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Abstract

Remote Sensing data is widely used in many applications such as object de-
tection, classification, segmentation, urban development monitoring, water
extraction, and natural disaster assessment. According to the survey con-
ducted by Geospatial World, there are a total number of 906 satellites present
in the atmosphere that is used to monitor the condition of the earth. Each
satellite is following a different clock pattern for capturing earth images with
multiple resolutions. Over the last few years, a constant improvement has
been observed in both spatial and spectral resolution that offering an op-
portunity to observe the condition of resources on earth. As per the United
Nations Sustainable Development goals, monitoring the development of na-
tions through satellite images is considered one of the most important goals
among its seventeen goals. Monitoring the quality of infrastructure by fol-
lowing the traditional approaches is extremely expensive and makes it diffi-
cult to track the progress toward these goals. Moreover, several factors such
as lack of transportation, illiteracy, and many others in the underdeveloped
countries make it difficult to conduct the survey and that can be a cause less
accuracy.

To overcome these challenges, remote sensing can be used to monitor
the infrastructural status effectively by using advanced data processing tech-
niques such as machine learning and deep learning. Deep Learning is con-
sidered an emerging field of data processing that is having potential to be
used in the domain of remote sensing for earth observation. In previous
studies, deep learning is primarily focused on urban mapping, classification,
and object detection by utilizing high spatial resolution of satellite images.
However, limited solutions have been introduced in the domain of remote
sensing. To overcome these challenges, several different deep learning algo-
rithms have been introduced to extract the features from the satellite images
to predict environmental conservation, sustainability, and socioeconomic de-
velopment. In this thesis, different deep learning-assisted data processing
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approaches are proposed to process the combination of multispectral false-
color based Sentinel-2 satellite images to evaluate the degree of the Happi-
ness Index of farmers by analyzing the availability of water.

Water is considered one of the imperative factors of living for a human
being. The primary objective of the thesis is to extract spatial and spectral
features from the satellite images to determine the availability of natural re-
sources such as water, forest, and agriculture that can help the Government
and other NGOs in real-time monitoring of urbanization. The availability
of resource of water is taken to evaluate the degree of the Happiness Index
among the farmers of Punjab from the satellite images and the survey data.
In this manner, three different frameworks have been proposed to evaluate
the degree of happiness with respect to different regions of Punjab such as
Malwa, Doaba, and Majha. The degree of the happiness index is evaluated
and justified by calculating the correlation between the outcomes related to
satellite images and the survey data. The higher availability of water defines
the higher index of happiness. The predicted outcomes are revealing that
the farmers of Punjab belong to the Malwa and Majha regions are contain-
ing a large number of manmade water resources as compared to the Doaba
region. Therefore, a higher degree of happiness is calculated in the farm-
ers of the Majha and Malwa regions as compared to the doaba region. The
outcome of the thesis defines the future scope of urbanization.
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Chapter 1

Introduction

Remote Sensing (RS) is a real-time process of capturing data in the form of
images of objects at a distance without making a physical appearance. Re-
mote sensing images are one type of image that is used in the field of remote
sensing for solving earth observation problems. The sensors that produce
electromagnetic radiation or acoustic energy acquire distant sensing images.
Even though the electromagnetic spectrum is vast, not all wavelengths are
equally useful in remote sensing. The radiation in the electromagnetic spec-
trum is used to target specific objects, depending on the properties of the
materials. The human eye, which is the true remote sensor, detects objects
using the visible spectrum. The ultraviolet and infrared wavelengths are
used to acquire the majority of remote sensing images. Sensors are devices
that record the motion of objects based on the electromagnetic spectrum
including cameras and scanners. Moreover, a vehicle is used to transport
the sensors from one place to another place. Ground-level platforms, aerial
platforms, and space-borne platforms are all types of carriers. Furthermore,
multiple sensors are used to capture satellite images. For both natural and
anthropogenic operations, RS images provide extensive global observation
and insights into ecosystem health and sustainability. As of 2021, there were
about 906 satellites with the primary use of "earth observation"1. The con-
stant improvement in both spatial and temporal resolutions of satellite im-
ages has provided greater chances of resolving small features on the Earth.
The Worldview-2 satellite has an average revisiting period of 1.1 days on

1source: https://www.geospatialworld.net/blogs/how-many-satellites-are-orbiting-the-earth-in-2021/.
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the Earth’s surface and can gather up to 1 million square kilometers of 8-
band images per day with a panchromatic resolution of 0.46 meters and a
multispectral resolution of 1.84 meters (Xiong et al., 2021). Every day, the
Sentinel-2 spacecraft collects 6 TB of data, and every five days, a complete
picture of the Earth is acquired (Phiri et al., 2020). Multispectral images (MSI)
are satellite images that have more than 3 bands. Since the 1970s, MSIs have
been widely and routinely utilized in the field of remote sensing. Mean-
while, spectrometry is also known as hyperspectral imaging (HSI) which are
gaining popularity in various application of remote sensing. In compari-
son to multispectral images, HSI typically comprises hundreds or thousands
of bands with a significantly smaller spectral bandwidth (10-20 nm). Every
pixel in a hyperspectral image may be considered a high-dimensional vec-
tor that represents the spectral reflectance of hundreds of continuous narrow
spectral channels across a given wavelength range. Not only can modern
HSI collection systems provide great spectral resolution, but they can also
provide high spatial resolution. Data from MSIs and HSIs may express ex-
tremely sophisticated features as well as more spectral and geographical in-
formation. For advanced image processing for different earth observation
applications such as target identification, anomalous materials, and object
recognition, HSIs are the most effective and accurate solution for solving
such problems (Lu, 2020; Pawar et al., 2021; Shi et al., 2020c; Qu et al., 2020;
Yang et al., 2020). Over the last several years, researchers have developed
several algorithms for the detection of objects in RS images. The main pur-
pose of remote sensing is to solve the collection of household census data
through satellite imagery which is previously held by field surveys.
The collection of census data is a crucial task in India as well as other coun-
tries in terms of giving information to decision-makers. Census data collec-
tion requires a lot of resources and time to collect important information.
This is particularly happening in those places that are having inadequate
communication and transportation services. To solve such problems, remote
sensing has taken place in the last few years. Remote sensing technology
has been utilized in various domains such as classification, change detec-
tion, climate change, drought detection, etc. However, satellite images need
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some preprocessing procedures for classification and change detection. In
this manner, the remote sensing community is always working to improve
remote sensing algorithms for features including change detection, prepro-
cessing, segmentation, and classification. Remote sensing data is mostly
utilized to monitor environmental changes using physical models (Liang,
2005). Life has become more modest as the Remote Sensing (RS) imaging
framework has improved by the accessibility of Very High Resolution (VHR)
satellite images. It assists researchers in classifying things for remote sensing
applications that were previously handled through field surveys. One of the
key features of real-time remote sensing satellite imagery is that the develop-
ment changes can be analyzed accurately by using high-resolution satellite
imagery. The importance of recognizing change contributes to a better un-
derstanding of human interactions with the environment, which may aid
with growth decision-making in a given region. The application for which
the change detection is employed determines the change decision entirely.
Detecting changes in real-time applications is difficult because it necessi-
tates several processing stages, including identifying a problem with change
detection, preprocessing the image, and assessing the application-specific
technique. In this manner, several data-driven machine learning (ML) ap-
proaches have traditionally been useful for monitoring the environmental
condition in the domain of remote sensing. With the growing availability of
"earth big data" and fast developments in machine learning, new approaches
for earth monitoring are becoming more viable.

1.1 Homeland Happiness Index

The main Agenda of the Sustainable Development Goals and Millennium
Development Goals of the United Nation is to eradicate poverty by 2030.
However, due to the lack of updated data on the happiness index based on
Socioeconomic, Infrastructure data, Development, Education, and Health,
many more developing countries become the key challenge for policymak-
ers. Conventionally, the survey data was used to calculate the development
of a specific region. However, surveying a specific location is a laborious
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process and expensive. As region-based development measurement is an
important aspect for policymakers to evaluate the livelihood programs by
government and non-governmental organizations. Monitoring the status of
the development and deployment of new schemes or products from private
sectors or government sectors makes people happy. Therefore, deep learn-
ing and satellite images are combined to predict the development status of a
particular region. Based on the evaluated results a degree of happiness can
easily be calculated by combining the satellite imagery and survey data of a
specific region.

1.2 Role of Deep Learning in Remote Sensing

Over the last decade, deep learning has become one of the most important
approaches in artificial intelligence for the extraction of important informa-
tion from satellite images. Moreover, deep learning comes up with several
techniques such as Neural networks, supervised approaches, and unsuper-
vised approaches for feature extraction. The role of deep learning in remote
sensing gained a significant role in the extraction of hierarchical features in
an automatic manner. Understanding multispectral images that are cap-
tured by remote sensing sensors such as Sentinel-2, Landsat-8, Quickbird,
BirdEye, and many more is a very important task in the domain of remote
sensing. Deep learning (DL), which has received a lot of attention in re-
cent years, is a potentially useful method for the extraction of large-scale
information from satellite imagery. Due to the multi-layer learning process
(LeCun, Bengio, and Hinton, 2015; Bengio, Courville, and Vincent, 2013),
the DL model can effectively estimate the complicated nonlinear relation-
ship between environmental parameters, which helps capture the potential
association among environmental factors such as retrieval of information,
fusion, downscaling, and many more. Furthermore, DL has reported great
superiorities in multi-resolution and multilevel learning in remote sensing
applications. DL is highly contributed to image processing and classification
problems (Zhang, Zhang, and Du, 2016). Deep learning (DL) techniques are
based on neural networks, which have been utilized in the remote sensing
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field for the last few years. However, before the development of DL, the re-
mote sensing community was utilizing support vector machines (SVM) and
ensemble classifiers, such as random forest (RF), for image classification and
other tasks (e.g. change detection). Out of all classifiers SVM gain the atten-
tion in the field of remote sensing due to its ability to handle the high dimen-
sionality data and performed better on training (Mountrakis, Im, and Ogole,
2011), on the other hand, RF is popular due to its ease of use for classifica-
tion and high precision (Belgiu and Drăguţ, 2016a). Since 2014, the remote
sensing community has focused on deep learning (DL), and DL algorithms
have shown promising solutions in a variety of image processing tasks, in-
cluding LULC classification, scene classification, and object recognition (Yu
et al., 2017b; Kussul et al., 2017; Sharma et al., 2017; Vetrivel et al., 2018). The
main focus of the study is on Remote Sensing Image Analysis which will
help decision-makers with urban planning and development. The following
are some examples of remote sensing images.

1. Multi Spectral Images (MSI): MSI is a type of satellite image which is
the combination of 3 to 15 multispectral bands. The scene is captured
from MSI by using these bands. However, in general colored image is
made up of three bands such as (Blue, Green, and Red), but in remote
sensing applications, multispectral images are utilized to solve the re-
mote sensing problems.

2. Hyper Spectral Images (HSI): HSI is another type of satellite image
which is a combination of 100 to 1000 spectral bands. The type of image
is better than multispectral images because the information inside the
image is visible. These types of images are mostly used to solve change
detection problems.

3. Panchromatic Images: A panchromatic image is a high-resolution single-
band grayscale image that "combines" information from the visible R,
G, and B bands. It results in a single integrated band with no wave-
length data. The word pan-sharpening refers to the simultaneous ac-
quisition of a panchromatic and a multispectral image over the same
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FIGURE 1.1: Different resolutions of satellite images

region. This might be thought of as a specific data fusion issue. Satel-
lites with a spatial resolution of 15 meters, DigitalGlobe’s satellites, and
the Satellite for Earth Observation produce such images.

1.3 Resolutions and It’s approaching

Satellite image resolution refers to the number of pixels /inch known in an
image is known resolution. The quality and detail of images depend upon
the number of pixels per inch. In general, images resolution is also known
as low resolution, medium resolution, and high resolution The details of the
smallest feature of an image are found in high-resolution images, while the
details of the largest feature of an image are found in low and medium-
resolution images. The resolution of remote sensing data is divided into
three categories: Spatial resolution, Spectral resolution, and Temporal res-
olution as presented in Figure 1.1. These resolutions are used to solve the
different problems of remote sensing.

Remote Sensing data is widely used in many applications such as change
detection, classification, climate change, and Land Use Land Cover classifi-
cation. However, in addition to classification and change detection, remote-
sensing image processing requires a few preprocessing steps, and it is highly
dependent on the method used that are selected to perform such specific
tasks in the field of remote sensing. Some of the common applications of
remote sensing are listed below and shown in Figure 1.2.
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FIGURE 1.2: Different applications of Remote Sensing

Agriculture

In the agriculture domain, RS data is mainly used to extract the crop field,
crop monitoring, and crop disease detection. By utilizing the RS data the
type of the crop and condition, crop yield production, and crop status can be
monitored by applying some advanced data processing approaches such as
Deep learning, CNN, RNN, Segmentation, Fusion many more.

Forest

RS data are widely used on forest data to manage the forest or detect fire right
from the high-resolution satellite imagery. The RS data in the forest domain
can provide information about deforestation, monitoring of biophysical, bio-
diversity monitoring, watershed protection, forest fire detection, and many
more.
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Hydrology

To address the problem of water shortage, the identification of water re-
sources has received a lot of attention in the field of remote sensing (Afaq
and Manocha, 2021b). The Remote Sensing data is used to extract the loca-
tion of water for the production of rice. Moreover, by utilizing advanced al-
gorithms on RS data small rivers, lakes, man-made wetlands, reservoirs and
other sources of water can be extracted automatically directly from satellite
images.

Atmoshpheric Condition

In order to comprehend the weather and climate, remote sensing is also uti-
lized to monitor and examine the atmosphere. The RS data is utilized for
a variety of things, including weather forecasting, air pollution monitoring,
climate change, and much more (Feng et al., 2015).

Land-Use Land-Cover

Recent advances in remote sensing and high-resolution image capture by
satellites have aided in the collection of datasets for research and develop-
ment. There have been considerable advancements in remote sensing and
high-resolution image processing, as well as the development of a range of
Land Use and Land Cover (LULC) classification algorithms in recent years.
One problem with LULC classification is that there is a lot of variability in
the data at high resolutions. The original datasets for classification are not
enough to generalize the instances collected at various times and locations.
Recently Deep learning has shown better performance for the extraction of
valuable information from satellite images. In RS data deep learning is uti-
lized for various tasks to accomplish such as Image processing, change detec-
tion, Accuracy assessment, and Classification. Furthermore, the utilization
of deep learning in the various domain are prested in Figure 1.3.
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1.4 Remote Sensing Image Classification

The classification approach is an effective solution in the domain of remote
sensing for urban planning, weather forecasting, mineral monitoring, and
environment monitoring. The classification is accomplished by assigning a
semantic label to every pixel based on previously learned class information.
The classification is performed by turning the colors, size, shape, and tex-
ture characteristics of an object into a class object. The classification can be
performed in two different ways in remote sensing:

• Pixel-based Classification.

• Object-based Classification.

• Pixel-based Classification: Pixel-based classification is a conventional
classification method in which each pixel is used to indicate a train-
ing sample for the method. It simply considers single-pixel spectral
data. In pixel-based classification, the adjacent pixel value, which aids
incorrectly classifying the pixel, is not employed, which may result in
an undesirable error during the process. Because of these drawbacks,
pixel-based classification is not recommended for RS data classifica-
tion, particularly for high-resolution RS images.

• Object-based Classification: The object-based classification is an al-
ternative to pixel-based classification, in which a group of pixels is
properly considered depending on their spatial and spectral qualities.
Objects are a collection of pixels with similar significant values. The
objects are subsequently categorized using the classification methods
as training samples. Furthermore, the entire images are divided into
small groups and segmented with the use of spectral and spatial fea-
tures. The segmented objects are then classified using the appropriate
classification algorithm based on the features and criteria applied by
the user, which may include color, texture, shape, size, and many more.
In this thesis, object-based classification with high-resolution images is
utilized for RS application.
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Furthermore, the classification approaches are broadly classified into two
different classification types: i) Supervised and ii) Unsupervised classifica-
tion.

FIGURE 1.3: Use of Deep Learning in various application of
remote sesing

1. Supervised: The method of categorizing image pixels to the given train-
ing set is known as supervised classification. The training set is pro-
duced by sampling the image with homogenous characteristics across
several locations. The initial step is to determine the training set’s infor-
mation categories. The second stage is to use the trained set to identify
the input image, with each image pixel being labeled according to the
algorithm parameters. As a result, semi-automated classification is also
termed supervised classification. The result of supervised classification
is far more accurate than that of unsupervised classification. Moreover,
if the training set is produced from extensive knowledge, the accuracy
will be high. Although this classification yields a very accurate result,
it requires significantly more effort and money than unsupervised clas-
sification.

2. Unsupervised: Unsupervised classification is a fully automated classi-
fication in which the input image is used to create the clusters. Without
any prior knowledge, the images are categorized. The first stage is to
group items together based on their characteristics. The next step is to
assign classes to the clusters that have been established. When there
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is no prior knowledge of the data in the remote sensing image, such
classification is beneficial. Unsupervised classification is faster than
supervised classification, however, selecting an efficient classification
technique is a challenging task. There is a high chance of misclassifica-
tion of pixels due to a lack of prior knowledge.

1.5 Problem Statement

To analyze the scale of infrastructural, Socio-economical, and industrial de-
velopment, the conduction of a survey is considered one of the most com-
mon and traditional techniques followed by most Government and Non-
government agencies around the globe. In India, the development with re-
spect to social and economical factors is evaluated by surveying after every
ten years. However, the management of the collected data by following tra-
ditional approaches is more challenging in terms of cost, manpower, and re-
sources. Moreover, the lack of participation in the survey is also considered
one of the most challenging aspects for the determination of socio-economic
development. These types of limitations are most common in the areas with
respect to a number of the factors such as lack of communication, limited
availability of transportation, less manpower, and many others. To over-
come the above-discussed limitations, several different organizations are an
opting technique of remote sensing for monitoring and analyzing the qual-
ity of resources. Moreover, the data processing capability of ML and DL
is continuously growing for the prediction of targeted objects from satel-
lite images. A number of ML techniques such as Random forests (Belgiu
and Drăguţ, 2016a; Otukei and Blaschke, 2010), support vector machines
(Gualtieri and Cromp, 1999; Heumann, 2011; Maulik and Chakraborty, 2017;
Oommen et al., 2008; Wang et al., 2017), and decision trees (Wang et al., 2017)
were often employed for the classification of the objects from multispectral
or hyperspectral satellite images. The process of image processing related
to machine learning approaches is completely dependent upon handcrafted
features. However, due to high dimensionality, it is difficult for traditional
image processing approaches to extract features with optimum accuracy. To
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overcome the data processing limitation of machine learning approaches,
deep learning-based solutions have been widely utilized in the domain of
remote sensing. As compared to ML approaches, DL methods are more ef-
ficient to extract the considerable features from the images (Garcia-Garcia
et al., 2017; Guo et al., 2016; Ioannidou et al., 2017). Moreover, several su-
pervised and semi-supervised machine learning approaches have been pro-
posed for patch-based, pixel-based, object-based, rule-based classification to
improve the prediction efficiency from the images belonging to the domain
of remote sensing (Kaur and Garg, 2011; Soille and Pesaresi, 2002; Garcia-
Garcia et al., 2017; Guo et al., 2016). In this manner, several deep learning-
based object detection solutions have been proposed to address the above-
mentioned challenges.

1.6 Contribution of the Thesis

The ultimate goal of this research is to propose a model for the prediction of
the Homeland Happiness Index from satellite imagery. In order to achieve
the desired result, this study is divided into the following four objectives.

1. Identification of deep learning techniques suitable for prediction of En-
vironmental conservation, sustainable Socio-economic Development,
and Citizen Safety and security from satellite imagery.

2. To conduct a survey for prediction of Good Governance, cultural preser-
vation, and citizen safety and security.

3. To propose a novel method for Homeland Happiness Index (H2I) and
modeling using satellite imagery and Survey data.

4. To apply and validate the developed model in different districts of Pun-
jab.
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1.7 Thesis Outline

The thesis is organized into six chapters. A brief outline of the chapters is
given below.

In Chapter 2, we present the background studies on remote sensing for
classification change detection, segmentation, and many more. This chapter
aims to explore the state-of-the-art literature for the selection of appropriate
techniques for the proposed study.

In Chapter 3, we propose a deep learning-based framework for the eval-
uation of the happiness index by using satellite images and survey data. The
motivation of the study is to predict the degree of happiness index of the
farmers of Punjab country India by correlating the sources of water and the
survey data.

In Chapter 4, some limitations from chapter-3 such as shadows identifi-
cation, extracting data from multi-resolution images, and small water bod-
ies have been overcome by introducing a Fog-inspired Deep Learning-based
Multi-resolution Data Integration technique for the water resources identifi-
cation from urban areas by applying multi-resolution satellite images. The
fundamental goal of the proposed study is to provide an automatic predic-
tion of water resources from satellite imagery that helps farmers to get suf-
ficient water for their cultivation land. The performance of the proposed
solution is also analyzed in the chapter.

