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ABSTARCT 

 

In the proposed work, plant growth dynamics are studied considering delay in nutrient 

uptake rate, utilization rate and nutrient use efficiency rate under the effect of toxicant 

present in soil or plant. Plant growth depends largely on the availability of nutrients and 

favourable resources. The presence of toxicant can hamper the supply of nutrients and 

their utilization and hence affects the plant growth. This impedance in nutrient supply 

and utilization are taken as the delay parameter, which plays a key role in this entire 

study. In the proposed work, the models for single plant growth, tree growth and plant 

population are formulated considering the delay in growth dynamics under the effect 

toxicants. The proposed models have been analysed mathematically and the results have 

been verified numerically and further validated with already existing statistical data of 

plant growth under the effect of various toxicants.  

Mathematically, the positivity and boundedness of all analytical solutions is established 

using comparison theorem. All possible and feasible interior and exterior equilibrium 

are calculated. Local stability analysis of interior equilibrium is established. Stability 

analysis of interior equilibrium considering delay parameter resulted into Hopf-

bifurcation showing the complex dynamical behaviour. Nature of the roots has been 

studied in detail using Rouche‟s theorem.  Sensitivity analysis of state variables with 

respect to model parameters is done for almost all the models using „Direct Method‟. 

Numerical simulation is done using MATLAB where all the model parameters have 

been assigned different numerical values. This helped to find the critical value of the 

delay parameter below which the system exhibited stability and above this critical 

value, the system lost stability and Hopf-bifurcation occurred.  

In chaper-1, The general introduction about plant growth dynamics under the effect of 

toxicants is given. The remarkable work done by the researchers is cited and the gaps 

have been identified through extensive literature review. All the important concepts of 

plant physiology and the necessary mathematical concepts required for their study have 

also been described. It also includes the proposed objectives of the study and summery 

of all the chapters.  
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In chapter-2, The effect of exogenic activities on nutrient concentration is studied by 

considering delay in nutrient utilization. A two-compartment mathematical model is 

proposed for the study of this phenomenon. It is shown that exogenic activities cause 

delay in nutrient utilization efficiency due to which the equilibrium losses stability. 

Sensitivity analysis with respect to model parameters is done using „Direct Method‟.It is 

found that the state variables of the model are more sensitive to parameters- nutrient 

transfer rate and consumption rate.  It is observed that with increase in nutrient transfer 

rate and decrease in consumption rate, the system tends to stability for the same value of 

other parameters.  The critical value of the delay parameter comes out to be 𝜏 = 0.9 

below which the system is table and above this critical value, the complex behaviour is 

shown by the system and Hopf-bifurcation occurred.  

In chapter-3, A two-compartment mathematical model is proposed for the study of an 

individual plant growth dynamics with time lag due to the presence of toxic metals in 

the soil. It is assumed in the model that nutrient uptake by root is hindered due to 

presence of toxic metal. This effect is studied by considering a time lag in utilization of 

nutrients in root in presence of toxic metal. Stability analysis of interior equilibrium is 

carried out. Sensitivity analysis of state variables with respect to model parameters is 

done. The nutrient utilization coefficient and consumption coefficient turn out to be the 

most sensitive model parameter. The value of delay parameter 𝜏 = 0.89 turn out be the 

critical value which changes the system behaviour from stability to complex one, 

leading to Hopf-bifurcation. 

In chapter-4, A mathematical model is proposed for analytical study and analysis of 

plant growth under the effect of toxic metal where the delay is considered in utilization 

of nutrients. It is assumed that the heavy metals present in the soil have toxic effects on 

the concentration of nutrients available in the soil for plant growth. This toxic effect in 

turn affects the plant growth adversely. This effect is studied by introducing the time-

lag (delay) in consumption or utilization of nutrients.  Stability analysis of feasible 

interior equilibrium and Hopf bifurcation has been studied. The sensitivity analysis 

reveals that nutrient concentration is least sensitive to all model parameters as compared 

to biomass. The system is stable below the critical value of delay parameter 𝜏 = 1.373 

and losses stability and show Hopf-bifurcation above this critical value. Simulation is 

done using MATLAB. 

In chapter-5, The reduction in tree biomass is modelled under the effect of toxic metal 

by considering delay in terms containing intrinsic growth rate. It is assumed that the soil 
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is contaminated with toxic metal and some amount of toxic metal is already present in 

the tree itself. It is further assumed that both these concentrations affect the tree 

biomass. Stability of feasible interior equilibrium is studied and Hopf bifurcation occurs 

at a critical value of time parameter 𝜏 = 3.17 and the periodic solution results. The 

sensitivity analysis concludes that tree biomass increases with increase in intrinsic 

growth rate and decrease in input rate of toxic metal. MATLAB is used to support the 

analytical results. 

In chapter-6, A mathematical model is framed that depicts the ecological phenomenon 

that and nutrient pool and plant population density are adversely affected by the 

presence of excessive toxic metal. The system of non-linear delay differential equations 

is used where the sate variables considered are nutrient pool, plant population density 

and toxic metal.  The delay is considered in nutrient utilization. It is shown that as the 

rate of damage of plant population density due to toxic metal and the input rate of toxic 

metal increase, the nutrient pool concentration and plant population density decreases. 

Two feasible equilibriums: uniform equilibrium and interior equilibrium are calculated.  

The system changes its behaviour from stable to unstable while passing through the 

critical value of delay parameter 𝜏 = 0.49 and Hopf bifurcation occurred. Sensitivity 

analysis of state variables in relation to model parameters is done. It reveals that 

decrease in nutrient use efficiency leads to stability of the system. Model is verified by 

taking those values of damage rate due to toxic metal (assumed to be Arsenic) which are 

available in already existing data for growth of winter wheat (Triticum aestivum L) and 

rape (Brassica napus) under the effect of high concentrations of Arsenic in soil (Liu et al 

2012). Simulation is done using MATLAB. 

In chapter-7, A mathematical model is proposed to study the combined effect of acid 

and toxic metal on plant population considering delay in utilization of favourable 

resources available in soil and surrounding plant environment. It is assumed that due to 

presence of toxic metal and acidity in soil, nutrient pool and plant population density 

gets adversely affected. The stability of the interior equilibrium of the system gets 

disturbed by the introduction of delay parameter. For the critical value of delay 

parameter 𝜏 = 3.38, Hopf bifurcation is observed where by system fluctuates its 

behaviour from being stable to unstable. The sensitivity of model solutions for different 

values of model parameters is established using sensitivity analysis. Rate of utilization 

and rate of interaction between nutrient and resources turn out be crucial model 

parameters. The model is also verified by taking the uptake rate values of copper using 
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the existing experimental data of a study conducted on the effect of heavy metals like 

copper, lead and zinc on growth of Lettuce in Vietnam (Nguyen Xuan Cu).   MATLAB 

code is used for simulation to support analytical results. 
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Chapter 1 

General Introduction 

1.1 Introduction 

Plant ecology is a branch of science that encompasses all kinds of possible interactions 

among organisms and their environment including spread and affluence of plants. It 

studies the growth of individual plant and plant population under varying environmental 

conditions. It takes care of the production of quality food, feed and vegetation in genetic, 

biotic and abiotic factors. Plants are the major producers in an ecosystem. Plant growth 

depends on local physical environment that includes light, water, temperature and 

nutrient availability in soil. These factors in turn depend on variables like leaf-area 

ration, net assimilation rate, leaching and runoff, accumulation of organic matter, 

microbial mineralization and immobilization of nutrients in the soil. 

Soil consists of the organic and minerals on the surface of earth that acts as a medium 

for plant growth. Organic matter is formed by decayed microorganisms and plants and 

minerals are formed by weathering of rocks. Soil holds roots of the plants and provide 

them the required moisture and nutrients to produce flowers and fruits. 

The soil-plant interaction via nutrient demonstrates a relationship that holds good not 

only at an individual level, but at population and at the ecosystem level too. Nutrient 

influence an individual plant growth, thereby affecting the plant population dynamics 

which in turn effects the crop production.  

Soil is an important sink for pollutants. For survival of the ever-increasing world 

population, there is an increase in demand for food. It led to a massive increase in 

agricultural and industrial activities throughout the world. It resulted into decline of 

quality and quantity of soil. This soil degradation is brought by process like erosion, 

salinization, contamination, drainage, acidification, laterization and loss of soil structure 

or a combination of these.  

The toxic chemicals in soil can adversely aff ect forest, agricultural crops and vegetation 

by destroying their characteristics and productivity. The direct influence of heavy metal 

ion on tree metabolism, especially on root physiology, has potential to reduce nutrient 

uptake. Copper (Cu) and zinc (Zn) are the essential macronutrientswhich are required for 

the optimum growth of the plants. Normally, these are found in very low concentration 
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in soil. Whereas, metals like cadmium (Cd), arsenic (As), chromium (Cr), lead (Pb), 

nickel (Ni), mercury (Hg) and selenium (Se) are toxic to plants. The various factors 

including the disposal of municipal and industrial wastes, application of chemical 

fertilizers, pesticides, insecticides, herbicides, atmospheric deposition and discharge of 

wastewater on land, resulted in the soil acidification and also elevated the concentration 

of above-mentioned heavy metals in the soil which in turn has become the main reason 

for the reduced plant growth. 

Cadmium (Cd) is one of the most widely spread heavy metals found in the soil. It is 

easily accumulated by plants and hinders the growth and ingestion of nutrients by 

agriculture crops such as Barley. Acid precipitation causes changes in the soil properties 

that influence root growth or function. The acidification of the soil raises the inorganic 

aluminium concentration at root zone which, at the sublethal concentration, reduce the 

cation uptake rate and at lethal concentration, increases the root mortality rate. Increased 

level of acidity entering the soil system could be the reason of leaching that causes root 

damages. 

It is also observed that the Xenobiotics in soil whose major source is agricultural 

pesticides can be toxic to soil biota which inhibits seed germination and suppresses 

plant growth. Acidification of soil is the adverse output of acid rain. Itleads to increased 

ex-change between hydrogen ion and nutrient cations in the soiland can be rapidly 

leached out in soil solution. The metal concentration in the plants generally increased 

with decreasing pH and accumulation of metal concentration in plant is inversely 

proportional to pH of soil. The accumulations of heavy metals in the plants increased 

with lower pH due to acid rain. 

India is basically an agricultural country and about seventy percent of the population is 

engaged in agriculture practices. To feed such a large population farmer are using 

extensive amount of pesticides, insecticides, herbicides and chemical fertilizers to 

increase the yield. Due to excessive use of all these chemicals the fertilityof the soil is 

decreasing, consequently diminishing the yield of agricultural crops which are also 

containing heavy metals and the other chemical toxicants that are even harmful to 

human health. 

Now it is evident that individual plants and plant population are under diff erent types of 

stresses, such as low nutrient availability, acidification causing lowering of pH, 

temperature fluctuations, drought, and presence of many salts, aluminium, heavy metals 
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and other toxic chemicals in the soil. All these stresses aff ect plant growth and yield 

through adverse physiological eff ects such as reduced leaf area development, reduced 

root growth or advanced canopy senescence. 

In research environments, modelling commonly serves purpose such as integrating 

knowledge or the quantitative testing hypotheses and for modelling, the system of 

interest needs to be described. In horticulture and agricultural sciences, the system of 

interest is commonly a plant and very often a collection of interacting plants, i.e. a row 

of plants or homogeneous crop canopy. 

Time delays of one type or another have been incorporated into biological models by 

many researchers. In real world, the growth rates of an individual plant or plant 

population will often not respond immediately to change in its own population, but 

rather will do so after a time lag. The factors that introduce time delay may include 

toxic metals in soil, utilization coefficient and nutrient use efficiency in plant growth 

dynamics. In general, the dynamics exhibited by delay differential equations is much 

more complicated as compared to the one presented by ordinary differential 

equations.The time delay forces a stable equilibrium to lose stability and become 

unstable and cause fluctuations. Role of delay (time lag) in plant growth under the effect 

of toxic metal is relatively a new field of studies.   

Mathematical models are a true replica of the amalgamation of environmental and 

ecological information. In mathematical model of natural phenomenon, it is not possible 

to consider all uncountable variables and factors, but only the pertinent information is 

considered to have a logical understanding of the nature of the dynamics. The proposed 

research work related to the study of role of delay on plant growth dynamics under the 

effect of toxicants will be carried out by using mathematical models and the models will 

be used to determine quantitatively the damage mechanism of plants and reduction in 

plant yield due to reducing factors such as the presence of toxic chemicals in the soil. 
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1.2 Literature Review 

Plant growth studies have their roots right back in ancient times. Early humans, nomads 

used to observe that crops and plants sown in certain seasons give fruits and feed as 

compared to other seasons. In the middle ages, Leonardo da Vinci was the first to 

observe systematically, the seasonal periodicity of growth and some features of plant 

forms. Theories of the arrangement of leaves on axis or stem, appear already in the 17
th

 

century. The modelling of the plant-soil interaction started with  a single-root scale 

model proposed byHiltner[1] for nutrient uptake by roots, known as rhizosphere 

models. The early modelling work between 1960 and 1970 related to water uptake by 

single root is credited to Dalton and Gardner [2].Temperature, Humidity, radiation 

input, respiration, transpiration, photosynthesis, carbon dioxide etc. are the major 

environmental factors that affect plant growth. Thornley[3] was the first to propose 

mathematical models including these factors individually and in 

combination.Watkinson[4]proposed a novel theoretical model in which the assumptions 

were that there was a dynamic growth process whose rate was dependent on the size of 

the plant, diminishing as a plant matured towards an upper size limit, that there was 

variability between the individual plants in a population, and that competition 

(particularly for the smaller plants in a dense population), reduced the growth rates, 

possibly resulting in mortality. Gifford and Evans [5] concluded that soil properties and 

availability of water are main factors responsible for increasing plant and crop yield 

through breeding programIt has been shown by Miler [6]that if concentrations of 

nutrients in long-lived tissues remain relatively constant (constant nutrient-use 

efficiency), then the contribution of plants to nutrient availability is proportional to 

accumulation of biomass of long lived tissues.Reynolds and Acock [7], analysed  how 

the agricultural productivity and natural ecosystem have long-term adverse effects of 

increasing levels of global carbon dioxide concentration. Valentine [8], assumed that a 

tree can be considered as a sum total of pipes and each pipe undergoes steady-state 

growth. Makela [9] , criticized that the partioning coefficients defined by Reynolds and 

Thornley are applicable only to the models that have equal turnover rates of root and 

shoot. He gave a more general derivation which considers models proposed by 

Reynolds and Thornley as a special case. and  Pugliese [10] has studied age dependent 

plant growth model, and proposed a continuous-time model of growth and reproduction. 

Kickert and Krupa [11] proposed and analysed models which deal with general group of 
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vegetables, instead of individual plant species. Czaran and Bartha [12]  studied 

spatiotemporal dynamic models of plant populations and communities. Thornley [13] 

described two mathematical models showing root: shoot allocation. Two modes of 

growth: steady state and exponential growth were considered for the comparison of 

transport-resistance approach and teleonomic method. Thornley [14] gave a two 

compartment mathematical model which is based on two processes-transport and 

chemical conversion which fits well to both theoretical observations and practical 

application. Thornley [15] proposed a transport-resistance mathematical model for 

allocation of carbon and nitrogen in root and shoot compartments of plants. Thornley 

[16] proposed a mathematical model for plants regarding their stem height and growth 

of diameter. Deleuze and Houllier [17], proposed a model addressing two modelling 

problems: total wood production which is a function of carbon translocation, described 

by Munch theory and stem form and wood quality. Diekmann et al. [18] have 

formulated and analysed general deterministic structured population models. Somma et 

al.[19]developed a three dimensional model that clubbed the simultaneous growth of 

root, water and nutrient uptake with soil, water and solute transport.Khush [20]showed 

how the technological advance has led to the dramatic achievements in world food 

production over the last 30 years and to the development of high-yielding varieties of 

wheat and rice. Lacointe[21]concluded that the models proposed by Thornley are 

specific and cannot be applied over a wide range of plants under different conditions. 

Tinker and Nye [22] started to consider root hairs in place of single root in models.   

Luis Garcia-Barrios et al. [23]showed how mathematical models of growth of mixed 

crop in combination with empirical data can reduce the time and investment required for 

the task. It illustrates that the spatial disposition of plants in intercrops, and diff erence 

in sowing time between species, can strongly aff ect their ecological inter-actions and, in 

consequence, the systems viability and performance.Bolker et al. [24] studied a spatial 

dynamic model for plant communities.Hedden [25] identified the genes responsible for 

dwarfing of traits which led to the remarkable increase in wheat and rice yields. 

Ioslovich and Gutman[26] have studied a plant growth model with gradual transition 

from vegetative to reproductive growth considering the diff erence of photosynthesis use 

efficiency when energy is accumulated in the vegetative and in the reproductive organs 

of a plant. Valentine and Makela [27]formulated a process-based model of tree growth 

that can be fitted and applied in an empirical mode. Verkroost and Wassan [28] 

developed a simple plant growth model that verified the linear relationship between 

relative growth rate and plant nitrogen concentration.  Vance and Nevai[29] proposed a 
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mathematical model for plant population growth considering competition in a light 

gradient for canopy partitioning. The growth and development of flowering plants 

depend on phytohormone gibberellin (GA). Overman [30] coupled planted plant 

biomass and mineral elements by two mathematical models using analytical functions. 

Harberd et al.[31] studied the mechanism that enable the plants to respond to GA and 

give them freedom from growth arrest and survival flexibility. Fowler et al.[32] 

proposed a mathematical model of carbon allocation and storage on the basis of which 

growth dynamics of trees can be predicted.  Liu et al. [33]  presented a spatial plant 

growth model spotted to pattern dynamics by using both mathematical analysis and 

numerical simulations. Asano et al.[34]  used semi dwarf phenotypeas an agronomically 

important trait for during modern crop breeding of rice ( Oryza sativa L.).Pingali [35] 

provided a detailed account of green revolution, its success and failure in terms of 

productivity, environment and economic levels. Production of photosynthetic canopy 

and crop yield both depend on nitrogen. Quilliam et al.[36] showed that the biochar 

amendment can improve the soil quality, reduce nutrient leaching and increase the crop 

yield. Clough et al.[37] gave a review of  emerging trends and gaps in biochar-nitrogen 

research which is very important for agronomical productivity and carbon sequencing. 

Clark et al.[38] synthesized discrete observations of growing season with continuous 

responses to temperature variation, to predict how increase in the temperature due to 

global warmingaccelerates onset of growth. Hawkesford [39] showed that not only the 

crop production depends on nitrogen, but the focused capture and use of nitrogen also 

optimises the consumption of this efficient macronutrient. Vanderwel and Purves [40] 

used a simple data model to predict substantial shift in forest dynamics in next 500 

years in united states. King et al.[41], instead of considering the loss of soil phosphorus 

like many researchers, has put more emphasis on the magnitude and quality of loss of 

sub surface phosphorus and its adverse effect on plant growth. Serrano-Mislata et 

al.[42] showed that stem growth and the size of the inflorescence meristem is controlled 

by DELLA, where flowers initiate. Paxson and Simon [43] showed how computers can 

control and monitor the growth of plants directly. Sanderman et al.[44], analysed the 

archived soil samples of crop rotation. The findings suggested the direct feedback 

between accelerated biological activity, carbon cycling rates and rates of carbon 

stabilization.  Dahiru [45], attempted to review the influence of some important growth 

regulating substances such as abscisic acid, auxin, cytokinin, ethylene, and gibberellins 

on plant growth. Ciereszko [46], showed how sugar plays an important role in defense 

reactions of plants.  
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The problem of estimating the eff ects of a toxicant on population by mathematical 

models began only in the early 1970‟s. Bazzaz et al. [47]studied the effect of Cadmium 

on photosynthesis and transpiration of excised leaves of corn and sunflower. Bazzaz et 

al. [48]  studied the Inhibition of photosynthesis in corn and sunflower by lead.  In last 

two chapters of his book, Hewitt [49] , covered one essential (Cl) and three non-

essential (Si, Co, V) elements and elements with more toxic effects (I, Br, F, Al, Ni, Cr, 

Se, Pb, Cd) and other heavy metals.The reduction of plant growth due to toxic eff ect of 

cadmium on diff erent processes in plantshas been studied by Rodecap and 

Tigey[50].Hallam et al.[51] presented a three-dimensional model that showed the effect 

of chronic or acute dose of toxicant on plant population at the system level. Hallam et 

al.[52] gave a toxicant-population interaction model that depicted the adverse effects of 

pollutants on population.  Hallam and de Luna [53] discussed the effects of toxicants on 

the population exposed to both, environmental and food chain pathways.  De Luna and 

Hallam [54] proposed three generic toxicant-population models consisting of three state 

variables: population , toxicant concentration in organism and toxicant concentration in 

environment. Gatto and Rinaldi [55], using some mathematical models, showed 

dramatic changes in the forest biomass due to small variations of the human exploitation 

of a natural forest. Shukla et al.[56] presented a model to show that increasing pollution 

due to increasing industrialization can lead to extinction of forest biomass and 

reforestation is the only way out to this issue.  Wolf et al. [57] studied the modelling of 

long-term response of crop to fertilizer and nitrogen.Freedman and Shukla [58] studied 

the effect of single influx, constant dose and periodic dose of toxicants on single species 

growth and predator-prey system. De Leo et al.[59] framed a simple mathematical 

model that clubbed the chemical properties of soil with tree biomass to study the effect 

of proton concentration on equilibrium. Brune and Deitz [60] conducted an experiment 

in which Barley seedlings were grown in hydroponic culture in the presence of toxic 

concentrations of different heavy metals. It revealed same distinct effects on specific 

leaf and root element content. Shukla et al.[61], presented a mathematical model that 

analysed how the increasing rate of toxicity due to industrialization leads to decrease in 

biomass density which in turn results into extinction of resource based species.  Curtis 

and Wang [62]used meta-analytic methods to summarize and interpret more than 500 

reports of effects of elevated CO2 on woody plant biomass accumulation and 

partitioning, gas exchange, and leaf nitrogen and starch content. Bonnet et al. [63] 

studied the effect of zinc on growth parameters and chlorophyll concentration of 

ryegrass. Mossor-Pietraszewska[64] shown that aluminium toxicity is one of the major 
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factors for reduced plant growth in acidic soils. Pishchik et al.[65] conducted an 

experiment in which plant growth promoting rhizobacteria were selected to obtain 

ecologically safe barley crop production on cadmium polluted soils. Dubey et al.[66] 

proposed a mathematical model to analyse and study the reduction of resource biomass 

of plants and trees due to industrialization and pollution. Van Ittersum et 

al.[67]presented an overview of the Wageningen crop and crop-soil modelling 

approaches, instead of focusing on few models only. Shenker et al.[68], studied 

Manganese nutrition effects on tomato growth and chlorophyll concentration. Dercole et 

al.[69] formulated a mathematical model with the help of partial differential-integral 

equations incorporating the effect of self-shading by leaves. Sheldon and Menzies [70], 

studied the eff ect of copper toxicity on the growth and root morphology of Rhodes 

grass (Chloris Gayana Knuth.) in resin buff ered solution culture. Thomas et al.[71] 

proposed a mathematical evolution model for phytoremediation of metals from the soil 

through the roots.Naresh et al.[72]proposed a nonlinear mathematical model to analyse 

and study the effect of an intermediate toxic product on the growth of plant biomass. 

Lauchli and Grattan [73] in one of the chapters, provided an overview of the effect of 

salinity on growth and development of crop plants.  Verma et al.  [74] gave a model for 

accumulation of cadmium in radish, carrot. Spinach and cabbage. Amodel related to 

coupling of water and heat transport in a soil-mulch-plant-atmosphere continuum 

(SMPAC) system has been studied by Wu et al.[75] which is being applied to winter 

wheat crop.Liu and Zhang [76]have studied the N-species food chain model with 

feedback control system in a polluted environment and have carried out the persistence 

and stability analysis.  Shukla et al.[77] framed a nonlinear mathematical model with 

assumption that population and resources are both simultaneously affected by toxicant. 

Hayat et al.[78] conclude that salicylic acid generates a variety of metabolic and 

physiological responses in plants and hence affects their growth and development.  

Nagajyoti et al.[79] studied the occurrence and toxic effects of a number of heavy 

metals on plants which are an integral part of entire ecosystem. Singh and Agrawal[80] 

studied the suitability of sewage sludge use for mung bean plants by evaluating the 

growth and yield responses and heavy metal accumulation at different sewage sludge 

amendmentrates. Sinha et al.[81] proposed a two species competition model which are 

under the simultaneous effect of toxicant and infectious disease. Tsonev and Lidon [82] 

measured the extent of plant injury due to increased concentration of zinc.  Mishra and 

Kalra[83] gave a very sound two compartment mathematical model for modelling effect 

of toxic metal on individual plant growth. Ahmad et al.[84] showed that the uptake of 
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non-essential element chromium along with other nutrients is one of the main causes of 

reduced growth and biomass of crops. Guo et al.[85]investigated heavy metals in soils 

and agricultural productsnear an industrial district in Dongguan City.  Pavel et al.[86] 

studied the phytotoxic effect of chromium and cadmium on germination and growth of 

Lepidium Sativum. Misra and Kalra[87] gave another worth full two compartments 

mathematical to study the effect of toxic metal on the structural dry weight of a plant. 

Shukla et al.[88] proposed  a nonlinear mathematical model to study the formation of 

acid rain in the atmosphereand its effect on plant species. Gupta et al.[89] emphasized 

the requirement of proper management of phosphorus along with its fertilizers which  

may help the maximum utilization by plants and minimum runoff and wastage. 

Bedbabis et al.[90] conducted an experiment in Tunisia for a period of ten years in an 

olive orchard , subjected to two different water treatments: well water (WW) and treated 

waste water( TWW). Data obtained indicated that standard quality indicesand oil 

content were not affected significantly by water quality. Boros and Micle 

[91]determined the Helianthus Annuus‟s tolerance to copper and its effect on 

germination of seeds and growth of plant.  Sundar and Naresh [92] proposed a nonlinear 

dynamical model to study the survival of biological population under the environmental 

pollution. Cu[93] conducted an experiment in Vietnam to study the effect of heavy 

metals on soil, water and plant biomass.Chi Peng et al. [94], gave a pollution 

accumulation model (PAM) to simulate the long-term changes of heavy metals 

concentration in soil. Mustafa and Komatsu [95]showed thatplants have evolved 

different strategies to cope with the accumulation of heavy metals when they take up 

heavy metals along with essential elements from the soil. Kumar et al.[96] proposed a 

non-linear mathematical model to study the effect of toxicant on biological species, 

some of whose members are already severely affected by the toxicant. Sundar et 

al.[97]proposed a mathematical model to analyse the effect of population and 

population density dependent industrialization on forestry resources. Yan et al.[98] 

evaluated the potential ecological risk of heavy metals accumulation from anaerobic co-

digestion of plants by comparing different initial substrate concentrations, digestion 

temperatures, and mixture ratios. 

History of delay differential equations is more than 200 years old. Very first application 

of delay differential equations is found in the field of geometry and number theory. 

However, the subject came into lime light after 1940 because of its use in engineering 

systems and control. Chapter II of the book “Delay-Differential Equations”[99],   
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presented a general theory of delay-differential equations. The problem of existence of 

solution and uniqueness properties of solutions of delay-differential equations have 

been studied. Mackey and Glass [100]used 1st-order nonlinear differential-delay 

equations to describedynamical respiratory systems. The equations displayed limit cycle 

oscillations and chaotic solutions. Glass and Mackey [101] presented a mathematical 

model for phase locking of a biological oscillator to a sinusoidal stimulus. Model is 

verified by using experimental data by making comparisons between theory. Cooke and 

Grossman [102] discussed the importance of taking into account the time delays 

inherent in the biological, physical and social phenomenon. Donald et al.[103] focused 

on the theoretical and applied research into populations and ecological systems based on 

characteristics of individuals. Gopalsamy  [104] in his book, presented an overview of 

recent advances in the stability and oscillation of autonomous delay differential 

equations. Kuang [105] treated both autonomous and non-autonomous systems with 

delays in his book. The main topics dealt with stability, coexistence of populations and 

oscillatory behaviour of the dynamics.  Belair et al.[106] developed an age-structure 

model for erythropoiesis which then got reduced to a system of delay differential 

equations with two delays.Roussel[107]used Delay Differential Equations in Chemical 

Kinetics. He [108] concluded that for analytical approximate solutions of delay 

differential equations, the variational iteration method can be very useful. Li et al.[109] 

studied the stability and bifurcation of delay differential equations involving two 

delays.Engelborghs et al.[110] established numerical methods and software package for 

bifurcation analysis of delay differential equations. Bocharov and Rihan [111] 

considered those models of biological phenomena whose dynamics is  explained better 

by delay differential equation and numerical approaches are the tools for their solutions. 

Ruan and Wei  [112] discussed the distribution and nature of roots of 3
rd

 degree 

transcendental polynomial. Shampine and Thompson  [113] have written a MATLAB 

code: DDE23 to solve delay differential equations with constant delays.  Engelborghs et 

al.[114]described a MATLAB package: DDE-BIFTOOL, for numerical bifurcation 

analysis of systems of delay differential equations with several fixed, discrete delays. 

Kubiaczyk and Saker[115] studied oscillation and stability in nonlinear delay 

differential equations of population dynamics. Kuznetsov  [116] studied the nonlinear 

dynamics system and their bifurcation by varying the values of parameters.  Lenbury 

and Giang[117]studied nonlinear delay differential equations involving population 

growth. Li and Wei  [118] discussed the distribution and nature of roots of 4th degree 

exponential polynomial. Ruan  [119] incorporated time delays of one or the kind in 
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biological models of several researchers dealing with dynamics of single species 

populations. Erneux [120] has written this book for researchers working in areas such as 

biology and engineering, where mathematical and statistical modelling are of main 

importance.Roose andSzalai[121]studied Continuation and bifurcation analysis of delay 

diff erential equations. Balachandran et al.[122] developed a new code for numerical 

solution of delay differential equations. Zhang et al.[123] discussed the distribution and 

nature of roots of 5
th

 degree transcendental polynomial. Smith [124] focused on the 

main tools in his book, which are necessary to comprehend the history of delay 

differential equations and their application in various models. Mallet-Paret and 

Nussbaum[125]considered a class of autonomous delay-differential equationswith state-

dependent delays whose solution was assumed to be linearly asymptotically stable. 

Sieber and Szalai [126] gave and then modified their general construction of 

characteristic matrix corresponding to system of linear delay differential equation, by 

pushing the poles in complex plane near to small neighbourhood of origin. Wolfrum et 

al.[127]  investigated the dynamical properties like stability of stationary points with 

delay differential equations with very large delays. Kuang [128] showed  how the 

popular MATLAB-based dde23 solver developed by Shampine and Thompson for 

delay differential equations can be used for numerically solving most delay differential 

equations and stability analysis.Huang et al.[129] studied Global Stability Analysis of 

Some Nonlinear Delay Differential Equations in Population Dynamics. Berezansky and 

Braverman [130]studied Boundedness and Persistence of Delay Diff erential Equations 

with Mixed Nonlinearity.  

Hopf‟s basic paper appeared in 1942. Hopf  [131]described the term Hopf bifurcation as 

the local birth or death of a periodic solution, which may be a self-excited oscillation, 

from an equilibrium as a parameter crosses a critical value. Hopf bifurcation occurs 

when a complex conjugate pair of eigenvalues becomes purely imaginary. This means 

Hopf bifurcation can only occur in systems of dimension two or higher. Marsden et 

al.[132]give a reasonably complete, although not exhaustive, discussion of what is 

commonly referred to as the Hopf bifurcation with applications to specific problems, 

including stability calculations. Hsu and Hwang  [133] took a well-known Holling-

Tanner, a prey-predator model and studied the Hopf-bifurcation for this ecological 

model.  Reddy et al.[134]presented a detailed study of the effect of time delay on the 

collective dynamics of coupled limit cycle oscillators at Hopf bifurcation. Manfredi and 

Fanti [135]clarified the relations between stability theorems and the notions of simple 
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and general Hopf bifurcations  Wei and Li[136] showed the occurrence of Hopf-

bifurcation at the equilibrium point when the delay increased from critical point, in 

Nicholson‟s blowflies equation. Gupta and Chandra [137]discussedHopf-bifurcation 

analysis of a modified Leslie-Gower prey-predator model in the presence of nonlinear 

harvesting in prey. Xiao et al.[138] studied the Hopf-bifurcation generated by varying 

the interaction parameter in neural network model.  Zhang and Guo [139] studied the 

direction and stability of Hopf-bifurcation using centre manifold theorem for the classic 

Van der Pol equation. Wang et al.[140] studied the direction and stability of Hopf 

bifurcation in a phytoplankton-zooplankton model, using the normal-form theory and 

centre manifold theorem.  

Dickinson and Galinas [141] introduced „Direct method‟ for sensitivity analysis of 

ordinary differential equations involving parameters which are not accurately known. 

The partial derivatives with respect to model parameters measure the sensitivity of the 

solution. Baker and Rihan [142] produced a new method to estimate the sensitivity of 

variables to model parameters and non-linearity effects for delay differential equations. 

Frey and Patil [143] identified and compared all the sensitivity methods used in various 

disciplines and prepared a consideration merit for application.  Rihan [144]developed a 

general theory for sensitivity analysis of mathematical models containing delays, using 

adjoint equations and direct methods. In this paper, the model parameters wereassumed 

to be constants. Caswell [145] gave a method from matric calculus for sensitivity 

analysis of transient population. Kepler [146] used both, the adjoint method and direct  

for sensitivity analysis of mathematical models. Perumal and Gunawan method [147] 

emphasized that the careless use of parametric sensitivity analysis may not provide the 

true picture of dynamics, it can lead to incorrect results as well.  Rihan [148] discussed 

the role of delay differential equations in dynamical systems, their computational tools, 

parameter estimation and sensitivity analysis. Wu [149], in his thesis, developed a 

methodology sensitivity analysis of functional structural plant models to understand the 

underlying biological processes.   Ingalls et al.[150] developed a new method to analyse 

the sensitivity of delay differential equations with respect to parameters to investigate 

direction of steady evolutionary change.  

The use of delay differential equations in plant physiology is not very prominent and 

very frequent. There are only handful of examples where delay differential equations 

have been used to present plant growth dynamics under the effect of toxicant. Dubey 
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and Hussain [151] developed a mathematical model to analyse and study the adverse 

effect of environmental pollution on forestry resource biomass with time delays in 

diffusive system. Pastor and Walker [152] presented a model depicting the dynamics of 

delays in nutrient cycling and population oscillations.They suggested that delays in 

release of nitrogen from decomposing litter, could produce oscillations in 

populations.Naresh et al.[153] proposed a mathematical model using delay differential 

equations to study and analyse the effect of toxicant on plant biomass with delay. 

 

1.3 Proposed objectives of the study 

On the basis of literature review and research gaps, the following objectives have been 

proposed in this present study: 

1. Mathematical study of plant growth dynamics models with delay. 

2. Modelling effects of toxic chemicals on plant growth dynamics with delay. 

3. Stability and Bifurcation Analysis of complex behaviour of plant growth dynamics 

due to delay. 

4. Sensitivity analysis of state variables with respect to model parameters. 

5. Verification of the model by comparison with existing experimental results. 

1.4 Basic concepts of general plant physiology used in the 

thesis 

1.4.1 Structure and Storage 

Plant models are invariably based on a great over-simplification of the real system. A 

simplification that seems to be some physiological significance is that in which plant 

material is divided into two categories: structure and storage [3] 

Let 𝑊 denotes the dry weight of the plant being considered, and 𝑊𝐺  and 𝑊𝑆 be the dry 

weights of structural and storage components of the total dry weight respectively, so 

that 
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  𝑊 = 𝑊𝐺 + 𝑊𝑆 (1.1) 

 

Defining the word “growth” simply in term of dry matter increment, and diff erentiating 

Eq. (1.1) with respect to time, t, it follows that there are two contributions to the total 

growth rate: 

  
𝑑𝑊

𝑑𝑡
=

𝑊𝐺

𝑑𝑡
+

𝑊𝑆

𝑑𝑡
 (1.2) 

 

The structural growth rate,
𝑊𝐺

𝑑𝑡
 , and the storage growth rate,

𝑊𝑆

𝑑𝑡
 , together make up the 

total growth rate, 
𝑑𝑊

𝑑𝑡
. Thus, it is possible for a plant to have a negative total growth rate, 

made up of a positive structural growth rate and a negative storage growth rate. An 

example of this is overnight growth where in many plants the storage material is greatly 

depleted, there is considerable structural growth, and the overall decrease in dry weight 

due to respiration. Physiologists traditionally use the symbol 𝑅𝑊  to denote a quantity 

called the relative growth rate (RGR) or specific growth rate, which is defined by 

  𝑅𝐺 =
1

𝑊

𝑑𝑊

𝑑𝑡
 (1.3) 

 

Specific growth rate is defined in term of the total dry weight, which includes both 

structure and storage. It may be more useful to calculate a specific structural growth rate 

𝜇𝐺 , defined by 

  𝜇𝐺 =
1

𝑊𝐺

𝑑𝑊𝐺

𝑑𝑡
  (1.4) 

 

1.4.2 Source and Sink strength 

The source strength of a region (as a whole) can simply be regarded as the net flux out 

of the region and can be determined solely by reference to transport processes taking 

place at the boundaries of the region. Source strength is defined by  

𝐹𝑋 =Net rate at which 𝑋 is transported out of that region of the plant. 

Sink strength is the negative of source strength, so that if 𝐹𝑋  is negative, then a sink of 

size −𝐹𝑋  is operating. 
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1.4.3 Utilization of Substrate 

The growth and development of a plant organ depends upon the availability in the 

required amounts of any substrates necessary for these processes. In this section, a 

phenomenological substrate utilization equation is given that is frequently 

usefulcomponents of plant models. 

Rectangular Hyperbola (Single Substrate) This is the most useful single equation 

available to the plant modeler. It is generally known to biologists as the Michaelis-

Menten relation. It is often applicable when the process under consideration is 

dependent upon the level of a single substrate 𝑋. The rate of utilization of 𝑋, 𝑈 is given 

by 

  𝑈 =
𝑘𝑋

𝐾+𝑋
 (1.5) 

 

Where 𝑘 and 𝐾 are constants and the symbol 𝑋 denotes the density of the substrate 𝑋. 

1.4.4 Translocation 

Plants would not be able to grow as they doif they were not able to transport materials 

to sites where they can be used. Transport is essentially a polar phenomenon, although 

many mechanisms are intrinsically are non-polar with polarity being imposed on the 

system by the arrangement of sources and sinks. In such cases the direction of transport 

can be changed by changing the sign of the sources and sinks. 

1.4.5 Light Interception by Plants and Crops 

An important part of many models of plant and crop growth is concerned with the 

interaction of the system with the light climate. The way in which this occurs 

determines the light flux density falling on each part of the plant or crop surface and this 

in turn through photosynthesis can greatly affect the extent and pattern of growth.  

Let 𝐼0 be the light flux density (assumed uniform) that is incident on a field of area 𝐴𝑓 . 

If 𝐽0 is the maximum light flux available for absorption, then 

  𝐽0 = 𝐴𝑓𝐼0 (1.6) 
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Let 𝐽𝑐  be the actual light flux absorbed by a crop covering a field. The overall efficiency 

of light absorption by the crop, 𝑓𝑐  , is given by  

  𝑓𝑐 =
𝐽𝑐

𝐽0
 (1.7) 

 

Let the crop consists of 𝑛𝑐  plants and let 𝑛𝑐𝐽𝑃 be the light flux absorbed by the crop, so 

that 𝐽𝑃  is the light flux absorbed by an average plant. If 𝑓𝑃  is the efficiency of light 

absorption of the plants in the crop, 𝑓𝑃  is given by 

  𝑓𝑃 =
𝐽𝑐

𝑛𝑐 𝐽𝑃
 (1.8) 

   

1.4.6 Photosynthesis 

An equation which is frequently used to describe steady-state photosynthetic response 

to light and carbon dioxide is the rectangular hyperbola 

  𝑃𝑠 =
𝛼𝐼𝛽𝐶

𝛼𝐼+𝛽𝐶
 (1.9) 

 

Where 𝑃𝑠 is the steady-state photosynthetic rate (no distinction is made here between net 

and gross photosynthesis), 𝐼 is the light flux density, 𝐶 is the carbon dioxide density, 𝛼 

and 𝛽 are constants. This equation is popular because it often gives an acceptable 

description of actual response and is manageable. 

1.4.7 Transport of Substrate 

The flux of substrate, 𝐵 (referred to as the mass transfer rate) from compartment 𝑖 to 

compartment  𝑖 − 1  is given by  

  𝐵 =
𝑠𝑖−𝑠𝑖−1

𝑟𝑖
 (1.10) 

 

Where 𝑟𝑖  is the transport resistance between 𝑖𝑡𝑕 and  𝑖 − 1 𝑡𝑕 compartment and 𝑠𝑖  is 

the substrate concentration in the 𝑖𝑡𝑕 compartment.  

1.4.8 Plant Growth Curve 

In the beginning (lag phase) the plant growth is slow and sluggish. Then, there comes a 

swift and expeditious increase (exponential phase) in the plant growth.  Henceforth, the 
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growth rate steadily decreases (stationary phase) due to impediment of nutrients. The 

typical sigmoid or S- shaped curve obtained by plotting growth and time is known as 

plant growth curve (Figure 1.1) 

 

 

 

Figure 1.1 Plant Growth Curve 

 

1.4.9 Plant Growth Rate 

The plant-resource interaction is the effect of a limiting resource on the plants at 

individual, population, and ecosystem levels of organization. At the individual level, a 

growth-rate dependency on nutrient availability can be written as [154] 

  𝑟 𝑅 = 𝜂𝜇𝑚𝑊𝑟
𝑅

𝑘𝑅+𝑅
  (1.11) 

   

where, 𝑅 is the availability of nutrient. 𝜂is the nutrient use efficiency.  𝑊𝑟 is the 

proportion of total biomass allocated to root mass, 𝜇𝑚  is the resource-saturated rate of 

resource uptake per unit of root mass and 𝑘𝑅  is a half-saturation constant for nutrient 

uptake. 
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1.5 Mathematical Preliminaries 

1.5.1 Existence of Unique, Bounded and Positive Solution of Delay 

differential equation 

A delay differential equation is a differential equation in which the present time 

derivative depends on the solution and derivatives of earlier times. Here an initial 

history function, rather than an initial condition, needs to be defined. A delayed state 

variable can be used to demonstrate the past dependence of a differential equation.The 

derivative of the state variableis not required in this case.The corresponding delay 

differential equation with a single delay 𝜏 > 0is given by[155] 

  𝑥  𝑡 = 𝑓(𝑥, 𝑥 𝑡 , 𝑥 𝑡 − 𝜏 ) (1.12) 

   

Assume that 𝑓(𝑡, 𝑥, 𝑦) and 𝑓𝑥(𝑡, 𝑥, 𝑦) are continuous on 𝑅3. Let 𝑠 ∈ 𝑅 and ∅:  𝑠 −

𝜏, 𝑠 → 𝑅 be continuous. We seek a solution 𝑥 𝑡  of equation (1.12) satisfying 

 𝑥 𝑡 = ∅ 𝑡 , 𝑡 ∈  𝑠 − 𝜏, 𝑠 , 𝑥 0 = 𝑥0  (1.13) 

And satisfying equation (1.12) on 𝑡 ∈  𝑠, 𝑠 + 𝜍  for some 𝜍 > 0. 

