
DATA-AWARE PLACEMENT AND SCHEDULING FOR
SCIENTIFIC WORKFLOW IN CLOUD COMPUTING

A

Thesis

Submitted to

For the award of

DOCTOR OF PHILOSOPHY (Ph.D.)

IN

COMPUTER SCIENCE AND ENGINEERING

By

Avinash Kaur

41400090

Supervised By :

Dr. Pooja Gupta

Co-Supervised By :

Dr. Manpreet Singh

LOVELY FACULTY OF TECHNOLOGY AND SCIENCES

LOVELY PROFESSIONAL UNIVERSITY

PUNJAB

2019

DECLARATION

This thesis is an account of research undertaken between August 2014 and April 2019 at

The Department of Computer Science and Engineering, Lovely Professional University,

Phagwara, India.

Except where acknowledged in the customary manner, the material presented in this

thesis is, to the best of my knowledge, original and has not been submitted in whole or

part for a degree in any university.

Avinash Kaur

Registration no. 41400090

Department of Computer Science and Engineering

Lovely Professional University, Phagwara, India

ii

CERTIFICATE

This is to certify that the declaration statement made by the student is correct to the

best of my knowledge and belief. She has submitted the Ph.D. thesis Data-aware

Placement and Scheduling for Scientific Workflow in Cloud Computing under my

guidance and supervision. The present work is the result of her original investigation,

effort and study. No part of the work has ever been submitted for any other degree at any

University. The Ph.D. thesis is fit for the submission and fulfillment of the conditions for

the award of Ph.D. degree in Computer Science Engineering from Lovely Professional

University, Phagwara.

Dr. Pooja Gupta

Associate Professor

Department of CSE

Lovely Professional University,

Phagwara, India

Dr. Manpreet Singh

Assistant Professor

Department of IT

Guru Nanak Dev Engineering

College, Ludhiana, India

iii

ABSTRACT

Cloud computing is the latest distributed computing paradigm with a lot of opportuni-

ties to run workflow applications without having in-house infrastructure. In particular,

cloud offers scalable, easily accessible and cost-efficient services for scientific work-

flow in cloud data centers. Cloud provides an unlimited virtual pool of resources that

can be acquired, configured, used and released as per the real-time requirement of the

applications.

Scientific Workflow is a composition of coarse-grained and fine-grained tasks with

varying execution requirements. In the big data era, it is compelling to extract and

process the knowledge from consistent data producing applications such as gravita-

tional wave detectors, particle accelerators, and telescopes. Large-scale data transfer

is involved in these applications, so efficient data placement techniques are required to

reduce the data-movement between the datacenters. The scheduling algorithms is a key

to automate their execution in cloud environment. It is a challenging task to develop a

scheduling algorithm, which can complete the execution of scientific workflows within

budget and deadline constraints.

In this thesis, the state-of-the-art is enhanced with task clustering technique, data

placement scheme and scheduling algorithm for scientific workflows in cloud environ-

ment. A Hybrid Balanced (HYB) task clustering technique has been developed to group

the task either horizontally or vertically based on the impact factor of the tasks in scien-

tific workflow. Further, a meta-heuristic approach has been applied to develop a Crow

Search Algorithm (CSA) based data placement scheme in order to find an appropriate

iv

data center for intermediate datasets. Furthermore, Data Placement Oriented Hetero-

geneous Earliest Finish Time (DPO-HEFT) scheduling algorithm has been developed

using the comprehension of task clustering and data placement with the balanced trade-

off of budget and deadline specifications.

The proposed HYB task clustering algorithm is efficient to combine the task in both

horizontal and vertical directions. This approach minimize the execution time through

a reduction in scheduling overhead. Impact factor technique applied in the proposed

clustering also resolves the distance and runtime imbalance issue in existing clustering

techniques for scientific workflow. Crow Search Algorithm (CSA) based placement

scheme precisely place intermediate datasets at appropriate data centers. The devel-

oped model reduce the data movement in the data centers, which directly affect the data

transfer cost and execution time of the scientific process. The DPO-HEFT scheduling

algorithm successfully addressed the fundamental issues of scientific workflow schedul-

ing for budget and deadline constraints.

The experiment results show that the data placement and scheduling algorithms

make a significant improvement in data movement and scheduling overhead. The de-

signed approach is dynamic in nature which takes clustering and placement decisions

as per budget and deadline parameters. The proposed model provides a low cost and

fast execution as compared to existing techniques for scientific workflow in a cloud

environment.

v

ACKNOWLEDGEMENTS

I take this opportunity to express my sincere thanks to everyone who has helped me in

various capacities to carried out this research and prepare the report.

I am delighted to thank our respected supervisors Dr. Pooja Gupta and Dr.Manpreet

Singh who have offered tremendous support in the completion of this research. Their

unparalleled knowledge, judgment, and moral fiber were together with their expertise.

I acknowledge the Department of Computer Science and Engineering, Lovely Pro-

fessional University to provide me the appropriate resources and financial support to

pursue the doctoral degree. I am grateful to the administration staff at the Centre for

Research Degree Programmes for the numerous applications.

I would also thank my parents, husband, daughter, friends, and contemporaries for

their co-operation and compliance. I cannot cherish a greater fortune other than having

them in my life. Their care and love are indispensable for my achievements.

Avinash Kaur

vi

CONTENTS

Declaration ii

Certificate iii

Abstract iv

Acknowledegments vi

List of Figures xiii

List of Tables xv

List of Abbreviations xvi

1 Introduction 1

1.1 Introduction to Cloud Computing . 1

1.2 Overview of Workflow . 2

1.2.1 Classification of Workflow . 2

1.2.2 Scientific Workflow Management System 3

1.2.3 Challenges of Workflow Management in Cloud 5

1.3 Research Issues and Objectives . 6

1.4 Research Methodology . 7

1.5 Thesis Contributions . 9

1.6 Thesis Organization . 10

vii

2 Literature Review 13

2.1 Introduction . 13

2.2 Review on Workflow Management System 14

2.3 Review on Task Clustering Techniques 16

2.4 Review on Data Placement Techniques 19

2.4.1 Classification of Data Placement Techniques 19

2.5 Review on Scheduling Algorithms . 35

2.6 Summary . 37

3 Hybrid Balanced Task Clustering for Scientific Workflow in Cloud Com-

puting 39

3.1 Introduction . 39

3.2 Related Work . 41

3.2.1 Load Imbalance . 41

3.2.2 Granularity . 42

3.2.3 Structural Similarity . 42

3.2.4 Data Dependency . 43

3.3 System Architecture . 44

3.3.1 Workflow . 44

3.3.2 Workflow Model . 45

3.3.3 Workflow Execution Environment 46

3.4 Proposed Hybrid Balanced Task Clustering Algorithm 47

3.4.1 Problem Formulation . 47

3.4.2 Research Methodology . 48

3.5 Experimental Evaluation . 55

3.5.1 Scientific Workflow Applications 55

3.5.2 Balanced Task Clustering Algorithms 57

3.5.3 Description of Baseline Balanced Clustering Algorithms 57

3.5.4 Experimental Evaluation . 61

3.5.5 Results and Discussion . 62

3.6 Summary . 67

viii

4 A Data Placement Strategy Based on Crow Search Algorithm in Cloud

Computing 68

4.1 Introduction . 68

4.2 Related Work . 71

4.3 Data Placement Process . 73

4.3.1 Data Placement Stages . 73

4.3.2 Need for Data Placement . 74

4.4 Research Methodology . 76

4.4.1 Proposed Crow Search Algorithm (CSA) Based Data Placement 76

4.4.2 Pseudo Code of Proposed CSA-based Runtime Data Placement 78

4.5 Comparison of CSA and PSO . 82

4.6 Experimental Evaluation . 82

4.6.1 Experimental Setup . 83

4.6.2 Results and Discussion . 84

4.7 Summary . 88

5 Data Placement Oriented Scheduling Algorithm for Scientific Workflows

in Cloud: A Budget-Aware Approach 90

5.1 Introduction . 90

5.2 Related Work . 92

5.3 System Architecture . 93

5.3.1 Cloud Data Center Model . 93

5.3.2 Workflow Model . 96

5.3.3 System Model . 96

5.4 Research Methodology . 98

5.4.1 Phase 1: Budget Distribution 99

5.4.2 Phase 2: Task Clustering in Workflow 100

5.4.3 Phase 3: Deadline Distribution 101

5.4.4 Phase 4: Task Selection . 102

5.4.5 Phase 5: Instance Selection . 102

5.5 Experimental Evaluation . 104

5.5.1 Experimental Methodology 104

5.5.2 Experimental Setup . 104

ix

5.5.3 Results and Discussion . 107

5.6 Summary . 115

6 Conclusion and Future Directions 117

6.1 Conclusion and Discussion . 117

6.2 Future Scope . 119

6.2.1 Energy-Efficient Placement and Scheduling 119

6.2.2 Replication Management . 119

6.2.3 Fault-tolerance and Provenance Management 119

6.2.4 Pricing Models . 120

References 140

Publications 141

x

LIST OF FIGURES

1.1 Scientific Workflow Management System functional architecture[1] . . 4

1.2 Research methodology flowchart . 8

1.3 Chapter wise thesis organization . 11

2.1 Data placement schemes in Cloud computing 20

3.1 WfMC reference model [2] . 45

3.2 Workflow model . 45

3.3 Workflow management system . 46

3.4 Flowchart of Proposed Hybrid Balanced Clustering Algorithm 49

3.5 A sample workflow . 50

3.6 Merging of clusters in a job . 52

3.7 Clustering to avoid runtime imbalance and dependency imbalance . . . 52

3.8 Merging clusters into a job . 52

3.9 Clustering to avoid runtime imbalance and dependency imbalance . . . 53

3.10 Merging clusters into a job . 53

3.11 Clustering to avoid runtime imbalance and dependency imbalance . . . 54

3.12 Merging clusters into a job . 54

3.13 A simplified version of the Montage workflow [3]. 55

3.14 A synthetic version of the CyberShake workflow [4]. 56

3.15 A synthetic version of Epigenomics workflow with multiple branches [5]. 56

3.16 A simplified version of the SIPHT workflow [6]. 57

xi

3.17 A simplified version of the LIGO Inspiral workflow [7]. 58

3.18 Working of Horizontal Clustering . 59

3.19 Working of Vertical clustering . 59

3.20 Working of the Horizontal Runtime Balancing (HRB) method 60

3.21 Working of Horizontal Impact Factor Balancing (HIFB) method 60

3.22 Working of Horizontal Distance Balancing (HDB) method 61

3.23 Comparison of performance Gain (µ) for various clustering methods . . 65

3.24 Execution time while varying virtual machines in Horizontal Clustering

technique . 66

3.25 Execution time while varying virtual machines in Hybrid Balanced Clus-

tering technique . 67

4.1 Cloud architecture for Workflow management system 69

4.2 Data Placement Process [8]. 74

4.3 Flowchart of Crow Search Algorithm(CSA) based data placement. . . . 77

4.4 Data Placement Map of initial datasets. 78

4.5 Data movement without storage limit without fixed location datasets (a)

varying number of datasets (b) varying number of datacenters 85

4.6 Data movement without storage limit with 20% fixed location datasets

(a) varying number of datasets (b) varying number of datacenters 86

4.7 Proportion of three types of data movements (a) Non-Fixed datasets (b)

20% Fixed datasets . 87

5.1 Workflow model . 95

5.2 Model for scheduling scientific workflows in cloud 96

5.3 A simplified display of the Montage workflow [3]. 105

5.4 A simplified display of Cybershake Workflow [3]. 106

5.5 A simplified display of Epigenomics workflow [3]. 106

5.6 A simplified display of the SIPHT workflow [6] 106

5.7 A simplified display of LIGO workflow [3] 107

5.8 Makespan Time of Montage workflow with 25, 50, 100 and 1000 tasks . 109

5.9 Makespan Time of Cybershake workflow with 30, 50, 100 and 1000 tasks110

5.10 Makespan Time of Epigenomics workflow with 24, 46, 100 and 997 tasks112

xii

5.11 Makespan Time of LIGO workflow with 30, 50, 100 and 1000 tasks . . 113

5.12 Makespan Time of SIPHT workflow with 30, 60, 100 and 1000 tasks . . 115

xiii

LIST OF TABLES

2.1 Objectives of correlation based data placement schemes 21

2.2 Properties of coorelation based data placement schemes 21

2.3 Objectives of Genetic algorithm energy based data placement schemes . 23

2.4 Properties of Genetic algorithm energy based data placement schemes . 23

2.5 Objectives of energy efficient based data placement schemes 25

2.6 Properties of energy efficient based data placement schemes 25

2.7 Objectives of PSO based data placement schemes 28

2.8 Properties of PSO based data placement schemes 28

2.9 Objectives of ACO based data placement schemes 29

2.10 Properties of ACO based data placement schemes 29

2.11 Objectives of optimization based data placement schemes 31

2.12 Properties of optimization based data placement schemes 31

2.13 Objectives of fault tolerant based data placement schemes 32

2.14 Properties of fault tolerant based data placement schemes 32

2.15 Objectives of replication based data placement schemes 34

2.16 Properties of replication based data placement schemes 34

3.1 Symbols used in this work . 47

3.2 Configuration setup for the experiment 62

3.3 Scientific workflow for experiment and number of tasks 63

3.4 Makespan time of workflow with or without clustering algorithms . . . 63

3.5 Performance gain for various workflows 63

xiv

4.1 Parameters for data placement . 84

5.1 Amazon EC2: Optimized instance series of memory 94

5.2 Amazon EC2: Optimized instance series of computing 94

5.3 Amazon EC2: Optimized instance series of storage vs CPU 94

5.4 Configuration setup for the experiment 105

5.5 Execution time for Montage Workflow 108

5.6 Execution Time for Cybershake Workflow 110

5.7 Execution Time for Epigenomics Workflow 111

5.8 Execution Time for LIGO Workflow 113

5.9 Execution Time for SIPHT Workflow 114

xv

LIST OF ABBREVIATIONS

ACO Ant Colony Optimization

AP Awareness Probability

AWS Amazon Web Services

BaRRS Balanced and Reuse-Replication Scheduling

BEA Bond Energy Algorithm

CPOP Critical Path of Processor

CSA Crow Search Algorithm

DAG Directed Acyclic Graph

DC Dynamic Clustering

dg Dependency Gain

DPO-HEFT Data Placement Oriented Hetrogenous Earliest

Finish Time

DVFS Dynamic Voltage and Frequency Scaling

GA Genetic Algorithm

HC Horizontal Clustering

HDB Horizontal Distance Balancing

HEFT Hetrogenous Earliest Finish Time

HIFB Horizontal Impact Factor Balanacing

HRB Horizontal Runtime Balancing

HRV Horizontal Runtime Variance

IFV Impact Factor Variance

xvi

LIGO Laser Inferometer Gravitational Wave Observa-

tory

MTC Multiple Task Computing

PPR Price/Performance Ratio

PSO Particle Swarm Optimization

QoS Quality of Service

SLA Servie Level Agreement

SOA Service Oriented Architecture

SR Selective Reclustering

SWFMS Scientific Workflow Management System

VC Vertical Clustering

VM Virtual Machine

WfMC Workflow Management Coalition

WPA Workflow and Platform Aware Task Clustering

xvii

CHAPTER 1

INTRODUCTION

1.1 Introduction to Cloud Computing

In 1960 John McCarthy imagined that computation in a certain time would be given as

a utility. The acknowledgment of this is cloud computing. Technologies such as Service

Oriented Architecture (SOA), web-services and hardware virtualization lay the path of

cloud landscape [9].

Cloud computing has emerged from various computing paradigms of distributed

computing over the growth of both hardware and Internet technology. Seamlessly using

the power of virtualization and distribution, cloud today provides the use of applications

and services over the Internet as if they are being used on the local machine. A cloud

computing stage is built with the broadly disseminated set of equipment stage which is

arranged and running assorted software services [10].

Most of the users are unaware of the services of cloud in their applications such

emails, social networking sites and other services offered or hosted on a cloud [11].

Users do not need to have any information about the background services. They can

make communication with many servers at the same time and there is communication

among servers also. Cloud computing aims to provide services to the users that host

documents on the Internet and outsource the IT infrastructure [12].

At an abstract level there are three types of cloud services:

1

1. Software as a Service

It delivers the software applications services as a utility to the clients. They can

get these services from the basic interface, for example, a web program over the

Internet [13].

2. Platform as a Service

It presents a high level cohesive framework to assemble, test and deploy the client

made applications.

3. Infrastructure as a Service

It gives certain critical computing resources to clients such as processing, storage,

network, etc. IaaS clients can convey self-assertive application, software, work-

ing frameworks on the infrastructure, which can be scaled on the basis of needs

of application resource [13].

1.2 Overview of Workflow

Workflow Management Coalition (WfMC) defined workflow as : “The automation of

a business process, in whole or part, during which documents, information or tasks are

passed from one participant to another for action, according to a set of procedural rules”

[14].

Here, WfMC described the work processes are the progression of organized ex-

ercises and calculations of a business procedure, which is a unique depiction of the

undertakings to be executed for that business process. They are utilized to join a few

diverse computational procedures into a solitary lucid procedure. The business applica-

tions can now be seen as complex work processes, which comprise of different changes

performed on the information required in accomplishing the goal. Workflows offer

points of interest in isolating capacities from applications. In this manner offering data

framework to be segment based, which arrange and deployed workflow tasks in cloud

data center.

1.2.1 Classification of Workflow

The workflows vary significantly in their computation and data requirement. A work-

flow may require a large set of data to execute a particular task. It may also require

2

large computation time in order to finish the execution of a particular task. This can

adhere to the combination of data and compute intensive jobs, which produce inter-

mediate data after the processing of the task. The size of produced dataset during the

computation can vary [15]. The workflows are classified as scientific workflows and

business workflows [16].

1. Business Workflow: The business process is automated, where information,

tasks or documents are transferred between the users as per the protocols. The

objective in business is achieved by a set of linked procedures or activities usually

within the structure of an organization. The efficiency and reliability of business

processes are increased by a business workflow.

2. Scientific Workflow: They are used for running and modeling scientific exper-

iments. In order to reduce the makespan, it assembles data processing and ex-

ecution of scientific activities. It represents the complex set of data processing

activities with data dependencies. There are various ways of representing the sci-

entific workflow and, Directed Acyclic Graph (DAG) is a generic way to represent

the scientific workflow.

1.2.2 Scientific Workflow Management System

Scientific Workflow Management System (SWFMS) fulfill the following requirements:

supporting parallel computing, software reuse, distributed resource management, user

interaction, collaborative sharing, fault tolerance, and other required features. The

Scientific Workflow Management System [1] is classified into four layer architecture

shown in Figure 1.1.

1. Application Layer: In this layer, workflows are constructed, further textual and

graphical user interfaces submit requirements to the system. The reusability and

flexibility of cloud service components and local resource component is provided

by modular programming. The translation of workflows accomplished with a

mathematical model in the next layer. Furthermore, this layer presents and visu-

alize the accomplished results.

2. Service Layer: The scientific workflows are executed in this layer. It deals with

fault tolerance and workflow monitoring for a workflow management system to

3

Application Layer

Service Layer

Management Layer

Infrastructure Layer

Workflow Design Presentation and Visualization

Workflow Monitoring Workflow Engine Fault Tolerance

Provenance
Management

Scientific Workflow
Scheduling

Data
Management

Cloud
Enviornment

Computing
resources

Storage
resources Network

Local Resources

Inform
ation

Services

Figure 1.1: Scientific Workflow Management System functional architecture[1]

work well. This layer receives eligibility requirements from the application layer

and scheduling requirements are obtained from the management layer. The sta-

bility of management system is improved by separating workflow execution from

task scheduling and task acquiring.

3. Management Layer: It is the bridge between the execution of workflows and

physical resources. The major part of this layer is Scientific Workflow Scheduling

that determines which scheduling algorithm to use. This layer has a significant

role in optimizing task procedures and parallelizing the processing of data. Be-

fore planning the scheduling, this layer obtains information about the resources

and applications. The movement of data is also involved during the scheduling

process which is then needed to be handled by efficient data management module.

The derivation history of data productions is recorded for tracking the experiment

processes and validating the results.

4. Infrastructure Layer: It is responsible for expanding the foregoing service plat-

form designed using cloud-based local resources. Using local resources, more

service selections and cost savings can be provided. Storage, computing, net-

work and other resources are included in each computing environment.

4

1.2.3 Challenges of Workflow Management in Cloud

To organize the scientific workflows in the cloud data centers, the researcher consid-

ers three major aspects 1) Workflow Clustering, 2) Data Placement and 3) Scheduling.

The clustering is a process to merge the tasks of a workflow based on their dependen-

cies. Furthermore, the data placement process is responsible for the placement of data

sets required by the tasks on an instance. The scheduling finally executes the tasks of

workflow in a cloud environment by considering the budget and deadline constraint.

Challenges in Tasks Clustering

Dependency calculation at run-time is difficult because of complex scientific workflow

task (e.g. Many tasks require one dataset and one task may require multiple datasets)

which directly affects the efficiency of clustering algorithms. Load balancing of scien-

tific workflow task on the different data centers is still a challenge. Improper clustering

of jobs increases the waiting time of Virtual Machines (VMs). All the techniques are

considering the homogeneous cloud environment where the heterogeneous environment

is provided by cloud providers nowadays.

Challenges in Data Placement

Improper data placement policy increases data movement in the data center which leads

to increased cost and delayed services. Placement of runtime datasets is still a challenge

in a complex scientific workflow. Storage and computation capacity is a bottleneck in

some situations while transferring the intermediate data sets. Most of the techniques

are focused on decreasing the data movement but not considered the data size. If the

data size is considered it may improve the data placement policy to a significant level.

Challenges in Tasks Scheduling

Pricing model allocates resources to scientific workflow jobs for a fixed number of hours

as per the predetermined policy. A small variance in prediction leads to cost desperation

for the user and partial use of cloud instances. Performance variance in cloud resources

due to failures, sharing of resources, VM consolidation (e.g VM migration) affects the

execution time. So it is a research challenge to calculate the execution time of the job.

5

Scheduling policy required modification with different Quality of Service (QoS) param-

eters requirement. Optimized use of on-demand, reserve and spot instances resources

in scheduling algorithms can give major benefits to users and service providers.

1.3 Research Issues and Objectives

The main objectives of this research is to address the fundamental issues related to

clustering algorithms, data placement schemes and scheduling algorithms for scientific

workflows in cloud infrastructure. In the present study, researcher targets the following

major components of SWfMS.

• Workflow Mapper: It is responsible for constructing a job from the small tasks

called task clustering. This reduces the system overhead.

• Data Management: It is used to manage the large volume of data and store the

data at an appropriate data center.

• Scheduler: It is responsible for mapping the tasks to the resources with certain

policies.

To address the above-mentioned challenges, first, there is a need to develop a task

clustering technique to merge the tasks of workflow. This facilitates the cloud in re-

ducing systems overheads and enabling faster execution of tasks. It avoids wastage of

resources. The following issues need to be addressed :

• How to reduce the under-utilization of resources?

• How to minimize system overheads?

• How to consider the data dependencies in a workflow?

• How to check the accuracy of clustering technique?

After the task clustering, the researcher developed a data placement technique to

place the datasets at an appropriate location in the data center. This approach reduced

the cost of execution through minimizing the data movements. The following issues

need to be addressed:

6

• How to effectively distribute data onto a storage device?

• How runtime generated datasets are to be placed?

• How the budget is going to be considered for storing of data?

• What will be the impact of developed technique on the performance metrics?

After the data placement, a scheduling technique need to be designed for the ex-

ecution of workflows jobs in the cloud data centers. The following issues need to be

addressed:

• How execution is to be scheduled with budget constraint?

• How execution is to be scheduled before the completion of the deadline?

• How to effectively develop the execution schedule while considering the available

resources?

Therefore, the researcher summarizes the following objectives:

1. To design a dynamic clustering algorithm for data-intensive scientific workflow

in cloud environment.

2. To develop a data placement strategy for optimization of data movement in cloud.

3. To develop a budget-aware scheduling algorithm for data-intensive workflow ap-

plications in cloud computing.

4. To analyze the proposed algorithms with existing algorithms on parameters such

as makespan, data movement, budget, deadline, etc.

1.4 Research Methodology

The expected outcome of the present study is to design and develop the budget and

deadline aware scheduling algorithm for data-intensive scientific workflow applications.

The proposed approach considers the budget and deadline constraints of the clients.

A flow chart in Figure 1.2 is a list of activities to achieve the mentioned objectives

7

followed by the research methodology for each objective. To achieve the mentioned

objectives following research methodology has been applied.

Literature review of clustering of tasks in cloud
computing

Literature review of data placement techniques in cloud
computing

Literature review of scheduling of scientific workflows
in cloud computing

Designed a task clustering techniques considering the structure of tasks
in scientific workflows

Designed a data placement method for intermediate generated data sets
of the tasks in scientific workflow

Designed a scheduling mechanism for the tasks of scientific workflow
while considering the budget of user

Evaluated and analyzed the proposed scheduling mechanism on different
performance metrics such as cost, budget, response time etc.

State-of-the-art

Figure 1.2: Research methodology flowchart

1. To achieve the first objective hybrid balanced task clustering algorithm has been

designed on the basis of ordering the tasks in a workflow. The optimal hybridiza-

tion of horizontal and vertical clustering is used to reduce the makespan of the

scientific workflow in the workflow management system for data-intensive appli-

cations. The experimental evaluation is performed on workflowsim.

8

2. To achieve the second objective, a data placement strategy has been designed

based on a meta-heuristic approach Crow Search Algorithm (CSA). This ap-

proach optimizes the overall data movement among the data centers and chooses

data placement location at runtime stage. Experimental evaluation is performed

on SwinDeW-C.

3. To achieve the third objective Data Placement Oriented Heterogeneous Earliest

Finish Time (DPO-HEFT) scheduling algorithm has been designed to sustain the

parallelism in workflow scheduling while considering deadline and budget con-

straints. The optimization technique has been used for data-intensive workflows.

Experimental evaluation is performed on workflowsim with real workflow traces.

4. To achieve the last objective training and testing of the system is performed with

Workflowsim and SwinDeW-C. Finally, the performance of the proposed algo-

rithms is evaluated with different scientific workflow applications and compared

with existing state-of-the-art algorithms.

1.5 Thesis Contributions

The present study addresses the defined research questions. The thesis contribution is

mentioned as follows:

• A literature survey of task clustering, data placement and scheduling mechanisms

for scientific workflow in cloud computing.

1. A detailed investigation carried to study various existing task clustering

techniques, data placement methods and scheduling algorithms in cloud

computing.

2. The classification of the mentioned techniques is done as per the common

characteristics.

3. Future research directions in the area of task clustering, data placement and

scheduling are presented.

• Task clustering technique for clustering tasks of scientific workflows in cloud

computing to reduce the makespan of the workflow.

9

1. Design and development of task clustering technique to group the tasks of

scientific workflows in a cloud.

2. Design and development of task clustering technique to reduce the makespan

and scheduling overhead of scientific workflows in cloud.

• Data Placement mechanism for placing the intermediate datasets at an appropriate

location in the data center in cloud computing.

1. Design and development of data placement scheme for placement of data

sets at an appropriate location in the data center.

2. Optimization of data placement technique to reduce the data movement of

datasets among the data centers of cloud.

• Scheduling method to execute the scientific workflows with the appropriate in-

puts.

1. Design and development of a scheduling algorithm for scientific workflows

in a cloud.

2. Design and development of a scheduling algorithm to execute the workflows

with the budget and deadline specified by the user.

1.6 Thesis Organization

The structure of the thesis and its dependencies are shown in Figure 1.3. Chapter 2 is re-

lated to the literature survey of clustering, scheduling, and taxonomy of data placement

techniques. Chapter 3 focuses on task clustering techniques in cloud computing. Chap-

ter 4 describes data placement of the datasets required by the tasks in cloud computing.

Chapter 5 presents the scheduling of scientific workflows in cloud computing. Chapter

6 concludes with future directions. In detail, the organization of thesis as follows:

• Chapter 2 presents the methodological survey of task clustering techniques, the

taxonomy of data placement techniques and scheduling of scientific workflows in

cloud computing. This chapter is partially derived from:

10

Chapter 1

Introduction, Background, Research
Objectives and Thesis Structure

Chapter 2

Methodological survey and taxonomy of
clustering, data placement and scheduling

algorithms in cloud

Chapter 3

Hybrid Balanced Task Clustering
algorithm for scientific workflows in

cloud computing.

Chapter 4

A Data Placement Strategy based on
Crow Search Algorithm in Cloud

Computing

Chapter 5

Data Placement Oriented Scheduling
Algorithm for Scientific Workflows in

Cloud : A Budget Aware Approach

Chapter 6

Conclusion and Future Directions

Figure 1.3: Chapter wise thesis organization

– Avinash Kaur, Pooja Gupta and Manpreet Singh, Anand N. “Data Place-

ment in Era Of Cloud Computing: A Survey, Taxonomy And Open Re-

search Issues”, Scalable Computing: Practice and Experience, 20(2), pp.

