuous.

2. ¢(z) =0iff z =0.

Abbas [3] acquaint with perception of w and w*-compatible mappings as follows.

Definition 5.5. [3] Mappings g: U — U and F: U x U — U are called

(1) w-compatible if F(gs,gv) = g(F(s,v)) whenever gs = F(s,v) and gv = F(v, s);

(2) w*-compatible if F(gs,gs) = g(F(s,s)) whenever gs = F(s, s).

5.2 Coupled Coincidence Point Theorems for Mappings
Having the Mixed g-Monotone Property

Theorem 5.6. Suppose (U,<,d) be an ordered complete metric space. Consider that
g:U = U and F: U x U — U be continuous mappings and F acquires the property of a
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mixzed g-monotone and g commutes with F', satisfy
P(d(F(r, s), F(t,v))) < p(M(r,s,t,0)) = ¢(M(r,s,t,v)) + 6(N(r,s,t,0))  (5.1)
where,

M(r, s, t,v) = max{d(gr, gt),d(gs, gv),d(F(r,s), gr),d(F(t,v), gt),
d(F(s,r),gs),d(F(v,t),gv)},

and

N(r, s, t,v) = min{d(F(r,s),gt),d(F(t,v), gr),d(F(r,s),gr),d(F(t,v), gt)},

for each r.t,v,s € U with gr > gt and gv > gs, here ¢ and ¢ are altering distance
functions and 0: [0,00) — [0,00) is a continuous function, 0(z) = 0 iff z = 0. Assume
that F(U x U) C g(U) and furthermore for each ro,so € U with F(ro,so) > gro and

F(s0,70) < gso, then g and F possesses a coupled coincidence point in U.

Proof. Suppose that rg, so € U with F(rg, so) > gro, F(so,r0) < gso. As F(U x U) C
g(U), we can take r1,s1 € U then gry = F(ro, so) and gs1 = F(so,70)-

Again, we can take ro, sy € U then gro = F(r1,s1) and gso = F(s1,71). As F acquires
the property of mixed g-monotone, then we have grg < gr; < gre and gsg < gs; < gsp.

Persistent this procedure, we can create two sequences {r,} and {s,} in U such that

grn = F(rp—1,8n-1) < grns1 = F(rp, sn),

gSn+1 = F(S",T’") < gsy = F(Snfla'rnfl)

If, for some integer n, we have (grn+1,9Snt+1) = (97Tn,98n), thus F(ry,s,) = gra
and F'(sp,rn) = gSn, (Tn,Sn) is a coincidence point of g and F. So, now we take

(97n+1,95n+1) 7 (97n, 95n) ¥ 0 € N, we accept that one of grni1 # grn or gsni1 7 gsn.

For each n € N, employing the inequality (5.1), we have

e(d(grns1,9rn)) = @(d(F (rn, ), F(rn-1, $n-1)))

(M (rn, sn,Tn-1,8n-1)) = ¢(M (7, Sn, Tn—1, Sn—1))

+ O(N(rn, Sny -1, Sn—1)),

o(d(F(sn;7mn), F(Sn-1,Tn-1)))

< @(M(sn,7n: Sp—1,7n-1)) = A(M (s, Tn, Sn—1,Tn-1))
+ O(N(8p,Tn, Sn—1,"n-1)),

IN

‘P(d(gsn—l-l, gsn))

where,
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M("'m SnyTn—1, Sn—l) = J\[(Sm"'m Sn—larn—l)
= max{d(grnagrn—l)ad(gsnagsn—l)ad(F(rn—l»Sn—l)» g7’n—1),
d(F(Tn»'qn)7grn)ad(F('97zarn)agsn)»d(F(Sn—larn—l)agsn—l)}

= maz{d(grn, grn-1), d(gSn, 95n-1), A(gn+1,97n), A(gSnt1,g5n)}-
and
N(rm SnyTn—1, 371,—1) = min{d(grn+la 97‘”—1), d(g""m grn), d(gr'n,—l-l» 97“71), d(grm grn—l)} =0.

Also,

N(5n7 Tny Sn—1, 7An—l) - min{d(gsn-l-l: gsn—l); d(gSTw gSn)7 d(gsn-i-l? gsn)7 d(gsTu gsn—l)} =0.

Now, let us consider three cases.
Case 1: M(ry, SnyTn—1, Sn—1) = max{d(grn, grn—1), d(gsn, gSn—1)}
We attain

o(d(grn+1,9m)) < w(maz{d(grn, grn-1), d(gsn, gsn—-1)})

- ¢(max{d(grn7grn—1)7d(gsnvgsn—1)})7 (5'2)
W(d(95n+1a Sn)) < (P(max{d(gsmgsn—l)»d(grmng—l)})
— ¢(maz{d(gsn, gsn—1),d(grn, grn—-1)})- (5.3)

Case 2: M(7n, Sn,Tn—1,Sn—1) = d(grn+1,97n)-
We claim that M (ry, S, Tn—1, Sn—1) = d(gTn+1, 9mn) = 0.
In fact if d(grpt1,97rn) # 0, then

e(d(grns1,9mn)) < w(d(grut1, 9rn)) — ¢(d(grns1, grn)) < @(d(grnr1,97m)) as ¢ > 0.

which is a contradiction. Since M (7, Sp, *n—1, Sn—1) = 0. Then it is obvious that (5.2)
and (5.3) hold.

Case 3: M(7n, Sn,Tn—1,5n—1)) = d(gSn+1, 9Sn)-
Similar to the proof of Case 2, one can also show that (5.2) and (5.3) hold.
Now, by (5.2) and (5.3), Vn € N, we obtain

(p(d(grn+1,grn)) Sap(mm’{d(grn, g?"n_1), d(gﬁn, gSn_l)})
- d)(ma:v{d(grn, grn—l)v d(gSn, gsn—l)})'

As ¢ > 0.
o(d(grn+1,9m)) < p(max{d(grn, grn—1). d(gsn, g5n-1)}),
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and utilizing the way that ¢ is non-decreasing, we obtain

d(grny1,9mn) < max{d(grn,grn_l),d(gsn,gsn_l)}. (5.4)
Similarly, we get

@(d(gsnr1,950)) < p(max{d(gs,, gsn—1),d(grn,grn—1)})
— ¢(maz{d(gsn, gsn—1), d(g7n, 9m-1)})
< p(maz{d(gsn, gsn-1), d(grn; grn-1)});

and consequently
d(gsn-i-lv gsn) < maw{d(gsmgsn—1)7 d(grn»grn—l)}v (5'5)

by (5.4) and (5.5), we have

max{d(grn+1,9rn), d(gSnt1, 9sn)} < max{d(grn, grn-1),d(gsn, gSn—1)},

and thus, the sequence max{d(grn+1,97n), d(gSn+t1,9sn)} is non-negative decreasing.

Thus we can find a > 0, then

lim max{d(grrﬁlagrn)ad(95n+lagsn)} = a. (5'6)
n—o0

It is effortlessly observed that if ¢: [0,00) — [0,00) is increasing, p(mazx(p,q)) =
max(e(p), ¢(q)) for p,q € [0,00). Consider this and (5.2) and (5.3), we have

maz{p(d(grn+1,9mn)), P(d(gSn+1, 95n))} = p(max{d(grn+1, 97n), d(98n+1,95n)})

< @(maz{d(grn, grn-1), d(gsn. gsn-1)}) — ¢(maa{d(grn, grn-1),d(gsn, gsn-1)}).
(5.7)

Letting n — oo in (5.7) and consider (5.6), we have ¢(a) < ¢(a) — ¢(a) < ¢(a), implies

¢(a) =0. As ¢ is an altering distance function, a = 0 thus

lim max{d(grni1,97rn),d(g5n+1,95:)} = 0. (5.8)

n—oQ
Thus lim d(grpt1,9rs) = lim d(gspt1,9sn) = 0.
n—oo n—oo

Next, we claim that {gr,}, {gs,} are Cauchy sequences.

We will prove that for each € > 0, we can find A € N if n,m > A,
maz{d(grm ), 9n0)), AGSmr)s 95n(n))} < &
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Presuppose the above statement is not true.

At that point, there exists an ¢ > 0 and sequences {gr,(\)}, {grn)} With n(A) >

m(A) > A such that

max{d(grm()\), ng()\))v d(gsm()\)v gsn()\))} > €.

(5.9)

Furthermore, we can take n(\) corresponding to m(A) in a manner, it is least integer

with n(A) > m(A) and satistying (5.9). Then

max{d(grm()\)a gr,,,(,\),l), d(gsm()\)v gs”(,\),l)} <e.

From triangle inequality

d(grn(xn), 9rmoy) < d(GTn(n), 90 —1) T AR -1, 9Tm(N))-
<d

d(gsn()\) » ISm(N) )

From (5.11) and (5.12), we have

maz{d(gr,(n), 9Tm(x))s AISn(r)s ISmn)) }
< maz{d(grn(n), 9Tn(n)=1)> A(gSn(r)s ISn(0)—-1)}
+ max{d(grnn)—1, 9m))» A(98n(r)=1> ISm(x)) }-

From (5.9), (5.10) and (5.13), we get

e <max{d(grnn), 9rm))s AgSn(r): 95mn)}
< maz{d(gra(x), 9n(x) 1) AISn(r)s ISn(n)—1)} + &

Letting A — oo in (5.14) and taking into account (5.8) we have

)\h_{lgo mam{d(grn()\)v grm()\))a d(gsn()\)a 98771(/\))} =é&.
Again, from the triangle inequality, we have

d(grn(n -1 9mN) 1) < AGrn)—19Tm)) + AGTmn), ITm)-1);
d(g5n(x)—1, 95m(n)—1) < A(gSn(\)—=1: 95mn) + A(GSm(n)» Sm(n)—1)-

From (5.16) and (5.17), we have
max{d(grn()\)—ly grm()\)—l)v d(gsn()\)—ly gsm()\)—l)}

< maz{d(gran)—1, 97mn))s AISn(n) -1, ISmn)
+ maz{d(grmx); 9rm(x)—1)> AGSm(r)s I5m(n)—1)}
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From (5.10), we have

maz{d(grp(—1, 9m)—1)s AISn(x)=1, ISm(n)—1)}
< max{d(grm()\)v g”'m()\)—l)v d(gsm()\)v gsm(/\)—l)} +e (519)

Using the triangle inequality, we have

d(grniny, 9rm)) < d(GTn(n)> 9Tnn)—1) T AT =15 9Tmn)—1) T AGTm) =15 9Tm(n))s
(5.20)

and

d(gsn(2)s 95m(n) < d(g8n(r) ISn(n)—1) T A(G8n(0)=15 ISm(n)—1) + A(GSm)—=1)s ISm(n))-
(5.21)
From (5.9), (5.20) and (5.21), we get

e <max{d(grno), 97m)), AGSnr)s 95m(n))}
< max{d(gry(n), 90 —1)s ASn(r)> ISn(n)-1)}
+ maz{d(grn(n)—1: 9m(x)—1)> AISn(3) =15 95m(n)—1)}
+ max{d(grm)—-1: 97m\) ) AISm(n)—=1)s ISm(r)) }- (5.22)

From (5.19) and (5.22), we have

e — maz{d(gr,xy, 9rn(n-1) A(gSn(r): ISn(n)-1)}
—maz{d(grm)—1,9m) ) AISm(n) 1), ISm(n) }
< maz{d(gra(x)—1, 9m(x)—1)> AISn(3) =15 9Sm(n)—1) }
< maz{d(grmn)—1, 9m(x))> AISm) 15 95mn) } + &€ (5.23)

Letting A — oo in (5.23) and using (5.8), we get
/\11—>Holc max{d(grn()\)—lygrm()\)—l)v d(gsn()\)—hgsm()\)—l)} =& (524)
Now, applying the inequality (5.1), we have

0(d(grniny, 9rmn)) = LAF ()15 800 —1)s AF () -1, Sm(n)—1)))

IN

PM (Tr(n)=15 Sn(\) =15 "m(A)—1> Sm(A)—1))
— O(M(rp(r\)=15 Sn(A)—1> Tm(A)—1) Sm(x)—1))
o(

+ N(rn A)—15 Sn(N) =15 Tm(A\) -1, Sm()\)—l))? (5'25)

where,
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M (T2 =15 Sn(\) =15 Tm(A) =15 Sm(A)—1)
= max{d(grp()—1, 9m\) 1) A9Tn(x), 9N —=1)s AGSn(r)=1> ISm(n)—1)5
A(Grmn)s 9TmN)—1) AISn(0)s I5n(3)—1)> AISmA)s ISm(n)—1)}

and

N(Tn(0)=15 Sn(2)=1> Tm(3) =1 Sm(\) 1) = MAn{d(grnr)s 97m)—=1), AGTmx) I —1);
d(grn()\)a grn(/\)—l)v d(grm()\)y grm(/\)—l)}'
Similarly,
©(d(g5n(0)> 95mn)) = L(AF(95n(0) =15 9Tr(x)—1)s AF (9Sm(n)—1, ITm(3)—1)))
< @(M(Sp(a)=15Tn(A)=15 Sm(A)—1> Tm(x)—1))

= O(M (Sp(\) =15 Tr(A) =15 Sm(A)—1> Tm(A)—1))
+ O(N (Sn(\) =15 Tn(A) =15 Sm(A)—1 Tm(3)—1)), (5.26)

where,

M (Sp(0) =15 Tn(\) =15 Sm(A)—1> Tm(A)—1)
= maz{d(gru(n) -1, 9Tm(x)—1)> AGSnr)s IS0 —-1), AGSn(x)=1, ISm(3)—1)5
d(g5m(n), I5m(n)—1)> AGTr(0)> ITn(A)—=1)5 AITm(N) s ITmn) 1)}

and

N(8n(0) =1 Tn(2)=1 Sm(V) =1 Tm(\)—=1) = Min{d(gsn(x), I5mn)—1)s AGSm(n)> I5n(N)—1)>

d(g8n(2)s 95n(n)—1)s A(G5m(x), ISm(n)—1)}-

From (5.25) and (5.26), we have

max{(d(grn(x), 9rm) ) AG5n(n)s I5mn))) } < ©(2n) — ¢(2n) + 0(un),
where,
Zn = mam{d(grn(,\)_l, grm(k)—l)» d(grn()\)v ng()\)—l)v d(gsn()\)—h gsm()\)—l)v
A(Grmx), Im)—1), AGSn(x)> I5n(2)—1)s AISm): ISm(n)—1) 1

and

ty, = mAn{d(grp(x): 97 m)—1), AISn(n): ISmn)—1)s AITm(n)s In(x)—1)s AISmA)s IS0 -1),
d(grn(x), 90 —=1)> A(G5n(x)> I5n () =1)s AITmA) s ITm(N) 1) AISm(r) ISm(n)—1)}
< mzn{d(grno\) grn()\)—l)v d(gsn()\)v gsn()\)—l)v d(grm(,\), grm()\)—l)v d(gsm()\)> gsm(/\)—l)}'
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Finally letting A — oo in last two inequalities and using (5.8), (5.15) and (5.24) and the

continuity of ¢, ¢ and 0, we acquire
p(e) < p(max(e,0,0)) — p(maz(e,0,0)) + 6(min(0,0)) < ¢(e)

and as a result, ¢(¢) = 0. As ¢ is an altering distance function, ¢ = 0 and a contradiction.
This verifies our claim.

