

DEVELOPMENT OF OPTIMIZED FRAMEWORK FOR

COMPUTATIONAL OFFLOADING IN

MOBILE CLOUD COMPUTING

A Thesis

Submitted in partial fulfilment of the requirements for the

award of the degree of

 DOCTOR OF PHILOSOPHY

in

 COMPUTER SCIENCE & ENGINEERING

By

Robin Prakash Mathur

41500183

Supervised By

Dr. Manmohan Sharma

Professor

LOVELY PROFESSIONAL UNIVERSITY

PUNJAB

2021

ii

DECLARATION

I hereby declare that the thesis work entitled “Development of Optimized Framework

for Computational Offloading in Mobile Cloud Computing” is an authentic record of

my own work carried out as requirements for the award of the degree of Doctor of

Philosophy in Computer Science and Engineering from Lovely Professional

University, Phagwara, India under the guidance of Dr. Manmohan Sharma, during

March 2016 to May 2021. All the information furnished in this thesis report is based

on my intensive work, genuine and has not been submitted in whole or part for a

degree in any university.

 Robin Prakash Mathur

 July, 2021

iii

CERTIFICATE

This is to certify that the declaration statement made by the student is correct to the

best of my knowledge and belief. He has completed the Ph.D. thesis Development of

Optimized Framework for Computational Offloading in Mobile Cloud

Computing under my guidance and supervision. The present work is the result of his

original investigation, effort, and study. No part of the work has ever been submitted

for any other degree at any University. The thesis work is fit for the submission and

partial fulfillment of the conditions for the award of Doctor of Philosophy degree in

Computer Science and Engineering from Lovely Professional University, Phagwara,

India.

 Dr. Manmohan Sharma

 Professor

 Lovely Professional University

 Phagwara, Punjab, India

iv

ABSTRACT

In the recent past, mobile cloud computing (MCC) has arisen in the computing world,

and many researchers and developers are working closely in this field. MCC is broadly

a convergence of fields like cloud computing, wireless technology, and mobile

computing. The rich computational resources available in the cloud are utilized to

execute the mobile task using the concept of offloading. The compute-intensive part

of the application is transferred to the cloud for execution. Upon the completion of

task execution in the cloud, the results are sent back to the mobile device. In this way,

the resource hunger applications are executed in a rich resource-intensive cloud. An

appropriate Infrastructure is required to store the data and CPU processing off-site

mobile device (not locally available) and execute on a remote cloud server. This

technology is understood as a mobile cloud in recent times. Computation offloading

solved various problems in a mobile cloud scenario. The task can be uploaded to the

cloud or surrogate server to cope with the incapability of low-power smartphones.

Computation like multimedia processing, image processing, audio processing, 3D

rendering, security, gaming, and text processing needs a lot of energy to execute. A lot

of energy is consumed in a compute-intensive task, and by offloading the task to the

cloud, device energy can be saved.

Offloading in a better bandwidth environment of 4G and 5G connectivity will reduce

the application's round trip time (RTT). Thus, performance will also improve in terms

of running an application. The devices having low processing capabilities can take

advantage of offloading and can enjoy the feel of high-end devices. An important

question in the offloading scenario is which part of the application needs to be

offloaded remotely. In order to identify that, the application needs to be partitioned.

In this work, the graph partitioning approach is considered based on spectral graph

partitioning with the Kernighan Lin algorithm. Experimental results show that the

v

proposed approach performs optimally in partitioning the application. The proposed

technique gave better results than the existing techniques in terms of edge cut, which

is less, concluding minimum communication cost among components and saving the

mobile device's energy.

The decision to offload is a significant concern. The mobile device decides whether

to execute the task locally or move on a remote server by assessing the storage,

processing, and bandwidth parameters. A decision engine is a substantial component

in the offloading framework, which helps decide when to offload the remote or cloud

server. In the process of offloading decision, various profilers like network, device,

and program profiler collect information related to network, application, battery level,

and CPU cycle, which help the solver to the decision for the offloading. Energy and

performance parameters are often evaluated during this phase. The decision engine's

accuracy should be high for the flawless execution of the application during the

offloading process. A technique has been proposed in this work by performing a stack

ensemble approach on machine learning techniques like the Gaussian approach, multi-

layer perceptron, k-nearest neighbors, and linear regression. It considers the various

dynamics of the environment like task size, bandwidth, device battery, and device

mobility. The proposed model performs better than other decision-making algorithms

in terms of execution time and CPU utilization and achieves higher accuracy in

making decisions while offloading the compute-intensive task to the remote server.

Mobility is a fundamental aspect of MCC where the mobile device gets connected to

the cloud or edge server through the intermediate cellular network during roaming for

the offloading process. The seamless connectivity with the network is required for the

mobile device to remain connected to the cloud or edge server and completes the

offloading effectively. Roaming is a significant procedure in mobility management;

with the help of this, the customer automatically receives the calls, sends data, and

travels outside the home network in Heterogeneous Access Networks (HAN)

environments. The handoff procedure is a two-step process that transfers an active call

from one cell to another, i.e., when a mobile node (MN) travels into a different cell

vi

while a conversation is in progress, the MSC immediately switches the call to a new

channel belonging to a new base station. Handoff dropped count depicts the scenario

when user equipment does not get the required signal strength during handover and

loses the connectivity with the base station of the cellular network. In this work, the

seamless mobility scheme has been proposed based on the heterogeneous network of

Wi-Fi and 4G networks. The proposed scheme is based on the fourth-order Markov

model for mobility prediction and received signal strength (RSS) of the network

nearest to the next predicted move of the device. The proposed scheme performed

better as compared to SINR based handoff mechanism based on the number of

handoffs and dropped count during device mobility in urban, semi-urban, and rural

areas.

During offload, the job needs to be queued on the cloud servers and allocated to the

virtual machines. Task scheduling is an important step where the mobile task is

assigned to the servers and processed somehow. In the overall offloading process,

energy conservation is a significant concern. The scheduling problem involves

mapping the offloaded task to the cloud server while satisfying the energy and time

constraints. When the task is offloaded from the mobile device to the cloud server, it

reaches the cloud service provider's server. The cloud schedulers are a fully-managed

entity in the cloud service providers. It minimizes the human intervention in

scheduling the task and provides a reliable solution. The tasks are scheduled on

various virtual machines available in the physical servers of the data centers. The

cloud service provider manages all information about the task that approached it for

processing. The Data center broker policy helps the cloudlets (task) to assign the

virtual machines. The data center policy must be appropriate for the minimum

execution time of the cloudlet. Similar to web applications, a mobile application

consists of different tasks. The thesis presents a hybrid scheduling scheme based on

particle swarm optimization (PSO) and bacterial foraging optimization (BFO). This

scheme performs better when compared to other variants of PSO in terms of makespan

and energy efficiency.

vii

ACKNOWLEDEGMENT

I would take this opportunity to give sincere thanks to everyone who contribution led

me to complete this thesis work. First and foremost, I would bow my head in front of

God for giving strength and energy to carry my work with zeal and enthusiasm

throughout this thesis work.

With immense pleasure and gratitude, I would like to express my sincere thanks to my

supervisor Dr. Manmohan Sharma, Professor, School of Computer Application,

Lovely Professional University. In my journey towards this degree, I have found a

mentor who is knowledgeable and warm-hearted. He has provided his incredible

support and guidance at all times and has given me worthy counselling, suggestions

and recommendations in my pursuit for the knowledge.

I express my sincere thanks to Dr. Rajeev Sobti, Professor and Senior Dean, School

of Computer Science and Engineering, Lovely Professional University for his kind

support and encouragement at all times.

I would like to thanks the School of Computer Science and Engineering, Division of

Research and Development and Central Library of the University for providing

continues guidance and resources required for the conduct of my research work.

I am deeply thankful to my Parents, Wife Kriti Mathur, Dear Son Lavish Mathur and

brother-in-law for their love, support, continues motivation and encouragement.

Without them, this thesis would never have been written.

viii

LIST OF FIGURES

Figure 1-1MCC: Intersection of mobile computing and cloud computing [2] 2

Figure 1-2 Mobile cloud computing architecture [4] ... 3

Figure 1-3 Computational offloading in mobile cloud computing .. 6

Figure 1-4 Decision to offload or not ... 10

Figure 1-5 Mobility Management in mobile cloud computing ... 11

Figure 1-6 Workflow of the thesis ... 19

Figure 2-1 Stages of the offloading process ... 20

Figure 2-2 Methods of computational offloading .. 21

Figure 2-3 Thinkair framework for offloading [18] ... 23

Figure 2-4 Offloading mechanism in mobile cloud [24] .. 24

Figure 2-5 Jade framework [29] .. 25

Figure 2-6 Parameters deciding the behavior of code partitioning 28

Figure 2-7 LP-based code partitioning scheme in MCC [49] .. 31

Figure 2-8 Mixed form of code partitioning scheme in MCC [49] .. 32

Figure 2-9 A Graph-based code partitioning scheme in MCC [49] 33

Figure 2-10 Directed Acyclic Graph (DAG) representing a mobile application 34

Figure 2-11 Consumption Graph and Weighted Consumption Graph [40] 36

Figure 2-12 High-level view of MAUI's architecture [39]. ... 36

Figure 2-13 Evolution of Wireless communication [61].. 47

Figure 2-14 Frequency reuse in cellular cell .. 47

Figure 2-15 Basic structure of a cellular network [75] .. 48

Figure 2-16 Basic structure of a 3G network ... 49

Figure 2-17 Basic structure of a 4G network ... 50

Figure 2-18 Horizontal and vertical handoffs [76] .. 51

Figure 2-19 Desirable handoff features [76] .. 52

Figure 2-20 Parameters used for making VHD decisions .. 53

Figure 2-21 Mobility model [61] ... 53

Figure 2-22 M2C2: A Mobility Management Scheme for MCC [77] 54

Figure 2-23 Task scheduling in mobile cloud computing [86] .. 55

Figure 3-1 Partitioned component offloaded on cloud sever ... 62

ix

Figure 3-2 Directed Acyclic Graph ... 64

Figure 3-3 Different types of graph topologies ... 65

Figure 3-4 Phases of graph partitioning ... 66

Figure 3-5 Scenario representing communication based on edge-cut 67

Figure 3-6 Flowchart representation of the proposed approach ... 68

Figure 3-7 Graph represents the edge cuts results of spectral ands KL algorithm 75

Figure 3-8 Graph represents the edge cuts results of the random .. 76

Figure 3-9 Graph represents the edge cuts results of the multi-level KL partitioning approach

 ... 77

Figure 3-10 Comparison of the edge cut results of spectral with and without KL approach,

random partitioning with KL, and multi-level KL. .. 78

Figure 4-1Offloading decision process .. 84

Figure 4-2 Multilayer perceptron model .. 85

Figure 4-3 Logistic regression model .. 87

Figure 4-4 Stack ensemble approach used for predicting the offloading decision 88

Figure 4-5 ROC curve of the different algorithm and the proposed methodology 93

Figure 5-1Computational offloading of task during mobility in MCC 101

Figure 5-2 N state Markov chain model for mobility prediction in MCC 101

Figure 5-3 Transition matrix .. 102

Figure 5-4 Handoff comparison between the two different strategies 106

Figure 5-5 Comparison of the number of handoffs dropped ... 108

Figure 6-1 Virtualization in cloud computing .. 110

Figure 6-2 System model for scheduling the offloaded task to the cloud server 111

Figure 6-3 Chemotaxis process of the bacteria [141] ... 115

x

LIST OF TABLES

Table 1-1 Challenges of mobile user and solution by mobile cloud computing 4

Table 2-1 Code partitioning techniques in MCC ... 29

Table 2-2 Various decision making techniques in MCC ... 38

Table 2-3 Task scheduling schemes in MCC framework .. 58

Table 3-1 Comparision of graph partitioning techniques with proposed technique 74

Table 4-1 Features considered for offloading decision ... 84

Table 4-2 Performance of different algorithms and proposed methodology 92

Table 4-3 CPU utilization of Decision engine module (in percentage) 94

Table 4-4 Execution time of Decision engine module (in a sec) 95

Table 5-1 Base stations feature based on the cellular environment 104

Table 5-2 WLAN access point features ... 105

Table 5-3 Handoff results in a different environment .. 106

Table 5-4 Handoff dropped results in a different environment 107

Table 6-1 Parameters considered in the simulation ... 120

Table 6-2 Execution time of the task in different techniques... 121

Table 6-3 Energy consumption of the task in different techniques 122

xi

 CONTENTS

Declaration..ii

Certificate..iii

Abstract .. iv

Acknowledegment .. vii

List of figures ...viii

List of tables.. x

1. Introduction .. 1

1.1 Mobile cloud computing .. 1

1.2 Background .. 6

1.2.1 Computational offloading ... 6

1.2.2 Code Partitioning .. 8

1.2.3 Decision engines ... 8

1.2.4 Mobility Management ... 10

1.2.5 Task Scheduling in MCC .. 12

1.3 Motivation ... 12

1.4 Objectives of the study .. 13

1.5 Thesis Contributions .. 14

1.6 Structure of the thesis .. 16

2. Review of Literature .. 20

2.1 Computational offloading and frameworks ... 20

2.2 Code partitioning in MCC ... 27

xii

2.3 Offloading decision making in MCC .. 36

2.4 Mobility mechanism in MCC .. 46

2.4.1 Wireless communication technologies .. 48

2.4.2 Handoff Management ... 50

2.5 Scheduling mechanism in MCC .. 55

2.6 Research Gaps and Challenges .. 59

2.7 Summary .. 61

3. Code partitioning during computational offloading in MCC 62

3.1 Introduction ... 62

3.2 Code partitioning using a graph model ... 64

3.3 Multi-level graph partitioning ... 65

3.4 Problem statement ... 67

3.5 Algorithm description .. 68

3.6 Performance Evaluation .. 73

3.6.1 Experimental Setup ... 73

3.6.2 Results and Discussion ... 74

3.7 Summary .. 79

4. Offload decision making in computational offloading 80

4.1 Introduction ... 80

4.2 Offload decision engine in MCC ... 81

4.3 Methodology .. 83

4.3.1 Offloading decision mechanism ... 83

4.4 Feature Selection ... 84

4.4.1 Multi-layer perceptron (MLP) .. 85

xiii

4.4.2 K-nearest neighbor (KNN) ... 85

4.4.3 Gaussian naïve Bayes method .. 86

4.4.4 Logistic Regression ... 87

4.5 Proposed stack ensemble approach ... 87

4.6 Performance Evaluation .. 90

4.6.1 Experimental Setup ... 90

4.7 Results and Discussion .. 92

4.8 Summary .. 96

5. Mobility management scheme during computational offloading 97

5.1 Introduction ... 97

5.2 Mobility management in MCC .. 98

5.2.1 Network ad Cloud Probing ... 99

5.3 Proposed mobility scheme during computational offloading 100

5.4 Proposed scheme for mobility management .. 103

5.5 Performance evaluation ... 104

5.5.1 Experiment Settings .. 104

5.5.2 Results and Discussion ... 106

5.6 Summary .. 108

6. A multi-objective task scheduling scheme in mobile cloud computing 109

6.1 Introduction ... 109

6.2 Related work .. 111

6.2.1 Task scheduling during computational offloading 111

6.2.2 Multi-objective approach of task scheduling 113

6.3 Proposed approach for task scheduling model .. 114

6.3.1 Bacteria Foraging Optimization .. 114

xiv

6.3.2 Particle swarm optimization (PSO) .. 116

6.4 Performance and Evaluation .. 119

6.4.1 Experimental setup ... 119

6.4.2 Results and Discussion ... 121

6.5 Summary .. 123

7. Conclusion and future work ... 124

7.1 Conclusion and Discussion .. 124

7.2 Future scope ... 126

REFERENCES ... 127

LIST OF PUBLICATION ... 144

1

CHAPTER 1

 INTRODUCTION

1.1 Mobile cloud computing

As per the Ericsson mobility report 2020 [1], the expected number of smartphone users in

2025 will be around 8.9 billion. The demand for smartphones in developing nations like

India and China is rising day by day. Android, BlackBerry, and Windows OS-based

smartphones have their place in the commercial market. These devices provide a different

type of features which enable the users to do various task related to location-based, image,

networking and sufficient space to store the data. Users can run different smartphone

applications like gaming, speech recognition, image and video-related editing, and

navigation-based apps with these features. Such applications are resource-intensive

applications that require a huge amount of CPU processing and battery, which are

sometimes not answered by existing smartphones.

Emerging technologies like MCC, ubiquitous computing, IoT have adopted computational

offloading to provide high-quality services (QOS) to the users. The mobile cloud

computing concept has emerged in the recent past and attracts researchers and developers

worldwide. It broadly means to run an application on the remote rich server. We can view

our mobile phones as a client in this case, which runs applications like Google, Facebook,

which are cloud-based applications. It is an infrastructure required to store the data and

CPU processing offsite mobile devices (not locally available) and enable mobile tasks on

a remote cloud server.

2

Figure 1-1 MCC: Intersection of mobile computing and cloud computing [2]

Fig. 1-1 depicts the mobile cloud computing which is an amalgamation of mobile

computing and cloud computing. Mobile computing [2] is a field of wireless

communication that empowers mobile devices to communicate during mobility. Handheld

devices or personal digital assistants (PDA) can communicate using wireless mediums like

WLAN or cellular networks. Rapid development in the field of telecommunication has

been seen since the 1990s. People can communicate with each other during mobility.

Several challenges still exist in mobility in mobile computing: coverage area, number of

mobile users, limited bandwidth, and heterogeneous mobile networks. This factor affects

the quality of services (QoS) to the user.

Cloud computing [3] is a distributed and parallel system where resources are available in

a virtualized environment and used by the customers based on service level agreement

(SLA). Cloud is a data center with nodes having resources available in the virtualized form

provisioned in hypervisors. Users can process its execution on the cloud using web services

like REST and SOAP. Users can access cloud services on pay-as-you prices and can

increase or decrease their demand on an elasticity basis. Services used in the cloud are

measured in metered form and transparent to the user. Cloud computing provides vital

support to the failovers and keeps a replica of the data to achieve durability and reliability

in the system.

3

Figure 1-2 Mobile cloud computing architecture [4]

Fig. 1-2 represents the broad architecture of MCC. Smart devices like mobile phones,

tablets are associated with the network operator (NO) through an access point or BTS. The

cloud service request of the mobile user reaches the cloud service provider through the

network operator and internet service provider (ISP). The mobile device is authenticated,

authorized, and accounted (AAA) through the network service provider. ISP act as an

intermediate between the NO and cloud service provider. The cloud service provider has

data centers providing different services in the form of software, platform, and

infrastructure through cloud controllers. It encompasses the power of virtualization and

utility computing.

4

Table 1-1 Challenges of mobile user and solution by mobile cloud computing

Challenges of the

mobile users

Solutions delivered by Mobile Cloud

Computing (MCC)

Lack of Storage

Capacity

MCC provides an extensive data storage

facility and its access to the mobile user.

Examples are Image Exchange, Flickr, and

Amazon S3.

Users need reliable

backup and security for

their information

Reliability can be improved by the data access

and running application on the cloud.

Reliability is a critical factor of cloud

services.

Energy is a significant

challenge in mobile

device

Computational offloading saves a good

amount of energy by immigrating the

compute-intensive task to the cloud from the

smart mobile device.

Incapability to process

an application when

having a low-end

hardware device

The mobile cloud provides solutions to mobile

users which are having low-end hardware

availability. They merely required optimal

bandwidth for processing through the cloud

server.

The various challenges of mobile users like lack of storage, reliable backup, energy

consumption, and inability to process a compute-intensive application can be solved using

cloud services. Various issues and solutions of mobile users are presented in Table 1-1.

There are various open challenges in the process of offloading in MCC are:

a. Uninterrupted internet connectivity and Bandwidth issue: The smart device must have

5

good bandwidth connectivity, so offloading becomes possible for the device. Loss of signal

may temper the offloading process, and again device need to execute the task locally in

case of non-availability of mobile signals. The emergence of 5G technology, cognitive

radio, and femtocells can help in providing seamless and quality services.

b. Privacy and security: Privacy and security must be seen as a crucial factor during the

offloading process and helps in establishing and maintaining the trust of the mobile user.

Data should be not being compromised in any sort of attacks, and privacy must be

preserved of the user.

c. Service Convergence: Single cloud will not solve the computational problem and meet

user expectations. Schemes need to formulate where users can exploit several clouds in a

unified way. Different cloud vendors need to have a proper service level agreement as a

migration of data is possible in the application processing. The pricing mechanism needs

to ease out when the user utilizes the services of a mobile service provider and a cloud

service provider.

d. Offloading during mobility: Handover in the perspective of MCC is less explored.

Offloading becomes a difficult task during device mobility. Unstable network conditions

and frequent handovers are a big challenge that needs to be addressed. Robust middleware

and mobility management paradigm need to work upon for creating an effective offloading

environment.

e. Application partitioning: Granularity of the application needs to be addressed correctly,

seeing the network conditions, the data size of the application, battery consumption, and

CPU cycles required. The mobile application consists of compute-intensive and graphics-

intensive code. The compute-intensive workload needs to be carefully partitioned based

upon the environment dynamics for energy saving. Still lot of scope is present where an

application can be dynamically partitioned based on current mobile device conditions.

The mobile cloud cannot be only seen as a powerful machine for offloading purposes nor

as an only pool of large virtual machines but can be explored with the great opportunity of

clouds such as elasticity, parallelization with the help of map-reduce, and its utility

6

computing model. Budding technologies like cloudlets, Web 4.0, and Hypervisor virtual

machines are boosting the popularity of MCC. Exploring the possibility of offloading in

enterprise android applications can create a revolution in the mobile industry and improvise

various business applications.

1.2 Background

In the era of highly configured mobile devices, sometimes users are under compulsion to

act as thin clients, have energy constraints, storage issues, and process incapability. Some

significant tasks in mobile devices like multimedia processing, image recognition, gaming,

and text processing consume high resources that users need to rethink the task being

performed. Computational offloading provides a platform to transfer the task from the user

device to the server on the cloud to perform the necessary computation and serve the user.

Several issues need to be addressed for computational offloading in MCC.

1.2.1 Computational offloading

A glimpse of the term 'computational offloading' is found in the 1990s, where researchers

have found that around 51% of the energy consumption of a portable computer battery can

be saved through remote process execution [5]. Such inspiration is continued to date, and

the methodology behind the computational offloading is used in recent technologies like

mobile computing and IoT.

Figure 1-3 Computational offloading in mobile cloud computing

7

Fig. 1-3 depicts the computational offloading process which solves various problems in a

mobile cloud scenario. In mobile cloud computation [6], the task can be offloaded to the

cloud or surrogate server to cope with the incapability of low-power smartphones.

Significant computation like multimedia processing, image recognition, gaming, text

processing needs much energy to execute. The decision to offload is a major concern. By

accessing the storage, processing, and bandwidth parameters, mobile devices decide

whether to accomplish the task locally or move on a distant server.

Generally, mobile applications are resource-intensive and need a lot of energy and other

processing requirements like CPU and memory. Based on various parameters like

bandwidth, availability of cloud server, we can move our computational task over the

cloud, process it, and get the outcome back on our device. Although it is not always

possible to offload the task on the cloud, a decision engine is deployed on mobile to take a

correct decision based on various parameters whether to offload or not [7]. Offloading can

be defined based on two different categories.

a) Partial Offloading: In this type of energy-aware approach, the program is partitioned

statically or dynamically on the client-side, and afterward, only a little required data is

transmitted to the cloud server. Thus, by transmitting reduced data, energy is saved up to a

large extent. In static partitioning developer [8] can annotate the methods or classes as

@remotable, which needs to execute on the cloud server-side. In some of the cases, the

developer needs to ensure not to mark @remotable. (i) code that implements user

applications user interface (UI) (ii) code responsible for Input/output of the mobile device

and restricted to it only.

b) Full Offloading: The complete program is transferred to the server in this scheme, and

the programmer cannot amend the source code. The program is primarily performed within

the client-side, and if it does not get executed within a specific time frame, the code is

offloaded to the server-side. In this strategy, the short applications are executed on the

client-side and extensive application is executed on the server as energy is the major

constraint.

8

1.2.2 Code Partitioning

Code needs to be partitioned before it is uploaded to the cloud. Code profiler partitions the

code either statically or dynamically. In the static case, the code which needs to execute

remotely is annotated with remote, which means that these methods or classes will be

executed on a remote server. In dynamic profiling, the code is partitioned during the

execution of code based upon the resource configuration available at the moment.

Static analysis and history trace strategies [7] are implanted by a different mechanism to

estimate the portion of code is intensive or not. Automated techniques are preferred over

static as they can quickly acclimate the code to be executed in different devices.

In a MCC environment, generally, two agents work for the process, one on the smartphone

device and the other on the cloud. The code partition process is conducted before the

offloading process based on parameters like application identifier, device identifier, and

RTT between the smartphone and the cloud.

Once the partition plan is done, the smart device transfers the required state to enable the

remote execution. A good partition plan can improve the performance, but the delay can be

observed in the decision-making process to offload. So, the code partition algorithm must

be accurate and fast to achieve optimized offloading performance.

Code partition algorithm should have some desired characteristics like Real-time

adaptability and Partition efficiency. The algorithm must adapt to network and device

changes. Code partition should be made dynamically based on the input of network

conditions. How much code needs to be offloaded is another challenge. Fine-grained

partitioning is always much value compared to coarse-grained partitioned. Thus, achieving

partition efficacy is another critical parameter in computational offloading.

1.2.3 Decision engines

Decision engines [7] decide when to offload based on various inputs make available by the

system profiling. The decision engine applies logic based on stochastic methods, fuzzy

logic, linear programming, machine learning-based, etc. The objective of offloading is to

transfer the computation to the resourceful server, which may be a distant place to improve

9

the device's performance and save energy. It is not always expected to offload the task on

a remote server but depending upon device conditions and bandwidth, and the decision to

offload can be taken. If one part of the code is processed on the smart mobile device and

the other is offloaded on the cloud/surrogate server, then it is partial offloading. The time

T taken to execute the task locally [8] is

 T= W/Sm (2.1)

where W is the computation amount required for the second part and Sm is the processing

speed of the mobile device.

The di quantity of data takes di/B seconds to send to a selected server if the second

component of the compute-intensive task is offloaded to a cloud server with bandwidth B.

The benefit of offloading the task on a cloud server is only when the computation of the

task, including the communication, can be achieved faster at the cloud server than local

execution.