377-398, DOI : https:// doi.org/10.12694/scpe.v20i2.1530, 2019. (Scopus,

ESCI)

• Chapter 3 describes the proposed task clustering technique for scientific work-

flows in cloud computing. This chapter is derived from:

– Avinash Kaur, Pooja Gupta and Manpreet Singh, “Hybrid Balanced Task

Clustering Algorithm for Scientific Workflows in cloud computing”, Scal-

able Computing: Practice and Experience, 20(2), pp. 237-258, DOI: https:

//doi.org/10.12694 /scpe.v20i2.1515, 2019. (Scopus, ESCI)

11

• Chapter 4 presents the proposed data placement technique for scientific work-

flows in cloud computing. This chapter is derived from :

– Avinash Kaur, Pooja Gupta , “A Data Placement Strategy Based on Crow

Search Algorithm in Cloud Computing”, Recent Patents on Computer Sci-

ence 12(1), DOI : https://doi.org/10.2174/ 2213275912666181127123431,

2019. (Scopus)

• Chapter 5 describes the proposed scheduling method for scheduling scientific

workflows in cloud computing. This chapter is derived from :

– Avinash Kaur, Pooja Gupta and Manpreet Singh, ”DPO-HEFT(Data Place-

ment Oriented HEFT) for Scheduling Scientific Workflows in Cloud Com-

puting”, Recent Patents on Computer Science (Under Review), 2019. (Sco-

pus)

• Chapter 6 presents the conclusion of the thesis finding and introduce possible

future directions. This chapter is partially derived from:

– Avinash Kaur, Pooja Gupta and Manpreet Singh, Anand N. “Data Place-

ment in Era Of Cloud Computing: A Survey, Taxonomy And Open Re-

search Issues”, Scalable Computing: Practice and Experience, 20(2), pp.

377-398, DOI : https:// doi.org/10.12694/scpe.v20i2.1530, 2019. (Scopus,

ESCI)

12

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Cloud Computing offers a new standard towards the development of workflow applica-

tions. It efficiently executes business as well as scientific workflows. The requirement

for the workflow applications is complex execution environment [9]. It is a challenge

for the organizations to provide such complex environments in-house for the workflow

applications. Therefore, Cloud is considered the best platforms for executing workflow

applications due to various features of cloud environment such as elasticity, on-demand

pricing policy, distributed data centers, heterogeneous resources, etc [10].

Executing the scientific workflows on cloud requires innovation in task clustering,

data placement and scheduling. The scientific workflow in cloud environment seeks the

consideration of the following points:

• Scientific workflows tasks need to be clustered for reduction of inter-task com-

munication cost and scheduling overhead.

• Build time and intermediate datasets used in the tasks execution need to be placed

appropriately.

• Scheduling of task to the appropriate resources in order to reduce the cost and

makespan time.

13

All the above objectives are necessary to execute the workflow efficiently within the

budget, minimum execution and scheduling cost. In this chapter, the literature survey

on different aspects has been presented on the Workflow Management Systems (WMS),

task clustering techniques, data placement methods and scheduling algorithms.

2.2 Review on Workflow Management System

Deelman et al. [17] designed a Peagus framework for scientific workflows with com-

plex mapping. It plans, executes and monitors the scientific workflows. Pegasus WMS

consists of DAGMan execution engine, Pegasus mapper, and condor scheduler for task

execution. The user defines the job as a Direct Acyclic Graph (DAG), in which tasks

are represented by vertices and dependency between tasks constitutes as edges. Pega-

sus generates the concrete workflow converted from the abstract workflows by map-

ping the tasks on the grid resources at runtime. The framework provides a relative

timing for scheduling the task over a grid resource. Hull et al. [18] proposed Tav-

erna workflow management system, it is an open source project that supports complex,

service-based and data-intensive process automation. It aims to improve the scalability

of workflow execution. It also provides clear performance tuning configurations for

third-party developers and expandability points for adding new builds. Travena pro-

cessors collect a large volume of data values through the web service interface from a

variety of databases. Travena offers efficient data management and workflow design

testing.

Warneke et al. [19] designed a Nephele, a dynamic resource allocation framework in

IaaS cloud to schedule and execute tasks. The jobs are expressed as DAG. A job man-

ager transforms the job graph received from the user to the execution graph. Nephle

ensured the cost effectiveness execution by allocating and deallocating the resources

using just-in-time allocation strategy. Nephele applied feedback data to detect both the

computational and input/output bottleneck for refinement of recurring jobs scheduling

strategy. Nephele keeps a track of instance allocation times, in case the resource can

be reutilized for the same instance type. It is not deallocated and reassigned the tasks

and thus reducing the processing cost and overall resource utilization. Bientinesi et al.

[20] introduced cloud workflow management system: SwinDeW-C (Swinburne Decen-

tralized Cloud Workflow) of large-scale workflow applications. The models consist of

14

SwimDeW-C coordinator peers with abilities to provision resources when needed for

managing the QoS requirements, data management and security issues. The workflow

is submitted to SwimDeW-C peers after the evaluation of the workflow for its non-

functional QoS requirements. When the tasks are successfully allocated, then it further

deploy the workflow instance. At run time, the coordinated peers executed various

workflow management activities to achieve satisfactory performance, but still there is a

scope of improvement. The final and the intermediate results are presented to the user

through SwimDeW-C web portal.

De Oliveira et al. [21] proposed SciCumulus, a cloud middleware to support Mul-

tiple Task Computing (MTC) paradigm to perform multiple parallel workflow tasks on

multiple cloud processors. The middleware promotes control workflow components

as an abstract view to the scientists of the complex cloud environment. The SciCu-

mulus provides a computational infrastructure for executing and supporting workflow

parallelism with parameter sweep and data parallelism. The SciCumulus requires the

scientists to enter the details of the workflow and to specify activities to be parallelized,

parameters to be explored and various other requirements. It handles the deployment

and execution through a layered architecture. The solution presented in SciCumulus is

not applicable to a heterogeneous cloud environment. Oliveira et al. [22] proposed an

architecture SimiFLow for similarity based comparison and clustering using a bottom-

up approach. It considered modeling of experiment lines. The implementation is done

in the GExpline tool for managing experiment lines. After the calculation of similarity,

SimiFlow generates clusters of the concrete workflow. For obtaining a modeled work-

flow, scientist does not have any guidance. However, similarity can be easily judged

from already modeled workflows. SimiFlow used three cartridges, first cartridge for

importing workflow, second for comparing workflow and third for calculating the sim-

ilarity. In the future, the author intends for the execution of comparison and clustering

of the workflow. SimiFLow can be enhanced by developing clustering algorithms.

Wei et al. [23] proposed Manjrasoft ANEKA a framework which is used for the

development, management, and deployment of the cloud applications. The service-

oriented framework is deployed on the heterogeneous resources and service which co-

ordinate the execution of applications. The middleware also provides advanced man-

agement capabilities such as reporting, remote deployment, control of application and

15

infrastructure, monitoring of the resources in cloud and integration with other cloud

technologies to ensure that applications are executed under specified Quality of Service

(QoS). Aneka offers an extensible API for the development of applications which are

distributed in nature and integration of new capabilities in the cloud. It also supports

different types of cloud: public, private or hybrid. Aneka provides the organization to

achieve end-to-end performance, scalability and high availability by conforming to the

Service Level Agreement (SLA)and providing the desired Quality of Service (QoS).

2.3 Review on Task Clustering Techniques

Chen and Ewa [24] analyzed the transient failures in workflow management systems

and categorized into job failure and task failure. Further, author introduced techniques

of Selective Reclustering (SR) and Dynamic Clustering (DC). The author also ad-

dressed the issues of run-time imbalance and dependency imbalance in task clustering.

These balancing methods reduced the workflow applications runtime performance as

per the number of clusters at each level decided by the users. It is unable to exploit

the parallelism between tasks. The main focus is on the occurrence of failure and im-

provement of the workflow makespan in a faulty environment. The robustness of the

methods is evaluated using the variance of patterns of failure, overhead, and runtime.

The workflow clustering also needs to be dynamically adjusted. Chen et al. [25] exam-

ined the cause for Dependency Imbalance and Runtime Imbalance in clustering of tasks.

It introduced quantitative metrics for evaluation of the severity of these problems. A se-

ries of balancing tasks are proposed to address the imbalance problem. The two new

metrics introduced are Horizontal Runtime Variance (HRV) for dealing with Runtime

Imbalance and Impact Factor Variance (IFV) for dealing with dependency imbalance.

Horizontal Impact Factor Balancing (HIFB) technique and the Horizontal Distance Bal-

ancing (HDB) technique are the clustering methods introduced to solve the workflow

balancing issues. The methods are implemented in WorkflowSim simulator using two

real workflows. The aim of the author is to address the overhead problem and to extend

the HDB method for horizontal clustering.

The intermediate strategy for data placement addressed the problem of security in

sensitive data [26]. The security overhead model is proposed to measure overheads in

security produced by sensitive data and for the dynamic placement of data of scientific

16

workflows. The data security is ensured in the model based on data confidentiality,

the authentication process, and data integrity. Security services are measured quantita-

tively by the data model. The selection of an appropriate data center performed using

Ant Colony Optimization (ACO) based algorithm. Li et al. [27] introduced a Parti-

cle Swarm Optimization (PSO) data transmission model for developing a cost-effective

data placement technique. It deals with the mapping of datasets onto different data cen-

ters. Mostly the workflow tasks are seen as an individual process while ignoring shared

datasets among workflows. The author focused on reducing data transmission costs for

multiple workflows. The introduced strategy is found to be generic and can be achieved

at a much lower cost. In the future, it aims to introduce quantum-based PSO for better

convergence.

Energy-aware scientific workflow scheduling algorithm EARES-D was proposed

and evaluated on cloudsim simulator to meet Service Level Agreement (SLA) response

time by minimizing energy consumption and CO2 emissions [28]. Within the accept-

able performance, limitations to reduce more energy consumption it has applied Dy-

namic Voltage and Frequency Scaling (DVFS) [29] and DNS [30] schemes. Further

it aims to run experiments on Saluki (local private cloud) established by Eucalyptus.

Wang et al. [31] proposed a solution for separating the role of workflow composer and

virtual machine administrator by introducing four heuristic algorithms namely Static

Maximal VMI number, Task Scheduling Algorithm for short process time, Adaptive

Task schedule algorithm and Greedy Task schedule algorithm for WFaaS approach. It

relies on the fact that one VM is available for one package while considering the factors

of monetary cost, process time and Price/performance Ratio (PPR) with scale-out any

physical Virtual Machine (VM). Proper configuration of the host are required to mini-

mize the cost and PPR. The algorithms proposed processed only DAG workflows that

are based on performance and ignored the factors of overhead and cost VMI instanti-

ation. Chen et al. [32] proposed metrics to address the problem of load balancing in

clustering. It has compared the performance of methods with two algorithms. It ad-

dressed the problems of load imbalance and data dependency. The work is an extension

of the top-down and bottom-up approach and both horizontal and vertical task cluster-

ing techniques are considered. For the qualitative measure of dependency imbalance,

the metrics proposed are Impact Factor Variance(IFV) and distance variance. In the

17

future, the author aims to normalize the value of proposed metrics and also implement

the metrics on asymmetric structures.

The portfolio clustering algorithm is designed to changes among multiple clustering

algorithms and make the selection according to the dynamic load. Chen et al. [32] con-

ducted the theoretical analysis of the impact on the runtime performance of scientific

workflow executions of transient failures. A general modeling framework presented for

task failure that uses a parameter estimation process based on Maximum Likelihood.

Three fault-tolerant clustering strategies introduced to improve workflow execution per-

formance in faulty execution environments. For the optimization of the makespan of

workflow, a dynamic task clustering method is introduced. On the basis of factors

of resource size and structure of workflow, a level-based autonomous Workflow-and-

Platform Aware (WPA) task clustering technique is introduced [33]. It aims at reducing

overhead in resource systems and wasting. The overheads in systems are classified into

four types of delays: delays in the queue, delays in the workflow engine, delays in job

postscript and delays in data transfer. The author worked on the factor of wastage of

resources and minimal queuing overhead. Evaluation of the proposed algorithm takes

place on actual application workflows such as Cybershake, LIGO, SIPHT.

Horizontal Clustering (HC), Horizontal Impact Factor Balancing (HIFB), Horizon-

tal Runtime Balancing (HRB) and Horizontal Distance Balancing (HDB) used for eval-

uate the proposed technique. The designed method delivered consistent performance in

all the experiments. Therefore, it can be used in workflow structures taking into account

the factors of varying runtime and distributing time. All the experiments showed that

the proposed approach delivers consistent performance. It can be applied in workflow

structures with communication time distributions and varied runtime. Further, aims

to identify the appropriate size of resource for optimal task performance. The goal is

to implement the workflow engine approach. Zhou et al. [34] presented an approach

to reuse and re-purpose workflow. It used the semantic similarity metric between the

workflow layer hierarchies. It adopted a clustering technique based on graph skeletons

to group layer hierarchies into clusters based on ranking technique. Semantic similitude

calculation is performed for activity names, the text of activity discipline, for two ac-

tivities. It identifies core workflow representation similarities in each cluster. Therefore

the workflows for reuse and repurposition are ranked and recommended. In the future,

18

it aims to consider the text syntactic and more similarity calculation conditions.

2.4 Review on Data Placement Techniques

Zhao et al. [35] and Wang et al. [36] presented an inventive review of literature in

the field of data placement. Still in the field of data placement research is persistently

growing. The integration and evaluation of existing research present in the data place-

ment field lie a need for a methodological survey of the literature. A complete survey

in methodical form for discovering and evaluating research challenges on the basis of

existing research in the field of data placement is done.

2.4.1 Classification of Data Placement Techniques

Data placement schemes are classified into different categories as shown in Figure 2.1.

Correlation-based Data Placement

Kosar and Linvy [37] proposed the scheduler for data placement has the ability to queue,

schedule, manage and monitor data placement jobs. They also applied the technique of

check-pointing jobs which provides complete automation for processing of data in the

heterogeneous systems. It possessed the ability to recover from network, software and

storage system failures without human intervention. It performs a dynamic adaption of

data placement jobs at the execution time to the system environment. Doraimani and

Iamnitchi [38] presented a filecule grouping technique for managing data in science

Grids while saving the time for locating the data and grouping the file based on its size.

LRU-bundle algorithm designed for file staging. Fedak et al. [39] introduced a BitDew

programming interface for data management operations as replication, placement and

fault tolerance. This architecture relies on independent services to transfer, store and

schedule the data.

Yuan et al. [40] proposed an algorithm for the run time and build time stage. In the

initial stage dependency between all the data sets is calculated and dependency matrix is

built. For the partitioning and clustering of data sets, the Bond Energy Algorithm (BEA)

is used. These partitions are shared among different data centers. These data centers

are partitioned using k means algorithm. After the generation of intermediate data, the

19

Replication based data

placement

Data placement schemes

in cloud computing

Fault tolerance based

data placement

Optimization based data

placement

Correlation based data

placement

Genetic Algorithm based

data placement

Energy efficient data

placement

PSO based data

placement

ACO based data

placement

Figure 2.1: Data placement schemes in Cloud computing

newly proposed clustering algorithm deals with new datasets. The dependencies for

each data center are judged and then accordingly data is moved. The factors of data

movement and gathering of data at one point are covered up. Two algorithms proposed

are as follows:

1. Build-Time Stage Algorithm: In this stage dependencies between the tasks is

calculated and dependency matrix is built. For the transformation of dependency

matrix to clustered dependency matrix, BEA is used. Global measure (GM) for

clustered dependency matrix is defined in Eq. 2.1.

GM =
n

∑
i=1

n

∑
j=1

DMi j(DMi, j−1 +DMi, j+1) (2.1)

Then further partitioned datasets are mapped to data center using binary parti-

20

tioning algorithm as per Eq. 2.2.

PM =
p

∑
i=1

p

∑
j=1

CMi j ∗
n

∑
i=p+1

n

∑
j=p+1

CMi j−

(
p

∑
i=1

n

∑
j=p+1

CMi j

)2

(2.2)

This process continues recursively.

2. Run-Time Stage Algorithm: Using K means algorithm, newly generated data sets

are clustered at this stage based on the intermediate dependency. The dependency

for all datasets with all data centers is calculated. At last the dataset placement is

performed depending on the maximum dependency on a data center.

Table 2.1: Objectives of correlation based data placement schemes

Schemes

Energy-

aware

Cost-

aware

Resource-

aware

Application-

aware

Factors

[38] - X - - Data dependency, File Size

[39] - X X X Data Transfer

[37] - X - X Data dependency

[40] - X - - Data dependency, Data Movement,

Execution Time

[36] - X - - Load balance, Execution Time

Table 2.2: Properties of coorelation based data placement schemes

Schemes

SLA

support

Security Cloud/

Grid

Algorithm Clustering

Algorithm

Tool/ Pro-

gramming

Language

[38] X - Grid Greedy Re-

quest Value

- Java

[39] X - Grid Information

Dispersal

- Java

[37] X - Grid - - Stock Server

[40] X - Cloud Bond Energy K means SwinDeW-C

[36] - - Cloud DCCP - cloud applica-

tion platform

(CApp)

Dynamic Computation Correlation Placement (DCCP) proposed for the method of

21

data placement that is based on dynamic computation correlation [36]. The datasets

with highly dynamic correlation placed at the same data center. The factors considered

are datacenter capacity load and datacenter input/output load. During the execution of

computations, data sets processed are stored on local data centers thus leading to the

reduction of execution time. This leads to Input/Output and statistical load balancing.

Table 2.1 represents the objectives of correlation based data placement schemes and

Table 2.2 represents the properties of correlation based data placement schemes.

Genetic Algorithm Based Data Placement

Er-Dun et al. [41] proposed an algorithm for reduction of movement of data among

data centers leading to load balancing in data centers. The heuristic and genetic are

combined together for improving the ability to local search and reducing the search

time. The heuristic idea is implemented in gene operations and initial population selec-

tion. The integer encoding rules are applied and the placement process is represented

by a gene. The ineffective fragments of genes that cannot be coded at data centers is

decided by using the encoding rule. Fitness function depicts advantages as well as dis-

advantages of genetic individuals. It shows the degree of dependence between data sets

and center load balance. Ddc is the total data dependency in the dc data center defined

in Eq. 2.3.

Ddc = ∑
dsi, ds j in dc

Di j (2.3)

The fitness function is defined in Eq. 2.4.

f itness =
1
|DCu|

(
∑

dc ε DCu

Ddc

)
(2.4)

Where DCu is data centers set which consist of at least one data set. Larger the

value depicts better gene. The overloading of data centers is adjusted by a non-normal

chromosome. If the gene is found to be invalid, it refers to the overloading of data

centers. So this gene is to be neglected. If the invalidity is depicted at the initial stage

then the new gene should be generated. If this occurs at the cross stage then genes

to be re-crossed and if it occurs at the mutation stage then genes to be re-mutated.

22

Optimization of genes is performed for reducing the movement of data. If the data

set is fixed location data set then calculate the dependency of each data set with a data

center as per formula. If the data set size exceeds the storage capacity of the data center,

then the dataset is placed on another data center.

Table 2.3: Objectives of Genetic algorithm energy based data placement

schemes

Schemes Energy-

aware

Cost-

aware

Resource-

aware

Application-

aware

Factors

[41] - X X X Data movement, Load balance

[42] - X X - Storage Capacity, Data Transfer

[43] - X X - Data dependency, Data movement,

Cost

Table 2.4: Properties of Genetic algorithm energy based data placement

schemes

Schemes SLA

support

Security Cloud/Grid Algorithm Clustering

Algorithm

Tool/ Pro-

gramming

Language

[41] X - Cloud Heuristic

genetic

- Cloudsim

[42] - - Cloud Optimal

genetic

- -

[43] - - Cloud Hashing K-Means -

Guo et al. [42] introduced a mathematical technique on the basis of the genetic

algorithm. The crossover rate(Pc), size of population (G) and mutation rate(Pm) is

determined. After the initial population generation of BG, the fitness value is obtained

for each individual. The fitness value of F = 1/Γ(Bt) is indicated using roulette wheel

selection. At last individuals are selected using roulette wheel selection [44]. Crossover

and mutation are performed on the selected matrix [45]. The individuals not adhering

to the requirements of storage capacity are abandoned.

In addition, Zheng et al. [43] introduced a genetic algorithm-based data placement

technique to reduce time and data scheduling costs between centers. Authors considered

the factors of dependency among slices of data and distributed the cost of transaction

23

for the placement of data using a genetic algorithm. It minimizes the transaction cost

while balancing the load. The author used a roulette wheel for realization model. The

fitness function is represented in Eq. 2.5.

Fitness =
∑DCTn Ci j

|DCT |
(2.5)

Where |DCT | represents the total data centers, DCTn specify the particular data

center numbered n and C ji is the total cost of cooperation between data sets j and i. The

objectives of Genetic Algorithm energy based data placement schemes is mentioned in

Table 2.3 and properties of Genetic algorithm energy based data placement schemes

are mentioned in Table 2.4.

Energy Efficient data placement

In literature, many authors proposed energy saving methods at a hardware level such as

processor speed adjustment, voltage settings, enlarging memory, etc. [46, 47, 48, 49,

50]. However, these methods are unable to reach maximum energy optimization, saving

of energy by these methods is comparatively less than turning the computer off. These

methods are only limited to a single node.

Xiao et al. [51] proposed a heuristic algorithm for data placement and two node

scheduling techniques in order to save consumption of energy during the execution of

tasks. In the proposed algorithm data blocks are kept rational for finding the minimum

set of nodes containing the collection of blocks of data. The goal of energy saving is

achieved by turning on minimum nodes required covering the maximum data blocks.

A greedy algorithm employed for covering data block with the computing node. The

author addresses two goals in it. First is the power consumption upper bound is known,

accordingly execution time of task requests by node scheduling is minimized. Second,

the execution time of tasks is known as per the execution time of task requests by node

scheduling is minimized. This optimization of batch scheduling achieves energy saving

effect by providing a solution for time constrained and power restrained issues in cloud

data centers. Each node s ε S, in node s,q is the number of data blocks, p is the number

of data blocks which meet the job requests, so node cover rate defined as per Eq. 2.6.

γ(s) =
p
q

(2.6)

24

If node s and node st have the same data block replica, then node s and node st are

data-exchangeable. The computation of resource utilization of nodes as per Eq. 2.7.

U = (e×Ucpu)+((1− e)×Udisk) (2.7)

where Ucpu stands for utilization of cpu, udisk stands for utilization of disk and e is scale

factor [51].

Pinheiro et al. [52] proposed Popular Data Concentration (PDC) algorithm. It dy-

namically migrated mostly used data on the disk to a different subset of disks in an

array. The purpose is to transfer the load to few disks so that other disks can be sent

to the mode of energy saving. Maheshwari et al. [53] addressed conservation fo en-

ergy for a cluster of nodes that execute Map Reduce jobs. Reconfiguration of clusters

is performed on the basis of the current workload. When the average utilization rises,

clusters are turned on or off.

Table 2.5: Objectives of energy efficient based data placement schemes

Schemes Energy

aware

Cost

aware

Resource

aware

Application

aware

Factors

[51] X - X - Power usage, Execution time

[52] X X - - File characteristics, workload char-

acteristics

[53] X - - - Power consumption, cost

[54] X X - X Execution cost, power usage

Table 2.6: Properties of energy efficient based data placement schemes

Schemes SLA

support

Security Cloud/

Grid

Algorithm Clustering

Algorithm

Tool/ Pro-

gramming

Language

[51] X - Cloud Dynamic

Algorithm

- Cloudsim

[52] - - File server Popular data

concentration

- Execution simu-

lator

[53] - - Grid Cluster recon-

figuration

- Gridsim

[54] - - Cloud EnCloud algo-

rithm

- iVIC with

Phython

25

Li et al. [54] proposed EnaClous approach that enables dynamic live application

placement considering the energy efficiency. In this approach, the virtual machine is

used for encapsulation of an application that performs scheduling of an application and

lives migration of an application for saving energy. Bin packing algorithm is used for

application placement. The author proposes an energy-aware heuristic algorithm. For

dealing with the varying resource demands, the investigator presented an over provision

technique.

Beloglazov et al. [55] proposed an architectural framework based on resource allo-

cation and principles for energy efficient green cloud computing. It introduced a virtual

node placement scheme and decides to turn on some physical nodes of the active virtual

nodes, but the data placement problem is not considered.

The objectives of Energy efficient based data placement schemes are specified in Ta-

ble 2.5 and the properties of energy efficient based data placement schemes is specified

in Table 2.6.

PSO based data placement

Yin et al. [56] designed the optimal assignment of tasks in a reasonable time are ob-

tained using the proposed hybrid particle swarm optimization approach. PSO based

algorithm is represented to solve Task Assignment Problem (TAP). PSO iteration em-

bedded with hill climbing heuristic for convergence. The factors considered are execu-

tion and communication costs.

Guo et al. [57] proposed a method based on particle swarm optimization leading for

cost reduction and transfer time execution. The investigator works on the on-demand

method as the standard for computing. This refers to paying per on per hour basis with

no long term commitments. According to the charging standard of Amazon. Poutk is

defined as pricing of the data center from DCk, pint as pricing of data transfer to DCl ,

Pk is the processing pricing of standard on-demand and Tp is the time of execution of

tasks. The task performed on data center k is i. Cost of data processing calculates as

per the Eq. 2.8.

Cp = Tp×Pk (2.8)

26

Cost of data transfer is represented as per Eq. 2.9.

Ct =
n

∑
i=1

n

∑
j=1

m

∑
k=1

∑
l 6=k

xik× x jl× (DTi j×Poutk +DTi j×Pinl) (2.9)

Fitness function is sum of cost of data transfer and processing represented as per Eq.

2.10.

C =Cp +Ct (2.10)

According to the best fitness value, data is placed at the data center.

Li et al. [58] proposed a cost-effective data placement scheme for multi-data cen-

ters. The data sets are transferred from one data center to another during the execution

of workflows. So mapping of these data sets to an appropriate data center is the issue ad-

dressed by the author. The focus is on reducing the cost of data transfer by considering

multiple workflows. Let DC =∪i=1,2,...|DC|dci be data center set, Gi is a single workflow

and datasets of multiple workflows (MWs) are represented as DS = ∪i=1,2,...ndsi Data

placement of multiple workflows MWS = ∪i=1,2,..nGi is represented with following Eq.

2.11.

Mmulti = ∪i, j=1,2,....,|DS|di→ dc j (2.11)

where dc jεDC∀diεDS, di is stored in unique data center in Mmulti.

Guo et al. [59] introduced PSO based algorithm embed in Small Position value

(SPV)[60]. The aim is to optimize the scheduling of tasks in cloud computing for min-

imization of processing cost. The algorithm relies on a small position value. The focus

is on reducing execution and transferring time. The fitness function for an algorithm is

taken as a combination of cost and time CT = T +C [57].

Pandey et al. [61] presented heuristic based Particle Swarm Optimization (PSO) to

schedule applications on cloud resources. Consideration is given to the factors of cost of

data transmission and computation. Mapping of tasks to the resources is accomplished

depending upon varying the cost of computing and communication.

Zhao et al. [35] clustered datasets on the basis of dependency using the proposed

hierarchical clustering based technique. A new factor as the size of the dataset is in-

troduced. This leads to a reduction in data movement. In the partitioning matrix, im-

proved dichotomy algorithm is used. For the mapping between data groups and servers

27

PSO based algorithm is used. The objectives of PSO based data placement schemes

is represented in Table 2.7 and properties of PSO based data placement schemes are

represented in Table 2.8.

Table 2.7: Objectives of PSO based data placement schemes

Schemes Energy-

aware

Cost-

aware

Resource-

aware

Application-

aware

Factors

[56] - X - - Execution and Communication

cost

[57] - X - - processing time, transferring time,

processing cost, transferring cost

[58] - X X - Data dependency, Data Transmis-

sion Cost

[59] - X X - Execution time, Transferring time,

Cost

[61] - X - - Execution cost, Communication

cost

[35] - X - - Data dependency, Data Movement

Table 2.8: Properties of PSO based data placement schemes

Schemes SLA

support

Security Cloud/Grid Algorithm Clustering

Algorithm

Tool/ Pro-

gramming

Language

[56] X - - Hybrid-PSO - -

[57] X - Cloud PSO - Matlab

[58] X - Cloud PSO - -

[59] X - Cloud PSO-SPV - Cloudsim

[61] X - Cloud PSO - -

[35] - - Cloud PSO Bond Energy

(BEA)

Visual Studio

2010

ACO based data placement

Liu et al. [62] presented data placement scheme for intermediate data placement af-

ter considering the factor of security. The security of data is based on aspects of data

integrity, authentication access, and data confidentiality. A model of security quanti-

28

tatively measures the services of data center security. Ant Colony Optimization(ACO)

based technique is used for dynamic selection of data center. In this study, the datasets

are divided into the flexible location and fixed location data sets according to the lo-

cation of stored data. For the evaluation of security services, Degree of Data Security

Deficiency (DDSD) is presented. The objectives of ACO based data placement schemes

are listed in Table 2.9 and properties of ACO based data placement schemes are de-

scribed in Table 2.10.

Table 2.9: Objectives of ACO based data placement schemes

Schemes Energy-

aware

Cost-

aware

Resource-

aware

Application-

aware

Factors

[62] - - X - data security, data transfer time

[58] - X X - Data dependency, Data Transmis-

sion Cost

[59] - X X - Execution time, Transferring time,

Cost

[61] - X - - Execution cost, Communication

cost

Table 2.10: Properties of ACO based data placement schemes

Schemes SLA

support

Security Cloud/Grid Algorithm Clustering

Algorithm

Tool/ Pro-

gramming

Language

[62] X X Cloud ACO - Cloudsim

[58] X - Cloud PSO - -

[59] X - Cloud PSO-SPV - Cloudsim

[61] X - Cloud PSO - -

Optimization based data placement

Agarwal et al. [63] proposed system considers the factors of WAN bandwidth, data

center capacity limit, data interdependency, user mobility and application changes. The

proposed approach analyzes the data centers logs. It used an iterative optimization

algorithm based on access patterns of data, locations of clients. Further, it outputs

recommendations of migration back to cloud service. For scaling the large volume of

29

data logs, this technique works in scope [64]. This algorithm works in three phases.