Theorem 1.5.1 (Existence of unique solution). Let 𝑓(𝑡, 𝑥, 𝑦) and 𝑓𝑥(𝑡, 𝑥, 𝑦) are 

continuous on 𝑅3. Let 𝑠 ∈ 𝑅 and ∅:  𝑠 − 𝜏, 𝑠 → 𝑅 be continuous. Then there exists 

𝜍 > 𝑠 and a unique solution of the initial-value problem (1.12)- (1.13) on  𝑠 − 𝜏, 𝜍 . 

Theorem 1.5.2 (Boundedness of solution).  Let 𝑓 satisfy the hypothesis of 

theorem1.5.1 and let 𝑥: [𝑠 − 𝜏, 𝜍) → 𝑅 be the noncontinuable solution of the initial 

value problem (1.12)- (1.13). If 𝜍 < ∞ then lim𝑡→𝜍− 𝑥(𝑡) = ∞ 

Remark 1.5.3Theorems 1.5.1 and 1.5.2 extend immediately to the case that 𝑥 ∈ 𝑅𝑛  and 

𝑓: 𝑅 × 𝑅𝑛 × 𝑅𝑛 → 𝑅𝑛 , it also extends to multiple discrete delays 𝜏0 < 𝜏1 < ⋯ < 𝜏𝑚  

where 𝑓 = 𝑓 𝑡, 𝑦 𝑡 , 𝑦(𝑡 − 𝜏0 , 𝑦 𝑡 − 𝜏1 , … , 𝑦(𝑡 − 𝜏𝑚)). 

Theorem 1.5.4 (Positivity of solution). Suppose that 𝑓: 𝑅 × 𝑅+
𝑛 × 𝑅+

𝑛 → 𝑅𝑛satisfies the 

hypothesis of theorem 1.5.1 and remark 1.5.3 and for all 𝑖, 𝑡 and for all 𝑥, 𝑦 ∈ 𝑅+
𝑛 : 

𝑥𝑖 = 0 ⇒ 𝑓𝑖(𝑡, 𝑥, 𝑦) ≥ 0 
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If the initial data ∅ in equation (1.13) satisfy ∅ ≥ 0, then the corresponding solution 

𝑥(𝑡) of equation (1.12) satisfy 𝑥(𝑡) ≥ 0 for all 𝑡 ≥ 𝑠 where it is defined. 

1.5.2 Stability by Variational matrix method 

Let an autonomous system of equations be  

  
𝑑𝑦

𝑑𝑡
= 𝑓(𝑦) (1.14) 

   

Where𝑦 is an n-tuple vector i.e.𝑦 = (𝑦1, 𝑦2 , − − −𝑦𝑛). Let𝜙(𝑡)be the solution of 

system (1.14). The linear part of the expansion of the system (1.14) about 𝜙 𝑡  is given 

bythe variational equation of the system (1.14) with respect to 𝜙(𝑡), written as 

  
𝑑𝑥

𝑑𝑡
= 𝑓𝑦 𝜙(𝑡) 𝑥 (1.15) 

   

Where 𝑓𝑦 𝜙(𝑡) =
𝑑𝑓𝑖

 𝑑𝑦 𝑗  𝑛×𝑛

 at 𝜙(𝑡). Since the stability of the variational system depicts 

the stability of any solution of a non- linearsystem governed by it,so stability of𝑥 = 0 of 

(1.15) determines the stability of 𝑦 = 𝜙(𝑡) of (1.14).  Particularly, when𝜙 𝑡 = 𝜙0, a 

constant, the system (1.14) becomes 

  
𝑑𝑥

𝑑𝑡
= 𝐴𝑥 (1.16) 

 

Where 𝐴 = 𝑓𝑦(𝜙0).Since a small perturbation of the system (1.14) is represented by 

system (1.15),so the stability of 𝑦 = 𝜙0 of (1.16) actually gives the stability of the 

solution of𝑥 = 0 of (1.15)  .The description of stability of every solution of 𝑥′ = 𝐴𝑥 is 

given by following theorems. [156] 

Theorem 1.5.5Ifall the characteristic roots of 𝐴 have negative real parts, then every 

solution of the system 𝑥′ = 𝐴𝑥 ,where 𝐴 =  𝑎𝑖𝑗   is a constant matrix, is asymptotically 

stable. 

Theorem 1.5.6 If all the characteristic roots of 𝐴 with multiplicity grater than one has 

negative real parts and all its roots with multiplicity one has non-positive real parts, then 

all the solutions of the system   𝑥′ = 𝐴𝑥 are bounded and hence stable. 

Following theorem [156]to determine the sign of real parts of the roots of characteristic 

equation. 
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Theorem 1.5.7Hurwitz’s Theorem.A necessary and sufficient condition for the 

negativity of the real parts of all the roots of the polynomial  

𝐿 𝜆 = 𝜆𝑛 + 𝑎1𝜆
𝑛−1 + 𝑎2𝜆

𝑛−2 + − − − − +𝑎𝑛  with real coefficients is the positivity 

of all the principal diagonals of the minors of the Hurwitz matrix 

𝐻𝑛 =

 
 
 
 
 
𝑎1

𝑎3

𝑎5

1
𝑎2

𝑎4

0 0 0    0 ⋯ 0
𝑎1 1 0    0 ⋯ 0
𝑎3 𝑎2 𝑎1 1 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮           0
0 0 0 0 0 0 ⋯      0  

 
 
 
 

 

Theorem 1.5.8.  Let ς1,ς2 … . ςm  are all non-negative and ζi
j(j = 0,1,2, …m: i =

1,2, … n) are constants. As  ς1, ς2, … , ςm  vary, the sum of the orders of the zeros of 

exponential polynomial P χ, e−χς1 , … . , e−χςm   on the open right half plane can change 

only if a zero appears on or crosses the imaginary axis, where 

P χ, e−χς1 , … . , e−χςm  

= χn + ζ1
0χn−1 + ⋯+ ζn−1

0χn + ζn
0

+  ζ1
1χn−1 + ⋯+ ζn−1

1χn + ζn
1 e−χς1 + ⋯

+  ζ1
mχn−1 + ⋯+ ζn−1

mχn + ζn
m  e−χςm  

Ruan and Wei [112], [157] proved this theorem using Rouches theorem[158]. 

  

1.5.3 Hopf-Bifurcation 

Hopf's crucial contribution was the extension from two dimensions to higher 

dimensions. Sometimes Hopf bifurcation is also called as “Poincaré-Andronov-Hopf 

bifurcation”.[132]Hopf-bifurcation theorem describes the way that a topological feature 

of a flow vary as one or more parameters are varied. The fundamental observation of 

flows is that if the stationary point is hyperbolic, i.e. eigenvalues of the linearized flow 

at the stationary point all have non-zero real pars, then the local behaviour of the flow is 

completely determined by the linearized flow. Hence, bifurcations of stationary points 

can only occur at parameter values for which a stationary point is non-hyperbolic.  

More, precisely, a bifurcation value of a parameter is a value at which the qualitative 

nature of the flow changes. 

The Hopf bifurcation is several orders of magnitude harder to analyse since it involves a 

non-hyperbolic stationary point with linearized eigenvalues ∓𝑖𝜔, and thus a two-
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dimensional centre manifold, and bifurcating solutions are periodic rather than 

stationary. Theorem 1.5.9. Hopf-Bifurcation Theorem.  

Let us consider one parameter family of delay equations 

  𝑥′ 𝑡 = 𝐹(𝑥𝑡 , 𝜇) (1.17) 

Where 𝐹: 𝐶 × 𝑅 → 𝑅𝑛  is a twice continuously differentiable in its arguments and 𝑥 = 0 

is a steady state for all values of 𝜇: 𝐹(0, 𝜇) ≡ 0. 

We may linearize 𝐹 about ∅ = 0 as follows 

𝐹 ∅, 𝜇 = 𝐿 𝜇 ∅ + 𝑓(∅, 𝜇) 

Where 𝐿 𝜇 : 𝐶 → 𝑅𝑛  is a bounded linear operator and 𝑓 is higher order: 

lim
∅→0

 𝑓(∅, 𝜇) 

 ∅ 
= 0 

Following is the characteristic equation about 𝐿: 

 𝜆𝐼 − 𝐴 𝜇, 𝜆  = 0, 𝐴𝑖𝑗  𝜇 = 𝐿(𝜇)𝑖 𝑒𝜆𝑒𝑗   

The roots of this equation constitute the main assumption. 

(H)The characteristic equation will be having a pair of simple roots ∓𝑖𝜔 with 𝜔0 ≠ 0 

and no other root that is an integer multiple of 𝑖𝜔0 for𝜇 = 0 

Here a root of order one means [159]a simple root. If the characteristic equation is 

written as 𝑕 𝜇, 𝜆 = 0, then (H)implies𝑕𝜆(0, 𝑖𝜔0) ≠ 0.So, by the implicit function 

theorem, there exists a continuously differentiable family of roots 𝜆 = 𝜆 𝜇 = 𝛼 𝜇 +

𝑖𝜔(𝜇) for small 𝜇 satisfying 𝜆 0 = 𝑖𝜔0. In particular, 𝛼 0 = 0 and 𝜔 0 = 𝜔0.Next 

assumption is that as 𝜇 increases through zero, the line of imaginary axis is crossed 

transversally by these roots. Actually, the assumption is: 

  𝛼′ 0 > 0 (1.18) 

In case𝛼′ 0 < 0,  we always ensure that equation (1.18) holds by changing the sign of 

the parameter i.e. we take parameter𝑣 = −𝜇. Thus, the positive sign is basically a  

normalization which ensures that if𝜇 < 0,then the pair of roots has a negative real part 

and if 𝜇 > 0,then it has positive real part. 
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Theorem 1.5.10.Let (H)and equation (1.18) hold. Then there exist 𝜀0 > 0, real valued 

even function 𝜇(𝜀) and 𝑇 𝜀 > 0 satisfying 𝜇 0 = 0 and 𝑇 𝜀 = 2𝜋
𝜔0
 , and a non-

constant 𝑇 𝜀 - periodic function 𝑝(𝑡, 𝜀) with all functions being continuously 

differentiable in 𝜀 for  𝜀 < 𝜀0, such that 𝑝(𝑡, 𝜀) is a solution of equation (1.17) and 

𝑝 𝑡, 𝜀 = 𝜀 𝑞(𝑡, 𝜀) where 𝑞(𝑡, 0) is a 2𝜋 𝜔0
 -periodic solution of 𝑞′ = 𝐿 0 𝑞. 

Moreover, there exist 𝜇0, 𝛽0, 𝛿 > 0 such that if equation (1.17) has a non-constant 

periodic solution 𝑥(𝑡) of period 𝑃 for some 𝜇 satisfying  𝜇 < 𝜇0 with 𝑚𝑎𝑥𝑡 𝑥𝑡 < 𝛽0 

and  𝑃 − 2𝜋
𝜔0
  < 𝛿, then 𝜇 = 𝜇(𝜀) and 𝑥 𝑡 = 𝑝(𝑡 + 𝜃, 𝜀) for some  𝜀 < 𝜀0 and 

some 𝜃. 

If 𝐹 is five times continuously differentiable then: 

  𝜇 𝜀 = 𝜇1𝜀
2 + 𝑂(𝜀4) (1.19) 

 
𝑇 𝜀 =

2𝜋

𝜔0

 1 + 𝜏1𝜀
2 + 𝑂(𝜀4)  (1.20) 

   

If all other characteristic roots for 𝜇 = 0 have strictly negative real parts except for ∓𝑖𝜔 

then 𝑝(𝑡, 𝜀)  is asymptotically stable if 𝜇1 > 0 and unstable if 𝜇1 < 0. 

1.5.4 Sensitivity Analysis of State Variables with respect to Model 

Parameters 

Systematic evaluation of the effects of model parameters on system solutions is called 

sensitivity analysis. There are number of methods to do sensitivity analysis of systems 

without delay, but there are only a few methods for sensitivity analysis of systems 

involving delays. The knowledge of how a small change in model parameter can bring 

change in the state variable, can be a great help in modelling process. It helps in 

elimination of ineffective and irrelevant parameters. It gives a complete insight into the 

overall behaviour of the proposed model.  

If all the parameters in the given system (1.12)- (1.13) are considered to be constants, 

then sensitivity analysis includes just the calculation of partial derivatives of solution 

with respect to each parameter[144]. The matrix of sensitivity functions is of the form: 

 
𝑆(𝑡) ≡ 𝑆 𝑡, 𝛼 =  

𝜕

𝜕𝛼
 
𝑇

𝑥(𝑡, 𝛼) 
(1.21) 
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Its 𝑗𝑡𝑕 column is:   𝑆𝑗  𝑡, 𝛼 =  
𝜕𝑥 𝑗 (𝑡,𝛼)

𝜕𝛼1
,
𝜕𝑥 𝑗 (𝑡,𝛼)

𝜕𝛼2
, … ,

𝜕𝑥 𝑗 (𝑡,𝛼)

𝜕𝛼𝑛
 
𝑇

 

This column vector gives sensitivity of the solution 𝑥𝑗 (𝑡, 𝛼) for small change in 

parameter 𝛼𝑖 , 𝑖 = 1,2,3, … , 𝑛. 

Theorem 1.5.11.𝑆(𝑡) satisfies the delay differential equation: 

 𝑆′ 𝑡 = 𝐽 𝑡 𝑆 𝑡 + 𝐽𝜏 𝑡 𝑆 𝑡 − 𝜏 + 𝐵 𝑡 , 𝑡 ≥ 0 (1.22) 

Where 𝐽 𝑡 =
𝜕

𝜕𝑥
𝑓 𝑡, 𝑥, 𝑥𝜏 ,   𝐽𝜏 𝑡 =

𝜕

𝜕𝑥𝜏
𝑓 𝑡, 𝑥, 𝑥𝜏 ,   𝐵 𝑡 =

𝜕

𝜕𝛼
𝑓 𝑡, 𝑥, 𝑥𝜏  

1.6 Summary 

This thesis consists of seven chapters whose detail is as follows: 

In chaper-1, the general introduction of the subject matter is given. Some important 

concepts of plant physiology are mentioned. All the necessary mathematical concepts 

have also been described, on the basis which the analytical and numerical analysis of all 

the proposed mathematical models have become possible. It also includes the detailed 

study of the earlier work done in the field of plant growth dynamics in the form of 

literature review.  

In chapter-2, a mathematical model is framed for the study and analysis of growth of an 

individual plant. The plant growth phenomenon is divided into two well-known 

compartments: root and shoot.  Structural dry weight and concentration of nutrients are 

the two state variables. It is assumed that the exogenic activities interfere with the 

uptake of nutrients from root compartment. It affects the nutrient use efficiency 

(utilization coefficients). As a result, there occurs root structural damage. Delay (time-

lag) is introduced in utilization parameter to analyse this effect analytically. It is 

observed that the interior equilibrium is stable in the absence of delay. The equilibrium 

is still asymptotically stable when the delay is less than a critical value. Once the critical 

value of delay parameter is crossed, the equilibrium losses stability and Hopf 

bifurcation occurs. MATLAB code dde23 is used to support the analytical results 

numerically.  

In chapter-3, a two-compartment mathematical model is proposed for the study of an 

individual plant growth dynamics with time lag due to the presence of toxic metals in 

the soil. It is assumed in the model that nutrient uptake by root is hindered due to 

presence of toxic metal. This effect is studied by considering a time lag in utilization 
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coefficient of nutrient concentration in root in presence of toxic metal. Stability analysis 

of interior equilibrium is carried out. Sensitivity analysis of state variables with respect 

to model parameters is done. Hopf bifurcation is studied using various values of delay 

parameter.  

In chapter-4, a mathematical model is proposed for analytical study and analysis of 

plant growth under the effect of toxic metal. It is assumed that the heavy metals present 

in the soil have toxic effects on the concentration of nutrients available in the soil for 

plant growth. This toxic effect in turn affects the plant growth adversely. This effect is 

studied by introducing the time-lag (delay) in consumption and utilization coefficient.  

Stability analysis of feasible interior equilibrium and Hopf bifurcation has been studied. 

The sensitivity of the model solutions is established by taking different values of the 

parameters appearing in the system. Simulation is done using MATLAB. 

In chapter-5, a mathematical model is developed to study and analyse the reduction in 

plant (tree) biomass under the effect of toxic metals with delays. It is assumed that the 

soil is contaminated with toxic metal and some amount of toxic metal is already present 

in the plant itself. It is further assumed that both these concentrations affect the plant 

(tree) biomass. This effect is studied by introducing the delay in tree biomass. Stability 

of feasible interior equilibrium is studied and Hopf bifurcation occurs at a critical value 

of time parameter and the periodic solution results. MATLAB code dde23 is used to 

support the analytical results. 

In chapter-6, a mathematical model is framed that depicts the ecological phenomenon 

that and nutrient pool and plant population density are adversely affected by the 

presence of excessive toxic metal. The system of non-linear delay differential equations 

is used where the sate variables considered are nutrient pool, plant population density 

and toxic metal.  It is shown that as the rate of damage of plant population density due 

to toxic metal and the input rate of toxic metal increase, the nutrient pool concentration 

and plant population density decreases. Two feasible equilibriums: uniform equilibrium 

and interior equilibrium are calculated.  Hopf bifurcation is studied by introducing delay 

parameter in the term involving nutrient utilization. Sensitivity analysis of state 

variables in relation to model parameters is done. Model is verified by taking those 

values of damage rate due to toxic metal (assumed to be Arsenic) which are available in 

already existing data for growth of winter wheat (Triticum aestivum L) and rape 

(Brassica napus) under the effect of high concentrations of Arsenic in soil (Liu et al 

2012). Simulation is done using MATLAB. 
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In chapter-7, a mathematical model is proposed to study the combined effect of acid and 

toxic metal on plant population considering delay in utilization of favourable resources 

available in soil and surrounding plant environment. It is assumed that due to presence 

of toxic metal and acidity in soil, nutrient pool and plant population density gets 

adversely affected. The stability of the interior equilibrium of the system gets disturbed 

by the introduction of delay parameter. For the critical value of delay parameter, Hopf 

bifurcation is observed. The sensitivity of model solutions for different values of model 

parameters is established using sensitivity analysis. The model is also verified by taking 

the uptake rate values of copper using the existing experimental data of a study 

conducted on the effect of heavy metals like copper, lead and zinc on growth of Lettuce 

in Vietnam (Nguyen Xuan Cu).   MATLAB code is used for simulation to support 

analytical results. 

In the end, bibliography is given to justify the problems undertaken for the study in this 

thesis. 
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Chapter 2 

The Effect of Exogenic Activities Considering 

Delay in Utilization of Nutrient Concentration: A 

Two Compartment Mathematical Model 

2.1 Introduction 

Plants need several elements for normal growth. Carbon, hydrogen, and oxygen come 

from the air and water and other nutrients come from soil. Soil provides nutrients and 

water and air provides hydrogen, carbon and oxygen. Nutrients are components in food 

that an organism uses to survive and grow. Plant -soil interaction means the mechanism 

in which the plants take essential nutrients from the soil through their roots which leads 

to growth of plants. Plants face problems in getting sufficient number of nutrients due to 

lack of their mobility. The insufficiency of any of these nutrients may cause decrease in 

fertility and productivity of plants. Sessional cycling of growth and certain features of 

pant patterns were observed by Leonardo da Vinci [160]in middle ages. Hiltner [161] 

was the first to start soil-plant interaction modelling. The early modelling work in the 

field of uptake of water by single root was carried out by Dalton and Gardner [2]. 

Tinker and Nye [22] were the first group to consider roots with hairs in their model. 

Thornley [162] was the first to apply mathematical modelling to variety of topics in 

plant physiology to predict the effect of factors such as temperature, humidity, radiation 

input and concentration of on process rates of photosynthesis, fluid transport, 

respiration, transpiration and stomatal responses. Lacointe [21] concluded that models 

suggested by Thornley are designed for a particular plant species and under particular 

conditions and so they cannot be applicable over a broad range of conditions. The lack 

of explicit representation of topology and geometry (Plant morphology) was pointed out 

by Godin et al.[163].  Misra and Kalra [83] studied the effect of toxic metal on growth 

of individual plant using a very sound 2-comaprtment mathematical model . Mishra and 

Kalra [87] further studied the effect of toxic metal on plant‟s structural dry weight using 
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two compartment mathematical model. Rouches theorem [158] plays a very important 

part for the discussion of distribution of roots of exponential polynomials. Roussel [107] 

used delay differential equations in chemical kinetics. Ruan and Wei [112] used 

Rouches theorem for the discussion of distribution of roots of exponential polynomials.  

Kubiaczyk and Saker [164] studied stability and oscillations in system of non-linear 

delay differential equations of population dynamics. Ruan and Wei [157] used Rouches 

theorem for the discussion of distribution of roots of exponential polynomials for study 

of stability involving delays. Lenbury and Giang [117] studied system of non-linear 

delay differential equations for population dynamics . Huang et al.[129]studied and 

analyzedthe global stability of system of non-linear delay differential equations 

involving population growth . Berezansky and Braverman [165] analyzed persistence 

boundedness of delay diff erential equations having mixed kind of non-linearity . So far, 

a lot of work has been done in the field of population dynamics where in time lag has 

been monitored in the various components of mechanisms, may it be a prey-predator 

models, epidemiology modelling or spread of diseases. The use of Delay differential 

equations in all these models which involve time lag, has been extremely worth full. Till 

date, delay differential equations have not been prominently used in the field of soil-

plant dynamics and agriculture. It is the need of time and situation, to apply this concept 

of delay differential equations to have a better analysis of the mechanism of soil-plant 

dynamics. 

In view of the above, mathematical model is framed for the study and analysis of 

growth of an individual plant. The plant growth phenomenon is divided into two well-

known compartments: root and shoot.  Structural dry weight and concentration of 

nutrients are the two state variables. It is assumed that the exogenic activities interfere 

with the uptake of nutrients from root compartment. It affects the nutrient use efficiency 

(utilization coefficients). As a result, there occurs root structural damage. Delay (time-

lag) is introduced in utilization parameter to analyse this effect analytically. The 

stability of interior equilibrium is discussed and Hopf bifurcation is observed. 

Sensitivity analysis is also done. MATLAB code dde23 is used to support the analytical 

results numerically.  

2.2 Mathematical Model 

Let 𝑁2and 𝑁1 denote the concentration of nutrients in shoot and root, respectively. Let 

𝑊2and 𝑊1denote the shoot and root structural dry weights, respectively. The 
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assumption is that the nutrient is taken up from the root compartment and the exogenic 

activities hinder the up taking of nutrients that are essential for the plants and adversely 

affect the nutrient use efficiency (utilization coefficients) resulting into root structural 

damage. This effect has been studied by introducing the delay (time-lag) in utilization 

parameter. 

These notations lead to the following mathematical model of the plant growth dynamics 

of non-linear differential equations: 

 𝑑𝑁2

𝑑𝑡
=

𝑇

𝑅𝑛
𝑁1 − 𝜇𝑊2𝑁2 − 𝑑2𝑁2 

(2.1) 

 𝑑𝑁1

𝑑𝑡
= 𝑈𝑛 −

𝑇

𝑅𝑛
𝑁1 − 𝜇𝑊1𝑁1(𝑡 − 𝜏) − 𝑑1𝑁1 

(2.2) 

 𝑑𝑊2

𝑑𝑡
= 𝑟2 𝑁2 𝑊2 − ∆2𝑊

2
2 

(2.3) 

 𝑑𝑊1

𝑑𝑡
= 𝑟1 𝑁1 𝑊1 − ∆1𝑊

2
1 

(2.4) 

With initial conditions, as: 

𝑁1 0 > 0,𝑁2 0 > 0,𝑊1 0 > 0,𝑊2 0 > 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 > 0 𝑎𝑛𝑑 𝑁1 𝑡 − 𝜏 = 𝜀, 

Constant for all 𝑡 ∈ [0, 𝜏] 

Here 𝑟1 𝑁1  and 𝑟2 𝑁2 has the following forms: 

𝑟1 𝑁1 = 𝜌𝑁1 − 𝛽10 , 𝑟1
′ 𝑁1 > 0 for 𝑁1 > 0,   𝑟1 0 = −𝛽10 , 

𝑟2 𝑁2 = 𝜌𝑁2 − 𝛽20 , 𝑟2
′ 𝑁2 > 0 for 𝑁2 > 0,   𝑟2 0 = −𝛽20 . 

The definitions of system parameters are as follows: 

𝑟2 𝑁2 and 𝑟1 𝑁1 are rates of intrinsic growth of shoot and root, respectively which are 

dependent on the availability of nutrient. 𝑇 is rate of nutrient transfer from root to shoot 

compartment. 𝑅𝑛  is the resistance to transportation of nutrient, 𝑈𝑛  is the rate of uptake 

of nutrient by root, 𝜇 is consumption coefficient or utilization coefficient,  𝜌 is nutrient-

use efficiency, 𝛽10 is natural decay of 𝑊1. 𝛽20is natural decay of 𝑊2. 𝑑1is natural decay 

of 𝑁1. 𝑑2 is natural decay of 𝑁2. ∆2and ∆1are self-limiting growth rates of 𝑊2and 𝑊1, 

respectively. 
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2.3 Boundedness of Solutions 

The boundedness of solutions of the model given by (2.1) -(2.4) is given by the lemma 

stated below: 

Lemma 2.3.1The model has all its solution lying in the region 

𝐷1 =   𝑁1, 𝑁2,𝑊1,𝑊2 ∈ 𝑅+
4: 0 ≤  𝑁1 + 𝑁2 +

𝜇

𝜌
𝑊1 +

𝜇

𝜌
𝑊2 ≤

𝑈𝑛

𝜑
 , 𝑎𝑠 𝑡 → ∞, for all 

positive initial values {𝑁1 0 ,𝑁2 0 ,𝑊1 0 ,𝑊2 0 ,𝑁1 𝑡 − 𝜏 = Constant for all 

𝑡 ∈ [0, 𝜏]} ∈ 𝐷1 ⊂ 𝑅+
4, where 𝜑 = min( 𝑑1, 𝑑2, 𝛽10 , 𝛽20). 

Proof. Consider the following function: 

𝐹 𝑡 = 𝑁1(𝑡) + 𝑁2(𝑡) +
𝜇

𝜌
𝑊1(𝑡) +

𝜇

𝜌
𝑊2(𝑡) 

𝑑𝐹(𝑡)

𝑑𝑡
=

𝑑

𝑑𝑡
 𝑁1(𝑡) + 𝑁2(𝑡) +

𝜇

𝜌
𝑊1(𝑡) +

𝜇

𝜌
𝑊2(𝑡)  

Using Equations (2.1) -(2.4) and 𝜑 = min( 𝑑1, 𝑑2 , 𝛽10 , 𝛽20) and assuming that 𝑁1(𝑡) ≈

𝑁1 𝑡 − 𝜏  as 𝑡 → ∞ , we get 

𝑑𝐹(𝑡)

𝑑𝑡
≤ 𝑈𝑛 −  𝜑𝐹 𝑡 . 

Applying the comparison theorem, we get as 𝑡 → ∞ :  we get                                                

𝐹 𝑡 ≤
𝑈𝑛
𝜑

 

𝑁1(𝑡) + 𝑁2(𝑡) +
𝜇

𝜌
𝑊1(𝑡) +

𝜇

𝜌
𝑊2(𝑡)  ≤

𝑈𝑛

𝜑
 . 

So, 0 ≤ 𝑁1(𝑡) + 𝑁2(𝑡) +
𝜇

𝜌
𝑊1(𝑡) +

𝜇

𝜌
𝑊2(𝑡)  ≤

𝑈𝑛

𝜑
 

This proves lemma. 

2.4 Positivity of Solutions 

It is essential to prove that all variables are positive for all times as the model explains 

plant growth dynamics. Positivity means that the system sustains. For positive solutions, 

we need to show that all solution of system given by Equations. (2.1)– (2.4), where 

initial condition are 𝑁1 0 > 0,𝑁2 0 > 0,𝑊1 0 > 0,𝑊2 0 > 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 >
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0 𝑎𝑛𝑑 𝑁1 𝑡 − 𝜏 = Constant for all 𝑡 ∈ [0, 𝜏], the solution 

 𝑁1(𝑡), 𝑁2(𝑡),𝑊1(𝑡),𝑊2(𝑡)  of the model stays positive for all time 𝑡 > 0. 

From equation (2.1), we get   
𝑑𝑁2

𝑑𝑡
=

𝑇

𝑅𝑛
𝑁1 − 𝜇𝑊2𝑁2 − 𝑑2𝑁2 

𝑑𝑁2

𝑑𝑡
≥ −(𝜇𝑊2 + 𝑑2)𝑁2 

𝑑𝑁2

𝑑𝑡
≥ − 𝜇

𝑈𝑛
𝜑

+ 𝑑2 𝑁2 

𝑁2 ≥ 𝑐1𝑒
− 𝜇

𝑈𝑛
𝜑

+𝑑2 𝑡
 

Hence, 𝑁2 > 0 as 𝑡 → ∞ 

From equation (2.3), we get,  
𝑑𝑊2

𝑑𝑡
= 𝑟2 𝑁2 𝑊2 − ∆2𝑊

2
2 

𝑑𝑊2

𝑑𝑡
=  𝜌𝑁2 − 𝛽20 𝑊2 − ∆2𝑊

2
2 

𝑑𝑊2

𝑑𝑡
≥ − 𝛽20 + ∆2𝑊2 𝑊2 

𝑑𝑊2

𝑑𝑡
≥ − 𝛽20 + ∆2

𝑈𝑛
𝜑
 𝑊2 

𝑊2 ≥ 𝑐2𝑒
− 𝛽20 +∆2

𝑈𝑛
𝜑
 𝑡

 

Hence, 𝑊2 > 0 as 𝑡 → ∞ 

From equation (2.4), we get 
𝑑𝑊1

𝑑𝑡
= 𝑟1 𝑁1 𝑊1 − ∆1𝑊

2
1 

𝑑𝑊1

𝑑𝑡
=  𝜌𝑁1 − 𝛽10 𝑊1 − ∆2𝑊

2
1 

𝑑𝑊1

𝑑𝑡
≥ − 𝛽10 + ∆1𝑊1 𝑊1 

𝑑𝑊1

𝑑𝑡
≥ − 𝛽10 + ∆1

𝑈𝑛
𝜑
 𝑊1 

𝑊1 ≥ 𝑐3𝑒
− 𝛽10 +∆2

𝑈𝑛
𝜑
 𝑡

 

Hence, 𝑊1 > 0 as 𝑡 → ∞ 
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From equation (2.2), we get  
𝑑𝑁1

𝑑𝑡
= 𝑈𝑛 −

𝑇

𝑅𝑛
𝑁1 − 𝜇𝑊1𝑁1(𝑡 − 𝜏) − 𝑑1𝑁1 

𝑑𝑁1

𝑑𝑡
≥ − 

𝑇

𝑅𝑛
𝑁1 + 𝑑1 𝑁1 −  𝜇𝑊1𝑁1(𝑡 − 𝜏) 

𝑑𝑁1

𝑑𝑡
+  

𝑇

𝑅𝑛
𝑁1 + 𝑑1 𝑁1 ≥ − 𝜇𝑊1𝑁1(𝑡 − 𝜏) 

Let  
𝑇

𝑅𝑛
𝑁1 + 𝑑1 = 𝛿 

𝑑𝑁1

𝑑𝑡
+ 𝛿𝑁1 ≥ − 𝜇𝑊1𝑁1(𝑡 − 𝜏) 

𝑑(𝑒𝛿𝑡𝑁1)

𝑑𝑡
≥ − 𝜇𝑊1𝑁1(𝑡 − 𝜏)𝑒𝛿𝑡  

𝑁1 𝑡 ≥ −𝜇 𝑁1(𝑥 − 𝜏)𝑊1𝑒
−𝛿(𝑡−𝑥)𝑑𝑥

𝑡

0

 

𝑁1 𝑡 ≥ −𝜇   𝑁1 𝑢 𝑊1𝑒
−𝛿 𝑡−𝑥 𝑑𝑥 +  𝑁1(𝑢)𝑊1𝑒

−𝛿(𝑡−𝑥)𝑑𝑥
𝑡

𝜏

𝜏

0

  

𝑁1 𝑡 ≥ −𝜇
𝑈𝑛
𝜑
  𝑁1 𝑢 𝑒

−𝛿 𝑡−𝑥 𝑑𝑥 +  𝑁1(𝑢)𝑒−𝛿(𝑡−𝑥)𝑑𝑥
𝑡

𝜏

𝜏

0

  

Every solution of 𝑁1 𝑡  of above inequality will converge to 0 as 𝑡 → ∞ if and only if      

𝑁1 𝑢 < 𝛿𝑢 for all 𝑢 > 0 

That is if and only if  𝑁1(𝑡 − 𝜏) <  
𝑇

𝑅𝑛
𝑁1 + 𝑑1 (𝑡 − 𝜏) for all 𝑡 > 𝜏. 

2.5 Interior Equilibrium of Model 

We calculate an interior equilibrium 𝐸1of model. The system of equations (2.1) -(2.4) 

has one feasible equilibrium 𝐸1(𝑁∗
1, 𝑁∗

2 ,𝑊∗
1,𝑊∗

2) where     

𝑊∗
1 =

1

∆1
 𝜌𝑁∗

1 − 𝛽10 > 0  provided 𝜌𝑁∗
1 > 𝛽10 

𝑊∗
2 =

1

∆2
 𝜌𝑁∗

2 − 𝛽20 > 0  provided 𝜌𝑁∗
2 > 𝛽20  

𝑁∗
1 =

(𝑈𝑛 +
𝜇

∆2
𝛽20)𝜖

𝑇

𝑅𝑛
+

𝜇𝜌

∆2
𝜖 + 𝑑2
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𝑁∗
2 =

−𝑔2+ 𝑔2
2−4𝑔1𝑔3

2𝑔1
 where 𝑔1 =

𝜇𝜌

∆1
, 𝑔2 =  𝑑1 −

𝜇𝛽10

∆1
 , 𝑔3 = −

𝑇

𝑅𝑛
𝑁∗

1 

2.6 Stability Analysis and Local Hopf Bifurcation 

Here, we analyse the dynamical behaviour of the interior equilibrium point 𝐸1 of the 

model given by (2.1) -(2.4). The exponential characteristic equation about equilibrium 

𝐸1 is given by: 

 𝜆4 + 𝐴1𝜆
3 + 𝐴2𝜆

2 + 𝐴3𝜆 + 𝐴4 + 𝑑𝑒−𝜆𝜏 = 0 (2.5) 

Here,    𝐴1 =  𝑃1 + 𝑃7 + 𝑃4 + 𝑃9 , 

𝐴2 =  𝑃4𝑃9 + 𝑃5𝑃8 + 𝑃1𝑃7 + 𝑃3𝑃6 + 𝑃1𝑃4 + 𝑃1𝑃9 + 𝑃4𝑃7 + 𝑃7𝑃9  

𝐴3 =   𝑃1 + 𝑃7  𝑃4𝑃9 + 𝑃5𝑃8 +  𝑃4 + 𝑃9  𝑃1𝑃7 + 𝑃3𝑃6   

𝐴4 =   𝑃4𝑃9 + 𝑃5𝑃8  𝑃1𝑃7 + 𝑃3𝑃6  , 𝑑 = 𝜇𝑊∗
1 

where, 𝑃1 = 𝜇𝑊∗
2 + 𝑑2,   𝑃2 =

𝑇

𝑅𝑛
 ,   𝑃3 = 𝜇𝑁∗

2, 𝑃4 =
𝑇

𝑅𝑛
+ 𝜇𝑊∗

1 + 𝑑1, 

𝑃5 = 𝜇𝑁∗
1, 𝑃6 = 𝜌𝑊∗

2, 𝑃7 = ∆2𝑊
∗

2, 𝑃8 = 𝜌𝑊∗
1, 𝑃9 = ∆1𝑊

∗
1 

Clearly 𝜆 = 𝑖𝜔 is a root of equation (5), So 

(𝑖𝜔)4 + 𝐴1(𝑖𝜔)3 + 𝐴2(𝑖𝜔)2 + 𝐴3(𝑖𝜔) + 𝐴4 + 𝑑𝑒−(𝑖𝜔)𝜏 = 0 

𝜔4 − 𝑖𝐴1𝜔
3 − 𝐴2𝜔

2 + 𝑖𝐴3𝜔 + 𝐴4 + 𝑑 cos𝜔𝜏 − 𝑖𝑠𝑖𝑛 𝜔𝜏 = 0 

Separating real and imaginary parts: 

 𝜔4 − 𝐴2𝜔
2 + 𝐴4 = −𝑑 𝑐𝑜𝑠 𝜔𝜏 (2.6) 

 𝐴1𝜔
3 − 𝐴3𝜔 = −𝑑 sin𝜔𝜏 (2.7) 

Squaring and adding equation (2.6) and (2.7), we get: 

 𝜔8 +  𝐴1
2 − 2𝐴2 𝜔

6

+  𝐴2
2 + 2𝐴4 − 2𝐴1𝐴3 𝜔

4

+  𝐴3
2 − 2𝐴2𝐴4 𝜔

2

+  𝐴4
2 − 𝑑2 = 0 

 

(2.8) 

Let 𝜔2 = 𝑦 and  𝐴1
2 − 2𝐴2 = 𝑎,  𝐴2

2 + 2𝐴4 − 2𝐴1𝐴3 = 𝑏, 
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 𝐴3
2 − 2𝐴2𝐴4 = 𝑐,  𝐴4

2 − 𝑑2 = 𝑟  

Equation (2.8) becomes: 

 𝑦4 + 𝑎𝑦3 + 𝑏𝑦2 + 𝑐𝑦 + 𝑟 = 0 (2.9) 

Lemma 2.6.1 If 𝑟 < 0, Equation (9) contains at least one positive real root. 

Proof. 

Let 𝑕 𝑦 = 𝑦4 + 𝑎𝑦3 + 𝑏𝑦2 + 𝑐𝑦 + 𝑟 

Here 𝑕 0 = 𝑟 < 0  ,  lim𝑦→∞ 𝑕 𝑦 = ∞ 

So, ∃𝑦0 ∈ (0,∞) such that 𝑕 𝑦0 = 0 

Proof completed. 

Also 𝑕′ 𝑦 = 4𝑦3 + 3𝑎𝑦2 + 2𝑏𝑦 + 𝑐 

Let  𝑕′ 𝑦 = 0 

 ⇒ 4𝑦3 + 3𝑎𝑦2 + 2𝑏𝑦 + 𝑐 = 0 (2.10) 

 ⇒ 𝑥3 + 𝑝𝑥 + 𝑞 = 0 (2.11) 

Where 𝑥 = 𝑦 +
3𝑎

4
 ,    𝑝 =

𝑏

2
−

3𝑎2

16
,   𝑞 =

𝑐

4
−

𝑎𝑏

8
+

𝑎3
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Assuming 𝑥 = (𝑚 + 𝑛) be the solution of equation (2.11), we get: 

𝑚3 −
𝑝3

27𝑚3
+ 𝑞 = 0 

Assuming 𝑚3 = 𝑧, we get 𝑧2 + 𝑞𝑧 −
𝑝3

27
= 0. 

Three roots of equation (2.11) come out to be: 

𝑥1 =  −
𝑞

2
+  𝐷 

1
3 

+  −
𝑞

2
−  𝐷 

1
3 

 

𝑥2 =  −
𝑞

2
+  𝐷 𝜍 

1
3 

+  −
𝑞

2
−  𝐷𝜍2 

1
3 

 

𝑥3 =  −
𝑞

2
+  𝐷𝜍2 

1
3 

+  −
𝑞

2
−  𝐷 𝜍 

1
3 

 

𝑦𝑖 = 𝑥𝑖 −
3𝑎

4
,    𝑖 = 1,2,3. 
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Where 𝐷 =  
𝑞

2
 

2

+  
𝑝

3
 

3

 and 𝜍 =
−1+ 3𝑖

2
 

Lemma 2.6.2 Suppose 𝑟 ≥ 0 

(I)     If 𝐷 ≥ 0, then equation (2.9) has positive roots iff 𝑦1 > 0, 𝑕(𝑦1) < 0. 

(II)  If 𝐷 < 0, then equation (2.9) has positive roots iff ∃ at least one 𝑦∗ ∈ (𝑦1, 𝑦2, 𝑦3) 

such that 𝑦∗ > 0 and 𝑕(𝑦∗) ≤ 0. 

(III)  If 𝐷 < 0, we know that equation (2.11) possesses only three zeros 𝑥1, 𝑥2, 𝑥3that is 

equation (2.10) has three roots 𝑦1, 𝑦2, 𝑦3 and at least one of them is real. 

Proof. (I)If 𝐷 ≥ 0, then equation (2.11) possesses a unique real root 𝑥1, which means 

equation (2.10) possesses unique real root 𝑦1. 

As 𝑕(𝑦) is a differentiable function and lim𝑦→∞ 𝑕 𝑦 = ∞, we have 𝑦1as the unique 

critical point of 𝑕(𝑦) which happens to be the minimum point of 𝑕 𝑦 . 

 

Suppose equation (2.9) possesses positive roots. In general, we suppose that it has 4 

positive roots denoted by 𝑦∗
𝑖
, 𝑖 = 1,2,3,4. Then equation (2.8) has 4 positive roots 

𝜔𝑖 =  𝑦∗𝑖 , 𝑖 = 1,2,3,4. 

From equation (2.7)        sin𝜔𝜏 =
𝐴3𝜔−𝐴1𝜔

3

𝑑
 

Which gives       𝜏 =
1

𝜔
 𝑠𝑖𝑛−1  

𝐴3𝜔−𝐴1𝜔
3

𝑑
 + 2(𝑗 − 1)𝜋  ; 𝑗 = 1,2,3, − − − 

Let 𝜏𝑘
(𝑗 ) =

1

𝜔𝑘
 𝑠𝑖𝑛−1  

𝐴3𝜔−𝐴1𝜔
3

𝑑
 + 2(𝑗 − 1)𝜋  ; 𝑘 = 1,2,3,4. ; 𝑗 = 1,2,3,− − 

Then ∓𝑖𝜔𝑘  is a pair of purely imaginary roots of equation (2.5) 

Where 𝜏 = 𝜏𝑘
(𝑗 ), 𝑘 = 1,2,3,4. ; 𝑗 = 1,2,3, − − − , We have lim𝑗→∞ 𝜏𝑘

(𝑗 ) = ∞, 𝑘 =

1,2,3,4.    

