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Abstract 

The task of network administrators to identify and determine the type of traffic traversing 

through the network is very critical to the rapid growth of new traffic each day. To ensure 

that the type of traffic coming in and out of a network is safe, traffic must be identified 

which requires classification of traffic in real-time. As the requirements of networks 

change over time, the situation of the network not able to meet some requirements is 

likely to occur.  The same resources that could meet the requirements today may not be 

enough for tomorrow or in the future. This can negatively affect the quality of service the 

network offers. Considering wide area networks, with limited resources in terms of low-

speed links, quantified number of packets are likely to be lost with varying fragments of 

packets transmitted at a time which lowers the quality of service. The classification 

procedure in such scenarios can also be affected due to the limited features extracted 

from the various fragments of packets that will successfully get to the destination node or 

server. After a rigorous and extensive review of literature, we realized that not much 

investigation has been conducted in this area since almost all the proposed work has not 

considered the case of a limited resource in networks in their proposed works. The 

renowned works done assumes the network under consideration has all the requirements 

fulfilled by the network‟s resources at any point in time. However, such consistent 

circumstances rarely happen physically. Hence, the need for a solution to help classify 

traffic flows accurately in such situations is highly required.  

The study aspires is to discover the effect of packet loss and fragmentation during the 

classification procedure. From previous works, the assumption of whether or not the 

network resources meet its requirements is not considered. This research factors such 

assumptions. The aim is to discover the magnitude of the effect it has on the statistical 

features of the flow extracted for classification. Two wide area networks  (Wired and 

Wireless) exposed to extreme packet loss scenario is designed and implemented using 

OMNET ++ simulation to generate our proposed Fragmentation Packet Loss Induced 

(FPL) dataset 1 and dataset 2 from the proposed wired and wireless topologies 



 

 

iv 

 

respectively. The wireless network is proposed to further validate the efficiency of the 

proposed algorithms in such environments. The speed of links in the networks is such 

that the number of packets sent at a time exceeds the capacity the links can transport at a 

time. This ensures the occurrence of fragmentation leading to extreme packet loss.  

The second objective of the research is to propose a QoS aware semi-supervised 

clustering algorithm that will improve upon the performance of traffic classification in 

networks.  The aim of this objective is to provide a solution in situations discovered in 

the first objective. The semi-supervised algorithm is implemented into a classifier that is 

able to classify application traffic or packets, utilizing restricted traffic features, few 

packets and at the same time maintains a low complexity and good classification 

accuracy. This is achieved by proposing two clusters and label hybrid algorithms, namely 

KNN+K-Medoids (KNKM) and SVM+K-Medoids (SVKM). The design of both 

algorithms makes full use of the advantages of the algorithms they constitute and 

concurrently optimizing other parameters of the primary algorithms. The proposed hybrid 

algorithms achieved good classification results with respect to the proposed scenario. 

However, accuracy levels needed to be improved. Also, the time complexity of SVKM 

resulted to be higher regardless of the improved accuracy rates. R-TAC semi-supervised 

algorithm is proposed to overcome these limitations. 

 

For the third objective of the study, we implement and validate the two algorithms to 

serve as a classifier to generate a compact summary (classify) of various traffic types 

while increasing the performance in presence of Quality of Service Parameters.  The 

proposed model is built and tested in a MATLAB simulation environment. The dataset 

generated from the OMNET simulation is initially filtered based on the statistical features 

discovered from the data logs at the end of the simulation. The algorithms are designed 

and implemented in MATLAB simulation environment with FPL datasets.  The 

algorithms are evaluated using the following classification metrics:    
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a. Precision  

b.  Accuracy  

c. The area under Receiving Operating Characteristics 

d. Processing Time  

e. Error Rates  

 

To validate the proposed work, we compare the results achieved with other existing 

works in literature in terms of the evaluation metrics. Results from the comparison show 

that our proposed semi-supervised algorithms perform better in such scenarios where 

networks have limited resources in terms of the parameters selected for the study. Also, 

the proposed works are able to distinctly classify and separate classes with no conflicting 

or overlapping clustering or classification. The overall processing time is also fair 

considering the amount of flows and features incorporated in the classification procedure. 

Furthermore, two datasets namely Cup KDD 1999 and IDS Trace from Cyber Watch 

Mid-Atlantic Collegiate Cyber Defense Competition (MACDCC) are employed to 

validate the accuracy of the proposed models. A compact summary of the traffic traces is 

derived along with their respective percentages for each traffic class.  The results are 

compared with the existing works in literature with the selected datasets. The results 

achieved further prove that the proposed works are efficient traffic classifiers, with the 

overall best classifier being the R-TAC model. 
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Chapter 1: Introduction 

Network and internet communications have become a pivotal aspect in which our work 

and social life evolve. In order to provide swift health care services, banking services, 

application of jobs, research work, keeping in touch with family and friends, security 

services, etc. applications that require internet services have been developed to this aid. 

With all its contributions and benefits, the complete operation and detailed 

comprehension of computer networks and internet are limited. This is a result of the rapid 

evolution of computer network architectures, protocols, traffic, and applications. The 

research community has therefore been motivated to breakdown this ambiguity and help 

with the understanding of internet and computer network activities. A branch of this 

formed a novel area of study known as Traffic Classification. This field of study is 

relevant and indispensable to unravel the complicated operations of the internet.  

1.1 Traffic Classification 

Data sharing over networks is one of the optimal methods to transfer and receive 

information in today‟s information era. When data is sent from a source network, the 

traffic can traverse on various hops depending on the path before it gets to the destination 

network. Traffic classification involves the process of associating examples of traffic 

generated to the specific source applications that resulted in its generation [1]. The word 

traffic in the context of this work exemplifies IP traffic, internet traffic and private 

network traffic, as well as packets or data flows within a network. The traffic can be 

intercepted or changed at any phase through the traveling process. It is therefore crucial 

for administrators of all networks to identify the traffic that enters their network. This 

requires traffic or packets to be classified. Modern years have demonstrated that Internet 

has proceeded with its sensational development. Use of assorted applications has 

expanded, particularly advanced applications likened to distributed applications and 

multimedia has turned out to be generally utilized. These days, managers face gigantic 
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difficulties to distinguish distinctive applications roaming on the Internet. The necessity 

of classifying internet traffic intensifies for administrators for various reasons such as 

guarding the system security, traffic engineering and monitoring of usual activities. The 

task of identifying applications is at the focal point of numerous security functions. An 

enterprise can have security blueprints to allow specific kind of applications while 

preventing others from entry, access or use. This could be exclusively determined by 

security, making it a great concern for Quality of Service (QoS) delivery. Particular kinds 

of application traffic in relation to QoS may get special treatment above other 

applications. For instance, in an office domain, email traffic may be prioritized over 

downloads of video files. Usually, these priorities placed on traffic types and how 

frequent they are utilized call for such special treatments. With respect to smaller network 

environments, traffic characterization may be required, for example, home systems, 

where no expertise personnel are available. Applications used to upload and download 

content onto and from the internet (such as U-torrent) and application platforms for 

viewing and streaming video content (YouTube), at a certain phase dynamically changed 

the criterion of internet architecture. With the influence of such sudden transformations in 

traffic trends on networks, traffic classification aided administrators to strategize and 

design architecture protocols to the effect of such new flows. 

The concept of Real Time traffic classification using clustering techniques or algorithms 

involves the process of identifying packet traces or portions of the traffic which are 

similar, possessing distinct features and grouping them under unique headings. Clustering 

techniques have several applications in a network system. For instance, they are the 

precursors to intrusion detection systems, which use anomaly detection [2] [3] [4].  

Furthermore, traffic classification is also applied to strengthen security applications and 

network management to boost the quality of service in smaller and larger networks [5] 

[6]. In addition, classifying application traffic accurately is required to improve the 

efficacy of network resource usage [7]. The traditional method of classifying traffic 

includes the Port based approach and Payload method of classification. Other approaches 

include Behavioral classification and Statistical classification 
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1.1.1 The Port-based Classification 

During the initial deployment and early existence of the internet, network traffic 

classification was not a subject of contention by any means. Port-based approach makes 

use of known ports in the list of registered ports ascribed from the Internet Assigned 

Numbers Authority (IANA) [8]. This includes determining an application dependent on 

assessing the packets in headers and coordinating it with its corresponding port number 

enlisted with the Internet Assigned Numbers Authority. Some recent emerging 

applications in the same manner as peer to peer traffic [9] similarly adopt unregistered 

port numbers, non-standard ports, or can select an irregular port. This increases the 

results of misclassification.  In the worst scenarios, inappropriate applications conceal 

themselves behind certain known ports in order not to be detected. When a session 

connection is established, the target port is sought using the application and the traffic is 

classified based on this information. In a few circumstances, there is a difficulty in 

realizing genuine port numbers in the situations of obscurity packet headers in the 

process of IP layer encryption. In any case, because of the infringement of port number 

assignments by an ever increasing number of recently rising applications, the technique 

has turned out to be progressively off base [9] [10] [11] [12] [13] [14]. The approach, 

though successful, experienced some drawbacks as newer trends in traffic emerged. 

Recorded improvements have uncovered the errors and shortcomings of these 

conventional strategies [15]. The limitations stem from various causes. Applications 

which invoke the use of HTTP server may use other standard port numbers instead of the 

originally assigned port. Also, the use of dynamic ports and encryption of the IP layer 

which also emerged made it difficult to find the genuine port number [16]. The approach 

could not classify these encrypted types of packets in the traffic flow. The port-based 

approach is explained into details in Schneider [17] and can be referred for in-depth 

understanding.  
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1.1.2 The Payload Classification 

To solve the inadequacy and dependence on the port-based method of classifying traffic, 

numerous research works suggested not only examining packet headers but including 

other features, in a method referred to as Payload Classification. In the Payload 

classification, packets found in flow payload are examined carefully to find known 

signatures [18]. Classification is done based on the similarities of these signatures with 

the knowledge-based signatures, which has already been trained with the classifier [19]. 

Payload scrutiny has been broadly utilized in open source systems like the Linux kernel 

firewall implementation process [20]. Additionally, intrusion detection systems (IDS) 

utilize payload-based classifiers frequently for distinguishing malevolent actions in 

networks [21]. The unwavering quality of this technique has been explored generally. Sen 

et al. [22] research work showed the effect of utilizing payload approach to detect P2P 

(Peer- to- Peer) traffic. They uncovered that it could limit the bogus misclassification rate 

by only 5% in most examined cases. There also exists different research dependent on 

payload classification [18] [23] [24] [25]. In spite of the fact that payload-based 

technique is viewed as a dependable procedure, it has some critical impediments and 

shortcomings. To begin with, the technique is challenged by the difficulty in updating the 

database of application signature, to enable effective comparisons. They can either 

coordinate the identified signatures in payloads packets or approve application-layer 

convention message groups. Also, the Payload method could not also classify encrypted 

data and handling of proprietary protocols became a challenge [16]. The capacity of the 

classifier reduces when encrypted traffic is classified or when protocols are encapsulated; 

analyzing of packets which are encrypted with this technique is unfeasible, which implies 

tons of system traffic stays unclassified. These traditional methodologies have high 

computational overheads and impose a lot of load on the device used for classification. 

As a result, they face trouble in adapting to the huge number of flows and the fast rate at 

which the network traffic propagates. With the advancements in technology, trends of 

how data is sent over networks changed which made masquerading of data another issue 

related to the traditional approach. 
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1.1.3 Behavioral Classification 

Behavioral classification strategy deals with examining the entire traffic patterns from the 

network generated by the hosts with the aim of identifying application types of data from 

selected or particular hosts. For instance, the quantity of conveyed hosts is tallied, 

considering the total ports and transport layer protocol. The authors in [26] [27] for 

example, used heuristic information like unique ports communicated with and exploited 

transport layer protocols to examine network traffic patterns and identify the kind of 

application that runs on the host. Different works [28] [29] demonstrated that network 

traffic can be classified by utilizing tons of information. They graphically investigated the 

connections between hosts, and they demonstrate that patterns in the created connections 

and client-server application graphs are not very quiet the same as those of peer to peer. 

Other researchers [30] [31] used the capabilities of ML algorithms together with some 

metrics for classification of individual network applications. Despite the behavioral 

classification yielding encouraging outcomes with lower computational cost, the greater 

part of these proposed works considered just the movement of the endpoints or hosts [32] 

[27]. 

1.1.4 Statistical Classification  

Because of the confinements of the previously mentioned methodologies, a huge number 

of late investigations have been concentrating on statistical-based approaches. The 

motivation stems from the notion that traffic produced by various applications shows 

discernable attributes.  Statistical classification involves making use of statistical features 

or factual attributes of flows in network traffic to distinguish applications. It makes use of 

various flow-level quantifications [33] [10] [9], like inter-arrival time of packets, idle 

time of flows, size of packets and length of packets. These estimations are distinctive for 

peculiar applications. Subsequently, this enables the classifier to separate distinctive 

applications from one another. Initially, network traffic statistical features were examined 

in some few works. Paxon [34] looked at the correlation existing between the class of 

traffic and characteristic feature of the flow, for example, the number of bytes and flow 
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length.  He recommended setups of experiential association attributes for a substantial 

number of applications. Likewise, Dewes et al. [35] used the network flow statistics, for 

example, the time duration of flows, inter-arrival time of packets, packet size to examine 

chat systems across the internet. Works from research conducted later, for example, [36], 

[37] and [38] looked at the distinct features of network traffic for various web 

applications.  The results from the examinations have enlivened analysts to delve into 

modern dimensions of classification procedures dependent basically on statistical 

attributes and features.  

In order to implement statistical classification, classifiers need to utilize data mining 

methods (to be precise algorithms in Machine Learning (ML)) since they have to manage 

diverse patterns of traffic from extensive datasets. The algorithms pertinent to ML are 

exceptionally lightweight and cost less in processing and resource consumption in 

comparison to the payload-based method. They are not based on packet inspection, but 

rather make use of the data extracted from flow analysis conducted. The adequacy of 

classifiers based on statistical approaches relies on the extricated features of flows, which 

stand in need for broader learning because of their multifaceted nature. Nevertheless, 

these procedures perform better compared to payload classification since they try not to 

include content from packets, hence encrypted traffic can be examined and classified 

without problems. 

1.2 Machine Learning Techniques 

The newer approach for classifying traffic is the use of clustering techniques which forms 

part of Machine Learning (ML). Machine Learning approaches are advanced in terms of 

accuracy, performance, and complexity compared to traditional approaches. ML enables 

a system to train itself with an existing database, from which the system later infers 

appropriate decisions regarding the traffic classification. That is, it enables a system to 

train itself with information fed to the system and later take the appropriate decision 

when required based on the prior knowledge or information it has [39]. The information 

normally represented as a dataset. The way of learning falls specifically under 
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Supervised, Unsupervised and Semi-supervised [40]. The supervised approach involves 

using an algorithm to study and make predictions from a labelled dataset. The dataset is 

also referred to as the training dataset or examples. A preexisting knowledge of the nature 

of the anticipated output is known. The algorithm learns from the training dataset which 

serves as a guide to infer the output of new examples that will be fed to the system. Thus, 

subjecting the process to supervision [41]. Unsupervised Learning as the name suggests 

has no supervision. The input dataset is unlabelled, hence prior knowledge of the output 

is not known. Algorithms are used to divulge and reveal the inherent structure of the data. 

The technique of unsupervised learning associates data elements possessing comparative 

qualities together from the unlabelled dataset. Even so, it has lower accuracy in 

classification and exhibits strenuous processes for training in contrast with the supervised 

methods. Be that as it may, there are two primary difficulties for classifying traffic 

utilizing these ML techniques. Right off the bat, labelled examples are rare and hard to 

get. With limited labelled tests, the indigenous supervised strategies frequently produce 

classifiers that don‟t sum up well to already concealed examples. Besides, not a wide 

range of application examples is known and new ones may show up after some time. 

Conventional supervised techniques compel an alignment of each example into one 

known class, eliminating the capacity of recognizing newer patterns of samples. This 

fostered the initiation of Semi-supervised learning. Semi-supervised descends as part of 

both supervised and Unsupervised Learning. The method makes use of some amount of 

labelled data infused, coupled or mixed with unlabelled data. The unlabelled data forms 

the majority of the dataset fed as input to the system. A mixture of labelled and 

unlabelled brings some form of supervision in the classification of the data [42]. 

Clustering techniques fall under unsupervised and semi-supervised learning and mostly 

has to deal with the association of some characteristic features [39]. 

There are different methods of clustering, namely classic K-means clustering, 

hierarchical, Density-based clustering, Grid-based clustering, and Probabilistic-based 

clustering. [43] [44] [45] [46]. Hybrid approaches to these methods are also in existence. 

The classic K-means method divides the dataset into a disjointed set of clusters and 
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exemplifies each cluster with its centroid whereas the Hierarchical clustering methods are 

more settled generating a clustering hierarchy [47]. Probabilistic model-based clustering 

presumes data is formed by an assortment of the inherent probability distributions among 

various populations intended to be described by its characteristics. The advantage is, the 

clusters formed are effortless to interpret [47] [46]. On the other hand,  with Density 

Based, clusters are defined to comprise of unpredictable shapes. This characteristic 

provides protection against outliers and noise [48]. Grid-based partitions given data 

spaces into a multi-resolution structure of grids with a finite number of cells [49] [50]. 

The method‟s collection of grid data contributes to the independent attribute of the Grid-

based clustering approach of data ordering [46].  

The clustering approach has been used by many researchers to promote adequate ways to 

classify traffic from various networks. Most of the approaches extract and examine the 

statistical features of packets which encompass packet size and distribution, arrival times 

between packets and packet length [51]. Others also make use of the patterns in the 

traffic.  Their approaches have yielded higher results proving clustering techniques as an 

efficient method. With further research into this, better efficient methods than the existing 

ones can still be developed for different application areas. The selected works in literature 

to estimable cognition has led to most proficient results in the literature as at the time of 

conducting this research. Hence, unsupervised and Semi-supervised methods using 

clustering analysis form the scope of the literature. Where supervised methods are 

incorporated in semi-supervised suggested works, we discuss the former for better 

understanding. The results obtained from the works are also discussed in terms of its 

accuracy in classification, performance, complexity in computations and run time where 

applicable. 

1.2.1   Clustering Approach of Classification 

The method of clustering bears on the process of classifying given amount of objects 

such that similar ones fall into a common class also called a cluster [46]. Thus, a cluster 

contains objects with similar characteristics which are distinct from objects in other 
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clusters as represented in Figure 1. Each colour (red, blue, green) represents a cluster. 

Objects and points with familiar features are represented in the duplicate colours, 

constituting a cluster. 

 

 

Figure 1: Cluster Representation 

 

The magnitude of how objects are similar or dissimilar to each other determines the 

particular cluster which they will belong. The perception of a cluster cannot be described 

strictly, but seen in diversity as a limited distance in scope within other cluster members, 

dump orbits of data space, or possessing intervals and exceptional distributions of 
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statistics [52]. Cluster parameter settings include distance function and the total number 

of clusters to expect, also termed as the threshold of density. The point of concentration 

in a cluster for cluster analysis is mainly the middle section of the cluster known as the 

centroid, which is usually denoted and located by a vector. 

Clustering approach is unsupervised since no labels are set or defined beforehand. It is 

therefore difficult to adjudicate whether clustering is right or wrong. However, careful 

consideration of certain factors, including the standards for partitioning, the distance 

between clusters, the quality of clusters and scalability supports the method of proficient 

and effective clustering.  

1.2.2 Standards for Partitioning 

The standard for dividing data traffic into clusters, whether hierarchical or non-

hierarchical, contributes to the effectiveness of a cluster. Hierarchical partitioning creates 

a form of classification in which closely related objects form smaller clusters and become 

sub-clusters of a larger cluster [53]. This form of partitioning can further be categorized 

into Agglomerative and Divisive. Agglomerative starts from the bottom and proceeds 

upwards into building a hierarchy. It begins with small single clusters and fuses two 

clusters in a continuous manner to form a larger group of clusters. The divisive approach, 

in contrast, conforms as a building from the top and proceeding downwards where a 

single cluster is divided in a continuous manner to form sub-clusters [54]. Non-

hierarchical partitions refer to clustering a given dataset into non-occurrence groups, with 

a tree-like structure. Categories of non-hierarchical partitioning are single pass, relocation 

and nearest neighbor approaches. Single-pass generates clusters that rely on the 

arrangement of the dataset, whereas relocation categorizes data into a known quantity of 

clusters and re-assigns them into finer clusters. The nearest neighbor approach puts 

objects of the given data into clusters with respect to the similarities of their nearest 

neighbour [52].  
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1.2.3 Distance between Clusters 

A clustering algorithm must consider the separation of the clusters. The decision of a data 

object or flow‟s exclusiveness to only a single cluster or multiple clusters must be 

considered. The similarity measure of distance must also be factored, for example, to 

choose a Euclidean distance or a connectivity-based method [54]. 

1.2.4 Quality of Clusters and Scalability  

The quality of a cluster deals with its capacity to handle noisy data, the formation of 

clusters with discretional or absolute shape, and dealing with different data types. A 

proficient cluster should be able to cluster all the data objects instead of a representative 

sample and also cater for high dimensional data [55]. Data must be scalable to prevent the 

wrong representation of results in the clustering process. 