Mapping of each client to a set of geographical candidates is performed using weighted

spherical mean calculation as per Eq. 2.12.

wsm((wi,~xi)
N
i=1) = interp

(
wn

∑wi
,~xN ,wsm(wi,~xi)

N−1
i=1

)
(2.12)

It handles the complexities of data inter-dependencies and shared data. In the second

phase, improvement in the placement is done by applying the proposed approach. In

the third phase, the mapping of data to the data center is performed by considering the

factor of the storage capacity of the data center.

Cataly urek et. al. [65] aims to place data files into and assigning tasks to the sites

of execution for reducing the cost while considering weights. To accomplish this, the

workflow modeled as a hypergraph. A heuristic based on hypergraph partitioning is pro-

posed for generating appropriate placement of data and assignment of the task. Accord-

ing to the proposed technique, computational and storage loads are distributed evenly

according to some pre-decided ratios. The hypergraph partitioner is implemented by

modifying PaToH [66].

In the multilevel framework, net costs are incorporated into PaToH in three phases.

In the first phase of coarsening of net costs if performed. In the phase of initial partition-

ing, the algorithm modification of GHGP is performed to be used with target weights

and net costs [66]. In the last phase of refinement, heuristic FM is modified for accurate

calculation of the vertex move gains and cutsize [67].

Yuan et. al. [40] proposed an algorithm for each build time and run time stage. In

the initial stage, the dependency between all the data sets is calculated and dependency

matrix is built. For the partitioning and clustering of data sets, the Bond Energy Algo-

rithm (BEA) is used. These partitions are distributed among different data centers. The

data centers are partitioned using the k-means algorithm. After the generation of in-

termediate data, the newly proposed clustering algorithm deals with new datasets. The

dependencies for each data center are judged and then accordingly data is moved. The

factors of data movement and gathering of data covered up a single point. This strategy

allocates application data among data centers automatically and reduces the movement

of data.

30

Pandey et al. [68] proposed the Non-linear Programming (NLP) model for mini-

mization of retrieval of data and execution cost of workflows. The proposed technique

aims at minimizing the computation cost and data transfer cost on the computing re-

source. For a case study, the intrusion detection application is considered. While using

the storage and compute resources, the NLP model is applied to intrusion detection ap-

plication. The objectives of optimization based data placement schemes are mentioned

in Table 2.11 and the properties of optimization based data placement schemes are

mentioned in Table 2.12.

Table 2.11: Objectives of optimization based data placement schemes

Schemes Energy

aware

Cost

aware

Resource

aware

Application

aware

Factors

[63] - - X - storage capacity, data interdepen-

dency, WAN bandwidth, IP ad-

dress

[65] - X X - Communication cost

[40] - X - - Data dependency, Cost

[61] - X - - Execution cost, Communication

cost

[68] - X - - execution cost

[69] - X X - execution cost, execution time,

data dependency

Table 2.12: Properties of optimization based data placement schemes

Schemes SLA

support

Security Cloud/Grid Algorithm Clustering

Algorithm

Tool/ Pro-

gramming

Language

[63] X - Cloud iterative opti-

mization

Cloud -

[65] - - Cloud combinatorial

algorithm

- C programming

language

[40] X - Cloud Bond Energy K-Means SwinDeW-C

[61] X - Cloud PSO - -

[68] X - Cloud NLP - Amazon Cloud-

Front

31

Fault-tolerance Data Placement

Li et al. [70] proposed the strategy based on the clustering algorithm of consistent

hashing and minimum distance. The data is clustered efficiently with the clustering

algorithm by placing item-based and user-based data. For addressing the effect of out-

liers and noises, cluster centers and threshold is updated. Item-based algorithm and

CBR strategy fill a sparse matrix of users [71]. The consistent hashing algorithm is

used for improving fault toleration and scalability.

Table 2.13: Objectives of fault tolerant based data placement schemes

Schemes Energy-

aware

Cost-

aware

Resource-

aware

Application-

aware

Factors

[70] - X X - Fault tolerance, Execution Time

[37] - X - X Data dependency, Fault tolerance

Table 2.14: Properties of fault tolerant based data placement schemes

Schemes SLA

support

Security Cloud/

Grid

Algorithm Clustering

Algorithm

Tool/ Pro-

gramming

Language

[70] X - Cloud Consistent

Hashing

K means VMware

[37] X - Grid - - Stock Server

A Data placement scheduler, Stork provide an ability to queue, schedule, manage

and monitor the data placement jobs. It also applies the technique of checkpointing

jobs. This approach provides complete automation for processing the data. The pro-

posed system makes the data transfer fully automatic in the heterogeneous systems.

It possesses the ability to recover from network, software and storage system failures

without human intervention. It performs a dynamic adaption of data placement jobs at

the execution time to system environment [37]. The proposed technique uses check-

pointing technique along with scheduling and managing the jobs in data placement.

The technique is best suited for the hetrogenous systems. Table 2.13 represents the

objectives of fault-tolerant based data placement schemes and Table 2.14 represents

properties of fault-tolerant based data placement schemes.

32

Replication-based Data Placement

Bharathi and Chervenak [72] presented a heuristic based on ordering jobs cleaned up in

workflow and reduce time taken for execution. A genetic algorithm based approach vary

the amount of storage and number of processors for generating schedules with low cost.

Tightly coupled data staging approach is used and also introduced DPS and workflow

manager models to work together for fulfilling the requirements of data management.

Wei et al. [73] introduced Cost-effective Dynamic Replication Management (CDRM)

scheme for reducing cost by capturing the relations between the availability of data cen-

ter and replica number. Its aims to increase the availability of data for the storage system

of the cloud for balancing the load and improving performance while considering fail-

ures. CDRM instincts proposed a model for maintaining a minimum number of replicas

according to requirement availability. Placement of replica is on the basis blocking ca-

pacity and probability of data nodes. CDRM dynamically redistributes according to

changing workload and capacity of the node.

The author proposed a Two-level DHT (TDHT) approach to apply Lazy update and

minimize the cost of communication [74]. Trading between availability and safety is

performed. This approach is integrated with DHT, known as Global DHT (GDHT).

Myint et al. [75] used the replication strategy to achieve network bandwidth avail-

ability, reliability, and adequate usage. The PC cluster system applied for cloud storage

system implementation.

Huang et al. [76] proposed a new interconnection network MyHeawood for cost-

effective data placement. It is based on different hashing functions on a hierarchical

network. It consists of a small switch and dual NIC server. Data placement strategy

is based on the hashing function composed of different hash functions. Hash functions

are composed of a hash key for computing server address for a master replica. After

that, on the basis of the address of master replica, remaining replicas are allocated in

a different layer. Three replicas are used for solving overhead of storage caused by

multiple replicas. This solves the issue of reliability in the cloud. Further, Pandey [77]

improved this technique with a replication method.

Casas et al. [78] designed a Balanced and Reuse-Replication Scheduling (BaRRS)

method for computing in the cloud. This algorithm divides the scientific workflow

among multiple workflows for balancing through parallelization. The main objective is

33

to deals with the reuse of data and different replication techniques for optimization of

transferable data. It considers the execution time of the task, patterns of dependency

among tasks and size of files for adapting to current techniques of replication and data

reuse. At last, it selects the optimal solution on the basis of monetary cost and execution

time. Table 2.15 represents objectives of Replication-based data placement schemes

and Table 2.16 represents properties of Replication-based data placement schemes.

Table 2.15: Objectives of replication based data placement schemes

Schemes Energy-

aware

Cost-

aware

Resource-

aware

Application-

aware

Factors

[72] - X - - Makespan, execution cost, storage

limit

[37] - X - X Data dependency, Fault tolerance

[73] - X - - CPU power, memory capacity, net-

work bandwidth, access latency,

load balance

[74] - X - - Response Latency, Cost

[76] - X - X Cost

[78] - X - X Execution time, Data dependency,

Task Size

Table 2.16: Properties of replication based data placement schemes

Schemes SLA

support

Security Cloud/Grid Algorithm Clustering

Algorithm

Tool/ Pro-

gramming

Language

[72] - - Grid Coarse and

fine grained

genetic algo-

rithm

- Cluster viz16

[37] X - Grid - - Stock Server

[73] X - Cloud CDRM - -

[74] X X cloud uTLA - PlanetLab

(Plab) platforms

[76] - - Cloud Hashing - Cloudsim

[78] - - Cloud BaaRS - VMware-ESXi-

based (version)

34

2.5 Review on Scheduling Algorithms

Kang et al. [79] investigated the issue of minimization of financial cost for allocation of

virtual resources and proposed a heuristic based algorithm. It consists of two phases of

VM packing and Multiple requests to a single resource (MRSR). It considers the factor

of quality of service assurance. It experimented the phases with an OpenStack based

cloud platform and found 30%. Rodriguez et al. [80] introduced a technique based

on swarm optimization (PSO) [81] to deal with resource provisioning and scheduling

in the cloud. The main aim is to reduce the execution cost of workflow along with

deadline constraints. It includes four basic principles of a model of heterogeneity, pay-

as-you-go, elasticity and resource dynamics. The factors such as VM boot time and

performance variation are also considered. It performed the evaluation on CloudSim

with four other workflows and reached a conclusion that the proposed algorithm out-

performed SCS [82] and IC-PCP state-of-the-art algorithms [83]. In each case, the

designed approach succeeded, while IC-PCP failed to meet deadlines and is capable of

producing a schedule with a lower cost of implementation. It analyzed that selecting

a resource pool initially enhances the performance and will work on different options

for selecting it. It aims to extend the genetic algorithms approach and implement the

approach in a workflow engine to make deployment easier.

On the basis of cloud service platform, for future manufacturing, introduced the ar-

chitecture of a scientific workflow management system [84]. It devised a new schedul-

ing method Max Percentages (MP) for static heterogeneous resources within the sys-

tem, resulting in increased overall system performance. The algorithm’s performance

is compared to other algorithms such as classic algorithms such as Min-Min, DCP, GA

and Max-Min. The effective performance is provided by the MP algorithm than the

other algorithms, but it ignores the security factor. Wu et al. [85] formulated the prob-

lem of budget-constrained workflow scheduling. It developed MED-CC, a prototype

for a generic workflow system incorporating existing technologies of the workflow. It

introduced MED-CC, a heuristic Critical-Greedy algorithm. The performance of the al-

gorithm is shown over existing methods. Its performance was compared with ScaleStar

and HBCS, which showed 10 percent improvement over ScaleStar and 25 percent better

than HBCS. Zhao et al. [86] designed the system for the heterogeneous environment

35

to improve the heuristic data placement algorithm. It presented clustering based on

data dependency and recursive portioning in the initialization phase. It considered the

factors of data size and fixed position. It extended the tree-to-tree heuristic data place-

ment technique for the frequently occurring movements of data on high bandwidths in

centers. The comparison is made with two classical strategies and results depicted that

the proposed strategy reduced the size and time for data transmission during execution.

It introduced a heuristic data layout method works in two phases. In the first phase,

the abstraction of both the datasets and the cloud system are done as tree-structured

models considering the factors of data correlation and network bandwidth. It extended

the heuristic data allocation method for making data movements frequent on high band-

width networks so as to reduce communication time of data. Results of simulation show

that during execution, the introduced strategy reduces the data movement and time re-

quired for processing. Further placement factors such as each server’s computing ca-

pacity and load balancing can be considered in the future. In terms of system reliability

and response time, replicating the user data can also be used for good performance.

Bryk et al. [87] investigated the issue of scheduling workflow sets while consid-

ering infrastructure costs and deadline constraints as a service cloud. It addressed the

ignored file transfers between workflow tasks that have a high impact on workflow en-

semble execution. A simulation model was proposed to handle file transfer between

tasks. It dynamically calculated the bandwidth and supported a large number of repli-

cas resulting in different congestion levels being simulated. By data caching and file

locality, the scheduling technique is introduced to reduce the transfers. It proposed both

static and dynamic scheduling and resource provisioning algorithm. It analyzed in a

virtual machine to task variance factors or temporary delay. The Storage and Workflow-

Aware DPDS (SWA-DPDS), Storage-Aware DPDS (SA-DPDS) and Storage-Aware

SPSS (SA-SPSS) scheduling algorithms are developed. They are based on the func-

tion of runtime prediction. It introduced file location-aware scheduling algorithm that

produced better schedules by taking file location into consideration when submitting

VMs task caches are examined. VM is selected on which the task is predicted to be

completed earlier while estimating runtime and file transfers. The performance of the

algorithms was good. Additional improvements can be made to estimate the file transfer

process. It is also possible to introduce safety margins in SPSS algorithm. The storage

36

billing model is still under development for storage. It is possible to extend this work

to the hybrid cloud landscape.

Ebrahimi et al. [88] introduced meta-heuristic based Big Data Placement Tech-

nique (BDAP) to improve workflow execution by reducing data transfers between mul-

tiple virtual machines in the cloud. Scientific workflows formalize the problem of data

placement across multiple virtual machines. It proposed a data placement algorithm,

taking into account the initial input data set and intermediate data sets obtained during

the workflow run. In the distributed environment, it evaluated the proposed technique

and assessed its solution for effective data placement at suitable virtual machines in

the cloud in minimal time. BDAP clusters and stores the most interdependent datasets

in the same virtual machine. It is generated after this random set of data placement

schemes. A heuristic function applied in the second step to calculate and compare gen-

erated schemes and return the best scheme. The two constraints that are considered

while placing are non-replication constraint and virtual machine storage capacity. In

the future, it aims to implement data replication for reducing data movement. It also

found that multiple workflows can be considered simultaneously.

Casas et al. [89] proposed a Balanced and File Reuse-Replication Scheduling (BaRRS)

algorithm for deploying scientific workflows. It includes three strategies for balancing

queues, reuse of files. It considers the factors of time of execution and monetary cost. It

analyzed the features of scientific workflows applications like dependency pattern, the

execution time of task and sizes of files. BaRRS is compared to a different scheduling

method using four different scientific workflows with different dependence patterns and

sizes of data files. It delivers promising results. Li et al. [90] proposed SCAS, a PSO

method dependent on factors of security and cost for scheduling. It addressed the multi-

constraint and multi-dimensional optimization issue. It aimed to reduce execution cost

while complying with limitations of deadline and risk. In addition, experiments are

conducted using Cloudsim framework to demonstrate the algorithm performance.

2.6 Summary

The detailed understanding of different task clustering techniques has been discussed

based on levels, labelling and similarity between tasks of workflow. Apart from task

clustering techniques, this chapter provides an insight into numerous data placement

37

schemes to place the datasets at appropriate location in data center with metrics of size

of data set, bandwidth of data center and storage capacity of data center. This chapter

also specifies the number of scheduling methods to schedule the scientific workflow

in order to minimize the execution time of workflow with different parameters such as

user budget, deadline, cost, etc. The prominent workflow management systems are also

discussed in detail.

It has been concluded from the literature survey that still there is a scope of im-

provement in QoS and resource management for scientific workflows in cloud environ-

ment. The optimization of data movements and appropriate scheduling algorithms can

overcome the fundamental issues of workflow execution in cloud data centers. Task

clustering can reduce the scheduling overhead, but the clustering overhead is again a

crucial factor which need to contemplate while designing the clustering techniques.

38

CHAPTER 3

HYBRID BALANCED TASK

CLUSTERING FOR SCIENTIFIC

WORKFLOW IN CLOUD

COMPUTING

3.1 Introduction

In past years of scientific discovery, the computational workflow continues to be popular

among various disciplines of science, including astronomy, physics, biology, seismol-

ogy, chemistry, and others [91].

A workflow is a series of activities representing business processes or computational

science with existing dependencies between them. These dependencies need to be sat-

isfied with the achievement of a goal [92]. Business workflow is a control-flow driven

activity including constructs for specifying conditions, paths and also involve human

interaction. It implements the company’s services or products. The scientific workflow

involves large scale data and/or complex computations, therefore, utilizes computing re-

sources and storage capacities [93]. It does not involve control-flow, but it is data-driven

and still exceptions (e.g. Askalon) are persisting [94].

39

A large amount of data processing is required by scientific workflows that consist of

millions of uncommon tasks [95]. For example, the Cybershake workflow [96] contain-

ing 800,000 tasks are executed on TeraGrid [97]. These loosely coupled applications

represent a considerable amount of data and computation [98]. Existing applications

such as Condor [99] do not consider overheads in the system, fault occurrence or re-

structuring of a workflow.

Workflow restructuring technique such as task clustering is introduced to improve

the scalability of the system and reduce overhead system costs [100, 101, 102]. It is

a process of merging smaller tasks into a larger job [100] which is the single unit of

execution in a workflow management system. After the task clustering on sceintific

workflow application, the execution units are reduced. Which in turns leads to an in-

crease in application computation and reducing system overheads.

However, various existing methods used an approach for the optimization of work-

flow structures. For example, Horizontal Clustering (HC) [100] merge the tasks at

different levels of workflow horizontally. For a single task, the horizontal level is de-

fined as the largest distance from the start task of the Directed Acyclic Graph (DAG) to

this task. The user controls the granularity of clusters that are defined as the number of

tasks. It defines either the total clustered jobs per horizontal level or jobs per task group.

Such techniques ignored the dynamic characteristics of distributed environments [103].

Many methods are introduced for reducing the system overhead and clustering the

tasks either horizontally or vertically but none of the technique employs both kinds

of clustering simultaneously. The structure of the workflow plays a significant role in

clustering of tasks of a workflow.

In the present study, the proposed Hybrid Balanced (HYB) task clustering algo-

rithm takes into account both the number of jobs available for clustering tasks and

workflow structure. Further, the tasks with the parent-child relationship are clustered

vertically and other tasks in the workflow are clustered horizontally according to hori-

zontal runtime balancing and horizontal distance balancing methods. Hence, this helps

in reducing systems overheads and faster execution of tasks with minimum wastage of

resources. The important points considered in the proposed work are:

• Minimum tasks overheads: The overheads are reduced to the minimum, while the

tasks with a single parent-child relationship are clustered into one job. Hence, the

40

dependency time of tasks reduced to a significant level.

• Minimum resource wastage: The proposed algorithm ensures that the dependent

tasks are provided with the data required as early as possible in order to avoid an

increase in waiting time and wastage of resources.

The remainder of the chapter is arranged as follows. The overview of related work is

outlined in section 3.2. Section 3.3 describes the system architecture of clustering. Sec-

tion 3.4 describes the proposed algorithm. Section 3.5 reports the performance evalua-

tion, results of the proposed technique along with available basic clustering techniques.

Section 3.5 presents the summary of chapter.

3.2 Related Work

3.2.1 Load Imbalance

Load balancing is a critical topic in distributed computing. To balance the computa-

tional load dynamically among different resources, the transfer of some jobs is required

from one resource to another in a period of time. This is called task reallocation [104].

A reallocation algorithm is proposed by Zhang et al. for tuning the parallel jobs sub-

mitted to the resource manager. The batch scheduler sends submission and cancellation

requests. It dynamically migrates processes from overloaded computational nodes to

less loaded nodes in a multi-cluster environment [105]. However, it exhibits the limi-

tation to maintain balance only with some idle nodes. In our case, we consider more

tasks then available compute resources. To handle load imbalance, Zhen et al. [106]

presented techniques to split tasks dynamically and consolidate them to fill idle compute

nodes. Similarly, Ying et al. [107] present a load balancing algorithm based on collab-

orative task clustering. Sahni et al. introduced level-based autonomous Workflow-and-

Platform Aware(WPA) task clustering method that considers the factors of the size of

the resource and also the structure of workflow [33].

In comparison to the techniques discussed above, proposed work merges the tasks

based on their runtime distribution also considering the data dependencies. Also, an

approach to dynamically select the order of clustering whether vertical or horizontal is

proposed.

41

3.2.2 Granularity

In scientific workflows, the techniques to control the granularity of tasks is also ad-

dressed. A label-based and level-based clustering approach is proposed by Singh et

al. [100]. Considering the same horizontal level tasks are clustered according to level-

based clustering. The number of tasks in a cluster is specified by the user. In another

approach of label-based clustering, the labeling of tasks is accomplished manually by

the user. This method is more prone to error due to manual interaction. A task grouping

and ungrouping algorithm are proposed by Ferreira et al., where information about an

application and resources is not known in advance [108]. This work does not consider

data dependencies but reduces queuing and scheduling overhead. An algorithm is pro-

posed by Muthuvelu et al. [109] that group tasks based on their runtime to resource

capacity. Muthuvelu et al. proposed another method [110] to determine the granular-

ity of task based on CPU time, resource constraints and task file size. Muthuvelu et

al. also introduced an online scheduling algorithm to cluster tasks based on the user’s

budget, application deadline, and resource network utilization [111]. Ng et al. [112]

aimed to increase the performance in the scheduling of tasks by introducing a factor

of bandwidth. Further, Liu and Liao et al. [113] proposed a technique for executing

fine-grained jobs by grouping tasks considering the processing capacity of available re-

sources and bandwidth. It presented a method to reuse and repurpose a workflow and

uses the semantic similarity metric between a workflow’s layer hierarchies. This tech-

nique ranked the clusters. The similarity computation used is dependent on syntactic

variations [114].

Because the execution of a scientific workflow involves a large number of processes.

This can lead to high failure levels. A general model of task failure is proposed by Chen

et al. using estimates based on maximum likelihood to improve the performance of

scientific workflows execution time [115]. The combination of horizontal and vertical

clustering does not take advantage of this framework.

3.2.3 Structural Similarity

Koohi et al. presented a method based on Shuffled Frog Leaping Algorithm(SFLA)

for the encoding of workflows through workflow representations by exploiting set de-

scriptors [116]. Zhao et al. [114] proposed a method for reusing and repurposing of a

42

workflow by calculating the semantic similarity between layers of different workflows.

The hierarchies in the workflow are grouped into clusters. Silva et al. proposed a simi-

Flow architecture for supporting clustering of workflows based on similarity [117].

3.2.4 Data Dependency

The proposed techniques significantly decrease the overhead and scheduling impact of

queuing time but the factor of data dependency is still ignored. The horizontal clus-

tering of tasks increased problems of dependency imbalance and runtime imbalance

among tasks. To overcome these problems, Chen et al. introduced three new methods

as Horizontal Impact Factor Balancing(HIFB), Horizontal Runtime Balancing(HRB)

and Horizontal Distance Balancing(HDB) [32]. In these algorithms, only horizontal

clustering is performed. In a workflow, there can be tasks with single parent single

child relationship. In these kinds of tasks, vertical clustering can prove to be more

advantageous then horizontal clustering technique. A general model of task failure is

proposed by Chen et al. using estimates based on maximum likelihood to improve

the performance of scientific workflows execution time [115]. This framework fails to

take advantage of the combination of horizontal and vertical clustering considering the

single parent and child relationship in the nodes of a workflow. The deciding factor

is unexplainable in research so as to cluster tasks vertically or horizontally in order to

maintain parallelism.

The existing work suffers from one or the following drawbacks

• The data dependencies between tasks not considered.

• The runtime imbalance and dependency imbalance not considered.

• The structure of workflow not considered.

• The maximum parallelism between tasks not exploited.

This work proposes a Hybrid balanced task clustering technique to perform clus-

tering while maintaining the parallelism of the system considering the single parent

single child relationships in the nodes of a workflow. Hybridizations of horizontal and

vertical clustering technique have been achieved using impact factor based clustering

43

technique. The cluster size is dynamically set as per job runtime to maintain the par-

allelism. Dependency variance is calculated using distance metrics. Horizontal and

vertical clustering is performed as per the available resources so that the parallelism

is not affected. Hybrid clustering improves scientific workflow performance in cloud

computing and provides an additional benefit to data placement.

3.3 System Architecture

3.3.1 Workflow

The Workflow Management Coalition (WfMC) defined a workflow as a method where

tasks are transferred from user to user according to protocols [2]. By WfMC’s defi-

nition, the work process is a progression of organized exercises and business process

calculations that is a unique representation of the undertakings to be carried out in that

business process. They are utilized to join a few diverse computational procedures into

a solitary lucid procedure. The business applications can now be seen as perplexing

work processes, which comprise of different changes performed on the information de-

sired to accomplish the goal. Workflows offer awesome points of interest in isolating

capacities from applications. In this manner, it offers the data segmentation framework

to arrange and incorporate the workflows in cloud data centers.

To recognize the interfaces within this structure, WfMC introduces its reference

model that empowers items to operate interactively at different levels. The workflow

management system is characterized as in Figure 3.1.

• Workflow Engine: A service of software providing the runtime environment

with a specific end-term goal of making, supervising and executing cases of work

processes.

• Process Definition: Specifies the information about the process and the work-

flows related to it.

• Workflow Interoperability: This interface makes interoperability possible be-

tween different processes of a workflow.

• Invoked Applications: Interfaces to strengthen cooperation with an assortment

of IT applications.

44

Process

Administration and
monitoring tool

Workflow
 Engine(s)

Workflow client
applications

Invoked
Applications

Workflow Enactment service

Workflow API and Interchange formats

Workflow
 Engine(s)Workflow

 Engine(s)Workflow
 Engine(s)

Interface 1

Interface 3Interface 2

Interface 4

Interface 5

Figure 3.1: WfMC reference model [2]

• Workflow Client Applications: It is an interface to strengthen the client interface

connection.

• Administration and Monitoring: It is an interface to provide an observing

framework and metric capabilities to encourage the administration of application

situations for composite work processes.

V1

V4 V5 V6

V2 V3

V7

e9

e5e4e3

e2e1

e8
e6

Figure 3.2: Workflow model

3.3.2 Workflow Model

A W f =(Vi,Ei) workflow application is represented as a Direct Acyclic Graph (DAG)

where Vi=vi1,vi2..vin is a set of vertices representing tasks and Ei represents control

45

edges or data dependence between them. A dependency ei j is the precedence constraint

of the form (vi1,v j1) ,where vi1,v j1 ∈ Vi and vi1 6= v j1. This refers to that the child task

can only complete its execution until the parent task has completed the execution. An

example of workflow is shown in Figure 3.2

3.3.3 Workflow Execution Environment

A workflow is submitted for execution to the workflow management system that resides

on a user interaction machine. The execution machine for a workflow is a grid, physical

cluster [118], a dedicated parallel system [96], a virtual environment such as the cloud

[119] or it can also be a local machine. Figure 3.3 shows environment of execution for

scientific workflows. The components of this environment are listed below:

Workflow
Mapper

Workflow Engine

Job Scheduler

Local Queue

Job
Wrapper

Job
Wrapper

Job
Wrapper

Remote
Queue

File
System

Head Node

Worker Node

Worker Node

Worker Node

Execution SiteSubmit Host

Figure 3.3: Workflow management system

Workflow Mapper: On the basis of abstract workflow generates an executable

workflow. The abstract workflow is submitted by the workflow user. This component

maps the workflow to appropriate computational resources. The restructuring of work-

flow is performed for performance optimization.

Workflow Engine: It executes the jobs as per dependencies defined by the work-

flow. It manages jobs by tracking their status. Job Scheduler is given the jobs whose

parent jobs have been completed.

46

Local Queue and Job Scheduler: It manages workflow jobs and monitor the per-

formance on remote and local resources. The Job Scheduler can be applied to different

scheduling algorithms such as HEFT[120] and MinMin[121] and improve the overall

runtime of workflow executions.

Job Wrapper: It takes tasks out of clustered jobs to be executed at the nodes of

the worker. All of these components work cooperatively with each other to perform

workflow preparation and execution.

Table 3.1: Symbols used in this work

Abbreviation Definition

WF Workflow

LVL Level in a workflow

J Number of jobs at a horizontal level

LT List of tasks at a level

DP Depth of workflow

JBi Empty Job

LC Empty list of clustered jobs

LST Sorted List of jobs

CT Child Task

IF Impact Factor

TLM Merged Task List

3.4 Proposed Hybrid Balanced Task Clustering Algorithm

In this section, the proposed Hybrid Balanced Task Clustering Algorithm (HYB) is

discussed which is not dependent on the input of the user. It is able to cluster the tasks

vertically with single parent single child relationship and merge the tasks horizontally

according to the number of resources. The system overhead is reduced while involving

the best utilization of resources. The flowchart of the proposed technique is depicted in

Figure 3.4. The symbols used in this work are explained in Table 3.1.

3.4.1 Problem Formulation

The two major issues that are undertaken by the clustering algorithms are dependency

imbalance and runtime imbalance. Runtime imbalance refers to the unequal distribution

47

at the same horizontal level of the runtime of tasks. While dependency imbalance refers

to clustering tasks at a level without taking into account the inter-task dependence factor.

This increases the waiting time for input at the next level and thus the delay in ex-

ecution. The problem is also referred to as data locality. Generally, runtime imbalance

leads to dependency imbalance and dependency imbalance leads to runtime imbalance.

The structure of workflow is also an important factor while clustering the tasks. As

horizontal clustering is always performed for tasks that may increase the problems of

runtime imbalance and dependency imbalance. So instead of performing task cluster-

ing horizontally at each level of workflow, vertical clustering can also be performed

of the tasks where single parent single child relationship exists between tasks besides

performing clustering horizontally. This may lead to an improvement in the execution

of workflow while further decreasing the delays. Considering the above challenges of

clustering, the introduced method aims to obtain appropriate hybrid clustering while

merging the tasks vertically with a similar impact factor and remaining tasks horizon-

tally according to the number of available resources. Thus reducing the overall execu-

tion time. For the realization of the desired clustering, the proposed hybrid balancing

algorithm as follows.

3.4.2 Research Methodology

This technique prefers to cluster the tasks with single parent single child relationship.

The problem of dependency imbalance is catered by measuring the impact factor of

tasks in the workflow. The Impact Factor (IF) of task tn is denoted using Eq. 3.1.

IF(tn) = ∑
ta⊂child(ta)

IF(tb)
parent(tb)

(3.1)

where child(ta) refers to a set of child tasks ta and parent(tb) is the number of parent

tasks of tb. Impact factor applied to determine the similarity of tasks or jobs [122].

The proposed algorithm ensures that the tasks with one parent-child relationship are

clustered into one cluster. The remaining tasks are then clustered horizontally. The

parent-child relationship is depicted by matching the impact factor of tasks vertically.

