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Abstract

Machine learning (ML) refers to training a machine to learn from experience. This
experience is provided as input to a machine in the form of a dataset. Intuitively, the
behaviour of the learned ML model is expected to agree with the provided dataset.
Moreover, to win the trust of its intended users, the ML model must agree with the
perception of human domain experts regarding the problem domain. So, agreement of
an ML model with the underlying dataset and perception of human domain experts are
the keys to accurate and trustable learning.

ML is moving out from the hands of scientists and research labs to the masses. It
is becoming important that the human users of ML-based solutions should be able to
interpret ML model behaviour as well as to provide feedback based on their experience-
based perception regarding the problem domain. A majority of the existing work to-
wards conferring interpretability to ML models has been focusing on explaining the
behaviour of ML models. However, interpretability is a means to an end and not the end
itself. There can be other ways to achieve the broader goals of interpretability. An im-
portant motivation behind conferring interpretability is to facilitate trust in an ML-based
solution. There is a need for a framework that can help explore the solution space of an
ML problem to find out an ML-based solution that is accurate as well as agrees with its
intended human users.

The goal of this thesis is to propose a framework that enables verification of the
learning acquired by an ML model against the provided dataset and the perception of
the human domain experts regarding the problem domain. This two-way verification
ensures that the learning process has been reliable and the acquired learning is in sync
with the prevailing domain knowledge. Additionally, this framework should be capable
of making the ML model explore the possibility of adapting itself to incorporate human
expert feedback, in case it is lacking in terms of the user agreement. The underlying
dataset, the ML model learned using that dataset and feedback of human experts are the
three pillars of this framework. The proposed framework listens to each of these pillars
individually and analyzes the agreement between these three pillars.

To listen to the dataset, this research used entropy and Gini index as information gain
measures to identify important characteristics of the dataset. To listen to the ML model,
this research used variable importance measures to identify features that were most af-
fecting the decision-making behaviour of the model. To listen to the human domain
experts, this research collected feedback from human experts in terms of feature impor-



tance as per their experience-based perception of the problem domain. To get unbiased
feedback from human experts, outcomes of listening to the dataset and the ML model
were not shared with human domain experts. The problem of measuring agreement
between these three pillars (data, model and human) has been modelled as a ’2-Judges
n-participants’ Spearman’s rank correlation problem, taking a pair of judges at a time.
As an analogy, dataset, ML model and human experts were considered as equivalent
to judges. Each feature used in the learning ML model was considered equivalent to a
participant. Hypothesis testing using rank correlation coefficient has been used to ver-
ify the statistical significance of the agreement between dataset, ML model and human
domain experts.

First, this research demonstrates the above framework to verify the learning acquired
by an ML model against the evaluated dataset and the prevailing domain knowledge (ex-
tracted through feedback from human domain experts). Second, this research expands
the proposed framework to enable human-feedback adaptive learning to improve user
agreement. The underlying motivation is that humans and machines have unique capa-
bilities and they can collaborate to complement each other. Human-feedback adaptive
learning aims to make an ML model adapt itself to incorporate feedback from human
domain experts in case it is lacking in terms of the agreement. The proposed frame-
work has been demonstrated using a novel problem domain of predicting the joining
behaviour of freshmen students using a primary dataset. The proposed framework has
been also demonstrated for predicting the onset of diabetes using a publicly available
standard dataset. We demonstrate human-feedback adaptive learning by enabling the
ML system to move from a state of ‘insignificant agreement’ to a state of ‘significant
agreement’ without losing much in terms of accuracy.

Humans are inherently good at interpreting visualizations. They have been using
visualizations to explain different phenomena under study. It is no surprise that most of
the approaches towards conferring human interpretability to ML models lead to visual-
ization as an outcome. This research proposes a novel visualization FIFI graph that can
enable interpreting ML models by analyzing feature importance and feature interactions
using a single visualization. As this visualization is modelled as a graph, the existing
research and software tools for network analysis can be used to analyze this visual-
ization. The proposed visualization has been demonstrated using the problem domain
of predicting the joining behaviour of freshmen students using a primary dataset and
predicting customer churn using the telco customer-churn dataset available on Kaggle.

The potential applications of this research work are in designing ML-based solutions
for problem domains involving critical decision-making. In such contexts, accuracy,
as well as user agreement, are both equally important for an ML-based solution. For
example, in the medical domain, any ML-based solution for assisting human medical



experts is likely to succeed only if its decision-making is in sync with the experience-
based perception of the human medical experts. The limitations of this research work
include a requirement of human domain experts and dependency on the selection of
quality human experts. It requires features to concepts mapping for complex domains
where it is not feasible to provide feedback in terms of feature importance.

The future scope of this research includes exploring alternatives of entropy and Gini
index as information gain measures, alternative human interpretability techniques for
listening to the ML model and alternatives other than the ranking of features to col-
lect human expert feedback. Instead of Spearman’s rank correlation, weighted correla-
tion can be explored as the degree of agreement between the three pillars in terms of
top-ranked features is more crucial. Innovative variants of existing algorithms can be
explored to implement human-feedback adaptive learning aiming at better user agree-
ment. Enabling human users with varying levels of domain expertise interact with ML
systems and making use of UI/UX practices is an opportunity to take ML to the masses.
Due to their analogy being a graph, exploring the interaction between a FIFI graph and
a knowledge graphs is another interesting research direction with potential impact.
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Chapter 1

Introduction

Humans and machines have unique strengths. Humans are good at decision-making in
unseen situations owing to their experience. Machines are good at processing data with
the desired level of detail and accuracy.

Machine Learning (ML) refers to training a machine to learn from experience (Mitchell,
2006). This experience is usually provided in the form of a dataset. Also, it is imper-
ative that this acquired learning is in sync with the prevailing domain knowledge as it
facilitates the trust of users in an ML model. Therefore, in any ML-based solution, the
underlying dataset, ML model and domain-specific human experts are expected to agree
with each other in terms of their perception regarding the problem domain. The agree-
ment between the dataset and the learned ML model indicates that the model has been
able to capture important characteristics from the dataset. The agreement between the
decision-making behaviour of the model and the perception of human domain experts
facilitates trust in the learning acquired.

There are several challenges to such a collaboration. These include the availability
of human domain experts, they may or may not have any knowledge about ML, and
even there can be variations in the level of their expertise regarding the problem domain.
Moreover, these human experts must be able to interpret the ML model so that they can
provide feedback based on their domain knowledge. There is a need for ML algorithms
that can incorporate this feedback from human domain experts. Another constraint is
to ensure that while attempting to incorporate this feedback, the ML model remains
accurate enough.

The field of ML has been witnessing tremendous growth during recent years owing
to its wide scope of applications. Some of the important applications of ML include
speech recognition, bio-surveillance and robot control (Guyon and Elisseeff, 2003).
Some of the most recent applications of ML include advertisement classification (Jain
et al., 2021), life insurance (Rani et al., 2021), secure data analytics (Gupta et al., 2020)
and cryptocurrency price prediction (Patel et al., 2020).



2 1. Introduction

Software engineers are coming up with tools with ML capabilities integrated into
them. Using these tools, even novice users can build ML models for their respective
problem domains. However, creativity, experience and domain knowledge are critical
to the success of ML models (Wagstaff, 2012)(Storcheus et al., 2015)(Domingos, 2012).

As ML is moving out of research labs to the hands of common users, these users
must be able to interpret the outcome of these models. However, a majority of the
advanced ML models behave like a black box in the sense that their outcome is not
interpretable to human users, particularly if they are not ML experts. This is termed as
lack of human interpretability in ML and is a major hurdle in the further growth of ML
(Ribeiro et al., 2016b). Also, human users must be able to interact with these ML-based
systems. It provides an opportunity to learn from the experience of human users (Kim,
2015).

During recent years, a renewed interest has been observed among the research com-
munity towards conferring human interpretability to ML models. Human interpretabil-
ity has several advantages like facilitating trust, debugging ML models, potential to dis-
cover new knowledge, ensuring fairness and addressing right-to-explanation situations
(Ribeiro et al., 2016a)(Lipton, 2016)(Doshi-Velez and Kim, 2017). However, this field
is still evolving and there are several research gaps. These research gaps include dis-
covering important interactions among variables to provide new insights and facilitate
verification by human experts (Strumbelj and Kononenko, 2010), exploring alternatives
as explainers (Ribeiro et al., 2016b), evaluation metrics, providing global explanations
(Ribeiro et al., 2016a), and the need of incorporating domain knowledge into the ML
process (Kim, 2015)(Yang et al., 2019)(Holzinger et al., 2019). However, it is important
to understand that interpretability is a means to an end and not the end itself. There may
be alternate ways to achieve the broader goals of interpretability.

The goal of this thesis is to propose and demonstrate a framework for collaboration
between data, ML model and human domain experts. The objective of this collabora-
tion framework is to verify the learning acquired by an ML model against the provided
dataset and prevailing domain knowledge. For this verification, the idea is to listen
to the dataset, ML model and human experts individually to know their perception re-
garding the problem domain. The framework then measures and analyze the degree of
agreement between these three. A significant agreement between these three indicates
that learning acquired by the model is accurate as well as in agreement with the prevail-
ing domain knowledge. Moreover, in case of a lack of agreement with human experts,
the framework makes the ML model attempt to adapt itself by re-exploring the solu-
tion space, to align with the human user’s perception regarding the problem domain.
Feature importance is a commonly used measure to interpret the decision-making be-
haviour of an ML model. Studying important interactions between features is important
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to understand which features interact more. This thesis also proposes a graph-based vi-
sualization that can be used to analyze feature importance and feature interactions using
a single visualization. Figure 1.1 gives a brief outline of this thesis.

Figure 1.1: Thesis outline diagram

Organization of the chapter:The goal of this chapter is to summarize the key inno-
vations presented in this thesis. The section structure follows the chapter structure of the
thesis. Section 1.1 gives a summary of the existing literature in the field of human inter-
pretability. It talks about the motivation behind studying interpretability, the taxonomy
of the existing work towards conferring interpretability, key ideas and explainers used
for explaining outcomes, desired characteristics of an explanation, evaluation metrics,
and problem domains attempted. Section 1.2 proposes and demonstrates a framework
that considers dataset, ML model and human experts as the three pillars of an ML-
based solution. The framework is capable of verifying learning acquired by the ML
model against the underlying dataset and the prevailing domain knowledge. Section
1.3 discusses the extension of the proposed framework to enable an ML model to in-
corporate feedback from human domain experts. The proposed framework listens to
human feedback and aims to adapt itself to improve user agreement. In case of a con-
flict between human feedback and data, the ML system is capable of reporting it as a
conflict. Section 1.4 presents Feature-importance Feature-Interactions (FIFI) graph, a
novel graph-based visualization for analyzing important features and important inter-
feature interactions using a graph object. The fact that it is a graph brings the potential
advantage of applying existing research and software tools for network analysis.

1.1 Human interpretability in ML-based solutions

The goal of this chapter is to investigate the approaches proposed towards conferring
human interpretability to ML-based solutions. The focus has been to identify the key
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ideas and motivations. The sources of papers selected for review included prominent
ML journals and leading conferences. The research studies were shortlisted using pre-
defined search strategies and inclusion criteria. The conclusions from the investigation
are presented in the form of answers to the important research questions like under-
lying motivations, characteristics of a good explanation, the taxonomy of approaches
proposed, key ideas used for conferring interpretability, alternatives used as explainers,
ML algorithms attempted for interpretability, problem domains attempted, evaluation
metrics, opportunities in human-computer interaction and possible future research di-
rections.

Human interpretability in machine learning (ML) based solutions refer ability to
explain its outcome in a manner that is understandable to a human expert. Human
interpretability of ML-based solutions has potential advantages like facilitating trust,
model debugging and ensuring fairness (Ribeiro et al., 2016b)(Doshi-Velez and Kim,
2017). A renewed interest in making ML-based solutions human-interpretable has been
observed among the ML community during recent years.

Goal: A critical evaluation of the existing work done in the field of conferring
human interpretability

The following research questions were formulated to keep the investigation guided:

• What are the underlying motivations for human interpretability?

• What are the characteristics of a good explanation?

• What is the taxonomy of the approaches proposed?

• What are the key ideas and explainers used for conferring interpretability?

• What are the metrics used for evaluating interpretability?

• Which ML models have been attempted for interpretability?

• What are the types of problems attempted?

• Is Interpretability compulsory always?

• Can human-machine collaboration be useful in incorporating domain expertise?

• What are the open research directions?

Approach
Search terms were constructed using common terms related to human interpretabil-
ity, alternate spellings, synonyms and keywords from relevant papers. Some of the
most relevant search terms included: human interpretability in ML; explainable ML;
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transparency in ML; understanding the outcome of classification models; understand-
ing black-box models and accuracy-interpretability trade-off. Sources of the search in-
cluded the reputed ML journals and conferences. A few of the most prominent ones in-
clude Journal of Machine Learning Research (JMLR), Pattern Recognition, IEEE trans-
actions, Machine Learning – Springer, International Conference on Machine Learning
(ICML), and Neural Information Processing Systems (NIPS).

The papers covering one or more of the following criteria were shortlisted: (i)
proposing an approach for conferring interpretability (ii) accuracy-interpretability trade-
off (iii) implementing human interpretability approach on an ML problem and (iv) po-
sition papers on human interpretability in ML, and (v) human-machine collaboration
focusing incorporating prevailing domain knowledge.

Findings from the literature survey
The potential advantages of human interpretability include facilitating trust of the end-
user in the ML model, providing new insights about the phenomena under study, pro-
viding scrutinizing ability to a human expert, and ensuring fairness or unbiasedness.
Accuracy-interpretability trade-offs also make it important. Starting May 2018, as per
new Global Data Protection Regulations (GDPR), human subjects that are going to be
affected by the outcomes of an ML-based solution have the right to get an explanation
for that outcome.

A good explanation should be interpretable and easy to understand. The number
of pieces of information should not exceed the comprehension capabilities of the user.
An explanation should be in terms of concepts known to the target audience. An ex-
planation must at least be locally true. It must agree to the behaviour of the model at
least in the neighbourhood of the example for which model outcome is being explained.
Explanations should be model agnostic i.e. these are applicable irrespective of which
underlying ML model is used.

The existing work towards conferring interpretability can be broadly classified into
model-agnosticism(Ribeiro et al., 2016b)(Ribeiro et al., 2016a)(Baehrens et al., 2010),
approaches for interpreting tree ensembles (Hara and Hayashi, 2016)(Deng, 2019)(Van-
dewiele et al., 2016), approaches for interpreting neural networks (Hechtlinger, 2016)(Samek
et al., 2016)(Montavon et al., 2017) and addressing lack of consensus in this evolving
field (Bibal and Frénay, 2016)(Weller, 2017)(Doshi-Velez et al., 2017). Model-agnostic
approaches can be further classified into (a) work done towards approximating a com-
plex model with a simple interpretable model and (b) modelling input-output relation-
ship without attempting transparency in the underlying model, termed as visual analytics
(Krause et al., 2016)(Villagrá-Arnedo et al., 2017).

Key ideas employed for conferring interpretability to ML models included: approxi-
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mating a complex model using a simpler but interpretable model (Ribeiro et al., 2016b);
identifying important features using local explanation vectors (Baehrens et al., 2010);
explaining ML model outcome in terms of feature-wise contribution; listing important
features using explanation curves; interpretability using partial derivatives with respect
to input; using programs snippets as explanations (Singh et al., 2016). Approaches for
interpreting tree ensembles include: extracting an interpretable decision tree from an
ensemble (Hara and Hayashi, 2016); using Genetic Algorithms to extract a single inter-
pretable tree from a population of trees (Vandewiele et al., 2016); and finding prototypes
in tree space (Tan et al., 2016). Other ideas included: extracting interpretable features
and summarizing results in the form of rule sets; Bayesian framework for learning a
falling rule list (Wang and Rudin, 2015); learning a small set of rules in disjunctive
normal form; heat maps to show most contributing pixels using deep-Taylor decompo-
sition. Interpretability has also been attempted through modelling input-output relation-
ships and making outcomes of a black-box model more expressive using heatmaps and
progression charts (Krause et al., 2016)(Villagrá-Arnedo et al., 2017).

Metrics used for evaluating interpretability include: volume of the information in the
explanation to be comprehended; ease of identifying how to move a data point to get its
prediction outcome label changed; quality of explanations evaluated by human experts;
how many outcomes are explained using only top-ranked features?; using explainability
score to compute MEP(Mean Explainability Precision) and (MER) Mean Explainability
Recall; quantifying interpretability using information entropy instead of the count of
features.

Interpretability is not compulsory always and in fact can be harmful in certain con-
texts. It is particularly useful in situations that involve critical decision making and a
say of human domain experts. Possible dangers of transparency include divergence be-
tween intended audience and the actual beneficiary; transparency in government use of
algorithms; lack of motivation of intellectual property if all algorithms are open source;
discrimination of sub-groups based on sensitive features.

Humans and machines have unique strengths and can complement each other. Humans-
machine collaboration has potential advantages like improved user agreement, acceler-
ated exploration of solution space, providing a bigger role to end-users in the design
of interactive and interpretable ML systems, and incorporating multi-disciplinary ex-
pertise. The key idea is to present the learned model to human domain experts in an
interpretable manner. The human experts in turn provide feedback back to the ML sys-
tem based on their experience-based perception regarding the problem domain. The ML
systems attempt to adapt themselves to incorporate the feedback provided by human ex-
perts.

There are several interesting opportunities for carrying out future research. There is



1.2. Data, Machine Learning and Human Experts: A collaboration 7

a need to discover important interactions of variables to provide new insights; facilitate
verification by human experts; explore alternatives as explainers; provide global expla-
nations; address inconsistencies in local explanations; evaluate alternatives for proxim-
ity measures between a complex model and its interpretable approximation; evaluating
alternatives as metrics; finding new graphical tools to improve expressiveness. As this
field is still evolving and is quite subjective, there is a need of addressing the lack of
consensus regarding definitions, types and metrics to measure interpretability. There is
a need to define criteria for the faithfulness of an explanation. As interpretability is not
always compulsory, there is a need for a framework to understand when transparency
is useful and when it is harmful. As ML is moving from research labs to the hands of
the masses, it is important to utilize human domain expertise for incorporating domain
knowledge into the ML process. There is a need for clearly defined requirements for
input and goals of the output; preparing a front-end for the intended audience in terms
of concepts known to them to improve interpretability. Some generic research direc-
tions include reducing computational complexity for interpretability in real-time and
extending approaches implemented for classification problems to regression tasks.

1.2 Data, Machine Learning and Human Experts: A
collaboration

The goal in this chapter is to propose a three-pillar framework with the provided dataset,
learned ML model and human expert feedback as to its three pillars. The objective of the
framework is to verify the learning acquired by the model against the provided dataset
and prevailing domain knowledge. This chapter describes the proposed framework,
methods used to listen to each of these three pillars and computing degree of agreement
between these. The intuitive idea is that in an ideal ML-based solution, the provided
dataset, ML model learned using the provided dataset, and human domain experts must
agree in terms of their perception regarding the problem domain. The proposed ap-
proach has been evaluated using two problem domains: (i) a novel problem domain of
predicting the joining behaviour of freshmen students using a primary dataset and (ii)
’diabetes’, a publicly available standard dataset. A positive degree of agreement was
observed between the dataset, ML model and human experts in terms of importance
assigned to features. The agreement between the provided dataset learned model and
human domain experts helps verify learning acquired by the ML model and facilitates
trust in the ML model. This work can potentially form the basis for developing formal
quantitative metrics for evaluating ML models in terms of reliable learning and capabil-
ity to facilitate trust of human users.
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Goal: A framework that verifies the agreement between the dataset, ML model
and human expert after listening to each individually

The goal is to propose and demonstrate a framework that verifies the learning ac-
quired by an ML model against the provided dataset and human expert feedback. The
intuitive idea is that in any ML-based solution, the provided dataset learned ML model
and human expert feedback should agree. These three can be regarded as the three pil-
lars of an ML-based solution. The proposed framework aims to listen to each of these
pillars individually and attempts to answer the following research question:

Q. Is the provided dataset, the learned ML model and human expert feedback in
agreement regarding their perception of the problem domain?

This chapter describes the proposed framework along with methods used to listen
to the dataset, ML model and human experts. The proposed approach has been demon-
strated using a primary dataset from a novel problem domain.

Approach used
The input to the framework is the underlying dataset and the ML model learned

using this dataset. The output of the framework is to verify whether the learning ac-
quired by the model is accurate and in sync with the prevailing domain knowledge.
The framework aims to listen to the provided dataset, learned ML model and human
expert feedback. Listening to the dataset refers to identifying important characteristics
by computing information gain using entropy and the Gini index. Listening to the ML
model refers to interpreting its decision-making behaviour by computing feature impor-
tance as per the model. Listening to human experts refers to taking feedback in terms
of important features as per their perception of the problem domain. After listening
to each of these three pillars, the framework verifies the degree of agreement between
them regarding the perception of the problem domain.
Results and contributions
For the problem domain of predicting the joining behaviour of freshmen students, the
input dataset consisted of records of freshmen students enrolled in a higher education
institute. The objective was to classify which of these enrolled students are likely to join
at the start of the session. For the ’diabetes’ dataset, the objective was to predict the onset
of diabetes based on different diagnostic measures. We demonstrated that the proposed
framework was capable of verifying the learning acquired by the ML model against
the provided dataset and prevailing domain knowledge as per feedback from human
domain experts. A statistically significant degree of agreement was observed between
the dataset, ML model and human expert feedback. This chapter has the following
contributions:

(i) A framework that listens to the important pillars of an ML-based solution: the
dataset, ML model and human domain experts.
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(ii) Enable verification of the learning acquired and facilitating trust of human users.
(iii) Due to its quantitative nature, this approach is having the potential of forming a

basis for developing formal metrics for facilitating trust in an ML model.

1.3 Human-feedback Adaptive Learning

Humans and machines have their unique strengths and collaboration between these two
have the potential to improve ML systems further. For any such collaboration, hu-
man users must be able to interpret the behaviour of ML systems. Moreover, human
users should have a provision to give feedback to ML systems based on their domain
knowledge. Consequently, apart from accuracy, human interpretability and the ability
to interact with human experts are becoming crucial parameters for ML systems (Yang
et al., 2019)(Kim, 2015)(Holzinger et al., 2019).

The solution space of an ML problem may have multiple solutions that are equally
good in terms of internal optimization metrics. However, these solutions may differ in
terms of their alignment with the user’s perspective of the problem domain. Including
human experts in this exploration of the solution space of a problem has the potential to
help search for a solution that not only satisfies the threshold for internal metrics but has
improved agreement with the user’s perspective regarding the problem domain under
study.

The goal in this chapter is to extend the framework proposed in chapter 3 by incorpo-
rating human-feedback adaptive learning capability. In case there is a lack of agreement
between the ML model and human domain experts, the proposed algorithm makes the
ML model search for a solution that is improved in terms of agreement with the user.
Moreover, it takes care that the accuracy of the model does not go below pre-decided
threshold limits in the context of the problem domain.
Goal: Human-feedback adaptive learning
The objective of the proposed framework is to incorporate prevailing domain knowledge
collected in the form of feedback from human experts regarding their perception of the
problem domain.

This chapter also provides an algorithmic and graphical description of the workflow
involved in the design of ML systems with human-feedback adaptive capability. As
the field of conferring the interactive ability to ML systems is new, there is a lack of
established guidelines and evaluation metrics. This chapter lists a set of guidelines for
the design of interpretable and interactive ML systems. Novel evaluation metrics that
can be used for evaluating these interpretable and interactive ML systems have also been
proposed. These metrics have been thought of keeping in mind that human users who
are interacting with ML systems may not be ML experts at all.
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Approach used
This chapter extends the capability of the framework proposed in chapter 3. The pro-
posed approach is based on an intuitive idea that the provided dataset, ML model learned
using that dataset and feedback from human domain experts are important pillars of an
ML-based solution. The proposed approach listens to each of these three pillars and
measures the degree of agreement between them. The problem of measuring the degree
of agreement between these three is modelled as a rank correlation problem with three
judges (dataset, model and domain knowledge) and ’n’ participants (features used for
learning).

If the agreement between these three pillars is lacking, the model is rebuilt to incor-
porate feedback from human experts. The revised model is acceptable only if it remains
accurate enough as per the requirements of the problem domain. If the revised model
can achieve agreement between dataset, model and human experts without a significant
decrease in classification accuracy, it is considered as a gainful trade-off. An intuitive
idea to align the ML model with the perception of human experts regarding the problem
domain is to relearn while giving lesser importance to features ranked least important
by human experts. Hypothesis testing using Spearman’s rank correlation has been used
to verify the statistical significance of the agreement between the ML model and human
domain experts.
Results and contributions
The proposed human-feedback adaptive algorithm has been demonstrated using our run-
ning example of prediction joining behaviour of freshmen students. The capability of
the framework has been demonstrated by reaching out from a ‘lack of agreement sit-
uation’ to ‘Presence of agreement situation’ by making the ML model adapt itself to
incorporate human expert feedback. The major contributions of this chapter are:

(i) An algorithmic and graphical description of the working of interactive ML sys-
tems

(ii) Proposes human-feedback adaptive learning algorithm to enable an ML model
to adapt to human expert feedback

(iii) Proposing novel opportunities in human-feedback adaptive learning
(iv) Proposing metrics for the evaluation of interpretable and interactive ML sys-

tems.