1.3 Clustering Algorithms 

Clustering classification makes use of a set of instructions or codes to determine how the 

overall classification process is done. These sets of codes define a clustering algorithm. 

Clustering algorithms are usually categorized into Linear and Non-Linear algorithms. 

Linear algorithms are suitable for datasets with low variance. Less or no change or input 

is required. Examples of Linear algorithms for clustering include the hierarchical 

algorithm, K-means algorithm, Quality threshold algorithm, Gaussian (Expectation 

Maximization) algorithm and Fuzzy C-means algorithm [55]. Contrarily, Non-Linear 

suits datasets with very high variance requiring the number of features to be reduced or 

dataset to be manipulated.  Examples include Density-based algorithm, MST (Minimum 

spanning tree) algorithm and Kernel K-means algorithm. An efficient or good clustering 

algorithm must possess but not limited to the characteristic of: 

 Being able to cluster datasets of high dimensions 

 Dealing with a variety of attributes 

 Identifying outliers and noise 
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 Generating results that are easy to interpret to provide more insight on input 

parameters 

 Identifying arbitrary shaped clusters 

1.3.1 Application Areas of Clustering 

Clustering techniques can be incorporated in Data summarization, data compression and 

reduction procedures of data mining and storage [56]. This makes clustering applicable to 

multimedia data (image, audio, and video), sequential data [57], uncertain data such as 

noise and big data. Furthermore, clustering can be used to observe extreme outliers in sets 

of data.  Outliers consist of data that fall outside the parameters of any cluster. This 

makes clustering useful in detecting patterns and dynamic trends in traffic flow.  Other 

application areas of clustering include determining genetics and DNA in Humans, 

providing analysis of crime cases, categorizing results of search engines, analysis in 

climate science, sequence analysis in genome, analysis in social networks and web 

applications [58][59][60]. 

1.4 Motivation of the Investigation 

The effects of quality of service parameters on homogenous and heterogeneous networks 

on entire network execution have resulted in a major concern for most network 

administrators. The scope of this research concentrates on two QoS parameters and that is 

Packet loss and Fragmentation. These two parameters go hand in hand such that, the 

packet size and length is as a result of fragmentation. Depending on the measure of 

resources the network possess, (bandwidth, link capacity, and speed) determines what 

amount of packet loss the network experiences. The objective is to find out the effects or 

how these QoS parameters will behave in the clustering procedure in machine learning in 

relation to their performance. Not much investigation has been done on this to utmost 

knowledge hence the aim to delve more into this notion and propose an algorithm that is 

able to withstand such conditions.  
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1.5 Objectives of the Study 

1. To investigate the effects of Packet Loss and fragmentation in Network 

traffic classification 

2. To develop QoS aware semi-supervised clustering algorithm that will 

improve upon the performance of traffic classification in networks 

efficiently in the presence of Packet loss and Fragmentation. 

3. To implement and validate the developed algorithm to serve as a 

classifier to generate a compact summary of various traffic types while 

increasing the performance in presence of QoS Parameters. 

 

1.5 Contributions and Scope of the Study 

The primary aim of the work under study is to provide a novel classification approach for 

wired networks which at a point in time due to increasing requirements of the network 

leads to insufficient resources. The classification occurs at the flow-level. For this, a 

network in a case of low-speed links is implemented in simulation. The QoS effects of it 

are captured in real traffic data logs to formulate a dataset for an experimental framework 

analysis. The dataset is utilized as ground truth in the training and assessment of 

proposed and existing classifiers. Furthermore, based on the requirements of the proposed 

classification strategy, algorithms are proposed that will be fully equipped to classify the 

traffic flows efficiently. Before the formulation of the proposed classification strategy, an 

extensive literature survey on existing works are carried out to study how they were 

formulated, parameters considered, achievements and flaws in them. Some of the models 

are selected based on the above mentioned areas and considered for an improved 

approach for the problem identified for the study.  

1. The relevance of the undertaken objectives and the proposed work offers a good 

technique for traffic classification which is of significance in seamless data 

transmission. The objectives ensure a quantified amount of literature is analyzed 
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to identify the gap in knowledge with respect to the problem statement. A 

summary of prominent works with most efficient results is presented to serve as a 

base groundwork to save cost and time for other research works [61].  

2. It provides an alternative approach for networks seeking to achieve good 

classification of traffic with the limited resources provided by the network. With 

the absence of datasets that considers the effects of QoS parameters when a 

network has low-speed links, real-time traffic data logs are captured and 

formulated into a dataset for evaluation and comparison with other existing 

works. 

3. The research further enhances the network‟s quality of service provided by 

network administrators and service providers. The suggested algorithms 

implemented into classifiers are efficient in classification when networks have 

limited resources [62] and also validated to be efficient even when requirements 

are met using existing datasets that do not consider such parameters. Therefore 

network providers QoS are never undermined with respect to traffic classification 

at any phase in the life of the network. 

1.7 Research Methodology  

To improve the Quality of service in Networks such as Wide area Networks (WANs) and 

Campus Area Networks while classifying the traffic coming into the networks, we first 

delve into Machine Learning and Clustering Techniques to identify persistent challenges 

that inhibit better quality of service and poor classification through systematic, well-

structured and authentic literature review. The research gap is identified to formulate the 

research problem and objectives. The overall goal is to classify application traffic flows 

using restricted traffic features, quantified number of packets to maintain a subsidized 

complexity in time and good classification accuracy. 
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1.7.1 Description of Suggested Objectives  

With respect to Objective 1 (To investigate the effects of Packet Loss and 

fragmentation in Network traffic classification), a network scenario is designed in 

OMNET ++ simulation and subjected to parameters that contribute to low quality of 

service which is accelerated loss of packets and inconsistent fragmentation. The method 

of simulation is preferred because it provides the resources to investigate into worst 

scenarios of network situations, and also afford adequate room to test various parameters 

during experimentation at a low cost. The logs generated from the implementation of the 

network scenario are analyzed to find the effects of packet loss and fragmentation in the 

classification procedure. The logs are filtered and transformed into a data set for analysis. 

To achieve this objective (To develop QOS aware semi-supervised clustering 

algorithm that will improve upon the performance of traffic classification in 

network efficiently in presence of Packet loss and Fragmentation), we propose a 

semi-supervised algorithm by exploiting the advantages of renowned works in literature 

to create a hybrid algorithm (classifier) that is able to withstand the conditions that deter 

the quality of service in the classification procedure.  

With respect to objective 3 (To implement and validate the developed algorithm to 

serve as a classifier to generate a compact summary of various traffic types while 

increasing the performance in presence of Quality of Service Parameters.), we 

implement the proposed algorithm in MATLAB on the generated dataset. The metrics 

used for the evaluation are confusion matrix, accuracy, precision, error rates, and time 

complexity. We validate the proposed work by comparing with other classifiers that 

proved to be efficient in literature. A comprehensive flow of methodology for the 

groundwork is displayed in Figure 2.  

1.7.4 Hardware and Software Requirements 

The system and simulation requirements of the study include: 

 RAM – 10GB 
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 Processor type – Intel Core i3 

 Hard disk size  – 500GB 

 Selected operating System for Simulation – Ubuntu 16.04 

 Windows 7 Professional for Editorial purposes 

 OMNET ++ - Version 5.3 

 INET – Version 3.6.5 

 MATLAB – Version R2017b 

 

1.8  Thesis Structure 

The write-up is organized systematically in chapters. Introduction of the study, 

motivation, suggested objectives and adopted methodology for accomplishing the 

targeted objectives are covered in the first chapter. The second chapter presents the 

history and background knowledge of all aspects of the study. This includes the scope of 

networks, parameters employed, and a comprehensive review of precedent works 

conducted. The work conducted with experiments is subsequently discussed in the next 

three chapters. The third chapter elaborates the topology design and execution. The 

architecture and exertion of the prospective algorithms are deliberated in the fourth 

chapter. Analysis of the outcomes achieved and verification constitute the fifth chapter of 

the study. Validation and analogy of the suggested works against other works and already 

in existence is performed in the sixth chapter to deduce conclusions. The seventh chapter 

summarizes the study with its findings and prospective additions that can be made in the 

future. The taxonomy of the study is demonstrated in Figure 3.  
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Figure 2: Flow of Proposed Methodology 
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Figure 3: Structure of the Thesis   
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Chapter 2:  Background Study 

2. 1 Packet Loss Parameter 

Triad parameters that affect network performance, in general, are latency, loss and jitter 

metrics [63]. Latency can be explained as the amount of time (in milliseconds) a data 

packet takes to journey to its destination and back again. This amount of time is known as 

the round trip time (RTT). Even though latency can be measured in a one-way trip, it 

fetches more costs and requires advanced instrumentation compared to the round trip 

measurement. Pertaining to the performance measure of QoS, latency falls under the 

Quality of Experience (QoE) metric. The variation of delay or latency from one point to 

another in a network depicts the jitter, which is the significant difference between the 

latency from one packet to another on a data path. Depending on the jitter buffer of 

networking equipment constitutes the amount of jitter bearable by the network. Packet 

Loss is the measure of packets misplaced during the journey of packets from a source 

point to a destination point. The network experiences packet loss when some of the 

packets are not received at the intended destination. This is very common in the real 

world of networks. The behaviour of networks to riffle or alternate occurs from time to 

time.  

2.1.1 Packet Loss versus Latency 

In the scenario of phone calls where a caller places a call to the receiver, latency will be 

the time it takes for the caller and receiver to have effective communication. The concept 

of queuing theory shows that when a link is more busy or congested, more packets will 

have to wait in the queue. When there is a high latency in transmission, packet loss also 

increases contributing to some packets being discarded to reduce the congestion, 

especially on low-speed links. Also, there will be no or limited space in the TCP buffer. 

This will cause transfers of packets to halt until the lost frames have been retransmitted 

and received at the destination. Some UDP- based applications can show its response to 
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packet loss by resending lost frames, corrupting the data or even terminating the active 

connection. Much of these effects are experienced in VoIP applications where one can 

hear feedback or echo as well as distorted audio. Other elements of the network and 

buffers try to fix the losses of packets which in turn cause delays which are easily seen in 

conversations.  This depicts that when the latency is high, packet loss increases. There 

can be a solution around it but that will also cause TCP activities to slow down rapidly.   

2.1.2 Packet Loss versus Throughput 

Some packets make it through to its destination even though some are lost on the way. 

The amount of data that travels or traverse through the network successfully is referred to 

as the throughput. The effects and impact of latency in the network are not eradicated by 

bandwidth increment. The time it takes to transmit a packet between two nodes A and B, 

across a network and to receive a response back impacts the network as a whole. Since 

the speed at which the packet travels cannot be greater than that of light, the amount of 

data that can travel successfully (throughput) greatly depends on the distance between the 

nodes in the network. 

The operation of TCP is such that when a packet is lost usually in wired networks as a 

result of congestion, the degree of packets sent is slimmed down to 50% of the prevailing 

size of the congestion window (cwnd). Assuming cwnd is 4, it will be lowered to 2 for 

the process of slow start in TCP to begin again. In order to find the appropriate and 

optimal throughput, the congestion window will be increased by 1 segment gradually. In 

situations of high packet loss, this will result in overall lower levels of throughput. 

2.1.3 Packet Loss versus Fragmentation 

The maximum size of packets or frames varies as a result of different networks that are 

connected via the internet. The maximum size otherwise the maximum transfer unit 

(MTU) of the data payload of 802.11 standard is normally 2312 bytes. Other forms of the 

802.15.4 standard have 104bytes as the MTU [64]. Fragmentation occurs when packets 

get onto a link with lesser maximum size than the packets arriving. Fragments of packets 
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are then transmitted in packets independent of each other. At the end of the transmission, 

with all fragments received, they are reassembled at the end host.  

2.1.3.1     Effects of Fragmentation on Packet Loss 

MTU size puts a limit the maximum size of packets that traverses on a link. 

Fragmentation, however, helps to overcome that limitation but that can also affect the 

performance of the network negatively by incurring extra costs and complexity due to the 

reassembling of protocols and the fragmentation process. However, there is a high 

probability for packet loss to increase since more packets for each of the primary packets 

must be transmitted.  In networks with limited resources, the repercussions of packets 

loss may be very critical.  

2.1.4 Causes of Packet Loss in Networks 

The network layer constitutes the building blocks for several applications and data that 

traverse on the network. Hence, problems arising from this layer will affect the other 

layers that operate on top of this layer negatively. Packet loss is one of the adverse effects 

networks suffer. The reasons why packets get dropped in a network includes link 

congestion, network device performance, software errors and issues on network devices 

and faults in cables and hardware. 

2.1.4.1   Link Congestion 

During a trip across a network, data traverse through several devices and links. When a 

link has utilized its capacity fully, incoming data arriving on that link must wait in a 

queue for its turn to be given access to travel on the link. Depending on the length of the 

queue, when the buffer space of the network device is full, the incoming data will have to 

be dropped and discarded.  However, several applications are able to handle it in such a 

way that it will be unnoticeable by the end user. The transfer speed of packets is slowed 

down in any stage a lost packet is encountered, which initiates a process to re-transmit the 

missing packets again. If packet loss does not occur continuously or consistently, 
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legitimate time applications like email retrievals and downloading of files normally 

experience minimal effects of it. On the other hand, applications which include phone 

and audio calls, video messaging and chats have its users noticing the effects of the lost 

packets such as missing parts of audio and video distortion. 

Increasing the bandwidth of congested links can help reduce congestion to a certain level. 

Also, configuring QoS to give much priority to some of the real-time applications like 

audio and video will not eliminate but can go a long way to reduce the congestion on 

links.  

2.1.4.2   Network Device Performance 

Network Devices includes switches, routers, and firewalls. Each device has its working 

performance as to how much traffic it can keep up with. Bandwidth increase can help to 

reduce packet loss to a certain level in that when the network device is not able to process 

the traffic that comes to it, packet loss can still occur. This can result because the network 

device has reached the maximum throughput that it can allow for. The device‟s memory 

has exhausted its capacity or CPU processing capacity, therefore dropping the packets 

when the traffic reaches the device.  

It is required to replace the device with a new one or add another device to an existing 

one to keep up with the incoming traffic and handle the throughput to its maximum.  

2.1.4.3   Software Errors on Network Devices 

Bugs in software can cause device malfunction and make the device not behave the usual 

way it is supposed to. Due to the complexity of network devices, it takes time for one to 

detect these bugs. Furthermore, some features do not work well or might even not work 

entirely. Since it takes some time to detect it might cause performance issues. Most of 

these performance issues are mostly found in packet captures and system logs. 

Frequent upgrade and updates of the device software are required for the devices that 

have been affected. 
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2.1.4.4   Cabling and Hardware Faults 

Another common cause of packet loss is faults with the physical components such as 

cables (e.g. fibre optic and copper cables), pinched cables, corrosions, poor crimping and 

faulty connectors. Hardware malfunction can generate errors in system logs and the 

device console.  

The best remediation is to replace faulty hardware or repairing faulty links if detected. 

2.2 The Network Study 

When computer components, systems, and devices connect in order to share or transfer 

resources through media or communication channels, it can be termed as a network [65]. 

A simple example of an existing network can be a couple of computers in connection to 

each other by a wired media, with the two being able to send or access information (files 

and documents) between each other. Networks can also be more robust and complicated 

such as several networks linked together to formulate a larger network. The type of 

network can be defined by the geographical area the network covers. With respect to that, 

network types can be grouped into three major groups namely Wide Area Networks 

(WANs), Local Area Networks (LANs), and Metropolitan Area Networks (MAN) [65]. 

Other varieties include Personal Area Network (PAN) and Campus Area Networks 

(CANs). The type of media used in the network can also define network types such as 

Passive Optical Local Area Network (POLAN).  

Depending on the type of devices connected to the network for communication, a 

network can be also grouped into Homogeneous or Heterogeneous. 

2.2.1 Local Area Networks (LANs) 

A LAN usually connects devices, workstations, and computers in a setting or buildings 

closer to each other or covering a small geographical area. Switches, Hubs, and Ethernet 

cables are some of the hardware devices used in LANs. Routers are used to connect 



 

 

34 

 

LANs to bigger networks and other LANs together to share resources, data, and 

information. Twisted pair and coaxial cables are examples of transmission media used in 

LANs. When devices are linked by wireless technology in a LAN, it can be referred to as 

a Wireless LAN (WLAN). This is made possible by using wireless access point devices 

to serve as a bridge between the computer devices and networks.  

2.2.2 Wide Area Networks (WAN) 

Networks covering larger geographical areas and spans constitute a large area network. A 

group of LANs connected to each other through radio waves, fibre optic cables, 

microwaves, satellites and can be restricted or made accessible to the public domain. 

Routers are used to route traffic from one network to another when the destination is not 

within the same network.  The internet is an example of a WAN. An organization or 

enterprise with several branches can also set up a Wide Area Network to share its data 

and information among the branches and headquarters. WANs are more prone to errors 

due to the distance the transmit covers compared to LANs.  

2.2.3 Metropolitan Area Networks (MAN) 

MANs cover a larger geographical area compared to LANs but also smaller compared to 

WANs. It is formed by integrating components from both networks. In this network, 

computers or systems at different locations within different or same towns are connected 

to share resources or information. A MAN can be set up for a town, city or even a 

campus. When several LANs are interconnected with a backbone line, a MAN can be 

formed and sometimes referred to as a Campus Network. Congestions are more prone 

and the network possesses low fault tolerance. An organization can be responsible for 

managing and maintaining the network since it is can be very difficult to design and 

maintain by an individual. 
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2.2.4 Personal Area Network (PAN) 

An individual can set up a network personally for himself or herself with computers, 

phones, wireless modem, cables, printers, etc. within an office, home or a small room. 

This type of network is called a Personal Area Network or PAN.   

2.2.5 Campus Area Networks (CAN) 

This network is designed and normally used for universities, larger or bigger schools, a 

business or districts. The geographical coverage is usually smaller than MANs but a 

smaller version of a MAN can be a CAN.  

2.2.6 Storage Area Networks (SAN) 

The technology of a storage device connected or attached to a server is similar to that of 

storage area networks. Pools of storage devices are connected to a number of servers. 

These storage devices and resources are placed at a different location away from the 

network to establish another performance network with high speeds.  SANs do not 

necessarily depend on a Local or Wide Area Network.  

2.2.7 Enterprise Private Networks (EPN) 

Most organizations, businesses, and enterprises prefer to build their own network to 

enhance communication, resource sharing and security (data protection and privacy). The 

network links the other locations or branches of the enterprise together. 

2.2.8 Virtual Private Networks (VPN) 

In scenarios where private and enterprise networks have to extend their network securely 

over a public or internet, VPNs come into use. It allows users of a private network to 

send, receive or access data remotely when they are not physically present or at a 

different location where they cannot connect to the private network. It gives the virtual 

connection to the users but seems as if they are connected physically to the private 
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network. A virtual point-to-point connection is established to make access to the private 

network possible. 

The scope of the study covers wide area networks where a lot of traffic is generated and 

congestion is likely to occur. WAN is selected not only because of its geographical 

coverage but also for its ability to permit more complexity in its design. WANs are also 

widely used with the internet being the largest of all; therefore the research can be 

implemented and applied in many areas and sections of today‟s global world.  

2.3 Network Traffic Classification Techniques 

In literature, classification of traffic is generally grouped into signature-based, flow-based 

methods and statistical methods. With signature-based, the strategy recommends 

employing signatures composed of behaviour adopted by application conventions and 

protocols.  Networks of Palo Alto that employs the unification of thread mitigation [66] 

utilize decoding the encoded traffic along with their respective signatures to recognize 

different applications. Taking inspirations from the drawbacks of deep packet analysis in 

signature-based methods such as being inclined to errors and impeded, Tongaonkar et al. 

[67] suggested a mechanized mark extraction approach which is fit to find new 

applications. Identified signatures depend on payload content of packets and are created 

with proportional sections of payloads in various streams. Furthermore, encoding of 

signatures into text content can be added. Statistical methods utilize statistics and insights 

determined out of packets [13] being arrival time between packets, average size of 

packets and application distribution which serves as features to distinguish between 

applications. Branch [68] employed two features that is inter-arrival time and length of 

packet in training his proposed algorithm to reveal the class of traffic. The decision of 

arrival time in between packets is an appropriate parameter since applications executed in 

actual time keep strict time fulfilment. For identical reasons, packet length likewise is 

additionally a helpful feature in identifying such applications. In flow-based methods, 

attributes of flows are extracted namely flow span, average size and packet quantity, etc. 

[69], [70] to detect applications. In [71], the technique of flow characteristics in a 
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multilevel manner is adopted to distinguish flows associated with various classes. An 

adopted hybrid technique for an algorithm is suggested [72] to develop a classifier, 

utilized to group flows with attributes totalling to 17. In a comparative methodology [73], 

algorithms capitalized on machine learning are adopted to classify flows, extracting 

important features from packet headers. The use of a public dataset with the hypothesis 

that port numbers resident in the packet headers can classify application flows correctly 

which is not accurate in some cases comes as a limitation to this methodology.  