Thus, we can define 𝜏0 = 𝜏𝑘0
(𝑗0) = min1≤𝑘≤4,𝑗≥1 𝜏𝑘

(𝑗 ) , 𝜔0 = 𝜔𝑘0
, 𝑦0 = 𝑦𝑘0

∗. 

Lemma 2.6.3 Suppose that 𝐴1 > 0, 𝐴2 > 0, 𝐴3 > 0,  𝐴4 + 𝑑  > 0, 𝐴1𝐴2 − 𝐴3 >

0, 𝐴1𝐴2𝐴3 − 𝐴3
2 − 𝐴1

2(𝐴4 + 𝑑) > 0. 

(I) If any one of the following condition holds: (i) 𝑟 < 0 (ii) 𝑟 ≥ 0, 𝐷 ≥ 0, 𝑦1 > 0 , 

𝑕 𝑦1 ≤ 0 (iii) 𝑟 ≥ 0, 𝐷 < 0 and there exists a 𝑦∗ ∈ (𝑦1, 𝑦2, 𝑦3) such that 𝑦∗ > 0 and 
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𝑕(𝑦∗) ≤ 0, then negative real part will be there in all roots of equation(5) when 

𝜏 ∈  0, 𝜏0 . 

(II) If any one of the conditions (i)-(iii) of (I) are not satisfied, then negative real parts 

will be there in all roots of equation (5) for all 𝜏 ≥ 0. 

Proof. When 𝜏 = 0, equation (5) becomes: 

 𝜆4 + 𝐴1𝜆
3 + 𝐴2𝜆

2 + 𝐴3𝜆 + 𝐴4 + 𝑑 = 0 (2.12) 

All roots of equation (12) have negative real parts iff 𝐴1 > 0, 𝐴2 > 0, 𝐴3 >

0,  𝐴4 + 𝑑  > 0, 𝐴1𝐴2 − 𝐴3 > 0, 𝐴1𝐴2𝐴3 − 𝐴3
2 − 𝐴1

2(𝐴4 + 𝑑) > 0.(Routh-Hurwitz‟s 

criteria) 

From Lemma 2.3.1 and Lemma 2.6.1, we know that if conditions (i)-(iii) are not 

satisfied, then none of the roots of equation (2.5) will have zero real part for all 𝜏 ≥ 0. 

 If one of the conditions (i), (ii) and (iii) holds, when 𝜏 ≠ 𝜏𝑘
(𝑗 ), 𝑘 = 1,2,3,4. ; 𝑗 ≥ 1, then 

none of the roots of equation (2.5) will have zero real part and 𝜏0 is the minimum value 

of 𝜏 for which the roots of equation (2.5) are purely imaginary. 

Let 𝜆 𝜏 = 𝛼 𝜏 + 𝑖𝜔(𝜏) be the roots of equation (2.5) satisfying: 

𝛼 𝜏0 = 0, 𝜔 𝜏0 = 𝜔0 

Lemma 2.6.4Suppose 𝑕′(𝑦0) ≠ 0. If 𝜏 = 𝜏0, then ∓𝑖𝜔0 is a pair of simple purely 

imaginary roots of equation (2.5). Moreover, If the condition of Lemma 2.6.2 are 

satisfied, then 
𝑑

𝑑𝜏
 𝑅𝑒𝜆(𝜏0) > 0. 

Proof. If 𝑖𝜔0 is not a simple root, then 𝑖𝜔0 must satisfy: 

𝑑

𝑑𝜆
 𝜆4 + 𝐴1𝜆

3 + 𝐴2𝜆
2 + 𝐴3𝜆 + 𝐴4 + 𝑑𝑒−𝜆𝜏  

𝜆=𝑖𝜔0
= 0 

−4𝑖𝜔0
3 − 3𝐴1𝜔0

2 + 2𝑖𝐴2𝜔0 + 𝐴3 − 𝜏𝑑(cos𝜔0𝜏 − 𝑖𝑠𝑖𝑛 𝜔0𝜏) = 0 

Separating real and imaginary parts: 

𝐴3 − 3𝐴1𝜔0
2 = 𝜏𝑑 𝑐𝑜𝑠 𝜔0𝜏 

4𝜔0
3 − 2𝐴2𝜔0 = 𝜏𝑑 sin𝜔0𝜏 

On dividing we get: 
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tan𝜔0𝜏 =

4𝜔0
3 − 2𝐴2𝜔0

𝐴3 − 3𝐴1𝜔0
2

 
(2.13) 

Also, 𝜔0 must satisfy equation (2.6) and (2.7), from where we get: 

 
tan𝜔0𝜏 =

𝐴1𝜔0
3 − 𝐴3𝜔0

𝜔0
4 − 𝐴2𝜔0

2 + 𝐴4
 

(2.14) 

Comparing (2.13) and (2.14) we get 

4𝜔0
6 + 3 𝐴1

2 − 2𝐴2 𝜔0
4 + 2 2𝐴4 + 𝐴2

2 − 2𝐴1𝐴3 𝜔0
2 +  𝐴3

2 − 2𝐴2𝐴4 = 0 

As we know 𝜔0
2 = 𝑦0, 

4𝑦0
3 + 3 𝐴1

2 − 2𝐴2 𝑦0
2 + 2 2𝐴4 + 𝐴2

2 − 2𝐴1𝐴3 𝑦0 +  𝐴3
2 − 2𝐴2𝐴4 = 0 

4𝑦0
3 + 3𝑙𝑦0

2 + 2𝑚𝑦0 + 𝑛 = 0 

Where 𝑙 =  𝐴1
2 − 2𝐴2 , 𝑚 =  2𝐴4 + 𝐴2

2 − 2𝐴1𝐴3 , 𝑛 =  𝐴3
2 − 2𝐴2𝐴4  

Which gives 𝑕′ 𝑦 = 4𝑦3 + 3𝑙𝑦2 + 2𝑚𝑦 + 𝑛 

Which is a contradiction as 𝑕′(𝑦0) ≠ 0. 

First part of the result is proved. 

Differentiating equation (2.5) with respect to 𝜏, we get 

𝑑𝜆(𝜏)

𝑑𝜏
=

𝑑𝜆𝑒−𝜆𝜏

4𝜆3 + 3𝐴1𝜆2 + 2𝐴2𝜆 + 𝐴3 − 𝑑𝜏𝑒−𝜆𝜏
 

Putting 𝜆 = 𝑖𝜔,
𝑑𝜆(𝜏)

𝑑𝜏
=

𝑑𝑖𝜔 (cos 𝜔−𝑖𝑠𝑖𝑛  𝜔𝜏 )

 𝐴3−3𝐴1𝜔2−𝑑𝜏 cos 𝜔𝜏  +𝑖 2𝐴2−4𝜔3+𝑑𝜏 sin 𝜔𝜏  
 

When 𝜏 = 𝜏0,  𝜔 = 𝜔0,   𝑦 = 𝑦0,  we get 

𝑑 𝑅𝑒𝜆 𝜏0 

𝑑𝜏
=
𝜔0

2

𝛾
𝑕′ 𝑦0 ≠ 0. 

Where 𝛾 =  𝐴3 − 3𝐴1𝜔
2 − 𝑑𝜏 cos𝜔𝜏 2 +  2𝐴2 − 4𝜔3 + 𝑑𝜏 sin𝜔𝜏 2 

If 
𝑑 𝑅𝑒𝜆  𝜏0 

𝑑𝜏
< 0, then equation (2.5) has a root with positive real part for 𝜏 < 𝜏0   and in 

close proximity of 𝜏0  which contradicts Lemma 2.6.2 

This completes the proof. 
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2.7 Sensitivity Analysis 

In this section, sensitivity analysis of state variables, namely concentration of  

𝑁1, 𝑁2and structural dry weight 𝑊1,𝑊2 is done with respect to model parameters, 

transfer rate 𝑇 and consumption coefficient 𝜇 of delayed nutrients. The values of 

parameters are perturbed and corresponding changes in state variables are observed. The 

graphical representation of the same is shown in the section-2.8 with the help of 

numerical example and detailed discussion is included in section 2.9-Conclusion.  

2.8 Numerical Example 

For the following set of values, the behaviour shown by the system is as follows: 

𝑈𝑛 = 10, 𝑇 = 1.5, 𝑅𝑛 = 1, 𝜇 = 1.05, 𝑑1 = 1, 𝑑2 = 1, 

𝜌 = 0.3, 𝛽10 = 0.2, 𝛽20 = 0.2, ∆1= 0.1, ∆2= 0.1 

 

 

Figure 2. 1The system is absolutely stable when there is no delay τ = 0. 
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Figure 2. 2The system is asymptotically stability when delay τ < 0.9. 

 

Figure 2. 3The system loses stability with delay τ ≥ 0.9 and Hopf bifurcation occurs. 
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Figure 2. 4Time series graph between partial changes in concentration of nutrient 𝑁1 in 

root compartment and different values of rate of nutrient transfer T. 

 

 

 

 

Figure 2. 5Time series graph between partial changes in concentration of nutrient 𝑁2 in 

shoot compartment and different values of rate of nutrient transfer T. 
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Figure 2. 6Time series graph between partial changes in structural dry weight 𝑊1of root 

compartment and different values of rate of nutrient transfer T. 

 

Figure 2. 7Time series graph between partial changes in structural dry weight 𝑊2 of 

shoot compartment and different values of rate of nutrient transfer T. 
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Figure 2. 8Time series graph between partial changes in concentration of nutrient 𝑁1in 

root compartment and different values of consumption coefficient μ of delayed nutrient. 

 

Figure 2. 9Time series graph between partial changes in concentration of nutrient 𝑁2in 

shoot compartment and different values of consumption coefficient μ. 

0 20 40 60 80 100 120 140 160 180 200
1

1.5

2

2.5

3

3.5

Time t


 N

1
/


 

 

Nutrient conc. N
1
 with Consumption coefficient  = 1.05

Nutrient conc. N
1
 with Consumption coefficient  = 1.00

Nutrient conc. N
1
 with Consumption coefficient  = 0.95

0 20 40 60 80 100 120 140 160 180 200
0.8

1

1.2

1.4

1.6

1.8

2

2.2

Time t


 N

2
/


 

 

Nutrient conc. N
2
 with Consumption coefficient  = 1.05

Nutrient conc. N
2
 with Consumption coefficient  = 1.00

Nutrient conc. N
2
 with Consumption coefficient  = 0.95



 

42 
 

 

Figure 2. 10Time series graph between partial changes in structural dry weight 𝑊1 of 

root compartment and different values of consumption coefficient μ . 

 

 

Figure 2. 11Time series graph between partial changes in structural dry weight 𝑊2 of 

shoot compartment and different values of consumption coefficient μ. 

2.9 Conclusion 
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delay  𝜏 = 0  in the system as shown in the Figure2.1. Even after the introduction of 

delay, there have been two different kinds of behaviour shown by the model. When the 

value of delay is less than 0.9  𝜏 < 0.9 , the equilibrium 𝐸1is asymptotically stable as 

shown in the Figure2.2. This value of delay parameter 𝜏 = 0.9 is the critical value. 

When delay crosses this critical value  𝜏 ≥ 0.9  equilibrium 𝐸1of the model losses 

stability and shows oscillations that is Hopf bifurcation occurs as shown in the 

Figure2.3. 

The sensitivity of model solutions is established by taking different values of the 

parameters appearing in system. It improves the understanding of the role played by 

specific model parameters.  

Sensitivity analysis reveals that with increase in the transfer rate of nutrient 𝑇 from root 

to shoot, the state variables-concentration of nutrients in root and shoot compartments 

and structural dry weights of root and shoot compartments (𝑁1, 𝑁2 ,𝑊1,𝑊2) tends 

towards stability for the same set of remaining parameters including time delay 𝜏 = 0.9 

. At T = 1.5, all the above-mentioned state variables show unstable behaviour via Hopf 

bifurcation. But as the value of T is increased to T= 1.6, all the state variables start 

showing the asymptotic stability and finally for T = 1.7, all the state variables start 

converging to a stable equilibrium point as shown by Figures 2.4 to 2.7. Apart from 

converging to stability, the structural dry weight 𝑊2 of shoot compartment also show 

increase in its value as we increase the value of T from 1.5 to 1.7 as shown by Figure 

2.7. Similarly, as we decrease the value of consumption coefficient 𝜇 from 𝜇 = 1.05 to 

𝜇 = 0.95, all the above-mentioned state variables start converging to a stable 

equilibrium as shown by Figures 2.8 to 2.11. In addition to convergence to stability, the 

structural dry weights 𝑊1 and 𝑊2 of root and shoot compartment show increase in their 

values as we decrease the value of consumption coefficient 𝜇 of delayed nutrient as 

shown by Figure 2.10 and Figure2.11. 
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Chapter 3 

The Study of Effect of Toxicanton Plant Growth 

Dynamics Considering Time Lag in Nutrient 

Utilization: A Two Compartment Model 

3.1 Introduction 

The survival of the plant population is under great threat as excessive quantity of the 

toxic metals and contaminants released from industries, acid rain and agricultural fields 

is entering our ecosystems regularly. Industries are producing heavy metals and 

radioactive substances. The fertilizers, pesticides and insecticides used in agriculture 

fields for more production toxic metals which cause harm to plant population. 

Thornley[3] authored a book in which plant physiology was studied entirely using 

mathematical modelling. But narrow scope of models given by Thornley was pointed 

out by Lacointe [21]. The failure to represent the topological and geometrical 

differences in Lapointe‟s‟ models was brought into light by Godin et al.[163]. A 

mathematical model consisting of combined effect of toxic metal and soil chemistry for 

study of the adverse effect of toxic metal on biomass of trees was given by De Leo et 

al.[59]. The model proposed by De Leo was further modified and applied to all plants 

by Guala et al. [166], [167]. A two-compartment mathematical model given by Misra 

and Kalra  [168], [87]studied the adverse effect of toxicity on individual plant growth 

by showing the overall decrease in uptake and concentration of nutrients and plant 

biomass in root and shoot compartments. The nature of roots of transcendental and 

exponential polynomial can be studied using Rouches theorem[158]. Ruan and Wei 

[112], [157] studied the nature and distribution of roots of exponential polynomials for 

study of stability with time lags using Rouches theorem.The phenomenon of population 

dynamics was represent using non-linear delay differential equations and its stability 

was also studied by Kubiaczyk and Saker[115]. The reduction of plant biomass under 

the effect of toxicant with time lag was studied by Naresh et al.[169]. Shukla et al.[170] 

studied how the crop yield gets adversely affected by the environmentally degraded soil. 
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The dynamics of a multi team prey predator system under the effect of time lag was 

studied by Sikarwar and Misra[171]. Naresh et al.[72] studied how the excessive 

industrial waste results into toxic uptake by plants and the resulting intermediate toxic 

product formed affects the intrinsic growth rate plant biomass and carrying capacity. 

Global stability of population growth with the help of non-linear delay differential 

equations was studied by Huang et al.[172]. Zhang et al.[123] gave a neural network 

model where the nature of the roots of a 5
th

 degree exponential polynomial was 

discussed.   

Although a lot of work has been done on plant growth under the effect of toxicants, but 

the use of delay differential equations is rare in this field. In presence of toxic metal in 

the soil, the nutrient uptake by the plant and the nutrient transfer from root to shoot 

compartment gets delayed. The nutrient use efficiency is adversely affected too. It leads 

to decrease in structural dry weight. So, this time delay due to toxic metal in soil is 

directly responsible for decrease in structural dry weight of plantwhich is the measure of 

delayed and reduced plant growth. Considering the above fact, a two-compartment 

mathematical model is proposed for the study of an individual plant growth. Here delay 

parameter is introduced in the term containing utilization coefficient and the complex 

behaviour giving rise to Hopf bifurcation is studied.  

3.2 Mathematical Model 

It is assumed in the model that nutrient uptake by root is hindered due to presence of 

toxic metal.It is further assumed that there is less transfer of nutrient from root to shoot 

compartment due to toxic metal.Nutrient concentration decreases in root as well as in 

shoot compartment resulting in decrease of structural dry weight of root and shoot 

respectively.It is further assumed that nutrient use efficiency is also affected with toxic 

metal resulting into decrease of structural dry weight of shoot. 

Let 𝑁1and 𝑊1 represent the concentration of nutrients and structural dry weight in root 

compartment respectively. Let 𝑁2and 𝑊2 represent the concentration of nutrients and 

structural dry weight in shoot compartment respectively. Let 𝐻𝑠be the concentration of 

heavy metal in soil. These notations lead to description of following model (3.1) -(3.5) 

consisting of system of non-linear delay differential equations: 
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 𝑑𝑁1

𝑑𝑡
=  𝑈𝑛 − 𝛼𝐻𝑠 −

𝑇

𝑅𝑛
𝑁1 − 𝜇𝑊1𝑁1(𝑡

− 𝜏) − 𝑑1𝑁1 

(3.1) 

 𝑑𝑁2

𝑑𝑡
=
𝑇(𝐻𝑠)

𝑅𝑛
𝑁1 − 𝜇𝑊2𝑁2 − 𝑑2𝑁2 

(3.2) 

 𝑑𝑊1

𝑑𝑡
= 𝑟1 𝑁1, 𝐻𝑠 𝑊1 − ∆1𝑊

2
1 

(3.3) 

 𝑑𝑊2

𝑑𝑡
= 𝑟2 𝑁2, 𝐻𝑠 𝑊2 − ∆2𝑊

2
2 

(3.4) 

 𝑑𝐻𝑠
𝑑𝑡

= 𝐼 − 𝛼1𝐻𝑠𝑁1 − ∆𝐻𝑠 
(3.5) 

With initial conditions as: 

𝑁1 0 > 0,𝑁2 0 > 0,𝑊1 0 > 0,𝑊2 0 > 0,𝐻𝑠(0) > 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0 𝑎𝑛𝑑 𝑁1 𝑡 −

𝜏=𝜀, Constant for all 𝑡∈ 0,𝜏] 

Here 𝑟1 𝑁1, 𝐻𝑠  and 𝑟2 𝑁2, 𝐻𝑠 have the following forms: 

𝑟1 𝑁1, 𝐻𝑠 =
𝜌𝑁1

1+𝛾1𝐻𝑠
− 𝛽1 𝐻𝑠 ,

𝜕𝑟1 𝑁1 ,𝐻𝑠 

𝜕𝐻𝑠
< 0,

𝜕𝑟1 𝑁1 ,𝐻𝑠 

𝜕𝑁1
> 0 for 𝑁1 > 0,𝐻𝑠 > 0 

𝑟2 𝑁2, 𝐻𝑠 =
𝜌𝑁2

1+𝛾2𝐻𝑠
− 𝛽2 𝐻𝑠 ,

𝜕𝑟2 𝑁2 ,𝐻𝑠 

𝜕𝐻𝑠
< 0,

𝜕𝑟2 𝑁2 ,𝐻𝑠 

𝜕𝑁2
> 0 for 𝑁2 > 0,𝐻𝑠 > 0 

𝑇 𝐻𝑠 =
𝑇

1 + 𝑇0𝐻𝑠
,   𝛽1 𝐻𝑠 = 𝛽10 + 𝛽11𝐻𝑠 , 𝛽2 𝐻𝑠 = 𝛽20 + 𝛽21𝐻𝑠 

The definitions of system parameters are as follows: 

𝑟2 𝑁2, 𝐻𝑠 and 𝑟1 𝑁1, 𝐻𝑠  are rates of growth of shoot and root under the effect of heavy 

metal 𝐻𝑠 , respectively that are dependent on the availability of nutrient. 𝑇 is rate of 

nutrient transfer from root to shoot compartment. 𝑅𝑛  is the resistance to transportation 

of nutrient. 𝑇 𝐻𝑠 is rate of nutrient transfer from root to shoot compartment which is 

hampered by the presence of heavy metal 𝐻𝑠 . 𝑅𝑛  is the aversion to transportation of 

nutrient,  𝑈𝑛 − 𝛼𝐻𝑠 is the rate of uptake by plant inhibited due to the presence of heavy 

metal in soil. 𝜇 is consumption coefficient or utilization coefficient, 𝜌 is efficiency of 

nutrient utilization. 𝛽10 is natural decay of 𝑊1. 𝛽20is natural decay of 𝑊2. 𝑑1is natural 

decay of 𝑁1. 𝑑2 is natural decay of 𝑁2. ∆2and ∆1are self-limiting rates of growth 𝑊2and 

𝑊1, respectively. 𝛽11 and 𝛽21 are damage rates of 𝑊1and 𝑊2respectively due to 𝐻𝑠. 𝐼 is 

the input rate of toxic metals. ∆ is the first order decay rate of 𝐻𝑠. 𝛼1 is the depletion 

rate of 𝐻𝑠 due to reaction between 𝐻𝑠and 𝑁1. 𝑇0 is the stress parameter that measures 

the increase in the resistance to nutrient transport from root to shoot compartment due to 
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presence of toxic metal in soil. 𝛾1and 𝛾2are the parameters measuring the decrease in 

nutrient use efficiency due to presence of toxic metal in the plants. Here all the 

parameters 𝛼, 𝐼, 𝜌, ∆, 𝜇, 𝑈𝑛 , 𝛼1, 𝑇0, 𝛾1, 𝛾2, ∆1, ∆2are taken to be positive constants. 

3.3 Boundedness of Solutions 

The boundedness of solutions of the model given by (3.1) -(3.5) is given by the 

following Lemma: 

Lemma 3.3.1  The model has all its solution lying in the region 

𝐷1 =   𝑁1, 𝑁2,𝑊1,𝑊2 , 𝐻𝑠 ∈ 𝑅+
5: 0 ≤ 𝑁1 + 𝑁2 +

𝜇

𝜌
𝑊1 +

𝜇

𝜌
𝑊2 ≤

𝑈𝑛

𝜑
, 𝐻𝑠𝑙 ≤ 𝐻𝑠 ≤

𝐻𝑠𝑢 , 𝑎𝑠 𝑡 → ∞, for all positive initial values 

{𝑁1 0 ,𝑁2 0 ,𝑊1 0 ,𝑊2 0 , 𝐻𝑠 0 ,𝑁1 𝑡 − 𝜏 = 𝜀  ∀𝑡 ∈ [0, 𝜏]} ∈ 𝐷1 ⊂ 𝑅+
5,where 

𝜑 = min( 𝑑1, 𝑑2, 𝛽10 , 𝛽20),  

Proof: Consider the following function: 

𝐹 𝑡 = 𝑁1(𝑡) + 𝑁2(𝑡) +
𝜇

𝜌
𝑊1(𝑡) +

𝜇

𝜌
𝑊2(𝑡) 

⇒
𝑑𝐹(𝑡)

𝑑𝑡
=

𝑑

𝑑𝑡
 𝑁1(𝑡) + 𝑁2(𝑡) +

𝜇

𝜌
𝑊1(𝑡) +

𝜇

𝜌
𝑊2(𝑡)  

Using Equations (3.1) -(3.4) and  𝜑 = min( 𝑑1, 𝑑2 , 𝛽10 , 𝛽20) and assumption 𝑁1(𝑡) ≈

 𝑁1 𝑡 − 𝜏  as 𝑡 → ∞ ,  

⇒
𝑑𝐹(𝑡)

𝑑𝑡
≤ 𝑈𝑛 −  𝜑𝐹 𝑡 . 

By usual comparison theorem, when 𝑡 → ∞ : 𝐹 𝑡 ≤
𝑈𝑛

𝜑
 

⇒ 𝑁1(𝑡) + 𝑁2(𝑡) +
𝜇

𝜌
𝑊1(𝑡) +

𝜇

𝜌
𝑊2(𝑡)  ≤

𝑈𝑛

𝜑
 . 

Also 𝐹 𝑡 ≥ 0. So, 

0 ≤ 𝑁1(𝑡) + 𝑁2(𝑡) +
𝜇

𝜌
𝑊1(𝑡) +

𝜇

𝜌
𝑊2(𝑡)  ≤

𝑈𝑛
𝜑

 

From equation (3.5):  
𝑑𝐻𝑠

𝑑𝑡
= 𝐼 − 𝛼1𝐻𝑠𝑁1 − ∆𝐻𝑠 

⇒
𝑑𝐻𝑠
𝑑𝑡

≤ 𝐼 − ∆𝐻𝑠 
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Then by usual comparison theorem, we get when 𝑡 → ∞: 

𝐻𝑠 ≤
𝐼

∆
= 𝐻𝑠𝑢  

Again, from equation (5.5), we get  
𝑑𝐻𝑠

𝑑𝑡
= 𝐼 − 𝛼1𝐻𝑠𝑁1 − ∆𝐻𝑠 

⇒
𝑑𝐻𝑠
𝑑𝑡

≥ 𝐼 − 𝛼1𝐻𝑠
𝑈𝑛
𝜑
− ∆𝐻𝑠 

⇒
𝑑𝐻𝑠

𝑑𝑡
≥ 𝐼 − 𝜗3𝐻𝑠  where 𝜗3 =  

𝛼1𝑈𝑛

𝜑
+ ∆  

By usual comparison theorem, when 𝑡 → ∞: 

𝐻𝑠 ≥
𝐼

𝜗3
= 𝐻𝑠𝑙  

So    𝐻𝑠𝑙 ≤ 𝐻𝑠 ≤ 𝐻𝑠𝑢 . 

This completes the proof. 

The boundedness lemma proves the fact that since all the quantities-nutrient 

concentrations in root and shoot, toxic metal in soil and structural dry weights of root 

and shoot are real quantities, so their individual values as well as their interactional 

combinations can never be negative and will always be finite for all the time. 

3.4 Positivity of Solutions 

For positive solutions, we need to show that all solution of system given by Equations. 

(3.1)– (3.5), where initial condition are 𝑁1 0 > 0,𝑁2 0 > 0,𝑊1 0 > 0,𝑊2 0 >

0,𝐻𝑠 0 > 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 > 0 𝑎𝑛𝑑 𝑁1 𝑡 − 𝜏 = 𝜀  ∀𝑡 ∈ [0, 𝜏], the solution 

 𝑁1 𝑡 , 𝑁2 𝑡 ,𝑊1 𝑡 ,𝑊2 𝑡 , 𝐻𝑠(𝑡)  of the model stays positive ∀𝑡 > 0. 

From equation (3.2):             
𝑑𝑁2

𝑑𝑡
=

𝑇 𝐻𝑠 

𝑅𝑛
𝑁1 − 𝜇𝑊2𝑁2 − 𝑑2𝑁2 

⇒
𝑑𝑁2

𝑑𝑡
≥ − 𝜇

𝑈𝑛
𝜑

+ 𝑑2 𝑁2 

⇒ 𝑁2 ≥ 𝑐1𝑒
− 𝜇

𝑈𝑛
𝜑

+𝑑2 𝑡
 

Hence                      𝑁2 > 0 as 𝑡 → ∞ 

Similar argument holds for 𝑁1,𝑊1,𝑊2, 𝐻𝑆 . 
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Thus, all the variables remain positive which shows that the system persists. 

3.5 Interior Equilibrium of the Model 

The system of equations (3.1) -(3.5) has one feasible positive interior equilibrium 

𝐸1(𝑁∗
1, 𝑁∗

2, 𝑊∗
1,𝑊∗

2, 𝐻∗
𝑠) where: 

𝑊∗
1 =

1

∆1
 

𝜌

1+𝛾1𝐻∗
𝑠
𝑁∗

1 −  𝛽10 + 𝛽11𝐻
∗
𝑠  > 0  , 

provided 𝜌𝑁∗
1 >  1 + 𝛾1𝐻

∗
𝑠  𝛽10 + 𝛽11𝐻

∗
𝑠  

𝑊∗
2 =

1

∆2
 

𝜌

1+𝛾2𝐻∗
𝑠
𝑁∗

2
−  𝛽20 + 𝛽21𝐻

∗
𝑠  > 0 , 

provided  𝜌𝑁∗
2 >  1 + 𝛾2𝐻

∗
𝑠  𝛽20 + 𝛽21𝐻

∗
𝑠  

𝑁∗
1 =

𝐼−∆𝐻∗
𝑠

𝛼1𝐻∗
𝑠

 provided 𝐼 > ∆𝐻∗
𝑠, 

𝑁∗
2 =

−𝑔2 +  𝑔2
2
− 4𝑔1𝑔3

2𝑔1
> 0 

where 𝑔1 =
𝜇𝜌

∆1 1+𝛾1𝐻∗
𝑠 

, 𝑔2 =  𝑑1 −
𝜇 𝛽10 +𝛽11𝐻

∗
𝑠 

∆1
 , 𝑔3 = −

𝑇 𝐼−∆𝐻∗
𝑠 

𝑅𝑛𝛼1𝐻∗
𝑠 1+𝑇0𝐻∗

𝑠 
 

The value of 𝐻∗
𝑠 is given by positive root of the equation 

𝛾2 𝛼 + 𝛿3∆ 𝐻
∗
𝑠

4 −  𝛾2 𝑈𝑛 − 𝛿1∆+𝛿3𝐼 −  𝛼 + 𝛿3∆  𝐻
∗
𝑠

3

−  𝑈𝑛+𝛿3𝐼 + 𝛿1 ∆ − 𝐼𝛾2 − 𝛿2∆
2 𝐻∗

𝑠
2 − 𝐼 2∆𝛿2 − 𝛿1 𝐻

∗
𝑠 + 𝛿2𝐼

2 = 0 

Where 𝛿1 =
1

𝛼
 
𝑇

𝑅𝑛
+ 𝑑1 −

𝜇𝛽10

∆1
 , 𝛿2 =

𝜇𝜌

∆1𝛼1
2 , 𝛿3 =

𝜋𝛽11

∆1𝛼1
 

The 4
th

 degree polynomial in 𝐻∗
𝑠will be having at most two positive roots provided: 

𝛾2 𝑈𝑛 − 𝛿1∆+𝛿3𝐼 >  𝛼 + 𝛿3∆ ,  𝑈𝑛+𝛿3𝐼 + 𝛿1∆ > 𝛿1𝐼𝛾2 + 𝛿2∆
2, 𝑘1 > 2∆𝛿2 

But due to positivity of 𝑁∗
1only one feasible positive root will exist provided 𝐼 > ∆𝐻∗

𝑠 

3.6 Stability Analysis and Local Hopf-Bifurcation 

The exponential characteristic equation about equilibrium 𝐸1 is given by: 

  𝜆5 + 𝐴1𝜆
4 + 𝐴2𝜆

3 + 𝐴3𝜆
2 + 𝐴4𝜆 + 𝐴5 

+  𝐵1𝜆
4 + 𝐵2𝜆

3 + 𝐵3𝜆
2 + 𝐵4𝜆

+ 𝐵5 𝑒
−𝜆𝜏 = 0 

 

(3.6) 
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Here    𝐴1 = − 𝑃1 + 𝑃7 + 𝑃13 + 𝑃19 + 𝑃25 , 𝐴2 =  𝑃7𝑃13 + 𝑃13𝑃25 + 𝑃25𝑃7 +

𝑃25𝑃10+𝑃11𝑃13+𝑃1𝑃7+𝑃1𝑃13+𝑃1𝑃25+𝑃7𝑃19+𝑃13𝑃19+𝑃19𝑃25,𝐴3= 

−  𝑃1 + 𝑃19  𝑃7𝑃13 + 𝑃13𝑃25 + 𝑃25𝑃7 + 𝑃10𝑃25 + 𝑃1𝑃19 𝑃7 + 𝑃13 + 𝑃25 +

𝑃1𝑃13𝑃7+𝑃19+𝑃25+𝑃7𝑃13𝑃25+𝑃10𝑃13𝑃22,𝐴4=𝑃1𝑃19𝑃7𝑃13+𝑃13𝑃25+𝑃25

𝑃7+𝑃25𝑃10+𝑃1+𝑃19𝑃7𝑃13𝑃25+𝑃10𝑃13𝑃22+𝑃1𝑃13𝑃19𝑃7+𝑃25+𝑃25𝑃7−𝑃1

0𝑃22𝐴5=−𝑃1𝑃19𝑃7𝑃13𝑃25+𝑃10𝑃13𝑃22+𝑃11𝑃13𝑃19𝑃25𝑃7−𝑃10𝑃22,𝐵1= 

𝜇𝑊∗
1, 𝐵2 = − 𝜇𝑊∗

1 𝑃1 + 𝑃13 + 𝑃19 + 𝑃25 , 𝐵3 =  𝜇𝑊∗
1  𝑃1 + 𝑃19  𝑃13 + 𝑃25 +

𝑃1𝑃19+𝑃1𝑃13+𝑃13𝑃25, 𝐵4=− 

𝜇𝑊∗
1 𝑃1𝑃19 𝑃13 + 𝑃25 + 𝑃13 𝑃1 + 𝑃19 + 𝑃1𝑃13 𝑃19 + 𝑃25  , 𝐵3 =

 𝜇𝑊∗
1 𝑃1𝑃19𝑃13𝑃25 + 𝑃11𝑃19𝑃13𝑃25  

Where    𝑃1 = − 𝜇𝑊∗
2 + 𝑑2 ,   𝑃2 =

𝑇

𝑅𝑛  1+𝑇0𝐻∗
𝑠 

 ,   𝑃3 = −𝜇𝑁∗
2 , 𝑃4 = 0, 𝑃5 =

−𝑇𝑇0𝑁
∗

1

𝑅𝑛  1+𝑇0𝐻∗
𝑠 2  , 𝑃6 = 0, 𝑃7 = − 

𝑇

𝑅𝑛
+ 𝑑1 , 𝑃8 = 0, 𝑃9 = 0, 𝑃10 = −𝛼, 𝑃11 =

𝜌𝑊∗
2

1+𝛾2𝐻∗
𝑠

, 𝑃12 = 0, 𝑃13 =
𝜌𝑁∗

2

 1+𝛾2𝐻∗
𝑠 2 −  𝛽20 + 𝛽21𝐻

∗
𝑠 − 2∆2𝑊

∗
2, 𝑃14 = 0, 𝑃15 =

− 
𝜌𝑁∗

2𝑊
∗

2𝛾2

 1+𝛾2𝐻∗
𝑠 2 + 𝛽21𝑊

∗
2 , 𝑃16 =

𝜌𝑊∗
1

1+𝛾1𝐻∗
𝑠

, 𝑃17 = 0, 𝑃18 = 0, 𝑃19 =
𝜌𝑁∗

1

 1+𝛾1𝐻∗
𝑠 2 −

 𝛽10 + 𝛽11𝐻
∗
𝑠 − 2∆1𝑊

∗
1, 𝑃20 = − 

𝜌𝑁∗
1𝑊

∗
1𝛾1

 1+𝛾1𝐻∗
𝑠 2 + 𝛽11𝑊

∗
1 , 𝑃21 = 0, 𝑃22 =

−𝛼1𝐻
∗
𝑠 , 𝑃23 = 0, 𝑃24 = 0, 𝑃25 = − 𝛼1𝑁

∗
1 + ∆  

Let𝜆 = 𝑖𝜔 is a root of equation (3.6), So 

 (𝑖𝜔)5 + 𝐴1(𝑖𝜔)4 + 𝐴2(𝑖𝜔)3 + 𝐴3(𝑖𝜔)2 + 𝐴4 𝑖𝜔 + 𝐴5 

+  𝐵1(𝑖𝜔)4 + 𝐵2(𝑖𝜔)3 + 𝐵3(𝑖𝜔)2 + 𝐵4 𝑖𝜔 + 𝐵5 𝑒
−(𝑖𝜔)𝜏 = 0 

⇒  𝑖𝜔5 + 𝐴1𝜔
4 − 𝑖𝐴2𝜔

3 − 𝐴3𝜔
2 + 𝑖𝐴4𝜔 + 𝐴5 

+  𝐵1𝜔
4 − 𝑖𝐵2𝜔

3 − 𝐵3𝜔
2 + 𝑖𝐵4𝜔 + 𝐵5  cos𝜔𝜏 − 𝑖𝑠𝑖𝑛 𝜔𝜏 = 0 

Separating real and imaginary parts: 

  𝜔5 − 𝐴2𝜔
3 + 𝐴4𝜔 

+  𝐵4𝜔 − 𝐵2𝜔
3 cos𝜔𝜏

−  𝐵1𝜔
4 − 𝐵3𝜔

2

+ 𝐵5  𝑠𝑖𝑛 𝜔𝜏 = 0 

 

(3.7) 
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  𝐴1𝜔
4 − 𝐴3𝜔

2+𝐴5 

+  𝐵1𝜔
4 − 𝐵3𝜔

2

+ 𝐵5 cos𝜔𝜏

+  𝐵4𝜔 − 𝐵2𝜔
3 sin𝜔𝜏 = 0 

 

(3.8) 

Squaring and adding equation (5.7) and (5.8), we get: 

 𝜔10 + 𝑎𝜔8 + 𝑏𝜔6 + 𝑐𝜔4 + 𝑑𝜔2 + 𝑟 = 0 (3.9) 

Where  𝑎 =  𝐴1
2 − 𝐵1

2 − 2𝐴2 , 𝑏 =   𝐴2
2 − 𝐵2

2 − 2𝐴4 − 2𝐴1𝐴3 + 2𝐵1𝐵3 , 𝑐 =

  𝐴3
2 − 𝐵3

2 − 2𝐴2𝐴4 + 2𝐵2𝐵4 − 2𝐵1𝐵5 , 𝑑 =   𝐴4
2 − 𝐵4

2 − 2𝐴3𝐴5 + 2𝐵3𝐵5 , 𝑟 =

 𝐴5
2 − 𝐵5

2  

Let 𝜔2 = 𝑦, then equation (5.9) becomes: 

 𝑦5 + 𝑎𝑦4 + 𝑏𝑦3 + 𝑐𝑦2 + 𝑑𝑦 + 𝑟 = 0 (3.10) 

Lemma 3.6.1 If 𝑟 < 0,then equation (3.10) has at least one positive real root. 

Proof. Let 𝑕 𝑦 = 𝑦5 + 𝑎𝑦4 + 𝑏𝑦3 + 𝑐𝑦2 + 𝑑𝑦 + 𝑟 

 Here 𝑕 0 = 𝑟 < 0  ,  lim𝑦→∞ 𝑕 𝑦 = ∞ 

 So, ∃𝑦0 ∈ (0,∞) such that 𝑕 𝑦0 = 0 

Proof completed. 

 Also 𝑕′ 𝑦 = 5𝑦4 + 4𝑎𝑦3 + 3𝑏𝑦2 + 2𝑐𝑦 + 𝑑 

 𝑕′ 𝑦 = 0

⇒ 5𝑦4 + 4𝑎𝑦3 + 3𝑏𝑦2 + 2𝑐𝑦

+ 𝑑 = 0 

(3.11) 

Which becomes: 

 𝑥4 + 𝑝𝑥2 + 𝑞𝑥 + 𝑠 = 0 (3.12) 

Where 𝑥 = 𝑦 +
𝑎

5
 , 𝑝 =

3𝑏

5
−

6𝑎2

25
 ,𝑞 =

2𝑐

5
+

6𝑎𝑏

25
+

8𝑎3

125
, 𝑠 =

𝑑

5
−

2𝑎𝑐

25
+

3𝑎2𝑏

125
−

3𝑎4

625
 

If 𝑞 = 0, then, four roots of equation (5.12) come out to be: 

𝑥1 =  −𝑝 +  𝐷

2
, 𝑥2 = − 

−𝑝 +  𝐷

2
, 𝑥3 =  −𝑝 −  𝐷

2
, 𝑥4 = − 

−𝑝 −  𝐷

2
 

Thus 𝑦𝑖 = 𝑥𝑖 −
𝑎

5
,    𝑖 = 1,2,3,4 are the roots of equation (3.12)where: 
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𝐷 = 𝑝2 − 4𝑠 

Lemma 3.6.2 Suppose 𝑟 ≥ 0 and 𝑞 = 0. 

(I) If 𝐷 < 0, then equation (3.10) has no positive real roots. 

(II) If 𝐷 ≥ 0, 𝑝 ≥ 0, 𝑠 ≥ 0, then equation (3.10) has no positive real roots. 

(III) If (I) and (II) are not satisfied, then equation (3.10) has positive real roots iff ∃ at 

least one 𝑦∗ ∈ (𝑦1, 𝑦2, 𝑦3, 𝑦4) such that 𝑦∗ > 0 and 𝑕(𝑦∗) ≤ 0. 

Proof. (I) If 𝐷 < 0, then equation (3.11) has no positive real roots. Since 

lim𝑦→∞ 𝑕 𝑦 = ∞, we have 𝑕′ 𝑦 > 0 for 𝑦 ∈ 𝑅.Hence 𝑕 0 = 𝑟 ≥ 0 implies 𝑕 𝑦  has 

no zero in  0,∞ . 

(II) Condition 𝐷 ≥ 0, 𝑝 ≥ 0, 𝑠 ≥ 0 imply that 𝑕′ 𝑦  has no zero in  −∞,∞ . It is 

similar to (I) that h(y) has no zero in   0,∞ . 

(III) The sufficiency is obvious. We need only to prove the necessity. If 𝐷 ≥ 0, we 

know that equation (3.12) has only four roots 𝑥1 , 𝑥2, 𝑥3and 𝑥4, that is equation (3.11) 

has only four roots  𝑦1, 𝑦2, 𝑦3 and 𝑦4 at least 𝑦1is a real root. Without loss of generality, 

we assume that 𝑦1, 𝑦2, 𝑦3 and 𝑦4are all real. This implies that 𝑕 𝑦  has at most four 

stationary points 𝑦1, 𝑦2, 𝑦3 and 𝑦4. If it is not true, then we have that either 𝑦1 ≤ 0 or 

𝑦1 > 0 and min 𝑕 𝑦𝑖 : 𝑦𝑖 > 0, 𝑖 = 1,2,3,4  > 0. If 𝑦1 ≤ 0, then 𝑕′ 𝑦  has no zero in 

 0,∞ . Since 𝑕 0 = 𝑟 ≥ 0 is the strict minimum of 𝑕(𝑦) for 𝑦 ≥ 0 which implies 

𝑕(𝑦) > 0 in   0,∞ . If 𝑦1 > 0 and min 𝑕 𝑦𝑖 : 𝑦𝑖 > 0, 𝑖 = 1,2,3,4  > 0, since 𝑕(𝑦) is a 

derivable function and lim𝑦→∞ 𝑕 𝑦 = ∞, then we have 

𝑚𝑖𝑛𝑦>0𝑕 𝑦 = min 𝑕 𝑦𝑖 : 𝑦𝑖 > 0, 𝑖 = 1,2,3,4  > 0. The necessity is proved.  

This completes the proof. 

