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ABSTRACT

The thesis entitled “Study of Fourier Series and Boundary Value
Problems Involving A-Function” is being submitted in partial fulfillment for the
award of degree of Doctor of Philosophy in Mathematics to Lovely Professional

University, Phagwara, Punjab.

Usually we call a function ‘special” when the function belongs to the
toolbox of the applied mathematician, the physicist or the engineer. They have a
particular notation and a number of properties. Mathematically, special functions
are functions defined on R, the set of real numbers or C, the set of complex
numbers and they possess not only series representations, but also integral
representations. This thesis is mainly concerned with the development of special
functions especially A-function. So the concept of Pochhammer notation, Mellin-
Barnes integrals, convergence and residue calculus are essential for the detailed
study of these functions. Recently the attention of mathematicians towards these
functions has increased from both the analytical and numerical point of view due to

their relation with the fractional calculus.

The whole thesis is divided into nine chapters, each divided into three to six
sections. The formulae and results are numbered progressively in each chapter. For
instance (3.2.5) denotes the Fifth formula of the Second section in the Third
chapter. Bibliography to the literature are given in full at the end of the thesis
arranged alphabetical order. In the text, they have been referred to by putting within
rectangular brackets, the serial number of the references, where so ever necessary;
the page of the references and the number of the result have also been given i.e.

[34, p.122(i1)] means second result of page 122 of the thirty fourth reference.

The First Chapter deals with the historical background, development and
definitions of the A-functions and polynomials in the context of the research work
accomplished in the subsequent chapters of this thesis. It also provide brief

literature of several aspects of special functions.

Since generating relations plays an important role in the investigation of

various useful properties of the sequences, which they generate and also used as
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z-transform in solving certain classes of difference equation which arise in a wide
variety of problems in operation research (including, for example, queening theory
and related stochastic process). Looking into the requirement and importance of
various properties of generating relations in the analysis of many problems of
mathematics and mathematical physics, in the Second Chapter, we have
established some new linear and bilinear generating relations involving A-function
of one variable. In section (2.2) and (2.3) by increasing the number of parameters in
the definition of A-Function and by using properties of gamma function we have

derived these relations.

Several authors have discussed a number of bilateral and trilateral
generating relations involving generalized hypergeometric functions time to time.
The A-function of one variable plays an important role in the development and
study of special functions. In Third Chapter, the usefulness of this function has
inspired us to find some new bilateral and trilateral generating relations involving

A-function of one variable.

Integrals are useful in connection with the study of certain boundary value
problems. It is also helpful for obtaining the expansion formula. These are also
used in the study of statistical distribution, probability and integral equation.
Fourth Chapter contains some definite and indefinite integrals involving the A-
function and other commonly used functions. Some double integrals involving A-
function have been also evaluated with the help of some known results. We have
used the results of Bajpai, Shrivastava, Rainville and others to derive these

integrals.

In Fifth Chapter, in the section (5.3), we have established two integrals
containing the products of A-Function and other hypergeometric functions. At the
end of this section we have also discussed particular cases. In section (5.4) some
new integrals involving A-functions are evaluated with the help of finite difference

operator [E,f(a) = f(a + 1)].

Looking into the requirement and importance of various properties of
expansion in several field, in Sixth Chapter we have established some new

Expansion and Identities involving A-Function of one variable by increasing the

Vi



number of parameters. In section (6.2) six new expansions and in section (6.3) nine
new identities involving A-Function of one variable has been established by

increasing the number of parameters.

Various problems in science and technology, when formulated
mathematically, lead naturally to certain classes of partial differential equations
involving one or more unknown functions together with the prescribed conditions
(known as boundary conditions) which arise from the physical situation. Several
researchers have obtained solutions to the differential equations related to certain
problems, which satisfy the given boundary conditions. The classical method in
obtaining solutions of the boundary value problems of mathematical physics can be
derived from Fourier’s another technique using integral transforms, which had its
origin in Heaviside’s work, has been developed in the past and has certain
advantages over the classical method. Several authors such as Arora (1998),
Chandel (2002), Chaurasia (1997), Srivastava (1998, 1999, 2000), Tiwari (1993)
have used various classes of orthogonal polynomials and generalized
hypergeometric functions of one or more variables in finding the solutions of the

boundary value problems concerning
(a) heat conduction in

(i) anon-homogenous finite bar

(i1) acircular cylinder
(b) free oscillations of water in a circular lake
(c) transverse vibrations in a circular membranes
(d) free symmetrical vibrations in a very large plate
(e) angular displacement in a shaft of circular cross-section
(f) potential theory, etc.

Inspired by these authors in Seventh Chapter, in section (7.3) first we have
evaluated an integral involving A-function of one variable and then applied it to
solve two boundary value. In section (7.4) we employ the A-function of one

variable in obtaining a solution of a partial differential equation related to heat

vii



conduction along with Hermite polynomials. In section (7.5) we derive the solution
of special one-dimensional time dependent Schrodinger equation involving Hermite
polynomials and A-function of one variable. In section (7.6) we employ the
A-function of one variable in obtaining a solution of a problems on (i) heat
conduction in a bar (ii) deflection of vibrating string and bounded electrostatic

potential in the semi-infinite space under certain conditions.

The subject of Fourier series for generalized hypergeometric functions
occupies outstanding place in the literature of special functions and boundary value
problems. Certain double Fourier series of generalized hypergeometric functions
play vital role in the improvement of the theories of special functions and two-

dimensional boundary value problems.

In the Eighth Chapter, we have founded some new Fourier series involving
A-function of one variable. We have taken help of the results obtained in chapter 4

to prove these Fourier series.

At the last in Ninth Chapter we have given the summary and conclusion of

the thesis.
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ABSTRACT

The thesis entitled “Study of Fourier Series and Boundary Value
Problems Involving A-Function” is being submitted in partial fulfillment for the
award of degree of Doctor of Philosophy in Mathematics to Lovely Professional

University, Phagwara, Punjab.

Usually we call a function ‘special” when the function belongs to the
toolbox of the applied mathematician, the physicist or the engineer. They have a
particular notation and a number of properties. Mathematically, special functions
are functions defined on R, the set of real numbers or C, the set of complex
numbers and they possess not only series representations, but also integral
representations. This thesis is mainly concerned with the development of special
functions especially A-function. So the concept of Pochhammer notation, Mellin-
Barnes integrals, convergence and residue calculus are essential for the detailed
study of these functions. Recently the attention of mathematicians towards these
functions has increased from both the analytical and numerical point of view due to

their relation with the fractional calculus.

The whole thesis is divided into nine chapters, each divided into three to six
sections. The formulae and results are numbered progressively in each chapter. For
instance (3.2.5) denotes the Fifth formula of the Second section in the Third
chapter. Bibliography to the literature are given in full at the end of the thesis
arranged alphabetical order. In the text, they have been referred to by putting within
rectangular brackets, the serial number of the references, where so ever necessary;
the page of the references and the number of the result have also been given i.e.

[34, p.122(i1)] means second result of page 122 of the thirty fourth reference.

The First Chapter deals with the historical background, development and
definitions of the A-functions and polynomials in the context of the research work
accomplished in the subsequent chapters of this thesis. It also provide brief

literature of several aspects of special functions.

Since generating relations plays an important role in the investigation of

various useful properties of the sequences, which they generate and also used as
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z-transform in solving certain classes of difference equation which arise in a wide
variety of problems in operation research (including, for example, queening theory
and related stochastic process). Looking into the requirement and importance of
various properties of generating relations in the analysis of many problems of
mathematics and mathematical physics, in the Second Chapter, we have
established some new linear and bilinear generating relations involving A-function
of one variable. In section (2.2) and (2.3) by increasing the number of parameters in
the definition of A-Function and by using properties of gamma function we have

derived these relations.

Several authors have discussed a number of bilateral and ftrilateral
generating relations involving generalized hypergeometric functions time to time.
The A-function of one variable plays an important role in the development and
study of special functions. In Third Chapter, the usefulness of this function has
inspired us to find some new bilateral and trilateral generating relations involving

A-function of one variable.

Integrals are useful in connection with the study of certain boundary value
problems. It is also helpful for obtaining the expansion formula. These are also used
in the study of statistical distribution, probability and integral equation. Fourth
Chapter contains some definite and indefinite integrals involving the A-function
and other commonly used functions. Some double integrals involving A-function
have been also evaluated with the help of some known results. We have used the

results of Bajpai, Shrivastava, Rainville and others to derive these integrals.

In Fifth Chapter, in the section (5.3), we have established two integrals
containing the products of A-Function and other hypergeometric functions. At the
end of this section we have also discussed particular cases. In section (5.4) some
new integrals involving A-functions are evaluated with the help of finite difference

operator [E,f(a) = f(a + 1)].

Looking into the requirement and importance of various properties of
expansion in several field, in Sixth Chapter we have established some new
Expansion and Identities involving A-Function of one variable by increasing the

number of parameters. In section (6.2) six new expansions and in section (6.3) nine
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new identities involving A-Function of one variable has been established by

increasing the number of parameters.

Various problems in science and technology, when formulated
mathematically, lead naturally to certain classes of partial differential equations
involving one or more unknown functions together with the prescribed conditions
(known as boundary conditions) which arise from the physical situation. Several
researchers have obtained solutions to the differential equations related to certain
problems, which satisfy the given boundary conditions. The classical method in
obtaining solutions of the boundary value problems of mathematical physics can be
derived from Fourier’s another technique using integral transforms, which had its
origin in Heaviside’s work, has been developed in the past and has certain
advantages over the classical method. Several authors such as Arora (1998),
Chandel (2002), Chaurasia (1997), Srivastava (1998, 1999, 2000), Tiwari (1993)
have wused various classes of orthogonal polynomials and generalized
hypergeometric functions of one or more variables in finding the solutions of the

boundary value problems concerning
(a) heat conduction in

(1) anon-homogenous finite bar

(i) acircular cylinder
(b) free oscillations of water in a circular lake
(c) transverse vibrations in a circular membranes
(d) free symmetrical vibrations in a very large plate
(e) angular displacement in a shaft of circular cross-section
(f) potential theory, etc.

Inspired by these authors in Seventh Chapter, in section (7.3) first we have
evaluated an integral involving A-function of one variable and then applied it to
solve two boundary value. In section (7.4) we employ the A-function of one
variable in obtaining a solution of a partial differential equation related to heat

conduction along with Hermite polynomials. In section (7.5) we derive the solution



of special one-dimensional time dependent Schrodinger equation involving Hermite
polynomials and A-function of one variable. In section (7.6) we employ the
A-function of one variable in obtaining a solution of a problems on (i) heat
conduction in a bar (ii) deflection of vibrating string and bounded electrostatic

potential in the semi-infinite space under certain conditions.

The subject of Fourier series for generalized hypergeometric functions
occupies outstanding place in the literature of special functions and boundary value
problems. Certain double Fourier series of generalized hypergeometric functions
play vital role in the improvement of the theories of special functions and two-

dimensional boundary value problems.

In the Eighth Chapter, we have founded some new Fourier series involving
A-function of one variable. We have taken help of the results obtained in chapter 4

to prove these Fourier series.

At the last in Ninth Chapter we have given the summary and conclusion of

the thesis.
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CHAPTER-1

INTRODUCTION

1.1 HYPERGEOMETRIC FUNCTION

In the theory of special functions, the Gaussian hypergeometric function is
very important. In fact nearly all the functions used in mathematical physics and
applied mathematics can be expressed in term of hypergeometric function or in terms
of confluent cases. This function is the extensions and generalization of the basic

geometric series and simple transcendental functions.

The function

Filab;cz] =1+ e, @o®nz (1.1.1)

(n n!

arises in the study of following second order linear differential equation having

regular singular points [56]
d?w dw
z(l—z)ﬁ+[c—(a+b+1)z]E—abw=O, (1.1.2)

forc > 0and c € Z. In (1.1.2), Pochhammer’s symbol (a), is factorial function defined

as

(a)h=(a,n)=(a+n—-1)(a+n—-2)....(a+1)a,n>1

_ I'(a+n) ce
=@ for n positive integer

and a # 0, (a, 0) = 1. The quantities a, b and ¢ in (1.1.2) are independent of z and are

called parameters, z is called argument.

. ,b; . . .
The function ,F; [? z], where a, b, ¢ are parameters and z is variable, is

known as Gauss’s hypergeometric function.

All four of these quantities may be any numbers, real or complex. There is one
exception, namely, that the series is not defined, then numerical value of the series
becomes infinite if ¢ < 0, if one of the parameters in numerator a < 0 or b < 0, such

that - a > - c, say. In general, if either of the numerator parameters is a negative



integer the series (1.1.1) terminates to a polynomial in z. The convergence conditions

of (1.1.1) are as follows:
(1) The series is convergent if |z| < 1 and divergent if |z| > 1,V z € Roor C.

(i)  For |z| = 1, the absolute convergence of series required Real (-a-b +c¢c) > 0

and for divergence Real (-a-b +c¢) <0.

most of the classical orthogonal polynomials, complete elliptic functions of
first and second kinds, incomplete beta function and Legendre functions are the
special cases of ,F;. Coulomb wave functions, parabolic cylinder functions, Bessel

functions, etc. are also the special cases of confluent hypergeometric function.
1.2 GENERALIZED HYPERGEOMETRIC FUNCTIONS

The function ,Fy is the generalization of hypergeometric function ,F;, where
nature of p parameters is similar as of a and b, and nature of q parameters is same as

of c. Thus the generalized hypergeometric series is:

aly ...y Ap; o (apy ...... (ap)n 2z
bl, ceey bq;

p n
IT (ai)n z
i=1

q
n=0 11 (bj), n!
j=1
where pF, is known as generalized hypergeometric function of variable z. If for any q,

by =0 or by < 0, the function ,F is not defined. If for any p, a, = 0 or a, < 0, the series

will terminates. In case non terminating pF,

(1) forlz|<lifp=q+1;
(ii) for|z|:1ifp:q+1andR( Lib - lela,-)>0

(iii)  forall finite zif p <q;

the series converges and diverges V z#0,q+ 1 <p.



Functions considered above and the class of the hypergeometric series are of
single variable. Countless achievement of philosophy of hypergeometric series in one
variable takes inspired the growth of equivalent theory in two and more than two

variables.

It was Appell (1880), who for the first time introduced the following four

series F;, F», F3, F,4 in two variables:

" o m+n b m b’ n
Fy[2PP5%,y] = 35 g 2w @m®n ymyn, 1.2.1)

(6)m+n m!n!

max{[x|, |y|} < 1;

F, [Z‘f;',."‘x, y] = Xmn=0 %xmﬂ (1.2.2)
1> x| +1yl;

Fa[&%70"x,y] = T pap 2 onmin ymyn, (123)
1> x|+ Iyl;

Falf0i% Y] = Zin peo (o Dmin ymyn, (1.2.4)

1> x| + Vyl;

In 1920, Humbert [27] introduced the confluent hypergeometric function of

two variables
o @mn@B)m
O1(0t, B2 73 X, ¥) = B nmo () B XY, (1.2.5)
[yl <oo, x| <13
, o _(B)m B
OB, B v X, V) = Xmn=opy XY (1.2.6)

[yl < o0, [x| < oo;

0 (B)m
Os(Bs v: % ) = Zmn=o iy — o XY (1.2.7)
: o _(@men®m
Wi B, Y X Y) = Binmo ) o i XY (1.2.8)
X[ <1, ly| <eo;
y ((X' X ) — Zoo ()m+n men (1 ) 9)
ALY %Y m,n=0 m(Y)nm! n! ’ -

[yl < oo, [x| < oo;



Horn (1931), while giving a general definition for the double power series,
constructed ten more hypergeometric functions viz. G; to Gz and H; to H; and thirteen
confluent out of these ten functions. Thus, there are 34 distinct convergent
hypergeometric series of two variables as shown by Horn [26]. Some of them, which

are useful in our research, are given as:

Gl(a, B, B,, X, y) — Zfﬁ,n=0 (Wm+nB)n-m(BIm-n men' (1210)

m! n!

ly| <s,r+s=1, x| <r;

GZ(OL, (l’, B, Br; X, y) — Zfﬁ’nﬂ) (Ot)m(a’)n(g)n—m(ﬁl)m—n mel’l' (1.2'11)

m! n!

ly| <1, x| < 1;

(@zn-m(®)2m-n , myn (1.2.12)

Gs(o, 05 X, ¥) = Xmn=o o—— A

ly| <s, 271 + 18rs £ 4(r—s)— 1 =0, x| < r;

Hi(a, B, 7; 8 X, y) = X2 oo mn®menWn ymyn (1.2.13)

(8)mm!n!

ly| <'s, (s — 1)* = drs, |x| <13

—-n(B)m(¥Y)n(@)n

Ha(a, B, 7, 8; 8 X, ¥) = i pog (O gmyn, (1.2.14)
ly| <s,(t+s)=1, x| <r;
Hs(o, B; v; %, y) = Z?’S,n:o%xmﬂ (1.2.15)
x| < 1;
H X — J'© M my,n 1.2.16
4(0'9 Y 05 X, Y) —Zm,nzo (3)mm! n! Xy, ( L. )

<s, (s—1)?=dr= x| <r;
y

Hs(o, B; v; X, y) = Z;ﬁ,nzowxmy“, (1.2.17)

(Y)nm!n!

ly| <'s, 16r° — 36rs + (8r— s + 27rs>) + 1 = 0, [x| < 13

H6((X, B’ v; X, y) — Z?ﬁ,nzo ()2m-n(B)n-m(¥)n men’ (1 218)

m! n!
ly| <s,s+1s*— 1, x| <13
oo ()2m-n(B)n(¥)n
Hi(a, B, v; 6; X, y) = Zm,n=oWXm}’", (1.2.19)

ly| <s, (s '—1)Y?=4r, x| <r;
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Hg(aa Ba X, Y) = Z?’S,n:OMXm}’nl (1220)

m!n!
x| < va;
®  (@am-n(®n
Ho(a, B; 6; X, y) = Zm,n=oa(§)nmxmyn, (1.2.21)
®  (@n®n-m@)mn-n
Ti(a, B ;% Y) = Binco™ (o XY™ (1.2.22)

In 1954, Saran [62] completed Lauricella’s series of hypergeometric function

of three variables by defining the functions Fg, Fg, Fg, Fx, Fum, Fu, Fp, Fr, Fs and Fr.

Felay, oy, aq, B1, B2, B2 Y1, Y2, Y33 X, Y, Z]

(o1, m+n+p)(B1,m)(B2,n+p) mean
1'm) (Yz,n) (Y3'p)(1'm)(1vn)(1’p)

= Zmnp=0g , (1.2.23)

Fgloag, o4, a1, B1, B2, B3s Y1, Y2, Y25 X, Y, Z]

— Yo (03, m+n+p)(B1,m)(B2)(B3.P) _m_n,p
Zmnp=0"(y myrpntp)am ) X (1.2.24)
Fgloy, az, 0z, B1, B2, B1; Y1, Y2, Y33 X, Y, 7]

(23 m)(az n+p)(B1,m+p)(B21) m_n,p
Vo (Y2 e Lm@LmLp) ~ ) L (1.2.25)

= Z?ﬁ,n,p:O(

Fyloy, ag, as, B1, B2, B1 Y1, Y2, Y25 X, Y, Z]

_ O (o1, m)(az,m)(a3,p)(B1,m+p)(B2,n) my,n,,p
= Lmnp=0"(y, munepamanap X Y 2 (1.2.26)
Fslay, oz, 02, B1, B2, B3 Y1, Y1, Y13 X Y, Z]

(ot1,m)(0t2,n+p)(B1,m)(B2,n)(B3.0) _m b
(y1,m+n+p)(1,m)(1,n)(1,p) xyzr. (1.2.27)

= Z?ﬁ,n,pzo

In addition to Lauricella’s and Saran’s functions Pandey [52] defined G and
G and Dhawan [18] considered G¢ and Gp hypergeometric function of three

variables, are given as follows:

GA(a, B, B’, 'Y, X, y, Z) _ Z;‘;’n’pzo (Ot)n+p—m(8)m+p(B )n menzp' (1228)

(Y)n+p-mm! n! p!

Iy| <1,|z| < 1, |x| < 1;

(n+p-m(B1)m(B2)n(B3)p xm

(Y)n+p-mm! n! p!

