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ABSTRACT 

Waterfall to Agile is the most well-known transformation in the last two decades. This 

paradigm shift from heavyweight to lightweight process models addresses many of the 

roadblocks to software project development. Any competitive IT industry cannot avoid 

underestimating the effort, cost, and length of their projects. Approximately 43 percent of 

projects are often completed late and reach crises as a result of over budgeting and less 

necessary functions. Estimation is a critical component of Software Project Management 

and according to the International Society for Parametric Analysis (ISPA), the 

International Cost Estimating and Analysis Association (ICEAA), and the Standish group 

chaos manifesto, several IT ventures have been hampered by unreliable estimates of 

effort and related costs. Improper and unreliable evaluation of software projects, as well 

as uncertainty in software specifications, contributes to failure and must therefore be 

taken into account in full letter and spirit. When Agile principles-based process models 

(e.g., Scrum) were introduced, it resulted in a dramatic shift in project management. This 

cultural shift proves to be beneficial in terms of improving the relationship between 

developer and customer. Estimation is easier in conventional methodologies because they 

use plan-driven methods, but in Agile, requirements are volatile, so effort estimation is 

the most difficult. This cause raises awareness among potential researchers all over the 

world to begin working on addressing the issue of unreliable effort prediction. There are 

numerous explanations for the difference between estimated and actual effort, including 

project, people, and resistance variables, incorrect use of cost drivers, ignorance of 

regression testing effort, understandability of user story size and its related difficulty, and 

so on. We examined the work of various authors and potential researchers who were 

attempting to bridge the gap between real and estimated effort. According to the related 

literature, machine learning models outperform non-machine learning and conventional 

estimation techniques. For various agile methodologies, researchers investigated and 

applied estimation types, techniques, and tools ranging from conventional to machine 

learning estimation. Software projects are dynamic and potentially unpredictable, which 
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adaptive models can accommodate well. At the moment, the majority of IT managers 

working on Agile projects rely on conventional estimation methods such as planning 

poker, expert judgment, and so on, which suffer from individual bias. To deal with 

volatile situations, an expert system is necessary. Our proposed approach is based on the 

concepts of adaptive networks and neuro-fuzzy to assist managers in determining suitable 

project resources. At the moment, there is a lack of scrum project datasets in public 

repositories, making it difficult for any researcher to present their work without 

jeopardizing its validity. To show the system's effectiveness, Scrum project data has been 

seeded into the knowledge base. IT stakeholders use issue monitoring systems such as 

JIRA, which offers a comprehensive environment for managing, integrating, and 

collaborating on end-to-end IT services but lacks Machine Learning supported 

estimation. 

While researchers used various effort estimation techniques such as use case points, 

adjusted use case points, story points, analogy-based estimation, and some soft 

computing techniques, ideal estimation accuracy remains a myth. According to Collabnet 

VersionOne agile state of the art study, scrum is the most widely used agile technique in 

software industries, but it is afflicted by estimation problems. We developed a hybrid 

Adaptive Neuro-Fuzzy Inference System (ANFIS) model tuned by the novel Energy-

Efficient BAT (EEBAT) and Cost Estimating BAT (CEBAT) algorithms to handle 

complex specificities and accurate estimation challenges in a scrum context. The system 

has been evaluated against various state-of-the-art and practice meta-heuristic and 

Machine Learning (ML) algorithms such as Fireworks, Ant Lion Optimizer (ALO), BAT, 

Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and others, and it not only 

produces promising effort estimation results but also outperforms them for homogeneous 

data sets. On over 200 Agile projects, we used our proposed techniques ANFIS-EEBAT 

and ANFIS-CEBAT and achieved significant estimation accuracy. 
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CHAPTER 1 

INTRODUCTION 

1.1 Waterfall to Agile: A Paradigm Shift 

In the last few decades, there have been significant paradigm shifts in the software 

engineering culture, the most notable of which is the transition from waterfall to Agile. 

As depicted in Figure 1.1, the key feature of agile development is that resources and 

planning are set throughout the project, leaving only requirements to vary. This means 

that resources and planning are fixed throughout the development cycle, and after some 

functionality is delivered, the requirements can be adjusted based on the needs. This is a 

distinct perspective from traditional software development when the final product is 

unknown.  

Traditional software development relies on up-front requirements analysis and breaking it 

down into milestones and success measures whereas agile development focuses on 

delivering the correct value based on a prioritized requirements backlog. Testing and 

working with the functionality, as well as a more fluid means of altering requirements, 

replace the usually written milestones.   

Figure 1.1: Waterfall vs Agile  
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1.2 Agile umbrella methodologies 

ASD is an umbrella term for a collection of approaches and activities based on the Agile 

Manifesto's values and principles. In the domain of software engineering, the term 

"Agile" is frequently used. With technological developments, Agile has become the 

standard in Fortune 500 firms. Figure 1.2 depicts that requirements are initially elicited 

from the clients but not all requirements have been considered for inclusion in the earliest 

iterations. The requirements stack is first prioritized and then the most important ones are 

sent for development. 

 

Figure 1.2: Essence of Agile 

1.2.1 The manifesto for Agile software development 

Agile methodologies are inspired from its manifesto laid by Snowbird’17 to pave the path 

for IT industries adopting a ‘continuous’ revolution. Agile is neither an approach nor a 

technique, it is more of a concept with four fundamental values. The manifesto in its 

original form is shown in Figure 1.3. 

 

Figure 1.3: Agile Manifesto 
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1.2.2 Agile software development principles 

The twelve principles of ASD are depicted in Figure 1.4 and are made to be followed in 

true letter and spirit by all the organizations embracing agile. 

 

Figure 1.4: Agile Principles 

1.2.3 Agile software development methodologies 

Agile has a buffet of methodologies in its parasol and each considers different thrust 

areas. The various popular agile methodologies are shown in Figure 1.5.  

 

Figure 1.5: Agile Umbrella 
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1.3 Scrum framework 

Scrum is an agile framework that takes in user stories as input requirements and 

accomplished the same in short, fixed-length, and time-boxed iterations called sprints. A 

shippable product is delivered as the sprint ends. The entire cycle beginning with Sprint 

Planning and ending at Retrospectives is called a Sprint. The detailed steps are given 

below: 

 Product Backlog: Customer prioritizes requirements as per business value and lists 

them in the product backlog. The representation of requirements is made using the 

US. As customer prioritizes their requirements, the project team also called the 

scrum team provides a high-level estimate for each user story. 

 Sprint Planning: As soon as a sprint begins, the team conducts a sprint planning 

meeting. All the stakeholders participate in the meeting. The prioritized product 

backlog is used by the team to pick up stories for implementation throughout a sprint 

during the meeting. The available capacity in person-hours and the team’s 

productivity is tantamount to address the count of user stories targeted. The 

customers must prioritize the product backlog. Prioritization ensures that the features 

developed first are of the highest value. The sprint planning meeting normally takes 

about half a day. 

 Sprint Backlog: The Scrum team utilizes sprint tasks which are defined as the 

definitive development activities, vital in resolving the requirement. They are 

obtained as breakdowns of product backlog’s requirements. A sprint backlog is an 

outcome after a spring planning meeting. The sprint backlog details the tasks and 

task-level estimates of the selected stories. On Sprint Backlog completion, the 

estimated total work is matched against original high-level Product Backlog 

estimates. 

 Implementation Cycle: Once the team is ready with the sprint backlog, 

implementation of stories commences. The Implementation cycle involves the 
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activities of design, coding, and testing. The progress of the team is monitored 

through visual controls like Story Boards and Effort Burn-down charts. 

 Daily Scrum: Every day the daily scrum meeting is conducted at a pre-determined 

time – typically done at the beginning of the day. This is a short meeting carried out 

without deviating from technical issues. It is mandatory for the team to “stand up” 

during these meetings so that the stipulated time is not exceeded. Each team member 

shares the status of their work by responding to the three crucial questions: what I 

achieved yesterday, what I shall accomplish today, and what impediments stall my 

progress? The sprint backlog is updated – with addition, deletion, and modification 

to the planned tasks and the remaining efforts for the same as the daily scrum 

meeting wrap-up. 

 Sprint Review: The output of the sprint is a potentially shippable product, which is 

demonstrated to all the stakeholders and their feedback is sought – this is called the 

sprint review meeting. All enhancements, bugs, or defects identified by the customer 

are added to the product backlog and are addressed based on their priority. The 

abstract view of the Scrum process has been shown in Figure 1.6. 

 Retrospective: Consequently, Retrospective succeeds Sprint Review. The team 

assesses what went well, what did not and identifies the changes needed to make the 

process better. 

 

Figure 1.6: Scrum process 

It allows a team to inspect and adopt.  The basic steps of ASD are shown in Figure 1.7. 

The detailed supposition stages of ASD present an iterative loop wherein customer 
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collaboration plays a crucial role in framing decisions, choosing and prioritizing 

requirements, incorporating feedback, etc.  

The iterative and incremental development resolve associated risks, thus laid a strong 

foundation of process models. 

 

Figure 1.7 Steps followed in Agile Software Development 

1.4 Effort estimation approaches and framework 

For the successful and effective execution of the project, SDEE plays an indispensable 

role in SDLC. It is the process of anticipating the amount of effort required to develop the 

software at the beginning of the project. It is very much essential for Software Project 

Management. The estimating framework is given in Figure 1.8. 
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Figure 1.8 Software estimation process flow 

1.4.1 Size estimating methods 

As per a survey, among SP, UCP, FP, OP, and LoC, SP is the preferred choice in the IT 

industry. The details for size estimation techniques and their usage are given in Table 1.1 

Table 1.1 Usage trend for size estimation techniques [1] 

Size estimation techniques % Usage in industry 

SP 61 

UCP 16 

FP 28 

OP 1 

LoC 11 

SP approach is mostly used in the IT industry as compared to other techniques. Various 

estimating methods are being used and employed by industries during the estimation 

process. As shown in Table 1.2, various metrics are used to measure the requirements in 

context. 
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Table 1.2 Requirement size estimation metric 

Size metric Definition and industrial presence 

 

 

SP 

ASD uses SP as a measuring metric and is a relative unit of 

measurement. It estimates the difficulty of implementing the user story. 

Many people use the Fibonacci sequence for estimating. PP can also be 

used to estimate SP. It is a variation in Delphi. Agile has an advantage 

over others as it takes units in their relative form instead of absolute 

thus giving an edge of comparing things easily. 

 

FP 

FP is based on the count of functions on which the size of the software 

depends. Function points can be calculated with a total of five 

characteristics i.e., Number of inputs, number of outputs, Inquiries 

count, External interfaces, and external logical files. 

UCP UCP extends FP. It is based on use case analysis. It has three types of 

actors – Simple, Average, and Complex, and the weighting factor is 

assigned to them as 1, 2, and 3 respectively. 

OP OP is used in COCOMO-II wherein objects are considered as modules 

and reports of the programming language for which effort estimate is 

desired. 

LoC LoC simply refers to estimate the project by tallying the lines of code 

in some source code. 

 

1.4.2 Effort estimation approaches 

Effort estimation can be carried out in various ways. The majority of the IT industries 

rely on empirical estimation wherein an educated guess is made to get the desired effort 

estimate. Few traditional and machine learning estimation techniques have been 

categorized in Table 1.3 with their associated usage, pros, and cons. 
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Table 1.3: Comparison of effort estimation approaches 

Estimation 

techniques 

Category Usage Pros Cons 

Estimation 

by Analogy 

Formal 

estimation 

model/non-

Algorithmic 

Weighted micro 

function points 

The 

estimation 

result is 

unequivocal. 

Improbable 

estimates; 

Dependable on 

preceding projects 

PP Expert 

estimation 

Group 

estimation 

Most popular/ 

accepted in 

industries 

Less research is 

done, so little 

empirical evidence is 

available. 

EJ Empirical 

estimation 

An educated 

guess 

Fast result Suffers from 

individual bias 

Delphi 

estimation 

Group 

estimation 

Wideband 

Delphi 

The collective 

opinion of 

estimators. 

No Analytic 

foundation 

COCOMO 

and 

COCOMO-II 

Heuristic 

approach 

Parametric 

models 

Clear results Much data is 

required for 

estimation. 

UCP Formal 

estimation 

model 

Size based Useful for 

predicting 

initial 

estimates 

Product backlog 

oblivious to few 

conditions. 

 

MUCP Formal 

estimation 

model 

Size based Based on 

requirements 

from UCP, 

Project 

managers, etc. 

Same issues as UCP. 
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LR, RBFNN Parametric/

Model-

Based 

Broad-spectrum Compatibility 

with existing 

data 

Accuracy declines 

due to low historical 

data availability. 

NN (SVM) Parametric/

Model-

Based 

Broad-spectrum High 

performance 

during on 

clamorous 

input data 

NN is a Black box 

with representation.  

TD and BU 

estimation 

EJ Project 

management 

software 

Historical 

data 

feasibility 

with excellent 

performance  

Less empirical 

evidence, TD is 

better in contrast to 

BU. 

 

1.5 Agile Estimation: Inception to Transition 

Agile is flexible, so it is a bit difficult to carry out effort estimation in it. We have already 

discussed that in agile, customer requirements are listed in the form of issues/user stories. 

An issue is a high-level definition of a requirement holding enough information for its 

estimation, development, and testing. However, a user story must be implementable in a 

single iteration otherwise if not, the requirement is broken down into smaller stories. The 

collection of stories is known as Product Backlog. The units of work can be categorized 

in two ways viz., Real-time units (hrs, days, etc.) and abstract units (SP, Ideal days). 

The customer prioritizes the stories. The priorities could be in terms like "high, medium, 

low", "Definitely needed, needed, and nice to have" or just numbers with higher numbers 

indicating higher priority. The responsibility of estimating the effort to implement the 

stories rests on the project team. Once prioritization and estimation are done, the 

customer’s need to go to time-to-market is decided upon, and a tentative release date is 

arrived at.  
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1.5.1 A decade of Agile estimation techniques 

Considering a decade of agile effort estimation research and the comparative accuracies 

(in general) is achieved by different estimation techniques is given in Table 1.4. 

Table 1.4 Accuracy metrics for various estimation algorithms [2] 

Estimation Algorithms Accuracy Metrics The accuracy achieved (in % age) 

NN MRE 34.5 

MMRE 41.65 

PRED (100) 91.535 

MAPE 39.78 

MdMRE 89 

R2 77.5 

MSE 1.25 

EJ MRE 27.675 

MdMRE 45 

PP/Disaggregation MRE 52.6 

UCP MRE 15.5 

MMRE 20.75 

PRED (100) 76.955 

R2 90.6 

MSE 8 

MMER 72.85 

MUCP MRE 9.45 

MMRE 10 

PRED (10) 90 

PRED (20) 60 

MdMRE 9 

LR using MUCP MRE 34 
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 MMRE 24.86 

PRED (100) 94.35 

MdMRE 62.76 

MMER 65.066 

Wideband Delphi (using LR) MRE 8.85 

BU/TD MRE 39 

 

1.5.2 Environment for different estimation algorithms 

The estimation algorithms have different impacts in different environments. For Project 

A the estimation technique E may result differently than Project B as there may be some 

factors considered in Project A that are not needed in Project B. Also, the in-house 

resources impact the effort. Team members' coupling and commitment to meet the 

estimated effort play a major role in the successful and timely competition of a project. 

There may be a case when a team member leaves his job in between the project so re-

work is required to re-estimate the effort. The estimation algorithms and their associated 

challenges are given in Table 1.5 

Table 1.5 Challenges in various estimation algorithms [2] 

Estimation 

algorithms 

Challenges 

NN Due to a lack of explanation ability and neural networks’ inherent black 

box characteristic, the estimated effort may not be accepted by IT 

stakeholders. Also, in some cases, the performance is below par vis-à-

vis expert judgment technique.  

EJ IT expert’s technical experience is subject to their learning curve and 

cannot be generalized. IT projects effort and costs estimated by an 

expert are biased due to their different perception of project size and 

complexity. 
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PP PP has been a widely used technique for Agile estimation but does not 

yield accurate estimates. 

UCP Due to Agile Scrum project characteristics, UCP cannot be utilized in its 

standard form. 

MUCP Due to Agile Scrum project characteristics, UCP cannot be utilized in its 

standard form. 

LR Regression analysis heavily relies on past project data which is a 

challenge in Agile as very little data is available for experimental 

analysis on the public repositories. 

Wideband 

Delphi 

Delphi cost estimation introduces bias in estimation-related decisions. 

BU/TD Not much evidence is available in the literature. 

 

1.5.3 Accuracy parameters 

The various accuracy parameters used to check the efficacy of effort and cost estimation 

techniques are given below [3]. 

 Magnitude of Relative Error (MRE) is the most common criteria for estimation 

techniques. It assesses every project in a dataset individually. The following equation 

represents MRE. 

     = 
                                

             
                                       (1.1) 

 Mean Magnitude of Relative Error (MMRE) measures percentage values of relative 

errors. The calculated % age value is the average value over the N items. It is given in 

the following equation.  

       
 

 
∑     

 
       (1.2) 



14 

 

 Median Magnitude of Relative Error (MdMRE) It measures the Median for MRE(s) 

and has acceptance criteria that is not sensitive to outliers. It is given in the following 

equation. 

      = 𝑒 𝑖𝑎n (    )    (1.3) 

 Mean Magnitude of Error Relative- It is used for cost estimation and is calculated by 

the median of Magnitude of Error Relative (MER). It is given in the following 

equation.  

      
 

 
∑     

 
       (1.4) 

 Mean Absolute Percentage Error- It determines absolute accuracy for different 

estimation models. The term absolute is considered as the assessment of the cost 

estimations from the actual recognized costs. MAPE can be calculated using the 

following equation. 

      
 

 
∑   

   
                               

             
 *100          (1.5) 

In this, the first summation is done for each estimated point, divided by the number of 

suitable points N. 

 Mean Squared Error- For calculating MSE, the following  

     
 

 
∑      𝑎            𝑖 𝑎 𝑒          

   
2  (1.6) 

where N is the available data in the dataset. It is directly proportional to PRED (x). 

 Balance Relative Error- It is more balanced than MRE in terms of overestimation and 

underestimation and can be calculated using the following equation. 

    
                                

                                    
   (1.7) 

 Squared Correlation Coefficient- It is used and defined to assess the efficacy of 

regression. It can be represented using the following equation. 
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R
2
 = 1-

∑                                    
   

∑                                       
   

        (1.8) 

 Prediction (PRED (x)) – In mathematical definition, PRED(x) is mathematically 

determined as:  

        ∑ [      ] 
             (1.9) 

PRED(x) value is calculated using the following equation. 

        
 

 
        (1.10) 

Here, ‘N’ represents the total of projects and ‘K’ is the count of projects having MRE 

below or equal to x. The value of x can be either 0.25, 0.50. 0.75 or 1.0. If a common 

value of x is 0.50, then PRED (0.50) refers to the % of projects whose MRE is less than 

or equal to 50%. Measuring the accuracy of estimation in scrum is an essential activity 

and determines its superiority with self and others. 