In Chapter 5, we present an advanced multi-stream deep learning ap-
proach to map rice fields through satellite images in a precise manner. The
proposed model has the capability to access multispectral information from
satellite images. The outcomes of the proposed solution are properly ana-
lyzed in the chapter.
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In chapter 6, the outcomes of the thesis are concluded and also notify the
scope of future work in the domain of remote sensing.
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Chapter 2

Related Work

In the resolution of 2011, the United Nations declared a higher degree of
happiness as a fundamental goal of a nation. The Quality of living with re-
spect to socio-economic, industrial, and infrastructural development is one
of the important aspects of our life (Dixit, Chaudhary, and Sahni, 2020). To
determine the quality of living, a higher degree of happiness is performing
an imperative role. Several different aspects such as conceptual data, social
media, job, philosophy, psychology, sociology, economics, and many more
need to be considered for the prediction of the happiness index (Jannani,
Sael, and Benabbou, 2021). As happiness is a fundamental right of every cit-
izen, the happiness index belonging to a particular individual is evaluated
by calculating from the above-discussed factors (Pérez-Benito et al., 2019).
Huang, Wu, and Deng, 2016 calculated the happiness index of urban China
by evaluating two factors such as household income and the quality of assets.
Peng et al., 2020b calculated the happiness index of 57 countries by utilizing
World Values Survey Wave 6 (WV6) dataset and big data techniques. (You,
2021) employed machine learning techniques to predict the degree of happi-
ness index based on the survey collected from the individuals belonging to
different regions of China. However, a number of drawbacks have been ob-
served while calculating the degree of happiness Index due to the calculated
results being entirely based on the survey data collected for each individual.
As the traditional approaches are time-consuming and costly, it is difficult
to implement to process the data in real-time. To overcome the limitation
of traditional approaches of data collection and processing, remote sensing
and deep learning have shown promising outcomes in the last few years to
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analyze the development of a particular region. Satellite imagery has been
effectively implementing in classification, change detection, feature extrac-
tion, and many other applications. However, concerning change detection
and classification, remote sensing imagery processing includes a few pre-
processing processes. Besides, it is majorly dependent on the techniques that
have been applied (Mountrakis, Im, and Ogole, 2011). Lately, deep learn-
ing techniques have been successful not only in classical issues like voice
recognition, detection, recognition, and text segmentation but also in much
other real-world application (Huang et al., 2013; Bengio, LeCun, et al., 2007;
Simonyan and Zisserman, 2014; Hu et al., 2015). The deep learning tech-
niques are influenced by the structure of the brain which is considered as a
profound architecture of human visual systems and the perceptron’s are ex-
pressing several absorption phases (Li, Chen, and Rao, 2018).
Satellite image classification and Change detection is characterizing as the
mechanism by which a feature or phenomenon is identified by analyzing it at
its distinctive period. Due to natural or human-made occurrences, detection
of a change is a process of detecting geospatial changes from Geographical
Information system (GIS) data (Manakos and Lavender, 2014).Change de-
tection is of great significance to detect satellite mapping changes, observing
environmental changes, and Land use and Land cover (Lu-Lc). Remote sens-
ing satellite collects satellite images at different resolutions and uses them to
detect changes (Asokan and Anitha, 2019). The remote sensing techniques
are utilized to monitor and analyze environmental issues at the global, na-
tional, and regional level. The purpose of change detection is to analyze the
variability in the images related to a specific area that is captured over a dis-
tinct period of times. Multi feature-based fusion techniques are utilized for
the detection of changes in Landsat images with three bands that are Red,
Green, and Blue (RGB) (Cai et al., 2018). The method of change detection is
commonly used for tracking environmental conditions such as the impact of
natural disasters and urban expansion, finding changes in vegetation, eval-
uating desertification, and detecting specific urban or natural variations in
the environment (Jianya et al., 2008). Change identification due to repeated
coverage at short intervals and reliable image quality is one of the primary
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features of remotely sensed data collected from Earth-orbiting satellites (An-
derson et al., 1977; Ingram, Knapp, and Robinson, 1981; Nelson, 1983; Singh,
1984). Techniques for change detection executing in different ways, like Lu-
Lc (Liu et al., 2017b; Liu et al., 2018; Liu et al., 2017c; Liu et al., 2016a; Am-
ici et al., 2017), Deforestation, settlement in urban areas, and natural dis-
aster change (Vickers, 2017; Hölbling, Friedl, and Eisank, 2015; Kleynhans,
Salmon, and Olivier, 2015). Remote Sensing (RS) technology has proved to
be the essential data source for continuous observation and evaluation over
time. Table 2.1 provides a brief survey on classification and change detection
in remote sensing using Landsat data with different resolutions.

Although the change detection techniques are applied in several differ-
ent fields, only a few methods are followed by the researchers. The purpose
of these approaches is to determine the substantial changes with respect to
a specific area from the satellite images. Figure. 1 illustrates the flow for
the detection of changes from satellite imagery. It has been realized that the
presence of noise and artifacts in original images influencing the detection
accuracy. Moreover, the selection of a Change detection (CD) and classifica-
tion techniques also affects the performance of the detection. This chapter
includes the literatures survey on remote sensing satellite imagery, classifi-
cation, change detection, and deep learning approaches.

2.1 Preprocesing and process of detecting changes

and classifying satellite images for remote sens-

ing

Remote sensing data is commonly used to detect the scale of change that
include a significant change in two different images with respect to a dis-
tinct period. The differences are identified to constitute a change map. 2.1
explains the complete process of detecting the changes within two images.
The process of change detection method starts with data collection, where a
series of images are taken from the same location at different periods. It has
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FIGURE 2.1: Different Image pre-processig techniques

been realized that it is imperative to apply the process of preprocessing on
targeted images to check the atmospheric effect and noise. After completing
the task of preprocessing, the change detection algorithms need to apply to
detect the scale of variability.

Image Preprocessing

To address the problem of atmospheric effects such as unwanted noise or
objects, researchers have developed different image processing methods. It
is hard to distinguish among various ground artifacts with human vision
due to the spatial resolution of satellite images. False-color variation helps
to classify the ground artifacts and helps to detect the efficacy of the change
map (Ma et al., 2017). Figure 2.1 shows the different methods of satellite
image preprocessing for change detection.

• Geometric registration: Geometric registration is a solution that helps
to detect unavoidable parts of satellite images to analyze change (Wu
et al., 2014; Zhang et al., 2016). This approach is primarily employed to
detect the changes in images that are captured in multiple dimensions
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that can be a reason for the misclassification of the pixels. To operate
geometric registration, Rational Polynomial Coefficient (RPC), Digital
Terrain Model (DTM), Scale-Invariant Feature Transform (SIFT), Par-
ticle Swarm Optimization Sample Consensus (PSOSAC), Continuous
Ant Colony Optimization (CACO), and Random Sample Consensus
(RANSAC) are proposed (Fytsilis et al., 2016; Wu et al., 2017; Wu et
al., 2019b; Cao, Zhou, and Li, 2016). Apart from these methods, one
more registration approach named as Harris Laplace is employed for
change detection (Cao et al., 2016). In this method, the identified points
are clustered and balanced using SIFT to improve the accuracy of point
detection.

• Radiometric correction: To normalize the multi-temporary data ob-
tained over different periods, relative radiometric correction can be ap-
plied. While comparing several data sets, it has been analyzed that
the process of image enhancement and correction is performing a sig-
nificant role (Franklin and Giles, 1995). Here, the radiometric correc-
tion method enhances the interpretability and consistency of remotely
sensed data. Radiometric correction is a series of methods designed
to transform the digital values of the sensors such as radiance, spec-
ular reflection, and surface temperature (Pons and Arcalís, 2013). For
stabilizing the brightness and contrast in the satellite images, the in-
tensity normalization method is performed. It can be evaluated by
changing a satellite image histogram as per requirement (Wan et al.,
2018). Radiometric corrections are also utilized in the Digital Eleva-
tion Model (DEM) to improve the incidentangel oriented surface area
(Ajadi, Meyer, and Webley, 2016). Sensors that causes adjustments in
scene illumination and geometric corrections are removed by radio-
metric corrections that eliminate geometric distortions.

• Despeckling: Despeckling is mostly used to minimize noise as well
as retain the information of the image. The pixel intensities are typi-
cally influenced by additive gaussian noise in optical images. Rather
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than utilizing Landsat 8 images, Synthetic Aperture Radar (SAR) im-
ages are commonly used in change detection. SAR images contain less
amount of atmospheric effects or clouds. However, the speckle noise
may influence the image’s pixels in the SAR image. Researchers have
developed different methods to increase the efficacy of the techniques
to detect changes in SAR images (Zhang et al., 2020). To eliminate
multiplicative noise in SAR images, spatiotemporal speckle filtering is
used (Wang, Zhao, and Chen, 2017). Another filter such as Lee sigma
filter used on SAR images for despeckling (Iino et al., 2018). In the
process of despeckling, Lee sigma filter showed a better result, among
other filters. On the other hand, the Gaussian noise model was de-
veloped that was widely used to eliminate Gaussian noise (Golilarz,
Gao, and Demirel, 2019; Masse et al., 2018). The pixel values are de-
termined by analyzing the complete image instead of considering the
neighborhood pixels of an image. In (Feng and Chen, 2017), nonlinear
diffusion filtering is proposed to deal with the speckle noise in SAR
images. Moreover, to denoise SAR images, a non-local mean filter is
presented (Devapal, Kumar, and Jojy, 2017). In (Reich, Wörgötter, and
Dellen, 2018), a real-time image dimensionality reduction filter is pro-
posed that uses a thresholding-based approach to identify the edges of
the images. Adaptive Cuckoo Search is another method based on opti-
mal bilateral filtering to accelerate the convergence of the bilateral filter
control parameter (Asokan and Anitha, 2020).

2.2 Different Classification and Change Detection

Techniques for Remote Sensing Application

To analyze the scale of urban growth, the primary objective of change detec-
tion methods has to analyze the condition of a specific location to identify
variations from the images captured at different periods. Through satellite-
based remote sensing, high spatial and spectral resolution-oriented images
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are captured that are used to analyze the scale of change. Based on its im-
plementation, different methods for the identification of changes have been
introduced in Figure 2.2.

2.2.1 Algebra Based approaches for remote sensing

To identify the scale of change, algebraic expressions are utilized to evaluate
each pixel of an image in algebra-based change detection techniques. Im-
age differencing (Ke et al., 2018), Image rationing (Liu et al., 2015), Change
Vector Analysis (CVA) (Ferraris et al., 2017), and Image regression (Ridd and
Liu, 1998) is the most common algebra detection methods. The selection of
a threshold value is considered the most imperative process in standard al-
gebraic change detection techniques that helps to detect the targeted region
of an image to analyze the scale of change. These solutions are easy to im-
plement, however, it is difficult to select an acceptable value of the threshold
that can cause poor determination of the scale of change. The major draw-
back of these approaches is the classification of the areas from the images
that contain a high ratio of noise. An unsupervised change detection ap-
proach is introduced to determine change vectors and statistical parameters
by utilizing the Expectation-Maximization (EM) algorithm (He et al., 2014).
The change vectors help to identify the image variance and the EM algorithm
is used to compute its statistical parameters. In (Qi et al., 2015), three mecha-
nisms such as object-oriented image analysis, Post Classification comparison
(PCC), and Principal Component Analysis (PCA) are utilized to analyze the
change that significantly minimized the rate of false alarms. Image differen-
tiation is a procedure that is used to analyze the greyscaled images to access
spatial information from the images. In the process of image processing, a
variation in two images can be analyzed adequately by accessing the inten-
sity of pixels in grey color (Vickers, 2017). Change vector analysis is another
change detection technique that describes the evolutionary nature of mul-
tispectral images. In this manner, it has been analyzed that the algebraic
change identification methods are easy to implement and simpler to apply
on images to detect the scale of change. (See Table 2.2)
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TABLE 2.2: Different studies on algebra-based approaches

Authors Approaches Images Area Accuracy
(Ke et al.,
2018)

Image Differencing Multispectral
Images

China 0.9451

(Luppino
et al., 2019)

Image regression Heterogeneous
Images

- -

(Liu et al.,
2015)

CVA (changevector
analysis and Image
Rationing)

Multi-
temporal
HS Images

California 0.99

(Ferraris
et al., 2017)

Fusion Based ap-
proach

Multispectral
and hy-
perspectral
(HRand LR)
LANDSAT 8

USA 0.97

(Xiong,
Chen, and
Kuang, 2012)

Image Rationing SAR Images China –

(Barber,
2015)

Generalized Like-
lihood ratio test
(GLTR)

SAR Images – –

(Ridd and
Liu, 1998)

Dynamic threshold-
ing

Multispectral
images

Alaska 0.94

(Qi et al.,
2015)

CVA PolSAR Panyu
China

0.99
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FIGURE 2.3: Transformation based process for detection of
changes from satellite imagery in remote sensing application

2.2.2 Transformation based approaches for remote sensing

The change detection also includes the use of pixel transformation to detect
the scale of change in the images by utilizing transformation techniques such
as Principal Component Analysis (PCA) (Abdi and Williams, 2010), Tasseled
Cap Transformation, and Chi-Square Transformation (CST) that are illus-
trated in Figures 2.3 and 2.4 for better understanding. While implementing a
transform-based change identification process, the redundant bands are re-
duced by decomposing the objects and the change is observed through trans-
formation. In the case of fast detection of changes for reference images, the
Homogenous Pixel Transformation (HPT) technique is proposed (Liu et al.,
2017b; Liu et al., 2018; Liu et al., 2017c; Liu et al., 2016b; Liu et al., 2016c). The
main disadvantage of this approach is, it is difficult for labeling the changing
area in the image. (See Table 2.3)

2.2.3 Classfication based approaches

The classification approach is completely dependent on the selection of data
for change analysis. As the change detection accuracy is not affected by ex-
ternal factors such as atmospheric disturbance, this is considered as one of
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TABLE 2.3: Different studies on transformation-based ap-
proaches

Authors Approaches Images Area Accuracy
(Sadeghi,
Ahmadi, and
Ebadi, 2016)

PCA Landsat-TM4 Islami
Island
(Urmia
Lake,
Iran)

0.96

(Massarelli,
2018)

Tasseled Cap Trans-
formation

Landsat Brindisi 0.91

(Thakkar
et al., 2016)

Tasseled Cap Trans-
formation

IRS 1C LISS-
III, Landsat 5
–TM, Land-
sat 8-OLI SR

India 0.84

(Vázquez-
Jiménez et
al., 2017)

Chi-square Quickbird,
WorldView,
GeoEye

Guerrero
Mexico

–

(Solano-
Correa,
Bovolo, and
Bruzzone,
2018)

Tasseled Cap Trans-
formation

Heterogeneous Trentino
Italy

–

(Liu et al.,
2016b)

Discrete Wavelet
Transform

Quickbird UK 0.96

(Zhang et al.,
2016)

Discrete Wavelet
Transform

USACE,
NOVA 2.1
small UASS

Yanzhou,
China

–

(Liu et al.,
2016b)

Discrete Wavelet
Transform

SAR Ranch,
Florida

0.87
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FIGURE 2.4: Principle component analysis

the most influential advantages of this approach. By utilizing the classification-
based change detection technique, the better outcomes related to the change
recognition can be achieved, however, the proposed solutions are suffering
from the limitation of the training data. The scale of change is determined by
following the concept of multi-dimensional distribution and the variables are
determined by implementing the Expectation-Maximization (EM) algorithm
(Prendes et al., 2014). To determine the area of land, an unsupervised classi-
fication approach is proposed named as for Ensemble Minimizing Learning
Algorithm (EML) that categorize the multiple images into clusters (Vignesh
et al., 2016). However, as the size of the samples is limited, the value of
the predictive outcome is unsatisfactory. For multitemporal satellite images,
Principle Component Analysis (PCA) is combined with an available classifi-
cation if urban levels change in the river delta, can be efficiently monitored
(Li and Yeh, 1998; Li et al., 2010). (See Figure 2.5)
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TABLE 2.4: Survey on classification-based aproaches

Authors Approach Images Area Accuracy
(Raja et al., 2013) Wavelet-Based Post

Classification
IRS-1B and
IRSP6

Madura
city
south
India

0.82

(Gong et al., 2015) Deep learning SAR Ottawa 0.98
(Vickers, 2017) Bayesian network

classifier
Cloud im-
ages

– 0.97

(Singh and Singh,
2017a)

Genetic algorithm
trained radial basis
function neural
network

SAR Ottawa 0.85

(65) Deep neural net-
work

Heterogeneous
optical and
Radar

China
Mexico

0.98

(Jin et al., 2019) Deep Convolutional
Neural Network

NGS China 0.96

(Zhang and Shi,
2020)

Convolutional Neu-
ral Network

VHR World
View 3

– 0.92

(Ren et al., 2020) Generative Adver-
sal Network

VHR – –

(Saha, Bovolo, and
Bruzzone, 2019)

Deep Change Vector
Analysis

VHR World
View 2,
Pleiades, and
Quickbird

- 0.96

(Touati, Mignotte,
and Dahmane, 2020)

Deep Sparse Resid-
ual

VHR World-
View2,Quick
Bird2

– 0.96

(Kalinicheva et al.,
2020)

Unsupervised ap-
proach

HR – –
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FIGURE 2.5: Complete process of classification based ap-
proaches for change detection

2.2.4 Advanced deep learning approaches in remote sensing

for classificaton and change detection

The advanced method of identification of changes consists of various reflec-
tion and spectral mixing models. In these approaches, the image value is
transformed into a substantial variable by following the concept of linear
pattern analysis. (Wang et al., 2014) has introduced a Hopfield Neural Net-
work (HNN) model (Li et al., 2014) to analyze the condition of the land.
Another change detection method named a temporal unmixing method is
proposed by (Xu et al., 2017) that analyzes the landscape images to identify
the change in the coverage area. A hybrid spectral change-based change de-
tection approach is explored by (Yan et al., 2018a). This approach defines the
differences between the spectral values and shapes, and it requires only spec-
tral features to defines the modifications which are not readily detectable.
This method is also suffering from the problem of over-clustering that de-
fines the limitation in the prediction of change with respect to the predefined
classes. In this manner, developing a model for the conversion of reflectance
value is considered as a big challenge in advanced models. (See Table 2.5)
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TABLE 2.5: Survey on advance methods for change detection
and classification

Authors Approaches Images Area Accuracy
(Xu et al.,
2017)

Empirical orthogo-
nal function (EOF)

Landsat Jiangsu,
china

89.25

(Wang et al.,
2014)

Resolution lan cover
change detection
(RLCCD)

Landsat 7 Liaoning,
china

-

(Marinelli,
Bovolo, and
Bruzzone,
2017)

Spectral change vec-
tors (SCVs)

Multitemporal
HS

Washington,
USA

-

(Yan et al.,
2018a)

Hybrid Spectral Dif-
ference (HSD)

WorldView 2
VHR Landsat
7

EMTM
China

–

(Ma et al.,
2019a)

Image Mapping Homogeneous
dataset (SAR)
Ottawa
dataset

China 0.97

2.3 Artificial Intelligence and Fuzzy-based Approaches

in Remote Sensing

Several new methods have incorporated in Artificial Intelligence (AI)techniques
that enhanced the scale of precision for change detection. A wide variety
of Remote Sensing (RS) research has suggested the superiority of AI-based
change detection approaches over the conventional approach for extracting
the features from the images (Zhang and Lu, 2019; Fang et al., 2020). The neu-
ral network-based approach consists of assessing the area of change by using
a combination of different neural network approaches, blurred method, and
remote sensing techniques. By following the proficiency of AI techniques
for feature extraction and learning, the evaluation of real-world geograph-
ical features has become possible with significant accuracy. Figure 2.6 il-
lustrates different AIassisted frameworks that are specifically designed to
analyze the change from the extracted feature maps. Based on the process
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FIGURE 2.6: Artificial intelligence-based classification and
change detection approaches in remote sensing

of in-depth feature extraction and training, the AI-based change detection
frameworks can be categorized into three types: Single-stream framework,
Double-stream framework, and Multi-modal integrated structure.

2.3.1 Single stream framework

In single-stream frameworks, only one primary AI method has to embed
in the predictive solution to identify the change. The categorization of the
single-stream frameworks can be done in two categories such as direct clas-
sification structure and transformation-based mapping structure as repre-
sented in Figure 2.7. It is imperative to mention that several studies have
updated the solutions for fulfilling the objective of change detection with
respect to the need for application and domain (Shi et al., 2020b; Shi et al.,
2020a).
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FIGURE 2.7: Direct classification structure

FIGURE 2.8: Siamese framework for change detection

2.3.2 Double stream framework

The double-stream structures are always been preferred to recognize the
change by analyzing the images which are captured at two different time-
stamps. Moreover, these methods can broadly categorize into three cate-
gories such as Siamese structure (Arabi, Karoui, and Djerriri, 2018; Jiang et
al., 2020; Varghese et al., 2018; Zhan et al., 2017), transformation-based struc-
ture, and post-classification form (Bruzzone and Cossu, 2002; Abuelgasim
et al., 1999; Lyu et al., 2018; Cao, Dragićević, and Li, 2019) as illustrated in
Figure 2.9.
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FIGURE 2.9: Post classification structure

2.3.3 Multi-model integrated structure

The multi-model integrated framework is a hybrid structure similar to a
double-stream design. Change detection is the spatiotemporal analysis that
can be achieved by acquiring the spatial and temporal features from the se-
quence of frames. In multi-model structures, both spatial and temporal fea-
tures are utilized to analyze the scale of change. The spatial features are
utilized to analyze the change patterns and temporal features are utilized to
analyze the dependency of change over spatial features captured on differ-
ent time-stamps (Vickers, 2017; Chen et al., 2019; Song et al., 2018; Shendryk
et al., 2018; Liu et al., 2019b). Several different architectures such as Auto-
Encoders (AEs), Deep Belief Networks (DBNs), Convolutional Neural Net-
work (CNN), Recurrent Neural Networks (RNNs), and Pulse Capsule Neu-
ral Network (PCNNs) are also used for change detection (Gong, Yang, and
Zhang, 2017; Han et al., 2019).

2.3.4 Auto-encoder (AE)

Auto-encoder can be used to reduce the dimensionality of a component. It
is widely used in for feature extractor, as, it has the robust feature learning
capability of neural network. The commonly used AE models are stacked
auto-encoders (Ma et al., 2019a; De et al., 2017; Planinšič and Gleich, 2018),
stacked denoising auto-encoders (Zhang et al., 2016; Su et al., 2016; Su et al.,
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2017), stacked fisher autoencoders (Liu et al., 2019a; Liu et al., 2019b), Sparse
auto-encoders (Fan, Lin, and Han, 2019), and denoising auto-encoders (Li,
Chen, and Rao, 2018). These autoencoders maintain spatial information by
extending pixel neighborhood values into vectors. In contrast, convolutional
auto-encoders are implemented directly by convolution kernels (Kerner et
al., 2019). Depending on its features, auto-encoders can detect changes in an
unsupervised manner and work effectively.