1.4 Feature-importance and Feature-interactions graph

Humans are inherently good at interpreting visualizations and have been using these
visualizations to explain a phenomenon under investigation. As a result, most of the
approaches for conferring human interpretability to ML models have resulted in a vi-
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sualization. These visualizations enable a human user to interpret the decision-making
behaviour of an ML model. Most of the existing visualizations focus on identifying
features that are relatively more important in terms of affecting the decision-making
behaviour of the ML model. Apart from studying the importance of features, it is also
important to identify important interactions between features. The identification of im-
portant interactions brings an opportunity to uncover important interactions that are still
unknown to the community concerned with the problem domain.
Goal: To propose a novel visualization for human interpretability

The goal of this chapter is to propose a novel visualization FIFI(Feature-importance
Feature-interactions) graph, for interpreting ML models by analyzing important features
as well as important interactions. The objective is that a human user should be able to
identify relatively important features and relatively strong interactions. Moreover, the
visualization should provide control in the hands of the user to filter out important inter-
actions and plot the visualization corresponding to the subset shortlisted. The proposed
visualization has been demonstrated using two problem domains, one using a primary
dataset and the other using a publicly available standard dataset. As the proposed visu-
alization has been modelled as a graph, the existing research on network analysis can
be applied to analyze this visualization. Also, due to its natural analogy, a comparison
has been made with a knowledge graph.
Approach used
The proposed visualization has been modelled as a graph. Each node of this graph rep-
resents a feature used by the ML model for learning. Each edge of this graph represents
the interaction between a pair of features. This visualization depicts the relative im-
portance of features and the relative magnitude of interactions between features used in
learning an ML model. The size of a node is made proportional to the importance of
the corresponding feature. The width of an edge is proportional to the magnitude of the
interaction between the corresponding pair of features.
Results and contributions
The proposed approach has been demonstrated using two problem domains. The first
problem domain was our running example of predicting the joining behaviour of fresh-
men students. The second problem was of predicting customer churn using a standard
dataset from Kaggle. In both the demonstrations, the proposed visualization has been
able to identify important features and important interactions between features. This
chapter has the following contributions:

(i) To propose a novel visualization for interpretability that can enable a human user
to interpret an ML model behaviour.

(ii) The proposed visualization is a compact alternative to existing visualizations
as it enables the identification of important features and important interactions using a
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single plot.
(iii) The proposed visualization provides control to the user in terms of filtering out

the most important interactions.
(iv) Existing tools and software for network analysis can be applied to analyze this

visualization as it is modelled as a graph object.

1.5 Problem domains identified for experimentation

For experimentation, the following problem domains were used:

1.5.1 Predicting joining behaviour of freshmen students

As per the University Grant Commission (UGC) report, there are almost 900 univer-
sities across India including more than 300 private universities (UGC, 2019). Most
of these private universities spend hugely in competing to reach out to students who
are exploring different options to take admission into. Every admission year, from the
students, enrolled in an educational institution, some students do not join the same in-
stitution. The reasons include getting a higher scholarship in some other institution,
preferred college or discipline of interest in some other institution. Each student, who
takes admission but do not join is a loss to the concerned educational institute in terms
of resources invested. Ability to foresee such students is important for an educational
institute. Institutes can use this information to plan activities towards improving the
retention of enrolled students.

The objective is to explore the applicability of ML in helping educational institutions
predict the joining behaviour of their freshmen students. The idea is to formulate this
research question as a binary classification ML problem. The target variable is the
actual joining status of a student with ‘Joined’ or ‘Lost’ as possible outcomes. The first
objective is to learn an ML-based model using admission details and the actual joining
status of freshmen students of previous batches for learning. Such a model can be used
for predicting the joining behaviour of freshmen students of the new batch. The second
objective is to analyze important factors that contribute towards the joining behaviour
the most. This problem domain is dynamic as student joining behaviour is affected by
multiple factors that include changes in admission policies and trends in the education
sector every year. The outcomes of this study can be used by an educational institution
to improve its admission processes.
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1.5.2 Predicting onset of diabetes using diagnostic measures

’Diabetes’ dataset is a standard dataset contributed originally by the National Institute
of Diabetes and Digestive and Kidney diseases (Kaggle, 2016). The objective was to
use ML to learn a model that can be used to predict ‘diabetes’ taking different diagnostic
measures as input. The diagnostic measures included age of the person, diastolic blood
pressure, body mass index, diabetes pedigree function, glucose level, insulin level, num-
ber of pregnancies and skin thickness. The target variable ’outcome’ is a binary variable
with values as 0 (not diabetes) or 1 (diabetes). In this research work, a framework for
collaboration between dataset, machine and human experts is proposed. The use of this
dataset is justified as in the medical domain, say of human medical experts is important
for the acceptance of an ML-based solution. The dataset consisted of 768 records of
female patients of Pima Indian origin. Out of 768 records, 268 are 1(diabetic) and 500
are 0 (not diabetic).

1.5.3 Predicting customer churn

Telco-customer churn dataset referred to as ’tcc’ here onwards, consisted of customer
records and is available publicly on Kaggle (Kaggle, 2019). The target variable ‘Churn’
contained a ’Yes’ for the customers who left within the last month and a ’No’ for the
retained customers. This data set includes information about the customers like services
availed, customer account information(period of association, payment method etc.) and
demographic information about customers. The dataset consisted of 7032 observations
and 21 variables.

1.6 Organization of the thesis

The rest of the thesis is organized as per the outline given in figure 1.1.
The chapter 2 is dedicated to the review of existing literature in the field of human

interpretability. It talks about the strategy used for doing the literature review and the
prior formulated research questions aiming to be answered through the literature review.
These questions included identifying the motivation behind studying interpretability, de-
sired characteristics of an explanation, broad categorization of the existing work towards
conferring interpretability, key ideas employed for explaining outcomes, and evaluation
metrics used.

The chapter 3 describes the proposed framework for collaboration between dataset,
ML model and human experts. The objective of this framework is to verify the learning
acquired by an ML model against the provided dataset and prevailing domain knowl-
edge. The chapter includes motivation for this collaboration, the detailed algorithm, and
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the framework diagram. The framework has been demonstrated using two datasets, one
primary dataset and one standard dataset.

The chapter 4 discusses how the framework proposed in the chapter 3 can be ex-
tended to address the situation where the learned ML model lacks in agreement with
the prevailing domain knowledge. The proposed approach has been demonstrated us-
ing a primary dataset. The algorithm demonstrated that an ML model can be made to
adapt itself to incorporate feedback from human domain experts. The chapter details
the enhanced algorithm and a framework with the capability of human-feedback adap-
tive learning. The chapter also identifies desired characteristics of interpretable and
interactive ML systems, opportunities in human-feedback adaptive learning and metrics
for evaluation of ML systems with human-feedback adaptive learning capability. The
chapter also coins the idea of human-capability adaptive interfaces as all human domain
experts are not equally competent.

The chapter 5 proposes Feature-importance Feature-Interactions (FIFI) graph, a vi-
sualization for interpreting ML models. The chapter also discusses the experimental
work to demonstrate the idea of a FIFI graph. The highlight of this visualization is that
it is capable of presenting feature importance as well as interactions between features
using one visualization, thereby offering a compact alternative. Also, being a graph, it
has the advantage that the existing theory of network analysis can be applied. It offers
flexibility in terms of filtering out sparse versions in case the user is interested in top
features or top interactions only. The chapter also provides a comparative analysis of a
FIFI graph and a knowledge graph due to their natural analogy being graph objects.

The chapter 6 presents a summary of the complete research work including con-
clusions and future research opportunities related to this work. A justification of each
future research direction has also been provided to motivate the readers.



Chapter 2

Human Interpretability in Machine
Learning Based Solutions – Literature
Survey

2.1 Introduction

The goal of this chapter is to review the state-of-the-art in the field of conferring hu-
man interpretability to ML-based solutions. The chapter starts with an introduction to
the concepts of ML and human interpretability. This introduction is followed by dis-
cussing investigation strategies adopted. To keep the review of the literature focused,
a set of fundamental research questions were formulated. These included investigat-
ing the underlying motivations behind human interpretability, key ideas employed for
conferring human interpretability, evaluation metrics, opportunities in human-computer
interaction, and identifying future research directions.

ML attempts to train a machine to learn from experience like human beings do.
Here, the experience input to a machine is provided in the form of a set of known
examples. The objective is that after training the machine should generalize well to
predict the outcome for unseen examples. “A machine learns with respect to a particular
task T, performance metric P, and type of experience E, if the system reliably improves
its performance P at task T, following experience E” (Mitchell, 2006).

ML problems where target variable labels are available along with examples are
known as supervised ML problems. Supervised ML problems are broadly categorized
into classification and regression problems. In a classification problem, the aim is to
predict the class of a categorical variable for a given unseen example. For example,
predicting whether a student will pass or fail, whether a tumour is malignant or benign
or as simple as whether there will be rain tomorrow or not? In a regression problem, the
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target variable is of continuous type, for example, predicting the price of a house.
ML is a multi-disciplinary field with computer science and statistics having made the

most significant contributions. Speech recognition, computer vision, bio-surveillance,
robot control and accelerating empirical sciences are among important applications of
ML (Guyon and Elisseeff, 2003). A few recent explorations of ML include advertise-
ment classification of online newspapers (Jain et al., 2021), recommender systems for
life insurance (Rani et al., 2021), commercial mobile adhoc networks (Taneja et al.,
2021), ML in secure data analytics (Gupta et al., 2020) and cryptocurrency price pre-
diction (Patel et al., 2020).

However, building ML models is not that straightforward as factors like creativity,
experience and domain knowledge are critical to their success (Wagstaff, 2012)(Storcheus
et al., 2015)(Domingos, 2012).

Human interpretability in ML refers to the ability to explain model outcomes for a
particular instance in a way that is understandable to a human user who may not know
ML. Models like regression and decision trees are interpretable inherently. For example,
looking at the coefficients in a regression equation, one can interpret the sign and mag-
nitude of the contribution of features towards prediction outcome. Similarly, by looking
at the level of a node (feature) in a decision tree, one can interpret the relative impor-
tance of each feature in the decision making of the ML model. Advanced ML models
like random forest and neural networks are lacking in human interpretability. For these
models, it is not easy to understand why a particular label outcome is predicted for a
given instance. Human interpretability offers advantages like facilitating trust in end
users, model debugging and ensuring that the ML solution is unbiased. It is useful in
ML-based solutions that affect human subjects and are liable for an explanation to the
affected human subjects regarding the decision outcome. Examples include the recidi-
vism problem where an ML-based solution is used for accepting or rejecting a parole
application, early detection of diseases in medicine and fraud detection in banking. Hu-
man interpretability is crucial in application domains that have the potential to impact a
large audience and involve human subjects.

In recent years, conferring human interpretability to ML models has been given im-
portance during top ML conferences like ICML (International Conference on Machine
Learning) and NIPS (Neural Information Processing Systems). A few of these events
have been listed below:

• ICML 2020 Workshop on Human Interpretability in Machine Learning (WHI),
Virtual

• ICML 2019 Workshop on Human In the Loop Learning (HILL), California, USA
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• ICML 2018 Workshop on Human Interpretability in Machine Learning (WHI),
Stockholm, Sweden

• ICML 2017 Workshop on Human Interpretability in Machine Learning (WHI),
Sydney, Australia

• NIPS 2017 Interpretable ML Symposium

• FAT-SG 2017 Workshop on Fairness, Accountability and Transparency in AI and
Big Data

• ICML 2016 Workshop on Human Interpretability in Machine Learning (WHI),
New York, USA

• NIPS 2016 Workshop on Interpretable Machine Learning in Complex Systems

The lack of human interpretability in ML-based solutions remains a major obstacle
in the acceptance of ML-based solutions in these problem domains. Due to its potential
advantages, a renewed interest has been observed among the research community in
conferring human interpretability to ML-based solutions. The objective of this chapter
is to review the work done towards making ML models interpretable to their human
users. The following research questions were formulated before the investigation of the
state-of-the-art:

Q.1 What are the underlying motivations for human interpretability?

Q.2 What are the characteristics of a good explanation?

Q.3 What is the taxonomy of the approaches proposed?

Q.4 What are the key ideas and explainers used for conferring interpretability?

Q.5 What are the metrics used for evaluating interpretability?

Q.6 Which ML models have been attempted for interpretability?

Q.7 What are the types of problems attempted?

Q.8 Is Interpretability compulsory always?

Q.9 Can human-machine collaboration be useful in incorporating domain exper-
tise?

Q.10 What are the open research directions?
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The contribution of this chapter is to summarize the findings of the literature review
in the field of human interpretability as answers to the research questions formulated
above.
Methodology - Search terms, literature resources and selection criteria

Search terms were constructed using common terms related to human interpretabil-
ity, alternate spellings, synonyms and keywords from relevant papers. Some of the
most relevant search terms included: human interpretability in ML; explainable ML;
transparency in ML; understanding the outcome of classification models; understand-
ing black-box models and accuracy-interpretability trade-off. Sources of the search in-
cluded the reputed ML journals and conferences. A few of the most prominent ones in-
clude Journal of Machine Learning Research (JMLR), Pattern Recognition, IEEE trans-
actions, Machine Learning – Springer, ICML, and NIPS.

The research studies covering one or more of the following criteria were shortlisted:
(i) proposing an approach for conferring interpretability (ii) accuracy-interpretability
trade-off (iii) implementing human interpretability approach on an ML problem (iv)
position papers on human interpretability in ML, and (v) human-machine collaboration
focusing incorporating prevailing domain knowledge.

2.2 Literature review

The presentation of this section has been organized into model-agnostic approaches,
interpreting tree ensembles, interpreting neural networks, human-machine interaction
and lack of consensus existing in this evolving field.
Model-agnostic approaches: Model-agnostic approaches are applicable irrespective
of the underlying ML algorithm. This independence of the underlying ML algorithm
brings advantages like flexibility in the choice of the underlying ML algorithm.

Using fundamental concepts of coalitional game theory (Strumbelj and Kononenko,
2010), a general method for explaining outcomes of any classification model has been
proposed. Using the Titanic dataset, the outcomes of different classifiers like naïve
Bayes (NB), artificial neural networks (ANN), logistic regression (LR), and support
vector machine (SVM) have been explained in terms of the contribution from each fea-
ture.

Local explanation vectors have been used to understand an instance-specific predic-
tion outcome of a classifier (Baehrens et al., 2010). These vectors are an estimation of
local gradients and characterize how a data point should be moved to change its predic-
tion outcome. The proposed approach was validated using three problem domains: (i)
Iris flowers classification in Fisher’s data set (ii) Distinguishing 2 from 8 in USPS data
set and (iii) a drug discovery problem.
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Local Interpretable Model-agnostic Explanations (LIME) algorithm has an underly-
ing assumption that every complex classifier can be approximated by a simpler model at
a local scale (Ribeiro et al., 2016b). The key idea has been to learn a local interpretable
model to explain the prediction outcome of any classifier. The SP-LIME algorithm that
uses a set of representing instances, has also been proposed to address the “Trusting
a model” problem. This work has already been implemented in Python and R as a
package.

Model-agnostic approaches have advantages like model flexibility, explanation flex-
ibility, representation flexibility, low switching cost and ability to compare models
(Ribeiro et al., 2016a). The associated challenges include: (i) getting a global under-
standing of the model (ii) inconsistency in local explanations (iii) some domains require
exact explanations, and (iv) incorporating more powerful forms of user feedback.

Program snippets have been used as local explanations of any black-box model
(Singh et al., 2016). The use of program snippets offers several advantages: (i) capabil-
ity to capture complex behaviour of black-box systems (ii) each existing interpretable
representation can be translated into a program and in fact, can represent their arbitrary
combinations (iii) level of detail can be controlled and (iv) research done on software
or programs analysis can be used to analyse complex systems being represented by
programs.

Local explanations methods like LIME are capable of identifying when a model is
right for the wrong reason. However, these models neither scale to the whole dataset nor
correct these problems. Input gradients-based explanations are consistent with local ex-
planation methods like LIME. Examining and selectively penalizing input gradients can
help regularize differentiable models (Ross et al., 2017). Given annotations about incor-
rect explanations, alternate explanations were explored to find better reasons to be right.
In the absence of annotations, classifiers with different decision boundaries were ex-
plored and inspected by human experts. The right-for-the-right reasons approach helps
bring robustness to explainable systems despite the presence of adversarial examples.

A model-agnostic explanation system based on if-then rules called ‘anchors’ has
been proposed (Ribeiro et al., 2018). An anchor explanation highlights part of the input
that is sufficient to make a prediction. A human user study was conducted to demon-
strate how anchors help humans predict the outcome for unseen instances with fewer
efforts and higher precision. The limitations of the approach include (i) overly specific
anchors for rare classes resulting in increased complexity and lesser coverage (ii) poten-
tially conflicting anchors where anchors with the different outcomes apply to the same
instance and (iii) the possibility of a variety of explanations for a given instance.

Influence functions have been used to explain prediction outcomes of black-box
models (Koh and Liang, 2017). Influence functions are based on the core idea of study-
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ing models through the lens of their training data. The idea is to trace back a prediction
outcome through the underlying ML algorithm to identify the most responsible training
points behind that prediction. The implementation of this approach required only oracle
access to gradients and Hessian-vector products. Even in the case of non-differentiable
and non-convex models, an approximation to influence functions using second-order op-
timization techniques can still provide valuable information. This work demonstrated
a variety of applications including training-set attacks, debugging models and fixing
datasets.

High-level functional programs, which capture the invariant structure in the ob-
served data have been proposed to represent abstract models (Penkov and Ramamoor-
thy, 2017). The authors propose a program-induction machine, an architecture capable
of inducing interpretable explanations in the form of LISP-like programs from observed
transition system data traces. The optimization procedure for program learning is based
on backpropagation, gradient descent and A* search. This work allows the users to
specify the properties and context in which data is to be explained by accepting a set of
predicates of interest from the user.

A crucial property that interpretability methods should satisfy is the robustness of
explanations to local perturbations. Such a requirement states that similar inputs should
give rise to similar explanations (Alvarez-Melis and Jaakkola, 2018). The authors
have formalized the intuitive notion of robustness and investigated popular gradient and
perturbation-based interpretability methods in terms of robustness of explanations. Ex-
perimental results showed that model-agnostic perturbation methods are more prone to
instability in comparison to their gradient-based counterparts. The authors also pro-
posed ways to enforce robustness in interpretability methods.

A novel method, ASTRID (Automatic STRucture IDentification), has been pro-
posed for investigating which feature interactions are exploited by the classifier for
making predictions (Henelius et al., 2017). Attributes are said to interact whenever
they are conditionally dependent given the class. Knowledge of such interactions has
applications in the field of pharmacovigilance and bioinformatics. This paper studies
two problems: (i) To determine if a particular grouping of attributes represents attribute
interactions structure in a given dataset and (ii) to automatically find a grouping of at-
tributes in the given dataset with maximum cardinality. ASTRID found this grouping in
polynomial time and did not make any assumption on the data distribution or classifier
thereby increasing its applicability.

Explaining outcomes of complex models in terms of feature importance becomes in-
feasible in the case of a high dimensional dataset without restraining the number of fea-
tures. A model-agnostic approach to limit the length of explanations using contrastive
explanations has been proposed (van der Waa et al., 2018). This approach utilizes the
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human tendency of asking questions like “Why this output (the fact) instead of that
output (the foil)?” to shortlist features playing an important role. An arbitrary model
was trained to distinguish between the fact and the foil. From this model, two sets of
rules, one for identifying data point as a fact and another for identifying data point as a
foil, were distilled. The factual rule set was subtracted from the foil rule set to obtain
a relative complement of the fact rules. This relative complement was used to con-
struct contrastive explanations. The proposed approach constructed explanations that
were shorter than the full feature list, provided more information on the contribution of
features and this contribution matched the underlying model more closely.

Assessment of algorithmic fairness is among the several advantages of interpretabil-
ity. This assessment is affected by explanation styles as certain explanations are inher-
ently less fair while some can enhance confidence in the algorithmic fairness (Dodge
et al., 2019). Assessment of fairness is also affected by whether it is model-wide or
instance-specific. There is a need for personalized and adaptive explanations to support
the assessment of fairness.

Interpreting tree ensembles: Tree ensembles utilize a large number of decision
trees to improve predictive performance. The outcome is computed using the outcomes
of individual trees. This increased predictive performance comes at the cost of inter-
pretability as compared to that using a single decision tree.

To avoid compromise on accuracy or interpretability in the case of tree ensembles,
using a pair of models, P and I, respectively for prediction and interpretation (Hara and
Hayashi, 2016), has been proposed. The tree ensemble has been approximated by an
interpretable model using the Expectation-Maximization (EM) algorithm that attempts
to minimize Kullback-Leibler (KL) divergence from the complex tree.

A framework named ‘inTrees’ that can extract, process, prune, summarize rules and
discover frequent variable interactions from a tree ensemble has been proposed (Deng,
2019). One limitation is that its current version in ‘R’ handles trees with binary splits
only, whereas, the algorithms apply to trees with multiple splits also.

GENESIM a genetic algorithm that learns a single interpretable decision tree after
starting with an initial population of decision trees has been proposed (Vandewiele et al.,
2016).

Finding prototypes in tree space has been proposed as a new approach for inter-
preting tree ensembles (Tan et al., 2016). Prototypes are “representative” observations.
This approach benefits from leveraging tree structure and naturally learned similarity
measures. The idea has been to focus on sparsity-in-observations instead of sparsity-in-
features.

Explaining tree ensemble methods usually rely on feature attribution. Existing fea-
ture attribution methods can assign higher importance to features with a lower impact on
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the model’s behaviour (Lundberg and Lee, 2017). This problem has been addressed by
developing fast exact solutions for SHAP (Shapley Additive explanations) values using
conditional expectations which are consistent as well as locally accurate. XGBoost has
been used to demonstrate the inconsistencies of current methods and improved cluster-
ing performance using SHAP values. The complexity of computing SHAP values has
also been reduced from exponential to O(T LD2), where, T, L and D respectively rep-
resents the number of trees, maximum number of leaves in any tree and the maximum
depth of any tree.

The importance of defining the right locality, while constructing local surrogate
models has been demonstrated (Laugel et al., 2018). Defining the locality right has
a major impact on the relevance and quality of the approximation of the local decision
boundary of a black-box model and thus on the quality of the explanation for an indi-
vidual instance. This work proposed a sampling strategy centred on a particular place of
the decision boundary, relevant for a prediction to be explained, rather than on the pre-
diction itself. The intuition behind the approach has been that as a local surrogate aim
at approximating local black-box decision boundary, this boundary should be sought
first to sample instances in the neighbourhood of the instance. The experimental results
demonstrated improvements in the local fidelity of the surrogate both for synthetic and
UCI repository datasets.

In contexts, where multiple distinct but accurate models for some datasets exist for
classification, current ML methods are likely to recover a complex model that combines
them (Ross et al., 2018). While individual models may be more or less interpretable,
their combinations are likely to be harder for humans to understand. The authors in-
troduced a way to identify a maximal distinct set but accurate models for a dataset
through optimizing orthogonal gradients during training. The proposed approach has
been demonstrated empirically to recover simpler more interpretable classifiers instead
of complex ones. The novelty of the work lay in the use of independence-based proxy,
focus on maximal sets, and training methods.

Interpreting neural networks: Artificial Neural Networks (ANNs) are capable of
providing accurate solutions in complex problem domains. However, they do not fare
well on the interpretability front.

Partial derivative or input gradient of the model with respect to input has been
used for interpreting any model, both for classification as well as regression problems
(Hechtlinger, 2016). If a partial derivative with respect to input was zero, it indicated
that this input did not affect the prediction function. If the same is non-zero, that input
was considered as important to the model prediction.

Layer-wise relevance propagation (LRP) framework has been used to explain pre-
dictions of a deep neural network by the decomposing outcome in terms of the input
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variables (Samek et al., 2016). In the context of an image classification problem, LRP
operates by building a local redistribution rule for each neuron. These rules are applied
in a backward pass to obtain pixel-wise decomposition. LRP is useful in analysing
differences in DNN architectures.

A novel technique called deep-Taylor decomposition that decomposes decisions of
a neural network as a relative contribution from features has been proposed (Montavon
et al., 2017). Existing approaches for explaining decisions of complex non-linear mod-
els have been categorized as (i) functional approaches involving a local investigation of
the prediction function or (ii) message passing approaches viewing approximation as an
outcome of a computational graph and explanation is produced using a backward pass
on this graph. This work has reconciled these two approaches in the context of deep
neural networks.

Deep neural networks are opaque and there is a need to explain neural computation.
The explanation problem itself has been modelled as a learning problem (Rosenbaum
et al., 2017). The authors present a new dataset and user simulator, e-QRAQ (explain-
able – Query, Reason and Answer Question), to test an agent’s capability to read a short
ambiguous story and answer a challenge questions associated with the given story. The
story is made ambiguous by replacing some of the entities with variables. The authors
demonstrated e-QRAQ by training a new neural architecture based on end-to-end mem-
ory networks to generate predictions as well as partial explanations. A strong correlation
was observed between the quality of the prediction and the explanation.

Sensitivity Analysis (SA) and Layer-wise Relevance Propagation (LRP) have been
evaluated for explaining prediction outcomes of a deep neural network (Samek et al.,
2017). Dataset used included image classification (ILSVRC2012 dataset), classification
of text documents (20Newsgroup dataset), and recognition of human actions in videos
(HMDB51 dataset).

Deep neural networks have shown success in processing images and audio data
whereas tree-based models have been popular for processing tabular data. Deep Neural
Decision Tree (DNDT), an intersection of these two approaches, (Yang et al., 2018) is a
neural network, where each set of its weights corresponds to a specific decision tree and
is interpretable. In a DNDT, parameters are simultaneously optimized using stochastic
gradient descent instead of a greedy splitting procedure. A DNDT self-prunes at split
as well as feature-level. The experimental work demonstrated better results than neural
networks for several tabular datasets while providing interpretability.

The automated discovery of new or unusual information in large datasets is a key to
scientific progress. Many image data analysis systems are making use of CNNs (Convo-
lutional Neural Networks). However, most of the existing anomaly and novelty detec-
tion methods are difficult to interpret. An approach to generate human-comprehensible
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explanations for novel discoveries in large image datasets has been proposed (Wagstaff
and Lee, 2018). Novelty detection is combined with CNN image features to achieve
rapid discovery and interpretable explanations. The proposed approach has been demon-
strated using the ImageNet images dataset. Experimental results implied that in the case
of novel image detection, explainable results in tandem with best discovery performance
are obtainable.

Textual explanations using natural language has been used to explain a decision
made by a deep neural network. Current textual explanations discuss class discrimina-
tive features in an image. Counterfactual explanations which reason about information
that is not present in an image, but might impact the decision if it were available, has
been proposed (Hendricks et al., 2018). The intuitive idea behind counterfactual expla-
nations is to identify the evidence which is discriminative for one class, but not present
in the other class. Experimental results demonstrated good counterfactual explanations
both qualitatively and quantitatively.

Image classifiers operate on low-level features rather than high-level concepts. Con-
cept Activation Vectors(CAVs) which represents the internal state of a neural network
in terms of high-level human-friendly concepts has been proposed (Kim et al., 2018).
The idea has been to quantify the importance of a user-defined concept to a classifica-
tion outcome. Image classification has been used as a testing ground to demonstrate the
approach. Contributions of this work include (i) human-friendly linear interpretation
and (ii) the use of natural high-level concepts in explaining model decision-making.

