
RESOURCE PROVISIONING FOR MULTI-TIER WEB
APPLICATIONS BASED ON WORKLOAD PREDICTION

IN CLOUD COMPUTING

A

Thesis

Submitted to

For the award of

DOCTOR OF PHILOSOPHY (Ph.D.)

in

COMPUTER SCIENCE AND ENGINEERING

By

Parminder Singh

41400088

Supervised By :

Dr. Pooja Gupta

Co-Supervised By :

Dr. Kiran Jyoti

LOVELY FACULTY OF TECHNOLOGY AND SCIENCES

LOVELY PROFESSIONAL UNIVERSITY

PUNJAB

2019

DECLARATION

This thesis is an account of research undertaken between August 2014 and March 2019

at The Department of Computer Science and Engineering, Lovely Professional Univer-

sity, Phagwara, India.

Except where acknowledged in the customary manner, the material presented in this

thesis is, to the best of my knowledge, original and has not been submitted in whole or

part for a degree in any university.

Parminder Singh

Registration no. 41400088

Department of Computer Science and Engineering

Lovely Professional University, Phagwara, India

ii

CERTIFICATE

This is to certify that the declaration statement made by the student is correct to the best

of my knowledge and belief. He has submitted the Ph.D. thesis Resource Provisioning

for Multi-tier Web Applications Based on Workload Prediction in Cloud Comput-

ing under my guidance and supervision. The present work is the result of his original

investigation, effort and study. No part of the work has ever been submitted for any

other degree at any University. The Ph.D. thesis is fit for the submission and fulfillment

of the conditions for the award of Ph.D. degree in Computer Science and Engineering

from Lovely Professional University, Phagwara.

Dr. Pooja Gupta

Associate Professor

Department of CSE

Lovely Professional University,

Phagwara, India

Dr. Kiran Jyoti

Assistant Professor

Department of IT

Guru Nanak Dev Engineering

College, Ludhiana, India

iii

ABSTRACT

Cloud computing is the on-demand delivery of computing power and storage capacity

on a pay-as-you-go system. The elasticity feature enables the application providers to

provision and de-provision the resources in an autonomic manner as per the real-time

demand of the applications.

Cloud resources are often under-provisioned or over-provisioned due to the dynamic

workload of web applications. The reactive auto-scaling technique delays to launch Vir-

tual Machines (VMs) instances due to instantiation time. A prediction model is a key

to design the proactive auto-scaling approach, which prepares the resources before the

arrival of actual workload. However, it is a challenging task for application providers

to gain cost efficiency, high availability and optimal resource utilization under the flash

crowd. The fundamental challenges need to be addressed are prediction model with

high accuracy, dynamic resource provisioning mechanism with efficient resource esti-

mation and selection of VMs during the scaling decision.

In this thesis, the current state-of-the-art is enhanced with time series prediction

model, auto-scaling technique and resource provisioning mechanism. A Technocrat

ARIMA and SVR Model (TASM) has been developed with a combination of statistical

and machine learning models. A classification approach has been designed to iden-

tify workload features and select the prediction model at the initial stage. The model

parameters are selected through residual testing. Further, Robust Hybrid Auto-Scaler

(RHAS) has been developed as per Monitor-Analyze-Plan-Execute (MAPE) architec-

ture for autonomous computing. The monitoring phase collects the user requests and

iv

infrastructure level parameters. Analysis and planning algorithms have been designed

with a queuing model and threshold-based rules to decide the scaling action from CPU

utilization, response time and time series prediction. Furthermore, Triangulation Re-

source Provisioning (TRP) technique has been developed with a profit-aware surplus

VM selection policy for the execution phase. This policy aims to balance cost and load

trade-off while selecting the VM to scale-in from the in-service VMs capacity.

TASM prediction model demonstrates a significant improvement in prediction ac-

curacy of web applications workload. The proposed time-series prediction model is

efficient to forecast seasonal and non-seasonal workload patterns. RHAS is a robust

approach to estimate the number of VMs and takes the scaling decision for multi-tier

web applications in cloud data center. The hybridization of reactive and proactive auto-

scaling methods achieves cost efficiency and high availability. TRP resource provi-

sioning mechanism with profit-aware surplus VM selection policy plays a vital role in

scale-in decisions.

The experiment results show a significant improvement in total cost, response time,

scaling overhead and consistency in CPU utilization as compared to existing techniques.

It also mitigates the short-term under-provisioning in cloud data centers due to the flash

crowd. The proposed resource provisioning mechanism is a profitable approach for web

application providers and ensures the Quality of Service (QoS) to the end-users.

v

ACKNOWLEDGEMENTS

I take this opportunity to express my sincere thanks to everyone who has helped me in

various capacities to carried out this research and prepare the report.

I am delighted to thank our respected supervisors Dr. Pooja Gupta and Dr. Kiran

Jyoti who have offered tremendous support in the completion of this research. Their

unparalleled knowledge, judgment, and moral fiber were together with their expertise.

I acknowledge the Department of Computer Science and Engineering, Lovely Pro-

fessional University to provide me the appropriate resources and financial support to

pursue the doctoral degree. I am grateful to the administration staff at the Centre for

Research Degree Programmes for the numerous applications.

I would also thank my parents, wife, daughter, friends, and contemporaries for their

co-operation and compliance. I cannot cherish a greater fortune other than having them

in my life. Their care and love are indispensable for my achievements.

Parminder Singh

vi

CONTENTS

Declaration ii

Certificate iii

Abstract iv

Acknowledegments vi

List of Figures xiv

List of Tables xv

List of Abbreviations xvi

1 Introduction 1

1.1 Challenges in Web Applications Resource Management 3

1.1.1 Challenges in Workload Prediction 4

1.1.2 Challenges in Auto-scaling . 4

1.1.3 Challenges in Resource Provisioning 4

1.2 Research Issues and Objectives . 5

1.3 Research Methodology . 6

1.4 Thesis Contribution . 8

1.5 Thesis Organization . 9

vii

2 Literature Review 12

2.1 Introduction . 12

2.2 Origin of Autonomic Computing . 13

2.2.1 Advancement in Autonomic Computing 13

2.3 Auto Scaling . 14

2.3.1 Types of Auto-scaling . 15

2.3.2 Types of Auto-scaling Policies 16

2.4 Elastic Applications . 17

2.4.1 Web Applications Architectures 17

2.4.2 Application Benchmarks . 19

2.5 Capacity Management of Web Applications 19

2.6 QoS-aware Cloud Computing . 20

2.7 Cloud Provisioning Architecture . 21

2.8 Resource Demand Estimation in Cloud 22

2.9 Taxonomy of Auto-scaling . 23

2.10 Survey on Auto-scaling Techniques 25

2.10.1 Application Profiling . 27

2.10.2 Control Theory . 29

2.10.3 Fuzzy Rules . 35

2.10.4 Machine Learning . 37

2.10.5 Queuing Theory . 43

2.10.6 Threshold-based Rules . 47

2.10.7 Time Series Analysis . 52

2.11 Challenges in Multi-tier Applications Resource Management 62

2.12 Summary . 63

3 A Technocrat ARIMA and SVR Model for Workload Prediction 64

3.1 Introduction . 64

3.2 Related Work . 65

3.2.1 Workload Characteristics . 66

3.2.2 Workload Prediction for Cloud Applications 67

3.3 System and Application Models . 68

3.4 System Architecture . 69

viii

3.4.1 Technocrat Workload Predictor 71

3.5 Research Methodology . 72

3.5.1 Workload Classification . 72

3.5.2 Workload Classification Model 73

3.5.3 Forecasting Models . 74

3.5.4 Time Series Analysis . 75

3.5.5 Non-seasonal Study . 76

3.5.6 Seasonal Study . 78

3.6 Experiment and Analysis . 78

3.6.1 Dataset . 79

3.6.2 Accuracy of Prediction Models 79

3.6.3 Accuracy of Auto-Scaling . 80

3.6.4 Experimental Setup . 81

3.6.5 Time Series Analysis . 83

3.7 Summary . 89

4 A Robust Hybrid Auto-Scaling Technique for Web Applications in Cloud 91

4.1 Introduction . 91

4.2 Background . 93

4.3 Related Work . 94

4.3.1 Auto-Scaling Using Queuing Model 94

4.3.2 Auto-Scaling Using Proactive Model 95

4.4 Proposed Approach . 96

4.4.1 Auto-scaling System Architecture 97

4.4.2 Monitoring Phase . 99

4.4.3 Analysis Phase . 100

4.4.4 Planning Phase . 101

4.4.5 Execution Phase . 104

4.5 Experiment Evaluation . 104

4.5.1 Experiment Setup . 104

4.5.2 Results and Discussion . 105

4.6 Summary . 115

ix

5 A Profit-aware Resource Provisioning for Web Applications in Cloud 117

5.1 Introduction . 117

5.2 Background . 118

5.2.1 Monitor . 119

5.2.2 Analyze . 119

5.2.3 Plan . 120

5.2.4 Execution . 120

5.2.5 Knowledge . 120

5.3 Related Work . 120

5.4 Proposed Approach . 122

5.4.1 Monitoring Phase . 122

5.4.2 Analysis Phase . 123

5.4.3 Planning Phase . 126

5.4.4 Execution Phase . 127

5.5 Experiment Evaluation . 127

5.5.1 Experiment Setup . 129

5.5.2 Performance Evaluation . 130

5.5.3 Results and Discussion . 131

5.6 Summary . 140

6 Conclusion and Future Directions 141

6.1 Conclusion and Discussion . 141

6.2 Future Directions . 143

6.2.1 Monitoring Tools . 144

6.2.2 Pricing Model . 144

6.2.3 Resource Allocation . 144

6.2.4 Horizontal and Vertical Scaling 144

6.2.5 Workload Predictor . 145

6.2.6 Multi-cloud Auto-scaling . 145

6.2.7 Energy-aware Auto-scaling . 145

6.2.8 Bin-packing Auto-scaling . 145

6.3 Final Remarks . 146

x

References 168

List of Publications 169

xi

LIST OF FIGURES

1.1 Three-tier cloud application [1] . 2

1.2 Research methodology flowchart . 7

1.3 Chapter wise thesis organization . 10

2.1 MAPE loop in resource provisioning 14

2.2 3-tier Web architecture [2] . 18

2.3 Capacity planning process [3] . 20

2.4 Cloud provisioning architecture [4] . 21

2.5 Queuing model for cloud data center [5] 22

2.6 Methods of application profiling . 27

2.7 Categories of control system . 30

2.8 Working of feedback control system 30

2.9 Categories of feedback control system 31

2.10 Hidden Markov Model (HMM) [6]. 40

2.11 A simple queuing model with one server [7]. 43

3.1 Technocrat cloud provisioning architecture 70

3.2 Generic forecasting methodology . 71

3.3 Sliding window approach for workload forecasting 72

3.4 Analytical process of forecasting model 76

3.5 Non-seasonal forecasting model . 77

3.6 ClarkNet 10 minutes time series, ACF and PACF plots 82

xii

3.7 NASA 10 minutes time series, ACF and PACF plots 83

3.8 ClarkNet series forecast results . 85

3.9 NASA series forecast results . 86

3.10 ClarkNet series resource allocation . 87

3.11 NASA series resource allocation . 88

3.12 ClarkNet Series prediction using TASM 89

3.13 NASA Series prediction using TASM 89

4.1 MAPE-K loop . 93

4.2 The cloud architecture for web applications 98

4.3 The workload forecasting approach using TASM prediction model . . . 101

4.4 ClarkNet workload prediction using LR, SVR, AR, MA, ARMA, ARIMA

and TASM . 107

4.5 NASA workload prediction using LR, SVR, AR, MA, ARMA, ARIMA

and TASM . 107

4.6 ClarkNet series VM required and allocated using proactive scaling . . . 109

4.7 ClarkNet series VM required and allocated using proposed RHAS . . . 109

4.8 NASA Series VM required and allocated using proactive scaling 110

4.9 NASA series VM required and allocated using proposed RHAS 110

4.10 ClarkNet series scaling overhead . 110

4.11 NASA series scaling overhead . 111

4.12 ClarkNet series average CPU utilization 112

4.13 NASA series average CPU utilization 112

4.14 ClarkNet series average response time 113

4.15 NASA series average response time 113

4.16 ClarkNet series SLA violation . 114

4.17 NASA series SLA violation . 114

4.18 ClarkNet series overall cost . 115

4.19 NASA series overall cost . 115

5.1 MAPE-K based cloud resources management. 119

5.2 The cloud resource provisioning architecture. 123

5.3 The proposed triangulation resource provisioning (TRP) approach. . . . 124

xiii

5.4 The TASM analytical process for workload forecasting. 125

5.5 ClarkNet workload of the 6th day in week. 130

5.6 Workload prediction of ClarkNet series using TASM prediction model. . 131

5.7 The QoS of singular, double and proposed triangulation mechanism for

ClarkNet Series. 133

5.8 The cost of singular, double and proposed triangulation mechanism for

ClarkNet Series. 133

5.9 The response time of surplus VM selection policies for ClarkNet series. 134

5.10 The CPU utilization of surplus VM selection policies for ClarkNet series.134

5.11 The cost of surplus VM selection policies for ClarkNet Series. 135

5.12 The comparison of CPU utilization for ClarkNet Series. 137

5.13 The comparison of response delay for ClarkNet Series. 138

5.14 The comparison of VM allocation for ClarkNet Series. 138

5.15 The comparison of cost for ClarkNet Series. 139

xiv

LIST OF TABLES

2.1 Taxonomy on application profiling based reviewed literature 28

2.2 Taxonomy on control theory based reviewed literature 33

2.3 Taxonomy on fuzzy rules based reviewed literature 36

2.4 Taxonomy on machine learning based reviewed literature 41

2.5 Taxonomy on queuing theory based reviewed literature 46

2.6 Taxonomy on threshold rules based reviewed literature 50

2.7 Taxonomy on time series analysis based reviewed literature 58

3.1 Summary of input workload . 79

3.2 Parameters grid . 81

3.3 Experiment results of non-seasonal study of ClarkNet Series (5 orders) . 85

3.4 Experiment results of non-seasonal study of NASA Series (5 orders) . . 85

3.5 Experiment results of ClarkNet series resource provisioning 87

3.6 Experiment results of NASA Series resource allocation 88

4.1 Notations used in the RHAS approach. 97

4.2 Summary of datasets information . 106

4.3 Accuracy of prediction models for ClarkNet workload. 108

4.4 Accuracy of prediction models for NASA workload. 108

5.1 Description of notations . 129

5.2 Detail of ClarkNet dataset . 129

xv

LIST OF ABBREVIATIONS

ACF Auto Correlation Function

AP Application Profiling

AR Autoregression

ARIMA Autoregressive Integrated Moving Average

ASP Application Service Provider

CSP Cloud Service Provider

CTH Control Theory

FR Fuzzy Rules

IaaS Infrastructure as a Service

LR Linear Regression

MA Moving Average

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MAPE-K Monitor-Analyze-Plan-Execute-Knowledge

ML Machine Learning

MSE Mean Square Error

PaaS Platform as a Service

PACF Partial Auto Correlation Function

QoE Quality of Experience

QoS Quality of Service

QTH Queuing Theory

xvi

RHAS Robust Hybrid Auto Scaler

RIL Reinforcement Learning

RMSE Root Mean Square Error

SaaS Software as a Service

SLA Service Level Agreement

SLO Service Level Objectives

SVM Support Vector Machine

SVR Support Vector Regression

TASM Technocrat ARIMA and SVR Model

TR Threshold-based Rules

TRP Triangulation Resource Provisioning

TSA Time Series Analysis

VM Virtual Machine

WWW World Wide Web

xvii

CHAPTER 1

INTRODUCTION

Cloud computing provides the computer resources as utility. The virtualization of re-

source becomes robust with technologies such as grid and cloud computing [8]. The

cloud providers creates the large IT infrastructure and rent the resource as pay-per-use

model [9]. The application providers are moving their application to cloud for cost

benefit [10]. It helps the organization to concentrate on the main business line instead

of focusing on technologies experiments. The cloud users can access their applica-

tions anywhere in the world. Fundamental of cloud computing is to deliver storage,

softwares and computing as a service. National Institute of Standards and Technology

(NIST)[11] define cloud as : “Cloud computing is a model for enabling ubiquitous,

convenient, on-demand network access to a shared pool of configurable computing re-

sources (e.g., networks, servers, storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort or service provider inter-

action. This cloud model is composed of five essential characteristics, three service

models, and four deployment models.”

At the abstract level there are three types of cloud services.

1. Infrastructure as a Service

The service providers enable the users to provision CPU, RAM, disk, network and

other computing resources where the customer can deploy their applications and

softwares. The cloud infrastructure is not managed by the users. The consumers

1

have the control over its applications.

2. Platform as a Service

The consumer can deploy and manage the application onto the cloud. Infras-

tructure can be created by user or given by third party. It can be created via

programming languages or tools.

3. Software as a Service

The facility provided to users to use its application running on cloud through

certain interface such as browser. The user is able to do the configuration of its

deployed application, other resources are managed by cloud providers.

As a computing platform, the application providers host different applications in

cloud environment such as web applications, scientific workflows and data analytical

services. In traditional manner, the web applications are hosted on rented servers or in

private infrastructure. These mechanisms does not support scalability features, which

results in over-provisioned and under-provisioned conditions. In cloud, elasticity fea-

ture enrich the users to grow/shrink the resources from unlimited virtual resources.

Thus, the cloud becomes the ideal environment to host web applications which have

dynamic nature in workload. The application providers are interested to move their

web applications from traditional infrastructures to cloud environment.

Elastic Load
Balancer

Elastic
Queue

Elastic
Queue

User
Interface Process Data

Access

Web Server Application Server

Presentation Tier Business Logic Tier Data Tier

Storage

Number of
requests

Number of
queued
requests

Number of
queued
requests

Scale Scale Scale

Database Server

Users

Figure 1.1: Three-tier cloud application [1]

2

Presentation tier, business logic tier and data tier is implemented by web server,

application server and database server shown in Figure 1.1.

Functionalities of Web Server

• Serve the static web content and accept/denying the client request

• Request passing to application server

• Response receiving and delivered back to client

Functionalities of Application Server

• Request receiving from web server

• Fetch data from database and process the business logic

• Processed data send back to Web server

Functionalities of Database Server

• Store the data in structured manner

• Store the data in unstructured manner

• Replication management

Earlier single tier architecture was used dedicated server for each tier such as web

server (Load Balancer), application server and database server. This architecture is not

suitable according to the elasticity feature of cloud computing. Most of the companies

are now using multi-tier architecture. Each tier in application serves a specific purpose.

The important benefit of multi-tier architecture is to manage the elasticity features. Re-

source management of multi-tier web applications are still a challenge due to higher

interdependency between the different layers [2].

1.1 Challenges in Web Applications Resource Management

To manage the web applications in cloud environment, we consider three major aspects:

1) Workload prediction, 2) Auto-Scaling, and 3) Provisioning. The workload prediction

3

is a process to take historical data and predict the incoming workload. Furthermore, the

auto-scaler planned the scaling decisions based on workload prediction or resource uti-

lization. The provisioning finally executes the auto-scaling decision to scale up/down or

do-nothing the resources in cloud environment by considering hardware and application

provider constraints.

1.1.1 Challenges in Workload Prediction

Cloud application workload patterns are constantly changing. The predictive workload

model is a key to autonomous cloud resources scaling. This technique have the poten-

tial to for cost reduction and make effective use of resources. The workload for web

applications is usually combined for various pattern over time. The single predictive

model can not predict various types of patterns in the workload.

1.1.2 Challenges in Auto-scaling

The scalability enriches the application provider to dynamically provision the com-

puting power and storage capacity on-demand for their applications. The carefully

designed auto-scaling approach can reduce the cost for the application provider while

maintaining the Quality of Service (QoS). It is crucial to understand when to scale up

and down the resources. The state-of-art algorithms mostly focus either on reactive or

proactive technique.

1.1.3 Challenges in Resource Provisioning

The dynamic resource provisioning arranges the resources on-demand according to the

application workload. The over-utilization and under-utilization of resources can be

prevented with autonomic resource provisioning. In the literature, the Service Level

Agreement (SLA) aware, load-aware, resource-aware and user behavior aware solutions

have proposed. The solutions are rigid for a particular metrics which provides benefit

either to end users or to the application providers. The scaling decision is taken based on

the planning phase of auto-scaling module. Further, this decision need to revisit based

on the infrastructure level constraints set by the application providers such as maximum

number of on-demand VMs to be provision for a particular application. The technique

required to give better QoS within the budget of application provider.

4

1.2 Research Issues and Objectives

The main objective of this thesis is to explore the prediction models, auto-scaling tech-

niques and resource provisioning mechanisms for web applications in cloud infrastruc-

ture.

• Workload Analyzer - It is responsible for the forecasting of future interest of the

applications. The forecast workload series sent to load predictor and performance

modeler modules.

• Performance Modeler - It selects the VMs to be distributed by taking into ac-

count the anticipated interest from the workload analyzer module. It also mon-

itors the execution of running VMs. Performance modeler module estimate the

required number of VMs and pass the estimate to application provisioner.

• Application Provisioner : It gets the user request from the admission controller

and pass it to the VMs in IaaS. It is responsible for monitoring the performance of

VMs. This module requests the resource provisioner for scale up/down the VMs

instances based on analysis and planning phase [4].

To explore the above mentioned problems, first we need to develop the workload

predictor that can give better accuracy for dynamic user requests. The following issues

need to be addressed:

• How to convert historical web logs to discrete model?

• How to classify the incoming workload?

• How to select the prediction model with highest accuracy?

• How to check the accuracy of predicted workload?

After workload prediction, we have to use the predicted workload to estimate the

number of resources in next scaling interval to minimize the renting cost, this need to

tackle following issues:

• How to monitor the user level and infrastructure level parameters?

5

• How to analyze the resource utilization?

• How to estimate the number of resource in next interval?

• How to minimize the resource oscillation?

• How to observe and handle the SLA violation?

Thirdly, provisioning should ensure the required resources availability for web ap-

plications. To ensure the profit for application providers following issues need to be

taken care:

• How to execute the planning policy to scale up/down/nothing as per application

providers constraints?

• Which VM to choose in scale down decision?

• How to provision the resources under different pricing policy?

• How to ensure profit to the application providers with QoS to the users?

Therefore, the researcher summarize the following objectives.

1. To propose workload prediction model on different time series for Multi-tier web

applications.

2. To develop an auto scaling approach for efficient resource selection for applica-

tion servers in multi-tier cloud environment.

3. To develop profit-aware dynamic resource provisioning algorithm for the virtual-

ized cloud environment.

4. To evaluate and analyze the proposed model with existing models on different

QoS parameters e.g. cost, response time, reliability, elasticity etc.

1.3 Research Methodology

The expected outcome of the research work is to develop a robust resource provisioning

mechanism based on workload prediction for multi-tier web applications to provide the

QoS to user with minimum SLA violation. A flow chart in Figure 1.2 is a list activities

6

to achieve the mentioned objectives followed by the research methodology for each

objective.

Identified the problems and defined the objectives

Methodological survey on reactive and proactive

resource provisioning techniques

Designed the prediction model using statistical and machine learning approaches

to forecast the time-series workload of web applications in cloud

Literature review of resource management in cloud

computing

Designed and developed the robust auto-scaling approach with hybrid analysis

phase and hybrid planning phase for multi-tier web applications in cloud

Designed and developed the triangulation resource provisioning mechanism with

profit-aware surplus VM selection policy for web applications in cloud

Evaluated and analyzed the existing and proposed resource provisioning

mechanism on different performance metrics e.g. cost, response time, CPU

utilization, etc.

State-of-the-art

Research

papers

Online

Sources

Research

papers

Online

Sources

Figure 1.2: Research methodology flowchart

1. To achieve the first objective, the statistical and machine learning techniques has

applied. The LR, ARIMA and SVR model has been selected for predicting time

series based on classification technique for the workload of multi-tier web ap-

plications. The real-time web server logs of NASA and ClarkNet has used for

experimental evaluation. The proposed model has developed and analyzed in R-

tool. The queuing model used to calculate the accuracy of the proposed model in

the resource provisioning of the cloud environment.

7

2. To achieve the second objective, a robust hybrid auto-scaling approach has been

presented. The analysis phase and planning phase in the MAPE-K loop designed

with the combination of a reactive and proactive approach. The scale up/down

decisions are planned by considering the time series prediction in the first objec-

tive and current system state. The simulation performed with Cloudsim toolkit

by incorporating auto-scaling libraries.

3. To achieve the third objective, a triangulation resource provisioning mechanism

designed with workload prediction, response time and CPU utilization. A profit-

aware surplus VM selection policy designed by considering the cost and load on

VM in the current scaling interval. The simple and professional executor used to

simulate the proposed algorithm. The simulation performed on Cloudsim toolkit

with executer libraries.

4. Reliability of predictive resource provisioning model with different models has

been evaluated by analyzing the execution of multi-tier web application on the

developed environment on different QoS matrices. e.g. RMSE, MAPE, cost,

response time, CPU utilization, etc.

1.4 Thesis Contribution

To give the answer of defined research questions, the thesis contribution is mentioned

as per following:

• A taxonomy and literature survey of auto-scaling and resource provisioning tech-

niques for web application in cloud.

1. A detail investigation has done to study various existing resource provision-

ing techniques in cloud computing.

2. The mentioned techniques classification has been done as per the common

characteristics.

3. Future research direction in the area of auto-scaling is presented.

• A technocrat ARIMA and SVR model to predict the web applications dynamic

workload to gain highest accuracy in short term prediction.

8

1. The technocrat workload prediction cloud architecture.

2. A workload characterization and classification technique.

3. A technocrat ARIMA and SVR model for time series forecasting of dy-

namic workload.

• A robust auto-scaler for web application in cloud with highest resource utilization

and minimum cost.

1. A MAPE-K based cloud architecture for web applications.

2. The design and development of hybrid analysis approach for resource auto-

scaling for Web applications in the cloud.

3. The design and development of a hybrid planning approach for scaling de-

cisions in cloud infrastructure.

• A profit-aware triangulation resource provisioning mechanism for application ser-

vice providers.

1. A TRP resource provisioning architecture for web applications.

2. The resource provisioning mechanism is designed for ASPs for web appli-

cations in the cloud.

3. The surplus VM selection algorithm is developed with the profit-aware ap-

proach.

1.5 Thesis Organization

The structure of thesis and its dependencies are shown in Figure 1.3. Chapter 2 is

related to literature survey and taxonomy of auto-scaling and provisioning techniques.

Chapter 3 is focused on the workload prediction of web application in cloud computing.

Chapter 4 is presented the auto-scaling techniques for web application management.

Chapter 5 is presented the profit-aware resource provisioning of web application in

cloud computing. In detail, the organization of thesis as follows:

• Chapter 2 presents the methodological survey and taxonomy on resource auto-

scaling and provisioning techniques for web application in cloud computing. This

chapter is partially derived from:

9

Chapter 1

Introduction, Background, Research

Objectives, Thesis Structure

Chapter 2

Methodological survey and taxonomy

of resource provisioning of web

applications in cloud

Chapter 3

A dynamic workload prediction model

based on statistical and machine

learning technique

Chapter 4

A robust auto-scaling

technique for web application

with hybrid analysis and

planning phase in MAPE loop

Chapter 5

A triangulation resource

provisioning mechanism and

profit-aware surplus VM

selection policy in cloud

Chapter 6

Conclusion and Future Directions

Figure 1.3: Chapter wise thesis organization

– Parminder Singh, Pooja Gupta, Kiran Jyoti, Anand N., “Research on Auto-

Scaling of Web Applications in Cloud: Survey, Trends and Future Direc-

tions”, Scalable Computing: Practice and Experience (Accepted), 2019.

(Scopus, ESCI)

• Chapter 3 describes the proposed a technocrat ARIMA and SVR model for dy-

namic workload prediction of web applications. This chapter is derived from:

– Parminder Singh, Pooja Gupta and Kiran Jyoti, “TASM: Technocrat ARIMA

and SVR Model for Workload Prediction of Web Applications in Cloud”,

Cluster Computing, Springer (Published), 2018. (Scopus, SCIE 1.6 IF)

• Chapter 4 explains the devised robust auto-scaling technique with hybrid analysis

10

and planning algorithms in cloud architecture for application service providers.

This chapter is derived from:

– Parminder Singh, Pooja Gupta and Kiran Jyoti, “A Robust Auto-Scaling

for Web Applications in Cloud Computing”, Cluster Computing, Springer

(Under Review), 2018. (Scopus, SCIE 1.6 IF)

• Chapter 5 presents the triangulation resource provisioning technique and profit-

aware surplus VM selection in scale-down decision in the execution phase of

cloud infrastructure. This chapter is derived from:

– Parminder Singh, Pooja Gupta and Kiran Jyoti, “Triangulation Resource

Provisioning for Web Applications in Cloud Computing: A Profit-Aware

Approach”, Scalable Computing: Practice and Experience (Accepted), 2019.

(Scopus, ESCI)

• Chapter 6 present the conclusion of thesis finding and introduce the possible fu-

ture directions. This chapter is partially derived from:

– Parminder Singh, Pooja Gupta, Kiran Jyoti and Anand N., “Research on

Auto-Scaling of Web Applications in Cloud: Survey, Trends and Future Di-

rections”, Scalable Computing: Practice and Experience (Accepted), 2019.

(Scopus, ESCI)

11

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Cloud computing is an emerging technology, which provides processing, bandwidth,

and storage as a service. Elasticity is the main characteristic of cloud computing, at

runtime resources are allocated and de-allocated from the processes as per increment or

decrement in the requirement. The resource pools seems unlimited for the users and can

acquire or release the resources anytime [12]. The regular monitoring of given services

is required to ensure the Quality of Service (QoS) and also need to fulfill the Service

Level Agreements (SLAs). The SLA violation leads to the penalty to cloud providers.

It is a big challenge for the service providers to provide services within the budget and

raise profit from datacenters. The QoS assures the behavior of cloud services towards

reliability, availability, elasticity, cost, time, etc. [13]. The infrastructure providers offer

different pricing policies, companies such as Amazon [14] provides resources for a fixed

price per hour. Thus, the providers should decide the resources for the processes while

maintaining the SLAs terms. In auto-scaling, decision-making techniques to allocate

the number of resources to different processes are categorized as reactive and proactive.

The reactive technique regularly watches events such as CPU, workload, queue, etc.,

and perform the elastic operation on the resources as per threshold rules. Proactive

forecasting methods are used to predict the traffic from the past workload. So far none

of the technique is splendid in all the cases [15].

12

The reasons for the ambiguity and diffusion in resource allocation for cloud environ-

ment are heterogeneity of resources, dynamic application requirements, and failures. As

for now, none of the technique can tackle aforesaid issues. Autonomic cloud computing

can provide the self-optimization, self-protecting, self-healing, and self-configuration

scaling [16].

2.2 Origin of Autonomic Computing

The word autonomic comes from the Biological system. The human body is working in

a self-managing manner without the interference of human. Autonomic Nerves System

(ANS) can handle problems like uncertain conditions, dynamic behavior and fault han-

dling. The similar way an automatic system works on the basis of human guidance and

behave accordingly in case of environment change like software and hardware require-

ments change or in case of fault occurrence. ANS handle the human body’s functions

like sweating to keep cool, pupil adjustment due to sunlight, digestion, and breathing,

the autonomic system handles the functionality of computing system and application

deployed without human intervention [17].

2.2.1 Advancement in Autonomic Computing

Researchers have started building the autonomous and self-managing system due to

the reason for heterogeneity, complexity, failures, and increase of knowledge in the

computing system [18]. Dynamic Assembly for Systems’ Adaptability, Dependability,

and Assurance (DASADA) is a project of the Department of Defense (DoD) developed

to handle the problem of a distributed system. Author working on 19 technologies given

by the DOD department and working on the adaptability and dependence to ensure

high-performance [19].

IBM took many initiatives for autonomic computing. IBM introduced an auto-

nomic computing system to manage failures, risk, and resources. Author invited the re-

searchers to work on the autonomic system using technologies like adaptive algorithms,

ANS, artificial intelligence, feedback control like technologies make it possible to de-

velop autonomic computing system for Grid computing [20]. IBM mentioned four fea-

tures of self-management as self (configuration-optimization-healing-protection). IBM

13

is a leader organization to develop autonomic computing system, but still a grand chal-

lenge to develop a computing system that can do self-management. The manual and

automatic system are not able to manage the heterogeneous computing environment

[21].

Prasher and Harri [22] developed an autonomic grid computing system in 2005.

The robust autonomic computing system proposed for heterogeneous components. The

model also provided the features like dynamic resources, grid application management,

and deployment. Autonomic cloud computing system was first introduced by kim et

al. [23] in 2009. Ensemble Kalman Filters (EnKF) is used to investigate the work-

flow history and works on autonomic objectives (acceleration, resilience, and conser-

vation). CometCloud has been used for resource management techniques for Hybrid

infrastructure. Traditional methods are not appropriate to fulfill the QoS requirement in

autonomic cloud computing. In this field, many areas are open to research.

2.3 Auto Scaling

Auto-scaling is a technique to dynamically adjusts the resources allocated to elastic

applications as per the incoming workloads. Auto-scalers in the cloud environment

are mostly generic while some are application specific to meet the SLA, QoS and

cost requirements. The challenge in auto-scaling for the web applications is to dy-

namically grow or shrink the resources to meet fluctuated workload requirement. Au-

tonomous scaling techniques work without human intervention. Autonomic systems

are self (configuring-optimizing-protecting-healing) [23]. The auto-scaling following

the MAPE loop: Monitoring (M), Analysis (A), Planning (P) and Execution (E) [24]

shown in Figure 2.1.

Monitor

Sensors

Analyze

User behavior,
CPU utilization,
Response time

Plan

Predictive
requests, Avg.
CPU utilization,
Avg. response

time

Execute

Scale up/down
decision Effectors

Figure 2.1: MAPE loop in resource provisioning

14

• Monitoring: The monitoring system collects the information from a cloud en-

vironment about the compliance of user expectations, resource status, and SLA

violation. It provides the state of infrastructure to the cloud provider, and users get

to know about application status with expected SLA. Auto-scaling protocols are

decided on the basis of performance metrics for web applications. Ghanbari et al.

[25] suggested parameters such as resize numbers, operating interval, decision

duration, decision threshold, refractory period and instance bounds. Generally,

metrics provided by cloud providers are related to VM management; otherwise,

it could be taken from the operating system. The proxy metrics are used to re-

duce the complexity of metrics such as hypervisor level and application level

(e.g., CPU utilization, workload).

• Analysis: The collected information is further processed in the analysis phase.

It gathers all information from metrics, current system utilization and prediction

information from historical workload. Some auto-scaler are working on a reac-

tive approach. The decision is taken after analyzing the current system state. The

threshold values are fixed to scale in/out decisions, while others are using a re-

active approach or both. Reactive is a sophisticated approach because there is

always a delay between the settings of resources for scaling decision. The VM

startup time varies from 350 to 400 seconds [26]. Flash crowd and events are still

a challenge with the reactive approach.

• Planning: Analysis phase evaluates the present state, now the planning phase

has to decide to scale up/down or scale in/out to compliance with SLA and profit

trade-off.

