
 IMPLEMENTATION OF EFFICIENT EFFORT AND COST

ESTIMATION TECHNIQUE FOR AGILE SOFTWARE

Thesis Submitted For the Award of the Degree of

 DOCTOR OF PHILOSOPHY

in

 Computer Science and Engineering

By

 Mohit Arora

41500188

Supervised by Co-Supervised by

Dr. Sahil Verma Dr. Aman Singh

LOVELY PROFESSIONAL UNIVERSITY

PUNJAB

2022

i

DECLARATION

 I hereby affirm that the thesis entitled Implementation of Efficient Effort and Cost

Estimation Technique for Agile Software submitted by me for the Degree of Doctor of

Philosophy in Computer Science and Engineering is the result of my original and

independent research work carried out under the guidance of Supervisor Dr. Sahil

Verma and Co-Supervisor Dr. Aman Singh, and it has not been submitted for to any

university or institute for the award of any degree or diploma.

Mohit Arora

School of Computer Science and Engineering

Lovely Professional University

Jalandhar- Delhi GT Road (NH-1)

Phagwara, Punjab, INDIA

Date: 10
th

 November, 2021

 Signature of the candidate

ii

CERTIFICATE

This is to certify that the thesis entitled Implementation of Efficient Effort and Cost

Estimation Technique for Agile Software submitted by Mr. Mohit Arora, School of

Computer Science and Engineering, Lovely Professional University, for the award of the

degree of Doctor of Philosophy, is a record of bonafide work carried out by him under

my supervision, as per the code of academic and research ethics.

The contents of this report have not been submitted and will not be submitted either in

part or in full, for the award of any other degree or diploma in this institute or any other

institute or university. The thesis fulfills the requirements and regulations of the

University and in my opinion meets the necessary standards for submission.

Dr. Sahil Verma

Supervisor

Dr. Aman Singh

Co-Supervisor

iii

ABSTRACT

Waterfall to Agile is the most well-known transformation in the last two decades. This

paradigm shift from heavyweight to lightweight process models addresses many of the

roadblocks to software project development. Any competitive IT industry cannot avoid

underestimating the effort, cost, and length of their projects. Approximately 43 percent of

projects are often completed late and reach crises as a result of over budgeting and less

necessary functions. Estimation is a critical component of Software Project Management

and according to the International Society for Parametric Analysis (ISPA), the

International Cost Estimating and Analysis Association (ICEAA), and the Standish group

chaos manifesto, several IT ventures have been hampered by unreliable estimates of

effort and related costs. Improper and unreliable evaluation of software projects, as well

as uncertainty in software specifications, contributes to failure and must therefore be

taken into account in full letter and spirit. When Agile principles-based process models

(e.g., Scrum) were introduced, it resulted in a dramatic shift in project management. This

cultural shift proves to be beneficial in terms of improving the relationship between

developer and customer. Estimation is easier in conventional methodologies because they

use plan-driven methods, but in Agile, requirements are volatile, so effort estimation is

the most difficult. This cause raises awareness among potential researchers all over the

world to begin working on addressing the issue of unreliable effort prediction. There are

numerous explanations for the difference between estimated and actual effort, including

project, people, and resistance variables, incorrect use of cost drivers, ignorance of

regression testing effort, understandability of user story size and its related difficulty, and

so on. We examined the work of various authors and potential researchers who were

attempting to bridge the gap between real and estimated effort. According to the related

literature, machine learning models outperform non-machine learning and conventional

estimation techniques. For various agile methodologies, researchers investigated and

applied estimation types, techniques, and tools ranging from conventional to machine

learning estimation. Software projects are dynamic and potentially unpredictable, which

iv

adaptive models can accommodate well. At the moment, the majority of IT managers

working on Agile projects rely on conventional estimation methods such as planning

poker, expert judgment, and so on, which suffer from individual bias. To deal with

volatile situations, an expert system is necessary. Our proposed approach is based on the

concepts of adaptive networks and neuro-fuzzy to assist managers in determining suitable

project resources. At the moment, there is a lack of scrum project datasets in public

repositories, making it difficult for any researcher to present their work without

jeopardizing its validity. To show the system's effectiveness, Scrum project data has been

seeded into the knowledge base. IT stakeholders use issue monitoring systems such as

JIRA, which offers a comprehensive environment for managing, integrating, and

collaborating on end-to-end IT services but lacks Machine Learning supported

estimation.

While researchers used various effort estimation techniques such as use case points,

adjusted use case points, story points, analogy-based estimation, and some soft

computing techniques, ideal estimation accuracy remains a myth. According to Collabnet

VersionOne agile state of the art study, scrum is the most widely used agile technique in

software industries, but it is afflicted by estimation problems. We developed a hybrid

Adaptive Neuro-Fuzzy Inference System (ANFIS) model tuned by the novel Energy-

Efficient BAT (EEBAT) and Cost Estimating BAT (CEBAT) algorithms to handle

complex specificities and accurate estimation challenges in a scrum context. The system

has been evaluated against various state-of-the-art and practice meta-heuristic and

Machine Learning (ML) algorithms such as Fireworks, Ant Lion Optimizer (ALO), BAT,

Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and others, and it not only

produces promising effort estimation results but also outperforms them for homogeneous

data sets. On over 200 Agile projects, we used our proposed techniques ANFIS-EEBAT

and ANFIS-CEBAT and achieved significant estimation accuracy.

v

Dedicated

To

My Beloved Parents,

My wife, Shivali Chopra,

My daughter, Parinaaz Arora

vi

ACKNOWLEDGEMENT

__

 I would like to express my sincere gratitude to my supervisor Dr. Sahil Verma and co

supervisor Dr. Aman Singh for their continuous support throughout my literature work.

Their guidance helped me a lot to address all the issues and challenges that came in my

way.

My family has always been a support to me. It is because of them I have been able to get

time for research.

(Mohit Arora)

vii

LIST OF FIGURES

1.1 Waterfall vs Agile ..1

1.2 Essence of Agile. ...2

1.3 Agile Manifesto ...3

1.4 Agile Principles ..3

1.5 Agile Umbrella...3

1.6 Scrum process. ...5

1.7 Steps followed in Agile Software Development ..6

1.8 Software estimation process flow ..7

1.9 Estimation in Scrum (Overview) ...20

2.1 Standard ANFIS Architecture with defined inputs ..30

2.2 Stages of ANFIS ..30

2.3 Standard Bat algorithm flowchart ..34

3.1 ML in Scrum estimation techniques ..60

3.2 MMRE of several ML techniques trained on Scrum datasets64

4.1 EEBAT Flowchart ...67

4.2 Flowchart depicting process of effort estimation using ANFIS-EEBAT68

4.3 RMSE errors for features set in ANFIS exhaustive search ..75

4.4 Correlogram of Effort estimation ...76

4.5 Feature profile for No. of Story Points ..77

4.6 Feature profile for Project Velocity ...78

4.7 Feature profile for Actual Effort ..78

viii

4.8 Box cox transformation of Number of story points ...79

4.9 Box cox transformation of Project velocity ...80

4.10 ANFIS-EEBAT structure ...82

4.11(a) Membership function for No. of Story Points in ANFIS-EEBAT83

4.11(b) Membership function for Velocity in ANFIS-EEBAT ...83

4.12 ANFIS-EEBAT Rules View ..84

4.13 ANFIS-EEBAT surface plot ..86

4.14(a) Training plots for ANFIS-BBAT ..85

4.14(b) Testing plots for ANFIS-EEBAT ..86

4.15 Box Plot of ANFIS-EEBAT with other models on ZKmS dataset88

4.16 Friedman test rank comparison on ZKmS ...90

5.1 CEBAT Flowchart ...97

5.2 Correlogram of Cost estimation ...99

5.3 Feature profile for Team Salary ...101

5.4 Feature profile for Actual Cost ..101

5.5(a) Quantile transformation of Number of Story Points ...103

5.5(b) Probability plots after quantile transformation of Number of Story Points103

5.6(a) Quantile transformation of Team Velocity ..104

5.6(b) Probability plots after quantile transformation of Team Velocity104

5.7(a) Quantile transformation of Team Salary ...105

5.7(b) Probability plots after quantile transformation of Team Salary105

5.8(a) Quantile transformation of Actual Cost ..105

5.8(b) Probability plots after quantile transformation of Actual Cost106

5.9 ANFIS-CEBAT structure...108

ix

5.10(a) Membership function for No. of Story Points in ANFIS-CEBAT110

5.10(b) Membership function for Velocity in ANFIS-CEBAT110

5.10(c) Membership function for Team Salary in ANFIS-CEBAT111

5.11 ANFIS-CEBAT Rules View ..111

5.12(a) Surface Plot for No. of Story Points & Velocity vs Actual Cost112

5.12(b) Surface Plot for No. of Story Points & Team Salary vs Actual Cost112

5.12(c) Surface Plot for Velocity & Team Salary vs Actual Cost 113

5.13 Box Plot of ANFIS-CEBAT with other models on Zia dataset114

5.14 Actual vs Estimated values of Cost in Scrum Projects ..115

x

LIST OF TABLES

__

1.1 Size estimation techniques and its usage in agile based projects7

1.2 Requirement size estimation metric ...8

1.3 Comparison of effort estimation approaches ...9

1.4 Accuracy metrics for various estimation algorithms ...11

1.5 Challenges in various estimation algorithms ...12

1.6 Work-Resource and Project factors ...15

1.7 Effort Estimation factors ...16

1.8 Velocity rating factors..16

1.9 Complexity rating factors ..17

1.10 Story size scales ...17

1.11 User story/Issues complexity scale ..18

1.12 Friction factors ...19

1.13 Dynamic force factors ..19

1.14 Widely used effort estimation techniques in industries ...21

2.1 Standard ANFIS Equations ..29

2.2 Two passes in ANFIS hybrid learning method ..31

2.3 BAT Variants with its strengths ...35

3.1 Accuracy parameter score of ML estimation techniques ...61

3.2 Agile datasets ...64

4.1 Learning paradigm for ANFIS-EEBAT...72

4.2 Zia dataset sample ..73

xi

4.3 Features Analysis Table ...75

4.4 Dataset features and labels ...75

4.5 Descriptive statistics of dataset ..79

4.6 FIS parameters for effort estimation ..81

4.7 EEBAT parameters ..81

4.8 ANFIS-EEBAT performance metric evaluation ..87

4.9 Results on ZKmS with other techniques ..87

4.10 Results on Zia with other techniques ...88

4.11 Mean Ranking of algorithms ...89

4.12 Friedman test results on ZKmS dataset ...89

5.1 RMSE error for features set in ANFIS exhaustive search ...98

5.2 Sample of features and labels for cost estimation ..98

5.3 Descriptive statistics for features and labels ..100

5.4 Features and labels after Quantile transformation ...102

5.5 FIS parameters for cost estimation ..107

5.6 CEBAT parameters ..107

5.7 ANFIS-CEBAT performance metric evaluation ...113

6.1 Time and Space Complexity of several algorithms ...120

xii

LIST OF ABBREVIATIONS

ABC Artificial Bee Colony

ACM Association for Computing Machinery

ALO Ant Lion Optimization

AMBA Adaptive multi-swarm bat algorithm

ANFIS Adaptive Neuro-Fuzzy Inference System

ANN Artificial Neural Network

AR Association Rule

ASD Agile Software Development

BatDNN Bat Deep Neural Network

BN Bayesian Network

BRE Balance Relative Error

BU Bottoms Up

CART Classification And Regression Trees

CatBoost Categorical Boosting

CBA Chaotic Bat Algorithm

CBR Case-Based Reasoning

CCNN Cascade Correlation Neural Network

CDF Cobb-Douglas's Function

CEBAT Cost Estimation Bat

xiii

CESP Cost Efficient Scrum Process

CFASEE Consistent Fuzzy Analogy-based Software Effort Estimation

CFP COSMIC Function Points

CMMI Capability Maturity Model Integration

COCOMO Constructive Cost Model

CORADMO Constructive Rapid Application Development Model

CPU Central Processing Unit

DABA Directed Artificial Bat Algorithm

DABC Directed Artificial Bee Colony

DBN Deep Belief Network

DLBA Double-subpopulation Lévy flight Bat Algorithm

DT Decision Trees

DVBA Dynamic Virtual Bats Algorithm

ECS Evolutionary Cost-Sensitive

EEBAT Energy Efficient Bat

EEP Effort Estimation Problem

EJ Expert Judgement

FASEE Fuzzy Analogy-based Software Effort Estimation

FCM Fuzzy C-Means

FIS Fuzzy Inference System

FLANN Functional Link Artificial Neural Network

xiv

FP Function Points

GA Genetic Algorithms

GD Gradient Descent

GLM Generalized Linear Model

GMDH Group Method of Data Handling

GNB Gaussian Naïve Bayes

GP Genetic Programming

GPU Graphics Processing Unit

GRNN General Regression Neural Network

IBA Island multipopulational parallel Bat Algorithm

ICEAA International Cost Estimating and Analysis Association

IEEE Institution of Electrical and Electronics Engineers

IFPUG International Function Point User Group

ISBSG International Software Benchmarking Standards Group

ISPA International Society of Parametric Analysis

IT Information Technology

KLOC Kilo Lines of Code

KNN K Nearest Neighbours

KOINS Kobena Information System

LBA Levy flight-based Bat Algorithm

LM Levenberg–Marquardt

xv

LMT Logistic Model Tree

LoC Lines of Code

LR Linear Regression

LSE Least Squares Estimation

LSTM Long Short-Term Memory

MAPE Mean Absolute Percentage Error

MATLAB Matrix Laboratory

MBE Mean Balance Error

MBRE Mean Balance of Relative Error

MDELP Multilayer Dilation-Erosion-Linear Perceptron

MdMRE Medium Magnitude of Relative Error

ME Mean Error

MER Magnitude of Error Relative

MF Membership Function

MIBRE Mean Inverted Balance Relative Error

ML Machine Learning

MLPANN Multi-Layer Perceptron Artificial Neural Network

MLR Multiple Linear Regression

MMER Mean Magnitude of Error Relative

MMRE Mean Magnitude of Relative Error

MOBA Multi-Objective Bat Algorithm

xvi

MBT Model Based Testing

MRE Magnitude of Relative Error

MSE Mean Squared Error

MUCP Modified Use Case Points

NASA National Aeronautics and Space Administration

NB Naïve Bayes

NF Neuro-Fuzzy

NFIS Neuro Fuzzy Inference System

NFR Non-Functional Requirements

NN Neural Networks

OBMLBA Opposition Based Modified Levy flight Bat Algorithm

OP Object Points

PC Product Customization

PNN Probabilistic Neural Network

PP Planning Poker

PRED Percentage Relative Error Deviation

PRINCE2 Project In Controlled Environment

PSO Particle Swarm Optimization

RBFN Radial Basis Function Network

RBFNN Radial Basis Function Neural Network

RBM Restricted Boltzmann Machine

xvii

RF Random Forests

RHWN Recurrent Highway Neural Network

RMSE Root Mean Squared Error

RQ Research Question

SAP Systems Programming and Advanced Data Processing

SBA Shrink factor Bat Algorithm

SBO Satin Bowerbird Optimization

SDEE Software Development Effort Estimation

SDLC Software Development Life Cycle

SGB Stochastic Gradient Boosting

SGD Stochastic Gradient Descent

SLIM Software Lifecycle Management

SLOC Source Lines of Code

SMOTE Synthetic Minority Over Sampling Technique

SP Story Points

SPSS Statistical Package for Social Sciences

SVM Support Vector Machine

SVR Support Vector Regression

TD Top Down

TE Team Experience

TF-IDF Term Frequency-Inverse Document Frequency

xviii

TLBAC Teaching–Learning-Based Artificial Bee Colony

TLBO Teaching–Learning-Based Optimization

TOSEM Transactions on Software Engineering and Methodology

TS Task Size

UCP Use Case Points

UFP Unadjusted Function Point

US User Stories

WEKA Waikato Environment for Knowledge Analysis

WOA Whale Optimization Algorithm

XGBoost eXtreme Gradient Boosting

ZKmS Zia K-means SMOTE

TABLE OF CONTENTS

__

 Declaration.. i

 Certificate .. ii

 Abstract ... iii

 Acknowledgement .. vi

 List of figures ... vii

 List of tables... x

 List of abbreviations ... xii

1 Introduction ... 1

 1.1 Waterfall to Agile: A Paradigm Shift ... 1

 1.2 Agile umbrella methodologies .. 2

1.2.1 The manifesto for Agile software development .. 2

1.2.2 Agile software development principles .. 3

1.2.3 Agile software development methodologies ... 4

 1.3 Scrum framework.. 4

 1.4 Effort estimation approaches and framework ... 6

 1.4.1 Size estimating methods ... 7

 1.4.2 Effort estimation approaches .. 8

 1.5 Agile Estimation: Inception to Transition... 10

 1.5.1 A decade of Agile estimation techniques .. 11

 1.5.2 Environment for different estimation techniques 12

 1.5.3 Accuracy parameters ... 13

 1.5.4 Effort estimation factors ... 15

 1.6 Estimation in Scrum .. 20

 1.6.1 Scrum estimation approaches .. 21

 1.6.2 Scrum estimation challenges .. 22

 1.6.3 Traditional estimation to Machine Learning assisted estimation 23

 1.7 Motivation ... 23

 1.8 Research objectives and main contributions .. 23

 1.9 Thesis Organization .. 24

2 Background and preliminaries .. 27

 2.1 Machine Learning techniques ... 27

 2.2 Standard Adaptive Neuro-Fuzzy Inference Systems .. 29

 2.3 Standard Bat algorithm ... 31

 2.4 Summary ... 36

3 Review of Literature ... 39

 3.1 Related work ... 39

 3.2 Research Questions ... 58

 3.2.1 Include and Exclude Criterion ... 59

 3.2.2 Data and Literature Sources description .. 59

 3.2.3 Study Selection Process ... 59

 3.3 Research Question responses ... 59

 3.4 Summary ... 64

4 Scrum effort estimation using ANFIS-EEBAT algorithm .. 66

 4.1 Introduction ... 66

 4.2 Methodology ... 66

 4.3 Deducing optimal parameters from EEBAT ... 72

 4.4 ANFIS optimization using EEBAT algorithm .. 72

 4.5 Experimental results and discussion ... 73

4.5.1 Dataset profiling.. 73

4.5.2 Renaming, identification and selection of features and labels 74

4.5.3 Expansion of dataset using k means SMOTE ... 76

4.5.4 Descriptive characteristics of dataset .. 77

4.5.5 Transformation of Features ... 79

4.5.6 Model selection ... 80

4.5.7 ANFIS-EEBAT performance evaluation and comparative analysis 86

 4.6 Statistical validations .. 89

 4.7 Summary ... 90

5 Scrum cost estimation using ANFIS-CEBAT algorithm ... 92

 5.1 Introduction ... 92

 5.2 Methodology ... 93

 5.3 Experimental results and discussion ... 98

5.3.1 Renaming, identification and selection of features and labels 98

5.3.2 Descriptive characteristics of dataset .. 100

5.3.3 Transformation of Features ... 102

5.3.4 Model selection ... 106

5.3.5 ANFIS-CEBAT performance evaluation and comparative analysis 113

 5.4 Summary ... 115

6 Conclusion and future work .. 118

 6.1 Conclusion .. 118

 6.2 Future work ... 121

 REFERENCES .. 123

 LIST OF PUBLICATIONS ... 134

1

CHAPTER 1

INTRODUCTION

1.1 Waterfall to Agile: A Paradigm Shift

In the last few decades, there have been significant paradigm shifts in the software

engineering culture, the most notable of which is the transition from waterfall to Agile.

As depicted in Figure 1.1, the key feature of agile development is that resources and

planning are set throughout the project, leaving only requirements to vary. This means

that resources and planning are fixed throughout the development cycle, and after some

functionality is delivered, the requirements can be adjusted based on the needs. This is a

distinct perspective from traditional software development when the final product is

unknown.

Traditional software development relies on up-front requirements analysis and breaking it

down into milestones and success measures whereas agile development focuses on

delivering the correct value based on a prioritized requirements backlog. Testing and

working with the functionality, as well as a more fluid means of altering requirements,

replace the usually written milestones.

Figure 1.1: Waterfall vs Agile

2

1.2 Agile umbrella methodologies

ASD is an umbrella term for a collection of approaches and activities based on the Agile

Manifesto's values and principles. In the domain of software engineering, the term

"Agile" is frequently used. With technological developments, Agile has become the

standard in Fortune 500 firms. Figure 1.2 depicts that requirements are initially elicited

from the clients but not all requirements have been considered for inclusion in the earliest

iterations. The requirements stack is first prioritized and then the most important ones are

sent for development.

Figure 1.2: Essence of Agile

1.2.1 The manifesto for Agile software development

Agile methodologies are inspired from its manifesto laid by Snowbird’17 to pave the path

for IT industries adopting a ‘continuous’ revolution. Agile is neither an approach nor a

technique, it is more of a concept with four fundamental values. The manifesto in its

original form is shown in Figure 1.3.

Figure 1.3: Agile Manifesto

3

1.2.2 Agile software development principles

The twelve principles of ASD are depicted in Figure 1.4 and are made to be followed in

true letter and spirit by all the organizations embracing agile.

Figure 1.4: Agile Principles

1.2.3 Agile software development methodologies

Agile has a buffet of methodologies in its parasol and each considers different thrust

areas. The various popular agile methodologies are shown in Figure 1.5.

Figure 1.5: Agile Umbrella

4

1.3 Scrum framework

Scrum is an agile framework that takes in user stories as input requirements and

accomplished the same in short, fixed-length, and time-boxed iterations called sprints. A

shippable product is delivered as the sprint ends. The entire cycle beginning with Sprint

Planning and ending at Retrospectives is called a Sprint. The detailed steps are given

below:

 Product Backlog: Customer prioritizes requirements as per business value and lists

them in the product backlog. The representation of requirements is made using the

US. As customer prioritizes their requirements, the project team also called the

scrum team provides a high-level estimate for each user story.

 Sprint Planning: As soon as a sprint begins, the team conducts a sprint planning

meeting. All the stakeholders participate in the meeting. The prioritized product

backlog is used by the team to pick up stories for implementation throughout a sprint

during the meeting. The available capacity in person-hours and the team’s

productivity is tantamount to address the count of user stories targeted. The

customers must prioritize the product backlog. Prioritization ensures that the features

developed first are of the highest value. The sprint planning meeting normally takes

about half a day.

 Sprint Backlog: The Scrum team utilizes sprint tasks which are defined as the

definitive development activities, vital in resolving the requirement. They are

obtained as breakdowns of product backlog’s requirements. A sprint backlog is an

outcome after a spring planning meeting. The sprint backlog details the tasks and

task-level estimates of the selected stories. On Sprint Backlog completion, the

estimated total work is matched against original high-level Product Backlog

estimates.

 Implementation Cycle: Once the team is ready with the sprint backlog,

implementation of stories commences. The Implementation cycle involves the

5

activities of design, coding, and testing. The progress of the team is monitored

through visual controls like Story Boards and Effort Burn-down charts.

 Daily Scrum: Every day the daily scrum meeting is conducted at a pre-determined

time – typically done at the beginning of the day. This is a short meeting carried out

without deviating from technical issues. It is mandatory for the team to “stand up”

during these meetings so that the stipulated time is not exceeded. Each team member

shares the status of their work by responding to the three crucial questions: what I

achieved yesterday, what I shall accomplish today, and what impediments stall my

progress? The sprint backlog is updated – with addition, deletion, and modification

to the planned tasks and the remaining efforts for the same as the daily scrum

meeting wrap-up.

 Sprint Review: The output of the sprint is a potentially shippable product, which is

demonstrated to all the stakeholders and their feedback is sought – this is called the

sprint review meeting. All enhancements, bugs, or defects identified by the customer

are added to the product backlog and are addressed based on their priority. The

abstract view of the Scrum process has been shown in Figure 1.6.