Next, we assume that 𝑞 ≠ 0. Consider the resolvent of equation (3.12): 

𝑞2 − 4 𝑣 − 𝑝  
𝑣2

4
− 𝑠 = 0 

 ⇒ 𝑣3 − 𝑝𝑣2 − 4𝑠𝑟 + 4𝑝𝑠 − 𝑞2 = 0 (3.13) 

By Cardan formula, equation (3.13) has the following three roots: 

 𝑣1 =  −
𝑞1

2
+  𝐷1 

1
3 

+  −
𝑞1

2
− 𝐷1 

1
3 

+
𝑝

3
, 
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 𝑣2 = 𝜍  −
𝑞1

2
+  𝐷1 

1
3 

+ 𝜍2  −
𝑞1

2
− 𝐷1 

1
3 

+
𝑝

3
‟ 

 𝑣3 = 𝜍2  −
𝑞1

2
+  𝐷1 

1
3 

+ 𝜍  −
𝑞1

2
− 𝐷1 

1
3 

+
𝑝

3
 

Where 𝑝1 = −
𝑝2

3
− 4𝑠, 𝑞1 = −

2𝑝3

27
+

8𝑝𝑠

3
− 𝑞2, 𝐷1 =

𝑝1
3

27
+

𝑞1
2

4
, 𝜍 =

1+ 3𝑖

2
 

 Let 𝑣∗ = 𝑣1 ≠ 𝑝, then equation (3.12) becomes: 

 
𝑥4 + 𝑣∗𝑥

2 +
𝑣∗

2

4

−   𝑣∗ − 𝑝 𝑥2 − 𝑞𝑥 +
𝑣∗

2

4

− 𝑠 = 0 

(3.14) 

For the above equation (3.14), (3.12) implies that the formula in the square brackets is a 

perfect square. If 𝑣∗ > 𝑝, then equation (3.14) becomes  

 𝑥2 +
𝑣∗
2
 

2

−   𝑣∗ − 𝑝𝑥 −
𝑞

2 𝑣∗ − 𝑝
 

2

= 0 

After factorization, we get 

𝑥2 +  𝑣∗ − 𝑝𝑥 −
𝑞

2 𝑣∗−𝑝
+

𝑣∗

2
 and 𝑥2 − 𝑣∗ − 𝑝𝑥 −

𝑞

2 𝑣∗−𝑝
+

𝑣∗

2
 

So, four roots of the equation (3.12) are 

𝑥1 =
− 𝑣∗ − 𝑝 +  𝐷2

2
, 

𝑥2 =
− 𝑣∗ − 𝑝 −  𝐷2

2
 

𝑥3 =
− 𝑣∗ − 𝑝 −  𝐷3

2
 

𝑥4 =
− 𝑣∗ − 𝑝 −  𝐷3

2
 

Where 𝐷2 = −𝑣∗ − 𝑝 +
𝑞

2 𝑣∗−𝑝
 and 𝐷3 = −𝑣∗ − 𝑝 −

𝑞

2 𝑣∗−𝑝
 

Then 𝑦𝑖 = 𝑥𝑖 −
𝑎

5
,    𝑖 = 1,2,3,4 are the roots of equation (3.10).  
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Thus, we have the following result: 

Lemma 3.6.3 Suppose that 𝑟 ≥ 0, 𝑞1 ≠ 0 and 𝑣∗ > 𝑝. 

(I) If 𝐷2 < 0 and 𝐷3 < 0, then equation (3.5) has no positive real roots. 

(II) If (I) is not satisfied, then equation (3.5) has positive real roots iff ∃ at least one 

𝑦∗ ∈ (𝑦1, 𝑦2, 𝑦3, 𝑦4) such that 𝑦∗ > 0 and 𝑕(𝑦∗) ≤ 0. 

Proof. The proof is similar to Lemma 3.6.2. We omit it. Finally, if 𝑣∗ < 𝑝, then 

equation (3.14) becomes: 

 
 𝑥2 +

𝑣∗
2
 

2

−   𝑝 − 𝑣∗𝑥 −
𝑞

2 𝑝 − 𝑣∗
 

2

= 0 
(3.15) 

Let   𝑦 =
𝑞

2 𝑝−𝑣∗ 
−

𝑎

5
.  

Hence, we have the following result. 

Lemma 3.6.4 Suppose that 𝑟 ≥ 0, 𝑞1 ≠ 0 and 𝑣∗ < 𝑝, then equation (3.10) has positive 

real roots iff 
𝑞2

4 𝑝−𝑣∗ 2 +
𝑣∗

2
= 0 and 𝑦 > 0 and 𝑕 𝑦  ≤ 0. 

Proof. Assume equation (5.14) has a real root 𝑥0satisfying: 

𝑥0 =
𝑞

2 𝑝 − 𝑣∗ 
, 𝑥0

2 = −
𝑣∗
2

 

⇒
𝑞2

4 𝑝−𝑣∗ 2 +
𝑣∗

2
= 0. 

Therefore, equation (3.14) has a real root 𝑥0iff 
𝑞2

4 𝑝−𝑣∗ 2 +
𝑣∗

2
= 0.  

The rest of the proof is similar to Lemma 3.6.2. We omit it. 

Suppose equation (3.10) possesses positive roots. In general, we suppose that it has 5 

positive roots denoted by 𝑦∗
𝑖
, 𝑖 = 1,2,3,4,5. Then equation (3.9) has 5 positive roots 

𝜔𝑖 =  𝑦∗𝑖 , 𝑖 = 1,2,3,4,5. 

We have        cos𝜔𝜏 =
𝐴6

 𝐵4𝜔−𝐵2𝜔3 2+ 𝐵1𝜔4−𝐵3𝜔2+𝐵5 2 

Which gives       𝜏 =
1

𝜔
 𝑐𝑜𝑠−1  

𝐴6

 𝐵4𝜔−𝐵2𝜔3 2+ 𝐵1𝜔4−𝐵3𝜔2+𝐵5 2 + 2𝑗𝜋  ; 𝑗 = 0,1,2,3, …. 
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Where 𝐴6 = −  𝐵1𝜔
4 − 𝐵3𝜔

2 + 𝐵5  𝐴1𝜔
4 − 𝐴3𝜔

2 + 𝐴5 +  𝐵4𝜔 − 𝐵2𝜔
3  𝜔5 −

𝐴2𝜔3+𝐴4𝜔 

Let𝜏𝑘
(𝑗 ) =

1

𝜔𝑘
 𝑐𝑜𝑠−1  

𝐴6

 𝐵4𝜔−𝐵2𝜔3 2+ 𝐵1𝜔4−𝐵3𝜔2+𝐵5 2
 + 2𝑗𝜋  ; 𝑘 = 1,2,3,4,5. ; 𝑗 =

0,1,2,3, …. 

Then ∓𝑖𝜔𝑘  is a pair of purely imaginary roots of equation (3.6) 

Where 𝜏 = 𝜏𝑘
(𝑗 ), 𝑘 = 1,2,3,4,5. ; 𝑗 = 1,2,3, … 

We have lim𝑗→∞ 𝜏𝑘
(𝑗 ) = ∞, 𝑘 = 1,2,3,4,5.    

Thus, we can define: 

 𝜏0 = 𝜏𝑘0

 𝑗0 = 𝑚𝑖𝑛
1≤𝑘≤4,𝑗≥1

 𝜏𝑘
 𝑗   ,   

𝜔0 = 𝜔𝑘0
, 𝑦0 = 𝑦𝑘0

∗ 

 

 

(3.16) 

Lemma 3.6.5 Suppose that 𝑢1 > 0, (𝑢1𝑢2 − 𝑢3) > 0, 𝑢3 𝑢1𝑢2 − 𝑢3 + 𝑢1 𝑢5 −

𝑢1𝑢4>0, 𝑢2𝑢5+𝑢3𝑢3𝑢1𝑢2−𝑢3+𝑢1𝑢4𝑢5−𝑢1𝑢4>0, 𝑢5>0. 

Where 𝑢1 =  𝐴1 + 𝐵1 , 𝑢2 =  𝐴2 + 𝐵2 , 𝑢3 =  𝐴3 + 𝐵3 , 𝑢4 =  𝐴4 + 𝐵4 , 𝑢5 =

 𝐴5 + 𝐵5 .  

(I) If any one of the following condition holds: (i) 𝑟 < 0 (ii) 𝑟 ≥ 0, 𝑞 = 0, 𝐷 ≥ 0 and 

𝑝 < 0 𝑜𝑟 𝑠 ≤ 0 and there exists a 𝑦∗ ∈ (𝑦1, 𝑦2, 𝑦3, 𝑦4) such that 𝑦∗ > 0 and 𝑕(𝑦∗) ≤ 0 

(iii) 𝑟 ≥ 0, 𝑞 ≠ 0, 𝑣∗ > 𝑝,𝐷2 ≥ 0 𝑜𝑟 𝐷3 ≥ 0  and there exists a 𝑦∗ ∈ (𝑦1, 𝑦2, 𝑦3 , 𝑦4) 

such that 𝑦∗ > 0 and 𝑕(𝑦∗) ≤ 0 (iv) 𝑟 ≥ 0, 𝑞 ≠ 0, 𝑣∗ < 𝑝,
𝑞2

4 𝑝−𝑣∗ 2 +
𝑣∗

2
= 0, 𝑦 > 0 and 

𝑕 𝑦  ≤ 0, then negative real part will be there in all roots of equation(3.1) when𝜏 ∈

 0, 𝜏0  

(II) If any one of the conditions (i)-(iv) of (I) are not satisfied, then negative real parts 

will be there in all roots of equation (3.1) for all 𝜏 ≥ 0. 

Proof. When 𝜏 = 0, equation (3.6) becomes; 

𝜆5 +  𝐴1 + 𝐵1 𝜆
4 +  𝐴2 + 𝐵2 𝜆

3 +  𝐴3 + 𝐵3 𝜆
2 +  𝐴4 + 𝐵4 𝜆 +  𝐴5 + 𝐵5 = 0 

 ⇒ 𝜆5 + 𝑢1𝜆
4 + 𝑢2𝜆

3 + 𝑢3𝜆
2 + 𝑢4𝜆 + 𝑢5

= 0 

(3.17) 
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All roots of equation (3.17) have negative real parts iff supposition of Lemma 3.6.5 

holds (Routh-Hurwitz‟s criteria). 

From Lemmas 3.6.1- 3.6.4, we know that if conditions (i)-(iv) of (I) are not satisfied, 

then none of the roots of equation (3.6) will have zero real part for all 𝜏 ≥ 0. 

If one of the conditions (i)-(iv) holds, when 𝜏 ≠ 𝜏𝑘
 𝑗  , 𝑘 = 1,2,3,4,5. ; 𝑗 ≥ 1, then none 

of the roots of equation (3.6) will have zero real part and 𝜏0 is the minimum value of 𝜏 

for which the roots of equation (5.6) are purely imaginary. This Lemma is concluded by 

using Theorem 1.3.8. 

 Let 𝜆 𝜏 = 𝜓 𝜏 + 𝑖𝜔(𝜏) (3.18) 

be the roots of equation (3.6) satisfying: 𝜓 𝜏0 = 0, 𝜔 𝜏0 = 𝜔0. 

Then we have the following Lemma. 

Lemma 3.6.6 Suppose 𝑕′(𝑦0) ≠ 0. If 𝜏 = 𝜏0, then ∓𝑖𝜔0 is a pair of simple purely 

imaginary roots of equation (3.6). Moreover, If the condition of Lemma 3.6.5 (I) are 

satisfied, then 
𝑑

𝑑𝜏
 𝑅𝑒𝜆(𝜏0) > 0. 

Proof. Substituting 𝜆 𝜏  into equation (3.6) and differentiating both sides with respect 

to 𝜏 

 
𝑑𝜆

𝑑𝜏
 
−1

=
 5𝜆4 + 4𝐴1𝜆

3 + 3𝐴2𝜆
2 + 2𝐴3𝜆 + 𝐴4 𝑒

𝜆𝜏 +  4𝐵1𝜆
3 + 3𝐵2𝜆

2 + 2𝐵3𝜆 + 𝐵4 

 𝐵1𝜆4 + 𝐵2𝜆3 + 𝐵3𝜆2 + 𝐵4𝜆 + 𝐵5 
−
𝜏

𝜆
 

By calculation, we have: 

  5𝜆4 + 4𝐴1𝜆
3 + 3𝐴2𝜆

2 + 2𝐴3𝜆 + 𝐴4 𝑒
𝜆𝜏  

𝜏=𝜏0

= 𝐴7 cos𝜔0𝜏 + 𝐴8 sin𝜔0𝜏 + 𝑖 −𝐴8 cos𝜔0𝜏 + 𝐴7 sin𝜔0𝜏  

 4𝐵1𝜆
3 + 3𝐵2𝜆

2 + 2𝐵3𝜆 + 𝐵4 𝜏=𝜏0
= 𝐵4 − 3𝐵2𝜔0

2 + 𝑖𝜔0 2𝐵3 − 4𝐵1𝜔0
2  

 𝐵1𝜆
4 + 𝐵2𝜆

3 + 𝐵3𝜆
2 + 𝐵4𝜆 + 𝐵5 𝜏=𝜏0

= 𝜔0
2 𝐵2𝜔0

2 − 𝐵5 + 𝑖𝜔0 𝐵5 − 𝐵3𝜔0
2 + 𝐵1𝜔0

4  

Where 𝐴7 =  5𝜔0
4 − 3𝐴3𝜔0

2 + 𝐴4 , 𝐴8 =  4𝐴1𝜔0
3 − 2𝐴3𝜔0  

Then, we have: 
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𝑑 𝑅𝑒𝜆 𝜏0 

𝑑𝜏
 

−1

=
𝑦0𝑕

′(𝑦0)

𝐴9
 

(3.19) 

Where 𝐴9 = 𝜔0
2  𝐵2𝜔0

3 − 𝐵5𝜔0 
2 +  𝐵5 − 𝐵3𝜔0

2 + 𝐵1𝜔0
4 2  

Thus, we have: 

 
sign  

𝑑 𝑅𝑒𝜆 𝜏0 

𝑑𝜏
 =  sign   

𝑑 𝑅𝑒𝜆 𝜏0 

𝑑𝜏
 

−1

 

=  sign  
𝑦0𝑕

′(𝑦0)

𝐴9
  

(3.20) 

Notice that 𝐴9, 𝑦0 > 0. 

Thus, applying the Lemmas 3.6.1-3.6.6, we have the following theorem: 

Theorem 3.1. Let 𝜔0, 𝑦0, 𝜏0 and 𝜆(𝜏) be defined by (3.16) to (3.18), respectively. 

Assume that the supposition of Lemma 3.6.5 holds. 

(I) If the conditions (i)-(iv) of Lemma 3.6.5 are not satisfied, then all the roots of 

equation (3.6) have negative real parts for all 𝜏 ≥ 0. 

(II) If one of the conditions (i)-(iv) of Lemma 3.6.5 is satisfied, then all the roots of 

equation (3.6) have negative real parts when 𝜏 ∈  0, 𝜏0 ; when 𝜏 = 𝜏0 and 𝑕′ 𝑦0 ≠ 0, 

then ∓𝑖𝜔0 is a pair of purely imaginary roots of equation (3.6) and all other roots have 

negative real parts. In addition, 
𝑑 𝑅𝑒𝜆  𝜏0 

𝑑𝜏
> 0 and equation (3.6) has at least one root 

with positive real part when 𝜏 ∈  𝜏0, 𝜏1 , where 𝜏1 is the first value of 𝜏 > 𝜏0 such that 

equation (3.6) has purely imaginary roots. 

3.7 Numerical Example 

Numerical method has been used to find the solution of the system of delay differential 

equations given by equations (3.1) – (3.5), we consider the following values of 

parameters: 

𝑈𝑛 = 10, 𝑇 = 1.5, 𝑅𝑛 = 1, 𝜇 = 1.05, 𝑑1 = 0.9, 𝑑2 = 0.9, 𝜌 = 0.3, 𝛽10 = 0.2, 𝛽20 =

0.2, ∆1= 0.1, ∆2= 0.1,𝐼 = 2, 𝛼1 = 1.6, ∆= 0.1 

For the given parametric values, we have 𝐸1: 𝑁∗
1 = 1.6830,𝑁∗

2 = 1.1057,𝑊∗
1 =

3.0490,𝑊∗
2 = 1.3172, 𝐻∗

𝑆 = 0.7161. 

In fact, without toxic effect, 𝑁∗
1 = 1.7357, 𝑁∗

2 = 1.1186,𝑊∗
1 = 3.2041,𝑊∗

2 =

1.3574. 
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Figure 3. 1Graph between nutrient concentration of root 𝑁1and time t with toxicity and 

without toxicity 

 

 

 

Figure 3. 2Graph between nutrient concentration of shoot 𝑁2 and time t with toxicity 

and without toxicity. 
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Figure 3. 3Graph between structural dry weight of root𝑊1 and time t with toxicity and 

without toxicity. 

 

Figure 3. 4Graph between structural dry weight of shoot 𝑊2 and time t with toxicity 

and without toxicity. 

 

0 20 40 60 80 100 120 140 160 180 200
1

1.5

2

2.5

3

3.5

Time t

W
1

 

 

W
1
 With Toxicity H

s

W
1
 Without Toxicity H

s

0 20 40 60 80 100 120 140 160 180 200
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Time t

W
2

 

 

W
2
 With Toxicity H

s

W
2
 Without Toxicity H

s



 

60 
 

 

Figure 3. 5The interior equilibrium point 𝐸1 (1.6830,1.1057,3.0490,1.3172,0.7161) of 

the system is stable when there is no delay that is τ = 0. 

 

Figure 3. 6The interior equilibrium point Interior 

𝐸1(1.6830,1.1057,3.0490,1.3172,0.7161) is asymptotically stable with delay τ < 0.89. 

 

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

Time t

S
o

lu
ti

o
n

 y

 

 

N
1

N
2

W
1

W
2

H
s

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

Time t

S
o

lu
ti

o
n

 y

 

 

N
1

N
2

W
1

W
2

H
s



 

61 
 

 

Figure 3. 7The interior equilibrium point𝐸1 (1.6830,1.1057,3.0490,1.3172,0.7161) 

losses its stability and Hopf- bifurcation occurred with delay τ ≥ 0.89. 

 

Figure 3. 8Increase in intake rate of toxic metal from I = 2 to I = 4, increases the critical 

value of delay parameter from τ = 0.89 to τ = 0.96. 

3.8 Sensitivity Analysis 

Sensitivity analysis helps to know the dependence of system solution on perturbation in 
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section, two model parameters, namely rate of nutrient transfer from root to shoot 𝑇 and 

consumption coefficient 𝜇 of delayed nutrient has been perturbed and the corresponding 

numerical solution of the state variables-concentration of nutrients, structural dry 

weights and concentration of toxic metal (𝑁1, 𝑁2,𝑊1,𝑊2, 𝐻𝑠) has been shown 

graphically. The main observations have been discussed in detail in Section 3.9- 

Conclusion. 

 

Figure 3. 9Time series graph between partial changes in concentration of nutrient 𝑁1 in 

root compartment and different values of rate of nutrient transfer T. 

 

Figure 3. 10Time series graph between partial changes in concentration of nutrient 𝑁2 

in shoot compartment and different values of rate of nutrient transfer T. 
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Figure 3. 11Time series graph between partial changes in structural dry weight 𝑊1 of 

root compartment and different values of rate of nutrient transfer T. 

 

Figure 3. 12Time series graph between partial changes in structural dry weight 𝑊2 of 

shoot compartment and different values of rate of nutrient transfer T. 
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Figure 3. 13Time series graph between partial changes in concentration of toxic metal 

𝐻𝑠 in soil and different values of rate of nutrient transfer T. 

 

Figure 3. 14Time series graph between partial changes in concentration of nutrient 𝑁1 

in root compartment and different values of consumption coefficient μ of delayed 

nutrient. 

 

 

0 20 40 60 80 100 120 140 160 180 200
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Time t


 H

s
/

 T

 

 

Toxic metal conc. H
s
 with Transfer T = 1.5

Toxic metal conc. H
s
 with Transfer T = 1.6

Toxic metal conc. H
s
 with Transfer T = 1.7

0 20 40 60 80 100 120 140 160 180 200
1

1.5

2

2.5

3

3.5

Time t


 N

1
/


 

 

Nutrient conc. N
1
 with Consumption coefficient  = 1.05

Nutrient conc. N
1
 with Consumption coefficient  = 1.00

Nutrient conc. N
1
 with Consumption coefficient  = 0.95



 

65 
 

 

Figure 3. 15Time series graph between partial changes in concentration of nutrient 𝑁2 

in shoot compartment and different values of consumption coefficient μ. 

 

Figure 3. 16Time series graph between partial changes in structural dry weight 𝑊1 of 

root compartment and different values of consumption coefficient μ . 
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Figure 3. 17Time series graph between partial changes in structural dry weight 𝑊2 of 

shoot compartment and different values of consumption coefficient μ. 

 

Figure 3. 18Time series graph between partial changes in concentration of toxic metal 

𝐻𝑠 in soil and different values of consumption coefficient μ. 
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1.1057)  with toxic effect as shown by Figure 3.1 and Figure 3.2. we also concluded 

0 20 40 60 80 100 120 140 160 180 200
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Time t


 W

2
/


 

 

Structural dry weight W
2
 with Consumption coefficient  = 1.05

Structural dry weight W
2
 with Consumption coefficient  = 1.00

Structural dry weight W
2
 with Consumption coefficient  = 0.95

0 20 40 60 80 100 120 140 160 180 200
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Time t


 H

s
/


 

 

Toxic metal conc. H
s
 with consumption coefficient  = 1.05

Toxic metal conc. H
s
 with consumption coefficient  = 1.00

Toxic metal conc. H
s
 with consumption coefficient  = 0.95



 

67 
 

that the equilibrium levels of structural dry weight in root (𝑊∗
1 = 3.2041)  and shoot 

(𝑊∗
2 = 1.3574) are more with no toxic effect than equilibrium level of structural dry 

weight in root (𝑊∗
1

= 3.0490) and shoot (𝑊∗
2 = 1.3172)  with toxic effect as shown 

by Figure 3.3 and Figure 3.4. It shows that involvement of toxic metal decreases the 

levels of nutrient concentration and structural dry weights of the plant.  

We also studied the stability and Hopf- bifurcation about the interior equilibrium of the 

system governed by equations (3.1)- (3.5).It has been concluded that when there is no 

time delay, interior equilibrium 𝐸1(1.6830, 1.1057, 3.0490, 1.3172, 0.7161) is stable 

as shown by Figure 3.5 as proved by lemma 3.6.5 using Routh-Hurwitz‟s criteria. But 

under the same set of values of parameters, we could find a critical value of the 

parameter delay below which that is 𝜏 < 0.89, the system is asymptotically stable as 

shown by Figure 3.6 and unstable above that critical value of parameter 𝜏 ≥ 0.89, as 

shown by Figure 3.7 as proved by lemmas 3.6.1-lemma 3.6.4. While passing through 

the critical value 𝜏 = 0.89 the system showed oscillations, hence Hopf bifurcation 

occurred. Further with increase in the intake rate of toxic metal, there is more decrease 

in nutrient concentration and structural dry weight of root and shoot compartment. The 

same combined adverse effect of increased intake rate of toxic metal and increased time 

delay is shown in Figure 3.8.  

The sensitivity of model solutions is established by taking different values of the 

parameters appearing in system. It improves the understanding of the role played by 

specific model parameters.  

Sensitivity analysis reveals that with increase in the transfer rate of nutrient 𝑇 from root 

to shoot, the state variables-concentration of nutrients in root and shoot compartments, 

structural dry weights of root and shoot compartments and concentration of toxic metal 

in soil (𝑁1, 𝑁2, 𝑊1,𝑊2, 𝐻𝑠) tends towards stability for the same set of remaining 

parameters including time delay 𝜏 = 0.89 . At T = 1.5, all the above-mentioned state 

variables show unstable behaviour via Hopf bifurcation. But as the value of T is 

increased to T= 1.6, all the state variables start showing the asymptotic stability and 

finally for T = 1.7, all the state variables start converging to a stable equilibrium point 

as shown by Figures 3.9 to 3.13. Apart from converging to stability, the structural dry 

weight 𝑊2 of shoot compartment also show increase in its value as we increase the 

value of T from 1.5 to 1.7 as shown by Figure 3.12. Similarly, as we decrease the value 

of consumption coefficient 𝜇 from 𝜇 = 1.05 to 𝜇 = 0.95, all the above-mentioned state 
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variables start converging to a stable equilibrium as shown by Figures 3.14 to 3.18. In 

addition to convergence to stability, the structural dry weights 𝑊1 and 𝑊2 of root and 

shoot compartment show increase in their values as we decrease the value of 

consumption coefficient 𝜇 of delayed nutrient as shown by Figure 3.16 and Figure 3.17.  
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Chapter 4 

Modelling on Single Plant Growth Dynamics 

Considering Delay in the Presence of Toxic Metal 

4.1 Introduction 

Plants need several elements for normal growth like Carbon, hydrogen, and oxygen 

which come from the air and water and other nutrients which come from soil. Nutrients 

are components in food that an organism uses to survive and grow. Plant -soil 

interaction means the mechanism in which the plants take essential nutrients from the 

soil through their roots which leads to growth of plants. A low concentration of heavy 

metals is necessary for growth of plants, but excess of these metals adversely affect the 

soil quality and hence the plant growth gets slowed down considerably. Thornley  

[162]was the first to apply mathematical modelling to wide range of subjects in plant 

physiology to predict effect of factors such as temperature, humidity, radiation input 

and concentration of CO2on process rates of respiration, photosynthesis, transpiration, 

fluid transport and stomatal responses. Lacointe[21] concluded that models suggested 

by Thornley are designed for a particular plant species and under particular conditions, 

so they cannot be applicable to a wider range of conditions. The lack of explicit 

representation of topology and geometry (Plant morphology) was pointed out by Godin 

et al.[163].  Deleo et al. [173] gave a simple model that coupled the effect of toxic metal 

and soil chemistry to study the adverse effect of toxic metal on biomass of trees. Guala 

et al.[166], [167] further modified the parameters of the model given by Deleo and 

showed that the model is applicable to not only trees, but all plants in general.   Misra 

and Kalra [83] studied how the toxicity of heavy metals can adversely affect the growth 

of an individual plant using a two-compartment mathematical model. Rouches 

theorem[158] plays a very important part for the discussion of distribution of roots of 

exponential polynomials. Ruan and Wei [112]used Rouches theorem for the discussion 

of distribution of roots of exponential polynomials. Kubiaczyk and Saker[164] studied 

stability and oscillations in system of non-linear delay differential equations of 

population dynamics. Ruan and Wei[157] used Rouches theorem for the discussion of 

distribution of roots of exponential polynomials for study of stability involving delays. 

Naresh et al.[169]studied the effect of toxicant on plant biomass with time delays. 

Shukla et al.[170] studied the effect of environmentally degraded soil by rain water and 
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wind on crop yield. Sikarwar[174] studied the effect of time delay on the dynamics of a 

multi team prey predator system. Naresh et al. [72]studied the effect of an intermediate 

toxic product formed by uptake of a toxicant on plant biomass. Huang et al. 

[129]studied analysis for global stability of system of non-linear delay differential 

equations involving population growth. Zhang et al. [123]studied the distribution of the 

roots of a fifth-degree exponential polynomial with applications to a delayed neural 

network model. The explicit formulae have been derived for determining the properties 

of the Hopf-bifurcation at the critical value using the normal form theory and manifold 

reduction by Hassard et al.[175]. Bocharov and Rihan[111] gave adjoint and direct 

methods for sensitivity analysis in numerical modelling in biosciences using delay 

differential equations.Rihan[144] did the Sensitivity analysis for dynamic systems with 

time-lags using adjoint equations and direct methods when the parameters appearing in 

the model are not only constants but also variables of time. Banks et al.[176] presented 

theoretical foundations for traditional sensitivity and generalized sensitivity functions 

for a general class of nonlinear delay diff erential equations. They Included theoretical 

results for sensitivity with respect to the delays.Ingalls et al.[150] developed a 

parametric sensitivity analysis for periodic solutions of delay diff erential equations. 

In the last decade, a lot of work has been done in the field of plant soil interaction under 

the effect of toxic metals. Till date, delay differential equations have not been 

prominently used in the field of soil-plant dynamics and agriculture. In the view of 

above, a mathematical model is proposed for the study of plant growth by introducing 

delay parameter in the terms containing consumption and utilization coefficient and the 

complex behaviour giving rise to Hopf bifurcation is studied.  

4.2 Mathematical Model 

The plant growth dynamics is governed by the following system of non-linear delay 

differential equations involving three state variables: Concentration of nutrients 𝑁 in the 

soil, amount of plant biomass 𝑊 and concentration of toxic metal 𝑀 in the soil 

 𝑑𝑁

𝑑𝑡
=  𝐾𝑁 − 𝐾𝑁𝑀𝑀 − 𝛼𝑁 𝑡 − 𝜏 𝑊 − 𝛿1𝑁 

(4.1) 

 𝑑𝑊

𝑑𝑡
= 𝛽𝑁 𝑡 − 𝜏 𝑊 − 𝛿2𝑊 

(4.2) 

 𝑑𝑀

𝑑𝑡
= 𝐼 − 𝛾𝑁𝑀 − 𝛿3𝑀 

(4.3) 

With initial conditions 𝑁 0 > 0,𝑊 0 > 0,𝑀 0 > 0 for all 𝑡 and 𝑁 𝑡 − 𝜏 = 

constant for 𝑡 ∈  −𝜏, 0 . 
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The parameters defined are as: 𝐾𝑁 is the availability of total nutrients and  𝐾𝑁 −

𝐾𝑁𝑀𝑀  is the supply of nutrients hindered due to presence of toxic metal. 𝛼 is the 

consumption coefficient.  𝛽 is the utilization coefficient for nutrients. 𝛾 is the depletion 

of 𝑀 due to interaction between 𝑀 and 𝑁. 𝐼 is the initial input of toxic metal 𝑀 in the 

soil. 𝛿1, 𝛿2, 𝛿3 are natural decay rates of 𝑁,𝑊 and 𝑀 respectively. Here all the 

parameters 𝛼, 𝛽, 𝛾, 𝐾𝑁 , 𝐾𝑁𝑀  , 𝐼, 𝛿1, 𝛿2, 𝛿3 are taken as positive. 

4.3 Boundedness of Solution 

The boundedness of solutions of the model given by (4.1) -(4.3) is given by the lemma 

stated below: 

Lemma 4.3.1  The model has all its solution lying in the region 𝐶 =   𝑁,𝑊,𝑀 ∈

𝑅+
3: 0 ≤ 𝑁 + 𝑊 ≤

 𝛿3𝐾𝑁−𝐼𝐾𝑁𝑀  

𝛿3𝜑
, 0 ≤ 𝑀 ≤

𝐼

𝛿3
 , 𝑎𝑠 𝑡 → ∞, for all positive initial values 

{𝑁 0 ,𝑊 0 ,𝑀 0 ,𝑁 𝑡 − 𝜏 = Constant for all 𝑡 ∈ [−𝜏, 0]} ∈ 𝐶 ⊂ 𝑅+
3, where 

𝜑= min(𝛼, 𝛽, 𝛿1, 𝛿2).  

Proof: Consider the following function: 

𝐵 𝑡 = 𝑁(𝑡) + 𝑊(𝑡) 

𝑑𝐵(𝑡)

𝑑𝑡
=

𝑑

𝑑𝑡
 𝑁(𝑡) + 𝑊(𝑡)  

Using Equations (4.1) -(4.2) and 𝜑= min(𝛼, 𝛽, 𝛿1, 𝛿2) and assuming that 𝑁𝑅(𝑡) ≈

𝑁𝑅 𝑡 − 𝜏  as 𝑡 → ∞ ,  

𝑑𝑊(𝑡)

𝑑𝑡
≤  𝐾𝑁 −

𝐼𝐾𝑁𝑀
𝛿3

 −  𝜑𝐵 𝑡 . 

Applying the comparison theorem, as 𝑡 → ∞ 

𝐵 𝑡 ≤
 𝛿3𝐾𝑁 − 𝐼𝐾𝑁𝑀 

𝛿3𝜑
 

So,   0 ≤ 𝑁 𝑡 + 𝑊 𝑡 ≤
 𝛿3𝐾𝑁−𝐼𝐾𝑁𝑀  

𝛿3𝜑
 

From equation (4.3):  
𝑑𝑀

𝑑𝑡
= 𝐼 − 𝛾𝑀𝑁 − 𝛿3𝑀 

⇒
𝑑𝑀

𝑑𝑡
≤ 𝐼 − 𝛿3𝑀 
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Then by usual comparison theorem, when 𝑡 → ∞:  

𝑀 ≤
𝐼

𝛿3
 

So,    0 ≤ 𝑀 ≤
𝐼

𝛿3
 

4.4 Positivity of Solutions 

Positivity means that the system sustains. For positive solutions, one needs to show that 

all solution of system given by Equations. (4.1)– (4.3), where initial condition is 

𝑁 0 > 0,𝑊 0 > 0,𝑀 0 > 0 for all 𝑡 and 𝑁 𝑡 − 𝜏 = constant for 𝑡 ∈  −𝜏, 0  , the 

solution  𝑁 𝑡 ,𝑊 𝑡 ,𝑀(𝑡)  of the model stays positive for all time 𝑡 > 0. 

From equation (4.3):  
𝑑𝑀

𝑑𝑡
≥ −(𝛾𝑁 + 𝛿3)𝑀 

⇒
𝑑𝑀

𝑑𝑡
≥ − 

𝛾 𝛿3𝐾𝑁 − 𝐼𝐾𝑁𝑀 + 𝛿3
2𝜑

𝛿3𝜑
  

⇒ 𝑀 ≥ 𝑐1𝑒
− 

𝛾 𝛿3𝐾𝑁−𝐼𝐾𝑁𝑀  +𝛿3
2𝜑

𝛿3𝜑
 𝑡

 

This concludes that 𝑀 > 0 for all 𝑡. 

Similar argument holds for 𝑁 and 𝑊. 

4.5 Interior Equilibrium 

We calculate an interior equilibrium𝐸∗ of model. The system of equations (4.1) -(4.3) 

has one feasible equilibrium 𝐸∗ 𝑁∗,𝑊∗, 𝑀∗  where: 

𝑁∗ =
𝛿2

𝛽
, 

𝑊∗ =  
𝐾𝑁  𝛽𝛿3+𝛾𝛿2 −𝐾𝑁𝑀 𝛽𝐼

 𝛽𝛿3+𝛾𝛿2 
 −

𝛿1

𝛼
, 

𝑀∗ =
𝛽𝐼

 𝛽𝛿3+𝛾𝛿2 
. 

4.6 Stability Analysis and Local Hopf-Bifurcation 

Here, the dynamical behaviour of the interior equilibrium points 𝐸∗ 𝑁∗,𝑊∗, 𝑀∗  of the 

model given by (4.1) -(4.3) is analysed. The exponential characteristic equation about 

equilibrium 𝐸∗ is given by: 
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 𝜆3 + 𝑚1𝜆
2 + 𝑚2𝜆 + 𝑚3 +  𝑛1𝜆

2 + 𝑛2𝜆 + 𝑛3 𝑒
−𝜆𝜏

= 0 

(4.4) 

Where 𝑚1 =  𝛿1 + 𝛿2 + 𝛿3 + 𝛾𝑁∗ ,𝑚2 =  𝛿1𝛿2 + 𝛿2𝛿3 + 𝛿3𝛿1 + 𝛿1𝛾𝑁
∗ +

𝐾𝑁𝑀𝛾𝑀∗, 𝑚3=𝛿1𝛿2𝛿3+𝛿2𝐾𝑁𝑀𝛾𝑀∗, 𝑛1=𝛼𝑊∗, 𝑛2=𝛼𝑊∗𝛿1+𝛿3+𝛾𝑁∗, 

𝑛3 = 𝛿2𝛿3𝛼𝑊
∗. 

Clearly 𝑚1, 𝑚2, 𝑚3, 𝑛1, 𝑛2, 𝑛3 are all positive. 

Clearly 𝜆 = 𝑖𝜔 is a solution of equation (4.4) if and only if  

  𝑖𝜔 3 + 𝑚1 𝑖𝜔 
2 + 𝑚2 𝑖𝜔 + 𝑚3

+  𝑛1 𝑖𝜔 
2 + 𝑛2 𝑖𝜔 + 𝑛3 𝑒

−𝑖𝜔𝜏 = 0 

 

(4.5) 

Separating real and imaginary parts: 

 𝑚3 −𝑚1𝜔
2 +  𝑛3 − 𝑛1𝜔

2 𝑐𝑜𝑠 𝜔𝜏 + 𝑛2𝜔 sin𝜔𝜏 = 0 (4.6) 

 𝑚2𝜔 − 𝜔3 + 𝑛2𝜔 𝑐𝑜𝑠 𝜔𝜏 −  𝑛3 − 𝑛1𝜔
2 sin𝜔𝜏 = 0 (4.7) 

Which gives: 

 𝜔6 +  𝑚1
2 − 𝑛1

2 − 2𝑚2 𝜔
4

+  𝑚2
2 − 𝑛2

2 + 2𝑛1𝑛3 − 2𝑚1𝑚3 𝜔
2

+  𝑚3
2 − 𝑛3

2 = 0 

 

 

(4.8) 

 

Let𝑎 =  𝑚1
2 − 𝑛1

2 − 2𝑚2 , 𝑏 =  𝑚2
2 − 𝑛2

2 + 2𝑛1𝑛3 − 2𝑚1𝑚3 , 𝑐 =  𝑚3
2 − 𝑛3

2  

Let 𝜔2 = 𝑦 , then equation (8) becomes: 

 𝑦3 + 𝑎𝑦2 + 𝑏𝑦 + 𝑐 = 0 (4.9) 

Lemma4.6.1 If 𝑐 < 0, Equation (4.9) contains at least one positive real root. 

Proof. Let   𝑕 𝑦 = 𝑦3 + 𝑎𝑦2 + 𝑏𝑦 + 𝑐  

Here   𝑕 0 = 𝑐 < 0  ,  lim𝑦→∞ 𝑕 𝑦 = ∞ 

So, ∃𝑦0 ∈ (0,∞) such that 𝑕 𝑦0 = 0  

Proof completed. 

Lemma 4.6.2 If 𝑐 ≥ 0, then necessary condition for equation (4.9) to have positive real 

roots is 𝐷 = 𝑎2 − 3𝑏 ≥ 0. 

Proof.  Since 𝑕 𝑦 = 𝑦3 + 𝑎𝑦2 + 𝑏𝑦 + 𝑐, therefore𝑕′ 𝑦 = 3𝑦2 + 2𝑎𝑦 + 𝑏 

 𝑕′ 𝑦 = 0 ⇒ 3𝑦2 + 2𝑎𝑦 + 𝑏 = 0 (4.10) 

The roots of equation (4.10) can be expressed as: 
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𝑦1,2 =

−2𝑎 ∓  4𝑎2 − 12𝑏

6
=
−𝑎 ∓  𝐷

3
 

(4.11) 

If 𝐷 < 0, then equation (4.10) does not have any real roots. So, the function  𝑕 𝑦  is 

monotone increasing function in y. It follows from  𝑕 0 = 𝑐 ≥ 0 that equation (4.9) 

has no positive real roots.  

Proof completed. 

Clearly if 𝐷 ≥ 0, then 𝑦1 =
−𝑎+ 𝐷

3
  is local minima of 𝑕 𝑦 .  Thus we have the 

following Lemma. 

Lemma4.6.3 If 𝑐 ≥ 0, then equation (4.9) has positive roots if and only if 𝑦1 > 0 and  

𝑕 𝑦1 ≤ 0 . 

Proof. The sufficiency is obvious. Only necessity needs to be proved. Otherwise, 

assume that either 𝑦1 ≤ 0 or 𝑦1 > 0and 𝑕 𝑦1 > 0 .If 𝑦1 ≤ 0, since 𝑕 𝑦  is increasing 

for 𝑦 ≥ 𝑦1 and 𝑕 0 = 𝑐 ≥ 0, it follows that 𝑕 𝑦  has no positive real zeros. If 𝑦1 >

0and 𝑕 𝑦1 > 0, since 𝑦2 =
−𝑎− 𝐷

3
 is the local maxima value, it follows that 𝑕 𝑦1 ≤

𝑕 𝑦2 . Hence, 𝑕 0 = 𝑐 ≥ 0, As𝑕 𝑦  does not have positive real roots.  

This completes proof. 

Lemma 4.6.4Suppose 𝑦1is defined by equation (4.11). 

(I)If 𝑐 < 0, Equation (4.9) contains at least one positive real root. 

(II) If 𝑐 ≥ 0and  𝐷 = 𝑎2 − 3𝑏 < 0, then equation (4.9) has no positive roots. 

(III) If 𝑐 ≥ 0, then equation (4.9) has positive roots if and only if  𝑦1 > 0 and  𝑕 𝑦1 ≤

0 . 

Proof. Suppose that equation (4.9) has positive roots. Without loss of generality, 

assume that it has three positive roots, denoted by 𝑦1, 𝑦2, 𝑦3.Then equation (4.8) has 

three positive roots, say𝜔1 =  𝑦1 , 𝜔2 =  𝑦2 , 𝜔3 =  𝑦3 . 

From equation (7): sin𝜔𝜏 =
𝑚2𝜔−𝜔

3

𝑑
 

Which gives 𝜏 =
1

𝜔
 𝑠𝑖𝑛−1  

𝑚2𝜔−𝜔
3

𝑑
 + 2(𝑗 − 1)𝜋  ; 𝑗 = 1,2,3, − 

Let 𝜏𝑘
(𝑗 ) =

1

𝜔𝑘
 𝑠𝑖𝑛−1  

𝑚2𝜔𝑘−𝜔𝑘
3

𝑑
 + 2(𝑗 − 1)𝜋  ; 𝑘 = 1,2,3. ; 𝑗 = 0,1,2, − − − 
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Then ∓𝑖𝜔𝑘  is a pair of purely imaginary roots of equation (4.8) 

 Where 𝜏 = 𝜏𝑘
(𝑗 ), 𝑘 = 1,2,3. ; 𝑗 = 0,1,2, − − −, lim𝑗→∞ 𝜏𝑘

(𝑗 ) = ∞, 𝑘 = 1,2,3.    

Thus, we define: 

 𝜏0 = 𝜏𝑘0

 𝑗0 = min
1≤𝑘≤3,𝑗≥1

 𝜏𝑘
 𝑗   ,   

𝜔0 = 𝜔𝑘0
, 𝑦0 = 𝑦𝑘0

 

 

(4.12) 

 

Lemma 4.6.5Suppose that 𝑚1 > 0,  𝑚3 + 𝑑 > 0,𝑚1𝑚2 −  𝑚3 + 𝑑 > 0. 

(I) If 𝑐 ≥ 0and  𝐷 = 𝑎2 − 3𝑏 < 0, then all the roots of equation (4.4) have negative real 

parts for all 𝜏 ≥ 0. 