As U is complete, 3 r,s € U then

r= lim gr, = lim F(ry,s,) =F ( lim r,, lim sn> ,
n—o00 n—o0 n—oo n—oo

(5.27)
s= lim gs, = lim F(sy,ry) =F ( lim s,, lim rn> )
n—oo n—o0 n—oo n—oo
As g is continuous, then from (5.27), we obtain
Jim_g(grn) = gr, lim g(gsn) = gs. (5.28)
F and g have the property of commutativity yields that
9(grni1) = g(F(rn, sn)) = F(grn, gsn) (5.29)

9(gsn+1) = g(F('Sna”'n)) = F(95n,9n)-

As, F is continuous, then {g(gr,+1)} is convergent to F(r,s) and {g(gsp+1)} convergent
to F(s,r). By (5.28) and uniqueness of the limit, we get F(r,s) = gr and F(s,r) = gs,

that is, g and F' possesses a coupled coincidence point.

This concludes the theorem. In the subsequent theorem we neglect the hypothesis that

F' is continuous.

Theorem 5.7. Presuppose all the presumptions of Theorem 5.6 are fulfilled . Moreover,

assume that g is monotone under the partial order < and U has the subsequent properties
(a) if an increasing sequence {ry} in U converges to some point v € U, then ry, < r,

for each n,

(b) if a decreasing sequence {s,} in U converges to some point s € U, then sy,

Y
vl

for each n.
Then the conclusion of Theorem 5.6 also hold.

Proof. Following the proof of Theorem 5.6. Then lim gr, =r and lim gs, = s.
n—oo n—0oo
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To prove F(r,s) = gr, F(s,r) = gs.

{gr,} is increasing and gr, — r and {gs,} is decreasing and gs, — s, from the as-
sumptions (a) and (b) that gr, <r and gs, > s, V n € N, In addition, without loss of
generality, one can presume that g is nondecreasing about the partial order <. Then

g*rn < gr and g%s, > gs, V n € N, where g?u = g(gu), for all u € U.

Utilizing the inequality (5.1) we get

(P(d(F(rv S)’ 927'71-‘4-1) = @(d(F(Tv 8)7F(grn795n)))
S (P(M(T7 5,9Tn, gsn)) - ¢(M(T, S, 9Tn, gSn))) (530)
+ O(N(r, 8,97, gSn))

and
@(d(F(s,7).9%sn41) = @(d(F(s,7), F(gsn, grn)))
< o(M(s,7,95n,9rn)) — ¢(M(8, 7,980, g7n)) (5.31)
+O(N(s,7,95n,97n))
where,

M((r, 8,970, 95n) = M (8,7, 95n, g7n)
= maz{d(gr, grn). d(gs, gsn), d(F(r,s), gr),
d(F(grn, 95n), 997n), d(F(s,7),95), d(F(gsn, g7n), 995n) }

and

N(7, 8, grn, gsn) = min{d(F(r, s), g°ry), d(g*rni1, gr), d(F(r, ), gr), d(g*rni1, 6°rn)}
(5.32)

and

N (8,7, 95n, grn) = min{d(F(s, 1), 9%sn), d(g°sn+1, 95), d(F(s,7), 95),d(9*s$n+1, 9% 5n) }-
Now, we claim that
mar{d(F(r,s),gr),d(F(s,7),gs)} = 0. (5.33)

If this not true, then max{d(F(r,s),gr),d(F(s,7),g9s)} > 0. Since lim gr, = r,
n

—r00

lim gs, = s, there exists N € N such that for all n > N,

n—o0
M(T» S, 9Tn, gsn) = M(57 T 9Sn, grn) = max{d(F(n s),gr), d(F(37 r),gs)}.
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Combining this with (5.30), (5.31) and (5.32), we get for all n > N,

p(maz{d(F(r,s), ¢*rni1),d(F(s,7), °sn41)})
= max{@(d(F(r,5), g*rny1), o(d(F(s,7), g% sn11))}
< p(max{d(F(r,s),gr),d(F(s,1),gs)} — ¢(max{d(F(r,s),gr),d(F(s,r),gs)}
+ O(min{d(F(r,s), g*r), d(g*rns1, gr), d(EF(r, 5), g7), d(g*Tna1, §%n),
d(F(s,7),9%sn) d(g°sn41,95), d(F(s,7),95), d(g%sn+1,9%5n)})

Letting n — oo, it follows that

p(maz{d(F(r,s),gr),d(F(s,r),gs)})
< @(maz{d(F(r,s),gr),d(F(s,r),gs)})
— ¢(max{d(F(r,s),gr),d(F(s,7),gs)}
+ 0(min{d(F (r,s), gr),d(gr, gr),d(F(r,s), gr),d(gr, gr)
d(F(s,7), 9s),d(gs,gs), d(F(s,7),gs),d(gs, 9s)})

As the property of 6, we get

p(maz{d(F(r,5), gr), d(F(s,1), 9s)})
< p(max{d(F(r,s),gr), d(F(s,7), 95)})
— ¢(maz{d(F(r,s), gr), d(F(s.7), g5)}
< p(maz{d(F(r,s),gr), d(F(s,7), 95)})

and consequently, ¢p(maz{d(F(r,s),gr),d(F(s,r),gs)} = 0. As ¢ is an altering distance
function, a contradiction. So, (5.33) holds Thus, F(r,s) = gr and F(s,r) = gs.

Theorem 5.8. Under the hypothesis of Theorem 5.7, suppose that gsg < gro. Then, it
follows gr = F(r,s) = F(s,r) = gs. Furthermore, if g and F' are w-compatible, then g

and F possesses a coupled coincidence point of the form (u, u).

Proof. If gsyp < gro, then gs < gs, < gso < gro < gr, < gr for all n € N. Thus, if
gr # gs (and then d(gr, gs) # 0 and d(gs, gr) # 0), hence by inequality (5.1), we acquire

(p(d(gf"?g'r)) - gD(d(F(s,T‘), F(T‘, '5)))
< p(M(s,r,r,8)) — d(M(s,7,7,8)) +60(N(s,r,1,5)),

where,

N(s,ryr,8) = min{d(F(s,r),gs),d(F(r,s),gr),
d(F(s,r),gr),d(F(r,s),gs)} = 0.
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and
M(s,r,r,s) = mazx{d(gs, gr),d(gr,gs),d(F(s,r),gs),d(F(r,s),gr),
d(F(s,r),gr),d(F(r,s),gs)}
= maz{d(gs, gr), d(gr, gs)},
Hence

p(d(gs, gr)) < p(max{d(gs, gr),d(gr,gs)}) — ¢(maz{d(gs, gr),d(gr,gs)}).  (5.34)

Since gs < gr, hence using the same idea we have

p(d(gr, gs)) < p(mazx{d(gs,gr),d(gr,gs)}) — B(maz{d(gs, gr),d(gr, gs)}).  (5.35)
From (5.34) and (5.35), we have

p(maz{d(gs, gr),d(gr,gs)}) = max{p(d(gs, gr)), p(d(gr,gs))}
< @(max{d(gs, gr),d(gr, gs)})
— ¢(max{d(gs, gr),d(gr,gs)})

< p(max{d(gs, gr),d(gr,gs)}).

and consequently, ¢(max{d(gs,gr),d(gr,gs)}) = 0. Since ¢ is an altering distance
function, we obtain d(gs, gr) = 0,d(gr, gs) = 0, a contradiction. Hence gr = gs, that is,

gr = F(r,s) = F(s,r) = gs.

Now, let u = gr = gs. Since g and F are w-compatible, thus gu = g(gr) = g(F(r,s)) =
F(gr,gs) = F(u,u). Thus, g and F possesses a coupled coincidence point of the form

(u, u).

To guarantee the uniqueness of the common coupled fixed point. If (U, <) is a partially
ordered set, we endow the product U x U with we need the subsequent idea for the

partial order relation:
for each (7, $), (r,s) e U x U (r,5) < (,§) < r <rfands> 5. (5.36)

Theorem 5.9. Including the condition (5.36) to the assumption of Theorem 5.6 (respec-
tively Theorem 5.7), assume that, for each (r,s), (7, §) € UxU, there exists (z,t) € UxU
that is comparable to (r,s) and (¥,$). Then g and F acquire a unique common coupled

fized point.

Proof: From Theorem 5.6, the set of coupled coincidence points of g and F' is non-

empty. We will demonstrate that if (r, s) and (7, §) are coupled coincidence points,
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g(r) = F(r;s), g(s) = F(s,r) and g(F) = F(#, ), g(8) = F(s,7),

gr = g7 and gs = gé. (5.37)

Choose an element (z,t) € U x U comparable with (r,s) and (7, §).

Let 29 = z,tg = t and choose z1,t; € U so that gz; = F(z0,to) and gt; = F(to, 20).
Then, in the same way as in the proof of Theorem 5.6, we can define sequences {gz,}

and {gt,} as follows
92n+1 = F(zn, tn) and gty 1 = F(tn, 2n).

Since (gr, gs) = (F(r,s), F(s,r)) and (F(z,t), F(t, z)) = (921, gt1) are comparable, then

gr < gz1 and gs > gty. It is simple to prove by using mathematical induction,
gr < gzn, g8 = gtn, V0 € N,
Now, from the contractive condition (5.1)

d(F(r,s), F(zn,tn)))
<p M(T, Sy Zn,y tn)) - QS(]\'I(T; S, Zn,y tn))
+ O(N(r, s, 2n, tn)), (5.38)

e(d(gr,gzns1)) = ¢

A~ o~

where,

M(r, s, 2n, tn) = maz{d(gr, gzn), d(gs, gtn), d(F (r, s), gr),
d(F(va t’n)’ gzn)? d(F(G, 7”'), gS), d(F(tn’ Zn)» gfn)}
= max{d(gr, gzn), d(gs, gtn)}-

and

N(r, 8, zn,tn) = min{d(F(r, S)vgzn)»d(F(zm tn), gr), d(F(r,s),gr), d(F(thn)vgzn)}
=0.

Therefore

o(d(gr, gzn+1)) < p(maz{d(gr, gzn), d(gs, gtn)}) — ¢(maz{d(gr, g21), d(gs, gtn)})
< p(max{d(gr, gzn). d(gs, gtn)}), (5.39)

and analogously
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w(d(gs, gtnt1)) < w(max{d(gs, gtn), d(gr, gzn}) — d(maz{d(gs, gtn),d(gr, g2n})
< @(maz{d(gs, gtn),d(gr,gzn)}). (5.40)

From (5.39) and (5.40) and utilized the fact that ¢ is non-decreasing, we have

p(maz{d(gr, 9zni1),d(gs, gtn1)}) = maz{p(d(gr, gzn+1), p(d(gs, gtni1))}
< @(maz{d(gr, gzn),d(gs, gtn)})
— ¢(max{d(gr, gzn),d(gs, gtn)}
< p(maz{d(gr, gzn),d(gs, gtn)})-

(5.41)

This implies that

maz{d(gr,gznr1),d(gs, gtny1)} < max{d(gr,gz,),d(gs, gtn)},

and consequently the sequence maz{d(gr, gzn+1), d(gs, gtnt1)} is decreasing and non-

negative and so,
lim mam{d(gr, g2n+1), d(gs7gtn+1)} = j> (542)
n—oo
for certain j > 0. Using (5.42) and letting n — oo in (5.41), we get
e(i) < ¢() — o) < #(),

and as a result ¢(j) =0 and thus j = 0.

Lastly, as
nh—>Holo mcw:{d(gr, gzn+1)v d(gs, gtn+1)} =0. (543)
This implies
lim d(gr, gzn+1) = lim d(gs, gtp+1) = 0. (5.44)
n—oo n—oo
Similarly
lim d(g7<agzn+1) = lim d(gé, gtn+1) =0. (545)
n—o00 n—oo

From (5.44) and (5.45), we have gr = g7, gs = g$.

Since F(r,s) = gr and F(s,r) = gs, by commutativity of g and F, we get

glgr) = g(F(r,s)) = F(gr,gs) and g(gs) = g(F(s,r)) = F(gs, gr). (5.46)
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Denote gr = m and gs = n. Then, from(5.46), it follows that
gm = F(m,n) and gn = F(n,m). (5.47)

Thus (m, n) is an other coupled coincidence point of g and F. Then, m = gr = gm and

n =gs = gn. So, (m,n) is a coupled common fixed point of g and F.

To show the uniqueness, presume that there exists another coupled common fixed point
of g and F is (h,j). Then h = gh = F(h,j) and j = gj = F(j,h). Since the pair
(h,7) is a coupled coincidence point of ¢ and F, we have gh = gm and gj = gn. Thus,

h =gh=gm =m and j = gj = gn = n. Therefore, the coupled fixed point is unique.

Theorem 5.10. Under the hypothesis of Theorem 5.7, presuppose in addition that for
each (r,s) and (7,8) in U, there is (z,t) € U x U, (F(z,t),F(t,z2)) is comparable to
(F(r,s),F(s,m)) and (F(7,8),F($,7)). If F and g are w-compatible, then g and F

acquire a unique common coupled fixed point of the form (t,t).

Proof: Using Theorem 5.7, the set of coupled fixed points of g and F' is non empty.
Presume (r, s) and (7, §) be coupled coincidence points of F' and g. Succeeding the proof

of Theorem 5.9, we can show that
g = gr and g§ = gs. (5.48)

Note that if (r, s) is a coupled coincidence point of g and F, then (s, ) is also a coupled
coincidence point of g and F. Thus, by (5.48) we have gr = gs. Put t = gr = gs.
As, F(r,s) = gr, F(s,r) = gs and g and F are w-compatible, we obtain gt = g(gr) =
g(F(r,s)) = F(gr,gs) = F(¢,t). Therefore, (t,t) is a common coupled fixed point of g
and F. Thus, gt = gr = gs = t and hence we have t = gt = F(t,t). Therefore, (t,t) is a

common coupled fixed point of g and F.

Example 5.1. Let U = {0,1,2} and define d: U x U — R* as d(r,s) = maz{r,s}.
Let F: U xU = U asr = F(r,s) for all s,r € U and g: U — U with ¢(0) = 1,¢9(1) =
2,9(2) =2 forallr € U.

Let @, ¢: [0,00) — [0,00) and 0: [0, 00) — [0, 00) be defined by p(2) = z and ¢(z) = %(z),
0(z) = z. Then, p, $,0 have the properties mentioned in Theorem 5.6.

