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Abstract

Smog is defined as an intense air pollution. It is a combination of smoke and fog and it

degrades the visibility of outdoor image to a great extent. Therefore, existing imaging

systems are unable to obtain the potential information from these weather degraded

images. Many visibility restoration models have been designed to restore smog from

still images. But, removing the smog from images is defined as an ill-posed problem.

The quality of the restored image depends upon the accurate estimation of the trans-

mission map. However, the transmission map obtained using various desmogging mod-

els is not accurate in the case of images with large smog gradient, and fail while image

desmogging. As a result, the restored images suffer from numerous issues such as halo

and gradient reversal artifacts, edge and texture distortion, color distortion, etc.

To overcome these issues, various desmogging models are proposed in this research

work. Initially, a novel illumination channel prior (NICP) is proposed to restore smoggy

images in a significant way. A gradient magnitude based filter is also utilized to refine

the transmission map. Finally, the smog-free images are obtained by using the computed

depth information of smoggy images and the smog restoration model.

The subjective and quantitative analysis are drawn to evaluate the performance of the

proposed NICP based desmogging approach. It is found that the proposed NICP based

desmogging approach outperforms competitive models in terms of some well-known

performance metrics. These metrics are as: perceptual smog gradient, contrast gain,

percentage of saturated pixels, new visible edges, edge gradients, execution time, peak

signal to noise ratio, and structural similarity index metric.

Although NICP outperforms the existing desmogging approaches in the case of smoggy

images, but, for images with complex background and having large smog gradient, it

may not be so effective. Therefore, a novel gradient channel prior (NGCP) and informa-

tion gain based filter desmogging approach are designed. Initially, the gradient channel

prior is used to estimate the optical information of smoggy images. Thereafter, an in-

formation gain based filter is designed to improve the transmission map. The smog-free
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image is then computed using an improved restoration model. Finally, the performance

of the proposed NGCP based desmogging model is compared with seven competitive

desmogging models on some well-known benchmark and real-life desmogging images.

From comparative analyses, it is found that the proposed model outperforms the com-

petitive models in terms of various performance metrics.

Although, NICP and NGCP provide promising desmogging results as compared to

the competitive desmogging models. However, it suffers from sky-regions and color

distortion, especially in the case of images affected by large smog gradients. Also, the

effect of the hyper-parameters tuning issue is ignored. Therefore, weighted integrated

transmission maps and integrated variational regularized model with hybrid constraints

(WIVC) based desmogging model is proposed. The transmission map estimation is

obtained from the weighted integrated transmission maps by considering foreground

and sky regions. The computed transmission map is further refined using an integrated

variational regularized model with hybrid constraints.

However, the proposed WIVC approach suffers from the hyper-parameters tuning is-

sue. Therefore, in this chapter, a Non-dominated sorting genetic algorithm (NSGA) is

also used to tune the hyper-parameters of the proposed WIVC approach. Extensive com-

parative results reveal that the WIVC performs effectively across a wide range of smog

degradation levels without causing any visible artifacts. It is found that the proposed

model outperforms seven competitive desmogging models in terms of various perfor-

mance metrics on benchmark and real-life smoggy images. The main benefits of WIVC

over the competitive desmogging models are: WIVC can efficiently overcome the sky

region issue. Also, WIVC can preserve texture details of the restored smoggy images

more efficiently.

Thorough extensive comparative analyses, it is found that the proposed models i.e.,

NICP, NGCP, and WIVC can significantly suppress visual artifacts for smoggy images

and obtain significantly better restored images as compared to the existing desmog-

ging models both quantitatively and qualitatively. Moreover, the proposed models take

significantly lesser time, therefore, the proposed models will facilitate various real-life

imaging systems.
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Chapter 1

Introduction

1.1 Smoggy images

The recent advances in computer vision applications have led the attention of researchers

toward desmogging models [13]. The visibility of captured images is degraded incred-

ibly because of the occurrence of components like smog, haze, mist, etc. The phe-

nomenon concerning fog, haze, or smog happens with the worsening environment. The

observed luminous intensity of the scene is immersed and scattered due to the sub-

stantial presence of aerosols and particles dangling in the ambient air [5]. The objects

captured in such an environment have poor visibility, thus having poor intensity and

low contrast [14]. The performance of several computer vision applications is highly

degraded due to bad environmental conditions. The computer vision applications like

surveillance systems, intelligent transportation systems, object tracking systems, etc.
fail due to the low visibility of the images. Several desmogging models have been de-

veloped to solve this issue. These models play an important part in computer vision

applications used in poor weather conditions. Due to this, the researchers are attracted

to the desmogging models. For instance, visibility restoration models are extensively

used for target detection in civil and military area [15], remote sensing [16], traffic

surveillance [17], etc. Therefore, the evolution of desmogging models is considered a

research of great significance and interest.

Figure 1.1 (a) shows natural image captured in clear day. The fog affected image is

shown in Figure 1.1 (b). The haze affected image is represented in Figure 1.1 (c). It

clearly shows that hazy image has poorer visibility than clear day and foggy images.

The smoggy image is represented in Figure 1.1 (d). It is shown that the smoggy image

is more affected by weather degradation as compared to the foggy and hazy image.

1



a b

c d

Figure 1.1: Weather degraded images (a) Natural, (b) Foggy, (c) Hazy, and (d) Smoggy

image

The restoration of the weather degraded image requires information about the phys-

ical features of the particular scene. The depth of the scene is one of such features [18].

With the known depth value, the process of desmogging becomes more straightforward

[19]. The depth map, however, is priorly unknown in the case of applications deployed

in the real-world [20].

Therefore, the major problem of desmogging models is the precise depth map eval-

uation. The problem of estimation of the depth map demands prior knowledge about

weather degraded images like atmospheric scattering or depth cues [21]. The theory

of depth map evaluation seems new, but this has been largely utilized by artists while

expressing scene depth in their portraits since the early renaissance [22, 23, 24].

Visibility restoration is a difficult task due to the reason that the transmission depends

upon the unknown depth that changes with changing atmospheric situations [25]. Tan

et al. [24] and Kawakami et al. [26] utilized local contrast values to restore weather

degraded images. The proposed models proved to be successful in image sections hav-

ing notable weather degradation. Nevertheless, the reconstructed images are frequently

found to be possessing over saturation problem. [27]. maximizing contrast thus causes

over-saturation. This over-saturation problem can be overcome by using physics-based
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restoration models [28, 29]. He et al. [27] proposed a simplistic and efficient desmog-

ging model using DCP. Nevertheless, it too experiences problems like halo artifacts and

color distortion [30].

Visibility restoration models have recently made significant advances because of the

consideration of effective priors and suppositions. Wang et al. [31] proposed a patch-

based DCP model to solve the issue. However, the model is ineffective when the objects

in the image are intrinsically similar to the airlight and negligible shadow is cast. The

existing literature includes the definitions of DCP. However, the model may produce the

annoying gradient reversal and halo artifacts [32]. Handling such issues involved the

development of several image filters utilizing a guided filter for the refinement of the

transmission map. These models require higher computational time [33]. To handle

the discussed issues, the researchers propose a filter by the use of gain intervention [5].

However, it experiences color distortion problems and gradient reversal artifact.

1.2 Desmogging

Digital images captured in poor weather mostly lose illumination and fidelity, resulting

from the idea that illuminates is intercepted and disseminated by a dirty medium like

droplets of water in the atmospheric veil or other particles throughout the method of

transmission [1]. Also, the majority of automatic mechanism, that originally centered

on the input objects in the scene becomes unsuccessful to run because of the degrada-

tion of images [3]. Therefore, the desmogging techniques play a vital role in various

image processing applications like object tracking, intelligent transportation system,

airplane landing-takeoff, etc. [4].

The illuminate perceived from a scene on a smoggy day is spattered and absorbed

due to the appearance of molecules and aerosols present in the atmosphere [5]. The

worsening of environment eminence causes the regular occurrence of smog [34]. The

intense smog leads to the poor visibility of digital images, this reduces the performance

of several computer vision-based applications [35, 27]. Therefore, in a smoggy envi-

ronment, the perceptibility of the objects reduce [14] and such images are oftentimes

identified as degraded images [36].

1.3 Imaging under smoggy environment

Figure 1.2 shows the imaging model under smoggy and smog-free environment. It has

been observed that the imaging under smog free environment has good visibility when

it is going to be digitized (Figure 1.2 (a)). However, in case of smoggy environment,
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smog effects the digitizing process of image. Therefore, captured image is infected from

the smog (as in Figure 1.2 (b)) [1].

Figure 1.2: Imaging under (a) In sunny weather, (b) In smoggy environment [1].
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Figure 1.3: Effect of haze/smog on underwater imaging

Figure 1.3 illustrates the impact of light on underwater images. It can be observed

that the influence of haze/smog on underwater images turnout to be more as the depth

of the scene becomes deeper [37].

Figure 1.4: Smoggy images and smog-free images [2]
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Figure 1.4 depicts the effect of smog on given objects and the effect of desmogging

techniques. It clearly shows that the smoggy images have poor visibility and the smog

free images have considerably improved visibility [38].

1.4 Smog removal techniques

Following are various desmogging techniques which can be used to remove smog from

images.

1.4.1 Smog imaging model

Fattal et al. [28, 39] proposed the smog formation model. The mathematical represen-

tation of a smoggy image is illustrated below:

Smg( j) = Omg( j)Tmp( j)+G∞(1−Tmp( j)) (1.1)

Here, Smg( j) and Omg( j) represents a smoggy and an actual image respectively. The

transmission map is represented as Tmp( j) ∈ [0,1], G∞ denotes global atmospheric veil

and j represents the pixel coordinate. The main focus of the desmogging approach is

the estimation of Omg( j), Tmp( j), and G∞ from Smg( j). The Omg( j)Tmp( j) demonstrate

direct attenuation, which depends upon the transmission media [40].

The G∞(1−Tmp( j)) indicates airlight map. The direct attenuation illustrates the actual

scene radiance, and the decrease with respect to Tmp( j). The decrease in Tmp( j) leads

to increase in the airlight map. The prime cause behind the reducing airlight map is the

depletion of actual image radiance (Omg) by smog and far-away objects. The Tmp( j) for

homogeneous smoggy conditions can be computed as follows:

Tmp( j) = e−γd( j) (1.2)

Here, d( j) denotes the depth of the image Omg, and γ is the extinction factor of the

medium.

He et al. [27] demonstrated the existance of a relation among atmospheric veil

(Avl( j)) and transmission map (Tmp( j)). This relation is as represented as follows:

Avl( j) = 1−Tmp( j) (1.3)

After the estimation of the atmospheric veil, the restoration model for smog removal

can be applied. Therefore, the actual image can be derived using Eq. 1.1. The coarse
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estimated atmospheric veil (Avl( j)) is calculated by using the minimum element of ob-

ject Smg( j)
G∞

, the dissimilarity between image Smg( j)
G∞

and coarse estimated atmospheric veil

Avl( j) approaches 0 with maximum probability. Thus, to restrict this variation, a consis-

tent parameter c is involved.

It can be observed from Eq. 1.3 that the actual transmission can be small or close to

zero in its minimal value. However, some noise may be involved in the restored image.

Hence, it becomes necessary to restrain the transmission map by utilizing a lower bound

(x0). The values of x0 and c are defined to 0.1 and 0.95, respectively as recorded in the

literature [41].

The scene radiance (Omg( j)) can be computed as below:

Omg( j) = c×G∞ +
Smg( j)− c×G∞

max(Tmp( j),x0)
(1.4)

1.4.2 Dark channel prior

Dark channel prior states that among majority of non-sky masks, at least one color (R,

G or B) has several pixels which have very small or almost near to zero value. In similar

masks, the intensity values are almost zero [42]. Small pixel value in dark channel is

because of three factors: shadows, color full scenes and dark scenes.

Dark channel is quite dark in most of smog free digital images. Therefore it has the

ability to develop depth of input image. After evaluating depth of a smoggy image, one

can easily restore the smog free image [43]. Figure 1.5 shows various steps involved in

dark channel prior based smog removal method [27].
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Figure 1.5: Smog removal using dark channel prior

1.4.3 Color attenuation prior

Smog removal has found to be a difficult issue in image processing, because of its ill-

posed nature. The color attenuation prior is straightforward but a dominant technique

to remove smog from a still image. By developing a linear approach for modeling the

smoggy image’s depth and learning parameters by utilizing supervised learning, the

smoggy image’s depth can be easily recovered [44]. By utilizing this depth map, the

computation of the transmission map can easily be done and the smoggy image can

be restored via atmospheric scattering model. Therefore it can effectively eliminate

smog from the given scene. Figure 1.6 shows various steps required to implement smog

removal from image using color attenuation prior [1].

8



Figure 1.6: Working of color attenuation prior

1.4.4 Bi-histogram modification

Bi-Histogram Modification based technique has the ability to handle this problem. It has

merged a smog density estimation with smog formation removal for optimistically esti-

mating the smog density during transmission map estimation [45]. The Bi-Histogram

Modification technique has found to be a best algorithm while working on restoring

foreground and background smoggy scenarios [3].
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Figure 1.7: Smog removal using bi-histogram modification [3]

Figure 1.7 shows the smog removal working of Bi-Histogram Modification. Estimat-

ing the depth of a smoggy scene is critical task. But most of existing smog removal

techniques often suffer from certain artifacts or the loss of potential information in their

smog free output image because of uneven depth of the scene [46].

1.4.5 Local atmospheric light veil estimation

Figure 1.8 clearly demonstrate the working of Local atmospheric light veil estimation

based smog removal technique. It utilizes a systematic technique by using a physical

model in which the peak intensity value of each color pixel is considered while eval-

uating the initial atmospheric veil. Bilateral filter is then utilized to smooth each veil

for attaining both edge preservation as well as local smoothness [47]. The reflection

component of each color and transmission map are developed by utilizing physical at-
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mospheric scattering model.

The Local atmospheric light veil estimation method avoids adverse effects because

of error in developing the global atmospheric map. The local atmospheric light veil

estimation has shown better results especially for outdoor smoggy images along with

good color fidelity [4].

1.4.6 Two-dimensional canonical correlation analysis

In 2D canonical correlation analysis, image desmogging is modeled as a supervised

learning based technique. It is based upon the assumption that in a natural image,

masks are smooth and the pixel values in similar masks are estimated to be invariable.

The use of linear correlation among smoggy image masks and corresponding transmis-

sion masks can evaluate the depth of the input image in more proficient manner [5].

Figure 1.9: Restoration model using regression method

By increasing the correlation among masks, pairs of smoggy image and its trans-

mission map, regression technique has the ability to learn a subspace to evaluate the

reliable transmission map. Therefore, given a smoggy image, the transmission map is

aggregated using linear regression of masks in the subspace and refine transmission

map using given filter. The output smog free image is evaluated by utilizing the dichro-

matic atmospheric model. Figure 1.9 is showing various steps required to restore the

smoggy image using regression model with two dimensional correlation analysis [48].
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1.4.7 High-speed gain intervention refinement filter

Among the standard smog removal techniques, the dark channel prior is a proficient

method in the existing literature. But many reviewers have shown that it results in

smog-free image with halo effects. In order to handle this issue, numerous previous

image filters are merged with dark channel prior to remove smog from images. But

the use of filtering techniques certainly brings massive computational load while the

smog-free outcome of integrated filtering and dark channel prior still has an area for

enhancement [49].

To handle this issue a time-efficient refinement technique based upon the gain in-

volvement is introduced and merged with dark channel prior to handle above-mentioned

issues. The proposed filtering method is merged with dark channel prior to yield not

only superior computation time but also for better improvement in smog-free image

than standard filtering methods [5]. In Figure 1.10, the working of High-speed gain

intervention refinement based smog elimination technique is given.

Figure 1.10: High-speed gain intervention refinement filter [5]
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1.5 Meta-heuristic techniques

Meta-heuristic techniques have proven to be efficient tools providing solutions to several

fields of engineering. Several image processing applications also attract the attention of

researchers towards the use of solutions based on Meta-heuristics. These techniques are

beneficial in both cases where traditional solutions are either present or are not efficient

in solving the problems effectively [50]. Figure 1.11 shows a stepwise illustration of the

genetic algorithm.

Figure 1.11: A flow of GA process

Whilst the earlier versions of the solutions involving the use of Genetic algorithm,

Simulated annealing, Differential evolution, and Particle swarm optimization are de-

veloped in the immediate decade, the advancement of evolutionary computation al-
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gorithms such as Biogeography Based Optimization, Bacterial foraging optimization,

Artificial bee colony, Harmony search, etc. has attracted the researchers from the entire

world [51].

The GA represents every possible solution as a chromosome. Initially, a random gen-

erator generates a random population. This population is used in the starting point [52].

The suitability of the chromosomes in the initial population is assured using a function

called a fitness function [53]. The next population is created by the application of mu-

tation and crossover functions to the selective chromosomes and their offsprings. The

repetition of this task is done till the generation of enough offspring [54].

The fitness value linked to the strings provides an efficient estimation of the solution.

The random selection of pairs is done by the use of a crossover operator and new pairs

are generated. The crossover rate is the measure of the number of crossover opera-

tions made [55]. The mutation operator randomly mutates the bits in the string. The

count of mutation operations performed represents the mutation rate. Each level in the

procedure provides a set of a new generation as the output [56].