• Execution : Execution phase is already decided in the planning phase. Cloud

providers API is responsible for the execution of planning. The client is unaware

of the issues in the execution phase. VMs are available to users for a certain pe-

riod, the startup time of VM takes some time, and these delays have been already

discussed with the user in resource SLA.

2.3.1 Types of Auto-scaling

There are two types of auto-scaling techniques.

15

1. Reactive

The reactive approach makes the dynamic decision at the runtime of the applica-

tion. Most of the models followed the threshold approach to create a new VM.

When the CPU utilization reaches a certain threshold, scale up and down deci-

sions are made [27]. The approach is simple and easy to implement, but it is

relatively slow and does not consider the VM boot-up time.

2. Proactive

The VM startup time cannot be neglected. Therefore, the proactive approach

forecasts from the historical workload pattern or CPU utilization. The short time

history is used to forecast future workload [28]. It considers the startup time in

advance. Challenge in proactive approach is the accuracy of prediction models.

2.3.2 Types of Auto-scaling Policies

There are two types of auto-scaling policies.

1. Vertical Scaling

It provides the scale up/down approach and system can change the machine con-

figuration at run time. Such as CPU cores, ram, a disk can change. The RackSpace

[29] is providing the facility to change the machine configuration. Most of the

service provider does not support this feature [15].

2. Horizontal Scaling

It provides the Scale in/out approach. The system can create and destroy the VM.

All service providers provide these features.

Resource provisioning mechanisms have the following research challenges:

Under-provisioning: The application has not sufficient resources to serve all incom-

ing requests from the servers. It may happen due to flash crowd or events, or poor

auto-scaling algorithm. This situation leads to SLA violation and application providers

have to pay the penalty to the users, and reliability of the providers also get affected.

The servers takes some time to be back in the normal state. This duration is know as

cool down period. The auto-scaling policy need to arrange enough resources as per the

application requirements which ensure the QoS to the end-users.

16

Over-provisioning: In this situation, the number of resources to process the applica-

tion is more than the required resources. Service provider’s reliability is increased in

this case. SLAs violation is minimum in over provisioning and up to a certain level ben-

eficial to handle the fluctuated workload. It affects the profit of the service provider, and

on-demand services become costly for the clients. There is no perfect solution exists

either in automatic or autonomous scaling.

Oscillation: It is a pack of both unwanted situations. Rapid resources scaling is taking

place without considering the effect on application performance. The condition can be

avoided using static and dynamic threshold value fixed for the VMs scaling. A cooling

down period is another approach used to handle the oscillation [30].

2.4 Elastic Applications

The elastic applications are dynamic in nature towards change in workload and vari-

ables. The load balancer is responsible for the management of elastic applications.

Cloud computing applications are managed on VMs, and VMs are managed by the

servers. Auto-scaler is a decision maker for the scaling of resources. The system is

said to be autonomous because human intervention is not required. Many cloud appli-

cations (e.g., Video streaming, web applications) are elastic in nature [31]. Most of the

articles about elastic applications considered the web applications as compared to other

elastic applications. Web applications consist of three tiers: Presentation, Application,

and Database. Most of the articles focused on the application or business tier scaling.

The major issue with auto-scaling is to scale the small running jobs, while long-running

jobs are coming under the scheduling problem.

2.4.1 Web Applications Architectures

Earlier single tier architecture has used the dedicated server for each tier such as a

web server (load balancer), application server and database server. The load balancer

transfers the load among other instances of single layer architecture. This architecture

is not suitable according to the elasticity and scalability features of cloud computing.

Most of the companies are now using multi-tier architecture (e.g., Amazon), where

each tier in architecture serves a specific purpose as shown in Figure 2.2. The most

17

important benefit of multi-tier architecture is to manage the scalability and elasticity

features. Resource management of multi-tier applications is still a challenge due to

higher interdependencies between the different layers [2]. Web tier, application tier,

and database tier are deployed on the web server, application server, and database server.

The responsibilities of the servers are:

Database-tierApplication-tierWeb-tier

Figure 2.2: 3-tier Web architecture [2]

• Web Server: It accepts or rejects the incoming client request. Another important

work of web server is to serve the static content. It also passes the request to the

application server. The response is delivered back to the user.

• Application Server: It receives the request from the web server. The literature

survey is biased towards the scaling of VMs for the application server. Business

logic is processed by this tier. It requests the database for the required data.

Optimization of queries can be done at this level also. After processing data

again send back to the web servers in the desired format.

• Database Server: Database management system is working at this level. The

application server connected this tier via database connectivity APIs (e.g. JDBC,

ODBC). Single tenant and multi-tenant databases compatible with the cloud ar-

chitecture (e.g. Oracle 12c). Structured and unstructured relational database man-

agement system is used to store the data and pass the required data to application

servers.

Another type of applications is service-based web applications such as Facebook

and e-commerce website of Amazon. Each service represented as the node is connected

with another service through directed edges and whole system abstracted as a directed

graph. The application further classified in Micro-services and Service-Oriented Archi-

tecture (SOA). The each tier in the the web application is required separate VM in cloud

environment. The present study is mainly focused on multi-tier web applications.

18

2.4.2 Application Benchmarks

Server performance and scalability can be checked with benchmarking applications.

It is the combination of web application and synthetic session based request to the

application. Some of the benchmarking applications are.

• RUBiS [32] Auction website model similar to eBay.com. It provides useful fea-

tures (browsing, bidding, selling) and backings three sorts of client sessions:

guest, purchaser, and dealer. The applications comprise of three primary parts:

Apache load balancer server, JBoss application server, and MySQL database

server. Benchmark updated in 2008.

• TPC-W [33] It is a transaction processing and database benchmark. Its a complex

shopping site for an online book store. It provides feature browsing, ordering, and

shopping. The performance is a meter on a different time scale. It was declared

an absolute benchmark in 2005.

• CloudStone [34] It is develop by Rad group, University of Berkley. It gives the

facility to measure the performance of multi-language and multi-platform tool for

web 2.0 application.

Other least used benchmarks are SpecWeb [35], TPC-C [36] and RUBBoS [37]

working in similar manner. It is best to use these benchmarking to measure the

performance in Real or simulated environment.

2.5 Capacity Management of Web Applications

As the growing demand for information services demand three things- scalability, avail-

ability and cost optimization from the service providers. Scalability means the service

provider can fulfill the demand of unpredictable customer’s crowd with minimum per-

formance degradation. Availability means the user can access the website anytime and

anywhere. The service provider should provide a predictable response time as per SLA.

Figure 2.3 represents the capacity planning model and its working.

The first step is to understand the architecture of an application in the business mod-

els and measurable goals module. In the second step, it characterizes the workload as

per different sites. The session describes the use of the site by different users e.g. use of

19

Understand the service

architecture

Analyze cost

performance

tradeoffs

Predict service

performance

Calibrate and

validate model

Develop performance

model
Forecast workload

evolution

Obtain the model

parameters

Characterize the

workload

Business Models and

measurable goals

Performance

Model

Workload

Model

Figure 2.3: Capacity planning process [3]

shopping website by the user opens multiple pages at the same time to browse different

items. The third step is to get model parameters from monitoring and measure the per-

formance of web services. Next step is to forecast the future workload. Further conduct

performance modeling for different workload pattern. Performance metrics (response

time, throughput and resource utilization) should map the actual requirement. Service

performance prediction should be done to predict the performance of the system. At

last, it performs the cost-benefit analysis and, plan the corrective actions in order to

meet the business objectives [3].

2.6 QoS-aware Cloud Computing

The agreement between customer and cloud service provider are based on the functional

requirements like time, price and, the non-functional QoS parameters such as reliability

and availability. Many techniques are there to resolve the expense and time constraints.

However, the existing techniques are unable to fulfill the QoS requirements. The rise

of Big data and IoT technologies required robust resource management techniques to

efficiently use the resources. Cloud computing gives new sights to the popular wireless

sensor network field to overcome the limitations of battery life and storage capacity

[38]. Garg et al. [39] proposed the architecture having features like dynamic resource

scaling and configuration. Heterogeneous workload considered without taking consid-

eration of application behavior.

20

2.7 Cloud Provisioning Architecture

The adaptive provisioning approach designed for dynamic workload, uncertain behavior

and resource estimation error [4]. The architecture is shown in Figure 2.4. The service

providers administered various components in the architecture. The SaaS layer accepted

the requests for application instances. The accepted user requests are sent to the PaaS

layer. The present study implements in the PaaS layer.

Request Scheduling and

VM Management

Historical Workload

Information
Admission

Control

Performance Modeler Application

Provisioner

V

M V

M
V

M

V

M

V

M
R2

R3
R1

IaaS

Provider

SaaS

Layer

PaaS
Layer

Accepted

user request

No. of VMs

Users

Request

Resource Provisioner

Workload Predictor

Figure 2.4: Cloud provisioning architecture [4]

1. Workload Analyzer : It is responsible for the prediction of future incoming

workload for the cloud applications. The forecast value inputs to the load predic-

tor and performance modeler module.

2. Load Predictor and Performance Modeler : It selects the VMs to be distributed

and taking into account the anticipated requests from workload analyzer module.

It also monitors the execution of running VMs. Queuing model is used to predict

the required VMs from the arrival rate of request that can meet the QoS measure-

ments.

3. Application Provisioner : It gets the user request from the admission controller

21

and passes it to VMs in IaaS. It is responsible for monitoring the performance of

VMs. Performance modeler module estimates the required number of VMs and

passes the estimate to application provisioner. The analysis and planning phase

takes the scaling decision. Further, the decision inputs to the resource provisioner

[4].

2.8 Resource Demand Estimation in Cloud

Once the predicted workload is achieved from the workload analyzer, the next step is

to resource demand estimation within the cloud. The resource estimation cannot decide

merely on the basis of workload, its the combination of workload and the current state

of a system. The queuing method is widely used in the industry to estimate the resources

[40] as shown in Figure 2.5. Resource demand estimation model are webPropht[41]

and same has extended for cloud is CloudPropht [42].

Figure 2.5: Queuing model for cloud data center [5]

Application provisioner gets the request from the admission controller working on

the M/M/1/K queue model. K is a queue size and defined at the time of SLA negotiation

of service time (Ts) and single request execution time (Tr). Admission control system

rejects the request if VM exceeds K thus it will not forward the request to application

provisioner. The accuracy of the resource demand prediction depends on workload pre-

diction, so the resource demand is a variable. Various techniques for demand prediction

22

are Response time approximation, Service Demand Law, Linear regression, Kalman fil-

ter, Optimization, Machine learning, Maximum likelihood estimation, Gibbs sampling

[43].

2.9 Taxonomy of Auto-scaling

Auto-scaling feature automates the capacity up and down process in a cloud environ-

ment. The user can specify the condition for scale up and down in interface developed

by cloud provider like Amazon EC2 [44]. The vendor RightScale [45] helps the user

to set the rules for auto-scaling. The user defines an upper and lower threshold rules to

instantiate scaling. The rule-based approach assumes that consumer has much knowl-

edge of the domain, but in actual condition, most of the users are not aware of scaling

rules. Apart from queuing theory, threshold technique, reinforcement learning, time

series analysis, and control theory techniques are used in auto-scaling [31]. The main

purpose of auto-scaling is job scheduling, SLA monitoring and run time scaling.

The taxonomy of auto-scaling is considered the following aspects:

1. Auto-scaling technique

2. Proactive, reactive or mixed (R/P)

3. Horizontal, vertical scaling or both (H/V)

4. Performance metrics (e.g. input request rate, CPU load time)

5. SLA parameters (e.g. response time)

6. Pricing model (e.g. On-demand, reserve, spot instance)

7. Monitoring tools

8. Experiment setup (e.g. Simulator, testbed or real provider)

9. Workload (e.g. Real or synthetic)

10. Approach (e.g. cost-aware, load-aware, etc.)

The researcher in the cloud computing used various techniques for analysis and

planning phase in MAPE loop to automate the scaling process. In literature, widely

23

used techniques classified in 7 major approaches such as threshold rules, fuzzy rules,

application profiling, machine learning, queuing theory, control theory and time series

analysis.

Auto-scaler is a crucial component in cloud computing. Auto-scalers are grouped

into two categories: Reactive and Proactive. The reactive approaches took the scaling

decision by analyzing the current state of the system. Proactive technique analyzes the

historical data and take scaling decision. Most of the techniques used hybridization of

these methods. So it’s challenging to classify the methods on two broad groups.

Cloud service providers widely use horizontal scaling as elasticity feature. Cloud

providers are providing a fix and customizable resources where the user can config-

ure VMs by specifying memory, cores, bandwidth, etc. Some articles developed the

auto-scaling techniques using vertical scaling, where the user can re-configure the VMs

resources such as CPU, memory and network bandwidth as per the requirement change.

The Centurylink service provider gives the service to scale the CPU cores without ver-

tical downtime.

Performance metrics is an essential tool to enhance the reliability of the users mov-

ing their applications to the cloud. The articles in literature used various metrics to

check the performance of their model such as SLA, CPU load time, request rate, etc.

The service providers need to know the expectations of the customers. It is the mas-

ter service agreement between the customer and service providers related to various

performance outage issues. This document describes the responsibilities of the cus-

tomer and service providers. It helps the customer to compare the performance among

different service providers. The commonly consider performance metrics in SLA re-

lated to auto-scaling are response time, budget, cost, throughput, etc.

Cloud providers are categories the cloud resources in three different pricing mod-

els: on-demand, reserved and spot-instances. On-demand resources gives performance

guarantee to the target application. The number of resources grows or shrink as per the

workload change through elasticity feature of cloud computing. The reserved resources

are a fixed number of resources. Amazon provides the spot instances relatively cheaper

than the on-demand resources. Spare capacity instances sell through auction mecha-

nism and user acquire the resources by submitting the bid. Single cloud and multi-cloud

resource estimation challenges are different for multi-tier web applications.

24

Monitoring tools act as performance indicators. It helps to determine the scaling

decisions. Monitoring interval defines the performance of auto-scaler. Balanced per-

formance can be achieved by selecting the right monitoring interval according to the

application. Amazon cloudwatch monitoring used by many articles whether some are

using custom monitoring tool.

Experiment characteristics considered for the implementation of the model has been

reviewed in the taxonomy of auto-scaling. Synthetic and real workload used by an

article for the analysis of the model. Cloudsim simulator used by many articles, while

some manuscripts used real testbed for the study of the model.

The newly added feature in the taxonomy is the approach of the authors on above

of the techniques to auto-scale. In the literature, the vision of investigators is to im-

prove one or more factors such as cost, resource optimization, QoS, SLA violation,

etc. Further, the researcher get clear idea about the articles which improve the specific

objectives.

2.10 Survey on Auto-scaling Techniques

This literature survey is focusing on auto-scaling and resource provisioning techniques

specifically for web applications in cloud computing. Researcher performed a sur-

vey on the auto-scaling technique which specifically focused on analysis and planning

phase. Auto-scaling of cloud computing has a large number of articles published. The

researcher put the papers in the associated category by identifying the approach, al-

gorithms used in the research paper for a better understanding. The researcher again

revised the models, metrics, monitoring tools, etc., from the articles and create tables

according to the classification of techniques. The symbol ’-’ in tables represent the lack

of information in the article.

Earlier surveys have been conducted by many authors [46, 47, 31, 48, 49], but the

regular updates in cloud infrastructure and persistent research yielding the new research

areas. There is a need to explore the present challenges and new research area in this

field. This survey augments the existing studies and recent research articles to describe

the research challenges for the web applications in cloud computing. Guitart et al. [46]

have done a survey of Internet applications deployed on dedicated or shared data cen-

ters. It focuses on the web server’s admission control issue. This service is related to

25

the SaaS layer of the cloud architecture. The elastic nature of web applications is more

relevant with auto-scaling and can be done in two ways: horizontal or vertical. Iden-

tification has done on the basis of approach reactive or proactive. The metric used by

the technique is identified in the survey. Workload used in the analysis of the approach

is also discussed along with the experimental setups. SLA parameter has to check the

validity of the model, so SLA parameters are collected from the papers.

Resources are the major factor in auto-scaling. To the best of our knowledge, no

existing survey has identified all types of resources used in a cloud environment. Exist-

ing surveys considered only on-demand resources in cloud infrastructure. In this study,

the researcher has identified other type of resources (e.g. Spot-instances, reserve and

on-demand) for application tier elastic layer.

Another important survey done by Manvi and Shyam [47] on resource management

in the cloud, but little attention has given to auto-scaling. Lorido-Botran et al. [31]

focused on the elastic application including web application. The article classifies the

technique and very useful literature survey, but the survey did not focus on the type of

resources such as on-demand, reserve and spot instances.

In this study, the researcher carried out a very diverse survey by including these sur-

veys with specifically to web applications auto-scaling techniques. A survey has done

on the basis of auto-scaling technique. Lorido-Botran et al. [31] has used the classifica-

tion technique and the investigator have added more approaches along with mentioned

former groups. This section covers the literature survey on auto-scaling techniques.

Each article is reviewed on the basis of auto-scaling taxonomy. The classification of

auto-scaling techniques are:

1. Application Profiling (AP)

2. Control Theory (CTH)

3. Fuzzy Rules (FR)

4. Machine Learning (ML)

5. Queuing Theory (QTH)

6. Threshold-based Rules (TR)

7. Time Series Analysis (TSA)

26

2.10.1 Application Profiling

It is a method to find the critical point of utilization of resources while running of

application workload (real or synthetic). The methods of application profiling are shown

in Figure 2.6. This technique is classified into two categories:

Application Profiling

Offline Application
Profiling

Online Application
Profiling

Integer Linear
Programming

(ILP)

Workload Profiling
Technique (WPT)

Application
Signature (AP)

AGILE

Rapid Profiling
(RP)

Figure 2.6: Methods of application profiling

1. Offline Application Profiling: This method of profiling is performed in a de-

tailed manner in resource provisioning of tasks at different stages of workload.

The advantage of offline profiling is to perform profiling manually after the ap-

plications are updated. The different methods of offline application profiling are:

(a) Integer Linear Programming (ILP): It is a mathematical optimization

problem. In this partial or all variables are integer. The constraints and

objective function is linear [50].

(b) Workload Profiling Technique (WPT): This technique collects the work-

load information. The workload modeling performed to estimate the per-

formance under the stressed conditions. The workload profiling done with

various types of testing techniques such as limit finding, soak testing, etc.

[51, 52, 53].

2. Online Application Profiling: This method of profiling is dynamic in nature and

fulfill the needs of the fine grained tasks that immediately require working virtual

27

machines with different workloads. The different techniques of online application

profiling are:

(a) Application Signatures (AS): This technique identifies a small set of classes

of workload and classifies them according to workloads. The resource allo-

cation of workload is cached at runtime [54].

(b) Elastic Distributed Resource Scaling (AGILE): In this technique, wavelets

are used for fulfilling the resource demand prediction with much large time

for the applications servers to start up before falling short of performance

[55].

(c) Rapid Profiling (RP): In this technique, the individual performance of the

virtual machine instance is profiled after it is obtained from the cloud. This

technique helps to judge the best tier for the profiled instance of virtual

machine [56].

Table 2.1 shows the taxonomy of reviewed articles in this section.

Table 2.1: Taxonomy on application profiling based reviewed literature

Ref. Technique R/P H/V Metric SLA
Pricing

Model
Monitor Experiment Approach

[50] AP + ILP P H
Arrival

rate

Response

time and

cost

Reserve - Custom testbed
Cost-

Aware

[52] AP R/P H

Arrival

rate,

No. of

Servers

Response

time

on-

demand

Custom

tool

Custom

testbed. 38

Intel Xeon

servers.

Capacity

Manage-

ment

[51]
AP +

TSA
P H

Arrival

rate, CPU

usage

Through-

put

on-

demand

Custom

tool. 5

minutes.

Custom

testbed.

MediaWiki

application.

Workload

and Cus-

tomer

aware

[53] AP R H CPU load

Response

time and

avail-

ability

on-

demand,

spot

in-

stances

Simulated.
Custom simu-

lator

Fault tol-

erant

Continued on next page

28

Table 2.1 – Continued from previous page

Ref. Technique R/P H/V Metric SLA
Pricing

Model
Monitor Experiment Approach

[54]
AP +

CMAC
P V

CPU, I/O,

memory,

swap

Response

time

on-

demand

Custom

tool

(Script)

Custom

testbed. Xen +

3 applications

(TPC-C, TPC-

W, SpecWeb)

Workload

Aware

[55] AP P H

Number

of user

requests,

number

of VMs,

response

time

Response

time,

cost

on-

demand
-

Custom

testbed. Olio

application +

Custom de-

cision agent

(VirtRL)

Cost-

Aware/

Resource-

Aware

[56]
AP +

ANN
P V

CPU and

memory

usage

Response

time

on-

demand

Custom

tool

Custom

testbed. Xen +

3 applications

(TPC-W, TPC-

C, SpecWeb)

Load

/Ca-

pacity

Aware

2.10.2 Control Theory

This method is used in the analysis and planning of the MAPE loop as shown in Figure

2.7. It automates the processing systems such as data centers, storage systems, and

web server systems. The main goal is to automate the scaling process. The controller

maintains the controlled variable y and manipulated variable yre f matches to the desired

level. Manipulated variable act as an input to the target system, the output is measured

by the sensor.

The different categories of control systems are:

• Open-loop: It is also called the non-feedback method. In this method, feedback

is not considered for validating the desired goal. The output is calculated using

the present state of the system.

• Closed-loop: The closed loop systems are further categorized into two cate-

gories:

29

CONTROL SYSTEMS

Closed-loop

Feed-back Feed-forward

Open-loop

Figure 2.7: Categories of control system

– Feed-back: The monitoring of the output and deviation from the goal is

monitored by the feedback controller. The working of the feedback system

is shown in Figure 2.8.

– Feed-forward: The anticipation of any kind of error in output is performed

by the feed forward method. The action is performed after considering the

type of error in the system.

SYSTEM

FEEDBACK

Output

Disturbance

Figure 2.8: Working of feedback control system

The feedback controller is mostly used in the reviewed articles. It further divided

into several categories [57] is shown in Figure 2.9:

• Fixed Gain Controllers: It is the simplest of all the available controllers. The

different types of fixed gain controllers are Proportional-Integral-Derivative (PID),

Proportional-Integral (PI) and Integral (I). PID is the most common controller.

uk = Kpek +Ki

k

∑
j=1

e j +Kd (ek− ek−1) (2.1)

Manipulated variable is denoted by uk (e.g. New number of VM); ek is the dif-

ference between set point yre f and yk is the output; ki, kp and kd are the integral,

30

Feedback Control
System

Fixed Gain Controller Model Predictive
ControllerAdaptive Controller

Figure 2.9: Categories of feedback control system

proportional and derivative gain parameters, which further adjust as per the target

system.

Lim et al. [58, 59] applied the I controller to manage the required VMs on av-

erage CPU utilization. Park and Humphrey [60] deployed PI controller to adjust

the resources for batch jobs and used their execution process. kp and ki (gain

factors) adjusted manually according to trail-and-error [58] basis or target appli-

cation model. Zhu and Agrawal [61] adjusted a PID controller derivative term

using the RIL agent. The agent learns to reduced the sum of squared error of

control variables without affecting budget and time constraints over time.

• Adaptive Controllers: These controllers are the adaptive controllers that work as

per the online data made available by target systems. It is incapable of handling

the flash load. It is further classified into three categories:

– Self-tuning PID Controller (SPID)

– Self-tuning Regulator (STR)

– Gain Scheduling (GS)

The adaptive controller is also used in the literature. For example, Ali-Eldin

et al. [62] used the two models, adaptive and proactive controllers for scaling-

down, based on the input workload and dynamic gain parameters. Scaling-up

is done using a reactive approach. Author also devised proportional controller

using proactive technique [63]. Padala et al. [64] introduced an adaptive PID

controller for MIMO and used second-order ARMA for non-linear relationships

31

between performance and resource allocation. The controller can fit the disk I/O

usage and CPU. Bodik et al. [65] used smoothing splines with gain. A gain-

scheduling adaptive controller applied to estimate the number of servers for input

workload. Kalyvianaki et al. [66] combined the Kalman filter with controllers

(SISO and MIMO) for CPU allocation to VMs. Gambi and Toffetti [67] predicted

job completion using kriging model. The master node enqueued all the incoming

request.

• Model Predictive Controllers (MPC): It is proactive in nature that considers

the present output and also forecasts the future behavior of the system. One of

its categories is Look-ahead controller [68]. An optimization problem is solved

by considering the cost function. These types of controllers comes under the

proactive approach. Roy et al. [68] devised workload forecasting model using

the ARMA model and look-ahead controller. Fuzzy model predictive controller

developed using the fuzzy model [69].

Farokhi et al. [70] devised the auto-scaling technique for vertical memory. The

application performance and resource utilization considered in developing the hy-

brid controller. The objective is to consume less memory for the task, and achieve

the highest memory utilization. The author achieved 83% memory utilization.

This work can further extend to increase memory utilization and considered the

cache memory in vertical scaling.

An auto-scaling task is highly dependent on the design of the controller and the

target application. The goal of the controller is to add and remove the resources

in the auto-scaling process. The problem still persists, when the workload is

dynamic and non-linear. General auto-scaling model is required, that can be an

adaptive controller with MPCs.

As discussed earlier, the controller has to tune the input variable (number of VMs)

to calculate the output variable (CPU load). In order to achieve this goal, a model has

been devised to represent the formal relationship, which determines how input param-

eters affect the output variables. This relationship is known as a transfer function in

control theory. PID controller represents with a linear equation, there is also the possi-

bility to define with a non-linear equation. Simple PID controller Single-Input-Single-

32

Output (SISO) is used, but there is also a provision to use Multiple-Input-Multiple-

Output(MIMO). Following performance models have been used in literature:

• ARMA(X) [64]: ARMA (Auto-regressive Moving Average) model is used to

define the characteristics of time series and draw future predictions. ARMAX

(ARMA with eXogenous input) devised the relationship between two-time series.

• Kalman Filter [66]: It is used to make a prediction of time series. It is a recursive

algorithm.

• Smoothing Splines [65]: It is a polynomial function used to smooth the curves to

avoid the noisy observations.

• Kriging Model or Gaussian Process Regression [67]: Statistical framework com-

bined with linear regression to predict future values. Unsampled data have been

used to perform the forecasting with a confidence measure.

• Fuzzy Model [71, 69, 72]: These models are used with fuzzy rules. Set of mem-

bership elements assigned a degree of value between 0 and 1 (Boolean logic).

Table 2.2 shows the taxonomy of reviewed articles in this section.

Table 2.2: Taxonomy on control theory based reviewed literature

Ref. Technique R/P H/V Metric SLA
Pricing

Model
Monitor Experiment Approach

[60]
CTH: PI

controller
R V

Job

progress

Job

deadline

on-

demand

Sensor

library

Custom

testbed, Ap-

plications +

HyperV

Predictive

/Cost-

aware

[58]

CTH: PI

controller

+ ES

R H

CPU

load,

request

rate

-
on-

demand

Hyperic

HQ

(Xen)

Custom

testbed. Xen +

ORCA + Web

service

-

[64]

CTH:

MIMO

adaptive

controller

+ ARMA

P V

CPU

usage,

disk I/O,

response

time

Response

time

on-

demand

Xen +

custom

tool. 20

seconds

Custom

testbed. Xen

+ (RUBiS,

TPC-W, media

server)

SLO

based

Continued on next page

33

Table 2.2 – Continued from previous page

Ref. Technique R/P H/V Metric SLA
Pricing

Model
Monitor Experiment Approach

[65]

CTH:

Gain-

scheduler

+

Smooth-

ing

splines +

Liner Re-

gression

P H

No. of

requests

and

servers,

response

time

Response

time

on-

demand

20

seconds

Real provider.

Amazon EC2

+ CloudStone

benchmark

Resource-

aware

[66]

CTH:

SISO and

MIMO

con-

trollers +

Kalman

filter

P V CPU load
Response

time

on-

demand

Custom

tool.

5 − 10

seconds

Custom

testbed. Xen

+ RUBiS

application

Resource-

aware

[59]

CTH: PI

controller

(Propor-

tional

thresh-

olding)

R H

CPU

load,

request

rate

-
on-

demand

Hyperic

SIGAR.

10

seconds

Custom

testbed. Xen

+ Modified

cloudStone

(using Hadoop

Distributed File

System)

SLO

based/

Work-

load

based

[62]

CTH:

Adaptive

con-

trollers +

QTH

R/P H

Number

of re-

quests,

service

rate

Number

of re-

quests

not

handled

on-

demand
Simulated

Custom simu-

lator in Python

SLA

Based

[63]

CTH:

Adaptive,

Propor-

tional

controller

+ QTH

R/P H

Number

of re-

quests,

requests

in buffer,

service

rate

-
on-

demand

Simulated.

1 minute

Custom simu-

lator in Python

Load

Aware

Continued on next page

34

Table 2.2 – Continued from previous page

Ref. Technique R/P H/V Metric SLA
Pricing

Model
Monitor Experiment Approach

[67]

CTH:

Self-

adaptive

controller

+ Kriging

model

P H

Number

of incom-

ing and

enqueued

requests,

no. of

VMs

Execution

time

on-

demand
-

Custom

testbed. Private

cloud + Sun

Grid Engine

(SGE)

QoS

aware

[73]

CTH:

Fuzzy

controller

+ TS

P H

Number

of hits,

RMSE

Response

time

on-

demand

Custom

tool

(Fuzzy

con-

troller)

Custom

testbed. Azure

Small VM

Workload

Aware

[74]

CTH:

Learning

automata

P H
Scaling

overhead

Response

time

on-

demand

Custom

tool. 5

minutes

Cloudsim
SLA

Aware

[70]

CTH:

Hybrid

Con-

troller +

TS

P V

CPU and

memory

utiliza-

tion

Response

time

on-

demand

Control

interval

using

/ proc/

meminfo

Custom

testbed. Xen

hypervisor

(RUBBoS

application)

App.

based/

Re-

source

based

2.10.3 Fuzzy Rules

One of the rule-based technique for the auto-scaling approach is fuzzy rules. In this

technique, rules are defined using if-else conditions. The major advantage of fuzzy

based auto-scaler over the threshold based rule-based approach is linguistic terms e.g.

low, medium, high. It uses the control system as a performance model for estimating

the required resources (output variable) for the workload (input variable). Fuzzy sets

are formed from the input and output variables, the membership function defines this

process between the (0,1) interval. Fuzzification is the process of transforming input

variables into fuzzy sets. The inverse transformation of single numeric values to best

inferred fuzzy value is known as defuzzification.

The fuzzy rule-based model used to construct the auto-scaler. This auto-scaler is

35

not able to handle the dynamic workload because most of the components of the fuzzy

controller are fixed at the design time (e.g. Rule set, membership function). Regular

update in the fuzzy controller with on-line monitoring can make the system of adaptive

nature. It could better handle the dynamic workload [69, 72]. Xu et al. [72] proposed

a model to apply the fuzzy-controller at the application tier, and forecast the resources

required input workload. Want et al. [69] used the same method for the database tier.

Predict the required resources rt+1 for the time step t+1, considering no flash workload

during that time step. Grimaldi et al. [75] developed a dynamic approach for horizontal

scale-out for the dynamic workload. Author proposed a fitness function: Fk =
N
∑
i

ai
mi,k
Ri

.

Here, metric observation represented by mi,k and Ri at k sample time aiε [0,1]. The

model works well under the failure of VMs, and robust for different workloads.

Many research articles extended the work with the neural fuzzy controller. Four-

layer neural network used to represent the fuzzy model [71]. The first layer belongs

to the input node. The second layer represents each input variable membership to the

fuzzy set. Layer three determines the precondition part of fuzzy rules. Final layer

act as a defuzzifier, which used to convert the layer 3 in numeric output. The rules

and membership of nodes are formed on-line with the help of parameters and structure

learning. Table 2.3 shows the taxonomy of reviewed articles in this section.

Table 2.3: Taxonomy on fuzzy rules based reviewed literature

Ref. Technique R/P H/V Metric SLA
Pricing

Model
Monitor Experiment Approach

[72] FR R H

CPU al-

location,

Arrival

rate

Through-

put

Reserve

con-

tainers

Custom

tool

Custom testbed

+ applications

(Java Pet Store)

Workload

aware

/ SLA

aware

[76] FR P H

No. of

servers

per tier

End-

to-end

delay

on-

demand
- Simulation

QoS

aware

[69] FR P V

No. of

queries,

I/O band-

width,

CPU load

Response

time,

through-

put

on-

demand

Xentop.

10

seconds

Custom

testbed, RUBiS

and TPC-H

applications +

Xen

Qos

aware

Continued on next page

36

Table 2.3 – Continued from previous page

Ref. Technique R/P H/V Metric SLA
Pricing

Model
Monitor Experiment Approach

[71]
FR +

ANN
P V

Number

of re-

quests,

resource

usage

End-

to-end

delay

on-

demand

Custom

tool. 3

minutes

Simulation
Workload

aware

[77] FR R H
Arrival

rate

Response

time

on-

demand

Custom

tool

Custom Simu-

lation

SLA

aware

[78] FR P H

Number

of hits,

RMSE

SLO
on-

demand

Custom

tool.

Microsoft

Azure Cloud

Load

aware

[75]
FR + PID

controller
P H

CPU

load and

network

usage

CPU us-

age(%),

NETIN,

NETOUT

on-

demand

Amazon

cloud-

watch

Setup on Ama-

zon EC2

QoS

aware

2.10.4 Machine Learning

Machine learning is a technique that is used online learning for constructing dynamic

approach for the estimation of resources. It is a self-adaptive technique as per the work-

load pattern available. The machine learning algorithms reclassified into various cate-

gories. The review is made for the different categories used in this particular literature.

• Reinforcement Learning (RIL): It is one of the widely used machine learning

approaches. Its agent performs an action as per the received environmental state.

As in a cloud environment, auto-scaler acts as an agent. An agent works on the

principle of trial and error method. It gets a response or reward for each action

performed [79]. The optimal scaling decision is taken by sensing the current state,

performance metric, and type of application. The auto-scalar or agent works to

yield more rewards. The main objective of machine learning is to control the data.

The purpose of the agent is to fetch appropriate action of each states.

Rt = rt+1 + γrt+2 + γ
2rt+3 + ...=

∞

∑
0

γ
krt+k+1 (2.2)

At time t +1 the rewards gained are Rt+1, the γ factor is the discount factor. The

37

value function Q(s,a) known as Q-value function defines the policy. The Q(s,a)

values evaluates the cumulative rewards for each state s by execution action a.

Q(s,a) = Eπ

{
∞

∑
k=0

γ
krt+k+1|St = s,at = a

}
(2.3)

This proactive learning method makes the decision with the state of application

about the future reward (e.g. response time). The result is generated after the

complete execution of the application on the cloud. The phases analyze and plan

of MAPE process are covered by RIL techniques. Firstly, data about the applica-

tion and rewards are taken from the lookup table (or any other structure) for later

use (analyze phase). In the planning phase, the data is used to take the scaling

action.

To apply RIL to auto-scaling, some basic elements need to define: first, the action

set A, the state space S, and the reward function R. The first two depend upon the

type of scaling: horizontal and vertical. Reward function depends upon the cost to

acquire the resources (VMs, network bandwidth, etc.), and SLA violation penalty

cost. While considering the horizontal scaling, the state defines as input workload

and the number of VMs.

