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Abstract  

From its origin to the present date World Wide Web is still evolving. It is a collection of huge 

repositories of interlinked web pages. It can be broadly classified into surface and hidden web. The 

fraction of visible data or surface web is very less as compared to its hidden counterpart Hidden web. 

Most of the data on the web is hidden from the users, but not the machines. Machines can read the data 

but the web is designed for visually navigating, finding, clicking and downloading files. And machines 

navigate by following logical rules. Humans are interested in interactive content while machines are 

structure and logic dependent. So hidden web data is hidden from the human eye, not machines. This 

data is hidden under the forms. So, for filling a form and retrieving the information, the right tool is 

required.  From available methods, developing a hidden web crawler is a righteous way. 

 The hidden web has better quality and quantity of data than the surface web. Surface web engines 

can crawl and index a large number of web pages daily to give a great start for information retrieval. 

Yet may not be adequate for complex data queries that require relevant classification of a large volume 

of results. Hidden web crawlers could be the result of it. Moreover, as the size of the web is increasing, 

distributed web crawling is the call of duty.  Crawling data from hidden web consist of surfacing and 

virtual integration. But information from underlying databases can be curated only when the HTML 

form is filled with appropriate values. The general web crawler does not make difference between a 

webpage with a form and a web page without a form. It simply discards the web page or a part of the 

web page if a form is encountered. General search engines are not endowed with the ability to go beyond 

query interfaces. So this task is performed by hidden web crawlers.  And in hidden web crawling to 

crawl data at large scale the crawlers are required to be efficient. It was found that in this area has no 

other focused crawler that can efficiently work in distributed manner.  

 This work comprises four objectives that are based on developing a novel architecture of distributed 

hidden web crawler for the focused web. The entry to the hidden web is not based on forms only but 

also rules are developed as rejection criteria. Crawling is based on three stages. Crawling is initiated in 

stage one, followed by ranking and classification. Hidden web documents have slim chances to be 

retrieved. The enhanced priority-based ranking algorithm has tackled the problem when the document 

is missed if it has a low rank. This algorithm is a triplet formula to calculate the rank of the website. By 

including site frequency, the documents which have a low rank earlier can have a high rank. By ranking 

the website, the crawler minimises the number of visits and maximize the number of websites with 

embedded forms. In the second stage, the links extracted from the first stage are ranked and classified. 

The third stage extracts the underlying content. The duplication detection technique of simhash is 
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implemented on the Redis server to improve the efficiency of the crawler. The resultant URLs can be 

for harvesting and indexing in search engines. The approach not only shows a better coverage rate but 

also in comparison with the existing approach harvest rate is high. The system can detect more status 

codes as compared to existing systems. A goal of crawler is to find maximum searchable forms in 

minimum visits, 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1   Information Retrieval  

Information organization dates back to the third century B.C.  and alphabetization was probably 

the oldest one devised by the Greeks. Tables of content were found in Greeks Scrolls in the second 

century.  It was first considered as the first Information retrieval (IR) system. In Ancient times papyrus 

scrolls were used by Greeks and Romans to store information. Some of the systems had used tags that 

consist of a summary. This was done to save time for searching [1]. 

The first computer-based searching was implemented in the 1940s.  The Cornell SMART System 

was the first computerised repository developed in the 1960s. Before the birth of the World Wide 

Web, IR systems were used by expert librarians as reference retrieval systems. The birth of the World 

Wide Web has brought the revolution in the methods of storing, accessing and searching of 

collections. As an academic and research discipline, IR has been defined in various ways [2]. 

IR in today’s context can be defined as a process of searching, exploring and discovering the 

information from the repository, to satisfy the information needs of the users.  An information retrieval 

system is a combination of content, computer hardware and software. Computer hardware that stores 

the content is called a collection, database or in terms of modern web phrasing, it is called a site. 

Content is made up of information units, which may themselves be a webpage of a website or a book 

section [3],[4]. Computer software processes the content or retrieves the content from the collection. 

Items in the web-based collection are web pages. The collection of pages is called a website. Users 

query the system for its information needs. It is retrieved by matching metadata [5].  

The most fitting analogy is that suppose if a user has an information requirement. Initially, it is 

vague. And it is required to be expressed into request. The request here is a search statement or query. 

However, the information is stored in databases. As the databases are the most valuable resource, but 

need to be found first to give relevant results. To be found, they must be indexed. The challenge for 

IR is to provide a good match between query and database to be found. If these two are correct this 

meant that the information is correct.  Activities of information retrieval systems are shown in Figure 

1.  Broadly this process consists of indexing, parsing, matching, ranking, and query modification. 

These processes are commonly a part of search engines. 
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Figure 1:  Information retrieval activities 

  1.2     Retrieval Model and Ranking  

Information retrieval is the process of matching the query against the information. An index 

is an optimised data structure that is built on top of the information objects. It allows faster access to 

the search process. The indexer tokenises the text, removes words with little semantic value and 

indexes them for the search. The same is done for the query as well. The relevance of the document 

is a subjective matter. It is different to the different users. A strong retrieval strategy and ranking can 

bring the best results in IR.  In the context of IR, the retrieval strategy model is an algorithm that takes 

a query and a set of documents. It assigns a similarity measure between the query and each document. 

This similarity represents relevance to the user query. Documents are then ranked based on their 

similarity to the query, and presented to the user. This process can be repeated and the query can be 

modified.   

 

      1.3   Models of Information retrieval  

Following are the three main models of information retrieval systems. 

• The Boolean model: This model uses an exact strategy to classify documents as relevant and non-

relevant. 

• The Vector Space Model:  Queries and documents are mapped to the Vector Space model. It uses 

spatial distance as a similarity measure. The document and query are considered vectors. Most of 

the time the similarity measure is the cosine angle between them. 

• The probabilistic model: It estimates document relevance as a probability using user feedback for 

iterative improvement. 
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      1.4  Search methods  

A broad classification of search methods includes Keyword search, Metasearch, Semantic 

search and Web search.  

• Keyword search: Keyword search is another way of querying the database. It is easy as it requires 

only some keywords relevant to the desired data. Most internet users are acquainted with it. 

• Metasearch: Meta search engines bring the results by accessing multiple search engines in a 

unified way. The underlying principle of this type of search is to access multiply data on the fly. 

Metasearch is very much similar to the federated search as these two words are most of the time used 

synonymously. 

• Semantic search: Combining the search and semantics have given birth to semantic search. It 

helps in improving the accuracy of the search by understanding the semantics of the search. 

• Web search:  According to the Kobayashi and Takeda (2000) survey report, it is claimed that 

85% of the users rely on search engines to find information. Two thirds to three-quarters use the web 

as their primary source of information while two-thirds to three-quarters were unable to get the 

information they want. We are living in the modern age of the web. Search engines play a prominent 

role in our lives. If we see the search engine statistics, 93 per cent of the web traffic is generated by 

search engines. And Google processes 2 trillion web searches a year. As the size of the web is 

increasing, information seeking is becoming complex. It is not confined to web search but search 

engines play an important role in this. One important tool of the search engine is a web crawler.  

According to authors in  [6], web search and information retrieval are different. From the spectrum 

of information retrieval, web search is an important part but not a whole. Queries are used to extract 

diverse information and web search engines are not effective for all types of queries.  

1.5  Web crawler  

A web crawler component of web search engines is a system that downloads web pages in bulk, 

figure (2) shows its working. Web crawlers are used for multiple purposes [7]. These systems first 

collect a corpus of web pages then index these web pages. When a user issues queries, from the index 

of the web pages, matched webpages are retrieved [8]. The nature of the web is dynamic. Web pages 
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are updated frequently and repeatedly. This changing web environment has left a major effect on the 

way crawlers have evolved. In recent times the scalability and dynamic nature of the web had made 

the crawling process more difficult. The conduct of any web crawler is the result of a blend of the 

following strategies: 

1. The selection policy states which pages are to be download [2].  

2. Re-visit policy states when to revisit web pages to check changes in case if pages are refreshed 

[9]. 

3. Politeness policy states help in avoiding overloading of web sites [10].  

4. Parallelization policy brings coordination in distributed web crawlers [11].   

1.5.1  The working of web crawler   

The web crawler selects one URL from the seed set to download the connected web pages, and 

extract the URL of a web page. These URLs are added to the fetcher component [8].  If not discovered 

earlier, it is added to the frontier. Implementation of a crawler on a big scale is complex. At large 

scale policies discussed earlier plus robot .txt standard is to be followed during crawling [12]. As 

shown in figure 2, each component plays an important part. The fetcher is used to fetch the requested 

web pages. Link extraction module, extract all the links present on the web pages. Page filtration 

module based on any criteria either keep the pages or discard them.  URL seen section decide if the 

page has been visited earlier or not.  The crawler either start crawling either randomly like generic 

crawling or collect as many pages as it can, otherwise follow some strict rules of crawling i.e focused 

or intelligent crawling. The following section discusses the three main crawling techniques. 

Figure 2 : Working of a web Crawler 



5 

 

1.5.2 Types of crawling techniques: 

1.5.2.1 Generic Crawling: Generic crawling is the term used for crawlers using breadth-first search 

for covering a large number of pages, the pages collected could be irrelevant [3]. The goal of 

the web crawler in generic crawling is to visit as many pages as it can. And extract the 

maximum number of hyperlinks. The crawler keeps updating its index. The working of the 

generic crawler is shown in figure 3. 

 

 

 

 

 

 

1. Choose the first URL from the list. 

2. Download the corresponding web pages at a local site. 

3. Extract the URLs, put the URLs in the list. 

4. Follow steps 1,2 and 3, until no URL is left in the list. 

In this category of crawling, the crawlers have no focus, it crawls and index everything that comes in 

its way, either its webpage, image or video etc [13].  When the focus of crawl or direction is expected 

from the crawlers, focused crawlers are used. 

 

 1.5.2.2  Focused Crawling 

 Focused crawling is meant to crawl relevant pages from a pre-defined set of topics. 

Consideration is  given only to relevant links and discarding irrelevant links [14],[15],[16],[17], [18]. 

A focused crawler gives priority to the URLs which have a high probability of user interest. This type 

of crawler aims to selectively search for web pages that are similar to a set of predefined topics  [17]–

[22]. These crawlers unlike generic crawlers, do not search all the links. It can be said that focused 

crawlers are the specific tools to crawl topic-specific information. These classifier based crawlers also 

require negative examples. Crawling algorithms for this approach are divided into two type’s 

Figure 3: Components of Generic crawler 
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algorithms [19] with background knowledge or without background knowledge [23]. Every focused 

crawler has at least three components. 

• Classifier: The classifier decides on the relevant pages to include potential links to the frontier. 

• Distiller:  The distiller identifies the home pages that point to topic relevant pages to decide the 

priority of URL’s that are to be visited.  

• Crawler:  This module fetches the web pages using the list of pages provided by the distiller. 

Figure 4 shows the components of a focused web crawler.  

 

 

 

 

 

 

 

 

 

 

 

 The focused crawler has the following advantages as compared to the other crawlers:  

• The focused crawler steadily acquires the relevant pages while other crawlers easily lose their 

way, even though they start from the same seed set [24]. 

• It can discover valuable web pages that are many links away from the seed set, and on the other 

hand, prune millions of web pages that may lie within the same radius. In this way collection of web 

documents on specific topics is of high quality [202].  

• It can also identify regions of the web that are dynamic or grow more as compared to that are 

relatively static [202].  

 

 1.5.2.3 Intelligent crawling 

 The Ultimate goal of any web crawler is to collect and process the web pages. The intelligent 

crawlers not only work on the similarity and priority of URLs, but they also undertake the semantics 

as well [25]. Semantic crawlers and ontology-based crawlers fall in this category. Intelligent crawlers 

attempt to give nearest to desired result [26]. Their search methodology is to retrieve information and 

have three main steps: identifying semantic relationships between table cells; converting tables into 

Figure 4: Components of focused web crawler 
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data in the form of a database; retrieving objective data by query languages [21]. These crawlers also 

use genetic rules and priority queues. 

 

1.6       Classification of World Wide Web 

From the time of its invention in 1989 to till date, the World Wide Web is expanding its size. 

Indexing all the pages of the World Wide Web is difficult. But the formation of an index is vital for 

the quality of results. Crawler gathers the information to be indexed. Search engines build indexes 

either manually or automatically. The vast majority of indexing is automatic.  Google holds the largest 

index system on World Wide Web. As shown in figure 5, WWW can be broadly classified into surface 

web and hidden web. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.6.1  Surface Web 

 The web that does not deal with retrieving data using FORM submission is called surface web. It 

is also called visible web or indexable web. It is visible to all users. Web crawler despite the use of 

different techniques- fetch and index the web pages. The most widely used search engine Google is 

surface web-based. Users can search anything by posing a query or writing any keyword. Google, 

Figure 5: Classification of World Wide Web 
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Wikipedia and Bing hold the major space in surface web crawling. Search engines are required to be 

powerful enough because they have to cater for the needs of every user.  

But it is interesting to know that surface web index only 16% of the total online information 

[27]. It is widely used even if its share is less. The reason for this is users search patterns in not 

specialised. Along with search engines, the surface web consists of web directories. Search engines 

have been there for a long time. Their configurations depend on the application. Web search engines 

like google and yahoo can crawl terabytes of data. Millions of the queries are responded to in sub-

seconds. There are different types of search engines 

Crawler Based search engines: Search engines that have a crawler to find and download the web 

page are called crawler-based search engines. The loop of find, download and analyse web page keep 

continue for this type of S.E. When the user poses the query, S.E check its database of the webpage 

to retrieve the best possible match. This type of S.E always finds the new pages and changes in a web 

page to update its databases. Google and Yahoo are two examples of crawler-based search engines. 

Web directory: It is an online catalogue of websites. Directories store the information on a hierarchal 

basis.  A directory has a label to its theme. The label help identifying the subject. It has a root directory 

that orders the web pages into a subject and sub-subject-specific hierarchal order. A user has to search 

further into it to find suitable and relevant information. For example, if a directory has label culture, 

and the user has to find the poetry. Then the search would be ‘country’/ ‘India’/ ‘literature’/ ‘poetry’.  

Though useful but users may find spending more time finding the information. The user might not 

have a crisp idea about his search. Many portals are based on web directories to start a search point 

for browsing. The best point of directories is that they are designed by human experts.  Most existing 

web directories were created manually by human specialists, putting lots of effort into it. Yahoo has 

one of the most famous directories widely used for general search as well as research purposes.  

 

Hybrid search engines: This category is again occupied by Google and Yahoo, as they have crawlers 

as well as directories. 

Meta search-based search engines: This type of search engine retrieve the results from more than 

one search engine. Results are combined to make a listing. Dogpile and Metacrawler are two famous 

meta-search engines. 

Specialized search engines: Suppose  if a search engine is used to search only shopping-related data, 

like yahoo shopping, searchnz etc are specialised search engines 
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 1.6.2 Hidden web 

 World Wide Web and corporate intranets make the information access direct and easy for the 

organizations. But on the web, not all the information is democratised. A person usually faces 

difficulty in navigating the hyperlinks on the web. The response lies in hands of search engines. There 

is always competition between the search engines companies to create the optimised index. 

Information tools and techniques have reached the point where quick information is being made 

available. However, the deeper solutions can’t be reached by developing a “one search engine serve 

all”. Deliberately much of the information is hidden. Indeed, its value lies in the degree to which it is 

hidden or not easily available.  

For example, if a person is interested in a trade of ABC Motor corporation. He must be interested 

in cars models featuring the next year. These kinds of information are available in the database but not 

given access to. Many reasons are behind it. Thus, the search for information comes down to the person 

who holds it.   

   For example, the personal home pages and internal directories of experts are not available through 

a simple search. In this case, this piece of information becomes the part of hidden web. For example, 

to write on a certain topic an expert is required. So typically, a small set of persons are contacted. 

These persons again referred to some other persons. In this way through this referral chain- a few 

layers deep, an expert is found. Similarly, in the hidden web, information is indeed available but due 

to technical or deliberate reasons, it is found under the layers of the hidden web. The layers are formed 

with the help of forms. So, hidden web content is that content that is hidden behind the web forms. To 

reach the content, a user has to fill the form. In [28] authors believed that the hidden web is a source 

of structured data. 

The surface web is just the tip of the iceberg, huge information is hidden under the layers of the 

hidden web or sometimes called the deep web. The crawlers have the job of finding the web page and 

indexing it. Mainstream crawlers are not designed to find the data hidden in forms. Traditional 

crawlers rely exclusively on hyperlinks. Hidden web crawler has to find <form> tag, to find the 

entrance to the hidden web. The data will be retrieved only if the form is submitted with correct values.  

As mentioned in [29], with the rise of server-side programming and scripting languages, such as 

PHP and ASP, databases became online accessible. Interaction with a web application help finding 

the desired data. The applications implement a common gateway interface for creation, generation and 

execution. Data is hosted on databases. Databases are queried using HTML forms. So, merely by 

following hyperlinks and downloading the web pages, the desired content can not be retrieved from 
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online databases. These contents are hidden from the web crawler point of view and thus are referred 

to as hidden web [30],[31]. 

Or in other words, we can say that the hidden web describes the hidden information available behind 

the search query interfaces that act as an entrance to backend databases. Hidden web consists of HTML 

pages produced as an answer to user requests submit through query forms [32]–[35]. Now the goal of 

hidden web crawlers is more specific than generic crawlers i.e is to search and index pages from the 

hidden web. And it is made possible by first finding the entrance to the hidden web i.e find form tag. 

Then submit the form and after submission, new URLs are generated. These URLs can as such be 

directed towards the surface web search engine.  Under the term hidden web, there are two types of 

hidden web crawlers either its hidden web crawler based on surfacing and the other is vertical search 

engine web crawlers. But the hidden web vertical search engine crawlers are based on schema 

matching [33], [36].  

No matter the category, finding entry is mandatory. Some online databases offer access to query 

interfaces that are dynamic query-based. Query interfaces act as a doorway to a hidden web. For 

example, if a user wants to buy an online air ticket, the search box of a search engine is to be filled by 

his query. A search engine will get back with result indexes that contain search forms now the user 

has to submit the form according to his specifications and will get the desired result. However, a 

traditional crawler cannot fill the form on the user’s behalf and there is no mechanism for the crawler 

to go inside the database tables and extract the data. Hence, database content is, therefore "hidden" to 

the user [37]. 

To retrieve this hidden information, the web crawler must submit the HTML form. Most of the 

time a single submission is not sufficient, each time is filled with a different dataset and multiple 

submissions are required. Thus, the problem of crawling the hidden web got reduced to the problem 

of assigning proper values to the HTML form fields. Now the challenging task is to design a hidden 

web crawler that can to meaningfully assign values to the fields in a query form [38]–[40]. As it is 

explained in [14] the challenges in assigning values to fields of certain types such as radio buttons. 

Dealing with text box input is most difficult. It is proved in [29] that the size of the hidden web is 

about 440 times more than the surface web. If this huge amount of data is available, then it must be 

some ways using which we can find useful data. Following are few ways: 

• User should increase their ability to find, evaluate and use information from all kinds of resources 

and collect experiences in constant practice and make full use of conventional search engines. 
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• A directory is a hierarchical presentation of hyperlinks of web pages and it is divided into topics 

and subtopics. Even some directories are a passage to HW to find relevant databases and then using a 

search tool needed information can be extracted. 

• Use of hidden web crawler. 

If it solely depends on the user to increase their ability to be found. This category is the private web. 

The second choice though useful require lots of human intervention. The most suitable way is the use 

of a hidden web crawler. The following section describes the detailed steps in hidden web crawling. 

 

1.6.2.1  Steps of Hidden Web Crawling 

1. Finding Sources of hidden web content: A human or crawler must recognize sites containing 

structure interfaces that prompt hidden web content. [41] discussed the configuration of the crawler 

for this reason. 

2.  Selection of similar sources: For a hidden web crawling task, one must choose a pertinent subset 

of the available content sources. In the unstructured case, the issue is known as database or resource 

selection [42] [43]. The first step of resource selection models the available content at a particular 

hidden website. 

3.  Underlying Content Extraction: A crawler must extract the content lying behind the form 

interfaces of the selected content sources. 

Now if we know that designing a crawler is the best way to dive into hidden web, and there are 

some functions crawler has to performed, there must be some types of hidden web. The hidden web 

is also categorized into the following types as shown in figure 5.  

• Truly invisible web: This type consists of the websites that don’t have hyperlinks to follow and 

all the websites that are unlinked fall in this category. 

• Private web: Private web poses restrictions on indexing, as access is limited to only a few people. 

Access to only specific IP addresses, Personal, internal, password-protected databases falls in this 

category. 

• Proprietary web:  Proprietary web demand identification and can be accessed only by providing 

registration. 

• Opaque web:  Traditional web search engines cannot index pages with disconnected URLs, and 

if the depth of crawl is high. This type of web is called opaque web [44]. 

• Dark web: This type came into existence when the owners do not wish to be indexed by the 

traditional search engines. The webmaster used no index policy. Usually, this type of web is not 

preferred due to its anonymity. 
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When we receive no results on Google, that doesn’t mean that there is no associated webpage. It 

may be the page from the hidden web because it is not always sure that the search engine has indexed 

it. There exist multiple reasons why a page may be invisible. Some pages are only temporarily 

unavailable, conceivably scheduled to be indexed later.  

Sometimes browser doesn’t display few documents, file formats, or any non-standards file 

formats all consist of the truly invisible web. So, the line that differentiates the surface web and the 

hidden web is that the crawlers cannot put human-like knowledge otherwise technically it could be 

indexed in a search engine. Based on access, the hidden web has two methods to access it: virtual 

integration or schema matching and surfacing the hidden web. Access methods are shown in figure 

6. 

Virtual integration  

• This approach is based on creating a mediator form for the specific domains. The mediator is the 

master form. Semantic mappings take place between each form and master form. Summaries are 

precomputed. The relevant forms are selected based on these summaries. Data is retrieved and 

combined from the selected form before presenting it to a user.  In [45] virtual integration is 

compared with modern-day shopping portals.  

• The data retrieved in this approach is homogenous. 

• The cost of maintaining mediators is high. 

• Relevant form identification is challenging. 

• This approach is not suitable for general web crawling. 
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Figure 6: Ways to access the hidden web 

Surfacing 

This approach precomputes the submission of the most appropriate HTML form. With each 

submission, a new URL is generated. Generated URLs can be indexed by any search engine. Surfacing 

leverage the existing web search engines. According to [34], endless pages can be included using 

hidden web pages. Web pages can be included as direct traffic or as ranked sources. In the surfacing 

approach, there is no need of building query models. This is already solved by analysing the contents 

of the retrieved pages resulting from form submission. The real challenge is to pre-compute the 

queries for forms. Another challenge is to find the suitable values of the forms. If the form has the 

select menu, the values can be gathered by parsing the forms because the values are already known. 

The challenge is to minimize the number of visits to check if the value is correct or not. More the 

number of visits more is the unreasonable load on the system. 

 

Both techniques have their challenges. In surfacing biggest challenge is to decide which form 

should be taken as the entry to the hidden web.  Which values are accurate to generate positive results? 

Each web form has more than one type of inputs. Which inputs can be filled or not? Even the text 

input could be generic i.e keyword-based or one with specific values. Since the time this term being 

coined hidden web is considered the most valuable. According to  [29], the hidden web is 550 times 

larger than the surface web. The key findings of this white paper are: 

• The hidden web had 7500 terabytes of information in 2001, as there is no source to measure the 

information of surface web and hidden web, so reliability is totally on the research published. 

• The hidden web consists of the most quality information. 
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• Half of the hidden web is based on topic-specific information. 

• The quality content of the hidden web is 1000-2000 larger than the surface web. 

