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ABSTRACT 

 

In the recent past, mobile cloud computing (MCC) has arisen in the computing world, 

and many researchers and developers are working closely in this field. MCC is broadly 

a convergence of fields like cloud computing, wireless technology, and mobile 

computing. The rich computational resources available in the cloud are utilized to 

execute the mobile task using the concept of offloading. The compute-intensive part 

of the application is transferred to the cloud for execution. Upon the completion of 

task execution in the cloud, the results are sent back to the mobile device. In this way, 

the resource hunger applications are executed in a rich resource-intensive cloud. An 

appropriate Infrastructure is required to store the data and CPU processing off-site 

mobile device (not locally available) and execute on a remote cloud server. This 

technology is understood as a mobile cloud in recent times. Computation offloading 

solved various problems in a mobile cloud scenario. The task can be uploaded to the 

cloud or surrogate server to cope with the incapability of low-power smartphones. 

Computation like multimedia processing, image processing, audio processing, 3D 

rendering, security, gaming, and text processing needs a lot of energy to execute. A lot 

of energy is consumed in a compute-intensive task, and by offloading the task to the 

cloud, device energy can be saved. 

Offloading in a better bandwidth environment of 4G and 5G connectivity will reduce 

the application's round trip time (RTT). Thus, performance will also improve in terms 

of running an application. The devices having low processing capabilities can take 

advantage of offloading and can enjoy the feel of high-end devices. An important 

question in the offloading scenario is which part of the application needs to be 

offloaded remotely. In order to identify that, the application needs to be partitioned. 

In this work, the graph partitioning approach is considered based on spectral graph 

partitioning with the Kernighan Lin algorithm. Experimental results show that the 
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proposed approach performs optimally in partitioning the application. The proposed 

technique gave better results than the existing techniques in terms of edge cut, which 

is less, concluding minimum communication cost among components and saving the 

mobile device's energy. 

The decision to offload is a significant concern. The mobile device decides whether 

to execute the task locally or move on a remote server by assessing the storage, 

processing, and bandwidth parameters.  A decision engine is a substantial component 

in the offloading framework, which helps decide when to offload the remote or cloud 

server. In the process of offloading decision, various profilers like network, device, 

and program profiler collect information related to network, application, battery level, 

and CPU cycle, which help the solver to the decision for the offloading. Energy and 

performance parameters are often evaluated during this phase. The decision engine's 

accuracy should be high for the flawless execution of the application during the 

offloading process. A technique has been proposed in this work by performing a stack 

ensemble approach on machine learning techniques like the Gaussian approach, multi-

layer perceptron, k-nearest neighbors, and linear regression. It considers the various 

dynamics of the environment like task size, bandwidth, device battery, and device 

mobility. The proposed model performs better than other decision-making algorithms 

in terms of execution time and CPU utilization and achieves higher accuracy in 

making decisions while offloading the compute-intensive task to the remote server. 

Mobility is a fundamental aspect of MCC where the mobile device gets connected to 

the cloud or edge server through the intermediate cellular network during roaming for 

the offloading process. The seamless connectivity with the network is required for the 

mobile device to remain connected to the cloud or edge server and completes the 

offloading effectively. Roaming is a significant procedure in mobility management; 

with the help of this, the customer automatically receives the calls, sends data, and 

travels outside the home network in Heterogeneous Access Networks (HAN) 

environments. The handoff procedure is a two-step process that transfers an active call 

from one cell to another, i.e., when a mobile node (MN) travels into a different cell 
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while a conversation is in progress, the MSC immediately switches the call to a new 

channel belonging to a new base station. Handoff dropped count depicts the scenario 

when user equipment does not get the required signal strength during handover and 

loses the connectivity with the base station of the cellular network. In this work, the 

seamless mobility scheme has been proposed based on the heterogeneous network of 

Wi-Fi and 4G networks. The proposed scheme is based on the fourth-order Markov 

model for mobility prediction and received signal strength (RSS) of the network 

nearest to the next predicted move of the device. The proposed scheme performed 

better as compared to SINR based handoff mechanism based on the number of 

handoffs and dropped count during device mobility in urban, semi-urban, and rural 

areas.  

During offload, the job needs to be queued on the cloud servers and allocated to the 

virtual machines. Task scheduling is an important step where the mobile task is 

assigned to the servers and processed somehow. In the overall offloading process, 

energy conservation is a significant concern. The scheduling problem involves 

mapping the offloaded task to the cloud server while satisfying the energy and time 

constraints. When the task is offloaded from the mobile device to the cloud server, it 

reaches the cloud service provider's server. The cloud schedulers are a fully-managed 

entity in the cloud service providers. It minimizes the human intervention in 

scheduling the task and provides a reliable solution. The tasks are scheduled on 

various virtual machines available in the physical servers of the data centers. The 

cloud service provider manages all information about the task that approached it for 

processing. The Data center broker policy helps the cloudlets (task) to assign the 

virtual machines. The data center policy must be appropriate for the minimum 

execution time of the cloudlet. Similar to web applications, a mobile application 

consists of different tasks. The thesis presents a hybrid scheduling scheme based on 

particle swarm optimization (PSO) and bacterial foraging optimization (BFO). This 

scheme performs better when compared to other variants of PSO in terms of makespan 

and energy efficiency. 
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CHAPTER 1                                                               

                                INTRODUCTION 

 

 

1.1 Mobile cloud computing  

As per the Ericsson mobility report 2020 [1], the expected number of smartphone users in 

2025 will be around 8.9 billion.  The demand for smartphones in developing nations like 

India and China is rising day by day. Android, BlackBerry, and Windows OS-based 

smartphones have their place in the commercial market. These devices provide a different 

type of features which enable the users to do various task related to location-based, image, 

networking and sufficient space to store the data. Users can run different smartphone 

applications like gaming, speech recognition, image and video-related editing, and 

navigation-based apps with these features. Such applications are resource-intensive 

applications that require a huge amount of CPU processing and battery, which are 

sometimes not answered by existing smartphones.       

Emerging technologies like MCC, ubiquitous computing, IoT have adopted computational 

offloading to provide high-quality services (QOS) to the users. The mobile cloud 

computing concept has emerged in the recent past and attracts researchers and developers 

worldwide. It broadly means to run an application on the remote rich server. We can view 

our mobile phones as a client in this case, which runs applications like Google, Facebook, 

which are cloud-based applications. It is an infrastructure required to store the data and 

CPU processing offsite mobile devices (not locally available) and enable mobile tasks on 

a remote cloud server. 
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Figure 1-1 MCC:  Intersection of mobile computing and cloud computing [2] 

 

Fig. 1-1 depicts the mobile cloud computing which is an amalgamation of mobile 

computing and cloud computing. Mobile computing [2] is a field of wireless 

communication that empowers mobile devices to communicate during mobility. Handheld 

devices or personal digital assistants (PDA) can communicate using wireless mediums like 

WLAN or cellular networks. Rapid development in the field of telecommunication has 

been seen since the 1990s. People can communicate with each other during mobility. 

Several challenges still exist in mobility in mobile computing: coverage area, number of 

mobile users, limited bandwidth, and heterogeneous mobile networks. This factor affects 

the quality of services (QoS) to the user. 

Cloud computing [3] is a distributed and parallel system where resources are available in 

a virtualized environment and used by the customers based on service level agreement 

(SLA). Cloud is a data center with nodes having resources available in the virtualized form 

provisioned in hypervisors. Users can process its execution on the cloud using web services 

like REST and SOAP. Users can access cloud services on pay-as-you prices and can 

increase or decrease their demand on an elasticity basis. Services used in the cloud are 

measured in metered form and transparent to the user.  Cloud computing provides vital 

support to the failovers and keeps a replica of the data to achieve durability and reliability 

in the system. 
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Figure 1-2   Mobile cloud computing architecture [4] 

 

Fig. 1-2 represents the broad architecture of MCC. Smart devices like mobile phones, 

tablets are associated with the network operator (NO) through an access point or BTS. The 

cloud service request of the mobile user reaches the cloud service provider through the 

network operator and internet service provider (ISP). The mobile device is authenticated, 

authorized, and accounted (AAA) through the network service provider. ISP act as an 

intermediate between the NO and cloud service provider. The cloud service provider has 

data centers providing different services in the form of software, platform, and 

infrastructure through cloud controllers. It encompasses the power of virtualization and 

utility computing.   
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Table 1-1 Challenges of mobile user and solution by mobile cloud computing 

 

 

Challenges of the 

mobile users 

Solutions delivered by Mobile Cloud 

Computing (MCC) 

Lack of Storage 

Capacity 

MCC provides an extensive data storage 

facility and its access to the mobile user. 

Examples are Image Exchange, Flickr, and 

Amazon S3. 

Users need reliable 

backup and security for 

their information 

Reliability can be improved by the data access 

and running application on the cloud. 

Reliability is a critical factor of cloud 

services. 

Energy is a significant 

challenge in mobile 

device 

Computational offloading saves a good 

amount of energy by immigrating the 

compute-intensive task to the cloud from the 

smart mobile device. 

Incapability to process 

an application when 

having a low-end 

hardware device 

The mobile cloud provides solutions to mobile 

users which are having low-end hardware 

availability. They merely required optimal 

bandwidth for processing through the cloud 

server. 

 

 

The various challenges of mobile users like lack of storage, reliable backup, energy 

consumption, and inability to process a compute-intensive application can be solved using 

cloud services. Various issues and solutions of mobile users are presented in Table 1-1. 

There are various open challenges in the process of offloading in MCC are: 

a. Uninterrupted internet connectivity and Bandwidth issue: The smart device must have 
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good bandwidth connectivity, so offloading becomes possible for the device. Loss of signal 

may temper the offloading process, and again device need to execute the task locally in 

case of non-availability of mobile signals. The emergence of 5G technology, cognitive 

radio, and femtocells can help in providing seamless and quality services.     

b. Privacy and security: Privacy and security must be seen as a crucial factor during the 

offloading process and helps in establishing and maintaining the trust of the mobile user. 

Data should be not being compromised in any sort of attacks, and privacy must be 

preserved of the user.  

c. Service Convergence:  Single cloud will not solve the computational problem and meet 

user expectations. Schemes need to formulate where users can exploit several clouds in a 

unified way. Different cloud vendors need to have a proper service level agreement as a 

migration of data is possible in the application processing. The pricing mechanism needs 

to ease out when the user utilizes the services of a mobile service provider and a cloud 

service provider.  

d. Offloading during mobility: Handover in the perspective of MCC is less explored. 

Offloading becomes a difficult task during device mobility. Unstable network conditions 

and frequent handovers are a big challenge that needs to be addressed. Robust middleware 

and mobility management paradigm need to work upon for creating an effective offloading 

environment.  

e. Application partitioning: Granularity of the application needs to be addressed correctly, 

seeing the network conditions, the data size of the application, battery consumption, and 

CPU cycles required. The mobile application consists of compute-intensive and graphics-

intensive code. The compute-intensive workload needs to be carefully partitioned based 

upon the environment dynamics for energy saving. Still lot of scope is present where an 

application can be dynamically partitioned based on current mobile device conditions.  

The mobile cloud cannot be only seen as a powerful machine for offloading purposes nor 

as an only pool of large virtual machines but can be explored with the great opportunity of 

clouds such as elasticity, parallelization with the help of map-reduce, and its utility 
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computing model. Budding technologies like cloudlets, Web 4.0, and Hypervisor virtual 

machines are boosting the popularity of MCC. Exploring the possibility of offloading in 

enterprise android applications can create a revolution in the mobile industry and improvise 

various business applications.  

1.2 Background 

In the era of highly configured mobile devices, sometimes users are under compulsion to 

act as thin clients, have energy constraints, storage issues, and process incapability. Some 

significant tasks in mobile devices like multimedia processing, image recognition, gaming, 

and text processing consume high resources that users need to rethink the task being 

performed. Computational offloading provides a platform to transfer the task from the user 

device to the server on the cloud to perform the necessary computation and serve the user. 

Several issues need to be addressed for computational offloading in MCC. 

1.2.1 Computational offloading 

A glimpse of the term 'computational offloading' is found in the 1990s, where researchers 

have found that around 51% of the energy consumption of a portable computer battery can 

be saved through remote process execution [5]. Such inspiration is continued to date, and 

the methodology behind the computational offloading is used in recent technologies like 

mobile computing and IoT.  

 

 

 

Figure 1-3 Computational offloading in mobile cloud computing 
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Fig. 1-3 depicts the computational offloading process which solves various problems in a 

mobile cloud scenario. In mobile cloud computation [6], the task can be offloaded to the 

cloud or surrogate server to cope with the incapability of low-power smartphones. 

Significant computation like multimedia processing, image recognition, gaming, text 

processing needs much energy to execute. The decision to offload is a major concern. By 

accessing the storage, processing, and bandwidth parameters, mobile devices decide 

whether to accomplish the task locally or move on a distant server. 

Generally, mobile applications are resource-intensive and need a lot of energy and other 

processing requirements like CPU and memory. Based on various parameters like 

bandwidth, availability of cloud server, we can move our computational task over the 

cloud, process it, and get the outcome back on our device. Although it is not always 

possible to offload the task on the cloud, a decision engine is deployed on mobile to take a 

correct decision based on various parameters whether to offload or not [7].  Offloading can 

be defined based on two different categories.  

a)   Partial Offloading: In this type of energy-aware approach, the program is partitioned 

statically or dynamically on the client-side, and afterward, only a little required data is 

transmitted to the cloud server. Thus, by transmitting reduced data, energy is saved up to a 

large extent. In static partitioning developer [8] can annotate the methods or classes as 

@remotable, which needs to execute on the cloud server-side. In some of the cases, the 

developer needs to ensure not to mark @remotable. (i) code that implements user 

applications user interface (UI) (ii) code responsible for Input/output of the mobile device 

and restricted to it only. 

b)  Full Offloading: The complete program is transferred to the server in this scheme, and 

the programmer cannot amend the source code. The program is primarily performed within 

the client-side, and if it does not get executed within a specific time frame, the code is 

offloaded to the server-side. In this strategy, the short applications are executed on the 

client-side and extensive application is executed on the server as energy is the major 

constraint.  
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1.2.2 Code Partitioning 

Code needs to be partitioned before it is uploaded to the cloud. Code profiler partitions the 

code either statically or dynamically. In the static case, the code which needs to execute 

remotely is annotated with remote, which means that these methods or classes will be 

executed on a remote server. In dynamic profiling, the code is partitioned during the 

execution of code based upon the resource configuration available at the moment. 

Static analysis and history trace strategies [7] are implanted by a different mechanism to 

estimate the portion of code is intensive or not. Automated techniques are preferred over 

static as they can quickly acclimate the code to be executed in different devices.  

In a MCC environment, generally, two agents work for the process, one on the smartphone 

device and the other on the cloud. The code partition process is conducted before the 

offloading process based on parameters like application identifier, device identifier, and 

RTT between the smartphone and the cloud. 

Once the partition plan is done, the smart device transfers the required state to enable the 

remote execution. A good partition plan can improve the performance, but the delay can be 

observed in the decision-making process to offload. So, the code partition algorithm must 

be accurate and fast to achieve optimized offloading performance. 

Code partition algorithm should have some desired characteristics like Real-time 

adaptability and Partition efficiency. The algorithm must adapt to network and device 

changes. Code partition should be made dynamically based on the input of network 

conditions. How much code needs to be offloaded is another challenge. Fine-grained 

partitioning is always much value compared to coarse-grained partitioned. Thus, achieving 

partition efficacy is another critical parameter in computational offloading.   

1.2.3 Decision engines  

Decision engines [7] decide when to offload based on various inputs make available by the 

system profiling. The decision engine applies logic based on stochastic methods, fuzzy 

logic, linear programming, machine learning-based, etc.  The objective of offloading is to 

transfer the computation to the resourceful server, which may be a distant place to improve 
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the device's performance and save energy. It is not always expected to offload the task on 

a remote server but depending upon device conditions and bandwidth, and the decision to 

offload can be taken. If one part of the code is processed on the smart mobile device and 

the other is offloaded on the cloud/surrogate server, then it is partial offloading. The time 

T taken to execute the task locally [8] is 

                                T= W/Sm                  (2.1) 

where W is the computation amount required for the second part and Sm is the processing 

speed of the mobile device. 

The di quantity of data takes di/B seconds to send to a selected server if the second 

component of the compute-intensive task is offloaded to a cloud server with bandwidth B. 

The benefit of offloading the task on a cloud server is only when the computation of the 

task, including the communication, can be achieved faster at the cloud server than local 

execution. 

Total time = communication time to/from server + computational time                                                                        

                                                                               (2.2) 

The offloading decision is generally taken after the inputs taken from the code profiler and 

system profilers. Code profilers determine "what to offload" merely we can say the code 

partitioning task and system profilers gather the information about the crucial parameters 

like available bandwidth, data size to be migrated, and the most important energy required 

to execute the code. A decision engine is a thinker, a differentiator which decides "when to 

offload" to the cloud server. The concept of Lyapunov optimization, dynamic 

programming, linear programming, fuzzy logic, and Markov chain can be applied to build 

the optimal decision engine. In some of the references, the offloading policy is also based 

upon the two-level genetic algorithms. Fig. 1-4 depicts the decision-making process where 

the mobile device takes decision to offload the component of the application to the cloud 

using cellular or wireless network or run the application on the mobile locally. 
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Figure 1-4   Decision to offload or not 

1.2.4 Mobility Management  

In the offloading process, the data that need to be processed is sent to the cloud or edge 

servers from the mobile device, get computed on the servers, and once the computation is 

done, the mobile device receives the computation results from the cloud or edge server. 

The offloading process in MCC may use heterogeneous types of wireless networks, which 

may include Wireless LAN (WLAN) and cellular services like 3G, 4G services, and even 

5G services soon. Various issues get raised when the offloading application runs, like 

availability of connectivity, the energy level of mobile devices, and availability of the cloud 

or edge servers. The different types of mobile services [4] are available to the mobile device 

like Bluetooth, Wi-Fi, 2G/3G/4G services. The transitions among these services are getting 

possible by a concept of vertical handoff.  The problems in MCC are similar to mobile 

computing, such as the issues [9] [10] related to handoffs, network delays, bandwidth, and 

limited battery energy. In the case of computational offloading, the mobile device or mobile 

nodes (MN) roams around different access networks like a mobile device may initially start 

some cloud services in the 4G network and commit offloading process in the Wi-Fi network 

due to its mobility. 
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Figure 1-5 Mobility Management in mobile cloud computing 

 

Handoff is a process when a mobile device changes its network from one to another.          

Fig. 1-5 discuss the mobility management in MCC framework. While in mobility, the 

mobile nodes initiate the process of handoffs for seamless connectivity. Handoff can 

introduce packet loss and long delays and hence can affect the cloud services further. Many 

applications in the modern computing environment are cloud-specific, like gaming 

applications, healthcare services, natural language processing (NLP) based applications, 

and computer vision. The mobile device can perform computations while roaming and may 

require cloud services for offloading purposes. The seamless transitions among networks 

can be either horizontal or vertical. When a device travels from one network to another 

without changing the network type, the process is called horizontal handoff, and if it 

changes the network, it is called vertical handoff. Heterogeneous networks (Hetnets) have 

various types of features like data rates, received signal strength (RSS), network capacity, 

bandwidth, and coverage span. The mobile device perceives these features and decides to 

select the best available network in its current location. The mobility of the device has a 

more substantial impact on the process of offloading. While the user is moving, the 

probability of changing the network is high. For the flawless offloading process, the 

transition among the cellular network must be smooth, and handoff must be minimized so 

that the mobile device remains attached to the cloud server. 
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1.2.5 Task Scheduling in MCC 

When the task is delegated to the cloud server from the mobile device, it reaches the cloud 

service provider's server. The cloud service provider manages all information about the 

task that approached it for processing. The Datacentre Broker policy [11] helps the 

cloudlets (task) to assign the virtual machines. The data center policy must be appropriate 

for the minimum execution time of the cloudlet. Similar to web applications, a mobile 

application consists of different tasks. These tasks can be represented as a directed acyclic 

graph(DAG). While the application's independent task can be executed simultaneously in 

multiple virtual machines, the dependent job needs to be synchronized as per their 

precedence order.  

When speaking about task scheduling, achieving minimum makespan is considered an NP-

hard problem. Most recent studies have focused on the cloud resources to the various 

cloudlets to optimize energy and execution time parameters. In this work, the particular 

task's execution time depends on the task size and the virtual machine's property. It is 

assumed in the work that the cloud service provider has a sufficient number of 

computational resources. The V number of virtual machines are deployed on the physical 

machines, and different virtual machines have a variety of processing units (CPU), random 

access memory (RAM), and networking capabilities. The data center brokers monitor all 

available resources and assign the machine to the task once approached. All jobs requiring 

the processing resources need to stand in a queue and based on the task scheduling scheme, 

tasks are planned to execute on the machine. 

1.3 Motivation 

Computational offloading is an emergent field in the area of MCC. Smart mobile devices 

in the modern era are energy-hungry and required much energy for their computational 

processing. An application like multimedia processing, image recognition, gaming, and 

text processing consumes high resources to rethink the task being performed. A possible 

solution to the problem can be achieved by transferring our task to a resourceful cloud 

server for making optimal execution. The work will contribute to computational offloading 
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in MCC, which is challenging for mobile and cloud service providers in today's scenario. 