First, we verify that g commutes with F, that is, F(gr,gs) = g(F(r,s))
Case 1: Ifr =0,8 =0, then gF(0,0) = ¢(0) =1 and F(g(0),g(0)) = 1.
Case 2: If r =0,s =1, then gF(0,1) = ¢(0) =1 and F(g(0),g(1)) = 1.
Case 3: If r =1, =0, then gF(1,0) = g(1) = 2 and F(g(1), g(0)) = 2.
Case 4: If r =1,s =1, then gF(1,1) = g(1) =2 and F(g(1),9(1)) = 2.
Case 5: If r = 0,5 =2, then gF(0,2) = ¢(0) = 1 and F(g(0),g(2)) = 1.
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Case 6: If r =2,5 =0, then gF(2,0) = ¢g(2) =2 and F(g(2), g(0))
Case 7: If r =2,s =1, then, gF(2,1) = ¢g(2) =2 and F(9(2),9(1))
Case 8: If r = 1,5 =2, then, gF(1,2) = g(1) = 2 and F(g(1), g(2))
Case 9: If r = 2,5 =2, then, gF(2,2) = g(2) =2 and F(g(2),g9(2))

In all above cases g commutes with F.

9
9

2
2.
2

Now, we verify that the function F and g satisfies the inequality (5.1) and let gr > gu

and gy < gv. Then, we have the succeeding cases.

Case 1: If s=r=t=v =0, then d(F(0,0), F(0,0)) =d(0,0) =0,

and

M(r,s,t,v) = M(0,0,0,0)

= max{d(g(0), 9(0)), d(g(0), 9(0)), d(F(0,0), 9(0)), d(F(0,0),4(0)),

d(F(0,0),9(0)),d(F(0,0),9(0))}
)

= maz{d(1,1),d(1,1),d(0,1),d(0,1),d(0,1),d(0,1)} = maz{1,1,1,1,1,1} =1,

also

N(r,s,t,v) = N(0,0,0,0) = min{d(F(0,0), g(0)),d(F(0,0), g(0)),

d(F(0,0),9(0)),d(F(0,0),9(0))}
= min{d(0,1),d(0,1),d(0,1),d(0,1)} = min{1,1,1,1} = 1.

As, p(0) =0 < (1) — (1) +6(1) = %, the inequality (5.1) is satisfied in this case.
Case 2: If r=1,t=1,s =0,v =0, then d(F(1,0), F(1,0)) =d(1,1) =1,

and
M(r,s,t,v) = M(1,0,1,0)
= max{d(g(1),9(1)), d(9(0), 9(0)),d(F(1,0),9(1)),d(F(1,0),g(1)),

d(F(0,1),9(0)). d(F(0,1),9(0))}
=maz{2,1,2,2,1,1} =

also

N(r,s,t,v) = N(1,0,1,0)

= min{d(F(1,0),9(1)),d(F(1,0),9(1)),d(F(1,0), g(1)),d(F(1,0),9(1))}
= min{d(1,2),d(1,2),d(1,2),d(1,2)} = min{2,2,2,2} = 2.

As, (1) =1 < p(2) — ¢(2) + 0(2) = 3, the inequality (5.1) is satisfied in this case.
Case 3: If r = 1,t = 1,v = 1,8 = 0, then as d(F(1,0),F(1,1)) =1, M(1,0,1,1) = 2
and N(1,0,1,1) = 2, the inequality (5.1) is satisfied in this case.

Case 4: If r = 1,s = 1,t = 1,v = 1, then as d(F(1,0),F(1,1)) =1, M(1,0,1,1) = 2
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and N(1,0,1,1) = 2, the inequality (5.1) is satisfied in this case.

Case 5: Ifr = s =t =wv =2, then as d(F(1,0),F(1,1)) =1, M(1,0,1,1) = 2 and
N(1,0,1,1) = 2, the inequality (5.1) is satisfied in this case.

Case 6: If r = 2,5 =0,t = 2,v =0, then as d(F(1,0),F(1,1)) =1, M(1,0,1,1) = 2
and N(1,0,1,1) = 2, the inequality (5.1) is satisfied in this case.

Case 7: If r = 2,s = 1,t = 2,v = 1, then as d(F(1,0),F(1,1)) =1, M(1,0,1,1) =2
and N(1,0,1,1) = 2, the inequality (5.1) is satisfied in this case.

Case 8: If r =t =wv = 2,5 =0, then as d(F(1,0),F(1,1)) =1, M(1,0,1,1) = 2 and
N(1,0,1,1) = 2, the inequality (5.1) is satisfied in this case.

Case 9: If r =2,s =t =v =1, then as d(F(1,0),F(1,1)) =1, M(1,0,1,1) = 2 and
N(1,0,1,1) = 2, the inequality (5.1) is satisfied in this case.

So, ¢, ¢ and 0 satisfy all the hypothesis of Theorem 6.19. Moreover,(2,2) is the coupled

cotncidence point of g and F'.

Example 5.2. Suppose U = R with usual metric and order. Define F: U x U — U as
F(r,s) = %(7"2 + 82 +1s) for allr,s € U. Also g: U — U with g(r) = for each r € U.

Presume o, ¢: [0,00) — [0,00) and 6: [0,00) — [0,00) be defined by ¢(2) = 2 and

o(z) = %1(2), 0(z) = z. Then, ¢, d,0 have the assumptions mentioned in Theorem 5.0.
Now, let gt < gr and gv > gs. So, we obtain

@(d(F(r,s), F(t,v))) = d(F(r, s), F(t,v))

1 1
= |g(r2 + 5%+ rs) — S(t2 + 0% + tw)]

IA

L2~ 1162 ) + - )

1
sl =)+ (s —v)l +[r =t + s —v|

%[2d(gr, gt) +2d(gs, gv)]

IN

w

< ZM(Tv s, t, U)
1
= M(T757t7v) - ZM('/’,S,I(:,U)
< @(M(r,s,t,v) — d¢(M(r,s,t,v)) +O(N(r,s,t,v))

where,

M(r, s,t,v) = max{d(gr, gt),d(gs, gv),d(F(r,s), gr),
d(F(t,v), gt),d(F(r,s), gt), d(F(t,v),gr)}

and

N(r,s,t,v) = min{d(F(r,s), gr), d(F(t,v), gt),d(F(r,s), gt), d(F(t,v),gr)}
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Thus, all of the assumptions of Theorem 5.6 are fulfilled. Furthermore, g and F' possesses

the unique coupled coincidence point (0,0).

Theorem 5.11. Suppose (U,d) be a complete metric space. Suppose g: U — U and
F: U xU — U be continuous mappings also F' has the property of mized g-monotone

and g commutes with F, satisfy
Q(d(F(r,s), F(t,v))) < p(M(r,s,t,v)) = ¢((r, 5,t,0)) (5.49)
where,
M(r, s,t,v) = maz{d(gr, gt), d(gs, gv),d(F(r, s), gr), d(F(t,v), gt), d(F(v,t), gv)}

for each r.v,t,s € U with gr > gt and gv > gs, here ¢ and ¢ are altering distance
functions. Assume that F(U xU) C g(U) and furthermore for each ro, sqg € U such that
F(ro, s0) > gro and F(sg,r0) < gso. Presuppose that U has the subsequent properties

(a) if an increasing sequence {ry} in U converges to some point r € U, then r, <r,

for each n,

(b) if a decreasing sequence {sn} in U converges to some point s € U, then s,

v
»

for each n.

Then g and F possesses a coupled coincidence point in U.

Corollary 5.12. Suppose (U,d) be a complete metric space. Presume F: U x U — U
be a function satisfying (5.49) (with g = Iy) ¥V r.t,v,s €U witht <r and v > s. Let F

acquire property of mized monotone . Presuppose
1. F is continuous or

2. U has the subsequent:

(a) if an increasing sequence {r,} — r, then r, <r, for each n,

(b) if a decreasing sequence {sn} — s, then s, > s, for each n.

furthermore for each ro,sqg € U with ro < F(ro,s0) and sqg > F(so,70), then F has a

coupled fixed point.

Corollary 5.13. Suppose (U,<,d) be an ordered complete metric space. Suppose F':
U x U — U is a continuous mapping on U possesses the property of mized monotone,

that there is | € [0, 1) satisfying
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d(F(r,s), F(t,v))) < lmax{d(gr, gt),d(gs, gv),d(F(r,s),gr),
d(F(t,v),gt),d(F(s,r),gs),d(F(v,t),gv)}

VorsvtelUwitht <r andv > s. Assume either F is continuous or U has the

subsequent properties:

(a) if an increasing sequence {ry} in U converges to some point v € U, then r, <,

for each n,

(b) if a decreasing sequence {sn} in U converges to some point s € U, then s, > s,

for each n.

If there exists ro,s9 € U such that ro < F(rg, s0) and sg > F(so,r0), thus F possesses a

coupled fixed point.

Proof. Using Theorem 5.11 and choosing as ¢= identity and ¢ = (1 — )y, we attain

the result.

5.3 Application to Integral Equations
In this segment, a useful application is presented. By utilizing the Corollary 5.12, the
existence and uniqueness of solutions of a non-linear integral equation has been showed.

Consider an integral equation of the following type:
1
r(b) = / (k1(b, L) + ka(b, L)) (f (L, (L)) + g(L,r(L)))dL + a(b), b € [0,1].  (5.50)
0
We will analyze (5.50) under the accompanying presumptions:
(1) ki [0,1] x [0,1] — R(% = 1,2) be continuous and 0 < k1(b, L) and 0 > ka(b, L).
(2) a € C[0,1].

(3) g,f:10,1] x R — R be two continuous functions.

(4) There exist constants p,v > 0, for each s,r € R with s <r

0 < f(b,?") _f(bvs) < l/[ln[(r—s)—i—l]],
—p[ln[(r — s) + 1]] < g(b,7) — g(b,s) < 0.

(5) There exist 7,6 € C|0, 1] satisfy
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1
Y (b) < /0 (b, L)(F(L, (L)) + g(L, 6(L)))dL
1
+ /0 (b, L)(F(L, (L)) + g(L, 7(L))dL + a(b),
5(b) > /O (b, L)(F(L,6(L)) + g(L.4(L)))dL

1
+ /O (b, L) (F(L,4(L))) + g(L, 6(L))dL + a(b).

(6) 2.maz(v,p) || k1 — k2 ||oo< 1, where

|| k1 — ko Hoo: Sup{(/ﬁ(b, L) - k’g(b,L)): b, L e [0, 1]}

Let U = C]0,1] be the space of continuous functions defined on [0, 1] with the usual

metric as follow

d(u,v) = sup |u(b) —v(d) |, for u,v € C[0,1].
be(0,1]

This space endowed with a partial order specified as
u,v € Cl0,1],u <v <= u(b) <wv(b), for some b € [0,1].
If in U x U we contemplate the order as follow
(u,2), (w,v) € U x U, (w,v) > (u,2) <= u<wandz >,

and for some u, z € U we obtain max(u, z), min(u, z) € U, condition (6.12) is satisfied.
Furthermore, in [106] showed that (C[0, 1], <) satisfy the presumption (1).
We now formulate our outcome.

Theorem 5.14. Under presumptions (1)-(6), equation (5.50) possesses a unique solu-
tion in C10, 1].

Proof: We contemplate the mapping F: U x U — U given by:

1
F(r,s)(b) :/0 ka(b, L)(f(L, (L)) + g(L, s(L)))dL

+ /O ko (b, L)(F(L, s(L)) + g(L,7(L)))dL + a(b), for b & [0, 1].

By virtuousness of our presumptions, F is well defined (for r, s € U then F(r,s) € U).
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Initially, we show that F' possesses the property of mixed monotone.

For ry <y and b € [0,1], we get

1
F(r1,5)(b) — F(rs,5)(5) = /0 k(. D)(F(L, (L)) + g(L, s(1)))dL
1
n /O ka(b, L)(F(Lys(L)) + (L, 1 (L)))dL + a(b)

1
- / (b, L)(F(Lora(L) + g(L, s(L)))dL
0 (5.51)

1
- / (b, L)( (L. s(L)) + gL, ra(L)))dL — a(b)

0

1
= | b D) — LoD
1
+ [ kb D0(Lra (L) = (L)AL
0
Consider r; < r9 and our presumptions,
f(Lvrl(L)) - f(L7T2(L)) <0, g(Lvrl(L) - g(Lver(L) >0,

and from (5.51) we obtain F(ry,s)(b) — F(ra,s)(b) < 0 and this proves that F(ry,s) <
F(rg, s).

Similarly, if s1 > s9 and b € [0, 1], we obtain F(r, s1)(b)—F(r, s2)(b) < 0, or, equivalently,
F(T,Sl) < F(Ta 52)'

Thus, F possesses the property of mixed monotone.
In the following, we estimate d(F(r, s), F(t,v)) for r > ¢, s < v.

As F possesses the property of mixed monotone, F(r,s) > F(t,v), we have

d(F'(r,s), F(t,v)) = sup | F(r,s)(b) — F(t,v)(b) |= sup (£(r,s)(b) — F(t,v)(D))
be0,1] be(0,1]

1
= aup | / ky(b, L)(F(L, 7(L)) + g(L, s(L)))dL
be(0,1] 0

1

+ [ Ralb D)) + gL (L)AL + a2
1

~ [ B D@D + ol ()
1

= [ Ralb. DAL o) + oL AL - alt)]

1
= o [/O ka(b, L)[(f (L, r(L)) — f(L,4(L))) — (9(L, v(L)) — g(L, s(L)))]dL

beo,1
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1
—/0 ka(b, e)[(f(L,v(L)) — f(L,s(L))) — (9(L.r(L)) —Q(L,t(L)))]dL]- (5.52)
By our presumptions (that r > ¢, s <)

f(Lyr

(
9(L;v(L)

Consider these last inequalities, ko < 0 and (5.52), we have

-1
A(F(rs). Pt 0) < swp [ [ k(b Dbinl(r(L) ~ (L)) + 1] + plinl(e(L) - 5(L)) + 1] de
be[o,1] LJo

1
+ /O (=ka(b, L))[v[In[(v(L) — s(L)) + L] + plin[(r(L) — (L)) + 1]Hde]

= maz(v,p) sup | / (1 (b, L) — ka(b, L))in[(r(L) — +(L)) + 1]de
befo.1) LJo

+ /Ol(kl(b, L) — ka(b, L))In[(v(L) — s(L)) + l]dL] (5.53)
Defining
I = [/ (k1(b, L) — ka(b, L)) [In[(r(L) — t(L)) + 1]]dL
I = [ (ki(b, L) — ka(b, L)) [In[(v(L) — s(L)) + 1]]dL

and applying the Cauchy-Schwartz inequality in (I), we have

<Ds(A?mw@—@@@V@f(ﬁﬁmwww%w»+m%aé

(5.54)
S| k1= k2 [loo (I [ =t +1)) = k1 = k2 [loo - (In(d(r, 1) + 1))
In similar way, we can obtain the subsequent estimate for (II):
(1) <[ k1 = k2 [|loo -(In(d(s, v) + 1)) (5.55)

from (5.53)-(5.55), we get

d(F(r,s), F(t,v)) < max(v,p) || k1 — k2 ||oo [(In(d(r,t) + 1)) + (In(d(s,v) + 1))]
< maz(v,pm) || k1 — k2 ||oo [(In(M(7,s,t,v)) + 1)) + (In(M(r,s,t,v)) + 1))]
— 2maz(v, ) || k1 — k2 ||oo [(ln(M(r, s,1,0)) + 1))] (5.56)

where,
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M(r, s, t,v) = max{d(gr, gt),d(gs, gv),d(F(r,s), gr),
d(F(t,v),gt),d(F(s, 1), gs),d(F(v,t), gv)}

from (5.56) and presumption (6) give us
d(F(r,s), F(t,v)) < (In(M(r, s,t,v)) + 1)),
or, equivalently,

d(F(r,s), F(t,v)) < (M(r,s,t,v))
— [(M(r,s,t,0)) —In(M(r,s,t,v)) + 1))].