2.3.5 Deep belief network (DBN)

A deep belief network is a generative statistical approach that learns to re-
build its inputs empirically. The deep belief network consists of several
hidden layers that are responsible to make interactions between the layers.
However, the units within the same layer are not connected and each hid-
den layer serves as a transparent layer for the next layer. It can be greed-
ily trained, i.e., one layer at a time, and appears in many unsupervised im-
age processing techniques (Ozdarici-Ok, 2015; Chu, Cao, and Hayat, 2016;
Samadi, Akbarizadeh, and Kaabi, 2019). A DBNassisted framework is pro-
posed for the classification of numerous changes from an image (Su et al.,
2017). The proposed solution incorporated a greedy layer-wise training ap-
proach that dramatically eliminates the problem of overfitting.

2.3.6 Convolutional Neural Network (CNN)

CNN techniques are effectively utilized in a wide range of remote sensing
applications such as land use Land cover, object detection, feature extraction,
and change detection (Gong et al., 2015; Liu et al., 2016c; Lyu et al., 2018;
Puig, Hyman, and Bolaños, 2002). It is used to improve the other change
detection techniques and to learn the non-linear mapping between modified
and unchanged image pairS. Due to the strong capability of feature learning
from images, CNN becomes the best choice for researchers when training
samples are sufficient (Chatfield et al., 2015; Peng and Guan, 2019). The
procedure of extracting information from images is illustrated in Figure 2.10.
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FIGURE 2.10: Working process of Convolutional Neural Net-
work

CNN architecture incorporates the convolutional layers with subsam-
pling operations that decrease design complexity and improves the capabil-
ity of generalization with less trainable parameters (Krizhevsky, Sutskever,
and Hinton, 2017; Gong et al., 2015; Liu et al., 2016c; Lyu et al., 2018). By con-
sidering the ability to learn the extracted features from an image, CNN has
obtained a considerable performance in various image analysis tasks. Many
classical CNNs and their extensions such as VGGNet (Peng and Guan, 2019;
Nemoto et al., 2017; Sakurada and Okatani, 2015), CaffeNet (El Amin, Liu,
and Wang, 2016), SegNet (Zhu et al., 2018), UNet (Peng, Zhang, and Guan,
2019), InceptionNet (Pomente, Picchiani, and Del Frate, 2018), and ResNet
(Venugopal, 2020) are used as a classifier. A multiscale convolutional neural
network (CNN) model is proposed by (Zhang et al., 2020) that trained the
model on non-normalized images for securing the more details of an image.
Moreover, to learn deep features for the detection of change, spatially regis-
tered images are required for CNN (Guo et al., 2018). To detect the complex
features from high-resolution satellite imagery, a Deep Difference Convo-
lutional Neural Network (DDCNN) is proposed by (Zhang and Shi, 2020).
While training the CNN model, a huge amount of labelled data is required
for the detection of change that is addressed in SemiCDNet model which is
developed by (Peng et al., 2020a). Hence, the use of CNN has changed the
process of image analysis, there is still no systematic way to design and train
the network which would be considered a long-standing issue in the remote
sensing community.



Chapter 2. Related Work 36

FIGURE 2.11: Recurrent Neural Network

2.3.7 Recurrent Neural Network (RNN)

As the task of change detection involves data with respect to multiple pe-
riods, the input can be converted in the form of a process that obtains the
information related to change from the data sets (Shi et al., 2020b; Shi et
al., 2020a). RNN techniques have received considerable attention to solv-
ing many complex issues involving sequential time series data, in particular
Long Short-Term Memory (LSTM) models (Ordóñez and Roggen, 2016). To
detect the changes from satellite images, it is necessary to provide a stable
framework for the expression of data extraction for change detection. In
this manner, RNN represents the feasible methods for learning imperative
information for the detection of change from sequential time-series remote
sensing data (Lyu, Lu, and Mou, 2016; Chen et al., 2019). However, due to
vanishing gradient problem in RNN, the enhanced version of RNN named
as Long Short-Term Memory (LSTM) network alleviates gradient disappear-
ance and gradient explosion from the sequential data (Lyu, Lu, and Mou,
2016; Song et al., 2018; Liu et al., 2019a; Liu et al., 2019b). The researchers
have utilized LSTM networks to obtain changes from the multi-temporal RS
data (Lyu, Lu, and Mou, 2016). The trained model could be transferred to
other data domains with an adequate generalization capacity. Figure 2.11
shows the core directive part in the form of a directed graph that can be un-
folded to a chain of series-connected units (i.e., RNN cells).
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2.3.8 Pulse capsule neural network

The pulse capsule neural network (PCNN) is a bionic neural network fo-
cused on the primate’s visual cortex (Dewan, Kashyap, and Kushwaha, 2019).
Unlike conventional neural networks, the learning and training phase does
not require the extraction of successful information from very complex back-
grounds in PCNN. The pulse neural network (PCNN) takes two-dimensional
image data and each neuron correlates to a single pixel of an image. The
pixel value acts as an external stimulation for each neuron that interconnects
the adjacent neurons and supply regional stimuli to the next connected neu-
rons. External and regional stimuli are mixed in a modulation field with a
pulse generator to generate the output. As the duration of training increases,
the PCNN produces a pulse sequence that can be used for the segmentation
and extraction of the features from the images (Dewan, Kashyap, and Kush-
waha, 2019) and, similarly, for the detection of change (Benedetti, Picchiani,
and Del Frate, 2018; Huang, Yu, and Feng, 2019; Ma et al., 2019a; Ma et al.,
2019b).

2.3.9 Fuzzy-based change detection approaches

The detection of change from a Synthetic Aperture Radar (SAR) by utilizing
a fuzzy clustering approach from an image is introduced in (Li et al., 2016).
The primary benefit of these approaches is, it has the ability to handle the
noise in an effective manner. Different studies investigate the detection of
changes by utilizing deep learning approaches (Huang et al., 2018a; Huang
et al., 2018b; Huang, Yu, and Feng, 2019). To enhance the ability of change
detection, a combination of fuzzy and Markov random fields is proposed
(Subudhi et al., 2014). Table 2.6 provides an in-depth analysis of the all the
above-dicussed ANN and fuzzy-based approaches with their respective ar-
eas.
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TABLE 2.6: Suevey on neural network and fuzzy-based ap-
proaches

Authors Approaches Images Area Accuracy
(Subudhi
et al., 2014)

Gibbs Markov Ran-
dom Field (GMRF)

Landsat Italy –

(Li et al.,
2016)

Multi-objective
Fuzzy Clustering

Ottawa Bern,
Switzer-
land

0.95

(Su et al.,
2016)

Deep learning and
Mapping (DLM)

Chanba Farmland 0.96

(Tian and
Gong, 2018)

Edge-weighted
fuzzy clustering

SAR Ottawa
dataset

Bern 0.78

(Huang et al.,
2018b)

Semi-transfer deep
convolutional net-
work (STDCNN)

WorldView 3,
Worldview 2

Hong
Kong
Shen-
zhen

0.91

(Huang et al.,
2018a)

Object-oriented
change detection

IKONOS Tang Jiao 0.92

(Jing, Gong,
and Guan,
2020)

SLIC-CNN and
CAE Features

Google Earth Beijing,
Wuhan

0.95

(Zhang and
Shi, 2020)

Essemble CNN WorldView-3
UAV

– 0.92

(Kalinicheva
et al., 2020)

Deep learning with
Graph-based ap-
proach

Sentinel-2
and SPOT-5

– –

(Karim and
Zyl, 2020)

Deep Learning and
Transfer Learning

Sentinel-1
and Sentinel-
2

– 0.85

(Wang et al.,
2020b)

Deep Siamese Net-
work

ZY-3 and GF-
2

Dalong
Lake and
China

0.97

(Song et al.,
2018)

Fully Convolutional
Network and Trans-
fer learning

KOMSAT-3A Korea 0.97

(Seydi,
Hasanlou,
and Amani,
2020)

Convolutional Neu-
ral Network

Polar SAR Abudhabi,
(UAE)

0.98

(Shi et al.,
2020a)

Deep Neural Net-
work

OSM Hong
Kong

-



Chapter 2. Related Work 39

2.3.10 GIS-based approaches

A Geographical Information System (GIS) incorporates various sources of
information in the detection of change. The main benefit of using GIS is to
identify a change in the area that is being examined in a regular manner.
It has been analyzed that multiple sources of data affect the performance
of the model. However, the GIS method is more effective for handling and
visualizing the multidimensional data in the field of remote sensing. GIS
incorporates quantitative data sources and makes it much easier to obtain
and analyze information on the detection of changes. Detection of vegetation
cover changes using remote sensing and utilized the Normalized Difference
Vegetation Index (NDVI) to categorize the vegetations (Gandhi et al., 2015).
GIS-inspired Land cover change detection with remote sensing is introduced
by (Rawat and Kumar, 2015). The proposed solution makes it easier to detect
improvements with better accuracy and lower cost.

2.3.11 Other clasification and change detection approaches

Besides the popular categories of change detection, some other approaches
are also used to detect changes in multi-temporal remote sensing images
(Mohamed, Mobarak, et al., 2016; Pasanen and Holmström, 2015; Lv et al.,
2016). In (Feng et al., 2018), objects are identified accurately and neighbor-
hood similarity is measured by utilizing an object-based change detection
approach. The biggest challenge of this approach is to deal with scattered
and distributed samples. In (Yang et al., 2017a), the authors described a veg-
etation cover change study by following Multivariate Adaptive Regression
Splines (MARS) model and the Back-Propagation Neural Networks (BPNNs)
modelassisted a hybrid approach. Another change detection approach for
remote sensing data is proposed in (He et al., 2015), which utilized an ad-
vanced Markov model to deal with the local ambiguity. Therefore, the need
for high computation resources is considered as one of the major disadvan-
tages (Gu, Lv, and Hao, 2017). (Han and Zhou, 2017) introduced the Adap-
tive Unimodal Subclass Decomposition (AUSD) learning system to analyze
change with respect to the land. For estimating change from heterogeneous
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images, a fusion-based FastMap approach is followed is proposed by (Touati,
Mignotte, and Dahmane, 2020).

2.4 Discussion and Conclusion

A change detection classification approach becomes considerably acceptable
if it provides details about change areas, accurately identifying the change
forms, and better understanding the detection of change outcomes. The scale
of accuracy is completely dependent upon the quality of the dataset, data
complexity, domain of study, and the method opted to perform the task of
change detection. This study discusses an overview of different techniques
and stages that are essential for the detection of changes. The limitations of
each method for the detection of change are highlighted and presented in
Table 2.7.

TABLE 2.7: Classification and change detection approach with
their limitations

Sr.
No.

Approaches Advantages Limitations

Algebra-based approaches
1 Image Differ-

encing
Execution is simple
and basic

This approach does not
give a point by point
matrix, and also it
requires an acceptable
range

2 Image Regres-
sion

Diminish the effect
of atmospherical
and environmental
variations between
reference images

Requires precision
regression function
for developing this
approach

3 Change vector
analysis

Capacity to handle
more bands of spec-
trum

Complexity in recog-
nizing the land cover
change (LC)
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Transformation based techniques
1 Principal Com-

ponent Analysis
(PCA)

The repetition of
information dimin-
ishes

It can’t give a total
matrix to change data
and require an edge to
recognize the progres-
sions that happened in
the territory.

2 Tasseled Cap
(TC)

Reduce the amount
of data between
bands

It is inconvenient to
interpret and probably
won’t offer an entire
matrix of changes.

Classification based approach
1 Post Classifica-

tion
Comparison Reduce
the impact of atmo-
spheric

This classification
requires more time
to produce output.
The image quality
relies upon a definitive
precision.

2 Unsupervised
Change Detec-
tion

An unsupervised
technique utilizes a
clustering approach.

The change path is
hard to recognize and
label.

Advanced models for change detection
1 Spectral Mix-

ture Model
The outcome is
steady and precise

Implementation com-
pared to other methods
is complicated

Visual based change detection approach
1 Visual Interpre-

tation
During analysis, hu-
man expertise and
information are use-
ful.

Incapable of giving a
point by point data
that has been chang-
ing but consumes more
and more time to up-
date the result.
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Gis based approach
1 GIS approach It allows mapping

the changes in the
image of the present
and past data

Performance of results
varying in mathemat-
ical and classification
process.

2 Integrated GIS
and RS method

It empowers the elu-
cidation and inves-
tigation of informa-
tion to be accessed

Detailed data from
various sources change
the identification.

The data related to remote sensing is always dependent upon the need of
the application. The accessibility of satellite information additionally plays
a vital role in the detection of change. After reviewing the different research
works, it has been concluded that the post classification approach delivers
considerable accuracy as compared to the algebraic approaches. There are
numerous techniques for detecting changes; however, it is difficult for se-
lecting an optimum and definite method. As detection of change is consid-
ered as one of the challenging areas, data analysts are implementing different
techniques by applying their skills to detect change. However, processing
the heterogeneous data is considered as one of the most common challenges
in change detection and classification. Due to advancements in technology,
satellite image processing is considered as an appropriate technology for re-
mote sensing applications. In the traditional image processing methods, the
collection of the satellite images, computational approach, and the impact
of disturbance on the satellite images were considered as the most common
issues. Advanced data analysis methods are developed for overcoming the
limitations of the traditional image processing approaches. In the past few
years, deep learning techniques have increased the efficiency of data pro-
cessing provided considerable prediction outcomes. In this manner, it has
been concluded that the development of deep learning-assisted hybrid ap-
proaches can help to obtain promising outcomes with respect to the domain
of change detection.
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Chapter 3

Satellite Images and Survey Data
to Predict Happiness Index

3.1 Introduction

The utilization of satellite images to map natural resources such as forests
and water bodies has become increasingly popular in recent years. Forest
and water resources are heavily used, therefore, regular monitoring is essen-
tial for the long-term management of these resources. The industrial rev-
olution brought the large need for water that causes the problem of global
warming and climate change. This development generates the need to iden-
tify the sources water bodies in a persistent way to estimate the quantity and
quality of water resources (Feng et al., 2015; Famiglietti and Rodell, 2013).
Moreover, the continuous growth of industries also causes the change of ur-
banization that claim the improper control of water conservation (Du, Ot-
tens, and Sliuzas, 2010; Xie et al., 2018; Shuster et al., 2005). In this manner,
an actual and accurate view of urban sources of water is critical for the de-
velopment of sustainability.

3.1.1 Problem Idendification and Motivation

Recognition of water bodies in a precise manner from satellite images is
considered one of the important applications in the domain of environment
monitoring. Different water prediction techniques have been developed in
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FIGURE 3.1: Conceptual Framework for Water bodies identifi-
cation from satellite imagery.

previous studies for resolving the issue of water index misclassification. How-
ever, accurately assessing the dynamics of water spectral features from a se-
ries of images is challenging due to the complex properties of water spec-
tral reflectance (Fisher, Flood, and Danaher, 2016). In this manner, water
index methods have been misclassified by the majority of the traditional ap-
proaches. Therefore, several limitations have been identified in terms of wa-
ter bodies recognization.

3.1.2 Contribution

Water extraction methods employ standard procedures to acquire data about
water availability using remote sensing images (Du et al., 2016; Wu et al.,
2019a; Zhou et al., 2014; Afaq and Manocha, 2021a). By following the need of
analyzing the water resource, the proposed solution has utilized RS images
as illustrated in Figure.3.1. Moreover, it has been analyzed that forwarding
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the data to the cloud is increasing the transmission cost with latency. How-
ever, fog computing is considered one of the most effective solutions to deal
with these two parameters. In this manner, the fog layer helps to achieve the
distributed computing environment by processing the data near to the user.
To fulfill the objective of the study, the contributions of the proposed study
are listed as:

1. To develop Deep Convo-Restrictive Model for covering the large tar-
geted area by analyzing the structural relationships among the smaller
area.

2. To add Conditional Random Field (CRF) layer in the proposed MDFN
to enhance the process of inferencing.

3. To improve spatial inferences by utilizing the Spatial-Inferred-Features
(SIF) to calculate the information of the targeted region for a significant
representation.

4. To transfer features to the Deep-Sparse-Auto-encoder (DSA) module
and calculate non-linear connection from local and global data.

3.1.3 Chapter Organization

The remaining chapter is structured into different sections and subsections.
Section 3.2 is devoted to a survey of the major literature on conventional and
advanced techniques for water identification. In Section 3.3, every potential
element of the suggested architecture is examined. The experimental out-
comes are presented in Section 3.4. Lastly, in Section 3.5, the conclusion of
the proposed solution and future perspective of the proposed study is dis-
cussed.

3.2 Literature Review

Several solutions have been introduced to evaluate water bodies using re-
mote sensing data by utilizing sub-pixels (Li et al., 2015; Yan et al., 2018b).
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FIGURE 3.2: Complete process of proposed MDFN.
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The previously developed solutions are divided into two following cate-
gories: (i) Conventional approaches and (ii) Advanced approaches.

3.2.1 Conventional approaches

Researchers have suggested several ML approaches such as SVM, k-means
clustering, and many others to evaluate RS images with different resolu-
tions(Kang et al., 2016; Katz, 2016) and the selection of important features
is critical in these proposed techniques from RS images. The hand-crafting
process for the collection of spatial features by using such methods is labori-
ous and time-consuming (Kang et al., 2016). (McFeeters, 1996) proposed an
NDWI approach for analyzing the target objects. This model has a limitation
in terms of gap analysis among shadows and water sources. To improvise
the performance of the NDWI model, author (Xu, 2006) recommended an in-
frared band instead of the green band to easily differentiate the shadows and
water from satellite images. The method yielded the best results for urban
water bodies identification.

TABLE 3.1: Comparison of multiple parameters

Studies Fining RS
Data

Data
Type

Fog
Plat-
form

Cloud
Plat-
form

(Feyisa et
al., 2014)

An automatic water ex-
traction index is pro-
posed to enhance the
water extraction accu-
racy while taking into
consideration of various
types of environmental
noise

✓ NIR × ×
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(McFeeters,
1996)

The NDWI approach is
proposed to extract the
aource of water from
satellite images

✓ NIR × ×

(Huang
et al., 2015)

Empirical evaluation is
conducted on VIIR data
for surface water detec-
tion

✓ SWIR × ×

(Xu, 2006) The modified NDWI
called MNDWI is pro-
posed to enhance the
open water features

✓ NIR × ×

(Kang et al.,
2016)

Multireservoir is identi-
fies by developing Hy-
brid approach

✓ - × ×

(Katz, 2016) In this study these issues
are discussed 1) Remote
sensing classification, 2)
Change detection, 3) Fu-
sion of diverse images

✓ SAR × ×

(Fang et al.,
2019)

The CNN-based frame-
work is developed for
the detection of reser-
voir

✓ Multi
spec-
tral
Bands

× ×

(Chen et al.,
2018b)

The identification water
resources from satellite
images are evaluated by
developing deep learn-
ing approach

✓ False-
color
com-
posite

× ×
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(Yu et al.,
2017a)

To extract water from
landsat 8 data, a hybrid
technique based on deep
learning is presented

✓ Spectral
bands

× ×

(Isikdogan,
Bovik, and
Passalac-
qua, 2017)

Fully convolutional neu-
ral network is designed
that specifically used to
segment the water from
landsat-8 images

✓ All
reflec-
tive
bands

× ×

Proposed
Solution

A new Multi-scale
Data Fusion Network
(MDFN) is presented
in this proposed study
to segment the water
resources from a desired
area

✓ False-
Color
Com-
posite

✓ ✓

3.2.2 Advanced Methods

In RS applications, deep learning has overcome the limitation of previously
developed image processing techniques (Huang et al., 2017; Badrinarayanan,
Kendall, and Cipolla, 2017; Zhu et al., 2017; Afaq and Manocha, 2021a). The
Convolutional Neural Network (CNN) is widely used for obtaining spa-
tial characteristics. CNN has a potential to extract multi-level characteris-
tics. The potential of the extraction of multi-level characteristics is the major
asset of the CNN approach. Weinstein and Ebert proposed MFCN which
was upgraded by adding Fully Convolutional Network (FCN) (Han et al.,
2020) to extract multiscale features for water extraction (Fang et al., 2019;
Chen et al., 2018b; Yu et al., 2017a; Isikdogan, Bovik, and Passalacqua, 2017).
CNN has been utilized by certain researchers to monitor the source of wa-
ter from multi-resolution satellite images. In this manner, the findings show
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that CNN has the capability to differentiate water area and ground shad-
ows (Weinstein and Ebert, 1971; Geng et al., 2020; Wang et al., 2020a) pro-
posed a novel DeepUNet model based on Convolution Neural Network to
segment pixels of an image to differentiate sea water. Furthermore, the se-
mantic segmentation with extended DeepLabv3+ was utilized on cityscapes
dataset with different parameters. Lately, a novel DeepWaterMapV2 was
proposed to map the surface water at a lower cost with improved precision
and recall value.
As significant research towards this path has been observed, researchers
have tried to incorporate advanced approaches for the effective prediction
of natural resources from satellite images. However, several militations have
been observed. To overcome those limitations and gaps, this research is aim-
ing to develop a robust solution for the prediction of water from RS data.

3.3 Proposed Methodology

The proposed study aims to segment different water resources by utilizing
data processing and handling principles of deep learning and fog analytics.
Every possible aspect of the proposed MDFN is explained by dividing it into
three phases as Data Acquisition and Image pre-processing, Water resource
determination, and Degree of happiness index determination as illustrated
in Figure. 3.2.

3.3.1 Data Acquisition and Pre-processing

As Punjab is considered as an essential food production state in India (Ku-
mar and Singh, 2020), the availability of water bodies resources facilitates
the farmer to cultivate the variety of crops for their livelihood that implies
the happiness index of farmers. Three wetlands such as Harike, Roper, and
Kanjli have been included to evaluate the status of water as demonstrated
in Figure. 3.3. In the proposed study, satellite images of 12 distinct natural
wetlands (839 km2 area) and 9 man-made wetlands (14739 km2 area) (Ladhar,
2002) are considered to identify the sources of water. The largest area of the
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FIGURE 3.3: Different wetlands sleclected for the proposed
study2

TABLE 3.2: Description of dataset used in the proposed study

Dataset Color
Composi-
tion

Image description Original
Images

Agumented
Images

Sentinel-
2 Images

False-color
bands

Pixel Density:
256×256, Resolu-
tion: 10m/pixel,
Bands: False-color
composite

5600 11090

wetland with a percentage of 69%, 14%, and 17% belong to rivers, reservoirs,
and ponds/tanks, respectively. The images of the targeted areas are captured
from Copernicus Open Access Hub 1. Moreover, the detailed description of
the dataset is provided in Table 3.2 and Table 3.3 for easy understanding of
the reader.

