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ABSTRACT 

There are numerous methods in the field of Image denoising that have emerged in the 

recent past. However, there are only a few that provide solutions with high accuracy 

and high proximity to the original image. Generally, to denoise an image two stage 

process is followed in which at first noise location is detected in image and secondly 

detected noise location is restored. The noise detection stage is very challenging as 

different noise model distort the image with different intensity values and strength.  

This leads to inaccurate detection of noisy pixels in the image i.e. over detection and 

under detection. After the detection of noisy pixel location it is required to replace the 

noisy pixel value with the estimated original pixel value. This task is performed by 

restoration stage and it is also a very challenging task due to presence of noise.  The 

overall performance of denoising algorithm depend upon individual accuracy of   

detection stage and restoration stage. To overcome these challenges the new adaptive 

algorithms of detection stage and restoration stage has been proposed to over come the 

over and under detection of noisy pixels. As quality of restoration stage depends upon 

closeness of restored value to the original values of image. To achieve this further an 

algorithm has been developed to enhance the performance of existing algorithm, this 

algorithm ensures the high proximity of restored value to the original pixel value. One 

more crucial thing that also needs to addressed in image denoising is to ensure the 

operational stability of algorithms on wide range of data set. To overcome this issue the 

proposed algorithms are tested on wide range of standard data set of grayscale images 

and color images. To validate the performance of proposed algorithms on the wide 

range of dataset various qualitative parameters are also utilized i.e. Peak signal to noise 

ratio (PSNR), Structural similarity index (SSIM) and Image enhancement factor 

(IEF).These parameters plays a vital role to evaluate  the performance of image 

denoising algorithms with other existing denoising algorithms  for different level on 

noise affected images. Therefore, this thesis focuses on designing algorithm with high 

denoising with detail preservation. In the initial work the various algorithms for image 

denoising have been analyzed and also the research gaps related to the study have been 

identified. Secondly, the hybrid algorithm for achieving image denoising of gray scale 

and color image dataset has been accomplished.  Finally, on the basis of complete 

denoising algorithm requirements and available research gaps in the design process of 
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image denoising algorithm, new adaptive image denoising algorithm have been 

presented in this work. The results validation of these algorithms has been 

accomplished and comparative analysis with the present state of the art is also done. 

The proposed hybrid method , spatially adaptive image denoising - enhanced noise 

detection (SAID-END) method, amalgamation of rank-order absolute difference 

trimmed global mean with progressive principal component analysis using performance 

booster method (ROAD-PPCA-PB) and amalgamation of spatially adaptive image 

denoising - enhanced noise detection with progressive principal component analysis 

using performance booster method (SAID-END-PPCA-PB) has respectively achieved 

3.01%, 5.24%, 7.32% and 14.85% PSNR improvement over best  performing recent 

state of the art iterative median filter algorithm (IMF) for gray scale standard Lena test 

image. Similarly, these algorithms have achieved 5.84%, 8.10%, 10.34% and 16.94% 

PSNR improvement respectively over best performing recent state of the art adaptive 

unsymmetric trimmed shock filter (AUTSF) algorithm for color standard Lena test 

image. 
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Chapter 1 

Introduction  
 

This chapter focuses on understanding of image, image denoising and image 

processing. In today's world technology is part of the lifestyle in one way or another. 

The impact of technology can easily be understood by simply realizing how often we 

are using it in our daily life. One of the most impact making technology is digital image 

processing. Digital image processing plays a vital role in various applications like face 

recognition, surveillance, medical imaging, robot vision, underwater imaging, satellite 

imaging etc. Image denoising is the primary preprocessing to image processing and also 

to almost all image analysis since impulse noise is an unwanted and inevitable noise 

that mixed with the original image in different situations, such as during image 

acquisition, storage and transmission. The Salt & Pepper noise (SPN) is the most 

common form of impulse noise in digital images. This noise can highly dilute the image 

quality as it occurs due to multiple sources such as the transmission of image, dust on 

the camera lens, faulty photosensors and faulty memory locations. Generally, faulty 

photosensors and faulty memory locations cannot be avoided as these occur due to the 

aging of electronic components. Due to these inevitable challenges image denoising is 

still a significant field and demanding for constant improvement. The process of image 

denoising becomes further challenging when an algorithm is required to denoise both 

grayscale and color images affected by SPN. To enhance the performance of image 

processing-based application it requires to keep the image noise-free and it should have 

proximity to the original image after denoising.  

This chapter is organized into seven sections. Section I describes the brief overview of 

the area under study. Section II and Section III give the introduction to image denoising 

and motivation respectively. Further, Section IV provides various research gaps. 

Section V and Section VI hold the objectives and research methodology. Finally, 

Section VII presents the organization of thesis work respectively.  
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1.1 Image Denoising  

 

In this digital era images are part of our daily life starting from a mobile phone screen 

unlock, social media to CCTV surveillance. Every day a massive number of images are 

captured and stored, but both these tasks are prone to noise. These images are 

considered as a vital source of information, so these are transmitted, stored and 

processed in high numbers. Any loss in image information can affect the overall 

performance of the application containing the image processing stage. So, day by day 

the demand for more conspicuous and accurate images is increasing. To fulfill this 

demand noise is required to be removed from the images. For this purpose, various 

algorithms are proposed and it is very difficult to choose one for the desired application. 

Every algorithm has its advantages and disadvantages.  This demands more 

technological advancements in image denoising algorithms to maintain image 

quality[1]–[5]. Due to these reasons, image denoising is still a valid challenge for the 

researchers. The image denoising process is required to achieve maximum denoising 

while keeping the prime details of images like high-frequency components and object 

bounders. The image loses some important information in the denoising stage as there 

is a very less intensity difference between the object and its boundaries. It is worth 

taking a note here that image denoising is an inverse problem, so the solution may vary 

from problem to problem. Salt and Pepper is the noise which is having a major role in 

image distortion. This noise can reduce the image details, hence it is important to detect 

and remove the noise before providing the image to the image processing stage.  

 

Salt and Pepper noise can have two possible values i.e, 0 or 255 [6]. The occurrence of 

impulse noise is random in image and can produce any pattern which makes it even 

more difficult to detect the location of noise and to predict the original value of the 

noisy pixel. This problem is considered as a classic problem in digital image processing 

but it is still attracting the attention of various researchers as the need for enhanced 

image visual clarity is always in demand. To achieve this various algorithms are 

available, hence it will be a challenging task to find a suitable method for both grayscale 
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and color images. As various methods were designed earlier for the grayscale image 

but in comparison, less work is performed with respect to color image denoising. 

To perform image denoising it’s important to understand image noise models. At each 

stage of the acquisition of a scene, disturbances (scratches, dust, faulty camera sensors, 

amplification, quantization) will deteriorate the quality of the image. These disturbances 

are grouped under the name of "image noise"[7]. The image noise can be categorized 

into two categories: 

 

• Independent noise (we speak of random noise) 

• The noise that depends on the distribution pattern. 

We can represent the noise affected image with the following expression[8]  

 

S ( a, b ) =  w( a, b ) + z( a, b )             (1) 

 

S(a,b) is defined as the combination of the real image w(a,b) and noise z(a,b).The noise 

z(a,b) is frequently defined by its variance (𝜎2𝑧). PSNR defines the quality of a 

denoised image from an image under the influence of noise. Similarly, 𝜎2𝑤 and  𝜎2𝑠 

represent the respective variances of the actual and the processed image. The noise of 

the image is considered as a random field. Because of the different mechanism are 

involved in image acquisition, the level of noise is affecting the image can be different. 

So, an algorithm needed which can remove this wide range of noises level. The most 

common noise in a digital image is Salt and Pepper noise which is also referred as shot 

noise, binary noise and impulse noise. This is caused while capturing and sending the 

images because of impairments involved in the communication process. It has just two 

conceivable values (0 and 255) as already discussed. The likelihood of the occurrence 

of any of these two values is normally under 0.1. The noisy pixels are kept on the other 

hand to the minimum value or to the most extreme value, provide the picture a "Salt and 

Pepper" like resemblance[1], [6], [9]–[12]. Noise-free pixels in the affected image stay 

unaltered. For the image of 8-bit, the representation of Pepper noise in the digital image 
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is done by using value zero and for Salt noise reflection is achieved by using value 255. 