Visual Analytics: This approach is based on using visualizations for modelling
input-output relationships of an ML classifier, to achieve interpretability (Krause et al.,
2016). This work has talked about the role that visual analytics can play in interpretabil-
ity. Making the outcomes of the black-box model more expressive instead of trying to
make the underlying complex model transparent has been attempted (Villagrá-Arnedo
et al., 2017). The idea has been to provide more information than mere classification like
interpreting progress, trends in learning and identifying causes for learning problems,
in the context of student performance. Expressive representation tools like progression
charts and heat maps have been used.

Addressing lack of consensus in this evolving field: As the field of human in-
terpretability is still evolving, there is a lack of consensus among the ML community
regarding the formal definitions and evaluation metrics for interpretability.

An attempt has been made to give more specific definitions of interpretability (Lip-
ton, 2016). This study aims to answer questions like: What are the underlying motiva-
tions for human interpretability in ML? What model properties and techniques confer
interpretability to ML models? The common notion that linear classifiers are inter-
pretable whereas deep neural networks are not, has also been questioned.
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The issue of lack of consensus related to definition and measurability of inter-
pretability has been addressed (Bibal and Frénay, 2016). Different terms being used
for interpretability has been categorized into (i) synonyms for interpretability and (ii)
the ones that depend on interpretability but are related to distinct problems e.g. accept-
ability, justifiability. Approaches to measuring interpretability have been categorized as
heuristics and user-based surveys.

The need to distinguish between types of transparency and identify settings, where
transparency may be harmful, has been addressed (Weller, 2017). Motivations and ben-
efits are different for different contexts as well as different stakeholders i.e. developer,
deployer, user and society. There is a need to (i) Define criteria and tests for faithfulness
of an explanation (ii) Metrics for comparing the performance of explainers (iii) Develop
outlines to understand what kinds of transparency are supportive and contexts in which
it can be harmful.

Data-driven ways have been suggested to derive operational descriptions and as-
sessments of explanations to address the issue of lack of consensus in defining and
evaluating interpretability (Doshi-Velez and Kim, 2017). The questions raised include:
Are all so-called interpretable models like decision trees, falling rule lists etc. equally
interpretable? Do all applications have the same interpretability needs? The authors
have suggested application-grounded, human-grounded and functionally-grounded as
approaches for interpretability evaluation.

Lack of clarity in existing definitions of interpretability and its cognates has been ad-
dressed (Krishnan, 2019). The authors have advocated that the notion of interpretability
is over-hyped and may not be the only solution to the broader goals of interpretability.
The research community should talk more about end goals rather than interpretability
which might be one tool among a possible set of solutions. Strategies like reviewing
the construction of training set and strategies for testing of classifiers have been talked
about to achieve many of the goals of interpretability without actually knowing the inner
working of ML algorithms.

Transparency is often advocated to facilitate trust in ML-based solutions and their
successive deployment in real-life situations. Motivations and benefits of transparency
vary for different types of transparency and in different contexts (Weller, 2019). The
author highlights and review settings where transparency may be harmful. Also, some-
times, transparency is a means to an end and not the end in itself. Also, transparency
can be used by actors with misaligned interests as a channel for manipulation or inap-
propriately use information gained due to the transparency of an ML model.

Explanations produced by existing tools are neither standardized nor systematically
assessed. There is a need for defining explainability to create best practices and identify
existing open challenges. To trust black-box models, there is a need for explainability
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in addition to interpretability(Gilpin et al., 2018). Explainability implies interpretability
but the reverse may not be always true. Most of the work focussing on explaining
deep networks involves evaluating explanations for (i) completeness as compared to the
original model (ii) Completeness as measured on a substitute task (iii) ability to detect
biases in models and (iv) Human evaluation for reasonableness.

Human-Machine Interaction: As ML is moving out from research labs to the
hands of the end-users, it is becoming important that future ML systems should be
capable of incorporating feedback from human domain experts. For this to happen,
end-users should be able to interpret the ML model as well as revert back with their
experience-based feedback regarding the problem domain.

Well-designed explanation interfaces have the potential to facilitate the trust-building
of end-users. A roadmap identifying important design issues worth investigation and a
set of general principles for the construction of explanation interfaces in the context of
trust-inducing interfaces has been provided (Pu and Chen, 2006).

The democratization of ML by providing a bigger role to end-users in the design of
ML systems has been advocated (Amershi et al., 2014). Involving users in the learning
process results in rapid and specific incremental updates in the ML model. This involve-
ment brings the challenge of understanding the capabilities, behaviour and needs of the
end-user. There are several open research challenges like common language differ-
ent fields, evaluation of interactive ML systems, establishing principles and guidelines,
leveraging the masses and addressing algorithmic problems (time-space trade-off).

Human-in-the-loop ML that enables interaction of human experts with ML systems
to incorporate domain knowledge, has been attempted (Kim, 2015). An interpretable
model iBCM to support human decision-making has been developed. This research
developed a model that allows transparent interaction with humans who may not be
ML experts. The model is demonstrated in the education domain for streamlining the
grading process.

A novel notion of interpretability has been provided looking beyond human under-
standing of model outcome (Dhurandhar et al., 2017). Interpretability is not an absolute
concept and must be considered relative to a target model that may be a human in the
most obvious setting. This work proposes a framework to compare interpretable pro-
cedures on practical aspects like robustness and accuracy. As a future direction, all
humans may not be equal relative to a task as expertise in a domain may increase the
level of detail consumable by that human.

An approach to efficiently optimize human interpretable models by directly involv-
ing human subjects in the optimization loop has been proposed (Lage et al., 2018). The
idea is to develop a diverse collection of models that can explain data well. From this
collection, pick models that are highly human interpretable. As the evaluation of an
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interpretable model involves human user studies, it helps to reduce the number of user
studies and make it cost-effective. The algorithms used included decision trees and neu-
ral networks. The Proxies used included average path length, the average number of
distinct features in a path, number of nodes, and number of non-zero features.

Overall decision-making in high-stakes settings is an ML model communicating
with a human who makes the final decision. Therefore, the relevant performance criteria
should be for the entire system and not only for the ML component. The performance of
such two-node tandem data fusion systems architecture has been characterized using the
theory of distributed detection (Varshney et al., 2018). The ML model node transmits its
observation to the human node. The final decision is produced after fusing independent
local observation of the human node with information received from the model node.
The experimental results have shown the overall system of a human combined with an
interpretable classifier outperformed the systems with a black-box classifier only. This
approach is termed a hybrid of human and ML models.

A hybrid human-machine intelligence approach has been proposed where initially a
white-box ML model is learned (Yang et al., 2019). The model is presented to human
experts to get their feedback on the learned model. The model is refined to incorporate
the feedback given by human experts. This iterative cycle goes on until an equivalent
ML model is reached that is as competitive as a black-box model in terms of internal
optimization metrics. The internal metrics used in this case were Precision, Recall and
F1-score. A user interface called ’Ruleslearner’ has been used to present the learned
model as a set of rules. These rules are in disjunctive normal form. Using this interface,
feedback from users is collected in the form of addition, deletion, modification, ranking
or filtering of rules.

The involvement of humans in the exploration of solution space can positively affect
computationally hard problems(Holzinger et al., 2019). This involvement can address
the disadvantages of auto-ML by reducing resource consumption, engineering efforts
required, and the amount of training data required. For demonstration, the ACO (Ant
colony optimization) algorithm was used for solving a TSP (Travelling Salesman Prob-
lem). The TSP problem was modelled as of finding the optimal path on a weighted
connected graph. The key idea has been to increase the probability of selection of a
human-traversed path, by artificial agents also.

Interdisciplinary expertise has been advocated to develop explanatory learning mod-
els that can provide interpretable and achievable insights in addition to accurate pre-
dictions (Rosé et al., 2019). The interdisciplinary expertise spans AI/ML engineers,
cognitive, education and UI/UX designers. The proposed approach demonstrated (i)
improvement in student learning (ii) better pedagogical practices and (iii) advancement
of learning science.
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Setting up appropriate expectations from AI systems is important as they vary among
end-users. The impact of setting up expectations has been demonstrated using two
versions of an AI-based scheduling assistant, with similar accuracy but different focus
(avoiding False Positives Vs False Negatives). Expectation adjustment techniques pre-
pare users for imperfections in AI systems and improve user acceptance of such systems
(Kocielnik et al., 2019).

The impact of combinations of explanations and feedback on users’ perception of
ML systems has been investigated (Smith-Renner et al., 2020). For the low-quality
model, explanations without the feedback opportunity lead to a negative user experi-
ence. For the high-quality model, requesting feature-level feedback without explanation
reduced trust.

Results showed that relational style leads to favourable perceptions as compared to
functional style. Technologies that offer high levels of automation and human control
have the potential to improve human performance and thus leading to wider adoption
of these technologies. The human-Centered Artificial Intelligence (HCAI) framework
aims to explain how to design for a high level of automation and human control, de-
ciding when to provide full control to humans and when to computer, and how to avoid
pitfalls associated with giving full control to humans or computer (Shneiderman, 2020).

Research on AI ethics should also focus on everyday interactions with personal tech-
nology as AI can commit moral wrongs (Shank and Gott, 2020). The findings reported
that two types of exposure lead to such wrongs most frequently: (i) exposing personal
information (31%) due to information sharing between devices and (ii) exposing peo-
ple (especially children) to undesirable content (20%) due to their proximity to audio
devices.

With the increase in demand for online education, the use of ML or AI-based teach-
ing assistants is an upcoming area for improving the learning experience of students.
Using an online survey, the perception of students regarding using machine teachers or
AI assistants in higher education was investigated (Kim et al., 2020). The findings of
the survey indicated that usefulness and ease of communication with these AI assistants
were key to the adoption of such assistants. The authors examined the impact of com-
munication style (relational vs functional) of machine teachers on students’ perception
about AI-based education (Kim et al., 2021).

Other related work: Falling rule lists (FRL) are classification models consisting of
a set of rules where (i) the order of rules decides which example to be classified by each
rule and (ii) the probability of success decreases monotonically downward. A Bayesian
framework to learn an FRL has been proposed (Wang and Rudin, 2015). FRLs are
particularly useful in healthcare applications where the patients are stratified into risk-
sets with a different priority.
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Supersparse Linear Integer Model (SLIM) has been used to produce an accurate
and interpretable model for recidivism prediction (Zeng et al., 2015). Running a SLIM
was modelled as an integer programming problem. It has been found that traditional
methods like ridge regression perform equally well as modern methods like Stochastic
Gradient Boosting.

An interpretable predictive model by integrating data-driven model and domain
knowledge has been proposed (Jovanovic et al., 2016). Hierarchy of diseases ICD-
9-CM (International Classification of Diseases 9th - revision clinical modifications) has
been taken as the domain knowledge. In this work, a way to quantify interpretability
using information entropy and not just the count of features has also been proposed.
Tree-Lasso regularized regression model was found competitive in accuracy while be-
ing more interpretable also.

Making interpretable models using the human mind’s construction of concepts and
meaning has been proposed (Condry, 2016). Using a relational model for meaning, the
concepts can be classified as form (symbol) or functions (meaning), given a context.

The problem of interpreting ML models built from high dimensional and sparse
data has also been attempted (Moeyersoms et al., 2016). The basic idea has been to
list important features using “Explanation curves”. It evaluates in terms of how many
examples have been explained for a given number of features listed. Online browsing
records for predicting product interest was used for empirical evaluation.

Conferring interpretability to Restricted Boltzmann Machines (RBM), a commonly
used algorithm for collaborative filtering in recommender systems, has been attempted
using explainable RBM technique (Abdollahi and Nasraoui, 2016). This technique
picks top-n recommendations using an explainability score for each item and each user.
MovieLens rating data has been used for testing the approach.

A two-stage approach to increase the interpretability of a Computer-aided Diagnosis
(CAD) system has been proposed (Gallego-Ortiz and Martel, 2016). The first stage
extracted features that reflect simple and interpretable characteristics of lesions. The
second stage summarized CAD results in the form of rules that can be explained in terms
of lesions characteristics. The problem of classification of breast MRIs as cancerous or
non-cancerous was taken for testing the proposed approach.

The Bayesian framework has been used to learn a classifier that consists of a small
set of rules in the disjunctive normal form to achieve interpretability (Wang et al., 2017).
The basic idea has been that in the space of good predictive models, a very sparse but
accurate rule set may exist. The problem was to find that rule set in a computationally
effective manner so that it can be used in practical settings.

Using the technique called “cloaking”, social-networking site users can inhibit infer-
ences being drawn from their activities as a matter of privacy (Chen et al., 2017). This
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work demonstrated that users have to cloak a small portion of their likes to inhibit any
inferences being drawn about them. Also, the targeted users for posting advertisements
can seek an explanation of why are they being targeted for this particular advertisement.

There exist legitimate concerns about the intentional and unintentional consequences
of AI systems. The authors advocated the use of explanations to make AI systems ac-
countable (Doshi-Velez et al., 2017). The authors reviewed current societal, moral and
legal norms around explanations and different contexts that required explanations under
the law. This work listed the technical considerations if AI systems are to produce kinds
of explanations currently required of humans under the law. Also, there is a need to
think about why and when explanations are useful enough to outweigh their cost.

For a given input, output and explanation, a human is expected to verify is the out-
put as per the input and expected rationale. Variation in factors like size of explanation,
creating new types of cognitive chunks, and repeated terms in an explanation have been
analysed to identify what factors of an explanation, affect its human-interpretability in
the context of verification and what factors are relatively insensitive (Narayanan et al.,
2018). Variation in the form of the domain was also evaluated. Any increase in ex-
planation complexity increased the response time of humans for verification tasks and
decreases subjective satisfaction with the explanation. Embedding a new concept im-
proved response time as compared to creating a new definition. New concepts and the
number of lines increased response time more as compared to the repetition of concepts
or longer lines.

The interest in interpretability has been extended to active learning, where the ex-
planation is of interest added to the labeller apart from the receiver of the decision and
creator of the model (Phillips et al., 2018). This work was an extension of the work on
LIME to interpret what specific trends and patterns an active learning strategy may be
exploring and how LIME can be used to generate locally faithful explanations for an
active learning strategy. These explanations help understand how different models and
datasets explore a problem space over time. The notion of uncertainty bias has been
introduced to quantify per-subgroup differences in terms of how active learning queries
spatial regions.

Arguing that a majority of the existing feature contribution-based explanation meth-
ods lack a formal mathematical definition, a novel definition of the feature score has
been proposed (Hara et al., 2018). The idea has been to find the maximally invariant
data perturbation that does not change the model’s output. The features that allow small
data perturbations are considered as the important ones. The intuition behind this is that
if a feature is relevant to the output, it cannot change a lot to keep the output changed.
The problem of finding maximal data perturbation has been formulated as semi-infinite
programming and approximated as a linear programming problem using the first-order
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Taylor expansion. The proposed approach has been demonstrated on image classifica-
tion with VGG16 and was able to identify important parts of the images effectively.

It has been argued that the interpretability of an ML system should be defined con-
cerning a specific task or agent. To answer this question, a model identifying different
roles that agents can fulfil concerning the ML system has been described (Tomsett et al.,
2018). The model has been illustrated in different scenarios like how the role of an agent
influences its goals and the implications for defining interpretability. This model can be
useful for the research community working on interpretability, developers involved in
such systems, and people involved in the auditing of ML systems. This approach can
help system creators-owners identify interpretability needs of different agents and spec-
ify the level of access to explanations based on the role of an agent.

Open Learner Modelling (OLM) provide tools for supporting human learning and
teaching by developing models of learner’s cognition and emotions (Conati et al., 2018).
The authors summarized how Artificial Intelligence can be used in education through
the OLM research and what are the necessary considerations for making it interpretable
and explainable. This work provided a starting point for an interpretable AI in edu-
cation. OLM are student models that allow users to access their content with varying
levels of interactivity. Key considerations for OLMs include identifying: (i) What is the
need of building the OLM (ii) Which aspects of the model are to be made available to
the user? (iii) How is the model accessed and the degree to which it can be manipulated?
and (iv) Who all have access to the model?

Knowledge bases are now a reality owing to their success in natural language pro-
cessing and semantic web search. Knowledge bases suffer from incompleteness and rely
on mapping entities and relations into a low-dimensional vector space via embedded
models. Embedded models are accurate but hard to interpret. Two pedagogical meth-
ods have been proposed to interpret embedding models associated with large knowledge
bases(Gusmao et al., 2018). The idea has been to extract human interpretable weighted
horn rules from embedding models.

Sharing understanding of an ML model’s decision-making behaviour can be risky
from the privacy aspect of the training data (Shokri et al., 2019). This work initiated
a new research direction termed as ‘Privacy – Quality Explanation trade-off”. The ob-
jective was to explore whether an adversary inferred private information regarding the
training data by leveraging explanations. Privacy risks of feature-based model expla-
nations have been investigated using membership-inference attacks. The idea was to
find out how much information about the presence of a training data point gets leaked
through model predictions plus explanations. Results showed that back-propagation
based explanations are prone to such information leak due to revealing statistical infor-
mation regarding the model’s decision boundaries about an input.
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2.3 Discussion on literature review

This section attempts to summarize the findings from the literature review. The existing
work can be broadly categorized as model-agnostic approaches, interpreting tree en-
sembles, interpreting neural networks, visual analytics and human-machine interaction
approaches. A few studies are addressing the lack of consensus regarding the defini-
tion of interpretability and its evaluation. The findings have been presented as per the
above categorization. For each category, key ideas have been summarized and existing
research gaps have been identified. Figure 2.1 presents a broad categorization of the
state-of-the-art. Table 2.1 summarizes the key ideas, explainers and metrics used.

Figure 2.1: A broad categorization of the existing work

Model-agnostic approaches: Concepts of coalitional game theory have been used
for explaining an ML model outcome in terms of the relative contribution of input fea-
tures (Strumbelj and Kononenko, 2010). Local explanation vector has been used to
explain an individual outcome (Baehrens et al., 2010). The algorithm LIME learns
an interpretable model locally around the instance to explain its prediction outcome
(Ribeiro et al., 2016b). Model agnostic approaches have potential advantages of model
flexibility and low switching cost (Ribeiro et al., 2016a). Program-snippets have also
been used as model-agnostic local explanations (Singh et al., 2016). Their advantages
include the ability to capture complex behaviour, the existence of a corresponding pro-
gram for each existing interpretable model, control on the level of detail in the program
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and using existing research in program or software analysis. Research gaps associated
with these approaches include: discovering important individual interactions (Strum-
belj and Kononenko, 2010); computational optimization(Strumbelj and Kononenko,
2010)(Ribeiro et al., 2016b); extension to regression tasks (Strumbelj and Kononenko,
2010)(Baehrens et al., 2010); exploring alternatives of a sparse linear model as ex-
plainer(Ribeiro et al., 2016b); addressing challenges associated with model-agnosticism
like global explanations, inconsistency among local explanations, more powerful forms
of user feedback (Ribeiro et al., 2016a); investigating methods for inducing programs,
including more expressive syntax in programs, exploring recently introduced differen-
tiable program induction technique, and evaluating the approach in other real-world
problems (Singh et al., 2016).

Interpreting tree ensembles: Using a pair of models, ‘P’ and ‘I’, respectively for
prediction and interpretation, has been demonstrated, where ‘I’ is an interpretable ap-
proximation of prediction model ‘P’ (Hara and Hayashi, 2016). A framework ‘inTrees’
demonstrated extracting, processing, pruning, summarizing and deciding on rules from
an ensemble of trees (Deng, 2019). Genetic algorithms have been used for extracting
an interpretable model starting with an initial population of decision trees (Vandewiele
et al., 2016). Prototypes in tree space have been found using the two unique aspects
of tree ensembles, tree structure and naturally-learned similarity measure (Tan et al.,
2016). Associated research gaps include: evaluating alternatives as proximity measure
between ‘P’ and ‘I’, and automatic calculation of the number of regions ‘K’ (Hara and
Hayashi, 2016); improving ‘inTrees’ package to handle trees with more than two splits
(Deng, 2019); reducing computational complexity (Vandewiele et al., 2016); using hu-
man experts to check the quality of prototypes, investigating other prototype-finding
procedures, evaluating on datasets having confusing objects or higher-dimensions and
optimization (Tan et al., 2016).

Interpreting neural networks: Approaches used for interpreting neural networks
model include input gradient, sensitivity analysis, layer-wise relevance propagation
(LRP) and deep Taylor decomposition. Input gradient was obtained using back-propagation
and chain rule, in case of a neural network (Hechtlinger, 2016). LRP is useful in ex-
plaining predictions of a deep neural network (DNN) and analyzing differences in DNN
architectures (Samek et al., 2016). Sensitivity Analysis (SA) and LRP are useful in
explaining the outcomes of a deep neural network (Samek et al., 2017). Deep Taylor
decomposition (Montavon et al., 2017) reconciles functional and message passing ap-
proaches, to attribute the outcome of a neural network in terms of influence from input
features. There is a need for evaluating these approaches in problem domains other than
image classification(Montavon et al., 2017).

Visual Analytics: This approach has aimed to keep the underlying model as black-
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box so that we do not gain on interpretability at the cost of accuracy due to the interpretability-
accuracy trade-off. The idea is representing input-output relationships using visual an-
alytics to bring interpretability (Krause et al., 2016). Another idea has been to focus
on making the outcome more expressive rather than just classifying using tools like
heat maps, progression charts, and confidence level in the prediction (Villagrá-Arnedo
et al., 2017). Research gaps associated with visual analytics include: identifying metrics
to compare interpretability through visual analytics (Krause et al., 2016); finding new
graphical tools to improve expressiveness, using this expressive information to guide
interventions, exploring in domains other than education (Villagrá-Arnedo et al., 2017).

Lack of consensus regarding interpretability concepts: A lack of consensus has
been reported in defining interpretability, its types and ways of measuring. Many terms
being used are related to interpretability but are distinct from interpretability (Bibal and
Frénay, 2016). Transparency is of different types and may not be useful in every setting.
Different stakeholders (developer, deployer and user) have different benefits or moti-
vations (Weller, 2017). Approaches for evaluation include (i) real humans, real tasks
(ii) real humans, simplified tasks (iii) No humans, proxy tasks (Doshi-Velez and Kim,
2017). The notion of interpretability is over-hyped and may not be the only solution
to the broader goals of interpretability like public trust, non-discrimination, and causal
explanations. Strategies like the construction of training sets and testing of classifiers
are also promising towards understanding the outcomes of an ML classifier (Krishnan,
2019).

Associated research gaps and open research questions include: distinguishing inter-
pretability measures of models and representations, linking results of user-based sur-
veys and heuristics by translating former to later (Bibal and Frénay, 2016); criteria for
the faithfulness of an explanation, framework to understand what transparency is useful
and what is harmful; metrics to compare two explainers (Weller, 2017), creating links
between evaluation approaches, what proxies for what applications, important factors
while designing simplified tasks, factors while characterizing proxies for explanation
quality (Doshi-Velez and Kim, 2017).

Human-Machine interaction: To incorporate feedback from human domain ex-
perts regarding the behaviour of ML systems, the behaviour of the ML system must
be interpretable. Moreover, human experts must be enabled to provide feedback to the
ML system based on their domain knowledge. Bi-directional communication between
machine and human in terms of prototypes and subspaces has been demonstrated using
an interactive ML model ’iBCM’ for clustering (Kim, 2015). A hybrid human-machine
intelligence approach where the model is refined to incorporate the feedback given by
human experts in the form of modifications in the rules explaining the ML model has
been demonstrated (Yang et al., 2019). The involvement of humans in the exploration
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of solution space has been demonstrated to positively affect computationally hard prob-
lems (Holzinger et al., 2019). Through the democratization of ML, end users can be
provided with a bigger role in the design of ML systems (Amershi et al., 2014). In-
terdisciplinary expertise spanning AI/ML engineers, cognitive, education and UI/UX
designers have been useful in developing explanatory learning models that can provide
interpretable and achievable insights in addition to accurate predictions (Rosé et al.,
2019). Human interpretability can be made cost-effective by reducing the number of
human user studies by involving human experts in the learning loop (Lage et al., 2018).

Other related studies: There are several other approaches proposed for conferring
interpretability. A falling rule list (FRL), an ordered list of rules, has been extracted
using a Bayesian framework (Wang and Rudin, 2015). Integration of data-driven model
and domain knowledge (hierarchy of diseases ICD-9-CM) using Tree-Lasso regular-
ized regression has been done for predicting pediatric hospital readmission (Jovanovic
et al., 2016). Interpretability can be improved by utilizing the conceptual structure of
meaning, focusing on the psychology of human learning of concepts (Condry, 2016). A
classifier comprising a small set of rules in disjunctive normal form can be learned using
a Bayesian framework. Also provides user-adjustable priors for desired shape and size
and domain-specific interpretability (Wang et al., 2017). A two-stage process has been
proposed for the diagnosis of breast MRI (Gallego-Ortiz and Martel, 2016), first extract-
ing simple and interpretable features and then summarizing results in the form of rules.
Research gaps include: exploring the integration of other sources of domain knowledge
hierarchies, incorporating additional patient follow-up data after discharge to improve
the model (Jovanovic et al., 2016); evaluating proposals to improve interpretability like
clearly defined requirements for input and goals of the output, minimize the number of
attributes, models that complement and expedite existing processes, preparing a front-
end for the intended audience in terms of concepts known to them (Condry, 2016).



36
2.L

iterature
Survey

Table 2.1: Summary of key ideas, explainers and evaluation metrics used.

Key Idea Explainer Evaluation Metrics
Coalitional game theory (Strumbelj
and Kononenko, 2010)

Outcome explained in terms of
feature-wise contribution

Captivating both the degree as well
as the sign of the influence.

Local explanation vector to ex-
plain an instance-specific outcome
(Baehrens et al., 2010)

Scatter plots of the explanation vec-
tors (local gradients)

Ease of characterizing how a data
point is to be moved to change its
label.

Using two models, P and I, Where I
is an interpretable approximation of
P (Hara and Hayashi, 2016)

Simplified decision Tree Number of regions(nodes) in the
simplified tree

Every complex model can be ap-
proximated at a local scale (Ribeiro
et al., 2016b)

Sparse linear model Human subjects on Amazon Me-
chanical Turk provided with expla-
nations to evaluate the following:
(i) Can users choose the best clas-
sifier among the two (ii) improving
an untrustworthy classifier and (iii)
Can explanations lead to insights?