 

Almost all of the studies reported on the hidden web rely on Bergman’s findings for research. 

Since 2001, Bergman and the bright planet has not made their research toward the quality of the 

content of hidden web public. 

 

Virtual integration vs Surfacing  

The virtual integration method is chiefly a way to integrate the data to access hidden web content. 

This type of hidden web is mediator based. The mediator forms are created for each domain. The 

forms are analysed to identify the domain of content. Semantic mappings are created from the inputs 

to form the elements of the mediator form. Queries are formulated and then creates semantic mappings 

from the inputs of the form to the elements in the mediated schema of that domain. Queries over the 

mediated form can then be redeveloped as queries over each of the underlying forms. Results retrieved 

from each of the forms can potentially be extracted, combined, and ranked, before being presented to 

the user.  

The hidden web is not all about indexing the web pages. Much of the retrieved data by issuing 

queries are used for harvesting. Google extract all the content though it stores it for temporary 

reference. The analogy that can be used here is- Google is like everything to everybody while the 

hidden web is everything to somebody. Instead of searching the entire web, the hidden web is directed 

towards a section to harvest data called directed harvest. 

Finding accurate and relevant data is not easy. Resources are visible to machines and the web is 

designed for humans to view, catch and download data. Machines navigate through the set of rules, 

while humans look for engaging content. The rise of interactive applications has placed a new layer 

in the code. Following figure 7 shows if a query for store location is posed on titan’s website. 
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Figure 7: Shows the website with a search interface 

1. The first step in hidden web crawling is to find the entrance to it by finding the search interface. 

Website first fulfils the criteria of being a part of the hidden web, due to the presence of a search 

interface. The results will be retrieved after the initial values are filled and the search is hit.  

2. Suppose if the query is to find the titan store in Amritsar city. The user has to click the store's 

section option. Then in the city section, Amritsar is to be clicked.  

3. The next step in hidden web crawling is to submit the forms.  So using the same example user has 

is to hit the search button. 

4. After the search button is hit, results are produced as shown in figure 8. 

 

 

 

 

 

 

 

Figure 8: Results after the search button is clicked 

A hidden web crawler has to automate all these steps. Suppose if the same query is posed on 

google as “ titan store in Amritsar”.  Even if it is posed as titan store Amritsar, or other keywords, a 

user has to start its search from the titan’s website. Now it would be easier if instead of using three 

steps to find relevant data it is available at step 1. This is how data is hidden. This shows the process 
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of engaging surface web search engines for hidden web search. The URLs generated after submission 

can be sent directly to a surface web search engine, otherwise used for harvesting. 

 

 

  

 

 

 

 

 

 

 

Figure 9:  Result of a query of titan store Amritsar 

So, this example shows the difference between Google search and the steps required to perform 

hidden web crawling. The following diagram concludes the difference between the steps of general 

and hidden web crawling. 

 

 

 

 

 

 

 

 

 

Web data is available in huge amounts. No matter how efficient the crawler is, a single crawler 

won’t be able to crawl the entire web.  So, distribution of crawler is required i.e more than one crawler 

are employed, each one doing their assigned job. The huge size of the web demands the use of 

distributed web crawlers. The following section describes the distributed web crawlers.  

Figure 10: Steps wise difference between generic and Hidden web crawling 
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1.7   Distributed Web Crawler 

 A distributed web crawler (DWS) should be designed to scale to many pages per second. Crawl 

manager, Domain Name Server (DNS) and downloader are the main components of DWS. Crawl 

manager put URL in a queue, accept requests for URL’s and download web pages. DNS resolver is 

requested for the IP addresses by the crawl manager and then it requests the robots.txt file in the web 

server root directory. When robot. txt files are parsed, excluded URL’s are removed and the requested 

URLs are sent to a downloader. Downloader is required to have reasonable speed because it has to 

accept requests for a large number of pages. The responsibility of the crawling application is to check 

the pages that are downloaded, for hyperlinks. If pages are not visited earlier,  then these are sent to 

the crawl manager in the form of a batch. In addition to low-cost components, the performance and 

network speed of distributed web crawlers can be scaled up [46], [47]. 

Importance of Distributed Web Crawlers  

• The web environment is not static so the search engine needs to manage the web expansion,  

number of users and their changeable searching pattern. This is the main motivation for the 

system to process a growing workload as the load is shared in the system.  

• Distributed web crawlers can also provide high capacity, where the capacity of the system is 

the maximum number of web users a system can maintain at any given time, also fulfilling 

both response time and throughput goals. 

• Distribution helps in increasing download speed. Each task can be performed in a fully 

distributed fashion means no central coordinator exists. 

Developing a distributed web crawler obliges major engineering challenges, all of which are 

eventually associated to scale. To retain the corpus of the search engine, a reasonable state of freshness 

the crawler must be distributed over multiple computers. The literature review gives a deep insight 

into web crawlers and their types. 

 

1.8  Performance metrics  

A performance metric is the degree to which a crawler holds some property. As per the best of 

our knowledge, precision, recall, coverage and effort were first used by  [48] in their technical report. 

It is also inferred from the literature that precision and recall are commonly used performance 

measures in web crawling.  Precision is defined as a portion of the information that is relevant to a 

search request. Effectiveness is the ability of the web crawler to satisfy the user in terms of the retrieval 

of relevant documents.  Authors in [13] also mentioned the importance of precision and recall. It is 

also mentioned that maintaining high precision with the growing size of the web is difficult. The same 
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is with recall. For a focused crawler discarding irrelevant web pages is also important. The rate at 

which relevant web pages are identified from irrelevant web pages is called harvest ratio. Another 

important measure is robustness. It is the ability of web crawlers to stay on topic relevant web pages. 

According to [49] recall and precision are useful if found from a finite set of URLs. In some 

studies, execution time and threshold of crawled webpages are also mentioned. It is mentioned in [50] 

that if no other measure is available, then a total number of crawled web pages is used as the metric 

measure. It is not always possible to collect all the relevant web pages. Authors in [51] proposed 

maximum average similarity and accumulated similarity. Authors in [52] suggested that along with 

scalability and freshness, coverage is another important measure for hidden web crawlers.  As 

scalability and freshness cannot measure the effectiveness of form-based crawlers. Coverage is defined 

as the ratio of the total number of relevant web pages that the crawler has extracted and the total 

number of relevant web pages in hidden web databases. For this, a crawler is dependent on database 

content. Another metric suggested by authors is submission efficiency. It is defined as the ratio of 

response web pages with search results to the total number of forms submitted by the crawler during 

one crawl activity.  

Suppose a hidden web crawler has crawled Nc pages, and let NT denote the total number of 

domain-specific hidden web pages. Nsf is the total number of searchable forms that are domain-

specific. Then harvest ratio is defined as the ratio of Nsf and Nc. Coverage is defined as  Nsf and NT. In 

[41] harvest ratio measures the ratio of relevant forms crawled from per web page. While in [53]  

coverage is defined as the ability to crawl as many relevant pages with a single query. Whether the 

crawled content is relevant to the query or not is measured by precision.  Authors in [54] have 

introduced another measure called specificity for the hidden web. Coverage is defined as the number 

of web pages that can be downloaded by updating query keywords. The literature shows that different 

studies have defined coverage in different ways. 
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Motivation 

1. The hidden web is inaccessible to the generic crawlers. This is the first motivation to develop a 

hidden web crawler. As it is mentioned in [29] users are unaware of the useful content hidden behind 

the forms. 

2. The existing hidden web crawler considers the form tag as the entry to the hidden web. This 

motivated us to search for more rules of finding searchable forms as an entry to the hidden web. 

3. The size of the hidden web is huge, and there are lots of free accessible databases available that 

can be searched and indexed by developing a hidden web crawler. 

4. There exist no crawler that has implemented focused hidden web with distribution in web crawling. 
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CHAPTER 2 

 

LITERATURE REVIEW 

The literature review is split into studies related to general and broad search crawlers, preferential 

crawlers, hidden web crawlers and distributed crawlers. 

 

2.1   General or broad search crawlers 

These crawlers keep on following the links without any condition. Their main task is to fetch the 

page and collect all the links for further navigation [7]. 

2.2   Preferential crawlers 

Preferential crawlers work on certain conditions submitted by a user. These crawlers do not collect 

all the web pages.  These crawlers work by selecting the relevant pages before the actual crawling 

begins. Also, the topic and domains of crawling are predefined.  

2.2. 1  Topical crawlers 

As the name suggests, these crawlers work on collecting information related only to a specific 

topic on World Wide Web. Not every time the labelled data is available to the crawler to remain 

focused. The seed URL’s can consist of one or more pages as examples. Topical crawlers are expected 

to be smart enough due to the absence of text classifiers. In [54] authors have worked on using topical 

crawlers for finding domain-specific information. They have not only considered the link context but 

also the importance of links.  

2.2.2  Focused crawlers:  

The focused web crawler uses certain judicious criteria to reach relevant web pages. In this 

crawling technique, while collecting web pages, a crawler is forced to focus on a certain theme. It 

starts with seed URLs, which are already trained with a data set [55]. To keep the focus on the relevant 

pages, this technique is entirely dependent on hierarchical ordering. Hierarchy is made using hard and 

soft focusing rules to identify candidate webpages for maximum appropriate search. Very hard focus 

rules worsen the search process. Seed URLs play important role in relevant webpage exploration [56]. 

These crawlers start with some labelled relevant and non-relevant examples of web pages. Focused 

web crawlers have the following components called: 

1. Fetcher or downloader which fetches the web page and retrieves its contents.  
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2. Frontier is a queue that stores the URLs to be processed. These URLs are yet to be visited, and then 

URLs available on a web page are extracted for further processing.   

3. In addition to these three components, a focused web crawler has a topic-specific crawling model, 

relevance estimation and ranking module. Focused crawler first collects several URLs as seed 

sites. From these URLs, a crawler begins its crawling process and give results in the form of 

webpages crawled.  Based on the literature following are the categories of focused crawlers.  

2.2.2.1  Semantic similarity based 

  In this category, focused crawlers are endowed with the special ability to exploit the semantics 

of web pages. These crawlers are more focused on the meaning of data instead of the structure of data. 

The resource description framework is used to store data and ontologies for knowledge representation.  

Focused and semantic crawling strategies are combined in [57], crawling starts from the random 

webpage. Multithreaded semantic web crawler [58] is focused on learning educational content. It 

learns with help of ontologies. Priority is given to the semantically relevant web pages. Semantically 

focused web crawler in [59] adapts to the changes in the environment. Semantic relevance is computed 

from the statistic of downloaded web pages for source information discovery. 

2.2.2.2  Machine learning-based/ Adaptive 

 These crawlers learn the linkage structure of the web while they crawl. Each web page is 

classified based on some features like in-links, sibling pages, and tokens in URLs.  It is interesting to 

know that how these features contribute to collecting relevant web pages. Here crawler is not given 

any hard-focused rule, instead, it relies on the acceptance criteria for relevant web pages. Learning 

crawlers start with few general starting points to collect user-specified web pages. Initially, the crawl 

is general but gradually it is focused on the user-specific web pages. These types of crawlers are trained 

on either supervised, unsupervised, semi-supervised or any other learning criteria.  

Training criteria is used to either classify relevant/non-relevant content. A focused crawler is 

called adaptive, when it employs learning rules to adapt its behaviour during crawling in a certain 

environment. The learning process of non-adaptive crawlers ends before the searching process starts. 

The learning capabilities for classification schemes are compared in [60] resulting in naïve Bayes as a 

weak classifier.  While [61] being the pioneer in this work have used two classifiers for path learning 

and online training. For path, learning context graphs are used in [62] but adaption is limited only to 

adding context graphs of newly found target documents. A classifier in [63] is built on a weighting 

scheme. First, the term frequency and inverse document frequency is improved in terms of the 

expression ability of web pages. Instead of considering a web page as a whole document, it is divided 
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into body, anchor, headline and keywords. Different weights, based on the expression ability of each 

of the parts. Link priority algorithm along with joint feature evaluation strategy combine anchor text 

and link context to predict the relevant links. 

2.2.2.3       Form focused 

   These special forms of focused web crawlers come with an additional component called form 

classifier that distinguishes between the form that can be searched and non-searchable forms. Form 

classification is mostly based on the structure of forms. Form Focused Crawler (FFC) efficiently 

discover forms on publicly indexable web [64]. Web forms are an entry point to hidden web crawling.   

2.2.2.4  Context/link focused crawlers 

 Hyperlinks are a rich source of information for any web crawler. Link contexts act as a clue 

for further exploration. Focused crawlers in this category can imitate the actions of human users and 

exploit these important indications to conduct a further search. A technique based on a combination 

of context and link analysis of web pages is proposed in [65]. The application of this research is a 

vertical search engine. Focused crawling under supervised learning requires training for finding 

similar documents. The proposed algorithm assumes both terms and links important for finding similar 

documents. While in [66] link and context analysis are done exploiting maximum entropy Markov 

model, and linear-chain conditional random field.  

2.2.2.5  Application based focused crawler  

These crawlers are focused on a single area. A crawler crawls geographically aware web page. 

The collaborative policy considers URL and the anchor-based full content of web page, classification 

and IP address-based policies. Geo-coverage, geo- focused and geo centrality are the evaluation 

metrics proposed in [67].  E- health-related content is crawled by crawler proposed in [68]. This 

adaptive crawler dynamically prepares the priority list. URLs with high priority are crawled first by 

the focused crawler. This crawler meets the data curation needs of end-users focused on cancer-related 

data. While in [69] area of application is crime-related data. 

2.2.2.6   Miscellaneous categories 

 Other categories of focused crawlers include Treasure crawlers [70], bootstrap crawlers[71], web 

crawlers that employ the structure of web page instead of the content of web page [72], sentiment 

focused crawlers [54]. The size of the frontier is a big issue in web crawling. A strategy named Sydney 
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strategy [12] helps to reduce the size of frontier and increase the coverage and quality of retrieved 

pages. It is also stated that if a crawler is more dependent on out-links, it worsens the coverage. 

2.3.  Forum crawlers  

Web forums are repositories of information, popular for their open discussions in form of either 

discussion forums or community question answering forums. In forums, the user creates the content 

and is stored in databases on receiving a request from the user. The response page is generated 

dynamically based on a predefined template. The forum site is connected by a very complex graph. 

For interrelated discussions, forums are divided into classes. The sub-forums are at the middle level. 

Threads are at the lowest level. Members do their discussions under threads. Forums are ordered into 

a fixed set of topics with one major topic, driven and updated by members, and govern by moderators. 

For web forums, the task of the crawler is to download all the similar pages [73]. The application of 

CrimeBB crawler is to curate information being used by criminals in underground forums. Web 

forums have no centralized index that’s why crawling web forum is difficult [69]. 

2.4.   Mobile crawlers 

This method helps in reducing the load. Web pages are selected and classified on the server-

side. Authors in [74] have given a perspective of mobility as the skill of migrating the data source 

before the crawling begins. The mobile crawler access only the resource required at a time then move 

to the next resource. Except for mobility and autonomy, adaptive learning are the discussed features 

for mobile agents.  While in [75] remote page filtering and compression, remote page selection, 

network load reduction as the benefits of mobile agents are discussed. 

2.5. Continuous /Incremental crawlers 

The web is dynamic, and web pages keep on changing. Incremental crawlers help in 

maintaining the fresh repository [76]. These crawlers visit pages that have changed or have a high 

probability of being changed. Continuous crawlers keep on revisiting every page it has visited earlier.  

Incremental crawler in [77] is scrapy based incremental web crawler. Incremental web crawling is 

made possible using bloom filters. But this crawler is not universal. Crawling rules varies with 

different websites. Authors in [78] have worked on the freshness and extraction of relevant content 

from the social web using focused crawling. To curate fresh content crawler has to incrementally visit 

the web page. Freshness is computed based on the web page’s creation date and web page content 

features. Any type of focused web crawler that is working on classification have the following baseline 

workflow. 
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Figure 11: Stepwise working of focused crawler with classifier 

Figure 11 sums the working of the focused crawler. URLs are picked from the frontier. The page is 

fetched, downloaded and parsed using the parser. Parser collects the terms. Term weighting is 

performed over the terms. Terms with weight are used to prepare the feature vector for the classifier 

and the score is computed. Further extracted URLs are added to the frontier. 

Issues and Challenges with Focused Crawler 

The following four issues were found with the focused crawlers:  

• To give the immediate benefit to web pages, focused crawlers may let pass significant pages by 

crawling only those web pages that are expected to give immediate advantage [118]. 

• Many HTML pages need to be refreshed on a daily, weekly or monthly basis. For such pages, the 

crawler has to updates the database by continuously adding fresh pages to the database to provide 

up-to-date information to the users. If these kinds of pages are large in number it puts stress on 

Internet traffic. A major issue is to develop a strategy that manages these pages [147].  

• The issue is to develop some method to retrieve only highly related pages and alternate techniques 

to poll the Web server so that the underlying resources are not overloaded.  

• The decision for the starting URL’s for frontier is another challenge [133]. 
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2.6.  Hidden web crawlers: 

To crawl the data hidden behind the web forms, the following steps are performed. 

1) Automated hidden web entry point discovery 

The hidden website can be discovered either using heuristic or machine learning. Authors in [79] 

have used heuristics either to discover form tag or finding other features of forms like- presence of a 

number of a text box and other heuristics to discard forms with short input used in [80], While in [41] 

and [81]  machine-learning algorithms are used to classify forms to find entry to the hidden web. It is 

mentioned that mainly if the website has an associated form tag available it’s taken into consideration. 

But all forms are not searchable forms. There could be login forms, registration forms and survey 

forms that are considered non-searchable forms. Now for the hidden web crawler question is: How to 

find searchable forms. To access the hidden web database finding a search interface is necessary. 

Mainly two techniques exist for this either use heuristic or machine learning. Following researches 

have used different heuristics for forms. 

     Table 1: Comparison of techniques in terms of heuristic and machine learning, pre query and 

post query, and features of forms. 

Ref  H/ML Pre/Post Form features  

3 H Both Pre/post  1. Input text box, with less than six characters. 

2. Password fields. 

15 ML Pre Term frequency. 

35 ML Pre 1. Submission method. 

2. Keywords. 

3. The number of fields of each type. 

65 Ml/H - Word email, password control, radio and text 

control, hidden control, select control, submit 

control, advance search etc using DOM tree. 

66 ML Pre Automatic  

 

 

Form modelling techniques in the hidden web can be compared using form type i.e simple 

form, complex forms, whether the data extraction requires supervision or not, types of information a 
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model require such as form fields necessary to submit a form or the semantic relationship between 

fields.  

     Table 2: Comparison of research in terms of focused crawling and classification algorithm 

Reference  FC  AC Supervised/ semi-supervised 

5 No - Semi-Supervised 

15 Yes Naïve Bayes Supervised 

18 Yes Bootstrap algorithm Semi-Supervised 

35 Yes Naïve Bayes Supervised 

66 Yes EEFC classification  Semi-Supervised 

 

Table 2 shows the comparison of research studies in terms of focused crawling (FC), Classification 

algorithm used, and learning techniques either supervised or semi-supervised. Classification and 

learning are an inseparable part of hidden web crawling. These two factors are considered in all four 

steps of hidden web crawling. 

2) Form modelling 

After entry to the hidden web, the next step is form modelling. Form modelling includes- if the 

classification is based on heuristic or machine learning.  Another way to classify the form is - 

classification of forms before submission i.e pre-query, and classification of form after submission i.e 

post query [82]. The post query case response page is a source of classification. The feature of each 

form is also the source of classification. Form modelling is also based on a supervised technique or 

unsupervised. 

 

3) Query selection 

The concept of static hierarchy for query selection is implemented in [83]. BioNav has been used 

for the hierarchies. The performance measure is the overall cost of the queries. The aim is to retrieve a 

greater number of records than size. Authors in [84]  have worked on both the content and structure of 

the form for queries as well as databases. The quality of the query is measured in terms of difficulty over 

the database. This model estimates the number of queries compulsory to retrieve the whole content of 

the hidden website. Performance is measured in terms of correlation of average precision. In [85] it is 

proved that the load on the system increases by increasing the number of submissions.   
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As some queries generate duplicate results. So, the query selection technique should have the goal 

of “minimize the number of queries and maximize the accurate response”. In  [86] the proposed model 

for unsupervised keyword selection. This model starts with keywords extracted from the form page.   

First, most frequent words are calculated, and submission is repeated until maximum results are 

obtained. Performance is measured in terms of the effectiveness of the technique with and without 

using a wrapper.  In [87], a technique in which for submission is done with the user-provided keyword. 

It also extracts keywords from the response pages. The keywords with higher informativeness are 

selected., which is calculated as their accumulated frequency. 

Query interface analysis techniques except for detection of hidden web entry points can be summed 

up as the use of the following techniques 

• Best effort parsing  

• Search form schema matching  

• Domain ontology identification  

A query is searched either by domain or by URL. This research is based on a search by URL. This 

search URL is classified into the hidden and non-hidden web. If it falls in the category of hidden web 

then feature extraction is applied and domains are classified. The results are processed by the query 

processor. 

4) Crawling path learning 

Path learning plays an important role in finding web pages that lead to searchable forms. It is the 

order of pages that is followed to reach the relevant pages i.e which forms lead to the correct response 

page, which values can lead to successful submission of the form and other interactions of the 

webpage. The path learning techniques include filling of forms and submission, and path crawling 

after successful submission.  Based on path learning crawlers are of the following types: 

• Which can download as many pages as they can [88]. 

• Focused crawlers  [89], [90] that are based on some intelligent rules leading the crawler to the 

subject relevant web pages. The proposed crawler is based on focused crawling.  

Like other categories of hidden web crawlers, there are no fixed measures to compare the performance 

of the hidden web crawlers. So, following tables 3 and 4 show the comparison of hidden web crawlers 

based on common features.  
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Table 3: Comparison of hidden web crawlers 

Crawling 

techniques 

Parameters 

[52] [91] [92] [93] [94] [95] [80] 

Technique Supervised  supervised supervised Domain-

specific 

supervised supervised supervised 

Freshness  No No  No  yes Yes No  No 

Query 

selection  

Not 

automatic 

Not 

mentioned  

Automatic  Automatic  Automatic  Automatic  Not 

mentioned 

Focused  Yes  Yes  Yes  No  Yes  Yes  Yes  

Sampling  Yes  Not 

mentioned  

Not 

mentioned  

Yes  No  No  Yes  

similarity No  Yes  Yes  Not 

mentioned  

Not 

mentioned  

Not 

mentioned  

Not 

mentioned 

Classification  Yes  Yes  Yes  Yes  Yes  Yes  Yes  

 

Table 4: Comparison of hidden web crawlers 

Crawling 

techniques 

Parameters 

[31] [50] [61] [62] [63] [68] [73] 

 

Technique 

Supervised  Supervised  Supervised  Supervised  Not 

mentioned  

Not 

mentioned  

Not 

mentioned  

Freshness  No  No  No Yes  No  No  No 

Query 

selection  

Automatic  Not 

mentioned  

Not 

mentioned  

Automatic  Automatic  Automatic  Automatic 

Focused  Yes  Yes  Yes  Yes  Yes  Yes  Yes  

Sampling  Yes  Not 

mentioned  

Not 

mentioned  

Yes  Yes  No  Yes  

Similarity Yes  No  No  Yes  Not 

mentioned  

Not 

mentioned  

Not 

mentioned  

Classification  Yes  Yes  Yes  Yes  Yes  Yes  Yes  
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On concluding the performance measures in literature, most of the work in the hidden web is based 

on (1)finding entry to hidden websites, (2) measuring classification accuracy forms, (3) finding the 

forms and submission of forms. Hidden web crawling neither have a standard dataset nor comparison 

framework and testing environment to compare features of techniques.  

