
ENERGY AWARE LOAD BALANCING IN FOG
COMPUTING

A Thesis
Submitted in partial fulfillment of the requirements

for the award of the degree of

DOCTOR OF PHILOSOPHY

in
COMPUTER SCIENCE AND ENGINEERING

By
Mandeep Kaur

41700092

Supervised By
Dr. Rajni

LOVELY PROFESSIONAL UNIVERSITY

PUNJAB

2021

DECLARATION

I hereby declare that thesis entitled "Energy aware load balancing in fog computing" sub-
mitted by me for Degree of Doctor of Philosophy in Computer Science and Engineering is
the result of my original and independent research work carried out under the guidance of
my Supervisor Dr. Rajni, Associate Professor, School of Computer Science and Engineering,
Lovely Professional University, Jalandhar. This work has not been submitted for the award
of any degree or fellowship of any other University or Institution.

Mandeep Kaur
School of Computer Science and Engineering,
Lovely Professional University,
Phagwara, Punjab-144411, India
Date:

i

ABSTRACT

Fog computing was introduced to cope up with the problems faced by cloud computing,
i.e., high latency, the distance between data centers and users, locality of data centers. Fog
computing brings the services provided by the cloud to the edge of the network. In a fog
computing environment, user requests are processed on the fog nodes deployed near to end-
user layer. The users are aware of the location of fog nodes, and due to the less distance from
end-users and fog nodes, the latency is reduced. Fog computing is a distributed approach that
provides an intermediate layer between the end-users and the cloud layer. Hence, it works
as a helping hand to the cloud to provide computing, networking, and storage services near
the end-user layer. E-healthcare, intelligent traffic management, smart homes, intelligent
waste management systems, smart cities, scientific workflows are widespread applications of
fog computing in this era of digitization.

Fog computing can play an essential role in executing parallel computational tasks, i.e.,
scientific workflow applications. To run workflow applications on the cloud datacenters may
take more time. So, fog computing can help the cloud to reduce latency issues faced by these
applications during execution. While executing large computational tasks, fog computing
faces challenges, i.e., load balancing, high energy consumption, less storage, resource man-
agement. So, there is a need to develop a resource-utilization-based framework that can help
to enhance the performance of fog systems and ensure maximum resource utilization that
can be achieved by applying load balancing in the fog layer.

Load balancing and energy consumption are essential issues to be resolved in the fog
computing environment. Due to the excess load on the fog servers, the situation can occur
in which few resources can become overloaded, and few will remain underloaded. In this
scenario, few resources will consume much energy, and others that remain idle will also
consume 60% of energy compared to the used ones. Hence, proper load balancing is required
in the fog environment so that all the resources can get an equal proportion of load and can
be fully utilized. This will also help to reduce energy consumption in a fog environment. So,
there is a need for a resource-utilization-based load balancing framework that can help to
utilize all the available resources fully.

This research work proposes a resource-utilization-based load balancing framework and
an energy-aware load balancing approach to achieve the set objectives. Extensive literature

iii

has been reviewed on load balancing and energy consumption in fog computing. A thorough
study of existing load balancing approaches has been conducted. The existing load balancing
approaches have been studied and analyzed also. Based on the literature review, it has been
observed that load balancing and energy consumption in fog nodes have been emerging issues
in fog computing that need to be addressed.

This research work proposes an approach for load balancing in the fog computing environ-
ment. Firstly, a resource utilization-based load balancing framework for the fog computing
environment has been proposed that helps to enhance resource utilization that can reduce
energy consumption in the fog environment. A load-balancing algorithm has been proposed
to evaluate the proposed framework. The proposed technique is Tabu-GWO-ACO that is a
hybrid approach made up of three different approaches, i.e., Tabu search, Grey Wolf Opti-
mization(GWO), Ant Colony Optimization(ACO). These different approaches are hybridized
to get the optimized solution for load balancing in the fog layer. The proposed algorithm
has been applied to evaluate the proposed framework.

Furthermore, a resource-utilization-based workflow execution model for fog computing
has been proposed. The proposed model tries to execute workflow tasks by balancing the
load among all available resources. Along with this, a PSW-fog Clustering algorithm has
been proposed to reduce the execution time and energy consumption by executing scientific
workflow applications in a fog-cloud environment. The proposed algorithm is named as
PSW-Fog Clustering-based Load balancing algorithm that is a hybridized form of Plant
Growth Optimization(PGO), Water Cycle Optimization(WCO), and Simulated Annealing
Approach(SAA).

This work considers scientific workflow applications to evaluate the proposed resource
utilization model and energy-aware load balancing approach. Scientific workflows are the
representation of tasks in the form of Directed Acyclic Graphs(DAG). Different sensors gen-
erate these tasks, actuators in different applications like astronomy, e-healthcare, intelligent
traffic management, and many other application scenarios. In this research, four scientific
workflows have been considered, i.e., Genome, Sipht, LIGO, Cybershake, to evaluate pro-
posed approaches.

iFogSim toolkit has been used to evaluate the proposed algorithm. Firstly the perfor-
mance of the Tabu-GWO-ACO has been analyzed and compared with other existing ap-
proaches. Afterward, the PSW-fog clustering-based load balancing approach has been eval-

iv

uated, and its results are compared with other existing approaches and Tabu-GWO-ACO. It
has been obtained that the PSW-fog clustering-based load balancing approach outperforms
other approaches. This research considers three different parameters, i.e., execution time,
energy consumption, and cost, to check the performance of proposed approaches. It has
been obtained that the proposed approaches implement proper load balancing in executing
scientific workflow applications, and this increases the resource utilization that leads to re-
duce energy consumption in the fog environment. It has been obtained that the proposed
approach reduces the execution time, computational cost, and energy consumption in fog
nodes while evaluating large computational tasks. The thesis also proposed a prototype
model for implementing FOCALB in real time environment i.e. Smart waste management
application.

v

ACKNOWLEDGEMENT

It is a pleasure for me to thank all those who have helped me accomplish this PhD thesis.
Firstly, I wish to express my deepest gratitude to Dr Rajni for guiding me throughout
this research work. My supervisor has been a continuous source of knowledge, inspiration,
motivation and encouragement during the entire course of this research work.

A special thanks to the management of Lovely Professional University to support me
in the best possible manner and facilitate me in balancing my work and my research. The
doctoral programme of LPU has made it possible for me to pursue my dream of study and
upgrade my knowledge.

Special thanks to Examiners of end-term reports and reviewers of journals who vetted
my submissions and gave valuable comments to improve the work further.

I take this opportunity to express my gratitude to all my teachers who have shaped me
and have contributed immensely to my knowledge and skill development since childhood. I
would like to thank all my colleagues for supporting and guiding me.
I would like to take this opportunity to remember my beloved father Late. S. Gurcharan
Singh for his motivation and bringing self confidence in me, and my mother Smt. Harmesh
Kaur for her endless love and support that helped me to reach upto this level. This thesis
would never have been conceived or borne fruit without the unconditional support of my
beloved father-in-law S. Nirbhai Singh and mother-in-law Smt. Satvinder Kaur who sup-
ported me from beginning to end. Their love, support, and unshakable faith in me provide
strength to succeed in all life goals. I am also thankful to my husband, S. Barinder Singh,
who has offered full support to me during the entire period of my research work. I would like
to thank my daughter Jaivin Kaur for her endless love and support and even for sacrificing
her childhood memories with me for me. She supported me on every step. I can not forgot to
thank each and every member of my both families who kept on motivating me in downfalls
of this research period.
In the end, I would like to thank all my friends for their endless support, and being there
when I needed them. Finally, I would like to thank every person who has, directly and
indirectly, helped and motivated me in this arduous task.

Mandeep Kaur

vi

TABLE OF CONTENTS

List of Figures . xi
List of Tables . xii

1 INTRODUCTION 1
1.1 Fog computing: Overview . 2

1.1.1 Definition . 3
1.1.2 Fog architecture . 5
1.1.3 Characteristics of fog computing . 7
1.1.4 Key areas focused by fog computing 8
1.1.5 Advantages of load balancing in fog computing 10
1.1.6 Open issues and challenges . 11

1.2 Scientific workflow applications in fog computing 12
1.3 Load balancing in fog environment . 13

1.3.1 Need for load balancing in fog computing 15
1.4 The motivation of study . 17
1.5 Thesis contribution . 17

1.5.1 Thesis organization . 19

2 Literature Survey 22
2.1 Growth of smart devices . 23

2.1.1 Motivation . 24
2.2 Load balancing techniques . 25

2.2.1 Literature review . 51
2.2.2 Cost-based load balancing . 51
2.2.3 Resource-utilization based load balancing approaches 53
2.2.4 Energy-aware load balancing approaches 55

vii

2.2.5 Year wise review of load balancing techniques 62
2.2.6 Performance measurements that impact load balancing 66

2.3 Open issues and research challenges . 69
2.4 Problem formulation . 70
2.5 Research assumptions . 71
2.6 Research objectives . 71

3 Proposed framework for load balancing (FOCALB) 72
3.1 FOCALB: Fog computing architecture of load balancing for scientific workflow

application . 73
3.1.1 Operating modules of FOCALB . 75
3.1.2 Workflow task assignment . 77
3.1.3 Workflow models for load balancing in fog computing 78

3.2 Hybridized load balancing algorithm for scientific workflows (Tabu-GWO-ACO) 80
3.2.1 Optimization methods used . 81
3.2.2 Proposed hybridized algorithm Tabu-GWO-ACO 84
3.2.3 Flow of execution of Tabu-GWO-ACO 86

3.3 Verification and validation of proposed framework- FOCALB 87
3.3.1 Experimental setup . 89
3.3.2 Results and discussion . 90
3.3.3 Applications of proposed architecture and approach in real time envi-

ronment . 96
3.4 Conclusion . 99

4 An energy-efficient load balancing approach for scientific workflows in fog
computing 101
4.1 Scientific workflows . 102
4.2 Resource-utilization based Workflow execution model for fog computing . . . 104
4.3 PSW-Fog clustering-based load balancing algorithm 106

4.3.1 Optimization approaches used in our proposed hybrid algorithm . . . 107
4.3.2 PSW-Fog clustering algorithm . 110
4.3.3 Flow of execution of proposed algorithm 111
4.3.4 Performance metrics . 113

viii

4.4 Analysis of PSW-Fog clustering-based load balancing approach 116
4.4.1 Experimental Requirement . 117
4.4.2 Result analysis . 118
4.4.3 Applications of proposed energy efficient load balancing algorithm . . 124

4.5 Conclusion . 126

5 CONCLUSION AND FUTURE WORK 127
5.1 Conclusion . 128
5.2 Future enhancement . 130

5.2.1 How limitations can be overcome in future 130

References 132

ix

List of Figures

1.1 Fog Taxonomy . 4
1.2 Layered architecture of fog computing . 6
1.3 Key areas of fog computing . 9
1.4 Examples of scientific workflows . 13
1.5 Load Balancing in fog environment . 14
1.6 Flow diagram of load balancing at fog layer 16

2.1 Growth of connected devices from year 2020-2030 23
2.2 Load balancing techniques . 26
2.3 Taxonomy of existing load balancing techniques 50
2.4 Evolution of load balancing . 65
2.5 Percentage of load balancing metrics considered in reviewed papers 67

3.1 FOCALB . 74
3.2 Working of FOCALB . 76
3.3 Workflow task assignment . 77
3.4 Tabu-GWO-ACO methodology . 88
3.5 Cost Analysis of Tabu-GWO-ACO approach 92
3.6 Execution time Analysis of Tabu-GWO-ACO approach 94
3.7 Energy Analysis Tabu-GWO-ACO approach 95
3.8 Applications of FOCALB . 97
3.9 Prototype of Waste management system . 99

4.1 Example of workflow . 103
4.2 Resource-utilization based workflow execution model for fog computing . . . 105
4.3 Flow of execution of PSW-Fog clustering based load balancing algorithm . . 114

x

4.4 Cost Analysis of different workflows(PSW-Fog clustering Aproach) 119
4.5 Time delay analysis of LIGO and Cybershake workflows (PSW-Fog clustering) 121
4.6 Time delay analysis of Genome and SIPHT workflows(PSW-Fog clustering

Aproach) . 122
4.7 Energy Analysis PSW-Fog clustering Aproach 124

xi

List of Tables

2.1 Traditional techniques . 29
2.2 Nature-inspired techniques . 32
2.3 Agent-based techniques . 34
2.4 Real-time based techniques . 36
2.5 Hybrid load balancing techniques . 39
2.6 Detailed approaches used in existing load balancing algorithms 41
2.7 Comparison of load balancing techniques considered in related work 58
2.8 Comparison of different algorithms on the basis of considered parameters . . 68

3.1 Required parameters . 89

4.1 Notations . 107
4.2 Experimental Requirement . 117

xii

LIST OF ABBREVIATIONS

IoT Internet of Things
IoE Internet of Everything
RMS Resource Management System
SDLB Scalable and Dynamic Load Balancer
GWO Grey Wolf Optimization
PSO Particle Swarn Optimization
ACO Ant Colony Optimization
PGO Plant Growth Optimization
WCO Water Cycle Optimization
SAA Simulated Annealing Approach
DAG Directed Acyclic Graphs
LIGO Laser Interferometer Gravitational Wave Observatory

xiii

CHAPTER 1

INTRODUCTION

With the increase in the Internet of Things (IoT), the amount of data generated by these de-
vices also increases. Cloud computing datacenters provide services for storage and processing
services to these IoT devices. Cloud computing provides services on a "pay-as-you-go" basis.
Cloud computing has a centralized structure, and its data centers are located far away from
the end-users. The time taken to store and process data on data centers is much more than
expected.

There are approximately twenty to thirty million edge devices present around the world [1].
These devices generate terabytes to petabytes of data daily. Due to the cloud’s centralized
storage space, sometimes it becomes difficult for end devices to access the data in emergen-
cies. IoT connects real-world things like smartphones, smart cities, intelligent vehicles, and
many other devices to the internet and allows connected devices to exchange data with min-
imal human interference. In IoT architecture, sensors generate data associated with some
applications and send them to the nearest sensor links [2]. The global deployment of different
sensors in smart cities requires a computing paradigm to support IoT services, applications,
and data analysis.

Cisco launched a new architecture in 2012, fulfilling these IoT requirements, i.e., Fog
computing. Fog computing can be said to as an extension of cloud computing to the edge of
the network. Fog performs latency-sensitive and energy-aware tasks efficiently on powerful
computing nodes at the network’s intermediate. Fog computing concept was introduced to
meet the demands from different segments of IoT, Internet of Everything (IoE) or Internet
of Me (IoM) from start to end, e.g., consumer, wearable, industrial, enterprise, automobile,
healthcare, building, energy [3].

This chapter provides a high-level view of this research work by providing an overview
of fog computing, its architecture, characteristics, key focus areas, applications, advantages,

1

and open issues and challenges faced by fog. Further, scientific workflow applications have
been described. Furthermore, the need for load balancing in a fog environment has been
described. In addition to this, the chapter also motivates to propose resource-utilization-
based load balancing in fog computing. In the end, the organization of the rest chapters has
been provided along with the thesis contributions.

1.1 Fog computing: Overview

Cisco has introduced fog computing as an extension of the cloud by providing its services near
to end-users. Fog computing is defined as an environment where many ubiquitous devices
communicate without third-party intervention [4] [5]. Satyanarayanan et al. [6] introduced
the term "Cloudlets" for fog computing, which Cisco popularized as an intermediate com-
plementary resource-rich layer between the edge device and the cloud. Fog computing is a
highly virtualized platform that provides compute, storage, and networking services between
end devices and traditional cloud computing data centers, typically but not exclusively lo-
cated at the edge of the network. The primary aim of fog computing is to solve the problems
faced by cloud computing during IoT data processing. The fog layer acts as an intermediate
layer between the cloud and IoT devices [1] [7]. Fog brings the compute, communication,
and decision making closer to where data originates from, speeding process times and lower
costs.

Fog computing comes up to conquer the problems faced by IoT users. It is a powerful
technology that provides different way-outs to the issues experienced in cloud computing. Fog
renders storage, computing along with networking services, but in a decentralized manner [8],
unlike centralized cloud. In fog computing environments, nodes are deployed in various places
and collected processed data from sensors installed at nearby locations. The real-time data
received at fog nodes are immediately processed and stored at the fog layer itself. End users
are responded after processing data at the fog layer. The data which is rarely to be used is
sent to the cloud for further storage and processing.

In this way, fog is not a substitution for cloud computing, but it can work well along with
the cloud in a combined form [9].

2

1.1.1 Definition

Various researchers have proposed several definitions, but Cisco introduced the term in the
year 2012. According to Cisco, fog brings cloud services closer to edge devices. Fog computing
is an architectural deployment of computing resources where unique nodes are enabled for
communication and data transmission between IoT devices rather than backing up their
data on the data centers of the cloud [10]. It provides a pool of infrastructure resources
of the cloud system, which forms a networking system between the resource and end-user
device. [2]. The service layer of fog is characterized as a collaboration of local networks
that consists of numerous network nodes like gateways and routers, having finite computing
ability [11]. F. Bonomi et al. [1] described fog computing as a distributive and hierarchical
computing platform for providing compute, storage, and network service delivery to the end-
users.
According to [12], fog computing is near to IoT devices; it is more suitable for lightweight
processes. The execution and storage of data between the smart IoT data sensors and the
cloud data centers are extended using a fog layer in between. Fog computing broadens
the cloud services to compete with challenges of conventional cloud computing [13]. Fog
nodes, sitting at the network edge, focus on collecting data, command users, and control IoT
devices [10]. Fog computing provides a hierarchical and distributed architecture supporting
combination of technical components and services like smart healthcare, cities, homes, and
connected e-vehicles. [14].
The fog node is the fundamental entity in the fog computing environment, which helps
execute IoT applications. Fog layer provides few characteristics like mobility, geological
distribution, and location awareness [15].

Fog computing is a decentralized computing technology in which data is processed and
stored between the source of origin and cloud infrastructure. The fog computing paradigm
is primarily motivated by a continuous increase in IoT devices. An ever-increasing amount
of data concerning volume, variety, and velocity is generated from an ever-growing array of
devices [5].

Figure 1.1 shows the taxonomy of fog computing that describes the technology used in
fog, its applications, architectures and frameworks, its features, and its related technologies.
The technology used in fog is further divided into three different categories. First is a wireless

3

Figure 1.1: Fog Taxonomy

technology connecting IoT with the fog layer, i.e., Wi-Fi, LTE, 3G, 4G, and 5G technologies.
The second category is hardware devices, i.e., routers, gateways, and bridges that act as
processing and storage devices in the fog layer. The last category is intelligent devices
that can become fog nodes, i.e., sensors, actuators, and intelligent gateways. Applications
of fog are innovative healthcare, Vehicular Adhoc network, Smart agriculture, Fog Radio
Access Network (F-RAN), Smart waste management, smart city, and scientific workflow
applications.
The architecture and framework of fog computing are divided into two categories, i.e., service-
based and application-based architecture. Fog computing has various features, i.e., low
latency, wireless access, distributed architecture, high availability, mobility support, local
awareness, and content generation and consumption at the user end. Fog computing has
various related technologies, i.e., grid computing, cloud computing, mobile cloud computing,
edge computing, multi-access edge computing, cloudlet computing.

4

1.1.2 Fog architecture

The traditional architecture of fog computing contains three layers. The first layer is the IoT
layer containing different smart devices. The second layer is the fog computing layer which
contains fog nodes having low computing and storage capacities. The Cloud layer is the
top layer containing massive data centers. The data produced by IoT devices is processed
by the fog layer, and then after processing the data, users are responded immediately. The
fog layer is deployed near the IoT users. Hence in the case of real-time applications, users
can get an immediate response. Cloud data centers store the data for a long time that is
received from the fog layer. This section represents fog architecture according to different
layers’ working. The layered architecture contains these layers, i.e., IoT layer, service layer,
connectivity layer, fog layer, fog service layer, virtualization, and cloud layer. Working of all
these layers is explained as follows:

• IoT layer: This layer contains different IoT-based smart devices. These devices are
daily usage devices that help users in their daily routine, i.e., smartphones, smart
vehicles, smart homes. These devices produce data in bulk within a fraction of seconds
per their usage by users. The smart devices in IoT layers contain smart sensors, and
these sensors generate data sent to the upper layers for its processing. IoT layer has
a large number of service requirements that need to be processed by computing nodes
according to their time requirement and availability of resources [16].

• Service layer: The service layer differentiates the task generated by the IoT layer
into two forms, i.e., firstly, those tasks that need immediate processing. Secondly,
those tasks that do not require rapid processing or less urgent tasks. The critical tasks
require rapid processing, so they are sent to fog computing nodes in the fog layer. The
less critical tasks can be assigned to other intermediate computing nodes.

• Connectivity layer: There are various components required to accept data from IoT
devices in fog computing architecture, i.e., gateways, wireless and wired connectivity
endpoints (i.e., switches, fully rugged routers). There can be client site equipment
and gateways installed to access fog computing nodes on the other aspect. In fog
architecture, edge devices can be connected with core networks and access cloud servers
and services.

5

Figure 1.2: Layered architecture of fog computing

6

• Fog layer: The fog layer is divided into two layers, i.e., fog layer and fog service layer.
Different fog nodes are deployed in the fog layer that receives tasks for processing from
the IoT layer. Different Fog Servers(FS) are connected to each other in the fog layer,
and these FS are managed by Fog Manager(FM). Each FS contains its Fog Table(FT)
that includes the information about the number of tasks generated, the number of
resources available, and several resources occupied. Based on the FT of each FS, FM
decides about tasks received from the IoT layer. Most essential tasks are passed to
fog computing nodes of the fog service layer containing their resource unit. The least
important tasks are executed on intermediate computing nodes.

• Cloud layer: In Figure 1.2 cloud layer is divided into two different parts in which the
first one is virtualization, and the second one is cloud layer. Virtual Machines(VMs)
are available in virtualization on each Physical Machines(PM) in the cloud layer. Vir-
tualization generates virtual servers on physical machines for the execution of tasks.
The Cloud layer contains physical machines, networking devices, enormous data cen-
ters. The Cloud layer receives data from the lower layer and stores it for any future
processing.

1.1.3 Characteristics of fog computing

As the fog sector develops, virtualization will be its key to success. The fog layer becomes
necessary to connect the cloud to things because it has latency, mobility, bandwidth, and
security issues. Simultaneously, not everything can run from the edge with intelligent end-
points because of space, energy, and security. Fog computing is an emerging technology that
has many characteristics. A few of them are discussed below:

• Geographically distributed: Fog nodes are geographically deployed on different
locations, unlike the cloud data centers that work in a centralized manner. Fog com-
puting nodes can be deployed at any place and can be accessed at anytime that helps
in maintaining real-time applications, for example, pipeline monitoring [15].

• Mobile application support: Fog nodes can not only be deployed at fixed locations
but mobile also. Fog computing supports mobility by providing computational offload-
ing and expansion in storage. For example, fog nodes can be deployed in connected
rails.

7

• Heterogeneous end-user support: Fog nodes can be located near to the end-users
at the network edge to provide immediate support in case of an emergency [15].

• Mobility support: Any mobile node can become a fog node, for example, cars, mobile
phones, etc.

Fog computing aims to enhance efficiency and decrease data to be transferred to the
cloud for processing. The fog layer can easily manage all the resources by sitting in between
the cloud and IoT [17]. The fog layer helps in preparing a viable business model like the
cloud layer. Fog computing can be used in transportation, smart cities, surveillance, health
care, and intelligent buildings [18] [18]. Fog computing can be used in different types of IoT
services [19]. First, e-Health gateway can be used for patients to monitoring their health
status [20]. Second, Smart homes can be improved by detecting the temperature, and air
conditioning system [21]. The emergency alarm can be activated and send warnings to the
owner. Third, Smart cities can be monitored traffic, and transport systems by IoT [17,18].

In a network, few systems remain under-loaded at some interval, while the others carry
the entire load of the network. To maintain the load in a balanced scheme, "Load Balancing"
becomes necessary. "Load Balancing strives to distribute the load in identical proportions
throughout resources depending on recourse capability so that every useful resource is not
overload or underutilized in a cloud device". Data centers in the cloud required minimizing
and distributing the workload among all resources for the proper functioning at their higher
degree of potential and controlling the magnitude of load distribution. Load balancing must
also be done to avoid deadlock and suppress the server overflow problem [22].

1.1.4 Key areas focused by fog computing

Fog computing has three fundamental areas, i.e. Resource management, Data management,
and Security. Figure 1.3 represents the main areas in which fog computing focuses. They
are discussed below:

• Resource management: In the fog computing environment, users have to face the
problems of allocation of resources due to uncertainty and distribution of resources,
which causes heterogeneity, dynamism, and failures [23] [24]. Automatic resource man-
agement is required to consider all QoS parameters like availability, execution time,

8

Figure 1.3: Key areas of fog computing

security application performance [25]. Resource Management System(RMS) contains
three essential components:
Resource provisioning: Resource provisioning is required in fog computing to se-
lect and maintain all fog resources. Resource provisioning can be of two types: static
provisioning, dynamic provisioning. In resource provisioning, software and hardware
resources such as DBMS, different load balancers, CPUs, hard disks are selected, de-
ployed, and managed. This ensures to enhance system performance [26].
Resource scheduling: Resource scheduling plays an essential role in administering
the data centers that contribute to improving resource utilization. When resource pro-
visioning is completed, resources are organized and scheduled by the resource scheduler
for different users [27].
Load balancing: Load balancing is necessary to distribute the workload in equal
proportion. Load balancing disseminates a similar proportion of workload amongst
all the resources based upon their capability to utilize every resource efficiently. Load
balancing ensures that there should not be any resources that are over-utilized or under-
utilized. Appropriate load balancing helps to maximize resource utilization, reduce the
response time and resource consumption [16] [28].

9

• Data management: The fog computing layer acquires the data from its lower layer,
i.e., IoT devices. This data is validated and reduced at the fog layer to be processed
or easily transferred to the cloud layer. Different analytical techniques are applied for
data analysis [1].

• Security: Fog computing helps to provide secure data transfer over the network. The
fog layer ensures data integrity and confidentiality to provide secure access to data.
User authentication and authorization helps to avoid any unauthorized access to the
data in the network [29].

1.1.5 Advantages of load balancing in fog computing

As discussed in earlier sections, there is a need for load balancing in fog computing
to enhance resource utilization. This chapter has studied various load balancing tech-
niques, and on the basis of reviewed articles, a load balancing-based framework for fog
computing has been proposed. Here are some advantages of combining load balancing
with fog computing, as discussed below:

– High availability: With load balancing, fog resources become highly available.
In case when there is no response from one resource, others will be available for
processing. Load balancer keeps track of under-loaded and overloaded resources
to ensure the availability of resources in case of latency-sensitive applications.

– Flexibility: The load balancer distributes the workload among all the resources, so
in case one resource fails, others will be available to process the data and respond
to the users.

– Reduced energy consumption: All resources, whether executing task or in idle
mode, consumes energy. With the help of load balancing, all the resources run
tasks approximately in an equal proportion. So, by avoiding overloading and
under-loading of resources, energy consumption in hardware nodes can be reduced.

10

– Reduced Cost: Fog load balancers are not expensive, as the cost depends upon
the resources consumed. By applying load balancing in fog computing hardware
cost, several resources may be used only according to the user requests.

– Resource utilization: By applying load balancing, all the resources in the fog
computing environment can be fully utilized. Because load balancers avoid under-
utilization and over-utilization of resources by distributing workload in equal pro-
portion in all the resources.

1.1.6 Open issues and challenges

Various open challenges can be further worked upon. The following can be further
explored:

– Communication between fog nodes: It can be further explored to find a
framework through which fog nodes can interface with each other. If the fog
nodes start communicating with each other’s, they can also share their resources.

– Detection of stolen Devices: Smart devices are costly than other simple de-
vices in the market. These can be stolen easily, so further work is required to
protect these gadgets.

– Security: Security is the biggest challenge in today’s world. Fog nodes need
more security algorithms to be implemented. Any malicious person can try to
enter into the system and temper the necessary information.

– Load balancing: Load balancing has become necessary in a fog environment.
Because it will cause a problem if the few servers will be overloaded and the others
will be under-loaded, if the load is not balanced in the system, it may cause a
deadlock in the system. So, there is a need to develop efficient load balancing
algorithms.

– Energy efficiency: Energy efficiency can be a huge challenge in fog computing.
The power consumption of fog needs to be reduced. As fog nodes are more in the
system, more energy is consumed. Need to manage the energy efficiently.

11

1.2 Scientific workflow applications in fog computing

This research work considered a few scientific workflows that are executed using the
proposed technique. This research tried to reduce execution time, cost, and energy con-
sumption in implementing these workflows. The overall efficiency of fog computing can
be significantly increased by improving load distribution in scientific workflow applica-
tions. Since workflow scheduling is an NP-complete challenge, meta-heuristic methods
are a better choice for optimizing it [30]. The existence of workflow benchmarks will
significantly aid the design and assessment of workflow management systems. Follow-
ing are the examples of scientific workflows that are considered to evaluate the proposed
framework and algorithms.

