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Abstract

Pontryagin duality theorem makes sense beyond the assumption of local compactness,
and hence it has been studied for more general classes of topological groups in different
directions using diverse techniques and approaches, but the problem of characterisation
and extension of the class of Pontryagin reflexive topological abelian groups proposed
in the pioneering paper of S Kaplan published in the year 1948 is still unsolved. In this
work, we address the problem of extension of the reflexive abelian groups beyond locally
compact abelian (LCA) topological groups with reference to Pontryagin duality theory
and following three objectives are achieved:

1. To study the reflexivity in topological vector spaces and convergence vector spaces.
2. To analyse the topological and convergence structures on the groups and the

character groups with reference to Pontryagin duality theory.
3. To examine the extensions of the Pontryagin reflexive groups to the wider class of

groups than locally compact abelian groups.

The inspiration to explore the extensions of the Pontryagin duality theory to the
wider class of groups than LCA groups is two-fold: one aspect is the duality theory of
topological vector spaces which is restricted to the class of locally convex spaces, and
another aspect is the duality theory of topological abelian groups which is restricted to
locally quasi-convex groups. As the roots of this research lie in the theory of locally
convex vector spaces so, in order to develop this research we have focused mainly on the
framework of general topology and functional analysis.

This thesis is divided into five chapters which are further divided into sections. An
overview of the chapters is as follows:

The first chapter of the thesis is preliminary in nature and presents the basic terms and
notations related to topological groups and Pontryagin duality theory.

The second chapter deals with extensions of Pontryagin duality theory in various
classes of topological groups which are not necessarily locally compact. Special emphasis
is given to present the influence of functional analysis on the development of the subject.

The third chapter is devoted to present a self-contained introduction to (filter)
convergence groups. This chapter contains certain examples and properties of
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convergence groups with particular reference to homeomorphism groups. Further, this
chapter deals with the properties of convergence groups with boundedness. We introduce
the notation of bounded convergence groups and present certain properties of bounded
sets in convergence groups.

In the fourth chapter, we introduce the notation of convergence measure space which is
based on the concept of topological modification of a convergence space, and we present
how this kind of approach can be used to study the class of locally compact convergence
groups. A general definition of a convergence measure space is still unknown and is
required for analysis over convergence groups.

In the fifth chapter, we define local quasi-convexity for the class of convergence groups
(convexity here is not an algebraic property of group) and prove that if a convergence
group is c-reflexive then it must be locally quasi-convex and hence, we obtain that in
contrast to the topological case locally compact abelian convergence groups do not lie in
the class of locally quasi-convex convergence groups. Further, we prove that the condition
of local quasi-convexity is sufficient for a compact (non-topological) convergence group
(if it exists) to be c-reflexive. It is worth mentioning; we do not know any example of a
compact convergence group which is not topological. So, the problem of existence of a
Hausdorff non-topological compact convergence group is still open. Finally, this chapter
ends with certain categorial aspects of the Pontryagin dual and the continuous dual.

The thesis ends with some concluding remarks and an extensive bibliography.
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Abstract

Pontryagin duality theorem makes sense beyond the assumption of local compactness,
and hence it has been studied for more general classes of topological groups in different
directions using diverse techniques and approaches, but the problem of characterisation
and extension of the class of Pontryagin reflexive topological abelian groups proposed
in the pioneering paper of S Kaplan published in the year 1948 is still unsolved. In this
work, we address the problem of extension of the reflexive abelian groups beyond locally
compact abelian (LCA) topological groups with reference to Pontryagin duality theory
and following three objectives are achieved:

1. To study the reflexivity in topological vector spaces and convergence vector spaces.
2. To analyse the topological and convergence structures on the groups and the

character groups with reference to Pontryagin duality theory.
3. To examine the extensions of the Pontryagin reflexive groups to the wider class of

groups than locally compact abelian groups.

The inspiration to explore the extensions of the Pontryagin duality theory to the
wider class of groups than LCA groups is two-fold: one aspect is the duality theory of
topological vector spaces which is restricted to the class of locally convex spaces, and
another aspect is the duality theory of topological abelian groups which is restricted to
locally quasi-convex groups. As the roots of this research lie in the theory of locally
convex vector spaces so, in order to develop this research we have focused mainly on the
framework of general topology and functional analysis.

This thesis is divided into five chapters which are further divided into sections. An
overview of the chapters is as follows:

The first chapter of the thesis is preliminary in nature and presents the basic terms and
notations related to topological groups and Pontryagin duality theory.

The second chapter deals with extensions of Pontryagin duality theory in various
classes of topological groups which are not necessarily locally compact. Special emphasis
is given to present the influence of functional analysis on the development of the subject.

The third chapter is devoted to present a self-contained introduction to (filter)
convergence groups. This chapter contains certain examples and properties of



convergence groups with particular reference to homeomorphism groups. Further, this
chapter deals with the properties of convergence groups with boundedness. We introduce
the notation of bounded convergence groups and present certain properties of bounded
sets in convergence groups.

In the fourth chapter, we introduce the notation of convergence measure space which is
based on the concept of topological modification of a convergence space, and we present
how this kind of approach can be used to study the class of locally compact convergence
groups. A general definition of a convergence measure space is still unknown and is
required for analysis over convergence groups.

In the fifth chapter, we define local quasi-convexity for the class of convergence groups
(convexity here is not an algebraic property of group) and prove that if a convergence
group is c-reflexive then it must be locally quasi-convex and hence, we obtain that in
contrast to the topological case locally compact abelian convergence groups do not lie in
the class of locally quasi-convex convergence groups. Further, we prove that the condition
of local quasi-convexity is sufficient for a compact (non-topological) convergence group
(if it exists) to be c-reflexive. It is worth mentioning; we do not know any example of a
compact convergence group which is not topological. So, the problem of existence of a
Hausdorff non-topological compact convergence group is still open. Finally, this chapter
ends with certain categorial aspects of the Pontryagin dual and the continuous dual.

The thesis ends with some concluding remarks and an extensive bibliography.



Chapter 1

Introduction and Preliminaries

The most versatile structure based on algebraic operations is the structure of a group.
In the mathematical environment, the group structure coexists overwhelmingly with an
additional structure of topology, limit, measure or order. The presence of a geometric
structure of topology with the algebraic structure of the group enables us to define the
convergence and continuity and hence, plays a vital role in the analysis. One of the
most prominent ways to obtain information about the space is to study the functions
which preserve the underlying structure of the space. For instance, in functional analysis,
the underlying object of study is a vector space with compatible topological or some
limit-related structure, and the information about the vectors is extracted by using the
continuous linear functionals. The continuous dual space and hence the reflexivity theory
plays the most prominent role in the development of locally convex spaces which further
has a profound impact on the progress of duality theory of groups. The primary purpose
of this thesis is to contribute to the theory of reflexive abelian groups (with some limit
related structures) that is, to present the local aspects of reflexivity in topological groups
those are not necessarily locally compact abelian and the objectives of the research are
accomplished by proving new results to widen the knowledge on reflexivity in groups
with limit related structures.

Influenced from the study of the group of continuous transformations Leja, F.
introduced the modern concept of the topological group as an object which is a blend
of both algebraic and topological structures with group inverse continuous and group
multiplication jointly continuous. The versatility of the structure makes a topological
group a significant object of study in different branches of mathematics which include
representation theory, topological algebra and harmonic analysis. An important field of
investigation to get a better insight of topological groups is the study of their structure.
This kind of investigation depends on the representation theory. The idea behind the
representations is to connect the topological groups to more concrete objects like matrices
and then to study these new objects to investigate the properties of the topological groups.
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Chapter 1. Introduction and Preliminaries

While working with the irreducible representations, Peter and Weyl obtained the
existence of invariant integrals on compact Lie groups. Using the tools of the abstract
integration theory, Haar proved the existence of a left invariant integral on locally compact
groups and laid the foundations of modern harmonic analysis. Later, von-Neumann
proved the existence as well as the uniqueness of an invariant integral (in general) for
the compact groups. Another important discovery of that period was the Pontryagin
duality theorem. Using the method of characters of Peter and Weyl on the theory
of irreducible representations, Pontryagin obtained a generalisation of the fundamental
structure theorem for finitely generated abelian groups to compact groups with a countable
base. In most of these studies (Haar integral and Pontryagin duality theory) the
topological groups were restricted to satisfy certain axiom of countability, but with
the development of the subject, the countability conditions on topological groups in
these results are removed. van-Kampen proves the duality theorem for all (without any
countability condition) locally compact abelian (LCA) groups. With the progress of
functional analysis and measure theory, several alternative treatments of the duality theory
are proposed. Rudin proves the Pontryagin duality theorem using the powerful tools of
functional analysis (Banach algebras) and measure theory (Haar measure) and this proof
presents an elegant combination of algebra and topology (a brief outline of this proof is
presented in Chapter 4, further for a proof without much use of functional analysis we
refer the reader to [39]).

The striking consequences of the Pontryagin duality theorem enable us to describe the
topological or algebraic property of LCA groups in terms of the respective properties of
their dual groups. The theorem proves that an LCA group is canonically isomorphic to
its double dual group and explains why the Pontryagin duality is satisfied in these groups.
In addition to this, the theorem serves as a base for abstract harmonic analysis (analysis
over topological groups) because the dual group is used as the underlying group in the
abstraction of the Fourier transform and is an essential tool to study the structure of LCA
groups. Several fields of research are devoted to these kinds of studies which include
the study of the character of all groups, the study of the structure of topological groups,
extensions of the (abelian or non-abelian) duality theorems, analysis over topological
groups, study of amenable group, etc. The work of Kaplan [62] provides the first example
of topological groups beyond LCA groups which satisfy Pontryagin duality and brings
into the picture the problem of characterisation of the class of reflexive topological abelian
groups. To date different reflexivity theories viz. Binz-Butzmann reflexivity, Chu duality,
Tannaka-Krein duality, etc. are proposed and studied for different classes of (abelian and
non-abelian) topological groups.

Here we deal with the problem of extension of reflexive topological abelian groups
beyond the class of LCA groups with reference to Pontryagin duality theory. Most of
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1.1. Topological groups

this work is the study of abstract mathematical structures and their duals with particular
emphasis on the groups and vector spaces with topological or convergence structure.
In the rest of this chapter, we introduce the notations related to topological groups and
Pontryagin duality theory. In this chapter, we do not attribute the specific definitions and
results, but our primary sources are included in the bibliography.

1.1 Topological groups

An abstract group (G, .) with a compatible topological structure τ is called topological
group . The term compatible means that algebraic operation of the group is linked to the
topological structure through the property that the group inverse

g 7→ g−1

is continuous and group multiplication

(g1, g2) 7→ g1.g2

is jointly (in product topology) continuous, here g, g1, g2 represents the elements of the
topological group G. When no confusion is likely to occur, we write G for (G, τ, .) and
represent the group operation g1.g2 as g1g2. The conditions of continuity of product in
the definition of the topological group asserts the existence of the neighbourhoods P of
g1 and Q of g2 for every neighbourhood O of g1g2 such that PQ ⊂ O. Similarly, the
continuity of the inverse operation implies the existence of a neighbourhood P of g for
every neighbourhood Q of g−1 such that P−1 ⊂ Q. If H ⊂ G is a (algebraic) subgroup
of a topological group then, the group H with the subspace topology induced from the
group G is called a topological subgroup.

The right (g 7→ ga) and the left (g 7→ ag) translations of a topological group can also
be viewed as the action of a topological group onto itself. The very first application of
the continuity of the group operations is to prove that the left translation and the right
translation are topological isomorphisms (a topological isomorphism is a map between
two topological groups which is an isomorphism of groups and homeomorphism of
topological spaces).

Another consequence of the continuity of the operations allows us to define the
symmetric neighbourhoods of identity, that is, every neighbourhood V of identity contains
a neighbourhood U (say, = V ∩ V −1) such that UU−1 ⊆ V . Further, for each open set O
and a subset E of a topological group G, the sets O−1, EO and OE are open in G. So, for
any two elements g1 and g2 of a topological group G there is a topological isomorphism
( viz. left and right translations) of G onto itself which takes g1 to g2 and hence every
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Chapter 1. Introduction and Preliminaries

topological group is homogeneous. It follows from the homogeneity that space behaves
in the same way at all the points and it is not necessary to describe the basis of the whole
space in order to describe the topology of a topological group. A complete system of the
neighbourhood of identity Ue (or an open basis at the identity) is sufficient to describe
the topology of the topological group completely. It is a consequence of homogeneity
that, to prove a group to be locally compact it is sufficient to prove that the identity has a
neighbourhood with compact closure.