Dorfinger et al. [74] utilized entropy of flows initial packets to determine whether or not 

the flow is encrypted. The initial packets refer to the payload excluding the packets 

inherent in the headers. The intended work was not targeted to detect the applications but 

to reveal if there is an existence of application flows encrypted.  Alshammari and Zincir-

Heywood [15] additionally utilized flow statistics conjoined with selected algorithms in 

literature to distinguish traffic. Their work yielded accuracy above 84%. Correlation 

information from flows is utilized by Zhang et al. [73] for their proposed work to 

categorize traffic into distinct applications. They defined the identified correlation as a 

bag consisting of flows (BoF).  The flows are ranked with IP address, port, and protocol 

of similar destinations. The correlation information gained is utilized as a feature for the 

classifier in a probabilistic model.  Evaluation results after the experimentation of traces 

from real networks resulted in accuracy from 60% to 85% for various applications. 

2.4 The Unsupervised Strategy 

Over the span of almost three decades, a quantified amount of works in literature have 

been suggested. A selection of clustering algorithms and methods that classifies network 

traffic effectively to our utmost knowledge is discussed. As far back as 1967, McQueen 

[75] proposed a non-hierarchical method of partitioning captioned as the K-means 

algorithm. Lloyd [76] adopted this method to partition datasets into clusters based on a 

predefined number of initially selected centroids (k). By this method, the centroid of the 

K number of clusters (Ck) is iteratively computed using the Euclidean distance, until a 

convergence measure is reached. The aim of this algorithm is to utilize the Euclidean 



 

 

38 

 

Distance to diminish the errors that occur in computing the mean squares from the 

objective function as given in equation (1) by: 
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where h is the Euclidean distance and x represents objects in the data. The distance is h 

defined as the separation existing between two points a and b as shown in equation (2); 
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where ai and bi are points within the Euclidean m space.

 

The algorithm proved to be 

efficient with )( jkno computational complexity in that k represents the sum of clusters, j 

equals the total number of iterations, n equals to the total number of objects. Figure 4 

illustrates how clusters are made from the k-means method. The first diagram, denoted as 

S1 represents objects in a given space of data to be grouped into two clusters. The value 

of K then becomes 2.   

 

 

 

 

 

Figure 4: Illustration of K-means Clustering 
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Two centroids Ck are chosen at random represented by the red and yellow balls in S2. The 

Euclidean distance from all the objects to the centroids are computed and assigned to the 

nearest centroid in S3. The green objects and brown objects are assigned to the red ball 

and yellow ball respectively, showing objects assigned to its nearest centroid. The mean 

distance from the objects in their respective centroid in each cluster is computed to find 

the new position of the centroid as represented in S4. New assignment of objects to its 

nearest centroid is computed again as shown in S5. Repetition of the process is done until 

the centroid placements remain the same and do not shift to a different position upon 

further iterations. Quantity of Clusters and iterations demonstrated to be highly lesser 

than the number of objects. Moreover, the algorithm which terminates at local optimal 

produced closely related clusters, and is also computationally faster, as compared to the 

hierarchical method, which is characterized by high complexity of )( 2nO . However, the 

method possessed a high sensitivity to noise and outliers limiting its quality criterion. The 

efficacy of this method also relies on the strength of centroids initialization. A weak or 

strong initialization produces poor and good clusters respectively. Using the Silhouette 

tool can help to predict good initialization. K-means algorithm has served and still serves 

as the basis for different and several algorithms and its analysis [77] [78] [79] [80].  

Hirvonen and Laulajainen [77] proposed a two-phase classification of traffic for Better 

Quality of Service (QoS) management incorporating the K-means clustering. The aim of 

their work is to provide an efficient classifier that is able to make out target applications 

and detect unknown flows (noise) in the network which could not be trained during the 

process. Classification is based on flow behavior and the process comes in phases, 

namely assignment phase and labelling phase with all using K-Means. The assignment 

phase basically assigns the flows to a cluster. The product of density measure and the 

phase threshold value determines the coverage of a particular cluster. The labelling phase 

uses the proposed algorithm to assign the appropriate label to the flows. A decision is 

then made based on the outcome of the above two phases serving as input to the classifier 

with some additional inputs. The proposed work resulted in classifying 97.8 % of target 

applications correctly after evaluation. Detection of untrained flows after evaluation 
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resulted in 97.9% MSN flows and 100% Telnet flows. However, the calculation and 

determination of threshold values are not explained in details by the authors. 

Furthermore, the evaluation only compared its efficiency to pure port-based classification 

which has already been proved in literature as less efficient. Although the authors 

mentioned their method as a lightweight, the issue of the computational heaviness of the 

proposed work is not discussed.       

Zhang et al. [81] came up with the BIRCH method which incorporated scalability into the 

clustering model. They used clustering feature tree (CF tree) with an in-memory structure 

and multilevel clustering to process large datasets in two main steps. Each step has an 

additional optional phase. Foremost, large datasets are compressed into a compact in-

memory CF tree with the underlying clustering structure intact. By digesting into more 

suitable ranges, an optional smaller CF tree can be built. In the second step, they used an 

agglomerative algorithm with other flexible clustering methods to produce initial clusters, 

which were then refined based on their centroids (optional). Results from 

experimentation show that BIRCH aligns and scales linearly well when points in every 

cluster increase in number. In comparison to the K-Means, BIRCH performs better with 

respect to time on variant base workload. Incorporation of the agglomerative algorithm 

led to achieving )( 2nO  complexity. However, the BIRCH algorithm is found to be 

sensitive to the order in which data points are introduced. In addition, the generated 

clusters‟ natural appearance is very slim because of the static nature of the leaf nodes 

making the algorithm generate spherical clusters. For the purpose of clustering large 

datasets, many authors have formulated and developed other algorithms which serve as 

an improvement on the drawbacks of BIRCH or for comparative analysis [82] [83]. 

Guha et al. [84] used a hierarchical clustering algorithm, termed as Clustering using 

Representatives (CURE), to cluster larger dataset. They hypothesized that CURE can 

withstand distortions caused by outliers and that this approach was best suited for 

arbitrary-shaped and non-spherical shaped clusters with wide variances. CURE awards an 

enormous complexity in costs as )log( 2 nnO   with respect to a higher dimensional space 
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of input size and generates a complexity of  )( 2nO  with a lower dimensional space of 

input size. Using this computation, the CURE approach marks scattered cluster data 

points as representative points of each cluster and introduces a shrinking factor to shrink 

these points towards the centroid. Comparatively, CURE produces higher quality clusters 

than BIRCH. When the number of points increases CURE results in better (lower) 

execution and running times (above 50%). CURE, however, is associated with higher 

data costs when it samples from a larger dataset. 

Ester et al. [48] aimed at bringing out clusters shaped arbitrarily from their work called 

DBSCAN. The Density-based approach factored the quality of clusters that will be 

produced by considering the algorithms capacity to identify noise. With the origination of 

a density-based opinion of a cluster, parameters Eps and MinPts were defined. Eps 

reflects the density reachability possessed by clusters, and it characterizes the highest 

radius value of a point (P) neighbourhood. MinPts, on the other hand, refers to the 

density connectivity, which is the lowest value of points in number with an Eps 

neighbourhood. Commencing from an arbitrary point a, the clusters are formed by 

finding if, for any a the distance to the P is lower or equivalent to Eps. It includes every 

point in that neighbourhood to a cluster if the condition is true and becomes part of the 

neighbourhood of P. The process is performed iteratively to include new points. 

DBSCAN possess a sensitive characteristic to its parameter assignments which are not 

easy to compute or set. Performance evaluation in comparison to CLARANS [85] in 

terms of the accuracy of selected synthetic databases shows that DBSCAN is able to 

pinpoint all clusters and also detect the points depicted as noise. Complexity of 

 (     ) with time is achieved, which is fair enough. However, CLARANS only 

divides large clusters or assign the noise data points to its closest cluster. In terms of run 

time, experimental results show that with increasing database size, DBSCAN performs 

better than CLARANS by a factor range of 250 to 1900, depicting much better runtime of 

DBSCAN. 
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Ankerst et al. [86] attempted using OPTICS to overcome inherent DBSCAN drawbacks. 

With DBSCAN, it is observed that the clusters produced from higher density require a 

smaller radius. It becomes a subcluster of those produced from lower density requiring a 

higher radius under the circumstance of the same MinPts. The proposed algorithm 

emerged as less sensitive to the parameter settings. In accordance with the structure of 

density-based methods, OPTICS generates a clustering order that stores information 

equating to a wide array of the parameter setting. Figure 6 shows how the algorithm 

scales well with varying values of Eps (ɛ) within a range of 10,000 to 100,000. This gives 

OPTICS the advantage of being linear and running very fast with respect to variable 

quantities of data points. The achieved complexity )log( nnO is fair enough, with n being 

equivalent to the totality of points. 

Subramani et al. [87] adopted a hybrid of OPTICS and DBSCAN to tackle the issue of 

selecting an appropriate density threshold in social network community detection. 

Selection of a suitable density threshold contributes to the production of substantive 

clusters which was a limitation in SCAN [88] and DENGRAPH [89]. With density 

defined by a distance function, OPTICS usage enabled the authors to select a good Eps 

parameter distance value in DBSCAN and also to realize the outcomes of using 

alternating density threshold values. The study revealed that a community definition is 

liable to lead to sudden change and relies on the application assumptions used. The issue 

of whether a true definition for a community in social networks is feasible is an open-

ended query that is derived from the analysis of the authors.  

Hajikarami et al. [90] proposed a high-speed link two-layered lightweight system. Their 

work is an improvement of [91]. Their architecture suggested using k classifiers in the 

first phase of classification to reduce cost, resources, and memory compared to using 

only one classifier. Furthermore, the two-layered system made way for network 

administrators to make necessary adjustments based on their network requirements. In 

that when new flows whose signatures have not been captured in the existing knowledge 

base are introduced, there are labelled as unknown. The network administrator is then 
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alerted to examine them and make the necessary changes to the classifier. After 

evaluation, the system‟s capacity to classify flows from applications correctly produced 

an accuracy of 99.5% and time of 41.28 seconds. The proposed architecture gives higher 

results but the time constraint for the network administrator to make adjustments to 

network requirements whenever there is a new trace which is not captured limits its 

efficiency. Moreover, the results showed that 60% of these new flows from applications 

were classified as unknown instead of being misclassified. This suggests the at least 40% 

of the flows can be misclassified before the network administrator makes the necessary 

changes which can really cost the network involved. 

Research into IP and Traffic classification using unique flow characteristics also proved 

to be very efficient. McGregor et al. [33] went for the Expectation Maximization (EM) 

calculation to separate packet follows into groups of traffic, where each group has 

exceptional traffic qualities. 

Zander et al. [92] suggested a novel computerized method of classification, an 

unsupervised method based on the statistical flow characteristics of NetMate [93]. Using 

the Expectation Maximization algorithm [33] and AutoClass Algorithm [94], the flow is 

first partitioned into bi-directional flows for the computation of flow characteristics. 

Intra-class homogeneity metric is then applied to maximize the overall homogeneity of 

the class. By this method, better separation of the different applications in a flow trace is 

achieved. The authors' approach resulted in an average accuracy of 86.5 percent in 

classification with some individual applications achieving a median close to 95% as 

depicted in Figure 8. The issue of computational complexity, as well as performance on 

larger datasets, has not been addressed by the authors as done by previously proposed 

methods.  

In [95], Bernaille et al. came up with a stream arrangement approach dependent on the 

magnitude payload of the initial of packets. Spectral clustering was adopted in the 

process. A value of 80% precision was attained for varying applications under study. 

Similarly, in [96], the authors targeted performance of ML algorithms by utilizing the 
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initial couple of packets in a flow. Despite the fact that this method is viewed as quicker 

and less tedious compared to the use of full flows, the situation of losing the underlying 

packets causes the capacity of this classifier to be progressively worse. 

Crotti et al. [13] came up with a unique fingerprint protocol strategy. Based on 

normalized thresholds of the algorithm, network traffic flows are classified. The 

suggested works depended on collective attributes of gathered packets which are the 

order of packets arriving, gap interval in time between arriving packets and packet 

dimension. Utilizing initial packets as [97], their investigation results accomplished 

immense accuracy for distinguishing a variety of applications types. In any case, 

adequacy of the strategy worsens if the orientation of the client and server is not known 

by the classifier, the start of the flow is omitted, loss of the principal or initial packet, or 

if reordering of a packet is excluded. 

Undeniably, a great number of researchers probed the viability pertaining to ML 

algorithms via the training and testing of classifiers with complete flows [9] [33] [10] 

[91] [96] [70]. For that reason, the ability to single out the sort of application before the 

end of flow contributes to the avoidance of losses in enterprises in any occurrence of 

security incidents.  A couple of research considers (for example [12] [98]) assessed ML 

strategies utilizing a sub-flows. The researchers in [12] proposed a technique of 

classification dependent on sub-flows as opposed to depending on classification using the 

extraction of flow features. They used the Naive Bayes algorithm utilizing a little 

quantity of the most current packets that were obtained from full flows for the training of 

the classifier. They demonstrated that they had the capacity to limit the amount of space 

required for buffering in the process of classification. Besides, this strategy stayed away 

from the classifier's pursue to obtain the beginning of flows as done in the previous 

studies ([95] and [24]), which has the propensity to be missed and thus influence 

effectiveness of the classifier; thereby showing poor execution of classification based on 

complete and full flows in certain situations. Further investigations were carried out in 

[97], utilizing the datasets the former researchers used for their work.   
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The creators in [99] consolidated two algorithms and exploit their resources in their 

methodology.  The advantages of classifying flows based on previous experience and 

detection of new applications without supervision were adopted from supervised and 

unsupervised techniques respectively.  The proposed strategy outperforms classification 

that utilizes supervised methods only.  This procedure lessens the time expected to 

prepare the classifier by utilizing labelled flows in limited measures. It can deal with 

debasement of supervised methods in their dealings with labelled datasets by applying 

clustering techniques to improve the performance of the classifier.  

2.5 The Semi-supervised Strategy 

The semi-supervised strategy can retain great outcomes with limited labelled examples 

and various unlabelled examples. Semi-Supervised Techniques have also led to a new 

dimension of research in clustering approaches. So as to address issues pertinent issues in 

supervised and unsupervised learning, few semi-supervised strategies have been 

considered over the previous years, which includes graph-based methods, cluster and 

label, and co-training [100].  The Co-training technique as recommended by Blum and 

Mitchell [101] serves as a common semi-supervised art. The instructions for the 

algorithm presume two features which are free and sufficiently able to prepare a 

proficient classifier.  Initially, the labelled data set is trained with two classifiers using the 

two features separately. At that point, every classifier characterizes the unlabelled 

information and instructs the other classifier with the small number of unlabelled 

examples they are generally certain of. Every classifier is trained again with the extra 

examples of the training data given by the other classifier, and the procedure is performed 

again. The least difficult procedure for semi-supervised strategy is self-training. When 

there exist significant quantity reduction of features to one or a single accustomed 

classifier, the process of co-training is changed into a self-training operation. With 

respect to self-training, the inherent classifier is foremost trained to utilize a little measure 

of labelled examples available. Thereafter, the classifier categorizes the data points not 

assigned to any label. The classifier is trained for another time and the technique 
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rehashed. The prevalent issue concerning self-training stems from the fact that 

classification procedure frequently experiences miscalculation aggregation and the 

algorithm used is not sturdy to anomalies or outliers [100]. 

Erman et al. [102] proposed one of the earliest semi-supervised works in clustering using 

supervised and unsupervised methods. Packet Milestones were used as a design 

consideration. The authors researched into classifying traffic using flow-based 

characteristics in applications and proposes a semi-supervised method for classifying 

traffic from known and unknown applications. The classifier is trained with flows 

comprising of few labelled and many unlabelled flows. The problem of class imbalance 

(high accuracy in flow and low accuracy in byte) [103] is addressed with the detection 

and good representation of both the mice and elephant flows as well as the effect of 

sampling methodologies on the selection. Higher accuracy of flow and bytes is achieved 

from the evaluation results with over 90% accuracy using the proposed semi-supervised 

procedure with real-time traces collected in a span of 24weeks. 

To revamp the accuracy of the clustering method of classification, Wang et al. [104] 

suggested a semi-supervised strategy called set based constrained K means. The 

statistical features of flows are extracted along with some background information of the 

TCP/IP flows. Using Gaussian mixture density, the observed data and derived constraints 

are modeled. The authors establish that the introduction of feature discretization in flow 

clustering can increase the level of clustering accuracy. Based on only how the flow 

features are similar or dissimilar, they are grouped according to the tuple labels. Flows 

which bear similarities from different applications are likely to be grouped into a 

particular cluster. The background information incorporated is that any traffic flow 

having their two destination tuples and protocol in common is said to belong to the same 

application. The authors used a Gaussian mixture model to formulate their constrained 

clustering problem. To generate the maximum likelihood of the model parameter of the 

given dataset, a log likelihood of the formula must be taken to make the computations 

easier. But using the log likelihood directly is expensive or hard. Therefore an 
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Expectation maximization approach must be incorporated. The authors proposed what 

they call an Approximate Method. The distinguishing element of this accession in 

comparison to the traditional K-means is exhibited in its scheme of assignment. K-means 

processes, each data point independently. On the other hand, SBCK considers equivalent 

samples as one whole based on the extra set based constraints. Comparing SBCK to K-

means and EM without feature discretization, SBCK provides better accuracy after 

clustering with a percentage range of 85 to 91 percent and with feature discretization 

provides accuracy of 94 to 97 percent accuracy. Also, run time for SBCK is better than 

K-means when clustering large datasets, but K-means performs better than SBCK when 

clustering small datasets. 

To overcome the limitation of labelled examples and wearisome manual work associated 

with supervised learning, Shukla et al. [105] proposed a semi-supervised clustering 

method classifying traffic using flow statistics and K-Medoids algorithm. The three-

phase procedure constitutes data preprocessing and transformation, clustering with K-

Medoids and assignment of class labels. The probabilistic assignment technique after 

evaluation again proves that accuracy values accelerate with increasing number of 

clusters. An accuracy of 92% is achieved with a cluster initialization of 30 which in the 

real world is delusive and increases the cost and overall time of the classifier. 

To address the poor traffic conducts with meager labelled examples, Zhang et al. [106] 

integrated flow correlation methodologies in all phases of classification.  For the 

fundamental training, flow correlation boosts labelled data by first using the pre-labelled 

data set to label the unlabelled ones using their correlation to the former. Subsequently, 

the traffic classifier possesses prominent execution by virtue of the all-encompassing size 

stature and nature of administered informational indexes. The correlated flows during the 

testing stage are recognized and arranged together by consolidating their individual 

expectations, that it may additionally upgrade the precision and exact certainty of 

classification. The exactness of the proposed technique is higher than KNN [107] and 

Erman [102] strategies over 20% on account of 10 labelled test sets for each class. The 
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outcomes demonstrate that using correlation stream can successfully address the 

minimized sample issue. 

Yan et al. [108] adopted a co-training method to classify online traffic in order to 

overcome the disadvantage of rare labelled samples in supervised learning. The 

recommended strategy is a semi-supervised technique, which utilizes minimal marked 

examples and a lot of unlabelled examples to improve the execution of the supervised 

learning strategy. The algorithm for co-training demands two distinct features which are 

enough for a proficient classifier. The authors choose the dimensions of the packet and 

the gap in packet arrival of the initial flows. Since the time of arrival is reliant on the 

network working conditions and influenced by jitter, the authors implement a jitter 

flexible feature called Netipt and merge this feature with the co-training algorithm. 

Evaluation results after experimentation reveal that the proposed method performs better 

with an overall accuracy of 97.36% compared to J48 algorithm with 85.83% and self-

training with 95.82%. All algorithms were integrated with the Netipt feature which 

further shows how the introduced feature helps to boost and more suitable for 

classification compared to other features. 

2.7 Classification for Specific Targets  

The technique of traffic classification has also been used to classify and identify specific 

kinds of traffic such as Internet video traffic, P2P traffic, Voice over IP traffic (VoIP), 

gaming traffic, analytical purposes and also to enhance the quality of service. These 

approaches are very relevant to users or organizations requiring very specific types of 

traffic usage, and anomaly detection on their networks.   

2.7.1 Video Traffic 

To give a complete Quality of Service (QoS) assurance for services pertaining to video 

streamed on the Internet, verified international standard organizations [109] have 

established distinct granularity for certain QoS service classes.  Nevertheless, the 
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granularity of classes may not be appropriate for the classification of every kind of video 

traffic with the surfacing of contemporary ones. Based on the resolution of the video or 

the amount of bandwidth required for its transmission, for instance, video traffic can be 

classified. With the end goal of increasingly proficient resource usage by networks, better 

granularity is required when video traffic on the Internet is to be classified. In the interim, 

the rapid growth of new applications make the conditions in the network progressively 

intricate and causes a  progression of issues to emerge, for example, managing of 

resources in the network and guaranteeing QoS for multimedia systems. It is trusted that 

classifying network traffic precisely is a compelling and efficient way for ISPs and 

administrators of networks to handle these issues [110]. This will enable enterprises 

offering internet services to ensure exceptional guarantees for QoS, video traffic and 

services which possess constrained QoS resources in the entire network. 