Issues with Hidden Web Crawler 

1. Efficiency, coverage, harvest rate, high quality and relevancy of hidden web sources are the main 

challenges for hidden web crawlers [10, 12, 13, 117, and 132]. 

2. Due to the unstructured nature of the surface web, finding forms is another considerable challenge 

[19, 20, and 48].  Pages with dynamic and decentralized nature pages are added, modified and 

deleted autonomously and forms are distributed on the PIW [12, 13]. 

3. The crawler has to process and interact with form-based search interfaces automatically. These 

interfaces are designed principally for the consumption of human beings [30, 55]. 

4. Hidden Web crawlers have to provide input in the form of “fill out” forms. This raises the question 

of how best to prepare the crawlers with the required input values for constructing search queries 

[119]. 

5. To run an IE system over a hidden web collection, a key challenge is to effectively and efficiently 

retrieve its useful documents, mainly the documents from which the IE system manages to extract 

tuples [127, 15]. 

 

2.7    Distributed crawlers 

Authors in [96] have designed a distributed vertical crawler using a template-based periodic 

strategy. The domain of crawling is internet forums. Performance has been measured in terms of the 

number of URLs processed. Results have shown that distributed crawling has gathered more number 

of URLs as compared to a separated vertical crawler. A geographically distributed web crawler is 

presented in [97]. The approach is tested on various crawling strategies. From all, URL based and 

extended anchor text-based have performed best.   

Jiankun Yu et al. [46] have presented a scalable cluster-based distributed crawler implemented as 

a data server. This crawler is shopping product-based. It performs feature extraction based on products. 

Web server is presented with processed data.  Scalability is provided using a Hadoop platform. Huge 

data is stored in Hbase. The assumption for load balancing is that when all the nodes finish their 

crawling task at the same time. Performance of crawler is compared with Nutch crawler. With 8 

crawling nodes between 3500 -4000 pages are crawled per minute. 
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Feng Ye et al.[98] have implemented a distributed crawler based on Apache Flink. On the 

cluster, Redis and other databases are deployed to store the web pages that are crawled. Scrapy is 

selected as an underlying crawling framework.  Duplication detection is employed by combining the 

bloom filter with Redis. Performance is measured in terms of crawled pages and execution time. The 

crawler has managed to crawl 20000 pages in seven hours. CPU utilization rate even at the fourth hour 

is less than 35% as compared to a single crawler.  Duplication detection is compared with bloom filter, 

link list, hashmap and treemap, from all bloom filter approaches has given promising results. The 

number of fetched pages increases to 7000 when the system used Mesos/Marathon platform. 

A geographically distributed web crawler called UniCrawl is presented in [99]. Performance 

is measured in terms of crawling rounds. 50 crawling rounds have yielded 5000 new URLs and 

throughput between 106 to 107 for 6000 seconds. Authors in  [100] have developed a dynamic web 

crawler as a service. Each stage of this architecture worked as a separate service and deals with its 

load, so scalability is also based on individual stages. The whole system does not need to be scaled. 

Along with being dynamic, this architecture is customizable and provide standalone service using 

elastic computing. The system has used Amazon RDS service.  Performance is compared for fetched 

pages vs time graph. This crawler can fetch more than 250 pages in less than 400000 seconds. Then 

using 5 virtual machines 300 pages are crawled in 153.04 seconds. With the same configuration 

number of discovered URLs are 8452. This system has also worked on discovering new domains from 

newly discovered URLs. Comparison is made between response time for multithreaded crawlers and 

virtual machines. For 300 pages, the response time of multithreaded crawler is 142132.4 and for virtual 

machines on cloud computing are 512159.8. 

Gunawan et al.[15] have proved that too many threads lead to a decrease in the performance 

of web crawlers. The system has divided crawling based on large sites first and then smaller size sites. 

Results are compared for CPU and memory utilisation. For 2000 threads CPU utilisation is 70% at 

550 Mbps bandwidth. Choosing a suitable approach to divide the Web is the main issue in parallel 

crawlers. 

Achsan and Wibowo [16] have worked on politeness property.  Bosnjak et al. [102] proposed 

a continuous and fault-tolerant web crawler called Twitter Echo. This crawler continuously extracts 

data from Twitter-like communities. Performance is measured in terms of classification accuracy with 

99.4% of the highest classification accuracy for non-Portuguese sites. 

A distributed crawler in  [102] is a platform-independent distributed crawler that can handle 

AJAX-based applications. They have also supported the breadth-first search for complete coverage. 

Performance is compared up to 64 active threads to crawl two-page applications and mediums sized 
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applications. Authors in  [103] have implemented distributed crawler based on Hadoop and P2P. All 

the files are stored and shared in the distributed file system. Performance is measured as time to crawl 

vs nodes.  

DG- Distributed General 

DF- Distributed focused  

CT- crawling time 

      DS- Downloading speed 

      MT – Maximum threads 

     CPU-U – CPU utilisation  

     T – throughput  

Table 5: Comparison of existing distributed web crawlers based on their performance measures. 

Ref DG DF Max no 

of nodes  

CT Pages/url DS MT Cpu-u T 

[46] - - 3 - 26136 361.50 - - - 

[98]  - - 60 

secs 

4000   - - - - 

[47] ✓ - - 7HRS 7000 - - 35% - 

[101] ✓ - 50 rounds 6000 - - - - 106  

-107 

[16] ✓ - 5VM 153.0

4 

8452 - - - - 

[104] - ✓ - 4 

hours 

- - 2000 

at 

550 

Mbps 

70 - 

[103] - ✓ - - - - - - - 
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 Crawlers cannot be compared using one parameter fits all so the research reported in the literature is 

compiled based on attributes. The following table differentiates different types of crawler-based on 

their attributes. 

Table 6: The comparison of web crawlers based on performance attributes 

CRAWLERS 

 

ATTRIBUTES  

Distributed 

web 

crawler 

Incremental 

crawler 

Domain-

specific 

crawler 

Mobile 

crawler 

Breadth-first 

crawling  

Robustness ✓   ✓  

Flexibility ✓   ✓  

Manageability ✓     

Network 

Resources 

✓   ✓  

High 

Performance 

✓   ✓  

Incremental 

Crawling 

 ✓    

Cost ✓     

Overlapping   ✓ ✓  

Communication  

Bandwidth 

  ✓ ✓  

Network Load 

Reduction 

  ✓ ✓  

Freshness  ✓    

Page rank     ✓ 

Scalability ✓  ✓   

Load Sharing ✓  ✓ ✓  

High Quality      
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From table 6, it is concluded that distributed, incremental, domain-specific, mobile and breadth-first 

crawlers have worked on above-mentioned performance measures. Here are few performance 

measures like freshness are the goal of incremental crawlers only. The quality web pages are not 

evaluated by anyone from the above-mentioned crawlers. But this feature is implemented by hidden 

web crawlers which shows another research gap in the studies. Similarly, there are performance 

measures for distributed crawlers as well. The following table shows the comparison of the distributed 

web crawlers based on: 

• Scalability - (S), 

• Load Balanced- (LB), 

• Fault-Tolerant -(FT),  

• Platform Independence- (PI), 

• Centralized control-(CC), 

• Full distributions- (FD), 

• Extensible- (E). 

 

Table 7: Comparison of distributed web crawlers 

S.no  Refere

nces 

S LB FT PI CC FD 

 

E 

[1]  [16] ✓     ✓ ✓ 

[2]  [79] ✓       

[3]  [105] ✓  ✓ ✓ ✓   

[4]  [102]  ✓    ✓  

[5]  [106] ✓       

[6]  [107] ✓  ✓ ✓  ✓  

[7]  [42] ✓  ✓   ✓  
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[8]  [108] ✓     ✓  

[9]  [109] ✓       

[10]  [110] ✓       

[11]  [111]  ✓   ✓   

[12]  [112] ✓    ✓   

[13]  [99] ✓  ✓  ✓ ✓  

[14]  [10] ✓    ✓   

[15]  [113] ✓      ✓ 

[16]  [114] ✓ ✓   ✓   

[17]  [115] ✓    ✓   

[18]  [116] ✓ ✓    ✓  

[19]  [117] ✓ ✓    ✓  

[20]  [118] ✓ ✓    ✓  

[21]  [119] ✓       

[22]  [120]  ✓    ✓  

[23]  [121]  ✓ ✓  ✓   
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[24]  [122]  ✓      

[25]  [123]   ✓  ✓   

[26]  [124]  ✓  ✓    

[27]  [125] ✓       

[28]  [126] ✓ ✓      

[29]  [127] ✓  ✓     

[30]  [128] ✓ ✓   ✓   

[31]  [129]        

[32]   [130] ✓    ✓   

[33]  [131] ✓    ✓   

[34]  [132] ✓       

[35]  [133] ✓  ✓  ✓ ✓  

[36]  [134]   ✓     

[37]  [135]     ✓   

[38]  [136] ✓    ✓   

[39]  [137] ✓ ✓ 

 

  ✓   
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Table 7 conclude that focus of web crawler towards distribution is mainly to satisfy the property 

of scalability, load balancing, and fault tolerance. Web crawler system is huge, it has to cater thousands 

of queries per second and even index construction takes a lot of time. On top of that, the system is 

required to handle faults, provide extensibility and other features at a reasonable cost. These needs 

point to a distributed system as the solution: a distributed system that can scale with additional 

components. Services are required to be distributed in such a way that these are always available. After 

carefully reviewing the literature of focused, hidden and distributed crawlers it is found that the 

following types of crawler are less reported in the literature. 

 

2.8  Focused hidden web crawlers 

Selective web crawling has been the interest of the research community for a long time. 

Focusing the crawl towards high-value target pages is one of the benefits of focused crawling, making 

focused hidden web crawling one of the eminent fields. Focused crawling on combination with the 

hidden web can emerge as the beneficial field for web crawling.  Authors in [90] have worked on 

focused crawling for the hidden web to collect topic-specific web pages. This work assumes that 

keywords can describe the topic but not all keywords can help. [138],[139] are other studies that fall 

under the category of focused hidden web crawlers.               

2.9  Focused distributed web crawler  

A distributed focused web crawler in [16]  crawls only a single web server. It collects a specific 

type of data from a web database.  The goal of a multithreaded crawler in [101] is to improve the 

performance in terms of network bandwidth and storage capacity. Focused crawling is implemented 

using the Naïve Bayes classifier. Experiment results have proved that the performance of web crawlers 

will fall if too many threads are used. This will also lead to high memory utilization and low 

performance. Twitter Echo crawler in [104] is for crawling Twitter data. The focus of crawl and 

coverage are two parameters taken. The modular distributed design can easily adapt target 

environment to crawl high volumes of data. Modular design made it adaptable for addition of new 

functionalities. 

2.10  Distributed hidden web crawlers 

In this category, [96] have developed distributed hidden web crawler for web forums. In this system, 

the crawler dynamically adjusts packet size. Websites have different crawling periods and this crawler 

flexibly adjusts to it. Authors in [69] have discussed distribution using breadth-first strategy but it is not 

efficient in crawling forum sites. No other research in this area has been reported. This shows that 

distribution in the hidden web demands more work.   The following diagram present a summarized view 
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of reported crawlers. 

 

 

Figure 12:  Shows reported the web crawlers and their types 

The above diagram shows the web crawlers and their types. It also shows the combinations that are 

made using broad categories. Like from focused crawlers and distributed web crawlers, focused distributed 

web crawlers have emerged. Web crawling is still an emerging field, each type of web crawler has certain 

problems associated with them. The following table shows a summary of types of web crawlers and their 

associated research problems. 
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Table 8: Open research problems associated with different types of web crawlers. 

Type of crawler Method  Research problems 

Classic  

focused  

Based on guidelines retrieve the 

most relevant pages  

The hypothesis of link and sibling 

locality is not accurate for always. 

 

Semantic focused The relevance of web pages is 

computed based on a property of 

sharing conceptual similar terms. 

Ontology is one of the concepts to 

define conceptual similarity 

Semantic computation and 

determining the similarity of web 

pages to reach highly prioritized 

target pages only. 

Learning/adaptable • Learn or adapt the 

crawling guidelines.  

• Guidelines are updated 

dynamically. 

• Classification algorithms 

guide the crawler towards 

the relevant web pages 

and paths. 

• Efficient use of limited 

resources to perform well. 

• Intelligent crawling that 

learns the features and 

relations of web pages. 

• Web page ranking 

challenges. 

Forum  Crawl forum data. • Lack of a centralized index. 

• The requirement of wrappers 

for metadata extraction 

Mobile  Compressed data is sent to the 

crawler after performing crawling 

at the server end. 

How to reduce the network load. 

Continuous 

/incremental 

Crawler update only a set of topic 

relevant web pages 

• Criteria to decide the 

probability of change, how to 

save bandwidth. 
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• Frequency and type of 

revisit. 

• The decision between the 

frequency of change and the 

degree of change for a web 

page. 

Forum  Crawl forum data. • Lack of a centralized index. 

• A requirement of wrappers 

for metadata extraction 

Mobile  Compressed data is sent to 

crawler after performing crawling 

at the server end. 

How to reduce the network load. 

Continuous 

/incremental 

Crawler update only a set of topic 

relevant web pages 

• Criteria to decide the 

probability of change, how to 

save bandwidth. 

• Frequency and type of 

revisit. 

• The decision between the 

frequency of change and the 

degree of change for a web 

page. 

Hidden web 

 

• Locate the hidden web source. 

• Understand associated forms 

• Select appropriate queries 

• Extract the relevant content 

 

• Efficiently finding the entry point to 

the hidden web. 

• Recognition of search interfaces to 

accept queries 

• Select queries that will return 

accurate data 

• How to automatically extract the 

content. 
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• Increasing coverage and reducing 

the cost of crawling 

• Indexing ajax and javascript pages 

as much as possible. 

• Optimal seed URLs 

Distributed To increase coverage, crawlers 

are deployed in a distributed 

fashion 

• Type of URL assignment 

Static or dynamic. 

• Cost per query reduction. 

• Web growth. 

• Effective partitioning of 

search space. 

• Efficient task assignment to 

crawling agents. 

• Effective cache design. 

• DNS, quality of service of 

servers. 

• Managing network 

bandwidth/ Load balancing 

etc. 
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Research Gap 

The literature has reported that no web crawler yet has implemented distribution using focused crawling in 

the hidden web. In addition to these following points shows the research gap.  

1. Most of the studies reported have used only form tag to find the entry to hidden web, using only 

a <form> tag is not sufficient. Because most of the websites these days come with the form tag. 

2. In focused crawling ranking is based on similarity alone, a proposed crawler is based on the 

ranking based and site similarity, weighting and backlink count. The ranking reward function does 

not depend only on a similarity function. 

3. Security is also a less touched field. By implementation of Redis provide security and fault 

tolerance. 

4. The crawler work with both pre-and post-query approaches. 

5. The crawlers face the issues of crawler traps and resource depletion. We have implemented 

stopping criteria’s with which crawler resources will never deplete. As the number is fixed for 

forms as well as newfound URLs. 
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Problem formulation 

The field of information retrieval has huge literature available. But when we branch it out to certain 

areas like distributed crawling in the hidden web, not much literature is available. As opposed to 

general web crawling, hidden web crawling requires a complex approach to parse, process and extract 

information from the hidden websites.  And similarly, the process of distribution in hidden web 

crawling is equally challenging.  The performance of the crawler is highly influenced by the 

architecture and techniques of crawling. From the literature review, it is found that distributed web 

crawler for the hidden web needs to be developed, as distributed crawlers for the hidden web are few 

and they face performance issues in terms of scalability, duplication, and are unable to support frequent 

changes in the underlying technology of web pages. Focused crawlers are software created to collect 

web pages that are relevant to specific topics.  It was also found that there is no focused distributed 

web crawler for the hidden web as per the literature. Based on the above-mentioned research gaps 

following objectives are formulated. 

 

1. To propose a novel architecture for smart distributed focused web crawler for the hidden web. 

2. Creating algorithms for smart distributed focused web crawling that can automatically parse, process, 

and interact with form-based search interfaces. 

3. Build web crawler based on the proposed architecture and algorithms. 

4. Compare and optimize the performance of the web crawler. 
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CHAPTER 3 

TO PROPOSE A NOVEL ARCHITECTURE FOR SMART DISTRIBUTED FOCUSED WEB 

CRAWLER FOR HIDDEN WEB. 

 

Focused web crawlers play an important role in creating and maintaining subject-specific web 

collections. Application of focused crawlers includes search engines, digital libraries, specialized 

information extraction and text classification of the high-quality result page, minimizing the time, 

space and network bandwidth. The goal of a focused crawler is to retrieve the maximum relevant 

pages. Focused crawling in this architecture is based on priority computation and ranking of the 

sources. The ranking is again an associated term to similarity. The value of similarity is computed for 

the URL encountered. Seed sites play an important role in focused crawling. Crawling begins with a 

single seed and further links are extracted from that. The following diagram shows the working of the 

crawler from the seed URL.  

 

 

 

 

 

 

 

 

 

Figure 13: Link extraction from seed URLs 

In the beginning, the frontier is empty. And it starts with a URL, all the methods reported in the 

literature falls into two categories in the context of seed sites. i.e either bootstrap based or machine 

learning-based. This architecture is based on bootstrapping method. The crawler is provided with the 

DMOZ dataset as seed URLs. 

Another important aspect of focused crawling is a computation of ranking and similarity. The 

ranking is required in both focused web crawling and hidden web crawling. In this architecture ranking 

reward function is a factor of the number of backlinks, term weighting and site similarity. The value 

of similarity is computed between [0-1]. The similarity is measured for classifying domains, finding 

similar terms for form submission. 
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A web crawler encounters several types of web pages. Based on content and types of web pages, 

the following web pages fall under the category of hidden web. The following table shows the types 

of web pages that are encountered by a web crawler. 

Table 9:  Categories of web pages encountered by a crawler 

Types of web pages 

crawler encounter 

Type of content Visible: can be indexed/ 

Hidden: cannot be 

Indexed 

The web page is static 

HTML text. 

Simple text Visible can be indexed 

HTML pages HTML page but nothing to index Hidden (specialized S.E. are 

there to search such content) 

Web page made of 

HTML, but dynamic. 

Html page with a form, consist of 

other controls. 

Sign in, user password, requiring 

selection. 

Form for user preference. 

If the form itself is made up 

of HTML, can be indexed. 

Web page with user 

preference form. 

Other pages are straightforward 

HTML. 

 

Because the form is based 

on user preferences so both 

form and its content are 

visible. S.E can index. 

Web page with a form 

that has user-specified 

information 

The form will generate dynamic 

information once submitted. 

The form is visible, the 

content behind the form is 

not visible. The crawler will 

not know how to deal with 

form. 

Dynamically generated 

page 

Pages are displayed dynamically 

and a sign of "?" appears in URL 

Dynamic pages are created 

by the script until the script 

is run, the crawler doesn't 

know what to do. So, it is 

part of the hidden web. 

Dynamic/real-time A web site that works with real-

time data. 

Hidden 
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Google index 120 kb 

pdf and postscript file All the web index 110kb. More 

than it is part of the invisible web 

Hidden 

The web page has an 

associated database with 

a web interface 

User issued commands through 

HTML form, and the result is 

dynamically generation of a web 

page. 

Hidden 

 

Before the crawler begins crawling the hidden web sources are to be found first. i.e finding the 

searchable forms. A crawler is required to differentiate between searchable and non-searchable forms. 

Following are the basic definitions related to the crawler architecture. 

• Searchable form: “Webform is called searchable form if it is capable of submitting a query to an              

online database which in turn, return the results of a query.” 

• Non-Searchable form: “The forms, for example, login registration, mailing list subscriptions forms,          

and so on are called non-searchable forms. These forms do not represent database queries. 

• Pre query: Pre-query techniques are based on identifying the entry to the hidden web based on the 

content and structure of the form. 

• Post query: Post query techniques identify entry to the hidden web, based on issuing queries to the 

databases. 

• Hidden website: A hidden website is associated with the searchable database. Results are retrieved 

upon issuing queries. A hidden website has a database associated, searchable form and result pages. 

• Depth of crawl: It is defined as the depth at which the searchable form is located. Or the minimum 

number of hops required to reach the searchable form. For example, the URL abc.com/holiday/new-

year/music will be similar to other Urls in its class.  

 

 

 

 

 

 

 

 

Figure 14: Shows the extraction of the target page 
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And the URL will be similar to abc.com/holiday in other class. Let the distance between the web

page be denoted by D. S be the source document. L be another document in a class hierarchy. In our 

approach, we have fixed the depth of search. According to [84],  most of the similar web pages are       

found at the depth of three. Distance ‘0’: if document d1 and d2 are in the same class. Distance ‘1’ or 

level 1: if document d1 and d2 are in sibling class. Distance ‘2’ or level 2: if classes of d1 and d2 are 

first cousins. Distance ‘3’ or level 3: if d1 and d2 are not related at all. 

• Domain and sources of search: Domain and sources are either single or multiple. For example,                      

the hotel domain and car rental domain. The source of retrieval could be from a single domain as         

well as multiple domains. 

• Type of search: This crawler is based on structured query search and keyword search. Hidden web         

entry is found by filling the forms. Usually, these forms have multiple input fields. So the choice of a                  

structured query is suitable. And the result pages are focused on the number of test domain used. 

• HTML form processing: The job of the server is only up to when the form is submitted. Once                         

submitted with correct values the web browser displays the results. Values of the forms are matched 

and once found correct the browser brings the result page. 

• Controls: Any forms can have bounded, unbounded and calculated controls. This crawler is based    

on bounded controls. Bounded controls have an underlying table associated. These controls are used 

to enter, display and update the values. Unbounded controls display only static text.   Calculated             

controls display data based on calculations. 

• Form elements: A HTML form consist of the number of form elements. As the crawler work on                     

structured data and bounded controls, button and submit are the most useful attributes. 

• Visible fields: Each HTML has visible or hidden form fields. If the field is visible it should or could     

be  filled to retrieve results. 

• Ranking reward: Ranking reward is a function of the weight of terms and derived ranking. The                  

similar the document is to the already found web data source the higher its ranking reward. 

• Use of breadth-first crawl: For the crawling strategy, an experiment in [140] shows that for                             

surface web crawling with the focused crawl, a breadth-first search is a better choice. 

• Stopping criteria: There are few limits posed on the crawler. Like the depth of 3, form submission                       

100, form detection- 100. The reason for choosing such criteria is to stop to crawler so that it does      

not  fall in a crawler trap. 

• Politeness policy:  The crawler should not overload the website with queries. This crawler                             

has implemented politeness by limiting the number of submissions. 

• Selection policy:  Selection policy decide which webpage to select to crawl. This crawler has                         

implemented selection policy by selecting only hidden web pages. 
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• Fault tolerance: Fault tolerance is implemented using the Redis server. If one server will fail           

others will take charge. Fault tolerance is an inbuilt feature of the Redis server. 

• Query probing: It is a technique to classify the text database by training a rule-based classifier. 

• Response status: When the crawler submits the page, data can either be retrieved or not based on 

the response status of the webform. 

 

3.1  The proposed architecture 

The proposed architecture work in three stages.  

1. URL adaption and classification: Frontier is initialised in this phase, followed by parameter 

learning, ranking and domain classification.  

2. Relevant source selection: When frontier encountered a URL, all the links are extracted in link 

frontier, and fetched link frontier.  

3. Underlying content extraction:  While in the third stage the form structure is extracted to fill and 

submit the forms.  

 

• This system has implemented the frontier as a queue from which URLs are taken out for further 

processing. The frontier starts from the seed URLs. We have implemented three queues as 

frontiers. The frontier for seed URLs consists of URLs from the directory.  