1.5.4   Effort estimation factors 

The agile effort is affected by work and project resources which are given in Table 1.6. 

The story point estimation factors and their tiers are given in Table 1.7. Table 1.8 and 

Table 1.9 show the velocity rating and complexity rating factors respectively. Table 1.10 

describes the story size scales while Table 1.11 describes the User story/Issues 

complexity scale. Table 1.12 and Table 1.13 list the decelerating factors and dynamic 

force factors respectively. 

Table 1.6 Work-Resource and Project factors [4] 

Estimation Factors 

Work Resource Related factors Project-related factors 

Project type Communication Skill 

Non-Functional Requirements (NFR) Familiarity in the team 

Software and Hardware Requirements Management skill 

Operational feasibility analysis Safety and Security 



16 

 

Complexity Work shift hours 

Information transaction Past project experience 

Site info Technical skills 

 

Table 1.7 Effort Estimation factors [5] 

Story point estimation factors Tiers 

TE Fresher, Intermediate, Advance, Expert  

TS Small, Medium, Large, Extra-Large 

Task Complexity Easiest, easy, moderate, complex, arduous 

Estimation Accuracy Over-estimated, well-estimated, under-estimated 

 

Table 1.8 Velocity rating factors [6] 

Factor 

level 

Rating Type of project 

 Low  0.94—0.98 The project is simple. For example, requirements are very 

straightforward, no volatility of requirements, all business and 

technical requirements are very clear to the team with no 

uncertainty, no research required in the project and it requires 

basic programming skills to complete. 

 Medium  0.90—0.94 The project is Moderately complex. For example, it requires 

little or no research and the team has strong expertise in allotted 

work. 

High 0.85—0.89 The project is extremely complex and demands accurate 

estimates by consideration of all the factors at a high level. 
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Table 1.9 Complexity rating factors [6] 

Level of factor Rating Type of Project 

Low  1 The project is simple. For example, requirements are 

very straightforward no volatility of requirements, no 

research required in the project, only rudimentary 

programming skills for completion with a clear 

understanding of technical requirements. There is no 

product uncertainty, process uncertainty, and resource 

uncertainty. A team of the right ability and experience is 

available. 

Medium 3 The project is moderately complex. For example, it 

requires little or no research, and the team has strong 

expertise in the allotted work. 

High 5 The project is extremely complex and demands accurate 

estimates by consideration of all the factors at a high 

level. 

 

Table 1.10 Story size scales [6] 

Value Guidelines 

5 The value “5” signifies some too large story to be accurately estimated. The 

story has to be fragmented into smaller stories and suitable to be divided a 

candidate for a new project. 

4 The value “4” signifies a very large story that requires a developer’s efforts 

for an extended time (beyond a week). 

3 The value “3” signifies a moderately large story that requires approx. 2-5 

days of work to be completed. 

2 The value “2” signifies a medium-sized story that requires 1-2 days of work  
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1 The value “1” signifies a very short story that can be completed in few 

hours and requires very little effort. 

 

Table 1.11 User story/Issues complexity scale [6] 

Value Guidelines 

5 The value “5” signifies an extremely complex story with high system 

interdependencies and vital expertise lacking in the developer group. 

Accurate interpretation of a story is tough due to the presence of large 

unknowns. Thus, extensive refactoring and research, and delicate judgment 

calls are required. The story is significantly impacting itself externally. 

4 The value “4” signifies a very complex story with high system 

interdependencies and vital expertise weakly present in the developer 

group. The story described by the product owner may not be accurately 

represented due to the presence of large unknowns. Thus, the story should 

have comparatively wider refactoring, research, strong programming skills, 

and delicate judgment calls. The story has a moderate impact externally on 

itself. 

3 The value “3” signifies a moderately complex story with moderate system 

interdependency with the presence of a strong skill set or experience within 

the developer group. It is a little challenging for the product owner in 

providing an accurate description of the story due to the presence of some 

unknowns. Thus, little refactoring, intermediate programming skills, 

research, and potent judgment calls. The story has a minimal external 

impact on itself. 

2 The value “2” signifies a coherent technical and business requirement that 

requires minimal research as the presence of unknowns are few. Thus, 

rudimentary programming skills are required to complete the story 

description. The story is localized to itself. 
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1 The value “1” signifies a completely accurate story description with 

unambiguous technical and business requirements and minimal unknowns. 

Thus, there is no research required, and basic skills in programming can be 

utilized. The story is localized to itself. 

 

Table 1.12 Decelerating factors [6] 

Decelerating factors Normal Volatile Highly Volatile Extremely Volatile 

Team Composition 1.00 0.99 0.94 0.89 

Process 1.00 0.99 0.95 0.91 

Environmental Factors 1.00 0.98 0.96 0.95 

Team Dynamics 1.00 0.99 0.89 0.86 

 

Table 1.13 Dynamic force factors [6] 

Variable Factor Normal High Very 

High 

Extremely 

High 

Expected Team Changes 1.00 0.99 0.97 0.95 

Introduction of New Tools 1.00 0.98 0.96 0.94 

Vendor’s Defect 1 0.99 0.96 0.89 

Team member’s responsibilities outside 

the project 

1 0.98 0.97 0.95 

Personal Issues 1 0.98 0.97 0.96 

Expected Delay in Stakeholder response 1 0.99 0.98 0.96 

Expected Ambiguity in Details 1 0.99 0.98 0.97 
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Expected Changes in environment 1 0.98 0.97 0.90 

Expected Relocation 1 0.98 0.96 0.92 

1.6 Estimation in Scrum 

Scrum is flexible, so effort estimation becomes challenging. Customer requirements in 

Scrum are listed in the form of user stories. A user story represents requirements in some 

standard form. However, a user story must be implementable in a single iteration 

otherwise if not, the requirement is broken down into smaller stories. The collection of 

stories is known as Product Backlog. The units of work can be categorized in two ways 

viz., Real-time units (hours, days, etc.) and abstract units (SP, Ideal days). The customer 

prioritizes the stories. The priorities could be in terms like "high, medium, low", 

"Definitely needed, needed, and nice to have" or just numbers with higher numbers 

indicating higher priority. The responsibility of estimating the effort to implement the 

stories rests on the project team. Once prioritization and estimation are done, the 

customer’s need to go to time-to-market is decided upon, and a tentative release date is 

arrived at. A typical scrum estimation process is shown in Figure 1.9.  

 

Figure 1.9 Estimation in Scrum (Overview) 
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Estimation in scrum is carried out in two ways i.e., (i) using numerical inputs, (ii) text 

data. The most important inputs in the first category are the calculated story points and 

the scrum team’s velocity. Velocity is a measure of the efforts completed in a single 

sprint through the scrum team. A sprint in scrum represents iterations. In the second case, 

the input is user story text/words which can be extracted from issue tracking systems. 

Based on one survey conducted by M. Usman et al. [7] data from sixty agile practitioners 

was collected to find which is the most used estimation technique and is tabulated in 

Table 1.14.  

Table 1.14 Widely used effort estimation techniques in industries [7] 

Parameters of 

Study 

Techniques Percentage practiced 

by Agile practitioners 

Estimation 

Techniques 

PP 63% 

Analogy based estimation 47% 

EJ 38% 

Size metrics SP (used solo or in combination with FP) 62% 

Cost Drivers Team’s experience and expertise level Mostly used 

1.6.1   Scrum estimation approaches  

As per the standard industry norms and related literature, scrum estimation has been 

carried out by various approaches given below: 

 Expert-based approaches: It relies on human expertise like expert judgment. 

 Model-based approaches: It relies on the previous data to predict new data.  

 Hybrid approaches: It combines both expert and model-based approaches. 

Scrum estimation as cited above primarily relies on the story point metric. It is the widely 

used metric for estimations in the Agile industry. ML models of estimation are 

performing well as compared to an educated guess by an IT expert. Various ML models 
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have been used like SVR, RF, DT, ANN, NF, DBN, optimization techniques (like GA, 

SBO, Adaptive Fireworks, ALO, and PSO), etc. This classical problem of estimation in 

scrum has been categorized into two parts given below: 

 Numerical data (Data points are numerical values as inputs) 

 Text classification (Data points are text/words as inputs) [8] 

In both scenarios, labels will always be a numerical value. 

1.6.2   Scrum estimation challenges 

We can’t rely on fixed models of ML-based estimation for estimating the effort of Scrum 

projects. They give good results in the initial estimates but differ to vary after successive 

sprints. The various estimation challenges in the field of scrum projects are given below: 

 User stories or Issue volatility. 

 No standard scale for issue size and its complexity. 

 No continuous estimation. 

 Non-inclusion of effort of quality requirements. 

 Issue’s complexity 

 Too many parameters affecting effort. 

 

1.6.3 Traditional estimation to Machine Learning assisted estimation 

The major reasons for this transition are given below: 

 Suffered from individual bias 

 Poor estimation accuracy leads to wrong client commitments 

 More time to reach a consensus 

 User story complexity 

 

 



23 

 

1.7 Motivation 

Software Project Management is an important aspect of software development. However, 

it has always been manual; hence it is prone to human error. The state of software project 

management currently suffers from inaccurate estimation, bias, and non-adaptiveness to 

rapid changes, either in requirements or environment. As a result, the time and cost of 

development increases, burdening the Agile team to fast-track the delivery process. Even 

though Agile is very flexible to the rapid changes, it is largely dependent on human 

expertise and efforts. Experience is a subjective quality that depends entirely on human 

factors. We cannot train two or more humans for the same experience in the same time 

frame and be assured that they will have the same learning. An experienced software 

engineer who has been in various business environments will be more robust than those 

who work in a single domain. 

Our motivation stems primarily from these factors: 

 The human factors can be automated with modern computation techniques. 

 Human errors can be lessened by choosing to depend on computer logic. 

To develop such a system of estimation for assisting a human is the need of the day. 

Fortunately, with the advancements in internet infrastructure, hardware, and software, 

such a system is feasible. The modern machine learning and deep learning techniques are 

a boon for us to automate the system and develop an intelligent assistant algorithm to aid 

the software development process.  

1.8 Research objectives and main contributions 

The research objectives are given below. 

Research Objective 1 

To review and analyze existing effort estimation techniques for Agile-based projects.  
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Research Objective 2 

Design and development of a hybrid effort estimation model for agile-based software 

projects. 

Research Objective 3 

Design and development of a cost estimation model for agile-based software projects. 

Research Objective 4 

Comparative analysis of existing effort and cost estimation approaches with the proposed 

models. 

Our main contribution is to the field of Agile software project estimation, using hybrid 

machine learning algorithms. An in-depth analysis of the existing effort estimation 

techniques reflects on the current state of Agile project estimation. We have utilized a 

hybrid of machine learning and fuzzy logic called an NF system. The most prominent is 

ANFIS, which is capable of modeling human logic and human learning efficiency, to 

automate complex human tasks. Thus, we have contributed to widening the applicability 

scope of ANFIS. We also contributed to the field of meta-heuristic optimization by 

developing a nature-inspired optimization algorithm to improve the learning of standard 

ANFIS. We have compared our implementation to several state-of-the-art algorithms and 

provided substantial information to assess our model’s advantages over them. 

1.9 Thesis Organization 

This section provides an overview of the chapter contents and their organization in the 

thesis. 

Chapter 2 describes the background study for our research. This chapter provides an 

outlook of the current scenario in our domain of interest: Scrum project estimation. We 

have discussed the machine learning techniques used in the domain; the background of 

Adaptive Neuro-Fuzzy Inference Systems, its architecture, and implementation; the 

description of standard Bat algorithm, its implementation, shortcomings, and the various 

hybrids developed; 
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Chapter 3 presents the literature review of the effort and cost estimation in Scrum 

projects using a variety of approaches. This chapter details the study selection process, 

inclusion and exclusion criterion of the literature, and the data and literature sources 

description; literature review summarizing the work of several authors on the usage of 

traditional, machine learning, fuzzy system and hybrid techniques to predict the effort or 

cost, their advantages, and disadvantages; formulation and discussion of research 

questions. 

Chapter 4 presents our developed technique for effort estimation. This chapter 

meticulously describes in various sections our architecture from data preparation to the 

estimated value of effort; the dataset description, feature selection, data synthesis and 

transformation; the challenges in adopting standard Bat algorithm for effort estimation; 

our novel structure modification to standard Bat algorithm in developing its hybrid; its 

pseudo-code and implementation in ANFIS; and the results of our developed technique 

against several state-of-the-art algorithms. 

Chapter 5 presents our developed technique for cost estimation. This chapter thoroughly 

describes in various sections our architecture for estimating the cost of a Scrum project; 

feature selection and transformation of the dataset; the challenges in adopting standard 

Bat algorithm for cost estimation; description of our novel feature that addresses the 

challenge of adopting modern machine learning techniques for cost estimation; its 

pseudo-code and implementation in ANFIS; and the results of our developed technique 

against several similar optimization algorithms implemented in ANFIS. 

Chapter 6 presents the conclusion of our thesis and the future scope of the research 

conducted. This chapter summarizes the challenges in traditional techniques of 

estimation; the transition to machine learning techniques, present literature of work and 

results; advantages and disadvantages of using ANFIS; requirement of meta-heuristic 

optimization algorithms in assisting with hyper parameter tuning; design and 

development of EEBAT, its integration and results relevant to effort estimation; design 

and development of CEBAT, its integration and results relevant to cost estimation; time 
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and space complexity analysis against several other algorithms; and the future scope of 

work in the software development estimation field. 
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CHAPTER 2 

BACKGROUND AND PRELIMINARIES 

The underlying architecture of the proposed approach has been inspired by the universal 

estimator i.e., ANFIS. Standard ANFIS [9] has promising solutions for problems of 

heavy weight process models in context to software estimation. ANFIS has some inherent 

pros and cons, which makes it a little less efficient for estimating in an Agile environment 

if applied as a standard. Some shortcoming of ANFIS includes high computational cost 

due to structural complexity and gradient learning hence for large inputs it will be slow, 

type, location and no. of membership functions, the curse of dimensionality and 

complexity-interpretability trade-off. As Agility means injecting ‘change’, a de-facto 

ingredient in reshaping the culture of software engineering, it becomes a mandate to 

optimized ANFIS hyper parameters to predict and adjust the Scrum project's effort during 

all prominent sprints. EEBAT technique will tune the ANFIS parameters. Related 

background work has been discussed in this chapter. 

2.1 Machine Learning techniques 

Various techniques are being used over the years for estimating the effort in both agile 

and non-agile environments. In agile projects, two very commonly used metrics influence 

the project’s growth efforts, one that defines the size and complexity of the project called 

the story points, and the other that defines the total number of story points that can be 

conveyed by the team in a sprint called the project team’s velocity. We can estimate 

efforts that are required by the software project using the agile approach efficiently based 

on the two factors- number of story points and team velocity. The estimation process for 

user stories in the backlog is discussed in a sprint planning meeting, after which, the 

product owner prioritizes the item effectively based on the team’s velocity. A very 

important factor in this process is to reduce any kind of influence on the team and to 
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successfully practice the exercise. Several machine learning techniques/hybrids that have 

been used in Agile project estimation are briefly discussed: 

 XGBoost [10]: The XGBoost algorithm is built upon tree boosting algorithms. It is an 

end-to-end scalable, ensemble system that uses data compression and gradient 

boosting framework. It comparatively uses lesser resources as compared to other 

ensemble learning methods. It is widely accepted to be an improvement over DT and 

RF and thus preferred in machine learning challenges.  

 CatBoost [11]: CatBoost is developed by Yandex Inc as a new gradient boosting 

toolkiSt that used ordered boosting, based on permutation for processing categorical 

features. CatBoost can utilize both CPU and GPU natively thus extends scalability 

over traditional machine learning techniques. It rivals XGBoost in performance and 

accuracy.  

 FLANN-WOA [12]: It is a hybrid algorithm that combines FLANN having 3 layers 

with a set number of nodes and then those nodes are being multiplied by the calculated 

weight vector by combining WOA.  

 RBFN-WOA [12]: RBFN has 3 layers just like the FLANN algorithm. The first layer 

of RBFN has input neurons that provide input data whereas the Gaussian RBF generates 

the middle layer. The final output is obtained as the weighted sum which is calculated 

by WOA and then multiplied by the nodes of the middle layer. 

 DBN-ALO [13]: The number of knots in the proposed DBN-ALO architecture has 

five RBM’s for traditional inputs whereas 3 for agile inputs. Just one node is available 

to attempt the output layer. The input is linked and evaluated according to the training 

algorithm in the visible DBN layer. Three RBM stacks were relocated. The effort is 

calculated as a linear amount of the final RBM output at the output layer.  

 SVR-RBF [14]: SVR has been designed to address regression problems. Oliveira 

initially investigated the application of SVR to estimate the cost of software projects. 

Kernel learning algorithm uses a popular kernel function in machine learning called the 

radial base function which is also used for the classification of vector machines.  
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 ABC-PSO [15]: A novel method was proposed for the calculation of the commitment 

in agile development projects focused on velocity and the story points. A mixed variant 

of ABC and PSO algorithms had been implemented as well for getting better results. 

2.2 Standard Adaptive Neuro-Fuzzy Inference Systems [9] 

ANFIS, popularly known as a universal estimator is based on Takagi-Sugeno Fuzzy 

System and makes use of potentials of neural network and fuzzy logic altogether in a 

package. It is computationally more efficient than Mamdani, which mostly depends on 

expert knowledge. The architecture of a standard ANFIS is given in Figure 2.1 and its 

equations are given in Table 2.1. It has primarily five layers with functionalities as 

follows: 
 

 Fuzzifying Layer: All neurons are adaptive nodes including premise parameters. 

 Implication Layer: Each neuron contains the product of all inputs. 

 Normalizing Layer: Each neuron is fixed. 

 Defuzzifying Layer: All neurons are adaptive nodes including consequence 

parameters. 

 Combining Layer: One neuron containing the sum of all inputs. 

Table 2.1 Standard ANFIS equations [9] 

Error Measure Ep = ∑ (          )
  

                                      (2.1) 

Error rate for the output node    

     
      (         

 )                                       (2.2) 

Generic parameter alpha        
  

  
                                                         (2.3) 

Learning rate with ‘k’ step size     
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                                                         (2.4) 
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                   (2.5) 

Covariance Matrix 
        

           
   

       
       

 𝑖                       (2.6) 
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]                                 (2.7) 
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Figure 2.1. Standard ANFIS Architecture with defined inputs 

The detailed supposition stages of the ANFIS model are described below and shown in 

Figure 2.2. 

Figure 2.2 Stages of ANFIS 

This model includes two stages given below. 