Concerns of analyzing video traffic that traverse the internet effectively with guaranteed 

Quality of Service is addressed by Zai-jian et al [111]. With one target application (Video 

Traffic) in focus, the authors use the QoS based Flow Aggregation framework to present 

a modified K-Singular Value Decomposition (KSVD) framework. Five QoS features are 

defined based on the upstream and downstream rates. These rates can be applicable when 

selecting features for QoS based classification because they depend on the bandwidth 

resources. Video traffic is grouped into five classes namely, Web video, trade style video, 

barter style video, and interactive video. Their QoS requirements are also grouped on a 

scale of 1 to 5, with 5 representing higher requirements of QoS.  A bag-QoS-word 

dictionary formation rests on the model.  Modified K-SVD is thereafter used to train the 

Bag-of-Words and the video traffic classified using a linear Support Vector Machine 

(SVM) classier. The aftermath of the experiments exposes that the suggested mechanism 

achieves 98.98% accuracy which is better compared to Naïve Bayes of 88.79% and 

Hidden Markov‟s Model of 89.87%. 



 

 

50 

 

2.7.2 Peer-to-Peer Traffic (P2P) 

Several applications reliant on P2P conventions have turned out to be immensely 

prominent, presently representing a noteworthy offer of the absolute system traffic. To 

evade limitations forced by system overseers for different reasons, the P2P conventions 

have turned out to be increasingly complex and utilize different strategies to stay away 

from identification and acknowledgment with standard estimation devices. The principal 

strategies to identify P2P traffic were port-based [112] [113] [114] [115]. These systems 

adopt port numbers at the fourth layer, data within headers, with a rundown of familiar 

ports to recognize corresponding P2P packets. With the subject of port-based discovery, 

it is highly compelling for P2P applications with constant port assignment. Presently the 

vast majority of the P2P applications adapts to ports changing. Classification of P2P 

stream is significant for managing networks, quality of service, traffic analysis, etc. since 

P2P applications embody a greater portion of the internet‟s contemporary traffic. ML 

strategies have pulled in wide consideration due to its high precision values in 

classification, and the ability to characterize obscure P2P traffic. Existing ML methods, 

for the most part, utilize the time characters of the domain where the flows are derived 

for P2P traffic classification. 

Bin and Hao [116] concentrated on detecting particular application traffic that is P2P 

traffic for their work. P2P metrics coupled with preferred semi-supervised technique of 

clustering referred to as Particle Swarm Optimization (PSO). To resolve the puzzle of 

obtaining labelled samples which are scarce and also the problem of new samples whose 

labels are not known beforehand, the authors proposed using a two-step semi-supervised 

method. The first step PSO is used to prepare the dataset by partitioning the scarce 

labelled dataset mixed with an enormous amount of unlabelled dataset. The second step 

constitutes using the labelled examples to acquire a direct linkage from clusters to their 

prospective classes respectively. PSO algorithm augments the inter-cluster distance while 

decreasing intra-cluster distance by discovering appropriate centroids. The algorithm 

outputs a set of clusters with centroids. A probabilistic mapping function is used to assign 
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other applications to their respective clusters for the final classification. Clustering 

evaluation depicts that the proposed method achieved more than 85% accuracy with 

labelled samples as many as 100 or more. The proposed work also achieved as high as 

95% accuracy of classification results with higher numbers of cluster initialization. The 

authors, however, assert the fact that a cluster initialization of 5000 is not realistic and 

inflates classification costs. 

With a similar target of also identifying P2P traffic with clustering technology, Tseng et 

al. [117] based on the traffic flow aggregates similar unfamiliar flows conjoined with 

labelled cases into related clusters. Categories of unknown traffic are classified based on 

the cluster they belong to the labelled ones. From [5], when the batch of packets within 

flows exceeds 64, it signifies there are enough features to classify the flow. The authors 

sift all flows beneath 64 threshold number and obtain the features of packet size which 

includes minimum and maximum packet in a flow, the average and standard deviation. 

They further use aggregation clustering technology, where the number of clusters is 

generated automatically as per the network flow. Based on the concept of correlation 

flow in [73], if a set of flows has the same 3 tuples, the flow is said to be from the same 

application. The correlation of traffic flows is evaluated to see if the traffic is coming 

from the same application or not. A semi-supervised classification is proposed where the 

labelled and unknown traffic is mixed. Based on similarities of the flows, the unknown 

traffic is grouped under the same cluster of the labelled traffic. It groups the unfamiliar 

traffic with labelled exemplars after aggregation. Similar flows are merged into the same 

cluster.  Results after assessment show that the suggested mechanism attained the 

maximal accuracy of 90% compared to Single-Linkage of approximately 65% and K-

means of 79% giving the same initial number of clusters for all three methods. Again the 

complexity of this method is not discussed, though results show it to be more efficient 

compared to the other methods.  

Using flow characteristics for classification is subject to change in different networking 

environments causing these features to be unstable. To overcome this drawback and to 
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increase machine learning classification stability, Du and Ou [118] proposed to use time 

and wavelet transform based frequency domain framework to identify and classify P2P 

traffic. The control packet information exchanged between peers concerning a data block 

before and after transmission is very stable. It does not change or differ irrespective of the 

network environment, P2P protocol or implementation used. Another characteristic of 

P2P is its unique periodic transmission, which differs from other applications. Discrete 

Wavelet transform (DWT) can break a time series in several portions with each portion 

containing significant information about the pilot time series. The authors utilize the 

above mentioned characteristics together with information gained from using DWT to 

represent a P2P flow and classify the packets. Experimental results compare the accuracy 

of classifiers trained by time domain characters only and classifiers trained by a mixture 

of time and frequency domain characters. Classifiers trained with only time domain 

characteristics results show varying values for flow and byte accuracy as being indirectly 

proportional. Where the flow accuracy is high (88% - 99%), byte accuracy is very low 

(28.13%). On the other hand, classifiers trained with mixed features showed stable flow 

accuracy values (99.59%, 99.34%, and 99.04%) and byte accuracy values (99.62%, 

97.18%, and 98.10%). 

2.7.3 Game Traffic 

To analyze and identify game traffic from different game applications, Han and Park 

[119] employed its statistical features and characteristics to ensure a productive 

classification. Based on the simple decision tree method of classification, the authors 

suggested a new method by name Alternative Decision Tree which incorporates these 

statistical features of game applications. Game traffic has few features which are not 

enough to effectively classify them. The authors investigated other statistical 

characteristics at the transport layer. They uncovered that, without using intricate 

methods, packets sizes which are frequently used can be used to classify some of the 

applications. In addition, packet size distributions amid the peculiar applications were 

common. Utilizing the above mentioned features discovered, the authors proposed the 
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ADT method of classification. ADT contains two distinct phases. The prime phase 

consists of an examination of statistical data and pre-classification of the flows. IP 

addresses for both clients and servers are also gathered. In the second phase, grouping of 

the flows rests on the pair of port numbers together with IP addresses. Relevant groups 

obtained are then classified again. The proposed method is relieved of forensic issues 

since user data is not involved, and limited features are used, therefore reducing the 

complexity. After experimentation, the results were evaluated in terms of precision and 

recall and compared with results from using port-based classification only and 

classification using correlation from packet size distribution only. The combination of 

port-based and correlation (ADT) produced better results compared to using each method 

separately. 

2.7.4 Voice over IP Traffic (VoIP) 

Do and Branch [120] also adopted the use of machine learning classification to identify 

VoIP, Skype in the presence of other traffic on the internet (gamming, etc.). Instead of 

using the whole flow of traffic, a short sliding window is selected. Cisco IP phones are 

used to generate the VoIP traffic. Also, Skype traffic which transcends under the 

proprietaries for VoIP calls over the internet is captured, when a client makes a call from 

one computer or phone to another over the Skype application. The authors aimed to prove 

that the significant features for classification are packet dimensions and the gap evident 

in their arrival. C4.8 decision tree mechanism is adopted to select the important features 

dominant in the dataset and then partitioned into segments of 1 to 10 seconds of sliding 

windows while increasing the sliding window by a second each time.  The datasets are 

then split into two folds for the training and testing. Using the J48 decision tree classifier 

the testing data is classified using a classifier trained with statistics in relation to packet 

measurements only, lag in arrival time of trailing packets only, and a mixture of both 

features. Experimental results show that with packet length statistics only, one second 

window has values 96%, 100%, and 92% while 10 second window has 98%, 100 and 

97% for VoIP, Skype, and Other traffic respectively. For the classifier trained with inter-
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arrival statistics only, 1-second window has values 89%, 93%, and 92.5% while 10-

second window has 97%, 99 and 99.1% for VoIP, Skype, and Other traffic respectively. 

The classifier trained with both features showed that for 1-second window, values 95%, 

99%, and 93% are achieved while 10 second window has 99%, 100 and 99.3% for VoIP, 

Skype, and other traffic respectively. Results for the 10-second widow indicate that using 

both features to train the classifier is very effective. 

2.7.5 Classification for Analytic Purpose 

Relying on an OMNETT++ prototype classifier, Achunala et al. [121] introduced an 

effortless packet classification. The authors aimed at using a clustering technique to build 

an effective, efficient and accurate classifier. Their research establishes a novel method to 

classify packets, excluding payload data or information. An Inter-Arrival Precision 

(IATP) clustering algorithm is proposed. The proposed model consists of applying 

clustering methodologies to generate independent clusters with training data and then 

classifying the obtained clusters further into smaller cluster subsets which are then 

labelled. The clusters are automatically labelled or grouped under five distinguish class 

ID‟s (Class ID 0 – Class ID 4).  Simulation results show 100% accuracy of results. The 

authors assert the fact that the results obtained do not represent real-time classification 

which falls within an accuracy of 85 to 95%. They agree on the fact that much study and 

heuristics are needed for real-time traffic quantifications. 

Identification of Traffic proof methodologies that depend on heuristics got from 

examining the patterns in host communication have likewise been proposed [26] [71] 

[122]. For instance, Karagiannis et al. [71] built up a technique that uses social, practical, 

and hosts habitudes in applications to recognize classes of traffic. Simultaneously, Xu et 

al. [27] built up an approach, in light of data theoretic methods and data mining, to find 

practical and application standards of hosts‟ habits and resources utilized by them. They 

accordingly employ these cases to construct a generic profiling for traffic.   
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2.7.6 Classification to Enhance Quality of Service  

Wang et al [122], classify clusters based on Quality of Service requirements other than 

applications of the traffic in a software defined networks (SDN) along with the 

implementation of Deep Packet Inspection. Incoming flows possessing long lives are 

detected with an SDN switch. With values of Hurst packet, port and average packet inter-

arrival time as inputs into a mapping function, traffic flows are classified into their 

respective QoS classes. Every network has a specific purpose; therefore the traffic 

generated from every network will not be the same. Because new applications are 

developed each day or even existing ones are getting updated, their statistical properties 

may also change. So there must be a way to retrain the QoS classifier to update these 

changes in the existing database already gathered after some duration.  The QoS classifier 

therefore employs a semi-supervised ML algorithm called Laplacian Support Vector 

Machine (LapSVM) inside the centralized SDN controller to achieve a coarse-grained 

classification. The authors apply a clustering assumption that statistical properties are 

similar in applications having identical QoS requirements. Evaluation of the classifier 

with respect to classifying accurately indicates that the proposed classifier is more 

efficient than the existing K-means based classifier proposed in [101]. With an accuracy 

exceeding 90% is an indication of a proficient classifier. However, the effects of packet 

loss on the classifier if any are not addressed by the authors. 

For the purpose of Quality of Service using a generative model (Hidden Markov‟s model, 

HMM) for semi-supervised sequence learning, Dianotti et al. [123] recommended a 

unique packet-level manner of traffic classification.  Usage of this HMM sequence 

qualifies this approach to be in line with semi-supervision.  Using the characteristics of 

packet dimensions and packet arrival timings, the authors performed classification 

applying these characteristics in an aggregated fashion using real network traffic and 

estimation, making it usable on encrypted traffic as well. From experimental results, their 

model classifies more than 90% applications correctly, which signifies a higher efficacy 

rate of being a multi classifier system. Performance measure under the increasing rate of 
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traffic data streams, as well as its capability to handle outliers,  is not included by the 

authors in their experimental results. Moreover, the authors admit that the success rate of 

their model is considered under the assumption of traffic flow in one direction of the 

application and not in both directions. They perceive the adaptation of the latter into the 

model to produce better accuracy. 

Packet loss induced by attenuation, shadowing, etc. in networks differs from packet loss 

as a result of congestion in networks. Periodic packet loss by virtue of network 

congestion can result in extreme abasement of network performance. To enhance QoS, 

increase throughput and reduce the congestion, packet loss classification has been 

suggested in literature.  Hsiao et al. [124] used the detection trends in relative one-way 

time (ROTT) in situations where the packet classification is not directly straight forward 

and descends in ambivalent zones. The author‟s proposition is that, since delay is a 

summation of delays in electromagnetic wave propagation from one end to another, 

queuing delays, delays in router processing, information from packet delay can be 

inferred from this. Hence, the occurrence of a packet loss in an estimated time is regarded 

as congestion delay so far as the delay propagates in escalating order, else it should be 

considered as a wireless loss. Within the interval of the ROTT gray zone, the 

classification of packet loss is such that when the received ROTT is greater than the 

upper bound gray zone it is referred to as congestion loss, other than that, it is categorized 

as wireless loss. Evaluation results of the classification algorithm depict high throughput 

values compared with Spike-train and ZigZag for distinguishing packet loss. For the 

purpose of network security, a multi classifier is more desirable by many corporations 

and organizations. 

2.8 Comparison of Traffic Classification Methods 

It is perceptible that the vast majority of the exploration so far has not assessed the 

efficacy of the classifier as far as fragmentation, delay, and packet loss are concerned. 

Besides, albeit unsupervised systems can distinguish the presence of another application 

in networks, most of the works have not examined and considered this issue, despite the 
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fact that it is referenced in [99]. Out of the works discussed above, the most productive 

ones with best performance results are analyzed and compared in Table 1 for 

unsupervised and Table 2 for semi-supervised. 

 

Table 1: Analysis of Efficient Unsupervised Clustering methods  

Author Objectives Clustering 

Method 

Clustering 

Parameters 

Limitations Results 

Lloyd [76] 

K -Means 

To diminish 

the errors that 
occur in 

computing the 

mean squares 
in cluster 

formation 

Classic K-

means 

Distance function 

as a parameter 
setting 

* Sensitive to 

noisy data 
* poor clustering 

resulting from 

poor initialization 
of centroids 

Produces closely related clusters compared to the 

traditional hierarchical methods 

Zhang et al.        

[81] BIRCH 

To use a 

limited amount 
of resources to 

process large 
datasets 

Hierarchical 

(agglomerative 
algorithm) 

* Clustering 

feature tree (CF 
tree)  

* Multilevel  
approach of 

clustering 

Sensitivity to 

insertion of data 
points 

*  Handle outliers (noise), 

*  Higher workload base performance *  Time : 
clusters large datasets in less than 15 seconds 

(within 10-14 seconds) to K means (minimum 
within 12 – 44 seconds range), CLARANS    ( 

Minimum of 816 seconds ) 

Ester et al. 
[48] 

DBSCAN 

To better the 
quality of 

clusters using 

the algorithm‟s 

capability to 

identify noise 

Density Based 
Clustering 

Density 
reachability (Eps), 

Maximum radius 

of neighborhood 

(MinPts)  

* Sensitivity to 
parameter 

settings (Eps and 

MinPts).   * 

Difficulty in 

computing 
parameters 

* Accuracy: Able to identify and detect noise 
points while CLARANS assigns to nearest 

cluster 

* Run time:  with increasing database size, 

DBSCAN performs better than CLARANS by a 

factor range of 250 to 1900. 
* Complexity of time which is fair  enough 

Guha et al. 

[16] CURE 

To Identify 

non-spherical 

shaped 
clusters, 

arbitrary 

shaped clusters 
and withstand 

outliers in 

large datasets 

Hierarchical * Representative 

points for clusters 

* Shrinking factor 

High 

computational 

complexity (cost) 
with higher 

dimensional 

space of input 
size (from large 

datasets) 

* Produces high quality clusters. 

* Time: 50% lower execution time compared to 

BIRCH with increasing number of points. 

Ankerst et al. 

[86]OPTICS 

To overcome 

the limitations 
of DBSCAN‟s 

sensitivity to 
its parameters 

 

Density Based * Density 

reachability (Eps), 
Maximum radius 

of Neighbourhood 
(MinPts) 

* Augmented 

Clustering 
ordering / 

structure 

Challenge of 

managing the 
clustering order 

with increasing 
updates of the 

database taking 

place 

* Reachability plot is insensitive to input 

parameters when compared to DBSCAN and 
other clustering methods 

* Run Time: Fairly same as DBSCAN with its 
parameter setting, but lower other parameter 

settings such as tree based special index or using 

grid objects 

Subramani et 

al. [87] 

To select an 

appropriate 
density 

threshold in 

social network 
community 

detection 

Hybrid 

Approach 
(OPTICS & 

DBSCAN) 

Density threshold  

parameter  

Computational 

complexity of the 
hybrid approach 

not discussed 

* Community definition is liable to lead to 

sudden change and relies on the application 
assumptions used. 

* Hybrid approach gives clear understanding into 

clustering structure 
* Ease of density threshold selection using the 

proposed method. 
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Table 2: Analysis of Efficient Semi-supervised Clustering Methods 

Author Objectives Clustering Method Clustering 

Parameters 

Limitations Results 

Erman et al. [102] To build a fast and 

accurate classifier 
that accustoms to 

known and 

unfamiliar 
applications. 

Classic K - means Distance function, 

Flow characteristics, 
packet Milestones 

Do not compare 

results and 
performance with 

other works or 

classifiers 

A high flow and byte 

accuracy is achieved with 
over 90% accuracy. 

Wang et al. [104] 

SBCK 

To improve upon the 

accuracy of 
clustering method of 

classification 

Hybrid: 

Probabilistic 
Hierarchical 

(K - means  with 

Gaussian Mixture 
Model) 

Flow Statistical 

Features, Feature 
Discretization, Log 

Likelihood,  

K means 

outperforms SBCK 
for small datasets in 

terms of run time 

SBCK – 0.4 seconds, 
K-means – 0.2 

seconds. 

 

*  Accuracy: SBCK – 94 

to 97 percent, K-means – 
73 to 81 percent, EM – 90 

to 93 percent (at higher 

levels of K =500) 
* Feature Discretization: 

SBCK – 96 to 99 percent 

accuracy 
* Run time: SBCK – 5 

seconds, K-Means – 13 

seconds  for large datasets 

Dianotti et al. [123] To develop a 

multiclassifier for 

higher accuracy to 

achieve a better 

Quality of Service 

Hybrid (Hidden 

Markov‟s Model 

with Packet features) 

Packet size, inter 

packet time,  

Do not compare its 

performance with 

other classifiers 

classifies more than 90% 

applications correctly 

Wang et al. [122] To realize an 

accurate traffic 
classification for 

Improved Quality of 

service 

Hybrid (Machine 

learning & Deep 
Packet Inspection) 

QoS requirements, 

average packet inter 
arrival  time, Hurst 

parameter, length of 

packet  

Issue of packet loss 

not addressed. 

Test accuracy exceeds 

90% which performs 
better than the existing K- 

means method in [102] 

 

Zander et al. 
[92]  

* To improve 
the overall 

intra class 
homogeneity 

* To overcome 

traditional 
methods of 

classification 

limitations. 

Probabilistic 
Clustering 

Approach 
(Expectation 

Maximization 

and mixture 
models 

(AutoClass) 

* Statistical flow 
characteristics      

* Intra class 
Homogeneity as a 

metric. 

 

Performance on 
increasing 

datasets  and 
runtime 

complexity not 

considered 
 

Achieves  an average 85% accuracy of clustering 
the flows with some applications achieving as 

high as  close to 95%  

Hirvonen and 
Laulajainen  

[77] 

To provide an 
efficient 

classifier that 

is able to 
identify target 

applications 

and classify 

network flows 

in applications 
that are 

untrained as 

unknown. 

Classic K –
Means 

* Flow 
behaviours           

* density measure 

* phase threshold 
value 

* Calculation and 
determination of 

threshold values not 

discussed. 
* The evaluation 

compared its 

efficiency to only 

pure port based 

classification  and 
not to other 

renowned existing 

works                   
 * Computational 

heaviness of the 

proposed work is 
not discussed 

* Classifies 97.8 % of target applications        
* precision: detection of untrained flows from 

applications  
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2.9 Evaluation and Discussion of Results 

From Table I, it can be deduced that all proposed works achieved some level of accuracy 

ranging from 80% to above 90% indicating that clustering techniques are better for 

network traffic classification. Also, supervised and semi-supervised methods that 

incorporated the K-means, either as an aggregation or adopting its advantages, achieved 

higher percentages of accuracy compared to the others.  From Table 1, Hirvonen and 

Laulajainen [77] used the classic K-means in an unsupervised technique and resulted in 

classifying 97.8% of target applications. Similarly, from Table 2, Erman et al. [102] using 

the Classic K-means in a semi-supervised technique achieved an over 90% accuracy in 

classifying flows. In addition, Wang et al. [122] semi-supervised SBCK, which has the 

Classic K-means and Gaussian mixture model (hybrid approach), resulted in 96% to 99% 

accuracy with feature discretization. They also obtained an accuracy of 94% to 97% 

without feature discretization.  SBCK also had better run time of 5 seconds compared to 

K-means of 13 seconds. The above methods with Classic K-means yielded better results 

compared to Zander et al.‟s [92] probabilistic clustering approach, which obtained 

accuracy between 85% to 95%.  Although Lloyd‟s [76] approach is one of the earliest to 

produce closely related clusters, its high sensitivity to noise remains a challenge. The 

Hierarchical agglomerative method used by Zhang et al. [81] overcame this drawback. 