• The frontier for links consists of URLs extracted from the seed URLs. The frontier for fetched 

links consists of URLs from links. The frontier depletes very easily. So as the frontier for seed 

URLs will have a scarcity of URLs, the frontier for links will be used.  

• A webpage can have multiple hyperlinks but not all are relevant. Aim of a web crawler is to fetch 

maximum hidden websites by minimizing the visited URLs. The following figure 15 shows three 

phases of the crawler. All the stages are interconnected with each other. 
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Figure 15: Architecture of proposed crawler as a single entity focused crawler 
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Figure 16: Analogy of the use of single URL 

Figure 16 shows the working of the crawler with respect to one URL. For example, abc.in is taken. As the 

URL is extracted from the frontier, the next step is pre-processing of URLs.  

1. A request is sent to the server, Redis server operates at port 127.0.0.1:6379 

2. Find the form on the page. 

3. Compare extracted content with already learned domains, find the relevant domain.  

4. Get the specific domain data, for form submission and submit the form. 
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5. Submission could either be post query or pre query. If the number of visible form fields is more 

than two then use the get method, post method otherwise. 

6. When the form is submitted, check the response status and add it to the result database. 

 

3.2  Preprocessing of URLs 

The baseline components of URLs are extracted. These are host, extension, documents, path etc). 

from all the components URL, path, anchor and text around anchor are fed to feature vector. The 

system has implemented python NLTK for stemming, stop word removal and tokenization. Now all 

the segmented words are fed to the feature vector. 

      Feature space for the hidden website is defined as: 

                                      FD= [ URL, anchor, text around anchor]                                                            (1) 

      Feature space for links of the hidden website is defined as: 

                     FL= [path, anchor, text]                                                                                (2) 

       First, stop words are removed. The next step is stemming using the Porter stemming algorithm. 

The top m terms are selected. After pre-processing, the URL is represented as                                 

                                          U= [u,a,t,p]                                                                                            (3) 

 

Where u is URL,     a= anchor,   t= text around Url,   p = path of URL. Now different weights are 

assigned to vector U 

        Tfij= u×tfij1 + a×tfij2 +t×tfij3                                                                           (4) 

                              Tfij(link)= u×tfij1+a×tfij2+t×tfij3                                                                          (5) 

𝜔𝑖𝑓 =
𝑡𝑖𝑓𝑖×𝑖 ⅆ𝑓𝑗̇×𝐼𝑔

𝛴𝑁=1
𝑁 (𝑡𝑖𝑓𝑖×𝑖 ⅆ𝑓𝑗)

2                                                                                                      (6) 

 

 

Wij = weight of term tj in document di 

Tf = term frequency 

Idf =inverse document frequency 

N = total number of documents 

IG= information gain of term tj 
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                                𝐼𝐺𝑗 = ℎ(𝑑) − ℎ(𝐷|𝑡𝑗)                                                                                                 (7) 

 

                          ℎ(𝑑) =  −∑ 𝑝(𝑑𝑖) ×ⅆ𝑖𝜖𝐷  𝑙𝑜𝑔2 𝑝(𝑑𝑖)                                                                            (8) 

 

                                   𝐻(𝑑|𝑡𝑗 ) =  −∑ 𝑝(𝑑𝑖|𝑡𝑗 ) × 𝑙𝑜𝑔2 𝑝(𝑑𝑖|𝑡𝑖 ⅆ𝑖∈𝐷 )                                                               (9) 

 

The path of the URL is learned to reach the exact location of the form. A special symbol 

related to the path is the forward-slash (/). The path of the URL is found after the hostname.  Anchors 

are helpful in internal navigation in URLs. And we need to find the internal links as well.  

 

3.3  Weight calculation of terms 

Based on feature vector construction, the weight of a term is computed based on occurrence in 

URL(U), anchor(A), text around the anchor (T) and path (P).  

      Term frequency of term Ti in U, A, T and P and is defined as: 

                                   tifi= α×tifi+ β×tifi+ γ ×tifi+ δ×tifi                                                                                                                   .(10) 

 

         where α, β, γ, and δ are the weight coefficient. Ig is the information gain of terms.  

                                           
𝑤𝑖𝑗̇=𝑡𝑖𝑓𝑖×𝑖̇ ⅆ𝑓𝑗×𝐼𝑔

√∑ (𝑁
𝑁=1 𝑡𝑖𝑓𝑖×𝑖̇ ⅆ𝑓𝑗)2

                                                                                               (11)         

It is proved in [12] that outcome of the tf-idf alone is an inappropriate distribution of the feature 

vector. In their approach, information is combined with the segmentation of pages in a major four 

sections. In our approach weights are based on URLs and associated terms. After term weighting 

similarity denoted by (S) is computed between the already discovered URL and newly discovered 

URL. The similarity is required in the ranking section is computed as follows: 

 

                     S = sim(U, Unew)+sim(A, Anew)+sim (T, Tnew)                                                                      (12) 

Similarity has a different meaning concerning each step in web crawling. The crawler has to work 

on finding similar URLs so that it can prevent similar data retrieval. The two files are said to be similar 

if a small percentage of text is different. In the context of similarity, two related terms are resemblance 

and containment. Resemblance means if two files resemble each other while containment is when one 
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file is contained in another. The crawler has to find similarity two ways: first, it has to find the 

similarity to perform term weighting in pre-processing of URLs, results will be used in computing 

ranking. Secondly, the system has to eradicate the duplicate URLs, for this the already existing 

technique is combined with Redis to improve the efficiency.   

The similarity is either character-based or term based. Cosine similarity is part of term-based 

similarity. After pre-processing, the system has a list (k) of more than 50k keywords. Now using the 

similarity model (V), the system read the reference file. In the next step, the elements are removed 

from the list (k) one by one. The similarity is computed between the two lists. For example, the flight 

is a word in list (k) and it has a close match in (V). If cosine similarity is 1, it means an exact match is 

found. The system has to extract an exact match as well as a close match. Cosine similarity is used to 

find terms for a query, and for finding similar URLs as well. Close match results are used for queries 

during repository generation in form submission.  

The similarity is required for finding top k terms for ranking. And it is also required to eliminate 

the near duplicate URLs. To eliminate near-duplicate URLs, we have implemented the Simhash 

technique. It is based on counting the occurrences of binary strings. Keys are stored in a data store. 

And a separate database is used as the query or repository database. Simhash program will open each 

file in the seed set. It scans through it and looks for matches. Tags are defined as the preselected set of 

strings, and Sum table stores the count of matches. The hash key is computed from the sum table 

entries. The attention is restricted only to the term weighting scheme. The data store consists of a 

computed path, size, term weight filename and key. Once the database is populated with data from the 

test directory. SIMFIND function looks for similar keys.  

The assumption of tolerance range is similar to [141]. The 16  8 bits tags are applied to the 

similarity measure. This measure is used to remove duplicate URLs.  The websites have a complex 

relationship with each other. One URL can be found on more than one website.  Downloading the 

same URLs multiple times is a waste of resources. The unique fingerprint for each request is calculated 

first as shown in figure 17.  All the repeated requests are removed here.  Simhash [141] is combined 

with Redis for improvement in results.  The following diagram shows the working of Simhash. The 

files shown in figure 17 are seed URLs. Simhash is a binary similarity metric. Two files are similar if 

a small percentage of their raw bit pattern is different, and it operates at the word level. It does not 

attempt complete coverage. It is focused on the files whose degree of similarity is strong. 
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Figure 17:  Computation of fingerprint 

The doc file is a list of URLs from the seed database. The weight of the feature vector is computed 

using tf-idf. Though the actual method has implemented variation with weighting methods. But it is 

implemented in the proposed crawler for detecting duplicate URLs only. The fingerprint is computed 

by add operation. The following diagram show formation of sumtable.  

 

 

 

 

 

 

 

 

 

Figure 18 : Formation of sumtable 

This technique is implemented over the seed URLs in the frontier. Then afterwards as the system            

keep   on collecting the URLs, duplicate URLs are discarded. 
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3.4   Learning 

The majority of the web crawler reported in the literature are based on learning. Each crawler has 

implemented it differently. The aim of a learning algorithm is to learn features for feature selection 

and use these features for ranking. The results from the first run will be used in successive runs. The 

uniqueness of our learning algorithm is learning is performed at both site level and link-level                      

( extracted URLs from a webpage).  The following steps are performed in the learning algorithm. 

1. A new website (X) is encountered, extract [U, A, T]. 

2. For each URL the queue with sites is ordered using a similarity model w.r.t  [U, A, T]. 

3. Extract the links from X. 

4. Links are saved in the link queue. The link queue is ordered using the similarity model w.r.t to [P, 

A, T]. 

5. Check for searchable forms by following the rules of rejection criteria. 

6. If the form is searchable extract path, anchor and text.  

7. With this, the information in the parameter learning module in stage 1, and link ranking in stage 

2, is updated. And new features are reflected in these two modules. 

8. The crawler has reached the threshold of 0.8, i.e 80 new URLs and 0.01, i.e 100 new forms. 

Site and link ranking are dependent on the learning process. Site learning and link learning                      

are updated periodically. Every time a new site is entered frontier and link ranking is updated to find         

similarity of the links. When parsing and crawling of URL is completed, features are collected. Then     

FSL is updated when relevant forms are found. 

3.5  Ranking 

Aim of ranking in hidden web crawling is to extract top n documents for the queries. The cost 

is expected to be the least for this work. We have adopted the formula for ranking from [142]. But our 

reward function is based on a number of out-links and site similarity and term weighting. Let SF be 

the frequency of out-links.  

                                          SF= ⅀ Ii                                                                                                (13) 

                                                       I =0, site has not appeared, 

                                                       I=1, if it has appeared 

 So ranking reward is a combined function of term weighting, site similarity and number of backlinks.  
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                                      € = wij   +S+SF                                                                                                   (14)                                

                               (rj)= (1-w). δj + w. ranking reward (€) / cj                                                               (15) 

w is the weight of balancing € and cj.. δj   is the number of new documents. Computation of rj shows 

the similarity of € and returned documents. If the value of € is closer to 0, it means that returned value 

is more similar to the already seen document.  cj is a function of network communication and 

bandwidth consumption. The value of the ranking reward will be closer to 0 if the new URL is similar 

to the already discovered URL.  Given the website with a searchable form, it is checked for similarity 

with known web pages cosine similarity is calculated. Site frequency is the number of times the site 

appears on other homepages i.e backlinks. After computing similarity, it is added to the ranking 

formula to compute the rank. 

3.6  Domain classification 

The aim of domain classification is to find topical relevance of the site and the home page. As 

the new URL is received. The system will extract the homepage content by parsing, removing stop 

words and stemming. The feature vector is constructed as explained above in the preprocessing 

section. The resulting vector is fed to the classifier to check if it is relevant or not. The crawler gets 

the base URLs or seed URLs from the frontier. The request is sent to a server. The crawler will first 

check for the presence of a search interface. Based on these the decision is made whether the 

encountered form is searchable or not. After these rules are applied, the crawler has a set of URLs that 

have <form> tag as well as the property of being searchable. On being provided with suitable values, 

these forms will retrieve the data from the associated database. 

Rule1: If the crawler does not find any <form> tag, consider this a non-searchable form. 

Rule2: If crawler found the <form> tag. Then extract the attribute type. If the attribute type is not in the 

repository call it a non-searchable page.   

Rule 3: If the crawler found the <form> tag, and extracted attribute type matched in a repository. But the 

attributes < 3, consider this page non-searchable. 

Rule 4: If the number of attributes is >3, but the submit button is not found, consider this page as non-

searchable. 

Rule 5: If there exists <form> tag, and attributes are similar to the repository, and submit button is 

also there. But button marker is not present then consider this page as non-searchable. 

Rule 6: If there exists <form> tag, and attributes are similar to the repository, submit button and button 

marker is are present. It is a searchable form. 
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Rule 7: If there exists <form> tag, but crawler found login, then this is non-searchable. 

Rule 8: If there exist <form> tag, but the crawler found registration, consider this page as non-searchable. 

Rule 9: If there exist <form> tag, but the crawler found subscribe, then consider this page as non-

searchable. 

Rule 10: If there exists <form> tag, but crawler found mailing list subscription, then consider this page 

as non-searchable.  

These days most of the web pages came with the form tag. But all forms cannot be put in the 

searchable categories. So above mentioned rules are implemented. Following figure 19, show the tree 

form of the rules. 

Figure 19: Diagrammatic view of rules for searchable forms 

3.7    Form structure extraction 

The aim of form structure extraction is to extract the content of the form. Each search form has 

some controls that a human can easily fill and submit. If a crawler has to fill the forms automatically 

it has to have a set of resources to automatically fill and submit the forms with suitable values. A task-

specific database is associated with a crawler. This database contains the set of values for filling the 

forms, created by parsing the form. And form element table is created with a control element type, 

label and domain values. The crawler will adaptively learn filling values with associated forms. This 

database of values will be initialized with the launch of the crawler. When the first run of the crawler 

is completed the parsed values will be analysed to collect data.  Form submission is of two types of 

post-form submission and Get form submission. This crawler work on both type of submissions. After 
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the form is submitted crawler got the response status. Response status is either a valid page or no page 

found code.   

Steps for form parsing: Following steps are performed while forms are parsed. 

• Using the Request library of python, an HTTP GET request is sent to the URL of a webpage.  

• The response of HTTP request is HTML content of a webpage. 

• Data is fetched and parsed using Beautiful soup. 

• HTML tags and their attributes are analysed.  

• Data is output in CSV file. 

 3.8  Form and response analysis 

After the form tag is found, its elements are extracted to make a repository called form element 

repository as shown in table II. Forms have multiple control elements. It could be of any type: 

• Text: This area of a form can be edited with multiple lines of words. 

• Input: This editable area has attributes types- type as text, Submit, checkbox and radio button 

• Select:  Select has two options like drop-down list box and multi-choice list box. 

Table 10: Contents of repository 

Control 

Element  

(Visible 

Fields) 

Label Domain Type Of 

Domain 

Size  Status  

Submit Search Submit Infinite More than 3 kb VR 

Radio Flight 

trip 

Round trip  

One-way trip 

Bounded More than 3 kb VR 

Select From, to Name of 

place 

(eg: Delhi to 

America) 

Bounded More than 3 kb VR 

 

After the repository is made as shown in table 10, as explained in [143] form submission include 

problems like 404 error page, duplicate information, and sometimes all information is retrieved in 
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single submission otherwise multiple submission are required. Two heuristics are implemented based 

on visible fields. If the number of visible fields is one or two -forms are classified using query probing, 

label extraction otherwise.  

3.9      Query probing 

The aim of query probing is to develop a set of queries for each class. On submitting these 

queries crawler will retrieve the same documents for that category. We have implemented a similar 

approach as [144], but we have implemented hierarchal classification, and the system can expand the 

number of classes as it crawls more URLs. Currently, classes are based on a seed datasets.  

3.10 Form submission 

Two related techniques with form submission are: 

HTTP POST: In the post query technique, forms are submitted with (name, value) tuple. This pair is 

sent encoded in the body of the request. Query probing is implemented in the post method technique. 

HTTP GET: In the get query technique, forms submission takes place by giving (name, value) pairs 

in URL. The pre-query technique is implemented in Get method technique. A URL has three symbols 

a question mark (?), equals to (=) and ampersand (&). (?) differentiates encoded (name, value) from 

the base URL and action path. (=) ,(&) separates the field name and field value. 

3.11 Stopping criteria  

 Exhaustive crawling is a waste of resources. This system has implemented the following stopping 

criteria. 

• Maximum depth of crawl: the crawler will stop following the link when the depth of three is 

reached. It is proved in [23] that most of the hidden web pages are found till depth 3. While at each 

depth maximum number of pages to be crawl is 100. 

• At any depth maximum number of forms to be found is 100 or less than a hundred. 

• If the crawler is at depth 1, it has crawled 50 pages, but no searchable form is found, it will directly 

move to the next depth. And the same rule is followed at depth 2. Suppose if at depth 2, 50 pages 

are crawled and no searchable form is found. The crawler will fetch a new link from the URL. 
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3.12  Assumptions and thresholds 

• The size of the frontier should not decrease below 100 URLs at a time, as the number decreases, 

it will crawl URLs from the link frontier and fetched link frontier. 

• The learning threshold is 80 new sites and 100 new searchable forms. 

• URLs are picked out from a crawler using first in first out order. 

3.13 Distribution 

The above architecture (figure 16) describes the working of a single entity of a focused crawler for 

the hidden web. Book, hotel and flight are the domains that crawlers process. We have implemented 

the Redis server as shared storage for URLs. Redis stores information in cache, unlike databases, 

which is why information access is faster. The proposed crawler is developed in Python. Scrapy is an 

application framework. Scrapy helps to extract web pages and structural data. For distributed crawling, 

Scrapy and Redis are integrated to implement more than one server.  

A crawler is implemented with a breadth-first search per host. Data can be extracted either by 

using the API of a website or by extracting information by accessing the webpage.  From the frontier, 

a URL of the webpage is sent as a request to the server. The server responds by returning the HTML 

content of the page. Once the data is accessed next step is to parse the data. To create a tree structure 

of HTML data html5lib parser library is used. To navigate through parse tree beautiful soup is used. 

It can pull any type of data.  The following figure 20, explained distribution using multiple Redis.  

Using multiple Redis servers, the crawler is made fault-tolerant. 

 

 

 

 

 

 

 

 

Figure 20:  Distribution of proposed crawler based on Redis server 
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3.14 Job scheduling  

In web crawling, to run multiple jobs simultaneously, the URL of a web page must be downloaded, 

parsed and the links captured from the web must be shared with all the crawlers.  Because scrapy has 

no mechanism for link sharing even though it has schedular, so the URLs are shared from the memory 

of crawler Figure (21) show the steps wise implementation of job scheduling. The task of job scheduler 

is to prevent overloading the websites. Web pages are popped out from the frontier first-in-first-out 

way. We have considered this as our baseline assumption. Crawling in breadth-first fashion is 

implemented as URL and server-based. It is proved in [12] that it yields promising results.  Following 

steps are performed in Job Scheduling.  

Step 1. To start crawling, scrapy send schedule request to message to a crawler.  

Step2.  As the crawler receives the request it starts crawling. From the Redis URL queue, a URL is 

selected and send as a request to the schedular. 

Step 3. Schedular receives a request of URL, it sends this to Redis (request queue), and then again 

contact (request scheduled) is made with scrapy. 

Step 4, 5. Now the associated webpage is to be downloaded, for this request is popped from the top of 

a request queue, and downloader on receiving the request, download the request page. 

Step 6, 7. Downloader after getting the contents of a page to submit the page to the crawler. 

Step 8,9.  Crawler parses the webpage, collect the new URLs and send a new list of URLs to Redis 

pipeline. Redis pipeline sends new URLs to Redis queue. One another advantage of Redis is multiple 

jobs are separated using unique keys. So, jobs are not mixed. 
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Figure 21: Job scheduling in proposed crawler 

 

RQ schedular is the lightweight solution used for job scheduling, it is used on top of Redis. 

With this schedular only requirement is to create schedular object with python. 

3.15   Implementation of Redis and beautiful soup 

Scrapy is a fast and powerful web extraction tool for structured web extraction. It is easily 

extensible and portable in Python. It is used as an application framework for writing web crawlers. 

Data can be saved into any format using scrapy. Any type of data can be scraped using scrapy selectors. 

At any time spidering can be closed using CloseSpider command.  BeautifulSoup is implemented with 

Scrapy for parsing HTML responses in Scrapy callbacks. Usually, BeautifulSoup and Scrapy are used 

alternatively but the proposed crawler implemented both for a beautiful soup to parse and prettify data, 

while extraction is made possible by scrapy. 

Distribution is made possible using a Redis server because Redis is exceptionally fast. It is not 

constrained to a single data type.  Redis operations are atomic. Suppose two clients are simultaneously 

active with one resource, Redis always receive the updated value. Following advantages of Redis are 

implemented in a proposed crawler  

1. Multiple Redis servers are operational, to provide fault tolerance. Redis can replicate data 

to any number of slave’s systems. 
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2. Redis rarely save data on disk, so the applications like web crawling where time is the 

performance measure, Redis is the best choice for multiple read and write at a time. 

3. It is easier to represent complex data structures in simpler forms. 

4. Redis server has an efficient pipeline system. For example, suppose a client is sending 

multiple requests to the server, the client can have replied in a single step. 

5. Redis is a secured server that demands authentication. 
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CHAPTER 4 

CREATING ALGORITHMS FOR SMART DISTRIBUTED FOCUSED WEB CRAWLING THAT 

CAN AUTOMATICALLY PARSE, PROCESS, AND INTERACT WITH FORM-BASED SEARCH 

INTERFACES. 

 

 

Figure 22: Show the detailed working of the proposed crawler 
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Figure 22 shows the working of components of the proposed crawler. The following sections explain 

the algorithms of each part. The first step in web crawling is to initialize the seed set. The seed set 

consist of a list of URLs from where the crawler starts the crawling. Frontier has this list of URLs. 

These URLs are dispatched to the other crawlers by the dispatcher. following steps are performed by 

the dispatcher. 

4.1  Dispatcher algorithm 

 

 

 

 

 

 

 

4.2  Parsing algorithm 

When the URL is encountered it is parsed for the desired fields. The proposed crawler is 

implemented with Beautiful soup. And under beautiful soup component. Urllib.parse is used for URL 

parsing. It is used to parse the forms as well. Following steps are performed by the parser.  

 

 

 

 

 

 

 

This crawler is focused towards hidden web crawling, so for a URL to be a part of hidden web 

crawling the first condition to satisfy is the availability of a form tag. But not all URLs with the form tag can 

have searchable forms. The crawler has to find those forms which on being filled with suitable values to 

generate a valid response. The following algorithm defines the rules for the URLs that can not be included 

IN further search. 

 

Goal: It is responsible for dispatching URLs to be crawled to the crawl supervisor. 

Output: It collects results from the supervisor  

1. Initialise the frontier and get URLs. 

2. Dispatch URLs to crawl supervisor. 

3. Collect fields. (fields are the data that is to be retrieve from the page ) 

 

Goal: Extract particular information  

1. initialize request library  

2. initialize html parser 

3. html.parser .feed (data) . ( this step is performed to feed parser with data  

4. find tag that corresponds to the original html object in document. 

5. Get URLs, go to baseline URL. 

6. Find forms . 

7. Follow rules as defined in figure (17). 

8. Parse forms for fields. 
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4.3  Algorithm for rejection criteria 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The crawl supervisor is given the list of searchable URLs. To reduce the time of crawling, the 

rules for rejection are followed at the frontier level. If the URL is considered searchable only that list 

if forwarded to crawl supervisor. 

 

 

1. Get the homepage of url. 

2. Search for the <form> tag. 

3.  If crawler do not find any <form> tag, drop the URL 

4. If crawler found the <form> tag. Then extract the attribute type. If the attribute type is not 

in repository , drop the URL 

5. If crawler found the <form> tag, and extracted attribute type matched in a repository. But 

the attributes < 3, drop the URL 

6. If the number of attributes is >3, but the submit button is not found, drop the URL 

7. If there exists <form> tag, and attributes are similar to the repository, and submit button 

is also there. But button marker is not present drop the URL 

8.  If there exists <form> tag, and attributes are similar to the repository, submit button and 

button marker is are present. Keep this url 

9. If there exists <form> tag, but crawler found login, drop the URL. 

10.  If there exist <form> tag, but crawler found registration, drop the URL 

11.  If there exist <form> tag, but crawler found subscribe, drop the URL 

12.  If there exist <form> tag, but crawler found mailing list subscription, then consider this 

page as non-searchable.  
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4.4     Algorithm of  Crawl supervisor  

The crawl supervisor assigns work to the worker crawlers. At starting the crawlers are assigned 

with metadata and number of URLs they are assigned to crawl. 

