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ABSTRACT 

The thesis entitled “Study of Fourier Series and Boundary Value 

Problems Involving A-Function” is being submitted in partial fulfillment for the 

award of degree of Doctor of Philosophy in Mathematics to Lovely Professional 

University, Phagwara, Punjab. 

Usually we call a function ‘special’ when the function belongs to the 

toolbox of the applied mathematician, the physicist or the engineer. They have a 

particular notation and a number of properties. Mathematically, special functions 

are functions defined on R, the set of real numbers or C, the set of complex 

numbers and they possess not only series representations, but also integral 

representations. This thesis is mainly concerned with the development of special 

functions especially A-function. So the concept of Pochhammer notation, Mellin-

Barnes integrals, convergence and residue calculus are essential for the detailed 

study of these functions. Recently the attention of mathematicians towards these 

functions has increased from both the analytical and numerical point of view due to 

their relation with the fractional calculus. 

The whole thesis is divided into nine chapters, each divided into three to six 

sections. The formulae and results are numbered progressively in each chapter. For 

instance (3.2.5) denotes the Fifth formula of the Second section in the Third 

chapter. Bibliography to the literature are given in full at the end of the thesis 

arranged alphabetical order. In the text, they have been referred to by putting within 

rectangular brackets, the serial number of the references, where so ever necessary; 

the page of the references and the number of the result have also been given i.e. 

[34, p.122(ii)] means second result of page 122 of the thirty fourth reference.   

 The First Chapter deals with the historical background, development and 

definitions of the A-functions and polynomials in the context of the research work 

accomplished in the subsequent chapters of this thesis. It also provide brief 

literature of several aspects of special functions. 

Since generating relations plays an important role in the investigation of 

various useful properties of the sequences, which they generate and also used as  
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z-transform in solving certain classes of difference equation which arise in a wide 

variety of problems in operation research (including, for example, queening theory 

and related stochastic process). Looking into the requirement and importance of 

various properties of generating relations in the analysis of many problems of 

mathematics and mathematical physics, in the Second Chapter, we have 

established some new linear and bilinear generating relations involving A-function 

of one variable. In section (2.2) and (2.3) by increasing the number of parameters in 

the definition of A-Function and by using properties of gamma function we have 

derived these relations. 

  Several authors have discussed a number of bilateral and trilateral 

generating relations involving generalized hypergeometric functions time to time. 

The A-function of one variable plays an important role in the development and 

study of special functions. In Third Chapter, the usefulness of this function has 

inspired us to find some new bilateral and trilateral generating relations involving 

A-function of one variable.  

 Integrals are useful in connection with the study of certain boundary value 

problems. It is also helpful for obtaining the expansion formula. These are also 

used in the study of statistical distribution, probability and integral equation. 

Fourth Chapter contains some definite and indefinite integrals involving the A-

function and other commonly used functions. Some double integrals involving A-

function have been also evaluated with the help of some known results. We have 

used the results of Bajpai, Shrivastava, Rainville and others to derive these 

integrals. 

  In Fifth Chapter, in the section (5.3), we have established two integrals 

containing the products of A-Function and other hypergeometric functions. At the 

end of this section we have also discussed particular cases. In section (5.4) some 

new integrals involving A-functions are evaluated with the help of finite difference 

operator [Eaf(a) = f(a + 1)].  

   Looking into the requirement and importance of various properties of 

expansion in several field, in Sixth Chapter we have established some new 

Expansion and Identities involving A-Function of one variable by increasing the 
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number of parameters. In section (6.2) six new expansions and in section (6.3) nine 

new identities involving A-Function of one variable has been established by 

increasing the number of parameters.  

 Various problems in science and technology, when formulated 

mathematically, lead naturally to certain classes of partial differential equations 

involving one or more unknown functions together with the prescribed conditions 

(known as boundary conditions) which arise from the physical situation. Several 

researchers have obtained solutions to the differential equations related to certain 

problems, which satisfy the given boundary conditions. The classical method in 

obtaining solutions of the boundary value problems of mathematical physics can be 

derived from Fourier’s another technique using integral transforms, which had its 

origin in Heaviside’s work, has been developed in the past and has certain 

advantages over the classical method. Several authors such as Arora (1998), 

Chandel (2002), Chaurasia (1997), Srivastava (1998, 1999, 2000), Tiwari (1993) 

have used various classes of orthogonal polynomials and generalized 

hypergeometric functions of one or more variables in finding the solutions of the 

boundary value problems concerning  

(a) heat conduction in  

(i) a non-homogenous finite bar  

(ii) a circular cylinder 

(b) free oscillations of water in a circular lake 

(c) transverse vibrations in a circular membranes  

(d) free symmetrical vibrations in a very large plate 

(e) angular displacement in a shaft of circular cross-section 

(f) potential theory, etc. 

Inspired by these authors  in Seventh Chapter, in section (7.3) first we have 

evaluated an integral involving A-function of one variable and then  applied it to 

solve two boundary value. In section (7.4) we employ the A-function of one 

variable in obtaining a solution of a partial differential equation related to heat 
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conduction along with Hermite polynomials. In section (7.5) we derive the solution 

of special one-dimensional time dependent Schrodinger equation involving Hermite 

polynomials and A-function of one variable. In section (7.6) we employ the  

A-function of one variable in obtaining a solution of a problems on (i) heat 

conduction in a bar (ii) deflection of vibrating string and bounded electrostatic 

potential in the semi-infinite space under certain conditions. 

 The subject of Fourier series for generalized hypergeometric functions 

occupies outstanding place in the literature of special functions and boundary value 

problems. Certain double Fourier series of generalized hypergeometric functions 

play vital role in the improvement of the theories of special functions and two-

dimensional boundary value problems.   

In the Eighth Chapter, we have founded some new Fourier series involving 

A-function of one variable. We have taken help of the results obtained in chapter 4 

to prove these Fourier series. 

 At the last in Ninth Chapter we have given the summary and conclusion of 

the thesis. 
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ABSTRACT 

The thesis entitled “Study of Fourier Series and Boundary Value 

Problems Involving A-Function” is being submitted in partial fulfillment for the 

award of degree of Doctor of Philosophy in Mathematics to Lovely Professional 

University, Phagwara, Punjab. 

Usually we call a function ‘special’ when the function belongs to the 

toolbox of the applied mathematician, the physicist or the engineer. They have a 

particular notation and a number of properties. Mathematically, special functions 

are functions defined on R, the set of real numbers or C, the set of complex 

numbers and they possess not only series representations, but also integral 

representations. This thesis is mainly concerned with the development of special 

functions especially A-function. So the concept of Pochhammer notation, Mellin-

Barnes integrals, convergence and residue calculus are essential for the detailed 

study of these functions. Recently the attention of mathematicians towards these 

functions has increased from both the analytical and numerical point of view due to 

their relation with the fractional calculus. 

The whole thesis is divided into nine chapters, each divided into three to six 

sections. The formulae and results are numbered progressively in each chapter. For 

instance (3.2.5) denotes the Fifth formula of the Second section in the Third 

chapter. Bibliography to the literature are given in full at the end of the thesis 

arranged alphabetical order. In the text, they have been referred to by putting within 

rectangular brackets, the serial number of the references, where so ever necessary; 

the page of the references and the number of the result have also been given i.e. 

[34, p.122(ii)] means second result of page 122 of the thirty fourth reference.   

 The First Chapter deals with the historical background, development and 

definitions of the A-functions and polynomials in the context of the research work 

accomplished in the subsequent chapters of this thesis. It also provide brief 

literature of several aspects of special functions. 

Since generating relations plays an important role in the investigation of 

various useful properties of the sequences, which they generate and also used as  
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z-transform in solving certain classes of difference equation which arise in a wide 

variety of problems in operation research (including, for example, queening theory 

and related stochastic process). Looking into the requirement and importance of 

various properties of generating relations in the analysis of many problems of 

mathematics and mathematical physics, in the Second Chapter, we have 

established some new linear and bilinear generating relations involving A-function 

of one variable. In section (2.2) and (2.3) by increasing the number of parameters in 

the definition of A-Function and by using properties of gamma function we have 

derived these relations. 

  Several authors have discussed a number of bilateral and trilateral 

generating relations involving generalized hypergeometric functions time to time. 

The A-function of one variable plays an important role in the development and 

study of special functions. In Third Chapter, the usefulness of this function has 

inspired us to find some new bilateral and trilateral generating relations involving 

A-function of one variable.  

 Integrals are useful in connection with the study of certain boundary value 

problems. It is also helpful for obtaining the expansion formula. These are also used 

in the study of statistical distribution, probability and integral equation. Fourth 

Chapter contains some definite and indefinite integrals involving the A-function 

and other commonly used functions. Some double integrals involving A-function 

have been also evaluated with the help of some known results. We have used the 

results of Bajpai, Shrivastava, Rainville and others to derive these integrals. 

  In Fifth Chapter, in the section (5.3), we have established two integrals 

containing the products of A-Function and other hypergeometric functions. At the 

end of this section we have also discussed particular cases. In section (5.4) some 

new integrals involving A-functions are evaluated with the help of finite difference 

operator [Eaf(a) = f(a + 1)].  

   Looking into the requirement and importance of various properties of 

expansion in several field, in Sixth Chapter we have established some new 

Expansion and Identities involving A-Function of one variable by increasing the 

number of parameters. In section (6.2) six new expansions and in section (6.3) nine 
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new identities involving A-Function of one variable has been established by 

increasing the number of parameters.  

 Various problems in science and technology, when formulated 

mathematically, lead naturally to certain classes of partial differential equations 

involving one or more unknown functions together with the prescribed conditions 

(known as boundary conditions) which arise from the physical situation. Several 

researchers have obtained solutions to the differential equations related to certain 

problems, which satisfy the given boundary conditions. The classical method in 

obtaining solutions of the boundary value problems of mathematical physics can be 

derived from Fourier’s another technique using integral transforms, which had its 

origin in Heaviside’s work, has been developed in the past and has certain 

advantages over the classical method. Several authors such as Arora (1998), 

Chandel (2002), Chaurasia (1997), Srivastava (1998, 1999, 2000), Tiwari (1993) 

have used various classes of orthogonal polynomials and generalized 

hypergeometric functions of one or more variables in finding the solutions of the 

boundary value problems concerning  

(a) heat conduction in  

(i) a non-homogenous finite bar  

(ii) a circular cylinder 

(b) free oscillations of water in a circular lake 

(c) transverse vibrations in a circular membranes  

(d) free symmetrical vibrations in a very large plate 

(e) angular displacement in a shaft of circular cross-section 

(f) potential theory, etc. 

Inspired by these authors  in Seventh Chapter, in section (7.3) first we have 

evaluated an integral involving A-function of one variable and then  applied it to 

solve two boundary value. In section (7.4) we employ the A-function of one 

variable in obtaining a solution of a partial differential equation related to heat 

conduction along with Hermite polynomials. In section (7.5) we derive the solution 
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of special one-dimensional time dependent Schrodinger equation involving Hermite 

polynomials and A-function of one variable. In section (7.6) we employ the  

A-function of one variable in obtaining a solution of a problems on (i) heat 

conduction in a bar (ii) deflection of vibrating string and bounded electrostatic 

potential in the semi-infinite space under certain conditions. 

 The subject of Fourier series for generalized hypergeometric functions 

occupies outstanding place in the literature of special functions and boundary value 

problems. Certain double Fourier series of generalized hypergeometric functions 

play vital role in the improvement of the theories of special functions and two-

dimensional boundary value problems.   

In the Eighth Chapter, we have founded some new Fourier series involving 

A-function of one variable. We have taken help of the results obtained in chapter 4 

to prove these Fourier series. 

 At the last in Ninth Chapter we have given the summary and conclusion of 

the thesis. 
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CHAPTER–1 

INTRODUCTION 

1.1  HYPERGEOMETRIC FUNCTION 

 In the theory of special functions, the Gaussian hypergeometric function is 

very important. In fact nearly all the functions used in mathematical physics and 

applied mathematics can be expressed in term of hypergeometric function or in terms 

of confluent cases. This function is the extensions and generalization of the basic 

geometric series and simple transcendental functions.  

  The function 

 2  [       ]    ∑                      (1.1.1) 

arises in the study of following second order linear differential equation having 

regular singular points [56] 

              [          ]                        (1.1.2) 

for c > 0 and c  Z. In (1.1.2), Pochhammer’s symbol (a)n is factorial function defined 

as   

 (a)n = (a, n) = (a + n – 1) (a + n  2) …. (a + 1)a, n 

           for n positive integer 

and a ≠ 0, (a, 0) = 1. The quantities a, b and c in (1.1.2) are independent of z and are 

called parameters, z is called argument.   

 The function    [       ], where a, b, c are parameters and z is variable, is 

known as Gauss’s hypergeometric function.  

 All four of these quantities may be any numbers, real or complex. There is one 

exception, namely, that the series is not defined, then numerical value of the series 

becomes infinite if c  0, if one of the parameters in numerator a  0 or b  0, such 

that - a > - c, say. In general, if either of the numerator parameters is a negative 
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integer the series (1.1.1) terminates to a polynomial in z. The convergence conditions 

of (1.1.1) are as follows: 

(i) The series is convergent if |z| < 1 and divergent if |z| > 1,  z  R or C. 

(ii) For |z| = 1, the absolute convergence of series required Real (- a - b + c) > 0 

and for divergence Real (- a - b + c) ≤ 0.  

 most of the classical orthogonal polynomials, complete elliptic functions of 

first and second kinds, incomplete beta function and Legendre functions are the 

special cases of 2F1. Coulomb wave functions, parabolic cylinder functions, Bessel 

functions, etc. are also the special cases of confluent hypergeometric function. 

1.2  GENERALIZED HYPERGEOMETRIC FUNCTIONS 

 The function pFq is the generalization of hypergeometric function 2F1, where 

nature of p parameters is similar as of a and b, and nature of q parameters is same as 

of c. Thus the generalized hypergeometric series is:  

  a1, …, ap;        (a1)n …… (ap)n   z
n 

 pFq           z   =      
  b1, …, bq;    n = 0 (b1)n …… (bq)n  n!  

 

 

            (ai)n z
n 

             =     

    n = 0       (bj)n  n!   

where pFq is known as generalized hypergeometric function of variable z. If for any q, 

bq = 0 or bq < 0, the function pFq is not defined. If for any p, ap = 0 or ap < 0, the series 

will terminates. In case non terminating pFq, 

(i) for |z| < 1 if p = q + 1; 

(ii) for |z| = 1 if p = q + 1 and  (∑        ∑       )    

(iii) for all finite z if p ≤ q; 

 the series converges and diverges  z ≠ 0, q + 1 < p. 

p 


i = 1  

q 


j = 1  
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 Functions considered above and the class of the hypergeometric series are of 

single variable. Countless achievement of philosophy of hypergeometric series in one 

variable takes inspired the growth of equivalent theory in two and more than two 

variables. 