Listing important features in case
of high-dimensional and sparse data
(Moeyersoms et al., 2016)

Explanation curves Computing feature-coverage (how
many outcomes are explained using
only top-ranked features)

Continued on next page
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Table 2.1 – continued from previous page
Key Idea Explainer Evaluation Metrics

Visual analytics (Krause et al.,
2016)

Graphical tools Uses the power of visual perception
in humans. Visualizing model be-
haviour by looking exclusively at
the relationship between input and
output.

Pick top ’n’ recommendations that
are interpretable (Abdollahi and
Nasraoui, 2016)

User-based neighbor-style explana-
tions

Explainability score for user-based
neighbour-style explanations, MEP
(Mean Explainability Precision)
and MER(Mean Explainability
Recall)

A two-stage approach: 1. Extract
interpretable features 2. Summarize
results in form of rules (Gallego-
Ortiz and Martel, 2016)

Only the most relevant nodes of
random forest are highlighted. The
size of the node is also proportion-
ate to their weight.

Degree of agreement with the radi-
ologist

Learning an FRL using bayesian
framework (Wang and Rudin, 2015)

FRL (Set of Rules with ordering) Falling rule lists with "Probability"
and "Support" for each rule

Integrating data-driven model and
domain knowledge (Jovanovic
et al., 2016)

Plotting information loss Quantifying interpretability using
information entropy instead of just
a count of features

Continued on next page



38
2.L

iterature
Survey

Table 2.1 – continued from previous page
Key Idea Explainer Evaluation Metrics

Extracting a single interpretable
tree from a population of trees us-
ing Genetic Algorithm (Vandewiele
et al., 2016)

Interpretable tree Number of nodes

Making outcomes of a black-box
model more expressive (Villagrá-
Arnedo et al., 2017)

Representation tools like Progres-
sion charts and heat maps

Ability to identify factors affecting
the outcome

SLIM (using integer programming)
(Zeng et al., 2015)

Rule Set, Decision tree Number of nodes

Interpretability using input gradient
(Hechtlinger, 2016)

Gradient vector Ability to identify important fea-
tures

LRP framework (Samek et al.,
2016)

decomposing classification deci-
sion in terms of input variables

Highlighting most contributing pix-
els in image classification

The relational model for meaning of
a concept (Condry, 2016)

Features ->Concepts ->meaning 1. Clearly defined input and output
requirements 2. Front-end for user
experience

Using program snippets as explana-
tions (Singh et al., 2016)

Program snippets The complexity of program snip-
pets

Continued on next page
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Table 2.1 – continued from previous page
Key Idea Explainer Evaluation Metrics

Interpreting tree ensembles by find-
ing prototypes in tree space (Tan
et al., 2016)

Prototypes in tree space Human experts to evaluate the qual-
ity of found prototypes

Learning a small set of rules in
the disjunctive normal form (Wang
et al., 2017)

Set of rules in disjunctive normal
form

Number of rules can be one
straightforward measure

Deep-Taylor decomposition (Mon-
tavon et al., 2017)

Decomposing classification deci-
sion of a DNN into the contribution
from of its input elements. Heat
Maps to show the most contributing
pixels.

Highlighting the most contributing
pixels in image classification. The
correctness of highlighted pixels as
per domain knowledge experts.

Interpretability prior (Lage et al.,
2018)

Decision tree Optimizing interpretable models

Bayesian case model (Kim, 2015) Prototypes and subspaces User agreement regarding cluster-
ing performed by the model

Allowing human users to modify
the rules (Yang et al., 2019)

Rules set Improvement in the user agreement

Human guided exploration of solu-
tion space (Holzinger et al., 2019)

Modelled as a TSP problem Savings in terms of computational
complexity

Continued on next page
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Table 2.1 – continued from previous page
Key Idea Explainer Evaluation Metrics

Learning alternate explanations (to
be right for the better reasons)
(Ross et al., 2017)

Input-gradient based explanations Robustness of explanations

Highlighting part of the input that
is sufficient to make a prediction
(Ribeiro et al., 2018)

If-then rules called ‘anchors’ How humans can predict with fewer
efforts and higher precision for un-
seen instances.

Quantifying the importance of a
user-defined concept towards a
classification result (Kim et al.,
2018)

Representing the internal state of a
neural network in terms of human-
friendly concepts called Concept
activation vectors (CAVs).

Answering questions about model
decision-making in terms of natural
high-level concepts.

Trace a model’s prediction through
its learning algorithm and back to
training points (Koh and Liang,
2017)

Identify training points most re-
sponsible for a given prediction

Debugging models and fixing
datasets

Inducing interpretable programs
from observed transition system
data traces (Penkov and Ra-
mamoorthy, 2017)

LISP-like programs Inducing interpretable programs

Continued on next page
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Table 2.1 – continued from previous page
Key Idea Explainer Evaluation Metrics

Investigating which feature interac-
tions are exploited by the classifier
(Henelius et al., 2017)

Identification of most contributing
feature interactions

Whether a particular grouping of at-
tributes represents attribute interac-
tions structure in a given dataset

Utilizing human tendency of asking
“Why this output (the fact) instead
of that output (the foil)?” (van der
Waa et al., 2018)

Contrastive explanations using a
relative complement of the fact
rules

Shorter explanations as compared
to the full feature list.
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2.4 Answers to the research questions formulated prior
to literature review

This section concludes the findings of the literature review in the form of answers to the
research questions formulated in section 2.1.
Q1. What are the underlying motivations for interpretability?

The key motivations for conferring human interpretability to ML models are listed
below:

(i) Trust: ML solutions with interpretability are more probable of winning a trust
vote from the end-user.

(ii) New insights: Interpretability has the potential to provide useful insights about
the underlying processes and discover new knowledge.

(iii) Scrutinizing ability: A human expert can scrutinize the decision-making pro-
cess of the classifier.

(iv) Fairness or un-biasedness: Interpretability helps to ensure that solution is not
biased towards a race or gender.

(v) Accuracy-interpretability trade-off: It is important to critically evaluate exist-
ing interpretability approaches so that new ideas can be generated to handle this
trade-off.

(vi) Right to explanation: Starting May 2018, as per new GDPR, human subjects
that are going to be affected by outcomes of an ML-based solution have the right
to get an explanation for that outcome.

Figure 2.2 presents these motivations graphically.
Q2. What are the desired characteristics of an explanation?

The desired characteristics of an explanation are listed below:

(i) Interpretable: The first and foremost essential characteristic of an explanation
is its ability to provide an understanding of the relation between input variables
and the model outcome.

(ii) Easy to understand: The number of pieces of information should not be be-
yond the comprehension capabilities of the user.

(iii) Target audience: An explanation should be in terms of concepts known to the
target audience. It may require mapping of features to concepts known to the user
and clearly defined requirements for input and goals of the output.
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Figure 2.2: Key motivations behind conferring human interpretability

(iv) Local fidelity: an explanation must at least be locally true i.e. must agree
to the behaviour of the model in the neighbourhood of the example that is being
explained.

(v) Model agnosticism refers to interpretability approaches that are applicable
irrespective of which underlying ML model is used.

Figure 2.3 presents these desired characteristics using a visualization.
Q3. What is the taxonomy of the approaches proposed?

The existing work towards conferring interpretability can be broadly classified into
model-agnosticism, approaches for interpreting tree ensembles, approaches for inter-
preting neural networks, human-machine collaboration and addressing lack of consen-
sus regarding terms related to interpretability. Model-agnostic approaches can be fur-
ther classified into (a) work done towards approximating a complex model with a simple
interpretable model and (b) Visual analytics where the input-output relationship is mod-
elled without attempting transparency in the underlying model. This taxonomy can be
represented as below:

• Model-agnostic

– Making underlying model transparent

– Visual analytics
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Figure 2.3: Desired characteristics of an explanation

• Model-specific

– Tree ensembles

– Neural Networks

• Human-machine interaction

• Addressing lack of consensus

Q4. What are the key ideas and explainers used for conferring interpretability?
The key ideas and explainers used for conferring interpretability are listed below:

(i) approximating a complex model at a local scale using a linear model

(ii) local explanation vector to explain an instance-specific outcome by identifying
more influential features

(iii) using fundamental concepts of coalitional game theory to explain an outcome
in terms of feature wise contribution

(iv) listing important features using explanation curves

(v) interpretability using partial derivative with respect to input

(vi) using program snippets as explanations
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(vii) extracting an interpretable decision tree from a tree ensemble using Expectation-
Maximization algorithm

(viii) extracting a single interpretable tree from a population of trees using Genetic
Algorithms

(ix) interpreting tree ensembles by finding prototypes in tree space

(x) extracting interpretable features and summarizing results in the form of rule
sets

(xi) learning a falling rule list using Bayesian framework

(xii) learning a small set of rules in disjunctive normal form

(xiii) heat maps to show most contributing pixels using deep-Taylor decomposi-
tion

(xiv) modeling input-output relationships using visual analytics

(xv) making outcomes of black-box model more expressive using heatmaps and
progression charts.

Figure 2.4 presents these key ideas using a visualization.
Q5. What are the metrics used for evaluating interpretability?

(i) decomposing classification outcomes into feature-wise contribution, both the
magnitude and direction of contribution

(ii) complexity of the explanation measured as the volume of the information in
the explanation to be comprehended. These include the number of nodes in the
decision tree, number of rules in the ruleset, and complexity of program snippets

(iii) ease of identifying how a data point is to be moved to change its label

(iv) evaluation of the quality of explanations by human experts. Can these expla-
nations enable human subjects in choosing the best classifier? Can explanations
help improve an untrustworthy classifier? Can explanations lead to insights?

(v) how many outcomes are explained using only top-ranked features

(vi) utilizing the power of visual perception in humans

(vii) MEP (Mean Explainability Precision) and MER (Mean Explainability Re-
call) using explainability score
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Figure 2.4: Key Ideas for conferring human interpretability

(viii) quantifying interpretability using information entropy instead of just count
of features.

Figure 2.5 presents these metrics using a visualization.
Q6. Which ML models have been attempted for interpretability?

The ML models that have been attempted for interpretability included decision trees,
Naïve Bayes, tree ensembles, Artificial Neural Networks, logistic regression, support
vector machine, AdaBoost, k-nearest Neighbors, Xgboost, Random forests, Classifica-
tion and regression trees, and simulated annealing. Almost all common ML algorithms
have been attempted for conferring interpretability.
Q7. What are the types of problems attempted?

Classification using Titanic dataset, Fisher’s IRIS dataset, UCI datasets; Text classi-
fication; Sentiment analysis; Image classification; Predicting product interest using on-
line browsing data; Explaining movie recommendations; Classification of breast Mag-
netic Resonance Images (MRIs); Recidivism prediction; Facebook data; Predicting
heating load of a building using synthetic and energy efficiency data.
Q8. Is Interpretability compulsory always?

Interpretability is particularly useful in situations that involve critical decision mak-
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Figure 2.5: Metrics for evaluating human interpretability

ing and a say of human domain experts. It is not compulsory always and can be harmful
rather in certain contexts. Possible dangers of transparency include

(i) divergence between intended audience and actual beneficiary

(ii) transparency in government use of algorithms

(iii) gaming of rules and lack of motivation of intellectual property if all algo-
rithms are open source

(iv) discrimination of sub-groups based on sensitive features.

Q9. Can human-machine collaboration be useful in incorporating domain expertise?
Humans and machine have their unique strengths and a collaboration between the

two can help to incorporate domain expertise into the learning of ML systems. Potential
advantages of a human-machine collaboration include improved user agreement, accel-
erated exploration of solution space, providing a bigger role to end-users in the design
of interactive and interpretable ML systems, and incorporating multi-disciplinary ex-
pertise. The key idea is to present the learned model to human domain experts in an
interpretable manner. The human experts in turn provide feedback to the ML system
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based on their experience-based perception regarding the problem domain. The ML
system attempts to adapt itself to incorporate the feedback provided by human experts.
In case there is a contradiction between what a human expert says and what data says,
the situation is reported as a conflict.
Q10. What are the open research directions?

The field of human interpretability is still evolving and offers the following oppor-
tunities for future research:

(i) Discovering important individual interactions of variables to provide new in-
sights and facilitate verification by human experts.

(ii) Need of optimization to reduce the computational complexity for interpretabil-
ity in real-time.

(iii) Extending proposed approaches from classification to regression tasks.

(iv) Exploring alternatives as explainers and metrics for their performance com-
parison.

(v) Addressing challenges like providing global explanations, inconsistency in
local explanation, and powerful forms of user feedback.

(vi) Explore alternatives for proximity measures between predictive model and
its interpretable approximation, varying number of regions in the interpretable
mode and automatic computation of the number of regions, while interpreting
tree ensembles.

(vii) Using human experts to check the quality of prototypes and investigating
prototype-finding procedures while using tree space prototypes for interpretabil-
ity.

(viii) Identifying metrics to compare interpretability through visual analytics, find-
ing new graphical tools to improve expressiveness, and using this expressive in-
formation to guide interventions.

(ix) Addressing lack of consensus in definition, types and metrics to measure in-
terpretability. There is a need to distinguish interpretability measures of models
and representations, linking results of user-based surveys and heuristics by trans-
lating former to later.

(x) There is a need to define criteria for the faithfulness of an explanation.

(xi) There is a need for a framework to understand when transparency is useful
and when it is harmful.
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(xii) The need of incorporating domain knowledge into the ML process; clearly
defined requirements for input and goals of the output; models that complement
and expedite existing processes; preparing a front-end for the intended audience
in terms of concepts known to them to improve interpretability.





Chapter 3

Data, ML Model and Human domain
experts: A collaboration for reliable
and trustable learning

3.1 Introduction

Every ML solution acquires its learning from the existing experience fed to the machine,
usually, in the form of a dataset. Any ML algorithm employed aims to capture impor-
tant characteristics from this dataset provided for learning. Moreover, to facilitate the
trust of human users, the behaviour of the learned ML model must be in sync with the
prevailing domain knowledge. So, an ML-based solution is expected to be in sync with
the provided dataset and human domain experts. Intuitively, the provided dataset, the
learned ML model and human domain experts can be considered as the three important
pillars for constructing an ML-based solution.

The goal of this chapter is to propose a framework for verifying the learning acquired
by an ML model. The underlying dataset, ML model and human domain experts are
the three pillars of this framework. The proposed approach aims to listen to each of
these three pillars regarding their perception of the problem domain under study. By
‘listen to’ we refer to understanding what features are important in terms of affecting
the outcome of the target variable. The dataset is listened to by computing information
gain measures using entropy and Gini index. The ML model is listened to in terms
of variable importance measures. The human experts are listened to by collecting the
importance of features as per their perception of the problem domain based on their
experience. After listening to each of the three pillars, the framework measures the
degree of agreement between them in terms of their perception of the problem domain.
The problem of measuring the agreement between these three pillars has been modelled
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as a Spearman’s rank correlation problem.
The proposed approach has been validated using two problem domains: (i) predict-

ing the joining behaviour of freshmen students using a primary dataset and (ii) predict-
ing the onset of diabetes using a publicly available standard dataset. We demonstrated
that the proposed framework was capable of verifying the learning acquired by the ML
model against the provided dataset and the prevailing domain knowledge as per feed-
back taken from human domain experts. This chapter has the following contributions:

(i) A framework that listens to the important pillars of an ML-based solution: the
dataset, ML model and human domain experts

(ii) Enable verification of the learning acquired and facilitating trust of human
users

(iii) Due to its quantitative nature, this approach is having the potential of forming
a basis for developing formal metrics for facilitating trust in an ML model

(iv) Validation of the proposed approach using a primary dataset and a standard
dataset

The rest of the chapter is organized as follows. Section 3.2 summarizes the related
work done in the field of conferring human interpretability. Section 3.3 describes the
problem formulation and hypothesis framed. Section 3.4 describes the proposed frame-
work using a framework diagram and an algorithmic description. Section 3.6 discusses
the datasets used for validation of the proposed approach. Section 3.7 describes the
experimental setup for validating the proposed approach along with evaluation meth-
ods. Section 3.8 Summarizes and discusses the results obtained during the experiments.
Section 3.9 summarizes conclusions of the chapter.

3.2 Related Work

Advanced ML models have demonstrated their supremacy in terms of prediction accu-
racy. However, their prediction outcomes are not easily interpretable to non-ML experts.
This lack of human interpretability is of concern in problem domains involving criti-
cal decision making. Human interpretability in ML offers advantages like facilitating
trust, new knowledge discovery, model debugging and ensuring fairness. As a result,
a renewed interest has been observed during recent years, towards conferring human
interpretability to ML-based solutions.

The existing work can be categorized into model-specific and model-agnostic meth-
ods. Model-specific methods apply to a particular underlying ML algorithm whereas
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model-agnostic refer to techniques that apply to any underlying model. The ‘inTrees’
framework that consists of algorithms to extract, process, prune and summarize rules
from a tree ensemble has been proposed (Deng, 2019). The use of two models, ’P’ for
prediction and ’I’ for interpreting has been proposed to approximate the learned com-
plex tree ensemble by a simple interpretable model using KL-divergence as proximity
measure (Hara and Hayashi, 2016). An approach benefitting from two unique aspects
of tree ensembles i.e. leveraging tree structure and naturally-learned similarity measure
has been proposed for Interpreting tree ensembles by finding prototypes in tree space
(Tan et al., 2016). GENESIM algorithm for extraction of a single interpretable model
from an initial population of decision trees using a genetic algorithm has been proposed
(Vandewiele et al., 2016). The Deep Taylor decomposition technique has been used to
decompose decisions of neural networks in terms of contribution from input elements
(Montavon et al., 2017). Layer-wise relevance propagation (LRP) framework has been
proposed to explain predictions of a deep neural network (Samek et al., 2016).A general
method to explain an outcome in terms of individual contributions of features using con-
cepts of coalitional game theory has been proposed (Strumbelj and Kononenko, 2010).
Local explanation vector that is an estimation of local gradients has been used to un-
derstand instance-specific outcome (Baehrens et al., 2010). Algorithm LIME has been
proposed to explain the prediction outcome of any classifier by learning an interpretable
model locally around the prediction (Ribeiro et al., 2016b). Use of input gradient i.e.
partial derivative of the model with respect to the input is proposed for interpreting
any model (Hechtlinger, 2016). The paper (Ribeiro et al., 2016a) advocates the use
of a model-agnostic approach covering advantages and associated challenges. Using
programs as model-agnostic local explanations have also been proposed (Singh et al.,
2016).

Due to its subjective nature, the field of interpretable ML is still evolving. There is
a lack of consensus related to the definition and evaluation of interpretability. There is
a lack of established formal metrics to compare ML models in terms of interpretability.
Moreover, a collaboration between machines and humans has been advocated due to
their unique strengths.

A majority of the existing work to confer human interpretability to ML models fo-
cuses on identifying features that are important in terms of their contribution towards the
predicted outcome. As discussed in the introduction section, the dataset, ML model and
human domain experts can be considered as the three pillars of an ML-based solution.
Any ML-based solution is expected to agree with the provided dataset and prevailing do-
main knowledge. Agreement with the dataset implies that the learning process has been
accurate. Agreement with prevailing domain knowledge implies that the ML solution
is in sync with human domain experts. Ensuring this two-way agreement, with dataset
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and human experts, is indeed an intuitive idea, to ensure accuracy as well as facilitate
acceptability of the developed solution. If any ML-based solution is in agreement with
the human domain experts regarding their perception of the problem domain, it helps
in facilitating trust in the ML-based solution. In this chapter, we demonstrate this idea
of collaboration between dataset, ML model and human domain experts to verify the
learning acquired by an ML model.

3.3 Problem formulation

This research work is based on an intuitive idea that the underlying dataset, ML model
learned using that dataset and feedback from human domain experts are the pillars of an
ML-based solution. The desired characteristics of any ML-based solution include (i) the
learning process must result in an ML model that incorporates important characteristics
of the underlying dataset and (ii) the behaviour of an ML model is expected to be in sync
with the perception of the human domain experts regarding the problem domain. For
example, let us consider an ML-based model for the classification of mammograms as
malignant or benign. Medical experts are likely to trust this model only if its decision-
making behaviour is as per the perception of the medical experts based on years of
medical practice.

The idea is to listen to each of these three pillars (dataset, model and human ex-
pert) and measure the degree of agreement between these. The dataset is listened to
in terms of identifying important characteristics using entropy and the Gini index. The
ML model is listened to in terms of interpreting its decision-making behaviour using
feature importance measures. The human experts are listened to by taking feedback in
terms of the importance of a feature as per their experience-based perception regarding
the problem domain.

The proposed collaboration aims to answer the following questions:
Q1. Did the learned ML model capture important characteristics of the provided

dataset?
Q2. Is the learning acquired by the ML-based model in sync with the prevailing

domain knowledge?
If the answer to both the questions is a ’Yes’, the model can be recommended for

reliability and trust vote. If the answer to any of the questions is a ’No’, it is an indicator
that there is a need to investigate the input dataset, the learning process or the process
of capturing human expert feedback. Outcomes of this investigation may lead to any of
the following:

(i) A problem in the dataset preparation
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(ii) A problem in the machine learning process adopted

(iii) A problem in the process of capturing feedback of human experts

(iv) A case of discovering a new knowledge

The problem of measuring the degree of agreement between dataset, ML model and
human domain experts has been modelled as a Spearman’s rank correlation problem.
Dataset, ML model and human domain experts are considered as Judges. The fea-
tures used for learning the ML model are considered as participants to be ranked by the
judges. As Spearman’s rank correlation test applies to 2-Judges at a time, the problem
of measuring agreement between three judges has been addressed by taking a pair of
judges at a time and repeating the test for each of the three pairs of judges. Spearman’s
rank correlation is denoted by the symbol (ρs).

To verify the statistical significance of the agreement observed between these three
judges, hypothesis testing has been used. The following hypothesis was formulated:

Null hypothesis (H0): Ranking of features by two judges are independent (ρs = 0)
The alternate hypothesis (H1): Ranking of features by two judges have a positive

association (ρs > 0)
Acceptance of the null hypothesis for any of the pair of judges is an indicator that the

concerned judges are not in sync with each other or do not have an agreement in terms
of the importance of features. On the other hand, acceptance of alternate hypothesis is
an indicator that the concerned pair of judges have a positive association or they are in
agreement in terms of their perception regarding the problem domain (rankings given to
the features).

3.4 Proposed framework

This section describes the proposed framework using a framework diagram and an al-
gorithmic description of the proposed framework.

Figure 3.1, shows the diagrammatic representation of the proposed framework. En-
tropy and Gini index have been computed as dataset measures to listen to the dataset.
Feature importance measures have been used for interpreting the decision-making be-
haviour of the model. After listening to the dataset and model, the next step is to measure
the degree of agreement between the dataset and the model regarding the ranking of fea-
tures in terms of importance. Spearman’s rank correlation has been used to measure this
degree of agreement. If the dataset and the model are in agreement, the agreement with
the human expert feedback is measured. If the dataset, model and human expert are in
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Figure 3.1: Framework for data, model and human expert collaboration

agreement, the model is considered trustworthy. If the degree of agreement is not found
at any of the two stages, the model is considered unreliable.

The input to the system was the provided dataset and a black-box ML-based model
learned using that dataset. For each feature used, information gain using entropy and
Gini index was computed. Using these values features were ranked, with rank 1 given to
feature with maximum information gain. To find a single rank for each feature, the aver-
age of the two ranks, one using entropy and one using Gini index, was taken. To listen to
the model, multiple variable importance measures were computed for each feature. Us-
ing these measures, an average rank was assigned to each feature as per its importance
to the model. To strengthen our understanding of model behaviour, a global surrogate
model was also used. To measure the degree of agreement, spearman’s rank correlation
was used. To verify the significance of the degree of agreement, hypothesis testing using
one-tail Spearman’s rank correlation was used. If the dataset and model do not agree,
the model is considered unreliable, else stage two processing starts. To listen to the hu-
man experts, each expert was asked to assign a unique rank to each feature based on his
or her perception regarding the problem domain. For each feature, an average rank was
computed by taking an average of ranks assigned to that feature by all human experts.
The degree of agreement between dataset, model and human experts was computed and
tested using spearman’s rank correlation. If the dataset, the ML model, and human ex-
perts do not have a degree of agreement, the model was not considered trustable. The
basic approach was quite intuitive. It aimed to listen to the dataset, the model and the
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Data: Dataset, a black-box ML model
Result: Interpreting model behaviour, verifying learning, facilitating trust

1 FEATURES = Set of features used for learning;
2 HUMANS = Set of human domain experts;
3 for each f in FEATURES do
4 Compute IGe, f and IGg, f ;
5 end
6 for each f in FEATURES do
7 Assign Re, f using IGe, f ;
8 Assign Rg, f using IGg, f ;
9 end

10 Compute Rdataset, f as average of Re, f and Rg, f ;
11 for each f in FEATURES do
12 Compute mmd f , acc_d f , gini_d f , times_root f and Imp f ;
13 end
14 for each f in FEATURES do
15 Assign Rmmd, f using mmd f ;
16 Assign Racc_d, f using acc_d f ;
17 Assign Rgini_d, f using gini_d f ;
18 Assign Rtimes_root, f using times_root f ;
19 Assign RImp f using Imp f ;
20 end
21 Compute RModel, f as average of Rmmd, f , Racc_d, f , Rgini_d, f , Rtimes_root, f and

RImp f ;
22 Analyze degree of agreement between Rdataset, f and RModel, f ;
23 if Dataset and Model do not agree then
24 Model is not reliable. Exit.
25 end
26 for each h in HUMANS do
27 for each f in FEATURES do
28 Collect Rh, f based on human expert perception
29 end
30 end
31 for each f in FEATURES do
32 Compute RHuman, f as average of ranks assigned to that feature Rh, f ;
33 end
34 Analyze degree of agreement between Rdataset, f , RModel, f and RHuman, f ;
35 if Dataset, Model and Human agree then
36 Model is trustworthy.
37 else
38 Model is not reliable.
39 end

Algorithm 1: Dataset, model, and human expert collaboration
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human domain experts and then analyze the agreement between them. A higher degree
of agreement between these three was taken as an indicator that the model had listened
to the dataset properly and is also in agreement with the prevailing domain knowledge.
Algorithm 1 describes the steps involved and related computations.