Tesauro et al. [80] devised the model using (w,ut−1,ut), where w is the total

number of user requests observed per time period; ut and ut−1 are the number of

VMs allocated to the application in the current time step, and the previous time

step, respectively;

Dutreilh et al. [81] followed the definition of the state as (w,u, p), where w is the

total number of requests and u is considered as the number of VMs allocated and

p as performance in the contract of average response time. Horizontal scaling has

been done on the basis of three decisions: append the new VM, deallocate the

VM and do nothing.

On the other hand, the resources assigned to each VM (CPU, RAM) for vertical

scaling are considered in state definition. Authors Rao et al. [82] and Xu et al.

[83] devised the state definition as (mem1, time1,vcpu1,,memu, timeu,vcpuu),

where memi, timei and vcpui are the ith VM’s memory size, scheduler credit and

number of virtual CPUs respectively. The possible operations for every three

38

variables can be increased, decrease or no-operation. The RIL defines the task as

a combination of each variable operation. Rao et al. again proposed a technique,

where RIL agent learned per VM [84]. State definition is configured as CPU,

bandwidth, memory, and swap.

RIL learning is also very useful for tasks that are very closely related to auto-

scaling problems, for example, the configuration of application parameters [85,

83]. Xu et al. [83] include the RIL agent with ANN to configure the parameters

as per the application and VM performance, such as Session timeout, MinSpare-

Servers, Keepalive timeout, Maxclient.

RIL can also be combined with control theory. Zhu and Agrawal [61] combine

the RIL agent with a PID controller. Application parameters are guided by the

controller to meet the Service Level Objectives (SLO). The resources are dynam-

ically provisioned according to the parameters.

RIL algorithms are important to gain the best management policy for cloud ap-

plications without any initial knowledge. It is an online approach to learn and

adapt as per the workload, application or system change. RIL technique could be

a better approach to handle the auto-scaling for general applications, but the RIL

approach is not mature enough to deal with the real cloud environment. This is

an open research field and efforts are required to handle the flash workload and

rapid change in state and actions.

• Hidden Markov Model (HMM) : This is modeled with a hidden Markov chain

with the hidden states. In the hidden Markov chain technique, the state is known

to the observers whereas in HMM it is invisible to observers. For example, two

friends Sam and Rick are communicating on the phone. Sam describes his ac-

tivities (eating, drinking) and Rick estimated the weather condition from his ac-

tivities. The estimation is performed on the basis of the maximum likelihood

estimation technique is shown in Figure 2.10. The parameters of HMM are x de-

fines the states in the model, y is the total observations under consideration and

state transition probability defined with a and b the output probability.

An HMM model usually required fewer observations as compare to basic Markov

chain models [86]. The system condition needs to observed minutely and input

39

Figure 2.10: Hidden Markov Model (HMM) [6].

to the model. The author used the Weka data mining tool for implementing the

HMM model, 2 states used with 0.01 iteration cutoff and spherical covariance. As

per an author, model given 97% accuracy in the auto-scaling decision. Database

tier is not considered in this work.

• Support Vector Machine (SVM): It is also used in some articles. It is one of the

supervised learning technique that is a combination of two techniques: classifica-

tion and regression. It can be applied to non-linear workload. The classification

is done on the basis of clusters formed and generates the classes for data under

specific region. Linear SVM can be used for classifying the web workload.

Liu et al. [87] proposed an adaptive technique with support vector machine

(SVM) with linear regression (LR). Characterization has done on the basis of pri-

ority of the job and workload pattern. The generic model has been developed for

cloud applications. The model can be extended further considering the different

QoS parameters according to the SLA and application.

• Q-learning is the most used algorithm in auto-scaling by extending it with vari-

ous techniques. Tesauro et al. [80] used the SARSA [79] approach. Some articles

[82, 83, 84, 85] did not specify which machine learning approach used in their

research, but problem definition and update function resemble the SARSA. There

are many problems in Q-learning and SARSA addressed various ways as follow-

ing [88, 89, 81, 83, 80]:

– Initial performance is bad and required a large training period. On-line per-

40

formance is poor before the best solution is found. It requires the exploration

of different states and actions.

– The curse of dimensionality problem in Q-learning. The number of state

variables grows the state exponentially. States are stored in lookup tables.

As the table grows, it takes time to search for the possible state from the

lookup table.

– The environmental condition has a great impact on the performance of the

RIL algorithms. As the conditions change the best optimal solution degrades

the performance. RIL need to design to work with application behavior or

environmental conditions.

Table 2.4 shows the taxonomy of reviewed articles in this section.

Table 2.4: Taxonomy on machine learning based reviewed literature

Ref. Technique R/P H/V Metric SLA
Pricing

Model
Monitor Experiment Approach

[80]

RIL+

ANN-

SARSA

+ QM

P H

Arrival

rate, pre-

vious no.

of VMs

Response

time

on-

demand
-

Trade applica-

tion. Custom

testbed.

Resource

based

[82] RIL+ANN P V

CPU and

memory

usage

Through-

put, re-

sponse

time

on-

demand

Custom

tool

TPC-C,

TPC-W and

SpecWeb. Cus-

tom testbed.

Xen.

VM

perfor-

mance

based

[89] TR + RIL P H

Request

rate, no.

of VMs,

response

time

Response

time

on-

demand

Custom

tool. 20

seconds.

-
Resource

aware

[61]

CT- PID

controller

+ RIL +

ARMAX

model +

SVR

P V

Application

adaptive

param-

eters

CPU and

memory

App

-lication

related

benefit

function

on-

demand
- -

Resource

and QoS

aware

Continued on next page

41

Table 2.4 – Continued from previous page

Ref. Technique R/P H/V Metric SLA
Pricing

Model
Monitor Experiment Approach

[84]
RIL +

CMAC
P V

CPU, I/O,

memory,

swap

Response

time

on-

demand

Custom

tool

(Script)

TPC-C,

TPC-W and

SpecWeb

applica-

tions. Custom

testbed. Xen

SLA

based/

Capacity

based

[81] RIL P H

No. of

user re-

quests,

no. of

VMs,

response

time

Response

time,

cost

on-

demand
-

Olio applica-

tion. Custom

testbed.

resource-

aware

[83]
RIL +

ANN
P V

CPU and

memory

usage

Response

time

on-

demand

Custom

tool

TPC-C, TPC-

W, SpecWeb

applica-

tions. Custom

testbed.

Budget

aware/QoS

based

[88] RIL P H

No. of

user re-

quests,

no. of

VMs,

response

time

Response

time,

cost

on-

demand
Simulated

Custom simu-

lator (Matlab)

Workload

aware

[85]
RIL +

Simplex
P V

CPU,

memory

- appli-

cation

parame-

ters

Response

time,

through-

put

on-

demand

Custom

tool
-

Resource

aware

[86] HMM R H

No. of

request,

MAPE,

RMSE

Cost-

Performance

on-

demand
- -

SLA

aware

Continued on next page

42

Table 2.4 – Continued from previous page

Ref. Technique R/P H/V Metric SLA
Pricing

Model
Monitor Experiment Approach

[87]

LR

(Linear

regres-

sion) +

SVM

R H
Prediction

time (ms)

Cost-

Performance

on-

demand

Custom

tool for

short,

medium

and large

task

length

Simulation
Workload

based

2.10.5 Queuing Theory

It is one of the widely used for modeling Internet applications. It is used in the analysis

phase of the auto-scaling process. It estimates the performance metrics and waiting

time for the requests. Queuing theory is a field of applied probability to solve the

queuing problem. Queuing issue is quite common in many fields such as telephone

exchange, petrol station, supermarket etc. The structure of the model is shown in Figure

2.11. The requests arrive at the server at mean arrival rate λ and remain in queue till

the processing. One or more servers are available to process the requests at the mean

process rate µ .

Figure 2.11: A simple queuing model with one server [7].

Author Kendall [90] represents the standard notation for queuing model known as

kendall’s notation. It describe the queue as A /B/C /K /N /D .

• A : Arrival process.

• B: Service time distribution.

• C : Number of servers.

• K : Capacity of system. The number of places in the system.

43

• N : Calling population. Size of users from where the request comes. Open pop-

ulation has an infinite number of customers and closed model is a finite number

of customers.

• D : Queue’s discipline. It represents the priority of jobs.

K ,N ,D elements are optional, by default variables are considered as K = ∞,

N = ∞ and D = FIFO. FIFO (First In First Out) is mostly used, which served the

request as they come. Another important one is Process Sharing (PS). Markovian (M)

refers to a Poisson process characterized by λ , which indicates the number of arrival

request per time unit. D stands for deterministic also refers to constant. G is also used

commonly known as general distribution.

Multi-tier applications are complex in nature and the queuing network can be useful.

The load balancer is represented by a single queue and distribute the coming requests

to the VMs.

Queuing theory is useful for stationary nature systems. It can work with both proac-

tive and reactive kind of environment. The main objective of the cloud-based system is

to develop a model on the basis of some known parameters (e.g. Arrival rate λ). Perfor-

mance metrics measured as the mean response time, and the average waiting time in the

queue. The web application workload is dynamic, it requires the timely recalculation

of queuing model and metrics.

The queuing model can be used in two ways: simulation and analytical method.

The analytical approach can be used with simple models. M/M/1 and G/G/1 are the

well-known methods used to define the arrival and service process. Simulation can be

used for the complex system to obtain the desired metrics.

M/M/1 (Poisson-based) is a basic queuing model. Exponential distribution is fol-

lowed by both the arrival times and the service times. The mean response time R of

M/M/1 model can be calculated as R =
1

µ−λ
. Arrival rate is represented by λ and

µ shows the service time respectively. G/G/1 is another simple method. Inter arrival

time and service time are controlled by general distributions with prior information of

mean and variance. G/G/1 system is represented by the following equation:

λ ≥
[

s+
σ2

a +σ2
b

2(R− s)

]−1

(2.4)

44

R is the mean response time and s is average service time. The variance of inter-

arrival time is σ2
a , σ2

b .

Little’s Law [91] is also used in many queuing scenarios. It states that the average

number of requests E[C] in the system is same as the average customer arrival rate λ

multiplied by the average time of each customer in the system E[T] : E[C] = λ ×E[T].

Simple and complex queuing used in the research articles for analysis of the perfor-

mance of applications and system.

Ali-Eldin et al. [63, 62] used a G/G/n queue to model a cloud application, and n

represents the number of servers. The model used to calculate the required resources to

process the hosted application workload λ , the response time according to the configu-

ration of servers.

An elastic cloud application can be represented using the queuing network, consid-

ered each VM as a separate queue. Urgaonkar et al. [92] devised a technique using

G/G/1 queues. Histogram used to predict the peak workload. The number of servers

calculated as per the queuing model and peak workload in specific time step. The reac-

tive approach further used to correct the value. The deficiency of the technique is the

under-utilization of resources.

Multi-tier applications can be deployed in a cloud environment and assigned one

or more queues for a specific tier. Zhang et al. [93] proposed a closed system with a

network of queues, which handles a limited number of users. Han et al. [94] deploy the

multi-tier application as an open system. G/G/n queues have been used and considered

one queue per each tier. Bacigalupo et al. [95] used the queuing model for the three-tier

web application. It computes the response time per each tier.

The models discussed are considered the analysis part of the MAPE-K loop. Some

techniques are used to implement the planning phase using optimization algorithm and

predictive controller [62] in order to maximize the revenue for the datacenters [96].

On-line monitoring captures the number of requests, which further input to the queu-

ing model to estimate the number of VMs required for the processing of application

workload [94, 92]. Zhang et al. [93] proposed a model using regression technique to

approximate estimate the number of CPU by calculating the quantity of a client requests

at each tier (e.g. Browsing, ordering or shopping).

Application of the queuing model is for cloud application and system modeling. It

45

defines the static architecture and required an update in parameters or structure of the

model. Simulation and the analytical tool can be used to solve the model. Any change

in the number of input request or a number of resources needs to update the model,

which is not cost-efficient. Most of the articles used CloudSim simulator [97], Vondra

and Sediv [98] developed a new simulation tool specifically for the auto-scaling. It

includes the trace file of widely used workloads.

Queuing model is a component in auto-scaler. The model works quite efficiently

with linear parameterized applications, and not fit for the applications with a non-linear

workload. The queuing model requires more efforts to work with multi-tier application

because of complex nature and non-linear relationships. Table 2.5 shows the taxonomy

of reviewed articles in this section.

Table 2.5: Taxonomy on queuing theory based reviewed literature

Ref. Technique R/P H/V Metric SLA
Pricing

Model
Monitor Experiment Approach

[96] QTH R H

Arrival

rate,

service

time

Response

time

on-

demand
Simulated

Custom simu-

lator (Monte-

Carlo)

Budget

Aware

[93]

QTH

+ Re-

gression

(Predict

CPU

load)

P -

CPU

load,

Number

and types

of trans-

actions

-
on-

demand

Custom

tool. 1

minute

Custom simu-

lator, based on

C++Sim. +

Data collected

from TPC-W

QoS

Based

[92]

QTH

+ His-

togram +

Thresh-

olds

R/P H
Peak

workload

Response

time

on-

demand

Custom

tool. 15

minutes

Custom

testbed. Xen +

2 applications

(RUBiS and

RUBBOS)

Resource

Aware

[95]

QTH +

Historical

perfor-

mance

model

P H
Arrival

rate

Response

time

on-

demand
-

Custom

testbed. Euca-

lyptus + IBM

Performance

Benchmark

Sample Trade

Prediction

/Re-

source

Aware

Continued on next page

46

Table 2.5 – Continued from previous page

Ref. Technique R/P H/V Metric SLA
Pricing

Model
Monitor Experiment Approach

[94]

QTH

(model) +

Reactive

scaling

R H

Arrival

rate,

service

time

Response

time,

cost

on-

demand

Custom

tool. 1

minute

Custom testbed

(called IC

Cloud) + TPC-

W benchmark

Cost-

Aware

[99]

QTH +

kalman

Filter

P H
Arrival

rate

Response

time

on-

demand

Custom

tool. 10

seconds

Custom

TestBed

User

Aware

[100] QTH P H
Arrival

rate

Response

time,

Bottle-

necks

on-

demand
-

Custom

testbed. Open

stack.

QoS

based

[98]

QTH

(Sim-

ulator

for auto-

scaling)

P H
Arrival

rate

VM uti-

lization,

Arrival

rate

on-

demand

Custom

tool. 15

minutes

Custom Simu-

lator for gen-

eral purpose.

-

2.10.6 Threshold-based Rules

Threshold based techniques are simple to implement and very popular. The threshold

values required a deep understanding of all the parameters of the corresponding environ-

ment and workload. Amazon EC2 [44] and RightScale [45] are using threshold-based

technique. The threshold based rule technique is purely related to planning. The num-

ber of resources allocated to the application in the form of VM according to a set of

rules. There are two types of scaling decision: Scaling up/down vertically increase or

decrease the capacity of the working node. Scaling in/out refers to horizontally increase

or decrease the VM capacity. The scaling up/out and scaling down/in is working on the

principle of Algorithm 1.

There are two parts of each formula: condition and action. x1 and x2 are perfor-

mance metrics (e.g. Number of requests, response time, budget, CPU load etc.), tU

and tL are the upper and lower threshold values of the performance metrics. Threshold

conditions checked with upper duration dU and lower duration dL, which considered

in the seconds. If certain conditions are met, the action will be taken. The manager

47

Algorithm 1 The algorithm of threshold rule based auto-scaling
1: if x1 > tU1 and/or x2 > tU2 and/or ... then . tUi is upper threshold

2: if Clock % dU == 0 then . dU is upper duration

3: n = n+ r . Scale-out or Scale-up

4: else if Clock % iU == 0 then . iU is upper cool down period

5: do−nothing

6: end if

7: end if

8: if x1 < tL1 and/or x2 < tL2 and/or ... then . tLi is upper threshold

9: if Clock % dL == 0 then . dL is lower duration

10: n = n− r . Scale-in or Scale-down

11: else if Clock % iL == 0 then . iL is lower cool down period

12: do−nothing

13: end if

14: end if

should decide resources r acquired or released during the action performed from the

total resources n. During horizontal scaling r is the number of VMs and during vertical

scaling r is CPU or RAM. The lower and upper cool down period is set as iL and iU ,

during this time auto-scaler do nothing.

It is easy to deploy a threshold-based technique in a cloud environment. Defin-

ing rules are a difficult task, it requires input from the client on different QoS metrics.

QoS parameters have performance trade-off. Application manager has to give threshold

value of performance metrics parameters. The experiment carried out by Koperek and

Funika [101], they defined the performance benefits of the application-oriented metrics

than system specific metrics. The threshold needs to be carefully decided otherwise it

can cause the oscillation problem [89]. To handle the oscillation issue, certain tech-

niques such as cool down, calm and inertia periods are set, so no scaling decision can

take place in these time slots.

Most of the techniques are using one or maximum two performance metrics. Com-

monly used performance metrics are input request rate, CPU load time and average

response time of application. Some authors are taking application response time as a

performance metric [89, 102] while few focused on the system level metrics such as

48

storage, network, and CPU [103]. Author Mahallat [104] considered the scaling over-

head and SLA violation. Due to the introduction of a new type of resources author Qu

et al. [53] evaluate the availability metrics along with response time.

The number of threshold values also varies with different techniques. Most of the

providers are using two threshold values: Upper and the lower threshold value. Hasan

et al. [103] used four threshold values. In this technique along with upper threshold

(T hrU), the author defines T hrbU , which is marginally lower than T hrU and T hroL

is pretty above than the lower threshold (T hrL). The significance of setting such a

threshold is to determine the trends. Scaling action could be taken as per the trends.

Metrics are fetched from the monitoring tool. Collecting the run-time data from the

monitor and taking action as per the rules is a reactive approach.

RightScale [45] voting system is combined with the reactive approach. If most

of VMs agree to scale up/out or down/in decision, then scaling action will be per-

formed. Threshold needs to set by the application manager. Several author are using

the RightScale technique (e.g. Simmons et al. [105], Kupferman et al. [30], Ghanbari

et al. [25], Chieu et al. [106]). Author Chieu et al. [106] working on the scalability of

web applications by defining the set of rules for the active sessions, further extend his

work [107] using RightScale. The rules are decided as per the upper and lower thresh-

old value of the sessions. If the sessions are going upper or lower scaling decision will

be taken.

RightScale works on the voting system, but it is highly dependent on the thresh-

old values set by the application-manager and the nature of the application workload.

Kupferman et al. [30] compared the RightScale with another technique and concluded

the disadvantages of RightScale. Simmons et al. [105] attempted to overcome this is-

sue using the strategy tree. The regression-based model used for three types of scaling

policies. Strategy tree follows the parent as per the workload trend.

The threshold rule-based technique is popular due to its simplicity and the client can

easily understand. Reactive nature of TR technique is a major challenge. Another issue

in the TR technique is to set appropriate performance metrics. In a cloud environment

approximate startup time of the VM is 5 to 10 minutes, so to ready the virtual machine

in a reactive manner put a delay in service, which leads to performance degradation.

To resolve this issue to some extent, Lorido-Botrcn et al. [108] suggested the dynamic

49

threshold values. The initial values of the threshold are static and later dynamic thresh-

old values set as per the SLAs violation.

Multi-cloud scaling is another issue in the auto-scaling. Auto-scaling for three-tier

application has been developed by Grozev and Buyya [109]. The rule-based technique

has been devised to take scaling decision for multiple data center.

Along with the on-demand resources, spot-instances are used for web application

provisioning. The spot instances are 90% cheaper than on-demand resources. So ef-

fective scaling strategy can provide significant benefit to the clients as well as a service

provider to reduce the SLA violation. Qu et al. [53] provided a reliable solution to

use spot instances for web application provisioning. Spot-instances have a potential for

fault tolerance and tackling of web application’s flash crowds or flash events workload.

Smart kill [110] is an important idea used to reduce the cost. Most of the service

provider charge hourly basis. It can further improve the system performance to avoid

VM starting and shutdown time. It can reduce the SLA violation.

It is easy to implement the rule-based auto-scaling of the particular application. If

the workload and nature of application can forecast easily than rule-based technique can

be used. Application with an unpredictable pattern should choose other suitable scaling

strategies. Table 2.6 shows the taxonomy of reviewed articles in this section.

Table 2.6: Taxonomy on threshold rules based reviewed literature

Ref. Technique R/P H/V Metric SLA
Pricing

Model
Monitor Experiment Approach

[30]

RightScale

and TSA

(LR +

AR(1))

Mix H

Request

rate, CPU

load

-
on-

demand
Simulated

Custom simu-

lator with real

experiment

-

[105]

RightScale

and Strat-

egy tree

R H

CPU idle

time,

no. of

sessions

-
on-

demand

Custom

tool(4

minutes)

Real provider.

Amazon EC2

+ RightScale +

web app.

Policy

Based

[101] TR R H

Average

waiting

time in

queue

CPU

load

on-

demand

Custom

tool

Public cloud:

FutureGrid,

Eucalyptus

India cluster

QoS

based

Continued on next page

50

Table 2.6 – Continued from previous page

Ref. Technique R/P H/V Metric SLA
Pricing

Model
Monitor Experiment Approach

[107]

RightScale

+ MA to

perfor-

mance

metric

R H

Number

of active

sessions

-
on-

demand

Custom

tool

Custom

testbed. Xen

+ custom col-

laborative web

application

Perfor

-mance

Based

[25] RightScale R H CPU load -
on-

demand

Amazon

Cloud-

Watch

Real provider.

Amazon EC2

+ RightScale

(PaaS) + web

application

Qos /

Perform

-ance

based

[111] TR R V

CPU

load,

memory,

band-

width,

storage

-
on-

demand
Simulated.

Custom simu-

lator, plus Java

rule engine

Drools

SLA

based

[102] TR R Both

CPU,

memory,

I/O

Response

time

on-

demand

Custom

tool. 1

minutes

Custom testbed

(called IC

Cloud) + TPC

Cost

Aware

[103] TR R Both

CPU

load,

response

time,

network

link, jitter

and delay

-
on-

demand
- -

Storage/

Network

aware

[110]
TR +

QTH
P H

Request

rate

Response

time

on-

demand

Amazon

Cloud-

Watch.

1 − 5

minutes

Real provider.

Amazon EC2 +

Httperf + Me-

diaWiki

QoS

Aware

[108] TR R V CPU load
Response

time

on-

demand

Simulated.

1 minute

Custom simu-

lator

Cost and

SLA

Aware

Continued on next page

51

Table 2.6 – Continued from previous page

Ref. Technique R/P H/V Metric SLA
Pricing

Model
Monitor Experiment Approach

[109] TR R H CPU load
Response

time

on-

demand

Custom

tool and

manual.

Amazon EC2

(4 data centers)

Cost

aware

[104]

TR +

Learning

Automata

R H
Scaling

Overhead

SLA

viola-

tion

on-

demand

Simulated.

5 min-

utes

CloudSim
SLA

aware

2.10.7 Time Series Analysis

Time series analysis is a very popular model and has applications in many areas includ-

ing economics, bioinformatics, finance, engineering, etc., to predict the measurement

for future time steps. An example, the number of requests that reach the server for an

application at one-minute intervals. The time series is used in the analysis phase to

forecast future workload.

Performance metrics (input workload, CPU load) sampled at fixed time intervals

(e.g. 5 minutes). The predicted series X gained from the sequence of observation w.

X = xt ,xt−1,xt−2, ...,xt−w+1 (2.5)

Time series forecasting applied in auto-scaling to estimate the future workload or

resources. Predefined rules are designed in planning phase [112], and optimize the

resource allocation [68].

As discussed earlier, the main objective of time series analysis is to predict the fu-

ture workload, on q observation from historical workload known as a history window or

input workload (where q≤ w). Time series analysis classified in two categories: direct

prediction and identification of a pattern in time series. The first category, direct predic-

tion contains auto-regression, moving average, ARMA, ARIMA, exponential smooth-

ing, and machine learning approaches:

• Moving Average (MA): A widely used model to smooth a time series to filter

noise from random fluctuation and to make predictions. General formula of MA

is as follows:

x̂t+r = a1xt +a2xt−1 + ...+aqxt−q+1 (2.6)

52

x̂t+r is a forecast value from last q observations with weighted average. Pre-

diction interval denotes by r, and typically sets to 1. Equal or different weight

factors are assigned to the values denoted by a1,a2,a3, ...,aq. There are differ-

ent types of MA’s are Simple Moving Average (SMA) and the Weighted Moving

Average (WMA). Moving average performs in various forms, but the objective

of MA is the same. In simple moving average’s general formula is considering

the arithmetic mean of previous q values. It considers the same weight of all

the observations. WMA considers the different weight for each observation. The

highest weight assigned to new observation, while less weight is given to previous

observations.

• Exponential Smoothing (ES): In contrast to the moving average, the weighted

average of previous observation is also calculated, but the ES considers all the

observation of time series (w values) from past history. The new parameter α ,

the smoothing factor has very less influence on the predicted value, because ex-

ponentially decreasing weight assigned to the new observations. There are many

versions of ES such as simple ES and Brown’s double ES [113]. The smoothed

value st is calculated from the present observation and past smoothed value based

on recursive formula: st = αxt +(1−α)st−1. Time series with fewer trends can

be forecast using simple ES. Brown’s double ES is suitable for linear trend time

series. Two smoothing series are required to calculate as:

s1
t = αxt +(1−α)s1

t−1

s2
t = αs1

t +(1−α)s2
t−1

(2.7)

s2
t is calculated from simple ES to s1

t . The trend dt and level ct is obtained from

s1
t and s2

t smoothed values. The forecast value x̂t+r is obtained from following

formula:

x̂t+r = ct + rdt

ct = 2s1
t − s1

t

dt =
α

1−α
s1
t − s2

t

(2.8)

• Auto-regression AR(p): The future value is forecast using the linear weighted

53

sum of previous observation p in the time series:

xt+1 = b1xt +b2xt−1 + ...+bpxt−p+1 + εt (2.9)

p represent the number of observations in the AR equation, which could be dif-

ferent from history window w length. White noise εt is added in the formula. AR

coefficients are calculated using different methods such as maximum likelihood

or least squares. The widely used technique in the literature is Yule-Walker equa-

tions and auto-correlation coefficient. The formula of auto-correlations as follows

for xt to xt−k, where k = 1,2,3...:

rk =
covariance(xt ,xt−k)

var(xt)
=

E[(xt−µ)(xt−k−µ)]

var(xt)
(2.10)

• Auto-Regressive Moving Average, ARMA(p,q): This model is the hybridization

of both AR of order p and MA of order q. ARMA model is described as:

xt = b1xt−1 + ...+bpxt−p + εt +a1εt−1 + ...+aqεt−q (2.11)

ARMA model can be used either purely as AR or MA model using ARMA(p,0)

and ARMA(0,q) respectively. ARMA is best suitable for stationary time series.

The extension of the ARMA model is ARIMA (Auto-Regressive Integrated Mov-

ing Average) model is suitable for non-stationary time series. If ε (white noise)

shows no pattern, then ARIMA(p,d,q) used where d represents the degree of

difference.

• Machine Learning Techniques: Analysis of time series was carried out by many

authors using machine learning-based techniques.

Regression-based techniques are based on statistical methods to form a polyno-

mial function, that find the nearest points from the history window w. Linear

regression is ordered 1 polynomial expression. The distance of points should be

as less as possible. Multiple Linear Regression is used when there is more than

one variable in the expression.

Neural Network is a group of interconnected artificial neurons put on multiple

layers. Multiple inputs are put in the hidden layer, which further given an output.

54

In time series one output against one input from the history window. Random

weights are assigned to the input vector during the training phase. The weights

are adapted to the optimized output has not achieved.

• Pattern Recognition: Time series data is a combination of seasonal and non-

seasonal data. The time series has patterned with a specific time period (e.g.

hours, day, month, year, or season) on the basis of short term and long term

workload. It finds the matching pattern in the history that relates to the current

pattern. It is very similar to the string matching technique [114].

• Signal Processing Techniques: This technique is based on harmonic analysis to

decompose a time series signal into different frequencies. Fast Fourier Transfor-

mation and spectral density estimation filter the noise and estimating the signal

value.

• Auto-correlation: In the linear regression errors are independent, the auto correla-

tion function is used to deal with the dependent error pattern. The input workload

from the history window is shifted recursively, and further compared with the

original time series.

The histogram is used to represent the time series. It splits the time series values

into equal size bins, and each bin represents the frequency. In literature, it is used to

represent the forecast values, resource distribution, and usage pattern.

Review of Articles

In the literature, time series analysis is mostly used prediction model for multi-tier

applications. A simple moving average model gives poor results [115], so the MA

used to remove the time series noise [59, 60]. Huang et al. [116] devised a resource

prediction model using double exponential smoothing, and simple mean and Weighted

Moving Average (WMA) applied for comparison. ES significantly gives better results

because of history records w. Mi et al. [117] applied Brown’s double ES to predict the

workload and achieve a good result for HTTP workload with a small error.

The auto-regression technique has also applied for workload and resource prediction

[118, 119, 115, 30, 68]. Roy et al. [68] used the AR model for workload forecasting

55

by taking the previous three observations. Further response time estimated from the

predicted values. An optimization controller applied to find resource allocation, con-

sidering SLA violation cost, reconfiguration, and leasing resources. Kupferman et al.

[30] used AR(order 1) to forecast the requests per second, and concluded that its perfor-

mance highly lies on many manager-defined parameters (e.g. Size of history window,

size of adaption window, monitoring-interval length). The forecasting is determined for

short-term and long-term trends, it is highly depended on the size of the history window.

Adaptation window determines the future model extension.

ARMA model is a simple and efficient model to predict the future workload (num-

ber of requests). Fang et al. [120] predict VMs CPU usage. ARIMA model is applied

in various articles [121, 122, 123]. ARIMA required historical workload. The perfor-

mance of the model highly depends upon the history window. ARIMA approach is ideal

for dynamic workload such as web applications. Sedaghat et al. [121] applied the hori-

zontal and vertical scaling to increase the benefit in terms of cost. Mao and Humphrey

[124] used the classification given as: increasing, stable, seasonal and on/off. Repack-

ing (or reconfiguration) of VMs to provide certain capacity, and repacking of the ap-

plication based on workload has been done. The approach then finds the optimal pack

of VMs and applications. The proposed approach is able to save 7% to 60% cost for

resource utilization. The container-based approach can further be optimized by consid-

ering more QoS parameters. Calheiros et al. [122] used ARIMA model for workload

prediction, and evaluate the impact on different QoS parameters. The web application

workload is dynamic and contains seasonal data. The model gives 91% accuracy for

non-seasonal data, but not fit for the highly non-seasonal workload. This work can be

further extend using an adaptive approach for classification of workload, and design the

heuristic for ARIMA fit function for different classes. As discussed earlier, one model

doesn’t fit for all types of workload, Messias et al. [123] present GA based approach for

time series prediction. Traces of real workload have been used to evaluate the prediction

model. A new metric has been introduced in the article named as an Elasticity Index

(EI), which describe the solution optimization. The range of EI varies from (0 to 1), a

value near to 1 means the solution is good. The model gives less error as compared to

other models. This approach is taking more time to predict the incoming request even

prediction is done on an hourly basis. Further, this model can be extended by mapping a

56

few prediction techniques with a specific application and workload pattern. GA model

can also design, particularly for cost, energy, sharing of resources, parameters.

The accuracy of neural network [125, 126] and multiple regression equation [65,

126, 30] model are highly dependent upon on the size of input the history window.

Islam et al. [125] used more than one value from the history and got a better result.

Kupferman et al. [30] devised the necessity of balanced size of input history window.

Regression of various window sizes applied to find the prediction values. The prediction

interval of r is also an important factor. Islam et al. [125] investigated the size of the

interval window and found appropriate scaling interval is of 12 minutes, because of VM

startup time is between 5-15 minutes. Prodan and Nae [126] applied the neural network

to forecast the game load for 2 minutes. In contrast, the neural network is better than

MA and ES in terms of accuracy.

Horizontal and vertical scaling is also an important factor considers by many authors

in literature. It can be either taken separately or in a hybrid manner also. Dutta et al.

[127] investigated that horizontal scaling has higher configuration cost as compare to

vertical scaling, but relatively have larger throughput. The author prefers the horizontal

scaling. Regression model applied to estimate the future workload. Fang et al. [120]

focused on horizontal scaling (CPU and memory) to handle the flash crowd, whereas

vertical scaling applied for regular changes.

Proactive time series forecasting can be combined with a reactive approach. Iqbal

et al. [5] devised a hybrid model for auto-scaling, the author uses the reactive technique

for scale-up and a regression model for scale-down. Polynomial regression used to

calculate the number of application-tier and database-tier VM instances.

A pattern identification technique also applied on time series analysis by some au-

thors [128, 115, 129]. Gong et al. [115] proposed an FFT based technique to identify

the matching patterns in resource utilization (CPU, RAM, Network and I/O). Auto-

correlation, histogram, and auto-regression are used for the comparison. Caron et al.

[128] designed the algorithm with more number of parameters, which gives poor per-

formance.

Resource utilization of application is also estimated with the simple histogram in

some articles by using mean distribution [118], and the highest frequency in the bin

[115]. The dynamic load balancer is introduced using Holt’s approach by using current

57

and historical data [130]. This work can be used with web workload, which may give

prediction efficiency and helps to resolve the load balancing issues.

Time series analysis techniques are able to forecast the future workload of web

applications. Further, this information can be used to predict resource requirements.

This technique is very appealing because of input workload is known to the auto-scaler

in advance, and have enough time to prepare the VMs beforehand. The drawback of

the technique is the accuracy, which depends upon the input workload, history window

selection, metrics, prediction interval, and target application. There is no best solution

for all types of time series forecasting. The future scope of time series forecasting for

adaptive or GA based technique for time series forecasting for a specific application by

considering the QoS parameters. Table 2.7 shows the taxonomy of reviewed articles in

this section.

Table 2.7: Taxonomy on time series analysis based reviewed literature

Ref. Technique R/P H/V Metric SLA
Pricing

Model
Monitor Experiment Approach

[118]

TSA:

AR(1)

and His-

togram +

QTH

P H

Request

rate and

service

demand

Response

time

on-

demand

Simulated.

1, 5, 10

and 20

minutes

Custom simu-

lator + algo-

rithms in Mat-

lab

Resource

Aware

[119] TSA: AR P H

Login

rate,

number

of active

connec-

tions,

CPU load

Energy

con-

sump-

tion,

Service

not

avail-

able

on-

demand
Simulated Simulator.

Energy

Aware

[126]

TSA: ML

Neural

Network

P H

Number

of entities

(players)

Prediction

accu-

racy

on-

demand

2 min-

utes

Simulator of

a MMORPG

game

QoS

based

[117]

TSA:

Brown’s

DES.

P -

No. of re-

quests per

VM

-
on-

demand

10 min-

utes

Custom

testbed. TPC-

W

Perform-

ance

based

Continued on next page

58

Table 2.7 – Continued from previous page

Ref. Technique R/P H/V Metric SLA
Pricing

Model
Monitor Experiment Approach

[115]

TSA:

FFT and

Discrete

Markov

Chains

P V CPU load
Response

time

on-

demand

Libxenstat

library. 1

minute

Custom

testbed. Xen

+ RUBiS +

part of Google

Cluster Data

trace for CPU

usage.