The tasks with a similar impact factor are grouped into one cluster. This help in reducing

the execution time of workflow and system overheads. For instance, Figure 3.5 shows

a workflow of five levels consisting of one task at level one, two tasks at level two, four

48

Yes

No

No

Yes

No

Yes

INPUT: Workflow (WF), Level in workflow (LVL),

Depth of workflow (DP), Number of jobs (J) at

horizontal level Variable: List of tasks (LT)

Output: Clustered Workflow (WF)

LVL < N

LT ← FetchTaskFromLevel(LVL, WF)

j ← 0

M ← Length(LT)

 LVL ← 1

N ← DP

j < M

JB ← MinimumRuntime(LST)

JB.add(task)

 i ← 0

i < J

JBi ← ,-

LC ← ,-

LT ← Sort(LT, order=desc)

LST ← Sort(JB, order=asce)

task ← LT*j+

JB.add(CT)

WF ← WF – LT – TLM + LC

CT ← task.child())

IFT ← CalculateImpactFactor(task)

IFCT ← CalculateImpactFactor(CT)

IFT == IFCT

TLM ← TLM + CT

task ← CT

LC.add(JB)

i < J

 i ← 1

j ← j + 1

 i ← i + 1

Yes

No

No

LVL ← LVL + 1

Yes

START

END

 i ← i + 1

Figure 3.4: Flowchart of Proposed Hybrid Balanced Clustering Algorithm

49

tasks at level three, three tasks at level four and one task at level five.

40

10 20

1030 30 20

302010

40

A

B C

D E F G

H I

J

K

Figure 3.5: A sample workflow

Algorithm 1 presents the pseudo code of proposed Hybrid Balanced task clustering

algorithm designed with the combination of horizontal distance balancing [32], hori-

zontal runtime balancing [32], and task impact factor [32]. The number of jobs is input

from the user. This algorithm addresses the problem of load imbalance and also con-

siders the tasks with asymmetric structure. The algorithm begins with the first level of

the workflow as in Figure 3.5 by selecting tasks from each level (Lines 2-3). Tasks are

clustered into a job and returned by merge procedure (Line 4). The merge procedure

merges the tasks vertically and horizontally. In merge procedure, the tasks are sorted

according to decreasing order of runtime (Line 13). At the third level of workflow,

there are four tasks D(30s), E(10s), F(30s), G(20s). The execution time for task D is

30s, similarly, for tasks E, F and G is 10s, 30s, 20s respectively. The task list LT is

maintained as per decreasing order of runtime of tasks LT =D,F,G,E. Then horizontal

runtime balancing adds the task D to the job with the shortest runtime as in Figure 3.6.

Step 2: The tasks are arranged as per the minimum distance with task D. The dis-

tance between the tasks is calculated as number of edges between the tasks. The dis-

tance of all nodes from node D is calculated as Distance=0(D),4(F),4(G),2(E). The

impact factor of task D included in a job is matched vertically to depict parent-child

relationship exists or not. If the relationship exists, the child task is added to the job J1

where task D resides (Lines 20 - 22) as shown in Figure 3.7 and Figure 3.8.

50

Algorithm 1 Hybrid Balanced Task Clustering algorithm.

Require: WF : workflow; J: jobs per horizontal level ; LV L: Level of workflow; DP:

depth of workflow

1: procedure HYCLUSTERING(W f)

2: for LV L < DP(WF) do

3: LT ← FETCHTASKSFROMLEVEL(WF,LV L) . Divide WF on the basis of

depth

4: T LM,LC← MERGE(LT,J) . Group of clustered job returned

5: WF ←WF−LT +LC−T LM . Dependency merging

6: end for

7: end procedure

8: procedure MERGE(LT,J)

9: for i < J do

10: JBi←{} . NULL JOB

11: end for

12: LC←{} . NULL JOB LIST

13: Sort LT in descending runtime order

14: for all task in LT do

15: LST ← sort list of JBi as per least distance with task

16: JB← the job with minimum runtime in LST

17: JB.add (task)

18: while IFT = IFCT do . CT is child task

19: JB.add(CT)

20: T LM← T LM+CT

21: task←CT

22: end while

23: end for

24: for i < J do

25: LC.add(JB)

26: end for

27: return LC,T LM

28: end procedure

51

J1 J2 J3
Execution time (J1,J2,J3)=0 seconds

J1(30s) J2 J3

D(30s)

Figure 3.6: Merging of clusters in a job

40

10 20

1030 30 20

302010

40

A

B C

D E F G

H I

J

K

40

10 20

10 30 20

3020

40

A

B C

E F G

I

J

K

C1

Figure 3.7: Clustering to avoid runtime imbalance and dependency imbalance

J1 J2 J3
Execution time (J1,J2,J3)=0 seconds

J1(30s) J2 J3

D(30s)

H(10s)

J1(40s) J2 J3

C1(D+H)

Figure 3.8: Merging clusters into a job

52

40

10 20

1030 30 20

302010

40

A

B C

D E F G

H I

J

K

40

10 20

30 20

30

40

A

B C

F G

J

K

C1 C2

Figure 3.9: Clustering to avoid runtime imbalance and dependency imbalance

J1 J2 J3
Execution time (J1,J2,J3)=0 seconds

J1(30s) J2 J3

D(30s)

H(10s)

J1(40s) J2 J3

C1(D+H)

J1(40s) J2(30s) J3

C1(D+H) C2(E+I)

Figure 3.10: Merging clusters into a job

Step 3: Now after the clustering of tasks D and H. The tasks in a task list(LT) are

task F, G, E. The horizontal distance balancing is performed on tasks E, F, and G on

the basis of shortest distance between them and targeted task D. The distances are 4,4,2

respectively for tasks F, G, E. The candidate E with minimal distance 2 is selected. Now

again the impact factor of task E is matched vertically and if the impact factor matches

with the task vertically then both are clustered into another cluster c2 as shown in Figure

3.9 and merged as a job J2 as shown in Figure 3.10

Step 4: Now the tasks left in the task list LT are F and G. Similarly the process

is repeated for the tasks F and G. However, these tasks do not have a parent-child re-

lationship with any task. So they cannot be clustered vertically. Therefore, horizontal

clustering is performed for the tasks F, G forming cluster c3 as shown in Figure 3.11

53

40

10 20

1030 20

302010

40

A

B C

D E F G

H I

J

K

40

10 20

30

40

A

B C

K

C1 C2 C330

Figure 3.11: Clustering to avoid runtime imbalance and dependency imbalance

and merging into job J3 as shown in Figure 3.12. The steps are repeated for different

number of tasks at levels of workflow. The tasks are merged into a cluster and assigned

as a job to execute. This reduces the scheduling overhead. The clusters are formed at

each level of workflow and then scheduled onto data centers.

J1 J2 J3
Execution time (J1,J2,J3)=0 seconds

J1(30s) J2 J3

D(30s)

H(10s)

J1(40s) J2 J3

C1(D+H)

J1(40s) J2(30s) J3

C1(D+H) C2(E+I)

J1(40s) J2(30s) J3(50s)

C1(D+H) C2(E+I) C3(F+G)

Figure 3.12: Merging clusters into a job

54

3.5 Experimental Evaluation

3.5.1 Scientific Workflow Applications

Montage [3] is one of the astronomy applications used to create large-scale image

mosaics of the sky. The images as input are projected into a sphere and then the overlap

is calculated for each image. These input images are projected to the precise orienta-

tion while preserving the constant background emission level for all images. In a final

mosaic, reprojected images are finally added. The final resulting image describes the

sky part under investigation in detail. The Montage workflow is represented by Figure

3.13. The size of the workflow depends on how many images are required to make the

mosaic of the sky.

Figure 3.13: A simplified version of the Montage workflow [3].

Cybershake [4] is seismology application that is used for calculating Probabilistic

Seismic Hazard curves for various geographic regions in Southern California. Hence,

used in the identification of all ruptures within a 200KM radius. It also changes rupture

into multiple rupture variations that differ in locations of hypocenters and distributions

55

Figure 3.14: A synthetic version of the CyberShake workflow [4].

Figure 3.15: A synthetic version of Epigenomics workflow with multiple branches [5].

of slips. Then synthetic seismograms are calculated for rupture variance. After that, the

peak intensity is extracted and added with the original rupture probability for produc-

tion probabilistic hazards for the location. Figure 3.14 shows a Cybershake workflow

illustration.

Epigenomics [5] is the CPU-intensive application. Initially, the data is obtained from

the Illumina-Solexa Genetic Analyzer in the form of DNA sequence lanes. Multiple

DNA sequences are generated by each Solexa machine. Then the workflow performs

the mapping of DNA sequences. Hence, creating a map showing the sequence density.

Figure 3.15 shows a simplified epigenomics structure.

56

Figure 3.16: A simplified version of the SIPHT workflow [6].

SIPHT [6] is responsible for researching small untranslated RNAs (sRNAs). It is

responsible for the regulation of different processes such as virulence or secretion in

bacteria. This predicts ρ-independent transcriptional terminators. A simplified version

of the SIPHT workflow is shown in Figure 3.16.

LIGO [7] Workflow data is collected by large-scale interferometers in the Laser In-

terferometer Gravitational Wave Observatory (LIGO) to search for gravitational wave

signatures. The objective of the observers is to measure and detect waves as relativity

predicts. It is a workflow that is data-intensive. A workflow version is shown in Figure

3.17. In this workflow tasks are divided into different groups, where there is a cluster

of interconnected tasks as shown in Figure 3.17.

3.5.2 Balanced Task Clustering Algorithms

The techniques of task clustering are divided into two different categories of horizontal

clustering and vertical clustering. A hybrid balanced task clustering method is intro-

duced in order to overcome the limitations of these techniques.

3.5.3 Description of Baseline Balanced Clustering Algorithms

The clustering methods considered in order to study the impact of the proposed clus-

tering technique are Horizontal Impact Factor Balancing (HIFB), Horizontal Distance

Balancing (HDB) and Horizontal Runtime Balancing (HRB) [32].

57

Figure 3.17: A simplified version of the LIGO Inspiral workflow [7].

Horizontal Clustering (HC): Tasks in this technique are merged into a job at the

same horizontal level of workflow. The horizontal level for a single task is considered

to be the greatest distance from the first workflow task beginning with the first task. The

first task is a parent-free task.

As shown in Figure 3.18, the tasks t2, t3, and t4 are combined together into a cluster

c1, thus creating just one job j1. The horizontal clustering is performed for the tasks at

the same level. Thus reducing the overhead.

Vertical Clustering (VC): In this algorithm task at the same vertical level of a

workflow are merged and make a single job. The tasks with one parent and one child

relationship are merged.

As shown in Figure 3.19 the tasks t2, t5, t8 exhibit parent-child relationship as t2

is a parent of t5 and further t5 is parent t8. So these tasks are clustered together into

a cluster c1, thus creating a job1. Similarly, t3, t6, t9 and t4, t7, t10 are clustered into

clusters c2, c3 thus creating combined jobs job2, job3 respectively. The overheads are

also combined into overheads o2, o3 and o4.

Horizontal Runtime Balancing (HRB): In this algorithm runtime of tasks is equally

distributed between jobs. The problem of runtime variance is addressed at the same hor-

izontal level. In this greedy method, the jobs are sorted according to the ascending order

of runtime. The new task is joined to the job with a minimum runtime. This method

58

o1

t1

o2 o3

t2 t3

o5

t5

o4

t4

o1

t1

o2

t2 t3 t4

o5

t5

c1
Job1

Figure 3.18: Working of Horizontal Clustering

Figure 3.19: Working of Vertical clustering

59

t1 t3

t6

t2 t4

t7

t1 t2

t6

t3 t4

t7

t8

20s 20s 30s 30s

t8

50s 50s

Figure 3.20: Working of the Horizontal Runtime Balancing (HRB) method

t1 t2 t3 t4 t5

t6 t7

t8 IF=1.0

IF=1/2 IF=1/2

IF=1/4 IF=1/4 IF=1/6 IF=1/6 IF=1/6
20s 20s 20s 20s 60s

t1 t2 t3 t4 t5

t7t6

t8

40s 40s

Figure 3.21: Working of Horizontal Impact Factor Balancing (HIFB) method

further raises the dependency imbalance among tasks as the factor of data dependency

is not considered while clustering.

As shown in Figure 3.20, there are four tasks t1, t2, and t3, t4 with runtime 20s and

30s respectively. According to this clustering method tasks t1, t3 are combined into one

cluster and t2, t4 are combined into another cluster. This balances the runtime among

tasks but leads to dependency imbalance among tasks.

Horizontal Impact Factor Balancing (HIFB): It overcomes the limitation of Hor-

izontal runtime balancing algorithm of dependency imbalance. In this algorithm, the

jobs are first sorted by considering the similarity of impact factor (IF) in increasing or-

der. Then the shortest job is selected using Horizontal Runtime Balancing. It groups

the jobs sharing the same position in the workflow.

As shown in Figure 3.21 the tasks t1, t2, and t3, t4, t5 have same impact factor.

Then using HRB the tasks t1, t2, and t3, t4 are combined into clusters c1, c2.

Horizontal Distance Balancing (HDB): Jobs are sorted in this clustering technique

taking into account the distance from the target job. After that Horizontal Runtime

Balancing method is executed for selecting the shortest job. The tasks with minimum

distance are merged, thus reducing data transfer.

60

t1 t2 t3 t4

t5 t6

t7

20s 20s 40s 40s
D=2 D=2

D=4

t4t3t2t1

t6t5t5

t7

40s 80s

Figure 3.22: Working of Horizontal Distance Balancing (HDB) method

As in Figure 3.22 the tasks t1 and t2 are closest as compared to the distance between

t1, t3, and t1, t4. So t1, t2 are combined into one cluster and t3, t4 are combined into

another cluster.

The performance of the above discussed algorithms has been evaluated using work-

flowsim on various datasets e.g. Montage, LIGO, SIPHT, Epigenomics, and Cyber-

shake.

3.5.4 Experimental Evaluation

Experimental Setup The trace-based simulation method is adopted for evaluation.

Real traces are used for evaluation of algorithms. In the simulation environment, differ-

ent system parameters used are a number of virtual machines, system overhead, differ-

ent workflows and sizes of data.

For executing applications of workflow, open source workflow simulator work-

flowsim [123] is used. It is used for modeling an execution environment in the cloud. It

is an extension of cloudsim. The DAG model of workflow is executed in it. It performs

clustering and scheduling of tasks. It also performs provisioning of resources at the

workflow level.

In the experiment, the simulator WorkflowSim is extended to implement the pro-

posed hybrid balanced task clustering technique. The virtual machine cluster of 20 sin-

gle homogeneous core VMs is used. In some distributed environments, such as Amazon

EC2, this cluster is a quota for a user. Each VM has a 512 MB configuration. For each

virtual machine, the processing capacity is 1000 MIPS and the network bandwidth has

been set to 15 MB/s by default.

61

The configuration setup for the experiment is described as in Table 3.2

Table 3.2: Configuration setup for the experiment

Parameter Value

No. of virtual machines 20

Memory Capacity 512 MB

Processing capacity 1000 MIPS

Network Bandwidth 15 MB/s

An evaluation of the proposed technique was performed for identification of its

ability. The method was assessed for enhancing scientific workflow execution time and

reducing the load to minimum resources. The experiment is conducted on the following

variables.

• Makespan: Total time is taken to execute on the available resources by the work-

flow application.

• Performance Gain: The clustering algorithm used over the execution of the work-

flow without clustering a task is defined as an overall improvement in the execu-

tion time of the workflow. It can be evaluated with Eq. 3.2

µ = (time taken without clustering− time taken with clustering)

/(time taken without clustering)∗100
(3.2)

µ > 0 for a clustering technique signifies that it leads to improvement of the

execution time of a workflow. µ < 0 refers to the negative impact of the clustering

method. This negative impact leads to an increase in execution time of workflow.

Different scientific workflow applications are used in the experiments along with

the fixed number of tasks for each as shown in Table 3.3.

3.5.5 Results and Discussion

Table 3.3 depicts the scientific workflow applications used for the experiment and the

number of tasks considered for each.

62

Table 3.3: Scientific workflow for experiment and number of tasks

Workflow Number of tasks

Cybershake 1000

Epigenomics 997

Montage 1000

SIPHT 1000

LIGO 1000

Then the makespan time for each scientific application is calculated as described in

Table 3.4.

Table 3.4: Makespan time of workflow with or without clustering algo-

rithms

HC HRB HIFB HDB HYB without

clustering

Cybershake 1511.46 1303.58 1833.68 1445.07 1352.92 2222.05

Epigenomics 238974.2 218583.8 241833.1 238754 206077.6 253462

LIGO 13188.79 12768.49 15261.21 13015.6 11635.49 17234.23

Montage 1210 924.71 936 947 923.61 1927.69

SIPHT 21154.99 9537.03 22778.28 18539.23 9499.07 23453.58

Using the makespan time, performance gain of scientific applications Cybershake,

Epigenomics, LIGO, Montage and SIPHT is calculated and compared as evaluated ac-

cording to different baseline algorithms and proposed an algorithm in Table 3.5.

Table 3.5: Performance gain for various workflows

Cybershake Epigenomics LIGO Montage SIPHT

HC 31.97903 5.715961 23.47329 37.23057 9.800593

HRB 39.11388 13.76072 25.91204 52.03015 59.33649

HIFB 17.478 4.588013 11.44826 51.44447 2.879305

HDB 34.96681 5.802842 24.4782 50.87384 20.95352

HYB 41.33435 18.69489 32.48616 52.08721 59.49842

Three sets of experiments are conducted on the scientific workflow applications.

63

Experiment 1 (Improvement in execution time): The makespan time of balanced

clustering algorithms on different scientific workflow applications Cybershake, Epige-

nomics, LIGO, Montage, SIPHT is obtained from the experiments performed. The

makespan time is mentioned in Table 3.4. According to the experimental evaluations

the following results are depicted:

• Cybershake: In this application, Hybrid Balanced (HYB) task clustering algo-

rithm improves the performance by 26% and 10% respectively from Horizontal

Impact Factor Balancing (HIFB) and Horizontal Clustering (HC).

• Epigenomics: In this application, there is 14.78%, 13.68%, 13.76% improve-

ment in execution time by Hybrid Balanced Clustering algorithm then Horizontal

Impact Factor Balancing (HIFB), Horizontal Distance Balancing (HDB) and Hor-

izontal Clustering (HC) respectively.

• LIGO: In this application, there is 23.75%, 11.77% , 10.60% and 8.87% improve-

ment in execution time by Hybrid Balanced Clustering algorithm then Horizontal

Impact Factor Balancing (HIFB), Horizontal Clustering (HC), Horizontal Dis-

tance balancing (HDB) and Horizontal Runtime Balancing (HRB) respectively.

• Montage: In this application, there is 23%, 2.46% improvement in execution time

of workflow by Hybrid Balanced Clustering algorithm then Horizontal Clustering

(HC) and Horizontal Distance Balancing respectively.

• SIPHT: In this application, there is 58%, 55% and 48% improvement in execu-

tion time by Hybrid Balanced Clustering algorithm then Horizontal Impact Factor

Balancing (HIFB), Horizontal Clustering (HC) and Horizontal Distance Balanc-

ing (HDB) respectively.

Hence from experiment 1, it is concluded that the execution time taken by Hybrid

Balanced (HYB) task clustering algorithm is lesser as compared to other baseline algo-

rithms. Proposed technique shows the overall improvement in execution time.

Experiment 2 (Performance Gain): In this experiment, the performance gain (µ)

of the proposed technique is evaluated with the other clustering algorithms. In this

experiment, the proposed technique is evaluated for identification of the amount to

64

0

10

20

30

40

50

60

70

Cybershake Epigenomics LIGO Montage SIPHT

P
e

rf
o

rm
a

n
ce

 G
ai

n

Scientific Workflow Applications

Performance Gain (µ)

HC HRB HIFB HDB HYB(Proposed)

Figure 3.23: Comparison of performance Gain (µ) for various clustering methods

which it impacts the overall execution time of workflow. Figure 3.5 shows the per-

formance gain µ for different clustering methods obtained from the experimental eval-

uation. From the experiments, it is depicted that all the methods of clustering retain

a positive gain performance. The proposed technique further improves the execution

time of different workflow applications. According to obtained results Montage, Cy-

berShake and SIPHT workflows have better performance gains with a minimum gain

of 52%, 41%, and 59% respectively. In comparison LIGO and Epigenomics having a

minimum performance gain of 32% and 18% respectively. The performance gain varia-

tion is due to the granularity of the average workflow runtime of tasks. Considering the

workflows the lowest value for the performance gain is for HIFB in SIPHT workflow.

In all the scientific workflows, the proposed Hybrid Balanced (HYB) task clustering

method performs better than the other balancing techniques. The clustering method

Horizontal Distance Balancing (HDB) and Horizontal Impact Factor Balancing (HIFB)

lacks in performance, because of the runtime as well as dependency imbalance between

tasks. These methods groups the tasks into a cluster that should execute in parallel

leading to an increase in execution time of workflow. The proposed hybrid balanced

task clustering method delivers a good performance since it first checks for parent-child

relationship and then clusters the tasks. Therefore, increasing the performance gain and

decreasing the overall execution time of workflow as shown in Figure 3.23.

65

Experiment 3 (Varying Virtual Machines): In experiment 3, the number of virtual

machines is varied while keeping the total number of tasks, each task consider as fixed

1000 MIPS.

First, the experiment is performed by using a horizontal clustering technique while

varying the number of Virtual Machines (VMs) as shown in Figure 3.24

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 20 40 60 80 100 120

E
xe

cu
ti

o
n

 T
im

e

No. of Virtual Machines

Execution Time by Varying Number of VMs

Montage Cybershake Epigenomics Inspiral SIPHT

Figure 3.24: Execution time while varying virtual machines in Horizontal Clustering

technique

The same experiment is conducted by using a hybrid balanced clustering algorithm

and the result is depicted as shown in Figure 3.25.

While comparing both the results, it is found that horizontal clustering technique

performs in a similar manner inspite of more number virtual machines available. While

in the proposed algorithm, the execution time decreases as the number of virtual ma-

chines increases. Hence leading to an increase in performance of the execution of

workflow applications. In some situations, the proposed technique performs as similar

to baseline algorithms. This depicts the proposed technique also reaches a stagnation

point but after more of the resource utilization in comparison to baseline algorithms.

As in Figure 3.24 the graph depicts the number of virtual machines increases rel-

66

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 20 40 60 80 100 120

Ex
ec

u
ti

o
n

 T
im

e

Number of VMs

Execution Time by Varying Number of VMs (HYB)

Montage Cybershake Epigenomics Inspiral SIPHT

Figure 3.25: Execution time while varying virtual machines in Hybrid Balanced Clus-

tering technique

atively decrease the execution time upto certain level after that it does not matter on

adding more virtual machines. The reason is that the parallelization in the workflow

depends on structure of scientific workflow. After certain level it does not matter on

adding more virtual machines. The proposed technique is performing in a similar man-

ner and adding up the virtual machines does not decrease the execution time.

3.6 Summary

The proposed Hybrid Balanced (HYB) task clustering method reduces the execution

time of workflow execution and avoids wastage of resources. The proposed approach

considers distance variance and merges the tasks with similar impact factor in the

pipeline. A simulation experiment is carried out to evaluate the proposed algorithm

compared to four methods of clustering: Horizontal Runtime Balancing (HRB), Hori-

zontal Clustering (HC), Horizontal Distance Balancing (HDB), and Horizontal Impact

Factor Balancing (HIFB). The results show that the proposed method of clustering can

perform significantly better than the existing clustering methods for scientific workflow.

67

CHAPTER 4

A DATA PLACEMENT STRATEGY

BASED ON CROW SEARCH

ALGORITHM IN CLOUD

COMPUTING

4.1 Introduction

In big data era, the increasing amount of data in scientific workflows arises the need

for high-end computing and a massive amount of storage. The most complex task is

to process this data. For a scientific workflow, relatively large data is to be stored in

different data centers [124]. Data centers are facing a variable amount of visitors with

the generation of data with the development of the Internet. This leads to an explosive

increase in storage capacity requirement[125]. A large amount of scientific data is

accumulated by various fields of research such as meteorology, astronomy, and bio-

informatics. Processing of large scale data and obtaining valuable scientific discoveries

are complex jobs. This lead to a rising need for high-performance computing [126].

This high-performance computing, also known as cloud computing entails the need for

mass storage resources [127].

68

Workflow Application Modelling and Definition
Tools

Workflow Specification

Task + Data Scheduler

Workflow Enactment Engine

Data Movement Dependency
Manager

Language
Interpreter

Data Provenance Runtime Manager Fault
Management

Middleware Support (Cloud)

Cloud Resources

Resource Information
Service

Application Information
Service

Information Service

Workflow
Design &
Definition

Build Time

Run Time

Workflow
Execution and

Control

Interaction with
Distributed
Resources

Figure 4.1: Cloud architecture for Workflow management system

The main process in cloud computing is to meet large volumes of data and store

data at a suitable data center during the execution of the workflow. This case arises the

need of data placement strategy [128]. Data placement includes all activities related to

movements such as replication, staging, transfer, space de-allocation, space allocation,

unregistering and registering metadata, retrieving and locating the data. There arises a

question of how data placement is performed on cloud computing.

The clients work on data, evaluate it and pass on to the server. The request of the

client is processed by the server. This is to-and-fro operation and, at the end, final

output is to be stored on the storage device. The data placement strategy is responsible

to determine this storage of output on a storage device.

Data storage reaches a terabyte magnitude scale in the cloud computing era. The

diverse and complex data structures, high demand for type and level of service has

induced great pressure on data management [129]. Cloud systems work on two kinds

of applications data-intensive and compute-intensive. These are handled concurrently

in the systems and generates a massive amount of output/intermediate data. The cloud

architecture that manages data and workflows is as in Figure 4.1.

69

The designing in engineering is a decision making the process for building the prod-

ucts satisfying particular needs[130]. Mostly, design problems in engineering include

complex objective functions with the varying number of decision variables [131]. The

method of optimization finds an appropriate solution considering the decision variables.

Different methods are used to solve design problems in engineering. The techniques

offer valid solutions but fail when it comes to complex design issues. There may be a

number of decision variables that can affect the objective function in some real design

problems. There can be many local optima by the objective function, but the researcher

may be interested in global optimum. So in these situations, appropriate optimization

methods are required.

Promising performance is shown by metaheuristic algorithms for solving problems

of real-world optimization. These metaheuristic algorithms use a specific tradeoff of

local search and randomization [132]. These algorithms do not guarantee to find an

optimized solution. These algorithms may not work most of the times. The best suitable

for global optimization is metaheuristic algorithms [133].

In the latest trend, mostly nature-inspired metaheuristic algorithms are used for tack-

ling complicated problems [132, 133]. These algorithms are surprisingly very efficient.

Some of the famous metaheuristics algorithms are Harmony Search (HS) based on mu-

sic improvisation process [134], Genetic Algorithm (GA) based on natural selection

[135], Particle Swarm Optimization (PSO) based on the social behavior of fish school-

ing and bird flocking [136], a cuckoo search algorithm based on the brood parasitism

of some cuckoo species [137, 138], Firefly Algorithm (FA) based on the flashing light

patterns of tropic fireflies [139], Bat Algorithm (BA) based on echolocation behavior of

microbats [140], etc. In the recent era, only a few characteristics inspired by nature are

used, and more algorithms can be developed. One of the motivations of this research is

to propose a metaheuristic method inspired by a user-friendly nature to place data sets

in suitable data centers to achieve promising results.

Data placement technique has been designed on the basis of nature-inspired meta-

heuristic technique, Crow Search Algorithm (CSA). The characteristics of cloud data

centers are investigated. The proposed technique integrates initial/generated and fixed

location datasets and divides into two stages: stage-in and stage-out. For the heuristic

data placement, CSA is used for reducing the time complexity of scientific workflows.

70

The number of experiments are conducted by varying different parameters such as a

ratio of shared and fixed location data sets, number of tasks and size of datasets.

Compared to the traditional data placement techniques for scientific workflows, the

experimental results depict that our approach reduces the data transfer cost. The primary

contributions of this chapter are:

• A Crow Search Algorithm (CSA) based data placement algorithm is designed for

distributing datasets according to the levels of the workflow. The algorithm per-

sists lower complexity and finds the appropriate data center for placing unshared

and shared datasets flexibly.

• Proposed algorithm consists of both build-time and run-time stages. All initial

data sets are allocated to data centers at the build-time stage by bond energy

algorithm, then all intermediate data sets are distributed in the run-time stage by

the proposed method.

The remaining chapter is organized as follows. In Section 2, background for data

placement and stages of data placement is represented. It also defines the different cat-

egories of data placement. Section 3 defines the used techniques for data placement

along with its parameters. Section 4 describes a novel proposed data placement al-

gorithm. Section 5 explains the experimental results. Finally, in section 6 presents a

summary of this chapter.

4.2 Related Work

The most critical issue in scientific workflows is the placement of intermediate gener-

ated datasets. Scientific workflow applications require a large number of datasets from

various organizations in the cloud computing environment, and these datasets need to be

distributed across different data centers. The scientific applications are executed in hy-

brid cloud [141]. Two or more then two public, private or community clouds composes

hybrid cloud. A popular Amazon Web Services (AWS) cloud environment charges large

amounts per gigabyte for data transfer from and into AWS. The data centers belonging

to various cloud providers will, therefore, include the cost of moving data between these

data centers during the execution of the workflow[141]. The massive data movements

for processing of scientific workflow bear a high cost.

71

Yuan et al. [40] proposed a data placement algorithm for a run time as well as for

build time stage. In the initial stage dependency between all the data sets is calculated

and dependency matrix is built. The partitioning and clustering of data sets are per-

formed by Bond energy algorithm (BEA). These partitions are shared among different

data centers. The introduced algorithm deals with the intermediate generated datasets.