Computational complexity analysis: The algorithm 1 comprises of 5 for loops,
1 nested for loop and 2 conditional statements. Each of the for loops iterates over the
number of features ‘n’ and has a complexity of O(n). The nested for loop represents the
collection of feedback from human experts and does not require any computational ef-
forts. The conditional statement is executed only once giving a complexity of O(1). So,
the computational complexity of the algorithm is O(4n)+O(1)+O(n)+O(1) = O(5n+2) =
O(n).

3.5 Experiments designed

The experiments designed and the underlying objectives have been compiled in table
3.1.

Table 3.1: Description and objective of experiments designed
Experiment # Experiment description Experiment Objective
1 Exploring multiple ML algorithms

to learn an accurate model
Learning an accurate ML
model

2 Identifying important features from
the dataset using entropy and Gini
index measures

Listening to what data says?

3 Understanding model behaviour us-
ing interpretability techniques

Listening to what the model
says?

4 Capturing feedback from human
domain experts based on their per-
ception regarding the problem do-
main

Listening to what human do-
main experts say?

5 Measuring and analyzing agree-
ment between dataset, model, and
human experts

Determining whether dataset,
model and human experts are
in agreement?
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3.6 Material (Dataset)

3.6.1 Problem domain 1: Predicting Joining behavior of freshmen
students

As per the University Grant Commission (UGC) report, there are almost 900 univer-
sities across India including more than 300 private universities UGC (2019). Most of
these private universities spend hugely in competing to reach out to students who are
exploring different educational institutes to take admission into. Due to this compe-
tition, educational institutions start their admission process for the next session quite
early, usually at the start of the year. Every admission year, from the students, enrolled
in an educational institution, some students do not join the same institution. The reasons
include getting a higher scholarship in some other institution, preferred college or disci-
pline of interest in some other institution. Each student, who takes admission but do not
join is a loss to the concerned educational institute in terms of resources invested. Abil-
ity to foresee such students is important for an educational institute. Institutes can use
this information to plan activities towards improving the retention of enrolled students.

Justification of choosing this problem: The objective is to explore the applicability
of ML in helping educational institutions predict the joining behaviour of their fresh-
men students. The related work in the field of educational data mining focusing the use
of ML solutions to predict student performance, predict student dropouts and predict
the employability of students. Exploring ML to foresee the joining behaviour of fresh-
men students is a novel problem domain. This problem domain is dynamic in nature
as student joining behaviour is affected by multiple factors like changes in admission
policies and trends in the education sector every year. As the proposed approach re-
quires feedback from human domain experts, the availability of experienced admission
counsellors justifies it as a suitable choice for validating this approach. The outcomes of
this study can be used by an educational institution to improve its admission processes
and retention of enrolled students.

The idea is to formulate the problem of predicting the joining behaviour of freshmen
students as a binary classification ML problem. The target variable is the actual joining
status of a student with ‘Joined’ or ‘Lost’ as possible outcomes. The first objective is to
learn an ML-based model using admission details and the actual joining status of fresh-
men students of previous batches for learning. Such a model can be used for predicting
the joining behaviour of freshmen students of the upcoming batches. The second ob-
jective is to analyze important factors that contribute towards the joining behaviour the
most.

The dataset consisted of students enrolled in an educational institute in North India,
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Table 3.2: Demography of the subjects used
Attribute Type Description
RegistrationNumber Int Unique ID for each student
AdmissionMonth Int Month of admission e.g 5 = May, 6 = June
Gender Factor F - Female, M – Male
State Factor Home state of student
HomeTownType Factor Rural, Urban (Metropolitan), Urban (Town)
ProgrammeName Factor Programme enrolled e.g. MBA, B. Arch. etc.
Discipline Factor Agriculture, Management etc.
QualifyingExam Factor Eligibility qualification e.g. 10+2, Graduation
MarksPercent Factor Marks in qualifying exam
CategoryCode Factor General, Scheduled Caste (SC), Scheduled

Tribe (ST) etc.
TransportAvailed Factor Transport facility of university availed?

[Yes/No]
LoanLetter Factor Education loan availed? [Yes/No]
PreviouslyStudied Factor Whether student studied earlier in the same in-

stitution? [Yes/No]
HostelAvailed Factor Hostel availed or not? [Yes/No]
MessAvailed Factor Mess availed or not? [Yes/No]
ScholarshipPercentage Numeric Scholarship amount offered as percentage of tu-

ition fee
ScholarshipBracket Factor High, Low, Medium
EconomicCondition Factor AboveAverage, Average. BelowAverage, Good
FeePaidPercentage Numeric Percentage of fee paid so far by student
MediumOfStudy Factor English, NonEnglish
FeePaidCategorized Factor High, Low, Medium
MarksCategory Factor Excellent, Fail, FirstDivision, SecondDivison,

ThirdDivision
HostelOrTransport Factor Hostel or transport availed? [Yes/No]
StudentStatus Factor Joined, Lost (Did not join)

during 2018 (Kumar et al., 2020). The target variable was ‘JoiningStatus’ with values
as ‘Joined’ or ‘Lost’. The dataset consisted of 13125 observations and 25 variables.
Out of 13125 students, 8374 joined while the remaining 4751 did not join, giving a
baseline accuracy of 63.8%. Table 3.2 shows the structure of our dataset with the type
and description of each attribute.

Feature selection: To shortlist the relevant features for learning a ML model, cor-
relation of each predictor was analyzed with the target variable ‘JoiningStatus’. As
majority of the predictors are categorical in nature, chi-square test statistic was used
to identify significant correlation. Also, a few features were dropped on the basis of
commonsense.

(i) Redundant features:
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• RegistrationNumber: Registration number of a student is not expected to affect
joining behavior of a freshmen student.

• BatchYear: Redundant as data is of 2018 batch only

• MessAvailed: Highly correlated with ‘HostelAvailed’

(ii) Transformed features:

• MarksPercent: Converted to categorical ‘MarksCategory’

• TransportAvailed: Utilized for deriving ‘HostelOrTransport’

• HostelAvailed: Utilized for deriving ‘HostelOrTransport’

• ScholarshipPercentage: Converted to categorical ‘ScholarshipBracket’

• FeePaidPercentage: Converted to categorical ‘FeePaidCategorized’

(iii) Features not correlated with the target variable:

• Gender: p-value = 0.1724, Not correlated with the target variable

• MediumOfStudy: p-value = 0.2655, Not correlated with the target variable

Features correlated with the target variable:

• AdmissionMonth: p-value = 3.695e-06

• HomeTownType: p-value < 2.2e-16

• QualifyingExam: p-value = 3.598e-08

• LoanLetter: p-value < 2.2e-16

• PreviouslyStudied: p-value < 2.2e-16

• ScholarshipBracket: p-value < 2.2e-16

• FeePaidCategorized: p-value < 2.2e-16

• MarksCategory: p-value < 2.2e-16

• HostelOrTransport: p-value < 2.2e-16

Based on the results of using feature selection techniques the following 9 features
were shortlisted for learning ML model:

(i) AdmissionMonth
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Table 3.3: Demography of the subjects for ’diabetes’ dataset
Attribute DataType Description
Age Int Age (years)
BloodPressure Int Diastolic blood pressure (mm Hg)
BMI Numeric Body mass index (weight in kg/(height in

m)^2)
DiabetesPedigreeFunction Numeric Diabetes pedigree function
Glucose Int Plasma glucose concentration 2 hours in

an oral glucose tolerance test
Insulin Int 2-Hour serum insulin (mu U/ml)
Pregnancies Int Number of times pregnant
SkinThickness Int Triceps skin fold thickness (mm)
Outcome Int 0 (not diabetes), 1(diabetes)

(ii) MarksCategory

(iii) LoanLetter

(iv) HomeTownType

(v) QualifyingExam

(vi) PreviouslyStudied

(vii) ScholarshipBracket

(viii) FeePaidCategorized

(ix) HostelOrTransport

3.6.2 Problem domain 2: Predicting onset of diabetes using diag-
nostic measures

As a second problem, a standard dataset ‘diabetes’ contributed by the National Institute
of Diabetes and Digestive and Kidney diseases was selected. This dataset is available
on Kaggle (Kaggle, 2016). The objective was to use ML to learn a model that can be
used to predict ‘diabetes’ taking different diagnostic measures as input. As our proposed
approach is useful in situations involving feedback as well as a say from human domain
experts, this dataset was found a fit for authenticating our approach.

The dataset consisted of 768 records of female patients of Pima Indian origin. Out of
768 records, 268 are 1(diabetic) and 500 are 0 (not diabetic), giving a baseline accuracy
of 65.1%. Table 3.3 shows the structure of our dataset with the type and description of
each attribute.
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Feature selection: To identify the features relevant for learning, the correlation of
each predictor with the target variable was computed as compiled in table 3.4. To iden-
tify any correlation between predictors, a correlation matrix was computed as detailed
in table 3.5.

Table 3.4: Correlation of features with the target variable
Feature(Diagnostic measure) Correlation with Outcome (diabetes)
Age 0.238
BloodPressure 0.065
BMI 0.293
DiabetesPedigreeFunction 0.174
Glucose 0.467
Insulin 0.131
Pregnancies 0.222
SkinThickness 0.075

Table 3.5: Correlation among predictors
Preg
nan-
cies

Glucose Blood
Pres-
sure

Skin
Thick
ness

Insulin BMI Diabetes
Pedigree
Function

Age

Pregnancies 1.00 0.13 0.14 -0.08 -0.07 0.02 -0.03 0.54
Glucose 0.13 1.00 0.15 0.06 0.33 0.22 0.14 0.26
BloodPressure 0.14 0.15 1.00 0.21 0.09 0.28 0.04 0.24
SkinThickness -0.08 0.06 0.21 1.00 0.44 0.39 0.18 -0.11
Insulin -0.07 0.33 0.09 0.44 1.00 0.20 0.19 -0.04
BMI 0.02 0.22 0.28 0.39 0.20 1.00 0.14 0.04
Diabetes Pedi-
gree Function

-0.03 0.14 0.04 0.18 0.19 0.14 1.00 0.03

Age 0.54 0.26 0.24 -0.11 -0.04 0.04 0.03 1.00

Outcome: All the predictors were having a positive correlation with the target vari-
able. ’BloodPressure’ and ’SkinThickness’ were having a very weak correlation. No
two features were strongly correlated as correlation was not very high (>.7). So, all
features were selected for participating in the learning process.

3.7 Methods

This section talks about the methods used for learning and evaluating an accurate ML-
based model. It also discusses methods used for identifying dataset characteristics,
interpreting the behaviour of the learned model, taking feedback from human experts
and analyzing agreement between the dataset, the model and human experts.
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3.7.1 Learning an accurate ML model

Learning algorithms: Logistic Regression (LR), Naive Bayes (NB), Classification and
Regression Tree (CART) and Random Forest(RF) algorithms were explored to learn an
ML-based model to predict the joining behaviour of freshmen students. LR uses the
logistic function to estimate the probability of each class of target variable. NB uses
the famous Bayes theorem to calculate the probability that a new instance belongs to a
particular category. CART is a decision tree algorithm that has the advantage of being
easily human interpretable (Wittkowski, 1986). RF is an ensemble approach to improve
the prediction accuracy of CARTs. In RF, for every instance, the classification outcome
is the most frequent outcome when each decision tree in the forest is made to give its
classification outcome (Breiman, 2001).

Performance metrics for model evaluation Classification accuracy (Acc), sensitiv-
ity (Se), specificity (Sp), Precision (P), F1-score and AUC values (area under the ROC
curve) were used as performance evaluation metrics. Sensitivity and specificity are not
equally critical in all ML problems. In the problem domain of predicting the joining
behaviour of freshmen students, it is important that no student who is likely to be ‘Lost’
should be missed out. These performance metrics were computed using equations 3.1,
3.2, 3.3 and 3.4 respectively.

Acc =
T P+T N

N
(3.1)

Se =
T P

T P+FN
(3.2)

Sp =
T N

T N +FP
(3.3)

P =
T P

T P+FP
(3.4)

TP, TN, FP, FN represent true positives, true negatives, false positives and false negatives
as computed from the confusion matrix. N is the total number of predictions made.

3.7.2 Listening to the dataset by identifying important characteris-
tics

Information gain measures using entropy and Gini index were computed for each feature
to identify important features as per the provided dataset.

Entropy is a measure of disorder or impurity. It is used to measure information
gain if a particular feature is selected for splitting while constructing trees (Hausser and
Strimmer, 2014).Entropy for a feature ‘f’ is computed using equation 3.5 (Shannon,
1948). Gini index is a measure of inequality in distribution (Handcock and Morris,



3.7. Methods 65

2006) and is always in the range of 0 to 1. It is computed for a feature using equation
3.6.

Entropy =−∑(p jlog2(p j) (3.5)

where p j is probability of a class ’j’.

Gini index = 1−∑ p2
j (3.6)

where p j is probability of a class ’j’.
In our case, there only two possible classes for the target variable as specified below:

• freshmen: ’lost’ or ’joined’ as possible outcome for the target variable, so j ∈
{lost, joined}

• diabetes: ’Yes’ or ’No’ as possible outcome for the target variable, so j ∈{Yes,No}

Information gain using entropy(IGe, f ) = entropy(parent)- Weighted average entropy
of children

Both entropy and Gini index have been used for information gain to have more ma-
tured inferences regarding the importance of individual features as they use different
splitting criteria. Also, in this work, multiple ML algorithms were explored before mea-
suring agreement between data, ML model and human experts. However, the proposed
approach will work using one of these two also.

3.7.3 Listening to the ML model

Listening to the ML model referred to identifying features that are affecting its decision-
making the most. Feature importance measures and global surrogate model techniques
were used to interpret ML model behaviour.

(a) Feature importance measures: Feature importance provides a global insight into
a model’s behaviour. It is a measure of the increase in the model’s error rate when the
values of a feature are permuted. A higher increase indicates higher importance for the
feature. The error rate was measured using ‘iml’ package in R(Molnar et al., 2018). The
importance of a feature ’f’ as per model is computed using equation 3.7.

Imp f = 1−AUC (3.7)

where AUC represents area under the ROC curve.
Apart from feature importance, the following additional variable importance mea-

sures were used:
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• mmd: mean minimal depth

• acc_d: mean decrease in accuracy after a feature is permuted

• gini_d: mean decrease in the Gini index of node impurity

• times_root: total number of trees in which feature is used for splitting the root
node

These importance measures were computed using the ’randomForestExplainer’ pack-
age in R (Liaw et al., 2002). The average rank assigned to a feature ’f’ as per model
was computed by finding the average of ranks assigned to a feature using mmd, acc_d,
gini_d, times_root and Imp f .

(b) Surrogate model: It is an approximation of a complex black box model using a
simpler model that may not be that accurate but is easy to interpret. R squared value is
taken as a measure of how well our surrogate model replicates the original black-box
model. It measures the amount of variance captured by our surrogate model.

3.7.4 Listening to human domain experts

Listening to human domain experts referred to taking feedback from them as per their
perspective of the problem domain. While taking feedback from human experts, out-
comes of listening to data and interpreting ML model behaviour were not shared with
them to get unbiased feedback. No knowledge of ML was assumed on the part of human
experts.

Problem domain 1: Predicting Joining behaviour of freshmen students
Human domain experts in this problem domain: Admission counsellors working in

the admissions department were picked as human domain experts. Their job profile
was handling queries of aspiring students in-person or telephonically. Based on their
conversation with prospective students over the years, they were having a perception
developed in their minds regarding the factors that affect the joining behaviour of fresh-
men students the most. The objective of taking feedback from these human experts was
to extract inputs from their experience-based perception.

Eligibility condition: Minimum five years of work experience and recommendation
from their project head was set as eligibility criteria for selection as a human expert.
The project head was the reporting manager of these admission counsellors.

The process followed for taking feedback: To ensure that the feedback of human
experts was based on their experience-based perception only, the outcomes from dataset
measures and understanding of the model behaviour was not shared with the identified
human experts. Each expert was asked to give feedback on each of the features used for
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developing an ML-based model. For each feature, an expert had to answer whether that
feature is important, level of its importance and assign a relative rank to each feature.

The orientation of human experts: To ensure that the feedback from a human expert
is based on their experience only, a training session was organized before taking feed-
back. Before taking feedback, it was ensured that all experts understood the feedback
format and questions. Figure 3.2 shows the format used.

Figure 3.2: Feedback form for human domain experts - problem domain 1

The average rank assigned to a feature ‘f’ was computed using equation 3.8.

RHuman, f =
∑

K
i=1 Rhi, f

K
(3.8)

where ’K’ denotes number of human domain experts shortlisted for taking feedback.
In our case, K = 10.

The following is the list of human domain experts from whom the feedback regard-
ing the problem domain was taken:

(i) h1: Maninder Kaur, Admission counselor
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(ii) h2: Vandana Sharma, Admission counselor

(iii) h3: Iesha Saroya, Admission counselor

(iv) h4: Rajwinder Kaur, Admission counselor

(v) h5: Pooja, Admission counselor

(vi) h6: Neha Vaish, Admission counselor

(vii) h7: Anchal Rai, Admission counselor

(viii) h8: Prachi Sharma, Admission counselor

(ix) h9: Anjali Chakma, Admission counselor

(x) h10: Ritu Singla, Admission counselor

Problem domain 2: Predicting the onset of diabetes
A similar approach as in problem domain 1, was followed for listening to human

domain experts in predicting the onset of diabetes. Instead of admission counsellors,
experienced human medical experts were picked as domain experts.

Eligibility condition: The selection criteria was having a professional medical de-
gree and a minimum of 5 years of medical practice. Also, before taking feedback, it
was ensured that the medical expert feels confident in terms of understanding regarding
the clinical measures used in the feedback form.

The orientation of human experts: To ensure that the feedback from human medical
experts is based on their experience during medical practice only, an interaction before
taking feedback was conducted individually with each medical expert. The objective
was to ensure that the medical expert understood the feedback format and questions.

Figure 3.3 shows the format used. In our case, K (number of human medical experts)
= 5.

The feedback was taken from the following human medical experts:

(i) h1: Dr Shruti Sood, M.B.B.S., DCH

(ii) h2: Dr Dr Yogesh Kalra, M.B.B.S., M.D.

(iii) h3: Dr Manjot Kaur, M.B.B.S., M.D.

(iv) h4: Dr Dhawal Kaushal, M.B.B.S., M.D.

(v) h5: Dr Vipin Rai, M.B.B.S., M.D.
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Figure 3.3: Feedback form for human domain experts - problem domain 2

3.7.5 Statistical tests and hypothesis testing for agreement analysis

The problem of measuring agreement between the dataset, ML model and human expert
was modelled as a ‘2-Judges and n-participants’ rank correlation problem. In a rank cor-
relation problem, there are two judges and ’n’ participants. Each of the judges is asked
to rank each participant. The objective of the test is to check whether the two judges
are in sync in terms of their rating of the participants. The value of the rank correla-
tion coefficient(ρs) varies from -1 to +1. The Spearman’s rank correlation coefficient
(Spearman, 1987)is computed using equation 3.9.

ρs = 1− 6∑
n
i=1 di

2

n(n2 −1)
(3.9)

where di is the difference between the ith pair of ranks and ’n’ is number of features
used for learning.

The use of Spearman’s rank correlation is justified as it has an analogy with the
problem of measuring agreement between data, ML model and human experts. In a ’2-
Judges n-participants’ rank correlation problem, judges are asked to rank participants on
the same agreed-upon parameters. The objective of using Spearman’s rank correlation
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is to measure the agreement between the two judges in terms of ranks assigned to par-
ticipants. On the same lines, the problem of measuring agreement between dataset, ML
model and human experts can be modelled as a Spearman’s rank correlation problem.
As an analogy, each feature used for learning was considered equivalent to a partici-
pant. Dataset, ML model and human domain expert were considered as judges. As we
were to analyze the agreement between three judges instead of two, the problem was
addressed by taking a pair of two judges at a time and repeating for each of the three
possible pairs.

Figure 3.4 presents an analogy of the problem of measuring agreement between data,
model and human experts with the Spearman’s rank correlation problem. Each feature
used for learning was considered equivalent to a participant. Dataset, ML model and
human domain expert were considered as judges.

Figure 3.4: Analogy with Spearman’s rank correlation problem

To verify the statistical significance of the degree of agreement among judges, hy-
pothesis testing using 1-tail Spearman’s rank correlation test was used. The following
three hypotheses were framed:

Hypothesis Test-1: Agreement between Dataset and Model
Null Hypothesis (H0): Ranking of features as per dataset and ML model is indepen-

dent (ρs = 0)
Alternate Hypothesis (H1): Ranking of features as per dataset and ML model has a

positive association (ρs > 0)
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Hypothesis Test-2: Agreement between Model and Human
Null Hypothesis (H0): Ranking of features as per ML model and human domain

experts is independent (ρs = 0)
Alternate Hypothesis (H1): Ranking of features as per ML model and human domain

experts has a positive association (ρs > 0)
Hypothesis Test-3: Agreement between Dataset and Human
Null Hypothesis (H0): Ranking of features as per dataset and human domain experts

is independent (ρs = 0)
Alternate Hypothesis (H1): Ranking of features as per dataset and human domain

experts has a positive association (ρs > 0)

3.8 Results and Discussion

This section summarizes the outcomes and observations of the experimental work con-
ducted.

3.8.1 Problem domain 1: Predicting joining behavior of freshmen
students

Experiment 1: Learning an accurate model
Table 3.6 mentions the performance evaluation metrics computed from the confu-

sion matrix.

Table 3.6: Performance comparison of ML models
Model Acc Se Sp Precision F1 Score AUC

Trng Test Trng Test Trng Test Trng Test Trng Test Trng Test
LR 0.818 0.81 0.654 0.633 0.911 0.91 0.806 0.8 0.722 0.707 0.862 0.861
NB 0.796 0.79 0.672 0.657 0.867 0.866 0.742 0.735 0.705 0.694 0.849 0.845
CART 0.802 0.789 0.66 0.627 0.883 0.88 0.762 0.748 0.707 0.682 0.793 0.78
RF 0.832 0.816 0.653 0.625 0.933 0.925 0.848 0.825 0.738 0.711 0.834 0.835

Outcome of the experiment: It was observed that all the four classification algo-
rithms gave accuracy in the range of around 78%-80%, a significant improvement over
baseline accuracy of 63.8%. All four algorithms competed well in terms of sensitivity,
specificity, precision, F1 score and AUC values. RF model has given the best classifi-
cation accuracy. A good generalization of classification accuracy from training to test
data was observed. RF model was taken as input for the next stages of the experimental
work.

Experiment 2: Listening to the dataset Table 3.7 mentions the information gain
computed using entropy and Gini index for each feature in ’freshmen’ dataset.



72 3. Data, Model and Human: A collaboration

Table 3.7: Ranking of features as per dataset
Feature(f) IGe, f Re, f IGg, f Rg, f RDataset, f
ScholarshipBracket 0.197 1 0.125 1 1
MarksCategory 0.116 2 0.067 2 2
HostelorTransport 0.1 3 0.062 3 3
FeePaidCategorized 0.091 4 0.052 4 4
LoanLetter 0.027 5 0.015 5 5
HomeTownType 0.022 6 0.014 6 6
PreviouslyStudied 0.005 7 0.003 7 7
QualifyingExam 0.002 8 0.001 8 8
AdmissionMonth 0.001 9 0.001 9 9

Outcome of the experiment: Each feature has been ranked in descending order of
IGe, f and IGg, f . The column RDataset, f is the average of the above two ranks (Re, f

and Rg, f ). It was observed that the features giving maximum information gain in-
cluded ’ScholarshipBracket’, ’MarksCategory’, ’HostelorTransport’, ’FeePaidCatego-
rized’ and ’LoanLetter’. The rank assigned to each feature was the same using entropy
and Gini index.

Experiment 3: Listening to the model
The RF model was picked for subsequent phases of the experimentation work owing

to its high accuracy and black-box nature. Table 3.8 mentions the quantitative measure
of importance given to a feature by the model and corresponding ranks are compiled in
Table 3.9 for ‘freshmen’ dataset.

Table 3.8: Feature Importance measures
Feature mmd acc_d gini_d times_root Imp f
ScholarshipBracket 1.028 0.125 1147.8 169 1.694
MarksCategory 1.348 0.043 467.8 105 1.198
HostelorTransport 1.758 0.028 356.6 98 1.14
FeePaidCategorized 1.786 0.03 322.5 70 1.123
LoanLetter 2.528 0.008 106.6 38 1.12
HomeTownType 2.634 0.007 130.2 14 1.078
PreviouslyStudied 3.25 0.004 42.4 6 1.066
QualifyingExam 2.598 0.006 109.5 0 1.061
AdmissionMonth 2.596 0.014 247.4 0 1.032

Global surrogate model: Figure 3.5 shows the global surrogate model with depth
fixed to two levels for our datasets. Globally top significant features selected for tree
construction included ’ScholarshipBracket’, ’MarksCategory’ and ’FeePaidCategorized’.

Outcome of the experiment: Top features to which model outcome is sensitive in-
cludes ‘ScholarshipBracket’, ‘FeePaidCategorized’, ‘HostelorTransport’, and ‘MarksCat-
egory’. The features selected for the construction of the global surrogate model were
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Table 3.9: The rank of a feature as per ML model
Feature Rmmd, f Racc_d, f Rgini_d, f Rtimes_root, f RImp f RModel, f
ScholarshipBracket 1 1 1 1 1 1.0
MarksCategory 2 2 2 2 5 2.6
HostelorTransport 3 4 3 3 3 3.2
FeePaidCategorized 4 3 4 4 2 3.4
LoanLetter 5 6 8 5 8 6.4
HomeTownType 8 7 6 6 6 6.6
PreviouslyStudied 9 9 9 7 9 8.6
QualifyingExam 7 8 7 8.5 7 7.5
AdmissionMonth 6 5 5 8.5 4 5.7

matching closely with the most significant variables found using feature importance.
Experiment 4: Feedback from human domain experts
Each human expert assigned a unique rank from 1 to 9 to the nine features that were

used in learning the ML-based model. Rank 1 was assigned to the feature perceived
as affecting joining behaviour the most as per that human expert. Successive ranks are
assigned in the same order. Figure 3.6 shows a snapshot of a feedback form filled by a
human expert.

Table 3.10 compiles the feedback from each human expert against each feature.
RHuman, f is the average rank assigned to each feature and is computed using equation
3.8.