The very first application of the homogeneity and symmetric neighbourhoods lie in
proving the separation properties for topological groups. If a topological group satisfy
T1 (point sets are closed) axiom of separation, we can find disjoint neighbourhoods for
any two disjoint elements of the topological group which proves that every topological
group which satisfies T1 axiom of separation is Hausdorff. Further, in a topological group
satisfying T1 axiom we can find the open sets which separate the identity e from the
closed sets not containing e, this fact along with the homogeneity of the topological group
implies the regularity of the topological group. The regularity of the topological group
may be used to find the continuous function which separates the identity element from
the closed set not containing the identity and hence proves the complete regularity of
a topological group. So, for a topological group satisfying T1 separation property the
Hausdorff separation axiom, regularity and complete regularity are equivalent conditions.
In general definition of a topological group no separation axiom is involved, but for
the purpose of analysis, the topological groups are assumed to satisfy the T1 axiom of
separation. A topological group is metrizable under very mild conditions of being T0

and first countable and further, a topological group is said to be almost metrizable if the
quotient group G/H is metrizable for some compact subgroup H of the group G.

Another important class of groups is the class of k-group which include the class
of locally compact groups and metrizable groups. For a topological space (X, τ) the
k-extension of the given topology τ of X is the strongest topology (denoted kτ ) on X
which agrees with the topology τ on each compact set. So, the k-refinement ofX denoted
as kX is the same underlying set X with the topology kτ where U (called k-open set)
belongs to kτ if U ∩ K is relatively open in K for every compact subset K of X . The
space X is called k-space if kτ = τ or kX = X . A group is called k-group [66] if it
is a group with k-topology such that the inverse operation (of the group) is continuous
and product is continuous in k-products, (k-product is the product with the k-refinement
of the product topology). It is important to note that any topological group (by adding
the k-refinement to the topology) can be turned into a k-group but, it is not necessary that
every k-group is a refinement of k-topology. Another inequivalent definition of k-group is
due to Noble [75] where all the k-groups are considered to be topological groups and the
k-groups are characterised in terms of k-continuous functions (a function is k-continuous
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1.2. Pontryagin duality

if the restriction of that function to every compact subset (of its domain) is continuous.)

Taking the quotient is an important tool to generate new topological group from a
given topological group. Let H be one of the normal subgroups (the subgroup invariant
under inner automorphisms) of a topological group G and G/H denotes the set of all
cosets of the subgroup H in the group G. A subset O of G/H is said to be open if the
projection map

π : G→ G/H

defined as
π(g) = the coset of H which contains g,

is continuous. Equivalently, we can say that π−1(O) is open in G. With this quotient
topology, the group G/H is called the quotient space. Another way to generate a
new topological group from given topological groups is by taking the direct product of
given groups and endowing the product with the product topology (product topology is
compatible with group structure). As a consequence of Tychonoff’s theorem a product of
compact topological groups is compact, and hence, the product of finitely many locally
compact groups is locally compact.

In a topological group, the left and the right translations are homeomorphisms and this
fact makes it possible to introduce a notation of sufficiently near points in G and hence,
makes G a uniform space. For g1, g2 ∈ G we translate say g1 to the identity and the
proximity of g1 and g2 is evaluated by neighbourhood V of the identity (in some sense)
into which g2 is translated. Formally, the sets LU and RU in G×G corresponding to each
neighbourhood U of identity are defined as:

LU = {(g1, g2) : g1
−1g2 ∈ U};

RU = {(g1, g2) : g2g1
−1 ∈ U}.

As U runs through all neighbourhoods of the identity, the family of all sets LU

(respectively LR) is called left (respectively right) uniform structure compatible with
group G. The structure of a uniform space on a group allows us to use uniformly
continuous functions and Cauchy sequences to study convergence in these groups.

1.2 Pontryagin duality

Any abstract group, when equipped with a discrete topology, is a topological group.
Beyond this, the non-trivial examples of the abelian topological groups include the
(additive or multiplicative) group of reals or complex numbers with usual topology (of
the respective topological space). The underlying additive structure of a topological
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Chapter 1. Introduction and Preliminaries

vector space (in particular, of the locally convex spaces) serves as an important class
of the additive abelian topological groups with reference to duality theory. Matrix groups
are an example of non-abelian topological groups and include the group of all invertible
n × n matrices with real (or complex) entries equipped with the topology induced from
the usual topology of Rn2 (or Cn2). Some other classes of the matrix groups are the
special linear group, orthogonal and unitary groups which are endowed with the relative
topology as a subset of the corresponding matrix group. The set of all homeomorphisms
of a topological space with the binary operation as the composition of maps becomes
a group called homeomorphism group and the homeomorphism group equipped with a
suitable function space topology becomes a topological group.

An important topological group from the viewpoint of the Pontryagin duality is the
circle group (denoted, T). It is a group (multiplicative) of complex numbers with unit
modulus and with topology inherited as the subspace topology of C. This group can
be identified in several equivalent (isomorphic) forms viz. T ∼= R/Z ∼= U(1) where
R/Z and U(1) denotes the quotient group of reals by integers and 1× 1 unitary matrices
respectively. It is important to point out that the circle group is compact and metrizable.
The set Hom(G,T) of all homomorphisms

χ : G→ T

called characters, of an abelian group G to the circle group T with the operation of
point-wise multiplication

(χ1χ2)(g) = χ1(g)χ2(g)

is called the algebraic dual of G. Further, if G is a topological abelian group, then
the set of all continuous characters is called character group and is denoted as Ĝ or
CHom(G,T). The weakest topology on G with respect to which all elements of Ĝ are
continuous is called Bohr topology (denoted σ(G, Ĝ)) of G. A topological group is said
to have sufficiently many characters if for each g1, g2 in G there is some χ ∈ Ĝ such
that χ(g1) 6= χ(g2) and if a group has sufficiently many continuous characters then it is
said to be maximal almost periodic (MAP). Further, a topology τ1 on a group G is called
compatible with another topology τ2 on G if (̂G, τ1) = (̂G, τ2).

For the purpose of analysis, the character group can be topologised using different
function space topologies (for instance in case of topological vector spaces: weak, weak∗,
strong, Mackey, etc topologies are induced on the dual space). The most common is the
compact-open topology τco. The character group with a compact-open topology is called
a dual group (Ĝ, τco) of the underlying group. It is quite important to note here that this
definition of the dual group fails in general for the non-abelian case [44]. For a topological
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1.2. Pontryagin duality

abelian group G there is an evaluation homomorphism

αG : G→ ˆ̂
G defined as αG(g)(χ) = χ(g) ∀ g ∈ G,χ ∈ Ĝ

(not necessarily continuous, injective or onto) from the group to its double dual (dual of
a dual group). If this evaluation map is a topological isomorphism, then the group is said
to satisfy the Pontryagin duality or is called Pontryagin reflexive.

Now we define the annihilator and the polar which is the underlying concept in
defining locally quasi-convex topological groups. The annihilator O⊥ of a subgroup O of
a topological abelian group G and the inverse annihilator ⊥E of a subgroup E of Ĝ are
the subgroups of Ĝ and G respectively defined as:

O⊥ = {χ ∈ Ĝ : χ{O} = {1}};

⊥E = {g ∈ G : χ(g) = {1} ∀ χ ∈ E}.

The more general notion for the annihilator and the inverse annihilator of a subgroup is
the polar (HB) and the inverse polar (LC). For any subset H of G and L of Ĝ the polar
and the inverse polar of H and L respectively are subsets defined as:

HB = {χ ∈ Ĝ : χ(H) ⊂ T+};

LC = {g ∈ G : χ(g) ⊂ T+, ∀ χ ∈ L}

here T+ = {z ∈ T : Re (z) ≥ 0}. If for each g /∈ H (H is a subgroup ofG) there is some
χ ∈ H⊥ with χ(g) 6= 0 then H is called dually closed in G, that is, G\H has sufficiently
many characters. A subgroup H is said to be dually embedded (or h-embedded) in G
if each continuous character (or any character) on H can be extended to a continuous
character of the group G.

Conclusion

In this chapter, we have presented the basic facts about the topological groups and
Pontryagin duality theorem. In the next chapter, we present the influence of functional
analysis on the development of this subject, and the subsequent chapters are devoted
to present the results obtained while investigating the extensions of Pontryagin duality
theory to the class of filter convergence groups.
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Chapter 2

Duality in Topological Groups

2.1 Influence of functional analysis

The first instance of extension of Pontryagin duality theorem is due to Kaplan [62]
where he obtains the extension of the Pontryagin duality theorem for the infinite products
(
∏

i∈I Gi) and direct sums (
⊕

i∈I Gi) of reflexive groups. Similar results are obtained
by him in [63] for the (suitable) direct limit (lim

←
Gn) and inverse limit (lim

→
Gn) of

the LCA groups. Influenced by the work of Arens [4] on the reflexivity (in functional
analysis sense) in vector spaces, Smith [85], proves that the Banach spaces as topological
groups are Pontryagin reflexive. Smith’s work infers that the reflexivity in functional
analytic sense is stronger than the reflexivity in Pontryagin sense and with this work
the study of Pontryagin duality in topological vector spaces is initiated. Due to the
lack of the notation of convexity similar to that of vector spaces and the absence of the
theorem like Hahn-Banach theorem for the general topological groups the duality theory
for topological groups cannot be deduced trivially (or analogously) from the theory of
topological vector spaces. (It is worth mentioning that a form of Hahn-Banach theorem
for topological abelian groups is available which is based on the theory of the additive
functionals.)

Hahn-Banach theorem (extension version) is one of the fundamental theorems in
functional analysis and plays a prominent role to study the linear functionals on
topological vector spaces and hence, the duality (or reflexivity) theory of topological
vector spaces is restricted to the class of locally convex spaces. To overcome the
difficulties arising due to lack of the notation of convexity, Vilenkin [90] inspired from
the Hahn Banach theorem (separation version) for topological vector space introduce
the notation of quasi-convexity and defines the class of topological groups called locally
quasi-convex groups which play the role similar to the class of locally convex spaces. This
chapter is devoted to present the known results related to the extensions of Pontryagin
duality with special emphasis to present the influence of functional analysis on the

9



Chapter 2. Duality in Topological Groups

development of the subject.

After local quasi-convexity in topological groups the second instance where we find a
deep impact of functional analysis on the development of the Pontryagin duality theory is
the concept of group dualities. Vector space duality is a well-studied topic in functional
analysis, but the translation of the concepts like duality pairs, compatible topologies,
Mackey spaces, etc. from locally convex spaces to quasi-convex groups is not trivial
and is an active area for research. The origin of the concept of the group dualities is due
to Varopoulos [87] and this work is motivated from the concept of vector space dualities.
For an abelian (topological) group G, let H be a subgroup of Ĝ, then the pair (G,H) is
called a group duality. In general (literature) there is no condition on H to separate the
points of G, in case H separates the points of G the pair (G,H) is called separating.

Corresponding to each pair (G,H), two topologies viz σ(G,H) and σ(H,G) are
associated. The former is the weakest topology on the group which make members of
H continuous, while the latter is the topology of pointwise convergence in the sense that
it is the weakest topology on H which makes the map

χ 7→ αg(χ) = χ(g)

continuous for all g in G. For a given duality pair (G,H) the topologies compatible with
the duality are those topologies of G which admit H as a dual group. A duality (G, Ĝ) is
obtained by replacingH with Ĝ and it is interesting to note that σ(G, Ĝ) is Bohr topology
on G.

Varopoulos [87] considers only the special case of locally precompact compatible
topologies and proves that the least upper bound (or supremum) of all compatible locally
precompact topologies is a compatible topology. Working on the problem of Mackey
topology for groups or in more general, on the problem of extension of Mackey Arens
theorem from locally convex space to locally quasi-convex groups, Chasco et al. [29]
prove that the least upper bound of all compatible group topologies for a topological
abelian group (in general) need not always be a compatible topology. They point out that
some restriction should be made on the class of (all) compatible topologies to make their
least upper bound compatible and to overcome this problem they consider the class of
locally quasi-convex group topologies and study the problems similar to Varopoulos for
the wider classes of locally quasi-convex topologies. Based on Mackey-Arens theorem
the two non-equivalent candidates for the definition of Mackey topology are proposed by
Chasco et al. [29].