Ga(a, B1, B2, P3; ¥: X, ¥, 2) = Xmn,p=0

Iy| <1,z < 1, |x| < 1;

y"zP, (1.2.29)



GC((X, Ba Bla Y, X, Y, Z)

(@Wm+p(B)m+n(B1)n-p myn,p

= Zmnp=0" (XY (1.2.30)
ly| <1,z < 1, x| < 1;

GD((I, o, Bla BZ) B39 Y X, Y, Z)

— Zfﬁ,n,p=o (O()p—m(al)n(Bl)m(Bz)n(BB)p mean, (123 1)

(Y)n+p-mm! n! p!

ly| <1,|z| < 1, |x| < I;

Taking the limiting cases of fourteen triple hypergeometric functions
due to Lauricella and Saran, Dhawan [17] defined five more confluent
hypergeometric functions 3GS), 3G(2), 3G](31), 3H(1), and 3H](31). Some of them, are

given as follows:

G (0, By V% Y, 2)

(Ol)n+p—m(81)m+p my,n,,p
(Y)n+p-mm! n! p! Xyzn (1.2.32)

= Z?l,n,p:O

ly| <1,|z| < 1, x| < I;

3G](31)(oc, B1,B2V:XY,2)

_ ' (a)n+p—m(61)m(62)n

= Zmnp=o ()ntp-mm! ! p! Xy z?, (1.2.33)
Iyl <1,z < 1, [x| < 1

HY (0, By, Y5 %y, 2)

_ \'oo ()m+p(B)m+n my,n,p

= Xmnp=0 )~ ymeominp X Y 20 (1.2.34)

ly| <s,lz| <t, 1+st=r+s+t, [x|<r;

In recent research work, the double hypergeometric function has been
generalized by taking more variables and more parameters. Moreover, G, H and A-
function also have been generalized by increasing the number of variables, in terms of

contour integral.

The A-function of one variable is defined by Gautam [22] and we will

represent here in the following manner:



((ap, 0‘1)) S
Xl o, py 1= 2 ] 6(s)x* ds (1.2.35)

m, n

p.q

where i = \/(— 1) and

A

(1)
H ['(aj + socj) H F(l —bj—sB;)
(1.2.36)
0(s)=
T - sop) T H ['(b; + sB))

(i1) m, n, p and q are non-negative numbers in whichm <p,n <q.
(iii)  x # 0 and parameters a;, o, by and Bx (j = 1 to p and k = 1 to q) are all
complex.

In (1.2.35), the integral is convergent if

(1) x#0,k=0,h>0, arg(ux)| < wh/2
(i) x>0,k=0=h, (v—ow)<—1

where

k=Im () o — 278

m p

h= Re(Z Bi— ZB + 2 o-2Z a) (1.2.37)
j= n+ j=1 " j=n+1

u =15 o 19 ;P (1.2.38)

p q
v=Re(Za—-2bj)—(p-q)/2,
1 1

p
W= Re(ZBJ ZocJ

and s=o +itison path L when [t| —o0.
1.3 POLYNOMIALS
1.3.1 Legendre Polynomials:

In the study of attraction of spheroids and planetary motion, Legendre was led

to the consideration of the series of the function

Ir=(1-2p cosy+p2)_”2 (1.3.1)



The expansion of this expression in ascending powers of p is of the form

> p" Pa(p), where pu=cosy, 0 < p < 1. (13.2)
n=0

The coefficients P,(n) are known as Legendre polynomials and it depends on
cosy only and can be shown to be polynomials of degree n in cosy. In term of

hypergeometric function as

_ 11—
PaW) = P[] (1.3.3)

1.3.2 Associated Legendre Polynomials:

Ferrer (1877) introduced the associated Legendre polynomial Pn(m)(u) and

Q,(lm)(u) of the first and second kinds respectively of degree n and order m, as the

solution of the differential equation.
d 2 dz 2 2
du{(l_“) du}+{n(n+1)—m/(1—u)}z:0, (1.3.4)

where (L = cos0).

It can be proved easily that if m is a positive integer and — 1 < p < 1, then

POV (0) = (1 — u2)>

dm
P (1.35)

where (1 — uz)m/ ? indicates the numerical value of the root.

Further P,fm)(u) and Q,(lm)(u) are surface spherical harmonics of degree n and

order m where Qflm)(u) = (-D)™ %pn(m)(u)

Legendre polynomials have been widely used in many applied problems
related to this spherical regions, steady temperatures in a solid and hemisphere,

temperature in non-homogeneous insulated bar etc.
1.3.3 Laguerre Polynomials:

Simple Laguerre polynomials L,(x) were introduced by Laguerre, E. N. in
(1879). These Laguerre polynomials also occur in an unedited manuscript (1881) of

Able. N. H.



Laguerre polynomials L(na) (x) are defined by the generating function [56]

1 —xt o3 n
(1-t)1+e et = ZTL:O L(na) (X)t (136)

and Rodrigues formula [56].

L@ (x) = L2 pr(xn+aex) (1.3.7)

n

In hypergeometric form, these polynomials L(na) (x) are expressed [56] by

L0 = E2 R [ x] (1.3.8)

n!

and known as generalized Laguerre or sonine polynomials. Moreover, the solution of

differential equation of second order [56]
L9 + (1 + a +n)DLYx) +nLiP(x) = 0 (1.3.9)
gives these polynomials.
For a = 0, the polynomials Lﬁf‘) (x) reduces to simple Laguerre polynomials
L(x) ie. L) = (R [ x]
1.3.4 Hermite Polynomials:

The notation H,(x) for Hermite polynomial was introduced by Szego's in

1939. H,,(x) (Hermite polynomials) are defined by generating function [56]

2xt—t2 _ yoo Hn ()" (1.3.10)

€ T an=0 4y

and Rodrigues formula [56]
H,(x) = (—1)"e**D"e~* (1.3.11)

The hypergeometric form, these polynomials H,(x) expressed [56] by

S Tl
Ho(x) = (20)*" JFo[ 22 = (1.3.12)

Moreover, the solution of differential equation of second order [56]

H, ()" — 2xH, (%) + 2nH,(x) = 0 (1.3.13)



gives these polynomials. Chebyshev Hermite polynomial H, (x),is given by the
generating relation

t2

X7 = z,?:()”en:!‘)f (1.3.14)
and related to Hermite polynomial by relation
Hn(x) = 22H, (V2x) (1.3.15)

1.3.5 Jacobi Polynomials:

The orthogonal polynomials which have occupied a significant place in the
recent research papers are the Jacobi polynomials Pn(a’ﬁ )(Z), introduced by C. G. J.

Jacobi (1859) and Prfa’ﬁ )(Z)is the solution of second order linear homogeneous

differential equation namely:
(1-z)*w" + B-a—(e+B+2)z]w +nn+a+p+1)w=0, (1.3.16)
where n is positive integer.

The Jacobi polynomials may be expressed in the hypergeometric form as:

PP @) = 0 SR [ (1317

n! a+l; 2

When we substitute oo =3 in the Jacobi polynomial, we get ultraspherical

polynomial P*®(z)and by the substitution oo=p = 0, these degenerate into

Legendre polynomial P,(x).
1.3.6 Generalized Bessel Polynomials:

In 1949, Krall and Frink defined generalized Bessel Polynomial as follows

y (i, B) = ,F, [:}L“n-li%] (1.3.18)

1.3.7 Orthogonal Polynomials:

If {¢u(x)} be a sequence of functions and w(x) is a non-negative weight

function such that w¢,” is integrable in (a, b), then the scalar product is defined by

b
(Ons Gm) =] W) 4a(x) dm(x) dx. (1.3.19)

10



If

(d)n, ¢m) = hy, Omn,

then sequence of function {,(x)} is said to be orthogonal, where

b
hy = (n, dn) = g [9n()]* W(x) dx, (1.3.20)

and
Om=1ifm=n

=0 if m #n.

11



CHAPTER-2
LINEAR AND BILINEAR GENERATING RELATIONS
INVOLVING A-FUNCTION

2.1 INTRODUCTION

The sequences, which is generated by generating relations plays significant
role in the study of numerous valuable properties. In solving certain classes of
difference equation which arise in a wide variety of problems in operation research
(for instance, queening theory and related stochastic process), the generating relations
are used as z-transform. Generating relations can also be used with good effect for the
determination of the asymptotic behavior of the generalized sequence {f;, }n=o as n —

oo by suitably adopting Darboux's method.

Shrivastava [71], Hussain [28], [29], Majumdar [46], Srivastava [78], Singh
[72], Patel [53], Ming [48] and several other authors have discussed a number of
linear and bilinear generating relations involving other generalized hypergeometric

functions time to time.

Looking into the requirement and importance of various properties of
generating relations in the analysis of many problems of mathematics and
mathematical physics, in this chapter we established some new linear and bilinear

generating relations involving A-function of one variable.

In section (2.3), we have established some new linear generating relations for

A-function of one variable.

In section (2.4), we have discussed some bilinear generating relations

involving A-function of one variable.

The content of this chapter in the form of two research papers has been

published in Applied Science Periodical [37] and IOSR Journal of Mathematics [40].
2.2 LINEAR GENERATING RELATIONS

Since linear generating relation has large role in the study of hypergeometric

functions. Thus in this section we have established the eight linear generating

12



relations involving A-Function. We have used some basic results from Shrivastava

and Manocha [69, p. 34, 44, 37 (10)].

(@), = (a,n) = &0 2.2.1)
I'a)
rl—-a-n) _ (-D"

T @ (2.2.2)
e* = oFo[——; x], (2.2.3)
(1-x) "= Fola; = x], [x| < 1, (2.2.4)
(1-%) "= I o(@n = (2.2.5)
(1+%) "= T2 o(@)y = (2.2.6)

to prove the following results.
Theorem 2.2.1: Prove that

(A+r,0),(aj, a])

(b381), 4

. o ' am+1in
(1) r=0 ;Ap+1,q |

Moo, (aj),
=(1-1) AAg‘:fg[ X(1 =97, o) ), VVap|. (2.2.7)

.. D" xm+1, A+r,0)(aj, 0‘1)
() Zo= Ao Mg,

A, (a 1“1)

“lw, S (2.2.8)

=(1+1) lAgl:f;ll (1+1t)”

larg (ux)| < ¥2 nh, where h and u are given in (1.2.37) and (1.2.38) respectively.

Proof
(1) Consider

A Am+1 n (A+r,0),(aj, (x])

p+1,q (b 31)
r=0

On expressing A-function in contour integral form as given in (1.2.35), we get

A=Y 0 f 0(s)xT(A + r + as) ds}

Zm

(Ol
= Zr 0

r!

{Zm f 6(s)x*(A + O(S)rFO\ + as) dS}

13



On altering the order of integration and summation, we get

1 o (O
A=—[ B(S)XTA+as) (522 (A + as), }ds

mtin 00, (ay),
=(1-1 AApffql( - °‘|(bﬁl)" ]

(in view of (1.2.35) and (1.2.36))
(i1) Proceed as above (i) and using (2.2.6)

Theorem 2.2.2: Prove that

(i) mn+1 |( j’aj)l.p
Apg+1 A-r,00,(bB),
_ (1 _ t)}\—lAm,n+1 (1 ( & ]) . (2 2 9)
= p.q+1 v, (b, B,)lq ’ B
N w (D' ymn+1 (@j.05),
(i1) 2r=0 1 qu+1 [ |(7\—I".Ol)'(ijsj)1q
= (1 +OM1A™PH [ e] 4t 0‘|(aj'0(j)1‘p ; (2.2.10)
—( ) p.q+1 X( ) (}\'O‘)'(bi’sj)lq ! o

larg (ux)| < ¥2 h, where h and u are given in (1.2.37) and (1.2.38) respectively.

Proof
1) Consider

(aj.o)
m,n+1 171V 1p
A= Xz 0 rpg+1 [Xl(?\—r,a),(bj,ﬁj)lq

On expressing A-function in contour integral form as given in (1.2.35), we get
o th 1
A= 2r=o;{2_me 0(s)x°T(1 — A +r— as) ds}

= Yrso o { ii fL 0(s)x*(1 —A—as), I'(1—A—as) ds}.

r!

On altering the order of integration and summation, we get
1 o @®OF
A= 2_me 0(s)x°T(1 —A—as) {Zrzo% (1 —X—as),}ds
= (1-t)*? ﬁfL 0(s)x’T(1 —A —as) (1 —t)*ds

o (ai,ocj)l‘p

. _ \A—1mn+1 —
= (1-t*A lx(l e, by,

p.q+1 (in view of (1.2.35) and

(1.2.36))

14



(i1) Proceed on same line as in (i) and use (2.2.6) to prove this result.

Theorem 2.2.3: Prove that

(1) o) EAm'n |(a] 0(]) ,(A+1,00)
r! p+lq (b B])

r=0
m,n ( ) A0
=1+ AAp+1ql x(1+1t)~ “|(b’ Bi) l; (2.2.11)
(—OF m.n (aj, a]) ()\+r,a)
(ii Z i B
m,n ( ) A
=(1-1) lAqul (1-1)" “'(b], s],) l; (2.2.12)

larg (ux)| < ¥2 wh, where h and u are given in (1.2.37) and (1.2.38) respectively.
Proof

1) Consider

- tr (aj, oc]) ,(A+1,0)
- Zr— pr1a X, B,

On expressing A-function in contour integral form as given in (1.2.35), we get

0(s)xS
4= ZT‘ 0 {_fL C(1-A-r—as) dS}

2T

T g{if 0(s)xS(A+as), }
T 4r=0 ) l2mi L (-1)'T(1-A-as)

On altering the order of integration and summation, we get

— 1 e(S)XS 0 (_1)r(t)r
= 2mi fL T(1-A—as) {2720 — (A + as), }ds

_ 1 0(s)xS(1-t)~4s
(1 + t) 271ti fL r(1—-A-as)
( ] ]) . .
=(1+1 )‘A;lfl q lx(l +t)” o‘|(b B])lp ; (in view of (1.2.35) and (1.2.36))
(i1) Proceed as above (i)
Theorem 2.2.4: Prove that
( J ])
. m,n

@ Ap q+1l |(b B, (1—A—r,a)

15



mn (ay95),
—(1+1) AquH[ K+ ) o ml @21
.o oo m,n ( )
(11) Zr 0( rt!) Ap q+1l |(bJ Bj (1—)L—r,oc)]
R (),
= (1 -t~ A% q+1 x(1 -1t |(b B), (1 ra) |’ (2:2.14)

larg (ux)| < ¥2 wh, where h and u are given in (1.2.37) and (1.2.38) respectively.
Proof

(1) Consider

A= c t (a, 0‘1)
- Z 1P q+1 |(b B] (1—k—r,a)
r=0

On expressing A-function in contour integral form as given in (1.2.35), we get

0(s)xS
A= Y20 on s —ds)

2mi

. (t)r 0(s)xS(A+as);
T ar=0 4 {Zm fL (-DIT(1-A+as) }

On altering the order of integration and summation, we get

_ 1 0% vy DO 4
A= 2mi fL r(1-A-as) {ZT‘=O 1 ()\ O(S)r}ds

_ 2 1 0(s)x5(1-t)*s
(1 + t) 2Tt fL r(1-A+as)

(aj),
= (1+ 0 Ap X I 1+~ |(b1 B]) (1—x°‘)l (in view of (1.2.35) and

(1.2.36))

(i1) Same as part (i)

2.3 BILINEAR GENERATING RELATIONS
In this section we establish the four bilinear generating relations involving two
A-Functions. In order to prove these relation we have use the relations given in

section (2.2) from Shrivastava and Manocha [69, p.37 (10), 34, 44].

Theorem 2.3.1: Prove that

. o o tv'  mn (@,04)1,p,A+L); ymn (aj'aj)lfp'(u-l-r's)
M ZZo Doy Apiiall ., ARl )

16



_ (a',a')l ,(7\,0()
B M o \9)ry/1p
=(1+t) M1+v)” Apiig[x(1 + 079 (bj.B))1q I

m,n -B (@,94)1,p.(WB)
Apir,g YA+ VTP ey ] (2.3.1)

. o (GO GAoN (aj,05)1,p, A+la)
(i1) Zl:O Zr 0 Tl Agl+nlq[ I ] ](bj}:’Bj)l,q ]

m,n (@,94)1,p, (1+1,8)
'Ap+1,q[ | (55,81, ]

~ —a@)05)1,p, A,0)
n _ 12)/1,p,
=(1-1t) M 1-v)" Apiigx(1 =07 (bj.Bj)1q I

m,n — N -B1@%1p, (LB)
Ap+1 q[Y(l V) I (bj»Bj)l,q ]r (232)

provided that |arg(ux)| < ©h/2 and|arg(uy)| < nh/2, where u and h are given in (1.2.37)
and (1.2.38) respectively.

Proof

1) Consider

_ Vo o V' mn (@j,%)1,p,/(A+L0) (j’aj)lpp’(w-r’s)
A= Zl 0 Zr 0 p+1lq[X| (05,811, ] p+1q[ | (bi’Bj)Lq

On expressing A-function in contour integral form as given in (1.2.35), we get

A= Z Zl'r'{Z_mf e(S)XSF(l—Al—l—as)dS}'

{Z_mf Q( )y 1—-(1 p—r— BZ) d‘Z}

(o] 0 _tl — )r 1 (7\ )
=220 Zrzo%( - {gf 0(s)x S—FOTS l)ds}.
{ f (Z)( )yz (ll"'BZ)r dZ}

On altering the order of integration and summation, we get

ﬁfL Bl F(l—?\—ocs){; I (“O‘S)l}dsl-
1 2 1 d (_t)r
[ﬁfL oy F(l—u—Bs){; i <“+Bz)r}dZ]-

S R R E A

A=

17



2 z (1+v)~ . .
— [, 8@y i BZ)clz] (in view of (1.2.36))

Hence Proved.
(i11)  Proceed as above (i)
Theorem 2.3.2: Prove that
. o o tvF m+1,np, A+La),(85,05)1,p m+1,ny, (100,050 1p
Q) Zl 0 Zr:OEF p+1,q [ | (b.B)1,q ] p+1,q [ | b.B1q ]

(}\,a),(aj,aj)]_,p

=(1-1 " (@ -v) MARE XA — 07T .
m+1,n _ -B (H'B)'(aj'aj)l,p
X Ap+1 q [Y(l V) | (bj’Bj)l,q ]r (233)
s 0 L' ym+1np, A+Lo),(@5,05)1,p
() =0 Zrzo 0w Aprig Xl (bj.Bj)1,q J

Am+1 ,n [ I(u+rJB)l(a]'la]')1,p]

p+1q (I
_ A u m+1,n - (}\:O():(aj:aj)l,p
=(1+1) " (1+v) MAL L [x(T+ D7 (0,810 ].
m+1,n -B (H'B),(aj:ajh,p
X Ap+1 q [ (1 + V) | (bj:Bj)l,q ]; (234)

provided that |arg(ux)| < wh/2 and |arg(uy)| < h/2, where u and h are given in (1.2.37)
and (1.2.38) respectively.

Proof

1) Consider

A= Zoo Zoo t_lV_r m+1,n[ |O\+lva)'(aj'0‘j)1,p] m+1n[ |(|J.+l",0£),(aj,0(j)1’p]
=0 r=0 p+1q (bj.Bi)1,q p+1q LY (bj.Bj)1,q

On expressing A-function in contour integral form as given in (1.2.35), we get

lr!

A=¥P, ¥ Ot—v—{ — [, 0()x’T(A+ [ + as) ds}.

G J, 8@y T(u+ 1+ B2) dz}

=220 Dreo lt) = V)r{ 11Ti J, 08X A+ as),T(A + as) ds}.

r!

{anf ?(z)y*(n+ Bz) I'(u + Bz) dz}

On altering the order of integration and summation, we get

A=), BT+ as) {T205 A+ as), ) ds].
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[ee]

1 r
: [ﬁfL P(z)y*I'(u + Bz) {z ‘;—, (n+ Bz)r} dZ]-

=1 -9 -V [, 8EX T+ as)(1 - )~ ds|

1
‘L2mi

J. 9@y T (u+ Bz)(1 —v)~F* dz]

()\;a).(aj.aj)l,p

_ _ Y _ -u am+1,n _ -
= (117 (1= v) T HART T X - 07T T

p+1,9

X ARSIy (L =) B PP Gin view of (12.36))
! yE L

Hence proved.

(i1) Proceed as above (i)
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CHAPTER-3

BILATERAL AND TRILATERAL GENERATING
RELATIONS INVOLVING A-FUNCTION

3.1 INTRODUCTION

In the progress and study of special functions A-function of one variable plays
a vital role. The usefulness of this function has inspired us to find some new

generating relations.

Hussain [28], Majumdar [46], Shrivastava [78], Singh [72], Ming [48] and
several other authors have discussed a number of bilateral and trilateral generating

relations involving generalized hypergeometric functions time to time.

In this chapter some new bilateral and trilateral generating relations have been

established involving A-function of one variable and other hypergeometric functions.

In section (3.3), we have discussed some new bilateral generating relations

involving A-function of one variable.

In section (3.4), we find some new trilateral generating relations for A-

function of one variable.