Total time = communication time to/from server + computational time

 (2.2)

The offloading decision is generally taken after the inputs taken from the code profiler and

system profilers. Code profilers determine "what to offload" merely we can say the code

partitioning task and system profilers gather the information about the crucial parameters

like available bandwidth, data size to be migrated, and the most important energy required

to execute the code. A decision engine is a thinker, a differentiator which decides "when to

offload" to the cloud server. The concept of Lyapunov optimization, dynamic

programming, linear programming, fuzzy logic, and Markov chain can be applied to build

the optimal decision engine. In some of the references, the offloading policy is also based

upon the two-level genetic algorithms. Fig. 1-4 depicts the decision-making process where

the mobile device takes decision to offload the component of the application to the cloud

using cellular or wireless network or run the application on the mobile locally.

10

Figure 1-4 Decision to offload or not

1.2.4 Mobility Management

In the offloading process, the data that need to be processed is sent to the cloud or edge

servers from the mobile device, get computed on the servers, and once the computation is

done, the mobile device receives the computation results from the cloud or edge server.

The offloading process in MCC may use heterogeneous types of wireless networks, which

may include Wireless LAN (WLAN) and cellular services like 3G, 4G services, and even

5G services soon. Various issues get raised when the offloading application runs, like

availability of connectivity, the energy level of mobile devices, and availability of the cloud

or edge servers. The different types of mobile services [4] are available to the mobile device

like Bluetooth, Wi-Fi, 2G/3G/4G services. The transitions among these services are getting

possible by a concept of vertical handoff. The problems in MCC are similar to mobile

computing, such as the issues [9] [10] related to handoffs, network delays, bandwidth, and

limited battery energy. In the case of computational offloading, the mobile device or mobile

nodes (MN) roams around different access networks like a mobile device may initially start

some cloud services in the 4G network and commit offloading process in the Wi-Fi network

due to its mobility.

11

Figure 1-5 Mobility Management in mobile cloud computing

Handoff is a process when a mobile device changes its network from one to another.

Fig. 1-5 discuss the mobility management in MCC framework. While in mobility, the

mobile nodes initiate the process of handoffs for seamless connectivity. Handoff can

introduce packet loss and long delays and hence can affect the cloud services further. Many

applications in the modern computing environment are cloud-specific, like gaming

applications, healthcare services, natural language processing (NLP) based applications,

and computer vision. The mobile device can perform computations while roaming and may

require cloud services for offloading purposes. The seamless transitions among networks

can be either horizontal or vertical. When a device travels from one network to another

without changing the network type, the process is called horizontal handoff, and if it

changes the network, it is called vertical handoff. Heterogeneous networks (Hetnets) have

various types of features like data rates, received signal strength (RSS), network capacity,

bandwidth, and coverage span. The mobile device perceives these features and decides to

select the best available network in its current location. The mobility of the device has a

more substantial impact on the process of offloading. While the user is moving, the

probability of changing the network is high. For the flawless offloading process, the

transition among the cellular network must be smooth, and handoff must be minimized so

that the mobile device remains attached to the cloud server.

12

1.2.5 Task Scheduling in MCC

When the task is delegated to the cloud server from the mobile device, it reaches the cloud

service provider's server. The cloud service provider manages all information about the

task that approached it for processing. The Datacentre Broker policy [11] helps the

cloudlets (task) to assign the virtual machines. The data center policy must be appropriate

for the minimum execution time of the cloudlet. Similar to web applications, a mobile

application consists of different tasks. These tasks can be represented as a directed acyclic

graph(DAG). While the application's independent task can be executed simultaneously in

multiple virtual machines, the dependent job needs to be synchronized as per their

precedence order.

When speaking about task scheduling, achieving minimum makespan is considered an NP-

hard problem. Most recent studies have focused on the cloud resources to the various

cloudlets to optimize energy and execution time parameters. In this work, the particular

task's execution time depends on the task size and the virtual machine's property. It is

assumed in the work that the cloud service provider has a sufficient number of

computational resources. The V number of virtual machines are deployed on the physical

machines, and different virtual machines have a variety of processing units (CPU), random

access memory (RAM), and networking capabilities. The data center brokers monitor all

available resources and assign the machine to the task once approached. All jobs requiring

the processing resources need to stand in a queue and based on the task scheduling scheme,

tasks are planned to execute on the machine.

1.3 Motivation

Computational offloading is an emergent field in the area of MCC. Smart mobile devices

in the modern era are energy-hungry and required much energy for their computational

processing. An application like multimedia processing, image recognition, gaming, and

text processing consumes high resources to rethink the task being performed. A possible

solution to the problem can be achieved by transferring our task to a resourceful cloud

server for making optimal execution. The work will contribute to computational offloading

13

in MCC, which is challenging for mobile and cloud service providers in today's scenario.

The topic is appropriate to the immediate environment as, at present, computational

offloading can be possible due to the availability of 4G and, in the coming future, 5G

technologies. It enables a mobile device to have the high bandwidth required for

computation migration to distant cloud servers.

The applicational partitioning is a primitive task that is done in the offloading process. The

compute-intensive portion of the application need lot of RAM and processing capability to

process a task. Application partitioning identifies the task for offloading. Lower

computational power and RAM capability motivate the developers to offload the task on

the cloud servers, and thus application partitioning becomes a fascinating topic for

research. Offloading decision is majorly affected by various factors like bandwidth,

mobility of the device, size of the task, and battery level of the mobile device. Accessing

accuracy and energy consumption during decision-making considering these parameters

make it an interesting field to study. The mobility during the offloading process is a

challenging task and motivates to work on mobility management. Handoff management

and cloud probing is an essential and exciting topic that led the researchers to find the

optimal solutions in terms of energy-saving and flawless connectivity to mobile users.

Lastly, the task scheduling on the cloud server is an open area. Many scheduling methods

like machine learning and nature-inspired method attract researchers to find the optimal

solutions. Computational offloading is a motivational topic in mobile cloud computing and

will always have a scope of improvement in the coming future also.

1.4 Objectives of the study

The main objective of this thesis is to develop an optimized framework for computational

offloading in MCC. There are broadly two types of offloading i.e., data offloading and

computation offloading. In this work, compute- intensive offloading is considered for the

study. The critical question which needs to answer in offloading is “what to offload.” The

focus of the thesis is to develop a partitioning method for the code that will decide which

portion of the application needs to be sent on the cloud server. The computational

14

capabilities of smart devices are limited in extent. Another question of “when to offload”

is also challenging in offloading. A decision scheme needs to be developed for effective

offloading on the cloud servers. Offloading depend on the various parameters of the device

and mobile network. The mobility of the device needs to be addressed during the offloading

process. A mobile device may roam and can change its position during offloading process.

A mobility scheme is required to be built based on the mobile device's mobility pattern.

After the data partitioning, offload decision making, and offloading during mobility, the

task is scheduled on the cloud servers for processing. An optimal scheduling scheme is

needed to place the task on the cloud servers.

Based on the study, the main objectives of this thesis would be:

1. To design an optimal algorithm for code partitioning in computational offloading.

2. To build a decision engine for computational offloading based on the dynamically

changing environment

3. To develop a mobility-based offloading scheme where users can offload while

moving from one location to other.

4. To develop a scheduling scheme that can prioritize the task on a virtual machine

1.5 Thesis Contributions

1. In this research work, initially, a literature review regarding computational offloading in

MCC has been pursued in chapter 2. The literature is studied from a different perspective

like code partitioning, decision engines, computational frameworks, mobility management,

and task scheduling. Further, the research issues have been identified in the computational

offloading. The challenging part of the research is identifying what, when, where, and how

to offload correctly. Studying the various types of existing architectures for offloading

purposes is the prime step of this thesis.

2. The research contributes to identifying the compute-intensive part of the application. It

15

was found in most of the research papers that the UI part is locally executed while the

computational task is offloaded on the cloud server. Code partitioning will divide the code

into two parts- One to execute local and the other to execute remotely. Code partitioning

algorithm is studied in-depth, and modification has been made in the dynamic code

partitioning scheme where code is partitioned based on the current parameter like network,

the bandwidth available. In order to identify that, the application needs to be partitioned.

In this work, the graph partitioning approach is considered based upon the spectral graph

partitioning with the Kernighan Lin algorithm. Experimental results show that the proposed

approach performs optimally in partitioning the application. The proposed technique gave

better results than the existing techniques in terms of edge cut, which is less, concluding

minimum communication cost among components and saving energy of the mobile device.

3. The third contribution of the research is to build the decision engine. A decision engine

is a reasoner that infers the "When to offload" question. To judge when to offload is very

important since various parameters like bandwidth, device battery play a crucial part in this

decision. A technique has been proposed by performing a stack ensemble approach on

machine learning techniques like the Gaussian approach, multi-layer perceptron, k-nearest

neighbors, and linear regression. It considers the various dynamics of the environment like

task size, bandwidth, device battery, and device mobility. The proposed model performs

better than other decision-making algorithms in terms of execution time and CPU

utilization and achieves higher accuracy in making decisions while offloading the compute-

intensive task to the remote server.

4. A fourth contribution of the research will make the mobile cloud computing user device

offload its computational task while moving from one location to another. The mobility

pattern of the user can be recorded, and based on the location, the offloading scheme can

be developed where the user device can offload the task to the nearest cloud server as per

its convenience. The seamless mobility scheme has been proposed based on the

heterogeneous network of Wi-Fi and 4G networks. The proposed scheme is based on the

fourth-order Markov model for mobility prediction and received signal strength (RSS) of

the network nearest to the next predicted move of the device. The proposed scheme

16

performed better as compared to SINR based handoff mechanism based on the number of

handoffs and dropped count during device mobility in urban, semi-urban, and rural areas.

5. The fifth contribution of the research is the task scheduling scheme in a mobile cloud

environment. In the end, the task is offloaded to the cloud server where virtual machines

(VMs) exist. A single physical cloud server contains N virtual machines where the tasks

are forked into the primary and secondary tasks. Allocating the same VM to the main task

is required since the primary and secondary tasks sometimes communicate. It is necessary

to schedule the offloaded task to execute without any deadlock or starvation-like problem.

This work offers a hybrid scheduling scheme based on bacterial foraging optimization and

Gaussian-based multi-objective particle swarm optimization (GMOPSO). When compared

to other PSO variations, this method outperforms them in terms of makespan and energy

efficiency.

1.6 Structure of the thesis

Chapter 1 presents the introduction to the concepts of MCC. It provides the details of the

areas which are presented in the work. The benefits of MCC have been presented in the

chapter. The concept of computational offloading has been presented, transferring the data

from mobile to cloud server to overcome the resource limitations present in the mobile. It

includes the discussion on code partitioning, where code needs to be partitioned before

uploading to the cloud. It also discussed decision engines that decide when to offload based

on various inputs provided by the system profiling. Mobility management is also discussed,

which defines that the offloading process in MCC may use heterogeneous wireless

networks, including Wireless LAN (WLAN) and cellular services like 3G, 4G services,

and even 5G services soon. When the task is delegated to the cloud server from the mobile

device, it reaches the cloud service provider's server. The concept of task scheduling is

presented where the cloud service provider manages all information about the task that

approached it for processing and scheduled it for execution.

Chapter 2 presents the literature review of the various task partitioning schemes that a

special program structure usually implements in computation offloading or a design pattern

17

that allows a code to run locally or remotely and handles interactions between the local and

remote code without affecting the functionality's integrity. It also provides a literature

review on decision engines. Decision engines decide when to offload based on various

inputs provided by the system profiling. The decision engine applies logic based on

stochastic methods, fuzzy logic, linear programming, machine learning-based, etc. Further,

it provides literature on mobility management in mobile cloud computing. A mobile device

is connected to a distant cloud, and continuous mobility causes a disconnection problem.

Suppose a device is connected through a 4G/ 3G network or in the future 5G with the cloud.

If the device moves to such a place where the mobile network is not available, the

connection with the cloud will be broken. The last section of the chapter provides the work

is done so far in the field of scheduling in MCC and cloud computing. Once the task has

been offloaded to a virtual machine, its execution plan or schedule is another challenge.

The scheduling algorithm must be optimally designed so that the task's timely execution

can be achieved and starvation or deadlock-like conditions can be avoided.

Chapter 3 presents the efficient partitioning technique considering an application as a

graph. Two different tasks are primarily done during offloading, first partitioning an

application and second, moving the created partition to the cloud or server. In this chapter,

the focus is on the first task, and the graph partitioning approach is considered, which is

based upon the spectral graph partitioning along with the Kernighan Lin algorithm. The

proposed approach reduces the communication cost between the different application

components in terms of edge cuts. Minimizing the communication cost between the

components leads to saving the energy of the mobile device.

Chapter 4 presents an approach of an offloading engine that is placed in the mobile device.

It must be light weighted and also provide highly accurate offloading decisions based on

the statistics provided to it by the context analyzer. The chapter presents a proposed

technique for the offloading decision that aims to achieve higher accuracy. It is based on

the stacked ensemble approach considering various mobile device parameters. The

proposed techniques aim to reduce the mobile device's processing time and CPU utilization

while taking the offloading decision.

18

Chapter 5 addressed the issues of seamless connectivity and proposed a technique for

reducing the number of handoffs and the dropped rate. It is based on the fourth-order

Markov model for location prediction and an RSS-based scheme for handoff decisions.

The mobile device perceives these features like data rates, received signal strength (RSS),

network capacity, bandwidth, and coverage span and decides to select the best available

network in its current location. The mobility of the device has a more significant impact on

the process of offloading. While the user is moving, the probability of changing the network

is high. For the flawless offloading process, the transition among the cellular network must

be smooth, and handoff must be minimized so that the mobile device remains connected

with the cloud server.

Chapter 6 proposed a hybrid scheduling technique based on Gaussian-based multi-

objective particle swarm optimization (GMOPSO) and Bacterial foraging optimization

(BFO). The GMOPSO provides us the global best solution, whereas using the BFO, the

local best solution is improvised. The contribution can be summarized as follows. a)

Minimize the energy consumption and makespan of the scheduling process. b) Simulation

and performance evaluations of the proposed algorithm with existing approaches.

Chapter 7 presents the conclusion of the overall work, limitations and the future directions.

The workflow of the thesis is discussed in the fig. 1-6.

19

Figure 1-6 Workflow of the thesis

Literature review on computational
offloading techniques in mobile
cloud computing.

Phase-1- Pursue literature survey on
code partitioning. Design and
implementation of optimal code
partitioning scheme.

Phase-2 Study of various decision
engine algorithms. Design and
implement decision engine based on
technical or fundamental approach

Phase-3- Study the mobility based
offloading schemes and design and
implement the optimal mobility based
offloading method

Phase-4 Study the scheduling schemes
on the virtual machines and develop
and implement the optimal scheduling
approach for offloaded task

20

CHAPTER 2

REVIEW OF LITERATURE

In this chapter, the literature review has been presented. Computational offloading is an

essential paradigm in MCC. It has been discussed along with some of the state of art

frameworks that exist in this field. Further, this chapter emphasizes four significant sections

of the thesis a) Application partitioning, b) decision making in MCC, c) mobility

management in MCC, d) Task scheduling in the MCC environment.

2.1 Computational offloading and frameworks

Offloading is a complex task that is performed in a step-by-step process. Fig. 2-1 present

the major steps taken during the offloading process are partitioning an application,

preparation for offloading, and decision to offload or not.

Figure 2-1 Stages of the offloading process

Deciding what to be offloaded is typically done during application partitioning. The

different granularities of the application can be considered for offloading like object level,

method level, class level, etc. Applications are comprised of both compute-intensive tasks

and GUI-related tasks. The task which is responsible for the GUI cannot be offloaded. So,

the compute-intensive part is partitioned either statically or dynamically. Annotation used

by application developers is a popular style of static partitioning where the developer writes

21

local or remote with a code for partitioning purposes. Dynamic partitioning incurs an extra

cost as, during the execution of an application, it is taking extra effort to identify the code

for local or remote execution. Once the partitions are ready, the next step is establishing a

connection with a cloud server, defining the proxy process on both the smart mobile device

and a remote cloud server. The device should be robust enough to handle failure if a

connection breaks with the cloud server. It must act intelligently by running a computation

on the local device itself and provide results to the user. Since program states are

transferred, re-executing a portion of the computation will not affect the correctness of the

program. The next major step is whether to offload or not, i.e., offloading decision. Various

profilers like network, device and program profiler collect information related to network,

application, battery level, and CPU cycle, which help the solver decide for the offloading.

Energy and performance parameters are often evaluated during this phase.

Major approaches of computational offloading

The Fig. 2-2 deliberates offloading approaches in three main directions; Client-Server

Communication methods, virtualization, and mobile agents.

Figure 2-2 Methods of computational offloading

In the Client-Server Communication process communication, the offloading process

utilizes the APIs of RPC, sockets, and RMI to offload the task communicate with the cloud

22

server. The advantage is this method is the stability that is offered to the mobile application

developers. The disadvantage is that the application services need to be pre-installed on

both ends, and it also not performs optimally due to the unavailability of the services during

mobility of the device. Existing work like Hyrax [12], Spectra [13], Chroma [14], and [6]

has developed techniques based on client-server communication.

A majority of frameworks use virtualization like MAUI [15], Clonecloud [16], Cloudlets

[17], Thainkair [18], and Mobicloud [19]. Virtualization has reduced the work of

programmers as rewriting of complete applications is not required in this method.

However, the virtual machine synthesis takes time, and the compatibility issue also arises

due to a dynamic mobile environment.

In the mobile agent method, the mobile code is partitioned and distributed on one or more

surrogate servers. The cost assessment is done based on the speed of the server. There are

issues related to security and agent management in this method. Scavenger [20] is a method

which uses a mobile agent-based method for offloading purpose.

Various literature has been reviewed which have done considerable work in the field of

computational offloading in MCC.

M. Satyanarayanan et al. [21] have proposed the concept of cyber foraging in which

migrating the task from mobile device to surrogate server is discussed. The author has

presented some real challenges like discovering the surrogate servers, trust formation

between client and surrogate, load balancing, which are widely addressed in the recent past.

RKK et al. [22] proposed the stack-on-demand (SOD) concept in which migration of light-

weighted threads is done using the JVM environment. The SOD. supports the partial

migration of thread data onto the server and thus optimizes the performance of the MCC

process. The SOD. model is implemented into a Java distributed runtime named the SOD.

S. Kosta et al. [18] proposed the framework for offloading work "Thinkair" over the cloud

with its application server concept and broadly discussed profiling. Fig. 2-3 presents the

Thinkair framework which have exploited the mobile device virtualization over the cloud

and provide method-level computational offloading. Parallel execution of tasks over

multiple virtual machines has been proposed in the concept. Thinkair framework can be

23

seen in fig. 2-3, which is implementing the offloading concept using the client-server

model.

Figure 2-3 Thinkair framework for offloading [18]

R. Kemp et al. [6] proposed the primitive android-based framework CUCKOO for

computational offloading. The framework offers a simple programming model using

remote method invocation and IPC mechanisms for local and remote job execution. It

provides a dynamic runtime system that decides whether a code will execute locally or

remotely at runtime.

Yang Ge et al. [8] proposed an algorithm that is based upon a game-theoretic approach.

The client resembles the player, and its strategy is to select one server which provides him

energy-efficient offloading scheme. The researcher can achieve Nash equilibrium in

polynomial time, which means it is an optimum solution where no player can find a better

policy if he deviates from the current policy unilaterally.

Ejaz Ahmed et al. [23] provide an extensive survey for seamless application execution in

MCC. They have focused on the study of state-of-the-art cloud-based mobile application

execution frameworks (CMAEFs). Different frameworks are compared based on some

24

significant parameters and, in the end, have suggested open challenges in the field.

Figure 2-4 Offloading mechanism in mobile cloud [24]

Dejan Kovachev et al. [24] present Mobile Augmentation Cloud Services (MACS)

middleware, enabling the adaptive extension of Android application execution from a

mobile client into the cloud. Fig. 2-4 presents a middleware which performs the application

partitioning, resource monitoring, and computation offloading. The application is partially

divided dynamically into two parts: running locally and running on a cloud server. The

middleware supports android-based offloading and achieved parallelization of the

offloading services.

S. H. Hung et al. [25] proposed the profile-based policy manager where agent programs

and integrated VPA tools are used for dynamic profiling. They have utilized cloud-based

services for getting better energy and performance factor.

S. Yang et al. [26] proposed a two-phased portioning mechanism MACO in which, after

code extraction, the user interface is executed locally, and the computational part is

offloaded on a remote server. They have proposed code partitioning to present the

application as two components- UI components and computational segment. Sending UI

information is inefficient over the network. Thus, the proposed method divides applications

25

so that UI runs locally and code computational is transferred on a remote server.

P. Balakrishnan et al. [27] proposed an energy-efficient algorithm for offloading in which

applications are partitioned into several interconnected partitions like task interaction

graphs (TIG) and scheduled for resources with minimum slack time. They have used the

technique dynamic voltage and frequency scaling (DVFS) for better power consumption

modeling.

A. Mtibaa et al. [28] proposed the offloading scheme where offloading is done on the set

of mobile device which they named as mobile device cloud(MDC) rather directly on a

distant cloud server. The task will be offloaded on the stable and durable mobile nodes

which are identified based on some social and contact history information. The proposed

algorithms show 80-90 % of energy-saving than offload on a distant cloud server.

H. Qian et al. [29] proposed the android based framework Jade which dynamically changes

its offloading strategy for energy-efficient offloading. Fig. 2-5 depicts the Jade framework,

which is using the RPC mechanism for client-server communication.

Figure 2-5 Jade framework [29]

M. P. Anastasopoulos et al. [30] have proposed the traffic-based computational based

upon a multi-objective non-linear programming scheme to optimize the network

performance, computational infrastructure, and battery lifetime in the worst case of delay

condition. The researchers have used the concept of network calculus for the theory.

26

Mati B et al. [31] have proposed the multi-site offloading policy based upon the Markov

decision process. The idea distinguishes between data and computation-intensive

components of an application and performs data and process-centric multi-site offloading.

To represent fading wireless mobile channels, they used the discrete-time Markov chain.

The energy-efficient Multi-site Offloading Policy (EMOP) algorithm has been developed

as an efficient solution to the multi-site partitioning problem, based on a value iteration

algorithm (VIA).

Byung-Gon Chun et al. [16] have implemented CloneCloud, a flexible application

partitioner that enables application-level VMs in mobile applications onto a device clone

operating in a computational cloud. They used a dynamic profiler and optimization solver

to migrate the method from mobile devices to the cloud. CloudClone migration works at

the granularity of thread-level, making the whole process lightweight and energy-efficient.

Xinwen Zhang et al. [32] have proposed offloading schemes where the single elastic

application is partitioned into platform-dependent or multiple independent weblets, which

can execute locally or migrated on the cloud server. They have also discussed the cost

model of an elastic application.

Y. Zhang et al. [33] have suggested that for a mobile user with intermittent connections

while on the move, an efficient offloading technique is needed. The task can be offloaded

to the servers based on the mobile device's mobility pattern, local cloud, and cloudlet

availability. For the best development of the algorithm, they used the mathematical model

Markov decision process. The MDP model is used to determine whether a program should

be run locally or remotely.

Min Chen et al. [34] proposed mobility-aware-based caching and computational

offloading in a 5Gultra-dense network. The authors have presented the different caching

schemes and developed a hybrid offloading mechanism to achieve the tradeoffs among

MBS, SBS, and D2D computational offloading.

M. V. Barbera et al. [35] have proposed an architecture where each mobile device is

associated with a software clone on the cloud. They consider two clones (i) an Off-clone

responsible for computational offloading and (ii) a back-clone used to restore user's data,

27

and the app is required. This concept helps to save energy and bandwidth both at the same

time.

Mark S. Gordon et al. [36] have proposed an offloading scheme built over Dalvik Virtual

Machine where threads can migrate freely over multiple virtual machines depending upon

the workload. The researcher also proposed T-scheduler, which schedules the threads

between the endpoints to optimize the throughput. Threads communications, VM

synchronization, and thread migration have inculcated the scheme.

Marinelli et al. [12] have proposed the platform Hyrax, which is derived from Hadoop that

cloud computing over android devices. It enables smart mobile devices to utilize the

network for the various resources required for its task execution. After doing specific

customization, the Hyrax can be used as Hadoop over a mobile device. Using the concept

of MapReduce and HDFS, Hyrax performs offloading in mobile devices. Task partitioning

can be done as per the MapReduce philosophy.

Hao Qian et al. [37] proposed a system of offloading to classify the local and remote

workflow by annotation. Those marked as @local will execute locally, and @remote will

execute on a distant cloud server. The scientific workflow is defined by the XAML file,

where the node represents each step. The hierarchical structure of XAML makes it easy to

analyze the relationship of the steps.

 Diogo Lima et al. [38] have proposed the cyber foraging technique where they have

adopted the programmer-driven partitioning model where the developer wrote annotations

to partition the code from its bytecode to remotely executable code. Annotation includes 1

and 0 for local and remote execution, which influences the decision to offload. A decision

will be affected by the network bandwidth, execution load, and available services provided

by the cloud server.

2.2 Code partitioning in MCC

Computational offloading in MCC utilizes the code partitioning approach to discrete the

compute-intensive portion of the application for running it in distributed or cloud

environment. The applications which can participate in the runtime partitioning scheme are

known as elastic applications. These elastic applications get executed transparently and

28

seamlessly on the remote servers. Applications can be partitioned by using various

partitioning schemes into separate components with different granularity

Code partitioning splits the application into two parts- compute-intensive and mobile

device-specific like user-interface ensuring that semantics of the application can be

preserved. Code partitioning is performed as the pre-processing step in the offloading

process, deciding which portion of the application will run locally or remotely on the

device. Application or code partitioning in mobile cloud offloading can be performed using

different strategies to partition the application. Fig. 2-6 defines the parameters of the

application where code partitioning can be performed.

Figure 2-6 Parameters deciding the behaviour of code partitioning

 Code partitioning in the application can be done on different granularities like module

level, method level, object level, thread level, class level, task level, allocation site-level

partitioning, and hybrid level partitioning. The objective of partitioning can be improving

the performance, reducing memory constraints, reducing network overload, reducing

programmer burden, and saving energy. Different partitioning models can be used to

partition the application for offloading purposes like Graph-based, Linear programming

based and Hybrid applications. Partitioning can support a single-level or multilevel

programming approach. Various types of profilers like hardware, software, network

29

profilers can be used by application partitioning scheme. The decision to offload to remote

or execute locally is decided by the allocation decision attribute, where the decision can be

taken online, offline, and in a hybrid format. The analysis technique is used to identify the

dependency of the component on each other. It can be done statically at the bytecode level

or dynamically involving runtime profiling. Annotation is a type of metadata that talks

about which component will be executed for partitioning. A programmer does manual

annotation during the code development, stating that a particular piece of code will be

executed remotely or locally. Automatic annotation decides in runtime about code

availability for execution. Table 2-1 discussed the code partitioning scheme in MCC along

with techniques of partitioning and its limitations.