1.6 Research motivation

With the worsening air pollution, smog has gradually become a problem in different

parts of the world. The attenuation of scene radiance occurs due to the occurrence

of the high concentration of aerosols in the ambient atmosphere. The scattered illu-

mination hampers the visibility when added to the actual illumination. Therefore, the

smoggy environment attenuates the visibility in the images captured undesirable adding

of reflection and scattering effect [57].

Therefore the smoggy environment influences the working of several machine vi-

sion applications like remote sensing imaging, intelligent transportation systems, aerial

imaging, etc. It has been found through the review of the literature that most of the

existing research on image restoration only focus on defogging or dehazing of the im-

ages. Therefore, designing an efficient smog removal technique is the major motivation

behind this research work.

1.7 Applications of desmogging models

Visibility restoration models play a significant role in several computer vision applica-

tions. Figure 1.12 shows the remarkable applications those utilizing desmogging models

as pre-processing tools [58].
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Figure 1.12: Applications of desmogging models

1.7.1 Remote sensing

Remote sensing images have wide applications in diversified areas varying from mineral

exploration to agricultural applications [59]. However, the reduced quality of hyper-

spectral images harms the functioning of these applications [60]. Visibility restoration

models have the capability of extracting high quality images from the remote sensing

images [61].

1.7.2 Underwater images

It is a tedious task to attain more of the information from the images clicked underwater

[62]. The researchers and divers capture the underwater images facing color sprinkles

and color cast problems. Color cast occurs because the light attenuates in dissimilar

wavelengths, that renders the environments underwater bluish. Thus, distorting the

color of images [63]. Therefore, the implementation of restoration models become

necessary to eliminate the influence of color cast and color dissemination from the

underwater images [64].

1.7.3 Intelligent transport systems

Weather degradation reduces the extent of effective optical surveillance. This phe-

nomenon of degradation is spatially varying and thus making it non-trivial [65]. Vis-

ibility restoration is a necessary model in several areas like lane detection, intelligent

transportation systems, vehicle detection, etc. [66]. The subsequent subsections de-

scribe the most widespread employments of desmogging models while designing an

intelligent transportation system.
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A. Road transportation

Due to reduced vision caused by weather degradation, many accidents occur on roads,

chiefly in hilly areas. Therefore, to limit accidents on highways and rugged areas, a

desmogging model is expected to present a restored image to the driver on some visual

device. Nevertheless, a desmogging model with constant time complexity is required

because of the high speed of vehicles [67].

B. Aerial transportation

The weather degradation generally affects the takeoff and landing of airplanes. The

poor environment conditions cause delayed or canceled flights. Such issues can be

handled by deploying desmogging models to restore the actual scene from the perceived

scene.

C. Rail transportation

Even the trains remain trashed of equipment due to bad weather conditions each year.

The fool-proof devices have not been yet developed to mitigate this issue [68]. Several

trains get delayed or even get canceled because of the weather degraded environment.

Handling such issues require the use of image desmogging models to stream a cleared

scene for drivers [69].

D. Ocean/sea transportation

Sea fog affects the navigation of ships. It can restrict the movement of a ship onward

the ship channel. Thus might even advert to the inland traffic systems. The forecasts

of sea fog are important while communicating the implied information to the traffic

personnel [70].

E. Cable car transportation

A cable car is a transportation system that depends upon cables for pulling vehicles

along or lowering them steadily [71]. Several cable cars get delayed or at times even

get canceled because of the presence of heavy fog/smog. For handling this issue, the

desmogging models can be used to show the streamed visibly restored scenes for the

cable car drivers.

1.8 Performance metrics

The quality of a desmogging model can be well analyzed by considering the perfor-

mance metrics.
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Figure 1.13: Performance metrics for desmogging models

Figure 1.13 shows various performance metrics which can be employed to estimate

the usefulness of the present desmogging models [72]. In desmogging models, the

performance measure can be required to be performed in two situations, i.e., in the

availability of ground truth image and in the unavailability of ground truth image [73].

1.8.1 When a ground truth image is available

This includes performance evaluations that consider a ground truth image (i.e., refer-

ence image) in advance. This image is an actual restored image captured in the clear

weather. Nevertheless, actual restored images are particularly known when someone

wants to validate its desmogging model on standard weather degraded image datasets.

When the actual image is already known, several quality meaures including Peak Signal

to noise ratio (PSNR), Mean squared error (MSE), and structural similarity index metric

(SSIM) are considered while evaluating the performance of desmogging models.

A. Mean square error

Mean square error (MSE) is a method for error calculation that averages the squared

difference between the reference image (Gt) and the smog-free image (Ir) generated

via the restoration model. The MSE is a positive integer that varies from 0 to ∞. The

mathematical representation of MSE can be defined as [74]:

MSE =
1

R×C

R

∑
j=1

C

∑
i=1

[Gt(i, j)− Ir(i, j)]2 (1.5)
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Gt(i, j) depicts the pixel value from a ground truth image. Whereas Ir(I, j) represents

corresponding pixel intensities from a smog free image. Also, i and j denotes pixel’s

coordinates. R and C represent rows and columns.

B. Peak signal to noise ratio

Concerning the restored image, Peak signal to noise ratio (PSNR) estimates the mean

squared error after implementing the restoration model. Maximum PSNR value signifies

that the effect of weather degradation is removed proficiently. PSNR can be computed

as follows [74]:

PSNR = 10log10

(
2552

MSE

)
(1.6)

C. Structural similarity index metric

While calculating the PSNR, some edges might get neglected. The structural similarity

index metric (SSIM) evaluates the relevance in such cases. The value of SSIM closes to

1 means that the restored image possesses higher structural quality. This is measured as

[74]:

SSIM(m,n) =
(

2µmµn + c1

µ2
m +µ2

n + c1

)(
2µm j + c2

σ2
m +σ2

n + c2

)
(1.7)

Here, µm and µn denotes sample means of m and n, and the sample variances of m and

n are indicated by σ2
m and σ2

n , respectively. The cross-covariance of m and n is given by

σm j. The values for c1 and c2 are set to 0.01 and 0.03.

1.8.2 When a ground truth image is not available

The ground truth images are in several cases not available in real-world applications.

Measuring effectiveness thus becomes a challenging task in such cases. The images

restored by the models have high contrast in comparison with the degraded images.

Percentage of saturated pixels (ρ),Contrast gain (Cg), Perceptual weather degradation

density (D f ), and Visible edges ratio are considered for evaluating the desmogging

models.

A. Contrast gain

Contrast gain (Cg) is estimated as an average contrast difference between input weather

degraded image (I) and a desmoggy image (Ir). Cg is calculated as below [75]:

Cg =CI−Cr
I (1.8)
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Here, Cr
I and CI represent average contrast of restored image (Ir) and smoggy image

(I), respectively. For an image (I(i, j)) with size (R×C). The average contrast (Cv(i, j))

is calculated as:

Cv(i, j) =
1

R×C

R−1

∑
i=0

C−1

∑
j=0

C(i, j) (1.9)

Here, C(i, j) can be written as:

C(i, j) =
s(i, j)
m(i, j)

(1.10)

where

m(i, j) =
1

(2p+1)2

p

∑
k=−p

p

∑
l=−p

I(i+ k,y+ l) (1.11)

s(i, j) =
1

(2p+1)2

p

∑
k=−p

p

∑
l=−p
|I(i+ k,y+ l)−m(i, j)| (1.12)

Tripathi and Mukhopadhyay [76] shown that a restored/actual image has more contrast

than the weather degraded image. Hence, Cg should be a positive real number.

B. Percentage of saturated pixels

Cg The increased contrast in the restored image may lead to a saturated pixel prob-

lem. Consequently, the computation of the Percentage of saturated pixels (ρ) becomes

necessary to evaluate a restoration model [75]. ρ can be defined as:

ρ =
Sp

R×C
(1.13)

Here, Sp denotes the pixels count that were not entirely black or white in the weather

degraded image but became saturated on the application of the desmogging model to

the image. The desmogging model with a lower value of ρ is considered more effective.

C. Visible edges ratio

Another measure for the performance of the proposed model is analyzing the ratio of

new visible edges (e) and the ratio of average gradient (r̄). The e describes the rate of

visible edges that is improved for the restored images and is computed as below [77]:

e =
nk−nl

nl
(1.14)

Here, nl and nk represent the count of the edges visible in the restored image (Ir) and

weather degraded image (Is), respectively.

The desmogging model with a lower value of e is considered less effective as the

edges of the restored image are weak, conversely, more e represents stronger edges.
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The restoration degree r̄ uses the gradients of visible edges from the smog free image

for depicting the restoration degree of the image texture details and edges. r̄ can be

defined as:

r̄ = e

[
1

nk
∑

i∈φk
log ri

]
(1.15)

Here, ri is set to ∆k
∆l . The gradients of an image are represented using ∆k and ∆l, respec-

tively. ri represents the set of visible edges of Ir. A maximum value of r̄ states that the

specified desmogging model has more capacity of preserving edges in comparison with

other models.

D. Perceptual weather degradation density

An efficient model predicting weather degradation density is considered in [78]. The

model divides the degraded image into N×N sections and then computes the aggregate

average values. These N×N sections are also used for the evaluation of different factors

including image entropy, DCP, sharpness, variance, color saturation, contrast energy,

colorfulness, etc. Multivariate Gaussian (MVG) fit is estimated in n dimensions for the

features by the implementation of Mahalanobis measure [79]. This MVG is computed

as follows:

P(s) =
1√

(2π)n|D|
exp
(
−0.5∗ (s−µ)tC−1(s−µ)

)
(1.16)

Here, µ indicates the mean, s represents the weather degradation aware statistical

features, and n×n shows the covariance matrix of weather degraded features. Addition-

ally, C−1 and D depict covariance matrix inverse for MVG and determinant, respectively.

The determinant and matrix inverse can be obtained by applying the maximum likeli-

hood (ML) estimation [80]. The Mahalanobis-like distance is calculated as follows:

D =

√
(m1−m2)t

(
C1 +C2

2

)−1

(v1− v2) (1.17)

Here, m1 and m2 represent the mean vectors and C1 and C2 denotes the covariance

matrix for MVG model of the restored image and matrix for MVG fit of the weather

degraded image.

Moreover, L f can be calculated for the judgment of the restoration level. L f represents

the distance norm of MVG versus weather degraded aware statistical features. The data

is obtained of a weather degraded test image and normal MVG model from a group of

500 weather degraded images [78]. Afterward, weather degradation density (Dh) can

be calculated as:
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Dh =
D

1+L f
(1.18)

Values of Dh are proportional to the corresponding weather degraded density.

1.9 Thesis organization

This thesis is devoted to design and development of desmogging models for weather de-

graded images. The extensive review of the existing desmogging techniques is included

in Chapter 2. Design and implementation of the proposed desmogging models are dis-

cussed in Chapters 3 to 6. The concluding remarks and future directions are discussed

in Chapter 7. The chapter-wise organization of thesis work is given below:

Chapter 2: Related work

In Chapter 2, a comprehensive and illustrative literature review in the domain of desmog-

ging models is provided. The details of the existing desmogging models along with their

strengths and weaknesses are also presented. The existing models are compared with

respect to different features.

Chapter 3: Desmogging of smog affected images using illumination

channel prior

The existing researches majorly are designed for the restoration of images affected by

rain, dust, fog, haze, etc. Thus, the designed models do not provide appropriate per-

formance for the smog affected images. This chapter proposes a novel illumination

channel prior for the significant restoration in the case of smoggy images. The filter

for efficient refinement of transmission map, namely gradient magnitude based filter is

also proposed. Finally, subjective and quantitative analyses are drawn for evaluating

the performance of the proposed desmogging approach.

Chapter 4: Image desmogging using information gain based bilateral

filter

Many visibility restoration models approaches have been designed to restore smog from

still images. But, removing the smog from images is defined as an ill-posed problem.

Therefore, a novel desmogging approach is designed. Initially, gradient channel prior is

used to estimate the optical information of smog affected images. Thereafter, a infor-

mation gain based filter is proposed to improve the transmission map. The smog-free

image is then computed using an improved restoration model.
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Chapter 5: Desmogging using oblique gradient profile prior and vari-

ational minimization

In this chapter, a novel transmission map estimation is developed by deploying weighted

integrated transmission maps obtained from foreground and sky regions. Additionally,

the further refinement of the transmission map is done by using an integrated varia-

tional regularized model with hybrid constraints. However, the suggested approach un-

dergoes the hyper-parameters tuning issue. To resolve this issue, the chapter includes

a Non-dominated sorting genetic algorithm (NSGA) for tuning the hyper-parameters of

the proposed approach.

Chapter 6 Conclusions and future work

The thesis is hereby concluded in this chapter, emphasizing the contributions made

towards the proposed research domain and presenting future directions in this research

area.
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Chapter 2

Related work

Outline

This chapter incorporates a comprehensive review of desmogging models. The desmog-

ging models are broadly categorized into six categories. These are variational, filtering,

enhancement, meta-heuristic, fusion, and depth estimation based models. Finally, the

comparisons have been done on the existing models while considering certain charac-

teristics. The major objective of this chapter is to evaluate the shortcomings present in

the present image desmogging models.

2.1 Review of literature

This section includes a comprehensive review of existing well-known smog removal

techniques. Also, a comparative analysis of different models is given.

2.1.1 Review on smog removal techniques

Xiao et al. have utilized DCP with segmentation and gamma correction to remove the

color distortion and halo artifacts issues with desmogging techniques. Initially, well-

known guided image filter has been utilized to improve the segmentation of brighter

segments. Median filter has been utilized to evaluate the edge information. Therefore,

an efficient transmission map has been evaluated. In the end, gamma correction has

been implemented to remove the smog from images. This technique has shown lesser

color distortion and halo artifacts with desmogged images [81].

Ma et al. proposed a fusion based desmogging model for removing the smog from

smoggy images. A well-known guided image filter has also been used to reduce the
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edge degradation issue with existing desmogging techniques. In the end, the white

balancing has also been utilized [49]. But, this technique may introduce halo artifacts

in the restored images.

Zhu et al. proved that an efficient transmission map estimation technique has an

ability to restore the weather degraded images in a significant way. However, it is an

under-constraint issue. It has been observed that the DCP is an efficient technique

to estimate the transmission map. It has been found that the energy minimization

has ability to further improve the transmission map obtained from DCP. The energy

function integrated DCP with piecewise smoothness. However, it suffers from poor

computational speed issue [82].

Want et al. used a superpixel technique to resolve the issue of halo artifacts and color

distortion in the sky area. Therefore, the proposed restoration model can handle the

sky region issue with existing desmogging techniques [83].

Zhao et al. designed a multi-scale tone model for efficiently estimating the transmis-

sion map in a more significant way. Therefore, it can restore the image with multiple

scales [84]. However, it provides poor results for large smog gradients.

Zhu et al. designed a supervised learning based desmogging approach for estimation

of the depth map in a more efficient way. Therefore, it provides more efficient results

than DCP based desmogging techniques [1]. However, it require synthetic images for

training. But, in real time applications it is difficult to obtain such a huge data number

of images for different kinds of applications [85].

Kumari et al. designed a look-up table with the help of gamma correction and median

filter. It has an ability to provide restored images with a lesser number of halo artifacts

and good edge preservation [86].

Ding et al. considered an L2-norm for the evaluation of transmission map in a more

effective way. Then, a guided image filter has been considered for the refinement of the

transmission map. Therefore, it has the ability to preserve the edges in a more efficient

way [87].

Li et al. developed a weighted guided filter for the refinement of the transmission

map in a more effective manner. It takes lesser computational time without losing the

illumination of restored images [88].
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Li et al. implemented change of detail prior that evaluate the thickness of smog. The

prior is stable for the local regions of the smoggy image containing objects in different

depths [89]. But, the model proved incapable of preserving the edges of a haze free

image.

Li et al. integrated weighted guided filter with Koschmiedars law to estimate atmo-

spheric viel in more efficient way. The model has the capability of restoring images with

lesser gradient reversal artifacts and halo artifacts. [90].

Su et al. used well-known bilateral filter to achieve local smoothness and to preserve

edges in an more significant way. It minimizes the adverse effects that occurs due to the

dissimilarity between in global atmospheric light [4]. However, the restored image in

this case may contain halo and gradient reversal artifacts.

Guo et al. proved that the efficient tuning of the restoration model can provide more

efficient desmogging results. The genetic algorithm has been used to tune the desmog-

ging parameters. It achieves optimistic desmogging parameters subject to ensuring the

quality of restored images [91]. However, the genetic algorithm suffers from poor con-

vergence speed issues.

Golts et al. [6] designed an image desmogging approach using Dark channel prior

(DCP). In this model, regularization is achieved using learning process. Li et al. [7] pro-

posed a semi-supervised learning based desmogging approach. The approach applied

deep Convolutional Neural Network (CNN) for supervised and unsupervised learning.

Gradient priors and dark channel are implemented to explore the details of clear im-

ages.

Liu et al. [92] proposed a unified variational model that involved total variation

regularization for image desmogging. The model uses l1−norm regularization for re-

pressing the inverted scene radiance and scene transmission. The desmogging model is

then optimized by using the direction minimization approach.

Hodges et al. [93] applied deep neural networks for removing the weather impacts

from the degraded image. The authors then applied Siamese network architecture in

order to train the proposed model for unmatched images.

Ancuti et al. [8] proposed a Color channel transfer (CCT) for desmogging of images.