In [67] the author studies several strong and weak topologies on abelian topological
groups and defines the Mackey topology ν(G, Ĝ) (if it exists) for a maximal almost
periodic groupsG as the strongest locally quasi-convex topology on the group compatible
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with (G, Ĝ). Further, a locally quasi-convex group (G, τ) is called Mackey group if the
topology τ of the group coincides with its Mackey topology ν(G, Ĝ) that is τ = ν(G, Ĝ).
Außenhofer et al. [10] studies the qualitative and quantitative aspects of the poset of
locally quasi-convex compatible topologies and obtain the answers for the problem left
open in [67]. Further, they propose several open problems and one of those is to find
sufficient condition for a pre-compact metrizable group to be Mackey.

Nieto and Peinador [74] by characterising the locally quasi-convex topologies with
reference to families of equicontinuous subsets introduce some new classes of topological
groups by grading the property of being a Mackey group. Dikranjan et al. [40] give a
more generalised definition of the Mackey topology which is based on the definition of
the general (not necessarily locally quasi-convex) Mackey group. (Some statements of
the Mackey problem for bounded groups are mentioned in [71, section 3.4].) In the same
paper [40] they provide the examples of non-Mackey non-complete metrizable locally
quasi-convex groups. Similar results are obtained in [8] where the authors prove that
the group of all integers with a linear non-discrete Hausdorff topology is non-Mackey.
Conjecture ([40, Conjecture 8.1]) states that every metrizable group in LCS is a Mackey
group in locally quasi-convex topology and a negative answer to this conjecture is
obtained by Gabriyelyan ([48, Theorem 3.1]) as they obtain that the group of all finite
sequences (RN , p0) with topology p0 induced from the product space RN is not Mackey
( in the category of locally quasi-convex groups) and this serves as an example of a
Mackey locally convex space which is not locally quasi-convex (this is the first example
in this regard). Further, the author defines a topology µ on a group G in the class of
maximal almost periodic abelian group G to be quasi-G-Mackey if there is no topology
ν ∈ TG(G, τ) such that µ < ν and µ is G-compatible with τ . In [49] the author gives
an example of a locally quasi-convex group which is not pre-Mackey. In this regard, the
author proves that AG(s), the (Graev) free abelian group over s,

s = {0 ∪ 1

j
: j ∈ N}

is a convergent sequence equipped with the topology induced from real line, is neither a
quasi-Mackey group nor a pre-Mackey group. Similar results are proved in [13]. These
results present how the locally quasi-convex groups differ from the locally convex vector
spaces.

If any metrizable locally quasi-convex topology on an abelian group G is a Mackey
topology then the group G is said to satisfy the Varopoulos paradigm [11] and it is quite
noteworthy that Varopoulos paradigm is a topological property of the group and it is
characterizing the fact (being of finite exponent) which is purely an algebraic feature. In
[11], the author proves that an abelian topological group satisfies Varopoulos paradigm

11
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iff it is bounded. Further, Außenhofer and Dikranjan [12], proves that the Mackey
topologies exist for ”linearly topologized Hausdorff abelian groups” and they describe
these Mackey topologies in terms of B-embedded subgroups and hence, in the class of
locally quasi-convex bounded groups.

Peinador and Tarieladze [69] makes a comparison of the Mackey theory based on the
two settings viz topological vector spaces and topological groups and point out some open
problems in this regard. For a categorial approach to the Mackey problem, we refer the
reader to [14].

Nuclear groups

Brown et al. [23] obtain an extension of Pontryagin duality and formulate it as the
functorial duality between the following two classes: (i) the class of all abelian Hausdorff
groups topologically isomorphic to product of a compact group with a product (countable)
of copies of Z and R; (ii) the class of abelian Hausdorff topological groups isomorphic
to sum of a discrete group with sum (countable) of copies of T and R. They prove
that for the groups from these classes the Hausdorff quotients and closed subgroups of
the groups again belong to the class itself, and in this regard, the term strong duality is
introduced for the first time. Further, Banaszczyk [15] defines a topological group G to
be strongly reflexive if all Hausdorff quotients and closed subgroups of G and its dual
group Ĝ are reflexive. The results of [23] are the first example of non locally compact
strongly reflexive groups and these results are extended in [15] where the notation of
nuclear groups is introduced.

In the theory of topological vector spaces, nuclear spaces were introduced
by Grothendieck in connection with the nuclear products and after that several
characterisation of the nuclear spaces are obtained. One of the characterisations describe
the nuclear spaces in terms of Kolmogorov diameter [19]. Banaszczyk [15] defines a
group to be a nuclear group if every neighbourhood of zero contains a neighbourhood
which is sufficiently small with respect to the given one. This class of nuclear groups
contain the nuclear spaces and LCA groups. Further, the class of nuclear groups contains
the class of groups which are closed under the formation of subgroups and Hausdorff
quotients. Various results related to the structure of nuclear groups, boundedness,
compactness of nuclear groups are presented in [51] and the author proves that the
evaluation mapping

αG : G→ ˆ̂
G

is always surjective if the group G is a complete nuclear group.

Außenhofer proves in [6], that the Čech complete nuclear groups are strongly
reflexive. Chasco and Peinador in [34] study the strong reflexivity for the class of almost
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metrizable reflexive topological abelian groups and they prove that the requirements for
the strong reflexivity can be weakened for these classes. To this date, no example of
strongly reflexive groups is known out of the class formed by nuclear groups and their
dual.

Another characterisation of the nuclear spaces is due to Pietsch; they characterise
nuclear spaces as locally convex spaces for which (appropriate) topologized spaces
of summable sequences and absolutely summable sequences are topologically and
algebraically same. Referring this characterisation as Grothendieck- Pietsch theorem [43]
Domı́nguez and Tarieladze introduced the GP-nuclear groups as the groups for which
summable sequences and absolutely summable sequences are the same topologically
as well as algebraically. They prove that the nuclear groups defined in the sense of
Banaszczyk (using Kolmogorov diameter) are GP-nuclear and the converse problem is
still open. For a survey of GP- nuclear groups along with properties of these groups under
certain operations like countable direct sums, we refer the reader to [42].

Außenhofer et al. in [9] by defining the notion of Schwartz topological groups
introduce the group version of the concept of Schwartz spaces. They define a Hausdorff,
abelian topological group G to be a Schwartz group if for every neighbourhood of zero
U in the group G there exists another neighbourhood V of zero in G and a sequence of
finite subsets (Fn) of the group G such that V is a subset of

Fn + U(n)

for every n in N. Along with the certain permanence properties of Schwartz groups, it
has been proved in [9] that the nuclear groups lie in a wider class of locally quasi-convex
Schwartz group. The property of being a Schwartz group in terms of the dual group
is studied by Chasco et al. in [32]. Chasco et al. [31] divide the strong reflexivity
in two separate properties and introduce the notation of q-reflexive groups ( Hausdorff
quotients of the group are reflexive) and s-reflexive groups (closed subgroups of the group
are reflexive) and propose certain problems in this regard which include the problem of
the study of self dual nuclear groups.

Characterisation of Locally Convex Spaces

Venkataraman [88] study the conditions under which the dually embedded and dually
closed subgroups of a topological abelian group (especially the open subgroups) satisfy
duality and prove that if a topological abelian group satisfies the Pontryagin duality then
so does its open subgroups. In [89], he proves a characterisation for the Pontryagin
reflexive groups but later it has been observed in [82] that the characterisation obtained
in [89] contains a wrong statement. According to Remus and Trigos-Arrieta [82] a group
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is said to respect compactness if the original topology of the group and the weakest
topology that makes each element of Ĝ continuous produce the same compact subspaces
and based on the fact that a reflexive linear space respects compactness if and only if it is
a Montel space they prove the existence of groups which do not respect compactness but
satisfy Pontryagin duality and hence produced a counter-example for the characterisation
obtained in [89].

Kye [64] also gives a characterisation for a class of additive topological abelian
groups of locally convex topological vector spaces where the condition provides the
characterisation of the continuity of the evaluation map that every convex, balanced
and closed set which is a neighbourhood of zero in the k-topology is a neighbourhood
of zero in the given topology. This characterisation due to Kye is based on the proof
of the Venkataraman’s characterisation, and hence it contains the statement similar to
that present in the previous characterisations, and thus the proof contains a gap and is
incomplete.

Hernàndez [58] presents the counter-example towards the characterisation of
Venkataraman and Kye. Further, the conditions on a topological group that are equivalent
to the Pontryagin reflexivity are also obtained in [58] but this characterisation is very
technical to be considered as the intern characterisation of the reflexive groups. However,
the question of intern characterisation has been obtained for some particular classes of
groups which include locally convex spaces, free topological groups, etc. It has been
pointed out in [58, p. 501] that ”in general, if that intern characterisation does exist, it
will not be an easy one with all probability since it was proved in [60] that the question
of characterising for what topological spaces X , the corresponding additive groups of the
rings of all continuous functions Cp(X), equipped with the point-wise open topology, are
P-reflexive, is undecidable in ZFC”.

Working on a particular class Bonales et al. [55] offers an alternative characterisation
of the duality of real locally convex spaces, and they prove in [54], that the same
characterisation also holds for complex locally convex spaces. Several questions are
left open in these two articles which include the problem related to the characterisation
of polar reflexive spaces. Hernàndez and Javier [59] proves a new characterisation of
topological abelian groups satisfying duality in terms of the precompact open (denoted
τpc) topology (that is the character group is equipped with precompact open topology)
and hence obtain a characterisation of polar reflexive spaces and prove that the Kye’s
characterisation in [65] is correct (but the proof is different). Further, they answer in
negative the question asked in [55] and prove that the group duality does not imply the
polar reflexivity.

In the next section, we present the duality results in some other classes of topological
groups.
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2.2 Duality in metrizable, bounded and other classes of
topological groups

The class of metrizable groups forms an important class from the viewpoint of duality
theory. Metrizable groups are contained in the class of k-groups. Noble [75] characterise
the k-groups (different from that present in other literature) to be topological groups in
which each k-continuous homomorphism is continuous and proves that for the k-groups
the evaluation map

αG : G→ ˆ̂
G

is continuous and propose the problem related to the reflexivity of complete k-groups.
Nickolas [73] provides the example of free groups which fail to be reflexive and gives a
negative answer to the question posed by Nobel. Lamartin [66] defines the k-group dual
of the Hausdorff abelian k-group as the group of all k-group morphisms from G into the
circle group and equip this group with the k-refinement of the compact-open topology.
Lamartin studies the duality properties for k-groups and points out that the difference in
the proofs arise because the product operation is not continuous in product topology but
in k-products.

Chasco [30] studies the duality properties of the metrizable topological groups and
proves that the dual group of every metrizable group is a k-space and from this result,
she proves that completeness in an important condition for reflexivity in the class
of metrizable groups. Further, she proves that Pontryagin duality and BB-reflexivity
(discussed in chapter 4) are the equivalent conditions for the metrizable groups. Another
significant result obtained by her is about the determined groups (For D a dense subgroup
of a topological group G, the group D is said to determined G if as topological groups Ĝ
and D̂ are equal) where she proves that the metrizable groups are determined.

Comfort et al. [38] while considering the class of determined groups give an example
of non-metrizable, non-compact determined groups and propose several questions in this
regard. Studying the conditions on the sequence of metrizable abelian groups to obtain
the reflexivity of inverse and direct limits of the sequence of metrizable groups Ardanza
and Chasco [1] obtain an extension of the results of Kaplan [63]. The class of almost
metrizable groups is a broader class of groups than the metrizable groups, and the results
regarding the duality properties of almost metrizable groups are obtained in [57].