Image Pre-processing: In this study, false-color composite bands were
utilized for pre-processing that helps to fulfill the necessity of the developed
model. Multiple pre-processing activities such as noise reduction, atmo-
spheric condition adjustment, and radiometric correction are performed on
collected images. Furthermore, several data augmentation methods such as

1Source: https://scihub.copernicus.eu/
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TABLE 3.3: WATER BODIES AVAILABILITY

Sr. No Type of Class Definition
1 River Running water
2 Man Made still water
3 Pond Water Still water
4 Lake Water Still water

clipping, rotating, flipping, shifting, and transforming are used to increase
the number of images to address the issue of model over-fitting that aids
in the resolution of imbalanced learning (Lan et al., 2019; Xie et al., 2019;
Zhang and Montgomery, 1994; Ji, Wei, and Lu, 2019; Ding et al., 2016; Perez
and Wang, 2017; Yang et al., 2016; Norouzi, Ranjbar, and Mori, 2009). More-
over, the super-pixel approach is utilized to optimize the prediction perfor-
mance of the proposed approach. Super-pixels are used in several computer
vision and image processing methods. A super-pixel defines the group of
pixels with similar characteristics. Hence, Simple Linear Iterative Clustering
(SLIC) (Achanta et al., 2012) is utilized to derive the superpixels and helps
to eliminate deviated pixels. In this way, the super-pixel technique in satel-
lite images makes the borders around the object that helps in distinguishing
every possible small adjacent object.

3.3.2 Fog Space: Water resource prediction

In this section, a Convolutional Restricted model-based technique is utilized
for the segmentation of water bodies by analyzing RS images as represented
in Fig. 3.2. The first module is responsible to extract spatial characteris-
tics from the RS data by utilizing the feature extraction capability of the
Deep Convolutional Restricted Model (DCRM). After extracting features,
the structural learning method is used in the second module to analyze the
relationship between the artifacts and the environment. At last, a feature
fusion layer is introduced to generate more effective image representative
functions. The step by step process of each module is discussed below:
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Deep Convo-Restricted Model The precise identification of features to-
wards the given object is determined as a key assessment parameter of the
proposed approach in the field of RS. Therefore, Deep Convo-Restricted Model
extracts spatial features from the given data by utilizing 2d-CNN and RBM
techniques. The developed framework is presented in Figure. 3.4 and ex-
plained in two layers such as Detection Layer (DL) and Visible Layer (VL).

FIGURE 3.4: The DCRM feature learning concept.

In DL, Fk series of kernels are utilized to identify the features from the
image and produce Dk dimension matrices indicated with Nd for feature ex-
traction. A dimensional matrix with its weights and bias is indicated by Fk

and bk, respectively. While the dimensional matrix of sub-units are expressed
by dk

ij. The variables i and j specify the ratio of convolution process. Using
the pooling technique denoted with Bα, the Max-pooling layers marked with
m are utilized to reduce the dimension of an image. Furthermore, the VL has
K number of convolutional filters and each filter has n f dimensional matrix.
Convolutional kernels Fk(k∈[i, k]) are included to deal with the possibility
of comparable characteristics of an image and shared among both DL and
VL. The following formula is used to determine the cumulative probabilistic
value:

m(vl, dl) =
1
z

exp(−e(dl, vl)) (3.1)

Here, the maxpooling operation is denoted by m, detection and visible layer
is represented as dl and vl, whereas, the normalised parameter z = 1

z exp (−e(vl, dl))
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FIGURE 3.5: Representation of structural learning.

and the DCRM energy function is computed as follows:

e(l, d) = −
k

∑
k=1

dk ⊙ (F̃k ⋆ l)−
k

∑
k−1

bk ∑
ij

di jk − s ∑
ij

lij, (3.2)

Here, 2d convolution, element-wise multiplication, and flipping opera-
tions are represented by ⋆, ⊙, and C̃k, respectively. In this manner, the units
of detecting layer DL evaluate the overall activation from smaller regions of
the satellite image. To minimize the inference process in the proposed solu-
tion, the following equation is used:

e(vl, dl) = −∑
K

∑
ij
(dk

ij(F̃k ⋆ l)ij + bkdk
ij)− s ∑

ij
lij ∑

(ij)βα

lk
ij ≤ 1, ∀k, α (3.3)

Here, the fixed-shape window of the DL is represented as Bα and SGD is
adopted to improve the specification of the DCRM (Han et al., 2016). More-
over, the contrastive divergence approach (Hinton, 2002) is employed to op-
timize the effectiveness of the method over the stochastic gradient descent
(SGD).

Structural Learning Layer (SLL) Even, CNN has the potential to obtain hi-
erarchical features, these features are ineffective to evaluate the relationship
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between artifacts and spatial features. Therefore, the CRF approach is em-
ployed for detecting the SIF (Bu et al., 2016) and the procedure of accessing
SIF are clearly illustrated in Figure. 3.5. A graph method represented as g =
(v,e) is introduced to manage high resolution (HR) images, where the edge e
is denoted as E and vertex v is denoted as V. The vertex unit refers to the im-
age sub-segments and the border refers to the relationship between nearby
unit pairs. The weight in the training data is used to generate the conditional
probability distribution as follows:

x(x∥y, t) =
1

z(x, t) ∏
i∈V

ϕn(xi, yi) ∏
eij∈e

ψe(xij, yi, yj) (3.4)

Here, a constructed graph model pair-wise partitioning function is ex-
pressed by a(y, t). The features of a unit are specified as ψe(xije, yi, yj). Fur-
thermore, the potentials of fn − Fe are labeled as log-linear function denoted
as eij. An edge which is composed of vi, vj and p represents the units with
their respective states y = < y1, y2, y3,....., yn >. The training procedure has
been modified as follows:

t∗argmintλ∥t∥2 −
m

∑
n=1

(∑
i∈V

tT
N fN(xn

i , yn
i ) + ∑

eij∈E

tT
E fE(xijen , yn

i , yn
i )) +

m

∑
n=1

log Z(xn, t)

(3.5)

Here, the weight of paired elements is t = [TN; TE], where λ is a positve
L2-regularizer represented as t = [TN; TE] . Additionally, the graphical
model is represented as (xn

i , yn
i ). It has been analyzed that by maximiz-

ing the value can imrove the chance of prediction of target class denoted
as x(y | y, t∗).

Spatially Inferred Features (SIF) As per the literature review, it has been
identified that the CRF is considered as one of the optimized approaches in
the field of RS. Here, the integration of CRF is done for enhancing the stabil-
ity of prediction. In parallel, the graphical and SIF models are applied to ob-
tain both super-pixel and spatial features for resolving the learning limitation
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of spatial features. The connection in the graph is defined as Gµ = (Vµ, Eµ),
where µ is describing as super-pixels. Moreover, ⊙(µ) is used to represent
the SIF model and is further calculated as follows:

⊙ (µ) = λ ∑
i∈Vµ

∑
j∈Vµ

θiθ
T
j exp

(
−kd

d(vi, vj)

σd

)
(3.6)

Here, the density of existence of the adjacent probability of defined ver-
tices i and j is specified by n× n matrix of odot. Moreover, the distance be-
tween super-pixels is denoted by d(vi, vj). Furthermore, the distance decay
rate, vertice distance, and normalised parameter are represented by kd, σd,
and λ, respectively.

FIGURE 3.6: DSA and CRF model for the extraction of hybrid
features.

Multi-layered Feature Fusion (MFF) A multilayer sparse auto-encoder (SAE)
is part of a multilayer feature fusion (MFF) neural network that is imple-
mented in the proposed solution. In addition, MFF precisely obtains the
hierarchical features with similar attributes from the images. Figure. 3.6 il-
lustrates the complete process of fusing multiple features. In the process of
feature and structural learning defined as [Up,⊙] ∈ W(N+nxn), two different
descriptors such as DHF Up and SIF ⊙ are obtained. In addition, DSA is uti-
lized to integrate linked data. Furthermore, the backpropagation approach
is applied in the proposed solution to optimize the prediction efficiency.
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The sample of SAE is denoted as X = (x1, x2, . . . .., xN)
T. The hidden units

nr in layer L are represented as rl = (rL
1 , rL

2 . . . . . . rL
nr). The sigmoid activation

functions utilized in the proposed model are further expressed as follows:

rL =
1

1 + e−x (tX + Br) (3.7)

Here, rL corresponds to the equivalent representation of the modified
encoder from the X input. The value of σ(z) will always be equal to (1 +

exp(−z))1, w ∈ RNxNH and bias value BH will corresponded to RNH x1. As a
result, a X̃ approximation equation can be expressed as follows:

X̃ =
1

1 + e−x (t
TrL + B0), Bo ∈ Rnx1 (3.8)

To reduce the varince between X and X̃, o is calculated as:

o =
1
nc

nc

∑
i=1

∥∥∥X̃i − Xi
∥∥∥2

+ β∥t∥2
2 + α

nr

∑
j=1

kl(p∥ p̃j) (3.9)

Here, the average activation fucntion is represented by p̃j of jth and p is
selected as an activation function.

3.4 Experiments

The efficacy of the proposed model is assessed on the Sentinel-2 image dataset.
The system is configured as follows to carry out the experiments: Intel Core
i5 2.8GHz CPU, NVIDIA GTX-1080Ti GPU, Ubuntu 18.4 LTS Operating Sys-
tem, Python Programming Language. The implementation of the developed
solution is evaluated and presented in distinct subsections as follows;

• Material and Methods

• Evaluation metrics

• Implementation of MDFN

• Prediction Performance
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TABLE 3.4: Survey collection from three regions of Punjab

Region Total responses Positive Responses Negative Responses
Dowaba 637 530 107
Malwa 556 412 114
Majha 283 191 92

• Identification Results

• Comparative Analysis

3.4.1 Material and Methods

The degree of happiness index is evaluated by following two processes as
follows; (i) Conducting an extensive field survey and (ii) Extraction of water
resources from RS data of the targetted areas. A total number of 1476 re-
sponses have been conducted according to the three regions of Punjab such
as Dowaba, Malwa, and Majha. The number of responses is divided accord-
ing to the regions of Punjab. The complete detail of responses which are
categorized into positive and negative responses is represented in Table 3.4
and illustrated in Figure. 3.7.

3.4.2 Evaluation Metrics

The prediction capability of the developed solution is impossed by calculat-
ing F1-score, Recall (R), Precision (P), and IoU performance measures. More-
over, the extraction of water by developed solution is justified by comparing
the determined outcomes with the performance of selected state-of-the-art
methodologies such as VGG, ResNet, DeepLab V3+, SegNet, NDWI, and
MDFN by calculating the similar measures. Furthermore, the specified error
metrics are expressed mathematically as follows:

P =
TP

TP + FP
(3.10)

R =
TP

TP + FN
(3.11)
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FIGURE 3.7: Number of responses according to positive and
negative responses

F1 =
2× R× P

R + P
(3.12)

IoU =
TP

TP + FP + FN
(3.13)

3.4.3 Implementation Of MDFN

Deep-Restrictive Model (DRM): The Deep Restrictive Model is containing
total 6 convolutional layers where Ist, 2nd, and 5th layers of the architec-
ture is responsible to execute convolutional operations. It is imperative to
mention that Contrastive Divergence (CD) is utilized to fine-tune the con-
volutional layers. Furthermore, the 3rd, 4th, and 6th layers of the network
perform the Max-pooling operation. Furthermore, the batch gradients are
updated during the process of CD by leveraging the momentum from the
previous gradients. Similarly, Deep Hierarchical Features (DHF) are utilized
to train the Structural Learning Layer without using the method of backprop-
agation. In this manner, certain experiments are carried out throughout the
generation of super-pixels to verify the presented solution’s efficiency and
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TABLE 3.5: Prediction permorance evaluated on the dataset.

Number of
Images

Data Divi-
sioning

Training
Samples

Validation
Samples

Test Sam-
ples

Overall
Accuracy

5600
70:30 3920 1176 504 0.826
75:25 4200 1050 350 0.852
80:20 4480 896 224 0.899

11090
70:30 5634 2328 2327 0.919
75:25 6238 2079 2772 0.938
80:20 7097 1774 2218 0.958

performance. Different parameters such as region size, L2 regularization (λ),
and distance factor (kd) with the value of 0.1 are calculated to analyze the
spatial correlation among super-pixels. The sparse penalty term α of every
hidden layer is evaluated at distant lr such as 0.2, 0.01, and 0.04. Further-
more, the weight (β), activation function (ρ), and the LR are tuned to 0.001,
0.05, and 0.01, respectively. To deal with overfitting, the proposed solution is
processed with 50 batches and 100 epochs. The manual data division method
is adopted with different ratios to evaluate the performance of the model.

3.4.4 Prediction Performance

In the original dataset, there are a total of 5600 images collected which are
further augmented to increase the number of images to satisfy the data-
hungry approach of deep learning. In addition to this, different data aug-
mentation techniques such as rotation, clipping, flipping, and transforma-
tion are performed on the images to enhance the adaptability of the data
that helps to deal with the issue of over-fitting (Ji, Wei, and Lu, 2019; Ding
et al., 2016; Perez and Wang, 2017; Yang et al., 2016; Norouzi, Ranjbar, and
Mori, 2009). After executing data augmentation processes, a total of 11090
images are collected that allowing for the inclusion of every imaginable real-
life scenario. To evaluate the train-set and test-set efficiency, different ratios
are used in dataset by utilizing the approach of manual data divisioning as
shown in Table 3.5.
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FIGURE 3.8: Comparision of different models on selected wet-
lands of Punjab.

3.4.5 Identification Results

A set of 940 remote sensing images are selected from the related ground truth
images to determine the prediction capability of the proposed solution. The
efficacy of the developed method is measured using different ratios as pre-
sented in Table 3.6. The water resources from various shapes are present in
the dataset that helps to determine the prediction efficiency of the proposed
method towards the complex pattern. The method has been considered to be
accurate for the classification of water bodies in diverse locations and shapes.
Furthermore, the model is capable of accurately distinguishing minor rivers
and barriers such as water tunnels. To avoid the biasness in the dataset, the
dataset is collected from three different locations of Punjab. The results of
each location are illustrated in Figure. 3.8.
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FIGURE 3.9: Training Losses of different models.

3.4.6 Comparative Analysis

The training loss for each selected method is presented in Fig. 3.9. In CNN,
the cost function is utilized to compute the variance int he middle of the
value of the ground truth of an image. Lower the loss-value means higher
the accuracy value of the model. During the comparison, it has been ob-
served that the VGG model has a higher loss value which is fairly similar
to SegNet. In the early epochs, the proposed MDFN has registered higher
loss. However, less loss has been observed after a certain number of epochs
that indicate the stability of the proposed model. Moreover, the comparative
analysis based on hyperparameters is illustrated in Table 3.8

Table 3.7 shows the training and testing time taken by the proposed model
and selected models. According to the computed results, according to the re-
sults the VGG has taken a total of 171.66 minutes of testing which is higher
as compared to the others. Additionally, the proposed solution has taken less
testing time with 94.37 minutes. In this manner, it can be concluded that the
proposed solution has taken less testing and training time as compared to
other models as presented in Table 4.13. Moreover, the computed outcomes
are also illustrated diagrammatically in Fig. 3.10 for easy understanding.

In addition, the stability of the developed solution is justified by evalu-
ating the P, R, F1-score, and IoU, The calculated outcomes are illustrated in
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(A) Training

(B) Testing

FIGURE 3.10: Execution time of different models
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TABLE 3.7: The execution time of the different models

Models Training-set Test-set
VGG 22,960 s 382.66 m 11310 s 188.55 m
DenseNet 18,120 s 302.11 m 9120 s 152.16 m
ResNet 18,760 s 312.66 m 10239 s 170.65 m
MDFN 12,675 s 211.25 m 3389 s 56.48 m
SegNet 19,043 s 317.38 m 10589 s 176.48 m
DeepLabv3+ 14555 s 242.58 m 9123 s 152.05 m

TABLE 3.8: Comparison of hyperparameters

Models Learning Rate Activation Function Batch size Epochs
MDFN 0.01 ReLU 50 100
VGG 0.001 Sigmoid 70 100

SegNet 0.01 ReLU 40 100
ResNet 0.001 ReLU 40 100

DenseNet 0.01 Sigmoid 50 100
DeepLabv3+ 0.01 ReLU 60 100

Table 3.9 and presented in Fig. 3.11 and Fig. 3.12. It has been observed that
the proposed solution has registered the highest accuracy of 0.958 as com-
pare to other models. Additionally, the traditional approach NDWI model
has achieved a prediction accuracy of 0.719. Furthermore, the F1-score of
the developed model acheived the accuracy of 0.928 as compared to VGG
(0.892), DenseNet (0.909), SegNet (0.908), DeepLabV3+ (0.907) and ResNet
(0.880). Similarly, the proposed model has also achieved a higher IoU value
with the value of 0.874% as compare to other models. Therefore, the pro-
posed method surpasses the existing deep learning models for the segmen-
tation of water from RS data. In addition to this, three distinct wetlands in
the Punjab region were chosen between 20 August 2019 and 30 November
2019 to assess the prediction performance as presented in Fig.3.11.

Water and vegetation are represented by the blue color and red color in
the original image, respectively. The lake is depicted as a pure white color
in the prediction image and the dotts indicates the urban area. The devel-
oped model effectively extracted the sources of water bodies from RS data
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FIGURE 3.11: Water identification results of Punjab from 30
Aug 2017 to 31 Aug 2019.

and also recognized the minor ponds, rivers, and small-lakes during seg-
mentation as presented in Fig. 3.11. Moreover, the stability of the developed
model is also better for differentiating the water and clouds. The bare land
is depicted with small dots in segmentation images. Moreover, solid lines
are depicted as mountain areas and dash lines marked as urban areas in im-
ages. The water bodies are isolated from the rest of the image shadows.
ResNet and VGG models show various patches in the corresponding areas
of the non-water area as water that defines the poor prediction performance.
Meanwhile, SegNet, DeepLabV3+ and, DenseNet have also produced some
false predictions. The primary water bodies are accurately recognized by the
NDWI model. However, certain bare-land and dense areas are also classified
as water bodies.

3.4.7 Survey-based prediction performance analysis

The happiness index of the farmers is determined by dividing data into four
different classes such as Very Happy (4), Happy (3), Neutral (2), and Not
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FIGURE 3.12: The prediction performace of defferent models
on several wetlands.

TABLE 3.10: KNN perfomance on 4 classes

No of neighbours k=120 k=100 k=70 k=50 k=20 k=10
Accuracy 63.92% 64.76% 65.23% 65.12% 62.34% 62.78

Happy (1). The degree of happiness is allocated in 4 classes where 1 defines
Not Happy and 4 defines Very Happy. Furthermore, the most influential
machine learning approaches such as K-Nearest Neighbors, DT, MLP, and
NAÏVE BAYES is utilized to evaluate the happiness index of farmers based
on the responses of the farmers. The prediction accuracy of each selected
model is evaluated and presented in Tables 3.10 3.11 3.12.

It has been observed that the accuracy of each model is improved while
decreasing the number of classes. From the calculated outcome, it can be con-
cluded that the MLP model achieved a higher accuracy of 65.25%. However,

TABLE 3.11: Performance of DT on 4 classes

No. of depths depth=3 depth=5 depth=7 Depth=10
Accuracy 62.67% 63.15% 64.56% 62.43%
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TABLE 3.12: Pereformace of MLP and NAÏVE BAYES on 4
classes

Prediction accuracy of MLP
Hidden Layers 2 2 2 3 4

Hidden Neurons 50 100 150 100 100
Accuracy 61.43 66.23 60.22 65.25 64.45

Prediction accuracy NAÏVE BAYES
No of folds 1 2 3 4 5
Accuracy 60.43% 65.13% 59.42% 64.78% 63.34

FIGURE 3.13: Comaparative analysis of different models
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the achieved results are not satisfactory due to class imbalance in the dataset.
To solve the issue of class imbalance, two major approaches are opted such as
over-sampling and under-sampling. The over-sampling techniques such as
SMOTE, SMOTE based on SVM, SMOTE based on borderline, RandomOver-
Sampler, and ADASYN, and the under-sampling approaches such as Tomek-
Links and TomekLinks are employed. Furthermore, the calculated outcomes
with respect to over-sampling and undersampling are shown below.

From the results, it has been realized that the MLP model has acheived a
better accuracy of 78.35% towards the 4 classes as presented in Table 2.5 and
Figure 3.13. On the other hand, the KNN, NAÏVE BAYES, and Decision Tree
registered the accuracy value of 68.26%, 60.53%, and 70.17%, respectively. In
this manner, a direct correlation has been observed between the availability
of water and the scale of happiness of the farmers. The higher availability
of water defines the higher index of happiness in farmers of that specific
region. It has been observed that the Malwa and Majha regions of Punjab
are containing a large number of manmade water resources as compared to
the Dowaba region. Therefore, a higher degree of happiness index has been
calculated in the farmers of the Majha and Malwa regions. However, due to
the less availability of water resources in the Dowaba region, a less degree
happiness index is observed in farmers.