To represent the effect of noise on image, 40% Salt and Pepper noise affected image is 

shown in figure 1.1 (a). 

 

  

            (a)                       (b) 

Figure 1.1. (a) 40% Salt and Pepper affected image (b) denoised image. 

 

There are two fundamental ways to deal with picture denoising, spatial domain methods 

and frequency domain techniques. A standard approach to remove noise from picture 

information is to utilize spatial methods. Spatial methods can be further arranged into 

non-linear  and linear methods. These techniques can be subdivided on the basis of 

situational awareness. Situational awareness can be used to make an image denoising 

algorithm adaptive which enhances the denoising performance. Generally, to reduce 

computational cost of algorithms and to make operation faster non adaptive algorithms 

are preferred. These algorithms perform operation at high speed at the cost of loss in 

proximity to original image. These methods work well in low to mid level of noise but 

quality of denoised image tend to reduce with increase in noise level in the image. 

Whereas the adaptive algorithms are used to improve the denoised image proximity to 

original image and to enhance the quality of image denoising in case of wide range of 

noise affected image. The adaptive nature of a algorithm can be implements at noise 
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detection and noise restoration levels in image denoising algorithm. Adaptive 

algorithms are complex to design and can have high computational cost also but these 

algorithms are focused to achieve high image denoising efficiency. Some of the 

denoising methods are as follows. 

 

A. Non-Linear Filter  

With non-linear filters, the noise is removed considering low frequency values as non-

noisy and informative. Spatial methods utilize a low pass filter on window of pixels 

with the presumption that the noise involves the higher values of the frequency range. 

The large number of spatial methods remove noise to a significant value at the cost of 

blurring pictures which thus makes the edges in pictures undetectable. Lately, an 

method  based on nonlinear center value method for example, weighted middle , rank 

adapted rank determination have been formed to overcome this downside[13]–[15].  

B. Weighted Median Filter  

The essential thought is to offer weight to every pixel. Each pixel is given a weight and 

this weight is increase with pixel. As per this weight the pixels are sorted into increasing 

order of values , and higher weight of pixel will provide more influence of the respective 

pixel in reconstruction of original value [16], [17].  

C. Mean Filter  

Mean filtering is essentially to replace every pixel value in a picture with the mean 

(`average') estimation of its neighbors, including itself. This has the impact of fading 

pixel values which are inconsistent of their environment. Mean filtering is generally 

considered as a convolution channel. Like different convolutions it is based around a 

window, which consider the shape and size of the area to be tested while computing the 

mean. Regularly a 3×3 square piece is utilized, considerably larger window size(e.g. 

5×5 squares) can be utilized for more intensive smoothing[8], [18], [19].  

D. Spatial-Frequency Filtering  

Spatial-frequency filtering alludes utilization of low pass filters with Fast Fourier 

Transform (FFT). In frequency filtration methods [20]–[22] the removal of the noise is 
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accomplished by devolving  a frequency domain filter and adjusting its cut-off 

frequency at a point when the noise levels are decorrelated from the required window 

in the frequency range. These techniques are tedious and rely upon the cut-off 

frequency and the filter bandwidth.  

E. Non-Adaptive Threshold  

VISUShrink [23]–[25] There are two types of thresholding: Soft and Hard thresholding. 

The Universal thresholding method i.e.VisuShrink is based on the Hard-thresholding 

and it is not appropriate for Soft-thresholding. VISUShrink is known to yield 

excessively smoothed pictures since its edge reconstruction can be much wider than 

edges in original image because of its reliance on the quantity of pixels in the picture.  

F. Adaptive Threshold  

SUREShrink[24], [25] utilizes a hybrid  of the edge information and the SURE [Stein’s 

Unbiased Risk Estimator] limit and performs superior to VISUShrink. BayesShrink 

limits the risk estimator work expecting better performance and consequently yielding 

required information along with edge preservation. BayesShrink outperform 

SUREShrink in the majority of the circumstances. Cross Validation[26] replaces 

wavelet coefficient with the weighted normalized neighborhood coefficients to limit 

Generalized Cross Validation (GCV) work giving ideal edge to each object. The 

presumption that one can separate noise from the window exclusively, is a challenging 

task the reconstruction of damaged pixel is incorrect when noise levels are high for the 

respective window sizes. Under these high noise condition, the spatial setup of 

neighboring wavelet coefficients can assume a vital part as noise in window 

arrangements. Reconstructed images tend to form significant components (artifacts e.g. 

straight lines, blur and patches), while high noise levels are randomly distributed. 

1.2 Motivation 

In image denoising, the designing of an efficient algorithm is a major challenge since 

it desires to have accurate noise detection, high proximity to original image and noise 

filtration for wide range of color and gray scale images. Thus, the initial work in the 

field of algorithm design with mentioned characteristics has been accomplished by 
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employing spatial domain and principle component analysis. Image denoising 

algorithm designs can be broadly divided into two stages, i.e., noise detection and noise 

filtration. However, due to vast image applications usage in today’s world, algorithm 

are required to be designed for both grayscale and color image dataset. 

The algorithm applicable for both grayscale and color images is required to be tested to 

wide range of image along with wide rage on noise levels. As in real life scenarios the 

noise level can be in any range from very low to high depending on various factors like 

environment, electronic component aging etc. To overcome these issues the proposed 

algorithm is tested on standard data set of color and grayscale images affected with 

wide range of noise.  

 

1.3 Research Gaps 

Research gaps identified as follows  

 

➢ Although the spatial filters perform well on digital images but they have some 

constraints regarding resolution degradation. These filters operate by 

smoothing over a fixed window and it produces artifacts around the object. 

This leads to requirement of adaptive window algorithms. 

 

➢ Existing filters so far have some disadvantages which are: loss of high 

frequency components for example thin lines,  thin  edges, blurring  image 

fine textures  in the  image during  the  noise removal operation. So, an 

improved noise detection algorithm can be implemented which will not only 

focus on identification of noisy pixels also focus on maintaining the image 

structure edges and work without decreasing the features of image. 

 

➢ Denoising is often required for proper image analysis, both by humans and 

machines. In the case of random-valued impulse noise, the performance of 

standard noise detectors is significantly reduced. In this case the improvement 
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is required in existing noise detector algorithms for efficient detection of 

noise. 

 

➢ Numerous approaches are being presented for gray scale image denoising but 

still there is a vast research scope for color image denoising. 

 

1.4 Research Objectives  

      The objectives of the work are as follows: 

 

1. To perform comparative analysis of existing algorithms for denoising of gray 

scale and colored image to find algorithm which will give superior 

performance for the removal of Salt and Pepper noise from the affected images. 

 

2. To improve the noise reduction procedure efficiency by developing adaptive 

detection stage.   

 

3. To improve the noise reduction procedure efficiency by developing adaptive 

filtering stage. 

 

4. To improve the algorithm for denoising procedure using noise pixel direction 

for achieving enhanced results. 

 

1.5 Research Methodology   

To achieve the proposed objectives of the work, a methodology layout is prepared in 

figure 1.2. In the research, we will present an efficient image denoising procedure for 

grayscale and color image noise reduction (The comparison will be done on various 
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algorithms for selection of grayscale and color image denoising procedure (objective 

1), to make detection stage window size  adaptive for denoising process (objective 2), 

to increase the performance by making restoration stage adaptive for denoising process  

(objective 3) and to achieve enhanced performance from designed algorithm (objective 

4). All the designed algorithms are tested on wide range of standard dataset with low to 

high levels of noise.  

The Flow chart for proposed methodology is given:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Methodology for the objectives 

Objective 1 

Denoised image  

Comparative analysis of 

algorithms to identify best 

performing algorithm   

Adaptive digital image denoising for gray scale and color images 

  

Increase the  image denoising performance using  

1. Implementing adaptive window size for detection stage. 
2. Implementing adaptive window size for restoration     

stage. 