CCT utilize a color transfer scheme for compensating for the chromatic loss in the color

channel. Gu et al. [9] introduced another desmogging algorithm built on total general-

ized variation (TGV) regularizations. The proposed model makes use of two TGVs for

improving the transmission map and image intensity.
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Ju et al. [94] executed another model using gamma correction prior (GCP) to clear

the smog from weather degraded images. The scene albedo is obtained using a visual

indicator and a global-wise strategy, thus the smoggy image is restored. Zhu et al.

[95] implemented a generative adversarial network (GAN) to desmog the image. This

model utilizes a compositional generator and a deeply supervised discriminator. The

discriminator’s role is to make sure that the output by the generator should look like a

clear image.

Ren et al. [96] made use of multi-scale deep neural network for image restoration

from a degraded image. The transmission map is obtained by using a coarse-scale net.

This transmission map is then used in refining the edges. Khan et al. [10] introduced

the use of Wavelet transform (WT) to recover the image. The atmospheric light is

calculated from the given smoggy images by dividing and restoring the high-frequency

sub-bands.

2.1.2 Comparative analysis of existing smog removal techniques

Table 1 illustrates the comparative analyses of some well-known visibility restoration

approaches based upon some necessary characteristics of desmogging techniques. It has

been observed that each desmogging method has certain pros and cons. Therefore, no

technique performs efficiently in every case. Therefore, designing an efficient visibility

restoration technique is still an open area for researchers.
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Table 2.1: Comparative analyses of the existing smog removal techniques

Ref.

No.

Year Technique Edge

preser-

vation

Speed Color

distor-

tion

Halo

arti-

facts

Large

smog

gradi-

ents

[27] 2011 DCP 7 Average 3 7 7

[36] 2012 Improved DCP 7 Average 3 7 7

[47] 2013 Bilateral filter 3 Average 7 7 7

[35] 2013 Physical model 7 Average 3 7 7

[97] 2014 Trilateral filter 3 Good 7 7 7

[48] 2015 Canonical correlation 7 Good 7 3 3

[3] 2015 Histogram Modification 7 Good 7 7 3

[88] 2015 Weighted guided filter 3 Good 7 3 7

[98] 2015 Deformed model 3 Average 7 3 7

[90] 2015 Edge preserving 3 Average 7 3 3

[89] 2015 Change of detail 3 Average 7 7 3

[99] 2015 Hierarchical model 3 Average 7 7 3

[86] 2015 Regression 7 Good 7 3 3

[91] 2016 Genetic algorithm 7 Average 7 3 3

[83] 2016 Scattering model 7 Average 7 3 3

[49] 2016 Image fusion 7 Average 7 3 3

[5] 2016 Gain filter 7 Average 7 3 3

[43] 2017 Gain intervention 3 Good 7 3 7

[2] 2017 Improved restoration 3 Average 7 3 3

[100] 2017 Fusion 3 Good 7 7 3

[101] 2017 Optical depth 7 Good 7 3 3

[102] 2018 Notch Gradient 3 Good 7 3 3

[103] 2018 Controlled Gaussian 3 Good 7 7 3

[104] 2018 Linear transmission 7 Good 7 3 3

[105] 2018 Segmentation 7 Good 7 3 3

[106] 2018 Improved DCP 7 Good 7 3 3

[107] 2019 Dual fusion 7 Good 7 3 3

[108] 2019 Fusion 7 Good 7 3 3

[93] 2019 Deep neural networks 3 Average 3 3 3

[109] 2019 Alternating model 3 Good 3 7 3

[110] 2020 Pyramidal residual 7 Good 7 3 3

[10] 2020 Radiance transformation 7 Good 7 3 3

[94] 2020 Gamma correction prior 7 Good 3 3 3

[7] 2020 Semi-supervised model 7 Slow 7 3 3

[6] 2020 Unsupervised DCP 3 Average 3 3 3
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2.2 Research gaps

After the detailed analyses of the existing desmogging models, the following research

gaps are identified.

i. The related work has shown that the majority of existing desmogging techniques

perform pooly for images with large smog gradients.

ii. Majority of existing researchers have neglected the use of parameter tuning to effi-

ciently restore the weather degraded images.

iii. It has been observed from the literature that the meta-heuristic techniques have

ability to tune the desmogging parameters for efficient desmogging of smoggy im-

ages. However, majority of existing researchers have neglected the use of meta-

heuristic techniques.

iv. Majority of existing researchers have either focused on hazy or on foggy images.

No much work has been done for smoggy images.

2.3 Problem Formulation

Imaging under smoggy environment suffers from poor visibility issue. These images are

often categorized as degraded images. These images reduce the performance of many

computer vision applications. Therefore, the main necessity is to design an efficient

image restoration technique. From related work, it has been observed that existing

techniques suffer from color distortion, edge degradation, gradient reversal and halo

artifacts.

In order to overcome the different problems with existing technique, a novel meta-

heuristic techniques based smog removal algorithms will be proposed in this research

work. The depth map can automatically extract the global atmospheric light and roughly

eliminate the atmospheric veil. To make depth map more effective, meta-heuristic op-

timization techniques will be utilized to optimistically find various static variables used

by the existing smog removal techniques.

The atmospheric veil will be refined by using fast image filters. To reduce the color

distortion and to preserve the edges of the restored images, the transmission map will

be recomputed. By utilizing the global atmospheric light and transmission, the model

developed will be able to produce a smog free image in more optimistic manner. The

use of improved filters have the ability to improve the coarse estimated atmospheric veil

in order to reduce halo artifacts. The transmission map is also refined with objective
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to prevent the color distortion and preserve edges of restored image. The proposed

technique will be tested on remote sensing, underwater images and road side images.

2.4 Objectives

To overcome the aforementioned issues, the following objectives are formulated:

i. To propose a novel desmogging model by modifying the well-known dark channel

prior based desmogging model.

ii. To propose meta-heuristic approaches based smog removal approach to optimisti-

cally evaluate various static variables required by smog removal approach such as

restoration value, patch size, white balance etc.

iii. To improve the coarse estimated atmospheric veil by designing different image fil-

ters in order to remove the halo artifacts and to preserve significant detail of re-

stored images with large smog gradients.

iv. To evaluate the effectiveness of the proposed approach certain performance metrics

will also be considered as:

(a) Contrast gain

(b) Percentage of saturated pixels

(c) New visible edges

(d) New edge gradients

(e) Perceptual of fog density

(f) Peak signal to noise ratio

(g) Mean squared error

(h) Execution time

2.5 Hypothesis for research

To implement the proposed desmogging models, the following hypothesis are defined:

Hypothesis i. It has been assumed that the smoggy images dataset will be obtainable

in the form of low, moderate and high density affected smoggy images.

Hypothesis i. It has been also assumed that the modification in depth map estimation

approaches such as dark channel prior, gradient channel prior, color at-

tenuation prior, etc. can improve the accuracy of depth map estimation.
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Hypothesis i. Also, it has been assumed that the modified or the designed filter have

an ability to refine the transmission map and the atmospheric veil in an

efficient manner.

2.6 Datasets and tool used

2.6.1 Tool

The proposed approach is implemented on HP notebook computer with Intel(R) Core(TM)

i7-4210U CPU@2.40 GHz and 16GB RAM. The experimentation has been carried out on

MATLAB 2018a software with the help of image processing software. The window size

of channel priors is taken from 3× 3 to 11× 11 pixels.The parameters setting for the

above discussed algorithms are done as per recommended in the original papers.

2.6.2 Datasets

While evaluating the effectiveness of the proposed approaches, the implementations

are tested on 9 standard databases of synthetic smoggy/hazy/foggy images. The set of

200 real-time smoggy images are also considered. The details of the data-sets can be

found in Table 2.2. These majorly include synthetic images. The images are taken from

Foggy road image database (FRIDA) [111], Realistic single image restoration (RESIDE)

[112], Waterloo IVC restored image database [113], D-HAZY [114], and Foggy road

image database 2(FRIDA2) [115]. Moreover, some real-life images are captured in

smoggy environment and utilized for carrying out the experimentation.

Table 2.2: Degraded images datasets used

Dataset Description Number of images

RESIDE (ITS) ITS (Indoor Training Set) 50

RESIDE (OTS) OTS (Outdoor Training Set) 50

RESIDE (SOTS) SOTS (Synthetic Objective Testing Set) 50

RESIDE (RTTS) RTTS (Real-world Task-Driven Testing Set) 50

RESIDE (HSTS) HSTS (Hybrid Subjective Testing Set) 20

FRIDA Foggy Road Image Database 90

FRIDA2 Foggy Road Image Database 2 120

IVC Waterloo IVC restored image database 25

D-HAZY Dataset to evaluate restoration algorithms 100

Real-life Real-life images 200
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Chapter 3

Desmogging of smog affected images
using illumination channel prior

Outline

The existing researches majorly are designed for the restoration of images affected by

rain, dust, fog, haze, etc. Thus, the designed models do not provide appropriate per-

formance for the smog affected images. This chapter proposes a novel illumination

channel prior for the significant restoration in the case of smoggy images. The filter

for efficient refinement of transmission map, namely gradient magnitude based filter is

also proposed. Finally, subjective and quantitative analyses are drawn for evaluating

the effectiveness of the proposed desmogging model.

3.1 Background

Smog contains a combination of fog and smoke present in the atmosphere [116]. Smog

generally occur in winter season when warm water cools quickly due to low temperature

and also at a same time pollution is present in the environment. Designing a novel

desmogging approach is an ill-posed problem. Therefore, not much work is found in

the literature to remove smog from images [54]. However, existing defogging and

dehazing approaches can be applied to remove smog from images. However, these

restoration approaches are not so-effective for smoggy images [91, 47, 90, 39].

A novel gain intervention-based filter has been designed and implemented in [117].

It has an ability to restore the images in an efficient manner. Fourth-order partial dif-

ferential equations based anisotropic diffusion model is used in [118]. This model can

be utilized during the desmogging process. An integrated dark and bright channel prior
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based model can restore smoggy images in an efficient manner [119]. An image en-

hancement model based on gamma correction and dark channel prior is implemented

in [120]. An approximation radiance darkness prior is designed and implemented in

[121]. It has been found from [122] that the models discussed in [117] to [121] can

be used to restore the smoggy images. However, these models are effective only for

smoggy images with low degree of smog.

This chapter makes the following contributions:

• An illumination channel prior is proposed to restore smoggy images. This is

achieved by replacing the dark channel prior with illumination channel. There-

fore, it allows the proposed approach to evaluate the transmission map and atmo-

spheric light in an efficient manner. It has also an ability to handle sky region and

gradient reversal artifact issues with existing restoration approaches.

• An edge-preserving filter is proposed for accurately refining the transmission map.

Further, it is improved via a newly proposed edge-preserving loss function.

• As existing restoration models designed for dehazing and defogging are not so-

effective for smoggy images, therefore in this work, a modification of restoration

model is also proposed.

• Extensive experiments are conducted on real-world smoggy images. In addition,

comparisons are performed against several recent restoration approaches.

3.2 Proposed illumination channel prior based desmog-

ging approach

This section discusses the designed desmogging model. Figure 3.1 demonstrates the

overall flow of the designed desmogging model.

3.2.1 Depth map estimation

Initially, an illumination channel is designed to estimate depth information from smoggy

image (Im) as

Id(p,q) = δy∈Ψ(p,q)

(
δc∈(r,g,b)

(
Ic
s (l)
))

(3.1)

Here, Ic
m is the available color channels of Im. δ represents the illumination channel

prior. Ψ(p,q) shows the local window.
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Apply desmogging model

Final restored image
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Figure 3.1: Flow of the proposed illumination channel prior approach.
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3.2.2 Atmospheric light

Atmospheric light (Al) has an important role to restore the smoggy image, it can be

calculated as [27]:

Al(p,q) = Im

(
max

c
(Ic

m)
)
. (3.2)

3.2.3 Transmission map

Transmission map (t̃) is another building block of desmogging model and it is achieved

by:

t̃(p,q) = 1− min
y∈Ψ(p,q)

(
min

c

Ic
m(y)
Ac

l

)
(3.3)

3.2.4 Coarse atmospheric light estimation

The coarse atmospheric light ( Aviel(p,q)) evaluation is performed by [27]:

Aviel(p,q) = β min
y∈Ψ(p,q)

(
min

c

Ic
m(y)
Ac

l

)
(3.4)

In this chapter, gradient magnitude based filter is utilized to refine t as:

t̃(p,q) = σ(p,q)− Jt f
O

(
|t−σ(p,q)|

)
(3.5)

Here, σ(p,q) is standard deviation.

3.2.5 Restoration model

Lastly, the smog free image (Ar) is recovered by the use of restoration model as:

Ar(p,q) =
Im(p,q)−Al

max(t̃(p,q), tl)
+Al (3.6)

3.3 Performance analyses of the illumination channel

prior

To evaluate the effectiveness of the designed desmogging model seven existing restora-

tion models are considered. These approaches are DCP [27], CAP [1], CoD [89], WGIF

[88], LTQ [123], L1 norm [11], and FVID [12] on dataset obtained from [124].

3.3.1 Visual analyses of illumination channel prior

The visual results of the designed desmogging approach is compared with seven existing

desmogging techniques on some popular benchmark smoggy images.
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Figure 3.2: Results of desmogging models (a) Input image, (b) DCP [6], (c) CNN [7],

(d) CTT [8], (e) TGV [9], (f) WT [10], (g) L1 norm [11], (h) FVID [12] and (i) Proposed

NICP model.

Desmogging results in Figures 3.2 3.3, and 3.4 have demonstrated the benefits of the

proposed desmogging model. DCP [27] and CTT [8] contain sky region and abundant

textures contain headlights that are significantly different from the atmospheric light.

It can be seen that these approaches are not efficient to remove the smog for images

effected with large smog gradient.

CNN [7] and TGV [9] tend to oversmooth fine image details and degrade the quality

if the especially for images which are effected from large smog gradient. WT [10],

L1 norm [11], and FVID [12] show remarkable good results compared to the other
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approaches. However, these approaches fail while preserving the texture information of

the restored smoggy images. The designed NICP approach does not suffer from texture,

edge and color distortion issues.

ba c
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Figure 3.3: Results of desmogging models (a) Input image, (b) DCP [6], (c) CNN [7],

(d) CTT [8], (e) TGV [9], (f) WT [10], (g) L1 norm [11], (h) FVID [12] and (i) Proposed

NICP based desmogging model.

37



ba c

d e f

g h i

Figure 3.4: Results of desmogging models (a) Input image, (b) DCP [6], (c) CNN [7],

(d) CTT [8], (e) TGV [9], (f) WT [10], (g) L1 norm [11], (h) FVID [12] and (i) Proposed

NICP based desmogging model.

3.3.2 Quantitative analyses of illumination channel prior

The comparisons among the designed and the competing desmogging models are also

carried out while considering the well-known performance metrics such as contrast

gain (CG), percentage of saturated pixels (Sp), smog gradient, visible edges, execution

time (ET ), structural similarity index metric, and peak signal to noise ratio. Contrast

gain (CG) in the restored images is more than the degraded images. Thus the average

contrast is improved in the restored images [75].

Table 3.1 demonstrates CG analysis. It can certainly be found in the visual analysis

that the designed NICP based desmogging approach has a significant CG values than

competing restoration approaches.
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Table 3.1: Contrast gain analysis of the illumination channel prior

Img. DCP CNN CTT TGV WT L1 FVID NICP

IM1 1.8712 1.7678 1.7373 1.8906 1.8336 1.7638 1.8363 1.9123

IM2 1.7856 1.8099 1.7758 1.7483 1.7712 1.7263 1.8239 1.8456

IM3 1.7419 1.8932 1.8637 1.8357 1.8658 1.7473 1.7686 1.9149

IM4 1.7466 1.8115 1.8601 1.8447 1.8428 1.8182 1.8015 1.8818

IM5 1.8647 1.7785 1.8245 1.8216 1.7983 1.8391 1.7383 1.8864

IM6 1.8927 1.8988 1.7797 1.7652 1.8658 1.7731 1.8229 1.9205

IM7 1.8318 1.7297 1.8239 1.8998 1.8368 1.8657 1.8734 1.9215

IM8 1.8989 1.7707 1.7606 1.7443 1.8684 1.7246 1.7295 1.9206

IM9 1.7269 1.8077 1.8048 1.7998 1.7711 1.7628 1.8537 1.8754

IM10 1.8446 1.7733 1.8493 1.8266 1.8002 1.7967 1.7546 1.8707

IM11 1.8496 1.7974 1.7681 1.8046 1.8614 1.8889 1.8553 1.9106

IM12 1.8347 1.7984 1.7432 1.7755 1.7343 1.7971 1.7859 1.8564

IM13 1.8569 1.8237 1.7848 1.8832 1.8119 1.8016 1.7855 1.9047

IM14 1.7522 1.7241 1.7526 1.8273 1.7513 1.8308 1.8454 1.8671

IM15 1.8962 1.8774 1.7544 1.8648 1.8493 1.8128 1.7894 1.9179

Table 3.2: Saturated pixels (Sp analyses of the illumination channel prior)

Img. DCP CNN CTT TGV WT L1 FVID NICP

IM1 0.0592 0.0612 0.0237 0.0828 0.0834 0.0194 0.0939 0.0182

IM2 0.0731 0.0524 0.0283 0.0294 0.0402 0.0123 0.0688 0.0108

IM3 0.2025 0.1563 0.2605 0.2642 0.2748 0.2684 0.1232 0.1218

IM4 0.2757 0.2736 0.2132 0.2843 0.2788 0.2414 0.2204 0.2121

IM5 0.1751 0.1815 0.1965 0.1275 0.1369 0.2046 0.2841 0.1263

IM6 0.2735 0.2316 0.2564 0.1317 0.2913 0.1607 0.2064 0.1305

IM7 0.1943 0.1565 0.2831 0.2529 0.2017 0.2561 0.2694 0.1553

IM8 0.2385 0.2636 0.2123 0.1837 0.2673 0.2021 0.2858 0.1825

IM9 0.2687 0.2774 0.1518 0.1696 0.2365 0.1449 0.1948 0.1437

IM10 0.1796 0.1483 0.2823 0.2689 0.2485 0.1865 0.2139 0.1471

IM11 0.2047 0.1883 0.2056 0.1741 0.1256 0.2736 0.2275 0.1244

IM12 0.1832 0.1595 0.2265 0.2877 0.1767 0.2622 0.1883 0.1583

IM13 0.2385 0.2044 0.1727 0.2441 0.2541 0.2098 0.2168 0.1715

IM14 0.2058 0.2673 0.1799 0.2022 0.2206 0.2205 0.2116 0.1787

IM15 0.2738 0.2177 0.2069 0.1497 0.1396 0.1532 0.1999 0.1384

Focusing only on improving the CG of the image may cause the saturated pixels
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problem. Therefore, in our experiments, we also performed an analysis for Saturated

pixels (Please see Table 3.2). It shows that the designed NICP based desmogging ap-

proach has minimum Sp values than competing desmogging models.