The dependencies for each data center are judged, and then accordingly data is moved.

The factors of data movement and gathering of data at one point are covered up. Er-dun

et al. [41] proposed an algorithm for reduction of movement of data among data centers

leading to load balancing in data centers. The heuristic and genetic schemes are com-

bined together for improving the ability to local search and reducing the search time.

The heuristic idea is implemented in gene operations and initial population selection.

The integer encoding rules are applied and a gene represents the placement process.

The encoding rule determines the ineffective fragments of genes that cannot be coded

at data centers. Fitness function depicts the advantages and disadvantages of genetic in-

dividuals. It shows the degree of dependence between data sets and center load balance.

Xu et al. proposed a mathematical data placement technique on the basis of a genetic

algorithm. The crossover rate(Pc), size of population (G) and mutation rate (Pm) is

determined [42]. It is determined after the initial population generation and the fitness

value of each individual [44]. Crossover and mutation are performed on the selected

matrix [45, 142]. The individuals not adhering to the requirements of storage capacity

are abandoned. In addition, Zheng et al. [43] introduced a genetic algorithm-based data

placement technique to reduce time and data scheduling costs between centers. Guo et

al. suggested a scheme based on particle swarm optimization leading for cost reduction

and transfer time reduction [57]. The investigator works on the on-demand method as

a standard for computing. This refers to paying per on per hour basis with no long term

commitments as per the charging standard of Amazon. Guo et al. [59] introduced Par-

ticle swarm optimization based algorithm embed in Small Position value (SPV) [60].

The aim is to optimize the scheduling of tasks in cloud for minimization of cost of pro-

cessing. The focus is on reducing execution and transferring time. The fitness function

for an algorithm is taken as a combination of cost and time CT = T +C [57].

Pandey et al. [61] presented heuristic based particle swarm optimization (PSO) to

schedule applications on resources of cloud. Consideration is given to the factors of cost

72

of data transmission and computation. Mapping tasks to resources are accomplished by

varying the cost of computing and communication.

Zhao et al. [35] clustered datasets on the basis of dependency using a proposed

hierarchical clustering based technique. A new factor as the size of the dataset is intro-

duced. This leads to a reduction in data movement. In the partitioning matrix, improved

dichotomy algorithm is used. For the mapping between data groups and servers, PSO

based algorithm is used.

Promising performance is shown by metaheuristic algorithms for solving problems

of real-world optimization. These algorithms use a tradeoff between local search and

randomization [132] and do not guarantee of optimization solution to be found. These

algorithms may succeed most of the time but not every time. The best suitable for global

optimization is metaheuristic algorithms [133]. At present, very limited nature-inspired

algorithms are used and even more algorithms can be proposed. One of the main pur-

poses of the research work is to introduce a user-friendly metaheuristic technique for

placement of data sets at appropriate data centers for obtaining promising results. In

this work, a crow search algorithm (CSA) based data placement strategy is developed

with an aim to achieve a lesser cost of transmission among data centers.

4.3 Data Placement Process

In the computing systems, the data placement process is defined as the movement of

input data of data-intensive applications from a remote site to the execution site, then a

movement of output data from execution to another remote site or same site. To prevent

the risk of disk full at the execution site, there is a requirement to allocate space and

deallocating the space when a job is done.

The data placement steps are presented as DAG (Directed Acyclic Graphs) and de-

pendencies between them are represented by an arc. The steps of data placement are as

shown in Figure 4.2.

4.3.1 Data Placement Stages

• Stage-in: This data placement stage is also known as build-time data placement.

This involves getting the provenance information of the dataset and pre-clustering

the similar data items before uploading the data to the appropriate data center [8].

73

Stage­in
Execute job
Stage­out

Allocate space for Input
& Output data

Stage­In

Execute the job

Stage­out Release Input space

Release output space

Figure 4.2: Data Placement Process [8].

• Stage-out: This data placement stage is also known as runtime data placement.

During the execution of workflows, intermediate data is generated. This data may

be the input for the subsequent tasks, so placing and managing this kind of data

is again a complicated task [8].

4.3.2 Need for Data Placement

• Management of budget for storage: Some scientists perform their task without

considering the budget whereas there are some that consider budget as one of the

QoS parameters. So, it depends upon vendor to vendor. These kinds of vendors

prefer the cloud service providers that adhere to the QoS parameters provided by

them [75][57].

• Effective distribution of data onto a storage device: There is a large variety of stor-

age devices available with different parameters like storage capacity, transmission

speed, etc. So making the data evenly and considerably distributed among these

storage devices is also an essential task [128].

• Data placement of data-intensive jobs is a major challenge in the cloud environ-

ment. Improper data placement policy increases data movement in the data center

which leads to increased cost and delayed services.

74

• Placement of runtime datasets is still a challenge in a complex scientific work-

flow. Storage and computation capacity is a bottleneck in some situations while

transferring the intermediate datasets.

• No placement policy considers the cached dataset (e.g. fixed position datasets)

which affects the performance at a significant level.

With the drastic increase in data, requirements for both commercial and scientific

applications are expected to reach several million terabytes scales. The matter of con-

cern is about the increasing I/O needs and also about a number of users accessing the

same dataset. In various fields like genomics and biomedical, more people will be ac-

cessing more datasets. The movement of a large amount of data for replication and

processing becomes the necessity. This brings a problem of reliable and efficient data

placement. There is a requirement of locating the data, moving the data to the place

where it is required, replicating and staging the data. The storage is allocated and de-

allocated. As the scheduling and managing of computational and network resources is

an important task, similarly scheduling the data placement activities is also crucial.

The above requirements of scientific workflows can be fulfilled by a cloud com-

puting paradigm. Firstly, cloud computing environment consists of large scale com-

modity hardware which provides infinite storage space with lower execution cost. Sec-

ondly, it is easily accessible from anywhere via the internet. Researchers can carry

out research from any region of the world. Thirdly, the services provided by the cloud

uses a pay-as-you-go model, depending on the requirement of the resources of specific

scientific applications. So, deploying scientific workflows on a cloud platform is the

most cost-effective. Several successful scientific cloud workflow systems are Cumulus

(https://cumulusnetworks.com), Nimbus (http://www.nimbusproject.org/ doc/ nimbus/

platform), and OpenNebula (http://opennebula.org).

Although, the cloud provides different features to execute the workflows in cloud

with infrastructure as a service several challenges are faced by the scientific cloud work-

flow system. Executing and scheduling the tasks of scientific workflows is a tedious

task. During scheduling, intermediate datasets are generated and placement of these

datasets is the most critical issue in data placement.

75

4.4 Research Methodology

In the present study, the real-world workflow graphs or random workflow graphs are

employed to represent different applications of the workflow using SwinDeW-C frame-

work [143]. Directed Acyclic Graph (DAG) of different workflow applications is rep-

resented by this framework. This framework specifies the number of tasks in the work-

flow, the size of transfer between tasks of workflow, and the execution time of each

task. These workflows have been used to measure the performance of the proposed

CSA-based data placement algorithm.

In this chapter, on the basis of intelligent behavior of crow, Crow Search Algorithm

(CSA) based data placement for scientific workflows in cloud computing is proposed.

The introduced algorithm is based on the crow’s behavior. Crow possesses the largest

brain in comparison to their body size and are considered to be the most intelligent of

all birds. They have remembrance power and can remember the places of hiding food

up to several months later [144, 145]. The protocols of CSA are [146]:

• Crows live in congregates.

• Crows remember their hiding places positions.

• Crows follow one another to do rustling.

• Crows protect their hiding places of food from being stolen.

4.4.1 Proposed Crow Search Algorithm (CSA) Based Data Placement

The researcher presents a novel CSA-based data placement strategy for scientific work-

flows in cloud. The proposed algorithm is responsible for the placement of intermediate

datasets at the data centers while ensuring minimal data movement between data cen-

ters. The two stages in the proposed technique are to build time data placement and

runtime data placement. Firstly, the build time algorithm is used to distribute data sets

to suitable data centers. After the build time stage, intermediate data sets are generated.

Secondly, a runtime algorithm is used to distribute the intermediate datasets to data cen-

ters. The runtime stage uses the Crow Search Algorithm (CSA) based data placement

method. The flowchart of CSA based runtime data placement is shown in Figure 4.3

76

Yes

START

 Define decision variables and

constraints

set of existing datasets

 Itermax= Number of Tasks

 Flight length(fl) = distance between data

centers

 Awareness Probability(AP)= Fixed data

set(Df=0) or Non fixed data set (Dnf=1)

Step 1: Initialize problem and adjustable parameters Step 2: Initialize positions and memories

Generate Random Solution

(Build Time Algorithm)

(

Fill the memory (K) by the

initial datasets

Step 3: CSA BASED RUN TIME ALGORITHM

For i = 1: T (Ready task)

do

TASK SCHEDULING (maximum

available datasets related to task)

Step 4: Generate position for newly generated datasets

For i = 1: M do

Create matrix DV (dataset, Dependency

gain, datacentre,Awareness

probability(AP) for i dataset and sort in

decreasing order as per dependency

gain

Repeat step 5 to 7

Foreach v in DCV

The new

position is

feasible?

Update position with new

one in Position matrix (PV)

with (Position,Fitness

value)

Do not update with new

one

No

Yes

s

Step 5: Check feasibility of new dataset on datacenter

Step 6: Evaluate fitness function for new positions

Foreach p in PV

Calculate the fitness function value

and update the PV

Update memory with the new

position

Add i to Dependency matrix (DM)

Step 8: check termination criteria

Repeat steps 3 to 7 T>0 STOP

Yes No

Update T for

new ready task

Get DCV vector from DV matrix(Data

centers and dependency gain)

Place the datasets as per Memory (K)

Foreach p in PV

Step 7: Update memory

Fitness of new

position is better

then fitness of
memory position

Update memory with the new

position

Do not update

memory

Place the datasets as per Memory (K)

IF AP >= 1

YES NO

Update memory

Figure 4.3: Flowchart of Crow Search Algorithm(CSA) based data placement.

77

4.4.2 Pseudo Code of Proposed CSA-based Runtime Data Placement

• Step 1: Initialize problem and parameters adjustable: Variables of decision and

constraints are defined in this step.

– crows(cr) = number o f datasets

– The flock size represents the number of existing datasets as per Eq. 4.1.

f locksize(N) = dataset
N

∑
i=1

Di (4.1)

– itermax represents the number of tasks in the workflow.

– Flight Length (FL) of a crow is defined as the distance between data centers.

– Awareness Probability (AP) is defined as awareness about fixed and non-

fixed datasets. For fixed location data sets D f = 0 or Non-fixed data sets

Dn f = 1.

• Step 2: Initialize crow(datasets) position and memory, data for clustering algo-

rithm allocation. In a search space, N crows are randomly positioned. Build time

algorithm is performed in this step. In build time stage, the initial datasets are

randomly positioned to datacenters. The data is represented by the matrix model.

Pre-clustering of the data sets is performed by K-means clustering algorithm.

The matrix is transformed and data sets are allocated to different data centers

as per the initial partitions defined for use in the runtime stage. This algorithm

works in two steps: 1) Setting up and clustering dependency matrix 2) Partition-

ing and distributing datasets [147] to an appropriate data center. The memory of

the crows(dataset) is initialized with the data center as shown in Figure 4.4. The

tasks are scheduled according to the placement of initial datasets and interme-

diate data sets are generated. Scheduling is an important issue for data-intensive

applications [148, 149]. The workflow tasks are periodically monitored and ready

tasks are scheduled onto the data centers

Figure 4.4: Data Placement Map of initial datasets.

78

• Step 3: The runtime stage is performed in this step. The runtime stage is re-

sponsible for placing the data sets at an appropriate data center according to CSA

based data placement algorithm. The ready tasks are selected one by one with all

the available datasets required by it. The ready task is a task if all the datasets

required by it are available for its execution. Now, it is decided by the system

which data center to allocate to these datasets. In our work, the focus is to place

intermediate generated datasets by CSA based approach during the runtime stage

of execution. For example, task t1 is the ready task with datasets related to as d1,

d2, d3, d4.

• Step 4: In this, the position for newly generated datasets is defined. The newly

generated datasets for a selected task t1 is added to the dependency matrix. De-

pendency Gain (dg) is calculated from the dependency matrix for each of the

datasets d1, d2, d3, d4 related to the task t1. The dependency between dataset

d j and datacenter dci is defined as the sum of dependencies of d j with all the

datasets in the data center dci.

Suppose dv is newly generated dataset. tv is a set of tasks that will use dv. Firstly,

the dependencies of newly generated dataset dv are calculated with all the other

available datasets in the system. This newly generated dataset is added to the

dependency matrix(DM) for dv as represented in Eq. 4.2

DMv j = DM jv = Dependencyv j =Count {Tv∩ Tj} (4.2)

The decision variable matrix(DV) is created for newly generated dataset dv, con-

taining information for each dataset related to a task as per Eq. 4.3.

DV (dv) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dataset dg dc AP

d1 0 dc2 0

d2 4 dc2 1

d3 3 dc1 1

d4 5 dc1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.3)

The matrix represents the dependency gain(dg) of dv with dataset d1 is 0 and d1

is placed at datacenter dc2. Similarly, representation is done for d2, d3 and d4

79

datasets. Then the DV matrix is sorted as per decreasing order of dependencies

as shown in Eq. (4.4)

DV (dv) =



dataset dg dc AP

d4 5 dc1 1

d2 4 dc2 1

d3 3 dc1 1

d1 0 dc2 0


(4.4)

Awareness Probability (AP) of each dataset is evaluated. If AP < 1 then it sym-

bolizes the dataset to be a fixed location dataset. Hence memory is updated with

the particular data center. Dataset d1 is a fixed location dataset with awareness

probability less than 1. Therefore, the memory of the crow is updated with the

location dc2 for dataset d1. If AP >= 1 then the information for the datasets are

stored in a decision variable vector(DCV) as represented in Eq. (4.5).

DCV (dv) =

∣∣∣∣∣∣∣∣∣∣∣∣

dc dg

dc1 5

dc2 4

dc1 3

∣∣∣∣∣∣∣∣∣∣∣∣
(4.5)

Steps 5 to 7 are repeated for each dataset.

• Step 5: The feasibility of a new crow(dataset) position is assessed on all DCV

datacenters. The feasibility to store dataset dv is evaluated for each data center

dc1, dc2. The feasibility to store dataset on a data center depends on the amount

of storage used of the data center. The maximum storage used of a data center

is represented as γmax. γmax (percentage threshold) specifies whether or not the

data center is overloaded and is also an experience parameter, γini represents

initial storage usage parameter. Therefore, how much storage a data center can

use for runtime data dc j is cs j ∗ (γmax− γini). The γmax value depends on the

system’s complete workload. If the system workload is substantial, the value of

γmax must be set to a larger value and if it is smaller, the value of γmax is set to

small to prevent the collection of too many datasets in one data center.

80

The datacenter dcs for the newly generated dataset dv is decided, if cssγ + sv <

cssγmax is true, where sv is dv and γ is dcs as a percentage of current storage usage.

Position Matrix is created with the position value (PV) and fitness. The position

value is updated by the data center if the data center is feasible else position value

is not updated with the data center value. For example, feasibility to place newly

generated dataset is evaluated with dc1 and dc2. If both dc1, dc2 have the storage

capacity available then the value of dc1, dc2 is updated in position value matrix

as in Eq. 4.6

PV (dv) =


dc Fitnessvalue

dc1 −

dc2 −

dc1 −

 (4.6)

• Step 6: The fitness function of a new position is evaluated using CSA. The goal

of the proposed CSA-based data placement algorithm is to reduce global data

transmission, hence the fitness function defined as per Eq. 4.7.

f itness =
1

∑tsiεT minDatatransmissionAmounttsi

(4.7)

where minDataTransmissionAmounttsi refers to the minimum data movements

required to execute the tsi task. The calculation is performed on a protocol that

the smaller dataset is always moved to larger storage.

Using Eq. 4.7 the fitness values are calculated for each data center dc1, dc2.

These values are updated in the Position matrix(PV) as Eq. 4.8.

PV (dv) =

∣∣∣∣∣∣∣∣∣∣∣∣

dc Fitnessvalue

dc1 0.5

dc2 0.1

dc1 0.5

∣∣∣∣∣∣∣∣∣∣∣∣
(4.8)

• Step 7: In this step fitness values of data centers, dc1 and dc2 are compared.

The position of the newly generated dataset dv is decided according to the best

81

fitness value. Accordingly, the memory of the crow is updated for the position of

a dataset.

• Step 8: Check termination criteria.

Steps 3 to 7 are repeated until maximum iterations itermax are reached and all the

datasets of ready tasks are evaluated. When the termination criteria are met, in

accordance with the fitness function, the best memory position which is the best

dataset position on the data center is reported as the solution.

4.5 Comparison of CSA and PSO

CSA as PSO uses the population of seekers for searching search space. Using an ele-

ment of the population increases the probability of finding an excellent solution. Other

parameters of optimization algorithms need to be adjusted in addition to the number of

iterations and population size. Parameter settings are the main drawback of optimiza-

tion algorithms. The algorithms with fewer parameters are easier to adjust. There are

only two parameters in CSA: a probability of awareness and flight length that need to

adjust, while the maximum value of speed, inertia weight, social learning factor, and

individual learning factor are four parameters in PSO. CSA is not a greedy algorithm

but PSO is a greedy algorithm. A new position generated by the crow may not be the

best position but it will move to a new position. It, therefore, increases the diversity of

the various [150] solutions generated.

Good solutions are memorized in memory in CSA, but each particle moves in PSO

towards the perfect location solution search in the group and on its own. So only the

best solutions that have been found so far are used in CSA.

4.6 Experimental Evaluation

The simulation is performed on SwinDeW-C [149] (Swinburne Decentralized Workflow

for Cloud), which is developed on the basis of SwinDeW-G [143] and SwinDeW [151].

There are 10 high-end PCs and 10 servers available. VMware software is set on the

host and virtual machine as data centers are created to simulate a cloud computing

environment.

82

Each data center consists of 8 storage-based virtual computing nodes. On these

virtual data centers, SwinDeW-C streams the data between nodes. Web portal used on

the application layer to deploy the application and upload the data.

SwinDeW-C is used in cloud applications on a large scale. SwinDeW-C’s key com-

ponents related to the data placement process are:

• User interface module: It is a kind of web portal that enables the users to deploy

the workflows. For uploading the data of an application, uploading component is

used and to monitor the execution of workflows monitoring component is used.

• Data management module : In SwinDeW-C the core part of data management

is data placement component. The data catalog component is responsible to store

information for different applications in data placement. Other essential com-

ponents are data synchronization component, data replication, provenance data

collection, and meta-data repository. These components are the supporting mod-

ules in data placement activity.

• Other Modules: Process repository is in Flow Management module that stores

all instances of workflows executing. The scheduling of tasks is carried out by

the scheduler in task management at the runtime stage. In addition, the Resource

Management Module stores data center usage information and triggers the data

placement adjustment process.

4.6.1 Experimental Setup

The proposed algorithm is evaluated on SwinDeW-C. The test workflows are generated

randomly for execution on SwinDeW-C. Hence, the evaluation results are not dependent

on any specific application. The number of existing and generated datasets are set to be

the same for every test workflow. Every test workflow exhibit the same number of tasks

and existing datasets. The assumption is that each task will generate only one dataset.

The complexity of test workflow can be controlled by varying number of datasets. The

random number of tasks will use every dataset. The tasks using the generated datasets

are executed only after the task that provides its input to the task completed execu-

tion. The complexity between tasks and datasets is controlled by changing the range

of random number. The factor of a number of fixed location datasets also impacts the

83

performance of the algorithm. The parameters for simulation settings are as in Table

4.1.

Table 4.1: Parameters for data placement

Parameter Value

Data Centers 10-15

Storage Capacity 100GB-500GB

Upload Cost Rate $0.08-$0.12/Gb

Download Cost Rate $0.13-$0.17/Gb

Size of Dataset 700-800 MB

4.6.2 Results and Discussion

Figure 4.5 displays the data movement when workflows are executed on a different

number of data centers without fixed location datasets and Figure 4.6 displays the

data movement with 20% fixed location datasets. It can be seen an increase in data

movement when the number of data sets have increased.

In an experiment, three types of test workflows are used with a varying number of

datasets. The test workflow dataset count is fixed to 80 and the result is depicted in

Figure 4.5(a) with varying number of datasets 30, 50 and 80. The same experiment

is conducted with 20% fixed location datasets as shown in Figure 4.6(a). The test

workflows with complexities are executed on a different number of data centers and the

results are as shown in Figure 4.5(b) and the same experiment is conducted with 20%

fixed location datasets with the result as in Figure 4.6(b).

Experiment 1 (Data Movements Without Fixed Location Datasets): From the re-

sult, conclusions can be derived that CSA based algorithm effectively reduces the total

data movement in the execution of workflow in comparison to build and run an algo-

rithm, and PSO based algorithm. The data movement by CSA is reduced by 3% in

comparison to PSO and by 15% in comparison to build and run algorithm as shown

in Figure 4.6(a). Figure 4.6(b) depicts the reduction in movement of data when an

evaluation is performed by varying number of data centers as 10, 15, 20. The CSA

based strategy shows the minimum data movement even if the number of data centers

84

0

20

40

60

80

100

120

140

160

180

30 50 80

D
at

a
M

o
ve

m
e

n
ts

Number of Datasets

Data Movements with Non-Fixed Datasets

Build and Run PSO CSA (Proposed)

(a)

0

20

40

60

80

100

120

140

160

180

10 15 20

D
at

a
M

o
ve

m
en

ts

Number of Datacenters

Data Movements while varying Datacenters with
Non-fixed Datasets

Build and Run PSO CSA (Proposed)

(b)

Figure 4.5: Data movement without storage limit without fixed location datasets (a)

varying number of datasets (b) varying number of datacenters

85

0

20

40

60

80

100

120

140

160

180

200

30 50 80

D
at

a
M

o
ve

m
en

ts

Number of Datasets

Data Movements with 20% Fixed Location Datasets

Build and Run PSO CSA (Proposed)

(a)

0

20

40

60

80

100

120

140

160

180

10 15 20

D
at

a
M

o
ve

m
en

ts

Number of Datacenters

Data Movements while varying Datacenters with 20%

Fixed Location Datasets

Build and Run PSO CSA

(b)

Figure 4.6: Data movement without storage limit with 20% fixed location datasets (a)

varying number of datasets (b) varying number of datacenters

86

0 100 200 300 400 500

Build and Run

PSO

CSA (Proposed)

207

178

163

111

41

31

179

145

134

Data Movements

Proportion of Data Movement with Non-Fixed Datasets

Data retrieved Data sent Data rescheduled

(a)

0 100 200 300 400

Build and Run

PSO

CSA(Proposed)

203

180

175

115

44

32

75

79

65

Data Movement

Proportion of Data Movements with 20% Fixed Location

Datasets

Data retrieved Data sent Data rescheduled

(b)

Figure 4.7: Proportion of three types of data movements (a) Non-Fixed datasets (b)

20% Fixed datasets

87

is increased.

Experiment 2 (Data Movements With Fixed Position Datasets): In this experi-

ment, the researcher changed initial datasets to 20% fixed location datasets to validate

the proposed technique. Figure 4.6 shows the results with 20% fixed location datasets.

The experiment conditions are same as in Figure 4.5. The results depicted in Figure 4.6

shows that CSA based approach reduces the data movement by 2% as shown in Figure

4.6(a) with varying datasets and 5% from PSO based approach with varying number of

data centers as shown in Figure 4.6(b). Similarly, CSA reduces the data movement by

10% with varying datasets as shown in Figure 4.6(a) and 13% with varying number

of data centers as shown in Figure 4.6(b) from build and run algorithm. Therefore, a

conclusion is derived that the proposed technique offers the minimum data movement

and also works well with fixed location datasets.

Experiment 3 (Proportion of Three Types of Data Movement): Figure 4.7 shows

that when the runtime algorithm is executed, a large amount of data is rescheduled.

The least re-allocation of data occurred when using the CSA-based algorithm for data

placement. Considering the case where there are no fixed location datasets, the result is

shown in Figure 4.7(a). The number of data movements for CSA is 134 in comparison

to PSO, build and run algorithm that posses data movements 145, 179 respectively.

Hence, CSA reduced the data movement in comparison to other algorithms.

Considering the case when there are 20% fixed location data sets, then data move-

ments for CSA, PSO, build and Run are 65, 79 and 75 respectively as shown in Figure

4.7(b). Hence, CSA posses the least amount of movement of data. The conclusion

is CSA based data placement lower down the movement of data. Thus, the proposed

technique decrease the execution time of workflow.

4.7 Summary

In this chapter, different characteristics of scientific cloud workflows have been evalu-

ated and data placement technique using Crow Search Algorithm (CSA) is proposed.

It automatically allocates the intermediate data among the data centers based on the

factor of dependency with data centers. Simulations performed reveals that CSA based

88

run time data placement technique minimize the movement of data in workflow execu-

tion. The data movements also decrease in-spite of having fixed location datasets in the

workflow. The experiments are also conducted by considering with 20% fixed location

data sets. The approach is flexible to work with fixed and non-fixed location datasets.

89

CHAPTER 5

DATA PLACEMENT ORIENTED

SCHEDULING ALGORITHM FOR

SCIENTIFIC WORKFLOWS IN

CLOUD: A BUDGET-AWARE

APPROACH

5.1 Introduction

Cloud computing is an effective and reliable business computing model which dis-

tributes the incoming requests on the pool of shared resources and provides online

physical machines. It transforms communication, storage and computer resources on-

demand into ordinary utilities and commodities [152, 153]. Without owning a cloud

physically, this feature brings large-scale computing. Infrastructure as a Service (IaaS)

is most common among the cloud services which is capable of delivering or releasing

pre-configured virtual machines. The client can access the virtual machines remotely

with minimum renting cost [154].

One of the popular frameworks is to characterize data-intensive scientific workflow

90

applications that are hosted and deployed on various cloud providers such as Amazon

EC2 [154]. It includes many data dependencies or inter-task control dependencies.

It is represented in the form of a Direct Acyclic Graph (DAG) with tasks as nodes

and edges as dependencies among tasks. The IaaS services provided by cloud service

providers are purchased by the clients for the execution of scientific workflows while

fulfilling the Quality of Service (QoS) parameter. The users are charged by the cloud

provider as per the billing cycle of the deployed workflows. Hence, the aim is reducing

monetary costs and makespan of execution of the workflow. Alkhanak et al. [155]

described the cost-aware approach for Service Level Objective (SLO) challenges (e.g.

makespan) and system functionality challenges. In this chapter, the researcher focus on

the development of a new scheduling algorithm for workflows to minimize makespan

and monetary and budget-compliant costs. The focus in this chapter is on designing the

scheduling algorithm taking into account the user budget and deadline trade-off.

In order to optimize monetary costs in heterogeneous computing environments, sig-

nificant research has been dedicated to the study of workflow scheduling. Heteroge-

neous Earliest Time First (HEFT) gave adequate performance when applied as a heuris-

tic scheduling algorithm. It achieves the higher search efficiency by reducing the range

of search space of task scheduling problem to minimum [156]. HEFT algorithm per-

forms poorly with some Directed Acyclic Graphs (DAG) tasks. It gives high perfor-

mance for scheduling small-scale task graphs, but with large-scale task graphs schedul-

ing issues are unsatisfactory. In this chapter, HEFT algorithm is improved to achieve

task scheduling performance.

Many indicators exist for evaluating task scheduling performance in cloud, such

as load balance, makespan, green computing economic principles, Quality of Service

(QoS), and average response time [157, 158]. The most important factors affecting

system performance is the makespan. Less energy consumption with higher throughput

rates can be considered as a smaller makespan. This research focus to propose a novel

scheduling workflow algorithm while considering the user’s budget. The algorithm tries

to maximize resource utilization and find the best scheduling solution. The makespan

is used as an important indicator of evaluation. The chapter’s main contributions are as

follows:

• A detailed design of the model with multiple VM categories and data centers.

91

• Design and development of Data Placement Oriented HEFT (DPO-HEFT) algo-

rithm by taking budget and deadline into consideration.

• The experimental evaluation of extensive proposed DPO-HEFT using workflowsim

and reak workflow traces.

5.2 Related Work

This section comprises the description of different scheduling algorithms used for sci-

entific workflows. The benefits and problems in HEFT algorithms are analyzed. The

task scheduling algorithm is proposed in this research by combining the advantages of

different types of algorithms. The scheduling of tasks on virtual machines is a process

of optimally scheduling the tasks with effective performance [159]. The task schedul-

ing is a combinatorial problem with no definite solution found so far [160]. Mostly

list scheduling algorithms are static. The list scheduling algorithms comprise of two

phases. The first phase obtains an appropriate scheduling strategy by deciding the pri-

ority order and in the second phase, an algorithm is responsible for assigning tasks to

the processor as per the order of priority. Different classic list scheduling algorithms

are HEFT and Critical Path of Processor (CPOP) [156]. One of the most used heuris-

tic algorithms is HEFT, that aims at minimizing the makespan. It is one of the most

popular algorithms used for scheduling of scientific workflows, even if the number of

heterogeneous computing resources is limited. Practically, it is a static algorithm which

provides a mapping of the tasks to the resources are determined by the scheduler. It

also determines the time taken to start each task before the execution of a workflow.

The different resources available for this scheduler are not prone to be homogenous.

In it, schedules are placed in the order of execution where tasks are classified. There

are two major stages in HEFT. One stage of list-based heuristic is prioritization phase

where priorities of all the tasks are calculated and another stage is to select the instances

where the selection of tasks is performed as per the priority order and scheduling is per-

formed to the best resource. The upward ranking method is used by HEFT for sorting

all the tasks of workflow in decreasing order of priority. For each task, the upward

rank is defined as the length of the longest path of a task to the exit task of a workflow.