 It was Appell (1880), who for the first time introduced the following four 

series F1, F2, F3, F4 in two variables: 

   [            ] = ∑                                                  (1.2.1) 

   max{|x|, |y|} < 1;  

   [               ] = ∑                                                 (1.2.2) 

   1 > |x| + |y|;  

   [               ] = ∑                                              (1.2.3) 

  1 > |x| + |y|;  

   [            ] = ∑                                            (1.2.4) 

   1 > √|x| + √|y|;  

 In 1920, Humbert [27] introduced the confluent hypergeometric function of 

two variables 

 1(α, β; γ; x, y) = ∑                                   (1.2.5) 

   |y| < ∞, |x| < 1;  

 2(β, β´; γ; x, y) = ∑                                   (1.2.6) 

   |y| < ∞, |x| < ∞;  

 3(β; γ; x, y) = ∑                                     (1.2.7) 

 Ψ1(α, β; γ, γ´; x, y) = ∑                                               (1.2.8) 

   |x| < 1, |y| < ∞;  

 Ψ2(α; γ, γ´; x, y) = ∑                                         (1.2.9) 

  |y| < ∞, |x| < ∞;  
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 Horn (1931), while giving a general definition for the double power series, 

constructed ten more hypergeometric functions viz. G1 to G3 and H1 to H7 and thirteen 

confluent out of these ten functions. Thus, there are 34 distinct convergent 

hypergeometric series of two variables as shown by Horn [26]. Some of them, which 

are useful in our research, are given as:  

 G1(α, β, β´; x, y) = ∑                                         (1.2.10) 

   |y| < s, r + s = 1, |x| < r;  

 G2(α, α´, β, β´; x, y) = ∑                                         (1.2.11) 

   |y| < 1, |x| < 1;  

 G3(α, α´; x, y) = ∑                                         (1.2.12) 

   |y| < s, 27r2s2 + 18rs ± 4(r – s) – 1 = 0, |x| < r;  

 H1(α, β, γ; ; x, y) = ∑                                             (1.2.13) 

  |y| < s, (s – 1)2 = 4rs, |x| < r;  

 H2(α, β, γ, ; ; x, y) = ∑                                              (1.2.14) 

  |y| < s, (r + s) = 1, |x| < r;  

 H3(α, β; γ; x, y) = ∑                                                   (1.2.15) 

  |x| < 1;  

 H4(α, γ; ; x, y) = ∑                                                  (1.2.16) 

  |y| < s, (s – 1)2 = 4r =, |x| < r;  

 H5(α, β; γ; x, y) = ∑                                           (1.2.17) 

  |y| < s, 16r2 – 36rs ± (8r – s + 27rs2) + 1 = 0, |x| < r;  

 H6(α, β, γ; x, y) = ∑                                           (1.2.18) 

  |y| < s, s + rs2 – 1, |x| < r;  

 H7(α, β, γ; ; x, y) = ∑                                                      (1.2.19) 

  |y| < s, (s – 1 – 1)2 = 4r, |x| < r;  
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 H8(α, β; x, y) = ∑                                                  (1.2.20) 

  |x| < ¼;  

 H9(α, β; ; x, y) = ∑                                                   (1.2.21) 

 1(α, β; γ; x, y) = ∑                                     .          (1.2.22) 

  In 1954, Saran [62] completed Lauricella’s series of hypergeometric function 

of three variables by defining the functions FE, FF, FG, FK, FM, FH, FP, FR, FS and FT.  

   [                                ] 
  ∑                                                                                    (1.2.23) 

   [                                ] 
  ∑                                                                                 (1.2.24) 

   [                                ] 
  ∑                                                                                      (1.2.25) 

   [                                ] 
  ∑                                                                                     (1.2.26) 

   [                                ] 
  ∑                                                                        .         (1.2.27) 

 In addition to Lauricella’s and Saran’s functions Pandey [52] defined GA and 

GB and Dhawan [18] considered GC and GD hypergeometric function of three 

variables, are given as follows:    

 GA(α, β, β´; γ; x, y, z) = ∑                                                       (1.2.28) 

   |y| < 1, |z| < 1, |x| < 1;  

 GB(α, β1, β2, β3; γ; x, y, z) = ∑                                                         (1.2.29) 

   |y| < 1, |z| < 1, |x| < 1;  
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  GC(α, β, β1; γ; x, y, z)  

  = ∑                                                                     (1.2.30) 

  |y| < 1, |z| < 1, |x| < 1;  

  GD(α, α1, β1, β2, β3; γ; x, y, z)  

  = ∑                                                                          (1.2.31) 

 |y| < 1, |z| < 1, |x| < 1;  

 Taking the limiting cases of fourteen triple hypergeometric functions  

due to Lauricella and Saran, Dhawan [17] defined five more confluent 

hypergeometric functions 3     , 3     , 3     , 3     , and 3     . Some of them, are 

given as follows:  

 3                     
  = ∑                                                     (1.2.32)   

 |y| < 1, |z| < 1, |x| < 1;  

   3                        

  = ∑                                                    (1.2.33)  

 |y| < 1, |z| < 1, |x| < 1;  

 3                       
  = ∑                                                        (1.2.34)   

  |y| < s, |z| < t, 1 + st = r + s + t, |x| < r;  

 In recent research work, the double hypergeometric function has been 

generalized by taking more variables and more parameters. Moreover, G, H and A-

function also have been generalized by increasing the number of variables, in terms of 

contour integral.  

 The A-function of one variable is defined by Gautam [22] and we will 

represent here in the following manner: 
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 A         [x|            ] =              (s) xs ds  (1.2.35) 

where i = ( 1) and 

(i) 
  (aj + sj) (1 – bj – sj)   
               (1.2.36) 
  
  (1 – aj – sj) (bj + sj)   

(ii) m, n, p and q are non-negative numbers in which m  p, n  q. 

(iii)  x  0 and parameters aj, j, bk and k (j = 1 to p and k = 1 to q) are all 

complex.  

  In (1.2.35), the integral is convergent if  

(i) x  0, k = 0, h > 0, |arg(ux)| < h/2 

(ii) x > 0, k = 0 = h, (  ) <  1 

where 

 k = Im (∑      ∑     ) 

               n          q                m                p 

 h = Re (j – j +  j – j )          (1.2.37) 
               j = 1       j = n + 1       j = 1       j = n + 1 

 

 u = ∏       ∏        (1.2.38) 

                p            q 

   = Re ( aj – bj )  (p - q)/2,       
                 1             1  

                q              p 

  w = Re ( j – j )        
                 1               1  

and  s =  + it is on path L when |t| →.  

1.3  POLYNOMIALS   

1.3.1  Legendre Polynomials: 

 In the study of attraction of spheroids and planetary motion, Legendre was led 

to the consideration of the series of the function  

 1/r = (1 – 2 cos + 2) – 1/ 2  (1.3.1) 

m, n  

p, q  

((ap, p))  

((bq, q))  
     1 
 2i    L 

m  n  

j = 1   j = 1   

p  q  

j = m + 1   j = n + 1   

 (s) =    
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 The expansion of this expression in ascending powers of  is of the form 

  

      h Pn(), where  = cos, 0 <  < 1.  (1.3.2) 
  n = 0 

 The coefficients Pn() are known as Legendre polynomials and it depends on 

cos only and can be shown to be polynomials of degree n in cos. In term of 

hypergeometric function as 

  Pn() =    [             ]              (1.3.3) 

1.3.2  Associated Legendre Polynomials: 

 Ferrer (1877) introduced the associated Legendre polynomial           and          of the first and second kinds respectively of degree n and order m, as the 

solution of the differential equation.  

  {(1 – 2)      } + {n(n + 1) – m2/(1 – 2)}z = 0, (1.3.4) 

where ( = cos). 

 It can be proved easily that if m is a positive integer and – 1  1, then 

           =              [                 (1.3.5) 

where (1 – 2)m/2 indicates the numerical value of the root. 

 Further          and          are surface spherical harmonics of degree n and 

order m where                                     
 Legendre polynomials have been widely used in many applied problems 

related to this spherical regions, steady temperatures in a solid and hemisphere, 

temperature in non-homogeneous insulated bar etc.  

1.3.3  Laguerre Polynomials: 

 Simple Laguerre polynomials Ln(x) were introduced by Laguerre, E. N. in 

(1879). These Laguerre polynomials also occur in an unedited manuscript (1881) of 

Able. N. H. 

d 
d 

dz 

d 
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 Laguerre polynomials          are defined by the generating function [56]                                            ∑             tn              (1.3.6) 

and Rodrigues formula [56].                                                                                                             (1.3.7) 

 In hypergeometric form, these polynomials          are expressed [56] by                                              [          ]                                                            (1.3.8) 

and known as generalized Laguerre or sonine polynomials. Moreover, the solution of 

differential equation of second order [56] 

 
                                             (1.3.9) 

gives these polynomials. 

 For  = 0, the polynomials          reduces to simple Laguerre polynomials  

 Ln(x) i.e.              [        ] 
1.3.4   Hermite Polynomials:  

 The notation       for Hermite polynomial was introduced by Szego's in 

1939.       (Hermite polynomials) are defined by generating function [56] 

         ∑                                                                                          (1.3.10) 

and Rodrigues formula [56]  

                       
                                                                   (1.3.11) 

 The hypergeometric form, these polynomials Hn(x) expressed [56] by 

                [                 ]                                                            (1.3.12) 

Moreover, the solution of differential equation of second order [56] 

                                                                                (1.3.13) 
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gives these polynomials. Chebyshev Hermite polynomial         is given by the 

generating relation 

         ∑                                                                                        (1.3.14) 

and related to Hermite polynomial by relation 

              √                                                                             (1.3.15) 

1.3.5  Jacobi Polynomials:  

 The orthogonal polynomials which have occupied a significant place in the 

recent research papers are the Jacobi polynomials           , introduced by C. G. J. 

Jacobi (1859) and           is the solution of second order linear homogeneous 

differential equation namely:  

 (1 – z)2w´´ + [ –  – ( + 2)z] w´ + n(n +  + 1)w = 0, (1.3.16) 

where n is positive integer.  

 The Jacobi polynomials may be expressed in the hypergeometric form as:          

                         [                 ]               (1.3.17)   

 When we substitute  in the Jacobi polynomial, we get ultraspherical 

polynomial           and by the substitution  = 0, these degenerate into 

Legendre polynomial Pn(x).   

1.3.6  Generalized Bessel Polynomials:  

In 1949, Krall and Frink defined generalized Bessel Polynomial as follows                             [             ]                                                        (1.3.18) 

1.3.7  Orthogonal Polynomials:  

 If {n(x)} be a sequence of functions and w(x) is a non-negative weight 

function such that wn
2 is integrable in (a, b), then the scalar product is defined by  

         b 

 (n, m) = w(x) n(x) m(x) dx.             (1.3.19) 
        a  
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 If 

 (n, m) = hn mn,  

then sequence of function {n(x)} is said to be orthogonal, where   

                                     b 
 hn  = (n, n) = [n(x)]2 w(x) dx, (1.3.20) 
                          a 

and  

 mn = 1 if m = n  

       = 0 if m n.   
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CHAPTER–2 

LINEAR AND BILINEAR GENERATING RELATIONS 

INVOLVING A-FUNCTION  

2.1  INTRODUCTION 

 The sequences, which is generated by generating relations plays significant 

role in the study of numerous valuable properties. In solving certain classes of 

difference equation which arise in a wide variety of problems in operation research 

(for instance, queening theory and related stochastic process), the generating relations 

are used as z-transform. Generating relations can also be used with good effect for the 

determination of the asymptotic behavior of the generalized sequence         
 as n  

  by suitably adopting Darboux's method.     

 Shrivastava [71], Hussain [28], [29], Majumdar [46], Srivastava [78], Singh 

[72], Patel [53], Ming [48] and several other authors have discussed a number of 

linear and bilinear generating relations involving other generalized hypergeometric 

functions time to time. 

 Looking into the requirement and importance of various properties of 

generating relations in the analysis of many problems of mathematics and 

mathematical physics, in this chapter we established some new linear and bilinear 

generating relations involving A-function of one variable.  

 In section (2.3), we have established some new linear generating relations for 

A-function of one variable.  

 In section (2.4), we have discussed some bilinear generating relations 

involving A-function of one variable.  

 The content of this chapter in the form of two research papers has been 

published in Applied Science Periodical [37] and IOSR Journal of Mathematics [40].  

2.2  LINEAR GENERATING RELATIONS  

 Since linear generating relation has large role in the study of hypergeometric 

functions. Thus in this section we have established the eight linear generating 
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relations involving A-Function. We have used some basic results from Shrivastava 

and Manocha [69, p. 34, 44, 37 (10)]. 

                      ,   (2.2.1) 

 
                         .    (2.2.2)   

 ex = 0F0[;; x],    (2.2.3) 

 (1  x)  a = 1F0[a; ; x], |x| < 1,   (2.2.4) 

 (1  x)  a =  ∑             .    (2.2.5) 

 (1 + x)  a =  ∑                .            (2.2.6) 

to prove the following results. 

Theorem 2.2.1:  Prove that  

(i) ∑                    [  (     )   
        (     )   ] 

                    [         (     )   
      (     )   ];  (2.2.7)  

(ii) ∑                       [  (     )   
       (     )   ] 

                    [         (     )   
      (     )   ];  (2.2.8)  

|arg (ux)| < ½ h, where h and u are given in (1.2.37) and (1.2.38) respectively. 

Proof 

(i) Consider                  ∑     
              [  (     )   

        (     )   ] 

 On expressing A-function in contour integral form as given in (1.2.35), we get 

   ∑              ∫                      
  ∑           {     ∫                        }  
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 On altering the order of integration and summation, we get 

       ∫                ∑                      

                          [         (     )   
      (     )   ]  

                                   (in view of (1.2.35) and (1.2.36)) 

(ii)    Proceed as above (i) and using (2.2.6)  

Theorem 2.2.2: Prove that  

            ∑     
              [          (     )   

(     )   ] 

                     [              (     )   
(     )   ];  (2.2.9)  

(ii)        ∑                       [          (     )   
(     )   ] 

                     [              (     )   
(     )   ];  (2.2.10)  

|arg (ux)| < ½ h, where h and u are given in (1.2.37) and (1.2.38) respectively. 

Proof 

(i)  Consider 

     ∑                    [          (     )   
(     )   ] 

 On expressing A-function in contour integral form as given in (1.2.35), we get 

   ∑              ∫                        

  ∑           {     ∫                            }  
 On altering the order of integration and summation, we get 

       ∫                  ∑                        

              ∫                           

                     [              (     )   
(     )   ]            (in view of (1.2.35) and  

(1.2.36)) 
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(ii) Proceed on same line as in (i) and use (2.2.6) to prove this result. 

Theorem 2.2.3: Prove that 

         ∑     
            [  (     )   

(     )           ] 

                  [         (     )   
(     )         ];  (2.2.11)  

         ∑        
            [  (     )   

(     )           ] 

                  [         (     )   
(     )         ];                      (2.2.12)  

|arg (ux)| < ½ h, where h and u are given in (1.2.37) and (1.2.38) respectively.  

Proof 

(i) Consider                    ∑     
            [  (     )   

(     )           ] 

 On expressing A-function in contour integral form as given in (1.2.35), we get 

   ∑              ∫                        

  ∑           {     ∫                               }  
 On altering the order of integration and summation, we get 

       ∫                  ∑                           

              ∫                            

                              [         (     )   
(     )         ]; (in view of (1.2.35) and (1.2.36)) 

(ii) Proceed as above (i) 

Theorem 2.2.4: Prove that 

           ∑     
            [  (     )             (     )   ] 
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                  [        (     )           (     )   ];  (2.2.13)             

(ii)        ∑                     [  (     )             (     )   ] 
                                [        (     )           (     )   ];  (2.2.14)  

|arg (ux)| < ½ h, where h and u are given in (1.2.37) and (1.2.38) respectively.  

Proof 

(i)   Consider                    ∑     
            [  (     )             (     )   ] 

 On expressing A-function in contour integral form as given in (1.2.35), we get 

   ∑              ∫                        

  ∑           {     ∫                               }  
 On altering the order of integration and summation, we get 

       ∫                  ∑                           

             ∫                           

                  [        (     )           (     )   ]  (in view of (1.2.35) and 

(1.2.36)) 

(ii) Same as part (i) 

2.3  BILINEAR GENERATING RELATIONS  

  In this section we establish the four bilinear generating relations involving two 

A-Functions. In order to prove these relation we have use the relations given in 

section (2.2) from Shrivastava and Manocha [69, p.37 (10), 34, 44]. 

Theorem 2.3.1: Prove that 

(i)       ∑    ∑                                                                                       (     )   
(     )             
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 = (1 + t)
 

(1 + v)
                                                                    

   .                                                        ,  (2.3.1) 

(ii) ∑    ∑                                                                         
   .                                                     
  = (1  t)

  
(1  v)

                                                                          
   .                                                         ,  (2.3.2) 

provided that |arg(ux)| <  h/2, where u and h are given in (1.2.37) 

and (1.2.38) respectively. 

Proof 

(i)     Consider 

    ∑    ∑                                                                                       (     )   
(     )             

 On expressing A-function in contour integral form as given in (1.2.35), we get 

  ∑    ∑     
   

    {     ∫                      }  
         ∫                         

   ∑    ∑                   {     ∫                          }  
    {     ∫                          } 

 On altering the order of integration and summation, we get 

  [     ∫                  {∑        
          }   ]  

 [     ∫                  {∑        
          }   ]  

                [     ∫                           ]   
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   .[     ∫                           ]          (in view of (1.2.36)) 

 Hence Proved. 

(iii) Proceed as above (i) 

Theorem 2.3.2: Prove that 

          ∑    ∑                                                                                                                          
  = (1  t)

  
(1  v)

                                                                   
                                                             ,      (2.3.3) 

(ii) ∑      ∑                                                                          
    .                                                       
 = (1 + t)

  
(1 + v)

                                                                     
                                                               ,      (2.3.4) 

provided that |arg(ux)| < h/2 and |arg(uy)| < h/2, where u and h are given in (1.2.37) 

and (1.2.38) respectively. 