Cybershake: The Cybershake computational pathway is modeled as a workflow and
implemented in the grid-based SCEC environment [31]. The SCEC first used it to
characterize earthquake hazards in the area. An MPI-based differential simulation is
used to produce Strain Green Tensors (SGT) given the region of interest. Synthetic
seismograms are created from the SGT data with each of the expected ruptures. The
generation of probabilistic hazard curves follows this [32–34]

Genome: The Epigenome Center uses the genomic, a CPU-intensive program, to
process output DNA methylation and histone modification results. The data is initially
collected in DNA sequence lanes from the ISGA ("Illumina-Solexa Genetic Analyzer").
Each Solexa computer generates multiple DNA sequences. The ISGA is divided into
various sections. Every chunk’s data is translated into a file that the Maq framework
can understand [35]. The workflow then performs the mapping of DNA sequences
to specific positions in a genome. This generates a map that depicts the sequence
density. Filtering out noisy sequences, translating sequences into the proper location
in a genome, producing a global map, and determining sequencing abundance at each
point in the genome are the remaining operations [30].

SIPHT: The Harvard University bioinformatics project was looking for small and
untranslated RNAs (sRNA) to control various bacterial processes such as secretion and
virulence. The sRNA recognition protocol using technological innovation software [36]
employs a workflow to simplify the hunt for sRNA encoding genes in the NCBI database

12

for all bacterial replicons. Condor DAGMan’s [37] capabilities are used to perform a
sequence of individual programs in the appropriate order for annotation and prediction
of sRNA encoding genes. These include forecasting Rho-independent transcriptional
function.

LIGO: Large-scale interferometers gather data for the Laser Interferometer Gravitational-
Wave Observatory (LIGO) workflows used to look for gravitational wave signatures.
The observer aims to quantify and detect waves in the manner expected by relativity.
The workflow produces a subset of output waveform from the spatial domain for each
section and evaluates the matching filter output. A trigger is created if a true inspiral
is detected, which could then be compared to stimuli for all the other detectors [38].
This workflow [39] is used to interpret data from small binary systems, including binary
neutron stars as well as black holes. Figure 1.4 represents a few scientific workflows,
out of which LIGO, SIPHT, GENOME, and Cybershake have been considered for this
research work.

Figure 1.4: Examples of scientific workflows

1.3 Load balancing in fog environment

In computing networks, at different time intervals, few nodes remain under-loaded,
while other nodes carry the entire load of the network. Due to the load imbalance on

13

the servers, there may be problems like system failure, network failure, energy con-
sumption, increased execution time. [40].Load balancing becomes necessary to control
the load in computing nodes. Load balancing seeks to distribute the load equally
throughout all resources according to their capability. With this, every useful resource
does not become overloaded or underutilized in a fog environment [41]. Data centers in
the cloud must minimize and equally distribute the workload for the proper function-
ing at the highest degree of potential and control the magnitude of load distribution.
Load balancing also becomes necessary to avoid overflowing, and deadlock problems
in server [42].
Load balancing is required to distribute a large volume of data on servers. With the
equal distribution of the workload in the network, resources can be efficiently utilized.
Load balancing has few characteristics, i.e., work is equally distributed in all nodes,
efficient resource utilization, improved system performance, reduced energy consump-
tion, more user satisfaction, reduced response time [43]. A few load balancing functions
are given below:

– It distributes network load or the requests of the clients efficiently across multiple
servers.

– Active nodes receive requests from end-users and ensure high availability and
reliability by immediately processing their requests.

– It provides flexibility to the servers so that any server can be added to the network
whenever required.

Figure 1.5: Load Balancing in fog environment

14

The Figure 1.5 shows how a load balancer receives the workload from various users and
assigns this workload to the computing servers. A load balancer continuously keeps
track of available servers in the network. When it receives the workload from different
clients, it checks the availability of resources. It then distributes the load among all
the computing resources to avoid overloading situations in the network.

1.3.1 Need for load balancing in fog computing

With the expansion in IoT in the digital world and a gradual increase in real-time
applications, the need for equal distribution of workload in the fog environment has
increased [42]. Load balancing helps to achieve high resource utilization and more user
satisfaction. With this, the overall performance of the system and the resource utility
will also improve. It ensures that no resource either becomes overloaded or remains
underutilized. By distributing the workload among all the processors equally, the over-
all operational cost of the system can be reduced, and user requests can be optimally
balanced. In cloud-fog-based architecture, users continuously pass their requests in
bulk amount to the fog nodes, which needs to be minimized to make exclusive use of
fog nodes [44]. The load balancer at the fog layer receives the task processing requests
from IoT devices and distributes the tasks among all processing nodes.
The main requirement of load balancing is to surmount the problems faced by over-
loaded resources at the fog layer. The tasks assigned to virtual machines can either
be reliant or independent of VMs. The load is divided into different types, i.e., CPU
load, storage devices, network load. These loads are divided into three categories based
upon the place and requirement of the user, i.e., a) critical load, b) Non-critical load, c)
Highly critical load. Load balancing is the process of detecting overburden and small
loaded nodes and then balancing the workload among all of them. By proper utiliza-
tion of fog resources, system performance can improve. Fog resources may be hardware
resources or virtual resources. The load balancer does these tasks for proper load bal-
ancing: 1) Allocating tasks to the physical machines, which are further assigned to the
virtual machines.2) Transferring workload between two physical machines or virtual
machines.

15

Figure 1.6: Flow diagram of load balancing at fog layer

The flow diagram in Figure 1.6 explains how load balancing works in fog computing. In
a combined cloud-fog-based computing environment, workload management becomes
compulsory at both the fog layer and the cloud layer. The fog layer helps to manage the
workload transmitted to the cloud layer. Fog layer receives data from smart devices,
then load balancer at fog layer checks the availability of fog nodes, so that workload
can be assigned to free fog node. If the fog nodes are available, the workload is equally
assigned to the free fog nodes in the computing environment. If all the nodes of the
fog layer are occupied, then the workload received from the smart devices has to wait
in the queue until it gets any free fog node. The load balancer continuously checks
for the availability of fog nodes. Whenever free fog node is found, then the workload
is assigned to the fog node. Highly time-sensitive requests are processed at the fog
layer itself, and their corresponding results are transmitted to the cloud layer for more
processing and storage.

16

1.4 The motivation of study

With the increased number of IoTs, the workload on the fog layer has been gradually
increased. Due to more workload on fog devices, the power consumption of nodes is
also high. Micro data centers at the fog layer are aided by load balancers responsible for
distributing the workload amongst multiple fog nodes to optimize resource utilization
and enhance response time. The load balancers ensure that the workload is equally
divided among the idle fog nodes to avoid the overloading of a few fog nodes. If there
is an imbalance of workload at the fog layer, it directly impacts the user response
and real-time event detection. Micro data centers of the fog layer are deployed in
remote environments, due to which the need for secure authentication is of significant
importance. An efficient load balancing framework must identify the idle edge data
centers so that workload can be equally and efficiently divided among all idle fog nodes.
Load balancing is required at the fog layer to achieve resource efficiency, avoid overload
in the network, maintain system firmness, improve system performance, and protect
the system against failures. Fog load balancing provides the following benefits to the
computing environment, which motivates towards the study of fog load balancing:

– High scalability.

– High energy efficiency.

– High resource utilization.

– Reduced cost.

– Reduced latency

– More flexibility

1.5 Thesis contribution

The significant contributions of this research work are described as follows:

– It has analyzed and provided detailed literature on load balancing in the fog com-
puting environment. A qualitative comparison between existing load balancing

17

techniques in fog computing has been provided based on parameters considered,
i.e., execution time, energy consumption, response time, processing time, etc.

– Different parameters, i.e., Time delay, cost, and energy consumption, have been
identified that helps to propose and design a resource-utilization-based load bal-
ancing framework for the fog computing environment.

– A framework has been proposed for a fog computing environment that helps to
improve the utilization of existing resources by equally distributing the workload
among all resources.

– Fog computing architecture is provided, showing load balancing and scheduling
in the fog layer. There are many existing fog computing architectures, but this
research enhanced the traditional architecture by providing load scheduling and
load balancing at the fog layer. Generally, traditional architectures implement
load scheduling or load balancing only. However, this work provided schedul-
ing and load balancing, which will improve system performance by speeding up
execution.

– A resource utilization-based load balancing framework is proposed for the fog
computing environment that is named as FOCALB. A detailed flow diagram has
been provided that explains the whole procedure of load balancing done in the
fog layer in the proposed architecture. When tasks get resources for processing
in time, it helps reduce wastage of resources, which will help reduce the energy
consumption of those resources.

– Hybridized load balancing algorithm for scientific workflows (Tabu-GWO-ACO)
has been proposed, which helps to utilize fog resources properly and reduce the
cost, execution time, and energy consumption in fog nodes. The proposed ap-
proach’s obtained results are compared with the existing tabu search method,
ACO, GWO, and Artificial Bee Colony(ABC) algorithms to analyze and compare
its efficiency.

– A prototype model has been proposed for implementing proposed architecture
FOCALB in real time application i.e. Smart waste management.

– Resource-utilization based workflow execution model has been proposed for fog

18

computing. This model helps to apply load balancing to enhance resource utiliza-
tion in fog computing.

– A hybrid load balancing approach, PSW-Fog Clustering tries to reduce energy
consumption in a fog computing environment while executing scientific workflows.
The work considers both the availability of tasks and workflow structure. The
work tries to reduce system overheads, minimize resource wastage, and enhance
tasks’ execution speed.

– –A framework has been proposed for the implementation of workflows. The pro-
posed work considers scientific workflows for execution in fog environments, i.e.,
LIGO, Genome, SIPHT, Cybershake workflows.

1.5.1 Thesis organization

After giving an introduction to the thesis in chapter 1, the rest of the thesis is structured
as follows:

Chapter 2 presents the literature survey on fog computing and load balancing tech-
niques. Load balancing techniques in fog computing have been thoroughly studied, and
taxonomy has been provided representing existing load balancing techniques. More-
over, a year-wise review of load balancing techniques has been done and delivered in
taxonomy. A comparison of different load balancing techniques has been described
based on various performance parameters. The chapter is concluded by formulating
the problem and providing its relative solution. Chapter 2 is partially derived from:

– Saroa, M. K., Aron, R. (2018, December). Fog computing and its role in the de-
velopment of smart applications. In 2018 IEEE Intl Conf on Parallel Distributed
Pro-cessing with Applications, Ubiquitous Computing Communications, Big Data
CloudComputing, Social Computing Networking, Sustainable Computing Com-
munications(ISPA/IUCC/ BDCloud/SocialCom/SustainCom) (pp. 1120-1127).
IEEE

– Kaur, M., Aron, R. (2021). A systematic study of load balancing approaches in
the fog computing environment. The Journal of Supercomputing, 1-46.

19

Chapter 3 describes the proposed architecture for load balancing in scientific workflow
applications in the fog computing environment. The proposed architecture is named
FOCALB. Existing frameworks have been studied and proposed an enhanced architec-
ture implementing load balancing in a fog environment to enhance resource utilization
and reduce energy consumption and execution time. The working framework has been
described in the form of a flow diagram that explains the whole procedure of load
balancing done in the fog layer in the proposed architecture. Along with this, a hy-
bridized load balancing algorithm for scientific workflows (Tabu-GWO-ACO) has been
submitted, which mainly helps to utilize fog resources properly and reduce the cost,
execution time, and energy consumption in fog nodes. The proposed approach’s ob-
tained results are compared with the existing tabu search method, ACO, GWO, and
Artificial Bee Colony(ABC) algorithms to analyze and compare its efficiency. The pro-
posed framework has been validated by comparing it with existing frameworks based
on considered parameters, i.e., execution time, energy consumption, and resource uti-
lization. The experimental results have been obtained by implementing the proposed
approach in the iFogSim toolkit. Chapter 3 partially derives from:

– Kaur, M., Aron, R. (2020). Equal Distribution Based Load Balancing Technique
for Fog-Based Cloud Computing. In International Conference on Artificial Intel-
ligence: Advances and Applications 2019 (pp. 189-198). Springer, Singapore.

– Kaur, M., Aron, R. FOCALB: Fog Computing Architecture of Load Balancing
for Scientific Workflow Applications. J Grid Computing 19, 40 (2021).

https://doi.org/10.1007/s10723-021-09584-w

– A novel load balancing technique for smart application in the fog computing envi-
ronment, International Journal of Grid and High-performance computing(IJGHPC),
IGI Global [Accepted]

Chapter 4 describes the proposed resource-utilization-based workflow execution model
for fog computing. This model helps to apply load balancing to enhance resource uti-
lization in fog computing. Along with this, the chapter also describes the proposed
hybrid load balancing approach PSW-Fog Clustering that tries to reduce energy con-
sumption in a fog computing environment while executing scientific workflows. Further,

20

this chapter analyses the proposed algorithm, and obtained results are compared with
other existing algorithms. Chapter 4 derives from:

– Kaur, M., Aron, R. (2020). Energy-aware load balancing in fog cloud comput-
ing.Materials Today: Proceedings. Elsevier.

– An energy-efficient load balancing approach for scientific workflows in fog com-
puting, Wireless Personal Computing, Springer [Communicated]

Chapter 5 finally concludes the thesis and provides the future scope of the proposed
work.

21

CHAPTER 2

Literature Survey

Fog computing is still not adopted as a mature computing paradigm, as some of its ar-
eas still need to be explored areas as load balancing, energy, resource utilization. Much
research works in the area of load balancing in cloud computing, but lesser in fog com-
puting. More focus is provided on scheduling in scientific workflows, but load balancing
in scientific workflows also seeks attention. Fog computing has a broad scope in its
application areas, so many intelligent devices generate more data which causes load
imbalance in the fog layer. So, load balancing also becomes necessary in fog computing.

The fog layer requires to balance a workload among all the resources. Requests received
from users are assigned to the fog nodes for an immediate response, and if there are
many user requests, they should be equally distributed among all fog computing nodes.
Hence, load balancing has become a necessity on the fog layer. It is required in both
physical nodes and virtual machines as well. The load balancing mechanism dissem-
inates the load fairly among host and virtual machines. This chapter reviews and
summarises the existing load balancing algorithms. Firstly, the growth of smart devices
has been discussed, and then the motivation behind this chapter has been provided. The
other section covers the load balancing related surveys that various researchers conduct.
Furthermore, load balancing techniques have been described thoroughly. The load bal-
ancing techniques have been explained, and their comparison has been provided based on
multiple parameters. Moreover, related work in fog computing has been provided based
on three categories, i.e., cost-based, resource-utilization-based, and energy-aware load
balancing approaches. In addition to this, a year-wise review of existing load balancing
approaches has been conducted. Taxonomy has been provided as an explaining focus of
the current studies. Moreover, performance measured those impact load balancing has
been discussed. Further, open issues and research challenges have been described. In
the last, the problem has been formulated, and research objectives have been provided.

22

2.1 Growth of smart devices

Internet of Things(IoT) daily produces a huge volume of data that is called Big data
[45], that needs analysis [46]. Since 2015 total of 15 billion IoT devices has emerged
that include sensors. The connected devices in IoT contain various smart devices, i.e.,
smart wearable devices (helping aids, glasses, and smartwatches), intelligent electric
grids [47] smart-cities [48], that measures energy consumption in smart homes, sensor
networks [49], self-driving vehicles [50].

Figure 2.1 shows the anticipated growth of connected devices in the coming years.
Cisco Systems, Inc. reports that the connected devices will grow up to 50 billion in
2020 [51]. But, in the current scenario, many researchers have analyzed the available
number of fog nodes in the current year 2020, i.e., approximately 31.73 billion devices
are available till the end of 2020 [52]. This ratio will start increasing from 15-25 percent
to 50 percent within the coming years and may reach up to 150 billion by 2030 [53].

Figure 2.1: Growth of connected devices from year 2020-2030

These devices consume a large amount of energy, which needs to reduce to prevent any

23

failure in the system. IoT data is stored and processed in cloud data centers. But,
cloud computing is only suitable for tasks requiring high latency and less service avail-
ability [41]. The growing IoT devices require a platform that reduces data transmission
and energy consumption by cloud data centers. Fog computing was established to pro-
vide low latency and high availability services to IoT users. Fog computing is a highly
virtualized technology that offers real-time interactions as it sits amongst the cloud
data centers and IoT users [54] [55]. The fog layer is connected via WiFi, Bluetooth,
and 4G LTE wireless internet access with nearby IoT devices [56].
With the expansion in IoT devices, the increased volume, velocity, and variety of data
have led to growth in Fog computing [57]. IoT also requires a real-time interaction plat-
form for the execution and storage of the data generated by these smart devices. Fog
computing provides features like location awareness, edge data centers deployment,
the geographical distribution of nodes. The fog layer contains small servers, smart
routers, or other equipment that provide a data transmission band between different
devices [58]. Fog computing was introduced in 2012, and now it has a vast scope in
many applications like smart cities, smart healthcare, smart transportation. [48].

2.1.1 Motivation

This study finds the increasing demand to handle the workload on resources present at
the fog layer and inquire about its precedent load balancing approaches. A comprehen-
sive review has been conducted to evaluate load balancing approaches of fog computing,
and these approaches were compared based on different metrics. The following facts
particularly inspired this chapter:

1 An increased need to understand precedent load distribution techniques in fog
computing. By balancing the load provided to the fog layer, resource utilization
can be enhanced, which will help to reduce the wastage of resources at the fog
layer.

2 The energy wastage by fog nodes is also increasing, which may cause failure in
the fog network. So this environment needs optimal support to reduce the energy
consumption in fog nodes.

24

2.2 Load balancing techniques

By the process of load balancing, performance improved by shifting workload among
the processors. Workload means- the total time of processing required to execute the
task assigned to a machine. Load balancing assigns load to underloaded VMs by taking
it from overloaded virtual machines. Load balancing affects system performance while
the application is executing. Load balancing aims to enhance the execution speed of
applications on resources because their execution time is unpredictable as it varies at
run time.
Load balancing in fog computing is applied to the physical nodes as well as the VMs.
In load balancing, the load is distributed among all the processing nodes in equal
proportion. Load balancing algorithms are divided into two main kinds, i.e., Initia-
tion process-based and current state-based. The first type further divided into three
types, i.e. sender initiation based [21], receiver initiation based [59], depends upon
both sender and receiver [60] [61] . The second type is further categorized into two
types static and dynamic, which can explain as follows:
a) Static load balancing: In static load balancing, the equivalent distribution of load
among the servers gives prior information of the applications and statistical informa-
tion. In static techniques of load balancing, those systems are considered in which load
variation is very low. The load is distributed among all the servers. Prior knowledge
of server resources is required to start implementation. The present system state is not
considered in these algorithms. There are some load balancing algorithms available
which are explained as follows:
In the round-robin method, the first node is selected randomly, and all other nodes are
assigned the jobs in a Round Robin fashion in which time slots are allocated to each
process. The tasks are assigned in a circular organization to the processor without
giving priority to any particular task. [62].Min-Min load balancing technique is used
for static load balancing [8] [62] [63]. It is suitable for small tasks only. Those tasks
considered, which are less time-consuming. Less time-consuming tasks are allocated
to the resources first. The processing of task will depend upon the execution time,
i.e., the task having minimum execution time is allocated, whereas the tasks having
maximum execution time will be on stand by till the processor becomes free [64]. Like

25

Figure 2.2: Load balancing techniques

the Min-Min algorithm, the Max-Min works to find out the minimum execution time,
but the only exception was that it firstly deals with the tasks that took maximum time
for execution. [62].Once the task gets the resource, it is removed from the task list, and
only pending tasks remain in the list, and their execution time is updated.
Tabu Search method is used for optimal load balancing between the fog and cloud
layers, which helps avoid resource constraints, i.e., computational cost and memory
usage. Finding the best task allocation at the fog layer is its main objective to op-
timize the time and cost by finding the best task allocation at the fog layer. Tabu
search method ensures online computations in the fog layer to increase the immediate
processing of tasks at the fog layer only. Tabu search method includes a bi-objective
function to estimate the cost at fog layer as well as cloud layer [28]. Opportunistic
Load Balancing Algorithm (OLB) tries to keep every node busy without considering
the existing workload of each resource. OLB need not calculate the time of execution
of tasks. OLB tries to balance the load between all the nodes to keep every node in
working condition. Tasks are randomly assigned to available nodes so that present
nodes can be fully utilized [65] [41].

b) Dynamic load balancing: The lighter server is searched in the dynamic load

26

balancing approach, and it is preferred for load balancing. The present system state
controls the network load, and these algorithms use real-time network communication.
The dynamic technique of load balancing finds out how to search for under-loaded
servers and then nominate an appropriate load of work. The load is transferred from
over-utilized virtual machines to under-utilized in real-time. In this, the workload is
shared between the processors at run time. This technique is considered to have com-
plicated algorithms, but their fault tolerance and overall performance are superior.
Different researchers gave several load balancing algorithms. Here a review of existing
dynamic algorithms has been provided. A few dynamic load balancing approaches
studied categorized as follows:

– Traditional techniques

– Nature-inspired techniques

– Agent-based techniques

– Real-time techniques

– Hybrid techniques

i)Traditional techniques There are various existing algorithms of load balancing
used as per user requirements. Breadth-First Search (BFS) algorithm is used for load
balancing among fog nodes. The selected node is searched first, whether it is the start-
ing node. It traverses the entire network layer-wise, thus exploring the neighboring
nodes (nodes directly connected to the source node). Load balancing can start from
the source node, and then the next-level neighbor nodes are searched [29]. With the
help of graph partitioning of virtual machine nodes, load balancing of task allocation
to various nodes was achieved. Graph partitioning theory can be used to enhance the
load balancing in fog computing nodes [66] [67].
Dynamic resource allocation method (DRAM) is used as a resource in a fog environ-
ment. It is effective and dynamic that works as an aid to provide equilibrium among the
load balance and situations like the slow running of systems to avoid them. The jobs
reaching their deadlines should be immediately assigned to the processor to complete
their execution within its deadline. So DRAM can help to balance the Load in Fog

27

computing [68] [16]. Real-Time Efficient Scheduling Algorithm (RTES) is the method
with which the help of the available bandwidth can balance load and execution of the
real tasks before their deadline. So that lesser time should be taken by intermediate
fog layer to give a response to their clients. [54].
The throttled algorithm assigns one task to a virtual machine at a time, while the
execution of tasks status of the virtual machine remains busy. VM can only perform
a single task at a time, rather than executing multiple tasks [69]. In this algorithm,
a list of virtual machines is prepared by the task manager. Tasks are assigned to the
virtual machines depending upon their size and capability. Load balancer maintains
its index table to keep the record of the status of virtual machines. When the client or
server requests a virtual machine of the data center, the load balancer scans its index
table and checks the availability of VMs. If VMs are available, free VMs are allocated
to the requesting clients/servers [70].
X. Xu et al. [16], and H. Qiao et al. [71] suggested different methods for allocation of
resources in a fog environment for load balancing. Fog computing has given a system
scheme for the inquiry of diversified computer nodes and their load balance. A method
is designed to balance the load in the fog environment that works through dynamic
service migration is named resource allocation. The aim of this technique is load bal-
ancing in all computing layers: cloud and fog nodes. To boost up the load balancing
during the execution of fog services is called a global resource allocation strategy.
Y. Yu et al. [72] presented a new design of a Scalable and Dynamic Load Balancer
(SDLB) for accomplishing the requirements of fog and mobile edge computing. Mobile
Edge Computing (MEC) come up with the migration of computing and stockpile ser-
vices from the remote cloud to the edge of the network. The performance of SLDB is
evaluated and compared with other adopted approaches for load balancing. The POG
has a core algorithm named minimal perfect hashing, and on this ground, a new data
structure was built named SDLB.
S. H. Abbasi et al. [73] proposed a four layers model for the fog with integration to
smart grids. The main perspective of their advanced design is to govern the resources
of a smart grid—the suggested design and work distributed like the six continents of
the world. Four algorithms were used in this work, i.e., Round Robin (RR), Throt-
tled, Particle Swarm Optimization (PSO), and Active VM Load Balancing Algorithm

28

(AVMLB) for load balancing and compared their results based on cost.
A. B. Manju et al. [43] proposed a four-layered architecture of fog computing envi-
ronment in which fog nodes act as proxy servers between the cloud data centers and
end-users. The fog layer reduces the workload on the cloud service providers [22].
Constraint-Based Min-Min Algorithm used for load balancing in fog environment. V.
Velde et al. [41] designed a load-balancing algorithm using a round-robin in Virtual
Machine(VM). Load balancing was found out to be a common and tough issue in cloud
computing. The load is assigned to VM through the processor, and load on the cloud
is stabilised using fuzzy logic. A digital system processor’s speed and load are consid-
ered two contributory parameters to contribute to the fuzzifier in cloud load balancing.
FRR load balancing algorithm carries a higher load in cloud computing than the con-
ventional Round Robin algorithm [74] [19].

Table 2.1: Traditional techniques

Author Algorithm
proposed

Experimental
Parameters

Approach
used

Advantages Disadvantages

Xu, X. et al.
[16]

DRAM Execution
time, Cost

Resource mi-
gration

• Minimized
load balance
variance.
• Improved
resource uti-
lization.

Service migra-
tion cost not
included.

Y. Yu et al.
[72]

SDLB Memory
efficiency,
update speed,
and through-
put

Minimal per-
fect hashing

• Less mem-
ory is used.
• Efficient Re-
source utiliza-
tion

Implementation
cost not con-
sidered.

continued on next page

29

continued from previous page

Author Algorithm
proposed

Experimental
Parameters

Approach
used

Advantages Disadvantages

S. H. Abbasi
et al. [73]

Active VM
Load Balanc-
ing Algorithm
(AVMLB)

Response
time, Cost,
Energy con-
sumption

Demand side
management

• Cost of
energy con-
sumption is
reduced.
• Response
time is re-
duced.

Security can
also be con-
sidered.

D. Puthal et
al. [29]

Adaptive be-
haviour based

Response
time, security

EDC authen-
tication Edge
data centres
are considered
and BFS is
used.

• Enhanced
efficiency.
• Increased
Security.

No real time
scenario is
considered for
results.

Dou, W et al.
[75]

Resource Co
Allocation
method

Start time,
Resource
utilization,
variance

High per-
formance
computing
applications

• Improved
resource uti-
lization.
• Improved
cost and per-
formance.

Energy con-
sumption is
not consid-
ered.

ii) Nature-inspired techniques
These kinds of the algorithm based upon habit of seeking food of animals or insects.
Different researchers have provided many algorithms containing the constant experi-
ence of nature: Honey bee behavior-based load balancing algorithm based on the Honey
bee behavior of collecting food from the beehives. The honey bees came back to their
hives in a dancing mode called dangling after collecting food. This dance form of bees
shows the quality and quantity of remaining food in the beehives. These bees inform

30

the other bees about the foods in the beehives by showing their joyful dangling dance
form, which is like an analog waveform. For load balancing in VMs, the honey bee’s
foraging behavior is followed. The earlier removed task helps find the lightly loaded
VM. In this way, the honey bee behavior is used to balance the load in the VMs [76].
In the Ant colony algorithm, the behavior of Ant while searching the food is considered.
Ants follow the way which other ants follow. The ant colony algorithm reduces the
makespan and also balances the load. If more ants choose a path, that means that path
has high computation power. The tasks in the ant colony algorithm are independent
of each other, computationally rigorous [77]. L. D. Dhinesh Babu [78] proposed an al-
gorithm called honey bee behavior-based load balancing (HBB-LB). The fundamental
objective of this algorithm is load distribution among all virtual machines. The average
time of execution and declining waiting time of the task can be notably be affected by
this. Other existing load balancing approaches are also discussed in this chapter. This
algorithm acknowledges the task preferences assigned to VMs. The load balancing in
VMs is dependent upon the honey bee’s food collecting process and behavior while
collecting food.
De Falco et al. [79]suggested a load balancing technique for the dynamic environment
based upon Extremal Optimization (EO). EO algorithm is used for task migrations dur-
ing the load balancing process. Some factors are considered to solve dynamic methods,
i.e., target nodes and fitness function selection. The authors compared the proposed
algorithm with the existing techniques which were proposed by them, i.e., sequential
extremal optimization-based algorithms.
Mishra, R. et.al. [40] proposed Ant Colony Optimization(ACO) based load balancing
technique. Authors mainly consider load balancing in a distributed environment which
improves response time and utilization of resources. The proposed algorithms consider
the behavior of ants for collecting food. The ants work mainly self-organized than
learning; they mainly follow reinforcement learning. An optimal path was followed to
find food. Babu and Samuel [80] in their recommended approach, i.e., QoS, considered
response time, task migrations as their criterion. In their publication, they represented
honey bees as task governors and VMs as their food resources. To diminish the load on
overloaded VM, the task with the lowest preference has emigrated from one VM to the
other VM. The recommended algorithm with PSO and ACO considered augmenting

31

its performance.

Table 2.2: Nature-inspired techniques

Author Algorithm
proposed

Parameters
considered

Approach
used

Advantages Disadvantages

L. D. Dhinesh
Babu et al.
[78]

HBB-LB Response
time,
makespan,
priority

Task priority • Improved
execution
time.
• Reduced
waiting time.

Only inde-
pendent tasks
are consid-
ered for load
balancing.

Hussein, M.K.
et al. [81]

PSO, and
ACO based
Meta-
heuristic
algorithm

Response
time, and
communica-
tion cost

Foraging be-
haviour for
finding food
sources

• Improved
response
time.
• Reduced
computation
cost.

Power con-
sumption of
nodes is not
considered.

De Falco et al.
[79]

Extremal
Optimization
(EO)

Cost, ef-
ficiency,
execution
time

Task Migra-
tion

• Reduced ex-
ecution time.
• Task mi-
gration is
reduced. •
Increased
resource uti-
lization.