SLO

based

[112]
TSA: AR

+ TR
P Both

Number

of re-

quests

-
on-

demand
Zabbix

Xen + Euca-

lyptus + Ph-

pCollab appli-

cation. Cus-

tom testbed +

Amazon EC2.

Resource

Aware

[128]

TSA:

Pattern

matching

P H

Total

number

of CPUs

Number

of ser-

viced

re-

quests,

cost

on-

demand

100 sec-

onds

Analytical

models

Resource

Aware

[129]

TSA:

FFT and

Discrete-

time

Markov

Chain

Mix V

CPU

load,

memory

usage

Response

time,

job

progress

on-

demand

Libxenstat

library. 1

second

-
SLO

Aware

[68] TSA: AR P H

Number

of users

in the

system

Response

time,

VM

cost,

appli-

cation

recon-

figu-

ration

cost

on-

demand
-

No experimen-

tation on sys-

tems

QOS

Aware

Continued on next page

59

Table 2.7 – Continued from previous page

Ref. Technique R/P H/V Metric SLA
Pricing

Model
Monitor Experiment Approach

[5]

TR +

TSA,

poly-

nomial

regres-

sion

Mix H

CPU

load,

number

of re-

quests,

number

of VMs

Response

time

on-

demand
1 minute -

SLA

based

[120]
TSA:

ARMA
P Both

Number

of re-

quests,

CPU load

Prediction

accu-

racy

on-

demand
-

Custom

testbed. Xen

and KVM

SLA

based

[116]

TSA:

Brown’s

double

ES. Com-

pared

with

WMA

P

CPU

load,

memory

usage

Prediction

accu-

racy

on-

demand
Simulated

Custom

testbed. TPC-

W

Cost-

Aware

[125]

TSA: ML

Neural

Network

and LR

+ Sliding

window

P H

CPU load

(aggre-

gated

value for

all VMs)

Prediction

accu-

racy

on-

demand

Amazon

Cloud-

Watch. 1

minute

Real provider.

Amazon EC2

and TPC-W

application.

Experiments

in R-Project.

Resource

Aware

[127]

TSA:

Poly-

nomial

regres-

sion

P Both

Number

of re-

quests

Response

time,

cost for

VM,

appli-

cation

license

and re-

configu-

ration

on-

demand

Custom

tool. 1

minute

Custom

testbed. KVM

+ Olio

Resource

/ Cost

Aware

Continued on next page

60

Table 2.7 – Continued from previous page

Ref. Technique R/P H/V Metric SLA
Pricing

Model
Monitor Experiment Approach

[121]

TSA:

ARIMA

+

Repack-

ing

Mix Both

Number

of re-

quest,

cost

Response

time

on-

demand

4 and 20

minutes.

Custom simu-

lator

Cost-

Aware

[51]
TSA +

Profiler
Mix H

Number

of re-

quest,

CPU

usage and

through-

put

Response

time

on-

demand

(Het-

eroge-

neous)

5 min-

utes
-

QoS

Aware

[122]
TSA:

ARIMA
P H

Request

rate,

RMSE

Response

time

on-

demand
simulated

CloudSim

toolkit

QoS

aware

[123]

TSA:

ARIMA

+ GA

P H

Request

rate,

Boot-

strap,

Mean

Elasticity

Index

(MEI),

RMSE,

MSE

Response

time,

Cost

on-

demand
simulated

Custom

testbed in

cloud

Resource

Aware

[130]

TSA:

Holt

model +

Reverse

trend

(RT) +

GA +

Fuzzy

logic

P H

Average

and

standard

error and

Break-

down

Execution

time,

Number

of mi-

grations

on-

demand

controlled

environ-

ment

Custom

testbed using

two clusters

with Globus

toolkit

Load

Balance

aware

Continued on next page

61

Table 2.7 – Continued from previous page

Ref. Technique R/P H/V Metric SLA
Pricing

Model
Monitor Experiment Approach

[131]

TSA:

Double

Expo-

nential

Smooth-

ing

(DES)

P H

Number

of re-

quests

Resources

and

SLA

on-

demand
Custom CloudSim

Cost

aware

[132]

TSA:

Weight

moving

average

(WMA)

Mix H

Number

of re-

quests +

CPU uti-

lization

cost
on-

demand
Custom CloudSim

cost

aware

2.11 Challenges in Multi-tier Applications Resource Management

Challenges come with opportunities. Effective resource management for multi-tier ap-

plication is a challenge in the cloud environment.

• The different classes of resources have a different effect on the QoS. CPU share

has a larger effect on the QoS than different resources for processing intensive

applications of computing. In other cases, the larger impact can be on memory

and disk. In any case, the relation between the QoS and resources is exceptionally

non-linear and challenge to determine execution[133, 134].

• The resource provisioning in multi-tier applications is a more complex task as

compared to the single-tier application because of the way that the resource re-

quest at every level is distinctive. The interaction between different tiers may

lead to an impact on QoS. So provisioning becomes a difficult task as it is hard to

decide when to provision and in what amount.

• The coarse-grained and wrong methodologies might cause low resource utiliza-

tion or performance degradation and leads to a penalty. Many existing technique

use VM migration but it is not fit for all types of application [118, 135, 136].

62

• The performance guarantee is not provided by cloud providers in regard to appli-

cation level performance. Additionally, the bandwidth of I/O including network

and disk is unpredictable and dynamic[137, 138]. Different economic or pricing

methods can have an enormous effect on multi-tier resource management. The

relationship between economic and distributed systems in cloud computing is an-

alyzed [137, 138]. SVM is used for the prediction of the interference score for

various I/O workloads all together to offer better reasonableness for client prop-

erties of recorded estimations.

Many existing methods can enhance the efficiency of resource management. But

still, the application performance is not controllable. For example, Xiong et al.

[135] studied the relationship between throughput and response time by the num-

ber of simulations. However, results depict that mean response time is different

for the same set of resources. Therefore, there are many hidden metrics that affect

the performance of the system.

2.12 Summary

Auto-scaling technique reserves the resources as per the incoming workloads. The

efficiency of the algorithm highly depends upon the prediction model. QoS parameters

are considered while designing the auto-scaler, which leads to SLA fulfillment and

avoid the penalty cost. Existing auto-scaler are still facing many research challenges.

Research articles have identified the issues and define with different characteristics.

In this study, a state-of-the-art survey has been carried out on auto-scaling and re-

source provisioning techniques and identified the key challenges in the resource pro-

visioning of the multi-tier web application. Auto-scaling techniques have been clas-

sified, and taxonomy describes the parametric similarities and differences in various

auto-scaling techniques. As per the review of articles, suggest some research directions

for the research community.

63

CHAPTER 3

A TECHNOCRAT ARIMA AND SVR

MODEL FOR WORKLOAD

PREDICTION

3.1 Introduction

Cloud computing becomes a potential platform for the services of the next generation.

The cloud-based organizations like Google, Amazon, Microsoft, and IBM are provid-

ing services like Software-as-a-Service (SaaS), Infrastructure-as-a-service (IaaS), and

Platform-as-a-Service (PaaS). As users are moving business applications on the cloud

environment, it increases the competition among the Cloud Service Providers (CSP).

The cloud resource provisioning (e.g. bandwidth, memory, type of VM, etc.) affects

the Quality of Service (QoS) from different aspects such as reliability, response delay,

etc. [139]. Thus, CSPs must give the guaranteed QoS to the clients to sustain in the

cloud landscape.

A firm set of machines acquired in the static allocation of resources. The web ap-

plication has a different incoming workload pattern in a cloud environment depending

on the minute, hour, day, week, month and year. The static allocation mechanism faces

resource oscillation problems due to different access patterns.

64

Cloud computing has the elasticity characteristic, which provides the dynamic re-

source supply on-demand. The resources can be acquired or released according to the

requirement as per the incoming requests to the application. The CSPs like Amazon

Web Services (AWS) and Google App Engine have the scalability characteristic that

could enhance resource usage and improve the QoS of the end-users. The scalability

feature increases or decreases the capacity of computing and storage.

The deployment of the requested number of resources is a challenge in scalability to

provide QoS to the end-users. In the literature, the auto-scaling addressed two types of

techniques. The first approach is reactive, which takes the scaling decision based on the

threshold values for resource utilization in cloud infrastructure. The second approach

is a proactive technique which predicts the future workload to scales resources prior to

the incoming workload. The reactive approach for auto-scaling was deployed by most

cloud providers. However, due to the high fluctuations in the web application workload,

this system faces high resource oscillation issue. In the case of the flash event or flash

crowd, the reactive approach raises the problem of Slashdot effect [140]. Therefore, a

need arises for a methodology capable of capturing the various pattern of the workload

with non-seasonal and seasonal traffic.

3.2 Related Work

In literature, there are two methods to solve the auto-scaling in the cloud landscape.

First, the resource utilization in the data centers is measured. Afterward, the thresh-

old rules are designed for scale-out or scale-in of resources configuration by the client

or human expert. Another approach is the autonomic technique with workload fore-

caster. The performance modeler estimated the required resources for the future incom-

ing workload. The cost and Service Level Agreement (SLA) trade-off required serious

consideration while designing the provisioning technique.

The characteristic of web application traffic is analyzed in recent research articles.

In this thesis, the researcher focused on proactive approaches to predicting web traffic

in the form of time series through Machine Learning (ML) and statistical models. The

workload classification applied to select the appropriate model according to the time se-

ries pattern present in the sliding window. This section describes a brief of the workload

characterization and prediction approaches.

65

3.2.1 Workload Characteristics

The classification and characterization of the incoming requests pattern is a valuable

tool for understanding the workload of cloud applications. In this field, there are a lot

of research articles.

Panneerselvam et al. [141] classified the workload as once-in-a-lifetime, constantly

changing, static, periodic and unpredictable into 5 different categories. Workload char-

acteristics investigated from workload types such as compute-intensive or data-intensive

jobs. The performance of Bayesian classifier on CPU-intensive jobs is satisfactory, and

memory-intensive jobs are better predicted by the Markov model. The average predic-

tion error of the models is 36% to 58%, which is quite high.

Zhang et al. [142] developed a web-based application workload factoring technique.

It divided the incoming workload as flash-workload and base-workload. It classified the

applications according to content and volume prominence. A threshold-based approach

applied to factor the workload into the base and crowd zone of the flash workload. The

model deficiency is that it can fit only in the hybrid cloud infrastructure.

Eldin et al. [143] used the statistics, time series analysis and polygon splines on the

Wikipedia traces to analyze the seasonality and trend. The strong seasonality is present

in the workload which is highly predictable. There is good efficiency in the short-term

prediction, but experienced lower accuracy for the workload contains the spikes.

Patel et al. [144] developed a clustering-based technique to recognize resources

usage within clusters for various patterns in the workload. The application trace log

selected randomly and identified the workload pattern. The limitation of this model

is that at the initial stage, it requires historical observations that make it difficult to

estimate the resource at the beginning stage. The global optimization in the data center

can improve resource management in the cloud environment.

Wang et al. [145] researched on the influence of workload characterization on slow

time-scale non-stationarity and rapid time-scale stochastic. This model helps to analyze

the workload traces to choose the dynamic resizing. The crucial factors for dynamic

resizing such as reliability, storage, and energy are not considered in this article.

The synthetic load generator (BURSE) for cloud computing developed by Yin et

al. [146]. The workload with burstiness and self-similarity can be produced with the

BURSE. Perhaps, the actual workloads have highly relied on the application and change

66

with time on a regular basis. In this method, the dynamic characteristics of the workload

have not considered.

Calzarossa et al. [147] analyzed the conventional web workload patterns for services

such as mobile applications, video services, online social networking in cloud infras-

tructure. The author analyzed the characteristics of incoming requests and mechanism

used in a cloud environment to characterize the workload.

3.2.2 Workload Prediction for Cloud Applications

The auto-scaling methods are grouped into two categories according to the elasticity

techniques. The first category is reactive, where the scaling rules are set by the human

expert or the customer. The second is proactive, it predicts the incoming workload from

the historical component.

In literature, the vertical and horizontal scaling techniques are proposed using the re-

active technique. Bonvin et al. [148] applied efforts to raise cloud data center profit and

performance using a reactive approach. Yang et al. [27] developed a reactive approach

to setup the data center resources based on the workload of the application hosted in

the cluster. The users defined the threshold rules to make the scaling decisions. Zhang

et al. [149] developed a reactive approach to classify the hybrid cloud workload into

the trespassing workload and base workload. The prediction model ARIMA applied for

scaling to the public cloud from local infrastructure.

The constraints of the reactive technique are that it responds to scaling only beyond

the threshold values of throughput or resource utilization. It took more time to recon-

figuration in case of the flash workload. The situation, when the additional resources

are not available, the user will experience poor QoS. The preparation of the required re-

source before incoming actual workload is called the proactive auto-scaling technique.

The prediction techniques help to develop the new proactive auto-scaling mechanisms.

Jiang et al. [150] developed a solution through prediction models. The problem of

capacity planning and provisioning of resources could be fixed with the proposed ap-

proach. The resources must be prepared for the incoming workload in advance. Clas-

sical prediction methods of the time series were applied to forecast the workload of the

web applications. Zhu et al. [61] developed a method to scale the VM type, VM cores,

VM speed, and VM memory vertically using control theory. The ARMAX prediction

67

method used to predict an application CPU cycle and memory requirement.

The Exponential Smoothing (ES) and second-order ARMA prediction models used

to analyze system behavior and time series prediction [68]. Roy et al. formed linear

equation using the variables used for the application such as cost, QoS and resources.

Messias et al. [123] applied the prediction method Naı́ve, exponential smoothing, AR,

ARMA, ARIMA, etc. The Genetic Algorithm (GA) employed to select the prediction

model. This technique provides the adequate performance along with certain overheads

of GA. Calheiros et al. [122] used the ARIMA model for cloud applications workload

forecasting and estimated the impact of the designed technique on the QoS parameter.

The machine learning approaches also applied in the literature to forecast the work-

load of the various applications. Sapankevych et al. [151] presented a survey on appli-

cations applied Support Vector Machine (SVM) for time series prediction. It found that

SVM can predict the time series accurately with nonlinear and non-stationary data. The

resource prediction applied for the multi-tier web application environment. Bankole

et al. [152] applied Neural Network (NN), Linear Regression (LR) and SVM. It con-

cluded that SVM is more accurate to predict than NN and LR. Islam et al. [125] applied

LR and NN models to develop a resource assessment and provisioning model. Liu

et al. [87] developed a auto-scaling based on pattern discrimination. The integer as-

signment problem used as per workload patterns for selecting SVM and LR prediction

models. Performance prediction performed using [153] workload characteristics with

the resource provisioning machine learning approach. Markov and Bayesian techniques

were used to predict the workload for cloud-based applications.

In the present study, the researcher developed a short-term prediction model for web

applications in a cloud environment. The classification approach selected the prediction

models LR, ARIMA, and SVR based on workload pattern. The sliding window ap-

proach applied to consider the latest historical workload to maximize the accuracy and

speed of the devised model. The primary goal of the study is to enhance the Quality of

Experience (QoE) of the end users and reducing the resource oscillation.

3.3 System and Application Models

An elastic system of public clouds provides services to the end users with PaaS and SaaS

layers. The PaaS layer can be the third-party providers interacting with the IaaS layer.

68

The SaaS providers concerned with web requests. The incoming request is processed

on virtual machines of the IaaS layer. The primary purpose of this study is to make the

efficient use of virtual resources with elasticity feature while meeting the Service Level

Objectives (SLO).

The elastic system took the platform status from the monitoring phase and future in-

coming traffic status from workload forecaster. The forecasting module used historical

data to generate the forecast that is subsequently sent to the auto-scaler for the decision

to scale-in or scale-out. This resolution inputs resources management to act on/off the

VM from the resource pool for virtual resources.

In the proactive elastic cloud system, one of the key components is the workload

forecasting module. In this section, the researcher discussed the proposed model design

with details of its input and output.

The research focused on the resource provisioning of the web application in the

cloud. The web servers processed the HTTP requests from clients. The precise model

of prediction can improve the QoE of end-users. The SLA is defined as Ts for processing

user requests with an agreed rejection rate.

3.4 System Architecture

An elastic system is an important characteristic of cloud computing. It scaled the re-

sources as per the user-defined application demand. The VM start and setup time is

non-negotiable. Therefore, the client found the delay in QoS leads the penalty to the

service provider.

Furthermore, the reserved resources can handle the flash crowd. But, it has been

observed most of the time reserved resources remain underutilized. In addition, the

reserved resources cannot handle the requests without the proper estimation. Thus, the

situation leads to poor QoS to the end-user and application provider has to pay penalty.

In the present study, the researcher proposed the Technocrat ARIMA and SVR

Model (TASM) prediction model. The designed model can effectively capture the work-

load pattern and find a suitable prediction model for different workload patterns in the

sliding window. The proposed technocrat provisioning architecture is shown in Figure

3.1. The technocrat workload predictor implements the TASM prediction model in a

cloud environment.

69

Request Scheduling and

VM Management

Historical Workload

Information
Admission

Control

Technocrat

Workload Predictor

Performance Modeler Application

Provisioner

V

M V

M
V

M

V

M

V

M

R2
R3

R1

IaaS layer/

provider

Sa
aS

La
ye

r
P

aa
S

La
ye

r

Accepted

user

request

No. of VMs

Users

Request

Resource Provisioner

Figure 3.1: Technocrat cloud provisioning architecture

The main components of the cloud provisioning system is shown in Figure 3.1 are:

1. Technocrat Workload Predictor: The workload of the application predicted for

the incoming traffic. The number of forecast requests passed to the Performance

Modeler for the next time slot.

2. Performance modeler: The future workload estimate got from the Technocrat

Workload Predictor module and estimate the VMs for the Application Provi-

sioner module.

3. Application provisioner: The incoming requests input to the Admission Control

component. It accepts or rejects the incoming request as per the present state of

the system. The admitted user requests scheduled to the VMs having required

capacity for processing. It also takes information about the estimated number of

VMs from the Performance Modeler. If the number of the required VMs varies

from actual VMs capacity, then the autonomous/automatic action taken by this

module to scale up/out or scale down/in.

70

Workload Data

Workload

Classification

Time-Series

Analysis

Non-seasonal

Study

Seasonal Study

Forecasting Result

Figure 3.2: Generic forecasting methodology

A detailed application workload behavior is required to design an robust architec-

ture. The log files moved to the central repository for Historical Workload Information.

Further, these log files are used as a training set for the forecasting models to predict

the future workload.

3.4.1 Technocrat Workload Predictor

Once the architecture is understood and components are defined, the researcher further

discussed the workload predictor design. Figure 3.2 shows the general scheme of the

forecasting process.

1. Workload classification module takes historical information on the workload and

analyzes the pattern of workload. In addition, this module selects the appropriate

model of prediction based on the pattern of workload. The pattern of workload

classified according to change in velocity and intensity of incoming requests.

The high time-scale workload characterized by non-linearity, while the low time-

scale workload is linear in nature. Therefore, the peak-to-mean ratio varies in

different workload patterns. In the high time-scale, the rate of change is higher as

compared to the low time-scale workload.

71

 Wt W(t+1) ………. W(t+k-1) ……………… W(t+k+r-1)

Sliding window

of size k

Prediction

Interval r

Prediction

Value

Figure 3.3: Sliding window approach for workload forecasting

2. Workload predictor designed to predict time series data using the LR, ARIMA

and SVR models. A single forecasting model is unable to predict different types

of patterns in the workload. ARIMA is employed for the prediction of the fast-

scale workload and, SVR and LR models are deployed for the slow-scale work-

load patterns.

3.5 Research Methodology

In the present study, the researcher considered the proposed prediction model to be the

agent and the task to be the workload. The problem is mounted as a problem with

the assignment of the agent-task. The classification technique designed to choose the

suitable model of prediction for different workload patterns.

3.5.1 Workload Classification

The startup time of resources (VMs) generally varies from 5-10 minutes in the elastic

cloud system. Thus, the granularity of the time series prediction should be coarse-

grained and latency period must be greater than or equal to the supply speed of VMs.

The researcher contemplated the model as a discrete time series. The proposed

model time intervals split into frames. The t ∈ {1,,K} is real-time data frame in wt

sliding window. The sliding window captures the latest lags for the prediction model to

takes the input of x sequences of k size for the output of w. Figure 3.3 shows the sliding

window used in workload forecasting.

In this study, the researcher considered i types of incoming workload and, different

web applications types described as Wi(i = 1, ...,n). Suppose j kind of forecasting

models Pj(j = 1,2) suits for various types of web applications workload Wi, as per

72

the workload pattern of the web applications. Allocate Pj to Wi, the ti j represents the

prediction time, and the prediction model j Mean Absolute Percentage Error (MAPE)

εi j(i = 1, ...,n, j = 1,2,3) for incoming workload i generated at time frame t with the

prediction model.

εi j =
1
n

n

∑
s=1

∣∣∣∣ws− ŵs

ws

∣∣∣∣×100% (3.1)

The ws entitled the actual output, and ŵs represents the prediction output at time

interval s, n is the number of observations in dataset at time frame t.

The classification of web applications workload performed using rate-of-change of

incoming workload as; fast time scale and slow time scale. The rate of change of fast

time scale is relatively high with a comparison to the slow time scale in the time-series.

The average rate of change in workload is defined as:

ω =
n

∑
s=1

(ws+1−ws)/N (3.2)

The time series with a fast scale have a greater sum of l2−norm with a comparison

to ω . The fast scale data is allocated to the ARIMA prediction model. The slow-scale

workload will be assigned to the SVR prediction model. The ARIMA gave higher accu-

racy for fast scale series while SVR has better accuracy in slow scale. The LR prediction

model applied in two situations. First, the linear time series or bad results found during

evaluation in the other prediction models. The fast prediction speed observed in LR as

compare to other prediction approaches. The ARIMA lag values will be used in the LR

model if ARIMA gives a poor result for fast scale data.

The model uses l2−norm, an average rate-of-change and error residuals to general-

ize the classification problem. Usually, web application jobs are small to medium size

with an inconsistent workload pattern.

3.5.2 Workload Classification Model

A heuristic approach designed to classify the workload. The heuristics designed ac-

cording to the residual test, Average Rate of Change (ARC), linearity test and l2−norm.

According to SLA, the cumulative platform error is allowed. The E = (E1, ...,Ei, ...,En)

defined the platform error. The controlled decision vector vi j described the prediction

73

model from the sliding window for the newly added frame after each frame has been

executed. The research goal is to minimize the prediction error after selecting vi j.

min
n

∑
i=1

2

∑
j=1

ei jvi j 0 > εi j < Ei j (3.3)

The model of classification generalizes the problem with the average rate-of-change

and l2− norm of the workload, further linearity and residual help in model selection.

The daily, monthly or weekly pattern dominates the web applications workload.

The linearity of the original series analyzed to perform a linear series test. This

procedure is recommended as the non-linear model is usually over-fitted with linear

series or weak fitting achieved with flexibility.

In this model, researchers used teravirta.test from the tseries package in R. This

library contained the implementation of Teravirta [154], a non-linearity test.

In case, the time series found non-linear ARIMA applied to the time-series. If the

evaluation results are unsatisfactory, then use an LR method to improve the achieved

results. ARIMA results from the non-seasonal study can be used to devise the models

by incorporating the significant lags.

The lagged values derived from the ARIMA results. Afterward, build the models

using the significant (non-seasonal) lags extracted from the analysis to create an em-

bedding scheme of lags.

Finally, the researcher performed the evaluation criteria again to examine the quality

of the new models.

3.5.3 Forecasting Models

In this section, the researcher explained the prediction models used to developed the

technocrat forecasting model.

ARIMA model is a joint of ARMA with differencing. The model defined as ARIMA

(p, d, q); the p represents the lagged values under consideration of autoregressive sec-

tion, d is the differences and q denotes the lagged values. The implementation of

this model in R [155] is known as Hyndman-khandakar algorithm [156] is present in

f orecast package.

Support Vector Regression (SVR) model is data analysis for classification and re-

gression analysis. It is a supervised learning model [157]. The main purpose is to solve

74

quadratic optimization problem in high dimension to discover the separability hyper-

plane by space [158]. In experiments, parameter settings of SVR: c = 100,m = 3,g =

0.5, p = 0.001, t = 2,s = 3,epsilon = 0.1.

Linear Regression (LR) model considers the regression model E(Y |X), where Y is a

response variable and X1,,Xp denotes the input. It is a process of analyzing how the

output is affected by the input [159]. It is one of the simple prediction technique. The

linear model is among the fast prediction model, but it has the issue of non-linearity

prediction [160]. The researcher applied an LR method in the proposed prediction

model for linear historical series, or the non-linear model gives unsatisfactory results.

In R tool, a lm method used for the prediction using the LR method.

3.5.4 Time Series Analysis

The workload is available in HTTP log format from the web trace files. The researcher

generates the discrete time series from the HTTP weblogs.

Data analysis in time series forecasting is critical. Here, the researcher manually

examine the ACF and PACF data to configure the forecasting models. The plots of ACF

and PACF provides seasonality, trends, and stationarity information. Figure 3.4 shows

an analytical forecasting technique. The di f f function in the time series is applied, if

the time series is non-stationary. Time series preprocessing performed to remove the

time series seasonality. The classical approach applied to the time series to identify the

series trends, seasonality, and irregularity.

The analytical process is explained in the steps. Firstly, ACF and PACF plot pro-

duced to analyze the significant lags manually. In case, there is no significant lag present

in the series, the maximum 5 lag value considered for the non-seasonal pattern and sea-

sonal pattern took 144 lags for 10 minutes discrete model (1 day). The researcher

considered a maximum of 5 lag values for non-seasonal due to the possibility to depict

auto-correlation from the first 5 lags in most of the time series. The technique of time

series decomposition used to determine the seasonality, irregularity, and trend in the

series. As observed from the current position, the sliding window provides the last five

values. Seasonality is removed from the historical workload frame by referring to the

model of decomposition generated during data pre-processing.

A classification approach performed on the values of the sliding window to find

75

Historical

Workload

Produce the time
series from data

Plot time series

and differenced

versions ACF and
PACF graphs

Analyze the

seasonality,

irregularity and
trend in the series

Apply non-
seasonal study

Figure 3.4: Analytical process of forecasting model

the appropriate prediction model. The suggested prediction model further applied to

study the incoming workload pattern of the seasonal and non-seasonal workload. It has

decided that a seasonal study would be for 144 lags (1 day) because the website usage

pattern matches weekdays. The observation of the last 5 values from the sliding window

entered into the classification model suggesting the appropriate prediction model for the

present frame to predict the upcoming value in the time series. If seasonal patterns are

discovered in preprocessing, then additional classical multiplicative time series model

will be applied to the non-seasonal forecast result. Although, the models are flexible

to select the seasonal model, even then most of the models cannot find the seasonality.

To calculate the residuals, the evaluation criteria have been applied. In addition, the

sliding window provides recent history lag values. This process is continued for every

10 minutes, and gives the incoming workload value.

3.5.5 Non-seasonal Study

The investigator analyzed the series and designed the model using LR, ARIMA, and

SVR as shown in Figure 3.5. The selection of the appropriate prediction model with the

proposed classification model. The sliding window observations are classified as per the

76

pattern and further select a suitable model of prediction automatically. If the observa-

tions are of slow scale, then LR or SVR model found a suitable for the particular series.

The predicted value passes through the evaluation criteria. The workload forecasting

performed in R, Support Vector Regression (SVR) implemented in svm function from

the e1071 package and lm for linear regression.

Non-Seasonal Study

Apply non-seasonal

ARIMA on the series

Apply the evaluation

criteria

Independent
Residual?
(Ljung Box

Test)

Bad

Results?

Apply Seasonal

Study

Fast Scale?
(ARC < l2-

norm)

Calculate the average
rate of change (ARC)

Apply LR model

Apply the evaluation

criteria

Apply Seasonal Study

YES

NO

Linear
Series?

(Teravirta
Test) YES

Apply SVR model

NO

YES

NO

YES

NO

W
o

rk
lo

ad
 C

la
ss

if
ic

at
io

n
 M

o
d

el

Figure 3.5: Non-seasonal forecasting model

The ARIMA model parameters can be generated with the function auto.arima in R.

This procedure is based on the observations of AICc. Further, the investigator incorpo-

77

rated the examine criteria for accessing the quality of the model.

Afterward, analyzed the residual independence from Box-Pierce [161] and Lung-

Box [162] tests. It analyzed whether or not the white noise process differs substantially

from h auto-correlations. If residual still present in the auto-correlation, then continue

to explore the model.

Furthermore, the researcher checked the series with models of slow scale like LR

and SV R. The popular non-linearity test named as teravirta.test is present in tseries

package of R. If the series is found linear, then the LR model applied to predict the

series otherwise SV R used to forecast the time-series.

3.5.6 Seasonal Study

The series may contain the daily seasonality. In the present study, the seasonality in the

series found from historical workload using the analytical process shown in Figure 3.4.

The classical approach of the time series used to decompose the series. This seasonal

pattern used to improve the outcome with seasonality in the LR and SV R models. In

addition, the model is given a flexible approach to select the seasonal order from the

sliding window for the given data.

The seasonal model and differentiated value can be evaluated using ARIMA model.

Ljung-Box test applied as a tool for evaluation criteria for comparing the new model

with existing models. If the null hypothesis is rejected, the model selects the LR to

improve the outcome and consider both the final forecast value outcomes. In order

to obtain analysis for new models, LR uses ARIMA information of lag values. The

repeated prediction values obtained from ARIMA model, the final values obtained after

the evaluation of comparison results.

3.6 Experiment and Analysis

In this section, the researcher describes the experiment setup, dataset details and pre-

processing of dataset. The researcher also discussed the parameters configuration. Two

real time datasets collected for the performance evaluation of existing and proposed

time series prediction model. The preprocessing of dataset is performed to ready the

weblogs in discrete series. Further, prediction accuracy of forecasting models tested

using the statistical programming language.

78

Table 3.1: Summary of input workload

Dataset Name ClarkNet NASA

File name Aug28log, access1 accesslogAug95

File size 171.0 MB, 172.5 MB 167.8 MB

Length (s) 3,328,587 (14 days) 3,461,612 (28 days)

Timestamp resolution 1 second 1 second

Sampling interval 10 minutes 10 minutes

Number of Samples 2016 (14 days) 4032 (28 days)

3.6.1 Dataset

The web applications datasets emulated for the experiment are ClarkNet [163] and

NASA [164]. The details of the datasets are described in Table 3.1.

Metro Baltimore-Washington DC area WWW server log collected for ClarkNet se-

ries. It has the HTTP requests of the WWW server of 2 weeks traces. The first week log

collected from 28 August, 1995, to 3 September, 1995. The second-week log obtained

from 4 September, 1995, to 10 September, 1995. The total number of requests observed

in the duration of 2 weeks are 3,328,587.

The 2 months WWW server log is collected from NASA Kennedy Space Center

Florida. The duration of the log is from 1 July, 1995, to 31 July, 1995, and second log is

from 1 August, 1995, to 31 August, 1995. The total 3461612 requests recorded in two

months.

3.6.2 Accuracy of Prediction Models

The performance metrics are Mean Square Error (MSE); Root Mean Squared Error

(RMSE); Mean Absolute Error (MAE); Mean Absolute Percentage Error (MAPE) used

to evaluate the proposed model.

MSE =
1
n

n

∑
s=1

(ws− ŵs)
2 (3.4)

RMSE =

√
1
n

n

∑
s=1

(ws− ŵs)
2 (3.5)

MAE =
∑

n
s=1 |ws− ŵs|

n
(3.6)

79

MAPE =
1
n

n

∑
s=1

∣∣∣∣ws− ŵs

ws

∣∣∣∣×100% (3.7)

The minimum value of error metrics concluded the best model. The n parameter

has denoted the number of observation in the past time series. The current workload in

the frame is denoted with ws and the predicted workload represented with ŵs.

3.6.3 Accuracy of Auto-Scaling

The resource allocation calculated using the M/M/m queuing model principle. In order

to calculate over-provisioning and under-provisioning, the platform error is evaluated

at a given point of time. The usage of the system is described according to the [155]

model.

ρ =
λ

mµ
(3.8)

Eq. 3.8, ρ is the system usage, λ is the arrival rate, m is the number of servers

required and µ is the processing rate. The ideal ρ case is less than 1 to maintain the

stability of the system. The goal is to maintain stability at less than m. The Equation

3.8 can write as follows:

m =

[
λ

ρµ

]
(3.9)

The response time required to calculate the desired value of ρ as per SLA and the

value of µ as processing time. The response time can be calculated as follows [155]:

R =

1
µ

1−ρ
(3.10)

After putting Eq. 3.10 in ρ function 3.8 and gained the Equation 3.11.

ρ = 1− 1
Rµ

(3.11)

80

R denotes the client’s assured response time as per SLA. The combination of Eq.

3.9 and 3.11:

m =

[
Rλ

Rµ−1

]
(3.12)

As per the scenario, the parameters were replaced in the next time frame to predict

the VMs [123]. The total resource oscillation calculated as follows:

Totalosc =
n

∑
s=1

∣∣∣∣ Rŵs

Rµ−1
− Rws

Rµ−1

∣∣∣∣ (3.13)

Oscillation is the sum of resource under-supply and over-supply. The workload

forecast is ŵ and at the given time s represents the actual workload as w. The n in the

time series denotes the number of frames.

3.6.4 Experimental Setup

The implementation of the presented models performed in R tool. The parameters con-

figured for most of the models. The ARIMA model has the feature to fit the parameters

automatically up to lag 5.

In SVM [165], there is no systematic way to select parameters. The parameters of

the SVR model are epsilon, cost, and gamma. Combination of parameters found using

experimentation on a similar dataset small sample.

Table 3.2: Parameters grid

Model Parameters

Naı̈ve −

LR −

AR(p) p = 2

MA(q) q = 3

ARMA(p,q) p = 2,q = 3

ARIMA(p,d,q) automatic

SVR m = 3, c = 100, g = 0.5, s = 3, p =

0.001, t = 2, epsilon = 0.1

81

In addition, all methods of forecasting with different parameters are trained on the

training dataset. The 80% data is used for the training purpose. However, the designed

technique could work in real time environment without any training. The selected mod-

els are displayed in Table 3.2 on the test dataset with parameter configuration. The 20%

time series data used for testing purposes.