Proof 

(i)     Consider 

     ∑    ∑                                                                                                                           

On expressing A-function in contour integral form as given in (1.2.35), we get 

   ∑    ∑             {     ∫                   }  
         ∫                      

  ∑    ∑                   {     ∫                        }  
    {     ∫                        } 

 On altering the order of integration and summation, we get 

   [     ∫               {∑                }   ]  
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 [     ∫               {∑     
          }   ]  

                [     ∫                         ]   
   .[     ∫                         ] 
   (1  t)

  
(1  v)

                                                                   
                                                            

        (in view of (1.2.36)) 

            Hence proved.  

(ii) Proceed as above (i) 
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CHAPTER–3 

 BILATERAL AND TRILATERAL GENERATING 

RELATIONS INVOLVING A-FUNCTION  

3.1  INTRODUCTION 

 In the progress and study of special functions A-function of one variable plays 

a vital role. The usefulness of this function has inspired us to find some new 

generating relations.  

 Hussain [28], Majumdar [46], Shrivastava [78], Singh [72], Ming [48] and 

several other authors have discussed a number of bilateral and trilateral generating 

relations involving generalized hypergeometric functions time to time. 

 In this chapter some new bilateral and trilateral generating relations have been 

established involving A-function of one variable and other hypergeometric functions. 

 In section (3.3), we have discussed some new bilateral generating relations 

involving A-function of one variable.  

 In section (3.4), we find some new trilateral generating relations for A-

function of one variable.  

 Most of the results in this chapter have been published in Arybhatta Journal of 

Mathematics and Informatics [41] in form of a research paper.  

3.2  RESULTS AND FORMULAE USED 

 In the present investigation we require the following formulae:  

 From Shrivastava and Manocha [69, p.37 (10), 34, 44], 

 ∑ ( ) ( )       (       )( )     0           (   )     (   )   1   

(3.2.1) 

∑ ( ) ( ) (   ) (   )  
     (   )( )     [            (   )    (   )   ]  

(3.2.2) 
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From Rainvile [56]: 

    ,                - = 
(   ) (     ) ,                  (3.2.3) 

 (a)n 
 (   ) ( )  (3.2.4)

 ( )   (  ) (     ), (3.2.5) 

 (      )  (     )(      )  (  ) (      )(      ) ,         (3.2.6) 

 (, p) ( + x, y + z) = (, x + y + z),           (3.2.7) 

 (, x + y) ( + x + y, t + z) = (, x + y + t + z) 

 = (, y) ( + y, x + t + z),        (3.2.8) 

 (, n) ( + n, q) = (, n + q) = (, q) ( + q, n).           (3.2.9) 

3.3  BILATERAL GENERATING RELATIONS 

 Since bilateral generating relations are of great importance in the study of  

A-Functions therefore in this section we have established the four bilateral Generating 

Relations involving A-Function and Gauss hypergometric function.  

Theorem 3.3.1: Prove that 

(i) ∑             ,                -           [  (        ) (     )   (     )   ]  
  = (1  t) (a)            [  (      ) (     )   (     )   ],    (3.3.1) 

(ii) ∑             ,                -            [  (     )   (         ) (     )   ] 
  = (1  t) (a)            [  (     )   (       ) (     )   ],   (3.3.2) 

(iii) ∑             ,                -            [  (     )   (     ) (     )   ]  
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   = (1  t) a/ 2            [  (     )   (   ) (     )   ],  (3.3.3) 

(iv) ∑             ,              -           [  (       ) (     )   (     )   ]  
   = (1  t) a/ 2            [  (     ) (     )   (     )   ];  (3.3.4) 

|arg (ux)| < ½ h, where h and u are given in (1.2.37) and (1.2.38) respectively and 

    is Gauss hypergeometric function. 

Proof 

(i) Consider 

               ∑     
       ,                -            [  (        ) (     )   (     )   ]   

 On expressing A-function in contour integral form as given in (1.2.35) and 

using (3.2.3), we get 

   ∑          (   ) (     )  ,     ∫  ( )   *  .     /    +   -   
 In the view of (3.2.4) and (2.2.5), we arrive at R.H.S. of (3.3.1) as follows:  

   ∑          (   ) (     )  ,     ∫  ( )  .    /  (     )   - 
      ∫  ( )   .    / ,∑         (   ) -    
      ∫  ( )   .    / (   ) (   )     
 = (1  t) (a)            [  (      ) (     )   (     )   ]         ( in view of  (1.2.35)) 

 Which we have to prove.  

(ii) - (iv) Proceed as above (i) and using the results of section 3.3. 
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3.4  TRILATERAL GENERATING RELATIONS 

 Theory of trilateral generating relations for different kind of special functions 

is of great significance. We are going to establish the five trilateral generating 

relations in this section.  

 In first result we have established a trilateral generating relation involving 

Horn’s hypergeometric function H2 and hypergeometric function FS. 

Theorem 3.4.1 

              ∑   
   ,                   -  (       )( ) 

                 [  (     )    (    )(     ) (     )   ]    

           ∑    (    )(    )(      )(   ) (  )              [  (     )    (  )(   ) (     )   ] 
       .  ,                           (   )     (   )   -,  (3.4.1) 

 |x| < r, |y| < s, (r + s) = 1, |arg (uv)| < ½ h, where h and u are given in (1.2.37) 

and (1.2.38) respectively; 

Proof 

 To prove (3.4.1), consider 

              ∑   
   ,                   -  (       )( ) 

                 [  (     )    (    )(     ) (     )   ]   . 

 Expressing H2 in series form, by using (1.2.14) and A-function (1.2.35) and 

using (3.2.4), we get 

              ∑ ∑ (      )(    )(    )(    )(     )(   )(   ) 
     

 
         (       )( ) 
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   .,     ∫  ( )  (   ) ( )(   ) ( )   -  . 

 After changing integration and summation order and using (3.2.9), we get  

       ∫  ( )  ( ) ( )    
 ∑ (      )(    )(    )(    )(   )(   )(   ) 
          

 [∑ (   )(     ) 
     (       )( )  ]     

Again applying (3.2.1), we find that  

      ∫  ( )   ( ) ( ) ∑ (      )(    )(    )(    )(   )(   )(   ) 
          

  .  0             (   )     (   )   1   . 
Further writing F1 in series form, on using (1.2.2), we find that  

      ∫  ( )   ( ) ( ) ∑ (      )(    )(    )(    )(   )(   )(   ) 
          

 ∑ (     )(    )(    )(       )(   )(   ) 
     , (   )   - , (   )   -     

Now using relation (3.2.7) and (3.2.6), we find that 

      ∫  ( )   ( ) ( ) ∑ (    )(    )(      )(   ) 
   (  )  

 ∑ (      )(     )(    )(    )(    )(       )(   )(   )(   ) 
         , (   )   - , (   )   -     

which in the light of (1.2.27) and (1.2.35) provides (3.4.1).  

 In the following results we have given the trilateral generating relations 

involving some hypergeometric functions given in section 1.2 of chapter 1.  
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Theorem 3.4.2: Prove that 

( )           ∑   
   ,              -  (   )( ) 

   .             [  (     )    (       ) (       )(     ) (     ) (     )   ]     

 ∑    (   )(     )(      )(   ) (  )              [  (     )    (     ) (     )(   ) (   ) (     )   ] 
   ,                                        (   )    (   )   -, 

(3.4.2) 

 r + s = 1, |y| < s, |x| < r, |arg (uv)| < ½ h, where h and u are given in (1.2.37) 

and (1.2.38) respectively,    is Horn’s function as in (1.2.10) and    is Saran’s 

function as in (1.2.23). 

(  )       ∑   
   ,              -  (       )( ) 

.             [  (     )    (    )(     ) (     )   ]    

 ∑    (     )(  )(   ) ( )              [  (     )    (  )(   ) (     )   ] 
.  ,                                (   )     (   )   -, 

(3.4.3) 

 |x| < 1, |arg (uv)| < ½ h, where h and u are given in (1.2.37) and (1.2.38) 

respectively,    is Horn’s function as in (1.2.15) and    is Saran’s function as in 

(1.2.26). 

(iii) ∑       ,             -  (       )( ) 
  .             [  (       ) (     )   (     )    (      )]    
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 ∑    (     )(     )(   ) (  )              [  (     ) (     )   (     )    (    )] 
   .  ,                                  (   )     (   )   -,   

(3.4.4) 

 |x| < r, |y| < s, rs2 |arg (uv)| < ½ h, where h and u are given in (1.2.37) 

and (1.2.38) respectively,    is Horn’s function as in (1.2.18) and    is Saran’s 

function as in (1.2.24). 

(iv)       ∑       ,                 -  (   )( ) 
                     [  (     )    (       ) (       )(     ) (     ) (     )   ]    

 ∑    (     )(    )(   ) (  )              [  (     )    (     ) (     )(   ) (   ) (     )   ] 
   ,                                       (   )    (   )   -, 

(3.4.5) 

 |y| < s, |x| < r, (s  1  1)2 = 4r, |arg (uv)| < ½ h, where h and u are given in 

(1.2.37) and (1.2.38) respectively,    is Horn’s function as in (1.2.19) and    is 

Saran’s function as in (1.2.25). 

Proof 

 (i) – (iv) Proceed as theorem 3.4.1 and using the results of section 3.2. 
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CHAPTER–4 

  DEFINITE AND INDEFINITE INTEGRALS 

INVOLVING A-FUNCTION  

4.1  INTRODUCTION 

 In the study of boundary value problems Integral plays an important role. Its 

usefulness cannot be ignored in getting expansion formulae. These are also significant 

when integral equation, probability and statistical distribution are studied.   

 Ronghe [59], Saxena [63], Sharma [67], Goyal [24], Mohan [50], Srivastava 

[76], [75], Jaloree [31] and several other authors have evaluated some definite, 

indefinite and double integrals involving the generalized hypergeometric functions. 

 Looking importance and usefulness of integral in various fields we have 

established some new integrals of various types, which will be helpful in the study of 

boundary value problems, expansion formula, statistical distribution, probability and 

integral equation. 

 Most of the results in this chapter have been published in The Mathematics 

Education [35] in form of a research paper.  

4.2  PREREQUISITE 

 In order to prove the results in the coming sections we shall need the following 

results:  

From Shrivastava [70], we have 

∫ (   )  
  (   )   (   )( )   

  = 
       (   ) (     ) (    )   (       ) (     )   

 ∑  (       ) (       ) (           )   (           ) (       ) 
     

(4.2.1) 
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provided that Re(1 + ) > 0, Re( + 1) > 0, Re (1 + ) > 0, Re (n ) > 0, Re( 

+ n + k ) > 0. 

∫ (   )  
  (   )   (   )( )   

 = 
(  )        (   ) (     ) (    )   (       ) (     )  

 ∑  (       ) (       ) (           )   (           ) (       ) 
     

(4.2.2) 

only if Re() > 0, Re( + 1) > 0, Re () > 0, Re (n ) > 0, Re( + n + k 

) > 0, Re (1 + ) > 0. 

 ∫ (   )    (   )   (   )( )   

  = 
       (   ) (   )   (     )  

 ∑  (       ) (       ) (       )   (       ) (         ) 
     

(4.2.3) 

only if Re(1 + ) > 0, Re( + 1) > 0, Re( + n + ) > 0, Re (1 + ) > 0. 

 ∫ (   )    (   )   (   )( )    = 

             
       (   ) (   )   (     )   

    ∑  (       ) (       ) (       )   (       ) (         )      (4.2.4) 

only if Re(1 + ) > 0, Re( + 1) > 0, Re(k + ) > 0, Re (1 + ) > 0. 

 ∫ (   )    (   )   (   )( )   

  = 
       (   ) (     ) (    )   (       ) (      )  
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 ∑  (        ) (        ) (       )   (        ) (          ) 
     

 (4.2.5) 

provided that Re(1 + 2n + ) > 0, Re( 2n ) > 0, Re(1 + ) > 0, Re( + 1) 

> 0, Re( n + k) > 0, Re (n ) > 0, Re(+ k) > 0, 

Re(+ k) > 0. 

  ∫ (   )    (   )   (   )( )   

  = 
(  )        (   ) (     ) (    )   (       ) (      )  

 ∑  (        ) (        ) (       )   (        ) (          ) 
     

 (4.2.6) 

only if Re(1 + 2n + ) > 0, Re( 2n) > 0, Re(1 + ) > 0, Re( + 1) > 0, 

Re( n + k) > 0, Re (n ) > 0, Re(+ k) > 0, Re(+ k) > 

0. 

From Bajpai [8], we have 

 ∫            (     )   (  )  (    ) (     ) (       )  ,  (4.2.7) 

where   (     ) is generalized Bessel function, Re() < 0, Re(a) < 2,               
From Whitaker and Watson [84], we have 

 ∫              (   ) (    )         (     )       (   ) (   )   (4.2.8) 

 Re(   )      
From MacRobert [44], we have 

 ∫      (   ) (    )   (    )              ( ) ( ) (   )    (4.2.9) 
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 Re( )      ( )     
From Rainville [56], we have 

 ∫            ( )     Re( )               (4.2.10) 

 ∫     (   )             ( ) ( ) (   )     Re( )      ( )     (4.2.11) 

From Erdelyi [21]:               ∫                       (   )  (     ) (     ) (       ) ,  (4.2.12)  

provided that  > 0, > 0. 

From Nielsen [51]:               ∫ (    )              (   )    (   )   (      ) (      )              (4.2.13) 

provided that . 

              ∫ (    )            =
  (   )    (   )   (      ) (      )                  (4.2.14) 

provided that . 

 From Mishra [49]: 

             ∫ (    )    
                (    )             (    )      

 = 
         ∑ (  )   (  )    (         )  (     )(  )    (  )      (              )      ,  (4.2.15) 

where h and k are positive integers, Q > P (or Q + 1 = P, |c| < 1), V < U (or V + 1 = U, 

|d| < 1), none of the    and    = 0 or < 0 and Re () > 0. 

 From MacRobert [45]: 

             ∫     (    )   (    )        = 
   (      ) (   ) ( ) (     )   (4.2.16) 

where Re(3  2u) > 0, n = 0, 1, 2, …;  
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             ∫         (      )       =  
   (   ) (      ) ( ) (     )  (4.2.17) 

where Re(1  2u) > 0, n = 0, 1, 2, …  

4.3  DEFINITE AND INDEFINITE INTEGRALS 

 Following Ronghe [59], Saxena [63], Sharma [67], Goyal [24], Mohan [50], 

Srivastava [75, 76], Jaloree [31] and other authors, in this section we have evaluated 

some definite and indefinite integrals involving the A-function of one variable with 

the help of results given in the previous section. 

Theorem 4.3.1 

 Prove that if Re(1 + ) > 0, Re(1 + ) > 0, Re(n) > 0, Re( 

+ n + k ) > 0, Re(1 + n + k +) > 0, Re(n ) > 0, |arg 

(uz)| < ½ h, where h and u are given in (1.2.37) and (1.2.38) respectively, then 

 ∫ (   )    (   )   (   )( )        [ (   ) (   )  (     )   
(     )   ]    

                      ∑  (       )   
    (       ) 

               [      (       ) (                 ) (     )    (           ) (       )(     ) (       ) (     )    (            ) (             ) ]  
    (4.3.1) 

Proof 

 Replace the A-function by its equivalent counter integral in L.H.S. of (4.3.1) 

as given in (1.2.35), we get  

 ∫ (   )    (   )   (   )( ) .     ∫  ( )   (   )  (   )       . 

 Under the given condition, changing the order of integration is valid, we arrive 

at  

 
    ∫  ( )   *∫ (   )       (   )      (   )( )  +    
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         = 
    ∫  ( )                (      ) (        ) (       )   (             ) (        )  

                ∑  (       ) (       ) (                 )   (              ) (          )          (By (4.2.1)) 

          ∑  (       )       (       ) 

               [      (       ) (                 ) (     )    (           ) (       )(     ) (       ) (     )    (            ) (             ) ] 
       (Interpreting with (1.2.35)).  

Which we have to prove.  