Stage 1: Obtain the optimal parameters for ANFIS 

 Loading training and testing data  
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 Generate base FIS 

 Setting base FIS parameters  

 Parameter adjustment of base FIS  

 Outputting optimal values as the result 

Stage 2: Using the optimized parameters in ANFIS 

Updated parameter values obtained from optimization algorithm added in the fuzzy 

system and calculation of the system error metrics. Table 2.2 describes the standard 

ANFIS hybrid learning method. 

Table 2.2 Forward and Backward pass in ANFIS hybrid learning method 

Legends Forward Pass Backward Pass 

Antecedent Parameters Fixed GD 

Consequent Parameters LSE Fixed 

Signals Node Outputs Error rates 

 

2.3 Standard Bat algorithm  

There are many meta-heuristic algorithms but we made use of the Bat algorithm for our 

proposed work. Bat algorithm is a metaheuristic optimization algorithm developed by 

Xin-She Yang [16] in 2010. The biological inspiration for the algorithm is the hunting 

instincts of micro-bats for food in some regions using one type of sonar, called 

echolocation. Bat species emit waves in the ultrasonic spectrum of waves, having some 

frequency and loudness, at some rate, towards the food which hits it and reflects to form 

an echo. Through the use of echoes, the bats analyze the distance of the food from its 

position. This is because the wave emitted at time step t reflects towards the bat at some 

time step t’ and the difference in time step (t’ - t) is used to assess the distance of the food 

from the bat. An individual bat from the population randomly flies towards a position    

with velocity  , varying wavelength , loudness  , fixed frequency    , and pulse 

emission rate  [   ]. The parameters – wavelength and rate of pulse emission rate can 
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be automatically adjusted based on a target's proximity. Loudness   [       ] where 

   is a largely positive and      is minimum constant. The difference between obstacles 

and targets is an inherent property of the bat species. The standard Bat algorithm is 

shown in Figure 2.3. The steps of the algorithm are as follows: 

 Initialization of the bat population: The search space is a region of many targets. 

Every iteration of the algorithm requires the bat to search for optimum target 

locations for their satisfaction. These locations being unknown, are initialized using 

the random generation of values through vectors (dimension d and population size n) 

with subsequent evaluation of their quality. 

                                   (2.8) 

where  [      ] ;   [      ] ;      and      are the corresponding highest and 

lowest boundaries of dimension d;   [   ] randomly.  

 Frequency, Velocity, and New Solutions Generation: The quality of the food 

sources evaluated during the initialization phase, influence the movements of the bats. 

The equations for generating velocity, frequency, and position are as follows. 

                                  (2.9) 

  
    

       
                (2.10) 

  
    

       
      (2.11) 

where    is the frequency of 𝑖   bat;      is the minimum frequency;      is the 

maximum frequency;  ’s value is generated randomly;    is the global best solution 

obtained among the n bats until current iteration;   
  is the velocity of bat 𝑖 at time t. 

 Intensification capability: The solution so obtained during the exploration phase is 

used as the central point for local searching of solutions. 

                   ̅       (2.12) 
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       where           is one of the elected high-quality solutions through any selection 

method;  ̅  is the average loudness of all bats at time step t;   [    ] generated 

randomly.  

 Updating loudness and pulse emission rate: Due to the proximity of the target, the 

Loudness   and pulse emission rate 𝑒   are modified and are given as follows. 

  
 

   
       (2.13) 

The equations for updating the parameters are as follows. 

  
       

           (2.14) 

𝑒   
    𝑒   

 [      ]           (2.15) 

where     are constants.  

Standard BAT algorithm [16] has certain inherent issues like failure to converge to global 

optima, multimodal optimization, poor exploration, slow rate of convergence, and no 

population diversity. To address these issues, various BAT variants have been introduced 

by researchers across the globe and are listed in Table 2.3 with their strengths. 

The list of inferences that have been deduced from the variants cited in Table 2.3 are: 

 Handling trade-off between exploration and exploitation 

 Converging to global optima instead of being trapped in local minima 

 Flexibility in the integration of the bat variants in different models 

 Diversity factor to maintain the distinctness of population 

 Improvising the algorithm for multimodal functions  
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Figure 2.3 Standard Bat algorithm flowchart 
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Table 2.3 BAT Variants with their strengths 

Bat Variants Strengths 

AMBA [17] Diversification using Opposition Based Learning technique, Swarm selection 

based on - random, best average fitness, worst average fitness, and farthest 

swarm best; Swarms can exchange information; Diversification is maintained 

Bat with Mutation [18] Mutation operator increases population diversity that results in improved 

exploration and a faster global rate of convergence 

BatDNN  [18] The sigmoid function used leads to a higher rate of convergence 

Binary Bat Algo  [19] Fitness function based on optimum-path classifier improves the convergence rate. 

Search space divided into n-cube lattice improves exploration and exploitation 

capabilities, Suitable for feature selection 

CBA [20] Chaotic mapping increases convergence and rate of convergence 

Differential Operator 

& Levy flights Bat  

[21] 

Differential operator improves the rate of convergence; Levy flights creates 

diversification leading to avoidance of premature convergence; Performs well on 

complex high-dimensional problems 

DABA  [22] Direction scope increases exploration and rate of convergence; Deep checks in 

the limited area increases exploitation 

DLBA  [18] Dynamic Weight model and Levy flight model increase exploration and 

exploitation; Mutation Probability increases diversity; Adaptive memory ability 

increases the rate of convergence 

DVBA  [23] Division of population into Explorer and Exploiter bat improve convergence, 

Roles can be interchanged, Exploration and exploitation capabilities are 

controlled using incremental rate divisor which is dependent on the location of 

prey 

Improved Bat Algo 

(cost estimation)  [24] 

Automatic shifting of a global search to local search Random movement prevents 

local search while in exploration hence increasing the rate of convergence 

IBA [25] Diversity increases exploration capability 

LBA [21] Levy flight behavior improves the exploitation capability, convergence and 

prevents falling into local optima 

LogisticBatDNN  [26] Polynomial mapping is used leading to a very good rate of convergence 

MeanBatDNN  [26] Updated equation of velocity based on       and       has higher convergence 

Modified Bat 

Algorithm (ANN)  

[26] 

Alpha parameter updates loudness and increasing exploration capability; 

Diversification leads to a better rate of convergence; Suitable for complex 

problems 
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Modified Bat 

Algorithm (Stability 

Analysis)  [27] 

Additional parameter ‘w’ adds stability by lessening restrictions on ‘f’ thus 

improving convergence; Exploration and exploitation capabilities are balanced 

MOBA [28] Combines the objective functions using weighted sum into a single objective 

function for solving multimodal problems 

Novel bat algorithm 

with multiple 

strategies coupling 

(mixBA)  [29] 

Multiple strategy autonomous selection strategy using probability 

OBMLBA  [30]  Levy flight improves exploitation ability; Opposition based Learning improves 

exploitation ability; Sinusoidal equation allows flexibility in modification of 

frequency 

Piecewise-BatDNN 

[26] 

Piecewise linear chaotic map leads to a higher rate of convergence 

SBA [25] Contraction factor maintains diversity; improves convergence efficiency and 

prevents falling into local optima 

Simplified Adaptive 

Bat based on the 

frequency [31] 

Frequency adjustment improves convergence and prevents falling into local 

optima 

SinBatDNN  [26] The sinusoidal mapping used leads to a higher rate of convergence 

 

2.4 Summary 

The transition from traditional techniques of estimation in Scrum-based projects to soft 

computing techniques such as machine learning and NF systems is evolutionary. 

Traditional techniques are human-dependent, as they require considerable experience and 

related domain knowledge to properly estimate the effort and cost of a project. However, 

there is an inherent disadvantage of such techniques, which is the primary individual bias 

that sways the sprint planning and clearance of backlog as a result. It has been concluded 

that machine learning techniques outperform traditional techniques of estimation.  

Though several popular ML techniques are applied in the application of cost and effort 

estimation in Scrum projects, their performance lags when the non-linearity in data 
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increases. Several authors created hybrids of such techniques which altered the 

performance positively. We have presented evidence that ensemble estimation techniques 

win over a single approach of estimation. However, hyperparameter tuning is a primary 

concern that needs to be addressed when adapting such algorithms to this domain. 

The usage of optimization techniques for hyperparameter tuning results in bridging actual 

and predicted values of effort estimation as compared to manual tuning. Grid Search and 

Random Search are the most common methods of hyperparameter tuning in machine 

learning. However, they are time-consuming and require high computational resources. 

This presents opportunities for developing optimization algorithms that have given 

promising results. DBN-ALO has maximum accuracy (PRED) and the lowest MMRE on 

the most used Agile dataset. Using the ALO optimization algorithm, DBN is 

automatically tuned to provide the best set of estimations of effort in effort and cost 

estimation. 

The advent of NF systems is a boon to the research community as it is most capable of 

replacing complex human tasks with intelligent automation. We have detailed the most 

prominent NF system called ANFIS that can be used in Scrum project estimation. We 

chose this system to develop a more efficient and faster algorithm than DBN-ALO. 

ANFIS has three fundamental concerns: selection of type and number of membership 

function, the curse of dimensionality, and interpretability-complexity trade-off. These can 

be mitigated by substituting another optimization algorithm in the standard ANFIS 

algorithm to adapt it for Scrum project estimation. We propose the use of a standard BAT 

algorithm for this purpose. 

The standard BAT algorithm is one of the best optimization algorithms that are suitable 

for enhancing the ANFIS performance. The standard BAT algorithm is very popular 

among researchers due to its enthralling performance on various datasets. Since it has 

also suffered from problems like convergence failure for global optima, multimodal 

optimization, poor rate of exploration, slow rate of convergence, lack of population 

diversity, and forgetfulness, its variants have been proposed by several authors. We have 
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provided a summary of the best variants to sensitize the readers of its potential in several 

domains. 
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CHAPTER 3 

REVIEW OF LITERATURE 

3.1 Related work 

Ravi Kiran et al. (2021) [32] presented various estimation challenges and issues faced by 

the IT companies incorporating Agile based practices. They conclude, planning poker as 

the most used technique/model of agile estimation. Authors also listed various pointers 

leads to inaccurate estimation and software crises. 

Athanasios Karapantelakis et al. (2021) [33] made use of MBT for teams incorporating 

scrum to estimate costs. Authors have created and presented a set of models that can 

estimate MBT adoption costs based on a number of baseline criteria such as staff 

competence and availability, as well as historical data utilization. 

Neha Gupta et al. (2021) [34] uses the integration technique to evaluate dynamic 

development efforts based on features and user input. The distributed method's results 

suggest that the energy expenditures produced from user data are valuable. 

Rene Avalloni de Morais (2021) [35] proposed deep learning-based algorithms for 

estimating story points in agile projects. For story point estimation, 16 open-source 

projects proposed and train different algorithms on a big dataset. Furthermore, author also 

employed natural language processing techniques to extract more useful characteristics 

from software requirements expressed as user stories. 

Zainab Rustum Mohsin (2021) [36] in his paper deduced that the artificial neural network 

technique was used to model software development effort COCOMO was one of the 

datasets used in the estimation. The MMRE and correlation R were utilized as evaluation 

tools. Following the construction and testing of the ANN model, and a comparison of the 

ANN model's test results with those of the SLIM, Function Points, and COCOMO-basic 

models, it was determined that the ANN was a suitable model for estimating effort. It is 
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also suggested that ANN be utilized as a predictive model for estimating software 

development effort. 

Simone Briatore et al. (2021) [37] in their paper describes a pilot validation experiment 

of an unique Agile framework for the development of hardware systems, which includes 

a parametric tool for more rigorously estimating task effort than standard confidence 

votes. The validation of electrical hardware design task estimation and overall project 

performance is presented. Experiments with teams of junior engineering students are used 

to validate the system. When using the offered tool during the planning phases of the 

development, the validation experiment revealed an improvement from a minimum of 8% 

to a maximum of 18%. 

Kasi Periyasamy et al. (2021) [38] explains the design and execution of a project tracking 

tool for software projects built using the agile method Scrum. The tool's users may keep a 

close eye on the progress of user stories, sprint tasks, and test cases that have been added 

to a scrum board. The tool provides a measure of difficulty to implement in terms of story 

points for each user story, as well as the expected completion time for each sprint job. For 

ongoing monitoring of efforts based on sprint tasks, the solution employs machine 

learning support. Three separate graduate course projects were used to test the tool's 

effectiveness. 

Przemyslaw Pospieszny et al. (2018) [39] use three approaches for effort estimation in 

the ISBSG dataset: SVM, MLPANN, GLM. They inferred SVM outperforms ANN and 

GLM by having lesser MMRE and higher PRED (25). Even when the dependent variable 

is log-transformed, GLM outperforms ANN, but SVM still wins. According to the 

authors, results may vary due to the presence of several project data in ISBSG, and things 

may be different if applied to a homogeneous set, such as PROMISE or from source 

forge. 

Morakot Choetkiertikul et al. (2017) [8] estimated the effort of user stories rather than the 

whole project. The authors made use of hybrid LSTM and RHWN and mined 16 open-

source projects. Their developed deep learning algorithm outperformed random guessing, 
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median, and mean techniques of estimation. Because the model is recurrent, the features 

will be consistent across all layers, eliminating over-fitting. They developed an end-to-

end model in which words are provided as input and story points are calculated as a final 

output. To validate results, they employed non-parametric testing. When utilized inside a 

team, story points are useful, but they should not be used to compare projects. 

Jasem M. Alostad et al. (2017) [5] introduced a Mamdani FIS type model for story 

point estimation that utilized team experience, narrative size, and narrative complexity as 

inputs to the FIS and estimated accuracy as the final result. The final results of the 

performance metrics MMRE and PRED are 0.28 and 50% respectively, which is directly 

proportional to the team’s experience as the sprints increase. 

Habibi Arifin et al. (2017) [40] proposed linear regression models for estimating both 

effort size (relative) and effort time (absolute).  They used data from Atlassian JIRA 

repositories to develop an estimator that is evidence-based. 

Saurabh Bilgaiyan et al. (2017) [3] reviewed cost estimation literature in agile-inspired 

projects. The authors have answered various RQs like - What are the most common agile 

estimate approaches? In what scenario may it be used? What percentage of people 

succeeds and how many people fail? They concluded that NN, EJ, PP, LR, Wideband 

Delphi, UCP, and MUCP are frequently searched terms. They also addressed the 

challenges they faced and concluded that scrum is the most popular methodology. 

Murat Salmanoglu et al., (2017) [41] compared the cosmic functional point to the 

narrative point on three industrial projects in an agile framework. As a consequence, they 

observed that cosmic gives more objective estimations than relative SP (which is based 

on the team's expertise) and that cosmic has a better forecast than SP with an underlying 

fact function. They concluded that cosmic FP-based regression models outperformed SP-

based regression models. 

Ricardo Araujo et al. (2017) [42] developed an MDELP model to handle software effort 

estimation concerns. However, because it is not used in agile projects, no conclusions can 
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be drawn about its effectiveness. They choose dilation and erosion operators based on 

pessas concepts. They claimed that the hybrid technique outperformed the existing in 

terms of PRED. 

Dragicevic Srdjana et al. (2017) [43] emphasized how the success of agile projects is 

dependent on the elicitation of strong issues.  Their developed approach could be used in 

any independent agile project to estimate effort. They used data from 160 projects. They 

employed the performance metric RMSE to check the discrepancy between actual and 

estimated effort. 

Vlad-Sebastian Ionescu et al. (2017) [44] used the TF-IDF, SVR, and GNB techniques to 

estimate effort for traditional techniques. When compared to the existing literature, the 

results appear to be favorable. 

Maciej Abdzki et al. (2017) [45] discussed the OSW project, the TOPO system, and the 

FOODIE system, along with the many challenges inherent in them, in their paper. They 

used the agile estimates literature to analyze everything and established some interesting 

conclusions, such as Planning Poker's capacity to produce superior results. 

Lavazza et al. (2017) [46] developed a novel technique that provides good estimation 

accuracy before production deployment. There were discussions of several accuracy 

prediction factors, and a standardized accuracy measure was used to assess the model's 

accuracies. The authors also compared various data sets of alternative models. 

Janeth Martnez et al. (2017) [47] demonstrated how to utilize a BN model in a Scrum 

context to generate estimation criteria based on the complexity and importance of user 

stories. They validated their developed model using correlation tests. This approach will 

help all newcomers’ transition to scrum-based projects. 

Mohd. Owais and R. Ramakishore (2017) [48] provided a technique for effort, cost, and 

time duration estimation in agile-based projects. No ML algorithm is used in this 

technique. They conclude their technique is fundamental thus any empirical proof that the 

current best techniques will be improved is absent. 
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Seyyed Hamid Samareh Moosavi et al. (2017) [49] developed an SBO algorithm for FIS 

parameter optimization. The authors claim that their developed algorithm provides 

optimum parameters to the FIS. They used the ISBSG dataset and the comparison was 

made using existing techniques such as CART, MLR, and others. 0.235 values for 

MMRE were identified, which is smaller than the group chosen for comparison. 

Shashank Mouli Satapathy et al. (2017) [50] demonstrated the usage of the SP technique 

to increase the accuracy of effort estimation. The authors compared internal and external 

results using three machine learning algorithms: DT, SGB, and RF. For training and 

testing the models, they used data from Zia et al. They next used logarithmic 

modifications to standardize the data they had collected. They give the ML model issue 

counts and velocity as inputs, to output the predicted effort. As a result, SGB performs 

better than the competition. BN can be employed in the future. 

Aditi Sharma and Ravi Ranjan (2017) [51] clarified some of the pressing queries, such as 

NFIS used in effort estimation and their rate of success based on several performance 

metrics. The concluding statements are incoherent in the context of Agile. It is suggested 

that NFIS be used with COCOMO, FP in the future. 

Binish Tanveer (2017) [52] mentioned in his work that it is necessary to have 

accompanying guidelines before setting up effort estimates to have a high success 

probability. It's designed for assessing the impact of change. After consulting with 

specialists, a framework for guidelines is created. 

Non-algorithmic models are applicable for agile-based tasks, according to Sufyan Basri et 

al., (2016) [53] . Because requirements are unpredictable in agile, they must be factored 

into the estimated effort and added to the final effort. A table of change type values is 

also provided, along with the percentage effort necessary for modifications in various 

phases. MRE's outcome is unsatisfactory. 

Saurabh Bilgaiyan et al. (2016) [54] provided an overview of soft computing strategies 

used in the last decade in agile effort estimation. In their conclusion, BN appears to be 
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more promising than other models, with a 62.8% accuracy rate, when compared to 

regression-based models, composite models, expert opinion, and PP. 

Anjali Sharma et al. (2016) [55] compare RF to various NNs and claim that RF 

outperforms GRNN, PNN, CCNN, and GMDH. They've used effort as a source of 

information for the RF approach. 