Most of the results in this chapter have been published in Arybhatta Journal of

Mathematics and Informatics [41] in form of a research paper.
3.2 RESULTS AND FORMULAE USED
In the present investigation we require the following formulae:
From Shrivastava and Manocha [69, p.37 (10), 34, 44],
Dn t t
S0 ERETE@yen = Fy (2, —a,~fi (2 + D5, ~( - D3]

3.2.1)

(Dn(6)n
— (@ + Dp(B+Dn "

PP, )t”—F4[/16a+1,8+1 (z—l)— (z+1)2]

(3.2.2)
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From Rainvile [56]:

(1+a),

2Filivarn = U =00 (3.23)
O (3.2.4)
(@)-n = % (3.2.5)
@, p—q) = (@,~)@ — q,p) = 21D, (3.2.6)

(1-a',q)
WP (L+x,y+2) =, X+Yy+12), (3.2.7)
(Lx+y)(L+x+y,t+z2)=(UL, x+y+t+2)
=Wy (L+y, X+t+2), (3.2.8)
(W) (u+n,q) = n+q) = q) (L+q,n). (3.2.9)

3.3 BILATERAL GENERATING RELATIONS

Since bilateral generating relations are of great importance in the study of
A-Functions therefore in this section we have established the four bilateral Generating

Relations involving A-Function and Gauss hypergometric function.

Theorem 3.3.1: Prove that

(a 10‘])
) n+1
(1) 2= Ou 2F1[1+a+l 1]Arr?,<§l+1 I( a/2- 10) (bj.B5), 1

(aj.o)
_ _ 4 —(@+1l) omn+1 1p
—(1 t) Ap,q+1 lxl(_a/Z,O),(bj,Bj)Lq (3'3.1)
(1+a/2+1,0),(ajq5),
. I +1, 4
(i1) Xz Ou 2F1[1+ail 1] Agl+1,éll I(b By), l
(1+a/2,0),(aj, OL])
_ —(@+1) m+1,n
=(1-1¢ Abiig X (o387, , (3.3.2)

(a+1,0),(aj, oc])
(ii1) Zzol, 2F1[1laal 1]AI§++11§[ (b B]

21



(@,0),(a; a)

_ —a/2 ym+1,n U

=(1-0"" A0\, l |(b ), (3.3.3)

(aj, 1)

) 1

iv) X2 ol, P P 1A a1 [ X| 1—a- 10)(b B),
_(1_t)—a/2Amn+1 |(1 1) . (3.3.4)
= pa+1 | %l aO)(b 87, o

larg (ux)| < ¥2 mh, where h and u are given in (1.2.37) and (1.2.38) respectively and

»F4 1s Gauss hypergeometric function.
Proof

(1) Consider

4l o
A _ t_ F [—l, a, mn+1 |( ],a])l,p
= 1 20 thtat T Apgri (-a/2-1,0),(b;.8;), . |

On expressing A-function in contour integral form as given in (1.2.35) and

using (3.2.3), we get

A=y L _ata — [, 8()x°T{1— (—2—1) — 0s} ds].

=07 (1+a/2); 2111

In the view of (3.2.4) and (2.2.5), we arrive at R.H.S. of (3.3.1) as follows:

A=y L ara — [, 8(s)x (1 g)lr(1+a/2) ds]

1=07 (1+a/2), 2m
1 w t
= — [, 8T (1+3) [0 (1 +a),]
=— [ 8T (1+3) (1 -5~ ds
2mi YL 2

(aj, J)1p

—a/2,0), (b"Bj)Lq ( in view of (1235))

_ —(a+1) omn+1
=(1-1) Ap,q+1 I |

Which we have to prove.

(i1) - (iv) Proceed as above (i) and using the results of section 3.3.
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3.4 TRILATERAL GENERATING RELATIONS

Theory of trilateral generating relations for different kind of special functions
is of great significance. We are going to establish the five trilateral generating

relations in this section.

In first result we have established a trilateral generating relation involving

Horn’s hypergeometric function H, and hypergeometric function Fg.

Theorem 3.4.1

Z H, [o,B,Y, 8+ n;xY] Pé“—n,ﬁ—n) @)
n=0

AmtLl (+1,0),(aj, a])

n
p+1a+1 | Vi(p, B, (u+n0)

B i (v, q)(8,q) (—y)aAm+i |<k 0),(2j,a)),

B . (1-o,q)(1,q) Apriiast Vi, Bi)1g 0)

q:

FS[a, - q )\: )\: B,I —Q, _B' W W W X, _(Z + 1) %I _(Z - 1) %]9 (341)

[x| <r,|y| <s, (r+s) =1, |arg (uv)| < ¥2 nh, where h and u are given in (1.2.37)

and (1.2.38) respectively;
Proof

To prove (3.4.1), consider

Z H, [o,B,Y, 65 n+n;xy] PIS“’“’B‘“) (2)
n=

Am+1'l (A+1n,0), (a] OL])
p+ia+1 |V, By, g, 0)

n

Expressing H; in series form, by using (1.2.14) and A-function (1.2.35) and
using (3.2.4), we get

U N @@ P DG D o wenpon
I I R ACNC
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1 » Q)
.[me 8(s)u DTG ds]t™.

After changing integration and summation order and using (3.2.9), we get

— 1"(7\) s
T 2mi f F(u) Y

@ p = DRI, DED) 4,

y (b p)(1,p)(1,q)
,q=0

(A, n) (Ol n,8—n) n
[Z Gtpm " 2 ]

Again applying (3.2.1), we find that

1 ry N @p-a)@,p), 9@ q)
T 2mi ), B(shw T(W ) (b p)(1,p)(1,9) =y

F, [7\, —a,—B;u+p;—(z+1) % —(z—-1) %] ds.
Further writing F; in series form, on using (1.2.2), we find that

1 r@) (', p— B, P, (", q)
T 2mi), 8(s)u” T() W £ (np)(1,p)(1, Q) v

A j+ R (=a)(=B k)

= (A p i+ (DA K

t.. t
[—(z + 1) =)[-(z — 1) =]¥ds.

2 2
Now using relation (3.2.7) and (3.2.6), we find that

A=

1 5,
f 8(s)u® rw .96, (—y)a

i), YOV PIeNy

| i (@ = q,pP)Aj+ K (B, p)(—aj)(-B.K)

t.. t
G FRApApL X et D EE-Dalds

p,j,k=0
which in the light of (1.2.27) and (1.2.35) provides (3.4.1).

In the following results we have given the trilateral generating relations

involving some hypergeometric functions given in section 1.2 of chapter 1.
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Theorem 3.4.2: Prove that

[00]

® Z Gy [8 41,8875 %, 1P P (2)
n=0
Atz | (y+n,0),(5+,0),(aj), )
“HAp+2,q+2 (b]-,B]-)lq,(o(+1+r1,0) (B+1+n,0)
= Z (8,p)(B”,p) (—x)PAT2L Ly 1.0).8.0).(aj5),
p=0 1 =F"p)(LP) p+2.a+2 | "(b;B;), (a+1,0) (B+1,0)

.FE[6+p,8+p,8+p,B’—p,y,y;1—B”—p,a+1,B+1;—y,(z—1)§,(z+1)§],
(3.4.2)
r+s=1,1y| <s, x| <r, |arg (uv)| < ¥2 nh, where h and u are given in (1.2.37)

and (1.2.38) respectively, G; is Horn’s function as in (1.2.10) and Fg is Saran’s

function as in (1.2.23).

(if) Z Hs [0, & + 0 p + n;x, y]PS ™0 ()
n=0

AmHLL O»+n,0),(aj,a].)1'p-

. \Y tn
p+1,q+1 (b]"B]')l‘q:(H‘FnrO)_

N 2 (& 2p) _(x)PATHLL -V|(}L’O),(aj'aj)1.p
. (b p)(1,p) p+la+l (bj,Bj)Lq,(u,O)
p: L

Fn[a +2p,—a, =B, A+, A +r;u,u+qu+qy —(z+ 1)%,—(2 - 1)%],
(3.4.3)

[x| <1, |arg (uv)| < ¥2 mh, where h and u are given in (1.2.37) and (1.2.38)
respectively, H; is Horn’s function as in (1.2.15) and Fy is Saran’s function as in

(1.2.26).
i) Zimo Ho [o, 24 m v x yIR" ™ ()

Am,l+1 v (ai'aj)lyp(l—u—n,o) .
“Ap+1,g+1 (1—7»—n,0),(b]-,3j)1’q
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— Z (a’, 2}’)) (—X)pAm‘l+1 Vl(ai’aj)ljp.(l_“’())
+ (1=2,p)(1,p) PHLAFL T (1-2,0),(byBy),
p:

FoL—pA—pr—pY,—a—B;1—o = 2p,u -y, ~(z+1);,—(z—-13],
(3.4.4)

y| <, s’ +s 1, larg (uv)| < ¥2 wh, where h and u are given in (1.2.37)

x| <,
and (1.2.38) respectively, Hg is Horn’s function as in (1.2.18) and Fg is Saran’s

function as in (1.2.24).
iv)  YooH;[a,y+n,6+n;8;x, y]PIE“’B) (z)

Am+2,l

(y+n,0),(8+n,0),(aj,ocj)1'p N
hp+2,q+2

v (b]-,B]-)lq,(oc+1+n,O) (B+1+4n,0)

_ (a’, 2p) (—x)pAm+2’l Vl(y,o).(s,o),(aj,aj)l‘p
- &, p)(1,p) pr2a+2 | V(b py), (@r10) (B+1.0)

e[V, y+qy+q8+1588+r1—a —2pa+ LB+ 1Ly, z—1)5,z+1):],
(3.4.5)

Iyl <s, x| <1, (s ™" = 1)* = 4,

arg (uv)| < %2 nth, where h and u are given in
(1.2.37) and (1.2.38) respectively, H; is Horn’s function as in (1.2.19) and Fy is

Saran’s function as in (1.2.25).
Proof

(i) — (iv) Proceed as theorem 3.4.1 and using the results of section 3.2.
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CHAPTER-H4

DEFINITE AND INDEFINITE INTEGRALS
INVOLVING A-FUNCTION

4.1 INTRODUCTION

In the study of boundary value problems Integral plays an important role. Its
usefulness cannot be ignored in getting expansion formulae. These are also significant

when integral equation, probability and statistical distribution are studied.

Ronghe [59], Saxena [63], Sharma [67], Goyal [24], Mohan [50], Srivastava
[76], [75], Jaloree [31] and several other authors have evaluated some definite,

indefinite and double integrals involving the generalized hypergeometric functions.

Looking importance and usefulness of integral in various fields we have
established some new integrals of various types, which will be helpful in the study of
boundary value problems, expansion formula, statistical distribution, probability and

integral equation.

Most of the results in this chapter have been published in The Mathematics

Education [35] in form of a research paper.
4.2 PREREQUISITE

In order to prove the results in the coming sections we shall need the following

results:

From Shrivastava [70], we have

j 1 (1—x)° (1 +x)°PP) (x)dx

_ 2P*o*IT(p4+1)r(1+06+n)I(—n-0)
- n!I'(2+n+p+o)r(1+n+p)

oo

[A+a+n+KIA+B+n+Kl(a+B+n+k—p—o0)
Z kKiT(l+a+B+n+k—o)[(a+k—p—o0)

)

k=0
(4.2.1)
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provided that Re(1 + ¢) >0, Re(p+1)>0,Re (1 + o) >0,Re (—n—-0c) > 0, Re(a + B
+n+k-p-0)>0.
1
f (1—x)P (1 +0°PP (x)dx
-1

_ (=1)"2P*9*Ir(6+1)I(1+p+n)I'(—n—p)
N n!l'(2+n+p+0o)r(1+n+o)

[00]

F[A+B+n+KI1+o0c+n+KIl(a+f+n+k—p—o0)
z kKT(l+a+B+n+k—pIl(B+k—p—o0) '

k=0
4.2.2)

only if Re(p+1)>0,Re(c+1)>0,Re (—p)>0,Re (—n—p)>0,Re(a+P+n+k
-p—0)>0,Re(1+p)>0.

/1, =%P 1+ PP (0)dx

_ 2P*9*Ir(c+1)I(p+1)
N n!I'(1+n+p)

o)

ZF(l+a+n+k)F(1+p+n+k)F(1—B+n+0)
kKIT2+k+p+o0)[(2+n+k+a+o0)

)

k=0
4.2.3)
only if Re(1 + p) >0,Re(c+1)>0,Re(1-B+n+0)>0,Re (1 +a)>0.
1, -%° 1+ 0P P (0dx =
2P+o+ir(s+1)r(p+1)
n'I'(1+n+o0)
o T'(1+B+n+K)Ir'(1+oc+n+k)I'(1—a+k+p) 4.2.4)

"4k=0 ¥ir(2+k+o+p)l(2+n+k+B+p)
only if Re(1 + ) >0,Re(p+1)>0,Re(l —a+k+p)>0,Re(1+p)>0.

S10 =0 @ +%°PP ()dx

_ 2P*oHIT(6+ I (1+p+n)I(—n—p)
N n!I'(2+n+p+0)l(-p—c-1)
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S T(—a—B—-n+KI(-1—p—c—KI(1-B+0c+k)
Z KIT(-B+k—n—p)I[(—a—B—n+k+o0)

(4.2.5)

provided that Re(1 + 2n + o+ ) > 0, Re(—2n—a —B) > 0, Re(1 + o) > 0, Re(p + 1)
> 0, Re—a—-B—-n + k) >0, Re (-n —p) > 0, Re(-1-p-c+ k) > 0,
Re(1-B+o+k)>0.

[, =%P 1+ 0P P (0)dx

_ (=D"2P*otIr(p+1)r(1+0+n)I(-n-o)
- n!I'(2+n+p+0)l'(-1-p—0)

[0e]

M(—a—B-n+KI(-1-p—0c—-KIA-B+p+k)
2 KIT(-B—n+k—0)[(—a—B—n+k+p) '

(4.2.6)
only if Re(1 +2n+ a+ ) > 0,Re(-2n—a—-B)>0,Re(1 + o) >0, Re(p+ 1) >0,
Re(—a-pPB-n+k)>0,Re(n-0)>0,Re(1-B+p+k)>0,Re(-1 -p-c+k)>
0.

From Bajpai [8], we have

(-D"Tr'(-o—-n)I'(2+0c-a)
I'(2+0—a—n)

fooo x°le ¥y (x;a,1)dx = , 4.2.7)

where y,(x;a,1)is generalized Bessel function, Re(c) < 0, Re(a—0) < 2, 0 #
-1,-2,-3, ...
From Whitaker and Watson [84], we have

nl'(a+B+1)

f.r[/z 2(X+B+1

25T i(a—p)e at+Ban —
0 —e (cosB)*"Pdo TP T (@t DIBTL) (4.2.8)
Re(a + B) > —1.
From MacRobert [44], we have
T2 Li(atB)B (gin@) oL B-14g = €2 L(OI(B)
Jy e (sin0)* *(cos0)P~1do = T 4.2.9)
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Re(a) > 0,Re(S) > 0.

From Rainville [56], we have

J, x%te™dx = I'(@), Re(a) > 0; (4.2.10)
top—1/t _ o1 _ tpt+o-1 I'(p)r'(o)
JyxPH(t—x)ldx =t roro; Re(p) > 0,Re(0) > 0. 4.2.11)

From Erdelyi [21]:

I'(p+1/2)I'(c+1/2)

1'[/2 s 2P 20 —
J, " “sin*?Bcos?°6.dB = (1/2) ootz (4.2.12)
provided that p > 0, ¢ > 0.
From Nielsen [51]:
T, . nI‘(1+p)cos(E)
fo (sinB)P cosub dO = zpr(1+ﬂ)r(1+2ﬂ) (4.2.13)
2 2
provided that p > —1.
- il (1+p)sin(50)
. P i — 2
J, (sin®)P sinub d6 a1 (4.2.14)
provided that p > —1.
From Mishra [49]:
T w-1 -imx ap:c(sinx)2h yu:d(sinx)2K
. (sinx)®™" e"™* pF o[ BQ] uF vl 5] dX
_ melmm _ (ap)rct (y)d'T(w+2hr+2Kkt)
T -1 4rt=0 22(hr+k0(B0) 11 (8¢ ! F(m+2hr+§ktim+1)’ (4.2.15)

where h and k are positive integers, Q > P (orQ+ 1=P,[c[|<1),V<U(orV+1=1,
|d] < 1), none of the B and &y = 0 or < 0 and Re (w) > 0.

From MacRobert [45]:

\/T[l—'(; —uw)'(u+n)

m™ . : 1-2u —
fo sin(2n + 1)6 (sinB) dé = r(w)r2-u+n)

(4.2.16)

where Re(3-2u)>0,n=0,1,2, ...;
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VT (u+n)F G - u)

T : —-2u -
fo cosnB (sin6/2)7*" db = F(w)(1-u+n)

4.2.17)

where Re(1 —2u)>0,n=0,1, 2, ...
4.3 DEFINITE AND INDEFINITE INTEGRALS

Following Ronghe [59], Saxena [63], Sharma [67], Goyal [24], Mohan [50],
Srivastava [75, 76], Jaloree [31] and other authors, in this section we have evaluated
some definite and indefinite integrals involving the A-function of one variable with

the help of results given in the previous section.
Theorem 4.3.1

Prove thatif Re(1 + p+ ) > 0,Re(1 + o) >0,Re(c+n+06+1) >0, Re(a +
+n+k-p-oc—-(u+38)>0,Re(l +n+k+p+p) >0, Re(—n—-0c-95) >0, |arg
(uz)| < ¥2 mh, where h and u are given in (1.2.37) and (1.2.38) respectively, then

(aj,aj)l’p

1
f_l(l —x)P(1+ X)GPISO"B)(X) Arg_é z(1 —x)*(1 + X)Sl(bj 5)
814

dx

oo

B 2"*"*12 F'l+a+n+k)
B k!

' [A+B+n+Kk)
n! s

5 (1+p,1),(1+0+ n,S),(aj,a]-)l p,(—a— B—n-k+0,8),(1—a—k+p+o,u+8)
p+4,q+4 ’

(1+n+o,8),(1—a—B—k—n+p+0,u+8),(bj,[3j)1 q,(2+p+cr+n,u+'6),(1+n+p,u)

4.3.1)
Proof

Replace the A-function by its equivalent counter integral in L.H.S. of (4.3.1)
as given in (1.2.35), we get

f_ll(l -x)P(1+ X)GPIEO('B)(X) [2i Jo 8()z°(1 =1 + x)%5ds]dx.

i
Under the given condition, changing the order of integration is valid, we arrive

at

1
2mi

fL 0(s) z8 [f_ll(l — x)PTHS (1 + x)°+55PrEa‘B)(X)dX] ds
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1

=5—J, 8(s)z

2T

g 2PHHSHOFESHID (54 115 +1)[(1+0+85+n)[(—n—0—8s)
n!T'(2+n+p+ps+o+8s)I(1+n+p+us)

ZOO F(1+a+n+k)I'A+p+n+k)r'(a+p+n+k—p+us—o—34s)
" &k=0 KIT(1+o+B+n+k—p—us)I'(a+k—p—p—ps)

ds, (By (4.2.1))

2pto+l _ o T'(1+a+n+k)
= Yo T +B+n+k)

n!

Am+2'l+2 " (1+p,u),(1+0+n,8),(aj,ocj)llp,(—a—B—n—k+o,8),(1—(x—k+p+c,u+8)

p+4,q+4 (1+n+c,8).(1—(x—B—k—n+p+0,p+8),(bj,8j)1q,(2+p+c+n,u+6),(1+n+p,u)

(Interpreting with (1.2.35)).
Which we have to prove.

Theorem 4.3.2: Prove that

1) onlyif Re(1 + c+3) >0, Re(1 +B)>0,Re(p+n+pu+1)>0,Re(a+p +n+
k—-p-oc—-(u+93)>0,Re(l +n+k+o+pn)>0,Re(—n—p—p) >0, |arg
(uz)| < ¥2 mh, where h and u are given in (1.2.37) and (1.2.38) respectively then

(aj,aj)l'p

d
(bB), |

[1,a = %P (1 +x°pP ) At [z(l —X)H(1+ %)

29+“+1§:F(1+B+n+k)

n! k!