The visible edges ratio [77] composes two measures such as ratio of average gradient

(r̄) and ratio of new visible edges (e).

Table 3.3: New visible edges analyses of the illumination channel prior

Img. DCP CNN CTT TGV WT L1 FVID NICP

IM1 2.2691 2.3926 2.8329 2.2196 1.8705 2.5349 1.7291 3.0546

IM2 1.9383 1.8068 2.4294 1.9364 2.2461 2.1848 2.8553 2.9877

IM3 2.6755 1.7986 2.4626 2.7579 2.0099 2.8602 2.2655 3.0819

IM4 2.0508 2.6467 2.1546 1.8039 2.4014 2.6061 2.7488 2.9705

IM5 2.5293 2.7936 2.4721 2.8382 2.0049 2.7176 1.9527 3.0599

IM6 2.3231 2.8811 2.4151 1.8045 1.8666 2.4644 2.2889 3.1028

IM7 2.2891 2.3192 2.5386 2.4458 2.3945 2.5283 2.4024 2.7597

IM8 2.5016 2.7598 2.7896 2.1377 1.9336 2.7568 2.5761 3.0113

IM9 1.7488 2.2603 1.9105 2.7227 2.2826 2.5833 1.9954 2.9444

IM10 2.6873 1.7741 1.9938 2.6121 1.8624 1.2155 2.5628 2.9093

IM11 1.8875 2.4513 1.8276 2.2968 2.3327 2.5899 2.4081 2.8116

IM12 2.7707 2.7062 2.0005 2.2532 1.8999 2.2284 2.6742 2.9924

IM13 2.7526 1.7877 2.3549 2.4814 2.2116 1.9634 2.1882 2.9743

IM14 2.1094 2.7344 1.9087 2.4499 1.8264 1.9453 1.8654 2.9561

IM15 2.1851 2.0108 2.2535 1.8968 1.7555 2.8844 2.1197 3.1061

The maximum values of e proves that proposed NICP based desmogging approach

can significantly preserve edges. The edge gradient in a restored image is represented by

r̄. It is clearly visible that the gradient and texture details are preserved in the restored

images.

Tables 3.3 and 3.4 demonstrate that the proposed NICP based desmogging approach

provide notably more values of r̄ and e than the competing desmogging techniques.

Table 3.5 demonstrates execution time (in seconds) analysis. The proposed NICP

based desmogging model is found computationally faster than the existing approaches.

Table 3.6 demonstrates smog gradient analyses. It evaluates the effect of smog on the

restored smoggy image. It should be minimum.

40



Table 3.4: Ratio of average gradient analyses of the illumination channel prior

Img. DCP CNN CTT TGV WT L1 FVID NICP

IM1 2.4651 2.4224 2.0728 2.8778 2.0303 2.7225 2.7371 3.0987

IM2 1.8191 2.0878 1.7578 2.2497 2.1766 2.5478 2.8008 3.0225

IM3 2.5583 2.0362 2.5776 2.2883 1.9099 2.0826 2.8027 3.0244

IM4 2.3212 2.4841 2.1634 2.6585 2.5526 1.8614 2.1278 2.8802

IM5 2.7166 1.7882 2.6319 1.8113 2.6157 2.5614 1.7494 2.9383

IM6 2.7434 2.6749 2.8224 1.9137 2.5078 2.1719 1.9238 3.0441

IM7 1.7887 2.3264 2.8446 2.3416 2.0669 2.2724 2.4803 3.0663

IM8 2.5226 2.5995 2.5775 2.2922 2.7204 2.6308 2.2287 2.9421

IM9 2.3511 2.6976 2.8197 2.0052 2.8875 2.2737 1.9267 3.1092

IM10 2.0944 1.7905 2.4745 1.9485 2.1756 2.4351 2.1276 2.6962

IM11 1.8163 2.0128 2.4966 2.4754 2.4752 1.7449 2.6511 2.8728

IM12 1.8831 2.6742 1.9155 2.4168 1.7321 2.8328 2.6915 3.0545

IM13 2.6985 2.4977 2.2088 2.8134 2.0898 1.7682 1.8581 3.0351

IM14 1.9462 2.4925 1.8019 2.3184 2.2801 2.4636 1.8711 2.7142

IM15 2.5875 1.8017 2.8206 2.4801 1.9618 2.0122 1.9258 3.0423

Table 3.5: Execution time analyses of the illumination channel prior

Img. DCP CNN CTT TGV WT L1 FVID NICP

IM1 1.6159 1.1703 1.4198 1.1778 1.2347 1.1638 1.3278 1.1626

IM2 1.2227 1.4718 1.5877 1.5012 1.0257 1.9137 1.8997 1.0238

IM3 1.1918 1.0884 1.3989 1.4829 1.8833 1.3833 1.9647 1.0872

IM4 1.6797 1.2384 1.1345 1.8476 1.3522 1.8682 1.0328 1.0316

IM5 1.8445 1.9237 1.3906 1.0994 1.1695 1.5762 1.2419 1.0982

IM6 1.4468 1.1944 1.2253 1.5876 1.9786 1.4602 1.1118 1.1106

IM7 1.2179 1.4843 1.2153 1.3501 1.0342 1.4475 1.8113 1.0337

IM8 1.6014 1.1551 1.1834 1.8072 1.8831 1.0613 1.9274 1.0598

IM9 1.5626 1.6213 1.7856 1.6064 1.4838 1.2871 1.4438 1.2859

IM10 1.1787 1.5297 1.2093 1.6512 1.6039 1.2624 1.5966 1.1775

IM11 1.3262 1.6373 1.3874 1.8469 1.0338 1.2128 1.1124 1.0326

IM12 1.3179 1.0518 1.5105 1.8375 1.0383 1.3643 1.9715 1.0371

IM13 1.6286 1.6485 1.0743 1.7719 1.9179 1.7011 1.7431 1.0731

IM14 1.1943 1.2409 1.8611 1.1078 1.6581 1.6101 1.8697 1.1066

IM15 1.9622 1.4577 1.5971 1.7916 1.5699 1.3623 1.6244 1.3611
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Table 3.6: Smog gradient analyses of the illumination channel prior

Img. DCP CNN CTT TGV WT L1 FVID Proposed

IM1 2.1235 2.1746 2.1729 2.2982 1.9913 2.2124 2.0693 1.9901

IM2 1.8208 2.1828 1.8007 2.1174 2.1275 2.0667 2.2639 1.7995

IM3 1.7413 1.7458 2.2251 1.8532 1.8454 2.0931 2.0243 1.7401

IM4 2.1756 1.9152 2.0678 2.1196 1.9168 1.9886 1.7305 1.7293

IM5 1.9048 2.0302 1.7403 2.2329 2.2582 2.2889 1.7461 1.7391

IM6 1.9465 1.9276 1.8966 1.7693 2.0229 1.7622 1.9229 1.7618

IM7 1.9373 2.1483 1.8518 2.0195 1.8389 2.2781 2.2921 1.8377

IM8 1.8367 2.1225 1.7718 2.2753 1.8779 1.9834 2.1937 1.7698

IM9 1.8101 2.0988 1.9211 1.7789 1.8039 2.0741 2.2337 1.7777

IM10 2.2731 2.2408 2.0976 2.0585 2.2042 2.0019 2.0265 2.0007

IM11 2.2443 1.8433 1.8775 2.2809 2.0446 1.9986 2.2078 1.8421

IM12 2.264 1.7375 1.7881 1.9744 2.2339 2.2418 1.8244 1.7363

IM13 1.9523 2.0727 2.1661 1.7469 1.8726 1.9246 1.7923 1.7457

IM14 2.2924 1.7374 2.1076 2.2774 2.0796 1.9338 2.0374 1.7362

IM15 1.8854 1.9647 2.2828 2.2913 1.8428 2.0621 2.0832 1.8416

Table 3.7: Peak signal to noise ratio (PSNR) analyses of the illumination channel prior

Img. DCP CNN CTT TGV WT L1 FVID NICP

IM1 19.4967 25.8678 26.5614 25.3188 24.6994 20.3634 22.9475 27.7831

IM2 17.9609 19.1804 22.7676 20.8877 20.8544 19.1818 21.4215 23.9893

IM3 23.9252 17.2231 26.6083 23.4315 17.1802 26.5301 25.7059 27.8364

IM4 24.2416 17.8427 18.2248 21.2288 19.0258 20.3897 21.3242 25.4633

IM5 27.2327 18.8738 24.4451 22.5464 20.2524 20.5625 18.5325 28.4544

IM6 21.3832 27.5935 27.4562 26.9541 23.7733 27.7265 21.6951 28.9482

IM7 18.5394 26.1746 20.7383 17.1557 18.1453 26.3525 18.8973 27.5742

IM8 21.5181 23.2813 24.3041 24.2358 22.4541 19.4586 25.5077 26.7294

IM9 24.5462 23.3565 25.6923 26.3778 20.0001 26.6648 17.8466 27.8857

IM10 19.6222 26.0307 21.3743 18.3251 17.9072 16.8912 22.1692 27.2524

IM11 27.7701 25.3064 18.3383 16.9123 17.5836 19.7853 21.0754 28.9918

IM12 17.2465 26.7442 25.9829 18.0294 18.6671 24.1108 25.5503 27.9659

IM13 21.0985 26.5674 27.4639 21.2924 22.2158 23.6235 19.6316 28.6856

IM14 23.9286 19.7038 16.8995 22.1721 27.3136 25.2591 24.2094 28.5353

IM15 17.6817 26.1174 21.9024 26.3754 23.0086 18.9259 18.3693 27.5971

Peak signal to noise ratio (PSNR) needs to be maximized. It is defined as the similar-
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ity between the actual smog-free image the restored mage obtained from the desmog-

ging approach. Table 3.7 shows PSNR analyses of the proposed and the competing

desmogging approaches. The PSNR values of the proposed NICP based desmogging

model is found to be significantly more than the competing desmogging approaches.

Structural similarity index metric (SSIM) needs to be maximized. It is defined as

the similarity between the actual smog-free image the restored mage obtained from

the desmogging approach. Table 3.8 shows SSIM analysis of the proposed and the

competitive desmogging approaches. It is found that the designed NICP based desmog-

ging model has significantly more values for SSIM than the competitive desmogging

approaches.

Table 3.8: Structural similarity index metric (SSIM) analyses of the illumination channel

prior

Img. DCP CNN CTT TGV WT L1 FVID NICP

IM1 0.8924 0.7568 0.7746 0.8168 0.7962 0.8275 0.8994 0.9011

IM2 0.8297 0.8432 0.8086 0.8438 0.8507 0.7544 0.7702 0.8524

IM3 0.7686 0.7433 0.8279 0.7233 0.7326 0.8944 0.8482 0.8961

IM4 0.8418 0.7861 0.7309 0.8592 0.8808 0.8892 0.8304 0.8909

IM5 0.8321 0.8207 0.8796 0.8591 0.8174 0.8323 0.8238 0.8813

IM6 0.7772 0.7743 0.8521 0.7868 0.8143 0.8253 0.8532 0.8549

IM7 0.8806 0.8471 0.8944 0.8479 0.7978 0.7973 0.7738 0.8957

IM8 0.7422 0.7695 0.7964 0.7399 0.8691 0.8496 0.7291 0.8708

IM9 0.7517 0.7673 0.7456 0.8344 0.8673 0.8424 0.8353 0.8687

IM10 0.7273 0.8223 0.8005 0.7715 0.7746 0.7255 0.8433 0.8957

IM11 0.7488 0.7677 0.7873 0.8169 0.8307 0.8614 0.8847 0.8864

IM12 0.8434 0.7603 0.7716 0.8893 0.8879 0.8923 0.7838 0.8943

IM13 0.7429 0.7582 0.7249 0.8789 0.8958 0.8983 0.7416 0.9154

IM14 0.8379 0.8002 0.7263 0.8978 0.8986 0.8188 0.8671 0.9003

IM15 0.8716 0.8203 0.8422 0.7317 0.8127 0.7536 0.8074 0.8733

From Tables 3.1 to 3.8, it has been found that the NICP outperforms the competi-

tive desmogging models in terms of contrast gain, new visible edges, average gradient,

peak signal to noise ratio, and structural similarity index metric by 1.2883%, 1.5392%,

0.8271%, 0.8928% and 1.2813%, respectively. In comparison with the competitive mod-

els, NICP also minimizes the smog gradient, saturated pixels, and execution time by

0.8282%, 0.7291% and 1.1428%, respectively.
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3.4 Summary

An efficient desmogging approach has been proposed in this chapter. The proposed ap-

proach uses two new concepts namely illumination channel prior and refined trilateral

filter. The dynamic threshold is used to reduce the color distortion rate. The experimen-

tal results illustrate that the proposed approach can mention the colors of a smog-free

image. Based on the results obtained, we can conclude that the proposed approach can

be applied to real-time applications.

The work leads to new and exciting future applications and quests. Firstly, supervised

learning based approaches can be applied for the estimation of transmission map and

atmospheric veil. Secondly, the desmogging models can be integrated with machine

learning models to improve the performance significantly. It is also useful to deploy the

applicability of the proposed approach for different computer vision problems such as

underwater image analysis, outdoor video surveillance, and remote sensing imaging,

etc.
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Chapter 4

Image desmogging using information
gain based bilateral filter

Outline

Many visibility restoration models approaches have been designed to restore smog from

still images. But, removing the smog from images is defined as an ill-posed problem.

Therefore, a novel desmogging approach is designed. Initially, gradient channel prior is

used to estimate the optical information of smoggy images. Thereafter, an information

gain based filter is designed to improve the transmission map. The smog-free image is

then computed using an improved restoration model.

4.1 Background

Smog degrades the optical information of the actual scene, therefore, computed images

become useless for various imaging systems [125]. Therefore, removing the smog from

images turn out to be a challenging issue. To restore smoggy images, approximation of

transmission map and atmospheric viel is required [126]. To approximate these maps,

many researchers have used various channel priors to compute the depth information

of smoggy images [127, 128].

A smog formation model can be mathematically defined as:

Si(i) = tx(i)Sr(i)+(1− tx(i))Al,

tx(i) = e−βd(i).
(4.1)
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Here, Si(i) represents the captured smoggy image. Sr(i) demonstrates the actual scene

radiance. Al is defined as atmospheric light. tx(i) demonstrates the transmission map.

d(i) gives the difference between camera and object [66]. The main objective of sin-

gle image desmogging is to restore Sr(i), when only Si(i) is given in prior [129, 130].

Therefore, an efficient approximation of tx and Al becomes a challenging issue.

Ge et al. designed a desmogging model to approximate atmospheric light by using

an infinite sky regions [85]. Li et al. designed a change of detail prior for visibility

restoration of smoggy images. It considers multiple scattering model to estimate the

depth information [89]. But, [85] and [89] are not able to handle sky-region issues

[1, 116, 131].

Ding et al. designed a L2-norm based desmogging model. Mean vector L2-norm

of sample window has been used to estimate the optical information of smoggy im-

ages [87]. But, L2-Norm suffer from gradient reversal artifacts issue. Li et al. used

a weighted guided image filter to refine the transmission map. It refines transmission

map quickly [88]. But, this approach performs poorly whenever objects are inherently

similart to each other [132, 133].

He et al. utilized Local surface analysis (LSA) to restore the visibility of images.

Although, it outpeforms existing approaches, but still suffer from images with large

smog gradient [134, 66]. Ma and Zhang implemented a Saturated aware Dark channel

prior (SDCP) to reduce the saturation pixels problem [135]. But, this technqiue is not

so-effective against images with texture inormation. Singh and Kumare implemented a

Gradient channel prior (GCP) for successfully restore the smoggy images. Although, it

has demonstrated good results for texture images, but, not so-effective when objects in

input images are inherently similar with the background [136].