Zia et al. (2016) [56] proposed a model based on expert systems and compared it with 

COCOMO-II and Function Point Analysis and found quite promising results i.e., 9% 

increased accuracy as compared to both. However, there is no detailed reasoning 

mentioned about the intelligent system and is not made in context to agile. 

Kayhan Moharreri et al. (2016) [57] developed for Agile-based projects a story point’s 

auto-estimation model. It inputs a dataset, selects and extracts features, then does a cost 

estimation analysis. RF, PP, NB, LMT, and their hybrids are some of the methods that 

have been used. Each one generates a confusion matrix. Conclusively, PP is 

outperformed by the hybrid. 

Binish Tanveer et al., (2016) [58] focused on Agile-based project effort estimation as an 

industrial case study. By the survey conducted amongst 3 SAP teams, impact, team 

expertise, and task complexity are three key factors that influence agile project effort and 

the industry largely rely on PP and SP for estimation.   

Aditi Panda et al. (2015) [59] compared multiple NNs used in Agile effort estimation on 

Zia et al. dataset. GRNN, PNN, GMDH, CCNN, and polynomial NN have been studied. 

With a PRED of 94%, they discovered that CCNN outperformed all others. They suggest 

SGB, RF with SP approach for future scope of work. 

Muhammad Usman et al. (2015) [60] conducted a state-of-the-practice survey for 

determining accuracy through an industrial perspective. They mined data from sixty agile 

practitioners. They concluded that PP is the most frequent method of estimation 

(63%) followed by SP estimation (62%) and the most frequent size metrics and cost 

drivers used at what stage of the SDLC. 
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Hind Zahraoui et. al (2015) [61] described scales and characteristics influencing user 

stories, and how they alter them for increased accuracy. Their approach is based on 

determining the story's priority as a multiple of its urgency and business value then 

finally creating a scale to accommodate it. 

Vachik S. Dave et al. (2015) [62] examined a decade of literature in which NN was used 

to estimate effort. They looked at 21 articles and concluded with several key findings 

which include a comparison of ANN to several techniques like PP, ANN having superior 

accuracy compared to FP and SLIM. However, the analysis was not in the context of 

agile. 

Ali Bou Nassif et al. (2015) [63] compared the effort for non-agile-based projects using 

the RBFNN, GRNN, CCNN, and MLP. Five datasets from ISBSG were used with CCNN 

outperforming the others. 

Manga I, Blamah (2014) [64] proposed the PSO framework in their study, which delivers 

improved percent accuracy. With adaptive learning, a comparison is made, but facts are 

missing. 

L.R. Nerkar, P.M. Yawalkar (2014) in their paper [4] reviewed the existing cost 

estimation techniques wherein algorithmic models like COCOMO, Putnam, FP model, 

and non-algorithmic i.e., analogy based, Parkinson’s law, price to win, and EJ 

comparisons are drawn. They also proposed a web cost model without any evidence that 

it is good. 

Rashmi Popli, Naresh Chauhan (2014) in their paper [65] presents the algorithmic 

estimation method based on the effect of various people and project factors. The author 

explains why it is necessary to include these factors and what problems peeps in if we 

don’t include these factors in estimation. The author discussed fourteen factors which 

include types of projects, quality requirements, etc. The algorithm begins with the 

calculation of unadjusted values, quality factors, and time factors. Based on these 

calculations, estimated story points and estimated time for the project. The future work 
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states the inculcation of other factors which affect the estimation process to make the 

process of estimation more accurate and efficient. 

Govind Singh Rajput, Ratnesh Litoriya (2014) in their paper [66] presented a novel cost 

estimation method for agile online projects. They used hybrid CORADMO for RAD 

projects which can be used in agile projects which are named CORAD_AGILE. It 

explains three new cost drivers which are substituted with three old cost drivers. These 

new cost drivers are replaced with personnel, collaboration support, and prepositioning 

assets. Effort, schedule, and personal productivity are calculated based on this model.       

Rashmi Popli, Narsh Chauhan (2014) [67] lay the foundation for an algorithm to estimate 

Effort and Cost in Agile projects. It is a related work to the previous paper that takes into 

account the concept of story points. This paper explains a mathematical estimation 

technique. The author also explained the life cycle of agile and explains the reason for the 

necessity of effort estimation in any project. The major causes which are responsible for 

inaccurate estimation in agile development are also discussed which include the 

methodology adopted, the political forces like managerial pressure, management control 

issues such as uncertainty and self-knowledge. Then the existing agile estimation 

techniques which are available are given along with their problems. Then the author 

proposed their method for the estimation using the story point approach. Total story 

points are calculated followed by the calculation of velocity which is the value computed 

by the SP completed in one iteration divided by SP in one US. Then, frictional velocity is 

calculated followed by estimated development time, effort and cost. Then a case study is 

done using hypothetical values of the various factors. The future work of the paper states 

that various correlating factors must be added to improve the estimation accuracy. 

Shashank Mouli Satapathy et al. (2014) [68] introduced SVR strategies for improving the 

effort estimation accuracy using the SP methodology. A comparative analysis of various 

SVR kernels has been carried out and it has been concluded after experimental results 

that RBF outperforms linear, polynomial, and sigmoid including kernels. SGB, RF, and 

other techniques can be used to make further improvements. 
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Usman, M., et al., (2014) [69] discussed various traditional and ML estimation 

techniques and compared their prediction accuracies. In their work, MUCP and NN 

appear as good candidates. The authors also identified various size metrics and cost 

drivers such as team expertise, size, etc. 

Zhamri Che Ani, Shuib Basri (2013) in their paper [70] has investigated how to estimate 

the effort for the software development in Agile Environment using UCP. Calculating the 

initial efforts in Agile Projects is a challenge because of the volatile requirements in these 

projects. And implementing UCP is difficult in agile projects due to two reasons. First, 

the product backlog contains short descriptions of user stories that don’t fit into the 

documentation standards of use case points. Secondly, none of the studies has clearly 

described how to use Agile Product Backlog with this approach.  So, the authors have 

successfully implemented this method despite its limitations. For the implementation of 

this method, KOINS data was taken for analysis. The steps for UCP are followed which 

involve determining and computing unadjusted use case points, technical complexity 

factors, environmental complexity factors, productivity factors, and estimated number of 

hours. The estimated result was near to the actual result stating that the UCP approach is 

suitable for estimating the efforts for software development at the early stages. The future 

work states that other estimation models are needed to be compared with this method like 

COCOMO on Agile projects. The major challenge in this paper was the relation of agility 

with the calculation is not clearly explained. The concept of user stories which is the 

baseline of agile projects seems to be disappeared in this paper. So, the problem 

definition can be formed by merging the concept of story points with use case points. The 

major challenge against this statement is the availability of the data set for the analysis. 

Abhilasha, Ashish Sharma (2013) in their paper [71] explain the concept of regression 

testing and test effort estimation for the regression testing. Test effort estimation turns out 

to be costly if all test cases need to be executed. So, there are various techniques used for 

the selection of test cases that minimally needs to be executed. An approach for the 

calculation of the Test effort estimation is proposed.  
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Ziauddin, Shahid Kamal Tipu, Shahrukh Zia (2012) [6] This paper presents a model for 

the effort estimation for agile projects. The author first discusses some cost estimation 

techniques and explains agile software development and its characteristics. Then 

techniques for effort estimation in agile that can be used are discussed. These estimating 

techniques include numeric sizing, t-shirt inspired sizes, the Fibonacci sequence, etc. It 

clearly states that the estimation is done by the team members in the sprint planning 

meeting for the stories of a product backlog. The story size scale is built which is an 

assessment of the work's relative size in terms of actual development effort. The 

complexity of the project which may be because of user stories or technical complexity is 

measured on the complexity scale. These two values, the effort can be calculated for a 

particular user story which in turn can be summed up for the total effort. Then the 

concept of velocity is used for the calculation of effort that the team can accomplish in 

one sprint. Then this velocity is optimized by taking into account the friction forces and 

the dynamic forces which reduces the projected velocity. Then completion time is 

calculated followed by the calculation of development cost based on the data collected 

from the 14 CMMI level 3 companies. Then the experimental analysis is made from the 

empirical data which is based on data of 21 software projects. The outcome shows that 

estimated results are near to the actual results. This paper opens several research 

problems for a future investigation like the use of the number of scales for the estimation 

of efforts like ranking scale or use of Fibonacci sequence. Moreover, the other factors 

that are affecting the velocity other than that are mentioned in the paper can be analyzed 

and more optimized results can be obtained. An improvement can be made on the 

estimation method by analyzing the major factors that seem missing in this approach.  

Evita Coelho, Anirban Basu (2012) in their paper [72] discussed the most acceptable 

approach in agile methodology – Story Points. Story points are the unit of measurement 

of user stories that expresses their overall size. The effort and duration that is required for 

the delivery of features to the customer are estimated by the team member. The 

traditional methods of effort estimation are not appropriate for effort estimation. For the 

story points approach, the estimation of the schedule and effort starts by understanding 
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the customer’s conditions of success and failure for the product backlog followed by the 

estimation of user stories and selection of iteration length, then the estimation of velocity, 

prioritization of user stories and then estimation of the delivery date. 

Ratnesh Litoriya, Narendra Sharma, Abhay Kothari (2012) in their paper [73] 

investigated the behavior of various cost drivers responsible for the prediction of the cost 

of any project and then substitution with closest values which will result in the decrease 

of cost of any project. The investigation is done on the 60 NASA past project data which 

already contains the actual efforts. And this data is then put into the WEKA tool and K-

mean clustering is applied to the data set which results in the formation of clusters. Then 

the value of these clusters is used to analyze the values of the cost drivers or in other 

words, the value of cost drivers gets optimized with the formation of clusters. So, the 

effect of the reduced values of cost drivers has a direct impact on the cost of the project. 

This reduction of values of cost drivers which results in the reduction of cost of the 

project is calculated by the use of the online freely available web-based tool AGILE 

COCOMO-II which was developed by the University of Southern California. The future 

work of the paper says that other data mining algorithms such as apriori etc. can be used 

to determine the better optimization of the cost drivers. And these optimized values can 

be applied on the web-based AGILE COCOMO-II. This paper must have served a great 

problem definition by incorporating data mining techniques in Cost estimation and new 

combinations of these fields have come out. 

Ritesh Tanmrakar, Magne Jorgensen (2012) in their paper [74] gives the study of the 

effect of the use of Fibonacci numbers concerning the linear numbers for effort 

estimation. Two case studies performed for analyzing the same provide significant 

insights. In the first case study, a group of students was divided into two groups – one for 

linear and the other for Fibonacci scale for effort estimation. The result showed a large 

difference in the values of effort estimations whereas the linear scale shows a higher 

value of the estimation. The second case study was performed with a set of experienced 

developers. The difference between the values of Fibonacci and linear scale estimations 
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differs with a smaller value. So, the use of Fibonacci is considered to be better than for 

the use of linear scale. 

Ehab E. Hassanein and Salma A. Hassanien (2020) [75] proposed CESP method would 

have a global project view, which will aid in reducing resource waste in the earlier stages 

by rearranging the tasks that will be needed in those stages. As a result, the total project 

time and expense are reduced. This while retaining the versatility and flexibility that the 

Agile technique needs. 

Aiman Khan Nazir et al. (2017) [76] investigated how agile methodology affects various 

aspects of software project management According to the literature review, agile 

methodology aids in software project management, which contributes to software 

success. 

Croix, Benjamin (2018) [77] aimed to examine the impact of Agile manifesto on the 

implementation of partial and tailored agile approaches in the related literature from 2001 

to 2017. They were convinced that the real nature of agility had been lost as a result of 

the industrialization of agile practices. Agile methods should be used within a specified 

structure that adheres to specific criteria based on principles, rather than as a simple 

process or procedure. 

P. Suresh Kumar et al. (2020) [78] discussed the use of various ANN for effort 

estimation. It has been discovered that using ANN to forecast machine effort is more 

accurate. As compared to conventional approaches such as function point, use-case 

methods, and so on, this approach is more accurate and superior. In the case of 

COCOMO projects when compared to statistical models, neural network-based models 

are more competitive as compared to the conventional regression models. 

Muhamad Yusnorizam Ma’arif et al. (2018) [79] aimed to share observations on the 

complexities of implementing Agile projects in Malaysia. This article will highlight the 

problems that a company faces if the Agile Scrum approach is implemented by 

conducting a few sets of interviews with domain experts. The key goal of the Agile 
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process in managing IS development projects is to achieve rapid implementation and 

execution. 

Faisal Hayat et al. (2019) [80] conducted a survey of various software companies and the 

results indicated that almost every software organization uses agile development 

(Scrum), which has a positive effect on software project management. 

Ali E. Akgun (2020) [81] categorized software development on various bases such as 

conceptual, community, and organizational. He took about two hundred software 

development teams and recognized the importance of the team wisdom process in the 

entire software development process. He showed the research model in the research work 

and also showed the correlation between different parameters. He then showed the results 

of the hypothesis. 

Asad Ali and Carmine Gravino (2019) [82] showed a systematic review based on their 

analysis of papers. They also answered 6 research questions with relevant tables and 

figures. They took the list of different datasets used in the paper and showed which 

dataset was widely used. They performed a secondary search in which they attempted to 

refer to the sources of the related studies, and they discovered several additional papers 

that had been missing in the primary search. 

Abdullah Altaleb and Muna Altherwi (2020) [83] provided a detailed analysis of the 

variables that influence the precision of effort estimation. The estimate of effort from 

previous research, variables were gathered and validated with 20 professionals in the 

field of mobile application growth from 18 organizations. The detailed factors and 

predictors provided in this research work guide the estimation value assignment for user 

stories. These variables were gathered from previous research on the Agile process and 

the creation of mobile apps. 

Emanuel Dantas et al. (2018) [84] proposed and tested a decision tree-based approach for 

estimating effort in agile projects They predefined its accuracy and usability, and the tool 

was tested by gathering data from four projects. They also compared the values of MRE 
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from the teams' forecasts to the values provided by the tool to assess their accuracy. They 

used the Technology Acceptance Model, which was simple to use, to determine. The 

preliminary results showed that the method can be used both effectively and efficiently. 

Magne Jørgensen et.al (2020) [85] took 362 software professionals in their 1st 

experiment for estimating the effort of 3 larger tasks of equal scale tasks. All of the tasks 

in the two experiments were assigned in random order. The likelihood of a bias against 

estimates of insufficient effort can be reduced. 

Anupama Kaushik et al. (2020) [13] proposed a hybrid model that combines DBN and 

ALO. The research work also included the time taken to predict effort as to deal with 

ambiguous estimation. The developed algorithm, DBN-ALO performs well as compared 

to other algorithms applied in the field of estimation on the Zia dataset with the lowest 

MMRE. 

Thanh Tung Khuat et. al (2018) [15] combines two algorithms which were ABC and 

PSO to make a hybrid model which produced favorable results comparatively. They also 

mentioned the related work with different parameters. They also showed the whole 

process starting with the estimation of story points. This latest algorithm outperformed 

various types of ANNs in previous studies. 

Onkar Malgonde and Kaushal Chari (2019) [86] took seven algorithms to predict a 

story's efforts. They also conducted different computer experiments to show that the 

ensemble-based benchmarking worked better than other ensemble-based benchmarking. 

They compared all the related work based on different parameters and also showed their 

proposed method. They used the ensemble learning model in their paper for the 

comparative analysis. 

Ali Bou Nassif et al. (2019) [87] initially, the regression analysis was carried out. The 

results revealed that data heteroscedasticity affected model efficiency. The linear output 

inference method worked better than the other modes. They answered three questions in 

the paper and also showed the related work on fuzzy models for getting an idea about the 
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current work done. They took four datasets and did the graphical representation for 

comparison. 

Soufiane Ezghari and Azeddine Zahi (2018) [88] proposed strengthening the FASEE by 

applying quality requirements to address the aforementioned drawbacks. The model 

includes two capabilities known as CFASEE. Both fuzzy estimates and crisp estimation 

are derived from the current estimation model. An experimental study was also carried 

out. 

Hosahalli Mahalingappa Premalatha and Chimanahalli Venkateshavittalachar Srikrishna 

(2019) [89] introduced a DBN-based model for the prediction of effort in any agile 

technique. There is no effect of the ECS-DBN method on agility because it uses simple 

inputs. At m level, prediction to evaluate the model's accuracy. Nearly 99% precision 

was achieved by the ECS-DBN method as compared to the other referred techniques. 

Claudio Ratke et al. (2019) [90] introduced an automated model based on narrative texts 

to estimate the effort of development. For the extraction of verbs and nouns, and 

linguistic reduction, and the standardization of keywords by synonyms, this paper 

suggested techniques for the symbolic study of natural language. The validation showed 

an accuracy of over 81%. To validate the algorithm, they separated the basis of the 

stories that were already calculated, provided in two halves where one was used to 

compose the words and the other was used to validate the results. 

Gajendra Sharma et al. (2019) [91] conducted and gathered empirical evidence from 

Nepal software development companies. The minimum size of the business was 30, 

while the maximum size of the company was 200. After that, the study of the case was 

performed by conducting a set of structured questionnaire interviews. The findings from 

the case study were compared with the results of the case study. He also did a literature 

review and discovered that there are practices for verification, validation, and testing 

cost/effort estimates based on empirical evidence. He concluded that the estimation of 

test effort follows the same pattern as the estimate of the software development project. 
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Martin Shepperd et al. (2007) [92] proposed a new framework for the evaluation of 

competing prediction systems based on unbiased statistics, standardized accuracy, testing 

the likelihood of results relative to the random 'predictions' baseline technique, which is 

guessing, and calculating effect sizes. 

Brijendra Singh and Shika Gautam (2016) [93]  provided a systematic literature review 

based on situational factors influencing the software process. They also analyzed how 

situational variables are involved in the Software processes. During the whole process of 

software development, various managerial and technical problems arise. To solve these 

problems, software processes are used to develop a product of quality. There are different 

kinds of situational variables that influence the software process. In the paper, situational 

factors were identified based on the literature review influencing the software process. 

Also, they analyzed five key significant situational factors. 

Fabián Ugalde et al. [94] compared the four methods of functional size estimation as the 

basis for estimation of effort in the context of a start-up company that uses an agile 

methodology to develop mobile applications. Software size measurements, expressed in 

USP, IFPUG Function, UCP, UFP, and CFP were taken from one project in the business 

for a set of requirements. Models of effort estimation were then derived from the using 

regression and their precision was determined by two accuracy parameters. 

Laura Diana Radu (2019) [95] proposed a model using BN for agile software 

development project prediction. They identified two main categories of factors that 

influence the effort needed based on literature review and the knowledge of practitioners: 

the quality of teamwork and user stories. 