 

 

 

 

 

 

 

4.5 Algorithm of Learning 

 

 

 

 

 

 

 

 

 

 

 

 

 

Goal: Search URLS of seed database 

1. If frontier has URLs <100. 

2. Pick a hidden web site from site database or seed sites. 

3. Extract links. 

4. Download page. 

5. Classify a page. 

6. If found relevant according to rules. 

7. Extract unvisited pages from the step 3. 

 

1. Initialize site and link ranking  

2. A new website (X) is encountered, extract [U, A, T]. 

3. For each URL the queue with sites is ordered using a similarity model with respect to 

[U, A, T]. 

4. Extract the links from X. 

5. Links are saved in the link queue. The link queue is ordered using the similarity model 

with respect to [P, A, T]. 

6. Check for searchable forms by following rules. 

7. If the form is searchable extract path, anchor and text.  

8. With this, the information in parameter learning module in stage 1, and link ranking in 

stage 2, is updated. And new features are reflected in these two modules. 

9. The crawler has reached the threshold of 0.8, i.e 80 new URLs and 0.1, i.e 100 new 

forms. 

 

 

10.  
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4.6 Algorithm of Similarity 

    

 

 

 

 

 

 

 

 

 

 

 

 

4.7   Algorithm of Ranking  

A hidden web source is said to be ranked if it returns the top k sources. Keeping the assumption 

simple as  [145], the ranking performed by this crawler is independent of queries. The sorting is done 

first in the first phase of crawling.  

 

1. Extract the new coming URL for U, A and T. 

2. Identify the domain of the web page under consideration. 

3. Order the site frontier according to the similarity. 

4. Similarity is computed as the cosine similarity of vectors. 

5. Calculate the out of site links for the encountered URL. 

6. Calculate the term frequency-inverse document frequency. 

7. Calculate the ranking using the formula  (𝑟𝑗) =  (1 − 𝑤). 𝛿𝑗 +  𝑤. (€) / 𝑐𝑗 . where cj is 

the factor of the network. 

8. Repeat steps 1-8 for ‘n’ number of web pages. 

 

 

 

1. Calculate term frequency i.e frequency of a word in the document. 

2. Calculate inverse document frequency i.e common or rare words in document. closer to 

zero value indicate the more common the word is. 

3. Find number of backlinks i.e SF using external _URLs = list of URLs, if the website has 

appeared in other links value is 1, zero otherwise. 

4. Find value of ranking reward €. It is sum of weighting and SF. 

5. Open file in directory, scan through it at word level. 

6. Look for matches of tags, if a match is found skip counter is decremented.  

7. Store count of match in sum table (ST). Hash is function of ST entries (path, file size, file 

name, keys). Tag counts make up the sum table entries, which are then combined to form a hash 

key. 

8. Get distance of sum tables.  It is the sum of the absolute values of the differences between 

their entries. 

9.  If this distance of sum table is zero files are totally identical. 

10.  If distance of sum table is within tolerance range then files not totally identical. 
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4.8 Building a Naïve Bayes classifier 

Term frequency is defined as how often a word occurs in a document. The more often it occurs in 

web page more important it is assumed. Term frequency is a ratio of one word with all the words in 

the document. Document frequency is how often occur in an entire set of documents. i.e. all of the 

web pages in DMOZ data set. In every webpage, there are few words like "a", "the", "and" etc appear 

very frequently. these words are discarded pre-processing. Frequencies are distributed exponentially 

so log values of Tf-idf are considered. It is computed for every word in the corpus. 

 For a given search word, documents are sorted based on their scores and the results are 

displayed.  This system is designed to first classify URLs into the hidden website or non-hidden 

website by checking the <form> tag in the source code of the webpage. If the form tag is not present 

it will discard the URL. The DMOZ dataset has URLs in groups. From each group, URLs are parsed 

into tokens. First, the top-level domains such as “.com”, “. co. in”, “.gov” are excluded. Stemming is 

performed on terms. Then Tf/IDF is computed for the terms to construct a feature vector. We have 

taken eight categories from the web browsable dataset for the training of Bayes classifier. Bayes 

theorem is applied to compute the probability of the URL belonging to domain Di. maximum a 

posteriori hypothesis is used for training.  

                                       𝐻𝑚𝑎𝑥 =  𝑎𝑟𝑔 𝑚𝑎𝑥 𝑃(𝑉|ℎ) ∗ 𝑃(ℎ)                                                                            (15) 

                                               (where V is the vocabulary for each group in the dataset) 

 

Each URL is split into tokens. Each token is checked with vocabularies in training data. Value of token 

is computed w.r.t to each vocabulary. Token will either match equally or partial. 

VT = value of token 

TC= token count 

EQ = equal match 

PM= partial match 

pp = prior probability 

lp = likelihood probability 

P(Di|URL) = posterior probability of URL to be in Di 

P(URL|Di ) = likelihood probability of URL to be in Di 

PDi                   =   prior probability of Di 

 

𝑉𝑇𝑖 = 𝐸𝑄 + (0.5 × 𝑝𝑎𝑟𝑡𝑚𝑎𝑡𝑐ℎ)                                                                                  (16) 
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VSDi   =              total count of words in vocabulary for domain Di , where (i= 1,2,3,4,5,6,7,8) 

  

n = upper bound of the token count, it denotes the highest number of tokens a URL has. 

 

                             𝑃(𝑈𝑅𝐿|𝐷𝑖 ) = ∑ 𝑇𝐷𝑖 /𝑉𝑆𝐷𝑖 
𝑛
𝑡=0                                                                                     (17) 

                                                 

  Prior probability and likelihood probability are used to know if the URL belongs to a domain. 

According to the dataset, a prior probability is assumed for each domain.  

 

pp = ratio of the total number of URLs in each domain to the total number of URLs in the dataset. 

The probability for any URL to be classified under a domain (Di) is computed as follows:  

𝑃(𝐷𝑖|𝑈𝑅𝐿)  =  𝑃(𝑈𝑅𝐿|𝐷𝑖) ×  𝑃𝐷𝑖)                                                                                   (18)                                                                  

4.9    Building SVM Classifier   

Almost all the real-world web data have linear inseparability. Support vector machine (SVM) is used to 

classify the blocks, and K- fold cross-validation is used for evaluation. Under the soft margin 

formulation, the linear kernel-based SVM classifier makes a certain number of mistakes and keep the 

class margin (CM) as wide as possible to correctly classify the points.  It is expected that the system 

must choose a decision boundary that perfectly separates the features to avoid overfitting. Under soft 

marginal formulation, SVM is allowed to make mistakes to keep the margin wide.  In this way, other 

points can be still be classified correctly.  

                             𝐿 =
1

2
‖𝑤‖2 + 𝜈(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑡𝑎𝑘𝑒𝑠)                                                                     (19) 

Hyperparameter v chooses the trade-off between maximizing the margin and minimizing the mistakes. 

• If ν has a small value, classification mistakes are given less importance. More focus is given to 

maximize the margin.  

• If ν has a large value, the focus is more on avoiding misclassification. 

More penalty is incurred by the points which are far away on the wrong side of the decision boundary. 

For every data point xi, there exists a slack variable ξi.  

• ξi = distance of xi from the CM, if xi is on the incorrect side of the margin, 

• ξi = 0, if xi is on the right side. 

Each xi has to satisfy the constraint of:         

                                   𝑦𝑖(𝑤⃗⃗ ⋅ 𝑥𝑖⃗⃗  ⃗ + 𝑏) ≥ 1 − 𝜉i                                                                                          (20) 
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The L.H.S of the equation is the confidence score denoted by CS.   

• For CS ≥ 1, the classifier has classified the point correctly.  

• For CS ≤ 1, the classifier did not classify the point correctly, and a penalty of ξi.  is incurred. 

Each point P is represented by P(x,y), 𝜙 is transformation function for point P as 

∅(𝑃) = (𝑥2, 𝑦2, √2𝑥𝑦)                                                                                                       (21) 

Minimization function is defined as : 

                                         𝐿 =
1

2
‖𝑤⃗⃗ ‖2 + 𝐶𝛴𝑖𝜆𝑖𝑦𝑖(𝑤⃗⃗ ⋅ 𝑥𝑖⃗⃗  ⃗ + 𝑏) ≥ 1 − 𝜉i                                                    (22)                                       

                                             𝐿 = 𝛴𝑖𝜆𝑖 −
1

2
𝛴𝑖𝛴𝑗𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝑥𝑖 ⋅ 𝑥𝑗                                                                (23)                                                                 

                                       𝑘(𝑥, 𝑦) =< 𝜙(𝑥), 𝜙(𝑦) >                                                                               (24) 

                                                                                                                                                                                                                                                                                               

                              (𝑃1, 𝑃2) =< 𝜙(𝑥1𝑦1)+,𝜙(𝑥2𝑦2)                                                                              (25) 

                                                                                                                                           

                       𝑘(𝑃1, 𝑃2) = 𝑥1
2𝑥2

2 + 𝑦1
2𝑦2

2 + 2𝑥⊥𝑦1𝑥2𝑦2                                                                         (26)                                           

                                     𝐾(𝑃1, 𝑃2) = (𝑥1𝑥2 + 𝑦1𝑦2)
2                                                                              (27) 

                      𝑘(𝑃1, 𝑃2) = ⟨𝑃1, 𝑃2⟩
2                                                                                                         (28) 

 

In real-world web data, it is difficult to find exact similar data. So, we have kept the notion of similarity 

as to how close the points are. The main takeaway from this is we have implemented linear classification 

in higher-dimensional space.  

Similarly, in the case of KNN, to work with maximum separability, for example, a dataset has N number 

of classes. µb is the mean vector, where b = I,2,3,….N. let xb be the total number of samples. 

                                     

                                          𝑥 = ∑ 𝑥𝑏
𝑁
𝑏=0                                                                                                      (29)                                                                                                                                                                                                                             

                                   

                       𝑀𝑃 = ∑ ∑ (𝑦𝑐 − µ𝑏    )(
𝑋𝑐
𝑐=1

𝑁
𝑏=1 𝑦𝑐 − µ𝑏    )

𝑇                                                                         (30) 

    

                                    𝑀𝑄 = ∑ (µ𝑏
𝑁
𝑏=1 − µ)(µ𝑏 - µ)𝑇                                                                                (31)                                                                                         

                                         𝜇 =
1

𝐴
∑ 𝜇𝑏

𝑁
𝑏=1                                                                                                    (32)                                                                                                             

Distance of all instances is measured from each other using Euclidian distance metric. The instance with 

maximum distance is selected and is called training distance.  If the boundary is 1.5 or 2 times of training 
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distance, it indicates classes are closer to each other. The approach has implemented non-exhaustive 

cross-validation. Under which k- fold cross-validation is implemented. For our approach, the value of 

K=5 comes out to be most suitable. With the aim of maximizing the prediction accuracy, non-perimetric 

neighbourhood component analysis is used for selecting features.  After the domains are classified as 

relevant, using the varied queries forms ate submitted. If the form is correctly submitted its status code 

is 200. Precision, recall and F1 score are computed using SVM and KNN algorithms. Finding the ideal 

value of k is fixed it depends on how suitable it is to the dataset. If the value of k is decided small, it will 

make the crawler more blind. That is low bias and high variance. If the value of k is set high, it will 

make the algorithm more flexible. The output is calculated as the class with the highest frequency from 

the k most similar instances. It is suggested in [146] that for an odd number of classes, the value of k 

should be odd. If the number of classes is even the value of k should be chosen even. 

4.10 Algorithm to find similar domains 

Let URL be denoted by U, Domain with D, and subdomain with SD and content similarity with CS. 

 

 

 

 

 

 

 

 

This approach is similar to [147]. To determine the closeness using similarity, a metric is required 

to determine less or high closeness. This research is based on finding the high similarity of values that 

reach near 1. For semantic similarity similar approach from  [141] is used, but with the Redis plugin. 

During form submission, Pre-Query identifies web databases by analysing the wide variation in 

content and structure of forms. Post-Query approach identifies web databases from the retrieved 

results by submitting probing queries to the forms. 

 

 

 

 

1. Crawl U, collect all the links present. 

2. Check for search ability using rules. 

3. If searchable find subdomains using beautiful soup. 

4. Create dictionary for each SD. 

5. Select terms above threshold. 

6. Find average of top k similar terms. 

a. 𝐶𝑆 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒((max
𝑘

|
𝑣𝑖⋂𝑠

|𝑆|
|) 
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4.11 Algorithm for pre query  

 

 

 

 

 

 

 

 

4.12  Algorithm for post query  

 

 

 

 

 

4.13 Form identification and analysis 

 After the crawler has identified the form, these are analysed to explore the form elements. 

Each form is equipped with text, HTML elements and controls. Text and HTML elements are not 

undertaken because these correspond to the structure of form only. Controls can either be bounded or 

unbounded. The proposed approach is based on bounded controls only. The following table shows the 

domain of experiment: 

Table 10: Search term description as per domains 

Domain Description 

Auto  Used car search 

Book Book search 

Flight Airfare search 

Hotel Hotel search 

Music Music CDs search 

Product  Household product search 

 

 

 

Input: relevant data to query  

Output : Retrieved results from the database 

1. If (query and input are same) 

2. Display results (current) 

3. Else  

4. Search words and extract forms  

5. Display results 

6. Stop 

 

1. Extract the query form of the page  

2. Changes in source code 

3. User query processing 

4. Create dynamic file  

 

 



73 

 

 

 

      4.14    Form structure extraction and form-filling 

 

 

 

 

 

 

 

 

 

 

 

4.15 Job scheduling algorithm  

 

 

 

 

 

 

 

 

 

4.16 Configuration 

The system hardware environment includes: CPU is Intel®, Core™ C5-7200@ 2.50 GHZ  2.70GHZ, 

with installed RAM-12.0 GB, and Redis 3.0.509. the crawler is implemented in python. The internet 

speed during the experiment was 50-100mbps. 

 

1. Get URL from the frontier  

2. Identify if it is searchable or not  

3. If it is searchable, extract size of form. 

4. If size is less than 3kb, discard the form. 

5. Parse form  

6. Extract control element, label and domain. 

7. Form processor associate suitable value with each control from the repository. 

8. The values of repository are initialized before the crawler bootstrap and after the 

completion of one cycle. 

9. After the first run is over the obtained pages are collected to analyse. 

 

1. Crawler is initialised with request message from scrapy. To start crawling, scrapy send 

schedule request to message to a crawler.  

2. Crawler upon receiving request start crawling by picking URL from the Redis URL 

queue 

3. Send URL as a request to schedular. 

4.  Schedular receives a request of URL sends this to Redis (request queue),  

5. Scheduler and then schedule request with scrapy. 

6. Now the associated webpage is to be downloaded, for this request is popped from the 

top of a request queue, and downloader on receiving the request, download the request 

page. 

7.  Downloader after getting the contents of a page to submit the page to the crawler. 

8. Crawler parses the webpage, collect the new URLs and send a new list of URLs to Redis 

pipeline. Redis pipeline sends new URLs to Redis queue. 

9.  One another advantage of Redis is multiple jobs are separated using unique keys. So, 

jobs are not mixed. 
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4.17 Evaluation 

This crawler has to first check if the page belongs to a hidden web or not, by following the rules 

mentioned in the domain classification section. After the seed database URLs are checked for <form> 

tag, the crawler has to pull the contents of the webpage using the URL. The request library makes use 

of HTTP within the python program. Beautiful Soup can extract any type of data from a webpage. 

After the HTML Markup’s are removed page is saved for further processing. Beautiful soup is 

combined with urllib3 to work with web pages. Another way is to download a copy of the webpage 

then use it locally. Beautiful soup has a feature called “prettify”, in which all the unnecessary tags can 

be dropped. We have selected 6 domains for a dataset. This dataset will be used to run machine 

learning algorithms.  

Initially, the DMOZ dataset is used. The dataset is cleaned by excluding the non-responsive 

web pages. The performance of the classifier is measured using a confusion matrix. Rows of confusion 

matrix denote actual class, while column indicates classes predicted by SVM and KNN classifiers. We 

have computed accuracy for each class. The average of each class denotes the performance of the 

classifier. The performance metrics are precision, recall and f1. Precision is the classification of a 

portion of web pages that are relevant to the class. It means how correct the system is to reject the web 

pages that are not relevant. The recall is how correctly the classifier can find relevant documents.   

4.18 Experimental setup 

We have selected eight domains from the dataset. This dataset will be used to run machine 

learning algorithms. This dataset contains 260000 associated URLs. Initially, the DMOZ dataset is 

used. In our approach, the content of the web pages is not fetched. The feature vector is constructed 

based on URL only.  

The performance of the classifier is measured using the confusion matrix. Rows of confusion 

matrix denote actual class, while column indicates classes predicted by SVM. We have computed 

accuracy for each class.  
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Classifier prediction is either positive or negative. While true and false conclude if the 

prediction is correct or not. The classifier has to do two tasks. First, it will classify to which class the 

URL belongs. From 960000 URLs, the crawler has selected 673629 URLs which falls into the hidden 

web according to the rules in table [1].  For training, 80% of the total URLs are used while the rest of 

the 20 % is for testing. Once the URL is correctly classified. The next task is to fill in the form values. 

For this, a query is needed to be generated. Once the crawler submits the form. We have used k nearest 

neighbour and SVM classifier to check the accuracy of the form submission. When the crawler will 

submit the form, the pages will have the following submit status.  The efficiency of form submission 

of hidden web crawlers depends on the number of available URLs. Cross-validation method estimates 

the efficiency of the learning model. The procedure has a single parameter called k that refers to the 

number of groups that a given data sample is to be split into. As such, the procedure is often called k-

fold cross-validation. When a specific value for k is chosen, it may be used in place of k in the reference 

to the model, such as k=10 becoming 10-fold cross-validation. The macro average is the harmonic 

mean of the precision, recall and F1Score. It is computed to know the overall performance of the 

system with various sets of data. Varied values of testing and training have been used.  Once the URL 

is correctly classified. The next task is to fill the form values with correct values. K nearest neighbour 

and SVM classifier is implemented to check the accuracy of the form submission. The submission 

status 200 shows that the system had submitted the form.                 

Table 12: Status code and their description 

Status code  Description  

200 OK 

400 Bad request response status code 

401 Unauthorized 

403 Forbidden client error status response code 

404 Page not found  

405 Method Not Allowed response status code 

413 Payload too large  

414 URI Too Long response status code 

500 Internal Server Error 

503 Service Unavailable  

524 A time out occurred  

2
1

precision recall
f

precision recall

 
=

+
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The analysis of the status code is required because when the crawler will submit the web page, the 

correct submission will yield a new URL. These URLs can be used for further analysis. Table 13 

shows that for k=5, the weighted average of performance measures gives high values as compared to 

other values of k. On comparing the values of table 7 and 8, results are more promising for k=5. The 

total number of web pages with status code 200 is 13888, which makes the harvest rate of 27%. From 

the total harvested URLs, it is observed that only two URLs corresponds to status code 524. This is 

very fewer data to analyze for the machine learning algorithm. Table 17 shows that for k=5 in KNN, 

the value of accuracy is high as compared to the SVM algorithm. The following tables 13-17 shows 

the result of experiments for precision, recall, F1 score, macro and weighted average, comparison of 

accuracy for 20%, 30%, 40% and 50% of testing data using SVM and k=2 in KNN.  

 

Table 13: Comparison of Precision, Recall and F1 Score for varied values of K in KNN 

 

 Values are optimal when k=5 and the split of training and testing data are 40/60. The table 14 shows 

that the weighted average of precision is more when there is a 40/60 ratio of testing and training data. 

But the values of the weighted F1 score is more promising in case of k=5. The ratio of testing and 

Status 

code  

Precision  Recall F1- score  

 K= 2 K=3 K=4 K=5 K=2 K=3 K=4 K=5 K=2 K=3 K=4 K=5 

200 0.86 0.88 0.88 0.87 0.96 0.94 0.95 0.95 0.91 0.91 0.91 0.91 

400 0.36 0.33 0.44 0.44 0.28 0.25 0.22 0.29 0.27 0.29 0.31 0.35 

401 1.00 1.00 1.00 0.86 1.00 0.65 0.79 0.60 0.78 0.79 0.72 0.71 

403 0.94 0.96 0.82 0.98 0.90 0.97 0.88 0.93 0.83 0.96 0.84 0.96 

404 0.76 0.77 0.76 0.78 0.60 0.62 0.60 0.59 0.67 0.69 0.70 0.67 

405 0.69 0.71 0.71 0.73 0.91 0.80 0.92 0.83 0.77 0.73 0.82 0.78 

413 0.25 0.23 0.34 0.25 0.06 0.15 0.10 0.13 0.16 0.19 0.17 0.17 

414 0.17 0.25 0.00 1.00 0.08 0.24 0.00 0.19 0.12 0.28 0.25 0.32 

500 1.00 1.00 0.00 0.00 1.00 0.11 0.00 0.00 0.22 0.18 0.10 0.00 

503 0.94 0.91 0.90 0.92 0.82 0.86 0.86 0.86 0.87 0.89 0.88 0.89 

524 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Macro 

average  

0.72 0.73 0.51 0.65 0.61

  

0.58 0.53 0.53 0.62 0.60 0.62 0.56 

Weighted 

average 

0.91 0.91 0.91 0.92 0.92 0.92 0.92 0.93 0.91 0.92 0.91 0.92 
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training data is tested for other values of k as well, but we found our approach working well for k=5. 

The results for k=2 and k=5 are presented while others are skipped due to space constraints. 

     Table 14: Computation of precision, recall and F1 score using SVM for variation of 20% to 

50% of testing data. 

Status 

code  

Precision  Recall F1- score  

 20% 30% 40% 50% 20% 30% 40% 50% 20% 30% 40% 50% 

200 0.79 0.80 0.78 0.79 0.92 0.95 0.96 0.97 0.82 0.87 0.86 0.87 

400 0.00 0.75 0.00 0.00 0.00 0.06 0.00 0.14 0.00 0.12 0.00 0.23 

401 1.00 0.00 0.00 0.78 0.20 0.00 0.00 0.00 0.33 0.00 0.00 0.00 

403 0.83 0.71 0.00 0.77 0.35 0.68 0.00 0.78 0.49 0.70 0.00 0.78 

404 0.66 0.71 0.76 0.73 0.59 0.54 0.49 0.35 0.44 0.62 0.59 0.48 

405 0.71 0.71 0.68 0.65 1.00 1.00 0.99 1.00 0.62 0.00 0.81 0.84 

413 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.83 0.00 0.00 0.05 

414 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

500 0.00 0.00 0.00 0.92 0.00 0.00 0.69 0.68 0.00 0.00 0.00 0.78 

503 0.81 0.90 0.91 0.00 0.67

  

0.68 0.00 0.00 0.73 0.78 0.78 0.00 

524 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Macro 

average  

0.53 0.41 0.38 0.49 0.42 0.41 0.38 0.39 0.44 0.41 0.39 0.39 

Weighte

d 

average  

0.89 0.90 0.99 0.90 0.90 0.90 0.99 0.80 0.87 0.88 0.88 0.88 

 

 In the case of SVM, table [15] shows the value of precision and recall when testing and training 

data ratio is 20/80, 30/70, 40/60 and 50/50. The weighted average of F1 is the same for 30%, 40% and 

50 %. Similarly, for k=2, a weighted average is the same for F1 score when the value of k is 2. 
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Table 15: Computation of precision, recall and F1 score using KNN for variation of 20% to 50% 

of testing data for K=2. 