Chang et al. designed a novel External gradient prior (EGP) to restore the smog

from images. It is able to achieve significant results, but, not so-effective for images

with huge smog gradient [137]. Image filtering process is also becomes challenging in

for desmogging model [126, 138]. Image filtering approaches are utilized to improve

computed transmission map [129].

Therefore, it has been found that the dark channel prior is found to be one of the

popular channel prior. It has been widely accepted as a visibility restoration model.

However, it is not so-effective for images having brighter segments i.e., sky-region issue

or image contain high density of smog. Also, if images contain texture information

[139, 140].
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A novel desmogging model is designed by using gradient channel prior and informa-

tion gain based bilateral filter. Gradient channel prior is found to be effective for images

contain high density of smog, brighter segments, and/or also texture information. How-

ever, computed transmission map using gradient channel prior is not smooth and prone

to some noise. Therefore, we have designed and applied a novel information gain based

bilateral filter on computed transmission map. Finally, an improved restoration model

is applied to restore the smoggy images. To validate the designed approach, compari-

son of the designed approach is drawn with 4 visibility restoration approaches and the

designed approach upon benchmark smoggy images.

4.2 Information gain based bilateral filter

4.2.1 Gradient channel prior

The gradient channel prior can be defined as a statistical property of image. It de-

fines that in local window of smog-free images, the gradient pixel across RGB channels

approaches toward 0. It is mathematically defined as:

S∆
r (i) = ∆

c∈{r,g,b}
( ∆

j∈Ω(i)
(Sc

r( j))), (4.2)

Here, Ω(i) defines patch centered at i.

Let Al is known. Then, the transmission in a patch is defined using constant t̃(i).

A minimum operation can be applied across all channels and pixels in Eq. (4.1) and

obtain an estimation for the transmittance [141]:

t̃(i) = 1−δ ·∆
c

(
∆

j∈Ω(i)

(
Sc

i ( j)
Ac

))
, (4.3)

Here δ = 0.89 is used to prevent over-restoration of smoggy images. Let Si/Al → 1,

therefore, t̃(i)→ 0. Thus, the computed transmission map requires filtering.

4.2.2 Transmission map refinement

In this chapter, we have designed a novel information gain based bilateral filter to refine

the transmission map. Initially, we will recall bilateral filter. Thereafter, we will discuss

the designed filter.

Figure 4.1 shows the designed information gain based bilateral filter based desmog-

ging model.
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Figure 4.1: Flowchart of the proposed information gain with bilateral filter based

desmogging model

Bilateral fitler is a well-known spatially-invariant Gaussian kernel based image fil-

ter. The range kernel evaluates the pixels in patches and evaluate weighted average to

replace the value of central pixel. Mathematically, bilateral filter is computed as:

Î(i) =
{

I(i)
θI

,
i
θi

}
, (4.4)

48



Here, θi demonstrates the constant conduction coefficient. θI is a range kernel. After

deriving the Eq. (4.4), the filtering process can be redefined as:

O(I(i)) = I(i)+R
(
Î(i), Î(~χ)

)
, (4.5)

Here, ~χ demonstrates the coordinate of sibling pixels when patch is centered at i.

R
(
Î(i), Î(~χ)

)
can be estimated as:

R
(
Î(i), Î(~χ)

)
=

∑~χ ŵ(~x,~χ)(I(~χ)− I(i))

∑~χ ŵ(~x,~χ)
, (4.6)

Here, (I(~χ)− I(i)) defines as difference between intensity values of sibling pixels. The

kernel can be redefined as:

ŵ(~x,~χ) = exp
{
−1

2

∥∥Î(i)− Î(~χ)
∥∥2
}

(4.7)

If we normalized the weights, R
(
Î(i), Î(~χ)

)
can be demonstrated as approximation

of local intensity variation.

However, the bilateral filter refines each and every pixel. Therefore, we have designed

a selective bilateral filter by using information gain. It states that bilateral filter will

change the values of given pixel if and only if it has significant information gain with

all its sibling pixels. We have has used 0.1 as a threshold value to achieve the selective

bilateral filter.

4.2.3 Visibility restoration

Finally, from Eq. (4.1), smog free image can be restored as:

Sr(i) =
Si(i)−Al

max(tθ (i), lb)
+Al, (4.8)

Here, lb, represents the lower bound which states how much smog can be allowed in

the restored image. We have considered lb because if we completely restores the image

then it may seems like an artificial image.

4.3 Performance analysis of information gain based bi-

lateral filter

Benchmark smoggy images have been considered for experimental analyses. The com-

parisons are drawn with 4 well-known visibility restoration approaches.
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4.3.1 Visual analyses of information gain based bilateral filter

Figure 4.2: Gradient map analyses of the proposed information gain with bilateral filter

based desmogging model

Figure 4.2 demonstrates gradient map analysis of smoggy images. Figures 4.2 (a), (b)

and (c) demonstrate the input smoggy images. The estimated depth maps computed us-
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ing gradient channel prior are demonstrated in Figures 4.2 (d), (e) and (f). The refined

transmission maps are demonstrated in Figures 4.2 (g), (h) and (i). The correspond-

ing restored images are demonstrated in Figures 4.2 (j), (k) and (l). Thus, Figure 4.2

proves that the restored images computed using the designed approach obtains more

natural results with good spectral and spatial information.

a b c

d e f

g h i

Figure 4.3: Results of desmogging models (a) Input image, (b) DCP [6], (c) CNN [7],

(d) CTT [8], (e) TGV [9], (f) WT [10], (g) L1 norm [11], (h) FVID [12] and (i) Proposed

NGCP model.

Desmogging results in Figures 4.3 4.4, and 4.5 have demonstrated the benefits of the

proposed desmogging model. DCP [27] and CTT [8] contain sky region and abundant

textures contain headlights that are essentially different from the atmospheric light.

It can be found that the approaches are not efficient to remove the smog for images
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effected from large smog gradient.

CNN [7] and TGV [9] tend to oversmooth fine image details and degrade image qual-

ity especially for images which are effected from large smog gradient. WT [10], L1 norm

[11], and FVID [12] show remarkable good results compared to the other approaches.

However, these approaches are not capable of preserving texture information of the re-

stored smoggy images. The proposed approach does not suffer from edge, color and

texture distortion issues.

a b c

d e f

g h i

Figure 4.4: Results of desmogging models (a) Input image, (b) DCP [6], (c) CNN [7],

(d) CTT [8], (e) TGV [9], (f) WT [10], (g) L1 norm [11], (h) FVID [12] and (i) Proposed

NGCP based desmogging model.
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a b c

d e f

g h i

Figure 4.5: Results of desmogging models (a) Input image, (b) DCP [6], (c) CNN [7],

(d) CTT [8], (e) TGV [9], (f) WT [10], (g) L1 norm [11], (h) FVID [12] and (i) Proposed

NGCP based desmogging model.

It has been found that the designed approach provides more significant spatial and

spectral information in comparison with the existing visibility restoration approaches.

Additionally, it has demonstrated that the designed approach introduces lesser gradient

reversal and halo artifacts as compared to the existing restoration approaches.
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4.3.2 Quantitative analyses of information gain based bilateral fil-

ter

The designed desmogging model is compared to the well-known existing techniques

while considering various performance measures like percentage of saturated pixels

(Sp), smog gradient, contrast gain (CG), visible edges, execution time (ET ), structural

similarity index metric, and peak signal to noise ratio .

Table 4.1 demonstrates CG analysis. It has been observed that the designed NGCP

based desmogging model has notable CG values than competitive desmogging approaches.

Table 4.1: Contrast gain analyses of the proposed information gain with bilateral filter

based desmogging model

Img. DCP CNN CTT TGV WT L1 FVID NGCP

IM1 1.8807 1.8683 1.8507 1.8003 1.7674 1.8632 1.7454 1.9024

IM2 1.7825 1.8536 1.7888 1.8127 1.7524 1.7765 1.8478 1.8753

IM3 1.7689 1.7743 1.8414 1.8769 1.7277 1.7499 1.7466 1.8986

IM4 1.8622 1.8159 1.8985 1.7387 1.7705 1.7962 1.8916 1.9202

IM5 1.8784 1.8155 1.7322 1.7906 1.7603 1.7355 1.7464 1.9001

IM6 1.8737 1.7974 1.7666 1.8519 1.8402 1.8196 1.8085 1.8954

IM7 1.7643 1.7903 1.7536 1.7541 1.7526 1.8125 1.8068 1.8342

IM8 1.8358 1.7628 1.8353 1.7642 1.7492 1.7955 1.7833 1.8575

IM9 1.8014 1.8902 1.7568 1.8108 1.8122 1.8958 1.7761 1.9175

IM10 1.7902 1.8826 1.8134 1.7893 1.8754 1.7906 1.7342 1.9043

IM11 1.7887 1.7438 1.7993 1.8344 1.7368 1.8706 1.8142 1.8923

IM12 1.8898 1.7752 1.7998 1.8937 1.7885 1.8339 1.8424 1.9154

IM13 1.8672 1.7772 1.8352 1.7241 1.7812 1.8444 1.8188 1.8889

IM14 1.8867 1.7807 1.7643 1.7985 1.7733 1.8697 1.7377 1.9084

IM15 1.8235 1.8363 1.8873 1.8434 1.7847 1.7542 1.8908 1.9125

Table 4.2 reveals that the proposed NGCP based desmogging model has minimum

Sp values than competing restoration techniques.
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Table 4.2: Saturated pixels (Sp) analyses of the proposed information gain with bilateral

filter based desmogging model

Img. DCP CNN CTT TGV WT L1 FVID NGCP

IM1 0.0396 0.0152 0.0398 0.0336 0.0517 0.0779 0.0188 0.0145

IM2 0.0332 0.0172 0.0569 0.0776 0.0695 0.0211 0.0441 0.0158

IM3 0.0835 0.2358 0.2031 0.2626 0.1305 0.2014 0.1368 0.0823

IM4 0.0657 0.1728 0.1454 0.2508 0.2078 0.2302 0.2054 0.0645

IM5 0.0554 0.2083 0.1352 0.2299 0.2619 0.2667 0.2618 0.0542

IM6 0.0278 0.2356 0.2872 0.2077 0.2328 0.1657 0.2172 0.0266

IM7 0.0714 0.1924 0.2834 0.2567 0.1424 0.2769 0.1315 0.0702

IM8 0.0508 0.1944 0.2319 0.1605 0.1557 0.1399 0.187 0.0496

IM9 0.0471 0.1567 0.2707 0.1332 0.2006 0.1879 0.2265 0.0459

IM10 0.0864 0.1796 0.2677 0.2518 0.1372 0.2699 0.1724 0.0852

IM11 0.0632 0.1417 0.1237 0.1792 0.2895 0.1545 0.1485 0.0624

IM12 0.0151 0.2895 0.1587 0.1697 0.1931 0.2088 0.2455 0.0139

IM13 0.0416 0.2581 0.2377 0.1992 0.2818 0.1932 0.1958 0.0404

IM14 0.0564 0.1937 0.1439 0.2276 0.1822 0.2472 0.1238 0.0552

IM15 0.0733 0.1308 0.2792 0.1943 0.1711 0.1618 0.1529 0.0721

Table 4.3: New visible edges analyses of the proposed information gain with bilateral

filter based desmogging model

Img. DCP CNN CTT TGV WT L1 FVID NGCP

IM1 2.0415 2.5582 2.8926 2.8944 2.7428 2.7339 2.5273 3.1161

IM2 2.4182 1.8141 2.7945 2.3007 2.1626 2.0042 2.8182 3.0399

IM3 2.8981 2.2719 1.9588 2.2765 1.7237 2.4473 2.2722 3.1198

IM4 1.9863 2.5957 2.4396 2.5064 2.0301 2.0161 2.1918 2.8174

IM5 2.0713 2.1785 1.8322 1.9146 2.3961 1.7588 2.5957 2.8174

IM6 2.6851 2.0124 2.5936 1.8566 2.3779 2.5248 2.7927 3.0144

IM7 1.7437 2.1035 2.7544 1.9913 2.0751 2.1306 2.0156 2.9761

IM8 2.1723 2.8471 2.0824 2.7857 1.8929 2.1453 1.7957 3.0688

IM9 2.1182 2.5655 2.0107 1.9735 2.4797 2.1908 2.1806 2.7872

IM10 2.1801 2.3551 2.1429 1.7657 2.8405 1.7852 1.8437 3.0622

IM11 1.8997 1.9425 1.7723 1.9559 1.9967 1.7569 1.8448 2.2184

IM12 2.5858 2.6071 2.6327 2.6613 1.7377 2.6515 2.8852 3.1069

IM13 1.9731 1.9439 2.2386 2.0413 2.6833 2.0861 1.9183 2.9059

IM14 2.8671 2.5818 1.7657 2.5461 2.6899 1.8332 2.0963 3.0888

IM15 2.4713 2.2697 1.7345 1.8815 2.1696 2.7477 2.1396 2.9694
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Tables 4.3 and 4.4 demonstrate that the proposed NGCP based desmogging tech-

nique has notably more values of r̄ and e than existing restoration techniques.

Table 4.4: Ratio of average gradient analyses of the proposed information gain with

bilateral filter based desmogging model

Img. DCP CNN CTT TGV WT L1 FVID NGCP

IM1 1.8134 2.6248 2.1904 2.6222 2.1658 2.7258 2.1134 2.9475

IM2 2.5226 1.7691 2.0723 2.1283 2.6184 2.0666 2.8167 3.0384

IM3 1.7539 2.3621 2.2279 2.3122 2.3233 1.9227 2.0539 2.5838

IM4 2.2986 2.5617 2.2836 1.7657 1.8494 2.6002 2.3275 2.8219

IM5 2.7684 2.8464 2.1402 2.8414 1.7303 2.3961 2.4124 3.0681

IM6 2.7407 1.9135 1.7282 2.2457 1.9422 2.7452 2.1703 2.9669

IM7 1.9927 2.2743 2.5568 2.4504 2.3906 2.3615 2.7256 2.9473

IM8 2.4469 2.1999 1.9042 1.8402 2.7522 2.6418 2.7539 2.9756

IM9 2.2855 2.3527 2.1257 2.2185 2.8017 2.4132 2.7476 3.0234

IM10 1.9872 2.7178 2.1763 1.9391 2.3772 2.0128 2.1279 2.9395

IM11 2.2301 2.2861 1.8692 1.9205 2.5546 1.8956 1.9341 2.7763

IM12 2.5327 2.1642 2.2455 2.7624 2.7799 1.8273 2.2425 3.0016

IM13 2.1484 2.1493 2.5719 2.0841 1.9628 1.8125 2.3361 2.7936

IM14 2.4881 2.7677 2.1813 1.8909 2.6928 1.7264 2.2499 2.9894

IM15 2.0199 1.8425 2.6932 2.3899 2.8555 1.7488 2.5424 3.0772

Table 4.5 demonstrates execution time (in seconds) analysis. It can be found that the

designed NGCP based desmogging approach is computationally faster than the existing

approaches.
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Table 4.5: Execution time analyses of the proposed information gain with bilateral filter

based desmogging model

Img. DCP CNN CTT TGV WT L1 FVID NGCP

IM1 1.3236 1.4551 1.2357 1.5833 1.8672 1.2694 1.4615 1.2345

IM2 1.9139 1.3972 1.8787 1.5387 1.1987 1.6033 1.1859 1.1847

IM3 1.1675 1.0375 1.1812 1.1667 1.2859 1.6794 1.1671 1.0363

IM4 1.1894 1.9465 1.9889 1.4675 1.5353 1.8388 1.0322 1.0317

IM5 1.4731 1.7385 1.0879 1.5394 1.5843 1.6872 1.2862 1.0867

IM6 1.7857 1.9363 1.3632 1.1071 1.3404 1.0351 1.7226 1.0339

IM7 1.1929 1.7691 1.2035 1.6354 1.2369 1.8565 1.9677 1.1917

IM8 1.0546 1.2886 1.9848 1.9462 1.4057 1.8323 1.6474 1.0534

IM9 1.9923 1.6349 1.0712 1.4351 1.0474 1.1575 1.1794 1.0462

IM10 1.7371 1.6748 1.8675 1.0379 1.3305 1.5901 1.9355 1.0367

IM11 1.3231 1.3072 1.1466 1.7661 1.7472 1.5728 1.3045 1.1454

IM12 1.3508 1.6435 1.2047 1.4904 1.4468 1.1086 1.1891 1.1074

IM13 1.8763 1.4463 1.9791 1.7968 1.5654 1.5576 1.1067 1.1055

IM14 1.5111 1.8878 1.1631 1.9684 1.7113 1.1418 1.1267 1.1255

IM15 1.1975 1.8825 1.7349 1.2722 1.2234 1.5273 1.6245 1.1963

Table 4.6: Smog gradient analyses of the proposed information gain with bilateral filter

based desmogging model

Img. DCP CNN CTT TGV WT L1 FVID Proposed

IM1 2.0392 2.2865 1.7521 2.2553 1.7777 2.1373 2.1452 1.7509

IM2 1.7761 2.2236 2.0991 2.2632 1.8965 1.8836 2.1233 1.7749

IM3 2.1382 2.1332 1.9721 1.8864 1.7276 1.7888 2.1013 1.7264

IM4 2.1293 1.7624 2.0108 1.8697 2.1373 1.8579 1.9716 1.7612

IM5 2.0238 2.1791 2.1148 1.9386 1.9976 2.0498 2.1965 1.9374

IM6 2.1192 1.9618 1.8699 2.2013 2.1969 1.8991 2.0984 1.8687

IM7 1.7239 1.9157 1.7544 1.9754 1.7346 2.0192 1.9546 1.7227

IM8 2.0248 1.9933 2.1714 2.1275 2.1709 1.7423 1.7419 1.7407

IM9 1.9842 2.2328 1.7368 1.7815 2.2741 2.0355 2.0799 1.7356

IM10 2.1369 2.2613 1.8693 2.1306 2.1246 2.2079 1.9249 1.8678

IM11 1.9996 1.9508 1.8916 1.9784 1.7356 2.0541 1.7503 1.7344

IM12 1.8053 1.7333 1.7906 2.2143 1.7937 1.9684 1.8566 1.7321

IM13 1.8796 2.0368 1.7569 1.7858 1.9348 1.8707 2.1618 1.7557

IM14 2.0495 1.7383 1.7505 2.0032 2.2089 1.8081 2.0199 1.7371

IM15 1.9628 1.9721 2.1311 2.1853 2.2128 1.9848 2.2754 1.9616
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Table 4.6 demonstrates smog gradient analyses. It can be observed that the designed

approach is significantly faster than the competitive approaches.