For a topological abelian group G, a subset E of G is said to be bounded if for every
neighbourhood U of the identity e there is a finite subset F of the group such that

E ⊂ FU(=
⋃
x∈F

xU).
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The topological abelian group is called totally bounded if the group itself is bounded.
If the topology of a topological group is Hausdorff and totally bounded then (by the
theorem of Weil [37]) the completion of the topological group G is compact, and this
group is called precompact that is, a group is precompact if and only if the closure of the
group is compact. Comfort and Ross [37] obtain an identification of the precompact group
topologies on an abelian topological group by proving that precompact group topology is
generated by some suitable subgroup of the characters which is point separating. More
precisely Raczkowski and Trigos [81] formulate this result as: IfG is a topological group,
then it carries the topology of pointwise convergence on its character group if and only if
the group G is totally bounded and they further study the duality (similar to Pontryagin
duality) in totally bounded abelian groups by equipping the character group with the finite
open topology in place of the compact-open topology. The class of precompact groups
contains the class of psudocompact groups as well as the ω-bounded groups.

Chasco and Peinador [35] while studying the conditions that a dense subgroup
of a locally compact abelian topological group must satisfy so that the character
group with the compact-open topology coincide with the whole group, proposed the
problem: Is a precompact, reflexive abelian group necessarily compact ? Working on
this problem and with the results of [30] Ardanza et al. [3] point out that the reflexive
precompact non-compact groups can only lie within the class of non-metrizable groups
and they give the examples of non-compact, precompact abelian groups and countably
compact non-compact reflexive abelian groups. After this result, the duality properties
of precompact groups are studied in different directions. Tkachenko [86] studies the
self-duality in different classes of precompact abelian groups. Bruguera and Tkachenko
[26] present a class of reflexive precompact non-compact abelian groups. Various
examples of non-discrete reflexive P-groups (groups with Gδ sets open) and non-compact
reflexive ω-bounded groups ( the precompact groups with the closure of every countable
set compact) are obtained by Galindo et al. [52]. Ferrer and Hernández [46, 45]
generalise several duality properties of the topological abelian groups to the non-abelian
case by defining the dual object as the irreducible representations of the group using
the Fell topology on the dual object. Galindo et al. [53] study some general principles
of reflexivity like the behaviour of reflexivity under group extension and present some
counter-examples with reference to the Pontryagin duality in the class of P-groups and
precompact groups. Gabriyelyan [47] uses the method of T−sequences to prove the
existence of non-discrete reflexive topologies on abelian groups of infinite exponents and
propose a similar problem for the abelian groups of finite exponents. Außenhofer and
Gabriyelyan [7] under the assumption of the continuum hypothesis provide a complete
negative answer to this problem and prove that every countable reflexive group of finite
exponent is discrete, and further they propose the problem of existence in ZFC of a
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bounded reflexive abelian group of cardinality ℵ1. In view of the results presented in
[7] Chasco et al. [36] points out that the class of bounded and precompact, torsion
abelian topological groups acquire special features in reference to Pontryagin duality
theory and they prove that if a group G is pseudocompact (or respectively Baire), then
all countably compact (or respectively compact) subsets of Ĝp (dual of G equipped with
the topology of pointwise convergence) are finite. Further, they prove that the group G is
pseudo-compact if and only if all countable subgroups of the dual group Ĝp are closed.
Finally, certain characterisations of pseudo-compactness and Baire property of Ĝp are
obtained in terms of the properties that express the richness of continuous characters of
the group G.

Conclusion

In this chapter, we have presented the influence of functional analysis on the extension
of the Pontryagin duality theory beyond local compactness. We have presented the known
results of the extension of duality theory for the class of topological vector spaces, nuclear
spaces and groups, metrizable groups, bounded topological groups, etc.

Another important class from the viewpoint of duality theory is the class of (filter)
convergence groups which contains the class of topological groups, and the corresponding
extension of the Pontryagin duality is the (continuous) c-duality. In the rest of this thesis,
we present the results related to the filter convergence groups and the continuous duality
theory.
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Chapter 3

Convergence Groups with Boundedness

The generalisation of the concept of a topological space is the convergence space
which is based on the concept of (convergent) filters. This category is more suitable for
analysis as we can find convergence structures satisfying certain properties for which no
topology exist. Different authors use different notations to specify (filter) convergence
spaces (cf. [18, 41, 76]). (For the notations related to convergence spaces via sequences
see. [80].) In order to overcome the difficulty related to different notations, we give a
self-contained introduction to (filter) convergence groups so that a unified notation can
be used thought the thesis. This chapter is also devoted to present certain examples of
convergence groups with particular emphasis on the homeomorphism groups.

A family of setsA is said to be coarser than the family B, (writtenA ≤ B), if for each
A ∈ A there is a B ∈ B with B ⊂ A. Further, a family A of subsets of a set is said to be
isotone if A ∈ A and A ⊂ B implies B ∈ A. Isotonisation (written A↑) of A is the least
isotone family that contains A. Another operation on the family Ai of subsets of set X is
the family of the intersection of elements (finitely many) of A and is denoted as A∩.

Definition 3.1. A filter F is a family of proper (φ /∈ F) subsets of a set X for which the
following conditions hold
(i) it is closed under supersets (i.e. isotone (F1 ⊃ F2 ∈ F ⇒ F1 ∈ F))
(ii) it is closed under finite intersection ( F1 ∈ F , F2 ∈ F ⇒ F1 ∩ F2 ∈ F).

Hence, we have F is a filter iff F = F↑∩.
Following [41] we denote by FX the set of all filters in a set X . A family of subsets
(non-empty) B of a set X is called filter base if isotonisation of B is filter on X and B↑ is
called filter generated by the filter base B. We have B is a filter base iff for B1, B2 ∈ B
there exists a B ∈ B with B ⊂ B1 ∩B2 and φ /∈ B.

Some basic examples of filters include the collection of all supersets of a given
nonempty subset; the collection of all cofinite subsets of an infinite set; the collection
of all the neighbourhoods of a point of a topological space.
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The intersection of all elements of a filter is called kernel of the filter. A filter is called
principal if the kernel of that filter belongs to that filter and is called free if the kernel of
the filter is empty. An ultrafilter or maximal filter is a filter that is not contained (properly)
in any other filter. Families A and B of subsets of X mesh (written A#B) if A and B are
not disjoint for all A in A and B in B. For any two filters F and G on a set X we have, if
F mesh with G then,

F ∧ G = {A ∩B : A ∈ F and B ∈ G}

is a filter. Further, for a family,A of subsets of a setX the grill (denotedA#) is the family
of subsets of X that intersect with every element of A. So, a filter is an ultrafilter iff it is
a filter- grill. It is quite noteworthy that an ultrafilter is either free or principal. Further,
filter F on set X is ultrafilter iff for each A ⊂ X only one of the conditions A ∈ F or
Ac ∈ F holds.

Let F be a filter on a set X and f : X → Y a map then,

f [F ] = {f(F ) : F ∈ F}

is called the image filter. For F1, F2 ∈ F we have

f(F1 ∩ F2) ⊆ f(F1) ∩ f(F2)

is not a filter on Y unless f is not surjective.

Theorem 3.2. For F an ultrafilter on set X and f : X → Y , we have G = f(F) is an

ultrafilter on the set Y .

Proof. Let, V /∈ f(F) for some V ⊆ Y . Then f−1(V ) /∈ U . Now,

X − f−1(V ) ∈ F .

Thus,
f(X − f−1(V )) ∈ f(F).

As,
f(X − f−1(V )) ⊆ Y − V,

we have Y − V ∈ f(U) and hence the proof.

For F ∈ F(X) and G ∈ F(Y ) define,

F × G = {F ×G : F ∈ F and G ∈ G}.
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F×G is a base for a filter onX×Y and its isotonisation (i.e. filter generated) is called the
product filter. This definition can be extended for the product of infinitely many filters.

Definition 3.3. Let λ be an arbitrary relation between X and the set of all filters on X .
The relation is called convergence on that set if forF1,F2 in FX and x inX the following
conditions hold:
(i) Centred: x↑ ∈ λ(x),
(ii) Isotone: If F1 ∈ λ(x) and F1 ≤ F2 then F2 ∈ λ(x) , and
(iii) Finitely deep: If F1,F2 ∈ λ(x) then, F1 ∩ F2 ∈ λ(x).
A Convergence space is a pair (X,λ).

This relation is also denoted by F −→
λ
x (or F −→ x, if no ambiguity is possible ) and

we say, filter F converges to x, or x is limit of F , whenever F ∈ λ(x).

Further, we have,
lim
λ
F = {x : F converge to x in λ}

and convergence is called Hausdorff if every filter on X converges to at most one point.

Example 3.4. Consider the following reflexive directed graph,

2

13

The graph neighbourhood of the vertices [77, Definition 3.1] of this graph are:

−→
1 = {1}, −→

2 = {1, 2}, −→
3 = {1, 2, 3};

and this graph can be represented by the following convergence:

{1}↑ → {1, 2, 3} {1, 2}↑ → {2, 3} {1, 2, 3}↑ → {3}
{2}↑ → {2, 3} {1, 3}↑ → {3}
{3}↑ → {3} {2, 3}↑ → {3}

Remark 3.5. The following properties of the convergence spaces make them worth
investigation:

1. Category of convergence spaces is

• Cartesian closed.
• Contains category of topological spaces.
• Contains the category of reflexive directed graphs.
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2. Convergence spaces are used in unifying (see. [21]) discrete and continuous models
of computation.

3. Convergence spaces play a vital role in extending the definition of differential to
the discrete structures (see. [77, 79]).

If λ1 and λ2 are two convergences on X then λ1 is called finner than λ2 (denoted as
λ1 ≥ λ2) iff

lim
λ1
F ⊂ lim

λ2
F

for each filter F on X .

For a topological space X, the convergence structure can be defined by associating the
filter F to x as: x is the limit of the filter F if the filter F is finer than the neighbourhood
filter of x. Hence, every topological space is a convergence space. It is quite important
to see that the concepts of point-set topology can be defined using convergence but, the
converse is not always true. In analysis, we can find many situations (like convergence in
measure), where non-topological convergence originate.

A map f : X → Y between two convergence spaces is said to be continuous if

F −→
X
x ⇒ f(F) −→

Y
f(x).

A convergence group is an (abstract) group with a compatible convergence structure, here
compatible means that the group operations (in the sense of convergence) are continuous.
It is evident from the above discussion that the class of convergence groups contains the
class of topological groups.

Some examples of non-topological convergence groups are as follows:

Example 3.6. Convergence groups arise in complex analysis from the theory of
quasi-conformal mappings [56]. For, Γ a group acting by homeomorphisms on a compact
metrizable space M, this action is called a convergence action if: for every infinite distinct
sequence of elements γn ∈ Γ there exist a subsequence γnk , k = 1, 2, . . . and points
a, b ∈ M such that the maps γnk

∣∣
M\{a} converge uniformly on compact subsets to the

constant map sending M \ {a} to b. Γ is called a convergence group.

Example 3.7. Convergence structures on the groups also arise from the theory of Σ−
groups, where an abelian group is assigned some infinite sums, and these unconditional
sums satisfy certain properties to make them the convergence groups.

Another large class of convergence groups is the class of the underlying groups of the
convergence vector spaces.
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Another important class is the class of homeomorphism groups. The next section is
devoted to present certain example of a homeomorphism group which is a non-topological
convergence group.

3.1 Homeomorphism groups

The problem of giving an admissible topology to a homeomorphism group is quite
old. Arens considered this problem for the group of homeomorphisms of locally compact
spaces and proved that for a class of continuous functions defined on some locally
compact Hausdorff space, the strongest admissible topology is the k-topology that can
be given to the space of continuous functions (admissible here means that the evaluation
map is jointly continuous). The extension of the problem to non-locally compact case was
considered by Park [76] and two types of convergence structures on the homeomorphism
groups were studied in this regard.

The first being the coarsest admissible convergence structure with which a
homeomorphism group is convergence group and other is the continuous convergence
structure which is coarsest admissible (evaluation is jointly continuous map) convergence
structure.
Continuous convergence structure plays a central role throughout the thesis.

Let (X,λ) and (Y, µ) be two convergence spaces and C(X, Y ) denotes the set of all
continuous (in the sense of convergence) maps from X to Y and the evaluation mapping

e : C(X, Y )×X → Y

is defined as
e(f, x) = f(x) ∀ f ∈ C(X, Y ) and x ∈ X.