The Hierarchical and density-based methods adopted by some authors considered the run 

time of the proposed algorithms. In terms of run time, Ester et al.‟s [48] DBCAN 

performs better than an existing density-based algorithm CLARANS by a factor range of 

250 to 1900. In spite of the similarity of Ankrest et al.‟s [83] OPTICS to DBSCAN in run 

time, it could achieve a lower complexity of O(n) using grid objects. The hybrid approach 

of the above methods in Subramani et al. [87], from Table 1, is able to define and give a 

clearer understanding of the clustering structure. However, its runtime complexity is not 

discussed by the authors. The most interesting derivation is that methods that aimed to 

improve the quality of service also achieved better results with accuracy above 90%.  In 

Table 2, that the approaches used by Dianotti et al. [123] and Wang et al. [122] achieved 

accuracy greater than 90%, which makes their methods more effective than the K-means 
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approach adopted by Erman et al [102]. Thus, incorporating quality of service features 

into the K-means method is more likely to produce higher percentages of accuracy. 

2.10 Challenges in Traffic Classification 

Even though the clustering technique of network traffic classification has yielded higher 

results in terms of accuracy and performance, some challenges still persist. The method 

of clustering itself has a challenge of how to produce good and non-overlapping clusters. 

The definition of a good cluster depends on the purpose for which the clustering is to be 

used or what it seeks to achieve. Another challenge is how to reduce the error rate. 

Roughan et al. [9] investigated the origin of this problem using statistical signatures of 

the flows, utilizing algorithms from machine learning and Nearest Neighbours for the 

purpose of Quality of Service. Their evaluation resulted that flows consisting of different 

applications are more prone to errors. As the number of mixed applications increases, the 

error rate also increases. The challenge of a better clustering technique with low 

computational complexity is another challenge in Network traffic classification. To the 

best of our knowledge, there is no proposed work that has achieved a lower 

computational complexity than K- means and overcoming the drawbacks of K-means at 

the same time. This poses the problem of one technique being able to factor all challenges 

and overcome all drawbacks. However, depending on the requirements of a particular 

network, the importance of what a technique can be prioritized.  

2.11 Summary 

Existing algorithms and methods which have had the greatest impact on clustering traffic 

flows have been discussed in the paper. These algorithms and most of the existing work 

is focused on features like packet size, inter-arrival time, including some QoS features as 

well [125]. However, their over-concentration on particular applications that are 

traversing through the network limits their capacity to classify service classes 

efficaciously for better QoS. In [6], the authors aimed at overcoming this limitation, but 

only focused on internet video traffic without adequate attention to other types of traffic 
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that can traverse through the same network. We therefore recommend further research 

into Quality of Service approaches to clustering. QoS levels provided by networks form 

an important aspect to many networks and service providers, therefore developing a more 

effective algorithm that uses some QoS parameters like throughput, packet loss, packet 

fragmentation, and delay will be of great value. Researchers have a keen interest in 

developing more accurate methods of classifying and identifying real-time traffic patterns 

in network security and other network solutions. A lot of models have been formulated 

based on the existing unsupervised and semi-supervised methods of clustering. These 

models comprise techniques, which demonstrate the algorithm‟s capability to handle 

noise and its performance and ability to classify a large dataset of real-time network 

traffic. Although classic K-means approach has served as a relevant model for the 

development of several semi-supervised clustering approaches, related computational 

complexity impedes its ability to work with limited computational resources. However, to 

our utmost knowledge, there is limited research on how the algorithms will perform 

under certain QoS parameters are incorporated, which is our aim to investigate in the 

study. 
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Chapter 3: Design and Implementation of Proposed 

Scenario Topology 

3.1 Motivation of the Design 

The proposed topology‟s motivation discerns from real-time wide area networks with 

limited resources for data transmission such as low-speed links. Most datasets used for 

testing classification algorithms are collected in network environments having adequate 

network resources to transmit data from source to destination networks. 

However, the performance of these algorithms on datasets generated from deprived 

networks has not been investigated. A topology to represent such scenarios is designed 

and implemented in OMNET ++ (Object Modular Network Testbed in C++) simulation 

to generate a dataset for the study. 

3.2 OMNET ++ Simulation 

OMNET ++ simulation software is a component-based object-oriented program with a 

modular open-architecture. It works as discrete-event network simulator for wired 

networks and distributed systems which include computer networks. It is gratis for 

studious research, unremunerated purposes and compatible with both Windows and 

Linux platforms, making it flexible to use. Graphical user interface (GUI) and parallel 

execution are supported with various add-on libraries which are imbedded and easily 

accessible. The main components include: 

1. The language topology (.ned files) defining the structure of elements and 

parameters 

2.  message definitions which is used to set several messages and supply the data 

sections required to be transferred to finely developed classes of C++  
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3. Sources from which simple modules are derived, including the files coded with 

C++ and identified with .h or .cc extensions. The sources for the constructed 

modules constitute all instructions and codes for the implementation of the 

modules to be used.  

Existing modules can be imported and edited to meet requirements or new modules can 

be created. OMNET ++ is installed on Ubuntu Linux 16.04 and integrated with INET 

framework 3.6.5 for the implementation of the network topology. The INET Framework 

is a module library for simulation environment of OMNET.  It is open-source and 

provides various protocols, agents, internet stack and other models for research purposes 

in the field of network communications.  

3.3 Proposed Scenario Implementation  

We assume a wide area network scenario where there is a lot of congestion leading to 

packet loss subjected to a lot of fragmented packets. Network topology is implemented in 

OMNET ++ simulation software as illustrated in Figure 5. The network topology consists 

of two autonomous networks connected by routers. Different types of application 

messages or packets are generated at random and exchanged between the two networks. 

The application messages include various audio and sound formats, video, https (websites 

or internet), FTP and VoIP. The parameters subjected to the topology are shown in Table 

3. The simulation is allowed to run for a time period of 150 hours. Data is exchanged 

between the clients and the data generated is sent over the border routers using the Border 

Gateway Protocol (BGP). For the actual transmission of messages, Transport Control 

Protocol (TCP) or User Datagram Protocol (UDP) is preferred and collected on the 

server. To begin with, when application data is generated, a session is established from 

the Transport layer using either TCP or UDP from the clients to the first hop (router). The 

Internet Protocol (IP) address of the router is fetched and the routing table is updated as 

shown in Figure 6. On the router, the best matching route for the packet transmission is 

sought. Internet Control Message Protocol (ICMP) is adopted to handle errors which may 

occur at this layer, and Address Resolution Protocol (ARP) aligns the virtual address to 
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the physical client address as displayed in Figure 7. Data logs throughout the entire 

transmission are collected on the server are saved in .vec (vector) file format by OMNET. 

The log file contains records of the data values in relation to time. It includes the inter-

arrival time of packets, packet types, the time covered in hops for a packet from a node to 

another node, hop counts, time to reach destination nodes, mean, standard deviation and 

all other records of time events with respect to the requirements of the network. The 

dataset is saved in .csv file format and exported to MATLAB for clustering and 

classification.  

 

 

Figure 5: Proposed Network Topology 
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Figure 6: Internal Activities on Host (Physical Layer) 

 

 

Figure 7: Internal Activities on Router (Network Layer) 
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Table 3: Simulation Parameters for Proposed Wired Topology  

Simulation Parameter Value / Type 

Simulation Time 150 hours 

Channel Type Wired 

Channel Delay 10us 

Link Speed 

Client – Server = 10mbps 

Client /host – Switch = 10mbps 

Router – Router = 100mbps 
 

Packet Length (in time) 45ms 

Packet Size 5420kbps 

Interval 100ms 

Sampling Rate 7000Hz 

Send Bytes 1000000000 bytes 

Protocols for transmission 
TCP  

UDP 

Queue Type Drop Tail Queue 

Switch Relay Unit Type Mac Relay Unit 

Routing Protocols 
BGP (Border Gateway 

Protocol) 

 

3.4 Classification Queues 

Classification is implemented at the network layer in the routers. Drop tail queuing is the 

adopted model for queuing the queuing process. Drop tail queue is an easy to implement 

mechanism that determines the manner and when packets are dropped. All packets are 

assigned the same priority level. When the queue is filled to its maximum capacity, new 

packets are dropped from the tail of the queue until enough space to accommodate 

packets is created. Figure 8 demonstrates the queuing process in the study. The packets 

are aligned in a queue at the router before being encapsulated and sent to the next layer as 

depicted in 8(a). In 8(b), the internal processes are visualized. There exist a classifier, 

pause queue, data queue and a scheduler. After classification, the packets go to the data 

queue to be scheduled for the next hop or layer. When the data queue reaches its 

maximum capacity, incoming packets  
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 Figure 8: Classification Queuing Mechanism at the Network Layer 

 

are sent to the pause queue. The pause queue puts the scheduler on hold until packets in 

the data queue are fully processed. However, packets are dropped when all queues are 

full. 

3.4 Results of Topology Implementation 

After completion of the simulation, the results are presented in three tabs by OMNET. 

These are the Vectors, Scalars and Histogram tabs. Vector section gives the record of the 

data values as a function of time. It includes the inter-arrival time of packets, the time 

covered in hops, hop counts, time to reach destination nodes and all other records of time 

events with respect to the requirements of the network. It also gives the mean values and 

standard deviation values as well. Figure 9 shows the Vector results as per the simulation 

run.  The scalar tab shows records of the aggregate values at the completion of the 

simulation. This includes the output attained with the parameter values incorporated in  
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Figure 9: Simulation Results Showing Vector Values 

 

the simulation including drop count, delay in transmission, throughput, total sum of 

received packets with frames sent as shown in Figure 10. Histogram tab gives the 

statistics of the simulation results that can also be plotted into a chart.  It presents the 

statistics of the entire simulation results such as the tail drop packet rate, delay in 

transmission, the rate at which packets are lost and queuing time as illustrated in Figure 

11. The results are then saved into a .csv file and exported into MATLAB for further 

clustering and further analysis. 
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Figure 10: Simulation Results Showing Scalar Values 

 

 

 

Figure 11: Simulation Results Showing Histogram Values of Packet Transmission 
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3.5 Proposed Wireless Scenario 

Though the scope of the research work focuses on wired topology, most of today's wide 

area networks incorporate wireless architecture. For this we propose a Wireless WAN 

setting as displayed in Figure 12. The network consists of three autonomous connected 

networks. The mobile hosts are disconnected and connected to a particular network 

depending on the range covered by the access points connected to each individual 

network. The wireless topology is subjected to the same situation of extreme packet loss 

and fragmentation with the parameters in Table 4. The data logs and transmission are 

captured and converted into a dataset which will be included for the validation of the 

proposed solutions.  

 

Figure 12: Proposed Wireless Topology 
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Table 4: Simulation Parameters for Proposed Wireless Topology 

Simulation Parameter Value / Type 

Simulation Time 150 hours 

Channel Type Wireless with wired backbone 

Channel Delay 10us 

Link Speed 

Client /host – Switch = 10mbps 

Router – Router = 100mbps 
 

Wireless LAN bit rate 2Mbps 

Packet Length (in time) 45ms 

Packet Size 128bytes 

Interval 100ms 

Sampling Rate 7000Hz 

Send Bytes 1000000000 bytes 

Protocols for transmission 
TCP  

UDP 

Queue Type Drop Tail Queue 

Data queue frame capacity 10 

Maximum  Queue Size 12 

Mobility speed  1mps 

Mobility update Interval  0.1s 

Mobility constraint Area  
 

MinX = 150m 

MinY = 120m 
MaxX = 430m 

MaxY = 110m 
 
 

Switch Relay Unit Type Mac Relay Unit 

Routing Protocols 
BGP (Border Gateway 

Protocol) 

 

3.6  FPL Dataset Capture and Statistics 

There exist several datasets for traffic classification collected at links and Border routers 

in CIADA [126]. However, as at the time this study is being conducted, none of these 

datasets has considered capturing the data when the network is deprived of resources or 

not able to meet the requirements of the network.  These parameters have been 

considered by this research to create such a dataset, a first of its kind to the best of our 

knowledge. Traces of packet transmission of data from source to destination are captured 

onto the server. We name the dataset derived from the proposed scenario as 

Fragmentation-Packet Loss induced (FPL) Traces.  The dataset from the wired topology 
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and wireless topology are referred as FPL 1 and FPL 2 respectively. The dataset consists 

of flows of IP packets generated from several applications.  A total of approximately 5.1 

billion IP packets with 81 million flows constituting to 920.04 GB data was collected.  

Out of these, various application flows are identified. A breakdown of the flows and its 

percentages are given in Table 4. P2P, Email, and Streaming applications have a further 

breakdown into specific application flows as depicted in Table 5, Table 6 and Table 7 

respectively. 

Table 5: Flow Statistics of FPL Dataset 

 

Table 6: Statistical Breakdown of P2P Flows in FPL Dataset 

Type FPL 1            

No. of Flows 

Flows (%) FPL 2       

No. of Flows 

Flows (%) 

BIT-TORRENT 1, 461, 593 15% 128,512 8.3% 

SKYPE 3,562, 323 37% 712,452 45.7% 

EDONKEY    478, 590 5% 6,868 0.4% 

GNUTELLA 1,936,100 20% 4,990 0.3% 

GOSSIP 2,143,417 23% 708,602 45.3% 

Total 9,582,023 100% 1,561,422 100% 

 

Table 7: Statistical Breakdown of Streaming Application Flows in FPL Dataset 

Type FPL 1                 

No. of Flows 

Flows (%) FPL 2       

No. of Flows 

Flows (%) 

YouTube 4,553,871 42% 4,101,455 34.2% 

Netflix 6,169,426 58% 7901455 65.8 

Total 10,723,297 100% 12,003,129 100% 

 

Application Type FPL 1              

No. of Flows 

Flows 

(%) 

FPL 2      

No. of Flows 

Flows 

(%) 

INSTANT MESSAGING 11,491 0.0% 403,436 1.0% 

EMAIL 2,465,201 5.0% 5,367,912 16.0% 

HTTP 14,530,023 30.0% 3,456,221 10.0% 

FTP 389,673 1.0% 7,34,205 2.0% 

P2P 9,582,023 19.0% 1,561,422 4.0% 

STREAMING APPS 10,723,297 22.0% 12,003,129 35.0% 

DIRECT LINKS (DOWNLOAD) 7,432 0.0% 18,457 0.0% 

MPEG 3,445,170 7.0% 4,345,472 13.0% 

WINDOWS MEDIA 54,257 0.0% 3,454,448 10.0% 

ICMP 134,556 0.0% 567,390 1.0% 

DATABASE 7,241,283 15.0% 457,889 1.0% 

UNKNOWN 1,236,103 2.0% 2,389,017 7.0% 

Total 48,590,509 100% 32,464,932 100% 
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Table 8: Statistical Breakdown of Mail Application Flows in FPL Dataset 

Type No. of Flows Flows (%) FPL 2       

No. of Flows 

Flows (%) 

MAIL_POP 989,342 40% 3,470,733 64.6% 

MAIL_SMTP 643,994 26% 862,120 16.1% 

MAIL_IMAP 831,865 34% 1,035,059 19.3% 

Total 2,465,201 100% 5,367,912 100% 

 

3.7 Effects of Packet Loss and Fragmentation  

The incorporation of the parameter values in Table 3 and 4 will result in a high packet 

drop count with the amount of sent bytes exceeding the capacity link can handle at a 

time. A graph of packet drop count against inter-arrival time is plotted in both cases of 

the proposed topologies. From the wired topology in Figure 13, as packet drop count 

increases, the pace at which packets arrive also increases. This depicts that latency to 

reach the destination is increased with rapid packet loss in the network. Results from the 

graph in Figure 14 depict the case of the wireless scenario. It can be observed that 

throughput also declines with increased latency. However, the rate at which throughput 

declines is dynamic. This is due to the mobility of the clients as they move from one 

network to another. The network they are connected to changes depending on the 

maximum coverage radius of the access points When a network has too many hosts 

connected at a point in time throughput declines rapidly with increasing inter-arrival 

time. When the number of hosts connected at a point in time is less, the rate of 

declination reduces. This fulfills the first objective‟s investigation. Table 9 shows the 

ratio of packets transmitted and received, which is further revealed in percentages also 

depicted in Figure 15, at the end of the simulation. It can be seen that the ratio of sent 

packets to the received is approximately 2:1, representing almost 50% of the packet 

transmitted were dropped. Overall throughput decreases with increasing inter-arrival time 

in both cases of the proposed network environments.  Hence, only a limited or small 

amount of flows can be classified at a time and few packets features can be extracted 

from the limited flows for the purpose of classification. 
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Figure 13: QoS Effects of Packets Loss in Classification Procedure in Proposed Wired Scenario 

 

 

Figure 14: QoS Effects of Packets Loss in Classification Procedure in Proposed Wireless Scenario 
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Figure 15: Overall Chart of the Total Number of Packet Flows (Transmitted Flows and Received 

Flows) 

 

Table 9: Statistics of Transmitted Bytes and Received Bytes after Simulation 

Parameters Sum of bytes transmitted Sum of bytes received 

Number of IP Packet (bytes) 10,327,610,944.31770000 5,179,977,888.79730000 

Percentage (%) 66.59714192 33.40285808 

Ratio 1.99375579703788                            :                   1 

 

To validate the proposed framework as a stand-alone classifier for traffic classification, 

the outcomes and results are compared with two existing renowned works namely,  K-

Nearest Neighbour (KNN) classifier [127], KNN+K-Means hybrid classifier [72] and 

Inter-arrival Time Precision classifier [121]. All classifiers are applied to the generated 

dataset with cross-validation in five folds. The results are assessed with the metrics as 

discussed previously. 
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3.8 Summary 

In this chapter, we set to design and implement the proposed topology and environment 

where the problem statement is likely to occur. The wired and wireless network 

topologies are implemented in a simulation environment in OMNET ++ . The parameters 

of the simulation are such that it ensures the network is prone to rapid packet loss. Due to 

the low speed and capacity of links, the higher arrival rate of packets on the low capacity 

of links this ensures a lot of congestion leading to fragmentation. The data logs collected 

at the server side contains entire statistical values of packet flows which include packet 

drop count, inter-arrival time, hop count, delay in transmissions, number of packets sent 

and received in each successful transmission.  Gathered data logs and captured traces of 

transmission throughout the entire simulation period are converted to .csv format to be 

exported to MATLAB to serve as the dataset for the study.  
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Chapter 4: Design and Implementation of Proposed 

Algorithms 

4.1 Motivation for Algorithms Design 

With respect to the second objective, the study aims to propose an algorithm with a 

higher prediction and accuracy rates during phases in a network where the quality of 

service is less. In order to achieve this, real-time transmission implemented in simulation 

is captured.  We identified in the previous chapter that few flows resulting in few features 

can be extracted and classified at a time. Hence, few flows will be used for the training 

procedure. To develop an algorithm to this effect, factors such as distance error, 

computational complexity must be highly considered. The algorithm in order to achieve 

high accuracy and high prediction rate must almost not tolerate any form of error in the 

distance calculation between the data points. Since resources are already limited in our 

case study a fast and easy to implement algorithm is required. Hence, the consideration of 

computational complexity is included. 

4.1.1 Minimal Distance Error 

An indebt survey of literature is conducted in chapter 2 from which we derived that the 

classical k-means approach of clustering (including hybrid approaches) yielded the most 

efficient results. This is due to the nature of partitional algorithms which tend to break the 

dataset into groups and reduce the distance between data points. This kind of process 

helps to identify flows with similar features or characteristics Due to the parameters 

incorporated in the topology few flows from the dataset will be used in the training 

process. It is therefore a necessity to achieve the most minimal distance error between 

data points. Since our dataset is likely to contain multiple fragments of data packets, a 

partitional algorithm like K-Medoids [128] and K-Means will be able to generate finer 
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groups of packets which possess similar features. An optimized K-Medoids algorithm is 

adopted for the clustering phase in the proposed algorithms. 

4.1.2 Ease of Use and Complexity of Algorithm  

After the clustering process, the algorithm must assign the output of the clustering (which 

now becomes the input for the next phase) into peculiar groups. This is achieved with 

classifiers. There are several machine learning classifiers including Perceptron, Naïve 

Bayes, Decision Tree, Logistic Regression, K-Nearest Neighbour (KNN) and Support 

Vector Machine (SVM) [129] [130] [131][132].   