(5.57)

Put ¢(r) =r and ¢(r) =7 — In(r + 1). Clearly, ¢ and ¢ are altering distance functions

and from (5.57) we have
P(d(F(r,s), F(t,v)) < @(M(r,s.t,v)) — ¢(M(r,s,t,0))
where,
M(r,s.t,v) = maz{d(gr, gt),d(gs, gv),d(F(r,s), gr),

d(F(t7 U)? gt)? d(F(S? r)? 98)7 d(F(U7 t)? gv)}'

This shows that the mapping F' fulfill the contractive condition appeared in Corollary
5.12.

Finally, let v, § be the functions appeared in presumption (5); then, from (5), we obtain
Y < F(1,0),6 > F(5,7).

Applying Corollary 5.12; we deduce the existence of (r,s) € U x U, F(r,s) = r and

F(s,r) = s, that is, (r, s) is a solution of equation (5.50).

This finishes the proof.

91



Chapter 6

Y-Cone Metric Spaces and
Coupled Common Fixed Point
Results

In this chapter, a new generalization of cone metric space, which is termed as Y-cone
metric space have been introduced. In section 6.1, the concepts of Y-cone metric space
have been introduced. Section 6.2, deals with some topological properties of Y-cone
metric space. In section 6.3 certain coupled common fixed point results have been

proved in partially ordered Y'-cone metric spaces.

6.1 Introduction

Metric spaces play a significant role in the study of Functional Analysis and Topology.
A metric space is a set in which we can talk about the distance between any two of
its elements. To discover a proper concept of a metric space, diverse concepts exist in
this sphere. So, different notions of distance lead to new notions of convergence and
continuity. Several generalizations of the metric space have then developed in many
papers (see [5, 45, 69, 101, 129, 130]). Recently, cone metric spaces were presented
by Huang and Zhang [69]. There they defined convergence in cone metric spaces and
presented the completeness. Again they showed some fixed point results of contractive
mappings on cone metric spaces. To apply this approach in Topology, the theory of cone

metric spaces have acquired by distinct researchers (see [1, 3, 124, 127, 144)).
First, let us start by making some basic definitions.

Let E be a real Banach space and P is a subset of E/. By 6 we denote the zero element
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of E. The subset P is said to be a cone if and only if

(1) P # {6}, P is non empty and closed set;
(2) if p,g € R,p,q >0 and u,v € P, then pu + quv € P;
(3) Pn(—P)={0}.
Given cone P C E, we Characterize a partial ordering < with respect to P by s < v iff

v —s € P. We shall write s < v to indicate that s < v but s # v, although s < v will

stand for v — s € intP where intP represents the interior of P.
Definition 6.1. [69] Suppose U be a non empty set. Presume the mapping d: UxU — E
satisfies the subsequent axioms for all uy,ug,us € U,

(1) 0 <d(u1,uz) and d(uj,ug) =0 <= s=u,

(2) d(u1,uz) = d(uz, ur),

(3) d(ul,u2) < d(ul, U3) + d(U3,UQ).

Then d is termed as a cone metric on U, and (U, d) is said to be a cone metric space.

The notion of b-metric space was introduced by Czerwik in [45]. For more insights about

the accompanying definitions, we allude the peruser to [45].

Definition 6.2. [45] Suppose U be a non-empty set and ¢ > 1 be a given real number.
A function d: U x U — RY is a b-metric on U if, for all uy, us,usz € U, the subsequent
conditions hold:

(1) d(uy,u2) =0 <= uj = ug,

(2) d(u1,u2) = d(ug, u1),

(3) d(uy,u2) < tld(ui,us) + d(us,ua)l.

Then, (U, d) is termed as a b-metric space.

For more insights about the accompanying definitions, we allude the peruser to [5].

Definition 6.3. [5] Suppose U be a non-empty set. The function A: U™ — [0, c0) is said
to be an A-metric on U if, for some x;,a € U,i = 1,2,...,n, the subsequent conditions
hold:
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(Al) A(Ul, U2, U3y -+ -5 Un—1, U’n) > 07
(A2) A(uj,ug,us, ..., Un_1,Uy) =0 < U =ug =uU3 = ... = Up_] = Up,
(As3)
A(U]_, U2, U3, - -« 7u7b—17u’rb) S A(ulyulyuly sy (ul)n—la (I)
+ A(UQ, u, U2, .. ., (UQ)TL—I»G)
+ A(un—h Up—1,Un—1,-- -, (u(n—l))n—h a)
+ A(Un, Up, Uny - -y (un)n—h a)'

Then (U, A) is called an A-metric space.

In the accompanying we generally assume E is a Banach space, P is a cone in F with

intP # () and < is a partial ordering with respect to P.

Definition 6.4. Suppose U be a non-empty set and k£ > 1 be a given real number.
Suppose a mapping Y: U' — E is called a Y-cone metric on U if, for any r;,a € U,i =

1,2,...,t, the following conditions hold:
(Y1) Y(ri,m2,73, ... 1—1,7¢) > 0,
(Y2) Y(ri,re,rs, ... ri1,1) =0 <= ri=ro=1r3=... =11 =1y,
(Y3)
Y(ri,ro, 73, ... rm1, ) < K[Y(r1,7m1,71, .0, (11) -1, )
12,72, T2, .., (r2)i—1,a) + ...

+Y(
+ Y(rt—l» Tt—1,Tt—15-- -, (r(t—l))t—l» a)
+Y(

T Tty Tty (7)1, @)].

The (U,Y) is called an Y-cone metric space.

Note that cone b-metric space is a special case of Y-cone metric space with ¢ = 2.
Proposition 6.5. If (U,Y) is Y-cone metric space, then for all r1,r9 € U, we have
Y(rl, T1,-..,71, 7“2) = Y(T‘z, r2,...,T9, 7’1).

Example 6.1. Let U = [0,1] and E = C} with || b ||=|| h ||sc + || ' |joos 7 € E and
let P ={h €E: h(t) > 00n[0,1]}. It is well-known that this cone is solid but it is not
normal. Define a'Y -cone metric Y: Ut — E by
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Y(Tl,rg,’r‘g, - ,rt_l,rt) =[|’I"1 — T2|2 + |7‘1 — 1“3| +...+ |7‘1 — 7‘,5|2
+ |re — 7’3|2 + |re —7’4|2 +... 4 |re —’f't|2
+ ...+ |7"t_1 — T’t‘Q]ew

t
DD ILEUIE

i=1 i<j
Then (U,Y) is a complete Y -cone metric space with the coefficient k = 2.
Lemma 6.6. Suppose U be an Y -cone metric space, for all r1,re,r3 € U we have,

Y(rl,rl, ce,T1, 7‘3) < k[(ﬁ — 1)Y(T‘1, T1y..-,T1, 7"2) + Y(T3,7’3, Lo, T3, 7‘2)]

and Y (r1,7r1,...,r1,73) < k[(t —1D)Y(r1,71,...,7m1,72) + Y(re,ra,...,72,73)].

Definition 6.7. Let (U,Y) is an Y-cone metric space. Then, for r € U and 6 < e, the

Y-balls with center r» and radius 6 < e are

By (r,e) ={s€U:Y(r,r,...,1,8) < e}.

6.2 Topological Y-cone Metric Spaces

In this section, we define the Topology of Y-cone metric space and study its Topological

properties.

Definition 6.8. Presuppose (U,Y) be a Y-cone metric space with coefficient & > 1.
For each r € U and each 0 < e, put By (r,e) = {s €U: Y(r,r,r,...,1r,5) < e} and put
B ={By(r,e) :r € U and < e}. Then, B is a subbase for some topology 7 on U.

Remark 6.9. Presuppose (U,Y) be an Y-cone metric space. In this chapter, T denotes
the topology on U, B denotes a subbase for the Topology on 7 and By (r, e) denotes the
Y- ball in (U,Y), which are described in Definition (6.8). In addition, U denotes the
base generated by subbase B.

Definition 6.10. Presuppose (U,Y) be a Y-cone metric space, a sequence {r,} in U
converges to r if for each ¢ € E with 6 < ¢, there is a natural number N such that for
all p > N, Y(rp,rp,1p,...,1p, 1) < c for certain fixed r in U. Hence r is known as the

limit of a sequence {r,} and it is represented by pli_}rglO Tp =T Or Tp — T as P — 00.

Definition 6.11. Presuppose (U,Y) be a Y-cone metric space, a sequence {r,} in U.
If for each ¢ € E with 6§ < ¢, there is a natural number N such that for all p,m > N, we

have Y (rp, 7p, 7p, - - ., p, 'm) <K ¢, then {rp} is called a Cauchy sequence in U.
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Definition 6.12. If each Cauchy sequence in U is convergent in U, then the Y-cone

metric space U is said to be complete.

Lemma 6.13. Suppose (U,Y) be a Y-cone metric space. If {r,} be a sequence in U

converges to point v, then r is unique.

Lemma 6.14. Suppose (U,Y) be an Y -cone metric space. If {r,} be a sequence in U

converges to r, then {r,} is a Cauchy sequence.

Lemma 6.15. Let (U,Y) be a Y-cone metric space. If there exist sequences {rp}, {sp}

such that rp, — 1,5, = s, then pli)nolo Y (rp, rp,Tpy oy Tpy Sp) = Y (1,71, .. 1, S).
Remark 6.16. Suppose (U,Y) be a Y-cone metric space over the ordered real Banach
space F with a cone P. Then the subsequent properties are used:

(1) If p1 < p2, p2 < p3, thus p1 < ps.

(2) If p1 < p2 and ps K p3, then p1 < p3.

(3) If # < v < ¢ for every ¢ € intP, then v = 6.

(4) If ¢ € intP, 0 < ay, an, — 0, then we can find ng so that for each n > ng we get
ap X C.

(5) If 6 < a, < by and a, — a, b, — b, thena < b, for each cone P.

(6) If F is a real Banach space with cone P and if e < Aa here e € P, 6 < X\ < 1, then
e=0.

(7) aintP CintP for a > 0.
(8) For each § > 0 and x € intP there is 0 < v < 1, such that || vz ||< 6.
(9) For each 6 < ¢1 and ¢y € P, there is an element 6 < d such that ¢; < d, c2 < d.

(10) For each 6 < ¢1 and 6 < ¢, there is an element § < e such that e < ¢q, e < ca.

6.3 Coupled Common Fixed Point Results

Now, we obtain common coupled fixed point results of maps satisfying more general
contractive conditions in the framework of partially ordered Y-cone metric spaces. we

start with the following result.

Remark 6.17. [59] Suppose (U, <) be a partially ordered set, F: U x U — U be an
operator with the property of mixed monotone on U. Then for all p € N, the pair

(FP  FP) possesses the property of mixed weakly monotone on U.
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Lemma 6.18. Let (U,Y) be an Y -cone metric space, then U x U is an Y -cone metric

space with the Y-cone metric D given by
D((r1,51),(re,82)s .-, (1,8)) =Y (r1,r9,...,7) + Y (51,82, ...,51)
forallry,s; €U, 1,7 =1,2,...,1.

Proof: Forallr;,s; € U, 4,5 =1,2,3,...,t, we have D((r1, s1), (r2, 52), (73, 53), . . ., (11, 5¢))
> 0.

Note that
D((r1, 1), (r2,82), ..., (re;8¢)) =0
<~ Y(ri,ro,...,1) +Y(s1,82,...,8) =0
<~ Y(ri,re,...,1) =0,Y(s1,82,...,8) =0
S 1 =r9=...=T7t8 =8 =...= S5
<~ (r1,81) = (r2,82) = ... = (11, S¢)-
Consider

D((r1,81),(ro,82), ..., (1,81)) =Y (r1,79,...,1) + Y(81,82,...,8¢t)

< klY(ri,r1,...,r,a) + Y(ro, 72, ..., 12, 0)
+Y(rrs,...,r3,a0) + ...+ Y(re,re, .. 1 Q)
+Y(s1,81,...,51,0) + Y(s2,82,...,52,b)
+Y(s3,83,...,83,0) +...+Y(s,8¢,...,5,0)]

= k[D((r1,51), (r1,81); -+, (r1,51), (@, 1))
+ D((r2, 52), (12, 52), . - -, (r2, 52), (a, b))
+ ...+ D((re,8¢), (re,8¢), - - -, (11, 8¢), (a, b))].

By the above D is an Y-cone metric on U x U.

Theorem 6.19. Suppose (U, <,Y) be a partially ordered complete Y -cone metric space
with the coefficient k > 1 relative to a solid cone P. Presume F,G: U x U — U be the
mappings such that (F, G) has the property of mized weakly monotone on U. Presuppose
that there exist a; > 0,1 =1,2,...,6 with a1 + as + a3+ 2kays < 1 and Z?:l a; <1 such
that

Y(F(r,s),F(r,s),...,F(r,s), Glw,v))
+Y(F(s,7),F(s,7),...,F(s,7),G(v,w))
<a1D((r,s),(r,s),...,(r,s), (w,v))
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T azD((1,8), (1,5).... (r,s), (F(r, ), F(s,r)))
T asD((w,v), (w,v), .., (w,v), (G(w,v), Glv,w)))
+aiD((r,9), (1 5)...... (1, ), (G(w,v), Glw, v)))
T asD((w,v), (w,v), .., (w,v), (F(r, ), F(s,r)))
+ ag(min{ D((w,v), (w,v), ... (w,v), (G(w, v), G(v, ),
D((r,5), (1, 5),...., (1. ), (G(w,v), Gw,v))),
D((w, v), (w,v),..., (w,v), (F(r,s), F(s,1)))}) (6.1)

Voo ,w,s € U withr <w and s > v, where D is defined as in Lemma (6.18). Suppose
that there exists ro,so € U such that ro < F(ro,s0), so > F(so,10) or ro < G(ro,s0),

s0 > G(s0,70), then G and F possesses a coupled common fized point in U.