Grayscale and color image 
adaptive image denoising 

Increase the image denoising quality by 

improving proximity to original image 

Objective 2 

Objective 3 

Objective 4 
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We are proposing an improvement in detection and filtering stage of denoising 

algorithm. To enhance the proximity of denoised pixel to the original pixel intensity of 

neighbor pixels are carefully selected by avoiding noise influenced pixels before 

replacing the noisy pixel value with mean or median of selected pixels. 

 

1.6 Thesis Organization 

This thesis is organized into six chapters as follows: 

Chapter 1 provides the introduction to the image denoising systems and various 

applications. Further, the importance of designing efficient image denoising algorithm 

and challenges for color image denoising have been presented. Based on this discussion 

the motivation, research gaps, and objectives of the proposed work have been also 

given. 

Chapter 2 delivers an exhaustive literature review for the proposed work. In this review, 

the different techniques for achieving image denoising over image affected with SPN 

are presented. Moreover, the challenges present in existing algorithms are discussed. 

 

Chapter 3 gives the basic design process of hybrid denoising algorithm for both 

grayscale and color images. Various existing algorithms like ROAD-TGM, DBMF, 

CWMF, PSMF, MF has been tested and top performing algorithms were selected for 

proposed algorithm. The proposed algorithm is hybrid in nature, representing a 

combination of two existing algorithms. It is important to mention that the proposed 

algorithm incorporates the advantages of both existing algorithms, yielding better 

results. 

 

Chapter 4 presents proposed detection stage and proposed filtration stage combined 

together as a spatially adaptive image denoising via enhanced noise detection method 

(SAID-END) is presented for grayscale and color images. The denoising is achieved 

using a two-stage sequential algorithm, the first stage ensures accurate noise estimation 

by eliminating over and under detection of noisy pixels. The second stage performs 
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image restoration by considering non-noisy pixels in estimation of the original pixel 

value. 

 

Chapter 5 provide two proposed methods and these methods are two-stage sequential 

algorithm for noisy grayscale and color images. At first proposed methods enhances 

the accuracy of the noise detection stage by using spatial domain filter rank-order 

absolute difference trimmed global mean (ROAD-TGM) or SAID-END along with 

transform domain-based progressive principle component analysis (PCA) method. 

Then the performance booster algorithm is used to ensure the proximity of restored 

values to the original values. 

 

Chapter 6 discuss the conclusions and future scope for the proposed work. 
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Chapter 2 

Literature Survey 
 

The Image denoising is crucial preprocessing stage for almost all the real time 

applications, image transmission and image analysis-based applications. The image 

denoising algorithm design is depended upon various factors like type and level of noise 

affecting the image.  As these noise models are different from each other its practical 

not feasible to provide single stop solution. In the field of image denoising another 

factor is type of image color or grayscale, the process of denoising become more 

challenging when color image is required to be denoised. Grayscale images are more 

used in application of biomedical image processing and color images are used in 

applications for satellite imaging, segmentation, quality analysis etc. So, the new design 

of algorithm with high accuracy for wide range of color and grayscale images is 

required. To achieve this, analysis of existing algorithms has been reported in the 

literature, and this chapter provides a comprehensive review of the different existing 

algorithm for achieving high denoising accuracy with high proximity to original image. 

Moreover, the challenges, future perspectives and their applications are also discussed. 

 

2.1 Introduction  

 In the field of image processing, digital images are often corrupted by several kinds of 

noises and artifacts. There are various reasons of generation of noises and artifacts in 

our digital world for example transmission of image in a noisy channel, faulty memory 

locations in hardware or during the process of image acquisition malfunctioning of 

pixels in camera sensors [27], [28]. In the digital images the major contribution to 

tamper the image quality is usually done by the impulse noise (it is a noise which 

corrupt the image with peak high and peak low values) [29], So it becomes important 

to remove the noise before the image is utilized further for analysis otherwise it will 

lead towards misinterpretation. The process of restoring the corrupted image, is known 

as image denoising. For the last few decades, researchers are dedicatedly working to 

achieve an effective denoising algorithm which will retain the important details of 



 

13 

 

image while removing the noise from digital image. To measure the performance or to 

evaluate the operational quality of algorithm quantitative and qualitative parameters are 

required, for this purpose various parameters are available, but most suitable or 

preferred parameters are Peak signal to noise ratio (PSNR)[30]–[32], Mean square error 

(MSE)[33], [34], Image enhancement factor (IEF)[11], Structural similarity index 

(SSIM)[35]–[37]. As we had already discussed that image is affected by several types 

of noises, but it is observed that impulse noise usually affects the images and the impact 

of impulse noise in the digital image is most severe in comparison to other noises. So, 

the researchers generally emphasize on the eliminating the impulse noise while 

ensuring the least loss to important details. Impulse noise is classified into two 

categories, first is the random-valued impulse noise and second is the salt-and-pepper 

noise also known as the fixed valued impulse noise [38], [39]. Moreover, the noise 

generation in the processes of acquisition (due to faulty camera sensor, amplifier, and 

quantization) of images is inevitable and it induce disturbances which can be 

discomforting for understanding and image processing. The purpose of noise filtering 

is to reduce intensity variations within each region of the image while respecting the 

integrity of scenes: transitions between homogeneous regions, significant elements of 

the image must be preserved for the best quality. An exhaustive literature review has 

been carried out related to the titled work to find out the current research aspects.  

Salt and pepper noise is also referred as impulse noise, which is also additionally 

understood as unwanted black and white pixels. This occurs to received images because 

of impairments involved in the communication process. It has just two conceivable 

values (0 and 255) [40]. The likelihood of occurrence of any of these two values is 

normally under 0.1. Salt and pepper noise present in the most of the digital images due 

to flawed of pixel components in the camera sensors, broken storage areas, or timing 

blunders in the digitization procedure. Some other noise or artifacts do also affect the 

image like Gaussian noise generally produces impact on digital images by altering its 

gray values. Due to this reason the Gaussian noise model essentially characterized and 

designed by its normalize histogram or probability density function (PDF) with respect 

to the gray value. In the case of Gaussian distributed noise, the PDF is given by equation 

(1): 
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Where µ is the mean, z represents the gray level and 𝜎2 is the variance[41]. The 

Gaussian noise mathematical model represents the correct approximation of real-world 

scenarios. Generally, Gaussian white noise follows two patterns of distorting pixels in 

the image one is Gaussian white noise with constant variance, mean and the other is 

Gaussian white noise of local variance as per image. 

 

There are some different kind of abnormalities that are involved in old movies, video 

arrangements and pictures - to be specific: blotches and the stripes. The film materials 

of early pictures and videos where frequently corrupted by irregular pattern of stripes 

lines and blotches [42]. Old motion pictures and images are significant authentic record 

yet the greater part of those films deteriorates in visual quality amid the years and 

diminishing their value. These artifacts might show up because of damage to the film 

surface or they might come into existence while cleaning the concealing little zone of 

the outer layer of video tape. While digitizing these types of movie tapes substantial 

outcome in the picture will have patches with low level values those are not associated 

with the original pixels. Fundamental pictorial deformity is due to dust particles that 

get stuck with the film area of the thin top layer of film tape. Moreover, the effect of 

stripes and blotches also caused by the outside dust particle on lenses, present in the 

devices like camera and projector.  The result of it shows up in the form of a tiny stripe 

of pixels of self-assertive form with almost dark value of respective pixels and 

sometimes it results in the form of blotches, which is defined as a piece or a tiny 

individual zone with comparative dark pixel shades. Due to which the effect of these 

two kinds of degradation in quality may remain permanent in film tapes and image 

acquisition process, so we need to design denoising algorithm to overcome these issues. 

Every pixel involved in stripe lines or blotches can contain different values than 

original, generally these are low level of intensity in the respective image. Spatial 
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filtering process is used when just additive noise exists in the image. As salt and pepper, 

strip lines and blotches are unavoidable due to their existence increases with aging of 

electronic components, pictures or tapes, so these are used for denoising performance 

evaluation in this thesis. 