ClarkNet Series

Time (10 min)

Nu
mb

er
of

Re
qu

es
ts

0 100 200 300 400

50
0

10
00

15
00

20
00

25
00

30
00

35
00

ClarkNet Series

Time (10 min)

Nu
mb

er
of

Re
qu

es
ts

0 100 200 300 400

−1
00

0
−5

00
0

50
0

10
00

0 5 10 15 20 25

0.0
0.2

0.4
0.6

0.8
1.0

Lag

AC
F

ClarkNet Series

0 5 10 15 20 25

−0
.5

0.0
0.5

1.0

Lag

AC
F

ClarkNet Series

0 5 10 15 20 25

−0
.2

0.0
0.2

0.4
0.6

0.8

Lag

Pa
rtia

l A
CF

ClarkNet Series

0 5 10 15 20 25

−0
.4

−0
.3

−0
.2

−0
.1

0.0
0.1

Lag

Pa
rtia

l A
CF

ClarkNet Series

Figure 3.6: ClarkNet 10 minutes time series, ACF and PACF plots

82

NASA Series

Time (10 min)

N
um

be
r

of
 r

eq
ue

st
s

0 5 10 15 20 25 30

0
20

0
40

0
60

0
80

0
10

00

NASA Series

Time (10 min)

N
um

be
r

of
 r

eq
ue

st
s(

di
ff)

0 5 10 15 20 25 30

−
50

0
0

50
0

0.00 0.05 0.10 0.15 0.20 0.25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

NASA Series

0.00 0.05 0.10 0.15 0.20 0.25

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

NASA Series

0.00 0.05 0.10 0.15 0.20 0.25

0.
0

0.
2

0.
4

0.
6

0.
8

Lag

P
ar

tia
l A

C
F

NASA Series

0.00 0.05 0.10 0.15 0.20 0.25

−
0.

3
−

0.
2

−
0.

1
0.

0

Lag

P
ar

tia
l A

C
F

NASA Series

Figure 3.7: NASA 10 minutes time series, ACF and PACF plots

3.6.5 Time Series Analysis

In the present study, the researcher designed a forecasting model for short-term pre-

diction. The discrete series generated from the workload of time series during the lag

of every 10 minutes. Researchers observed the daily seasonal pattern in the workload

time series. Such a pattern is not reflected in the ACF and PACF plots. The series of

indifference has a significant lag in ACF showed 12 and PACF showed 16 respectively

83

shown in Figure 3.6.

In the present study, the seasonality is observed from the 144 lag values with each

lag of 10 minutes to sense the seasonality in last 24 hours. The sliding window time

frame picked and applied the classification approach. In the case of non-seasonal study,

the researcher used the 5 lag values of 10 minutes series mostly used in time series

prediction in literature. Auto-correlation can usually be observed from the first lags of

5.

The results showed that there is no seasonality in the ClarkNet and NASA series as

shown in Figure 3.6 and Figure 3.7 respectively. This could be analyzed from the ACF

and PACF plots. Thus, the researcher continued to apply the non-seasonal study. As the

proposed approach is towards the autonomous system, pre-processing was done before

the non-seasonal study series. The classical multiplicative time series model used to

decompose the series according to the analytical approach.

Non-seasonal Study

The model was used SVR, ARIMA, and LR to build the non-seasonal prediction model.

The proposed classification approach applied as per sliding window approach on each

time frame in the first phase. The adequate model selected in the original time series

through the classification approach. The parameter configuration is not required by the

ARIMA method in R. This can be performed with the auto.arima automated version.

The ARIMA function used in this process with the seasonality restriction. The config-

uration of the SVR model parameters as follows: s = 3, p = 0.001,m = 3,c = 100,g =

0.5,epsilon = 0.1, t = 2.

The experiment results of ClarkNet Series in Table 3.3 showed that the AR model

gives the best results in existing models. In the case of the NASA series experiment, the

best results are obtained from existing models is LR Table3.4. Therefore, in general, no

predictive model is best. Compared to other models, the proposed model in the present

study performed significantly better. The classification approach helps with different

workload patterns to select the appropriate model. In the case of ClarkNet series, the

accuracy of SVR is unsatisfactory, and ARMA delivers the poor results for the NASA

series. Figure 3.8 and Figure 3.9 indicate the proposed model prediction efficiency. It

has been observed that the proposed model able to predict the workload more accurate

84

Table 3.3: Experiment results of non-seasonal study of ClarkNet Series (5 orders)

Model MAE MSE RMSE MAPE

Naı̈ve 192.75 65561.45 256.04 12.87

LR 207.63 79569.25 282.08 14.52

AR 178.81 57862.46 240.54 12.41

MA 197.15 69282.43 263.21 13.78

ARMA 219.24 81878.24 286.14 15.19

ARIMA 181.19 58415.94 241.69 12.47

SVR 230.65 93023.06 304.99 16.12

TASM 152.40 45911.11 214.26 10.72

0

50

100

150

200

250

300

350

N A Ï VE LR A R M A A R M A A R I M A S V R TA S M

CLA R KNET SER IES F ORECAST R ESULTS

MAE RMSE MAPE

Figure 3.8: ClarkNet series forecast results

Table 3.4: Experiment results of non-seasonal study of NASA Series (5 orders)

Model MAE MSE RMSE MAPE

Naı̈ve 70.02 9330.15 96.59 19.67

LR 50.81 5427.85 73.67 14.67

AR 66.95 8066.15 89.81 19.42

MA 66.20 7876.31 88.75 19.26

ARMA 80.36 12476.14 111.70 22.88

ARIMA 66.39 8028.82 89.60 19.19

SVR 66.77 8617.73 92.83 18.79

TASM 47.76 4891.24 69.94 13.76

85

0.00

20.00

40.00

60.00

80.00

100.00

120.00

N A Ï V E L R A R M A A R M A A R I M A S V R T A S M

N A SA SER IES F OR ECAST R ESULTS

MAE RMSE MAPE

Figure 3.9: NASA series forecast results

as compared to other prediction models.

Seasonal Study

The seasonality could be present in the time series. The seasonality can be observed

in the testing phase. The researcher applied data preprocessing and further applied the

classic multiplicative model to remove the seasonality. To improve the series result, an

additional seasonal pattern is used. In the 10 minutes series, the daily seasonality means

144 lag values. ARIMA model can automatically select the seasonal order, LR and SV R

model are configured manually. Once the data input into the model, the seasonal pattern

recorded and the result improved with seasonality. There is no seasonality present in

this series. However, having the same outcome as the non-seasonal study. The order

1,0,1 for selected automatically, when applied auto.arima on the entire series.

Accuracy of Resource Provisioning

The over-provisioning and under-provisioning of the resource provisioning techniques

are calculated using Eq. 3.10 and Eq. 3.11. The performance result obtained from the

experiments mentioned in Table 3.5 and Table 3.6 for ClarkNet and NASA time series

in terms of platform resource allocation. In the experiments, the following scenario is

considered: response time as per SLA is 0.4s and processing rate (µ) is 1 request per

86

Table 3.5: Experiment results of ClarkNet series resource provisioning

Model Under-provisioning Over-provisioning Total

Naı̈ve 151 129 280

LR 172 139 311

AR 148 127 275

MA 168 135 303

ARMA 180 136 316

ARIMA 151 129 280

SVR 182 131 313

TASM 128 116 244

second. In the case of ClarkNet series, AR gives better results where LR is adequate for

NASA series as compared to existing models. The proposed model TASM performed

fairly well in saving resources with QoS to the end-users. The performance of the

Naı́ve model is also good, which is the basic prediction model. The comparison results

of resource oscillation are shown in Figure 3.10 and Figure 3.11 for the ClarkNet and

NASA time series respectively. The predictive accuracy of the TASM prediction model

for ClarkNet and NASA workload shown in Figure 3.12 and Figure 3.13.

0

50

100

150

200

250

300

350

Naïve LR AR MA ARMA ARIMA SVR TASM

ClarkNet Resource Provisioning Using TASM

Under Provisioning Over Provisioning

Figure 3.10: ClarkNet series resource allocation

87

Table 3.6: Experiment results of NASA Series resource allocation

Model Under-provisioning Over-provisioning Total

Naı̈ve 117 112 229

LR 77 85 162

AR 108 96 204

MA 108 94 202

ARMA 140 127 267

ARIMA 110 95 205

SVR 112 108 220

TASM 77 73 150

0

50

100

150

200

250

300

Naïve LR AR MA ARMA ARIMA SVR TASM

NASA Series Resource Provisioning Using
TASM

Under Provisioning Over Provisioning

Figure 3.11: NASA series resource allocation

The proposed model can be an effective tool for the proactive auto-scaling tech-

nique. The reason being the web application have irregular request pattern and most of

the pattern is nonlinear in the workload. The total time-series depicted the high scale

and non-linear series, but sliding window contains some linear and slow scale frames.

So, it is recommended to use the proposed model in resource provisioning of web ap-

plications with mixed request patterns.

88

0

500

1000

1500

2000

2500

3000

3500

4000

1

13 25 37 49 61 73 85 97

10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

25
3

26
5

27
7

28
9

30
1

31
3

32
5

33
7

34
9

36
1

37
3

38
5

39
7

N
u

m
b

er
 o

f
re

q
u

es
ts

Time (10 mins)

ClarkNet Series Prediction using TASM

Actual TASM Prediction

Figure 3.12: ClarkNet Series prediction using TASM

0

200

400

600

800

1000

1200

1400

1

24 47 70 93

11
6

13
9

16
2

18
5

20
8

23
1

25
4

27
7

30
0

32
3

34
6

36
9

39
2

41
5

43
8

46
1

48
4

50
7

53
0

55
3

57
6

59
9

62
2

64
5

66
8

69
1

71
4

73
7

76
0

78
3

80
6

N
u

m
b

er
 o

f
re

q
u

es
ts

Time (10 mins)

NASA Series prediction using TASM

Actual Predicted

Figure 3.13: NASA Series prediction using TASM

In experimental results, the proposed model shows the under-provisioning and over-

provisioning of the resources are minimum as compare to the state-of-the-art prediction

models. Thus, it can provide the benefit in terms of cost to the customers adopts on-

demand pricing policies in cloud infrastructure.

3.7 Summary

In this chapter, cloud provisioning architecture discussed with a new prediction module

called as a technocrat workload predictor. The new model designed named as Techno-

crat ARIMA and SVR Model (TASM). VM startup takes 5 to 10 minutes in the cloud

environment. Thus, the workload prediction could be a solution at the primary stage,

89

which helps to prepare the resources for the incoming workload in cloud data centers.

The workload of the web application is a mixture of different patterns of time se-

ries. There is no general model that fits all types of time series in the literature. In

the present study, the researcher proposed a classification-based workload prediction

model TASM, which provides a better understanding of the workload and helps to se-

lect the prediction model. Furthermore, the prediction model analyzed residual testing

for model parameter configuration. The TASM model has effectively predicted both

seasonal and non-seasonal patterns.

The accuracy of the model was evaluated with metrics MAE, MSE, RMSE, and

MAPE. In addition, platform error was calculated as over-provisioned and under pro-

visioned resources. The experiment results showed that the proposed model helps to

strengthen the auto-scaling and provisioning mechanism for web applications in the

cloud environment.

90

CHAPTER 4

A ROBUST HYBRID AUTO-SCALING

TECHNIQUE FOR WEB

APPLICATIONS IN CLOUD

4.1 Introduction

According to recent trends in the age of cloud computing, various application providers

host cloud applications rather than purchasing computer infrastructure. The resources

are offered by cloud providers like Amazon EC2 with additional scalability and pay-per-

use model features in the form of virtual machines for Application Providers (APs) [31,

166, 49]. Three pricing models are offered by the cloud providers named as reservation,

spot instances and on−demand. Virtual Machines (VMs) are supplied on-demand and

can be purchased at a fixed price on an hourly basis. In the reserve VMs, the APs must

set the contractual period and prices for a number of VMs. Amazon EC2 launched the

spot pricing policies for unused capacity.

Amazon sales unused VMs capacity through an open market bidding mechanism.

A bid is made through an auction mechanism to define the maximum unit price for the

VM number and type in the cloud. The resources will be allocated to the cloud user if

the offer price is higher than the current place price. Spot cases can be interrupted due

91

to the number of reasons, including an increase in spot prices over the maximum price,

capacity can no longer be provided, or increase in the demand for spot instances [167].

Spot instances are cost-effective and can be interrupted for non-time-critical appli-

cations. The constraints in sport instances are availability and time restriction, which

made it a non-suitable pricing policy for web applications.

The web application providers is concerned about the web environment’s dynamic

characteristics and incoming requests patterns from the end users. Therefore, the static

supply of resources is not an effective technique. As the incoming user request rate

increases also generate the under-provisioning condition. This causes the user requests

to be delayed or interrupted. In the second scenario, when traffic is reduced cause the

over-provisioning situation which results in higher renting costs to the APs [49, 74].

The minimum amount of resources is prepaying by APs in order to obtain the dis-

count on the rental when considering the different cloud pricing models (e.g. EC2

reserved rental receives up to 75 percent discount) [49, 168]. Afterward, APs prefer

to use the short-term lease model to satisfy temporary needs with varying loads. This

method is a highly efficient mechanism to determine capacity and on-demand rental

resources according to the application workload [169].

In this study, the researcher designed a Robust Hybrid Auto-scaler RHAS) for web

applications in the cloud environment. The technique is designed carefully to save costs

together with Quality of Service (QoS). The MAPE cycle has important functionalities

for the implementation of an autonomous system and the saving of rental costs. The

present study put more focus on the analysis and planning phase of the MAPE archi-

tecture to ensure strengthen the auto-scaling decision making process. The MAPE loop

features are used for the auto-scaling process.

The main contribution of the present study is as follows:

• Designed and developed a hybrid analysis method for the auto-scaling of re-

sources for web applications.

• Designed and developed a hybrid planning mechanism for the scaling decisions

in the cloud environment.

• The performance evaluation of the proposed approach carried under real-world

workload traces for different metrics.

92

4.2 Background

Auto-scaling is a technique to dynamically adjusts the resources allocated to elastic

applications as per the incoming workloads. Auto-scaler in the cloud environment

is generic while some are application specific to meet the Service Level Agreement

(SLA), QoS and minimizing the renting cost. The auto-scaling challenge for the web

applications is to dynamically grow or shrink the resources to meet fluctuated workload

requirement. Autonomous scaling techniques work without human intervention. Au-

tonomic systems are self (configuring-optimizing-protecting-healing) [23]. The auto-

scaling following the MAPE-K loop: Monitoring (M), Analysis (A), Planning (P) and

Execution (E), knowledge(k) [170, 24] shown in Figure 4.1.

Monitor

Analysis Plan

Execute

Managed Elements (Cloud Applications/Resources)

Knowledge

Figure 4.1: MAPE-K loop

1. Monitoring: The monitoring system collects the information from a cloud en-

vironment about the compliance of user expectations, resource status, and SLA

violation. It provides the state of infrastructure to the cloud provider, and users

get to know about application status with expected SLA. Auto-scaling protocols

are decided on the basis of performance metrics for web applications. The author

suggested parameters such as resize numbers, operating interval, decision dura-

tion, decision threshold, refractory period and instance bounds [25]. Generally,

metrics provided by cloud providers are related to VM management, otherwise, it

will be taken from the operating system. The proxy metrics are used to reduce the

complexity of metrics such as hypervisor level and application level (e.g., CPU

utilization, workload).

93

2. Analysis: The collected information is further processed in the analysis phase.

It gathers all information from metrics and current system utilization and predic-

tion information of future workload. Some auto-scaler are working on a reactive

approach. The decision is taken after analyzing the current system state. The

threshold values are fixed to scale in/out decisions, while others are using a reac-

tive approach or both. Reactive is a sophisticated approach because it’s always a

delay between the settings of resources for scaling decision. The VM startup time

varies from 350 to 400 seconds [26]. Flash crowd and events are still a challenge

with the reactive approach.

3. Planning: Analysis phase evaluates the present state, now the planning phase

has to decide to scale up/down or scale in/out to compliance with SLA and profit

trade-off.

4. Execution: Execution phase is already decided in the planning phase. Cloud

providers API is responsible for the execution of planning. The client is unaware

of the issues in the execution phase. VMs are available to users for a certain pe-

riod, the startup time of VM takes some time, and these delays have been already

discussed with the user in resource SLA.

5. Knowledge: The knowledge to be shared among above all four functions stored

in this repository. The shared knowledge contains metrics, historical logs, topol-

ogy information, and policies. The information passed to the autonomic manager.

4.3 Related Work

4.3.1 Auto-Scaling Using Queuing Model

In the literature, the authors modeled the cloud servers as a queuing system. The queu-

ing model M/G/m/m+ r is modeled the probability distribution for the response time

in the cloud infrastructure [171]. In this article, the incoming requests inter-arrival time

assumed to be exponentially distributed. Yang et al. [172] modeled the multi-server

with GIx/M/S/N queuing model. The general distribution of inter-arrival time, server

times with exponential distribution, service capacity as finite with batch processes. The

incoming request segregated into different subtasks, the performance is assessed with

94

the proposed queuing model. Urgaonkar et al. [92] calculated the required servers with

Little’s law and G/G/1. Further errors are removed with a reactive approach. Zhang

et al. [93] applied regression model and QM to calculate the CPU demands in the fu-

ture. Villela et al. [96] modeled the e-commerce applications with M/GI/1/PS queuing

model. The characterization of incoming requests performed with the real traces of

e-commerce applications.

4.3.2 Auto-Scaling Using Proactive Model

In the literature, the researchers mostly applied time series prediction model to forecast

the multi-tier web applications workload. A Simple Moving Average (SMA) [115] gave

less accuracy to predict fluctuating workload. Some authors applied MA to reduce the

noise in time series [59, 60]. Huang et al. [116] proposed a resource prediction model

with Double Exponential Smoothing (DES) and, the comparison performed with the

Weighted Moving Average (WMA) and mean. The history records w helps to get better

results in ES. Mi et al. [117] applied Brown’s double ES to predict the workload and

achieve a good result for HTTP workload with a small error. Aslanpour et al. [131]

applied DES and WMA for the prediction of time series.

The auto-regression technique has also applied for workload and resource prediction

[118, 119, 115, 30, 68]. Roy et al. [68] used the AR model for workload forecasting

by taking the previous three observations. Further response time estimated from the

predicted values. An optimization controller applied to find resource allocation, con-

sidering SLA violation cost, reconfiguration, and leasing resources.

ARMA model is a simple and efficient model to predict future workload (number of

requests). Fang et al. [120] predict VMs CPU usage. ARIMA model is applied in vari-

ous articles [121, 122, 123]. ARIMA required historical workload. The performance of

the model highly depends upon the history window. ARIMA approach is ideal for dy-

namic workload such as web applications. Sedaghat et al. [121] applied the horizontal

and vertical scaling to increase the benefit in terms of cost. Mao and Humphrey [124]

used the classification given as increasing, stable, seasonal and on/off. Calheiros et al.

[122] used ARIMA model for workload prediction, and evaluate the impact on differ-

ent QoS parameters. The web application workload is dynamic and contains seasonal

data. The model gives 91% accuracy for non-seasonal data, but not fit for the highly

95

non-seasonal workload. This work can be further extend using an adaptive approach for

classification of workload, and design the heuristic for ARIMA fit function for different

classes. As discussed earlier, one model doesn’t fit for all types of workload, Messias et

al. [123] present GA based approach for time series prediction. Traces of real workload

have been used to evaluate the prediction model. A new metric has been introduced in

the article named as an Elasticity Index (EI), which describe the solution optimization.

The range of EI varies from (0 to 1), a value near to 1 means the solution is good. The

model gives less error as compared to other models.

The accuracy of neural network [125, 126] and multiple regression equation [65,

126, 30] model are highly dependent upon on the size of input the history window.

Islam et al. [125] used more than one value from the history and got a better result.

Kupferman et al. [30] devised the necessity of balanced size of input history window.

Regression of various window sizes applied to find the prediction values. The prediction

interval of r is also an important factor. Islam et al. [125] investigate the size of the

interval window and found 12 minutes an appropriate time, because of VM startup time

is between 5−15 minutes. Prodan and Nae [126] applied the neural network to forecast

the game load for 2 minutes. In contrast, the neural network is better than MA and ES

in terms of accuracy.

Time series analysis techniques are able to forecast the future workload of web

applications. Further, this information can be used to predict resource requirements.

The technique is very appealing because of input workload is known to the auto-scaler

in advance, and have enough time to prepare the VMs beforehand. The drawback of

techniques is the accuracy, which depends upon the input workload, history window

selection, metrics, prediction interval, and target application. There is no best solution

for all types of time series forecasting. In this study, the researcher has developed

a robust auto-scaling technique with a hybrid approach. The analysis and planning

phase carefully designed with classification based prediction model TASM and reactive

technique to give QoS while saving the cost for application provider.

4.4 Proposed Approach

In this section, the researcher discussed the proposed approach for auto-scaling of web

applications. The MAPE loop is applied for Robust Hybrid Auto-Scaler (RHAS) de-

96

sign. This approach is intended to estimate the necessary resources for the incoming

workload in horizontal scaling. Table 4.1 describes the symbols used in this section.

Table 4.1: Notations used in the RHAS approach.

Component Description

Art
t Analyzed response time in last minute

Au
t Analyzed CPU utilization during4s

Clock Simulation timer

D Scaling decision (e.g. ScaleUp, ScaleDown, DoNothing)

k Size of sliding window

Mrt
t Average response time at time t

Mu
t Average CPU utilization at time t

RT lowT hr Lower threshold in response time

RT uprT hr Upper threshold of response time

Srt Response time as per SLA

SLAV Total SLA violation in an hour

4s Scaling Interval

sw sliding window of size k

T Throughput in last minute

U lowT hr Lower threshold in CPU utilization

UuprT hr Upper threshold of CPU utilization

V MAL Total virtual machines V MP and V MS

V MF Virtual machines required in future as per ŵt+1

V Mmax maximum on-demand VMs scaling limit

V MP Pending virtual machines list

V MS In service virtual machines list

wt Requests received at time t

ŵt+1 Analyzed future incoming request at time t

wt Request answered at time t

4.4.1 Auto-scaling System Architecture

As per the proposed approach, the web applications in cloud architecture is shown in

Figure 4.2. It is a communication architecture of the Application Provider (AP), Cloud

Provider (CP) and end-user communication architecture. The end users send the re-

quest to AP through the Internet for Web applications. The load balancer has received

the demand from AP and sends the request to the Virtual Machine (VM) deployed for

97

application-tier. The multi-tier web applications usually have three layers and a separate

VM for each level. The user request may access all tier of web applications. Afterward,

the user got the response this life cycle the user gets the answer. The auto-scaling

method calculates the necessary VMs for the incoming requests. This research con-

tributes to the auto-scaling mechanism in the analysis, planning and execution phase.

In this model, the cloud provider considered which offers the infrastructure with differ-

ent price policy, for example. On-demand and reserved.

Knowledge

Base

Monitor

Planner

Web Tier

Application

Tier

Database

Tier

Load Balancing

End Users

Application Service Provider

Cloud Service

Provider

Sensors

Effectors

VM VM VM

Auto-Scaling

Mechanism

Analyze

 Discrete

Time Series

TASM

Forecaster

CPU

Utilization

Response
Time

Proactive

Reactive

Executor

VM

Figure 4.2: The cloud architecture for web applications

Algorithm 2 is defined as the mechanism used in our approach for auto-scaling.

The first phase of this approach is to monitor the resources. This approach is unique

as the decisions taken on scaling are reviewed in 4s minutes called scaling interval.

Every minute monitoring is done. The researcher mentioned the monitoring steps in

Algorithm 3.

98

Algorithm 2 The pseudo code of auto-scaling management

1: Begin . Boot the reserved VMs for incoming workload

2: while system is running do

3: for every 1 min do

4: Monitoring(); . Stores history of metrics

5: if Clock % 4s = 0 then

6: Analysis(historical w of k size, history of Mu, history of Mrt)

7: Planning(ŵt+1, Au, Art);

8: Execution(D);

9: end if

10: end for

11: end while

12: End

4.4.2 Monitoring Phase

The dynamic behavior of incoming workloads like seasonality, non-seasonality or flash

crowds influences auto-scaling decisions. In Algorithm 3, the monitoring phase reg-

ularly fetches the information of application and infrastructure level parameters on a

fixed interval [49]. After every minute, the monitoring took place. The parameters of

application levels are end-user request (w), whereas parameters for the infrastructure

level are the number of VMs and their usage. The response time is employed as an

SLA parameter. The monitoring module logged the arrival rate, the available capacity

and the capacity used with the control domain.

The Eq. 4.1 used to evaluate the response time of every request. In addition, Eq.

4.2 calculated the average response time. Here, the ArrivalTime is the Clock time when

cloudlet is submitted and the FinishTime is the Clock time of the cloudlet completion.

The ProcessedTime is the total time for the cloudlet processing.

ResponseTime = FinishTime−ProcessedTime−ArrivalTime (4.1)

Mrt
t =

∑
TotalCloudletsFinished

j=1 ResponseTime j

TotalCloudletsFinished (4.2)

99

The Eq. 4.3 is used to calculate the average CPU utilization. Here, V MAL is the

addition of pending virtual machines (V MP) and in-service virtual machine (V MS).

Mu
t =

∑
V MAL

j=1 V M jUtilization

V MAL (4.3)

Algorithm 3 The pseudo code of monitoring phase

1: /* User behavior parameters */

2: Store wt . Incoming workload (1 minute)

3: /* Infrastructure and platform level parameters */

4: Store V MP, V MS . VM parameters

5: Store Mrt
t and Mu

t . SLA parameters and Resource Utilization

4.4.3 Analysis Phase

In the chapter 3, the researcher described the proposed proactive analyzer to forecast a

time series known as Technocrat ARIMA and SVR Model (TASM). This approach used

the pattern discrimination technique on the sliding window of past workload [173]. In

this research, a combination of reactive and proactive analytical techniques is presented

to a new hybrid method of analysis. According to the Algorithm 4, the TASM em-

ployed (line no. 4) in a proactive section to forecast the maximum incoming request in

a minute for upcoming scaling interval. In addition, the CPU usage and response time

are analyzed for the reactive section (line no. 6).

Firstly, the time-series model are used to calculate the future arrival rate ŵt+1. The

monitoring phase employed to stores the series of (wt) in the (4s) time interval. The

ws =
(
w1

t ,w
2
t ,,w

k
t
)

is the time series represented in discrete model. TASM prediction

model (line no. 5) calculated the ŵi+1, the flowchart of approach is shown in Figure 4.3.

Secondly, the average CPU usage of every minute obtained for each scaling interval

(lines 7 to 9). The usage of the CPU is calculated according to Eq. 4.3. Moreover, the

average CPU use assessed in line 10 as per Eq. 4.4 in the past scaling interval.

Thirdly, the last minute response time obtained from the monitoring phase. The

response time is considered as the SLA parameter. The response time is evaluated

according to Eq. 4.1. Then, the average response time of last minute with Eq. Art
t is

calculated (line no. 11), it is a QoS indicator.

100

Incoming

workload

Generate discrete

time series

Workload

classification

Stationary

series?

Differenced the

time series

Apply Forecast

Model

No

Yes

Es timated future

requests

Figure 4.3: The workload forecasting approach using TASM prediction model

Thirdly, the response time is collected as an SLA parameter during the last minute

collected from the monitoring phase. The response time is calculated as per Eq. 4.1.

Afterward, the average response time calculates with Eq. 4.2. The average response

time is a QoS indicator. In this approach, the researcher has considered the analyzed

response time Art
t is the average response time in the last minute (line no. 11). The

researcher thus placed the most emphasis on last-minute response time.

Au
t =

∑
k
t=1 Mu

t
k

(4.4)

4.4.4 Planning Phase

The planning phase makes decisions with auto-scaling techniques that are reactive and

proactive. The reactive approach supported the flash load. The reliability of predic-

tive testing remains in question since the workload does not depend on the historical

workload all the time. This approach adds resources to the resource pool if available

resources do not meet the adequate requirements. This approach ensures the capacity

101

Algorithm 4 The pseudo code of hybrid analysis approach (Proposed)

1: Input: Mu (duration is the last 4s minutes), Mrt (duration is the last minute), sw

(requests per minute from the past4k minutes)

2: Output: ŵt+1, Au and Art

3: Variable: double cpuUtilization← 0, string predictionModel← TASM

4: /* Proactive Section */

5: ŵt+1←WorkloadPredictor(predictionModel, sw) . Predict the future arrival rate

6: /* Reactive Section */

7: for i = 0 to i <4s do

8: cpuUtilization← cpuUtilization+Mu
t−i−4s

9: end for

10: Au← cpuUtilization/4s . Average CPU utilization in4s minutes

11: Art ←Mrt . Response time of last minute

12: return ŵt+1, Au and Art

available is higher than the capacity required.

The response time (Art) analyzed and CPU utilization (Au) analyzed are evaluated

under the threshold rules as per Algorithm 5. If the CPU usage analyzed is greater than

the CPU usage of the top threshold value, and the response time analyzed is larger than

the upper threshold value (line 4), an immediate decision is taken for ScaleU p (line

5). Here, there is no additional consideration took place and return from the procedure

(line 6). If the CPU utilization analyzed is less than the lower threshold value and the

response time analyzed is lower than the response time threshold value then (line no.

7), the decision set on for ScaleDown (line no. 8) is a temporary one. This decision was

filtered further through the proactive section (line no. 10) and then the final decision

was taken.

V MF =

[
ŵt+1

RT SLAµ

]
(4.5)

The queuing model applied in proactive section (line no. 10). The number of

VMs required for upcoming workload estimated using Eq. 4.5 (line no. 11). Here,

three arguments are processing rate (µ), future incoming request (ŵt+1) and response

102

time (RT SLA) according to SLA. Afterward, the current capacity compared with the

calculated capacity required in the next scaling interval. If the estimated number of

VMs is greater than the current capacity than decision set to ScaleU p (line no. 13).

Furthermore, if the calculated VMs are the same as available VMs than decision set

to DoNothing (line no. 15), otherwise, the reactive auto-scaling decision is final to

ScaleDown the VM.

The short-term workload prediction is applied to the pattern with less forecasting

errors, whether the reactive approach used to handle the patterns with higher forecast-

ing errors. The VMs are ready in a proactive approach before the incoming of actual

workload and, the reactive approach takes the scaling decision as per the current status

of the infrastructure level parameters. This proposed approach is able to correct the

wrong of a proactive approach with reactive method.

Algorithm 5 The pseudo code of hybrid planning approach (Proposed)

1: Input: Au, Art , U lowT hr, UupT hr, RT lowT hr, RT upT hr, ŵt+1

2: Output D

3: /* Reactive Scaling */

4: if Au >UupT hr and Art > RT upT hr then

5: D← ScaleU p

6: return D

7: else if Au <U lowT hr and Art < RT lowT hr then

8: D← ScaleDown

9: end if

10: /* Proactive Scaling */

11: V MF ← QueuingModel(ŵt+1,µ,RT SLA) . Queuing model M/M/m estimates the

future capacity

12: if V MAL <V MF then

13: D← ScaleU p

14: else if V MAL ==V MF then

15: D← DoNothing

16: end if

17: return D

103

4.4.5 Execution Phase

The execution phase implements the perception of the planning phase. The final de-

cision to scale-up, scale-down or do nothing is taken with the collaboration of cloud

providers. The default executor randomly selects the machines from the resource pool

to scale up/down. This phase cross-validates the VMs on-demand limit before the scale-

up decision, which rejects the scale-up decision if it exceeds the limit. Likewise, no

other request will be received if the on-demand resources limit is met.

4.5 Experiment Evaluation

The aim of this work is to devise the robust automated approach for scaling the resources

with maximized utilization of the resources and provided response time according to

SLA. The experiment was conducted as per the following:

• The comparison of prediction models AR, LR, MA, ARMA, ARIMA, SVR and

TASM made for short-term prediction (1 minute). The actual workload traces are

used to emulate the incoming requests. The R− tool is used to implement the

prediction models.

• CloudSim toolkit has extended to implement the existing and proposed tech-

niques with new classes for auto-scaling features. The decisions of auto-scaling

assessed on the basis of various performance metrics such as CPU utilization,

response time, renting cost, SLA penalty cost and VM allocation.

4.5.1 Experiment Setup

The CloudSim toolkit extended with new classes and R scripts. The R tool is used

to implement the prediction model. R−Caller library used in CloudSim toolkit to

integrate R API in Java. The different auto-scaling approaches are implemented such

as threshold rules based technique [174], SVR [175], AR [30], ARIMA [122] and the

investigator’s proposed model TASM [173]. These prediction models compared on the

basis of response time, CPU utilization, VM allocation and cost. The designed approach

gave minimum response time and optimal resource utilization.

104

Table 4.2 describes the detail of weblog traces used in the experiment in this re-

search. The experiment evaluation is performed with the following entities: cloud

service provider, application service provider and end-user. The detail of the entities

are:

Cloud Provider

The CloudSim offers the cloud provider ability for infrastructure related parameters and

methods. Classes for rental management of resources are added in existing CloudSim

toolkit. The time shared scheduling technique is used for the evaluation of proposed

and existing models.

Application Provider

Cloud infrastructure is a platform for application providers to host the application. The

on-demand resources in virtual machines are significantly delayed to start-up. This in-

teresting study shows that VM start-up time varies with factors like VM request time,

VM size and weekday. In literation, some authors are considered a normal or a fixed

number distribution in VM start-up time. In this study, the researcher defined the VM

startup time for the experiment is fixed at 5 minutes. Consequently, after every 10

minute, the hybrid auto-scaler made scaling decisions with the highest priority to reac-

tive scaling. Although, the proposed technique is flexible and the scaling interval could

be changed as per the need of user and application.

End User

The ClarkNet and NASA workload emulated as web application incoming request to

AP. These weblog are incorporated in tremendous research studies for the evaluations of

auto-scaling techniques [176, 177, 123, 132]. Table 4.2 describes the detail of weblog

traces.

4.5.2 Results and Discussion

The 6 metrics for performance assessment are described as follows:

105

Table 4.2: Summary of datasets information

Dataset Name ClarkNet NASA

File name Aug28log, access1 accesslogAug95

File size 171.0 MB, 172.5 MB 167.8 MB

Length (s) 3,328,587(14days) 3,461,612 (28 days)

Timestamp resolution 1 second 1 second

Sampling interval 1 minutes 1 minutes

Number of Samples 2880 (2 days) 2880 (2 days)

Prediction Accuracy of Time Series Models

The parameters of the cloud infrastructure are response time, CPU utilization and arrival

rate of incoming requests are stored by monitoring phase. In the analysis phase, the key

component is workload predictor. This phase forecast the future requests using the

TASM prediction method based on the classification of discrete series in the sliding

window [173]. This sliding window captures the latest historical request and prediction

models are applied on the basis of the classification approach. In order to capture the

various trends in incoming workload, the linear and non-linear models are employed.

The model proposed shows a lower difference in incoming workload and predicted

workload, which could be feasible for scaling decision for web applications requests in

a cloud environment. The researcher tested the 10 minutes discrete series of predictions

in previous work. In this experiment, the researchers tested the discreet set of 1 minute

as shown in Figure 4.4 for the series ClarkNet and Figure 4.5 for the NASA series. The

largest value of 1 minutes is picked in next scaling interval (e.g. 10 minutes) from the

predicted workload. This strategy helps to reduce the SLA breach and optimize the

appropriate resource usage in upcoming scaling interval.

Mean-Absolute-Percentage-Error (MAPE) and Root-Mean-Square-Error (RMSE)

metrics are used to asses the accuracy of the prediction model. The Eq. 4.6 and Eq.