(II) If 𝑐 < 0 or 𝑐 ≥ 0, 𝑦1 > 0 and  𝑕 𝑦1 ≤ 0, then all the roots of equation (4.4) have 

negative real parts for all 𝜏 ∈  0, 𝜏0  

Proof. When 𝜏 = 0, equation (4.4) becomes: 

 𝜆3 + (𝑚1 + 𝑛1)𝜆2 + (𝑚2 + 𝑛2)𝜆 + (𝑚3 + 𝑛3) = 0 (4.13) 

By Routh-Hurwitz‟s criteria, (H1): All roots of equation (4) have negative real parts if 

and only if  𝑚3 + 𝑛3 > 0, (𝑚1 + 𝑛1)(𝑚2 + 𝑛2) − (𝑚3 + 𝑛3) > 0. 

If 𝑐 ≥ 0and  𝐷 = 𝑎2 − 3𝑏 < 0,Lemma 4.6.4 (II) shows that equation (4.4) has no roots 

with zero real part for all 𝜏 ≥ 0. When 𝑐 < 0 or 𝑐 ≥ 0, 𝑦1 > 0 and  𝑕 𝑦1 ≤ 0, Lemma 

4.6.4 (I) and (III) implies that when 𝜏 ≠ 𝜏𝑘
(𝑗 ), 𝑘 = 1,2,3. ; 𝑗 ≥ 1, equation (4.4) has no 

roots with zero real part and 𝜏0 is the minimum value of 𝜏 so that the equation(4.4) has 

purely imaginary roots. Applying Theorem 1.5.8, the conclusion of the lemma is 

obtained. 

 Let 𝜆 𝜏 = 𝜓 𝜏 + 𝑖𝜔(𝜏) (4.14) 

be the roots of equation (4) satisfying: 𝜓 𝜏0 = 0, 𝜔 𝜏0 = 𝜔0 

In order to guarantee that ∓𝜔0 are simple purely imaginary roots of equation (4.4), with 

𝜏 = 𝜏0 and 𝜆 𝜏  satisfies transversality condition, assume that   𝑕′ 𝑦0 ≠ 0. 

Lemma 4. Suppose 𝑦0 = 𝜔0
2. If 𝜏 = 𝜏0, Then Sign  𝜓′  𝜏0  =Sign  𝑕′ 𝑦0   

Proof. Putting 𝜆 𝜏  in equation (4.4) and differentiating w.r.t 𝜏, it follows that 
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𝑑𝜆

𝑑𝜏
 3𝜆2 + 2𝑚1𝜆 + 𝑚2 +   𝑛1𝜆

2 + 𝑛2𝜆 + 𝑛3  −𝜏 +  2𝑛1𝜆 + 𝑛2  𝑒
−𝜆𝜏  

= 𝜆 𝑛1𝜆
2 + 𝑛2𝜆 + 𝑛3 𝑒

−𝜆𝜏  

⇒  
𝑑𝜆

𝑑𝜏
 
−1

=
 3𝜆2 + 2𝑚1𝜆 + 𝑚2 𝑒

𝜆𝜏

𝜆 𝑛1𝜆2 + 𝑛2𝜆 + 𝑛3 
+

 2𝑛1𝜆 + 𝑛2 

𝜆 𝑛1𝜆2 + 𝑛2𝜆 + 𝑛3 
−
𝜏

𝜆
 

From equations (4.6) -(4.8): 

𝜇′ 𝜏0 = 𝑅𝑒  
 3𝜆2 + 2𝑚1𝜆 + 𝑚2 𝑒

𝜆𝜏

𝜆 𝑛1𝜆2 + 𝑛2𝜆 + 𝑛3 
 + 𝑅𝑒  

 2𝑛1𝜆 + 𝑛2 

𝜆 𝑛1𝜆2 + 𝑛2𝜆 + 𝑛3 
  

=
1

∆
 3𝜔0

6 + 2𝑎𝜔0
4 + 𝑏𝜔0

2  

Where ∆=   𝑛3 − 𝑛1𝜔
2 2 +  𝑛2𝜔 

2 ,∆> 0 and 𝜔0 > 0. 

It is concluded that: 

Sign  𝜓′  𝜏0  =Sign  𝑕′ 𝑦0   

This proves lemma. 

4.7 Direction and Stability of Hopf-Bifurcating Solution 

In the previous section, a family of periodic solutions is obtained that bifurcate from the 

positive steady state 𝐸∗at the critical values of 𝜏. It is also worthwhile to determine the 

direction, stability and period of these bifurcating periodic solutions. In this section, an 

explicit formula is derived to determining the properties of the Hopf-bifurcation at the 

critical value 𝜏𝑗 , using the normal form theory and manifold reduction due to Hassard et 

al (1981) [175]. 

Let 𝑢1 = 𝑁 − 𝑁∗, 𝑢2 = 𝑊 −𝑊∗, 𝑢3 = 𝑀 −𝑀∗and normalizing the delay 𝜏 by time 

scaling 𝑡 →
𝑡

𝜏
 , equations (4.1) -(4.3) are transformed into: 

 𝑑𝑢1

𝑑𝑡
= −𝛿1𝑢1 − 𝐾𝑁𝑀𝑢3 − 𝛼𝑊∗𝑢1 𝑡 − 1 − 𝛼𝑢1(𝑡

− 1)𝑢2 

(4.15) 

 𝑑𝑢2

𝑑𝑡
= −𝛿2𝑢2 + 𝛽𝑊∗𝑢1 𝑡 − 1 + 𝛽𝑢1(𝑡 − 1)𝑢2 

(4.16) 

 𝑑𝑢3

𝑑𝑡
= −𝛾𝑀∗𝑢1 −  𝛾𝑁∗ + 𝛿3 𝑢3 − 𝛾𝑢1𝑢3 

(4.17) 

Thus, work can be done in the phase 𝐶 = 𝐶   −1,0 , 𝑅+
3 . Without loss of generality, 

denote the critical value 𝜏𝑗  by 𝜏0.  
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Let 𝜏 = 𝜏0 + 𝜇, then 𝜇 = 0 is a Hopf-bifurcation value of the system given by equations 

(4.15) -(4.17). For the simplicity of notations, rewrite this system as 

 𝑢′ 𝑡 = 𝐿𝜇  𝑢𝑡 + 𝐹 𝜇, 𝑢𝑡  (4.18) 

Where 𝑢 𝑡 =  𝑢1 𝑡 , 𝑢2 𝑡 , 𝑢3 𝑡  
𝑇
∈ 𝑅3, 𝑢𝑡 𝜃 ∈ 𝐶 is defined by 𝑢𝑡 𝜃 = 𝑢𝑡 𝑡 + 𝜃 , 

and  

𝐿𝜇 : 𝐶 → 𝑅,   𝐹: 𝑅 × 𝐶 → 𝑅 are given, respectively by  

𝐿𝜇∅ =  𝜏0 + 𝜇  

−𝛿1 0 −𝐾𝑁𝑀
0 −𝛿2 0

−𝛾𝑀∗ 0 − 𝛾𝑁∗ + 𝛿3 
  

∅1 0 

∅2 0 

∅3 0 
 + 

 𝜏0 + 𝜇  
−𝛼𝑊∗ 0 0
𝛽𝑊∗ 0 0

0 0 0
  

∅1 −1 

∅2 −1 

∅3 −1 
  

And 𝐹 𝜇, ∅ =  𝜏0 + 𝜇  
𝐹1

𝐹2

𝐹3

  respectively where 𝐹1 = −𝛼∅1 −1 ∅2 0 ,  

𝐹2 = 𝛽∅1 −1 ∅2 0 , 𝐹3 = −𝛾∅1 0 ∅3 0 , 

∅ 𝜃 =  ∅1 𝜃 , ∅2 𝜃 , ∅3 𝜃  
𝑇
∈ 𝐶  −1,0 , 𝑅 . 

By the Riesz representation theorem, there exist a function 𝜂 𝜃, 𝜇  of bounded variation 

for 𝜃 ∈  −1,0 , such that 𝐿𝜇∅ =  𝑑
0

−1
𝜂 𝜃, 0 ∅ 𝜃 for ∅ ∈ 𝐶. 

In fact, choose  

𝜂 𝜃, 𝜇 =  𝜏0 + 𝜇  

−𝛿1 0 −𝐾𝑁𝑀
0 −𝛿2 0

−𝛾𝑀∗ 0 − 𝛾𝑁∗ + 𝛿3 
 𝛿 𝜃 + 

 𝜏0 + 𝜇  
−𝛼𝑊∗ 0 0
𝛽𝑊∗ 0 0

0 0 0
 𝛿 𝜃 + 1  

Here 𝛿 is the Dirac delta function.   

For ∅ ∈ 𝐶  −1,0 , 𝑅+
3 , define: 

𝐴 𝜇 ∅ =

 
 
 

 
 𝑑∅ 𝜃 

𝑑𝜃
, 𝜃 ∈ [−1,0)

 𝑑
0

−1

𝜂 𝜃, 0 ∅ 𝜃 , 𝜃 = 0.

  



 

78 
 

And    𝑅 𝜇 ∅ =  
0, 𝜃 ∈ [−1,0)

𝐹 𝜇, ∅ 𝜃 = 0.
  

Then the system (4.18) is equivalent to: 

 𝑢′ 𝑡 = 𝐴 𝜇 ∅ + 𝑅 𝜇 𝑢𝑡  (4.19) 

For 𝜓 ∈ 𝐶1  −1,0 , 𝑅+
3 , define 

𝐴∗𝜓 𝑠 =  
−

𝑑𝜓 𝑠 

𝑑𝑠
, 𝑠 ∈ [−1,0)

 𝑑
0

−1
𝜂𝑇(−𝑡, 0)𝜓 −𝑡 , 𝑠 = 0.

 and bilinear inner product  

 < 𝜓 𝑠 , ∅ 𝜃 > 

= 𝜓 0 ∅ 0 

−   𝜓 𝜉 − 𝜃 𝑑𝜂(𝜃)𝜙(𝜉)
𝜃

𝜉=𝜃

0

−1

𝑑𝜉 

 

(4.20) 

Sine𝐴∗ and 𝐴 = 𝐴(0) are adjoint operators and 𝑖𝜔0 are eigen values of 𝐴 0 . Thus they 

are eigen values of 𝐴∗. Suppose that 𝑞 𝜃 = 𝑞(0)𝑒𝑖𝜔0𝜃  is an eigen vector of 

𝐴 0 corresponding to the eigen value 𝑖𝜔0. Then 𝐴 0 =  𝑖𝜔0 𝑞 𝜃 . When 𝜃 = 0, 

 𝑖𝜔0𝐼 −  𝑑𝜂 𝜃 𝑒𝑖𝜔0𝜃
0

−1

 𝑞 0 = 0, 

which yields 𝑞 0 =  1, 𝜍1, 𝜌1 
𝑇  where: 

𝜍1 =
 𝛼𝑊∗ + 𝛿1 + 𝑖𝜔0 

𝐾𝑁𝑀
  𝑎𝑛𝑑 𝜌1 =

𝛽𝑊∗ 𝛿2 − 𝑖𝜔0 

𝛿2
2 + 𝜔0

2
 

Similarly, it can be verified that 𝑞∗ 𝑠 = 𝐷 1, 𝜍2, 𝜌2 𝑒
𝑖𝜔0𝜏0𝑠 is the eigen value of 𝐴∗ 

corresponding to −𝑖𝜔0, where 

𝜍1 =
 𝛼𝑊∗ + 𝛿1 − 𝑖𝜔0 

𝐾𝑁𝑀
  𝑎𝑛𝑑 𝜌1 =

𝛽𝑊∗ 𝛿2 + 𝑖𝜔0 

𝛿2
2 + 𝜔0

2
 

In order to assure < 𝑞∗ 𝑠 , 𝑞 𝜃 > = 1, the value of D needs to be determined. 

From equation (4.20), < 𝑞∗ 𝑠 , 𝑞 𝜃 > 

= 𝐷 1, 𝜍2, 𝜌2  1, 𝜍1, 𝜌1 
𝑇

−  𝐷 1, 𝜍2, 𝜌2 𝑒
−𝑖𝜔0𝜏0 𝜉−𝜃 𝑑𝜂(𝜃) 1, 𝜍1, 𝜌1 

𝑇𝑒𝑖𝜔0𝜏0

𝜃

𝜉=𝜃

0

−1

𝑑𝜉 

= 𝐷  1 + 𝜍1𝜍2 + 𝜌1𝜌2 −   1, 𝜍2, 𝜌2 
0

−1
𝜃𝑒𝑖𝜔0𝜏0𝜃 1, 𝜍1, 𝜌1 

𝑇   
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= 𝐷 1 + 𝜍1𝜍2 + 𝜌1𝜌2 + 𝜏0𝜍2𝑊
∗ 𝛽𝜌1 − 𝛼𝜍1 𝑒

𝑖𝜔0𝜏0  

Hence, choose 𝐷 =
1

 1+𝜍1𝜍2+𝜌1𝜌2+𝜏0𝜍2𝑊∗ 𝛽𝜌1−𝛼𝜍1 𝑒
𝑖𝜔0𝜏0 

 

such that < 𝑞∗ 𝑠 , 𝑞 𝜃 > = 1, < 𝑞∗ 𝑠 , 𝑞 𝜃 > = 0. 

Following the algorithm given by Hassard et al (1981) [175]and using the same 

notations as there to compute the coordinates describing the centre manifold 𝐶0 at 

𝜇 = 0. 

Let 𝑢𝑡be the solution of equation (4.18) with 𝜇 = 0. Define: 

 𝑧 𝑡 =< 𝑞∗ 𝑠 , 𝑢𝑡 𝜃 >,
𝑊 𝑡, 𝜃 = 𝑢𝑡 𝜃 − 2𝑅𝑒(𝑧 𝑡 𝑞 𝜃 ) 

(4.21) 

On the centre manifold 𝐶0, 𝑊 𝑡, 𝜃 = 𝑊  𝑧 𝑡 , 𝑧 𝑡 , 𝜃  

Where  𝑊 𝑧, 𝑧, 𝜃 = 𝑊20 𝜃 
𝑧2

2
+ 𝑊11 𝜃 𝑧𝑧 + 𝑊02 𝜃 

𝑧
2

2
+ ⋯, 

𝑧 and 𝑧 are local coordinates for centre manifold 𝐶0 in the direction of 𝑞∗ and 𝑞∗ . Note 

that 𝑊  is real if 𝑢𝑡  is real. Consider only real solution. For solution 𝑢𝑡 ∈ 𝐶0 of equation 

(4.20), since 𝜇 = 0, 

𝑧′ 𝑡 = 𝑖𝜔0𝜏0𝑧+< 𝑞∗ 𝜃 , 𝐹  0,𝑊 𝑧, 𝑧, 𝜃 + 2𝑅𝑒 𝑧 𝑡 𝑞 𝜃   > 

= 𝑖𝜔0𝜏0𝑧 + 𝑞∗ 0  𝐹  0,𝑊 𝑧, 𝑧, 0 + 2𝑅𝑒 𝑧 𝑡 𝑞 𝜃    

≡ 𝑖𝜔0𝜏0𝑧 + 𝑞∗ 0 𝐹0 𝑧, 𝑧  

Rewrite this equation as: 

 𝑧′ 𝑡 = 𝑖𝜔0𝜏0𝑧(𝑡) + 𝑔(𝑧, 𝑧) (4.22) 

Where: 

 𝑔 𝑧, 𝑧 = 𝑞∗ 0 𝐹0 𝑧, 𝑧 

= 𝑔20 𝜃 
𝑧2

2
+ 𝑔11 𝜃 𝑧𝑧 + 𝑔02 𝜃 

𝑧
2

2

+ 𝑔21 𝜃 
𝑧2𝑧

2
+ ⋯ 

 

 

 

 

(4.23) 

 As 𝑢𝑡 𝜃 =  𝑢1𝑡 , 𝑢2𝑡 , 𝑢3𝑡 =  𝑊 𝑡, 𝜃 + 𝑧 𝑞 𝜃 + 𝑧𝑞 𝜃  

and 𝑞 0 =  1, 𝜍1, 𝜌1 
𝑇𝑒𝑖𝜔0𝜏0𝜃 , so 

𝑢1𝑡 0 = 𝑧 + 𝑧 + 𝑊20
 1  0 

𝑧2

2
+ 𝑊11

(1) 0  𝑧𝑧 + 𝑊02
(1) 0 

𝑧
2

2
+ ⋯, 
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𝑢2𝑡 0 = 𝜍1𝑧 + 𝜍1𝑧 + 𝑊20
 2  0 

𝑧2

2
+ 𝑊11

(2) 0  𝑧𝑧 + 𝑊02
(2) 0 

𝑧
2

2
+ ⋯, 

𝑢3𝑡 0 = 𝜌11
𝑧 + 𝜌11

𝑧 + 𝑊20
 3  0 

𝑧2

2
+ 𝑊11

(3) 0  𝑧𝑧 + 𝑊02
(3) 0 

𝑧
2

2
+ ⋯, 

𝑢1𝑡 −1 = 𝑧𝑒−𝑖𝜔0𝜏0 + 𝑧𝑒𝑖𝜔0𝜏0 + 𝑊20
 1  −1 

𝑧2

2
+ 𝑊11

(1) −1  𝑧𝑧 + 𝑊02
(1) −1 

𝑧
2

2
+

⋯, 

𝑢2𝑡 −1 =

𝜍1𝑒
−𝑖𝜔0𝜏0𝑧 + 𝜍1𝑒

𝑖𝜔0𝜏0𝑧 + 𝑊20
 2  −1 

𝑧2

2
+ 𝑊11

(2) −1  𝑧𝑧 + 𝑊02
(2) −1 

𝑧
2

2
+ ⋯, 

Thus, comparison of coefficients with equation (4.23) gives: 

𝑔20 = 𝐷 1, 𝜍1, 𝜌1 𝑓𝑧2 , 𝑔02 = 𝐷 1, 𝜍1, 𝜌2 𝑓𝑧2 , 

𝑔11 =  𝐷 1, 𝜍1, 𝜌2 𝑓𝑧𝑧 , 𝑔21 =  𝐷 1, 𝜍1, 𝜌2 𝑓𝑧2𝑧  

In order to determine 𝑔21 , focus needs to be on computation of 𝑊20 𝜃  and 𝑊11 𝜃 . 

From equations (4.19) and (4.21): 

𝑊 ′ = 𝑢𝑡
′ − 𝑧′𝑞 − 𝑧

′
𝑞 =  

𝐴𝑊 − 2𝑅𝑒 𝑞∗ 0 𝐹0𝑞 𝜃  , 𝜃 ∈ [−1,0)

𝐴𝑊 − 2𝑅𝑒 𝑞∗ 0 𝐹0𝑞 0  + 𝐹0 , 𝜃 = 0
  

 Let 𝑊 ′ = 𝐴𝑊 + 𝐻 𝑧, 𝑧, 𝜃  (4.24) 

Where: 

 
𝐻 𝑧, 𝑧, 𝜃 = 𝐻20 𝜃 

𝑧2

2
+ 𝐻11 𝜃 𝑧𝑧 + 𝐻02 𝜃 

𝑧
2

2

+ 𝐻21 𝜃 
𝑧2𝑧

2
+ ⋯, 

 

 

 

(4.25) 

On the other hand, on 𝐶0 near the origin 𝑊 ′ = 𝑊𝑧𝑧
′ + 𝑊𝑧𝑧

′
 

Expanding the above series and computing the coefficients, we get 

  𝐴 − 2𝑖𝜔0𝐼 𝑊20 𝜃 = −𝐻20 𝜃 ,   𝐴𝑊11 𝜃 
= −𝐻11 𝜃  

(4.26) 

By equation (4.22), for 𝜃 ∈  −1,0 , 

𝐻 𝑧, 𝑧, 𝜃 = −𝑞∗ 0 𝐹0𝑞 𝜃 − 𝑞∗ 0 𝐹0𝑞 𝜃 = −𝑔𝑞 𝜃 − 𝑔 𝑞 𝜃  

Comparing the coefficients with (4.23) for 𝜃 ∈ [−1,0] that  

𝐻20 𝜃 = −𝑔20𝑞 𝜃 − 𝑔02𝑞 𝜃 ,  𝐻11 𝜃 = −𝑔11𝑞 𝜃 − 𝑔11𝑞 𝜃 . 

From equations (4.22), (4.25) and the definition of 𝐴 we obtain 
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𝑊20 𝜃 = 2𝑖𝜔0𝜏0𝑊20 𝜃 + 𝑔20𝑞 𝜃 + 𝑔02𝑞 𝜃  

Solving for 𝑊20 𝜃 : 

𝑊20 𝜃 =
𝑖𝑔20

𝜔0𝜏0
𝑞 0 𝑒𝑖𝜔0𝜏0𝜃 +

𝑖𝑔02

3𝜔0𝜏0
𝑞 0 𝑒−𝑖𝜔0𝜏0𝜃 + 𝐸1𝑒

2𝑖𝜔0𝜏0𝜃 , 

And similarly 

𝑊11 𝜃 =
−𝑖𝑔11

𝜔0𝜏0
𝑞 0 𝑒𝑖𝜔0𝜏0𝜃 +

𝑖𝑔11

𝜔0𝜏0
𝑞 0 𝑒−𝑖𝜔0𝜏0𝜃 + 𝐸2 

Where 𝐸1 and 𝐸2 are both three dimensional vectors, and can be determined by setting 

𝜃 = 0 in 𝐻. 

In fact, since 𝐻 𝑧, 𝑧, 𝜃 = −2𝑅𝑒 𝑞∗ 0 𝐹0𝑞 0  + 𝐹0, So 

𝐻20 𝜃 = −𝑔20𝑞 𝜃 − 𝑔02𝑞 𝜃 + 𝐹𝑧2 , 

𝐻11 𝜃 = −𝑔11𝑞 𝜃 − 𝑔11𝑞 𝜃 + 𝐹𝑧𝑧  

Where 𝐹0 = 𝐹𝑧2
𝑧2

2
+ 𝐹𝑧𝑧𝑧𝑧 + 𝐹

𝑧
2
𝑧

2

2
+ ⋯ 

Hence combining the definition of 𝐴,  

 𝑑
0

−1
𝜂 𝜃 𝑊20 𝜃 = 2𝑖𝜔0𝜏0𝑊20 0 + 𝑔20𝑞 0 + 𝑔02𝑞 0 − 𝐹𝑧2  and  

 𝑑
0

−1

𝜂 𝜃 𝑊11 𝜃 = 𝑔11𝑞 0 − 𝑔11𝑞 0 − 𝐹𝑧𝑧  

Notice that  

 𝑖𝜔0𝜏0𝐼 −  𝑒𝑖𝜔0𝜏0𝜃𝑑𝜂 𝜃 
0

−1

 𝑞 0 = 0 

And  −𝑖𝜔0𝜏0𝐼 −  𝑒−𝑖𝜔0𝜏0𝜃𝑑𝜂 𝜃 
0

−1
 𝑞 0 = 0 

implies 

 2𝑖𝜔0𝜏0𝐼 −  𝑒2𝑖𝜔0𝜏0𝜃𝑑𝜂 𝜃 
0

−1

 𝐸1 = 𝐹𝑧2  

And −  𝑑𝜂 𝜃 
0

−1
 𝐸2 = 𝐹𝑧𝑧  

Hence,  
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 2𝑖𝜔0 + 𝛿1 + 𝛼𝑊∗𝑒−2𝑖𝜔0𝜏0 0 −𝐾𝑁𝑀

𝛽𝑊∗𝑒−2𝑖𝜔0𝜏0  2𝑖𝜔0 + 𝛿2 0

𝛾𝑀∗ 0  2𝑖𝜔0 + 𝛾𝑁∗ + 𝛿3 

 𝐸1

= −2 
𝛼𝜍1𝑒

−𝑖𝜔0𝜏0𝜃

−𝛽𝜍1𝑒
−𝑖𝜔0𝜏0𝜃

−𝛾𝜌1

  

and 

 

 𝛿1 + 𝛼𝑊∗ 0 −𝐾𝑁𝑀
𝛽𝑊∗ 𝛿2 0

𝛾𝑀∗ 0  𝛾𝑁∗ + 𝛿3 
 𝐸2 = −2  

𝛼𝑅𝑒 𝜍1 𝑒
𝑖𝜔0𝜏0𝜃

−𝛽𝑅𝑒 𝜍1 𝑒
𝑖𝜔0𝜏0𝜃

−𝛾𝑅𝑒 𝜌1 

  

Thus 𝑔21  can be expressed by the parameters. 

Based on the above analysis, each 𝑔𝑖𝑗  can be determined by the parameters. Thus, 

following quantities can be computed: 

 𝐶1 0 =
𝑖

2𝜔0𝜏0
 𝑔11𝑔20 − 2 𝑔11 

2 −
 𝑔02  

2

3
 +

𝑔21

2
 , 

𝜇2 = −
𝑅𝑒 𝐶1 0  

𝑅𝑒 𝜆 ′  𝜏0  
, 𝛽2 = 2𝑅𝑒 𝐶1 0  ,  

𝑇2 = −
𝐼𝑚 𝐶1 0  + 𝜇2𝐼𝑚  𝜆′ 𝜏0  

𝜔0𝜏0
 

 

 

 

 

 

(4.27) 

Theorem 4.1The value of 𝜇2 determines the direction of the Hopf bifurcation: if 

𝜇2 > 0 𝜇2 < 0 , then the Hopf bifurcation is supercritical (subcritical) and the 

bifurcating periodic solutions exist for 𝜏 > 𝜏0 𝜏 < 𝜏0 . The value of 𝛽2 determines the 

stability of bifurcating solutions: the bifurcating periodic solutions are orbitally 

asymptotically stable (unstable) if 𝛽2 < 0  𝛽2 > 0  . The value of 𝑇2 determines the 

period of the bifurcating periodic solutions: the period increases (decreases) if 𝑇2 >

0  𝑇2 < 0   

4.8 Sensitivity Analysis 

In this paper, the model includes constant parameters. The „Direct Method‟ to estimate 

the general sensitivity coefficients is used. The direct method is based on considering all 

parameters as constants and then the sensitivity coefficients are estimated by solving 

sensitivity equations simultaneously with the original system. If all the parameters 

 𝛼, 𝛽, 𝛾  appearing in the system model (4.1)– (4.3) are taken to be constants, then 

sensitivity analysis, in this case, may just entail finding the partial derivatives of the 

solution with respect to each parameter. As an illustration if consider parameter 𝛽, then 
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partial derivatives of the solution  𝑁,𝑊,𝑀  with respect to 𝛽 give rise to following set 

of sensitivity equations: 

 𝑑𝑆1

𝑑𝑡
= −𝛿1𝑆1 − 𝛼𝑁 𝑡 − 𝜏 𝑆2 − 𝐾𝑁𝑀𝑆3

− 𝛼𝑊𝑆1 𝑡 − 𝜏  

(4.28) 

 𝑑𝑆2

𝑑𝑡
=  𝛽𝑁 𝑡 − 𝜏 − 𝛿2 𝑆2 + 𝛽𝑊𝑆1 𝑡 − 𝜏 

+ 𝑊𝑁 𝑡 − 𝜏  

(4.29) 

 𝑑𝑆3

𝑑𝑡
= −𝛾𝑀𝑆1 −  𝛾𝑁 + 𝛿3 𝑆3 

(4.30) 

Where 𝑆1 =
𝜕𝑁

𝜕𝛽
, 𝑆2 =

𝜕𝑊

𝜕𝛽
, 𝑆3 =

𝜕𝑀

𝜕𝛽
 

Then, this system of sensitivity equations (4.28) – (4.30) along with the original system 

of equations (4.1) – (4.3) is solved to estimate the sensitivity of the state variables 

 𝑁,𝑊,𝑀  to the parameter 𝛽. The similar procedure and argument holds for estimating 

the sensitivity of the state variables with respect to the parameters 𝛼 and 𝛾. 

Sensitivity of Variables to Parameter 𝜶:As shown by Figures 4.1 and Figure 4.2, the 

parameter consumption coefficient 𝛼 does not lead to much of variation and change in 

the values of state variables nutrient concentration N and concentration of toxic metal M 

which ultimately remain stable and tens to zero, as we decrease the values of 𝛼 from 

𝛼 = 0.9 to 𝛼 = 0.5. It predicts the lesser sensitivity of state variables N and M to the 

parameter 𝛼. However, for the same range of values of 𝛼, the state variable amount of 

plant biomass W goes under considerable change as shown by Figure 4.3. It shows 

increase in the rate of plant biomass with decrease in the delayed value of consumption 

coefficient. It remains stable as well. 

Sensitivity of Variables to Parameter 𝜷:Initially, the rate of nutrient concentration 

starts losing stability with decrease in value of utilization coefficient, but finally 

becomes stable and tends to be zero as we decrease the values of parameter utilization 

coefficient 𝛽 from 𝛽 = 0.7 to 𝛽 = 0.3 as shown by Figure 4.4.  Figure 4.5 shows the 

increase in rate of concentration of toxic metal M with decrease in value of utilization 

coefficient 𝛽 from 𝛽 = 0.7 to 𝛽 = 0.3. It starts losing stability as well. Decrease in the 

rate of plant biomass W with decreased value of delayed utilization coefficient is shown 

by the Figure 4.6. It also starts losing stability. 

Sensitivity of Variables to Parameter 𝜸:Figure 4.7 shows that rate of nutrient 

concertation is not very much affected by decease in values of depletion coefficient  𝛾 

from 𝛾 = 0.2 to 𝛾 = 0.05. It does not lose stability. Figure 4.8 shows decrease in rate of 
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concentration of toxic metal with decrease in values of depletion coefficient of toxic 

metal due to interaction with nutrients. It stays stable. Figure 4.9 shows Increase in rate 

of plant biomass with decrease in values of depletion coefficient of toxic metal due to 

interaction with nutrients. It remains stable as well. 

 

Figure 4. 1Time series graph between partial changes in nutrient concentration N for 

different values of consumption coefficient α 

 

Figure 4. 2Time series graph between partial changes in concentration of toxic metal M 

for different values of consumption coefficient α. 
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Figure 4. 3Time series graph between partial changes in plant biomass W for different 

values of consumption coefficient α. 

 

Figure 4. 4Time series graph between partial changes in nutrient concentration N for 

different values of utilization coefficient β. 
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Figure 4. 5Time series graph between partial changes in concentration of toxic metal M 

for different values of utilization coefficient β. 

 

Figure 4. 6Time series graph between partial changes in plant biomass W for different 

values of utilization coefficient β. 
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Figure 4. 7Time series graph between partial changes in nutrient concentration N for 

different values of depletion coefficient  γ. 

 

Figure 4. 8Time series graph between partial changes in concentration of toxic metal M 

for different values of depletion coefficient  γ. 
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Figure 4. 9Time series graph between partial changes in plant biomass W for different 

values of depletion coefficient γ. 

4.9 Numerical Example 

To consolidate the analytical result with the help of a numerical, simulation is done with 

MATLAB. For the following set of values, the behaviour shown by the system is as 

follows: 

𝐾𝑁 = 1, 𝐾𝑁𝑀 = 0.3,

𝛼 = 0.9, 𝛿1 = 0.2, 𝛽 = 0.7, 𝛿2 = 0.8, 𝐼 = 0.5, 𝛾 = 0.2, 𝛿3 = 0.4. 

The behaviour of the system for different values of delay is shown as under: 

𝐸1(𝑁∗ = 1.1426,𝑊∗ =  0.5181,𝑀∗ =  0.7950) 
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Figure 4. 10The interior equilibrium points𝐸1(1.1426, 0.5181, 0.7950) of the system 

is stable when there is no delay that is τ=0. 

 

Figure 4. 11When delay τ<1.373, the interior equilibrium point 

𝐸1(1.1426, 0.5181, 0.7950)is asymptotically stable. 
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Figure 4. 12Phase space diagram of Nutrient N, Plant Biomass W and Toxic Metal M 

when delay τ<1.373. 

 

Figure 4. 13The interior equilibrium point 𝐸1(1.1426, 0.5181, 0.7950)losses its 

stability and Hopf- bifurcation occurred when delay τ≥1.373. 
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Figure 4. 14Phase space diagram of Nutrient N, Plant Biomass W and Toxic Metal M 

when delay τ≥1.373. The bifurcating periodic solution is orbitally, asymptotically 

stable. 

4.10 Conclusion 

In this paper, a mathematical model is proposed to study the role of delay on the plant 

growth dynamics under the effect of toxic metal. The stability and Hopf- bifurcation 

about the interior equilibrium is studied.It has been concluded that when there is no time 

delay, interior equilibrium 𝐸1(1.1426, 0.5181, 0.7950) is completely stable (Figure 

4.10) as proved by lemma 4.6.5 using Routh-Hurwitz‟s criteria. But under the same set 

of parameters, a critical value of the parameter delay is obtained below which the 

system is asymptotically stable (Figure 4.11and Figure 4.12) and unstable above that 

critical value of parameter (Figure 4.13 and Figure 4.14) as proved by lemma 4.6.4 and 

lemma 4.6.6. While passing through the critical value, the system showed oscillations 

that is Hopf bifurcation.  

In this paper, the sensitivity of model solutions due to perturbing the parameters 

appearing in delay differential systems is also investigated, using direct method. It is 

seen how the sensitivity functions enable one in identification of specific parameters 

and improve the understanding of the role played by specific model parameters. The 

oscillation and change in values accompanied by the sensitivity of state variables to 

parameters means that the solution is sensitive to changes in the parameter and that 

parameter plays an important role in the model. Sensitivity analysis reveals that the state 
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variable nutrient concentration 𝑁 is least sensitive to all parameters   𝛼, 𝛽, 𝛾 as 

compared to other two state variables 𝑊 and 𝑀 who show considerable amount of 

change in their rates for different sets of values of the parameters. Rate of plant biomass 

shows increase with decrease in the delayed value of consumption coefficient and stays 

stable (Figure 4.3) and decrease with decrease in delayed value of utilization coefficient 

and loses stability (Figure 4.6).  

Our theoretical as well as numerical results show that for a certain threshold of 

parameters, the system possesses asymptotic stability around positive interior 

equilibrium. Further from stability analysis and numerical simulation, it is concluded 

that 𝜏 is a bifurcating parameter for which the interior equilibrium point shows stable 

oscillatory behaviour when 𝜏 ≥ 𝜏0 .After considering the eff ect of time lag in the 

system, limit cycles appear for interior equilibrium points when time delay crosses some 

critical value.  

In future, the efforts will be made to validate the proposed mathematical model with 

some existing plant growth data under the effect of toxic metals. The proposed 

mathematical model dealing with delay in plant soil dynamics under the effect of 

toxicant will be helpful to farmers, agriculturists, ecologists and scientists to use 

pesticides, insecticides and chemical fertilizers in an optimal way. The study of the 

factors due to which the delay is produced, and the components being affected will help 

the concerned community to plan the remedial measures. Being quantitative in nature, 

the mathematical model will prove to be economic in terms of time and money being 

invested on large scale experiments. 
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Chapter 5 

Modelling on Tree Biomass with Time Lag due 

tothe Toxic Metal in Soil and Tree 

5.1 Introduction 

The excess of toxic metals adversely affects the soil quality and hence the plant growth 

gets slowed down considerably. Thornley[162]was the first to apply mathematical 

modelling to variety of topics in plant physiology.Lacointe [21]concluded that models 

suggested by Thornley are designed for a particular plant species and under particular 

conditions and so they cannot be applicable over a broad range of conditions. A simple 

mathematical model was given byDe Leo et al.[59]that coupled the effect of toxic metal 

and soil chemistry to study the adverse effect of toxic metal on biomass of trees. The 

parameters of the model given by Leo were further modified and it was shown  by 

Guala et al.[166], [167]that the model is applicable to not only trees, but all plants in 

general. The effect of toxic metal on growth of individual using a two-compartment 

mathematical model was studied by Misra and Kalra[168], [177]. Rouches 

theorem[158]was used for the discussion of distribution of roots of exponential 

polynomials by Ruan and Wei[112], [157]. The effect of time delay on the dynamics of 

a multi team prey predator system was studied  by Sikarwar and Misra[171]. 

In view of above, a mathematical model is developed to study the role of delay on plant 

biomass due to toxic metals and three state variables considered are: concentrations of 

toxic metal in soil, concentrations of toxic metal in plant and the tree biomass. Hopf 

bifurcation occurred at a critical value of time parameter. Numerical simulation is done 

using MATLAB. 

 

5.2 Mathematical Model 

The model that includes three state variables -concentrations of toxic metal in soil 𝑀𝑆, 

concentrations of toxic metal in tree𝑇𝑃and tree biomass 𝐵𝑀, is given by: 

 𝑑𝐵𝑀
𝑑𝑡

= 𝑟𝐵𝑀 −
𝑟

𝐾
𝐵𝑀

2 − ∆1𝐵𝑀 
(5.1) 
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 𝑑𝑇𝑃
𝑑𝑡

= 𝛼𝑇𝑃 − 𝑟𝑇𝑃 𝑡 − 𝜏 

+ 𝑟𝐵𝑀𝑇𝑃 𝑡 − 𝜏  

(5.2) 

 𝑑𝑀𝑆

𝑑𝑡
= 𝐼 − 𝛼𝑀𝑆𝑇𝑃 − ∆2𝑀𝑆 

(5.3) 

With initial conditions: 𝐵𝑀 0 > 0, 𝑇𝑃 0 > 0, 𝑀𝑆 0 > 0 with 𝑇𝑃 𝑡 − 𝜏 = 𝐴 at 

𝑡 ∈ [−𝜏, 0] 

The system parameters are taken as: 𝑟 is intrinsic growth rate of tree biomass,  𝐾 is the 

carrying capacity for heavy metal. ∆1is natural decay of tree biomass 𝐵𝑀  and ∆2 is 

natural decay of 𝑀𝑆. 𝐼 is the input rate of heavy metals in soil.   𝛼 is depletion rate of 𝑀𝑆 

due to interaction between 𝑀𝑆 and 𝑇𝑃. Here all the parameters 𝑟, 𝐾, ∆1, ∆2, 𝛼, and 𝐼 are 

taken as positive. 

5.3 Boundedness of Solutions 

The boundedness of the model given by following lemma: 

Lemma 5.3.1  The model has all its solution lying in the region 𝐶 =   𝐵𝑀 , 𝑇𝑃  ,𝑀𝑆 ∈

𝑅+
3: 0 ≤ 𝐵𝑀 + 𝑇𝑃 + 𝑀𝑆 ≤

𝐼

𝜑
 , 𝑎𝑠 𝑡 → ∞, for all positive initial values 

{𝐵𝑀 0 , 𝑇𝑃 0 ,𝑀𝑆 0 , 𝑇𝑃 𝑡 − 𝜏 = 𝐴, Constant for all 𝑡 ∈ [−𝜏, 0]} ∈ 𝐶 ⊂ 𝑅+
3, where 

𝜑= min(𝑟, 𝛼, ∆1, ∆2).  

Proof:Let us assume:  𝑊 𝑡 = 𝐵𝑀 𝑡 + 𝑇𝑃 𝑡 + 𝑀𝑆(𝑡) 

⇒
𝑑𝑊(𝑡)

𝑑𝑡
=

𝑑

𝑑𝑡
 𝐵𝑀 𝑡 + 𝑇𝑃 𝑡 + 𝑀𝑆(𝑡)  

Using Equations (5.1) -(5.2) and 𝜑= min(𝑟, 𝛼, ∆1, ∆2) and assuming that 𝑇𝑃(𝑡) ≈

𝑇𝑃 𝑡 − 𝜏  as 𝑡 → ∞ , we get: 

𝑑𝑊(𝑡)

𝑑𝑡
≤ 𝐼 −  𝜑𝑊 𝑡  

Applying the comparison theorem, we get: 

As 𝑡 → ∞ : 𝑊 𝑡 ≤
𝐼

𝜑
 

Therefore, finally we have  0 ≤ 𝐵𝑀 + 𝑇𝑃 + 𝑀𝑆  ≤
𝐼

𝜑
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5.4 Positivity of Solutions 

Positivity means that the system sustains. For positive solutions, we need to show that 

all solution of system given by Equations. (5.1)– (5.3), where initial condition are 

𝐵𝑀 0 > 0, 𝑇𝑃 0 > 0, 𝑀𝑆 0 > 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 > 0 𝑎𝑛𝑑 𝑇𝑃 𝑡 − 𝜏 = Constant for all 

𝑡 ∈ [−𝜏, 0], the solution  𝐵𝑀 𝑡 , 𝑇𝑃 𝑡 ,𝑀𝑆 𝑡  of the model stays positive for all time 

𝑡 > 0. 

From equation (5.1)  
𝑑𝐵𝑀

𝑑𝑡
≥ − 

𝑟𝐼

𝐾𝜑
+ ∆1 𝐵𝑀 

⇒ 𝐵𝑀 ≥ 𝑐1𝑒
− 

𝑟𝐼

𝐾𝜑
+∆1 𝑡

 

From equation (5.2)  
𝑑𝑇𝑃

𝑑𝑡
≥ −𝑟𝑇𝑃 

⇒ 𝑇𝑃 ≥ 𝑐2𝑒
−𝑟𝑡  

From equation (5.3)  
𝑑𝑀𝑆

𝑑𝑡
≥ − 

𝛼𝐼

𝐾𝜑
+ ∆2 𝑀𝑆  

⇒ 𝑀𝑆 ≥ 𝑐3𝑒
− 

𝛼𝐼

𝐾𝜑
+∆2 𝑡

 

Hence,  𝐵𝑀 𝑡 , 𝑇𝑃 𝑡 ,𝑀𝑆 𝑡  stays positive for all time 𝑡 > 0. 

5.5 Interior Equilibrium 

The system of equations (5.1) -(5.3) has one feasible equilibrium 𝐸∗(𝐵∗
𝑀 , 𝑇∗𝑃 ,𝑀∗

𝑆) 

where: 

𝐵∗
𝑀 =

𝐾(𝑟−∆1)

𝑟
 provided 𝑟 > ∆1, 

𝑇∗𝑃 =
𝐴(𝑟 − 𝑟𝐾 + 𝐾∆1)

𝛼
 

𝑀∗
𝑆 =

𝐼

𝐴(𝑟 − 𝑟𝐾 + 𝐾∆1) + ∆2
 

5.6 Stability Analysis and Local Hopf-Bifurcation 

Here, we analyse the dynamical behaviour of interior equilibrium 

point𝐸∗(𝐵∗
𝑀 , 𝑇∗𝑃 ,𝑀∗

𝑆) of the model given by (5.1) -(5.3). The exponential 

characteristic equation about 𝐸∗ is given by: 
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 𝜆3 + 𝑚1𝜆
2 + 𝑚2𝜆 + 𝑚3 +  𝑛1𝜆

2 + 𝑛2𝜆 + 𝑛3 𝑒
−𝜆𝜏

= 0 

(5.4) 

Here 𝑚1 = − 𝑃1 + 𝑃9 + 𝛼 , 𝑚2 =  𝑃1𝑃9 + 𝛼 𝑃1 + 𝑃9  ,𝑚3 = −𝛼𝑃1𝑃9,  𝑛1 =

 𝑟 −
𝑟

𝐾
𝐵∗

𝑀 , 𝑛2 =  𝑃1 + 𝑃9  
𝑟

𝐾
𝐵∗

𝑀 − 𝑟 , 𝑛3 = 𝑃1𝑃9  𝑟 −
𝑟

𝐾
𝐵∗

𝑀 . 