 Retrospective: Consequently, Retrospective succeeds Sprint Review. The team

assesses what went well, what did not and identifies the changes needed to make the

process better.

Figure 1.6: Scrum process

It allows a team to inspect and adopt. The basic steps of ASD are shown in Figure 1.7.

The detailed supposition stages of ASD present an iterative loop wherein customer

6

collaboration plays a crucial role in framing decisions, choosing and prioritizing

requirements, incorporating feedback, etc.

The iterative and incremental development resolve associated risks, thus laid a strong

foundation of process models.

Figure 1.7 Steps followed in Agile Software Development

1.4 Effort estimation approaches and framework

For the successful and effective execution of the project, SDEE plays an indispensable

role in SDLC. It is the process of anticipating the amount of effort required to develop the

software at the beginning of the project. It is very much essential for Software Project

Management. The estimating framework is given in Figure 1.8.

7

Figure 1.8 Software estimation process flow

1.4.1 Size estimating methods

As per a survey, among SP, UCP, FP, OP, and LoC, SP is the preferred choice in the IT

industry. The details for size estimation techniques and their usage are given in Table 1.1

Table 1.1 Usage trend for size estimation techniques [1]

Size estimation techniques % Usage in industry

SP 61

UCP 16

FP 28

OP 1

LoC 11

SP approach is mostly used in the IT industry as compared to other techniques. Various

estimating methods are being used and employed by industries during the estimation

process. As shown in Table 1.2, various metrics are used to measure the requirements in

context.

8

Table 1.2 Requirement size estimation metric

Size metric Definition and industrial presence

SP

ASD uses SP as a measuring metric and is a relative unit of

measurement. It estimates the difficulty of implementing the user story.

Many people use the Fibonacci sequence for estimating. PP can also be

used to estimate SP. It is a variation in Delphi. Agile has an advantage

over others as it takes units in their relative form instead of absolute

thus giving an edge of comparing things easily.

FP

FP is based on the count of functions on which the size of the software

depends. Function points can be calculated with a total of five

characteristics i.e., Number of inputs, number of outputs, Inquiries

count, External interfaces, and external logical files.

UCP UCP extends FP. It is based on use case analysis. It has three types of

actors – Simple, Average, and Complex, and the weighting factor is

assigned to them as 1, 2, and 3 respectively.

OP OP is used in COCOMO-II wherein objects are considered as modules

and reports of the programming language for which effort estimate is

desired.

LoC LoC simply refers to estimate the project by tallying the lines of code

in some source code.

1.4.2 Effort estimation approaches

Effort estimation can be carried out in various ways. The majority of the IT industries

rely on empirical estimation wherein an educated guess is made to get the desired effort

estimate. Few traditional and machine learning estimation techniques have been

categorized in Table 1.3 with their associated usage, pros, and cons.

9

Table 1.3: Comparison of effort estimation approaches

Estimation

techniques

Category Usage Pros Cons

Estimation

by Analogy

Formal

estimation

model/non-

Algorithmic

Weighted micro

function points

The

estimation

result is

unequivocal.

Improbable

estimates;

Dependable on

preceding projects

PP Expert

estimation

Group

estimation

Most popular/

accepted in

industries

Less research is

done, so little

empirical evidence is

available.

EJ Empirical

estimation

An educated

guess

Fast result Suffers from

individual bias

Delphi

estimation

Group

estimation

Wideband

Delphi

The collective

opinion of

estimators.

No Analytic

foundation

COCOMO

and

COCOMO-II

Heuristic

approach

Parametric

models

Clear results Much data is

required for

estimation.

UCP Formal

estimation

model

Size based Useful for

predicting

initial

estimates

Product backlog

oblivious to few

conditions.

MUCP Formal

estimation

model

Size based Based on

requirements

from UCP,

Project

managers, etc.

Same issues as UCP.

10

LR, RBFNN Parametric/

Model-

Based

Broad-spectrum Compatibility

with existing

data

Accuracy declines

due to low historical

data availability.

NN (SVM) Parametric/

Model-

Based

Broad-spectrum High

performance

during on

clamorous

input data

NN is a Black box

with representation.

TD and BU

estimation

EJ Project

management

software

Historical

data

feasibility

with excellent

performance

Less empirical

evidence, TD is

better in contrast to

BU.

1.5 Agile Estimation: Inception to Transition

Agile is flexible, so it is a bit difficult to carry out effort estimation in it. We have already

discussed that in agile, customer requirements are listed in the form of issues/user stories.

An issue is a high-level definition of a requirement holding enough information for its

estimation, development, and testing. However, a user story must be implementable in a

single iteration otherwise if not, the requirement is broken down into smaller stories. The

collection of stories is known as Product Backlog. The units of work can be categorized

in two ways viz., Real-time units (hrs, days, etc.) and abstract units (SP, Ideal days).

The customer prioritizes the stories. The priorities could be in terms like "high, medium,

low", "Definitely needed, needed, and nice to have" or just numbers with higher numbers

indicating higher priority. The responsibility of estimating the effort to implement the

stories rests on the project team. Once prioritization and estimation are done, the

customer’s need to go to time-to-market is decided upon, and a tentative release date is

arrived at.

11

1.5.1 A decade of Agile estimation techniques

Considering a decade of agile effort estimation research and the comparative accuracies

(in general) is achieved by different estimation techniques is given in Table 1.4.

Table 1.4 Accuracy metrics for various estimation algorithms [2]

Estimation Algorithms Accuracy Metrics The accuracy achieved (in % age)

NN MRE 34.5

MMRE 41.65

PRED (100) 91.535

MAPE 39.78

MdMRE 89

R2 77.5

MSE 1.25

EJ MRE 27.675

MdMRE 45

PP/Disaggregation MRE 52.6

UCP MRE 15.5

MMRE 20.75

PRED (100) 76.955

R2 90.6

MSE 8

MMER 72.85

MUCP MRE 9.45

MMRE 10

PRED (10) 90

PRED (20) 60

MdMRE 9

LR using MUCP MRE 34

12

 MMRE 24.86

PRED (100) 94.35

MdMRE 62.76

MMER 65.066

Wideband Delphi (using LR) MRE 8.85

BU/TD MRE 39

1.5.2 Environment for different estimation algorithms

The estimation algorithms have different impacts in different environments. For Project

A the estimation technique E may result differently than Project B as there may be some

factors considered in Project A that are not needed in Project B. Also, the in-house

resources impact the effort. Team members' coupling and commitment to meet the

estimated effort play a major role in the successful and timely competition of a project.

There may be a case when a team member leaves his job in between the project so re-

work is required to re-estimate the effort. The estimation algorithms and their associated

challenges are given in Table 1.5

Table 1.5 Challenges in various estimation algorithms [2]

Estimation

algorithms

Challenges

NN Due to a lack of explanation ability and neural networks’ inherent black

box characteristic, the estimated effort may not be accepted by IT

stakeholders. Also, in some cases, the performance is below par vis-à-

vis expert judgment technique.

EJ IT expert’s technical experience is subject to their learning curve and

cannot be generalized. IT projects effort and costs estimated by an

expert are biased due to their different perception of project size and

complexity.

13

PP PP has been a widely used technique for Agile estimation but does not

yield accurate estimates.

UCP Due to Agile Scrum project characteristics, UCP cannot be utilized in its

standard form.

MUCP Due to Agile Scrum project characteristics, UCP cannot be utilized in its

standard form.

LR Regression analysis heavily relies on past project data which is a

challenge in Agile as very little data is available for experimental

analysis on the public repositories.

Wideband

Delphi

Delphi cost estimation introduces bias in estimation-related decisions.

BU/TD Not much evidence is available in the literature.

1.5.3 Accuracy parameters

The various accuracy parameters used to check the efficacy of effort and cost estimation

techniques are given below [3].

 Magnitude of Relative Error (MRE) is the most common criteria for estimation

techniques. It assesses every project in a dataset individually. The following equation

represents MRE.

 =

 (1.1)

 Mean Magnitude of Relative Error (MMRE) measures percentage values of relative

errors. The calculated % age value is the average value over the N items. It is given in

the following equation.

∑

 (1.2)

14

 Median Magnitude of Relative Error (MdMRE) It measures the Median for MRE(s)

and has acceptance criteria that is not sensitive to outliers. It is given in the following

equation.

 = 𝑒 𝑖𝑎n () (1.3)

 Mean Magnitude of Error Relative- It is used for cost estimation and is calculated by

the median of Magnitude of Error Relative (MER). It is given in the following

equation.

∑

 (1.4)

 Mean Absolute Percentage Error- It determines absolute accuracy for different

estimation models. The term absolute is considered as the assessment of the cost

estimations from the actual recognized costs. MAPE can be calculated using the

following equation.

∑

 *100 (1.5)

In this, the first summation is done for each estimated point, divided by the number of

suitable points N.

 Mean Squared Error- For calculating MSE, the following

∑ 𝑎 𝑖 𝑎 𝑒

2 (1.6)

where N is the available data in the dataset. It is directly proportional to PRED (x).

 Balance Relative Error- It is more balanced than MRE in terms of overestimation and

underestimation and can be calculated using the following equation.

 (1.7)

 Squared Correlation Coefficient- It is used and defined to assess the efficacy of

regression. It can be represented using the following equation.

15

R
2
 = 1-

∑

∑

 (1.8)

 Prediction (PRED (x)) – In mathematical definition, PRED(x) is mathematically

determined as:

 ∑ []
 (1.9)

PRED(x) value is calculated using the following equation.

 (1.10)

Here, ‘N’ represents the total of projects and ‘K’ is the count of projects having MRE

below or equal to x. The value of x can be either 0.25, 0.50. 0.75 or 1.0. If a common

value of x is 0.50, then PRED (0.50) refers to the % of projects whose MRE is less than

or equal to 50%. Measuring the accuracy of estimation in scrum is an essential activity

and determines its superiority with self and others.

1.5.4 Effort estimation factors

The agile effort is affected by work and project resources which are given in Table 1.6.

The story point estimation factors and their tiers are given in Table 1.7. Table 1.8 and

Table 1.9 show the velocity rating and complexity rating factors respectively. Table 1.10

describes the story size scales while Table 1.11 describes the User story/Issues

complexity scale. Table 1.12 and Table 1.13 list the decelerating factors and dynamic

force factors respectively.

Table 1.6 Work-Resource and Project factors [4]

Estimation Factors

Work Resource Related factors Project-related factors

Project type Communication Skill

Non-Functional Requirements (NFR) Familiarity in the team

Software and Hardware Requirements Management skill

Operational feasibility analysis Safety and Security

16

Complexity Work shift hours

Information transaction Past project experience

Site info Technical skills

Table 1.7 Effort Estimation factors [5]

Story point estimation factors Tiers

TE Fresher, Intermediate, Advance, Expert

TS Small, Medium, Large, Extra-Large

Task Complexity Easiest, easy, moderate, complex, arduous

Estimation Accuracy Over-estimated, well-estimated, under-estimated

Table 1.8 Velocity rating factors [6]

Factor

level

Rating Type of project

 Low 0.94—0.98 The project is simple. For example, requirements are very

straightforward, no volatility of requirements, all business and

technical requirements are very clear to the team with no

uncertainty, no research required in the project and it requires

basic programming skills to complete.

 Medium 0.90—0.94 The project is Moderately complex. For example, it requires

little or no research and the team has strong expertise in allotted

work.

High 0.85—0.89 The project is extremely complex and demands accurate

estimates by consideration of all the factors at a high level.

17

Table 1.9 Complexity rating factors [6]

Level of factor Rating Type of Project

Low 1 The project is simple. For example, requirements are

very straightforward no volatility of requirements, no

research required in the project, only rudimentary

programming skills for completion with a clear

understanding of technical requirements. There is no

product uncertainty, process uncertainty, and resource

uncertainty. A team of the right ability and experience is

available.

Medium 3 The project is moderately complex. For example, it

requires little or no research, and the team has strong

expertise in the allotted work.

High 5 The project is extremely complex and demands accurate

estimates by consideration of all the factors at a high

level.

Table 1.10 Story size scales [6]

Value Guidelines

5 The value “5” signifies some too large story to be accurately estimated. The

story has to be fragmented into smaller stories and suitable to be divided a

candidate for a new project.

4 The value “4” signifies a very large story that requires a developer’s efforts

for an extended time (beyond a week).

3 The value “3” signifies a moderately large story that requires approx. 2-5

days of work to be completed.

2 The value “2” signifies a medium-sized story that requires 1-2 days of work

18

1 The value “1” signifies a very short story that can be completed in few

hours and requires very little effort.

Table 1.11 User story/Issues complexity scale [6]

Value Guidelines

5 The value “5” signifies an extremely complex story with high system

interdependencies and vital expertise lacking in the developer group.

Accurate interpretation of a story is tough due to the presence of large

unknowns. Thus, extensive refactoring and research, and delicate judgment

calls are required. The story is significantly impacting itself externally.

4 The value “4” signifies a very complex story with high system

interdependencies and vital expertise weakly present in the developer

group. The story described by the product owner may not be accurately

represented due to the presence of large unknowns. Thus, the story should

have comparatively wider refactoring, research, strong programming skills,

and delicate judgment calls. The story has a moderate impact externally on

itself.

3 The value “3” signifies a moderately complex story with moderate system

interdependency with the presence of a strong skill set or experience within

the developer group. It is a little challenging for the product owner in

providing an accurate description of the story due to the presence of some

unknowns. Thus, little refactoring, intermediate programming skills,

research, and potent judgment calls. The story has a minimal external

impact on itself.

2 The value “2” signifies a coherent technical and business requirement that

requires minimal research as the presence of unknowns are few. Thus,

rudimentary programming skills are required to complete the story

description. The story is localized to itself.

19

1 The value “1” signifies a completely accurate story description with

unambiguous technical and business requirements and minimal unknowns.

Thus, there is no research required, and basic skills in programming can be

utilized. The story is localized to itself.

Table 1.12 Decelerating factors [6]

Decelerating factors Normal Volatile Highly Volatile Extremely Volatile

Team Composition 1.00 0.99 0.94 0.89

Process 1.00 0.99 0.95 0.91

Environmental Factors 1.00 0.98 0.96 0.95

Team Dynamics 1.00 0.99 0.89 0.86

Table 1.13 Dynamic force factors [6]

Variable Factor Normal High Very

High

Extremely

High

Expected Team Changes 1.00 0.99 0.97 0.95

Introduction of New Tools 1.00 0.98 0.96 0.94

Vendor’s Defect 1 0.99 0.96 0.89

Team member’s responsibilities outside

the project

1 0.98 0.97 0.95

Personal Issues 1 0.98 0.97 0.96

Expected Delay in Stakeholder response 1 0.99 0.98 0.96

Expected Ambiguity in Details 1 0.99 0.98 0.97

20

Expected Changes in environment 1 0.98 0.97 0.90

Expected Relocation 1 0.98 0.96 0.92

1.6 Estimation in Scrum

Scrum is flexible, so effort estimation becomes challenging. Customer requirements in

Scrum are listed in the form of user stories. A user story represents requirements in some

standard form. However, a user story must be implementable in a single iteration

otherwise if not, the requirement is broken down into smaller stories. The collection of

stories is known as Product Backlog. The units of work can be categorized in two ways

viz., Real-time units (hours, days, etc.) and abstract units (SP, Ideal days). The customer

prioritizes the stories. The priorities could be in terms like "high, medium, low",

"Definitely needed, needed, and nice to have" or just numbers with higher numbers

indicating higher priority. The responsibility of estimating the effort to implement the

stories rests on the project team. Once prioritization and estimation are done, the

customer’s need to go to time-to-market is decided upon, and a tentative release date is

arrived at. A typical scrum estimation process is shown in Figure 1.9.

Figure 1.9 Estimation in Scrum (Overview)

21

Estimation in scrum is carried out in two ways i.e., (i) using numerical inputs, (ii) text

data. The most important inputs in the first category are the calculated story points and

the scrum team’s velocity. Velocity is a measure of the efforts completed in a single

sprint through the scrum team. A sprint in scrum represents iterations. In the second case,

the input is user story text/words which can be extracted from issue tracking systems.

Based on one survey conducted by M. Usman et al. [7] data from sixty agile practitioners

was collected to find which is the most used estimation technique and is tabulated in

Table 1.14.

Table 1.14 Widely used effort estimation techniques in industries [7]

Parameters of

Study

Techniques Percentage practiced

by Agile practitioners

Estimation

Techniques

PP 63%

Analogy based estimation 47%

EJ 38%

Size metrics SP (used solo or in combination with FP) 62%

Cost Drivers Team’s experience and expertise level Mostly used

1.6.1 Scrum estimation approaches

As per the standard industry norms and related literature, scrum estimation has been

carried out by various approaches given below:

 Expert-based approaches: It relies on human expertise like expert judgment.

 Model-based approaches: It relies on the previous data to predict new data.

 Hybrid approaches: It combines both expert and model-based approaches.

Scrum estimation as cited above primarily relies on the story point metric. It is the widely

used metric for estimations in the Agile industry. ML models of estimation are

performing well as compared to an educated guess by an IT expert. Various ML models

22

have been used like SVR, RF, DT, ANN, NF, DBN, optimization techniques (like GA,

SBO, Adaptive Fireworks, ALO, and PSO), etc. This classical problem of estimation in

scrum has been categorized into two parts given below:

 Numerical data (Data points are numerical values as inputs)

 Text classification (Data points are text/words as inputs) [8]

In both scenarios, labels will always be a numerical value.

1.6.2 Scrum estimation challenges

We can’t rely on fixed models of ML-based estimation for estimating the effort of Scrum

projects. They give good results in the initial estimates but differ to vary after successive

sprints. The various estimation challenges in the field of scrum projects are given below:

 User stories or Issue volatility.

 No standard scale for issue size and its complexity.

 No continuous estimation.

 Non-inclusion of effort of quality requirements.

 Issue’s complexity

 Too many parameters affecting effort.

1.6.3 Traditional estimation to Machine Learning assisted estimation

The major reasons for this transition are given below:

 Suffered from individual bias

 Poor estimation accuracy leads to wrong client commitments

 More time to reach a consensus

 User story complexity

23

1.7 Motivation

Software Project Management is an important aspect of software development. However,

it has always been manual; hence it is prone to human error. The state of software project

management currently suffers from inaccurate estimation, bias, and non-adaptiveness to

rapid changes, either in requirements or environment. As a result, the time and cost of

development increases, burdening the Agile team to fast-track the delivery process. Even

though Agile is very flexible to the rapid changes, it is largely dependent on human

expertise and efforts. Experience is a subjective quality that depends entirely on human

factors. We cannot train two or more humans for the same experience in the same time

frame and be assured that they will have the same learning. An experienced software

engineer who has been in various business environments will be more robust than those

who work in a single domain.

Our motivation stems primarily from these factors:

 The human factors can be automated with modern computation techniques.

 Human errors can be lessened by choosing to depend on computer logic.

To develop such a system of estimation for assisting a human is the need of the day.

Fortunately, with the advancements in internet infrastructure, hardware, and software,

such a system is feasible. The modern machine learning and deep learning techniques are

a boon for us to automate the system and develop an intelligent assistant algorithm to aid

the software development process.

1.8 Research objectives and main contributions

The research objectives are given below.

Research Objective 1

To review and analyze existing effort estimation techniques for Agile-based projects.

24

Research Objective 2

Design and development of a hybrid effort estimation model for agile-based software

projects.

Research Objective 3

Design and development of a cost estimation model for agile-based software projects.

Research Objective 4

Comparative analysis of existing effort and cost estimation approaches with the proposed

models.

Our main contribution is to the field of Agile software project estimation, using hybrid

machine learning algorithms. An in-depth analysis of the existing effort estimation

techniques reflects on the current state of Agile project estimation. We have utilized a

hybrid of machine learning and fuzzy logic called an NF system. The most prominent is

ANFIS, which is capable of modeling human logic and human learning efficiency, to

automate complex human tasks. Thus, we have contributed to widening the applicability

scope of ANFIS. We also contributed to the field of meta-heuristic optimization by

developing a nature-inspired optimization algorithm to improve the learning of standard

ANFIS. We have compared our implementation to several state-of-the-art algorithms and

provided substantial information to assess our model’s advantages over them.

1.9 Thesis Organization

This section provides an overview of the chapter contents and their organization in the

thesis.

Chapter 2 describes the background study for our research. This chapter provides an

outlook of the current scenario in our domain of interest: Scrum project estimation. We

have discussed the machine learning techniques used in the domain; the background of

Adaptive Neuro-Fuzzy Inference Systems, its architecture, and implementation; the

description of standard Bat algorithm, its implementation, shortcomings, and the various

hybrids developed;

25

Chapter 3 presents the literature review of the effort and cost estimation in Scrum

projects using a variety of approaches. This chapter details the study selection process,

inclusion and exclusion criterion of the literature, and the data and literature sources

description; literature review summarizing the work of several authors on the usage of

traditional, machine learning, fuzzy system and hybrid techniques to predict the effort or

cost, their advantages, and disadvantages; formulation and discussion of research

questions.

Chapter 4 presents our developed technique for effort estimation. This chapter

meticulously describes in various sections our architecture from data preparation to the

estimated value of effort; the dataset description, feature selection, data synthesis and

transformation; the challenges in adopting standard Bat algorithm for effort estimation;

our novel structure modification to standard Bat algorithm in developing its hybrid; its

pseudo-code and implementation in ANFIS; and the results of our developed technique

against several state-of-the-art algorithms.

Chapter 5 presents our developed technique for cost estimation. This chapter thoroughly

describes in various sections our architecture for estimating the cost of a Scrum project;

feature selection and transformation of the dataset; the challenges in adopting standard

Bat algorithm for cost estimation; description of our novel feature that addresses the

challenge of adopting modern machine learning techniques for cost estimation; its

pseudo-code and implementation in ANFIS; and the results of our developed technique

against several similar optimization algorithms implemented in ANFIS.

Chapter 6 presents the conclusion of our thesis and the future scope of the research

conducted. This chapter summarizes the challenges in traditional techniques of

estimation; the transition to machine learning techniques, present literature of work and

results; advantages and disadvantages of using ANFIS; requirement of meta-heuristic

optimization algorithms in assisting with hyper parameter tuning; design and

development of EEBAT, its integration and results relevant to effort estimation; design

and development of CEBAT, its integration and results relevant to cost estimation; time

26

and space complexity analysis against several other algorithms; and the future scope of

work in the software development estimation field.

27

CHAPTER 2

BACKGROUND AND PRELIMINARIES

The underlying architecture of the proposed approach has been inspired by the universal

estimator i.e., ANFIS. Standard ANFIS [9] has promising solutions for problems of

heavy weight process models in context to software estimation. ANFIS has some inherent

pros and cons, which makes it a little less efficient for estimating in an Agile environment

if applied as a standard. Some shortcoming of ANFIS includes high computational cost

due to structural complexity and gradient learning hence for large inputs it will be slow,

type, location and no. of membership functions, the curse of dimensionality and

complexity-interpretability trade-off. As Agility means injecting ‘change’, a de-facto

ingredient in reshaping the culture of software engineering, it becomes a mandate to

optimized ANFIS hyper parameters to predict and adjust the Scrum project's effort during

all prominent sprints. EEBAT technique will tune the ANFIS parameters. Related

background work has been discussed in this chapter.

2.1 Machine Learning techniques

Various techniques are being used over the years for estimating the effort in both agile

and non-agile environments. In agile projects, two very commonly used metrics influence

the project’s growth efforts, one that defines the size and complexity of the project called

the story points, and the other that defines the total number of story points that can be

conveyed by the team in a sprint called the project team’s velocity. We can estimate

efforts that are required by the software project using the agile approach efficiently based

on the two factors- number of story points and team velocity. The estimation process for

user stories in the backlog is discussed in a sprint planning meeting, after which, the

product owner prioritizes the item effectively based on the team’s velocity. A very

important factor in this process is to reduce any kind of influence on the team and to

28

successfully practice the exercise. Several machine learning techniques/hybrids that have

been used in Agile project estimation are briefly discussed:

 XGBoost [10]: The XGBoost algorithm is built upon tree boosting algorithms. It is an

end-to-end scalable, ensemble system that uses data compression and gradient

boosting framework. It comparatively uses lesser resources as compared to other

ensemble learning methods. It is widely accepted to be an improvement over DT and

RF and thus preferred in machine learning challenges.