4.7 defines the standard metric for RMSE and MAPE. The obtained result described

in Table 4.3 for ClarkNet series and Table 4.4 for NASA series. The experiment result

showed that the proposed model gave good result in short-term (10 minutes) workload

prediction. However, the short-term prediction (1 minute) is still a challenge for the

prediction models. Thus, the prediction error could lead to SLA violation and delayed

106

0
10

0
30

0

A
ct

ua
l

0
10

0
30

0

LR

0
10

0
30

0

S
V

R

10
0

30
0

0 500 1000 1500 2000 2500

A
R

Time
0

20
0

40
0

M
A

0
20

0
40

0

A
R

M
A

0
10

0
30

0

A
R

IM
A

10
0

30
0

0 500 1000 1500 2000 2500
TA

S
M

Time

ClarkNet Series Prediction

Figure 4.4: ClarkNet workload prediction using LR, SVR, AR, MA, ARMA, ARIMA

and TASM

0
40

80
12

0

A
ct

ua
l

0
20

60
10

0

LR

0
40

80
12

0

S
V

R

0
40

80
12

0

0 500 1000 1500 2000 2500

A
R

Time

0
40

80
12

0

M
A

0
40

80
12

0

A
R

M
A

0
20

60
10

0

A
R

IM
A

0
20

60
10

0

0 500 1000 1500 2000 2500

TA
S

M

Time

NASA Series Prediction

Figure 4.5: NASA workload prediction using LR, SVR, AR, MA, ARMA, ARIMA and

TASM

107

Table 4.3: Accuracy of prediction models for ClarkNet workload.

Prediction model RMSE MAPE

LR 64.37 34.52

SVR 64.67 32.95

AR 54.60 30.42

MA 59.24 33.14

ARMA 59.25 32.98

ARIMA 51.24 26.64

TASM 42.24 20.63

Table 4.4: Accuracy of prediction models for NASA workload.

Prediction model RMSE MAPE

LR 16.56 66.77

SVR 17.0 67.93

AR 14.09 56.32

MA 15.72 62.40

ARMA 15.23 60.37

ARIMA 13.37 52.68

TASM 11.01 39.21

services. The researcher sensed the requirement of hybrid auto-scaling technique with

a reactive approach. The proposed hybrid solution with the proactive and reactive tech-

nique could overcome the error of prediction models in scaling decision by taking the

scaling action based on current resources utilization.

RMSE =

√
1
n

n

∑
s=1

(actualWorkloads− predictedWorkloads)
2 (4.6)

MAPE =
1
n

n

∑
s=1

∣∣∣∣actualWorkloads− predictedWorkloads

actualWorkloads

∣∣∣∣×100% (4.7)

VM Allocation

The number of VMs used to answer the web application request under hybrid analysis

and planning algorithms are analyzed. The experiment conducted on the first couple

108

0

5

10

15

20

25

1 1
4

2
7

4
0

5
3

6
6

7
9

9
2

1
0

5

1
1

8

1
3

1

1
4

4

1
5

7

1
7

0

1
8

3

1
9

6

2
0

9

2
2

2

2
3

5

2
4

8

2
6

1

2
7

4

2
8

7

0

500

1000

1500

2000

2500

3000

3500

4000

4500

V
M

s
re

q
u

ir
e

d

Time (10 min)

U
se

r
re

q
u

es
ts

ClarkNet Series Resources Requirement

Requests VMs Required

0

2

4

6

8

10

12

14

16

18

20

1 1
4

2
7

4
0

5
3

6
6

7
9

9
2

1
0

5

1
1

8

1
3

1

1
4

4

1
5

7

1
7

0

1
8

3

1
9

6

2
0

9

2
2

2

2
3

5

2
4

8

2
6

1

2
7

4

2
8

7

0

500

1000

1500

2000

2500

3000

3500

4000

4500

V
M

s
a

ll
o

ca
te

d

Time (10 min)

U
se

r
re

q
u

es
ts

ClarkNet Series Resources Allocated

Requests VMs Allocated

Figure 4.6: ClarkNet series VM required and allocated using proactive scaling

0

5

10

15

20

25

1 1
4

2
7

4
0

5
3

6
6

7
9

9
2

1
0

5

1
1

8

1
3

1

1
4

4

1
5

7

1
7

0

1
8

3

1
9

6

2
0

9

2
2

2

2
3

5

2
4

8

2
6

1

2
7

4

2
8

7

0

500

1000

1500

2000

2500

3000

3500

4000

4500

V
M

s
re

q
u

ir
e

d

Time (10 min)

U
se

r
re

q
u

es
ts

ClarkNet Series Resources Requirement

Requests VMs Required

0

5

10

15

20

25

1 1
4

2
7

4
0

5
3

6
6

7
9

9
2

1
0

5

1
1

8

1
3

1

1
4

4

1
5

7

1
7

0

1
8

3

1
9

6

2
0

9

2
2

2

2
3

5

2
4

8

2
6

1

2
7

4

2
8

7

0

500

1000

1500

2000

2500

3000

3500

4000

4500

V
M

s
a

ll
o

ca
te

d

Time (10 min)

U
se

r
re

q
u

es
ts

ClarkNet Series Resources Allocated

Requests VMs Allocated

Figure 4.7: ClarkNet series VM required and allocated using proposed RHAS

of days of ClarkNet and NASA discrete time series. The performance of the analysis

phase showed that the performance of the proposed prediction model TASM is good

as compare to the state-of-the-art prediction model for web applications. The proposed

hybrid planning algorithm tested with the help of two scenarios. The comparison result

shown in Figure 4.6 is for the first experiment with proactive auto-scaling with TASM

and Figure 4.7 with the proposed hybrid solution with ClarkNet series. Similarly, Fig-

ure 4.8 and Figure 4.9 show the second experiment carried out with proactive TASM

and the proposed auto-scaling approach on NASA series. The TASM model is capable

of predicting future demand in peak hours. However, due to predictive error, resource

oscillation is present in a proactive approach. The AP rents VMs on request and releases

with workload reduction, frequent releasing and acquiring of VM depict the poor scal-

ing approach and lead to delayed services and more cost in the hourly billing cycle. The

proposed approach shows the stability in the scaling process reduce the scaling over-

head and proper utilization of resources under various billing cycles. This also helps to

reduce the renting and SLA penalty cost.

109

0

1

2

3

4

5

6

7

8

0

200

400

600

800

1000

1200

1

1
4

2
7

4
0

5
3

6
6

7
9

9
2

1
0

5

1
1

8

1
3

1

1
4

4

1
5

7

1
7

0

1
8

3

1
9

6

2
0

9

2
2

2

2
3

5

2
4

8

2
6

1

2
7

4

2
8

7

V
M

s
R

e
q

u
ir

e
d

U
se

r
R

e
q

u
e

st
s

Time (10 min)

NASA Series Resources Requirement

Actual VMs Required

0

1

2

3

4

5

6

7

0

200

400

600

800

1000

1200

1

1
4

2
7

4
0

5
3

6
6

7
9

9
2

1
0

5

1
1

8

1
3

1

1
4

4

1
5

7

1
7

0

1
8

3

1
9

6

2
0

9

2
2

2

2
3

5

2
4

8

2
6

1

2
7

4

2
8

7

V
M

s
R

e
q

u
ir

e
d

U
se

r
R

e
q

u
e

st
s

Time (10 min)

NASA Series Resources Allocated

Actual VMs Allocated

Figure 4.8: NASA Series VM required and allocated using proactive scaling

0

1

2

3

4

5

6

7

8

0

200

400

600

800

1000

1200

1

1
4

2
7

4
0

5
3

6
6

7
9

9
2

1
0

5

1
1

8

1
3

1

1
4

4

1
5

7

1
7

0

1
8

3

1
9

6

2
0

9

2
2

2

2
3

5

2
4

8

2
6

1

2
7

4

2
8

7

V
M

s
R

e
q

u
ir

e
d

U
se

r
R

e
q

u
e

st
s

Time (10 min)

NASA Series Resources Requirement

Actual VMs Required

0

1

2

3

4

5

6

7

8

0

200

400

600

800

1000

1200

1

1
4

2
7

4
0

5
3

6
6

7
9

9
2

1
0

5

1
1

8

1
3

1

1
4

4

1
5

7

1
7

0

1
8

3

1
9

6

2
0

9

2
2

2

2
3

5

2
4

8

2
6

1

2
7

4

2
8

7

V
M

s
R

e
q

u
ir

e
d

U
se

r
R

e
q

u
e

st
s

Time (10 min)

NASA Series Resources Allocated

Actual VMs Allocated

Figure 4.9: NASA series VM required and allocated using proposed RHAS

0

20

40

60

80

100

Rule
Based

Technique

AR LR SVR MA ARMA ARIMA TASM RHAS

R
e

so
u

rc
e

 P
ro

vi
si

o
n

in
g

Auto Scaling Techniques

ClarkNet Series Scaling Overhead

Provision De-provision

Figure 4.10: ClarkNet series scaling overhead

110

0
5

10
15
20
25
30
35
40

Rule
Based

Technique

AR LR SVR MA ARMA ARIMA TASM RHAS

R
e

so
u

rc
e

 P
ro

vi
si

o
n

in
g

Auto Scaling Techniques

NASA Series Scaling Overhead

Provision De-provision

Figure 4.11: NASA series scaling overhead

The ClarkNet and NASA series again used for the third and fourth experiment. The

6th and 7th day in the series used to evaluate the performance of proposed algorithms.

Figure 4.10 and Figure 4.11 shows the experiment results for the number of the scaling

decision took under various prediction approaches. Furthermore, the proposed planning

algorithm reduces over-usage and under-usage of resources up to 16 percent.

CPU Utilization

The CPU utilization means work is done by the Central Processing Unit (CPU) for the

VM deployed in the cloud environment. The proposed mechanism RHAS has been

tested for their performance with the percentage of CPU utilization while executing the

incoming workload. The use of the CPU was tested for the prediction models, threshold

rules based technique and proposed RHAS technique. The results of the experiment for

ClarkNet series is shown in Figure 4.12 and Figure 4.13 for shows comparison result of

NASA series. The technique based on the threshold rules is capable of achieving maxi-

mum use of the CPU in the ClarkNet web trace, but for NASA series due to the 10 min-

utes scaling period, the Threshold rules (TR) mechanism CPU utilization achieved only

42 percent. This technique is also faces lot of under-provisioning and over-provisioning

issues, due to which cloud provider is satisfied but the application provider observed of-

ten downtime in application availability. The proposed technology is a mixed reactive

and proactive approach, thus providing a consistent usage of 90 percent of the CPU in

both ClarkNet and NASA series.

111

70

75

80

85

90

95

Rule
Based

Technique

AR LR SVR MA ARMA ARIMA TASM RHAS

A
vg

. C
P

U
 U

ti
liz

at
io

n

Auto Scaling Techniques

ClarkNet Series Average CPU Utilization

CPU Utilization

Figure 4.12: ClarkNet series average CPU utilization

0

20

40

60

80

100

120

Rule
Based

Technique

AR LR SVR MA ARMA ARIMA TASM RHAS

A
vg

. C
P

U
 U

ti
liz

at
io

n

Auto Scaling Techniques

NASA Series Average CPU Utilization

CPU Utilization

Figure 4.13: NASA series average CPU utilization

Response time

The elapsed time between the application request to response is known as response

time. The web application response time should be fast. In this research work, the

requested response time in this experiment was taken 1 second according to the SLA.

One of the Quality of Experience (QoE) parameter is the minimum response time. The

ClarkNet series result is shown in 4.14 and NASA series result described in Figure

4.15 are the representing the comparison of the outcome of the mean response time.

The proposed algorithms in this research are given a response in less time span. The

proposed technique RHAS is able to provide better QoS to the end-users under static

and dynamic workload conditions.

112

0
0.5

1
1.5

2
2.5

3
3.5

4

Rule
Based

Technique

AR LR SVR MA ARMA ARIMA TASM RHAS

A
vg

. R
e

sp
o

n
se

 T
im

e

Auto Scaling Techniques

ClarkNet Series Average Response Time

Response Time

Figure 4.14: ClarkNet series average response time

0

1

2

3

4

5

Rule Based
Technique

AR LR SVR MA ARMA ARIMA TASM RHAS

A
vg

. R
e

sp
o

n
se

 T
im

e

Auto Scaling Techniques

NASA Series Average Response Time

Response Time

Figure 4.15: NASA series average response time

SLA violation

The SLA agreement is a crucial aspect that ensures cloud services are provided to end-

users. In the event of an SLA violation, the AP must pay a penalty to the end-users.

The violation of the SLA calculated with Eq. 4.8.

SLAV =
w

∑
i=1

RTi−Srt (4.8)

The comparison result fo ClarkNet series shown in Figures 4.16 and NASA series

shown in Figure 4.17 against SLA violation. The results of the experiments show that

the proposed RHAS technique have less than 1% SLA violation. Thus, the proposed

113

mechanism can give better QoS to the end-users as compare to state-of-the-art auto-

scaling techniques for web applications.

0

1

2

3

4

5

6

Rule Based
Technique

AR LR SVR MA ARMA ARIMA TASM RHAS

SL
A

 V
io

la
ti

o
n

 (
%

)

Auto Scaling Techniques

ClarkNet Series SLA Violation

SLA Violation Percentage

Figure 4.16: ClarkNet series SLA violation

0
2
4
6
8

10
12
14

Rule
Based

Technique

AR LR SVR MA ARMA ARIMA TASM RHAS

SL
A

 V
io

la
ti

o
n

 (
%

)

Auto Scaling Techniques

NASA Series SLA Violation

SLA Violation Percentage

Figure 4.17: NASA series SLA violation

Renting Cost

The resources rented on-demand as per the pay-as-you-go model. The rental cost is

calculated hourly basis by Amazon EC2. The total amount is the sum of each VM

per hour usage. Figure 4.18 are shown for the rental cost of the ClarkNet series and

Figure 4.19 is shown the renting cost of the NASA series. This infringement causes

the application provider to pay a penalty. The proposed model in this research is cost-

effective for application providers. The combined renting and penalty cost reduces up

114

to 26 percent.

0

10

20

30

40

50

60

Rule
Based

Technique

AR LR SVR MA ARMA ARIMA TASM RHAS

C
o

st
 ($

)

Auto Scaling Techniques

ClarkNet Series Cost

Renting Cost SLA Penalty

Figure 4.18: ClarkNet series overall cost

0
2
4
6
8

10
12
14

Rule
Based

Technique

AR LR SVR MA ARMA ARIMA TASM RHAS

C
o

st
 ($

)

Auto Scaling Techniques

NASA Series Cost

Renting Cost SLA Penalty

Figure 4.19: NASA series overall cost

It is worth to mention that the proposed technique RHAS for auto-scaling is a ro-

bust approach, providing the end user with an efficient and fair amount of QoS while

benefiting ASP. Reduction of the SLA penalty will minimize the total bearing cost of

ASP. The end-user will experience a justified response time QoE according to the SLA

agreement.

4.6 Summary

The web application providers experienced irregular load changes in the cloud envi-

ronment. This issue leads to an unsure scaling decision. In this study, the researcher

115

designed a hybrid analysis and planning algorithms under Robust Hybrid Auto-Scaler

(RHAS) approach. The proposed RHAS technique provides benefit for auto-scaling

with important terms such as costs and QoS parameters. The results from the exper-

iments showed that it reduced the rental cost and SLA violation as compare to state-

of-the-art proactive and reactive scaling methods. There is also a fair quantity of CPU

usage in the proposed technique. Consequently, it was evident that other parameters like

the number of requests and the use of CPU are equally important in the scaling deci-

sions along with response time. The RHAS approach can offer the application providers

profit in terms of cost and also gives the end user QoE for web application in the cloud

environment.

116

CHAPTER 5

A PROFIT-AWARE RESOURCE

PROVISIONING FOR WEB

APPLICATIONS IN CLOUD

5.1 Introduction

The paradigms for cloud computing include Infrastructure as a Service (IaaS), Platform

as a Service (PaaS) and Software as a Service (SaaS) [11]. In a cloud environment, VMs

are provided with different pricing models such as the reserved, spot instances and on-

demand [178]. The Application Service Providers (ASP) are rent out the VMs from

Cloud Service Providers (CSP) and host the applications. These applications are SaaS

applications such as e-commerce applications. The customers use Internet services to

access the web application from cloud data centers [179]. The requests of end users

are dynamic and expect service quality. The careful design of the techniques to supply

resources could overcome the problem of resource oscillation, this situation arises when

the resources are over-utilized or under-utilized in the data centers [180].

The exact number of resources estimation is an important decision for web appli-

cation in the cloud. This factor is influenced by the user request pattern [181]. The

irregular access pattern of the websites generates the fluctuation in the incoming traffic.

117

The number of resources if deployed in the cloud data center for incoming traffic, this

leads to the over-utilization, due to this ASP has to pay more cost. The second con-

dition, when less number of resources arranged for the incoming traffic. This lead to

an under-utilization state, where renting cost is less but ASP has to pay the SLA viola-

tion penalty to the customers [5]. Thus, a need arose to develop a technique which can

overcome both the state and give a fair amount of services to the end-users.

The resource oscillation problem could be solved with dynamic provisioning tech-

nique for the data center resources. This technique can be designed with a combination

of infrastructure-level parameters and user-level parameters. The ASP requirements

are maximum profit gain with minimum SLA penalty. The Quality of Service (QoS)

parameters help to strengthen the reliability of customers on the service providers.

In chapter 3, the researcher discussed the proposed Technocrat ARIMA and SVR

Model (TASM) [182]. The proposed model highly suited for the applications with the

dynamic workload. In this research work, the researcher combined the technique de-

veloped in chapter 3 and chapter 4 to develop the Triangulation Resource Provisioning

(TRP). The proposed technique in this research used the feature of robust auto-scaling

technique with the enhanced execution module. In this study, the researcher contribu-

tion is as per the following:

• Designed a resource provisioning mechanism for web applications in a cloud

environment.

• Designed and developed the profit-aware surplus VM selection technique.

• The real weblog traces are used to evaluate the proposed and existing techniques

on various performance metrics such as CPU utilization, response time, VM al-

location and cost.

5.2 Background

The autonomous computing is able to perform self-configuration, self-optimization, and

self-protective [23, 183]. In the autonomous scaling, the researchers in history used the

same technique and develop the provisioning approach with four phases of Monitor-

Analyze-Plan-Execute (MAPE) loop [24]. The MAPE loop in cloud architecture is

118

shown in Figure 5.1. The infrastructure and user behavior parameters are collected by

monitoring phase [25]. Afterward, the analyze phase considered this data to process

with reactive and proactive scaling algorithms to find useful information. Furthermore,

the third phase took this information to plan the scaling decision to scale-up, scale-

down or do-nothing. The fourth phase is the execution phase, which implements the

scaling decision as per the planning phase decision and providers constraints such as

the limit of on-demand VMs to deploy for the particular application. In literature, auto-

scaling techniques are categorized as threshold rules, control theory, queuing theory,

application profiling, fuzzy logic, and time-series based [31].

M
o

n
it

o
r

A
n

al
y

ze

P
la

n

Ex
e

cu
te

Knowledge

Cloud Applications/Resources

Figure 5.1: MAPE-K based cloud resources management.

5.2.1 Monitor

This phase collects the data from the cloud data centers about the resource utilization,

Service Level Agreement (SLA) violation and users incoming requests [116, 184]. The

cloud providers offer the monitor services on the hypervisor level, VM level, and appli-

cation level.

5.2.2 Analyze

The data received from the monitoring phase processed to find useful information. This

information helps in the decision-making process in the planning phase. The two types

of analysis technique are reactive and proactive, which is used in literature by various

authors. In the reactive approach, threshold values are decided for scale in/out decision

119

in horizontal scaling [185]. In a proactive technique, the incoming traffic or resource

utilization is forecast from the historical data. This information used to percept the

future situation of workload and resource usage. The proactive technique is able to

dismiss the issue of VM delay in a startup, while the reactive approach is efficient to

handle the current uncertain situation.

5.2.3 Plan

This phase collects the processed information from the analysis phase. Here, the poli-

cies are designed to take the scaling action based on the arguments such as the number

of request in the next scaling interval, average CPU utilization, average response time,

etc. In literature, numerous techniques are designed based on the QoS, SLA, cost, load,

and resource to overcome the resource oscillation in cloud infrastructure [186, 187].

5.2.4 Execution

The cloud providers give unlimited resources flexibility to the application providers.

According to the budget and deadline constraints, the ASP is deciding the limit of max-

imum on-demand resources. The execution phase provides the feature to pass the scale-

in or scale-out decision according to the limit set by the ASP. Aslanpour et al. [132]

designed the super-professional executor, which provide the feature of quarantined the

spare capacity if the billing hour is not completed. This technique can save the cost in

hourly billing cycle cloud services.

5.2.5 Knowledge

The shared repository is called a knowledge phase in the MAPE-K loop. This stores the

data related to the status of resources, historical logs and policies [188]. The autonomic

manager applied this information at various events in the decision-making process.

5.3 Related Work

The brief survey of resource provisioning techniques is discussed in this section.

A survey on the autonomic computing using MAPE-K conducted to introduce vari-

ous techniques. In this study, Huebscher and Julie [189] introduced the basic concepts

120

and motivation for autonomous computer applications. Rahimizadeh et al. [190] de-

vised a two-tier application with the MAPE approach in dynamic cloud provisioning

environment. Maurer et al. [191] has developed the MAPE autonomous control cir-

cuit for the cloud infrastructure. The adaptive technology designed based on thresholds

values. In the present study, the researcher used a hybrid approach with the prediction

model and threshold rules for scaling actions. The scientific application’s configuration

performed inefficient manner with the MAPE loop using adaptive framework [192].

Ghobaei et al. [193] also applied the MAPE-K loop in provisioning of resources in

cloud data centers.

Islam et al. [125] applied neural network and linear regression for the resource usage

analysis. The author also discussed the issues in resource provisioning of cloud data

centers. Huang et al. [116] used Double Exponential Smoothing (DES) to calculate

the resource utilization with scaling indicators. Bankole et al. [152] and Ajila et al.

[194] performed analysis using neural network. The performance metrics throughput,

response time and resource usage are analyzed. Pankaj Deep et al. [186] develop the

resource provisioning techniques for the analysis and planning phase. The effectiveness

of indicators enhanced with the help of a decision tree. Mohamed et al. [185] developed

a reactive approach based on the MAPE loop with reactive scaling policies. The static

policies is a problem for dynamic resource provisioning, especially for web applications

in cloud computing. Herbst et al. [195] proposed a proactive analysis phase along with

monitoring phase in the MAPE loop. Simple to complex attributes applied to choose

the prediction model with fewer errors. Singh et al. [196] designed resource allocation

technique based on the clustering of workload. The author segregates the workload as

per the QoS requirements. Toosi et al. [197] developed a threshold-rule based heuristics

to use renewable energy for load balancing in the cloud.

Casalicchio and Silvestri [198] proposed the 5 rules to calculate the resources for

various architectures. Garcia et al. [199] designed planning phase with rules based on

SLA agreement. This approach aimed at improving the QoS at a minimal cost. A plan-

ning algorithm designed to analyze the capacity of the resource using machine learning

approach [184]. Fallah et al. [74] used a reactive and proactive approach in the plan-

ning phase to estimate the allocation of resources with learning automata. Beltran et al.

[187] devised approach with vertical and horizontal scaling combined. Further, an auto-

121

nomic framework for resource provisioning reduces the cost of application deployment.

Molto et al. [200] applied over-subscription and live migration techniques for vertical

and horizontal scaling. Arani et al. [201] introduced the MAPE loop based framework

for resource provisioning. Aslanpour et al. [202] designed the proactive and reactive

based auto-scaling approach. Two-sided planning phase devised with the resource uti-

lization and SLA violation. Moldovan et al. [203] proposed the cost-aware policies for

surplus VM selection in a cloud environment. The author described the importance of

resource usage and CPU utilization for scale-out decisions.

In literature, many authors proposed the resource provisioning techniques to strengthen

the SaaS. The frameworks, mechanism, models, and algorithms are developed which

specially focused on a web application in the cloud environment. The key challenge in

reactive auto-scaling approach is VM startup time, which varies from 5 minutes to 15

minutes [186, 204, 205]. The wisely applied prediction model with a reactive approach

could reduce the scaling overhead and enhance the resource utilization.

In the present study, the researcher designed the architecture for resource provision-

ing for web applications. The proposed technique is a hybridization of proactive and

reactive techniques.

5.4 Proposed Approach

The proposed approach for resource provisioning is discussed in this section. The ap-

proach developed in the present work is based on the IBM MAPE-K loop and the

modules were executed at a specified interval. The triangulation approach employed

a proactive and reactive resource scaling methods. The cost and SLA trade-off is con-

sidered in the proposed provisioning mechanism. The goal of the present study is to

designed a profit-aware resource provisioning approach for ASP while giving the QoS

to the end-users.

The proposed cloud resource provisioning architecture is shown in Figure 5.2. The

ASP, CSP and end-users are the crucial components of the cloud environment.

5.4.1 Monitoring Phase

In the monitoring phase, the resource-aware approach collects the for resource usage

(e.g. CPU utilization) [180] [23] and, SLA-aware approach monitored the response

122

users

End users

Historical workload

TASM Workload
Predictor

Performance Modeler

devices desktop

Web-tier Application-tier Database-tier

Admission Control

Application
Provisioner

Data Centers

CPU Utilization

Resource
Provisioner

Accepted
User

 Requests

No. of
VMs

R
es

po
ns

e
Ti

m
e

Cloud Service
Provider

Application Service
Provider

Response

Figure 5.2: The cloud resource provisioning architecture.

time. The information related to incoming requests, SLA parameters and resource uti-

lization helps to take the effective provisioning decisions. The cloud architecture shown

in Figure 5.2 highlighted the monitoring parameters: workload prediction, response

time and CPU utilization.

5.4.2 Analysis Phase

The data collected from the monitoring phase used in the analysis phase to find the

useful inferences from the data. The historical workload, CPU utilization and response

time are the key components of proposed Triangulation Resource Provisioning (TRP)

mechanism. The performance modeler estimates the number of VMs as per the analysis

discussed in Chapter 4 and Section 4.4.3. The proposed TRP mechanism shown in

Figure 5.3. The working of each module is describe as follows:

123

Triangulation
Resource

 Provisioning

Workload
Prediction

Response
Time

CPU
Utilization

Figure 5.3: The proposed triangulation resource provisioning (TRP) approach.

Workload Prediction

In the chapter 3, the researcher described the working of proposed prediction model for

web application in cloud named as Technocrat ARIMA and SVR Model (TASM) [182].

The prediction accuracy of the proposed TASM model is better as compare to the state-

of-the-art prediction models. In the present study, TASM workload predictor employed

in the workload predictor module in the cloud architecture. The workload prediction

approach is shown in Figure 5.4. The repository stores the historical workload, the

researcher collect the information and convert the incoming request in discrete time

series. The detail working of the approach is described in Chapter 3 and the published

article [182]. In addition, the discrete time series further classified in slow and fast

scale. The proposed classification approach selected the ARIMA, LR or SVR model

based the workload pattern. In the Chapter 3, the proposed model test on the discrete

series of 10 minutes. In the current study, the researcher consider short term prediction

of 1 minute discrete time series. The result of 1 minute prediction approach discussed

in Chapter 4.

CPU Utilization

CPU utilization is the key parameter of resource usage. This can be observed from the

host deployed the VMs in cloud architecture. The average CPU utilization is calculated

according to Eq. 5.1.

124

Historical Workload

Produce the discrete time series

ACF and PACF graph of di fferencing

and actual time series

Analyze the trends, irregularity and

seasonality in time series

Apply non-seasonal study

Figure 5.4: The TASM analytical process for workload forecasting.

AverageCpuUtilization =
∑

OnlineV ms
i=1 V MiCPUutilization

OnlineV Ms
(5.1)

Where V Mi utilization is the CPU utilization of V Mi and, OnlineV Ms are the total

VMs including in-service VMs and startup VMs.

V MiCPUutilization =
∑

currentcloudlets
j=1 (CloudletPEs j ∗CloudletLength j

PE ∗MIPS
(5.2)

The CurrentCloudlets are total incoming request in the scheduler according to dis-

crete time series (e.g. the number of request in 1 minute). The CloudletPEs are the total

processors requirement and a number of instruction in each user request cloudletLength.

The Million Instruction Per Second (MIPS) and Processing Elements (PE) defined the

processing capacity of each VM in cloud data centers.

Response Time

The response time is the duration taken by the system to respond to each request in the

cloud. The Eq. 5.3 used to calculate the average response time in the past minute in the

current scaling interval. Response time is also an SLA parameter usually considered

by the end-users. The surplus VM selection policy also used the response time for a

scale-in decision.

125

AverageResponseTime =
∑

TotalProcessedCloudlets
i=1 ResponseTimei

TotalProcessedCloudlets
(5.3)

The number of cloudlets executed in last minutes represented with TotalProcessedCloudlets.

ResponseTimei defined the delay in response iat ith response to the incoming request.

Furthermore, the Eq. 5.4 used to calculate the response delay.

ResponseTimei = FinishTimei−ProcessTimei−ArrivalTimei (5.4)

The ArrivalTimei is the recorded Clock when the user request accepted in a cloud

system, the cloudlet processing time represented with ProcessTimei. Once the cloudlet

execution is complete then system Clock time recorded is the FinishTimei of each

cloudlet.

5.4.3 Planning Phase

The application provisioner implements the planning phase. The planning module was

based on the threshold based rules to get a decision on scaling as the planning phase

described in Chapter 4 and Section 4.4.4. This phase used the analyzed information

during the analysis phase.

The threshold rules are designed to take scaling decision as per the scaling indi-

cators. The processed parameters collected from the analysis phase such as predicted

workload in scaling interval, average CPU utilization and response time. The response

time is set 0.2s− 1.0s for lower and upper threshold and CPU utilization is set as

20%− 80% respectively. Rather, the proposed approach is flexible and application

provider can change the values as per the QoS requirements.

The planning phase takes the decision for scale-in, scale-out or does nothing. The

upper-threshold values are compared against the current CPU utilization and response

time, if either of the analyzed parameters found greater, further forecast current work-

load compared with the forecast workload. The scale−out decision occurred immedi-

ately, if the current cloudlets are less than forecast cloudlets.

Otherwise, if CPU utilization and response time both are less against lower-threshold

values then further compare the current number of requests with the predicted work-

load. The scale− in decision taken in case the forecast requests are less than the current

requests, else the decision would be to do−nothing.

126

This decision of scale− in, scale−out and do−nothing input to execution phase.

5.4.4 Execution Phase

The resource provisioner implements this phase and took the scaling decisions such as

scale-in, scale-out or do nothing as per the decision of the planning module. The present

study aims to optimize the scale-in decision in a cloud environment.

The cloud environment has the elasticity feature, due to which de-provisioning oc-

curred in the scale-in decision. The present study presented a profit-aware policy for

scale-in decision in a cloud computing environment. The approach is flexible for pro-

viding the scale-in decision for any type of billing cycle. The experiments in this re-

search work done on the Amazon EC2 hourly billing services. The detailed working

of the proposed surplus VM selection defined in Algorithm 6. Table 5.1 described the

symbols used in this section.

As per proposed algorithm 6, two important factors are considered, first one is pend-

ing minutes from the billing cycle from the VM and second is the number of request in

the queue to be processed on the VM also called load on the VM. The line no. (4−11)

are designed to create a list of VMs whose billing cycle will be terminated in the next

scaling interval represented with onDemandSurplusV Ms. In line no. (12− 13), the

selection of VM is limit to specific VM only if the onDemandSurplusV Ms have only 1

VM. In this condition, the approach is designed to select the only VM present on the list.

Furthermore in line no. (14− 15), the surplus VM list may be empty because no VM

has near to the completion of billing cycle duration 4s, then no scale-in event would

not occur. In addition, if the onDemandSurplusV Ms size is more than 1, the selection

of VM out of the list. In line no. (17−29), the eligible VM for scale-in further sorted

based on the load on the VMs. To ensure the QoS to end-user, the selection of VM with

least load is selected for scale-in event. The calcuatePendingST function employed to

estimate the cloudlets service time. In line no. (30), the surplusV M find during the

selection process returned to the resource provisioner.

5.5 Experiment Evaluation

CloudSim [97] toolkit is used to simulate the the proposed model TRP. Cloud infras-

tructure can be simulated with CloudSim. Data analytic task performed with libraries

127

Algorithm 6 The pseudo code of proposed profit-aware surplus VM selection policy

1: Input: OnDemandVM List (V MS +V MP)

2: Output: surplusVM

3: Variables: availableTime,remainingTime, onDemandSurplusV Ms ← null, minLST ←

anHour

4: for vm in onDemandVmList do . Prepare the VMs list having left service time less than or

equals to scaling interval

5: LST ← null;

6: availableTime←Clock−V M.getRequestTime()

7: LST ← anHour− (availabletime%anHour)

8: if LST<=4s then

9: onDemandSurplusVMs.add(vm);

10: end if

11: end for

12: if onDemandSurplusVMs.legnth() == 1 then . If list containing only 1 VM

13: surplusV M← onDemandSurplusV Ms.pop() . Select the first VM as surplusVM

14: else if onDemandSurplusVMs.empty() then . If list is empty

15: surplusVM← null

16: else . If list containing more than 1 VMs

17: for vm in onDemandSurplusVMs do

18: vm.LST ← 0

19: cloudletList← vm.getScheduler().getCloudletList()

20: for cloudlet in cloudletList do

21: pendingServiceTime← calculatePendingST (cloudlet)

22: vm.LST ← vm.LST − pendingServiceTime

23: end for

24: if abs(vm.LST)< minLST then . abs stands for absolute value

25: minLST ← vm.LST

26: surplusVM← vm

27: end if

28: end for

29: end if

30: return surplusVm;

128

Table 5.1: Description of notations

Parameter Description

Clock Timer for Simulation

4s Scaling Interval

OnDemandVM Combined List of in-service and pending VMs

V MP List of VMs about to ready or in ready state

V MS List of VMs in-service

OnDemandSurplusV Ms List of potential surplus VMs in scaling interval

LST VM’s left service time in current billing hour

cloudletList List of incoming request called cloudlets

SurplusVM In Algorithm 6, the VM finally selected for scale down

Table 5.2: Detail of ClarkNet dataset

Parameter Value

Log Files Aug28log, access1

No. of Requests 3,328,587

Duration 2 weeks

Discrete Time series 1 minute

enriched R Tool. CloudSim toolkit extended with auto-scaling classes and data science

libraries. R language scripts are executed in the CloudSim environment with R Caller

library.

5.5.1 Experiment Setup

The experiment was conducted using the weblog of ClarkNet [163]. The series contains

different workload patterns of the time series helped to evaluate the performance of ex-

isting and proposed provisioning mechanisms in normal and peak hours. The workload

details presented in Table 5.2.

In cases of peak workload, larger VMs are provisioned, whereas small VMs are

provisioned when workloads are normal. The amount of time to start VM considered as

5 minutes for this experiment. The scheduling algorithm is considered in the experiment

is time shared.

129

0

100

200

300

400

500

1

1
1
2

2
2
3

3
3
4

4
4
5

5
5
6

6
6
7

7
7
8

8
8
9

1
0
0
0

1
1
1
1

1
2
2
2

1
3
3
3

U
se

r
re

q
u

e
st

s

Time (1 min)

ClarkNet Series

Figure 5.5: ClarkNet workload of the 6th day in week.

5.5.2 Performance Evaluation

The performance metrics applied to evaluate the proposed resource provisioning mech-

anism are as follows:

Response Time: The time to respond to the request is referred to as the response

time. At the time of cloud service agreement, the delay of the response time is agreed.