Proof. Take rg,s0 € U. Set r1 = F(ro,s0),51 = F(s0,70),72 = G(r1,s1) and s9 =
G(s1,71).
From the condition ro < F(rg, o), so > F(so,70) and (F,G) has the property of mixed

weakly monotone, we have

r1 = F(ro,s0) < G(F(ro, s0), F(s0,70)) = G(r1,51) = 11 <79,

ro = G(rl,sl) < F(G(Tl,sl),G(Sl,Tl)) = F(TQ,SQ) = ro < 13.

Thus,

s1 = F(so,m0) > G(F(s0,70), F(ro,50)) = G(s1,71) = s1 > $2,

So = G(sl,rl) > F(G(sl,rl),G(rl,sl)) = F(SQ,?"Q) = S > S3.
Repeating this process, we obtain

rop+1 = F(rop, s2p), S2p+1 = F(s2p,r2p),

ropt2 = G(ropt1, S2pt1), and sgpro = G(sopy1,72p41) for all p € N

Therefore the sequences {r,} and {s,} are monotone:

Similarly, from the condition 1o < G(rg, so), so > G(s0,70). Then by (6.1), we have

Y (ropi1sTopits - - T2pi1, Topy2) + Y (S2p11, 82p11, - - S2p4 15 S2p42)
=Y (F(rap, s2p), F(r2p, 52p)s - - -, F(12p, 52p), G(T2p41, S2p41))

+Y (F(52p> 7"2p)7 F(32p7 T2p)a ceey F(SZpa 7"2;1))7 G(S2p+17 T2p+1))
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<aD ((7”2;)7 52p)7 (7“2;)7 52;0)7 ceey (Tva 52p)7 (T2p+17 32p+1))
+agD ((7”21)» 52p)’ ("”219» 52p)7 S ("“219» 32p)7 (F("°2p7 32p)7 F(32p» 7’2p)))
+a3D ((r2p+1, 52p+1), (T2pt1. 52p+1), - - -5 (T2p41, S2p11)5 (G(T2p41, S2p11), G(S2p11.T2p11)))

+ asD ((rap, S2p), (r2ps S2p), - - - (T2py S2p), (G(T2p41, S2p41), G(S2pt1, T2p+1)))

+asD ((rop+1, 52p+1)s (T2pt1.82p41)s - - -5 (T2ps1, S2p41), (F(r2p, S2p), F(52p,72p)))
+ ag[min{D ((T2p+1, 52p+1), (T2p41552p41)5 - -+, (T2p15 52p1), (G(T2p415 52p41), G(S2pt1, T2p41))) 5
D ((r2p, 52p)s (T2py S2p), - - - 5 (T2py S2p), (G (T2p+1, S2p+1), G(S2p+1, T2p41))) 5

D ((r2p+1, 82p+1)), (rop+1, 52p+1))s -+ -5 (T2p41, S2p+1)s (F(r2p, 52p), F(82p,72p))) H-

Thus, we get

Y (rop+1, Topt1s - - - Topt1: T2p+2) T Y (S2p41, S2p+1, - - - 5 S2p+1, S2p42)
< a1D((rop, s2p); (T2ps S2p)s - - -5 (T2ps S2p), (T2p+1, S2pt1))
+ asD((rap, S2p), (r2ps S2p), - - -5 (T2ps S2p), (P2ps1, S2p41))
+ azD((rop+1, S2p+1), (T2p+1, S2p+1), - - -5 (T2p+1, S2p41)s (T2p+2, S2p42))
+ asD((rap, s2p)s (T2ps S2p), - - -5 (T2p, S2p)s (T2pt2s S2p42))
+asD((T2p+1, S2p+1); (T2p415 S2p4+1)5 -« -5 (T2p41, S2p41), (T2p41, S2p41))
+ag[min{ D ((rap+1, $2p1+1)s (T2pt15 82p41)s - - -5 (P2pt1s S2p+1)s (T2p+2, S2p42)),
D((rap, 52p); (2p, 82p)5 - - -5 (T2py 52p), (T2p+2, S2p42));
D((rop+1; S2p+1), (r2p+1, S2p+1)5 - - -5 (T2p41, 82p41) (T2p+1, S2p41)) }H (6.2)
= a1D((rap, S2p), (T2p, S2p), - - -, (r2p; S2p), (T2p+1, S2pt1))
+ asD((rap, S2p), (T2ps S2p), - - -5 (T2ps S2p), (P2p+1, S2p+1))
+a3D((r2p+1, S2p+1); (T2p+15 S2p+1)5 -« -5 (T2p41, S2p+1), (T2p+2, S2p42))
+ asD((r2p. S2p), (r2ps S2p), - - -+ (T2p; S2p), (r2p+2, S2p+2))

< a1D((rap, S2p)s (T2ps S2p)s - - -5 (T2ps S2p), (T2pt1, S2pt1))

+ a2 D((r2p, S2p); (T2ps S2p)s - - - 5 (T2p; S2p),s (T2p+1, S2p+1))
+a3D((r2p+1, 52p+1))s (T2p+15 82p+1)s - - -5 (T2pt1, S2p+1) (T2p+2, S2p+2))
+ kasD((rap, s2p), (r2ps $2p)5 - - -5 (T2ps S2p), (T2p1, S2p41))
+ kaaD((rop+1, S2p+1); (T2p+1, S2p+1)5 - -+ (T2p1, S2p+1), (T2p2, S2p12))
= (a1 + a2 + kaa) D((rap, S2p), (T2p, S2p)s - - -+ (T2p, S2p), (T2p+1, S2p+1))
+ (a3 + kaa) D((rept1, S2p41)), (T2ps1: S2p41) - - (Tapt1, S2p+1), (T2pi2, Sapr2))-
< (a1 + ag + kaqg)[Y (rop, m2p, - - - s T2p, T2p+1) + Y (S2p, S2ps - - -, S2ps S2p+1)]
+ (a3 + kaa)[Y (rops1s rapr1, - - - ropt1, Topa2) + Y (S2p41s S2p41, - - S2pa1, S2p12)-

(6.3)
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Similarly, we get

Y (52p11,52p115- - S2p11,52p42) + Y (T2pi15T2p 415+ - -5 T2p i1, T2py2)
< (al +ag + ka4)[Y(52p7 S2py - -+ 5 S2p; 52p+1) + Y(r2p’ T2py -+ "2p;s r2p+1)]
+ (a3 + kaq)[Y (S2p+1, 5241, - - 5 5241, S2p42) T Y (T2p 1. T2p41, - - - T2p1 1, T2pt2)]-
(6.4)
It follows from (6.3) and (6.4) that
Y (rops1,Topsts - -5 Topi1s Topr2) + Y (S2p11, 52p115 - - - S2p41, S2pt2)]
a1 + as + kay
< m[y(ﬁp, T2py -« T2py 7"2p+1) + Y(52p> S2py -5 S2py 52p+1)]'
_ (a14as+kay)
Leté—m,then0§5<land
Y (rop+1: T2p+15 - - > T2p15 T2p+2) + Y (82p415 82p415 - -+ 5 S2p415 S2p42)]
< 5[Y(T2p, T2py e v vy T2ps T2p+1) + Y(SQP, S2py -+ -5 S2p, Sgp+1)]. (65)
For all p € N, by interchanging the roles of F' and G and using (6.1), we have
Y (ropro, mopra, - -5 T2p12, T2pr3) + Y (52p42, S2p12, - - -, S2p12, S2p13) (6.:6)
< OY (ropt1,T2pt1s -+ o5 T2pt15 Top+2) + Y (S2p+1, 82p415 - - -5 S2p+1, S2p+2)]-
It follows from (6.5) that
Y (rops1;Toptts -+ - Topt1s Topr2) + Y (S2pt1, 52p115 - - - S2pt1, S2p42)]
< O[Y (rap, 12, - - - Topy ropt1) + Y (s2p, S2p, - -5 S2p: S2p41)]
S 5(6(Y(T2p—1> T2p—1,---5T2p—1, r2p) + Y(32p—17 S2p—1,+-+,S2p—1, SZp)))
< O(0(0(Y (r2p—2,T2p-2,- -, T2p—2,T2p1) + Y (S2p-2,82p-2,- - -, S2p—2, S2p—1))))-
This implies
(Y (P21 T2pt1s - - - s Topt1, T2pt2) + Y (S2pt1, S2pt1s - - -5 S2pt1s S2p42)]
<Y (rop-2:T2p-2s > Top-2,T2p—1) + Y (S2p-2, 52p-2, - -, S2p-2, 52p-1))]
< &Y (ro,ro....,10,m1) + Y (S0, S0, - - -, 50, 51)- (6.7)
and similarly, by (6.6), we get
Y (rop+2, 2p+2s - - - Topt2, T2p+3) + Y (S2p+2, S2p125 - - -5 S2p+2, S2p+3)
< (52p+2[Y(7’0, T0y---,70, 7‘1) + Y(So, S0, .-, S0, 81)]. (6.8)
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By Lemma (6.6) we have for all pym € N with p <m

Y (ropt1,72p+1s - - 5 T2p+15 T2mt1) + Y (82p11, S2p+1, - -+ S2p15 S2m41)
< k[(p— 1Y (rope1, ropsis - - > T2pt1s Topr2) + Y (T2pt2, T2pt2, - - 5 T2p42, T2t 1))
+ k[(p — DY (s2p+1, S2p+1, - - -, S2p1, S2p+2)) + Y (S2p+2, S2p+2, - - - S2p+2, S2m+1))]
< (k(p — )Y (rop+1,T2p+1s - - - T2p+1, T2pt2) + k(D — 1)Y (S2p41, S2p41, - - - 5 S2p41, S2p42))

(k2 (p— DY (Fopt2, T2pt2s - - - s T2pr2; T2pta) + E(p — 1)Y (52p42, S2p42; - - - » S2p+25 52p43))
oo (0= DETY (rame1. P2m1s - T2m—1, T2m)
+ k2 NY (Somo1, S2m1, - - -+ S2m—1, 52m))
B2 Y (Fom, Toms -+« s Toms Tomat) + Y (S2m, $2m,s -« ++ S2ms S2ma1))

< (k(p — DY (rop41,T2p41, - - - s Topt1, Topt2) + k(P — DY (S2p41, S2p+1, - -+ S2p41, S2p42))
+ (K2 (p = )Y (ropez, rops2, - Papr2, Taprs) + K20 = DY (s2p42, 82p12. -, S2p42, 52p43))
o (R (p = 1Y (ram, P2ms - T2my Tamet) + K27 (p = DY (s2m, $2ms - -5 $2m: S2me1))

< k(p-— 1)52p+1(1 + kS + K252+ .. (Y (ro,roy...,7r0,71) + Y (S0, S0, - - -, S0, 51))-

This implies

Y (rops1:T2pa1s - -5 T2pt1s T2ma1) + Y (S2p41, S2p415 - - - 5 S2p41+ S2mt1)
52p+1
<(p-— 1)1 — k5( (ro, 705 -, 70,71) + Y (S0, 50, - - -, S0, 51))-

Similarly, we get

Y(T2pa T2py -+ -5 T2p, T2m+1) + Y(32p7 S2py -5 S2ps 32m+1)
k6%
S (p - 1) 1_ k(s(Y(r()a ro,. .- 77”077"1) + Y(SO-, S05---550, 51))7
and
Y(’/‘Qp, T2py - - T2p, Tgm) + Y(Sgp, S2py -+« + 5 S2p, ng)
ko2
= (p_ 1)1 — ké( (T077“07~~~77"0,7"1) +Y(SO-,SO7"'7SO-,$1))9
also,
Y (7op41, T2ptis - - s T2pt1, T2m) + Y (S2p41, S2p41, - - - S2pt+-1: S2m)
52p+1

< (p— 1) ké( (7‘0,7‘0,...,7‘0,7'1) -‘rY(S(),S(),...,S(),Sl)).
Hence, for each p,m € N with p < m, we get
Y(rp,rpy - sTpsTm) + Y (Sp, Spy -+, Spy Sm)

101



Chapter 6. Y-Cone Metric Spaces and Coupled Common Fized Point Results

koP
1—-kd

<(p—-1) (Y(ro,70,---,70,71) + Y (80,50, - - -, 50, 51))-

According to Remark 3.12(4), and for any ¢ € E with 6 < ¢, there exists o such that
for any

kéP
1—ko

p > po, (p - 1) (Y(T‘(), T0y-- -y TO»TI) —+ Y(SO» 50, -+,50, 51)) <ec

Furthermore, for any m > p > pp, Remark (6.16) (1) shows that Y (rg,79,...,70,71) +
Y (s0, S0, --,50,51) < ¢. Hence, by Definition (6.11), {r,} and {s,} are Cauchy se-
quences in U. By the completeness of U, 3 n,) € U such that

lim r, = n and hms =
p—00 p p J

We now show that (n, ) is a coupled common fixed point of F' and G.

Suppose F' is continuous, then we have

p—00 pP—00 pP—00

n= lim rp;; = plgl;o F(rp,sp) =F ( lim 7, lim sp> = F(n,)),

1= ILm Spr1 = lim F(sp,rp) = F < lim sp, lim rp) =F(j,n).
p—roo

pP—r00 p—>00 p—r00

Using (6.1), we get

Y(F(n,)). F(n,)), F(n,j),...... ,F(n,)),G(n,)))
+Y(FQ,n), F(,n), F(,n), ... F(,n), G(,n))
< a1D((n,)), (n,)), (n,3), .- .. ;(n,1), (n,)))
+azD((n,)), (n,)), (n.3), ... , (1)), (F(n,)), F(3:n)))
+agD((n,)), (n,)), (n.)), ... ,(n,1),(G(n,)), G(3,n)))
+asD((n,)), (n)), (n.3), .- ,(1,1), (G(n,)), G(3,m)))
+asD((n,)), (n,)),-- - , (1)), (F(n,)), F(.n)))
+ ag(min{D((n,)), (n,)),-- ... ,(n,)), (G(n,)), G(),n))),
D((n,)), (n.3);-- -+ »(1,)), (G(n,)), G(3,m))),
D((n,)); (n.3), ... »(n,)), (F(n,)), F(,n)))})
= azD((n,)), (n,)), ... + (1)) (n,3))
+azD((n,)), (n,)), -+ ,(1,1), (G(n,)), G(3,n)))
+asD((n,)), (n,)), -+ , (1)), (G(n,)), G(s,7)))
+asD((n,)), (n,)),-- - .. , (1)), (1,)))

= (a3 + as)D((n,)), (n,1), (n,1), - - .. ;(n,1), (G(n,)),G(3,n)))
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= (a3 +as)(Y(n,m,...... N, G(n, ) +Y (0,0, 0. ,1,G(,n))).
Therefore
Y(n,n,......, n,G(n,3) +Y (3,0, ,1,G(3,n))
<(ag+as)Y(n,n,...... G, ) +Y (0,0, ,1,G(3,m)))

Since 0 < (a3 + a4) < 1, Remark 3.12(6) shows that

Y(n,n,......, n, G gN)+Y (3,35 - - - ,1,G(J,n)) = 0. Hence, Y(n,n,......,n,G(n,))) =

0 and Y (3,5,...... ,1,G(,n)) = 6. That is G(n,)) = n and G(3,n) = j. This implies
(n,)) is a coupled fixed point of G. Similarly, we can show that (n,]) is a coupled fixed

point of F' when G is a continuous mapping. This completes the proof.