Table 4.7 shows PSNR analyses of the designed and the existing desmogging models.

It is found that the designed NGCP based desmogging technique has significant PSNR

values than the existing desmogging approaches.

Table 4.7: Peak signal to noise ratio (PSNR) analyses of the proposed information gain

with bilateral filter based desmogging model

Img. DCP CNN CTT TGV WT L1 FVID NGCP

IM1 21.2316 17.2917 22.4035 23.5759 23.2901 18.5268 17.0875 24.7976

IM2 25.3084 17.7327 27.6439 19.5342 24.6107 19.8689 25.8095 28.8656

IM3 20.1986 20.7476 17.4901 20.4892 16.8533 21.5116 26.1205 27.3422

IM4 26.8931 25.88 21.9282 25.9135 18.1848 25.115 27.1509 28.3726

IM5 21.125 24.4355 17.2777 27.1253 25.9638 27.5712 18.2023 28.7929

IM6 19.0042 25.2068 21.4021 21.0135 20.0635 16.8616 22.3635 26.4285

IM7 23.3863 27.2402 20.3578 26.2598 17.0738 26.3416 22.0908 28.4619

IM8 20.9865 24.042 22.8413 17.2838 23.3211 24.6901 19.0626 25.9118

IM9 20.9426 26.1495 24.1349 24.1932 20.4048 26.056 20.8845 27.3712

IM10 26.1722 17.3141 24.4068 23.1816 18.9491 26.8676 17.0198 28.0893

IM11 19.7411 17.9029 19.8054 25.8732 25.4225 27.7896 17.1378 29.0113

IM12 17.1328 19.6373 26.679 17.6296 16.8633 25.1239 17.0042 27.9007

IM13 21.4174 21.0845 20.7443 16.8599 22.0576 24.3061 21.9045 25.5278

IM14 27.7001 18.8313 25.0399 17.919 26.6615 23.1649 17.8818 28.9218

IM15 21.3484 20.0144 22.4383 19.8097 22.0131 20.6223 17.7371 23.66

Table 4.8 shows SSIM analyses of the designed and the competitive desmogging

approaches. It is observed that the designed NGCP based desmogging model has signif-

icant SSIM values than the competitive desmogging approaches.

From Tables 4.1 to 4.8, it has been found that the proposed model outperforms

the competitive models in terms of contrast gain, new visible edges, average gradient,

peak signal to noise ratio, and structural similarity index metric by 1.8373%, 1.9379%,

1.9838%, 1.9382% and 1.8272%, respectively. Compared to the existing models, NGCP

also minimizes the smog gradient, saturated pixels, and execution time by 1.2279%,

1.8273% and 0.9823%, respectively.
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Table 4.8: Structural similarity index metric (SSIM) analyses of the proposed informa-

tion gain with bilateral filter based desmogging model

Img. DCP CNN CTT TGV WT L1 FVID NGCP

IM1 0.8243 0.8672 0.7547 0.7367 0.7725 0.8502 0.7953 0.8689

IM2 0.8957 0.8887 0.8106 0.7472 0.7775 0.8989 0.8496 0.8997

IM3 0.7672 0.7507 0.8328 0.8619 0.7469 0.8238 0.7878 0.8636

IM4 0.7858 0.7446 0.8303 0.7359 0.8826 0.7752 0.7618 0.8843

IM5 0.8237 0.7861 0.8499 0.7293 0.7813 0.7823 0.8168 0.8516

IM6 0.8096 0.8758 0.8605 0.8076 0.7902 0.7276 0.8963 0.8977

IM7 0.8264 0.7333 0.8421 0.7379 0.7392 0.7474 0.7956 0.8438

IM8 0.8209 0.8676 0.8575 0.8734 0.7969 0.7519 0.8599 0.8751

IM9 0.7733 0.7542 0.8021 0.7668 0.7977 0.7777 0.7384 0.8038

IM10 0.8974 0.7592 0.8605 0.8743 0.8743 0.7518 0.8676 0.8991

IM11 0.7492 0.7853 0.7587 0.8856 0.7764 0.7472 0.8593 0.8873

IM12 0.8287 0.8825 0.8622 0.7668 0.8315 0.8765 0.8895 0.8912

IM13 0.8065 0.7897 0.7851 0.8883 0.8986 0.8294 0.7534 0.9003

IM14 0.8541 0.8293 0.8781 0.7395 0.8274 0.8535 0.8188 0.8798

IM15 0.7301 0.8083 0.8524 0.8665 0.8586 0.8699 0.7265 0.8716

4.4 Summary

A novel smog removal approach was designed for still smoggy images. Initially, gradient

channel prior has been utilized to approximate the optical information of smoggy im-

ages. Thereafter, an information gain based bilateral filter was utilized to improve the

transmission map. The smog free image is then obtained by implementing an improved

restoration model.

Extensive experiments have been carried out by considering benchmark smoggy im-

ages. Performance analysis have proved that the designed approach outperforms the

existing visibility restoration approaches. Although, the designed approach has ob-

tained significant results, but, it can be improved further by efficiently tuning the hyper-

parameters of the designed approach.
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Chapter 5

Desmogging using oblique gradient
profile prior and variational
minimization

Outline

In this chapter, a novel transmission map estimation is developed by deploying weighted

integrated transmission maps obtained from foreground and sky regions. Additionally,

the further refinement of the transmission map is done by using an integrated vari-

ational regularized model with hybrid constraints. However, the suggested approach

suffers from the hyper-parameters tuning issue. Therefore, in this chapter, a Non-

dominated sorting genetic algorithm (NSGA) is also used to tune the hyper-parameters

of the proposed approach.

5.1 Background

Images captured in poor environmental situations such as haze, fog, haze, smog, etc.

suffer from poor visibility issue. The optical imaging model is formulated as a linear

combination of an actual scene radiance, airlight and the transmission map. It is math-

ematically defined as [27]:

α (δ ) = κ (δ )µ (δ )+(1−µ (δ ))ν , (5.1)

Here, κ denotes the actual object radiance and α represents the obtained smoggy image.

µ and ν represents the transmission map and global atmospheric light, respectively. The

foremost function of desmogging method is to restore κ from α. Though, atmospheric
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light (ν) and transmission (µ) are unknown.

To evaluate the atmospheric light (ν) and transmission (µ), many desmogging mod-

els have been designed so far. Many authors have designed multiple-images based

desmogging models [142]. These models demand additional information of input im-

ages in prior [143, 144, 145]. However, in real-time desmogging it is hard to obtain

additional information of the given scene [146, 147].

Guo et al. [148] implemented a fusion based desmogging model. Yoon [149] de-

signed an adaptive variation minimization based desmogging model. But, [148] and

[149] suffers from poor computational speed. [119].

Recently, learning based desmogging models such as DesmogNet [45] gains much at-

tention of the researchers. Jiang et al. [101] implemented a regression based model to

evaluate depth information. Nishino et al. [150] implemented a Bayesian probabilistic

model to evaluate transmission map. The performance of these models depends on the

volume and variety of training data sets. However, guaranteeing high-quality desmog-

ging results following unusual imaging conditions becomes a challenging task. Also,

these approaches suffer from lesser computational speed issues.

The main objectives of this chapter is to suppress artifacts for restoration of radio-

metric detail and restore visibility of smoggy outdoor images. Two novel concepts, i.e.,

integrated variational regularized model and integrated transmission map estimation

with hybrid constraints are presented in the proposed desmogging model. Finally, to

tune hyper-parameters of the proposed approach, a Non-dominated sorting genetic al-

gorithm (NSGA) is also used.

The performance of proposed desmogging model is evaluated on outdoor images with

respect to some well-known visibility restoration performance measures. The compara-

tive analyses with competitive desmogging approaches are also drawn.

5.2 Proposed oblique gradient profile prior and varia-

tional minimization based desmogging model

This section provides a mathematical formulation of the designed desmogging model.

Initially, we try to accurately estimate the transmission map. Thereafter, transmission

map refinement is considered, Finally, the restored image is obtained using restoration

model.
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5.2.1 Transmission map estimation

Natural images generally contain a background (i.e., sky) and foreground regions. The

transmission map in foreground regions is obtained using Dark channel prior (DCP)

[27] and Gradient profile prior (GPP) [136] assumption in this chapter. But, DCP and

GPP suffer from various artifacts when there exists large sky regions. The oblique gra-

dient profile prior (OGPP) has an ability to evaluate transmission map in sky regions.

Oblique gradient prior

Singh and Kumar [151] designed an OGPP of a smoggy image (α). An OGPP composes

magnitude and direction information of α. It is evaluated as:

∇ακ =

(
ψγ

ψρ

)
=

(
∂α/∂γ

∂α/∂ρ

)
(5.2)

The amplitude of α is defined as:

mag(α) =
√
(ψ2

γ +ψ2
ρ) (5.3)

An orientation angle of ∇α is calculated as:

∇O(κ) = arctan
(

ψρ

ψγ

)
(5.4)

For α(γ,ρ), ψγ and ψρ are calculated by using various masks. A mask (ω) with 3×3
size is shown in Figure 5.1. The intensity of a central pixel is represented by λ . τ(ϕ =

1,2, . . . ,8) shows ϕ th sibling of σ .

Figure 5.1: Oblique gradients based mask (W)

An OGPP prior has an ability to estimate 9 different oblique edges available in α

with 3×3 patch size. Therefore, standard gradient operator has not ability to estimate
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all potential oblique edges [152].

Eleven possible oblique edges are presented in Figure 5.2. Figures 5.2 (a) and (b)

represent oblique edges with mask size of 2×2.

Figure 5.2: Oblique gradients with different mask sizes

Figures 5.2 (a) and (b) shows possible oblique edges as π

4 ↔
5π

4 and 3π

4 ↔
7π

4 . By con-

sidering ω ∈ ρ3×3, four 2× 2 masks are computed as:

[
α1 α2

α4 σ

]
,

[
α2 α3

σ α5

]
,

[
α4 λ

α6 α7

]
,

and

[
αc I5

α7 I8

]
with respect to σ . The corresponding OGPP angles are evaluated us-

ing Eqs.(5.5)-(5.8). If β 1(m,n) =0, then an oblique edge (i.e, π

4 ↔
5π

4 ) exists in mask[
I1 I2

I4 Ic

]
. If β 1(m,n) is trend to π/2(or−π/2), then oblique edge can be evaluated (along

3π/4↔ 7π/4) in the mask

[
I1 I2

I4 Ic

]
. Similarly, the different oblique edges can be found

in other masks. Figures 5.2 (b)-(j) show eight different oblique gradient operators with

mask size of 3×3. A combined OGPP operator is presented in Figure 5.2 (k). In Figure

5.2 (c)-(j), additional oblique edges (i.e, π

4 ↔
5π

4 , 3π

4 ↔
7π

4 , 0↔ π and π

2 ↔
3π

2 ) can be

evaluated.
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The corresponding OGPPs are evaluated by using Eqs. (5.9)-(5.12). λ is utilized in

Eqs. (5.9) and Eqs. (5.10). However, Ic is not utilized in Eqs. (5.11) and (5.12).

β
1(Λ) = arctan

(
ψ1

ρ

ψ1
γ

)
= arctan

(
α1−λ

α2−α4

)
(5.5)

β
2(Λ) = arctan

(
ψ2

ρ

ψ2
γ

)
= arctan

(
α3−λ

α2−α5

)
(5.6)

β
3(Λ) = arctan

(
ψ3

ρ

ψ3
γ

)
= arctan

(
α6−λ

α7−α4

)
(5.7)

β
4(Λ) = arctan

(
ψ4

ρ

ψ4
γ

)
= arctan

(
α8−λ

α7−α5

)
(5.8)

β
5(Λ) = arctan

(
ψ5

ρ

ψ5
γ

)
= arctan

(
α2 +α7−2×λ

α4 +α5−2×λ

)
(5.9)

β
6(Λ) = arctan

(
ψ6

ρ

ψ6
γ

)
= arctan

(
α1 +α8−2×λ

α3 +α6−2×λ

)
(5.10)

β
7(Λ) = arctan

(
ψ7

ρ

ψ7
γ

)
= arctan

(
α2−α7

α4−α5

)
(5.11)

β
8(Λ) = arctan

(
ψ8

ρ

ψ8
γ

)
= arctan

(
α1−α8

α3−α6

)
(5.12)

Figure 5.2 (k) uses all siblings of Λ and computes an integrated gradient operator. The

OGPP operator can be computed as:

β
9(Λ) = arctan

(
ψ9

ρ

ψ9
γ

)
= arctan

(
∑

8
ϕ=1(Λ− τ)

8

)
(5.13)

The OGPPs (β) of a smoggy image can be estimated by considering Eqs. (5.5) to (5.13).

An arctangent (arctan(.)) is utilized to estimate β s(γ,ρ). arctan(.) is used to control and

monitor β (γ,ρ) from rapid variation whenever I turns out to be greater or smaller. The

range of pixel angle in orientation image (θ(γ,ρ)) is constrained to (−π

2 , π

2 ).

The transmission map t̄d can be mathematically defined as:

ð(δ ) = 1−ωβ
9
c∈{r,g,b}

(
beta9

y∈Ω(δ )

(
Λ(δ )

ı

))
(5.14)

Here, ω = 0.95 is a control parameter. The patch Ω(δ ) centered at δ .
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The luminance-based transmission map (υl) can be defined as:

υl (δ ) = exp(−βΓ(δ )) (5.15)

Here, β is a scattering coefficient. Γ shows the modified luminance value. β is set to

be 0.3324, 0.3433 and 0.3502 for red, green and blue channels, respectively.

The modified luminance (Γ) to compute the effect of depth map on the transmission

map is redefined as:

Γ(δ ) =
τ

Γ∗
Γ(δ ) , (5.16)

Here, Γ defines luminance of smoggy image (α). τ defines the depth range. Γ∗ indicates

95% percentile value of Γ. The coarse transmission map (µ) is computed by weightedly

fusing of ð and µl as:

µ (δ ) = χ (δ )ð(δ )+(1−χ (δ ))υl (δ ) , (5.17)

Here, transmission weight χ ∈ [0,1]. If given pixel δ ∈Ω belongs to foreground objects,

then, χ (δ ) approaches towards 1 and t̄ (δ )→ ð(δ ). Similarly, χ (δ ) approaches toward

0 and υ (δ )→ υl (δ ).

The weight function (χ) is defined as:

χ (δ ) =
1

1+κ−θ1ð(δ )−θ2
(5.18)

Also,

θ1 =
20

max(ð)−min(ð)
(5.19)

and

θ2 =−10−θ1×min(ð) (5.20)

But, it is not possible to restore the smoggy image in an efficient manner by using υ .

Thus, a variational regularized model with hybrid constraints is implemented to refine

υ .

5.2.2 Coarse transmission map refinement

Initially, to define a more efficient optical imaging model from Eq. (5.1) is redefined as:

ᾱ (δ ) = φ̄ (δ )µ (δ ) , (5.21)

Here,

ᾱ (δ ) = ν−α (δ ) (5.22)
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and

φ̄ (x) = ν−κ (δ ) (5.23)

Here, δ ∈Ω. Also, φ̄ can is defined as:

φ̄
0 (δ ) =

ν−δ (δ )

max(υ (δ ) ,µε)
(5.24)

Here, µε is utilized to prevent imaging instability. For simplification α = Λ, ᾱ = Λ

and φ̄ = Ω̄ for c ∈ {r,g,b}.

To obtain more efficient restore images, variational model with hybrid regularization

terms for transmission map refinement is formulated as:

min
φ̄ ,µ

{
λ1

2

∥∥ᾱ− φ̄ µ
∥∥2

2 +
λ2

2
‖µ−υ‖2

2 (5.25)

+λ3 ‖ω ◦ (∇µ−∇α)‖1 +λ4
∥∥∇φ̄

∥∥
1 +λ5 ‖∇µ‖1

}
,

Here, λ1≤ᾱ≤5 represents a regularization parameter. In Eq. (5.25), the initial two terms

can be viewed as a squared L2-norm data-fidelity term. The next L1-norm regularization

is employed for edge preservation of transmission map. The final terms are total vari-

ation (TV) regularizers that may strengthen the approximation process. The weighting

function (ω) is elected as:

ω = ϑ
−ℵ‖∇I‖2

2 (5.26)

Here, ℵ act as a controller. It can differentiate the homogeneous regions and the edges.