Here 𝑚1, 𝑚2, 𝑚3, 𝑛1, 𝑛2, 𝑛3 are all positive. 

Where 𝑃1 = − 𝑟 −
2𝑟

𝐾
𝐵∗

𝑀 − ∆1 , 𝑃2 = 0 , 𝑃3 = 0, 𝑃4 =
𝑟

𝐾
𝑒−𝜆𝜏 , 𝑃5 = − 𝛼 +

𝑟𝐾𝐵∗𝑀−𝑟𝑒−𝜆𝜏, 𝑃6=0,𝑃7=0, 𝑃8=−𝛼𝑇∗𝑃, 𝑃9=−𝛼𝑇∗𝑃+∆2 

Clearly 𝜆 = 𝑖𝜔 is a solution of equation (5.4) if and only if  

  𝑖𝜔 3 + 𝑚1 𝑖𝜔 
2 + 𝑚2 𝑖𝜔 + 𝑚3

+  𝑛1 𝑖𝜔 
2 + 𝑛2 𝑖𝜔 + 𝑛3 𝑒

−𝑖𝜔𝜏

= 0 

 

(5.5) 

Separating real and imaginary parts we get: 

 𝑚3 −𝑚1𝜔
2 +  𝑛3 − 𝑛1𝜔

2 𝑐𝑜𝑠 𝜔𝜏

+ 𝑛2𝜔 sin𝜔𝜏 = 0 

(5.6) 

 𝑚2𝜔 − 𝜔3 + 𝑛2𝜔 𝑐𝑜𝑠 𝜔𝜏 −  𝑛3 − 𝑛1𝜔
2 sin𝜔𝜏

= 0 

(5.7) 

Which gives: 

 𝜔6 +  𝑚1
2 − 𝑛1

2 − 2𝑚2 𝜔
4

+  𝑚2
2 − 𝑛2

2 + 2𝑛1𝑛3

− 2𝑚1𝑚3 𝜔
2 +  𝑚3

2 − 𝑛3
2 

= 0 

 

 

(5.8) 

Let 𝜔2 = 𝑦 and  𝑚1
2 − 𝑛1

2 − 2𝑚2 = 𝑎,  𝑚2
2 − 𝑛2

2 + 2𝑛1𝑛3 − 2𝑚1𝑚3 =

𝑏,  𝑚3
2 − 𝑛3

2 = 𝑐  

Equation (5.8) becomes: 

 𝑦3 + 𝑎𝑦2 + 𝑏𝑦 + 𝑐 = 0 (5.9) 

Lemma5.6.1 If 𝑐 < 0, Equation (5.9) contains at least one positive real root. 

Proof.  Let 𝑕 𝑦 = 𝑦3 + 𝑎𝑦2 + 𝑏𝑦 + 𝑐  

Here 𝑕 0 = 𝑐 < 0  ,  lim𝑦→∞ 𝑕 𝑦 = ∞ 

So, ∃𝑦0 ∈ (0,∞) such that 𝑕 𝑦0 = 0 
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Proof completed.  

Lemma5.6.2If 𝑐 ≥ 0, then necessary condition for equation (5.9) to have positive real 

roots is 𝐷 = 𝑎2 − 3𝑏 ≥ 0. 

Proof.  Since 𝑕 𝑦 = 𝑦3 + 𝑎𝑦2 + 𝑏𝑦 + 𝑐,  

We have 𝑕′ 𝑦 = 3𝑦2 + 2𝑎𝑦 + 𝑏 

 𝑕′ 𝑦 = 0 ⇒ 3𝑦2 + 2𝑎𝑦 + 𝑏 = 0 (5.10) 

The roots of equation (5.10) can be expressed as: 

 
𝑦1,2 =

−2𝑎 ∓  4𝑎2 − 12𝑏

6

=
−𝑎 ∓  𝐷

3
 

(5.11) 

If𝐷 < 0, then equation (5.10) does not have any real roots. So, the function 𝑕 𝑦  is 

monotone increasing function in y. It follows from 𝑕 0 = 𝑐 ≥ 0that equation (5.9) has 

no positive real roots.  

Proof completed. 

Clearly if 𝐷 ≥ 0, then 𝑦1 =
−𝑎+ 𝐷

3
 is local minima of 𝑕 𝑦 . Thus we have following 

Lemma. 

Lemma5.6.3  If 𝑐 ≥ 0, then equation (5.9) has positive roots if and only if 𝑦1 > 0 and  

𝑕 𝑦1 ≤ 0 . 

Proof. The sufficiency is obvious. We only need to prove necessity. Otherwise, we 

assume that either 𝑦1 ≤ 0 or 𝑦1 > 0and 𝑕 𝑦1 > 0 .If 𝑦1 ≤ 0, since 𝑕 𝑦  is increasing 

for 𝑦 ≥ 𝑦1 and 𝑕 0 = 𝑐 ≥ 0, it follows that 𝑕 𝑦  has no positive real zeros. If 𝑦1 >

0and 𝑕 𝑦1 > 0, since 𝑦2 =
−𝑎− 𝐷

3
is the local maxima value, it follows that 𝑕 𝑦1 ≤

𝑕 𝑦2 . Hence, 𝑕 0 = 𝑐 ≥ 0, we know that 𝑕 𝑦  does not have positive real roots.  

This completes proof. 

Lemma 5.6.4Suppose 𝑦1is defined by equation (5.11). 

(I)      If 𝑐 < 0, Equation (5.9) contains at least one positive real root. 

(I) If 𝑐 ≥ 0and  𝐷 = 𝑎2 − 3𝑏 < 0, then equation (5.9) has no positive roots. 
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(II) If 𝑐 ≥ 0, then equation (5.9) has positive roots if and only if  𝑦1 > 0 and  𝑕 𝑦1 ≤

0 . 

Proof. Suppose that equation (5.9) has positive roots. Without loss of generality, we 

assume that it has three positive roots, denoted by 𝑦1, 𝑦2, 𝑦3.Then equation (5.8) has 

three positive roots, say𝜔1 =  𝑦1 , 𝜔2 =  𝑦2 , 𝜔3 =  𝑦3 . 

From (5.7)  sin𝜔𝜏 =
𝑚2𝜔−𝜔

3

𝑑
 

Which gives: 𝜏 =
1

𝜔
 𝑠𝑖𝑛−1  

𝑚2𝜔−𝜔
3

𝑑
 + 2(𝑗 − 1)𝜋  ; 𝑗 = 1,2,3, − 

Let 𝜏𝑘
(𝑗 ) =

1

𝜔𝑘
 𝑠𝑖𝑛−1  

𝑚2𝜔𝑘−𝜔𝑘
3

𝑑
 + 2(𝑗 − 1)𝜋  ; 𝑘 = 1,2,3. ; 𝑗 = 0,1,2, − − − 

Then ∓𝑖𝜔𝑘  is a pair of purely imaginary roots of equation (5.8) 

Where 𝜏 = 𝜏𝑘
(𝑗 ), 𝑘 = 1,2,3. ; 𝑗 = 0,1,2, − − −  

We have lim𝑗→∞ 𝜏𝑘
(𝑗 ) = ∞, 𝑘 = 1,2,3,4.    

Thus, we can define: 

 𝜏0 = 𝜏𝑘0
(𝑗0) = min

1≤𝑘≤3,𝑗≥1
 𝜏𝑘

(𝑗 ) ,

𝜔0 = 𝜔𝑘0
, 𝑦0 = 𝑦𝑘0

 

 

(5.12) 

Lemma 5.6.5Suppose that 𝑚1 > 0,  𝑚3 + 𝑑 > 0,𝑚1𝑚2 −  𝑚3 + 𝑑 > 0. 

(I)  If 𝑐 ≥ 0and  𝐷 = 𝑎2 − 3𝑏 < 0, then all the roots of equation (3.4) have negative 

real parts for all 𝜏 ≥ 0. 

(II)  If 𝑐 < 0 or 𝑐 ≥ 0, 𝑦1 > 0 and  𝑕 𝑦1 ≤ 0, then all the roots of equation (3.4) have 

negative real parts for all 𝜏 ∈  0, 𝜏0 . 

Proof.When 𝜏 = 0, equation (5.4) becomes: 

 𝜆3 + (𝑚1 + 𝑛1)𝜆2 + (𝑚2 + 𝑛2)𝜆 + (𝑚3 + 𝑛3)

= 0 

(5.13) 

By Routh-Hurwitz‟s criteria, (H1):All roots of equation (5.5) have negative real parts if 

and only if  𝑚3 + 𝑛3 > 0, (𝑚1 + 𝑛1)(𝑚2 + 𝑛2) − (𝑚3 + 𝑛3) > 0. 

If 𝑐 ≥ 0and  𝐷 = 𝑎2 − 3𝑏 < 0,Lemma 5.6.4 (II) shows that equation (5.4) has no roots 

with zero real part for all 𝜏 ≥ 0. When 𝑐 < 0 or 𝑐 ≥ 0, 𝑦1 > 0 and  𝑕 𝑦1 ≤ 0, Lemma 

5.6.4 (I) and (III) implies that when 𝜏 ≠ 𝜏𝑘
(𝑗 ), 𝑘 = 1,2,3. ; 𝑗 ≥ 1, equation (5.4) has no 



 

99 
 

roots with zero real part and 𝜏0 is the minimum value of 𝜏 so that the equation (5.4) has 

purely imaginary roots. Applying Theorem 1.5.8., we obtain the conclusion of the 

lemma. 

 Let 𝜆 𝜏 = 𝛽 𝜏 + 𝑖𝜔(𝜏) (5.14) 

be the roots of equation (4) satisfying:𝛽 𝜏0 = 0, 𝜔 𝜏0 = 𝜔0 

In order to guarantee that ∓𝜔0 are simple purely imaginary roots of equation (5.4), with 

𝜏 = 𝜏0 and 𝜆 𝜏  satisfies transversality condition, we assume that   𝑕′ 𝑦0 ≠ 0. 

Lemma 5.6.6Suppose 𝑦0 = 𝜔0
2. If 𝜏 = 𝜏0, Then Sign  𝛽′ 𝜏0  =Sign  𝑕′ 𝑦0   

Proof.Let 𝜆 = 𝜆 𝜏  be the root of equation (5.4).  

Putting 𝜆 𝜏  in equation (5.4) and differentiating w.r.t 𝜏, it follows that 
𝑑𝜆

𝑑𝜏
 3𝜆2 +

2𝑚1𝜆+𝑚2+𝑛1𝜆2+𝑛2𝜆+𝑛3−𝜏+2𝑛1𝜆+𝑛2𝑒−𝜆𝜏=𝜆𝑛1𝜆2+𝑛2𝜆+𝑛3𝑒−𝜆𝜏 

 
𝑑𝜆

𝑑𝜏
 
−1

=
 3𝜆2 + 2𝑚1𝜆 + 𝑚2 𝑒

𝜆𝜏

𝜆 𝑛1𝜆2 + 𝑛2𝜆 + 𝑛3 
+

 2𝑛1𝜆 + 𝑛2 

𝜆 𝑛1𝜆2 + 𝑛2𝜆 + 𝑛3 
−
𝜏

𝜆
 

From equations (5.6) -(5.8), we have  

𝛽′ 𝜏0 = 𝑅𝑒  
 3𝜆2 + 2𝑚1𝜆 + 𝑚2 𝑒

𝜆𝜏

𝜆 𝑛1𝜆
2 + 𝑛2𝜆 + 𝑛3 

 + 𝑅𝑒  
 2𝑛1𝜆 + 𝑛2 

𝜆 𝑛1𝜆
2 + 𝑛2𝜆 + 𝑛3 

  

=
1

𝛾
 3𝜔0

6 + 2𝑎𝜔0
4 + 𝑏𝜔0

2  

Where 𝛾 =   𝑛3 − 𝑛1𝜔
2 2 +  𝑛2𝜔 

2 , such that  𝛾 > 0 and 𝜔0 > 0. 

We conclude that: Sign  𝛽′ 𝜏0  =Sign  𝑕′ 𝑦0  . 

This proves lemma. 

5.7 Sensitivity Analysis 

In this section, sensitivity analysis of state variable, namely tree biomass 𝐵𝑀is done 

with respect to model parameters,intrinsic growth rate of tree biomass 𝑟 andthe input 

rate of heavy metals𝐼 in soil. The values of parameters are perturbed and corresponding 

changes in state variables are observed. The graphical representation of the same is 

shown in the section-5.8 with the help of numerical example and detailed discussion is 

included in section 5.9-Conclusion. 
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5.8 Numerical Example 

Numerical simulation is performed by taking set of parametric values as: 

𝑟

𝐾
= 0.2, ∆1= 0.3, 𝑟 = 0.9, ∆2= 0.3, 𝐼 = 1, 𝛼 = 0.4, 𝐴 = 3  

 

Figure 5. 1The interior equilibrium point Interior𝐸∗(𝐵∗
𝑀 , 𝑇∗𝑃 , 𝑀∗

𝑆)is asymptotically 

stable with delay τ<3.17. 

 

Figure 5. 2Phase plane with delay τ<3.17 
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Figure 5. 3The interior equilibrium point 𝐸∗(𝐵∗
𝑀 , 𝑇∗𝑃 , 𝑀∗

𝑆) losses its stability and 

Hopf- bifurcation occurred with delay τ≥3.17 

 

Figure 5. 4Phase plane with delay τ≥3.17 
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Figure 5. 5Time series graph between partial changes in tree biomass 𝐵𝑀 and different 

values of internal growth rate r. 

 

Figure 5. 6Time series graph between partial changes in tree biomass 𝐵𝑀 and different 

values of input rate I of toxic metal. 

5.9 Conclusion 

The interior equilibrium𝐸∗ of the model has been studied for stability of the model.The 

system represented by equations (5.1) -(5.3) undergoes a Hopfbifurcation at the critical 

value 𝜏 = 𝜏0. When delay is less than 3.17 i.e. 𝜏 < 3.17 the equilibrium 

𝐸∗(𝐵∗
𝑀 , 𝑇∗𝑃 , 𝑀∗

𝑆) is asymptotically stable as shown by Figure 5.1 and Figure 5.2. The 

moment delay crosses critical value 3.17i.e. 𝜏 ≥ 3.17the system undergoes bifurcation 

and periodic solution results as shown by Figure 5.3 and Figure 5.4. 
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The sensitivity of model solutions is established by taking different values of the 

parameters appearing in system. It improves the understanding of the role played by 

specific model parameters.  

Sensitivity analysis reveals that with increase in the internal growth rate 𝑟 from 0.5 to 

0.6, state variable-tree biomass 𝐵𝑀tends towards stability for the same set of remaining 

parameters including time delay 𝜏 = 3.17 . At𝑟 = 𝑂. 5 , tree biomass show unstable 

behaviour via Hopf bifurcation. But as the value of 𝑟 is increased to 𝑟 = 0.55, tree 

biomass start showing the asymptotic stability and finally for 𝑟 = 0.6, tree biomass start 

converging to a stable equilibrium point as shown by Figure 5.5. Apart from converging 

to stability, the tree biomass𝐵𝑀  also show increase in its value as we increase the value 

of 𝑟 from 0.5 to 0.6 as shown by Figure 5.5. Similarly, as we decrease the value of input 

rate 𝐼 of toxic metal from 𝐼 = 1.0 to 𝐼 = 0.6, the tree biomass𝐵𝑀 start converging to a 

stable equilibrium as shown by Figures 5.6. In addition to convergence to stability,the 

tree biomass𝐵𝑀  also show increase in its value as we decrease the value input rate 𝐼 of 

toxic metal from 𝐼 = 1.0 to 𝐼 = 0.6 as shown by Figure 5.6. 
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Chapter 6 

Dynamics Induced by Delay under the Effect 

of Toxic Metal on Nutrient Pool andPlant 

Population Density 

6.1 Introduction 

Production of quality food is one of the topmost priorities for world scientists and 

agriculturists today, which is under threat. The quality of food is getting compromised 

and is deteriorating day by day due to persistent presence of toxic metals in the soil. The 

presence of arsenic in the soil and its toxic effect on the plants is a major concern. Coal 

fuels and metal smelters are the main sources of excessive arsenic concentration in the 

soil.  Tu and Ma[178] showed that natural formation and anthropogenic activities are 

the main reasons of entrance of arsenic into terrestrial and aquatic environment. Geng et 

al.[179]reported that arsenic sensitivity is intimately linked to phosphorus nutrition in 

plants. Wang and Duan[180] studied the effect of external and internal phosphate status 

on arsenic toxicity and accumulation in rice seedlings. Pigna et al.[181]reported that 

applying phosphorus fertilizers could increase arsenic availability in soils and enhance 

plant uptake of arsenic. Liao et al.[182]studied root distribution and elemental 

accumulation of Chinese brake from arsenic contaminated soils where forty hectares of 

arsenic polluted land was irrigated by local farmers. Liu et al.[183]studied the effects of 

high concentrations of soil arsenic on growth of winter wheat and rape. They concluded 

that the growth gets reduced by nearly 20 percent. Brune and Dietz[184] did 

comparative analysis of elemental composition of Barley seedlings in the presence of 

toxic concentrations of heavy metals like cadmium, molybdenum, nickel and zinc. 

Pedreno et al.[185] reviewed the main results of heavy metals like cadmium, chromium 

and nickel on tomato plant. Penget al.[186] developed a pollutant accumulation model 

based on mass balance theory to simulate the long-term effects of heavy metal 

concentrations on soil. Cu[93] has shown in his paper that cultivation of crops on 

contaminated sites may result in both growth inhibition and tissue accumulation that 

may cause possible risks to human health. It considered the transport and uptake of 

cadmium by vegetables in Lettuce. Vineethet al.[187] conducted a pot experiment to 

study the toxicity nature of heavy metals in Vigna radiata (green gram).  Seed 
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germination test was conducted by Boros and Micle[91] to determine plant‟s tolerance 

to copper and to investigate its influence on the germination of seeds and  growth of 

sunflower. The extent of plant injury by elevated zinc concentration was assessed by 

Tsonev and Lidon[82] considering its specific and strong dependence on the 

environmental conditions and availability of other heavy metals. Pavel et al.[86] used 

Lepidium sativum as a test plant to assess the phytotoxic effects of chromium and 

cadmium. It was found that root development and dry biomass were adversely affected 

by toxic stress. Dan et al.[188] studied and established nickel phytotoxicity thresholds 

for oat (Avena sativa L.) in four soil types, each created by blending a low and a high 

nickel soil, to generate a range of concentrations. A pot study was conducted by 

Xiong[189] to determine lead bioaccumulation and tolerance on seed germination and 

growth of Brassica pekinensis Rupr. Misra and Kalra[83], [177] studied the growth of 

an individual plant under the effect of toxic metals using a two-compartment 

mathematical model consisting of system of ordinary differential equations. Ruan and 

Wei [112]studied the nature and distribution of roots of third-degree exponential 

polynomial and applied the result on a delay model for control of testosterone secretion.  

Rihan[144] did the Sensitivity analysis for dynamic systems with time-lags using 

adjoint equations and direct methods when the parameters appearing in the model are 

not only constants but also variables of time. A lot of work has been done on plant 

growth under the effect of toxicants using ordinary differential equations. The effect of 

delay on plant growth dynamics under the effect of toxicant has not been widely studied 

using delay differential equations. 

It is an ecological phenomenon that and nutrient pool and plant population density are 

adversely affected by the presence of excessive toxic metal. This dynamic is 

mathematically depicted by the model proposed in this study. It is shown that as the rate 

of damage of plant population density due to toxic metal and the input rate of toxic 

metal increase, the nutrient pool concentration and plant population density decreases. 

Hopf bifurcation is studied by introducing delay parameter in the term involving 

nutrient utilization. Sensitivity analysis of state variables in relation to model 

parameters is done. Model is verified by taking those values of damage rate due to toxic 

metal (assumed to be Arsenic) which are available in already existing data for growth of 

winter wheat (Triticum aestivum L) and rape (Brassica napus) under the effect of high 

concentrations of Arsenic in soil (Liu et al 2012). Simulation is done using MATLAB. 
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6.2 Mathematical Model 

Let the three state variables be: Nutrient pool 𝑁, Plant population density 𝑃 and toxic 

metal 𝑇. The system governing the dynamics is given by equations (6.1)- (6.3): 

 𝑑𝑁

𝑑𝑡
=  𝐾 − 𝑣𝑁𝑇 − 𝑢𝑁 𝑡 − 𝜏 𝑃 − 𝛼𝑁 

(6.1) 

 𝑑𝑃

𝑑𝑡
= 𝑟 𝑁, 𝑇 𝑃 − 𝛽𝑃2 

(6.2) 

 𝑑𝑇

𝑑𝑡
= 𝑄 − 𝑣𝑁𝑇 − 𝛾𝑇 

(6.3) 

Where 𝑟 𝑁, 𝑇 = 𝜌𝑁 − 𝜀 𝑇 ;  𝜀 𝑇 = 𝜀0 + 𝜀1𝑇 

With initial conditions: 𝑁 0 ≥ 0, 𝑃 0 ≥ 0, 𝑇 0 ≥ 0 ∀ 𝑡 > 0 and 𝑁 𝑡 − 𝜏  is 

constant for 𝑡 ∈  0, 𝜏 . 

The parameters in system of equations (6.1)- (6.3) are: 𝐾 is the total available input of 

nutrient pool,  𝐾 − 𝑣𝑁𝑇  is the nutrient availability adversely hampered due to the 

uptake of toxic metal, 𝑢 is the consumption coefficient or the utilization coefficient of 

nutrient, 𝛼 is the natural decay of nutrient, 𝑟 𝑁, 𝑇  is the intrinsic growth rate of plant 

population density which depends on nutrient pool and is adversely affected by toxic 

metal, 𝜌 is nutrient use efficiency, 𝜀0is the natural decay of plant population density, 

𝜀1is the rate of damage of plant population density due to toxic metal, 𝛽 is self-limiting 

rate of plant population density, 𝑄 is the input rate of toxic metal, 𝑣 is the deletion rate 

of toxic metal due to interaction between toxic metal and nutrient pool, 𝛾 is natural 

decay of toxic metal. All the parameters of this system are supposed to be positive.  

6.3 Boundedness of Solutions 

The boundedness of solutions is proved by following Lemma: 

Lemma 6.3.1 All the solutions of the system of equations (6.1)- (6.3) lie in the three-

dimensional region ℝ =   𝑁, 𝑃, 𝑇 ∈ 𝑅3+: 0 ≤ 𝑁 + 𝑃 ≤
𝐾

ℵ
, 0 ≤ 𝑇 ≤

𝑄

𝛾
 , 𝑡 → ∞, where 

ℵ = min. 𝑣, 𝑢, 𝛼, 𝜌, 𝜀0, 𝜀1, 𝛽  with initial conditions 𝑁 ≥ 0, 𝑃 ≥ 0, 𝑇 ≥ 0 ∀ 𝑡 > 0 and 

𝑁 𝑡 − 𝜏 = constant for 𝑡 ∈  0, 𝜏 . 

Proof.  Let 𝑊 = 𝑁 + 𝑃; 𝑁 ≥ 0, 𝑃 ≥ 0. 

⇒
𝑑𝑊

𝑑𝑡
=
𝑑𝑁

𝑑𝑡
+
𝑑𝑃

𝑑𝑡
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⇒
𝑑𝑊

𝑑𝑡
≤ 𝐾 − ℵ𝑊 

where ℵ = min. 𝑣, 𝑢, 𝛼, 𝜌, 𝜀0, 𝜀1, 𝛽  

As 𝑡 → ∞,𝑊 ≤
𝐾

ℵ
  (By usual comparison theorem) 

So, 0 ≤ 𝑁 + 𝑃 ≤
𝐾

ℵ
 

From equation (6.3):  
𝑑𝑇

𝑑𝑡
≥ 𝑄 − 𝛾𝑇; 𝑇 ≥ 0. 

As 𝑡 → ∞, 𝑇 ≤
𝑄

𝛾
 (By usual comparison theorem) 

So, 0 ≤ 𝑇 ≤
𝑄

𝛾
 

Proof completed. 

6.4 Positivity of Solutions 

From equation (6.3):
𝑑𝑇

𝑑𝑡
≥ − 𝑣𝑁 + 𝛾 𝑇 

⇒
𝑑𝑇

𝑑𝑡
≥ − 𝑣

𝐾

ℵ
+ 𝛾 𝑇 

⇒ 𝑇 ≥ 𝑒− 𝑣
𝐾

ℵ
+𝛾 𝑡

 

Similarly, 𝑃 ≥ 𝑒
− 𝜀0+𝜀1

𝑄

𝛾
+𝛽

𝐾

ℵ
 𝑡

 

and 𝑁 ≥ 𝑒
− 𝛼+𝑣

𝑄

𝛾
 +𝑢

𝐾

ℵ
 𝑡

 

So, 𝑁 ≥ 0, 𝑃 ≥ 0, 𝑇 ≥ 0 ∀ 𝑡. 

Hence solution set of the system of equations stay positive for all t. It ensures that 

system persists. 

6.5 Equilibrium Points 

There are two feasible equilibrium points 𝐸1 and 𝐸2, out of which 𝐸1is a uniform 

equilibrium point in the absence of toxicity and 𝐸2 is the feasible interior equilibrium in 

the presence of all three state variables. It is assumed that at the points of equilibriums: 

𝑁 𝑡 − 𝜏 ≅ 𝑁 𝑡 . 
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6.5.1 Equilibrium 𝑬𝟏 𝑵 ≠ 𝟎, 𝑷 ≠ 𝟎, 𝑻 = 𝟎  

This equilibrium corresponds to natural growth of plant population density through the 

availability of nutrient pool in the absence of toxic metal where the values of state 

variables are given by: 

𝑃 =
𝜌𝑁 −𝜀0

𝛽
> 0,  provided 𝜌𝑁 > 𝜀0 , 

𝑁 =
−𝑓2∓ 𝑓2

2−4𝑓1𝑓3

2𝑓1
 where 𝑓1 = 𝑢𝜌, 𝑓2 =  𝛼𝛽 − 𝑢𝜀0  , 𝑓3 = −𝛽𝐾. 

6.5.2 Equilibrium 𝑬𝟐 𝑵
∗ ≠ 𝟎, 𝑷∗ ≠ 𝟎, 𝑻∗ ≠ 𝟎  

This equilibrium corresponds to growth of plant population density in the presence of 

toxic metal where:  

𝑁∗ =
𝑄−𝛾𝑇∗

𝑣𝑇∗
> 0, provided 𝑄 > 𝛾𝑇∗, 

𝑃∗ =
1

𝛽
 
𝜌 𝑄−𝛾𝑇∗ 

𝑣𝑇∗
−  𝜀0 + 𝜀1𝑇

∗  > 0, provided 
𝜌 𝑄−𝛾𝑇∗ 

𝑣𝑇∗
>  𝜀0 + 𝜀1𝑇

∗ , 

The cubic polynomial in 𝑇∗ is: 

 𝛽𝑣2𝛾 − 𝑢𝑣𝛾𝜀1 𝑇
∗3 +  𝛽𝑣2𝐾 − 𝛽𝑣2𝑄 − 𝑢𝜌𝛾2 + 𝑢𝑣𝜀1𝑄 − 𝑢𝑣𝜀0𝛾 + 𝛼𝛽𝛾𝑣 𝑇∗2

+  𝑢𝑣𝜀0𝑄 + 2𝜌𝑢𝛾𝑄 − 𝛼𝛽𝑣𝑄 𝑇∗ − 𝑢𝜌𝑄2 = 0 

But due to positivity of 𝑁∗only one feasible positive root will exist provided 𝑄 > 𝛾𝑇∗ 

6.6 Study of Uniform equilibrium 𝑬𝟏and Local Stability 

Analysis 

There is no delay  𝜏 = 0  in the absence of toxic metal  𝑇 = 0 . Uniform equilibrium 𝐸1 𝑁 ≠

0, 𝑃 ≠ 0, 𝑇 = 0  correspond to growth of plant population density through nutrient pool in the 

absence of toxic metal. The system of equations depicting this dynamic is: 

 𝑑𝑁 

𝑑𝑡
= 𝐾 − 𝑢𝑁 𝑃 − 𝛼𝑁  

(6.4) 

 𝑑𝑃 

𝑑𝑡
= 𝑟 𝑁  𝑃 − 𝛽𝑃 2 

(6.5) 

The corresponding characteristic equation is given by: 

 𝜆2 + 𝑎𝜆 + 𝑏 = 0 (6.6) 
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Where 𝑎 =  𝛼 + 𝑢𝑃 + 𝜀0 + 2𝛽𝑃 − 𝜌𝑁  > 0 provided 𝛼 + 𝑢𝑃 + 𝜀0 + 2𝛽𝑃 > 𝜌𝑁  

And𝑏 =  𝑢𝑃 𝜀0 + 2𝛽𝑢𝑃 2 + 2𝛼𝛽𝑃 + 𝛼𝜀0 − 𝛼𝜌𝑁  > 0 provided 𝑢𝑃 𝜀0 + 2𝛽𝑢𝑃 2 +

2𝛼𝛽𝑃 + 𝛼𝜀0 > 𝛼𝜌𝑁  

By Routh-Hurwitz criteria all the roots of equation (6.6) will lie in left half plane 

(having negative real part) and the system (6.4)- (6.5) will be stable if and only if 

𝑎 > 0, 𝑏 > 0. 

6.7 Study of Interior equilibrium 𝑬𝟐and Hopf- Bifurcation 

Analysis 

The interior equilibrium𝐸2 𝑁
∗ ≠ 0, 𝑃∗ ≠ 0, 𝑇∗ ≠ 0  represents the growth of plant 

population density under the effect of toxic metal. The corresponding system of 

equations is: 

 𝑑𝑁∗

𝑑𝑡
=  𝐾 − 𝑣𝑁∗𝑇∗ − 𝑢𝑁∗ 𝑡 − 𝜏 𝑃∗ − 𝛼𝑁∗ 

(6.7) 

 𝑑𝑃∗

𝑑𝑡
= 𝑟 𝑁∗, 𝑇∗ 𝑃∗ − 𝛽𝑃∗2

 
(6.8) 

 𝑑𝑇∗

𝑑𝑡
= 𝑄 − 𝑣𝑁∗𝑇∗ − 𝛾𝑇∗ 

(6.9) 

The exponential characteristic equation associated with system of equations (6.7)- (6.9) 

is: 

  𝜆3 + 𝑔1𝜆
2 + 𝑔2𝜆 + 𝑔3 

+ 𝑒−𝜆𝜏  𝑕1𝜆
2 + 𝑕2𝜆 + 𝑕3 = 0 

(6.10) 

 

Where𝑔1 = − 𝑝1 + 𝑝5 + 𝑝9 , 𝑔2 =  𝑝1𝑝5 + 𝑝5𝑝9 + 𝑝9𝑝1 − 𝑝3𝑝7 , 𝑔3 =  𝑝1𝑝5𝑝9 +

𝑝3𝑝5𝑝7,𝑕1=𝑝𝜏, 𝑕2=𝑝𝜏𝑝5+𝑝9, 𝑕3=−𝑝𝜏𝑝5𝑝9 

The values of 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8, 𝑝9, 𝑝𝜏 , are given as: 

𝑝1 = − 𝑣𝑇∗ + 𝛼 , 𝑝2 = 0, 𝑝3 = −𝑣𝑁∗, 𝑝4 = 𝜌𝑃∗, 𝑝5 = 𝜌𝑁∗ − 𝜀0 − 𝜀1𝑇
∗ − 2𝛽𝑃∗, 𝑝6

= −𝜀1𝑃
∗, 𝑃7 = −𝑣𝑇∗, 𝑝8 = 0, 𝑝9 = − 𝑣𝑁∗ + 𝛾 , 𝑝𝜏 = −𝑢𝑃∗ 

As 𝜆 = 𝑖𝜔 is a root of equation (6.10), so: 
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   𝑖𝜔 3 + 𝑔1 𝑖𝜔 
2 + 𝑔2 𝑖𝜔 + 𝑔3 

+ 𝑒− 𝑖𝜔  𝜏 𝑕1 𝑖𝜔 
2 + 𝑕2 𝑖𝜔 

+ 𝑕3 = 0 

 

(6.11) 

Separation of real and imaginary parts give: 

 𝑔3 − 𝑔1𝜔
2

+  𝑕3 − 𝑕1𝜔
2 cos𝜔𝜏

+ 𝑕2 𝜔 sin𝜔𝜏 = 0 

(6.12) 

 𝑔2𝜔 − 𝜔3 + 𝑕2𝜔 cos𝜔𝜏

−  𝑕3 − 𝑕1𝜔
2 sin𝜔𝜏 = 0 

(6.13) 

Elimination of sin𝜔𝜏 and cos𝜔𝜏 gives: 

 𝜔6 +  𝑔1
2 − 𝑕1

2 − 2𝑔2 𝜔
4

+  𝑔2
2 − 𝑕2

2 + 2𝑕1𝑕3

− 2𝑔1𝑔3 𝜔
2 +  𝑔3

2 − 𝑕3
2 = 0 

 

(6.14) 

Let 𝑦 = 𝜔2 and 𝑙 =  𝑔1
2 − 𝑕1

2 − 2𝑔2 ,𝑚 =  𝑔2
2 − 𝑕2

2 + 2𝑕1𝑕3 − 2𝑔1𝑔3 , 𝑛 =

 𝑔3
2 − 𝑕3

2 , then equation (6.14) becomes: 

 𝑦3 + 𝑙𝑦2 + 𝑚𝑦 + 𝑛 = 0 (6.15) 

Lemma 6.7.1If 𝑛 < 0, Equation (6.15) has at least one positive real root. 

 Proof. Let  𝑓 𝑦 = 𝑦3 + 𝑙𝑦2 + 𝑚𝑦 + 𝑛  

Here 𝑓 0 = 𝑐 < 0  ,  lim𝑦→∞ 𝑓 𝑦 = ∞ 

So, ∃𝑦0 ∈ (0,∞) such that 𝑕 𝑦0 = 0 

Hence proved. 

Lemma 6.7.2If 𝑛 ≥ 0, then necessary condition for equation (6.15) to have positive real 

roots is 𝐷 = 𝑙2 − 3𝑚 ≥ 0. 

Proof.    Since 𝑓 𝑦 = 𝑦3 + 𝑙𝑦2 + 𝑚𝑦 + 𝑛,  

⇒ 𝑓 ′ 𝑦 = 3𝑦2 + 2𝑙𝑦 + 𝑚 

 𝑓 ′ 𝑦 = 0 ⇒ 3𝑦2 + 2𝑙𝑦 + 𝑚 = 0 (6.16) 

The roots of equation (6.16) can be expressed as: 

 
𝑦1,2 =

−2𝑙 ∓  4𝑙2 − 12𝑚

6
=
−𝑙 ∓  𝐷

3
 

(6.17) 
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If 𝐷 < 0, then equation (6.16) does not have any real roots. So, the function  𝑓 𝑦  is 

monotone increasing function in y. It follows from  𝑓 0 = 𝑛 ≥ 0 that equation (6.15) 

has no positive real roots. 

Lemma 6.7.3  If 𝑛 ≥ 0, then equation (6.15) has positive roots if and only if 𝑦1 > 0 and  

𝑓 𝑦1 ≤ 0 , provided 𝐷 ≥ 0 and 𝑦1 =
−𝑙+ 𝐷

3
  is local minima of 𝑓 𝑦 . 

Proof. The sufficiency is obvious. Only necessity needs to be proved. Otherwise, 

assume that either 𝑦1 ≤ 0 or 𝑦1 > 0and 𝑓 𝑦1 > 0 .If 𝑦1 ≤ 0, since 𝑓 𝑦  is increasing 

for 𝑦 ≥ 𝑦1 and 𝑓 0 = 𝑛 ≥ 0, it follows that 𝑓 𝑦  has no positive real zeros. If 𝑦1 >

0and 𝑓 𝑦1 > 0, since 𝑦2 =
−𝑙− 𝐷

3
 is the local maxima value, it follows that 𝑓 𝑦1 ≤

𝑓 𝑦2 . Hence, 𝑓 0 = 𝑛 ≥ 0, As 𝑓 𝑦  does not have positive real roots. 

Lemma 6.7.4 Suppose 𝑦1is defined by equation (6.17). 

(I) If 𝑛 < 0, Equation (6.10) contains at least one positive real root. 

(II) If 𝑛 ≥ 0and  𝐷 = 𝑙2 − 3𝑚 < 0, then equation (6.15) has no positive roots. 

(III) If 𝑛 ≥ 0, then equation (6.15) has positive roots if and only if  𝑦1 > 0 and  

𝑕 𝑦1 ≤ 0 . 

Proof. Suppose that equation (6.15) has positive roots. Without loss of generality, 

assume that it has three positive roots, denoted by𝑦1, 𝑦2, 𝑦3. Then equation (6.14) has 

three positive roots, say 𝜔1 =  𝑦1 , 𝜔2 =  𝑦2 , 𝜔3 =  𝑦3 . 

From equation (6.12) and (6.13), we have: 

sin𝜔𝜏 =  
 𝑔1𝜔

2 − 𝑔3 +  𝑔2𝜔 − 𝜔3  𝑕3 − 𝑕1𝜔
2 

𝑕2
2𝜔2 +  𝑕3 − 𝑕1𝜔2 2

  

⇒ 𝜏 =
1

𝜔
 𝑠𝑖𝑛−1  

 𝑔1𝜔
2 − 𝑔3 +  𝑔2𝜔 − 𝜔3  𝑕3 − 𝑕1𝜔

2 

𝑕2
2𝜔2 +  𝑕3 − 𝑕1𝜔2 2

 + 2(𝑗 − 1)𝜋  ; 𝑗

= 1,2,3, − − 

Let 𝜏𝑘
(𝑗 ) =

1

𝜔𝑘
 𝑠𝑖𝑛−1  

 𝑔1𝜔𝑘
2−𝑔3 + 𝑔2𝜔𝑘−𝜔𝑘

3  𝑕3−𝑕1𝜔𝑘
2 

𝑕2
2𝜔𝑘

2+ 𝑕3−𝑕1𝜔𝑘
2 2  + 2(𝑗 − 1)𝜋  ; 𝑘 =

1,2,3. ; 𝑗 = 0,1,2, − − − 

Then ∓𝑖𝜔𝑘  is a pair of purely imaginary roots of equation (6.14) 

Where 𝜏 = 𝜏𝑘
(𝑗 ), 𝑘 = 1,2,3. ; 𝑗 = 0,1,2, − − −, lim𝑗→∞ 𝜏𝑘

(𝑗 ) = ∞, 𝑘 = 1,2,3.    
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Thus, we define: 

 𝜏0 = 𝜏𝑘0
(𝑗0) = min

1≤𝑘≤3,𝑗≥1
 𝜏𝑘

(𝑗 ) ,

𝜔0 = 𝜔𝑘0
, 𝑦0 = 𝑦𝑘0

 

(6.18) 

Lemma 6.7.5 Let (𝑔1 + 𝑕1) > 0,  𝑔3 + 𝑕3 > 0, (𝑔1 + 𝑕1)(𝑔2 + 𝑕2) − (𝑔3 + 𝑕3) > 0. 

(I) If 𝑛 ≥ 0and  𝐷 = 𝑙2 − 3𝑚 < 0, then all the roots of equation (6.10) have negative 

real parts for all 𝜏 ≥ 0. 

(II) If 𝑛 < 0 or 𝑛 ≥ 0, 𝑦1 > 0 and  𝑓 𝑦1 ≤ 0, then all the roots of equation (6.10) have 

negative real parts for all 𝜏 ∈  0, 𝜏0 . 

Proof. When 𝜏 = 0, equation (6.10) becomes 

 𝜆3 + (𝑔1 + 𝑕1)𝜆2 + (𝑔2 + 𝑕2)𝜆 + (𝑔3 + 𝑕3)

= 0 

(6.19) 

By Routh-Hurwitz‟s criteria, all roots of equation (6.10) have negative real parts if and 

only if (𝑔1 + 𝑕1) > 0,  𝑔3 + 𝑕3 > 0, (𝑔1 + 𝑕1)(𝑔2 + 𝑕2) − (𝑔3 + 𝑕3) > 0. 

If 𝑛 ≥ 0and  𝐷 = 𝑙2 − 3𝑚 < 0, Lemma6.7.2 (II) shows that equation (6.10) has no 

roots with zero real part for all 𝜏 ≥ 0. When 𝑛 < 0 or 𝑛 ≥ 0, 𝑦1 > 0 and  𝑓 𝑦1 ≤ 0, 

Lemma6.7.2 (I) and (III) implies that when 𝜏 ≠ 𝜏𝑘
(𝑗 ), 𝑘 = 1,2,3. ; 𝑗 ≥ 1, equation (6.10) 

has no roots with zero real part and 𝜏0 is the minimum value of 𝜏 so that the equation 

(6.10) has purely imaginary roots. Applying Theorem 1.5.8, the conclusion of this 

Lemma is obtained. 

Lemma 6.7.6 Suppose 𝑦0 = 𝜔0
2. If 𝜏 = 𝜏0, Then Sign  𝜓′  𝜏0  =Sign  𝑓 ′ 𝑦0   

Proof.Let us assume that: 

 𝜆 𝜏 = 𝜓 𝜏 + 𝑖𝜔(𝜏) (6.20) 

be the roots of equation (6.10) satisfying: 𝜓 𝜏0 = 0, 𝜔 𝜏0 = 𝜔0 

To guarantee that ∓𝜔0 are simple purely imaginary roots of equation (6.10), with 

𝜏 = 𝜏0 and 𝜆 𝜏  satisfies transversality condition, assume that   𝑓 ′ 𝑦0 ≠ 0. 