= (-

k=0

l S (1+0,8),(1+p+n,u),(1+n+k+0,8),(aj,a]-)Lp,(—a—B—n—k+p,p.),(l—B—k+p+o,p+8)l
p+5,9+4 ’

(1+n+p,u),(1—ot—B—k—n+p+0,u+8),(b]-,[3j)1 q,(2+p+cr+n,u+6),(1+n+cr,6)

4.3.2)
(i1) IfRe(a+1)>0,Re(-B+k+c5+06+1)>0,Re(p+pn+1)>0,Re(c+5+1)

> 0, |arg (uz)| < Y2 mh, where h and u are given in (1.2.37) and (1.2.38)

respectively, then

1 —_ )P op(ap) m,l T 5 (aj'o‘j)ljp
J (=P (1 +x)°P, "7 (x) Apq |2(1 — )" (1 + %) |(bj.B,-)1,q dx
2P ST(L+ o+ n+ k)
~ n! Z k!
=0
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(iii)

(iv)

AL | outs (1+p,u),(l+cr,8),(1+n+k+p,u),(1—B+n+cr,8),(a,-,oc,-)Lp 433)
p+4,9+3 (b]-,B]-)lq,(1+n+p,u),(2+k+p+6,u+8),(2+0(+n+k+0,8) ! e

IfRe(—a+k+p+pu+1)>0,Re(a+1)>0,Re(p+u+1)>0,Re(c+0+1)
> 0, |arg (uz)| < Y2 mh, where h and u are given in (1.2.37) and (1.2.38)

respectively, then

1 (aj,aj)
[, =%°P (1 +°B P () AR 2(1 - 01 (1 + X)Sl(bj'Bj):Z dx
_ 2P T(L+ B+t k)
~ n! Z k!
k=0
(1+p,w),(140,8),(1+n+k+0,8),(1—a+k+p,w),(aj,a;)
Apiaqes [22") COR L 434
, (bj,Bj)llq,(1+n+0',8),(2+k+p+0',u+8),(2+B+n+k+p,p)
-1 n P.gq (b]'B])lq
_ 2O (—a—B-n+k)
~ n! Z k!
k=0

m+3,l+2 +8
Ap+5,q+4 [ZZ” (1

5 (1+0.8).(1+p+n,u),(1—B+0+k,8).(a,-,a,-)1jp.(2+p+0,u+8).(1+B+n—k+p,u)
+X) I(1+n+p,u),(Z+k+p+0,u+8),(bj,[3j)1q,(2+n+p+0,u+8),(—a—6—n+k+c,8) !

(4.3.5)

provided that Re(1 + o+ ) > 0, Re(—a— B —2n) > 0, Re(—a— B —n + k) > 0, Re(1

+0+0)>0,Re(l +n+p+p)>0,Re(-1+k—-p-c—-(u+0)>0,Re(1 -B+0c+

k +8) > 0, Re(—p —n—p) > 0, |arg (uz)| < ¥2 wh, where h and u are given in (1.2.37)

and (1.2.38) respectively.

v)

L1 =—x)r op(apB) m,l T 5 (aj;aj)l,p
f_l(l )P (1+x)°P; (%) Apg [z(l )H(1 + x) |(bj'8j)1’q dx
_ (—1)n2pto+l ® M(—a—B—n+k)

B n! Z k!
k=0
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Am#3 ez [ oues (1+p40),(1+0+0,8),(1=B+p+k ), (a),05) | |, (2+p+0,1+8),(1+B+n—k+0,8)

p+5,q+4 (1+n+c,8),(2+k+p+o,u+8),(bi,Bj)Lq,(z+n+p+o,u+8),(—a—3—n+k+p,u) ’

(4.3.6)
provided that Re(1 + a+ ) > 0, Re(—a— B —2n) > 0, Re(—a— B —n + k) > 0, Re(1
+p+wW>0,Re(l1+n+0c+3)>0,Re(-1+k—p—-c+(u+3)>0,Re(1 -B+p+
k+w) > 0,Re(—oc—n—-23) >0, |arg (uz)| < ¥2 nh, where h and u are given in (1.2.37)
and (1.2.38) respectively.

Proof

(1) Proceed as in theorem 4.3.1 and using the results (4.2.2)
(i1) It can be established using (4.2.3).

(iii)) It can be established using (4.2.4).

(iv) It can be established using (4.2.5).

) It can be established using (4.2.6).

Theorem 4.3.3: Prove that

(aj,ocj)l'p

d
(5i.By), X

fooo xP~le /%y (x;a,1) All(,’,lq lzx"|

(2—a+p,)\),(aj,ocj)1'p

(1+P+m,7t),(bj,si)1‘q'(2—a—m+p,?\)l’ 4.3.7)

— (_1)mAk+1,l+1 lzl

p+1,q9+2

where Re(L) > 0, Re(p) < 0, Re(a—p) <2, p # —1,—2,—3, .... and |arg (uz)| < V2 7h,
where h and u are given in (1.2.37) and (1.2.38) respectively.

Proof

To establish (4.3.7), replace the A-function by its equivalent counter integral

as given in (1.2.35), we get

fomxp‘le‘l/xym(x; a,1) [ZL J, 8@ st)‘sds] dx.

i

Under the given condition, changing the order of integration is valid, we

arrive at
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oo _1
%fL 0(s) z° [fo xPHAs—lexy (x;a,1) dx] ds.

Now evaluate the integral in the braces using (4.2.7) and finally interpret it

with (1.2.35), we get (4.3.7).

The following theorem (4.3.4) can be established easily in the view of (4.2.7)

exactly on the same lines as given above respectively.
Theorem 4.3.4: Prove that

(aj,ocj)l‘p

d
(5i.8)), 4 X

fom xP~le /%y (x;a,1) Alf,’,lq [zx‘”

_ K+1,l+1
- (_1)mAp+2,q+1

(-p-mA),(a;,05). ,(-1-p+a+m2)
[ A o l (4.3.8)

(_1—p+a,}\)'(b]"8j)1.q

where Re(L) > 0, Re(p) <0, Re(a—p) <2, p # —1,—2,—3, .... and [arg (uz)| < Y2 7h,
where h and u are given in (1.2.37) and (1.2.38) respectively.

Theorem 4.3.5: Prove that

(aj,ocj)l‘p

de
(55.8)), 4

/2 .
Jy /2 sin2P@ cos?°0AL Ix. sin?M@cosZkg|

_cymyansn [ GG,

p+2,q+1 Xl(b]-,ﬁj) ga+p+oh+lo | 4.3.9)

1,

provided that p > 0, o > 0,

arg (ux)| < %2 nth, where h and u are given in (1.2.37) and

(1.2.38) respectively.
Proof

To establish (4.3.9), use (1.2.35) and after changing the order of integration,
we get

T
1 z
— j x5 0(s) U sin2(P*+hs)g cos2(o+ks)g 49 | ds.
2mi ), 0
Now evaluate the integral in the braces by using the result (4.2.12) and finally

interpreting in view of (1.2.35), the integral (4.3.9) is obtained.
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Theorem 4.3.6: Prove that

(2.
() f:/z sin?P@ cos2°0 Ap'y Ix.sin‘2h6c052k9| e 4

(0583 4

m+1n+1l ( )(a] 0‘1) -p—oh- k)l' 43.10)

=(1/2) Ap+2 q+1 X|(1 )( 8)
2 PO 4

Y2 wh, where h and u are given in (1.2.37) and

(1.2.38) respectively.

(aj.05)
(i) f(;T/z sin®P0 cos?°0 Ayl [X. sin?"@cos~2kg|, \**|de

(b5.8)), 4

= (1/2) ATl [x (4.3.11)

p+1,9+2

(2 )(1 1) l

l(1 ). (bjB5),  (1+p+oh—1) |

provided that p > 0, 6 > 0, |arg (ux)| < ¥2 mh, where h and u are given in (1.2.37) and
(1.2.38) respectively.

(aj.05)
(111) f(;r[/z Siane COSZGG Arl?)l,,(;l lX' Sin_2h9C05‘2k9|(b]_ B]-)l,P de
J’F) 1,9
(] ]) ( p— 0'h+k)
— m,n+2
= (1/2) Ap+1lq+2l | 1 __Gk ) (or6), (4.3.12)

provided that p > 0, 6 > 0, |arg (ux)| < ¥2 mth, where h and u are given in (1.2.37) and
(1.2.38) respectively.

Proof

The proof of the integrals (4.3.10) to (4.3.12) would run parallel to what we

have obtained in theorem 4.3.5.
Theorem 4.3.7: Prove that

(ayy),

(5By), 4 dx

f: cos(ux) (sinx/2)7*®1x AT [z. (sinx/2)%"|

p+2,q+2 I(]_ ml_uh) (b B]) (1 (1)1+u,h) ’ (4313)

:\/(T[)Am+1,n+1 ( )(al 0‘1) (1 wq,h) l
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provided that h > 0, ®; > 0 and |arg (uz)| < ¥2 mth, where h and u are given in (1.2.37)
and (1.2.38) respectively.

Proof

We can express the integrand which contained A-function in term of Mellin-
Barnes type integral (1.2.35). Due to absolute convergence of the integrals involved in

the process we can interchange the order of integrations, which is justifiable, we get

% ]L x5 0(s) Uoncos(ux) (sin ;)

Now evaluate the integral in the braces using the formula given in Bajpai [6]:

—2(wq1-hs)

dxl ds.

(@1 +WIG - w1)
F(l—u)1+u)F(u)1)

—2
f: cos(ux) (sing) “ dx =V

and applying (1.2.35), the definition of the A-function, we get the result (4.3.13).

Theorem 4.3.8: Prove that

1 b , k@),

A= a+yePm = Apg [z. (1 =)y " | dY
814
_ 2bF@2Hiri1 4y 4h]
a v!
(a-wy+v,k),(aj,a). ,(—1-b-wz-v,k)
m+1,n+1 —k =V 1p
X AR (227 o), oo l (4.3.14)

provided that k > 0, @, > 0 and [arg (uz)| < ¥2 th, where h and u are given in (1.2.37)

and (1.2.38) respectively.
Proof

We can express the integrand which contained A-function in term of Mellin-
Barnes type integral (1.2.35). Due to absolute convergence of the integrals involved in

the process we can interchange the order of integrations, which is justifiable, we get

1 1
| xse<s)U (1— )2 (1 4+ y)PpP (y) dy | ds.
2mi g, _1

Now evaluate the integral in the braces using the formula given in Bajpai [4]:
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2b+@2+1T(14y4b) T(14+w,)T(a — wy+V)

[ A=y @+ y)PPPP () dy =

V! I'(a-w,)I'(2+b+w,+v)’
and applying (1.2.35), to get (4.3.14).
Theorem 4.3.9: Prove that
T (aj.07),
J, (sinB)? cosub x AP [z (sin@)~ 28|(bj'8j)1:Zl de
= VT cos(%)Ag‘f;T;Hl |(1’ p’; _; ’ )B(J)_p_ﬁ)l (4.3.15)
20

provided that p > —1,8 >0 and |arg (uz)| < ¥2 mth, where h and u are given in (1.2.37)
and (1.2.38) respectively.

Proof

We can express the integrand which contained A-function in term of Mellin-
Barnes type integral (1.2.35). Due to absolute convergence of the integrals involved in

the process we can interchange the order of integrations, which is justifiable, we get

21

1 T
— f x5 0(s) U (sinB)P~235 cosub del ds.
L 0

Now evaluate the integral in the braces using the formula (4.2.13), and

applying (1.2.35), to get (4.3.15).

Theorem 4.3.10: Prove that

f:(sine)P sinuf x A l (Slne) 25|(bl & 1,p do

B,
@pa), , ')'(‘p;u'S)
.MU n+2
=vﬁsm(7)A‘§+’§,+q+2[|1p8 o) by, 7 (4.3.16)
2

provided that p > —1, 8 > 0 and |arg (uz)| < %2 nh, where h and u are given in (1.2.37)
and (1.2.38) respectively.

Proof

On applying (4.2.14) instead of the (4.2.13) in theorem (4.3.15) theorem
(4.3.16) is established.
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Theorem 4.3.11: Prove that

)Zh

:d(sinx)2K
ol UF V"

T[ .
fo (sinx)®~1e™X JF Q[aP:C(SmX Sy
mn 2\ %y P
X Ap, [ (sinx) | (b ) dx

_ imm/2 yoo (ap)rct (yy)ed®
= Ve Lri=0 (BQ)rl‘! Gy t!

m+2n

(.o+2hr+2kt a)+2hr+2kt+1 ) ( )
),
p+2 q+2 |

( B m+2hr+2kt+m+1 2 (4317)
] >

where h and k are positive integers, Q> P (orQ+ 1 =P, |c|<1),V<U(orV+1=1,
|d] < 1), none of the B and 8y = 0 or < 0 and Re (») > 0 and |arg (uz)| < %2 wh, where

h and u are given in (1.2.37) and (1.2.38) respectively.
Proof

We can express the integrand which contained A-function in term of Mellin-
Barnes type integral (1.2.35). Due to absolute convergence of the integrals involved in

the process we can interchange the order of integrations, which is justifiable, we get

1 T : c(sinx)2h -d(sinx)2K
— ] x5 0(s) [J (sin X)m+zks—1 eimx F Q[ap.c(smx)BQ] oF V[Yu.d(81nx)8V]dX ds.
L 0

Evaluate the integral in the braces using the formula (4.2.15) and using
Gamma-function's multiplication formula Erdelyi [36, p.4, (11)], we get

imT/2 oo (ap)rc” (yy)ed*
Vme Zrit=0 (Bo),r! (8v)e !

w + 2hr + 2kt o+ 2hr + 2kt + 1
r( i +;\s)r( 5

_ j % 0(s)
2m ) I,(oo+2hr+§ktim+1_H\S)

+ ?\s)

ds

Now applying (1.2.35), the value of the integral (4.3.17) is obtained.

Theorem 4.3.12: Prove that

]])

byf), o de

"sin(2n + 1)0 (sin0)1 724 xA™™ |7, sin2hg
0 p.q (b,
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_ \/EAm+1,n+1 (%_ u'h)’(aj'aj)Lp’(l_u‘h)

p+2,q+2 Zl(l_u—n,h),(bj,ﬁj)l q,(2—u+n,h) ’

(4.3.18)

provided that Re(3 —2u) >0,n=0, 1,2, ..., h> 0 and |arg (uz)| < ¥2 wh, where h and
u are given in (1.2.37) and (1.2.38) respectively.

Proof

We can express the integrand which contained A-function in term of
Mellin-Barnes type integral (1.2.35). Due to absolute convergence of the integrals
involved in the process we can interchange the order of integrations, which is

justifiable, we get

1 T
— f x5 0(s) U sin(2n + 1) 8 (sin@)1~2u-hs) del ds.
2 )y 0

Now evaluate the integral in the braces using the formula (4.2.16), we have

3
1 . F(E—u+hs)r‘(u+n—hs)
VI o fL X80 | T —her2 —u+n +hs)

On applying (1.2.35), the integral (4.3.18) is obtained.

Theorem 4.3.13: Prove that

(aj,ocj)ljp de

f(;T cosno (sin ©/2)724x AT [Z- sin?"(6/2) |(b]_ B)
By g

p.q

= TIA?:'C? Z|

1 wh (aje). ,(1—uh)
(G-un) ), l (4.3.19)

(1—u—n,h),(b]-,Bj)lyq,(l—u+n,h)
provided that Re(1 —2u)>0,n=0, 1,2, ..., h > 0 and |arg (uz)| < ¥2 h, where h and
u are given in (1.2.37) and (1.2.38) respectively.
Proof

Proceed as in theorem 3.4.2 and using the result (4.2.17)
4.4 DOUBLE INTEGRALS

In this section, we have evaluated nine double integrals involving A-function

of one variable by taking the help of some results given in section (4.2). We have
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proved theorem 4.4.1 and other results can be easily proved by adopting the same

lines.

Theorem 4.4.1: Prove that

m/2 mj220tBt Lo ; . _ _
Jo Iy el (cosx) *+Pe+P) (siny)°~* (cosy)P

. A,
A [z(2e**Y) cosx siny) " (2el0 ) cosx cosy) "1dxdy

ino i
me 2 ,m+3n ze? (1+a+BA+W),(0,2),(p,1),(3j,%4)1,p

= 2(x+ﬁ+1 p+3,9+3 [27\+|_L |(b]'B])1 q;(0'+p,7\+u),(1+0(,?\),(1+B,p),]’ (4.4' 1)

provided that Re (o + B) > — 1, Re(c) > 0, Re(p) > 0, A = 0 and pu = 0, |arg (uz)| < ¥2
mh, where h and u are given in (1.2.37) and (1.2.38) respectively.

Proof

We can express the integrand which contained A-function in term of Mellin-
Barnes type integral (1.2.35). Due to absolute convergence of the integrals involved in

the process we can interchange the order of integrations, which is justifiable, we get

1

I=—[ 6(s)z".

- 2Tl

2 2B ixlocrA8)=(B+19)] (o) (@A +BHHS)] gy
0 T

[fog eiy[(0+7xs)+(p+us)] (siny) (o+As)—1 (Cosy)(p+us)—1dy] ds

Now using the results (4.2.8), (4.2.9) and interpreting it with the help of
(1.2.35), to get R.H.S. of (4.4.1).

Theorem 4.4.2: Prove that
o+B+1 .
Q) fot f(;T/Z ZT xP~1(t — x)°~1ei@=B)Y (cosy)@+B

Apq [Z(erinOSY)A(Z(t —x)e™V cosy)"]dxdy

p+o—-1 ’}\ k ‘}\ L(p, ), (a;, ot

= Zarpr1 p+3,q+3 (b]-,Bj)lq,(o+p,A+u),(1+a,X),(1+B,u), (4.4.2)
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where Re (a+ ) > — 1, Re(o) > 0, Re(p) > 0, A = 0 and p > 0, |arg (uz)| < Y2 7h,
where h and u are given in (1.2.37) and (1.2.38) respectively.

© ~T/2 20(+B+1 .
(ii) f f - xP~le Xel@ By (cosy)a+h
o Jo

Apa [Z(eriycosy)}\(Ze‘iy cosy)" dxdy

AT [Z (reatBrnEDa), | L)

= Ja+B+1 p+2,g+2 | A (by.By), p(1+a, (4B |

provided that Re (a.+ ) > — 1, Re(o) > 0, A = 0 and p = 0, |arg (uz)| < ¥2 nh, where
h and u are given in (1.2.37) and (1.2.38) respectively.

(iii) fot f(;T/Z xP~1 (t — X)o—lei(a+B)Y(Siny)a—1(Cosy)ﬁ—l

Apq [Z(Xeininy)A((t — x)eV cosy)"]dxdy

imA (oc,k),(B,u),(pJ\),(G,u),(a,-.ocj)ljp

2 (bj'Bj)1,q’(0-+p'}‘+u):(O(+B,?x+p_) ’ 4.4.4)

ina +0—-1 pMm+4n A+
— p+o— ) u
=ez2t Apiagsr |2t Ve

where Re (a) > 0, Re (B) > 0, Re(o) > 0, Re(p) > 0, A = 0 and p = 0, |arg (uz)| < ¥2
mh, where h and u are given in (1.2.37) and (1.2.38) respectively.

(v) [ fo"* %0 e el (siny)*~1 (cosy)P?

Apg [z(xeiysiny)}\(eiy cosy)" Jdxdy

ina imA (o,?x).(oc,l),(&u)'(aj'“j)l,p

_ — Aam+3n
=ez A LEE |(bj'Bj)1'q'(a+B'7\+|J) , 4.4.5)

p+3,9+

provided that Re (o)) > 0, Re (B) > 0, Re(c) > 0, A= 0 and p > 0, |arg (uz)| < %2 rh,
where h and u are given in (1.2.37) and (1.2.38) respectively.

V) f %P ey (e, Dy° e Wy, (i b, 1) Ay [zxy* ] dxdy

= (_1)m+nAk+2,l+2 (2_a+P’7\),(2—b+o,p),(aj,ai)l‘p

p+2,q+4 (1+p+m,x),(1+c+n,p),(bi,ﬁj)1q,(z—a—m+p,x),(z—b-n+c,u) ’

(4.4.6)
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where Re(c) < 0, Re(p) > 0, Re(n) > 0, Re(A) > 0, Re(a—p) < 2,
p#—-1,-2,-3,—4,-5..,Re(b-0)<2,0# —1,-2,-3,—4, ... and |arg (uz)| < %2
mh, where h and u are given in (1.2.37) and (1.2.38) respectively.

Vi) [ S xPTe T Yy (e, 1)y e Wy, (v b, 1) Apy[zx Ay TR ] dxdy

_ (_1)m+nAk+2.l+2 (—p—m,X),(—G—n,u),(aj,a,-)l‘p,(—1—p+a+m,7x),(—1—0+b+n,u)

p+4,q9+2 (—1—p+a,?\),(—1—G+b,u)l(bi'8i)1 q ’

(4.4.7)

where Re(c) < 0, Re(p) > 0, Re(n) > 0, Re(A) > 0, Re(a—p) < 2,
p#—-1,-2,-3,—4..,Re(b-0)<2,0#—1,-2,-3,—4... and |arg (uz)| < ¥2 7h,
where h and u are given in (1.2.37) and (1.2.38) respectively.