In cloud environments, the least recorded response time is 200ms. Mohamed et al. [185]

and Beltran et al. [187] took into account the response between 700m and 1200ms. In

the present study, the researchers took into account 1000ms in the experiment to ensure

the QoS. In the proposed TRP technique, the recorded response time is used to scale

the cloud resources in a horizontal way.

SLA Violation: The SLA violation is considered as the time to respond to a user

request. The desired response time is 1000ms according to the present study experi-

ments. The delay in services than agreed response time leads to the penalty to ASP. In

this study, the researcher used the delay of more than 1 second to charge a penalty to

application providers.

Cost: The aim of the present study is to minimize the provisioning cost for web

application along with QoS in a cloud environment. In literature, most of the articles

only considered the renting cost while ignoring the SLA penalty. In the real scenario,

the total cost is the sum of the SLA penalty and renting cost. In the present study, the

130

researcher also considered the total cost according to the real scenario.

5.5.3 Results and Discussion

The effectiveness and performance of the TRP mechanism discussed in this section.

Workload Prediction

The arrival rate of incoming workload is forecast using the prediction model TASM

[182]. This model TASM has discussed in detail in Chapter 3. In contrast to the ex-

isting time series prediction model, TASM gives better accuracy for web applications

workload. The TASM is designed with combination the LR, SVR, and ARIMA mod-

els. These models are chosen according to classification on the pattern of the incoming

requests. In Chapter 3, the researcher performed the evaluation using 10 minutes short

time forecast. The weblogs first compiled in the discrete-time series model. A short

prevision of 1 minute was conducted and further applied in this approach in the pro-

posed mechanism TRP. Figure 5.6 shows the prediction result of ClarkNet series with

TASM.

0

100

200

300

400

500

1 9
7

1
9
3

2
8
9

3
8
5

4
8
1

5
7
7

6
7
3

7
6
9

8
6
5

9
6
1

1
0
5
7

1
1
5
3

1
2
4
9

1
3
4
5

U
se

r
R

e
q

u
e

st
s

Time (1 min)

ClarkNet series workload prediction

Actual TASM

Figure 5.6: Workload prediction of ClarkNet series using TASM prediction model.

RMSE =

√
1
n

n

∑
s=1

(actualRequestss− predictedRequestss)
2 (5.5)

131

MAPE =
1
n

n

∑
s=1

∣∣∣∣actualRequestss− predictedRequestss
actualRequestss

∣∣∣∣×100% (5.6)

Root-Mean-Square-Error (RMSE) in Eq. 5.5 and Mean-Absolute-Percentage-Error

(MAPE) in Eq. 5.6 are used to asses accuracy of the prediction models. The TASM

prediction model observed value is 42.24 for RMSE and 20.63% for MAPE against the

LR values are 64.37 and 34.52% and ARMA values are 51.24 and 32.98% receptively

for ClarkNet series.

Triangulation Resource Provisioning Mechanism

In Section 4.2, the researcher explained in detail the TRP mechanism with the help of

Figure 5.3. The TRP mechanism is formed with three important parameters related

to high-level and low-level details. The experiment evaluation is compared with three

different approaches.

The first approach is related to the utilization of resources for deployed VMs (sin-

gular approach). In every 1 minute, the monitoring phase records CPU usage, further

average CPU utilization is calculated as per the scaling interval. The threshold values

are decided based on the type of applications e.g. If average CPU utilization is be-

yond 80% (upper threshold) than new VM is scaled-out, and a 20% CPU utilization

(lower-threshold) leads scale-in decision.

The second approach (double approach) considered in the experiment with addi-

tional feature response time with CPU utilization. The delay in response is related to

the violation of the SLA agreement. Like the CPU utilization, the response time is also

take scaling decision based on threshold values.

In the present study, the 3-D [205] technique based model has designed. Triangula-

tion Resource Provisioning (TRP) added one more parameter that is a number of user

request in discrete time series. This parameter is forecast based on the proposed pre-

diction model TASM. The LR, ARIMA and SVR models are selected to forecast based

on the classification technique to select the prediction model as per the sliding window

pattern. Another contribution of this research is the profit-aware surplus VM selection

policy. This help to optimize the QoS along with ASP’s profit.

132

0

1

2

3

4

Response Time
(Avg)

Response Time
(SD)

SLA Violation (%)

QoS of ClarkNet Series

Singular Double Triangulation

Figure 5.7: The QoS of singular, double and proposed triangulation mechanism for

ClarkNet Series.

0

5

10

15

Renting Cost SLA Penality Total Cost

C
o

st
 ($

)

Cost for ClarkNet Series

Singular Double Triangulation

Figure 5.8: The cost of singular, double and proposed triangulation mechanism for

ClarkNet Series.

133

0.8

0.85

0.9

0.95

1

LUFD FUFD Cost-aware Load-aware Profit-aware
(Proposed)

R
e

sp
o

n
se

 t
im

e
 (

s)

VM Selection Policy

Response Time for ClarkNet Series

Response Time

Figure 5.9: The response time of surplus VM selection policies for ClarkNet series.

69

70

71

72

73

74

LUFD FUFD Cost-aware Load-aware Profit-aware
(Proposed)

C
P

U
 U

ti
liz

at
io

n
 (

%
)

VM Selection Policy

CPU Utilization for ClarkNet Series

CPU Utilization

Figure 5.10: The CPU utilization of surplus VM selection policies for ClarkNet series.

134

0

2

4

6

8

10

12

LUFD FUFD Cost-aware Load-aware Profit-aware
(Proposed)

C
o

st
 ($

)

VM Selection Policy

Cost for ClarkNet Series

Renting Cost SLA Penalty

Figure 5.11: The cost of surplus VM selection policies for ClarkNet Series.

The experiment results of resource provisioning mechanisms Singular, Double and

Triangulation is shown in Figure 5.7 and Figure 5.8. The response delay is 1 second

considered for this experiment as an SLA parameter. The results show that the pro-

posed TRP mechanism is able to provide the response time as per SLA which lead to

maintaining the reliability of users on the ASP. The response delay Standard Deviation

(SD) shows the QoE of the users. The lower SD value of proposed Triangulation tech-

nique depicts that the response delay is close to the desired response time as per SLA

agreement. The provisioning cost of the services to ASP are not only renting cost of

resources but also the penalty cost, which needs to pay in case of delayed services. The

TRP mechanism gives 20% benefit in terms of total provisioning and penalty cost.

Profit-aware Surplus VM Selection Policy

In Amazon EC2, the VM selection for scale-in decision is random. The state-of-the-

art policy is developed as per Last Up First Down (LUFD) [202], First Up First Down

(FUFD) [131]. Aslanpour et al. also designed the load-aware and cost-aware [132, 205]

surplus VM selection policies. In the present study, the experiment is employed the

super-professional executor [132]. In this research work, the researcher designed a new

profit-aware surplus VM selection technique. The existing cost-aware policy scale-in

135

the VM with maximum utilization of current billing time period. The issue cost-aware

policy is SLA violation due to the number of jobs in the queue need to terminate. In

this condition, the SLA penalty faced by the ASP. Another approach in the literature is

load-aware policy, which put a more renting cost to the ASP. This technique selects the

VM to scale-out, where the number of request in scheduler queue is minimum. This

method can choose any VM to de-provision with the minimum workload irrespective

of pending service minutes of the billing period. This approach provides the QoS to the

end-user but put more burden on ASP in terms of renting cost.

In the present study, the profit-aware surplus VM selection policy identifies the VMs

pending service time within the scaling interval. For example, the VMs with a pending

service range from 0 to 10 minutes were shortlisted for scaling interval of 10 minutes.

The minimum jobs in the scheduler queue of the VMs were then selected for the scale-

in action. In every scaling interval, this process is repeated. The proposed VM surplus

selection policy shows the significant benefit in experiment results for the ASP and QoS

for the end-users.

The ClarkNet web traces are used to emulate the incoming requests in CloudSim

toolkit. The experiment is conducted with two types of an executor: Simple and Super

Professional (Suprex) [132]. In the first scenario, LUFD and FUFD scaling policies

cannot support the Suprex executor, so default executor deployed for these scaling poli-

cies. The suprex executor enriched with quarantined VMs technique to simulated for

cost-aware, load-aware and proposed profit-aware surplus VM selection policies. The

quarantined feature of suprex executor does not implement the scale-in decision im-

mediately, rather it holds the VM till completion of the hourly billing cycle. Thus, it

provides the benefit to recall the VM from the quarantined list if VM needed in next

scaling interval.

The comparison result of proposed and existing surplus VM selection policies shown

in Figure 5.9, Figure 5.10 and Figure 5.11 response time, CPU usage and renting cost

respectively. The experiment result showed that the response time of proposed profit-

aware and load-aware policies are minimum, thus gives QoS to the end-users. The

highest CPU usage observed in LUFD and FUFD scale-in policies. The LUFD and

FUFD techniques not able to hold the machine and implement the scaling decision im-

mediately. Due to this, policies gain higher CPU utilization along with higher renting

136

Figure 5.12: The comparison of CPU utilization for ClarkNet Series.

cost also. In total, the proposed profit aware policy benefit the ASP up to 16 percent in

cost while giving the QoS experience to the end-users.

Comparison of Resource Provisioning Mechanisms

The cost-aware (LRM) and cost-aware (ARMA) [68] are the two baseline resource pro-

visioning mechanism used to compare the proposed TRP mechanism. Yang et al. [206]

applied the Linear Regression (LR) in the cost-aware (LR) provisioning technique. Roy

et al. [68] designed the provisioning technique with second-order Autoregressive Mov-

ing Average (ARMA) prediction model. In the present study, the proposed profit-aware

(TRP) mechanism used the TASM prediction model.

Figure 5.12 described the CPU usage of cost-aware (LRM), cost-aware (ARMA)

and proposed profit-aware (TRP) provisioning mechanism for web application in cloud

for ClarkNet web trace. The more than 100% CPU usage showed the shortage of re-

sources due to the faulty auto-scaling mechanism. Here, the current resources are not

able to handle the incoming workload and ASP has to pay penalty to the end-users.

The frequent spikes observed in ARMA and LR resource utilization, this indicates the

existing technique is less efficient as compared to proposed TRP mechanism. Thus,

the carried out research is successfully able to overcome resource oscillation issues in

cloud data centers.

137

Figure 5.13: The comparison of response delay for ClarkNet Series.

Figure 5.14: The comparison of VM allocation for ClarkNet Series.

138

The average response delay at each scaling interval of cost-aware (LRM), cost-

aware (ARMA) and proposed profit-aware (TRP) mechanisms are shown in Figure

5.13. The response delay is the SLA parameter and key parameter to calculate the

SLA penalty. Both under-usage and over-usage of the resource are cost surplus for

ASPs. In this experiment, the response delay as per SLA agreement considered as 1s.

Figure 5.13 shows the experiment results for ClarkNet series response delay more than

1 second. The proposed approach experienced very fewer spikes and almost near to

0, this means that the TRP mechanism is a flexible, robust and reliable technique for

resource provision come up with the cost and QoS benefits.

The VM allocations for each scaling interval for cost-aware (LRM), cost-aware

(ARMA) and proposed profit-aware (TRP) mechanisms are shown in Figure 5.14. The

experiment results show that the proposed profit-aware (TRP) approach is more bene-

ficial than cost-aware (LRM) and cost-aware (ARMA) baseline resource provisioning

techniques.

0

5

10

15

20

25

30

Cost-aware
(LR)

Cost-aware
(ARMA)

Profit-aware
(TRP)

C
o

st
 ($

)

Resource Provisioning Mechanism

Cost for ClarkNet Series

Renting Cost SLA Penalty

Figure 5.15: The comparison of cost for ClarkNet Series.

The total cost paid by the ASP is SLA penalty to the end-user for delayed services

and renting cost to CSP for infrastructure services shown in Figure 5.15. The experi-

ment result shows that the proposed TRP approach is more cost beneficial as compared

to other state-of-the-art resource provisioning techniques. The renting cost of TRP

139

mechanism is higher than other technique but relatively bear minimum SLA penalty.

Here, ASP can gain up to 12 percent profit using the proposed resource provisioning

techniques.

5.6 Summary

In the present study, resource provisioning technique is developed for web application

in cloud infrastructure. The Triangulation Resource Provisioning (TRP) mechanism

designed with CPU utilization, response time and workload prediction parameters. In

addition, a new profit-aware surplus VM selection policy designed for scale-in deci-

sion. The TRP mechanism designed under MAPE control loop. The monitoring phase

collects the infrastructure and user level parameters. The analysis phase processed the

information with TASM prediction model, average CPU usage and average response

time. The planning phase heuristic is used to take the scaling decision. The execution

phase designed with super-professional executor for profit-aware surplus VM selection

policy. The proposed technique select the appropriate VM to scale-in from the sur-

plus VM list, so that it could save the cost and maintain the desired QoS as per SLA.

The ClarkNet workload traces emulated the incoming traffic. R tool and CloudSim en-

hanced with auto-scaling libraries used to perform a comparison between existing and

proposed resource provisioning techniques. The proposed provisioning approach with

profit-aware surplus VM selection policy is a profit-aware approach can provide the

application providers to save the overall provisioning cost while giving the QoS to the

end-users for web application in the cloud data centers.

140

CHAPTER 6

CONCLUSION AND FUTURE

DIRECTIONS

6.1 Conclusion and Discussion

Cloud computing provides the resources in a pay-as-you-go manner to the users as per

the real-time demand of the applications. This feature eliminates the requirement of lo-

cal infrastructure and users can concentrate on their main business. The web application

providers have been attracted towards this appealing feature.

The application providers have been deployed the applications on the cloud data

centers. The cloud computing brings advantages for web application providers like

higher availability, QoS, cost efficiency and reliability. However, the resource provi-

sioning of web application have some pending challenges.

In this thesis, the researcher divided the challenges into three aspects: 1) workload

prediction of web applications, 2) auto-scaling of web application in the cloud, and 3)

resource provisioning to raise profit with QoS. The researcher performed a methodolog-

ical literature review, proposed solutions, developed the mechanisms, and simulate the

techniques to escalate the current state-of-the-art in these areas. In particular, Chapter 1

explained the detail of the objectives of this thesis and described the contribution of the

present study. It also defines the structure of the thesis.

In Chapter 2, a methodological survey carried for the existing research on the prob-

141

lems addressed in this research work. The survey starts with the origin of autonomous

computing. The detail investigation has been carried for elastic applications, capac-

ity management and QoS-aware requirement of web applications in cloud data centers.

A comprehensive taxonomy on auto-scaling techniques is proposed and compared the

literature articles. The resource provisioning technique is discussed in detail in each

auto-scaling category. The researcher also identified the challenges in resource provi-

sioning of cloud applications.

Chapter 3 presented the efficient time series prediction model specifically for web

applications in the cloud. The name of the developed prediction model is Technocrat

ARIMA and SVR Model (TASM). It is the combination of three prediction models

along with the workload classification approach. There are various types of workload

patterns presented in the workload of web applications. In literature, there is no general

method that fits with all types of patterns present in the workload. The classification

of workload performed on the basis of l2−norm, average-rate-of-change and linearity

test. A mechanism is designed to configure the model’s parameters with residual test-

ing. In addition to existing models, it is able to predict the workload with seasonal and

non-seasonal patterns. A new cloud architecture designed with the proposed prediction

model named as Technocrat Cloud Provisioning Architecture. The researcher devel-

oped this model using R programming language. The ClarkNet and NASA weblogs

converted to a discrete time series for performance evaluation. The error rate in the

existing and proposed model tested with the performance metrics such as MAE, MSE,

RMSE, and MAPE. The platform error calculated for over-provisioning and under-

provisioning of the resources. The experimental results confirmed the higher efficiency

of TASM for web application in the cloud environment. It makes a significant improve-

ment in resource oscillation problem in the cloud applications.

Chapter 4 proposed a Robust Hybrid Auto-Scaler (RHAS) technique to solve the

web application provider’s issue of uncertain scaling decisions due to irregular incom-

ing requests. The technique is designed on the basis of Monitor-Analyze-Plan-Execute

and knowledge (MAPE-K) architecture. The monitor phase collects the data for user

requests and resource utilization. The hybrid analysis phase is designed to calculate

the future incoming request with TASM prediction model, average CPU utilization

and average response time. These values further input to the hybrid planning phase,

142

which is designed with the combination of reactive and proactive auto-scaling meth-

ods. CloudSim toolkit is extended with auto-scaling libraries and R− caller library for

the simulation of the proposed RHAS auto-scaling technique. The efficiency of RHAS

is demonstrated through simulation experiments. The simulation results proved that

RHAS reduces the renting cost and SLA violation with a fair amount of CPU utiliza-

tion.

Chapter 5 presented the resource provisioning mechanism with a comprehensive

work of workload prediction, auto-scaling technique. The proposed technique is de-

signed to maximize the profit of the application provider and also ensure the QoS to

the end-user. Triangulation Resource Provisioning (TRP) mechanism designed using

workload prediction, CPU utilization and response time. This technique focused on the

execution phase of MAPE-K architecture, where the decision of planning phase collides

with infrastructure level constraints. The super-professional executors gave the facility

to quarantined the spare capacity. The scale-in decision in horizontal scaling needs

to select an in-service Virtual Machine (VM). The profit-aware surplus VM selection

policy developed to select the VM with the least load in the current scaling interval.

CloudSim toolkit is enhanced with classes of the execution phase. The real workload of

ClarkNet series is used in the experimental evaluation. The simulation results demon-

strated that proposed TRP and Profit-aware Surplus VM selection policy stable the CPU

utilization, enhance the renting cost for fair QoS and reduce the SLA penalty. The total

cost to the application providers is the sum of renting cost and SLA penalty. Therefore,

the TRP mechanism is superior in terms of cost and QoS. The application providers

reap more profit and users get QoS for the web applications in the cloud environment.

6.2 Future Directions

Although many research efforts have researched the resource provisioning problem for

cloud applications. There are still scope of improvement and research gaps to be inves-

tigated for the multi-tier web applications. The following sections describe important

future directions in this field.

143

6.2.1 Monitoring Tools

Cost effective monitoring tools are required to implement, which explore the hidden

parameters such as cache memory, service time and types of request (e.g. Compute

intensive and data intensive). Application and workload-specific monitoring interval

can further improve the auto-scaler results.

6.2.2 Pricing Model

The companies such as Amazon, Google and Microsoft have their different pricing

model. Most of the researchers considered auto-scaling techniques with on-demand

resources while considering the unlimited resources. Other types of pricing are also in-

troduced e.g. Spot instances by the Amazon. The cost of such resources is very less as

compared to on-demand resources. Very few authors start working on the spot instance

for web applications, so the area is very immature and have different research chal-

lenges. Auto-scaling techniques for spot-instances using reactive and proactive tech-

niques give more benefit to application providers and clients.

6.2.3 Resource Allocation

The information on data center resources plays a significant role in resource provision-

ing decisions. Some parameters such as CPU, RAM, Disk are well-known factors but

some parameters such as cache memory, network bandwidth, and fault tolerance are

least considered in the literature. VMs for input workload for different tiers of the web

application is the future scope of many articles. SLA based resource allocation with

different QoS parameters needs improvement. It can be further improved by extending

the queuing network model.

6.2.4 Horizontal and Vertical Scaling

Horizontal scaling is used in most of the articles. Operating system and cloud architec-

ture support horizontal scaling. The vertical scaling is easier in cloud infrastructure and

gives better cost benefit. Hypervisors and operating system support could be enhanced

for the vertical scaling. Energy and cost-effective VMs allocation and consolidated with

migration are the future areas for research.

144

6.2.5 Workload Predictor

The existing workload predictors are considered the historical workload. Flash work-

load is hard to predict from the past workload. As growth in the online data mining and

deep learning techniques, real-time data can be used to avoid the sudden burst condi-

tion in the data center. Web applications face this problem due to any hackers attack

(DDOS) or flash event. Categorization of application will be more helpful to handle the

flash crowd. Spot instances can be more effective in terms of cost optimization to serve

flash workload.

6.2.6 Multi-cloud Auto-scaling

Multiple cloud providers are supporting multi-tier web architecture. Cloud providers

individually proved the reliability of their services. Multi-cloud architecture for web

applications needs to work upon. The cloud provider can be selected by considering the

application feature as the type of application, input workload, geographical area, etc.

The reliability-aware auto-scaling in the multi-cloud environment from factorizing the

various parameters guarantee the trust of users.

6.2.7 Energy-aware Auto-scaling

The existing work mostly focused on cost optimization and QoS requirement. The

data center is also facing environmental issues also. Solar data centers and renewable

energy resources in the data center can reduce the carbon problem. The carbon and

energy-aware auto-scaling provide the preference to the environmental friendly data

centers in a single and multi-cloud environment. The weather condition and maximum

solar power generating data centers give the highest priority for resource allocation.

6.2.8 Bin-packing Auto-scaling

The bin packing approach offers potential research topics in auto-scaling of web appli-

cations in cloud computing. The size of bins could vary, which makes this approach

more robust. Resource provisioning of bins is lightweight techniques and gives cost

benefits to the providers.

145

6.3 Final Remarks

Cloud computing has enough potential to save the cost and provide quality service for

multi-tier web applications. The competitive market of the cloud opens up the chal-

lenges and opportunities to solve these challenges. In this thesis, the researcher tra-

versed the problems of the application providers for proactive resource management of

the multi-tier web applications in the cloud. The proposed resource provisioning mech-

anisms in this research are influential in developing the profit-oriented middle-ware for

application providers. It will accredit the resource provisioning with cost saving, QoE

satisfaction and fair resource utilization in the cloud infrastructure.

146

REFERENCES

[1] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter, Cloud Comput-

ing Patterns: Fundamentals to Design, Build, and Manage Cloud Applications.

Springer, 2014.

[2] K. B. Douglas, “Web services and service-oriented architectures: the savvy man-

ager’s guide,” 2003.

[3] V. A. Almeida and D. A. Menascé, “Capacity planning an essential tool for man-

aging web services,” IT professional, vol. 4, no. 4, pp. 33–38, 2002.

[4] R. N. Calheiros, R. Ranjan, and R. Buyya, “Virtual machine provisioning based

on analytical performance and qos in cloud computing environments,” in Parallel

Processing (ICPP), 2011 International Conference on, pp. 295–304, IEEE, 2011.

[5] W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek, “Adaptive resource provision-

ing for read intensive multi-tier applications in the cloud,” Future Generation

Computer Systems, vol. 27, no. 6, pp. 871–879, 2011.

[6] L. R. Rabiner, “A tutorial on hidden markov models and selected applications in

speech recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989.

[7] J. W. Cohen, The single server queue, vol. 8. Elsevier, 2012.

[8] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing

and emerging it platforms: Vision, hype, and reality for delivering computing as

147

the 5th utility,” Future Generation computer systems, vol. 25, no. 6, pp. 599–616,

2009.

[9] A. Huth and J. Cebula, “The basics of cloud computing,” United States Com-

puter, 2011.

[10] KPMG, “2014 cloud survey report,” KPMG, Report, 2014.

[11] P. Mell and T. Grance, “The nist definition of cloud computing,” 2011.

[12] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski,

G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, et al., “Above the clouds: A berke-

ley view of cloud computing,” 2009.

[13] J. Lango, “Toward software-defined slas,” Communications of the ACM, vol. 57,

no. 1, pp. 54–60, 2014.

[14] J. Varia and S. Mathew, “Overview of amazon web services,” Amazon Web Ser-

vices, 2014.

[15] T. Lorido-Botrán, J. Miguel-Alonso, and J. A. Lozano, “Auto-scaling techniques

for elastic applications in cloud environments,” Department of Computer Archi-

tecture and Technology, University of Basque Country, Tech. Rep. EHU-KAT-IK-

09, vol. 12, p. 2012, 2012.

[16] H. Kim, M. Parashar, D. J. Foran, and L. Yang, “Investigating the use of au-

tonomic cloudbursts for high-throughput medical image registration,” in 2009

10th IEEE/ACM International Conference on Grid Computing, pp. 34–41, IEEE,

2009.

[17] “An architectural blueprint for autonomic computing,” tech. rep., IBM, June

2005.

[18] M. Rahman, R. Ranjan, R. Buyya, and B. Benatallah, “A taxonomy and survey on

autonomic management of applications in grid computing environments,” Con-

currency and computation: practice and experience, vol. 23, no. 16, pp. 1990–

2019, 2011.

148

[19] W. S. Mandak, C. A. Stowell, et al., Dynamic assembly for system adaptability,

dependability and assurance (DASADA) project analysis. PhD thesis, 2001.

[20] P. Horn, “Autonomic computing: Ibm\’s perspective on the state of information

technology,” 2001.

[21] I. Tivoli, “Autonomic computing policy language,” Tutorial, IBM Corp, 2005.

[22] M. Parashar and S. Hariri, “Autonomic grid computing,” Proceedings of Interna-

tional Conference on Autonomic Computing, U.S.A., pp. 1–10, May 2005.

[23] H. Kim, Y. El-Khamra, S. Jha, and M. Parashar, “An autonomic approach to

integrated hpc grid and cloud usage,” in e-Science, 2009. e-Science’09. Fifth

IEEE International Conference on, pp. 366–373, IEEE, 2009.

[24] M. Maurer, I. Breskovic, V. C. Emeakaroha, and I. Brandic, “Revealing the mape

loop for the autonomic management of cloud infrastructures,” in Computers and

Communications (ISCC), 2011 IEEE Symposium on, pp. 147–152, IEEE, 2011.

[25] H. Ghanbari, B. Simmons, M. Litoiu, and G. Iszlai, “Exploring alternative ap-

proaches to implement an elasticity policy,” in Cloud Computing (CLOUD),

2011 IEEE International Conference on, pp. 716–723, IEEE, 2011.

[26] M. Mao and M. Humphrey, “A performance study on the vm startup time in the

cloud,” in Cloud Computing (CLOUD), 2012 IEEE 5th International Conference

on, pp. 423–430, IEEE, 2012.

[27] J. Yang, T. Yu, L. Jian, J. Qiu, and Y. Li, “An extreme automation framework for

scaling cloud applications,” IBM Journal of Research and Development, vol. 55,

no. 6, pp. 8–1, 2011.

[28] E. Caron, F. Desprez, and A. Muresan, “Forecasting for grid and cloud com-

puting on-demand resources based on pattern matching,” in Cloud Computing

Technology and Science (CloudCom), 2010 IEEE Second International Confer-

ence on, pp. 456–463, IEEE, 2010.

[29] RackSpace, “RightScale public cloud infrastructure.” https://www.

rackspace.com/, 2019. [Online; accessed 10-April-2019].

149

https://www.rackspace.com/
https://www.rackspace.com/

[30] J. Kupferman, J. Silverman, P. Jara, and J. Browne, “Scaling into the cloud,”

CS270-advanced operating systems, 2009.

[31] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A review of auto-scaling

techniques for elastic applications in cloud environments,” Journal of Grid Com-

puting, vol. 12, no. 4, pp. 559–592, 2014.

[32] R. R. U. B. System, “http://rubis.ow2.org/, 2009.,” [Online Accessed: 20-02-

2016].

[33] TPC-W, “http://www.tpc.org/tpcw/default.asp, 2012.,” [Online Accessed: 20-02-

2016].

[34] C. P. by Rad Lab Group., “http://radlab.cs.berkeley.edu/wiki/

projects/cloudstone/, 2012.,” [Online Accessed: 20-02-2016].

[35] S. T. httperf HTTP load generator., “http://www.spec.org/web2009/, 2012.,” [On-

line Accessed: 19-02-2016].

[36] TPC-C., “http://www.tpc.org/tpcc/default.asp/, 2012.,” [Online Accessed: 19-

02-2016].

[37] R. B. B. Benchmark., “http://www.tpc.org/tpcc/default.asp/, 2012.,” [Online Ac-

cessed: 19-02-2016].

[38] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and S. U. Khan,

“The rise of “big data” on cloud computing: Review and open research issues,”

Information Systems, vol. 47, pp. 98–115, 2015.

[39] S. K. Garg, S. K. Gopalaiyengar, and R. Buyya, “Sla-based resource provisioning

for heterogeneous workloads in a virtualized cloud datacenter,” in Algorithms

and Architectures for Parallel Processing, pp. 371–384, Springer, 2011.

[40] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi, Queueing networks and

Markov chains: modeling and performance evaluation with computer science

applications. John Wiley & Sons, 2006.

150

[41] Z. Li, M. Zhang, Z. Zhu, Y. Chen, A. G. Greenberg, and Y.-M. Wang,

“Webprophet: Automating performance prediction for web services.,” in NSDI,

vol. 10, pp. 143–158, 2010.

[42] A. Li, X. Zong, M. Zhang, S. Kandula, and X. Yang, “Cloudprophet: predicting

web application performance in the cloud,” ACM SIGCOMM Poster, 2011.

[43] S. Spinner, G. Casale, F. Brosig, and S. Kounev, “Evaluating approaches to re-

source demand estimation,” Performance Evaluation, vol. 92, pp. 51–71, 2015.

[44] A. E. C. C. A. AutoScaling., “http://aws.amazon.com/autoscaling/.,” [Online Ac-

cessed: 19-02-2016].

[45] R. B. B. B. A. Scaling., “http:// support.rightscale.com/03-tutorials/02-aws/02-

website edition/set up autoscaling using voting tags.,” [Online Accessed: 19-02-

2016].

[46] J. Guitart, J. Torres, and E. Ayguadé, “A survey on performance management for

internet applications,” Concurrency and Computation: Practice and Experience,

vol. 22, no. 1, pp. 68–106, 2010.

[47] S. S. Manvi and G. K. Shyam, “Resource management for infrastructure as a

service (iaas) in cloud computing: A survey,” Journal of Network and Computer

Applications, vol. 41, pp. 424–440, 2014.

[48] P. Singh, G. B. Singh, and K. Jyoti, “A study on resource provisioning of multi-

tier web applications in cloud computing,” in 2015 2nd International Conference

on Computing for Sustainable Global Development (INDIACom), pp. 799–802,

IEEE, 2015.

[49] C. Qu, R. N. Calheiros, and R. Buyya, “Auto-scaling web applications in clouds:

a taxonomy and survey,” arXiv preprint arXiv:1609.09224, 2016.

[50] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “A cost-aware elasticity provi-

sioning system for the cloud,” in Distributed Computing Systems (ICDCS), 2011

31st International Conference on, pp. 559–570, IEEE, 2011.

151

[51] H. Fernandez, G. Pierre, and T. Kielmann, “Autoscaling web applications in het-

erogeneous cloud infrastructures,” in Cloud Engineering (IC2E), 2014 IEEE In-

ternational Conference on, pp. 195–204, IEEE, 2014.

[52] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A. Kozuch, “Autoscale:

Dynamic, robust capacity management for multi-tier data centers,” ACM Trans-

actions on Computer Systems (TOCS), vol. 30, no. 4, p. 14, 2012.

[53] C. Qu, R. N. Calheiros, and R. Buyya, “A reliable and cost-efficient auto-scaling

system for web applications using heterogeneous spot instances,” Journal of Net-

work and Computer Applications, vol. 65, pp. 167–180, 2016.

[54] N. Vasić, D. Novaković, S. Miučin, D. Kostić, and R. Bianchini, “Dejavu: ac-

celerating resource allocation in virtualized environments,” in ACM SIGARCH

computer architecture news, vol. 40, pp. 423–436, ACM, 2012.

[55] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes, “Agile: Elastic distributed

resource scaling for infrastructure-as-a-service.,” in ICAC, vol. 13, pp. 69–82,

2013.

[56] J. Dejun, G. Pierre, and C.-H. Chi, “Resource provisioning of web applications

in heterogeneous clouds,” in Proceedings of the 2nd USENIX conference on Web

application development, pp. 5–5, USENIX Association, 2011.

[57] T. Patikirikorala and A. Colman, “Feedback controllers in the cloud,” in Pro-

ceedings of APSEC, 2010.

[58] H. C. Lim, S. Babu, J. S. Chase, and S. S. Parekh, “Automated control in cloud

computing: challenges and opportunities,” in Proceedings of the 1st workshop

on Automated control for datacenters and clouds, pp. 13–18, ACM, 2009.

[59] H. C. Lim, S. Babu, and J. S. Chase, “Automated control for elastic storage,” in

Proceedings of the 7th international conference on Autonomic computing, pp. 1–

10, ACM, 2010.

[60] S.-M. Park and M. Humphrey, “Self-tuning virtual machines for predictable

escience,” in Proceedings of the 2009 9th IEEE/ACM International Symposium

on Cluster Computing and the Grid, pp. 356–363, IEEE Computer Society, 2009.

152

[61] Q. Zhu and G. Agrawal, “Resource provisioning with budget constraints for

adaptive applications in cloud environments,” in Proceedings of the 19th ACM

International Symposium on High Performance Distributed Computing, pp. 304–

307, ACM, 2010.

[62] A. Ali-Eldin, J. Tordsson, and E. Elmroth, “An adaptive hybrid elasticity con-

troller for cloud infrastructures,” in 2012 IEEE Network Operations and Man-

agement Symposium, pp. 204–212, IEEE, 2012.

[63] A. Ali-Eldin, M. Kihl, J. Tordsson, and E. Elmroth, “Efficient provisioning of

bursty scientific workloads on the cloud using adaptive elasticity control,” in

Proceedings of the 3rd workshop on Scientific Cloud Computing Date, pp. 31–

40, ACM, 2012.

[64] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, and

A. Merchant, “Automated control of multiple virtualized resources,” in Proceed-

ings of the 4th ACM European conference on Computer systems, pp. 13–26,

ACM, 2009.

[65] P. Bodık, R. Griffith, C. Sutton, A. Fox, M. Jordan, and D. Patterson, “Statistical

machine learning makes automatic control practical for internet datacenters,” in

Proceedings of the 2009 conference on Hot topics in cloud computing, pp. 12–12,

2009.

[66] E. Kalyvianaki, T. Charalambous, and S. Hand, “Self-adaptive and self-

configured cpu resource provisioning for virtualized servers using kalman fil-

ters,” in Proceedings of the 6th international conference on Autonomic comput-

ing, pp. 117–126, ACM, 2009.

[67] A. Gambi and G. Toffetti, “Modeling cloud performance with kriging,” in

Proceedings of the 34th International Conference on Software Engineering,

pp. 1439–1440, IEEE Press, 2012.

[68] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in the cloud using pre-

dictive models for workload forecasting,” in Cloud Computing (CLOUD), 2011

IEEE International Conference on, pp. 500–507, IEEE, 2011.

153

[69] L. Wang, J. Xu, M. Zhao, Y. Tu, and J. A. Fortes, “Fuzzy modeling based re-

source management for virtualized database systems,” in 2011 IEEE 19th Annual

International Symposium on Modelling, Analysis, and Simulation of Computer

and Telecommunication Systems, pp. 32–42, IEEE, 2011.

[70] S. Farokhi, P. Jamshidi, E. B. Lakew, I. Brandic, and E. Elmroth, “A hybrid cloud

controller for vertical memory elasticity: A control-theoretic approach,” Future

Generation Computer Systems, vol. 65, pp. 57–72, 2016.