Status 

code  

Precision  Recall F1- score  

 20% 30% 40% 50% 20% 30% 40% 50% 20% 30% 40% 50% 

200 0.79 0.80 0.78 0.79 0.92 0.95 0.96 0.97 0.82 0.87 0.86 0.87 

400 0.00 0.75 0.00 0.00 0.00 0.06 0.00 0.14 0.00 0.12 0.00 0.23 

401 1.00 0.00 0.00 0.78 0.20 0.00 0.00 0.00 0.33 0.00 0.00 0.00 

403 0.83 0.71 0.00 0.77 0.35 0.68 0.00 0.78 0.49 0.70 0.00 0.78 

404 0.66 0.71 0.76 0.73 0.59 0.54 0.49 0.35 0.44 0.62 0.59 0.48 

405 0.71 0.71 0.68 0.65 1.00 1.00 0.99 1.00 0.62 0.00 0.81 0.84 

413 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.83 0.00 0.00 0.05 

414 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

500 0.00 0.00 0.00 0.92 0.00 0.00 0.69 0.68 0.00 0.00 0.00 0.78 

503 0.81 0.90 0.91 0.00 0.67

  

0.68 0.00 0.00 0.73 0.78 0.78 0.00 

524 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Macro 

average  

0.53 0.41 0.38 0.49 0.42 0.41 0.38 0.43 0.44 0.41 0.39 0.39 

Weighted 

average 

0.89 0.90 0.90 0.90 0.90 0.90 0.99 0.88 0.87 0.88 0.88 0.88 

 

Table 16: Computation of precision, recall and F1 score using KNN for variation of 20% to 

50% of testing data for    K =5. 

Status 

code  

Precision  Recall F1- score  

 20% 30% 40% 50% 20% 30% 40% 50% 20% 30% 40% 50% 

200 0.80 0.86 0.86 0.85 0.96 0.95 0.96 0.95 0.87 0.90 0.91 0.90 

400 0.00 0.51 0.43 0.57 0.00 0.26 0.22 0.24 0.00 0.34 0.29 0.34 

401 0.00 0.93 0.90 0.75 0.00 0.70 0.73 0.71 0.00 0.80 0.81 0.73 

403 0.66 0.85 0.83 0.78 0.71 0.82 0.63 0.60 0.69 0.83 0.71 0.68 

404 0.72 0.78 0.81 0.79 0.46 0.57 0.55 0.57 0.56 0.66 0.66 0.60 

405 0.72 0.72 0.73 0.72 0.98 0.83 0.81 0.85 0.83 0.77 0.77 0.78 
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413 0.00 0.26 0.26 0.33 0.00 0.13 0.14 0.16 0.00 0.17 0.18 0.22 

414 0.00 1.00 0.46 0.50 0.00 0.18 0.13 0.05 0.00 0.30 0.21 0.10 

500 0.00 0.00 0.25 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.06 0.00 

503 0.91 0.89 0.92 0.88 0.69 0.81 0.85 0.80 0.78 0.85 0.88 0.84 

524 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Macro  

Average  

0.44 0.71 0.57 0.55 0.44 0.57 0.47 0.46 0.43 0.60 0.50 0.48 

Weighted 

Average  

0.88 0.91 0.91 0.91 0.90 0.92 0.92 0.91 0.88 0.91 0.91 0.91 

 

Table 17: Comparison of Accuracy for KNN and SVM 

Accuracy 

KNN SVM 

Percentage of testing 

data  

K=2 K=3 K=4 K=5  

20% 0.89 0.88 0.89 0.9 0.89 

30% 0.88 0.89 0.88 0.92 0.90 

40% 0.90 0.80 0.90 0.92 0.90 

50% 0.90 0.89 0.90 0.91 0.90 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23:  Comparison of Precision for varied values of K in KNN 
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Figure 24:  Comparison of Recall for varied values of K in KNN 
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data  
 



81 

 

 

       

 

 

 

 

      

                                        

 

 

 

 

 

 

 

 

 

 

 

               

 

 

 

 

  

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

2
0
0

4
0
0

4
0
1

4
0
3

4
0
4

4
0
5

4
1
3

4
1
4

5
0
0

5
0
3

5
2
4

P
re

ci
si

o
n

Status Code

Computation of  Precision for 20% to 50% of testing data for 

k =5.

20% 30% 40% 50%

Figure 28:  Computation of precision for 20% to 50% of testing data for K=5 
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Figure 29: Computation of recall for 20% to 50% of testing data for k=5 
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Figure 30: Comparison of F1 score for 20% to 50 % of testing data  
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Figures 23-32, conclude that for the proposed approach KNN has performed better than 

SVM. Figure 33 shows that the proposed crawler has a high harvest rate as contrast to its pioneer 

contemporaries. The values of the status code as shown in tables 13-17, shows that the system has 

correctly classified the forms as well as submit them. Results are also shown for the ratio of testing 

and training data. For this approach for k=5 at 40% of testing, data gave promising results. On being 

compared with a focused crawler (FC), form-focused crawler (FFC), Enhanced form crawler (EEFC). 

The proposed crawler has a more than 10% high harvest rate than EEFC. There exist only a few 

crawlers that implement both pre query and post query approaches, ICHW also worked on both 

techniques. The rejection rules and stopping criteria’s have impacted the harvest rate of the crawler.  

 

 

 

 

 

 

 

 

 

4.19   Path Learning  

The goal of path learning is to extract only those links which with minimum hops can lead the 

crawler to the hidden web databases. Some of the links are considered good, while others are 

discarded. Along with jasmine directory and amazon, 20 real websites from Alexa's list of top sites 

are exhaustively crawled to check at which depth most web pages are found. Our observation is similar 

to [148]. Below the depth of 6, the crawler was not able to find a considerable percentage of forms. 

The simplest reason for this is that form is designed for human interaction. And for this most of the 

times forms are put on upper levels. Due to this reason, the depth of the crawler is limited to 3. It is 

also observed that from the crawled URLs the number of URLs for book domain are high as compared 

to others. Figure 34 justify the observation. Backlinks also impact the performance of the focused web 

crawler. Following the connection between the web pages, crawler the good target pages. Features 

vector is constructed for FS and FL as explained in Equations 2 and 3. FL is calculated at each level. 

From a webpage, a huge number of feature vectors can be extracted. But due to length and space 

Figure 33: Comparison of FC, FFC, EEFC and proposed crawler  

in terms of harvest rate   
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constraints, the top 10 features are used and are constructed as explained in section 4.2. The good links 

are either immediate benefit links or delayed benefit links. Immediate benefit links are at level 1, while 

delayed benefit links are at levels 2 and 3. The next step is to compute the similarity between the FS 

and FL.  

 

 

 

 

 

 

 

 

 

 

 

 

 

4.20  Application of crawler as an approach for atmospheric emission. 

Suppose the user has a goal to find a property with a good air quality index. Given f (Amritsar, Punjab), 

(Ludhiana, Punjab), (Jalandhar, Punjab) be the three cities for which search is targeted. Instead of 

using three different crawling nodes, the crawling is implemented as three different threads for each 

tuple. Let’s assign C1 = (Amritsar, Punjab), C2 = (Ludhiana, Punjab), C3= (Jalandhar, Punjab). The 

location-based subdivisions of the cities are taken as the administrative divisions. Amritsar and 

Jalandhar have 5 administrative divisions whereas Ludhiana has 7 administrative divisions. Location-

based crawling is done on these administrative divisions. Crawled data is combined for average 

pollution in each city. The goal is to find PM 10 and PM 2.5 values in administrative divisions. The 

crawler will crawl and parse the data from the real estate website and combine this with location-aware 

crawling. The traversing of the crawler is controlled using rejection rules.  

 The results will be useful for making the right investment in a property based on qualitative, 

relevant and empirical data. Also, suppose if a user is already living in any of the above-mentioned 

cities, crawling using this web crawler will help find similar properties and set a good value on their 

own. Users can also search for fair deals. Due to space constraints, the results regarding the submission 

of the form regarding each feature is not presented, moreover, most of the URLs belongs to the 

dynamic databases. Data are combined from both real estate and pollution URLs, by implementing 

expectation maximum clustering technique using a gaussian mixture model. Data normalization is 
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performed using MAX-MIN normalization. In this case, the expectation-maximization algorithm is 

implemented to find parameters. The parameters are defined as: M denote the sample of data points, 

µ is Gaussian distribution, ⅀ covariance, u is defined as input vector, ‘I’ denote possible curves, ‘i’ 

denote data points, C is Gaussian curve, wij is weighting factor of a feature vector, π   denotes gaussian 

weight, 𝜕 is standard deviation and m is a number of data points in data set. Derivation of likelihood 

is as follows: Let θ be the random variable with binary values 

                                                     𝜃 = 𝑃(𝐼)                                                                                                (26) 

                                              𝐼 − 𝜃 = 𝑃(0)                                                                                                (27)                             

                                

                 The likelihood is defined as 𝑙(𝜃) = 𝜃𝑛1(𝐼 − 𝜃)𝑛0                                                                    (28)                                                                      

Taking derivative on both sides of equation (19) 

                                     
  𝜕2 𝑙(𝜃)

𝜕 (𝜃)
= 𝑛1 𝜃

𝑛−1  (𝐼 − 𝜃)𝑛0       − 𝑛0𝜃
𝑛1     (𝐼 − 𝜃)𝑛0−1                                         (29)                                        

                                                   = 𝜃𝑛−1  (𝐼 − 𝜃)𝑛0−1(𝑛1(𝐼 − 𝜃) − 𝑛0θ)                                                  (30)                                         

                                                   =  𝜃𝑛−1  (𝐼 − 𝜃)𝑛0−1(𝑛1(𝑛1 + 𝑛0 )𝜃                                                        (31)                                         

If θ= 0, or θ= 1 

𝜃 =
𝑛1

𝑛0 + 𝑛1
 

Let M data samples be denoted as M1, M2, M3 …. Mn, the maximum likelihood for the Gaussian model 

is derived as  

                                      log 𝑙 (𝜇, 𝜎) =  ∑ (𝑚
𝑖=1

1

√2ℿ
𝑒

−(𝑥−𝜇)2

2𝜎2                                                                        (32)                                                                      

                                                    =  𝐶 + ∑ − log 𝑙 𝑚
𝑖=1  - 

(𝑥(𝑖)−𝜇)2

2𝜎
                                                               (33)                                                                

                                   
𝜕 log 𝑙(μ,σ)

𝜕 μ
= 

1     

𝜎2
∑ (𝑥𝑖 𝑚

𝑖=1 -𝜇)                                                                                    (34)                                                                               

                                                  = ∑   
1

  𝜎

𝑚
𝑖=1   - 

(𝑥(𝑖)−𝜇)2

𝜎3
                                                                               (35)                                                                               

                                          𝜎2𝑀𝑙 =  
1

𝑚 
∑ (𝑥(𝑖)𝑚

𝑖=1 -𝜇𝑀𝑙)
2                                                                            (36)                                                                           

Now estimation maximization for the Gaussian model is derived as follows. Suppose Y is 

Multinomial  Distribution, 

                                                                P(Y = k; θ) = 𝜇𝑘                                                                       (37)                                                                      

                                                                              𝑇~𝑁(𝜇𝑘 ,∑𝑘)                                                              (38)                                                              
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                            𝑝(𝑥 = 𝑘, 𝑇; 𝜃, 𝜇, ∑) =𝜃𝑘
1

(2 𝜋)
𝑛
2  |⅀𝑘|

1

2

 ℯ
−1

2
  (𝑧 − 𝜇𝑘 )

𝑇 ∑ (𝑧−𝜇𝑘
−1
𝐾 )                                      (39) 

      Expectation calculation:        𝑝(𝑥|𝑧; 𝜃, 𝜇, ∑) = ∏ 𝑝(𝑥(𝑖)𝑚
𝑖=1 |𝑧𝑖; 𝜃, 𝜇, ∑)                                               (40)                                                            

       Maximization calculation:    max
  𝜃,𝜇,∑

∑ ∑ ∑ 𝑞(𝑥(𝑖)𝑘
𝑘=1

𝑚
𝑖=1

𝑚
𝑖=1 =k) log(𝜃𝑘𝒩(𝑧(𝑖);𝜇𝑘)                                 (41)                                                          

After applying the above-discussed technique, clusters of regions are formed according to the air 

quality index in Amritsar, Jalandhar and Ludhiana. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Further analysis could be made on the reason for the low air quality index. Due to space constraints, 

a tabular form of data is not presented, the above figures have shown the computed results of air quality 

in the three cities.  

 

4.21     Comparative advantages 

The proposed technique is one of its kind works that associate real estate data and air quality index 

to find a property in smart cities of Punjab. The crawler can be trained to be used for any other search 

terms.  The results have shown that the proposed approach has a high harvest rate as compared to 
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existing techniques. This approach is scalable in terms of the growing size of the web, it is extensible 

as any third-party component for example indexer can be added. The ranking is a function of both 

backlinks and term weighting, due to which the chances of term bias is less. The crawler successfully 

saves itself from the crawler traps due to efficient stopping criteria’s and accurately classify more 

status codes than [10]. The F1 measure of the proposed technique is higher than [149], as this technique 

has also implemented text clustering. One of another advantage of this technique is that it works with 

both GET and Post methods. In this way, the crawler can have a high number of URLs for analysis 

and indexing. The following table compares the running time and the number of searchable forms of 

adaptive crawler for hidden web entries (ACHE) and ICHW. There exists no technique as perfect that 

it can stop a crawler to fall in the spider traps. So, the intelligent rules of rejection are designed to 

prevent the crawler from falling it into infinite crawling loops.  

 

Table 18: Comparison of running time and number of searchable forms 

Domain  Running 

time of 

ACHE 

Running time 

of proposed 

crawler 

without 

rejection rules  

Running time of  

proposed 

crawler with 

rejection rules  

Searchable 

form  

ACHE 

Searchable form 

of proposed 

crawler  

Property  Not 

included  

7H  12 M 6H 39M Not included 3809 

Book 8H 21M 7H  21M 6H 58M 599 4589 

Flight 7H 59M 6H  18M 7H 52M 1705 2843 

Music 7H 59M 7H  00M 6H 58M 776 1447 

Premier Not 

included  

6H 35M 6H 01M Not included  668 

Product  7H 50M 7H 28M 7H 48M 386 1999 

Pollution  Not 

included  

7H 26M 6H 20M Not included 2002 

 

The above table shows the running time of the proposed crawler is comparatively less than ACHE. Also, 

the number of searchable forms founds are more than ACHE. A goal of a crawler is to find maximum 

searchable forms in minimum visits, so the number of searchable forms without rejection rules are not 

included.  The above results show the computation of results for the web forms that cannot be submitted 

due to their status code. If the status code is except the above-mentioned code, then it means that the 

form has been submitted correctly. In the testing phase, confusion matrix figures out the precision, recall 

and f1- score of the correctly submitted searchable form classification. During feature selection and top 
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k terms are required after performing stemming, stop words. For this cosine similarity is implemented 

and it is used in ranking for prioritising the URLs. But there is another issue that URLs are available on 

multiple websites. So, if a crawler will keep crawling the same URL again and again, it is a waste of 

resources. So to eliminate the duplicates, we have used simhash [141] technique. Simhash has used 

MYSQL as a data store. Table 19 and Table 20 show the number of forms submitted using GET method 

and POST method out of the total number of forms per domains. 

Table 19: Shows the number of forms retrieved per domain. 

Domain 

 

Number 

of  

URLs 

200 400 401 403 404 405 413 414 500 503 524 

Book   13936 9969 55 71 24 463 2285 914 25 50 0 9 

Product  886 496 0 0 240 115 0 0 0 0 35 0 

Auto 4034 29 9 0   0 21 0 263 3 2 3707 0 

Flight 6016 3075 254 0  0 338 0 0 57 12 2280 0 

Hotel 911 398 0 0  17 452 0 0 15 2 27 0 

Music  84 35 10 0  0 0 0 6 2 0 31 0 

Premier 2 2 0 0 10 0 0 0 0 0 0 0 

 

Table 20: Shows the number of forms submitted using the GET method. 

Domain 

 

Number 

of  

URLs 

200 400 401 403 404 405 413 414 500 503 524 

Book    9741 3078 0 0 0 13 2285 893 0 0 3471 1 

Product  2 2 0 0 0 0 0 0 0 0 0 0 

Auto 29 29 0 0 0 0 0 0 0 0 0 0 

Flight 723 183 0 0 0 0 0 0 0 0 540 0 

Hotel 0 0 0 0 0 0 0 0 0 0 0 0 

Music  0 0 0 0 0 0 0 0 0 0 0 0 

Premier 0 0 0 0 0 0 0 0 0 0 0 0 

 

If the form is submitted with status code 200, it means that the form has been submitted with correct 

values. Sometimes the form is submitted but the response is not generated due to some reasons like 
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internal server error, service unavailable etc. For coverage, we have considered only those pages for 

which response is generated back. 

Table 21:  Shows the number of forms submitted using the POST method. 

Domain 

 

No of 

URLS 

200 400 401 403 404 405 413 414 500 503 524 

Book   7677 6891 3 24 24 450 0 21 25 2 236 1 

Product  633 494 0 0 24 115 0 0 0 0 0 0 

Auto 99  29 9 0 0 21 0 0 3 2 35 0 

Flight 4422 2892 254 0 0 404 0 26 57 12 540 0 

Hotel 959 398 0 0 17 452 0 0 15 50 27 0 

Music  84 35 10 0 0 0 0 6 2 0 31 0 

Premier 12 2 0 0 10 0 0 0 0 0 0 0 

Figure 37 and Figure 38 shows the number of forms correctly submitted and the comparison of GET 

and POST method respectively. Our approach has worked better with POST methods. Which indicate 

the efficiency of the ranking algorithm and form submission method as explained in [148]. Table 22 

shows the comparison of GET and POST method w.r.t to documents per domain and new documents.  

 

 

 

 

 

 

 

  

 

 

Figure 37: Comparison of coverage for GET and POST methods 
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Table 22: Comparison of GET and POST method w.r.t number of documents per domain vs new 

document captured 

DOMAIN  GET     POST    

  L  Q N UJ L  Q N UJ 

BOOK 100 134 13936 9661 100 134 13936 9677 
 

200 146 29200 8791 200 146 29200 9781 
 

300 133 53200 8902 300 133 53200 9992 

PRODUCT 100 91 9100 6271 100 91 9100 9281 
 

200 97 1900 8791 200 97 1900 8801 
 

300 85 3400 8902 300 85 3400 8002 

AUTO  100 107 9100 5000 100 107 9100 5003 
 

200 90 1456 4568 200 90 1456 4788 
 

300 86 450 678 300 86 450 708 

FLIGHT 100 128 11200 456 100 128 11200 458 
 

200 129 789 567 200 129 789 867 

  300 105 2344 567 300 105 2344 500 

HOTEL 100 54 6767 4567 100 54 6767 5038 
 

200 40 567 20 200 40 567 120 
 

300 51 450 34 300 51 450 71 

MUSIC  100 39 56 35 100 39 56 30 
 

200 56 45 36 200 56 45 39 
 

300 61 32 4 300 61 32 0 

 

In table 22, keeping the number of queries same, the methods of submission are compared. Efficiency 

is compared with respect to unique documents retrieved. From the total number of document new unique 

documents are calculated. In table22, Q (number of queries), N (Number of documents), Uj number of 

new documents retrieved. Since the method has not performed well in premier domain, so we have 

skipped its comparison in terms of number of documents. At present we have experimented with only 

three value of Q, i.e 100, 200 and 300. Another inference from the above table shows that our system 

has worked well with return limit 100. After return 100, the system retrieved lesser number of unique 

values. 
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Our method is static limit based ranking method. If we choose many high frequencies, coverage rate is 

decreased. This led to skipping some high-ranking documents, this is the reason our system has not 

worked well with premier. But in future with use of multiple query words, this problem could be 

overcome. Figure 39 and Figure 40 shows the comparison of submission methods in terms of new 

document captured. 
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Figure 39: Comparison of domains for number of document and new document captured 

using POST method 

 

Figure 40: Coverage in terms of forms submitted 
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CHAPTER 5  

COMPARE AND OPTIMIZE THE PERFORMANCE OF THE WEB CRAWLER 

5.1  Comparison based on performance issues. 

The comparison of proposed crawler is being made with all the pioneer work done in this area. But no 

platform exists for hidden web crawlers from which crawlers can be compared using all the 

performance measures. The existing technologies have worked on different performance measures.  

Table 23: Comparison of proposed crawler with hidden web crawlers 

Ref Breadth 

search/(BFS) 

Depth search 

(DFS) 

Technique  Strength Weakness 

 [141] DFS • Matching of domain 

attributed using text 

similarity 

• Error detection using hash 

of important parts 

• Worked on multi-attributed 

structured data 

efficient label 

matching technique 

and incremental 

feedback-based 

crawling  

Require 

significant 

human 

intervention 

and also not 

scalable  

[141] DFS Stratified sampling, web 

pages are concatenated using 

navigational elements 

• Domain 

independent 

• Hash for 

duplication 

detection 

Hash value of 

each sentence 

pose huge 

restrictions 

[150] DFS Unstructured databased  • Query 

probing is adaptive  

• Queries are 

also focused  

Flat 

classification 

is not 

considered 
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[80] BFS • Crawling- domain 

specific 

• Query probing 

Can discover 

unstructured hidden 

databases as well 

Deals only 

with full text, 

pre classified 

forms 

[151] DFS • Unstructured 

database type 

• Query selection on 

based of frequency of 

occurrence 

Complete 

automation and 

high coverage  

Not secure , 

and fixed 

return results 

[92] DFS Incremental, and calculation 

of potential gain at each step 

Hybrid policies for 

query selection  

Huge memory 

requirement 

[152] - Use of heuristics to identify 

forms 

Extensible, can 

handle client as well 

as server-side 

technologies  

It is assumed 

that one label 

is always 

associated 

with form 

elements it is 

not true in all 

cases. 

[153] DFS Databased used is multi-

attributed and set covering 

approach for queries. 

Approach is quite 

effective in 

generating meaning 

ful queries 

Results from 

each round is 

added to the 

next round, it 

require huge 

resources in 

term of space. 

[154] BFS Greedy algorithm and 

weight- based calculation for 

queries. 

Adaptive, and 

retrieve 

homogenous data 

Configuration 

require huge 

efforts 

[33] 

 

 

DFS Query are selected based on 

the informativeness test  

Navigation is easier Cannot 

be scaled to 
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hidden web 

crawling. 

[155] 

 

DFS  A unified query interface is 

created based on domain 

knowledge. Freshness of 

page is also undertaken using 

revisit policy . 

The scope of 

specialised hidden 

web crawler is high 

for this technique 

Performance 

measure do 

not include 

efficiency of 

unified query 

interface  

PROPOSED 

CRAWLER 

BFS High harvest rate 

Priority based crawl to avoid 

ranking bias 

Works both on pre and post 

query  

 

Crawler can be used 

as general as well as 

specialised crawler  

Advanced 

form 

recognition 

will deliver 

more accurate 

results. 

 

5.2  Comparison with Mercator [10] 

Mercator is extensible and scalable web crawler that has been widely used as the base line crawler. 

proposed crawler on being compared with Mercator has worked on more categories of status codes. 

For unauthorized access and login, the forms are discarded at early stages. The status code considered 

are asynchronous response, bad request error, page not found, payload too large – request entity is 

large, payload too large – URI too long, internal server error and service unavailable error. Other 

performance measures cannot be compared as in Mercator the performance is measured in terms of 

number of URLS, while in case of proposed crawler it is classification accuracy. It is because proposed 

crawler submit the page as well.  

Another comparison can be made with [156]. This study has presented a two-stage crawling, the 

forms are detected and classified according to the domains. The performance measures are in terms of 

site classification and form classification. This crawler is not distributed. While proposed crawler is 

distributed as well as it submits the forms and retrieve the results. These results can be used for further 

analysis. Proposed crawler  is based on both pre and post query techniques . 