Table 2-1 Code partitioning techniques in MCC

Paper

Technique used for

partitioning
Limitations

ThinkAir [18]

ThinkAir provides a basic

library that, when combined

with compiler support,

simplifies the job of the

programmer: every procedure

that should be considered for

offloading is annotated with

@Remote.

Requires developers to

annotate source code methods

Cuckoo [6]

Use the current

activity/service architecture in

Android, which uses an

interface specified by the

developer in an interface

specification language to

separate compute-intensive

elements (services) from

interactive sections of the

Used android based activity

model but still requires an

optimal code to be offloaded

30

programme (activities) (AIDL)

MAUI [39]

Developers must use the

"Remoteable" annotation to

indicate the can-be-offloaded

methods of a.Net mobile

application.

Requires developers to

annotate source code methods

Clonecloud [16]

Modifies the Android

Dalvik VM to include an

application partitioner and

execution runtime, allowing

apps to offload chores to a

cloned VM hosted by a Cloud

server.

Static partitioning

technique requires to use of a

modified JVM

Jade [29]

A remotable class is a class

that implements the Remotable

Task interface. A remotable

object is an instance (object) of

remotable classes.

Static partitioning

technique requires developers

to annotate source code

methods

Automatic scientific

workflow on the local cluster

and cloud [37]

Annotation for remote as

@remote and local as @local

Static partitioning

technique requires developers

to annotate source code

methods

Towards a new model for

cyber foraging[38]

Propose to use annotations

written by the developer to

partition an application from its

bytecode into remotely

executable methods based on

network conditions, execution

workload, and no. of server

available

Dynamic partitioning

technique requires developers

to annotate source code

methods

An Optimal

Offloading Partitioning

Algorithm

in Mobile Cloud Computing

[40]

Based on the Consumption

Graph (CG) and Weighted

Consumption Graph (WCG),

which is a dynamic based

concept

Dynamic partitioning

method but communication

cost b/w local and remote

server is a challenge

31

Figure 2-7 LP-based code partitioning scheme in MCC [49]

Linear programming (LP) is a mathematical representation of an code partitioning

approach that uses an objective function to identify the best solution [41] [42]. The

objective function is a linear type and helps in achieving a solution in a worst-case scenario.

LP models help in formulating optimization equations in mobile applications while

considering various variables as an integer value. In case of unavailability of the profilers

and annotation also in mobile application, the linear programming helps to decide the

partitioning module as seen in fig. 2-7.

32

Figure 2-8 Mixed form of code partitioning scheme in MCC [49]

In order to increase the efficiency of APAs, the hybrid application partitioning algorithm

combines elements from both graph-based and LP-based application partitioning

algorithms by extracting relevant aspects which is discussed in fig. 2-8. Mobile Assistance

Using Infrastructure (MAUI) [39] performs hybrid application partitioning by considering

the application as a graph and performing linear programming also for optimization of the

partition results. In similar manner, other framework like cloudclone [16] and [43] [44]

have used the hybrid application partitioning.

33

Figure 2-9 A Graph-based code partitioning scheme in MCC [49]

Applications are difficult to comprehend and represent; applications are modelled using a

Directed Acyclic Graph (DAG). Fig. 2-9 discussed the graph -based code partitioning

scheme. Vertices and edges are the two components of a graph, and they represent the

various parameters of an application. [5]. The vertex represents the computational cost,

while the edge represents the communication cost. The partitioning strategy aims to

partition the code in different segments where minimum possible communication holds

between the nodes. In MCC, during offloading, the application is partitioned either

statically or dynamically [45] [46] [47] [48].

34

Graph-based application partitioning models the mobile applications in the form of a

Directed Acyclic Graph (DAG) as shown in the Fig. 2-10. The different elements of the

graph, namely vertices and edges, represent the various parameter of the mobile

application, such as computation cost, memory cost, granularity, data size, communication

cost.

Figure 2-10 Directed Acyclic Graph (DAG) representing a mobile application

Graph-based techniques use a different coarsening algorithm to maximize code

partitioning. In mobile cloud computing, a step-by-step process for graph partition. The

first step is to determine whether the annotation is required. If the annotation is not present,

the developer must manually add annotations to the code [49].

If the application has annotations, it will continue to check the profiler's output. The profiler

will collect the information that the application requires. After completing all of the

preceding phases, the execution moves on to the graph modelling phase. Graph modelling

can benefit from programmer annotation and profiling results.

Following that, one or more algorithms are used to improve the graph model. Finally,

inference methods such as solver are given the optimization result in order to decide and

perform partitioning. Since our work is focused upon the code partitioning algorithm, the

annotations and profiler output are assumed to be ideal.

Many real-life applications have N number of solutions in the solution space. If an

application requires multiple solutions, optimization can be achieved by selecting the best

alternative solution based on certain factors. The graph partitioning problem (GPP) is

35

concerned with partitioning the vertices in such a way that the edge cut value is reduced.

When considering the GPP in the mobile cloud computing applications, the different

vertices can be assumed at different granularity levels like classes, methods, threads,

objects, or the application itself as a vertex.

In our problem, we are assuming vertex as method-level granularity. There are various

techniques like local search optimization techniques like Simulated Annealing, Genetic

Algorithm, Tabu Search, Random Walk, Neighbourhood Search, Swarm intelligence-based

Ant Colony Optimization, and Particle Swarm Optimization which can be used for the

optimization method. These optimization strategies are distinguished by the recursive

application of the local search approach to the problem's solution. Graph partitioning is an

NP-hard problem that aims to divide the graph's nodes such that there is a minimal inter-

partition relationship that means minimum communication cost and execution cost on both

sides of the client or cloud side. The multilevel graph partitioning method has emerged as

highly effective graph partitioning in recent scientific studies. George Karypis et al. [50]

have done proposed multilevel graph partitioning schemes which are effective in their

manner. A multilevel approach can be used to divide Graph G. A multilevel algorithm's

basic flow is simple to comprehend. The graph G is coarsened down to a few hundred

vertices, a partition of this considerably smaller graph is produced, and the partition is then

projected back towards the original.

Huaming Wu et al. [40] suggested the min-cost offloading partitioning (MCOP)

algorithm, which partitions the code for local and remote execution. The partition model

differentiates the offloadable and unaffordable tasks based on the consumption graph as

presented in the fig. 2-11. The cost model is also proposed for calculating the overall cost

of execution of the task. The MCOP algorithm provides a stably quadratic runtime

complexity to decide the task execution locally or remotely.

36

Figure 2-11 Consumption Graph and Weighted Consumption Graph [40]

2.3 Offloading decision making in MCC

Decision engines are considered a key component in the offloading framework [2],

which decides to offload the task to the remote server based on the profiling process's

available parameters.

 Eduardo Cuervo et al. [39] proposed an energy-aware offloading mechanism “MAUI”

and used code partitioning and profiler concept for offloading the task. It has used the

optimization engine for decision making and provides an energy-efficient strategy at

runtime. MAUI architecture is presented in fig. 2-12.

Figure 2-12 High-level view of MAUI's architecture [39]

37

Mohammed A. Hassan et al. [51] proposed the scheme POMAC for dynamic decision-

making, which is transparent to the developer and compares the existing decision classifier

for their approach.

B.Gao et al. [52] proposed an algorithm that takes total energy consumption and schedule

length as an essential parameter for offloading. The authors have proposed two strategies-

One for uploading the task from the mobile device to the server and the second on the

server's side workflow engine. They have focused on autonomous decision-making ability,

offload authorization, and task clustering.

B. Zhou et al. [53] suggested the "mCloud" offloading framework, which consists of a

mobile device, proximate cloudlets, and a public cloud service, with the goal of improving

the MCC service's availability and performance. Context-aware offloading decision

provides decision at the runtime where to offload code and in which wireless medium. The

framework also provides the cost estimation method for accessing time and energy.

M. Amoretti et al. [54] proposed a modelling and simulation framework MCC design and

analysis, including energy efficiency, storage capacities, processing power, and data

security. The proposed discrete event simulator is a useful tool for evaluating the parallel

task's execution. The model is based on the Queueing Network (QN), which consists of

two sub-networks, one for each type of queue. They have also proposed the offloading

decision algorithm based upon the energy level. The offloading policy is formulated on the

offloading probability parameter.

Mahbub E. Khoda et al. [55] have presented an intelligent computation offloading system

for offloading code from a mobile device to a cloud server over a 5G network. They

suggested a decision engine based on the Lagrange Multiplier, a non-linear optimization

solver that increases application reaction time and reduces mobile device energy

consumption.

Mendoza et al. [3] suggested a Python-based system in which offloading decisions are

made based on cloudlet execution time, client device execution time, and mobile device to

cloud transfer time.

Kosta et al. [4] proposed the framework for offloading work "Thinkair" over the cloud with

38

its application server concept and broadly discussed profiling. They have exploited the

mobile device virtualization over the cloud and provide method-level computational

offloading.

Kemp et al. [5] proposed the primitive android-based framework CUCKOO for

computational offloading. The framework offers a simple programming model using

remote method invocation and IPC mechanism for the job's local and remote execution.

It has a robust runtime algorithm that determines whether code should be executed locally

or remotely at runtime. Table 2-2 presents the comparative study of the offloading related

work on the basis of energy (E) and performance (P) parameter and type of profiling,

decision engine and application considered.

Table 2-2 Various decision-making techniques in MCC

Paper Year Contribution E P

Type of

Profiling

done

Decision

engine

addressed

Offloading

application

Kosta et al.

[18]
2012

Proposed a

framework based

upon three-

component, i.e.,

application

server, execution

environment, and

profiler

✓ ✓

Hardware,

Software,

Network

Execution

controller

based upon

time,

energy, and

cost

N-Queens

problem, Virus

scanning

application,

Image

combiner, face

detection

application

Rudenkc et

al. [56]
2012

CUCKOO-

Worked for

android based

application.

Presented

intelligent

offloading

mechanism based

upon IPC

✓ ✓

Heuristic

approach

considered

Yes

Eyedentify

(image-based

app) and

Photo-shoot

(augment

reality game-

based app)

Cuervo et

al. [39]
2010

Primarily worked

on energy

management.

Provides high-

level

programming

✓ ✓

Device,

Program,

Network

Yes
Face

recognition

39

architecture for

remote execution

based on RMI.

Ma et al.

[22]
2011

Propose and

implemented

computation

migration

technique stack-

on-demand

(SOD) into Java

distributed

runtime that

migrates the

light-weighted

threads. It

optimizes

offloading by

moving more

specific data over

the cloud.

 ✓

Data

migration

through

JVM Tool

Interface

(JVMTI)

No
iPhone based

application

Kovachev et

al. [24]
2012

Proposed the

middleware

named mobile

augmentation

cloud services

(MACS), which

enables

applications of

android to offload

the task from the

mobile device to

the cloud server

✓ ✓

Profiling

is done by

MACS

middlewar

e

MACS

form an

optimizatio

n problem

that

decides for

local or

remote

execution

Generally,

android based

application

Solved the N-

Queens

problem, and

face detection

and face

recognition

Gao et al.

[52]
2012

Present a

heuristic

algorithm and

provide a

dynamic

offloading

solution that

saves time and

energy

✓ ✓
Energy

profile

Decision

algorithm

based upon

time and

energy

Type of

workload not

defined clearly

Hung et al.

[25]
2012

Proposed a

framework that

profiles the data

and decides

dynamically to

offload or not

 ✓

Framewor

k

integrated

along with

VPA tool

profile-

based

policy

manager

and

profiling

service

object

recognition

(OR)

40

helps in

decision

making

Yang et al.

[26]
2012

Proposed a two-

phase partitioning

mechanism called

Manageable

Application Code

Offloading

(MACO) which

divides the

problem in UI

based and

computation

based and

executes them

separately, one

locally and the

other remotely.

✓ ✓

Network-

based and

done by

automatic

partitionin

g

mechanis

m

Used the

concept of

decision-

maker

web pages

from

commercial

and online

products

Xia et al.

[57]
2013

The phone2cloud

architecture,

which includes a

bandwidth and

resource monitor

as well as an

execution time

predictor, was

proposed and

built. For the

framework, an

offloading

decision engine

was also

proposed.

✓ ✓

Bandwidt

h and

Execution

time

Used

offloading

decision

algorithm

based on

execution

time and

power

consumptio

n

Sort, Pathfinder

(shortest path),

and word count

Eom et al.

[58]
2013

Presents an

adaptive machine

learning

algorithm based

on the founding

from four

different

workloads and 19

distinct machine

learning

algorithms and

four workloads

and worked over

the Android-

✓ ✓

computati

on work,

data size,

bandwidth

Use

machine

learning-

approach to

decide

whether to

offload or

local

Android-based

applications

41

based application

for final testing of

the algorithm

Mtibaa et al.

[28]
2013

Proposed

environment

mobile device

cloud (MDC) in

offloading

happens in the

cloud created by

a group of the

mobile device.

✓ Energy

and time

Implement

ed own

MDCloud

to decide to

offload on

MDC,

Cloud, or

cloudlet

Android-based

applications

Anastasopo

ulos et al.

[30]

2014

Proposed multi-

objective service

provisioning

scheme for

energy-aware

offloading with

delay

consideration

✓

Decision-

based on

energy

consumpti

on

Use the

concept of

network

calculus

Not defined

Qian et al.

[29]
2014

Proposed a

framework that

saves energy

during

computation

offloading in

Android apps

✓ ✓

Execution

time,

Battery

level,

CPU and

wireless

connectivi

ty, data

size

Use the

concept of

Jade

optimizer

for making

a decision

Image

processing,

Navigation

application

Truong-Huu

al [59]
2014

Dynamic

opportunistic

offloading

algorithm has

been proposed,

which is based

upon the Markov

decision process

 ✓ Energy

Use MDP

model for

opportunist

ic

offloading

Size reduction

of photographs

Hyytiä et al.

[60]
2015

Proposed a

stochastic model

for studying the

dynamic

offloading in

mobile cloud

computing

✓ ✓

Energy,

monetary

cost, delay

Decision is

based on a

multi-

queue

model

which

captures

the

required

features

Not available

42

Terefe et al.

[31]
2015

Application can

be executed on

multi-site which

uses discrete-time

Markov chain

(DTMC) to

prototype fading

wireless mobile

channels

✓ Energy

Combinatio

n of static

analysis

and

dynamic

profiling

leads to the

formation

of a

mathematic

al model

Code intensive

and data-

intensive

Lee et al.

[61]
2015

Proposed a

mobility aware

based offloading

decision and use

a second-order

Markov model as

a mobility model

✓ ✓

Device,

Program,

Network

propose a

probability-

based

prediction

engine for

taking an

offloading

decision

Considered

dummy dataset

Flores et al.

[7]
2015

Framework is

proposed, which

is offloading the

application

considering

granularity at the

method level.

Java reflection is

used along with

the client-server

model

✓ ✓

memory,

CPU,

network

bandwidth

, cloud

server

capacity,

and also

size of the

applicatio

n

Informatio

n defined

in a JSON

schema is

used to

create the

automated

mechanism

which

profiles the

code

NQueens

problem

Zhang et al.

[33]
2015

Proposed an

MDP based

dynamic

offloading

algorithm

✓ ✓

Computati

on power

and

execution

cost

Used

stochastic

modelling

and

dynamic

optimizatio

n.

Designed a

dynamic

algorithm

for

decision

making

Face

recognition

Wang et al.

[62]
2015

Proposed

adaptive

application

offloading model

✓ ✓

Response

time and

energy

Dynamic

application

offloading

policy

Real-time

applications

43

in the paper.

Lyapunov

optimization

theory is used to

propose the

offloading

decision

algorithm

based on

stochastic

network

optimizatio

n

Neto et al.

[63]
2016

Proposed and

implemented a

location-aware

decision engine

that is modelled

upon execution

time, energy, and

bandwidth

prediction

✓ ✓

CPU and

Bandwidt

h

Used

location

awareness

and spline

interpolatio

n for

modelling

the

decision

engine

Face Detection

Application

Khoda et al.

[55]
2016

Over the 5G

network,

proposed an

intelligent

computation

offloading system

that takes

decisions for code

offloading from a

mobile device to

a cloud server.

✓ ✓

Bandwidt

h, data

size, cloud

speed

factor,

server

load

condition

Used

regression

model,

Lagrange

multiplier

for

decision

making

N-Queens

application

Wu et al.

[40]
2016

The min-cost

offloading

partitioning

(MCOP)

technique was

proposed, which

divides the code

into sections for

local and remote

execution. Based

on the

consumption

graph, the

partition model

distinguishes

between

offloadable and

non-offloadable

processes.

✓ ✓

Program,

network,

and

energy

profiler

Weighted

call graph

is used for

offloading

decision

Face

recognition

application

44

Chen et al.

[34]
2016

Proposed the

concept of

mobility aware-

based caching

and

computational

offloading in the

5Gultra-dense

network.

✓
Channel

bandwidth

Based on

the

mobility of

the user,

offloading

strategy is

decided

Random

mobility nodes

considered

Chen et al.

[64]
2017

A framework is

offered based on

an application's

design pattern,

and an estimating

model is offered

that determines

which cloud

resource to

offload.

✓ ✓

Focused

upon the

network

aspect

considered

bandwidth

, round

trip time,

and server

(cloud

resource)

response

time

Based on

the

profiling

information

, a decision

algorithm

will select

the optimal

service for

offloading

Gobang game

(Interactive

chess game)

and face finder

application

Rego et.al

[65]
2017

Proposed an

offloading

decision scheme

in which decision

tree algorithm

C4.5 is

considered as a

significant theme.

✓

Mainly

considered

the

network

conditions

like data

rate and

round-trip

time

(RTT)

Decision to

offload is

taken based

on decision

tree

Matrix

operation

Ko et al.

[66]
2018

Decision-making

is done using the

formulation of the

Markov decision

process (MDP). It

is formed

considering the

various types of

wireless networks

and device spatial

and temporal

conditions.

✓

Network

conditions

are

considered

for

profiling

purposes

like

device

position in

Wi-Fi AP,

edge, and

cloud

Value

Iteration

Algorithm

is used for

making an

optimal

decision in

MDP

formation

Considered

dummy task of

different

complexities

level

45

Ravi et al.

[67]
2018

DBSCAN, along

with KL

divergence, has

been used for

identifying the

offloading task.

Further, the

offloading

algorithm is used

for decision-

making purposes.

✓
CPU

cycles

Designed

decision

algorithm

which

considered

CPU cycles

and

execution

deadline

based on

probabilisti

c measures.

Chess game

and Video

editing

application

Zhou et al.

[68]
2019

Optimal solution

for offloading on

multi-edge

servers has been

explored using

Markov approx.

approach.

Performed state

transition over

Markov chain

considering

different

configurations

✓ ✓

CPU

cycles,

uplink,

and

downlink

data rates

Used

Markov

based

approximat

ion

approach

for

decision

making

Considered

dummy task

with different

load scenarios

Qi et al.

[69]
2019

Decision

algorithm has

been developed

using the deep

RL approach.

Mobility models

are also

developed for

decision-making

in smart vehicles.

 ✓

Mobility

factor,

bandwidth

, CPU

cycle

Used A3C

algorithm

for

decision

making

Created own

task for testing

purpose

Misra et al.

[70]
2019

Proposed and

implemented

three-tier

architecture for

offloading in the

cloud, cloudlets,

and nearby

devices based

upon auction

theory.

✓ ✓

Bandwidt

h,

Response

time,

energy

Used the

auction

theory

principle

for

decision

making

Merge Sort,

Knapsack

problem,

Matrix

multiplication

46

Zhou et al. [53] suggested the "mCloud" offloading structure, which consists of mobile

devices, cloudlets near the device, and a public cloud service, with the goal of improving

the MCC service's availability and performance. The context-aware offloading decision

provides a decision at the runtime where to offload code and wireless medium.

Manukumar et al. [71] proposed an enhanced particle swarm optimization algorithm

approach for decision making and aimed to reduce the makespan of the offloading process

and power consumption. A decision-making approach based on online machine learning

and genetic algorithms was proposed by Xiaomin et al. [72]. It was also designed to

conserve energy and time when using a mobile device.

Elhosuieny et al. [73] proposed a methodology based on non-linear polynomial regression,

which helps in building the time-predicting model. It decided to offload based on

bandwidth and predicted time to execute on the mobile device.

Shahidinejad et al. [74] proposed a decision-making scheme based on learning automata.

It has improved the decision engine's execution time using the probability of the mobile

device's events. Much work has been done on energy and performance during the

offloading process, but the work on the accuracy of the decision engine classifier has not

been addressed in most research.

2.4 Mobility mechanism in MCC

 Mobility in wireless networks refers to a node, Mobile Node (MN), changing its

attachment point to the network while its communication to the network remains

uninterrupted. The current requirement in wireless communication is to provide services to

the consumer on a real-time basis. Various applications related to multimedia applications,

healthcare, and gaming require ubiquitous services maintaining the high data rate and

providing roaming services. The evolution of wireless communication can be seen in

fig. 2-3, where it can be seen that the data rate gets increased in the past years, and mobility

has taken its essential place in the communication system.

47

Figure 2-13 Evolution of Wireless communication [61]

Evolution of wireless communication is discussed in fig. 2-13. In the early 1980s, the

foundation of 1G was laid down, which provided seamless connectivity in mobile voice

services. The data bandwidth was around 2kbps and used the FDMA multiplexing. The

base stations were deployed for the mobile users in the geographical area called a cell.

Ideally, the hexagonal shape seems perfect for frequency reuse in the cellular network, as

seen in fig. 2-14 but these cells overlap in reality.

Figure 2-14 Frequency reuse in cellular cell

A base station is a communication system used to establish communication with the

mobile device using radio waves. Each base station has a coverage area, and receivers and

transmitters are mounted on the base station. Two radio channels are used for the

48

communication between mobile and base station a) control channel used for call setup, call

initialization, and other control purpose b) forward channel used for transmitting

information from base station to the mobile device.

2.4.1 Wireless communication technologies

The 1G mobile technology [75] has used analog signal that works amazing for voice

communication but has challenges like limited capacity in terms of spectrum and limited

scalability. 2G was introduced in the 1990s, providing more voice capacity using

modulation techniques like TDMA and working on digital signals. Technologies like D-

AMPS and GSM were based on the TDMA. The digital transmissions enable voice

compression and very scalable technology. Still, an issue of signal interference was there

in the 2G technology. The call drop was potentially high in the 2G network. It had started

using CDMA technologies for voice communication. 2G does the communication by using

both circuit and packet switching modes. In all these cellular networks, there are base

station controller (BSC) and base transceiver stations (BTS). Each cell in the network has

one BTS, and multiple BTS are controlled by one BSC. These BSC are connected to the

mobile switching centre (MSC), which is linked to the PSTN network. The cellular

network's basic design and its many components are depicted in fig. 2-15.

Figure 2-15 Basic structure of a cellular network [75]

49

In the early 2000s, the 3G technology, also known as the universal mobile

telecommunication system (UMTS), was introduced with a high data rate of 2Mbps and a

packet network method. It delivered high data rates, more capacity, and enhanced the

experience of mobile broadband. It provided high-quality audio and video services using

WCDMA technologies and supports both circuit and packet-switched for call and internet.

UTRAN acts like the brain of the network. The nobeB is acting similar to the BTS of the

2G systems. Radio network controller (RNC) can be connected to many enodeB through

the lub interface. RNC is further connected to the PSTN and PDN network in the core

network of the 3G systems. The 3G system works parallel with the conventional cellular

system where the voice network works as the previous network setup, and the data network

operates in parallel by serving the GPRS support node (SGSN) and gateway GPRS support

node (GGSN) as defined in fig. 2-16.

Figure 2-16 Basic structure of a 3G network

 After the evolution of the 3G system, around the year 2010, the 4G technology was

introduced with a data speed of 200 Mbps. It is a unified IP and seamless mixture of

broadband technologies of LAN, WAN, and WLAN. It uses CDMA and internet

technologies for core communication. The enodeB is similar to BTS and nodeB, whereas

E-UTRAN acts as an interface for all coordination of user devices and backend core

network. The EPC has two planes a) core plane which is used for controlling, managing,

and monitoring the communication, and b) the user plane

50

Figure 2-17 Basic structure of a 4G network

which is used for managing data communication, management, and evaluation purposes.

The MME is a mobility management entity that takes care of mobility issues and

authentication, and HSS is a home subscriber system that keeps the information about user

records.

2.4.2 Handoff Management

Disconnection becomes a vital problem because of continuous mobility. Assume a device

is connected to the cloud over a 4G/ 3G network or, in the future, 5G. Now, if the device

goes to a location where the mobile network is unavailable, the cloud connection will be

lost. A handoff occurs when a mobile device switches from one network to another. The

seamless transitions among networks can be either horizontal or vertical.

Vertical and horizontal handoff

When a device moves from one network to another without changing the network type,

then the process is called horizontal handoff [76], and if it changes the network, then it is

called vertical handoff. Heterogeneous networks (Hetnets) have various types of features

like data rates, received signal strength (RSS), network capacity, bandwidth, and coverage

span. Fig. 2-18 depicts the horizontal and vertical handoff style.

51

 Figure 2-18 Horizontal and vertical handoffs [76]

The mobile device perceives these features and decides to select the best available network

in its current location. Various reasons can lead to the process of handoff, like avoiding the

call drops situation, when cell capacity to hold new calls is exhausted, the existence of

channel interference, or when there is a change in user behaviour in mobility and speed.

Hard and Soft Handoff

Hard handoff follows the "break before make" policy, and soft handoff follows the "make-

before-break" connection. Hard handoff requires the user device connected to get a break

before connecting to another station. It is implemented in FDMA and TDMA based

devices. It is a cheaper strategy to implement, but the delay is mostly experienced while

implementing this method. On the other hand, in soft handoff, the mobile device gets

connected to more than one BTS during the same time. It achieves higher quality and low

delay but is only supported by CDMA/ WCDMA mobile phones.

Network-controlled, Mobile-controlled and Mobile-assisted Handoff

When the handoff decision is taken by the network after measuring the number of mobile

stations in the cell, it is known as network-controlled handoff. It was taken initially in

AMPS (advanced mobile phone system) and TACS (total access communication system).