The topic is appropriate to the immediate environment as, at present, computational 

offloading can be possible due to the availability of 4G and, in the coming future, 5G 

technologies. It enables a mobile device to have the high bandwidth required for 

computation migration to distant cloud servers. 

The applicational partitioning is a primitive task that is done in the offloading process. The 

compute-intensive portion of the application need lot of RAM and processing capability to 

process a task. Application partitioning identifies the task for offloading. Lower 

computational power and RAM capability motivate the developers to offload the task on 

the cloud servers, and thus application partitioning becomes a fascinating topic for 

research. Offloading decision is majorly affected by various factors like bandwidth, 

mobility of the device, size of the task, and battery level of the mobile device. Accessing 

accuracy and energy consumption during decision-making considering these parameters 

make it an interesting field to study.  The mobility during the offloading process is a 

challenging task and motivates to work on mobility management. Handoff management 

and cloud probing is an essential and exciting topic that led the researchers to find the 

optimal solutions in terms of energy-saving and flawless connectivity to mobile users. 

Lastly, the task scheduling on the cloud server is an open area. Many scheduling methods 

like machine learning and nature-inspired method attract researchers to find the optimal 

solutions. Computational offloading is a motivational topic in mobile cloud computing and 

will always have a scope of improvement in the coming future also. 

1.4 Objectives of the study 

The main objective of this thesis is to develop an optimized framework for computational 

offloading in MCC. There are broadly two types of offloading i.e., data offloading and 

computation offloading. In this work, compute- intensive offloading is considered for the 

study.   The critical question which needs to answer in offloading is “what to offload.” The 

focus of the thesis is to develop a partitioning method for the code that will decide which 

portion of the application needs to be sent on the cloud server. The computational 
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capabilities of smart devices are limited in extent. Another question of “when to offload” 

is also challenging in offloading. A decision scheme needs to be developed for effective 

offloading on the cloud servers. Offloading depend on the various parameters of the device 

and mobile network. The mobility of the device needs to be addressed during the offloading 

process. A mobile device may roam and can change its position during offloading process. 

A mobility scheme is required to be built based on the mobile device's mobility pattern. 

After the data partitioning, offload decision making, and offloading during mobility, the 

task is scheduled on the cloud servers for processing. An optimal scheduling scheme is 

needed to place the task on the cloud servers.  

 

Based on the study, the main objectives of this thesis would be: 

1. To design an optimal algorithm for code partitioning in computational offloading. 

2. To build a decision engine for computational offloading based on the dynamically 

changing environment 

3. To develop a mobility-based offloading scheme where users can offload while 

moving from one location to other. 

4. To develop a scheduling scheme that can prioritize the task on a virtual machine 

1.5 Thesis Contributions 

1. In this research work, initially, a literature review regarding computational offloading in 

MCC has been pursued in chapter 2. The literature is studied from a different perspective 

like code partitioning, decision engines, computational frameworks, mobility management, 

and task scheduling. Further, the research issues have been identified in the computational 

offloading. The challenging part of the research is identifying what, when, where, and how 

to offload correctly. Studying the various types of existing architectures for offloading 

purposes is the prime step of this thesis.  

2. The research contributes to identifying the compute-intensive part of the application. It 
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was found in most of the research papers that the UI part is locally executed while the 

computational task is offloaded on the cloud server. Code partitioning will divide the code 

into two parts- One to execute local and the other to execute remotely. Code partitioning 

algorithm is studied in-depth, and modification has been made in the dynamic code 

partitioning scheme where code is partitioned based on the current parameter like network, 

the bandwidth available. In order to identify that, the application needs to be partitioned. 

In this work, the graph partitioning approach is considered based upon the spectral graph 

partitioning with the Kernighan Lin algorithm. Experimental results show that the proposed 

approach performs optimally in partitioning the application. The proposed technique gave 

better results than the existing techniques in terms of edge cut, which is less, concluding 

minimum communication cost among components and saving energy of the mobile device. 

3. The third contribution of the research is to build the decision engine. A decision engine 

is a reasoner that infers the "When to offload" question. To judge when to offload is very 

important since various parameters like bandwidth, device battery play a crucial part in this 

decision. A technique has been proposed by performing a stack ensemble approach on 

machine learning techniques like the Gaussian approach, multi-layer perceptron, k-nearest 

neighbors, and linear regression. It considers the various dynamics of the environment like 

task size, bandwidth, device battery, and device mobility. The proposed model performs 

better than other decision-making algorithms in terms of execution time and CPU 

utilization and achieves higher accuracy in making decisions while offloading the compute-

intensive task to the remote server. 

4. A fourth contribution of the research will make the mobile cloud computing user device 

offload its computational task while moving from one location to another. The mobility 

pattern of the user can be recorded, and based on the location, the offloading scheme can 

be developed where the user device can offload the task to the nearest cloud server as per 

its convenience. The seamless mobility scheme has been proposed based on the 

heterogeneous network of Wi-Fi and 4G networks. The proposed scheme is based on the 

fourth-order Markov model for mobility prediction and received signal strength (RSS) of 

the network nearest to the next predicted move of the device. The proposed scheme 
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performed better as compared to SINR based handoff mechanism based on the number of 

handoffs and dropped count during device mobility in urban, semi-urban, and rural areas.  

5. The fifth contribution of the research is the task scheduling scheme in a mobile cloud 

environment.  In the end, the task is offloaded to the cloud server where virtual machines 

(VMs) exist. A single physical cloud server contains N virtual machines where the tasks 

are forked into the primary and secondary tasks. Allocating the same VM to the main task 

is required since the primary and secondary tasks sometimes communicate. It is necessary 

to schedule the offloaded task to execute without any deadlock or starvation-like problem. 

This work offers a hybrid scheduling scheme based on bacterial foraging optimization and 

Gaussian-based multi-objective particle swarm optimization (GMOPSO). When compared 

to other PSO variations, this method outperforms them in terms of makespan and energy 

efficiency. 

1.6 Structure of the thesis   

Chapter 1 presents the introduction to the concepts of MCC. It provides the details of the 

areas which are presented in the work. The benefits of MCC have been presented in the 

chapter. The concept of computational offloading has been presented, transferring the data 

from mobile to cloud server to overcome the resource limitations present in the mobile. It 

includes the discussion on code partitioning, where code needs to be partitioned before 

uploading to the cloud. It also discussed decision engines that decide when to offload based 

on various inputs provided by the system profiling. Mobility management is also discussed, 

which defines that the offloading process in MCC may use heterogeneous wireless 

networks, including Wireless LAN (WLAN) and cellular services like 3G, 4G services, 

and even 5G services soon. When the task is delegated to the cloud server from the mobile 

device, it reaches the cloud service provider's server. The concept of task scheduling is 

presented where the cloud service provider manages all information about the task that 

approached it for processing and scheduled it for execution. 

Chapter 2 presents the literature review of the various task partitioning schemes that a 

special program structure usually implements in computation offloading or a design pattern 
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that allows a code to run locally or remotely and handles interactions between the local and 

remote code without affecting the functionality's integrity. It also provides a literature 

review on decision engines. Decision engines decide when to offload based on various 

inputs provided by the system profiling. The decision engine applies logic based on 

stochastic methods, fuzzy logic, linear programming, machine learning-based, etc. Further, 

it provides literature on mobility management in mobile cloud computing.  A mobile device 

is connected to a distant cloud, and continuous mobility causes a disconnection problem.  

Suppose a device is connected through a 4G/ 3G network or in the future 5G with the cloud. 

If the device moves to such a place where the mobile network is not available, the 

connection with the cloud will be broken. The last section of the chapter provides the work 

is done so far in the field of scheduling in MCC and cloud computing. Once the task has 

been offloaded to a virtual machine, its execution plan or schedule is another challenge. 

The scheduling algorithm must be optimally designed so that the task's timely execution 

can be achieved and starvation or deadlock-like conditions can be avoided. 

Chapter 3 presents the efficient partitioning technique considering an application as a 

graph. Two different tasks are primarily done during offloading, first partitioning an 

application and second, moving the created partition to the cloud or server. In this chapter, 

the focus is on the first task, and the graph partitioning approach is considered, which is 

based upon the spectral graph partitioning along with the Kernighan Lin algorithm. The 

proposed approach reduces the communication cost between the different application 

components in terms of edge cuts. Minimizing the communication cost between the 

components leads to saving the energy of the mobile device.  

Chapter 4 presents an approach of an offloading engine that is placed in the mobile device. 

It must be light weighted and also provide highly accurate offloading decisions based on 

the statistics provided to it by the context analyzer. The chapter presents a proposed 

technique for the offloading decision that aims to achieve higher accuracy. It is based on 

the stacked ensemble approach considering various mobile device parameters. The 

proposed techniques aim to reduce the mobile device's processing time and CPU utilization 

while taking the offloading decision.  
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Chapter 5 addressed the issues of seamless connectivity and proposed a technique for 

reducing the number of handoffs and the dropped rate. It is based on the fourth-order 

Markov model for location prediction and an RSS-based scheme for handoff decisions. 

The mobile device perceives these features like data rates, received signal strength (RSS), 

network capacity, bandwidth, and coverage span and decides to select the best available 

network in its current location. The mobility of the device has a more significant impact on 

the process of offloading. While the user is moving, the probability of changing the network 

is high. For the flawless offloading process, the transition among the cellular network must 

be smooth, and handoff must be minimized so that the mobile device remains connected 

with the cloud server. 

Chapter 6 proposed a hybrid scheduling technique based on Gaussian-based multi-

objective particle swarm optimization (GMOPSO) and Bacterial foraging optimization 

(BFO). The GMOPSO provides us the global best solution, whereas using the BFO, the 

local best solution is improvised. The contribution can be summarized as follows. a) 

Minimize the energy consumption and makespan of the scheduling process. b) Simulation 

and performance evaluations of the proposed algorithm with existing approaches. 

Chapter 7 presents the conclusion of the overall work, limitations and the future directions.  

The workflow of the thesis is discussed in the fig. 1-6. 
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Figure 1-6 Workflow of the thesis 

 

 

 

 

Literature review on computational 
offloading techniques in mobile 
cloud computing. 

Phase-1- Pursue literature survey on
code partitioning. Design and
implementation of optimal code
partitioning scheme.

Phase-2 Study of various decision 
engine algorithms. Design and 
implement decision engine based on 
technical or fundamental approach

Phase-3- Study the mobility based 
offloading schemes and design and 
implement the optimal mobility based 
offloading method

Phase-4 Study the scheduling schemes 
on the virtual machines and develop 
and implement the optimal scheduling 
approach for offloaded task
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CHAPTER 2                                                                                

REVIEW OF LITERATURE 

 

 

In this chapter, the literature review has been presented. Computational offloading is an 

essential paradigm in MCC. It has been discussed along with some of the state of art 

frameworks that exist in this field. Further, this chapter emphasizes four significant sections 

of the thesis a) Application partitioning, b) decision making in MCC, c) mobility 

management in MCC, d) Task scheduling in the MCC environment. 

2.1 Computational offloading and frameworks 

Offloading is a complex task that is performed in a step-by-step process. Fig. 2-1 present 

the major steps taken during the offloading process are partitioning an application, 

preparation for offloading, and decision to offload or not.  

 

 

Figure 2-1 Stages of the offloading process 

 

Deciding what to be offloaded is typically done during application partitioning. The 

different granularities of the application can be considered for offloading like object level, 

method level, class level, etc.  Applications are comprised of both compute-intensive tasks 

and GUI-related tasks. The task which is responsible for the GUI cannot be offloaded. So, 

the compute-intensive part is partitioned either statically or dynamically. Annotation used 

by application developers is a popular style of static partitioning where the developer writes 
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local or remote with a code for partitioning purposes. Dynamic partitioning incurs an extra 

cost as, during the execution of an application, it is taking extra effort to identify the code 

for local or remote execution. Once the partitions are ready, the next step is establishing a 

connection with a cloud server, defining the proxy process on both the smart mobile device 

and a remote cloud server. The device should be robust enough to handle failure if a 

connection breaks with the cloud server. It must act intelligently by running a computation 

on the local device itself and provide results to the user. Since program states are 

transferred, re-executing a portion of the computation will not affect the correctness of the 

program. The next major step is whether to offload or not, i.e., offloading decision. Various 

profilers like network, device and program profiler collect information related to network, 

application, battery level, and CPU cycle, which help the solver decide for the offloading. 

Energy and performance parameters are often evaluated during this phase. 

 

Major approaches of computational offloading 

The Fig. 2-2 deliberates offloading approaches in three main directions; Client-Server 

Communication methods, virtualization, and mobile agents. 

 

 

Figure 2-2 Methods of computational offloading 

In the Client-Server Communication process communication, the offloading process 

utilizes the APIs of RPC, sockets, and RMI to offload the task communicate with the cloud 
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server. The advantage is this method is the stability that is offered to the mobile application 

developers. The disadvantage is that the application services need to be pre-installed on 

both ends, and it also not performs optimally due to the unavailability of the services during 

mobility of the device. Existing work like Hyrax [12], Spectra [13], Chroma [14], and [6] 

has developed techniques based on client-server communication.   

A majority of frameworks use virtualization like MAUI [15], Clonecloud [16], Cloudlets 

[17], Thainkair [18], and Mobicloud [19]. Virtualization has reduced the work of 

programmers as rewriting of complete applications is not required in this method. 

However, the virtual machine synthesis takes time, and the compatibility issue also arises 

due to a dynamic mobile environment.  

In the mobile agent method, the mobile code is partitioned and distributed on one or more 

surrogate servers. The cost assessment is done based on the speed of the server. There are 

issues related to security and agent management in this method. Scavenger [20] is a method 

which uses a mobile agent-based method for offloading purpose.  

Various literature has been reviewed which have done considerable work in the field of 

computational offloading in MCC.  

M. Satyanarayanan et al. [21] have proposed the concept of cyber foraging in which 

migrating the task from mobile device to surrogate server is discussed. The author has 

presented some real challenges like discovering the surrogate servers, trust formation 

between client and surrogate, load balancing, which are widely addressed in the recent past. 

RKK et al. [22] proposed the stack-on-demand (SOD) concept in which migration of light-

weighted threads is done using the JVM environment. The SOD. supports the partial 

migration of thread data onto the server and thus optimizes the performance of the MCC 

process. The SOD. model is implemented into a Java distributed runtime named the SOD.  

S. Kosta et al. [18]  proposed the framework for offloading work "Thinkair" over the cloud 

with its application server concept and broadly discussed profiling. Fig. 2-3 presents the 

Thinkair framework which have exploited the mobile device virtualization over the cloud 

and provide method-level computational offloading. Parallel execution of tasks over 

multiple virtual machines has been proposed in the concept. Thinkair framework can be 
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seen in fig. 2-3, which is implementing the offloading concept using the client-server 

model. 

 

 

Figure 2-3 Thinkair framework for offloading [18] 

 

R. Kemp et al. [6] proposed the primitive android-based framework CUCKOO for 

computational offloading. The framework offers a simple programming model using 

remote method invocation and IPC mechanisms for local and remote job execution. It 

provides a dynamic runtime system that decides whether a code will execute locally or 

remotely at runtime. 

Yang Ge et al. [8] proposed an algorithm that is based upon a game-theoretic approach. 

The client resembles the player, and its strategy is to select one server which provides him 

energy-efficient offloading scheme. The researcher can achieve Nash equilibrium in 

polynomial time, which means it is an optimum solution where no player can find a better 

policy if he deviates from the current policy unilaterally.  

Ejaz Ahmed et al. [23] provide an extensive survey for seamless application execution in 

MCC. They have focused on the study of state-of-the-art cloud-based mobile application 

execution frameworks (CMAEFs). Different frameworks are compared based on some 
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significant parameters and, in the end, have suggested open challenges in the field. 

 

 

Figure 2-4 Offloading mechanism in mobile cloud [24] 

 

Dejan Kovachev et al. [24] present Mobile Augmentation Cloud Services (MACS) 

middleware, enabling the adaptive extension of Android application execution from a 

mobile client into the cloud. Fig. 2-4 presents a middleware which performs the application 

partitioning, resource monitoring, and computation offloading. The application is partially 

divided dynamically into two parts: running locally and running on a cloud server. The 

middleware supports android-based offloading and achieved parallelization of the 

offloading services.  

S. H. Hung et al. [25] proposed the profile-based policy manager where agent programs 

and integrated VPA tools are used for dynamic profiling. They have utilized cloud-based 

services for getting better energy and performance factor. 

S. Yang et al.  [26]  proposed a two-phased portioning mechanism MACO in which, after 

code extraction, the user interface is executed locally, and the computational part is 

offloaded on a remote server. They have proposed code partitioning to present the 

application as two components- UI components and computational segment. Sending UI 

information is inefficient over the network. Thus, the proposed method divides applications 
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so that UI runs locally and code computational is transferred on a remote server.  

P. Balakrishnan et al. [27] proposed an energy-efficient algorithm for offloading in which 

applications are partitioned into several interconnected partitions like task interaction 

graphs (TIG) and scheduled for resources with minimum slack time. They have used the 

technique dynamic voltage and frequency scaling (DVFS) for better power consumption 

modeling. 

A. Mtibaa et al. [28] proposed the offloading scheme where offloading is done on the set 

of mobile device which they named as mobile device cloud(MDC) rather directly on a 

distant cloud server. The task will be offloaded on the stable and durable mobile nodes 

which are identified based on some social and contact history information. The proposed 

algorithms show 80-90 % of energy-saving than offload on a distant cloud server.  

H. Qian et al. [29] proposed the android based framework Jade which dynamically changes 

its offloading strategy for energy-efficient offloading. Fig. 2-5 depicts the Jade framework, 

which is using the RPC mechanism for client-server communication. 

 

 

Figure 2-5 Jade framework [29] 

 

M. P. Anastasopoulos et al. [30] have proposed the traffic-based computational based 

upon a multi-objective non-linear programming scheme to optimize the network 

performance, computational infrastructure, and battery lifetime in the worst case of delay 

condition. The researchers have used the concept of network calculus for the theory.  
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Mati B et al. [31] have proposed the multi-site offloading policy based upon the Markov 

decision process. The idea distinguishes between data and computation-intensive 

components of an application and performs data and process-centric multi-site offloading. 

To represent fading wireless mobile channels, they used the discrete-time Markov chain. 

The energy-efficient Multi-site Offloading Policy (EMOP) algorithm has been developed 

as an efficient solution to the multi-site partitioning problem, based on a value iteration 

algorithm (VIA). 

Byung-Gon Chun et al. [16] have implemented CloneCloud, a flexible application 

partitioner that enables application-level VMs in mobile applications onto a device clone 

operating in a computational cloud. They used a dynamic profiler and optimization solver 

to migrate the method from mobile devices to the cloud. CloudClone migration works at 

the granularity of thread-level, making the whole process lightweight and energy-efficient. 

Xinwen Zhang et al. [32] have proposed offloading schemes where the single elastic 

application is partitioned into platform-dependent or multiple independent weblets, which 

can execute locally or migrated on the cloud server. They have also discussed the cost 

model of an elastic application.  

Y. Zhang et al. [33] have suggested that for a mobile user with intermittent connections 

while on the move, an efficient offloading technique is needed. The task can be offloaded 

to the servers based on the mobile device's mobility pattern, local cloud, and cloudlet 

availability. For the best development of the algorithm, they used the mathematical model 

Markov decision process. The MDP model is used to determine whether a program should 

be run locally or remotely. 

Min Chen et al. [34]  proposed mobility-aware-based caching and computational 

offloading in a 5Gultra-dense network. The authors have presented the different caching 

schemes and developed a hybrid offloading mechanism to achieve the tradeoffs among 

MBS, SBS, and D2D computational offloading.  

M. V. Barbera et al. [35] have proposed an architecture where each mobile device is 

associated with a software clone on the cloud. They consider two clones (i) an Off-clone 

responsible for computational offloading and (ii) a back-clone used to restore user's data, 
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and the app is required. This concept helps to save energy and bandwidth both at the same 

time. 

Mark S. Gordon et al. [36] have proposed an offloading scheme built over Dalvik Virtual 

Machine where threads can migrate freely over multiple virtual machines depending upon 

the workload. The researcher also proposed T-scheduler, which schedules the threads 

between the endpoints to optimize the throughput. Threads communications, VM 

synchronization, and thread migration have inculcated the scheme.    

Marinelli et al. [12] have proposed the platform Hyrax, which is derived from Hadoop that 

cloud computing over android devices. It enables smart mobile devices to utilize the 

network for the various resources required for its task execution. After doing specific 

customization, the Hyrax can be used as Hadoop over a mobile device. Using the concept 

of MapReduce and HDFS, Hyrax performs offloading in mobile devices. Task partitioning 

can be done as per the MapReduce philosophy. 

Hao Qian et al. [37]  proposed a system of offloading to classify the local and remote 

workflow by annotation. Those marked as @local will execute locally, and @remote will 

execute on a distant cloud server. The scientific workflow is defined by the XAML file, 

where the node represents each step. The hierarchical structure of XAML makes it easy to 

analyze the relationship of the steps. 