Table 3.10: Feedback from human experts
Attribute Rh1, f Rh2, f Rh3, f Rh4, f Rh5, f Rh6, f Rh7, f Rh8, f Rh9, f Rh10, f RHuman, f
ScholarshipBracket 1 1 1 1 1 1 1 1 1 1 1.0
MarksCategory 2 3 2 2 2 4 2 6 2 2 2.7
HostelorTransport 6 6 7 8 6 9 3 7 4 4 6.0
FeePaidCategorized 7 5 9 4 9 2 9 5 5 8 6.3
LoanLetter 8 7 5 3 4 5 7 9 3 3 5.4
HomeTownType 9 9 8 6 7 3 8 3 9 6 6.8
PreviouslyStudied 5 8 6 5 5 8 4 4 6 7 5.8
QualifyingExam 3 2 3 7 8 7 5 8 7 9 5.9
AdmissionMonth 4 4 4 9 3 6 6 2 8 5 5.1

Outcome of the experiment: All human experts were having consensus that ’Schol-
arshipBracket’ affects the joining behaviour of freshmen students the most. ’Scholar-
shipBracket’ and ’MarksCategory’ were the top two features as per the majority of
human experts.

Analysis of Agreement between dataset, model and human experts After collect-
ing rankings of features as per the three judges (dataset, model and human experts), the
degree of agreement between these three in terms of ranking of features was computed
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Figure 3.5: Global surrogate model

and verified for statistical significance. Table 3.11 gives a comparison of ranks assigned
to features based on dataset measures, model behaviour, and human expert feedback.

Table 3.12 compiles the value of Spearman’s rank correlation coefficient to measure
agreement between data, model and human feedback, taking two at a time. Also, it
compiles the outcomes of the three hypothesis tests formulated to verify the statistical
significance of the agreement observed. The value of ‘n’ in our case was 9 as a total
of nine features were used for learning the ML model. Referring to the table of critical
values for one-tail Spearman’s ranked correlation coefficient, the critical value for n=9
was 0.6 at a 5% level of significance.

Outcomes of the experiment:
(i) A positive value of correlation coefficient (test statistic) was observed for each

pair of judges. The positive values indicate agreement between dataset measures, model
behaviour and human perception.

(ii) As the value of the test statistic was greater than the critical value in each of
the three tests, the null hypothesis was rejected for each pair of judges. It indicates that
there is a statistically significant positive association between rankings of features by
dataset, model and human experts.
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Figure 3.6: Feedback form for human experts

(iii) The model has been able to extract important features of the dataset into its
learning and this learning was also in sync with the prevailing domain knowledge as per
human domain experts.

3.8.2 Problem domain 2: Predicting onset of diabetes using diag-
nostic measures

Experiment 1: Learning an accurate model
Table 3.13 mentions the performance evaluation metrics computed from the confu-

sion matrix for LR, NB, CART and RF algorithms.
Outcome of the experiment: It was observed that all the four classification algo-

rithms gave accuracy in the range of around 75%-79%, a significant improvement over
baseline accuracy of 65.1%. All four algorithms competed well in terms of sensitivity,
specificity, precision, and AUC values. RF model has given the best classification ac-
curacy for training data and an almost equally good performance using test data. RF
model was taken as input for the next stages of the experimental work.

Experiment 2: Listening to the dataset
Table 3.14 mentions the information gain using entropy and Gini index for each
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Table 3.11: Ranks assigned by dataset, model and human experts
Feature RDataset, f RModel, f RHuman, f
ScholarshipBracket 1 1 1.0
MarksCategory 2 2.6 2.7
HostelorTransport 3 3.2 6.0
FeePaidCategorized 4 3.4 6.3
LoanLetter 5 6.4 5.4
HomeTownType 6 6.6 6.8
PreviouslyStudied 7 8.6 5.8
QualifyingExam 8 7.5 5.9
AdmissionMonth 9 5.7 5.1

Table 3.12: Degree of agreement and hypothesis testing
Pair of Judges Hypothesis Test Test Statis-

tic (TS)
Critical
Value (CV)

Statistical Test
Outcome

Dataset & Model Hypothesis Test-1 0.860 0.6 H0 is Rejected
Model & Human Hypothesis Test-2 0.766 0.6 H0 is Rejected
Dataset & Human Hypothesis Test-3 0.695 0.6 H0 is Rejected

Table 3.13: Performance comparison of ML models
Model Acc Se Sp Precision AUC

Trng Test Trng Test Trng Test Trng Test Trng Test
LR 0.773 0.786 0.557 0.567 0.888 0.904 0.727 0.76 0.84 0.831
NB 0.762 0.771 0.607 0.582 0.845 0.872 0.678 0.709 0.824 0.83
CART 0.793 0.745 0.552 0.448 0.923 0.904 0.793 0.714 0.767 0.704
RF 1.000 0.766 1.000 0.552 1.000 0.88 1.000 0.712 0.814 0.814

feature in ’diabetes’ dataset and corresponding ranks assigned.

Table 3.14: Ranking of features as per dataset
Feature(f) IGe, f Re, f IGg, f Rg, f RDataset, f
Age 0.038 2.5 0.025 2 2.3
BloodPressure 0.02 5 0.012 5.5 5.3
BMI 0.038 2.5 0.024 3 2.8
DiabetesPedigreeFunction 0.019 6 0.012 5.5 5.8
Glucose 0.162 1 0.095 1 1.0
Insulin 0.016 7 0.01 7 7.0
Pregnancies 0.033 4 0.021 4 4.0
SkinThickness 0.013 8 0.008 8 8.0

Outcome of the experiment: Each feature has been ranked using IGe, f and IGg, f

and the column RDataset, f is the average of these two ranks. It was observed that the
features giving maximum information gain included ’Glucose’, ’BMI’, and ’Age’. The
ranks assigned to each feature using entropy and Gini index were very close.
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Figure 3.7: Data, Model and Human opinion - problem domain 1

Experiment 3: Listening to the model
The RF model was picked for subsequent phases of the experimentation work owing

to its high accuracy and black-box nature. Table 3.15 mentions the quantitative measure
of importance given to a feature by the model and corresponding ranks are compiled in
Table 3.16 for ‘diabetes’ dataset.

Table 3.15: Feature Importance measures
Feature mmd acc_d gini_d times_root Imp f
Age 0.038 2.5 0.025 2 2.3
BloodPressure 0.02 5 0.012 5.5 5.3
BMI 0.038 2.5 0.024 3 2.8
DiabetesPedigreeFunction 0.019 6 0.012 5.5 5.8
Glucose 0.162 1 0.095 1 1.0
Insulin 0.016 7 0.01 7 7.0
Pregnancies 0.033 4 0.021 4 4.0
SkinThickness 0.013 8 0.008 8 8.0

Outcome of the experiment: Top features to which model outcome is sensitive to
included ‘Glucose’, ‘BMI’, and ‘Age’.

Experiment 4: Feedback from medical domain experts
Each human expert assigned a unique rank from 1 to 8 to the eight features used in

learning the ML-based model. Rank 1 was assigned to the feature perceived as affecting
the onset of diabetes the most as per that human medical expert. Successive ranks
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Table 3.16: The rank of a feature as per ML model
Feature Rmmd, f Racc_d, f Rgini_d, f Rtimes_root, f RModel, f
Age 3 3 3 2 2.75
BloodPressure 7 8 5 8 7
BMI 2 2 2 3 2.25
DiabetesPedigreeFunction 5 5 4 6 5
Glucose 1 1 1 1 1
Insulin 6 6 7 5 6
Pregnancies 4 4 6 4 4.5
SkinThickness 8 7 8 7 7.5

are assigned in the same order. Table 3.17 compiles the feedback from each of the 5
human medical experts against each feature. Each of these human experts was having
experience of more than 5 years. RHuman, f is the average rank assigned to each feature
and is computed using equation 3.8.

Table 3.17: Feedback from human experts
Attribute Rh1, f Rh2, f Rh3, f Rh4, f Rh5, f RHuman, f
Age 2 2 5 5 3 3.4
BloodPressure 4 4 6 6.5 5 5.1
BMI 1 1 2 2.5 2 1.7
DiabetesPedigreeFunction 5 5 1 2.5 6 3.9
Glucose 3 3 3 2.5 1 2.5
Insulin 7 7 4 2.5 4 4.9
Pregnancies 8 8 7 6.5 7 7.3
SkinThickness 6 6 8 8 8 7.2

Outcome of the experiment: The set of top three features were the same as per the
model and human experts. However, the internal ranking was not the same. All human
experts were having consensus that ‘Glucose’, ‘BMI’ , and ‘Age’ affect the onset of
diabetes the most.

Analysis of Agreement between dataset, model and human experts After collect-
ing rankings of features as per the three judges (dataset, model and human experts), the
degree of agreement between these three in terms of ranking of features was computed
and verified for statistical significance. Table 3.18 gives a comparison of ranks assigned
to features based on dataset measures, model behaviour, and human expert feedback.

Table 3.19 compiles the value of Spearman’s rank correlation coefficient to measure
agreement between data, model and human feedback, taking two at a time. Also, it
compiles the outcomes of three hypothesis tests formulated to verify the statistical sig-
nificance of the agreement observed. The value of ‘n’ in our case was 8 as a total of
eight features were used for learning the ML model. Referring to the table of critical
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Table 3.18: Ranks assigned by dataset, model and human experts
Feature RDataset, f RModel, f RHuman, f
Age 2.3 2.75 3.4
BloodPressure 5.3 7 5.1
BMI 2.8 2.25 1.7
DiabetesPedigreeFunction 5.8 5 3.9
Glucose 1.0 1 2.5
Insulin 7.0 6 4.9
Pregnancies 4.0 4.5 7.3
SkinThickness 8.0 7.5 7.2

values for one-tail Spearman’s ranked correlation coefficient, the critical value for n=8
was 0.643 at 5% level of significance.

Table 3.19: Degree of agreement and hypothesis testing
Pair of Judges Hypothesis Test Test Statis-

tic (TS)
Critical
Value (CV)

Statistical Test
Outcome

Dataset & Model Hypothesis Test-1 0.933 0.643 H0 is Rejected
Model & Human Hypothesis Test-2 0.798 0.643 H0 is Rejected
Dataset & Human Hypothesis Test-3 0.714 0.643 H0 is Rejected

Outcomes of the experiment:
(i) A positive value of correlation coefficient (test statistic) was observed for each

pair of judges. The positive values indicate agreement between dataset measures, model
behaviour and human perception.

(ii) As the value of the test statistic was greater than the critical value in each of
the three tests, the null hypothesis was rejected for each pair of judges. It indicates that
there is a statistically significant positive association between rankings of features by
dataset, model and human experts.

(iii) It is concluded that the model has been able to extract important features of
the dataset into its learning and this learning is also in sync with the prevailing domain
knowledge as per human domain experts.

3.9 Conclusions and Future work

Dataset, model and human domain experts can be considered as the three pillars for
constructing an ML-based solution. Listening to each of these pillars helps verify
the acquired learning against the provided dataset and prevailing domain knowledge.
Agreement between these three pillars regarding their perception of the problem do-
main facilitates confidence in the ML model in terms of accuracy and user agreement.
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Figure 3.8: Data, Model and Human opinion - problem domain 2

The problem of measuring the degree of agreement between data, model and human
can be modelled as a rank correlation problem. A higher degree of agreement between
dataset and model indicates that the model has listened well to the dataset. A higher de-
gree of agreement between model and human indicates that the behaviour of the model
is in sync with the prevailing domain knowledge. Statistical significance of the agree-
ment can be verified by hypothesis testing using one-tail Spearman’s rank correlation
coefficient.

The proposed approach has the potential of forming the basis for developing formal
quantitative metrics to facilitate trust in ML-based solutions. Information gain com-
puted using entropy and Gini index are useful in identifying features having higher
predictive power. Variable importance measures and model-agnostic techniques help
diagnose the behaviour of any complex ML model. Human expert feedback is impor-
tant to validate the behaviour of an ML model. RF algorithm outperformed LR, NB and
CART algorithms in terms of classification accuracy.

Future research directions include exploring additional dataset measures and model-
agnostic interpretability techniques to listen to the provided dataset and learn the model
more comprehensively. For measuring agreement between stakeholders, weighted rank
correlation can be explored as an improvement over spearman’s rank correlation. Also,
the proposed approach can be extended to regression problems and other problem do-
mains.



Chapter 4

Human-feedback Adaptive Learning

4.1 Introduction

Humans and machines have their unique strengths and collaboration between these two
have the potential to improve ML systems. For any such collaboration, human users
must be able to interpret the behaviour of the ML system. Moreover, human users should
have a provision to give feedback to the ML system based on their domain knowledge.
Consequently, apart from accuracy, human interpretability and the ability to interact
with human experts are the crucial parameters for the success of ML systems.

The solution of an ML problem involves the optimization of one or more internal
metrics. The most popular ones among these internal metrics include accuracy, preci-
sion, recall, AUC values, and F1-score. Solution space of an ML problem may have, in
general, multiple solutions that are equally good in terms of these internal optimization
metrics. However, these solutions may differ significantly in terms of their alignment
with the user’s perspective of the problem domain. Including human domain experts in
this exploration of the solution space of a problem has the potential to help search for a
solution that not only satisfies the threshold for internal metrics but has improved agree-
ment with the user. Moreover, the involvement of human experts has the potential to
accelerate this exploration of solution space, therefore, helping in terms of algorithmic
complexity.

During recent years, a renewed interest in conferring interpretability and interact
ability (with human users) to ML systems have been observed. However, a lack of
consensus regarding definitions, standard practices and evaluation metrics still exists.

The goal in this chapter is to extend our framework to enable human-feedback adap-
tive learning. The objective is to make the ML model adapt to human expert feedback
in case there is a lack of agreement with the human domain experts regarding their per-
ception of the problem domain. The chapter provides a base algorithm for the design
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of interpretable and interactive ML systems that gives a common starting point for fur-
ther improvements. The chapter also identifies potential metrics for the evaluation of
interpretable and interactive ML systems. Establishing principles and guidelines for the
design of interactive ML systems will help in standardization and building a consensus.
The chapter drafts a set of desired characteristics for interpretable and interactive ML
systems. To take ML to the masses, human users with different expertise levels of the
domain must be enabled to interact with and provide feedback to ML systems. The
chapter proposes an interface that can capture feedback from human experts with differ-
ent levels of expertise. This will help make experiments involving human experts more
economical and enable leveraging of the masses in improving or verifying ML systems.

The major contributions of this chapter are:

(i) An algorithmic and graphical description of the working of interactive ML
systems

(ii) Proposes human-feedback adaptive learning algorithm to enable an ML model
to adapt to human expert feedback

(iii) A set of desired characteristics for interpretable and interactive ML systems

(iv) A set of potential evaluation metrics for interpretable and interactive ML sys-
tems

These contributions have the potential to positively impact the progress in the field of
interpretable and interactive ML systems.

The rest of the chapter is organized as follows: Section 4.2 summarizes the related
work and existing research gaps. Section 4.3 describes the problem formulation. Section
4.4 describes the proposed framework using an algorithm and a framework diagram.
Section 4.5 describes the experimental work to demonstrate human-feedback adaptive
learning. Section 4.6 summarizes the outcomes of the experimental work. Section 4.7
lists desired characteristics of an interactive and interpretable ML system. Section 4.8
proposes metrics that can be used for the evaluation of interactive ML systems. Section
4.9 describes potential improvements to improve the working of interactive ML systems
in form of human-feedback adaptive learning. Section 4.10 summarizes conclusions and
possible lines for future work.

4.2 Related work

To take ML to the masses, end users must trust ML-based solutions. To facilitate this
trust-building, these users should be enabled to interpret the decision-making behav-
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ior of an ML model. Interpretable ML is gaining attention due to its potential ad-
vantages like facilitating trust, debugging model, ensuring fairness and RTE (Right-
to-explanation) obligation (Ribeiro et al., 2016b)(Lipton, 2016)(Doshi-Velez and Kim,
2017). A few of the most prominent approaches in conferring interpretability to ML
models include Partial dependence plots (Friedman, 2001), Individual conditional ex-
pectation plots (Goldstein et al., 2015), feature interaction plots (Friedman et al., 2008),
feature importance plot (Breiman, 2001), global surrogate models (Molnar, 2020), local
interpretable model-agnostic explanations (LIME) (Ribeiro et al., 2016b), and Shapley
explanations (Shapley, 1953).

Humans and machines have a distinct set of capabilities that can complement each
other via collaboration between the two. Humans are good at making decisions in never-
seen-before situations based on their prior experiences. Machines are good at processing
a large volume of data without getting tired. A collaboration of humans and machines
has the potential to affect the learning process positively in terms of accelerating the
exploration of solution space. The idea is to have this search space exploration process
guided via human interaction. Such collaboration has other potential advantages like
reducing engineering efforts, learning with a lesser number of human experts or training
data. Moreover, a collaboration of humans and machines is useful in reaching out to ML
solutions that have better user agreement. It involves iterative interaction cycles between
the two sides. As human users who are not ML experts are getting access to ML tools, it
becomes imperative to enable these users to interpret the decision-making behaviour of
the model. Also, they should be enabled to provide feedback to the ML model based on
their domain expertise. So, the ML community need to continue improving ML systems
in terms of interpretability as well as the ability to interact with human users. Figure 4.1
shows idea of bi-directional interaction between human and machine.

Figure 4.1: Human-Machine Interaction diagram

A hybrid human-machine intelligence approach has been proposed (Yang et al.,
2019) where the model is refined to incorporate the feedback given by human experts.
A user interface called ’Ruleslearner’ has been used to present the learned model as a
set of rules in disjunctive normal form and collect feedback from users in the form of
addition, deletion, modification, ranking or filtering of rules.
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The involvement of humans in the exploration of solution space can positively af-
fect computationally hard problems (Holzinger et al., 2019). The ACO (Ant colony
optimization) algorithm was used for solving a TSP (Travelling Salesman Problem).
The key idea has been to increase the probability of selection of a path that is traversed
by a human, by artificial agents also.

An interactive ML model ’iBCM’ that enables a two-way communication (Kim,
2015) with human experts has been proposed for clustering. Human to ML model
communication is in terms of prototypes and subspaces. ML model reverts through
explanations after incorporating user feedback.

The democratization of ML by providing a bigger role to end-users in the design of
ML systems has been advocated (Amershi et al., 2014). Involving users in the learning
process results in rapid and specific incremental updates in the ML model. This involve-
ment brings the challenge of understanding the capabilities, behaviour and needs of the
end-user.

Interdisciplinary expertise has been advocated to develop explanatory learning mod-
els that can provide interpretable and achievable insights in addition to accurate predic-
tions(Rosé et al., 2019). The interdisciplinary expertise spans AI/ML engineers, cogni-
tive, education and UI/UX (User Interface/User Experience) designers.

Research gaps:The associated future lines of work in the design of interactive and
interpretable ML-based systems involving human-machine collaboration include:

(i) understanding capabilities and needs of each user

(ii) developing a common language across different domains

(iii) establishing principles and guidelines for the design of interactive ML sys-
tems

(iv) developing metrics for the evaluation of interactive ML systems

(v) leveraging human expertise in reducing computation cost of problems that
involve the exploration of a large solution space

(vi) utilizing established practices in UI/UX design

(vii) developing innovative and intuitive ideas to accommodate human expert
feedback.

4.3 Problem Formulation

This section describes the workflow involved in an interpretable and interactive ML sys-
tem in the form of an algorithm and flowchart. The objective is to develop a framework
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that can present an ML model to a human expert in an interpretable manner. Addition-
ally, it can collect feedback from human experts regarding their perception of the prob-
lem domain. The proposed framework must be capable of measuring agreement with
the human user and validating the statistical significance of this agreement. Moreover,
in case the agreement between the ML model and human experts is lacking, it should be
able to make the ML model adapt itself to incorporate human feedback. While attempt-
ing to incorporate human feedback, the ML model should remain within acceptable
limits of accuracy. Whenever there is a conflict between what data and humans say, the
same should be reported as a conflict.

First, an accurate ML model is developed using the provided dataset and an ap-
propriate ML algorithm. The behaviour of this ML model is explained to the human
domain expert using interpretability techniques like feature importance plot. After pre-
senting the ML model to the human, the system collects the level of agreement between
the ML model and the user’s perspective of the problem domain. The Likert scale is
one commonly used technique to collect user agreement. The choice of the scale can
be kept flexible and be decided as per the requirement of the problem domain. A com-
monly used scale is 1-5 where 1 represents strongly disagree and 5 represents strongly
agree. After collecting user agreement, the system prompts the human user to provide
feedback, if any, to the ML model in an intuitive and human-friendly manner. A dedi-
cated user interface is used to collect this feedback. This interface provides users with
an option to play with existing model behaviour like modifying feature importance or
modifying rules. As a next step, the system goes back to incorporate the feedback pro-
vided and revert with a refined model to the user. In case, the user feedback is conflicting
with what data is saying, the system reverts with a conflict. Again, the system prompts
the human user to provide feedback on the revised version of the model or resubmit
feedback in case a conflict is reported. This iterative cycle of collecting and incorporat-
ing feedback from a human user goes on until the human user is done with providing
feedback. After the human user has no more feedback for the ML model, the system
collects agreement between the human user and the ML model again. The difference in
user agreement before and after human interaction is measured and checked for statisti-
cal significance using statistical tests. If the interaction has resulted in an improvement
in the user agreement, it is termed as a fruitful interaction else a non-fruitful interaction.

The workflow in an interactive ML system has been presented using algorithm 2 and
figure 4.2 shows its graphical representation using a flowchart.

Novelty of the proposed human-feedback adaptive algorithm: The algorithm
takes motivation from the intuitive idea that in an ML-based solution, the ML model
should agree with the provided dataset as well as the perception of human domain ex-
perts regarding the problem domain under study. The agreement with the dataset is
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Data: Dataset for learning
Result: Interpreting model behaviour, Improved user agreement

1 Learn an accurate ML model using the provided dataset;
2 Present the ML model to the human expert for interpretation;
3 Collect the agreement between user’s perspective and ML model;
4 Prompt the human user to provide feedback to the ML model ;
5 if User feedback conflict with data then
6 Report as a conflict
7 else
8 Incorporate feedback and revert with a revised model
9 end

10 if User is done with giving feedback then
11 goto 15
12 else
13 goto Step 4
14 end
15 Collect agreement between user and model;
16 Measure the statistical significance of the change in user agreement before and

after interaction with human;
17 if Change in the agreement is significant then
18 Human interaction is fruitful.
19 else
20 Human interaction is not fruitful.
21 end
Algorithm 2: ML system with Human-feedback adaptive learning capability

crucial for verifying the correctness of the learning acquired. The agreement with the
perception of human domain experts is crucial for facilitating trust in ML-based solu-
tions. This algorithm also addresses the situation where the learned model lacks agree-
ment with human experts. The algorithm makes the ML model adapt by exploring the
solution space again to reach out to its accurate version as well as in agreement with
prevailing domain knowledge. The highlight of this algorithm is that it ensures agree-
ment with the dataset as well as human perception. Due to the two-way verification
(against the dataset and the human perception), the algorithm is capable of identifying
problems in the preparation of the dataset, problems in the learning process, problems
in capturing or analyzing human feedback. Also, it is capable of addressing the case of
discovering new knowledge when the ML model lacks agreement with human experts
despite being correct. This may be useful in problem domains where the phenomenon
under investigation is complex and not well understood yet.
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Figure 4.2: Human-feedback adaptive interactive ML system

4.4 Extended framework with human-feedback adap-
tive learning capability

This section discusses extending the framework to enable human-feedback adaptive
learning. The basic idea remains to listen to the dataset, the model and the human
domain experts separately in terms of ranking of features. A higher degree of agree-
ment between these three is an indicator that the model had captured important features
as per the dataset and its decision-making is in agreement with the prevailing domain
knowledge. The degree of agreement between dataset, model and human experts was
computed using spearman’s rank correlation. If the dataset, the ML model, and human
experts do not have a degree of agreement, the model was not considered trustable. In
case this agreement is lacking, the ML model attempts to explore the solution space
again with a revised strategy to find its version that is better aligned with human users
and is still accurate. To measure the degree of agreement, spearman’s rank correlation
was used. To verify the significance of the degree of agreement, hypothesis testing using
one-tail Spearman’s rank correlation was used.

The algorithm 3 depicts the flow of the work and the figure 4.3 presents the extended
framework graphically with changes highlighted.
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These highlighted changes represent the scenario when a lack of agreement between
dataset, ML model and human domain experts is observed in terms of their perception
regarding the problem domain. In such a case, the ML model attempts to adapt itself
to human expert feedback by exploring the solution space again. The revised model is
again checked for agreement with the perception of human domain experts. Also, it is
ensured that in search of agreement with human perception, the accuracy of the model
remains within acceptable limits. These limits are bound to vary from one problem
domain to another depending upon the criticality of the decision making involved. In
case, the algorithm is not able to find a version of the ML model that is in agreement
with the dataset as well as the perception of human experts, it is reported as a conflict.

Figure 4.3: Human-feedback adaptive learning framework

4.5 Experimentation

This section describes the experimental work conducted for demonstrating how an ML
system can adapt itself to incorporate human expert feedback. The objective is to pro-
pose and demonstrate a framework that verifies agreement between the dataset, the ML
model and human experts in terms of their perception regarding the problem domain.
The framework aims to listen to the dataset, model and human expert and analyze the
degree of agreement between these three. In case of a lack of agreement, the framework
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Data: Dataset, a black-box ML model
Result: Interpreting model behaviour, verifying learning, facilitating trust

1 FEATURES = Set of features used for learning;
2 HUMANS = Set of human domain experts;
3 for each f in FEATURES do
4 Compute IGe, f and IGg, f ;
5 end
6 for each f in FEATURES do
7 Assign Re, f using IGe, f ;
8 Assign Rg, f using IGg, f ;
9 end

10 Compute Rdataset, f as average of Re, f and Rg, f ;
11 for each f in FEATURES do
12 Compute Imp f ;
13 end
14 for each f in FEATURES do
15 Compute RModel, f using Imp f ;
16 end
17 Analyze the degree of agreement between Rdataset, f and RModel, f ;
18 if Dataset and Model do not agree then
19 Model is unreliable. Exit.
20 end
21 for each h in HUMANS do
22 for each f in FEATURES do
23 Collect Rh, f based on human expert perception
24 end
25 end
26 for each f in FEATURES do
27 Compute RHuman, f as average of ranks assigned to that feature Rh, f ;
28 end
29 Analyze degree of agreement between Rdataset, f , RModel, f and RHuman, f ;
30 if Dataset, Model and Human agree then
31 Model is trustworthy
32 else
33 Rebuild Model incorporating human expert feedback.
34 end
35 if Dataset, Model and Human agree then
36 if Model is still accurate enough then
37 Model is trustworthy.
38 else
39 Report as a conflict.
40 end
41 end

Algorithm 3: Human-Feedback Adaptive Learning
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Table 4.1: Experiments designed and the underlying objective
Experiment # Experiment description Experiment Objective
1 Listening to the provided

dataset, learned ML model
and human domain experts

Extracting their perception regard-
ing the problem domain in terms of
feature importance

2 Measuring and analyzing the
degree of agreement between
dataset, model, and human
expert

To check whether the dataset,
model and human experts are in
sync in terms of their perception re-
garding the problem domain

3 Revising ML model to align
with user’s feedback (if feasi-
ble and required)

To achieve improved agreement of
ML model with the user’s percep-
tion regarding the problem domain

makes the ML model revise itself to align with the user’s perspective by exploring the
solution space again while giving minimum importance to least ranked features as per
human domain experts. The experiments designed and the underlying motivations have
been compiled in Table 4.1.