 CatBoost [11]: CatBoost is developed by Yandex Inc as a new gradient boosting

toolkiSt that used ordered boosting, based on permutation for processing categorical

features. CatBoost can utilize both CPU and GPU natively thus extends scalability

over traditional machine learning techniques. It rivals XGBoost in performance and

accuracy.

 FLANN-WOA [12]: It is a hybrid algorithm that combines FLANN having 3 layers

with a set number of nodes and then those nodes are being multiplied by the calculated

weight vector by combining WOA.

 RBFN-WOA [12]: RBFN has 3 layers just like the FLANN algorithm. The first layer

of RBFN has input neurons that provide input data whereas the Gaussian RBF generates

the middle layer. The final output is obtained as the weighted sum which is calculated

by WOA and then multiplied by the nodes of the middle layer.

 DBN-ALO [13]: The number of knots in the proposed DBN-ALO architecture has

five RBM’s for traditional inputs whereas 3 for agile inputs. Just one node is available

to attempt the output layer. The input is linked and evaluated according to the training

algorithm in the visible DBN layer. Three RBM stacks were relocated. The effort is

calculated as a linear amount of the final RBM output at the output layer.

 SVR-RBF [14]: SVR has been designed to address regression problems. Oliveira

initially investigated the application of SVR to estimate the cost of software projects.

Kernel learning algorithm uses a popular kernel function in machine learning called the

radial base function which is also used for the classification of vector machines.

29

 ABC-PSO [15]: A novel method was proposed for the calculation of the commitment

in agile development projects focused on velocity and the story points. A mixed variant

of ABC and PSO algorithms had been implemented as well for getting better results.

2.2 Standard Adaptive Neuro-Fuzzy Inference Systems [9]

ANFIS, popularly known as a universal estimator is based on Takagi-Sugeno Fuzzy

System and makes use of potentials of neural network and fuzzy logic altogether in a

package. It is computationally more efficient than Mamdani, which mostly depends on

expert knowledge. The architecture of a standard ANFIS is given in Figure 2.1 and its

equations are given in Table 2.1. It has primarily five layers with functionalities as

follows:

 Fuzzifying Layer: All neurons are adaptive nodes including premise parameters.

 Implication Layer: Each neuron contains the product of all inputs.

 Normalizing Layer: Each neuron is fixed.

 Defuzzifying Layer: All neurons are adaptive nodes including consequence

parameters.

 Combining Layer: One neuron containing the sum of all inputs.

Table 2.1 Standard ANFIS equations [9]

Error Measure Ep = ∑ ()

 (2.1)

Error rate for the output node

 (

) (2.2)

Generic parameter alpha

 (2.3)

Learning rate with ‘k’ step size

√∑ (

)

 (2.4)

Unknown Vector 𝑎
 𝑎

 (2.5)

Covariance Matrix

 𝑖 (2.6)

Gaussian Function

 𝑎 exp [(

)

] (2.7)

30

Figure 2.1. Standard ANFIS Architecture with defined inputs

The detailed supposition stages of the ANFIS model are described below and shown in

Figure 2.2.

Figure 2.2 Stages of ANFIS

This model includes two stages given below.

Stage 1: Obtain the optimal parameters for ANFIS

 Loading training and testing data

31

 Generate base FIS

 Setting base FIS parameters

 Parameter adjustment of base FIS

 Outputting optimal values as the result

Stage 2: Using the optimized parameters in ANFIS

Updated parameter values obtained from optimization algorithm added in the fuzzy

system and calculation of the system error metrics. Table 2.2 describes the standard

ANFIS hybrid learning method.

Table 2.2 Forward and Backward pass in ANFIS hybrid learning method

Legends Forward Pass Backward Pass

Antecedent Parameters Fixed GD

Consequent Parameters LSE Fixed

Signals Node Outputs Error rates

2.3 Standard Bat algorithm

There are many meta-heuristic algorithms but we made use of the Bat algorithm for our

proposed work. Bat algorithm is a metaheuristic optimization algorithm developed by

Xin-She Yang [16] in 2010. The biological inspiration for the algorithm is the hunting

instincts of micro-bats for food in some regions using one type of sonar, called

echolocation. Bat species emit waves in the ultrasonic spectrum of waves, having some

frequency and loudness, at some rate, towards the food which hits it and reflects to form

an echo. Through the use of echoes, the bats analyze the distance of the food from its

position. This is because the wave emitted at time step t reflects towards the bat at some

time step t’ and the difference in time step (t’ - t) is used to assess the distance of the food

from the bat. An individual bat from the population randomly flies towards a position

with velocity , varying wavelength , loudness , fixed frequency , and pulse

emission rate []. The parameters – wavelength and rate of pulse emission rate can

32

be automatically adjusted based on a target's proximity. Loudness [] where

 is a largely positive and is minimum constant. The difference between obstacles

and targets is an inherent property of the bat species. The standard Bat algorithm is

shown in Figure 2.3. The steps of the algorithm are as follows:

 Initialization of the bat population: The search space is a region of many targets.

Every iteration of the algorithm requires the bat to search for optimum target

locations for their satisfaction. These locations being unknown, are initialized using

the random generation of values through vectors (dimension d and population size n)

with subsequent evaluation of their quality.

 (2.8)

where [] ; [] ; and are the corresponding highest and

lowest boundaries of dimension d; [] randomly.

 Frequency, Velocity, and New Solutions Generation: The quality of the food

sources evaluated during the initialization phase, influence the movements of the bats.

The equations for generating velocity, frequency, and position are as follows.

 (2.9)

 (2.10)

 (2.11)

where is the frequency of 𝑖 bat; is the minimum frequency; is the

maximum frequency; ’s value is generated randomly; is the global best solution

obtained among the n bats until current iteration;
 is the velocity of bat 𝑖 at time t.

 Intensification capability: The solution so obtained during the exploration phase is

used as the central point for local searching of solutions.

 ̅ (2.12)

33

 where is one of the elected high-quality solutions through any selection

method; ̅ is the average loudness of all bats at time step t; [] generated

randomly.

 Updating loudness and pulse emission rate: Due to the proximity of the target, the

Loudness and pulse emission rate 𝑒 are modified and are given as follows.

 (2.13)

The equations for updating the parameters are as follows.

 (2.14)

𝑒
 𝑒

 [] (2.15)

where are constants.

Standard BAT algorithm [16] has certain inherent issues like failure to converge to global

optima, multimodal optimization, poor exploration, slow rate of convergence, and no

population diversity. To address these issues, various BAT variants have been introduced

by researchers across the globe and are listed in Table 2.3 with their strengths.

The list of inferences that have been deduced from the variants cited in Table 2.3 are:

 Handling trade-off between exploration and exploitation

 Converging to global optima instead of being trapped in local minima

 Flexibility in the integration of the bat variants in different models

 Diversity factor to maintain the distinctness of population

 Improvising the algorithm for multimodal functions

34

Figure 2.3 Standard Bat algorithm flowchart

35

Table 2.3 BAT Variants with their strengths

Bat Variants Strengths

AMBA [17] Diversification using Opposition Based Learning technique, Swarm selection

based on - random, best average fitness, worst average fitness, and farthest

swarm best; Swarms can exchange information; Diversification is maintained

Bat with Mutation [18] Mutation operator increases population diversity that results in improved

exploration and a faster global rate of convergence

BatDNN [18] The sigmoid function used leads to a higher rate of convergence

Binary Bat Algo [19] Fitness function based on optimum-path classifier improves the convergence rate.

Search space divided into n-cube lattice improves exploration and exploitation

capabilities, Suitable for feature selection

CBA [20] Chaotic mapping increases convergence and rate of convergence

Differential Operator

& Levy flights Bat

[21]

Differential operator improves the rate of convergence; Levy flights creates

diversification leading to avoidance of premature convergence; Performs well on

complex high-dimensional problems

DABA [22] Direction scope increases exploration and rate of convergence; Deep checks in

the limited area increases exploitation

DLBA [18] Dynamic Weight model and Levy flight model increase exploration and

exploitation; Mutation Probability increases diversity; Adaptive memory ability

increases the rate of convergence

DVBA [23] Division of population into Explorer and Exploiter bat improve convergence,

Roles can be interchanged, Exploration and exploitation capabilities are

controlled using incremental rate divisor which is dependent on the location of

prey

Improved Bat Algo

(cost estimation) [24]

Automatic shifting of a global search to local search Random movement prevents

local search while in exploration hence increasing the rate of convergence

IBA [25] Diversity increases exploration capability

LBA [21] Levy flight behavior improves the exploitation capability, convergence and

prevents falling into local optima

LogisticBatDNN [26] Polynomial mapping is used leading to a very good rate of convergence

MeanBatDNN [26] Updated equation of velocity based on and has higher convergence

Modified Bat

Algorithm (ANN)

[26]

Alpha parameter updates loudness and increasing exploration capability;

Diversification leads to a better rate of convergence; Suitable for complex

problems

36

Modified Bat

Algorithm (Stability

Analysis) [27]

Additional parameter ‘w’ adds stability by lessening restrictions on ‘f’ thus

improving convergence; Exploration and exploitation capabilities are balanced

MOBA [28] Combines the objective functions using weighted sum into a single objective

function for solving multimodal problems

Novel bat algorithm

with multiple

strategies coupling

(mixBA) [29]

Multiple strategy autonomous selection strategy using probability

OBMLBA [30] Levy flight improves exploitation ability; Opposition based Learning improves

exploitation ability; Sinusoidal equation allows flexibility in modification of

frequency

Piecewise-BatDNN

[26]

Piecewise linear chaotic map leads to a higher rate of convergence

SBA [25] Contraction factor maintains diversity; improves convergence efficiency and

prevents falling into local optima

Simplified Adaptive

Bat based on the

frequency [31]

Frequency adjustment improves convergence and prevents falling into local

optima

SinBatDNN [26] The sinusoidal mapping used leads to a higher rate of convergence

2.4 Summary

The transition from traditional techniques of estimation in Scrum-based projects to soft

computing techniques such as machine learning and NF systems is evolutionary.

Traditional techniques are human-dependent, as they require considerable experience and

related domain knowledge to properly estimate the effort and cost of a project. However,

there is an inherent disadvantage of such techniques, which is the primary individual bias

that sways the sprint planning and clearance of backlog as a result. It has been concluded

that machine learning techniques outperform traditional techniques of estimation.

Though several popular ML techniques are applied in the application of cost and effort

estimation in Scrum projects, their performance lags when the non-linearity in data

37

increases. Several authors created hybrids of such techniques which altered the

performance positively. We have presented evidence that ensemble estimation techniques

win over a single approach of estimation. However, hyperparameter tuning is a primary

concern that needs to be addressed when adapting such algorithms to this domain.

The usage of optimization techniques for hyperparameter tuning results in bridging actual

and predicted values of effort estimation as compared to manual tuning. Grid Search and

Random Search are the most common methods of hyperparameter tuning in machine

learning. However, they are time-consuming and require high computational resources.

This presents opportunities for developing optimization algorithms that have given

promising results. DBN-ALO has maximum accuracy (PRED) and the lowest MMRE on

the most used Agile dataset. Using the ALO optimization algorithm, DBN is

automatically tuned to provide the best set of estimations of effort in effort and cost

estimation.

The advent of NF systems is a boon to the research community as it is most capable of

replacing complex human tasks with intelligent automation. We have detailed the most

prominent NF system called ANFIS that can be used in Scrum project estimation. We

chose this system to develop a more efficient and faster algorithm than DBN-ALO.

ANFIS has three fundamental concerns: selection of type and number of membership

function, the curse of dimensionality, and interpretability-complexity trade-off. These can

be mitigated by substituting another optimization algorithm in the standard ANFIS

algorithm to adapt it for Scrum project estimation. We propose the use of a standard BAT

algorithm for this purpose.

The standard BAT algorithm is one of the best optimization algorithms that are suitable

for enhancing the ANFIS performance. The standard BAT algorithm is very popular

among researchers due to its enthralling performance on various datasets. Since it has

also suffered from problems like convergence failure for global optima, multimodal

optimization, poor rate of exploration, slow rate of convergence, lack of population

diversity, and forgetfulness, its variants have been proposed by several authors. We have

38

provided a summary of the best variants to sensitize the readers of its potential in several

domains.

39

CHAPTER 3

REVIEW OF LITERATURE

3.1 Related work

Ravi Kiran et al. (2021) [32] presented various estimation challenges and issues faced by

the IT companies incorporating Agile based practices. They conclude, planning poker as

the most used technique/model of agile estimation. Authors also listed various pointers

leads to inaccurate estimation and software crises.

Athanasios Karapantelakis et al. (2021) [33] made use of MBT for teams incorporating

scrum to estimate costs. Authors have created and presented a set of models that can

estimate MBT adoption costs based on a number of baseline criteria such as staff

competence and availability, as well as historical data utilization.

Neha Gupta et al. (2021) [34] uses the integration technique to evaluate dynamic

development efforts based on features and user input. The distributed method's results

suggest that the energy expenditures produced from user data are valuable.

Rene Avalloni de Morais (2021) [35] proposed deep learning-based algorithms for

estimating story points in agile projects. For story point estimation, 16 open-source

projects proposed and train different algorithms on a big dataset. Furthermore, author also

employed natural language processing techniques to extract more useful characteristics

from software requirements expressed as user stories.

Zainab Rustum Mohsin (2021) [36] in his paper deduced that the artificial neural network

technique was used to model software development effort COCOMO was one of the

datasets used in the estimation. The MMRE and correlation R were utilized as evaluation

tools. Following the construction and testing of the ANN model, and a comparison of the

ANN model's test results with those of the SLIM, Function Points, and COCOMO-basic

models, it was determined that the ANN was a suitable model for estimating effort. It is

40

also suggested that ANN be utilized as a predictive model for estimating software

development effort.

Simone Briatore et al. (2021) [37] in their paper describes a pilot validation experiment

of an unique Agile framework for the development of hardware systems, which includes

a parametric tool for more rigorously estimating task effort than standard confidence

votes. The validation of electrical hardware design task estimation and overall project

performance is presented. Experiments with teams of junior engineering students are used

to validate the system. When using the offered tool during the planning phases of the

development, the validation experiment revealed an improvement from a minimum of 8%

to a maximum of 18%.

Kasi Periyasamy et al. (2021) [38] explains the design and execution of a project tracking

tool for software projects built using the agile method Scrum. The tool's users may keep a

close eye on the progress of user stories, sprint tasks, and test cases that have been added

to a scrum board. The tool provides a measure of difficulty to implement in terms of story

points for each user story, as well as the expected completion time for each sprint job. For

ongoing monitoring of efforts based on sprint tasks, the solution employs machine

learning support. Three separate graduate course projects were used to test the tool's

effectiveness.

Przemyslaw Pospieszny et al. (2018) [39] use three approaches for effort estimation in

the ISBSG dataset: SVM, MLPANN, GLM. They inferred SVM outperforms ANN and

GLM by having lesser MMRE and higher PRED (25). Even when the dependent variable

is log-transformed, GLM outperforms ANN, but SVM still wins. According to the

authors, results may vary due to the presence of several project data in ISBSG, and things

may be different if applied to a homogeneous set, such as PROMISE or from source

forge.

Morakot Choetkiertikul et al. (2017) [8] estimated the effort of user stories rather than the

whole project. The authors made use of hybrid LSTM and RHWN and mined 16 open-

source projects. Their developed deep learning algorithm outperformed random guessing,

41

median, and mean techniques of estimation. Because the model is recurrent, the features

will be consistent across all layers, eliminating over-fitting. They developed an end-to-

end model in which words are provided as input and story points are calculated as a final

output. To validate results, they employed non-parametric testing. When utilized inside a

team, story points are useful, but they should not be used to compare projects.

Jasem M. Alostad et al. (2017) [5] introduced a Mamdani FIS type model for story

point estimation that utilized team experience, narrative size, and narrative complexity as

inputs to the FIS and estimated accuracy as the final result. The final results of the

performance metrics MMRE and PRED are 0.28 and 50% respectively, which is directly

proportional to the team’s experience as the sprints increase.

Habibi Arifin et al. (2017) [40] proposed linear regression models for estimating both

effort size (relative) and effort time (absolute). They used data from Atlassian JIRA

repositories to develop an estimator that is evidence-based.

Saurabh Bilgaiyan et al. (2017) [3] reviewed cost estimation literature in agile-inspired

projects. The authors have answered various RQs like - What are the most common agile

estimate approaches? In what scenario may it be used? What percentage of people

succeeds and how many people fail? They concluded that NN, EJ, PP, LR, Wideband

Delphi, UCP, and MUCP are frequently searched terms. They also addressed the

challenges they faced and concluded that scrum is the most popular methodology.

Murat Salmanoglu et al., (2017) [41] compared the cosmic functional point to the

narrative point on three industrial projects in an agile framework. As a consequence, they

observed that cosmic gives more objective estimations than relative SP (which is based

on the team's expertise) and that cosmic has a better forecast than SP with an underlying

fact function. They concluded that cosmic FP-based regression models outperformed SP-

based regression models.

Ricardo Araujo et al. (2017) [42] developed an MDELP model to handle software effort

estimation concerns. However, because it is not used in agile projects, no conclusions can

42

be drawn about its effectiveness. They choose dilation and erosion operators based on

pessas concepts. They claimed that the hybrid technique outperformed the existing in

terms of PRED.

Dragicevic Srdjana et al. (2017) [43] emphasized how the success of agile projects is

dependent on the elicitation of strong issues. Their developed approach could be used in

any independent agile project to estimate effort. They used data from 160 projects. They

employed the performance metric RMSE to check the discrepancy between actual and

estimated effort.

Vlad-Sebastian Ionescu et al. (2017) [44] used the TF-IDF, SVR, and GNB techniques to

estimate effort for traditional techniques. When compared to the existing literature, the

results appear to be favorable.

Maciej Abdzki et al. (2017) [45] discussed the OSW project, the TOPO system, and the

FOODIE system, along with the many challenges inherent in them, in their paper. They

used the agile estimates literature to analyze everything and established some interesting

conclusions, such as Planning Poker's capacity to produce superior results.

Lavazza et al. (2017) [46] developed a novel technique that provides good estimation

accuracy before production deployment. There were discussions of several accuracy

prediction factors, and a standardized accuracy measure was used to assess the model's

accuracies. The authors also compared various data sets of alternative models.

Janeth Martnez et al. (2017) [47] demonstrated how to utilize a BN model in a Scrum

context to generate estimation criteria based on the complexity and importance of user

stories. They validated their developed model using correlation tests. This approach will

help all newcomers’ transition to scrum-based projects.

Mohd. Owais and R. Ramakishore (2017) [48] provided a technique for effort, cost, and

time duration estimation in agile-based projects. No ML algorithm is used in this

technique. They conclude their technique is fundamental thus any empirical proof that the

current best techniques will be improved is absent.

43

Seyyed Hamid Samareh Moosavi et al. (2017) [49] developed an SBO algorithm for FIS

parameter optimization. The authors claim that their developed algorithm provides

optimum parameters to the FIS. They used the ISBSG dataset and the comparison was

made using existing techniques such as CART, MLR, and others. 0.235 values for

MMRE were identified, which is smaller than the group chosen for comparison.

Shashank Mouli Satapathy et al. (2017) [50] demonstrated the usage of the SP technique

to increase the accuracy of effort estimation. The authors compared internal and external

results using three machine learning algorithms: DT, SGB, and RF. For training and

testing the models, they used data from Zia et al. They next used logarithmic

modifications to standardize the data they had collected. They give the ML model issue

counts and velocity as inputs, to output the predicted effort. As a result, SGB performs

better than the competition. BN can be employed in the future.

Aditi Sharma and Ravi Ranjan (2017) [51] clarified some of the pressing queries, such as

NFIS used in effort estimation and their rate of success based on several performance

metrics. The concluding statements are incoherent in the context of Agile. It is suggested

that NFIS be used with COCOMO, FP in the future.

Binish Tanveer (2017) [52] mentioned in his work that it is necessary to have

accompanying guidelines before setting up effort estimates to have a high success

probability. It's designed for assessing the impact of change. After consulting with

specialists, a framework for guidelines is created.

Non-algorithmic models are applicable for agile-based tasks, according to Sufyan Basri et

al., (2016) [53] . Because requirements are unpredictable in agile, they must be factored

into the estimated effort and added to the final effort. A table of change type values is

also provided, along with the percentage effort necessary for modifications in various

phases. MRE's outcome is unsatisfactory.

Saurabh Bilgaiyan et al. (2016) [54] provided an overview of soft computing strategies

used in the last decade in agile effort estimation. In their conclusion, BN appears to be

44

more promising than other models, with a 62.8% accuracy rate, when compared to

regression-based models, composite models, expert opinion, and PP.

Anjali Sharma et al. (2016) [55] compare RF to various NNs and claim that RF

outperforms GRNN, PNN, CCNN, and GMDH. They've used effort as a source of

information for the RF approach.

Zia et al. (2016) [56] proposed a model based on expert systems and compared it with

COCOMO-II and Function Point Analysis and found quite promising results i.e., 9%

increased accuracy as compared to both. However, there is no detailed reasoning

mentioned about the intelligent system and is not made in context to agile.

Kayhan Moharreri et al. (2016) [57] developed for Agile-based projects a story point’s

auto-estimation model. It inputs a dataset, selects and extracts features, then does a cost

estimation analysis. RF, PP, NB, LMT, and their hybrids are some of the methods that

have been used. Each one generates a confusion matrix. Conclusively, PP is

outperformed by the hybrid.

Binish Tanveer et al., (2016) [58] focused on Agile-based project effort estimation as an

industrial case study. By the survey conducted amongst 3 SAP teams, impact, team

expertise, and task complexity are three key factors that influence agile project effort and

the industry largely rely on PP and SP for estimation.

Aditi Panda et al. (2015) [59] compared multiple NNs used in Agile effort estimation on

Zia et al. dataset. GRNN, PNN, GMDH, CCNN, and polynomial NN have been studied.

With a PRED of 94%, they discovered that CCNN outperformed all others. They suggest

SGB, RF with SP approach for future scope of work.

Muhammad Usman et al. (2015) [60] conducted a state-of-the-practice survey for

determining accuracy through an industrial perspective. They mined data from sixty agile

practitioners. They concluded that PP is the most frequent method of estimation

(63%) followed by SP estimation (62%) and the most frequent size metrics and cost

drivers used at what stage of the SDLC.

45

Hind Zahraoui et. al (2015) [61] described scales and characteristics influencing user

stories, and how they alter them for increased accuracy. Their approach is based on

determining the story's priority as a multiple of its urgency and business value then

finally creating a scale to accommodate it.

Vachik S. Dave et al. (2015) [62] examined a decade of literature in which NN was used

to estimate effort. They looked at 21 articles and concluded with several key findings

which include a comparison of ANN to several techniques like PP, ANN having superior

accuracy compared to FP and SLIM. However, the analysis was not in the context of

agile.

Ali Bou Nassif et al. (2015) [63] compared the effort for non-agile-based projects using

the RBFNN, GRNN, CCNN, and MLP. Five datasets from ISBSG were used with CCNN

outperforming the others.

Manga I, Blamah (2014) [64] proposed the PSO framework in their study, which delivers

improved percent accuracy. With adaptive learning, a comparison is made, but facts are

missing.

L.R. Nerkar, P.M. Yawalkar (2014) in their paper [4] reviewed the existing cost

estimation techniques wherein algorithmic models like COCOMO, Putnam, FP model,

and non-algorithmic i.e., analogy based, Parkinson’s law, price to win, and EJ

comparisons are drawn. They also proposed a web cost model without any evidence that

it is good.