Theorem 6.20. Suppose all the assumptions of Theorem 6.19 are satisfied . Moreover,

presume that U has the subsequent properties

(a) if an increasing sequence {rp} in U converges to some point n € U, then rp, < n,
vp,

(b) if a decreasing sequence {s,} in U converges to some point ) € U, then s, > j, Vp.
Then the conclusion of Theorem 6.19 also hold.

Proof. Succeeding the proof of Theorem 6.19 just we need to show that (n,]) is a

coupled fixed point of F.

As {r,} is non-decreasing and 7, — n and {sp} is non-increasing and s, — j, by our

assumption, 7, < n and s, >, V p.

Applying the contractive condition, we have

+ Y (ropi2, Topt2, -5 Topra, (1)) + Y (S2p42, 82p42, -+ o5 Sopt2, F(,1))]
=kl(p— DY (n,n,...... Ny Topy2) (P — )Y (3,3, ..., 8, S2pr2)
+ Y(G(7’2p+1-, 52p+1)7 G(T2p+1, 52p+1)7 ~~~~~~ 7G(7”2p+17 52p+1)» F(an))

+ Y (G(s2p41,T2p+1)s G(S2p4+1,T2pt1) s - - - - ,G(s2pg1,T2p+1), F(3,m))]. (6.9)

By using (6.1) and interchanging the roles of F' and G we obtain

Y (G(rops1, 52p+1)s G(T2p+15 52p41) s -+ - - - - ,G(ropt1, S2pt+1), F(n,]))
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+ Y/(G(s2p+1,T2p+1), G(S2p+15T2p41), - o - s G(s2p41,72p41), F(3,m))
< arD((r2p+1, S2p+1), (P21, S2p41)5 - - - s (rop+1s s2p41), (1,7))
+ a2 D((rop+1, $2p+1), (T2pt1, S2p41), -+ - s (ropt1, S2p41), (G(rops1, S2p41), G(S2p+1,T2p11)))
+azD((n,)), (n,)). (n,3), ... ;(n,)), (F(n,)), F(3,n)))
+ asD((rop+1, S2p+1), (r2p+1, S2p1)5 - - - - s (Top+1, S2p41), (F(n,)), F(3, 1))
+asD((n,)), (n,1), (n,3), - - .. , (n,0), (G(rapi1, s2p41), G(S2p11,T2p41)))
+ ag(mit{D((n,)), (n.)),...... ,(n,3), (F(n,)), F(3,m))),
D((rop1; s2p+1): (T2p+1, S2p41), -+ - - s (ropt1s s2pt1), (F(n.)), F(3, ),
D((n,)); (n,)), (n,3), ... 1 (1,)), (G(rapt1, s2p+1), G(s2p11,72p+1)))
= a1D((rapt1, S2p+1)s (T2p+15 S2p+1) - - s (rop+1, s2p41), (1,]))
+ a2D((rapt1, s2p+1), (T2p1, S2p41), - (rop+1; S2p+1); (r2pt2, S2p42))
+azD((n,)), (n,1), (n,3), - - .. ,(n,)), (F(n,)), F(),n)))
+ asD((rop+1, S2p+1), (P2p+1, S2p1 )5+ -+  (ropt1, s2p11), (F(n,)), F(3,m)))
+asD((n,)), (1,1), .- .. 1 (1)), (ropt2, s2p12))
+ ag(min{D((n,)), (n,J),...... ,(n,)), (F(n,)), F(3,n))),
D((r2p+1,52p+1); (T2p1, S2p+1)s - - - s (rap+1, s2p11), (F(n,)), F(3,1))),
D((n,)), (n;3)--- .. 5 (1.3); (rop+2, S2p+2))- (6.10)

It follows (6.9) and (6.10) that

Y(n,n,...... N F(n, ) +Y(0,0,.--0-. .1, F(3,m))
<Ekllp—1DY(n,n,...... Ny Topt2) (0 — 1Y (3,3, 115 82p+2)
+ a1D((r2p+1, S2p+1); (T2pt1, S2p41)s - - - - s (T2p+1. S2p41), (1,)))
+ a2 D((rop+1, s2p+1), (rop+1, S2p41)5-- - - - s (r2p1s S2pi1), (T2pr2, S2p+2))

(1,), (n,1), -5 (n,)), (F(n,)), F(3,m)))
(

+ agD((rop+1, 52p+1)- (T2p41582p41) -+ - - - s (rept1, S2pr1), (F(n,)), (3, n)))

(
(
+ asD(
(

+ a5D((an)7 (n7J)> """ ) (n J) (7"2p+27 52p+2))
+ ag(min{D((n,1), (n,3), .- .. s (n,1), (F(ny1), F(3,m))),
D((rapt1, S2p+1); (P2pt15 S2p41) s+ - s (Tapt15 82p11), (F(n,1), F(3,m))),

D((”»J)?(nh})v """ 7(”7.])7(7'2104-2952174-2))}' (6'11)

Taking the limit as p — oo in above inequality, we have

Y(n,n,...... ., F(n,)) +Y (0,0, .3, F(3,n))
<Ekllp—1)Y(n,n,...... nn)+(p—10Y(0,0,. ... .1,
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+a1D((n.)), (n,1), -+ (n,1), (n,]))
+a2D((n.)), (n,)),- - (n,)), (n,)))
+azD((n.)), (n,)), ..., (n,)), (F(n,)), F (), n)))
+asD((n.)), (n,1), .- (n,0), (F(n,)), F(3,n)))
+asD((n.)), (n,)), ... (n,), (n,)))
+ ag(min{D((n,)), (n,)), ... ... ,(n,)), (F(n,)), F(),n)))
D((n,)), (n,3), - .. s (n,1), (F(n.)), F(3,n)))
D((n,)), (n,3); -+ »(n,1), (n,0))})
= klazD((n,)), (n,1), - - ... ,(n,)), (F(n,)), F(3,n)))
+asD((n,)), (n,1), -+ - s (n.), (F(n,)), F(3,n)))]-
Therefore,
Y(n,m,...... N, F(n, ) +Y0,0,--.0.. 0, F(,n))
< k(az + as)D((n.)), (n,1), (1,3), - .- .. ,(n,1), (F(n.)), F(3,n)))
=k(ag +ag)[Y(n,n,.......n, F(n,))) + Y (G, 0, .1, F(3,n))]

Y(n,n,......, n, F(n,))+Y(0U,3...... ,1, F(,m)) =6,

that is, F((n,)) = n and F(j,n) = j. Similarly, one can show that G(n,;) = n and
G(j,n) = ). This proves that (n,)) is a coupled common fixed point of F' and G and this
finishes the proof.

To guarantee the uniqueness of coupled fixed point in Theorem 6.19 and 6.20 we give

the condition.

For each (7, s), (w,v) € U x U there is (z,u) € U x U that is comparable to (r, s) and (w, v).
(6.12)

Theorem 6.21. Including the condition (6.12) to the assumption of Theorem 6.19 (re-
spectively Theorem 6.20) we acquire the uniqueness of the coupled common fized point

of F' and G. Furthermore, any fized point of F' is a fized point of G and conversely.

Proof: Suppose (n,)) and (¢, (') are coupled common fixed points of F' and G, thus,
n= F(“;J)? ¢= G(C?C): J= F(Jan) and CI = G(Clac) We shall prove that n = ¢, j =
¢
Suppose that (n,)) < (¢,¢’) without loss of generality, then it follows from Theorem
6.19.
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Y(n,n,...... ) +Y (0,0, ,3,¢)
= Y(F(n,J),F(n,J),...,F(n,]),G(C,CI))
+Y(F(G,n). FQGn), ..., F(,n), G((.C)

< a1D((n,)), (n,3), (1,3), -5 (n,3), (¢, ¢')
+a2D((1,)), (n,1). -, (n,)), (F(n,)), F(3,n)))
+a3D((¢, (), (€. () (G ¢ (G(C (), G, Q)
+asD((1n,)), (n,)). -, (1)), (G(C, ('), G((, Q)
+asD((¢,¢): (€. ¢y, (¢ 0, (F (1)), F(3,m)))
+ ag(min{D((¢, ('), (¢, ¢+, (¢ ¢, (G(¢: N, G(( ),
D((n,)), (1,1); - -+ (n,1), (G(¢, ¢), G(¢', O))),
D((¢.¢"): (¢ €y -5 (6, €, (F(n,3), F(, 1)) )
= a1D((n,J), (n,)), (n,1), - -, (n,), (¢, ¢))

)
)
F(
)

)
)

+ CLZD((nv.])v (nv.])7 KRR (nv.])7 (nv.]))
+ QSD((C7 Cl)v (C* C/)? s (Cv C/)7 (Cv C,))
=+ a4D((Tl,]), (n7J)7 RER) (n7J)> (C? CI))

+asD((¢,¢"). (¢.¢),- -, (¢, (na)))

+ag(min{D((¢. ("), (¢, ¢, (¢, ), (¢ ¢,
D((n,3); (n,3), -+ (n,1), (¢, ¢')),
D((¢. ¢ (66,5 (60 (ma))})

Y(n,n,......, Q) +Y(,0--,),¢) < (a1 +as+as)D((n.)), (n,)). - .. (n,1), (¢, ¢))
== ((11 +(l4 +CL5)Y(TL,7Z,. .. 7n7<) + Y(J?J? R 7J7C,)'

Since, 0 < (aj+as+as) < 1, remark (6.16)(6) shows Y (n,n,...,n,Q)+Y(,),...,),¢") =
6, which implies n = ¢ and j = (.

Now, we show that any fixed point of F' is a fixed point of G and conversely. Applying
Theorem 6.19, we get

Y(n,n,...,n,)) +Y(Q,3,...,3,n)
=Y (F(n,)),F(n,)), F(n.j),...,F(n,),G(,n))
+Y(FQ,n), F(,n), F(,n), ..., F(,n),G(n,)))
< a1D((n,)). (n,3), (1)), -, (n.9), (0, m))
+a2D((n,)), (n,1), -, (n,)), (F(n,)), F (3, n)))
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+azD(().n), ),n), 0, n), - ... (3, ), (G(3,n), G(n,))))
+a4D((n,)), (n.)), -, (n,1). (G(3,n), G(n,))))
+azD((.n), (),n), -, (0,n). (F(n,)), F(3,n)))
+ ag(min{D((j,n), ), n), ..., (0, n), (G, n), G(n,)))),
D((n,)), (n,)). (n.3), - .. (n,3), (G(j, n), G(n,)))),
D((3;n), 3,m). - (0,m), (F(n,)), F(3,n)))})
= a1D((n,)), (n,));---,(n,)),();n))

n ? -]777'7”’7

(
(n,3), (n,)

+ a2D((n,3), (n.)), (1), - . (n,3), (n,)))

+azD((.n), (),n), (0, n), ... (0, ), (0. n))

+ asD((n,)), (n.1), (n,1), - -, (n,3), 3, )

+asD((.n), (0,n), -, (0,n). (n,3))

+ ag(min{D((j,n), (), n),---, (), n), 1. n)),
D((n.1), (n,1): (n,3), - -+, (n,1), (0, m)),
D((3;n), 3,m). - (0,m), (n,1))})

)
= (a1 + as + a5)D((n,)), (n,)), (n,3), - - (n,1), (), n))
= ((11 +a4+a5)Y(n>n7"'7n?J)+Y(J>.]7"'>.]7n)'

Since, 0 < (a1+agq+as) < 1, Remark 6.16(6) shows Y (n,n,...,n,))+Y(4,J,-..,3,n) =0,
which implies n = j. The coupled common fired point of F' and G is unique. This finishes

the proof.

Example 6.2. Presume (U, <,Y) be a totally ordered complete Y -cone metric space
with Y -cone metric defined as in Example (6.1). Let F\G: U x U — U as F(r,s) =
G(r,s) = (T+2S) forallr,s € U.

The pair (F,G) has the property of mized weakly monotone on U.

Y(F(r,s), F(r,s),...... JE(r,8),G(t,v) + Y (F(s,7), F(s,7), ... ,F(s,7),G(s,1))
= [(n—1)|F(r,s) — G(t,v)]> + (n — )|F(s,r) — G(v,t)[}]e”

r—+ 2s t+21}2 s+ 2r v—l—2t2
—|(n—1 - 1 - w
[(n ) - - +(n—1) - - e
|- (B | e @) e
N 77 77 77 77
r 2 2
r t 2s  2v s  v|2 2t 2r
< , . a2 =Y 27 b W
<2 =Dl -7 i B e B ]P
2(n—1)

T [|7'—t|2+|2s—2'u|2+|5—v|2+|2t—27'|2]ew
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< 2(n—1)

where a1 = %,ag = a3 = a4 = a5 = ag = 0. Hence, the conditions of Theorem 6.19 are

satisfied. Moreover, (0,0) is the unique coupled common fized point of F and G.

Corollary 6.22. Presume (U, <,Y) be a partially ordered complete Y -cone metric space
with the coefficient k > 1 relative to a solid cone P. Presuppose F: U x U — U be the
mappings and possesses the property of mized monotone on U. Suppose that there exist

a; > 0 with a1 + as + ag + 2kag < 1 and Z? a; < 1 such that

Y (F(r,s), F(r,s),...... ,F(r,s), F(w,v))
+Y(F(s,7), F(s,7),...... ,F(s,r), F(v,w))
< a1D(((rys),(r,8),...... ,(ry8), (w,v)))
+aaD((r,8),(r,s),...... , (1, 8), (F(r,s), F(s,r)))
+ asD((w,v), (w,v),...... , (w,v), (F(w,v), F(v,w)))
+asD((r,8),(r,8),...... , (ry8), (F(w,v), F(w,v)))
+ asD((w,v), (w,v),...... , (w,v), (F(r,s), F(s,1)))
+ ag(min{D((w,v), (w,v),...... s (w,v), (F(w,v), F(v,w))),
D((r,s),(r,s),...... , (1, 8), (F(w,v), F(w,v))),

S
)
=
0
=

...... , (w,v), (F(r,s), F(s,7)))}) (6.13)

Vors,v,welU withr <w and s > v, where D is defined as in Lemma 6.18.