(vii) fom foooxp_le_l/xym(x; a, 1)y’ te Yy, (y;b,1) Alf)',lq[Z)<7‘y_‘l ] dxdy

_ (_1)m+nAk+2.l+2 (2—a+p,k),(—c—n,u),(aj,ocj)l‘p,(—1—G+b+n,u)

p+3,9+3 (1+p+m,)\),(—1—($+b,u),(b]-,B]-)1 q,(2—a—m+p,}\) ’
(4.4.8)

where Re(c) < 0, Re(p) > 0, Re(n) > 0, Re(A) > 0, Re(a—p) < 2,

p#*—-1,-2,-3,—4..,Re(b-0)<2,0#—1,—-2,-3,—4... and |arg (uz)| < ¥2 mth,
where h and u are given in (1.2.37) and (1.2.38) respectively.

(viii) fooo fooo xP~le=xy (x;a,1)y° te Vy, (y;b, 1) Alg‘,lq [zx Ay* ] dxdy

_ (_1)m+nAk+2.l+2 (—p—m,)\),(z—b+o,u),(aj,ocj)1‘p,(—1—p+a+m,}\)

p+3,9+3 Z (—1—p+a,)\),(1+0+n,u),(b]-,Bj)lq,(Z—b—n+G,p.) !
(4.4.9)
where Re(c) < 0, Re(p) > 0, Re(n) > 0, Re(A) > 0, Re(a—p) < 2,
p#—-1,-2,-3,-4..,Re(b-0)<2,0#—1,-2,-3,—4... and |arg (uz)| < ¥2 =h,
where h and u are given in (1.2.37) and (1.2.38) respectively.

Proof

Proceeding on the same lines as in the theorem 4.4.1, the results (4.4.2) to
(4.4.9) can be established with the help of (4.2.7), (4.2.8), (4.2.9), (4.2.10) and
4.2.11).
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CHAPTER-5

INTEGRATION INVOLVING CERTAIN PRODUCTS
AND A-FUNCTION

5.1 INTRODUCTION

Some integrals containing the product of other commonly used
hypergeometric functions have been evaluated by Shrivastava [75, 76], Tiwari [81,

82] and several other authors.

In this chapter, we shall establish some integrals containing the products of
other hypergeometric functions and A-Function using E-operator on the lines of

Shrivastava [75, 76], Tiwari [81, 82] and several other authors.

In section (5.4), some integrals containing the product of A-Function and
generalized hypergeometric function have been derived by using E (finite difference

operator).

Most of the results in this chapter have been published in Applied Science

Periodical [39] in form of a research paper.
5.2 FORMULA USED

From Shrivastava [62, p.426, (1.3); (1.4)] (with z replaced by iz are required in

the present work:

(@,@";(c);(c);
2 Fl )by sy — X 2%~y 2]

o @A+2n)r(+n) A
:Zn O%I?ﬁZn(ZZ) F[(bl; (gglggg ((?1))(@ () x? 'y ] (5.2.1)

and

(@),@7;(c);(cY; 2
Ml oy oy — X 25 —y°2’]

210 (22) F[AA@@@UD; 2.

=I'(1+2) 2o (b),(b"):(d);(d"); y2], (5.22)

20n!

where C+ A+A'<D+B+B,A"+C "+ A<B’"+ D’ + B, and for all values of A

with possible exception of zero and negative integers. (a) represents the sequence of A
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parameters aj, ay, ..., as and this convention will be retained throughout this chapter.
Burchnall and Chaundy [13] gives the notation for double hypergeometric function,

which was also introduced by Kampe de Feriet [3].

The finite difference operator E is given in [12], with w = 1 has the following

operations
E.f(a) = f(a + 1), E}f(a) = E,[ER~1f(a)]. (5.2.3)
5.3 MAIN INTEGRALS

In this section, we have established two integrals containing the products of
other hypergeometric functions and A-Function. We have represented these two
integrals in another forms also. At the end of this section we have also discussed

particular cases.

Theorem 5.3.1: Prove that

o -1 o (a),@";(c);(c;
fo zPTA~1gin 27 F[(ﬁ)'(%,);(fi);(cd,);— x2z2,—y?z?]

e (@),
IB 2 |(b]]B]] le

_ 2 (A+2n)r'(A+n) n,A+n,(a),(@");(c);(c); %2
— 4n=0 51+p-A-2np) [(b) (b7);(d);(d); 'y ]

(——p Zm) (a] a])

, 5.3.1
—————— )(b B]) (1+2n+)\—p,2m),(1—n—%—p/Z.m) ( )

k+1 [+1 2m
p+1 q+3 B I

which is valid under the conditions C+ A'+A<D+B'+B, A"+ C "+ A<B'+D" +

B, R(p + A + 2‘;—_"") > 1 (forj=1,2,3 ... k), R(p+ A+ 28Dy < | (forj=1,2,
)]

., ) and |arg (u )| < Y2 mh, where h and u are given in (1.2.37) and (1.2.38)

respectively.
Proof

To prove (5.3.1), take the expansion (5.2.1), multiply both side by f(z),
integrate w.r.t. z from O to oo and on interchanging the order of summation and

integration, we get
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2 MG - o
v (A+2nm)r(+n) nA+n,(a),(a");(c);(c?;
= Ym0 Floy i@y XY’

Jy Tan(22) f(2)dz. (5.3.2)

forA"+C+A<B"+D+B,A"+C " +A<B " +D " +B,R(A+m+1)>0 and

R(A + &+ 1) > 0, where for large z, f(z) = O(|z|é); and for small z, f(z) = O(|z|").

@

(i)
(iii)

The change of integration and summation is justified [12, p.500] because
The series

A+2K)T(A+k) Ak
T k@2 Flg @, x5y

Y=o
is uniformly convergent in 0 < z < N, N being arbitrary;

f(z) is a continuous function of z V z >z, > 0;

The integral on the left of (5.3.2) converges absolutely under the stated

conditions.

Now on taking

(ayy),

f(z) = zP~sin ZZAkl IB ‘2m|( by8y),.
]

in (5.3.2), we can express A-function in term of Mellin-Barnes type integral (1.2.35).

Due to absolute convergence of the integrals involved in the process we can

interchange the order of integrations, which is justifiable, evaluate integral in the

braces using [44, p.328(10)] and interpreting it with (1.2.35), we get (5.3.1).

Theorem 5.3.2: Prove that

T i e

(1 ])
—2m

-y (A+2n)I'(A+n) n,A+n,(a),(@);(c);(c); %2
— 4n=0 j1+p-A-2np) [(b) (b7);(d);(d"); 'y ]
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ARFLLHL (l_p 2m),(aj, aj)

z2m| 2 533
p+1,q+3 B (1 n———— )(b B]) (1+2n+7\—p,2m),(1—n—%—p/z,m) ( )

which is valid under the conditions A"+ C+ A<B"+D+B, A"+ C '+ A<B +D’

Zm(a] 1)

+ B, R(p+7\+ )>O(fOI‘_]—123 WKL, Rp+A+———) <1 (forj=1,2,

3, ...., ) and |arg (uB)| < ¥2 nh, where h and u are given in (1.2.37) and (1.2.38)
respectively.
Proof

If we take

(JJ)

f(z) = zP"1cos 2z Akl IB —2m|(b B)
i’Pj

proceed on the parallel lines as mentioned above and then in the light of the result [45,

p-328(11)], we obtain (5.3.3).

On considering the result (5.2.2), proceeding on the parallel lines as mentioned
above and making use of the result [45, p.328(10); p.328(11)], we get the following
different forms of the integral (5.3.1) and (5.3.3) as

Integral 5.3.1(a)
fo zP*t2~1gin 27 F[g)) E?)))((Cd))((cd)) —x%722, —y?7?]

(aj,),
lB _2m|(bl Bj Pldz

I‘(A+1) n,A+n,(a),(@);(c);(c?; %2
T ol+p-A Zn 0 5npr [(b) (b);(d);(dY); 'y ]

(——p n,2m),(aj, 0(])

,(5.34)
(__n_&_e )(b 3]) (1+x—p,2m),(1—n—%—p/2.m)

k+ll+1 2m
p+1 q+3 B I

which is valid under the same conditions as (5.3.1) and

Integral 5.3.1(b)

fo zPTA=1 cos 27 F[g)) %f)))((?)((cd)) — x2z2, —y?2?]
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(ayc0),
k1 —2m a;,q
Ay [3 o8,

I‘(}\+1) n,A+n,(a),(@”);(c);(c"; %2
= Jrwpmx 2n=0 3ap; F L(b), (b):(d)i(d); ¥’

Ak+1l+1 lB ZmI(__p n,2m), (a] a]) (5_3‘5)

+1,9+3 A !

The conditions of validity for (5.3.5) are the same as for (5.3.3).
PARTICULAR CASES

1. Fora=band a” =b", the double hypergeometric function in the left breaks up
into the product of two generalized hypergeometric functions and from (5.3.1),

we thus get

fooo Zp+)\__1 sin 2z CFD[ES));;_ XZZZ] C,FD,[ESI));;_ yZZZ]

(ay), ,
—2m
[B |(b B]) l

_ (A+2n)I(A+n) nA+n,(c);(c?); <2 v2
= Yn=0 yrepa—amyr FLa)(d); 2

(——p 2m),(aj, oc])

, (5.3.8)
(E‘n“" )(b] B]) (1+2n+}\—p,2m),(1—n—%—P/z'm)

k+ll+1 B Zm
p+1 q+3

The conditions of validity for (5.3.8) are the same (with A = B, A" = B") as
given in (5.3.1).

2. On the other hand, since

(@,@";(c);(c); (@),(@",(c);
Flto). o) @) % Y1 = a+ v+ cFo o5+ Dby b, X].

when y = 0.

The special case A=A"=B =B =0 of (5.3.1) provides us

©_p+A-1 (@ _ 7] -2m (a5 ’)
fo z sin 2z cFp| g, x? [B |(b I
_ (A+2n)F(A+n) n,A+n,(c); %2
—Zn=owc+2 plea; ]
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1
Ak+LIHL om, G P2M) (aj. “i)
p+1,9+3 B (1

E"““" )(b B,) (1+2n+}\—p,Zm),(l—n—%—P/Z'm)

(5.3.9

which is valid under the same conditions as for (5.3.1) with A=A"=B=B " =C" =
D" =0.

Further, with C=0,D=1,d; =1+ A, x = 1, express oF; as a Bessel function,
evaluate ,F; using Gauss's theorem [56] and after that on a closer examination we find

fooozp+7\—1h(22)sin22.A IB _Zmlgblﬁi) ldz

(——p 2m),(aj, 0(])

— 1 k+1 +1 [B Zml
21+p=2 p+1q+3 (E ————— )(b] B]) (1+2n+)\—p,2m),(1—n—%—p/2,m) ’
(5.3.10)

2m(a] 1)

provided that R(p + A + ]) >—-1(G=1,....,k,Rp+——)<12(=1, ..., )

and |arg (u B)| < ¥2 th, where h and u are given in (1.2.37) and (1.2.38) respectively.

Similar consequences of the integral (5.3.3)

(aj.a5)
® _p+A-1 k! —2m > " Vp
fo z Ja(2z)cos 2z Ay, [Bz |(b]_’B]_)1jq dz

L pk+LIH+1 IB 2m (“p 2m),(a, O‘i)

= givo2 Apriaes 1-n-2-2m )(b] B, (1+2n+}\—p,2m),(1—n—%—p/2,m) '

(5.3.11)

Zm(a] 1)

providedthatR(p+7\+2r;—_bj)>—1(j=1,....,k),R(p+ ) <12G=1, ..., ])
]

and |arg (u B)| < ¥2 th, where h and u are given in (1.2.37) and (1.2.38) respectively.

3. It may be of interest to conclude with the remark that the integrals (5.3.1) and
(5.3.3) provide few fascinating outcomes on reducing few or all the functions
that occurred in the integrand and it does not seem out of place to mention that
specially in the light of the results [56, p.105,106]

a b
o2 ;‘ 4x] = oF1 [ x] oF [ x]
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and

2 . .
2Fa[® X:] = Fi[y, — x]1Fi[px]

b, +

Nl T

—a;
b
2

N=

since oF; is reduced to Bessel function and by Kummer's second theorem [56, p.126]
it can be also transformed to ;F;. Then further ;F; can be reduced to a generalized
Laguerre polynomial L{(x), Whittaker function My 1,(x), Bessel function of first kind

I(x), Hermite polynomial H,(x) and Weber's parabolic cylinder function D,(x).
5.4 INTEGRALS USING FINITE DIFFERENCE OPERATOR E
In this section we evaluate four integrals by using finite difference operator E:

Theorem 5.4.1: Prove that

(aj,aj)ljp

/2 . .
72 $in2P@ cos2°0 AT |x. sin?h@cos2ke)|
0 P4 (bj.8y), 4

. oFy [ew fy; ¢ sin®0 cos>'0] dO

()Zr L@ iz l Gretumn) (Grovvri) (ay), (5.4.1)

I J(o)r! p+2,q+1 (bj.Bj)lq,(1+p+0+(u+v)r,h+k) ’
provided that p > 0, 6 > 0, |arg (ux)| < ¥2 ©th, where h and u are given in (1.2.37) and

(1.2.38) respectively.
Proof

L, T'(ej+1)c*

Taking product of (4.3.9) and M, T(f+2)

. EYEYE,
and using the operator e? , We
get

ud aj,a) 4 r(ej+A)ct

EYEYE ) 200 AMN . 2h 2k (ay Vip | Hj=1 ey

e ptotAf[25in“PY cos“°0O A X. sin“"0cos“*0 —_

{fo p.q |(b,—,Bj)Lq =, T(£+2) }

— eEgEVE}\{ m+2n | +ph +Gk (a] 0(]) l_[]!1=1 F(e].+}\)c}\} (5 4 5)
Ap+2,9+1 (b;.8 (1+p+oh+k) I, r(§+x) o

Expanding both sides of (5.4.5) and applying (5.2.3), we have

(aj,aj)l'p
(b5.87), 4

T
Yo J2 sin?(PHHNQ cos? (VG AT lX. sin?"@cos?k0)|
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ITjL, T(ej+A+r)cMr
I, T(f+A+1)r! }

Hlulr(e]”“”)cmr L AmF27 (§+p+ur,h),(%+c+vr,k),(aj,aj)Lp
Zr 0{ v T(f+A+1)r! (_) p+2,q+1 (b]-,Bj)lq,(1+p+c+(u+v)r,h+k)

I'(a+n)
()

and integration, then replace(f; + A) by fj and (e; + A) by ¢;, to obtain (5.4.1).

Further, using (o, n) =

, on left hand side change the order of summation

Theorem 5.4.2: Prove that

(aj,a]-)l'p

/2
f sin?P0 cos2°0 Arl;f‘(;1 [X. sin_2h90052k9|(b_ )
0 ]’B] 1,9

x oFy [ew: fy; ¢ sin®*0 cos>'0] dO

( ) Z H] 1(ej,r)cr Am+1'n+1 G+G+Vr,k),(aj,a]-)l’p,(—p—c—(p.+v)r,h—k)
r=0 | (f ot Pt2at+l G—p+ur,h),(b]-,[3]-)11q

l, (5.4.2)

provided that p > 0, 6 > 0, |arg (ux)| < ¥2 mh, where h and u are given in (1.2.37) and
(1.2.38) respectively.
Proof

Proceed as in theorem 5.4.1 and using the results (4.3.10)

Theorem 5.4.3: Prove that

(aj,a]-)lyp
(bj'Bj)Lq

/2
j sin®P0 cos*°0 Ayl lX. sin?"Bcos~2k0|
0
x JFy [ew fy; ¢ sin®0 cos>'0] dO

( )Zr On] 1(e] ryc’ Am+1,n+1l ( +p+p.rh) (a] (x,) )

H;’ 1(f ;r)r! p+1,9+2 (; o— ur,k),(b],B,) ,(1+p+o(u+v)r,h— k)l 54

provided that p > 0, ¢ > 0, |arg (ux)| < ¥2 mh, where h and u are given in (1.2.37) and
(1.2.38) respectively.
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Proof
Proceed as in theorem 5.4.1 and using the results (4.3.11)

Integral 5.4.4

/2
f sin??H cos?°0 Ay x.sin‘2h6c05‘2k6| e | 40
0 ' ( B])

(a oc) ( p—o—(u+v)r,h+k)
= () s s ane II " (5:44)

HV L(f)r! p+1q+2 —p— prh ——0' vrk) (b; B])

provided that p > 0, 6 > 0, |arg (ux)| < ¥2 mth, where h and u are given in (1.2.37) and
(1.2.38) respectively.

Proof

Proceed as in theorem 5.4.1 and using the results (4.3.12)
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CHAPTER-6

EXPANSION AND IDENTITIES INVOLVING
A-FUNCTION

6.1 INTRODUCTION

Samtani [61], Saxena [63, 64], Srivastava [79], Rathi [57], Agrawal [1], Goyal
[23], and several other authors have evaluated some Expansion and Identities for

generalized hyper geometric functions.

Looking into the requirement and importance of various properties of
expansion and identities in several field, in this chapter we established some new

Expansion and Identities involving 'A-Function' of one variable.

We have established some new Expansions for 'A-Function' of one variable in

section (6.2).

We have discussed some new Identities involving 'A-Function' of one variable

in section (6.3).

Some of the results in this chapter have been published in International
Research Journal of Mathematics, Engineering and IT [38] respectively in form of

research paper.
6.2 EXPANSION FORMULAE

Expansion Formulae plays an important role in study of special functions in
particular A-Function. In this section, we established six Expansion Formula
involving A-function of one variable with the help of integrals obtained in chapter 4.
In the present investigation, despite of integrals in chapter 4 we also require the

following Formulae:
From Rainvile [56]:
zI'(z) =T(z+ 1), (6.2.1)

20+B+1T(1 4+ q4+n)I(1+B+n)
n!(1+o+B+2n)I(1+a+p+n)’

[L =01 +0PPP (0)]2dx = 622)
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Theorem 6.2.1: Prove that

(ai,(xj)llp

(1—x)P(1+x)°Ape Iz(l —x)"(1 + x)5|(bj‘6j)
1q

PYE“"” (%)

~ i 2091+ a4+ B+ 21+ a+ P+ mMI(1+a+n+k)

KIT(l+a+n)l'(1+B+n)
n=0,k=0

(1+p+°"“)’(1+°+8+n'6)’(ai'ai)l,p‘

Am+2,l+2 lZ2u+6 |

p+4,q+4 (1+n+0+B,8),(1-k—-n+p+o,u+8),(b;,B5)

)
1,9

(—a—n-k+0,8),(1-k+p+0+B,1+8)
(2+p+o+n+a+B,u+8),(1+n+p+a,p) |’

(6.2.3)

provided that Re(B+1) > 0, Re(a+1) > 0, Re(fp+a+p+1) > 0,
Re(c+PB+n+3d+1) >0, Re(~c-8-n) >0, Re(k —p—oc—(u+3)+n) >0, |arg
(uz)| < ¥2 mh, where h and u are given in (1.2.37) and (1.2.38) respectively.

Proof

To prove (6.2.3), consider

(aj,ocj)l'p

_ m,l _ 8
(1 —=x)P(1 +x)°A7, |2z(1 = )*(1 +x) |(b]-,61-)1_q

=¥, CGRPP (). (6.2.4)

Due to the continuity and bounded variation of expression on the L.H.S. in (-

1, 1), equation (6.2.3) is valid. On taking product of (6.2.3) and (1 —x)*“(1+

X)BPIEO“B) (x) and integrating between — 1 to 1 with respect to x, using relation (4.3.1)
in left hand side, interchanging the order of integration and summation, which is valid
under the condition [14, p.176)], using orthogonality property of Jacobi Polynomials,

we get

_ 2PT9(1+a+B+2mT(A+a+B+n) oo T'(1+a+n+k)

Cn r(1+a+n)(1+B+n) " &k=0 k!

Am+2‘l+2 ZZlJ—"'S (1+p+(X,IJ-)’(I+0'+B+n.8),(aj,0(j)1’p,

p+4,q+4 (1+n+0+B,S),(l—k—n+p+0,u+8),(bj'ﬁj)1qr

(—a—n-k+0,8),(1-k+p+0+B,1u+8)
(2+p+o+n+a+B,u+8),(1+n+p+o,p) |

(6.2.5)
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Further using (6.2.5) in (6.2.4), we get the relation (6.2.3).