Theorem 4.3.2: Prove that 

(i)  only if Re(1 + ) > 0, Re(1 + ) > 0, Re(n) > 0, Re( + n + 

k ) > 0, Re(1 + n + k +) > 0, Re(n ) > 0, |arg 

(uz)| < ½ h, where h and u are given in (1.2.37) and (1.2.38) respectively then 

 ∫ (   )    (   )   (   )( )        [ (   ) (   )  (     )   
(     )   ]     

              (  )         ∑  (       )   
    

               [      (       ) (                 ) (     )    (           ) (       )(     ) (       ) (         ) (     )    (            ) (             )]  
    (4.3.2) 

(ii)  If Re() > 0, Re(k) > 0, Re() > 0, Re() 

> 0, |arg (uz)| < ½ h, where h and u are given in (1.2.37) and (1.2.38) 

respectively, then 

 ∫ (   )    (   )   (   )( )        [ (   ) (   )  (     )   
(     )   ]    

                      ∑  (       )   
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              [      (     )    (       ) (           ) (           )(     ) (     ) (         ) (         ) (     )   ]  (4.3.3) 

(iii)  If Re(k) > 0, Re() > 0, Re() > 0, Re() 

> 0, |arg (uz)| < ½ h, where h and u are given in (1.2.37) and (1.2.38) 

respectively, then 

 ∫ (   )    (   )   (   )( )        [ (   ) (   )  (     )   
(     )   ]    

                      ∑  (       )   
    

              [      (     )    (       ) (           ) (           )(     ) (     ) (         ) (         ) (     )   ]  (4.3.4) 

(iv) ∫ (   )    (   )   (   )( )        [ (   ) (   )  (     )   
(     )   ]    

                       ∑  (        )   
    

               [     ( 
  )  (       ) (           ) (     )    (           ) (            )(     ) (       ) (         ) (     )    (         ) (           )]  

    (4.3.5) 

provided that Re(1 + ) > 0, Re(n) > 0, Re(n + k) > 0, Re(1 

+ ) > 0, Re(1 + n + ) > 0, Re(1 + k ) > 0, Re( + 

k +) > 0, Re(n) > 0, |arg (uz)| < ½ h, where h and u are given in (1.2.37) 

and (1.2.38) respectively.  

(v) ∫ (   )    (   )   (   )( )        [ (   ) (   )  (     )   
(     )   ]    

 (  )         ∑  (        )   
    



34 
 

               [      (       ) (           ) (     )    (           ) (            )(     ) (       ) (         ) (     )    (         ) (           )]  
    (4.3.6) 

provided that Re(1 + ) > 0, Re(n) > 0, Re(n + k) > 0, Re(1 

+ ) > 0, Re(1 + n + ) > 0, Re(1 + k ) > 0, Re( + 

k + ) > 0, Re(n) > 0, |arg (uz)| < ½ h, where h and u are given in (1.2.37) 

and (1.2.38) respectively. 

Proof 

(i)  Proceed as in theorem 4.3.1 and using the results (4.2.2) 

(ii)  It can be established using (4.2.3). 

(iii)  It can be established using (4.2.4). 

(iv) It can be established using (4.2.5). 

(v)  It can be established using (4.2.6). 

Theorem 4.3.3: Prove that 

 ∫            (     )         [    (     )   
(     )   ]    

         (  )                [  (       ) (     )    (         )(       ) (     )   ]          (4.3.7) 

where Re() > 0, Re() < 0, Re(a) < 2,               and |arg (uz)| < ½ h, 

where h and u are given in (1.2.37) and (1.2.38) respectively.  

Proof 

 To establish (4.3.7), replace the A-function by its equivalent counter integral 

as given in (1.2.35), we get  

 ∫            (     )  *     ∫  ( )        +     
Under the given condition, changing the order of integration is valid, we  

arrive at  
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    ∫  ( )   *∫              (     )    +     

  Now evaluate the integral in the braces using (4.2.7) and finally interpret it 

with (1.2.35), we get (4.3.7).  

 The following theorem (4.3.4) can be established easily in the view of (4.2.7) 

exactly on the same lines as given above respectively. 

Theorem 4.3.4: Prove that 

 ∫            (     )         [     (     )   
(     )   ]     

 (  )                [    (        ) (     )   
(      ) (     )    (          )]         (4.3.8) 

where Re() > 0, Re() < 0, Re(a) < 2,               and |arg (uz)| < ½ h, 

where h and u are given in (1.2.37) and (1.2.38) respectively.  

Theorem 4.3.5:  Prove that 

 ∫                        [               (     )   
(     )   ]     

  (   )              [  (     )    (         )(      ) (      ) (     )   ]          (4.3.9) 

provided that  > 0, > 0, |arg (ux)| < ½ h, where h and u are given in (1.2.37) and 

(1.2.38) respectively.  

Proof 

 To establish (4.3.9), use (1.2.35) and after changing the order of integration, 

we get        ∫     ( ) [∫     (    )        (    )    ]     
  Now evaluate the integral in the braces by using the result (4.2.12) and finally 

interpreting in view of (1.2.35), the integral (4.3.9) is obtained.  
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Theorem 4.3.6: Prove that 

(i)  ∫                         [                (     )   
(     )   ]    

  (   )                [  (      ) (     )   
(      ) (     )    (        )]        (4.3.10) 

provided that  > 0, > 0, |arg (ux)| < ½ h, where h and u are given in (1.2.37) and 

(1.2.38) respectively.  

(ii) ∫                         [                (     )   
(     )   ]    

  (   )                [  (      ) (     )    (         )(      ) (     )   ]          (4.3.11) 

provided that  > 0, > 0, |arg (ux)| < ½ h, where h and u are given in (1.2.37) and 

(1.2.38) respectively.  

(iii)      ∫                         [                 (     )   
(     )   ]    

               (   )              [  (      ) (      ) (     )   
 (     )    (        ) ]          (4.3.12) 

provided that  > 0, > 0, |arg (ux)| < ½ h, where h and u are given in (1.2.37) and 

(1.2.38) respectively.  

Proof 

 The proof of the integrals (4.3.10) to (4.3.12) would run parallel to what we 

have obtained in theorem 4.3.5. 

Theorem 4.3.7: Prove that 

∫     (  )  (      )            [  (      )   (     )   
(     )   ]    

  ( )               [  (        ) (     )    (        ) (       ) (     )    (      ) ],  (4.3.13) 
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provided that h > 0, and |arg (uz)| < ½ h, where h and u are given in (1.2.37) 

and (1.2.38) respectively.  

Proof 

 We can express the integrand which contained A-function in term of Mellin-

Barnes type integral (1.2.35). Due to absolute convergence of the integrals involved in 

the process we can interchange the order of integrations, which is justifiable, we get        ∫     ( ) [∫    (  ) 
 (     )  (     )    ]     

 Now evaluate the integral in the braces using the formula given in Bajpai [6]: 

∫    (  )  (     )        =    (    ) (       ) (      ) (  )  

and applying (1.2.35), the definition of the A-function, we get the result (4.3.13). 

Theorem 4.3.8: Prove that 

∫ (   )     (   )   (   )( )         [  (   )   (     )   
(     )   ]     

                    

                [      (     ) (     )    (      )(        ) (     )    (           )],  (4.3.14) 

provided that k > 0, and |arg (uz)| < ½ h, where h and u are given in (1.2.37) 

and (1.2.38) respectively.  

Proof 

 We can express the integrand which contained A-function in term of Mellin-

Barnes type integral (1.2.35). Due to absolute convergence of the integrals involved in 

the process we can interchange the order of integrations, which is justifiable, we get        ∫     ( ) [∫ (   )      
  (   )   (   )( )   ]     

Now evaluate the integral in the braces using the formula given in Bajpai [4]: 
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 ∫ (   )     (   )   (   )( )             (     )   (    ) (        ) (    ) (        ), 
and applying (1.2.35), to get (4.3.14). 

Theorem 4.3.9:  Prove that 

∫ (    )                  [  (    )    (     )   
(     )   ]     

         (   )             [  (      ) (      ) (     )   
(     )    (        ) (        )],   (4.3.15) 

provided that  and |arg (uz)| < ½ h, where h and u are given in (1.2.37) 

and (1.2.38) respectively.  

Proof 

 We can express the integrand which contained A-function in term of Mellin-

Barnes type integral (1.2.35). Due to absolute convergence of the integrals involved in 

the process we can interchange the order of integrations, which is justifiable, we get        ∫     ( ) [∫ (    )      
         ]     

 Now evaluate the integral in the braces using the formula (4.2.13), and 

applying (1.2.35), to get (4.3.15).  

Theorem 4.3.10: Prove that 

              ∫ (    )                 [  (    )    (     )   
(     )   ]     

         (   )             [  (      ) (      ) (     )   
(     )    (        ) (        )], (4.3.16) 

provided that and |arg (uz)| < ½ h, where h and u are given in (1.2.37) 

and (1.2.38) respectively.  

Proof 

 On applying (4.2.14) instead of the (4.2.13) in theorem (4.3.15) theorem 

(4.3.16) is established. 
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Theorem 4.3.11: Prove that 

             ∫ (    )    
                (    )             (    )    

          [  (    )   (     )   
(     )   ]     

 =         ∑ (  )   (  )   (  )    (  )                    

                                           [  (     )    (                )(            ) (              ) (     )   ] (4.3.17) 

where h and k are positive integers, Q > P (or Q + 1 = P, |c| < 1), V < U (or V + 1 = U, 

|d| < 1), none of the    and    = 0 or < 0 and Re () > 0 and |arg (uz)| < ½ h, where 

h and u are given in (1.2.37) and (1.2.38) respectively.  

Proof 

 We can express the integrand which contained A-function in term of Mellin-

Barnes type integral (1.2.35). Due to absolute convergence of the integrals involved in 

the process we can interchange the order of integrations, which is justifiable, we get 

        ∫     ( ) [∫ (    )        
                (    )             (    )    ]     

 Evaluate the integral in the braces using the formula (4.2.15) and using 

Gamma-function's multiplication formula Erdelyi [36, p.4, (11)], we get 

         ∑ (  )   (  )   (  )    (  )               

       ∫     ( ) [ (             )  (               ) (                 ) ]    

  Now applying (1.2.35), the value of the integral (4.3.17) is obtained.  

Theorem 4.3.12: Prove that 

             ∫     (    )   (    )             [         (     )   
(     )   ]     
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                   [  (       ) (     )    (       )(        ) (     )    (     ) ],  (4.3.18) 

provided that Re(3  2u) > 0, n = 0, 1, 2, …, h > 0 and |arg (uz)| < ½ h, where h and 

u are given in (1.2.37) and (1.2.38) respectively.  

Proof 

 We can express the integrand which contained A-function in term of  

Mellin-Barnes type integral (1.2.35). Due to absolute convergence of the integrals 

involved in the process we can interchange the order of integrations, which is 

justifiable, we get 

                ∫     ( ) [∫    (    )   
 (    )   (    )   ]     

 Now evaluate the integral in the braces using the formula (4.2.16), we have 

               ∫     ( ) [ (         )  (      ) (    ) (        ) ]    

  On applying (1.2.35), the integral (4.3.18) is obtained. 

Theorem 4.3.13: Prove that 

             ∫         (      )           [       (   ) (     )   
(     )   ]    

           [  (       ) (     )    (       )(        ) (     )    (     ) ],  (4.3.19) 

provided that Re(1  2u) > 0, n = 0, 1, 2, …, h > 0 and |arg (uz)| < ½ h, where h and 

u are given in (1.2.37) and (1.2.38) respectively.  

Proof 

 Proceed as in theorem 3.4.2 and using the result (4.2.17)  

4.4  DOUBLE INTEGRALS 

 In this section, we have evaluated nine double integrals involving A-function 

of one variable by taking the help of some results given in section (4.2). We have 
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proved theorem 4.4.1 and other results can be easily proved by adopting the same 

lines. 

Theorem 4.4.1: Prove that 

 ∫ ∫                  (   ) (    )     (   ) (    )   (    )    

  .         (   (   )         ) (   (   )         )       

                                      (     )    (       ) (     ) (     ) (         ) (   ) (   ) (     )    ,  (4.4.1) 

provided that Re () > 1, Re() > 0, Re() > 0,     and    , |arg (uz)| < ½ 

h, where h and u are given in (1.2.37) and (1.2.38) respectively.  

Proof 

 We can express the integrand which contained A-function in term of Mellin-

Barnes type integral (1.2.35). Due to absolute convergence of the integrals involved in 

the process we can interchange the order of integrations, which is justifiable, we get 

       ∫  ( )     
   ∫  (    ) (    )          (    ) (    ) (    ) (    ) (    )     
 . ∫     (    ) (    )    (    )(    )  (    )(    )        

 Now using the results (4.2.8), (4.2.9) and interpreting it with the help of 

(1.2.35), to get R.H.S. of (4.4.1). 

Theorem 4.4.2: Prove that 

(i) ∫ ∫                  (   )     (   ) (    )    

  .         (         ) ( (   )         )       

                             (   )    (     )    (       ) (     ) (     ) (         ) (   ) (   ) (     )    ,  (4.4.2) 
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where Re () > 1, Re() > 0, Re() > 0,     and    , |arg (uz)| < ½ h, 

where h and u are given in (1.2.37) and (1.2.38) respectively. 

(  )         ∫ ∫           
 

 
          (   ) (    )    

 .         (         ) (          )       

                      [       (     )    (     ) (     )(         ) (   ) (     )   ]   (4.4.3) 

provided that Re () > 1, Re() > 0,     and    , |arg (uz)| < ½ h, where 

h and u are given in (1.2.37) and (1.2.38) respectively.  

(iii)        ∫ ∫           (   )     (   ) (    )   (    )    

  .         (        ) ((   )        )       

                          [           (     )    (       ) (       )(   ) (   ) (   ) (   ) (     )   ]  (4.4.4) 

where Re () > 0, Re () > 0, Re() > 0, Re() > 0,     and    , |arg (uz)| < ½ 

h, where h and u are given in (1.2.37) and (1.2.38) respectively.  

(iv)       ∫ ∫                (   ) (    )   (    )    

 .         (        ) (        )       

                    [       (     )    (       )(   ) (   ) (   ) (     )   ]   (4.4.5) 

provided that Re () > 0, Re () > 0, Re() > 0,     and    , |arg (uz)| < ½ h, 

where h and u are given in (1.2.37) and (1.2.38) respectively. 

(v)        ∫ ∫            (     )           (     )                        

 (  )                  [  (       ) (       ) (     )    (         ) (         )(       ) (       ) (     )   ]  
 (4.4.6) 
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where Re() < 0, Re() > 0, Re() > 0, Re() > 0, Re(a) < 2,                   , Re(b) < 2,                   and |arg (uz)| < ½ 

h, where h and u are given in (1.2.37) and (1.2.38) respectively. 

(vi) ∫ ∫            (     )           (     )                          

 (  )                  [  (        ) (        ) (     )   
(      ) (      ) (     )    (          ) (          )]  

 (4.4.7) 

where Re() < 0, Re() > 0, Re() > 0, Re() > 0, Re(a) < 2,                , Re(b) < 2,                  and |arg (uz)| < ½ h, 

where h and u are given in (1.2.37) and (1.2.38) respectively. 

(vii) ∫ ∫            (     )           (     )                         

 (  )                  [  (       ) (        ) (     )    (         )(       ) (      ) (     )    (          ) ]  
 (4.4.8) 

where Re() < 0, Re() > 0, Re() > 0, Re() > 0, Re(a) < 2,                , Re(b) < 2,                  and |arg (uz)| < ½ h, 

where h and u are given in (1.2.37) and (1.2.38) respectively. 

(viii) ∫ ∫            (     )           (     )                         

 (  )                  [  (        ) (       ) (     )    (         )(      ) (       ) (     )    (          )]  
 (4.4.9) 

where Re() < 0, Re() > 0, Re() > 0, Re() > 0, Re(a) < 2,                , Re(b) < 2,                  and |arg (uz)| < ½ h, 

where h and u are given in (1.2.37) and (1.2.38) respectively. 

Proof 

 Proceeding on the same lines as in the theorem 4.4.1, the results (4.4.2) to 

(4.4.9) can be established with the help of (4.2.7), (4.2.8), (4.2.9), (4.2.10) and 

(4.2.11).  
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CHAPTER–5 

INTEGRATION INVOLVING CERTAIN PRODUCTS 

AND A-FUNCTION 

5.1  INTRODUCTION 

 Some integrals containing the product of other commonly used 

hypergeometric functions have been evaluated by Shrivastava [75, 76], Tiwari [81, 

82] and several other authors.  