Presuppose either F is continuous or U has the subsequent properties
(a) if an increasing sequence {rp} in U converges to some point n € U, then r, < n,
Vp,
(b) if a decreasing sequence {sp} in U converges to some point ) € U, then s, >, Vp.

Furthermore for each ro,so € U with ro < F(ro, so) and so > F(so,r0), then F has a
coupled fized point.

Proof. Taking G = F in Theorems 6.19 and 6.20 and using Remark 6.17, we acquire

the corollary.

Corollary 6.23. Presume (U, <,Y) be a partially ordered complete Y -cone metric space
with the coefficient k > 1 relative to a solid cone P. Suppose F: U x U — U be the
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mappings and possesses the property of mized monotone on U. Presuppose that there

exist K € [0,1) such that

Y(F(r,s), F(r,s), F(r,s),...... ,F(r,s), F(w,v))
+Y(F(s,r),F(s,r), F(8,7),...... ,F(s,r), F(v,w)) (6.14)
<KY(@rrr...... ,rw) +FY (88,8, . ... .. ,8,0))

Vor.s,w,velU withr <w and s > v.

Presuppose either F' is continuous or U has the subsequent properties

(a) if an increasing sequence {rp} in U converges to some point n € U, then rp, < n,

Vp,

(b) if a decreasing sequence {sp} in U converges to some point ) € U, then s, >, Vp.

Furthermore for each 1o, so € U such that 1o < F(rg, s0) and so > F(so,70), then F has
a coupled fized point.

Proof. Taking G = F and a1 = K,a9 = a3 = a4 = a5 = ag = 0 in Theorems 6.19 and

6.20 and using Remark 6.17, we obtain the corollary.
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Chapter 7

Results on Coupled Fixed Point
in Partially Ordered Metric

Spaces

In this chapter, certain unique coupled fixed point results in ordered metric space have
been proved. This chapter has been divided into two sections. In section 7.1, some
coupled fixed point theorems have been established. An example is also given in order
to illustrate the effectiveness of our result at the end of the Section. In section 7.2,
coupled fixed point results have been proved for rational expressions in partially ordered

metric spaces.

7.1 Coupled Fixed Point Results in Partially Ordered Met-

ric Spaces

In this segment, the following result has been established in complete ordered metric
spaces.

Theorem 7.1. Suppose (X, <) be a partially ordered set endowed with a metric d so
(X, d) is complete. Let a map F: X x X — X possess the property of mized monotone
on X and there exist ro,s9 € X with ro < F(ro, so) and so > F(so, ro). Let there
exist : [0,00) — [0,00) is a continuous and non decreasing function, it is positive in
(0,00),%(0) =0 and tllglo P(t) = 00; so that

d(F(r,s), F(t,v)) <d(r,t)+(d(s,v)) (7.1)

forallrt,s,v e U, witht <r,v>s. Presuppose,
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I) F is continuous or
IT) X has the subsequent properties,

(a) if an increasing sequence {rp} in X converges to some point t* € X, then

ry < t*, for each n,

(b) if a decreasing sequence {s,} in X converges to some point v* € X, then

Sn > v*, for each n.
Then F has a coupled fixed point (t*,v*) € X x X.

Proof. Take rg,s9 € X and set 11 = F(ro,s0) and s; = F(sg,79). Repeating this

process, set rp11 = F(rp, sy) and sp11 = F(8p, 7). Then by (7.1), we have

d(rn, Tnt1) = d(F(Tn-1, $n-1), F'(rp, $n)) < d(rn—1,70) + (d(sn-1, sn)), (7.2)
and similarly,

d(sn, Snt1) = d(F(8n—1,7n-1), F'(sn,7n)) < d($p—1,8n) + P (d(rn-1,77)). (7.3)

By adding, we have
Pn < D1 + Y(Pn-1). (7.4)

Let Pn = d(rn, Tny1) + d(Sn, Spr1)-

If 3 ny € N* such that d(ry,,7n,—1) = 0, d(sp,,Sn,—1) = 0, then rp, 1 = 1y, =
F(rn,—1,8n1-1)s8n1—1 = Sny = F(Sny,Tny;—1) and 7y, _1;8p, -1 is fixed point of F' and
this completes the proof. In other case d(ryy1,7y) # 0; d(Sp+1,8n) # 0,V n € N. Then

by using assumption on v , we have,
Pn < Pn1 +Y(pn-1) < pu (7.5)
pp IS a non - negative sequence and posses a limit §*. Taking limit n — oo, we have
0 <6 +(8%)

and as a result ¥ (d*) = 0. Though our assumption on ¢ , we conclude 6* = 0, ie.
ayie ) =0
lim d(rp41,7n) + d(Spt1,8,) = 0.

n—o0

— lim d(rp41,m0) = lUm d(spt1,8,) = 0. (7.6)
n—oo n—oo
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Next, we prove that {r,}, {s,} are Cauchy sequences. Presuppose that atleast one {r,}
or {s,} be not a Cauchy sequence. Then 3 >0 and subsequence of integers ng, mjy with

ng > my > k, such that
Tk = d(Timy,Tny) + d(Smy,Sn,) > 6, VE=1,2,3.... (7.7)

Further, conforming to my, we can take ny in such a manner that it is least integer with

ng > my, > k fulfilling equation (7.7), we have
d(rmk» Tnk—l) + d(smkv Snk—l) <e. (78)
Using (7.7) and (7.8) and triangle inequality, we get

e < Tk = d(ka, 7"nk) + d(smkpsnk)
< d(?"mk, Tnk—l) + d(?"nk_]_, Tnk) + d(Smk, Snk—l) + d(snk—h Snk)
= d(?‘mk, rnk—l) + d(smk» Snk—l) + d(rnk—la rnk) + d(snk—b Snk)

< € + pnk—l- (79)
Letting k — oo and applying (7.6), we get

lim 7, =¢>0. (7.10)

n,mM—00
Now, we get
d(r7rnk+1a Tnk—i-l) = d(F(ka,; Smy, )7 F(Tnk,; Sny, ))

A(F (Pugs 50 ) F(Ping - 5my)) (7.11)
d(T'nk, ka) + ¢(p(bnk ’ 'Smk))

IA

Similarly,

A(Smy+1, Snp+1) = Ad(F(Smy> Tmy, )s F(Sny, Tny))
= d(F(Snk, 7'1zk)a F(Smka 7mk)) (7'12)
d(snk7 Smk) + d)(d({rnk, ka)),

Using (7.11) and (7.12), we get

The1 < 7% + (k) (7.13)

Vkel, 23,...taking k — oo of both sides of equation (7.13) and from equation (7.10),

it follows that € = lim rg1q < lim 7 + ¥(r;) < € a contradiction. Therefore {r,} and
k—o0 k—o0
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{sn} are Cauchy sequences. We now prove that F(t*,v*) = t*, F(v*,t*) = v*. We shall
distinguish the cases (I), II(a) and II(b) of the Theorem 7.1.
As X is complete, 3 t*,v* € X so lim r, = t*, lim s, = v*.

n—oo n—oo

We now show that if the assumption (1) holds, then (t*, v*) is coupled fixed point of F.

As, we have

t* = lim rpq11 = lm F(ry,s,) = F( lim 7,, lim sn) = F(t*,v"),
n—oo n—oo n—ro0 n—roo

v¥ = lim spp1 = lim F(sp,r,) = F( lim s,, lim rn) = F(v*,t")
n—oo n—oo n— oo n—oo

Therefore, (t*,v*) is coupled fixed point of F.

Suppose now that the condition II(a) and II(b) of the theorem holds. The sequence

{rn} = t*, {sp} — v*

d(F(t*,v*),t") < d(F(t",v*), rp41) + d(rpe1,t7)
=d(F(t*,v*), F(rn,sp)) + d(rpa1,t%)
<d(t*,rp) +Y(d(v*, sp)) + d(rper, t5).

Letting n— oo, we have
d(F(t*,v"),t%)<0 +1(0) = 0.

This implies that F(t*,v*) = t* similarly, we can show that F(v*,t*) = v*. This

completes the theorem.

Theorem 7.2. Suppose the assumptions of Theorem 7.1 hold. In addition, suppose that
z € X s comparable to t and v for all t,v € X. Then F has a unique coupled fixed
point.

Proof. Presuppose (t',v'), (t*,v*) € X x X are coupled fixed points of F.

Consider the subsequent two cases:

Case 1: (t',v') and (t*, v*) are comparable. We get
d(t', 1) = d(F(t',0"), F(£*,07)) < d(t', 1) + ¢ (d(v',v")),

similarly,
d(v',v") = d(F(v', o), F(v",u%)) < d(v', v") + ¥ (d(u',u")).

It follows that
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A(t',t*) +d(v',v%) < d(t', ) +d(v',v") +ld(v],v7) +d(t )]
= d(t',t*) +d(v',v*) =0
So, t' = t*, v = v* . The proof is complete.

Case 2: Suppose now that (¢',v') and (t*,v*) are not comparable. Choose an element

(w, z) € X comparable with both of them.

Monotonicity = (F™(w, z), F™(z,w))
() =Gt G
< (fnte 1) () (o) (i)
(

(
n(’U*,t*
< d(t*,w) + P (d(w", 2))) + (d(v*, 2) + (d(t*, w)))

+ (d(w, t") +P(d(2,v))) +

3

d(z,v") +(d(w,t"))) = 0.

so t* =t v* = . The proof is complete.

Example 7.1. Suppose X = [0,00) be endowed with the standard metric d(r,s) =
|r —s|,Vr,s € X. Then (X,d) is complete metric space.

Consider the map F: X x X — X defined by

-2
r 5, 2s<r.

)

F(r,s) =

2
Let us take 1): [0,00) — [0, 00) such that ¥(t) = ?t

Evidently F' is continuous and has the property of mized monotone. Moreover there are
ro = 0; so =0 in X such that ro = 0 < F(0,0) = F(ro,s0) and s = 0 > F(0,0) =
F(s0,70).

Then it is obvious (0,0) is the unique coupled fixed point of F.

Now, we have following possibility for values of (r,s) and (t,v) such that r>t, v>s

d(F(r,s), F(t,v)) = d <r —2s t— 2v> 1

=) =gl =205 - )

IN

1 2
2l =)+ 215~ v)
=1+ 215 — ) = d(r, )+ ¥(d(5,0).

IA

Therefore, all the assumptions of Theorem 7.1 hold.

Hence, F has a coupled fized point in X.
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7.2 Coupled Fixed Point Results for Rational Contractions

In the following section, some coupled fixed point theorems for rational contractions

have been presented.

Theorem 7.3. Suppose (X, <) be a partially ordered set endowed with a metric d so
(X,d) is complete. Presume a map F: X x X — X possess the property of mized
monotone on X. Let a, 8 € [0,1) and L > 0 be positive real numbers with (8 + «) < 1,
forallr,s,v,t € X, satisfy

d(F(r, ), F(t,0)) < a0 Zzzflg’ F0) L saer

+ Lmin{d(r, F(r,s)),d(t, F(t,)), (7.14)
d(t, F(r,s)),d(r, F(t,v))}.

Presuppose

I) F is continuous or
II) X has the subsequent properties,

(a) if an increasing sequence {rp} in X converges to some point r € X, then
rn <1, for each n,
(b) if a decreasing sequence {sn} in X converges to some point s € X, then

Sp > s, for each n.
Then F has a coupled fized point.

Proof. Take 79, so € X. Set r1 = F(ro, s0) and s1 = F(sg,7r0). Repeating this process,
set rpi1 = F(ry, sp) and 8,41 = F(8y, 7). Then by (7.14), we have

d(rna Tn-i—l) = d(F(Tn—lv 5n—1)7 F(Tm Sn))
d(Tn—ly F(Tn—lv Sn—l))d(rnv F("'na Sn))
d(rn—la rn)

+L min{d(rnflyF(Tnflv57171));(1(7’7”F(Tmsn));
d(rmF(rn—l»sn—l))ad(rn—lvF(rnasn))}

d(rnfly Tn)d(r'n,; 7"n+1)
p— d —
“ d(rp—1,7mn) +Ad(ra—1,mn)

<a + ﬂd(rn—lﬂnn)

+ L min{d(rn—1,7n), d(rn, Tn+1), (T, 7n), d(Tn—1,Tn41) }

which implies that

d(rp, Tn+1) < d(rp—1,7n). (7.15)
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Similarly, we get

d(3n7 Sn—i-l) S ﬁ d(sn—la Sn)- (716)
1l-a
By adding (7.15) and (7.16), we have
dy < T fadn_l (7.17)
Let dp = d(rp, "nt1) + d(Sn, Spt1)-
Consequently, if we set A = %, then we have
dp, < Adp—1 < ... < \dy. (7.18)

If dy = 0, then (rg, so) is a coupled fixed point of F.

Presume dy > 0. Thus, for every k € N, by repeated application of triangle inequality,

we obtain

d(Tn, Tnk) + d(Sn, Snk) < [d(rn, Tns1) + d(rntr, Tnge) + oo+ d(Tprk—1, Tork)]
+ [d(sn, Snt1) + d(Snt1, Spt2) + -« + d(Sntk—1, Sntk)]
<dp+dpy1+ .ot dpgr-1
_ - AF)

<7 do—0 as n — oo. (7.19)

Therefore {r,} and {s,} are Cauchy sequences.

As X is complete, 3 s € X so lim r, = r, lim s, = s. Now, we show that if the
n—oo n—oo

assumption (I) holds, then (r, s) is coupled fixed point of F.

As, we have

r= lim r,1 1 = lim F(ry,s,) = F( lim r,, lim sn) = F(r,s),
n—oo n—oo n—oo n—oo

s= lim spy1 = lim F(sp,ry) = F( lim s,, lim rn) = F(s,1).
n—o0 n—ro0 n—o0 n—oo

Consequently, (r,s) is coupled fixed point of F'.

Now, presume that the condition II(a) and II(b) of the theorem holds.

The sequence {r,} —r, {sp} = s

d(rp, F(ry, $p))d(r, F(r,s))
d(rp,m)

+ L min{d(rp, F(rpn, sn)),d(r, F(r, s)),

d(F(ry, sn), F(r,s)) < « + Bd(ry,r)
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d(rn, F(r,8)), d(r, F'(Tn, sn))}
Letting n— oo, we have d(F(r,s),r) < 0.

This implies that F(r,s) = r. Similarly, we can show that F(s,r) = s. This completes

the theorem.

Corollary 7.4. Suppose ( X,<) be a partially ordered set endowed with a metric d so
(X,d) is complete. Presume a map F: X x X — X possesses the property of mized
monotone on X . Let there be non-negative real numbers 3, € [0,1) with + a < 1 for

all rys, t,v € X, we have

d(r, F'(r,s))d(

t, F(t,v))
d(r,t)

d(F(r,s), F(t,v)) < « + Bd(r,t).