2.2 Denoising Methods 

There are diverse classes of filtering methods present in spatial domain filtering [43], 

[44]. These methods are powerful when the picture is corrupted by impulse noise. A 

median filter has a place in the class of nonlinear filters. The median filter (MF) 

additionally takes after the sliding the window guideline like the mean filter [45], [46]. 

The median is more powerful contrasted with the mean value. In this way, a removing 

the exceptionally less similar pixel from a region has no impact on the central value 

altogether.  

     Subsequently the median value be the approximation of one of the pixels in the area, 

so the median filter does not create new implausible pixel value when the filter overlaps 

an edge. Henceforth the median filter is extraordinarily enhanced to protect object edges 

other than the mean filter. These central values help median filters in denoising uniform 

noise from a digital image. The primary disadvantage of SMF (standard median filter)  

is that it is powerful just for low noise densities in the image [47]. At high noise 

densities, SMF frequently display requirement for large window sizes and deficient 

when noise ratio is high in image. Median filter containing the high denoising power 

for low noise levels and it has been one of the most popular filters. As its various 

advancements have been proposed in form of multistate median filter [48], such as 

median filter based on homogeneity information decision based trimmed median filters 

to improve its performance [11]. The method for removal of impulse noise from highly 

corrupted images [49]  was proposed to eliminate the noises from images where noise 

types are Gaussian and mixed noises. This method operates using a simple two-step 

method where it does switching between the output of an identity filter and a rank-

ordered mean (ROM) filter. It always try to get the tradeoff between noise suppression 

and image fine texture preservation.   It has low computational complexity as well.  

Simulation results show that it performs better in terms of noise suppression and 

preservation of fine details than other nonlinear filters with maximum 40% noise 
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density. The filter performs well on both grayscale and color images. The rank-ordered 

mean filter is another two-step method which performs noise detection and then 

filtering operation on the noisy pixels. This filter is adaptive where restoration is 

performed according to the current state of the noisy image.  It is defined by the output 

of an operator which calculates the differences between the current pixel and the other 

sorted pixels where the center pixel is under evaluation.   So, this method is s robust 

and simple but this does not preserve the image fine textures during restoration. The 

fuzzy filter based method [50] was proposed for enhancement of digital images 

corrupted  by impulse noises. This technique adopts a two-step fuzzy reasoning method 

where the first subunit is noise detection module which detects the noises by 

considering luminance differences among neighboring pixels.  The second subunit is 

restoration filter module which modifies the value of the corrected pixel to preserve the 

image fine textures.  This filter performs better  in terms of MSE than  the other 

mentioned  filter in [51]. A robust algorithm [52] was proposed for noise reduction  in 

color images where the noise types are impulse and Gaussian.  This filter has an added 

advantage that it can enhance the sharpness in the restored images. This operator is a 

smoothing one which is based on a random walk model and a fuzzy similarity measure 

between pixels connected by digital geodesic paths.  Experimental results of this filter 

show that it is useful for segmentation of digital images. To some extent, this is also 

useful for reducing the mixed impulse noises and Gaussian noises in the digital images. 

The technique suffers from high computational complexity. Evolutionary method  [53] 

was proposed for image enhancement and impulse noise reduction.  The method uses 

the genetic algorithm to find a filter set for reducing impulse noises in digital images. 

The salt-and-pepper noise is used to corrupt the digital images while the algorithm 

works to suppress the noise from Lena image. There are m number of filters available, 

the number of possible ordered subsets of n filters is ‘mn’. This technique finds the 

proper type and order of filters using genetic algorithm.   The operators of the genetic 

algorithm such as encoding, fitness evaluation, selection, cross over, mutation and 

elitism strategy are properly maintained in the algorithm to find the optimal solution. 

To find the filter which will be used for the all scenarios is difficult and time consuming 

to determine.  That is why the algorithm is not suitable for fast operations. Standard 

deviation was [54] used to devised an algorithm for restoring digital images which are 
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distorted by random valued noise especially at high noise density.   The detection 

method is performed by finding the optimum direction among the test window, by 

calculating the standard deviation in different directions in the filtering window.  

Results prove that the technique has superior performance, when compared to other 

existing methods, especially at high noise rates. An improved image denoising using 

wavelet transform method [55] was proposed which was using a dual step approach for 

denoising. In the first step it uses stationary wavelet based denoising and in continuation 

to second step, a spatial domain method, Non-local means, is used to remove the 

artifacts. This method works with standard method of noise detection and then removal 

of noise. Proposed technique concentrates on adequate selection of threshold to avoid 

reduction in noise pixel selection procedure and then use non local mean to fill the noise 

affected pixels. Now let’s discuss some of the most effective and commonly used 

algorithms for image denoising. 

Progressive Switching  Median is a  filter which works in two stages and it is a median 

based filter, [56]. Initially, an impulse detector is used to generate a sequence of binary    

window images.  This binary window image predicts the location of noise in the 

observed image. Then iteration-based procedure is utilized to remove the noise. Filter 

performance for random  value noise is very poor, but its performance is  very good  for 

fixed valued noises   [57].  

 The Center weighted median  (CWM) filter, which is a weighted median filter giving 

more weight just to the central values of every window [58]. This filter can save 

important details while removal of added noise from digital image. The factual 

properties of the CWM filter are examined. It is observed that the CWM filter can 

outperform the median filter. The median weight is typically required to be sure and 

odd for better execution [59]. CWM filter can maintain its performance with respect to 

different noises and artifacts.  

 

The image denoising techniques are required to remove the noise existing in the image. 

But these techniques are generally designed for grayscale images. To make these 

techniques compatible with color images an iterative mechanism is required to be 

produced which can pipeline the component (Red, Green and Blue image) of color 
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image. So, by breaking the color image into 3 components a grayscale algorithm can 

be made compatible with them. Let us consider an example grayscale images which are 

having single matrix containing pixel intensity value from 0 to 255, whereas if we break 

a color image into its three basic color components then one by one separately 

processing can be applied to them and these separate images can be combined to 

produce color image at  the end again. Now let’s discuss the algorithms considered for 

this comparative analysis. Let’s start with first one which is ROAD (Rank Ordered 

Absolute Difference) this method is quite efficient when image is affected by uniform 

noise[60]. This method is based on a window to detect the pixel affected by noise, so 

these detected pixels can be removed from image.  Let  s = (s1,s2) be the pixel position 

below the threshold value and Ωs(N) be the number of point in a (2N+1) × (2N+1) 

surrounding concentrated at s for creation of window.  

 

Ωs(N) = {𝑠 + (𝑖, 𝑗)    − 𝑁 ≤ 𝑖, 𝑗 ≤ 𝑁                           (2) 

  

Let us consider N=1. Hence Ωz denotes the set of points in a 3x3 identified surrounding 

of s. Given by expression (3) 

 

Ωz = Ωs (1)/{s}                                        (3) 

 

For every one point of y ϵ Ωz define 𝑑𝑥,𝑦 as the complete difference in strength of the 

pixel among s and y. Absolute difference is expressed by following expression (4) 

 

𝑑𝑥,𝑦 = |𝑢𝑠 − 𝑢𝑦|                   (4) 

 

Sort the 𝑑𝑥,𝑦 value in ascending order and describe the ROAD by following expression 

(5) 

 

𝑅𝑂𝐴𝐷𝑚(𝑠) = ∑ 𝑟𝑖(𝑠)𝑚
𝑖=1 1 < 𝑖 < 𝑚                         (5) 

 

Where 2 ≤ 𝑚 ≤ (2𝑁 + 1)2 − 1 and 𝑟𝑖(𝑠) is the smallest 𝑑𝑥,𝑦for y ϵ Ωz.  
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Let’s suppose value for N=1 and  m=4, ROAD offers similarity or  closeness with its 

neighbors which is  presented  in the form of  pixel intensity value to its 4 nearest 

neighbors in 3×3 window. Rationale under this process noisy pixel will have high 

intensity difference with other neighbor pixel values in comparison the original pixel 

values will have lower differences of intensity values. So, the ROAD value would be 

higher in places where uncontaminated pixel existing and these are part of original 

picture. Moreover, these pixels are going to have large portion of the neighboring pixel 

of similar intensity so ROAD value will be high. ROAD value can be utilized to 

recognize a pixel infused by noise affect, this can be achieved by setting a specific 

threshold value. For the image denoising the ROAD value is more prominent than the 

threshold value when the pixel is considered to be affected by noise. It is recommended 

to utilize a 3×3 window and m=4 for the noise level under 25% generally 5×5 window 

and m=12. In the Trimmed Global Mean (TGM) Filter calculation begins by the 

identification of noisy pixels. On the likelihood that the preparing pixels assume P (i, j) 

is in the vicinity of 0 and 1, at that point the pixel in uncorrupted and if in the same 

event  the range of  event that the P (i, j) is 0 or 1 then it is determined as noisy pixels. 