Perceptron classifiers are built on the concept of Artificial Neural Networks. It is a linear 

classifier that employs a binary function to decide if the input is associated with a class or 

not.  The concept of random weights generation is employed in all iterations of 

simulation. Naïve Bayes classifier makes use of a probabilistic function that makes the 

assumption of total independence of each feature value with respect to other features in a 

class. Decision Tree adopts the concept of a tree with branches (observations made) and 

leaf nodes (conclusions drawn). It derives information from observations of an item and 

uses that to draw conclusions about an item in question or target. Logistic Regression 

classifiers are normally used to predict problems with two class values (could be 

extended) in the field of statistics. An output curve in an „S‟ shape is generated which 

accepts real numbers and maps them to values ranging from 0 to 1. KNN classifier also 

termed as the Lazy Classifier. It omits the whole process of training data points. A data 

point is assigned to a class based on the vote popularity of its closest neighbours. With 

SVM classifiers, the goal is to establish a line between classes in order to maximize the 

distance between the classes. The larger the distance between the classes, the closer the 

data points in a class and better predicted classes will be produced. Table 9 describes the 

strengths and weaknesses of these machines learning classifiers. 
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Table 10: Summary of Machine Learning Classifiers  

Classifier Type Strengths Weaknesses 

Perceptron Linear Model Ability to infer unseen 

or unknown data 

 

Input variables have no 

restrictions 

Hard limit function characteristic 

allows it to take only 1 value (0 or 1 ) 

 

Only vectors which are linearly 

separable can be classified 

 

Naïve Bayes Probabilistic Model Easy to implement 

 

Fast prediction of test 

data 

 

For parameter 

estimation, training 

requires few data 

samples 

 

 

There is a chance that accuracy can be 

lost 

 

 

Due to the assumption of Independent 

variables, dependency nature of 

variables cannot be modified or 

improved 

Decision Tree Linear Model (with 

respect to Decision 

rules) 

Process is very 

transparent 

 

Decision making is 

less ambiguous 

 

Each decision outcome 

can be analyzed 

comprehensively 

 

Flexible to allow both 

categorical and real 

value features 

 

Very unstable in nature 

 

Not very accurate relatively 

 

Biased towards categorical data 

possessing distinct number levels 

 

Complex calculations evolve with 

uncertain and linked output values 

 

Logistic Regression Statistical Model  Requires less 

computational 

resources 

 

Easy Interpretation  

 

No requirement of 

scaling input features 

 

Results in well 

computed probability 

predictions 

 

 

Cannot be implemented on non-linear 

problems 

 

Only performs better when the required 

independent variables have been 

identified 

 

Predicts only categorical values as 

output 

KNN Non-Parametric Model Possess the ability to 

classify outliers (noise) 

 

Very fast and easy to 

implement 

Training stage can be 

omitted which reduces 

the time complexity 

 

Gives the flexibility to 

The value of the K parameter is a 

requirement to be determined 

 

If training samples are many, high costs 

can be incurred 
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opt for other distance 

metrics 

 

Evolves easily with 

new data or changes 

SVM  Works well with both 

linearly and non-

linearly separable 

problems 

 

High accuracy 

prediction rates with 

the use of its kernel 

tricks 

 

Problem of solving for 

a local optima is 

avoided 

 

User must experiment with several 

kernels to find the right parameters for 

the problem  

 

With time complexity in consideration, a classifier such as K-Nearest Neighbour [127] 

[107] is incorporated. KNN is easy to implement and omits the training aspects of a 

dataset contributing to lower time complexity of the suggested algorithm to be 

implemented. Furthermore, SVM is also opted for due to its strengths and ability to work 

with non-linear datasets. These classifiers are optimized further into algorithms that are 

easy to use with good computational complexity. 

4.2 KNKM Algorithm  

A hybrid semi-supervised algorithm is proposed, implemented and evaluated. The hybrid 

approach consists of combining the advantages of K-medoids algorithm and KNN 

classifier. The semi-supervision of the hybrid algorithms falls under the cluster and label 

mechanism. Implementation of the suggested algorithm is performed in MATLAB. The 

recommended algorithm consists of three stages namely, data filtering, clustering, and 

labelling. Raw data in .csv format imported into MATLAB is filtered to convert all the 

content of numeric strings into numbers. Where contents of fields are formatted as 

strings, NaN (Not a Number) is put in its place. The clustering process is initiated and 

performed to establish the features within flows and extract them. The total number of 

features extracted and clusters revealed will serve as input and a form of supervision for 
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the labelling process. A Brief discussion of these selected algorithms constituting the 

proposed algorithm is described in the next sections. 

4.2.1 The K-Medoids Clustering Strategy 

The K-medoids is a long established partitioning clustering as an improved K-means. The 

best representation of a cluster in K-means is to select the average distance of the data 

points resident in the cluster. The mean does not match or necessarily correspond to a 

point in the original dataset. The Euclidean distance is adopted to calculate the mean. 

Contrarily, K-medoids selects a single data point among the rest to exemplify the cluster. 

These data points are also termed as exemplars. The advantage of exemplars is to help 

reduce the total sum of the data objects‟ dissimilarities. The middlemost point within a 

cluster is described as the medoids. Other distances other than the Euclidean distance 

such as Manhattan distance can be used in K-medoids. K-medoids is sturdier to noise and 

outliers when compared to K-means, motivating us to adopt K-medoids for the proposed 

algorithm. 

4.2.2 K-Nearest Neighbor Algorithm (KNN)  

KNN stands as an elementary supervised classification algorithm method, unlike the 

unsupervised K-means. The amount of data points that must be trained lies in proximity 

to the data points which is used to predict the particular class it belongs to, is the k. The 

advantages of this algorithm for classification include its predictive power, ease of output 

interpretation, and low computation cost. KNN just like K-medoids has the flexibility of 

utilizing several distance measures. Furthermore, it is a non-parametric algorithm; 

therefore no assumptions must be met before implementation.   

4.2.3 The proposed algorithm 

The KNKM algorithm is as shown in Table 10. The clustering process is performed with 

K-Medoids with Silhouette. The features for each cluster are extracted and the number of 

clusters revealed as K serves as an additional input to the KNN classifier for 
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classification. For example, if n clusters are identified when the clustering procedure is 

concluded, the initial assignment of k for the labelling procedure using KNN algorithm 

will be n. With the extra information from the clustering process, Weighted KNN is 

employed to label the dataset given by Equation (3). 

 (  )             ∑     
 
    (   ( ))   -  (3) 

Where xq represents the query point, i represent each data point, wi is the weight of a 

point to a k neighbour and V represents a vector point. The contribution from every 

individual k neighbour is weighed with their respective distances to query point xq. As a 

result greater weight wi is allotted to closer neighbours. The weight wi   is given by: 

     = 
 

  (     )
              -                 (4) 

Table 11: KNKM Proposed Hybrid Algorithm 

 

 

 

 

 

 

 

 

 

 

 

Step 1: Load dataset 

Step 2: For each column in the dataset: 

 Convert contents of string fields with numeric values to 

numbers 

 Replace strings without numeric values with NaN  

Step 3: Select Km as the Medoids for n data points at random. 

Step 4: Compute the distance between all data points n and the 

selected Medoids k for the closest Medoids. 

Step 5: For each duo of data object j not chosen and elected data 

object p, calculate total cost to swap, TCpj. 

 If TCpj < 0, p is substituted by j 

Step 6: Re-run steps 4-5 until convergence is reached if and there is 

no change in the assignment process. 

Step 7: Apply Silhouette to obtain fine clusters with its outliers. 

Quantity of clusters k and feature labels obtained serves as an input 

for the labelling. 

Step 8: Load the input data into KNN classifier 

Step 9: Initialize the k value 

Step 10: For every query point xq, 

                   For every data point, i = 1 to n  

 Compute the  weighted distance to all data points  

 Save the all Wi computed  and sort the list  

Step 11: Select the first k points from the list with its corresponding 

k-distances  to determine k-th Minimum distance 

Step 12:  For k ≥ 0, Let ki  and  kj  represent number of points in an 

ith  and jth class among k points, 

 If ki > kj ∀ i ≠ j, assign xq, to class i. 

Data 

Filtration 

Clustering 

Labelling 
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Hence, more weight is allotted to data points closer to the query point and less weight to 

points which are far from the query point. The overall classification is performed with 5-

fold cross-validation to identify classes the flows belong. The design of the suggested 

mechanism and implementation is depicted in Figure 16. 

 

Figure 16: Overall Flow of Proposed KNKM Design and Implementation 
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4.2.4 Complexity of KNKM 

KNKM algorithm executes with linear time, in that the time it takes for the algorithm to 

run into completion depends on the number or size of its input data. In notation form, the 

complexity of KNKM can be represented asymptotically as O(k(n-k)
2
) where k represents 

the number of clusters n is the size of input data or number of instances.  

4.2.5 Results of KNKM on FPL 1 Dataset 

The results after implementing the algorithm on the dataset show 5 clusters were revealed 

after clustering with K-Medoids and Silhouette as shown in Figure 17. After Silhouette 

tool is applied, the flows of packets are represented in a bar chart in Figure 18. The 

longer bars represent the inliers or how high the flows are similar features. The shorter 

bars represent the outliers of a particular cluster.  Application of Weighted K-NN with 5-

fold cross-validation is discussed under the following metrics: Precision, Accuracy, 

Processing time, Area under Receiving Operating Curve (ROC) and Error Rates.  

Precision is explained as a prediction of an accuracy measure. Estimation of precision 

values is expressed in Equation (5):  

          
                           (  )

                           (  )                               (  )
      -                (5) 

TP symbolizes True Positives while TF characterizes True Negatives. A graph of 

precision versus inter-arrival time is plotted. Increasing rates of inter-arrival time are 

experienced with the increment in packet drop count from the scenario in the topology. 

Hence, in the worst scenario of a higher or increasing inter-arrival time, precision values 

ranging from an average of 82% to 94% can be obtained with the hybrid method as 

exhibited in Figure 19. The achieved range presents a good prediction that accuracy value 

after classification with the proposed is likely to be better. Accuracy represents the 

amount of classes the proposed classified correctly out of the total number of classes as 

given in Equation (6):  
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                                     (     )

                                 (           )
        -            (6) 

where TN denotes True Negatives, FN means False Negatives and FP exemplifies False 

Positives. For accuracy of classification, derived confusion matrix graph is employed to 

determine the effective rate of the classifier. From Figure 20, KNKM predicted 20 classes 

after classification. In the case of classifying P2P traffic, traffic belonging to Skype class 

is predicted wrongly as Edonkey. A similar misclassification occurs with streaming 

applications where YouTube class is predicted as Netflix. In addition, all mail generated 

traffic is classified as mail_smtp, irrespective of whether it is mail_pop, mail_imap or 

mail_smtp, identified in the true class. 

 

 

Figure 17:  Identified Clusters after Clustering Phase 
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Figure 18: Clusters Revealed Showing Inliers and Outliers 

 

 

Figure 19: Precision Sine Wave Curve for KNKM Algorithm 
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Mpeg is also misclassified into the windows media class. Windows media framework has 

a protocol known as Media Transfer Protocol (MTP) which enables the transfer of media 

files between portable devices. Remote Access Protocol (RDA) is used by database 

applications to access data from remote locations. The foreign or unknown traffic 

injected were identified, but also misclassified as belonging to the database class or 

unknown class. This could be that the unknown traffic bears some feature similarities 

with the database generated traffic.  From the misclassification, it can be observed that 

the classifier is able to identify the type of traffic (either P2P, Mail, streaming, etc.) but 

not distinctively classify it. Out of the 20 classes, 12 classes were classified correctly 

while 8 classes were misclassified giving it an accuracy of 91.3%.  

Receiver Operating Characteristics (ROC) curve plots TP rates versus 100-Specificity for 

varying parameter checkpoints.  The area covered by the ROC curve (AUC) depicts a 

measure of parameter‟s performance to differentiate the various classes. The closeness of 

the curve to the topmost corner on the left denotes how high the long-term accuracy of a 

model stands on a scale of 0 to 1, where 1 is highest and 0 is lowest. From Figure 21, the 

AUC graph shows an area of 1.0 which concludes that the proposed classifier gives a 

high overall accuracy prediction. KNKM achieved an error rate of 8.7% with 4.5482 

seconds of processing time. 
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Figure 20: Confusion Matrix Graph of True Classes against Predicted Classes 

 

 

Figure 21: Area under ROC for KNN+K-Medoids Classifier 
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4.2.6 Results of KNKM on FPL 2 Dataset 

The algorithm is tested on the dataset generated from the wireless scenario and evaluated 

in terms of accuracy of classification. From Figure 22, KNKM predicted Skype traffic as 

Edonkey and YouTube as Netflix. There were misclassifications as well with respect ot 

unknown and unknown encrypted traffic as well mails generated with the IMAP protocol 

and FTP traffic. KNKM predicted 11 classes precisely out of the 20 classes with an 

overall classification accuracy of 90.86% and error percentage rate of 9.14%. The 

accuracy in comparison to FPL 1 decreases at a rate of 0.44%. 

 

 

 Figure 22:  Confusion Matrix Graph Showing the True Class against Predicted Class in 

Wireless Environment (KNKM) 
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4.3  SVKM Algorithm  

4.3. 1  Motivation of Algorithm Design 

To improve recuperate accuracy in classification and scale down error rates as suggested 

according to the formulated objectives of the study, we optimize the parameters of the 

labelling process by introducing kernel functions of Support Vector Machines which has 

the capacity to work with non-linear datasets effectively. The hybrid algorithm is an 

improvement of the KNKM algorithm, which employs the advantages of K-medoids and 

Support Vector Machine algorithms.  

4.3.2 Proposed Algorithm Implementation 

A cluster and label algorithm is again proposed, implemented and evaluated. The hybrid 

model combines the advantages of K-medoids algorithm and SVM classifier. MATLAB 

simulation is employed in the algorithm implementation. The proposed algorithm is 

demonstrated in Table 12. Figure 23 displays the overall operations of algorithm 

implementation. The algorithm has three phases which consist of data filtering, 

clustering, and labelling. Similarly to the former algorithm, the raw data is filtered and 

clustered with the K-Medoids algorithm. The features residing in flows are extracted in 

addition to the number of clusters revealed.  The number of features extracted and 

clusters revealed serves as guidance for the labelling process. The distinct difference 

between SVKM and KNKM lies in the labelling phase. While the former incorporates the 

SVM algorithm for its labelling the later utilizes KNN algorithm. A brief discussion of 

Support Vector Machine is described from the next section. 

4.3.3  Support Vector Machine (SVM) 

The exertion of Support Vector Machines [133] relies on supervised models possessing 

related algorithms for learning tasks, for analyzing large amount data for classification, 

regression and pattern identification purposes. With SVM, almost the entire attributes are 

utilized to create parallel partitions giving rise to two parallel lines using hyperplanes 
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with margins in high-dimensional space. The given data is separated into classes using 

the hyperplane margins. Greater margins are directly proportional to lower error rates of 

the classifier. SVM has the advantage of being flexible and robust which generally gives 

its exact precision predictions. It is however sensitive to the kernel parameters selected 

for its implementation leading to a possible high computational complexity. SVM can be 

categorized as linear or non-linear according to the nature of datasets to be classified. 

Linear SVM accepts that the examples to be trained in space are parted by a visible gap. 

A straight hyperplane separating two classes is predicted. The essential concentration 

while drawing the hyperplane is on expanding the separation it bears to the adjoining data 

point of every other class. A real-time dataset is, for the most part, scattered up to some 

degree. To take care of this issue, data division into various classes based on a straight 

and linear hyperplane cannot be viewed as a preferable decision. To address this, Vapnik 

et al. [134] recommended making non-linear classifiers by incorporating kernel functions 

to maximize the margins of hyperplanes. 

4.3.4 The proposed Algorithm   

The process for the data set acquisition and generation remains the same as in KNN+K-

Medoids procedure. Thus, the clustering portion is the same while the labeling and 

classification procedure differs from the former. Since the dataset is real-time and non-

linear, there is a tendency of overlapping classes. A kernel trick for SVM must be utilized 

to reconstruct the data into an elevated dimensional data space to ensure accurate 

classification. A hybrid or multiclass kernel is incorporated by the application of both 

Cubic Polynomial and Gaussian kernels. The training data set is first transformed into a 

higher dimensional data space with the cubic polynomial function given in Equation (6). 

    (   )  (∑      
 
     )

 
    -     (6) 

Where x and y denote vectors in input space, C less than zero designates a complimentary 

parameter that trades off the impact single training example reaches, j denotes the total 

data points, and n symbolizes the dimension of the training data.  The features that are 
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extracted in addition to clusters obtained after clustering with K-Medoids provides a form 

of supervision for obtaining hyperplanes and the number of classes for the classification 

procedure. 

Table 12: SVKM Proposed Hybrid Algorithm 

Step 1: Load dataset 

Step 2: For each column in the dataset: 

 Convert contents of string fields with numeric values 

to numbers 

 Replace strings without numeric values with NaN 

Step 3: Select Km as the Medoids for n data points at random. 

Step 4: Compute the distance between all data points n and the 

selected Medoids k for the closest Medoids. 

Step 5: For each duo of data object j not chosen and elected 

data object p, calculate total cost to swap, TCpj. 

 If TCpj < 0, p is substituted by j 

Step 6: Re-run steps 4-5 until a convergence is reached if and 

there is no change in the assignment process. 

Step 7: Apply Silhouette to obtain fine clusters with its 

outliers. Quantity of clusters k and feature labels obtained 

serves as an input for the labelling. 

Step 8: Transform training dataset T into higher dimensional 

space, ∀ (x, y)   T 

     (   )  (∑     

 

   

  )

 

 

Step 9: Discover the appropriate hyperplanes h, and points 

closest to hyperplanes sv (support vectors), from all classes, C  

Step 10: Compute d (h, sv),  ∀ (x, y)   T where d is the 

distance using  the Gaussian kernel function 

Step 11: Select optimal hyperplane for which the margin is 

maximized to classify and assign data points to appropriate 

class, C. 
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Figure 23: Overall Flow of SVKM Design and Implementation 
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The clustering resulted in 5 clusters. Hence, the our polynomial function will have a 

dimension of degree 5. The points closest to the hyperplanes (lines) also described as 

support vectors, among all the classes are fetched. The extent of separation from the lines 

to the support vectors is computed using a Gaussian kernel function given in equation (7). 

  (   )      (   
‖   ‖ 

   
)  -      (7) 

Where ‖   ‖  denotes the squared Euclidean distance. The line for which the margin 

is maximized is selected as the optimal hyperplane. The optimal hyperplane classifies or 

the data points into their appropriate classes.  

4.3.5 Complexity of SVKM 

The first phase of SVKM algorithm runs with linear time. However, the second phase 

takes calls from cubic polynomial functions. Therefore the time it takes for the algorithm 

to completely execute is directly proportional to the cube of the input size. The above 

complexity of SVKM lies between O(n
2
) and O (n

3
), with the highest being O(n

3. 
).  

4.3.6 Results of SVKM (FPL 1) 

The classifier is evaluated with metrics of precision, accuracy, area under ROC, error 

rates and time complexity with processing time. In terms of precision, the proposed 

achieved values ranging from 85% to 94% as depicted in Figure 24. A confusion matrix 

graph is generated after classification as shown in Figure 25. The proposed also predicted 

20 classes. However, 14 classes were predicted correctly and 6 classes misclassified. For 

P2P classification, traffic belonging to Skype class is misclassified to Edonkey class. 

Traffic for Gnutella class is predicted wrongly assigned to bit torrent. Although YouTube 

class is predicted correctly, Netflix class is wrongly assigned to FTP class.  Mail_Imap is 

misclassified as Mail_smtp while Direct Link downloads are assigned to Instant 

Messages. The misclassification of the classifier at most instances bears no similarities 

with respect to its properties. However, features like packet length and size could have 

some similarities which may lead to wrong predictions. 
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Figure 24: Precision Sine Wave Curve for SVKM Algorithm 

 

Figure 25: Confusion Matrix of Accuracy Showing True Class against Predicted Class 
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The overall accuracy achieved after classification is 92.4%, showing an increased margin 

of 1.1%.  The area covered under the ROC curve for the proposed is 1.0 validating that 

the classifier is efficient for making accurate predictions as shown in Figure 26. The error 

percentage obtained is 7.6%. In terms of processing time, the classifier utilized 2.9839 

seconds showing a decrease of 1.5643 seconds from the time utilized by KNN+K-

Medoids. 

 

 

 

 

 

 

 

 

 

 

Figure 26: Area Under ROC for SVKM Classifier 

 

4.3.7 Results on SVKM (FPL 2) 

The proposed algorithm on the wireless dataset generated similarly revealed 20 classes. 7 

out of the 20 classes were misclassified and 13 classes were predicted accurately. 

Misclassification of application traffic like skype, Mail_imap, windows media, and 

instant messages occured. However, classification of unknown traffic and encrypted 

traffic was accurately predicted. The overall classification accuracy achieved is 91.94% 
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as shown in Figure 27 with error rate of 8.6% incurred. The accuracy achieved compared 

to the accuracy from the wired environment shows a decline or decrease of 0.86%.  