Suppose

1) F is continuous or
IT) X has the subsequent properties,

(a) if an increasing sequence {rn,} in X converges to some point r € U, then

rn, <1, for each n,

(b) if a decreasing sequence {sp} in X converges to some point s € U, then

Sp > S, for each n.

Then F has a coupled fixed point.

Proof. Take L = 0 in Theorem 7.3, we acquire Corollary 7.4.

Theorem 7.5. Let the assumptions of Theorem 7.3 hold. We acquire the uniqueness of

the coupled fixed point of F.

Proof. Let (r,s) and (#,$) are coupled fixed points of F, then, F(r,s) = r, F(s,7) =

s, F(#,8) =7 and F($,7) = §. We shall prove that r =7, s = .
Consider the subsequent two cases:

Case 1: If (r,s) and (7, §) are comparable. We get

d(r, F (7, $))d(r, F(r,s))
d(,r)

+ L man{d(7, F(7, §)), d(r. F(r, 5)),
d(#, F(r,s)),d(r, F(r. 5))}

d(#,r) =d(F (7, $),F(r,s)) < « + pd(#,r)
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< Bd(#,r),

which provides d(#,r) < 0,8 < 1 (a contradiction). Thus r = 7.
In similar way,  d($,s) = d(F($,7), F(s,r)) <0.
Thus, s = §. Hence, (1, s) is a unique coupled fixed point of F'.

Case 2: Presume (r,s) and (7, §) are not comparable. By supposition there is (z,u) €
X x X comparable with both of them.

We define sequences {z,}, {u,} as follows
20 =2, up = u, 2p+1 = F(2n, un) and up11 = F(up, 2,) V10

Since (z,u) is comparable with (r, s), we may suppose that (r,s) > (z,u) = (20, up)-

It is easy to prove by using the mathematical induction, that
(r,8) > (2n, upn), Vn. (7.20)

From (7.14) and (7.20), we have
d(r, F(r, $))d(zn, F(zn, un))
d(r, zn)
+ L min{d(r, F(r,s)),d(zn, F(zn, un)),
d(zn, F(r,s)),d(r, F(zn, Un))}
< Bd(r, zn). (7.21)

d(F(T, S)vF(Z'mun)) <

+ Bd(7"7 Zn)

Similarly, we also have
d(un+t1,8) < Bd(up, s). (7.22)

Adding (7.21) and (7.22), we get

d(?”, Zn-i—l) + d(un+17 S) < ﬁ[d(r, Zn) =+ d(um 3)]
S /62 [d(?", Z'n—l) + d(un—h S)]

< B Yd(r, z0) + d(ug, )] — 0 asn — oo.

Thus,
lim d(upy1,8) = li_>m d(r, znse1) = 0. (7.23)

n—oo

In a similar way, we can show that

lim d(upt1,$) = lim d(#, zp41) = 0. (7.24)

n—ro0 n—oo

118



Chapter 7. Results on Coupled Fixed Point in Partially Ordered Metric Spaces

From (7.23) and (7.24), we obtain r =7 and s = §.

Example 7.2. Suppose X = [0,1] with metric d(r,s) = maz{r,s}, for all r,s € X.

Then (X, d) is complete metric space.
Consider the map F: X x X — X defined by

r/(s+5) ifs<r,
0 if not.

F(r,s) =

Euvidently F is continuous and possesses the property of mized monotone. Furthermore
there are rg = 0; so =0 in X sorg =0 < F(0,0) = F(ro,so) and sp = 0 > F(0,0) =
F(SQ, ’7‘0) .

Then it is obvious (0,0) is the unique coupled fixed point of F.
Now, we have following possibilities for values of (r,s) and (t,v) so r>t, s<v.

Case 1: If t>v,r>s, we get

t r
F(t,v) = oS F(r,s) = P
— d(F(T‘,S),F(t,U)):max{si57vi5} - 8:—5 = % <t7r+7'>
d(r, F(r,s))d(t, F(t,v))
<« d(?", t) +ﬁd(r» t)

+ L min{d(r, F(r,s)),d(t, F(t,v)),d(t, F(r,s),d(r, F(t,v))}.

Case 2: If t < v, r>s, we get

,
s+5

r r 1 /tr
K [ pr— A 2 - <_ .
— d(F(r’g),F(f,"U)) 777(1:1‘{8_‘_5,0 S+5_3(r Jrr)
S

F(t,v) =0, F(r,s) =

Case 3: If t>v, r < s, we gel

F(t,v) = ¢ 3 F(r,s) =0.

v+

v+5
- ad(r, F(r,s))d(t, F(t,v))
- d(r,t)

+ L min{d(r, F(r,s)),d(t, F(t,v)),d(r, F(t,v)),d(t, F(r,s))}.
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Case 4: Ift <wv, r < s, we get F(t,v) =0 and F(r,s) =0.
Thus all the assumptions of Theorem 7.3 hold.
Hence, F has a coupled fixed point in X .

Theorem 7.6. Suppose (X, <) be a partially ordered set endowed with a metric d so
(X,d) is complete. Presume a map F : X x X — X possesses the property of mized
monotone on X. Presuppose there exist non-negative real numbers 3, € [0,1) and
L >0 with (B+«a) <1, for all r,s,t,v € X, we have

d(t,F(t,v))[1 +d(r, F(r,s))] .
[L+d(r,t)] + pdlrt) (7.25)
+ L min{d(r, F(r,s)),d(t, F(r,s)),d(r, F(t,v))}.

d(F(r,s), F(t,v)) < «

Suppose

I) F is continuous or
II) X has the subsequent properties,
(a) if an increasing sequence{r,} in X converges to some point r € X, then

rn <1, for each n,

(b) if a decreasing sequence {s,} in X converges to some point s € X, then

Sp > S, for each n.
Then F has a coupled fixzed point.

Proof. Take rg,sp € X. Set r1 = F(rg,s9) and s1 = F(sg,79). Repeating this process,
set rpi1 = F(ry, sp) and 8,41 = F(8n, 7). Then by (7.25), we have

d(rp,nt1) = d(F(rp—1, Sn—1), F(rn, sn))
S ad(rnv F(Tm Sn))[l + d(""n—l» F(rn—l, Sn—l))]

(14 d(rp—1,7)] + Bd(rn-1,7n)

+Lmin{d(rn—l-,F(Tn—lySn—l))ad(TmF(rn—laSn—l))ad(rn—lyF(Tmsn))}

d(T’n, Tn+1)[1 + d(rn_17 Tn)]
14 d(rn_1,7n)] + Bd(rn-1,75)

+L min{d(rn—l» 7"71)» d(?"n, rn)v d(Tn—h 7"n+1)}7

which implies that
d —d 26
(Tm Tn+1) < 1 (Tn 1, rn)- (7 )
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Similarly, we get

d(?/n, yn+1) < 1 f ad(yn—la Z/n)- (7'27)
By adding (7.26) and (7.27), we have
dy < p dn—1 (7.28)
T l-a
Let dp, = d(rn, rnt1) + d(Sp, Spa1)-
Consequently, if we set A = %, then we have
dp, < Adp—1 < ... < \dy. (7.29)

If dy = 0, then (rg, so) is a coupled fixed point of F.

Assume that dg > 0. Then, for every kK € N | by repeated application of triangle

inequality, we obtain

A(Tn, Tnk) + d(Sns Snk) < [d(rn, Tns1) + d(rntr, Tng) + oo+ d(Tpgk—1, Tork)]
+ [d(8ns Sn41) + d(Snt15 Sn42) + -+« + d(Sntk—1, Sntk)]
= [d(rn, rn+1) + d(sn, Sn1)] + [d(rng1, rnt2)
+d(spt1; snt2)] + -+ [Tk 1, Tok) + d(Snrk—1, Snrk)]
<dp+dp1+ ..o dugr-1

n(1 _ Yk
o=

<=7 do — 0asn — oo. (7.30)

Therefore {r,} and {s,} are Cauchy sequences.

As (X,d) is a complete metric space, 3 7,5 € X so li_>m Ty =T, li_>m s, = s. Now, we
n—oo n—oo
show that if the assumption (I) holds, then (r, s) is coupled fixed point of F.
As, we have
r= lim rpy; = lim F(r,,s,) =F ( lim 7,, lim sn) = F(r,s),
n—oo n—oo n—oo n—oo

s= lim spy1 = lim F(sp,ry) =F ( lim s,, lim rn) = F(s,1).
n—oo n—oo n—oo n—oo

Thus, (r,s) is coupled fixed point of F.

Assume now that the condition II(a) and II(b) of the theorem holds.

The sequence {r,} —r, {sp} = s

d(rn, F(rn, 50))[1 + d(r, F(r, s))]
[14d(r,r)]
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+ L min{d(r, F(r,s)),d(rn, F(r,s)),d(r, F(rn, sn))}-

Letting n— oo, we have
d(F(r,s),r) <0.

This implies that F(r,s) = r. In the same way, we can prove that F(s,r) = s. This

completes the theorem.

Corollary 7.7. Suppose (X,<) be a partially ordered set endowed with a metric d
so (X,d) is complete. Presume a map F: X x X — X possesses the property of mized
monotone on X . Suppose there exist non-negative real numbers 8, « € [0,1) with S+« <

1, for all r,s,t,v € X, satisfy

dt, F(t,v)[1 + d(r, F(r, s)]

d(F(r,s), F(t,v)) < « [1+d(r,t)]

+ Bd(r, t).

Suppose

I) F is continuous or
II) X has the subsequent properties,

(a) if an increasing sequence {rn} in X converges to some point r € X, then

rn <1, for each n,

(b) if a decreasing sequence {s,} in X converges to some point v € X, then

Sp > S, for each n.
Then F has a coupled fixed point.

Proof Take L = 0 in Theorem 7.6, we acquire Corollary 7.7.

Theorem 7.8. Let the assumptions of Theorem 7.6 hold. We acquire the uniqueness of

the coupled fixed point of F'.

Proof. Let (r,s) and (#,$) are coupled fixed points of F, then, F(r,s) =r, F(s,r) =
s, F(#,$) =7 and F($,7) = §. We shall show that r =7, s = 4.

Consider the subsequent two cases.

Case 1: Let (r, s) and (7, §) are comparable. We have

d(#, F(r, $))d(r, F(r, s))
d(#,r)

+ L min{d(#, F(#,8)),d(r, F(r, s)),
d(r, F(r. s)),d(r, F(#,5))}

d(#,r) = d(F(#,8),F(r,s)) < a + Bd(#,r)
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< Bd(r,r),

which provides d(#,7) <0, 8 < 1(a contradiction). Thus r = 7.
In similar way, d($, s) = d(F($,7), F(s,r)) <0.

Thus, s = $§. Hence, (7, s) is a unique coupled fixed point of F'.

Case 2: Presume (r,s) and (7, §) are not comparable. By supposition there is (z,u) €
X x X comparable with both of them.

We define sequences {z,}, {un} as follows
20 =2, Ug = U, 2Zpt1 = F(zn,un) and up11 = Flup, 2,) Yn.

Since (z,u) is comparable with (r, s), we may suppose that (r,s) > (z,u) = (20, up)-

It is easy to prove by using the mathematical induction,
(r,8) > (2n, upn) Vn. (7.31)

From (7.25) and (7.31), we have

d(zm F(Zm Un))[l + d(?”, F(T» 3))]
[14d(r, z,)]

+ L min{d(r, F(r,s)),d(r, F(zp,un)), d(zn, F(r,s))}

d(F(r,s), F(zn,un)) < + Bd(r, zp)

or
d(r, zn+1) < Bd(r, z). (7.32)

Similarly, also we have
d(un-i-la 3) < /Bd(um S)' (733)

Adding (7.32) and (7.33), we get

d(r, zny1) + d(Ung1, 5) < ﬁ[d(r, zp) + d(um 5)]
< 62 [d(’l‘, anl) + d(unfly 5)]

< B Yd(r, 20) + d(ug, s)] — 0 asn — oo.

Thus,
lim d(upy1,s) = lim d(r, zp41) = 0. (7.34)

n—oo n—oo

In similar way, we can show that

nli_)n;@d(unﬂ,é) = nh_)ngo d(7, zn41) = 0. (7.35)
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From (7.34) and (7.35), we obtain r =7 and s = §.

Example 7.3. Let X = [0, 1] with metric d(r,s) = |r —s|, for allr,s € X. Then (X,d)
is complete metric space.
Consider the map F: X x X — X defined by

F(r,s) = (r1—73) ifs <.

Evidently F is continuous and possesses the property of mized monotone. Also there
are o = 0;50 =0 in X such that ro = 0 < F(0,0) = F(ro,s0) and sop = 0 > F(0,0) =
F(s9,70)-

Then it is obvious that (0,0) is the unique coupled fized point of F.

Now, we have following possibility for value of (r,s) and (t,v) such that r>t, v>s.

A(F(r.5), F(t,0)) = | 7= = =0 < Sl = 0]+ (s — o)) < Sl — 1
d(t, F(t,v)[1 +d(r, F(r,s)]
so T+ dr 1) ()

+ L min{d(r, F(r,s)),d(r, F(t,v)),d(t, F(r,s))}.
Thus all the conditions of Theorem 7.6 hold.

Hence F has a coupled fized point in X.
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Conclusion

As presented at the beginning of this work, the role of the fixed point theory is a major

one in developing the science and the technique, through the pure theoretical contribu-

tions, as well as through the applicative contributions. Bhaskar and Laksmikantham,

extend this theory to partially ordered metric spaces and introduce the concept of cou-

pled fixed point for mixed-monotone operators, obtaining results about the existence, the

existence and the uniqueness of the coincidence points for mixed g-monotone operators.

We consider that the results obtained in couple fixed points are of a great importance

within the fixed point theory.

1. Obtaining results as concerns the existence and the uniqueness of certain coupled

fixed point theorems for mixed monotone mapping with a new rational contractive

condition in ordered cone metric spaces, in which the operator verifies another

contraction type.

2. Obtaining results as regards the existence and the uniqueness of the couple coinci-

dence point possess the property of mixed g-monotone operators in the framework

of ordered metric spaces and G-metric spaces. We conclude some applications on

integral equations by using coupled fixed point theorems in ordered metric spaces

and G-metric spaces.

3. We introduce a new idea of Y-cone metric spaces and study certain topological

properties of Y-cone metric spaces. Then some couple common fixed point results

have been generalized using the property of mixed weakly monotone in ordered

Y-cone metric spaces.
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Future Scope of Study

Based on present research study, it is suggested that b-metric spaces [45], S-metric
spaces [130], A-cone metric spaces [5] have sufficiently wide mathematical structures.
They opens the scope of their applicability in practical situations to a large extent. The
analysis of these spaces, in particular the investigation of coupled fixed point, coupled
coincidence and coupled common fixed point theorems defined on such spaces may be

fruitful from many angles.
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