3.5 Conclusion

Advanced hardware and data processing solutions have provided the ca-
pability to analyze the frames to identify common patterns effectively. In
this manner, a multi-layer data fusion approach is developed for the seg-
mentation of water sources in a specific area by utilizing multispectral data.
The purpose of this study is to analyze the degree of happiness index in the
farmers of different regions of state Punjab towards the availability of water
at their specific location. The maximum prediction accuracy is achieved by
integrating DSA that evaluates spatial features from the data. Furthermore,
the DRCM-assisted unsupervised learning solution is also integrated with
the proposed solution for the extraction of complex characteristics from the
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labeled data. The determined outcomes define the efficacy of the developed
solution for the prediction of the source of water from different RS samples
by registering the higher rate of F1 (0.928), IoU (0.874), Recall (0.899), and
Precision (0.958). Moreover, the higher accuracy in the performance mea-
sures achieved by the proposed solution has outperformed the selected mod-
els concerning the prediction of the sources of water from Rs images. Fur-
thermore, the conducted survey defines the higher correlation between the
degree of happiness in farmers towards the availability of water resources in
that specific location. In this manner, the proposed solution can be consid-
ered to analyze the degree of happiness of the individuals related to the other
social aspects such as urban development, food security, and many others.
Howover, the proposed model is not able to identify the small water bodies
due to the presence of cloud. In future work a multi-spectral high resolution
satellite images need to pe utilized for the prediction of small water bodies
in the domain of remote sensing.
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Chapter 4

Water Bodies Identification

4.1 Introduction

Identification of water resources from satellite images has become a primary
domain of research in the area of remote sensing. As water is helping in
the overall development of humans, it also adds to economic development
by affecting nearly every industry such as agriculture, petroleum refineries,
melting facilities, and many others (Feng et al., 2015; Famiglietti and Rodell,
2013). Over the last few decades, the constant expansion of companies in
metropolitan areas has resulted in substantial changes in urban water man-
agement (Du, Ottens, and Sliuzas, 2010; Xie et al., 2018). It has been hypoth-
esized that inefficient water management has an impact not only on sustain-
ability but also on the normal role of ecosystems (Shuster et al., 2005). More-
over, it has been analyzed that the large need for water and constantly in-
creasing temperature has become the key challenge of climate change. There-
fore, the development of empirical and reliable urban water management is
essential for efficient sustainability.

4.1.1 Problem Identification

The mapping of water resources is considered as one of the crucial applica-
tions for resource surveys, flood assessments, and environment monitoring.
From the last few decades, numerous studies have been suggested for the
identification of water resources. Researchers from different domains have
proposed several strategies to address the issue of misclassification of water
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FIGURE 4.1: The conceptual framework of the proposed frame-
work

indexes. However, due to the unique features of water spectral reflectance,
precisely analyzing the dynamics properties of water from a sequence of im-
ages is difficult to analyze (Fisher, Flood, and Danaher, 2016). Therefore, the
water indexes were incorrectly categorized using traditional data process-
ing methods. In this manner, several limitations have been observed with
respect to the identification of water resources in the previously developed
identification approaches.

4.1.2 Motivation and Contribution

At present, satellite images have shown a considerable outcome in the field
of remote sensing (Shuster et al., 2005). By considering the advancement in
data acquisition and processing techniques, satellite images are widely used
in several domains such as environmental conservation, geography, mili-
tary identification, mapping, many others (Yang et al., 2017b). Moreover,
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advanced data processing techniques and high computational resources al-
low more effective and precise analysis of the objects from satellite images.
In this manner, remote sensing has been widely used for natural resource
mapping by considering its capability of collecting a large number of obser-
vations with low cost (Du et al., 2016; Wu et al., 2019a; Zhou et al., 2014).
Therefore, the ability of a high scope of perceptions from remote sensing
made it possible to map the water resources in a frequent and effective man-
ner (Zhou et al., 2014). Hence, the extraction of water resources from the
targeted area is illustrated in Figure.4.1. In this manner, to achieve the goal
of the prediction of water resources, the objectives of the proposed chapter
are listed as:

1. To analyze the area by identifying the underlying relationship among
the smaller areas with the help of the proposed Deep Convolutional-
Restrictive Model (DCRM).

2. To improvize the concept of inferencing and structural learning in an
explicit manner with the help of the proposed Multi-scaler Data Inte-
gration Technique (MDIT).

3. To increase spatial deviations by computing the data of the designated
areas by adding Spatial Inferred Features (SIF) in the proposed MDIT.

4. To evaluate the non-direct relationship among the features of the data
by utilizing Deep Sparse Auto-encoder (DSA) module.

4.1.3 Chapter Structure

The rest of the chapter is organized into multiple sections. In Section 4.2, the
primary literature of review is made on traditional and modern approaches
for the detection of water. Every possible aspect of the proposed architecture
is discussed in Section 4.3. Experimental results are discussed in Section
4.4. At last, primary conclusive remarks with possible future directions are
discussed in Section 4.5.
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4.2 Related Work

In this section, extensive literature is reviewed and presented by dividing
it into the following subsections: (i) Conventional approaches and (ii) Deep
Learning approaches.

TABLE 4.1: Comparative analysis based on the specific param-
eters

Authors Description Satellite
Data

Fog TechnologyReal
Time

(Feyisa et
al., 2014)

To identify the water bod-
ies from satellite imager
an automatic approach
for the identification of
water is proposed while
taking various types of
environmental noise.

Yes No Traditional No

(McFeeters,
1996)

To detect the patterns of
open water features an
NDWI method is pro-
posed.

Yes No Traditional No

(Huang
et al.,
2015)

To identify the surface
water an exploratory
evaluation is carried out
on VIR satellite images.

Yes No Traditional No

(Xu,
2006)

To enhance the water
identification accuracy
the modified version of
NDWI and MNDWI is
proposed for the identifi-
cation of water bodies.

Yes No Traditional No
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(Kang et
al., 2016)

The Hybrid approach is
proposed to identify the
multi reservoir water sup-
ply in dry years.

Yes No Traditional No

(Katz,
2016)

Three special issues are
presented in this study
(1) Change detection, (2),
Remote sensing classifica-
tion, (3) Fusion of diverse
types of images.

Yes No Modern No

(Fang et
al., 2019)

To detect the global reser-
voir from Landsat-8 im-
ages a convolutional neu-
ral network framework is
proposed.

Yes No Modern No

(Chen
et al.,
2018b)

For the extraction the of
urban water bodies from
a deep learning architec-
ture is proposed.

Yes No Modern No

(Yu et al.,
2017a)

A deep-learning-based
hybrid approach is
proposed for the identi-
fication of water bodies
from Landsat-8 images.

Yes No Modern No

(Isikdogan,
Bovik,
and Pas-
salacqua,
2017)

To segment water bod-
ies a Fully Convolutional
Neural Network is devel-
oped for Landsat 8 im-
ages.

Yes No Modern No
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Proposed
Solution

In this proposed study, a
novel Multi-scaler Data
Integration Technique
(MDIT) is proposed to
identify the availability
of water resources from
a targeted location using
sentinel-2 images

Yes Yes Modern Yes

4.2.1 Conventional approaches

Numerous techniques have been developed to recognize water resources by
utilizing the techniques of remote sensing such as single and multi-band
threshold approaches, water bodies index methods, and water mapping meth-
ods using sub-pixels (Li et al., 2015; Yan et al., 2018b). McFeeters and (McFeeters,
1996) developed a Normalized Water Difference Index (NDWI) approach to
identify the targeted object. However, the proposed model fails to identify
the difference between shadows and water resources. (Xu, 2006) proposed
an approach that deals with the gap between shadows and water by employ-
ing a mid-infrared band for the normalization as compare to the green band.
The proposed model has shown the utmost result for urban water bodies ex-
traction. On the other hand, several machine learning approaches such as
k-mean clustering, support vector (Kang et al., 2016; Katz, 2016) have been
developed by multiple researchers to identify the water bodies in an accurate
manner. These approaches were generally utilizing remote sensing images
with limited spatial resolution. Furthermore, the selection of appropriate
combinations of features such as spectral, texture, and shapes played are
playing a crucial role in these approaches. Therefore, the process of feature
extraction is time-consuming and difficult (Kang et al., 2016).
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4.2.2 Deep Learning approaches

Deep learning has shown significant efficacy in the domain of image process-
ing that overcomes the limitations of standard data processing approaches
(Huang et al., 2017; Badrinarayanan, Kendall, and Cipolla, 2017; Zhu et al.,
2017; Afaq and Manocha, 2021a). Convolutional Neural Network (CNN) is
one of the most prominent deep learning image processing techniques that
is primarily used to extract features and perform classification operations
(Han et al., 2020). The ability to generate multi-level features is considered
the fundamental advantage of the CNN technique. Researchers employed
CNN models to extract water from images by successfully distinguishing
water, shadow, and ice/snow from cloud shadows and ground shadows
without utilizing additional resources (Fang et al., 2019; Chen et al., 2018b;
Yu et al., 2017a; Isikdogan, Bovik, and Passalacqua, 2017). Moreover, a Multi-
scale fully convolutional Network (MFCN) was proposed by (Weinstein and
Ebert, 1971; Geng et al., 2020; Wang et al., 2020a) to extract multiple features
from the satellite images. However, most of the experiments had minimal or
short-term dimensions.
As a majority of studies have been developed, researchers have incorporated
high-dimensional image processing algorithms for the better prediction of
environmental resources. However, several limitations have been observed
from the previously discussed literature that is presented in Table 4.1. This
research aims to build an innovative method that can be implemented into
remote sensing to address those limitations and gaps.

4.3 Proposed Work

The proposed solution aims to determine the availability of water resources
by utilizing the advanced image processing principles of deep learning. The
proposed solution is discussed into two different phases such as Data collec-
tion and Water resource determination as illustrated in Fig. 4.2.
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4.3.1 Data Collection

The real-time identification of the water resources from satellite images is
considered one of the most effective methods of remote sensing. In the pro-
posed study, a total of 9 man-made wetlands with an area of 14739 km2 and
12 distinct natural wetlands with an area of 839 km2 are considered to an-
alyze the status of water resources (Kumar and Singh, 2020; Ladhar, 2002).
The targeted area is illustrated in Fig. 4.2. The wetlands such as rivers, reser-
voirs, and ponds/tanks are covering the 69%, 14%, and 17% percentage of
area, respectively. In the proposed study, three wetlands of Punjab such as
Roper, Harike, and Kanjli are considered to analyze the status of water as
illustrated in Fig. 4.3. The data with respect to the targeted location are
acquired from the Copernicus Open Access Hub (COAH) 1. Moreover, the
detailed specification of the data is presented in Table 4.3.

Data Pre-processing: In the proposed study, Sentinel-2 images are uti-
lized with 4 different bands such as VNIR, Blue, Green, and Red. Therefore,
the need for the process of data normalization is realized to adapt to change
the specification of data according to the input requirement of the proposed
model. Several preprocessing operations such as Geometric correction (Lan
et al., 2019), Correction of atmospheric condition (Xie et al., 2019), and Radio-
metric correction (Zhang and Montgomery, 1994) are performed on the data
to normalize the sentinel-2 images. Geometric corrections are utilized to de-
termine the location of the image by performing several geometric registra-
tions are considered such as geo-referenced, co-registration, and orthorecti-
fication. To deal with undesirable atmospheric conditions, object subtraction
and disturbance adaptive methods are utilized to correct the atmospheric
conditions. Moreover, radiometric correction such as histogram matching,
overlapping regions between images, and pseudo-invariant features are also
performed on the dataset. In addition to this, different data augmentation
techniques such as rotation, clipping, flipping, and transformation are per-
formed on the images to enhance the adaptability of the data that helps to

1Source: https://scihub.copernicus.eu/
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FIGURE 4.2: Distribution of wetland and other man-made lakes
in Punjab Pandey and Khare, 2017

FIGURE 4.3: Selected wetlands from Punjab situated on
Sentinel-2 images
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FIGURE 4.4: Examples of different data augmentation opera-
tions

deal with the issue of over-fitting (Ji, Wei, and Lu, 2019; Ding et al., 2016;
Perez and Wang, 2017; Yang et al., 2016; Norouzi, Ranjbar, and Mori, 2009) as
illustrated in Fig. 4.4. Furthermore, super-pixel segmentation is considered
to improve the overall accuracy of prediction. In this manner, the Simple Lin-
ear Iterative Clustering (SLIC) (Achanta et al., 2012) technique is employed
to extract super-pixels from an image to remove the deviated pixels. For each
super-pixel, the average features are calculated as tp ∈ rr, where tp is defined
as super-pixel and rn is defined as the selected area of each super-pixel.

4.3.2 Fog Module: Water bodies source prediction

In this section, the Convolutional Restrictive Machines-assisted multi-layered
prediction method is proposed to identify the availability of water resources
from the satellite images. The overall working process of the proposed ap-
proach is illustrated in Fig.4.2. In the first space, Deep Convolutional Re-
strictive Model is proposed to extract the spatial features from the satellite
images. In the second space, the relationship between artifacts and the en-
vironment is calculated by utilizing the structural learning process. At last,
to produce the efficient feature from input data, a feature fusion layer is in-
cluded at the top of the prediction model. The complete process for each
space is explained ahead.

Feature Extraction: Deep Convolutional-Restrictive Model It is determined
that the accurate prediction of features related to a specific object is a signifi-
cant assessment parameter in the domain of computer vision. In this manner,
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FIGURE 4.5: DCRM feature learning concept

a hybrid Deep Convolutional-Restrictive Model (DCRM) is proposed to ex-
tract the local scale-invariant features from images. It extracts the features
from both 2-Dimensional (2D) Convolutional Neural Networks (CNN) and
Restricted Boltzmann Machines (RBM). The overall architecture of the pro-
posed DCRM is presented in Fig. 4.5 and discussed by dividing it into two
different layers such as Detection Layer (T) and Visible Layer (U).
Detection Layer: In the detection layer, cK number of filters are employed for
feature extraction to convolve an image and create TK dimensional matrix
represent with nt. The weights and Bias values of a dimensional matrix are
represented by cK and BK respectively. On the other hand, the sub-units of a
dimensional matrix are represented with TK

ij . The ratio value of the convolu-
tion process is defined with i and j. Moreover, the dimensionality reduction
of an image is calculated by including the max-pooling layer denoted with
m and the pooling operations are denoted as bα.

Visible Layer: In the visible layer, the K number of convolutional filters
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are considered in a single layer where each filter is containing Nc dimen-
sional feature matrix. The convolutional kernels cK(K∈[i, K]) are processed
over the entire region of an image and divided between the detection and
visible layers to deal with the probability of similar features appearing in an
image. The mathematical calculation of cumulative probabilistic value are as
follows:

M(t, u) =
1
Z

exp(−e(t, u)) (4.1)

Here, a normalised parameter of the separation function is denoted as
Z = ∑u ∑t exp (−e(u, t)) and the DCRM energy function is determined as:

e(T, U) = −
K

∑
k=1

TK ⊙ (c̃K ∗U)−
K

∑
K−1

BK ∑
ij

Ti jK − S ∑
ij

Uij, (4.2)

Here, the signification of the 2D convolution is represented with ∗, element-
wise multiplication is represented as ⊙, and flipping operation is denoted as
C̃k. In this manner, the components of detection layer t are utlized to calcu-
late the total activation from a descrete areas of an image. In this manner, the
energy function of the proposed model is calculated as:

e(T, U) = −∑
k

∑
ij
(TK

ij (c̃
K ⋆ U)ij + BkTK

ij )− S ∑
ij

Uij ∑
(ij)βα

LK
ij ≤ 1, ∀U, α (4.3)

Here, the pooling window of a detection layer is denoted as βα. Stochas-
tic Gradient Descent (SGD) is used to optimize DCRM parameters (Han et
al., 2016). Furthermore, the Contrastive Divergence (CD) solution (Hinton,
2002) is utilized to enhance the performance of the network as compared to
the Stochastic Gradient Descent algorithm (SGD). In this manner, a total of
6 convolutional layers are implemented in DCRM. The first, third, and fifth
layers of the model are performing the operation of convolution. The convo-
lutional layers are fine-tuned with Contrastive Divergence (CD) to optimize
the performance of feature extraction. On the other hand, the second, fourth,
and sixth layers is performing the function of Max-polling. In addition, the
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batch gradients are modified by using the extra momentum of the preceding
gradients during CD. However, the changes in the dynamic rates caused the
elimination of meaningful features. The process of feature extraction is per-
formed on different learning rates to extract optimal features by selecting the
optimal learning rate.

Structural Learning Layer (SLL) While CNN may generate hierarchical
features, these features are still inadequate for calculating the correlation
between spatial features and objects. The super-pixel-based CRF model is
proposed to deal with this issue that is used to identify the Spatially Inferred
Features (SIF) (Bu et al., 2016). The overall process of extracting the spa-
tial inferred features from an image is illustrated in Fig. 4.6. Moreover, a
graph-based o = (V,E) approach is proposed in which vertex v is defined as
V and the edge e is defined as E. The vertex unit of an image is composed of
its sub-segments, whereas the edge is composed of the relationship between
adjacent unit pairs. The conditional probability distribution is evaluated by
considering the weight in the training data. SLL is containing deep hierar-
chical features which are working without backpropagation. For evaluat-
ing the efficiency and performance of the proposed system, few experiments
are conducted during the establishment of super-pixels. Region size (every
superpixel), L2-regularizer parameter (λ), and distance factor (kd) with the
value of 0.1 are opted for calculating the spatial relationship between super-
pixels.

x(x∥y, w) =
1

Z(x, w) ∏
i∈V

ϕN(xi, yi) ∏
eij∈E

ψE(xij, yi, yj) (4.4)

Here, the pair-wise partition function of a created graph model is rep-
resentd as Z(x, w). The features are denoted as fN = θN(xi, yi) and fE =

ψE(xije, yi, yj). Moreover, the non-linear features are the sequence of fN − fE

that are indicated as log-linear. The eij sign described an edge composed of
vertex vi, vj and p is represented as the components with their respective
states y =< y1, y2, y3,....., yN >. The process of training is reformed as:
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FIGURE 4.6: Representation of structural learning

w∗argminwλ∥w∥2 −
M

∑
n=1

(∑
i∈V

wT
N fN(xn

i , yn
i ) + ∑

eij∈E

wT
E fE(xijen , yn

i , yn
i ))

+
M

∑
n=1

log Z(xn, w)

(4.5)

Here, λ, w = [WN; WE] is defined as a non-negative L2-regularizer pa-
rameter and the weight of pairwise elements. Furthermore, the training sam-
ple of a graphical model is described as (pn

i , qn
i ). It has been found that by

maximizing the value of x(y | y, w∗), the conditional probability distribution
over the target class can be obtained.

Spatially Inferred Features (SIF) The structure of CFR is included in the
proposed SIF to improve the prediction accuracy. The proposed DCRM model
is showing a lack of spatial relationships from the super-pixels. To overcome
the constraint of spatial feature learning, SIF models is utilized to access both
spatial and super-pixel features at the same instance of time. The connection
in the graph is denoted as oµ = (Vµ, Eµ). Here, µ described the super-pixels
and ⊙(µ) defined the SIF model which is further calculated as:
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FIGURE 4.7: Procedure to extract hybrid feature using Feature
fusion (DSA) and CRF model.

⊙ (µ) = λ ∑
i∈Vµ

∑
j∈Vµ

θiθ
h
j exp

(
−kt

t(vi, vj)

σt

)
(4.6)

Here, ⊙ is n× n matrix that represents the frequency of the availablility
of neighbouring probability defined as i and j . The distance of super-pixels
are represented as t(vi, vj). Moreover, σt kt, , and λ denoted the distance of
the vertices, distance decay rate, and the normalized parameter, respectively.

Multi-layered Feature Fusion (MFF) In the proposed solution, multilayer
Feature Fusion (MFF) is a form of neural network with multilayer Sparse
Auto-Encoder (SAE). In addition, the hierarchical features are learning through
MFF by rembling the features from the image. The overall process of the
MFF is illustrated in Fig. 4.7. Furthermore, DHF Sp and SIF ⊙ are two differ-
ent descriptors that are included during the process of structural and feature
learning that are represented as [Sp,⊙] ∈ R(N+nxn). On the other hand, the
linked features are fused by applying DSA. After finishing the unsupervised
pretraining phase, supervised backpropagation with limited labeled data is
used to optimize the network for optimal parameters.
Let every training sample of SAE represented as A = (a1, a2, . . . .., ar)d. The
hidden units r f in layer I are represented as fi = ( f I

1 , f I
2 . . . . . . f I

r f ). The linear
and nonlinear sigmoid activation functions are represented as follows:

f d =
1

1 + e−x (wA + B f ) (4.7)
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Here, f I represents the altered encoder from in the input A. In this man-
ner, the value of σ(Z) is always be equal to (1 + exp(−Z))1, w ∈ Grxr f and
the value of bias B f is correspond to Gr f x1. Therefore, an approximation
equation of Ã can be written as follows:

Ã =
1

1 + e−a (w
D f I + B0), Bo ∈ Grx1 (4.8)

o is calculated to minimize the error between A and Ã as follows:

o =
1
rs

rS

∑
i=1

∥∥∥Ãi − Ai
∥∥∥2

+ β∥w∥2
2 + α

r f

∑
j=1

kl(x∥x̃j) (4.9)

Here, x̃j describe the average activation of the jth hidden unit and the ac-
tivation function x is selected. In MFF, three Stacked Auto-Encoders (SAEs)
with the size of 1200, 700, and 500 hidden units are applied for constructing
DSA. The sparse weights (α) are calculated in each hidden layer at different
learning rates such as 2, 0.1, and 0.05. Furthermore, the activation function
(ρ) with the weight (β) of 0.05 is adjusted to 0.001, and the learning rate is
tuned to 0.01. To address the problem of overfitting, a batch of 20 is trained
on 100 epochs.

4.4 Experiments

In this section, the complete working process of the proposed framework is
illustrated in Fig. 4.8 and different performance measures have been cal-
culated to evaluate the prediction performance of the proposed solution.
Therefore, the performance is evaluated into different subsections as follows:

• Data Modulation

• Water Identification result of MDIT

• Working efficiency of MDIT, ResNet, VGG, SegNet, and DenseNet

• Evaluation metrics
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FIGURE 4.8: The overall working process of the proposed
framework
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TABLE 4.4: Water bodies prediction evaluation on different ra-
tios of the dataset.

Total Images Ratio Training Validation Test Accuracy

5600
70:30 3920 1176 504 0.845
75:25 4200 1050 350 0.873
80:20 4480 896 224 0.902

11090
70:30 5634 2328 2327 0.929
75:25 6238 2079 2772 0.934
80:20 7097 1774 2218 0.945

• Comparison of Identification results

• Fog-based performance evaluation

4.4.1 Data Modulation

A total number of 5600 images are selected in the original dataset. As deep
learning algorithms need a huge amount of data for training, different data
augmentation approaches are applied to the original dataset to increase the
size of the dataset and 11090 augmented images are generated. Moreover,
the manual data splitting method is applied to the datasets to generate train-
ing and testing sets. The dataset is divided into three different ratios as 70:30,
75:25, and 80:20. The overall accuracy calculated on both of the datasets is
presented in Table 4.4.