The continuous convergence structure (denoted, (C(X, Y ), λc))is defined as

G −→
λc

f iff e(G × F) −→
µ
f(x), ∀ x ∈ X, and F −→

λ
x,

that is a filter G converge to f in C(X, Y ) iff e(G × F) converge to f(x) in Y whenever,
F converge to x in X . It is important to see here that when X is a locally compact space
and Y = R, then the continuous convergence structure and the compact-open topology
coincide.

If G is a filter on C(X, Y ) with G ∈ G and F is a filter on the set X with F ∈ F then
we denote

G(F) = e(G × F) = {G(F )}↑;

G(F) = G↑(F);
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Chapter 3. Convergence Groups with Boundedness

G(F ) = G(F ↑).

With these notations continuous convergence can be defined as

G −→
λc

f iff G(F) −→
µ
f(x) ∀ F −→

λ
x.

Now consider the homeomorphism group H(Q) of the rational numbers (Q, τR∩Q)

endowed with the subspace topology of the real line. Clearly, the group H(Q) is not
locally compact. If this group is endowed with the continuous convergence structure then
it is evident from [76] that the algebraic structure of H(Q) is not compatible with the
continuous convergence structure.

The coarsest convergence structure (denoted here, λa) is another convergence
structure defined on H(Q) which makes it a convergence group.

Let, F −−→
τR∩Q

x a filter on Q and G,G1,G2 filters on H(Q). For the evaluation map

ω : H(Q)×Q→ Q

we get,
G × F = ω(G × F).

Now define convergence λa on H(Q) as:

G −→
λa

f iff G(F) −−→
τR∩Q

f(x)

and
G−1(F) −−→

τR∩Q
f−1(x) ∀ F −−→

τR∩Q
x,

here, G−1 is the filter generated by {G−1 : G ∈ G}, i.e. {G−1 : G ∈ G}↑.

Theorem 3.8. (H(Q), λa) is a convergence group.

Proof. Centred:
As H(Q) is a homeomorphism group so, both g, g−1 ∈ H(Q) are continuous.
For F −−→

τR∩Q
x we have,

{g}↑(F) = g(F) −−→
τR∩Q

g(x)

and
{g−1}↑(F) = g−1(F) −−→

τR∩Q
g−1(x).

Hence, {g}↑ −→
λa

g.
Isotone:
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For, G1 −−→
τR∩Q

g1 and G1 ≤ G2 we have,

G1(F) ≤ G2(F) ∀ F −→
λa

x

⇒ G2 −−→
τR∩Q

g2

and G1 ≤ G2 ⇒ G−1
1 ≥ G−1

2 so,

G−1
1 (F) ≥ G−1

2 (F) ∀ F −→
λa

x

⇒ G−1
2 −−→

τR∩Q
g2

Hence, G2 ≥ G1 −→
λa

g1 ⇒ G2 −→
λa

g2.

Finitely deep:
For, G1 −−→

τR∩Q
g and G2 −−→

τR∩Q
g we have,

G1(F) −−→
τR∩Q

x and G2(F) −−→
τR∩Q

x

⇒ G1(F) ∧ G2(F) −−→
τR∩Q

x

as
G1(F) ∧ G2(F) = (G1 ∧ G2)F

we have,
(G1 ∧ G2)F −−→

τR∩Q
x.

Similarly, for, G−1
1 −−→

τR∩Q
g and G−1

2 −−→
τR∩Q

g we get,

G−1
1 (F) −−→

τR∩Q
x and G−1

2 (F) −−→
τR∩Q

x

⇒ G−1
1 (F) ∧ F−1

2 (F) −−→
τR∩Q

x

as
G−1

1 (F) ∧ G−1
2 (F) = (G−1

1 ∧ G−1
2 )F

we have,
(G−1

1 ∧ G−1
2 )F −−→

τR∩Q
x.

Hence, we have G1 −→
λa

g and G2 −→
λa

g ⇒ G1 ∧ G2 −→
λa

g

Continuity of composition:
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Chapter 3. Convergence Groups with Boundedness

For, G1 −−→
τλa

g1 and G2 −−→
τλa

g2

(G1 ◦ G2)(F) = (G1(G2))(F) −−→
τR∩Q

(g1 ◦ g2)(x)

⇒ G1 ◦ G2 −−→
τλa

g1 ◦ g2.

Similarly,

(G1 ◦ G2)−1(F) = (G−1
2 (G−1

1 ))(F) −−→
τR∩Q

(g−1
2 (g−1

1 ))(x) = (g1 ◦ g2)−1(x)

⇒ (G1 ◦ G2)−1 −−→
τλa

(g1 ◦ g2)−1.

Hence, If G1 −−→
τλa

g1 and G2 −−→
τλa

g2 we have, G1 ◦ G2 −−→
τλa

g1 ◦ g2.

Continuity of inversion:
For, G −−→

τλa
g we have,

G−1(F) −−→
τR∩Q

g−1(x)

and
(G−1)−1(F) = G(F) −−→

τR∩Q
g(x) = (g−1−1

)(x).

Hence, G −→
λa

g ⇒ G−1 −→
λa

g−1

3.2 Bounded convergence groups

Let G be an abelian (not necessarily topological or convergence) group (additive
notation is used throughout this section). Vilenkin [90, Definition 1.1], defines the
boundedness onG as the family (called bounded sets) of subsets of the group G, satisfying
the following conditions:

1. B is bounded implies that −B is bounded;

2. finite sets are bounded;

3. subsets of all bounded sets are bounded;

4. B1 ∪B2 and B1 +B2 are bounded whenever, B1, B2 are bounded.

Some examples are: the family of all finite subsets define a boundedness on any abelian
group; the family of all precompact subsets define boundedness on a topological group.
For a more detailed account of topological groups with boundedness we refer the reader
to [50]. Here, we study the convergence groups with boundedness. Most of the results of
this chapter are motivated from [15, Section 18] and [18, Section 3.7].
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3.2. Bounded convergence groups

Consider the family of all subsets σCW , σCS respectively of a convergence group G
which are bounded in the following sense.

Definition 3.9. A subset B of the convergence group G is said to be bounded (B ∈ σCW )
if there exists a filter F converging to 0 (additive identity) in G such that for every F ∈ F
there exists n ∈ N with B ⊂ nF .

Definition 3.10. A subset B of the convergence group G is said to be bounded (B ∈ σCS )
if for every filter F converging to 0 (additive identity) in G, there is a coarser filter F1

converging to 0, such that for every F1 ∈ F1 there exists n ∈ N with B ⊂ nF1.

Theorem 3.11. σCW defines a boundedness on G.

Proof. (i) Let, B ∈ σCW , then

B ∈ σCW ⇔ ∃F −→
G

0 : ∀F ∈ F ∃ n ∈ N , B ⊂ nF.

G is a convergence group so, F −→
G

0 ⇒ −F −→
G

0. As B ∈ σCW hence, −B ⊂
n(−F ), ∀ − F ∈ −F ⇒ −B ∈ σCW .
(ii) Let g ∈ G then we first prove that {g} is bounded. Clearly, {g}↑ −→

G
g and {g}↑−g −→

G

0. As, {g} ⊂ {g}↑ − g hence, {g} ∈ σCW . Extending the result for a subset of G with
finite elements we get that finite subsets of G are bounded.
(iii) Let, B ∈ σCW and B1 ⊂ B then B1 ⊂ nF , hence, B1 ∈ σCW .
(iv) Let, B1, B2 ∈ σCW then,

B1 ∈ σCW ⇔ ∃F1 −→
G

0 : ∀F1 ∈ F1 ∃ n ∈ N , B1 ⊂ nF1;

B2 ∈ σCW ⇔ ∃F2 −→
G

0 : ∀F2 ∈ F2 ∃ m ∈ N , B2 ⊂ mF2.

Now asG is a convergence group hence, G =< F1 +F2 >−→
G

0 andB1 +B2 ⊂ kG ∀ G ∈
G, k = max{n,m}. Hence, B1 +B2 ∈ σCW .
Similarly, we can prove that B1 ∪B2 ∈ σCW .

Theorem 3.12. σCS defines a boundedness on G.

Proof. The proof is similar to Theorem 3.11, hence omitted.

Remark 3.13. We do not know whether σCW and σCS induce two different boundedness
on a convergence group or they coincide.

Definition 3.14. A convergence group G is called locally bounded group if every filter
which converges to 0 in the group G contains a bounded set.

Proposition 3.15. For B a bounded subset of the convergence group (G, σCW ), {kB :

k ∈ N} is a bounded subset of (G, σCW ).
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Chapter 3. Convergence Groups with Boundedness

Proof. As B ∈ σCW so, there exists a filter F → 0 in the convergence group G such
that for every F ∈ F there exists n ∈ N with B ⊂ nF . Further, for every nB we have,
k(nB) = (nkB) ⊂ mF , where m = nk ∈ N. Hence kB ∈ σCW .

Theorem 3.16. Let (G1, σCW ) and (G2, σCW ) be convergence groups with boundedness;

B a bounded subset of G1 and φ : G1 → G2 a continuous homomorphism then, φ(B) ⊂
G2 is bounded in G2.

Proof. As B is bounded subset of (G1, σCW ) so there exists a filter F → 0 in the group
G1 such that for every F ∈ F there exists n ∈ N with B ⊂ nF . Now, as φ is continuous
homomorphism so G = φ(F) → 0 in G2. Further, for every G ∈ G there exist n ∈ N
with φ(B) ⊂ nG = nφ(F ) and hence the proof.

Theorem 3.17. For (G, σ) be a convergence group with boundedness andH its subgroup,

σH = {H ∩B : ∀ B ∈ σ}, defines a boundedness on H induced by G.

Proof. (i) For B1 ∈ σH , there is some B in σ such that B1 = H ∩B. Hence,

−B1 = (−H) ∩ (−B) = H ∩ (−B).

As B ∈ σ =⇒ (−B) ∈ σ hence, −B1 ∈ σH .

(ii) For, B a finite subset of H we have B ∈ σ and hence, B = B ∩B ∈ σH .
(iii) For B1 ∈ σH we have B ∈ σ such that B1 = H ∩ B. Further for B2 ⊂ B we

have B3 ⊂ B such that B2 = H ∩B3 hence, B2 ∈ σH .

(iv) For, B1, B2 ∈ σH we have B1 = H ∩B3 and B2 = H ∩B4 for some B3, B4 ∈ σ.
Now,

B1 ∪B2 = (H ∩B3) ∪ (H ∩B4) = H ∩ (B3 ∪B4).

As, B3 ∪B4 ∈ σ hence, B1 ∩B2 ∈ σH .
Similarly, we have

B1 +B2 = (H ∩B3) + (H ∩B4) = H ∩ (B3 +B4).

hence, B1 +B2 ∈ σH .

Theorem 3.18. For a convergence group (G, σ) with boundedness and H its normal

subgroup, canonical images of the bounded subsets of the group define a boundedness

on G/H (denoted σG/H ) induced by (G, σ).

Proof. Let, the canonical mapping be q : G→ G/H then we need to prove that

q(σ) = {q(B) : ∀B ∈ σ}
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3.2. Bounded convergence groups

induce the boundedness σG/H .
The proof is similar to Theorem 3.17 and hence omitted.

Theorem 3.19. For ((Gi)i∈I , (ei,j)i≤j) a system of convergence groups with boundedness

σiCW , if G is the reduced inductive limit of this system ( i.e. all maps ei are injective) then

a B ⊂ G is bounded iff there is an index i ∈ I and A ⊂ Gi, a bounded subset such that

B = ei(A).

Proof. If there is index i ∈ I and A ⊂ Gi, a bounded subset such that B = ei(A) then
subset B of G is bounded is evident from Theorem 3.16.
For, B ⊂ G a bounded set there is an index i ∈ I and filter F → 0 in the convergence
group Gi such that for each F ∈ ei(F) there is n ∈ N with B ⊂ nF . So, B ⊂ ei(Gi).
Further, e−1

i (B) ⊂ nF and as ei is injective hence, e−1
i (B) = A is a bounded subset of

Gi and hence, B = ei(A).

Remark 3.20. Compact subsets of bounded convergence group need not be bounded (see.
[18, Proposition 3.7.4, Proposition 3.7.6 ]).

Theorem 3.21. Inductive limits, coproducts and quotients of locally bounded

convergence groups are locally bounded.