Putting 𝜆 𝜏  in equation (6.10) and differentiating w.r.t 𝜏, it follows that 

𝑑𝜆

𝑑𝜏
 3𝜆2 + 2𝑔1𝜆 + 𝑔2 +   𝑕1𝜆

2 + 𝑕2𝜆 + 𝑕3  −𝜏 +  2𝑕1𝜆 + 𝑕2  𝑒
−𝜆𝜏  

= 𝜆 𝑕1𝜆
2 + 𝑕2𝜆 + 𝑕3 𝑒

−𝜆𝜏  
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⇒  
𝑑𝜆

𝑑𝜏
 
−1

=
 3𝜆2 + 2𝑔1𝜆 + 𝑔2 𝑒

𝜆𝜏

𝜆 𝑕1𝜆2 + 𝑕2𝜆 + 𝑕3 
+

 2𝑕1𝜆 + 𝑕2 

𝜆 𝑕1𝜆2 + 𝑕2𝜆 + 𝑕3 
−
𝜏

𝜆
 

From equations (6.12) -(6.14): 

𝜓′ 𝜏0 = 𝑅𝑒  
 3𝜆2 + 2𝑔1𝜆 + 𝑔2 𝑒

𝜆𝜏

𝜆 𝑕1𝜆2 + 𝑕2𝜆 + 𝑕3 
 + 𝑅𝑒  

 2𝑕1𝜆 + 𝑕2 

𝜆 𝑕1𝜆2 + 𝑕2𝜆 + 𝑕3 
  

=
 3𝜔0

6 + 2𝑙𝜔0
4 + 𝑚𝜔0

2 

  𝑕3 − 𝑕1𝜔2 2 +  𝑕2𝜔 2 
 

Here   𝑕3 − 𝑕1𝜔
2 2 +  𝑕2𝜔 

2 > 0 and 𝜔0 > 0. 

It is concluded that Sign  𝜓′ 𝜏0  =Sign  𝑓 ′ 𝑦0  . 

Theorem 6.1 Let 𝜏0 and 𝜔0 be defined by equation (6.18) and 𝑦0 = 𝜔0
2. Let (𝑔1 +

𝑕1) > 0,  𝑔3 + 𝑕3 > 0, (𝑔1 + 𝑕1)(𝑔2 + 𝑕2) − (𝑔3 + 𝑕3) > 0. 

(I) If 𝑛 ≥ 0and  𝐷 = 𝑙2 − 3𝑚 < 0, then the interior equilibrium 𝐸2 𝑁
∗, 𝑃∗, 𝑇∗  of the 

system (6.1)- (6.3) is absolutely stable (i.e. asymptotically stable for all 𝜏 ≥ 0). 

(II) If 𝑛 < 0 or 𝑛 ≥ 0, 𝑦1 > 0 and  𝑓 𝑦1 ≤ 0, then the interior equilibrium 

𝐸2 𝑁
∗, 𝑃∗, 𝑇∗  of the system (6.1)- (6.3) is asymptotically stable for all 𝜏 ∈  0, 𝜏0 . 

(III) If the conditions of (II) are satisfied for 𝜏 = 𝜏0 and 𝑓 ′ 𝑦0 ≠ 0, then the system 

exhibits Hopf bifurcation at 𝐸2 𝑁
∗, 𝑃∗, 𝑇∗ . 

6.8 Sensitivity Analysis 

Sensitivity analysis helps to increase the understating of relationship between 

parameters and variables. It is an essential ingredient of model evaluation and quality 

assurance. It measures how much of each parameter contributes to the output variable. 

All the parameters considered in this paper are assumed to be constant. Thus, sensitivity 

analysis just entails finding the partial derivatives of solution with respect to each 

variable. For instance, if we take nutrient use efficiency parameter 𝜌, then partial 

derivatives of the solution  𝑁, 𝑃, 𝑇  with respect to 𝜌 give rise to following set of 

sensitivity equations: 

 𝑑𝑆1

𝑑𝑡
= −(𝑣𝑇 + 𝛼)𝑆1 − 𝑢𝑁 𝑡 − 𝜏 𝑆2 − 𝑣𝑁𝑆3

− 𝑢𝑃𝑆1 𝑡 − 𝜏  

(6.21) 
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 𝑑𝑆2

𝑑𝑡
= 𝜌𝑃𝑆1 +  𝜌𝑁 − 𝜀𝑜 − 𝜀1𝑇 − 2𝛽𝑃 𝑆2 

(6.22) 

 𝑑𝑆3

𝑑𝑡
= −𝑣𝑇𝑆1 −  𝑣𝑁 + 𝛾 𝑆3 

(6.23) 

Where  𝑆1 =
𝜕𝑁

𝜕𝜌
, 𝑆2 =

𝜕𝑃

𝜕𝜌
, 𝑆3 =

𝜕𝑇

𝜕𝜌
 

Then, this system of sensitivity equations (6.21) – (6.23) along with the original system 

of equations (6.1) – (6.3) is solved to estimate the sensitivity of the state variables 

 𝑁, 𝑃, 𝑇  to the parameter 𝜌. The similar procedure and argument holds for estimating 

the sensitivity of the state variables with respect to the other parameters.  

6.9 Verification of Model with Existing Experimental Data 

In this section, we try to verify the proposed model with already existing experimental 

data related to the growth of winter wheat (Triticum aestivum L) and rape (Brassica 

napus) under the effect of high concentrations of Arsenic in soil[183]. 

Wheat and rape are two widely grown crops in China. The soil arsenic (As) levels are 

also very high in these areas. To understand the effect of uptake of As on the growth of 

these two crops and the soil As bioavailability at different growth stages of wheat and 

rape, a pot experiment was conducted in the campus of Huazhong agriculture 

university, China. The results indicated that winter wheat was much more sensitive to 

As than rape. Crop yields were elevated at low concentrations of As addition 

(<60mg/kg) but reduced at high rates of As concentrations (80-100mg/Kg). The data 

related to this dynamic is given by Table 6.1 and Table 6.2. 

Table 6. 1Effect of Arsenic on biomass and yield of rape: 

Arsenic 

treatments 

(mg/kg) 

Arsenic 

treatment 

 (% age) 

Biomass 

(g/pot) 

% age 

decrease 

Yield 

(g/pot) 

% age 

decrease 

0  0 25.5 0 16.4 0 

20  20  23.2 9.0 14.8 9.7 

40  40  22.1 13.3 14.1 14.0 

60  60  21.0 17.6 13.4 18.2 

80  80  20.3 21.4 13.1 20.1 

100  100  19.3 24.3 12.1 26.2 
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Table 6. 2Effect of Arsenic on biomass and yield of wheat: 

Arsenic 

treatments 

(mg/kg) 

Arsenic 

treatment 

 (% age) 

Biomass 

(g/pot) 

% age 

decrease 

Yield 

(g/pot) 

% age 

decrease 

0  0 71.3 0 39.9 0 

20  20  64.1 10.0 35.7 10.5 

40  40  61.4 13.8 33.9 15.0 

60 60  58.5 17.9 32.6 18.2 

80  80  57.8 18.9 31.2 21.8 

100  100  56.4 20.8 29.9 25.0 

 

 

6.10 Numerical Example 

The following set of parametric values is taken to represent graphically the dynamics 

depicted by the system of equations (6.1)- (6.3). The percentage increase in the values 

of damage rate 𝜀1 of plant population density are specifically taken within the range of 

the values of toxic metal arsenic (As) taken in the above-mentioned experimental data 

[183]. 

𝐾 = 10, 𝑢 = 1, 𝛼 = 1, 𝜌 = 0.3, 𝜀0 = 0.2, 𝜀1 = 0.1, 𝛽 = 0.1, 𝑄 = 1, 𝑣 = 2, 𝛾 = 1 

With initial conditions: 𝑁 0 = 0.5, 𝑃 0 = 1, 𝑇 0 = 1.5 

In the absence of toxic metal, the uniform equilibrium 𝐸1 𝑁 ≠ 0, 𝑃 ≠ 0, 𝑇 = 0  has the 

values: 

𝑁 = 2.0288, 𝑃 = 4.0086, 𝑇 = 0. 

With the introduction of toxic metal, the interior equilibrium 𝐸2 𝑁
∗ ≠ 0, 𝑃∗ ≠ 0, 𝑇∗ ≠

0 gets the values:  

𝑁∗ = 1.9634, 𝑃∗ = 3.6873, 𝑇∗ = 0.2030 
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Figure 6.1The uniform equilibrium 𝐸1(𝑁 ,𝑃 ,0) is absolutely stable in the absence of 

toxic metal. 

 

 

 

 

 

Figure 6.2Trajectories showing adverse effect of introduction of toxic metal on nutrient 

pool. 
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Figure 6.3Trajectories showing adverse effect of introduction of toxic metal on plant 

population. 

 

 

 

The following Table 6.3 shows how the growth of plant population gets damaged with 

increasing rate of 𝜀1. The percentage increase in the values of 𝜀1 is taken as per range of 

soil arsenic metal mentioned in experimental data. 

Table 6. 3Effect of increasing rate of 𝜀1on plant population: 

Toxic metal 

(uptake rate) 

Toxic metal (%age) Plant population % age decrease 

0.0 0 4.0086 0 

0.1 10 3.6873 3.11 

0.2 20 3.6001 10.1 

0.4 40 3.4378 14.2 

0.6 60 3.2901 17.9 

0.8 80 3.1552 21.2 

1.0 100 3.0313 24.3 
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Figure 6.4Trajectories of plant population showing decrease in their values with 

increasing rate of 𝜺𝟏. 

 

The following Table 6.4 shows how the plant population gets decreased with increase in 

input rate of toxic metal. 

Table 6. 4Effect of increase in input rate of toxic metal Q on plant population: 

Input rate of 

toxic metal Q 

Toxic metal 

(%age) 

Plant population % age decrease 

0.0 0 4.0086 0 

1.0 10 3.6873 3.11 

2.0 20 3.3668 16.0 

4.0 40 2.7016 32.6 
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Figure 6.5Trajectories of plant population showing decrease in their values with 

increase in input rate of toxic metal Q. 

 

 

Figure 6.6The interior equilibrium 𝐸2 𝑁
∗, 𝑃∗, 𝑇∗  is absolutely stable when there is no 

delay i.e. τ = 0. 
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Figure 6. 7The interior equilibrium 𝐸2 𝑁
∗, 𝑃∗, 𝑇∗  is asymptotically stable when delay 

i.e. τ<0.49 

 

 

Figure 6. 8The interior equilibrium𝐸2 𝑁
∗, 𝑃∗, 𝑇∗  exhibits Hopf bifurcation when delay 

i.e. τ ≥ 0.49 
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Figure 6.9Time series graph between partial changes in N (nutrient pool) for different 

values of the parameter ρ (nutrient use efficiency). 

 

 

Figure 6.10Time series graph between partial changes in P (plant population) for 

different values of the parameter ρ (nutrient use efficiency). 
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Figure 6.11Time series graph between partial changes in N (nutrient pool) for different 

values of the parameter u (utilization coefficient). 

 

 

Figure 6.12Time series graph between partial changes in P (plant population) for 

different values of the parameter u (utilization coefficient). 

6.11 Conclusion 

The role of delay on plant population under the effect of toxic metal is studied with the 

help of proposed model.  The system of non-linear delay differential equations is used 

where the sate variables considered are nutrient pool, plant population density and toxic 

metal. The boundedness of the system is proved using usual comparison theorem. 
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Positivity of the solutions shows that all the three variables considered being real in 

natural phenomenon always remain positive at all the times. Two feasible equilibriums: 

uniform equilibrium 𝐸1and interior equilibrium 𝐸2 are calculated. The local stability of 

uniform equilibrium 𝐸1 is studied. Using Routh Hurwitz criteria, it is shown by Figure 

6.1 that equilibrium 𝐸1 is absolutely stable in the absence of toxic metal. The 

experimental data considered in this paper in Table 6.1 and Table 6.2 showed that how 

the excessive amount of soil arsenic adversely effects the biomass and yield of wheat 

and rape. Using the above-mentioned set of parameters, the same ill effect of toxic 

metal on nutrient pool and plant population is shown by Figure 6.2 and Figure 6.3. The 

value of nutrient pool decreases from 2.0288 to 1.9634 and plant population decreases 

from 4.0086 to 3.6873 for the same set of parameters. Rate of the damage to plant 

population density due to increase in toxicity rate is calculated in Table 6.3. The 

percentage decrease in plant population from 0% (in absence of toxic metal) to 24.3% 

(when uptake rate is 1.0) calculated in Table 6.3 in this study, falls well within the range 

of decrease shown by experimental data for wheat and rape in Table 6.1 and Table 6.2. 

The same decrease in plant population is shown graphically by Figure 6.4. Table 6.4 

and Figure 6.5 shows the adverse effect of increase in input rate of toxic metal on plant 

population density. The Hopf bifurcation analysis about the interior equilibrium 𝐸2 is 

done. Figure 6.6 shows that the interior equilibrium is absolutely stable when there is no 

delay i.e. 𝜏 = 0. The equilibrium 𝐸2is asymptotically stable when delay is less than the 

critical value i.e. 𝜏 < 0.91 as shown by Figure 6.7. The equilibrium  𝐸2 losses stability 

and shows Hopf bifurcation for values of delay that are more than critical value i.e. 

𝜏 ≥ 0.91. This is shown by Figure 6.8. The sensitivity analysis helped to understand the 

role played by model parameters on the solution space. Figure 6.9 indicates that with 

decrease in the nutrient use efficiency (from 0.3 to 0.2), not only the nutrient pool tends 

towards stability, its value increases too. Figure 6.10 indicates how the decrease in 

nutrient use efficiency (from 0.3 to 0.2) leads to stability of the system and decrease in 

plant population density. Figure 6.11 shows that with decrease in the utilization of 

delayed nutrient not only the system tends to stability, the value of nutrient pool 

increases as well. The increase is more evident in plant population density with decrease 

in utilization of delayed nutrient as shown by Figure 6.12.  
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Chapter 7 

Modelling the Impact of DelayConsidered in 

Utilization of Favourable Resources on Plant 

Population Density under the Effect of Acid and 

Toxic Metal 

7.1 Introduction 

A minimum level of pH value is essential for survival and growth of plants. But 

accumulation of acid over a long period of time lowers this pH level and leads to 

increased level of toxicity of metals. This lower value of pH makes the conditions 

unsuitable for survival of plants. Weathering of soil, rocks, drainage and mining 

introduces metal in plant soil dynamics. The solubility of metals is very high in acid 

solution and thereby increases toxicity of theses metals which adversely affects the plant 

growth and uptake rate of nutrients. Nwachukwu and Agbede[190] did an experiment 

using a contaminated soil in a pot. It shown significant increase in plant metal uptake 

and bioaccumulation.In a study by Bolan et al.[191] seven organic amendments were 

investigated for their effects on the reduction of chromium in a mineral soil, low in 

organic matter content. Industrial waste and sewage sludge are major source of soil 

pollution that originate from mining industries, chemical industries, metal processing 

industries and the like. Brune and Dietz[60] concluded that these industrial waste and 

sludge include a variety of chemicals like heavy metals, phenolics, acids etc. Excessive 

concentration of these metals in soils can reduce plant growth and affect soil 

microorganisms or their activities. Faizan et al.[192] have shown that Cadmium is a 

highly toxic, metallic soil contaminant which adversely affects the plant growth 

especially at the early stage reducing the crop production. The soil-nutrient-plant 

interaction represents a good example of a relationship that operates at individual, 

population and ecosystem levels. Donald et al.[193] concluded in their book that nutrient 

influence individual plant growth, which has subsequent effect on population growth 

dynamics which in turn influence production of standing crop. It is evident from the 

experimental findings that the toxic chemicals such as heavy metals, pesticides and acids 

adversely effects the soil nutrient dynamics which in turn reduces the plant population 
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growth. Agricultural research almost completely depends on experimental and empirical 

works, combined with statistical analysis and a very few mathematical modelling 

analyses has been carried out in this direction.  Mahmood et al.[194] conducted an 

experiment to show toxic effects of heavy metals on early growth and tolerance of cereal 

crops.Nitrogen dynamics in soil, its availability to the crop and the effects of nitrogen 

deficiency on crop performance were studied by Van Ittersum et al.[195]. Verma et 

al.[74]gave a mathematical model to show that the crops grown on contaminated soils 

leads to Phyto-toxicity. Lucia et al.[196] conducted three different experiments to 

determine the effects of three different heavy metals on plant growth, tissue 

accumulation and examine their uptake by sunflower in soil.  Lu et al.[85] studied heavy 

metal concentrations in soil and agricultural products near an industrial district in 

Dongguan city for agriculture products like vegetables and bananas. Cu[197] has shown 

in his paper that cultivation of crops on contaminated sites may result in both growth 

inhibition and tissue accumulation that may cause possible risks to human health. It 

considered the transport and uptake of cadmium by vegetables in Lettuce. Misra and 

Kalra[168], [177] gave a model which concluded that under the effect of toxicant, both 

the nutrient concentration and structural dry weight gets adversely affected.Global 

stability of population growth with the help of non-linear delay differential equations 

was studied by Huang et al.[172]. Zhang et al.[123] gave a neural network model where 

the nature of the roots of a 5
th

 degree exponential polynomial was discussed.Bocharov 

and Rihan[198] gave adjoint and direct methods for sensitivity analysis in numerical 

modelling in biosciences using delay differential equations. Rihan[144]performed the 

Sensitivity analysis for dynamic systems with time-lags using adjoint equations and 

direct methods when the parameters appearing in the model are not only constants but 

also variables of time. Banks et al.[176]presented theoretical foundations for traditional 

sensitivity and generalized sensitivity functions for a general class of nonlinear delay 

diff erential equations. They Included theoretical results for sensitivity with respect to the 

delays. Ingalls et al.[199] developed a parametric sensitivity analysis for periodic 

solutions of delay diff erential equations. Selvarangam et al.[200] complied the 

oscillation results for second order half liner neutral delay differential equations with 

maxima. Pramanik and Biswas [201] studied the solutions of some non-linear 

differential equations in connection to Bruck conjecture.  

Although a lot of work has been done on plant growth under the effect of toxicants, but 

the use of delay differential equations is rare in this field. In the consideration of this 
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fact, a mathematical model is proposed to study the combined effect of acid and toxic 

metal on plant population considering delay in utilization of favourable resources 

available in soil and surrounding plant environment. It is assumed that due to presence 

of toxic metal and acidity in soil, nutrient pool and plant population density gets 

adversely affected. The stability of the interior equilibrium of the system gets disturbed 

by the introduction of delay parameter. For the critical value of delay parameter, Hopf 

bifurcation is observed. The sensitivity of model solutions for different values of model 

parameters is established using sensitivity analysis. The model is also verified by taking 

the uptake rate values of copper using the existing experimental data of a study 

conducted on the effect of heavy metals like copper, lead and zinc on growth of Lettuce 

in Vietnam Cu [93].   MATLAB code is used for simulation to support analytical results. 

7.2 Mathematical Model 

The following system of non-linear delay differential equations (8.1) -(8.5) governs the 

plant population growth having five state variables: Density of favourable resources 𝑅 

including soil and surrounding environment, Plant population density 𝐵, Concentration 

of nutrients pool 𝑁 in the soil, Concentration of acid 𝑇 in the soil and Concentration of 

toxic metal 𝑀 in the soil . 

 𝑑𝑅

𝑑𝑡
= 𝛽1𝑁𝑅 − 𝛽2𝑅 − 𝛼1𝐵𝑅(𝑡 − 𝜏) 

(7.1) 

 𝑑𝐵

𝑑𝑡
= 𝛼1𝐵𝑅 𝑡 − 𝜏 − 𝛼2𝐵 

(7.2) 

 𝑑𝑁

𝑑𝑡
= 𝑁0 − 𝛾1𝑁 − 𝛽1𝑁𝑅 − 𝐾𝛿2𝑇𝑁 − 𝐾𝜀2𝑀𝑁

+ 𝐾𝛽2𝑅 + 𝐾𝛼2𝐵 

(7.3) 

 𝑑𝑇

𝑑𝑡
= 𝑇0 − 𝛿1𝑇 − 𝛿2𝑇𝑁 

(7.4) 

 𝑑𝑀

𝑑𝑡
= 𝑀0 − 𝜀1𝑀− 𝜀2𝑀𝑁 

(7.5) 

With the initial conditions:  𝑅 0 > 0, 𝐵 0 > 0,𝑁 0 > 0, 𝑇 0 > 0,𝑀 0 > 0 for all 

𝑡, 𝑅 𝑡 − 𝜏 = constant for 𝑡 ∈  −𝜏, 0 . 

The parameters are defined as: 𝑁0 = Constant nutrient input in soil, 𝑇0 = Input rate of 

acid, 𝑀0 = Input rate of metal, 𝛿1 = Natural decay rate of acid, 𝜀1 = Natural decay rate 

of metal, 𝛿2 = Uptake rate of acid by plant, 𝜀2 =  Uptake rate of metal by plant, 𝛼2 = 

Natural decay rate of plant population density, 𝛽2 = Natural decay rate of favourable 

resources, 𝛾1 = Nutrient leaching rate, 𝛼1 = Specific rate of utilization of favourable 
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resources by plant population density, 𝛽1 = Rate of interaction of nutrient and 

favourable resources. 𝐾(0 < 𝐾 < 1) is proportional amount of resource and biomass 

which is recycled back to nutrient pool after degradation. 

7.3 Boundedness of Solutions 

Boundedness means all the quantities considered in this model being real, their 

individual values as well as their total will always be finite and non-negative. The 

following lemma proves the boundedness of solutions of the model given by (7.1) -

(7.5): 

Lemma 8.3.1 All the solutions of the model (7.1)- (7.5) lie in the region: Ω =

  𝑅, 𝐵, 𝑁, 𝑇,𝑀 ∈ 𝑅+
5: 0 ≤ 𝑇 ≤

𝑇0

𝛿1
, 0 ≤ 𝑀 ≤

𝑀0

𝜀1
, 0 ≤

𝑁0+𝑇0+𝑀0

𝜑
≤ 𝑅 + 𝐵 + 𝑁 + 𝑇 +

𝑀, 0 ≤ 𝑅 + 𝐵 + 𝑁 ≤
𝑁0

𝜑1
 , 𝑎𝑠 𝑡 → ∞, for all positive initial values 

{𝑅 0 , 𝐵 0 ,𝑁 0 , 𝑇 0 ,𝑀 0 , 𝑅 𝑡 − 𝜏 = Constant for all 𝑡 ∈ [−𝜏, 0]} ∈ Ω ⊂ 𝑅+
5, 

where 

𝜑1 = min.   1 − 𝐾 𝛼2,  1 − 𝐾 𝛽2, 𝛾1 and 𝜑= max(𝛿1 + 𝜀1 +
 1+𝐾 𝛿2𝑇0

𝛿1
+

 1+𝐾 𝜀2𝑀0

𝜀1
,

𝛼2 , 𝛽2 , 𝛿1, 𝜀2 ).  

Proof.  From equation (7.4):  
𝑑𝑇

𝑑𝑡
≤ 𝑇0 − 𝛿1𝑇 

Applying the comparison theorem, we get: 

As 𝑡 → ∞: 𝑇 ≤
𝑇0

𝛿1
 

From equation (7.5):   
𝑑𝑀

𝑑𝑡
≤ 𝑀0 − 𝜀1𝑀 

Applying the comparison theorem, we get: 

As 𝑡 → ∞: 𝑀 ≤
𝑀0

𝜀1
 

Let 𝑊 𝑡 = 𝑅 𝑡 + 𝐵 𝑡 + 𝑁(𝑡) 

𝑑𝑊

𝑑𝑡
=
𝑑 𝑅 + 𝐵 + 𝑁 

𝑑𝑡
 

= 𝑁0 − 𝛾1𝑁 − 𝐾𝛿2𝑇𝑁 − 𝐾𝜀2𝑀𝑁 −  1 − 𝐾 𝛼2𝐵 −  1 − 𝐾 𝛽2𝑅 

Let 𝜑1 = min.   1 − 𝐾 𝛼2,  1 − 𝐾 𝛽2, 𝛾1 , 
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Then    
𝑑𝑊

𝑑𝑡
≤ 𝑁0 − 𝜑1𝑊 

Applying the comparison theorem, we get: 

As 𝑡 → ∞ ∶  𝑊 ≤
𝑁0

𝜑1
 

𝑅 + 𝐵 + 𝑁 ≤
𝑁0

𝜑1
 

Again,    let 𝑊1 𝑡 = 𝑊 𝑡 + 𝑇 𝑡 + 𝑀(𝑡) 

𝑑𝑊1

𝑑𝑡
=  𝑁0 + 𝑇0 + 𝑀0 − 𝛿1𝑇 − 𝜀1𝑀 −  1 + 𝐾 𝛿2𝑇𝑁 −  1 + 𝐾 𝜀2𝑀𝑁 − 𝜑1𝑊 

Let 𝜑= max(𝛿1 + 𝜀1 +
 1+𝐾 𝛿2𝑇0

𝛿1
+

 1+𝐾 𝜀2𝑀0

𝜀1
, 𝛼2 , 𝛽2 , 𝛿1, 𝜀2 ), 

Then    
𝑑𝑊1

𝑑𝑡
≥  𝑁0 + 𝑇0 + 𝑀0 − 𝜑𝑊1 

Applying the comparison theorem, we get: 

As 𝑡 → ∞: 𝑊1 ≥
 𝑁0+𝑇0+𝑀0 

𝜑
 

Hence  𝑅 + 𝐵 + 𝑁 + 𝑇 + 𝑀 ≥
 𝑁0+𝑇0+𝑀0 

𝜑
 

7.4 Positivity of Solutions 

For system to sustain, solution space must be positive. For positive solutions, we need 

to show that all solution  𝑅 𝑡 , 𝐵 𝑡 , 𝑁 𝑡 , 𝑇 𝑡 ,𝑀 𝑡  of the model governed by 

Equations. (7.1)– (7.5) stay positive for all time 𝑡 > 0, where initial condition is 

𝑅 0 > 0, 𝐵 0 > 0,𝑁 0 > 0, 𝑇 0 > 0,𝑀 0 > 0 for all 𝑡 and 𝑅 𝑡 − 𝜏 = constant 

for 𝑡 ∈  −𝜏, 0 .  

From equation (7.4):  
𝑑𝑇

𝑑𝑡
≥ −(𝛿1 + 𝛿2𝑁)𝑇 

⇒
𝑑𝑇

𝑑𝑡
≥ − 

𝛿1𝜑1 + 𝛿2𝑁0

𝜑1
 𝑇 

⇒ 𝑇 ≥ 𝑐1𝑒
− 

𝛿1𝜑1+𝛿2𝑁0
𝜑1

 𝑡
 

⇒ 𝑇 > 0 for all 𝑡. 

From equation (7.5):  
𝑑𝑀

𝑑𝑡
≥ −(𝜀1 + 𝜀2𝑁)𝑀 
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⇒
𝑑𝑀

𝑑𝑡
≥ − 

𝜀1𝜑1 + 𝜀2𝑁0

𝜑1
 𝑀 

⇒ 𝑀 ≥ 𝑐2𝑒
− 

𝜀1𝜑1+𝜀2𝑁0
𝜑1

 𝑡
 

⇒ 𝑀 > 0 for all 𝑡. 

Based on the same logic, 𝑅 > 0, 𝐵 > 0 and 𝑁 > 0. 

7.5 Equilibrium Points of the Model 

The dynamical system governed by equations (7.1)- (7.5) has two non-negative 

equilibrium points 𝐸2(𝑖 = 1,2) out of which 𝐸1is a uniform equilibrium points and 𝐸2 is 

the interior equilibrium point. At all points of equilibrium: 𝑅 𝑡 − 𝜏 = 𝑅 𝑡  

(I) The first uniform equilibrium point 𝐸1 𝑅 ≠ 0, 𝐵 ≠ 0,𝑁 ≠ 0, 𝑇 = 0,𝑀 = 0  

𝑅 =
𝛼2

𝛼1
 , 𝐵 =

𝛽1𝑁 −𝛽2

𝛼1
 if 𝛽1𝑁

∗ > 𝛽2 

𝑎𝑛𝑑 𝑁 =
𝑁0 + 𝐾𝛽2𝑅 + 𝐾𝛼2𝐵 

𝛾1 + 𝛽1𝑅 
 

(II) The second interior equilibrium point 𝐸2 𝑅
∗ ≠ 0, 𝐵∗ ≠ 0,𝑁∗ ≠ 0, 𝑇∗ ≠ 0,𝑀∗ ≠ 0  

𝑇∗ =
𝑇0

𝛿1 + 𝛿2𝑁
∗

 , 𝑀∗ =
𝑀0

𝜀1 + 𝜀2𝑁
∗
 ,  

𝑅∗ =
𝛼2

𝛼1
 , 𝐵∗ =

𝛽1𝑁
∗−𝛽2

𝛼1
 if 𝛽1𝑁

∗ > 𝛽2 , 

𝑁∗ =
𝑁0 + 𝐾𝛽2𝑅

∗ + 𝐾𝛼2𝐵
∗

𝛾1 + 𝛽1𝑅∗ + 𝐾𝛿2𝑇∗ + 𝐾𝜀2𝑀∗
 

such that 𝑁∗ =
−𝑕2+ 𝑕2

2−4𝑕1𝑕3

2𝑕1
> 0 

Where 𝑕1 = 𝛾1𝛼1𝛿2 +  1 − 𝐾 𝛼2𝛽1𝛿2,  

𝑕2 = 𝛾1𝛼1𝛿2 + 𝐾𝛿2𝑇0𝛼1 + 𝐾𝜀2𝑀0 − 𝑁0𝛿2 +  1 − 𝐾 𝛼2𝛽1𝛿1, 𝑕3 = −𝑁0𝛿1𝛼1 

7.6 Study of Uniform Equilibrium 𝑬𝟏and Local Stability 

In the absence of acid and toxic metal  𝑇 = 0,𝑀 = 0 , there is no delay  𝜏 = 0 . The 

system of equations governing the dynamics about equilibrium 𝐸1 𝑅 ≠ 0, 𝐵 ≠ 0, 𝑁 ≠

0, 𝑇 = 0,𝑀 = 0  becomes:  
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 𝑑𝑅 

𝑑𝑡
= 𝛽1𝑁 𝑅 − 𝛽2𝑅 − 𝛼1𝐵 𝑅 (𝑡) 

(7.6) 

 𝑑𝐵 

𝑑𝑡
= 𝛼1𝐵 𝑅  𝑡 − 𝛼2𝐵  

(7.7) 

 𝑑𝑁 

𝑑𝑡
= 𝑁0 − 𝛾1𝑁 − 𝛽1𝑁 𝑅 + 𝐾𝛽2𝑅 + 𝐾𝛼2𝐵  

(7.8) 

The characteristic equation associated with variational matrix about equilibrium 𝐸1is 

given by:    

 𝜆3 + 𝜉1𝜆
2 + 𝜉2𝜆 + 𝜉3 = 0 (7.9) 

Where  𝜉1 = 𝛽2 + 𝛼2 + 𝛾1 + 𝛼1𝐵 + 𝛽1𝑅 − 𝛽1𝑁 − 𝛼1𝑅  

𝜉2 =   𝛽1𝑁 − 𝛽2 − 𝛼1𝐵   𝛼1𝑅 − 𝛼2 −  𝛼1𝑅 − 𝛼2  𝛾1 + 𝛽1𝑅  

−  𝛾1 + 𝛽1𝑅   𝛽1𝑁 − 𝛽2 − 𝛼1𝐵  − 𝛽1𝑅  𝛽1𝑁 − 𝛽2 − 𝛼1𝐵  − 𝛼1
2𝐵 𝑅  

𝜉3 =   𝛽1𝑁 − 𝛽2 − 𝛼1𝐵   𝛼1𝑅 − 𝛼2  𝛾1 + 𝛽1𝑅  + 𝛼1
2𝐵 𝑅  𝛾1 + 𝛽1𝑅  

+ 𝛽1𝑅  𝛼1𝑅 − 𝛼2  𝐾𝛽2 − 𝛽1𝑁   

By Routh-Hurwitz‟s criteria, the real parts of roots of the equation (8.9) will be negative 

iff 𝜉1 > 0, 𝜉2 > 0, 𝜉3 > 0 and 𝜉1𝜉2 − 𝜉3 > 0. 

Hence, the uniform equilibrium 𝐸1 will always be locally stable, provided: 

𝜉1 > 0, 𝜉2 > 0, 𝜉3 > 0 and 𝜉1𝜉2 − 𝜉3 > 0. 

7.7 Study of Interior Equilibrium 𝑬𝟐and Local Hopf-

Bifurcation 

In the presence of acid and toxic metal  𝑇∗ ≠ 0,𝑀∗ ≠ 0 , it is assumed that there will 

be delay  𝜏 ≠ 0 . The system of equations governing the dynamics about equilibrium 

𝐸2 𝑅
∗ ≠ 0, 𝐵∗ ≠ 0, 𝑁∗ ≠ 0, 𝑇∗ ≠ 0,𝑀∗ ≠ 0  becomes: 

 𝑑𝑅∗

𝑑𝑡
= 𝛽1𝑁

∗𝑅∗ − 𝛽2𝑅
∗ − 𝛼1𝐵

∗𝑅∗(𝑡 − 𝜏) 
(7.10) 

 𝑑𝐵∗

𝑑𝑡
= 𝛼1𝐵

∗𝑅∗ 𝑡 − 𝜏 − 𝛼2𝐵
∗ 

(7.11) 

 𝑑𝑁∗

𝑑𝑡
= 𝑁0 − 𝛾1𝑁

∗ − 𝛽1𝑁
∗𝑅∗ − 𝐾𝛿2𝑇

∗𝑁∗

− 𝐾𝜀2𝑀
∗𝑁∗ + 𝐾𝛽2𝑅

∗

+ 𝐾𝛼2𝐵
∗ 

 

(7.12) 
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 𝑑𝑇∗

𝑑𝑡
= 𝑇0 − 𝛿1𝑇

∗ − 𝛿2𝑇
∗𝑁∗ 

(7.13) 

 𝑑𝑀∗

𝑑𝑡
= 𝑀0 − 𝜀1𝑀

∗ − 𝜀2𝑀
∗𝑁∗ 

(7.14) 

The exponential characteristic equation about equilibrium 𝐸2 is given by: 

 𝜇5 + 𝜁1𝜇
4 + 𝜁2𝜇

3 + 𝜁3𝜇
2 + 𝜁4𝜇 + 𝜁5

+  𝜂1𝜇
4 + 𝜂2𝜇

3 + 𝜂3𝜇
2 + 𝜂4𝜇

+ 𝜂5 𝑒
−𝜇𝜏 = 0 

 

(7.15) 

Here                𝜁1 = − 𝐿1 + 𝐿7 + 𝐿13 + 𝐿19 + 𝐿25 , 

𝜁2 =  𝐿15𝐿23 + 𝐿1𝐿7 + 𝐿13𝐿7 + 𝐿13𝐿19 + 𝐿19𝐿25 + 𝐿1𝐿25 + 𝐿7𝐿19 + 𝐿25𝐿7 +

𝐿13𝐿25+𝐿1𝐿19−𝐿11𝛽1𝑅∗ , 

𝜁3 =  − 𝐿1𝐿15𝐿23 + 𝐿7𝐿15𝐿23 + 𝐿15𝐿19𝐿23 + 𝐿1𝐿7𝐿13 + 𝐿7𝐿13𝐿19 + 𝐿13𝐿19𝐿25 +

𝐿1𝐿19𝐿25+𝐿1𝐿7𝐿25+𝐿1𝐿13𝐿19+𝐿7𝐿19𝐿25+𝐿1𝐿13𝐿25+𝐿7𝐿13𝐿25+𝐿14𝐿18+𝛽1

𝑅∗𝐿6𝐿12−𝛽1𝑅∗𝐿7𝐿11−𝛽1𝑅∗𝐿11𝐿19−𝛽1𝑅∗𝐿11𝐿25 , 

𝜁4 =  𝐿1𝐿7𝐿15𝐿23 + 𝐿7𝐿15𝐿19𝐿23 + 𝐿1𝐿15𝐿19𝐿23 + 𝐿1𝐿7𝐿13𝐿19 + 𝐿7𝐿13𝐿19𝐿25

+ 𝐿1𝐿13𝐿19𝐿25 + 𝐿1𝐿7𝐿19𝐿25 + 𝐿1𝐿7𝐿13𝐿25 + 𝐿1𝐿14𝐿18 + 𝐿7𝐿14𝐿18

+ 𝛽1𝑅
∗𝐿6𝐿12𝐿19 + 𝛽1𝑅

∗𝐿6𝐿12𝐿25 − 𝛽1𝑅
∗𝐿7𝐿11𝐿19 − 𝛽1𝑅

∗𝐿11𝐿19𝐿25

− 𝛽1𝑅
∗𝐿7𝐿11𝐿25  

𝜁5 = − 𝐿1𝐿7𝐿15𝐿19𝐿23 + 𝐿1𝐿7𝐿13𝐿19𝐿25 + 𝐿1𝐿7𝐿14𝐿18 − 𝛽1𝑅
∗𝐿7𝐿11𝐿19𝐿25  

𝜂1 = 𝛼1𝐵
∗, 𝜂2 = 𝛼1𝐵

∗ 𝐿7 + 𝐿13 + 𝐿19 + 𝐿25 , 𝜂3

= 𝛼1𝐵
∗ 𝐿15𝐿23 + 𝐿7𝐿13+2𝐿19𝐿25 + 𝐿7𝐿25 + 𝐿13𝐿19 + 𝐿13𝐿25 , 𝜂4

= 𝛼1𝐵
∗ 𝐿12𝐿19 + 𝐿12𝐿25 − 𝐿14𝐿18 − 𝐿7𝐿15𝐿23 − 𝐿15𝐿19𝐿23 − 𝐿7𝐿13𝐿19

− 𝐿13𝐿19𝐿25 − 𝐿7𝐿13𝐿25 , 𝜂5

= 𝛼1𝐵
∗ 𝛽1𝑅

∗𝐿12𝐿19𝐿25 − 𝐿7𝐿15𝐿19𝐿23 − 𝐿7𝐿13𝐿19𝐿25 − 𝐿7𝐿14𝐿18  

Where   𝐿1 = − 𝛽2 − 𝛽1𝑁
∗ ,   𝐿2 =  0,   𝐿3 = 𝛽1𝑅

∗, 𝐿4 = 0, 𝐿5 = 0,𝐿6 = 𝛼1𝐵
∗, 𝐿7 =

−𝛼2, 𝐿8 = 0, 𝐿9 = 0, 𝐿10 = 0, 𝐿11 = (𝛽2𝐾 − 𝛽1𝑁
∗), 𝐿12 = 𝛼2𝐾, 𝐿13 = − 𝛾1 + 𝛽1𝑅

∗ +

𝛿2𝐾𝑇∗+𝜀2𝐾𝑀∗, 𝐿14=−𝛿2𝐾𝑁∗, 𝐿15=−𝜀2𝐾𝑁∗, 𝐿16=0, 𝐿17=0, 

𝐿18 = −𝛿2𝑇
∗, 𝐿19 = − 𝛿1 + 𝛿2𝑁

∗ , 𝐿20 = 0, 𝐿21 = 0, 𝐿22 = 0, 𝐿23 = −𝜀2𝐾𝑀
∗, 𝐿24 =

0, 𝐿25 = − 𝜀1 + 𝜀2𝑁
∗ . 

As 𝜇 = 𝑖𝜔 is a root of equation (7.15), So 
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 𝑖𝜔5 + 𝜁1𝜔
4 − 𝑖𝜁2𝜔

3 − 𝜁3𝜔
2 + 𝑖𝜁4𝜔 + 𝜁5 

+  𝜂1𝜔
4 − 𝑖𝜂2𝜔

3 − 𝜂3𝜔
2 + 𝑖𝜂4𝜔 + 𝜂5  cos𝜔𝜏 − 𝑖𝑠𝑖𝑛 𝜔𝜏 = 0 

Separating real and imaginary parts: 

  𝜔5 − 𝜁2𝜔
3 + 𝜁4𝜔 +  𝜂4𝜔 − 𝜂2𝜔

3 cos𝜔𝜏

−  𝜂1𝜔
4 − 𝜂3𝜔

2 + 𝜂5  𝑠𝑖𝑛 𝜔𝜏

= 0 

 

(7.16) 

  𝜁1𝜔
4 − 𝜁3𝜔

2+𝜁5 

+  𝜂1𝜔
4 − 𝜂3𝜔

2 + 𝜂5 cos𝜔𝜏

+  𝜂4𝜔 − 𝜂2𝜔
3 sin𝜔𝜏 = 0 

 

(7.17) 

Squaring and adding equation (7.16) and (7.17), we get: 

 𝜔10 + 𝑎𝜔8 + 𝑏𝜔6 + 𝑐𝜔4 + 𝑑𝜔2 + 𝑟 = 0 (7.18) 

Where  𝑎 =  𝜁1
2 − 𝜂1

2 − 2𝜁2 , 𝑏 =   𝜁2
2 − 𝜂2

2 − 2𝜁4 − 2𝜁1𝜁3 + 2𝜂1𝜂3 , 

𝑐 =   𝜁3
2 − 𝜂3

2 − 2𝜁2𝜁4 + 2𝜂2𝜂4 − 2𝜂1𝜂5 , 

𝑑 =   𝜁4
2 − 𝜂4

2 − 2𝜂3𝜂5 + 2𝜂3𝜂5 , 𝑟 =  𝜁5
2 − 𝜂5

2  

Let 𝜔2 = 𝜒, then, equation (7.18) becomes: 

 𝜒5 + 𝛼𝜒4 + 𝛽𝜒3 + 𝛾𝜒2 + 𝛿𝜒 + 𝜀 = 0 (7.19) 

Lemma 7.7.1If 𝜀 < 0, Equation (7.19) has contains at least one positive real root. 

Proof.  Let 𝑓 𝜒 = 𝜒5 + 𝛼𝜒4 + 𝛽𝜒3 + 𝛾𝜒2 + 𝛿𝜒 + 𝜀 

Here 𝑓 0 = 𝜀 < 0  ,  lim𝜒→∞ 𝑓 𝜒 = ∞ 

So, ∃𝜒0 ∈ (0,∞) such that 𝑓 𝜒0 = 0. 

Proof completed. 

Also  𝑓 ′ 𝜒 = 5𝜒4 + 4𝛼𝜒3 + 3𝛽𝜒2 + 2𝛾𝜒 + 𝛿 

 𝑓 ′ 𝜒 = 0

⇒ 5𝜒4 + 4𝛼𝜒3 + 3𝛽𝜒2 + 2𝛾𝜒

+ 𝛿 = 0 

(7.20) 

Which becomes: 

 𝑢4 + 𝑎𝑢2 + 𝑏𝑢 + 𝑐 = 0 (7.21) 
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Where 𝑢 = 𝜒 +
𝛼

5
 ,𝑎 =

3𝛽

5
−

6𝛼2

25
,𝑏 =

2𝛾

5
+

6𝛼𝛽

25
+

8𝛼3

125
, 𝑐 =

𝛿

5
−

2𝛼𝛾

25
+

3𝛼2𝛽

125
−

3𝛼4

625
 

If 𝑏 = 0, then, four roots of equation (7.21) come out to be: 

𝑢1 =  −𝑎 +  Η

2
, 𝑢2 = − 

−𝑎 +  Η

2
, 𝑢3 =  −𝑎 −  Η

2
, 𝑢4 = − 

−𝑎 −  Η

2
 

Thus 𝜒𝑖 = 𝑢𝑖 −
𝛼

5
,    𝑖 = 1,2,3,4 are the roots of equation (8.19) where: 

Η = 𝑎2 − 4𝑐 

Lemma 7.7.2 Suppose 𝜀 ≥ 0 and 𝑏 = 0. 