Graph opti-
mization is
not consid-
ered.

continued on next page

32

continued from previous page

Author Algorithm
proposed

Parameters
considered

Approach
used

Advantages Disadvantages

Babu and
Samuel et
al. [80]

Honey bees
foraging be-
havior

Makespan,
Response
time

Honey bee
technique
is used to
reduce the
response time
and improve
resource uti-
lization.

• Low re-
sponse time.
• High re-
source use.
• Lower num-
ber of task mi-
grations.

Less scala-
bility, More
complexity.

Devi et al. [82] Weighted
Round-
Robin(WRR)

Completion
time, Task
migration

Execution
time is con-
sidered.

• Reduced re-
sponse time

Only ho-
mogeneous
environment
is considered
for execution.

Mishra, R. et
al. [40]

Heuristic
algorithm has
been consid-
ered based
upon ACO to
balance load

Makespan,
energy con-
sumption,
throughput

Heuristics al-
gorithms are
analyzed

Minimized
CPU load,
memory con-
sumption,
load on net-
work.

No clusters
are con-
structed

iii)Agent-based techniques
The agent-based technique works upon real-time information. Each server has an agent
in the server pool that keeps track of its current load and provides it to the load bal-
ancer. The load balancer decides according to this information while assigning the
tasks to the servers. Singh, A et al. [83] proposed Agent-based Automated Service
Composition (A2SC) for resource provisioning in the cloud environment. The authors
mainly focus on the reduction of VM costs and equal distribution of resources. Java

33

has been used to get the experimental results. They considered four data centers hav-
ing different platforms. The main aim is to provide efficient service allocation in the
data centers.
Alam, M.G.R et.al [84] [85] proposed Multi-agent based offloading in mobile fog. Re-
inforcement learning-based techniques are used to reduce the latency of delivering ser-
vices to mobile users. Mobile codes are deployed on mobile fogs that are geographically
distributed. Agents act as the entity that has pre-knowledge about the environment.
Agents learn from the environment. This method aims to reduce execution time and
reduce the time to access services by mobile users. OmNet++ is considered to find the
simulation results.
Chen, C et al. [86] developed an agent-based task assignment technique for load bal-
ancing in the cloud. They have implemented fair competitive and dynamic adjustment
principles for task allocation. The primary purpose of this work was to improve re-
source allocation and resource utilization. Simulation results have been taken using
CloudSim. With this technique, the processing time increased.

Table 2.3: Agent-based techniques

Author Algorithm
proposed

Experimental
Parameters

Approach
used

Advantages Disadvantages

Singh, A et al.
[83]

Agent based
Automated
Service Com-
position
(A2SC)

Response
time, resource
utilization

Modularization
of agents.

• VM cost is
reduced. •
Complexity is
reduced.

Increased cost
for maintain-
ing security.

Alam, M.G.R
et al. [85]

Multi-agent
based

Execution
time, energy
consumption,
latency

Distributed
reinforcement
learning

•Reduced la-
tency.
•Reduced ex-
ecution time.

Privacy of
mobile users
is not consid-
ered.

continued on next page

34

continued from previous page

Author Algorithm
proposed

Experimental
Parameters

Approach
used

Advantages Disadvantages

Chen, C et al.
[86]

Agent Based
Allocation
Algorithm
(ABAA)

Execution
time, re-
sponse time

Fair compe-
tition and
dynamic
adjustment
principle.

•Improved re-
source alloca-
tion and uti-
lization.

Processing
and transmis-
sion time is
more.

Keshvadi et
al. [87]

Multi-agent
based load
balancing
technique

Makespan,
degree of
imbalance,
response time

Multi agents
helps to max-
imize the re-
source useage.

• Reduced re-
sponse time.
• Better re-
source use.
• Improved
make span.

DcM agents
do not have
timers to
self destroy
themselves.

iv) Real-time based techniques
These kinds of algorithms exhibit real-time behavior. These algorithms try to improve
latency and execution time. A scheduling table for load balancer is formed before the
simulation, and this table is modified at run time according to the changes that oc-
curred dynamically. M. A. Elsharkawey et al. [88] developed real time-efficient (RTES)
algorithm for fog load balancing. According to their recommendations, fog computing
architecture furnishes a setup approach for load balancing. The algorithm concentrates
on real tasks to be achieved within a definite period and increases throughput and net-
work utilization. The intention of RTES balances the load by utilizing bandwidth and
responding to the clients in a limited period. CloudSim tool is pre-owned to resolve
the load balancing algorithm in the fog computing environment.
According to B. Sotomayor et al. [89] and Dsouza et al. [62] round-robin algorithm is
used for load balancing in a fixed environment. In this, the resources are merited on
their time-sharing manner, i.e., based on the first-come-first-serve (FCFS). The node
that will have the least number of connections is assigned the task.

35

Table 2.4: Real-time based techniques

Author Algorithm
proposed

Experimental
Parameters

Approach
used

Advantages Disadvantages

M. A.
Elsharkawey
et al. [88]

RTES Turnaround
time,
through-
put

Real tasks
completion
within dead-
line

• Improved
throughput.
• Increased
network uti-
lization

Less scalable
and more
complexity.

Verma, M. et
al. [54]

Real time effi-
cient schedul-
ing algorithm

Network
utilization,
turnaround
time,
through-
put

Real time
streaming

• Less band-
width utiliza-
tion
• Low fault
tolerance.
• Increased
throughput.

Low effi-
ciency.

Wang, J. et
al. [90]

Discrete-
differential
evolution
approach has
been used
to design
fog node
deployment
algorithm

Time, space,
load

space time
characteristic
based strat-
egy has been
used

• Response
time is re-
duced
• Improved
real-time per-
formance.
• Effective
load balanc-
ing.

Energy con-
sumption in
fog nodes is
not consid-
ered.

v)Hybrid techniques
These kinds of algorithms are in a combination of one algorithm to the other. These
approaches combine characteristics of two or more different techniques to make an effi-
cient approach for load balancing. A centralized controller controls all the functionality

36

in a meta-heuristic approach, i.e., data interchange, mutation-based upon fitness func-
tion, to better map virtual machines hosts. In a meta-heuristic approach, a problem
can be solved by following a few sets of operations. Mainly this algorithm is inspired
by other existing load balancing algorithms, i.e., honey bee behavior-based load bal-
ancing, particle swarm optimization (PSO), ant colony optimization (ACO) [91] [92].
N. Song et al. [67] presented a scheme owned to transform physical nodes into virtual
nodes by cloud automation technology in the fog computing environment. The graphic
representation given in which fog nodes were expressed by vertex and task dependen-
cies and used the edges expressed bandwidth. A layered framework was provided, and
the graph was constructed using a Cloud automation system.
H. Menon et al. [66] provided graph repartitioning and mapping-based load balancing
algorithms for parallel computing. They provided an automatic load balancing system
along with an adaptive run time system. S. Verma et al. [93] put forward a productive
algorithm for load balancing for a fog-cloud-based architecture. Data replication is used
to minimize the complete dependency on big data centers and maintain fog networks.
Data replication in datacentres is used to reduce the use of bandwidth [93]. The data
replication technology emphasizes data maintenance and reduces overall dependency
in fog networks on big data centers. They also compared the present cloud-based load
balancing techniques with fog-cloud-based techniques. This algorithm aims to balance
load through the fog network, which reduced the cloud dependency of the internet
users by providing data closer to the users. They proposed a three-tier fog computing
architecture comprised of the ground tier, edge tier, and core tier. CloudSim 3.0 is
used to implement a load balancing mechanism in the Fog environment.
K. Dasgupta et al. [94] had given an algorithm for load balancing utilized to spot the
globally optimal solution in complex or vast search space. This algorithm follows a
manner that first initializes and then evaluates the fitness values. It gives an optimal
solution to found out the chromosome with the lowest fitness twice and eliminates it
with the chromosome of highest fitness. The primary function of this algorithm is to
reduce the cost function.
Meftah, Ali et al. [95] modeled the behavior of "Facebook applications" and studied
service broker policy and algorithms of load balancing to check the performance of dat-
acentres and large internet applications. They measured the performance of Facebook

37

applications based on a few parameters. They applied service broker policies, i.e., clos-
est datacentre and three algorithms(throttled, round-robin, and equally spread current
execution) used for load balancing. Service broker policy considers the configuration of
the datacentre and load balancing as prime factors. It helps route the traffic between
datacentres and users with the various policies, i.e., minimal response time and nearby
placement of data-centers policy.
Mohanty et al. [91] and Naqvi, Syed Aon Ali et al. [92] provided Meta-Heuristic
approach-based load balancing. They used the PSO algorithm for equal distribution
of tasks and to enhance resource utilization. CloudSim is used as a simulation envi-
ronment. Mao, Yingchi et al. [96] proposed a load balancing approach based upon a
load prediction model named Adaptive Load Balancing Algorithm(ALBA). The new
resources are added if the workload is more than the maximum threshold, and if the
load is less than the minimum threshold, then resources are removed from the cluster.
The main motive is to balance the workload among all resources and to reduce the
response time. The authors also introduced a load prediction model to increase load
prediction accuracy. CloudSim is used as a simulation model to show the experimental
results.
Few more papers have been studied from the current year. Various researchers are
working in load balancing in fog computing, and they have provided many load bal-
ancing techniques. Some of the techniques have been discussed below:

Beraldi, R. et al. [97] proposed two load balancing approaches to resolving resource
management problems in load balancing, i.e., adaptive and sequential forwarding al-
gorithms. To evaluate their proposed algorithms, the authors considered a real-time
scenario of a smart city. They combined theoretical models with a simulation approach.
They tried to reduce the response time by 19%, and the loss rate has been reduced to
0.2%. To obtain simulation results, Omnet++ has been used.

Beraldi, R et al. [98] probe-based load balancing algorithm to resolve problem of load
distribution in fog nodes. They mainly focus on selecting fog nodes to allocate incoming
jobs. The proposed approach is based on mathematical and simulation models.

Rehman, A.U. [99] proposed a dynamic load balancing strategy based on energy-
efficient resource allocation. The authors mainly focus on providing energy-aware

38

solutions of load balancing for fog and edge devices. They have used CloudSim to
evaluate simulation results. The authors considered energy efficiency and cost param-
eters to assess the proposed approach, and energy has been reduced to 8.67%, and cost
to 16.77% compared to the DRAM approach.

Singh, S.P. [100] studied various existing approaches of load balancing and compared
them based on different parameters. The authors provided a taxonomy of different
load balancers by comparing them and provided their applications also. The authors
also focused on providing an energy-efficient load balancing approach.

Singh, S.P. [101] proposed a fuzzy-based load balancing algorithm. Authors have de-
veloped a fuzzy-based load balancer with different design levels of fuzzy control. The
proposed load balancer has four layers, i.e., data center layer, core layer, fog access
layer, and fog device layer. They mainly focus on traffic splitting in fog networks.

Table 2.5: Hybrid load balancing techniques

Author Algorithm
proposed

Experimental
Parameters

Approach
used

Advantages Disadvantages

N. Song et al.
[67]

Cloud at-
omization
technology

Running
time, Node
migration

Graph re-
partitioning

• Improved
system per-
formance.
• Equilibrium
time and cost
improved.

Resource uti-
lization can
be improved.

H. Menon et
al. [66]

Graph re-
partitioning
and mapping
based tech-
nique.

Execution
time, object
migration
cost

Automatic
load balanc-
ing as well as
adaptive run
time.

• Improved
performance.
• Increased
execution
time.

Implementation
cost not con-
sidered.

continued on next page

39

continued from previous page

Author Algorithm
proposed

Experimental
Parameters

Approach
used

Advantages Disadvantages

S. Verma et
al. [93]

Data replica-
tion technique

Response
time, execu-
tion time

Maximal uni-
form distribu-
tion

• Reduced
cloud de-
pendency
of users.
•Improved
response time
Less reliabil-
ity.

Less security.

K. Dasgupta
et al. [94]

Genetic Algo-
rithm (GA)
based load
balancing

Response
time, cost

Natural selec-
tion and ge-
netics.

Minimized
make span.

Less efficiency

Meftah, Ali et
al. [95]

Throttled,
Round Robin,
and Equally
spread cur-
rent execution

Response
time, request
processing
time, opera-
tional cost

Service broker
policy

• Improved
performance
of “facebook
applications”.
• System
response time
improved.

Low security.

Mohanty et
al. [91]

Meta-
Heuristic
approach-
based load
balancing

Makespan,
Economic
cost, resource
utilization,
waiting
time, and
turnaround
time

Particle
Swarn
Optimiza-
tion(PSO)

Increased re-
source utiliza-
tion.

Less scalabil-
ity

40

This section thoroughly studied different load balancing techniques and discussed their
advantages and disadvantages. The following table 2.6 compares existing load balanc-
ing techniques in detail based upon the approaches used.

Table 2.6: Detailed approaches used in existing load balancing algorithms

Author,Journal(impact
factor)

Algorithm Approach Simulator Application

V. Velde et al.
[41], IEEE con-
ference

Round
Robin(RR)

Designed load bal-
ancing algorithm ba-
sis of fuzzy tech-
nique.

Fuzzy Inference
System (FIS)

Cloud systems,
Information
centers.

M. Verma [54],
International
Journal of
Information
Technology and
Computer Sci-
ence (0.765)

Real Time Effi-
cient (RTES)

Proposed fog com-
puting architecture
providing scheduling
policy for load bal-
ancing.

CloudSim Real time
streaming ap-
plications, IoTs,
Sensor net-
works.

Q. Fan et
al. [49],IEEE
Transactions on
Network Science
and Engineer-
ing(3.894)

LoAd Balancing
(LAB) scheme

Load balancing algo-
rithm was proposed
to reduce the latency
of data flows of IoT
devices

Base Sta-
tions(BS) are
deployed for
simulation re-
sults

Base stations,
mobile cellular
core

continued on next page

41

continued from previous page

Author,Journal(impact
factor)

Algorithm Approach Simulator Application

X. Xu et al. [16],
Wireless Com-
munications and
Mobile Comput-
ing(2.336)

Dynamic Re-
source Allocation
Method(DRAM)

Distinct forms of
computing nodes
have been given to
investigated, for fog
computing and load
balance.

CloudSim IoT applica-
tions

D. Puthal et
al. [29],Jour-
nal of Paral-
lel and Dis-
tributed Com-
puting(3.734)

Adaptive EDC
authentication
technique

Intended peculiar
load balancing way
outs to verify the
Edge data centres
(EDCs) and detect
fewer loaded EDCs
for task allocation.

Scyther simu-
lation environ-
ment

Edge data cen-
tres (EDC)

N. Téllez et
al. [28], Interna-
tional Journal
on Artificial
Intelligence
Tools(0.778)

Tabu Search
Method

Proposed opti-
mal load bal-
ancing method
by using Integer
linear Program-
ming(ILP),otimal
task allocation and
to reduce memory
consumption and
cost of computation.

Synthetic task
scenarios are
used for experi-
mental results,
embedded de-
vices are also
used.

Smart grids,
smart traffic

continued on next page

42

continued from previous page

Author,Journal(impact
factor)

Algorithm Approach Simulator Application

M. Zahid
et.al. [102],
Advances on
P2P, Parallel,
Grid, Cloud
and Internet
Computing

Hill Climbing
Load Balancing

A three layered
framework is pro-
vided to resolve
electricity problems
of the users. Service
broken policy is
used to implement
the proposed algo-
rithm to reduce the
response time and
processing time.

Cloud Analyst
tool

Smart build-
ings, smart
meters, smart
grids

S. H. Abbasi
et al. [73],
International
Conference on
Broadband
and Wireless
Computing,
Communication
and Applications

Active VM Load
Balancing Algo-
rithm (AVMLB)

Proposed four layer
based fog computing
model to manage re-
sources of smart grid.

Cloud Analyst Smart
Grid(SG)
and Micro
Grid(MG)

Y. Yu et al. [72],
Proceedings of
the Workshop
on Mobile Edge
Communications

Scalable and Dy-
namic Load Bal-
ancer (SDLB)

Mobile Edge Com-
puting (MEC) has
been proposed to
move computing and
storage services from
cloud to edge.

POG data
structure.

Mobile Edge
comput-
ing(MEC)

continued on next page

43

continued from previous page

Author,Journal(impact
factor)

Algorithm Approach Simulator Application

L.D. Dhinesh
Babu [76], Ap-
plied Soft Com-
puting,6.725

Honey Bee Be-
havior based
Load Balancing
(HBB-LB)

Proposed load bal-
ancing algorithm to
thoroughly balanced
load in virtual ma-
chine.

CloudSim Robotics

N. Song et
al. [67], China
Communica-
tions(2.688)

cloud automa-
tion technology

Presented a frame-
work to transform
the tangible nodes of
fog computing into
virtual nodes

Cloud automa-
tion system

Delay sensitive
application,
graph theory.

Mao, Yingchi
et.al. [96], Pro-
ceedings of
the Second
International
Conference
on Innovative
Computing and
Cloud Comput-
ing

Adaptive Load
Balancing Algo-
rithm(ALBA).

Load prediction
model (ALBA)
based load balancing
approach has been
proposed, that fo-
cused upon optimal
resource utilization
and to reduce re-
sponse time.

CloudSim Web applica-
tions

continued on next page

44

continued from previous page

Author,Journal(impact
factor)

Algorithm Approach Simulator Application

S. Verma et
al. [93], IEEE
Conference, and
A. Nahir [59],
IEEE Transac-
tions on Parallel
and Distributed
Systems(2.68)

Data replication
technique

Proposed an effective
load balancing algo-
rithm for a fog-cloud
architecture

CloudSim 3.0 Applied on het-
erogeneous plat-
forms

M. J. Ali et
al. [74], In-
ternational
Conference on
Intelligent Net-
working and
Collaborative
Systems

State-Based
Load Balancing
(SBLB)

A four layer cloud-
fog based architec-
ture is proposed for
effective allocation of
tasks. Different load
balancing algorithms
are implemented,
their results are
compared.

Cloud Analyst
tool

Tried to reduce
electricity con-
sumption

A. Chawla et al.
[103], Big Data
Analytics

Package-based
load balancing
algorithm

Load balancing is
done by performing
virtual machine
replication and
grouping the pack-
ages.

CloudSim For proper uti-
lization of re-
sources, and to
reduce the exe-
cution time.

continued on next page

45

continued from previous page

Author,Journal(impact
factor)

Algorithm Approach Simulator Application

N. Kumar [104],
Information and
Communication
Technology for
Sustainable De-
velopment

Fuzzy row
penalty method

Fuzzy based load bal-
ancing technique is
followed to reduce
the uncertain time
required to response
in fuzzy cloud envi-
ronment

CloudSim Fuzzy cloud en-
vironment

J. Wan et al.
[105], IEEE
Transactions on
Industrial Infor-
matics(10.215)

Energy aware
Load Balancing
and Schedul-
ing(ELBS)

Mainly focus to
check the effects of
service broker policy,
and load balancing
algorithms on data
centres, and large-
scale applications

Robots were
setup which
were attached
with raspberry
pie board

Packaging of
candies in a
Smart factory

Meftah, Ali et
al. [95],Interna-
tional journal of
advanced com-
puter science
and applica-
tions(1.3)

Service Broker
Policies Based
load balancing

Workload on the fog
nodes is measured by
establishing energy
consumption model,
and then an opti-
mization function for
load balancing was
provided.

Cloud Analyst Facebook appli-
cations

continued on next page

46

continued from previous page

Author,Journal(impact
factor)

Algorithm Approach Simulator Application

Naqvi, Syed
Aon Ali et al.
[92], Interna-
tional Journal
of Knowledge-
Based Organi-
zations(0.498),
and Mohanty
et.al. [91]

Meta-Heuristic
approach based
load balancing

Particle Swarn Opti-
mization(PSO) algo-
rithm have been im-
plemented for equal
distribution of tasks,
and to increase the
resource utilization.

CloudSim Web applica-
tions

Talaat, F.M.
et al. [106],
Journal of Ambi-
ent Intelligence
and Human-
ized Comput-
ing(7.14)

Load balancing
and optimization
strategy (LBOS)

Modified weighted
round robin tech-
nique has been
proposed which
is named as
AWRR(Adaptive
WRR). Proposed
technique is applied
in fog computing
environment in order
to enhance quality of
service.

MATLAB E-healthcare
application

continued on next page

47

continued from previous page

Author,Journal(impact
factor)

Algorithm Approach Simulator Application

Beraldi, R.
et al. [97],
Pervasive and
Mobile Comput-
ing(3.453)

Two algorithms
have been pro-
posed i.e. Se-
quential and
Adaptive For-
warding

The proposed algo-
rithms aims to an-
ticipate load balanc-
ing in the fog en-
vironment. They
have used self tun-
ing adaptation tech-
nique to enhance sys-
tem performance.

Omnet++
framework

E-healthcare
application

Shahid, M.H. et
al. [107],Com-
puter Communi-
cations(3.167)

Load balancing
and content-
filtration algo-
rithms have been
proposed

caching mechanism
has been proposed to
ensure data delivery
in fog environment.
Proposed two dif-
ferent algorithms to
implement load bal-
ancing which helps
to reduce energy
consumption in fog
computing.

Python for
programming,
and caching
simulation en-
vironment is
used to obtain
results

Notice board
case study has
been considered

continued on next page

48

continued from previous page

Author,Journal(impact
factor)

Algorithm Approach Simulator Application

Bhatia,
M. et
al. [108],
Comput-
ing(2.495)

Load schedul-
ing algorithm
(QCI) has been
proposed that
is inspired from
quantum com-
puting

A quantumized
scheduling approach
has been proposed
fog applications. A
node based comput-
ing idex is defined
for computational
capacity estimation.

iFogSim Wireless ap-
plications were
considered that
were located at
end users

This section has discussed various load balancing algorithms, which mainly depend
upon their initiation process and current state. These approaches are applied to fog,
cloud layers for load balancing, and better utilization of resources. The studied tech-
niques are grouped into two different categories, and taxonomy is presented in detail.
Figure 2.3 provides the taxonomy of load balancing techniques and provides the cur-
rent research work in load balancing.

49

Figure 2.3: Taxonomy of existing load balancing techniques
50

2.2.1 Literature review

Many researchers have explored the area of fog computing. This section covers the
review of different research works conducted in scheduling and load balancing in cloud
and fog computing. A literature review of some research work done in fog computing,
managing load balancing, and task scheduling in workflows has been conducted. Many
types of research work provided different techniques for scheduling the workflows, but
load balancing still needs more exploration. Load balancing techniques need to be pro-
vided for proper resource utilization in fog computing while processing scientific work-
flows. This section represents various approaches proposed by different researchers for
load balancing in fog computing. Related work has been divided into three parts, i.e.,
cost-based, resource-utilization-based, and energy-aware load balancing approaches.
Following is the review of some recent research works in fog computing:

2.2.2 Cost-based load balancing

Xie Y et al. [109] formalized scheduling problems in business workflow applications
and proposed a novel PSO-based approach named DNCPSO to reduce the cost and
makespan. The proposed algorithm is an improved PSO form that applies a directional
search process to select data and mutation operations. In their experimental work,
authors executed different workflows by considering various factors, cost, and time
and compared them with the existing approaches to prove them better. Li, Chunlin,
et al. [110] proposed a workflow scheduling algorithm for cloud resources based upon
load balancing. They offered a model for workflow scheduling in the distributed cloud
environment. This system model helps to reduce the system’s response time while
executing workflows. The authors proposed a workflow scheduling algorithm based
upon the shortest path technique to reduce the execution time of tasks and energy
consumption in cloud data centers. They developed social media applications and
considered live video applications of workflows to implement their proposed scenario.

Rizvi et al. [111] proposed a workflow scheduling policy to reduce the computational
cost and execution time; they named it a fair budget scheduling algorithm. They
implemented different scientific workflows and compared their results with their pro-

51

posed technique. They verified the provided results through the ANOVA test to prove
the effectiveness of their approach. De Maio V et al. [112] proposed a multi-objective
workflow offloading approach called MOWO for task distribution in the fog environ-
ment. Their proposed approach’s main objective is to reduce execution time, enhance
reliability, and reduce financial costs. The authors considered real-world workflows for
execution and obtained results, i.e., meteorological, biomedical, and astronomy work-
flows. The proposed approach is compared to the existing approach HEFT and reduced
response time to 30%.

Tellez, N. et al. [28] proposed a tabu search algorithm to implement load balancing in a
fog-cloud environment. They have considered two cost functions, one for computational
cost in fog and the other for the cloud. The proposed approach tabu search ensures
online calculations in the fog layer to ensure increased processing of tasks at the fog
layer itself. Beraldi, R., et al. [97] proposed two load balancing algorithms to solve
problems of resource management. The authors used fog node populations different
in number, configuration, and processing power to evaluate their proposed approach.
They combined both simulation and mathematical model-based approaches to verify
their proposed approach’s performance—the proposed approach reduced response time
to 19% and a loss rate to 0.2%.

Ding, R. et al. [113] proposed a PSO-based approach for scientific workflow schedul-
ing. They used the fitness function to keep track of the execution of workflows under
deadlines. They developed an e-healthcare app for monitoring heart rate and tried to
reduce the execution cost of workflows. They provided different workflow models for
fog computing. Rehman, A. et al. [114] proposed an algorithm for workflow schedul-
ing and named it a multi-objective genetic algorithm (MOGA). They mainly focus on
reducing the makespan and on reducing energy consumption in cloud resources. They
considered a few parameters to ensure proper resource utilization, i.e., budget, make-
span, energy consumption, cost.
Xie, Y et al. [109] proposed a PSO-based workflow scheduling algorithm to reduce cost
and make-span in the cloud-edge environment. WorkflowSim simulation is used to
provide simulation results. They included Sipht, Epigenomics, Montage, CyberShake,
and Inspiral workflows for experimental analysis. Zhou, X. et al. [115] proposed a
fuzzy-based workflow scheduling algorithm for the cloud to reduce make-span and cost

52

optimization. They proposed different workflow models for the cloud environment.
They implemented real-time workflow simulations on jMetal simulator. Serhani, M.A.
et al. [116] proposed architecture for the cloud to execute IoT workflows. The proposed
architecture keeps track of the current VM load and its capacity, state of applications,
and if any recovery action is required, it acts accordingly. The QoS parameters, i.e.,
cost and time, Scalability, are considered to enhance proper resource utilization. Docker
Swam Cluster, along with PostgreSQL used for simulation results.
Bittencourt, L.F. et al. [117] proposed an HCOC scheduling approach for the cloud
environment to reduce cost and execution time of tasks in cloud data centers. HCOC
tried to execute all workflow tasks in private cloud resources based on pay peruse. Xu,
R. et al. [118] proposed an improved PSO-based scheduling algorithm for workflow
application to reduce the execution time of workflows than existing PSO algorithms
that will help to reduce the execution cost of workflows. They used MATLAB for
experimental results.

Naik, K.J. et al. [119] proposed a scheduling model to balance the load in fog computing-
based connected car applications. The tasks are scheduled at the server level rather
than the device level. The proposed load optimization model examples are used to re-
duce runtime and deadline. iFogSim is used to show the results. Puthal, D. et al. [120]
proposed a secure load balancing approach for edge data centers. The cloud data cen-
ters help authenticate the end-users to build a secure connection between end-users
and edge computing devices. They proposed a secure and sustainable approach for
load balancing in edge data centers.

2.2.3 Resource-utilization based load balancing approaches

Javadzadeh, Ghazaleh et al. [121] provided a systematic review of existing literature
by studying existing approaches in fog computing. According to the authors, fog
computing is the best solution for the limitations of cloud computing. Singh, Simar
Preet [101] proposed a fuzzy-based load balancer to reduce the resource wastage in fog
computing. They also provided a fuzzy-based three-tier model for the load balancer

53

based on the software-defined distribution of tasks. They have used both theoretical as
well as empirical experiments. They tried to improve resource utilization and reduce
costs.

Ding, Ruimiao, et al. [113] proposed a scheduling approach based upon Particle Swarm
Optimization (PSO) and Min-Min strategy. They define different workflow models, i.e.,
time and cost models, based on resource cost and execution time in a fog computing
environment. The fitness function is used to calculate the execution cost of workflow
implementation. For the simulation results, java JDK 1.7 has been used. The work’s
main focus is to reduce the implementation cost by finishing the tasks before their dead-
line. Elsherbiny, Shaymaa, et al. [122] proposed Intelligent Water Drop (IWD) based
algorithm for workflows scheduling in the cloud environment. They applied different
workflows to the Workflow simulator, i.e., cybershake, sipht, epigenomics, to compare
their make-span with the proposed algorithm. De Falco, et al. [79] proposed extremal
optimization (EO) based load balancing approach. In the proposed EO approach, dur-
ing the load balancing process, task migrations are done. The authors considered few
factors in evaluating EO’s performance, i.e., fitness function and target nodes. The
authors compared their proposed approach to their previously proposed approach, i.e.,
sequential-extremal optimization algorithms.

Liao, S. et al. [123] developed a framework for optimizing training task distribution by
considering communication cost and physical computing to reduce data transfer error
at every device. They considered machine learning for their experimental evaluation
and proved that their proposed network-aware approach reduces model training cost
and enhances accuracy. The authors implement their experiments on synthetic and
real-world data to confirm network resource utilization improvement by their proposed
algorithm. M. Kaur et al. [124] developed fog computing architecture for load bal-
ancing in scientific workflow application that is named as FOCALB. The paper also
proposed a hybrid load balancing approach i.e. Tabu-GWO-ACO. The proposed ap-
proach aimed at maximum resource utilization and reduce implementation cost and
energy consumption in fog layer. The results have been obtained using iFogSim toolkit
and the obtained resuls are compared with other existing approaches on the basis of
considered parameters i.e. cost, energy, time.