4.4.2 Water Identification Results Of MDIT

To check the prediction performance of the proposed model, a total number
of 1050 images are selected. As the evaluation is carried out on different
ratios, the calculated results are presented in Table 4.5. It has been observed
that the proposed model is performed better on the augmented dataset as
compared to the original dataset with an 80:20 ratio. In this manner, the ratio
of 80:20 is selected for further performance evaluation of the proposed model

The calculated results of the proposed solution are illustrated in Fig. 4.9
and Fig. 4.10. From the calculated outcomes, it has been realized that the
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TABLE 4.5: Prediciton performance analysis of MDIT

Model Resolution P R F1 IoU

MDIT
70 : 30 0.929 0.902 0.911 0.853
75 : 25 0.934 0.897 0.919 0.861
80 : 20 0.945 0.919 0.929 0.871

proposed model is successfully identified the water bodies with different
shapes from multiple areas even small lakes, ponds, obstacles. Three dif-
ferent wetlands such as Harike, the Hussainiwala reservoir, and the Kanjili
were selected and the images are captured at different time instances to re-
move the biases from the dataset. Furthermore, the performance of the pro-
posed model is evaluated by utilizing a 5-fold based leave one out a testing
protocol to check the prediction efficiency. In each iteration, out of 5 folds,
4-folds are used for training and the remaining fold is used for testing the
prediction performance. In this manner, each fold gets a chance to be in a
test set. The evaluated outcomes are shown in Table 4.6.

Table 4.6 represents the average prediction outcome of water identifica-
tion for 5 folds. It has been observed that confusion usually occurs between
rivers and lakes. A total of 8% rivers are misclassified as lakes. The reason
for misclassification can be the less number of training samples that can be
avoided by increasing the samples related to the particular class in the train-
ing phase. In this manner, the average prediction accuracy of the proposed
model with respect to the k-fold cross-validation technique is achieved by
0.943% of accuracy with the standard deviation of ±0.94.

4.4.3 Working Efficiency Of MDIT, ResNet, VGG, SegNet,

and DenseNet models

The performance of each model such as ResNet, VGG, DenseNet, Deeplab
v3+, SegNet, and MDIT is illustrated in Fig. 4.11. The loss function is uti-
lized in the convolutional neural network to evaluate the difference between
the value of the ground truth of an image and the prediction results of the
model. The performance of the model is directly dependent on the value of
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FIGURE 4.9: Examples of the recognition of water bodies of
the proposed model. Original images False-color composite re-
mote sensing images of different wetlands and the water bod-
ies detection is shown in black and white images of each wet-

land.

FIGURE 4.10: The performance evaluation of MDIT on 256 ×
256 resolution sentinel-2 images.
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TABLE 4.6: 5-Fold Cross Validation River (A), Lake(B), Man-
made (C), Ponds (D), and Reservoir (E). The prediction accu-
racy of the propsed model is highlighted with bold values in

the table.

TABLE 4.7: Fold-1

A B C D E
A 0.938 0.024 0 0 0
B 0 0.947 0 0 0
C 0 0 0.969 0 0
D 0.034 0 0 0.939 0.018
E 0 0 0 0 0.948

TABLE 4.8: Fold-2

A B C D E
A 0.936 0.022 0 0 0.014
B 0 0.942 0 0 0
C 0 0 0.955 0.021 0
D 0 0 0 0.934 0
E 0.008 0 0 0 0.941

TABLE 4.9: Fold-3

A B C D E
A 0.969 0.035 0 0 0
B 0 0.942 0 0 0
C 0 0 0.947 0.001 0.021
D 0.021 0 0 0.938 0
E 0 0 0 0 0.948

TABLE 4.10: Fold-4

A B C D E
A 0.945 0 0 0 0.021
B 0 0.942 0 0 0
C 0 0 0.955 0.02 0
D 0 0 0 0.934 0
E 0.022 0 0 0 0.941

TABLE 4.11: Fold-5

A B C D E
A 0.974 0.015 0 0 0.022
B 0 0.959 0 0 0
C 0 0 0.946 0.013 0
D 0.003 0 0 0.948 0
E 0 0 0 0 0.957

TABLE 4.12: Overall
Accuracy

k-fold (5 folds) Overall Accuracy
Fold-1 0.948%
Fold-2 0.941%
Fold-3 0.935%
Fold-4 0.938%
Fold-5 0.956%
Mean 0.943%

Standard deviation ± 0.94
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the loss. The lower value of loss means the higher accuracy of the model. It
has been observed that the VGG model has registered higher loss as compare
to MDIT and DeepLab v3+. From the calculated outcomes, the proposed
model registered a lower value of loss as compared to other state-of-the-art
models that define the outstanding performance of the proposed MDIT.

FIGURE 4.11: Training Losses of different models.

Furthermore, the training and testing of each sate-of-the-art model are
presented in Table 4.13. It has been observed from the calculated outcome
that VGG has higher training and testing time as compare to other mod-
els. On the other hand, the proposed model takes considerably less time for
training and testing. The proposed model takes a total training time of 212
minutes, where the VGG, Deeplab V3+, DenseNet, ResNet, and SegNet have
taken the training time of 380.75 minutes, 240.44 minutes, 332.92 minutes,
320.72 minutes, respectively.

As presented in Table 4.13, it has been observed that the proposed model
took less training and testing time as compare to all state-of-the-art models.
Moreover, the calculated result of each model is represented in Fig. 4.12 for
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TABLE 4.13: The training time of different models on sentinel-2
images.

Models Training Testing
VGG 22,845 s 380.75 m 12340 s 205.66 m
DeepLab V3+ 14426.4 s 240.44 m 4819.8 s 80.33 m
DenseNet 18,054 s 300.91 m 9430 s 157.16 m
ResNet 19,375 s 322.92 m 10920 s 182 m
MDIT 12,774 s 212.91 m 3289 s 54.81 m
SegNet 19,243 s 320.72 m 10789 s 179.81 m

(A) Training

(B) Testing

FIGURE 4.12: The Training and Testing time of different models
for the prediction of water bodies from sentinel-2 images.
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better understanding.

4.4.4 Evaluation Metrics

In the proposed study, four performance measures such as F1-score, Recall
(R), Precision (P), and intersection over union (IoU) are used to analyze the
prediction performance of the proposed solution. Moreover, the selected
measures are mathematically represented as follows:

P =
TP

TP + FP
(4.10)

R =
TP

TP + FN
(4.11)

F1 =
2× R× P

R + P
(4.12)

IoU =
TP

TP + FP + FN
(4.13)

Here, IoU defines the intersection of the two sets of predicted outcomes
and its ground truth values. The efficiency of the ResNet, VGG, DeepLab
V3+, DenseNet SegNet, NDWI, and MDIT is evaluated by utilizing the same
performance metrics. The precision refers to the proper recognition of water
pixels defines by (TP) in relation to overall water pixel prediction (TP + FP).
Moreover, recall defines the pixels that are correctly detected (TP) in com-
parison to the actual pixels are defined as (TP + FN). The F1-score is used
to describe the scale of accuracy by addressing the occurrences of recall and
precision discrepancies.

It has been realized from the results that the proposed solution achieved
a better Precision with the value of 0.945 as compared to DeepLab V3+ 0.914,
DenseNet 0.911, ResNet 0.909, SegNet 0.913, and VGG 0.899. In addition,
the traditional method NDWI has registered a precision of 0.709. Moreover,
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in terms of F1-score, the proposed solution has registered the value of F1-
score is 0.919 which is higher than other state-of-the-art models such as VGG,
DeepLab V3+, DenseNet, SegNet, and ResNet with the values of F1-score
0.864, 0.896, 0.894, 0.891, and 0.881, respectively. On the other hand, the pre-
diction performance of the proposed model is also observed based on the IoU
and the proposed model registered the higher value of 0.872 as compared to
VGG, Deeplab V3+, DenseNet, SegNet, ResNet, and NDWI with the values
of 0.832, 0.868, 0.865, 0.843, 0.850, and 0.759, respectively. All the calculated
results are presented in Table 4.14 and illustrated in Fig. 4.15 and Fig. 4.13
for better understanding. It has been determined that the proposed approach
outperforms other deep learning models in terms of prediction performance.
Furthermore, the prediction performance of the proposed solution is evalu-
ated on three different wetlands of Punjab within the period of 1 Aug. 2018
to 30 Oct. 2019 as illustrated in Fig. 4.15.

The blue and red colors in the False composite color image represent wa-
ter and vegetation, respectively. In the images, the water is represented as
a solid white color, while the dotted line represents the urban area. From
the sentinel-2 false-color composite images, the proposed method correctly
identified the water and also distinguished the tiny rivers and lakes dur-
ing prediction. The water bodies are separated from all other shadows but
ResNet and VGG have wrongly identified the water bodies from the images
and these two approaches show the non-water area as water that defines
the false prediction of such models. Similarly, in Deeplab V3+, DenseNet,
and SegNet some false identified results have been recognized. Moreover,
the performance of the traditional approach such as NDWI has successfully
identified the main water bodies from images but some urban areas and bare
land are also recognized as water bodies by such model.

4.4.5 Fog-based Performance Evaluation

Resource optimization is a crucial method for decreasing computing costs
while attaining the required data processing capabilities. Due to a lack of
computational power and network capacity, the fog nodes processed the
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FIGURE 4.13: Comparative result of different models for the
recognition of water bodies.

data in the local environment rather than transmitting it to the cloud. In
this manner, three measurements are calculated to determine the utilization
of the resources as follows:

• Image Segment processing time

• Overall Processing time on fog and cloud layer

FIGURE 4.14: Fog nodes processing time
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In comparison to the original data, Fig. 4.14(a) represents the processing
time difference between the original and downsampled image segments on
the fog node with the different number of image batches. The system has
been evaluated using downsampled data with a resolution of 256× 256. It
has been determined that the model executed the downsampled data run
four times faster as compared to the original data. The model took 62.4
milliseconds to process a single downsampled image segment. The opti-
mal number of image segments is determined by forwarding the image seg-
ments on fog and cloud servers as presented in Fig. 4.14(b). A different num-
ber of image batches have been forwarded on both fog and cloud servers to
evaluate the processing time. From the calculated outcomes, it has been ob-
served that fog servers have taken less processing time as compared to cloud
servers. It can be realized that the fog server has taken 1.54 seconds to pro-
cess the 32 batches as compared to the cloud server which took 2.8 seconds
for the number of batches. Similarly, a relevant increment in the processing
time is observed with the different number of batches. In this manner, it has
been observed that the fog layer is performed considerably better by tak-
ing less processing time as compared to the cloud layer for the prediction of
water bodies from the satellite images. The reason behind the less data pro-
cessing time consumption on fog servers is, images are processed on local
machines that save the transmission delay. Therefore, it has been concluded
that data processing is more effective by following the distributed data pro-
cessing principles of fog analytics.

4.5 Conclusion

The continuous progression in the data acquisition and processing methods
has brought significant enhancement in the field of remote sensing. Several
conventional and modern remote sensing techniques are directly dependent
on the base methods of deep learning such as CNNs for the extraction of
essential features from the thousands of RGB color values. However, to ex-
amine the low-level pixels, it is compulsory to access the high-level informa-
tion from the satellite images. In this manner, a multi-layered framework is
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proposed to detect the presence of different water resources from sentinel-
2 images in a targeted area. The purpose of predicting the water resources
from the target location is to determine the level of happiness index of that
specific region towards the availability of water. To analyze the complex
patterns of sentinel-2 images, the DSA-based approach is utilized in the pro-
posed study to analyze the spatial information from the images. Further-
more, an unsupervised deep learning-based DCRM technique is utilized to
extract features from the annotated images. The calculated outcomes jus-
tified the performance of the proposed framework by achieving the higher
accuracy of precision, recall, F1-measure, and IoU with the value of (0.945%),
(0.868%), (0.929%), and (0.871%), respectively. Furthermore, the compar-
ative analysis has shown the correctness in the prediction performance of
the proposed solution by achieving the precision of 0.945% as compared
to the selected state-of-the-art approaches such as NDWI (0.709%), ResNet
(0, 909%), VGG (0.899%), DeepLab V3+ (0.914%), DenseNet (0.911%), and
SegNet (0.913%). Moreover, several limitations with respect to the predic-
tion of shadows, clouds, small lakes, and rivers have been observed in the
conventional methods that have been overcome in the proposed solution.
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Chapter 5

Rice Monitoring from Satellite
Images Using Deep Learning

5.1 Introduction

Monitoring Land Use and Land Cover (LULC) is considered an essential task
in the domain of agriculture for yield prediction, food security, export plan-
ning, crop estimation, and many others (Jesús Rubio, 2018; Papageorgiou,
Markinos, and Gemtos, 2011). The monitoring of LULC from satellite images
can provide an effective solution for crop management that is considered as
one of the primary objectives of agribusiness for the rapid growth of popu-
lation (Kontgis, Schneider, and Ozdogan, 2015). Earlier, the crop fields were
monitored manually and it was considered one of the most tedious and time-
consuming tasks. Moreover, the dynamics in the weather condition is also
considered as one of the most prominent challenges in the cultivation of crop
(Wuebbles et al., 2017). As the population is rapidly growing, the production
and management of food need to be achieved (Alexandratos, 2009). Over the
past few years, several solutions have been developed by the researcher for
generating field maps by utilizing satellite images (Liu et al., 2017a). In this
manner, remote sensing has proved a prominent solution for the monitoring
of agricultural or non-agricultural land (Zhang et al., 2018a). However, there
are still some limitations such as the complex spectral channels of satellite
images and atmospheric conditions that need to be considered for effective
monitoring.
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5.1.1 Research domain

Several techniques are developed by researchers for monitoring the fields
from satellite imagery (Kavzoglu and Colkesen, 2013). Random Forest (RF)
is one of the traditional machine learning models in the field of remote sens-
ing and achieved a higher accuracy with minimal training time (Ok, Akar,
and Gungor, 2012; Belgiu and Drăguţ, 2016b). Other traditional classifiers
such as canonical correlation forest (CCF) (Rainforth and Wood, 2015), ex-
treme gradient boosting (XgBoost) (Chen and Guestrin, 2016), Support Vec-
tor Machine (SVM) (Park et al., 2018), and Light Gradient Boosting Machine
(LightGBM) have been developed by the researchers for the classification (Ke
et al., 2017). Moreover, the LGBM approach has shown a better result among
these machine learning approaches and has achieved a better accuracy so far
in the field of remote sensing (Ustuner and Balik Sanli, 2019). Nowadays,
several modern classifiers such as InceptionNet and VGG are developed to
classify RGB images (Albert, Kaur, and Gonzalez, 2017), DeepLabV3+ (Chen
et al., 2018a; Niu et al., 2018), and Convolutional Neural Network (CNN)
(Zhang et al., 2018a) approaches have been developed to achieve the complex
dependencies among temporal information and spectral bands. Moreover,
DeepLabV3+ is also utilized to extract the spatial features from hyperspec-
tral images. However, with a lot of salt and pepper noise, the categorization
findings are generally limited. The following challenges are most common
in the domain of remote sensing.

• Satellite images have a very low spatial resolution and the inexact mea-
surement of a substantial geographic region due to the traditional sen-
sors.

• The influence of adverse environmental conditions such as cloud shad-
ows and solar radiation on satellite images.

• Current spectral indices for recognizing crop fields from satellite im-
ages are often exploratory. Moreover, it requires additional domain
measurements and validation processes at the time for applying to dis-
tinct locations.
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FIGURE 5.1: Conceptual framework for the prediction of rice
field from satellite imagery.

5.1.2 Contribution

In the proposed study, an advanced multi-stream deep learning approach is
proposed to overcome the above-discussed challenges and to map rice fields
through satellite images in a precise manner. The proposed model has the ca-
pability to access multispectral information from satellite images. Therefore,
the Landsat 8 satellite images are used in the proposed study. The proposed
solution is orthogonal to area-specific spectral indices. In this manner, the
proposed approach can retrieve the paddy features directly from the input
data. The conceptual framework for the prediction of rice fields from satellite
images is illustrated in Figure 5.1. The overall contribution of the proposed
study is listed below:

1. Development of a pipeline for the collection of Landsat 8 satellite im-
ages of the rice field with respect to a specific area for the boundary
prediction and classification.

2. A Bi-GRU technique-based Multi-streaming Deep Neural Network (MR-
DNN) approach is proposed to evaluate the temporal dependencies re-
lated to multiple timestamps.

3. For enabling pixel-based mapping at different temporal resolutions,
a multi-temporal spatial resolution solution is embedded in the pro-
posed framework.
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5.1.3 Chapter Structure

The remaining chapter is organized into different sections. In Section 5.2,
some of the imperative studies related to the traditional and modern mon-
itoring approaches are discussed. Section 5.3 is containing every possible
working detail of the proposed framework. The calculated outcomes are
discussed in Section 5.4 to evaluate the performance of the proposed frame-
work. Lastly, the chapter is concluded with its primary findings in Section
5.5.

5.2 Related Word

This section discusses the previous literature based on the traditional ap-
proach for rice mapping and modern approaches for remote sensing.

5.2.1 Traditional Approach

Many traditional approaches have been developed by the researchers for
classifying the rice field from satellite imagery such as Normalised Differ-
ence Vegetation Index (NDVI) (Rouse et al., 1974), Enhanced Vegetation In-
dex (EVI)(Huete et al., 2002), Rice Growth Vegetation Index (RGVI) (Nuarsa,
Nishio, and Hongo, 2011), Land Surface Water Index (LSWI) (Xiao et al.,
2006), Soil Adjusted Vegetation Index (SAVI) (Huete, 1988) and many other.
The main purpose of developing NDVI is to detect the living crop by uti-
lizing the light which is reflected from the vegetation. However, there are
some limitations with respect to the misclassifications (Rouse et al., 1974).
To overcome this issue, the EVI method was developed that improved the
performance of the NDVI including light distortion, reflection, and solar in-
cidence angle. As these traditional approaches worked only on three spectral
bands (red, blue, infrared), it is considered as a primary limitation of these
models (Kontgis, Schneider, and Ozdogan, 2015). To overcome these lim-
itations, some advanced computer vision techniques have been developed
for rice field classification, feature extraction, object detection from satellite
imagery.
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TABLE 5.1: Compatrative analysis based on specific parame-
ters

Study Description Method Limitations

(Rouse et
al., 1974)

In this study a method
is developed for mea-
sure the vegetated area
using ERTS-1 MSS data

Traditional The proposed tech-
niques is sinsitive to
chlorophyll, but de-
veloped for flourish
vegetations. Mostly
the proposed approch
is used for vegetation
health and dynamics.

(Huete et
al., 2002)

The analysis of MODIS
NDVI and EVI perfor-
mance from biophysi-
cal radiometric is eval-
uated

Traditional EVI is only saturated
for growing seasons and
MODIS data is available
after 2000

(Nuarsa,
Nishio,
and
Hongo,
2011)

Landsat images are
used by author for rice
plant mapping and
spectral features

Traditional However, the developed
approach is limited
to cloudless and high
resolutions images.
Obtaining cloudless
images throughout the
rice-growing season is
difficult in some areas
due to severe climate
constraints.
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(Xiao
et al.,
2006)

A technique is devel-
oped for paddy rice
monitoring using time
series data with three
vegetations indices
LSWI, EVI, and NDVI

Traditional MODIS pixels typically
include a mix of differ-
ent crop types due to
their low spatial resolu-
tion. Croplands have a
wide range of field sizes,
especially in mountain-
ous areas where crops
are generally smaller
than one MODIS pixel,
resulting in sub-pixel
variability in crop type
and intensity.

(Huete,
1988)

To reduce the soil
brightness a trans-
formation approach
is developed by the
author

Traditional The fundamental non-
linearity of ratio-based
indices, as well as the in-
fluence of additive noise
factors such as air path
radiances, is the NDVI’s
primary drawbacks

(Ball,
Ander-
son, and
Chan Sr,
2017)

In this study, some
challenges in remote
sensing using deep
learning are analyzed

Modern Limitations of different
modern approaches are
highlighted in the pro-
posed study.

(Albert,
Kaur,
and Gon-
zalez,
2017)

A Convolutional Neu-
ral Network is utilized
to analyze the pattern
in urban land use using
large scale satellite im-
agery data

Modern The proposed ap-
proach is limited to
high-resolution satellite
imagery which is not
publically available.



Chapter 5. Rice Monitoring from Satellite Images Using Deep Learning 111

(Pareeth
et al.,
2019)

Landsat 8 images
and Random Forest
approach is utilized
for post-processing to
extract the Land Use
Land Cover (LULC)

Modern Creating a time series
data is a challenging
part for many domains
of satellite imagery.

(Yue et
al., 2015)

A Deep Learning-
based framework
Restricted Boltzman
Machine with Deep
Belief Network is de-
veloped for feature
extraction

Modern The do not acquire
spatial contextual infor-
mation like the normal
shape of a class objects.

(Yue et
al., 2015)

A hybrid approach is
proposed for classifica-
tion from spectral and
spatial resultion

Modern The proposed approach
is unable to learn spatial
contextual features.

Proposed
Model

In the proposed so-
lution, a Bidirectional
Gated Recurrent Unit
is (Bi-GRU) proposed
to monitor rice field
from Landsat 8 satellite
imagery

Modern In the proposed ap-
proach, the above-
mentioned challenges
are overcome by devel-
oping multi-streaming
based deep learning
approach.