(I) If Η < 0, then equation (7.19) has no positive real roots. 

(II) If Η ≥ 0, 𝑎 ≥ 0, 𝑐 ≥ 0, then equation (7.19) has no positive real roots. 

(III) If (I) and (II) are not satisfied, then equation (7.19) has positive real roots iff ∃ at 

least one 𝜒∗ ∈ (𝜒1, 𝜒2 , 𝜒3, 𝜒4) such that 𝜒∗ > 0 and 𝑓(𝜒∗) ≤ 0. 

Proof. (I) If Η < 0, then equation (7.19) has no positive real roots. Since 

lim𝜒→∞ 𝑓 𝜒 = ∞, we have 𝑓 ′ 𝜒 > 0 for 𝜒 ∈ 𝑅.Hence 𝑓 0 = 𝜀 ≥ 0 implies 𝑓 𝜒  

has no zero in  0,∞ . 

(II) Condition Η ≥ 0, 𝑎 ≥ 0, 𝑐 ≥ 0 imply that 𝑓 ′ 𝜒  has no zero in  −∞,∞ . It is 

similar to (I) that 𝑓(𝜒) has no zero in   0,∞ . 

(III) The sufficiency is obvious. We need only to prove the necessity. If Η ≥ 0, we 

know that equation (7.21) has only four roots 𝑢1 , 𝑢2, 𝑢3and 𝑢4, that is equation (7.20) 

has only four roots  𝜒1, 𝜒2 , 𝜒3 and 𝜒4 at least 𝜒1is a real root. Without loss of generality, 

we assume that 𝜒1, 𝜒2, 𝜒3 and 𝜒4are all real. This implies that 𝑓 𝜒  has at most four 

stationary points 𝜒1, 𝜒2, 𝜒3 and 𝜒4. If it is not true, then we have that either 𝜒1 ≤ 0 or 

𝜒1 > 0 and min 𝑓 𝜒𝑖 : 𝜒𝑖 > 0, 𝑖 = 1,2,3,4  > 0. If 𝜒1 ≤ 0, then 𝑓 ′ 𝜒  has no zero in 

 0,∞ . Since 𝑓 0 = 𝜀 ≥ 0 is the strict minimum of 𝑓(𝜒) for 𝜒 ≥ 0 which implies 

𝑓(𝜒) > 0 in   0,∞ . If 𝜒1 > 0 and min 𝑓 𝜒𝑖 : 𝜒𝑖 > 0, 𝑖 = 1,2,3,4  > 0, since 𝑓(𝜒) is a 

derivable function and lim𝜒→∞ 𝑓 𝜒 = ∞, then we have 

𝑚𝑖𝑛𝜒>0𝑓 𝜒 = min 𝑓 𝜒𝑖 : 𝜒𝑖 > 0, 𝑖 = 1,2,3,4  > 0. The necessity is proved.  

This completes the proof. 

Next, we assume that 𝑏 ≠ 0. Consider the resolvent of equation (7.21) 



 

134 
 

𝑏2 − 4 𝑣 − 𝑎  
𝑣2

4
− 𝑐 = 0 

 ⇒ 𝑣3 − 𝑎𝑣2 − 4𝑐𝑟 + 4𝑎𝑐 − 𝑏2 = 0 (7.22) 

By Cardan formula, equation (7.22) has the following three roots: 

𝑣1 =  −
𝑏1

2
+  Η1 

1
3 

+  −
𝑏1

2
− Η1 

1
3 

+
𝑎

3
, 

𝑣2 = 𝜍  −
𝑏1

2
+  Η1 

1
3 

+ 𝜍2  −
𝑏1

2
− Η1 

1
3 

+
𝑎

3
‟ 

𝑣3 = 𝜍2  −
𝑏1

2
+  Η1 

1
3 

+ 𝜍  −
𝑏1

2
−  Η1 

1
3 

+
𝑎

3
 

Where 𝑒1 = −
𝑎2

3
− 4𝑐, 𝑏1 = −

2𝑎3

27
+

8𝑎𝑐

3
− 𝑏2 , Η1 =

𝑒1
3

27
+

𝑏1
2

4
, 𝜍 =

1+ 3𝑖

2
 

Let 𝑣∗ = 𝑣1 ≠ 𝑎, then equation (8.22) becomes: 

 
𝑢4 + 𝑣∗𝑢

2 +
𝑣∗

2

4

−   𝑣∗ − 𝑎 𝑢2 − 𝑏𝑢 +
𝑣∗

2

4

− 𝑐 = 0 

(7.23) 

For the above equation (7.22), (7.20) implies that the formula in the square brackets is a 

perfect square.  

If 𝑣∗ > 𝑎, then equation (7.22) becomes: 

 𝑢2 +
𝑣∗
2
 

2

−   𝑣∗ − 𝑎𝑢 −
𝑏

2 𝑣∗ − 𝑎
 

2

= 0 

After factorization, we get: 

𝑢2 +  𝑣∗ − 𝑎𝑢 −
𝑏

2 𝑣∗−𝑎
+

𝑣∗

2
 and 𝑢2 −  𝑣∗ − 𝑎𝑢 −

𝑏

2 𝑣∗−𝑎
+

𝑣∗

2
 

So, four roots of the equation (21) are: 

𝑢1 =
− 𝑣∗−𝑎+ Η2

2
, 𝑢2 =

− 𝑣∗−𝑎− Η2

2
 , 𝑢3 =

− 𝑣∗−𝑎+ Η3

2
,   𝑢4 =

− 𝑣∗−𝑎− Η3

2
 

Where Η2 = −𝑣∗ − 𝑎 +
𝑏

2 𝑣∗−𝑎
 and Η3 = −𝑣∗ − 𝑎 −

𝑏

2 𝑣∗−𝑎
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Then 𝜒𝑖 = 𝑢𝑖 −
𝛼

5
,    𝑖 = 1,2,3,4 are the roots of equation (8.20).  

Thus, we have the following Lemma. 

Lemma 7.7.3Suppose that 𝜀 ≥ 0, 𝑏1 ≠ 0 and 𝑣∗ > 𝑎. 

(I) If Η2 < 0 and Η3 < 0, then equation (7.19) has no positive real roots. 

(II) If (I) is not satisfied, then equation (7.19) has positive real roots iff ∃ at least one 

𝜒∗ ∈ (𝜒1, 𝜒2, 𝜒3 , 𝜒4) such that 𝜒∗ > 0 and 𝑓(𝜒∗) ≤ 0. 

Proof. The proof is similar to lemma 7.7.1. We omit it. Finally, if 𝑣∗ < 𝑎, then equation 

(7.23) becomes: 

 
 𝑢2 +

𝑣∗
2
 

2

−   𝑎 − 𝑣∗𝑢 −
𝑏

2 𝑎 − 𝑣∗
 

2

= 0 
(7.24) 

Let 𝜒 =
𝑏

2 𝑎−𝑣∗ 
−

𝛼

5
 

Hence, we have the following Lemma. 

Lemma 7.7.4Suppose that 𝜀 ≥ 0, 𝑏1 ≠ 0 and 𝑣∗ < 𝑎, then equation (7.22) has positive 

real roots iff 
𝑏2

4 𝑎−𝑣∗ 2 +
𝑣∗

2
= 0 and 𝜒 > 0 and 𝑓 𝜒  ≤ 0. 

Proof. Assume equation (7.23) has a real root 𝑢0satisfying: 

𝑢0 =
𝑏

2 𝑎 − 𝑣∗ 
, 𝑢0

2 = −
𝑣∗
2

 

⇒
𝑏2

4 𝑎−𝑣∗ 2 +
𝑣∗

2
= 0. 

Therefore, equation (7.23) has a real root 𝑢0iff 
𝑏2

4 𝑎−𝑣∗ 2 +
𝑣∗

2
= 0.  

The rest of the proof is similar to Lemma 7.7.1. We omit it. 

Suppose equation (7.20) possesses positive roots. In general, we suppose that it has 5 

positive roots denoted by 𝜒∗
𝑖
, 𝑖 = 1,2,3,4,5. Then equation (7.19) has 5 positive roots 

𝜔𝑖 =  𝜒∗𝑖 , 𝑖 = 1,2,3,4,5. 

We have        cos𝜔𝜏 =
𝜁6

 𝜂4𝜔−𝜂2𝜔3 2+ 𝜂1𝜔4−𝜂3𝜔2+𝜂5 2
 

⇒ 𝜏 =
1

𝜔
 𝑐𝑜𝑠−1  

𝜁6

 𝜂4𝜔 − 𝜂2𝜔3 2 +  𝜂1𝜔4 − 𝜂3𝜔2 + 𝜂5 2
 + 2𝑗𝜋  ; 𝑗 = 0,1,2,3, − − 
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Where 𝜁6 = −  𝜂1𝜔
4 − 𝜂3𝜔

2 + 𝜂5  𝜁1𝜔
4 − 𝜁3𝜔

2 + 𝜁5 +  𝜂4𝜔 − 𝜂2𝜔
3  𝜔5 −

𝜁2𝜔3+𝜁4𝜔 

Let𝜏𝑘
(𝑗 ) =

1

𝜔𝑘
 𝑐𝑜𝑠−1  

𝜁6

 𝜂4𝜔−𝜂2𝜔3 2+ 𝜂1𝜔4−𝜂3𝜔2+𝜂5 2
 + 2𝑗𝜋  ; 𝑘 = 1,2,3,4,5. ; 𝑗 =

0,1,2,3, − 

Then ∓𝑖𝜔𝑘  is a pair of purely imaginary roots of equation (7.15) 

Where 𝜏 = 𝜏𝑘
(𝑗 ), 𝑘 = 1,2,3,4,5. ; 𝑗 = 1,2,3, − − − ,  

We have lim𝑗→∞ 𝜏𝑘
(𝑗 ) = ∞, 𝑘 = 1,2,3,4,5.    

Thus, we can define: 

 𝜏0 = 𝜏𝑘0
(𝑗0) = min

1≤𝑘≤4,𝑗≥1
 𝜏𝑘

(𝑗 )       , 𝜔0

= 𝜔𝑘0
, 𝜒0 = 𝜒𝑘0

∗ 

(7.25) 

Lemma 7.7.5Suppose that 𝜎1 > 0, (𝜎1𝜎2 − 𝜎3) > 0, 𝜎3 𝜎1𝜎2 − 𝜎3 + 𝜎1 𝜎5 − 𝜎1𝜎4 >

0,  𝜎2𝜎5 + 𝜎3𝜎3  𝜎1𝜎2 − 𝜎3 + 𝜎1𝜎4 𝜎5 − 𝜎1𝜎4 > 0, 𝜎5 > 0. 

Where 𝜎1 =  𝜁1 + 𝜂1 , 𝜎2 =  𝜁2 + 𝜂2 , 𝜎3 =  𝜁3 + 𝜂3 , 𝜎4 =  𝜁4 + 𝜂4 , 𝜎5 =  𝜁5 + 𝜂5 . 

(I)If any one of the following condition holds: (i) 𝜀 < 0 (ii) 𝜀 ≥ 0, 𝑏 = 0, Η ≥ 0 and 

𝑎 < 0 𝑜𝑟 𝑐 ≤ 0 and there exists a 𝜒∗ ∈ (𝜒1, 𝜒2 , 𝜒3, 𝜒4) such that 𝜒∗ > 0 and 𝑓(𝜒∗) ≤ 0 

(iii) 𝜀 ≥ 0, 𝑏 ≠ 0, 𝑣∗ > 𝑎,Η2 ≥ 0 𝑜𝑟 Η3 ≥ 0  and there exists a 𝜒∗ ∈ (𝜒1, 𝜒2, 𝜒3, 𝜒4) 

such that 𝜒∗ > 0 and 𝑓(𝜒∗) ≤ 0 (iv) 𝜀 ≥ 0, 𝑏 ≠ 0, 𝑣∗ < 𝑎,
𝑏2

4 𝑎−𝑣∗ 2 +
𝑣∗

2
= 0, 𝜒 > 0 and 

𝑓 𝜒  ≤ 0, then negative real part will be there in all roots of equation(8.15) when 

𝜏 ∈  0, 𝜏0 . 

(II)If any one of the conditions (i)-(iv) of (I) are not satisfied, then negative real parts 

will be there in all roots of equation (7.15) for all 𝜏 ≥ 0. 

Proof. When 𝜏 = 0, equation (7.15) becomes; 

𝜇5 +  𝜁1 + 𝜂1 𝜇
4 +  𝜁2 + 𝜂2 𝜇

3 +  𝜁3 + 𝜂3 𝜇
2 +  𝜁4 + 𝜂4 𝜇 +  𝜁5 + 𝜂5 = 0 

 𝜇5 + 𝜎1𝜇
4 + 𝜎2𝜇

3 + 𝜎3𝜇
2 + 𝜎4𝜇 + 𝜎5 = 0 (7.26) 

All roots of equation (7.26) have negative real parts iff supposition of Lemma 7.7.5 

holds (Routh-Hurwitz‟s criteria). 
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From Lemmas 7.7.1- 7.7.5, we know that if conditions (i)-(iv) of (I) are not satisfied, 

then none of the roots of equation (7.26) will have zero-real part for all 𝜏 ≥ 0. 

If one of the conditions (i)-(iv) holds, when 𝜏 ≠ 𝜏𝑘
 𝑗  , 𝑘 = 1,2,3,4,5. ; 𝑗 ≥ 1, then none 

of the roots of equation (7.26) will have zero real part and 𝜏0 is the minimum value of 𝜏 

for which the roots of equation (7.26) are purely imaginary. This lemma is concluded by 

using Theorem1.5.8. 

 Let 𝜇 𝜏 = 𝜓 𝜏 + 𝑖𝜔(𝜏) (7.27) 

be the roots of equation (8.26) satisfying: 𝜓 𝜏0 = 0, 𝜔 𝜏0 = 𝜔0.  

Then we have the following lemma. 

Lemma 7.7.6Suppose 𝑕′(𝜒0) ≠ 0. If 𝜏 = 𝜏0, then ∓𝑖𝜔0 is a pair of simple purely 

imaginary roots of equation (7.26). Moreover, If the condition of Lemma 7.7.5 (I) are 

satisfied, then 
𝑑

𝑑𝜏
 𝑅𝑒𝜇(𝜏0) > 0. 

Proof.  Substituting 𝜆 𝜏  into equation (7.15) and differentiating both sides with respect 

to 𝜏 

 
𝑑𝜇

𝑑𝜏
 
−1

=
 5𝜇4 + 4𝜁1𝜇

3 + 3𝜁2𝜇
2 + 2𝜁3𝜇 + 𝜁4 𝑒

𝜇𝜏 +  4𝜂1𝜇
3 + 3𝜂2𝜇

2 + 2𝜂3𝜇 + 𝜂4 

 𝜂1𝜇4 + 𝜂2𝜇3 + 𝜂3𝜇2 + 𝜂4𝜇 + 𝜂5 
−
𝜏

𝜇
 

By calculation, we have: 

  5𝜇4 + 4𝜁1𝜇
3 + 3𝜁2𝜇

2 + 2𝜁3𝜇 + 𝜁4 𝑒
𝜇𝜏  𝜏=𝜏0

= 𝜁7 cos𝜔0𝜏 + 𝜁8 sin𝜔0𝜏 + 𝑖 −𝜁8 cos𝜔0𝜏 + 𝜁7 sin𝜔0𝜏  

 4𝜂1𝜇
3 + 3𝜂2𝜇

2 + 2𝜂3𝜇 + 𝜂4 𝜏=𝜏0
= 𝜂4 − 3𝜂2𝜔0

2 + 𝑖𝜔0 2𝜂3 − 4𝜂1𝜔0
2  

 𝜂1𝜇
4 + 𝜂2𝜇

3 + 𝜂3𝜇
2 + 𝜂4𝜇 + 𝜂5 𝜏=𝜏0

= 𝜔0
2 𝜂2𝜔0

2 − 𝜂5 + 𝑖𝜔0 𝜂5 − 𝜂3𝜔0
2 + 𝜂1𝜔0

4  

Where 𝜁7 =  5𝜔0
4 − 3𝜁3𝜔0

2 + 𝜁4 , 𝜁8 =  4𝜁1𝜔0
3 − 2𝜁3𝜔0  

Then, we have: 

 
 
𝑑 𝑅𝑒𝜇 𝜏0 

𝑑𝜏
 

−1

=
𝜒0𝑕

′(𝑦0)

𝜁9
 

(7.28) 

Where 𝜁9 = 𝜔0
2  𝜂2𝜔0

3 − 𝜂5𝜔0 
2 +  𝜂5 − 𝜂3𝜔0

2 + 𝜂1𝜔0
4 2  
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Thus, we have: 

 
sign  

𝑑 𝑅𝑒𝜇 𝜏0 

𝑑𝜏
 =  sign   

𝑑 𝑅𝑒𝜇 𝜏0 

𝑑𝜏
 

−1

 

=  sign  
𝜒0𝑓

′(𝜒0)

𝜁9
  

(7.29) 

Where  𝜁9, 𝜒0 > 0. 

Thus, based on the application of lemmas 7.7.1-7.7.6, we have the following theorem: 

Theorem 7.1Let the assumptions of lemma 6 hold and  𝜔0, 𝜒0 , 𝜏0 and 𝜇(𝜏) be defined 

by (7.18) to (7.20), then: 

(I) All the roots of equation (7.18) will have negative real part for all 𝜏 ≥ 0, if the 

conditions (i) –(iv)of lemma 7.7.5 are not satisfied.  

(II) All the roots of equation (7.18) have negative real parts , if one of the conditions(i) 

–(iv) of lemma 7.7.5 is satisfied and  𝜏 ∈  0, 𝜏0 .  When 𝜏 = 𝜏0 and 𝑕′ 𝜒0 ≠ 0, then 

∓𝑖𝜔0 is a pair of purely imaginary roots of equation (8.18) and all other roots have 

negative real parts. In addition, 
𝑑 𝑅𝑒𝜇  𝜏0 

𝑑𝜏
> 0 and equation (7.18) has at least one root 

with positive real part when 𝜏 ∈  𝜏0, 𝜏1 , where 𝜏1 is the first value of 𝜏 > 𝜏0 such that 

equation (7.18) has purely imaginary roots. 

7.8 Existing Experimental Data for Verification of Model 

Lettuce is an annual plant most often grown as a leaf eating vegetable. The consumption 

of lettuce has become extremely popular in daily diet of Vietnamese people. Lettuce 

was found to be more responsive than the other vegetables for the accumulation of 

heavy metals. Waste water and use of excessive fertilizers further enhances the level of 

heavy metals in soil. Practically, it is also not possible to prevent farmers from 

cultivation on these soils. Cu (2015) [93] studied the impact of the heavy metals (Cu, 

Pb, Zn) as stress factors to growth and heavy metal concentration by Lettuce. 

The pot experiments were carried out at the green house of Vietnam academy of 

agricultural sciences in Hanoi, Vietnam. The soil was contaminated by heavy metals in 

different rates and place in pot experiments (5Kg soil/pot), left it overnight and then 

sown seeds of Lettuce 30 seeds/pot. After 15 days of sowing pruning conducted to 

ensure appropriate density for growing plants (10 plants/pot). The soils used in the 

experiments is red river soil collected at a vegetable growing area of Thanh Tri district, 
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Hanoi, Vietnam. The treatments were contaminated with heavy metals at levels of 50 

ppm (0.05 gm/Kg), 100 ppm (0.1 gm/Kg), 200 ppm (0.2 gm/Kg) for Cu and Pb; and 

100 ppm (0.1 gm/Kg), 300 ppm (0.3 gm/Kg), 500 ppm (0.5 gm/Kg) for Zn.  The 

treatments were conducted individually to determine the influence of the levels of added 

Cu, Pb and Zn. The plants were observed for their growth and yield (above ground) and 

harvested after 45 days. Heavy metal contents in soil and plant were estimated using 

atomic absorption spectroscopy, extractions to assess mobilization of Cu2+, Pb2+,

Zn2 + in EDTA solution. The results and discussion regarding this experiment are: 

Table 7. 1Effect of added Cu on growth of Brassica juncea (fresh weight): 

Added Cu: ppm (g/Kg) Plant Height Yield 

cm % g/pot % 

0 (0) 19.5 100 70.3 100 

50 (0.05) 15.0 77 55.9 80 

100 (0.1) 14.7 75 50.0 71 

200 (0.2) 12.5 64 33.1 47 

 

 

Table 7. 2Effect of added Pb on growth of Brassica juncea (fresh weight): 

Added Pb: ppm (g/Kg) Plant Height Yield 

cm % g/pot % 

0 (0) 19.5 100 70.3 100 

50 (0.05) 14.7 75 37.3 53 

100 (0.1) 13.4 69 34.7 49 

200 (0.2) 12.5 56 31.0 44 

 

Table 7. 3Effect of added Zn on growth of Brassica juncea (fresh weight): 

Added Zn: ppm (g/Kg) Plant Height Yield 

cm % g/pot % 

0 (0) 19.5 100 70.3 100 

100 (0.1) 19.7 101 75.7 108 

300 (0.1) 16.7 86 64.1 91 

500 (0.5) 15.5 80 43.8 62 

 

7.9 Numerical Example 

To support the analytical result, numerical method has been used to solve equations 

(7.1) -(7.5) and simulation has been done with MATLAB. The following set of 

parametric values has been considered: 
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𝑁0 = 3,𝑀0 = 1.9, 𝑇0 = 1.9, 𝐾 = 0.1, 𝛼1 = 0.13, 𝛼2 = 0.2, 𝛽1 = 0.8, 𝛽2 = 0.3, 𝛾1

= 0.1, 𝛿1 = 0.4, 𝛿2 = 0.1, 𝜀1 = 0.45, 𝜀2 = 0.1 

Here the values of uptake rate of acid and metal are taken as per range of values of the 

heavy metal Copper (Cu) taken in the above-mentioned experimental data on study of 

growth of Lettuce under the effect of heavy metals [93] 

Behaviour of the system about equilibrium 𝑬𝟏 𝑹 ≠ 𝟎,𝑩 ≠ 𝟎,𝑵 ≠ 𝟎, 𝑻 = 𝟎,𝑴 =

𝟎:  

For the above set of parametric values, we obtain the following values of uniform 

equilibrium point 𝐸1: 𝑅 = 1.5891, 𝐵  = 2.8553, 𝑁  = 0.8388. 

With the initial values: 𝑅 0 = 1, 𝐵 0 = 1, 𝑁 0 = 1 

 

Figure 7. 1Trajectories of the model without acid and toxic metal with respect to time 

shows stable behaviour of the equilibrium 𝐸1 (1.5891,2.8553,0.8388). 
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Figure 7. 2Trajectories showing adverse effect of acid T and metal M on concentration 

of nutrient pool N with respect to time. 

 

Figure 7. 3Trajectories showing adverse effect of acid T and metal M on plant 

population density B with respect to time t. 

 

 

 

Behaviour of the system about equilibrium 𝑬𝟐 𝑹
∗ ≠ 𝟎,𝑩∗ ≠ 𝟎,𝑵∗ ≠ 𝟎, 𝑻∗ ≠

𝟎, 𝑴∗≠𝟎: 

0 50 100 150 200 250 300 350 400 450 500
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Time t

C
o

n
c
. 
o

f
 N

u
ti

e
n

ts
 N

 

 

Conc. of Nutrients N Without Acid T and Metal M

Conc. of Nutrients N With Acid T and Metal M

0 50 100 150 200 250 300 350 400 450 500
0.5

1

1.5

2

2.5

3

Time t

P
la

n
t 

p
o

p
u

la
ti

o
n

 d
e
n

s
it

y
 B

 

 

Plant population density B Without Acid T and Metal M

Plant population density B With Acid T and Metal M



 

142 
 

For the same set of parametric values, we obtain the following values of interior 

equilibrium point 𝐸2: 𝑅∗ = 1.5891, 𝐵∗ = 2.5130,𝑁∗ = 0.7929, 𝑇∗ = 3.9177,𝑀∗ =

3.5513. 

with initial conditions: 𝑅 0 = 1, 𝐵 0 = 1,𝑁 0 = 1, 𝑇 0 = 1,𝑀 0 = 1. 

 

 

Figure 7. 4The interior equilibrium points  

𝐸2(1.5891, 2.5130, 0.7929, 3.9177, 3.5513) of the system is stable when there is no 

delay that is τ=0. 

 

Figure 7. 5The interior equilibrium point 

𝐸2(1.5891, 2.5130, 0.7929, 3.9177, 3.5513)is asymptotically stable with delay τ<3.38. 
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Figure 7. 6The interior equilibrium point 𝐸2(1.5891, 2.5130, 0.7929, 3.9177, 3.5513) 

losses its stability and Hopf- bifurcation occurred with delay τ≥3.38. 

7.10 Sensitivity Analysis 

Estimation of the general sensitivity coefficients is done using the „Direct Method‟ 

which assumes that all the parameters considered in the model are constants. Here, the 

sensitivity coefficients can be estimated by solving sensitivity equations simultaneously 

with the original system. For an instance, the partial derivatives of the solution 

 𝑅, 𝐵, 𝑁, 𝑇,𝑀  with respect to 𝛽1 (interaction rate between nutrient and resources)give 

the following set of sensitivity equations: 

 𝑑𝑆1

𝑑𝑡
= (𝛽1𝑁 − 𝛽2)𝑆1 + 𝛽1𝑅𝑆3

− 𝛼1𝐵𝑆1 𝑡 − 𝜏 + 𝑁𝑅 

(7.30) 

 𝑑𝑆2

𝑑𝑡
= −𝛼1𝑆2 + 𝛼1𝐵𝑆1 𝑡 − 𝜏  

(7.31) 

 𝑑𝑆4

𝑑𝑡
=  𝐾𝛽2 − 𝛽1𝑁 𝑆1 + 𝐾𝛼2𝑆2

−  𝛾1 + 𝛽1𝑁 + 𝐾𝛿2𝑇

+ 𝐾𝜀2𝑀 𝑆3 − 𝐾𝛿2𝑁𝑆4

− 𝐾𝜀2𝑁𝑆5 

 

 

(7.32) 

 𝑑𝑆4

𝑑𝑡
= −𝛿2𝑇𝑆3 −  𝛿1 + 𝛿2𝑁 𝑆4 

(7.33) 
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 𝑑𝑆5

𝑑𝑡
= −𝜀2𝑀𝑆3 −  𝜀1 + 𝜀2𝑁 𝑆5 

(7.34) 

   

Where 𝑆1 =
𝜕𝑅

𝜕𝑎1
, 𝑆2 =

𝜕𝐵

𝜕𝑎1
, 𝑆3 =

𝜕𝑁

𝜕𝑎1
, 𝑆4 =

𝜕𝑇

𝜕𝑎1
 , 𝑆5 =

𝜕𝑀

𝜕𝑎1
 

Then, we solve this system of sensitivity equations (7.30) – (7.34) along with the 

original system of equations (7.1) – (7.5) to estimate the sensitivity of the state variables 

 𝑅, 𝐵, 𝑁, 𝑇,𝑀  to the parameter 𝛽1 (interaction rate between nutrient and resources). In 

the same way, the sensitivity analysis of the state variables with respect to the 

parameters 𝛼1 (specific rate of utilization of resources by biomass) is also done.  

 

Figure 7. 7Time series graph between partial changes in R (density of favourable 

resources) and different values of parameter 𝛽1 (interaction rate between nutrient and 

resources). 
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Figure 7. 8Time series graph between partial changes in B(plant population density) 

and different values of parameter 𝛽1(interaction rate between nutrient and resources). 

 

Figure 7. 9Time series graph between partial changes in N (concentration of nutrients 

pool) and different values of parameter 𝛽1 (interaction rate between nutrient and 

resources). 
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Figure 7. 10Time series graph between partial changes in T (concentration of acid in 

soil) and different values of parameter 𝛽1 (interaction rate between nutrient and 

resources). 

 

Figure 7. 11Time series graph between partial changes in M (concentration of toxic 

metal in soil) and different values of parameter 𝛽1 (interaction rate between nutrient and 

resources). 
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Figure 7. 12Time series graph between partial changes in R (density of favourable 

resources) and different values of parameter 𝛼1 (specific rate of utilization of resources 

by biomass). 

 

Figure 7. 13Time series graph between partial changes in B (plant population density) 

and different values of parameter 𝛼1 (specific rate of utilization of resources by 

biomass). 
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Figure 7. 14Time series graph between partial changes in N (concentration of nutrient 

pool) and different values of parameter 𝛼1(specific rate of utilization of resources by 

biomass). 

 

Figure 7. 15Time series graph between partial changes in T (concentration of acid in 

soil) and different values of parameter 𝛼1(specific rate of utilization of resources by 

biomass). 
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Figure 7. 16Time series graph between partial changes in M (concentration of toxic 

metal in soil) and different values of parameter 𝛼1(specific rate of utilization of 

resources by biomass). 

7.11 Conclusion 

The role of delay on the plant population growth under the combined effect of acid and 

toxic metal is studied with the help of proposed mathematical model. 

In the absence of acid and toxic metal, the system shows stable behaviour as shown by 

the Figure 7.1. This result corresponds to the 100% yield in the study of Lettuce 

considered in this paper. The introduction of the acid and toxic metal has adverse effect 

on plant growth. It is evident that the value of concentration of nutrient pool decreases 

(From 0.8388 to 0.7929) under the combined effect of acid and toxic metal as shown by 

the Figure 7.2. It is also clear from the Figure 7.3 that theplant population density 

undergoes a decrease in its value (From 2.8553 to 2.5130), which is nearly 14 %, when 

the rate of uptake of metal and acidity is 0.1. This result also falls well within range of 

plant yield decrease from 12% to 21%, when Cu input is increased from 50ppm(0.05) to 

100ppm (0.1) in the mentioned study. 

The local stability of the uniform equilibrium 𝐸1is studied. It is shown that the 

equilibrium point 𝐸1 𝑅 = 1.5891, 𝐵  = 2.8553,𝑁  = 0.8388  is stable as shown by 

Figure 8.1 using Routh-Hurwitz‟s criteria. The stability and Hopf- bifurcation about the 

interior equilibrium𝐸2 is also studied.Using Lemma 7.7.5 (Routh-Hurwitz‟s criteria), it 

is shown thatinterior equilibrium 𝐸2(𝑅∗ = 1.5891, 𝐵∗ = 2.5130,𝑁∗ = 0.7929, 𝑇∗ =

3.9177,𝑀∗ = 3.5513) is stable, in the absence of delay (𝜏 = 0) as shown by Figure 
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7.4. But the system is asymptotically stable for all values which are below the critical 

value of delay parameter (𝜏 < 3.38), keeping all the other parameters same as shown 

by Figure 7.5. Once the critical value of the delay parameter is reached (𝜏 ≥ 3.38), the 

system losses stability and becomes unstable as shown by Figure 7.6. The system shows 

the periodic oscillation when it passes through that critical value that is Hopf bifurcation 

occurs. 

The sensitivity of model solutions is established by taking different values of the 

parameters appearing in system. It improves the understanding of the role played by 

specific model parameters.  

As we start increasing the rate of interaction of nutrient and resources, the entire system 

starts converging to stability. For 𝛽1 = 0.8, the system i.e. the concentration of 

nutrients, the density of resources and plant population density, concentration of acid 

and concentration of toxic metal show Hopf bifurcation through periodic oscillations. 

But as we increase the value of 𝛽1 from 𝛽1 = 0.8 to 𝛽1 = 0.9, the system starts showing 

asymptotical stability as the periodic oscillations start dying down and eventually ends 

up converging to a stable equilibrium point as we further increase the value of 𝛽1from 

𝛽1 = 0.9 to 𝛽1 = 1. It has also been observed that density of resources remain almost 

same throughout these increasing values of𝛽1, but concentration of nutrient pool keep 

on decreasing with increase in the value of 𝛽1. On the contrary, plant population 

density, concentration of acid and concentration of toxic metal show similar kind of 

increase as we increase the values of 𝛽1.This phenomenon is shown by the Figure 7.7-

Figure 7.11. 

As we start decreasing the specific rate of utilization of delayed resources by plant 

population density, the entire system starts converging to stability. For 𝛼1 = .13, the 

system i.e. the concentration of nutrients pool, the amount of resources and plant 

population density,concentration of acid and concentration of toxic metal show Hopf 

bifurcation through periodic oscillations. But as we decrease the value of 𝛼1 from 

𝛼1 = .13 to 𝛼1 = .125, the system starts showing asymptotical stability as the periodic 

oscillations start dying down and eventually ends up converging to a stable equilibrium 

point as we further decrease the value of 𝛼1from 𝛼1 = .125 to 𝛼1 = .11. It has also been 

observed that density of resources,concentration of acid and concentration of toxic 

metal start increasing too with decrease in the value of 𝛼1, but this increase is more 

visible in case of resources as compared to concentration of acid and concentration of 
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toxic metal. On the contrary, plant population density and concentration of nutrient pool 

show similar kind of decrease in their values with decrease in the value of 𝛼1. This 

phenomenon is graphically shown by Figure 7.12-Figure 7.16. 
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Appendices 

Dimensions of Variables and Parameters used in Chapter 2 

Variable Description Dimensions 

𝑁1 Concentration of 

nutrients in root 

compartment 

Kg mole 𝑚−3 

𝑁2 Concentration of 

nutrients in shoot 

compartment 

Kg mole 𝑚−3 

𝑊1 Concentration of 

structural dry weight 

in root compartment 

Kg 

𝑊2 Concentration of 

structural dry weight 

in shoot compartment 

Kg 

𝑡 Time variable Day 

 

 

Parameters Description Dimensions 

𝑟1 Rate of growth of root 

under the effect of 

exogenic activities 

𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝜏 Time delay due of 

presence of toxic metal in 

soil. 

Day 

𝑟2 Rate of growth of shoot 

under the effect of 

exogenic activities 

𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝑇 Rate of nutrient transfer 

from root to shoot 

compartment. 

Kg mole 𝑚−3𝑑𝑎𝑦−1 

𝑅𝑛  The resistance to 

transportation of nutrient 
Kg mole 𝑚−3 

𝜇 Consumption coefficient 

or utilization coefficient 
𝐾𝑔−1𝑑𝑎𝑦−1 

𝜌 Efficiency of nutrient 

utilization 
𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝛾1 Measuring the decrease in 

nutrient use efficiency 

due to presence of toxic 

metal in the plants 

𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝛾2 Measuring the decrease in 

nutrient use efficiency 

due to presence of toxic 

metal in the plants 

𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝛽10 Natural decay of 𝑊1. 𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝛽20 Natural decay of 𝑊2. 𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝑑1 Natural decay of 𝑁1 𝐾𝑔 𝑚𝑜𝑙𝑒 𝐾𝑔 𝑚𝑜𝑙𝑒 −1𝑑𝑎𝑦−1 

𝑑2 Natural decay of 𝑁2 𝐾𝑔 𝑚𝑜𝑙𝑒 𝐾𝑔 𝑚𝑜𝑙𝑒 −1𝑑𝑎𝑦−1 
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𝑈𝑛  Initial availability of 

nutrient in soil. 
Kg mole 𝑚−3𝑑𝑎𝑦−1 

∆1 Self-limiting rate of 

growth of 𝑊1 
𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

∆2 Self-limiting rate of 

growth of 𝑊2 
𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

 

Dimensions of Variables and Parameters used in Chapter 3 

Variable Description Dimensions 

𝑁1 Concentration of 

nutrients in root 

compartment 

Kg mole 𝑚−3 

𝑁2 Concentration of 

nutrients in shoot 

compartment 

Kg mole 𝑚−3 

𝑊1 Concentration of 

structural dry weight 

in root compartment 

Kg 

𝑊2 Concentration of 

structural dry weight 

in shoot compartment 

Kg 

𝑡 Time variable Day 

 

𝐻𝑆 Concentration of 

heavy metal in soil 

Kg mole 𝑚−3 

 

Parameters Description Dimensions 

𝑟1 Rate of growth of root 

under the effect of 

exogenic activities 

𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝜏 Time delay due of 

presence of toxic metal 

in soil. 

Day 

𝑟2 Rate of growth of shoot 

under the effect of 

exogenic activities 

𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝑇 Rate of nutrient transfer 

from root to shoot 

compartment. 

mg mole 𝑚−3𝑑𝑎𝑦−1 

𝑅𝑛  The resistance to 

transportation of nutrient 
mg mole 𝑚−3 

𝜇 Consumption coefficient 

or utilization coefficient 
𝑚𝑔−1𝑑𝑎𝑦−1 

𝜌 Efficiency of nutrient 

utilization 
𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝛾1 Measuring the decrease 

in nutrient use efficiency 

due to presence of toxic 

metal in the plants 

𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝛾2 Measuring the decrease 𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 
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in nutrient use efficiency 

due to presence of toxic 

metal in the plants 

𝛽10 Natural decay of 𝑊1. 𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝛽20 Natural decay of 𝑊2. 𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝑑1 Natural decay of 𝑁1 𝐾𝑔 𝑚𝑜𝑙𝑒 𝐾𝑔 𝑚𝑜𝑙𝑒 −1𝑑𝑎𝑦−1 

𝑑2 Natural decay of 𝑁2 𝐾𝑔 𝑚𝑜𝑙𝑒 𝐾𝑔 𝑚𝑜𝑙𝑒 −1𝑑𝑎𝑦−1 

𝑈𝑛  Initial availability of 

nutrient in soil. 
Kg mole 𝑚−3𝑑𝑎𝑦−1 

∆1 Self-limiting rate of 

growth of 𝑊1 
𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

∆2 Self-limiting rate of 

growth of 𝑊2 
𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝛽11 Damage rates of 𝑊1 due 

to 𝐻𝑠 
𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝛽21 Damage rates of 𝑊2 due 

to 𝐻𝑠 
𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝐼 The input rate of toxic 

metals 
Kg mole 𝑚−3𝑑𝑎𝑦−1 

∆ First order decay rate of 

𝐻𝑠 
𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝛼1 Depletion rate of 𝐻𝑠 due 

to reaction between 

𝐻𝑠and 𝑁1 

𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝑇0 Stress parameter that 

measures the increase in 

the resistance to nutrient 

transport from root to 

shoot compartment due 

to presence of toxic 

metal in soil 

𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

 

Dimensions of Variables and Parameters used in Chapter 4 

Variable Description Dimensions 

𝑁 Concentration of 

nutrients in the soil 
Kg mole 𝑚−3 

𝑊 Amount of plant 

biomass 

Kg  

𝑀 Concentration of toxic 

metal in the soil 
Kg mole 𝑚−3 

𝑡 Time variable Day 

 

Parameters Description Dimensions 

𝐾𝑁 The availability of 

total nutrients 
Kg mole 𝑚−3𝑑𝑎𝑦−1 

𝛼 The consumption 

coefficient 
𝑚𝑔−1𝑑𝑎𝑦−1 

𝛽 The utilization 

coefficient 
𝑚𝑔−1𝑑𝑎𝑦−1 

𝛾 The depletion rate of Kg mole 𝑚−3𝑑𝑎𝑦−1 
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toxic metal due to 

interaction between 

nutrients and biomass 

𝐼 The initial input of 

toxic metal in the soil 

Kg mole 𝑚−3𝑑𝑎𝑦−1 

𝛿1 Natural decay rate of 

𝑁 

𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝛿2 Natural decay rate of  
𝑊 

𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝛿3 Natural decay rates of  
𝑀 

𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

 

Dimensions of Variables and Parameters used in Chapter 5 

Variable Description Dimensions 

𝑀𝑆 Concentration of toxic 

metal in the soil 
Kg mole 𝑚−3 

𝐵𝑀 Tree biomass Kg  

𝑇𝑃 Concentration of toxic 

metal in the tree 
Kg mole 𝑚−3 

𝑡 Time variable Day 

 

 

Parameters Description Dimensions 

𝑟 Intrinsic growth rate 

of tree biomass 
𝐾𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝐾 The carrying capacity 𝐾𝑔−1𝑑𝑎𝑦−1 

∆1 Natural decay of tree 

biomass 

𝐾𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

∆2 Natural decay of toxic 

metal in soil 

𝐾𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝐼 The initial input of 

heavy metal in the soil 

Kg mole 𝑚−3𝑑𝑎𝑦−1 

𝛼 The depletion rate of 

𝑀𝑆 due to interaction 

between 𝑀𝑆 and 𝑇𝑃 

𝐾𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

 

Dimensions of Variables and Parameters used in Chapter 6 

Variable Description Dimensions 

𝑁 Nutrient pool Kg mole 𝑚−3 

𝑃 Plant population 

density 

Kg  

𝑇 Toxic metal  Kg mole 𝑚−3 

𝑡 Time variable Day 
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Parameters Description Dimensions 

𝑟 𝑁, 𝑇  The intrinsic growth 

rate of plant 

population density 

which depends on 

nutrient pool and is 

adversely affected by 

toxic metal 

𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝐾 The total available 

input of nutrient pool 
Kg mole 𝑚−3𝑑𝑎𝑦−1 

𝛼 The natural decay of 

nutrient pool 

𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝜌 Nutrient use efficiency 𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝜀0 The natural decay of 

plant population 

density 

𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝜀1 The rate of damage of 

plant population 

density due to toxic 

metal 

𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝛽 Self-limiting rate of 

plant population 

density 

𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝑄 The input rate of toxic 

metal 

Kg mole 𝑚−3𝑑𝑎𝑦−1 

𝑣 The deletion rate of 

toxic metal due to 

interaction between 

toxic metal and 

nutrient pool 

𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝛾 Natural decay of toxic 

metal 

𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

 

Dimensions of Variables and Parameters used in Chapter 7 

Variable Description Dimensions 

𝑅 Density of favourable 

resources 
Kg mole 𝑚−3 

𝐵 Plant population 

density 

Kg 

𝑁 Concentration of 

nutrient pool 
Kg mole 𝑚−3 

𝑇 Concentration of acid  Kg mole 𝑚−3 

𝑀 Concentration of 

metal 
Kg mole 𝑚−3 

𝑡 Time variable Day 

 

Parameters Description Dimensions 

𝑁0 Constant nutrient 𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 
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input in soil 

𝑇0 Input rate of acid Kg mole 𝑚−3𝑑𝑎𝑦−1 

𝑀0 Input rate of metal 𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝛿1 Natural decay rate of 

acid 

𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝜀1 Natural decay rate of 

metal 
𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝛿2 Uptake rate of acid by 

plant 
𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝜀2 Uptake rate of metal 

by plant 
𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝛼2 Natural decay rate of 

plant population 

density 

Kg mole 𝑚−3𝑑𝑎𝑦−1 

𝛽2 Natural decay rate of 

favourable resources 
𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝛾1 Nutrient leaching rate 𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝛼1 Specific rate of 

utilization of 

favourable resources 

by plant population 

density 

𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

𝛽1 Rate of interaction of 

nutrient and 

favourable resources 

𝑚𝑔𝐾𝑔−1𝑑𝑎𝑦−1 

 

 