54

Biswas, T et al. [125] proposed PSO based algorithm for scheduling workflows con-
sidering different parameters like resource utilization, makespan, load balancing, and
speedup ratio to design the fitness function. They considered real-time workflows
for simulation results, i.e., LIGO, SIPHT, Epigenomics, and Montage. The proposed
algorithm tried to improve the speedup ratio and make-span. They also applied the
ANOVA test to prove their provided result to be better than other existing approaches.
Aron, R [126] proposed a resource provisioning model to analyze scientific workflows.
The author aims to incorporate an efficient resource provisioning strategy to improve
VM performance in the cloud environment. They proposed a hyper heuristic-based
scheduling algorithm to decrease the makespan and cost also.
Singh, S.P. et al. [101] designed a fuzzy-based load balancer to maintain the payload
and load balancing between the fog and cloud environments. The authors proposed
an energy-efficient fuzzy-based three-level design for load balancing in fog networks.
They also proposed a fuzzy-based load balancing approach to manage traffic between
cloud and fog. C.-F. Lai et al. [127] proposed NAT based load balancing approach
for resources in fog computing. The proposed load balancing approach is ICE based,
and used three layer fog architecture containing TURN servers at the edge of network
that are monitored by fog nodes controllers. The authors considered two parameters
for analysing i.e. maximum load, and controller latency. It has been obtained that
maximum load has been applied to the nodes and observed that the proposed method
distributes cloud load and avoid transfer server load to the users. L. F. Bittencourt et
al. [128] have proposed a health monitoring system for minimizing network usage and
latency, and proposed model is based on fog architecture. Along with this, a load bal-
ancing approach has been proposed. The authors used iFogSim toolkit for validation
of the effectiveness of their proposed approach.

2.2.4 Energy-aware load balancing approaches

Shahid, Muzammil Hussain, et al. [107] proposed load balancing and content filtering
based energy-aware mechanisms. In their proposed approach, they applied load dis-
tribution among fog nodes in a random manner. Then content filtration is done on
active nodes. The proposed load balancing algorithm helps to increase the efficiency

55

of the system. Kaur, Mandeep et al. [55] proposed a load balancing technique based
on equal workload distribution. The provided approach is implemented using a cloud
analyst tool, and results are compared with round-robin and throttled load balancing
techniques. The chapter tries to reduce the implementation cost in the fog environ-
ment and improve resource utilization. D. Baldo et al. [129] has proposed a LoRaWAN
architecture for Smart waste management. The proposed system is deployed at the
edge of the network. Smart bins are designed that are deployed in the city contain-
ing capability of their own data collection. Video surveillance units are deployed to
monitor the bins. The smart bins contains photo Voltaic panels for energy saving.

Saroa, Mandeep Kaur et al. [130] proposed architecture for innovative application in
fog computing, i.e., intelligent waste management systems. The authors also discussed
different fog computing applications. They also studied load balancing in a fog envi-
ronment and compared the existing techniques. Wadhwa, Heena et al. [131] proposed
additional resource provisioning and scheduling techniques in a fog environment. The
authors studied fog computing-related to other models and proposed architecture of
fog computing for e-healthcare. It also provides the challenges faced by IoT and their
solutions through fog computing.Shahid, M.H. et al. [107] proposed an energy-aware
mechanism in which they applied load balancing and content filtering on fog networks.
Each active node is analyzed based on its energy level and several current neighbors.
After analyzing nodes, the necessary content is cached in these nodes by applying the
filtration process. The authors also proposed a load balancing algorithm to enhance
system performance. The authors considered a notice board case study for the exper-
imental results. The Fog-based caching simulation environment is used for simulation
results, and Python is used for programming purposes.
Choudhary, Anita, et al. [132] has proposed a VM placement-based energy-aware load
balancing algorithm. Their proposed approach uses a task clustering approach to re-
duce energy consumption in cloud data centers. The proposed approach is based on a
min-min algorithm and combines smaller tasks into large tasks to reduce virtual ma-
chines’ burden. Kaur M et al. [133] proposed an energy-aware load balancing technique
for the fog computing environment. They considered scientific workflow applications to
execute in fog computing using iFogSim. The proposed approach tries to enhance re-
source utilization by reducing latency and reduce energy consumption in fog nodes. R.

56

K. Naha [134] proposed an energy-aware resource allocation method based on multiple
linear regression. The proposed approach tries to reduce failures that occurred in fog
computing because of energy constraints. Along with this, an energy-aware framework
has been proposed to execute different applications in fog. The proposed approach
has been compared with other existing approaches, reducing execution and processing
time.

Al-khafajiy et.al. [135] proposed COMITMENT, a trust management-based approach
for fog computing to secure fog nodes. To monitor fog resources, they proposed a
load balancing algorithm that helps to monitor fog resources’ performance and reduces
congestion on fog with offloading. They considered CPU consumption, fog security
while applying load balancing. De Maio et al. [112] proposed a multi-objective task
offloading approach in fog computing for workflows. They considered biomedical, as-
tronomy, and meteorological workflow examples to evaluate their proposed approach.
They claimed that their proposed MOWO approach reduced the response time to 30%
in small tasks. They modeled workflow problems in the fog-cloud environment while
considering three different parameters cost, response time, and reliability.
Naqvi, S.A.A et.al. [92] proposed ACO based load balancing in fog-cloud computing.
They also proposed three layer-based fog-cloud architecture for smart grids. They tried
to prove ACO results to be better than a round-robin and throttled. They provided
simulation results using NetBeans. They tried to reduce processing time and energy
consumption by fog nodes. Talaat, F.M. et al. [106] proposed a load balancing algo-
rithm (LBOS) for fog computing and implemented it in healthcare applications. They
proposed a three-layer architecture for Fog-IoT. This algorithm aims to reduce response
time and allocation cost. The proposed algorithm helps monitor network traffic, and it
equally distributes the incoming user requests between the available servers. The au-
thors ensure load balancing (85.71%) and resource utilization through their proposed
approach in a fog environment.
Al-khafajiy et.al. [135] proposed COMITMENT, a trust management-based approach
for fog computing to secure fog nodes. To monitor fog resources, they proposed a
load balancing algorithm that helps to monitor fog resources’ performance and reduces
congestion on fog with offloading. They considered CPU consumption, fog security
while applying load balancing. De Maio et al. [112] proposed a multi-objective task

57

offloading approach in fog computing for workflows. They considered biomedical, as-
tronomy, and meteorological workflow examples to evaluate their proposed approach.
They claimed that their proposed MOWO approach reduced the response time to 30%
in small tasks. They modeled workflow problems in the fog-cloud environment while
considering three different parameters cost, response time, and reliability.
Naqvi, S.A.A et.al. [92] proposed ACO based load balancing in fog-cloud computing.
They also proposed three layer-based fog-cloud architecture for smart grids. They tried
to prove ACO results to be better than a round-robin and throttled. They provided
simulation results using NetBeans. They tried to reduce processing time and energy
consumption by fog nodes. Talaat, F.M. et al. [106] proposed a load balancing algo-
rithm (LBOS) for fog computing and implemented it in healthcare applications. They
proposed a three-layer architecture for Fog-IoT. This algorithm aims to reduce response
time and allocation cost. The proposed algorithm helps monitor network traffic, and it
equally distributes the incoming user requests between the available servers. The au-
thors ensure load balancing (85.71%) and resource utilization through their proposed
approach in a fog environment.

The following table 2.7 provides a review of existing load balancing and scheduling
techniques in workflows. Existing approaches have been compared based on their
execution environment, objectives, performance metrics considered for evaluation, and
the experiment’s application.

Table 2.7: Comparison of load balancing techniques considered in related work

Year Author Environment Objective Performance
metrics

Applications

continued on next page

58

continued from previous page

Year Author Environment Objective Performance
metrics

Applications

2019 Ding,
Ruimiao,
et al. [113]

Java with
JDK 1.7

To provide
cost-effective
schedul-
ing policy
for multi-
workflow

Execution
cost and time

Heart rate
monitoring

2019 Li, Chunlin,
et al. [110]

WorkflowSim
simulator

To provide
workflow
scheduling
based on load
balancing to
utilize the
resources of
cloud effi-
ciently

Execution
Time, System
Performance,
Cost

Real live
video

2020 Rizvi et al.
[111]

CloudSim
simulator

To schedule
the task fairly
and mini-
mized the
makespan to
satisfy finance
constraints

Computation
cost and
makespan

Amazon’s
EC2

continued on next page

59

continued from previous page

Year Author Environment Objective Performance
metrics

Applications

2017 Choudhary,
Anita, et
al. [132]

WorkflowSim
simulator

To provide an
energy-aware
load balanc-
ing technique
for workflows
in the cloud
environment.

Energy con-
sumption

Scientific ap-
plications

2017 Elsherbiny,
Shaymaa, et
al. [122]

WorkflowSim
simulator

To develop
the workflow
scheduling
algorithm
for meta-
heuristics

System per-
formance and
scheduling
cost.

Common
workflows, i.e.
sipht, cyber
share etc.

2020 Serhani, M.
Adel, et
al. [116]

Self-adapting
cloud service
orchestration

Proposed an
architecture
for end to
end workflow
management
support

CPU utiliza-
tion, storage

IoT workflows
and e-health
monitoring

2020 De Maio V et
al. [112]

Multi-
objective
workflow
offloading
(MOWO)

To propose
an efficient
workflow
offloading ap-
proach for fog
computing

Response
time, finan-
cial cost, and
reliability

Real-world
workflows

continued on next page

60

continued from previous page

Year Author Environment Objective Performance
metrics

Applications

2020 Ying xie, et
al. [109]

Docker Swam
Cluster along
with Post-
greSQL

To propose an
architecture
to support
workflow
management

QoS parame-
ters i.e. cost
and time,
Scalability

Health moni-
toring

2021 Ijaz, S, et al.
[136]

MATLAB To pro-
pose a novel
energy-aware
workflow
scheduling
model to
optimize
makespan
and energy-
consumption
in fog envi-
ronmenr.

Makespan,
and energy-
consumption

Real world
workflow ap-
plications

2021 D. Baldo et al.
[129]

LoRaWAN
gateways,
Raspberry
Pi, Mysql
database

To propose
LoRaWAN
architecture
for smart
waste man-
agement
system

Filling levels
of bins, Abso-
lute and rela-
tive errors

Smart waste
management
system

Many experiments have been conducted to offset the cloud storage burden as the load
on the cloud grows exponentially, as discussed above. Since fog networks are hetero-

61

geneous and complex, they cannot use most cloud load balancing techniques directly.
Some load balancing tasks are throughput maximization, response time minimization,
and traffic management. Other load balancing techniques include server-side resource
utilization management, request processing time reduction, and distributed environ-
ment scalability enhancement.
In today’s fog computing environments, users need applications that react quickly any-
time, and they try to access something and function quickly. Since load balancing is
regarded as a fundamental problem, a practical load balancing approach can dramati-
cally boost QoS factors in a fog network. According to Kashani et al. [137], objective
function-based optimization in load balancing decision making should be extended to
improve and optimize load balancing. In this analysis, Tabu scan, GWO, and ACO
are combined to produce a converged objective function.

2.2.5 Year wise review of load balancing techniques

This section covers load balancing techniques, including QoS parameters and Focus of
Study (FoS) in fog computing and cloud computing. Figure 2.4 describes the load
balancing evolution of fog computing across many years.
In the year 2013, K. Dasgupta et al. [94] proposed a Genetic Algorithm (GA) based
load balancing technique. GA mainly focuses on balancing workload among all cloud
resources, which helps to reduce the makespan of tasks. A cloud analyst tool has been
used to show the simulation results. The authors compared the proposed algorithms
with the hill-climbing, round-robin, and first-come-first-serve algorithms and ensured
their algorithm outperforms existing ones. Resource utilization increased by equal dis-
tribution of workload. L. D. Dhinesh Babu [78] proposed a honey bee behavior inspired
load balancing algorithm which provides a balanced load among all virtual machines
that improves throughput.
In the year 2014, H. Menon et al. [66] provided graph partitioning-based load balancing
methods. To reduce service migration costs, the authors provided repartitioning meth-
ods.SCOTCH and CHARM++ have been used to implement the proposed algorithms.
A greedy algorithm has been used to balance the workload. Different load balancers
have been compared based on their performance. Singh, G.S. et.al. [138] HACOBEE

62

load balancing algorithm for dynamic environment. They used ACO and Artificial
Bee Colony techniques for equal distribution of load in all nodes. HACOBEE has been
compared with the existing techniques, and it performs better than other techniques
and reduces response time. Cloud analyst tool has been used for simulation results.
In the year 2015, Ouies et al. [139] improves the quality of experience of users, as
with the increase in traffic demands of users are increased. The authors mainly fo-
cused on load balancing. User requests are processed at fog layer cluster resources.
Small cells are generated having less complexity, and a resource management-based
algorithm has been proposed. In the year 2016, N. Song et al. [67] proposed a graph
repartitioning-based load balancing technique that helps to improve network flexibility
and resource utilization. Cloud automation technology is used to show the simulation
results. Four layered fog computing architecture has been provided, i.e., Physical layer,
cloud resource layer, service, and platform management layers. S. Verma et al. [93]
proposed a data replication technique-based load balancing algorithm for the fog-cloud
environment. The action aims to reduce cloud dependency, as data is processed at the
fog layer only. The three-layered architecture proposed, which comprises ground, edge,
and core layers.CloudSim 3.0 has been used to show simulation results.
In year2017,Beraldi et.al [140] proposed Cooperative load balancing(CooLoad) for fog
computing environment. Requests have been observed; when requests came to a full
processing node, they were forwarded to another node. Quality of service has improved
with equal load distribution.Y. Yu et al. [72]proposed Scalable and Dynamic Load Bal-
ancer(SLDB) for mobile edge computing. Minimal perfect hashing has been used in
the SLDB algorithm to enhance performance and reduces memory consumption. The
Data Plane(DP) of SLDB has been considered, which fits in the cache and improves
processing speed.
In the year 2018, Rafique et al. [141] proposed Novel Bio-Inspired Hybrid Algorithm
(NBIHA) for load balancing in a fog environment. Average response time and energy
consumption have been reduced by applying efficient task scheduling. The proposed
system architecture has three layers, i.e., client layer, fog layer having scheduler, and
cloud layer containing datacentres. Metaheuristic Particle Swarn Optimization(MPSO)
is used for scheduling tasks.iFogSim has been used to provide the simulation results.
Arshad et al. [142] evaluate and analyses nature-based algorithms named Pegion In-

63

spired Optimization(PIO) and Binary Bat Algorithm(BBA). The energy consumption
of Cloudlets has been measured by evaluating these algorithms. The three-layer ar-
chitecture proposed containing smart homes in the first layer, cloudlets at the second
layer and, cloud servers at the third layer. Smart meters at smart homes are used for
bill estimation.
In the year 2019, A. Fahs et al. [143] proposed a routing algorithm for fog environ-

ment. This technique aimed to reduce latency and equal load distribution. With the
equal distribution of load, sender to receiver service access time is reduced. Proposed
proximity aware system based upon Kubernetes. N. Javaid et al. [144] proposed a
nature-inspired Cukoo search load balancing algorithm that combined with levy walk
distribution and flower pollination. They optimized the response time and processing
time of fog and cloud as well. Cost is also considered an important parameter, as
they tried to reduce the cost of data transfer, microgrids, VMs, and the total cost.
H.A. Khattak et al. [145] proposed fog-cloud server-based architecture, which aims in
proper utilization of all resources. They implemented their proposed utilization-based
load balancing approach in e-healthcare. In e-healthcare, data is very critical and can
not tolerate fractional delay. They tried to distribute equal load among all servers by
shifting load from overloaded servers to less load. They considered different parameters
like latency, load balancing, QoS, bandwidth. They used iFogSim to obtain simulation
results.
In the year 2020, Talaat, F.M. et al. [106] proposed a resource allocation-based load
balancing approach that depends upon reinforcement learning. This approach keeps
track of network traffic by measuring server loads that help it to handle incoming re-
quests. This approach distributes the workload among all available resources for their
appropriate utilization. A three-layer fog-cloud-based architecture has been proposed
for healthcare. This approach helps to reduce response time. M. Kaur et al. [55] pro-
posed a load balancing approach based upon the equal distribution of workload. They
proposed three-tier architecture of fog-cloud. To reduce energy consumption, cost, and
processing time in the fog-cloud environment is the main motive of this chapter. The
results are obtained using a cloud analyst simulation tool by implementing proposed
approaches. They also compared their approach with existing round-robin, throttled
algorithms.M. Bhatia et al. [108] proposed a quantumized approach of task scheduling

64

Figure 2.4: Evolution of load balancing
65

in a fog environment. The proposed approach tends to distribute workload among all
fog nodes, so that system performance could be improved and execution delay can be
reduced. iFogSim has been used to show simulation results.

2.2.6 Performance measurements that impact load balancing

Load balancing helps to enhance system stability. For the implementation of proper
load balancing in a system, a good load balancer is required. N number of VM is
required to execute n number of tasks. The workload of a finite number of users is
equally divided into an equal number of virtual machines assigned to them. Each
virtual machine remains in two states that are active state and ineffective state. The
energy consumption of VM in the idle state is 60% of the VM inactive state [146]. Here
a few performance measures are discussed which may affect load balancing in the fog
computing environment:

– Energy consumption: Electric power consumed by the fog nodes can be considered as
energy consumption in fog computing. There are various devices in the fog environment,
i.e., servers, gateways, routers that consume energy while performing operations [147].
Load balancing is mainly done to reduce the overall energy consumption in the fog
nodes.

– Thrashing: Thrashing is the state of the system in which all nodes spend their entire
time forwarding jobs among themselves without executing these jobs [28]. A system
may enter in thrashing state if memory or other resources are consumed by idle nodes
only. When there is no idle VMs, the system will keep on finding idle VMs, and tasks
are forwarded to the next node in the system. If still, the task does not get the resource
for execution, it is again forwarded to the next node. Hence, until the tasks get the
resources, all the nodes keep on forwarding them rather than executing. Proper load
balancing is required to resist the system from entering into a thrashing state.

– Reliability: The stability of the system may be improved if the systems are reliable
and it recovers from any failure. During the execution of the tasks, any system failure
may occur; then the job is shifted to another machine to continue its execution [40].

– Predictability: Predictability is a degree of correct prediction about the state of a

66

system, i.e., allocating tasks, executing tasks, completing a task. The Predictability can
be done based on the previous behavior of the tasks coming from the system. Proper
load balancing can enhance the prediction value [40].

– Fault tolerance: Fault tolerance of any system is the availability of the system during
any failure to continue the regular operation of the system. A load-balancing algorithm
can be adopted to improve the fault tolerance of the system under partial failure [148].

– Execution time: Execution time of any system is the time from the assignment of
any task till the execution completes. The system performs the task and returns the
result to the requesting user. A simple load balancing algorithm can be adopted to
reduce the execution time of the tasks [149].

– Cost: The cost of maintaining the resources is reduced by load balancing in the com-
puting environment, which includes various factors: energy consumption, maintenance
cost [150]. If only a few resources are utilized with more load, and others remain un-
derutilized, they also require maintenance. Due to this, the maintenance cost will be
high. So load balancing is needed to reduce implementation and maintenance costs.

–

Figure 2.5: Percentage of load balancing metrics considered in reviewed papers

The table 2.8 provide a comparison of existing load balancing algorithms based on
considered parameters.

67

Table 2.8: Comparison of different algorithms on the basis of considered parameters

Author & Year Cost Energy
effi-
ciency

Latency Response
time

Processing
time

System
perfor-
mance

Resource
utiliza-
tion

[43] × × × ×
[150] ×
[28] × ×
[102] × × ×
[151]
[73] ×
[72] × × × ×
[152] × ×
[93] × ×
[153] × × × ×
[74]
[103] × ×
[104] × × ×
[105] × ×
[96] × ×

68

2.3 Open issues and research challenges

Fog computing provides a distributed computing environment. Fog computing expands
the services of cloud computing to the edge of the network. Fog computing contains
various computing devices called fog nodes, i.e., routers, switches, gateways deployed on
geographically distributed areas. Fog nodes are connected through networking devices,
i.e., WiFi, 3G, 4G VOLTE. Fog computing provides storage services at the network
edges to process user requirements. Fog server offers services like data management and
has to reduce maintenance costs. Some of the issues that are faced in fog computing
are discussed below:

– Security: Fog computing has to deal with various kind of cyber-attacks which affects
the security of fog nodes. Various researchers provide few authentication techniques,
but there is still a need to secure edge data centers by providing the techniques which
can help to execute lightweight processes in real-time. Location-aware data should also
be secured because if the intruder knows the data location, they may try to temper
data and nodes. The security threats should identified, so that fog nodes can be made
more secure [29] [18].

– Deployment of fog servers: Fog servers need to be placed near to the IoT devices,
and users should be aware of the locations of fog nodes. Fog servers need to be deployed
in the way that they should provide maximum services. The maintenance costs of the
fog servers are reduced if the work done by the fog nodes is continuously analyzed. De-
ployment of fog servers should be done expertly to utilize resources fully, and simulation
results should match with the run-time environment [154] [155].

– Privacy: As fog computing supports location awareness, the privacy of fog servers
becomes a challenging task. There should be the implementation of laws and privacy
policies to provoke data transfer outside the network boundaries. While transferring
data from the IoT layer to the fog and upper layers, leakage of sensitive data should
be avoided. The IoT users who have to access the fog servers should be authentic and
trustworthy so that they should not temper private information [45] [156].

– Power consumption of nodes: If the fog nodes are not properly deployed and no
load balancing is applied, then few resources will become overloaded, and few will

69

remain under-loaded. The under-loaded resources will also consume the same amount
of power for their work. So power consumption of fog nodes needs to be reduced
by proper resource utilization. There is a need to design energy consumption models
which can help to reduce the requirement of computation power, and also computational
cost [157] [74] [55].

– Computational delay: Fog computing support time-sensitive applications which can
not endure any computational delay. Real-time applications require an immediate re-
sponse; whenever any request is received at fog resources, it should be immediately
processed [18] [59].

– Server Availability: Network manager at the fog layer is responsible for the avail-
ability of resources in the fog computing environment. A sustainable and reliable fog
architecture needs to design for resource availability. Application failure and security
may affect the availability of fog resources.

2.4 Problem formulation

Based on the Literature review following problem has been formulated for this research
work:

– While maintaining the workload in a fog-based cloud system, it becomes mandatory to
keep the energy consumption of computing nodes at the fog layer.

– An efficient framework is required to reduce the energy consumption of fog-based cloud
servers, which will help for the proper utilization of fog nodes.

– Due to overloaded requests from huge end-users, they may face problems while executing
their requests.

– There is a need to design an efficient energy-aware load balancing algorithm to manage
the workload on the fog nodes and enhance resource utilization in the fog computing
environment.

These issues have been considered for further research work.

70

2.5 Research assumptions

– It has been assumed that in fog environment more time-critical tasks are required to
be executed in limited time.

– It has been assumed that in case of more number of user requests in fog environment,
there is load imbalance. There may be overloading and underloading of resources.

– In order to manage the workload on the fog nodes and enhance the resource utilization
in the fog environment, there is a need to design an efficient energy aware load balancing
algorithm.

– The proposed framework assumes that fog nodes can be clustered dynamically in order
to process more number of requests.

– The proposed load balancing scheme assumes the presence of a centralized fog comput-
ing system that collects all the state information concerning the fog nodes, while our
proposed framework is fully distributed.

2.6 Research objectives

The main objectives of research work are:

– To study and analyze existing load balancing techniques in fog computing.

– To design a resource utilization-based load balancing framework for fog computing.

– To design an efficient energy-aware load balancing algorithm for the fog computing
environment.

– To implement the proposed algorithm in a fog computing environment and compare its
results with the existing techniques.

71

CHAPTER 3

Proposed framework for load
balancing (FOCALB)

The previous chapter provides a detailed description of load balancing in the fog com-
puting environment. The study of related work depicted that only load scheduling has
been addressed in fog computing. Still, load balancing has not been given much attention
in fog computing for scientific workflows. To provide a solution to load balancing for
scientific workflow applications in a fog environment, the fog computing architecture of
load balancing for scientific workflow applications has been designed in this chapter.

The proposed framework considers three main parameters while implementing load bal-
ancing in a fog environment, i.e., Execution time, Computational cost, Energy con-
sumption. A significant amount of data that needs immediate processing and storage
also requires resource utilization in some scenarios. Many researchers focus on improv-
ing fog computing performance with critical concerns like scheduling, privacy, security,
and system deployment. Fog computing still faces many obstacles in its growing way,
i.e., Less storage space, Privacy issues due to location-awareness, Overloading of re-
sources, More energy consumption, resource management.

This research mainly focuses on the overloaded resources issue, which means the re-
sources need load balancing. Load balancing is an open issue that is reducing the per-
formance of the fog computing environment. Load balancing equally distributes the
workload among all the fog resources, considering system requirements. Efficient load
balancing is required in fog computing to enhance the utilization of resources and to
provide high-quality services to the users.

In this chapter we proposed a framework for maximum resource utilization in the fog
computing environment and named it FOCALB. The proposed framework has been
divided into three layers, i.e., end-users, fog layer, and cloud layer. FOCALB has

72

been divided into three modules in terms of operating techniques, i.e., pre-processing
module, optimization module, and parameter analysis. Further, the chapter provides
workflow models that are considered in this research. In addition to this, Hybridized
load balancing algorithm for scientific workflows (Tabu-GWO-ACO) has been proposed
to evaluate the working of FOCALB.

3.1 FOCALB: Fog computing architecture of load bal-
ancing for scientific workflow application

Workflows are used in scientific domains for performing different experiments. A large
volume of data is exchanged during the communication process between other re-
sources. Most workflow tasks are executed on local fog nodes in fog computing rather
than sending them to the cloud. Nevertheless, with the increase of data exchange be-
tween different fog nodes, load balancing optimization becomes necessary so that nei-
ther of the fog nodes becomes overloaded with tasks nor remains underloaded. Hence,
these resources consume more energy while processing the tasks, resulting in fog nodes’
high hardware cost. So load balancing can help improve system performance and re-
duce workflow task’s execution time and energy consumption.
This section proposed a fog computing architecture of load balancing (FOCALB) for
scientific workflow applications to reduce the cost, execution time, and execution time
energy consumption that will overcome overloaded resources in the scientific workflow
application-based fog computing. The proposed FOCALB model is shown in the Fig-
ure 3.1.
Figure 3.1 illustrates the three-layered fog architecture for load balancing that in-

cludes the end-user layer, fog layer, and cloud layer. The proposed architecture has
layers similar to the basic architecture of fog computing but with modifications in the
fog layer. These layers are explained as follows:
End-user layer: End users are at the edge of the network that generates requests and
submits to the fog layer. In scientific workflow applications, the number of requests
leads to millions of tasks per second. These tasks are parsed and then sent to the fog
layer for execution. The tasks with a minimum deadline are prioritized over the others.

73

Figure 3.1: FOCALB

These tasks are executed in the fog layer itself, and others are sent to the cloud layer.
Fog layer: The fog layer containing fog nodes has been divided into different clusters
containing a few fog nodes in each. Each cluster has its local controller that keeps track
of all fog nodes in the cluster and ensures full utilization of all the resources in the
cluster. Users connected to the fog layer continuously transfer requests to fog nodes.
There are many users, so the number of tasks generated is also significant in amount.
This architecture aims to get networking services closer to the nodes producing data
at the lowest awareness layer. Nodes, computers, physical and virtual sensors, vehi-
cles, and other components make up the system. Many of these nodes are handled
in compliance with the service’s specifications and the node’s characteristics. The fog
layer contains nano data centers having cloud-like services but in a limited manner.
These nano data centers have limited storage and processing capabilities. So, only
those tasks that require an immediate response are executed, and others are forwarded
to the cloud layer. Fog nodes have their local scheduler assigning tasks to the cluster’s

74

local controller based on their priority. Load balancing in a fog environment allows for
an even allocation of workload across infrastructure, intending to continue to deliver
services even though a portion of service fails. That is accomplished by provisioning
and de-provisioning instances of applications, as well as adequate resource manage-
ment. Since data centers procure differences between hosts and display unique traffic
characteristics, fog computing requires an effective load balancing system to improve
device efficiency and network usage.
Cloud layer: The cloud layer is attached to the Fog layer for data transmission and
storage in the future. Cloud layers have Large data centers that have ample storage,
computing, and networking capacities. This data center provides storage support to
the fog nano data centers for their less prioritized tasks for future use and storage.