 

 

Figure 27: Confusion Matrix Graph Showing the True Class against Predicted Class in Wireless 

Environment (SVKM) 

 

4.4 Real-Time Application-Based Clustering (R-TAC)  

4.4.1 Motivation of Algorithm 

The previously proposed hybrid algorithms resulted in good accuracy in classification 

considering the parameters and circumstances of the network under study. However, 

there is a need for improvement. Also, the complexity of SVKM algorithm though fair 

needs to be reduced since the network is already experiencing the resource starvation. To 

address these issues, Real-time application-based clustering is proposed. 



 

 

98 

 

4.4.2 The Proposed Algorithm 

R-TAC is a semi-supervised clustering approach with two phases namely clustering and 

classification. From the classification (label) phase of SVKM, we introduced the 

transformation of the testing dataset into a higher dimensional space to fit the real-time 

data from the simulation. A true reflection of the dataset should be implemented both in 

both clustering and labelling phase.  R-TAC initial step is to execute this task using the 

quadratic function in equation (8) to transform the dataset T, into a two-dimensional 

feature space T ꞌ. The function takes vectors x and y as input representing the data points 

in the two-dimensional space and n denotes the sum of all data points.  

 (   )  ∑ (        )
  

     -         (8) 

The clustering phase sets off by first choosing at random pivotal points Cp within the data 

space to represent the centers. These points are assumed centers for the cluster. The 

distance between the data points and the centers are computed with the Minkowski 

distance metric in equation (9). This metric gives as a parameter p, with which the order 

of the distance between two data points can be set which is an advantage to decrease the 

errors incurred during distance calculation. When p is assigned the value of 2, the 

weighted distance can be obtained which gives more weight or value to data points close 

to the testing data point. Data points are assigned to the cluster C with minimum distance. 

The pivotal points for the clusters are rediscovered by finding the point within the cluster, 

which has an average distance to all other points utilizing the same distance metric. The 

process is repeated until there are no further cluster assignments.  

d  = (∑ ((     
 
   ) p )1/p     

-            (9) 

At this stage, the clusters are likely to overlap each other due to overlapping features. The 

second phase classifies the data points into finer classes or clusters. For all data objects 

belonging to two or more clusters, the distance to the respective cluster centers is 

computed utilizing the Gaussian function in equation (10). The data point is assigned to 

the cluster with the minimum distance. However, the Cp for all C will have to be 
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recomputed and the process repeated till no overlapping clusters are formed. Table 13 

illustrates the pseudo-code for the algorithm. The flow of the algorithm is represented in 

Figure 28. 

  (   )      (   
‖   ‖ 

   
)   -            (11) 

 

Table 13: R-TAC Proposed Algorithm 

Step 1: ∀ (x, y)   T  transform dataset T to T ꞌ 

    (   )  (∑ (     
 
     ) 2   

→ T ꞌ 

Step 2: Select pivotal points Cp  within the data space at 

random  

Step 3: ∀ xi    T‟ compute the distance d, to all Cp   

d= (∑ ((     
 
   ) k )1/2   

 

Step 4: Assign the data objects a C with minimum 

distance and recompute  Cp  for all C using d 

Step 5: Repeat steps 3 and 4 until a convergence is 

reached if and there is no change in the assignment 

process. 

Step 6:  ∀ xi    C ≥ 2, Calculate the d(xi, Cp) with the 

Gaussian function   (    )      (   
‖   ‖ 

   
), y = Cp 

Step 7: Assign    to cluster with the minimum d 

Step 8: Re-compute Cp for all C‟s and repeat Step 6 and 

7 till all C‟s are distinct. 

 

4.4.3 Complexity of R-TAC  

Due to the quadratic functions utilized, the execution time of R-TAC is directly 

proportional to the square of the input size it takes. The time complexity of R-TAC is 

initially equivalent to O(nm) where n is the input size and m is the number of clusters. 

However, the complexity is bounded from the above to O(n
2
) with the incorporation of 

the quadratic functions. 
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Figure 28: Flow diagram of R-TAC 
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4.4.4 Results of R-TAC 

The dataset from the proposed scenario is used to test the algorithm. After the clustering 

phase, 7 overlapping clusters are formed as shown in Figure 29.  After the classification 

procedure was completed, 20 classes are identified. Precision values ranging from the 

lowest being 85% and highest 99% were obtained for R-TAC as displayed in Figure 30. 

This range is quite higher compared to KNKM and SVKM. 

. 

Figure 29: Clusters Revealed after  Initial Clustering Phase 

 

In terms of accuracy, R-TAC predicted both mail_pop and mail_imap as mail_smtp. 

Furthermore, Mpeg and ICMP classes are also predicted as windows media as depicted in 

Figure 31. These false negative predictions were almost prevalent among all the proposed 

algorithms. Overall, R-TAC had 16 classes predicted rightly and 4 classes wrongly 
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predicted, resulting in 96.40% accuracy. The area under ROC covered is 1 which further 

confirms the good prediction propensity of the algorithm, displayed in Figure 32. 

 

 

Figure 30: Sine Wave Graph of Precision against Inter-arrival time for R-TAC 

  

 

Figure 31: Confusion Matrix Graph Showing True class against Predicted Class (R-TAC) 
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Figure 32: Area Under ROC Covered for Classification with R-TAC 

 

4.4.5 Results of R-TAC on FPL 2 

With respect to the dataset gathered from the wireless scenario, R-TAC similarly like 

KNKM and SVKM also revealed 20 classes. From the graph in Figure 33,  15 classes 

were accurately predicted with 5 classes misclassified which includes FTP, Mail_imap, 

Instant Messages, MPEG and Windows Media applications. The overall accuracy 

achieved for the classification is 95.63% with 4.37 error rates incurred. The accuracy in 

comparison with the results with FPL 1 from the wired scenario shows a decrease of 

0.77% . 
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Figure 33 : Confusion Matrix Graph Showing the True Class against Predicted Class in Wireless 

Environment (R-TAC) 

 

4.5 Summary 

The architecture and implementation of our suggested algorithms are discussed in the 

content of this chapter. The first proposed algorithm, KNN+K-Medoids hybrid algorithm 

as the name implies constitutes the KNN algorithm and K-Medoids algorithm. The 

advantages of this primary algorithm are combined in the design.  The novelty of the 

algorithm stems from its hybrid nature. The three phases of the algorithm are data 

filtration, clustering, and labelling. The dataset is first filtered to eliminate unwanted data 

fields and convert the required fields into their appropriate formats. In the clustering 

phase, the distance metric used to in the computation of the medoids is the Euclidean 

formula for distance in place of the traditional Manhattan formula, because the target is to 

reduce the separation dissimilarity to its minimum. Also the weighted KNN is used 

instead of the classical KNN in the labelling phase to enable the classifier to emerge with 
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finer classes. Results after implementation show that the proposed algorithm is achieved 

a precision range of 82 % to 94%, and able to predict 20 classes out of which 12 were 

predicted correctly to result in 91.3% accuracy. 

 The next proposed hybrid SVKM employs the two kernel tricks of the SVM algorithm to 

transform the dataset to higher dimensional space which is the right format for our 

dataset. This improves the classification precision by a margin of 3% and accuracy with a 

margin of 1.1%.  However, time complexity higher compared to KNKM and accuracy 

needs to be improved. This contributed to the development of R-TAC algorithm.  

R-TAC algorithm transforms the dataset to a higher dimensional space before clustering 

and classification. It employs the Minkowski distance metric in all its distance 

computations. The accuracy of classification is improved to 96.40% with a higher 

precision range from 75% to 99%. The results of the proposed algorithms are validated in 

the next trailing chapters to confirm its efficiency.  
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Chapter 5: Analysis of Results  

This chapter reviews the outcomes, findings, and conclusions after experiments are 

conducted employing the evaluation with the classification metrics chosen for the study. 

The proposed works are further validated by making a comparison with other three 

existing works namely, KNN [127], KNN+K-Means [72] and IATP [121]. The overall 

outcomes are further used to draw conclusions for the study. 

5.2 Precision 

Precision is a prediction of accuracy measure. The precision range for each mechanism is 

compared in Figure 34. The outcome reveals that KNN achieved a precision range of 62 

to 94%, IATP with 58% to 69% and KNN+K-Means resulted in 70% to 93%. The 

proposed classifiers achieved the overall best with proposed KNKM with 82% to 94%, 

SVKM classifier with 85% to 94% and R-TAC with the highest precision, ranging from 

85% to 99%. Because the higher delimiter of the precision range of all classifiers is 

almost the same, the lower delimiter is used to determine the best of all the classifiers in 

terms of precision. We can affirm from the outcome that the proposed model is likely to 

perform exceptionally and give a high accuracy prediction value. 

5.3  Accuracy  

In terms of accuracy in classification, the classifiers are evaluated by a confusion matrix 

graph to show the total number of classes, true classes and predicted classes. From Figure 

35, the proposed models together with KNN+K-Means resulted in 20 classes while KNN 

and IATP resulted in 14 classes. KNN and IATP could not distinguish further between 

the P2P traffic and classified all unidentified traffic such as database and encrypted traffic 

as unknown traffic. This shows the former three classifiers produced finer classes. Out of 

the 14 classes, KNN classified 3 classes correctly (True Positive Rate (TPR)) while 6 

classes were wrongly classified (False Positive Rate (FPR)). Due to  
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Figure 34: Comparative Graph of achieved Precision Range for all Classifiers  

 

overlapping features, 5 classes were predicted or classified into different classes giving 

an accuracy of 73.79%.  KNN+K-Means predicted 1 class perfectly and 6 classes were 

predicted into different classes. 13 classes were completely misclassified out of the total 

of 20 classes identified resulting in an accuracy of 65. 2%. IATP predicted 5 classes 

correctly and 9 classes wrongly with 4 classes due to overlapping flow features. IATP 
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resulted in 66.5% average accuracy.  The proposed KNKM had 12 classes predicted 

correctly and 8 classes misclassified giving an accuracy of 91.3%. SVKM predicted 16 

classes correctly out of 20 classes and 4 classes were misclassified resulting in an 

accuracy of 92.4%. R-TAC had 16 classes predicted correctly and 4 classes misclassified 

resulting in an accuracy of 96.40%. It can further be inferred from the results that the 

proposed approaches do not have an instance of predicting a class into multiple classes. 

This shows that the proposed methods are able to accurately distinguish between features 

to avoid the problem of overlapping features in classification resulting in higher accuracy 

values. Also, all accuracy values achieved falls into the precision range of each classifier 

respectively validating the accuracy values obtained. From the above revelations from the 

outcomes, it can be confirmed that the suggested methods perform better in classifying 

packet flows correctly compared to the existing renowned works in literature in presence 

of extreme packet loss and fragmentation or wired networks with limited resources. 

5.4 Error Rates 

Error rate is the amount of misclassification allowed by each classifier, thus the inverse 

of accuracy values obtained. After classification KNN had an error rate of 26.21%, 

KNN+K-Means achieved 34.8% and IATP with 33.5%. KNKM resulted in 8.7% and 

SVM+K-Medoids with 7.6% and R-TAC had the lowest with 3.6 error rate. The lower 

error rates of the proposed methods are attributed to the labelling method adopted for 

each algorithm.  A chart of accuracy with error rate for each classifier is shown in Figure 

36. 
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Figure 35: Comparative Graph of Confusion Matrix Showing Classified and Misclassified classes for 

Each Classifier 
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Figure 36: Comparative Graph of achieved Accuracy with Error Rates for Each Classifier 

 

5.5 Area under ROC 

ROC curve validates the classifier‟s ability to make good classification predictions. The 

greater the proximity of the curve is to the leftmost axis in a range of 0 to 1, the better its 

performance. The results from Figure 37 depicts that AUC for KNN is 0.9, KNN+K-

Means is 0.87 and IATP with 0.5. The proposed models (KNKM, SVKM, and R-TAC) 

have an AUC of 1.0. This shows that though all the classifiers have good prediction 

property, the proposed models have the best capacity to classify traffic flows in scenarios 

of networks with increased packet drop count, or where congestion is likely to occur. 
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Figure 37: Comparative Graph of ROC Curves Showing the Area Under ROC for Each Classifier 

 

5.6 Processing Time 

The time it takes for each classifier to complete the entire process is significant in 

evaluation. The longer the processing the (time complexity), more costs are incurred in 

terms of resource usage. The complexity of the algorithm affects the overall processing 

time of the algorithm. KNN classifier utilized 1.0767 seconds and KNN+K-Means used 

4.1804 seconds. IATP utilized 3.2521 seconds. It took 4.5482 seconds for KNKM 

classification, SVKM utilized 2.9839 seconds and R-TAC with 1.9983 seconds.  The 

least time utilized by the KNN classifier can be attributed to the fact that less number of 

instructions is executed in the algorithm. Out of the other hybrid methods, SVKM took 
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the least time to process. This is due to the advantage of the kernel trick employed in the 

classification processes. The real-time or non-linear dataset transformation into higher 

dimensional space limits the time it takes for the classes to be discovered and data points 

to be grouped into their respective classes.  The comparative rundown of the analyzed 

results is depicted in Table 14. 

 

Table 14: Comparative Summary of Attained Outcomes for Each Classifier with FPL 1 Dataset 

CLASSIFIER 

CLASSIFICATION METRIC (Parameter) 

Precision 

Range (%) 

Accuracy 

(%) 

Error  

(%) 
AUC Time (s) 

KNN 62 - 94 73.79 26.21 0.9 1.0767 O(nd) 

KNN+K-MEANS 70 -93 65.20 34.80 0.87 4.1804 O(n) 

IATP 58.69 66.50 33.50 0.5 
3.2521 

O(n*log n) 

KNKM 82-94 91.30 8.70 1.0 
4.5482  

O(k(n-k)
2
 

SVKM 85-94 92.40 7.60 1.0 2.9839 O(n
3
) 

R-TAC 85.94 96.40 3.6 1.0 1.9983 O(n
2
) 

 

5.7 Analysis of Results from Wired Scenario (FPL 1) in 

comparison to Wireless Scenario (FPL 2) 

The existing algorithms are also tested on the dataset derived from the wireless scenario 

and compared with the proposed works in terms of classification accuracy. From Figure 

38, All existing classifiers revealed 14 classes with the proposed classifiers revealing 20 
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classes. The issue of overlapping or multiple classifications persisted with respect to the 

existing algorithms.  

On the other hand, the proposed works in all cases classified application traffic 

distinctively. KNN achieved a classification accuracy of 70.45%, which is a reduction of 

3.34%  in classification accuracy. KNN+K-Means resulted in 68.70% classification 

accuracy with IATP achieving 72.50% accuracy. Both KNN+K-Means and IATP 

classifier improved in classification accuracy of 3.5% and 6.0% respectively. This asserts 

the fact that the latter two existing algorithms have better propensities in working in 

wireless environments when the problem of some resource starvation exists. On the hand 

the existing works, though experienced a decline in classification accuracy in wireless 

environments, the decline rate is minimal and exceeds the classification accuracy of all 

the existing classifiers. We can therefore conclude that the proposed works can work 

efficiently in the both wired and wireless environments where there is some form of 

resource starvation where the speed of links are not able to meet the requirements of the 

network leading to extreme packet loss and fragmentation. A comparison of classification 

accuracy in both the proposed wired and wireless environments is depicted in Table 15. 
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Figure 38: Confusion Matrix of Classification of Classifiers in Wireless Scenario (FPL 2) 
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Table 15: Comparison of Classification Accuracy (Wired Scenario Vs. Wireless Scenario) 

CLASSIFIER 

CLASSIFICATION ACCURACY (%) 

Wired Scenario (FPL 1)  Wireless Scenario (FPL 2) 

KNN 73.79 70.45 

KNN+K-MEANS 65.20 68.70 

IATP 66.50 72.50 

KNKM 91.30 90.86 

SVKM 92.40 91.54 

R-TAC 96.40 95.63 

 

5.8 Summary 

This chapter contributes to the third objective of the study by validating the proposed 

works. We analyze the finding of the works and compare with existing works using the 

proposed dataset from the proposed wired and the wireless environments. The proposed 

works revealed finer classes compared to the existing ones and have higher accuracy and 

precision values. The results show that the proposed algorithms implemented in 

MATLAB as classifiers are better models in application and protocol classification than 

the already existing models in literature in all cases of the proposed scenarios.  
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Chapter 6: Validation of Proposed Algorithms 

To further ensure that the proposed approaches are efficient as discussed prior to this 

chapter, we test the algorithms with existing datasets to unravel its classification 

efficiency. Some existing datasets in relation to traffic analysis and classification are 

discussed in this section. As at the time of the conduction of this research, none of the 

datasets collected or used in literature has considered the parameter of limited resources 

experienced by networks. The study aims to provide a solution in the phase of a network 

cycle where such limitations occur. However, to prove that the proposed work can 

efficiently, we validate using the most closely related dataset with respect to the 

parameters considered by our study.  

6.1 Datasets for Traffic Classification 

With respect to datasets for traffic analysis and classification on the internet, enterprise 

and organizational networks, several datasets are in existence. CAIDA  has a collection 

of these datasets and updates them from time to time. The environment for the collection 

of the datasets discussed originated from the University of California at San Diego 

Academic & Science (UCSD). The datasets include 

 Historical and Near-Real-Time UCSD Network Telescope Traffic Dataset [135] 

[136] 

 The CAIDA Anonymized Internet Traces Dataset 2008 [137] 

 Statistical information for the CAIDA Anonymized Internet Traces [138] 

 UCSD Network Telescope Educational Dataset [139][140] 

 OC48 Peering Point Traces [141] 

 ITA Network Traces [142] 

 Waikato Internet Traffic Storage (WITS) Data Catalogue [143] 
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 Cup KDD 1999 [144] 

 Mid-Atlantic CCDC dataset [145] 

Two datasets in literature are selected namely Cup KDD‟99 and MACCDC IDS trace for 

the validation of the proposed works. The results are compared in terms of classification 

overall accuracy with the three existing works as well and discussions are made to that 

effect.  

6.1.1  Historical and Near-Real-Time UCSD Network Telescope Traffic 

Dataset  

The dataset is made of near to real-time raw traces of traffic captured on UCSD with a 

telescope instrument. The dataset comes in the form of highly compressed packet capture 

(pcap) files collected over a running time of an hour. The dataset contains some worms in 

the traffic efficient for detection of spoofing related denial of service attacks from a 

source.  

6.1.2 The CAIDA Anonymized Internet Traces Dataset 2008 

This is an ongoing dataset which has been collected since 2008. It contains passive traffic 

traces captured from monitors with high speed installed on the backbone links of 

commercial networks. CryptoPan prefix is employed to protect the anonymity of traffic 

traces. Only header information is kept in the captured snap which varies from 64 to 94 

bytes in length. This is to help avoid high rates of packet loss.  It is useful for research in 

scopes covering security issues, attributes of traffic from the internet, duration of flows, 

application disseminations and distributions related to geography and topology. 

6.1.3 Statistical information for the CAIDA Anonymized Internet 

Traces 

From various backbone links of OC 192, monthly traces of traffic were gathered 

routinely, each in an hour.  With parameters of size and costs incurred for storage, traces 
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were captured quarterly (three month period). The dataset consists of statistical 

information, which includes characteristics of protocols and flows. Among these includes 

start and stop time of flows, number of packets, packets unknown, rates of transmission, 

and packet size.   

6.1.4 UCSD Network Telescope Educational Dataset 

The dataset comprises of analyzed unidirectional IP Traffic to dark space and outlines 

various methods to analyze traffic generated with the internet protocol for IP addresses 

which have not been assigned yet (dark space).  Network addresses for all destinations 

are masked with the initial 8bits zeroed. Source addresses are also protected by 

anonymizing with a cryptopan single key. The data captures are traces from the year 

2012, in which the raw data in pcap format.   

6.1.5 OC48 Peering Point Traces  

The OC48 dataset contains passive traces of network traffic gathered in 2002 and 2003 

from OC48 peer links within a large ISP network. Any software that can read files in 

pcap and tcpdump file formats such as Wireshark, tcpdump can be adopted to read them. 

Its application is similar to CAIDA Anonymized Internet Traces Dataset 2008 and can be 

used for research related to security, application breakdowns, and internet traffic analysis. 

6.1.6 ITA Network Traces 

From the Internet Traffic Analysis (ITA) organization, this dataset of network trace is 

useful for study and research related to dynamics of networks, patterns in network 

growth, end-user usage statistics of usage and simulations inspired by trace.  

6.1.7 Waikato Internet Traffic Storage (WITS) 

WITS is a compilation of Internet traffic datasets generated at the University of 

Auckland, University of Waikato and selected Indianapolis and New Zealand ISP 

networks for research purposes. These datasets of network traces were captured in 
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different years. Versions of the datasets include Auckland I - Auckland X, IPLS I - IPLS 

III, Waikato I – Waikato VIII and NZIS I – NZIS II. 

6.1.8 Cup KDD 1999  

The cup KDD dataset was used for the competition organized by KDD conference to 

develop a predictive model (detector) for Intrusion detection in the field of data mining.  

The goal of the model is to determine whether a connection is bad (attacks) or good (no 

attacks/ normal). The dataset was generated in a military environment which depicts a 

wired or wireless environment and contains numerous amount of intrusions infused into 

it. 