In a case where a mobile station measures the network parameters and handoff decision is

52

taken by the network, it is called mobile-assisted handoff. In a different scenario, when a

mobile device measures the signal strength and interference level and takes the decision to

handoff, then it is known as mobile-controlled handoff. The reaction time is much smaller

than 0.1 seconds.

 Desirable handoff features

 Figure 2-19 Desirable handoff features [76]

 The handoff method aims to maximize reliability and performance. The methods must

provide a base station having high signal quality and signal to noise ratio (SNR) and receive

signal strength (RSS). The handoff technique must provide seamless mobility,

uninterrupted services, and load balancing. It must aim to minimize the channel

interference and number of handoffs as seen in the fig. 2-19.

Vertical Handoff Criteria and Metrics

There are number of parameters that affect the handoff decision like received signal

strength, network connection time, handoff latency, network load, power consumption, and

velocity. These parameters depicted in the fig. 2-20 are often analysed while moving from

one network to another network.

53

Figure 2-20 Parameters used for making VHD decisions

Kilho Lee et al. [61] have created a mobility model as seen in fig. 2-21 and the decision to

offload will be made based on the pattern seen by the model. Based on user location data

(Wi-Fi), the 2nd order Markov model is framed and trained with the mobility pattern of

specific users. In the future, the offloading decision will be taken based on this model. A

prediction engine is also proposed to decide whether to offload or not. However, the

researcher leaves the future scope of the moving speed factor as it also affects the

offloading performance.

Figure 2-21 Mobility model [61]

54

Different solutions have been proposed by researchers that address mobility during

computational offloading. M2C2[77] has proposed a multihoming mechanism as in

fig. 2-22 where device probes for network and cloud network during mobility. The best

cellular network and cloud network are selected based on the RSSI and cloud ranking

process in this work.

Figure 2-22 M2C2: A Mobility Management Scheme for MCC [77]

Clonecloud [16], MAUI [39], ThinkAir [18], and Cuckoo [6] have proposed an effective

and standard solution for computational offloading in mobile cloud clouding but have not

considered mobility as a factor in their work.

A handoff scheme in mobile cloud computing has been proposed by Q. Qi et al. [78], which

focuses on saving the device power, but while offloading, the bandwidth must be above

4MB to avoid the handoff delay.

A. S. Alnezari et al. [79] presented the handoff mechanism and offloading strategy in

mobile cloud computing using the fuzzy logic model approach and worked on 3G and

WLAN environments. Q. Bani Hani et al. [80] presented a robust five-layer service-

oriented architecture that can perform seamless handoff in WiMAX and helps in reducing

the bandwidth and power consumption.

T. Ali et al. [81] and A. Sgora et al. [82] have presented the fuzzy approach based on multi-

55

criteria and multi-attribute handover decisions.

Z. Sanaei et al. [83] has discussed the challenges and issues faced in MCC when

heterogeneity in the network is introduced. The complexity gets increases when the mobile

device roams in 3G, Wi-Fi, and WiMAX networks.

D. Bhattacharjee et al. [84] and Tong Liu et. al. [85] discussed the user device mobility

and the prediction of the location in the next movement. The mobility in mobile cloud

computing is still an open area where much research is still required, and hence, mobility

is incorporated in the computational offloading in this work.

2.5 Scheduling mechanism in MCC

This section provides the work done so far on the topic of MCC scheduling. As seen in

fig. 2-23, once the task has been offloaded to a cloud server, its execution plan or schedule

is another challenge on a virtual machine. Task scheduling is ordering a task and assigning

a module to the server that can optimally manage the task. The scheduling algorithm must

be optimally designed so that the task's timely execution can be achieved and starvation or

deadlock-like conditions can be avoided.

 Figure 2-23 Task scheduling in mobile cloud computing [86]

56

A good scheduler can decrease the server's operational cost, improve resource

utilization, and reduce the waiting time in the queue. Some of the current work done on the

cloud task scheduling is presented below:

The mobile user offloads [86] the task to the cloud server using the wireless access point

or cellular network. The required bandwidth by the device is provided by the access point

and supports like signal strength so that mobile remains connected to it. When the offloaded

task reaches the cloud server, they are arranged in a queue by the broker entity. Broker

controls the task admission, check resources availability of CPU, storage, and memory in

the form of virtual machines. After that, it allocates the task to the VMs for execution, as

seen in figure 2-23. This is the basic architecture of task scheduling in mobile cloud

computing.

Hsu Mon Kyi et al. [87] have proposed an algorithm on scheduling and resource allocation

of virtual resources and virtual machines named Efficient Virtual Machines Scheduling

Algorithm (MSA). The performance of the scheduling algorithm is evaluated using the

stochastic Markov model. To present the concept, Eucalyptus architecture is introduced as

a system model. The resource allocation decision model is based upon the continuous

Markov chain model.

K. Jagannathan et al. [88] have presented the mathematical model on the buffer overflow

in parallel queues. The study shows that the longest queue first scheduling policy has a

superior queue overflow performance than queue blind policies. Several lemmas are

presented in support of the theory presented in the paper. The study assumed that the system

contains N parallel queues that are served by a single server. Time is allotted, and the server

only handles one queue at a time.

Jilan Chen et al. [89] presented the weighted round-robin scheduling algorithm for task

scheduling in a Hadoop framework. Since some tasks are light weighted, and some tasks

is heavy weighted, the researcher proposed the algorithm to optimize the

H. Khojasteh et al. [90] have proposed a resource allocation mechanism over the cloud

server using prioritization. The forked task has given top priority over the newly arrived

task in the task queue, and in another case, the threshold is defined to control the priority.

57

The markovian multi-server queueing system analyzes the performance of both

mechanisms. The impact of task arrival rate, service time, and the quantity of offloaded

jobs on the performance indicators for both priority systems was also examined.

X. Nan et al. [91] have investigated the QoS and resource cost of the multimedia service

provider by the proposed queueing model and optimization methods. The researchers have

analyzed various types of scenarios like single server scenarios and multi-server scenarios.

Using the window azure platform, various simulations are made in the study.

H. Eom et al. [58] focused on offloading scheduling and using machine learning-based

techniques to improve the process. Their research looked at 19 distinct machine learning

methods and four different workloads.

Yuan Zhang et al. [92] has proposed the joint resource scheduling and code partitioning for

effectively allocating cloudlet to multiple cloud users. They have proposed a code

partitioning algorithm based on the call tree. Hsu Mon Kyi et al.

Efficient Virtual Machines Scheduling Technique is a suggested algorithm [87] for

scheduling and resource allocation of virtual resources and virtual machines (EVMSA).

The performance of the scheduling algorithm is evaluated using the stochastic Markov

model. Eucalyptus architecture is introduced as a system model. The resource allocation

decision model is based upon the continuous Markov chain model.

X. Wei et al. [93] have proposed the extended cloudlet approach for supporting local mobile

cloud. They have presented a hybrid PSO approach and optimized the profit and energy

consumption during scheduling.

M. Nir et al. [94] have presented a task scheduler model that optimizes mobile cloud

computing's energy function.

X. Lin et al. [95] proposed a scheduling scheme based on dynamic voltage and frequency

scaling and has optimized the application makespan and reduce energy consumption.

Table 2-3 presents the various task scheduling schemes, specifically in the mobile cloud

computing framework.

58

Table 2-3 Task scheduling schemes in MCC framework

Techniques and

Work Done

Year
Type of

Problem

Objective

function
Framework Environment

HACAS [93] 2013
Application

scheduling

Profit and

Energy

consumptio

n

MCC Simulation

TSPCCE [94] 2014
Task

scheduling
Energy MCC

IBM's linear programming

solver

MCC task

scheduling

algorithm[95]

2014

Task

scheduling

with DVFS

Energy and

Time

MCC MATLAB

LARAC

algorithm [96]
2015

Task

scheduling

with DVFS

Energy and

Time

Deadline

MCC

Simulation

eDors [97]

2016

Dynamic

scheduling

and energy-

efficient

offloading

Energy and

completion

time

MCC Simulation

MCF-DF [98]

2016

Task

admission

and

scheduling

Admission

rate and

execution

cost

MEC

Python

HCOA[99] 2017

Task

offloading

and

scheduling

Energy MCC Simulation

CMSACO [100]
2017

Multi-Task

offloading

Profit and

completion

time

MCC Simulation

TSRA[101]
2017

Resource

allocation

and

scheduling

Delay MEC Simulation

59

COPE [102]

2017
Task

scheduling

Energy,

Price of

Cloud

service

provider,

Delay

MCC Thinkair based simulation

DAA [103] 2018
Task

scheduling
Makespan MEC Simulation

GABTS [104] 2018

Task

offloading

and

scheduling

Energy,

response

time,

deadline,

and

cost

MCC C++

OAOA [105]
2019

Stochastic

approach for

task

scheduling

Energy and

QoS
MCC Simulation

Application-

aware [106]

2019
Task

Scheduling
Latency MEC iFogSim

MWSM [107] 2019
Workflow

scheduling

Latency,

Energy,

and Cost

MCC Simulation

RCTSPO [108] 2020
Task

scheduling

Makespan,

Reliability,

and Load

MEC Cloudsim

EBCO-TS [109]
2020

Task

scheduling

Makespan

and energy
MCC Cloudsim

ADO-MTS

[110]
2020

Task

scheduling

Makespan,

Resource

utilization,

and Energy

MCC Cloudsim

2.6 Research Gaps and Challenges

 This section presents the challenges in mobile cloud computing and research gaps that

are found during literature review. When speaking about the partitioning, the issue of

synchronization is still a problem. The compute-intensive part is required to be executed

on a cloud server, and it becomes essential that the mobile device remains synchronized

60

with the cloud for offloaded tasks. If a deadlock occurs on the cloud server, it can hinder a

mobile application's working. The granularity of the application needs to be decided

appropriately as offloading objects, classes, or methods creates a different type of

overheads. Other observations in code partitioning were:

• There has been various research about application partitioning, but very few researchers

have considered dynamic partitioning during offloading in mobile cloud computing.

• It was found that schemes were not adaptive in terms of network bandwidth, energy

consumption, and task size.

• It was also observed that minimum communication should exist between the local and

remote components of the application, but very less work had been done in this area and

the edge-cut concept was not explored upon.

Research Gaps observed on the basis of literature review in the decision engine were:

• Offloading faces significant challenges on the front of energy consumption and

performance, and there is still a scope of improvement that needs to be addressed.

• Lot of research has been done on energy and performance, but limited work was found

on the accuracy of the decision engine of the offloading process.

Research gaps observed in mobility management during offloading are:

• Based upon the literature review, it was found very few researchers had worked

upon mobility during offloading. Mobile device normally roams with the users. It

has not been considered as factor during the mobility scheme.

• Handoff of the mobile device was not explored much in the research of mobile

cloud computing which can affect the device connectivity with the cloud server.

The mobile device may roam from one position to another. The mobile applications running

on devices use cloud services and move in the heterogeneous cellular network. The handoff

mechanism must be smooth enough so that connectivity cannot be lost with the cloud

server. The techniques must be developed to reduce the mobile device's energy

conservation while roaming from one base station to another.

61

In the mobile cloud context, task scheduling still has a lot of room for improvement. The

virtual machine must schedule the mobile task that was offloaded to the cloud server.

Traditional methods focused on the task's execution time on the cloud server.

• Energy consumption is a big challenge on the cloud servers also as a number of the

task are growing tremendously.

• The scheduling scheme must focus on the bandwidth, CPU utilization, and memory

of the physical machines, where tasks are allocated to the virtual machines by the brokers.

2.7 Summary

This chapter presents the literature review of the various task partitioning schemes utilized

in designing the code partitioning scheme for mobile cloud computing. Literature has been

explored, and limitations of the various approaches are found in the study. It also provides

a literature review on decision engines. Decision engines decide when to offload based on

various inputs provided by the system profiling. The detailed tabular form of the

comparison is presented where the decision engines are presented specifying the energy

and performance criteria of the techniques. Mobility feature is also explored, and focus on

various cellular technologies has been placed. Handoff mechanisms are discussed with

respect to mobility management. The scheduling schemes in mobile cloud computing have

been presented in the last phase of the chapter, where different optimization parameters are

also presented. The various research gap and challenges are discussed at last of the chapter.

62

CHAPTER 3

CODE PARTITIONING DURING COMPUTATIONAL

OFFLOADING IN MCC

3.1 Introduction

Computational offloading is emerging as a popular field in mobile cloud computing

(MCC). Modern applications are power and compute-intensive, leading to energy, storage,

and processing issues in mobile devices. Using the offloading concept, a mobile device can

offload its computation to the cloud servers and receive back the device's results.

Figure 3-1 Partitioned component offloaded on cloud sever

An important question that arises in the offloading scenario is which part of the application

needs to be offloaded remotely. In order to identify that, the application needs to be

partitioned. In this work, the graph partitioning approach is considered based upon the

spectral graph partitioning with the Kernighan Lin algorithm. Experimental results show

that the proposed approach performs optimally in partitioning the application. The

proposed technique gave better results than the existing techniques in terms of edge cut,

63

which is less, concluding minimum communication cost among components and saving

energy of the mobile device.

Graphs are usually used as simplification by researchers while displaying application

problems. One of the significant operations in graph theory is graph cutting. Other

fundamental operations like traversal, flows, trees, and path are used in many scientific

problems. Graph partitioning [111] is used to solve the complex problem as assuming an

application as a graph reduces the complexity of manifolds.

Scientific problems lie in VLSI design, social network analysis, image analysis, and DNA

mapping are solved using graph partitioning. Graph partitioning aims to divide the vertices

into a certain number of groups where the nodes in one group are strongly connected while

having a minimum connection with the other group. The two types of graph partitioning

are constrained and unconstrained partitioning. The partitions of the same size are known

as a constrained partition, while the partitions of unconstrained are of different sizes. Graph

partitioning is used to minimize the computational load on either side of the partition and

reduce the communication cost in various scientific simulations.

A Graphs G = (V, E) is the data structures of non-linear type and consist of vertices or

nodes V and collection of edges e = {x, y} between pairs of vertices. The number of vertices

n in the graph is represented as |V(G)| and the number of edges is represented as |E(G)|.

A graph H = (W, F) , where WV and FE, is a subgraph of a graph G = (V, E).

The simple graph with vertex set V1 V2 and edge set E1 E2 defined by G1 G2 is the

union of two simple graphs, G1 = (V1, E1) and G2 = (V2, E2).

Matching M is a subset of the set E of edges of the graph G = (V, E) in which no two edges

are incident with the same vertex. The vertex of the endpoint is matching is said to be

matched; otherwise, it is known as unmatched.

Code partitioning is the foremost important task in computation offloading. It aims to

define the application's components, which can be offloaded to the server or run locally on

a mobile device. Specific components like GUI-based code and codes that need to be

secured from different attacks are intentionally made to run locally to run graphics

smoothly and mitigate the risk of attacks. The developer can annotate the component

64

@remote and @local to classify the code for offloading.

The nodes represent the computation points, and the edges depict the communication

between two nodes. The graph partitioning problem is an NP-hard problem which makes

it more appealing for many scientific problems.

3.2 Code partitioning using a graph model

Applications are complex to understand and simplify; applications are modelled using its

call graph, a Directed Acyclic Graph (DAG) which can be seen in fig. 3-2.

Figure 3-2 Directed Acyclic Graph

The two components of the graph are vertices and edges representing the different

parameters of an application [55]. The vertex represents the computational cost, while the

edge represents the communication cost. The partitioning strategy aims to partition the

code in different segments where minimum possible communication holds between the

nodes. In MCC, during offloading, the application is partitioned either statically or

dynamically. The set of nodes is offloaded on the cloud for computation.

a

b

c

d

e

f

65

Figure 3-3 Different types of graph topologies

Fig. 3-3 represents various type of graph topologies where a) Node topology b) Linear

topology c) Tree or Mesh topology are represented respectively. There can be a different

level of granularity of the application, i.e., thread-level, method level, class level, or

application level.

 The graph can be represented with different topologies, i.e., either a complete graph as a

node, a linear chain, tree, or a mesh. The mobile application can be signified by an array

of fine-grained tasks in a linear chain, where the task can be executed either on the mobile

device or offloaded to the cloud for execution.

3.3 Multi-level graph partitioning

 Graph Partitioning is an NP-hard problem [48], and to achieve the optimal solutions of

the problem, heuristic-based methods have been formulated. The goal of each heuristic

method is to achieve the smallest possible cut for the two sides. In the scenario, the

objective of the partitioning is to divide the compute-intensive part in the client and cloud

or server-side. A multi-level technique is a series of smaller graphs that are combined to

form a larger graph. The smallest of these graphs is used for the initial bisection. Finally,

the graph is uncoarse, and each of the coarse graphs undergoes partition refinement.

Vertices are given a weight that is proportional to their function. Weights are assigned to

edges based on the amount of data that must be transmitted.

66

Figure 3-4 Phases of graph partitioning

Fig. 3-4 presents the three phases of multi-level graph partitioning [50][112][113] in which

a graph is partitioned. These phases are coarsening phase, partitioning phase, and the last

is refinement phase. The first phase is defined as coarsening phase, where the graph is

converted into a sequence of smaller graphs using the concept of matching. The coarsening

phase reduces the complexity of the graph up to a large extent. The coarsening leads to the

edge contradiction where two connected vertices joined with an edge are merged into one

vertex. The weight of the two vertexes is added into one, whereas the weight of the edges

remains intact as earlier one. The various matching techniques used in the graph

partitioning are random matching, heavy edge matching, heaviest edge matching, and zero-

edge matching. After the coarsening phase, the next task is partitioning phase where the

target is to have minimum edge-cut bisection that will divide the graph into two parts.

Dividing the coarsened graph will lead the original graph into two partitions with less

complexity. The last phase is the refinement phase which make the partitions more stable

and improved version of the results achieved in the previous phase.

67

3.4 Problem statement

The code partitioning in mobile cloud computing aims to partition the code for offloading

purposes, ensuring that there should be minimum interaction among the client and server

(cloud). Resource constraint device often needs a solution to reduce the computational

complexity of its application; the developed approach should focus on the least

communication among the partitions of the application. The computation is divided among

the local mobile device and remote cloud server to ease the mobile device's processing.

Figure 3-5 Scenario representing communication-based on edge-cut

Fig. 3-5 depicts two scenarios a) Communication between mobile and cloud before stable

partition b) Communication between mobile and cloud after stable partition Data

dependencies inside a computation are commonly described using graphs. The graph G=

(V, E) consists of vertices V= {V1, V2,.., Vn } and edges so that it is partitioned into smaller

components with specific computation tasks. The vertices and edges are weighted, i.e., the

computation and communication costs are included in the problem. The partition of a graph

is a process of dividing the task into subtask where P = P1 U P2 U...U PK such that the

application seems to be balanced partitioned. For example. the graph is coarsened with

heavy edge matching, partitioned with spectral partitioning and finally refined by

68

kernighan lin algorithm. Assuming a node F along with node D and E, the initial partition

of components created by spectal partitioning is fig. 3-5 (A). The refinement can be done

by kernighan lin algorithm as seen in fig. 3-5 (B) where node C is swapped with node F to

other side reducing the number of edge-cuts. Thus, final swapping of F and C node by KL

algorithm will reduce cost and edge-cuts.

3.5 Algorithm description

Figure 3-6 Flowchart representation of the proposed approach

69

For balanced graph partitioning, a multi-level hybrid technique is proposed in this thesis

work. Although perfect partitioning is a challenging task, it can be achieved by optimizing

the partitions at different levels. In fig.3-6, a graph is initially taken as an input where each

node represents some class, method, or object based on the granularity. In this scenario,

method-level granularity is considered. The graph contains many nodes at the initial level.

To increase the effectiveness of the partitioning, the graph is coarsened using a matching

concept. Heavy edge matching is performed on the graph initially, and after coarsening,

the initial partitioning is applied by using spectral graph partitioning. During the initial

partitioning, it is desired that a minimum edge cut among nodes must be achieved along

with the optimal partitions of the component. The spectral graph partitioning algorithm

creates balanced partitions, but the Kernighan Lin algorithm is further applied during the

refinement phase for achieving minimum edge cut. The proposed approach has considered

three different algorithms- Heavy edge matching for coarsening purpose, Spectral graph

partitioning for initial partition, and Kernighan Lin algorithm to refine the partition results

set.

The step by step phases of the proposed approach are discussed below:

Phase1: Coarsening Phase:

The original graph G0 is condensed into a series of smaller graphs G1, G2, ..., Gn such that

the number of a vertex in the initial graph is reduced to a small number of vertexes

|V0|>|V1|>|V3|>….>|Vn|. The coarsening process results in the formation of graphs with a

reduced number of vertices and edges [40]. By collapsing the edge, the weight of the two

vertices gets summed up, which are connected by the collapsed edge. The process of

coarsening is achieved by the matching process. Various matching techniques are used, like

random matching, maximal matching, and heavy edge matching (HEM).

70

 Algorithm 3.1 Heavy edge matching

HEM aims to achieve the minimized cut by finding maximal matching

//Input:𝐺: the graph at state j with corresponding Edges 𝐸 and Vertices 𝑉, i.e.

𝐺𝑖(𝑉𝑖, 𝐸𝑖)

𝑤: Edge weight and Vertex weight in the graph

x, y: vertices which will be merged after coarsening

//Output: new graph 𝐺 = (𝑉, 𝐸)after merging nodes.

1. For all nodes 𝑣 𝜖 𝑉

2. If 𝑣 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜 {𝑥, 𝑦} // a random vertex is selected

a. Then

b. 𝑤{𝑒(𝑥 ∪ 𝑦, 𝑣)} = 𝑤{𝑒(𝑥, 𝑣)} + 𝑤{𝑒(𝑦, 𝑣)}

 // addition of weight (heavy edge matching)

3. 𝐸𝑖 ← 𝐸 { 𝑒(𝑥 ∪ 𝑦), 𝑣}

4. End if

5. 𝐸 ← 𝐸𝑖 − {𝑒(𝑎, 𝑣), 𝑒(𝑏, 𝑣)} // removing all edges from E

6. End

7. For 𝑉 ← 𝑉𝑖 − 𝑣(𝑥, 𝑦)

8. Return 𝐺(𝑉, 𝐸)

Phase 2: Partitioning Phase:

 After coarsening, the next phase is to apply the partitioning strategy over the

coarsened graph [114]. It aims to partition the graphs into a bisectional graph or

more based on the problem's requirement. In reference to mobile cloud computing,

the partition can be bisectional, i.e., the node running locally or remotely.

71

 Algorithm 3.2 Spectral approach for partitioning

 //Input: a weighted connected graph G = (V, E)

 //Output: a partitioned graphs G1 = (V1, E1), G2= (V2, E2)

1. Construct Laplacian matrix LM and then compute the eigenvector ev.

2. Explore the median of ev

3. LOOP process

4. For each graph node ni ∈ G

5. if ev(ni) ≤ median

6. move node ni in P1

7. else

8. move node ni in P2

9. If |V1|−|V2| > 1 transfer some nodes from P1 to P2 having equal median

so that to equate the difference among two vertices count.

10. Let Ps represent the collection of vertices that are adjacent to P2 in P1.

11. Let Pt represents the collection of vertices that are adjacent to P1 in P2.

12. Place edge separator Es which is the set of edges of G with one point in Ps

and the second in Pt.

13. Let E1 represents the collection of edges whose both end vertices lies in

P1.

14. Let E2 represents the collection of edges whose both end vertices lies in

P2. Build up the graphs G1 = (V1, E1), G2= (V2, E2)

15. End

72

 Algorithm 3.3 Refinement phase

//Input: a graph G1 = (V1, E1), G2= (V2, E2)

//Output: improved and refined graphs G (V, E) define a refined nodes partition

into sets A and B

1. Best partition ← Current partition

2. Do //computing initial gain

3. ∀ nodes a ∈ A and ∀ nodes b ∈ B, compute the D value

4. Let EL1, EL2, and EL3 be the empty lists

5. LOOP process

6. For each node n1 of G to |V|/2

7. Examine a from set A and b from set B in the following way:

8. g = D[a] + D[b] - 2*c (a, b) is maximal

9. In this pass, discard a and b.

10. Append g to EL1, a to EL2, and b to EL3

11. Compute updated value of D for elements A = A \ a and B = B \ b

12. End for

13. Calculate the value of k that maximises g max, the sum of g max.

14. EL [1],..., EL[k]

15. If (g_max > 0) then

a. Exchange av[1],av[2],...,av[k] with bv[1],bv[2],...,bv[k]

b. Until (g_max <= 0)

16. Return 𝐺(𝑉, 𝐸)

The partitioned graph G1 = (V1, E1), G2= (V2, E2) is gradually refined further with the

Kernighan Lin partitioning strategy to improve the quality of partition.

73

3.6 Performance Evaluation

3.6.1 Experimental Setup

The approach has been implemented as a partitioning strategy in the Chaco simulator [115],

which is primarily written in the C language. The work has been performed on a device

having configuration Intel (R) core i3 CPU M330 @ 2.12 GHz processor, 4 GB of RAM,

and Ubuntu 14 Operating System. The performance of the partitioning method is evaluated

with respect to specific parameters like the execution time, data transferred, and energy

consumption which is embedded in the input graph as weighted vertex and weighted edges.

The evaluation has been conducted to investigate the effectiveness of the partitioning

method in terms of edge cuts. A lower value of edge cuts reflects the minimum

communication between the partition P1 and P2. The behavior of the proposed solution is

also compared with the random partitioning and multi-level KL algorithm.

 For each approach, the execution time and energy consumption are chosen at random

from 100ms to 500ms and 1J to 20J, respectively, using the uniform distribution. These

execution time limits are obtained from the range defined in the actual android application's

trace log file [116] and the energy model for offloading framework in run time [117] [118].

For each method, these assumptions are reasonable as there is no correlation between

energy consumption and execution time. The size of data that moves during offloading is

assumed to be in the range of 50KB -500KB [29]. During offloading, the data travels

between the various methods for complete execution of the application.

For the evaluation of the proposed technique, different node size graphs are generated. The

weight of the nodes [119] are assumed to be the execution time of the node or method, and

the weight of the edges are calculated based on the given formula

 𝑇 = 𝐷𝑎𝑡𝑎 𝑆𝑖𝑧𝑒 /𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ (3.1)

To reduce the complexity of the evaluation, the different dependencies between the

software components are assumed to be the weighted nodes and edges. In a real scenario,

74

the call graph will depend upon the actual software design of the application and may be

drawn with different topologies. In this work, the linear graph has been assumed for the

evaluation of the proposed approach.