3.1.1 Operating modules of FOCALB

The proposed model is divided into three modules in terms of operating techniques
pre-processing module, optimization module, and parameter analysis module as given
in Figure 3.2. The process adopted in each module is given below:
Preliminary processing: Workflows are first taken as input and then parsed into a
group of tasks using WFMS (Workflow management system), which allows for auto-
mated and smooth workflow execution. It lets users identify and model workflows, set
deadlines and budget constraints, and the environments in which they choose to work.
The WFMS then evaluates and executes these inputs within the given constraints. The
task dispatcher then examines the dependencies and sends the completed assignments
to the scheduler.
Optimization module: Using this approach to conduct multiple assignments enables
the user to get a more detailed view of the service received. Task scheduling in the
cloud has recently become a research subject, and current research demonstrates its rel-
evance and various types of solutions. Tsai and Rodrigues [158] work demonstrated the
importance of balancing intensification-based and diversification-based solution search
algorithms to produce the best scheduling performance. The number of tasks mapped
onto fog nodes is executed if all the nodes get the resources. However, if a few tasks did
not get resources and nodes in the fog layer remain underloaded, it needs optimization

75

Figure 3.2: Working of FOCALB

of resources. Hence the load balancing technique is required for the optimization of
resources. The proposed algorithm Tabu-GWO-ACO is applied for the optimization
of resources.
Parameter analysis module: When optimization of resources is done, then consid-
ered parameters are analyzed, i.e., energy consumption, cost, and execution time. If,
while analyzing parameters, it is found that optimization is still required, tasks are
sent back to optimization modular, and tasks’ rescheduling is done.

76

3.1.2 Workflow task assignment

Figure 3.3 shows the task assignment process in fog nodes. The workflow scheduler

Figure 3.3: Workflow task assignment

collects tasks from different users, pushes them into the queue, and tasks remain in
the queue until they get processing resources. Remote users submit their jobs for pro-
cessing at fog nodes. The workflow scheduler assigns these jobs to fog’s local controller
according to their priority. When resources are available, tasks are sent for execution.
After the execution of tasks, the job scheduler is informed about the status of tasks.
In this way, the fog layer load can be reduced, as the jobs are assigned when resources
are available. Fog cluster’s local controller keeps an eye on load on virtual machines.
If VMs are overloaded, tasks are taken from the corresponding VM and assigned to
other idle VM. Load balancer balances the load on fog nodes.

77

3.1.3 Workflow models for load balancing in fog computing

Workflows in fog computing are considered NP-complete problems and can be de-
fined as Directed Acyclic Graph (DAG) that can be denoted by a set of vertices
(V1, V2, V3,, Vn) and edges (E1, E2, E3..., En). Here vertices denote the set of tasks
mapped onto the set of VMs (VM1, V M2, V M3,, V Mn), and edges represent the
communication between tasks T (T1, T2, T3......Tn). The edges in workflows are given
weights by providing communication and computation time of each job. These tasks
are assigned to resources in fog and cloud layer R (R1, R2, R3,, Rn). Here are some
models represented in this section. They are time, cost, energy models, and makespan
and objective functions for workflows in fog computing.

Time model

The numerical solution can be used to measure the available execution time when
the workflow is being performed to track the workflow execution phase or reschedule
the remaining tasks. According to Chirkin et al. [159], when calculating the workflow
execution period, task dependencies should be considered along with task heterogeneity
and computational capital. Another critical aspect of scientific workflows is that certain
runtime elements are stochastic in design from the standpoint of estimation. The
execution time in workflows is calculated as the total time taken by any process from
its submission to completion. This time also considers when any process remains in
the queue, i.e., the time to wait for resources or the time to wait for another task to
complete.

Tt =
VMx∑
x=1

TR +
VMx∑
x=1

TP +
VMx∑
x=1

TW (3.1)

Tt = Total time
TR = Receiving or passing the time of task
TP = Processing Time of task
TW = Waiting Time of task

78

Cost model

Cost in scientific workflow execution is considered the total Movement Factor (MF)
and the Cost Factor (CF). MF can be calculated as the ratio of cost taken during the
execution of a task considering migration cost to the VM cost. CF can be calculated
as the ratio of total process cost multiplied by memory taken by the task to the VM
and data centre cost.

Tc(TotalCost) = (MF + CF)/2 (3.2)

Where MF= Movement Factor
CF= Cost Factor

MF =
1

Number of host in data center

VMx∑
x=1

Number of migration

used VM
(3.3)

CF =
VMx∑
X=1

Cost to process ∗Memory of task

VM ∗ data center
(3.4)

Where, VMx defines the total number of VM in the system. The actual cost can be
calculated as the sum of under deadline task’s cost and deadline crossed task’s cost.

ActualCost = Underdeadlined task′s cost+Deadline crossed task′s cost (3.5)

Energy model

Energy is the sum of total time, movement factor, and cost factor of the total num-
ber of instances. The following equation shows the energy consumption by the fog
environment while executing workflows.

Energy =
VMx∑
x=1

(Tt +MF + CF) ∗ number of instances (3.6)

Tt represents total time, MF is the movement factor, and CF is the cost factor.

79

Makespan

Expected time to compute matrix ETC(Tj, Rj) where Tj is the sequence of tasks, and
Rj is a sequence of resources, that is the precondition of tasks. The postcondition
shows that the sequence in which the tasks are executed in order to minimize the
makespan. In order to reduce the makespan, the load is distributed among available
resources. The makespan (MS) can be computed as follows:

MS = maximum(C(Tj, RRn)) (3.7)

Where C is the task completion time and is computed by C=RRn+ERn

Here RRn represents ready time of resource n.
ERn represents the execution time of task j for resource n.

Objective function

On the basis of total makespan, energy model, cost model, and time model, that are
determined above, the objective function of this paper can be defined as follows.

f(p) = α ∗ (Tt + Tc + E +MS) (3.8)

Here, f(p) is considered the model’s objective function, which should be as minimum
as possible for the best solution. When optimization is achieved in the algorithm it
means fitness value is achieved. Tt, Tc, E, MS represents total time, total cost, energy,
and makespan, respectively.

3.2 Hybridized load balancing algorithm for scientific
workflows (Tabu-GWO-ACO)

Load distribution in fog computing needs an equal proportion distribution of tasks
among all fog nodes. VM load balancing requires detecting all the nodes’ workload
within some time to get resources within time. This section describes different op-
timization techniques used for this study and proposed a hybridized load balancing

80

algorithm for scientific workflows that are based on the combination of Tabu-GWO-
ACO.

3.2.1 Optimization methods used

The key aim of using load balancing optimization techniques is to minimize the cost
function. This research has used the tabu search, Grey Wolf Optimization(GWO), and
Ant Colony Optimization(ACO), among other approaches. Tabu search improves local
search efficiency by taking into account load balancing [28]. The key reason for using
tabu search is that online computations are needed in specific layers, and tasks should
be processed when they arrive. Natesan and Chokkalingam [160] have shown that
grey wolf works actively to reconFigure and balance loads. In assigning the individual
tasks allocated for the virtual machine implementation, GWO used ACO to improve
performance.

Tabu search

Tabu search helps to find a feasible solution by reducing circuit simulations. Tabu
search technique has online computations that help for processing of task as it arrives.
The tabu search method uses a flexible memory that makes the search more versatile.
Tabu search method is used to search overloaded and underloaded nodes so that proper
load can be distributed among all the nodes [114] [161].
The tabu search’s fundamental concept is to penalize actions that take the solutions
into search areas previously explored. On the other hand, tabu search accepts non-
improving options deterministically to avoid being trapped in local minimums. The
research work undergoes an initial solution and generates a series of adjacent alterna-
tives to the current solution, s’, which is marked as Sn. The tabu list solutions are
omitted from this set of solutions, excluding those following the Aspiration Criterion.
Then by removing all obsolete options from the list to update it.

s′ ∈ N(s) = {N(s)− T (s)}+ A(s) (3.9)

81

Choose from N(s) the best solution s’. Update the best solution if the solution is better
than the current best one. Here upgrade s to be s’, regardless of whether s’ is more
substantial than s. Here T(S) represents tabu search list that contains the list of all
moves in tabu search. This list is modified by removing the expired moves and added
new move s’ in it. Furthermore, A(S) is the aspiration criteria that is considered to
update set of solutions in tabu search.

Ant colony optimization

ACO technique solves computational problems with probabilistic methods, finding
proper routes to distribute the load among all nodes. It works based on the behavior
of real ants for collecting food. This algorithm is used to find the optimum path for
those tasks which are discarded by overloaded nodes, and the path helps them to reach
the underloaded nodes [81] [162].
Every ant produces a solution in the first step of solving a problem. The second phase
contrasts the paths of numerous ants. Moreover, pathways or pheromones are modified
in the third step. ACO optimizes a challenge by upgrading the pheromone trail in the
search area and shifting these ants according to basic mathematical formulas about the
likelihood of transformation and complete pheromones. ACO produces and measures
the fitness of world ants at each iteration. Finally, Update the vulnerable regions’
pheromone and edge.
When fitness is increased, local ants are moved to better areas. Otherwise, a random
search path is selected. The ACO is focused both on local and international searches.
Local ants can switch into the latent zone with the best option for a region x.

Px(i) =
Tphx(i)∑n
j=1 ij(i)

(3.10)

Where Tphx(i) is the complete pheromone in area, i is the total number of tasks.
Update the pheromone by it(i + 1) = (1 + er)it(i). ACO is simple to integrate with
other approaches, and it performs well when solving complex optimization problems.

82

Grey wolf optimization

GWO is a meta-heuristic optimization approach. GWO mainly depends on the prin-
ciple of the grey wolf’s nature to hunt cooperatively. The model structure of GWO
makes it different from others. It is a large-scale search method centered on three
optimal samples. The hunting behavior of grey wolves inspires grey wolf optimization.
The wolves always live in groups. The hierarchy of grey wolves is divided into four
primary levels, i.e., alpha(α), beta(β), delta(δ), omega(ω). Here α acts as the leader
of the group that takes all hunting decisions. β are the subordinates of α, which help
them to take decisions. δ acts as scouts that have to report α and β, but they dominate
ω. ω are the last wolves in the group allowed to eat in the last [163].
When developing GWO, the fittest approach was used to mathematically model wolves’
social hierarchy alpha(α). Consequently, beta(β) and delta(δ) are the second and third-
best alternatives, respectively. Taking X and Y as coefficient vectors to describe the
wolfs’ encirclement of prey,

−→
X = 2−→x .−→v1 −−→x (3.11)
−→
Y = 2.−→v2 (3.12)

When iterating, the components of x decrease to zero, and v1 and v2 are random
vectors. To mathematically model grey wolf’s hunting behaviour, the first three best
solutions obtained so far will be saved, requiring the other search agents to change
their positions following the best search agents’ position.

−→
Da = |

−→
Y1.
−→
Pa −−→p |,

−→
Db = |

−→
Y2.
−→
Pb −−→p |,

−→
Dc = |

−→
Y3.
−→
Pd −−→p |, (3.13)

−→
P1 = |

−→
Pa −

−→
X1
−→
Da|,
−→
P2 = |

−→
Pb −

−→
X2
−→
Db|,
−→
P3 = |

−→
Pc −

−→
X3
−→
Dc|, (3.14)

−→
P (t+ 1) =

−→
P1 +

−→
P2 +

−→
P3

3
(3.15)

Here, grey wolves position vector is denoted by
−→
P , and

−→
P1,
−→
P2,
−→
P3 are the position

vectors of the α, β,δ respectively.

83

3.2.2 Proposed hybridized algorithm Tabu-GWO-ACO

All defined algorithms are hybridized to implement load balancing in the scientific
workflow application. Our proposed algorithm is a combined form of tabu search
method, GWO algorithm, and ACO algorithm. All these algorithms are combined in
one algorithm to achieve good results in fog load balancing. Tabu search method works
well to search over-utilized and underutilized fog nodes; ACO and GWO are both ex-
cellent for optimizing the fog environment. When workflow tasks are generated, they
are parsed and mapped on fog nodes for processing. Firstly, the tabu search method
is applied to check the utilization of fog nodes. Sometimes tasks are allocated to few
fog nodes only, and others remain underloaded so that the tabu search method will
recognize the over-utilized and underutilized fog nodes. On underutilized fog nodes,
ACO will be applied for optimization. On over-utilized fog nodes, GWO will work
for optimization. ACO and GWO work better than the tabu search method to obtain
better load balancing. The proposed algorithm is implemented in four parts. Following
are some steps that thoroughly explains the proposed algorithm:
step I: Firstly, the number of fog nodes are initialized as N, and workflows as W, re-
spectively. Make parsing trees of fog nodes. Then tasks are extracted from workflows
and mapped onto fog nodes.
Step II: When all tasks are mapped onto fog nodes, fog nodes are searched to uti-
lize available resources. Fog nodes can be over-utilized and under-utilized. So, the
tabu search method is applied to check the utilization of fog nodes. This algorithm
will continue searching nodes until it finds over-utilized and under-utilized nodes. All
neighboring nodes are checked for their utilization, and when over-utilized or under-
utilized nodes are found tabu list is updated.

84

Algorithm 2: Hybridized load balancing algorithm for scientific workflows (Tabu-
GWO-ACO)
Input: Workflow number and fog nodes
Output: Optimize cost and delay

1 A. Initialization Algorithm (W,T)
2 Initialize the number of fog nodes and workflows N ← fog nodes,W ← Number of

workflows, and Parse workflows
3 while W do
4 Parse Wi, Extract task Ti ← Wi

5

X ←
n∑

i=1

[Ti +Wi] (3.16)

Map Task on fog nodes N ← X
6 B. TABU search (N,W,X)
7 Set T = T0 and Iteration = N
8 Repeat, and set m = 0 ,worst = 0,it = it+1 // Here "it" is iteration
9 Repeat, and set set m = m+1

10 Execute searching neighbour (T, Tm)
11 Execute searching node (N,Nm)
12 if D(Nm) > D(N) then
13 until D(Nm)
14 update Tabu list(T, Tm)
15 N = Nm

16 if DNm ← Tabulist(T, Tm) then

17 until iteration = maxit

18 Selected nodes

19 C. Grey Wolves (N)
20 Initialization Population (S(N))
21 Define all combination X ← 2N , Wolves← X, Xα ← Gα, Xβ ← Gβ, Xδ ← Gδ

Xupdate = (Gα +Gβ +Gδ)/3 (3.17)

22 D. ACO (Xupdate)
23 ApplyAnts← Xupdate

24 update pheromones, optimize fitness value f(p)
25 if optimization exist then

26 go to the step 29
27 else

28 go to step 2 and repeat again
29 Threshold← optimizevalue
30 Migrate task according to the threshold and Analyze time, cost, and energy.

85

Step III: After finding under-utilized and over-utilized nodes, GWO and ACO meth-
ods are applied for optimization.

In the proposed solution, three approaches are hybridized: GWO, ACO, and Tabu.
Here, hybridized does not imply contemporary work but instead works on the same
objective function. In this case, hybridized usage is concerned with obtaining a quick
and natural conference rather than taking time and enforcing convergence. The first
input to GWO, which operates for all variations in a given number of iterations (500),
monitors the time and then reduces the area of variation and is assigned to ACO.
All parameters are not simplified, and no multi-objective have been used in this work,
which has the inherited problem of implementing convergence. This research has chosen
these optimization methods because they need global optimization, which GWO and
ACO also provide. Because of the speed at which ACO searches, it achieves high
convergence compared to all other optimizations. GWO is experimenting with semantic
optimization that provides an association between input space and quick convergence
in a larger population.

3.2.3 Flow of execution of Tabu-GWO-ACO

This section contains a framework explaining the flow of execution of the Tabu-GWO-
ACO algorithm. FOCALB has three layers similar to fog’s basic architecture. The
implementation of scientific workflow tasks is presented through the framework in this
section. End users generate workflow tasks, which are mapped to the fog nodes near
them. These fog nodes are further connected to cloud data centers. After initializing
tasks to fog nodes, these nodes are searched for over-utilization and under-utilization.
Tabu search method is applied on over-utilized nodes for searching, which checks the
nodes with time delay. Load balancing is applied to these nodes to avoid over-utilization
of nodes. Nodes are reviewed based on time delay for task execution; if some nodes are
free, tasks from overloaded nodes migrate to free nodes. Load balancing is done using
GWO. Here, three parameters have been considered, i.e., α , β, γ, as best searching
agents in GWO, which search for free resources in fog nodes. If the convergence point
is reached, then the threshold is sent to the fog node, and tasks are migrated to the
cloud. If no converge point is reached, tasks are initialized, and again GWO is applied.

86

Time delay, cost of execution, and energy consumption in fog nodes are analyzed. This
process works in the case of over-utilized fog nodes.
On the other hand, when fog nodes are underutilized, ACO balances the load on fog
nodes. ACO works on the behavior of ants in search of food. Pheromones are updated
after all ants completed their tour, and after convergence, the task from overloaded
fog nodes is taken and transferred to under-utilized fog nodes. Figure 3.4 shows
the proposed methodology followed to achieve load balancing in the fog computing
environment, and the algorithm is given in Algorithm 2.

3.3 Verification and validation of proposed framework-
FOCALB

This section mainly focuses on the verification and validation of the proposed frame-
work. Experimental requirements have been discussed, and performance evaluation
criteria have been described. The proposed load balancing framework and proposed
Tabu-GWO-ACO load balancing algorithm have been implemented in the iFogSim
toolkit. This work aims to provide a load balancing strategy for workflow-based ap-
plications of fog computing. The proposed technique tries to reduce execution time,
implementation cost, and energy consumption in fog nodes. Three types of experi-
ments have been percolated to analyze the validity of the proposed work. Three test
cases have been provided to present the experimental results. In the first test case,
the cost of implementation has been analyzed. In the second test case, the execution
time of workflows applications has been represented. In the third test case, energy
consumption by different resources has been described. Approximately 2 to 200 fog
nodes have been taken to calculate the results. An average of forty runs has been done
to ensure the statistical correctness of experiments.

This section contains the simulation results obtained using iFogSim, a simulator used
for edge computing, IoT and fog environment for IoT service management, and mod-
eling and simulating networks and different applications. iFogSim works with the
CloudSim in an associated form where CloudSim has a vast library containing cloud
environment simulation and resource management. CloudSim handles the events be-

87

Figure 3.4: Tabu-GWO-ACO methodology

88

tween fog components.

3.3.1 Experimental setup

Few experimental requirements have been considered to evaluate the proposed ap-
proach. This work used 64-bit Windows 7 operating system. iFogSim, the most pow-
erful simulation tool, has been used to represent simulation results. The fog computing
layer has been divided into the form of fog clusters containing several fog nodes. The
rest of the requirements are explained in the form of a table.

Table 3.1: Required parameters

Parameter Value
Operating sys-
tem

Windows7 64
Bit

Simulator iFogSim
MIPS 2000
No.of fog nodes 2 to 200
No.of Hosts 1 to 2
RAM 200MB
Number of tasks 100-1000
Number of work-
flows

10 to 12

Bandwidth up to 60 Mbps

Table 3.1 describes the requirements to achieve simulation results.
iFogSim is an open-source, high-performance toolkit used for fog computing, IoT, and
edge computing environments. It is used to simulate fog computing and IoT networks.
iFogSim works with CloudSim in collaboration. iFogSim has three main components,
i.e., physical components that include physical fog nodes, logical components that
contain different application modules and application edges, and lastly, management
components that include module mapping objects and fog controller [164].

89

Why iFogSim for simulation results?

iFogSim is an open-source, high-performance toolkit used for fog computing, IoT, and
edge computing environments. It is used to simulate fog computing and IoT networks.
iFogSim works with CloudSim in collaboration. iFogSim has three main components,
i.e., physical components that include physical fog nodes, logical parts that contain dif-
ferent application modules and application edges, and lastly, management components
that include module mapping objects and fog controller [164].

Due to its simple interface and low complexity, iFogSim is used in this work. The
iFogSim simulation toolkit is based on the simple CloudSim platform. CloudSim is one
of the wildly accepted Cloud computing simulators. Extending the abstraction from
basic CloudSim classes, iFogSim provides space for simulating custom fog computa-
tion with several fog nodes and IoT computers (e.g., sensors, actuators). However, the
groups are annotated in iFogSim so that users with no previous knowledge of CloudSim
can conveniently identify the fog computing infrastructure, service placing, and re-
source allocation policies. iFogSim uses sense-process-actuate and the distributed data
flux paradigm when simulating every fog computing environment scenario. It makes it
easier to assess end-to-end latency, network congestion, electricity use, operating costs,
and quotas [165].

3.3.2 Results and discussion

Scientific workflows are the representation of tasks in the form of Directed Acyclic
Graphs (DAG). Different sensors generate these tasks, actuators in different appli-
cations like astronomy, e-healthcare, intelligent traffic management, and many other
application scenarios [112] [166]. There are various scientific workflows, i.e., Cyber-
shake, Genome, SIPHT, LIGO, Epodonomic [167]. In DAG, tasks are represented in
connected nodes and edges in which nodes represent the tasks and edges represent com-
munication between them. The research work considered LIGO, Cybershake, SIPHT,
and Genome workflow samples for our experimental results. Cybershake is utilized to
characterize the earthquake hazards by Southern California earthquake center [109].
Cybershake can also classify as a data-intensive workflow having significant Cpu and

90

memory requirements. LIGO workflow stands for laser interferometer gravitational
observatory used in the area of physics. It is used to detect the earth’s gravity. LIGO
have More memory and CPU requirement as it contains tasks of large size [122]. Most
of the tasks of LIGO need memory optimization-based VMs [168]. SIPHT is used at
Harvard University in bioinformatics projects to detect bacterial replicons. It is used
to search Bacterial small RNAs (sRNA) that regulate the secretion process in bac-
teria. National center uses Sipht workflow to automate search for encoding genes in
sRNA [168] [115]. Hans Winkler created GENOME in 1920. It is used in the field
of genetics and biology to collect an organism’s genetic material. It contains RNA or
DNA of viruses. It may include non-coded DNA or coded genes. Genomics is the study
of genomes [169].
This section will provide the results obtained after implementing the proposed algo-
rithm. It is not easy to execute scientific workflow data sets in a real-time environment;
hence they are executed in the simulation environment. Scientific workflow data sets
are run on the iFogSim simulator using Eclipse to minimize execution time, cost, and
energy consumption.
Different scientific workflow data sets (i.e., LIGO, Cybershake, Genome, and Sipht)
are considered for experimental results. Two algorithms run on iFogSim, i.e., tradi-
tional tabu search method and our proposed method tabu-GWO-ACO method. It has
been obtained from the experimental results that the combined form of tabu-GWO
and ACO methods works better than the tabu search method for achieving efficient
load balancing in the fog computing environment.
For simulation results, iFogSim has been used to check the performance of the Tabu-
GWO-ACO load balancing technique. Proposed technique results are compared with
existing approaches to verify that performance of Tabu-GWO-ACO is better than ABC,
ACO, Tabu search, GWO. Various applications have been investigated to analyze the
performance of our proposed technique

91

(a) Genome (b) LIGO

(c) Sipht (d) Cybershake

Figure 3.5: Cost Analysis of Tabu-GWO-ACO approach

Test case I: Cost analysis

Different type of workflow tasks are assigned to fog nodes, and their performance is
analyzed. If more number of fog nodes are used in the fog layer, then their cost
consumption will be more. This research have considered Genome, Cybershake, Sipht,
LIGO workflows for execution and compared different existing approaches with the
proposed one.

In Figure 3.5, four subFigures show different workflow execution results. In Figure
3.5(a), execution of Genome scientific workflow execution result is displayed. The
graph shows the number of fog nodes on the x-axis and the cost on the y-axis. With the
increase of fog nodes, implementation cost is also increased. This research proposed
a hybrid approach containing tabu search, grey wolf optimization, and ant colony
optimization algorithms in hybrid form. With the Tabu-GWO-ACO approach, the

92

cost of implementation has been by applying load balancing. The Figure shows that
the proposed method reduces the cost compared to other techniques, i.e., ABC, ACO,
Tabu search, GWO. Similarly, other workflows, i.e., LIGO, Sipht, and Cybershake
tasks, have been provided to fog computing and stored their results. These results
are shown in Figure 3.5(a),(b),(c) and (d), respectively. All the results obtained
by implementing the different workflow tasks are assigned to fog nodes, and their
performance is analyzed. If more fog nodes are used in the fog layer, then their cost
will be more. This research work considered four different scientific workflows, i.e.,
Genome, Cybershake, Sipht, LIGO, for execution and compared existing approaches
with the proposed one. In Genome and LIGO, implementation cost is reduced by
3% using Tabu-GWO-ACO than other existing techniques. On the other hand, for
Sipht and cybershake workflows, 4% is reduced with Tabu-GWO-ACO than in different
current approaches.

Test case II: Execution time analysis

Scientific workflows, i.e. Genome, LIGO, Sipht, and cybershake, is having large
datasets from which tasks are parsed to fog nodes. The fog layer needs more num-
ber of nodes to execute these large tasks. Execution time increases as the number of
tasks are increased. This work have implemented the proposed technique and analyzed
the execution time of tasks in the fog layer.

Figure 4.6 shows the analysis done for the execution time of different workflow tasks.
The execution time of tasks is calculated by the time taken from the submission of
tasks till the execution completes. Time taken in the queue is also calculated. Fig-
ure 4.6 have four parts 4.6(a),(b),(c),(d) representing execution time of each scientific
workflows Genome,LIGO,Sipht,Cybershake respectively.The x-axis shows the number
of fog nodes in the graphs, and the y-axis represents execution time. It can be seen
from graphs that with the increase of fog nodes, execution time also increases. This
research works to reduce the execution time of tasks with the help of the proposed
hybridized load balancing algorithm for scientific workflows (Tabu-GWO-ACO). In
Genome and LIGO, execution time is reduced by 25% and 12%, respectively, using

93

(a) Genome (b) LIGO

(c) Sipht (d) Cybershake

Figure 3.6: Execution time Analysis of Tabu-GWO-ACO approach

94

(a) Genome (b) LIGO

(c) Sipht (d) Cybershake

Figure 3.7: Energy Analysis Tabu-GWO-ACO approach

Tabu-GWO-ACO than other existing approaches. On the other hand, Tabu-GWO-
ACO tries to minimize the execution time of Sipht and cybershake workflows by 18%
and 20%, respectively.

Test case III: Energy consumption analysis

In this case, energy consumption has been analyzed by different fog nodes in the fog
layer. In the case of a large number of tasks, more resources are required. When the
number of resources is more, more energy is consumed. Four different scientific work-
flows, i.e., Genome, Cybershake, Sipht, LIGO, have been considered in this work for
execution and compared different existing approaches with the proposed one.

Figure 3.7 is used to depict the energy consumption in fog nodes using the Tabu-GWO-
ACO approach. The Figures 3.7(a),(b),(c),(d) represents energy consumption in the

95

fog layer in which the number of fog nodes is represented on the y-axis and energy
consumption on the x-axis. In more tasks, the requirement for the number of nodes is
increased, due to which energy consumption is also more. With our proposed approach
Tabu-GWO-ACO this work tries to reduce energy consumption in fog nodes by load
balancing in the fog layer. The Figures show that Tabu-GWO-ACO outperforms all
other techniques with which it is compared. For example, in Genome and LIGO,
Tabu-GWO-ACO tries to reduce energy consumption in fog nodes by 14% and 6%,
respectively. On the other side, in Sipht and cybershake, energy consumption is reduced
by 8.40% and 9.55%, respectively.

3.3.3 Applications of proposed architecture and approach in
real time environment

With the growth of the internet of things, fog computing has also grown and has a
broad scope in many areas nowadays. Fog computing is becoming an alternative to
cloud computing for some applications with a distributed environment. Due to more
number of users, fog computing faces the problem of load imbalance. So by imple-
menting proposed load balancing architecture in real-time applications, fog computing
can work more efficiently. Some applications of proposed architecture FOCALB have
been defined as follows:

– E-HealthCare: In e-healthcare systems even a fractional delay is unbearable. In case
of more IoT devices used for e-health systems, by implementing load balancing in the
fog layer, all requests generated by IoT sensors can be equally assigned to all resources
for fast processing. Due to its less latency feature, fog can help to build efficient
e-healthcare systems that can help to store and process patient’s data in fractional
seconds [106].

– FoAgro: Fog computing has a broad scope in agriculture also. Different types of sensors
can be installed to monitor the crops. Hence, fog nodes can monitor all the activities
with the help of data collected from these sensors. In the case of more number of
sensors, data requests will be more. Load balancing can enhance the working of fog
nodes by speeding up the processing in the fog layer [170].

96

Figure 3.8: Applications of FOCALB

– Smart transportation Smart vehicles can be managed with the help of fog computing.
Fog nodes can be deployed near roadside units that may collect and store data from
smart vehicles and processes faster than the cloud. In large cities, traffic is more, so
more data is generated. Sometimes, due to more traffic jams, data can be generated
in terabytes. Due to which there may be an overloading of fog resources. So, load
balancing can be applied to maintain road traffic smoothly. [48].

– Smart homes: Fog can monitor all the smart devices in a home, i.e., smart clock,
bulb, coffee machine, and all other necessary devices in our daily life. Fog computing
can immediately process the requests generated by these smart devices and help them
to immediately respond to the user. In daily routine, data generated by the smart
devices can be more, so load scheduling can be applied along with load balancing in fog
layer in the computing environment [130].

– Connected parking System: Fog computing help to find a free parking lot for the

97

users of their cars. Fog nodes installed at parking areas collect data continuously from
nearby sensors in the parking area. According to this data, fog nodes update the
available parking lots online to easily find parking spaces for them. Load balancing can
be applied in fog computing to handle a massive number of requests generated by a
large number of vehicles and parking sensors [170].

– Smart waste management: Nowadays, with the growth of population, garbage is
also growing. A waste management system can be a solution for the betterment of the
environment today. In large cities, garbage collection is in tons, and waste bins are
filled faster. Hence more data is generated by sensors installed in containers. Here load
balancers can be installed in fog nodes to handle this data efficiently. So, fog computing
can help to generate such kind of system that can help to collect and manage the waste
more efficiently [130].