 Diogo Lima et al. [38] have proposed the cyber foraging technique where they have 

adopted the programmer-driven partitioning model where the developer wrote annotations 

to partition the code from its bytecode to remotely executable code. Annotation includes 1 

and 0 for local and remote execution, which influences the decision to offload. A decision 

will be affected by the network bandwidth, execution load, and available services provided 

by the cloud server. 

2.2 Code partitioning in MCC  

Computational offloading in MCC utilizes the code partitioning approach to discrete the 

compute-intensive portion of the application for running it in distributed or cloud 

environment. The applications which can participate in the runtime partitioning scheme are 

known as elastic applications. These elastic applications get executed transparently and 
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seamlessly on the remote servers. Applications can be partitioned by using various 

partitioning schemes into separate components with different granularity    

Code partitioning splits the application into two parts- compute-intensive and mobile 

device-specific like user-interface ensuring that semantics of the application can be 

preserved. Code partitioning is performed as the pre-processing step in the offloading 

process, deciding which portion of the application will run locally or remotely on the 

device. Application or code partitioning in mobile cloud offloading can be performed using 

different strategies to partition the application. Fig. 2-6 defines the parameters of the 

application where code partitioning can be performed.  

 

 

Figure 2-6 Parameters deciding the behaviour of code partitioning 

 

 Code partitioning in the application can be done on different granularities like module 

level, method level, object level, thread level, class level, task level, allocation site-level 

partitioning, and hybrid level partitioning. The objective of partitioning can be improving 

the performance, reducing memory constraints, reducing network overload, reducing 

programmer burden, and saving energy. Different partitioning models can be used to 

partition the application for offloading purposes like Graph-based, Linear programming 

based and Hybrid applications. Partitioning can support a single-level or multilevel 

programming approach. Various types of profilers like hardware, software, network 
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profilers can be used by application partitioning scheme. The decision to offload to remote 

or execute locally is decided by the allocation decision attribute, where the decision can be 

taken online, offline, and in a hybrid format. The analysis technique is used to identify the 

dependency of the component on each other. It can be done statically at the bytecode level 

or dynamically involving runtime profiling. Annotation is a type of metadata that talks 

about which component will be executed for partitioning. A programmer does manual 

annotation during the code development, stating that a particular piece of code will be 

executed remotely or locally. Automatic annotation decides in runtime about code 

availability for execution.  Table 2-1 discussed the code partitioning scheme in MCC along 

with techniques of partitioning and its limitations.  

   

Table 2-1 Code partitioning techniques in MCC 

 

 

Paper 

Technique used for 

partitioning 
Limitations 

ThinkAir [18] 

ThinkAir provides a basic 

library that, when combined 

with compiler support, 

simplifies the job of the 

programmer: every procedure 

that should be considered for 

offloading is annotated with 

@Remote. 

Requires developers to 

annotate source code methods 

Cuckoo [6] 

Use the current 

activity/service architecture in 

Android, which uses an 

interface specified by the 

developer in an interface 

specification language to 

separate compute-intensive 

elements (services) from 

interactive sections of the 

Used android based activity 

model but still requires an 

optimal code to be offloaded 
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programme (activities) (AIDL) 

MAUI [39] 

Developers must use the 

"Remoteable" annotation to 

indicate the can-be-offloaded 

methods of a.Net mobile 

application. 

Requires developers to 

annotate source code methods 

Clonecloud [16] 

Modifies the Android 

Dalvik VM to include an 

application partitioner and 

execution runtime, allowing 

apps to offload chores to a 

cloned VM hosted by a Cloud 

server. 

Static partitioning 

technique requires to use of a 

modified JVM 

Jade [29] 

A remotable class is a class 

that implements the Remotable 

Task interface. A remotable 

object is an instance (object) of 

remotable classes. 

Static partitioning 

technique requires developers 

to annotate source code 

methods 

Automatic scientific 

workflow on the local cluster 

and cloud [37] 

Annotation for remote as 

@remote and local as @local 

Static partitioning 

technique requires developers 

to annotate source code 

methods 

Towards a new model for 

cyber foraging[38] 

Propose to use annotations 

written by the developer to 

partition an application from its 

bytecode into remotely 

executable methods based on 

network conditions, execution 

workload, and no. of server 

available 

Dynamic partitioning 

technique requires developers 

to annotate source code 

methods 

An Optimal         

Offloading Partitioning 

Algorithm 

in Mobile Cloud Computing 

[40] 

Based on the Consumption 

Graph (CG) and Weighted 

Consumption Graph (WCG), 

which is a dynamic based 

concept 

Dynamic partitioning 

method but communication 

cost b/w local and remote 

server is a challenge 
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Figure 2-7   LP-based code partitioning scheme in MCC [49] 

 

Linear programming (LP) is a mathematical representation of an code partitioning 

approach that uses an objective function to identify the best solution [41] [42]. The 

objective function is a linear type and helps in achieving a solution in a worst-case scenario. 

LP models help in formulating optimization equations in mobile applications while 

considering various variables as an integer value. In case of unavailability of the profilers 

and annotation also in mobile application, the linear programming helps to decide the 

partitioning module as seen in fig. 2-7. 
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Figure 2-8 Mixed form of code partitioning scheme in MCC [49] 

 

In order to increase the efficiency of APAs, the hybrid application partitioning algorithm 

combines elements from both graph-based and LP-based application partitioning 

algorithms by extracting relevant aspects which is discussed in fig. 2-8.  Mobile Assistance 

Using Infrastructure (MAUI) [39] performs hybrid application partitioning by considering 

the application as a graph and performing linear programming also for optimization of the 

partition results. In similar manner, other framework like cloudclone [16] and [43] [44] 

have used the hybrid application partitioning. 
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Figure 2-9 A Graph-based code partitioning scheme in MCC [49] 

 

Applications are difficult to comprehend and represent; applications are modelled using a 

Directed Acyclic Graph (DAG). Fig. 2-9 discussed the graph -based code partitioning 

scheme. Vertices and edges are the two components of a graph, and they represent the 

various parameters of an application. [5]. The vertex represents the computational cost, 

while the edge represents the communication cost. The partitioning strategy aims to 

partition the code in different segments where minimum possible communication holds 

between the nodes. In MCC, during offloading, the application is partitioned either 

statically or dynamically [45] [46] [47] [48]. 
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Graph-based application partitioning models the mobile applications in the form of a 

Directed Acyclic Graph (DAG) as shown in the Fig. 2-10. The different elements of the 

graph, namely vertices and edges, represent the various parameter of the mobile 

application, such as computation cost, memory cost, granularity, data size, communication 

cost. 

 

Figure 2-10   Directed Acyclic Graph (DAG) representing a mobile application 

 

Graph-based techniques use a different coarsening algorithm to maximize code 

partitioning. In mobile cloud computing, a step-by-step process for graph partition. The 

first step is to determine whether the annotation is required. If the annotation is not present, 

the developer must manually add annotations to the code [49].   

If the application has annotations, it will continue to check the profiler's output. The profiler 

will collect the information that the application requires. After completing all of the 

preceding phases, the execution moves on to the graph modelling phase. Graph modelling 

can benefit from programmer annotation and profiling results. 

Following that, one or more algorithms are used to improve the graph model. Finally, 

inference methods such as solver are given the optimization result in order to decide and 

perform partitioning. Since our work is focused upon the code partitioning algorithm, the 

annotations and profiler output are assumed to be ideal. 

Many real-life applications have N number of solutions in the solution space. If an 

application requires multiple solutions, optimization can be achieved by selecting the best 

alternative solution based on certain factors. The graph partitioning problem (GPP) is 
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concerned with partitioning the vertices in such a way that the edge cut value is reduced. 

When considering the GPP in the mobile cloud computing applications, the different 

vertices can be assumed at different granularity levels like classes, methods, threads, 

objects, or the application itself as a vertex.  

In our problem, we are assuming vertex as method-level granularity. There are various 

techniques like local search optimization techniques like Simulated Annealing, Genetic 

Algorithm, Tabu Search, Random Walk, Neighbourhood Search, Swarm intelligence-based 

Ant Colony Optimization, and Particle Swarm Optimization which can be used for the 

optimization method. These optimization strategies are distinguished by the recursive 

application of the local search approach to the problem's solution. Graph partitioning is an 

NP-hard problem that aims to divide the graph's nodes such that there is a minimal inter-

partition relationship that means minimum communication cost and execution cost on both 

sides of the client or cloud side. The multilevel graph partitioning method has emerged as 

highly effective graph partitioning in recent scientific studies.  George Karypis et al. [50] 

have done proposed multilevel graph partitioning schemes which are effective in their 

manner. A multilevel approach can be used to divide Graph G. A multilevel algorithm's 

basic flow is simple to comprehend. The graph G is coarsened down to a few hundred 

vertices, a partition of this considerably smaller graph is produced, and the partition is then 

projected back towards the original. 

Huaming Wu et al. [40]  suggested the min-cost offloading partitioning (MCOP) 

algorithm, which partitions the code for local and remote execution. The partition model 

differentiates the offloadable and unaffordable tasks based on the consumption graph as 

presented in the fig. 2-11.  The cost model is also proposed for calculating the overall cost 

of execution of the task. The MCOP algorithm provides a stably quadratic runtime 

complexity to decide the task execution locally or remotely.  
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Figure 2-11   Consumption Graph and Weighted Consumption Graph [40]   

2.3 Offloading decision making in MCC 

Decision engines are considered a key component in the offloading framework [2], 

which decides to offload the task to the remote server based on the profiling process's 

available parameters.  

 Eduardo Cuervo et al. [39] proposed an energy-aware offloading mechanism “MAUI” 

and used code partitioning and profiler concept for offloading the task. It has used the 

optimization engine for decision making and provides an energy-efficient strategy at 

runtime. MAUI architecture is presented in fig. 2-12. 

 

 

Figure 2-12   High-level view of MAUI's architecture [39] 
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Mohammed A. Hassan et al. [51] proposed the scheme POMAC for dynamic decision-

making, which is transparent to the developer and compares the existing decision classifier 

for their approach. 

B.Gao et al. [52] proposed an algorithm that takes total energy consumption and schedule 

length as an essential parameter for offloading. The authors have proposed two strategies- 

One for uploading the task from the mobile device to the server and the second on the 

server's side workflow engine. They have focused on autonomous decision-making ability, 

offload authorization, and task clustering. 

B. Zhou et al. [53] suggested the "mCloud" offloading framework, which consists of a 

mobile device, proximate cloudlets, and a public cloud service, with the goal of improving 

the MCC service's availability and performance. Context-aware offloading decision 

provides decision at the runtime where to offload code and in which wireless medium. The 

framework also provides the cost estimation method for accessing time and energy.    

M. Amoretti et al. [54] proposed a modelling and simulation framework MCC design and 

analysis, including energy efficiency, storage capacities, processing power, and data 

security. The proposed discrete event simulator is a useful tool for evaluating the parallel 

task's execution. The model is based on the Queueing Network (QN), which consists of 

two sub-networks, one for each type of queue. They have also proposed the offloading 

decision algorithm based upon the energy level. The offloading policy is formulated on the 

offloading probability parameter.   

Mahbub E. Khoda et al. [55] have presented an intelligent computation offloading system 

for offloading code from a mobile device to a cloud server over a 5G network. They 

suggested a decision engine based on the Lagrange Multiplier, a non-linear optimization 

solver that increases application reaction time and reduces mobile device energy 

consumption. 

Mendoza et al. [3] suggested a Python-based system in which offloading decisions are 

made based on cloudlet execution time, client device execution time, and mobile device to 

cloud transfer time. 

Kosta et al. [4] proposed the framework for offloading work "Thinkair" over the cloud with 
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its application server concept and broadly discussed profiling. They have exploited the 

mobile device virtualization over the cloud and provide method-level computational 

offloading.  

Kemp et al. [5] proposed the primitive android-based framework CUCKOO for 

computational offloading. The framework offers a simple programming model using 

remote method invocation and IPC mechanism for the job's local and remote execution. 

It has a robust runtime algorithm that determines whether code should be executed locally 

or remotely at runtime. Table 2-2 presents the comparative study of the offloading related 

work on the basis of energy (E) and performance (P) parameter and type of profiling, 

decision engine and application considered. 

 

Table 2-2   Various decision-making techniques in MCC 

 

Paper Year Contribution E P 

Type of 

Profiling 

done 

Decision 

engine 

addressed 

Offloading 

application 

Kosta et al. 

[18] 
2012 

Proposed a 

framework based 

upon three-

component, i.e., 

application 

server, execution 

environment, and 

profiler 

✓ ✓ 

Hardware, 

Software, 

Network 

Execution 

controller 

based upon 

time, 

energy, and 

cost 

N-Queens 

problem, Virus 

scanning 

application, 

Image 

combiner, face 

detection 

application 

 

Rudenkc et 

al. [56] 
2012 

CUCKOO-

Worked for 

android based 

application. 

Presented 

intelligent 

offloading 

mechanism based 

upon IPC 

✓ ✓ 

Heuristic 

approach 

considered 

Yes 

Eyedentify 

(image-based 

app) and 

Photo-shoot 

(augment 

reality game-

based app) 

Cuervo et 

al. [39] 
2010 

Primarily worked 

on energy 

management. 

Provides high-

level 

programming 

✓ ✓ 

Device, 

Program, 

Network 

Yes 
Face 

recognition 
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architecture for 

remote execution 

based on RMI.  

Ma et al. 

[22] 
2011 

Propose and 

implemented 

computation 

migration 

technique stack-

on-demand 

(SOD) into Java 

distributed 

runtime that 

migrates the 

light-weighted 

threads. It 

optimizes 

offloading by 

moving more 

specific data over 

the cloud. 

 ✓ 

Data 

migration 

through 

JVM Tool 

Interface 

(JVMTI) 

No 
iPhone based 

application 

Kovachev et 

al. [24] 
2012 

Proposed the 

middleware 

named mobile 

augmentation 

cloud services 

(MACS), which 

enables 

applications of 

android to offload 

the task from the 

mobile device to 

the cloud server 

✓ ✓ 

Profiling 

is done by 

MACS 

middlewar

e 

MACS 

form an 

optimizatio

n problem 

that 

decides for 

local or 

remote 

execution 

Generally, 

android based 

application 

Solved the N-

Queens 

problem, and 

face detection 

and face 

recognition 

Gao et al. 

[52] 
2012 

Present a 

heuristic 

algorithm and 

provide a 

dynamic 

offloading 

solution that 

saves time and 

energy 

✓ ✓ 
Energy 

profile 

Decision 

algorithm 

based upon 

time and 

energy 

Type of 

workload not 

defined clearly 

Hung et al. 

[25] 
2012 

Proposed a 

framework that 

profiles the data 

and decides 

dynamically to 

offload or not 

 ✓ 

Framewor

k 

integrated 

along with 

VPA tool 

profile-

based 

policy  

manager 

and 

profiling 

service 

object 

recognition 

(OR) 
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helps in 

decision 

making 

Yang et al. 

[26] 
2012 

Proposed a two-

phase partitioning 

mechanism called 

Manageable 

Application Code 

Offloading 

(MACO) which 

divides the 

problem in UI 

based and 

computation 

based and 

executes them 

separately, one 

locally and the 

other remotely. 

✓ ✓ 

Network-

based and 

done by 

automatic 

partitionin

g 

mechanis

m 

Used the 

concept of 

decision-

maker 

web pages 

from 

commercial 

and online 

products 

Xia et al. 

[57] 
2013 

The phone2cloud 

architecture, 

which includes a 

bandwidth and 

resource monitor 

as well as an 

execution time 

predictor, was 

proposed and 

built. For the 

framework, an 

offloading 

decision engine 

was also 

proposed. 

✓ ✓ 

Bandwidt

h and 

Execution 

time 

Used 

offloading 

decision 

algorithm 

based on 

execution 

time and 

power 

consumptio

n 

Sort, Pathfinder 

(shortest path), 

and word count 

Eom et al. 

[58] 
2013 

Presents an 

adaptive machine 

learning 

algorithm based 

on the founding 

from four 

different 

workloads and 19 

distinct machine 

learning 

algorithms and 

four workloads 

and worked over 

the Android-

✓ ✓ 

computati

on work, 

data size, 

bandwidth 

Use 

machine 

learning-

approach to 

decide 

whether to 

offload or 

local 

Android-based 

applications 
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based application 

for final testing of 

the algorithm 

Mtibaa et al. 

[28] 
2013 

Proposed 

environment 

mobile device 

cloud (MDC) in 

offloading 

happens in the 

cloud created by 

a group of the 

mobile device. 

✓  Energy 

and time 

Implement

ed own 

MDCloud 

to decide to 

offload on 

MDC, 

Cloud, or 

cloudlet 

Android-based 

applications 

Anastasopo

ulos et al. 

[30] 

2014 

Proposed multi-

objective service 

provisioning 

scheme for 

energy-aware 

offloading with 

delay 

consideration 

✓  

Decision-

based on 

energy 

consumpti

on 

Use the 

concept of 

network 

calculus 

Not defined 

Qian et al. 

[29] 
2014 

Proposed a 

framework that 

saves energy 

during 

computation 

offloading in 

Android apps 

✓ ✓ 

Execution 

time, 

Battery 

level, 

CPU and 

wireless 

connectivi

ty, data 

size 

Use the 

concept of 

Jade 

optimizer 

for making 

a decision 

Image 

processing, 

Navigation 

application 

Truong-Huu 

al [59] 
2014 

Dynamic 

opportunistic 

offloading 

algorithm has 

been proposed, 

which is based 

upon the Markov 

decision process 

 ✓ Energy 

Use MDP 

model for 

opportunist

ic 

offloading 

Size reduction 

of photographs 

Hyytiä et al. 

[60] 
2015 

Proposed a 

stochastic model 

for studying the 

dynamic 

offloading in 

mobile cloud 

computing 

✓ ✓ 

Energy, 

monetary 

cost, delay 

Decision is 

based on a 

multi-

queue 

model 

which 

captures 

the 

required 

features 

Not available 
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Terefe et al. 

[31] 
2015 

Application can 

be executed on 

multi-site which 

uses discrete-time 

Markov chain 

(DTMC) to 

prototype fading 

wireless mobile 

channels 

✓  Energy 

Combinatio

n of static 

analysis 

and 

dynamic 

profiling 

leads to the 

formation 

of a 

mathematic

al model 

Code intensive 

and data-

intensive 

Lee et al. 

[61] 
2015 

Proposed a 

mobility aware 

based offloading 

decision and use 

a second-order 

Markov model as 

a mobility model 

✓ ✓ 

Device, 

Program, 

Network 

propose a 

probability-

based 

prediction 

engine for 

taking an 

offloading 

decision 

Considered 

dummy dataset 

Flores et al. 

[7] 
2015 

 

Framework is 

proposed, which 

is offloading the 

application 

considering 

granularity at the 

method level. 

Java reflection is 

used along with 

the client-server 

model 

✓ ✓ 

memory, 

CPU, 

network 

bandwidth

, cloud 

server 

capacity, 

and also 

size of the 

applicatio

n  

Informatio

n defined 

in a JSON 

schema is 

used to 

create the 

automated 

mechanism 

which 

profiles the 

code 

NQueens 

problem  

Zhang et al. 

[33] 
2015 

Proposed an 

MDP based 

dynamic 

offloading 

algorithm 

✓ ✓ 

Computati

on power 

and 

execution 

cost 

Used 

stochastic 

modelling 

and 

dynamic 

optimizatio

n. 

Designed a 

dynamic 

algorithm 

for 

decision 

making 

Face 

recognition 

  

Wang et al. 

[62] 
2015 

Proposed 

adaptive 

application 

offloading model 

✓ ✓ 

Response 

time and 

energy 

Dynamic 

application 

offloading 

policy 

Real-time 

applications 
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in the paper. 

Lyapunov 

optimization 

theory is used to 

propose the 

offloading 

decision 

algorithm 

based on 

stochastic 

network 

optimizatio

n 

Neto et al. 

[63] 
2016 

Proposed and 

implemented a 

location-aware 

decision engine 

that is modelled 

upon execution 

time, energy, and 

bandwidth 

prediction 

✓ ✓ 

CPU and 

Bandwidt

h 

Used 

location 

awareness 

and spline 

interpolatio

n for 

modelling 

the 

decision 

engine  

Face Detection 

Application  

Khoda et al. 

[55] 
2016 

Over the 5G 

network, 

proposed an 

intelligent 

computation 

offloading system 

that takes 

decisions for code 

offloading from a 

mobile device to 

a cloud server. 

✓ ✓ 

Bandwidt

h, data 

size, cloud 

speed 

factor, 

server 

load 

condition 

Used 

regression 

model, 

Lagrange 

multiplier 

for 

decision 

making 

N-Queens 

application 

Wu et al. 

[40] 
2016 

The min-cost 

offloading 

partitioning 

(MCOP) 

technique was 

proposed, which 

divides the code 

into sections for 

local and remote 

execution. Based 

on the 

consumption 

graph, the 

partition model 

distinguishes 

between 

offloadable and 

non-offloadable 

processes. 