 In this chapter, we shall establish some integrals containing the products of 

other hypergeometric functions and A-Function using E-operator on the lines of 

Shrivastava [75, 76], Tiwari [81, 82] and several other authors.  

 In section (5.4), some integrals containing the product of A-Function and 

generalized hypergeometric function have been derived by using E (finite difference 

operator).  

 Most of the results in this chapter have been published in Applied Science 

Periodical [39] in form of a research paper.  

5.2  FORMULA USED 

 From Shrivastava [62, p.426, (1.3); (1.4)] (with z replaced by iz are required in 

the present work: 

    ,( ) (  ) ( ) (  ) ( ) (  ) ( ) (  )            - 
  = ∑ (    ) (   )           (  )  ,( ) (  ) ( ) (  )        ( ) (  ) ( ) (  )      - (5.2.1) 

and 

    ,( ) (  ) ( ) (  ) ( ) (  ) ( ) (  )            - 
  =  (   )∑               (  )  ,( ) (  ) ( ) (  )        ( ) (  ) ( ) (  )      -, (5.2.2) 

where C + A + A´ ≤ D + B + B´, A´ + C´ + A ≤ B´ + D´ + B, and for all values of  

with possible exception of zero and negative integers. (a) represents the sequence of A 
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parameters a1, a2, …, aA and this convention will be retained throughout this chapter. 

Burchnall and Chaundy [13] gives the notation for double hypergeometric function, 

which was also introduced by Kampe de Feriet [3].    

 The finite difference operator E is given in [12], with w = 1 has the following 

operations 

 Eaf(a) = f(a + 1),     ( )    ,      ( )-.           (5.2.3)  

5.3  MAIN INTEGRALS 

 In this section, we have established two integrals containing the products of 

other hypergeometric functions and A-Function. We have represented these two 

integrals in another forms also. At the end of this section we have also discussed 

particular cases. 

Theorem 5.3.1: Prove that 

 ∫                 ,( ) (  ) ( ) (  ) ( ) (  ) ( ) (  )            - 
             [      (     )   (     )   ]    
  = ∑ (    ) (   )                ,( ) (  ) ( ) (  )        ( ) (  ) ( ) (  )      - 
                [     .            / (     )    (           ) (            )(       ) (     )   ]  (5.3.1) 

which is valid under the conditions C + A' + A ≤ D + B' + B, A´ + C´ + A ≤ B´ + D´ + 

B, R(          ) >  1 (for j = 1, 2, 3,…., k), R(      (    )  ) < 1 (for j = 1, 2, 

3, …., l) and |arg (u  )| < ½ h, where h and u are given in (1.2.37) and (1.2.38) 

respectively. 

Proof 

 To prove (5.3.1), take the expansion (5.2.1), multiply both side by f(z), 

integrate w.r.t. z from 0 to and on interchanging the order of summation and 

integration, we get    
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 ∫      ,( ) (  ) ( ) (  ) ( ) (  ) ( ) (  )            - ( )   
   = ∑ (    ) (   )       ,( ) (  ) ( ) (  )        ( ) (  ) ( ) (  )      - 
   . ∫      (  )   ( )  ,  (5.3.2) 

for A´ + C + A ≤ B´ + D + B, A´ + C´ + A ≤ B´ + D´ + B, R( + 1) > 0 and 

R( + 1) > 0, where for large z, f(z) = O(|z|); and for small z, f(z) = O(|z|).  

 The change of integration and summation is justified [12, p.500] because 

(i)  The series 

 ∑ (    ) (   )           (  )  ,( ) (  ) ( ) (  )        ( ) (  ) ( ) (  )      -  
 is uniformly convergent in 0     , N being arbitrary; 

(ii)  f(z) is a continuous function of z  z ≥ z0 > 0; 

(iii)  The integral on the left of (5.3.2) converges absolutely under the stated 

conditions.  

 Now on taking 

  f(z) =                   [      (     )   (     )   ] 
in (5.3.2), we can express A-function in term of Mellin-Barnes type integral (1.2.35). 

Due to absolute convergence of the integrals involved in the process we can 

interchange the order of integrations, which is justifiable, evaluate integral in the 

braces using [44, p.328(10)] and interpreting it with (1.2.35), we get (5.3.1). 

Theorem 5.3.2: Prove that 

 ∫                 ,( ) (  ) ( ) (  ) ( ) (  ) ( ) (  )            - 
  .       [      (     )   (     )   ]    
  = ∑ (    ) (   )                ,( ) (  ) ( ) (  )        ( ) (  ) ( ) (  )      - 
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                [     .           / (     )    (           ) (            )(       ) (     )   ]  (5.3.3) 

which is valid under the conditions A´ + C + A ≤ B´ + D + B, A´ + C´ + A ≤ B´ + D´ 

+ B, R(          ) >  (for j = 1, 2, 3, …., k), R(      (    )  ) < 1 (for j = 1, 2, 

3, …., l) and |arg (u  )| < ½ h, where h and u are given in (1.2.37) and (1.2.38) 

respectively. 

Proof 

 If we take 

  f(z) =                   [      (     )   (     )   ] 
proceed on the parallel lines as mentioned above and then in the light of the result [45, 

p.328(11)], we obtain (5.3.3). 

 On considering the result (5.2.2), proceeding on the parallel lines as mentioned 

above and making use of the result [45, p.328(10); p.328(11)], we get the following 

different forms of the integral (5.3.1) and (5.3.3) as  

Integral 5.3.1(a) 

  ∫                 ,( ) (  ) ( ) (  ) ( ) (  ) ( ) (  )            - 
   .       [      (     )   (     )   ]dz 

  = 
 (   )      ∑           ,( ) (  ) ( ) (  )        ( ) (  ) ( ) (  )      - 

               [     .            / (     )    (        ) (            )(         ) (     )   ]  (5.3.4) 

which is valid under the same conditions as (5.3.1) and  

Integral 5.3.1(b) 

 ∫                 ,( ) (  ) ( ) (  ) ( ) (  ) ( ) (  )            - 
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  .       [      (     )   (     )   ]dz 

  = 
 (   )      ∑           ,( ) (  ) ( ) (  )        ( ) (  ) ( ) (  )      - 

                 [     .           / (     )    (        ) (            )(         ) (     )   ]  (5.3.5) 

 The conditions of validity for (5.3.5) are the same as for (5.3.3). 

PARTICULAR CASES 

1.  For a = b and a´ = b´, the double hypergeometric function in the left breaks up 

into the product of two generalized hypergeometric functions and from (5.3.1), 

we thus get  

 ∫                CFD,( ) ( )      - C´FD´,(  ) (  )      -  
   .        [      (     )   (     )   ] dz 

  = ∑ (    ) (   )                ,( ) (  )        ( ) (  )      - 
                [     .            / (     )    (           ) (            )(       ) (     )   ]  (5.3.8) 

  The conditions of validity for (5.3.8) are the same (with A = B, A´ = B´) as 

given in (5.3.1).  

2.   On the other hand, since  

  ,( ) (  ) ( ) (  ) ( ) (  ) ( ) (  )    -   A + A´ + CFB + B´ + D,( ) (  ) ( ) ( ) (  ) ( )  -, 
when y = 0. 

 The special case A = A´ = B = B´ = 0 of (5.3.1) provides us  

 ∫                CFD,( ) ( )      - .        [      (     )   (     )   ] dz 

   = ∑ (    ) (   )                C + 2FD,( )        ( )   - 
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                [     .            / (     )    (           ) (            )(       ) (     )   ]  (5.3.9) 

which is valid under the same conditions as for (5.3.1) with A = A´ = B = B´ = C´ = 

D´ = 0. 

 Further, with C = 0, D = 1, d1 = 1 + 1, x = 1, express 0F1 as a Bessel function, 

evaluate 2F1 using Gauss's theorem [56] and after that on a closer examination we find  

 ∫           (  )               [      (     )   (     )   ]    
 = 

                      [     .            / (     )    (           ) (            )(       ) (     )   ]  
(5.3.10) 

provided that R(          ) >  1 (j = 1, …., k), R(    (    )  ) < 1/2 (j = 1, …., l) 

and |arg (u  )| < ½ h, where h and u are given in (1.2.37) and (1.2.38) respectively. 

 Similar consequences of the integral (5.3.3) 

 ∫           (  )               [      (     )   (     )   ]    
 = 

                      [     .           / (     )    (           ) (            )(       ) (     )   ]  
(5.3.11) 

provided that R(          ) >  1 (j = 1, …., k), R(    (    )  ) < 1/2 (j = 1, …., l) 

and |arg (u  )| < ½ h, where h and u are given in (1.2.37) and (1.2.38) respectively. 

3.  It may be of interest to conclude with the remark that the integrals (5.3.1) and 

(5.3.3) provide few fascinating outcomes on reducing few or all the functions 

that occurred in the integrand and it does not seem out of place to mention that 

specially in the light of the results [56, p.105,106] 

 2F3,                                          -   0F1,     - 0F1,     - 
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and 

 2F3,                                -   1F1,       - 1F1,     - 
since 0F1 is reduced to Bessel function and by Kummer's second theorem [56, p.126] 

it can be also transformed to 1F1. Then further 1F1 can be reduced to a generalized 

Laguerre polynomial    ( ), Whittaker function Mk,m(x), Bessel function of first kind 

In(x), Hermite polynomial Hn(x) and Weber's parabolic cylinder function Dn(x). 

5.4  INTEGRALS USING FINITE DIFFERENCE OPERATOR E 

 In this section we evaluate four integrals by using finite difference operator E:  

Theorem 5.4.1: Prove that 

 ∫                         [               (     )   (     )   ]  
  . uFv [eu; fv; c sin cos]    

  .  /∑ ∏ (    )      ∏ (    )                        [  (     )    (      (   )     ).         / .         / (     )   ]         (5.4.1) 

provided that  > 0, > 0, |arg (ux)| < ½ h, where h and u are given in (1.2.37) and 

(1.2.38) respectively.  

Proof  

 Taking product of (4.3.9) and 
∏  (    )      ∏  (    )     and using the operator          , we 

get  

          *∫                        [               (     )   (     )   ]∏  (    )      ∏  (    )       + 
           *.  /              [  (     )    (         ).      / .      / (     )   ] ∏  (    )      ∏  (    )    },     (5.4.5) 

Expanding both sides of (5.4.5) and applying (5.2.3), we have 

 ∑ *    ∫     (    )        (    )         [               (     )   (     )   ] 
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             .   
∏  (      )        ∏  (      )         + 

  =∑ *    ∏  (      )        ∏  (      )      .  /              [  (     )    (      (   )     ).         / .         / (     )   ]}. 

 Further, using (   )   (   ) ( ) , on left hand side change the order of summation 

and integration, then replace(    ) by    and (    ) by   , to obtain (5.4.1). 

Theorem 5.4.2: Prove that 

∫          
               [                (     )   (     )   ]  

    uFv [eu; fv; c sin cos]    

  .  /∑ ∏ (    )      ∏ (    )                         [  .         / (     )   .         / (     )    (     (   )     )], (5.4.2) 

provided that  > 0, > 0, |arg (ux)| < ½ h, where h and u are given in (1.2.37) and 

(1.2.38) respectively. 

Proof 

 Proceed as in theorem 5.4.1 and using the results (4.3.10) 

Theorem 5.4.3: Prove that 

∫          
               [                (     )   (     )   ] 

     uFv [eu; fv; c sin cos]    

  .  /∑ ∏ (    )      ∏ (    )                         [  .         / (     )    (     (   )     ).         / (     )   ], (5.4.3) 

provided that  > 0, > 0, |arg (ux)| < ½ h, where h and u are given in (1.2.37) and 

(1.2.38) respectively. 
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Proof 

 Proceed as in theorem 5.4.1 and using the results (4.3.11) 

Integral 5.4.4 

∫          
               [                 (     )   (     )   ]    

  .  /∑ ∏ (    )      ∏ (    )                       [  .         / .         / (     )    (     )    (     (   )     ) ],          (5.4.4) 

provided that  > 0, > 0, |arg (ux)| < ½ h, where h and u are given in (1.2.37) and 

(1.2.38) respectively. 

Proof 

 Proceed as in theorem 5.4.1 and using the results (4.3.12) 
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CHAPTER–6 

EXPANSION AND IDENTITIES INVOLVING  

A-FUNCTION  

6.1  INTRODUCTION 

 Samtani [61], Saxena [63, 64], Srivastava [79], Rathi [57], Agrawal [1], Goyal 

[23], and several other authors have evaluated some Expansion and Identities for 

generalized hyper geometric functions.  

 Looking into the requirement and importance of various properties of 

expansion and identities in several field, in this chapter we established some new 

Expansion and Identities involving 'A-Function' of one variable.  

 We have established some new Expansions for 'A-Function' of one variable in 

section (6.2).  

  We have discussed some new Identities involving 'A-Function' of one variable 

in section (6.3).  

 Some of the results in this chapter have been published in International 

Research Journal of Mathematics, Engineering and IT [38] respectively in form of 

research paper.  

6.2  EXPANSION FORMULAE  

 Expansion Formulae plays an important role in study of special functions in 

particular A-Function. In this section, we established six Expansion Formula 

involving A-function of one variable with the help of integrals obtained in chapter 4. 

In the present investigation, despite of integrals in chapter 4 we also require the 

following Formulae:  

From Rainvile [56]: 

 z ( )   (   ),   (6.2.1) 

 ∫ (   )    (   ) ,  (   )( )-    = 
       (     ) (     )  (        ) (       ).  (6.2.2) 



54 

 

Theorem 6.2.1: Prove that 

 (   ) (   )        [ (   ) (   )  (     )   (     )   ] 
 ∑     (        ) (       ) (       )   (     ) (     ) 
         (   )( ) 

               [      (         ) (             ) (     )   (       ) (         ) (     )      
        (               ) (         )(          ) (             ) ]   (6.2.3) 

provided that Re() > 0, Re() > 0, Re() > 0, 

Re(n) > 0, Re(n) > 0, Re(k n) > 0, |arg 

(uz)| < ½ h, where h and u are given in (1.2.37) and (1.2.38) respectively.  

Proof 

 To prove (6.2.3), consider 

  (   ) (   )        [ (   ) (   )  (     )   (     )   ] 
 ∑         (   )( )    (     ) 

 Due to the continuity and bounded variation of expression on the L.H.S. in ( 

1, 1), equation (6.2.3) is valid. On taking product of (6.2.3) and  (   ) (   )   (   )( ) and integrating between  1 to 1 with respect to x, using relation (4.3.1) 

in left hand side, interchanging the order of integration and summation, which is valid 

under the condition [14, p.176)], using orthogonality property of Jacobi Polynomials, 

we get  

        (        ) (       ) (     ) (     ) . ∑  (       )       

               [      (         ) (             ) (     )   (       ) (         ) (     )      
        (               ) (         )(          ) (             ) ]   (6.2.5) 
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 Further using (6.2.5) in (6.2.4), we get the relation (6.2.3). 

Theorem 6.2.2: Prove That 

(i) (   ) (   )         [ (   ) (   )  (     )   (     )   ] 
 ∑     (  ) (        ) (       ) (       )   (     ) (     ) 
         (   )( ) 

                [      (         ) (             ) (     )    (       ) (         ) (           ) (     )      
  (               ) (         )(          ) (             ) ],  (6.2.6) 

provided that Re() > 0, Re() > 0, Re(n) > 0, 

Re() > 0, Re(n + k +) > 0, Re(n) > 0, Re(k 

n) > 0, |arg (uz)| < ½ h, where h and u are given in (1.2.37) and 

(1.2.38) respectively.  

(ii) (   ) (   )         [ (   ) (   )  (     )   (     )   ] 
 ∑     (        ) (       ) (       )   (     ) (     ) 
         (   )( ) 

             [      (     )    (         ) (               ) (             )(       ) (       ) (           ) (       ) (     )   ]  
(6.2.7) 

provided that Re() > 0, Re() > 0, Re(k + ) > 0, Re() > 

0, Re() > 0, |arg (uz)| < ½ h, where h and u are given in (1.2.37) and 

(1.2.38) respectively. 

(iii) (   ) (   )         [ (   ) (   )  (     )   (     )   ] 
 ∑     (        ) (       ) (       )   (     ) (     ) 
         (   )( ) 
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             [      (     )    (         ) (               ) (             )(       ) (       ) (           ) (       ) (     )   ]  
(6.2.8) 

provided that Re() > 0, Re() > 0, Re() > 0, Re() > 

0, |arg (uz)| < ½ h, where h and u are given in (1.2.38) and (1.2.39) respectively. 