The proposed load balancing framework FOCALB can be used to implement real time
application i.e. smart waste management systems to build smart city homes. This
chapter proposes a prototype of waste management system implementing load balancing
at fog layer. The proposed prototype model contains three layers: Smart sensor devices,
fog nodes/ servers, Cloud datacenters. Smart bins will be deployed which will contain
the sensors. These Smart bins will be further tied up to the fog layer which filters the
data to be passed to the cloud. Load balancer will balance the load on the fog nodes. It
will divide the load equally on all the nodes. Fog nodes will generate alert messages to
notify the garbage carriers to collect the waste. Security sensors will also be installed in
the bins which will inform about the safety of the bins. If anyone will try to temper the
bins then these sensors will start playing loud noise signals which can save the stealing
of bins. The Smart bins will be connected through Wi-Fi, 3G/4G, LTE to the fog
layer. An application will be generated to operate the whole scenario. Fog layer will
be further connected to the cloud. CloudSim will be used to manage the cloud and the
fog nodes.

98

Figure 3.9: Prototype of Waste management system

3.4 Conclusion

This chapter described the proposed Resource-utilization based load balancing frame-
work for the fog environment. Different workflow models have been described that
are considered to analyze the performance of the proposed framework. A load balanc-
ing model has been proposed for scientific workflow applications in the fog computing
environment. Scientific workflow applications have been considered to evaluate the
proposed technique. The proposed algorithm Tabu-GWO-ACO is a hybrid form con-
taining three different algorithms, i.e., Tabu search, GWO, and ACO. Tabu search
algorithm is used to find out the underloaded and overloaded fog nodes, and then
GWO and ACO are used to optimize fog nodes. The proposed approach mainly tries

99

to enhance resource-utilization by proper load balancing in the fog computing envi-
ronment. Further, the proposed FOCALB model has been implemented in simulation
environment implementing proposed load balancing approach Tabu-GWO-ACO and
analyzed that obtained results outperform the other existing approaches. Further-
more, real time applications of FOCALB have been described and one prototype of
smart waste management has been proposed to be implemented in real time environ-
ment in future works. Smart waste management system can help to develop a clean
and green city.

100

CHAPTER 4

An energy-efficient load balancing
approach for scientific workflows in
fog computing

The previous chapter discussed the proposed resource utilization-based load balancing
framework for scientific workflows. In this chapter, an energy-aware load balancing
algorithm has been designed considering scientific workflow applications. Fog computing
has to face the load balancing problem having all valuable features and limited storage
capacity. Many internet users using smart devices keep on sending data simultaneously,
which causes a shortage of resources. Sometimes only a few resources are utilized, and
the others in the fog layer remain unused, hence wastage of resources and wastage of
power to keep them on. Load balancing becomes a challenging task in the fog computing
layer to reduce the cost and energy usage. With the imbalance in load in the fog layer,
bandwidth is also wasted, providing less throughput, and response time to the user
increases. All this happens due to a highly restricted environment and limited resources
availability [55].

This chapter firstly introduces scientific workflows. A further resource-utilization-based
workflow execution model for fog computing has been proposed. Furthermore, the meta-
heuristic techniques-based energy-aware load-balancing algorithm is named as PSW-Fog
Clustering-based Load balancing algorithm. This algorithm is hybridized from PGO,
WCO, and SAA algorithms. PWS considers three main parameters to analyze the
results, i.e., time delay, computational cost, and energy consumption. This approach
aims to reduce the energy consumption in fog computing by maximizing resource uti-
lization. Load balancing is applied to optimizing the use of resources in the fog layer.
Fog nodes in the fog layer are combined in few clusters containing few fog nodes each.
Scientific workflow applications are considered to evaluate the proposed approach.

101

4.1 Scientific workflows

Fog computing is the most trending technology in the Internet of Things (IoT) nowa-
days. The fog has removed the barriers of computing and storing IoT data at cloud
datacentres by providing local storage and processing services. Fog computing brings
computing and storage services local to the end-users and enhances the popularity of
IoT. The system has to decide where the applications have to execute, i.e., in the fog
layer or the cloud, to fulfill the quality of the service requirements. A cloud-fog sched-
uler should be installed to make the system’s execution decision to avoid any delay
in task processing. Load balancing plays a vital role in enhancing the performance of
a fog computing system. Due to the distributed nature of the fog environment, load
balancing becomes a very challenging task. The load distribution mechanism becomes
difficult due to more users’ presence, which leads to load fluctuation in the fog environ-
ment. For maximum utilization of resources in a fog environment, the load should be
distributed among all available VMs to avoid overloading and underloading resources
in the fog computing layer.

Scientific workflows are data-intensive applications representing distributed data sources
and complex computations in various domains, i.e., astronomy, engineering sciences,
and bioinformatics. In distributed environments like fog computing, multiple sensors
and experimental processes generate a large volume of data that needs collection and
processing within specific time constraints. Geographically distributed fog resources
can be used to collect and process this data. Although fog computing has numerous
advantages over cloud computing, it also faces many challenges [112]. One challenge
is load balancing in scientific workflow task execution in the complex environment of
resources. Scientific workflow tasks require real-time implementation, but fog comput-
ing resources can be overloaded due to the large volume of data. Hence there is a
need to balance the data among existing resources in equal proportion to be processed
in real-time. Even distribution of tasks among all the resources can result in proper
utilization of resources, hence save energy and execution time also [109].

Workflows in fog computing are considered NP-complete problems and can be de-
fined as Directed Acyclic Graph (DAG) that can be denoted by a set of vertices
{V1, V2, V3,, Vn} and edges {E1, E2, E3..., En}. Here vertices denote the set of tasks

102

mapped onto the set of VMs, i.e., {VM1, V M2, V M3,, V Mn}, and edges represent
the communication between tasks T, i.e., {T1, T2, T3......Tn}. The edges in workflows are
given weights by providing communication and computation time of each job. These
tasks are assigned to resources in fog and cloud layer R, i.e., {R1, R2, R3,, Rn}. This
section represents the time, cost, energy models, and makespan and objective function
for workflows in fog computing. Figure 4.1 below shows the example of simple work-
flows: This section defined different type of common workflows such as Montage [171],

Figure 4.1: Example of workflow

Sipht, CyberShake [172], Ligo and Epigenomics [122]. These different workflows are
explained as below:

A montage workflow application is used for astronomic applications, which builds huge
picture mosaics of the sky. Montage tasks can be identified into input and output,
which do not use more CPU processing capability [171]. CyberShake workflow is used
to identify natural disasters, i.e., earthquakes. It is classified as a data concentrated
workflow which consumes a large amount of memory CPU capability [172]. Sipht is
used in the national center to detect replicates of all bacteria used to collect biotechnol-
ogy information. These types of workflows need more CPU utilization but less input-
output utilization. Laser Interferometer Gravitational-Wave Observatory (LIGO) is
the workflow application used for earth’s gravity detection. Ligo workflows contain

103

those kinds of tasks which take more memory for execution in CPU [122]. Epige-
nomics workflows are used to detect the production of DNA. They are data incentives
hence more CPU utilization. They are being used for genome sequencing operations
in epigenome center [122].

4.2 Resource-utilization based Workflow execution model
for fog computing

This section proposes a workflow execution model for a fog computing environment
that is based on resource utilization. While executing larger computational tasks, fog
computing faces specific problems like load scheduling, load balancing. Our proposed
solution will help to enhance resource utilization and reduce energy consumption in
fog nodes. Figure 4.2 shows the proposed workflow execution model for the fog com-
puting environment. The proposed architecture has three layers as that of traditional
fog architecture. As shown in the Figure 4.2, five steps describe the working of this
proposed model. These steps are described below in the layer-wise format:
End-user layer: The very first layer is the end-user layer in which end users generate

a large number of workflow tasks. Workflow container stores these tasks for some time
and then assign these tasks to the workflow scheduler. The working of these steps is
as follows:
Step 1. Workflow container submits workflow tasks to the workflow scheduler. These
tasks are submitted in the manner they arrived in the workflow container.
Step 2. Workflow scheduler contains a queue where tasks wait for resources. The
workflow tasks entered the queue from the queue’s rear end when they arrived and
were removed from the front end.
Step 3. As the resources become available, and these tasks are removed from the task
queue and assigned to the fog layer’s central controller layer.
Fog layer: This is the second layer of the proposed workflow execution model. This
layer contains different fog clusters that contain various fog nodes. This layer also con-
tains a central controller that controls the working of these fog clusters. The central
controller checks the availability of fog codes in each cluster and assigns the workflow

104

Figure 4.2: Resource-utilization based workflow execution model for fog computing

tasks to the available nodes. Working of this layer is explained in the following step:
Step 4: The central controller receives the workflow tasks from the workflow sched-
uler. It contains the load balancer that continuously keeps a watch on all fog nodes
in all fog clusters. Here PSW-Fog clustering-based load balancing approach has been

105

applied to distribute the tasks among all available nodes in equal proportion. In each
fog cluster, various fog nodes contain VM that execute these workflow tasks. The tasks
with the highest priority are executed first. The other tasks with low priority can wait
for the processor and assign them to the cloud layer for processing and further stor-
age. The fog layer executes real-time tasks that are having limited time and require
an immediate processor. Load balancer assigns such tasks to the available VMs, and
users respond after processing tasks.
Cloud layer: This is the third layer of the proposed workflow execution model. This
layer contains large data centers that can store and process a large amount of data.
Further, this layer includes various computing, networking, and storage resources.
Step 5: After processing at fog layer, workflow tasks processing results are informed
to users, and these tasks are further sent to the cloud layer for storage and more pro-
cessing if required.
The proposed workflow execution model tries to reduce the execution time of resources.
With the reduction of execution time, the number of resources needed will also reduce
energy consumption. So, our proposed solution can enhance maximum resource uti-
lization and minimize energy consumption.

4.3 PSW-Fog clustering-based load balancing algo-
rithm

In this section, a Fog-Clustering-based load balancing algorithm has been proposed
for executing workflow datasets. While executing workflow datasets, a load balanc-
ing problem is raised due to the fog computing layer’s lesser storage and computing
capacity. Due to this, a few VM in the fog layer becomes overloaded with the tasks,
and others still wait for the tasks. Along with this, VMs consume more energy even if
they are free. An efficient load balancing approach is required to reduce the overload-
ing of VMs. This section contains the methodology and algorithm proposed in this
work. This section includes three subsections, i.e., proposed methodology, proposed
algorithm, and performance metrics.

106

4.3.1 Optimization approaches used in our proposed hybrid al-
gorithm

Various meta-heuristic optimization approaches are available to find near-optimal so-
lutions to solve complex computational problems that can not be solved using a single
method. Using a single approach may not find the required optimum solution within
the defined problem’s time constraints. There are many natural phenomena available
that different researchers use to solve many various optimization problems. This re-
search work tried solving the load balancing problem faced in fog computing during the
execution of sizeable scientific workflow computations. So, only one single optimization
approach may not be able to find one optimum solution. Hence, this work combined
different natural phenomenon-based optimization approaches, i.e., plant growth op-
timization, simulated annealing algorithm, and water cycle optimization. All these
approaches are explained in this section. Here table 4.1 represents different notations
used in this chapter.

Table 4.1: Notations

Notations Description

Mi Optimized threshold at ith
iteration

f(xi) Distance function

P Prediction of task mapping

e Current resource allocation

Ci Population of clusters

NSn Optimize cluster mapping
by Ncluster

Cn Fog nodes in cluster

Ci Average value of fog nodes in
cluster

continued on next page

107

continued from previous page

Notations Description

Fn Fog nodes

Nclusters Random cluster of fog nodes

Sn Simulated annealing

Npop N population

Ti Execution time

Pi Computation time

EFog
En Energy consumption

CFog
Cn Forwarding tasks

CFog
Pc Computational Tasks

∂ Clustering threshold

Plant Growth Optimization(PGO)

This algorithm is proposed to simulate the real way of a plant’s growth by considering
its branching, leaves growth, and phototropism. PGO varies from the natural plant-
growth process to consider two kinds of behaviors to find the optimal solution. Firstly it
produces new branching points to find the optimal solution. Secondly, it considers the
new growing leaves around branches to find accurate solution [173] [174]. This research
considered the PGO approach in the proposed hybrid approach to select cluster heads
in different fog-nodes clusters. PGO is considered because of the need for less variance
because cluster size variance increases by default that causes load imbalance in nodes.
The PGO is based upon a real tree’s growth in which the trunk grows from roots and
branches grow from the branches. This process goes on, and some new more branches
grow from the nodes of branches. The same process continues till the tree is formed.
The plant growth process has been followed to develop an optimization approach in
which optimization starts from the plant’s root and keeps growing till branches until

108

the best solution is found [175] [176]. The following equation can be used to find an
optimum solution using PGO.

Mi =

{
1− f(xi)− fmin∑N

J=1[f(xj)− fmin]
+

{
αi(t) ∗

(
Pi −

∑
Qi

)
∗ βcl

i (4.1)

In eq (1) Mi optimize threshold at ith iteration its depend on fog nodes distance
function f (xi) its Euclidian distance. With minimum value of threshold maximum
chance on same cluster.

Simulated Annealing Algorithm(SAA)

The SAA was introduced by [177] in 1983 based on metal annealing’s chemical process.
The process of SAA starts with a random answer, and then the neighbor solution is
found. SAA is generally used for single solution problems [178]. Many researchers
have used SAA to solve different NP-hard problems and solved large computational
tasks [178–180] In our proposed approach, fog nodes have been divided into clusters.
After selecting the cluster head using the PGO algorithm, workflow tasks are mapped
onto clusters. So, this work used SAA for intracluster mapping. SAA is used to
analyze all cluster resources and their energy consumption. The mapping of tasks can
be predicted using the current allocation of resources. SAA helps to find a global
solution for the NP-hard problem by having a large error margin. The margin error
can be defined as the acceptance probability that can be considered to predict the task
mapping on cluster resources. The following formula has been used to predict task
mapping in clusters.

P =

{
1

1 + e−
∆(Curi)

I

}
(4.2)

In eq(2) P is the mapping task prediction of task mapping on fog cluster that is
calculated by e−

∆(Curi)
I current allocation resources, resources utilization reduce then

task mapping will increase because of prediction value increase.

109

Water Cycle Optimization(WCO)

The main idea behind WCO is taken by the observation of the natural water cycle
process that describes how all water from streams and rivers flow into the sea [181].
The water cycle describes how rivers and streams are formed by receiving water from
the melting of glaciers or heavy rains, and then this water goes into the sea. This
basic concept of the natural water cycle has been used by different researchers to im-
plement optimization to solve various computations [182]. When SAA could not find
the optimized solution, WCO is used to maximize the energy and cost of resources be-
tween inter-cluster resource mapping. Firstly, the population in clusters is defined on
which tasks to be mapped. The following equation describes the population of clusters.

Ci = f(xi
1, x

i
2, x

i
3..., x

i
n) Where i = 1, 2, 3....Npop (4.3)

In eq(3), Ci shows the population of clusters on which task is mapped. Here N is
number of design variables. A matrix shows the initial population of size Npop

NSn = round

{
| Cn∑n

i=1Ci

|clustern = 1, 2, 3....Ncluster (4.4)

In eq (4), NSn optimize the task mapping on fog clusters by WCA objective function
which optimizes cluster mapping by number of cluster resources Ncluster . Cn is number
of fog nodes in a cluster and

∑n
i=1Ci is average value of normalize cluster fog nodes.

4.3.2 PSW-Fog clustering algorithm

This section proposes a PSW-fog clustering-based load balancing algorithm for scien-
tific workflow applications. The heuristic optimization algorithms explained in section
4.1 have been used in a hybrid form to create a PSW-fog clustering-based load bal-
ancing algorithm. These approaches are combined to find the best optimal solution
without wasting execution time and energy of resources. In the algorithm, 3 number
of fog nodes and cloud resources are considered input. The desired output of the al-
gorithm is to optimize load balancing on fog nodes. Available fog nodes are combined

110

in the form of fog clusters. The PGO algorithm is applied to find the cluster head for
each cluster. Here population in each cluster is defined, and the fitness function takes
two different parameters, i.e., energy and cost. The convergence is applied according to
both these parameters. If converged, then select cluster head. Now, after the selection
of each cluster head, tasks are mapped onto resources by using SAA. If optimized,
then computing parameters are analyzed. If not optimized, task migration is applied
to balance each resource and WCO using the same computing parameters. Now here
population for each cluster is defined, and an optimized solution for cluster mapping is
found. If optimized, then computing parameters are analyzed; otherwise, again, WCO
is applied to optimize. These approaches can not provide an optimal solution for load
balancing in fog computing if used alone. This work has done hybridization of all the
explained techniques to enhance resource utilization in a fog environment. When all
the resources are utilized reasonably, it will reduce the time delay processing the tasks.
Energy consumption in these nodes will automatically be reduced, which will reduce
the computational cost.

4.3.3 Flow of execution of proposed algorithm

This section explains the proposed algorithm in the form of a flow chart that explains
the proposed algorithm’s working. The methodology used in this algorithm is divided
into three parts, i.e., making fog nodes clusters, initial task mapping, and optimize
mapping among clusters. All these steps are explained as follows:

1. Making fog nodes cluster: In this step, firstly, fog nodes are created into a group
of fog nodes, and then a cluster head is selected. The plant growth (PGO) approach
takes this decision. This approach uses two parameters for optimization, i.e., energy
and resource cost. If both parameters are optimized, make a cluster and select cluster
head. Plant growth optimization is used because of the need for less variance of the
group because cluster size variance increases by default that causes load imbalance.
2. Task initial mapping: After selecting optimize clusters and cluster head, parse
the workflow and map task on fog groups. Here the different combination of fog nodes
has been made on which different tasks are mapped. Here simulated annealing (SAA)
has been initiated according to fog clusters that take intra-cluster mapping decisions.

111

Algorithm 3: PSW-Fog Clustering based load balancing algorithm
Input: Number of fog nodes and resources of cloud
Output: Optimize Load balancing on fog nodes

1 Fn← Fog nodes
2 Nclusters← Random Cluster of Fog nodes
3 PG = plant growth(Ncluster, Fn)
4 for 1 to Ncluster do

5 Apply Mi =

{
1− f(xi)−fmin∑N

J=1[f(xj)−fmin]
, f (xi) > fmin

1 ,f (xi) = fmin

i = 1, 2, 3N and

Calculate Mi(ClusteringThreshold)
6 if Clusterth> Mi then

7 Begin
8 Cluster ← Fn

9 else

10 Clusteri+1← Fn

11 EndIf
12 Stop
13 Sn =simulated annealing (Clusteri, Fn)
14 for 1 to Clusteri do

15 Start
16 Map task by P = 1(

1+e−
∆(Curi)

I

)
17 Stop
18 if (optimize) then

19 Begin
20 Analysis of Task computing Parameters
21 else

22 Apply WCO (tasks, clusteri, Fn)
23 For every cluster define population by Ci = f (xi

1, x
i
2, x

i
3 , x

i
n) i=1,2,3. . .

..Npop

24 Define Cost by NSn = round
{
| Cn∑n

i=1 Ci
|cluster n = 1, 2, 3Ncluster

25 if [NS]n < min(NSn) then

26 Begin
27 Computation of tasks on VM
28 Analysis of Task computing Parameters
29 else

30 Go to step 22
31 End
32 End

112

After simulated annealing analysis of all cluster node resources, map tasks on nodes
and analyze performance parameters, i.e., energy, cost, and time delay. If performance
parameters are optimized, run the computation and again analyze parameters. Other-
wise, go to the next step.
3. Optimize mapping among clusters: This step comes into the picture when
the previous step does not optimize. If the previous step fails to optimize all con-
sidered parameters, there is still load imbalance in the fog layer, hence needing load
balancing. So task migration is applied to the clusters, and tasks from heavily loaded
clusters are taken and transferred to lightly loaded clusters. In this step, water cycle
optimization has been used by considering all performance metrics. The WCO reduces
the energy consumption and cost of resources between inter-cluster. If all parameters
are optimized, then all the parameters can be analyzed to check the performance of
the proposed approach; otherwise, the loop continues with task migration on clusters.
Figure 4.3 represents the flow of execution in the PSW-Fog clustering-based load bal-
ancing algorithm. The Figure 4.3 is divided into three steps explained above in this
section.

4.3.4 Performance metrics

The proposed algorithm tries to reduce the execution time of tasks in fog clusters to
reduce time delay. Along with this computational cost, and energy consumption in
fog nodes has been reduced. All the considered computational parameters have been
described as follows.

Time delay:

Time delay in fog environment can be considered as the time interval between the
submission of the task to the response after processing of that task. The time delay
depends on computational time; if the computation time is less, then the time delay will
be lower. The fog layer mainly tries to reduce the time delay for processing tasks near
end users. The following equation describes the time delay calculated in the proposed

113

Figure 4.3: Flow of execution of PSW-Fog clustering based load balancing algorithm

114

algorithm.

Ti =

{
1− f(xi)− fmin∑N

J=1[f(xj)− fmin]
+

{
αi(t) ∗

(
Pi −

∑
Qi

)
∗ βcl

i (4.5)

In eq (4.6) First part of latency depend on objective function of plant growth opti-
mization and second show the latency calculation by fog nodes and cloud respectively
but fog nodes cluster and temporary storage improve the computation time Pi and∑

Qi show the resources and these are dependent on two hyper parameters βcl
i and

αi(t) .

Cost

The computational cost in a fog environment can be considered in the form of the
maintenance cost and energy consumption in fog nodes [150]. If only a few resources
are utilized, and others remain underutilized, they must be adequately maintained.
Along with fog resources, cloud resources also compute tasks that also have some
computational cost. The following equation is used to calculate the computational
cost in a fog-cloud environment.

Ccost
Pc =

{
Clusteri.NSn(1− β) ∗ (αi(t) − αi(t−1)) + Ccloud

Cn (4.6)

In eq (5) Ccost
Pc represents the analysis of computation task in Cloud. Computation

depends on different parameters where NSn (1− β) NV is virtual machine mapping
with task migration of cloud fog nodes, and

(
αi(t) − αi(t−1)

)
is number of computation

resources available. If this quantity increases then computation cost also increases.
Ccloud

Cn also depend on resources of cloud.

Energy

The fog layer contains various devices such as gateways, routers, servers that consume
much energy while executing large computational tasks. While migrating tasks be-
tween clusters, energy consumption in nodes is also increased. Hence maximum load

115

balancing in fog nodes can help to reduce energy consumption in the fog environment.
The following equation represents the energy consumption in a fog environment.

EFog
En =

{
∂ ∗

N∑
i=1

CFog
Cn + (1− ∂) ∗

N∑
i=1

CFog
Pc + Ccloud

Cn (4.7)

Equation (7) shows the EFog
En Energy consumption which depends on two factors:

first is CFog
Cn forwarding tasks, and second is CFog

Pc Computation tasks. Here ∂ is
clustering threshold.

4.4 Analysis of PSW-Fog clustering-based load bal-
ancing approach

This section evaluates the proposed PSW-Fog clustering approach by executing sci-
entific workflow applications. For simulation purposes, iFogSim collaborates with
CloudSim because of its huge library of resource management and cloud environment
simulation. CloudSim handles all the events occurring between different fog com-
ponents. In the experimental requirement table 4.2, it has been explained that 20
to 200 fog nodes have been considered, which makes fog nodes clusters. Approxi-
mately 20 fog clusters have been considered that contain 10 to 20 VM per cluster.
Fog nodes have less computing capacity, so the fog layer is further connected to the
cloud layer having a large data center. The fog layer works in collaboration with the
cloud layer. The fog layer processes the tasks having fewer time requirements, and
other tasks with low priority are sent to the cloud layer. This research is carried out
experiment by considering benchmark workflows such as GENOME, Cybershake [172],
SIPHT [122], and LIGO [122]. This research compared its results with other exist-
ing approaches, i.e., Artificial Bee Colony (ABC), Tabu search [114] [161], Ant Colony
Optimization(ACO) [81] [162], Grey Wolf Optimization(GWO) [163], and Tabu-GWO-
ACO approaches, and it has been represented through graphs that proposed approach
outperforms than all other optimization approaches.

116

4.4.1 Experimental Requirement

This research work has considered few experimental requirements to obtain simulation
results. The fog layer has been divided into clusters, each containing a maximum of
20 nodes. Table 4.2 represents the experimental requirements used for the evaluation
of the proposed PSW-Fog clustering-based load balancing in fog environment.
iFogSim has been considered because of its open-source availability. It is a high-
performance toolkit used for fog and edge computing environments. It is used to simu-
late fog computing and IoT networks. iFogSim works with CloudSim in collaboration.
iFogSim contains three components, i.e., physical components containing physical fog
nodes, logical elements containing different application modules and application edges,
and lastly, management components that include module mapping objects and fog
controller [164].

Table 4.2: Experimental Requirement

Experiments Parameters Value/Name

Simulator CloudSim and iFogSim

Dataset Workflows (LIGO, SIPHT,
GENOME, Cybershake)

Datacenter One

VM 10 to 20

Fog Nodes 20 to 200

Optimization algorithm simulated annealing, plant
growth, WCA

Processer Per VM 0.5MIPS

Memory per VM 200MB

Max Clusters 20

Max fog nodes in Cluster 20

117

4.4.2 Result analysis

This section covers the simulation results obtained from iFogSim after evaluating the
proposed approach PSW-Fog clustering-based load balancing. These results have been
compared based on time delay, cost, and energy consumption in a fog environment.
This work has considered datasets of LIGO, Genome, SIPHT, and cybershake. The
obtained results are shown in graphs that compare the proposed approach with other
existing techniques.

Cost analysis

The considered workflows are executed using the proposed approach, and their com-
putational cost has been analyzed. The workflows are taken in size of 20 to 100 tasks,
and they are executed on fog nodes considering 20 to 200 fog nodes as represented in
graphs in Figure 4.4. The graphs represent variations in cost during execution on a
varying number of fog nodes. It can be seen in graphs that with an increase in the
number of fog nodes, computational cost also increased in every experiment. With
our proposed multi-objective optimization approach, This research has improved cost
reduction compared to other existing heuristic approaches. Figure 4.4(a) shows the
computational cost while evaluating LIGO workflow. It can be seen from the graph
that the proposed approach significantly reduces the computational cost in fog nodes
during execution on the different number of fog nodes from 20-200. Our proposed
approach overlaps the cost values of other existing approaches in some experiments,
but its average value improves the cost reduction. The improvement in cost reduction
in the proposed approach is due to the clustering of fog nodes. Workflows are executed
in distributed resources that reduce cost and other parameters. It has been obtained
that after comparing with other approaches, PWS-fog clustering tries to reduce cost
by 25% in the case of LIGO. In Figure 4.4(b), variation in cost can be seen during
the evaluation of cybershake workflow, which clearly shows the reduction in cost by
the proposed approach. The mean value of cost reduction in each experiment has been
improved by PSW-Fog clustering. This reduction in cost in the case of cybershake is
its lesser complexity compared to LIGO. In the experimental analysis, it has been ob-
tained that PSW-Fog based approach tries to reduce 45% as compared to the average

118

(a) LIGO (b) Cybershake

(c) Genome (d) SIPHT

Figure 4.4: Cost Analysis of different workflows(PSW-Fog clustering Aproach)

119

of all other considered approaches. Same as LIGO and cybershake, other workflows
GENOME and SIPHT are also executed. Figure 4.4(c) and Figure 4.4(d) shows
the improvement in cost reduction to 35%, 40% in the case of GENOME and SIPHT,
respectively. Both the graphs show a significant reduction in computational cost in
all experiments. This cost reduction in GENOME and SIPHT is due to optimization
in the clustering of fog nodes and the migration of tasks between the optimized cluster.

Time delay analysis

Time delay has been evaluated and represented in the form of bar graphs. Figure
4.5 has been divided into two parts, out of which Figure 4.5(a) represents the time
delay in evaluating LIGO workflows. Our proposed approach reduces time delay in
executing workflow tasks on fog nodes compared to other existing techniques. As
shown in the LIGO graph, when 20 fog nodes are considered, the time delay overlaps
the different existing approaches. However, the average time delay has been reduced in
other experiments by considering 40-200 fog nodes. Fog nodes have been grouped into
clusters that help in reducing the execution time of tasks. Due to distributed nature of
fog computing, all the resources are distributed in available fog nodes clusters that help
execute large workflow tasks, i.e., 20-100 tasks per cluster. Time delay is measured
in seconds. The X-axis of graphs represents the number of fog nodes considered for
experiments, and the y-axis represents the time delay in seconds.

120

(a) LIGO

(b) Cybershake

Figure 4.5: Time delay analysis of LIGO and Cybershake workflows (PSW-Fog clustering)

121

(a) Genome

(b) SIPHT

Figure 4.6: Time delay analysis of Genome and SIPHT workflows(PSW-Fog clustering
Aproach)

122

Figure 4.5(b) shows time delay calculated while executing cybershake workflow that
indicates that the proposed approach reduces time delay as compared to other con-
sidered approaches. Due to the low complexity of cybershake, the mean value of time
delay has been reduced in every experiment.

Similar improvement trends have been observed in the case of GENOME and SIPHT
that are represented in Figure 4.6(a) and 4.6(b), respectively. Figures represent
execution time of GENOME and SIPHT that shows significant improvement in all
experiments. It has been obtained that while considering 20 to 200 fog nodes in
experiments, time delay has been reduced to 30%, 50%, 40%, and 45% in case of
LIGO, cybershake, Genome, and SIPHT, respectively.