3.6.2 Results and Discussion

The comparative performance of the spectral approach with Kernighan Lin, Random

partitioning, and Multi-level KL are discussed in Table 3-1.

Table 3-1 Comparison of graph partitioning techniques with proposed technique

Node

count

Multilevel

KL

Random Spectral

Without

KL
With KL

Without

KL

With

KL

10 1.5 15.42 1.5 1.5 1.5

20 1.5 26.04 1.5 4.5 1.5

30 1.72 37.21 1.72 6.6 1.72

40 1.35 40.51 3.1 8.45 1.35

50 4.58 52.16 3.39 13.12 4.58

60 2.41 64.7 3.03 3.02 2.21

70 3.33 99.43 3.88 9.34 2.06

80 2.91 78.12 5.32 7.26 2.5

90 4.81 108.19 4.91 8.06 4.74

100 10.12 110.12 11.15 10.5 9.14

The experiment was conducted on different node counts ranging from 10 to 100. The

experimental results are achieved with a coarsening percentage of 50%. The graph results

are compared with different approaches, i.e., spectral approach with and without KL,

Random partitioning with KL and without KL, and proposed multi-level graph partitioning.

75

Figure 3-7 Graph represents the edge cuts results of spectral ands KL algorithm

The graph of fig. 3-7 represents the results of the spectral approach on the different graphs

having a varying number of nodes from 10 to 100. The edge cut results of the spectral

approach are plotted with a combination of the Kernighan Lin (KL) approach and without

its combination. The results conclude that spectral partitioning performs better when

combined with the Kernighan Lin approach. The number of edge cuts is significantly

reduced in this combination. The Kernighan Lin improves the results during the refinement

process.

0

2

4

6

8

10

12

14

10 20 30 40 50 60 70 80 90 100

Edge cuts

No. of Nodes

Spectral Partitioning approach

Spectral Without KL

Spectral With KL

76

Figure 3-8 Graph represents the edge cuts results of the random

The graph of fig. 3-8 represents the results of a random approach on the different graphs

having a varying number of nodes from 10 to 100. The edge cut results of the random

approach are drawn with a combination of the Kernighan Lin (KL) approach and without

its combination.

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100

Edge Cuts

No. of Nodes

Random Partitioning

Randon without KL

Random with KL

77

Figure 3-9 Graph represents the edge cuts results of the multi-level KL partitioning

approach

The graph of fig. 3-9 represents results of the multi-level KL approach on the size of the

different graphs varying from 10 to 100. The number of the graph cut are gradually

increasing with the number of the nodes.

0

2

4

6

8

10

12

10 20 30 40 50 60 70 80 90 100

Edge cuts

No. of Nodes

Multilevel KL

Multilevel KL

78

Figure 3-10 Comparison of the edge cut results of spectral with and without KL

approach, random partitioning with KL, and multi-level KL.

The results indicate that considering the combination of spectral approach with the

Kernighan Lin algorithm performs optimally compared to random and multi-level

partitioning in a mobile cloud scenario. The minimum edge cut describes the minimum

communication between the mobile device, i.e., client and cloud side. The spectral

approach with KL is slightly better than the other approaches concerning the number of

edge cuts

0

10

20

10 20 30 40 50 60 70 80 90 100

Edge Cuts

No. of Nodes

Comparitive of partitioning approaches

Spectral without KL

Spectral with KL

Random with KL

Multilevel KL

79

3.7 Summary

This chapter presents a heuristic approach developed based on a multi-level hybrid

approach for balanced graph partitioning. Although perfect partitioning in the mobile cloud

computing offloading process is challenging, it can be achieved by optimizing the

partitions at different levels. Heavy edge matching is performed on the graph initially for

coarsening, and then spectral graph partitioning is applied for the initial partitioning of the

graph. In the last stage, the Kernighan Lin algorithm is used for the refinement of the

partitioned graph. The spectral partitioning and the Kernighan Lin algorithm have

performed optimally compared to the existing approach of random partitioning and multi-

level KL approach in terms of edge cuts. The spectral method and KL help to increase the

edge cut size, which is important for communication between the client device and the

cloud. In the future, the approach will be implemented in the real software design in the

mobile application, and further investigation will be carried out considering different

parameters in the account. Partitioning of an application during offloading in mobile cloud

computing is a critical problem. Different heuristics can be developed considering various

parameters during the study. In this work, the mobility of the device is not affecting the

partitioning results. It can be an open area where researchers can work and develop a better

model based on mobility.

80

CHAPTER 4

OFFLOAD DECISION MAKING IN COMPUTATIONAL

OFFLOADING

4.1 Introduction

With the development of emerging communication networks like 4G, 5G, and even 6G,

mobile users have rapidly increased. This also increases the number of fascinating mobile

applications like image processing, healthcare applications, gaming, etc. The primary

concern in these mobile applications is their energy requirements. These applications

consume a lot of energy, which drains the mobile battery faster. Mobile cloud computing

provides computation resources like processing and storage to the needed devices in the

cloud framework. The various reasons that intent the present developers to make cloud-

based mobile applications are massive storage and processing facilities in the cloud. The

emergence of communication networks improves the data transfer rates extensively.

Technology like cloudlets, hypervisor virtual machines designed for a mobile device also

enables mobile cloud background processing. Mobile cloud computing encompasses a

computational offloading framework that helps deploy the compute-intensive task to the

remote server to save energy and increase the mobile device's performance. Once the

computation is completed on the remote server, the computed results are directed back to

the mobile device. "When to offload." is a challenging question in computational

offloading that always needs a solution for the mobile device's optimal performance during

mobile offloading to the cloud servers.

81

4.2 Offload decision engine in MCC

 A decision engine is a significant component in the offloading framework, which helps

decide when to offload the task to the remote or cloud server. The decision engine's

accuracy should be high for the flawless execution of the application during the offloading

process. There are various subtasks in the offloading process, like identifying the

offloadable task using partitioning, profiling, and offloading decisions. The application can

be alienated into the compute-intensive portion and the graphical user interface portion

(GUI). The graphics-related partition cannot be offloaded as it will refrain the application

from performing, so the only compute-intensive section is offloaded to the remote server.

Profiling is a process of gathering the various devices, networks, and application-related

information required for the offloading operation. The process of offloading is entirely

opportunistic, which relies on external features to offload the task from a mobile device. It

is a non-trivial process that requires various parameters for decision-making. The mobile

battery status, CPU cycles, global positioning system (GPS) for gauging the device's

mobility, signal strength, bandwidth availability, and size of the application task are the

various features that need to be extracted offloading process. This dynamic information is

gathered on a timely basis by the profiler for the decision engine's offloading decision. A

decision engine is a substantial component in the offloading framework, which helps

decide when to offload to the remote or cloud server. Several contexts [120], like

application specifications, mobile specifications, and network specifications, are utilized

to make accurate decision-making. Different algorithms of machine learning like logistic

regression [39], decision tree [121], naïve Bayes [122], fuzzy logic [123], and SVM [124]

have been used in recent research for offloading decision making. Since the offloading

engine is placed in the mobile device, it must be light weighted and also provide highly

accurate offloading decisions based on the statistics provided to it by the context analyzer.

The work contributes to the following points in the computational offloading process:

a) A technique is proposed for the offloading decision that aims to achieve higher accuracy.

It is based on the stacked ensemble approach considering various mobile device

parameters.

82

b) The proposed techniques aim to reduce the processing time and CPU utilization of the

mobile device while taking the offloading decision.

A technique has been proposed by performing a stack ensemble approach on machine

learning techniques like the Gaussian approach, multi-layer perceptron, k-nearest

neighbors, and linear regression. It considers the various dynamics of the environment like

task size, bandwidth, device battery, and device mobility. The proposed model performs

better than other decision-making algorithms in terms of execution time and CPU

utilization and achieves higher accuracy in making decisions while offloading the compute-

intensive task to the remote server.

In the process of offloading decision, various profilers like network, device, and program

profiler collect information related to network, application, battery level, and CPU cycle,

which help the solver to the decision for the offloading. Energy and performance

parameters are often evaluated during this phase. It is not always expected to offload the

task on the remote server but depending upon device conditions and bandwidth; the

decision to offload can be taken. The time T taken to execute the task locally is

 Local Execution Time = W/Sm (4.1)

Where W is the computation amount required for the second part and Sm is the processing

speed of the mobile device. If the second part of the computation is offloaded to the cloud

server having bandwidth B, the di amount of data takes di/B seconds to transfer data to the

designated server. The benefit of offloading the task on a cloud server is only when the

computation of the task, including the communication, can be achieved faster at the cloud

server than executing locally.

Execution Time (Remote) = (communication time to/from server) + (computational time

on server) (4.2)

Key Decision:

If Execution Time (Local) < Execution Time (Remote) then Go Local

 (4.3)

Else Execution Time (Local) > Execution Time (Remote) then Go Remote

 (4.4)

83

4.3 Methodology

The mobile application is considered as a graph in work. The graph nodes represent the

interrelated tasks. During offloading, the application is partitioned to identify the job to be

offloaded or executed locally. In this work, the nodes which are required to be offloaded

are considered for the decision-making phase. Application partitioning is a primitive task

and done before decision-making. It is assumed that nodes coming to the decision engine

are offloadable tasks. During the context analysis phase, different metrics are collected

using the profiling tool for offloadable tasks. The context analyzer works with the device

profiler to collect the battery status of the device. Other profilers like network profilers give

data related to GPS and bandwidth. GPS details come with the availability of satellites

[125], but actual power consumption is based upon the active or inactive state of the GPS

component.

4.3.1 Offloading decision mechanism

 The offloading decision is considered as the concluding step of the computational

offloading process. A decision engine helps to decide when to offload to the remote or

cloud server. The decision engine accuracy should be optimal for taking the correct

decision to offload in the offloading process. Since the offloading engine is placed in the

mobile device, it must be light weighted and also provide highly accurate offloading

decisions centered on the statistics provided to it by the context analyzer. The offload

decision process is represented in Fig. 4-1, in which the decision engines direct the

computation task towards remote or local execution based on the decision logic upon which

it is designed. The various profilers collect information about the mobile device and

provide the decision engine to take offload decisions. Based on the decision, the device

either offloads the task to the cloud or edge server and performs remote execution or

executes the task locally.

84

Figure 4-1 Offloading decision process

4.4 Feature Selection

The metrics considered in the work are battery status, bandwidth, global positioning system

(GPS) data, and the application's size. In most of the work related to offloading, the

mobility of the device is not considered. As mobility is an important aspect, it is regarded

as a parameter for decision-making. Mobility of the device is accessed with the GPS of the

device. If the device GPS is in an ON state, it is considered that the user is moving, and if

GPS is in an OFF state, the user is in a stable position. Table 1 represents the various

features and classes used in work. Once the offloading decision is taken, the task will be

executed locally represented as ELOCAL or executed remotely represented as EREMOTE.

Table 4-1 Features considered for offloading decision

Features Information

ELOCAL Local execution class of task on the mobile device

EREMOTE Remote execute class of task on the cloud server

DSIZE Size of a task that is compute-intensive

BCHANNEL Bandwidth available during the offloading process

GPS Global positioning system of the mobile device (on/off)

BTSTATUS Battery available during the offloading process

85

4.4.1 Multi-layer perceptron (MLP)

An artificial neural network (ANN) [126] resembles the human biological brain in artificial

intelligence. The three different processes of human neurons are simulated in ANN.

Fig. 4-2 represents the multi-layer perceptron model where the first layer is the receiving

and evaluating the input signal; dendrites do the same in a human neuron. The second layer

is the processing of input information by the node or neuron. The third layer of the process

is used to generate the processed data's output, similar to the biological neuron's axon.

Figure 4-2 Multilayer perceptron model

The input layer of the model has n nodes defined as 𝒙 = [𝑥1𝑥2 … 𝑥𝑛] .The model has n

features to be given as input to the perceptron model and can have one or more hidden

layers based on the computation complexity. There are weights 𝒘 = [𝑤1𝑤2 … 𝑤𝑛]

associated with the input features. The activation function determines the output of the

perceptron model and is represented by

 A = ∑ 𝑥𝑖𝑤𝑖 𝑛
𝑖=1 (4.5)

4.4.2 K-nearest neighbor (KNN)

It is a supervised machine learning [127] based on an instance-based classification method

where training records are stored and used to predict the class of the unseen record case. In

86

this scheme, the K parameter value is determined, which describes the number of nearest

neighbors. Different kinds of distance metrics are used to classify the unseen case in the

respected class. For example, the distances can be the Euclidean distance as the following

equation:

 (4.6)

Also, the distance can be Manhattan distance as

 (4.7)

After calculating the distance of unseen case with the training set, the majority vote of class

labels is taken among the k-nearest neighbors:

 Y = argmax ,ϵ 𝐷𝑧 𝐼(𝑣 =𝑦𝑖) (4.8)

Selecting K's value is a crucial task as a compelling too-small value leads to sensitivity to

the noise points, and a larger value includes the data points of other classes.

4.4.3 Gaussian naïve Bayes method

 It is a statistical classifier [128] that enables the class's prediction based on probabilities,

primarily based on the Bayes probability theory. The prediction principle of the naïve

Bayes model is based on the following equation:

 (4.9)

In the above equation, H assumes that Q has its place in the class label C. Let Q be a data

sample where the class label is unidentified. The model's task is to work out the posterior

probability P (Q|X), which is that the probability that assumption H embraces in observed

data X. The P (H) is that the prior probability, P(Q) is the probability that the trial data is

)
2
||...

2
|

22
|

2
|

11
(|),(

qn
x

um
x

v
x

u
x

v
x

u
xvud −++−+−=

)(/)()|(
)(

)()|(
)|(QPHPHQP

QP

HPHQP
QHP ==

||...|
22

||
11

|),(
jp

x
ip

x
j

x
i

x
j

x
i

xjid −++−+−=

87

monitored. P (Q|H) is the likelihood probability of observing the sample X, as long as the

assumption holds.

4.4.4 Logistic Regression

In machine learning, logistic regression [129] is one of the favored classification algorithms

based on supervised learning. It is a particular case of linear regression where the target

variable is categorical. In fig. 4-3 represents the logistic regression model where the data

points are fitted in a logit model or sigmoid function, and the probability of the target

variable is predicted after that.

Figure 4-3 Logistic regression model

During the computation, a categorical value is predicted on a given independent input

variable. The logistic regression model is based upon the sigmoid function, which is seen

as

 (4.10)

4.5 PROPOSED STACK ENSEMBLE APPROACH

 The stack ensemble approach is considered a powerful method in achieving the

classification task [130]. In this technique, multiple machine learning techniques are

combined to improve and boost prediction accuracy. The modern learning approach

) (-z)e^+1/(1=sigmoid(z)

88

follows the ensemble technique by combining the diversified set of machine learning

algorithms to overcome the particular algorithm's weakness and build a robust model.

Hence, each algorithm puts a substantial contribution where the strength of another

algorithm counters its weakness. In the simplest form of the ensemble, all models are

considered, and the unweighted average of the prediction of each model is utilized. The

unrated average will be calculated by dividing the sum of the models' predicted values in

the library. In the current scenario, the concept of model stacking is used where an

automatic assignment of balanced weights is done by using another level of the learning

algorithm. The balanced weight is used to avoid the class imbalance in the scenario.

Stacking is a competent ensemble method in which groups are laid down. Certain machine

learning algorithms are placed at a specific group, and their prediction is passed to the next

level as input. The algorithm designated at the next level is trained to combine the

predictions of first-level algorithms optimally and generate a new prediction based on the

previous information. In this scenario, the first-level models are MLP, KNN, and Gaussian

naïve Bayes, and the second-level model is LR.

Figure 4-4 Stack ensemble approach used for predicting the offloading decision

89

Algorithm 4.1 Stack ensemble-based approach for decision making

Input: D = {x p, y q} m
 is the training data where xp is a dataset that belongs to feature

space and yq is a label that belongs to a class label set), Q is the collection of all algorithm

Output: An ensemble classifier H

1: Learning of first-level classifiers in the primary step

2: for q ← 1 to Q, do

3: Learn base classifier hq based on the original dataset D

4: end for

5: Construct new data sets from D that contain an original class label and new features

as the first-level prediction.

6: end for

7: Learn a second-level classifier based on a new dataset

8: return H(x)

Stacking is a process of learning a high-level classifier on top of the base classifiers. It can

be regarded as a meta-learning approach. The base classifiers are called first-level

classifiers, and a second-level classifier is learned to combine the first-level classifiers. In

fig. 4-4, the process of stacking is demonstrated in which has the following three significant

steps. First- level classifier is learned on the original training data set. It can be learned

either based on bootstrap sampling, boosting or performing parameter tuning for a

homogeneous classifier, or applying different classification methods for generating the

heterogeneous classifier. Secondary, new data has to be generated based on the first-level

classifier or base classifier's output. The first-level classifier's output is fed as a new feature

to the new dataset given in the second-level classifier. The class label of the second-level

dataset remains the same as the first-level dataset. Based on the second level dataset, which

is applied to any meta-classifier, the class level is predicted for the second level classifier.

90

4.6 Performance Evaluation

4.6.1 Experimental Setup

The proposed decision engine has been implemented in Python language. The technique

has been executed on a device having configuration Intel (R) core i3 CPU M330 @ 2.12

GHz processor, 8 GB of RAM, and Windows 10 OS. The decision engine method's

performance is assessed concerning specific parameters like battery status, bandwidth,

GPS data, and the application's task size. The evaluation has been accompanied to

investigate the effectiveness of the decision engine in terms of accuracy. A higher value of

accuracy reflects the correct decision-making by the offloading engine. The behavior of

the suggested model is also compared with the prevailing algorithm like logistic regression

(LR), k-nearest neighbors (KNN), Gaussian naïve Bayes (Gaussian), and multi-layer

perceptron model (MLP). The application's task size for offloading and device battery

levels is taken randomly between 100 KB and 4000 KB and 800 mAh to 4000 mAh,

respectively, using the uniform distribution. In this work, a lower battery level is considered

a 20% percentage of the actual device battery [131], and the battery status above it is

regarded as a greater battery level. The bandwidth [57] of the device is kept between 400

kbps to 800 kbps. The application task size [57] is considered between 100 KB and 4000

KB. The condition of mobility [126] is also considered based on the GPS parameter in

which two states are considered, i.e., stable if it is OFF and unstable state if it is ON. For

every model, i.e., LR, KNN, Gaussian, MLP, and proposed model, k-fold cross-validation

(where k = 10) is applied to seek out the best hyperparameters at the training stage. The

dataset of 1600 records is created using the Python language, which depicts the mobile

device's real-time scenario. The dataset is split into two sets in the current work, i.e., a

training set and a testing set, where 80% is for the training set and 20% is for a testing set.

The confusion matrix is used to examine the various machine learning model's performance

with the proposed model more accurately. A confusion matrix is a valuable tool for

examining the classifier's fitness in classifying the data correctly in the various classes of

the problem scenario. The performance of the models can be measured using a variety of

measures based on true positive (TP), true negative (TN), false positive (FN), and false-

91

negative (FN). The various measures that are calculated for the problem statements are:

 Sensitivity = TP/ Positive (4.11)

 Specificity = TN/ Negative (4.12)

Accuracy= sensitivity*(Positive/ (Positive + Negative)) + specificity* Negative/ (Positive

+ Negative)) (4.13)

 Precision= (TP) / (TP + FP) (4.14)

 F1_Score = 2(precision * sensitivity) / precision + sensitivity (4.15)

 FPR = FP / FP + TN (4.16)

Sensitivity or true positive states how well the model classifies the positive tuple

correctly. In contrast, sensitivity or false positive talks about how well the negative tuples

are correctly classified as negative. The accuracy of the model for classification states the

correct prediction rate. The summarization of sensitivity and precision can be seen in

F1_Score, whereas the ratio of negative tuples classified as unfavorable can be seen as a

false positive rate (FPR). Comparing the various techniques like Naïve Bayes, KNN,

Logistic regression, MLP, and the proposed model has been done based on the above-listed

measures.

92

4.7 Results and Discussion

Table 4-2 Performance of different algorithms and proposed methodology

Algorithm Specificity Sensitivity Precision
F1_

Score
Accuracy FPR

Gaussian Naïve

Bayes
92.08 88.52 83.07 85.71 91 7.91

KNN 98.2 94.26 95.83 95.04 97 1.7

Logistic

regression
89.56 84.42 78.03 81.1 88 10.43

MLP 98.92 96.72 97.52 97.11 98.25 1.06

Proposed

Model
99.28 96.72 98.33 97.52 98.5 0.77

Table 4-2 shows the various scores of various models and the proposed methodology

computed to compare the performances. It has been found that the accuracy of the proposed

model is 98.5%, which is comparatively higher than other techniques. The proposed

method's specificity and sensitivity are 99.28% and 96.72%, which is better than the

compared methods. The FPR parameter is low as 0.77, which signifies the false positive

classification. The F1 score is 97.52%, which is higher than other methods, stating that

precision and sensitivity are more valuable. It also depicts that the decision engine can

adequately handle a balanced class where the decision can be biased based on the training

dataset.

93

 Figure 4-5 ROC curve of the different algorithm and the proposed

methodology

The performances of various models are also compared based on the Receiver Operating

Characteristic (ROC) curve. The area under the curve (AUC) value is the highest in the

proposed model, which is 0.98 compared with other models. Fig. 4-5 states the different

algorithms' ROC curves and depicts the trade between the (1-specificity) and sensitivity.

When the curve value is closer to the value of 1 and lies more towards the graph's left side,

it represents that the true positive rate (TPR) of the classification model is more than the

false positive rate (FPR).

94

 Table 4-3 CPU utilization of Decision engine module (in percentage)

No. of

computational

task

Naïve

Bayes
MLP KNN LR

Proposed

Scheme

10 5.3 4.4 4.3 4.8 4.4

20 7.2 7 7.2 6.8 4.9

30 8.2 7.7 7.6 9 7.1

40 10.5 13.3 7.9 6.3 7.6

50 8.3 6.4 7.4 6.6 7.1

60 8.9 7.3 9.6 8 9.6

70 5.7 9.8 5.9 9.4 5.6

80 10.5 10.7 9.4 12.3 9.1

90 13.3 14.1 7.7 10.9 7.2

100 13.5 14.6 9.6 10.5 8.5

Table 4-3 represents the performance of the decision engine based on CPU utilization.

Different application size tasks are given as input to the decision engine module along with

bandwidth, device energy, and GPS status. The proposed scheme performs better as

compared to other machine learning algorithms. The CPU utilization in a particular set of

computational tasks is less in an ensemble-based approach, which shows it as a powerful

strategy to be considered as a decision engine. CPU utilization percentage is varied since

each allocation given to the decision engine has a randomized computational task based on

mobile device state. The CPU utilization of the proposed scheme is around 9% less on

average than other methods.

95

Table 4-4 Execution time of Decision engine module (in a sec)

Table 4-4 represents the performance of the decision engine based on execution time. The

decision engine's execution time is comparatively better when a randomized computational

task is given to it in a different count. The proposed scheme is around 47% faster as

compared to the algorithms.

A decision engine is a key component of the offloading system, since it determines when

a task should be offloaded to a remote or cloud server. This research proposed a stack-

based classification method for performing the decision engine's offloading decision-

making duty in the computational offloading process. When compared to other machine

learning models, the suggested classifier is found to be more accurate. The ROC curve for

the suggested approach is shown, which has a higher TPR than other models. Based on the

device's GPS, the feature of mobility is also taken into account at work. The proposed

technique is a viable decision engine solution because of its shorter execution time and

lower CPU use.

No. of

computational

task

Naïve

Bayes
MLP KNN LR

Proposed

Scheme

10 1.09 1.16 0.8 0.9 0.41

20 1.43 1.21 0.95 1.27 0.83

30 1.48 1.48 1.37 1.43 0.91

40 1.28 0.98 1.29 1.44 0.79

50 1.32 1.2 1.3 1.38 0.76

60 1.21 1.16 1.83 1.45 0.81

70 1.34 1.04 1.5 1.08 0.34

80 0.71 1.4 1.5 1.14 0.5

90 1.44 0.78 1.33 0.92 0.36

100 2.3 0.7 1.8 1.9 0.37

96

4.8 Summary

This work suggested a stack-based classification method that can perform the offloading

decision-making task of the decision engine in the computational offloading process. The

accuracy of the proposed classifier is found better when compared with different machine

learning models. The proposed technique's ROC curve is presented, which has better TPR

compared to other models. The feature of mobility is also considered in work based on the

GPS of the device. The lower execution time and lower CPU utilization make the proposed

scheme a viable decision engine approach.

97

CHAPTER 5

MOBILITY MANAGEMENT SCHEME DURING

COMPUTATIONAL OFFLOADING

5.1 Introduction

Seamless connectivity is the prime requirement for performing computation during

offloading in MCC. It enables the mobile user to sustain uninterrupted and constant

connectivity. It does consider the location and environment also where the mobile device

is moving. In mobile cloud computing, seamless connectivity [132] enables the device to

remain connected with the cloud service providers without degrading the QoS. At present,

an enormous number of wireless data network technologies are Wi-Fi, Wi-MAX, 3GPP,

LTE, and, more recently, the 5G technologies also. The core technologies in a cellular

network, like a circuit-switched network, are also transformed to the internet protocol (IP)

based network. It leads to the usage of the IP-based packet by the LTE technologies also.

Many of the IEEE standards and RFC are proposed and implemented in recent times on

these new transformations. Hence, there is a need to work on the mobility management of

the devices also so that robust, cost-effective, highly available services can be provided to

mobile users. It needs to assure that the mobile device needs to remains connected in

different geographical locations. In traditional communication systems, the applications

were limited to two-way directions, like voice communication, emails, and text. The recent

emerging applications like telemedicine, sensor-based IoT applications, video streaming

applications have changed the focus from two-way communications and open a new

dimension of mobility in the communication system. Mobility management is an essential

dimension of ubiquitous computing, which makes it more valuable and usable. The

problems in MCC are similar to mobile computing, such as the issues [9] [10] related to

handoffs, network delays, bandwidth, and limited battery energy. In computational

98

offloading, the mobile device or mobile nodes (MN) roams around different access

networks like a mobile device may initially start some cloud services in the 4G network

and commit offloading process in the Wi-Fi network due to its mobility.