4.6 Results and Discussion

This section compiles the experimental outcomes and discusses the observations from
these experiments.

As detailed in 3.6, all the four classification algorithms gave accuracy in the range of
around 78%-80%. All four algorithms competed well in terms of sensitivity, specificity,
precision, F1 score and AUC values. RF model has given the best classification accu-
racy. Moreover, a good generalization of classification accuracy from training to test
data was observed. RF model was taken as input for the next stages of the experimental
work.

4.6.1 Listening to Dataset, Model and Human

Table 3.7 mentions the importance of each feature as per the dataset. Each feature has
been ranked in descending order of IGe, f and IGg, f . The column RDataset, f is the average
of the above two ranks. It was observed that the features giving maximum information
gain included ’ScholarshipBracket’, ’MarksCategory’, ’HostelorTransport’, ’FeePaid-
Categorized’ and ’LoanLetter’. The rank assigned to each feature was the same using
entropy and Gini index.

Table 4.2 mentions the quantitative measure of importance given to a feature by
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Table 4.2: Feature Importance
Feature(f) Imp f RModel, f
ScholarshipBracket 1.694 1
FeePaidCategorized 1.198 2
HostelorTransport 1.14 3
AdmissionMonth 1.123 4
MarksCategory 1.12 5
HomeTownType 1.078 6
QualifyingExam 1.066 7
LoanLetter 1.061 8
PreviouslyStudied 1.032 9

Table 4.3: Ranks as per dataset, model and human experts
Feature RDataset, f RModel, f RHuman, f
ScholarshipBracket 1 1 1.0
MarksCategory 2 6 2.7
HostelorTransport 3 3 6.0
FeePaidCategorized 4 2 6.3
LoanLetter 5 9 5.4
HomeTownType 6 4 6.8
PreviouslyStudied 7 8 5.8
QualifyingExam 8 7 5.9
AdmissionMonth 9 5 5.1

the model. Top features to which model outcome is sensitive to includes ’Scholarship-
Bracket’, ’FeePaidCategorized’ ,’HostelorTransport’, and ’MarksCategory’.

Table 3.10 compiles the feedback from each human expert against each feature.
Each human expert assigned a unique rank from 1 to 9 to the nine features that are used
in learning the ML-based model. Rank 1 is assigned to the feature that is perceived
as affecting joining behaviour the most as per that human expert. Successive ranks are
assigned in the same order. RHuman, f is the average rank assigned to each feature is
computed.

4.6.2 Verifying agreement between dataset, model and human ex-
perts

After collecting rankings of features as per the three judges (dataset, model and human
experts), the degree of agreement between these three in terms of ranking of features
was computed and verified for statistical significance. Table 4.3 gives a comparison
of ranks assigned to features based on dataset measures, model behaviour, and human
expert feedback.
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Table 4.4 compiles the value of Spearman’s rank correlation coefficient to measure
agreement between data, model and human feedback, taking two at a time. Also, it
compiles the outcomes of three hypothesis tests formulated to verify the statistical sig-
nificance of the agreement observed. The value of ’n’ in our case was 9 as a total of nine
features were used for learning the ML model. Referring to the table of critical values
for one-tail Spearman’s ranked correlation coefficient, the critical value for n=9 was 0.6
at 5% level of significance.

Table 4.4: Degree of agreement and hypothesis testing
Pair of Judges Hypothesis Test Test Statis-

tic (TS)
Critical
Value (CV)

Statistical Test
Outcome

Dataset & Model Hypothesis Test-1 0.517 0.6 H0 is Accepted
Model & Human Hypothesis Test-2 0.456 0.6 H0 is Accepted
Dataset & Human Hypothesis Test-3 0.695 0.6 H0 is Rejected

Observations:

(i) Dataset and Model: A positive value of correlation coefficient (test statistic)
was observed between the ranking of features as per dataset and model, however,
the magnitude of correlation was ’moderate’ only. As the value of the test statistic
was smaller than the critical value, the null hypothesis was accepted. It indicates
that rank orders of features as per dataset and model are independent or not in
agreement.

(ii) Model and Human Expert: A positive value of correlation coefficient (test
statistic) was observed between the ranking of features as per ML model and hu-
man experts. However, the magnitude of the correlation was ’moderate’ only. As
the value of the test statistic was smaller than the critical value, the null hypothesis
was accepted. It indicates that rank orders of features as per the ML model and
human experts are independent.

(iii) Dataset and Human Expert: A strong positive value of correlation coefficient
(test statistic) was observed between the ranking of features as per dataset and hu-
man experts. As the value of the test statistic was greater than the critical value,
the null hypothesis was rejected. It indicates that there was a statistically sig-
nificant positive association between rankings of features by Dataset and Human
experts.

(iv) As two out of three hypothesis tests resulted in the rejection of the alternate
hypothesis, it was concluded that the dataset, model and human experts were not
in sync in terms of rank orders assigned to features.
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Table 4.5: Revised ranks as per dataset, model and human experts
Feature Rdataset, f RModel, f RHuman, f
ScholarshipBracket 1 1 1
MarksCategory 2 4 2.7
HostelorTransport 3 3 6
FeePaidCategorized 4 2 6.3
LoanLetter 5 8 5.4
PreviouslyStudied 6 7 5.8
QualifyingExam 7 6 5.9
AdmissionMonth 8 5 5.1

4.6.3 Making ML model adapt to human expert feedback

To achieve a positive degree of association between rank orders by dataset, model and
human experts, ’HomeTownType’, the least average ranked feature by human experts
was removed as a predictor. The ML model was rebuilt using all earlier features except
’HomeTownType’. Table 4.5 compiles the revised ranks assigned to features as per
dataset, model and human experts.

Table 4.6 compiles the value of Spearman’s rank correlation coefficient taking two
judges at a time. Also, it compiles the outcomes of three hypothesis tests to verify the
statistical significance of the agreement observed. The value of ’n’ was revised to 8 as
now a total of eight features were used for learning the revised ML model. Referring
to the table of critical values for one-tail Spearman’s ranked correlation coefficient, the
critical value for n=8 was 0.643 at 5% level of significance.

Table 4.6: Degree of agreement and hypothesis testing after adapting to human feedback
Pair of Judges Hypothesis Test Test Statis-

tic (TS)
Critical
Value (CV)

Statistical Test
Outcome

Dataset & Model Hypothesis Test-1 0.767 0.643 H0 is Rejected
Model & Human Hypothesis Test-2 0.688 0.643 H0 is Rejected
Dataset & Human Hypothesis Test-3 0.795 0.643 H0 is Rejected

Observation(s):

(i) A positive value of the correlation coefficient (test statistic) was observed for
each pair of judges. The positive values indicate agreement between dataset mea-
sures, model behaviour and human perception.

(ii) As the value of the test statistic was greater than the critical value in each of the
three tests, the null hypothesis was rejected for each pair of judges. It indicates
that there is a statistically significant positive association between rankings of
features by dataset, model and human experts.
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(iii)The model has been able to extract important features of the dataset into its
learning and this learning is also in sync with the prevailing domain knowledge
as per human domain experts.

(iv) Accuracy of the revised model dropped from 0.832 to 0.82 which is a marginal
decrease only. Any gain in facilitating trust in the model at the cost of a minimal
drop in accuracy might be a worthy trade-off in many problem domains.

4.7 Desired characteristics of an interactive and inter-
pretable ML system

Based on the state-of-the-art and results of the experimental work, the following are the
desired characteristics of interpretable and interactive ML systems:

(i) No ML knowledge should be assumed on the part of human users

(ii) Human users are expected to be conversant with data points

(iii) The system should have the ability to present the learned ML model to a
human domain expert in an interpretable manner

(iv) The system should support an intuitive medium of interaction with a human
user to collect feedback and revert after incorporating the feedback

(v) The system should provide a user interface for collecting feedback from hu-
man experts. This interface should be easy to use and support ’what-if’ analysis

(vi) The system should have provision to assess the degree to which the ML model
agrees with the user’s perspective

(vii) The system should have a provision to test and report the significance of the
difference in user agreement before and after the interaction cycle.

(viii) The system should be able to report conflicts with explanation wherever user
feedback is contradicting what the data says

4.8 Metrics for evaluation of interactive ML systems

Future ML systems shall be expected to be accurate, interpretable and interactive. The
field of evaluating ML models in terms of prediction accuracy is quite established. The
most popular metrics that are in use include accuracy, precision, recall, F1-score and



4.8. Metrics for evaluation of interactive ML systems 95

AUC values. The evaluation of ML models in terms of interpretability is still evolving.
Evaluation metrics for human interpretability that has been proposed include (i) the
Size of the explanation (For example, the number of nodes in the tree) (ii) the Rating of
explanations by human users. The evaluation of ML models in terms of interact ability
is still evolving and there is a lack of established metrics. The following metrics are
proposed for evaluating interactive ML systems:

(a) Improvement in user agreement: A natural expectation from an interactive ML
system is its capability to align itself with the user’s perspective of the problem domain.
So, an ML system should be capable of collecting agreement between the ML model
and human users in terms of their perception regarding the problem domain. Also, it
should be capable of verifying whether the interaction with the human expert has been
fruitful or not in terms of improvement in the user agreement.

(i) Collecting user agreement: Agreement of the ML model with the user’s perspec-
tive of the domain knowledge can be collected using the following techniques:

Likert Scale: Each human expert is asked to rate the ML model in terms of its
alignment with the perspective of that human expert regarding the problem domain.
The most commonly used range of the Likert scale is 1-5 where 1 represents "Strongly
disagree" and 5 represents "Strongly agree". Agreement of the ML model with the
user’s perspective is collected before and after human interaction.

Spearman’s rank correlation coefficient: In this approach, the problem of measuring
agreement between the ML model and human experts is modelled as a ’2-Judge and
n-participants’ Spearman’s rank correlation problem. The ’n’ features used for learn-
ing are ranked in terms of importance both by the ML model and human expert. The
Spearman’s rank correlation is computed between these two vectors of feature ranks.
The value of the correlation coefficient indicates the magnitude of agreement between
the ML model and human experts.

(ii) Measuring improvement in user agreement: The improvement in user’s agree-
ment can be measured using the following alternatives:

Hypothesis Testing: To verify the statistical significance of the change in user agree-
ment before and after interaction of the ML model with human users, hypothesis testing
is used. Wilcoxon Signed rank test or Spearman’s rank correlation can be used as the
statistical significance test. An example of the hypothesis has been framed below:

Null hypothesis (H0): There is no change in the user agreement level before and
after interaction

The alternate hypothesis (H1): There is a positive change in user agreement level
after interaction

Human Support (HS): It refers to the number of human users feeling that the ML
model agrees with their perspective. The number is counted before and after the inter-
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action. A positive change can be taken as an improvement in user agreement after the
ML model refined itself to accommodate feedback from human experts. The happiness
threshold for a human expert can be kept at >4 (using a 1-5 Likert scale) or can be made
available for finetuning depending on the requirement of the problem domain.

Happiness Average (HA): To keep HS independent of the number of human experts
used, change in the average user agreement before and after the interaction, is computed.
The average is taken of Likert scale values collected.

(b) Accelerated Exploration: Gain in terms of decrease in the computational cost
of exploring solution space can be measured to check how much acceleration has been
possible as a result of involving a human expert. Comparison is made with the compu-
tation cost without involving a human expert.

(c) Economical Learning: In problem domains, having less training data or expen-
sive availability of human experts for evaluating ML systems, iterative human interac-
tion has the potential to make the learning process economical. The economic gain can
be measured in terms of the decrease in the number of human experts required or the
associated cost.

(d) UI/UX: An interactive ML system must provide an interface through which
human users can provide feedback to the system. The desired characteristics of this in-
terface include (i) User-friendliness (ii) Provision of ’Playground’ or ’What-if’ analysis
to foresee impact before submitting feedback to the system, and (iii) Intuitiveness of the
medium for taking feedback from human experts.

(e) Conflict Reporting: Whenever human user feedback is different from what the
underlying dataset says, the ML system must be capable of detecting and reporting this
conflict. An intuitive rule to detect a conflict can be fixing a threshold in terms of pre-
diction accuracy. If incorporating feedback from human user result in a decrease in
accuracy below the agreed-upon pre-decided threshold value, it is reported as a conflict.
This threshold can be decided after consultation with human domain experts. Addition-
ally, the system should be able to explain this conflict to the human expert so that the
human expert can interpret the conflict and resubmit the feedback.

4.9 Other Novel opportunities

This section describes the novel opportunities with the potential to improve the state-of-
the-art in the field of interpretable and interactive ML systems. The idea is to improve
the agreement of the ML system with the user’s perspective by making the ML model
adapt to human feedback without losing much on accuracy.
(a) Human-feedback adaptive random forest (HARF) – Weighted Selection of fea-
tures
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The selection of feature subspaces for growing decision trees is a key step in build-
ing random forest (RF) models. The most commonly used approach for the selection
of feature subspaces has been to randomly select a subset of features. However, this
random selection can be replaced by weighted subspace selection where features are
selected as per feature weightage provided as an input vector to the RF algorithm. An
application of this approach has been to improve the classification performance of RF
models in case of high-dimensional data (Xu et al., 2012)(Zhao et al., 2017). In such a
scenario, random selection may not be the appropriate choice as many features may not
have even decent predictive power.

On the same lines, this approach can be applied to the design of interpretable and
interactive ML systems where feature importance is being used as an intuitive medium
of collecting feedback from human experts. Using a dedicated user interface, the feature
importance as per the user’s perspective of the domain knowledge is collected as feed-
back to the ML model. The ML model then adapts itself to incorporate the feedback
provided by the human expert. The key idea is to use feature importance as per user
feedback while selecting a feature subspace instead of going for random selection. As
a result, the refined version of the ML model will aim to align itself more with the user
in terms of importance assigned to the feature.

Mathematical specification of the bootstrapping process for the three variants shown
in Figure 4.4 is provided as below:

Random Selection:

p( fi) = p( f j) ∀ i, j ∈ {1,2, ...,n} and f ∈ F (4.1)

Weighted Selection:

p( fi) ∝ Rank{Human, f} ∀ i ∈ {1,2, ...,n} and f ∈ F (4.2)

Feature Elimination:

p( fi) = p( f j) ∀i, j ∈ {1,2, ...,n} and f ∈ F −{ fl} (4.3)

where,

n = number of features used by the original model

F = Set of all features

fi = ith feature from set of features ‘F’

p(fi) = Probability of an ith feature getting selected during bootstrapping
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fl = least ranked feature from set ‘F’

Figure 4.4: Human-feedback adaptive Random forest

(b) User-interface that can adapt to human capability
As different users from the same domain may not have the same level of expertise,
there is a need to have a flexible interface for collecting feedback from the human user.
For example, in the case of feature importance being used as a medium for collecting
user feedback, the following flexibility can help address the issue of different users
possessing a different level of expertise in terms of domain knowledge:

(i) Allowing the human user to play with (increasing or decreasing) the size(width)
of the bars showing the importance of each feature.

(ii) Showing feature importance as High, Medium, or Low and allowing the user
to play with this labelling in terms of changing labels.

(iii) Showing feature importance as binary values like {Useful, Not Useful} and
allowing the user to change this labelling as per his or her perception of the prob-
lem domain.

This approach attempts to match experts with varying domain expertise. Users can
choose between giving feedback as a continuous value interval, discrete {High, Medium,
Low} or even binary {Useful, Not Useful}.

Comparison to existing related work: A collaboration between humans and ma-
chines has exciting opportunities to explore due to the unique strengths of each. ’RulesLearner’
an interface to learn a model in the form of rules in disjunctive normal form has been de-
veloped (Yang et al., 2019). The interface allows human experts to provide feedback in
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Figure 4.5: Human-capability adaptive feedback form

the form of modifications to the learned rules. Another related work has been ’iBCM’,
a model that helps clustering of students assignments in an interactive manner(Kim,
2015). The feedback from human experts has been taken in the form of ’prototypes’ and
’subspaces’. Another related work has been to accelerate searching of solution space in
computationally hard problems using feedback from human experts in the form of must-
be-travelled paths (Holzinger et al., 2019). This input helps the machine reduce the size
of the solution space to be explored. In this research work, the feedback from human
domain experts has been taken in the form of ranks assigned to features used for learn-
ing the ML model. The ranks are assigned based on the experience-based perception
of human experts regarding the problem domain. The objective of the collaboration be-
tween humans and machines in this work has been to reach out to a version of the ML
model that is in agreement with the provided dataset as well as the perception of the
human domain experts.

4.10 Conclusions and Future Work

The solution space of an ML problem generally has multiple solutions that are almost
equally competitive in terms of accuracy but differ significantly in terms of the user
agreement. Interaction of an ML system with human domain experts has the potential
to help an ML system reach for a solution with improved user agreement and still have
accuracy within acceptable limits. Any gain in terms of the user agreement without
resulting in an inaccurate model might be a good trade-off in many problem domains
involving critical decision-making and a say of human users. Improved user agreement
facilitates developing trust of human users in the ML system.
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Accuracy, interpretability and ability to interact with human users are going to be
important characteristics and evaluation criteria for future ML systems. ML commu-
nity need to come up with variants of existing ML algorithms which have established
supremacy in terms of accuracy. These variants should have the ability to explain their
decision-making process to their users and adapt themselves as per feedback from do-
main experts aiming for improved user agreement. There is a need to bring a consensus
on principles, guidelines and formal evaluation metrics regarding interpretable and in-
teractive ML systems. These systems must take care of the fact that the human users
whom these are going to interact with are not ML engineers and may not have the same
expertise level regarding the problem domain.

Future lines of this work include: (i) evaluating the proposed framework for human-
feedback adaptive learning in other problem domains. (ii) experimental work to eval-
uate the other variants of the human-feedback adaptive algorithms, and (iii) designing
a human-capability adaptive user interface to enable interaction of users with different
levels of domain expertise.



Chapter 5

Feature-Importance and
Feature-Interactions (FIFI) Graph: A
visualization for human
interpretability in machine learning

5.1 Introduction

Humans have been inherently good at interpreting visualizations and have been using
these visualizations as a medium for explaining a phenomenon or process. Therefore, it
is no surprise that the outcome of most of the approaches towards conferring human in-
terpretability to ML models has been a visualization in one or the other form. Examples
include showing feature importance as a horizontal bar chart where the width of a bar
against a feature indicates its relative importance and highlighting the most contribut-
ing pixels in problem domains involving image processing. These visualizations aim
to explain ML model behaviour to human users by highlighting the most contributing
features.

Most of the existing work has focused on identifying important features to interpret
the decision-making behaviour of a model. However, studying interactions between
features is also important. It facilitates knowledge discovery and provides new insights
into the underlying physical phenomena. Analyzing interactions between features is
particularly important in problem domains where the underlying physical phenomena
are complex and not yet well understood.

The goal of this chapter is to propose a visualization that can enable interpreting
an ML model in terms of important features as well as important interactions among
features. The idea is to plot the relative importance of features and relative strength
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of interactions between features into a single plot. The proposed visualization has been
modelled as a network graph. In this graph, each node represents a feature and each edge
represents an interaction between a pair of corresponding features. As the proposed vi-
sualization is a graph, existing research and software tools for network analysis can be
applied for interpreting ML model behaviour, especially, in the case of high-dimensional
data sets. The proposed approach has been demonstrated using two problem domains.
The first problem is our running example of predicting the joining behaviour of fresh-
men students using a primary dataset. The second problem is of predicting customer
churn using a secondary dataset. Due to its natural analogy, a comparison of the pro-
posed FIFI graph with a knowledge graph has also been made.

The rest of the chapter is organized as follows: Section 5.2 summarizes the related
work focusing on existing visualizations for interpreting the behaviour of ML models.
Section 5.3 describes the proposed visualization and the steps involved in its construc-
tion. Section 5.4 describes the datasets and methods used to implement the FIFI graph.
Section 5.5 demonstrates the implementation of the FIFI graph and observations from
the results. Section 5.6 draws an analogy of the FIFI graph with the concept of a knowl-
edge graph. Section 5.7 gives conclusions and possible future work along with the
potential applications of the FIFI graph.

5.2 Related Work

Due to the advantages associated with the interpretability of ML models, a renewed in-
terest in conferring human interpretability to ML models has been observed among the
research community over the past a few years (Ribeiro et al., 2016a)(Lipton, 2016)(Doshi-
Velez and Kim, 2017). The existing work on conferring human interpretability can be
classified into model-specific and model-agnostic approaches. Model-specific methods
are approaches that apply to a specific ML model say random forest or artificial neu-
ral network. Model-agnostic interpretability methods are independent of the underlying
ML model. Model-agnostic approaches offer the advantage of flexibility in terms of
choice of which ML model to use. This makes the corresponding visualizations for hu-
man interpretability also independent of the underlying ML algorithm (Molnar, 2020).
Further, the approaches for conferring human interpretability to ML models can be clas-
sified as local or global. The approaches that explain the prediction behaviour for a sin-
gle instance are classified as local. The approaches that explain the behaviour of the ML
model overall, are classified as global. The use of local approaches is important when
we are specifically interested in investigating the decision making of the ML model for
a particular instance. Global approaches are useful in winning the trust vote of a user
by explaining the overall decision-making process of the ML model.
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In Table 5.1, a comparison of popular model-agnostic approaches has been made
focusing on the objective of each explanation along-with their pros and cons. Most of
the visualizations make use of a measure of feature importance. Feature importance is
indeed an intuitive way of communicating the behaviour of an ML model to its human
users. However, studying the type and magnitude of the interaction between features has
the potential to provide new insights into the underlying physical phenomena. It may
lead to knowledge discovery especially in problem domains that are not well understood
yet.

As studying the individual importance of features and interactions between features
has potential advantages, a visualization that supports analysis of them both is worth
using. In this chapter, the aim is to propose and demonstrate a visualization in the form
of a graph that can represent feature importance as well as feature interactions in a single
visualization. A human interpretable explanation to understand ML model behaviour in
the form of a graph is an intuitive idea. It has an advantage that research and software
tools available on network analysis can be used for interpreting ML models. To the best
of our knowledge, there is no such alternative visualization for human interpretability.

5.3 Proposed approach

This section describes how to create a visualization for human interpretability of ML
models with the following capabilities:

• Should enable identification of features that are contributing most towards the
decision-making process of the model.

• Should enable identification of important interactions between features.

• Should provide control to the user in terms of filtering out important interactions.

Feature importance: The importance of a feature is measured as its sensitivity (in
terms of increase in the prediction error) to permuting its feature values (Breiman,
2001). If any such permuting increases the model error, the concerned feature is termed
as "Important" as per the model’s decision-making behaviour. Otherwise, it is termed as
"Unimportant" or not contributing towards the decision-making behaviour of the model.

Feature interaction: A pair of input features in an ML model are termed as "Inter-
acting" if their combined influence on the prediction outcome is beyond their influence.
For an interacting pair of features, their combined effect is not simply additive but usu-
ally, more complex (Molnar, 2020), "The interaction between two features is the change
in the prediction that occurs by varying the features, after having accounted for the in-
dividual feature effects" .
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Table 5.1: Pros and cons of existing visualizations for human interpretability
Visualization Scope Objective Pros Cons
Partial Depen-
dence Plot (PDP)
(Friedman, 2001)

Local Shows the
marginal effect
of a feature on
the predicted
outcome

Intuitive enough to
be understood by a
layman. Measures
the causal relation-
ship between a fea-
ture and an outcome.

Can plot a maximum
of two features. As-
sumes features are
uncorrelated.

Individual Con-
ditional Expec-
tation (ICE) Plot
(Goldstein et al.,
2015)

Global Plots one line per
instance showing
how prediction
changes with
change in feature
values

More intuitive com-
pared to PDPs. Has
the potential to un-
cover heterogeneous
relationships.

Can plot only one
feature meaning-
fully. Requires
features to be uncor-
related.

Feature In-
teraction plot
(Friedman et al.,
2008)

Global To plot the
strength of inter-
actions between
features. Uses
H-Statistic to
compute interac-
tions.

H-Statistic has a
meaningful inter-
pretation. Detects
all kinds of interac-
tions.

Computationally ex-
pensive. Estimates
will vary from run to
run due to the sam-
pling involved.

Feature Im-
portance plot
(Breiman, 2001)

Global To plot the rela-
tive importance
of features in
terms of increase
in prediction
error when fea-
ture values are
permuted.

Nice interpretation.
Global insight. The
use of error ratio in-
stead of error differ-
ence makes feature
importance compa-
rable.

Needs access to the
actual outcome tar-
get.

Global Surrogate
Model (Molnar,
2020)

Global Approximating a
complex black-
box model using
a simple inter-
pretable model

Easy to explain to
non-ML experts.
Using the R-square
measure, it is easy to
measure how well is
our approximation.

Conclusions are
about the model, not
the data. Difficult
to decide cut-off for
R-square as a good
approximation.

LIME Explana-
tion Ribeiro et al.
(2016b)

Local Fitting an inter-
pretable model
that is locally
faithful, at least.

A better choice
where sparse expla-
nations are required.
Highly popular due
to its sparse nature.

Shows only top
contributing fea-
tures. Does not
guarantee perfection
in the distribution of
contribution.

Local Surrogate
Model – Shapley
Values (Shapley,
1953)

Local Plots distribution
of contribution of
features in a com-
prehensive man-
ner.

Delivers a full ex-
planation. Suitable
in situations that de-
mand explainability
as a right. A method
with solid theory.