Rashmi Popli, Naresh Chauhan (2014) in their paper [65] presents the algorithmic

estimation method based on the effect of various people and project factors. The author

explains why it is necessary to include these factors and what problems peeps in if we

don’t include these factors in estimation. The author discussed fourteen factors which

include types of projects, quality requirements, etc. The algorithm begins with the

calculation of unadjusted values, quality factors, and time factors. Based on these

calculations, estimated story points and estimated time for the project. The future work

46

states the inculcation of other factors which affect the estimation process to make the

process of estimation more accurate and efficient.

Govind Singh Rajput, Ratnesh Litoriya (2014) in their paper [66] presented a novel cost

estimation method for agile online projects. They used hybrid CORADMO for RAD

projects which can be used in agile projects which are named CORAD_AGILE. It

explains three new cost drivers which are substituted with three old cost drivers. These

new cost drivers are replaced with personnel, collaboration support, and prepositioning

assets. Effort, schedule, and personal productivity are calculated based on this model.

Rashmi Popli, Narsh Chauhan (2014) [67] lay the foundation for an algorithm to estimate

Effort and Cost in Agile projects. It is a related work to the previous paper that takes into

account the concept of story points. This paper explains a mathematical estimation

technique. The author also explained the life cycle of agile and explains the reason for the

necessity of effort estimation in any project. The major causes which are responsible for

inaccurate estimation in agile development are also discussed which include the

methodology adopted, the political forces like managerial pressure, management control

issues such as uncertainty and self-knowledge. Then the existing agile estimation

techniques which are available are given along with their problems. Then the author

proposed their method for the estimation using the story point approach. Total story

points are calculated followed by the calculation of velocity which is the value computed

by the SP completed in one iteration divided by SP in one US. Then, frictional velocity is

calculated followed by estimated development time, effort and cost. Then a case study is

done using hypothetical values of the various factors. The future work of the paper states

that various correlating factors must be added to improve the estimation accuracy.

Shashank Mouli Satapathy et al. (2014) [68] introduced SVR strategies for improving the

effort estimation accuracy using the SP methodology. A comparative analysis of various

SVR kernels has been carried out and it has been concluded after experimental results

that RBF outperforms linear, polynomial, and sigmoid including kernels. SGB, RF, and

other techniques can be used to make further improvements.

47

Usman, M., et al., (2014) [69] discussed various traditional and ML estimation

techniques and compared their prediction accuracies. In their work, MUCP and NN

appear as good candidates. The authors also identified various size metrics and cost

drivers such as team expertise, size, etc.

Zhamri Che Ani, Shuib Basri (2013) in their paper [70] has investigated how to estimate

the effort for the software development in Agile Environment using UCP. Calculating the

initial efforts in Agile Projects is a challenge because of the volatile requirements in these

projects. And implementing UCP is difficult in agile projects due to two reasons. First,

the product backlog contains short descriptions of user stories that don’t fit into the

documentation standards of use case points. Secondly, none of the studies has clearly

described how to use Agile Product Backlog with this approach. So, the authors have

successfully implemented this method despite its limitations. For the implementation of

this method, KOINS data was taken for analysis. The steps for UCP are followed which

involve determining and computing unadjusted use case points, technical complexity

factors, environmental complexity factors, productivity factors, and estimated number of

hours. The estimated result was near to the actual result stating that the UCP approach is

suitable for estimating the efforts for software development at the early stages. The future

work states that other estimation models are needed to be compared with this method like

COCOMO on Agile projects. The major challenge in this paper was the relation of agility

with the calculation is not clearly explained. The concept of user stories which is the

baseline of agile projects seems to be disappeared in this paper. So, the problem

definition can be formed by merging the concept of story points with use case points. The

major challenge against this statement is the availability of the data set for the analysis.

Abhilasha, Ashish Sharma (2013) in their paper [71] explain the concept of regression

testing and test effort estimation for the regression testing. Test effort estimation turns out

to be costly if all test cases need to be executed. So, there are various techniques used for

the selection of test cases that minimally needs to be executed. An approach for the

calculation of the Test effort estimation is proposed.

48

Ziauddin, Shahid Kamal Tipu, Shahrukh Zia (2012) [6] This paper presents a model for

the effort estimation for agile projects. The author first discusses some cost estimation

techniques and explains agile software development and its characteristics. Then

techniques for effort estimation in agile that can be used are discussed. These estimating

techniques include numeric sizing, t-shirt inspired sizes, the Fibonacci sequence, etc. It

clearly states that the estimation is done by the team members in the sprint planning

meeting for the stories of a product backlog. The story size scale is built which is an

assessment of the work's relative size in terms of actual development effort. The

complexity of the project which may be because of user stories or technical complexity is

measured on the complexity scale. These two values, the effort can be calculated for a

particular user story which in turn can be summed up for the total effort. Then the

concept of velocity is used for the calculation of effort that the team can accomplish in

one sprint. Then this velocity is optimized by taking into account the friction forces and

the dynamic forces which reduces the projected velocity. Then completion time is

calculated followed by the calculation of development cost based on the data collected

from the 14 CMMI level 3 companies. Then the experimental analysis is made from the

empirical data which is based on data of 21 software projects. The outcome shows that

estimated results are near to the actual results. This paper opens several research

problems for a future investigation like the use of the number of scales for the estimation

of efforts like ranking scale or use of Fibonacci sequence. Moreover, the other factors

that are affecting the velocity other than that are mentioned in the paper can be analyzed

and more optimized results can be obtained. An improvement can be made on the

estimation method by analyzing the major factors that seem missing in this approach.

Evita Coelho, Anirban Basu (2012) in their paper [72] discussed the most acceptable

approach in agile methodology – Story Points. Story points are the unit of measurement

of user stories that expresses their overall size. The effort and duration that is required for

the delivery of features to the customer are estimated by the team member. The

traditional methods of effort estimation are not appropriate for effort estimation. For the

story points approach, the estimation of the schedule and effort starts by understanding

49

the customer’s conditions of success and failure for the product backlog followed by the

estimation of user stories and selection of iteration length, then the estimation of velocity,

prioritization of user stories and then estimation of the delivery date.

Ratnesh Litoriya, Narendra Sharma, Abhay Kothari (2012) in their paper [73]

investigated the behavior of various cost drivers responsible for the prediction of the cost

of any project and then substitution with closest values which will result in the decrease

of cost of any project. The investigation is done on the 60 NASA past project data which

already contains the actual efforts. And this data is then put into the WEKA tool and K-

mean clustering is applied to the data set which results in the formation of clusters. Then

the value of these clusters is used to analyze the values of the cost drivers or in other

words, the value of cost drivers gets optimized with the formation of clusters. So, the

effect of the reduced values of cost drivers has a direct impact on the cost of the project.

This reduction of values of cost drivers which results in the reduction of cost of the

project is calculated by the use of the online freely available web-based tool AGILE

COCOMO-II which was developed by the University of Southern California. The future

work of the paper says that other data mining algorithms such as apriori etc. can be used

to determine the better optimization of the cost drivers. And these optimized values can

be applied on the web-based AGILE COCOMO-II. This paper must have served a great

problem definition by incorporating data mining techniques in Cost estimation and new

combinations of these fields have come out.

Ritesh Tanmrakar, Magne Jorgensen (2012) in their paper [74] gives the study of the

effect of the use of Fibonacci numbers concerning the linear numbers for effort

estimation. Two case studies performed for analyzing the same provide significant

insights. In the first case study, a group of students was divided into two groups – one for

linear and the other for Fibonacci scale for effort estimation. The result showed a large

difference in the values of effort estimations whereas the linear scale shows a higher

value of the estimation. The second case study was performed with a set of experienced

developers. The difference between the values of Fibonacci and linear scale estimations

50

differs with a smaller value. So, the use of Fibonacci is considered to be better than for

the use of linear scale.

Ehab E. Hassanein and Salma A. Hassanien (2020) [75] proposed CESP method would

have a global project view, which will aid in reducing resource waste in the earlier stages

by rearranging the tasks that will be needed in those stages. As a result, the total project

time and expense are reduced. This while retaining the versatility and flexibility that the

Agile technique needs.

Aiman Khan Nazir et al. (2017) [76] investigated how agile methodology affects various

aspects of software project management According to the literature review, agile

methodology aids in software project management, which contributes to software

success.

Croix, Benjamin (2018) [77] aimed to examine the impact of Agile manifesto on the

implementation of partial and tailored agile approaches in the related literature from 2001

to 2017. They were convinced that the real nature of agility had been lost as a result of

the industrialization of agile practices. Agile methods should be used within a specified

structure that adheres to specific criteria based on principles, rather than as a simple

process or procedure.

P. Suresh Kumar et al. (2020) [78] discussed the use of various ANN for effort

estimation. It has been discovered that using ANN to forecast machine effort is more

accurate. As compared to conventional approaches such as function point, use-case

methods, and so on, this approach is more accurate and superior. In the case of

COCOMO projects when compared to statistical models, neural network-based models

are more competitive as compared to the conventional regression models.

Muhamad Yusnorizam Ma’arif et al. (2018) [79] aimed to share observations on the

complexities of implementing Agile projects in Malaysia. This article will highlight the

problems that a company faces if the Agile Scrum approach is implemented by

conducting a few sets of interviews with domain experts. The key goal of the Agile

51

process in managing IS development projects is to achieve rapid implementation and

execution.

Faisal Hayat et al. (2019) [80] conducted a survey of various software companies and the

results indicated that almost every software organization uses agile development

(Scrum), which has a positive effect on software project management.

Ali E. Akgun (2020) [81] categorized software development on various bases such as

conceptual, community, and organizational. He took about two hundred software

development teams and recognized the importance of the team wisdom process in the

entire software development process. He showed the research model in the research work

and also showed the correlation between different parameters. He then showed the results

of the hypothesis.

Asad Ali and Carmine Gravino (2019) [82] showed a systematic review based on their

analysis of papers. They also answered 6 research questions with relevant tables and

figures. They took the list of different datasets used in the paper and showed which

dataset was widely used. They performed a secondary search in which they attempted to

refer to the sources of the related studies, and they discovered several additional papers

that had been missing in the primary search.

Abdullah Altaleb and Muna Altherwi (2020) [83] provided a detailed analysis of the

variables that influence the precision of effort estimation. The estimate of effort from

previous research, variables were gathered and validated with 20 professionals in the

field of mobile application growth from 18 organizations. The detailed factors and

predictors provided in this research work guide the estimation value assignment for user

stories. These variables were gathered from previous research on the Agile process and

the creation of mobile apps.

Emanuel Dantas et al. (2018) [84] proposed and tested a decision tree-based approach for

estimating effort in agile projects They predefined its accuracy and usability, and the tool

was tested by gathering data from four projects. They also compared the values of MRE

52

from the teams' forecasts to the values provided by the tool to assess their accuracy. They

used the Technology Acceptance Model, which was simple to use, to determine. The

preliminary results showed that the method can be used both effectively and efficiently.

Magne Jørgensen et.al (2020) [85] took 362 software professionals in their 1st

experiment for estimating the effort of 3 larger tasks of equal scale tasks. All of the tasks

in the two experiments were assigned in random order. The likelihood of a bias against

estimates of insufficient effort can be reduced.

Anupama Kaushik et al. (2020) [13] proposed a hybrid model that combines DBN and

ALO. The research work also included the time taken to predict effort as to deal with

ambiguous estimation. The developed algorithm, DBN-ALO performs well as compared

to other algorithms applied in the field of estimation on the Zia dataset with the lowest

MMRE.

Thanh Tung Khuat et. al (2018) [15] combines two algorithms which were ABC and

PSO to make a hybrid model which produced favorable results comparatively. They also

mentioned the related work with different parameters. They also showed the whole

process starting with the estimation of story points. This latest algorithm outperformed

various types of ANNs in previous studies.

Onkar Malgonde and Kaushal Chari (2019) [86] took seven algorithms to predict a

story's efforts. They also conducted different computer experiments to show that the

ensemble-based benchmarking worked better than other ensemble-based benchmarking.

They compared all the related work based on different parameters and also showed their

proposed method. They used the ensemble learning model in their paper for the

comparative analysis.

Ali Bou Nassif et al. (2019) [87] initially, the regression analysis was carried out. The

results revealed that data heteroscedasticity affected model efficiency. The linear output

inference method worked better than the other modes. They answered three questions in

the paper and also showed the related work on fuzzy models for getting an idea about the

53

current work done. They took four datasets and did the graphical representation for

comparison.

Soufiane Ezghari and Azeddine Zahi (2018) [88] proposed strengthening the FASEE by

applying quality requirements to address the aforementioned drawbacks. The model

includes two capabilities known as CFASEE. Both fuzzy estimates and crisp estimation

are derived from the current estimation model. An experimental study was also carried

out.

Hosahalli Mahalingappa Premalatha and Chimanahalli Venkateshavittalachar Srikrishna

(2019) [89] introduced a DBN-based model for the prediction of effort in any agile

technique. There is no effect of the ECS-DBN method on agility because it uses simple

inputs. At m level, prediction to evaluate the model's accuracy. Nearly 99% precision

was achieved by the ECS-DBN method as compared to the other referred techniques.

Claudio Ratke et al. (2019) [90] introduced an automated model based on narrative texts

to estimate the effort of development. For the extraction of verbs and nouns, and

linguistic reduction, and the standardization of keywords by synonyms, this paper

suggested techniques for the symbolic study of natural language. The validation showed

an accuracy of over 81%. To validate the algorithm, they separated the basis of the

stories that were already calculated, provided in two halves where one was used to

compose the words and the other was used to validate the results.

Gajendra Sharma et al. (2019) [91] conducted and gathered empirical evidence from

Nepal software development companies. The minimum size of the business was 30,

while the maximum size of the company was 200. After that, the study of the case was

performed by conducting a set of structured questionnaire interviews. The findings from

the case study were compared with the results of the case study. He also did a literature

review and discovered that there are practices for verification, validation, and testing

cost/effort estimates based on empirical evidence. He concluded that the estimation of

test effort follows the same pattern as the estimate of the software development project.

54

Martin Shepperd et al. (2007) [92] proposed a new framework for the evaluation of

competing prediction systems based on unbiased statistics, standardized accuracy, testing

the likelihood of results relative to the random 'predictions' baseline technique, which is

guessing, and calculating effect sizes.

Brijendra Singh and Shika Gautam (2016) [93] provided a systematic literature review

based on situational factors influencing the software process. They also analyzed how

situational variables are involved in the Software processes. During the whole process of

software development, various managerial and technical problems arise. To solve these

problems, software processes are used to develop a product of quality. There are different

kinds of situational variables that influence the software process. In the paper, situational

factors were identified based on the literature review influencing the software process.

Also, they analyzed five key significant situational factors.

Fabián Ugalde et al. [94] compared the four methods of functional size estimation as the

basis for estimation of effort in the context of a start-up company that uses an agile

methodology to develop mobile applications. Software size measurements, expressed in

USP, IFPUG Function, UCP, UFP, and CFP were taken from one project in the business

for a set of requirements. Models of effort estimation were then derived from the using

regression and their precision was determined by two accuracy parameters.

Laura Diana Radu (2019) [95] proposed a model using BN for agile software

development project prediction. They identified two main categories of factors that

influence the effort needed based on literature review and the knowledge of practitioners:

the quality of teamwork and user stories.

Hrvoje Karna et al.(2018) [96] investigated data based on five distinct software

empirical projects originating in the same setting that had been used for performing a

formal experiment. The assessment of the results obtained during the process of data

mining uses established criteria.

55

Anureet Kaur and Kulwant Kaur (2019) [97] presented different factors to estimate effort

for the mobile apps. The indices of different popular accuracy parameters are used to

measure the model's accuracy and results indicate that the proposed model provides a

good forecast as well as prediction.

Ahlam Alhaddad et al. (2005) [98] research has shown that most of the current research

has used MMRE, MRE, and PRED for accuracy of effort estimation measurement, where

NASA93 and COCOM81 were the most widely used datasets. In addition, most of the

studies reviewed attempted to use methods of machine learning, whereas other studies

have proposed models for hybrids. Concerning size metrics, most of the studies reviewed

used a line of (KLOC/ LOC / SLOC) code.

Mayank Jha and Richa Jha (2020) [99] showed the model to represent the variation in

bias and the accuracy of the technology estimates of an enterprise test attempt to

conclude CDF, NF approach, and methods of Genetics. The motive of this study is to

reduce the cost of software and to explain how to apply these concepts to the general

system with divisions. Simple algorithms are provided - Cobb Douglas, ANFIS approach

to genetic algorithms and decide which algorithm is most appropriate for finding the best

algorithm as precise as possible.

Pinar Efe and Onur Demirors (2019) [100] proposed a method to measure change and

subsequent cost of rework and evolution, to accurately monitor software projects. In five

different businesses, five case studies were performed to explore the usability of the

proposed model.

Washington Almeida (2021) [101] described a process model for calculating metrics that

can be used in agile contracts rather than structured FPs, which have already proven to be

troublesome and difficult to handle for contractors.

Muhammad Ijaz Khan et al. (2019) [102] investigated the characteristics of user stories

that can affect the estimation of effort in agile projects. They also showed the different

search strategies and answered one research question in their paper. In the results, they

56

showed the papers selected, a summary of the papers when collected year-wise, and

characteristics of different user stories in their paper.

According to ISPA [1], approx. 67% of software projects decline to meet deadlines while

staying within budget. The unpredictability of system and software requirements is one of

the primary reasons for software project failures. The other is incorrect estimations of job

size, cost, and personnel requirements. Two of the most difficult parts of estimating

scrum-based projects are change and sprint-wise estimation. The vast majority of IT

firms have adopted hybrid process models, which are mostly based on Agile umbrella

methodologies. The shift in effort estimation approaches has occurred from the transition

of process models from heavy weight models such as an iterative waterfall to lightweight

models [103] such as Agile. Traditional estimation processes [104] such as EJ,

TD estimating, Delphi-Cost estimation and others are well suited for high weight process

models in some way, but they fall short of bridging the estimated and real effort gap that

Agile methodologies need. Researchers began exploring alternatives as a result of the

changing nature of Agile-based project needs, finally settling on soft computing

techniques [3]. Providing rules for unpredictable issues is one of the most well-known

applications of NF frameworks [51]. However, because software projects are inherently

unpredictable and complicated, the data supplied at the beginning of the activity is

insufficient, and the issue of story point estimation is entirely unknown. Fuzzy and NF

models can be used to mitigate the vulnerability while enhancing estimation precision in

this instance. Due to the unpredictability of the effort estimation issue and the complexity

of the project and human characteristics relationship analysis, the optimization process is

critical. The optimization [49] can be connected directly to effort estimating techniques

like quality weighting in analogy-based estimation, or indirectly to machine learning

algorithms. It is suitable for parameter weighting, NN optimization, and ANFIS

hyperparameter tuning.

Jorgensen and Shepperd [92] published a comprehensive review in the 1980s that found

more than 10 approaches for estimating effort, with regression-based tactics beating

57

empirical alternatives. Despite the vast number of comprehensive research on ML models

in the estimation of software projects, contradictory results have been accounted for in

terms of the estimated exactness of these models, regardless of the process model

method. When a comparable ML model is built with various datasets [39], [104] or

circumstances [68], the accuracy of the estimation changes. The authors in [104] declared

that the ML model is superior to the regression model, however, they reasoned in [105]

that the regression model surpasses the ML model. According to the correlation amongst

various ML models such as ANN and case-based reasoning, researchers in [39] inferred

the former beats the latter while those in [106] detailed the contrary outcome. Experts

may be deterred from adopting ML models due to the difference in current empirical

judgments. Furthermore, ML systems have a far more complex theory than traditional

estimate procedures. To promote the use of ML techniques in SDEE, it is important to

actively condense empirical proof on ML models in continuous research and testing.

More than ML, industry experts rely on EJ and Delphi cost estimating methodologies.

CBR, BN, SVR, ANN, DT, GA, AR, GP, and other ML approaches have been utilized

for SDEE [69][107][108][109], although most have yet to be employed for estimation in

Agile projects. The aforementioned ML systems can be used as standalone or in

conjunction with other ML or non-ML approaches. For instance, GA has been integrated

with CBR, ANN, and SVR for highlight weighting and selection. For execution, fuzzy

logic [5] was used with CBR, ANN, and DT. Other datasets were utilized for estimation,

such as ISBSG, JIRA Repositories, PROMISE data repository, and so on. Holdout, n

times overlay Cross-Validation and Leave One Out Cross-Validation [104], [110] are the

most popular approval methods. MMRE, PRED (25), and MdMRE [3] are prominent

accuracy metrics. For estimating projects that incorporated both traditional and

lightweight methods in some scenarios, BN [43], [106] was shown to have the poorest

MMRE across all ML Techniques, compared to CBR, DT, SVR, ANN, AR, and GP.

COCOMO estimates, EJ, and FPA [41] were also researched. CBR and ANN, according

to studies, are more accurate than ML-based regression models. We have determined

from our literature survey that ML models outperform non-ML approaches. Because the

58

performance of estimation models varies from one dataset to the next, rendering them

prone to inaccuracies, analyst’s advice [111], [112] that identifying the best model in a

given context rather than the best single model is more productive. The base models

separate homogeneous [42], [62], [112] (e.g., MLP, ANFIS, CART, LR, CBR, SVR,

RBF, RF, SGB, and so forth) and heterogeneous effort estimation systems. Single ML

techniques, according to studies, are the most trustworthy for producing ensembles. It

was discovered that DT-based homogeneous ensembles are the most accurate, followed

by CBR-based ensembles, and SVR-based ensembles. NF, SVR, DT, Regression are the

most prominent techniques used as solos, hybrid, ensembles for estimation. It has also

been inferred from the literature that the most common blend rules namely mean, median,

and weighted mean is deduced for integrating the base effort models. MLP, SVM,

CART, FIS with C-means clustering, and subtractive grouping are among the most

widely utilized non-linear concepts. All of the approaches mentioned are derived from

generic estimation procedures.

3.2 Research Questions

The research questions have been drafted within the ML context as per the following:

 Research review include criterion

 Research review exclude criterion

 Data repositories details

 Study selection criteria

The various research questions formulated are defined below:

RQ1: What ML algorithms are applied for estimation in Scrum projects?

RQ2: What level of estimation accuracy is achieved by ML techniques in Scrum project

estimation?

RQ3: In ML techniques, do meta-heuristic algorithms increase the estimation accuracy

significantly?

RQ4: Which Scrum project data is available online?

59

RQ5: Do ensemble methods outperform other ML techniques?

3.2.1 Include and Exclude Criterion

This research includes papers that link different soft computing approaches for ASD

estimation. Papers were gathered from a variety of internet sites, journals, conferences,

and other items that have previously been circulated. Papers and data that aren't related to

the topic of analysis are excluded from the study.

3.2.2 Data and Literature Sources description

Papers from TOSEM (ACM), IEEE Transactions, Science Direct, Google Scholar,

Springer, and other sources were utilized in the study. Papers from these online databases

have been searched using search strings: software ∧ (effort ∨ cost) ∧ (estimate) ∧

(learning ∨ ML) ∨ machine ∨ CBR ∨ DT ∨ regression analysis ∨ NN ∨ BN ∨ SVM ∨

SVR ∨ Deep ∨ Learning ∨ fuzzy ∨ NF ∨ ANFIS ∨ Metaheuristic ∨ scrum ∨ Agile ∧

Software ∧ Development ∨ GA ∨ analogy ∨ EJ ∨ PP.

3.2.3 Study Selection Process

The following processes were used to determine which studies should be included and

excluded based on the criteria given below:

 Electing abstract and title: The review approach resulted in the submission of a few

research articles, some of which were picked based on their titles and modified

works.

 Electing complete article: A considerate volume of papers and articles have been

thoroughly evaluated and examined.