[71] P. Lama and X. Zhou, “Autonomic provisioning with self-adaptive neural fuzzy

control for percentile-based delay guarantee,” ACM Transactions on Autonomous

and Adaptive Systems (TAAS), vol. 8, no. 2, p. 9, 2013.

[72] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif, “On the use of fuzzy mod-

eling in virtualized data center management,” in Fourth International Conference

on Autonomic Computing (ICAC’07), pp. 25–25, IEEE, 2007.

[73] T. Heinze, V. Pappalardo, Z. Jerzak, and C. Fetzer, “Auto-scaling techniques for

elastic data stream processing,” in Data Engineering Workshops (ICDEW), 2014

IEEE 30th International Conference on, pp. 296–302, IEEE, 2014.

[74] M. Fallah, M. G. Arani, and M. Maeen, “Nasla: Novel auto scaling approach

based on learning automata for web application in cloud computing environ-

ment,” International Journal of Computer Applications, vol. 113, no. 2, 2015.

[75] D. Grimaldi, A. Pescape, A. Salvi, V. Persico, et al., “A fuzzy approach based

on heterogeneous metrics for scaling out public clouds,” IEEE Transactions on

Parallel and Distributed Systems, 2017.

[76] P. Lama and X. Zhou, “Efficient server provisioning with end-to-end delay guar-

antee on multi-tier clusters,” in Quality of Service, 2009. IWQoS. 17th Interna-

tional Workshop on, pp. 1–9, IEEE, 2009.

[77] S. Frey, C. Lüthje, C. Reich, and N. Clarke, “Cloud qos scaling by fuzzy logic,”

in Cloud Engineering (IC2E), 2014 IEEE International Conference on, pp. 343–

348, IEEE, 2014.

154

[78] P. Jamshidi, C. Pahl, and N. C. Mendonça, “Managing uncertainty in autonomic

cloud elasticity controllers,” IEEE Cloud Computing, vol. 3, no. 3, pp. 50–60,

2016.

[79] R. S. Sutton and A. G. Barto, Introduction to reinforcement learning, vol. 135.

MIT Press Cambridge, 1998.

[80] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani, “A hybrid reinforcement

learning approach to autonomic resource allocation,” in 2006 IEEE International

Conference on Autonomic Computing, pp. 65–73, IEEE, 2006.

[81] X. Dutreilh, S. Kirgizov, O. Melekhova, J. Malenfant, N. Rivierre, and I. Truck,

“Using reinforcement learning for autonomic resource allocation in clouds: to-

wards a fully automated workflow,” in ICAS 2011, The Seventh International

Conference on Autonomic and Autonomous Systems, pp. 67–74, 2011.

[82] J. Rao, X. Bu, C.-Z. Xu, L. Wang, and G. Yin, “Vconf: a reinforcement learn-

ing approach to virtual machines auto-configuration,” in Proceedings of the 6th

international conference on Autonomic computing, pp. 137–146, ACM, 2009.

[83] C.-Z. Xu, J. Rao, and X. Bu, “Url: A unified reinforcement learning approach for

autonomic cloud management,” Journal of Parallel and Distributed Computing,

vol. 72, no. 2, pp. 95–105, 2012.

[84] J. Rao, X. Bu, C.-Z. Xu, and K. Wang, “A distributed self-learning approach for

elastic provisioning of virtualized cloud resources,” in 2011 IEEE 19th Annual

International Symposium on Modelling, Analysis, and Simulation of Computer

and Telecommunication Systems, pp. 45–54, IEEE, 2011.

[85] X. Bu, J. Rao, and C.-Z. Xu, “Coordinated self-configuration of virtual machines

and appliances using a model-free learning approach,” Parallel and Distributed

Systems, IEEE Transactions on, vol. 24, no. 4, pp. 681–690, 2013.

[86] A. Y. Nikravesh, S. A. Ajila, and C.-H. Lung, “Cloud resource auto-scaling sys-

tem based on hidden markov model (hmm),” in Semantic Computing (ICSC),

2014 IEEE International Conference on, pp. 124–127, IEEE, 2014.

155

[87] C. Liu, C. Liu, Y. Shang, S. Chen, B. Cheng, and J. Chen, “An adaptive predic-

tion approach based on workload pattern discrimination in the cloud,” Journal of

Network and Computer Applications, vol. 80, pp. 35–44, 2017.

[88] E. Barrett, E. Howley, and J. Duggan, “Applying reinforcement learning towards

automating resource allocation and application scalability in the cloud,” Concur-

rency and Computation: Practice and Experience, vol. 25, no. 12, pp. 1656–

1674, 2013.

[89] X. Dutreilh, A. Moreau, J. Malenfant, N. Rivierre, and I. Truck, “From data

center resource allocation to control theory and back,” in 2010 IEEE 3rd Inter-

national Conference on Cloud Computing, pp. 410–417, IEEE, 2010.

[90] D. G. Kendall, “Stochastic processes occurring in the theory of queues and their

analysis by the method of the imbedded markov chain,” The Annals of Mathe-

matical Statistics, pp. 338–354, 1953.

[91] J. Keilson and L. Servi, “A distributional form of little’s law,” Operations Re-

search Letters, vol. 7, no. 5, pp. 223–227, 1988.

[92] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood, “Agile dy-

namic provisioning of multi-tier internet applications,” ACM Transactions on

Autonomous and Adaptive Systems (TAAS), vol. 3, no. 1, p. 1, 2008.

[93] Q. Zhang, L. Cherkasova, and E. Smirni, “A regression-based analytic model

for dynamic resource provisioning of multi-tier applications,” in Fourth Interna-

tional Conference on Autonomic Computing (ICAC’07), pp. 27–27, IEEE, 2007.

[94] R. Han, M. M. Ghanem, L. Guo, Y. Guo, and M. Osmond, “Enabling cost-aware

and adaptive elasticity of multi-tier cloud applications,” Future Generation Com-

puter Systems, vol. 32, pp. 82–98, 2014.

[95] D. A. Bacigalupo, J. van Hemert, A. Usmani, D. N. Dillenberger, G. B. Wills, and

S. A. Jarvis, “Resource management of enterprise cloud systems using layered

queuing and historical performance models,” in Parallel & Distributed Process-

ing, Workshops and Phd Forum (IPDPSW), 2010 IEEE International Symposium

on, pp. 1–8, IEEE, 2010.

156

[96] D. Villela, P. Pradhan, and D. Rubenstein, “Provisioning servers in the appli-

cation tier for e-commerce systems,” ACM Transactions on Internet Technology

(TOIT), vol. 7, no. 1, p. 7, 2007.

[97] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,

“Cloudsim: a toolkit for modeling and simulation of cloud computing environ-

ments and evaluation of resource provisioning algorithms,” Software: Practice

and experience, vol. 41, no. 1, pp. 23–50, 2011.

[98] T. Vondra and J. Šedivỳ, “Cloud autoscaling simulation based on queueing net-

work model,” Simulation Modelling Practice and Theory, vol. 70, pp. 83–100,

2017.

[99] A. Gandhi, P. Dube, A. Karve, A. Kochut, and L. Zhang, “Adaptive, model-

driven autoscaling for cloud applications,” in 11th International Conference on

Autonomic Computing (ICAC 14), pp. 57–64, 2014.

[100] J. Vilaplana, F. Solsona, I. Teixidó, J. Mateo, F. Abella, and J. Rius, “A queuing

theory model for cloud computing,” The Journal of Supercomputing, vol. 69,

no. 1, pp. 492–507, 2014.

[101] P. Koperek and W. Funika, “Dynamic business metrics-driven resource provi-

sioning in cloud environments,” in International Conference on Parallel Pro-

cessing and Applied Mathematics, pp. 171–180, Springer, 2011.

[102] R. Han, L. Guo, M. M. Ghanem, and Y. Guo, “Lightweight resource scaling for

cloud applications,” in Cluster, Cloud and Grid Computing (CCGrid), 2012 12th

IEEE/ACM International Symposium on, pp. 644–651, IEEE, 2012.

[103] M. Z. Hasan, E. Magana, A. Clemm, L. Tucker, and S. L. D. Gudreddi, “Inte-

grated and autonomic cloud resource scaling,” in 2012 IEEE Network Operations

and Management Symposium, pp. 1327–1334, IEEE, 2012.

[104] I. Mahallat, “Astaw: Auto-scaling threshold-based approach for web application

in cloud computing environment,” 2015.

[105] B. Simmons, H. Ghanbari, M. Litoiu, and G. Iszlai, “Managing a saas application

in the cloud using paas policy sets and a strategy-tree,” in Proceedings of the 7th

157

International Conference on Network and Services Management, pp. 343–347,

International Federation for Information Processing, 2011.

[106] T. C. Chieu, A. Mohindra, A. A. Karve, and A. Segal, “Dynamic scaling of

web applications in a virtualized cloud computing environment,” in e-Business

Engineering, 2009. ICEBE’09. IEEE International Conference on, pp. 281–286,

IEEE, 2009.

[107] T. C. Chieu, A. Mohindra, and A. A. Karve, “Scalability and performance of

web applications in a compute cloud,” in e-Business Engineering (ICEBE), 2011

IEEE 8th International Conference on, pp. 317–323, IEEE, 2011.

[108] T. Lorido-Botrcn, J. Miguel-Alonso, and J. A. Lozano, “Comparison of auto-

scaling techniques for cloud environments,” 2013.

[109] N. Grozev and R. Buyya, “Multi-cloud provisioning and load distribution for

three-tier applications,” ACM Transactions on Autonomous and Adaptive Sys-

tems (TAAS), vol. 9, no. 3, p. 13, 2014.

[110] E. Casalicchio and L. Silvestri, “Autonomic management of cloud-based sys-

tems: the service provider perspective,” in Computer and Information Sciences

III, pp. 39–47, Springer, 2013.

[111] M. Maurer, I. Brandic, and R. Sakellariou, “Enacting slas in clouds using rules,”

in European Conference on Parallel Processing, pp. 455–466, Springer, 2011.

[112] S. Khatua, A. Ghosh, and N. Mukherjee, “Optimizing the utilization of virtual

resources in cloud environment,” in 2010 IEEE International Conference on

Virtual Environments, Human-Computer Interfaces and Measurement Systems,

pp. 82–87, IEEE, 2010.

[113] R. G. Brown and R. F. Meyer, “The fundamental theorem of exponential smooth-

ing,” Operations Research, vol. 9, no. 5, pp. 673–685, 1961.

[114] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Introduction to algo-

rithms second edition,” 2001.

158

[115] Z. Gong, X. Gu, and J. Wilkes, “Press: Predictive elastic resource scaling for

cloud systems,” in 2010 International Conference on Network and Service Man-

agement, pp. 9–16, IEEE, 2010.

[116] J. Huang, C. Li, and J. Yu, “Resource prediction based on double exponen-

tial smoothing in cloud computing,” in Consumer Electronics, Communications

and Networks (CECNet), 2012 2nd International Conference on, pp. 2056–2060,

IEEE, 2012.

[117] H. Mi, H. Wang, G. Yin, Y. Zhou, D. Shi, and L. Yuan, “Online self-

reconfiguration with performance guarantee for energy-efficient large-scale

cloud computing data centers,” in Services Computing (SCC), 2010 IEEE In-

ternational Conference on, pp. 514–521, IEEE, 2010.

[118] A. Chandra, W. Gong, and P. Shenoy, “Dynamic resource allocation for shared

data centers using online measurements,” in Quality of Service—IWQoS 2003,

pp. 381–398, Springer, 2003.

[119] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao, “Energy-aware

server provisioning and load dispatching for connection-intensive internet ser-

vices.,” in NSDI, vol. 8, pp. 337–350, 2008.

[120] W. Fang, Z. Lu, J. Wu, and Z. Cao, “Rpps: a novel resource prediction and

provisioning scheme in cloud data center,” in Services Computing (SCC), 2012

IEEE Ninth International Conference on, pp. 609–616, IEEE, 2012.

[121] M. Sedaghat, F. Hernandez-Rodriguez, and E. Elmroth, “A virtual machine re-

packing approach to the horizontal vs. vertical elasticity trade-off for cloud au-

toscaling,” in Proceedings of the 2013 ACM Cloud and Autonomic Computing

Conference, p. 6, ACM, 2013.

[122] R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya, “Workload prediction

using arima model and its impact on cloud applications’ qos,” Cloud Computing,

IEEE Transactions on, vol. 3, no. 4, pp. 449–458, 2015.

[123] V. R. Messias, J. C. Estrella, R. Ehlers, M. J. Santana, R. C. Santana, and S. Reiff-

Marganiec, “Combining time series prediction models using genetic algorithm to

159

autoscaling web applications hosted in the cloud infrastructure,” Neural Comput-

ing and Applications, pp. 1–24, 2016.

[124] M. Mao and M. Humphrey, “Auto-scaling to minimize cost and meet application

deadlines in cloud workflows,” in High Performance Computing, Networking,

Storage and Analysis (SC), 2011 International Conference for, pp. 1–12, IEEE,

2011.

[125] S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction models for adap-

tive resource provisioning in the cloud,” Future Generation Computer Systems,

vol. 28, no. 1, pp. 155–162, 2012.

[126] R. Prodan and V. Nae, “Prediction-based real-time resource provisioning for

massively multiplayer online games,” Future Generation Computer Systems,

vol. 25, no. 7, pp. 785–793, 2009.

[127] S. Dutta, S. Gera, A. Verma, and B. Viswanathan, “Smartscale: Automatic appli-

cation scaling in enterprise clouds,” in Cloud Computing (CLOUD), 2012 IEEE

5th International Conference on, pp. 221–228, IEEE, 2012.

[128] E. Caron, F. Desprez, and A. Muresan, “Pattern matching based forecast of non-

periodic repetitive behavior for cloud clients,” Journal of Grid Computing, vol. 9,

no. 1, pp. 49–64, 2011.

[129] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: elastic resource scaling

for multi-tenant cloud systems,” in Proceedings of the 2nd ACM Symposium on

Cloud Computing, p. 5, ACM, 2011.

[130] R. E. De Grande, A. Boukerche, and R. Alkharboush, “Time series-oriented

load prediction model and migration policies for distributed simulation systems,”

IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 1, pp. 215–

229, 2017.

[131] M. S. Aslanpour and S. E. Dashti, “Proactive auto-scaling algorithm (pasa) for

cloud application,” International Journal of Grid and High Performance Com-

puting (IJGHPC), vol. 9, no. 3, pp. 1–16, 2017.

160

[132] M. S. Aslanpour, M. Ghobaei-Arani, and A. N. Toosi, “Auto-scaling web appli-

cations in clouds: a cost-aware approach,” Journal of Network and Computer

Applications, vol. 95, pp. 26–41, 2017.

[133] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback control of

computing systems. John Wiley & Sons, 2004.

[134] W. Lloyd, S. Pallickara, O. David, J. Lyon, M. Arabi, and K. Rojas, “Performance

implications of multi-tier application deployments on infrastructure-as-a-service

clouds: Towards performance modeling,” Future Generation Computer Systems,

vol. 29, no. 5, pp. 1254–1264, 2013.

[135] P. Xiong, Z. Wang, G. Jung, and C. Pu, “Study on performance management

and application behavior in virtualized environment,” in Network Operations and

Management Symposium (NOMS), 2010 IEEE, pp. 841–844, IEEE, 2010.

[136] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi, “An analytical

model for multi-tier internet services and its applications,” in ACM SIGMETRICS

Performance Evaluation Review, vol. 33, pp. 291–302, ACM, 2005.

[137] H. Wang, Q. Jing, R. Chen, B. He, Z. Qian, and L. Zhou, “Distributed systems

meet economics: Pricing in the cloud.,” HotCloud, vol. 10, pp. 1–6, 2010.

[138] S. Ibrahim, B. He, and H. Jin, “Towards pay-as-you-consume cloud computing,”

in Services Computing (SCC), 2011 IEEE International Conference on, pp. 370–

377, IEEE, 2011.

[139] A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,

A. Rabkin, and I. Stoica, “Above the clouds: A berkeley view of cloud com-

puting,” Dept. Electrical Eng. and Comput. Sciences, University of California,

Berkeley, Rep. UCB/EECS, vol. 28, no. 13, p. 2009, 2009.

[140] A. M. C. Halavais, The Slashdot effect: analysis of a large-scale public conver-

sation on the World Wide Web. PhD thesis, 2001.

[141] J. Panneerselvam, L. Liu, N. Antonopoulos, and Y. Bo, “Workload analysis for

the scope of user demand prediction model evaluations in cloud environments,”

161

in Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility

and Cloud Computing, pp. 883–889, IEEE Computer Society, 2014.

[142] H. Zhang, G. Jiang, K. Yoshihira, and H. Chen, “Proactive workload manage-

ment in hybrid cloud computing,” IEEE Transactions on Network and Service

Management, vol. 11, no. 1, pp. 90–100, 2014.

[143] A. A. Eldin, A. Rezaie, A. Mehta, S. Razroev, S. S. de Luna, O. Seleznjev,

J. Tordsson, and E. Elmroth, “How will your workload look like in 6 years?

analyzing wikimedia’s workload,” in Cloud Engineering (IC2E), 2014 IEEE In-

ternational Conference on, pp. 349–354, IEEE, 2014.

[144] J. Patel, V. Jindal, I.-L. Yen, F. Bastani, J. Xu, and P. Garraghan, “Work-

load estimation for improving resource management decisions in the cloud,” in

Autonomous Decentralized Systems (ISADS), 2015 IEEE Twelfth International

Symposium on, pp. 25–32, IEEE, 2015.

[145] K. Wang, M. Lin, F. Ciucu, A. Wierman, and C. Lin, “Characterizing the impact

of the workload on the value of dynamic resizing in data centers,” Performance

Evaluation, vol. 85, pp. 1–18, 2015.

[146] J. Yin, X. Lu, X. Zhao, H. Chen, and X. Liu, “Burse: A bursty and self-similar

workload generator for cloud computing,” IEEE Transactions on Parallel and

Distributed Systems, vol. 26, no. 3, pp. 668–680, 2015.

[147] M. C. Calzarossa, L. Massari, and D. Tessera, “Workload characterization: a

survey revisited,” ACM Computing Surveys (CSUR), vol. 48, no. 3, p. 48, 2016.

[148] N. Bonvin, T. G. Papaioannou, and K. Aberer, “Autonomic sla-driven provision-

ing for cloud applications,” in Proceedings of the 2011 11th IEEE/ACM inter-

national symposium on cluster, cloud and grid computing, pp. 434–443, IEEE

Computer Society, 2011.

[149] H. Zhang, G. Jiang, K. Yoshihira, H. Chen, and A. Saxena, “Intelligent work-

load factoring for a hybrid cloud computing model,” in Services-I, 2009 World

Conference on, pp. 701–708, IEEE, 2009.

162

[150] Y. Jiang, C.-S. Perng, T. Li, and R. N. Chang, “Cloud analytics for capacity plan-

ning and instant vm provisioning,” IEEE Transactions on Network and Service

Management, vol. 10, no. 3, pp. 312–325, 2013.

[151] N. I. Sapankevych and R. Sankar, “Time series prediction using support vector

machines: a survey,” IEEE Computational Intelligence Magazine, vol. 4, no. 2,

2009.

[152] A. A. Bankole and S. A. Ajila, “Cloud client prediction models for cloud re-

source provisioning in a multitier web application environment,” in Service Ori-

ented System Engineering (SOSE), 2013 IEEE 7th International Symposium on,

pp. 156–161, IEEE, 2013.

[153] P. S. Doshi, M. Goel, A. Agarwal, and K. Punjabi, “Performance provisioning

using machine learning based automated workload classification,” 2018. US

Patent App. 15/257,491.

[154] T. Teräsvirta, C.-F. Lin, and C. W. Granger, “Power of the neural network linear-

ity test,” Journal of Time Series Analysis, vol. 14, no. 2, pp. 209–220, 1993.

[155] R. C. Team et al., “R: A language and environment for statistical computing,”

2013.

[156] R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and practice.

OTexts, 2014.

[157] S. R. Gunn et al., “Support vector machines for classification and regression,”

ISIS technical report, vol. 14, no. 1, pp. 5–16, 1998.

[158] C.-H. Wu, C.-C. Wei, D.-C. Su, M.-H. Chang, and J.-M. Ho, “Travel time predic-

tion with support vector regression,” in Intelligent Transportation Systems, 2003.

Proceedings. 2003 IEEE, vol. 2, pp. 1438–1442, IEEE, 2003.

[159] X. Yan and X. Su, Linear regression analysis: theory and computing. World

Scientific, 2009.

[160] G. A. Seber and A. J. Lee, Linear regression analysis, vol. 329. John Wiley &

Sons, 2012.

163

[161] S. Makridakis, S. C. Wheelwright, and R. J. Hyndman, Forecasting methods and

applications. John wiley & sons, 2008.

[162] G. M. Ljung and G. E. Box, “On a measure of lack of fit in time series models,”

Biometrika, vol. 65, no. 2, pp. 297–303, 1978.

[163] S. Balbach, “Clarknet web server logs,” URL http://ita. ee. lbl.

gov/html/contrib/ClarkNet-HTTP. html, accessed: 25 Feb, 2018.

[164] J. Dumoulin, “Nasa web server logs,” URL http://ita. ee. lbl.

gov/html/contrib/NASA-HTTP. html, accessed: 25 Feb, 2018.

[165] Y. Xiaofang and W. Yaonan, “Parameter selection of support vector machine

for function approximation based on chaos optimization,” Journal of Systems

Engineering and Electronics, vol. 19, no. 1, pp. 191–197, 2008.

[166] E. F. Coutinho, F. R. de Carvalho Sousa, P. A. L. Rego, D. G. Gomes,

and J. N. de Souza, “Elasticity in cloud computing: a survey,” annals of

telecommunications-annales des télécommunications, vol. 70, no. 7-8, pp. 289–

309, 2015.

[167] A. EC2”, “”spot instances”,” 2018.

[168] Y. Shen, H. Chen, L. Shen, C. Mei, and X. Pu, “Cost-optimized resource provi-

sion for cloud applications,” in High Performance Computing and Communica-

tions, 2014 IEEE 6th Intl Symp on Cyberspace Safety and Security, 2014 IEEE

11th Intl Conf on Embedded Software and Syst (HPCC, CSS, ICESS), 2014 IEEE

Intl Conf on, pp. 1060–1067, IEEE, 2014.

[169] M. Amiri and L. Mohammad-Khanli, “Survey on prediction models of appli-

cations for resources provisioning in cloud,” Journal of Network and Computer

Applications, vol. 82, pp. 93–113, 2017.

[170] A. Computing et al., “An architectural blueprint for autonomic computing,” IBM

White Paper, vol. 31, pp. 1–6, 2006.

164

[171] H. Khazaei, J. Misic, and V. B. Misic, “Performance analysis of cloud computing

centers using m/g/m/m+ r queuing systems,” IEEE Transactions on parallel and

distributed systems, vol. 23, no. 5, pp. 936–943, 2012.

[172] B. Yang, F. Tan, and Y.-S. Dai, “Performance evaluation of cloud service con-

sidering fault recovery,” The Journal of Supercomputing, vol. 65, no. 1, pp. 426–

444, 2013.

[173] P. Singh, P. Gupta, and K. Jyoti, “TASM: technocrat ARIMA and SVR model

for workload prediction of web applications in cloud,” Cluster Computing, nov

2018.

[174] B. Adler, “Building scalable applications in the cloud: Reference architecture &

best practices, rightscale inc,” 2011.

[175] A. Y. Nikravesh, S. A. Ajila, and C.-H. Lung, “Towards an autonomic auto-

scaling prediction system for cloud resource provisioning,” in Proceedings of the

10th International Symposium on Software Engineering for Adaptive and Self-

Managing Systems, pp. 35–45, IEEE Press, 2015.

[176] J. Li, S. Su, X. Cheng, M. Song, L. Ma, and J. Wang, “Cost-efficient coordinated

scheduling for leasing cloud resources on hybrid workloads,” Parallel Comput-

ing, vol. 44, pp. 1–17, 2015.

[177] J. Liu, Y. Zhang, Y. Zhou, D. Zhang, and H. Liu, “Aggressive resource pro-

visioning for ensuring qos in virtualized environments,” IEEE transactions on

cloud computing, no. 1, pp. 1–1, 2015.

[178] M. Al-Roomi, S. Al-Ebrahim, S. Buqrais, and I. Ahmad, “Cloud computing pric-

ing models: a survey,” International Journal of Grid and Distributed Computing,

vol. 6, no. 5, pp. 93–106, 2013.

[179] N. Joshi and S. Shah, “A comprehensive survey of services provided by preva-

lent cloud computing environments,” in Smart Intelligent Computing and Appli-

cations, pp. 413–424, Springer, 2019.

165

[180] Z. Xiao, W. Song, and Q. Chen, “Dynamic resource allocation using virtual ma-

chines for cloud computing environment,” IEEE transactions on parallel and

distributed systems, vol. 24, no. 6, pp. 1107–1117, 2013.

[181] C. Qu, R. N. Calheiros, and R. Buyya, “Auto-scaling web applications in clouds:

A taxonomy and survey,” ACM Computing Surveys (CSUR), vol. 51, no. 4, p. 73,

2018.

[182] P. Singh, P. Gupta, and K. Jyoti, “Tasm: technocrat arima and svr model for

workload prediction of web applications in cloud,” Cluster Computing, pp. 1–

15, 2018.

[183] S. S. Gill, I. Chana, M. Singh, and R. Buyya, “Radar: Self-configuring and self-

healing in resource management for enhancing quality of cloud services,” Con-

currency and Computation: Practice and Experience, vol. 31, no. 1, p. e4834,

2019.

[184] H. R. Qavami, S. Jamali, M. K. Akbari, and B. Javadi, “Dynamic resource pro-

visioning in cloud computing: a heuristic markovian approach,” in International

Conference on Cloud Computing, pp. 102–111, Springer, 2013.

[185] M. Mohamed, M. Amziani, D. Belaı̈d, S. Tata, and T. Melliti, “An autonomic

approach to manage elasticity of business processes in the cloud,” Future Gener-

ation Computer Systems, vol. 50, pp. 49–61, 2015.

[186] P. D. Kaur and I. Chana, “A resource elasticity framework for qos-aware ex-

ecution of cloud applications,” Future Generation Computer Systems, vol. 37,

pp. 14–25, 2014.

[187] M. Beltrán, “Automatic provisioning of multi-tier applications in cloud comput-

ing environments,” The Journal of Supercomputing, vol. 71, no. 6, pp. 2221–

2250, 2015.

[188] S. Zareian, R. Veleda, M. Litoiu, M. Shtern, H. Ghanbari, and M. Garg, “K-feed-

a data-oriented approach to application performance management in cloud,” in

2015 IEEE 8th International Conference on Cloud Computing, pp. 1045–1048,

IEEE, 2015.

166

[189] M. C. Huebscher and J. A. McCann, “A survey of autonomic comput-

ing—degrees, models, and applications,” ACM Computing Surveys (CSUR),

vol. 40, no. 3, p. 7, 2008.

[190] K. RahimiZadeh, M. AnaLoui, P. Kabiri, and B. Javadi, “Performance modeling

and analysis of virtualized multi-tier applications under dynamic workloads,”

Journal of Network and Computer Applications, vol. 56, pp. 166–187, 2015.

[191] M. Maurer, I. Brandic, and R. Sakellariou, “Adaptive resource configuration

for cloud infrastructure management,” Future Generation Computer Systems,

vol. 29, no. 2, pp. 472–487, 2013.

[192] M. Koehler, “An adaptive framework for utility-based optimization of scientific

applications in the cloud,” Journal of Cloud Computing, vol. 3, no. 1, p. 4, 2014.

[193] M. Ghobaei-Arani, S. Jabbehdari, and M. A. Pourmina, “An autonomic resource

provisioning approach for service-based cloud applications: a hybrid approach,”

Future Generation Computer Systems, vol. 78, pp. 191–210, 2018.

[194] S. A. Ajila and A. A. Bankole, “Cloud client prediction models using ma-

chine learning techniques,” in Computer Software and Applications Conference

(COMPSAC), 2013 IEEE 37th Annual, pp. 134–142, IEEE, 2013.

[195] N. R. Herbst, N. Huber, S. Kounev, and E. Amrehn, “Self-adaptive workload

classification and forecasting for proactive resource provisioning,” Concurrency

and computation: practice and experience, vol. 26, no. 12, pp. 2053–2078, 2014.

[196] S. Singh and I. Chana, “Resource provisioning and scheduling in clouds: Qos

perspective,” The Journal of Supercomputing, vol. 72, no. 3, pp. 926–960, 2016.

[197] A. N. Toosi, C. Qu, M. D. de Assunção, and R. Buyya, “Renewable-aware geo-

graphical load balancing of web applications for sustainable data centers,” Jour-

nal of Network and Computer Applications, vol. 83, pp. 155–168, 2017.

[198] E. Casalicchio and L. Silvestri, “Mechanisms for sla provisioning in cloud-based

service providers,” Computer Networks, vol. 57, no. 3, pp. 795–810, 2013.

167

[199] A. G. Garcı́a, I. B. Espert, and V. H. Garcı́a, “Sla-driven dynamic cloud resource

management,” Future Generation Computer Systems, vol. 31, pp. 1–11, 2014.

[200] G. Moltó, M. Caballer, and C. de Alfonso, “Automatic memory-based vertical

elasticity and oversubscription on cloud platforms,” Future Generation Com-

puter Systems, vol. 56, pp. 1–10, 2016.

[201] M. G. Arani, M. Shamsi, et al., “An extended approach for efficient data storage

in cloud computing environment,” International Journal of Computer Network

and Information Security, vol. 7, no. 8, p. 30, 2015.

[202] M. S. Aslanpour and S. E. Dashti, “Sla-aware resource allocation for application

service providers in the cloud,” in Web Research (ICWR), 2016 Second Interna-

tional Conference on, pp. 31–42, IEEE, 2016.

[203] D. Moldovan, H.-L. Truong, and S. Dustdar, “Cost-aware scalability of applica-

tions in public clouds,” in Cloud Engineering (IC2E), 2016 IEEE International

Conference on, pp. 79–88, IEEE, 2016.

[204] A.-F. Antonescu and T. Braun, “Simulation of sla-based vm-scaling algo-

rithms for cloud-distributed applications,” Future Generation Computer Systems,

vol. 54, pp. 260–273, 2016.

[205] M. S. Aslanpour, S. E. Dashti, M. Ghobaei-Arani, and A. A. Rahmanian, “Re-

source provisioning for cloud applications: a 3-d, provident and flexible ap-

proach,” The Journal of Supercomputing, vol. 74, no. 12, pp. 6470–6501, 2018.

[206] J. Yang, C. Liu, Y. Shang, B. Cheng, Z. Mao, C. Liu, L. Niu, and J. Chen,

“A cost-aware auto-scaling approach using the workload prediction in service

clouds,” Information Systems Frontiers, vol. 16, no. 1, pp. 7–18, 2014.

168

LIST OF PUBLICATIONS

• Parminder Singh, Pooja Gupta and Kiran Jyoti. “TASM: Technocrat ARIMA

and SVR Model for Workload Prediction of Web Applications in Cloud”, Cluster

Computing, Springer (Published), 2018. (Scopus, SCIE 1.6 IF)

• Parminder Singh, Pooja Gupta and Kiran Jyoti. “Triangulation Resource Provi-

sioning for Web Applications in Cloud Computing: A Profit-Aware Approach”,

Scalable Computing: Practice and Experience (Accepted), 2019. (Scopus, ESCI)

• Parminder Singh, Pooja Gupta, Kiran Jyoti and Anand N. “Research on Auto-

Scaling of Web Applications in Cloud: Survey, Trends and Future Directions”,

Scalable Computing: Practice and Experience (Accepted), 2019. (Scopus, ESCI)

• Parminder Singh, Pooja Gupta and Kiran Jyoti. “A Robust Auto-Scaling for

Web Applications in Cloud Computing”, Cluster Computing, Springer (Under

Review), 2018. (Scopus, SCIE 1.6 IF)

• Parminder Singh, Gurjot Balraj Singh, and Kiran Jyoti. “A study on resource

provisioning of multi-tier web applications in cloud computing”, In 2015 2nd In-

ternational Conference on Computing for Sustainable Global Development (IN-

DIACom), pp. 799-802. IEEE, 2015. (Scopus)

• Parminder Singh, Pooja Gupta and Kiran Jyoti. “Energy Aware VM Consolida-

tion Using Dynamic Threshold in Cloud Computing”, International Conference

on Intelligent Computing and Control Systems (ICICCS), IEEE, 2019. (Scopus)

169

	Declaration
	Certificate
	Abstract
	Acknowledegments
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Challenges in Web Applications Resource Management
	Challenges in Workload Prediction
	Challenges in Auto-scaling
	Challenges in Resource Provisioning

	Research Issues and Objectives
	Research Methodology
	Thesis Contribution
	Thesis Organization

	Literature Review
	Introduction
	Origin of Autonomic Computing
	Advancement in Autonomic Computing

	Auto Scaling
	Types of Auto-scaling
	Types of Auto-scaling Policies

	Elastic Applications
	Web Applications Architectures
	Application Benchmarks

	Capacity Management of Web Applications
	QoS-aware Cloud Computing
	Cloud Provisioning Architecture
	Resource Demand Estimation in Cloud
	Taxonomy of Auto-scaling
	Survey on Auto-scaling Techniques
	Application Profiling
	Control Theory
	Fuzzy Rules
	Machine Learning
	Queuing Theory
	Threshold-based Rules
	Time Series Analysis

	Challenges in Multi-tier Applications Resource Management
	Summary

	A Technocrat ARIMA and SVR Model for Workload Prediction
	Introduction
	Related Work
	Workload Characteristics
	Workload Prediction for Cloud Applications

	System and Application Models
	System Architecture
	Technocrat Workload Predictor

	Research Methodology
	Workload Classification
	Workload Classification Model
	Forecasting Models
	Time Series Analysis
	Non-seasonal Study
	Seasonal Study

	Experiment and Analysis
	Dataset
	Accuracy of Prediction Models
	Accuracy of Auto-Scaling
	Experimental Setup
	Time Series Analysis

	Summary

	A Robust Hybrid Auto-Scaling Technique for Web Applications in Cloud
	Introduction
	Background
	Related Work
	Auto-Scaling Using Queuing Model
	Auto-Scaling Using Proactive Model

	Proposed Approach
	Auto-scaling System Architecture
	Monitoring Phase
	Analysis Phase
	Planning Phase
	Execution Phase

	Experiment Evaluation
	Experiment Setup
	Results and Discussion

	Summary

	A Profit-aware Resource Provisioning for Web Applications in Cloud
	Introduction
	Background
	Monitor
	Analyze
	Plan
	Execution
	Knowledge

	Related Work
	Proposed Approach
	Monitoring Phase
	Analysis Phase
	Planning Phase
	Execution Phase

	Experiment Evaluation
	Experiment Setup
	Performance Evaluation
	Results and Discussion

	Summary

	Conclusion and Future Directions
	Conclusion and Discussion
	Future Directions
	Monitoring Tools
	Pricing Model
	Resource Allocation
	Horizontal and Vertical Scaling
	Workload Predictor
	Multi-cloud Auto-scaling
	Energy-aware Auto-scaling
	Bin-packing Auto-scaling

	Final Remarks

	References
	List of Publications