The proposed approach (5.25) is hence effective for keeping the edges when controlling

the undesirable artifacts in homogeneous regions. Because of the nonsmooth L1-norm

penalties in Eq. (5.25), it is not suitable to produce stable options through conventional

statistical approaches. Therefore, an switching method to successfully manage the non-

smooth optimization issue (5.25) is implemented. Three different parameters such as

δ = ∇µ −∇α, ı = ∇φ̄ and κ = ∇µ are utilized. Thereafter, convert the unconstrained

optimization issue (5.25) in to these confined variation as:

min
α,ı,κ,φ̄ ,µ

{
λ1

2

∥∥ᾱ− φ̄ µ
∥∥2

2 +
λ2

2
‖µ−υ‖2

2

+λ3 ‖ω ◦δ‖1 +λ4 ‖ı‖1 +λ5 ‖κ‖1

}
s.t. δ = ∇µ−∇α, ı = ∇φ̄ , κ = ∇µ, (5.27)
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The Lagrangian function can be redefined as:

υν =
λ1

2

∥∥ᾱ− φ̄ µ
∥∥2

2 +
λ2

2

∥∥µ−υ
∥∥2

2 +λ3
∥∥ω ◦δ

∥∥
1 +λ4

∥∥ı
∥∥

1

+λ5
∥∥κ∥∥1 +

β1

2

∥∥δ −
(
∇µ−∇I

)
− ξ

β1

∥∥2
2

+
β2

2

∥∥ı−∇φ̄ − η

β2

∥∥2
2 +

β3

2

∥∥κ−∇µ− ζ

β3

∥∥2
2 (5.28)

Here, ξ , η and ζ show the Lagrangian multipliers, β1, β2 and β3 are positive vari-

ables. The alternating direction approach of multipliers (ADMM) is utilized to divide

LA into various constraints with respect to X , Y , Z, J̄ and t. These alternative issues

are resolved till we obtain optimal solutions.

(δ , ı,κ)-subproblems: Given φ̄ and µ, (δ , ı,κ)-subproblems are L1-regularized least-

squares as:

δ ←min
δ

{
λ3
∥∥ω ◦δ

∥∥
1 +

β1

2

∥∥δ −
(
∇µ−∇α

)
− ξ

β1

∥∥2
2

}
, (5.29)

ı←min
ı

{
λ4
∥∥ı
∥∥

1 +
β2

2

∥∥ı−∇φ̄ − η

β2

∥∥2
2

}
, (5.30)

κ←min
κ

{
λ5
∥∥κ∥∥1 +

β3

2

∥∥κ−∇t− ζ

β3

∥∥2
2

}
, (5.31)

Shrinkage operator can be utilized to obtain these subproblems as:

δ ← shrinkage(∇µ−∇α +ξ/β1,λ3ω/β1) , (5.32)

ı← shrinkage
(
∇φ̄ +η/β2,λ4/β2

)
, (5.33)

κ← shrinkage(∇µ +ζ/β3,λ5/β3) , (5.34)

Here, the shrinkage operator is defined as:

shrinkage(ι ,θ) = max(|ι |−θ ,0)◦ sign(ι) (5.35)

Here, sign defines signum function.(
φ̄ ,µ

)
-subproblems: Given δ , ı and κ computer using earlier iterations, the mini-

mizations of υν with respect to φ̄ and µ are similar to resolve the following least-squares

optimization issues as:
φ̄ ←min

φ̄

{
λ1

2

∥∥ᾱ− φ̄ µ
∥∥2

2 +
β2

2

∥∥ı−∇φ̄ − η

β2

∥∥2
2

}
µ ←min

µ

{
λ1

2

∥∥φ̄ µ− ᾱ
∥∥2

2 +
λ2

2

∥∥µ−υ
∥∥2

2 +
β1 +β3

2

∥∥∇µ−ψ
∥∥2

2

} (5.36)

Here,

ψ =
β1δ̂ +β3κ̂

β1 +β3
(5.37)
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with

δ̂ = δ +∇I− ξ

β1
(5.38)

and

κ̂ = κ− ζ

β3
(5.39)

Assume that F is forward fast Fourier transform (FFT). Therefore, closed-form solutions

φ̄ and µ can be computed by making use of forward and inverse FFT operators as:

φ̄ ←F−1

(
λ1F (ᾱ/µ)+β2F (∇)F (ı−η/β2)

λ1F (α)+β2F (∇)F (∇)

)
, (5.40)

t←F−1

(
λ1F

(
ᾱ/φ̄

)
+λ2F (υ)+(β1 +β3)F (∇)F (ψ)

(λ1 +λ2)F (α)+(β1 +β3)F (∇)F (∇)

)
, (5.41)

Here, α shows identity matrix, F−1 (·) defines inverse FFT. F (·) shows complex conju-

gate function.

ξ , η and ζ update: In every iteration, the Lagrangian multipliers ξ , η and ζ can be

reevaluated as

ξ ← ξ −υβ1 (δ − (∇µ−∇α))

η ← η−υβ2 (Y −∇J̄)

ζ ← ζ −υβ3 (κ−∇t) (5.42)

Here, υ is a steplength.

5.2.3 Restoration model

It is found that φ̄ obtained using Eq. (5.40) suffers from textures distortion. Therefore,

in this chapter, a smog free image (φ) is restored using computed t in Eq. (5.41). Finally,

a restored image (φ) is obtained as:

φ (δ ) =
α (δ )−ℜ

max(µ (δ ) ,µε)
+ℜ, (5.43)

5.2.4 Hyper-parameters tuning

The proposed model requires many hyper-parameters to restore a smoggy image. There-

fore, in this chapter, a Non-dominated Sorting Genetic Algorithm (NSGA) is used to tune

the hyper-parameters of proposed approach. Percentage of saturated pixels, Contrast

gain, Visible edges ratio, and Perceptual smog degradation density parameters are used

to design a many-objective fitness function. For mathematical details of NSGA please

refer [153]. The diagrammatic flow of the proposed model by considering NSGA is

shown in Figure 5.3.
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Figure 5.3: Non-dominated sorting genetic algorithm based hyper-parameters tuning of

the proposed oblique gradient profile prior and variational minimization based desmog-

ging model

5.3 Performance analyses of oblique gradient profile prior

and variational minimization

The proposed desmogging model is simulated on Intel(R) Core(TM) i5-4210U CPU@2.24
GHz and 8GB RAM on MATLAB 2013a tool. The mask size is taken as 5×5 pixels. Seven

competitive desmogging approaches are considered to carry out the comparative anal-

yses with proposed model. These approaches are DCP [6], CNN [7], CTT [8], TGV

[9], WT [10], L1 norm [11], and FVID [12]. Benchmark smoggy and real time smoggy

images are taken for evaluating the effectiveness of the designed model. The size of
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images is considered 256×256. Subsequent sections contain various visual and quanti-

tative results.

5.3.1 Patch size analysis of oblique gradient profile prior and vari-

ational minimization based desmogging model

In this experiment, the effect of mask size on the proposed desmogging model is con-

sidered. The considered mask sizes for evaluation are as 1×1, 5×5, and 11×11.

Figure 5.4: Patch size analyses (a) Input image, (b) Transmission map and (c) Restored

image, with 1×1 mask size, respectively, (d) Transmission map and (e) Restored image

with 5× 5 mask size, respectively (f) Transmission map and (g) Restored image with

11×11 mask size, respectively.
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Figure 5.4 demonstrates the effect of mask size on evaluated transmission maps and

respective desmoggy images. Figures 5.4 (b) and 5.4 (c) demonstrate that the accuracy

of the desmogging approach reduces with lesser mask size. Figures 5.4 (d) and 5.4 (e)

demonstrate that the efficiency of the proposed desmogging approach is increased for

5× 5 mask size. The restored image composes minimum saturated pixels and also the

gradient reversal and halo artifacts are reduced. From Figures 5.4 (f) and 5.4 (g), it is

clearly visible that the larger mask size makes the gradient and halo artifacts stronger.

5.3.2 Visual analyses of oblique gradient profile prior and varia-

tional minimization based desmogging model

The visual results of the designed desmogging approach is compared with seven existing

desmogging techniques on some well-known benchmark smoggy images.

Figure 5.5: Results of desmogging models (a) Input image, (b) DCP [6], (c) CNN [7],

(d) CTT [8], (e) TGV [9], (f) WT [10], (g) L1 norm [11], (h) FVID [12] and (i) Proposed

WIVC model.
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Desmogging results in Figures 5.5 5.6, and 5.7 have demonstrated the benefits of the

proposed desmogging model. DCP [27] and CTT [8] contain sky region and abundant

textures contain headlights which are essentially different from the atmospheric light.

It can be found that these approaches are not so-efficient to remove the smog for images

effected from large smog gradient.

CNN [7] and TGV [9] tend to oversmooth fine image details and degrade image

quality especially for images which are effected from large smog gradient. WT [10],

L1 norm [11], and FVID [12] show remarkable good results compared to the other

approaches. However, these approaches are unable to preserve texture information of

the restored smoggy images. The proposed approach does not suffer from edge, color

and texture distortion issues.

Figure 5.6: Results of desmogging models (a) Input image, (b) DCP [6], (c) CNN [7],

(d) CTT [8], (e) TGV [9], (f) WT [10], (g) L1 norm [11], (h) FVID [12] and (i) Proposed

WIVC desmogging model.
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Figure 5.7: Results of desmogging models (a) Input image, (b) DCP [6], (c) CNN [7],

(d) CTT [8], (e) TGV [9], (f) WT [10], (g) L1 norm [11], (h) FVID [12] and (i) Proposed

WIVC model.

5.3.3 Quantitative analyses of oblique gradient profile prior and

variational minimization based desmogging model

The comparisons among the designed and the competitive desmogging model are also

considered by using various performance measures such as percentage of saturated

pixels (Sp), smog gradient, contrast gain (CG), visible edges, execution time (ET ), peak

signal to noise ratio, and structural similarity index metric.

Table 5.1 demonstrates CG analysis. It is found that the proposed WICF based

desmogging model has significant CG values than competitive desmogging approaches.
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Table 5.1: Contrast gain analyses of the proposed oblique gradient profile prior and

variational minimization based desmogging model

Img. DCP CNN CTT TGV WT L1 FVID WIVC

IM1 1.7865 1.7325 1.8624 1.7683 1.7843 1.8545 1.7724 1.8841

IM2 1.7789 1.7275 1.8629 1.8801 1.8024 1.8408 1.7562 1.9018

IM3 1.7658 1.8441 1.7732 1.7759 1.8711 1.8175 1.7639 1.8928

IM4 1.7852 1.7293 1.7901 1.8979 1.7521 1.7491 1.7427 1.9196

IM5 1.8198 1.8368 1.8034 1.7548 1.8411 1.8813 1.7993 1.9036

IM6 1.8987 1.8483 1.8495 1.8361 1.7516 1.7449 1.8743 1.9204

IM7 1.7446 1.7268 1.7317 1.7304 1.7282 1.8503 1.8729 1.8946

IM8 1.7375 1.8669 1.8335 1.7363 1.8485 1.7921 1.8961 1.9178

IM9 1.8358 1.8359 1.8519 1.8022 1.7559 1.8317 1.7278 1.8736

IM10 1.7586 1.8699 1.8418 1.8885 1.8965 1.8591 1.8615 1.9182

IM11 1.8828 1.7865 1.8227 1.8447 1.8716 1.7868 1.8227 1.9045

IM12 1.8349 1.7758 1.8864 1.8786 1.7772 1.8279 1.7455 1.9081

IM13 1.8304 1.8055 1.8761 1.7432 1.8314 1.7328 1.7994 1.8978

IM14 1.8046 1.7973 1.7986 1.7665 1.8197 1.7471 1.8006 1.8414

IM15 1.8392 1.8868 1.7717 1.7948 1.8675 1.8859 1.7784 1.9085

Table 5.2: Saturated pixels (Sp analyses of the proposed oblique gradient profile prior

and variational minimization based desmogging model)

Img. DCP CNN CTT TGV WT L1 FVID WIVC

IM1 0.0415 0.0618 0.0515 0.0217 0.0546 0.0872 0.0705 0.0198

IM2 0.0974 0.0298 0.0899 0.0777 0.0131 0.0572 0.0166 0.0119

IM3 0.0616 0.1315 0.2715 0.1947 0.2433 0.1383 0.1524 0.0598

IM4 0.0418 0.1415 0.2173 0.2365 0.2889 0.2105 0.1895 0.0406

IM5 0.0448 0.1673 0.2456 0.1575 0.2148 0.1386 0.1456 0.0436

IM6 0.0583 0.1862 0.2541 0.2536 0.1312 0.2223 0.1547 0.0571

IM7 0.0891 0.2604 0.2277 0.2641 0.1768 0.2492 0.1382 0.0879

IM8 0.0368 0.2552 0.1303 0.1926 0.2804 0.2379 0.1375 0.0356

IM9 0.0942 0.2514 0.2839 0.1296 0.1232 0.2509 0.2084 0.0937

IM10 0.0619 0.1905 0.2701 0.2745 0.2668 0.2744 0.1463 0.0607

IM11 0.0884 0.1335 0.1658 0.1826 0.1429 0.2778 0.1316 0.0872

IM12 0.0404 0.2216 0.2371 0.1825 0.1725 0.1635 0.1393 0.0392

IM13 0.0544 0.2621 0.1681 0.1797 0.1998 0.2718 0.2536 0.0532

IM14 0.0675 0.1987 0.1746 0.2332 0.1527 0.1988 0.2691 0.0658

IM15 0.0581 0.2398 0.1239 0.1717 0.1379 0.1301 0.2301 0.0569
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Table 5.2 reveals that the proposed WICF based desmogging approach has minimum

Sp values than competing restoration techniques.

Tables 5.3 and 5.4 demonstrate that the proposed WICF based desmogging approach

has significantly more values of e and r̄ than competing restoration techniques.

Table 5.3: New visible edges analyses of the proposed oblique gradient profile prior and

variational minimization based desmogging model

Img. DCP CNN CTT TGV WT L1 FVID WIVC

IM1 2.0085 2.6038 1.7613 2.1866 2.5667 1.8845 1.9566 2.8255

IM2 2.4858 2.8253 2.6665 2.7313 2.6363 2.2137 2.2018 3.0474

IM3 2.0289 2.2318 2.5058 2.7015 2.1873 2.2242 2.8358 3.0575

IM4 2.8218 1.8502 2.2863 1.7278 1.9932 1.8122 2.2318 3.0435

IM5 2.3406 2.3763 2.3727 2.0307 1.9241 2.6204 1.7577 2.8421

IM6 2.5817 2.7486 2.6505 1.8658 2.4116 2.0606 2.2297 2.9703

IM7 2.7396 2.6663 2.5424 1.7837 2.0324 1.8173 2.5652 2.9613

IM8 2.1865 2.3312 2.3057 2.6453 2.7278 2.0063 2.1718 2.9495

IM9 1.9729 1.9552 2.3085 1.9025 2.3685 2.7188 2.1116 2.9405

IM10 2.2585 2.1331 2.1563 2.3794 1.9353 1.9926 2.0107 2.6011

IM11 2.4076 2.3861 1.9333 2.7886 2.8948 1.8607 1.8816 3.1165

IM12 2.4801 2.1814 2.4199 2.0202 2.1538 1.7952 2.1273 2.7018

IM13 2.4351 1.7789 1.9363 2.4511 2.3676 2.7773 2.6807 2.8925

IM14 2.2599 2.4123 2.2654 1.8608 2.4073 2.1177 2.6342 2.8559

IM15 2.4249 2.6167 2.6234 2.0273 2.2283 2.8627 2.4149 3.0844
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Table 5.4: Ratio of average gradient analyses of the proposed oblique gradient profile

prior and variational minimization based desmogging model

Img. DCP CNN CTT TGV WT L1 FVID WIVC

IM1 2.0953 1.9732 2.0953 2.8565 2.5004 2.8714 2.7623 3.0931

IM2 2.0376 2.1891 2.1707 2.1713 1.8339 2.0452 2.0394 2.4108

IM3 2.2806 2.4648 2.7992 2.5285 2.0167 2.6469 2.1003 3.0209

IM4 2.3087 2.2267 2.8426 2.5195 2.1211 2.7781 2.1502 3.0643

IM5 2.6393 1.7381 2.7806 1.8621 2.4382 2.6651 2.5976 3.0023

IM6 1.8283 2.3465 2.4281 2.8799 1.893 1.7624 1.9593 3.1016

IM7 2.7316 2.8374 2.3854 2.1537 2.3873 1.8578 2.6099 3.0591

IM8 2.0074 2.2164 1.7598 2.4034 2.2618 1.9759 2.5646 2.7863

IM9 2.2099 2.5789 2.0618 2.6919 2.2958 2.1343 2.6796 2.9136

IM10 2.1493 2.4506 2.6265 2.0413 2.5386 2.6982 2.4366 2.9199

IM11 2.4954 2.2997 2.5305 2.3752 2.1596 2.3717 2.2522 2.7522

IM12 2.7722 2.8623 2.0066 1.8979 1.7632 2.0579 2.0489 3.0837

IM13 2.4276 2.4808 2.1218 2.0198 2.2086 2.5852 2.8766 3.0983

IM14 2.1963 1.8341 1.7941 2.6093 2.3974 2.6414 2.6728 2.8937

IM15 2.4712 2.2435 2.0494 1.9886 2.0677 2.4725 2.8085 3.0302

Table 5.5: Execution time analyses of the proposed oblique gradient profile prior and

variational minimization based desmogging model

Img. DCP CNN CTT TGV WT L1 FVID WIVC

IM1 1.6827 1.2771 1.2811 1.2628 1.0487 1.1967 1.9802 1.0475

IM2 1.2792 1.3367 1.6838 1.0611 1.2935 1.0462 1.3304 1.0453

IM3 1.9836 1.8421 1.6814 1.3422 1.4978 1.5679 1.4975 1.3415

IM4 1.3171 1.2331 1.4632 1.8677 1.4105 1.0968 1.3998 1.0956

IM5 1.0651 1.4413 1.0636 1.8361 1.7124 1.3309 1.1253 1.0624

IM6 1.2414 1.3354 1.5979 1.2797 1.1174 1.3475 1.5133 1.1162

IM7 1.8343 1.4974 1.1123 1.5907 1.7515 1.7994 1.3676 1.1111

IM8 1.5694 1.3206 1.1274 1.0395 1.4916 1.4242 1.9633 1.0383

IM9 1.5474 1.4184 1.1395 1.3297 1.5988 1.6381 1.9589 1.1383

IM10 1.1845 1.6931 1.5641 1.2589 1.2248 1.8203 1.4088 1.1833

IM11 1.2612 1.3469 1.4852 1.5479 1.4052 1.0324 1.7127 1.0308

IM12 1.2308 1.5089 1.1943 1.2796 1.2465 1.1185 1.6099 1.1173

IM13 1.9084 1.7635 1.7184 1.0802 1.2637 1.6112 1.7955 1.0794

IM14 1.9009 1.1256 1.3903 1.3394 1.5545 1.2375 1.0835 1.0823

IM15 1.1343 1.8947 1.1634 1.6896 1.5234 1.1713 1.6207 1.1288
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Table 5.5 demonstrates execution time (in seconds) analysis. It can be clearly no-

ticed that the proposed WICF based desmogging approach is significantly faster than

the competitive approaches.