For noisy pixels, we choose a window of size N X N and eliminate every noise affected 

pixel with in the chosen window, to achieve the stated elimination, it becomes important 

to locate the median of the rest of the pixels and replace the noise affected pixels with 

the median value. In the event that they chose window contains whole pixels are noisy 

pixels at that point noisy pixel is supplanted by trimmed global mean. Trimmed global 

mean is calculated by avoiding the involvement of noisy pixels in the calculation of 

restoration stage. So combinedly ROAD TGM  is a two-phase calculation, in the 

primary stage the noisy pixels in the image applied for denoising is distinguished 

utilizing rank order absolute difference (ROAD) algorithm. In the subsequent phase, 

the degraded pixels are replaced by the median of the noiseless pixels in the chosen 

window. Trimmed global mean filter is utilized, if the chosen window comprises all of 

the pixels as noise affected pixels. Then TGM is calculated by eliminating the noise 

corrupted pixels from the window and mean of the uncorrupted pixels is obtained to 

replace the value with noisy pixel. In this manner, it doesn't take abundant handling 

time however still provides great outcomes for high noise density. The fundamental 
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points of interest of the ROAD TGM calculation are that it is anything but difficult to 

actualize in equipment and that it has low run time[8]. 

 

Decision Based Median Filter (DBMF) was proposed to deal with impulse noise (Salt 

and Pepper noise) as we already know this noise exists at two value 0 or 255. So, this 

algorithm checks the existence of noise from the beginning and identifies the noise 

locations and considers the values as original values if they exist between 1 and 254 

and then this filter uses median value to restore the original value. Drawback of this 

filter is when high level of noise in introduced in image then its effectiveness is reduced. 

 

Different Applied Median Filter (DAMF) [61] algorithm was developed to operate on a 

wide range of impulse noise. It can successfully denoise all range of impulse noise but its 

performance declines sharply as noise density becomes very high. Iterative median filter 

(IMF)[62] is using a fixed window base iterative mechanism for high-density impulse 

noise reduction. This is a very promising method and achieves the desired results. The 

use of a fixed window provides high speed operation of IMF algorithm but affects its 

accuracy when very high noise density is present in the window. Some other algorithms 

were also designed by using trimmed values to avoid noise effect on original value 

estimation. Adaptive unsymmetric trimmed shock filter (AUTSF)[63] is also a two-stage 

process for the detection and restoration of noisy image. This algorithm performs well on 

both color and grayscale images. Modified cascaded filter (MCF)[64] is a hybrid 

approach using trimmed median values to neglect the effect of noise on the restoration 

stage. This algorithm can operate well on color images affected by impulse noise. Fuzzy 

decision-based algorithms and supervised data-driven models were also developed to 

enhance the image denoising for impulse noise.  Adaptive Type-2 Fuzzy Filter (FDS, 

fuzzy denoising for Impulse noise)[65] this is also two-stage algorithms, where first stage 

operates to classify pixel as good or bad and second stage, uses the weighted mean value 

for the restoration of noisy value. Iterative scheme-inspired network (IIN)[66] denoises 

on the basis of training data, the accuracy of the algorithm depends on size and type of 

images in the dataset. The comparative analysis of recent state of the art methods for 

grayscale image denoising is presented in Table 2.1. The mean PSNR and mean SSIM 

value of IMF method is higher than other methods in comparison which confirms it 
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superior performance. So, to claim high performance the proposed method is required to 

surpass the performance of IMF for gray scale images. On the similar ground comparative 

analysis of recent state of the art methods for color image denoising is presented in Table 

2.2. The AUTSF methods has achieved the better mean PSNR value for color image 

denoising when tested for standard test image of Lena for the noise range of 10% to 90%.   

Table 2.1. Comparative analysis of recent state of the art methods for grayscale image 

denoising. 

 

 

Table 2.2. Comparative analysis of recent state of the art methods for color image 

denoising. 

 

2.3 Simulation Process and Evaluation Parameters  

In this area, we will discuss the parameters for evaluations and procedure of achieving 

our outcomes to demonstrate the picture reconstruction ability of the given algorithms. 

We simulated the algorithms in MATLAB and tried the execution on both 16 color 

images of USC South California miscellaneous dataset volume 3 [67] and 50 grayscale 

images of Brodatz texture dataset [68]. We included three types of image degradations 

that we had applied in the standard image data set for grayscale and color images of 

256*256 size. Both the color and gray scale pictures are affected by 10% to 80% of 

noise levels with the step size of 10% and for artifacts like stripes it is starting from 2-

Test Image 10% 20% 30% 40% 50% 60% 70% 80% 90% Mean

PSNR 41.40 37.25 34.49 31.67 28.99 26.54 23.95 21.39 18.30 29.33

SSIM 0.9894 0.9759 0.9573 0.9293 0.8858 0.8280 0.7441 0.6379 0.5020 0.83

PSNR 42.97 39.29 36.84 34.94 33.21 31.64 30.22 28.53 25.93 33.73

SSIM 0.9902 0.9788 0.9655 0.9494 0.9304 0.9064 0.8770 0.8370 0.7620 0.91

PSNR — 31.43 29.50 27.62 26.39 — — — — 28.74

SSIM — — — — — — — — — —

PSNR 43.48 40.18 37.05 35.40 33.98 32.49 31.23 29.70 27.42 34.55

SSIM 0.9913 0.9796 0.9675 0.9541 0.9383 0.9183 0.8953 0.8623 0.8058 0.92

PSNR 40.65 36.9 34.32 31.72 29.32 26.83 24.11 21.37 18.15 29.26

SSIM 0.9825 0.9627 0.9396 0.9079 0.8687 0.8110 0.7355 0.6360 0.5085 0.82

PSNR 41.52 37.89 35.67 33.95 32.55 31.31 29.79 28.28 25.87 32.98

SSIM 0.9815 0.9606 0.9389 0.9131 0.8866 0.8541 0.8180 0.7719 0.7049 0.87

PSNR — 27.23 26.21 24.82 23.98 — — — — 25.56

SSIM — — — — — — — — — —

PSNR 41.83 38.59 36.65 35.14 33.9 32.69 31.43 30.01 27.88 34.24

SSIM 0.9858 0.9684 0.9504 0.9299 0.9091 0.8846 0.8572 0.8219 0.7700 0.90

Peppers

FDS [65]

DAMF [61]

IIN [66]

IMF [62]

Noise level

Lena

FDS [65]

DAMF [61]

IIN [66]

IMF [62]

Test Image 10% 20% 30% 40% 50% 60% 70% 80% 90% Mean

AUTSF      

[63]
PSNR

41.51 38.12 35.91 34.20 32.60 31.05 29.22 27.38 24.29 32.70

MCF [64] PSNR
— — 38.95 36.55 34.20 31.42 26.41 21.34 8.46 28.19

Noise level

Lena
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pixel wide strips to 9-pixel wide stripes, blotches are started from 4-pixel square to 81-

pixel square for both artifacts we have 8 levels.  For the statistical evaluation of 

denoising algorithm we are using 3 parameters PSNR, SSIM, IEF. These parameters 

are applied to the denoised image to achieve statistical values for interpretation of 

comparative analysis. Peak signal to noise ratio (PSNR) [69] can be mathematically 

expressed by equation  (6). 