5.2.2 Modern Approaches

Deep learning approaches are utilized in numerous domains of remote sens-
ing such as Image Classification, Object Detection, and semantic segmen-
tation (Ball, Anderson, and Chan Sr, 2017). Moreover, deep learning ap-
proaches are also applied for image classification. By analyzing the con-
siderable outcomes of the deep learning methods, several researchers have
utilized the principles of deep learning for various remote sensing domains
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such as Land Use Land Cover (LULC) classification and Urban Planning
Albert, Kaur, and Gonzalez, 2017; Pareeth et al., 2019. A broad variety of
statistical learning methods have been explored for target identification and
image recognition through spectral images (Mittal et al., 2019). Furthermore,
the authors proposed a Deep Belief Network (DBN) to classify the land cover
from aerospace spectral images (Li, Zhang, and Zhang, 2014). However, due
to the deployment of multiple Full Connected Layers (FCL), the performance
of DBN was suffered due to the limited resources. Moreover, the production
of spectral images by utilizing satellite images has become a different chal-
lenge in the field of classification for spectral images. The adversarial con-
dition of an image is also considered as one of the most common challenges
that makes object classification difficult (Yue et al., 2015). Moreover, a deep
learning-based Convolutional Neural Network was proposed by Slavkovikj
et al. (Slavkovikj et al., 2015) that was used to collect the spatial pattern from
multiple spectral bands. However, due to the limited amount of training
data, the proposed techniques did not perform better and misclassified the
temporal dimension. In this manner, Table 5.1 Illustrates the comparison of
traditional, modern, and proposed approaches.

5.3 Proposed Model

As the objective of the proposed study is to monitor the land related to rice
field from satellite images, the complete process of the proposed solution is
illustrated in Figure 5.2. The process of land prediction is divided into two
sub-modules:

1. Input module

(a) Data acquisition

(b) Data preprocessing

2. Prediction the status of rice fields

(a) Feature extraction module

(b) Rice field mapping
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5.3.1 Input module

The input module is dealing with the process of data acquisition and pre-
processing as follows:

Data Acquisition

Initially, the Landsat 8 satellite images are primarily obtained from the Earth
Explore platform 1. These images are essentially a digital map of the out-
put radiance with infrared, visible, thermal infrared values at the top of the
Earth’s atmosphere. Landsat 8 images are containing multiples regions with
11 spectral bands for 16 days. After acquiring the images, the images are
compressed into small sizes and transferred into the ground station database
and again retransferred and converted into calibrated pixels. The captured
images are categorized into multiple levels based on the quality of data and
types of pre-processing as follows: (i) High-quality geometric information is
containing data with respect to less cloud, accurate orbit information with
time-series data at level 1. (ii) In level 2, the geometric requirements are not
confirmed such as cloud shadow, older sensors, insufficient ground control.
However, the requirement of data preprocessing in level 2 is required to en-
able more real-time analysis 2. Similarly, both the level are required to ensure
the completion and accuracy of the data. If the data is not available in level
1, level 2 data will be used.

Data Pre-Processing

In satellite images, the atmospheric condition and Spatio-temporal differ-
ences are considered as one of the most common challenges for remote sens-
ing. In the proposed solution, some common pre-processing stages are fol-
lowed as follows:

1. For geometric correction, the georeference and co-registration technique
is utilized (Huete et al., 2002).

1source: https://earthexplorer.usgs.gov/
2source: https://www.usgs.gov/landresources/nli/landsat
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FIGURE 5.3: Deep Neural Netowrk temporal resolution archi-
tecture for rice mapping

2. To correct the atmospheric effects, the disturbance adaptive process
and dark object subtraction approaches are utilized in the proposed
solution (Nuarsa, Nishio, and Hongo, 2011).

3. To collect the temporal and spectral pattern, multiple radiometric ap-
proaches such as histogram matching, overlapping regions, etc (Mittal
et al., 2019) are utilized.

4. The re-scaling coefficients are used to convert the digital numbers into
radiance values. (Zhang, Gong, and Chan, 2018)
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5.3.2 Prediction the status of rice fields

The major difference between satellite images and normal images is, satellite
images are containing multicolor bands. On the other hand, normal images
are containing 3 bands of color (Red, Green, and Blue). In this manner, satel-
lite images are specifically known as multispectral images. Therefore, the
extraction of spatial features from satellite images is difficult as compared to
the normal image. To achieve this limitation, a deep learning-assisted multi-
spectral feature extraction approach is proposed to segment the target area
for better classification.

In the proposed study, two classes of fields such as rice field and non-rice
field are carried out which are labelled with two integer values i.e. P=1,2.
The input image A = (a11, a1n1, ...an1n2) is a set made up a feature vector
V = V1×V2. Moreover, the Landsat 8 image is containing 11 spectral bands,
therefore, all bands are denoted with M with the value of 11. More specifi-
cally, each satellite image is denoted as a = A1, A2, ......At. Where t denotes
the time taken for capturing the particular image. In the proposed study, the
value of time t is set to 28 which defines 28 tiles of an image for a year to
monitor the rice cultivation. Moreover, the problem of zoning and monitor-
ing (Xiao et al., 2006) is also considered in the proposed study.

1. Rice field Zoning: Full time RZS is a mapping procedure of full-time
fuction F1 : Sn∗m∗t → Sn∗2 from the pair of image a to the set of label
vectors.

Z = F1(a) (5.1)

Where Z defines N vectors that correspond the number of pixels z1, ..., zn, ..., zN

in an image. Every element is a 2-dimensional vector z denoted as{
z1, z2}. Where z1, z2 denotes the value of prediction probability that

defines the relation of an image with the targeted class such as rice field
or non-rice field. Moreover, the aggregation function Z∗ = agg(z1, z2)

is used to decide the belongingness of Z∗ label to the pixel of an image.
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Furthermore, to maximize the classification performance, the definition
of classification model F1 and an aggregation function are primarily re-
quired.

2. Rice field monitoring: The function F2 : Sn∗m∗T → Sn∗T∗2 represent the
process of rice field monitoring from pair of images a. Mathematically,
it is calculated as;

z = F1(a) (5.2)

Where z = {z1, ....zt} represent the labelled information for a point
t. At last, the aggregation function is utilized to decide the final label
for every pixel. Here, the label Zt has the same meaning in rice zon-
ing segmentation. Similarly, Rice Monitoring Segmentation needs to
be described with the function model F2 and an aggregation function.

Feature extraction module

Based on the above-mentioned two problems, a deep learning-assisted mod-
ular approach is proposed to combined temporal, spectral, spatial features
for final classification in a simultaneous manner. In the proposed model,
the input layers are used to feed the satellite data to the proceeding layers
and Bidirectional-Gated Recurrent Unit (Bi-GRU) is utilized for handling the
temporal patterns of the input data. Moreover, Convolutional Neural Net-
work (CNN) is used to classify the spatial and spectral dependencies from
the pixel values. At last, the final prediction is achieved by the output layer.
The complete overview of the proposed model is illustrated in Figure 5.3.

Bi-GRU Space: Initially, a 2D Convolutional Neural Network (2D CNN)
(Huete, 1988) is utilized to obtain pixel-wise features from satellite imagery
and Gated Recurrent Unit (GRU) model is utilized to capture temporal de-
pendencies Golilarz, Gao, and Demirel, 2019. The advantage of the Bi-GRU
model over the most widely used LSTM technique is processing the tem-
poral dependencies. GRU’s working process is quite similar to the Long
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FIGURE 5.4: The proposed structure of Bi-GRU architecture

Short-Term Memory (LSTM), however, there are some structural differences
(Pareeth et al., 2019; Mittal et al., 2019). The Bi-GRU model is used to capture
temporal interdependence in both past and future directions across several
time steps. Because there are fewer parameters in the GRU model as com-
pared to LSTM, it can deal with less training data and take less time to train.
Moreover, it has the capability to deal with the problem of vanishing gradi-
ent (Pareeth et al., 2019). In this manner, Bidirectional Gated Recurrent Unit
(Bi-GRU) (Mittal et al., 2019) approach is utilized in the proposed study to
calculate future probabilities which is essential for long-term classifications
such as the cultivation of rice. The proposed approach effectively obtained
the temporal dependencies from satellite images before feeding data to the
convolutional layers. Moreover, the Bi-GRU model is able to combine the
previous and next feature information by processing the data in forward and
as well as backward direction simultaneously with two different hidden lay-
ers. The traditional GRU is made up of three different gates reset gate (et),
update gate (vt), and output gate (ht). Under the control of input (at) and
previous state (ht−1) ,the output gate is determined and calculated as:

et = σ(weat + Ueht−1 + be) (5.3)
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vt = σ (wvat + Uvht−1 + bv) (5.4)

h̃t = tanh [What + Uh (rt ⊙ ht−1) + bh] (5.5)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (5.6)

Where et denotes the reset gate, vt represents the update gate, and h̃t is
used to add new memory information. On the other hand, We, Ue, wv, Uv

are the wight metrics. To stable the memory value into -1, 1 tanh activation
function is used that defines the dependency of the current state of the GRU
on the previous state in the current memory. The proposed Bi-GRU model is
able to learn the information from previous and future data while process-
ing current data and focused on two GRUs that are unidirectional in oppo-
site direction illustrated in Figure 5.4. This enables the future and previous
knowledge to influence the current states and calculated as:

−→
ht = gru f wd

(
at,
−−→
ht−1

)
(5.7)

←−
ht = grubwd

(
at,
←−−
ht+1

)
(5.8)

ht =
−→
ht ⊕

←−
ht (5.9)

Where
−→
ht denotes the forward state of GRU and

←−
ht = grubwd represent

the backward state of the GRU. While ⊕ defines the integration of the two
different features. Multiple images with respect to different periods are re-
quired to train the Bi-GRU model. In this manner, the group of 28 images
was used for a targeted area with a sample rate of 16 days per year that is
the hidden unit of the Bi-GRU module (T = 28). Due to Equation 4, the in-
put is flattered before entering into the Bi-GRU module. The output vector
is transformed into 2D to maintain the spatial structure information. Finally,
the outcome obtained from Bi-GRU is further transferred to Convolutional
Neural Network Layer.
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Convolutional Neural Network Space: To capture the spatial dependen-
cies among the multiple bands, a Convolutional Neural Network is designed
in a proposed study. In this space, two different types of temporal resolu-
tions are carried out (i) Full-time temporal resolution (FTTR) and (ii) Real-
time temporal resolution (RTTR). The full-time resolution took the temporal
dimension as a whole into its consideration. For that reason, we use filters
on the first convolutional layer to aggregate the outputs of Bi-GRU blocks
over many times. The same number of filters and kernel sizes are used in
convolutional layers for real-time temporal resolution. In first convolutional
layer process L0 = 128× 28 spectral bands to L1 = 256 with bc = 3 size of the
kernel. The filters in second layer of convolution is L2 = 128 and bc = 3 is
the size of kernel. Similarly, the third convolution also include L3 = 64 f ilters
with a kernel size of bc = 3.
In Real-time temporal resolution, the outcome generated by the proposed
Bi-GRU is directly fed to the convolution layer and the neuron of one layer is
linked only with neurons of another layer in receptive area (Li, Zhang, and
Zhang, 2014). When the layers are at a deep level, they become small and ex-
tract more accurate and descriptive features. The concentration of the model
will remain on the local spatial dependencies among the pixels instead of
the actual targeted area of an image. Across the entire input representation,
the actual field area of an image is changed. On the other hand, the spatial
dependencies as well spectral dependencies of the previous layer are cap-
tured by the neurons of the succeeding layer. The computational efficiency
of the convolutional network is high as compared to a fully connected net-
work in terms of weight sharing. The same weight and biases are shared by
the neurons that are in the same layer with their weighted sum formation in
the respective area of the observed neurons (Yue et al., 2015).

Vij = ϕ

(
bi +

K

∑
k=1

WikZj+m−1

)
= ϕ(bi + WiZj) (5.10)

Where the number of bands/filters are denoted by K, Vi, ϕ are the output
of the jth neuron and neural activation function, respectively. The overall
shared bais of filter i is denoted by bi. The shared weight with vector is
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calculated as Wi = [Wi1, .....WiK]. Moreover, the actual area of an images is
calculated as Zj = [Zj, .......Zj+kc−1]. The three different types of convolu-
tional layers are designed in the proposed solution and also multiple num-
bers of filters are assigned to each layer due to different spatial features. The
complete process of convolution layers with their respective weights is rep-
resented in Figure 5.5. According to spatial resolution (30m) of Landsat 8,
the same and small kernel sizes are used for each layer.

Convolutional layers assume strongly spectral dependencies by simulta-
neously taking into account all spectral bands. In practice, partial depen-
dencies may be present because of the high difference between the spectral
bands. Therefore, the pooling layer is used after every convolutional layer to
deal with this issue and soothes the performance of the architecture by sub-
sampling. The selected size of the pooling layer is APsize = 2 with stride= 2.
In the proposed solution, the average pooling technique is utilized instead
of Max Pooling to deal with rice field features because rice field features are
not sharp as compared to other features.

Rice field mapping

The dimensionality reduction of a source image is performed and the fi-
nal convolutional output must be transformed into the source input size for
pixel-level segmentation (Yue et al., 2015). To achieve this, bi-linear upsam-
pling layer is utilized on 2D data for generating g× n1 × n2 pixels. In the gth

proposal, pixels ij from nearby pixels are interpolated.

Pg
ik =

Vi−1,k+Vik+Vi+1,k

3
f orj− 1 ≤ k ≤ j + 1 (5.11)

Pg
kj =

Vkj−1+Vkj+Vkj+1

3
f ori− 1 ≤ k ≤ 1 + i (5.12)

At last, the upsampling is converted by mapping to classify the score
Wang et al., 2018a.

Y = WP + B (5.13)
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Where the scores for non-rice field and rice field is denoted by P = [P1, ...., Pg]

and W, B are trainable parameters. Moreover, the output of the above-mentioned
technique is finally transferred to the softmax layer that does not linearize the
projection and normalize the classification values for class comparison. The
mathematical calculation of the aggregation function is as follows:

FC
ij =

expFC
ij

∑C′∈s exp(FC′ ij)
(5.14)

Where the score of the value of the pixels is denoted by FC
ij . The final pixel

label is determined as F∗ij = argmaxC∈sFCij during the test period.

Hyperparameter Optimization: To effectively address the rice zoning and
rice monitoring segmentation, two-loss functions such as former K f and lat-
ter Kr are utilized to determine the scale of loss. A loss-share α ratio is de-
fined for a specific part of the model to calculate the full-time and real-time
loss. This also makes it possible for users to control the model flexibility.
Mathematically, the calculation of loss is represented as:

K = αK f + (1− α)Kr − ∑
1≤i≤N1,1≤j≤N1

∑
C∈K

1F∗ij
log(F∗ij) (5.15)

Where K f and Kr represents the loss function that is used to increase the
value of true class for every image pixel. To enhance the efficacy of the pro-
posed model, the following training parameter is tuned accordingly:

1. Optimization of Parameters: In the proposed study, the Adam opti-
mization technique is applied to train the network. This technique has
shown better results in terms of theoretically and empirically on mo-
mentum and RMSProp (Ball, Anderson, and Chan Sr, 2017).

2. Tuning of Hyperparameter: The hyperparameters are fine-tuned by
following some parameters such as Momentum coefficient µ, learning
Rate n, regularisation λ, and the batch size b. There are enhanced by
using the Bayesian approach (Li, Zhang, and Zhang, 2014).
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3. Avoid Overfitting: Training data are limited based on the requirement
of expert knowledge (e.g. rice-paddy labeling) and real-world experi-
ences for specific applications as rice mapping (e.g. low sampling rate).
However, due to the limited amount of data, the rice field monitoring
led to overfitting. To deal with the overfitting problem, several strate-
gies are applied to the dataset.

• Data Argumentation: The transformation technique is used to in-
crease the size of the dataset without losing accuracy. In this man-
ner, some transformations are applied to the proposed dataset to
increase the sample into eight multiple samples by combining k =

π/2 rotations, k = 0....3, and verticle direction. The transformed
images have the same class and label.

• Regularization: To avoid the overfitting of the proposed model,
some regularization techniques are also applied such as pooling,
batch normalization, and drop-out.

5.4 Performance Evaluation

In this section, the utmost performance of the proposed framework is evalu-
ated on the Landsat 8 image-based dataset. The performance of the proposed
solution is evaluated and presented in different subsections:

1. Study area and dataset

2. Monitoring performance evaluation

3. Comparative analysis

5.4.1 Study area and dataset

As India is one of the largest countries for cultivating rice, we have opted
Punjab state for the experimental study. During the past few years, Punjab
is the second largest popular state of India for rice production and it is also
known as the "Rice Bowl of India". Punjab has located between 29’30” N to
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TABLE 5.2: Seasons for rice cultivation

Season Sowing Harvesting
Rainy Season May- August September -November

Autumn Season June - July October - November

32’32” N latitude and 73’55 E to 76’50 E longitude in Northern India. The
altitude of Punjab varies between 230 m to 700 m from the mean sea level.
The cultivable area is 4.20 million hectares (83.4%of total geographical area)
and the net area sown is 4.023 million hectares (95.7% of cultivable area).
The gross cropped area is 7.739 million hectares and the area sown is 3.704
million hectares with a cropping intensity of 186 %. The net irrigated area is
4.019 million hectares (by canals- 26.2%, by Tube wells- 72.5%, and by others
– 1.3%). The gross irrigated area is 7.442 million hectares and the percent-
age of the net irrigated sown area is 96.17%. The total number of landhold-
ings is 10.93 lakh out of which 2.04 lakh (18.7%) are marginal farmers, 1.83
lakh (16.7%) small farmers and 7.06 lakh (64.6%) farmers hold land above 2
hectares 3. It can be cultivated on a range of low permeability and pH soil
ranging between 5.0 and 9.5. Different varieties of rice are cultivated in Pun-
jab. The annual average temperature is 16 to 30◦, showing the temperature
is 20-30◦, and harvesting temperature is 16 to 27◦. 4. The rice cultivation
seasons in Punjab are summarized in Table 5.2. The complete source code
of the proposed solution can be found by accessing the given link of GitHub
repository 5.

Dataset: For rice cultivation two different types of real-world Landsat 8
satellite image-based dataset is created by specifying the region of interest.
In order to check the efficiency of the proposed model, the two largest places
from India are selected to build the real-world rice dataset such as Punjab
and West Bengal.

3Source: https://www.apnikheti.com/rice-TypesofVarieties
4Source: https://www.apnikheti.com/en/pn/agriculture/crops
5Source: https://github.com/yasir2afaq/Multi-resolution-deep-neural-network.git
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TABLE 5.3: Important features of both datasets

Dataset Time Stamp Number
of Im-
ages

Resolution Class distri-
bution

Cloud
Cover-
age

Punjab
Rice

01-05-2017
to 30-05-
2019

70 30m/pixels 130,110,720
: 43,969,464

<10%

West
Bengal
Rice

01-06-2017
to 30-12-
2019

70 30m/pixels 37,296,336:
138,529,580

<10%

• Punjab rice: The whole rice farming is concentrated in the State’s high
productivity zone. After Tamil Nadu, Punjab ranks second in the coun-
try in rice productivity. Punjab’s average three-year productivity (3337
kg/ha) is 71% higher than that of the nation’s average three-year pro-
ductivity (1,947 kg/ha). Indeed, the rice area in Punjab is lower, al-
though overall productivity is higher 6.

• West-Bengal Rice: With average productivity of 2.6 tons/ha, the State
has the cultivation of 5.8 million ha in rice, covering irrigated and rain-
fed areas. This is the largest state of India which is producing a high
amount of rice 7. As the rice-growing season is monsoon, the presence
of clouds is a challenging task in the field of remote sensing for crop
monitoring. In the proposed study, only the images which are con-
taining <10% clouds are downloaded from Earth Explorer. Further-
more, preprocessing techniques are applied to the proposed dataset to
remove further noise from the selected images. The main features of
both datasets are shown in Table 5.3.

To conduct the experiments, the configuration of the system is as follows:
CPU: Intel Core i5 2.8-GHz CPU, GPU: NVIDIA GTX-1080Ti GPU, Oper-
ating System: Ubuntu 18.4 LTS, and Programing Language: Python. The
complete configuration of the proposed model is presented in Table 5.4 for

6Source: http://www.drdpat.bih.nic.in/PA-Table-19-Punjab
7Source: https://icar.gov.in/files/state-specific/chapter/125.htm
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TABLE 5.4: Proposed architecture configuration

Space Model
Compo-
nents

Size of Input Size of Output

Rice Zoning
Input 28 × 64 × 64 × 14 4096 × 28 × 14
Bi-GRU 4096 × 28 × 14 28 × 64 × 64 × 128
CNN 28 × 64 × 64 × 128 28 × 64 × 64 × 2

Rice Monitoring
Output 28 × 64 × 64 × 2 28 × 64 × 64 × 2
CNN 28 × 64 × 64 × 128 1 × 64 × 64 × 2
Output 1 × 64 × 64 × 2 1 × 64 × 64 × 2

better understanding which includes 40747689 parameters including weight
and biases.

5.4.2 Monitorng performance evaluation

To improve the performance of the proposed model, a k-fold cross-validation
process is followed for training and testing. K-fold cross-validation is uti-
lized in the proposed study to divide the dataset equally into a training set
and test set. More specifically, the data is randomly divided into k-equal sub-
sets for model training using k− 1 subsets and for model testing the single
remaining subset is used. The whole process is performed k times and the
observed test accuracy is averaged 10 results. k = 10 is frequently applied
to reach the utmost performance between the training data and sufficient in-
visible samples to evaluate accurately. To avoid the problem of overfitting in
the model, the training data is divided into learning rates i.e. k -2 subsets,
and the tuning set is 1 subset. The whole process is repeated k -1 time and
selected the best performance. In case the model is assured to perform well
on unseen data (via the tuning system), an optimal setting can be set and
thus avoids over-fitting in the test set. In total, 80% for preparation, 10% for
validation, and 10% for testing are divided between labeled data. Moreover,
an early stoppage process is followed during training that helps to prevent
the overfitting as well as speed up the training by calculating model conver-
gence on the tuning set instead of the learning set (Li, Zhang, and Zhang,
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TABLE 5.5: Seasonal imapct on rice mapping

Problem Year Precision Recall

Rice Zoning
2017 95.61% 95.89%
2018 93.33% 94.43%
2019 90.77% 93.61%

Overall 91.12% 94.11%

Rice Monitoring
2017 94.78% 90.23%
2018 93.23% 89.12%
2019 90.33% 91.89%

Overall 86.22% 89.11%

2014).