Energy-consumption analysis

A similar kind of experiment has been conducted to analyze energy consumption in
fog nodes. This research has considered the same number of fog nodes like cost and
time analysis, i.e., 20 to 200, for conducting experiments. This research has conducted
approximately ten experiments considering 20,40,60,....,200 fog nodes in every experi-
ment. Figure 4.7(a) shows the energy consumption in the case of LIGO. It can be seen
from Figure 4.7(a) that PSW-Fog based load balancing approach reduces energy con-
sumption to 60% compared to other existing approaches. Clustering fog nodes reduces
the intra-cluster task migration, reducing energy consumption during the migration
of tasks between nodes. Figure 4.7(b) represents energy consumption in cybershake,
which shows a 70% reduction in energy consumption with the proposed approach. Sim-
ilarly Figure 4.7(c) and 4.7(d) shows energy consumption in GENOME and SIPHT
respectively. Both the Figures 4.7(c) and 4.7(d) represents the reduction in energy
consumption to 50%, and 45% in case of PSW-fog clustering-based load balancing
approach in case of all the experiments. This improvement is due to optimization in
the clustering of fog nodes.The proposed model and approach can be implement in
real time applications that are further described in the further section. Energy con-
sumption in real applications is the main issue now days that is further required to be
worked upon. In future works, real time application will be implemented and energy
consumption in real time application will be tried to be reduced.

123

(a) LIGO (b) Cybershake

(c) Genome (d) SIPHT

Figure 4.7: Energy Analysis PSW-Fog clustering Aproach

4.4.3 Applications of proposed energy efficient load balancing
algorithm

– Home energy management Traditionally energy was generated by burning fossil
fuels which increases human life threats, increased carbon emission and global warming
as well. The other source of energy production is solar system and windmills. In
this modern computing era, smart systems exist like smart grids which help in green
power distribution, power usage control, improves the load. These day smart meters
are installed in smart grids which help to keep record of power consumption and also

124

control the power consumption. These smart meters generate a large volume of data
which is stored and processed by cloud datacenters. But due to high latency problem
with cloud, data is being processed by fog computing layer in between the cloud and
smart grids (IoT layer). Fog nodes can be deployed in the homes which keep record of
on/off electric devices. If the load on smart grids is more, then fog nodes automatically
switch off the unused appliances. This helps to save energy consumption in smart
homes.

– Smart traffic management system With the growth of IoT and fog computing
Internet of Vehicles (IoV) came into existence. Due to driving mistakes of humans, there
are chances of accidents. IoV can help to reduce accidents and reduce congestion in the
city. IoV has transformed the moving vehicles into intelligent electric vehicles, which
helps to reduce latency as well as energy consumption. Due to real time interconnections
between vehicle to vehicle, vehicle to sensors and vehicle to computing framework, fog
nodes need to process immediately to avoid any congestion [183]. In the IoV, a large
volume of data is generated intelligent electrical vehicles containing sensors, which need
to be distributed among all nearby fog nodes for immediate decision making as well as
network management. The smart vehicles can be informed by smart traffic lights about
any congestion or road-holes in their path and these vehicles can change their routes
and will further send signals to the vehicles coming behind them. In this way traffic is
re- routed to avoid any congestion or accident. Along with this demand for reducing the
energy consumption by Road Side Units(RSU) and electrical vehicles is also increasing.
As RSUs are having installed batteries which consumes a large amount of energy while
interacting with electric vehicles and other RSUs. But there is less work provided in
energy conservation in moving vehicles, which is compulsory to conserve natural energy
resources and improve the computing process in IoV. There is a need to provide energy
aware computing in fog environment for smart traffic management system [184].

These applications can be further implemented using proposed approach to reduce
energy consumption in real time environment. As, the power consumption has become
a big issue now days that need to be further worked upon.

125

4.5 Conclusion

Load balancing in scientific workflows is necessary to utilize the resources at the fog
layer fully. This chapter provides the architecture for fog computing implementing
load balancing in a scientific workflow. Furthermore, this chapter reviews the existing
load balancing and scheduling techniques in workflows and briefly reviews them. Fur-
thermore, the PSW-fog clustering-based load balancing algorithm has been proposed
by amalgamating different existing heuristic approaches, i.e., plant growth, simulated
annealing, and water cycle algorithms. Different types of existing scientific workflow
examples have been described to implement in a fog environment using the proposed
approach. This research work has considered three different computing parameters
used to check the performance of the proposed approach, i.e., time delay, cost, and en-
ergy consumption. In order to evaluate the proposed approach, iFogSim has been used
to find the simulation results. The results obtained by executing PSW-fog clustering
are compared with other existing approaches. It can be seen from graphs that our
proposed solution tries to improve than other approaches. PSW-fog clustering tries to
reduce time delay, computational cost, and energy consumption in fog nodes.

126

CHAPTER 5

CONCLUSION AND FUTURE
WORK

The main contribution of the thesis is concluded in this chapter. A thorough study
is done in fog computing, and its architecture, applications, open issues, and research
challenges have been discussed. Fog mainly provides services of cloud computing near
the edge of the network. The main issue of latency faced by cloud computing has been
resolved by fog computing by deploying its nodes near to network edge. Due to large and
complex computational tasks, fog computing faces the problem of overloaded resources.
Different issues caused by overloaded resources have been identified. Various existing
approaches have been studied, and a thorough literature review has been provided. This
research proposed fog computing architecture of load balancing for scientific workflow
application to overcome overloaded resources in the fog computing environment and
named it FOCALB.

Further, to evaluate and analyze the proposed framework, a hybrid load balancing algo-
rithm has been proposed (Tab-GWO-ACO). Further, a resource-utilization-based Work-
flow execution model for fog computing has been proposed to reduce energy consumption
in a fog environment. PWS-Fog based load balancing approach has been proposed to
analyze the proposed model. The proposed approaches have been analyzed, their ex-
perimental requirements have been explained, and the obtained simulation results are
compared with existing approaches. The results obtained from the simulation show that
the proposed techniques outperform the existing methods.

This chapter concludes the research work done in this thesis by highlighting its main
contributions. The chapter begins with the conclusion of the research work conducted
in this thesis by briefing each and every chapter. Further, it discussed load balancing
and energy consumption in fog computing. The chapter provides the future scope of the

127

work and provides the research directions for future researchers.

5.1 Conclusion

The thesis," Energy aware load balancing in fog computing," addresses resource uti-
lization, load balancing, and energy consumption challenges in the fog computing en-
vironment.

Chapter 1 studied fog computing, its definitions provided by different researchers,
and its key areas. Further, the need for load balancing at the fog layer is discussed.
Parameters that affect load balancing are discussed, and a taxonomy is provided de-
scribing existing load balancing techniques. Also, Open issues and challenges faced in
fog computing environments discussed can be considered for future research. Scien-
tific workflow applications have been described that are used to evaluate the proposed
approaches in this research work.

As provided in chapter 2, a thorough literature review has been conducted in fog
computing considering its challenges, i.e., load balancing, resource utilization, energy
consumption. Various load balancing techniques provided by different researchers have
been studied, and their comparison in the form of tables is provided. Year-wise reviews
of existing approaches have been conducted, and a taxonomy showing year-wise studies
has been provided. Further, the chapter concluded by formulating the problem and
providing the research objectives.

The next chapter 3 proposed a load balancing architecture for the fog computing
environment. The proposed framework has been divided into three layers, i.e., end-
user layer, fog layer, cloud layer. Here, the fog layer has been divided into various
clusters containing few fog nodes each. Fog clusters have their local controllers that
keep track of each fog node in the cluster. The load balancing process is applied if
there is overloading or underloading of resources. Fog’s local controller transfers tasks
from overloaded resources to underloaded resources. The proposed load balancing
approach Tabu-GWO-ACO has been applied to avoid overloading of resources and for
full utilization of resources in a fog environment. FOCALB has been implemented
in simulation environment. Load balancing approach TABU-GWO-ACO has been

128

evaluated by using scientific workflow applications. Different application scenarios of
FOCALB have been discussed at the end of the chapter. The chapter also proposed
a prototype model for implementing FOCALB in real time environment i.e. Smart
waste management application.

Further chapter 4 proposed a resource-utilization-based model for energy-aware load
balancing in a fog environment. This model mainly works for minimizing the energy
consumption in a fog environment. An energy-aware load balancing approach, i.e.,
PSW-Fog clustering, has been proposed for maximum resource utilization. Energy con-
sumption in fog resources can be reduced with maximum resource utilization. All the
results have been obtained by evaluating the proposed approaches in the iFogSim sim-
ulation environment using LIGO, Sipht, Cybershake, Genome workflow applications.
An energy-aware load balancing approach (PWS-Fog clustering) has been executed in
the proposed model by using scientific workflow applications. It has been obtained
from experimental results that the proposed approaches outperform the existing load
balancing approaches. At the end, the chapter also describes the real time application
scenarios of proposed energy-aware load balancing approach.

The main contributions of this research work are summarised as follows:

– A thorough literature review has been conducted in load balancing in the fog computing
environment.

– Resource utilization based load balancing framework has been proposed that ensures
maximum utilization of available resources in fog computing

– A load balancing approach has been proposed to optimize the resources in the fog layer.

– Three main parameters have been considered to analyze the proposed resource utilization-
based load balancing framework and energy-aware load balancing algorithm, i.e., Exe-
cution time, Computational cost, Energy consumption.

– This thesis presents the development and implementation of the proposed framework
(FOCALB) and loads balancing approaches, i.e., Tabu-GWO-ACO and PWS-Fog clus-
tering approaches.

– The proposed framework provides load balancing and maximizes resource utilization in
the fog layer, minimizing energy consumption.

129

– The proposed solution for load balancing helps for efficient resource utilization.

5.2 Future enhancement

There are some open issues in fog computing that can show future directions to the
researchers to explore this area more. Moreover, many open areas need to be explored
more, i.e., security, resource provisioning, and energy consumption.The section provides
the research directions for future researchers, and also describes how limitations of this
work can be overcome in future.

Few open challenges and future directions are provided below:

– The security and privacy of fog nodes have been a big challenge nowadays. So this area
can be considered for future research.

– In the case of extensive data, energy consumption in fog computing increases. Hence
there is a need to evaluate the energy-aware load balancing approach in real-time fog
computing applications, i.e., e-healthcare.

– There is a need for implementing load balancing and load scheduling in a real-time
environment.

– All existing load balancing approaches have been executed in the simulation environ-
ment, so experimentation is needed in the real world.

– There is a need to improve the multi-objective load scheduling problem in a fog-cloud
environment.

– It can not be said which load balancing approach is best to reduce cost and energy
consumption in a fog environment.

5.2.1 How limitations can be overcome in future

The challenges described above can guide future researchers to explore and enhance
the area of fog computing more. In the future, this research work will be extended
towards other issues faced by the fog environment. All these issues can be considered
in the future to explore the fog computing area. Further, the proposed approaches will

130

be implemented in real time environment by implementing Smart waste management
system that will help to enhance cities. In the future, more load balancing approaches
will be explored in fog computing and try to enhance the fog-cloud environment’s
performance in real-time systems. Further, case studies will be conducted in nearby
city areas for implementation of smart waste management systems and overcome the
problem of waste management.

131

References

[1] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog computing: A platform for
internet of things and analytics,” in Big data and internet of things: A roadmap for
smart environments, pp. 169–186, Springer, 2014.

[2] M. Peng, S. Yan, K. Zhang, and C. Wang, “Fog computing based radio access networks:
Issues and challenges,” arXiv preprint arXiv:1506.04233, 2015.

[3] T. H. Luan, L. Gao, Z. Li, Y. Xiang, G. Wei, and L. Sun, “Fog computing: Focusing
on mobile users at the edge,” arXiv preprint arXiv:1502.01815, 2015.

[4] S. Shahzadi, M. Iqbal, T. Dagiuklas, and Z. U. Qayyum, “Multi-access edge computing:
open issues, challenges and future perspectives,” Journal of Cloud Computing, vol. 6,
no. 1, pp. 1–13, 2017.

[5] P. Varshney and Y. Simmhan, “Demystifying fog computing: Characterizing architec-
tures, applications and abstractions,” in 2017 IEEE 1st International Conference on
Fog and Edge Computing (ICFEC), pp. 115–124, IEEE, 2017.

[6] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-based
cloudlets in mobile computing,” IEEE pervasive Computing, no. 4, pp. 14–23, 2009.

[7] F. Bonomi, R. Milito, J. Zhu, and S. A. Computing, “its role in the internet of things‖,”
in Proceedings First Ed. MCC Workshop Mob. Cloud Comput., New York, NY, USA:
ACM, pp. 13–16.

[8] S. Khan, S. Parkinson, and Y. Qin, “Fog computing security: a review of current
applications and security solutions,” Journal of Cloud Computing, vol. 6, no. 1, p. 19,
2017.

132

[9] T. Shuminoski, S. Kitanov, and T. Janevski, “Advanced qos provisioning and mobile
fog computing for 5g,” Wireless Communications and Mobile Computing, vol. 2018,
2018.

[10] M. R. Anawar, S. Wang, M. Azam Zia, A. K. Jadoon, U. Akram, and S. Raza, “Fog
computing: an overview of big iot data analytics,” Wireless Communications and Mo-
bile Computing, vol. 2018, 2018.

[11] F. Hosseinpour, J. Plosila, and H. Tenhunen, “An approach for smart management of
big data in the fog computing context,” in 2016 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom), pp. 468–471, IEEE, 2016.

[12] B. Farahani, F. Firouzi, V. Chang, M. Badaroglu, N. Constant, and K. Mankodiya,
“Towards fog-driven iot ehealth: Promises and challenges of iot in medicine and health-
care,” Future Generation Computer Systems, vol. 78, pp. 659–676, 2018.

[13] K. Kai, W. Cong, and L. Tao, “Fog computing for vehicular ad-hoc networks:
paradigms, scenarios, and issues,” the journal of China Universities of Posts and
Telecommunications, vol. 23, no. 2, pp. 56–96, 2016.

[14] A. Giordano, G. Spezzano, and A. Vinci, “Smart agents and fog computing for smart
city applications,” in International Conference on Smart Cities, pp. 137–146, Springer,
2016.

[15] P. G. V. Naranjo, Z. Pooranian, M. Shojafar, M. Conti, and R. Buyya, “Focan: A
fog-supported smart city network architecture for management of applications in the
internet of everything environments,” Journal of Parallel and Distributed Computing,
2018.

[16] X. Xu, S. Fu, Q. Cai, W. Tian, W. Liu, W. Dou, X. Sun, and A. X. Liu, “Dynamic
resource allocation for load balancing in fog environment,” Wireless Communications
and Mobile Computing, vol. 2018, 2018.

[17] M. M. Mahmoud, J. J. Rodrigues, K. Saleem, J. Al-Muhtadi, N. Kumar, and V. Ko-
rotaev, “Towards energy-aware fog-enabled cloud of things for healthcare,” Computers
& Electrical Engineering, vol. 67, pp. 58–69, 2018.

133

[18] M. Aazam and E.-N. Huh, “Fog computing and smart gateway based communication
for cloud of things,” in 2014 International Conference on Future Internet of Things
and Cloud, pp. 464–470, IEEE, 2014.

[19] T. Desai and J. Prajapati, “A survey of various load balancing techniques and chal-
lenges in cloud computing,” International Journal of Scientific & Technology Research,
vol. 2, no. 11, pp. 158–161, 2013.

[20] M. M. Rathore, A. Paul, W.-H. Hong, H. Seo, I. Awan, and S. Saeed, “Exploiting
iot and big data analytics: Defining smart digital city using real-time urban data,”
Sustainable cities and society, vol. 40, pp. 600–610, 2018.

[21] N. Rathore and I. Chana, “Load balancing and job migration techniques in grid: a
survey of recent trends,” Wireless personal communications, vol. 79, no. 3, pp. 2089–
2125, 2014.

[22] J. Baliga, R. W. Ayre, K. Hinton, and R. S. Tucker, “Green cloud computing: Balancing
energy in processing, storage, and transport,” Proceedings of the IEEE, vol. 99, no. 1,
pp. 149–167, 2011.

[23] H. Atlam, R. Walters, and G. Wills, “Fog computing and the internet of things: a
review,” Big Data and Cognitive Computing, vol. 2, no. 2, p. 10, 2018.

[24] M. Ghobaei-Arani, A. Souri, and A. A. Rahmanian, “Resource management approaches
in fog computing: a comprehensive review,” Journal of Grid Computing, pp. 1–42,
2019.

[25] T. Huang, B. Xu, H. Cai, J. Du, K.-M. Chao, and C. Huang, “A fog computing based
concept drift adaptive process mining framework for mobile apps,” Future Generation
Computer Systems, vol. 89, pp. 670–684, 2018.

[26] B. Bhavani and H. Guruprasad, “Resource provisioning techniques in cloud computing
environment: a survey,” International Journal of Research in Computer and Commu-
nication Technology, vol. 3, no. 3, pp. 395–401, 2014.

[27] S. S. Gill and R. Buyya, “Resource provisioning based scheduling framework for exe-
cution of heterogeneous and clustered workloads in clouds: from fundamental to auto-
nomic offering,” Journal of Grid Computing, vol. 17, no. 3, pp. 385–417, 2019.

134

[28] N. Téllez, M. Jimeno, A. Salazar, and E. Nino-Ruiz, “A tabu search method for load
balancing in fog computing,” Int. J. Artif. Intell, vol. 16, no. 2, 2018.

[29] D. Puthal, R. Ranjan, A. Nanda, P. Nanda, P. P. Jayaraman, and A. Y. Zomaya,
“Secure authentication and load balancing of distributed edge datacenters,” Journal of
Parallel and Distributed Computing, vol. 124, pp. 60–69, 2019.

[30] S. Saeedi, R. Khorsand, S. G. Bidgoli, and M. Ramezanpour, “Improved many-objective
particle swarm optimization algorithm for scientific workflow scheduling in cloud com-
puting,” Computers & Industrial Engineering, vol. 147, p. 106649, 2020.

[31] P. Maechling, E. Deelman, L. Zhao, R. Graves, G. Mehta, N. Gupta, J. Mehringer,
C. Kesselman, S. Callaghan, D. Okaya, et al., “Scec cybershake workflows—automating
probabilistic seismic hazard analysis calculations,” in Workflows for e-Science, pp. 143–
163, Springer, 2007.

[32] N. A. Niemi, M. Oskin, and T. K. Rockwell, “Southern california earthquake center ge-
ologic vertical motion database,” Geochemistry, Geophysics, Geosystems, vol. 9, no. 7,
2008.

[33] S. Callaghan, P. Maechling, E. Deelman, K. Vahi, G. Mehta, G. Juve, K. Milner,
R. Graves, E. Field, D. Okaya, et al., “Reducing time-to-solution using distributed high-
throughput mega-workflows-experiences from scec cybershake,” in 2008 IEEE Fourth
International Conference on eScience, pp. 151–158, IEEE, 2008.

[34] E. Deelman, S. Callaghan, E. Field, H. Francoeur, R. Graves, N. Gupta, V. Gupta,
T. H. Jordan, C. Kesselman, P. Maechling, et al., “Managing large-scale workflow
execution from resource provisioning to provenance tracking: The cybershake exam-
ple,” in 2006 Second IEEE International Conference on e-Science and Grid Computing
(e-Science’06), pp. 14–14, IEEE, 2006.

[35] H. Li, J. Ruan, and R. Durbin, “Maq: Mapping and assembly with qualities,” Version
0.6, vol. 3, 2008.

[36] J. Livny, H. Teonadi, M. Livny, and M. K. Waldor, “High-throughput, kingdom-
wide prediction and annotation of bacterial non-coding rnas,” PloS one, vol. 3, no. 9,
p. e3197, 2008.

135

[37] C. Team, “Dagman (directed acyclic graph manager),” See website at http://www. cs.
wisc. edu/condor/dagman, 2005.

[38] A. Kaur, P. Gupta, and M. Singh, “Hybrid balanced task clustering algorithm for
scientific workflows in cloud computing,” Scalable Computing: Practice and Experience,
vol. 20, no. 2, pp. 237–258, 2019.

[39] D. A. Brown, P. R. Brady, A. Dietz, J. Cao, B. Johnson, and J. McNabb, “A case
study on the use of workflow technologies for scientific analysis: Gravitational wave
data analysis,” in Workflows for e-Science, pp. 39–59, Springer, 2007.

[40] S. K. Mishra, B. Sahoo, and P. P. Parida, “Load balancing in cloud computing: A big
picture,” Journal of King Saud University-Computer and Information Sciences, 2018.

[41] V. Velde and B. Rama, “An advanced algorithm for load balancing in cloud computing
using fuzzy technique,” in 2017 International Conference on Intelligent Computing and
Control Systems (ICICCS), pp. 1042–1047, IEEE, 2017.

[42] J. Rufino, M. Alam, J. Ferreira, A. Rehman, and K. F. Tsang, “Orchestration of con-
tainerized microservices for iiot using docker,” in 2017 IEEE International Conference
on Industrial Technology (ICIT), pp. 1532–1536, IEEE, 2017.

[43] A. Manju and S. Sumathy, “Efficient load balancing algorithm for task preprocess-
ing in fog computing environment,” in Smart Intelligent Computing and Applications,
pp. 291–298, Springer, 2019.

[44] R. Buyya and S. Venugopal, “A gentle introduction to grid computing and technolo-
gies,” database, vol. 2, p. R3, 2005.

[45] Y. Simmhan, “Big data and fog computing,” arXiv preprint arXiv:1712.09552, 2017.

[46] S. E. Bibri, “The iot for smart sustainable cities of the future: An analytical framework
for sensor-based big data applications for environmental sustainability,” Sustainable
Cities and Society, vol. 38, pp. 230–253, 2018.

[47] M. Chiang and T. Zhang, “Fog and iot: An overview of research opportunities,” IEEE
Internet of Things Journal, vol. 3, no. 6, pp. 854–864, 2016.

[48] A. Amin, S. Riyaz, A. Ali, and Z. Paul, “Review of iot data analytics using big data, fog
computing and data mining,” International Journal of Computer Science and Mobile
Computing, vol. 6, pp. 33–39, 2017.

136

[49] Q. Fan and N. Ansari, “Towards workload balancing in fog computing empowered iot,”
IEEE Transactions on Network Science and Engineering, 2018.

[50] O. Consortium et al., “Openfog reference architecture for fog computing,” Architecture
Working Group, 2017.

[51] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the fog: Towards a com-
prehensive definition of fog computing,” ACM SIGCOMM Computer Communication
Review, vol. 44, no. 5, pp. 27–32, 2014.

[52] J. Letić, “Internet of things statistics for 2020 – taking things apart,” 2019.

[53] N. G., “How many iot devices are there in 2020? [all you need to know],” 2020.

[54] M. Verma, N. Bhardwaj, and A. K. Yadav, “Real time efficient scheduling algorithm
for load balancing in fog computing environment,” Int. J. Inf. Technol. Comput. Sci,
vol. 8, no. 4, pp. 1–10, 2016.

[55] M. Kaur and R. Aron, “Equal distribution based load balancing technique for fog-based
cloud computing,” in International Conference on Artificial Intelligence: Advances and
Applications 2019, pp. 189–198, Springer, 2020.

[56] V. Moysiadis, P. Sarigiannidis, and I. Moscholios, “Towards distributed data manage-
ment in fog computing,” Wireless Communications and Mobile Computing, vol. 2018,
2018.

[57] P. C. Zikopoulos, C. Eaton, D. DeRoos, T. Deutsch, and G. Lapis, Understanding big
data: Analytics for enterprise class hadoop and streaming data. Mcgraw-hill New York,
2012.

[58] X. Jiang, P. Hu, Y. Li, C. Yuan, I. Masood, H. Jelodar, M. Rabbani, and Y. Wang,
“A survey of real-time approximate nearest neighbor query over streaming data for fog
computing,” Journal of Parallel and Distributed Computing, vol. 116, pp. 50–62, 2018.

[59] A. Nahir, A. Orda, and D. Raz, “Replication-based load balancing,” IEEE Transactions
on Parallel and Distributed Systems, vol. 27, no. 2, pp. 494–507, 2016.

[60] M. R. H. J. Younis and A. M. El-Halees, “Hybrid load balancing algorithm in heteroge-
neous cloud environment,” Hybrid Load Balancing Algorithm in Heterogeneous Cloud
Environment, vol. 5, no. 3, 2015.

137

[61] H. Sharma and G. S. Sekhon, “A review on load balancing in cloud using enhanced ge-
netic algorithm,” International Journal of Computer Engineering & Technology, vol. 8,
no. 2, 2017.

[62] C. Dsouza, G.-J. Ahn, and M. Taguinod, “Policy-driven security management for fog
computing: Preliminary framework and a case study,” in Proceedings of the 2014 IEEE
15th International Conference on Information Reuse and Integration (IEEE IRI 2014),
pp. 16–23, IEEE, 2014.

[63] S. Aslam and M. A. Shah, “Load balancing algorithms in cloud computing: A survey
of modern techniques,” in 2015 National Software Engineering Conference (NSEC),
pp. 30–35, IEEE, 2015.

[64] S. Rehman, N. Javaid, S. Rasheed, K. Hassan, F. Zafar, and M. Naeem, “Min-min
scheduling algorithm for efficient resource distribution using cloud and fog in smart
buildings,” in International Conference on Broadband and Wireless Computing, Com-
munication and Applications, pp. 15–27, Springer, 2018.

[65] S.-C. Wang, K.-Q. Yan, W.-P. Liao, and S.-S. Wang, “Towards a load balancing in a
three-level cloud computing network,” in 2010 3rd international conference on com-
puter science and information technology, vol. 1, pp. 108–113, IEEE, 2010.

[66] H. Menon, A. Bhatele, S. Fourestier, L. Kale, and F. Pellegrini, “Applying graph
partitioning methods in measurement-based dynamic load balancing,” tech. rep., 2015.

[67] S. Ningning, G. Chao, A. Xingshuo, and Z. Qiang, “Fog computing dynamic load
balancing mechanism based on graph repartitioning,” China Communications, vol. 13,
no. 3, pp. 156–164, 2016.

[68] A. M. Alakeel et al., “A guide to dynamic load balancing in distributed computer
systems,” International Journal of Computer Science and Information Security, vol. 10,
no. 6, pp. 153–160, 2010.

[69] S. Nazir, S. Shafiq, Z. Iqbal, M. Zeeshan, S. Tariq, and N. Javaid, “Cuckoo optimization
algorithm based job scheduling using cloud and fog computing in smart grid,” in Inter-
national Conference on Intelligent Networking and Collaborative Systems, pp. 34–46,
Springer, 2018.

138

[70] D. Patel and A. S. Rajawat, “Efficient throttled load balancing algorithm in cloud
environment,” International Journal of Modern Trends in Engineering and Research,
vol. 2, no. 03, pp. 463–480, 2015.

[71] H. Qiao and P. Pal, “On maximum-likelihood methods for localizing more sources than
sensors,” IEEE Signal Processing Letters, vol. 24, no. 5, pp. 703–706, 2017.

[72] Y. Yu, X. Li, and C. Qian, “Sdlb: A scalable and dynamic software load balancer
for fog and mobile edge computing,” in Proceedings of the Workshop on Mobile Edge
Communications, pp. 55–60, ACM, 2017.

[73] S. H. Abbasi, N. Javaid, M. H. Ashraf, M. Mehmood, M. Naeem, and M. Rehman,
“Load stabilizing in fog computing environment using load balancing algorithm,” in
International Conference on Broadband and Wireless Computing, Communication and
Applications, pp. 737–750, Springer, 2018.

[74] M. J. Ali, N. Javaid, M. Rehman, M. U. Sharif, M. K. Khan, and H. A. Khan, “State
based load balancing algorithm for smart grid energy management in fog comput-
ing,” in International Conference on Intelligent Networking and Collaborative Systems,
pp. 220–232, Springer, 2018.

[75] W. Dou, X. Xu, X. Liu, L. T. Yang, and Y. Wen, “A resource co-allocation method
for load-balance scheduling over big data platforms,” Future Generation Computer
Systems, vol. 86, pp. 1064–1075, 2018.

[76] P. V. Krishna, “Honey bee behavior inspired load balancing of tasks in cloud computing
environments,” Applied Soft Computing, vol. 13, no. 5, pp. 2292–2303, 2013.

[77] K. Li, G. Xu, G. Zhao, Y. Dong, and D. Wang, “Cloud task scheduling based on
load balancing ant colony optimization,” in 2011 Sixth Annual ChinaGrid Conference,
pp. 3–9, IEEE, 2011.

[78] D. B. LD and P. V. Krishna, “Honey bee behavior inspired load balancing of tasks in
cloud computing environments,” Applied Soft Computing, vol. 13, no. 5, pp. 2292–2303,
2013.

[79] I. De Falco, E. Laskowski, R. Olejnik, U. Scafuri, E. Tarantino, and M. Tudruj, “Ex-
tremal optimization applied to load balancing in execution of distributed programs,”
Applied Soft Computing, vol. 30, pp. 501–513, 2015.

139

[80] K. R. Babu and P. Samuel, “Enhanced bee colony algorithm for efficient load balancing
and scheduling in cloud,” in Innovations in bio-inspired computing and applications,
pp. 67–78, Springer, 2016.

[81] M. K. Hussein and M. H. Mousa, “Efficient task offloading for iot-based applications in
fog computing using ant colony optimization,” IEEE Access, vol. 8, pp. 37191–37201,
2020.

[82] D. C. Devi and V. R. Uthariaraj, “Load balancing in cloud computing environment
using improved weighted round robin algorithm for nonpreemptive dependent tasks,”
The scientific world journal, vol. 2016, 2016.