Hrvoje Karna  et al.(2018) [96] investigated data based on five distinct software 

empirical projects originating in the same setting that had been used for performing a 

formal experiment. The assessment of the results obtained during the process of data 

mining uses established criteria. 
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Anureet Kaur and Kulwant Kaur (2019) [97] presented different factors to estimate effort 

for the mobile apps. The indices of different popular accuracy parameters are used to 

measure the model's accuracy and results indicate that the proposed model provides a 

good forecast as well as prediction. 

Ahlam Alhaddad et al. (2005) [98] research has shown that most of the current research 

has used MMRE, MRE, and PRED for accuracy of effort estimation measurement, where 

NASA93 and COCOM81 were the most widely used datasets. In addition, most of the 

studies reviewed attempted to use methods of machine learning, whereas other studies 

have proposed models for hybrids. Concerning size metrics, most of the studies reviewed 

used a line of (KLOC/ LOC / SLOC) code. 

Mayank Jha and Richa Jha (2020) [99] showed the model to represent the variation in 

bias and the accuracy of the technology estimates of an enterprise test attempt to 

conclude CDF, NF approach, and methods of Genetics. The motive of this study is to 

reduce the cost of software and to explain how to apply these concepts to the general 

system with divisions. Simple algorithms are provided - Cobb Douglas, ANFIS approach 

to genetic algorithms and decide which algorithm is most appropriate for finding the best 

algorithm as precise as possible. 

Pinar Efe and Onur Demirors (2019) [100] proposed a method to measure change and 

subsequent cost of rework and evolution, to accurately monitor software projects. In five 

different businesses, five case studies were performed to explore the usability of the 

proposed model. 

Washington Almeida (2021) [101] described a process model for calculating metrics that 

can be used in agile contracts rather than structured FPs, which have already proven to be 

troublesome and difficult to handle for contractors. 

Muhammad Ijaz Khan et al. (2019) [102] investigated the characteristics of user stories 

that can affect the estimation of effort in agile projects. They also showed the different 

search strategies and answered one research question in their paper. In the results, they 
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showed the papers selected, a summary of the papers when collected year-wise, and 

characteristics of different user stories in their paper. 

According to ISPA [1], approx. 67% of software projects decline to meet deadlines while 

staying within budget. The unpredictability of system and software requirements is one of 

the primary reasons for software project failures. The other is incorrect estimations of job 

size, cost, and personnel requirements. Two of the most difficult parts of estimating 

scrum-based projects are change and sprint-wise estimation. The vast majority of IT 

firms have adopted hybrid process models, which are mostly based on Agile umbrella 

methodologies. The shift in effort estimation approaches has occurred from the transition 

of process models from heavy weight models such as an iterative waterfall to lightweight 

models [103] such as Agile. Traditional estimation processes [104] such as EJ, 

TD estimating, Delphi-Cost estimation and others are well suited for high weight process 

models in some way, but they fall short of bridging the estimated and real effort gap that 

Agile methodologies need. Researchers began exploring alternatives as a result of the 

changing nature of Agile-based project needs, finally settling on soft computing 

techniques [3]. Providing rules for unpredictable issues is one of the most well-known 

applications of NF frameworks [51]. However, because software projects are inherently 

unpredictable and complicated, the data supplied at the beginning of the activity is 

insufficient, and the issue of story point estimation is entirely unknown. Fuzzy and NF 

models can be used to mitigate the vulnerability while enhancing estimation precision in 

this instance. Due to the unpredictability of the effort estimation issue and the complexity 

of the project and human characteristics relationship analysis, the optimization process is 

critical. The optimization [49] can be connected directly to effort estimating techniques 

like quality weighting in analogy-based estimation, or indirectly to machine learning 

algorithms. It is suitable for parameter weighting, NN optimization, and ANFIS 

hyperparameter tuning. 

Jorgensen and Shepperd [92] published a comprehensive review in the 1980s that found 

more than 10 approaches for estimating effort, with regression-based tactics beating 
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empirical alternatives. Despite the vast number of comprehensive research on ML models 

in the estimation of software projects, contradictory results have been accounted for in 

terms of the estimated exactness of these models, regardless of the process model 

method. When a comparable ML model is built with various datasets [39], [104] or 

circumstances [68], the accuracy of the estimation changes. The authors in [104] declared 

that the ML model is superior to the regression model, however, they reasoned in [105] 

that the regression model surpasses the ML model. According to the correlation amongst 

various ML models such as ANN and case-based reasoning, researchers in [39] inferred 

the former beats the latter while those in [106] detailed the contrary outcome. Experts 

may be deterred from adopting ML models due to the difference in current empirical 

judgments. Furthermore, ML systems have a far more complex theory than traditional 

estimate procedures. To promote the use of ML techniques in SDEE, it is important to 

actively condense empirical proof on ML models in continuous research and testing. 

More than ML, industry experts rely on EJ and Delphi cost estimating methodologies. 

CBR, BN, SVR, ANN, DT, GA, AR, GP, and other ML approaches have been utilized 

for SDEE [69][107][108][109], although most have yet to be employed for estimation in 

Agile projects. The aforementioned ML systems can be used as standalone or in 

conjunction with other ML or non-ML approaches. For instance, GA has been integrated 

with CBR, ANN, and SVR for highlight weighting and selection. For execution, fuzzy 

logic [5] was used with CBR, ANN, and DT. Other datasets were utilized for estimation, 

such as ISBSG, JIRA Repositories, PROMISE data repository, and so on. Holdout, n 

times overlay Cross-Validation and Leave One Out Cross-Validation [104], [110] are the 

most popular approval methods. MMRE, PRED (25), and MdMRE [3] are prominent 

accuracy metrics. For estimating projects that incorporated both traditional and 

lightweight methods in some scenarios, BN [43], [106] was shown to have the poorest 

MMRE across all ML Techniques, compared to CBR, DT, SVR, ANN, AR, and GP. 

COCOMO estimates, EJ, and FPA [41] were also researched. CBR and ANN, according 

to studies, are more accurate than ML-based regression models. We have determined 

from our literature survey that ML models outperform non-ML approaches. Because the 
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performance of estimation models varies from one dataset to the next, rendering them 

prone to inaccuracies, analyst’s advice [111], [112] that identifying the best model in a 

given context rather than the best single model is more productive. The base models 

separate homogeneous [42], [62], [112] (e.g., MLP, ANFIS, CART, LR, CBR, SVR, 

RBF, RF, SGB, and so forth) and heterogeneous effort estimation systems. Single ML 

techniques, according to studies, are the most trustworthy for producing ensembles. It 

was discovered that DT-based homogeneous ensembles are the most accurate, followed 

by CBR-based ensembles, and SVR-based ensembles. NF, SVR, DT, Regression are the 

most prominent techniques used as solos, hybrid, ensembles for estimation. It has also 

been inferred from the literature that the most common blend rules namely mean, median, 

and weighted mean is deduced for integrating the base effort models. MLP, SVM, 

CART, FIS with C-means clustering, and subtractive grouping are among the most 

widely utilized non-linear concepts. All of the approaches mentioned are derived from 

generic estimation procedures. 

3.2 Research Questions 

The research questions have been drafted within the ML context as per the following: 

 Research review include criterion 

 Research review exclude criterion 

 Data repositories details 

 Study selection criteria 

The various research questions formulated are defined below: 

RQ1: What ML algorithms are applied for estimation in Scrum projects? 

RQ2: What level of estimation accuracy is achieved by ML techniques in Scrum project 

estimation? 

RQ3: In ML techniques, do meta-heuristic algorithms increase the estimation accuracy 

significantly? 

RQ4: Which Scrum project data is available online? 
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RQ5: Do ensemble methods outperform other ML techniques? 

3.2.1 Include and Exclude Criterion 

This research includes papers that link different soft computing approaches for ASD 

estimation. Papers were gathered from a variety of internet sites, journals, conferences, 

and other items that have previously been circulated. Papers and data that aren't related to 

the topic of analysis are excluded from the study. 

3.2.2 Data and Literature Sources description 

Papers from TOSEM (ACM), IEEE Transactions, Science Direct, Google Scholar, 

Springer, and other sources were utilized in the study. Papers from these online databases 

have been searched using search strings: software ∧ (effort ∨ cost) ∧ (estimate) ∧ 

(learning ∨ ML)  ∨ machine ∨ CBR ∨ DT ∨ regression analysis ∨ NN ∨ BN ∨ SVM ∨ 

SVR ∨ Deep ∨ Learning ∨ fuzzy ∨ NF ∨ ANFIS ∨ Metaheuristic ∨ scrum ∨ Agile ∧ 

Software ∧ Development ∨ GA ∨ analogy ∨ EJ ∨ PP. 

3.2.3 Study Selection Process 

The following processes were used to determine which studies should be included and 

excluded based on the criteria given below: 

 Electing abstract and title: The review approach resulted in the submission of a few 

research articles, some of which were picked based on their titles and modified 

works. 

 Electing complete article: A considerate volume of papers and articles have been 

thoroughly evaluated and examined. 

3.3 Research Question responses 

What ML algorithms are applied for estimation in Scrum projects? (RQ1) 
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ASD and its umbrella methodologies have extensive applicability for many ML models. 

It can be inferred from Figure 3.1 [113][114][5][59][50][43][115][116][8][64] that many 

authors have transitioned to increasingly powerful ML techniques with the increase in 

years.  

Figure 3.1 ML in Scrum estimation techniques 

What level of estimation accuracy is achieved by ML techniques in Scrum project 

estimation? (RQ2) 

ML techniques are superior as compared to traditional ones. Table 3.1 shows the 

estimation accuracy of various ML techniques in Scrum project estimation. We have used 

the MMRE accuracy parameter for comparative analysis. Several techniques outperform 

others on the same dataset and performance metric. 
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Table 3.1 Accuracy parameter score of ML estimation techniques 

Estimation techniques Accuracy parameters 

(MMRE) 

Dataset used Outperformed 

Fireworks algorithm 

optimized NN [113] 

0.0293 

 

Zia TLBO, TLBABC, 

DABC, LM 

 

DBN-ALO [13] 0.0225 Zia Zia, Fireworks 

algorithm 

optimized NN 

Multiagent 

Techniques [114] 

0.1 Twelve Web 

projects 

Delphi, PP 

Mamdani FIS [5] Sprint1 – 0.28 

Sprint2 – 0.15 

Sprint3 – 0.09 

 

Three sprints of 

Agile projects 

Comparison with 

actual estimates 

GRNN [117] 0.3581 

 

Zia Zia, PNN 

PNN [117] 1.5776 Zia Zia 

GMDHPNN [118] 0.1563 Zia GRNN, PNN 

CCNN [118] 0.1486 Zia GRNN, PNN, 

GMDHPNN 

SGB [68] 0.1632 Zia RF, DT 

RF [119] 0.2516 Zia DT 

DT [50] 0.3820 Zia Zia 

BN [43] Above 90% 

accuracy 

Real agile 

projects 

Comparison with 

actual estimates. 
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ABC-PSO [15] 0.0569 Zia ABC, PSO, GRNN, 

PNN, GMDPNN, 

CCNN 

SVM, NB, KNN, DT 

[116] 

SVM – 0.50, NB – 

0.85, KNN – 0.70 

DT – 0.98 

699 and 5607 

issues from 8 

open projects 

Comparison with 

actual estimates 

NB [44] 2.044 10 developer 

groups from 

IBM.  

Not Available 

LSTM + RHWN [8] 58% accuracy 

 

16 projects from 

9 open-source 

repositories 

Traditional 

techniques of 

estimation. 

PSO [57] 0.1988 Zia Zia 

SVR Linear kernel, 

SVR Polynomial 

kernel, 

SVR RBF kernel, 

SVR Sigmoid kernel 

[118] 

0.1492 

0.4350 

 

0.0747 

0.1929 

Zia SVR Linear, 

Polynomial, and 

Sigmoid kernel 

From Table 3.1 DBN-ALO with 0.0225% MMRE currently stands as the best technique 

when applied to Zia dataset. However, the other techniques using other datasets have 

different accuracies thus cannot be used to compare on the same level. The compiled 

MMRE results can be seen in Figure 3.2. 

In ML techniques, do meta-heuristic algorithms increase the estimation accuracy 

significantly? (RQ3) 

The usage of meta-heuristic algorithms for estimation of effort and cost in scrum-based 

projects is fairly low, as per the literature review. It can also be seen from Table 3.1 that 
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only two such techniques: the Fireworks algorithm [113] and ABC-PSO [115] have been 

used in this domain. The fireworks algorithm has the most superior accuracy among all 

ML techniques used in Scrum project estimation while ABC-PSO is second in the 

performance criterion. This evidence supports our research question that using meta-

heuristic algorithms significantly increases estimation accuracy. 

 

Figure 3.2 MMRE of several ML techniques trained on Scrum datasets 

Which Scrum project data is available online? (RQ4) 

Various online repositories can be used to find the datasets for Scrum projects in Table 

3.2.  
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Table 3.2 Agile datasets 

Dataset Name Dataset Links/References 

Story Point Dataset  

[120] 

https://seanalytics.github.io/DeepSoft.html 

https://seanalytics.github.io/ 

https://github.com/SEAnalytics/datasets 

Zia et. al  [6] 

Twelve Web projects [121] 

Three sprints of Agile projects [5] 

ISBSG [49] 

699 and 5607 issues from 8 

open-source projects 

[116] 

  

Do ensemble methods outperform other ML techniques? (RQ5) 

According to the literature study, ensemble estimation strategies produce better outcomes 

than single estimate methods. DBN-ALO is having remarkable accuracy as compared to 

PSO. 

3.4 Summary 

We have surveyed a large volume of articles, book chapters, and papers, to present the 

most updated survey on the advancements in the field of effort and cost estimation for 

Scrum projects. We have provided the inclusion and exclusion criterion, study selection 

process, description of the data and literature sources, and then formulated a set of vital 

research questions. In the results and discussions section, we answer these research 

questions based on our literature review. We have provided the Scrum projects datasets 

used by several authors for training and testing their ML techniques. We then provide a 

https://seanalytics.github.io/DeepSoft.html
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list of the ML algorithms that have been gaining prominence within recent years. Further, 

we have also tabulated the set of accuracies for these ML algorithms. Many algorithms 

use the same dataset. Most authors have chosen to use MMRE and PRED as the 

performance metrics for defining the accuracy of their techniques. We discuss the 

relevance of meta-heuristic algorithms in the Agile project domain. Our literature review 

indicates that such adoption is low, with only two techniques namely Fireworks 

algorithm [113] and ABC-PSO applied for Scrum project estimation. However, their 

performance is far superior to ML techniques that are manually tuned. Thus, we infer that 

the usage of meta-heuristic optimization algorithms significantly improves the 

performance of ML techniques. We have also established the fact that ensemble methods 

are superior to other ML techniques. Finally, we provide a list of all the factors that 

influence effort estimation.  
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CHAPTER 4 

SCRUM EFFORT ESTIMATION USING ANFIS-EEBAT 

ALGORITHM 

4.1 Introduction 

ANFIS provides increased learning, adapting, and non- linear abilities, as it makes use of 

combined advantages of NN and FIS and thereby can be trained without an explicit 

empirical knowledge pool. Despite carrying strong estimation capabilities, ANFIS 

architecture needs parameter adjusting and tuning. The objective function of the ANFIS-

EEBAT approach is to optimize parameters of ANFIS using an energy-efficient BAT 

algorithm. To begin with, the system needs its food to start estimating the effort of new 

projects. Our approach depends on the training of certain project parameters which will 

be primarily inserted in the knowledge base. However, the data needs to be 

understandable, so before training, it is being passed from the data preparation module. 

This chapter discusses our proposed algorithm ANFIS-EEBAT in context to effort 

estimation.  

4.2 Methodology 

The input data to ANFIS-EEBAT has been taken from the six software houses 

incorporating Agile practices. The algorithm of the proposed methodology is presented as 

four broad categories given below. 

 Data Preparation 

• Loading the Agile project dataset.  

• Perform a feature selection using ANFIS based exhaustive search. 

 Data Set Partitioning and Model Selection 

• Partitioning of transformed data into training and testing sets in the ratio 80:20. 

• Training ANFIS-EEBAT model using training data. 
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 Testing Part 

• Performing prediction using a trained model.  

• Comparing prediction results with the original dataset. 

 Performance Evaluation  

• Calculate the loss function i.e., MSE. 

• Perform model comparison using various performance metrics. 

• Compare the output of the above-defined metrics 

Figure 4.1 EEBAT Flowchart 
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Figure 4.2 Flowchart depicting the process of effort estimation using ANFIS-EEBAT 

In our proposed algorithm, we update the standard bat algorithm by introducing a new 

parameter called Energy which will update the position and velocity of the bat based on 
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its distance from the prey. We propose two new factors for the energy parameter - 

eagerness and magnitude of work, that dynamically get updated for controlling 

exploration and exploitation trade-off. It becomes exhaustive for a bat or pair of bats to 

search for its target or prey due to continuous echolocation (lack of cognitive ability), 

exploration (failure to converge), and exploitation (trapping in local optima). To address 

these concerns, EEBAT is proposed. The distinctive features of the proposed algorithm 

are - the energy parameter and memory capability. The flowchart of EEBAT is shown in 

Figure 4.1. 

 The Energy Parameter, E  

The energy parameter denoted by E is as follows, 

   𝑖  𝑒     𝑒𝑎    
      (4.1) 

where  𝑖  𝑒    , is the fitness of the current bat. The population diversity due to energy 

lets the bat intelligently assess its capability thus improving time complexity and 

convergence. The mean of the best positions is taken to find a convergence junction, as 

every bat in the population finds a different position for one value of the parameter. These 

positions are the best solutions as evident by the fitness value calculated so the collective 

energy of these deduced positions determines their optimality. 

 The memory capability of the bat  

The population in the standard bat has no history of the previous solutions encountered 

by the previous bats hence, novel solutions are left and premature convergence occurs. 

To solve this gap of the standard bat, the second improvement proposed is the 

introduction of memory capability. We store the position of bats in a special space called 

Memory Space (  ) in every iteration. This capability improves exploration as 

previously encountered solutions are prevented from being explored and exploited, hence 

improving the rate of convergence. This prevents trapping of the population in local 

optima and decreases time complexity for the algorithm. 
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Pseudo-code of EEBAT 

The pseudo-code of the EEBAT is given below.  

Define the objective function     ,   [       ]
  

Initialize the bat population     𝑖  [       ] , Velocity   , Population Energy     𝑖  

[       ] , Memory Space      𝑖  [       ]  and Maximum Number of Iterations 

n_iter. 