Computationally ex-
pensive. Not suit-
able for Sparse ex-
planations.
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FIFI graph is a visualization that depicts the relative importance of features and
relative magnitude of interactions between features used in learning an ML model. The
visualization is modelled as a graph where each node represents a feature and edge
represent the interaction between the corresponding pair of features. The size of a node
is made proportional to the importance of the corresponding feature. The width of an
edge is made proportional to the magnitude of the interaction between the corresponding
pair of features.

Figure 5.1 shows a model FIFI graph consisting of 4 nodes and 6 edges. From this
model diagram, it is easy to interpret that ’X1’ and ’X3’ are the features that are rel-
atively more important in decision-making by the model (represented by node size).
Also, the interactions between the pairs (X1, X2) and (X2, X3) are relatively strong
(represented by edge width). A limitation of this visualization is that increase in com-
putation cost is combinatorial. For an ML model that learns using ‘n’ features, the
number of interactions to be computed is given by the equation 5.1.(

n
2

)
=

n!
2!(n−2)!

(5.1)

Figure 5.1: A model FIFI graph

5.4 Experimental Setup

This section describes the datasets and methods used for conducting experimental work.
The proposed visualization was demonstrated using the following two problem do-
mains:

(i) Predicting joining behaviour of freshmen students (our running example)



106 5. Feature-Importance and Feature-Interactions Graph

(ii) Predicting customer churn using Telco customer-churn(tcc) dataset. The ‘tcc’
dataset consisted of customer records and is available publicly on Kaggle (Kaggle,
2019). The target variable was ‘Churn’ with values as ‘Yes’ or ‘No’. The dataset
consisted of 7032 observations and 21variables. There were 1869 customers with
churn status ‘Yes’ and 5163 customers with churn status ‘No’.

For learning an ML model, Random Forest (RF) algorithm was used. RF algorithm
was selected due to two reasons. First, it is a black-box algorithm and lacks human
interpretability. Second, software tools are available to compute feature importance and
feature interaction for an RF model.

To construct a FIFI graph for our RF model, the following steps were performed for
features used in learning the RF model:

(a) Feature importance was computed for each feature

(b) Feature interaction was computed for each pair of features

(c) A visualization in the form of a graph was plotted where nodes represent
features and edges represent interactions

(d) Node size was made proportionate to feature-importance

(e) Edge width was made proportionate to strength of feature-interaction

(f) To improve interpretability, a sparse version of the graph was created by leav-
ing out interactions with strength lesser than the mean interaction strength

The implementation was done using ’iml’ and ’igraph’ packages in R, an open-
source statistical software tool (Molnar et al., 2018)(Csardi et al., 2006).

5.5 Results and Discussion

This section compiles the results of the experimental work and associated observations.
Performance of the RF model: Table 5.2 compiles baseline accuracy, prediction

accuracy and Area under the ROC curve value for ‘tcc’ and ‘freshmen’ datasets. Base-
line accuracy is prediction accuracy if the majority class is always predicted by an ML
model. It is useful as a benchmark to evaluate the worthiness of employing ML in a
problem domain.

As observed from Table 5.2, the RF algorithm achieved a significant improvement
in accuracy for both the datasets. ML was found worth applying in both the problem
domains. Also, AUC values above 0.8 were reported for both datasets.
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Table 5.2: Performance measures for RF Model
Dataset Baseline accuracy Accuracy AUC Value
freshmen 0.638 0.816 0.832
tcc 0.734 0.791 0.822

FIFI graph of RF model for ‘freshmen’ dataset:
Table 5.3 represents feature importance as per our RF model for ‘freshmen’ dataset.

Table 5.4 mentions the interaction strength of each feature with each of the other fea-
tures except itself. Figure 5.2 shows the FIFI graph for the RF model developed for
’freshmen’ dataset and Figure 5.3 shows a sparse variant of the FIFI graph. It was ob-
tained after deleting edges whose interaction strength is lesser than the mean interaction
strength overall

Table 5.3: Feature-Importance for ‘freshmen’ dataset
id featureName featureImportance
f01 ScholarshipBracket 1.5608
f02 MarksCategory 1.1672
f03 HostelorTransport 1.1033
f04 FeePaidCategorized 1.1234
f05 LoanLetter 1.0949
f06 HomeTownType 1.0464
f07 PreviouslyStudied 1.0334
f08 QualifyingExam 1.0259
f09 AdmissionMonth 1.0145

Table 5.4: Feature-Interactions for ‘freshmen’ dataset
f01 f02 f03 f04 f05 f06 f07 f08 f09

f01 0.0000 0.2674 0.3555 0.3999 0.3503 0.2972 0.1436 0.2027 0.0928
f02 0.4105 0.0000 0.4567 0.2115 0.2169 0.3134 0.3205 0.3076 0.2877
f03 0.2622 0.5093 0.0000 0.4320 0.5212 0.1787 0.0799 0.3476 0.0497
f04 0.3360 0.2506 0.4773 0.0000 0.3585 0.1671 0.1771 0.2230 0.0635
f05 0.2958 0.3099 0.4939 0.3414 0.0000 0.2048 0.1195 0.0915 0.0838
f06 0.1963 0.3121 0.1915 0.1927 0.2386 0.0000 0.2787 0.1902 0.2881
f07 0.1381 0.3892 0.0847 0.2102 0.1364 0.2553 0.0000 0.1537 0.3363
f08 0.3243 0.3030 0.2568 0.1710 0.0934 0.1885 0.1339 0.0000 0.0701
f09 0.0601 0.2144 0.0496 0.0534 0.0810 0.3413 0.2586 0.0843 0.0000

Observation: It was observed that ‘ScholarshipBracket’, ‘MarksCategory’, and
‘HostelorTransport’ features contribute more in the decision-making process of the
model. Talking about interactions between features, the pairs (‘HostelorTransport’,
‘LoanLetter’), and (‘HostelorTransport’, ‘MarksCategory’) were observed to have rela-
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Figure 5.2: FIFI graph for ’freshmen’ dataset

tively strong interactions.

FIFI graph of RF model for ‘tcc’ dataset:
Table 5.5 compiles feature importance as per our RF model for ’tcc’ dataset. The

features are listed in descending order of importance. As each of these features is going
to be a node in the FIFI graph, a unique ID was assigned to each feature. Table 5.6
mentions the interaction strength of each feature with each of the other features except
itself. Figure 5.4 shows the FIFI graph for the RF model developed for the ’tcc’ dataset.
Figure 5.5 shows a sparse variant of the FIFI graph. It was obtained after deleting edges
with interaction strength lesser than the mean interaction strength overall.

Table 5.5: Feature-Importance for ‘tcc’ dataset
id featureName featureImportance
f01 tenure 1.9826
f02 MonthlyCharges 1.6380
f03 Contract 1.4963
f04 OnlineSecurity 1.4427
f05 TechSupport 1.4164
f06 PaymentMethod 1.3955
f07 OnlineBackup 1.2471
f08 InternetService 1.2864
f09 DeviceProtection 1.2447
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Figure 5.3: Sparse FIFI graph for ’freshmen’ dataset

Observation: It was observed that ‘tenure’, ‘MonthlyCharges’, and ‘Contract’ fea-
tures contribute more to the decision-making process of the model. Talking about
interactions between features, the pairs (‘Contract’, ‘TechSupport’), and (‘Contract’,
‘MonthlyCharges’) were observed to have relatively strong interactions.

5.5.1 A comparative analysis

Table 5.1 in section 5.2 gives a comparative analysis of the existing visualizations for
interpreting ML models. In this section, a comparative analysis on the same lines is
made for a FIFI graph. A FIFI graph has a global scope, unlike PDP, LIME and Shapley

Table 5.6: Feature-Interactions for ‘tcc’ dataset
f01 f02 f03 f04 f05 f06 f07 f08 f09

f01 0.0000 0.2674 0.3555 0.3999 0.3503 0.2972 0.1436 0.2027 0.0928
f02 0.4105 0.0000 0.4567 0.2115 0.2169 0.3134 0.3205 0.3076 0.2877
f03 0.2622 0.5093 0.0000 0.4320 0.5212 0.1787 0.0799 0.3476 0.0497
f04 0.3360 0.2506 0.4773 0.0000 0.3585 0.1671 0.1771 0.2230 0.0635
f05 0.2958 0.3099 0.4939 0.3414 0.0000 0.2048 0.1195 0.0915 0.0838
f06 0.1963 0.3121 0.1915 0.1927 0.2386 0.0000 0.2787 0.1902 0.2881
f07 0.1381 0.3892 0.0847 0.2102 0.1364 0.2553 0.0000 0.1537 0.3363
f08 0.3243 0.3030 0.2568 0.1710 0.0934 0.1885 0.1339 0.0000 0.0701
f09 0.0601 0.2144 0.0496 0.0534 0.0810 0.3413 0.2586 0.0843 0.0000
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Figure 5.4: FIFI graph for ’tcc’ dataset

explanations as it presents the overall behaviour of a model. Also, a FIFI graph can
present the importance of all features used for learning instead of one feature at a time
like in the case of PDPs and ICEs. A FIFI graph is a compact alternative as it is capable
of presenting feature importance as well as interactions between features using a single
visualization. Also, being a graph object, it offers an option to derive a sparse version
highlighting important features or important interactions only. In that sense, it provides
advantages of both LIME as well as Shapley-valued based explanations. However, it is
also computationally expensive due to the computing of feature interactions involved.

5.6 FIFI graph Versus a Knowledge-graph

A knowledge graph is a way to organize and retrieve information in the form of a
graph. It is used by search engines to improve their search results in response to user
queries. Social networking sites and e-commerce sites are also using a knowledge graph
to store and retrieve useful information. In a knowledge graph, nodes represent real-
world entities and edges represent the existence of a relationship between corresponding
nodes(entities). Edge labels specify the type of relationship. Figure 5.6 shows a sample
knowledge graph (Nickel et al., 2015). As both FIFI graph and a Knowledge-graph are
a representation of knowledge, it is worth making a comparison between the two. Table
5.7 makes a tabular comparison between these two graphical structures.
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Figure 5.5: Sparse FIFI graph for ’tcc’ dataset

5.7 Conclusions and Future work

Feature-importance and Feature-interactions can be plotted into a single visualization in
the form of a FIFI graph, making it a compact alternative to existing visualizations. It is
easy to interpret as the size of a node is proportional to the importance of a feature and
the width of an edge is proportional to the magnitude of the interaction between the pair
of corresponding features. Modelling this visualization as a graph brings an advantage
that existing theory and tools for network analysis can be employed for analyzing it.
A sparse version of a FIFI graph is useful in improving interpretability as most of the
time, the user is interested in identifying top features and top interactions only. Being a
graphical structure, a FIFI graph has a natural analogy with the concept of a knowledge
graph.

A FIFI graph has several potential applications. It is useful in interpreting which
features are affecting the decision-making process of the underlying ML model the most
and which are the prominent interactions between features. Using an interactive version
of a FIFI graph or a customized user interface, feedback from human experts can be
taken in terms of feature importance as well as feature interaction by allowing the users
to play with the size of a node and width of an edge.

Future directions of this work include additional controls that can be given in the
hands of end-user like interactively filtering important features. Another variant of a



112 5. Feature-Importance and Feature-Interactions Graph

Figure 5.6: A sample knowledge graph

FIFI graph can be created where feature-importance is replaced by 1-way feature inter-
action. Such a visualization will be useful in identifying the most interacting features
and then zooming out which of its interactions are relatively stronger. Another possible
exploration is using a FIFI graph and a knowledge graph in a complementary manner.
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Table 5.7: FIFI graph Versus Knowledge graph
S. No. FIFI graph Knowledge graph
1 Nodes represent features used for

learning an ML model.
Nodes represent real-world entities.

2 Scope of nodes(features) is limited to
features expected to contribute towards
a target variable.

Scope of nodes(entities) is global as
any association may be found useful in
some search query

3 An edge represents the presence of
interaction between features used in
learning an ML model.

An edge represents an association be-
tween two real-world entities in the
form of relationships.

4 Node size and edge width are propor-
tional to feature importance and fea-
ture interaction strength respectively.

Node size and edge width do not vary.
However, making these two propor-
tionate has the potential to enable com-
parison of the strength of associations
and the importance of entities associ-
ated with the entity of interest.

5 Representation of interactions (maybe
known as well as unknown) as per ML
model.

Representation of existing knowledge
in a form that machine can store and
retrieve.

6 Reliability of a FIFI graph depends on
the quality of the ML process

Makes use of existing published or
commercially available information

7 The objective is to enable human users
to interpret ML model behaviour.

The objective is to improve the qual-
ity and justify search results of a search
engine

8 Construction of a FIFI graph requires
an ML model. Domain experts may be
or may not be involved in the learning
process.

Construction of a Knowledge graph
requires domain experts, data inter-
linking and ML algorithms





Chapter 6

Summary and Conclusions

In this thesis, the goal has been to develop a framework that can enable verification of
the learning acquired by an ML model against the provided dataset and prevailing do-
main knowledge. The framework has been demonstrated to be capable of listening to
the dataset, the ML model and human domain experts. After listening to these three,
the framework measures the degree of agreement between them regarding their percep-
tion of the problem domain in terms of feature importance and reports the statistical
significance of this agreement. In case, the agreement of the ML model with the human
user is lacking, the framework attempts to make the ML model adapt itself to incor-
porate human expert feedback. FIFI graph, a graph-based visualization, has also been
demonstrated for interpreting ML models by analyzing important features and important
interactions between features using a single visualization. In chapter 2, the state-of-the-
art in the field of conferring human interpretability to ML models has been reviewed.
A set of ten research questions were formulated to keep the review guided. The find-
ings from the review have been presented in the form of answers to these formulated
research questions. In chapter 3, a framework that has the provided dataset, the learned
ML model and human expert feedback as to its three pillars, has been demonstrated.
This framework aimed to listen to each of these three pillars in terms of the importance
of features regarding the problem domain. After listening to each of these pillars, the
framework verifies whether these three are in sync with each other in terms of their per-
ception of the problem domain. In chapter 4, the framework demonstrated in chapter
3 was enhanced to enable human-feedback adaptive learning in case the ML model is
not in agreement with human experts. The proposed framework attempts to make the
ML model adapt itself to incorporate human expert feedback without losing much on
the accuracy front. The idea has been to relearn a solution by eliminating features that
were considered least important by human domain experts. This chapter also proposed a
set of desired characteristics for the design of interpretable and interactive ML systems.
Novel opportunities in human-feedback adaptive learning and evaluation metrics for in-
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teractive ML systems were also proposed. An interface for human-capability adaptive
feedback has also been discussed that can allow human users with varying levels of
domain expertise to interact with an ML system. In chapter 5, FIFI graph, a novel vi-
sualization has been proposed and demonstrated. This graph is capable of presenting
feature-importance and feature interactions using a single plot. As this visualization has
been modelled as a graph object, the existing tools and software for network analysis
can be applied to analyze this visualization.

6.1 Conclusions

Motivations for conferring human interpretability include facilitating trust, providing
new insights, scrutinizing ability, ensuring fairness and right-to-explanation situations.
As per the new Global Data Protection Regulation (GDPR), with effect from May 2018,
human subjects that are going to be affected by outcomes of an ML-based solution have
the right to ask for an explanation leading to that particular outcome.

A good explanation of an ML model should be interpretable, easy to understand and
should be in terms of concepts known to the target audience. It may require mapping of
features to concepts known to the user and clearly defined requirements for input and
goals of the output.

Model-agnostic approaches, approaches for interpreting tree ensembles, approaches
for interpreting neural networks and human-machine interaction are the broad categories
into which the existing work towards conferring interpretability can be broadly classi-
fied.

The key ideas used for conferring interpretability has been quite intuitive. These in-
cluded interpreting a complex model using its interpretable approximation, explaining
an instance-specific outcome by identifying influential features, explaining an outcome
in terms of feature-wise contribution, computing input gradient and using programs
snippets as explanations. Tree ensembles have been interpreted by extracting an inter-
pretable decision tree from a population of trees and finding prototypes in tree space.
Rulesets have been used for extracting interpretable features and summarizing results.
Visual analytics has been used for modelling input-output relationships and making out-
comes of a black-box model more expressive.

Human interpretability in ML is an evolving field and there is still a lack of formal
metrics. Key ideas used for evaluating interpretability include measuring the complex-
ity of the explanation in terms of the volume of information to be comprehended and
ease of identifying how a data point is to be moved to change its label. Evaluation
of the quality of explanations by human experts is another measure of interpretabil-
ity. Can these explanations enable human subjects in choosing the best classifier, im-
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proving an untrustworthy classifier, and find new insights? The other ideas include
feature-coverage (how many outcomes are explained using only top-ranked features),
MEP (Mean Explainability Precision) and MER (Mean Explainability Recall) using ex-
plainability score, and quantifying interpretability using information entropy instead of
just count of features.

Interpretability is useful in situations that involve critical decision making and a say
of human domain experts. It is not compulsory always and rather can be harmful in cer-
tain contexts. Possible dangers of transparency include (i) divergence between intended
audience and actual beneficiary (ii) transparency in government use of algorithms (iii)
gaming of rules and lack of motivation of intellectual property if all algorithms are open
source (iv) discrimination of sub-groups based on sensitive features.

Humans and machine have their unique strengths and a collaboration between the
two can help incorporate domain expertise into the learning of ML systems. A human-
machine collaboration brings potential advantages of an improved user agreement, ac-
celerated exploration of solution space, providing a bigger role to end-users in the de-
sign of interactive and interpretable ML systems, and incorporating multi-disciplinary
expertise. The key idea is to present the learned model to human domain experts in
an interpretable manner. The human experts in turn provide feedback back to the ML
system based on their experience-based perception of the problem domain. The ML
system attempts to adapt itself to incorporate the feedback provided by human experts.
In case there is a contradiction between what a human expert says and what data says,
the situation is reported as a conflict.

The provided dataset, the ML model learned using the provided dataset and feedback
from human domain experts are the three pillars for constructing an ML-based solution.
An ML-based solution is expected to have incorporated important characteristics of the
provided dataset and should also be in sync with human domain experts in terms of
their perception regarding the problem domain. Listening to each of these three pillars
and measuring the degree of agreement between them is a way to verify the acquired
learning against the provided dataset and prevailing domain knowledge. A collaboration
between these three helps to verify the learning acquired by the ML model and facilitate
the trust of human users in an ML-based solution.

Information gain computed using entropy and Gini index are useful in identifying
features having higher predictive power. Variable importance measures and model-
agnostic techniques help diagnose the behaviour of a complex ML model. Human expert
feedback is important to validate the behaviour of an ML model.

The problem of measuring the degree of agreement can be modelled as a rank corre-
lation problem where features are considered as participants and the above three pillars
(data, model and human) are considered as Judges. A higher degree of the agreement
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indicates that the model has listened to what the dataset is saying and is in sync with the
human expert’s perspective of the prevailing domain knowledge. The statistical signifi-
cance of this agreement can be verified by hypothesis testing using one-tail Spearman’s
rank correlation coefficient.

The approach of developing a framework with the dataset, ML model and human ex-
pert feedback as to its pillars and making these three collaborate is quantitative and has
the potential of forming the basis for developing formal quantitative metrics to facilitate
trust in ML-based solutions.

Solution space of an ML problem generally has multiple solutions that have ac-
curacy within acceptable limits but differ significantly in terms of agreement with the
human user’s perception regarding the problem domain under study. Interaction of an
ML system with human domain experts has the potential to help an ML system reach
out solutions with improved user agreement and acceptable accuracy. Any gain in terms
of agreement with a human user, if feasible without resulting in an inaccurate model, is
a good trade-off in many of the problem domains. Improved user agreement facilitates
developing trust of human users in the ML system.

Feature-importance and Feature-interactions can be plotted into a single visualiza-
tion in the form of a FIFI graph. It is a compact alternative to visualizing n+1 graphs (a
feature interaction graph for each of the ‘n’ features and a graph for feature importance).
Modelling a FIFI graph as a graph object provides the advantage that existing theory and
tools for analysis of graphs can be employed for analyzing it. Sparse versions are useful
in improving interpreting of the FIFI graph as most of the time, the user is interested
in identifying top features and top interactions only instead of scanning all interactions
exhaustively. Being a graphical structure, a FIFI graph has an analogy with the concept
of a knowledge graph.

Using a FIFI graph, stakeholders of an ML solution can interpret which features are
affecting the decision-making process of the underlying ML model the most. Also, it is
useful in identifying prominent interactions between features. A FIFI graph can be used
in the design of interactive and interpretable ML systems where feedback from human
users is part of the ML learning process. Using an interactive version of a FIFI graph
or a customized user interface, feedback from human experts can be taken in terms of
feature importance as well as feature interaction by allowing the users to play with the
size of a node and width of an edge.

Accuracy, interpretability and ability to interact with human users are going to be
important characteristics and evaluation criteria for future ML systems. ML commu-
nity need to come up with variants of existing ML algorithms which have established
supremacy in terms of accuracy. These variants should have the ability to explain their
decision-making process to their users and adapt themselves as per feedback from do-
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main experts. These systems must take care of the fact that the human users whom these
are going to interact with are not ML engineers and do not have the same expertise level
about the problem domain.

The field of interpretable and interactive ML systems is an evolving field and there
is a need to bring a consensus on principles, guidelines and formal evaluation metrics.

6.1.1 Scope and limitations of this research work

Scope

• Easy to understand and intuitive

• Quantitative approach

• Relies on well-established concept of hypothesis testing for measuring user agree-
ment

• Useful in situations where user agreement is also critical in addition to accuracy

• Existing research on graph theory can be applied to the FIFI graph to identify
important features as well as interactions.

Limitations

• Requirement of human domain experts

• Selection and orientation of the human experts is crucial to the success of this
approach

• In problem domains like Image processing, feedback of human experts can not
be taken in terms of the importance of pixels. Need to take feedback in terms of
human-friendly concepts using techniques like concept activation vectors(CAVs).

6.2 Future research

This research work has several opportunities as the possible lines for future work:
Listening to the three pillars
To extract important characteristics of the provided dataset, alternatives of entropy

and Gini index as information gain measures can be explored. One alternative measure
that can be explored is the Gain ratio. In this work, feature importance measures have
been used to interpret ML model behaviour. There is a scope of exploring other human
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interpretability methods for listening to the ML model better. Examples of other inter-
pretability methods include interpretable decision trees and surrogate models. More-
over, there are multiple ways of computing feature importance. It will be interesting to
evaluate these alternatives in terms of their efficacy and ease of use. Feature importance
is quite an intuitive idea of collecting the perception of human experts regarding the
problem domain. Alternatives other than the ranking of features in terms of their im-
portance can be used to collect human expert feedback regarding the problem domain.
These alternatives may be evaluated in terms of ease of use by human experts and their
applicability in the proposed approach.

Weighted rank correlation
In the case of spearman’s rank correlation, all ranks are given the same importance.

However, as in the proposed approach, the degree of agreement between the three pillars
in terms of top-ranked features is more important than the agreement of features that are
least-ranked by the ML model. It is because the agreement of a feature that is ranked
high by dataset in terms of information gain or by ML model in terms of feature impor-
tance is more crucial as compared to a low-ranked feature. So, instead of spearman’s
rank correlation, weighted correlation can be explored.

Evaluating human-feedback adaptive learning in other problem domain
The proposed human-feedback adaptive learning approach has potential applications

in problem domains where there is a lack of training data and in problems where the
agreement of the ML model with human users is crucial. For example, an ML-based
solution for disease diagnosis requires to have a significantly high user agreement to
win a trust vote from medical domain experts.

Variants of the human-feedback adaptive algorithms
As future ML systems are expected to be interpretable and interactive, there is a need

to come up with variants of learning algorithms that can enable an ML model to adapt
itself to incorporate human expert feedback to result in the improved user agreement.
These variants should be able to address the issue of variety in feedback collected from
a diverse set of human users who may not have the same level of domain expertise.
Another opportunity is to evaluate alternative ideas to adapt to human expert feedback
collected that can be used as an alternative to the ‘eliminating least-ranked feature’
approach demonstrated in this work.

Metrics for evaluation of interactive and interpretable systems
Human interpretability and the ability to interact with human users are going to be

among the desired characteristics of future ML systems, in addition to being accurate.
The task of evaluating ML systems in terms of accuracy is quite established using met-
rics like accuracy, precision and recall. However, there is still a lack of formal and
established metrics for evaluating ML systems in terms of interpretability and interac-
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tion ability.
Novel opportunities in UI/UX design
As human users are poised to play a bigger role in future ML systems, these systems

must be equipped with a user interface that can enable human users to interact with
ML systems irrespective of their ML expertise. The medium of communicating to the
user and collecting feedback from the user should be in terms known to these users.
Moreover, all human users interacting with the ML system may not have the same level
of expertise in the problem domain. So, the ML system should have a user interface that
can accommodate human users with varying levels of expertise regarding the problem
domain. There is a need to bring established UI/UX practices into the design of this
user interfaces.

Extension to regression problems
The proposed framework has been demonstrated using a binary classification prob-

lem. A future line of work can be to evaluate this framework onto regression problems.
Controls in the hands of the FIFI graph user
As future work, a few controls can be given in the hands of the end-user. A user can

be enabled to create a subset of the graph that interactively filter top important features.
A user can be enabled to filter out important interactions only as per user criteria.

Variants of the FIFI graph
Another variant of a FIFI graph can be created where feature-importance is replaced

by 1-way feature interaction. Such a visualization will be useful in identifying the
most interacting features and then zooming out which of its interactions are relatively
stronger.

Communicating with a Knowledge-graph
Possible exploration of using a FIFI graph and a knowledge graph in a complemen-

tary manner is another future line of work.
Performance comparison of FIFI graph in human interpretability
As future work, experimental work can be conducted involving human subjects to

evaluate the efficacy of a FIFI graph. The experimental work can be focused on measur-
ing how a FIFI graph performs against other visualization techniques for interpretability.

Plotting higher-order interactions
The proposed FIFI graph plots visualization between a pair of features. However,

in complex problem domains like computational biology, there may be interactions of
order higher than two. Identification of these higher-order interactions has the potential
to discover important interactions that are still unknown to the experts of the problem
domain under study.

Addressing computational complexity
As the number of features used for learning by an ML model increases, the number
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of feature interactions to be computed also increases combinatorically. There is a need
to find computationally efficient ways for computing feature interactions apart from the
H-Statistic based computations.
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