✓ ✓ 

Program, 

network, 

and 

energy 

profiler 

Weighted 

call graph 

is used for 

offloading 

decision 

Face 

recognition 

application 
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Chen et al. 

[34] 
2016 

Proposed the 

concept of 

mobility aware-

based caching 

and 

computational 

offloading in the 

5Gultra-dense 

network. 

✓  
Channel 

bandwidth 

Based on 

the 

mobility of 

the user, 

offloading 

strategy is 

decided 

Random 

mobility nodes 

considered 

Chen et al. 

[64] 
2017 

A framework is 

offered based on 

an application's 

design pattern, 

and an estimating 

model is offered 

that determines 

which cloud 

resource to 

offload. 

✓ ✓ 

Focused 

upon the 

network 

aspect 

considered 

bandwidth

, round 

trip time, 

and server 

(cloud 

resource) 

response 

time 

Based on 

the 

profiling 

information

, a decision 

algorithm 

will select 

the optimal 

service for 

offloading 

Gobang game 

(Interactive 

chess game) 

and face finder 

application 

Rego et.al 

[65] 
2017 

Proposed an 

offloading 

decision scheme 

in which decision 

tree algorithm 

C4.5 is 

considered as a 

significant theme. 

✓  

Mainly 

considered 

the 

network 

conditions 

like data 

rate and 

round-trip 

time 

(RTT) 

Decision to 

offload is 

taken based 

on decision 

tree 

Matrix 

operation 

Ko et al. 

[66] 
2018 

Decision-making 

is done using the 

formulation of the 

Markov decision 

process (MDP). It 

is formed 

considering the 

various types of 

wireless networks 

and device spatial 

and temporal 

conditions. 

✓  

Network 

conditions 

are 

considered 

for 

profiling 

purposes 

like 

device 

position in 

Wi-Fi AP, 

edge, and 

cloud 

Value 

Iteration 

Algorithm 

is used for 

making an 

optimal 

decision in 

MDP 

formation 

Considered 

dummy task of 

different 

complexities 

level 



45 

 

Ravi et al. 

[67] 
2018 

DBSCAN, along 

with KL 

divergence, has 

been used for 

identifying the 

offloading task. 

Further, the 

offloading 

algorithm is used 

for decision-

making purposes. 

✓  
CPU 

cycles 

Designed 

decision 

algorithm 

which 

considered 

CPU cycles 

and 

execution 

deadline 

based on 

probabilisti

c measures. 

Chess game 

and Video 

editing 

application 

Zhou et al. 

[68] 
2019 

Optimal solution 

for offloading on 

multi-edge 

servers has been 

explored using 

Markov approx. 

approach. 

Performed state 

transition over 

Markov chain 

considering 

different 

configurations 

✓ ✓ 

CPU 

cycles, 

uplink, 

and 

downlink 

data rates 

Used 

Markov 

based 

approximat

ion 

approach 

for 

decision 

making 

Considered 

dummy task 

with different 

load scenarios 

Qi et al. 

[69] 
2019 

Decision 

algorithm has 

been developed 

using the deep 

RL approach. 

Mobility models 

are also 

developed for 

decision-making 

in smart vehicles. 

 ✓ 

Mobility 

factor, 

bandwidth

, CPU 

cycle 

Used A3C 

algorithm 

for 

decision 

making 

Created own 

task for testing 

purpose 

Misra et al. 

[70] 
2019 

Proposed and 

implemented 

three-tier 

architecture for 

offloading in the 

cloud, cloudlets, 

and nearby 

devices based 

upon auction 

theory. 

✓ ✓ 

Bandwidt

h, 

Response 

time, 

energy  

Used the 

auction 

theory 

principle 

for 

decision 

making 

Merge Sort, 

Knapsack 

problem, 

Matrix 

multiplication 
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Zhou et al. [53] suggested the "mCloud" offloading structure, which consists of mobile 

devices, cloudlets near the device, and a public cloud service, with the goal of improving 

the MCC service's availability and performance. The context-aware offloading decision 

provides a decision at the runtime where to offload code and wireless medium.  

Manukumar et al. [71] proposed an enhanced particle swarm optimization algorithm 

approach for decision making and aimed to reduce the makespan of the offloading process 

and power consumption. A decision-making approach based on online machine learning 

and genetic algorithms was proposed by Xiaomin et al. [72]. It was also designed to 

conserve energy and time when using a mobile device.  

Elhosuieny et al.  [73] proposed a methodology based on non-linear polynomial regression, 

which helps in building the time-predicting model. It decided to offload based on 

bandwidth and predicted time to execute on the mobile device.  

Shahidinejad et al.  [74] proposed a decision-making scheme based on learning automata. 

It has improved the decision engine's execution time using the probability of the mobile 

device's events. Much work has been done on energy and performance during the 

offloading process, but the work on the accuracy of the decision engine classifier has not 

been addressed in most research.  

2.4 Mobility mechanism in MCC  

 Mobility in wireless networks refers to a node, Mobile Node (MN), changing its 

attachment point to the network while its communication to the network remains 

uninterrupted. The current requirement in wireless communication is to provide services to 

the consumer on a real-time basis. Various applications related to multimedia applications, 

healthcare, and gaming require ubiquitous services maintaining the high data rate and 

providing roaming services. The evolution of wireless communication can be seen in        

fig. 2-3, where it can be seen that the data rate gets increased in the past years, and mobility 

has taken its essential place in the communication system.  
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Figure 2-13 Evolution of Wireless communication [61] 

  

Evolution of wireless communication is discussed in fig. 2-13. In the early 1980s, the 

foundation of 1G was laid down, which provided seamless connectivity in mobile voice 

services. The data bandwidth was around 2kbps and used the FDMA multiplexing. The 

base stations were deployed for the mobile users in the geographical area called a cell.  

Ideally, the hexagonal shape seems perfect for frequency reuse in the cellular network, as 

seen in fig. 2-14 but these cells overlap in reality. 

 

Figure 2-14   Frequency reuse in cellular cell 

 

A base station is a communication system used to establish communication with the 

mobile device using radio waves. Each base station has a coverage area, and receivers and 

transmitters are mounted on the base station. Two radio channels are used for the 
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communication between mobile and base station a) control channel used for call setup, call 

initialization, and other control purpose b) forward channel used for transmitting 

information from base station to the mobile device. 

2.4.1 Wireless communication technologies 

The 1G mobile technology [75] has used analog signal that works amazing for voice 

communication but has challenges like limited capacity in terms of spectrum and limited 

scalability. 2G was introduced in the 1990s, providing more voice capacity using 

modulation techniques like TDMA and working on digital signals. Technologies like D-

AMPS and GSM were based on the TDMA. The digital transmissions enable voice 

compression and very scalable technology. Still, an issue of signal interference was there 

in the 2G technology. The call drop was potentially high in the 2G network. It had started 

using CDMA technologies for voice communication. 2G does the communication by using 

both circuit and packet switching modes. In all these cellular networks, there are base 

station controller (BSC) and base transceiver stations (BTS). Each cell in the network has 

one BTS, and multiple BTS are controlled by one BSC. These BSC are connected to the 

mobile switching centre (MSC), which is linked to the PSTN network. The cellular 

network's basic design and its many components are depicted in fig. 2-15.  

 

 

Figure 2-15 Basic structure of a cellular network [75] 
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In the early 2000s, the 3G technology, also known as the universal mobile 

telecommunication system (UMTS), was introduced with a high data rate of 2Mbps and a 

packet network method. It delivered high data rates, more capacity, and enhanced the 

experience of mobile broadband. It provided high-quality audio and video services using 

WCDMA technologies and supports both circuit and packet-switched for call and internet. 

UTRAN acts like the brain of the network. The nobeB is acting similar to the BTS of the 

2G systems.  Radio network controller (RNC) can be connected to many enodeB through 

the lub interface. RNC is further connected to the PSTN and PDN network in the core 

network of the 3G systems. The 3G system works parallel with the conventional cellular 

system where the voice network works as the previous network setup, and the data network 

operates in parallel by serving the GPRS support node (SGSN) and gateway GPRS support 

node (GGSN) as defined in fig. 2-16.  

 

Figure 2-16   Basic structure of a 3G network 

 

 After the evolution of the 3G system, around the year 2010, the 4G technology was 

introduced with a data speed of 200 Mbps.  It is a unified IP and seamless mixture of 

broadband technologies of LAN, WAN, and WLAN. It uses CDMA and internet 

technologies for core communication.  The enodeB is similar to BTS and nodeB, whereas 

E-UTRAN acts as an interface for all coordination of user devices and backend core 

network. The EPC has two planes a) core plane which is used for controlling, managing, 

and monitoring the communication, and b) the user plane             
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Figure 2-17   Basic structure of a 4G network 

 

which is used for managing data communication, management, and evaluation purposes. 

The MME is a mobility management entity that takes care of mobility issues and 

authentication, and HSS is a home subscriber system that keeps the information about user 

records. 

2.4.2 Handoff Management  

Disconnection becomes a vital problem because of continuous mobility.  Assume a device 

is connected to the cloud over a 4G/ 3G network or, in the future, 5G. Now, if the device 

goes to a location where the mobile network is unavailable, the cloud connection will be 

lost. A handoff occurs when a mobile device switches from one network to another. The 

seamless transitions among networks can be either horizontal or vertical. 

 

Vertical and horizontal handoff 

When a device moves from one network to another without changing the network type, 

then the process is called horizontal handoff [76], and if it changes the network, then it is 

called vertical handoff. Heterogeneous networks (Hetnets) have various types of features 

like data rates, received signal strength (RSS), network capacity, bandwidth, and coverage 

span. Fig. 2-18 depicts the horizontal and vertical handoff style. 
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        Figure 2-18 Horizontal and vertical handoffs [76] 

 

The mobile device perceives these features and decides to select the best available network 

in its current location. Various reasons can lead to the process of handoff, like avoiding the 

call drops situation, when cell capacity to hold new calls is exhausted, the existence of 

channel interference, or when there is a change in user behaviour in mobility and speed.  

 

Hard and Soft Handoff 

Hard handoff follows the "break before make" policy, and soft handoff follows the "make-

before-break" connection. Hard handoff requires the user device connected to get a break 

before connecting to another station. It is implemented in FDMA and TDMA based 

devices. It is a cheaper strategy to implement, but the delay is mostly experienced while 

implementing this method. On the other hand, in soft handoff, the mobile device gets 

connected to more than one BTS during the same time. It achieves higher quality and low 

delay but is only supported by CDMA/ WCDMA mobile phones. 

 

Network-controlled, Mobile-controlled and Mobile-assisted Handoff 

When the handoff decision is taken by the network after measuring the number of mobile 

stations in the cell, it is known as network-controlled handoff. It was taken initially in 

AMPS (advanced mobile phone system) and TACS (total access communication system). 

In a case where a mobile station measures the network parameters and handoff decision is 
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taken by the network, it is called mobile-assisted handoff. In a different scenario, when a 

mobile device measures the signal strength and interference level and takes the decision to 

handoff, then it is known as mobile-controlled handoff. The reaction time is much smaller 

than 0.1 seconds. 

 

 Desirable handoff features 

 

         Figure 2-19 Desirable handoff features [76] 

 

 The handoff method aims to maximize reliability and performance. The methods must 

provide a base station having high signal quality and signal to noise ratio (SNR) and receive 

signal strength (RSS). The handoff technique must provide seamless mobility, 

uninterrupted services, and load balancing. It must aim to minimize the channel 

interference and number of handoffs as seen in the fig. 2-19. 

 

Vertical Handoff Criteria and Metrics 

 

There are number of parameters that affect the handoff decision like received signal 

strength, network connection time, handoff latency, network load, power consumption, and 

velocity. These parameters depicted in the fig. 2-20 are often analysed while moving from 

one network to another network.   
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Figure 2-20 Parameters used for making VHD decisions 

 

Kilho Lee et al. [61] have created a mobility model as seen in fig. 2-21 and the decision to 

offload will be made based on the pattern seen by the model. Based on user location data 

(Wi-Fi), the 2nd order Markov model is framed and trained with the mobility pattern of 

specific users. In the future, the offloading decision will be taken based on this model. A 

prediction engine is also proposed to decide whether to offload or not. However, the 

researcher leaves the future scope of the moving speed factor as it also affects the 

offloading performance.  

 

Figure 2-21 Mobility model [61] 
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Different solutions have been proposed by researchers that address mobility during 

computational offloading. M2C2[77] has proposed a multihoming mechanism as in             

fig. 2-22 where device probes for network and cloud network during mobility. The best 

cellular network and cloud network are selected based on the RSSI and cloud ranking 

process in this work.  

 

 

Figure 2-22  M2C2: A Mobility Management Scheme for MCC [77] 

 

Clonecloud [16], MAUI [39], ThinkAir [18], and Cuckoo [6] have proposed an effective 

and standard solution for computational offloading in mobile cloud clouding but have not 

considered mobility as a factor in their work.  

A handoff scheme in mobile cloud computing has been proposed by Q. Qi et al. [78], which 

focuses on saving the device power, but while offloading, the bandwidth must be above 

4MB to avoid the handoff delay.  

A. S. Alnezari et al. [79] presented the handoff mechanism and offloading strategy in 

mobile cloud computing using the fuzzy logic model approach and worked on 3G and 

WLAN environments. Q. Bani Hani et al. [80] presented a robust five-layer service-

oriented architecture that can perform seamless handoff in WiMAX and helps in reducing 

the bandwidth and power consumption.   

T. Ali et al. [81] and A. Sgora et al. [82] have presented the fuzzy approach based on multi-
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criteria and multi-attribute handover decisions. 

Z. Sanaei et al. [83] has discussed the challenges and issues faced in MCC when 

heterogeneity in the network is introduced. The complexity gets increases when the mobile 

device roams in 3G, Wi-Fi, and WiMAX networks. 

D. Bhattacharjee et al. [84] and Tong Liu et. al.  [85] discussed the user device mobility 

and the prediction of the location in the next movement. The mobility in mobile cloud 

computing is still an open area where much research is still required, and hence, mobility 

is incorporated in the computational offloading in this work. 

2.5 Scheduling mechanism in MCC 

This section provides the work done so far on the topic of MCC scheduling. As seen in 

fig. 2-23, once the task has been offloaded to a cloud server, its execution plan or schedule 

is another challenge on a virtual machine. Task scheduling is ordering a task and assigning 

a module to the server that can optimally manage the task. The scheduling algorithm must 

be optimally designed so that the task's timely execution can be achieved and starvation or 

deadlock-like conditions can be avoided. 

 

                          Figure 2-23 Task scheduling in mobile cloud computing [86] 
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A good scheduler can decrease the server's operational cost, improve resource 

utilization, and reduce the waiting time in the queue. Some of the current work done on the 

cloud task scheduling is presented below: 

The mobile user offloads [86] the task to the cloud server using the wireless access point 

or cellular network. The required bandwidth by the device is provided by the access point 

and supports like signal strength so that mobile remains connected to it. When the offloaded 

task reaches the cloud server, they are arranged in a queue by the broker entity. Broker 

controls the task admission, check resources availability of CPU, storage, and memory in 

the form of virtual machines. After that, it allocates the task to the VMs for execution, as 

seen in figure 2-23. This is the basic architecture of task scheduling in mobile cloud 

computing. 

Hsu Mon Kyi et al.  [87] have proposed an algorithm on scheduling and resource allocation 

of virtual resources and virtual machines named Efficient Virtual Machines Scheduling 

Algorithm (MSA). The performance of the scheduling algorithm is evaluated using the 

stochastic Markov model. To present the concept, Eucalyptus architecture is introduced as 

a system model. The resource allocation decision model is based upon the continuous 

Markov chain model.   

K. Jagannathan et al. [88] have presented the mathematical model on the buffer overflow 

in parallel queues. The study shows that the longest queue first scheduling policy has a 

superior queue overflow performance than queue blind policies. Several lemmas are 

presented in support of the theory presented in the paper. The study assumed that the system 

contains N parallel queues that are served by a single server. Time is allotted, and the server 

only handles one queue at a time. 

Jilan Chen et al. [89] presented the weighted round-robin scheduling algorithm for task 

scheduling in a Hadoop framework. Since some tasks are light weighted, and some tasks 

is heavy weighted, the researcher proposed the algorithm to optimize the     

H. Khojasteh et al. [90] have proposed a resource allocation mechanism over the cloud 

server using prioritization. The forked task has given top priority over the newly arrived 

task in the task queue, and in another case, the threshold is defined to control the priority. 
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The markovian multi-server queueing system analyzes the performance of both 

mechanisms. The impact of task arrival rate, service time, and the quantity of offloaded 

jobs on the performance indicators for both priority systems was also examined. 

X. Nan et al.  [91]  have investigated the QoS and resource cost of the multimedia service 

provider by the proposed queueing model and optimization methods. The researchers have 

analyzed various types of scenarios like single server scenarios and multi-server scenarios. 

Using the window azure platform, various simulations are made in the study.   

H. Eom et al. [58] focused on offloading scheduling and using machine learning-based 

techniques to improve the process. Their research looked at 19 distinct machine learning 

methods and four different workloads. 

Yuan Zhang et al. [92] has proposed the joint resource scheduling and code partitioning for 

effectively allocating cloudlet to multiple cloud users. They have proposed a code 

partitioning algorithm based on the call tree. Hsu Mon Kyi et al.  

Efficient Virtual Machines Scheduling Technique is a suggested algorithm [87] for 

scheduling and resource allocation of virtual resources and virtual machines (EVMSA). 

The performance of the scheduling algorithm is evaluated using the stochastic Markov 

model. Eucalyptus architecture is introduced as a system model. The resource allocation 

decision model is based upon the continuous Markov chain model.  

X. Wei et al. [93] have proposed the extended cloudlet approach for supporting local mobile 

cloud. They have presented a hybrid PSO approach and optimized the profit and energy 

consumption during scheduling.  

M. Nir et al. [94] have presented a task scheduler model that optimizes mobile cloud 

computing's energy function. 

X. Lin et al. [95] proposed a scheduling scheme based on dynamic voltage and frequency 

scaling and has optimized the application makespan and reduce energy consumption.                                                                                                                                                    

Table 2-3 presents the various task scheduling schemes, specifically in the mobile cloud 

computing framework. 
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Table 2-3   Task scheduling schemes in MCC framework 

 

Techniques and 

Work Done 

Year 
Type of 

Problem 

Objective 

function 
Framework Environment 

HACAS [93] 2013 
Application 

scheduling 

Profit and 

Energy 

consumptio

n 

MCC Simulation 

TSPCCE [94] 2014 
Task 

scheduling 
Energy MCC 

 

IBM's linear programming 

solver 

MCC task 

scheduling 

algorithm[95] 

2014 

Task 

scheduling 

with DVFS 

 

 

Energy and 

Time 

MCC MATLAB 

LARAC 

algorithm [96] 
2015 

Task 

scheduling 

with DVFS 

Energy and 

Time 

Deadline 

MCC 
 

Simulation 

 

eDors [97] 

 

2016 

 

 

Dynamic 

scheduling 

and energy-

efficient 

offloading 

Energy and 

completion 

time 

MCC Simulation 

 

 

 

MCF-DF   [98] 

 

 

 

2016 

 

Task 

admission 

and 

scheduling 

 

 

 

Admission 

rate and 

execution 

cost 

 

 

 

MEC 

 

 

 

Python 

HCOA[99] 2017 

Task 

offloading 

and 

scheduling 

Energy MCC Simulation 

 

CMSACO [100] 
2017 

Multi-Task 

offloading 

Profit and 

completion 

time 

MCC Simulation 

 

TSRA[101] 
2017 

Resource 

allocation 

and 

scheduling 

Delay MEC Simulation 
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COPE [102] 

2017 
Task 

scheduling 

Energy, 

Price of 

Cloud 

service 

provider, 

Delay 

MCC Thinkair based simulation 

DAA [103] 2018 
Task 

scheduling 
Makespan MEC Simulation 

GABTS [104] 2018 

Task                                   

offloading 

and 

scheduling 

Energy, 

response 

time, 

deadline, 

and 

cost 

MCC C++ 

 

OAOA [105] 
2019 

Stochastic 

approach for 

task 

scheduling 

Energy and 

QoS 
MCC Simulation 

 

Application-

aware [106] 

2019 
Task 

Scheduling 
Latency MEC iFogSim 

MWSM [107] 2019 
Workflow 

scheduling 

Latency, 

Energy, 

and Cost 

MCC Simulation 

RCTSPO [108] 2020 
Task 

scheduling 

Makespan, 

Reliability, 

and Load 

MEC Cloudsim 

 

EBCO-TS [109] 
2020 

Task 

scheduling 

Makespan 

and energy 
MCC Cloudsim 

ADO-MTS 

[110] 
2020 

Task 

scheduling 

 

Makespan, 

Resource 

utilization, 

and Energy 

MCC Cloudsim 

 

2.6 Research Gaps and Challenges 

   This section presents the challenges in mobile cloud computing and research gaps that 

are found during literature review. When speaking about the partitioning, the issue of 

synchronization is still a problem. The compute-intensive part is required to be executed 

on a cloud server, and it becomes essential that the mobile device remains synchronized 
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with the cloud for offloaded tasks. If a deadlock occurs on the cloud server, it can hinder a 

mobile application's working. The granularity of the application needs to be decided 

appropriately as offloading objects, classes, or methods creates a different type of 

overheads. Other observations in code partitioning were: 

• There has been various research about application partitioning, but very few researchers 

have considered dynamic partitioning during offloading in mobile cloud computing.  