PSNR (dB) = 10 ∗ log10((225 × 255))/MSE)                     (6) 

Where MSE is a mean square error between the denoised image and original image 

[70] .MSE is expressed by given equation(7). 

 

MSE =
1

p X q
∑ (f(i, j) − g(i, j))2p,q

i,j=1                    (7) 

Where 1<i<p and 1<j<q  

The Structural Similarity Index (SSIM) is a perceptual metric that quantifies image 

quality degradation caused by processes  such as  data transmission and by data 

compression or we can say SSIM index is a way for analyzing  the perceived quality of 

digital cinematic pictures and television, as well as other kinds of videos and digital 

images [71].  It is a full reference metric that requires two images from the same image 

capture a reference image and a processed image. SSIM is given by equation (8). 

SSIM(x;  y)  =  [l(x;  y)]α[c(x;  y)]β[s(x;  y)]γ           (8)  

here α> 0, β> 0 and γ> 0 control the relative significance. 

 

  l(x;y)=
2µx µy+ c1

μ2
x+μ2

y+c1
               (9) 

 

 c(x;y)=
2σx σy+ c2

σ2
x+σ2

y+c2
                                                                   (10) 

 

 s(x;y)=
2σxy+ c3

σxσy+c3
                                                                                   (11) 
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Where the variables used in equation (9), (10) and (11) are explained as µx and µy 

represent the means of the original and coded images, respectively, σx and σy represent 

the standard deviations of each of the signals and σxyis the covariance of the two photos. 

[51]. 

Image enhancement factor (IEF) [72] is the ratio of mean square error before filtering 

to the mean square error after filtering. It is expressed by the equation (12). 

 

                𝐼𝐸𝐹 =
∑ 𝑛𝑖𝑗−𝑟𝑖𝑗𝑖𝑗

∑ 𝑥𝑖𝑗−𝑟𝑖𝑗𝑖𝑗
                                                                    (12)

 In equation (12) n is corrupted image, r is original image and x is restored image. 

 

2.4 Conclusion 

Due to the growing demand for devices with high image quality for both grayscale and 

color images, researchers are looking for solutions, which provide optimum results for 

each application. Image denoising algorithm provide this solution for salt & pepper 

noise for both grayscale and color images.  

This chapter addresses the challenges involved in designing of image denoising 

algorithm for grayscale and color image dataset. Designing an optimal image denoising 

algorithm with accurate detection stage to provide maximum performance in 

comparison with other existing image denoising algorithms is one of the major 

challenges in the implementation of image denoising. The second major task in process 

of image denoising is to achieve proximity of denoised pixel value to the original pixel 

value of respective location. Therefore, different algorithms for achieving the high 

denoising characteristics for the wide range of image dataset with their advantages and 

disadvantages have been discussed in this study. To evaluate and validate the 

performance of image denoising algorithm statistically parameters are required. So, to 

achieve this, various parameters and techniques have been taken into consideration, 

such as PSNR, SSIM and IEF.  
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Chapter 3 

Hybrid Denoising Algorithm for Both Grayscale 

and Color Images 

  

Image quality is greatly affected by noise. Noisy images lead to inaccurate results as 

well as to segmentation and enhancement errors, making denoising vital to efficient 

image processing. Existing denoising methods do not work effectively on both 

grayscale and color images. Thus, a novel hybrid denoising algorithm is proposed 

herein, which works well on both image types. The proposed two-stage method 

involves: (i) noisy pixel detection; and (ii) noisy pixel restoration. In the first stage, the 

hybrid algorithm detects the noisy pixel position; while in the second stage, the 

corrupted value of the noisy pixel is restored using a hybrid algorithm. The proposed 

algorithm was used to process a variety of grayscale and color images. Comparison of 

these results with those of five other denoising algorithms showed that the proposed 

hybrid denoising algorithm outperformed these existing ones. 

 

3.1 Introduction  

In the field of image processing, digital images are often affected by several kinds of 

noise. There are various reasons for noise in the digital world. Some of the most 

common reasons include transmission of images in a noisy channel, faulty memory 

locations in the hardware, and malfunctioning of pixels in the camera sensors during 

image acquisition. The resultant noise is known as impulse noise because it corrupts 

the image; it has peak high and peak low values of 255 and 0, respectively. The second 

most prominent distortion involved in image deterioration is artifacts. The impulse 

noise generated during image acquisition (related to camera sensor noise produced by 

high temperature or low light). It is important to remove such noise, before the image 

is analyzed. Otherwise, it can lead to misinterpretation. The process of restoring the 

corrupt image is known as image denoising. The effectiveness of the image denoising 

process depends upon the percentage of noise the algorithm can eliminate from the 
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corrupt image and how close the restored pixel value is to the original pixel value. When 

the image denoising algorithm is not effective, important details, like edges, will not be 

preserved. This makes image denoising a challenging task. Over the last few decades, 

researchers have worked to achieve an effective and accurate denoising algorithm that 

can retain the important details of images, while removing the noise. To measure the 

performance of a denoising algorithm, various quantitative parameters are available, 

including the peak signal to noise ratio (PSNR), mean square error (MSE), and 

structural similarity index (SSIM). Although images are affected by several types of 

noise, it is impulse noise which largely affects images. Therefore, researchers have 

focused on eliminating impulse noise, while ensuring that important details are retained 

in the image. Impulse noise in the field of digital image processing is more commonly 

referred to as Salt and Pepper noise. Most existing denoising algorithms remove the 

noise by reducing the intensity variations within each region of the image; this produces 

a blurred effect which reduces the image clarity and affects other aspects of image 

processing, like segmentation and edge detection. To achieve higher levels of 

performance in image processing, we need to preserve the integrity of the original pixel 

values. Herein, we outline a novel hybrid algorithm for denoising. Its performance is 

compared with several existing algorithms, including the Median Filter (MF), 

Progressive Switching Median Filter (PSMF), Center Weighted Median Filter 

(CWMF), Decision-Based Median Filter (DBMF) and Rank-Ordered Absolute 

Differences Trimmed Global Mean Filter (ROAD-TGM). A large dataset of grayscale 

and color images having different noise levels was used to evaluate the performances 

of all these algorithms. 

 

3.2 Related Work 

It is necessary to explore noise models and their effects to design a better mechanism 

to counter noise effects in digital images. Herein, we describe various types of noise 

models as well as existing denoising algorithms as background to this study. 
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3.2.1 Digital Image Noise 

Salt and Pepper noise (or impulse noise) is defined by unwanted black and white pixels. 

This noise occurs because of sudden and sharp changes in the digital signal during 

image acquisition. This noise has two defined levels (0 and 255) . The occurrence of 

these two values in the image is random. This noise primarily occurs at the time of 

image acquisition because of dust on the camera lens, faulty pixel components in the 

camera sensors and defective digital storage locations. Another prominent image 

impairments are strip lines and blotches these represent physical damage to surface of 

a image. These can also occur to an image digitally due to bulk damage of neighboring 

pixels generally due to overheating. These artifacts can be reparented mathematically 

by using equation 1. 

 

               M × N      (1) 

 

The strip line artifact can be represented by considering the M as width of line and N 

as length of line. If we consider the M=2 and N=10 then it will be considered as line 

have with of 2 pixels and length of 10 pixels. Similarly, for blotch artifacts the ratio of 

M and N will be proportionate as this artifact represent a block. In the case if M =5 and 

N = 5 then it will be considered as block or a patch representing artifact having width 

and length as 5 × 5 pixels. In this way by change values of M and N different size or 

patterns of strip lines and blotch artifacts can be represented in image. Typically for 

strip lines range of M=2 to M=9 and N=256 (total length of image). Blotch artifacts 

range is M=2 to M=9 and N=2 to N=9 in incremental eight steps. 

 

3.2.2 Image Denoising Algorithms 

A spatial filtering process is commonly used to remove the noise from affected images. 