Theorem 6.2.2: Prove That

(aj,aj)l'p

i  (A=-xPA+x° AN lz(l —x)*(1 +x)%| (38,

_ 20t (D)1 +a+ B+ 201 +a+B+n)(1+B+n+Kk) H@8)
B Nn=0k=0 KIT(1+a+n)l(1+B+n) h (%)

(1+0+ 8,6),(1+p+n+a,u),(1+n+k+o+[3,6),(aj,aj)l‘p,

m+3,l+2 +8
' Ap+5,q+4 [ZZ” |

(1+n+p+0(,u),(l—k—n+p+0,u+6),(bj,[3j)1‘q‘ )

(-B—-n—-k+p,w),(1+a—k+p+o,u+8)
(2+p+o+n+a+B,u+8),(1+n+o0+B,8) | (6.2.6)

provided that Re(B+1) > 0, Re(fa+1) > 0, Re(p+a+n+pu+1) > 0,
Re(c+B+0+1) >0,Re(n + k +a+P+pn+1) >0, Re(—p—a—p—n) >0, Re(k
—p—o—(u+38)+n) >0, |arg (uz)| < ¥2 mh, where h and u are given in (1.2.37) and
(1.2.38) respectively.

(aj,a]-)l’p

(ii) (1-x)P(1 +x)° Agl'é Iz(l -x)*(1 + X)5|(b]._5j)1’q

~ i 2091+ o+ B+ 2L +a+B+mI(1+a+n+k)

(o)
KIT(1 +a+n)I(1+pB+n) P, (%)

n=0,k=0

1+p+o,p),(1+0+B,8),(1+n+k+p+a,p),(1+k+0,6),(a;,a;
A lzZ“*SI( P+ i), (1+0+B,8),(1+n-+ke+p-+a ), (1+k+0,8).(ay,a),

’ i,Bj ,(1+n+p+a,p),(2+k+p+o+a+f,u+d),(2+a+B+n+k+o,
p+4,q+3 b; ]1q( ),(2+k 8),( k+0,8) |’

(6.2.7)

provided that Re(B + 1) > 0, Re(aa + 1) >0, Re(k + 6+ 6+ 1) >0, Re(p+a+pn+1) >

0,Re(fp +o+38+1) >0, |arg (uz)| < Y2 mh, where h and u are given in (1.2.37) and
(1.2.38) respectively.

(ai,aj)llp

(i) (1—xP+x)° AT s lz(l -1+ X)Sl(b].‘gj)
1q

B 2071+ a+B+2n)I(1+a+B+n)(1+B+n+k) Pl ()
B 0,k=0 KIT(A+a+n)l(1+B+n) nT
n:, —3
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amtal [ o (1+p+ot,p.),(1+6+8,8),(1+n+k+0+6,8),(1+k+p,u),(aj,0(j)1’p
p+4,9+3 (b]-,Bj)lq,(1+n+0+8,8),(2+n+k+p+a+B,p+8),(2+a+6+k+p+0,u) ’

(6.2.8)
provided that Re(B + 1) >0, Re(ac + 1) >0, Re(p+a+pn+1) >0,Re(c+B+ 6+1) >
0, |arg (uz)| < ¥2 wh, where h and u are given in (1.2.38) and (1.2.39) respectively.

(aj,ocj)l'p

(iv)  (1-xPA+x)°Apy lz(l —x)*1 + x)5|(bjjﬁj)1'q

~ i 2791+ a4+ B+ 20)[(L+a+ B+ (—a—B—n+k)

(o)
KIT(L+ o+ n)[(1+ B +n) Pn ()

n=0,k=0

5 (1+0+ 8,6),(1+p+n+a,u),(1—B+c+k+6,6),(aj,aj)1‘p,

p+5q+4 (1+n+p+a,p),2+k+p+0+a+B,u+8),(bj,B;) !

1,9

AT l22”+5(1 + X)

(2+p+o+a+B,u+8),(1+a+B+n—K+p,u)
(2+n+p+o+a+B,u+8),(—a—n+k+ao,8) |’

(6.2.7)

provided that Re(1 + n + p+a+p) >0,Re(-1 + k —a-B-p-c—-(n+9)) >0,
Re(1+c+pB+9)>0,Re(l+o+k+0)>0,Re(—p—a—n—pu)>0,Re(l +n+a+p)
>0,Re(—a— B —n + k) >0,]arg (uz)| < ¥2 nh, where h and u are given in (1.2.37) and
(1.2.38) respectively.

(aj,a]-)l’p

v) (A-xPA+x)° Agl_’é lz(l —-x)*(1 + X)Sl(ijsj)l’q

~ i 20791+ a4+ B+ 201 +a+ B+l +a+pf—-n+k)

(@p)
KIT(1+a+n)l(1+p+n) Py (%)

n=0,k=0

(1+p+a,u),(1+0+n+B,S),(l—B+a+p+k,u),(aj,(xj)1p,

m+3,142 +58
Apisqia lzZ” |

(1+n+0+0(,8),(2+a+B—k+p+0,p.+8),(bj,ﬁj)1’q, ’

(2+p+o+a+B,u+8),(1+2p+n—k+0,8)
(24+n+p+o+a+B,u+8),(—B—n+k+p,p) |/

(6.2.9)

provided thatRe(1 + n + a+B) >0, Re(—a—B—-n +k) >0,Re(l + p+a+pu) >0,
Re(—a—oc—-n—-08) >0,Re(lL+n+c+P+0) >0,Re(l1-B+p+a + k+ pu) >0,
Re(-1 -k —-p—-oca—p—(u+d) >0, larg (uz)| < ¥2 mh, where h and u are given in
(1.2.37) and (1.2.38) respectively.
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Proof

(1) to (v) Proceed as in theorem 6.2.1 and using the results (4.3.2) to (4.3.6),

respectively.
6.3 IDENTITIES

In this section, we have discussed certain properties of A-Function. Going in
lines with Kishore and Srivastva [33] we have established nine Identities involving
A-function of one variable in form of propositions. We have applied definition of

A-Function and properties of Gamma function to obtain these identities.
Theorem 6.3.1: Prove that

ATN+2 |( jjai)l'p'(k’v)
Apiiq+2 (0,1),(=1+kv), (b}, B5),

_ Amn+1 |(1 ])
- p.a+1 |%l(o,h), (b 3,
1,v), (a o )
m+1,n+1 o)
— Ap+1,q+2 l I(O h) (b] B]) (O’V)l, (631)

larg (ux)| < ¥2 7th, where h and u are given in (1.2.37) and (1.2.38) respectively.
Proof

To prove (6.3.1), consider left hand side of (6.3.1), after using (1.2.35), We

have

I'(1-hs)I'(2—k-vs) ¢
I'(1-k-vs) ds

1
L.H.S. = EIL e(S)

= — . 8(s)T(1 —hs)(1 — k — vs)x°ds [On using (6.2.1)]

_(1-K) B
= J, 8(s)T(1 —hs)x*ds

__f F(l hs)T'(1+vs) Sd
21 I'(vs)

which in the light of (1.2.35) provides right hand side of (6.3.1).
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Theorem 6.3.2: Prove that

Am+1n+1 l (Z_k’v)’(aj'aj)l,p l

X
p+1,q+2 (o,h),(bj,ﬁj)l‘q,(l—k,v)

(aj,Otj)
B _ m,n+1 Lp
— (1 k)Ap,q+1 IXI(O,h)'(b]'B])lq

4 AL lx| (6.3.2)

(LV);(aj.O(j)l,p l
p+1,q+2 ’

©h),(by.B;), (V)
larg (ux)| < ¥2 mth, where h and u are given in (1.2.37) and (1.2.38) respectively.
Proof

To prove (6.3.2), consider left hand side of (6.3.2), after using (1.2.35), to

obtain

1 I'(0—hs)r'(2—k+vs)
LH.S. = pyr fL 0(s) ['(1-k+vs) x“ds

- szfL 6(s)I'(0 —hs)(1 — k + vs)x°ds [On using (6.2.1)]

(a
2

-k)
— J, 8(s)T(1 - hs)x*ds

1 r(0-hs)I'(1+vs) ¢
2mi fL 0(s) T'(vs) x°ds,

which in the light of (1.2.35) provides right hand side of (6.3.2).

Theorem 6.3.3: Prove that

kAm+2,n+1I I(O‘a)’(k‘a)‘(aj‘aj)Lp l

X
p+2,q+2 (O,h),(bj,Bj)lyq,(1+k,0()

_Am+2,n+1l (1,0(),(k,oc),(aj,ocj)1‘p l

X
p+2,q+2 (o,h),(bj,ﬁj)l‘q,(1+k,a)

(0,a),(aj,ocj)1‘p

m+1,n+1
A le(o,h),(b]-,ﬁj)l'q ’ (6.3.3)

p+1,9+1

larg (ux)| < ¥2 h, where h and u are given in (1.2.37) and (1.2.38) respectively.
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Proof
To prove (6.3.3), consider

Ame2net | (1,0t),(k,oc),(aj,aj)1‘p
p+2,q+2 (o,h),(b]-,B]-)lq,(1+k,oc)

_ 1 I'(1+as)I'(k+as)I'(1-hs) ¢
T 2mi fL 0(s) T'(1+k+as) x°ds

(on using (1.2.35))

_ 1 asT'(as)I'(~hs) ¢
T omi fL G(S) k+as x>ds

_ 1 (k+as—Kk)I'(as)I'(1-hs) ¢
=2l 0 s xods

[On using (6.2.1)]

= ﬁfL 0(s) I'(1 — hs)I'(as)x3ds

k

I'(1-hs)I'(k+as)T(as)
— J, 8(s) xSds,

F(1+k+as)

which in the light of (1.2.35) provides right hand side of (6.3.3).
Theorem 6.3.4: Prove that

(O,a)(a]-,oc]-)l‘p,(—k,oc)

m+1,n+2
kA le (Om,(1—ka) (b3,

p+2,9+2

_ AmFLn+l [ ©@a(aje),
=~ fpriart (Xl (o),

L AmHLne2 _X (1.a),(aj,a,-)1‘p.(—k.a)
p+2,q+2 (1—k,o(),(0,h),(bj,[3j)1q )

(6.3.4)
larg (ux)| < %2 nth, where h and u are given in (1.2.37) and (1.2.38) respectively.
Proof
To prove (6.3.4), consider

AM+1n+2 (1’0()'(31"0‘1')1@'(_1('0()

p+2,g+2 |X (1—k,o(),(0,h),(bj,ﬁj)1‘q
1 I'(1+as)I'(k—as)I'(1-hs) g
T 2mi fL 9(5) r'(1+k-as) x°ds

(on using (1.2.35))
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1 asI'(as)I'(1—hs
_ig @ra-hs) s,
2mi YL k—as

(k- (k ocs))l"(ocs)l"(l hs) s 4s

=5, 669

2mi

[On using (6.2.1)]

= —ﬁfL 0(s)T'(1 — hs)I'(as)x%ds

I'(1—hs)I'(k—as)T'(as) Sd
I'(1+k-as)

k
+5= 1, 6(s)
which in the light of (1.2.35) provides right hand side of (6.3.4).
Theorem 6.3.5: Prove that

Amn+1 (](x]) ( a+2,0)
p+1a+1 (Xl o), (b] B])

_Am n+2 |(aj,aj)1,p,(—ot+k+2,c),(1—a—k,c)
P+2.0+2 1M (1-a+ko),(-a-ko), (b 8;),
=k(k + DAY |(’ Wi (6.3.5)
- (by.85), 3.

larg (ux)| < ¥2 wh, where h and u are given in (1.2.37) and (1.2.38) respectively.
Proof

To prove (6.3.5), consider

p+1,9+1

Am,n+1 (a] a]) ( a+2,0)
I( a,0), (b B])

ATn+2 (a J"ai)l p'(_a+k+2,0),(1—0t—k,0)
p+2q+2 |(1—a+k,0),(—0t—k,0),(bj,[3j)Lq

— f I'(1+a—os) <Sds
2Tl F(1+ot—2—crs)
1 I'(a—k-os)I(1+a+k-0s) ¢ .
me ) T rok—z—o5)M(ocrk—o5) (on using (1.2.35))
_ _f 9( ) S{ I'(1+a—os) . I'(a—k—-os)['(1+a+k—os) }
T 2mi I(1+a-2-0s) [(1+a—k—-2-0s)[(a+k-0s)

= %L 0(s)x*{(a—os)(a—os—1) — (a —k—1—o0s)(a+ k—os)}ds

[On using (6.2.1)]
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= k(k+1)5= [, 6(s)x°ds

which in the light of (1.2.35) provides right hand side of (6.3.5).

Theorem 6.3.6: Prove that

Ame2n (a]-,oc]-)1‘p,(—0(+3/2,0),(1—a,0)
ptz,q+2 | Xl

(—a+%,o‘),(—0(+2r6)r(b]"Bi)Lq

Am+20 [ (ai'“i)1_pf(1—G—B,G),(—a+8+3/2,c)l

p+2,q+2 (—oc—B,G),(—oc+[3+1/2,0'),(bj,[3j)1_q
(aj.y),
=B(B+2)A‘““[l(b’; l (©30
]

larg (ux)| < ¥2 wh, where h and u are given in (1.2.37) and (1.2.38) respectively.
Proof
Proceed as in theorem 6.3.5.

Theorem 6.3.7: Prove that

mn+1 |( j,aj)l'p’(_a,c)
p+1 q+1 (- ot—l,O')J(b]"Bj)Lq

mn+1 (aj, oc]) ,(—a+B+2,0)
_Ap+1,q+1 (1- ot+[30) (bj B])

_ (B4 A |5 6.3.7
_(B ) p.q Xl(bj'Bj)lq ’ ( ol )

larg (ux)| < ¥2 wh, where h and u are given in (1.2.37) and (1.2.38) respectively.

Proof

To prove (6.3.7), consider left hand side of (6.3.7), after using (1.2.35), to

obtain

_ 1 s[(a+2-0s)  T(a—B-0s)
L.H.S.= py— fL 0(s)x {l"(oc+1—GS) [‘(a—ﬁ—1—cs)}ds

= ﬁfL 0(s)x*{(a+1—-o0s) — (a =B —1—o0s)}ds [On using (6.2.1)]
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_ 1 s
=(B+2)— J, 8(s)x°ds
which in the light of (1.2.35) provides right hand side of (6.3.7).

Theorem 6.3.8: Prove that

(2-kv),(aj,%4)1,p
Am+1,n+1 X %51,
pr1,a+2 (Xl (1 1) by ;) (1t

=(1- )Am n+1[ | (@,9)1,p 1

P.a+1 Y (1,h), (05,811,
m+1,n+1, (LV).(@,9))1,p
+ AP+1 q+2 [x I(Lh).(bj’ﬁj)l,q’(o"’)]' (63.8)

larg (ux)| < ¥2 wh, where h and u are given in (1.2.37) and (1.2.38) respectively.
Proof
To prove (6.3.8), let us consider left hand side of (6.3.8).

After using (1.2.35), we obtain

_ 1 I'(2-k+vs)I'(~hs) ¢
LH.S. =25 fL 0(s) r(1-k+vs) ds
= [, 8(s)T(~hs)(1 — k + vs)x°ds [On using (6.2.1)]

_ -k
2mi

J, 8(s)T(=hs)x°ds

1 I'(—hs)T(1+vs) <5
+to— fL 0(s) ey X ds,
which in the light of (1.2.35) provides right hand side of (6.3.8).
Theorem 6.3.9: Prove that

Amn+1 [x |(aj,0tj)1,p,(1—k,v)
p+1 qg+2%l(1n), (—k,v),(b]-,Bj)l‘q]

AT n+1[ | (@j,95)1,p, 1

p q+1 (1 h),(bj:Bj)l,q
AmFLN+1 (1,v),(aj,04)1,p
Ap+1,a+2 Xl (1 1), 0, 81 0] (6.3.9)

larg (ux)| < ¥2 h, where h and u are given in (1.2.37) and (1.2.38) respectively.
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Proof
To prove (6.3.9), let us consider left hand side of (6.3.9), after using (1.2.35),
we obtain

_ 1 I'(=hs)I'(1+k-vs) ¢
L.H.S.=—— J, 80s) i X ds
1
2mi

J, 8(s)T(=hs)(k — vs)x°ds [On using (6.2.1)]
K
= 2—me 0(s) I'(—hs)xds
_ 1 IF'(=hs)'(1+vs) ¢
2mi fL G(s) r'(vs) x°ds

which in the light of (1.2.35) provides right hand side of (6.3.9).
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CHAPTER-7

APPLICATION OF A-FUNCTION OF ONE VARIABLE
IN OBTAINING A SOLUTION OF SOME BOUNDARY
VALUE PROBLEMS

7.1 INTRODUCTION

Various problems in science and technology, when formulated
mathematically, lead naturally to certain classes of partial differential equations
involving one or more unknown functions together with the prescribed conditions
(known as boundary conditions) which arise from the physical situation. Several
workers have obtained solutions to the equations related to certain problems, which
satisfy the given boundary conditions. The classical method in obtaining solutions of
the boundary value problems of mathematical physics can be derived from Fourier

series.

Another technique using integral transforms, which had its origin in
Heaviside’s work, has been developed in the past and has certain advantages over the

classical method.

The theory developed by Heaviside and Doetsch and others have unified the
latter investigations by Bromwhich and Carson in the recent work on the Laplace
transformation. Although the Laplace transform has been extensively (and
intensively) employed, it is particularly useful for problem associated with ordinary
differential equations as well as for problems involving heat conduction. Also, other
integral transforms can be utilized while solving the most of the BVP of mathematical
physics. This method of solution is really convenient, direct and straightforward than
the classical method, which generally requires great ingenuity in assuming at the

outset the correct form for the solution.

Several authors such as Arora (1998), Chandel (2002), Chaurasia (1997),
Srivastava (1998, 1999, 2000), Tiwari (1993) have used various classes of orthogonal
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polynomials and generalized hypergeometric functions of one or more variables in

finding the solutions of the boundary value problems concerning
(a) heat conduction in

(i) anon-homogenous finite bar

(i1) acircular cylinder
(b) free oscillations of water in a circular lake
(c) transverse vibrations in a circular membranes
(d) free symmetrical vibrations in a very large plate
(e) angular displacement in a shaft of circular cross-section
(f) potential theory, etc.

Vishwakarma [83], Tiwari [81, 82], Ronghe [60], Agrawal [1], Srivastava
[71], Jain [30], Srivastava [73], Srivastava [74] and several other authors have
obtained solutions of boundary value problems involving generalized hypergeometric
functions by expressing u(x, t) in terms of known orthogonal polynomials and certain

special functions of one and more variables, where u(x, t) = (k'/k)f(x)g(x).

Following Vishwakarma [83], Tiwari [81, 82], Ronghe [60], Agrawal [1],
Srivastava [71], Jain [30], Srivastava [73], Srivastava [74] and several other authors,
in this chapter we will employ the A-function of one variable in obtaining a solution
of some boundary value problems and find new solutions which will be useful for

further research.

In section (7.3) first we evaluate an integral involving A-function of one
variable and then we make its application to solve two boundary value problems on (i)
heat conduction in a bar (ii) deflection of vibrating string under certain conditions.
Again in section (7.4) we employ the A-function of one variable in obtaining a
solution of a partial differential equation related to heat conduction along with
Hermite polynomials. The aim of section (7.5) is to derive the solution of special one-
dimensional time dependent Schrodinger equation involving 'A-Function' of one

variable and Hermite polynomials, while in (7.6) we employ the 'A-Function' of one
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variable in obtaining a solution of a Bounded Electrostatic Potential in the Semi-

Infinite Space.

Most of the results in section 7.5 and 7.6 of this chapter have been published
in The Mathematics Education [36] and in Journal of Indian Academy of Mathematics

[34] respectively in form of couple of research papers.
7.2 RESULTS REQUIRED
In the present investigation we require the following results:
From Gradshteyn [25], we have following modified form:
Lsin Y2 nn I'(w)

L
[ (sin mx/L)® ! sin nnx/L dx = (7.2.1)
0 2 ' +o+n)) T{% (1 +o—n))

where n € Z.
E.f(a) = f(a + 1); E,"f(a) = E [E" 'f(a)], (7.2.2)
where E (finite difference operator) is given in Milne-Thamson [47].
Modified form of the integral given by Ronghe [58]:
» 2" P T2p + 1)

[ x®e YH,(x)dx = , (7.2.3)
- I'(p—n/2+1)

In this chapter, we shall also make application of following modified form of
the integral [25, p.372]:
7 sin Y2 nwt ['(®)

[ (siny)® 'sinnydy= ,
0 2° T (@+n+ 1)) T{%(@—n+1))

Re () > 0. (7.2.4)

We will also use the following notation:

Ay, .., Ay
F[Ax*]=(Fy [ Bll’ Bj; Ax>H]dx
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10]
IT (Aj; k) A* x**
j=1

= v
k=0 IT(Bj; k) k!
j=1

7.3 APPLICATION OF A-FUNCTION IN BOUNDARY VALUE PROBLEMS

In this section first we evaluate an integral involving A-function of one
variable and then we make its application to solve two boundary value problems on (i)

heat conduction in a bar (ii) deflection of vibrating string under certain conditions.