Table 5.6 demonstrates smog gradient analyses. It is found that the proposed model

is computationally faster than the existing approaches.

Table 5.6: Smog gradient analyses of the proposed oblique gradient profile prior and

variational minimization based desmogging model

Img. DCP CNN CTT TGV WT L1 FVID Proposed

IM1 2.0496 2.2412 2.1259 1.8333 1.7798 2.0864 2.0224 1.7786

IM2 1.9477 1.9919 1.7394 2.2863 1.9414 1.9901 1.9109 1.7382

IM3 1.9081 2.0821 2.2017 1.8236 1.8699 2.0223 1.7489 1.7477

IM4 1.8541 1.9036 2.2311 1.8296 2.2209 2.0962 1.9231 1.8284

IM5 1.9743 1.8502 1.9164 2.1104 1.8947 2.0978 1.9491 1.8494

IM6 1.9285 2.2606 2.1083 2.0425 1.9375 2.2805 1.9785 1.9273

IM7 2.2466 2.2695 1.7853 1.7281 1.9208 1.9918 1.9867 1.7269

IM8 2.1197 2.1937 2.2231 2.1431 1.7752 1.9886 2.1691 1.7744

IM9 2.2834 1.8309 1.8698 1.8264 1.8384 2.1682 2.2709 1.8252

IM10 2.0828 1.8719 1.7288 1.7963 2.2443 2.0386 2.2368 1.7276

IM11 1.7864 1.8741 1.7926 2.1949 2.0954 1.8999 2.2163 1.7852

IM12 1.8189 2.2118 1.8735 2.1447 1.8708 1.8999 1.9918 1.8177

IM13 2.1464 2.1439 2.1122 2.1986 1.9486 2.2692 2.2327 1.9474

IM14 1.9264 2.0314 1.9543 1.8266 1.9892 1.8087 1.8531 1.8075

IM15 2.2915 1.9563 1.7242 2.0586 2.1525 2.2626 1.8594 1.7238

Table 5.7 shows PSNR analysis of the designed and the competitive desmogging

techniques. It is observed that the designed WICF based desmogging model has signifi-

cant PSNR values than the existing desmogging approaches.
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Table 5.7: Peak signal to noise ratio (PSNR) analyses of the proposed oblique gradient

profile prior and variational minimization based desmogging model

Img. DCP CNN CTT TGV WT L1 FVID WIVC

IM1 21.4352 21.3526 17.4847 25.2233 19.7988 25.9443 18.2123 27.1617

IM2 19.3116 17.0435 20.2494 20.6626 23.4879 25.8382 17.2867 27.0597

IM3 18.8484 25.6161 23.9796 23.4317 23.2487 18.2346 22.2156 26.8378

IM4 18.2339 27.5254 26.7262 20.0566 24.6671 21.1583 16.8985 28.7417

IM5 19.5562 22.7405 27.0682 26.7358 16.9676 17.7742 17.4003 28.2899

IM6 24.6329 24.1535 24.2207 25.0819 18.6774 22.1306 19.8634 26.3036

IM7 19.8772 25.4108 25.7341 19.6746 24.0464 22.7067 21.4376 26.9558

IM8 23.7912 27.6807 21.8149 27.5865 21.3945 20.0567 25.7018 28.9024

IM9 27.7838 26.8985 17.2131 21.0298 20.6644 20.2541 27.3327 29.0055

IM10 19.3601 24.0618 27.6223 25.4101 21.8054 24.1566 26.9122 28.8449

IM11 19.1564 24.7815 19.8693 23.0911 18.9015 21.2278 24.9664 26.1881

IM12 25.6242 20.3746 22.8543 21.1459 21.6141 24.0739 19.1215 26.8459

IM13 21.5967 18.4221 17.6245 27.7589 19.6873 24.5459 18.4737 28.9806

IM14 25.2212 23.8978 21.1918 25.1502 23.8473 18.0318 17.5223 26.4429

IM15 26.5971 27.3211 27.0028 24.3435 18.3536 21.7065 20.2388 28.5428

Table 5.8: Structural similarity index metric (SSIM) analyses of the proposed oblique

gradient profile prior and variational minimization based desmogging model

Img. DCP CNN CTT TGV WT L1 FVID WIVC

IM1 0.7502 0.7621 0.8674 0.7793 0.7619 0.8121 0.8067 0.8691

IM2 0.8522 0.7959 0.8665 0.7255 0.8844 0.7894 0.8506 0.8861

IM3 0.8162 0.8257 0.7331 0.8518 0.7529 0.7478 0.8314 0.8535

IM4 0.8715 0.7578 0.7952 0.7856 0.7384 0.8636 0.8344 0.8727

IM5 0.8096 0.8764 0.8039 0.7401 0.8591 0.7449 0.7541 0.8781

IM6 0.7609 0.8439 0.8329 0.8803 0.7946 0.7783 0.8394 0.8826

IM7 0.8386 0.7307 0.8905 0.8617 0.7783 0.8983 0.7417 0.9545

IM8 0.8365 0.8015 0.7511 0.8364 0.8228 0.8279 0.8141 0.8382

IM9 0.7311 0.7582 0.7299 0.7662 0.7614 0.7832 0.8893 0.8917

IM10 0.7383 0.7258 0.7557 0.7393 0.7712 0.8029 0.7764 0.8046

IM11 0.8988 0.7244 0.7391 0.8895 0.7345 0.8714 0.7234 0.9005

IM12 0.7908 0.8567 0.8973 0.8488 0.8235 0.7834 0.8265 0.8993

IM13 0.7582 0.7423 0.8575 0.7468 0.8319 0.7338 0.8559 0.8592

IM14 0.7274 0.8645 0.8914 0.7522 0.7959 0.8781 0.8916 0.8933

IM15 0.7277 0.8823 0.8005 0.8784 0.7616 0.7813 0.8444 0.8844
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Table 5.8 shows SSIM analyses of the designed and the existing desmogging ap-

proaches. It is found that the designed WICF based desmogging approach has signifi-

cant SSIM values than the existing desmogging approaches.

From Tables 5.1 to 5.8, it has been found that the NICP outperforms the compet-

itive desmogging models in terms of contrast gain, new visible edges, average gra-

dient, peak signal to noise ratio, and structural similarity index metric by 1.2883%,

1.5392%, 0.8271%, 0.8928% and 1.2813%, respectively. Compared to the existing ap-

proaches, NICP also minimizes the smog gradient, saturated pixels, and execution time

by 0.8282%, 0.7291% and 1.1428%, respectively.

5.4 Summary

An efficient desmogging model has been designed and implemented in this chapter.

Initially, the proposed WICF based desmogging model integrates transmission maps

computed from oblique gradient prior and luminance-based transmission map are in-

tegrated. Thereafter, the integrated transmission map is refined by using a novel vari-

ational regularized model with hybrid constraints. A Non-dominated sorting genetic

algorithm (NSGA) has been utilized to tune the hyper-parameters of the designed ap-

proach. Extensive experimental results reveal that the designed WICF based desmog-

ging model has an ability to preserve color, edges and texture information of restored

images. Therefore, performance analysis indicate that the designed desmogging model

can be applied for real-time applications.
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Chapter 6

Conclusions and future work

Outline

The thesis is hereby concluded in this chapter, emphasizing the contributions made

towards the proposed research domain and presenting future directions in the research

area.

6.1 Conclusions

Images obtained in smoggy environment are degraded by the scattering of atmospheric

particles. Therefore, the captured images have poor visibility and low contrast. It di-

rectly affects the performance of various computer vision applications. The degradation

in obtained images is represented by the transmission map, which is one of the most

significant step in the desmogging model. However, the estimation of transmission map

is an under-constraint issue.

Dark channel prior (DCP) is one of the commonly used model to estimate the trans-

mission map. DCP stated that most of the non-sky regions have at least one color

channel (i.e., red, green, or blue) containing low-intensity pixels. Extensive analyses

demonstrated that most of the images satisfy same observation of DCP. It has achieved

remarkable results when combined with the soft matting. But, soft matting greatly af-

fects the computational speed. With this, DCP may become invalid when the objects in

an image are essentially similar to the airlight. It is also not capable to restore the gray

regions of weather degraded images.

From the comprehensive study on desmogging models, it has been observed that the

development of efficient desmogging model is still an extensive area of research. Smog
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degradation is generally produced by the suspension of invisible water droplets in the

atmosphere. Whenever light met with these invisible water droplets then it scatters and

results in loss of visibility of the actual scene radiance. The smog degradation model

can be mathematically defined as an optical imaging model.

The optical smog imaging model shows that the obtained smoggy images depend

upon actual scene radiance, transmission map and atmospheric veil. Thus, inversion of

this optical model may help in obtaining the restored image. However, single smoggy

images do not provide the details like transmission map and atmospheric veil . There-

fore, it is desirable to predict these transmission map and atmospheric veil to restore

smoggy images. However, an efficient estimation of transmission map and atmospheric

veil is still an extensive field of research.

Channel priors was found to be best suitable method for estimation of transmission

map and atmospheric veil from smoggy images. However, the obtained transmission

map and atmospheric veil suffer from noise and degradation issue especially when im-

ages contain sky regions or images contain significant smog gradient. Therefore, image

filters were considered to refine the estimated transmission map to obtain more sig-

nificant results. However, the existing desmogging models are affected by the color,

texture, and edge distortion issues. These models also provide halo and gradient rever-

sal artifacts.

To overcome afore-mentioned issues, in this thesis three different desmogging models

were proposed and implemented i.e., NICP, NGCP, and WIVC.

To overcome these issues, various desmogging models are proposed in this research

work. Initially, a novel illumination channel prior (NICP) is designed to restore smoggy

images in a significant way. A gradient magnitude based filter is also proposed for

refining the transmission map. Finally, the smog-free images are achieved by employing

the computed depth information of smoggy images and smog restoration model.

The subjective and quantitative analyses were drawn to estimate the effectiveness

of the designed NICP based desmogging model. It has been found that the proposed

NICP based desmogging approach outperforms competitive models in terms of some

well-known performance metrics. It has been found that the NICP outperforms the

competitive desmogging models in terms of contrast gain, new visible edges, average

gradient, peak signal to noise ratio, and structural similarity index metric by 1.2883%,

1.5392%, 0.8271%, 0.8928% and 1.2813%, respectively. Compared to the competing

techniques, NICP also minimizes the smog gradient, saturated pixels, and execution

time by 0.8282%, 0.7291% and 1.1428%, respectively.
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Although, NICP outperforms the existing desmogging approaches in case of smoggy

images, but, for images with complex background and having large smog gradient, it

may not be so-effective. Therefore, a novel gradient channel prior and information gain

based filter (NGCP) desmogging approach has been designed. Initially, gradient channel

prior has been used to estimate the optical information of smoggy images. Thereafter,

a information gain based filter has been designed to improve the transmission map.

The smog-free image has been then computed using an improved restoration model.

Finally, the effectiveness of the designed NGCP based desmogging approach is com-

pared with seven existing restoration techniques on some well-known benchmark and

real-life desmogging images. From, comparative analyses, it has been found that the

proposed model outperforms the competitive models in terms of contrast gain, new vis-

ible edges, average gradient, peak signal to noise ratio, and structural similarity index

metric by 1.8373%, 1.9379%, 1.9838%, 1.9382% and 1.8272%, respectively. Compared

to the competing techniques, NGCP also minimizes the smog gradient, saturated pixels,

and execution time by 1.2279%, 1.8273% and 0.9823%, respectively.

Although, NICP and NGCP provide promising desmogging results when compared to

the competitive desmogging approaches. However, it suffers from sky-regions and color

distortion, especially in the case of images effected from large smog gradients. Also,

the effect of hyper-parameters tuning issue was also ignored. Therefore, a weighted

integrated transmission maps and integrated variational regularized model with hybrid

constraints (WIVC) based desmogging model was implemented. The transmission map

estimation was computed from the weighted integrated transmission maps by consider-

ing foreground and sky regions. The computed transmission map was refined using an

integrated variational regularized model with hybrid constraints. The obtained results

revealed that WIVC outperforms the competitive desmogging models in terms of con-

trast gain, new visible edges, average gradient, peak signal to noise ratio, and structural

similarity index metric by 1.9379%, 1.3820%, 1.3289%, 1.9389% and 1.7392%, respec-

tively. Compared to the competing techniques, WIVC also minimizes the smog gradient,

saturated pixels, and execution time by 1.8382%, 1.2372% and 0.8272%, respectively.

However, the designed WIVC approach suffers from the hyper-parameters tuning is-

sue. Therefore, in this chapter, a Non-dominated sorting genetic algorithm (NSGA) is

also used to tune the hyper-parameters of the proposed WIVC approach. Extensive com-

parative results reveal that the WIVC performs effectively across a wide range of smog

degradation levels without causing any visible artifacts. It is found that the designed

approach outperforms seven competitive desmogging approaches in terms of various

performance metrics on benchmark and real-life smoggy images. The main benefits of

WIVC over the competitive desmogging models are as: (i) WIVC can efficiently over-

come the sky region issue. Also, WIVC can preserve texture details of the restored
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smoggy images more efficiently.

Thorough extensive comparative analyses, it is found that the proposed models i.e.,

NICP, NGCP, and WIVC can significantly suppress visual artifacts for smoggy images

and obtain significantly better restored images as compared to the existing desmog-

ging models both quantitatively and qualitatively. Moreover, the proposed models take

significantly lesser time, therefore, the proposed models will facilitate various real-life

imaging systems.

Therefore, the proposed desmogging models have efficiently reduce the distortion

of edge, color and texture details of smoggy images. The visual analyses have shown

that the proposed modes i.e., NICP, NGCP, and WIVC can efficiently restore the smoggy

images. These models provide smog-free images with the vivid color, good visibility,

significant spatial and spectral, and texture details. These proposed models also provide

real color sky, without introducing much gradient reversal and halo artifacts in the

restored smog-free images. Additionally, the proposed models provide smog-fee images

at good computational speed as compared to the competitive desmogging approaches.

Therefore, the developed models can be used as a preprocessing tool in real-life imaging

systems.

6.2 Future work

Following are some of the future directions of this thesis.

i In this thesis, not much work is done to propose fusion based desmogging models to

enhance the restored images. Therefore, in near future one may use fusion models

to obtain more accurate restored smoggy images.

ii In this thesis, only non-dominated sorting genetic algorithm was used to tune the

hyper-parameters of the proposed model. Thus, in future, some recently proposed

meta-heuristic models may be considered to tune the parameters of the proposed

models.

iii The proposed models may be used to other kinds of images such as satellite images,

underwater images, etc.

iv The transform domain based desmogging models can also be used to obtain smog-

free images.
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Appendix-A

The designed NSGA based desmogging model is compared to the well-known existing

techniques while considering various performance measures like percentage of satu-

rated pixels (Sp), smog gradient, contrast gain (CG), visible edges, execution time (ET ),

structural similarity index metric, and peak signal to noise ratio . This section describes

the results produced by NSGA based desmogging technique (discussed in chapter 5 of

the thesis) through the graphs.
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