Spatial domain filters use neighborhood operations on pixel intensity values for 

denoising the image. The various classes of spatial domain filtering methods are 

presented in the subsections. 
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A. Median Filter 

The MF belongs to the class of nonlinear filters. It performs denoising by replacing the 

noisy pixel value with the median of the neighboring pixels. The median filter denoising 

performance can be enhanced by using a moving window, as in the mean filter. In 

contrast, the mean filter performs denoising by replacing the noisy pixel value with the 

mean value of the neighboring pixels. The median filter is more effective than the mean 

filter because it considers the middle intensity values of the neighboring pixels and is 

less affected by outliers. In this way, removing the least similar pixel in a region will 

not drastically change the denoised image from the original image. Therefore, the 

median filter is better at protecting sharp edges in the image than the mean filter. Using 

middle values of the surrounding pixels also ensures that the median filter corrects 

distributed noise in digital images. The primary disadvantage of the median filter is that 

the algorithm is only powerful at low noise densities. At high noise densities, the 

median filter frequently needs a larger window size and may not retain the important 

details of an image. Median filters are most popular for processing low noise level 

images at high denoising power. To improve its performance at low to mid noise levels, 

various advancements have been proposed, including the multistate median filter and 

homogeneity information decision-based trimmed median filters. 

 

B. Progressive Switching Median Filter 

The PSMF is an enhanced version of the median filter. Initially, an impulse detector is 

used to generate a sequence of binary window images. The binary window image 

predicts the location of noise in the observed image. An iterative procedure is applied 

to remove image noise. The performance of this filter for random-valued noise is very 

poor, but its performance for fixed-valued noise is very good. 

 

C. Center Weighted Median Filter  

The CWMF gives more weight to the central values of every window in the median 

filter, allowing it to retain important details while removing noise from digital images. 
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The CWMF performs better than a simple median filter and maintains its performance 

at different noise levels. The median weight is crucial to its execution. 

 

D. Decision-Based Median Filter  

The DBMF is designed to process noise-affected images by identifying the existence 

of impulse noise among the pixels. Firstly, it scans for impulse noise-affected pixels by 

evaluated whether the selected pixel value lies in between the range of the maximum 

and minimum possible values. This is because impulse noise-affected pixels can only 

have minimum and maximum values, i.e., 255 or 0. If the pixel value under evaluation 

is within the range of 1 to 254, then it is defined as a non-noisy pixel and no further 

processing is performed. While if the value of the pixel under evaluation does not fall 

within this range, then it is defined as a noisy pixel and is changed to the median value 

of the pixel values present within a selected window. When high density noise is 

present, it causes the calculated median value to be corrupted. In such cases, the 

neighborhood pixel value is used to replace the noisy pixel value. This generates a 

higher correlation between neighborhood pixels and noisy pixels that leads to better 

preservation of edges. The DBMF performs its operation within a fixed length window 

of pixel size 3×3, which markedly reduces its processing time compared with other 

filters. The main disadvantage of the DBMF algorithm is the occurrence of streaking, 

which occurs when the image is affected by high density noise. In this case, the noisy 

pixel is replaced by a neighborhood pixel value which is also noisy. Hence, this method 

is unable to recover details of edges satisfactorily under high noise densities. 

 

E. Rank-Ordered Absolute Differences Trimmed Global Mean Filter  

The ROAD-TGM is an algorithm which uses a trimmed global mean filter with rank-

ordered absolute differences to filter scratches, random impulse noise, blotches and 

stripes. It involves two-stages of processing. In the first stage, the noisy pixels are 

identified using ROAD. In the second stage, the noisy pixels are changed to the median 

of the non-noisy pixels within a selected window. The TGM filter is used when the 

selected window contains only corrupted pixels. The algorithm uses a window of fixed 
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size in both filtering and detection stages. Its denoising performance is better than other 

existing algorithm, when restoring images affected by random-valued impulse noise. 

The ROAD-TGM algorithm also produces good noise filtering, when images are 

corrupted by the high levels of impulse noise. 

 

3.3 Description of the Datasets 

The datasets used herein consist of 50 grayscale images from the Brodatz texture dataset 

(Fig. 3.1) and 16 color images from the University of South California miscellaneous 

dataset volume 3 (Fig. 3.2). All simulations were carried out in MATLAB (MathWorks, 

Natick, MA, USA).  

To establish the robustness of our proposed algorithm, two image degradations types 

(Salt and Pepper as well as artifacts) were added to images at varying levels (Fig. 3.3). 

Firstly, 10% noise was added, then 20% noise was added, with additional increments 

of 10% noise up to a noise level of 80% of the total pixels. Similarly, eight levels of 

artifacts are produced for straplines and blotch. Noise-affected data in both grayscale 

and color images were denoised using six different algorithms, i.e., the proposed 

algorithm, ROAD-TGM, DBMF, CWMF, PSMF and MF. By multiplying the grayscale 

image dataset (GD), total number of noise levels (NL), total number of algorithms (NA) 

and total number of parameters (NP) with each other, the total number of results for the 

GD (TRG) produced in our comparison of the proposed algorithm with existing 

algorithms could be calculated, i.e., 50(GD)*8(NL)*6(NA)*3(NP) = 7200 (TRG). 

Similarly, in the case of the color image dataset (CD), the total number of results for 

the CD (TRC) could be calculated, using 16(CD)*8(NL)*6(NA)*3(NP) = 2304 (TRC). 

Comparisons of the proposed algorithm with the five other existing algorithms are made 

using box plots. Values contained in each box were calculated by multiplying the GD, 

NL, selected algorithm for the box plot (SD) and the selected parameter for the box plot 

(SP), i.e., 50(GD)*8(NL)*1(SA)*1(SP) = 400 (GBP; total values in the box plots for 

the GD). Similarly, the total number of values in the box plots for the CD (CBP) was 

given by 16 (CD)*8(NL)*1(SA)*1(SP) = 128. Our methodology is shown 

schematically in Fig. 3.3. 
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Figure 3.1. Brodatz texture dataset of grayscale images[68] 

 

Figure 3.2. University of South California miscellaneous dataset of color images[73] 
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Figure 3.3. Flow chart showing the methodology used in this study. NB: Median Filter 

(MF), Progressive Switching Median Filter (PSMF), Center Weighted Median 

Filter (CWMF), Decision-Based Median Filter (DBMF) and Rank-Ordered 

Absolute Differences Trimmed Global Mean Filter (ROAD-TGM), Peak 

Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM), Grayscale 

image dataset (GD), Total number of noise levels (NL), Total number of algorithms 

(NA), Total number of parameters (NP), Total number of results for the GD (TRG), 

color image dataset (CD), Total number of results for the CD (TRC), selected algorithm 

for the box plot (SD) and the selected parameter for the box plot (SP). 
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3.4 Statistical Parameters 

To evaluate the performance of the various denoising algorithms, both PSNR and SSIM 

values were used: 

(a) Peak signal to noise ratio and image enhancement factor  

The PSNR [29] can be mathematically expressed as: 

PSNR (dB) = 10 ∗ log10((225 × 255))/MSE) ,     (2) 

where MSE is the mean square error between the denoised image and original image . 

The MSE is given by: 

MSE =
1

𝑀𝑁
∑ ∑ [f(x, y) − g(x, y)]2𝑁

x=1
𝑀
𝑦=1 ,      (3) 

where N and M are the dimensions of the images; f(x, y) is the original image and 

g(x, y) is the approximated image. IEF is ratio of mean square error before filtering to 

the mean square error after filtering. 

 

(b) Structural Similarity Index  

The SSIM is a metric that quantifies image quality degradation caused by processes, 

such as data transmission and data compression. The SSIM is used to analyze the 

perceived quality of digital stored or real time image as well as other kinds of videos 

and digital images. It is a full reference metric that requires two images for its 

calculation. The first image is the original image, which is used as the reference image; 

while the second image is the processed image. The SSIM measures luminance (l), 

contrast (c) and structure (s) of images x and y, giving: 

 

   SSIM(x;  y)  =  [l(x;  y)]α[c(x;  y)]β[s(x;  y)]γ,  (4) 

here α, β and γ are the weights, set to α> 0, β> 0 and γ> 0, to control the relative 

importance of l, c and s, defined in Eq. (5)–(7) below. 