3.3 Research Question responses

What ML algorithms are applied for estimation in Scrum projects? (RQ1)

60

ASD and its umbrella methodologies have extensive applicability for many ML models.

It can be inferred from Figure 3.1 [113][114][5][59][50][43][115][116][8][64] that many

authors have transitioned to increasingly powerful ML techniques with the increase in

years.

Figure 3.1 ML in Scrum estimation techniques

What level of estimation accuracy is achieved by ML techniques in Scrum project

estimation? (RQ2)

ML techniques are superior as compared to traditional ones. Table 3.1 shows the

estimation accuracy of various ML techniques in Scrum project estimation. We have used

the MMRE accuracy parameter for comparative analysis. Several techniques outperform

others on the same dataset and performance metric.

61

Table 3.1 Accuracy parameter score of ML estimation techniques

Estimation techniques Accuracy parameters

(MMRE)

Dataset used Outperformed

Fireworks algorithm

optimized NN [113]

0.0293

Zia TLBO, TLBABC,

DABC, LM

DBN-ALO [13] 0.0225 Zia Zia, Fireworks

algorithm

optimized NN

Multiagent

Techniques [114]

0.1 Twelve Web

projects

Delphi, PP

Mamdani FIS [5] Sprint1 – 0.28

Sprint2 – 0.15

Sprint3 – 0.09

Three sprints of

Agile projects

Comparison with

actual estimates

GRNN [117] 0.3581

Zia Zia, PNN

PNN [117] 1.5776 Zia Zia

GMDHPNN [118] 0.1563 Zia GRNN, PNN

CCNN [118] 0.1486 Zia GRNN, PNN,

GMDHPNN

SGB [68] 0.1632 Zia RF, DT

RF [119] 0.2516 Zia DT

DT [50] 0.3820 Zia Zia

BN [43] Above 90%

accuracy

Real agile

projects

Comparison with

actual estimates.

62

ABC-PSO [15] 0.0569 Zia ABC, PSO, GRNN,

PNN, GMDPNN,

CCNN

SVM, NB, KNN, DT

[116]

SVM – 0.50, NB –

0.85, KNN – 0.70

DT – 0.98

699 and 5607

issues from 8

open projects

Comparison with

actual estimates

NB [44] 2.044 10 developer

groups from

IBM.

Not Available

LSTM + RHWN [8] 58% accuracy

16 projects from

9 open-source

repositories

Traditional

techniques of

estimation.

PSO [57] 0.1988 Zia Zia

SVR Linear kernel,

SVR Polynomial

kernel,

SVR RBF kernel,

SVR Sigmoid kernel

[118]

0.1492

0.4350

0.0747

0.1929

Zia SVR Linear,

Polynomial, and

Sigmoid kernel

From Table 3.1 DBN-ALO with 0.0225% MMRE currently stands as the best technique

when applied to Zia dataset. However, the other techniques using other datasets have

different accuracies thus cannot be used to compare on the same level. The compiled

MMRE results can be seen in Figure 3.2.

In ML techniques, do meta-heuristic algorithms increase the estimation accuracy

significantly? (RQ3)

The usage of meta-heuristic algorithms for estimation of effort and cost in scrum-based

projects is fairly low, as per the literature review. It can also be seen from Table 3.1 that

63

only two such techniques: the Fireworks algorithm [113] and ABC-PSO [115] have been

used in this domain. The fireworks algorithm has the most superior accuracy among all

ML techniques used in Scrum project estimation while ABC-PSO is second in the

performance criterion. This evidence supports our research question that using meta-

heuristic algorithms significantly increases estimation accuracy.

Figure 3.2 MMRE of several ML techniques trained on Scrum datasets

Which Scrum project data is available online? (RQ4)

Various online repositories can be used to find the datasets for Scrum projects in Table

3.2.

64

Table 3.2 Agile datasets

Dataset Name Dataset Links/References

Story Point Dataset

[120]

https://seanalytics.github.io/DeepSoft.html

https://seanalytics.github.io/

https://github.com/SEAnalytics/datasets

Zia et. al [6]

Twelve Web projects [121]

Three sprints of Agile projects [5]

ISBSG [49]

699 and 5607 issues from 8

open-source projects

[116]

Do ensemble methods outperform other ML techniques? (RQ5)

According to the literature study, ensemble estimation strategies produce better outcomes

than single estimate methods. DBN-ALO is having remarkable accuracy as compared to

PSO.

3.4 Summary

We have surveyed a large volume of articles, book chapters, and papers, to present the

most updated survey on the advancements in the field of effort and cost estimation for

Scrum projects. We have provided the inclusion and exclusion criterion, study selection

process, description of the data and literature sources, and then formulated a set of vital

research questions. In the results and discussions section, we answer these research

questions based on our literature review. We have provided the Scrum projects datasets

used by several authors for training and testing their ML techniques. We then provide a

https://seanalytics.github.io/DeepSoft.html

65

list of the ML algorithms that have been gaining prominence within recent years. Further,

we have also tabulated the set of accuracies for these ML algorithms. Many algorithms

use the same dataset. Most authors have chosen to use MMRE and PRED as the

performance metrics for defining the accuracy of their techniques. We discuss the

relevance of meta-heuristic algorithms in the Agile project domain. Our literature review

indicates that such adoption is low, with only two techniques namely Fireworks

algorithm [113] and ABC-PSO applied for Scrum project estimation. However, their

performance is far superior to ML techniques that are manually tuned. Thus, we infer that

the usage of meta-heuristic optimization algorithms significantly improves the

performance of ML techniques. We have also established the fact that ensemble methods

are superior to other ML techniques. Finally, we provide a list of all the factors that

influence effort estimation.

66

CHAPTER 4

SCRUM EFFORT ESTIMATION USING ANFIS-EEBAT

ALGORITHM

4.1 Introduction

ANFIS provides increased learning, adapting, and non- linear abilities, as it makes use of

combined advantages of NN and FIS and thereby can be trained without an explicit

empirical knowledge pool. Despite carrying strong estimation capabilities, ANFIS

architecture needs parameter adjusting and tuning. The objective function of the ANFIS-

EEBAT approach is to optimize parameters of ANFIS using an energy-efficient BAT

algorithm. To begin with, the system needs its food to start estimating the effort of new

projects. Our approach depends on the training of certain project parameters which will

be primarily inserted in the knowledge base. However, the data needs to be

understandable, so before training, it is being passed from the data preparation module.

This chapter discusses our proposed algorithm ANFIS-EEBAT in context to effort

estimation.

4.2 Methodology

The input data to ANFIS-EEBAT has been taken from the six software houses

incorporating Agile practices. The algorithm of the proposed methodology is presented as

four broad categories given below.

 Data Preparation

• Loading the Agile project dataset.

• Perform a feature selection using ANFIS based exhaustive search.

 Data Set Partitioning and Model Selection

• Partitioning of transformed data into training and testing sets in the ratio 80:20.

• Training ANFIS-EEBAT model using training data.

67

 Testing Part

• Performing prediction using a trained model.

• Comparing prediction results with the original dataset.

 Performance Evaluation

• Calculate the loss function i.e., MSE.

• Perform model comparison using various performance metrics.

• Compare the output of the above-defined metrics

Figure 4.1 EEBAT Flowchart

68

Figure 4.2 Flowchart depicting the process of effort estimation using ANFIS-EEBAT

In our proposed algorithm, we update the standard bat algorithm by introducing a new

parameter called Energy which will update the position and velocity of the bat based on

69

its distance from the prey. We propose two new factors for the energy parameter -

eagerness and magnitude of work, that dynamically get updated for controlling

exploration and exploitation trade-off. It becomes exhaustive for a bat or pair of bats to

search for its target or prey due to continuous echolocation (lack of cognitive ability),

exploration (failure to converge), and exploitation (trapping in local optima). To address

these concerns, EEBAT is proposed. The distinctive features of the proposed algorithm

are - the energy parameter and memory capability. The flowchart of EEBAT is shown in

Figure 4.1.

 The Energy Parameter, E

The energy parameter denoted by E is as follows,

 𝑖 𝑒 𝑒𝑎
 (4.1)

where 𝑖 𝑒 , is the fitness of the current bat. The population diversity due to energy

lets the bat intelligently assess its capability thus improving time complexity and

convergence. The mean of the best positions is taken to find a convergence junction, as

every bat in the population finds a different position for one value of the parameter. These

positions are the best solutions as evident by the fitness value calculated so the collective

energy of these deduced positions determines their optimality.

 The memory capability of the bat

The population in the standard bat has no history of the previous solutions encountered

by the previous bats hence, novel solutions are left and premature convergence occurs.

To solve this gap of the standard bat, the second improvement proposed is the

introduction of memory capability. We store the position of bats in a special space called

Memory Space () in every iteration. This capability improves exploration as

previously encountered solutions are prevented from being explored and exploited, hence

improving the rate of convergence. This prevents trapping of the population in local

optima and decreases time complexity for the algorithm.

70

Pseudo-code of EEBAT

The pseudo-code of the EEBAT is given below.

Define the objective function , []

Initialize the bat population 𝑖 [] , Velocity , Population Energy 𝑖

[] , Memory Space 𝑖 [] and Maximum Number of Iterations

n_iter.

Define parameters pulse frequency at , pulse rates 𝑒 and loudness

Calculate fitness of the initial bat population using (4.2) and their initial energy using

(4.3)

 , where

{

𝑖

 𝑖 𝑒 𝑖 𝑒 𝑖
 𝑒 𝑖 𝑒 𝑖
 𝑎 𝑎 𝑒 𝑒 𝑒𝑒 []

 (4.2)

 𝑖 𝑒 𝑒𝑎
 , where {

𝑖
 𝑖 𝑒 𝑖 𝑒 𝑒 𝑒 𝑎

 (4.3)

Determine the best bat based on Energy and set as the energy of this bat

while t is lesser than n_iter

Spawn new solutions using (4.4) by adjusting frequency using (4.5) and updating velocities

using (4.6)

 , where {

 𝑒 𝑖 𝑎 𝑖 𝑎 𝑖 𝑒 𝑒

 𝑖 𝑖 𝑎 𝑖 𝑎 𝑖 𝑒 𝑒

 (4.4)

 , where {

 𝑒 𝑒 𝑖 𝑎
 𝑖 𝑖 𝑒 𝑒
 𝑎 𝑖 𝑒 𝑒

 𝑎 𝑎 𝑒 𝑒 𝑒𝑒 []

 (4.5)

 , where {

 𝑎 𝑒 𝑖 𝑖
 𝑒 𝑖 𝑒 𝑎 𝑖

 (4.6)

71

 if (rand (0,1) > 𝑒) then

 Elect a solution among the best solutions

 Spawn a local solution near the elected best solution using (4.7)

 ̅

 where

{

 𝑒 𝑒 𝑖 𝑎 𝑖

 𝑖 𝑖𝑎 𝑎
 𝑒 𝑒 𝑖 𝑒

 𝑎 𝑎 𝑒 []

 ̅ 𝑒 𝑎 𝑒 𝑒
 𝑎 𝑎 𝑎 𝑖 𝑒 𝑒

 (4.7)

 Calculate fitness of local solution and its Energy,

 end if

 if (local solution does not exist in) then

 Memorize the current solutions in

 Fly randomly and spawn a new solution

 if (rand (0, 1) < and < and)

 Accept the new solutions and store them in

 Increase 𝑒 using (4.8) and reduce using (4.9)

 , where { 𝑎 (4.8)

𝑒
 𝑒

 [𝑒], where { 𝑎 (4.9)

 end if

 end if

 Rank the bats on the basis of Energy and find and

end while

72

4.3 Deducing optimal parameters from EEBAT

The proposed system after the default initialization process will undergo tuning of base

fuzzy system parameters by EEBAT. The inherent training algorithm of ANFIS will be

replaced by EEBAT. The parameters of the base FIS will be adjusted based on low values

of fitness/error function. We choose MMRE as our fitness function. genfis is used as a

base FIS with fuzzy c-means clustering to create rules and input MFs in the forward pass.

EEBAT will minimize the error in the backward pass run. The detailed supposition stages

of effort estimation are given in Figure 4.2 and forward and backward pass parameter

settings of ANFIS-EEBAT are given in Table 4.1.

Table 4.1 Learning paradigm for ANFIS-EEBAT

 Forward Pass Backward Pass

Antecedent parameters Fixed EEBAT

Consequent parameters EEBAT Fixed

Signals Node Outputs Accuracy maximization

4.4 ANFIS optimization using EEBAT algorithm

Forward Pass:

Step 1: Initialize the parameters and initial population of the EEBAT algorithm.

Step 2: Set the number of rules for the membership functions and the error tolerance.

Step 3: Update the consequent parameters using the EEBAT algorithm.

Step 4: Predict the values of effort and evaluate them.

Step 5: If the values satisfy the PRED, then go to Step 7. Else, go to Step 3.

Backward Pass:

Step 6: Update antecedent parameters using the EEBAT algorithm.

Step 7: Calculate the MMRE of the predicted values of effort.

Step 8: If the error values are within the threshold, then STOP. Else, go to Step 7.

73

4.5 Experimental results and discussion

The accuracy achieved by the system depicts the efficacy of the proposed system. This

chapter presents the results recorded so far.

4.5.1 Dataset profiling

Each row in Table 4.2 represents an Agile Project. Project names are not revealed in the

referred dataset. The Effort represents the Number of Story Points. Vi is Initial Team

Velocity. D is Deceleration, which affects the Team Velocity. V is the Final adjusted

team velocity, calculated by V = (Vi)
D
. Sprint Size is the size of a typical Sprint in a

Scrum Project. Team Size is the size of the Scrum Team. Team Salary is the salary of

Scrum Team Members. The Actual Time field value represents the Number of Days, for

instance, in the first row 156 SP took 63 days to complete. Est. Time and Estimated Cost

fields signify estimated time and cost calculated by Zia. The Actual Cost is the cost of the

Scrum Project. Time MRE is calculated as:

 (4.10)

Cost MRE is calculated as:

 (4.11)

Table 4.2 Zia dataset sample [6]

Effo

rt D V

Spri

nt

Size

Tea

m

Size

Team

Salary

Actual

time

Est.

Time

Actual

Cost Est. Cost

Time

MRE

Cost

MRE

156 4.2 0.687 2.7 10 22 230000 63 58 1200000 1023207.14 7.93 14.73

202 3.7 0.701 2.5 10 21 260000 92 81 1600000 1680663.89 11.95 5.04

173 4 0.878 3.3 10 22 250000 56 52 1000000 992269.51 7.14 0.77

331 4.5 0.886 3.8 10 22 300000 86 87 2100000 2002767.22 1.16 4.63

124 4.9 0.903 4.2 10 22 300000 32 29 750000 676081.32 9.375 9.84

339 4.1 0.903 3.6 10 22 400000 91 95 3200000 2895132.85 4.39 9.52

97 4.2 0.859 3.4 10 22 250000 35 29 600000 540113.84 17.14 9.98

257 3.8 0.833 3 10 22 250000 93 84 1800000 1614078.94 9.67 10.32

74

4.5.2 Renaming, identification, and selection of features and labels

We have renamed few fields of the dataset and performed ANFIS based exhaustive

search to find the best combination of fields that are chosen as inputs aka features and are

matched against output aka label. This exhaustive search has been carried out in

MATLAB. Fields named “Effort”, “V” and “Actual Time” from Table 4.1 are renamed to

“No. of Story Points”, “Velocity” and “Actual Effort” respectively. Table 4.2 shows that

our label “Actual Effort” is mostly affected by “No. of Story Points” and “Velocity” with

a minimum value of Train error i.e., 0.6504. The other pairs (No. of Story Points-Team

Size) and (Velocity-Team Size) have not been selected as the value of the training error is

more vis-à-vis chosen pair. The errors of the feature sets are shown in Figure 4.3. These

assist managers in making better decisions of feature selection.

The least indispensable feature selection minimizes complexity and produces software

effort estimation results in less time. The deduced features and label after renaming is

given in Table 4.4.

84 3.9 0.646 2.4 10 22 190000 36 35 500000 507264.58 2.77 1.45

211 4.6 0.758 3.2 10 22 250000 62 66 1200000 1267179.55 6.45 5.59

131 4.6 0.758 3.2 10 22 250000 45 41 800000 786732.223 8.88 1.65

112 3.9 0.773 2.9 10 22 200000 37 39 650000 597142.61 5.4 8.13

101 3.9 0.773 2.9 10 22 200000 32 35 600000 538494.68 9.375 10.25

74 3.9 0.773 2.9 10 22 200000 30 26 400000 394545.65 13.33 1.36

62 3.9 0.773 2.9 10 22 200000 21 22 350000 330561.22 4.76 5.55

289 4 0.742 2.8 10 22 250000 112 103 2000000 1971485.44 8.03 1.42

113 4 0.742 2.8 10 22 250000 39 40 800000 770857.32 2.56 3.64

141 4 0.742 2.8 10 22 250000 52 50 1000000 961866.44 3.84 3.81

213 4 0.742 2.8 10 22 250000 80 76 1500000 1453032.29 5 3.13

137 3.7 0.758 2.7 10 22 220000 56 51 800000 854347.55 8.92 6.79

91 3.7 0.758 2.7 10 22 220000 35 34 550000 567484.33 2.85 3.17

75

Table 4.3: Features Analysis Table

Features Train error

No. of Story Points, Velocity 0.6504

No. of Story Points, Team Size 4.9212

Velocity, Team Size 15.7069

From Figure 4.4, we can validate our results from ANFIS based Exhaustive search.

Table 4.4: Dataset features and labels

Features Labels

No. of Story Points Velocity Actual Effort

156 2.7 63

202 2.5 92

173 3.3 56

331 3.8 86

Figure 4.3 RMSE errors for features set in ANFIS exhaustive search

76

Figure 4.4 Correlogram of Effort estimation

4.5.3 Expansion of dataset using k means SMOTE

We have applied k-means based SMOTE [122], [123], a data augmentation technique, on

the Zia dataset, to generate synthetic values of features and labels. The purpose of this

step is to address the issues of a modest amount of data for training and testing.

 𝑎 (4.12)

Here, x is the element of minority class set A, is the element of a set A1 which is

calculated using k nearest neighbors of x, sampled at some rate N. The new dataset is

labeled as ZKmS (Zia K-means SMOTE) and is being used in our ANFIS-EEBAT

model.

77

4.5.4 Descriptive characteristics of the dataset

The descriptive statistics of ZKmS have been given in Table 4.5. It includes count

(number of projects in the dataset), mean, standard deviation, the minimum and maxi-

mum value of “No. of Story Points”, “Velocity” and “Actual Effort” in the dataset. The

statistics “Count” with a value of 162 signifies that ZKmS contains 162 project data.

“Mean” represents the average value of the fields. “Std” is the standard deviation which

represents the difference of the field values from the Mean value. “Min” represents

minimum value and “Max” represents the maximum value.

A detailed profile description of “Number of Story points” is given in Figure 4.5, for

“Velocity” in Figure 4.6 and “Actual Effort” in Figure 4.7.

Figure 4.5 Feature profile for No. of Story Points

78

Figure 4.6 Feature profile for Project Velocity

Figure 4.7 Feature profile for Actual Effort

79

Table 4.5: Descriptive statistics of dataset

Statistics No. of Story points Velocity Actual Effort

Count 162.000000 162.000000 162.000000

Mean 159.648148 3.054938 54.333333

Std 72.914182 0.384328 23.046806

Min 62.000000 2.400000 21.000000

Max 339.000000 4.200000 112.000000

4.5.5 Transformation of Features

The features for effort estimation using ANFIS-EEBAT have been transformed using

Box-Cox transformation. The Box-Cox transformation uses lambda λ as the exponent.

The best value of λ is found from th followin quation:

 {

 𝑖 λ

lo 𝑖 λ
 λ [] (4.11)

Figure 4.8 Box cox transformation of Number of story points

80

Figure 4.9 Box cox transformation of Project velocity

4.5.6 Model selection

ANFIS-EEBAT has been applied to the features from the dataset as per the step given

below.

Data loading and Generate Fuzzy Inference system

After we input features in the proposed ANFIS-EEBAT model, the antecedent layer

creates the input MFs. The initial set of parameters for ANFIS and EEBAT are given in

Table 4.6 and Table 4.7 respectively.

The number of inputs is “2” which are “No. of Story Points” and “Velocity”. The

Number of outputs is “1” which is “Actual Effort”. The Learning algorithm is “EEBAT”.

The value “4” in the Number of inputs MFs parameter signifies that there exists 4

gaussian MFs for each input with a unique set of gaussian parameters. “Fuzzy C-Means”

Partitioning method has been employed which is used to create a base FIS. The input MF

is “gaussmf (gaussian)” which represents our data in normal distribution and the output

MF is “linear” which produces a singular value. The base fuzzy system is created using

the “genfis3” functionality of MATLAB. The “And” method signifies the product of

81

weights of neuro-fuzzy system with the inputs. The “Or” method utilizes “probor

(probabilistic or)” which is the algebraic sum of the previous layers. The implication and

aggregation are set to “min” and “max” respectively. “wtaver” i.e., weightage average is

used for defuzzification. The training iterations aka epochs are set to 100 as after this

value over fitting occurs. The iterations have been validated against several trials. The

error tolerance is set to 1e-5.

Table 4.6 FIS parameters for effort estimation

No. of inputs 2

No. of outputs 1

Learning algorithm EEBAT

No. of input MFs [4 4]

Partitioning method Fuzzy C-Means

Input MF Gaussmf

Output MF Linear

Base fuzzy system genfis3

And Method Prod

Or Method Probor

Implication Min

Aggregation Max

Defuzzification wtaver

Maximum Iterations 100

Error Tolerance 1e-5

The size of the initial BAT population is kept as “40”. The max no. of iterations is “100”.

Pulse rate signifies optimal solution searching precision of the algorithm. The tuning

parameters of ANFIS are the optimal solution. Loudness controls the speed of

convergence of the algorithm. The value of and determines the range of

82

frequency that assists in global searching capability. Alpha and gamma are constants. The

values for each parameter are obtained during several exhaustive trials.

Table 4.7 EEBAT parameters

Population size 40

Max Iterations 100

Pulse Rate 0.3

Loudness 0.9

 0

 0.1

Alpha (α) 0.9

Gamma (γ) 0.9

Building ANFIS-EEBAT model structure

After setting up the initial parameters, the proposed model’s structure is shown in Figure

4.10.

Figure 4.10 ANFIS-EEBAT structure

It contains five layers, as discussed in Figure 2.1. There are two inputs, four pairs of input

MFs, four sets of rules, four output MFs and one output. The two inputs are “No. of Story

83

Points” and “Velocity”. “Estimated Effort” is the final output. The operations performed

at different layers are synonymous with the description in Figure 2.1. There are three

basic logical operations, “and”, “or”, “not” depicted in the figure with three color codes

“blue”, “red” and “green” respectively. The rules are created using logical “and”

operations in our case. The logical “or” and “not” operations are not used.

ANFIS-EEBAT MFs and Rules view

After the training and testing, membership function parameters are adjusted using

EEBAT and can be seen in Figure 4.11(a) and Figure 4.11(b). The rules for the same are

shown in Figure 4.12.

Figure 4.11(a): Membership function for No. of Story Points in ANFIS-EEBAT

Figure 4.11(b): Membership function for Velocity in ANFIS-EEBAT

84

The x-axis and y-axis represent “No. of Story Points” and membership values of input1

respectively in Figure 4.11(a). The set of four unique MFs created are represented as

curves (in1cluster1, in1cluster2, in1cluster3, in1cluster4). The red color marks the

selected curve. in1 signifies Input1. The x-axis and y-axis represent “Velocity” and

membership values of input2 respectively in Figure 4.11(b). The set of four unique MFs

created are represented as curves (in1cluster1, in1cluster2, in1cluster3, in1cluster4). in2

signifies Input2. The curves are overlapped due to the minute values of “Velocity” which

is ranging from 2.4 to 4.2.

Figure 4.12: ANFIS-EEBAT Rules View.