Proof. For a family (Gi)i∈I of locally bounded convergence groups let, G be the
convergence group with final convergence(with respect to ui : Gi → G) group structure.
Locally boundedness of G implies the theorem.
Let, F → g be filter on G then there are ij’s, j = 1 . . . n in I and for every k ∈ N a filter
Fk → 0 in Gik . Further, we have finitely many elements g1, g2 . . . gm in the group G such
that

F − x ⊃ ui1(F1) + ui1(F1) + · · ·+ uin(Fn) + U(g1) + · · ·+ U(gm)

where U(gm) = {U : U → gm in G} is the neighbourhood filter of gm. As every
summand contains a bounded set hence, the proof.

Conclusion

This chapter begins with a self-contained introduction to the filter convergence
groups. Then we present a certain (homeomorphism) group which is a non-topological
convergence group. Finally, the notation of boundedness in convergence groups is
introduced, and certain properties of the bounded sets are presented. It is evident that
boundedness does not play the same role for convergence groups which it plays in the
topological case. In this chapter, we have seen certain examples of boundedness on the
convergence groups, but the inverse problem has not been explored, i.e. to define the
convergence structure if a bounded group is given.

29





Chapter 4

Convergence Measure Space

One of the major problems in extending Pontryagin duality of topological groups
beyond local compactness is the fact that the evaluation map of a topological group to
its second dual group fails to be continuous. In this regard, Peinador [68] proves that the
evaluation map

e : Ĝ×G→ T

defined as
e(χ, x) = χ(x)

is continuous if and only if the group G is locally compact and thus the result explains
why the class of locally compact abelian groups fits best for the theory of Pontryagin
reflexive topological groups, but as we replace compact-open topology with continuous
convergence structure on character group the evaluation map is always continuous.

To obtain an extension of Pontryagin duality theorem for the convergence group first,
we look at some facts about the Rudin’s proof of Pontryagin duality theorem.

Theorem 4.1 (Pontryagin duality theorem). For any LCA topological group the

evaluation mapping

αG : G→ ˆ̂
G

is a topological isomorphism. ( ˆ̂
G denotes the double dual group.)

The proof of the theorem follows in three parts
(i) αG is isomorphism of G into ˆ̂

G

(ii) αG is homeomorphism of G into ˆ̂
G.

(iii) αG(G) is closed and dense in ˆ̂
G.

The proof of (i), i.e. to prove that character group separates points of G requires hard
tools of measure theory and operator algebra, so we present some basic facts about it. For

31



Chapter 4. Convergence Measure Space

a detailed account of the theorem and for the proof of (ii) and (iii) we refer the reader to
[83, Theorem 1.7.2].

For a locally compact abelian group G, let, L1(G) denotes the space of all integrable
functions on G (L1(G) is a commutative Banach algebra), C0(G) the space of all
complex-valued, continuous functions on G which vanish at infinity and M(G) the set
of all complex-valued completely additive Borel measures on G.

For f ∈ L1(G), χ ∈ Ĝ and µG a Haar measures on G, we have a bounded linear
operator,

F : L1(G)→ C0(Ĝ), f 7→ F(f) = f̂

defined as
f̂(χ) =

∫
f.χ̄dµG

called Fourier transform of f on G.

Example 4.2. [83, Example 1.2.7] For G = T,Z and R we have,

1. For G = T, f̂(n) = 1
2π

∫ π
−π f(eιθ)e−ιnθdθ (n ∈ Z).

2. For G = Z, f̂(eια) =
∑∞

n=−∞ f(n)e−ιnα (eια ∈ T, α ∈ R).

3. For G = R, f̂(y) =
∫∞
−∞ f(x)e−ιxydx (x, y ∈ R).

Further, we have L1(G) is associative algebra with the (multiplication) convolution
defined as

(f ∗ g)(x) =

∫
f(x− z)g(z)µG(z) , x, z ∈ G

and C0(Ĝ) is an associative algebra with the pointwise multiplication defined as

(φ.ψ)(χ) = φ(χ).ψ(χ), χ ∈ Ĝ.

The image of F under the map

F : L1(Ĝ)→ C0(
ˆ̂
G ∼= G)

is called Fourier algebra A(Ĝ) on the group.
Ĝ can be given a weak topology induced by A(Ĝ) and the Galfand theory gives us that
A(Ĝ) is a separating sub-algebra of C0(Ĝ). We have Ĝ is a group as well as locally
compact Hausdorff space and via compact-open topology these two structures fit together
to make it a locally compact abelian group.
Let, us denote by M(G) the set of all complex-valued, bounded, regular, Borel measures
µ on the topological group G. For µ, ν ∈M(G) the convolution is defined as

(µ ∗ ν)E = (µ× ν)(E2)
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here, E is the Borel set in G and E2 = {(g1, g2) ∈ G×G : g1 + g2 ∈ E}.
M(G) with multiplication defined by convolution is a commutative Banach algebra with
unit.

In view of class M(G) the Fourier transform

F : L1(G)→ C0(Ĝ)

is extended to Fourier -Stieltjes transform given as

F : M(G)→ Cbu(Ĝ), µ→ F(µ) = µ̂,

defined as
µ̂(χ) =

∫
G

χ̄dµ, χ ∈ Ĝ

here Cbu(Ĝ) is the Banach space of all bounded, uniformly continuous, complex valued
functions on Ĝ.

The inverse Fourier transform can be defined as

f =

∫
f̂(χ)dµ̂.

This inversion formula does not always hold. Let us denote by B(G), the set of
all functions for which the inversion formula holds (Bochner’s theorem and Jordan
decomposition theorem implies that this set consists of linear combinations (finite) of
positive definite, continuous functions on G). Hence, we obtain the inversion theorem for
a large class of functions, L1(G) ∩ B(G). It is a consequence of the inversion theorem
that Ĝ separates the points on G.

To obtain analogues results for the class of convergence groups, we need a theory of
abstract integration on convergence groups. Some results in this regard are presented in
the next section.

4.1 Duality in convergence groups

An approach towards the abstract integration theory on topological spaces is restricted
exclusively to the class of locally compact Hausdorff spaces. The difficulty of the
problem to develop a theory of abstract integration for convergence spaces which are
not necessarily topological, lies in, defining a sigma algebra related to the convergence
structure of the underlying space so that the measure is compatible with the convergence
structure. Here, we use the topological modification to define the σ− algebra compatible
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with the convergence structure.
In any convergence space the filter

N (x) =
⋂
{F : F → x}

is defined as the neighbourhood filter of x and elements ofN (x) as the neighbourhoods of
x. A setU inX is said to be open if it is a neighbourhood of all of its points. The collection
of all open sets satisfy the axioms of topology, and hence, a topology can be associated to
every convergence space (called topological modification [18, Definition 1.3.8], o(X) of
the convergence space).

Definition 4.3. The topological modification,(denoted λtm), is the finest topology (with
respect to associated convergence structure of this topology) coarser than convergence
structure λ.

We define the convergence measure space using topological modification as follows:

Definition 4.4 (Convergence Measure Space). A convergence measure space is quadruple
(X,λ,M, µ), with (X,M, µ) a measure space and (X,λ) a convergence space such that
λtm ⊂M, i.e every open set (in the sense of convergence) is measurable.

Remark 4.5. This definition coincides with the definition of the topological measure space
if the underlying convergence structure is topological. With this kind of approach to define
the σ−algebra most of the results for the convergence measure spaces can be obtained
from the theory of topological measure spaces.

The next example illustrates that there exists two different convergence spaces with
same topological modification.

Definition 4.6. [18, Definition 1.3.23] A convergence space (X,λ) is pseudo-topological
if F −→

X
x whenever every ultrafilter finer then F converge to x and the

pseudo-topological modification, χ(X) associated to a convergence space is defined as

F −−−→
χ(X)

x iff G −→
X
x for every ultrafilter G ≥ F .

Example 4.7. Consider a non pseudo-topological convergence space X . Clearly, X and
χ(X) need not be homeomorphic but the topological modification of X and χ(X) are
homeomorphic.

Example 4.8. [18, Example 1.4.5][A compact convergence space which is
non-topological] The finest convergence on [0, 1] that has same convergent ultrafilter
as the usual topology of [0, 1] is a compact Hausdorff convergence space which is not
topological.
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Theorem 4.9. The topological modification (X,λtm) of a (not necessarily topological)

compact convergence space (X,λ) is always a compact topological convergence space.

Proof. The proof is evident from the facts that, λtm has more convergent filters than λ.
The identity map

i : (X,λ)→ (X,λtm)

is continuous. Every ultrafilter which is convergent in λ is convergent in λtm; (X,λtm)

has more compact subsets than (X,λ).

There is no result analogous to 4.9 for locally compact convergence spaces and
this brings into the picture the problem of characterisation of the class of convergence
spaces whose topological modification is locally compact topological space. Further, the
topological modification (G,Λtm) of a convergence group (G,Λ) not always gives rise to
a group topology, i.e. the resulting topology need not be a group topology, and hence for
convergence groups, the following problem arises:

Problem 4.10. To characterise those convergence groups whose topological modification
is a locally compact topological group.

To best of our knowledge, no result analogues to Theorem 4.9 holds for compact
convergence groups, and this gives rise to the following problem in the class of locally
compact convergence groups.

Problem 4.11.

Are the convergence groups whose topological modification locally compact topological
group, reflexive?

It is quite important to point out here that a general definition of a convergence
measure space is still unknown and is required for analysis over convergence groups.
Further, it has been obtained that introducing the theory like Haar integrals for
convergence groups is not a trivial process as the analytical behaviour of locally compact
convergence groups (or spaces) is not similar to locally compact topological groups (or
spaces).

4.2 BB-Duality and continuous duality

The comparison of the two different notations of reflexivity for topological groups viz
BB-duality (Binz and Butzmann Duality) and the Pontryagin duality has been initiated by
Chasco and Peinador [33]. They prove that if the evaluation map

αG : G→ ˆ̂
G
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is continuous then the P-bidual is a topological subgroup of BB-bidual. Using this
theorem, the example of the BB-reflexive group which is not Pontryagin reflexive is
obtained. Bruguera and Chasco [25] while studying the properties of the subgroups and
quotients with respect to BB-duality theory define a BB-reflexive group to be BB-strongly
reflexive (convergence) group if the Hausdorff quotients of G and ΓcG are BB-reflexive,
and they prove that this class of topological groups contains (or is larger than) the class of
locally compact abelian groups.

Study of duality theory of convergence abelian groups is initiated by Butzmann [28].
Let (G,Λ) be a convergence abelian group and ΓG denotes the set of all continuous (as
convergence space) homomorphisms of G into the circle group. The set of continuous
homomorphisms (of convergence groups) with the structure of continuous convergence is
defined as convergence dual of G and is denoted as (ΓG,Λc). For a convergence group
G, the map

κ : G→ ΓΓG

defined as
κ(g)(χ) = χ(g) ∀ g ∈ G, χ ∈ ΓG

is a continuous group homomorphism and the convergence group G is called c-reflexive
if this evaluation map κ is an isomorphism. The behaviour of continuous duality (in
the sense of continuous convergence structure) under the operations like products and
co-products is studied by Butzmann. While studying the subgroups and the quotients
of the convergence groups he finds the sufficient condition for the continuous character
group (CHom(H,T)) of a subgroup H of the group G to be isomorphic to the quotient
of a continuous-character group of given convergence group. Finally, he obtains the
characterisation of relatively compact subsets of the continuous character group of a
topological group and proves that if the topological group is locally quasi-convex, then the
natural mapping from the given topological group into its bidual group is an embedding
(the converse is also true). Ardanza-Trevijano and Chasco [2] investigate the conditions
under which the continuous-dual of the limit of the inverse system is the direct limit of
the continuous-dual system and the conditions for which the direct and inverse limits are
related via continuous-duality. While studying the limits and co-limits of the topological
groups, Beattie and Butzmann [16] point out that inductive limits and quotients of
reflexive convergence groups may not be reflexive and they prove that, inductive limits
of LCA groups is reflexive if this limit is separated.

Chasco and Peinador [35] point out that all the abelian groups are determined from
the viewpoint of convergence, that is for a dense subgroup H ⊂ G of a topological
abelian group the continuous convergence structure in ΓG and ΓH coincide. Beattie
and Butzmann [17] while extending the results of [33] point out that the problem
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of determined groups is simple to handle with the continuous duality than with the
Pontryagin dual. Further, the difference in the behaviour of the continuous duality and
Pontryagin duality is studied for the problem of distinguishing the topological groups
with same dual and it has been pointed out that there might be many group topologies on
underlying group of a topological group all having the same Pontryagin dual and in this
case if one of these groups is P-reflexive then none of the others can be P-reflexive.