• It was found that schemes were not adaptive in terms of network bandwidth, energy 

consumption, and task size. 

• It was also observed that minimum communication should exist between the local and 

remote components of the application, but very less work had been done in this area and 

the edge-cut concept was not explored upon. 

Research Gaps observed on the basis of literature review in the decision engine were: 

• Offloading faces significant challenges on the front of energy consumption and 

performance, and there is still a scope of improvement that needs to be addressed. 

• Lot of research has been done on energy and performance, but limited work was found 

on the accuracy of the decision engine of the offloading process. 

 

Research gaps observed in mobility management during offloading are: 

• Based upon the literature review, it was found very few researchers had worked 

upon mobility during offloading. Mobile device normally roams with the users. It 

has not been considered as factor during the mobility scheme. 

• Handoff of the mobile device was not explored much in the research of mobile 

cloud computing which can affect the device connectivity with the cloud server. 

The mobile device may roam from one position to another. The mobile applications running 

on devices use cloud services and move in the heterogeneous cellular network. The handoff 

mechanism must be smooth enough so that connectivity cannot be lost with the cloud 

server. The techniques must be developed to reduce the mobile device's energy 

conservation while roaming from one base station to another. 
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In the mobile cloud context, task scheduling still has a lot of room for improvement. The 

virtual machine must schedule the mobile task that was offloaded to the cloud server. 

Traditional methods focused on the task's execution time on the cloud server.  

• Energy consumption is a big challenge on the cloud servers also as a number of the 

task are growing tremendously.  

• The scheduling scheme must focus on the bandwidth, CPU utilization, and memory 

of the physical machines, where tasks are allocated to the virtual machines by the brokers. 

2.7 Summary 

This chapter presents the literature review of the various task partitioning schemes utilized 

in designing the code partitioning scheme for mobile cloud computing. Literature has been 

explored, and limitations of the various approaches are found in the study. It also provides 

a literature review on decision engines. Decision engines decide when to offload based on 

various inputs provided by the system profiling. The detailed tabular form of the 

comparison is presented where the decision engines are presented specifying the energy 

and performance criteria of the techniques. Mobility feature is also explored, and focus on 

various cellular technologies has been placed. Handoff mechanisms are discussed with 

respect to mobility management. The scheduling schemes in mobile cloud computing have 

been presented in the last phase of the chapter, where different optimization parameters are 

also presented. The various research gap and challenges are discussed at last of the chapter. 
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CHAPTER 3                                                                         

CODE PARTITIONING DURING COMPUTATIONAL 

OFFLOADING IN MCC 

 

3.1 Introduction  

Computational offloading is emerging as a popular field in mobile cloud computing 

(MCC). Modern applications are power and compute-intensive, leading to energy, storage, 

and processing issues in mobile devices. Using the offloading concept, a mobile device can 

offload its computation to the cloud servers and receive back the device's results.  

 

Figure 3-1 Partitioned component offloaded on cloud sever 

 

An important question that arises in the offloading scenario is which part of the application 

needs to be offloaded remotely. In order to identify that, the application needs to be 

partitioned. In this work, the graph partitioning approach is considered based upon the 

spectral graph partitioning with the Kernighan Lin algorithm. Experimental results show 

that the proposed approach performs optimally in partitioning the application. The 

proposed technique gave better results than the existing techniques in terms of edge cut, 
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which is less, concluding minimum communication cost among components and saving 

energy of the mobile device.  

Graphs are usually used as simplification by researchers while displaying application 

problems. One of the significant operations in graph theory is graph cutting.  Other 

fundamental operations like traversal, flows, trees, and path are used in many scientific 

problems. Graph partitioning [111] is used to solve the complex problem as assuming an 

application as a graph reduces the complexity of manifolds. 

Scientific problems lie in VLSI design, social network analysis, image analysis, and DNA 

mapping are solved using graph partitioning. Graph partitioning aims to divide the vertices 

into a certain number of groups where the nodes in one group are strongly connected while 

having a minimum connection with the other group. The two types of graph partitioning 

are constrained and unconstrained partitioning. The partitions of the same size are known 

as a constrained partition, while the partitions of unconstrained are of different sizes. Graph 

partitioning is used to minimize the computational load on either side of the partition and 

reduce the communication cost in various scientific simulations.  

A Graphs G = (V, E) is the data structures of non-linear type and consist of vertices or 

nodes V and collection of edges e = {x, y} between pairs of vertices. The number of vertices 

n in the graph is represented as |V(G)| and the number of edges is represented as |E(G)|.  

A graph H = (W, F) , where WV and FE, is a subgraph of a graph G = (V, E). 

The simple graph with vertex set V1  V2 and edge set E1  E2  defined by G1  G2 is the 

union of two simple graphs, G1 = (V1, E1) and G2 = (V2, E2). 

Matching M is a subset of the set E of edges of the graph G = (V, E) in which no two edges 

are incident with the same vertex. The vertex of the endpoint is matching is said to be 

matched; otherwise, it is known as unmatched. 

Code partitioning is the foremost important task in computation offloading. It aims to 

define the application's components, which can be offloaded to the server or run locally on 

a mobile device. Specific components like GUI-based code and codes that need to be 

secured from different attacks are intentionally made to run locally to run graphics 

smoothly and mitigate the risk of attacks. The developer can annotate the component 
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@remote and @local to classify the code for offloading. 

The nodes represent the computation points, and the edges depict the communication 

between two nodes. The graph partitioning problem is an NP-hard problem which makes 

it more appealing for many scientific problems.  

3.2 Code partitioning using a graph model   

Applications are complex to understand and simplify; applications are modelled using its 

call graph, a Directed Acyclic Graph (DAG) which can be seen in fig. 3-2.  

 

 

Figure 3-2 Directed Acyclic Graph 

 

The two components of the graph are vertices and edges representing the different 

parameters of an application [55]. The vertex represents the computational cost, while the 

edge represents the communication cost. The partitioning strategy aims to partition the 

code in different segments where minimum possible communication holds between the 

nodes. In MCC, during offloading, the application is partitioned either statically or 

dynamically.  The set of nodes is offloaded on the cloud for computation.  

 

a

b

c

d

e

f
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Figure 3-3 Different types of graph topologies 

 

Fig. 3-3 represents various type of graph topologies where a) Node topology   b) Linear 

topology c) Tree or Mesh topology are represented respectively. There can be a different 

level of granularity of the application, i.e., thread-level, method level, class level, or 

application level.                                                     

 The graph can be represented with different topologies, i.e., either a complete graph as a 

node, a linear chain, tree, or a mesh. The mobile application can be signified by an array 

of fine-grained tasks in a linear chain, where the task can be executed either on the mobile 

device or offloaded to the cloud for execution. 

3.3 Multi-level graph partitioning 

 Graph Partitioning is an NP-hard problem  [48], and to achieve the optimal solutions of 

the problem, heuristic-based methods have been formulated. The goal of each heuristic 

method is to achieve the smallest possible cut for the two sides. In the scenario, the 

objective of the partitioning is to divide the compute-intensive part in the client and cloud 

or server-side. A multi-level technique is a series of smaller graphs that are combined to 

form a larger graph. The smallest of these graphs is used for the initial bisection. Finally, 

the graph is uncoarse, and each of the coarse graphs undergoes partition refinement. 

Vertices are given a weight that is proportional to their function. Weights are assigned to 

edges based on the amount of data that must be transmitted. 
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Figure 3-4   Phases of graph partitioning 

 

Fig. 3-4 presents the three phases of multi-level graph partitioning [50][112][113] in which 

a graph is partitioned. These phases are coarsening phase, partitioning phase, and the last 

is refinement phase. The first phase is defined as coarsening phase, where the graph is 

converted into a sequence of smaller graphs using the concept of matching. The coarsening 

phase reduces the complexity of the graph up to a large extent. The coarsening leads to the 

edge contradiction where two connected vertices joined with an edge are merged into one 

vertex. The weight of the two vertexes is added into one, whereas the weight of the edges 

remains intact as earlier one. The various matching techniques used in the graph 

partitioning are random matching, heavy edge matching, heaviest edge matching, and zero-

edge matching. After the coarsening phase, the next task is partitioning phase where the 

target is to have minimum edge-cut bisection that will divide the graph into two parts. 

Dividing the coarsened graph will lead the original graph into two partitions with less 

complexity. The last phase is the refinement phase which make the partitions more stable 

and improved version of the results achieved in the previous phase. 
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3.4 Problem statement  

The code partitioning in mobile cloud computing aims to partition the code for offloading 

purposes, ensuring that there should be minimum interaction among the client and server 

(cloud). Resource constraint device often needs a solution to reduce the computational 

complexity of its application; the developed approach should focus on the least 

communication among the partitions of the application. The computation is divided among 

the local mobile device and remote cloud server to ease the mobile device's processing.  

 

 

Figure 3-5 Scenario representing communication-based on edge-cut 

 

Fig. 3-5 depicts two scenarios a) Communication between mobile and cloud before stable 

partition b) Communication between mobile and cloud after stable partition Data 

dependencies inside a computation are commonly described using graphs. The graph G= 

(V, E) consists of vertices V= {V1, V2,.., Vn } and edges so that it is partitioned into smaller 

components with specific computation tasks. The vertices and edges are weighted, i.e., the 

computation and communication costs are included in the problem. The partition of a graph 

is a process of dividing the task into subtask where P = P1 U P2 U...U PK   such that the 

application seems to be balanced partitioned.  For example. the graph is coarsened with 

heavy edge matching, partitioned with spectral partitioning and finally refined by 
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kernighan lin algorithm. Assuming a node F along with node D and E, the initial partition 

of components created by spectal partitioning is fig. 3-5 (A). The refinement can be done 

by kernighan lin algorithm as seen in fig. 3-5 (B) where node C is swapped with node F to 

other side reducing the number of edge-cuts.  Thus, final swapping of F and C node by KL 

algorithm will reduce cost and edge-cuts. 

3.5 Algorithm description 

 

 

Figure 3-6 Flowchart representation of the proposed approach 
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For balanced graph partitioning, a multi-level hybrid technique is proposed in this thesis 

work. Although perfect partitioning is a challenging task, it can be achieved by optimizing 

the partitions at different levels. In fig.3-6, a graph is initially taken as an input where each 

node represents some class, method, or object based on the granularity. In this scenario, 

method-level granularity is considered. The graph contains many nodes at the initial level. 

To increase the effectiveness of the partitioning, the graph is coarsened using a matching 

concept. Heavy edge matching is performed on the graph initially, and after coarsening, 

the initial partitioning is applied by using spectral graph partitioning. During the initial 

partitioning, it is desired that a minimum edge cut among nodes must be achieved along 

with the optimal partitions of the component. The spectral graph partitioning algorithm 

creates balanced partitions, but the Kernighan Lin algorithm is further applied during the 

refinement phase for achieving minimum edge cut. The proposed approach has considered 

three different algorithms- Heavy edge matching for coarsening purpose, Spectral graph 

partitioning for initial partition, and Kernighan Lin algorithm to refine the partition results 

set. 

The step by step phases of the proposed approach are discussed below: 

 

Phase1: Coarsening Phase:  

The original graph G0 is condensed into a series of smaller graphs G1, G2, ..., Gn such that 

the number of a vertex in the initial graph is reduced to a small number of vertexes 

|V0|>|V1|>|V3|>….>|Vn|. The coarsening process results in the formation of graphs with a 

reduced number of vertices and edges [40].  By collapsing the edge, the weight of the two 

vertices gets summed up, which are connected by the collapsed edge. The process of 

coarsening is achieved by the matching process. Various matching techniques are used, like 

random matching, maximal matching, and heavy edge matching (HEM). 
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  Algorithm 3.1     Heavy edge matching  

 

HEM aims to achieve the minimized cut by finding maximal matching 

//Input:𝐺: the graph at state j with corresponding Edges 𝐸 and Vertices 𝑉, i.e. 

𝐺𝑖(𝑉𝑖, 𝐸𝑖) 

𝑤: Edge weight and Vertex weight in the graph 

x, y: vertices which will be merged after coarsening 

//Output: new graph 𝐺 = (𝑉, 𝐸)after merging nodes. 

1. For all nodes 𝑣 𝜖 𝑉 

2. If 𝑣 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜 {𝑥, 𝑦} // a random vertex is selected 

a. Then 

b. 𝑤{𝑒(𝑥 ∪ 𝑦, 𝑣)} =  𝑤{𝑒(𝑥, 𝑣)} + 𝑤{𝑒(𝑦, 𝑣)}                                                                      

   // addition of weight (heavy edge matching) 

3. 𝐸𝑖 ← 𝐸 { 𝑒(𝑥 ∪ 𝑦), 𝑣} 

4. End if 

5. 𝐸 ← 𝐸𝑖 − {𝑒(𝑎, 𝑣), 𝑒(𝑏, 𝑣)}       // removing all edges from E 

6. End  

7. For   𝑉 ← 𝑉𝑖 − 𝑣(𝑥, 𝑦) 

8. Return 𝐺(𝑉, 𝐸) 

 

 

Phase 2: Partitioning Phase: 

     After coarsening, the next phase is to apply the partitioning strategy over the 

coarsened graph [114]. It aims to partition the graphs into a bisectional graph or 

more based on the problem's requirement. In reference to mobile cloud computing, 

the partition can be bisectional, i.e., the node running locally or remotely.  
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  Algorithm 3.2     Spectral approach for partitioning 

 

 //Input: a weighted connected graph G = (V, E) 

 //Output: a partitioned graphs G1 = (V1, E1), G2= (V2, E2) 

1. Construct Laplacian matrix LM and then compute the eigenvector ev. 

2. Explore the median of ev 

3. LOOP process 

4. For each graph node ni  ∈ G 

5. if ev(ni) ≤ median  

6. move node ni in P1  

7. else 

8. move node ni in P2 

9. If |V1|−|V2| > 1 transfer some nodes from P1 to P2 having equal median 

so that to equate the difference among two vertices count. 

10. Let Ps represent the collection of vertices that are adjacent to P2 in P1. 

11. Let Pt represents the collection of vertices that are adjacent to P1 in P2. 

12. Place edge separator Es which is the set of edges of G with one point in Ps 

and the second in Pt.  

13. Let E1 represents the collection of edges whose both end vertices lies in 

P1. 

14. Let E2 represents the collection of edges whose both end vertices lies in 

P2.  Build up the graphs    G1 = (V1, E1), G2= (V2, E2) 

15. End 
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   Algorithm 3.3       Refinement phase 

 

//Input: a graph G1 = (V1, E1), G2= (V2, E2) 

//Output: improved and refined graphs G (V, E) define a refined   nodes partition 

into sets A and B 

1. Best partition ← Current partition 

2. Do                   //computing initial gain  

3. ∀  nodes a ∈ A and ∀  nodes b ∈ B, compute the D value                         

4. Let EL1, EL2, and EL3 be the empty lists 

5. LOOP process  

6. For each node n1 of G to |V|/2 

7. Examine a from set A and b from set B in the following way: 

8. g = D[a] + D[b] - 2*c (a, b) is maximal 

9. In this pass, discard a and b. 

10. Append g to EL1, a to EL2, and b to EL3 

11. Compute updated value of D for elements A = A \ a and B = B \ b  

12. End for 

13. Calculate the value of k that maximises g max, the sum of g max. 

14. EL [1],..., EL[k] 

15. If (g_max > 0) then 

a. Exchange av[1],av[2],...,av[k] with bv[1],bv[2],...,bv[k] 

b. Until (g_max <= 0) 

16. Return 𝐺(𝑉, 𝐸) 

 

The partitioned graph G1 = (V1, E1), G2= (V2, E2) is gradually refined further with the 

Kernighan Lin partitioning strategy to improve the quality of partition. 
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3.6      Performance Evaluation 

3.6.1 Experimental Setup 

 

The approach has been implemented as a partitioning strategy in the Chaco simulator [115], 

which is primarily written in the C language. The work has been performed on a device 

having configuration Intel (R) core i3 CPU M330 @ 2.12 GHz processor, 4 GB of RAM, 

and Ubuntu 14 Operating System. The performance of the partitioning method is evaluated 

with respect to specific parameters like the execution time, data transferred, and energy 

consumption which is embedded in the input graph as weighted vertex and weighted edges. 

The evaluation has been conducted to investigate the effectiveness of the partitioning 

method in terms of edge cuts. A lower value of edge cuts reflects the minimum 

communication between the partition P1 and P2. The behavior of the proposed solution is 

also compared with the random partitioning and multi-level KL algorithm.  

   For each approach, the execution time and energy consumption are chosen at random 

from 100ms to 500ms and 1J to 20J, respectively, using the uniform distribution. These 

execution time limits are obtained from the range defined in the actual android application's 

trace log file [116] and the energy model for offloading framework in run time [117] [118]. 

For each method, these assumptions are reasonable as there is no correlation between 

energy consumption and execution time. The size of data that moves during offloading is 

assumed to be in the range of 50KB -500KB [29]. During offloading, the data travels 

between the various methods for complete execution of the application. 

For the evaluation of the proposed technique, different node size graphs are generated. The 

weight of the nodes [119] are assumed to be the execution time of the node or method, and 

the weight of the edges are calculated based on the given formula  

 

             𝑇 = 𝐷𝑎𝑡𝑎 𝑆𝑖𝑧𝑒 /𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ                  (3.1) 

 

To reduce the complexity of the evaluation, the different dependencies between the 

software components are assumed to be the weighted nodes and edges. In a real scenario, 
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the call graph will depend upon the actual software design of the application and may be 

drawn with different topologies. In this work, the linear graph has been assumed for the 

evaluation of the proposed approach.   

3.6.2 Results and Discussion  

The comparative performance of the spectral approach with Kernighan Lin, Random 

partitioning, and Multi-level KL are discussed in Table 3-1. 

 

Table 3-1 Comparison of graph partitioning techniques with proposed technique   

Node    

count 

Multilevel 

KL 

Random Spectral 

Without 

KL 
With KL 

Without 

KL 

With 

KL 

10 1.5 15.42 1.5 1.5 1.5 

20 1.5 26.04 1.5 4.5 1.5 

30 1.72 37.21 1.72 6.6 1.72 

40 1.35 40.51 3.1 8.45 1.35 

50 4.58 52.16 3.39 13.12 4.58 

60 2.41 64.7 3.03 3.02 2.21 

70 3.33 99.43 3.88 9.34 2.06 

80 2.91 78.12 5.32 7.26 2.5 

90 4.81 108.19 4.91 8.06 4.74 

100 10.12 110.12 11.15 10.5 9.14 

 

The experiment was conducted on different node counts ranging from 10 to 100. The 

experimental results are achieved with a coarsening percentage of 50%. The graph results 

are compared with different approaches, i.e., spectral approach with and without KL, 

Random partitioning with KL and without KL, and proposed multi-level graph partitioning.  
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Figure 3-7 Graph represents the edge cuts results of spectral ands KL algorithm 

 

The graph of fig. 3-7 represents the results of the spectral approach on the different graphs 

having a varying number of nodes from 10 to 100. The edge cut results of the spectral 

approach are plotted with a combination of the Kernighan Lin (KL) approach and without 

its combination. The results conclude that spectral partitioning performs better when 

combined with the Kernighan Lin approach. The number of edge cuts is significantly 

reduced in this combination. The Kernighan Lin improves the results during the refinement 

process. 
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Figure 3-8 Graph represents the edge cuts results of the random 

 

The graph of fig. 3-8 represents the results of a random approach on the different graphs 

having a varying number of nodes from 10 to 100. The edge cut results of the random 

approach are drawn with a combination of the Kernighan Lin (KL) approach and without 

its combination. 
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Figure 3-9 Graph represents the edge cuts results of the multi-level KL partitioning 

approach 

 

The graph of fig. 3-9 represents results of the multi-level KL approach on the size of the 

different graphs varying from 10 to 100. The number of the graph cut are gradually 

increasing with the number of the nodes. 
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Figure 3-10 Comparison of the edge cut results of spectral with and without KL 

approach, random partitioning with KL, and multi-level KL.  