Both the task calculation time and edge communication time on the path are consid-

92

ered [156]. HEFT solves the only problem of mono-objective workflow scheduling.

Different versions of HEFT are developed in different environments. One of the algo-

rithm same as HEFT is Critical Path on a Processor (CPOP) algorithm. In the CPOP

algorithm, to calculate the priority value of tasks both task’s upward rank value and

downward rank value are added. The sorting of the tasks is performed by priority value

from highest to lowest. The tasks that possess the highest priority value are known as

critical tasks. In the second phase, the assignment of the critical tasks to the critical pro-

cessors is performed. The processor that provides minimum execution time for a task

to the processor is known as a critical processor. The allocation strategy employed by

CPOP is same as HEFT for non-critical tasks. Various other list scheduling algorithms

are heterogeneous scheduling algorithm with improved task priority (HSIP) [161], the

predict earliest finish time (PEFT) algorithm [162], the Median Deviation-based Task

Scheduling (MDTS) algorithm [163] etc.

Zeng et al. [164] introduced solutions to schedule workflow in clouds with cost and

security considerations. The problem of a multi-objective off-line scheduling problem

for deterministic workflows consisting of adhering to budget and meeting deadlines

are extensively studied. Although the problem of multi-objective offline scheduling

problem consisting of meeting deadlines and respecting a budget has been extensively

studied for deterministic workflows [165, 166].

Malawski et al. [167] introduced an algorithm for scheduling workflows while con-

sidering the limits of time and budget. However, the objective is different as it considers

the ensembles of a workflow.

5.3 System Architecture

In this section, the system architecture of scientific workflow scheduling is described.

5.3.1 Cloud Data Center Model

In a cloud datacenter, a set of P types of instance series V Mp =V M1
p,V M2

p..,V Mk
p..V Mqs

p

is provided. The instance series of three different kinds provided by Amazon EC2

(memory optimized, computing optimized and storage optimized) [168] are shown in

Table 5.1, Table 5.2 , Table 5.3. It is denoted as V M1
p, V M2

p and V M3
p in this research.

Several characteristics specify a VM type V Mk
p, including processing capacity pck

p in

93

million floating point operations per second (MFLOPS), instance series type p, cost per

hour CT k
p , storage and memory space. VMs are charged in unit time (e.g., minute,

hour) based on their lease time and amount of part-time unit used. It is rounded up to

the next full-time unit. If the lease time unit is an hour, then the time of 2 hours and 1

minute is rounded up to 3 hours. Hence, it results in a three-hour lease cost calculation.

No limit is imposed on the number of VMs and can be accessed in clouds.

Table 5.1: Amazon EC2: Optimized instance series of memory

vCPU Memory(GiB) Processing

Capacity

(MFLOPS)

Cost

Per

Hour

Storage(GB)

r3.large 2 15 8800 $0.175 1x32SSD

r3.xlarge 4 30.5 17600 $0.350 1x80SSD

r3.2xlarge 8 61 35200 $0.700 1x160SSD

r3.4xlarge 16 122 70400 $1.400 1x320SSD

r3.8xlarge 32 244 140800 $2.800 2x120SSD

Table 5.2: Amazon EC2: Optimized instance series of computing

vCPU Memory(GiB) Processing

Capac-

ity(MFLOPS)

Cost

Per

Hour

Storage(GB)

c3.large 2 3.75 8800 $0.105 2x16SSD

c3.xlarge 4 7.5 17600 $0.210 2x40SSD

c3.2xlarge 8 15 35200 $0.420 2x80SSD

c3.4xlarge 16 30 70400 $1.840 2x160SSD

c3.8xlarge 32 60 140800 $1.680 2x320SSD

Table 5.3: Amazon EC2: Optimized instance series of storage vs CPU

vCPU Memory(GiB) Processing

Capac-

ity(MFLOPS)

Cost

Per

Hour

Storage(GB)

d2.xlarge 4 30.5 17600 $0.69 3x2000SSD

d2.2xlarge 8 61 35200 $1.38 6x2000SSD

d2.4xlarge 16 122 70400 $2.76 12x2000SSD

d2.8xlarge 32 244 140800 $5.52 24x2000SSD

94

v2 v3

v4 v5 v6

v7

v1

e1

e5

e2

e3
e4

e6

e7

Figure 5.1: Workflow model

All processing units use only one data center. Due to the security issues, the units do

not interact directly. For the execution of the task T on Virtual Machine (VM), the data

of the predecessor task also needs to be on the same VM, unless the data is produced on

some other VM. The researcher assumes a large bandwidth of data centers for all units

of processing. The actual processing units are the VMs, which are classified with a set

of parameters from different providers. A categorized (c) VM exhibits nc processors.

These processors can process one task at a particular time instant. VM speed spc is

considered as a number of instructions handle per unit of time, a cost per unit of time

cl,c; and an initial cost cini,c defined respectively. All the VMs consider the unlimited

amount of time to boot before starting the execution of tasks. The start time of the task

is not included in the cost of VM. Hence, the platform consists of a different set of

possible c categories of VMs. Some assumptions taken are:

• Same bandwidth for each VM in all directions.

• Storage capacity of the VM is enough. So, there will be no problem with mem-

ory/space overflow.

• Time of initialization of VM is the same.

VMs exhibit different start-up times defined as Hstart,vm. The ending time of VM

is Hend,vm, when the data created by the last computed task is transferred to the data

center. VMs are allocated contiguously. For the discontinuous allocations, VMs can be

released and later on a new one can be allocated.

95

5.3.2 Workflow Model

The directed acyclic graph (DAG) represents a workflow application W f where W f =

(Vi,Ei). Ei represents edges control or data dependencies between them and Vi=vi1,vi2..vin

is a set of vertices representing tasks. A dependency ei j is the precedence constraint of

the form (vi1,v j1), where vi1,v j1 ∈ Vi and vi1 6= v j1. This refers to that the child task can

only complete its execution if the parent task has completed the execution. An example

workflow is shown in Figure 5.1. To each dependency (Taski,Task j) ε E represents the

data in the size (size(dTaski,Task j)). The task is said to be ready task if all its predecessors

have finished execution and the output data required by it is available.

5.3.3 System Model

First, the problem definition is refined. For the workflow scheduling, there are three

layers in the cloud environment shown in Figure 5.2 [169]. All the preceding tasks

are represented in a task graph layer. The virtual machine network is represented in the

resource graph layer and set of network-connected data centers are represented in the

cloud infrastructure layer. According to Abdelkader et al. the problem of task schedul-

ing in heterogeneous systems is to correctly allocate tasks to machines for optimizing

certain performance metrics such as resource utilization and execution time [170].

T1

T2
T3

T4 T5

VM1

VM2 VM3

VM4

Task Graph

Resource
Graph

VM4 VM4

DC1 DC3
DC5

Cloud
Infrastructure

Figure 5.2: Model for scheduling scientific workflows in cloud

96

• Cost: The cost model represents different features of existing cloud providers

(Amazon, OVH, Google) offerings. The complete cost of the entire execution

of the workflow is the sum of the cost of using the VMs (Costvm) and the cost

of using the datacenter (CostDCT). The cost (Costvm) of the usage of a VM of

category (Cvm) is calculated as follows:

Costvm = (Hend,vm−Hstart,vm)∗Cl,cvm +Cini,cvm (5.1)

The start-up cost is Cini,cvm as in Eq. 5.1. Cl,cvmis a term proportional to usage

duration Hend,vm−Hstart,vm. The datacenter cost is based on a cost per time-

unit Costl,DCT to which transfer cost is added. The transfer cost is calculated by

the amount of data transferred into datacenter (size(din,DCT)) and from the data

center (size(dDCT,out)). din,DCT represents input data to tasks in the workflow and

dDCT,out represents data output from tasks. Hstart is the time when the first VM is

booked and Hend is the last time, the last processed task data was sent to the data

center. So the total cost of data centre (DCT) is calculated as Eq. 5.2.

CostDCT =(size(din,DCT)+size(dDCT,out))∗Costtrs f +(Hend,last−Hstart, f irst)∗Costl,DCT

(5.2)

The total cost of processing the workflow where Ivm are the used VMs for execu-

tion is represented in Eq. 5.3

Costw f = ∑
vmεIV M

Costvm +CostDCT (5.3)

• Objective: The main goal is to meet the deadline while also considering the bud-

get, given a deadline Dl and a budget BD as per Eq. 5.4.

Dl ≥ (Hend,last−Hstart, f irst) and BD≥Costw f (5.4)

The complex objective is to find a schedule that minimizes the makespan while

considering the budget as in Eq. 5.5

min(Hend,last−Hstart, f irst) where BD≥Costw f (5.5)

97

The goal is defined as per the above-mentioned definitions. The basic goal is to

minimize the makespan and cost. Here, the approach designed to find a schedule with

a minimum cost, where the cost must not exceed the budget. The conditions ensure

successful execution of workflow within a specified constraint of a budget. The weight

of a task is represented as ¯ωtask +σtask. It follows a Gaussian law with mean ¯ωtask and

standard deviation σtask which can be estimated through sampling method.

5.4 Research Methodology

This section introduces Data Placement Oriented-HEFT (DPO-HEFT), that is using the

data placement as sub-module in HEFT and extending HEFT while considering the

budget. The introduced algorithm accounts for the budget constraint as well.

Algorithm 2 DPO-HEFT
1: procedure DPO−HEFT (w f ,BDcalc,P)

2: s̄p←MeanSpeed(P)

3: bwd← getbwd(P)

4: BDtask← divideBD(w f ,BDcal, s̄p,bwd)

5: Sortedlist ← SortingTasksByRanks(w f , s̄p,bwd, ¯lat)

6: hole,newhole← 0

7: for Task jinSortedlist do

8: host← getBestHost(Task j,BDtask, p,NewHole)

9: hole← newhole

10: sch[Task j]← host

11: schedule(Task j,host)

12: update(Used(vm))

13: end for

14: end procedure

The objective of the proposed algorithm is to gain the highest parallelism as per the

budget of the user. The proposed algorithm works in five phases:

• Phase 1: Budget Distribution

• Phase 2: Workflow Clustering

98

• Phase 3: Deadline Distribution

• Phase 4: Task Selection

• Phase 5: Instance Selection

5.4.1 Phase 1: Budget Distribution

In this phase, the budget is distributed globally among different tasks on different levels

of the workflow. According to the budget, for a given workflow, firstly fraction is

reserved for the costs of the initialization of the datacenter and VM. Then, the remaining

budget is divided into tasks. The task at each level is scheduled to an instance according

to the budget assigned. The initial budget is denoted by BDini. For the estimation of the

reserved amount the parameters are:

• Cost of Data Center: The duration of Hend,last−Hstart, f irst is to be estimated. The

total duration is calculated as maximum work (Workmax) as represented in Eq.

5.6.

Workmax = ∑
taskεw f

(¯ωtask +σtask) (5.6)

Hend,last−Hstart, f irst is represented as in Eq. 5.7

Hend,last−Hstart, f irst =
Workmax

sp1
+

size(din,DCT)+ size(dDCT ,out)
bwd

(5.7)

The cost of input/output data is paid several times with Ct for the outside world

and with Cl,DCT as per the usage of the data center.

• Initialization of VM: We assume that the first category of VM is different for each

task, so we budget the amount s∗Cini,1.

Choices are conservative. All in all, we reserve the corresponding budget amount

and are left for the tasks with BDcal . This reduced BDcal budget is shared proportionally

among tasks as in Algorithm 3.

In Algorithm 3, the time required to execute a task j including the transfer time is

calculated as in Eq. 5.8.

99

Algorithm 3 Budget Division Algorithm

1: procedure BUDGETdiv(w f ,BDcal, s̄p,bwd)

2: Workmax← GetMaximumWork(w f)

3: dtmax← GetMaximumTotalDataTrans f erred(w f)

4: for task in WF do

5: budget[task]← BDtask← BDcal×
¯ωtask+σTj

sp1
+

size(dspred,Tj
)

bwd
Workmax

s̄p + dtmax
bwd

6: end for

7: end procedure

timecal,Tj =
¯ωtask +σTj

s1
+

size(dspred,Tj)

bwd

where size(dspred,Task j) = ∑
Task j

′,Task jεE

size(dtask j
′,Task j

)
(5.8)

size(dspred,Task j) is the size of input data from all its predecessors. The correspond-

ing budget to the task j in proportion of entire workflow is allocated as in Eq. 5.9

:

BDtask j =
timecalc,Tj

timecalc,w f
×BDcal (5.9)

The time required to execute the entire workflow(wf) is calculated as in Eq. 5.10

where dtmax represents total volume of data within workflow. :

timecal,w f =
w fmax

s̄p
+

dtmax

bwd
where dtmax = ∑

Task j
′,Task jεE

size(dtask j
′,Task j

) (5.10)

The computed weights are divided by the mean speed s̄p of different categories of

VM while the data sizes (size(dtask j
′,Task j

)) are divided by bandwidth(bwd) between

data centres and VM. This step is performed in Line 4 of Algorithm 2.

5.4.2 Phase 2: Task Clustering in Workflow

In this, the proposed Hybrid Balanced (HYB) task clustering algorithm 1 is used for

clustering tasks which are not dependent on the input of the user. It is able to cluster the

tasks vertically with single parent single child relationship and the tasks horizontally as

well. The system overhead is reduced while involving the best utilization of resources.

100

The proposed algorithm is explained in our previous work [171]. This phase gives the

clusters at each level represented by CLS.

5.4.3 Phase 3: Deadline Distribution

The objective of this phase is to complete the execution of the workflow in time. As

there are large and complex scientific workflows in different areas such as medical mod-

eling, weather forecasting, climate modeling, etc. These are the examples of deadline

sensitive applications and need to be executed in a specified time constraint. There are

two kinds of deadline constrained application. One is the hard deadline constrained, in

which once missed the deadline can result in disaster on life or environment. Another

is the soft deadline constraints, in which small margins in deadlines are tolerable [172].

So to fulfill the objective of this phase, the deadline needs to be distributed as

sub-deadlines among the tasks of the workflow. It involves distributing the deadline

among different levels of the workflow. The tasks are distributed proportionally among

each level based on the user’s deadline (Dl). Each level is assigned a sub-deadline

Dlsub(Level). For the achievement of deadline objective, an assumption is that every

task completes the execution before the assigned deadline. The estimated initial dead-

line of a task is represented as in Eq. 5.11.

Dlsub(Level) = maxt jεCLS[timecal,Tj] (5.11)

The time taken to execute each task in cluster (timecal,Tj) is represented in Eq. 5.8.

The deadline value for all the levels is estimated. Then, it is distributed among the tasks

at a level. The proportion unit at a level is represented by Eq. 5.12.

ηdeadline =
tentry

∑
level=1

Dlsub(Level)×CLS(level) (5.12)

where Dlsub(Level) is sub-deadline of level and CLS(level) represents clusters at

level.

The deadline factor (f actor(deadline)) is represented as per Eq. 5.13.

f actor(deadline) =
Dl−Dlsub(Level)(1)

ηdeadline
(5.13)

101

Dlsub(Level)(1) is the level consisting of an exit task. The remaining deadline sub-

tracting the total deadline(Dl) is represented in the numerator of Eq. 5.13. The length

of the deadline for each level is distributed as per Eq. 5.14.

Dlsub(Level)(l) = f actor(deadline)×Dlsub(Level)×CLS(level)+Dlsub(Level)

(5.14)

5.4.4 Phase 4: Task Selection

The selection of the tasks is performed in this phase according to the upward rank value

[156]. The upward rank is based on mean communications costs and mean computation

cost. The tasks are sorted according to decreasing order of rank values. If two tasks have

the same rank then the task whose immediate successor is having highest upward rank

is selected. This is performed in the Algorithm 2 (Line 5).

5.4.5 Phase 5: Instance Selection

In this phase, the selection of instance is performed according to two conditions, (a)

placement of data sets and (b) budget of the user.

• Placement of data sets: In this phase, the CSA based data placement strategy for

scientific cloud workflows is executed. This technique is a two-phase algorithm.

Firstly, build time algorithm used for distributing the initial data sets to appropri-

ate data centers. Secondly, a runtime algorithm is used to distribute the interme-

diate datasets to data centers. Runtime stage uses the CSA based approach. The

algorithm is explained in our previous work [173].

• Sub-Budget: To host every ready task, sub-budget is used to select the best VM as

per Algorithm 4. On a platform P, the best host of task j is the one that provides

the best EFT (Earliest Finish Time) for Task j, including the budget (BD(task j))

allocated to task j. The P platform defines as the set of host candidates, consisting

of VMs already used in addition to one fresh VM in each category. The total time

of execution of task j on the host is calculated as in Eq. 5.15.

timeexec(task j,host) = δnew× timeboot + ¯ωtask j +
σtask j

skhost
+

size(dsin,task j)

bwd
(5.15)

102

Algorithm 4 Best Host Selection Algorithm

1: procedure BestHost(Task j,budget[task],P,hole)

2: BDtask← budget[task]+hole

3: Newhost initialized← category(cheapest)

4: Besthost ← vm,where vmεNewvmandcvm = 1

5: minEFT ← EFT (task j,Besthost)

6: for eachhost(Usedvm
⋃

Newvm) do

7: if (EFTtask j,host) < minEFT and (Costtask j,host ≤ BDtask j) and

(DataTrans f erCosttask j,host ≤ BDtask j) then

8: minEFT ← EFTtask j,host

9: bestHost← Host

10: hole← BDtask j −Ctask j

11: end if

12: end for

13: end procedure

In Eq. 5.15 , δnew is a variable and depends on the type of host allocated. The

value is 1, if host ε Newvm else 0. If the host is the used vm , then some of the

input data may be available. So the size used will be size(dsin,Task j) instead of

size(dspred,Task j).

For the computation of EFTtask j,host , Earliest begin time(EBT) is accounted on

that host (EBThost) and timeexec(task j,host) is added. The earliest begin time de-

pends upon the availability of the host and input data transfer to host any task(task j).

All of the data produced by the predecessor of the task(task j) on another host

is to be sent to the data center before submission to host as there are no direct

communications between VMs. These transfers have the associated cost with

it, that is added to timeexec(task j,host)× cl,host for the computation of the total cost

(Ctask j,host) which is for the execution of task j on the host. The algorithm acquires

any unused fraction of the budget used when assigning previous tasks: this is the

variable hole. The hole acquires the leftover budget of the user. So DPO-HEFT

is an extension of the HEFT algorithm that deals with provisioning of the budget

while also considering the placement of data sets used for the tasks.

103

5.5 Experimental Evaluation

The proposed scheduling DPO-HEFT is evaluated through a set of experiments.

5.5.1 Experimental Methodology

The introduced algorithm is evaluated on simulator workflowsim. The model used is

three different categories of VM along with costs from Google Cloud, Amazon, and

OVH. The VM cost is dependent on the mean prices of instances. The payment for

each used second is done for VM.

Five types of workflows: Montage, LIGO, Cybershake, Epigenomics, and SIPHT

are used to perform the experiments. In the LIGO workflow, a large amount of input

data is involved. There are many parallel tasks in it. In the Cybershake workflow,

fifty percent of the tasks consist of input data. The first set of tasks in a workflow

generate data in parallel. The generated data is used by a directly connected task. There

are many interconnected tasks in MONTAGE workflow. So, it is difficult to maintain

parallelism in it. The workflowsim simulator generates a benchmark for each type of

workflow, with different task numbers as according to the workflow. The comparison

of the results is performed with HEFT and HEFTBUDG algorithms. The results for the

different number of tasks are reported.

5.5.2 Experimental Setup

Workflowsim [123] is used for the simulation of experiments. It supported the workflow

applications for deploying and scheduling workflows. The workflow generator is used

to produce 100 synthetic workflows. Synthetic workflows are obtained from the infor-

mation collected from the actual execution of scientific workflows on the cloud. Once

node number and the type of a desired synthetic workflow is set. The other remaining

characteristics of this workflow are determined automatically, such as average data size

and the edge number. Also, the task calculation and communication costs in this work-

flow are also determined. The process of determination involves the calculation of the

cost of task and cost of communications between tasks [174]. The configuration setting

is depicted in Table 5.4.

104

Table 5.4: Configuration setup for the experiment

Parameter Value

No. of virtual machines 5-20

Memory Capacity 512 MB

Processing capacity 1000 MIPS

Network Bandwidth 15 MB/s

Application Model

The real world workflows are used [173] i.e Montage, SIPHT, LIGO, Epigenomics and

Cybershake. These workflows are widely used to evaluate scheduling algorithms per-

formance. The DAG features of these workflows include a number of edges and nodes,

average data size and execution time of tasks. The structures of these five workflow ap-

plications are illustrated in Figure 5.3 for Montage, Figure 5.4 for CyberShake, Figure

5.5 for Epigenomics 5.7 and Figure 5.6 of SIPHT scientific processes. The workflows

with a different number of tasks are selected for the experiment.

Figure 5.3: A simplified display of the Montage workflow [3].

105

Figure 5.4: A simplified display of Cybershake Workflow [3].

Figure 5.5: A simplified display of Epigenomics workflow [3].

Figure 5.6: A simplified display of the SIPHT workflow [6]

106

Figure 5.7: A simplified display of LIGO workflow [3]

Resource Model

A cloud model is considered with a data center and different types of VM. The charac-

teristics of VM are modeled similarly as Amazon EC2 instances. The charging period

considered for VMs is 60 minutes, as most of the cloud providers. Amazon EC2’s

pricing scheme is considered as a pricing model because of its widespread use. The

on-demand instance of Amazon EC2 with purchasing option is used [175].

Comparative Algorithms

DPO-HEFT is compared with the algorithms described below:

• HEFT: The Heterogeneous Earliest Finish Time heuristic (HEFT) [156] is the

most used algorithm for scheduling workflows with shorter makespan but it ex-

hibits certain limitations.

• HEFTBUDG: This algorithm assigns the priorities to the tasks based on the bud-

get allocated per task and then assigns VMs according to the priorities [176].

5.5.3 Results and Discussion

The budget is taken as user input. The limit is set to the budget. The minimum value

of the budget is set to 5 virtual machines and maximum budget value is 20 virtual

machines. The assumption considered is the maximum number of virtual machines that

107

a user can access is 20 and the minimum is 5 virtual machines. The makespan of each

algorithm is calculated for different workflow applications. Five types of workflows

are used to perform the experiments instantiated with a different number of tasks. The

results for each scientific workflow application is represented in Figure 5.8, Figure 5.9,

Figure 5.10, Figure 5.11 and Figure 5.12.

• Montage Workflow : Table 5.5 represents the execution time for Montage work-

flow using HEFT, HEFTBUDG and DPO-HEFT with varying budget and number

of tasks as 25, 50, 100 and 1000. It is depicted from the Table 5.5 that for 25 tasks

with the minimum budget the execution time of HEFT and HEFTBUDG is 123.8

seconds, 116.8 seconds respectively while DPO-HEFT completes the execution

in 103.79 seconds. Similarly, considering the case with 1000 tasks and 0.75 bud-

get, DPO-HEFT completes the execution in 1920.6 seconds while HEFT and

HEFTBUDG complete the execution in 1941.56 seconds and 1928.41 seconds

respectively. Hence, DPO-HEFT performs much better than other benchmark-

ing algorithms with minimum time for execution. The number of tasks involved

in workflow does not impact the results but the difference in execution time is

higher in a small number of tasks in comparison to the larger number of tasks.

The execution time results for Montage workflow analyzed from Figure 5.8.

Table 5.5: Execution time for Montage Workflow

Number

of tasks

Budget:

0.25

Budget:

0.5

Budget:

0.75

Budget:

1.0

DPO-HEFT 25 103.79 85.72 73.55 54.73

HEFT 25 123.8 114.03 92.63 73.06

HEFTBUDG 25 116.8 98.6 82.5 63.08

DPO-HEFT 50 222.32 154.4 109.77 91.32

HEFT 50 286.12 175.89 130.11 120.05

HEFTBUDG 50 270.45 160.12 118.1 98.65

DPO-HEFT 100 360.54 303.87 202.33 189.45

HEFT 100 380.98 322.14 224.8 208.19

HEFTBUDG 100 375.3 312.2 215.78 196.25

DPO-HEFT 1000 3434.33 2707.92 1920.6 1554.12

HEFT 1000 3454.25 2725.92 1941.56 1601.21

HEFTBUDG 1000 3421.68 2718.1 1928.41 1573.54

108

0

20

40

60

80

100

120

140

0.25 0.5 0.75 1

M
a

ke
sp

a
n

Budget

Makespan Time for Montage Workflow (25 tasks)

DPO-HEFT(Proposed) HEFT HEFTBUDG

(a)

0

50

100

150

200

250

300

350

0.25 0.5 0.75 1

M
a

ke
sp

a
n

Budget

Makespan Time for Montage Workflow (50 tasks)

DPO-HEFT(Proposed) HEFT HEFTBUDG

(b)

0

50

100

150

200

250

300

350

400

450

0.25 0.5 0.75 1

M
ak

e
sp

a
n

Budget

Makespan Time for Montage Workflow (100 tasks)

DPO-HEFT(Proposed) HEFT HEFTBUDG

(c)

0

500

1000

1500

2000

2500

3000

3500

4000

0.25 0.5 0.75 1

M
ak

es
p

an

Budget

Makespan Time for Montage Workflow (1000 tasks)

DPO-HEFT(Proposed) HEFT HEFTBUDG

(d)

Figure 5.8: Makespan Time of Montage workflow with 25, 50, 100 and 1000 tasks

• Cybershake : The Table 5.6 represents the execution time for Cybershake work-

flow using HEFT, HEFTBUDG and DPO-HEFT with varying budget and number

of tasks as 25, 50, 100 and 1000. It is depicted from the Table 5.6 that for 25 tasks

with the minimum budget the execution time taken by HEFT and HEFTBUDG

is 383.57 seconds, 363.87 seconds respectively while DPO-HEFT completes the

execution in 323.64 seconds. Similarly, considering the case with 1000 tasks and

0.75 budget, DPO-HEFT completes the execution in 2615 seconds while HEFT

and HEFTBUDG complete the execution in 2935 seconds and 2822.5 seconds

respectively. Hence DPO-HEFT performs much better than the other state-of-art

algorithms with minimum time for execution. The number of tasks involved in

workflow does not impact the results but the difference in execution time is higher

in a small number of tasks in comparison to the larger number of tasks. The exe-

cution time results for Cybershake workflow can be analyzed from Figure 5.9.

109

Table 5.6: Execution Time for Cybershake Workflow

No. of tasks Budget: 0.25 Budget: 0.5 Budget: 0.75 Budget: 1

DPO-HEFT 25 323.64 288.03 270.76 262.5

HEFT 25 383.57 307.12 282.57 283.4

HEFTBUDG 25 363.87 299.14 278.45 271.2

DPO-HEFT 50 705.63 393.13 330.99 303

HEFT 50 737.56 432.57 360.98 325.4

HEFTBUDG 50 725.12 410.11 345.51 315.5

DPO-HEFT 100 1741.45 634.5 481.89 440.3

HEFT 100 1801.58 686.37 548.12 487.28

HEFTBUDG 100 1765.15 656.48 503.21 466.57

DPO-HEFT 1000 5354.44 3743.97 2615 2281.07

HEFT 1000 5675.54 3962.14 2935 2599.2

HEFTBUDG 1000 5570.4 3852.5 2822.5 2489.3

0

50

100

150

200

250

300

350

400

450

0.25 0.5 0.75 1

M
a

ke
sp

an

Budget

Makespan Time of Cybershake Workflow (30 tasks)

DPO-HEFT(Proposed) HEFT HEFTBUDG

(a)

0

100

200

300

400

500

600

700

800

0.25 0.5 0.75 1

M
ak

e
sp

an

Budget

Makespan Time of Cybershake Workflow (50 tasks)

DPO-HEFT(Proposed) HEFT HEFTBUDG

(b)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.25 0.5 0.75 1

M
ak

e
sp

an

Budget

Makespan Time of Cybershake Workflow (100 tasks)

DPO-HEFT(Proposed) HEFT HEFTBUDG

(c)

0

1000

2000

3000

4000

5000

6000

0.25 0.5 0.75 1

M
ak

e
sp

an

Budget

Makespan Time of Cyershake Workflow (1000 tasks)

DPO-HEFT(Proposed) HEFT HEFTBUDG

(d)

Figure 5.9: Makespan Time of Cybershake workflow with 30, 50, 100 and 1000 tasks

110

• Epigenomics : The Table 5.7 represents the execution time for Epigenomics

workflow using HEFT, HEFTBUDG and DPO-HEFT with varying budget and

number of tasks as 24, 46, 100 and 1000. It is depicted from the Table 5.7

that for 24 tasks with the minimum budget the execution time taken by HEFT

and HEFTBUDG is 10424.21 seconds, 9813.5 seconds respectively while DPO-

HEFT completes the execution in 9403.89 seconds. Similarly, considering the

case with 997 tasks and 0.75 budget, DPO-HEFT completes the execution in

1716287.99 seconds while HEFT and HEFTBUDG complete the execution in

1916306.54 seconds and 1816294.53 seconds respectively. Hence DPO-HEFT

performs much better than the other state-of-art algorithms with minimum time

for execution. The number of tasks involved in workflow does not impact the

results but the difference in execution time is higher in a small number of tasks

in comparison to a larger number of tasks. The execution time results for Epige-

nomics workflow can be analyzed from Figure 5.10.