5.2 Mobility management in MCC

Tracing mobile nodes, preparing a handover, picking a new network, registering the mobile

device with various service providers, and conducting the handover are all responsibilities

of mobility management. Finding the SMD's Point of Attachment (PoA) and keeping the

SMD's connectivity while changing the PoA are key issues in mobility management. The

initial matter is controlled by location management [133], and the second is handover

management [134]. A geographical coverage area is an area is divided into a sub-area

known as a cell. It is a cell cluster means the group of a cell. A cell is assigned a bunch of

frequencies and served by a base station consisting of a trans receiving system and control

unit. A base transceiver system is deployed as a hub to handle the information transfer

between source and mobile terminals. Now, the mobile switching center control all BSC,

MSC takes part in the registration update, authentication, and call delivery process. The

basic function of a network is to allow mobile devices to communicate over GSM and

UMTS networks. The data that has to be processed is transferred from the mobile device

to the cloud or edge servers, where it is computed on the servers. The mobile device

receives the calculation results from the cloud or edge server after the computation is

completed. The offloading process in MCC may use heterogeneous types of wireless

networks, which may include Wireless LAN (WLAN) and cellular services like 3G, 4G

services, and even 5G services in the near future. Various issues get raised when the

offloading application runs, like connectivity, the energy level of mobile devices, and the

availability of the cloud or edge servers. The different types of mobile services [4] are

available to the mobile device like Bluetooth, Wi-Fi, 2G/3G/4G services.

99

5.2.1 Network ad Cloud Probing

The aim of MM is to track where subscribers are allowing calls, SMS, and other mobile

phones. Like roaming is a significant procedure in MM, with the help of this, the customer

automatically receives the calls, sends data, and travels outside the home network in

Heterogeneous Access Networks (HAN) environments. The handoff procedure is a two-

step process that transfers an active call from one cell to another, i.e., when a mobile node

(MN) travels into a different cell while a conversation is in progress, the MSC immediately

switches the call to a new channel belonging to a new base station. The handoff is initiated

when the new base station's average signal level exceeds the current base station by a

certain amount. When a device moves from one network to another without changing the

network type, then the process is called horizontal handoff, and if it changes the network,

then it is called vertical handoff. Basically, -90 dBm to -100 dBm is an acceptable voice

quality range. Location management keeps track of the active mobile station within the

cellular network to route the incoming call. A mobile station is active if it is powered ON.

Usually, location management means how to track a mobile station between two

consecutive phone calls. The goal of location management is to maintain track of the

current location of users so that incoming packets can be routed to the mobile location. If

a mobile station sends an update message, its specific location is unknown, which causes

considerable delivery delays. If the mobile station's position is updated often, the network

knows where it is, and data packets can be transmitted without any further processing.

However, mobility management consumes a significant amount of uplink radio capacity

and battery power.

Heterogeneous networks (Hetnets) have various types of features like data rates, received

signal strength (RSS), network capacity, bandwidth, and coverage span. The mobile device

perceives these features and decides to select the best available network in its current

location. The mobility of the device has a greater impact on the process of offloading.

While the user is in a moving state, the probability of changing the network is high. For

the flawless process of offloading, the transition among the cellular network must be

smooth, and handoff must be minimized so that the mobile device remains connected with

100

the cloud server. Many modern computing environments are cloud-specific, like gaming

applications, healthcare services, natural language processing (NLP) based applications,

and computer vision. The mobile device can perform computations while roaming and may

require cloud services for offloading purposes.

During cloud probing and selection, the best cloud is searched for the offloading process

based on QoS offered by the cloud service provider. The parameters like network

throughput, CPU utilization, latency, and delay are considered for cloud probing services

(CPS). Based on these parameters, the cloud services are ranked using the cloud ranking

services (CRS). The mobile applications use RESTful APIs for taking the cloud services.

After selecting the appropriate cellular and cloud services, the task is uploaded for

computational offloading.

5.3 Proposed mobility scheme during computational offloading

Computational offloading is a complex problem in mobile cloud computing. The offloaded

task initiated by the mobile device during the offloading process reaches the cloud server

through the heterogeneous cellular network or Wi-Fi network. In fig. 5-1, the offloading

mechanism is shown where the mobile device may roam among different networks, and

the mobility of the device compels it to choose the network with higher signal strength

through network probing. Further, cloud probing is also required for selecting the best

cloud for executing the offloaded application component. In this work, an assumption is

made that mobile devices have fixed the cloud server based on the technique used in [8],

Simple Additive Weighting (SAW). The contribution of this work is to devise a mechanism

for network probing where an optimal network can be searched, and the device remains

connected to the cloud server. It aims to have less handoff and dropped rate happen so that

seamless connectivity can be realized without interrupting the cloud service.

101

Figure 5-1 Computational offloading of task during mobility in MCC

The proposed technique aims to provide a mobility scheme where the number of handoffs

can be minimized, and the handoff dropped can be reduced. In this work, the COST-231-

Hata path loss model [135] is considered along with the pathway mobility model in various

mobile environments like urban, semi-urban, and rural locations to simulate the cellular

model of the offloading device.

Figure 5-2 N state Markov chain model for mobility prediction in MCC

In this scenario, the mobile device roams in the different states or locations, represented

with the Markov model. In fig. 5-2, the generic case of n state Markov model is presented

where a device moves among different states, and the probability of moving to

102

the next state is updated after every movement in the cellular or Wi-Fi area.

 P {Sn+1 = w | Sn = qn, Sn-1 = qn-1 … S1 = q1, S0 = q0} (5.1)

 The device's mobility is a stochastic random process, and the device can move to any

state in state space. State-space is an area which is having network coverage or Wi-Fi

access point. The mobile device performs the transition from one state to another based on

the transition matrix. The probability of the transition matrix gets updated after every

movement initially and learning is undergone. Fig. 5-3 depict the transition matrix for N

states.

Figure 5-3 Transition matrix

In the first-order Markov chain, the model forecasts the next action by only seeing the user's last

action. In the current scenario, the prediction of the next location movement accessed by a mobile

device is the problem consideration. The Markov model consists of mobile user location as states,

and the fourth-order Markov model is considered, which means the next state can be predicted

based on the previous four states. It has been seen that a higher-order Markov chain [136] increases

the accuracy of the prediction; there is an increase in the number of states also. So, to manage the

trade-off, the fourth-level Markov model is applied for location prediction, and further higher-order

may make a mobile application more complex and could affect the battery drainage also during the

decision making for handoff.

103

5.4 Proposed scheme for mobility management

In this paper, the fourth-order Markov chain-based mobility scheme is proposed, which

aims to reduce the number of handoffs and dropped rates also. The mobile device is initially

connected with either Wi-Fi or a cellular network. Once the device starts the offloading

process, it may start moving from one location to another location. The problem has

considered the pathway mobility model [137] in the scenario, which has been implemented

in a different cellular environment like urban, semi-urban, and rural locations and

compared with SINR based handoff mechanism [138]. The cloud server is assumed to be

stationary and connected to the cellular service in the current scenario. When the device

starts moving, it probes for the network or access point having strong signal strength. The

network probing scheme is proposed as:

Pseudocode 5.1 Network probing for a candidate list of BS/AP and network selection

Finding the list of the predicted base station and access point based on the current location

of the user equipment using a 4th order Markov model

Input:

Base station threshold

Access point threshold

D, database of all access point and base station

Output: L, list of candidate base station and access point in D

Method:

1. User equipment is connected to a base station or access point connected with the cloud.

2. Candidate list = {}

3. For each access point and base station in D, do

4. Repeat

5. Compare the current RSS with the existing Base station and Access point RSS

104

6. Update candidate list with that BS and AP whose RSS is above the threshold value in

the available area

7. until no change

8. If (User equipment Current RSS < threshold value), Select BS / AP from the candidate

list based on the predicted location of user equipment derived using 4th order Markov model

and perform offload

9. Else continue offload at the current location

5.5 Performance evaluation

5.5.1 Experiment Settings

In this work, a scenario is assumed to connect the mobile device to the cloud server through

various base stations and access points. When the device starts moving, it probes for the

network or access point having strong signal strength and select the network based on the

next predicted move. In table 5-1, the frequency of the base station is considered 2100 MHz

for all towers as the 4G network is considered in work. The height of the base stations

(Hbs), transmitted power (Pt), transmitted antenna (Gt), and connector loss (A) are also

considered for urban, semi-urban, and rural while defining the base stations [139] during

this work. The work presented also compares techniques based on the cellular area like

urban, semi-urban, and rural.

Table 5-1 Base stations feature based on the cellular environment

 Urban Sub-Urban Rural

Frequency Base

station (F)
2100 MHZ 2100 MHZ 2100 MHZ

Height of base

station (Hbs)
30 34 38

Transmitted power

(Pt)
43 46 48

Transmitted antenna

(Gt)
18 18 18

Connector loss (A) 2 2 2

105

The cellular network ‘s received signal strength (RSS) can be computed as:

RSS = Trasmit_Power (Pt) + Trasmit_Antenna (Gt) − Path_loss (PL) – connect_loss (A)

 (5.2)

The path loss model expressed for the cellular network COST-231-Hata model [23]

 Path_loss (dB) = A + B log10 (d) +C (5.3)

In equation 3,

A = 46.3+ 33.9 log10 (carrier_freq) – 13.28 log10 (BS_height) – a (Mobile_height)

 (5.4)

 B = 44.9 – 6.55 log 10 (BS_height) (5.5)

and the value of C is 0 for rural and suburban areas and 3for urban areas

In table 5-2, various parameters are presented, which are used in the WLAN simulation

setting.

The path loss [24] in WLAN is represented in dB as:

PL(WLAN) = constant power loss(L) +10 (path loss exponent n)log (d) + Fading

effect(S) (5.6)

The RSS for WLAN is articulated in dBm as:

 RSS (WLAN) = Trasmit_Power (Pt) – Path_loss (PL) (5.7)

Table 5-2 WLAN access point features

Features of WLAN Parameter Values

Constant power loss (L) 147dB

Path loss exponent (n) 3 dB

Shadow fading (S) 2

Transmit Power (Pt) 1dBm

106

5.5.2 Results and Discussion

During the implementation of the strategy, the numbers of user equipment were considered

in the range of 100 to 500, and the three environments were considered, i.e., urban,

suburban, and rural.

Table 5-3 Handoff results in a different environment

No. of

user

equipment

Urban Sub-Urban Rural

Urban

SINR

Handoff

Urban

Proposed

Handoff

Sub-

Urban

SINR

Handoff

Sub-

Urban

Proposed

Handoff

Rural

SINR

Handoff

Rural

Proposed

Handoff

100 4404 3849 3740 3280 2866 2450

200 6924 5919 5885 4930 6705 5820

300 8651 7462 9262 7790 6090 5156

400 10397 8703 10428 8849 7401 6427

500 12938 10714 11912 9990 9559 8002

Table 5-3 represents the count of handoff in the urban, sub-urban, and rural environments.

It is calculated on different numbers of users in different cellular network features.

Figure 5-4 Handoff comparison between the two different strategies

107

Fig. 5-4 presents the comparison of the number of handoffs in the proposed technique with

SINR based approach in Urban, Sub-Urban, and Rural. Based on the simulation, it is

founded that the proposed handoff strategy based on location prediction performs better as

compared SINR based handoff. The numbers of handoffs are less in three different

environments when compared with SINR based handoff. The lower handoff count depicts

seamless connectivity with the cloud server and a flawless offloading process.

Table 5-4 Handoff dropped results in a different environment

No. of

user

equipment

Urban Sub-Urban Rural

Urban

SINR

Dropped

Urban

Proposed

Dropped

Sub-

Urban

SINR

Dropped

Sub-

Urban

Proposed

Dropped

Sub-

Urban

SINR

Dropped

Sub-

Urban

Proposed

Dropped

100 2557 1053 2189 882 1270 560

200 4235 2408 3580 2203 4089 2274

300 5494 4396 5801 4530 3688 2273

400 7025 5537 7164 5649 4680 3702

500 9411 7124 8809 6709 6430 5100

Table 5-4 presents the handoff dropped results in the urban, sub-urban, and rural

environments.

In this work, a mobility-based offloading system in MCC is suggested, with the goal of

reducing the number of mobile device handoffs as well as the number of handoffs dropped.

The 4th order Markov model is developed to anticipate the user equipment's next location.

The technology will allow user equipment to stay connected to a cellular or Wi-Fi network,

which will then connect to a cloud or edge server for the computational offloading

operation to be completed. For implementing the proposed work, the work encompasses

diverse mobility situations such as urban, semi-urban, and rural, and it has been found to

perform better than the comparative SINR-based technique.

108

Figure 5-5 Comparison of the number of handoffs dropped

Table 5-4 shows the comparison of the number of handoffs dropped in the proposed

technique with SINR based approach in Urban, Sub-Urban, and rural environments.

Handoff dropped count depicts the scenario when user equipment does not get the required

signal strength during handover and loses the connectivity with the base station of the

cellular network. The results shown the fig. 5-5 interprets that the proposed technique

reduces the dropped rate in the cellular network, and altogether reduction in dropped rate

provides seamless connectivity of the mobile device to the cloud server. In all three cellular

environments, the proposed technique has performed well in handoff dropped to count.

5.6 Summary

This chapter proposes a seamless mobility scheme based on the heterogeneous network of

Wi-Fi and 4G networks. The proposed scheme is based on the fourth-order Markov model

for mobility prediction and received signal strength (RSS) of the network nearest to the

next predicted move of the device. The chapter is arranged in different sections where the

related work in mobility in mobile cloud computing has been presented. The proposed

mobility scheme for the offloading process has been presented in the chapter, along with

the results of the proposed approach.

109

CHAPTER 6

A MULTI-OBJECTIVE TASK SCHEDULING SCHEME

IN MOBILE CLOUD COMPUTING

6.1 Introduction

Cloud computing accomplishes a range of virtualized resources, which creates scheduling

a significant component. A client may need several virtualized resources to process the

task on the cloud. That is why scheduling cannot be done manually. The scheduling process

needs to be modelled automatically through scheduling schemes that aim to maximize the

central processing unit (CPU) utilization and reduce the energy consumption of the virtual

machine. MCC is currently an encouraging field in the cyber-physical world. It is an

amalgamation of mobile computing and cloud computing. Computational offloading is one

feature in the mobile cloud application that offloads the task to the cloud server, processes

it, and gets the results back on the mobile device. During offload, the job needs to be queued

on the cloud servers and allocated to the virtual machines. Task scheduling is an important

step where the mobile task is assigned to the servers and processed somehow. In the overall

offloading process, energy conservation is a significant concern. The scheduling problem

involves mapping the offloaded task to the cloud server while satisfying the energy and

time constraints. This chapter presents a hybrid scheduling scheme based on Gaussian-

based multi-objective particle swarm optimization (GMOPSO) and bacterial foraging

optimization (BFO). This scheme performs better when compared to other variants of

particle swarm optimization (PSO) in terms of makespan and energy efficiency. The cloud

schedulers are a fully-managed entity in the cloud service providers. It minimizes the

human intervention in scheduling the task and provides a reliable solution. The tasks are

scheduled on various virtual machines available in the physical servers of the data centers.

110

Figure 6-1 Virtualization in cloud computing

The fig. 6-1 depicts a process of virtualization [140] which is a core technology of cloud

computing that permits running different OSs concurrently on one physical machine (PM).

These operating systems run in isolation from each other on these physical machines by

particular middleware technology known as virtual machines. The middleware software

which enables creating, running, and managing these virtual machines on single or multiple

pools of physical machines is called hypervisors. The brokers or hypervisors enable

scheduling on the virtual machines of the physical system. The cloud service providers

monitor all the requests coming to the server and keeps the information about the utilization

level of physical machines present in the data center. The characteristics of the task are

recorded, and dependencies are also closely watched. The tasks that reach the server are

broadly classified as CPU bounded, and Input-output (IO) bounded. The compute-intensive

tasks require a large amount of Random access memory (RAM) to get processed. The IO-

based tasks are mostly requiring the peripherals devices connected nearby the servers.

111

6.2 Related work

6.2.1 Task scheduling during computational offloading

Computation offloading is the technique inside mobile cloud computing where an

application is partitioned upon local and remote execution based on some criteria. Fig. 6-2

depicts the system model for task scheduling of offloaded tasks. In the offloading process,

an application is partitioned, and based upon some measures; the decision has been taken

to offload the task or execute it locally. Those tasks which are identified to be performed

on an edge server are offloaded on it. The objective functions considered in the work are

to minimize the makespan of the mobile task and minimize the mobile task's energy cost.

Figure 6-2 System model for scheduling the offloaded task to the cloud server

These jobs reach the cloud server and get scheduled by some scheduling technique. Task

scheduling on the cloud server is one of the prime tasks on mobile cloud computing. The

virtual machines (VM) need to be allocated to the task's execution by the cloud service

provider. Major thirst has been given to research in the field of mobile computing by a

112

framework like Chroma(RPC) [14], Cuckoo(RMI) [6], spectra [13], MAUI [15],

Mobicloud [19], and Clonecloud [16]. These are popular frameworks in this cloud

computing domain that empower the concept of offloading the task to the cloud server

either by task partitioning or considering a complete application for offloading purposes.

Various studies have been done in the past, trying to achieve optimization in different

objective functions like makespan, energy, quality of service (QoS), load balancing, and

cost. The problem of task scheduling has much scope for optimization since of its NP-hard

nature. The mobile application consists of many computational tasks represented as nodes,

and dependency among these nodes is defined as a cloud. Resources are required in the

cloud servers for the execution of these offloaded computational tasks. The availability of

these resources needs to be assured by the cloud service providers, and also, the pricing of

services may vary from country to country.

The mobile task offloading model consists of two ways to execute the task, i.e., either to

offload the task on the cloud server or to execute the task locally on the mobile phone.

After the initial task partitioning phase, the decision of offloading is made by the decision

engine by gathering various device and network parameters through the profiling process.

Now, through a cellular network or Wi-Fi network, the task reaches the cloud server. The

objective of offloading is to transfer the computation to the resourceful server at a distant

place to improve the device's performance and save energy. Taking the offload decision to

a remote server is not always mandatory but depends on the various parameters affecting

the device's performance. In some scenarios, partial offloading is also performed. One part

of the application task is processed on a mobile device, and the other is offloaded to the

surrogate or cloud server. The task's computation time depends on the computation amount

required and the mobile device's processing speed. In a scenario, let assume the job is

divided into two partitions where the first partition executes locally and the second partition

runs on a remote server. For local execution, let CT_LOCAL be the computation time required

on the local device, CA_LOCAL is the computation amount, and PS_LOCAL is the mobile

device's processing speed. The relationship among these values will be:

 CT_LOCAL = CA_LOCAL / PS_LOCAL (6.1)

113

For remote execution, the second partition is executed on the cloud/edge server. Let

BAVAILABLE be the available bandwidth in the device and the amount of data to be transferred

be DAMOUNT_OF_DATA. The time taken to transfer the data to/from the server will be

CT_REMOTE will be

CT_REMOTE =DAMOUNT_OF_DATA / BAVAILABLE + Cloud processing time (6.2)

Total time CT_TOTAL taken to execute the application both locally and remotely will be a

summation of the above two equations, which is

 CT_TOTAL =CT_LOCAL + CT_REMOTE (6.3)

When a task is transferred from a mobile device to a cloud server, it is delivered to the

cloud service provider's server. The cloud service provider manages all information about

the task that approached it for processing. The Datacenter Broker policy [11] helps the

cloudlets (task) to assign the virtual machines. The data center policy must be appropriate

for the minimum execution time of the cloudlet. Similar to web applications, a mobile

application consists of different tasks. These tasks can be represented as a directed acyclic

graph (DAG). While the application's independent task can be executed simultaneously in

multiple virtual machines, the dependent job needs to be synchronized as per their

precedence order.

6.2.2 Multi-objective approach of task scheduling

The mulita-objective approach focuses on optimizing more than one objective function

simultaneously. Energy and makespan are considered objective functions for the study. A

task offloading scheme is based on optimizing the multi-objective function, where

minimizing both functions is the approach's actual goal.

Makespan is defined as the time required for the processing of the task CPU and its

transmission time. The makespan of a task on the virtual machine is calculated considering

the computing power of the VM and the size of the task. It can be defined the following

equation:

 Makespan(T) = size of the task ∕ computational power (6.4)

114

Two factors calculate energy cost: virtual machine usage charges, which are usually

different for cloud service providers, and calculated on a second basis. The other is the

execution time of the task. It can be defined the following equation:

 Energy Cost = execution time X virtual machine usage charge (6.5)

6.3 Proposed approach for task scheduling model

The proposed approach (GMOPSO-BFO) is based on a hybrid approach of particle swarm

optimization (PSO) and Bacteria foraging optimization (BFO). The PSO approach works

excellent in searching the solution globally, whereas the BFO works optimally with local

search capabilities. The combined approach of these two techniques generates an optimal

solution globally and locally in search capability and higher convergence time.

In this work, the particular task's execution time depends on the task size and the virtual

machine's property. Following are the basic definitions regarding mobile task scheduling:

a) Consider a set of n virtual machines as V = {V1, V2, V3…, Vn}

b) A task of the application tasks T = {T1, T2…, Tx}

c) E is the set of connections between any two tasks, Ti and Tj.

d) Collection of physical machines (PMs) in the data center = (PM1, PM2, PM3..., PMn)

It is assumed in the work that the cloud service provider has a sufficient number of

computational resources. The V number of virtual machines are deployed on the physical

machines, and different virtual machines have a variety of processing units (CPU), random

access memory (RAM), and networking capabilities. The data center brokers monitor all

available resources and assign the machine to the task once approached. All jobs requiring

the processing resources need to stand in a queue and based on the task scheduling scheme,

tasks are planned to execute on the machine.

6.3.1 Bacteria Foraging Optimization

The bacteria foraging method is a natural selection method in which microorganisms like

bacteria tend to search or forage the food to survive in the E-coli (intestine) of the human

115

body [141]. The primary strategy of bacteria to survive is by locating the nutrients, handling

them, and ingesting the food to get the energy to live and reproduce. Those bacteria which

do not successfully forage the nutrient typically get eliminated from the system. It follows

the concept of survival for the fittest. This evolutionary concept made the scientist

fascinated and motivated them to use it as an optimization process. Most of the

optimization processes can be performed with such an evolutionary approach. The main

aim of the bacteria is to maximize the energy attained during foraging per unit time. It

depends on certain factors like prey density in the environment and characteristics of the

environment. It also depends on the sensing and cognitive capabilities of the bacteria.

The E. coli bacteria have a cell structure having various biological features like nucleoid,

ribosomes, cytoplasm, pilus, and plasma membrane. As these attributes do normal cell

process, another critical feature, i.e., flagellum, helps bacteria propagate or move in

different directions. Chemotaxis is the process of movement of the organism from its

position in the presence of some chemical attractants and repellents. With the help of

flagella, there are two possible movements, i.e., either its moves clockwise or tumble, and

the other is counter clockwise or swim. Fig. 6-3 depicts the movement of bacteria like

tumbling and swimming in the E. coli. In a favourable condition of the environment where

sufficient nutrients are available and the non-acidic and non-alkaline nature of the intestine,

it swims and the opposite of it. It tumbles typically, which is changing the direction of the

swim.

 Figure 6-3 Chemotaxis process of the bacteria [141]

 The other significant process related to bacteria is swarming, where bacteria release some

attractants to swarm together, searching for food. If the attractants are released high and

deep, there are chances that different bacteria explore food together; otherwise, they go

116

alone in the reverse situation. During the reproduction process, the bacteria get split into

two parts to increase their population. Bacteria reproduce based upon the nutrient available

in the bacteria or the fitness function. The bacteria also go through the elimination and

dispersal phase in their lifetime due to their local environment. Sometimes, the condition

to survive gets reduced when the sudden rise in heat or nutrients is finished. In terms of

computing, to avoid trapping in the local optima, the elimination and dispersal process is

used.

6.3.2 Particle swarm optimization (PSO)

Particle swarm optimization (PSO) is a nature-inspired algorithm [142] [143] based on

social behavior and a flock of birds' dynamic movement. A group of birds known as swarm

moves together, searching for food in a particular direction and different velocities. Each

bird or particle looks for food and is usually followed by other birds. These birds

communicate with each other during their search and typically follow each other closer to

the food. The closeness from the food is calculated as a fitness value after a periodic

interval of time. Each bird in the swarm is represented as a particle in multidimensional

space with a certain velocity and position. Each particle keeps two things in its memory,

i.e., their own best position pbest and other is the global best position of gbest of their

group. In the standard PSO, the velocity of the particle is updated with the equation

 𝑣𝑖
(𝑘+1)

= [𝜔𝑣𝑖
(𝑘)

+ 𝑐1𝜉1(𝑏𝑖
(𝑘)

− 𝑥𝑖
(𝑘)

) + 𝑐2𝜉2(𝑦(𝑘) − 𝑥𝑖
(𝑘)

)] (6.6)

where)(k

iv 1+ is its velocity (k)

ix is the ith particle's position at step k, (k)

ib is the best position

visited by the ith particle, (k)y is the overall best position ever visited, ω is inertia- weight

and ξ1 , ξ2 are the random numbers between 0 and 1 and c1, c2 are the acceleration

coefficients. Velocity is updated by inertia, cognitive and social behaviour of the particle.

The updated version of PSO, which improve the convergence rate, was constriction factor

where the velocity vector as

117

 𝑣𝑖
(𝑘+1)

= 𝜒[𝑣𝑖
(𝑘)

+ 𝑐1𝜉1(𝑏𝑖
(𝑘)

− 𝑥𝑖
(𝑘)

) + 𝑐2𝜉2(𝑦(𝑘) − 𝑥𝑖
(𝑘)

)] (6.7)

𝑥𝑖
(𝑘+1)

= 𝑥𝑖
(𝑘)

+ 𝑣𝑖
(𝑘+1)

 (6.8)

where is a constriction factor in the above equation and (k)

ix is the ith particle's position

at step k,)(k

iv 1+ is its velocity, (k)

ib is the best position visited by the ith particle, (k)y is the

overall best position ever visited. It has been observed that after incorporating the Gaussian

density function in the above equation, the results come better in terms of the global

solution. The updated velocity equation will be

)x(yRandn)x(brandnv (k)

i

(k)(k)

i

(k)

i

)(k

i −+−=+ |||1 (6.9)

where the randn and Randn are based on the Gaussian density function's absolute value.

The Gaussian random density function is represented by

 𝑓(𝑥) =
1

√2𝜋
𝑒−𝑥2

2⁄ (6.10)

Pseudocode 6.1 GMOPSO-BFO approach for task scheduling:

Initialize the Bacteria Foraging Optimization (BFO) parameters and Particle swarm

optimization (GMOPSO) parameters:

Np, Nc, Sl, Nr, Ne, C, Pdispersal, dattract, wattract, hattract, wattract, pi, f, vi

Input: a collection of all bacteria where each bacteria represented as ()lkji ,,

Output: a collection of information on how much these bacteria collect nutrients

1. begin: Let ()lkji ,, be the position of the ith bacteria in the environment where j

defines the chemotaxes step, k defines the reproduction step, and l defines the dispersal

elimination step.