Each row of the plot represents a rule. There are a set of four rules based on input and

output membership functions. The red line is a slider for selecting the input values. For

instance, we have selected the value of “No. of Story Points” as 84.8 and “Velocity” as

2.48. The yellow color in the plots depicts how the input variable is used in the rules. The

blue color in the output membership function, “Effort”, signifies how the output is

utilized in the rules. The output of each rule is combined and defuzzified to create an

aggregated output in the bottom-right plot. The estimated effort, 33 is the output and is

shown by the red color line.

85

ANFIS-EEBAT Surface Plot

The surface plot shown in Figure 4.13 depicts the mapping of the features with the labels.

It can be deduced from the surface plat that for our features, the output is linear which is

following Takagi-Sugeno Type 3 FIS.

Figure 4.13 ANFIS-EEBAT surface plot

Figure 4.14(a) Training plots for ANFIS-EEBAT

86

Figure 4.14(b) Testing plots for ANFIS-EEBAT

4.5.7 ANFIS-EEBAT performance evaluation and comparative analysis

ANFIS-EEBAT model’s performance has been evaluated using various metrics like ,

MSE, RMSE, MAE, MAPE, MMRE, and PRED and is given in Table 4.8 for ZKmS and

Zia datasets. ANFIS-EEBAT has also been compared with other state-of-the-art models

on the aforementioned datasets and summarized in Table 4.9 and Table 4.10. The training

and testing plots of ANFIS-EEBAT on ZKmS are shown in Figure 4.14(a) and Figure

4.14(b) respectively.

Our approach is accurate to 98.47% and 99.93% on ZKmS and Zia datasets respectively

and will assist the IT industry stakeholders in getting accurate estimates of their

respective projects. It also provides 100% estimation accuracy up to 2.4% for PRED.

87

Table 4.8 ANFIS-EEBAT performance metric evaluation

Data

set

 MSE RMSE MAE MAPE MMRE PRED

(25%)

PRED

(2.4%)

ZKmS 0.984723 7.992858 2.827164 0.440483 0.971148 3.910372 100 100

Zia [6] 0.999349 0.556203 0.74579 0.35558 1.019133 1.518311 100 100

Table 4.9 Results on ZKmS with other techniques

Techniques MSE RMSE MAE MAPE MMRE PRED

(15%)

ANFIS 0.982857 9.25933 3.042915 0.57697 0.896473 4.310884 100

ANFIS-GA 0.973329 18.2304 4.269707 2.025023 3.525099 6.568641 96.67

ANFIS-PSO 0.977309 11.83014 3.439497 0.366967 0.857856 4.498164 96.67

ANFIS-BAT 0.955252 24.72921 4.972847 1.386903 2.748092 5.78877 86.67

Random Forest 0.812542 98.71803 9.935695 0.325292 1.394628 13.38908 66.67

SVR 0.294153 377.0704 19.4183 3.678706 0.965226 20.50747 46.67

SGB 0.955736 22.65617 4.759849 0.35478 0.825001 5.676487 93.33

ANFIS-EEBAT 0.984723 7.992858 2.827164 0.440483 0.971148 3.910372 100

The lowest MMRE and highest PRED (15%) signify the efficacy of ANFIS-EEBAT over

other techniques. Various techniques are employed on the ZKmS dataset for comparative

analysis. Standard ANFIS uses hybrid (back propagation and LSE) learning for training.

In ANFIS-GA, ANFIS-PSO, and ANFIS-BAT the default learning algorithm of ANFIS

has been replaced by GA, PSO, and BAT respectively. GA, PSO, and BAT are well-

known nature-inspired meta-heuristic algorithms. Their innate ability to find optimal

solutions provides valuable feedback in exploration and comparison. RF is one of the

ensemble learning algorithms which performs the mean prediction of singular trees for

estimation. SVR with RBF kernel has been used. SGB has also been employed for

estimation. It is a well-known algorithm that inculcates randomness and variation in

boosting which increases robustness in learning complex data.

88

Table 4.10: Results on Zia with other techniques

Techniques MAE MMRE PRED (25%) PRED (2.4%)

ANFIS 0.982857 0.57697 4.310884 100 40

ANFIS-GA 0.973329 2.025023 6.568641 100 20

ANFIS-PSO 0.977309 0.366967 4.498164 100 40

ANFIS-BAT 0.955252 1.386903 5.78877 100 40

Zia regression [6] Not Available* Not Available 7.19 57.14 0

Fireworks

algorithm [113]

0.9946 Not Available 2.9339 Not Available Not Available

DBN-ALO [13] Not Available Not Available 2.225 98.4321 Not Available

ANFIS-EEBAT 0.99935 0.35558 1.518 100 100

* The data of performance metrics are not available in the referred research papers. This

comparison has been performed on real Agile projects. It can be inferred that despite

good accuracies by Fireworks optimized NN and DBN-ALO, a gap of actual and

estimated effort is still present. This gap has been further narrowed down using the

ANFIS-EEBAT approach with a PRED of 100 closes to 2.4%. Figure 4.15 shows the box

plot of our proposed approach with other models on the homogeneous dataset. It can be

inferred that ANFIS-EEBAT has the lowest value of the median.

Figure 4.15: Box Plot of ANFIS-EEBAT with other models on ZKmS dataset

89

4.6 Statistical validations

Performance evaluation of our proposed approach with other models is based on

statistical validations. As per the nature of our data, non-parametric tests such as

Friedman[124] have been applied to the ZKmS dataset using SPSS. This test performs

the average ranking of the models and detailed test statistics have been shown in Table

4.11 and Figure 4.12 for the Friedman test.

We have considered our null hypothesis that all the models are similar. The standard chi-

square value for 4 degrees of freedom, df, and alpha = 0.05 is 9.488 and our chi-square

value is 10.133, which rejects our null hypothesis. The value of Asymp. Sig. (0.038) is

less than the significance value of alpha (0.05) which ascertains those models are

dissimilar. As per Figure 4.16, the mean rank of ANFIS-EEBAT is 2.47 as compared to

ANFIS (2.87), ANFIS-PSO (2.93), ANFIS-GA (3.73), and ANFIS-BAT (3.0).

Table 4.11. Mean Ranking of algorithms

Ranks

Algorithms Mean Rank

ANFIS 2.87

ANFIS-PSO 2.93

ANFIS-GA 3.73

ANFIS-BAT 3.00

ANFIS-EEBAT 2.47

Table 4.12. Friedman test results on ZKmS dataset

Test Statistics

N 30

Chi-Square 10.133

df 4

Asymp. Sig. 0.038

90

Figure 4.16: Friedman test rank comparison on ZKmS

4.7 Summary

We have developed a nature-inspired algorithm called Energy Efficient BAT algorithm,

to tune the parameters of ANFIS and titled it ANFIS-EEBAT, for Scrum Effort

estimation. Our developed algorithm outperforms various state-of-the-art algorithms

applied in the field of estimation including DBN-ALO, ABC-PSO, ANFIS-PSO, ANFIS-

GA and ANFIS-BAT, and several others. The key novelty of our algorithm is Energy

Factor and Memory Space. Energy Factor is paramount to let the stronger bats search for

global areas while the weaker bats are utilized to search locally in one of the global areas.

This approach is robust for Scrum effort estimation as the bats have a defined role based

on their energy. Essentially, the bats search both local and global areas for the best value

of effort in parallel. Memory Space helps in keeping a track of areas already explored,

preventing the bats from repeated searching. This means that for a similar set of story

points and velocity, the effort need not be searched again, as the best estimate has already

been stored. In technical terms, the goal for the bats is to search for local and global

optima. One set of bat population searches one of the global solutions locally to find the

best solution among them while the other set scours other unexplored global solutions,

for deeper exploration. This allows our algorithm to constantly look for the best solutions

in a wider search space. As the bats have Memory Space, this means that convergence to

local optima will never occur and there will be no loss in computation due to the search

for already existing solutions within the search space. These factors improve the time and

91

space complexity of the algorithm, as evident by the analysis of results on the dataset. For

effort estimation in Scrum projects, this is vital to include little variations in story points

and velocity.

As we move to experimental results and discussion, there is descriptive information about

various characteristics of the dataset and the generated ANFIS model. The selection of

our features and labels is made using ANFIS Exhaustive search in MATLAB. This can

be justified from the correlogram that indicates a high correlation among these features.

The dataset profiling illustrates our features and labels in terms of mean, deviation,

outliers, etc. through the plots. Since the data is scarce, the dataset has been expanded

with the help of K-means SMOTE. It is worth noting that we implemented the algorithm

by tuning the k-value to prevent a repetition of data values.

The model selection for ANFIS is crucial as it has to be manually generated and

validated. ANFIS requires manual selection of the type and number of membership

functions. We used the Gaussian function as the choice of our membership function with

4 rules each for one input. The Gaussian function is one of the types of bell-curved

functions that suits well for real-world data with substantially large values. For each

input, 4 rules will be generated to assimilate all the required cases for Scrum project

estimation. We randomly tested for 4 rules and found them suitable for our purpose. All

details have been illustrated, from the ANFIS-EEBAT structure to the membership

functions. Finally, we have comparatively analyzed our developed algorithm against

other state-of-the-art algorithms, on various performance metrics suitable for regression

type of problems and statistically validated these results.

92

CHAPTER 5

SCRUM EFFORT ESTIMATION USING ANFIS-CEBAT

ALGORITHM

5.1 Introduction

To be competitive in this fast-moving market place organization need to drive

innovations through cross key functional and business units. Continuous change is the

new norm in software engineering. This industry is primed for a paradigm shift as

numerous potentially market-changing technologies link up on every front. The transition

from heavy-weight process models (e.g., waterfall) to digital singularity (e.g., Agile,

DevOps) is the most noted one. Cost estimation is one of the key factors to determine the

success of a typical IT project. It is an important metric to assists project managers to

take firm decisions in context to budgeting and resource management. Estimating costs in

Scrum projects require a more collaborative, iterative, and incremental approach than in

traditional techniques. To estimate the cost of a Scrum project, its US size must be

known. The US is a high-level requirement and is measured as story points. The SP is a

relative metric and performs a significant role in estimation. As per ICEAA and Standish

group chaos manifesto, nearly two-third of the software projects entered crises as a result

of inaccurate predictions of effort and its associated costs. The empirical estimation

techniques like EJ, Delphi-cost estimation, COCOMO, etc. have their inherent limitations

of learning knowledge base and may not be used in Scrum projects. Most of the Agile

teams use PP and other empirical estimation techniques to estimate the effort of scrum

projects. These traditional techniques suffered from individual bias and lead to inaccurate

estimates.

Scrum projects faced critical issues of inaccurate cost estimation over the past few years

which lead to software crises. These inaccurate estimates create ripples in subsequent

iterations of a typical Scrum project. We have created a hybrid ANFIS model tuned by

93

Cost-Estimating Bat which will assist project managers to make better decisions in

context to cost commitments to clients. As per our in-depth study, there is no single

expert system that exists in the literature that estimated the cost of scrum projects.

ANFIS-CEBAT approach improves the present state of cost estimation due to its unique

learning capability. We discuss the novelty of CEBAT in this chapter.

5.2 Methodology

The steps of the proposed methodology are given below:

Data Preparation

 Loading the Agile project dataset.

 Perform a feature selection using ANFIS based exhaustive search.

 Data Transformation using Quantile transformer.

Data Set Partitioning and Model Selection

 Partitioning of transformed data into training and testing sets in the ratio 80:20.

 Training ANFIS-CEBAT model using training data.

Testing Part

 Performing prediction using a trained model.

 Inverse transformation of the predicted value.

 Comparing prediction results with the original dataset.

Performance Evaluation

 Calculate output from the loss function i.e., MSE.

 Perform model comparison using various performance metrics.

 Compare the output of the above-defined metrics

Algorithm of CEBAT

The standard BAT algorithm is susceptible to getting trapped in local minima or not

converging at all. To improve upon the standard BAT algorithm, we have proposed a

94

unique factor called Energy Factor that accounts for a bat’s capability in searching for

solutions within the global or local space. The Energy Factor is based on a bat’s

eagerness to search for a solution. Hence, the higher the eagerness, the higher the chances

of exploration. Less eager bats are allowed to exploit the global spaces that help in

finding the best solution in that area. Hence, it solves the problem of trapping in local

minima.

We have also introduced another factor called Memory Space. It stores all explored space

at every iteration of the algorithm. This improves the rate of convergence and prevents

the bat from leaving out a global space for exploration. The time complexity of the

algorithm is also increased.bat from leaving out a global space for exploration. The time

complexity of the algorithm is also increased.

One key application of the standard BAT algorithm is estimating linear quantities. In

Scrum projects, cost estimation is non-linear, as the combination of several direct and

indirect components manipulates the cost of a project. To address this issue, we propose

another factor that ranges between 0 and 1. The choice of value for Cost Multiplier is

human-based, as a means for bridging the differences in components. A value of 0

suggests the bridge is too long thus it is highly unlikely the non-linearity can be mapped

onto the algorithm while a value of 1 means that there is no bridge between the

components thus the cost can be ascertained easily. The flowchart of CEBAT is shown in

Figure 5.1.

Pseudo-code of CEBAT

The pseudo-code of CEBAT is given below:

Define the objective function , p []

Initialize the bat population (𝑖 []) using (5.1), Velocity ,

Population Energy (𝑖 []), Memory Space 𝑖 [] and

Maximum Iterations n_iter.

95

 where

{

 𝑖

 𝑖 𝑒 𝑎 𝑖 𝑒 𝑖

 𝑒 𝑎 𝑖 𝑒 𝑖

 𝑎 𝑎 𝑒 𝑒 𝑒𝑒 []

 (5.1)

Define parameters pulse frequency at , pulse rates 𝑒 and loudness

Calculate fitness of the initial bat population using (5.2) and their initial energy using

(5.3)

 𝑖 𝑒 , where {
𝑖

 𝑖 𝑖 𝑖 𝑎
 (5.2)

 𝑖 𝑒 𝑖 𝑖𝑒 𝑒𝑎

where {
 𝑖 𝑒 𝑖 𝑒 𝑒 𝑒 𝑎

 𝑖 𝑖𝑒 []
 (5.3)

Determine the best bat based on Energy and set as the energy of this bat

while t is lesser than n_iter

Spawn new solutions using (5.4) by adjusting frequency using (5.5) and updating

velocities using (5.6)

 , where {

 𝑒 𝑖 𝑎 𝑖 𝑎 𝑖 𝑒 𝑒

 𝑖 𝑖 𝑎 𝑖 𝑎 𝑖 𝑒 𝑒

 (5.4)

 , where

{

 𝑒 𝑒 𝑖 𝑎

 𝑖 𝑖 𝑒 𝑒

 𝑎 𝑖 𝑒 𝑒

 𝑎 𝑎 𝑒 𝑒 𝑒𝑒 []

 (5.5)

 , where {

 𝑎 𝑒 𝑖

 𝑖 𝑒 𝑖 𝑒 𝑎 𝑖
 (5.6)

96

if (rand (0,1) > 𝑒) then

Elect a solution among the best solutions

Spawn a local solution near the elected best solution using (5.7)

 ̅

where

{

 𝑒 𝑒 𝑖 𝑎 𝑖

 𝑖 𝑖𝑎 𝑎

 𝑒 𝑒 𝑖 𝑒

 𝑎 𝑎 𝑒 𝑒 𝑒𝑒 []

 ̅ 𝑒 𝑎 𝑒 𝑒

 𝑎 𝑎 𝑎 𝑖 𝑒 𝑒

 (5.7)

Calculate fitness of local solution and its Energy,

end if

if (local solution does not exist in) then

Memorize the current solutions in

Fly randomly and spawn a new solution

If (rand (0,1) < and)

Accept the new solutions and store them in

Increase 𝑒 using (5.8) and reduce using (5.9)

 , where { 𝑎 (5.8)

𝑒
 𝑒

 [𝑒], where { 𝑎 (5.9)

end if end if

Rank the bats based on Energy and find and

end while

97

Figure 5.1 CEBAT Flowchart

98

5.3 Experimental results and discussion

In this section, experimental results have been discussed from inception to the transition

of the application of ANFIS-CEBAT.

5.3.1 Renaming, Identification, and Selection of features and labels

We have made use of ANFIS based exhaustive search functionality in MATLAB to find

the train and validations errors of a random combination of features of the dataset. These

errors help us to find correlation i.e., which combination of features in the dataset is in

alignment with the target label i.e., Actual cost. In Table 5.1, it can be inferred that value

of train and validation error is minimum for “No. of Story Points, Velocity and Team

Salary” and therefore it is used as a feature for our algorithm.

Table 5.1 RMSE error for features set in ANFIS exhaustive search

Features Train Error Validation Error

No. of Story Points, Velocity, Team Size 0 0.2751

No. of Story Points, Velocity, Team Salary 0 0.2378

No. of Story Points, Team Size, Team Salary 0.0002 0.1005

No. of Story Points, Team Size, Actual Effort 0.0065 0.1802

Velocity, Team Size, Team Salary 0.0888 3.6809

Velocity, Team Size, Actual Effort 0.0003 0.415

Velocity, Team Salary, Actual Effort 0 0.2702

Team Size, Team Salary, Actual Effort 0.0071 0.4004

Few samples of the deduced features set and labels are given in Table 5.2.

Table 5.2 Sample of features and labels for cost estimation

Features Labels

No. of Story Points Velocity Team Salary Actual Cost

156 2.7 230000 1200000

99

202 2.5 260000 1600000

173 3.3 250000 1000000

331 3.8 300000 2100000

Figure 5.1 validates our selection of features and labels, by which it is inferred that a high

correlation exists among them. It is worth noting that the “Team Salary” feature highly

correlates with “No. of Story Points” and “Team Velocity”, which is corroborated by the

fact that a software developer’s salary is directly dependent on his efforts completed

within a due timeframe. Thus, it is evidencing these two features are direct components

of “Team Salary”. However, in the case of the “Actual Cost” feature, the figure ascertains

that “No. of Story Points” highly correlates while “Team Velocity” is contrastingly

having a little dependency on “Actual Cost”. This implies “Team Velocity” is an indirect

component for estimating the cost of a project. Hence, the choice of value for Cost

Multiplier is to be judged carefully by discussion, to aid in an accurate cost estimation

process.

Figure 5.2 Correlogram of Cost estimation

100

5.3.2 Descriptive statistics of the dataset

Table 5.3 contains the descriptive statistics for Zia. The count (number of projects in the

dataset), mean, standard deviation, minimum and maximum values of “No. of Story

Points”, “Velocity”, “Team Salary” and “Actual Cost” are all included in the dataset. The

statistic “Count” with the value 21 indicates that there are 21 projects in Zia. The average

value of the fields is represented by the term "mean." The standard deviation (Std) is the

difference between the field values and the Mean value. The values "Min" and "Max"

represent the minimum and maximum values, respectively.

Table 5.3 Descriptive statistics for features and labels

Statistics No. of Story Points Velocity Team Salary Actual Cost

count 21.000000 21.000000 21.000000 21.000000

mean 163.714286 3.023810 246190.48 1114286.00

std 82.743062 0.438069 46419.41 705893.60

min 62.000000 2.400000 190000 350000

25% 101.000000 2.800000 220000 600000

50% 137.000000 2.900000 250000 800000

75% 211.000000 3.200000 250000 1500000

max 339.000000 4.200000 400000 3200000

After the selection of our features and labels, the dataset has been profiled to provide an

overview of the various characteristics in the features and labels for cost estimation.

Figure 5.3 explains the profile of the “Team Salary” attribute while Figure 5.4 explains

the profile of the “Actual Cost” attribute.

101

Figure 5.3 Feature profile for Team Salary

Figure 5.4 Feature profile for Actual Cost

102

5.3.3 Transformation of Features

The dataset contains proportionally large values for Actual Cost as compared to No. of

Story Points and Velocity. It has to be transformed to a Gaussian distribution and made

suitable for estimation using machine learning techniques. Hence, we used Quantile

Transformation to transform the values ranging from 0 to 1. The formula for Quantile

Transformation is given by the following formula:

 inf{ : } [] (5.10)

A sample of the transformed values is provided in Table 5.4.

 Table 5.4 Features and labels after Quantile transformation

No. of Story Points Velocity Team Salary Actual Cost

0.6 0.15 0.35 0.675

0.7 0.05 0.85 0.8

0.65 0.8 0.6 0.55

0.95 0.95 0.925 0.95

0.4 1 0.925 0.35

Figure 5.5(a) and Figure 5.5(b) portray the before and after the change in values using

Quantile Transformation in “Story Points”.

Figure 5.6(a) and Figure 5.6(b) portray the before and after the change in values using

Quantile Transformation in “Team Velocity”.

Figure 5.7(a) and Figure 5.7(b) portray the before and after the change in values using

Quantile Transformation in “Team Salary”.

Figure 5.8(a) and Figure 5.8(b) portray the before and after the change in values using

Quantile Transformation in “Actual Cost”.

103

Figure 5.5(a) Quantile transformation of Number of Story Points

Figure 5.5(b) Probability plots after quantile transformation of Number of Story Points

104

Figure 5.6(a) Quantile transformation of Team Velocity

Figure 5.6(b) Probability plots after quantile transformation of Team Velocity

105

Figure 5.7(a) Quantile transformation of Team Salary

Figure 5.7(b) Probability plots after quantile transformation of Team Salary

Figure 5.8(a) Quantile transformation of Actual Cost

106

Figure 5.8(b) Probability plots after quantile transformation of Actual Cost

5.3.4 Model selection

Data loading and Generate Fuzzy Inference System

After providing the inputs to the ANFIS-CEBAT model, the antecedent layer creates the

input MFs. The initial set of parameters for ANFIS and CEBAT are given in Table 5.5

and Table 5.6 respectively. The values of ANFIS parameters have been optimized using

CEBAT. The Number of inputs is “3” which are “No. of Story Points”, “Velocity” and

“Team Salary”. The Number of outputs is “1” which is “Actual Cost”. The Learning

algorithm is “CEBAT”. The value “10” in the number of inputs MFs parameter signifies

that there exists 10 gaussian MFs for each input with a unique set of gaussian parameters.

“Fuzzy C-Means” Partitioning method has been employed which is used to create a base

FIS. The input MF is “gaussmf (gaussian)” which represents our data in normal

distribution and the output MF is “linear” which produces a singular value. The base

fuzzy system is created using the “genfis3” functionality of MATLAB. The “And”

method signifies the product of weights of neuro-fuzzy system with the inputs. The “Or”

method utilizes “probor (probabilistic or)” which is the algebraic sum of the previous

layers. The implication and aggregation are set to “min” and “max” respectively.

“wtaver” i.e., weightage average is used for defuzzification. The training iterations aka

epochs are set to 40 as after this value over fitting occurs. The iterations have been

validated against several trials. The error tolerance is set to 1e-5.

107

Table 5.5 FIS parameters for cost estimation

ANFIS Parameters

No. of inputs 3

No. of outputs 1

Learning algorithm CEBAT

No. of input MFs [10, 10, 10]

Partitioning method Fuzzy C-Means

Input MF gaussmf

Output MF linear

Base fuzzy system genfis3

And Method prod

Or Method probor

Implication prod

Aggregation Sum

Defuzzification wtaver

Max. Iterations 40

Error Tolerance 1e-05

The initial BAT population size is set to “10”. The maximum number of iterations is

“40”. Pulse rate signifies optimal solution searching precision of the algorithm. The

tuning parameters of ANFIS are the optimal solution. The values for each parameter are

obtained during several exhaustive trials.