(iv) (   ) (   )         [ (   ) (   )  (     )   (     )   ] 
 ∑     (        ) (       ) (        )   (     ) (     ) 
         (   )( ) 
                [     (   )  (         ) (               ) (     )    (       ) (         ) (           ) (     )      

  (               ) (          )(             ) (             )],  (6.2.7) 

provided that Re(1 + n + ) >0, Re(1 + k ) > 0, 

Re(1 + ) >0, Re ( + k +) > 0, Re (n) > 0, Re(1 + n + ) 

> 0, Re(n + k) > 0,|arg (uz)| < ½ h, where h and u are given in (1.2.37) and 

(1.2.38) respectively. 

(v) (   ) (   )         [ (   ) (   )  (     )   (     )   ] 
 ∑     (        ) (       ) (         )   (     ) (     ) 
         (   )( ) 

                [      (         ) (               ) (     )    (       ) (         ) (           ) (     )      
  (               ) (          )(             ) (            ) ],  (6.2.9) 

provided that Re(1 + n + ) > 0, Re(n + k) > 0, Re(1 + ) > 0, 

Re(n) > 0, Re(1 + n + ) > 0, Re( + k + ) > 0, 

Re(1  k ) > 0, |arg (uz)| < ½ h, where h and u are given in 

(1.2.37) and (1.2.38) respectively. 
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Proof 

 (i) to (v) Proceed as in theorem 6.2.1 and using the results (4.3.2) to (4.3.6), 

respectively.  

6.3  IDENTITIES  

 In this section, we have discussed certain properties of A-Function. Going in 

lines with Kishore and Srivastva [33] we have established nine Identities involving  

A-function of one variable in form of propositions. We have applied definition of  

A-Function and properties of Gamma function to obtain these identities. 

Theorem 6.3.1: Prove that 

              [  (   ) (      ) (     )   (     )    (   ) ] 
   = (   )           [  (   ) (     )   (     )   ] 
                    [  (   ) (     )    (   )(   ) (     )   ],  (6.3.1) 

|arg (ux)| < ½ h, where h and u are given in (1.2.37) and (1.2.38) respectively.  

Proof 

  To prove (6.3.1), consider left hand side of (6.3.1), after using (1.2.35), We 

have  

 L.H.S.      ∫  ( )  (    ) (      ) (      )       

      ∫  ( )  (    )(      )     [On using (6.2.1)] 

  (   )   ∫  ( )  (    )      

       ∫  ( )  (    ) (    ) (  )     , 
which in the light of (1.2.35) provides right hand side of (6.3.1). 
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Theorem 6.3.2: Prove that 

                [  (   ) (     )    (     )(     ) (     )   ] 
   = (   )           [  (   ) (     )   (     )   ] 
                    [  (   ) (     )    (   )(   ) (     )   ],  (6.3.2) 

|arg (ux)| < ½ h, where h and u are given in (1.2.37) and (1.2.38) respectively.  

Proof 

 To prove (6.3.2), consider left hand side of (6.3.2), after using (1.2.35), to 

obtain  

 L.H.S.      ∫  ( )  (    ) (      ) (      )       

      ∫  ( )  (    )(      )     [On using (6.2.1)] 

  (   )   ∫  ( )  (    )      

       ∫  ( )  (    ) (    ) (  )     , 
which in the light of (1.2.35) provides right hand side of (6.3.2). 

Theorem 6.3.3: Prove that 

 k                [  (   ) (     )    (     )(   ) (   ) (     )   ] 
  =                  [  (   ) (     )    (     )(   ) (   ) (     )   ] 
                    [  (   ) (     )   (   ) (     )   ],  (6.3.3) 

|arg (ux)| < ½ h, where h and u are given in (1.2.37) and (1.2.38) respectively.  
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Proof 

  To prove (6.3.3), consider  

                [  (   ) (     )    (     )(   ) (   ) (     )   ] 
      ∫  ( )  (    ) (    ) (    ) (      )                 (on using (1.2.35)) 

      ∫  ( )    (  ) (   )         
     ∫  ( ) (          ) (  ) (    )      [On using (6.2.1)] 

     ∫  ( )  (    ) (  )      

      ∫  ( )  (    ) (    ) (  ) (      )     , 
which in the light of (1.2.35) provides right hand side of  (6.3.3). 

Theorem 6.3.4: Prove that 

 k                [  (   ) (     ) (     )   (   )(     )    (    ) ] 
   =                 [  (   ) (     )   (   )(     )   ] 
                    [  (     ) (   ) (     )   (   ) (     )    (    ) ],  
  (6.3.4) 

|arg (ux)| < ½ h, where h and u are given in (1.2.37) and (1.2.38) respectively. 

Proof 

 To prove (6.3.4), consider  

                [  (     ) (   ) (     )   (   ) (     )    (    ) ] 
     ∫  ( )  (    ) (    ) (    ) (      )      (on using (1.2.35)) 
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      ∫  ( )    (  ) (    )         
      ∫  ( ) (  (    )    ) (  ) (    )      [On using (6.2.1)] 

       ∫  ( )  (    ) (  )      

       ∫  ( )  (    ) (    ) (  ) (      )     , 
which in the light of (1.2.35) provides right hand side of  (6.3.4). 

Theorem 6.3.5: Prove that 

              [  (    ) (     )   (     )    (      )] 
                  [  (       ) (      ) (     )   (     )    (        ) (       )]  

   =  (   )       [  (     )   (     )   ],           (6.3.5) 

|arg (ux)| < ½ h, where h and u are given in (1.2.37) and (1.2.38) respectively.  

Proof 

 To prove (6.3.5), consider  

              [  (    ) (     )   (     )    (      )] 
                  [  (       ) (      ) (     )   (     )    (        ) (       )]  

      ∫  ( )  (      ) (        )       

      ∫  ( )  (      ) (        ) (          ) (      )                 (on using (1.2.35)) 

      ∫  ( )   *  (      ) (        )  (      ) (        ) (          ) (      )+   
     ∫  ( )   *(    )(      )  (        )(      )+   

[On using (6.2.1)] 
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   (   )     ∫  ( )       

which in the light of (1.2.35) provides right hand side of   (6.3.5). 

Theorem 6.3.6: Prove that 

             [  .       / (      ) (     )   (     )    (        ) (     )] 
                  [  (      ) (          ) (     )   (     )    (       ) (          )]   

   =  (   )       [  (     )   (     )   ],  (6.3.6) 

|arg (ux)| < ½ h, where h and u are given in (1.2.37) and (1.2.38) respectively.  

Proof 

 Proceed as in theorem 6.3.5. 

Theorem 6.3.7: Prove that 

              [  (      ) (     )   (     )    (    ) ] 
                  [  (       ) (     )   (     )    (        )]   

   = (   )       [  (     )   (     )   ],  (6.3.7) 

|arg (ux)| < ½ h, where h and u are given in (1.2.37) and (1.2.38) respectively.  

Proof 

  To prove (6.3.7), consider left hand side of (6.3.7), after using (1.2.35), to 

obtain  

            ∫  ( )   * (      ) (      )  (      ) (        )+    

      ∫  ( )   *(      )  (        )+   [On using (6.2.1)] 
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  (   )     ∫  ( )       

which in the light of (1.2.35) provides right hand side of (6.3.7). 

Theorem 6.3.8: Prove that 

                ,  (   ) (     )    (     ) (     ) (     )    - 
   = (   )           ,  (   ) (     )    (     )   - 
                    ,  (   ) (     )    (   ) (   ) (     )   -,  (6.3.8)  

|arg (ux)| < ½ h, where h and u are given in (1.2.37) and (1.2.38) respectively. 

Proof 

  To prove (6.3.8), let us consider left hand side of (6.3.8).  

After using (1.2.35), we obtain  

            ∫  ( )  (      ) (   ) (      )       

      ∫  ( )  (   )(      )     [On using (6.2.1)] 

  (   )   ∫  ( )  (   )      

       ∫  ( )  (   ) (    ) (  )     , 
which in the light of (1.2.35) provides right hand side of (6.3.8). 

Theorem 6.3.9: Prove that 

              ,  (   )  (    ) (     )    (     )    (     ) - 
   = k            ,  (   ) (     )    (     )    - 
                    ,  (   ) (     )    (   ) (   ) (     )   -,  (6.3.9)  

|arg (ux)| < ½ h, where h and u are given in (1.2.37) and (1.2.38) respectively. 
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Proof 

  To prove (6.3.9), let us consider left hand side of (6.3.9), after using (1.2.35), 

we obtain  

            ∫  ( )  (   ) (      ) (    )       

      ∫  ( )  (   )(    )     [On using (6.2.1)] 

      ∫  ( )  (   )      

       ∫  ( )  (   ) (    ) (  )      
which in the light of (1.2.35) provides right hand side of (6.3.9). 
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CHAPTER–7 

APPLICATION OF A-FUNCTION OF ONE VARIABLE 

IN OBTAINING A SOLUTION OF SOME BOUNDARY 

VALUE PROBLEMS 

7.1  INTRODUCTION 

 Various problems in science and technology, when formulated 

mathematically, lead naturally to certain classes of partial differential equations 

involving one or more unknown functions together with the prescribed conditions 

(known as boundary conditions) which arise from the physical situation. Several 

workers have obtained solutions to the equations related to certain problems, which 

satisfy the given boundary conditions. The classical method in obtaining solutions of 

the boundary value problems of mathematical physics can be derived from Fourier 

series.  

  Another technique using integral transforms, which had its origin in 

Heaviside’s work, has been developed in the past and has certain advantages over the 

classical method.  

 The theory developed by Heaviside and Doetsch and others have unified the 

latter investigations by Bromwhich and Carson in the recent work on the Laplace 

transformation. Although the Laplace transform has been extensively (and 

intensively) employed, it is particularly useful for problem associated with ordinary 

differential equations as well as for problems involving heat conduction. Also, other 

integral transforms can be utilized while solving the most of the BVP of mathematical 

physics. This method of solution is really convenient, direct and straightforward than 

the classical method, which generally requires great ingenuity in assuming at the 

outset the correct form for the solution.  

 Several authors such as Arora (1998), Chandel (2002), Chaurasia (1997), 

Srivastava (1998, 1999, 2000), Tiwari (1993) have used various classes of orthogonal 



65 

 

polynomials and generalized hypergeometric functions of one or more variables in 

finding the solutions of the boundary value problems concerning  

(a) heat conduction in  

(i) a non-homogenous finite bar  

(ii) a circular cylinder 

(b) free oscillations of water in a circular lake 

(c) transverse vibrations in a circular membranes  

(d) free symmetrical vibrations in a very large plate 

(e) angular displacement in a shaft of circular cross-section 

(f) potential theory, etc. 

 Vishwakarma [83], Tiwari [81, 82], Ronghe [60], Agrawal [1], Srivastava 

[71], Jain [30], Srivastava [73], Srivastava [74] and several other authors have 

obtained solutions of boundary value problems involving generalized hypergeometric 

functions by expressing u(x, t) in terms of known orthogonal polynomials and certain 

special functions of one and more variables, where  u(x, t) = (k'/k)f(x)g(x). 

 Following Vishwakarma [83], Tiwari [81, 82], Ronghe [60], Agrawal [1], 

Srivastava [71], Jain [30], Srivastava [73], Srivastava [74] and several other authors, 

in this chapter we will employ the A-function of one variable in obtaining a solution 

of some boundary value problems and find new solutions which will be useful for 

further research. 

 In section (7.3) first we evaluate an integral involving A-function of one 

variable and then we make its application to solve two boundary value problems on (i) 

heat conduction in a bar (ii) deflection of vibrating string under certain conditions. 

Again in section (7.4) we employ the A-function of one variable in obtaining a 

solution of a partial differential equation related to heat conduction along with 

Hermite polynomials. The aim of section (7.5) is to derive the solution of special one-

dimensional time dependent Schrodinger equation involving 'A-Function' of one 

variable and Hermite polynomials, while in (7.6) we employ the 'A-Function' of one 
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variable in obtaining a solution of a Bounded Electrostatic Potential in the Semi-

Infinite Space.   

 Most of the results in section 7.5 and 7.6 of this chapter have been published 

in The Mathematics Education [36] and in Journal of Indian Academy of Mathematics 

[34] respectively in form of couple of research papers.  

7.2  RESULTS REQUIRED 

 In the present investigation we require the following results: 

 From Gradshteyn [25], we have following modified form: 

L  Lsin ½ n() 
(sin x/L) – 1 sin nx/L dx =                                                                       (7.2.1) 
    0                                 2 – 1 {½ (1 +  + n)} {½ (1 +  – n)}   

where n   .  

 Eaf(a) = f(a + 1); Ea
nf(a) = E [Ea

n – 1f(a)],                          (7.2.2)       

where E (finite difference operator) is given in Milne-Thamson [47].   

 Modified form of the integral given by Ronghe [58]: 

     2 n
 x2 e – x  Hn(x) dx =                                         ,            (7.2.3) 
                                         n/2 

 In this chapter, we shall also make application of following modified form of 

the integral [25, p.372]: 

  sin ½ n() 
 (sin y) – 1 sin ny dy =                                                                           , 
     0                               2 – 1 {½ ( + n + 1)} {½ ( – n + 1)}   

  Re () > 0.  (7.2.4)  

We will also use the following notation:  

  
 F [ x2] UFV [                   x2]dx 



2 

A1, .., AU; 

B1, .., BV; 
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    = 

       k = 0 

7.3  APPLICATION OF A-FUNCTION IN BOUNDARY VALUE PROBLEMS 

 In this section first we evaluate an integral involving A-function of one 

variable and then we make its application to solve two boundary value problems on (i) 

heat conduction in a bar (ii) deflection of vibrating string under certain conditions.  

 First of all we state and prove the following two lemmas which will be used in 

subsequent sections. 

Lemma 7.3.1 

 ∫           
Hn(x)        [    |                       dx 

                      [    |(     )                                       (7.3.1) 

|arg (ux)| < ½ h, where h and u are given in (1.2.37) and (1.2.38) respectively. 

Proof 

 The result (7.3.1) can be established by replacing the 'A-Function' given in 

(1.2.35) on the L.H.S., interchanging the order of integral involved in the process, 

evaluating the integral in the braces using (7.2.3) and applying (1.2.35) the definition 

of 'A-Function', the value of the integral is obtained.  

 Now we shall establish the following integral involving the A-function of one 

variable.  

Lemma 7.3.2 

 ∫                            [           (     )             ] 
                         [     (     )                                 ] 

U 

(Aj; k) k x2k 

j = 1   
V 

(Bj; k) k! 

j = 1   
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provided that Re () > 0, |arg (uz)| < ½ h, where h and u are given in (1.2.37) and 

(1.2.38) respectively.  

Proof  

 To prove (7.3.2), using 'A-Function' given in (1.2.35), change the order of 

integration which valid under the given condition, evaluate the inner integral with the 

help of (7.2.1) and finally interpret it with (1.2.35), to get (7.3.2). 

PROBLEM - I 

7.3.1  APPLICATION TO HEAT CONDUCTION IN A BAR  

 Under certain boundary conditions, a problem on heat conduction in a bar is 

considered in this section. If sides of the bar are insulated and the loss of heat from the 

sides by conduction or radiation is negligible, then in a uniform bar 0 x L, the 

temperature u(x, t) satisfies the heat equation given below:  

 (2u/x2) = (1/c)(u/t), t 0.  (7.3.3) 

 If we take  

 u(0, t) = 0, u(L, t) = 0, (7.3.4) 

as boundary conditions and  

 u(x, 0) = f(x),  (7.3.5) 

as initial condition, then partial differential equation (7.3.3) has the solution  

      
 u (x, t) = Bn sin nx/L exp[– t(nc)2/L],  (7.3.6) 
      n = 1  

is given by Prasad [54], where n is any integer and  

 L  
 Bn = (2/L) f(x) sin nx/L dx.   (7.3.7) 
                     0    

 Now we shall consider the problem of determine u(x, t), where  

                                  [           (     )             ]. (7.3.8) 
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Solution of the Problem 

 Combining (7.3.7) and (7.3.8) and making the use of lemma 7.3.2, we derive,  

                           [     (     )                                 ] 

 Putting the value of Bn from (7.3.8) in (7.3.6), we get following required 

solution of the problem 

            ∑               [         ]        

       .              [     (     )                                 ].  