2. for all bacteria in the list:

118

3. Loop elimination-dispersal step

4. Loop reproduction step

5. Loop Chemotaxis step

6. go for chemotactic steps using (a) and (b), respectively

7. Initialize the value of vi and position pi of the ith bacteria

(a) Compute tumbling step:

() () ()
()

() ()idltidlt

idlt
iClkjlkj

T

ii +=+ ,,,,1

(b) Compute Swim step:

() ()()lkjPlkjJlkjiJlkjiJ i

cc ,,,,,),,,(),,,(+=

8. Set Jlast =
),,,(lkjiJ

9. If),,1,(lkjiJ + < Jlast

10. Update Jlast

11. For the reproduction phase: calculate the fitness function using:

()
+

=

=
1

1

,,,
cN

j

i

health lkjiJJ

12. Sort in ascending order the bacteria and chemotactic parameters

 If (k < Nr), perform reproduction step again till k= Nr

13. For elimination and dispersal:

14. for each bacteria,

15. if (ped < Pdispersal),

119

16. do elimination and dispersal till l= Ne

17. Do Mutation of the remaining bacteria (particles) using PSO scheme

18. Update pi, best and gi, best upon meeting the condition

)()(

)()(

,,

,,

bestiiibesti

bestiiibesti

gfgfifgg

pfpfifpp

=

=

19. Update velocity of each bacteria (particle) after every iteration by the Gaussian

based velocity-

)x(yRandn)x(brandnv (k)

i

(k)(k)

i

(k)

i

)(k

i −+−=+ |||1

20. Update position of each bacteria (particle) after every iteration by the formula-

)(k

i

(k)

i

)(k

i vxx 11 ++ +=

21. Check pi, which should exist within the range

22. Repeat step reproduction and PSO until convergence is achieved.

23. After the stopping criteria are met, the value of gbest and f(gbest) must be recorded.

24. End

6.4 Performance and Evaluation

6.4.1 Experimental setup

The proposed approach has been developed in the language Python in the window 10

environment on Intel (R) Core (TM) i5, 1.80 GHz, CPU 8 GB. Various parameters

considered during the simulation of the proposed technique have been presented in table

6-1. In evaluating the proposed method, five virtual machines are considered, and a

collection of tasks is assumed between 100 and 1000. The results are compared with the

existing work on MOPSO [144] and BFO [145] regarding the energy efficiency and

makespan of the task execution. The proposed scheme is based Gaussian swarm approach

120

implemented in MOPSO along with the BFO. The experiment has been performed by

considering the number of bacteria (Np) as 20 and No_of_chemotactics (Nc) as 10. In the

same way, the initial size of PSO is considered as 20 in the experiment. The experiment

runs iteratively about ten times to find the average of makespan and energy values. The

experiment has been performed by considering m random task to n virtual machine. The

task size and required execution time are uniformly distributed. It has been found that the

Gaussian scheme has outperformed the standard PSO and increases the convergence ability

of PSO. Since our problem is multi-objective, when Gaussian is implemented with

MOPSO and BFO, it gives better results in energy efficacy and reduced makespan time.

Both factors are required for the offloading problem in mobile cloud computing.

 Table 6-1 Parameters considered in the simulation

Parameters for BFO and PSO Value Used

No_of_bacteria (Np)
20

No_of_chemotactics (Nc)
10

swim_length (S l)
4

No_of_reproductions (Nr)
4

No_of_dispersals (Ne)
2

step_size (C)
1.45

probability_dispersal (P dispersal)
0.25

d_attractant (dattract)
0.1

w_attractant (wattract)
0.2

h_repellant (hattract)
0.1

w_repellant (wattract)
10

PSO Swarm size
20

Self-recognition coefficient
1

121

6.4.2 Results and Discussion

Table 6-2 presents the various task execution times, and it can be seen that the GMOPSO-

BFO approach has performed better than the other algorithms. As the number of tasks

increases on the virtual machine, the proposed scheme maintains the lowest makespan. The

proposed scheme has less makespan for the various range of tasks from 100 to 1000

compared to MOPSO, BFO, and MOPSO-BFO.

Table 6-2 Execution time of the task in different techniques

TASK MOPSO BFO PSO-BFO

GMOPSO-

BFO

100 41.47 38.66 37.65 37.18

200 155 151.81 155.05 145.25

300 345.4 335.53 335 327.38

400 594.85 597.26 594.85 567.8

500 926.43 916.66 913.98 878.55

600 1332.22 1333.36 1324.33 1284.5

700 1813.15 1885.31 1803.56 1750.51

800 2349.87 2390.75 2310.6 2316.66

900 2934.87 3034.93 2924.65 2916.73

1000 3743.78 3692.85 3655.96 3618.93

In this work, the energy consumption is calculated of the proposed GMOPSO-BFO

technique and compared with the method like MOPSO, BFO, and MOPSO-BFO. In this

experiment, the number of virtual machines is considered 5, and the number of tasks ranges

Social coefficient
2

Inertial weight
0.5

122

from 100 to 1000. The experiment aimed to determine the energy consumption of the

various techniques on virtual machines. The unit of the energy consumption is considered

as joules/minute.

Table 6-3 Energy consumption of the task in different techniques

TASK MOPSO BFO PSO-BFO
GMOPSO-

BFO

100 1.05 1.05 1.03 1.03

200 2.15 2.15 2.15 2.14

300 3.14 3.12 3.16 3.11

400 4.15 4.13 4.15 4.12

500 5.18 5.19 5.17 5.18

600 6.33 6.33 6.3 6.18

700 7.45 7.46 7.5 7.42

800 8.49 8.47 8.46 8.45

900 9.6 9.62 9.61 9.59

1000 10.72 10.75 10.71 10.66

Table 6-3 presents the various tasks on the virtual machine and GMOPSO-BFO approach,

which has consumed less energy in joules than the other algorithms. It has been observed

that when the number of tasks increases from 100 to 1000, the machine's energy

consumption also increases. The proposed schemes perform better as compared to the other

algorithm. The proposed schemed able to save energy consumption in the virtual machine.

It is clear from the experimental results that the proposed scheme GMOPSO-BFO performs

better in completion time and energy consumption.

123

6.5 Summary

The chapter proposed a hybrid scheduling technique based on Gaussian-based multi-

objective particle swarm optimization (GMOPSO) and Bacterial foraging

optimization(BFO). The GMOPSO provides us the global best solution, whereas using the

BFO, the local best solution is tried to be improvised. The work methodology and the

detailed design approach of the suggested scheduling system are presented in the chapter.

The evaluation results compared with existing works are also discussed in the chapter.

124

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion and Discussion

Code partitioning is the foremost important task in computation offloading. In this study,

a heuristic has been developed based on a multilevel hybrid approach for balanced graph

partitioning. Although perfect partitioning in the mobile cloud computing offloading

process is a challenging task, it can be achieved by optimizing the partitions at different

levels. Heavy edge matching is performed on the graph initially for coarsening, and then

spectral graph partitioning is applied for the initial partitioning of the graph. In the last

stage, the Kernighan Lin algorithm is used for the refinement of the partitioned graph. The

spectral partitioning along with the Kernighan Lin algorithm has performed optimally as

compared to the existing approach of random partitioning and the multilevel KL approach

in terms of edge cuts. The spectral approach, along with KL, improves the edge cut size,

which plays a key parameter in the communication between the client device and the cloud

side. The initial design of the application partitioning scheme for mobile applications aims

to develop an optimal code partitioning scheme and focused to optimize the edge cut. It

has been aimed to minimize the number of edge cuts that minimize the communication

between partitions. In this work, there are two partitions of the application where one

partition resides on the mobile site and the other on the cloud server. Scheme is not

applicable for multi-site offloading method. The energy consumption during the

offloading process of partitioned task is not considered in the scope of the work and will

be explored in the future work.

125

A decision engine is a significant component in the offloading framework, which helps

decide when to offload the task to the remote or cloud server. This work suggested a stack-

based classification method that can perform the offloading decision-making task of the

decision engine in the computational offloading process. The accuracy of the proposed

classifier is found better when compared with different machine learning models. The

proposed technique's ROC curve is presented, which has better TPR compared to other

models. The feature of mobility is also considered in work based on the GPS of the device.

The lower execution time and lower CPU utilization make the proposed scheme a viable

decision engine approach.

A mobility-based offloading scheme in MCC has been proposed in this work where the

emphasis is given to reduce the number of handoff of the mobile device and also the

handoff dropped count. The 4th order Markov model has been devised for predicting the

next location of the user equipment. The technique will enable the user equipment to

remain connected to the cellular network or Wi-Fi network, which at the end gets connected

to the cloud or edge server for completing the computational offloading task. The work

includes the various mobility environments like urban, semi-urban, and rural for

implementing the proposed work, and it has found that it has performed better than the

compared SINR based approach. In this work, the cloud server is considered to be

stationary and connected to the cellular service in the current scenario and in case of tie-

breaking situation between two signals having same signal strengths during network

selection, mobile device will select any network in random order.

The jobs reach the cloud server during offloading and get scheduled by some scheduling

technique. Task scheduling on the cloud server is one of the prime tasks on mobile cloud

computing. This work presents a hybrid scheduling approach based upon the Gaussian

multi-objective particle swarm optimization and bacteria foraging optimization. Both

makespan and energy consumption are essential factors in offloading method of MCC. The

proposed scheme performs better in makespan and energy consumption. The results are

compared with the MOPSO, BFO, and hybrid MOPSO-BFO. The scheme leverages the

global optima of GMOPSO and the local optima by BFO.

126

7.2 Future scope

• In the future, the approach will be implemented in the real software design in

the mobile application, and further investigation will be carried out considering

different parameters in the account. Partitioning of an application during

offloading in mobile cloud computing is a critical problem. Different heuristics

can be developed considering various parameters during the study. In this work,

the mobility of the device is not affecting the partitioning results. It can be an

open area where researchers can work and develop better models based on

mobility.

• Different parameters like data privacy, data confidentiality, and device security

will be explored for decision-making in the future. Unsupervised learning,

Reinforcement learning, and the evolutionary-based scheme will be studied and

used to make the decision-making techniques during offloading.

• 5G and 6G networks will be explored in coming future work, where the handoff

mechanism will be studied and implemented for providing relevant ground for

the computational offloading process in mobile cloud computing. Further, cloud

probing strategies will be devised for finding the best cloud services during

offloading.

• A scheduling scheme will be developed based on other optimization parameters

like a load on the servers, scalability, latency, and resource utilization. The multi-

site scheduling will also be explored to offload the task on cloud servers, and

task dependency will be managed in such schemes of scheduling. Resource

allocation schemes on cloud server will be explored since in current work, only

task scheduling scheme has been worked upon.

127

REFERENCES

[1] "Ericsson Mobility Report 2020," https://www.ericsson.com/en/mobility-

report/reports.

[2] A. Zaslavsky and Z. Tari, “Mobile computing: Overview and current status,” J. Res.

Pract. Inf. Technol., vol. 30, no. 2, pp. 42–52, 1998.

[3] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing

and emerging IT platforms: Vision, hype, and reality for delivering computing as the

5th utility,” Futur. Gener. Comput. Syst., vol. 25, no. 6, pp. 599–616, 2009, doi:

10.1016/j.future.2008.12.001.

[4] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud computing:

architecture, applications, and approaches,” Wirel. Commun. Mob. Comput., vol. 13,

no. 18, pp. 1587–1611, Dec. 2013, doi: 10.1002/wcm.1203.

[5] A. Rudenko, P. Reiher, G. J. Popek, and G. H. Kuenning, “Saving portable computer

battery power through remote process execution,” ACM SIGMOBILE Mob. Comput.

Commun. Rev., vol. 2, no. 1, pp. 19–26, Jan. 1998, doi: 10.1145/584007.584008.

[6] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo: A computation offloading

framework for smartphones,” in Lecture Notes of the Institute for Computer

Sciences, Social-Informatics and Telecommunications Engineering, LNICST, vol.

76 LNICST, 2012, pp. 59–79.

[7] H. Flores, P. Hui, S. Tarkoma, Y. Li, S. Srirama, and R. Buyya, “Mobile code

offloading: from concept to practice and beyond,” IEEE Commun. Mag., vol. 53,

no. 3, pp. 80–88, Mar. 2015, doi: 10.1109/MCOM.2015.7060486.

[8] Y. Ge, Y. Zhang, Q. Qiu, and Y.-H. Lu, “A game theoretic resource allocation for

overall energy minimization in mobile cloud computing system,” in Proceedings of

the 2012 ACM/IEEE international symposium on Low power electronics and design

- ISLPED ’12, 2012, p. 279, doi: 10.1145/2333660.2333724.

128

[9] P. Bahl, R. Y. Han, L. E. Li, and M. Satyanarayanan, “Advancing the state of mobile

cloud computing,” in Proceedings of the third ACM workshop on Mobile cloud

computing and services - MCS ’12, 2012, p. 21, doi: 10.1145/2307849.2307856.

[10] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing: A survey,”

Futur. Gener. Comput. Syst., vol. 29, no. 1, pp. 84–106, Jan. 2013, doi:

10.1016/j.future.2012.05.023.

[11] S. Singh and I. Chana, “A Survey on Resource Scheduling in Cloud Computing:

Issues and Challenges,” J. Grid Comput., vol. 14, no. 2, pp. 217–264, Jun. 2016,

doi: 10.1007/s10723-015-9359-2.

[12] E. E. Marinelli, “Hyrax : Cloud Computing on Mobile Devices,” vol. 0389, no.

September, 2009.

[13] J. Flinn, SoYoung Park, and M. Satyanarayanan, “Balancing performance, energy,

and quality in pervasive computing,” in Proceedings 22nd International Conference

on Distributed Computing Systems, pp. 217–226, doi:

10.1109/ICDCS.2002.1022259.

[14] R. K. Balan, M. Satyanarayanan, S. Y. Park, and T. Okoshi, “Tactics-based remote

execution for mobile computing,” in Proceedings of the 1st international conference

on Mobile systems, applications and services - MobiSys ’03, 2003, pp. 273–286, doi:

10.1145/1066116.1066125.

[15] E. Cuervo et al., “MAUI,” in Proceedings of the 8th international conference on

Mobile systems, applications, and services - MobiSys ’10, 2010, p. 49, doi:

10.1145/1814433.1814441.

[16] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud,” in

Proceedings of the sixth conference on Computer systems - EuroSys ’11, 2011, p.

301, doi: 10.1145/1966445.1966473.

[17] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The Case for VM-Based

Cloudlets in Mobile Computing,” IEEE Pervasive Comput., vol. 8, no. 4, pp. 14–23,

Oct. 2009, doi: 10.1109/MPRV.2009.82.

[18] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “ThinkAir: Dynamic

129

resource allocation and parallel execution in the cloud for mobile code offloading,”

Proc. - IEEE INFOCOM, pp. 945–953, 2012, doi:

10.1109/INFCOM.2012.6195845.

[19] D. Huang, X. Zhang, M. Kang, and J. Luo, “MobiCloud: Building Secure Cloud

Framework for Mobile Computing and Communication,” in 2010 Fifth IEEE

International Symposium on Service Oriented System Engineering, Jun. 2010, pp.

27–34, doi: 10.1109/SOSE.2010.20.

[20] M. Daro Kristensen, “Scavenger: Transparent development of efficient cyber

foraging applications,” in 2010 IEEE International Conference on Pervasive

Computing and Communications (PerCom), Mar. 2010, pp. 217–226, doi:

10.1109/PERCOM.2010.5466972.

[21] M. Satyanarayanan, “Pervasive computing: vision and challenges,” IEEE Pers.

Commun., vol. 8, no. 4, pp. 10–17, 2001, doi: 10.1109/98.943998.

[22] R. K. K. Ma, K. T. Lam, C. L. Wang, and C. Zhang, “A stack-on-demand execution

model for elastic computing,” Proc. Int. Conf. Parallel Process., pp. 208–217, 2010,

doi: 10.1109/ICPP.2010.79.

[23] E. Ahmed, A. Gani, M. Khurram Khan, R. Buyya, and S. U. Khan, “Seamless

application execution in mobile cloud computing: Motivation, taxonomy, and open

challenges,” J. Netw. Comput. Appl., vol. 52, pp. 154–172, 2015, doi:

10.1016/j.jnca.2015.03.001.

[24] D. Kovachev and R. Klamma, “Framework for Computation Offloading in Mobile

Cloud Computing,” Int. J. Interact. Multimed. Artif. Intell., vol. 1, no. 7, p. 6, 2012,

doi: 10.9781/ijimai.2012.171.

[25] S. H. Hung, J. P. Shieh, and Y. W. Chen, “A profile-driven dynamic application

offloading scheme for Android systems,” 1st IEEE Glob. Conf. Consum. Electron.

2012, GCCE 2012, pp. 540–541, 2012, doi: 10.1109/GCCE.2012.6379903.

[26] S. Yang, “Manageable granularity in mobile application code offloading for energy

savings,” Proc. - 2012 IEEE Int. Conf. Green Comput. Commun. GreenCom 2012,

Conf. Internet Things, iThings 2012 Conf. Cyber, Phys. Soc. Comput. CPSCom

130

2012, pp. 611–614, 2012, doi: 10.1109/GreenCom.2012.93.

[27] P. Balakrishnan and C. K. Tham, “Energy-efficient mapping and scheduling of task

interaction graphs for code offloading in mobile cloud computing,” Proc. - 2013

IEEE/ACM 6th Int. Conf. Util. Cloud Comput. UCC 2013, pp. 34–41, 2013, doi:

10.1109/UCC.2013.23.

[28] A. Mtibaa, K. A. Harras, and A. Fahim, “Towards computational offloading in

mobile device clouds,” Proc. Int. Conf. Cloud Comput. Technol. Sci. CloudCom,

vol. 1, pp. 331–338, 2013, doi: 10.1109/CloudCom.2013.50.

[29] H. Qian and D. Andresen, “Jade: Reducing energy consumption of android app,”

Int. J. Networked Distrib. Comput., vol. 3, no. 3, pp. 150–158, 2015, doi:

10.2991/ijndc.2015.3.3.2.

[30] M. P. Anastasopoulos, A. Tzanakaki, and D. Simeonidou, “Energy-aware offloading

in mobile cloud systems with delay considerations,” 2014 IEEE Globecom Work.

GC Wkshps 2014, pp. 42–47, 2014, doi: 10.1109/GLOCOMW.2014.7063383.

[31] M. B. Terefe, H. Lee, N. Heo, G. C. Fox, and S. Oh, “Energy-efficient multisite

offloading policy using Markov decision process for mobile cloud computing,”

Pervasive Mob. Comput., vol. 27, pp. 75–89, 2015, doi:

10.1016/j.pmcj.2015.10.008.

[32] X. Zhang, A. Kunjithapatham, S. Jeong, and S. Gibbs, “Towards an elastic

application model for augmenting the computing capabilities of mobile devices with

cloud computing,” Mob. Networks Appl., vol. 16, no. 3, pp. 270–284, 2011, doi:

10.1007/s11036-011-0305-7.

[33] Y. Zhang, D. Niyato, and P. Wang, “Offloading in Mobile Cloudlet Systems with

Intermittent Connectivity,” IEEE Trans. Mob. Comput., vol. 14, no. 12, pp. 2516–

2529, 2015, doi: 10.1109/TMC.2015.2405539.

[34] M. Chen, Y. Hao, M. Qiu, J. Song, D. Wu, and I. Humar, “Mobility-aware caching

and computation offloading in 5G ultra-dense cellular networks,” Sensors

(Switzerland), vol. 16, no. 7, pp. 1–13, 2016, doi: 10.3390/s16070974.

[35] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa, “To offload or not to offload? the

131

bandwidth and energy costs of mobile cloud computing,” Proc. - IEEE INFOCOM,

pp. 1285–1293, 2013, doi: 10.1109/INFCOM.2013.6566921.

[36] M. S. Gordon, D. Anoushe Jamshidi, S. Mahlke, Z. Morley Mao, and X. Chen,

“CoMET: Code offload by migrating execution transparently,” Proc. 10th USENIX

Symp. Oper. Syst. Des. Implementation, OSDI 2012, pp. 93–106, 2012.

[37] H. Qian and D. Andresen, “Automate scientific workflow execution between local

cluster and cloud,” Int. J. Networked Distrib. Comput., vol. 4, no. 1, pp. 45–54, 2016,

doi: 10.2991/ijndc.2016.4.1.5.

[38] D. Lima, H. Miranda, and F. Taïani, “Towards a new model for cyber foraging,”

Proc. 13th Work. Adapt. Reflective Middleware, ARM 2014, co-located with

ACM/IFIP/USENIX Int. Middlew. Conf., 2014, doi: 10.1145/2677017.2677023.

[39] E. Cuervoy et al., “MAUI: Making smartphones last longer with code offload,”

MobiSys’10 - Proc. 8th Int. Conf. Mob. Syst. Appl. Serv., pp. 49–62, 2010, doi:

10.1145/1814433.1814441.

[40] H. Wu, W. Knottenbelt, K. Wolter, and Y. Sun, “An optimal offloading partitioning

algorithm in mobile cloud computing,” Lect. Notes Comput. Sci. (including Subser.

Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9826 LNCS, pp. 311–328,

2016, doi: 10.1007/978-3-319-43425-4_21.

[41] D. Kovachev and R. Klamma, “Framework for Computation Offloading in Mobile

Cloud Computing,” Int. J. Interact. Multimed. Artif. Intell., vol. 1, no. 7, p. 6, 2012,

doi: 10.9781/ijimai.2012.171.

[42] M.-R. Ra, B. Priyantha, A. Kansal, and J. Liu, “Improving energy efficiency of

personal sensing applications with heterogeneous multi-processors,” in Proceedings

of the 2012 ACM Conference on Ubiquitous Computing - UbiComp ’12, 2012, p. 1,

doi: 10.1145/2370216.2370218.

[43] M. Goraczko, J. Liu, D. Lymberopoulos, S. Matic, B. Priyantha, and F. Zhao,

“Energy-optimal software partitioning in heterogeneous multiprocessor embedded

systems,” in Proceedings of the 45th annual conference on Design automation -

DAC ’08, 2008, p. 191, doi: 10.1145/1391469.1391518.

132

[44] K. Sinha and M. Kulkarni, “Techniques for Fine-Grained, Multi-site Computation

Offloading,” in 2011 11th IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing, May 2011, pp. 184–194, doi: 10.1109/CCGrid.2011.69.

[45] M. Smit, M. Shtern, B. Simmons, and M. Litoiu, “Partitioning Applications for

Hybrid and Federated Clouds,” 2012, [Online]. Available:

http://www.mikesmit.com/wp-content/papercite-

data/pdf/cascon2012.pdf%5Cnpapers2://publication/uuid/8BB68396-C5E5-475D-

833B-CC1C08B39FD8.

[46] C. Wang and Z. Li, “Parametric analysis for adaptive computation offloading,” in

Proceedings of the ACM SIGPLAN 2004 conference on Programming language

design and implementation - PLDI ’04, 2004, p. 119, doi: 10.1145/996841.996857.

[47] J. Niu, W. Song, and M. Atiquzzaman, “Bandwidth-adaptive partitioning for

distributed execution optimization of mobile applications,” J. Netw. Comput. Appl.,

vol. 37, pp. 334–347, Jan. 2014, doi: 10.1016/j.jnca.2013.03.007.

[48] T. Verbelen, T. Stevens, F. De Turck, and B. Dhoedt, “Graph partitioning algorithms

for optimizing software deployment in mobile cloud computing,” Futur. Gener.

Comput. Syst., vol. 29, no. 2, pp. 451–459, 2013, doi: 10.1016/j.future.2012.07.003.

[49] J. Liu, E. Ahmed, M. Shiraz, A. Gani, R. Buyya, and A. Qureshi, “Application

partitioning algorithms in mobile cloud computing: Taxonomy, review and future

directions,” J. Netw. Comput. Appl., vol. 48, pp. 99–117, Feb. 2015, doi:

10.1016/j.jnca.2014.09.009.

[50] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partitioning

irregular graphs,” SIAM J. Sci. Comput., vol. 20, no. 1, pp. 359–392, 1998, doi:

10.1137/S1064827595287997.

[51] M. A. Hassan, K. Bhattarai, Q. Wei, and S. Chen, “POMAC: Properly offloading

mobile applications to clouds,” 6th USENIX Work. Hot Top. Cloud Comput.

HotCloud 2014, pp. 1–6, 2014.

[52] B. Gao, L. He, L. Liu, K. Li, and S. A. Jarvis, “From mobiles to clouds: Developing

energy-aware offloading strategies for workflows,” Proc. - IEEE/ACM Int. Work.

133

Grid Comput., pp. 139–146, 2012, doi: 10.1109/Grid.2012.20.

[53] B. Zhou, A. V. Dastjerdi, R. N. Calheiros, S. N. Srirama, and R. Buyya, “MCloud:

A Context-Aware Offloading Framework for Heterogeneous Mobile Cloud,” IEEE

Trans. Serv. Comput., vol. 10, no. 5, pp. 797–810, 2017, doi:

10.1109/TSC.2015.2511002.

[54] M. Amoretti, A. Grazioli, and F. Zanichelli, “A modeling and simulation framework

for mobile cloud computing,” Simul. Model. Pract. Theory, vol. 58, pp. 140–156,

2015, doi: 10.1016/j.simpat.2015.05.004.

[55] M. E. Khoda, M. A. Razzaque, A. Almogren, M. M. Hassan, A. Alamri, and A.

Alelaiwi, “Efficient Computation Offloading Decision in Mobile Cloud Computing

over 5G Network,” Mob. Networks Appl., pp. 1–16, 2016, doi: 10.1007/s11036-016-

0688-6.

[56] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo: A computation offloading

framework for smartphones,” Lect. Notes Inst. Comput. Sci. Soc. Telecommun. Eng.

LNICST, vol. 76 LNICST, pp. 59–79, 2012, doi: 10.1007/978-3-642-29336-8_4.

[57] F. Xia, F. Ding, J. Li, X. Kong, L. T. Yang, and J. Ma, “Phone2Cloud: Exploiting

computation offloading for energy saving on smartphones in mobile cloud

computing,” Inf. Syst. Front., vol. 16, no. 1, pp. 95–111, 2014, doi: 10.1007/s10796-

013-9458-1.