[83] A. Singh, D. Juneja, and M. Malhotra, “A novel agent based autonomous and ser-
vice composition framework for cost optimization of resource provisioning in cloud
computing,” Journal of King Saud University-Computer and Information Sciences,
vol. 29, no. 1, pp. 19–28, 2017.

[84] M. G. R. Alam, N. H. Tran, C. T. Do, C. Pham, S. F. Abedin, A. K. Bairagi, R. Haw,
and C. S. Hong, “Distributed reinforcement learning based code offloading in mobile
fog,” , pp. 285–287, 2014.

[85] M. G. R. Alam, Y. K. Tun, and C. S. Hong, “Multi-agent and reinforcement learning
based code offloading in mobile fog,” in 2016 International Conference on Information
Networking (ICOIN), pp. 285–290, IEEE, 2016.

[86] T. C. Chen and C. T. Chen, “Method for configurable intelligent-agent-based wireless
communication system,” June 13 2000. US Patent 6,076,099.

[87] S. Keshvadi and B. Faghih, “A multi-agent based load balancing system in iaas cloud
environment,” Int. Robot. Autom. J, vol. 1, no. 1, 2016.

[88] M. A. Elsharkawey and H. E. Refaat, “Mlrts: Multi-level real-time scheduling algorithm
for load balancing in fog computing environment,” International Journal of Modern
Education and Computer Science, vol. 10, no. 2, p. 1, 2018.

[89] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Virtual infrastructure
management in private and hybrid clouds,” IEEE Internet computing, vol. 13, no. 5,
pp. 14–22, 2009.

140

[90] J. Wang, D. Li, and M. Y. Hu, “Fog nodes deployment based on space-time character-
istics in smart factory,” IEEE Transactions on Industrial Informatics, 2020.

[91] S. Mohanty, P. K. Patra, M. Ray, and S. Mohapatra, “A novel meta-heuristic approach
for load balancing in cloud computing,” International Journal of Knowledge-Based
Organizations (IJKBO), vol. 8, no. 1, pp. 29–49, 2018.

[92] S. A. A. Naqvi, N. Javaid, H. Butt, M. B. Kamal, A. Hamza, and M. Kashif, “Meta-
heuristic optimization technique for load balancing in cloud-fog environment integrated
with smart grid,” in International Conference on Network-Based Information Systems,
pp. 700–711, Springer, 2018.

[93] S. Verma, A. K. Yadav, D. Motwani, R. Raw, and H. K. Singh, “An efficient data
replication and load balancing technique for fog computing environment,” in 2016 3rd
International Conference on Computing for Sustainable Global Development (INDIA-
Com), pp. 2888–2895, IEEE, 2016.

[94] K. Dasgupta, B. Mandal, P. Dutta, J. K. Mandal, and S. Dam, “A genetic algorithm
(ga) based load balancing strategy for cloud computing,” Procedia Technology, vol. 10,
pp. 340–347, 2013.

[95] A. Meftah, A. E. Youssef, and M. Zakariah, “Effect of service broker policies and
load balancing algorithms on the performance of large scale internet applications in
cloud datacenters,” International journal of advanced computer science and applica-
tions, vol. 9, no. 5, pp. 219–227, 2018.

[96] Y. Mao, D. Ren, and X. Chen, “Adaptive load balancing algorithm based on prediction
model in cloud computing,” in Proceedings of the Second International Conference on
Innovative Computing and Cloud Computing, p. 165, ACM, 2013.

[97] R. Beraldi, C. Canali, R. Lancellotti, and G. P. Mattia, “Distributed load balancing
for heterogeneous fog computing infrastructures in smart cities,” Pervasive and Mobile
Computing, p. 101221, 2020.

[98] R. Beraldi, C. Canali, R. Lancellotti, and G. P. Mattia, “A random walk based load
balancing algorithm for fog computing,” in 2020 Fifth International Conference on Fog
and Mobile Edge Computing (FMEC), pp. 46–53, IEEE, 2020.

141

[99] A. U. Rehman, Z. Ahmad, A. I. Jehangiri, M. A. Ala’Anzy, M. Othman, A. I. Umar,
and J. Ahmad, “Dynamic energy efficient resource allocation strategy for load balancing
in fog environment,” IEEE Access, vol. 8, pp. 199829–199839, 2020.

[100] S. P. Singh, R. Kumar, A. Sharma, and A. Nayyar, “Leveraging energy-efficient load
balancing algorithms in fog computing,” Concurrency and Computation: Practice and
Experience, p. e5913, 2020.

[101] S. P. Singh, A. Sharma, and R. Kumar, “Design and exploration of load balancers for
fog computing using fuzzy logic,” Simulation Modelling Practice and Theory, vol. 101,
p. 102017, 2020.

[102] M. Zahid, N. Javaid, K. Ansar, K. Hassan, M. K. Khan, and M. Waqas, “Hill climbing
load balancing algorithm on fog computing,” in International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing, pp. 238–251, Springer, 2018.

[103] A. Chawla and N. S. Ghumman, “Package-based approach for load balancing in cloud
computing,” in Big Data Analytics, pp. 71–77, Springer, 2018.

[104] N. Kumar and D. Shukla, “Load balancing mechanism using fuzzy row penalty method
in cloud computing environment,” in Information and Communication Technology for
Sustainable Development, pp. 365–373, Springer, 2018.

[105] J. Wan, B. Chen, S. Wang, M. Xia, D. Li, and C. Liu, “Fog computing for energy-aware
load balancing and scheduling in smart factory,” IEEE Transactions on Industrial
Informatics, vol. 14, no. 10, pp. 4548–4556, 2018.

[106] F. M. Talaat, M. S. Saraya, A. I. Saleh, H. A. Ali, and S. H. Ali, “A load balanc-
ing and optimization strategy (lbos) using reinforcement learning in fog computing
environment,” Journal of Ambient Intelligence and Humanized Computing, pp. 1–16,
2020.

[107] M. H. Shahid, A. R. Hameed, S. ul Islam, H. A. Khattak, I. U. Din, and J. J. Rodrigues,
“Energy and delay efficient fog computing using caching mechanism,” Computer Com-
munications, 2020.

[108] M. Bhatia, S. K. Sood, and S. Kaur, “Quantumized approach of load scheduling in fog
computing environment for iot applications,” Computing, pp. 1–19, 2020.

142

[109] Y. Xie, Y. Zhu, Y. Wang, Y. Cheng, R. Xu, A. S. Sani, D. Yuan, and Y. Yang, “A
novel directional and non-local-convergent particle swarm optimization based workflow
scheduling in cloud–edge environment,” Future Generation Computer Systems, vol. 97,
pp. 361–378, 2019.

[110] C. Li, J. Tang, T. Ma, X. Yang, and Y. Luo, “Load balance based workflow job schedul-
ing algorithm in distributed cloud,” Journal of Network and Computer Applications,
vol. 152, p. 102518, 2020.

[111] N. Rizvi and D. Ramesh, “Fair budget constrained workflow scheduling approach for
heterogeneous clouds,” Cluster Computing, vol. 23, no. 4, pp. 3185–3201, 2020.

[112] V. De Maio and D. Kimovski, “Multi-objective scheduling of extreme data scientific
workflows in fog,” Future Generation Computer Systems, 2020.

[113] R. Ding, X. Li, X. Liu, and J. Xu, “A cost-effective time-constrained multi-workflow
scheduling strategy in fog computing,” in International Conference on Service-Oriented
Computing, pp. 194–207, Springer, 2018.

[114] A. Rehman, S. S. Hussain, Z. ur Rehman, S. Zia, and S. Shamshirband, “Multi-
objective approach of energy efficient workflow scheduling in cloud environments,”
Concurrency and Computation: Practice and Experience, vol. 31, no. 8, p. e4949,
2019.

[115] X. Zhou, G. Zhang, J. Sun, J. Zhou, T. Wei, and S. Hu, “Minimizing cost and makespan
for workflow scheduling in cloud using fuzzy dominance sort based heft,” Future Gen-
eration Computer Systems, vol. 93, pp. 278–289, 2019.

[116] M. A. Serhani, H. T. El-Kassabi, K. Shuaib, A. N. Navaz, B. Benatallah, and A. Be-
heshti, “Self-adapting cloud services orchestration for fulfilling intensive sensory data-
driven iot workflows,” Future Generation Computer Systems, 2020.

[117] L. F. Bittencourt and E. R. M. Madeira, “Hcoc: a cost optimization algorithm for
workflow scheduling in hybrid clouds,” Journal of Internet Services and Applications,
vol. 2, no. 3, pp. 207–227, 2011.

[118] R. Xu, Y. Wang, Y. Cheng, Y. Zhu, Y. Xie, A. S. Sani, and D. Yuan, “Improved
particle swarm optimization based workflow scheduling in cloud-fog environment,” in

143

International Conference on Business Process Management, pp. 337–347, Springer,
2018.

[119] K. J. Naik and D. H. Naik, “Minimizing deadline misses and total run-time with load
balancing for a connected car systems in fog computing,” Scalable Computing: Practice
and Experience, vol. 21, no. 1, pp. 73–84, 2020.

[120] D. Puthal, M. S. Obaidat, P. Nanda, M. Prasad, S. P. Mohanty, and A. Y. Zomaya,
“Secure and sustainable load balancing of edge data centers in fog computing,” IEEE
Communications Magazine, vol. 56, no. 5, pp. 60–65, 2018.

[121] G. Javadzadeh and A. M. Rahmani, “Fog computing applications in smart cities: A
systematic survey,” Wireless Networks, vol. 26, no. 2, pp. 1433–1457, 2020.

[122] S. Elsherbiny, E. Eldaydamony, M. Alrahmawy, and A. E. Reyad, “An extended intelli-
gent water drops algorithm for workflow scheduling in cloud computing environment,”
Egyptian informatics journal, vol. 19, no. 1, pp. 33–55, 2018.

[123] S. Liao, J. Wu, S. Mumtaz, J. Li, R. Morello, and M. Guizani, “Cognitive balance
for fog computing resource in internet of things: An edge learning approach,” IEEE
Transactions on Mobile Computing, 2020.

[124] M. Kaur and R. Aron, “Focalb: Fog computing architecture of load balancing for
scientific workflow applications,” Journal of Grid Computing, vol. 19, no. 4, pp. 1–22,
2021.

[125] T. Biswas, P. Kuila, and A. K. Ray, “A novel workflow scheduling with multi-criteria us-
ing particle swarm optimization for heterogeneous computing systems,” Cluster Com-
puting, pp. 1–17, 2020.

[126] R. Aron, “Resource provisioning strategy for scientific workflows in cloud computing
environment,” in Cloud Computing for Optimization: Foundations, Applications, and
Challenges, pp. 99–122, Springer, 2018.

[127] C.-F. Lai, H.-Y. Weng, H.-Y. Chou, and Y.-M. Huang, “A novel nat-based approach for
resource load balancing in fog computing architecture,” Journal of Internet Technology,
vol. 22, no. 3, pp. 513–520, 2021.

144

[128] A. Asghar, A. Abbas, H. A. Khattak, and S. U. Khan, “Fog based architecture and load
balancing methodology for health monitoring systems,” IEEE Access, vol. 9, pp. 96189–
96200, 2021.

[129] D. Baldo, A. Mecocci, S. Parrino, G. Peruzzi, and A. Pozzebon, “A multi-layer lorawan
infrastructure for smart waste management,” Sensors, vol. 21, no. 8, p. 2600, 2021.

[130] M. K. Saroa and R. Aron, “Fog computing and its role in development of smart
applications,” in 2018 IEEE Intl Conf on Parallel & Distributed Processing with
Applications, Ubiquitous Computing & Communications, Big Data & Cloud Com-
puting, Social Computing & Networking, Sustainable Computing & Communications
(ISPA/IUCC/BDCloud/SocialCom/SustainCom), pp. 1120–1127, IEEE, 2018.

[131] H. Wadhwa and R. Aron, “Fog computing with the integration of internet of things:
architecture, applications and future directions,” in 2018 IEEE Intl Conf on Parallel &
Distributed Processing with Applications, Ubiquitous Computing & Communications,
Big Data & Cloud Computing, Social Computing & Networking, Sustainable Com-
puting & Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom), pp. 987–
994, IEEE, 2018.

[132] A. Choudhary, M. C. Govil, G. Singh, L. K. Awasthi, and E. S. Pilli, “Task clustering-
based energy-aware workflow scheduling in cloud environment,” in 2018 IEEE 20th In-
ternational Conference on High Performance Computing and Communications; IEEE
16th International Conference on Smart City; IEEE 4th International Conference on
Data Science and Systems (HPCC/SmartCity/DSS), pp. 968–973, IEEE, 2018.

[133] M. Kaur and R. Aron, “Energy-aware load balancing in fog cloud computing,” Materials
Today: Proceedings, 2020.

[134] R. K. Naha, S. Garg, S. K. Battula, M. B. Amin, and D. Georgakopoulos, “Multiple
linear regression-based energy-aware resource allocation in the fog computing environ-
ment,” arXiv preprint arXiv:2103.06385, 2021.

[135] M. Al-khafajiy, T. Baker, M. Asim, Z. Guo, R. Ranjan, A. Longo, D. Puthal, and
M. Taylor, “Comitment: A fog computing trust management approach,” Journal of
Parallel and Distributed Computing, vol. 137, pp. 1–16, 2020.

145

[136] S. Ijaz, E. U. Munir, S. G. Ahmad, M. M. Rafique, and O. F. Rana, “Energy-makespan
optimization of workflow scheduling in fog–cloud computing,” Computing, pp. 1–27,
2021.

[137] M. H. Kashani, A. Ahmadzadeh, and E. Mahdipour, “Load balancing mechanisms in
fog computing: A systematic review,” arXiv preprint arXiv:2011.14706, 2020.

[138] G. S. Singh and T. Vivek, “Implementation of a hybrid load balancing algorithm for
cloud computing,” Int. J. Adv. Technol. Eng. Sci, vol. 3, no. 1, pp. 73–81, 2015.

[139] J. Oueis, E. C. Strinati, and S. Barbarossa, “The fog balancing: Load distribution for
small cell cloud computing,” in 2015 IEEE 81st vehicular technology conference (VTC
spring), pp. 1–6, IEEE, 2015.

[140] R. Beraldi, A. Mtibaa, and H. Alnuweiri, “Cooperative load balancing scheme for edge
computing resources,” in 2017 Second International Conference on Fog and Mobile
Edge Computing (FMEC), pp. 94–100, IEEE, 2017.

[141] H. Rafique, M. A. Shah, S. U. Islam, T. Maqsood, S. Khan, and C. Maple, “A novel bio-
inspired hybrid algorithm (nbiha) for efficient resource management in fog computing,”
IEEE Access, 2019.

[142] H. Arshad, “Evaluation and analysis of bio-inspired techniques for resource manage-
ment and load balancing of fog computing,” Int J Adv Comput Sci Appl, vol. 9, no. 7,
2019.

[143] A. Fahs and G. Pierre, “Proximity-aware traffic routing in distributed fog computing
platforms,” 2019.

[144] N. Javaid, A. A. Butt, K. Latif, and A. Rehman, “Cloud and fog based integrated
environment for load balancing using cuckoo levy distribution and flower pollination
for smart homes,” in 2019 International Conference on Computer and Information
Sciences (ICCIS), pp. 1–6, IEEE, 2019.

[145] H. A. Khattak, H. Arshad, S. ul Islam, G. Ahmed, S. Jabbar, A. M. Sharif, and
S. Khalid, “Utilization and load balancing in fog servers for health applications,”
EURASIP Journal on Wireless Communications and Networking, vol. 2019, no. 1,
p. 91, 2019.

146

[146] N. Bila, E. de Lara, K. Joshi, H. A. Lagar-Cavilla, M. Hiltunen, and M. Satya-
narayanan, “Jettison: Efficient idle desktop consolidation with partial vm migration,”
in Proceedings of the 7th ACM european conference on Computer Systems, pp. 211–224,
2012.

[147] H. Bano, N. Javaid, K. Tehreem, K. Ansar, M. Zahid, and T. Nazar, “Cloud comput-
ing based resource allocation by random load balancing technique,” in International
Conference on Broadband and Wireless Computing, Communication and Applications,
pp. 28–39, Springer, 2018.

[148] K. Saharan and A. Kumar, “Fog in comparison to cloud: A survey,” International
Journal of Computer Applications, vol. 122, no. 3, 2015.

[149] V. Stantchev, A. Barnawi, S. Ghulam, J. Schubert, and G. Tamm, “Smart items, fog
and cloud computing as enablers of servitization in healthcare,” Sensors & Transducers,
vol. 185, no. 2, p. 121, 2015.

[150] C. Li, H. Zhuang, Q. Wang, and X. Zhou, “Sslb: self-similarity-based load balancing
for large-scale fog computing,” Arabian Journal for Science and Engineering, pp. 1–12,
2018.

[151] M. B. Kamal, N. Javaid, S. A. A. Naqvi, H. Butt, T. Saif, and M. D. Kamal, “Heuristic
min-conflicts optimizing technique for load balancing on fog computing,” in Interna-
tional Conference on Intelligent Networking and Collaborative Systems, pp. 207–219,
Springer, 2018.

[152] M. Zakria, N. Javaid, M. Ismail, M. Zubair, M. A. Zaheer, and F. Saeed, “Cloud-fog
based load balancing using shortest remaining time first optimization,” in Interna-
tional Conference on P2P, Parallel, Grid, Cloud and Internet Computing, pp. 199–211,
Springer, 2018.

[153] L. Liu, D. Qi, N. Zhou, and Y. Wu, “A task scheduling algorithm based on classifi-
cation mining in fog computing environment,” Wireless Communications and Mobile
Computing, vol. 2018, 2018.

[154] B. Tang, Z. Chen, G. Hefferman, T. Wei, H. He, and Q. Yang, “A hierarchical dis-
tributed fog computing architecture for big data analysis in smart cities,” in Proceed-
ings of the ASE BigData & SocialInformatics 2015, p. 28, ACM, 2015.

147

[155] N. Verba, K.-M. Chao, J. Lewandowski, N. Shah, A. James, and F. Tian, “Modeling
industry 4.0 based fog computing environments for application analysis and deploy-
ment,” Future Generation Computer Systems, vol. 91, pp. 48–60, 2019.

[156] S. B. Nath, H. Gupta, S. Chakraborty, and S. K. Ghosh, “A survey of fog com-
puting and communication: current researches and future directions,” arXiv preprint
arXiv:1804.04365, 2018.

[157] F. Jalali, K. Hinton, R. Ayre, T. Alpcan, and R. S. Tucker, “Fog computing may help to
save energy in cloud computing,” IEEE Journal on Selected Areas in Communications,
vol. 34, no. 5, pp. 1728–1739, 2016.

[158] C.-W. Tsai and J. J. Rodrigues, “Metaheuristic scheduling for cloud: A survey,” IEEE
Systems Journal, vol. 8, no. 1, pp. 279–291, 2013.

[159] A. M. Chirkin, A. S. Belloum, S. V. Kovalchuk, M. X. Makkes, M. A. Melnik, A. A.
Visheratin, and D. A. Nasonov, “Execution time estimation for workflow scheduling,”
Future generation computer systems, vol. 75, pp. 376–387, 2017.

[160] G. Natesan and A. Chokkalingam, “Optimal task scheduling in the cloud environment
using a mean grey wolf optimization algorithm,” International Journal of Technology,
vol. 10, no. 1, pp. 126–136, 2019.

[161] N. Siasi, A. Jaesim, and N. Ghani, “Tabu search for efficient service function chain
provisioning in fog networks,” in 2019 IEEE 5th International Conference on Collabo-
ration and Internet Computing (CIC), pp. 145–150, IEEE, 2019.

[162] S. L. MIRTAHERI and H. R. SHIRZAD, “Optimized distributed resource management
in fog computing by using ant-olony optimization c,” Future Trends of HPC in a
Disruptive Scenario, vol. 34, p. 206, 2019.

[163] D. Patel, M. K. Patra, and B. Sahoo, “Gwo based task allocation for load balancing
in containerized cloud,” in 2020 International Conference on Inventive Computation
Technologies (ICICT), pp. 655–659, IEEE, 2020.

[164] R. Mahmud and R. Buyya, “Modelling and simulation of fog and edge computing en-
vironments using ifogsim toolkit,” Fog and edge computing: Principles and paradigms,
pp. 1–35, 2019.

148

[165] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim: A toolkit for
modeling and simulation of resource management techniques in the internet of things,
edge and fog computing environments,” Software: Practice and Experience, vol. 47,
no. 9, pp. 1275–1296, 2017.

[166] J. L. de Souza Toniolli and B. Jaumard, “Resource allocation for multiple workflows
in cloud-fog computing systems,” in Proceedings of the 12th IEEE/ACM International
Conference on Utility and Cloud Computing Companion, pp. 77–84, 2019.

[167] A. Markus and A. Kertesz, “A survey and taxonomy of simulation environments mod-
elling fog computing,” Simulation Modelling Practice and Theory, vol. 101, p. 102042,
2020.

[168] Z. Li, J. Ge, H. Yang, L. Huang, H. Hu, H. Hu, and B. Luo, “A security and cost aware
scheduling algorithm for heterogeneous tasks of scientific workflow in clouds,” Future
Generation Computer Systems, vol. 65, pp. 140–152, 2016.

[169] L. Nieroda, L. Maas, S. Thiebes, U. Lang, A. Sunyaev, V. Achter, and M. Peifer, “irods
metadata management for a cancer genome analysis workflow,” BMC bioinformatics,
vol. 20, no. 1, pp. 1–8, 2019.

[170] S. Kunal, A. Saha, and R. Amin, “An overview of cloud-fog computing: Architectures,
applications with security challenges,” Security and Privacy, vol. 2, no. 4, p. e72, 2019.

[171] G. B. Berriman, E. Deelman, J. C. Good, J. C. Jacob, D. S. Katz, C. Kesselman,
A. C. Laity, T. A. Prince, G. Singh, and M.-H. Su, “Montage: a grid-enabled engine for
delivering custom science-grade mosaics on demand,” in Optimizing Scientific Return
for Astronomy through Information Technologies, vol. 5493, pp. 221–232, International
Society for Optics and Photonics, 2004.

[172] R. Graves, T. H. Jordan, S. Callaghan, E. Deelman, E. Field, G. Juve, C. Kesselman,
P. Maechling, G. Mehta, K. Milner, et al., “Cybershake: A physics-based seismic hazard
model for southern california,” Pure and Applied Geophysics, vol. 168, no. 3, pp. 367–
381, 2011.

[173] X. Cai, P. Li, and X. Wu, “Artificial plant optimization algorithm with double selection
strategies for dv-hop,” Sensor Letters, vol. 12, no. 9, pp. 1383–1387, 2014.

149

[174] W. Cai, W. Yang, and X. Chen, “A global optimization algorithm based on plant
growth theory: plant growth optimization,” in 2008 International conference on intel-
ligent computation technology and automation (ICICTA), vol. 1, pp. 1194–1199, IEEE,
2008.

[175] K. Guney, A. Durmus, and S. Basbug, “A plant growth simulation algorithm for pattern
nulling of linear antenna arrays by amplitude control,” Progress In Electromagnetics
Research, vol. 17, pp. 69–84, 2009.

[176] S. Akyol and B. Alatas, “Plant intelligence based metaheuristic optimization algo-
rithms,” Artificial Intelligence Review, vol. 47, no. 4, pp. 417–462, 2017.

[177] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,”
science, vol. 220, no. 4598, pp. 671–680, 1983.

[178] A. M. Fathollahi-Fard, K. Govindan, M. Hajiaghaei-Keshteli, and A. Ahmadi, “A green
home health care supply chain: New modified simulated annealing algorithms,” Journal
of Cleaner Production, vol. 240, p. 118200, 2019.

[179] S. Bahadori-Chinibelagh, A. M. Fathollahi-Fard, and M. Hajiaghaei-Keshteli, “Two
constructive algorithms to address a multi-depot home healthcare routing problem,”
IETE Journal of Research, pp. 1–7, 2019.

[180] S. M. Mousavi and R. Tavakkoli-Moghaddam, “A hybrid simulated annealing algorithm
for location and routing scheduling problems with cross-docking in the supply chain,”
Journal of Manufacturing Systems, vol. 32, no. 2, pp. 335–347, 2013.

[181] H. Eskandar, A. Sadollah, A. Bahreininejad, and M. Hamdi, “Water cycle algorithm–a
novel metaheuristic optimization method for solving constrained engineering optimiza-
tion problems,” Computers & Structures, vol. 110, pp. 151–166, 2012.

[182] A. Sadollah, H. Eskandar, A. Bahreininejad, and J. H. Kim, “Water cycle algorithm
with evaporation rate for solving constrained and unconstrained optimization prob-
lems,” Applied Soft Computing, vol. 30, pp. 58–71, 2015.

[183] Y. Luo, Y. Chen, and J. Wu, “Energy efficient fog computing with architecture of
smart traffic lights system,” in 2021 3rd East Indonesia Conference on Computer and
Information Technology (EIConCIT), pp. 248–254, IEEE, 2021.

150

[184] Z. Ning, J. Huang, and X. Wang, “Vehicular fog computing: Enabling real-time traffic
management for smart cities,” IEEE Wireless Communications, vol. 26, no. 1, pp. 87–
93, 2019.

151

LIST OF PUBLICATIONS

– International Journals(SCI/SCOPUS)

– Kaur, M., & Aron, R. (2021). A systematic study of load balancing approaches in the
fog computing environment. The Journal of Supercomputing, 1-46. Impact factor: 2.6
[SCI]

– Kaur, M., Aron, R. FOCALB: Fog Computing Architecture of Load Balancing for Scien-
tific Workflow Applications. J Grid Computing 19, 40 (2021). https://doi.org/10.1007/s10723-
021-09584-w [SCI]

– Kaur, M., & Aron, R. (2020). Energy-aware load balancing in fog cloud computing.
Materials Today: Proceedings. Elsevier. [SCOPUS]

– Resource utilization-based load balancing framework for fog computing based smart
application, International Journal of Grid and High performance computing(IJGHPC),
IGI Global [ESCI/SCOPUS] [Accepted]

– International Conferences(SCI/SCOPUS)

– Saroa, M. K., & Aron, R. (2018, December). Fog computing and its role in devel-
opment of smart applications. In 2018 IEEE Intl Conf on Parallel Distributed Pro-
cessing with Applications, Ubiquitous Computing Communications, Big Data Cloud
Computing, Social Computing Networking, Sustainable Computing Communications
(ISPA/IUCC/BDCloud/SocialCom/SustainCom) (pp. 1120-1127). IEEE.

– Kaur, M., & Aron, R. (2020). Equal Distribution Based Load Balancing Technique
for Fog-Based Cloud Computing. In International Conference on Artificial Intelligence:
Advances and Applications 2019 (pp. 189-198). Springer, Singapore.

– An energy-efficient load balancing approach for fog environment using scientific work-
flow applications. International Conference on Distributed Computing and Optimiza-
tion Techniques (ICDCOT – 2021), Springer. (Accepted and Presented).

152

– Fog clustering-based architecture for load balancing in scientific workflows. 4th Inter-
national Conference on Computational Intelligence Data Engineering(ICCIDE-2021),
Springer. (Accepted and Presented)

– Communicated papers (SCI)

– An energy-efficient load balancing approach for scientific workflows in fog computing,
Wireless Personal Computing, Springer [Communicated]

153

	List of Figures
	List of Tables
	INTRODUCTION
	Fog computing: Overview
	Definition
	Fog architecture
	Characteristics of fog computing
	Key areas focused by fog computing
	Advantages of load balancing in fog computing
	Open issues and challenges

	Scientific workflow applications in fog computing
	Load balancing in fog environment
	Need for load balancing in fog computing

	The motivation of study
	Thesis contribution
	Thesis organization

	Literature Survey
	Growth of smart devices
	Motivation

	Load balancing techniques
	Literature review
	Cost-based load balancing
	Resource-utilization based load balancing approaches
	Energy-aware load balancing approaches
	Year wise review of load balancing techniques
	Performance measurements that impact load balancing

	Open issues and research challenges
	Problem formulation
	Research assumptions
	Research objectives

	Proposed framework for load balancing (FOCALB)
	FOCALB: Fog computing architecture of load balancing for scientific workflow application
	Operating modules of FOCALB
	Workflow task assignment
	Workflow models for load balancing in fog computing

	Hybridized load balancing algorithm for scientific workflows (Tabu-GWO-ACO)
	Optimization methods used
	Proposed hybridized algorithm Tabu-GWO-ACO
	Flow of execution of Tabu-GWO-ACO

	Verification and validation of proposed framework- FOCALB
	Experimental setup
	Results and discussion
	Applications of proposed architecture and approach in real time environment

	Conclusion

	An energy-efficient load balancing approach for scientific workflows in fog computing
	Scientific workflows
	Resource-utilization based Workflow execution model for fog computing
	PSW-Fog clustering-based load balancing algorithm
	Optimization approaches used in our proposed hybrid algorithm
	PSW-Fog clustering algorithm
	Flow of execution of proposed algorithm
	Performance metrics

	Analysis of PSW-Fog clustering-based load balancing approach
	Experimental Requirement
	Result analysis
	Applications of proposed energy efficient load balancing algorithm

	Conclusion

	CONCLUSION AND FUTURE WORK
	Conclusion
	Future enhancement
	How limitations can be overcome in future

	References