PROBLEM - II 

7.3.2   HOMOGENEOUS WAVE PROBLEM  

 We shall determine the deflection u(x, t) of vibrating string in this section. If 

the weight of string due to tension is negligible then the partial differential equation 

given below is satisfied by deflection u(x, t) 

 (1/c2)(u/t2) = (2u/x2), 0 < x < L. (7.3.11) 

Now we choose  

 u(0, t) = 0, u(L, t) = 0,             (7.3.12) 

as the boundary conditions and  

 u(x, 0)/t = g(x), (initial velocity)             (7.3.13) 

and    

  u(x, 0) = f(x),             (7.3.14) 

as initial conditions, then partial differential equation (7.3.11) gives the solution 

      
 u (x, t) = Bn cos nct/L + Cn sin nct/L] sin nx/L,          (7.3.15) 
       n = 1  
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where Bn is given by (7.3.7) and  

 L  
 Cn = (2/nc) g(x) sin nx/L dx.    (7.3.16)      
                         0                     

  The solution (7.3.15) is given by Prasad [54]. 

 Now consider the problem of determining u(x, t), where u(x, 0) [=f(x)] is 

given by (7.3.8), while  

                          [           (     )             ]. (7.3.17) 

 After combining (7.3.16) and (7.3.17) and making the use of lemma (7.3.2), 

we arrive at  

                                [     (     )                                   ] 

 Putting the value of Bn and Cn in (7.3.15) to get required solution of the 

problem in the following form: 

            ∑                           

  .              [     (     )                                 ]  
  +      ∑                               

                       [     (     )                                   ] 

7.4 HEAT CONDUCTION INVOLVING A-FUNCTION AND HERMITE 

POLYNOMIALS 

 Here first of all we shall evaluate an integral containing A-function of one 

variable and Hermite Polynomials with the help of finite difference operator E and 

discuss their application in solving a problem on heat conduction considered by 

Bajpai [1993]. An expansion formula involving A-function of one variable and 

Hermite Polynomials has also been obtained at the end of this section. 
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Theorem 7.4.1: Prove that 

 ∫                       [     (     )             ]    [                       ]   

         ∑ ∏                  ∏                 

  .              [     (     )                                          ]   (7.4.1) 

provided that |arg (uz)| < ½ h, where h and u are given in (1.2.37) and (1.2.38) 

respectively.  

Proof  

  On multiplying both sides of (7.3.1) by 

 

                     

 

 

apply the operator e           , we get       

          
e    ( x2 e – x  Hn(x) A       [zx2 ] dx)  

      



           
= e       (2n             [|z/4 |           ])  
      

(7.4.2) 

 Expanding both side of (7.4.2) and using Eaf(a) = f(a + 1), we have  

              
   

   
( x2 e – x  Hn(x) A   [|zx2 |       ] dx)      
l = 0  

U 

(Aj + )   
j = 1   

V 

(Bj + )  
j = 1   

E
E 

2 m, n 
p, q 

 

m+1, n 
p + 1, q + 1 

 

(1+),(aj, j)1, p  
 

(bj, j)1,q, (1  n/2 )
 

E
E 

U 

(Aj + )   
j = 1   

V 

(Bj + )  
j = 1   

E
E 

V 

(Bj + l) l ! 

j = 1   

2 m, n 

  p, q 

 

(aj, j)1, p 
(bj, j)1,q 

U 

(Aj + l)x4l l  
j = 1   

U 

(Aj + )   
j = 1   
V 

(Bj + )  
j = 1   
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= (2 n  [z/4|  ])  

       

(7.4.3) 

 Now using (a;n) = (a + n)/(a), altering the summation and integration order 

in the L.H.S. and replace (Bj + ) by Bj and (Aj + ) by Aj, to get (7.4.1). 

Application to Heat Conduction:  

 Consider following partial differential equation  

 u/t = k [u/x2 + 2x (u/x) + 2u], x  ( ),  (7.4.4)  

where boundary condition is  

  Lim u(x) = 0,  
   |x|  

Equation (4.1) is related to the following equation Carslaw [15] 

 /x2  (/x)(U/k)  /k – (/t)(1/k) = 0,  (7.4.5) 

where  U = 2kx, = 0, = – 2k, (< x < ). 

 The solution of equation (7.4.4) is given by Bajpai [9] as follows:  

                  
 u (x, t) = Cn          

Hn(x),  (7.4.6) 
    n = 0 

where Hn(x) is the Hermite polynomial and  

    1               

 Cn =  u(x) Hn(x) dx,  (7.4.7) 
           2n n!

 Now we shall consider the problem of determining u (x, t), where 

    
     u(x) =  x2 e – x  Hn(x) A  [zx 2 |              ] UFV [                  x4].     (7.4.8) 

m+1, n 

 p + 1, q + 1 

 

(1+l), (aj, j)1, p  
 

 

(bj, j)1, q, (1  n/2 l)
 

U 

(Aj + l) l l 
j = 1   
V 

(Bj + l) l ! 

j = 1   

2 m, n 
p, q 

 

……, ….. 
……, ….. 

A1, .., AU; 
B1, .., BV; 
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 Combining (7.4.7) and (7.4.8) and making the use of integral (7.4.1), we 
derive              
   
                
Cn = [1/(2n!)]  A                [z/4  |                                             ])  
              l = 0

   (7.4.9) 

 Putting the value of Cn from (7.4.9) in (7.4.6), we get 

u (x, t)=  
 (1/2) (1/n!) e– 2 k n t – x   Hn(x).       
  n = 0 

         
 A       [z/4  |                                            ])   (7.4.10)  
      l = 0 

Expansion Formula 

 Making a use of (7.4.8) and (7.4.9) in (7.4.6), we derive the following 

expansion formula:  

    
       x2 A    [zx 2 |               ] UFV [              x4]  

                
 = (1/2) (1/n!) Hn(x).      
                  n = 0 

                 

        
 A       [z/4  |                                             ])   
       l = 0

(7.4.11) 

7.5 TIME–DEPENDENT SCHRODINGER EQUATION INVOLVING  

A-FUNCTION 

 One of the fundamental problems in quantum mechanics is to find solution of 

Schrodinger equation for different forms of potentials. As a result of the failure of 

classical physics of predict correctly the result of experiments on microscopic 

systems, the Schrodinger equation and more general formulation of quantum 

mechanics have been set up. By testing their predictions of the properties of systems, 

m + 1, n 

p + 1, q + 1 

 

(1 +l),  (aj, j)1, p 
 

 
(bj, j)1, q, (1  n/2 l)

 

U 

(Aj;l) 
l l 

j = 1   
V 

(Bj;l) l !
 

j = 1   

2 

m + 1, n 
p + 1, q + 1 

 

(1 +l), (aj, j)1, p  
 

(bj, j)1, q, (1  n/2 l)
 

U 

(Aj;l) 
l l 

j = 1   
V 

(Bj;l) l !
 

j = 1   

m, n 
p, q 

 

(aj, j)1, p 

(bj, j)1, q 
A1, .., AU; 

B1, .., BV; 

U 

(Aj;l) 
l l 

j = 1   m + 1, n 
p + 1, q + 1 

 

(1 +l), (aj, j)1, p  
 

(bj, j)1, q, (1  n/2 l)
 

V 

(Bj;l) l !
 

j = 1   
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where in case of failure and success of classical mechanics, they must be verified. In 

fact whole atomic physics, solid state physics, chemistry and some other branches of 

applied sciences obey the principals of quantum mechanics or satisfy differential 

equations similar to the Schrodinger equations, and same is true for nuclear and 

particle physics.  

 Making an appeal of Bajpai [7], we obtain the following integrals: 

 
 x 2e x   H2(x) A       [zx2h |               ] dx 
 

 =  22z |                                        ],                   (7.5.1)
  
and 
 
 x2

e
 x   H2 (x) A        [ zx2h |               ] dx 

 

 =  22z |                                        ],               (7.5.2)
  

provided that ……,    |arg (uz)| < ½ h, where h and u 

are given in (1.2.37) and (1.2.38) respectively. 

The Special Schrodinger Equation 

 Let us take the problem of a particle having the potential V(x), where V(x) is 

given by  

 V(x) = [h2 / (2m)] x2.                  (7.5.3) 

 For this system the time dependent Schrodinger equation Rae [55] can be 

written as: 

uhu       hx2u) .  
t      2imx2im  

  Setting K = h /(2im) into (7.5.4), we have 

uu  _    
t        x2  

provided u(x,t)  0 for large values of t and |x| we also assume that                        

= + 

= K Kx2u, 

u + 2, v  
p + 2, q + 1 

/2 +h), (1 +, h), (aj, j)1, p   

(bj, j)1, qh )  




(aj, j)1, p  

(bj, j)1, q 

u, v  
p, q 

2 




u, v 
p, q  

(aj, j)1, p 

(bj, j)1, q 

2 

(3/2 +h), (1 +, h), (aj, j)1, p   
(bj, j)1, qh ) 

u + 2, v  
p + 2, q + 1 
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             u(x, 0)u(x).   (7.5.6) 

 The solution of (7.5.4) is given by Bajpai [10], as under: 

 
 u(x,t) = Ane k(2n + 1) t   x  / 2Hen(2 x ), 
 

where Hen(x) are Chebyshev Hermite polynomials [10]: 

 
 u(x,t) = Bne  k(2n + 1) t  x  / 2Hn(x),                     (7.5.7)
  
where Hn(x) are Hermite polynomials. 

 Also 

         A n = 1/(nu(x) e x  /2  Hen (2x) dx,                 (7.5.8) 

       
        Bn = 1/(2nn!       u(x) e x  /2 Hn (x) dx.                 (7.5.9) 
 

Solutions in terms of A-Function: 

 The solution of (7.5.7) leads to the following solutions: 

                    
 u1(x, t) =          B2n e

 k(4n +1 ) t x  / 2 H2n (x),                                        (7.5.10) 
                    n=0 

where 

B2n = 1/[22n(2n)!      u1(x)  e
 x  / 2 H2n (x) dx (7.5.11) 

 

u2(x, t) =         B2n + 1 e  k(4n +3) t x  / 2 H2 n + 1 (x) dx              (7.5.12) 

where 

B2n + 1 = 1/[22n+1(2n + 1)!      u2(x)  e
 x  / 2 H2 n + 1 (x) dx (7.5.13) 

If we substitute 

u1(x) =  x2 e x  /2  A       [ z x2h |                 ]                     (7.5.14) 

and 
 
u2(x) =  x2e x  / 2  A         [ z x2h |               ]  (7.5.15) 



n=0









n=0 







2 

2 

2 

2 

2 

2 

2 

2 



n=0

u, v  
p, q 

(aj, j)1, p 

(bj, j)1, q 

 

u, v  
p, q  

(aj, j)1, p  

(bj, j)1, q 

 

2 

2 
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in (7.5.11) and (7.5.13) respectively and use the integrals (7.5.1) and (7.5.2), then the 

solutions corresponding to (7.5.10) and (7.5.12) are given by: 

u1(x, t) = 1/(1/(2n)!] e k(4n + 1) t x  / 2         

 

        . z |                                             ] H2n(x),      (7.5.16)
  

valid under the conditions of (7.5.1). 

u2(x, t) = 1/(1/(2n + 1)!] e k(4n + 3) t x  / 2         

 

            .z |                                          ] H2n + 1(x),  (7.5.17)
  
valid under the conditions of (7.5.2). 

7.6   BOUNDED ELECTROSTATIC POTENTIAL  

 In this section, with the help of A–function of one variable, in the Semi-

Infinite Space we shall obtain a bounded Electrostatic Potential. First of all we shall 

establish the following integral in form of lemma. 

Lemma 7.6.1: Prove that 

     
 (sin y) – 1 sin ny A       [z (sin y) |               ] dy 

    

= 2 1 –  sin ½ nA                [z 2 –  |                                             ],  (7.6.1) 

provided that |arg uz| < ½ hand Re () > 0, where h and u are given in 

(1.2.37) and (1.2.38) respectively.  

Proof 

  Using 'A-Function' given in (1.2.35), alter the order of integration, evaluate the 

integral (inner) using (7.2.4) and finally interpret it with (1.2.35), to get (7.6.1).  

Bounded Electrostatic Potential in the Semi-Infinite Space 

  Under certain boundary conditions, in the Semi-Infinite Space, we consider a 

problem on Bounded Electrostatic Potential. When the space is free of charges, in the 


 
n=1 

2 

2 


 
n=1 

u + 2, v  
p + 2, q + 1 

/2 +h) , (1 +  , h ) , (aj, j)1, p  
(bj, j)1, qh )  

(3/2 +h), (1 +, h), ( aj, j)1, p   
(bj, j)1, qnh ) 

u + 2, v  
p + 2, q + 1 

m, l 
 p, q 

(aj, j)1, p 

(bj, j)1, q 
 

m + 1, l 

p + 1, q + 2 

(, ), (aj, j)1, p 
 
(bj, j)1, q, (1/2 + /2  n/2, /2)   
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semi-infinite space x > 0, 0 < y <  let bounded electrostatic potential, which is 

denoted by V(x, y), so that  

 Vxx(x, y) + Vyy(x, y) = 0, where x > 0, 0 < y <  (7.6.2) 

and suppose that  

  V(x, ) = 0, V(x, 0) = 0; x > 0 

  V(0, y) = f(y); 0 < y <  

 See the following figure, where boundedness condition serves as a condition at 

the missing right-hand end of the strip shown there.  

         y 
 
         V = 0 
 
       V = f(y)             2V = 0  
 

0 V = 0 

  Assuming that f is piecewise smooth, then solution of (7.6.2) is given by [16]: 

       
 V (x, y) = bn exp (– nx) sin ny  (7.6.3) 
        n = 1  

where  

    
 bn = (2/) f(y) sin ny dy, n = 1, 2, …..  (7.6.4)
        0  
           
Now choose  

 
  f(y) =(sin y) – 1 A       [z (sin y) |              ]  (7.6.5)
   
Solution of the Problem 

 Combining (7.6.5) and (7.6.4) and making the use of the lemma 7.6.1, we 

derive  

  bn = 2 2 –  sin ½ nA                [z 2 –  |                                            ],  (7.6.6)  

m, l 
 p, q 

(aj, j)1, p 

(bj, j)1, q 
 

m + 1, l 

p + 1, q + 2 

(, ), (aj, j)1, p 
 
(bj, j)1, q, (1/2 + /2  n/2, /2)   
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 Putting the value of bn from (7.6.6) in (7.6.3), we get the following required 

solution of the problem:  

                 
 V (x, y) = 2 2 –  sin ½ n exp (– nx) sin ny   
                  n = 1  

    A                 [z 2 –  |                                             ],  (7.6.7) 

provided the condition stated with (7.6.1) are satisfied.  

m + 1, l 

p + 1, q + 2 

(, ), (aj, j)1, p 
 
(bj, j)1, q, (1/2 + /2  n/2, /2)   
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CHAPTER–8 

FOURIER SERIES INVOLVING A-FUNCTION  

8.1   INTRODUCTION 

 In the study of boundary value problems and special functions, Fourier series 

for generalized hypergeometric functions plays a vital role. Certain double Fourier 

series of generalized hypergeometric functions play a vital role in the improvement of 

the theories of boundary value problems of dimension two and special functions.  

  Using generalized hypergeometric functions, certain number of Fourier series 

have been evaluated by Bajpai [5, 11], Taxak [80], Sharma [66], Mishra [49] and 

others recently. 

 Looking vital role of Fourier series in the study of boundary value problems 

and special functions, in this chapter, we shall establish some new Fourier series 

involving A-function of one variable on the lines of Bajpai [5, 11], Taxak [80], 

Sharma [66], Mishra [49] and several other authors.  

8.2  RESULTS REQUIRED 

 While deriving Fourier series involving A-Function of one variable following 

results are required 

From Rainville [56]: 

             ∫ (   )  
  (   )   (   )( )  (   )( )    

 = 0, if m ≠ n, 

 = 
       (     ) (     )  (        ) (       ), if m = n;           (8.2.1) 

where Re(a) >  1, Re(b) >  1.  

 The following orthogonality properties given in [43]: 
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 ∫   (   )      =    

                                                            (8.2.2) 

 ∫                 =    
                                                        (8.2.3) 

 ∫                 =                                    
   (8.2.4) 

provided either both m and n are odd or both m and n are even integers. 