Table 5.7: Execution Time for Epigenomics Workflow

Number of

tasks

Budget : 0.25 Budget : 0.5 Budget : 0.75 Budget : 1

DPO-HEFT 24 9403.89 7608.45 5806.6 5585.93

HEFT 24 10424.21 8027.14 6525.9 5903.79

HEFTBUDG 24 9813.5 7817.8 6217.23 5792.57

DPO-HEFT 46 27578.87 15677.9 7927 7737.92

HEFT 46 31597.57 17696.14 9047.98 8656.21

HEFTBUDG 46 29582.5 16666.31 8839.41 8449.78

DPO-HEFT 100 150154.2 122402.4 82951.06 67904.16

HEFT 100 160175.61 129420.34 88977.27 73922.3

HEFTBUDG 100 152965.43 126413.89 85966.89 70915.84

DPO-HEFT 997 2023852.36 1844564.02 1716287.99 1548963.73

HEFT 997 2423873.15 2044583.21 1916306.54 1748982.4

HEFTBUDG 997 2223860.58 1944572.41 1816294.53 1648992.21

• LIGO : The Table 5.8 represents the execution time for LIGO workflow using

HEFT, HEFTBUDG and DPO-HEFT with varying budget and number of tasks as

30, 50, 100 and 1000. It is depicted from the Table 5.8 that for 30 tasks with the

111

0

2000

4000

6000

8000

10000

12000

0.25 0.5 0.75 1

M
a

k
e

sp
a

n

Budget

Makespan Time of Epigenomics Workflow (24 tasks)

DPO-HEFT(Proposed) HEFT HEFTBUDG

(a)

0

5000

10000

15000

20000

25000

30000

35000

0.25 0.5 0.75 1

M
a

k
e

sp
an

Budget

Makespan Time of Epigenomics Workflow (46 tasks)

DPO-HEFT(Proposed) HEFT HEFTBUDG

(b)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0.25 0.5 0.75 1

M
ak

e
sp

an

Budget

Makespan Time of Epigenomics Workflow (100 tasks)

DPO-HEFT(Proposed) HEFT HEFTBUDG

(c)

0

500000

1000000

1500000

2000000

2500000

3000000

0.25 0.5 0.75 1

M
ak

e
sp

an

Budget

Makespan Time of Epigenomics Workflow (997 tasks)

DPO-HEFT(Proposed) HEFT HEFTBUDG

(d)

Figure 5.10: Makespan Time of Epigenomics workflow with 24, 46, 100 and 997 tasks

minimum budget, the execution time taken by HEFT and HEFTBUDG is 3458.96

seconds, 3144.51 seconds respectively while DPO-HEFT completes the execu-

tion in 2837.52 seconds. Similarly, considering the case with 1000 tasks and 0.75

budget, DPO-HEFT completes the execution in 98336.44 seconds while HEFT

and HEFTBUDG complete the execution in 92567.74 seconds and 88055.87 sec-

onds respectively. Hence, DPO-HEFT performs better than existing algorithms

with minimum time for execution. The number of tasks involved in workflow

does not impact the results but the difference in execution time is higher in a

small number of tasks in comparison to a larger number of tasks. The execution

time results for LIGO workflow can be analyzed from Figure 5.11.

• SIPHT: The Table 5.9 represents the execution time for SIPHT workflow using

HEFT, HEFTBUDG and DPO-HEFT with varying budget and number of tasks

as 30, 60, 100 and 1000.

112

Table 5.8: Execution Time for LIGO Workflow

No. of tasks Budget: 0.25 Budget: 0.5 Budget: 0.75 Budget: 1

DPO-HEFT 30 2837.52 2100.58 1614.27 1461.22

HEFT 30 3458.96 2529.65 1933.74 1683.41

HEFTBUDG 30 3144.51 2218.74 1721.45 1572.54

DPO-HEFT 50 4821.6 2780.93 2121.65 1692.87

HEFT 50 5342.31 3205.54 2642.82 2013.87

HEFTBUDG 50 5033.57 3091.02 2394.81 1802.08

DPO-HEFT 100 9463.91 6962.74 6372.76 4236.44

HEFT 100 10282.5 7582.45 6994.52 4853.71

HEFTBUDG 100 9874.21 7270.95 6581.41 4445.77

DPO-HEFT 1000 142064.65 109661.45 98336.44 84041.83

HEFT 1000 164094.67 129383.41 113367.54 92567.74

HEFTBUDG 1000 148064.42 119673.43 101355.62 88055.87

0

500

1000

1500

2000

2500

3000

3500

4000

0.25 0.5 0.75 1

M
a

ke
sp

an

Budget

Makespan Time of LIGO Workflow (30 tasks)

DPO-HEFT(Proposed) HEFT HEFTBUDG

(a)

0

1000

2000

3000

4000

5000

6000

0.25 0.5 0.75 1

M
ak

e
sp

an

Budget

Makespan Time of LIGO Workflow (50 tasks)

DPO-HEFT(Proposed) HEFT HEFTBUDG

(b)

0

2000

4000

6000

8000

10000

12000

0.25 0.5 0.75 1

M
ak

e
sp

an

Budget

Makespan Time of LIGO Workflow (100 tasks)

DPO-HEFT(Proposed) HEFT HEFTBUDG

(c)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0.25 0.5 0.75 1

M
ak

e
sp

an

Budget

Makespan Time of LIGO Workflow (1000 tasks)

DPO-HEFT(Proposed) HEFT HEFTBUDG

(d)

Figure 5.11: Makespan Time of LIGO workflow with 30, 50, 100 and 1000 tasks

113

It is depicted from the Table 5.9 that for 30 tasks with the minimum budget the

execution time taken by HEFT and HEFTBUDG is 4514.57 seconds, 4505.21

seconds respectively while DPO-HEFT completes the execution in 4492.28 sec-

onds. Similarly, considering the case with 1000 tasks and 0.75 budget, DPO-

HEFT completes the execution in 28263.89 seconds while HEFT and HEFT-

BUDG complete the execution in 32324.96 seconds and 30364.71 seconds re-

spectively. Hence DPO-HEFT performs much better than the other state-of-art

algorithms with minimum time for execution. The number of tasks involved in

workflow does not impact the results but the difference in execution time is higher

in a small number of tasks in comparison to a larger number of tasks. The execu-

tion time results for SIPHT workflow can be analyzed from Figure 5.12.

Table 5.9: Execution Time for SIPHT Workflow

No. of tasks Budget: 0.25 Budget: 0.5 Budget: 0.75 Budget: 1

DPO-HEFT 30 4492.28 4504.61 4498.01 4421.09

HEFT 30 4514.57 4523.89 4517.91 4442.74

HEFTBUDG 30 4505.21 4515.84 4509.58 4431.69

DPO-HEFT 60 5325.77 5207.49 4967.06 4735.73

HEFT 60 5348.93 5228.47 4988.08 4756.38

HEFTBUDG 60 5332.8 5219.91 4976.31 4745.1

DPO-HEFT 100 8121.7 5197.97 5008.16 4511.81

HEFT 100 10112.66 5818.67 5827.44 5032.29

HEFTBUDG 100 9547.53 5714.75 5617.61 4821.77

DPO-HEFT 1000 48640.62 44715.91 28263.89 25744.43

HEFT 1000 51584.71 50586.45 32324.96 30325.79

HEFTBUDG 1000 49685.87 48554.53 30364.71 28664.29

The results depict that in case of any scientific workflow application while fix-

ing the initial budget, DPO-HEFT is performing better than other algorithms in terms

of makespan of the workflow. The schedules available for five workflows Montage,

LIGO, Epigenomics, SIPHT and Cybershake obtained by DPO-HEFT results in mini-

mum makespan, whether the number of tasks is minimum or maximum. The proposed

algorithm DPO-HEFT manages to achieve smaller makespan using fewer VMs in com-

parison to HEFT and HEFTBUDG.

114

4360

4380

4400

4420

4440

4460

4480

4500

4520

4540

0.25 0.5 0.75 1

M
a

ke
sp

a
n

Budget

Makespan Time for SIPHT Workflow (30 tasks)

DPO-HEFT(Proposed) HEFT HEFTBUDG

(a)

4400

4500

4600

4700

4800

4900

5000

5100

5200

5300

5400

0.25 0.5 0.75 1

M
ak

es
p

an

Budget

Makespan Time of SIPHT Workflow (60 tasks)

DPO-HEFT(Proposed) HEFT HEFTBUDG

(b)

0

2000

4000

6000

8000

10000

12000

0.25 0.5 0.75 1

M
ak

e
sp

a
n

Budget

Makespan Time of SIPHT Workflow (100 Tasks)

DPO-HEFT(Proposed) HEFT HEFTBUDG

(c)

0

10000

20000

30000

40000

50000

60000

0.25 0.5 0.75 1

M
a

ke
sp

an

Budget

Makespan Time of SIPHT Workflow (1000 Tasks)

DPO-HEFT(Proposed) HEFT HEFTBUDG

(d)

Figure 5.12: Makespan Time of SIPHT workflow with 30, 60, 100 and 1000 tasks

The structure of the tasks in workflow also affects the makespan of scheduling work-

flow with a budget constraint. As in MONTAGE and CYBERSHAKE workflows, a

large number of initial tasks are involved. For each initial task, the amount of work in-

volves the same magnitude. Due to the nearby structure of a task bag of LIGO, there is

hardly any improvement. The Epigenomics workflow exhibit more makespan in com-

parison to other workflow application due to more parallelization required. Hence, the

type of structure of workflow also impacts the performance.

5.6 Summary

In this chapter, a scheduling algorithm is presented with budget and deadline trade-off

to schedule scientific workflows. This technique contemplates the task clustering and

data placement strategy. These platforms enable multiple types of VMs with different

cost and speed parameters to dynamically enrolled. DPO-HEFT is an extension of the

115

HEFT scheduling algorithm. The proposed algorithm manages to find a solution while

enforcing the prescribed budget and smaller makespan in comparison to the baseline

versions. DPO-HEFT outperforms over HEFTBUDG, HEFT especially for workflows

with a non-trivial interdependence graph. The proposed algorithm achieved a better

makespan and is able to find a better schedule.

116

CHAPTER 6

CONCLUSION AND FUTURE

DIRECTIONS

In this chapter, the research work presented in the thesis is summarized. The contribu-

tions are outlined with future research directions.

6.1 Conclusion and Discussion

In this thesis, the schemes and algorithms for clustering and scheduling scientific work-

flows are explored to meet different functional and quality of service requirements. In

this work, the set of algorithms are designed and implemented to allow scientific work-

flows to be distributed among different cloud data centers in order to meet functional

requirements such as monetary cost, budget and deadline.

Chapter 2 presents an overview of deploying scientific workflow on the cloud.

In the literature review, different task clustering, data placement, and scheduling algo-

rithms are discussed. However, scarcity of research exists that considers planning and

deploying the scientific workflow application in a cloud environment with different QoS

parameters. To bridge this gap, these problems are addressed with different proposed

algorithms.

117

Chapter 3 describes a proposed algorithm for task clustering in scientific work-

flows. The scientific workflows in cloud computing exhibit different kinds of structure.

There is no efficient technique available to consider the structure of the workflow and

perform the execution. In this chapter, the researcher proposed Hybrid Balanced (HYB)

task clustering algorithm for scientific workflows that reduces the makespan of work-

flow execution and thus avoids wastage of resources. The proposed approach merges

the tasks with similar impact factor in the pipeline. An experiment is conducted for

evaluation of the proposed algorithm in comparison to four clustering methods: Hor-

izontal Runtime Balancing (HRB), Horizontal Clustering (HC), Horizontal Distance

Balancing (HDB), and Horizontal Impact Factor Balancing (HIFB). The experiment

aimed to evaluate execution time improvement. The results depict that the proposed

clustering method is able to perform better than the existing clustering algorithms for

scientific workflow. Therefore, it provides the benefit to reduce the scheduling overhead

for different workflow structures.

Chapter 4 proposed an algorithm for the placement of intermediate datasets gen-

erated during the execution of the workflow. Different characteristics of scientific cloud

workflows are evaluated. The data placement technique based on Crow Search Algo-

rithm (CSA) has been designed that automatically allocate the intermediate datasets

between data centers based on the factor of dependency with data centers. Experiments

performed to reveal that the proposed data placement technique reduces the movement

of datasets during workflow execution. The data movements also decrease in spite of

having a certain percentage of fixed location datasets in the workflow.

Chapter 5 proposed Data Placement Oriented Heterogeneous Earliest Finish

Time (DPO-HEFT) algorithm to schedule scientific workflows on Cloud with data

placement and task clustering. Scheduling of scientific workflows on cloud is a cru-

cial activity. DPO-HEFT is an extension of HEFT and is able to find a solution of

deadline and budget constraints while enforcing the prescribed QoS. The makespan for

the scientific workflow is improved by DPO-HEFT in comparison to other state-of-art

algorithms especially for workflows with a non-trivial interdependence graph. The pro-

posed algorithm achieved a better makespan and able to find a better resource for the

workflow task to be executed.

118

All in all, the proposed framework helps the scientists to deploy the scientific work-

flows on cloud in an optimal manner and provide budget and deadline parameters.

6.2 Future Scope

This thesis has investigated the approach for task clustering, data placement and schedul-

ing of scientific workflows in a cloud environment. The developed approaches can be

extended in different ways by other higher level optimization algorithms. The following

sections describe important future directions in this field.

6.2.1 Energy-Efficient Placement and Scheduling

The carbon footprints and a large amount of energy consumption is the major issue

in the cloud data centers. The regular increase in electricity charges also arises the

need to design energy efficient techniques for cloud applications. Scientific workflow

scheduling consumes a large number of resources. Thus a solution needs to provide

which select energy efficient data center on priority for data placement and scheduling.

6.2.2 Replication Management

The replication technique placed the same data sets on more than one data center, this

help to increase the data available on more than one location in time-critical applica-

tions. This technique has the potential to be a future direction for data placement, which

further decreases the movement of data. In the future, the bandwidth of data centers can

also be considered which can further increase the effectiveness of the strategy, the num-

ber of parameters can be added to make strategy cost-effective.

6.2.3 Fault-tolerance and Provenance Management

Scheduling approach can be extended with provenance technique. Cloud infrastruc-

ture allows tasks to be interrupted and re-scheduled. Regular monitoring the health of

schedule task insist to re-schedule the task. This could be possible to terminate the task

on current VM and restart on VM with good performance. Such dynamic decisions

also involve budgetary risks. For example, deriving timeouts from execution is a chal-

lenging issue, but the online design heuristics with maximum likelihood can reduce the

119

final makespan while taking into consideration of initial budget constraint. Fault tol-

erance based scheduling heuristic can be developed to make the execution of scientific

workflow seamless.

6.2.4 Pricing Models

Cloud offers different pricing models such as reserved, on-demand and spot instances.

The reserved instances are taking the fixed resources for a long period e.g. 1 year.

The cloud providers are giving high benefit on this policy. On-demand resources are

scale-up or scale-down the resources at the run-time requirement of the applications.

Spot-instances are the spare capacity form reserved resources. They are much cheaper

as compare to on-demand and reserved resources. The highly cost-efficient planning

algorithms could be designed by mixing the resources with different pricing models.

The cloud providers offer different pricing window such as per hour or per minute.

This mode directly affects the total deployment and running cost of the workflow.

The techniques are required to select the appropriate pricing policy form multi-cloud

providers is another possible future direction.

120

REFERENCES

[1] C. Lin, S. Lu, Z. Lai, A. Chebotko, X. Fei, J. Hua, and F. Fotouhi, “Servic-

Oriented Architecture for VIEW: a Visual Scientific Workflow Management Sys-

tem,” IEEE International Conference, pp. 335–342, 2008.

[2] D. Hollingsworth and U. Hampshire, “Workflow management coalition: The

workflow reference model,” Document Number TC00-1003, vol. 19, 1995.

[3] G. Berriman, A. Laity, J. Good, J. Jacob, D. Katz, E. Deelman, G. Singh, M. Su,

and T. Prince, “Montage: The architecture and scientific applications of a na-

tional virtual observatory service for computing astronomical image mosaics,” in

Proceedings of Earth Sciences Technology Conference, 2006.

[4] R. Graves, T. H. Jordan, S. Callaghan, E. Deelman, E. Field, G. Juve, C. Kessel-

man, P. Maechling, G. Mehta, K. Milner, et al., “Cybershake: a physics-based

seismic hazard model for southern california,” Pure and Applied Geophysics,

vol. 168, no. 3-4, pp. 367–381, 2011.

[5] G. Juve and E. Deelman, “Scientific workflows in the cloud,” in Grids, clouds

and virtualization, pp. 71–91, Springer, 2011.

[6] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi, “Char-

acterizing and profiling scientific workflows,” Future Generation Computer Sys-

tems, vol. 29, no. 3, pp. 682–692, 2013.

121

[7] A. Abramovici, W. E. Althouse, R. W. Drever, Y. Gürsel, S. Kawamura, F. J.

Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, et al., “Ligo: The

laser interferometer gravitational-wave observatory,” Science, vol. 256, no. 5055,

pp. 325–333, 1992.

[8] X. Liu and A. Datta, “Towards intelligent data placement for scientific work-

flows in collaborative cloud environment,” in Parallel and Distributed Process-

ing Workshops and Phd Forum (IPDPSW), 2011 IEEE International Symposium

on, pp. 1052–1061, IEEE, 2011.

[9] F. International and J. Conference, “2009 Fifth International Joint Conference on

INC , IMS and IDC,” pp. 44–51, 2009.

[10] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid comput-

ing 360-degree compared,” Grid Computing Environments Workshop 2008 (GCE

’08), pp. 1–10, 2008.

[11] N. Sclater, “elearning in the cloud,” International Journal of Virtual and Personal

Learning Environments (IJVPLE), vol. 1, no. 1, pp. 10–19, 2010.

[12] K. Keahey, P. Armstrong, J. Bresnahan, D. LaBissoniere, and P. Riteau, “Infras-

tructure outsourcing in multi-cloud environment,” in Proceedings of the 2012

workshop on Cloud services, federation, and the 8th open cirrus summit, pp. 33–

38, ACM, 2012.

[13] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break in

the clouds,” ACM SIGCOMM Computer Communication Review, vol. 39, no. 1,

p. 50, 2008.

[14] D. Hollingsworth, “Workflow Management Coalition The Workflow Reference

Model,” no. 1, pp. 1–55, 1995.

[15] L. Ramakrishnan and B. Plale, “A multi-dimensional classification model for sci-

entific workflow characteristics,” Proceedings of the 1st International Workshop

on Workflow Approaches to New Data-centric Science - Wands ’10, pp. 1–12,

2010.

122

[16] WfMC, “Workflow Management Coalition Terminology {&} Glossary,” Man-

agement, vol. 39, no. 3, pp. 1–65, 1999.

[17] E. Deelman, G. Singh, M.-h. Su, J. Blythe, Y. Gil, C. Kesselman, G. B. Berriman,

J. Good, A. Laity, J. C. Jacob, D. S. Katz, a. Gil, G. Mehta, and K. Vahi, “Pe-

gasus: a framework for mapping complex scientific workflows onto distributed

systems,” Scientific Programming Journal, vol. 13, no. January, pp. 219–237,

2005.

[18] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. R. Pocock, P. Li, and T. Oinn,

“Taverna: A tool for building and running workflows of services,” Nucleic Acids

Research, vol. 34, no. WEB. SERV. ISS., pp. 729–732, 2006.

[19] D. Warneke and O. Kao, “Nephele: Efficient Parallel Data Processing in the

Cloud,” Proceedings of the 2nd Workshop on ManyTask Computing on Grids

and Supercomputers MTAGS 09 November 2009 Portland OR USA, pp. 1–10,

2009.

[20] P. Bientinesi, R. Iakymchuk, and J. Napper, “Handbook of Cloud Computing

(2010),” Handbook of Cloud Computing, pp. 493–516, 2010.

[21] D. De Oliveira, E. Ogasawara, F. Baiao, and M. Mattoso, “SciCumulus: A

lightweigh cloud middleware to explore many task computing paradigm in sci-

entific workflows,” Proceedings - 2010 IEEE 3rd International Conference on

Cloud Computing, CLOUD 2010, pp. 378–385, 2010.

[22] D. Oliveira, “Similarity-based Workflow Clustering,” no. July 2016, 2010.

[23] Y. Wei, K. Sukumar, C. Vecchiola, D. Karunamoorthy, and R. Buyya, “Chapter

27 Aneka Cloud Application Platform and Its Integration with Windows Azure,”

pp. 1–30.

[24] W. Chen, M. Rey, and M. Rey, “Fault Tolerant Clustering in Scientific Work-

flows,” 2012.

[25] W. Chen, R. Ferreira, E. Deelman, and R. Sakellariou, “Balanced Task Clustering

in Scientific Workflows,” pp. 1–8, 2013.

123

[26] W. Liu, S. Peng, W. Du, and W. Wang, “Security-aware intermediate data place-

ment strategy in scientific cloud workflows,” 2014.

[27] X. Li, Y. Wu, F. Ma, E. Zhu, F. Wang, L. Wu, and Y. Yang, “A New Particle

Swarm Optimization-Based Strategy for Cost-Effective Data Placement in Sci-

entific,” pp. 115–120, 2014.

[28] M. M. Zhu and C. Q. Wu, “Energy-Efficient Resource Management for Scientific

Workflows in Clouds,” pp. 402–409, 2014.

[29] E. Le Sueur and G. Heiser, “Dynamic voltage and frequency scaling: The laws

of diminishing returns,” in Proceedings of the 2010 international conference on

Power aware computing and systems, pp. 1–8, 2010.

[30] D. Andresen, T. Yang, V. Holmedahl, and O. H. Ibarra, “Sweb: Towards a scal-

able world wide web server on multicomputers,” in Parallel Processing Sym-

posium, 1996., Proceedings of IPPS’96, The 10th International, pp. 850–856,

IEEE, 1996.

[31] J. Wang, P. Korambath, I. Altintas, J. Davis, and D. Crawl, “Workflow as a Ser-

vice in the cloud: Architecture and scheduling algorithms,” Procedia Computer

Science, vol. 29, pp. 546–556, 2014.

[32] W. Chen, R. Ferreira, E. Deelman, and R. Sakellariou, “Using imbalance metrics

to optimize task clustering in scientific workflow executions,” Future Generation

Computer Systems, vol. 46, pp. 69–84, 2015.

[33] J. Sahni and D. P. Vidyarthi, “Workflow-and-Platform Aware task clustering for

scientific workflow execution in Cloud environment,” 2016.

[34] Z. Zhou, Z. Cheng, L.-j. Zhang, W. Gaaloul, and K. Ning, “Scientific Work-

flow Clustering and Recommendation Leveraging Layer Hierarchical Analysis,”

vol. X, no. X, pp. 1–14, 2016.

[35] Q. Zhao, C. Xiong, and P. Wang, “Heuristic data placement for data-intensive

applications in heterogeneous cloud,” Journal of Electrical and Computer Engi-

neering, vol. 2016, 2016.

124

[36] T. Wang, S. Yao, Z. Xu, and S. Jia, “Dccp: an effective data placement strategy

for data-intensive computations in distributed cloud computing systems,” The

Journal of Supercomputing, vol. 72, no. 7, pp. 2537–2564, 2016.

[37] T. Kosar and M. Livny, “A framework for reliable and efficient data placement in

distributed computing systems,” Journal of Parallel and Distributed Computing,

vol. 65, no. 10, pp. 1146–1157, 2005.

[38] S. Doraimani and A. Iamnitchi, “File grouping for scientific data management:

lessons from experimenting with real traces,” in Proceedings of the 17th inter-

national symposium on High performance distributed computing, pp. 153–164,

ACM, 2008.

[39] G. Fedak, H. He, and F. Cappello, “Bitdew: a programmable environment for

large-scale data management and distribution,” in High Performance Computing,

Networking, Storage and Analysis, 2008. SC 2008. International Conference for,

pp. 1–12, IEEE, 2008.

[40] D. Yuan, Y. Yang, X. Liu, and J. Chen, “A data placement strategy in scien-

tific cloud workflows,” Future Generation Computer Systems, vol. 26, no. 8,

pp. 1200–1214, 2010.

[41] Z. Er-Dun, Q. Yong-Qiang, X. Xing-Xing, and C. Yi, “A data placement strategy

based on genetic algorithm for scientific workflows,” in Computational Intelli-

gence and Security (CIS), 2012 Eighth International Conference on, pp. 146–

149, IEEE, 2012.

[42] W. Guo and X. Wang, “A data placement strategy based on genetic algorithm in

cloud computing platform,” in Web Information System and Application Confer-

ence (WISA), 2013 10th, pp. 369–372, IEEE, 2013.

[43] P. Zheng, L.-Z. Cui, H.-Y. Wang, and M. Xu, “A data placement strategy for

data-intensive applications in cloud,” Jisuanji Xuebao(Chinese Journal of Com-

puters), vol. 33, no. 8, pp. 1472–1480, 2010.

[44] T. Back, Evolutionary algorithms in theory and practice: evolution strategies,

evolutionary programming, genetic algorithms. Oxford university press, 1996.

125

[45] M. Mitchell, An introduction to genetic algorithms. MIT press, 1998.

[46] M. Poess and R. O. Nambiar, “Tuning servers, storage and database for energy

efficient data warehouses,” in Data Engineering (ICDE), 2010 IEEE 26th Inter-

national Conference on, pp. 1006–1017, IEEE, 2010.

[47] A. Beckmann, U. Meyer, P. Sanders, and J. Singler, “Energy-efficient sorting

using solid state disks,” Sustainable Computing: Informatics and Systems, vol. 1,

no. 2, pp. 151–163, 2011.

[48] L. Rao, X. Liu, L. Xie, and W. Liu, “Minimizing electricity cost: Optimization

of distributed internet data centers in a multi-electricity-market environment,” in

INFOCOM, 2010 Proceedings IEEE, pp. 1–9, IEEE, 2010.

[49] W. Lang and J. Patel, “Towards eco-friendly database management systems,”

arXiv preprint arXiv:0909.1767, 2009.

[50] E. M. Elnozahy, M. Kistler, and R. Rajamony, “Energy-efficient server clusters,”

in International Workshop on Power-Aware Computer Systems, pp. 179–197,

Springer, 2002.

[51] Y. Xiao, J. Wang, Y. Li, and H. Gao, “An energy-efficient data placement al-

gorithm and node scheduling strategies in cloud computing systems,” in Proc.

of the 2nd Int’l Conf. on Advances in Computer Science and Engineering (CSE

2013). Paris: Atlantis Press, vol. 63, 2013.

[52] E. Pinheiro and R. Bianchini, “Energy conservation techniques for disk array-

based servers,” in ACM International Conference on Supercomputing 25th An-

niversary Volume, pp. 369–379, ACM, 2014.

[53] N. Maheshwari, R. Nanduri, and V. Varma, “Dynamic energy efficient data place-

ment and cluster reconfiguration algorithm for mapreduce framework,” Future

Generation Computer Systems, vol. 28, no. 1, pp. 119–127, 2012.

[54] B. Li, J. Li, J. Huai, T. Wo, Q. Li, and L. Zhong, “Enacloud: An energy-

saving application live placement approach for cloud computing environments,”

in Cloud Computing, 2009. CLOUD’09. IEEE International Conference on,

pp. 17–24, IEEE, 2009.

126

[55] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource allocation

heuristics for efficient management of data centers for cloud computing,” Future

generation computer systems, vol. 28, no. 5, pp. 755–768, 2012.

[56] P.-Y. Yin, S.-S. Yu, P.-P. Wang, and Y.-T. Wang, “A hybrid particle swarm op-

timization algorithm for optimal task assignment in distributed systems,” Com-

puter Standards & Interfaces, vol. 28, no. 4, pp. 441–450, 2006.

[57] L. Guo, Z. He, S. Zhao, N. Zhang, J. Wang, and C. Jiang, “Multi-objective

optimization for data placement strategy in cloud computing,” in International

Conference on Information Computing and Applications, pp. 119–126, Springer,

2012.

[58] X. Li, Y. Wu, F. Ma, E. Zhu, F. Wang, L. Wu, and Y. Yang, “A new particle swarm

optimization-based strategy for cost-effective data placement in scientific cloud

workflows,” in Future Information Technology, pp. 115–120, Springer, 2014.

[59] L. Guo, S. Zhao, S. Shen, and C. Jiang, “Task scheduling optimization in cloud

computing based on heuristic algorithm.,” JNW, vol. 7, no. 3, pp. 547–553, 2012.

[60] J. M. Cope, N. Trebon, H. M. Tufo, and P. Beckman, “Robust data placement

in urgent computing environments,” in Parallel & Distributed Processing, 2009.

IPDPS 2009. IEEE International Symposium on, pp. 1–13, IEEE, 2009.

[61] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A particle swarm optimization-

based heuristic for scheduling workflow applications in cloud computing envi-

ronments,” in Advanced information networking and applications (AINA), 2010

24th IEEE international conference on, pp. 400–407, IEEE, 2010.

[62] W. Liu, S. Peng, W. Du, W. Wang, and G. S. Zeng, “Security-aware intermediate

data placement strategy in scientific cloud workflows,” Knowledge and informa-

tion systems, vol. 41, no. 2, pp. 423–447, 2014.

[63] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H. Bhogan, “Volley:

Automated data placement for geo-distributed cloud services.,” in NSDI, vol. 10,

pp. 28–0, 2010.

127

[64] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey, D. Shakib, S. Weaver, and

J. Zhou, “Scope: easy and efficient parallel processing of massive data sets,”

Proceedings of the VLDB Endowment, vol. 1, no. 2, pp. 1265–1276, 2008.

[65] Ü. V. Çatalyürek, K. Kaya, and B. Uçar, “Integrated data placement and task

assignment for scientific workflows in clouds,” in Proceedings of the fourth in-

ternational workshop on Data-intensive distributed computing, pp. 45–54, ACM,

2011.

[66] Ü. Çatalyürek and C. Aykanat, “Patoh (partitioning tool for hypergraphs),” in

Encyclopedia of Parallel Computing, pp. 1479–1487, Springer, 2011.

[67] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for improving net-

work partitions,” in Papers on Twenty-five years of electronic design automation,

pp. 241–247, ACM, 1988.