Conclusion

In this chapter, we have presented the role of measure theory in analytical proof of
Pontryagin duality theorem. We have defined the convergence measure space using the
topological modification but due to the lack of the notation of a general convergence
measure space the extension of Pontryagin duality theorem for convergence groups is
not trivial (even for some small classes). It is important to point out that no theorem
analogues to Pontryagin duality theorem hold for the locally compact convergence groups.
The counterexample in this regard is presented in [18, Example 8.5.14]. In this regard,
the problem of characterisation of the class of c-reflexive locally compact convergence
groups is still open, and we obtain certain partial answers in chapter 5.
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Chapter 5

Locally Quasi-Convex Convergence
Groups

We begin this chapter with an example of a non-reflexive, locally compact
convergence abelian group.

LetX be a locally compact topological space, C(X) and C(X,T) respectively denote
the group of all continuous, real-valued functions on X and the group of unimodular
(X → T) continuous functions on X (for details refer [18, Section 8.5] ). Define

ρ : Cc(X)→ Cc(X,T) as ρ(f) = ρ ◦ f.

Clearly, ρ is continuous and a group homomorphism. Further, as X is locally compact
so Cc(X) = Cco(X) and Cc(X,T) = Cco(X,T). From [18, Theorem 5.8.11] we have,
Cc(X,T) is reflexive. For

κ : X → ΓcC(X,T)

defined as
κ(x)f = f(x),

the group generated by κ(X), (denoted G =< κ(X) >) is a locally compact subgroup
[18, Proposition 8.5.12] of ΓcCc(X,T). Further, from [18, Example 8.5.14] we have, for
X a connected, compact topological space, the group G =< κ(X) > is not reflexive.

It is clear from the above discussion that class of locally compact convergence
abelian groups is not contained in the class of c-reflexive groups. So, in this chapter,
we deal with the problem of characterisation of the class of reflexive locally compact
convergence groups. To obtain a class of reflexive locally compact convergence groups,
we introduce the notation of local-quasi-convexity in convergence groups and prove that
local quasi-convexity is a necessary condition for a convergence group to be c-reflexive.
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Chapter 5. Locally Quasi-Convex Convergence Groups

Further, we prove that a non-topological compact convergence group (if it exists) is
reflexive iff it is locally quasi-convex. This chapter ends with some results related to the
duality of limits and co-limits in the class of locally quasi-convex convergence abelian
groups.

5.1 Local quasi-convexity and continuous duality

The concept of polar is well know in the theory [84] of topological vector spaces and
plays the central role in the development of the duality theory of locally convex spaces.
Similarly the notion of annihilator and polar plays an important role in defining locally
quasi-convex topological groups. The idea behind the definition of a quasi-convex subset
is to separate (with continuous characters) the subset from the points in the (relative)
complement of that subset. Formally, a subset A ⊂ G of a topological abelian group is
quasi-convex if for each point g in G\A, there exists a character χ in the polar set of A
such that

Re(χ(g)) < 0,

that is ABC = A. Further, G is locally quasi-convex if it has a base comprising of
quasi-convex neighbourhoods of identity. As any reflexive group is dual of its character
group, so the dual groups are locally quasi-convex and hence, the reflexive abelian groups
lie in the class of locally quasi-convex topological abelian groups but the converse may
fail as additive group of rational numbers Q equipped with the Euclidian topology induced
from the additive group R of real numbers is locally convex but not reflexive. Banaszczyk
[15] relates the local convexity of the topological vector space to local quasi-convexity
of the underlying additive abelian topological group and proves that a topological vector
space is a locally convex space iff when considered as an additive group (an underlying
group of topological vector space) it is a locally quasi-convex. It is quite interesting to
note that convexity (of vector spaces) is purely an algebraic property while the definition
of quasi-convexity involves the topology of the group and to this date, there is no physical
interpretation for quasi-convexity. A study of quasi-convex subsets is conducted in [67]
where the author studies the quasi-convex subsets of Z and presents its relation with Bohr
sets.

We extend the definition of local quasi-convexity1 to the class of convergence groups
and obtain a characterisation of the c-reflexive locally compact convergence abelian
groups.

For any convergence abelian group G, the annihilator and inverse annihilator are
defined as:
1We are thankful to Prof Frédéric Mynard for introducing the current version of the definition of local
quasi-convexity.
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5.1. Local quasi-convexity and continuous duality

Definition 5.1 (Annihilator and inverse annihilator). The annihilator O⊥ of a subgroup
O of convergence abelian group G and the inverse annihilator ⊥E of a subgroup E of ΓG

are the subgroups of ΓG and G respectively defined as:

O⊥ = {χ ∈ ΓG : χ{O} = {1}};

⊥E = {g : χ(g) = {1} ∀ χ ∈ E} ⊂ G.

The more general notion for the annihilator and the inverse annihilator of a subgroup
is the polar (HB) and the inverse polar (LC).

Definition 5.2 (Polar and inverse polar). For any subset H of G and L of ΓG the polar
and the inverse polar of H and L respectively are subsets defined as:

HB = {χ ∈ ΓG : χ(H) ⊂ T+};

LC = {g ∈ G : χ(g) ⊂ T+, ∀ χ ∈ L},

here T+ = {z ∈ T : Re (z) ≥ 0}.

If T is identified with the interval (−1
2
, 1

2
] the equivalent notations of polar and

annihilator are presented in [15].

The idea behind the definition of a quasi-convex subset [90] is to separate (with
continuous characters) the subset from the points in the (relative) complement of that
subset. Using this idea, we define the local quasi-convexity for convergence groups as:

Definition 5.3 (Quasi-convex set). A subset A of a convergence abelian groups G is
quasi-convex if for each point g in G\A, there is a character χ in the polar set of A
such that Reχ(g) < 0, that is

ABC = A

.

Definition 5.4 (Locally quasi-convex convergence group). A convergence group G is
locally quasi-convex if for each filter F −→

G
0 , there exists another filter G coarser than F

such that G −→
G

0 and G has a filter base composed of quasi-convex sets.

In view of [41] local quasi-convexity can be defined in terms of regularity with respect
to the family of quasi-convex sets.

Proposition 5.5. Let G1 and G2 be convergence groups and

f : G1 → G2
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Chapter 5. Locally Quasi-Convex Convergence Groups

a continuous (convergence) homomorphism and H ⊂ G2 a quasi-convex set then

f−1(H) ⊂ G1 is a quasi-convex set.

Proof. Let g /∈ f−1(H), then f(x) /∈ H . As H is quasi-convex then there exists,

χ ∈ ΓG2 : χ(f(g)) /∈ T+ and χ(H) ⊂ T+.

Now,
(χ ◦ f) ◦ f−1(H) ⊂ χ(H) ⊂ T+

and hence, χ ◦ f(g) /∈ T+.

Theorem 5.6. A subgroup of a locally quasi-convex convergence group is a locally

quasi-convex convergence group.

Proof. Let G be locally quasi-convex so for each filter F → 0 in G, there is another filter
G coarser than F such that G → 0 and G has a filter base composed of quasi-convex sets.
With respect to the inclusion map

i : A→ G

the subgroup convergence structure is an initial convergence structure so, if G → 0 in A
then i(G)→ 0 in G and hence, G has a filter base composed of quasi-convex sets.

Theorem 5.7. Direct sum of the locally quasi-convex convergence groups is a locally

quasi-convex convergence group.

Proof. The proof is similar to Theorem 5.6.

Theorem 5.8. For a locally quasi-convex convergence abelian group, Γc separates the

points on the group.

Proof. Let, G be locally quasi-convex convergence abelian group so it has filter base B
composed of quasi-convex sets. Now, A ∈ B is a quasi-convex set if for every x ∈ G\A
there exists a character χ ∈ Γ(G) such that

|χ(g)| > 1

4

and
|χ(A)| = sup{|χ(g)| : g ∈ A} ≤ 1

4
,

that is every element of the filter base is separated and hence the proof.

Corollary 5.9. For every locally quasi-convex convergence abelian group, κG is injective.
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For any convergence space X let,

Cc(X,T) = {f : f : X → T and f is continuous}

be the group of all continuous unimodular functions. Then we have:

Theorem 5.10. If Cc(X,T) is locally quasi-convex then it is c-reflexive.

Proof. Let, κx : X → ΓcCc(X,T) be defined as

κx(x)(f) = f(x) ∀ x ∈ X , f ∈ Cc(X,T).

We have, κx is well defined and as ΓcCc(X,T) has continuous convergence structure so
κx is continuous. κx is embedded is evident from the following commutative diagram:

Cc(X,T) ΓCΓCCc(X,T)

Cc(X,T)

id

κCc(X,T)

κ∗x

Hence, κx is an embedding and for

κ∗x : ΓCΓCCc(X,T)→ Cc(X,T)

we have we have κCG(X,τ) is isomorphism iff κ∗x is injective. Hence, from Theorem 5.9
the result follows.

The following theorem is evident as the special case of [18, Proposition 8.1.3].

Theorem 5.11. For every locally quasi-convex convergence abelian group G, κG is

continuous.

Proof. The map
e : ΓcG×G→ T

defined as
e(χ, x) = χ(x)

is a continuous. The continuity of κG follows from the following commutative diagram:

G× ΓcG ΓcΓcG× ΓcG

ΓcG×G T

κG×id

v ω

e
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Chapter 5. Locally Quasi-Convex Convergence Groups

Here, v represents the exchange of components and ω represents the evaluation mapping.

Corollary 5.12. κG is a continuous group homomorphism.

Proof. For x, y ∈ G and χ ∈ Γc we have

κG(x+ y)(χ) = χ(x+ y)

= χ(x)χ(y)

= κG(x)(χ)

= κG(y)(χ)

= (κG(x) + κG(y)) (χ).

So, from Theorem 5.11, we get that κG is a continuous group homomorphism.

Theorem 5.13. For every locally quasi-convex convergence abelian group, κG is an

embedding.

Proof. Let U be a quasi-convex set contained in a filter base, the filter generated by which
converge to zero in G then, UBB is contained in a filter base, the filter generated by which
converges to zero in ΓcΓcG. As

κ−1
G (UBB) = UBC = U

so,
κG(U) = κG(κ−1

G UBB) = UBB ∩ κG(G).

From Theroem 5.9 and Theorem 5.11, we get that κG is an embedding.

Example 5.14 (A locally quasi-convex convergence group need not be c-reflexive.).
The topological group L2

Z [0, 1] of almost every-where integer integrable functions ([6,
Corollary 11.15.]]) is a locally quasi-convex metrizable complete group which does not
satisfy P-reflexivity. Hence as a convergence group, L2

Z [0, 1] is not c-reflexive but it is
locally quasi-convex.

Theorem 5.15. For a convergence abelian group G,

(i) a filter Φ −−→
ΓcG

0 iff AB ∈ Φ for every finite subset A of G.

(ii) For every filter F −→
G

0, there is B ∈ F such that BB ∈ Φ.

(iii) If U −→
G

0 then, UBB is contained in a filter base, filter generated by which converge

to zero in ΓcΓcG.

Proof. (i) and (ii) are evident from [18, Proposition 8.1.8 ] and the proof of (iii) is evident
from (ii).
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5.1. Local quasi-convexity and continuous duality

Theorem 5.16. If a convergence group is c-reflexive then it must be locally quasi-convex.

Proof. To prove this result it is sufficient to prove that if a convergence group is embedded
then it must be locally quasi-convex.
In a convergence abelian group G let,

κG : G→ ΓcΓcG

be an embedding. Let, U is a quasi-convex set contained in a filter base, the filter
generated by which converge to zero in G. Then, κG(U) is a quasi-convex set contained
in a filter base, the filter generated by which converge to zero in κG(G). So, there exists
a quasi-convex set W contained in a filter base, the filter generated by which converge to
zero in ΓcΓcG such that κG(U) = W ∩ κG(G). Using theorem 5.15 we obtain that there
is a V contained in a filter base, the filter generated by which converge to zero in G with
W ⊇ V BB and hence,

κG(U) ⊇ V BB ∩ κG(G).