Comparison with Hidden web crawling techniques on basis of form features, pre-query and post 

query, and use of machine learning and heuristics. 
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Table 24: Comparison of Proposed crawler with other technologies based on forms features. 

Ref  Machine 

learning 

and 

heuristics  

 Pre/Post Form features  

3 Heuristics Both Pre/post  • Input text box, with less than six characters. 

• Password fields. 

15 Machine 

learning 

Pre • Term frequency. 

35 Machine 

learning 

Pre • Submission method. 

• Keywords. 

• Number of fields of each type. 

65 Machine 

learning 

and 

heuristics 

- • Word email, password control, radio and text 

control, hidden control, select control, submit 

control, advance search etc using DOM tree. 

66 Machine 

learning  

Pre • Automatic  

 

Proposed 

crawler 

Both 

heuristic 

and 

machine 

learning 

Both pre and 

post  

• Automatic submission 

• Forms are dropped at early stage using 

rejection rules, so crawler save its time. 

Results from table [18] demonstrate the 

running time of crawler.  

 

 

The following table show the comparison of distributed web crawler with other types of crawlers 

on the basis robustness, flexibility, manageability, network resources, high performance, incremental 

crawling, cost, Communication bandwidth, network load reduction and freshness. Distribution using 

Redis server has been proved beneficial in proposed crawler. It is fault tolerant and secured using 

REDIS server.  
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Table 25: Comparison of proposed crawler with distributed hidden web crawlers 

Characteristics  DWC[30] HWC[61] DSHW[12] AKSHR 

[62] 

DGDWC Proposed 

crawler 

How it collect 

search forms 

Identify but 

donot 

download  

Identify but 

donot 

download  

Automatic 

search and 

downloads 

forms  

Automatic 

search and 

downloads 

forms 

Automatic 

search and 

downloads 

forms 

Identify 

but do not 

download 

until final 

stage  

How it find 

entry to hidden  

web 

Form tag  Form tag  Form tag Form tag  Not defined Form tag 

plus other 

rules  

Do it select 

candidate forms  

No  No No No No Yes  

Is the form 

filling 

automatic  

No  Not fully  - Fully  Fully  Fully  

Extensible  No  No  No  Yes  - Yes  

Scalable  No No  No  No -  Yes  

Use of network 

bandwidth  

High  High  - - - Low , due 

to 

stopping 

criterias 

 

The form crawler, form focused crawler and enhanced form crawler have coverage rate 19%, 79% 

and 95% respectively. But these above-mentioned crawlers have included only auto and job domains. As 

mentioned in literature computation of coverage is not same everywhere. We have opted total number of 

forms detected and submitted correctly. So total number of forms under 200 status is coverage of crawler. 
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Table 116: Comparison of proposed crawler in terms of coverage. 

Domain Number of forms 

200 400 401 403 404 405 413 414 500 503 524 

Book 9969 55 71 24 463 2285 914 25 50 3707 2 

Product 496 0 0 240 115 0 0 0 0 0 0 

Auto 29 9 0 0 21 0 0 3 2 35 0 

Flight 3075 254 0 0 338 263 0 57 12 2280 0 

Hotel  398 0 0 17 452 0 0 15 2 27 0 

Music 35 10 0 0 0 0 6 2 0 31 0 

Premier 2 0 0 6 0 0 0 0 0 0 0 

 

The current domains under consideration are book, auto, product, flight, hotel, music, and premier 

and single application of pollution data . The results are manually merged for pollution and other 

domains. The domains depend on the seed sites. As crawling and learning progress, system can 

automatically add new domains. There are many restrictions on this like memory, network bandwidth 

and other hardware resources. In the reported literature, only one study is found in which Redis server 

is implemented [157]. Though distributed this crawler is only for generic crawling.  

This technique outperforms the web crawler presented in  [158]. On comparing accuracy and 

recall, in testing phase crawler  has accuracy 81.06% and precision 84.62 %, whilst both performance 

measures have reached above 95% in our technique. 

5.3  Constraints and barriers 

During the initial stage of crawling, DMOZ dataset was used. After initial extraction, it was found that 

most of the URLs were not available upon sending request.   The proposed crawler can work on both 

DMOZ, and jaismine directory. The URLs are collected from amazon.com as well. and ranking is 

function of three components. 

Proposed crawler is implemented in python , it is provided with URLs obtained from above         

crawler, DMOZ, jaismine and amazon. Any of the mentioned can be used to start crawling.  
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Other barriers faced are hardware and network resource constraints. Websites are not designed 

same so sticking to structural features become mandatory.  

1. System could work with any number of  URLs, but due to restriction posed its  is confined to a 

certain number of URLs and number of forms. If these restrictions are lifted crawler is trapped 

under spider traps. 

2. Pages often contain invalid characters (i.e. incompatible with the encoding of the page).  

3. Servers often return all kinds of HTTP errors (500, 404, 400, etc.) 

4. Servers are often unreachable and cause timeouts. The domain/website might not exist anymore,    

or there might be DNS problems, or it might be under heavy load. 

5. Some web pages are huge and cannot be downloaded in single crawl. If the crawler will do so, it 

will run out of memory soon.  

6. Our method is static limit based ranking method. Because we have put limit on the  number of web 

pages . If we choose many high frequencies, coverage rate is decreased. This led to skipping some 

high-ranking documents, this is the reason our system has not worked well with premier. But in 

future with use of multiple query words, this problem could be overcome. 
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CHAPTER 6  

CONCLUSION AND FUTURE SCOPE 

 

6.1  Conclusion  

• Due to the large volume and dynamic nature of the hidden web, achieving wide coverage and high 

efficiency is a challenging issue. To overcome these issues, interlinked and interdependent three-

stages of crawler efficiently harvest hidden web interfaces.  

• With the adoption of focusing on relevant pages, learning link path, features of target pages, novel 

rejection criteria and submission system have considerably increased the throughput.  

• Crawler focus on its target throughout its crawling process, and identify promising links to the 

target pages effectively, and can rapidly locate its target by its efficient search strategy.  

• The stopping criteria and threshold rules have also been employed to avoid unproductive crawling. 

Experiments have proved that most of the forms are available at depth three.  

• Based on effective Ranking and Learning algorithms/strategies, the crawler has ultimately 

achieved a good performance. An enhanced ranking algorithm for collect hidden websites based 

on priority by overcoming the ranking bias. 

• A ranking algorithm is a triplet formula to calculate the rank of the website. By including site 

frequency, the documents which have low rank earlier can have a high rank. By ranking the 

website, the crawler minimises the number of visits and maximize the number of websites with 

embedded forms. Ranking algorithm has helped improving the results in terms of throughput. 

• Experimental results indicate that the performance of the proposed crawler has a better harvest rate 

and coverage rate than of existing techniques.  

The following points discuss some of the major issues faced by hidden web crawlers, and how 

these are resolved by proposed crawlers. 

• Identification of entry to hidden web: Finding entry to hidden web is one of the major challenges. 

As it is evident from the literature that most of the studies have considered the availability of form 

tag as the entry to the hidden web, but this is enhanced, using some rules, which do not include 

every source into hidden web entry. As this crawler is designed for general search, if all the 

websites with form tag are included it sure will increase the number of collected URLs but then 
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crawler has to check each URL during form submission. If the non-searchable URLs are rejected 

at the early stage it will save the efforts of the crawler. 

• Social responsibility: A crawler is required to follow social responsibility. That is, it should not 

overburden the website with queries. Sometimes it the crawler burden the website it results in 

denial of service. To overcome this, stopping criteria’s are designed.  

The depth of crawl is maximum up to three, the maximum number of pages to crawl is 100, 

the maximum number of forms found is 100. At each depth, if crawler has crawled 50 pages but 

the searchable form is not found, it will jump to the next depth.  

• Interaction with search interface: A publicly indexable web crawler cannot fill and submit the 

queries. To automatically parse, process and interact with query interfaces a repository is designed. 

That is continuously updated for the form values. 

• Selection policy: A web crawler has to follow the selection policy. It tells the web crawler that 

which pages are needed to be downloaded. Duplicate URLs are removed at frontier level then first 

rejection criteria are followed to select which pages not to crawl. Secondly, the ranking mechanism 

is designed to select which URL to crawl first.  

• Implementation of distributed crawler: The hidden web crawling lack distribution in 

combination with focused crawling. This crawler has implemented focused crawling in hidden 

web and it is distributed using Redis server. Redis is also acting as a data store. 

• Similarity and duplication detection: Exhaustive crawling is a waste of resources. In this 

research, SIMHASH is implemented using the Redis plugin to detect similarities in URLs at the 

frontier level. Duplicate URLs will be discarded at a frontier level. 

• Form submission: Hidden web crawlers are based on either pre or post query submission 

methods.  The proposed crawler implemented both based on heuristics of form structure extraction. 

Initially, all the possibilities are tried to submit the forms before the system learn to fill and submit 

automatically. This also leads to limit the fields of form under consideration. 

• The enhanced ranking algorithm for collecting hidden websites based on priority has tackled the 

problem when the document is missed if it has low rank. This algorithm is a triplet formula to 

calculate the rank of the website. By including site frequency, the documents which have a low 

rank earlier can have a high rank. By ranking the website, the crawler minimises the number of 

visits and maximize the number of websites with embedded forms.  

• In searching for new rules to improve the efficiency, we have imposed a limit on the number of 

documents to be returned. This has also served as the drawback of the system as the crawler should 

not pose any limit on the number of documents.  
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• One another limitation of the system is in premier domain. The number of forms submitted is very 

low. For this reason, the domain could not be included in the new document retrieved factor.  

 

6.2  Future Scope 

In this research, various challenges of hidden web crawling are overcome. But still, many 

improvements can be made. In future applications of crawling and case studies will be taken into 

account. Furthermore, the followings points can be taken into account 

1. We have designed the stopping rules to save the crawler from the exhaustive crawling traps. This not 

only saves memory and time but also help to retrieve more unique documents. On the same line, we 

have implemented the concept of crawling up to the depth of three and after that new URL is picked 

up from the frontier.  

2. The efficiency of the crawler is shown by correctly submitted web pages. The inclusion of more 

domains and status codes remains as future work.  

3. We are also going to combine the distance rank algorithm which we believe will yield better results. 

In future, we will also work on unbounded forms.  

4. Further work can also be done in direction of indexing or resultant URLs and harvesting. 

5. Crawlers can be made more efficient by making enhancements in form submission techniques and 

form recognition techniques. 

6. Future work will also include creating a user-friendly user interface. 

7. The performance of the crawler is dependent on the seed URLs, in future, the work will be done 

in this area. Currently, the crawler bootstrap using seed URLs, in future machine learning could 

be applied to carefully select the URLs. 

8. More work could be done on improving the ranking and freshness of URLs. 
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Annexure 1 

Source code  

Accuarcy  

import numpy as np 
import matplotlib.pyplot as plt 
import pandas as pd 
#from pandas.compat import StringIO 
from sklearn import svm 
from sklearn.metrics import classification_report, confusion_matrix 
 
from similarityforduplication import * 
 
class Prop2NumTranser(object): 
    def __init__(self, properties=[]): 
        self._properties = properties 
 
    def fit(self, data): 
        self._properties = list(set(data)) 
 
    def transform(self, l): 
        for i in range(len(l)): 
            l[i] = self._properties.index(l[i]) + 1 
 
 
url = "F:\\crw\dataset\\Link-names-final.csv" 
#url = "F:\\crawler code extract\\data\\Link-names-final.csv" 
 
names = ['URL', 'METHOD', 'ACTION', 'BASEURL', 'DEPTH', 'PATHVALUES', 'DOMAIN', 'STATUSCODE'] 
 
dataset = pd.read_csv(url,names=names,keep_default_na=False, encoding='latin1') 
 
transer = Prop2NumTranser() 
transer.fit(np.hstack((dataset.iloc[:, 0]))) 
transer.transform(dataset.iloc[:, 0]) 
 
transer.fit(np.hstack((dataset.iloc[:, 1]))) 
transer.transform(dataset.iloc[:, 1]) 
 
transer.fit(np.hstack((dataset.iloc[:, 2]))) 
transer.transform(dataset.iloc[:, 2]) 
 
transer.fit(np.hstack((dataset.iloc[:, 3]))) 
transer.transform(dataset.iloc[:, 3]) 
 
transer.fit(np.hstack((dataset.iloc[:, 4]))) 
transer.transform(dataset.iloc[:, 4]) 
 
transer.fit(np.hstack((dataset.iloc[:, 5]))) 
transer.transform(dataset.iloc[:, 5]) 
 
transer.fit(np.hstack((dataset.iloc[:, 6]))) 
transer.transform(dataset.iloc[:, 6]) 
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X = dataset.iloc[:, :-1].values 
y = dataset.iloc[:, 7].values 
 
from sklearn.model_selection import train_test_split 
 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.50) 
 
from sklearn.preprocessing import StandardScaler 
 
scaler = StandardScaler() 
scaler.fit(X_train) 
 
X_train = scaler.transform(X_train) 
X_test = scaler.transform(X_test) 
 
#########  KNeighborsClassifier ######################## 
 
from sklearn.neighbors import KNeighborsClassifier 
 
classifier = KNeighborsClassifier(n_neighbors=5) 
classifier.fit(X_train, y_train) 
 
y_pred = classifier.predict(X_test) 
 
from sklearn.metrics import classification_report, confusion_matrix 
 
print(confusion_matrix(y_test, y_pred)) 
print(classification_report(y_test, y_pred)) 
 
###########  SVM Classifier###################### 
'''clf_ae = svm.SVC(probability=True) 
clf_ae.fit(X_train, y_train) 
y_pred = clf_ae.predict(X_test) 
print(confusion_matrix(y_test, y_pred)) 
print(classification_report(y_test, y_pred))''' 
 
 
class Prop2NumTranser(object): 
    def __init__(self, properties=[]): 
        self._properties = properties 
 
    def fit(self, data): 
        self._properties = list(set(data)) 
 
    def transform(self, l): 
        for i in range(len(l)): 
            l[i] = self._properties.index(l[i]) + 1 
 
 
p=graphs() 

 

FET TEST  

from sklearn.feature_extraction.text import CountVectorizer 
from sklearn.feature_extraction.text import TfidfVectorizer 
import matplotlib.pyplot as plt 
import numpy as np 
import nltk 
import pandas as pd 
from nltk.corpus import stopwords 
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from nltk.tokenize import word_tokenize 
nltk.download('stopwords') 
#data = pd.read_csv("E:\CRW_data\crawlset-final.csv",encoding="ISO-8859-1") 
#data = pd.read_csv("E:\CRW_data\crawlset-final.csv",error_bad_lines=False) 
data = pd.read_csv("F:\\crw\\dataset\\Link-names-final.csv",encoding='latin1') 
print(type(data)) 
 
messages = data.iloc[:, -2].dropna() 
print('-----------------') 
print(str(messages)) 
#vect = CountVectorizer() 
#vect.fit(messages.dropna()) 
#print(vect.get_feature_names()) 
#dtm = vect.transform(messages.dropna()) 
#repr(dtm) 
#print(dtm) 
#print(pd.DataFrame(dtm.toarray(), columns=vect.get_feature_names())) 
 
example_sent = messages 
 
stop_words = stopwords.words('english') 
stop_words.extend(['from', 'subject', 'blog', 'the', 'which']) 
word_tokens = word_tokenize(str(example_sent)) 
 
filtered_sentence = [w for w in word_tokens if not w in stop_words] 
 
filtered_sentence = [] 
 
for w in word_tokens: 
    if w not in stop_words: 
        filtered_sentence.append(w) 
 
print(word_tokens) 
print(filtered_sentence) 
 
 
def createDTM(messages): 
    vect = TfidfVectorizer() 
    dtm = vect.fit_transform(messages)  # create DTM 
    print(dtm) 
    # create pandas dataframe of DTM 
    dataf = pd.DataFrame(dtm.toarray(), columns=vect.get_feature_names()) 
    dataf.to_csv('vector.csv', sep=',',encoding='latin1') 
    return pd.DataFrame(dtm.toarray(), columns=vect.get_feature_names()) 
 
print(createDTM(messages)) 
df = pd.read_csv('vector.csv') 
headerList =[] 
valueList =[] 
 
for eachHeader in list(df.columns.values): 
    if eachHeader == "Unnamed: 0": 
        continue 
    headerList.append(eachHeader) 
    valueList.append(df[eachHeader].value_counts()[1]) 
 
 
print(headerList) 
print(valueList) 
y_pos = np.arange(len(headerList)) 
plt.bar(y_pos, valueList, align='center', alpha=0.5) 
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plt.xticks(y_pos, headerList) 
plt.ylabel('Number of Form submitted') 
plt.title('Domain vs No of Form submittion') 
plt.show() 
 
 

FINAL CRW  

from difflib import SequenceMatcher 
import requests 
import csv 
import operator 
from bs4 import BeautifulSoup 
from urllib.parse import urlparse 
from redis import Redis 
from rq import Queue 
from page_text import page_text_at_url 
 
from Book import bookHeaders, getBookValue 
from Hotel import hotelHeaders, getHotelValue 
from Flight import flightHeaders, getFlightValue 
from Apartment import apartmentHeaders,getApartmentValue 
from Auto import autoHeaders, getAutoValue 
from Music import musicHeaders, getMusicValue 
from Premierleagueresults import premierLeagueHeaders, getPremierLeagueValue 
from Product import productHeaders, getProductValue 
 
 
writingFile = csv.writer(open('Link-names-final.csv', 'w')) 
writingFile.writerow(['URL', 'METHOD', 'ACTION', 'BASEURL', 'DEPTH', 'PATHVALUES', 'DOMAIN', 
'STATUSCODE']) 
 
 
textFromHotel = list(hotelHeaders()) 
textFromBook = list(bookHeaders()) 
textFromFlight = list(flightHeaders()) 
textFromApartment = list(apartmentHeaders()) 
textFromAuto = list(autoHeaders()) 
textFromMusic = list(musicHeaders()) 
textFromPremier = list(premierLeagueHeaders()) 
textFromProduct = list(productHeaders()) 
 
 
threshold = 0.1 
thresholdForIDCom = 0.8 
def similar(a, b): 
    return SequenceMatcher(None, a, b).ratio() 
 
q = Queue(connection=Redis('127.0.0.1',6379)) 
 
#url = 'https://www.amazon.in/' 
#url = 'https://www.jasminedirectory.com/' 
#url = 'http://www.dmoz.org.in/' 
#url = 'https://www.bbc.com/' 
#url = 'https://www.Tmall.com/' 
#url = 'https://www.Baidu.com/' 
#url ='https://Qq.com/' 
#url = 'https://Ebay.com/' 
#url = 'https://Bestbuy.com/' 
#url ='https://Ikea.com/' 
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#url ='https://www.indiamart.com/' 
url = 'https://www.whatsinproducts.com/' 
#url  = 'https://www.flipkart.com/' 
#url = 'https://www.google.com/' 
#url = 'https://www.ldblog.jp/' 
#url ='https://www.cc.com/' 
#url = 'https://www.rumorfix.com' 
#url = 'https://www.citysquares.com/' 
#url = 'https://www.cocoacontrols.com/' 
#url = 'https://www.themestotal.com/' 
#url = 'https://www.wtmlondon.com/' 
#url = 'https://www.yatra.com/' 
#url = 'https://tomandlorenzo.com/' 
#url ='https://www.paintnite.com/' 
#url ='https://facebookpostmarketing.blogspot.com/' 
#url = 'https://mypapershop.com/' 
#url = 'https://www.yellowpages.co.th/' 
#url = 'https://www.lasvegas.com/' 
#url = 'https://www.newqc.cn/' 
#url = 'https://www.xiu8.com/' 
#url = 'https://www.noobmeter.com/' 
#url ='https://www.themestotal.com/' 
#url = 'https://www.cocoacontrols.com/' 
#url= 'https://www.debijenkorf.nl/' 
#url ='-https://www.home-designing.com/' 
#url = 'https://www.imdb.com/' 
#url ='https://www.youtube.com/' 
#url ='https://www.bestbuy.com/' 
#url= 'https://www.musicgenreslist.com/' 
#url ='https://www.melodyful.com/' 
#url ='https://www.gaana.com/' 
#url= 'https://www.cinespot.net/' 
#url= 'https://www.deautos.com/' 
#url= 'https://www.paintnite.com/' 
#url='https://www.bigbasket.com/' 
#url = 'https://www.wclc.com/' 
#url= 'https://www.xneolinks.com/' 
#url = 'https://www.zhuoaiwang.com/' 
#url ='https://www.css3gen.com/' 
#url = 'https://www.golestanema.com-/' 
#url = 'https://www.vocuspr.com-/' 
#url = 'https://www.playrust.com/' 
#url= 'https://www.proxy4free.com/' 
#url  ="https://www.lc115.com/ 
#url = 'https://www.yahoo.com/' 
#url = 'https://www.newqc.cn/' 
#url = 'https://www.xiu8.com/' 
#url = 'https://allinchrome.com/' 
#url ='https://www.engineersedge.com/' 
#url ='https://www.erpnext.com/' 
#url ='https://www.snapdeal.com/' 
 
 
 
 
 
ListOfURLs = [] 
ListOfURLs.append(url) 
 
for item in ListOfURLs: 
    try: 
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        job = q.enqueue(page_text_at_url, item) 
        page = job.perform() 
        soup: BeautifulSoup = BeautifulSoup(page.text, 'html.parser') 
    except Exception as e: 
        print(e) 
 
    aTags = soup.find_all('a', href=True) 
    for eachaTag in aTags: 
        link = eachaTag.get('href') 
        goturl = '' 
        if link.find('https://') != -1 and link.find('https://') == 0: 
            goturl = eachaTag.get('href') 
        else: 
            goturl = url+link 
        ListOfURLs.append(goturl) 
 
    forms = soup.find_all('form') 
    for eachform in forms: 
        methodType = eachform.get('method') 
        action = eachform.get('action') 
        inputName = '' 
        o = urlparse(item) 
        depth = o.path.count('/') 
        values = o.path.replace('/', ' ').replace('.html', '').replace('-', ' ') 
        baseURL = o.scheme+'://'+o.hostname 
        payload = '' 
        if methodType != None: 
            #Find Label 
            allspans = eachform.find_all('span') 
            labelArray =[] 
            for eachSpan in allspans: 
                #print(eachSpan.text) 
                labelArray.append(eachSpan.text.lower()) 
            print('Size',labelArray) 
            nonSearchableText = ['username', 'password'] 
            s1 = set(labelArray) 
            s2 = set(nonSearchableText) 
            countNonSearchable = s1.intersection(s2) 
            if countNonSearchable !=None and len(countNonSearchable) == 0: 
               resultDist = {} 
               resultHotel = {x for x in labelArray for y in textFromHotel if similar(x, y) > 
threshold} 
               resultBook = {x for x in labelArray for y in textFromBook if similar(x, y) > 
threshold} 
               resultFlight = {x for x in labelArray for y in textFromFlight if similar(x, y) 
> threshold} 
               resultAuto = {x for x in labelArray for y in textFromAuto if similar(x, y) > 
threshold} 
               resultApartment = {x for x in labelArray for y in textFromApartment if 
similar(x, y) > threshold} 
               resultMusic = {x for x in labelArray for y in textFromMusic if similar(x, y) > 
threshold} 
               resultPremier = {x for x in labelArray for y in textFromPremier if similar(x, 
y) > threshold} 
               resultProduct = {x for x in labelArray for y in textFromProduct if similar(x, 
y) > threshold} 
 
               if len(resultBook) != 0 and len(resultHotel) != 0 and len(resultFlight) != 0 
and len(resultAuto) != 0 and len(resultApartment) != 0 and len(resultMusic) != 0 and 
len(resultPremier) != 0 and len(resultProduct): 
                    resultDist = {'book': len(resultBook), 'hotel': len(resultHotel), 
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'flight': len(resultFlight),'auto': len(resultAuto), 'apartment': len(resultApartment), 
'music': len(resultMusic),'premier': len(resultPremier), 'product': len(resultProduct)} 
                    foundDomain = max(resultDist.items(), key=operator.itemgetter(1))[0] 
               else: 
                    foundDomain = '' 
               print('==========', foundDomain) 
               print('Domain Data', resultDist) 
               if foundDomain != '': 
                   #find hidden inputs 
                   allInputField = eachform.find_all('input') 
                   hiddenText = '' 
                   id = [] 
                   for eachInput in allInputField: 
                        print(baseURL) 
                        print(eachInput) 
                        try: 
                            if eachInput.get('type').strip() == 'hidden': 
                                 hiddenText += eachInput.get('name') + '=' + 
eachInput.get('value') + "&" 
                            elif eachInput.get('type').strip() == 'text': 
                                id.append(eachInput.get('name')) 
 