[68] S. Pandey, K. K. Gupta, A. Barker, and R. Buyya, “Minimizing cost when using

globally distributed cloud services: A case study in analysis of intrusion detec-

tion workflow application,” Cloud Computing and Distributed Systems Labora-

tory, The University of Melbourne, Australia, Melbourne, Australia, Tech. Rep,

2009.

[69] A. Kaur and P. Gupta, “A data placement strategy based on crow search algorithm

in cloud computing,” Recent Patents on Computer Science, vol. 12, 2019.

[70] Q. Li, K. Wang, S. Wei, X. Han, L. Xu, and M. Gao, “A data placement strat-

egy based on clustering and consistent hashing algorithm in cloud computing,”

in Communications and Networking in China (CHINACOM), 2014 9th Interna-

tional Conference on, pp. 478–483, IEEE, 2014.

[71] Z. Chedrawy and S. S. R. Abidi, “An intelligent knowledge sharing strategy fea-

turing item-based collaborative filtering and case based reasoning,” in Intelligent

Systems Design and Applications, 2005. ISDA’05. Proceedings. 5th International

Conference on, pp. 67–72, IEEE, 2005.

128

[72] S. Bharathi and A. Chervenak, “Scheduling data-intensive workflows on stor-

age constrained resources,” in Proceedings of the 4th Workshop on Workflows in

Support of Large-Scale Science, p. 3, ACM, 2009.

[73] Q. Wei, B. Veeravalli, B. Gong, L. Zeng, and D. Feng, “Cdrm: A cost-effective

dynamic replication management scheme for cloud storage cluster,” in Cluster

Computing (CLUSTER), 2010 IEEE International Conference on, pp. 188–196,

IEEE, 2010.

[74] Y. Ye, L. Xiao, I.-L. Yen, and F. Bastani, “Cloud storage design based on hybrid

of replication and data partitioning,” in Parallel and Distributed Systems (IC-

PADS), 2010 IEEE 16th International Conference on, pp. 415–422, IEEE, 2010.

[75] J. Myint and T. T. Naing, “A data placement algorithm with binary weighted

tree on pc cluster-based cloud storage system,” in Cloud and Service Computing

(CSC), 2011 International Conference on, pp. 315–320, IEEE, 2011.

[76] X. Huang, Y. X. Peng, and P. F. You, “Data placement and query for cloud

computing based on myheawood network,” in Applied Mechanics and Materi-

als, vol. 543, pp. 3100–3104, Trans Tech Publ, 2014.

[77] S. Pandey and R. Buyya, “Scheduling workflow applications based on multi-

source parallel data retrieval in distributed computing networks,” The Computer

Journal, vol. 55, no. 11, pp. 1288–1308, 2012.

[78] I. Casas, J. Taheri, R. Ranjan, L. Wang, and A. Y. Zomaya, “A balanced sched-

uler with data reuse and replication for scientific workflows in cloud computing

systems,” Future Generation Computer Systems, 2016.

[79] D.-K. Kang, S.-H. Kim, C.-H. Youn, and M. Chen, “Cost adaptive workflow

scheduling in cloud computing,” Proceedings of the 8th International Conference

on Ubiquitous Information Management and Communication, pp. 1–8, 2014.

[80] M. A. Rodriguez and R. Buyya, “Deadline Based Resource Provisioning and

Scheduling Algorithm for Scientific Workflows on Clouds,”

129

[81] Y. Shi and R. C. Eberhart, “Empirical study of particle swarm optimization,” in

Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress

on, vol. 3, IEEE, 1999.

[82] S.-C. Tai, C. Lai, and Y.-C. Lin, “Two fast nearest neighbor searching algorithms

for image vector quantization,” Communications, IEEE Transactions on, vol. 44,

no. 12, pp. 1623–1628, 1996.

[83] L. Singh and S. Singh, “A survey of workflow scheduling algorithms and research

issues,” International Journal of Computer Applications, vol. 74, no. 15, 2013.

[84] X. Li, J. Song, and B. Huang, “A scientific workflow management system archi-

tecture and its scheduling based on cloud service platform for manufacturing big

data analytics,” The International Journal of Advanced Manufacturing Technol-

ogy, 2015.

[85] C. Q. Wu, X. Lin, D. Yu, W. Xu, and L. Li, “End-to-End Delay Minimization for

Scientific Workflows in Clouds under Budget Constraint,”

[86] Q. Zhao, C. Xiong, and P. Wang, “Heuristic Data Placement for Data-Intensive

Applications in Heterogeneous Cloud,” vol. 2016, 2016.

[87] P. Bryk, M. Malawski, and G. Juve, “Storage-aware Algorithms for Scheduling

of Workflow Ensembles in Clouds,” Journal of Grid Computing, pp. 359–378,

2016.

[88] M. Ebrahimi, A. Mohan, S. Lu, and A. Kashlev, “BDAP : A Big Data Placement

Strategy for Cloud- Based Scientific Workflows,”

[89] I. Casas, J. Taheri, R. Ranjan, L. Wang, and A. Y. Zomaya, “A balanced sched-

uler with data reuse and replication for scientific workflows in cloud computing

systems,” Future Generation Computer Systems, 2016.

[90] Z. Li, J. Ge, H. Yang, L. Huang, H. Hu, H. Hu, and B. Luo, “A security and

cost aware scheduling algorithm for heterogeneous tasks of scientific workflow

in clouds,” Future Generation Computer Systems, 2016.

130

[91] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A.

Lee, J. Tao, and Y. Zhao, “Scientific workflow management and the kepler sys-

tem,” Concurrency and Computation: Practice and Experience, vol. 18, no. 10,

pp. 1039–1065, 2006.

[92] E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Workflows and e-science:

An overview of workflow system features and capabilities,” Future Generation

Computer Systems, vol. 25, no. 5, pp. 528–540, 2009.

[93] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman, and

J. Good, “On the use of cloud computing for scientific workflows,” in 2008 IEEE

fourth international conference on eScience, pp. 640–645, IEEE, 2008.

[94] S. Ostermann, K. Plankensteiner, D. Bodner, G. Kraler, and R. Prodan, “Integra-

tion of an event-based simulation framework into a scientific workflow execution

environment for grids and clouds,” in European Conference on a Service-Based

Internet, pp. 1–13, Springer, 2011.

[95] S. Callaghan, P. Maechling, P. Small, K. Milner, G. Juve, T. Jordan, E. Deel-

man, G. Mehta, K. Vahi, D. Gunter, K. Beattie, and C. X. Brooks, “Metrics for

heterogeneous scientific workflows: A case study of an earthquake science ap-

plication,” International Journal of High Performance Computing Applications,

vol. 25, no. 3, pp. 274–285, 2011.

[96] R. Mats, G. Juve, K. Vahi, S. Callaghan, G. Mehta, and P. J. M. andEwa Deel-

man, “Enabling large-scale scientific workflows on petascale resources using mpi

master/worker,” in Proceedings of the 1st conference of the Extreme Science and

Engineering Discovery Environment, July 2012.

[97] “The TeraGrid Project.” http://www.teragrid.org.

[98] E. Deelman, C. Kesselman, G. Mehta, L. Meshkat, L. Pearlman, K. Blackburn,

P. Ehrens, A. Lazzarini, R. Williams, and S. Koranda, “GriPhyN and LIGO:

building a virtual data grid for gravitational wave scientists,” in 11th IEEE Inter-

national Symposium on High Performance Distributed Computing (HPDC ’02),

2002.

131

http://www.teragrid.org

[99] S. Kalayci, G. Dasgupta, L. Fong, O. Ezenwoye, , and S. Sadjadi, “Distributed

and adaptive execution of condor dagman workflows,” in Proceedings of the 22nd

International Conference on Software Engineering and Knowledge Engineering

(SEKE’2010), July 2010.

[100] G. Singh, M. Su, K. Vahi, E. Deelman, B. Berriman, J. Good, D. S. Katz, and

G. Mehta, “Workflow task clustering for best effort systems with pegasus,” in

15th ACM Mardi Gras Conference, 2008.

[101] M. Hussin, Y. C. Lee, and A. Y. Zomaya, “Dynamic job-clustering with dif-

ferent computing priorities for computational resource allocation,” in The 10th

IEEE/ACM International Conference on Cluster, Cloud and Grid Computing,

May 2010.

[102] H. Zhao and X. Li, “Efficient grid task-bundle allocation using bargaining based

self-adaptive auction,” in The 9th IEEE/ACM International Conference on Clus-

ter, Cloud and Grid Computing, May 2009.

[103] S. P. Singh, A. Nayyar, R. Kumar, and A. Sharma, “Fog computing: from archi-

tecture to edge computing and big data processing,” The Journal of Supercom-

puting, pp. 1–36, 2018.

[104] L. Tomas, B. Caminero, and C. Carrion, “Improving grid resource usage: Metrics

for measuring fragmentation,” in 12th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing (CCGrid ’12), pp. 352–359, 2012.

[105] X. Zhang, Y. Qu, and L. Xiao, “Improving distributed workload performance

by sharing both cpu and memory resources,” in Proceedings of 20th Interna-

tional Conference on Distributed Computing Systems, (ICDCS’2000, pp. 233–

241, 2000.

[106] Z. Guo, M. Pierce, G. Fox, and M. Zhou, “Automatic task re-organization in

mapreduce,” in Cluster Computing (CLUSTER), 2011 IEEE International Con-

ference on, pp. 335–343, 2011.

[107] H. Ying, G. Mingqiang, L. Xiangang, and L. Yong, “A webgis load-balancing

algorithm based on collaborative task clustering,” Environmental Science and In-

132

formation Application Technology, International Conference on, vol. 3, pp. 736–

739, 2009.

[108] R. Ferreira da Silva, T. Glatard, and F. Desprez, “On-line, non-clairvoyant op-

timization of workflow activity granularity on grids,” in Euro-Par 2013 Paral-

lel Processing, vol. 8097 of Lecture Notes in Computer Science, pp. 255–266,

Springer Berlin Heidelberg, 2013.

[109] N. Muthuvelu, J. Liu, N. L. Soe, S. Venugopal, A. Sulistio, and R. Buyya, “A

dynamic job grouping-based scheduling for deploying applications with fine-

grained tasks on global grids,” in Proceedings of the 2005 Australasian workshop

on Grid computing and e-research, 2005.

[110] N. Muthuvelu, I. Chai, and C. Eswaran, “An adaptive and parameterized job

grouping algorithm for scheduling grid jobs,” in 10th International Conference

on Advanced Communication Technology (ICACT 2008), vol. 2, pp. 975 –980,

2008.

[111] N. Muthuvelu, C. Vecchiola, I. Chai, E. Chikkannan, and R. Buyya, “Task

granularity policies for deploying bag-of-task applications on global grids,”

Future Generation Computer Systems, vol. 29, no. 1, pp. 170 – 181, 2013.

¡ce:title¿Including Special section: AIRCC-NetCoM 2009 and Special section:

Clouds and Service-Oriented Architectures¡/ce:title¿.

[112] N. W. Keat, A. T. Fong, L. T. Chaw, and L. C. Sun, “Scheduling framework for

bandwidth-aware job grouping-based scheduling in grid computing,” Malaysian

Journal of Computer Science, vol. 19, no. 2, pp. 117–126, 2006.

[113] Q. Liu and Y. Liao, “Grouping-based fine-grained job scheduling in grid com-

puting,” in First International Workshop on Education Technology and Computer

Science, Mar. 2009.

[114] Z. Zhou, Z. Cheng, L.-j. Zhang, W. Gaaloul, and K. Ning, “Scientific Work-

flow Clustering and Recommendation Leveraging Layer Hierarchical Analysis,”

IEEE Transactions on Services Computing, vol. 11, no. 1, pp. 169–183, 2018.

133

[115] W. Chen, R. F. Da Silva, E. Deelman, and T. Fahringer, “Dynamic and fault-

tolerant clustering for scientific workflows,” IEEE Transactions on Cloud Com-

puting, vol. 4, no. 1, pp. 49–62, 2016.

[116] T. Koohi-var and M. Zahedi, “S CIENTIFIC W ORKFLOW C LUSTERING

BASED O N,” vol. 7, no. 4, pp. 1–13, 2017.

[117] V. Silva, F. Chirigati, K. Maia, E. Ogasawara, D. Oliveira, V. Braganholo,

L. Murta, and M. Mattoso, “Similarity-based workflow clustering,” in JCIS,

vol. 2, pp. 23–35, 2011.

[118] T. Fahringer, R. Prodan, R. Duan, J. Hofer, F. Nadeem, F. Nerieri, S. Podlipnig,

J. Qin, M. Siddiqui, H.-L. Truong, et al., “Askalon: A development and grid

computing environment for scientific workflows,” in Workflows for e-Science,

pp. 450–471, Springer, 2007.

[119] G. B. Berriman, G. Juve, E. Deelman, M. Regelson, and P. Plavchan, “The ap-

plication of cloud computing to astronomy: A study of cost and performance,”

in Workshop on e-Science challenges in Astronomy and Astrophysics, 2010.

[120] H. Topcuoglu, S. Hariri, and W. Min-You, “Performance-effective and low-

complexity task scheduling for heterogeneous computing,” IEEE Transactions

on Parallel and Distributed Systems, vol. 13, no. 3, pp. 260–274, 2002.

[121] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and K. Kennedy, “Task

scheduling strategies for workflow-based applications in grids,” in 5th IEEE In-

ternational Symposium on Cluster Computing and the Grid (CCGrid ’05), 2005.

[122] W. Chen, R. F. Da Silva, E. Deelman, and R. Sakellariou, “Balanced task clus-

tering in scientific workflows,” Proceedings - IEEE 9th International Conference

on e-Science, e-Science 2013, pp. 188–195, 2013.

[123] W. Chen and E. Deelman, “Workflowsim: A toolkit for simulating scientific

workflows in distributed environments,” in 2012 IEEE 8th International Con-

ference on E-Science, pp. 1–8, IEEE, 2012.

134

[124] E. Deelman and A. Chervenak, “Data management challenges of data-intensive

scientific workflows,” in Cluster Computing and the Grid, 2008. CCGRID’08.

8th IEEE International Symposium on, pp. 687–692, IEEE, 2008.

[125] A. Labrinidis and H. V. Jagadish, “Challenges and opportunities with big data,”

Proceedings of the VLDB Endowment, vol. 5, no. 12, pp. 2032–2033, 2012.

[126] J. J. Rehr, F. D. Vila, J. P. Gardner, L. Svec, and M. Prange, “Scientific computing

in the cloud,” Computing in science & Engineering, vol. 12, no. 3, pp. 34–43,

2010.

[127] A. Saxena, G. Shrivastava, and K. Sharma, “Forensic investigation in cloud com-

puting environment,” The International Journal of forensic computer science,

vol. 2, pp. 64–74, 2012.

[128] H. N. Wang, W. X. Xu, and C. L. Jia, “A high-speed railway data placement strat-

egy based on cloud computing,” in Applied Mechanics and Materials, vol. 135,

pp. 43–49, Trans Tech Publ, 2012.

[129] K. Sharma and B. Gupta, “Multi-layer defense against malware attacks on smart-

phone wi-fi access channel,” Procedia Computer Science, vol. 78, pp. 19–25,

2016.

[130] S. K. Shrivastava, P. Kumar, and A. Pandey, “Impact of software licenses in cloud

computing based e-governance initiatives,” in Communication Systems and Net-

work Technologies (CSNT), 2014 Fourth International Conference on, pp. 592–

596, IEEE, 2014.

[131] G. Shrivastava, K. Sharma, and A. Bawankan, “A new framework semantic

web technology based e-learning,” in Environment and Electrical Engineering

(EEEIC), 2012 11th International Conference on, pp. 1017–1021, IEEE, 2012.

[132] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization: Overview

and conceptual comparison,” ACM computing surveys (CSUR), vol. 35, no. 3,

pp. 268–308, 2003.

[133] X.-S. Yang, “Metaheuristic optimization,” Scholarpedia, vol. 6, no. 8, p. 11472,

2011.

135

[134] Z. W. Geem, J. H. Kim, and G. V. Loganathan, “A new heuristic optimization

algorithm: harmony search,” simulation, vol. 76, no. 2, pp. 60–68, 2001.

[135] J. Holland, “Adaptation in natural and artificial systems: an introductory analysis

with application to biology,” Control and artificial intelligence, 1975.

[136] R. Kennedy, “J. and eberhart, particle swarm optimization,” in Proceedings of

IEEE International Conference on Neural Networks IV, pages, vol. 1000, 1995.

[137] X.-S. Yang and S. Deb, “Cuckoo search via lévy flights,” in Nature & Biologi-

cally Inspired Computing, 2009. NaBIC 2009. World Congress on, pp. 210–214,

IEEE, 2009.

[138] M. Khari and P. Kumar, “An effective meta-heuristic cuckoo search algorithm for

test suite optimization,” Informatica, vol. 41, no. 3, 2017.

[139] X.-S. Yang, “Firefly algorithm, stochastic test functions and design optimisa-

tion,” International Journal of Bio-Inspired Computation, vol. 2, no. 2, pp. 78–

84, 2010.

[140] X.-S. Yang, “A new metaheuristic bat-inspired algorithm,” in Nature inspired co-

operative strategies for optimization (NICSO 2010), pp. 65–74, Springer, 2010.

[141] J. K. Wang and X. Jia, “Data security and authentication in hybrid cloud comput-

ing model,” in Global High Tech Congress on Electronics (GHTCE), 2012 IEEE,

pp. 117–120, IEEE, 2012.

[142] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiob-

jective genetic algorithm: Nsga-ii,” IEEE transactions on evolutionary computa-

tion, vol. 6, no. 2, pp. 182–197, 2002.

[143] Y. Yang, K. Liu, J. Chen, J. Lignier, and H. Jin, “Peer-to-peer based grid work-

flow runtime environment of swindew-g,” in e-Science and Grid Computing,

IEEE International Conference on, pp. 51–58, IEEE, 2007.

[144] Wikipedia contributors, “Corvus — Wikipedia, the free encyclopedia,” 2018.

[Online; accessed 2-September-2018].

136

[145] A. D. Craig and A. Craig, “How do you feel–now? the anterior insula and human

awareness.,” Nature reviews neuroscience, vol. 10, no. 1, 2009.

[146] D. C. Penn and D. J. Povinelli, “On the lack of evidence that non-human ani-

mals possess anything remotely resembling a ‘theory of mind’,” Philosophical

Transactions of the Royal Society of London B: Biological Sciences, vol. 362,

no. 1480, pp. 731–744, 2007.

[147] D. Yuan, Y. Yang, X. Liu, and J. Chen, “A data placement strategy in scien-

tific cloud workflows,” Future Generation Computer Systems, vol. 26, no. 8,

pp. 1200–1214, 2010.

[148] S. Venugopal and R. Buyya, “An scp-based heuristic approach for scheduling

distributed data-intensive applications on global grids,” Journal of Parallel and

Distributed Computing, vol. 68, no. 4, pp. 471–487, 2008.

[149] Y. Yang, K. Liu, J. Chen, X. Liu, D. Yuan, and H. Jin, “An algorithm in swindew-

c for scheduling transaction-intensive cost-constrained cloud workflows,” in

eScience, 2008. eScience’08. IEEE Fourth International Conference on, pp. 374–

375, IEEE, 2008.

[150] A. Askarzadeh, “A novel metaheuristic method for solving constrained engineer-

ing optimization problems : Crow search algorithm,” vol. 169, pp. 1–12, 2016.

[151] J. Yan, Y. Yang, and G. K. Raikundalia, “Swindew-a p2p-based decentral-

ized workflow management system,” IEEE Transactions on Systems, Man, and

Cybernetics-Part A: Systems and Humans, vol. 36, no. 5, pp. 922–935, 2006.

[152] T. Wu, H. Gu, J. Zhou, T. Wei, X. Liu, and M. Chen, “Soft error-aware energy-

efficient task scheduling for workflow applications in dvfs-enabled cloud,” Jour-

nal of Systems Architecture, vol. 84, pp. 12–27, 2018.

[153] X. Zhang, T. Wu, M. Chen, T. Wei, J. Zhou, S. Hu, and R. Buyya, “Energy-

aware virtual machine allocation for cloud with resource reservation,” Journal of

Systems and Software, vol. 147, pp. 147–161, 2019.

137

[154] Z. Zhu, G. Zhang, M. Li, and X. Liu, “Evolutionary multi-objective workflow

scheduling in cloud,” IEEE Transactions on parallel and distributed Systems,

vol. 27, no. 5, pp. 1344–1357, 2016.

[155] E. N. Alkhanak, S. P. Lee, and S. U. R. Khan, “Cost-aware challenges for work-

flow scheduling approaches in cloud computing environments: Taxonomy and

opportunities,” Future Generation Computer Systems, vol. 50, pp. 3–21, 2015.

[156] H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-effective and low-

complexity task scheduling for heterogeneous computing,” IEEE transactions

on parallel and distributed systems, vol. 13, no. 3, pp. 260–274, 2002.

[157] Z. Tang, X. Zhang, K. Li, and K. Li, “An intermediate data placement algorithm

for load balancing in spark computing environment,” Future Generation Com-

puter Systems, vol. 78, pp. 287–301, 2018.

[158] L. Xu, K. Wang, Z. Ouyang, and X. Qi, “An improved binary pso-based task

scheduling algorithm in green cloud computing,” in 9th International Conference

on Communications and Networking in China, pp. 126–131, IEEE, 2014.

[159] S. Mullainathan and J. Spiess, “Machine learning: an applied econometric ap-

proach,” Journal of Economic Perspectives, vol. 31, no. 2, pp. 87–106, 2017.

[160] K. Li, “Energy and time constrained task scheduling on multiprocessor comput-

ers with discrete speed levels,” Journal of Parallel and Distributed Computing,

vol. 95, pp. 15–28, 2016.

[161] V. Kumar, C. Katti, and P. Saxena, “A novel task scheduling algorithm for hetero-

geneous computing,” International Journal of Computer Applications, vol. 85,

no. 18, 2014.

[162] H. Arabnejad and J. G. Barbosa, “List scheduling algorithm for heterogeneous

systems by an optimistic cost table,” IEEE Transactions on Parallel and Dis-

tributed Systems, vol. 25, no. 3, pp. 682–694, 2014.

[163] M. F. Akbar, E. U. Munir, M. M. Rafique, Z. Malik, S. U. Khan, and L. T.

Yang, “List-based task scheduling for cloud computing,” in 2016 IEEE Interna-

tional Conference on Internet of Things (iThings) and IEEE Green Computing

138

and Communications (GreenCom) and IEEE Cyber, Physical and Social Com-

puting (CPSCom) and IEEE Smart Data (SmartData), pp. 652–659, IEEE, 2016.

[164] L. Zeng, B. Veeravalli, and X. Li, “Saba: A security-aware and budget-aware

workflow scheduling strategy in clouds,” Journal of parallel and Distributed

computing, vol. 75, pp. 141–151, 2015.

[165] H. M. Fard, R. Prodan, and T. Fahringer, “A truthful dynamic workflow schedul-

ing mechanism for commercial multicloud environments,” IEEE Transactions on

Parallel and Distributed systems, vol. 24, no. 6, pp. 1203–1212, 2013.

[166] R. N. Calheiros and R. Buyya, “Meeting deadlines of scientific workflows in pub-

lic clouds with tasks replication,” IEEE Transactions on Parallel and Distributed

Systems, vol. 25, no. 7, pp. 1787–1796, 2014.

[167] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Algorithms for cost-

and deadline-constrained provisioning for scientific workflow ensembles in iaas

clouds,” Future Generation Computer Systems, vol. 48, pp. 1–18, 2015.

[168] Amazon, “Amazon ec2 instance types.” https://aws.amazon.com/ec2/

instance-types/, 2008. [Online; accessed 19-March-2019].

[169] C. Q. Wu, X. Lin, D. Yu, W. Xu, and L. Li, “End-to-end delay minimization for

scientific workflows in clouds under budget constraint,” IEEE Transactions on

Cloud Computing, vol. 3, no. 2, pp. 169–181, 2015.

[170] D. M. Abdelkader and F. Omara, “Dynamic task scheduling algorithm with load

balancing for heterogeneous computing system,” Egyptian Informatics Journal,

vol. 13, no. 2, pp. 135–145, 2012.

[171] A. Kaur, P. Gupta, and M. Singh, “Hybrid balanced task clustering algorithm

for scientific workflows in cloud computing,” Scalable Computing: Practice and

Experience, vol. 20, no. 2, pp. 237–258, 2019.

[172] V. Arabnejad, K. Bubendorfer, and B. Ng, “Budget and deadline aware e-science

workflow scheduling in clouds,” IEEE Transactions on Parallel and Distributed

Systems, vol. 30, no. 1, pp. 29–44, 2019.

139

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

[173] P. G. Avinash Kaur, “A data placement strategy based on crow search algorithm

in cloud computing,” Recent Patents on Computer Science, vol. 12, no. 1, 2019.

[174] “Source-Code of Workflow Generator,.” https://github.com/pegasus-isi/

WorkflowGenerator. Accessed: 2018-09-30.

[175] M. Wang, K. Ramamohanarao, and J. Chen, “Trust-based robust scheduling

and runtime adaptation of scientific workflow,” Concurrency and Computation:

Practice and Experience, vol. 21, no. 16, pp. 1982–1998, 2009.

[176] Y. Caniou, E. Caron, A. K. W. Chang, and Y. Robert, “Budget-aware schedul-

ing algorithms for scientific workflows with stochastic task weights on heteroge-

neous iaas cloud platforms,” in 2018 IEEE International Parallel and Distributed

Processing Symposium Workshops (IPDPSW), pp. 15–26, May 2018.

140

https://github.com/pegasus-isi/WorkflowGenerator
https://github.com/pegasus-isi/WorkflowGenerator

LIST OF PUBLICATIONS

• Avinash Kaur, Pooja Gupta and Manpreet Singh, “Hybrid Balanced Task Clus-

tering Algorithm for Scientific Workflows in cloud computing”, Scalable Com-

puting: Practice and Experience, 20(2), pp. 237-258, DOI: https://doi.org/10.12694

/scpe.v20i2.1515, 2019. (Scopus, ESCI)

• Avinash Kaur, Pooja Gupta , “A Data Placement Strategy Based on Crow Search

Algorithm in Cloud Computing”, Recent Patents on Computer Science 12(1),

DOI : https://doi.org/10.2174/ 2213275912666181127123431, 2019. (Scopus)

• Avinash Kaur, Pooja Gupta and Manpreet Singh, Anand N. “Data Placement

in Era Of Cloud Computing: A Survey, Taxonomy And Open Research Issues”,

Scalable Computing: Practice and Experience, 20(2), pp. 377-398, DOI : https://

doi.org/10.12694/scpe.v20i2.1530, 2019. (Scopus, ESCI)

• Avinash Kaur, Pooja Gupta and Manpreet Singh, “DPO-HEFT(Data Placement

Oriented HEFT) for Scheduling Scientific Workflows in Cloud Computing”, Re-

cent Patents on Computer Science (Under Review), 2019. (Scopus)

• Avinash Kaur, Vaishali and Pooja Gupta,“A survey on the services provided by

various cloud providers”, Jn. of Control Theory and Applications, 2016. (Scopus)

• Avinash Kaur, Pooja Gupta and Manpreet Singh, “Task Clustering and Data

Placement Aligned Scheduling of Scientific Workflows”, International Confer-

ence on Intelligent Computing and Control Systems, 2019. IEEE (Scopus).

141

	Declaration
	Certificate
	Abstract
	Acknowledegments
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Introduction to Cloud Computing
	Overview of Workflow
	Classification of Workflow
	Scientific Workflow Management System
	Challenges of Workflow Management in Cloud

	Research Issues and Objectives
	Research Methodology
	Thesis Contributions
	Thesis Organization

	Literature Review
	Introduction
	Review on Workflow Management System
	Review on Task Clustering Techniques
	Review on Data Placement Techniques
	Classification of Data Placement Techniques

	Review on Scheduling Algorithms
	Summary

	Hybrid Balanced Task Clustering for Scientific Workflow in Cloud Computing
	Introduction
	Related Work
	Load Imbalance
	Granularity
	Structural Similarity
	Data Dependency

	System Architecture
	Workflow
	Workflow Model
	Workflow Execution Environment

	Proposed Hybrid Balanced Task Clustering Algorithm
	Problem Formulation
	Research Methodology

	Experimental Evaluation
	Scientific Workflow Applications
	Balanced Task Clustering Algorithms
	Description of Baseline Balanced Clustering Algorithms
	Experimental Evaluation
	Results and Discussion

	Summary

	A Data Placement Strategy Based on Crow Search Algorithm in Cloud Computing
	Introduction
	Related Work
	Data Placement Process
	Data Placement Stages
	Need for Data Placement

	Research Methodology
	Proposed Crow Search Algorithm (CSA) Based Data Placement
	Pseudo Code of Proposed CSA-based Runtime Data Placement

	Comparison of CSA and PSO
	Experimental Evaluation
	Experimental Setup
	Results and Discussion

	Summary

	Data Placement Oriented Scheduling Algorithm for Scientific Workflows in Cloud: A Budget-Aware Approach
	Introduction
	Related Work
	System Architecture
	Cloud Data Center Model
	Workflow Model
	System Model

	Research Methodology
	Phase 1: Budget Distribution
	Phase 2: Task Clustering in Workflow
	Phase 3: Deadline Distribution
	Phase 4: Task Selection
	Phase 5: Instance Selection

	Experimental Evaluation
	Experimental Methodology
	Experimental Setup
	Results and Discussion

	Summary

	Conclusion and Future Directions
	Conclusion and Discussion
	Future Scope
	Energy-Efficient Placement and Scheduling
	Replication Management
	Fault-tolerance and Provenance Management
	Pricing Models

	References
	Publications