Further,
V ⊆ V BC = κ−1

G (V BB) ⊆ κ−1
G (κG(U)) = U

so, U(⊇ V BC) is a quasi-convex set contained in a filter base, the filter generated by
which converge to zero in G. Hence, the proof.

Remark 5.17. As there exists non reflexive locally compact convergence group so, this
group serves as an example of a non locally quasi-convex, convergence abelian group
and this situation is in contrast to the nature of locally quasi-convex topological abelian
groups as locally compact abelian topological groups are locally quasi-convex.

Theorem 5.18. Cc(X,T) is c-reflexive iff it is locally quasi-convex.

Proof. The proof follows from 5.10 and 5.16.

Motivated from [24, Proposition 3.2.9] we obtain the following result:

Theorem 5.19. A compact convergence abelian group which is locally quasi-convex is

reflexive.

Proof. The evaluation map κG is an embedding is evident from 5.13.
The evaluation map κG is onto:
If G is a compact group then, we have ΓcG is discrete, and hence, ΓcΓcG is compact.
As ΓcG is locally compact, its dual is topological and has the compact-open topology,
therefore ΓcΓcG = (̂ΓcG).
As, G is compact Hausdorff space, κG is continuous, hence κG(G) = ΓcΓcG. As every
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Chapter 5. Locally Quasi-Convex Convergence Groups

subgroup of the dual of a discrete group, which separates points from the group, is dense,
the subgroup κG(G) of ΓcΓcG is dense and hence the proof.

Remark 5.20. We do not know any example of a non-topological, Hausdorff compact
convergence abelian group. The following elementary facts are known in this regard.

• A non-topological compact convergence group, must be infinite.

• Every reflexive compact convergence abelian group must be topological, and hence,
a non-topological compact convergence group must not be locally quasi-convex.

Next we present certain facts obtained while investigating the examples of groups with
convergence.

Interaction between groups and convergence spaces

Let Γ be a subset of a group G such that each element of G is a product of elements of
Γ and no element of Γ is redundant, i.e. no element of Γ can be written as product of
its other elements. The edge colored Cayley digraph (directed graph) for G generated
by Γ is the directed graph C such that the vertex set of C is G and the edge set of C is
E = {(g, gγ) : g ∈ G , γ ∈ Γ}. The edges are colored by j : E → Γ, where j(g, h) = s.

Consider the symmetric group S3 with generators {(12), (123)}. Then the left
product of the elements of the generator set with the elements of the group is given as:

Generator id (12) (13) (23) (123) (132)

(12) (12) id (123) (132) (13) (23)
(123) (123) (23) (12) (13) (132) id

The following edge colored Cayley digraph is obtained

id (123)

(12)

(132)

(23)

(13)

→=(123) →=(12)
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5.1. Local quasi-convexity and continuous duality

Without colors the edge colored Cayley digraph reduces to the following Cayley
digraph:

id (123)

(12)

(132)

(23)

(13)

Further, in addition to the condition that γ ∈ Γ if another condition γ = id is added to the
definition of Cayley graph we obtain a reflexive Cayley digraph as follows:

The reflexive Cayley digraph for G generated by Γ is the reflexive digraph C such that
the vertex set of C is G and the edge set of C is {(g, gγ) : g ∈ G and γ = id or γ ∈ Γ}.

With this definition the reflexive Cayley digraph for S3 with generator set {(12), (123)} is:

id (123)

(12)

(132)

(23)

(13)

As explained in Example 3.4, a reflexive diagraph can be represented by a
convergence space [21, Proposition 5]. So in view of above discussion we can see how
fixing a generating set of a group generates the convergence.

Remark 5.21. 1. The convergence structure defined via Cayley graphs is not
necessarily compatible with group structure and is not necessarily Hausdroff.

2. We have not explored here, different convergences a group can generate on
considering different generators, but this kind of approach provides a view to
analyse ”groups with convergence” in place of convergence groups.

Apart from finite groups, the convergence generated by the infinite groups is also of a
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great interest, an elementary example in this case includes:
Reflexive Cayley digraph of Z generated by {1}

−2 −1 0 1 2

Further, in view of [78, Example 4.6] a Cayley graph for Z ⊕ Z is the graph Cartesian
product2 Z× Z generated by (Γ× {e}) ∪ ({e} × Γ) and can be represented as follows:

Now, define a function + : Z × Z → Z as +(a, b) = a + b. Clearly, + is continuous
but this convergence is not Hausdroff, hence the problem to obtain a non topological,
Hausdroff, compact convergence group is still unsolved.

5.2 Duality of limits

In this section, we present the results obtained regarding the duality properties of
limits of locally quasi-convex convergence groups. For a detailed study of the duality of
projective and inductive limits of topological and convergence groups we refer the reader
to [1, 2, 16, 17].

We denote by CAG and LCAG the categories of abelian convergence groups and
of locally quasi-convex Hausdorff convergence abelian groups, respectively. A directed
system is an indexed set I in which for each pair i, j in (I,≤) there is a k in I such that
i, j ≤ k. Projective system in CAG is family of pairs

{(Gi, fij)|i, j ∈ I, j ≤ i}

of a collection of convergence groups {Gi} and continuous homomorphisms {fij : Gj →
Gi} such that fii is identity homomorphism and fik = fij ◦ fjk for i ≤ j ≤ k. The subset

{(gi)i∈I ∈
∏
i∈I

Gi|fij(gj) = gi with i ≤ j}

2We are thankful to Prof Daniel R. Patten for suggesting this example.
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5.2. Duality of limits

of the product
∏
i∈I
Gi is called inverse limit or projective limit (lim

←
Gn) of projective

system {Gi, fij}, here the product
∏
i∈I
Gi is equipped with initial convergence structure in

respect of the projections
πi :

∏
i∈I

Gi → Gi.

Dual (categorical) to the notion of projective (or inverse limit) is the inductive (or direct
limit). An inductive system in CAG over a directed system I is defined as the family (of
pairs)

{Gi, fij|i, j ∈ I, i ≤ j}

of the collection of convergence abelian groups {Gi} and continuous homomorphisms
{fij : Gi → Gj} such that fii = idGi and fik = fjk ◦ fij when i ≤ j ≤ k. The inductive

or direct limit is defined as the quotient

(lim
→
Gn =

∐
i∈I

Gi\ ∼)

of an inductive system {Gi, fij}, of the disjoint union
∐
i∈I
Gi, where two elements gi ∈ Gi

and gj ∈ Gj are equivalent if there is a k ≥ i, j such that fik(gi) = fjk(gj).
For a family (Gi)i∈I of convergence abelian groups,

∑
i∈I Gi and

⊕
i∈I Gi denotes the

product and the coproduct of Gi’s, equipped with product convergence structure final
group convergence structure with respect to the natural injections

εJ : GJ →
⊕
i∈I

Gi, (for all finite J ⊂ I)

respectively.

Proposition 5.22. For G a locally quasi-convex convergence abelian group, G/ker(κG)

is dually closed in G, i.e. it has enough characters.

In order to prove that the dual group of a locally quasi-convex, compact, abelian
convergence group is c-reflexive we prove the following factorization property. The proof
is motivated from [18, Theorem 8.1.14].

Theorem 5.23. For convergence abelian groups H and G. If φ : L → H and ψ : H →
L are continuous homomorphisms such that, φ ◦ ψ = id or equivalently the following

diagram is commutative
H H

L

ψ

id

φ

then, L = ψ(H)⊕ ker(φ).
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Proof. Let, y ∈ ψ(H) ∩ ker(φ). Then, there is an x ∈ H for which y = ψ(x) and hence,

0 = ψ(y) = id(x) = x

⇒ y = 0.

For, x ∈ L,
φ(x− ψ(φ(x))) = φ(x)− φ(ψ(φ(x))) = 0

and hence,
x = ψ(φ(x)) + (x− ψ(φ(x))) ∈ ψ(H)⊕ ker(φ).

So, L is algebraic direct sum. Clearly, this sum is topological and hence the proof.

Proposition 5.24. For a locally quasi-convex, compact, abelian convergence group G the

convergence group ΓcG is c-reflexive.

Proof. ΓcG is embedded is evident from the following diagram

ΓcG ΓCΓCΓCG

ΓcG

id

κΓcG

κ∗G

As G is reflexive, we have
κG(G) = ΓCΓCG

and hence κG(G)B = 0. Now, using Theorem 5.23, we have,

ΓcΓcΓcG = κΓcG(ΓcG)⊕ ker(κ∗G)

and as κG(G)B = 0 we have

ΓcΓcΓcG = κΓcG(ΓcG).

Hence, the convergence group ΓcG is c-reflexive.

For a family (Gi)i∈I of convergence groups, the maps

Λ : Γc(
∑
i∈I

Gi)→
⊕
i∈I

(ΓcGi)

and
∆ : Γc(

⊕
i∈I

Gi)→
∑
i∈I

(ΓcGi)

are isomorphism [28, Proposition 2.2, 2.3]. These two statements are dual to each other
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5.2. Duality of limits

and hence seems analogues but the proof to the second is not straight forward. From [28,
Theroem 2.4] we obtain the following:

Theorem 5.25. For family (Gi)i∈I of compact, locally quasi-convex convergence abelian

groups, the convergence groups
∑

i∈I Gi and
⊕

i∈I Gi are c-reflexive.

Proof. For, compact, locally quasi-convex convergence abelian groups we have E(ξ) =

(κGi(ξ(i)))i∈I is an isomorphism which we get from theorem [28, Proposition 2.2].
Further, ω is a mapping from

∑
i∈I ΓcΓcGi to Γc(

⊕
i∈I ΓcGi) The proof is evident from

the following diagram

∑
i∈I Gi

∑
i∈I ΓcΓcGi

ΓcΓc(
∑

i∈I Gi) Γc(
⊕

i∈I ΓcGi)

E

κ ω

(u−1∗)

We obtain the following results as a special case of [2, Theorem 4.1].

Theorem 5.26. The c-dual of the direct limit of the compact, locally quasi-convex

convergence abelian groups is the inverse limit of the c-dual i.e. for family (Gi)i∈I of

compact, locally quasi-convex convergence abelian groups, Γc(lim→
Gi) ∼= (lim

←
ΓcGi).

Theorem 5.27. For functor F : CAG → LCAG defined by F (G) = G/ker(κG),

F (lim
→
Gi) = (lim

←
FGi).

Proof. The proof is evident from Theorem 5.22 and from fact that the functor F is left
adjoint to the inclusion functor LCAG→ CAG.

Conclusion

In this chapter, we have presented the notion of local quasi-convexity in convergence
groups. We have seen that locally compact convergence groups (and, non-topological
compact convergence groups, if they exist) are not contained in the class of locally
quasi-convex convergence abelian groups. Finally, we have proved certain results related
to the limits of local-quasi-convex convergence abelian groups.
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Concluding Remarks

It is evident that the behaviour (in reference to duality theory) of non-topological
locally compact convergence groups is quite different from the class of locally compact
topological groups and it is not trivial to extend the implications of boundedness and
compactness from topological groups to convergence groups.

In order to make an attempt to obtain an extension of the theory of integration
from topological spaces to convergence spaces we have introduced the term convergence
measure space whose underlying idea is to define the σ-algebra compatible with the
convergence structure. Our idea of the convergence measure space depends on the
topological modification of the convergence space but as compactness and the open sets
do not play the same role in theory of filter convergence groups as they play in topological
case, so the problem of obtaining a suitable class of measurable sets for the purpose of
analysis is still unsolved, and hence the general definition of a convergence measure space
is still not known.

Motivated from the convexity in topological vector spaces and quasi-convexity in
topological groups we have introduced the notation of local-quasi-convexity for the
class of convergence abelian groups and in contrast to topological case it has been
obtained that the class of locally compact convergence groups do not lie in the class
of locally quasi-convex convergence groups. We prove that the local quasi-convexity
is necessary for a convergence group to be c-reflexive. Further, we obtain that locally
quasi-convex, compact convergence groups are c-reflective. The problem to obtain the
concrete examples of filter convergence groups beyond homeomorphism groups and the
problem of existence of non-topological compact convergence groups is still unsolved. In
this regard, we have obtained that if non-topological compact convergence group exists
then, it cannot be reflexive.
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