Table 5.6 CEBAT Parameters

Population Size 10

Max Iterations 40

Pulse Rate 0.3

108

Loudness 0.9

 0

 0.1

Alpha (α) 0.9

Gamma (γ) 0.9

Cost multiplier 1.0

Building ANFIS-EEBAT model structure

After setting up the initial parameters, the proposed model’s structure is shown in Figure

5.9. It contains five layers, as discussed in Figure 2.1. There are three inputs, ten pairs of

input MFs, ten sets of rules, ten output MFs and one output. The three inputs are “No. of

Story Points”, “Velocity” and “Team Salary”. The output is “Estimated Cost”. The

operations performed at different layers are synonymous with the description in Figure

2.1. There are three basic logical operations, “and”, “our”, “not” with three color codes

“blue”, “red” and “green” respectively. The rules are created using logical “and”

operations in our case. The logical “or” and “not” operations are not used.

Figure 5.9 ANFIS-CEBAT structure

109

ANFIS-CEBAT MFs and Rules view

After the training and testing, membership function parameters are adjusted using

CEBAT. The rules for the same are shown in Figure 5.11. The x-axis and y-axis in Figure

5.10(a) represent “No. of Story Points” and membership values of input1 respectively.

The set of ten unique MFs created are represented as curves (in1cluster1, in1cluster2,

in1cluster3, … in1cluster10) in the figure. in1 signifies Input1. The x-axis and y-axis in

Figure 5.10(b) represent “Velocity” and membership values of input2 respectively. The

set of ten unique MFs created are represented as curves (in1cluster1, in1cluster2,

in1cluster3, in1cluster10) in the figure. in2 signifies Input2. The x-axis and y-axis in

Figure 5.10(c) represent “Team Salary” and membership values of input3 respectively.

The set of ten unique MFs created are represented as curves (in1cluster1, in1cluster2,

in1cluster3, …, in1cluster10) in the figure. in3 signify Input3.

Each row of the plot represents a rule. There are a set of ten rules based on input and

output membership functions. The red line is a slider for selecting the input values. For

instance, we have selected the value of “No. of Story Points” as 0.04, “Velocity” as 0.016

and Team Salary as 0.073. The yellow color in the plots depicts how the input variable is

used in the rules. The blue color in the output membership function, “Cost”, signify how

the output is utilized in the rules. The output of each rule is combined and defuzzified to

create an aggregated output in the bottom-right plot. The estimated cost, 0.0425 is the

output and is shown by the red color line.

110

Figure 5.10(a) Membership function for No. of Story Points in ANFIS-CEBAT

Figure 5.10(b) Membership function for Velocity in ANFIS-CEBAT

111

Figure 5.10(c) Membership function for Team Salary in ANFIS-CEBAT

Figure 5.11 ANFIS-CEBAT Rules View

ANFIS-CEBAT Surface Plot

The surface plots are shown in Figures 5.12(a), 5.12(b), and 5.12(c) depicts the mapping

of the features with the labels. It can be deduced from the surface plat that for our

features, the output is linear which is following Takagi Sugeno Type 3 FIS. Surface Plot

renders a 3-dimensional view of one dependent variable (“Actual Cost”) against two

112

independent variables (“No. of Story Points”, “Team Velocity”, “Team Salary”; set of

either two).

Figure 5.12(a) Surface Plot for No. of Story Points & Velocity vs Actual Cost

Figure 5.12(b) Surface Plot for No. of Story Points & Team Salary vs Actual Cost

113

Figure 5.12(c) Surface Plot for Velocity & Team Salary vs Actual Cost

5.3.5 ANFIS-CEBAT performance evaluation and comparative analysis

We have used the Zia dataset for both performance and comparative analysis. Several

renowned performance metrics have been used to analyze the performance of the ANFIS-

CEBAT algorithm. We have used , MSE, RMSE, MAE, MAPE, MMRE and, PRED as

shown in Table 5.7. Our analysis shows that ANFIS-CEBAT is 99.47% accurate when

properly tuned and beats Zia’s algorithm, standing at 99%, by a clear margin. Hence, The

IT industry stakeholders thus can be assured of precise cost estimation in a Scrum

project. It also provides 100% estimation accuracy up to 5.6% for PRED.

Table 5.7 ANFIS-CEBAT performance metric evaluation

Model R
2
 RMSE MAE MAPE MMRE PRED

(25%)

PRED

(5.6%)

ANFIS-

CEBAT

0.994 24251.79212 3798.415 0.524 2.370974364 100 100

Standard

ANFIS

0.899 102060.9803 10204.790 1.812 8.18773613 80 60

114

ANFIS-PSO

(custom

code)

0.976 102166.6061 70796.157 7.196 7.312754751 100 40

ANFIS-GA

(custom

code)

0.971 165060.4348 126420.47

6

12.488 12.48840386 60 20

ANFIS-BAT 0.932 131855.0466 33097.541 6.282 12.45133916 60 20

Zia [6] 0.990 39417.73196 8482.414 0.122 4.111956902 100 80

In figure 5.13, it is implied that ANFIS-CEBAT is most robust to outliers and has the

least MRE for all values in the Zia dataset as compared to other algorithms, including the

Ensemble algorithms like RF and Regression-based algorithms like SGD and SVR.

The values of real and predicted cost for ANFIS-CEBAT are compared against ANFIS,

ANFIS-BAT, ANFIS-GA, ANFIS-PSO, and Zia as shown in Figure 5.14, which

demonstrates its capability to accurately estimate the cost of substantially smaller

projects.

Figure 5.13 Box Plot of ANFIS-CEBAT with other models on Zia dataset

115

Figure 5.14 Actual vs Estimated values of Cost in Scrum Projects

5.4 Summary

The problem of cost estimation in Scrum projects is rampant as it requires meticulous

details about the project, in the form of different components, directly or indirectly

affecting it. Our rationale to develop an intelligent cost prediction algorithm is to assist

the managers in software companies in estimating the cost of a project without delving

into the details of the components that accrued the expenses for the software project. We

have thus developed a meta-heuristic optimization algorithm called Cost-Efficient BAT

that is having three primary factors, Energy factor, Memory Space, and Cost Multiplier.

The Energy factor is crucial to indulge each bat of the population in searching for the

solution according to their eagerness. The fitness of a bat is determined by this Energy

factor, where the stronger bats are given the task of exploration while the weaker bats are

made to exploit each of the explored spaces, to find the most optimal solution amongst

them. This means that once the best cost of a project has been estimated among a pool of

similar estimates, the bats shift to the next area to search the same. In the end, the final

cost from the set of best costs is selected, which according to our analysis is 99.47%

accurate. With the introduction of Memory Space, the bats remember the explored

116

spaces, thus they are not subjected to repeat the search. This improves the rate of

converges and prevents converging to local optima. An added benefit is the improvement

in the time complexity of the algorithm. The introduction of Cost Multiplier is valuable

for covering the non-linearity in cost estimation in a Scrum project. The cost will be

affected by direct and indirect components, which will allow the bias to ploy in its

estimation, hampering the development as a result. Hence, it is unacceptable to let human

bias sway the cost estimation of a software project. Cost Multiplier takes this into account

by bridging the gap between direct and indirect components. It is effective in reducing

manual mode of estimation and prejudice as shown by the results.

The experimental results and discussion section gives insight into the dataset profiling,

selection of features and labels, ANFIS-CEBAT model generation and structure, and the

performance and comparative analysis against several other algorithms. The dataset has

been described on several characteristics like count, median, standard deviation,

minimum and maximum value, etc. We have used ANFIS based exhaustive search

functionality in MATLAB and found the best set of features based on the lowest error.

Furthermore, we have validated our feature selection with the use of a correlogram. It is

also effective in quantitatively explaining the Cost Multiplier factor. Detailed profiling of

these features is provided. Using the Quantile Transformer, we have described its

effectiveness in transforming the data into Gaussian-like distribution, with the help of

several plots.

The tuning of ANFIS is critical to its delivery of exceptional performance on the

provided set of inputs. Such tuning requires resolute selection of the type and number of

membership functions. To reflect the real-world nature of the dataset, we used the

Gaussian function as the choice of our membership function. With the hit and trial

method, we select the number of rules for each membership function as ten. Hence, we

use ten sets of rules against four sets of inputs to determine the Scrum project cost.

In the performance and comparative analysis of ANFIS-CEBAT, its effectiveness against

several popular algorithms, ANFIS, ANFIS-BAT, ANFIS-PSO, ANFIS-GA, Random

117

Forest, SVR, SGD, and Zia, its closest competitor has been summarized. From the

analysis, it can be assured that ANFIS-CEBAT is 99.47% accurate, with a 100% value of

PRED up to 5.6%. It is also worth noting that ANFIS-CEBAT can be utilized for small

projects made by small teams and thus, is not limited to enterprise software projects.

118

CHAPTER 6

CONCLUSION AND FUTURE SCOPE

6.1 Conclusion

Estimation is an indispensable requisite that assist project managers to take firm decisions

and fulfilling client commitments. When the requirements are discussed between the

client and manager, they comprehend some estimated cost of the project as per their

experience. As stated by the current literature, during the start of any typical IT project,

managers primarily depend upon empirical estimation. Due to the complex nature of

projects, estimation based on an educated guess does not yield fruitful results. Effort

estimation is entirely human-based and directly proportional to the human experience in

one or several domains thus threatening to delay the tasks if not properly strategized.

However, cost estimation is more an arduous task because of its dependency on several

direct and indirect components, which sways the actual cost of estimation, resulting in

discrepancies. Human bias leads to opinionated planning and erroneous estimation.

ML-assisted estimation narrows down this gap by using logical estimation based on

statistics and fuzzy logic. It helps in decreasing the difference between the actual and

estimated effort to a substantial level. We have discussed the works of several authors

that use several machine learning techniques for this exact purpose. Though they are

profound in performance when compared against traditional techniques, yet there are

challenges in adopting them in the industries. These techniques require heavy

computational resources that should be scalable over time to minimize performance

degradation. Hyperparameter tuning is necessary to achieve peak-level performance from

the algorithm. Such challenges require using optimization algorithms that can tune the

hyperparameters easily. We have presented such hybrid techniques in an attempt to

understand the challenges associated with them. We again infer the same challenge of

powerful performance against increased algorithmic complexity and failure to accurately

119

estimate the cost of a Scrum project. We thereby proposed using NF systems, a hybrid

system of neural networks and fuzzy logic.

We have attempted to accommodate the challenge of effort and cost estimation using the

most popular NF system called ANFIS. ANFIS is capable of modeling complex human

tasks, thus it’s a worthy candidate to solve the challenges in Scrum project estimation.

But standard ANFIS has inherent complications that make it unsuitable for our domain.

Replacing the original optimization algorithms in ANFIS with the standard Bat algorithm

does not yield significant results. We attempt to solve this challenge by designing two

different optimization algorithms based on standard Bat called Energy Efficient Bat

Algorithm and Cost Estimating Bat Algorithm.

The ANFIS-EEBAT approach makes use of the three capabilities neural networks, fuzzy,

and novel Bat hybrid EEBAT. The complexity of the proposed algorithm is managed by

our novel energy equation and memory space concept. We have provided the detailed

architecture of our algorithm, from preparing the data to providing values of estimated

effort. The dataset we used is provided by Zia which contains substantially fewer values

to train and test our model. Hence, we applied K-means SMOTE to synthesize the data,

which gave us wonderful results without any repetitive values. The structure of ANFIS,

its MFs, and Rules has been described using figures. We have provided the pseudo-code

of the algorithm to help understand it’s working. We used MATLAB to program our

algorithm and collect estimated effort data. From the comparative analysis, we conclude

that our algorithm performs the best amongst other state-of-the-art algorithms viz.

ANFIS, ANFIS-GA, ANFIS-PSO, RF, SGD, and SVR, against MMRE and PRED

performance metrics.

For cost estimation, we have used the ANFIS-CEBAT approach that uses the novel Cost

Multiplier concept to solve the non-linearity in cost estimation in software engineering,

focusing on the Scrum project. We have introduced this novel feature to bridge the gap

between direct and indirect components that determine the cost of a project, using a

single variable. We use the original Zia dataset and program the algorithm in MATLAB.

120

The pseudo code of the algorithm has been provided for better understanding. We have

compiled the data for estimated cost value and compared it against other similar

algorithms viz. ANFIS, ANFIS-GA, ANFIS-PSO, RF, SGD, and SVR against MMRE

and PRED performance metrics. The comparative analysis places our developed

algorithm at the top.

Additionally, we have analyzed the time and space complexity of our developed

algorithms using the Big O notation. These algorithms are ANFIS, ANFIS-GA, ANFIS-

PSO, ANFIS-BAT, ANFIS-EEBAT, and ANFIS-CEBAT.

Table 6.1 Time and Space Complexity of several algorithms

Algorithm Time Complexity Space Complexity

ANFIS-EEBAT O(m.n) O(m.n)

ANFIS-CEBAT O(m.n) O(m.(n+p))

ANFIS O(n) O(m.n)

ANFIS-PSO O(m.n) O(m.n)

ANFIS-BAT O(m.n) O(m.n)

ANFIS-GA O(g(m.n+n)) O(m.n)

Table 6.1 shows the comparison of time and space complexities of various algorithms.

Here m is the number of iterations, n is the number of inputs and g is the number of

generations.

We have calculated the time complexity of the entire algorithm, including the cost

function used in optimization. Most algorithms require quadratic computation time on a

system to execute for a certain set of values. ANFIS-GA is the slowest algorithm due to

repeatedly computing the values of estimation for a set of inputs for each set of elements

in the generation.

In terms of space complexity, ANFIS-CEBAT takes the maximum memory. This is due

to the inherent structure of the algorithm, where we store the global solutions to keep a

121

track of the explored solutions. The other algorithms avail quadratic units of memory to

store their data.

It is worth noting that the time-space trade-off affects the feasibility of the algorithms.

Some algorithms are extremely space-efficient while some are extremely time-efficient

but not both.

ANFIS-EEBAT and ANFIS-CEBAT provide the best time-space tradeoff for each of

their purposes, effort, and cost estimation respectively. ANFIS-EEBAT is most effective

when the inputs increase considerably. ANFIS-CEBAT models the non-linearity nature

of cost estimation with added space complexity, which is beneficial in the long term as

memory becomes cheaper. Hence, these algorithms provide the perfect blend of

performance and accuracy.

6.2 Future Work

Project estimation is a critical step in the software development process. The current state

of the IT industry still lacks the accurate estimation ability hence the transition to Agile

methodologies is still a challenge. In our contributions to developing a system of effort

and cost estimation to assist project managers, whether experienced or new to the role,

there is a lot of research potential that we have identified in this field. Many modern

machine learning techniques and optimization algorithms remain to be tested for

estimation. They can further add to the literature of the current work. The factors that

contribute to estimation are plenty but in the current scenario only. Potential accelerating

and decelerating factors are yet to be gauged due to changes in requirements over time. It

is vital to assess and take these factors into account. We have estimated the effort based

on the number of story points and velocity in a sprint which we have assumed are

validated. If we consider estimation sprint-wise, the descriptions of user stories can be

used to analyze and estimate the effort, using Natural Language Processing techniques.

Cost estimation can be improved as well. In an extension of this idea, we can add another

component that is unique to the industry and team. There currently exists no generic scale

for story size and story complexity. A team that works on a project is liable to work with

122

some set standard that influences their strategy over the process of development and

estimation. We thereby have identified that this unique component when inserted into the

estimation process, will be responsible for adapting to the needs of every team based on

their individuals, suitable to a particular feature of the project of industry.

123

REFERENCES

[1] A. B. Nassif, M. Azzeh, L. F. Capretz, and D. Ho, “Neural network models for

software development effort estimation: a comparative study,” Neural Comput.

Appl., vol. 27, no. 8, pp. 2369–2381, 2016, doi: 10.1007/s00521-015-2127-1.

[2] B. Prakash and V. Viswanathan, “A survey on software estimation techniques in

traditional and agile development models,” Indones. J. Electr. Eng. Comput. Sci.,

vol. 7, no. 3, pp. 867–876, 2017, doi: 10.11591/ijeecs.v7.i3.pp867-876.

[3] S. Bilgaiyan, S. Sagnika, S. Mishra, and M. Das, “A systematic review on software

cost estimation in Agile Software Development,” J. Eng. Sci. Technol. Rev., vol.

10, no. 4, pp. 51–64, 2017, doi: 10.25103/jestr.104.08.

[4] L. R. Nerkar, “Software Cost Estimation using Algorithmic Model and Non-

Algorithmic Model a Review,” Int. J. Comput. Appl., vol. 0975–8887, pp. 4–7,

2014.

[5] J. M. Alostad, L. R. A. Abdullah, and L. S. Aali, “A Fuzzy based Model for Effort

Estimation in Scrum Projects,” Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 9, pp.

270–277, 2017, [Online]. Available: www.ijacsa.thesai.org.

[6] Ziauddin, S. K. Tipu, and S. Zia, “An Effort Estimation Model for Agile Software

Development,” Adv. Comput. Sci. its Appl., vol. 2, no. 1, pp. 314–324, 2012.

[7] M. Usman, J. Börstler, and K. Petersen, An Effort Estimation Taxonomy for Agile

Software Development, vol. 27, no. 4. 2017.

[8] M. Choetkiertikul, H. K. Dam, T. Tran, T. T. M. Pham, A. Ghose, and T. Menzies,

“A deep learning model for estimating story points,” IEEE Trans. Softw. Eng., vol.

45, no. 7, pp. 637–656, 2019, doi: 10.1109/TSE.2018.2792473.

[9] J. S. R. Jang, “ANFIS: Adaptive-Network-Based Fuzzy Inference System,” IEEE

Trans. Syst. Man Cybern., vol. 23, no. 3, pp. 665–685, 1993, doi:

10.1109/21.256541.

[10] T. Chen and C. Guestrin, “XGBoost : A Scalable Tree Boosting System,” in

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data, 2016, pp. 785–794.

[11] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin,

“CatBoost : unbiased boosting with categorical features,” in 32nd Conference on

Neural Information Processing Systems, 2018, no. Section 4, pp. 1–11.

124

[12] A. Kaushik, D. K. Tayal, and K. Yadav, “The Role of Neural Networks and

Metaheuristics in Agile Software Development Effort Estimation,” Int. J. Inf.

Technol. Proj. Manag., vol. 11, no. 2, pp. 50–71, 2020, doi:

10.4018/IJITPM.2020040104.

[13] A. Kaushik, D. K. Tayal, and K. Yadav, “A Comparative Analysis on Effort

Estimation for Agile and Non-agile Software Projects Using DBN-ALO,” Arab. J.

Sci. Eng., vol. 45, pp. 2605–2618, 2020, doi: 10.1007/s13369-019-04250-6.

[14] A. L. I. Oliveira, “Estimation of software project effort with support vector

regression,” Neurocomputing, vol. 69, pp. 1749–1753, 2006, doi:

10.1016/j.neucom.2005.12.119.

[15] T. T. Khuat and M. H. Le, “A Novel Hybrid ABC-PSO Algorithm for Effort

Estimation of Software Projects Using Agile Methodologies,” J. Intell. Syst., vol.

27, no. 3, pp. 489–506, 2018, doi: 10.1515/jisys-2016-0294.

[16] X. S. Yang, “A new metaheuristic Bat-inspired Algorithm,” Stud. Comput. Intell.,

vol. 284, pp. 65–74, 2010, doi: 10.1007/978-3-642-12538-6_6.

[17] M. Pant, K. Deep, J. C. Bansal, K. N. Das, and A. K. Nagar, Soft computing for

problem solving, vol. 9, no. 1. 2018.

[18] L. Jun, L. Liheng, and W. Xianyi, “A double-subpopulation variant of the bat

algorithm,” Appl. Math. Comput., vol. 263, pp. 361–377, 2015, doi:

10.1016/j.amc.2015.04.034.

[19] R. Y. M. Nakamura, L. A. M. Pereira, D. Rodrigues, K. A. P. Costa, J. P. Papa,

and X. S. Yang, “Binary Bat Algorithm for Feature Selection,” Swarm Intell. Bio-

Inspired Comput., no. 2010, pp. 225–237, 2013, doi: 10.1016/B978-0-12-405163-

8.00009-0.

[20] S. Eskandari and M. M. Javidi, “A novel hybrid bat algorithm with a fast

clustering-based hybridization,” Evol. Intell., pp. 1–16, 2019, doi: 10.1007/s12065-

019-00307-5.

[21] X. Shan, K. Liu, and P. L. Sun, “Modified Bat Algorithm Based on Lévy Flight

and Opposition Based Learning,” Sci. Program., pp. 1–13, 2016, doi:

10.1155/2016/8031560.

[22] A. Rekaby, “Directed Artificial Bat Algorithm (DABA) - A new bio-inspired

algorithm,” in International Conference on Advances in Computing,

Communications and Informatics, ICACCI, 2013, pp. 1241–1246, doi:

10.1109/ICACCI.2013.6637355.

[23] A. O. Topal and O. Altun, “A novel meta-heuristic algorithm: Dynamic Virtual

Bats Algorithm,” Inf. Sci. (Ny)., vol. 354, pp. 222–235, 2016, doi:

10.1016/j.ins.2016.03.025.

125

[24] A. Alihodzic and M. Tuba, “Improved bat algorithm applied to multilevel image

thresholding,” Sci. World J., vol. 2014, no. 176718, pp. 1–16, 2014, doi:

10.1155/2014/176718.

[25] S. S. Guo, J. S. Wang, and X. X. Ma, “Improved Bat Algorithm Based on

Multipopulation Strategy of Island Model for Solving Global Function

Optimization Problem,” Comput. Intell. Neurosci., pp. 1–12, 2019, doi:

10.1155/2019/6068743.

[26] N. S. Jaddi, S. Abdullah, and A. R. Hamdan, “Optimization of neural network

model using modified bat-inspired algorithm,” Appl. Soft Comput. J., vol. 37, pp.

71–86, 2015, doi: 10.1016/j.asoc.2015.08.002.

[27] M. Fozuni Shirjini, A. Nikanjam, and M. Aliyari Shoorehdeli, “Stability analysis

of the particle dynamics in bat algorithm: standard and modified versions,” Eng.

Comput., no. 0123456789, 2020, doi: 10.1007/s00366-020-00979-z.

[28] X. S. Yang, “Bat algorithm for multi-objective optimisation,” Int. J. Bio-Inspired

Comput., vol. 3, no. 5, pp. 267–274, 2011, doi: 10.1504/IJBIC.2011.042259.

[29] Y. Wang et al., “A novel bat algorithm with multiple strategies coupling for

numerical optimization,” Mathematics, vol. 7, no. 2, pp. 1–17, 2019, doi:

10.3390/math7020135.

[30] Q. Liu, L. Wu, W. Xiao, F. Wang, and L. Zhang, “A novel hybrid bat algorithm

for solving continuous optimization problems,” Appl. Soft Comput. J., vol. 73, pp.

67–82, 2018, doi: 10.1016/j.asoc.2018.08.012.

[31] M. Chawla and M. Duhan, “Bat algorithm: A survey of the state-of-the-art,” Appl.

Artif. Intell., vol. 29, no. 6, pp. 617–634, 2015, doi:

10.1080/08839514.2015.1038434.

[32] R. K. Mallidi and M. Sharma, “Study on Agile Story Point Estimation Techniques

and Challenges,” Int. J. Comput. Appl., vol. 174, no. 13, pp. 9–14, 2021, doi:

10.5120/ijca2021921014.

[33] A. Karapantelakis, “Estimating costs for adopting and using model-based testing in

agile SCRUM teams,” Proc. - 2021 IEEE 14th Int. Conf. Softw. Testing, Verif.

Valid. Work. ICSTW 2021, pp. 199–204, 2021, doi:

10.1109/ICSTW52544.2021.00042.

[34] N. Gupta and R. P. Mahapatra, “An effective agile development process by a

hybrid intelligent effort estimation protocol,” J. Ambient Intell. Humaniz. Comput.,

no. 0123456789, 2021, doi: 10.1007/s12652-021-03088-x.

[35] R. A. de Morais, “DEEP LEARNING BASED MODELS FOR SOFTWARE

EFFORT ESTIMATION USING STORY POINTS IN AGILE

ENVIRONMENTS,” 2021.