 

The results indicate that considering the combination of spectral approach with the 

Kernighan Lin algorithm performs optimally compared to random and multi-level 

partitioning in a mobile cloud scenario. The minimum edge cut describes the minimum 

communication between the mobile device, i.e., client and cloud side. The spectral 

approach with KL is slightly better than the other approaches concerning the number of 

edge cuts 
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3.7  Summary 

This chapter presents a heuristic approach developed based on a multi-level hybrid 

approach for balanced graph partitioning. Although perfect partitioning in the mobile cloud 

computing offloading process is challenging, it can be achieved by optimizing the 

partitions at different levels. Heavy edge matching is performed on the graph initially for 

coarsening, and then spectral graph partitioning is applied for the initial partitioning of the 

graph. In the last stage, the Kernighan Lin algorithm is used for the refinement of the 

partitioned graph. The spectral partitioning and the Kernighan Lin algorithm have 

performed optimally compared to the existing approach of random partitioning and multi-

level KL approach in terms of edge cuts. The spectral method and KL help to increase the 

edge cut size, which is important for communication between the client device and the 

cloud. In the future, the approach will be implemented in the real software design in the 

mobile application, and further investigation will be carried out considering different 

parameters in the account. Partitioning of an application during offloading in mobile cloud 

computing is a critical problem. Different heuristics can be developed considering various 

parameters during the study. In this work, the mobility of the device is not affecting the 

partitioning results. It can be an open area where researchers can work and develop a better 

model based on mobility.  
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CHAPTER 4                                                                             

OFFLOAD DECISION MAKING IN COMPUTATIONAL 

OFFLOADING 

 

4.1 Introduction 

With the development of emerging communication networks like 4G, 5G, and even 6G, 

mobile users have rapidly increased. This also increases the number of fascinating mobile 

applications like image processing, healthcare applications, gaming, etc. The primary 

concern in these mobile applications is their energy requirements. These applications 

consume a lot of energy, which drains the mobile battery faster. Mobile cloud computing 

provides computation resources like processing and storage to the needed devices in the 

cloud framework. The various reasons that intent the present developers to make cloud-

based mobile applications are massive storage and processing facilities in the cloud. The 

emergence of communication networks improves the data transfer rates extensively. 

Technology like cloudlets, hypervisor virtual machines designed for a mobile device also 

enables mobile cloud background processing. Mobile cloud computing encompasses a 

computational offloading framework that helps deploy the compute-intensive task to the 

remote server to save energy and increase the mobile device's performance.  Once the 

computation is completed on the remote server, the computed results are directed back to 

the mobile device. "When to offload." is a challenging question in computational 

offloading that always needs a solution for the mobile device's optimal performance during 

mobile offloading to the cloud servers.   

 

 



81 

 

4.2 Offload decision engine in MCC  

 A decision engine is a significant component in the offloading framework, which helps 

decide when to offload the task to the remote or cloud server. The decision engine's 

accuracy should be high for the flawless execution of the application during the offloading 

process. There are various subtasks in the offloading process, like identifying the 

offloadable task using partitioning, profiling, and offloading decisions. The application can 

be alienated into the compute-intensive portion and the graphical user interface portion 

(GUI). The graphics-related partition cannot be offloaded as it will refrain the application 

from performing, so the only compute-intensive section is offloaded to the remote server. 

Profiling is a process of gathering the various devices, networks, and application-related 

information required for the offloading operation. The process of offloading is entirely 

opportunistic, which relies on external features to offload the task from a mobile device. It 

is a non-trivial process that requires various parameters for decision-making. The mobile 

battery status, CPU cycles, global positioning system (GPS) for gauging the device's 

mobility, signal strength, bandwidth availability, and size of the application task are the 

various features that need to be extracted offloading process. This dynamic information is 

gathered on a timely basis by the profiler for the decision engine's offloading decision. A 

decision engine is a substantial component in the offloading framework, which helps 

decide when to offload to the remote or cloud server. Several contexts  [120], like 

application specifications, mobile specifications, and network specifications, are utilized 

to make accurate decision-making. Different algorithms of machine learning like logistic 

regression [39], decision tree [121], naïve Bayes [122], fuzzy logic [123], and SVM  [124] 

have been used in recent research for offloading decision making. Since the offloading 

engine is placed in the mobile device, it must be light weighted and also provide highly 

accurate offloading decisions based on the statistics provided to it by the context analyzer.  

The work contributes to the following points in the computational offloading process: 

a) A technique is proposed for the offloading decision that aims to achieve higher accuracy. 

It is based on the stacked ensemble approach considering various mobile device 

parameters.  



82 

 

b) The proposed techniques aim to reduce the processing time and CPU utilization of the 

mobile device while taking the offloading decision.  

A technique has been proposed by performing a stack ensemble approach on machine 

learning techniques like the Gaussian approach, multi-layer perceptron, k-nearest 

neighbors, and linear regression. It considers the various dynamics of the environment like 

task size, bandwidth, device battery, and device mobility. The proposed model performs 

better than other decision-making algorithms in terms of execution time and CPU 

utilization and achieves higher accuracy in making decisions while offloading the compute-

intensive task to the remote server. 

In the process of offloading decision, various profilers like network, device, and program 

profiler collect information related to network, application, battery level, and CPU cycle, 

which help the solver to the decision for the offloading. Energy and performance 

parameters are often evaluated during this phase. It is not always expected to offload the 

task on the remote server but depending upon device conditions and bandwidth; the 

decision to offload can be taken. The time T taken to execute the task locally is               

       Local Execution Time = W/Sm             (4.1)   

Where W is the computation amount required for the second part and Sm is the processing 

speed of the mobile device. If the second part of the computation is offloaded to the cloud 

server having bandwidth B, the di amount of data takes di/B seconds to transfer data to the 

designated server. The benefit of offloading the task on a cloud server is only when the 

computation of the task, including the communication, can be achieved faster at the cloud 

server than executing locally. 

Execution Time (Remote) = (communication time to/from server) + (computational time 

on server)                               (4.2) 

Key Decision: 

If Execution Time (Local) < Execution Time (Remote) then Go Local       

                                (4.3) 

Else Execution Time (Local) > Execution Time (Remote) then Go Remote                 

                               (4.4) 
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4.3 Methodology 

The mobile application is considered as a graph in work. The graph nodes represent the 

interrelated tasks. During offloading, the application is partitioned to identify the job to be 

offloaded or executed locally. In this work, the nodes which are required to be offloaded 

are considered for the decision-making phase. Application partitioning is a primitive task 

and done before decision-making. It is assumed that nodes coming to the decision engine 

are offloadable tasks. During the context analysis phase, different metrics are collected 

using the profiling tool for offloadable tasks. The context analyzer works with the device 

profiler to collect the battery status of the device. Other profilers like network profilers give 

data related to GPS and bandwidth. GPS details come with the availability of satellites 

[125], but actual power consumption is based upon the active or inactive state of the GPS 

component. 

4.3.1 Offloading decision mechanism 

 The offloading decision is considered as the concluding step of the computational 

offloading process. A decision engine helps to decide when to offload to the remote or 

cloud server. The decision engine accuracy should be optimal for taking the correct 

decision to offload in the offloading process. Since the offloading engine is placed in the 

mobile device, it must be light weighted and also provide highly accurate offloading 

decisions centered on the statistics provided to it by the context analyzer. The offload 

decision process is represented in Fig. 4-1, in which the decision engines direct the 

computation task towards remote or local execution based on the decision logic upon which 

it is designed. The various profilers collect information about the mobile device and 

provide the decision engine to take offload decisions. Based on the decision, the device 

either offloads the task to the cloud or edge server and performs remote execution or 

executes the task locally.  
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Figure 4-1 Offloading decision process 

  

4.4 Feature Selection 

The metrics considered in the work are battery status, bandwidth, global positioning system 

(GPS) data, and the application's size. In most of the work related to offloading, the 

mobility of the device is not considered. As mobility is an important aspect, it is regarded 

as a parameter for decision-making. Mobility of the device is accessed with the GPS of the 

device. If the device GPS is in an ON state, it is considered that the user is moving, and if 

GPS is in an OFF state, the user is in a stable position. Table 1 represents the various 

features and classes used in work. Once the offloading decision is taken, the task will be 

executed locally represented as ELOCAL  or executed remotely represented as EREMOTE.  

 

Table 4-1 Features considered for offloading decision  

Features Information 

ELOCAL Local execution class of task on the mobile device 

EREMOTE Remote execute class of task on the cloud server 

DSIZE Size of a task that is compute-intensive 

BCHANNEL Bandwidth available during the offloading process 

GPS Global positioning system of  the mobile device (on/off) 

BTSTATUS Battery available during the offloading process 
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4.4.1 Multi-layer perceptron (MLP)  

An artificial neural network (ANN) [126] resembles the human biological brain in artificial 

intelligence. The three different processes of human neurons are simulated in ANN.          

Fig. 4-2 represents the multi-layer perceptron model where the first layer is the receiving 

and evaluating the input signal; dendrites do the same in a human neuron. The second layer 

is the processing of input information by the node or neuron. The third layer of the process 

is used to generate the processed data's output, similar to the biological neuron's axon.  

 

Figure 4-2 Multilayer perceptron model 

  

The input layer of the model has n nodes defined as  𝒙 =  [𝑥1𝑥2  … 𝑥𝑛 ] .The model has n 

features to be given as input to the perceptron model and can have one or more hidden 

layers based on the computation complexity. There are weights  𝒘 =   [𝑤1𝑤2  … 𝑤𝑛]  

associated with the input features. The activation function determines the output of the 

perceptron model and is represented by 

 

                          A = ∑ 𝑥𝑖𝑤𝑖 𝑛
𝑖=1               (4.5) 

4.4.2 K-nearest neighbor (KNN)  

It is a supervised machine learning [127] based on an instance-based classification method 

where training records are stored and used to predict the class of the unseen record case. In 
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this scheme, the K parameter value is determined, which describes the number of nearest 

neighbors. Different kinds of distance metrics are used to classify the unseen case in the 

respected class. For example, the distances can be the Euclidean distance as the following 

equation:  

 

                                                                                      (4.6) 

 

Also, the distance can be Manhattan distance as 

 

                                           (4.7) 

 

After calculating the distance of unseen case with the training set, the majority vote of class 

labels is taken among the k-nearest neighbors:                                                       

 

   Y = argmax ,ϵ 𝐷𝑧  𝐼( 𝑣 =𝑦𝑖 )              (4.8) 

 

Selecting K's value is a crucial task as a compelling too-small value leads to sensitivity to 

the noise points, and a larger value includes the data points of other classes.  

4.4.3 Gaussian naïve Bayes method 

 It is a statistical classifier [128] that enables the class's prediction based on probabilities, 

primarily based on the Bayes probability theory. The prediction principle of the naïve 

Bayes model is based on the following equation:  

                

                    (4.9) 

  

In the above equation, H assumes that Q has its place in the class label C. Let Q be a data 

sample where the class label is unidentified. The model's task is to work out the posterior 

probability P (Q|X), which is that the probability that assumption H embraces in observed 

data X. The P (H) is that the prior probability, P(Q) is the probability that the trial data is 
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monitored. P (Q|H) is the likelihood probability of observing the sample X, as long as the 

assumption holds. 

4.4.4 Logistic Regression  

In machine learning, logistic regression [129] is one of the favored classification algorithms 

based on supervised learning. It is a particular case of linear regression where the target 

variable is categorical. In fig. 4-3 represents the logistic regression model where the data 

points are fitted in a logit model or sigmoid function, and the probability of the target 

variable is predicted after that.  

 

                       

Figure 4-3 Logistic regression model 

    

During the computation, a categorical value is predicted on a given independent input 

variable. The logistic regression model is based upon the sigmoid function, which is seen 

as                                   

         (4.10) 

4.5 PROPOSED STACK ENSEMBLE APPROACH  

  The stack ensemble approach is considered a powerful method in achieving the 

classification task  [130]. In this technique, multiple machine learning techniques are 

combined to improve and boost prediction accuracy. The modern learning approach 

) (-z)e^+1/(1=sigmoid(z)
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follows the ensemble technique by combining the diversified set of machine learning 

algorithms to overcome the particular algorithm's weakness and build a robust model. 

Hence, each algorithm puts a substantial contribution where the strength of another 

algorithm counters its weakness. In the simplest form of the ensemble, all models are 

considered, and the unweighted average of the prediction of each model is utilized. The 

unrated average will be calculated by dividing the sum of the models' predicted values in 

the library. In the current scenario, the concept of model stacking is used where an 

automatic assignment of balanced weights is done by using another level of the learning 

algorithm. The balanced weight is used to avoid the class imbalance in the scenario. 

Stacking is a competent ensemble method in which groups are laid down. Certain machine 

learning algorithms are placed at a specific group, and their prediction is passed to the next 

level as input. The algorithm designated at the next level is trained to combine the 

predictions of first-level algorithms optimally and generate a new prediction based on the 

previous information. In this scenario, the first-level models are MLP, KNN, and Gaussian 

naïve Bayes, and the second-level model is LR.    

 

           

 

Figure 4-4 Stack ensemble approach used for predicting the offloading decision 
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Algorithm 4.1        Stack ensemble-based approach for decision making 

 

Input: D = {x p, y q} m
 is the training data where xp is a dataset that belongs to feature 

space and yq is a label that belongs to a class label set), Q is the collection of all algorithm  

Output: An ensemble classifier H 

1: Learning of first-level classifiers in the primary step 

2: for q ← 1 to Q, do 

3: Learn base classifier hq based on the original dataset D 

4: end for 

5: Construct new data sets from D that contain an original class label and new features 

as the first-level prediction. 

6: end for 

7: Learn a second-level classifier based on a new dataset  

8: return H(x)  

 

Stacking is a process of learning a high-level classifier on top of the base classifiers. It can 

be regarded as a meta-learning approach. The base classifiers are called first-level 

classifiers, and a second-level classifier is learned to combine the first-level classifiers. In 

fig. 4-4, the process of stacking is demonstrated in which has the following three significant 

steps. First- level classifier is learned on the original training data set. It can be learned 

either based on bootstrap sampling, boosting or performing parameter tuning for a 

homogeneous classifier, or applying different classification methods for generating the 

heterogeneous classifier. Secondary, new data has to be generated based on the first-level 

classifier or base classifier's output. The first-level classifier's output is fed as a new feature 

to the new dataset given in the second-level classifier. The class label of the second-level 

dataset remains the same as the first-level dataset. Based on the second level dataset, which 

is applied to any meta-classifier, the class level is predicted for the second level classifier.   
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4.6  Performance Evaluation 

4.6.1 Experimental Setup 

The proposed decision engine has been implemented in Python language. The technique 

has been executed on a device having configuration Intel (R) core i3 CPU M330 @ 2.12 

GHz processor, 8 GB of RAM, and Windows 10 OS. The decision engine method's 

performance is assessed concerning specific parameters like battery status, bandwidth, 

GPS data, and the application's task size. The evaluation has been accompanied to 

investigate the effectiveness of the decision engine in terms of accuracy. A higher value of 

accuracy reflects the correct decision-making by the offloading engine. The behavior of 

the suggested model is also compared with the prevailing algorithm like logistic regression 

(LR), k-nearest neighbors (KNN), Gaussian naïve Bayes (Gaussian), and multi-layer 

perceptron model (MLP).  The application's task size for offloading and device battery 

levels is taken randomly between 100 KB and 4000 KB and 800 mAh to 4000 mAh, 

respectively, using the uniform distribution. In this work, a lower battery level is considered 

a 20% percentage of the actual device battery  [131], and the battery status above it is 

regarded as a greater battery level. The bandwidth [57] of the device is kept between 400 

kbps to 800 kbps. The application task size  [57] is considered between 100 KB and 4000 

KB. The condition of mobility  [126] is also considered based on the GPS parameter in 

which two states are considered, i.e., stable if it is OFF and unstable state if it is ON. For 

every model, i.e., LR, KNN, Gaussian, MLP, and proposed model, k-fold cross-validation 

(where k = 10) is applied to seek out the best hyperparameters at the training stage. The 

dataset of 1600 records is created using the Python language, which depicts the mobile 

device's real-time scenario. The dataset is split into two sets in the current work, i.e., a 

training set and a testing set, where 80% is for the training set and 20% is for a testing set. 

The confusion matrix is used to examine the various machine learning model's performance 

with the proposed model more accurately. A confusion matrix is a valuable tool for 

examining the classifier's fitness in classifying the data correctly in the various classes of 

the problem scenario. The performance of the models can be measured using a variety of 

measures based on true positive (TP), true negative (TN), false positive (FN), and false-
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negative (FN). The various measures that are calculated for the problem statements are: 

 

                  Sensitivity = TP/ Positive           (4.11) 

 

                   Specificity = TN/ Negative          (4.12) 

 

Accuracy= sensitivity*(Positive/ (Positive + Negative)) + specificity* Negative/ (Positive 

+ Negative))                  (4.13) 

 

                  Precision= (TP) / (TP + FP)                   (4.14) 

 

        F1_Score = 2(precision * sensitivity) / precision + sensitivity (4.15) 

 

                                          FPR =   FP / FP + TN               (4.16) 

 

Sensitivity or true positive states how well the model classifies the positive tuple 

correctly. In contrast, sensitivity or false positive talks about how well the negative tuples 

are correctly classified as negative. The accuracy of the model for classification states the 

correct prediction rate. The summarization of sensitivity and precision can be seen in 

F1_Score, whereas the ratio of negative tuples classified as unfavorable can be seen as a 

false positive rate (FPR). Comparing the various techniques like Naïve Bayes, KNN, 

Logistic regression, MLP, and the proposed model has been done based on the above-listed 

measures.  

 

 

 

 

 



92 

 

4.7 Results and Discussion  

Table 4-2 Performance of different algorithms and proposed methodology 

Algorithm Specificity Sensitivity Precision 
F1_ 

Score 
Accuracy FPR 

Gaussian Naïve 

Bayes 
92.08 88.52 83.07 85.71 91 7.91 

KNN 98.2 94.26 95.83 95.04 97 1.7 

Logistic 

regression 
89.56 84.42 78.03 81.1 88 10.43 

MLP 98.92 96.72 97.52 97.11 98.25 1.06 

Proposed 

Model 
99.28 96.72 98.33 97.52 98.5 0.77 

 

Table 4-2 shows the various scores of various models and the proposed methodology 

computed to compare the performances. It has been found that the accuracy of the proposed 

model is 98.5%, which is comparatively higher than other techniques. The proposed 

method's specificity and sensitivity are 99.28% and   96.72%, which is better than the 

compared methods. The FPR parameter is low as 0.77, which signifies the false positive 

classification. The F1 score is 97.52%, which is higher than other methods, stating that 

precision and sensitivity are more valuable. It also depicts that the decision engine can 

adequately handle a balanced class where the decision can be biased based on the training 

dataset.  
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                            Figure 4-5 ROC curve of the different algorithm and the proposed 

methodology 

 

The performances of various models are also compared based on the Receiver Operating 

Characteristic (ROC) curve. The area under the curve (AUC) value is the highest in the 

proposed model, which is 0.98 compared with other models. Fig. 4-5 states the different 

algorithms' ROC curves and depicts the trade between the (1-specificity) and sensitivity. 

When the curve value is closer to the value of 1 and lies more towards the graph's left side, 

it represents that the true positive rate (TPR) of the classification model is more than the 

false positive rate (FPR). 
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                  Table 4-3 CPU utilization of Decision engine module (in percentage) 

 

No. of 

computational 

task 

Naïve 

Bayes 
MLP KNN LR 

Proposed 

Scheme 

10 5.3 4.4 4.3 4.8 4.4 

20 7.2 7 7.2 6.8 4.9 

30 8.2 7.7 7.6 9 7.1 

40 10.5 13.3 7.9 6.3 7.6 

50 8.3 6.4 7.4 6.6 7.1 

60 8.9 7.3 9.6 8 9.6 

70 5.7 9.8 5.9 9.4 5.6 

80 10.5 10.7 9.4 12.3 9.1 

90 13.3 14.1 7.7 10.9 7.2 

100 13.5 14.6 9.6 10.5 8.5 

 

Table 4-3 represents the performance of the decision engine based on CPU utilization. 

Different application size tasks are given as input to the decision engine module along with 

bandwidth, device energy, and GPS status. The proposed scheme performs better as 

compared to other machine learning algorithms. The CPU utilization in a particular set of 

computational tasks is less in an ensemble-based approach, which shows it as a powerful 

strategy to be considered as a decision engine. CPU utilization percentage is varied since 

each allocation given to the decision engine has a randomized computational task based on 

mobile device state. The CPU utilization of the proposed scheme is around 9% less on 

average than other methods.  
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Table 4-4 Execution time of Decision engine module (in a sec) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-4 represents the performance of the decision engine based on execution time. The 

decision engine's execution time is comparatively better when a randomized computational 

task is given to it in a different count. The proposed scheme is around 47% faster as 

compared to the algorithms. 

A decision engine is a key component of the offloading system, since it determines when 

a task should be offloaded to a remote or cloud server. This research proposed a stack-

based classification method for performing the decision engine's offloading decision-

making duty in the computational offloading process. When compared to other machine 

learning models, the suggested classifier is found to be more accurate. The ROC curve for 

the suggested approach is shown, which has a higher TPR than other models. Based on the 

device's GPS, the feature of mobility is also taken into account at work. The proposed 

technique is a viable decision engine solution because of its shorter execution time and 

lower CPU use. 