                        except Exception as e: 
                            print(e) 
                        foundIdsAndText = {} 
                        if foundDomain == 'book': 
                            foundIdsAndText = {(x, y) for x in id for y in textFromBook if 
similar(x, y) > thresholdForIDCom} 
                        elif foundDomain == 'flight': 
                            foundIdsAndText = {(x, y) for x in id for y in textFromFlight if 
similar(x, y) > thresholdForIDCom} 
                        elif foundDomain == 'hotel' : 
                            foundIdsAndText = {(x, y) for x in id for y in textFromHotel if 
similar(x, y) > thresholdForIDCom} 
                        elif foundDomain == 'apartment': 
                              foundIdsAndText = {(x, y) for x in id for y in 
textFromApartment if similar(x, y) > thresholdForIDCom} 
                        elif foundDomain == 'auto': 
                            foundIdsAndText = {(x, y) for x in id for y in textFromAuto if 
similar(x, y) > thresholdForIDCom} 
                        elif foundDomain == 'music': 
                            foundIdsAndText = {(x, y) for x in id for y in textFromMusic if 
similar(x, y) > thresholdForIDCom} 
                        elif foundDomain == 'premier' : 
                            foundIdsAndText = {(x, y) for x in id for y in textFromPremier if 
similar(x, y) > thresholdForIDCom} 
                        elif foundDomain == 'product': 
                              foundIdsAndText = {(x, y) for x in id for y in textFromProduct 
if similar(x, y) > thresholdForIDCom} 
                        else: 
                            foundIdsAndText = {} 
 
                        payload = {} 
                        for eachIdAndText in foundIdsAndText: 
                            if foundDomain == 'book': 
                                payload = {eachIdAndText[0]: getBookValue(eachIdAndText[1])} 
                            elif foundDomain == 'hotel': 
                                payload = {eachIdAndText[0]: getHotelValue(eachIdAndText[1])} 
                            elif foundDomain == 'flight': 
                                payload = {eachIdAndText[0]: 
getFlightValue(eachIdAndText[1])} 
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                            elif foundDomain == 'apartment': 
                                payload = {eachIdAndText[0]: 
getApartmentValue(eachIdAndText[1])} 
                            elif foundDomain == 'auto': 
                                payload = {eachIdAndText[0]: getAutoValue(eachIdAndText[1])} 
                            elif foundDomain == 'music': 
                                payload = {eachIdAndText[0]: getMusicValue(eachIdAndText[1])} 
                            elif foundDomain == 'premier': 
                                payload = {eachIdAndText[0]: 
getPremierLeagueValue(eachIdAndText[1])} 
                            elif foundDomain == 'product': 
                                payload = {eachIdAndText[0]: 
getProductValue(eachIdAndText[1])} 
                            else: 
                                payload = {} 
                        try: 
                            if action != None and action.find(o.hostname) == -1: 
                                action = baseURL + action + '?' + hiddenText 
                            else: 
                                action = action + '?' + hiddenText 
                            if methodType == 'get': 
                                resp = requests.get(action, params=payload) 
                                print('submit form get:', action, payload) 
                            else: 
                                resp = requests.post(action, data=payload) 
                                print('submit form post:', action, payload) 
                            writingFile.writerow([item, methodType, action, o.path, depth, 
values, foundDomain, resp.status_code]) 
                            print('writing Data--->', item, methodType, action, o.path, 
depth, values, foundDomain, resp.status_code) 
                        except Exception as e: 
                            print(e) 
 
 
 
 

SEARCH  

import csv 
import random 
 
class Apartment: 
 
    def __init__(self, names, price, area, unittype): 
        self.names = names 
        self.price = price 
        self.area = area 
        self.unittype = unittype 
Apartment_list = [] 
 
with open('apartments.csv', newline='') as csv_file: 
    reader = csv.reader(csv_file) 
    next(reader, None) 
    for names, price, area, unittype in reader: 
        Apartment_list.append(Apartment(names, price, area, unittype)) 
 
def  apartmentDetail(index): 
     return Apartment_list[index] 
 
def apartmentHeaders(): 
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    return ['names', 'price', 'area', 'unittype'] 
 
def getApartmentValue(prop): 
    apartment: Apartment = apartmentDetail(random.randrange(0, len(Apartment_list), 3)) 
 
    if prop == 'names': 
        value = apartment.names 
    elif prop == 'price': 
        value = apartment.price 
    elif prop == 'area': 
        value = apartment.area 
 
    else: 
        value = apartment.unittype 
    return value 
#print(getApartmentValue('unittype')) 
 

import csv 
import random 
 
#dateCrawled,name,seller,offerType,price,abtest,vehicleType,yearOfRegistration,gearbox,powerP
S,model,kilometer,monthOfRegistration,fuelType,brand,notRepairedDamage,dateCreated,nrOfPictur
es,postalCode,lastSeen 
 
class Auto: 
 
    def __init__(self, dateCrawled, name,seller, offerType, 
price,abtest,vehicleType,yearOfRegistration,gearbox,powerPS, 
                 
model,kilometer,monthOfRegistration,fuelType,brand,notRepairedDamage,dateCreated,nrOfPictures
,postalCode,lastSeen): 
        self.dateCrawled = dateCrawled 
        self.name = name 
        self.seller = seller 
        self.price = price 
        self.abtest = abtest 
        self.vehicleType = vehicleType 
        self.yearOfRegistration = yearOfRegistration 
        self.gearbox = gearbox 
        self.powerPS = powerPS 
        self.model = model 
        self.kilometer = kilometer 
        self.monthOfRegistration = monthOfRegistration 
        self.fuelType = fuelType 
        self.brand = brand 
        self.notRepairedDamage = notRepairedDamage 
        self.dateCrawled= dateCreated 
        self.nrOfPictures= nrOfPictures 
        self.postalCode= postalCode 
        self.lastSeen = lastSeen 
 
 
Auto_list = [] 
 
with open('autos.csv', newline='') as csv_file: 
    reader = csv.reader(csv_file) 
    next(reader, None) 
 
    for 
dateCrawled,name,seller,offerType,price,abtest,vehicleType,yearOfRegistration,gearbox,powerPS
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,model,kilometer,monthOfRegistration,fuelType,brand,notRepairedDamage,dateCreated,nrOfPicture
s,postalCode,lastSeen in reader: 
 
        
Auto_list.append(Auto(dateCrawled,name,seller,offerType,price,abtest,vehicleType,yearOfRegist
ration,gearbox,powerPS,model,kilometer,monthOfRegistration,fuelType,brand,notRepairedDamage,d
ateCreated,nrOfPictures,postalCode,lastSeen)) 
 
def  autoDetail(index): 
     return Auto_list[index] 
 
def autoHeaders(): 
    return 
['dateCrawled','name','seller','offerType','price','abtest','vehicleType','yearOfRegistration
','gearbox','powerPS','model','kilometer','monthOfRegistration','fuelType','brand','notRepair
edDamage','dateCreated','nrOfPictures','postalCode','lastSeen'] 
 
def getAutoValue(prop): 
    auto: Auto = autoDetail(random.randrange(0, len(Auto_list), 3)) 
 
    if prop == 'dateCrawled': 
        value = auto.dateCrawled 
    elif prop == 'name': 
        value = auto.name 
    elif prop == 'seller': 
        value = auto.seller 
    elif prop == 'offerType': 
        value = auto.offerType 
    elif prop == 'price': 
        value = auto.price 
    elif prop == 'abtest': 
        value = auto.abtest 
    elif prop == 'vehicleType': 
        value = auto.vehicleType 
    elif prop == 'yearOfRegistration': 
        value = auto.yearOfRegistration 
        # 
'powerPS','model','kilometer','monthOfRegistration','fuelType','brand','notRepairedDamage','d
ateCreated','nrOfPictures','postalCode','lastSeen' 
    elif prop == 'powerPS': 
        value = auto.powerPS 
    elif prop == 'model': 
        value = auto.model 
    elif prop == 'kilometer': 
        value = auto.kilometer 
    elif prop == 'monthOfRegistration': 
        value = auto.monthOfRegistration 
    ########################### 
    elif prop == 'fuelType': 
        value = auto.fuelType 
    elif prop == 'brand': 
        value = auto.brand 
    elif prop == 'notRepairedDamage': 
        value = auto.notRepairedDamage 
    elif prop == 'dateCreated': 
        value = auto.dateCreated 
    elif prop == 'nrOfPictures': 
        value = auto.nrOfPictures 
    elif prop == 'postalCode': 
        value = auto.postalCode 
    else: 
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        value = auto.lastSeen 
    return value 
 
#print(getAutoValue('lastSeen')) 
 

import csv 
import random 
 
class Book: 
 
    def __init__(self, title, author, genre, height, publisher): 
        self.keyword = title 
        self.author = author 
        self.genre = genre 
        self.height = height 
        self.publisher = publisher 
 
 
book_list = [] 
 
with open('books.csv', newline='') as csv_file: 
    reader = csv.reader(csv_file) 
    next(reader, None) 
    for title, author, genre, height, publisher in reader: 
        book_list.append(Book(title, author, genre, height, publisher)) 
 
def bookDetail(index): 
    return book_list[index] 
 
def bookHeaders(): 
    return ['keyword', 'author', 'genre', 'height', 'publisher'] 
 
def getBookValue(prop): 
    book: Book = bookDetail(random.randrange(0, len(book_list), 3)) 
    if prop == 'keyword': 
        value = book.keyword 
    elif prop == 'author': 
        value = book.author 
    elif prop == 'genre': 
        value = book.genre 
    elif prop == 'height': 
        value = book.height 
    else: 
        value = book.publisher 
    return value 
import csv 
import random 
 
 
class Flight: 
 
    def __init__(self, 
year,month,day,day_of_week,airline,flight_number,tail_number,origin_airport,destination_airpo
rt,scheduled_departure,departure_time,departure_delay,taxi_out,wheels_off,scheduled_time,elap
sed_time,air_time,distance,wheels_on,taxi_in,scheduled_arrival,arrival_time,arrival_delay,div
erted,cancelled,cancellation_reason,air_system_delay,security_delay,airline_delay,late_aircra
ft_delay,weather_delay): 
        self.year = year 
        self.month = month 
        self.day = day 
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        self.day_of_week = day_of_week 
        self.airline = airline 
        self.flight_number=flight_number 
        self.tail_number=tail_number 
        self.origin_airport = origin_airport 
        self.destination_airport=destination_airport 
        self.scheduled_departure=scheduled_departure 
        self.departure_time=departure_time 
        self.departure_delay = departure_delay 
        self.taxi_out = taxi_out 
        self.wheels_off = wheels_off 
        self.scheduled_time = scheduled_time 
        self.elapsed_time = elapsed_time 
        self.air_time = air_time 
        self.distance = distance 
        self.wheels_on = wheels_on 
        self.taxi_in = taxi_in 
        self.scheduled_arrival = scheduled_arrival 
        self.arrival_time = arrival_time 
        self.arrival_delay = arrival_delay 
        self.diverted = diverted 
        self.cancelled = cancelled 
        self.cancellation_reason = cancellation_reason 
        self.air_system_delay = air_system_delay 
        self.security_delay = security_delay 
        self.airline_delay = airline_delay 
        self.late_aircraft_delay = late_aircraft_delay 
        self.weather_delay = weather_delay 
 
 
flight_list = [] 
 
with open('flights.csv', newline='') as csv_file: 
    reader = csv.reader(csv_file) 
    next(reader, None) 
    for 
year,month,day,day_of_week,airline,flight_number,tail_number,origin_airport,destination_airpo
rt,scheduled_departure,departure_time,departure_delay,taxi_out,wheels_off,scheduled_time,elap
sed_time,air_time,distance,wheels_on,taxi_in,scheduled_arrival,arrival_time,arrival_delay,div
erted,cancelled,cancellation_reason,air_system_delay,security_delay,airline_delay,late_aircra
ft_delay,weather_delay in reader: 
        
flight_list.append(Flight(year,month,day,day_of_week,airline,flight_number,tail_number,origin
_airport,destination_airport,scheduled_departure,departure_time,departure_delay,taxi_out,whee
ls_off,scheduled_time,elapsed_time,air_time,distance,wheels_on,taxi_in,scheduled_arrival,arri
val_time,arrival_delay,diverted,cancelled,cancellation_reason,air_system_delay,security_delay
,airline_delay,late_aircraft_delay,weather_delay)) 
 
def flightDetail(index): 
    return flight_list[index] 
 
def flightHeaders(): 
    return 
['year','month','day','day_of_week','airline','flight_number','tail_number','origin_airport',
'destination_airport','scheduled_departure','departure_time','departure_delay','taxi_out','wh
eels_off','scheduled_time','elapsed_time','air_time','distance','wheels_on','taxi_in','schedu
led_arrival','arrival_time','arrival_delay','diverted','cancelled','cancellation_reason','air
_system_delay','security_delay','airline_delay','late_aircraft_delay','weather_delay'] 
 
def getFlightValue(prop): 
    flight: Flight = flightDetail(random.randrange(0, len(flight_list), 3)) 
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    if prop == 'year': 
        value = flight.year 
    elif prop == 'month': 
        value = flight.month 
    elif prop == 'day': 
        value = flight.day 
    elif prop == 'day_of_week': 
        value = flight.day_of_week 
    elif prop =='airline': 
        value = flight.airline 
    elif prop == 'flight_number': 
        value = flight.flight_number 
    elif prop == 'tail_number': 
         value = flight.tail_number 
    elif prop == 'origin_airport': 
        value = flight.origin_airport 
    elif prop == 'destination_airport': 
        value = flight.destination_airport 
    elif prop == 'scheduled_departure': 
        value = flight.scheduled_departure 
    elif prop == 'departure_time': 
        value = flight.departure_time 
    elif prop == 'departure_delay': 
        value = flight.departure_delay 
    elif prop == 'taxi_out': 
        value = flight.taxi_out 
    elif prop =='state': 
        value = flight.wheels_off 
    elif prop == 'wheels_off': 
        value = flight.scheduled_time 
    elif prop == 'elapsed_time': 
         value = flight.elapsed_time 
    elif prop == 'air_time': 
        value = flight.air_time 
    elif prop == 'distance': 
        value = flight.distance 
    elif prop == 'wheels_on': 
        value = flight.wheels_on 
    elif prop == 'taxi_in': 
        value = flight.taxi_in 
    elif prop == 'scheduled_arrival': 
        value = flight.scheduled_arrival 
    elif prop == 'arrival_time': 
        value = flight.arrival_time 
    elif prop == 'arrival_delay': 
        value = flight.arrival_delay 
    elif prop =='diverted': 
        value = flight.diverted 
    elif prop == 'cancelled': 
        value = flight.cancelled 
    elif prop == 'cancellation_reason': 
         value = flight.cancellation_reason 
    elif prop == 'air_system_delay': 
        value = flight.air_system_delay 
    elif prop == 'security_delay': 
        value = flight.security_delay 
    elif prop == 'airline_delay': 
        value = flight.airline_delay 
    elif prop == 'late_aircraft_delay': 
        value = flight.late_aircraft_delay 
    else: 



128 

 

        value = flight.weather_delay 
    return value 
 
#print(getFlightValue('flight_number')) 
 
 
 
 
import csv 
import random 
 
 
class Flight: 
 
    def __init__(self, 
year,month,day,day_of_week,airline,flight_number,tail_number,origin_airport,destination_airpo
rt,scheduled_departure,departure_time,departure_delay,taxi_out,wheels_off,scheduled_time,elap
sed_time,air_time,distance,wheels_on,taxi_in,scheduled_arrival,arrival_time,arrival_delay,div
erted,cancelled,cancellation_reason,air_system_delay,security_delay,airline_delay,late_aircra
ft_delay,weather_delay): 
        self.year = year 
        self.month = month 
        self.day = day 
        self.day_of_week = day_of_week 
        self.airline = airline 
        self.flight_number=flight_number 
        self.tail_number=tail_number 
        self.origin_airport = origin_airport 
        self.destination_airport=destination_airport 
        self.scheduled_departure=scheduled_departure 
        self.departure_time=departure_time 
        self.departure_delay = departure_delay 
        self.taxi_out = taxi_out 
        self.wheels_off = wheels_off 
        self.scheduled_time = scheduled_time 
        self.elapsed_time = elapsed_time 
        self.air_time = air_time 
        self.distance = distance 
        self.wheels_on = wheels_on 
        self.taxi_in = taxi_in 
        self.scheduled_arrival = scheduled_arrival 
        self.arrival_time = arrival_time 
        self.arrival_delay = arrival_delay 
        self.diverted = diverted 
        self.cancelled = cancelled 
        self.cancellation_reason = cancellation_reason 
        self.air_system_delay = air_system_delay 
        self.security_delay = security_delay 
        self.airline_delay = airline_delay 
        self.late_aircraft_delay = late_aircraft_delay 
        self.weather_delay = weather_delay 
 
 
flight_list = [] 
 
with open('flights.csv', newline='') as csv_file: 
    reader = csv.reader(csv_file) 
    next(reader, None) 
    for 
year,month,day,day_of_week,airline,flight_number,tail_number,origin_airport,destination_airpo
rt,scheduled_departure,departure_time,departure_delay,taxi_out,wheels_off,scheduled_time,elap
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sed_time,air_time,distance,wheels_on,taxi_in,scheduled_arrival,arrival_time,arrival_delay,div
erted,cancelled,cancellation_reason,air_system_delay,security_delay,airline_delay,late_aircra
ft_delay,weather_delay in reader: 
        
flight_list.append(Flight(year,month,day,day_of_week,airline,flight_number,tail_number,origin
_airport,destination_airport,scheduled_departure,departure_time,departure_delay,taxi_out,whee
ls_off,scheduled_time,elapsed_time,air_time,distance,wheels_on,taxi_in,scheduled_arrival,arri
val_time,arrival_delay,diverted,cancelled,cancellation_reason,air_system_delay,security_delay
,airline_delay,late_aircraft_delay,weather_delay)) 
 
def flightDetail(index): 
    return flight_list[index] 
 
def flightHeaders(): 
    return 
['year','month','day','day_of_week','airline','flight_number','tail_number','origin_airport',
'destination_airport','scheduled_departure','departure_time','departure_delay','taxi_out','wh
eels_off','scheduled_time','elapsed_time','air_time','distance','wheels_on','taxi_in','schedu
led_arrival','arrival_time','arrival_delay','diverted','cancelled','cancellation_reason','air
_system_delay','security_delay','airline_delay','late_aircraft_delay','weather_delay'] 
 
def getFlightValue(prop): 
    flight: Flight = flightDetail(random.randrange(0, len(flight_list), 3)) 
    if prop == 'year': 
        value = flight.year 
    elif prop == 'month': 
        value = flight.month 
    elif prop == 'day': 
        value = flight.day 
    elif prop == 'day_of_week': 
        value = flight.day_of_week 
    elif prop =='airline': 
        value = flight.airline 
    elif prop == 'flight_number': 
        value = flight.flight_number 
    elif prop == 'tail_number': 
         value = flight.tail_number 
    elif prop == 'origin_airport': 
        value = flight.origin_airport 
    elif prop == 'destination_airport': 
        value = flight.destination_airport 
    elif prop == 'scheduled_departure': 
        value = flight.scheduled_departure 
    elif prop == 'departure_time': 
        value = flight.departure_time 
    elif prop == 'departure_delay': 
        value = flight.departure_delay 
    elif prop == 'taxi_out': 
        value = flight.taxi_out 
    elif prop =='state': 
        value = flight.wheels_off 
    elif prop == 'wheels_off': 
        value = flight.scheduled_time 
    elif prop == 'elapsed_time': 
         value = flight.elapsed_time 
    elif prop == 'air_time': 
        value = flight.air_time 
    elif prop == 'distance': 
        value = flight.distance 
    elif prop == 'wheels_on': 
        value = flight.wheels_on 
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    elif prop == 'taxi_in': 
        value = flight.taxi_in 
    elif prop == 'scheduled_arrival': 
        value = flight.scheduled_arrival 
    elif prop == 'arrival_time': 
        value = flight.arrival_time 
    elif prop == 'arrival_delay': 
        value = flight.arrival_delay 
    elif prop =='diverted': 
        value = flight.diverted 
    elif prop == 'cancelled': 
        value = flight.cancelled 
    elif prop == 'cancellation_reason': 
         value = flight.cancellation_reason 
    elif prop == 'air_system_delay': 
        value = flight.air_system_delay 
    elif prop == 'security_delay': 
        value = flight.security_delay 
    elif prop == 'airline_delay': 
        value = flight.airline_delay 
    elif prop == 'late_aircraft_delay': 
        value = flight.late_aircraft_delay 
    else: 
        value = flight.weather_delay 
    return value 
 
#print(getFlightValue('flight_number')) 
 

import csv 
import random 
# 
uniq_id,crawl_timestamp,product_url,product_name,product_category_tree,pid,retail_price,disco
unted_price, 
 
# 
image,is_FK_Advantage_product,description,product_rating,overall_rating,brand,product_specifi
cations 
class Product: 
 
    def __init__(self, 
Id,Name,StockQuantity,Price,Description,Category,ProductType,PaymentMethod): 
        self.Id = Id 
        self.Name = Name 
        self.StockQuantity = StockQuantity 
        self.Price = Price 
        self.Description = Description 
        self.Category = Category 
        self.ProductType = ProductType 
        self.PaymentMethod = PaymentMethod 
 
 
product_list = [] 
 
with open('products.csv', newline='') as csv_file: 
    reader = csv.reader(csv_file) 
    next(reader, None) 
    for Id,Name,StockQuantity,Price,Description,Category,ProductType,PaymentMethod in reader: 
        
product_list.append(Product(Id,Name,StockQuantity,Price,Description,Category,ProductType,Paym
entMethod)) 
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def productDetail(index): 
     return product_list[index] 
 
def productHeaders(): 
    return ['uniq_id', 'crawl_timestamp', 
'product_url','product_name','product_category_tree','pid,retail_price','discounted_price','i
mage','is_FK_Advantage_product','description','product_rating','overall_rating','brand,produc
t_specifications'] 
 
def getProductValue(prop): 
    product: Product = productDetail(random.randrange(0, len(product_list), 3)) 
 
    if prop == 'Id': 
        value = product.Id 
    elif prop == 'Name': 
        value = product.Name 
    elif prop == 'StockQuantity': 
        value = product.StockQuantity 
    elif prop == 'Price': 
        value = product.Price 
    elif prop == 'Description': 
        value = product.Description 
    elif prop == 'Category': 
        value = product.Category 
    elif prop == 'ProductType': 
        value = product.ProductType 
    else: 
        value = product.PaymentMethod 
    return value 
 
#print(getProductValue(PaymentMethod)) 
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