Define parameters pulse frequency    at   , pulse rates 𝑒    and loudness    

Calculate fitness of the initial bat population using (4.2) and their initial energy using  

(4.3)    

                       , where 

{
 
 

 
 

𝑖         
         

      𝑖  𝑒              𝑖 𝑒  𝑖  
        𝑒              𝑖 𝑒  𝑖  
   𝑎      𝑎  𝑒  𝑒  𝑒𝑒  [   ]

    (4.2)         

    𝑖  𝑒     𝑒𝑎    
  , where {

𝑖         
 𝑖  𝑒     𝑖  𝑒        𝑒     𝑒    𝑎 

     (4.3)            

Determine the best bat based on Energy and set       as the energy of this bat 

while t is lesser than n_iter 

Spawn new solutions using (4.4) by adjusting frequency using (4.5) and updating velocities 

using (4.6) 

  
    

       
 , where {

  
    𝑒   𝑖       𝑎  𝑖 𝑎   𝑖 𝑒   𝑒   

  
        𝑖 𝑖       𝑎  𝑖 𝑎   𝑖 𝑒   𝑒     

      (4.4)         

                     , where {

     𝑒  𝑒       𝑖    𝑎 
      𝑖 𝑖      𝑒  𝑒   
      𝑎 𝑖      𝑒  𝑒   

   𝑎      𝑎  𝑒  𝑒  𝑒𝑒  [   ] 

     (4.5) 

  
    

       
       , where {

       𝑎   𝑒        𝑖      𝑖 
    𝑒   𝑖 𝑒 𝑎 𝑖  

      (4.6)  
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 if (rand (0,1) > 𝑒   ) then 

  Elect a solution among the best solutions 

  Spawn a local solution near the elected best solution using (4.7) 

                                              ̅  

                         where 

{
 
 

 
 
             𝑒  𝑒   𝑖     𝑎 𝑖  

                     𝑖    𝑖𝑎 𝑎  
                    𝑒 𝑒  𝑖    𝑒    

   𝑎      𝑎  𝑒   [    ]

 ̅     𝑒 𝑎 𝑒      𝑒     
           𝑎    𝑎   𝑎   𝑖 𝑒   𝑒   

        (4.7) 

  Calculate fitness of local solution and its Energy,          

 end if 

 if (local solution does not exist in   ) then 

  Memorize the current solutions in     

  Fly randomly and spawn a new solution 

  if (rand (0, 1) <    and      <       and                ) 

   Accept the new solutions and store them in    

   Increase 𝑒    using (4.8) and reduce    using (4.9) 

     
       

 , where {       𝑎          (4.8) 

𝑒   
    𝑒   

 [  𝑒   ], where {       𝑎        (4.9)  

  end if 

 end if  

 Rank the bats on the basis of Energy and find    and       

end while 
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4.3 Deducing optimal parameters from EEBAT 

The proposed system after the default initialization process will undergo tuning of base 

fuzzy system parameters by EEBAT. The inherent training algorithm of ANFIS will be 

replaced by EEBAT. The parameters of the base FIS will be adjusted based on low values 

of fitness/error function. We choose MMRE as our fitness function. genfis is used as a 

base FIS with fuzzy c-means clustering to create rules and input MFs in the forward pass. 

EEBAT will minimize the error in the backward pass run. The detailed supposition stages 

of effort estimation are given in Figure 4.2 and forward and backward pass parameter 

settings of ANFIS-EEBAT are given in Table 4.1. 

Table 4.1 Learning paradigm for ANFIS-EEBAT 

 Forward Pass Backward Pass 

Antecedent parameters Fixed EEBAT 

Consequent parameters EEBAT Fixed 

Signals Node Outputs Accuracy maximization 

 

4.4 ANFIS optimization using EEBAT algorithm 

Forward Pass: 

Step 1: Initialize the parameters and initial population of the EEBAT algorithm. 

Step 2: Set the number of rules for the membership functions and the error tolerance. 

Step 3: Update the consequent parameters using the EEBAT algorithm. 

Step 4: Predict the values of effort and evaluate them. 

Step 5: If the values satisfy the PRED, then go to Step 7. Else, go to Step 3. 

Backward Pass: 

Step 6: Update antecedent parameters using the EEBAT algorithm. 

Step 7: Calculate the MMRE of the predicted values of effort. 

Step 8: If the error values are within the threshold, then STOP. Else, go to Step 7. 
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4.5 Experimental results and discussion 

The accuracy achieved by the system depicts the efficacy of the proposed system. This 

chapter presents the results recorded so far. 

4.5.1 Dataset profiling 

Each row in Table 4.2 represents an Agile Project. Project names are not revealed in the 

referred dataset. The Effort represents the Number of Story Points. Vi is Initial Team 

Velocity. D is Deceleration, which affects the Team Velocity. V is the Final adjusted 

team velocity, calculated by V = (Vi)
D
. Sprint Size is the size of a typical Sprint in a 

Scrum Project. Team Size is the size of the Scrum Team. Team Salary is the salary of 

Scrum Team Members. The Actual Time field value represents the Number of Days, for 

instance, in the first row 156 SP took 63 days to complete. Est. Time and Estimated Cost 

fields signify estimated time and cost calculated by Zia. The Actual Cost is the cost of the 

Scrum Project. Time MRE is calculated as: 

        
                            

           
   (4.10) 

Cost MRE is calculated as: 

        
                            

           
    (4.11) 

 

Table 4.2 Zia dataset sample [6] 

Effo

rt    D V 

Spri

nt 

Size 

Tea

m 

Size 

Team 

Salary 

Actual 

time 

Est. 

Time 

Actual 

Cost Est. Cost 

Time 

MRE 

Cost 

MRE 

156 4.2 0.687 2.7 10 22 230000 63 58 1200000 1023207.14 7.93 14.73 

202 3.7 0.701 2.5 10 21 260000 92 81 1600000 1680663.89 11.95 5.04 

173 4 0.878 3.3 10 22 250000 56 52 1000000 992269.51 7.14 0.77 

331 4.5 0.886 3.8 10 22 300000 86 87 2100000 2002767.22 1.16 4.63 

124 4.9 0.903 4.2 10 22 300000 32 29 750000 676081.32 9.375 9.84 

339 4.1 0.903 3.6 10 22 400000 91 95 3200000 2895132.85 4.39 9.52 

97 4.2 0.859 3.4 10 22 250000 35 29 600000 540113.84 17.14 9.98 

257 3.8 0.833 3 10 22 250000 93 84 1800000 1614078.94 9.67 10.32 
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4.5.2 Renaming, identification, and selection of features and labels 

We have renamed few fields of the dataset and performed ANFIS based exhaustive 

search to find the best combination of fields that are chosen as inputs aka features and are 

matched against output aka label. This exhaustive search has been carried out in 

MATLAB. Fields named “Effort”, “V” and “Actual Time” from Table 4.1 are renamed to 

“No. of Story Points”, “Velocity” and “Actual Effort” respectively. Table 4.2 shows that 

our label “Actual Effort” is mostly affected by “No. of Story Points” and “Velocity” with 

a minimum value of Train error i.e., 0.6504. The other pairs (No. of Story Points-Team 

Size) and (Velocity-Team Size) have not been selected as the value of the training error is 

more vis-à-vis chosen pair. The errors of the feature sets are shown in Figure 4.3. These 

assist managers in making better decisions of feature selection. 

The least indispensable feature selection minimizes complexity and produces software 

effort estimation results in less time. The deduced features and label after renaming is 

given in Table 4.4. 

 

84 3.9 0.646 2.4 10 22 190000 36 35 500000 507264.58 2.77 1.45 

211 4.6 0.758 3.2 10 22 250000 62 66 1200000 1267179.55 6.45 5.59 

131 4.6 0.758 3.2 10 22 250000 45 41 800000 786732.223 8.88 1.65 

112 3.9 0.773 2.9 10 22 200000 37 39 650000 597142.61 5.4 8.13 

101 3.9 0.773 2.9 10 22 200000 32 35 600000 538494.68 9.375 10.25 

74 3.9 0.773 2.9 10 22 200000 30 26 400000 394545.65 13.33 1.36 

62 3.9 0.773 2.9 10 22 200000 21 22 350000 330561.22 4.76 5.55 

289 4 0.742 2.8 10 22 250000 112 103 2000000 1971485.44 8.03 1.42 

113 4 0.742 2.8 10 22 250000 39 40 800000 770857.32 2.56 3.64 

141 4 0.742 2.8 10 22 250000 52 50 1000000 961866.44 3.84 3.81 

213 4 0.742 2.8 10 22 250000 80 76 1500000 1453032.29 5 3.13 

137 3.7 0.758 2.7 10 22 220000 56 51 800000 854347.55 8.92 6.79 

91 3.7 0.758 2.7 10 22 220000 35 34 550000 567484.33 2.85 3.17 
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Table 4.3: Features Analysis Table 

Features Train error 

No. of Story Points, Velocity 0.6504 

No. of Story Points, Team Size 4.9212 

Velocity, Team Size 15.7069 

 

From Figure 4.4, we can validate our results from ANFIS based Exhaustive search. 

Table 4.4: Dataset features and labels 

Features Labels 

No. of Story Points Velocity Actual Effort 

156 2.7 63 

202 2.5 92 

173 3.3 56 

331 3.8 86 

Figure 4.3 RMSE errors for features set in ANFIS exhaustive search 
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Figure 4.4 Correlogram of Effort estimation 

4.5.3 Expansion of dataset using k means SMOTE 

We have applied k-means based SMOTE [122], [123], a data augmentation technique, on 

the Zia dataset, to generate synthetic values of features and labels. The purpose of this 

step is to address the issues of a modest amount of data for training and testing. 

      𝑎                       (4.12) 

Here, x is the element of minority class set A,    is the element of a set A1 which is 

calculated using k nearest neighbors of x, sampled at some rate N. The new dataset is 

labeled as ZKmS (Zia K-means SMOTE) and is being used in our ANFIS-EEBAT 

model. 
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4.5.4 Descriptive characteristics of the dataset 

The descriptive statistics of ZKmS have been given in Table 4.5. It includes count 

(number of projects in the dataset), mean, standard deviation, the minimum and maxi-

mum value of “No. of Story Points”, “Velocity” and “Actual Effort” in the dataset. The 

statistics “Count” with a value of 162 signifies that ZKmS contains 162 project data. 

“Mean” represents the average value of the fields. “Std” is the standard deviation which 

represents the difference of the field values from the Mean value. “Min” represents 

minimum value and “Max” represents the maximum value. 

A detailed profile description of “Number of Story points” is given in Figure 4.5, for 

“Velocity” in Figure 4.6 and “Actual Effort” in Figure 4.7. 

 

Figure 4.5 Feature profile for No. of Story Points 
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Figure 4.6 Feature profile for Project Velocity 

 

Figure 4.7 Feature profile for Actual Effort 
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Table 4.5: Descriptive statistics of dataset 

Statistics No. of Story points Velocity Actual Effort 

Count 162.000000 162.000000 162.000000 

Mean 159.648148 3.054938 54.333333 

Std 72.914182 0.384328 23.046806 

Min 62.000000 2.400000 21.000000 

Max 339.000000 4.200000 112.000000 

 

4.5.5 Transformation of Features 

The features for effort estimation using ANFIS-EEBAT have been transformed using 

Box-Cox transformation. The Box-Cox transformation uses lambda λ as the exponent. 

The best value of λ is found from th  followin   quation: 

     {
    

 
    𝑖  λ   

lo   𝑖  λ   
     λ  [    ]       (4.11) 

 

Figure 4.8 Box cox transformation of Number of story points 
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Figure 4.9 Box cox transformation of Project velocity 
 

4.5.6 Model selection 

ANFIS-EEBAT has been applied to the features from the dataset as per the step given 

below. 

Data loading and Generate Fuzzy Inference system 

After we input features in the proposed ANFIS-EEBAT model, the antecedent layer 

creates the input MFs. The initial set of parameters for ANFIS and EEBAT are given in 

Table 4.6 and Table 4.7 respectively. 

The number of inputs is “2” which are “No. of Story Points” and “Velocity”. The 

Number of outputs is “1” which is “Actual Effort”. The Learning algorithm is “EEBAT”. 

The value “4” in the Number of inputs MFs parameter signifies that there exists 4 

gaussian MFs for each input with a unique set of gaussian parameters. “Fuzzy C-Means” 

Partitioning method has been employed which is used to create a base FIS. The input MF 

is “gaussmf (gaussian)” which represents our data in normal distribution and the output 

MF is “linear” which produces a singular value. The base fuzzy system is created using 

the “genfis3” functionality of MATLAB. The “And” method signifies the product of 
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weights of neuro-fuzzy system with the inputs. The “Or” method utilizes “probor 

(probabilistic or)” which is the algebraic sum of the previous layers. The implication and 

aggregation are set to “min” and “max” respectively. “wtaver” i.e., weightage average is 

used for defuzzification. The training iterations aka epochs are set to 100 as after this 

value over fitting occurs. The iterations have been validated against several trials. The 

error tolerance is set to 1e-5. 

Table 4.6 FIS parameters for effort estimation 

No. of inputs 2 

No. of outputs 1 

Learning algorithm EEBAT 

No. of input MFs  [4 4] 

Partitioning method Fuzzy C-Means 

Input MF Gaussmf 

Output MF Linear 

Base fuzzy system genfis3 

And Method Prod 

Or Method Probor 

Implication Min 

Aggregation Max 

Defuzzification wtaver 

Maximum Iterations 100 

Error Tolerance 1e-5 

 

The size of the initial BAT population is kept as “40”. The max no. of iterations is “100”. 

Pulse rate signifies optimal solution searching precision of the algorithm. The tuning 

parameters of ANFIS are the optimal solution. Loudness controls the speed of 

convergence of the algorithm. The value of      and      determines the range of 
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frequency that assists in global searching capability. Alpha and gamma are constants. The 

values for each parameter are obtained during several exhaustive trials. 

Table 4.7 EEBAT parameters 

Population size 40 

Max Iterations 100 

Pulse Rate 0.3 

Loudness 0.9 

     0 

     0.1 

Alpha (α) 0.9 

Gamma (γ) 0.9 

 

Building ANFIS-EEBAT model structure 

After setting up the initial parameters, the proposed model’s structure is shown in Figure 

4.10. 

 

Figure 4.10 ANFIS-EEBAT structure 

It contains five layers, as discussed in Figure 2.1. There are two inputs, four pairs of input 

MFs, four sets of rules, four output MFs and one output. The two inputs are “No. of Story 
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Points” and “Velocity”. “Estimated Effort” is the final output. The operations performed 

at different layers are synonymous with the description in Figure 2.1. There are three 

basic logical operations, “and”, “or”, “not” depicted in the figure with three color codes 

“blue”, “red” and “green” respectively. The rules are created using logical “and” 

operations in our case. The logical “or” and “not” operations are not used. 

ANFIS-EEBAT MFs and Rules view 

After the training and testing, membership function parameters are adjusted using 

EEBAT and can be seen in Figure 4.11(a) and Figure 4.11(b). The rules for the same are 

shown in Figure 4.12. 

Figure 4.11(a): Membership function for No. of Story Points in ANFIS-EEBAT 

Figure 4.11(b): Membership function for Velocity in ANFIS-EEBAT 
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The x-axis and y-axis represent “No. of Story Points” and membership values of input1 

respectively in Figure 4.11(a). The set of four unique MFs created are represented as 

curves (in1cluster1, in1cluster2, in1cluster3, in1cluster4). The red color marks the 

selected curve. in1 signifies Input1. The x-axis and y-axis represent “Velocity” and 

membership values of input2 respectively in Figure 4.11(b). The set of four unique MFs 

created are represented as curves (in1cluster1, in1cluster2, in1cluster3, in1cluster4). in2 

signifies Input2. The curves are overlapped due to the minute values of “Velocity” which 

is ranging from 2.4 to 4.2. 

 

Figure 4.12: ANFIS-EEBAT Rules View. 

Each row of the plot represents a rule. There are a set of four rules based on input and 

output membership functions. The red line is a slider for selecting the input values. For 

instance, we have selected the value of “No. of Story Points” as 84.8 and “Velocity” as 

2.48. The yellow color in the plots depicts how the input variable is used in the rules. The 

blue color in the output membership function, “Effort”, signifies how the output is 

utilized in the rules. The output of each rule is combined and defuzzified to create an 

aggregated output in the bottom-right plot. The estimated effort, 33 is the output and is 

shown by the red color line. 
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ANFIS-EEBAT Surface Plot 

The surface plot shown in Figure 4.13 depicts the mapping of the features with the labels. 

It can be deduced from the surface plat that for our features, the output is linear which is 

following Takagi-Sugeno Type 3 FIS. 

 

Figure 4.13 ANFIS-EEBAT surface plot 

Figure 4.14(a) Training plots for ANFIS-EEBAT 
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Figure 4.14(b) Testing plots for ANFIS-EEBAT 

4.5.7 ANFIS-EEBAT performance evaluation and comparative analysis 

ANFIS-EEBAT model’s performance has been evaluated using various metrics like   , 

MSE, RMSE, MAE, MAPE, MMRE, and PRED and is given in Table 4.8 for ZKmS and 

Zia datasets. ANFIS-EEBAT has also been compared with other state-of-the-art models 

on the aforementioned datasets and summarized in Table 4.9 and Table 4.10. The training 

and testing plots of ANFIS-EEBAT on ZKmS are shown in Figure 4.14(a) and Figure 

4.14(b) respectively. 

Our approach is accurate to 98.47% and 99.93% on ZKmS and Zia datasets respectively 

and will assist the IT industry stakeholders in getting accurate estimates of their 

respective projects. It also provides 100% estimation accuracy up to 2.4% for PRED. 
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Table 4.8 ANFIS-EEBAT performance metric evaluation 

Data 

set 

   MSE RMSE MAE MAPE MMRE PRED 

(25%) 

PRED 

(2.4%) 

ZKmS 0.984723 7.992858 2.827164 0.440483 0.971148 3.910372 100 100 

Zia [6]  0.999349 0.556203 0.74579 0.35558 1.019133 1.518311 100 100 

 

Table 4.9 Results on ZKmS with other techniques 

Techniques    MSE RMSE MAE MAPE MMRE PRED 

(15%) 

ANFIS 0.982857 9.25933 3.042915 0.57697 0.896473 4.310884 100 

ANFIS-GA 0.973329 18.2304 4.269707 2.025023 3.525099 6.568641 96.67 

ANFIS-PSO 0.977309 11.83014 3.439497 0.366967 0.857856 4.498164 96.67 

ANFIS-BAT 0.955252 24.72921 4.972847 1.386903 2.748092 5.78877 86.67 

Random Forest 0.812542 98.71803 9.935695 0.325292 1.394628 13.38908 66.67 

SVR 0.294153 377.0704 19.4183 3.678706 0.965226 20.50747 46.67 

SGB 0.955736 22.65617 4.759849 0.35478 0.825001 5.676487 93.33 

ANFIS-EEBAT 0.984723 7.992858 2.827164 0.440483 0.971148 3.910372 100 

 

The lowest MMRE and highest PRED (15%) signify the efficacy of ANFIS-EEBAT over 

other techniques. Various techniques are employed on the ZKmS dataset for comparative 

analysis. Standard ANFIS uses hybrid (back propagation and LSE) learning for training. 