 From Macrobert [43], [45]: 

  
   (   )  (    ) (    )     ∑ ( ) (   )        (    )          (8.2.5) 

where 0 <   , Re s  
  .  

  
   (   ) (    ) (     )       ∑ ( ) (   )          ,       (8.2.6) 

where 0 <   .  

8.3  FOURIER SERIES 

 In this section, we have established some new Fourier series involving  

A-function of one variable.  

 Most of the results have been published in International Journal of Scientific 

Research and Reviews [42] in form of a research papers.  

Fourier series 8.3.1 

 (     )    (   )   

        [  (     )  (   )   (     )   
(     )   ]  

 = 
       ∑ (        ) (       ) (     )         (  )   (   )( )  

                [      (        ) (       ) (     )    (        ) (     )(       ) (       ) (     )    (      ) (             )] (8.3.1) 
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provided that h > 0, k > 0, Re(a) >  1, Re(b) >  1 and |arg (uz)| < ½ h, where h and 

u are given in (1.2.37) and (1.2.38) respectively. 

Proof 

 To establish (8.3.1), let 

 f(x, y) = (     )    (   )   

         [  (     )  (   )   (     )   
(     )   ]  

 = ∑              (  )   (   )( ).   (8.3.2) 

 Equation (8.3.2) is valid, since f(x, y) is defined in the region  

 0 < x < π, 1 < y < 1. 

 There are many awkward problems related to writing an expression for a 

function f(x, y) in terms double Fourier series expansion. With two-variables 

analogues of well-known Dirichlet's conditions and the Jordan's theorem, 

convergence of almost all double Fourier series expansions is covered. In this respect, 

a brief discussion given by Carslaw and Jaeger [15] provide a good coverage of the 

subject.  

 Taking the product of (8.3.2) and (   ) (   )   (   )( ), integrate w.r.t. y 

from  1 to 1, and applying (4.3.14) and (8.2.1), we obtain   

    (     )     

                          [     (     )   (       ) (     )    (     )(       ) (     )    (             )]        
 = ∑          (     )(        ) (       )    (  ).  (8.3.3) 

 Multiply (8.3.3) by cos(ux), integrate w.r.t. x from 0 to π, and using (4.3.13) 

and cosine function's orthogonal property, to get 

             (        ) (       ) (     )  
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                 [      (        ) (       ) (     )    (        ) (     )(       ) (       ) (     )    (      ) (             )]    (8.3.4) 

except that A0,v is one-half of the above value. From (8.3.2) and (8.3.4), the Fourier 

series (8.3.1) is obtained 

Fourier series 8.3.2 

 (    )        [  (    )    (     )   
(     )   ]  

         = 
                 [  (       ) (     )   

(     )    (      )] 
     + 

   ∑              [  (        ) (     ) (     )   
(     )    (        ) (        )]        (    )        (8.3.5) 

provided that  is a positive number and |arg (uz)| < ½ h, where h and u are given in 

(1.2.37) and (1.2.38) respectively. 

Proof 

 To establish (8.3.5), let 

 f() = (    )        [  (    )    (     )   
(     )   ]  

       = 
    + ∑        cosr,  (8.3.6)

 As f() is of bounded variation and continuous in (0, π), when  > 0, equation 

(8.3.6) is valid. 

 Multiply (8.3.6) by cos(u), integrate w.r.t.  from 0 to π, to get 

 ∫ (    )    cos (u)         [  (    )    (     )   
(     )   ] d 

 = 
    ∫     ( )    + ∑       ∫         cosu d.   

Now using (4.3.15) and cosine function's orthogonal property, we get  

    = 
    cos

                [  (        ) (      ) (     )   
(     )    (        ) (        )]  (8.3.7) 
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 From (8.3.6) and (8.3.7), the result (8.3.5) is obtained. 

Fourier series 8.3.3 

 (    )        [  (    )    (     )   
(     )   ]  

         + 
   ∑              [  (        ) (     ) (     )   

(     )    (        ) (        )]     . sin(πr/2) sinr, (8.3.8) 

provided that  is a positive number and |arg (uz)| < ½ h, where h and u are given in 

(1.2.37) and (1.2.38) respectively. 

Proof 

 To prove (8.3.8), let 

 f() = (    )        [  (    )    (     )   
(     )   ] 

       = ∑        sin r,  (8.3.9) 

 Multiply (8.3.9) by cos(u), integrate w.r.t.  from 0 to π, and using (4.3.16) 

and sine function's orthogonal property, to get 

    = 
    sin

                [  (        ) (      ) (     )   
(     )    (        ) (        )]   (8.3.10) 

 From (8.3.9) and (8.3.10), the formula (8.3.8) follows immediately. 

Fourier series 8.3.4 

 (    )              (    )             (    )  
 

           [  (    )   (     )   
(     )   ]  

 = 
   ∑ ∑ (  )   (  )   (  )    (  )                     (     ) 

                                  [  (            ) (               ) (     )   
(             ) (               ) (     )   ]  (8.3.11) 
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where n's are either even or odd in addition to the conditions of validity followed by 

(4.3.17). 

Proof 

 To prove (8.3.11), let 

 f(x) = (    )              (    )             (    )  
 

         [  (    )   (     )   
(     )   ]  

        = ∑              .  (8.3.12) 

 As f(x) is of bounded variation and continuous in (0, π), equation (8.3.12) is 

valid. 

 Multiply (8.3.12) with eimx, integrate w.r.t. x from 0 to π, to get 

  ∫ (    )      eimx            (    )             (    )  
 

           [  (    )   (     )   
(     )   ]     

           = ∑        ∫   (   )     .  

Now using (4.3.17) and (8.2.2), we get 

    = 
          ∑ (  )   (  )   (  )    (  )            

                                    [  (     )    (                 )(             ) (               ) (     )   ]        (8.3.13) 

 From (8.3.12) and (8.3.13), the Fourier exponential series (8.3.11) is obtained. 

Fourier series 8.3.5 

 (    )              (    )             (    )  
 

           [  (    )   (     )   
(     )   ]  
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 = 
   ∑ (  )   (  )   (  )    (  )                       [  (     )   

(             ) (     )   ] 
 + 

   ∑ ∑ (  )   (  )   (  )    (  )                       cos nx 

                [  (     )    (                 )(             ) (               ) (     )   ]  (8.3.14) 

where n's are either even or odd in addition to the conditions of validity followed by 

(4.3.17).  

Proof 

 To establish (8.3.14), let 

 (    )              (    )             (    )  
 

        [  (    )   (     )   
(     )   ]  

            = 
    ∑             .  (8.3.15)

 Multiply (8.3.15) with eimx, integrate w.r.t. x from 0 to π, and using (4.3.17) 

and (8.2.3), we get  

    = 
          ∑ (  )   (  )   (  )    (  )            

                                     [  (     )    (                )(             ) (               ) (     )   ]        (8.3.16) 

 From (8.3.15) and (8.3.16), the Fourier cosine series (8.3.14) is obtained. 

Fourier series 8.3.6 

 (    )              (    )             (    )  
 

           [  (    )   (     )   
(     )   ]  

 = 
     ∑ ∑ (  )   (  )   (  )    (  )                        sin nx 
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                                     [  (     )    (                 )(             ) (               ) (     )   ], (8.3.17) 

where n's are either even or odd in addition to the conditions of validity followed by 

(4.3.17). 

Proof 

 To prove (8.3.17), let 

 (    )              (    )             (    )  
 

        [  (    )   (     )   
(     )   ]  

            = ∑             .  (8.3.18) 

 Multiply (8.3.18) with eimx, integrate w.r.t. x from 0 to π, and using (4.3.17) 

and (8.2.4), we get  

    = 
           ∑ (  )   (  )   (  )    (  )            

                                     [  (     )    (                )(             ) (               ) (     )   ]        (8.3.19) 

 From (8.3.18) and (8.3.19), the Fourier sine series (8.3.17) is obtained. 

Fourier series 8.3.7 

 (    )           [         (     )   
(     )   ] 

          =    ∑                [  (       ) (     )    (       )(        ) (     )    (     ) ]        (    )        (8.3.20) 

provided that h is a positive number, 0 ≤  ≤ π and |arg (uz)| < ½ h, where h and u 

are given in (1.2.37) and (1.2.38) respectively. 

Proof 

 To prove (8.3.20), let 
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 f() = (   )            [         (     )   
(     )   ]  

                 = ∑    (    )       , (8.3.21) 

R(1 2u) > 0, 0 ≤  ≤ π. 

 As f() is of bounded variation and continuous in (0, π) when R(1 2u) ≥ 0, 

equation (8.3.24) is valid. 

 Multiply (8.3.21) with    (    ), integrate w.r.t.  from 0 to π, to get 

 ∫ (   )         (    )       [         (     )   
(     )   ] d 

 =∑       ∫    (    )     (    ) d. 

 Now using (4.3.18) and sine function's orthogonal property, we have  

    = 
                   [  (     ) (     )    (        )(         ) (     )    (   ) ]  (8.3.22)  

 The result (8.3.20) is obtained with the help of (8.3.21) and (8.3.22). 

Fourier series 8.3.8 

   (      )          [       (   ) (     )   
(     )   ] 

                  [  (     )    (     )(       ) (     )   ]  
             +    ∑                [  (       ) (     )    (       )(        ) (     )    (     ) ]      cos r,       (8.3.23) 

provided that h is a positive number, 0 ≤  ≤ π and |arg (uz)| < ½ h, where h and u 

are given in (1.2.37) and (1.2.38) respectively. 

Proof 

 To prove (8.3.23), let us consider 

 f() = (     )           [       (   ) (     )   
(     )   ]   
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  = 
    ∑            ,  (8.3.24) 

 R(2u) > 0, 0 ≤  ≤ π. 

 Multiply (8.3.24) by cos(v), integrate w.r.t.  from 0 to π, and using (4.3.19) 

and cosine function's orthogonal property, to get 

    = 
           [  (     ) (     )    (     )(        ) (     )    (   ) ]    (8.3.25)              

 From (8.3.24) and (8.3.25), the formula (8.3.23) follows. 

Fourier series 8.3.9 

∑                
    [  (     ) (     )    (   )(   ) (     )    (      )]     (    )  

                 [        (     )   
(     )   ] (8.3.26)  

provided that |arg (uz)| < ½ h, where h and u are given in (1.2.37) and (1.2.38) 

respectively. 

Proof  

 Using (1.2.35), the expression on the left side of (8.3.26) can be written as  

  ∑         ∫  ( ) [ (    ) (   ) ( ) (     )    (    )  ]        

 On changing the order of integration and summation which is easily seen to be 

justified, the above expression becomes 

 
    ∫  ( )  (    ) (   ) *∑ ( ) (   )        (    )  +       

and on using the relation (8.2.5), it takes the form 

 
            ∫  ( ) (       )     

which is just the expression on the right side of (8.3.26). (8.3.26) is the Fourier sine 

series for the A-function of one variable.  
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Fourier series 8.3.10 

            [  (    ) (     )    (   )(     )   ]  
                    [  (    ) (     )    (   )(   ) (     )    (    )]       

                       [         (     )   
(     )   ]. (8.3.27) 

provided that |arg (uz)| < ½ h, where h and u are given in (1.2.37) and (1.2.38) 

respectively. 

 The Fourier cosine series (8.3.27) is proved in an analogous manner by using 

(1.2.35) and (8.2.6).  
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CHAPTER–9 

SUMMARY AND CONCLUSION 

9.1  INTRODUCTION 

The special functions in mathematics arise in the solution of differential 

equation governing the behavior of certain physical quantities. Therefore a 

function ‘special’ when the function has a place in the toolkit of the applied 

scientist, engineer and the applied mathematician. These are denoted by particular 

notation and have number of properties. Mathematically, special functions are 

functions defined on R, the set of rear number or C, the set of complex number and 

these are not only represented by series representation, but also by integral 

representations. This thesis is mainly concerned with the A-function and its 

properties. So the concept of Pochhammer symbols, calculus of residue, Mellin-

Barnes integrals and convergence are necessary for the detailed study. Recently the 

attention of mathematicians towards these functions has increased from both the 

analytical and numerical point of view due to their wide use. 

  The present study had been undertaken with the following specific  

objectives: 

 To develop some new generating relations involving A- function of one 

variable. 

 To find some new definite and indefinite integrals involving A-function of 

one variable. 

  To find innovative Fourier Series involving A-function. 

 To find some new expansions involving A-function. 

 To find some new identities involving A-function. 

 To obtain new solutions of some boundary value problems in term of A-

function. 



91 

 

9.2  SUMMARY 

The present thesis has been divided into nine chapters. In first chapter, the 

historical background, development and definitions of the A-functions of one 

variable and polynomials in the context of the research work accomplished in the 

subsequent chapters of this thesis are given in this chapter. It also provide brief 

literature of several aspects of special functions.   

 Generating relations plays an important role in the investigation of various 

useful properties of the sequences, which they generate.  In second chapter, 

‘Linear and Bilinear Generating Relations involving A-Function' looking into the 

requirement and importance of various properties of generating relations in the 

analysis of many problems of mathematics and mathematical physics, we have 

established eight new linear and four bilinear generating relations involving A-

function of one variable.  

Several authors have discussed a number of bilateral and trilateral 

generating relations involving generalized hypergeometric functions time to time. 

The usefulness of A-Function has inspired us to find some new generating 

relations. In third chapter, ‘Bilateral and Trilateral Generating Relations involving 

A-Function’ some new bilateral and trilateral generating relations have been 

established involving A-function of one variable and other hypergeometric 

functions. 

 Integrals are useful in connection with the study of certain boundary value 

problems. It is also helpful for obtaining the expansion formula.  In fourth chapter 

‘Definite and Indefinite Integrals involving A-function’ we have evaluated some 

definite, indefinite and double integrals involving the A-function of one variable 

and other generalized hypergeometric functions.  

In Fifth Chapter, ‘Integration Involving Certain Products and A-Function’ 

we have established two integrals containing the products of other hypergeometric 

functions and A-Function. We have represented these two integrals in another 

forms and also discussed particular cases. We have evaluated new integrals 

involving A-functions with the help of finite difference operator [Eaf(a) = f(a + 1)].
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 Looking into the requirement and importance of various properties of 

expansion and identity in various field, in sixth chapter ‘Expansion and Identities 

Involving A-Function’ We have established six new expansions and nine new 

identities involving A-function of one variable.   

 Various problems in science and technology, when formulated 

mathematically, lead naturally to certain classes of partial differential equations 

involving one or more unknown functions together with the prescribed conditions 

(known as boundary conditions) which arise from the physical situation. Several 

researchers have obtained solutions to the equations related to certain problems, 

which satisfy the given boundary conditions. In the seventh chapter ‘Application 

of A-Function of one variable in obtaining a Solution of some Boundary Value 

Problems” first we evaluated an integral involving A-function of one variable and 

then we applied it to get solution of  two boundary value problems on (i) heat 

conduction in a bar (ii) deflection of vibrating string under certain conditions. We 

have engaged the A-function of one variable in obtaining a solution of a partial 

differential equation related to heat conduction along with Hermite polynomials.  

We have derived a solution of special one-dimensional time dependent 

Schrodinger equation involving Hermite polynomials and A-function of one 

variable and also obtained a solution of a bounded electrostatic potential in the 

semi-infinite space. 

 The subject of Fourier series for generalized hypergeometric functions 

occupies outstanding place in the literature of special functions and boundary 

value problems. Certain double Fourier series of generalized hypergeometric 

functions play vital role in the improvement of the theories of special functions 

and two-dimensional boundary value problems.  

 Looking vital role of Fourier series in the literature of special functions 

and boundary value problems, in eighth chapter, ‘Fourier Series Involving A-

Function’ we have established some new Fourier series involving A-Function of 

one variables on the lines of Bajpai and others.   
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9.3  CONCLUSION 

      The conclusions of this thesis are as follows: 

 We have evaluated new linear and bilinear generating relations involving 

A-function of one variable. 

 We have established new bilateral and trilateral generating relations 

involving A-function of one variable. 

  New definite and indefinite integrals involving A-function of one variable 

has been established. 

 Innovative Fourier series involving A-function has been derived.  

  New expansions and identities involving A-function has been founded.  

 New solutions of some boundary value problems involving  

A-function has been obtained viz. Heat conduction, wave equation, and 

bounded electrostatic potential in semi-infinite space.  
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