 

No. of 

computational 

task 

Naïve 

Bayes 
MLP KNN LR 

Proposed 

Scheme 

10 1.09 1.16 0.8 0.9 0.41 

20 1.43 1.21 0.95 1.27 0.83 

30 1.48 1.48 1.37 1.43 0.91 

40 1.28 0.98 1.29 1.44 0.79 

50 1.32 1.2 1.3 1.38 0.76 

60 1.21 1.16 1.83 1.45 0.81 

70 1.34 1.04 1.5 1.08 0.34 

80 0.71 1.4 1.5 1.14 0.5 

90 1.44 0.78 1.33 0.92 0.36 

100 2.3 0.7 1.8 1.9 0.37 
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4.8 Summary 

This work suggested a stack-based classification method that can perform the offloading 

decision-making task of the decision engine in the computational offloading process. The 

accuracy of the proposed classifier is found better when compared with different machine 

learning models. The proposed technique's ROC curve is presented, which has better TPR 

compared to other models. The feature of mobility is also considered in work based on the 

GPS of the device. The lower execution time and lower CPU utilization make the proposed 

scheme a viable decision engine approach.   
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CHAPTER 5                                                                            

MOBILITY MANAGEMENT SCHEME DURING 

COMPUTATIONAL OFFLOADING 

 

5.1 Introduction  

Seamless connectivity is the prime requirement for performing computation during 

offloading in MCC. It enables the mobile user to sustain uninterrupted and constant 

connectivity. It does consider the location and environment also where the mobile device 

is moving.  In mobile cloud computing, seamless connectivity [132] enables the device to 

remain connected with the cloud service providers without degrading the QoS.  At present, 

an enormous number of wireless data network technologies are Wi-Fi, Wi-MAX, 3GPP, 

LTE, and, more recently, the 5G technologies also. The core technologies in a cellular 

network, like a circuit-switched network, are also transformed to the internet protocol (IP) 

based network. It leads to the usage of the IP-based packet by the LTE technologies also. 

Many of the IEEE standards and RFC are proposed and implemented in recent times on 

these new transformations. Hence, there is a need to work on the mobility management of 

the devices also so that robust, cost-effective, highly available services can be provided to 

mobile users. It needs to assure that the mobile device needs to remains connected in 

different geographical locations. In traditional communication systems, the applications 

were limited to two-way directions, like voice communication, emails, and text. The recent 

emerging applications like telemedicine, sensor-based IoT applications, video streaming 

applications have changed the focus from two-way communications and open a new 

dimension of mobility in the communication system. Mobility management is an essential 

dimension of ubiquitous computing, which makes it more valuable and usable. The 

problems in MCC are similar to mobile computing, such as the issues  [9] [10] related to 

handoffs, network delays, bandwidth, and limited battery energy. In computational 
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offloading, the mobile device or mobile nodes (MN) roams around different access 

networks like a mobile device may initially start some cloud services in the 4G network 

and commit offloading process in the Wi-Fi network due to its mobility. 

5.2 Mobility management in MCC 

Tracing mobile nodes, preparing a handover, picking a new network, registering the mobile 

device with various service providers, and conducting the handover are all responsibilities 

of mobility management. Finding the SMD's Point of Attachment (PoA) and keeping the 

SMD's connectivity while changing the PoA are key issues in mobility management. The 

initial matter is controlled by location management [133], and the second is handover 

management [134]. A geographical coverage area is an area is divided into a sub-area 

known as a cell. It is a cell cluster means the group of a cell. A cell is assigned a bunch of 

frequencies and served by a base station consisting of a trans receiving system and control 

unit. A base transceiver system is deployed as a hub to handle the information transfer 

between source and mobile terminals. Now, the mobile switching center control all BSC, 

MSC takes part in the registration update, authentication, and call delivery process.  The 

basic function of a network is to allow mobile devices to communicate over GSM and 

UMTS networks. The data that has to be processed is transferred from the mobile device 

to the cloud or edge servers, where it is computed on the servers. The mobile device 

receives the calculation results from the cloud or edge server after the computation is 

completed. The offloading process in MCC may use heterogeneous types of wireless 

networks, which may include Wireless LAN (WLAN) and cellular services like 3G, 4G 

services, and even 5G services in the near future. Various issues get raised when the 

offloading application runs, like connectivity, the energy level of mobile devices, and the 

availability of the cloud or edge servers. The different types of mobile services [4] are 

available to the mobile device like Bluetooth, Wi-Fi, 2G/3G/4G services. 
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5.2.1 Network ad Cloud Probing 

The aim of MM is to track where subscribers are allowing calls, SMS, and other mobile 

phones. Like roaming is a significant procedure in MM, with the help of this, the customer 

automatically receives the calls, sends data, and travels outside the home network in 

Heterogeneous Access Networks (HAN) environments. The handoff procedure is a two-

step process that transfers an active call from one cell to another, i.e., when a mobile node 

(MN) travels into a different cell while a conversation is in progress, the MSC immediately 

switches the call to a new channel belonging to a new base station. The handoff is initiated 

when the new base station's average signal level exceeds the current base station by a 

certain amount. When a device moves from one network to another without changing the 

network type, then the process is called horizontal handoff, and if it changes the network, 

then it is called vertical handoff. Basically, -90 dBm to -100 dBm is an acceptable voice 

quality range.  Location management keeps track of the active mobile station within the 

cellular network to route the incoming call. A mobile station is active if it is powered ON. 

Usually, location management means how to track a mobile station between two 

consecutive phone calls. The goal of location management is to maintain track of the 

current location of users so that incoming packets can be routed to the mobile location. If 

a mobile station sends an update message, its specific location is unknown, which causes 

considerable delivery delays. If the mobile station's position is updated often, the network 

knows where it is, and data packets can be transmitted without any further processing. 

However, mobility management consumes a significant amount of uplink radio capacity 

and battery power. 

Heterogeneous networks (Hetnets) have various types of features like data rates, received 

signal strength (RSS), network capacity, bandwidth, and coverage span. The mobile device 

perceives these features and decides to select the best available network in its current 

location. The mobility of the device has a greater impact on the process of offloading. 

While the user is in a moving state, the probability of changing the network is high. For 

the flawless process of offloading, the transition among the cellular network must be 

smooth, and handoff must be minimized so that the mobile device remains connected with 
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the cloud server. Many modern computing environments are cloud-specific, like gaming 

applications, healthcare services, natural language processing (NLP) based applications, 

and computer vision. The mobile device can perform computations while roaming and may 

require cloud services for offloading purposes. 

During cloud probing and selection, the best cloud is searched for the offloading process 

based on QoS offered by the cloud service provider. The parameters like network 

throughput, CPU utilization, latency, and delay are considered for cloud probing services 

(CPS). Based on these parameters, the cloud services are ranked using the cloud ranking 

services (CRS).  The mobile applications use RESTful APIs for taking the cloud services. 

After selecting the appropriate cellular and cloud services, the task is uploaded for 

computational offloading.  

5.3 Proposed mobility scheme during computational offloading          

Computational offloading is a complex problem in mobile cloud computing. The offloaded 

task initiated by the mobile device during the offloading process reaches the cloud server 

through the heterogeneous cellular network or Wi-Fi network. In fig. 5-1, the offloading 

mechanism is shown where the mobile device may roam among different networks, and 

the mobility of the device compels it to choose the network with higher signal strength 

through network probing. Further, cloud probing is also required for selecting the best 

cloud for executing the offloaded application component. In this work, an assumption is 

made that mobile devices have fixed the cloud server based on the technique used in  [8], 

Simple Additive Weighting (SAW). The contribution of this work is to devise a mechanism 

for network probing where an optimal network can be searched, and the device remains 

connected to the cloud server. It aims to have less handoff and dropped rate happen so that 

seamless connectivity can be realized without interrupting the cloud service.       
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Figure 5-1 Computational offloading of task during mobility in MCC 

 

The proposed technique aims to provide a mobility scheme where the number of handoffs 

can be minimized, and the handoff dropped can be reduced. In this work, the COST-231-

Hata path loss model [135] is considered along with the pathway mobility model in various 

mobile environments like urban, semi-urban, and rural locations to simulate the cellular 

model of the offloading device. 

 

 

Figure 5-2 N state Markov chain model for mobility prediction in MCC                  

 

In this scenario, the mobile device roams in the different states or locations, represented 

with the Markov model. In fig. 5-2, the generic case of n state Markov model is presented 

where a device moves among different states, and the probability of moving to  
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the next state is updated after every movement in the cellular or Wi-Fi area.  

 

              P {Sn+1 = w | Sn = qn, Sn-1 = qn-1 … S1 = q1, S0 = q0}  (5.1) 

 The device's mobility is a stochastic random process, and the device can move to any 

state in state space. State-space is an area which is having network coverage or Wi-Fi 

access point. The mobile device performs the transition from one state to another based on 

the transition matrix. The probability of the transition matrix gets updated after every 

movement initially and learning is undergone. Fig. 5-3 depict the transition matrix for N 

states.  

 

 

 

Figure 5-3 Transition matrix 

 

In the first-order Markov chain, the model forecasts the next action by only seeing the user's last 

action. In the current scenario, the prediction of the next location movement accessed by a mobile 

device is the problem consideration. The Markov model consists of mobile user location as states, 

and the fourth-order Markov model is considered, which means the next state can be predicted 

based on the previous four states. It has been seen that a higher-order Markov chain  [136] increases 

the accuracy of the prediction; there is an increase in the number of states also. So, to manage the 

trade-off, the fourth-level Markov model is applied for location prediction, and further higher-order 

may make a mobile application more complex and could affect the battery drainage also during the 

decision making for handoff.  
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5.4 Proposed scheme for mobility management 

In this paper, the fourth-order Markov chain-based mobility scheme is proposed, which 

aims to reduce the number of handoffs and dropped rates also. The mobile device is initially 

connected with either Wi-Fi or a cellular network. Once the device starts the offloading 

process, it may start moving from one location to another location. The problem has 

considered the pathway mobility model  [137] in the scenario, which has been implemented 

in a different cellular environment like urban, semi-urban, and rural locations and 

compared with SINR based handoff mechanism [138]. The cloud server is assumed to be 

stationary and connected to the cellular service in the current scenario. When the device 

starts moving, it probes for the network or access point having strong signal strength. The 

network probing scheme is proposed as:   

  

Pseudocode 5.1    Network probing for a candidate list of BS/AP and network selection  

 

Finding the list of the predicted base station and access point based on the current location 

of the user equipment using a 4th order Markov model  

Input: 

Base station threshold 

Access point threshold 

D, database of all access point and base station 

Output: L, list of candidate base station and access point in D 

Method:  

1.  User equipment is connected to a base station or access point connected with the cloud. 

2.  Candidate list = {} 

3.  For each access point and base station in D, do 

4.  Repeat  

5. Compare the current RSS with the existing Base station and Access point RSS 
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6. Update candidate list with that BS and AP whose RSS is above the threshold value in 

the available area 

7. until no change 

8. If (User equipment Current RSS < threshold value), Select BS / AP from the candidate 

list based on the predicted location of user equipment derived using 4th order Markov model 

and perform offload 

9. Else continue offload at the current location 

5.5 Performance evaluation 

5.5.1  Experiment Settings 

In this work, a scenario is assumed to connect the mobile device to the cloud server through 

various base stations and access points. When the device starts moving, it probes for the 

network or access point having strong signal strength and select the network based on the 

next predicted move. In table 5-1, the frequency of the base station is considered 2100 MHz 

for all towers as the 4G network is considered in work. The height of the base stations 

(Hbs), transmitted power (Pt), transmitted antenna (Gt), and connector loss (A) are also 

considered for urban, semi-urban, and rural while defining the base stations  [139]  during 

this work. The work presented also compares techniques based on the cellular area like 

urban, semi-urban, and rural.     

Table 5-1 Base stations feature based on the cellular environment 

  Urban Sub-Urban Rural 

Frequency Base 

station (F) 
2100 MHZ 2100 MHZ 2100 MHZ 

Height of base 

station (Hbs) 
30 34 38 

Transmitted power 

(Pt) 
43 46 48 

Transmitted antenna 

(Gt) 
18 18 18 

Connector loss (A) 2 2 2 
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The cellular network ‘s received signal strength (RSS) can be computed as:          

RSS = Trasmit_Power (Pt) + Trasmit_Antenna (Gt) − Path_loss (PL) – connect_loss (A)     

         (5.2) 

The path loss model expressed for the cellular network COST-231-Hata model [23] 

                       Path_loss (dB) = A + B log10 (d) +C               (5.3) 

In equation 3,  

A = 46.3+ 33.9 log10 (carrier_freq) – 13.28 log10 (BS_height) – a (Mobile_height)                                                                                   

                                                                                                            (5.4) 

                                  B = 44.9 – 6.55 log 10 (BS_height)   (5.5)                        

and the value of C is 0 for rural and suburban areas and 3for urban areas 

 

In table 5-2, various parameters are presented, which are used in the WLAN simulation 

setting.  

 

The path loss [24] in WLAN is represented in dB as: 

 

PL(WLAN) = constant power loss(L) +10 (path loss exponent n )log (d) + Fading 

effect(S)             (5.6) 

 

The RSS for WLAN is articulated in dBm as: 

 

               RSS (WLAN) = Trasmit_Power (Pt) – Path_loss (PL)      (5.7) 

    

Table 5-2 WLAN access point features 

Features of WLAN Parameter Values 

Constant power loss (L) 147dB 

Path loss exponent (n) 3 dB 

Shadow fading (S) 2 

Transmit Power (Pt) 1dBm 
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5.5.2 Results and Discussion 

During the implementation of the strategy, the numbers of user equipment were considered 

in the range of 100 to 500, and the three environments were considered, i.e., urban, 

suburban, and rural.  

Table 5-3 Handoff results in a different environment 

No. of 

user 

equipment 

Urban Sub-Urban Rural 

Urban 

SINR 

Handoff 

Urban 

Proposed 

Handoff 

Sub-

Urban 

SINR 

Handoff 

Sub-

Urban 

Proposed 

Handoff 

Rural 

SINR 

Handoff 

Rural 

Proposed 

Handoff 

100 4404 3849 3740 3280 2866 2450 

200 6924 5919 5885 4930 6705 5820 

300 8651 7462 9262 7790 6090 5156 

400 10397 8703 10428 8849 7401 6427 

500 12938 10714 11912 9990 9559 8002 

 

Table 5-3 represents the count of handoff in the urban, sub-urban, and rural environments. 

It is calculated on different numbers of users in different cellular network features.  

 

Figure 5-4 Handoff comparison between the two different strategies 
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Fig. 5-4 presents the comparison of the number of handoffs in the proposed technique with 

SINR based approach in Urban, Sub-Urban, and Rural. Based on the simulation, it is 

founded that the proposed handoff strategy based on location prediction performs better as 

compared SINR based handoff. The numbers of handoffs are less in three different 

environments when compared with SINR based handoff. The lower handoff count depicts 

seamless connectivity with the cloud server and a flawless offloading process. 

 

Table 5-4 Handoff dropped results in a different environment 

No. of 

user 

equipment 

Urban Sub-Urban Rural 

Urban 

SINR 

Dropped 

Urban 

Proposed 

Dropped 

Sub-

Urban 

SINR 

Dropped 

Sub-

Urban 

Proposed 

Dropped 

Sub-

Urban 

SINR 

Dropped 

Sub-

Urban 

Proposed 

Dropped 

100 2557 1053 2189 882 1270 560 

200 4235 2408 3580 2203 4089 2274 

300 5494 4396 5801 4530 3688 2273 

400 7025 5537 7164 5649 4680 3702 

500 9411 7124 8809 6709 6430 5100 

 

Table 5-4 presents the handoff dropped results in the urban, sub-urban, and rural 

environments. 

In this work, a mobility-based offloading system in MCC is suggested, with the goal of 

reducing the number of mobile device handoffs as well as the number of handoffs dropped. 

The 4th order Markov model is developed to anticipate the user equipment's next location. 

The technology will allow user equipment to stay connected to a cellular or Wi-Fi network, 

which will then connect to a cloud or edge server for the computational offloading 

operation to be completed. For implementing the proposed work, the work encompasses 

diverse mobility situations such as urban, semi-urban, and rural, and it has been found to 

perform better than the comparative SINR-based technique. 
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Figure 5-5 Comparison of the number of handoffs dropped      

Table 5-4 shows the comparison of the number of handoffs dropped in the proposed 

technique with SINR based approach in Urban, Sub-Urban, and rural environments. 

Handoff dropped count depicts the scenario when user equipment does not get the required 

signal strength during handover and loses the connectivity with the base station of the 

cellular network. The results shown the fig. 5-5 interprets that the proposed technique 

reduces the dropped rate in the cellular network, and altogether reduction in dropped rate 

provides seamless connectivity of the mobile device to the cloud server. In all three cellular 

environments, the proposed technique has performed well in handoff dropped to count.  

5.6 Summary 

This chapter proposes a seamless mobility scheme based on the heterogeneous network of 

Wi-Fi and 4G networks. The proposed scheme is based on the fourth-order Markov model 

for mobility prediction and received signal strength (RSS) of the network nearest to the 

next predicted move of the device. The chapter is arranged in different sections where the 

related work in mobility in mobile cloud computing has been presented. The proposed 

mobility scheme for the offloading process has been presented in the chapter, along with 

the results of the proposed approach. 
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CHAPTER 6                                                                                   

A MULTI-OBJECTIVE TASK SCHEDULING SCHEME 

IN MOBILE CLOUD COMPUTING 

 

6.1 Introduction  

Cloud computing accomplishes a range of virtualized resources, which creates scheduling 

a significant component.  A client may need several virtualized resources to process the 

task on the cloud. That is why scheduling cannot be done manually.  The scheduling process 

needs to be modelled automatically through scheduling schemes that aim to maximize the 

central processing unit (CPU) utilization and reduce the energy consumption of the virtual 

machine. MCC is currently an encouraging field in the cyber-physical world. It is an 

amalgamation of mobile computing and cloud computing. Computational offloading is one 

feature in the mobile cloud application that offloads the task to the cloud server, processes 

it, and gets the results back on the mobile device. During offload, the job needs to be queued 

on the cloud servers and allocated to the virtual machines. Task scheduling is an important 

step where the mobile task is assigned to the servers and processed somehow. In the overall 

offloading process, energy conservation is a significant concern. The scheduling problem 

involves mapping the offloaded task to the cloud server while satisfying the energy and 

time constraints. This chapter presents a hybrid scheduling scheme based on Gaussian-

based multi-objective particle swarm optimization (GMOPSO) and bacterial foraging 

optimization (BFO). This scheme performs better when compared to other variants of 

particle swarm optimization (PSO) in terms of makespan and energy efficiency. The cloud 

schedulers are a fully-managed entity in the cloud service providers. It minimizes the 

human intervention in scheduling the task and provides a reliable solution. The tasks are 

scheduled on various virtual machines available in the physical servers of the data centers.  
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Figure 6-1 Virtualization in cloud computing 

 

The fig. 6-1 depicts a process of virtualization [140] which is a core technology of cloud 

computing that permits running different OSs concurrently on one physical machine (PM). 

These operating systems run in isolation from each other on these physical machines by 

particular middleware technology known as virtual machines. The middleware software 

which enables creating, running, and managing these virtual machines on single or multiple 

pools of physical machines is called hypervisors. The brokers or hypervisors enable 

scheduling on the virtual machines of the physical system. The cloud service providers 

monitor all the requests coming to the server and keeps the information about the utilization 

level of physical machines present in the data center. The characteristics of the task are 

recorded, and dependencies are also closely watched. The tasks that reach the server are 

broadly classified as CPU bounded, and Input-output (IO) bounded. The compute-intensive 

tasks require a large amount of Random access memory (RAM) to get processed. The IO-

based tasks are mostly requiring the peripherals devices connected nearby the servers. 
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6.2 Related work 

6.2.1 Task scheduling during computational offloading  

Computation offloading is the technique inside mobile cloud computing where an 

application is partitioned upon local and remote execution based on some criteria. Fig. 6-2 

depicts the system model for task scheduling of offloaded tasks.  In the offloading process, 

an application is partitioned, and based upon some measures; the decision has been taken 

to offload the task or execute it locally. Those tasks which are identified to be performed 

on an edge server are offloaded on it. The objective functions considered in the work are 

to minimize the makespan of the mobile task and minimize the mobile task's energy cost. 

 

 

Figure 6-2 System model for scheduling the offloaded task to the cloud server 

 

These jobs reach the cloud server and get scheduled by some scheduling technique. Task 

scheduling on the cloud server is one of the prime tasks on mobile cloud computing. The 

virtual machines (VM) need to be allocated to the task's execution by the cloud service 

provider. Major thirst has been given to research in the field of mobile computing by a 
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framework like Chroma(RPC) [14], Cuckoo(RMI) [6], spectra [13], MAUI [15], 

Mobicloud [19], and Clonecloud [16]. These are popular frameworks in this cloud 

computing domain that empower the concept of offloading the task to the cloud server 

either by task partitioning or considering a complete application for offloading purposes. 

Various studies have been done in the past, trying to achieve optimization in different 

objective functions like makespan, energy, quality of service (QoS), load balancing, and 

cost. The problem of task scheduling has much scope for optimization since of its NP-hard 

nature. The mobile application consists of many computational tasks represented as nodes, 

and dependency among these nodes is defined as a cloud. Resources are required in the 

cloud servers for the execution of these offloaded computational tasks. The availability of 

these resources needs to be assured by the cloud service providers, and also, the pricing of 

services may vary from country to country.  

The mobile task offloading model consists of two ways to execute the task, i.e., either to 

offload the task on the cloud server or to execute the task locally on the mobile phone. 

After the initial task partitioning phase, the decision of offloading is made by the decision 

engine by gathering various device and network parameters through the profiling process. 