In ANFIS-GA, ANFIS-PSO, and ANFIS-BAT the default learning algorithm of ANFIS 

has been replaced by GA, PSO, and BAT respectively. GA, PSO, and BAT are well-

known nature-inspired meta-heuristic algorithms. Their innate ability to find optimal 

solutions provides valuable feedback in exploration and comparison. RF is one of the 

ensemble learning algorithms which performs the mean prediction of singular trees for 

estimation. SVR with RBF kernel has been used. SGB has also been employed for 

estimation. It is a well-known algorithm that inculcates randomness and variation in 

boosting which increases robustness in learning complex data. 

 



88 

 

Table 4.10: Results on Zia with other techniques 

Techniques    MAE MMRE PRED (25%) PRED (2.4%) 

ANFIS 0.982857 0.57697 4.310884 100 40 

ANFIS-GA 0.973329 2.025023 6.568641 100 20 

ANFIS-PSO 0.977309 0.366967 4.498164 100 40 

ANFIS-BAT 0.955252 1.386903 5.78877 100 40 

Zia regression [6] Not Available* Not Available 7.19 57.14 0 

Fireworks 

algorithm [113] 

0.9946 Not Available 2.9339 Not Available Not Available 

DBN-ALO [13] Not Available Not Available 2.225 98.4321 Not Available 

ANFIS-EEBAT 0.99935 0.35558 1.518 100 100 

 

* The data of performance metrics are not available in the referred research papers. This 

comparison has been performed on real Agile projects. It can be inferred that despite 

good accuracies by Fireworks optimized NN and DBN-ALO, a gap of actual and 

estimated effort is still present. This gap has been further narrowed down using the 

ANFIS-EEBAT approach with a PRED of 100 closes to 2.4%. Figure 4.15 shows the box 

plot of our proposed approach with other models on the homogeneous dataset. It can be 

inferred that ANFIS-EEBAT has the lowest value of the median.  

 

Figure 4.15: Box Plot of ANFIS-EEBAT with other models on ZKmS dataset  
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4.6 Statistical validations 

Performance evaluation of our proposed approach with other models is based on 

statistical validations. As per the nature of our data, non-parametric tests such as 

Friedman[124] have been applied to the ZKmS dataset using SPSS. This test performs 

the average ranking of the models and detailed test statistics have been shown in Table 

4.11 and Figure 4.12 for the Friedman test. 

We have considered our null hypothesis that all the models are similar. The standard chi-

square value for 4 degrees of freedom, df, and alpha = 0.05 is 9.488 and our chi-square 

value is 10.133, which rejects our null hypothesis. The value of Asymp. Sig. (0.038) is 

less than the significance value of alpha (0.05) which ascertains those models are 

dissimilar. As per Figure 4.16, the mean rank of ANFIS-EEBAT is 2.47 as compared to 

ANFIS (2.87), ANFIS-PSO (2.93), ANFIS-GA (3.73), and ANFIS-BAT (3.0). 

Table 4.11. Mean Ranking of algorithms 

Ranks 

Algorithms Mean Rank 

ANFIS 2.87 

ANFIS-PSO 2.93 

ANFIS-GA 3.73 

ANFIS-BAT 3.00 

ANFIS-EEBAT 2.47 

 

Table 4.12. Friedman test results on ZKmS dataset 

Test Statistics 

N 30 

Chi-Square 10.133 

df 4 

Asymp. Sig. 0.038 
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Figure 4.16: Friedman test rank comparison on ZKmS 

4.7   Summary 

We have developed a nature-inspired algorithm called Energy Efficient BAT algorithm, 

to tune the parameters of ANFIS and titled it ANFIS-EEBAT, for Scrum Effort 

estimation. Our developed algorithm outperforms various state-of-the-art algorithms 

applied in the field of estimation including DBN-ALO, ABC-PSO, ANFIS-PSO, ANFIS-

GA and ANFIS-BAT, and several others. The key novelty of our algorithm is Energy 

Factor and Memory Space. Energy Factor is paramount to let the stronger bats search for 

global areas while the weaker bats are utilized to search locally in one of the global areas. 

This approach is robust for Scrum effort estimation as the bats have a defined role based 

on their energy. Essentially, the bats search both local and global areas for the best value 

of effort in parallel. Memory Space helps in keeping a track of areas already explored, 

preventing the bats from repeated searching. This means that for a similar set of story 

points and velocity, the effort need not be searched again, as the best estimate has already 

been stored. In technical terms, the goal for the bats is to search for local and global 

optima. One set of bat population searches one of the global solutions locally to find the 

best solution among them while the other set scours other unexplored global solutions, 

for deeper exploration. This allows our algorithm to constantly look for the best solutions 

in a wider search space. As the bats have Memory Space, this means that convergence to 

local optima will never occur and there will be no loss in computation due to the search 

for already existing solutions within the search space. These factors improve the time and 
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space complexity of the algorithm, as evident by the analysis of results on the dataset. For 

effort estimation in Scrum projects, this is vital to include little variations in story points 

and velocity. 

As we move to experimental results and discussion, there is descriptive information about 

various characteristics of the dataset and the generated ANFIS model. The selection of 

our features and labels is made using ANFIS Exhaustive search in MATLAB. This can 

be justified from the correlogram that indicates a high correlation among these features. 

The dataset profiling illustrates our features and labels in terms of mean, deviation, 

outliers, etc. through the plots. Since the data is scarce, the dataset has been expanded 

with the help of K-means SMOTE. It is worth noting that we implemented the algorithm 

by tuning the k-value to prevent a repetition of data values. 

The model selection for ANFIS is crucial as it has to be manually generated and 

validated. ANFIS requires manual selection of the type and number of membership 

functions. We used the Gaussian function as the choice of our membership function with 

4 rules each for one input. The Gaussian function is one of the types of bell-curved 

functions that suits well for real-world data with substantially large values. For each 

input, 4 rules will be generated to assimilate all the required cases for Scrum project 

estimation. We randomly tested for 4 rules and found them suitable for our purpose. All 

details have been illustrated, from the ANFIS-EEBAT structure to the membership 

functions. Finally, we have comparatively analyzed our developed algorithm against 

other state-of-the-art algorithms, on various performance metrics suitable for regression 

type of problems and statistically validated these results. 
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CHAPTER 5 

SCRUM EFFORT ESTIMATION USING ANFIS-CEBAT 

ALGORITHM 

5.1 Introduction 

To be competitive in this fast-moving market place organization need to drive 

innovations through cross key functional and business units. Continuous change is the 

new norm in software engineering. This industry is primed for a paradigm shift as 

numerous potentially market-changing technologies link up on every front. The transition 

from heavy-weight process models (e.g., waterfall) to digital singularity (e.g., Agile, 

DevOps) is the most noted one. Cost estimation is one of the key factors to determine the 

success of a typical IT project. It is an important metric to assists project managers to 

take firm decisions in context to budgeting and resource management. Estimating costs in 

Scrum projects require a more collaborative, iterative, and incremental approach than in 

traditional techniques. To estimate the cost of a Scrum project, its US size must be 

known. The US is a high-level requirement and is measured as story points. The SP is a 

relative metric and performs a significant role in estimation. As per ICEAA and Standish 

group chaos manifesto, nearly two-third of the software projects entered crises as a result 

of inaccurate predictions of effort and its associated costs. The empirical estimation 

techniques like EJ, Delphi-cost estimation, COCOMO, etc. have their inherent limitations 

of learning knowledge base and may not be used in Scrum projects. Most of the Agile 

teams use PP and other empirical estimation techniques to estimate the effort of scrum 

projects. These traditional techniques suffered from individual bias and lead to inaccurate 

estimates. 

Scrum projects faced critical issues of inaccurate cost estimation over the past few years 

which lead to software crises. These inaccurate estimates create ripples in subsequent 

iterations of a typical Scrum project. We have created a hybrid ANFIS model tuned by 
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Cost-Estimating Bat which will assist project managers to make better decisions in 

context to cost commitments to clients. As per our in-depth study, there is no single 

expert system that exists in the literature that estimated the cost of scrum projects. 

ANFIS-CEBAT approach improves the present state of cost estimation due to its unique 

learning capability. We discuss the novelty of CEBAT in this chapter. 

5.2 Methodology 

The steps of the proposed methodology are given below: 

Data Preparation 

 Loading the Agile project dataset.  

 Perform a feature selection using ANFIS based exhaustive search. 

 Data Transformation using Quantile transformer. 

Data Set Partitioning and Model Selection 

 Partitioning of transformed data into training and testing sets in the ratio 80:20. 

 Training ANFIS-CEBAT model using training data. 

Testing Part 

 Performing prediction using a trained model.  

 Inverse transformation of the predicted value. 

 Comparing prediction results with the original dataset. 

Performance Evaluation  

 Calculate output from the loss function i.e., MSE. 

 Perform model comparison using various performance metrics. 

 Compare the output of the above-defined metrics 

Algorithm of CEBAT 

The standard BAT algorithm is susceptible to getting trapped in local minima or not 

converging at all. To improve upon the standard BAT algorithm, we have proposed a 
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unique factor called Energy Factor that accounts for a bat’s capability in searching for 

solutions within the global or local space. The Energy Factor is based on a bat’s 

eagerness to search for a solution. Hence, the higher the eagerness, the higher the chances 

of exploration. Less eager bats are allowed to exploit the global spaces that help in 

finding the best solution in that area. Hence, it solves the problem of trapping in local 

minima. 

We have also introduced another factor called Memory Space. It stores all explored space 

at every iteration of the algorithm. This improves the rate of convergence and prevents 

the bat from leaving out a global space for exploration. The time complexity of the 

algorithm is also increased.bat from leaving out a global space for exploration. The time 

complexity of the algorithm is also increased. 

One key application of the standard BAT algorithm is estimating linear quantities. In 

Scrum projects, cost estimation is non-linear, as the combination of several direct and 

indirect components manipulates the cost of a project. To address this issue, we propose 

another factor that ranges between 0 and 1. The choice of value for Cost Multiplier is 

human-based, as a means for bridging the differences in components. A value of 0 

suggests the bridge is too long thus it is highly unlikely the non-linearity can be mapped 

onto the algorithm while a value of 1 means that there is no bridge between the 

components thus the cost can be ascertained easily. The flowchart of CEBAT is shown in 

Figure 5.1. 

Pseudo-code of CEBAT 

The pseudo-code of CEBAT is given below: 

Define the objective function     , p  [        ]
  

Initialize the bat population    (𝑖  [        ]) using (5.1), Velocity   , 

Population Energy    (𝑖  [        ]), Memory Space       𝑖  [        ]  and 

Maximum Iterations n_iter. 
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 where 

{
 
 

 
 𝑖         

         

      𝑖  𝑒        𝑎       𝑖 𝑒  𝑖  

        𝑒        𝑎       𝑖 𝑒  𝑖  

   𝑎      𝑎  𝑒  𝑒  𝑒𝑒  [    ]

   (5.1) 

Define parameters pulse frequency    at   , pulse rates 𝑒    and loudness    

Calculate fitness of the initial bat population using (5.2) and their initial energy using 

(5.3)    

 𝑖  𝑒         , where   {
𝑖         

      𝑖 𝑖      𝑖    𝑎 
     (5.2) 

   𝑖  𝑒            𝑖  𝑖𝑒     𝑒𝑎      

where {
 𝑖  𝑒     𝑖  𝑒        𝑒     𝑒    𝑎 

        𝑖  𝑖𝑒    [   ]
   (5.3) 

Determine the best bat based on Energy and set       as the energy of this bat 

while t is lesser than n_iter 

Spawn new solutions using (5.4) by adjusting frequency using (5.5) and updating 

velocities using (5.6) 

   
    

       
 , where {

  
    𝑒   𝑖       𝑎  𝑖 𝑎   𝑖 𝑒   𝑒   

  
        𝑖 𝑖       𝑎  𝑖 𝑎   𝑖 𝑒   𝑒     

        (5.4)     

                              , where 

{
 
 

 
      𝑒  𝑒       𝑖    𝑎 

      𝑖 𝑖      𝑒  𝑒   

      𝑎 𝑖      𝑒  𝑒   

   𝑎      𝑎  𝑒  𝑒  𝑒𝑒  [    ] 

 (5.5) 

        
    

       
       , where {

       𝑎   𝑒        𝑖   

   𝑖      𝑒   𝑖 𝑒 𝑎 𝑖  
  (5.6)  
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if (rand (0,1) > 𝑒   ) then 

Elect a solution among the best solutions 

Spawn a local solution near the elected best solution using (5.7) 

                   ̅  

where 

{
 
 
 

 
 
              𝑒  𝑒   𝑖     𝑎 𝑖  

                     𝑖    𝑖𝑎 𝑎  

                    𝑒 𝑒  𝑖    𝑒    

   𝑎      𝑎  𝑒  𝑒  𝑒𝑒  [     ]

 ̅     𝑒 𝑎 𝑒      𝑒     

           𝑎    𝑎   𝑎   𝑖 𝑒   𝑒   

    (5.7) 

Calculate fitness of local solution and its Energy,          

end if 

if (local solution does not exist in   ) then 

Memorize the current solutions in     

Fly randomly and spawn a new solution 

If (rand (0,1) <    and               ) 

Accept the new solutions and store them in    

Increase 𝑒    using (5.8) and reduce    using (5.9) 

  
       

  ,  where {       𝑎      (5.8) 

𝑒   
    𝑒   

 [  𝑒   ], where {       𝑎     (5.9) 

end if end if  

Rank the bats based on Energy and find    and       

end while 



97 

 

  

Figure 5.1 CEBAT Flowchart 
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5.3 Experimental results and discussion 

In this section, experimental results have been discussed from inception to the transition 

of the application of ANFIS-CEBAT. 

5.3.1 Renaming, Identification, and Selection of features and labels 

We have made use of ANFIS based exhaustive search functionality in MATLAB to find 

the train and validations errors of a random combination of features of the dataset. These 

errors help us to find correlation i.e., which combination of features in the dataset is in 

alignment with the target label i.e., Actual cost. In Table 5.1, it can be inferred that value 

of train and validation error is minimum for “No. of Story Points, Velocity and Team 

Salary” and therefore it is used as a feature for our algorithm. 

Table 5.1 RMSE error for features set in ANFIS exhaustive search 

Features Train Error Validation Error 

No. of Story Points, Velocity, Team Size 0 0.2751 

No. of Story Points, Velocity, Team Salary 0 0.2378 

No. of Story Points, Team Size, Team Salary 0.0002 0.1005 

No. of Story Points, Team Size, Actual Effort 0.0065 0.1802 

Velocity, Team Size, Team Salary 0.0888 3.6809 

Velocity, Team Size, Actual Effort 0.0003 0.415 

Velocity, Team Salary, Actual Effort 0 0.2702 

Team Size, Team Salary, Actual Effort 0.0071 0.4004 

 

Few samples of the deduced features set and labels are given in Table 5.2. 

Table 5.2 Sample of features and labels for cost estimation 

Features Labels 

No. of Story Points Velocity Team Salary Actual Cost 

156 2.7 230000 1200000 
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202 2.5 260000 1600000 

173 3.3 250000 1000000 

331 3.8 300000 2100000 

 

Figure 5.1 validates our selection of features and labels, by which it is inferred that a high 

correlation exists among them. It is worth noting that the “Team Salary” feature highly 

correlates with “No. of Story Points” and “Team Velocity”, which is corroborated by the 

fact that a software developer’s salary is directly dependent on his efforts completed 

within a due timeframe. Thus, it is evidencing these two features are direct components 

of “Team Salary”. However, in the case of the “Actual Cost” feature, the figure ascertains 

that “No. of Story Points” highly correlates while “Team Velocity” is contrastingly 

having a little dependency on “Actual Cost”. This implies “Team Velocity” is an indirect 

component for estimating the cost of a project. Hence, the choice of value for Cost 

Multiplier is to be judged carefully by discussion, to aid in an accurate cost estimation 

process. 

 

Figure 5.2 Correlogram of Cost estimation 
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5.3.2 Descriptive statistics of the dataset 

Table 5.3 contains the descriptive statistics for Zia. The count (number of projects in the 

dataset), mean, standard deviation, minimum and maximum values of “No. of Story 

Points”, “Velocity”, “Team Salary” and “Actual Cost” are all included in the dataset. The 

statistic “Count” with the value 21 indicates that there are 21 projects in Zia. The average 

value of the fields is represented by the term "mean." The standard deviation (Std) is the 

difference between the field values and the Mean value. The values "Min" and "Max" 

represent the minimum and maximum values, respectively. 

Table 5.3 Descriptive statistics for features and labels 

Statistics No. of Story Points Velocity Team Salary Actual Cost 

count    21.000000 21.000000 21.000000 21.000000 

mean    163.714286 3.023810 246190.48 1114286.00 

std      82.743062 0.438069 46419.41 705893.60 

min     62.000000 2.400000 190000 350000 

25% 101.000000 2.800000 220000 600000 

50% 137.000000 2.900000 250000 800000 

75% 211.000000 3.200000 250000 1500000 

max     339.000000 4.200000 400000 3200000 

After the selection of our features and labels, the dataset has been profiled to provide an 

overview of the various characteristics in the features and labels for cost estimation. 

Figure 5.3 explains the profile of the “Team Salary” attribute while Figure 5.4 explains 

the profile of the “Actual Cost” attribute. 
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Figure 5.3 Feature profile for Team Salary 

Figure 5.4 Feature profile for Actual Cost 
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5.3.3 Transformation of Features 

The dataset contains proportionally large values for Actual Cost as compared to No. of 

Story Points and Velocity. It has to be transformed to a Gaussian distribution and made 

suitable for estimation using machine learning techniques. Hence, we used Quantile 

Transformation to transform the values ranging from 0 to 1. The formula for Quantile 

Transformation is given by the following formula: 

     inf{   :       }     [   ]   (5.10) 

A sample of the transformed values is provided in Table 5.4. 

 Table 5.4 Features and labels after Quantile transformation 

No. of Story Points Velocity Team Salary Actual Cost 

0.6 0.15 0.35 0.675 

0.7 0.05 0.85 0.8 

0.65 0.8 0.6 0.55 

0.95 0.95 0.925 0.95 

0.4 1 0.925 0.35 

 

Figure 5.5(a) and Figure 5.5(b) portray the before and after the change in values using 

Quantile Transformation in “Story Points”. 

Figure 5.6(a) and Figure 5.6(b) portray the before and after the change in values using 

Quantile Transformation in “Team Velocity”. 

Figure 5.7(a) and Figure 5.7(b) portray the before and after the change in values using 

Quantile Transformation in “Team Salary”. 