[58] H. Eom, P. St. Juste, R. Figueiredo, O. Tickoo, R. Illikkal, and R. Iyer, “Machine

Learning-Based Runtime Scheduler for Mobile Offloading Framework,” in 2013

IEEE/ACM 6th International Conference on Utility and Cloud Computing, Dec.

2013, pp. 17–25, doi: 10.1109/UCC.2013.21.

[59] T. Truong-Huu, C. K. Tham, and D. Niyato, “To offload or to wait: An opportunistic

offloading algorithm for parallel tasks in a mobile cloud,” Proc. Int. Conf. Cloud

Comput. Technol. Sci. CloudCom, vol. 2015-Febru, no. February, pp. 182–189,

2015, doi: 10.1109/CloudCom.2014.33.

[60] E. Hyytia, T. Spyropoulos, and J. Ott, “Offload (only) the right jobs: Robust

offloading using the Markov decision processes,” Proc. WoWMoM 2015 A World

134

Wirel. Mob. Multimed. Networks, 2015, doi: 10.1109/WoWMoM.2015.7158127.

[61] K. Lee and I. Shin, “User mobility model based computation offloading decision for

mobile cloud,” J. Comput. Sci. Eng., vol. 9, no. 3, pp. 155–162, 2015, doi:

10.5626/JCSE.2015.9.3.155.

[62] J. Wang, J. Peng, Y. Wei, D. Liu, and J. Fu, “Adaptive application offloading

decision and transmission scheduling for mobile cloud computing,” 2016 IEEE Int.

Conf. Commun. ICC 2016, 2016, doi: 10.1109/ICC.2016.7510721.

[63] J. L. D. Neto, D. F. Macedo, and J. M. S. Nogueira, “Location aware decision engine

to offload mobile computation to the cloud,” Proc. NOMS 2016 - 2016 IEEE/IFIP

Netw. Oper. Manag. Symp., no. Noms, pp. 543–549, 2016, doi:

10.1109/NOMS.2016.7502856.

[64] Z. Liu, X. Zeng, W. Huang, J. Lin, X. Chen, and W. Guo, “Framework for context-

aware computation offloading in mobile cloud computing,” Proc. - 15th Int. Symp.

Parallel Distrib. Comput. ISPDC 2016, pp. 172–177, 2017, doi:

10.1109/ISPDC.2016.30.

[65] P. A. L. Rego, E. Cheong, E. F. Coutinho, F. A. M. Trinta, M. Z. Hasany, and J. N.

D. Souza, “Decision Tree-Based Approaches for Handling Offloading Decisions and

Performing Adaptive Monitoring in MCC Systems,” Proc. - 5th IEEE Int. Conf.

Mob. Cloud Comput. Serv. Eng. MobileCloud 2017, pp. 74–81, 2017, doi:

10.1109/MobileCloud.2017.19.

[66] H. Ko, J. Lee, and S. Pack, “Spatial and Temporal Computation Offloading Decision

Algorithm in Edge Cloud-Enabled Heterogeneous Networks,” IEEE Access, vol. 6,

pp. 18920–18932, 2018, doi: 10.1109/ACCESS.2018.2818111.

[67] A. Ravi and S. K. Peddoju, “Mobile computation bursting-An application

partitioning and offloading decision engine,” ACM Int. Conf. Proceeding Ser., pp.

1–10, 2018, doi: 10.1145/3154273.3154299.

[68] W. Zhou, W. Fang, Y. Li, B. Yuan, Y. Li, and T. Wang, “Markov Approximation for

Task Offloading and Computation Scaling in Mobile Edge Computing,” Mob. Inf.

Syst., vol. 2019, pp. 1–12, 2019, doi: 10.1155/2019/8172698.

135

[69] Q. Qi et al., “Knowledge-Driven Service Offloading Decision for Vehicular Edge

Computing: A Deep Reinforcement Learning Approach,” IEEE Trans. Veh.

Technol., vol. 68, no. 5, pp. 4192–4203, 2019, doi: 10.1109/TVT.2019.2894437.

[70] S. Misra, B. E. Wolfinger, M. P. Achuthananda, T. Chakraborty, S. N. Das, and S.

Das, “Auction-Based Optimal Task Offloading in Mobile Cloud Computing,” IEEE

Syst. J., vol. 13, no. 3, pp. 2978–2985, Sep. 2019, doi:

10.1109/JSYST.2019.2898903.

[71] S. T. Manukumar and V. Muthuswamy, “A Novel Multi-Objective Efficient

Offloading Decision Framework in Cloud Computing for Mobile Computing

Applications,” Wirel. Pers. Commun., vol. 107, no. 4, pp. 1625–1642, Aug. 2019,

doi: 10.1007/s11277-019-06348-4.

[72] X. Jin, Z. Wang, and W. Hua, “Cooperative Runtime Offloading Decision Algorithm

for Mobile Cloud Computing,” Mob. Inf. Syst., vol. 2019, pp. 1–17, Sep. 2019, doi:

10.1155/2019/8049804.

[73] A. Elhosuieny, M. Salem, A. Thabet, and A. Ibrahim, “ADOMC-NPR Automatic

Decision-Making Offloading Framework for Mobile Computation Using Nonlinear

Polynomial Regression Model,” Int. J. Web Serv. Res., vol. 16, no. 4, pp. 53–73, Oct.

2019, doi: 10.4018/IJWSR.2019100104.

[74] A. Shahidinejad and M. Ghobaei‐Arani, “Joint computation offloading and resource

provisioning for e <scp>dge‐cloud</scp> computing environment: A machine

learning‐based approach,” Softw. Pract. Exp., vol. 50, no. 12, pp. 2212–2230, Dec.

2020, doi: 10.1002/spe.2888.

[75] T. Mshvidobadze, “Evolution mobile wireless communication and LTE networks,”

in 2012 6th International Conference on Application of Information and

Communication Technologies (AICT), Oct. 2012, pp. 1–7, doi:

10.1109/ICAICT.2012.6398495.

[76] N. Nasser, A. Hasswa, and H. Hassanein, “Handoffs in fourth generation

heterogeneous networks,” IEEE Commun. Mag., vol. 44, no. 10, pp. 96–103, Oct.

2006, doi: 10.1109/MCOM.2006.1710420.

136

[77] K. Mitra, S. Saguna, C. Ahlund, and D. G. Lulea, “M2C2: A mobility management

system for mobile cloud computing,” in 2015 IEEE Wireless Communications and

Networking Conference (WCNC), Mar. 2015, pp. 1608–1613, doi:

10.1109/WCNC.2015.7127708.

[78] Q. Qi, J. Liao, and Y. Cao, “Integrated multiple services handoff in mobile cloud

computing,” in Global Information Infrastructure Symposium - GIIS 2013, Oct.

2013, pp. 1–3, doi: 10.1109/GIIS.2013.6684380.

[79] A. S. Alnezari and N.-E. Rikli, “Achieving Mobile Cloud Computing through

Heterogeneous Wireless Networks,” Int. J. Commun. Netw. Syst. Sci., vol. 10, no.

06, pp. 107–128, 2017, doi: 10.4236/ijcns.2017.106006.

[80] Q. Bani Hani and J. P. Dichter, “Energy-efficient service-oriented architecture for

mobile cloud handover,” J. Cloud Comput., vol. 6, no. 1, p. 9, Dec. 2017, doi:

10.1186/s13677-017-0079-y.

[81] T. Ali and M. Saquib, “Analysis of an Instantaneous Packet Loss Based Vertical

Handover Algorithm for Heterogeneous Wireless Networks,” IEEE Trans. Mob.

Comput., vol. 13, no. 5, pp. 992–1006, May 2014, doi: 10.1109/TMC.2013.42.

[82] A. Sgora, C. A. Gizelis, and D. D. Vergados, “Network selection in a WiMAX–WiFi

environment,” Pervasive Mob. Comput., vol. 7, no. 5, pp. 584–594, Oct. 2011, doi:

10.1016/j.pmcj.2010.10.001.

[83] Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya, “Heterogeneity in Mobile Cloud

Computing: Taxonomy and Open Challenges,” IEEE Commun. Surv. Tutorials, vol.

16, no. 1, pp. 369–392, 2014, doi: 10.1109/SURV.2013.050113.00090.

[84] D. Bhattacharjee, A. Rao, C. Shah, M. Shah, and A. Helmy, “Empirical modeling of

campus-wide pedestrian mobility: observations on the USC campus,” in IEEE 60th

Vehicular Technology Conference, 2004. VTC2004-Fall. 2004, vol. 4, pp. 2887–

2891, doi: 10.1109/VETECF.2004.1400588.

[85] Tong Liu, P. Bahl, and I. Chlamtac, “Mobility modeling, location tracking, and

trajectory prediction in wireless ATM networks,” IEEE J. Sel. Areas Commun., vol.

16, no. 6, pp. 922–936, 1998, doi: 10.1109/49.709453.

137

[86] C. Tang, M. Hao, X. Wei, and W. Chen, “Energy-aware task scheduling in mobile

cloud computing,” Distrib. Parallel Databases, vol. 36, no. 3, pp. 529–553, Sep.

2018, doi: 10.1007/s10619-018-7231-7.

[87] Hsu Mon Kyi and Thinn Thu Naing, “Stochastic Markov Model Approach for

Efficient Virtual Machines Scheduling on Private Cloud,” Int. J. Cloud Comput.

Serv. Archit., vol. 1, no. 3, pp. 1–13, Nov. 2011, doi: 10.5121/ijccsa.2011.1301.

[88] K. Jagannathan and E. Modiano, “The Impact of Queue Length Information on

Buffer Overflow in Parallel Queues,” IEEE Trans. Inf. Theory, vol. 59, no. 10, pp.

6393–6404, Oct. 2013, doi: 10.1109/TIT.2013.2268926.

[89] D. Wang, J. Chen, and W. Zhao, “A Task Scheduling Algorithm for Hadoop

Platform,” J. Comput., vol. 8, no. 4, Apr. 2013, doi: 10.4304/jcp.8.4.929-936.

[90] H. Khojasteh, J. Misic, and V. Misic, “Prioritization of Overflow Tasks to Improve

Performance of Mobile Cloud,” IEEE Trans. Cloud Comput., vol. 7161, no. c, pp.

1–1, 2016, doi: 10.1109/TCC.2016.2535240.

[91] X. Nan, Y. He, and L. Guan, “Queueing model based resource optimization for

multimedia cloud,” J. Vis. Commun. Image Represent., vol. 25, no. 5, pp. 928–942,

2014, doi: 10.1016/j.jvcir.2014.02.008.

[92] Yuan Zhang, Jinyao Yan, and Xiaoming Fu, “Reservation-based resource scheduling

and code partition in mobile cloud computing,” in 2016 IEEE Conference on

Computer Communications Workshops (INFOCOM WKSHPS), Apr. 2016, pp. 962–

967, doi: 10.1109/INFCOMW.2016.7562219.

[93] X. Wei, J. Fan, Z. Lu, and K. Ding, “Application scheduling in mobile cloud

computing with load balancing,” J. Appl. Math., vol. 2013, 2013, doi:

10.1155/2013/409539.

[94] M. Nir, A. Matrawy, and M. St-Hilaire, “An energy optimizing scheduler for mobile

cloud computing environments,” Proc. - IEEE INFOCOM, pp. 404–409, 2014, doi:

10.1109/INFCOMW.2014.6849266.

[95] X. Lin, Y. Wang, Q. Xie, and M. Pedram, “Task Scheduling with Dynamic Voltage

and Frequency Scaling for Energy Minimization in the Mobile Cloud Computing

138

Environment,” IEEE Trans. Serv. Comput., vol. 8, no. 2, pp. 175–186, 2015, doi:

10.1109/TSC.2014.2381227.

[96] W. Zhang, Y. Wen, and D. O. Wu, “Collaborative task execution in mobile cloud

computing under a stochastic wireless channel,” IEEE Trans. Wirel. Commun., vol.

14, no. 1, pp. 81–93, 2015, doi: 10.1109/TWC.2014.2331051.

[97] S. Guo, B. Xiao, Y. Yang, and Y. Yang, “Energy-efficient dynamic offloading and

resource scheduling in mobile cloud computing,” Proc. - IEEE INFOCOM, vol.

2016-July, 2016, doi: 10.1109/INFOCOM.2016.7524497.

[98] Lin Wang, L. Jiao, D. Kliazovich, and P. Bouvry, “Reconciling task assignment and

scheduling in mobile edge clouds,” in 2016 IEEE 24th International Conference on

Network Protocols (ICNP), Nov. 2016, pp. 1–6, doi: 10.1109/ICNP.2016.7785317.

[99] T. Wang, X. Wei, C. Tang, and J. Fan, “Efficient multi-tasks scheduling algorithm

in mobile cloud computing with time constraints,” Peer-to-Peer Netw. Appl., vol.

11, no. 4, pp. 793–807, 2018, doi: 10.1007/s12083-017-0561-9.

[100] H. Shah-Mansouri, V. W. S. Wong, and R. Schober, “Joint Optimal Pricing and Task

Scheduling in Mobile Cloud Computing Systems,” IEEE Trans. Wirel. Commun.,

vol. 16, no. 8, pp. 5218–5232, 2017, doi: 10.1109/TWC.2017.2707084.

[101] T. Zhao, S. Zhou, X. Guo, and Z. Niu, “Tasks scheduling and resource allocation in

heterogeneous cloud for delay-bounded mobile edge computing,” in 2017 IEEE

International Conference on Communications (ICC), May 2017, pp. 1–7, doi:

10.1109/ICC.2017.7996858.

[102] J. Zhang et al., “Hybrid computation offloading for smart home automation in

mobile cloud computing,” Pers. Ubiquitous Comput., vol. 22, no. 1, pp. 121–134,

2018, doi: 10.1007/s00779-017-1095-0.

[103] L. Lin, P. Li, J. Xiong, and M. Lin, “Distributed and Application-Aware Task

Scheduling in Edge-Clouds,” in 2018 14th International Conference on Mobile Ad-

Hoc and Sensor Networks (MSN), Dec. 2018, pp. 165–170, doi:

10.1109/MSN.2018.000-1.

[104] C. Tang et al., “A Mobile Cloud Based Scheduling Strategy for Industrial Internet

139

of Things,” IEEE Access, vol. 6, pp. 7262–7275, 2018, doi:

10.1109/ACCESS.2018.2799548.

[105] Q. Jiang, V. C. M. Leung, H. Tang, and H. S. Xi, “Adaptive Scheduling of Stochastic

Task Sequence for Energy-Efficient Mobile Cloud Computing,” IEEE Syst. J., vol.

13, no. 3, pp. 3022–3025, 2019, doi: 10.1109/JSYST.2019.2922436.

[106] T. Oo and Y.-B. Ko, “Application-aware Task Scheduling in Heterogeneous Edge

Cloud,” in 2019 International Conference on Information and Communication

Technology Convergence (ICTC), Oct. 2019, pp. 1316–1320, doi:

10.1109/ICTC46691.2019.8939927.

[107] W. Tian, R. Gu, R. Feng, X. Liu, and S. Fu, “A QoS-Aware workflow scheduling

method for cloudlet-based mobile cloud computing,” Proc. - 2019 IEEE Int. Congr.

Cybermatics 12th IEEE Int. Conf. Internet Things, 15th IEEE Int. Conf. Green

Comput. Commun. 12th IEEE Int. Conf. Cyber, Phys. So, pp. 164–169, 2019, doi:

10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00048.

[108] L. Chen, K. Guo, G. Fan, C. Wang, and S. Song, “Resource Constrained Profit

Optimization Method for Task Scheduling in Edge Cloud,” IEEE Access, vol. 8, pp.

118638–118652, 2020, doi: 10.1109/ACCESS.2020.3000985.

[109] C. Arun and K. Prabu, “A multi-objective EBCO-TS algorithm for efficient task

scheduling in mobile cloud computing,” Int. J. Netw. Virtual Organ., vol. 22, no. 4,

pp. 366–386, 2020, doi: 10.1504/IJNVO.2020.107570.

[110] M. Garg and R. Nath, “Autoregressive dragonfly optimization for multiobjective

task scheduling (ado-mts) in mobile cloud computing,” J. Eng. Res., vol. 8, no. 3,

pp. 71–90, 2020, doi: 10.36909/JER.V8I3.7643.

[111] B. Hendrickson and T. G. Kolda, “Graph partitioning models for parallel

computing,” Parallel Comput., vol. 26, no. 12, pp. 1519–1534, 2000, doi:

10.1016/S0167-8191(00)00048-X.

[112] M. Kaya, A. Koçyiʇit, and P. E. Eren, “An adaptive mobile cloud computing

framework using a call graph based model,” J. Netw. Comput. Appl., vol. 65, pp. 12–

35, 2016, doi: 10.1016/j.jnca.2016.02.013.

140

[113] G. Karypis and V. Kumar, “Parallel multilevel graph partitioning,” in Proceedings

of International Conference on Parallel Processing, pp. 314–319, doi:

10.1109/IPPS.1996.508075.

[114] B. Hendrickson and R. Leland, “An Improved Spectral Graph Partitioning

Algorithm for Mapping Parallel Computations,” SIAM J. Sci. Comput., vol. 16, no.

2, pp. 452–469, Mar. 1995, doi: 10.1137/0916028.

[115] T. Chaco, “Bruce Hendrickson and Robert Leland,” Sandia Natl. Lab., no. July, pp.

1–44, 1995.

[116] “Traceview. Profiling with traceview and dmtracedump,”

http://developer.android.com/tools/debugging/debugging-tracing.html.

http://developer.android.com/tools/debugging/debugging-tracing.html.

[117] A. Carroll and G. Heiser, “An analysis of power consumption in a smartphone,”

Proc. 2010 USENIX Annu. Tech. Conf. USENIX ATC 2010, pp. 271–284, 2019.

[118] K.-T. (Tim) Cheng and Y.-C. Wang, “Using Mobile GPU for General-Purpose

Computing - A Case Study of Face Recognition on Smartphones,” 2011 Int. Symp.

Vlsi Des. Autom. Test, pp. 54–57, 2011.

[119] Seungjun Yang et al., “Fast dynamic execution offloading for efficient mobile cloud

computing,” in 2013 IEEE International Conference on Pervasive Computing and

Communications (PerCom), Mar. 2013, pp. 20–28, doi:

10.1109/PerCom.2013.6526710.

[120] K. Akherfi, M. Gerndt, and H. Harroud, “Mobile cloud computing for computation

offloading: Issues and challenges,” Appl. Comput. Informatics, vol. 14, no. 1, pp. 1–

16, Jan. 2018, doi: 10.1016/j.aci.2016.11.002.

[121] P. A. L. Rego, P. B. Costa, E. F. Coutinho, L. S. Rocha, F. A. M. Trinta, and J. N. de

Souza, “Performing computation offloading on multiple platforms,” Comput.

Commun., vol. 105, pp. 1–13, Jun. 2017, doi: 10.1016/j.comcom.2016.07.017.

[122] A. Ferrari, S. Giordano, and D. Puccinelli, “Reducing your local footprint with

anyrun computing,” Comput. Commun., vol. 81, pp. 1–11, May 2016, doi:

10.1016/j.comcom.2016.01.006.

141

[123] H. R. Flores Macario and S. Srirama, “Adaptive code offloading for mobile cloud

applications,” in Proceeding of the fourth ACM workshop on Mobile cloud

computing and services - MCS ’13, 2013, p. 9, doi: 10.1145/2497306.2482984.

[124] A. A. Majeed, A. U. R. Khan, R. UlAmin, J. Muhammad, and S. Ayub, “Code

offloading using support vector machine,” in 2016 Sixth International Conference

on Innovative Computing Technology (INTECH), Aug. 2016, pp. 98–103, doi:

10.1109/INTECH.2016.7845057.

[125] and L. Y. M. Gordon, L. Zhang, B. Tiwana, R. Dick, Z. M. Mao, ““PowerTutor: A

power monitor for android-based mobile platforms,” 2013.

http://ziyang.eecs.umich.edu/projects/powertutor/, 2.

[126] L. Zhang et al., “Accurate online power estimation and automatic battery behavior

based power model generation for smartphones,” in Proceedings of the eighth

IEEE/ACM/IFIP international conference on Hardware/software codesign and

system synthesis - CODES/ISSS ’10, 2010, p. 105, doi: 10.1145/1878961.1878982.

[127] S. Bermejo and J. Cabestany, “Adaptive soft k-nearest-neighbour classifiers,”

Pattern Recognit., vol. 33, no. 12, pp. 1999–2005, Dec. 2000, doi: 10.1016/S0031-

3203(99)00186-7.

[128] W. B. Claster, “Naïve Bayes Classifier,” in Mathematics and Programming for

Machine Learning with R, CRC Press, 2020, pp. 141–160.

[129] S. Menard, Applied Logistic Regression Analysis. 2455 Teller Road, Thousand Oaks

California 91320 United States of America: SAGE Publications, Inc., 2002.

[130] O. Sagi and L. Rokach, “Ensemble learning: A survey,” Wiley Interdiscip. Rev. Data

Min. Knowl. Discov., vol. 8, no. 4, Jul. 2018, doi: 10.1002/widm.1249.

[131] M. Tanriverdi and A. A. M, “Context-Aware Decision Making System for Mobile

Cloud Offloading,” Int. J. Comput. Networks Commun., vol. 7, no. 6, pp. 69–85,

Nov. 2015, doi: 10.5121/ijcnc.2015.7605.

[132] N. Golmie, “Seamless mobility: are we there yet?,” IEEE Wirel. Commun., vol. 16,

no. 4, pp. 12–13, Aug. 2009, doi: 10.1109/MWC.2009.5281249.

[133] I. Al-Surmi, M. Othman, and B. Mohd Ali, “Mobility management for IP-based next

142

generation mobile networks: Review, challenge and perspective,” J. Netw. Comput.

Appl., vol. 35, no. 1, pp. 295–315, Jan. 2012, doi: 10.1016/j.jnca.2011.09.001.

[134] D. Le, X. Fu, and D. Hogrefe, “A review of mobility support paradigms for the

internet,” IEEE Commun. Surv. Tutorials, vol. 8, no. 1, pp. 38–51, 2006, doi:

10.1109/COMST.2006.323441.

[135] Y. Singh, “Comparison of Okumura, Hata and COST-231 Models on the Basis of

Path Loss and Signal Strength,” Int. J. Comput. Appl., vol. 59, no. 11, pp. 37–41,

Dec. 2012, doi: 10.5120/9594-4216.

[136] F. Bai and A. Helmy, “A Survey of Mobility Models in Wireless Adhoc Networks,”

Wirel. Ad Hoc Sens. Networks, pp. 1–30, 2004.

[137] M. Deshpande and G. Karypis, “Selective Markov models for predicting Web page

accesses,” ACM Trans. Internet Technol., vol. 4, no. 2, pp. 163–184, May 2004, doi:

10.1145/990301.990304.

[138] K. Ayyappan, K. Narasimman, and P. Dananjayan, “SINR Based Vertical Handoff

Scheme for QoS in Heterogeneous Wireless Networks,” in 2009 International

Conference on Future Computer and Communication, Apr. 2009, pp. 117–121, doi:

10.1109/ICFCC.2009.121.

[139] B. O. H. Akinwole and J. J. Biebuma, “Comparative Analysis of Empirical Path Loss

Model for Cellular Transmission in Rivers State,” Am. J. Eng. Res., vol. 02, no. 08,

pp. 24–31, 2013.

[140] H. Nashaat, N. Ashry, and R. Rizk, “Smart elastic scheduling algorithm for virtual

machine migration in cloud computing,” J. Supercomput., vol. 75, no. 7, pp. 3842–

3865, Jul. 2019, doi: 10.1007/s11227-019-02748-2.

[141] K.M. Passino, “Biomimicry of bacterial foraging for distributed optimization and

control,” IEEE Control Syst., vol. 22, no. 3, pp. 52–67, Jun. 2002, doi:

10.1109/MCS.2002.1004010.

[142] C. A. Coello Coello and M. S. Lechuga, “MOPSO: a proposal for multiple objective

particle swarm optimization,” in Proceedings of the 2002 Congress on Evolutionary

Computation. CEC’02 (Cat. No.02TH8600), vol. 2, pp. 1051–1056, doi:

143

10.1109/CEC.2002.1004388.

[143] R. A. Krohling, “Gaussian swarm: a novel particle swarm optimization algorithm,”

in IEEE Conference on Cybernetics and Intelligent Systems, 2004., vol. 1, pp. 372–

376, doi: 10.1109/ICCIS.2004.1460443.

[144] E. S. Alkayal, N. R. Jennings, and M. F. Abulkhair, “Efficient Task Scheduling

Multi-Objective Particle Swarm Optimization in Cloud Computing,” in 2016 IEEE

41st Conference on Local Computer Networks Workshops (LCN Workshops), Nov.

2016, pp. 17–24, doi: 10.1109/LCN.2016.024.

[145] Rajni and I. Chana, “Bacterial foraging based hyper-heuristic for resource

scheduling in grid computing,” Futur. Gener. Comput. Syst., vol. 29, no. 3, pp. 751–

762, Mar. 2013, doi: 10.1016/j.future.2012.09.005.

144

LIST OF PUBLICATION

• Robin P. Mathur and Manmohan Sharma, “Graph-Based Application Partitioning

Approach for Computational Offloading in Mobile Cloud Computing”, Recent Advances

in Computer Science and Communications (2021) 14: 92.

https://doi.org/10.2174/2213275912666190716114033 (SCOPUS)

• Robin P. Mathur and Manmohan Sharma, "A survey on computational offloading

in mobile cloud computing," 2019 Fifth International Conference on Image Information

Processing Solan (ICIIP), 2019, pp. 515-520, doi: 10.1109/ICIIP47207.2019.8985893.

IEEE- (SCOPUS)

• Mathur R.P., Sharma M. (2021) Mobility Management Scheme During Offloading

in Mobile Cloud Computing. In: Choudhury S., Gowri R., Sena Paul B., Do DT. (eds)

Intelligent Communication, Control and Devices. Advances in Intelligent Systems and

Computing, vol 1341. Springer, Singapore. https://doi.org/10.1007/978-981-16-1510-8_13

• R. P. Mathur and M. Sharma, "A Machine Learning Approach for offload Decision

Making in Mobile Cloud Computing," 2021 7th International Conference on Advanced

Computing and Communication Systems (ICACCS), 2021, pp. 1148-1154, doi:

10.1109/ICACCS51430.2021.9441795. IEEE- (SCOPUS)

https://doi.org/10.2174/2213275912666190716114033