Now, through a cellular network or Wi-Fi network, the task reaches the cloud server. The 

objective of offloading is to transfer the computation to the resourceful server at a distant 

place to improve the device's performance and save energy. Taking the offload decision to 

a remote server is not always mandatory but depends on the various parameters affecting 

the device's performance. In some scenarios, partial offloading is also performed. One part 

of the application task is processed on a mobile device, and the other is offloaded to the 

surrogate or cloud server. The task's computation time depends on the computation amount 

required and the mobile device's processing speed. In a scenario, let assume the job is 

divided into two partitions where the first partition executes locally and the second partition 

runs on a remote server. For local execution, let CT_LOCAL be the computation time required 

on the local device, CA_LOCAL is the computation amount, and PS_LOCAL is the mobile 

device's processing speed. The relationship among these values will be: 

                                        CT_LOCAL = CA_LOCAL /   PS_LOCAL                    (6.1) 
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For remote execution, the second partition is executed on the cloud/edge server. Let 

BAVAILABLE be the available bandwidth in the device and the amount of data to be transferred 

be DAMOUNT_OF_DATA. The time taken to transfer the data to/from the server will be 

CT_REMOTE   will be    

CT_REMOTE =DAMOUNT_OF_DATA / BAVAILABLE + Cloud processing time    (6.2) 

Total time CT_TOTAL taken to execute the application both locally and remotely will be a 

summation of the above two equations, which is                       

                                       CT_TOTAL =CT_LOCAL + CT_REMOTE                             (6.3) 

When a task is transferred from a mobile device to a cloud server, it is delivered to the 

cloud service provider's server. The cloud service provider manages all information about 

the task that approached it for processing. The Datacenter Broker policy [11] helps the 

cloudlets (task) to assign the virtual machines. The data center policy must be appropriate 

for the minimum execution time of the cloudlet. Similar to web applications, a mobile 

application consists of different tasks. These tasks can be represented as a directed acyclic 

graph (DAG). While the application's independent task can be executed simultaneously in 

multiple virtual machines, the dependent job needs to be synchronized as per their 

precedence order. 

6.2.2 Multi-objective approach of task scheduling  

The mulita-objective approach focuses on optimizing more than one objective function 

simultaneously. Energy and makespan are considered objective functions for the study. A 

task offloading scheme is based on optimizing the multi-objective function, where 

minimizing both functions is the approach's actual goal. 

Makespan is defined as the time required for the processing of the task CPU and its 

transmission time. The makespan of a task on the virtual machine is calculated considering 

the computing power of the VM and the size of the task. It can be defined the following 

equation:                      

              Makespan(T) = size of the task ∕ computational power        (6.4) 
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Two factors calculate energy cost: virtual machine usage charges, which are usually 

different for cloud service providers, and calculated on a second basis. The other is the 

execution time of the task. It can be defined the following equation: 

     Energy Cost = execution time X virtual machine usage charge   (6.5) 

6.3 Proposed approach for task scheduling model 

The proposed approach (GMOPSO-BFO) is based on a hybrid approach of particle swarm 

optimization (PSO) and Bacteria foraging optimization (BFO). The PSO approach works 

excellent in searching the solution globally, whereas the BFO works optimally with local 

search capabilities. The combined approach of these two techniques generates an optimal 

solution globally and locally in search capability and higher convergence time. 

In this work, the particular task's execution time depends on the task size and the virtual 

machine's property. Following are the basic definitions regarding mobile task scheduling: 

a) Consider a set of n virtual machines as V = {V1, V2, V3…, Vn}  

b) A task of the application tasks T = {T1, T2…, Tx}  

c) E is the set of connections between any two tasks, Ti and Tj.  

d) Collection of physical machines (PMs) in the data center = (PM1, PM2, PM3..., PMn) 

It is assumed in the work that the cloud service provider has a sufficient number of 

computational resources. The V number of virtual machines are deployed on the physical 

machines, and different virtual machines have a variety of processing units (CPU), random 

access memory (RAM), and networking capabilities. The data center brokers monitor all 

available resources and assign the machine to the task once approached. All jobs requiring 

the processing resources need to stand in a queue and based on the task scheduling scheme, 

tasks are planned to execute on the machine. 

6.3.1 Bacteria Foraging Optimization  

The bacteria foraging method is a natural selection method in which microorganisms like 

bacteria tend to search or forage the food to survive in the E-coli (intestine) of the human 
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body [141]. The primary strategy of bacteria to survive is by locating the nutrients, handling 

them, and ingesting the food to get the energy to live and reproduce. Those bacteria which 

do not successfully forage the nutrient typically get eliminated from the system. It follows 

the concept of survival for the fittest. This evolutionary concept made the scientist 

fascinated and motivated them to use it as an optimization process. Most of the 

optimization processes can be performed with such an evolutionary approach. The main 

aim of the bacteria is to maximize the energy attained during foraging per unit time. It 

depends on certain factors like prey density in the environment and characteristics of the 

environment. It also depends on the sensing and cognitive capabilities of the bacteria. 

The E. coli bacteria have a cell structure having various biological features like nucleoid, 

ribosomes, cytoplasm, pilus, and plasma membrane. As these attributes do normal cell 

process, another critical feature, i.e., flagellum, helps bacteria propagate or move in 

different directions. Chemotaxis is the process of movement of the organism from its 

position in the presence of some chemical attractants and repellents. With the help of 

flagella, there are two possible movements, i.e., either its moves clockwise or tumble, and 

the other is counter clockwise or swim. Fig. 6-3 depicts the movement of bacteria like 

tumbling and swimming in the E. coli. In a favourable condition of the environment where 

sufficient nutrients are available and the non-acidic and non-alkaline nature of the intestine, 

it swims and the opposite of it. It tumbles typically, which is changing the direction of the 

swim.  

                                        

   Figure 6-3 Chemotaxis process of the bacteria [141] 

 

 The other significant process related to bacteria is swarming, where bacteria release some 

attractants to swarm together, searching for food. If the attractants are released high and 

deep, there are chances that different bacteria explore food together; otherwise, they go 
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alone in the reverse situation. During the reproduction process, the bacteria get split into 

two parts to increase their population. Bacteria reproduce based upon the nutrient available 

in the bacteria or the fitness function. The bacteria also go through the elimination and 

dispersal phase in their lifetime due to their local environment. Sometimes, the condition 

to survive gets reduced when the sudden rise in heat or nutrients is finished. In terms of 

computing, to avoid trapping in the local optima, the elimination and dispersal process is 

used. 

6.3.2 Particle swarm optimization (PSO) 

Particle swarm optimization (PSO) is a nature-inspired algorithm [142] [143] based on 

social behavior and a flock of birds' dynamic movement. A group of birds known as swarm 

moves together, searching for food in a particular direction and different velocities. Each 

bird or particle looks for food and is usually followed by other birds. These birds 

communicate with each other during their search and typically follow each other closer to 

the food. The closeness from the food is calculated as a fitness value after a periodic 

interval of time. Each bird in the swarm is represented as a particle in multidimensional 

space with a certain velocity and position. Each particle keeps two things in its memory, 

i.e., their own best position pbest and other is the global best position of gbest of their 

group. In the standard PSO, the velocity of the particle is updated with the equation  

                  𝑣𝑖
(𝑘+1)

= [𝜔𝑣𝑖
(𝑘)

+ 𝑐1𝜉1(𝑏𝑖
(𝑘)

− 𝑥𝑖
(𝑘)

) + 𝑐2𝜉2(𝑦(𝑘) − 𝑥𝑖
(𝑘)

)]          (6.6) 

where )(k

iv 1+ is its velocity (k)

ix is the ith particle's position at step k, (k)

ib  is the best position 

visited by the ith particle, (k)y is the overall best position ever visited, ω is inertia- weight 

and ξ1  , ξ2   are the random numbers between 0 and 1 and c1, c2 are the acceleration 

coefficients. Velocity is updated by inertia, cognitive and social behaviour of the particle. 

The updated version of PSO, which improve the convergence rate, was constriction factor 

where the velocity vector as  
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            𝑣𝑖
(𝑘+1)

= 𝜒[𝑣𝑖
(𝑘)

+ 𝑐1𝜉1(𝑏𝑖
(𝑘)

− 𝑥𝑖
(𝑘)

) + 𝑐2𝜉2(𝑦(𝑘) − 𝑥𝑖
(𝑘)

)]   (6.7) 

𝑥𝑖
(𝑘+1)

= 𝑥𝑖
(𝑘)

+ 𝑣𝑖
(𝑘+1)

                                                   (6.8) 

where   is a constriction factor in the above equation and (k)

ix is the ith particle's position 

at step k, )(k

iv 1+ is its velocity, (k)

ib  is the best position visited by the ith particle, (k)y is the 

overall best position ever visited. It has been observed that after incorporating the Gaussian 

density function in the above equation, the results come better in terms of the global 

solution. The updated velocity equation will be  

   )x(yRandn)x(brandnv (k)

i

(k)(k)

i

(k)

i

)(k

i −+−=+ |||1      (6.9) 

where the randn and Randn are based on the Gaussian density function's absolute value. 

The Gaussian random density function is represented by    

                                          𝑓(𝑥) =
1

√2𝜋
𝑒−𝑥2

2⁄      (6.10)  

 

Pseudocode 6.1   GMOPSO-BFO approach for task scheduling: 

Initialize the Bacteria Foraging Optimization (BFO) parameters and Particle swarm 

optimization (GMOPSO) parameters:  

Np, Nc, Sl, Nr, Ne, C, Pdispersal, dattract, wattract, hattract, wattract, pi, f, vi 

Input: a collection of all bacteria where each bacteria represented as ( )lkji ,,  

Output: a collection of information on how much these bacteria collect nutrients 

1. begin: Let ( )lkji ,,   be the position of the ith bacteria in the environment where j 

defines the chemotaxes step, k defines the reproduction step, and l defines the dispersal 

elimination step. 

2. for all bacteria in the list: 
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3. Loop elimination-dispersal step 

4. Loop reproduction step 

5. Loop Chemotaxis step 

6. go for chemotactic steps using (a) and (b), respectively 

7. Initialize the value of vi  and  position pi  of the ith bacteria 

(a) Compute tumbling step:     

                                         

( ) ( ) ( )
( )

( ) ( )idltidlt

idlt
iClkjlkj

T

ii +=+ ,,,,1 

                                                                       

(b) Compute Swim step:       

                                       
( ) ( )( )lkjPlkjJlkjiJlkjiJ i

cc ,,,,,),,,(),,,( +=
 

8. Set Jlast  =  
),,,( lkjiJ

 

9. If ),,1,( lkjiJ +  <  Jlast 

10. Update Jlast 

11. For the reproduction phase:   calculate the fitness function using: 

                                            

( )
+

=

=
1

1

,,,
cN

j

i

health lkjiJJ

                           

12. Sort in ascending order the bacteria and chemotactic parameters  

             If (k < Nr), perform reproduction step again till k= Nr  

13. For elimination and dispersal: 

14. for each bacteria, 

15. if (ped < Pdispersal), 
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16. do elimination and dispersal till l= Ne 

17. Do Mutation of the remaining bacteria (particles) using PSO scheme 

18. Update pi, best and gi, best upon meeting the condition  

                                       
)()(

)()(

,,

,,

bestiiibesti

bestiiibesti

gfgfifgg

pfpfifpp

=

=

 

19. Update velocity of each bacteria (particle) after every iteration by the Gaussian 

based velocity-  

                         
 )x(yRandn)x(brandnv (k)

i

(k)(k)

i

(k)

i

)(k

i −+−=+ |||1

 

20. Update position of each bacteria (particle) after every iteration by the formula-                                                                                                   

                                     
)(k

i

(k)

i

)(k

i vxx 11 ++ +=
 

21. Check pi, which should exist within the range  

22. Repeat step reproduction and PSO until convergence is achieved.  

23. After the stopping criteria are met, the value of gbest and f(gbest) must be recorded. 

24. End 

6.4  Performance and Evaluation  

6.4.1 Experimental setup 

The proposed approach has been developed in the language Python in the window 10 

environment on Intel (R) Core (TM) i5, 1.80 GHz, CPU 8 GB. Various parameters 

considered during the simulation of the proposed technique have been presented in table 

6-1. In evaluating the proposed method, five virtual machines are considered, and a 

collection of tasks is assumed between 100 and 1000. The results are compared with the 

existing work on MOPSO [144] and BFO [145] regarding the energy efficiency and 

makespan of the task execution. The proposed scheme is based Gaussian swarm approach 
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implemented in MOPSO along with the BFO. The experiment has been performed by 

considering the number of bacteria (Np) as 20 and No_of_chemotactics (Nc) as 10. In the 

same way, the initial size of PSO is considered as 20 in the experiment. The experiment 

runs iteratively about ten times to find the average of makespan and energy values. The 

experiment has been performed by considering m random task to n virtual machine. The 

task size and required execution time are uniformly distributed. It has been found that the 

Gaussian scheme has outperformed the standard PSO and increases the convergence ability 

of PSO. Since our problem is multi-objective, when Gaussian is implemented with 

MOPSO and BFO, it gives better results in energy efficacy and reduced makespan time. 

Both factors are required for the offloading problem in mobile cloud computing.  

                        Table 6-1  Parameters considered in the simulation 

Parameters for BFO and PSO Value Used 

No_of_bacteria (Np) 
20 

No_of_chemotactics (Nc) 
10 

swim_length (S l) 
4 

No_of_reproductions (Nr) 
4 

No_of_dispersals (Ne) 
2 

step_size ( C ) 
1.45 

probability_dispersal (P dispersal) 
0.25 

d_attractant (dattract) 
0.1 

w_attractant (wattract) 
0.2 

h_repellant (hattract) 
0.1 

w_repellant  (wattract) 
10 

PSO Swarm size 
20 

Self-recognition coefficient 
1 
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6.4.2 Results and Discussion 

Table 6-2 presents the various task execution times, and it can be seen that the GMOPSO-

BFO approach has performed better than the other algorithms. As the number of tasks 

increases on the virtual machine, the proposed scheme maintains the lowest makespan. The 

proposed scheme has less makespan for the various range of tasks from 100 to 1000 

compared to MOPSO, BFO, and MOPSO-BFO. 

Table 6-2 Execution time of the task in different techniques 

 

TASK MOPSO BFO PSO-BFO 

GMOPSO-

BFO 

100 41.47 38.66 37.65 37.18 

200 155 151.81 155.05 145.25 

300 345.4 335.53 335 327.38 

400 594.85 597.26 594.85 567.8 

500 926.43 916.66 913.98 878.55 

600 1332.22 1333.36 1324.33 1284.5 

700 1813.15 1885.31 1803.56 1750.51 

800 2349.87 2390.75 2310.6 2316.66 

900 2934.87 3034.93 2924.65 2916.73 

1000 3743.78 3692.85 3655.96 3618.93 

 

In this work, the energy consumption is calculated of the proposed GMOPSO-BFO 

technique and compared with the method like MOPSO, BFO, and MOPSO-BFO. In this 

experiment, the number of virtual machines is considered 5, and the number of tasks ranges 

Social coefficient 
2 

Inertial weight 
0.5 
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from 100 to 1000. The experiment aimed to determine the energy consumption of the 

various techniques on virtual machines. The unit of the energy consumption is considered 

as joules/minute.  

Table 6-3 Energy consumption of the task in different techniques 

 

TASK MOPSO BFO PSO-BFO 
GMOPSO-

BFO 

100 1.05 1.05 1.03 1.03 

200 2.15 2.15 2.15 2.14 

300 3.14 3.12 3.16 3.11 

400 4.15 4.13 4.15 4.12 

500 5.18 5.19 5.17 5.18 

600 6.33 6.33 6.3 6.18 

700 7.45 7.46 7.5 7.42 

800 8.49 8.47 8.46 8.45 

900 9.6 9.62 9.61 9.59 

1000 10.72 10.75 10.71 10.66 

 

Table 6-3 presents the various tasks on the virtual machine and GMOPSO-BFO approach, 

which has consumed less energy in joules than the other algorithms. It has been observed 

that when the number of tasks increases from 100 to 1000, the machine's energy 

consumption also increases. The proposed schemes perform better as compared to the other 

algorithm. The proposed schemed able to save energy consumption in the virtual machine. 

It is clear from the experimental results that the proposed scheme GMOPSO-BFO performs 

better in completion time and energy consumption. 
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6.5 Summary 

The chapter proposed a hybrid scheduling technique based on Gaussian-based multi-

objective particle swarm optimization (GMOPSO) and Bacterial foraging 

optimization(BFO). The GMOPSO provides us the global best solution, whereas using the 

BFO, the local best solution is tried to be improvised. The work methodology and the 

detailed design approach of the suggested scheduling system are presented in the chapter. 

The evaluation results compared with existing works are also discussed in the chapter. 
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CHAPTER 7  

CONCLUSION AND FUTURE WORK 

 

7.1 Conclusion and Discussion  

Code partitioning is the foremost important task in computation offloading. In this study, 

a heuristic has been developed based on a multilevel hybrid approach for balanced graph 

partitioning. Although perfect partitioning in the mobile cloud computing offloading 

process is a challenging task, it can be achieved by optimizing the partitions at different 

levels. Heavy edge matching is performed on the graph initially for coarsening, and then 

spectral graph partitioning is applied for the initial partitioning of the graph. In the last 

stage, the Kernighan Lin algorithm is used for the refinement of the partitioned graph. The 

spectral partitioning along with the Kernighan Lin algorithm has performed optimally as 

compared to the existing approach of random partitioning and the multilevel KL approach 

in terms of edge cuts. The spectral approach, along with KL, improves the edge cut size, 

which plays a key parameter in the communication between the client device and the cloud 

side.  The initial design of the application partitioning scheme for mobile applications aims 

to develop an optimal code partitioning scheme and focused to optimize the edge cut. It 

has been aimed to minimize the number of edge cuts that minimize the communication 

between partitions. In this work, there are two partitions of the application where one 

partition resides on the mobile site and the other on the cloud server. Scheme is not 

applicable for multi-site offloading method. The energy consumption during the 

offloading process of partitioned task is not considered in the scope of the work and will 

be explored in the future work. 
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A decision engine is a significant component in the offloading framework, which helps 

decide when to offload the task to the remote or cloud server. This work suggested a stack-

based classification method that can perform the offloading decision-making task of the 

decision engine in the computational offloading process. The accuracy of the proposed 

classifier is found better when compared with different machine learning models. The 

proposed technique's ROC curve is presented, which has better TPR compared to other 

models. The feature of mobility is also considered in work based on the GPS of the device. 

The lower execution time and lower CPU utilization make the proposed scheme a viable 

decision engine approach.   

A mobility-based offloading scheme in MCC has been proposed in this work where the 

emphasis is given to reduce the number of handoff of the mobile device and also the 

handoff dropped count. The 4th order Markov model has been devised for predicting the 

next location of the user equipment. The technique will enable the user equipment to 

remain connected to the cellular network or Wi-Fi network, which at the end gets connected 

to the cloud or edge server for completing the computational offloading task. The work 

includes the various mobility environments like urban, semi-urban, and rural for 

implementing the proposed work, and it has found that it has performed better than the 

compared SINR based approach.  In this work, the cloud server is considered to be 

stationary and connected to the cellular service in the current scenario and in case of tie-

breaking situation between two signals having same signal strengths during network 

selection, mobile device will select any network in random order. 

The jobs reach the cloud server during offloading and get scheduled by some scheduling 

technique. Task scheduling on the cloud server is one of the prime tasks on mobile cloud 

computing. This work presents a hybrid scheduling approach based upon the Gaussian 

multi-objective particle swarm optimization and bacteria foraging optimization. Both 

makespan and energy consumption are essential factors in offloading method of MCC. The 

proposed scheme performs better in makespan and energy consumption. The results are 

compared with the MOPSO, BFO, and hybrid MOPSO-BFO. The scheme leverages the 

global optima of GMOPSO and the local optima by BFO.  
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7.2 Future scope 

• In the future, the approach will be implemented in the real software design in 

the mobile application, and further investigation will be carried out considering 

different parameters in the account. Partitioning of an application during 

offloading in mobile cloud computing is a critical problem. Different heuristics 

can be developed considering various parameters during the study. In this work, 

the mobility of the device is not affecting the partitioning results. It can be an 

open area where researchers can work and develop better models based on 

mobility.  

• Different parameters like data privacy, data confidentiality, and device security 

will be explored for decision-making in the future. Unsupervised learning, 

Reinforcement learning, and the evolutionary-based scheme will be studied and 

used to make the decision-making techniques during offloading.  

• 5G and 6G networks will be explored in coming future work, where the handoff 

mechanism will be studied and implemented for providing relevant ground for 

the computational offloading process in mobile cloud computing. Further, cloud 

probing strategies will be devised for finding the best cloud services during 

offloading. 

• A scheduling scheme will be developed based on other optimization parameters 

like a load on the servers, scalability, latency, and resource utilization. The multi-

site scheduling will also be explored to offload the task on cloud servers, and 

task dependency will be managed in such schemes of scheduling. Resource 

allocation schemes on cloud server will be explored since in current work, only 

task scheduling scheme has been worked upon. 
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