Figure 5.8(a) and Figure 5.8(b) portray the before and after the change in values using 

Quantile Transformation in “Actual Cost”. 
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Figure 5.5(a) Quantile transformation of Number of Story Points 

 

Figure 5.5(b) Probability plots after quantile transformation of Number of Story Points 
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Figure 5.6(a) Quantile transformation of Team Velocity 

 

Figure 5.6(b) Probability plots after quantile transformation of Team Velocity 
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Figure 5.7(a) Quantile transformation of Team Salary 

 

Figure 5.7(b) Probability plots after quantile transformation of Team Salary 

   

Figure 5.8(a) Quantile transformation of Actual Cost 
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Figure 5.8(b) Probability plots after quantile transformation of Actual Cost 

5.3.4 Model selection 

Data loading and Generate Fuzzy Inference System 

After providing the inputs to the ANFIS-CEBAT model, the antecedent layer creates the 

input MFs. The initial set of parameters for ANFIS and CEBAT are given in Table 5.5 

and Table 5.6 respectively. The values of ANFIS parameters have been optimized using 

CEBAT. The Number of inputs is “3” which are “No. of Story Points”, “Velocity” and 

“Team Salary”. The Number of outputs is “1” which is “Actual Cost”. The Learning 

algorithm is “CEBAT”. The value “10” in the number of inputs MFs parameter signifies 

that there exists 10 gaussian MFs for each input with a unique set of gaussian parameters. 

“Fuzzy C-Means” Partitioning method has been employed which is used to create a base 

FIS. The input MF is “gaussmf (gaussian)” which represents our data in normal 

distribution and the output MF is “linear” which produces a singular value. The base 

fuzzy system is created using the “genfis3” functionality of MATLAB. The “And” 

method signifies the product of weights of neuro-fuzzy system with the inputs. The “Or” 

method utilizes “probor (probabilistic or)” which is the algebraic sum of the previous 

layers. The implication and aggregation are set to “min” and “max” respectively. 

“wtaver” i.e., weightage average is used for defuzzification. The training iterations aka 

epochs are set to 40 as after this value over fitting occurs. The iterations have been 

validated against several trials. The error tolerance is set to 1e-5. 
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Table 5.5 FIS parameters for cost estimation 

ANFIS Parameters 

No. of inputs 3 

No. of outputs 1 

Learning algorithm CEBAT 

No. of input MFs [10, 10, 10] 

Partitioning method Fuzzy C-Means 

Input MF gaussmf 

Output MF linear 

Base fuzzy system genfis3 

And Method prod 

Or Method probor 

Implication prod 

Aggregation Sum 

Defuzzification wtaver 

Max. Iterations 40 

Error Tolerance 1e-05 

 

The initial BAT population size is set to “10”. The maximum number of iterations is 

“40”. Pulse rate signifies optimal solution searching precision of the algorithm. The 

tuning parameters of ANFIS are the optimal solution. The values for each parameter are 

obtained during several exhaustive trials. 

Table 5.6 CEBAT Parameters 

Population Size 10 

Max Iterations 40 

Pulse Rate 0.3 
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Loudness 0.9 

     0 

     0.1 

Alpha (α) 0.9 

Gamma (γ) 0.9 

Cost multiplier 1.0 

 

Building ANFIS-EEBAT model structure 

After setting up the initial parameters, the proposed model’s structure is shown in Figure 

5.9. It contains five layers, as discussed in Figure 2.1. There are three inputs, ten pairs of 

input MFs, ten sets of rules, ten output MFs and one output. The three inputs are “No. of 

Story Points”, “Velocity” and “Team Salary”. The output is “Estimated Cost”. The 

operations performed at different layers are synonymous with the description in Figure 

2.1. There are three basic logical operations, “and”, “our”, “not” with three color codes 

“blue”, “red” and “green” respectively. The rules are created using logical “and” 

operations in our case. The logical “or” and “not” operations are not used. 

Figure 5.9 ANFIS-CEBAT structure 
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ANFIS-CEBAT MFs and Rules view 

After the training and testing, membership function parameters are adjusted using 

CEBAT. The rules for the same are shown in Figure 5.11. The x-axis and y-axis in Figure 

5.10(a) represent “No. of Story Points” and membership values of input1 respectively. 

The set of ten unique MFs created are represented as curves (in1cluster1, in1cluster2, 

in1cluster3, … in1cluster10) in the figure. in1 signifies Input1. The x-axis and y-axis in 

Figure 5.10(b) represent “Velocity” and membership values of input2 respectively. The 

set of ten unique MFs created are represented as curves (in1cluster1, in1cluster2, 

in1cluster3, in1cluster10) in the figure. in2 signifies Input2. The x-axis and y-axis in 

Figure 5.10(c) represent “Team Salary” and membership values of input3 respectively. 

The set of ten unique MFs created are represented as curves (in1cluster1, in1cluster2, 

in1cluster3, …, in1cluster10) in the figure. in3 signify Input3. 

Each row of the plot represents a rule. There are a set of ten rules based on input and 

output membership functions. The red line is a slider for selecting the input values. For 

instance, we have selected the value of “No. of Story Points” as 0.04, “Velocity” as 0.016 

and Team Salary as 0.073. The yellow color in the plots depicts how the input variable is 

used in the rules. The blue color in the output membership function, “Cost”, signify how 

the output is utilized in the rules. The output of each rule is combined and defuzzified to 

create an aggregated output in the bottom-right plot. The estimated cost, 0.0425 is the 

output and is shown by the red color line. 
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Figure 5.10(a) Membership function for No. of Story Points in ANFIS-CEBAT 

 

Figure 5.10(b) Membership function for Velocity in ANFIS-CEBAT 
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Figure 5.10(c) Membership function for Team Salary in ANFIS-CEBAT 

Figure 5.11 ANFIS-CEBAT Rules View 

ANFIS-CEBAT Surface Plot 

The surface plots are shown in Figures 5.12(a), 5.12(b), and 5.12(c) depicts the mapping 

of the features with the labels. It can be deduced from the surface plat that for our 

features, the output is linear which is following Takagi Sugeno Type 3 FIS. Surface Plot 

renders a 3-dimensional view of one dependent variable (“Actual Cost”) against two 
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independent variables (“No. of Story Points”, “Team Velocity”, “Team Salary”; set of 

either two).  

 

Figure 5.12(a) Surface Plot for No. of Story Points & Velocity vs Actual Cost 

 

Figure 5.12(b) Surface Plot for No. of Story Points & Team Salary vs Actual Cost 



113 

 

 

Figure 5.12(c) Surface Plot for Velocity & Team Salary vs Actual Cost 

5.3.5 ANFIS-CEBAT performance evaluation and comparative analysis 

We have used the Zia dataset for both performance and comparative analysis. Several 

renowned performance metrics have been used to analyze the performance of the ANFIS-

CEBAT algorithm. We have used  , MSE, RMSE, MAE, MAPE, MMRE and, PRED as 

shown in Table 5.7. Our analysis shows that ANFIS-CEBAT is 99.47% accurate when 

properly tuned and beats Zia’s algorithm, standing at 99%, by a clear margin. Hence, The 

IT industry stakeholders thus can be assured of precise cost estimation in a Scrum 

project. It also provides 100% estimation accuracy up to 5.6% for PRED. 

Table 5.7 ANFIS-CEBAT performance metric evaluation 

Model R
2
 RMSE MAE MAPE MMRE PRED 

(25%) 

PRED 

(5.6%) 

ANFIS-

CEBAT 

0.994 24251.79212 3798.415 0.524 2.370974364 100 100 

Standard 

ANFIS 

0.899 102060.9803 10204.790 1.812 8.18773613 80 60 
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ANFIS-PSO 

(custom 

code) 

0.976 102166.6061 70796.157 7.196 7.312754751 100 40 

ANFIS-GA 

(custom 

code) 

0.971 165060.4348 126420.47

6 

12.488 12.48840386 60 20 

ANFIS-BAT 0.932 131855.0466 33097.541 6.282 12.45133916 60 20 

Zia [6] 0.990 39417.73196 8482.414 0.122 4.111956902 100 80 

 

In figure 5.13, it is implied that ANFIS-CEBAT is most robust to outliers and has the 

least MRE for all values in the Zia dataset as compared to other algorithms, including the 

Ensemble algorithms like RF and Regression-based algorithms like SGD and SVR.  

The values of real and predicted cost for ANFIS-CEBAT are compared against ANFIS, 

ANFIS-BAT, ANFIS-GA, ANFIS-PSO, and Zia as shown in Figure 5.14, which 

demonstrates its capability to accurately estimate the cost of substantially smaller 

projects. 

 

Figure 5.13 Box Plot of ANFIS-CEBAT with other models on Zia dataset 
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Figure 5.14 Actual vs Estimated values of Cost in Scrum Projects 

5.4 Summary 

The problem of cost estimation in Scrum projects is rampant as it requires meticulous 

details about the project, in the form of different components, directly or indirectly 

affecting it. Our rationale to develop an intelligent cost prediction algorithm is to assist 

the managers in software companies in estimating the cost of a project without delving 

into the details of the components that accrued the expenses for the software project. We 

have thus developed a meta-heuristic optimization algorithm called Cost-Efficient BAT 

that is having three primary factors, Energy factor, Memory Space, and Cost Multiplier. 

The Energy factor is crucial to indulge each bat of the population in searching for the 

solution according to their eagerness. The fitness of a bat is determined by this Energy 

factor, where the stronger bats are given the task of exploration while the weaker bats are 

made to exploit each of the explored spaces, to find the most optimal solution amongst 

them. This means that once the best cost of a project has been estimated among a pool of 

similar estimates, the bats shift to the next area to search the same. In the end, the final 

cost from the set of best costs is selected, which according to our analysis is 99.47% 

accurate. With the introduction of Memory Space, the bats remember the explored 
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spaces, thus they are not subjected to repeat the search. This improves the rate of 

converges and prevents converging to local optima. An added benefit is the improvement 

in the time complexity of the algorithm. The introduction of Cost Multiplier is valuable 

for covering the non-linearity in cost estimation in a Scrum project. The cost will be 

affected by direct and indirect components, which will allow the bias to ploy in its 

estimation, hampering the development as a result. Hence, it is unacceptable to let human 

bias sway the cost estimation of a software project. Cost Multiplier takes this into account 

by bridging the gap between direct and indirect components. It is effective in reducing 

manual mode of estimation and prejudice as shown by the results. 

The experimental results and discussion section gives insight into the dataset profiling, 

selection of features and labels, ANFIS-CEBAT model generation and structure, and the 

performance and comparative analysis against several other algorithms. The dataset has 

been described on several characteristics like count, median, standard deviation, 

minimum and maximum value, etc. We have used ANFIS based exhaustive search 

functionality in MATLAB and found the best set of features based on the lowest error. 

Furthermore, we have validated our feature selection with the use of a correlogram. It is 

also effective in quantitatively explaining the Cost Multiplier factor. Detailed profiling of 

these features is provided. Using the Quantile Transformer, we have described its 

effectiveness in transforming the data into Gaussian-like distribution, with the help of 

several plots. 

The tuning of ANFIS is critical to its delivery of exceptional performance on the 

provided set of inputs. Such tuning requires resolute selection of the type and number of 

membership functions. To reflect the real-world nature of the dataset, we used the 

Gaussian function as the choice of our membership function. With the hit and trial 

method, we select the number of rules for each membership function as ten. Hence, we 

use ten sets of rules against four sets of inputs to determine the Scrum project cost. 

In the performance and comparative analysis of ANFIS-CEBAT, its effectiveness against 

several popular algorithms, ANFIS, ANFIS-BAT, ANFIS-PSO, ANFIS-GA, Random 
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Forest, SVR, SGD, and Zia, its closest competitor has been summarized. From the 

analysis, it can be assured that ANFIS-CEBAT is 99.47% accurate, with a 100% value of 

PRED up to 5.6%. It is also worth noting that ANFIS-CEBAT can be utilized for small 

projects made by small teams and thus, is not limited to enterprise software projects.  
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CHAPTER 6 

CONCLUSION AND FUTURE SCOPE 

6.1 Conclusion 

Estimation is an indispensable requisite that assist project managers to take firm decisions 

and fulfilling client commitments. When the requirements are discussed between the 

client and manager, they comprehend some estimated cost of the project as per their 

experience. As stated by the current literature, during the start of any typical IT project, 

managers primarily depend upon empirical estimation. Due to the complex nature of 

projects, estimation based on an educated guess does not yield fruitful results. Effort 

estimation is entirely human-based and directly proportional to the human experience in 

one or several domains thus threatening to delay the tasks if not properly strategized. 

However, cost estimation is more an arduous task because of its dependency on several 

direct and indirect components, which sways the actual cost of estimation, resulting in 

discrepancies. Human bias leads to opinionated planning and erroneous estimation. 

ML-assisted estimation narrows down this gap by using logical estimation based on 

statistics and fuzzy logic. It helps in decreasing the difference between the actual and 

estimated effort to a substantial level. We have discussed the works of several authors 

that use several machine learning techniques for this exact purpose. Though they are 

profound in performance when compared against traditional techniques, yet there are 

challenges in adopting them in the industries. These techniques require heavy 

computational resources that should be scalable over time to minimize performance 

degradation. Hyperparameter tuning is necessary to achieve peak-level performance from 

the algorithm. Such challenges require using optimization algorithms that can tune the 

hyperparameters easily. We have presented such hybrid techniques in an attempt to 

understand the challenges associated with them. We again infer the same challenge of 

powerful performance against increased algorithmic complexity and failure to accurately 



119 

 

estimate the cost of a Scrum project. We thereby proposed using NF systems, a hybrid 

system of neural networks and fuzzy logic. 

We have attempted to accommodate the challenge of effort and cost estimation using the 

most popular NF system called ANFIS. ANFIS is capable of modeling complex human 

tasks, thus it’s a worthy candidate to solve the challenges in Scrum project estimation. 

But standard ANFIS has inherent complications that make it unsuitable for our domain. 

Replacing the original optimization algorithms in ANFIS with the standard Bat algorithm 

does not yield significant results. We attempt to solve this challenge by designing two 

different optimization algorithms based on standard Bat called Energy Efficient Bat 

Algorithm and Cost Estimating Bat Algorithm. 

The ANFIS-EEBAT approach makes use of the three capabilities neural networks, fuzzy, 

and novel Bat hybrid EEBAT. The complexity of the proposed algorithm is managed by 

our novel energy equation and memory space concept. We have provided the detailed 

architecture of our algorithm, from preparing the data to providing values of estimated 

effort. The dataset we used is provided by Zia which contains substantially fewer values 

to train and test our model. Hence, we applied K-means SMOTE to synthesize the data, 

which gave us wonderful results without any repetitive values. The structure of ANFIS, 

its MFs, and Rules has been described using figures. We have provided the pseudo-code 

of the algorithm to help understand it’s working. We used MATLAB to program our 

algorithm and collect estimated effort data. From the comparative analysis, we conclude 

that our algorithm performs the best amongst other state-of-the-art algorithms viz. 

ANFIS, ANFIS-GA, ANFIS-PSO, RF, SGD, and SVR, against MMRE and PRED 

performance metrics. 

For cost estimation, we have used the ANFIS-CEBAT approach that uses the novel Cost 

Multiplier concept to solve the non-linearity in cost estimation in software engineering, 

focusing on the Scrum project. We have introduced this novel feature to bridge the gap 

between direct and indirect components that determine the cost of a project, using a 

single variable. We use the original Zia dataset and program the algorithm in MATLAB. 
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The pseudo code of the algorithm has been provided for better understanding. We have 

compiled the data for estimated cost value and compared it against other similar 

algorithms viz. ANFIS, ANFIS-GA, ANFIS-PSO, RF, SGD, and SVR against MMRE 

and PRED performance metrics. The comparative analysis places our developed 

algorithm at the top. 

Additionally, we have analyzed the time and space complexity of our developed 

algorithms using the Big O notation. These algorithms are ANFIS, ANFIS-GA, ANFIS-

PSO, ANFIS-BAT, ANFIS-EEBAT, and ANFIS-CEBAT. 

Table 6.1 Time and Space Complexity of several algorithms 

Algorithm Time Complexity Space Complexity 

ANFIS-EEBAT O(m.n) O(m.n) 

ANFIS-CEBAT O(m.n) O(m.(n+p)) 

ANFIS O(n) O(m.n) 

ANFIS-PSO O(m.n) O(m.n) 

ANFIS-BAT O(m.n) O(m.n) 

ANFIS-GA O(g(m.n+n)) O(m.n) 

 

Table 6.1 shows the comparison of time and space complexities of various algorithms. 

Here m is the number of iterations, n is the number of inputs and g is the number of 

generations. 

We have calculated the time complexity of the entire algorithm, including the cost 

function used in optimization. Most algorithms require quadratic computation time on a 

system to execute for a certain set of values. ANFIS-GA is the slowest algorithm due to 

repeatedly computing the values of estimation for a set of inputs for each set of elements 

in the generation. 

In terms of space complexity, ANFIS-CEBAT takes the maximum memory. This is due 

to the inherent structure of the algorithm, where we store the global solutions to keep a 
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track of the explored solutions. The other algorithms avail quadratic units of memory to 

store their data. 

It is worth noting that the time-space trade-off affects the feasibility of the algorithms. 

Some algorithms are extremely space-efficient while some are extremely time-efficient 

but not both.  

ANFIS-EEBAT and ANFIS-CEBAT provide the best time-space tradeoff for each of 

their purposes, effort, and cost estimation respectively. ANFIS-EEBAT is most effective 

when the inputs increase considerably. ANFIS-CEBAT models the non-linearity nature 

of cost estimation with added space complexity, which is beneficial in the long term as 

memory becomes cheaper. Hence, these algorithms provide the perfect blend of 

performance and accuracy. 

6.2 Future Work 

Project estimation is a critical step in the software development process. The current state 

of the IT industry still lacks the accurate estimation ability hence the transition to Agile 

methodologies is still a challenge. In our contributions to developing a system of effort 

and cost estimation to assist project managers, whether experienced or new to the role, 

there is a lot of research potential that we have identified in this field. Many modern 

machine learning techniques and optimization algorithms remain to be tested for 

estimation. They can further add to the literature of the current work. The factors that 

contribute to estimation are plenty but in the current scenario only. Potential accelerating 

and decelerating factors are yet to be gauged due to changes in requirements over time. It 

is vital to assess and take these factors into account. We have estimated the effort based 

on the number of story points and velocity in a sprint which we have assumed are 

validated. If we consider estimation sprint-wise, the descriptions of user stories can be 

used to analyze and estimate the effort, using Natural Language Processing techniques. 

Cost estimation can be improved as well. In an extension of this idea, we can add another 

component that is unique to the industry and team. There currently exists no generic scale 

for story size and story complexity. A team that works on a project is liable to work with 
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some set standard that influences their strategy over the process of development and 

estimation. We thereby have identified that this unique component when inserted into the 

estimation process, will be responsible for adapting to the needs of every team based on 

their individuals, suitable to a particular feature of the project of industry. 
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