First of all we state and prove the following two lemmas which will be used in

subsequent sections.

Lemma 7.3.1

oo 2p —x2 m,n (a] a])lp
f_mx e H,(x) Ap,q [ |(b] B])1q] dx

(1+2p,22),(aj,%))1,p

_ n—-2p Am+1,n A
= Vr2A [2/4 |(b By, (1—;+px)]

p+1,9+1

(7.3.1)

larg (ux)| < ¥2 nh, where h and u are given in (1.2.37) and (1.2.38) respectively.
Proof

The result (7.3.1) can be established by replacing the 'A-Function' given in
(1.2.35) on the L.H.S., interchanging the order of integral involved in the process,
evaluating the integral in the braces using (7.2.3) and applying (1.2.35) the definition

of 'A-Function', the value of the integral is obtained.

Now we shall establish the following integral involving the A-function of one

variable.

Lemma 7.3.2

Lo . TX 1 ;. DTX ym,l X9, (@599 1p
J, (sin )7 sin——Apy lz(sm )

(bj'Bj)l,q
- . _ (w,}\)(a (X)l
=21 wsm—A“”“ l 272 y7ioLp l (7.3.2)
priare I(bj'ﬁi) GH5TEY)
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provided that Re (o) > 0, |arg (uz)| < ¥2 mth, where h and u are given in (1.2.37) and
(1.2.38) respectively.

Proof

To prove (7.3.2), using 'A-Function' given in (1.2.35), change the order of
integration which valid under the given condition, evaluate the inner integral with the

help of (7.2.1) and finally interpret it with (1.2.35), to get (7.3.2).
PROBLEM - 1
7.3.1 APPLICATION TO HEAT CONDUCTION IN A BAR

Under certain boundary conditions, a problem on heat conduction in a bar is
considered in this section. If sides of the bar are insulated and the loss of heat from the
sides by conduction or radiation is negligible, then in a uniform bar 0 < x <L, the

temperature u(x, t) satisfies the heat equation given below:

(0*u/ox?) = (1/c)(Buldt), t > 0. (7.3.3)
If we take
u(0, t) =0, u(L, t) = 0, (7.3.4)

as boundary conditions and
u(x, 0) = f(x), (7.3.5)

as initial condition, then partial differential equation (7.3.3) has the solution
u(x,t)=2 B, sinnnx/L exp[— t(ncn)z/L], (7.3.6)
n=1

is given by Prasad [54], where n is any integer and

L
B, =(2/L) | f(x) sin nnx/L dx. (7.3.7)
0

Now we shall consider the problem of determine u(x, t), where

. R > S 1 T\, (@501,
u(x,0) = f(x) = (smT)w 1A‘5‘,q lz(smT) |(b’i’B’j)1: ) (7.3.8)

68



Solution of the Problem

Combining (7.3.7) and (7.3.8) and making the use of lemma 7.3.2, we derive,

— . — ((J.),}\),(a',a')l
B, = 22 ®sin— AT lzz A yae l (7.3.9)
" 2 TprLarz |(bi'Bi)1.q'(%+?$5‘%)

Putting the value of B, from (7.3.8) in (7.3.6), we get following required

solution of the problem

2
u(x,t) = 2279y sin % exp [—t@] sin =

_ (@A), (a5,04)1
L AmFLL lzz A pHi/p l 7.3.10
priare I(bi’Bi)1.q'(%+%$g’%) ( )

PROBLEM - 11
7.3.2 HOMOGENEOUS WAVE PROBLEM

We shall determine the deflection u(x, t) of vibrating string in this section. If
the weight of string due to tension is negligible then the partial differential equation

given below is satisfied by deflection u(x, t)

(1/c*)(°u/ot’) = (8°u/ox), 0 < x < L. (7.3.11)
Now we choose

u(0, t)=0,u(L, t) =0, (7.3.12)
as the boundary conditions and

ou(x, 0)/0t = g(x), (initial velocity) (7.3.13)
and

u(x, 0) = f(x), (7.3.14)
as initial conditions, then partial differential equation (7.3.11) gives the solution

e}

u(x,t)=2 [Bycosnnct/L + C, sin nnct/L] sin nmx/L, (7.3.15)
n=1

69



where B, is given by (7.3.7) and

L
C, = (2/nmc) | g(x) sin nnx/L dx. (7.3.16)
0

The solution (7.3.15) is given by Prasad [54].

Now consider the problem of determining u(x, t), where u(x, 0) [=f(x)] is

given by (7.3.8), while

. TX\ =1 AMN Xy (85,9 1,p
g(x) = (smT)w Apq IZ(SIHT)Hl(pri)l_q . (7.3.17)

After combining (7.3.16) and (7.3.17) and making the use of lemma (7.3.2),

we arrive at

—w’ L . nm,M+1N _y . (@)m),@@5,04)1
C,=2%2"® —sin—Ap.," 727K prIp ) 7.3.18
S 7319

Putting the value of B, and C, in (7.3.15) to get required solution of the

problem in the following form:

— . hTmx nmct . nm
u(x,t) =227y sin—cos ——sin—

Am+LL I _)Ll(w,l),(aj,ajh,p l
* S ip+1,q+2 1, w-nA
(538), G5 722)

—’ L . nmx . nmct . nm
+2279° ¥  —sin— sin— sin—
nTc L L 2

AM+1,N lzz—u (U)Irlvl):(ajraj)l,p, l. 7.3.19

L2 | (bi'Bi)l,q'(%"-%ig'%) ( :
7.4 HEAT CONDUCTION INVOLVING A-FUNCTION AND HERMITE
POLYNOMIALS

Here first of all we shall evaluate an integral containing A-function of one
variable and Hermite Polynomials with the help of finite difference operator E and
discuss their application in solving a problem on heat conduction considered by
Bajpai [1993]. An expansion formula involving A-function of one variable and

Hermite Polynomials has also been obtained at the end of this section.
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Theorem 7.4.1: Prove that

®© 2p ,—x2 mn |__2x(@%)1p AUy Ap
S x*P e Hy(x)Apq sz |(bj.6j)1q uFv| gl puAx* [dx

o L (ADAI2~4H

= \m2n-20 Y1
Lizo e, B!
m+1,1 —, (1+2p+4ul22),(8j,%)1,p
: Ap+1,q+2 lzz l(bj,ﬁj)qu.(1—§+p+2ul.?\) ’ (741)

provided that |arg (uz)| < ¥2 mh, where h and u are given in (1.2.37) and (1.2.38)

respectively.
Proof

On multiplying both sides of (7.3.1) by

U
T (A; + 8) A
i=
v
IT 1(Bj +9)
i=
E,"Es
apply the operator e , we get
U <
” » IT (A +8) 2
et EB{( | x®e " Ha(x) Aplg [2x™"] dx) ——— }
- I1 (B, +8)
i=

U
I1 (Aj+8) 1°
j=1

(bi, B1a- (1 =0/2+p, 1) v

2 1 oL
_ eEp ES%:(\/TC 2n—2p Arf;::: i’nq+ | [|Z/4 7»|(]+ 2p, 2 A),(ai, 1. p ])
H](BJ + 6)
j=

(74.2)

Expanding both side of (7.4.2) and using E,f(a) = f(a + 1), we have

U

. . o IT (A + 8+ Dx* ' a8
. . j=1
Z 2p efxz Hn Am’ n 2N aJ’ (X‘J Lp d J
zzo{dwx x) P-4 [lzx |(bjsl3j)1,q 1dx) v
OB;+6+)1!
i=1
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U
m+1, n (I+2p+4pl,20), (a, oy, p jfjl(Aj+8+l) a3+ g4l

A
prLa+rt ¥ ) 0w piaun S

IIB;+8+1)!!
j=1

=(\m2"" % A

(7.4.3)

Now using (a;n) = I'(a + n)/I'(a), altering the summation and integration order

in the L.H.S. and replace (B; + 6) by B; and (A; + 8) by A, to get (7.4.1).
Application to Heat Conduction:

Consider following partial differential equation

dulot = k [0*u/ox? + 2x (Bu/dx) + 2u], X € (— o, ), (7.4.4)
where boundary condition is

Lim u(x) =0,
x| = o0.

Equation (4.1) is related to the following equation Carslaw [15]

O*vIox* — (BvIox)(U/K) — (1/K)(v — vo)v — (8v/at)(1/k) = 0, (7.4.5)
where U =2kx, vo=0, v=—2k, (— o< X < 0).

The solution of equation (7.4.4) is given by Bajpai [9] as follows:

>}

ux, )= C,e 2knt=x*H (x), (7.4.6)
n=0

where Hp(x) is the Hermite polynomial and

1 0

[ u(x) Hn(x) dx, (7.4.7)
2" g ~”

Cn:

Now we shall consider the problem of determining u (x, t), where

...... g eeeee Ay, .., Ay

—x2 s 5
ux) = xPe Hax) Ap'g [zx U U o [ g axt . (7.4.8)
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Combining (7.4.7) and (7.4.8) and making the use of integral (7.4.1), we
derive

U
A D 274w
(1+2p+4“l,27\,), (aj, aj)l,p ]) j=1( ] )
(0 B (L =02+ p+2ul0) 7 v
I (B;; )/ !
i=1

m+1,n

= 2Pp! s
Co=[V@¥0DIE Apiy gy

(2147 |

(7.4.9)
Putting the value of C, from (7.4.9) in (7.4.6), we get

u (Xa t): 0
(1122 (/) e 2X" P H(x).
n=0

Zo PtlLg+l b B 1 —12+p+2p 07" v

U
. | e a2 IT (A D a' 240!
+ 1, ) ji» Y j=1
{z AR g (L 2RHARE 2, @ @y ) (7.4.10)
I
nl(Bj;l)l!
i=

Expansion Formula

Making a use of (7.4.8) and (7.4.9) in (7.4.6), we derive the following

expansion formula:

2p among 2@ &)ip [gl, AU, 4y
X Ap’ q [ZX | (bJ’ Bj)l,q ] UFV 15 «o» BV; 7\IX ]

= (1/2%°) ;_ 0(1/nz) H,(x).

(bi’ Bi)l.qa(l —H/2+p+2ul, }u) \

U
® 1 A I (Az ol 2
m+1,n a (1L+2p+4 20, (a, o), =1
.{zz—oAp+1,q+1[Z/4 | VNS
= I (B 1) 1!
j=1

(7.4.11)

7.5 TIME-DEPENDENT SCHRODINGER EQUATION INVOLVING
A-FUNCTION

One of the fundamental problems in quantum mechanics is to find solution of
Schrodinger equation for different forms of potentials. As a result of the failure of
classical physics of predict correctly the result of experiments on microscopic
systems, the Schrodinger equation and more general formulation of quantum

mechanics have been set up. By testing their predictions of the properties of systems,
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where in case of failure and success of classical mechanics, they must be verified. In
fact whole atomic physics, solid state physics, chemistry and some other branches of
applied sciences obey the principals of quantum mechanics or satisfy differential
equations similar to the Schrodinger equations, and same is true for nuclear and

particle physics.

Making an appeal of Bajpai [7], we obtain the following integrals:

Y 2
[ —o0 x e ™% Hpy (x) A W V[zx?" | (@ 0)1.p] dx
P-4 (bj, Bp1.q
2,v 12+ p, h), (1 + p, h), (@;, o),
=2 At (12+p P10 (&), Ayt p 7.5.1
p+2’q+1[Z|(bj,Bj)l,q,(]*V‘Fp,h) ] ( )
and
IOO 2Pl —x2hg x) A “’V[zx2h| (a, OLJ‘)Lp] dx
—0 e 2v+1 P, q (bj, Bj)l,q
_ A2ptl g, UH2V (/2 +p, h), (1+p,h), (&, )1, p
=2 Ap+2’q+1[Z| (bj,Bj)l’q,(l—v+p,h) ], (752)
provided that p>v, p=0,1,2 ...... , v=0,1,2,.......... , larg (uz)| < V2 mth, where h and u

are given in (1.2.37) and (1.2.38) respectively.
The Special Schrodinger Equation

Let us take the problem of a particle having the potential V(x), where V(x) is

given by
V(x) = [h?/ (2m)] x°. (7.5.3)

For this system the time dependent Schrodinger equation Rae [55] can be

written as:

qu_czh &u,_ h .
ot 2imox> 2im (7.5.4)

Setting K = — h /(2im) into (7.5.4), we have

Ou =K az_u — Kx2u,
ot ox* (7.5.5)

provided u(x,t) — 0 for large values of t and |x| — . we also assume that
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u(x, 0) =ux). (7.5.6)
The solution of (7.5.4) is given by Bajpai [10], as under:

0 2
ux,) =% A, KD He (V2 x),

n=0

where He,(x) are Chebyshev Hermite polynomials [10]:

© 2
u(x,t) = §=O B, e K+ D=XT2 gy, (1.5.7)

where H,,(x) are Hermite polynomials.

Also
An=UmNn) | :) ux)e ¥ He, (V2x) dx, (7.5.8)
Ba= 1/2n12) [ u(x) e Hy(x) dx. (7.5.9)

Solutions in terms of A-Function:

The solution of (7.5.7) leads to the following solutions:

o0
wx, )= % Bye KénthixT2p (7.5.10)
n=0
where
2n o0 -x2/2
Bo = 1/[2"2m)Nm) ] wi(x) e "2 Hap (x) dx (7.5.11)
W= 7 Bu.ie “UVNH L ) de (75.12)
n=0
where
Banet = /2 20+ DIA] |7 wa(x) € > Hyna1 () dx (7.5.13)
If we substitute
2
_2p X2 A WYV oh (@, 1 p
u(x)= xPe Ap,q[zx | (bj,Bj)l,q] (7.5.14)
and
2
_ 2041 —x72 u, v 2h (3, o)
u(x) = X e A ZX UGt 7.5.15
2(%) oa L2 (7.5.15)
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in (7.5.11) and (7.5.13) respectively and use the integrals (7.5.1) and (7.5.2), then the
solutions corresponding to (7.5.10) and (7.5.12) are given by:

P 2
ui(x,t) = 1/(\/7'5) )y | [1/2n)!] e —k@n+1)t—x7/2
n=

u+2,v (12+p,h),(L+p ,h), (8, O

)l,p
p+2,q+1[ZI (b, B (1 - v+ p.h) 1 Hon(x), (7.5.16)

valid under the conditions of (7.5.1).

P
Ua(x, 0 = V(R T [12n + 1)l] e 92
n=1

u+2,v (372 +p,h). (1+p.h), (2}, A1, p
'Ap+2,q+1[Z| (bj, Bt (1=n-+p.h) 1 Hop +1(%), (7.5.17)

valid under the conditions of (7.5.2).

7.6 BOUNDED ELECTROSTATIC POTENTIAL

In this section, with the help of A—function of one variable, in the Semi-
Infinite Space we shall obtain a bounded Electrostatic Potential. First of all we shall

establish the following integral in form of lemma.

Lemma 7.6.1: Prove that

(aj, a1, p

(bj, Bp1.q Idy

jo (sin y)° ' sin nyAr;’é [z (sin y)"|

=2 O nsintann AM LD [z (@M @y 1, (7.6.1)
p+1,q+2 (b, Bi)1.a» (172 + /2 £ 1/2, A/2)

provided that |arg uz| < %2 hm, A >0 and Re (®) > 0, where h and u are given in

(1.2.37) and (1.2.38) respectively.
Proof

Using 'A-Function' given in (1.2.35), alter the order of integration, evaluate the

integral (inner) using (7.2.4) and finally interpret it with (1.2.35), to get (7.6.1).
Bounded Electrostatic Potential in the Semi-Infinite Space

Under certain boundary conditions, in the Semi-Infinite Space, we consider a

problem on Bounded Electrostatic Potential. When the space is free of charges, in the
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semi-infinite space x > 0, 0 <y < 7, let bounded electrostatic potential, which is

denoted by V(x, y), so that
VX, y) + Vyy(X,y) =0, where x > 0,0 <y <m (7.6.2)
and suppose that
Vix,m)=0,V(x,0)=0;x>0
VO, y)=1f(y);0<y<m

See the following figure, where boundedness condition serves as a condition at

the missing right-hand end of the strip shown there.

y
T V=0

V = f(y) ViV =0 <
0 V=0

Assuming that f is piecewise smooth, then solution of (7.6.2) is given by [16]:

V (x,y) =n;)= 1 b, exp (— nx) sin ny (7.6.3)
where

b, = (2/m) fon f(y)sinnydy,n=1,2,..... (7.6.4)

Now choose

(aj, 01, p

fy) = (sin y)° ' A™ [ (sin y) |
y B y P-4 y (b]’ Bj)l,q

] (7.6.5)
Solution of the Problem

Combining (7.6.5) and (7.6.4) and making the use of the lemma 7.6.1, we
derive
m + l, l _a (('07 }\‘)7 (aj’ a‘j)l,p

b,=22"“sinYann A [z2 o 1, (7.6.6)
p+1l,q+2 (di, Bidi.a» (172 + ®/2 £ 1n/2, A/2)
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Putting the value of b, from (7.6.6) in (7.6.3), we get the following required

solution of the problem:
VX,y= 220y {sin Y2nm exp (—nx) sin ny x
n=1

AL (22" (o, 1), (a), oy, p ]} (7.6.7)

p+1,q+2 (i, B o (172 + &/2 £ 1/2, 1/2)

provided the condition stated with (7.6.1) are satisfied.
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CHAPTER-8

FOURIER SERIES INVOLVING A-FUNCTION

8.1 INTRODUCTION

In the study of boundary value problems and special functions, Fourier series
for generalized hypergeometric functions plays a vital role. Certain double Fourier
series of generalized hypergeometric functions play a vital role in the improvement of

the theories of boundary value problems of dimension two and special functions.

Using generalized hypergeometric functions, certain number of Fourier series
have been evaluated by Bajpai [5, 11], Taxak [80], Sharma [66], Mishra [49] and

others recently.

Looking vital role of Fourier series in the study of boundary value problems
and special functions, in this chapter, we shall establish some new Fourier series
involving A-function of one variable on the lines of Bajpai [5, 11], Taxak [80],

Sharma [66], Mishra [49] and several other authors.
8.2 RESULTS REQUIRED

While deriving Fourier series involving A-Function of one variable following

results are required

From Rainville [56]:
1
j 1-x°2(01+ X)bPIEa‘b) (X)Péla’b) (x) dx
-1

=0, ifm #n,

23+tb+1ra4n+1)I(b+n+1) .
= 1
n!(a+b+2n+1)I'(a+b+n+1)’

m = n; (8.2.1)

where Re(a) > — 1, Re(b) > — 1.

The following orthogonality properties given in [43]:
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T, m = n;
™ 5 — .
Jy eilm—mx gy — 27, m=n=0;

0, m # n;
mn/2, m = n;
T
foe‘mxcosnxdx: M, m=n=0;
0, m # n;

T
- m=n,

T imx o _<72 ’
J, €™ sin nxdx_{o’ men,
provided either both m and n are odd or both m and n are even integers.

From Macrobert [43], [45]:

Vrr(2-s) , . 1-2s _ oo S)r .
—2r(§—s) (sinB) =22 as). sin(2r + 1) 6,
where 0 < 0 <, ResS%.
Vrr(1-s) [ . 6 —2s _ o &)r
ra—s) (sm 2) =1+2Y72, s cosré,

where 0 < 0 < .

8.3 FOURIER SERIES

(8.2.2)

(8.2.3)

(8.2.4)

(8.2.5)

(8.2.6)

In this section, we have established some new Fourier series involving

A-function of one variable.

Most of the results have been published in International Journal of Scientific

Research and Reviews [42] in form of a research papers.

Fourier series 8.3.1
(sin>) 21 (1 — y)W2

(aj.5)
A (i Xy2h 1— -k 1,p
x Apjq [Z (Slnz) ( y) l(bi'Bi)Lq

_2Wetl o (a+b+2t+1)(a+b+t+1)
T ym <=0 T(a+t+1)

cos(rx) PP (y) x

2

(1—w1—r,h),(—wZ—a.k),(bj,ﬁj)l‘q.(l—wl+r,h).(—wZ,k)

m+2,n+2 -k
Apraqa lZ- 27

80

(l—wl,h),(—wz+t,k),(aj,aj)1‘p,(1—w1,h),(—l—a—b—wz—t,k)

(8.3.1)



provided that h > 0, k > 0, Re(a) > — 1, Re(b) > — 1 and |arg (uz)| < ¥2 mh, where h and
u are given in (1.2.37) and (1.2.38) respectively.