6.1.9 IDS Traces (Mid-Atlantic CDCC)  

The dataset consists of traces from Intrusion Detection gathered from System National 

Cyber Watch Mid-Atlantic Collegiate Cyber Defense Competition (MACCDC). It comes 

in the form of captured packet traces collected from 2010 to 2012. This public dataset of 

traces serves as ground truth for the testing of IDS and traffic classifiers in different 

network environments. The traces consist of traces of traffic from both cryptographic and 

non-cryptographic application protocols used for the transmission of traffic from source 

to destination.  

6.2 Validation of Algorithms with CUP KDD’99 Dataset  

6.2.1 Results of Proposed Algorithms 

All the classifiers except KNKM revealed 7 distinct classes labelled by the respective 

application protocol type. KNKM resulted in 6 distinct classes. The class types are 

Hypertext Transfer Protocol (HTTP), Simple Mail Transfer Protocol (SMTP), Post Office 

Protocol version 3(POP3), Edonkey, Bit Torrent (BT), I Seek You (ICQ) VoIP 

application and Real-Time Transport Protocol (RTP). The results in terms of accuracy 

prediction for all classifiers are discussed and analyzed for conclusions. 
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KNKM predicted 4 classes perfectly (SMTP, POP3, BT, ICQ,) against the true class as 

depicted in Figure 39.  However, class HTTP had half of the total flows predicted as 

SMTP. Edonkey traffic is also predicted wrongly as ICQ traffic. The overall average 

accuracy achieved by the KNKM classifier is 96.76%.  

From Figure 40, SVKM had 5 classes (HTTP, SMTP, POP3, Edonkey, ICQ) rightly 

predicted against the true class. Class BT is predicted wrongly into class ICQ. In 

addition, RTP class is predicted into Edonkey class. The overall average accuracy 

achieved is 97.64%.  

Out of the 7 classes revealed for the true class in Figure 41, R-TAC predicted 6 classes 

correctly. Only the BT class was predicted wrongly into ICQ class. The overall average 

accuracy achieved by R-TAC algorithm on the dataset is 98.95%. 

 

Figure 39: Confusion Matrix Graph of Proposed KNKM on Cup KDD’99 Dataset 
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Figure 40: Confusion Matrix Graph of Proposed SVKM on Cup KDD’99 Dataset 

 

 

Figure 41: Confusion Matrix Graph of Proposed R-TAC on Cup KDD’99 Dataset 
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6.2.2 Results on Existing Algorithms 

The dataset is tested on the three previously selected existing algorithms in literature. All 

algorithms revealed 7 classes except IATP with 6 classes revealed. The classes identified 

are Hypertext Transfer Protocol (HTTP), Simple Mail Transfer Protocol (SMTP), Post 

Office Protocol version 3(POP3), Edonkey, Bit Torrent (BT), I Seek You (ICQ) VoIP 

application and Real-Time Transport Protocol (RTP).  

KNN classifier assigned 3 classes (HTTP, POP3, ICQ) rightly against the true class. It 

wrongly assigned Edonkey to HTTP and RTP to SMTP class in Figure 42. However, part 

of SMTP is correctly assigned with the other portion grouped into POP3. The overall 

average accuracy achieved by the KNN classifier is 95.71%. 

The hybrid KNN+K-Means classifier predicted POP3 and BT correctly into their 

respective classes as revealed in Figure 43. Classes HTTP, Edonkey and RTP were 

classified wrongly into SMTP, ICQ and HTTP respectively.  Class SMTP was partly 

predicted correctly and other portion into class HTTP. Accuracy of KNN+K-Means 

classifier on the dataset resulted in 93.39%. 

IATP classifier correctly and perfectly classified 3 classes (Edonkey, BT, ICQ) out of the 

total 6 classes in Figure 44. 50% of HTTP flows are correctly assigned while 50% is 

classified as ICQ. Furthermore, 75% of SMTP is predicted as its true class and 25% 

assigned to Edonkey class. 79% of POP3 generated traffic is correctly assigned and 21% 

wrongly assigned to ICQ. The overall accuracy achieved by the classifier is 79.30%.  

6.3 Analysis of Results on CUP KDD’99 Dataset 

In relation to HTTP generated traffic identified, the proposed algorithms were able to 

classify them better compared to the existing algorithms. KNKM predicted 50% of it 

correctly and the other two proposed works classified them perfectly. Out of the existing 

algorithms, only KNN algorithm classified HTTP traffic correctly. With SMTP, all the 

existing algorithms could not classify them correctly but all the proposed works classified 
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them perfectly. From the above, it can be inferred that the proposed works are better 

classifiers for HTTP and SMTP traffic compared to the existing algorithms.  

With the exception of IATP classifier, all other classifiers classified POP3 correctly with 

respect to the true class. Most of the existing classifiers had difficulties in classifying 

Edonkey traffic and BT. This is due to the dynamic nature and features of P2P traffic. 

IATP correctly classified Edonkey correctly out of the existing models. Out of the 

proposed works, only KNKM wrongly classified Edonkey. With BT traffic, KNN+K-

Means classifier and IATP achieved assigning them correctly. Only KNKM out of the 

proposed models predicted it correctly. From this, it can be concluded that IATP 

classifier is a better option for classifying P2P traffic.  

The proposed works perfectly classified ICQ traffic. IATP, in addition, classified ICQ 

perfectly out of the existing works. KNKM and IATP could not identify RTP traffic on 

the whole which affected its overall accuracy prediction on the dataset. However, only R-

TAC could classify RTP traffic perfectly out of the other classifiers which were able to 

identify RTP. 

From the analysis conducted above, the proposed algorithms performed better in 

comparison to the existing works. R-TAC evolved as the overall best classifier on the 

dataset with an accuracy of 98.95%.  Table 16 displays the summary of the analysis of 

the classifiers with the traffic types they predicted perfectly. The checkmark denotes 

perfectly classified and the cross mark denotes misclassified. 
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Figure 42: Confusion Matrix Graph of KNN on Cup KDD’99 Dataset 

 

 

Figure 43: Confusion Matrix Graph of KNN+K-Means on Cup KDD’99 Dataset 
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Figure 44: Confusion Matrix Graph of IATP on Cup KDD’99 Dataset 

 

Table 16: Classification Analysis of Classifiers with Traffic Flows Classified and Misclassified on 

Cup KDD’99 Dataset 

CLASSIFIER 
APPLICATION 

HTTP SMTP POP3 EDONKEY BT ICQ RTP 

KNN  ×  × × × × 

KNN+K-MEANS × ×  ×  × × 

IATP × × ×     

KNKM ×   ×    

SVKM     ×  × 

R-TAC     ×   
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6.4 Validation of Algorithms with MACDCC IDS Trace 

6.4.1 Results on Proposed Algorithms 

All the proposed algorithms after classification revealed 9 classes where each class 

denotes the application protocol type used to generate the traffic trace. They include File 

Transfer Protocol (FTP), TCP (Transport Control Protocol), Hypertext Transfer Protocol 

(HTTP), Transport Layer Security (TLS), Server Message Block (SMB), Spanning Tree 

Protocol (STP), Internet Control Message Protocol (ICMP), Secure Sockets Layer (SSL), 

and Secure Shell (SSH). The accuracy results achieved from the classifiers are discussed 

and analyzed.  

KNKM classified 7 classes accurately and predicted 2 classes (ICMP, SSH) wrongly. 

ICMP is predicted as STP and SSH as SSL as shown in Figure 45. The overall accuracy 

achieved for KNKM is 97.50% with the underlying dataset.  

Out of the 9 classes, SVKM also classified 7 classes accurately and predicted 2 classes 

wrongly (TCP, STP). TCP is classified into HTTP class and STP is assigned to FTP class 

as depicted in Figure 46 constituting to an accuracy of 96.47%. Though both KNKM and 

SVKM had two classes predicted wrongly, the difference in classification accuracy is a 

result of the difference in the number of flows for the application protocols that were 

classified.  

R-TAC had 8 out of 9 classes predicted accurately as displayed in Figure 47. Aside from 

the TCP class classified as FTP, all other classes are predicted rightly against the true 

class. The overall accuracy achieved by R-TAC is 98.97%. 
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Figure 45: Confusion Matrix Graph of KNKM on MACDCC IDS Trace 

 

 

 Figure 46: Confusion Matrix Graph of SVKM on MACDCC IDS Trace 
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Figure 47: Confusion Matrix Graph of R-TAC on MACDCC IDS Trace 

 

6.4.2 Results on Existing Algorithms 

The existing works on the underlying dataset also revealed 9 classes (FTP, TCP, HTTP, 

TLS, SMB, STP, ICMP, SSL, SSH). However, the issue of overlapping classification 

was prevalent in with all classifiers.  

KNN classifier predicted 4 classes (FTP, TCP, ICMP, SSL) perfectly. On the other hand, 

as displayed in Figure 48, 2 classes (TLS, STP) are classified incorrectly. Both TLS and 

STP classified are into SMB class. FTP class had 50% of flows predicted accurately, 25% 

into ICMP and 25% into SSH. The SMB class also had multiple classifications. 67% of 

the flows were classified accurately with 33% misclassified as ICMP. KNN achieved a 

classification accuracy of 91.30% after classification. 

The KNN+K-Means hybrid classifier had 5 classes (FTP, TCP, HTTP, SMB, SSL) 

classified accurately into their respective classes. With misclassification in Figure 49, 3 

classes namely STP, ICMP, SSH are assigned wrongly into SMB, STP, SSL respectively. 
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Class TLS had 50% classified as HTTP and 50% as SMB. The overall accuracy achieved 

by the hybrid classifier is 94.20%. 

Out of the 9 classes revealed IATP had only 1 class (TCP) accurately classified with 

respect to its true class from Figure 50. Classes FTP, HTTP, TLS, SMB, STP, ICMP, and 

SSH were misclassified as TCP, FTP, SMB, FTP, SMB, SSL, and FTP respectively. SSL 

is also misclassified with 67% as TLS and 33% % as SMB. This resulted in an overall 

accuracy of 78.43%.  

6.5 Analysis of Results on MACDCC IDS Trace 

All classifiers achieved the same matrix dimension by revealing 9 classes where each 

class represents the application protocol used to generate the traffic type. In relation to 

FTP traffic, only the IATP classifier misclassified this traffic type. All other classifiers 

were able to predict it accurately with respect to the true class. With TCP traffic, the 

existing classifiers had no problem with its classification as they all perfectly classified it. 

However, SVKM and R-TAC could not classify TCP traffic accurately. Only KNKM out 

of the proposed works was able to achieve a perfect classification of TCP traffic. With 

respect to TCP traffic on the underlying IDS Trace, the existing works performed better 

than the proposed.  

With HTTP traffic flows, the proposed works perfectly assigned them into their 

respective classes. Only KNN+K-Means classified this traffic type accurately out the 

existing works. For SMB traffic flows, again the proposed works classified them 

accurately while only KNN+K-Means hybrid classifier achieved a correct classification 

out of the existing models. Therefore, it can be inferred that the proposed works 

outperformed the existing works in classifying HTTP and SMB traffic.  

Furthermore, two of the proposed works experienced no misclassification with STP 

generated traffic compared to the existing works. SVKM had a misclassification problem 

with this class. None of the existing models could classify STP class perfectly as they 

were all misclassified into other classes. With ICMP traffic, two of the proposed works 
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(SVKM and R-TAC) assigned all flows to their respective classes. Only the KNN 

classifier out of the existing works could achieve this. Therefore it can be stated that the 

existing works have poor performance with classifying STP and ICMP flows compared 

to the proposed models. In addition, with the exception of IATP classifier, all other 

classifiers had no misclassification issues with SSL traffic flows. With SSH traffic flows, 

only 2 proposed classifiers (SVKM and R-TAC) were able to classify these flows 

accurately. All existing works misclassified the flows into other classes. 

From the analysis above, the proposed models did not experience the classification of a 

class into multiple classes as compared to the existing models. The least performing 

classifier in terms of accuracy for the proposed works (96.47% - SVKM) algorithm 

outperforms the best of the existing models (94.20% - KNN+K-Means). The overall best 

classifier again is R-TAC with 98.93% overall accuracy. From the underlying dataset or 

traces incorporated, it can be stated that the proposed works outperform the existing 

models with R-TAC being the overall best classifier. Table 17 demonstrates a summary 

of the analysis. 

 

Figure 48: Confusion Matrix Graph of KNN on MACDCC IDS Trace 
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Figure 49: Confusion Matrix Graph of KNN+K-Means on MACDCC IDS Trace  

 

 

Figure 50: Confusion Matrix Graph of IATP on MACDCC IDS Trace 
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Table 17: Classification Analysis of Classifiers with Traffic Flows Classified and Misclassified on 

MACDCC IDS Trace 

CLASSIFIER 
APPLICATION PROTOCOL 

FTP TCP HTTP SMB STP ICMP SSL SSH 

KNN   × × ×   × 

KNN+K-MEANS     × ×  × 

IATP ×  × × × × × × 

KNKM      ×  × 

SVKM  ×   ×    

R-TAC  ×       

 

6.6 Conclusions of Validated Results 

In both cases of the two datasets utilized as well as the proposed dataset that suited the 

scenario of the study best, the proposed works (KNKM, SVKM, and R-TAC) achieved 

higher accuracy values when compared to the existing works. The least accuracy rate 

among them always exceeded the best of the existing models in all cases of the datasets 

used in the validation process. Hence, a conclusion can be drawn from the results and 

analysis in the above sections that the proposed algorithms when integrated as classifiers 

can achieve great results in application protocol classification and can also be 

implemented in areas of intrusion detection systems to identify different protocols used in 

traffic generation of traffic.  

Furthermore, the R-TAC algorithm achieved tremendous accuracy results in all cases of 

validation with the datasets. Because a classifier‟s prediction and accuracy rates justify its 

performance and efficiency, a conclusion can be drawn that, the proposed R-TAC 

algorithm is the overall best classifier and also possess competitive time complexity with 

all other algorithms. It can be concluded that the proposed algorithms can be 

implemented as stand-alone classifiers, able to classify traffic flows or packet flows in the 

presence of rapid packet loss with variable fragmentation parameters. The comparative 

rundown of results after the analysis is depicted in Table 18 with the proposed and 

existing datasets.  
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The QoS parameters latency and throughput in the scenario deteriorates with increasing 

inter-arrival time. Therefore only a limited amount of flows with a small number of 

packets and features can be extracted. With small amount of features, the problem of 

overlapping classes are likely to occur which limits the classification accuracy of a 

classifier. The proposed algorithms can work efficiently in the presence of these QoS 

parameters using the limited features available to classify the traffic and produce fine 

classes or clusters.  

 

Table 18: Summary of Classification Accuracy Results 

CLASSIFIER 

CLASSIFICATION ACCURACY (%)  

CUP KDD‟99 
MACDCC IDS 

TTRACE 

FPL 1 

DATASET 

(Wired) 

FPL 2 

DATASET 

(Wireless) 

KNN 95.71 91.30 73.79 70.45 

KNN+K-

MEANS 
93.39 94.20 62.5 68.70 

KNKM 79.30 78.43 69.40 72.50 

IATP 96.76 97.50 91.30 90.86 

SVKM 97.64 96.47 92.40 91.54 

R-TAC 98.95 98.97 96.40 95.63 
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Chapter 7: Conclusion and Future Works 

7. 1 Conclusion 

The groundwork and thesis explain machine learning, clustering techniques and its 

applications in networking, particularly in wide and wireless area networks. Furthermore, 

pervasive literature scrutiny is conducted to fathom the diversified methods adopted by 

researchers to classify packets or traffic flows, their findings, drawbacks, and 

achievements. The gap in research identified is that not much investigation has been done 

to find out the effects of quality of service parameters which includes packet loss, 

congestion, fragmentation, bandwidth on the classification procedure. Moreover, we 

realized that these parameters that contribute to poor quality of service results mainly 

from limited resources not able to satisfactorily serve the requirements of a network. 

Therefore, we investigate the negative effects of packet loss with packet fragmentation as 

a result of varied packet length on the classification procedure. We design a topology 

scenario as such in simulation to obtain a dataset. The initial topology is in a wired 

environment which covers the scope of the research. However, a second scenario in a 

wireless environment is proposed to validate the efficiency of the proposed algorithms in 

such scenarios. The results show that the latency of transmission is increased rapidly 

when these parameters are highly prominent in a network. The QoS parameters latency 

and throughput in the scenario deteriorates with increasing inter-arrival time. Therefore 

only a limited amount of flows with a small number of packets and features can be 

extracted. With small amount of features, the problem of overlapping classes are likely to 

occur which limits the classification accuracy of a classifier. The proposed works 

implemented as classifiers can work efficiently in the presence of these QoS parameters 

using the limited features available to classify the traffic and produce fine classes or 

clusters.  
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The first algorithm combines the advantages of K-Medoids algorithm and KNN to obtain 

a semi-supervised strategic algorithm. The ability of the K-Medoids algorithm to cut 

down dissimilarity of separation between data traces is optimized with the use of the 

Euclidean Distance in the distance computation. KNN algorithm‟s ability to label or 

classify data objects with low time complexity is optimized with the incorporation of 

Weighted KNN where the weights of each data object to the query point are used instead 

of the distance. After its application on the dataset, the results from Table 14 

demonstrates that the algorithm under proposition achieves tremendous accuracy and 

precision values in classification. A time complexity of O(k(n-k)
2 

is achieved. We 

therefore proposed the second algorithm to improve upon the first in terms of all the 

evaluation metrics. 

The second algorithm (SVKM) replaces the labelling procedure of the first by exploiting 

the robustness of the SVM algorithm with kernel tricks. Two kernels are utilized which 

are the Cubic Polynomial kernel and Gaussian kernel to identify the optimal hyperplanes 

and classify the support vectors into their appropriate classes. From Table 14, objective to 

improve upon the proposed KNKM is achieved in terms of all the evaluation metrics with 

92.4% accuracy in classification is achieved. Also, the processing time is reduced from 

4.5482 seconds in the first proposed algorithm to 2.9839 seconds which is almost a half-

rate reduction.  

However, the complexity of SVKM algorithm turned out to be a little higher compared to 

KNKM algorithm. Furthermore, the accuracy improved by a minimal rate of 1.1% which 

needs further improvement. To this effect, Real-Time Application Clustering (R-TAC) is 

proposed. Unlike the previously proposed algorithms, this semi-supervised algorithm 

prepares the training dataset into the real-time format by transforming into a higher 

dimensional feature space. The incorporation of a quadratic function is employed for this 

transformation. With respect to the clustering and classification phases, the Minkowski 

distance and Gaussian functions metrics are utilized for distance computations. The 

algorithm is robust and achieves a lower computational complexity of O (n
2
) compared to 
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SVKM of O (n
3
). The accuracy rate achieved is as high as 96.40%, a massive raise from 

1.1% to 5.1% with respect to the initial KNKM proposed work. 

To validate the proposed works, the algorithms incorporated into a classifier are 

compared with other 3 renowned classifiers (KNN KNN+K-Means, IATP classifiers). 

Though as at the time of the study there were no datasets in literature that suits the 

proposed scenario, two datasets for Intrusion Detection which bears feature similarities 

with our proposed FPL dataset is employed. The Cup KDD 1999 and MACDCC IDS 

Trace are selected. In both cases of the datasets, the results in terms of accuracy metrics 

show that the proposed works are efficient classifiers compared to the existing renowned 

classifiers. However, with respect to specific application traffic like TCP and Bit torrent 

traffic, the existing classifiers performed better than the proposed models unlike 

validation with the proposed dataset. The overall best classifier is the proposed R-TAC 

with the high accuracy rates of 96.40%, 98.95%, and 98.93% for FPL dataset, Cup KDD 

1999 dataset, and MACDCC IDS Trace respectively.  

 

7.1.2 Summary of Findings 

The summary of the findings in the study conducted can be summarized as 

1. Packet Loss and Fragmentation has an effect on the inter-arrival time between 

packets flows leading to increased latency and declining throughput rates in the 

classification procedure. 

2. As a result, only a few flows can be classified at a time which limits the amount 

of features that can be identified for clustering and classification 

3. The proposed algorithms can be implemented as classifiers that are able to 

withstand scenarios of extreme packet loss to classify the packets with high 

accuracy and lesser error rates. 

4. The proposed algorithms have higher prediction propensities of classes compared 

to the existing algorithms.  
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5. Hybrid clustering or classification algorithms can increase performance in 

classification but can be limited by time complexity. 

 

7.2 Future Works 

The situation of limited resources in networks will continue to be evident as requirements 

of networks change each day to meet the needs of network users. For further 

investigation in the future, other quality of service parameters including bandwidth 

leading to congesting will be investigated in diverse networks such as wireless networks 

with wireless sensor nodes. Though the accuracy achieved for R-TAC is high, we aim to 

achieve a perfect score of accuracy levels. The parameter for the algorithm will be 

investigated further to achieve this.  

Furthermore, the issues pertaining to computational complexity still persist for clustering 

algorithms. For future studies, much concentration will be given to this area of research 

to reduce the heaviness of all the algorithms. For this study, the scope was limited to wide 

area networks. We aim to expand the solutions to various networks types such as Adhoc 

networks and Wireless Sensor Networks. 
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