126

[36] Z. R. Mohsin, “Application of Artificial Neural Networks in Prediction of

Software Development Effort,” Turkish J. Comput. Math., vol. 12, no. 14, pp.

4186–4202, 2021.

[37] S. Briatore and A. Golkar, “Estimating Task Efforts in Hardware Development

Projects in a Scrum Context,” IEEE Syst. J., pp. 1–7, 2021, doi:

10.1109/JSYST.2021.3049737.

[38] K. Periyasamy and J. Chianelli, “A project tracking tool for scrum projects with

machine learning support for cost estimation,” in 29th International Conference on

Software Engineering and Data Engineering, 2021, vol. 76, pp. 86–94, doi:

10.29007/6vwh.

[39] P. Pospieszny, B. Czarnacka-Chrobot, and A. Kobylinski, “An effective approach

for software project effort and duration estimation with machine learning

algorithms,” J. Syst. Softw., vol. 137, pp. 184–196, 2018, doi:

10.1016/j.jss.2017.11.066.

[40] H. H. Arifin, J. Daengdej, and N. T. Khanh, “An empirical study of effort-size and

effort-time in expert-based estimations,” in Proceedings - 8th IEEE International

Workshop on Empirical Software Engineering in Practice, 2017, pp. 35–40, doi:

10.1109/IWESEP.2017.21.

[41] M. Salmanoglu, T. Hacaloglu, and O. Demirörs, “Effort Estimation for Agile

Software Development : Comparative Case Studies Using COSMIC Functional

Size Measurement and Story Points,” in IWSM/Mensura, 2017, pp. 1–9.

[42] R. de A. Araújo, A. L. I. Oliveira, and S. Meira, “A class of hybrid multilayer

perceptrons for software development effort estimation problems,” Expert Syst.

Appl., vol. 90, pp. 1–12, 2017, doi: 10.1016/j.eswa.2017.07.050.

[43] S. Dragicevic, S. Celar, and M. Turic, “Bayesian network model for task effort

estimation in agile software development,” J. Syst. Softw., vol. 127, pp. 109–119,

2017, doi: 10.1016/j.jss.2017.01.027.

[44] V.-S. Ionescu, H. Demian, and I.-G. Czibula, “Natural Language Processing and

Machine Learning Methods for Software Development Effort Estimation,” Stud.

Informatics Control, vol. 26, no. 2, pp. 219–228, 2017, doi:

10.24846/v26i2y201710.

[45] M. Łabędzki, P. P. Romiński, A. Rybicki, and M. Wolski, “Agile effort estimation

in software development projects – case study,” Cent. Eur. Rev. Econ. Manag.,

vol. 1, no. 3, pp. 135–152, 2017.

[46] L. Lavazza and S. Morasca, “On the Evaluation of Effort Estimation Models,” in

Proceedings of the 21st International Conference on Evaluation and Assessment in

Software Engineering - EASE’17, 2017, pp. 41–50, doi:

10.1145/3084226.3084260.

127

[47] J. López-Martínez, A. Ramírez-Noriega, R. Juárez-Ramírez, G. Licea, and S.

Jiménez, “User stories complexity estimation using Bayesian networks for

inexperienced developers,” Cluster Comput., pp. 1–14, 2017, doi: 10.1007/s10586-

017-0996-z.

[48] M. Owais and R. Ramakishore, “Effort, duration and cost estimation in agile

software development,” in 9th International Conference on Contemporary

Computing, 2017, pp. 1–5, doi: 10.1109/IC3.2016.7880216.

[49] S. H. Samareh Moosavi and V. Khatibi Bardsiri, “Satin bowerbird optimizer: A

new optimization algorithm to optimize ANFIS for software development effort

estimation,” Eng. Appl. Artif. Intell., vol. 60, pp. 1–15, 2017, doi:

10.1016/j.engappai.2017.01.006.

[50] S. M. Satapathy and S. K. Rath, “Empirical assessment of machine learning

models for agile software development effort estimation using story points,” Innov.

Syst. Softw. Eng., vol. 13, no. 2–3, pp. 191–200, 2017, doi: 10.1007/s11334-017-

0288-z.

[51] A. Sharma and R. Ranjan, “Software Effort Estimation using Neuro Fuzzy

Inference System : Past and Present,” Int. J. Recent Innov. Trends Comput.

Commun., vol. 5, no. 8, pp. 78–83, 2017.

[52] B. Tanveer, “Guidelines for utilizing change impact analysis when estimating

effort in agile software development,” in EASE, 2017, pp. 1–6, doi:

10.1145/3084226.3084284.

[53] S. Basri, N. Kama, F. Haneem, and S. A. Ismail, “Predicting effort for requirement

changes during software development,” in Proceedings of the Seventh Symposium

on Information and Communication Technology - SoICT ’16, 2016, pp. 380–387,

doi: 10.1145/3011077.3011096.

[54] S. Bilgaiyan, S. Mishra, and M. Das, “A Review of Software Cost Estimation in

Agile Software Development Using Soft Computing Techniques,” in 2nd

International Conference on Computational Intelligence and Networks (CINE),

2016, pp. 112–117, doi: 10.1109/CINE.2016.27.

[55] A. Sharma and Karambir, “Experimental Recognition of Random Forest for Agile

Software Effort Estimation,” Int. J. Adv. Res. Comput. Sci. Softw. Eng., vol. 6, no.

7, pp. 520–524, 2016.

[56] K. Z. Khan, S. K. Tipu, and S. Zia, “An Intelligent Software Effort Estimation

System,” J. Expert Syst., vol. 1, no. 4, pp. 91–98, 2012.

[57] K. Moharreri, A. V. Sapre, J. Ramanathan, and R. Ramnath, “Cost-Effective

Supervised Learning Models for Software Effort Estimation in Agile

Environments,” in IEEE 40th Annual Computer Software and Applications

Conference (COMPSAC), 2016, pp. 135–140, doi: 10.1109/COMPSAC.2016.85.

128

[58] B. Tanveer, L. Guzmán, and U. M. Engel, “Understanding and improving effort

estimation in Agile software development- an industrial case study,” in

Proceedings of the International Workshop on Software and Systems Process,

2016, pp. 41–50, doi: 10.1145/2904354.2904373.

[59] A. Panda, S. M. Satapathy, and S. K. Rath, “Empirical Validation of Neural

Network models for Agile Sooftware Effort Estimation based on Story Points,” in

3rd International Conference on Recent Trends in Computing, 2015, pp. 772–781.

[60] M. Usman, E. Mendes, and J. Börstler, “Effort estimation in Agile software

development: A survey on the state of the practice,” in ACM International

Conference Proceeding Series, 2015, pp. 1–10, doi: 10.1145/2745802.2745813.

[61] H. Zahraoui and M. A. Janati Idrissi, “Adjusting story points calculation in scrum

effort & time estimation,” in 10th International Conference on Intelligent Systems:

Theories and Applications, SITA, 2015, pp. 1–8, doi:

10.1109/SITA.2015.7358400.

[62] V. S. Dave and K. Dutta, “Neural network based models for software effort

estimation: A review,” Artif. Intell. Rev., vol. 42, no. 2, pp. 295–307, 2014, doi:

10.1007/s10462-012-9339-x.

[63] A. B. Nassif, M. Azzeh, L. F. Capretz, and D. Ho, “Neural network models for

software development effort estimation: a comparative study,” Neural Comput.

Appl., pp. 1–15, 2015, doi: 10.1007/s00521-015-2127-1.

[64] I. Manga and N. V. Blamah, “A particle Swarm Optimization-based Framework

for Agile Software Effort Estimation,” Int. J. Eng. Sci., vol. 3, no. 6, pp. 30–36,

2014, [Online]. Available: http://www.theijes.com/papers/v3-i6/Version-

5/D0365030036.pdf.

[65] R. Popli and N. Chauhan, “Agile estimation using people and project related

factors,” in International Conference on Computing for Sustainable Global

Development, INDIACom 2, 2014, pp. 564–569, doi:

10.1109/IndiaCom.2014.6828023.

[66] G. S. Rajput and R. Litoriya, “Corad Agile Method for Agile Software Cost

Estimation,” Open Access Libr. J. Corad, vol. 1, pp. 1–13, 2014, doi:

10.4236/oalib.1100579.

[67] R. Popli and N. Chauhan, “Cost and effort estimation in agile software

development,” in Optimization, Reliabilty, and Information Technology (ICROIT),

2014 International Conference on, 2014, pp. 57–61, doi:

10.1109/ICROIT.2014.6798284.

[68] S. M. Satapathy, A. Panda, and S. K. Rath, “Story Point Approach based Agile

Software Effort Estimation using Various SVR Kernel Methods,” in The 26th

International Conference on Software Engineering and Knowledge Engineering,

129

2014, pp. 304–307, [Online]. Available:

https://ksiresearchorg.ipage.com/seke/seke14paper/seke14paper_150.pdf.

[69] M. Usman, E. Mendes, F. Weidt, and R. Britto, “Effort estimation in Agile

Software Development: A systematic literature review,” in ACM International

Conference Proceeding Series, 2014, pp. 82–91, doi: 10.1145/2639490.2639503.

[70] Z. C. Ani and S. Basri, “A case study of effort estimation in Agile software

development using Use Case Points,” in Agile Symposium, Malaysia, 2013, vol.

25, no. 4, pp. 1111–1115.

[71] Abhilasha and A. Sharma, “Test effort estimation in regression testing,” in

Innovation and Technology in Education (MITE), 2013, pp. 343–348, doi:

10.1109/MITE.2013.6756364.

[72] A. Coelho, Evita, Basu, “Effort Estimation in Agile Software Development using

Story Points,” Int. J. Appl. Inf. Syst., vol. 3, no. 7, pp. 7–10, 2012.

[73] R. Litoriya and A. Kothari, “An Efficient Approach for Agile Web Based Project

Estimation : AgileMOW,” J. Softw. Eng. Appl., vol. 6, pp. 297–303, 2013.

[74] R. Tamrakar and M. Jørgensen, “Does the Use of Fibonacci Numbers in Planning

Poker Affect Effort Estimates ?,” in Proceedings of the EASE 2012, 2012, pp.

228–232.

[75] E. E. Hassanein and S. A. Hassanien, “Cost Efficient Scrum Process Methodology

to Improve Agile Software Development,” Int. J. Comput. Sci. Inf. Secur., vol. 18,

no. 4, pp. 123–131, 2020.

[76] A. K. Nazir, I. Zafar, and M. Abbas, “The impact of agile methods on software

project management,” in International Conference on Engineering, Computing &

Information Technology, 2017, pp. 1–6, doi: 10.1109/ecbs.2005.68.

[77] B. Croix, “The Role of the Agile Manifesto in Partial and Tailored Agile

Manifesto in Partial and Tailored Agile Methods Adoption : A Systematic

Literature Review,” 2018.

[78] P. S. Kumar, H. S. Behera, A. K. K, J. Nayak, and B. Naik, “Advancement from

neural networks to deep learning in software effort estimation : Perspective of two

decades,” Comput. Sci. Rev., vol. 38, p. 100288, 2020, doi:

10.1016/j.cosrev.2020.100288.

[79] M. Y. Maarif, S. M. Shahar, M. F. H. Yuso, and N. S. M. Satar, “The Challenges

of Implementing Agile Scrum in Information System’s Project,” Jour Adv Res.

Dyn. Control Syst., vol. 10, no. 9, pp. 2357–2363, 2018.

[80] F. Hayat, A. U. Rehman, K. S. Arif, K. Wahab, and M. Abbas, “The influence of

Agile Methodology (Scrum) on Software Project Management,” in 20th

130

IEEE/ACIS International Conference on Software Engineering, Artificial

Intelligence, Networking and Parallel/Distributed Computing (SNPD), 2019, pp.

145–149, doi: 10.1109/SNPD.2019.8935813.

[81] A. E. Akgün, “Team wisdom in software development projects and its impact on

project performance,” Int. J. Inf. Manage., vol. 50, pp. 228–243, 2020, doi:

10.1016/j.ijinfomgt.2019.05.019.

[82] A. Ali and C. Gravino, “A systematic literature review of software effort

prediction using machine learning methods,” J. Softw. Evol. Process, vol. 31, no.

10, pp. 1–25, 2019, doi: 10.1002/smr.2211.

[83] A. Altaleb, M. Altherwi, and A. Gravell, “An Industrial Investigation into Effort

Estimation Predictors for Mobile App Development in Agile Processes,” in 9th

International Conference on Industrial Technology and Management, 2020, pp.

291–296.

[84] E. Dantas, M. Perkusich, E. Dilorenzo, D. F. S. Santos, H. Almeida, and A.

Perkusich, “Effort Estimation in Agile Software Development: an Updated

Review,” Softw. Eng. Knowl. Eng., no. June, pp. 1–7, 2018, doi:

10.18293/SEKE2018-003.

[85] M. Jørgensen and T. Halkjelsvik, “Sequence effects in the estimation of software

development effort,” J. Syst. Softw., vol. 159, pp. 1–11, 2020, doi:

10.1016/j.jss.2019.110448.

[86] O. Malgonde and K. Chari, “An ensemble-based model for predicting agile

software development effort,” Empir. Softw. Eng., pp. 1017–1055, 2019.

[87] and A. A. Ali Bou Nassif, Mohammad Azzeh , Ali Idri, “Software Development

Effort Estimation Using Regression Fuzzy Models,” Comput. Intell. Neurosci.,

vol. 2019, no. 8367214, pp. 1–17, 2019, doi: 10.1109/9780471683179.ch11.

[88] S. Ezghari and A. Zahi, “Uncertainty management in Software effort estimation

using a consistent fuzzy analogy-based method,” Appl. Soft Comput., vol. 67, pp.

540–557, 2018, doi: 10.1016/j.asoc.2018.03.022.

[89] C. Premalatha, Hosahalli Srikrishna, “Effort Estimation in Agile Software

Development using Evolutionary CostSensitive Deep Belief Network,” Int. J.

Intell. Eng. Syst., vol. 12, no. 2, pp. 261–269, 2019.

[90] C. Ratke, H. H. Hoffmann, T. Gaspar, and P. E. Floriani, “Effort Estimation using

Bayesian Networks for Agile Development,” in 2nd International Conference on

Computer Applications and Information Security, ICCAIS 2019, 2019, pp. 1–4,

doi: 10.1109/CAIS.2019.8769455.

[91] G. Sharma, “Evidence-Based Software Cost Effort Estimation of Verification ,

Validation and Testing in Nepal,” J. Comput. Sci. Inf. Technol., vol. 1, no. 1, pp.

131

29–40, 2020.

[92] M. Jorgensen and M. Shepperd, “A Systematic Review of Software Development

Cost Estimation Studies,” IEEE Trans. Softw. Eng., vol. 33, no. 1, pp. 33–53,

2007, doi: 10.1109/TSE.2007.256943.

[93] B. Singh and S. Gautam, “Situational Factors Affecting the Software Process : A

Systematic Literature Situational Factors Affecting the Software Process : A

Systematic Literature Review,” in International Conference on Advanced

Computing and Software Engineering (ICACSE-16), 2016, no. February, pp. 1–9.

[94] F. Ugalde, A. Quesada-López, Christian Martínez, and J. Marcelo, “A comparative

study on measuring software functional size to support effort estimation in agile,”

in CIbSE, 2020, pp. 1–10.

[95] L. Radu, “Effort Prediction in Agile Software Development with Bayesian

Networks,” in Proceedings ofthe 14th International Conference on Software

Technologies (ICSOFT2019), 2019, no. Icsoft, pp. 238–245, doi:

10.5220/0007842802380245.

[96] H. Karna and S. Gotovac, “Application of data mining methods for effort

estimation of software projects,” Softw. Pract. Exp., no. May, pp. 1–21, 2018, doi:

10.1002/spe.2651.

[97] A. Kaur and K. Kaur, “Investigation on test effort estimation of mobile

applications: Systematic literature review and survey,” Inf. Softw. Technol., vol.

110, no. February, pp. 56–77, 2019, doi: 10.1016/j.infsof.2019.02.003.

[98] A. Alhaddad, I. Albaltah, A. Abualkishik, M. Abdellatief, and A. A. Al Kharusi,

“A systematic mapping study on software effort estimation,” J. theoratical Appl.

Inf. Technol., vol. 98, no. 17, pp. 3620–3625, 2005.

[99] M. Jha and R. Jha, “Comparing the Effort Estimated By Different Models,” in 6th

International Conference on Advanced Computing & Communication Systems

(ICACCS), 2020, pp. 1148–1154.

[100] P. Efe and O. Demirors, “A change management model and its application in

software development projects,” Comput. Stand. Interfaces, vol. 66, no. April, pp.

1–12, 2019, doi: 10.1016/j.csi.2019.04.012.

[101] W. H. de C. Almeida, “A Model using Agile Methodologies for Defining Metrics

to be used by the Public Sector in Brazil to set Remuneration for Outsourced

Software Development,” Comput. Sci., pp. 272–274, 2021, doi: 10.1109/icse-

companion52605.2021.00125.

[102] M. I. Khan, Z. U. Din, M. A. Abid, and T. Naeem, “User Story Characteristics

Affecting Software Cost in Agile Software Development: A Systematic Literature

Review,” Int. J. Comput. Sci. Netw. Secur., vol. 19, no. 12, pp. 13–18, 2019.

132

[103] R. Popli and N. Chauhan, “Cost and effort estimation in agile software

development,” in International Conference on Reliability, Optimization and

Information Technology, 2014, pp. 57–61, doi: 10.1109/ICROIT.2014.6798284.

[104] J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang, “Systematic literature review of

machine learning based software development effort estimation models,” Inf.

Softw. Technol., vol. 54, no. 1, pp. 41–59, 2012, doi: 10.1016/j.infsof.2011.09.002.

[105] E. Mendes, I. Watson, C. Triggs, N. Mosley, and S. Counsell, “A comparative

study of cost estimation models for web hypermedia applications,” Empir. Softw.

Eng., vol. 8, no. 2, pp. 163–196, 2003, doi: 10.1023/A:1023062629183.

[106] L. Radlinski, “A survey of bayesian net models for software development effort

prediction,” Int. J. Softw. Eng. Comput., vol. 2, no. 2, pp. 95–109, 2010.

[107] M. Azzeh, A. B. Nassif, and S. Banitaan, “Comparative analysis of soft computing

techniques for predicting software effort based use case points,” IET Softw., vol.

12, no. 1, pp. 19–29, 2018, doi: 10.1049/iet-sen.2016.0322.

[108] Q. M. Yousef and Y. A. Alshaer, “Dragonfly Estimator : A Hybrid Software

Projects’ Efforts Estimation Model using Artificial Neural Network and Dragonfly

Algorithm,” Int. J. Comput. Sci. Networ Secur., vol. 17, no. 9, pp. 108–120, 2017.

[109] T. Menzies, Y. Yang, G. Mathew, B. Boehm, and J. Hihn, “Negative results for

software effort estimation,” Empir. Softw. Eng., vol. 22, no. 5, pp. 2658–2683,

2017, doi: 10.1007/s10664-016-9472-2.

[110] A. Idri, M. Hosni, and A. Abran, “Systematic Literature Review of Ensemble

Effort Estimation,” J. Syst. Softw., vol. 1, pp. 1–35, 2016, doi:

10.1016/j.jss.2016.05.016.

[111] M. Padmaja and D. Haritha, “Software Effort Estimation using Meta Heuristic

Algorithm,” Int. J. Adv. Res. Comput. Sci., vol. 8, no. 5, pp. 196–201, 2017,

[Online]. Available:

https://search.proquest.com/openview/dc9da6e8d9857b23c8c88c47eba7c3ed/1?pq

-origsite=gscholar&cbl=1606379.

[112] J. Murillo-Morera, C. Quesada-López, C. Castro-Herrera, and M. Jenkins, “A

genetic algorithm based framework for software effort prediction,” J. Softw. Eng.

Res. Dev., vol. 5, no. 1, pp. 1–33, 2017, doi: 10.1186/s40411-017-0037-x.

[113] Tung Khuat and Hanh Le, “An Effort Estimation Approach for Agile Software

Development using Fireworks Algorithm Optimized Neural Network,” Int. J.

Comput. Sci. Inf. Secur., vol. 14, no. 7, pp. 122–130, 2018, doi:

10.1162/neco.2008.20.1.65.

[114] M. Adnan and M. Afzal, “Ontology Based Multiagent Effort Estimation System

for Scrum Agile Method,” IEEE Access, vol. 5, pp. 25993–26005, 2017.

133

[115] T. T. Khuat and M. H. Le, “A Novel Hybrid ABC-PSO Algorithm for Effort

Estimation of Software Projects Using Agile Methodologies,” J. Intell. Syst., vol.

27, no. 3, pp. 489–506, 2017, doi: 10.1515/jisys-2016-0294.

[116] S. Porru, A. Murgia, S. Demeyer, M. Marchesi, and R. Tonelli, “Estimating Story

Points from Issue Reports,” in Proceedings of the The 12th International

Conference on Predictive Models and Data Analytics in Software Engineering,

2016, pp. 1–10, doi: 10.1145/2972958.2972959.

[117] A. Panda, S. M. Satapathy, and S. K. Rath, “Empirical Validation of Neural

Network Models for Agile Software Effort Estimation based on Story Points,”

Procedia Comput. Sci., vol. 57, pp. 772–781, 2015, doi:

10.1016/j.procs.2015.07.474.

[118] S. M. Satapathy, “Effort Estimation Methods in Software Development

Department of Computer Science and Engineering National Institute of

Technology Rourkela Effort Estimation Methods in Software Development using,”

National Institute of Technology Rourkela, 2016.

[119] K. Anjali Sharma, “Empirical Validation of Random Forest for Agile Software,”

Int. J. Eng. Sci. Res. Technol., vol. 5, no. 7, pp. 1437–1446, 2016.

[120] M. Choetkiertikul, H. K. Dam, T. Tran, T. T. M. Pham, A. Ghose, and T. Menzies,

“A deep learning model for estimating story points,” IEEE Trans. Softw. Eng., vol.

14, no. 8, pp. 1–12, 2018, doi: 10.1109/TSE.2018.2792473.

[121] M. Adnan and M. Afzal, “Ontology based Multiagent Effort Estimation System for

Scrum Agile Method,” IEEE Access, vol. 5, pp. 25993–26005, 2017, doi:

10.1109/ACCESS.2017.2771257.

[122] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE:

Synthetic Minority Over-sampling Technique,” J. Artif. Intell. Res., vol. 16, no.

Sept. 28, pp. 321–357, 2002, doi: 10.1613/jair.953.

[123] F. Last, G. Douzas, and F. Bacao, “Oversampling for Imbalanced Learning Based

on K-Means and SMOTE,” Inf. Sci. (Ny)., vol. 465, pp. 1–19, 2018, doi:

10.1016/j.ins.2018.06.056.

[124] J. L. Hodges and E. L. Lehmann, “Rank Methods for Combination of Independent

Experiments in Analysis of Variance,” Ann. Math. Stat., vol. 33, no. 2, pp. 482–

497, 1962, doi: 10.1214/aoms/1177704575.

134

LIST OF PUBLICATIONS

1. Arora M., Verma S., Kavita, Chopra S. (2020) A Systematic Literature Review

of Machine Learning Estimation Approaches in Scrum Projects. In: Mallick

P., Balas V., Bhoi A., Chae GS. (eds) Cognitive Informatics and Soft Computing.

Advances in Intelligent Systems and Computing, vol 1040. Springer, Singapore.

https://doi.org/10.1007/978-981-15-1451-7_59.

2. M. Arora, S. Verma, and Kavita, “An efficient effort and cost estimation

framework for Scrum Based Projects,” International Journal of Engineering

and Technology (UAE), vol. 7, no. 4.12 Special Issue 12, pp. 52–57, 2018

3. Arora, M., Chopra, S., Gupta, P.: Estimation of regression test effort in Agile

projects. Far East J. Electron. Commun. 3(II), 741–753, 2016

https://doi.org/10.1007/978-981-15-1451-7_59