Proof

To establish (8.3.1), let
f(x, y) = (sin ) 72"1 (1 — y)"2

(aj,ocj)l‘p

m,n caX\2he1 _ )k
x Apq |z (sin))*" (1 —y) |(bj’Bj)1,q

= Yirt=0Art cos(rx) Pt(a‘b) ). (8.3.2)
Equation (8.3.2) is valid, since f(x, y) is defined in the region
0<x<m-1<y<I.

There are many awkward problems related to writing an expression for a
function f(x, y) in terms double Fourier series expansion. With two-variables
analogues of well-known Dirichlet's conditions and the Jordan's theorem,
convergence of almost all double Fourier series expansions is covered. In this respect,
a brief discussion given by Carslaw and Jaeger [15] provide a good coverage of the

subject.

Taking the product of (8.3.2) and (1 —y)?(1 + y)bPV(a'b) (y), integrate w.r.t. y
from — 1 to 1, and applying (4.3.14) and (8.2.1), we obtain

2Y2(sin g)_zwl

(—wy +v,k),(aj,a,-)1'p,(— 1—a—b-w,-vk)

x AmFLntll, 9-k(ginZ)2h
( 2) |(_W2_a’k)’(bj'Bj)l,q’(_WZ’k)

p+2,9+2

'@a+v+1)
LV (a4+b+2v+1)T(a+b+v+1)

=2rz0A

cos(rx). (8.3.3)
Multiply (8.3.3) by cos(ux), integrate w.r.t. X from 0 to «, and using (4.3.13)
and cosine function's orthogonal property, to get

A = 2W2+1 (34 b4+2v+1)T(a+b+v+1)
uv - m r(a+v+1)

81



( ) (~w2+vK),(aj, ocj) ,(1—=wy,h),(~1-a—b-w,-v k)
(8.3.4)

(1- wl—uh)( w3 —2a,k),(b; B]) ,(1-wq+uh),(=wy k)

X p+4,9+4

except that Ay, is one-half of the above value. From (8.3.2) and (8.3.4), the Fourier

series (8.3.1) is obtained

Fourier series 8.3.2

(sinB)PA™™ |, (sin(a)-25|(aj’°"')1’p
P4 (bj.8y), 4

Am n+1

\/1'[ p+1,q+1

(310‘1) (9/25)
|1 p8 (b] B]

2 mn+2 (10‘1) pT )(—u 8)

+ 7 2re1 Apia g | 1+p8 25) (), .cos(mr/2) cosro, (8.3.5)
2’

provided that § is a positive number and |arg (uz)| < ¥2 mh, where h and u are given in

(1.2.37) and (1.2.38) respectively.

Proof
To establish (8.3.5), let

f(6) = (sin®)PADT |z. (sinB)~ 2f5|(b’ B’i
]

= % + Y72, C, cosrb, (8.3.6)

As f(0) is of bounded variation and continuous in (0, 7), when p > 0, equation
(8.3.6) is valid.
Multiply (8.3.6) by cos(u0), integrate w.r.t. 6 from 0 to «, to get

(@),

m, . m,n i —28
fo (Slne)p cos (ue) Ap’q lZ. (Slne) |(b B]) do

=0 [T cos (u6) dO + X2, C; [ cos 10 cosud do.
Now using (4.3.15) and cosine function's orthogonal property, we get

(a aj, 1) 2 )(_ %'S)l (8.3.7)

2
“"s )(-2)(03)

Cy _i mn+2
_\/— p+2q+2 |
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From (8.3.6) and (8.3.7), the result (8.3.5) is obtained.

Fourier series 8.3.3

(aj,05)
AP AL 26 1p
(sinB)PA, I (sin®)~ |(bi’Bi)1_q

(]O‘]) pT )(—ES)

2 oo ) . .
+ ﬁ2r=1 Aglfzfqzﬂ I z| 1+p5 P )(b B, l . sin(ntr/2) sinr6, (8.3.8)
2’

provided that § is a positive number and |arg (uz)| < %2 wh, where h and u are given in

(1.2.37) and (1.2.38) respectively.

Proof

To prove (8.3.8), let

(aj)
s mn . -28 Lp
f(8) = (sinB)PAL" |z (sin®) '(bpsjh,q

= Yreq Cp sin 16, (8.3.9)

Multiply (8.3.9) by cos(ub), integrate w.r.t. © from 0 to «, and using (4.3.16)

and sine function's orthogonal property, to get

U Amn+2 (ajay), (_

2 2’ ),(_p;_uls)
Cy= 7= SIS Apia gz z|(1 1*”5)(—3 )(b B]) (8.3.10)
2’ 2’

)

From (8.3.9) and (8.3.10), the formula (8.3.8) follows immediately.

Fourier series 8.3.4

)Zk

5]

)Zh] UF V[yU:d(sinX

. -1 ap:c(sinx
(sinx)V ™! pF o[ " Bo

(aj,aj)lypl

x A™™ 7. (sinx)%*
p,ql (sinx) I(b]-,[s,-)Lq

_ i 0 o0 (ap)rc” (yy)ed* in(m/2—x)
= In Zn=—oo Zr,t=0 (BQ)rr! Sy t!

Am+2 n+2

m+2hr+2kt')\ ) m+2hr+2kt+1 (a (x)
p+2q+2[ i N AHosey l 8.3.11)

I w+2hr+2kt m+2hr+2kt+1
( ) ) (byBy),

2
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where n's are either even or odd in addition to the conditions of validity followed by

(4.3.17).

Proof
To prove (8.3.11), let
. — :c(sinx)2h :d(sinx)2K
() = (sinx)71 pF o[ T T yF [ ]
m,n 22 1 1)
X Apq |2 (sinx)“?| (b8, ,
=y o A,e inx, (8.3.12)
As f(x) is of bounded variation and continuous in (0, ), equation (8.3.12) is
valid.

Multiply (8.3.12) with e™, integrate w.r.t. x from 0 to =, to get

- ) _ imx . . )zh :d . )Zk
fo (sm X)m 1 e PF Q[ap c(sinx BQ] UF V[YU (sinx 5V]

aa)),

)dx

mmn 2A
x Apq |z (sinx) | (b 8

= V5o Ap f €M X dx,
Now using (4.3.17) and (8.2.2), we get

1 2 oo (ap)rc” (Yudied®
Am = = e/ Zmzom

w+2hr+2kt 0)+2hr+2kt+1
( ) )3y %),

Apira ° 8.3.13
p+2,9+2 |(bj'6j)1‘q'( m+2hr+§kt+m+1,}\) ( )

From (8.3.12) and (8.3.13), the Fourier exponential series (8.3.11) is obtained.
Fourier series 8.3.5

. i 2h . i 2k
(SinX)W_l PF Q[ap.c(smx)BQ] UF V[yU.d(51nx)8V]

(aj,ocj)l‘p

x A™™ |z, (sinx)??
pa |2 (SInX) |(b,~,Bj)1’q
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a)+2hr+2kt ( )
_ izoo (ap)rc” (yu)ed® Am+Ln | 3
nt=0(gg), 1t (Sy)e t! Ap+1 (b;.85),

2 o) o (aP)rCr(YU)tdt inm/2
+ \/nZn=1 Zr,t=0 (BQ)rr| ((Sv)t tl e COS nx

u)+2hr+2kt (m+2hr+2kt+1 ) ( e )
p+2 q+2 | m+2hr+2kt+n+1}\ (8.3.14)
(by.B5), > )

where n's are either even or odd in addition to the conditions of validity followed by

(4.3.17).
Proof

To establish (8.3.14), let

. i 2h . i 2k
(SinX)m_l PFQ[ap.C(smx) ] FV[yU.d(smx) ]

Bl U Sy
(aj.05)
mmn . 2\ 1,p
x Apgq |2 (sinx) |(b]_,B]_)1‘q
=224 ¥, By cosnx. (8.3.15)

Multiply (8.3.15) with ™, integrate w.r.t. x from 0 to 7, and using (4.3.17)
and (8.2.3), we get

2 i ap)rc’ dt
Bm — _elm‘l'[/Z Zt?ot 0 (ap)re’ (Yudt

v =0 (Bo), 1! (By)e t!
w+2hr+2kt (,o+2hr+2kt+1
Am+2n ( 2 }‘)( )(a] 0‘1) 83.16
p+2,q+2 I w+2hr+2kt+m+1 ( 2D )

(bj'Bj)Lq'(f)\)
From (8.3.15) and (8.3.16), the Fourier cosine series (8.3.14) is obtained.
Fourier series 8.3.6

. i h . : k
(SinX)W_l oF Q[ap.c(smx);Q] oF V[yU.d(smx);V]

(aj,ocj)l'p

x A™™ |z, (sinx)?*
paq |2 (Sinx) |(b]-,sj)1lq

__2 ) 0 (aP)rCr(YU)tdt inm/2
= ivm Zn=1 Zr’t:O (BQ)rr! 6y)c e S1n nxX
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w+2hr+2kt m+2hr+2kt+1
( 7\) ( ) (ay, 0‘1)

m+2,n 2 )
Aprzata I(b.,ﬁ.) w,\) (8.3.17)
JF] 1,q 2

where n's are either even or odd in addition to the conditions of validity followed by

(4.3.17).
Proof

To prove (8.3.17), let

. - : i zh :d(si 2k
(sm X)w 1 PF Q[(xp c(smx)BQ] UF V[YU (smx)SV]
(aj,aj)
Am.n (si 2A 1p
x Apl |2z (sinx) I(bj'Bj)Lq
= Yin= 1 Cp sinnx. (8.3.18)

Multiply (8.3.18) with ™, integrate w.r.t. x from 0 to =, and using (4.3.17)
and (8.2.4), we get

_ 2 _imm/2 yoo  (@p)rc"(yy)ed*
Cm = i ¢ Zrt=0 (BQ), It (8v)e t!

2

Z (b.8) u)+2hr+2kt+m+1 N (8.3.19)
1E) y

2,

l |( m+2hr+2kt’)\)l( cu+2hr+2kt+1 ) ( aj, a])
p+2,9+2

2
From (8.3.18) and (8.3.19), the Fourier sine series (8.3.17) is obtained.

Fourier series 8.3.7

(Sine)l—ZuAm,n 7 Sinzhel(ai'o‘i)l_p
pq |~ (b]-,Bj)l'q
2 oo am+ln+l “h (31 0‘1) p(1-wh) .
_%Zr=0 Ap+2,q+2 l |(1 —u-r,h), (b B] (2—u+r,h) SIn(Zr + 1)9, (8.3.20)

provided that h is a positive number, 0 < 0 < x and |arg (uz)| < ¥2 wh, where h and u

are given in (1.2.37) and (1.2.38) respectively.
Proof

To prove (8.3.20), let
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] ])
biBi), o

f(0) = (sin0)' 2" AQly Iz 51n2h9|(
=) ,sin(2r+ 1)6 C,, (8.3.21)

R(1 =2u)>0,0<6<m.
As f(0) is of bounded variation and continuous in (0, ) when R(1 —2u) > 0,

equation (8.3.24) is valid.

Multiply (8.3.21) with sin(2v + 1)6, integrate w.r.t. 0 from 0 to =, to get

T, . 1-2U ~: mn .- 2h (aj’aj)l_p
Jo (sin©)*2"sin(2v + 1)0 Ay’ [z sin*"6) do

(bj'Bj)l‘q
=220 Cy f: sin(2v + 1)0 sin(2r + 1)0 do.
Now using (4.3.18) and sine function's orthogonal property, we have

m+1,n+1
Ch=—= Ap+2 q+2

(U+vh) (by.87), ( 1+u—v,h) (8.3.22)

I 2 - +uh (ajocj) ,(wh) I

The result (8.3.20) is obtained with the help of (8.3.21) and (8.3.22).

Fourier series 8.3.8

(aj,a]-)ljp

(sin®/2)"*"Apqd [Z- sin*"(6/2) I(bj.Bj)
1q

L pm+in —uh (a] a])
E p+1,q9+1 |(b (1 uh)

m+1,n+1l N2 ~wh)(aja), p(1-wh)

2
+ﬁ2r=oAp+z,q+2 (1-u-r).(0y5;). (1—u+r,h)l cos 10, (8.3.23)

provided that h is a positive number, 0 < 6 < x and |arg (uz)| < ¥2 wh, where h and u

are given in (1.2.37) and (1.2.38) respectively.
Proof
To prove (8.3.23), let us consider

(ay), ,

— (i} —-2u amn 2h
f(0) = (sin6/2)™*" A, 5 |z sin (6/2)|(b 8),
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=24+ %2, CrcosTo, (8.3.24)
R(2u)>0,0<0<m.

Multiply (8.3.24) by cos(v0), integrate w.r.t. 6 from 0 to «, and using (4.3.19)

and cosine function's orthogonal property, to get

7+ uh). (@), (wh) l (8.3.25)

mmn
A [ I(u+vh) (bj, e] (u—v,h)

From (8.3.24) and (8.3.25), the formula (8.3.23) follows.
Fourier series 8.3.9

(r 1),(aj,q; ) -r1)
Z AT |z " sin(2r + 1)0
__,1),(b,,3,)1jq,( 1)

(8.3.26)

p.q

=£sm9Amnl 2 (@), l

sin26 ' (b;, B])

provided that |arg (uz)| < %2 nh, where h and u are given in (1.2.37) and (1.2.38)
respectively.
Proof

Using (1.2.35), the expression on the left side of (8.3.26) can be written as

S)C(r+s)
Yrzo7m 2m 0(s) l[‘(s)l"(2+r in(2r + 1) 9]

On changing the order of integration and summation which is easily seen to be

justified, the above expression becomes

f 0(s )F(2 = [Zr 0(( S sin(2r + 1) 9] z5ds.

2mi
and on using the relation (8.2.5), it takes the form

V. 1 .
—nsme %fL 8(s) (z/sin?0)5ds.
which is just the expression on the right side of (8.3.26). (8.3.26) is the Fourier sine

series for the A-function of one variable.
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Fourier series 8.3.10

Amntl I(] J)
p.q+2 (b By), JRCE

l (r,l),(aj,aj)l'p,(—r,l)

F2ATE L ) lcosrﬁ
(5'1)'(bj'8j)1_q'(0'1)

p+2,9+2

nAgf’"[ e, l (8.3.27)

sm2 (b] B])

provided that |arg (uz)| < ¥2 mh, where h and u are given in (1.2.37) and (1.2.38)

respectively.

The Fourier cosine series (8.3.27) is proved in an analogous manner by using

(1.2.35) and (8.2.6).
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CHAPTER-9

SUMMARY AND CONCLUSION

9.1 INTRODUCTION

The special functions in mathematics arise in the solution of differential
equation governing the behavior of certain physical quantities. Therefore a
function ‘special’ when the function has a place in the toolkit of the applied
scientist, engineer and the applied mathematician. These are denoted by particular
notation and have number of properties. Mathematically, special functions are
functions defined on R, the set of rear number or C, the set of complex number and
these are not only represented by series representation, but also by integral
representations. This thesis is mainly concerned with the A-function and its
properties. So the concept of Pochhammer symbols, calculus of residue, Mellin-
Barnes integrals and convergence are necessary for the detailed study. Recently the
attention of mathematicians towards these functions has increased from both the

analytical and numerical point of view due to their wide use.

The present study had been undertaken with the following specific

objectives:
e To develop some new generating relations involving A- function of one
variable.

e To find some new definite and indefinite integrals involving A-function of

one variable.
e To find innovative Fourier Series involving A-function.
e To find some new expansions involving A-function.
e To find some new identities involving A-function.

e To obtain new solutions of some boundary value problems in term of A-

function.
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9.2 SUMMARY

The present thesis has been divided into nine chapters. In first chapter, the
historical background, development and definitions of the A-functions of one
variable and polynomials in the context of the research work accomplished in the
subsequent chapters of this thesis are given in this chapter. It also provide brief

literature of several aspects of special functions.

Generating relations plays an important role in the investigation of various
useful properties of the sequences, which they generate. In second chapter,
‘Linear and Bilinear Generating Relations involving A-Function' looking into the
requirement and importance of various properties of generating relations in the
analysis of many problems of mathematics and mathematical physics, we have
established eight new linear and four bilinear generating relations involving A-

function of one variable.

Several authors have discussed a number of bilateral and trilateral
generating relations involving generalized hypergeometric functions time to time.
The usefulness of A-Function has inspired us to find some new generating
relations. In third chapter, ‘Bilateral and Trilateral Generating Relations involving
A-Function” some new bilateral and trilateral generating relations have been
established involving A-function of one variable and other hypergeometric

functions.

Integrals are useful in connection with the study of certain boundary value
problems. It is also helpful for obtaining the expansion formula. In fourth chapter
‘Definite and Indefinite Integrals involving A-function’ we have evaluated some
definite, indefinite and double integrals involving the A-function of one variable

and other generalized hypergeometric functions.

In Fifth Chapter, ‘Integration Involving Certain Products and A-Function’
we have established two integrals containing the products of other hypergeometric
functions and A-Function. We have represented these two integrals in another
forms and also discussed particular cases. We have evaluated new integrals

involving A-functions with the help of finite difference operator [E.f(a) = f(a + 1)].
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Looking into the requirement and importance of various properties of
expansion and identity in various field, in sixth chapter ‘Expansion and Identities
Involving A-Function” We have established six new expansions and nine new

identities involving A-function of one variable.

Various problems in science and technology, when formulated
mathematically, lead naturally to certain classes of partial differential equations
involving one or more unknown functions together with the prescribed conditions
(known as boundary conditions) which arise from the physical situation. Several
researchers have obtained solutions to the equations related to certain problems,
which satisfy the given boundary conditions. In the seventh chapter ‘Application
of A-Function of one variable in obtaining a Solution of some Boundary Value
Problems” first we evaluated an integral involving A-function of one variable and
then we applied it to get solution of two boundary value problems on (i) heat
conduction in a bar (i1) deflection of vibrating string under certain conditions. We
have engaged the A-function of one variable in obtaining a solution of a partial
differential equation related to heat conduction along with Hermite polynomials.
We have derived a solution of special one-dimensional time dependent
Schrodinger equation involving Hermite polynomials and A-function of one
variable and also obtained a solution of a bounded electrostatic potential in the

semi-infinite space.

The subject of Fourier series for generalized hypergeometric functions
occupies outstanding place in the literature of special functions and boundary
value problems. Certain double Fourier series of generalized hypergeometric
functions play vital role in the improvement of the theories of special functions

and two-dimensional boundary value problems.

Looking vital role of Fourier series in the literature of special functions
and boundary value problems, in eighth chapter, ‘Fourier Series Involving A-
Function’ we have established some new Fourier series involving A-Function of

one variables on the lines of Bajpai and others.
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9.3 CONCLUSION
The conclusions of this thesis are as follows:

e We have evaluated new linear and bilinear generating relations involving

A-function of one variable.

e We have established new bilateral and trilateral generating relations

involving A-function of one variable.

e New definite and indefinite integrals involving A-function of one variable

has been established.
e Innovative Fourier series involving A-function has been derived.
e New expansions and identities involving A-function has been founded.

e New solutions of some boundary value problems involving
A-function has been obtained viz. Heat conduction, wave equation, and

bounded electrostatic potential in semi-infinite space.
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1. Introduction

The A-function of one variable ts defined by Gautam [3] and we will

represent here in the following manner:
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ABSTRACT

In this paper, we establish some new some new expansion formulae imvolving A-function
of two variables.

L. INTRODUCTION:

The subject of expansion formulae of generalized hypergeometric functions occupies a
vital position in the literature of special functions. Certain two-dimensional expansion formulae
of generalized hypergeometric functions participate major role in the growth of the theories of
special functions and two-dimensional boundary value problems.

The A-function of one variable is defined by Gautam [2] and we will represent here in the
following manner:
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(ii) m, n, p and q are non-negative numbers in whichm<p,n<gq.
(iii) x # 0 and parameters a;, o, by and fli (j = 1 to pand k = 1 to q) are all complex.
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Abstract :

In this puper we evadniate same itegrals mvelving the products of A fiunction
ond other bypergeameivic functions. while in fust section some iitegrais imvolving the
pradnct of gereradiied Rvpergeomerric function and A-function of one variable wiil be
derived by meany of finite difference operaior E.
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Abstract: The aim of this paper is to establish same new linear generating relations involving A-funciion of one

variable.
1. Introduction
The A-function of one variable is defined by Gautam [ 1] and we will represent here in the following manner:
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ABSTRACT

The A-function of one variable plays an important role in the devélopment and study of
special functions, The usefulness of this function has inspired us to find some new generating relations.
In this paper some new bilateral and trilateral generating relations have been established involving A-
function of one variable and other hypergeometric functions.

1. INTRODUCTION:

The A-function of one variable is defined by Gautam [ 1] and we will represent here in the
following manner:
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