Spatio-temporal Condition effects: To check the Spatio-temporal condi-
tion, the proposed model is evaluated on two different temporal resolu-
tions namely Rice Zoning Segmentation and Rice Monitoring Segmentation.
Moreover, the performance is evaluated on Spatial datasets by training the
selected models. The Rice Zoning Segmentation and rice monitoring results
on the Punjab rice dataset are illustrated in Figure 5.6 and Figure 5.7.

The proposed model has achieved a better performance as compared to
other baseline models in terms of F1-score 95.32% on the Punjab Rice dataset.
On the other hand, the comparison is also done on Rice monitoring Segmen-
tation on the same datasets and the proposed model again achieved better
performance with the F1-score 93.12% which is higher than other selected
models. However, the models have not shown better results on the West-
Bengal Rice dataset. The result of each model is illustrated in Figure 5.8 and
Figure 5.9.

Moreover, the efficacy of each selected model is tested by choosing a dif-
ferent model design. Here, (i) Bi-GRU: changed Bi-GRU block with GRU
or LSTM to check the impact of temporal data on future and past monitor-
ing, (ii) CNN: changed the CNN clocks with multilayer perceptrons (MLP)
to know the impact spectral and spatial features, (iii) Upsampling: changed
the bilinear upsampling with Deep Neural Network (DNN) with the same
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FIGURE 5.6: Comparative analysis of rice zoning segmentation
on punjab dataset.
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FIGURE 5.7: Comparative analysis of rice Monitoring segmen-
tation on punajb rice dataset.
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FIGURE 5.8: Comparative analysis of rice zoning segmentation
on West-bengal rice dataset.
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FIGURE 5.9: Comparative analysis of rice monitoring on West-
bengal rice dataset.
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kernel size as the CNN space to measure the segmentation performance up-
sampling effect. The final result of each model is evaluated on both datasets
and illustrated in Table 5.6 in terms of F1-score and training and testing time.
The calculated outcomes revealed that the model Bi-GRU + CNN + Upsam-
pling has shown a better result as compare to other models. The highest
results are highlighted for easy understanding.

Analysis of Seasonal effects: In this section, the performance of the model
is analyzed against the seasonal impact. The model is evaluated on two dif-
ferent seasonal effects such as annual cultivation and different type of crops.
As there will be different types of crops in Punjab namely Wheat, Paddy,
Basmati, Cotton, etc. 8. Moreover, the dataset is further divided into three
different cultivation periods (2017, 2018, and 2019). The evaluated results
in terms of Precision and Recall are compared with other selected models
and illustrated in Table 5.5. It has been realized that the performance of the
model is not effective in 2017 just because of climate change which can af-
fect the spectral bands and may change the important features in spectral
channels.

In addition, rice cultivation in Punjab has different durations that are
ranged from 100-120 days to 130-140 days in a district of Punjab state named
Amritsar. In this manner, the input data vary the size of the window with T
= 7, 14, 28 to activate the zoning and monitoring with multiple periods.

The results of Rice Zoning segmentation and Rice Monitoring segmenta-
tion in terms of Precision and Recall for different window sizes are illustrated
in Table 5.7. The results for larger window sizes are low as compared to the
other two window sizes. The degradation in results occurred due to the
confusion generated at the time of differentiation of the smaller fields with
another area.

8Source: https://pbplanning.gov.in/pdf/COCbriefreport.pdf
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TABLE 5.7: Effect of multiple crops on model performance for
rice mapping

Problem Window Size Precision Recall

Rice Zoning 7 93.22% 95.23%
14 84.23% 95.12%
28 82.11 % 94.12 %

Rice Monitoring
7 94.21 % 92.77 %

14 86.23% 86.33%
28 83.55 % 84.18 %

5.4.3 Comparative analysis

The performance of the proposed model is justified by comparing it with the
selected models such as SVM, LGBM, XGboost, Threshold, Convolutional
Neural Network (CNN), DeepLabV3+, Spectral, VGG, Random Forest, and
InceptinnNet. The final result is summarized in Table 5.8. From the cal-
culated outcomes, it has been observed that the proposed model took less
training time and test time on Landsat 8 images as compared to other deep
learning models illustrated in Table 5.9.

From Table 5.8 and 5.9, It can be analyzed that the proposed model has
achieved a better result on Landsat 8 images as compared to another se-
lected model by achieving 95.12% on rice zoning and 92.67% on rice mon-
itoring. Furthermore, the evaluation of classification efficiency was done at a
fine-tuned level with the calculation of true/false positive and true/false-
negative results. The confusion matrices are generated on the proposed
model and other selected models for Rice Zoning Segmentation on the Pun-
jab rice dataset. Table 5.10 represents the normalized confusion matrices-
based results on different models.

Moreover, the interpretation of the proposed model for rice field segmen-
tation is done by visualizing the outcomes of the model based on the region
of interest. The true-color image as illustrated in Figure 5.10(a) can easily
understand. The segmentation results based on the true-color image and the
ground truth image with the combination of 11 spectral bands are illustrated
in Figure 5.10. After visualizing the segmentation results, it can be seen that
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TABLE 5.9: Traning time and test time of differnt models

Models Traning (In Seconds) Testing (In Seconds)
Threshold 80 81
Spectral 1390 26

SVM 1265 17
VGG 1432 21

InceptionNet 1478 22
CNN 1260 13

RF 1129 15
Light-GBM 1012 17

XGboost 1190 78
DeepLabV3+ 1250 14

Proposed Model 940 12

the proposed model performed better for segmenting the ground truth pixels
as compared to other selected models.

The prediction efficiency of the proposed solution is evaluated by com-
paring the results with conventional and modern selected approaches such
as Threshold, Spectral, RF, SVM, LGBM, XGboost, CNN, and DeepLabV3+.
Images from the West-Bengal dataset are selected for testing the prediction
performance of the proposed solution. The selected image for prediction
analysis is captured on 01-Aug-2018. The calculated performance measures
such as P, R, F1, Kappa, and Accuracy is presented in Table 5.11 to justify the
prediction performance of the proposed solution. Moreover, the segmented
outcomes are shown in Figure 5.11 for better understanding. It has been
observed that the proposed (MR-DNN) tends to have a maximum F1-Score
with the value of 96.33% as compare to DeepLabV3+ (92.13%), CNN (91.22),
RF (88.43%), Light-GBM (89.77%), XGboost (89.67%), SVM (88.33%), Spec-
tral (84.44%), and Threshold (85.46%). Similarly, better prediction efficiency
has been observed from the outcome on the West-Bengal dataset on different
dates. Therefore, it has been concluded that the proposed model is robust
than other deep learning and machine learning models. Furthermore, the
calculated outcomes illustrated in Figure 5.11 and Figure 5.12

Extracting the crop field from satellite imagery is considered one of the
most imperative task for accurate planning the food. In this manner, the
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FIGURE 5.10: Segmentation result of different models (a) Nat-
ural color (b) Ground truth (green pixel= rice field,and yel-
low pixel= non-rice field). (c) Proposed model. (d) CNN. (e)
DeepLab V3+.(f) SVM. (g) Spectral. (h) Threshold. (i) Random

Forest. (j) Light-GBM.

FIGURE 5.11: Segmentation results of differnt models on West-
bengal datatset on 01-Aug-2018. (a) Natural color. (b) Ground
truth. (c) Proposed model. (d) DeepLab V3+ (e) CNN. (f) SVM.
(g) Light-GBM. (h) Random Forest. (i) Spectral. (j) Threshold.
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FIGURE 5.12: Segmentation results of differnt models on West-
bengal datatset on 01-Aug-2018. (a) Natural color. (b) Ground
truth. (c) Proposed model. (d) DeepLab V3+ (e) CNN. (f) SVM.
(g) Light-GBM. (h) Random Forest. (i) Spectral. (j) Threshold.

distance metric is used to evaluate the localization ability of the rice mapping
approach. Two binary images (a) True-color and (b) Ground-truth (b) were
selected for the detection of result: a = (a1, ..., alw) and b = (b1, ..., blw). Here,
a1 and b1 represent the binary value 0, 1 of an image in which 0 represent the
rice-negative and 1 represent the rice-positive. The length and width of each
pixel of an image is denoted by l and w. Furhtermore, the Image Euclidean
Distance (IMED)Fytsilis et al., 2016 technique is utilized to check the spatial
relationship between the image pixels which is mathematically calculated as:

d(a, b) =
1

aπ

lw

∑
i,j=1

exp

{
−|pi(a)− pj(b)|2

2

}
(ai − bi)

(
aj − bj

)
(5.16)

The position of ith pixel (a) and jth pixel (b) is denoted by pi(a) = (l, w)

and pj(b)= pj(b) = (l′, w′) ,respectively. Moreover, the IMED between two
spatial pixels is represented by |pi(a) − pj(b)| =

√
(l − l′)2 + (w− w′)2. It

has been observed that the performance of the proposed model is much bet-
ter than the other selected approachs. The proposed model has achieved the
distance of 27.786 px in image. On the other hand, CNN with 41.51 px, SVM
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TABLE 5.12: Overall accuracy on SAR data

Models Overall Accuracy(OA) Kappa IoU

Conventional
SVM 0.672± 0.030 0.59 0.601
RF 0.876± 0.018 0.77 0.798

Light-GBM 0.863± 0.018 0.79 0.804
XGboost 0.853± 0.019 0.77 0.783

Modern

VGG 0.731± 0.028 0.63 0.682
InceptionNet 0.821± 0.021 0.77 0.793

CNN 0.883± 0.018 0.79 0.802
DeepLabv3+ 0.912± 0.013 0.83 0.882

Proposed 0.942± 0.011 0.89 0.895

with 77.04 px, RF with 5.03 px, Spectral with 33.982, and Threshold with
the distance value of 74.675. Moreover, Mean square error (MSE) and Mean
absolute error (MAE) based error measures are calculated to justify the sen-
sitiveness of the proposed model towards outliers. It has been observed that
the proposed model has calculated the less value of MSE with the value of
0.96± 0.21 and MAE with the value of 0.74± 0.08. The calculated error val-
ues define the ability of accurate prediction of the rice field from the satellite
images.

In addition, the SAR data were captured from European Space Agency
(ESA) under Sentinel-1. The data is publically available with multiple res-
olutions. In order to check the prediction efficiency, the proposed model
is evaluated and compared on time-series Synthetic Aperture Radar (SAR)
data. The results of the proposed approach and other selected approaches
are presented in Table 5.12. It has been observed from the calculated out-
come that the proposed model has achieved a better overall accuracy value
of 0.942% and Intersection of Union (IoU) 0.895% as compare to the 0ther
selected model on SAR images. On the order hand, the DeppLabv3+ model
also shows better performance as compared to conventional and modern ap-
proaches for the prediction of rice fields from SAR images. The DeepLabv3+,
CNN, InceptionNet, XGboost, Light-GBM, RF, and SVM models registered
the overall accuracy of values 0.912%, 0.883%, 0.821%, 0.853%, 0.863%, 0.876%,
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TABLE 5.13: Normalized Confusion matrix on SAR data

Models Class Rice field Non-rice field OA

Proposed Model Rice field 93.23% (TP) 6.33% (FN)
Non-Rice field 21.54% (FP) 82.56% (TN) 86.31%

DeepLabv3+ Rice field 84.78% (TP) 11.34% (FN)
Non-Rice field 26.98% (FP) 80.67% (TN) 81.22%

CNN Rice field 79.23% (TP) 10.43% (FN)
Non-Rice field 34.54% (FP) 79.52% (TN) 77.93%

XGboost Rice field 90.33% (TP) 16.93% (FN)
Non-Rice field 42.24% (FP) 77.22% (TN) 73.90%

Light-GBM Rice field 90.76% (TP) 19.43% (FN)
Non-Rice field 39.54% (FP) 83.34% (TN) 74.77%

SVM Rice field 91.53% (TP) 5.13% (FN)
Non-Rice field 44.14% (FP) 80.22% (TN) 77.71%

RF Rice field 92.53% (TP) 6.13% (FN)
Non-Rice field 44.14% (FP) 80.22% (TN) 77.46%

Threshold Rice field 89.19% (TP) 10.44% (FN)
Non-Rice field 60.12% (FP) 67.12% (TN) 68.90%

Spectral Rice field 86.56% (TP) 2.13% (FN)
Non-Rice field 34.14% (FP) 65.22% (TN) 80.71%

FIGURE 5.13: Segmentation results of different models on
Sentinel-1 SAR dataset. (a) Ground Truth (GT). (b) MR-DNN.

(c) DeepLabv3+. (d) CNN. (e) XGboost. (d) Light-GBM.
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0.672%, respectively. The IoU values of SVM (0.601%), RF (0.798%), Light-
GBM (0.804%), XGboost (0.783%), InceptionNet (0.793%), CNN (0.802%),
and DeepLabv3+ (0.882%). Moreover, the confusion matrix is created for
each selected model to check the prediction accuracy of rice field and non-
rice field from SAR images. The calculated outcome is presented in Table ??
for better understanding. The classification results of each selected method
are further compared with the proposed MR-DNN and illustrated in Figure
5.13. The Pink color in the image referred to the area of the rice field that is
not identified by the model (FN). On the other hand, the blue color is not a
rice field but identified as a rice field by the proposed model (FP). At last, the
green color is a rice field and the model has correctly identified as rice field
(TP) and the black is color non-rice field and the model has segmented it as
a non- rice field (TN).

5.5 Conclusion

Developing a suitable technique for monitoring land from satellite imagery
has become a central topic for research in the agriculture domain from the
last few years. Earlier findings have reported the adequacy of satellite im-
ages to fulfill the purpose of land monitoring with some limitations such as
low or medium spatial resolution, neglection of high spatial resolution, and
many others. In this manner, a Multi-streaming Deep Neural Network (MR-
DNN) is proposed for the collection of data and for monitoring the bound-
aries of rice fields from Landsat 8 satellite images. The proposed solution
is having the capability for capturing the pixel-based rice field from satellite
images automatically. In the proposed model, Bi-GRU is utilized to extract
the temporal dependencies from satellite imagery before feeding data to the
CNN model. Furthermore, the CNN model is used to capture spatial de-
pendencies among the multiple bands. The performance analysis is done on
two different real-time Landsat 8 satellite datasets. The proposed model has
achieved the high prediction performance in terms of F1-score by achieving
the accuracy value of 95.32% on the Punjab rice dataset and 93.12% on the
West-Bengal rice dataset. Furthermore, the prediction performance of the
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proposed solution is justified by comparing the calculated outcomes with
selected solutions such as DeepLabV3+, CNN, SVM, RF, LGBM, XGBoost,
Spectral, and Threshold. From the calculated outcomes, it has been observed
that the proposed model has achieved the higher mean accuracy of 95.32%
as compared to DeepLab V3+ (92.44%), CNN (91.81% ), SVM (90.60%), RF
(90.81%), LGBM (91.86%), XGBoost (89.68%), Spectral (89.87%), and Thresh-
old (86.21%). In this manner, the proposed solution can help Government
bodies and other decision-makers to monitor the production of other food
crops such as wheat, corn, sugarcane, etc.
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Chapter 6

Conclusion and Future Work

6.1 Thesis Summary

The overall goal of this thesis is to utilize advanced innovative approaches
to satellite images to resolve practical remote sensing problems such as clas-
sification, object detection, and urban development monitoring. In this the-
sis, we have explored and developed some innovative approaches such as
Computer Vision, Satellite Images, Fog computing, and Deep Learning in
the field of remote sensing. Advanced classification concepts based on deep
learning have been demonstrated to be effective for classifying multiples
classes from satellite imagery. The use of Deep learning and satellite im-
agery for the prediction of the happiness index based on the development
and basic fundamental rights provided by the Government to the people of
Punjab is explored in this thesis. The satellite images contain a lot of infor-
mation about the earth and extracting such information is a challenging task.
This dissertation proposed three different solutions to extract important in-
formation from satellite images for the prediction of the Happiness index of
farmers by applying a deep learning approach. Furthermore, survey data is
also collected from different regions of the state of Punjab to check the sat-
isfaction level of the people of Punjab. In order to overcome the challenges
of multi-resolution satellite imagery, in chapter 5, we have utilized spatio-
spectral-temporal resolution satellite imagery. The proposed model has the
capability to access multispectral information from multi-resolution images.
Therefore, the Landsat 8 satellite images are used in the proposed study. The
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proposed solution is orthogonal to area-specific spectral indices. In this man-
ner, the proposed approach can retrieve the paddy features directly from the
input data.

Findings:

• In chapter 3, we have proposed a novel deep learning-based Multi-data
Fusion Network (MDFN) to identify the water resources from Sentinel-
2 images. This research aims to predict the degree of happiness index in
farmers of Punjab by correlating the survey data and the satellite data.
In this manner, MDFN is proposed to identify the different sources of
water from Sentinel-2 satellite images. Furthermore, multi-structural
feature fusion layers are utilized in the proposed solution to extract
the spatial features from remote sensing images to predict the sources
of water. The calculated outcomes of the proposed solution are fur-
ther compared with the state-of-the-art models such as NDWI, ResNet,
VGG, SegNet, DeepLabv3+, and DenseNet. According to the calcu-
lated results of the proposed methodology, it has been observed that
the proposed model defines better prediction performance by register-
ing the higher values of Precision, F1-score, Recall, and IoU with the
value of 0.958%, 0.928%, 0.899%, and 0.874%, respectively. In order
to check the correlation between the survey data and the satellite data
for the prediction of the degree of happiness index among the farmers
four different models such as K-Nearest Neighbour (KNN), Decision
Tree (DT), Multi-layer perceptron (MLP), and NAÏVE BAYES are eval-
uated on the survey data. The calculated outcomes show that the MLP
has achieved a higher accuracy value of 78.35% out of all other selected
models. Furthermore, the collected survey and the evaluated results
define the high correlation between the degree of happiness towards
the availability of water resources in a specific location.

• By extending the complexity of multi-spectral satellite images for clas-
sification, object detection, and segmentation. Water resources identi-
fication become a hot topic in the field of remote sensing to deal with
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the problem of water scarcity. In this manner, a novel Multi-layered
Data Integration Technique (MDIT) is proposed to identify the sources
of water from RS images. Moreover, a Deep Convolutional Restrictive
Machine (DCRM) is proposed to extract the deep hierarchical features
from Sentinel-2 satellite images. By the use of DCRM, meaningful pat-
terns among the features are calculated. Moreover, the Deep Sparse
Auto-encoder (DSA) and Spatial Inferred Features (SIF) modules are
employed in the proposed model to enhance the inference among the
spatial features and calculate the indirect relationship among the ex-
tracted features. Furthermore, the proposed methodology is compared
with state-of-the-art methodologies such as ResNet, VGG, DenseNet,
DeepLabv3+, SegNet, and NDWI to check the prediction efficiency of
the proposed solution. It has been overserved from the calculated re-
sults that the proposed approach has outperformed by registering the
precision value of (0.945%), which is higher than other selected mod-
els.

• By reviewing the literature related to Remote Sensing and satellite im-
agery for classification and object detection, it has been observed that
there is no work has been done by applying Spatiotemporal-spectral
resolution. In the above-mentioned studies, only false-color compos-
ite images are utilized to identify the water resources from Sentinel-
2 images. The main goal of this study is to utilize Sapatio-temporal-
spectral images to predict the rice field by applying deep learning ap-
proaches. A novel deep learning-based Multi-Resolution Deep Neu-
ral Network (MR-DNN) approach is proposed to predict the rice field
by performing the multi-streaming classification from Landsat 8 im-
ages. The proposed solution can automatically capture the pixel-based
rice field from satellite images. To check the prediction efficiency of
the proposed solution, the proposed model is evaluated on two dif-
ferent real-time datasets. It has been observed from the results that
the proposed model has achieved the highest F1-score accuracy value
of 95.32% on the Punjab rice dataset and 93.12% on the West-Bengal
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rice dataset. Furthermore, a comparative analysis is done with state-
of-the-art models such as DeepLabV3+, CNN, SVM, RF, LGBM, XG-
Boost, Spectral, and Threshold to justify the prediction performance
of the proposed solution. From the calculated outcomes, it has been
observed that the proposed model has achieved a higher mean accu-
racy of 95.32% as compared to DeepLab V3+ (92.44%), CNN (91.81% ),
SVM (90.60%), RF (90.81%), LGBM (91.86%), XGBoost (89.68%), Spec-
tral (89.87%), and Threshold (86.21%). In this manner, the proposed so-
lution can help Government bodies and other decision-makers to mon-
itor the production of other food crops such as wheat, corn, sugarcane,
etc.

6.2 Future work

Due to advancements in hardware as well as algorithms, remote sensing
technology received attention in the last few years. The proposed models
have achieved satisfactory results but still, some improvements could be
made.

• Hyperspectral and Multispectral Satellite Images: Hyperspectral im-
ages contain very rich spatial and spectral information and compare to
multispectral images because in hyperspectral images there are more
than 200 bans and multispectral images are having more than 3 bands.
In the future, we can utilize hyperspectral images instead of multi-
spectral for the detection of development changes by applying a large
deep learning-based multi-resolution approach.

• Computational Complexity: However, because the computing diffi-
culty of processing hyperspectral data is so high, it would be extremely
beneficial if the spectral dimensionality could be decreased while main-
taining the same knowledge from the hyperspectral bands.

• Data and Pre-processing: In the domain of remote sensing, there is
a lack of hyper-spectral, multi-spectral, and SAR datasets. In future
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work, we will create datasets that will help researchers to extract im-
portant information from satellite images. Moreover, climate and weather
changes, such as snow and cloud, have a significant influence on RS im-
ages. Further study in my future work will be aimed at removing the
influence of weather variations in the classification of RS images.

In the field of remote sensing, manual data collection and pre-processing
are considered an imperative aspects to justify the findings. In this manner,
a survey has been conducted based on different parameters such as Good
Governance, cultural preservations, citizen safety, and security. Good Gov-
ernance has been opted to evaluate the happiness index of the individuals
who belong to a specific area by predicting the availability of water. How-
ever, different parameters such as cultural preservation, citizen safety, and
security can also be utilized to evaluate the level of happiness index. There-
fore, the above-discussed parameters such as cultural preservation, citizen
safety, and security will be included in the proposed study to enhance pro-
ductivity and stability concerning the prediction of the happiness index.
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