 

l(x;y) = 
2µxµy+ c1

μ2
x+μ2

y+c1
,      (5) 
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c(x;y) = 
2σxσy+ c2

σ2
x+σ2

y+c2
,      (6) 

s(x;y) = 
2σxy+ c3

σxσy+c3
,      (7) 

where the variables µx and µy in Eq. (5) represent the means of the original and 

denoised images x and y, respectively. The variables σx and σy represent the standard 

deviations, while σ2
x  and  σ2

y are the variances of images x and y, respectively. The 

variable σxy is the covariance of these images. 

In situations where the denominator is close to zero, the constants C1, C2 and C3 are 

introduced. For an 8-bit grayscale image composed of L = 256 gray levels, where L is 

the dynamic range of the pixel values; C1 =(𝑘1𝐿)2, C2 = (𝑘2𝐿)2 and C3 = C2/2, where 

𝑘1 and  𝑘2  are constants and their default values are 𝑘1 = 0.01 and 𝑘2= 0.03. When C1 

= C2 = 0, the metric is reduced to the universal quality index. 

3.5 Algorithm Selection for the Hybrid Model 

The proposed algorithm is hybrid in nature, representing a combination of two existing 

algorithms. It is important to mention that the proposed algorithm incorporates the 

advantages of both existing algorithms, yielding better results. The steps involved in 

selecting algorithms for the proposed method were as follows: 

Step 1: Consider the most prevalent existing denoising algorithms, i.e., ROAD-TGM,   

DBMF, CWMF, PSMF and MF 

Step 2: Select noise type (Salt and Pepper noise) and set the initial noise level at 10% 

Step 3: Add noise (10%) to all grayscale images of the dataset 

Step 4: Apply existing denoising algorithms for denoising these noisy images 

Step 5: Calculate the PSNR, SSIM and IEF values for all denoised images for each 

respective algorithm 

Step 6: Increase the noise level to 20% in Step 2 and repeat Step 3 to Step 5; keep 

incrementing the noise and repeating Step 6 until it reaches a level of 80% 
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Step 7: Calculate PSNR, SSIM and IEF values for all images for all noise levels 

Step 8: Repeat Step 2 but change the impairment type to Artifacts 

Step 9: Repeat Step 3 to Step 7 for Artifacts noise-affected images 

Step 10: Compare all denoising algorithms for each noise type (Salt and Pepper as 

well as Artifacts) and for all noise levels (10%–80%) using PSNR, SSIM and IEF 

values 

Step 11: Rank the existing denoising algorithms based on their PSNR, SSIM and IEF 

values 

Step 12: Select the two top-performing denoising algorithms for inclusion in the 

proposed algorithm. 

Clearly, all the above-mentioned steps also must be implemented for color images 

because the two top-ranked algorithms may be different for grayscale and color images. 

Based on our results for grayscale images, the ROAD-TGM and DBMF were the two 

top-performing algorithms, while ROAD-TGM and CWMF were the two top-

performing algorithms for color images. These algorithm pairs were selected for the 

proposed hybrid algorithm for grayscale and color images. Once the two best 

performing algorithms were selected, the next step was to integrate these algorithms 

into the proposed method. The proposed hybrid scheme performs the denoising 

operation in two stages, involving (i) noisy pixel detection; and (ii) noisy pixel 

restoration, as outlined below. 

 

I. Noisy pixel detection:  

The first stage of the proposed method was to detect noisy pixels. As outlined above, 

noise was added to all images (grayscale and color) in incremental steps from 10% up 

to 80%. The proposed algorithm was applied to all noisy images. To understand the 

proposed algorithm process in detail, we firstly describe how to denoise grayscale 

images. The detection of noisy pixels in grayscale images is shown in the flow chart in 

Fig. 3.4. 
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Figure 3.4. Flow chart of the proposed hybrid model. NB: Decision-Based Median 

Filter (DBMF) and Rank-Ordered Absolute Differences Trimmed Global 

Mean Filter (ROAD-TGM) and resultant matrix (IR). 
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As shown in Fig. 3.4, the noisy grayscale image was input into ROAD-TGM and 

DBMF, being the two top-ranked denoising algorithms selected for our hybrid 

algorithm. Output matrices of these two denoising algorithms (ROAD-TGM and 

DBMF) were ID1 and ID2, respectively. It is obvious that the values of pixels, which 

were non-corrupted in the original matrix (after mixing noise) remained unchanged in 

both ID1 and ID2. Meanwhile, the values of all corrupted pixel were changed in ID1 

and ID2, with both denoising algorithms giving different denoised values of the 

corrupted pixels. The two matrices ID1 and ID2 were subtracted to get the resultant 

matrix ‘IR’. In the matrix IR, if the value of a pixel is zero, this means that the pixel 

was not corrupted, and has the same value in ID1 and ID2. But any corrupted pixel in 

matrix IR will not be zero, as its corresponding values in ID1 and ID2 will not be the 

same. Therefore, the non-zero values in matrix IR identify noisy pixels. In this way, we 

can identify the positions of all noisy pixels in the images. An example of this process 

is outlined below. 

 

(a) 

   

          (b)        (c) 

 

172 163 168 

168 158 164 

160 165 152 

 
172 0 168 

168 158 255 

160 0 152 

 

172 0 168 

168 158 162 

160 162 152 
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       (d)        (e) 

         

         (f)        (g) 

       

         (h)        (i) 

Figure 3.5. (a) Original matrix, (b) Matrix corrupted by Salt and Pepper noise 

(highlighted pixels are corrupted by noise), (c) Matrix ID1 restored by ROAD-TGM 

from (b), (d) Matrix ID2 restored by DBMF from (b), (e)Resultant matrix IR (IR = 

ID1−ID2, for Salt and Pepper noise), (f) Matrix corrupted by non-extreme noise, (g) 

Matrix ID1 restored by ROAD-TGM from (f), (h) Matrix ID2 restored by DBMF from 

(f), (i) Resultant matrix IR (non-extreme). NB: DBMF, Decision-Based Median 

Filter; and ROAD-TGM, Rank-Ordered Absolute Differences Trimmed 

Global Mean Filter. 

 

172 166 168 

168 158 255 

160 170 152 

 

0 -166 0 

0 0 -93 

0 -8 0 

 
172 143 168 

168 158 235 

160 165 152 

 
172 166 168 

168 158 167 

160 165 152 

 

172 158 168 

168 158 235 

160 165 152 
 

0 8 0 

0 0 -68 

0 0 0 
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As shown in Fig. 3.5(a), a 3×3 matrix is the original matrix. This original matrix was 

corrupted with Salt and Pepper noise, as shown in Fig. 3.5(b). Noise-affected areas are 

highlighted in each subsequent matrix. The noisy matrix was then denoised by the two 

top-ranked algorithms, i.e., the ROAD-TGM and DBMF (NB: the proposed hybrid 

algorithm does not have any prior information about noise locations). Both the denoised 

matrices of ROAD-TGM (ID1) and DBMF (ID2) were subtracted to produce the 

resultant matrix (IR = ID1−ID2). Its zero-valued pixels indicate non-corrupted pixels, 

while its non-zero values indicate the location of noise-affected pixels. Hence, noise-

affected areas in the 3×3 resultant matrix are given by IR(1,2), IR(2,3) and IR(3,2) in 

the case of Salt and Pepper noise. Similarly, in the case of non-extreme noise, the noise-

affected areas are IR(1,2) and IR(2,3) (Fig. 3.5(i)). In this way, we were able to detect 

noisy pixels.  

 

II. Noisy Pixel Restoration:  

Once a noisy pixel is detected the next stage is restoration of the value of the noisy 

pixel, which should be as close as possible to the original value of the pixel (prior to 

the corruption). To illustrate this stage, we present two cases, detailing the process for 

Salt and Pepper and non-extreme noise-affected images. 

Case 1: This case involved restoration of pixel values corrupted by Salt and Pepper 

noise. In the IR for Salt and Pepper noise (Fig. 3.5(e)), there are three corrupt pixels. 

We can compare the corresponding pixel positions of these corrupted pixels in matrices 

ID1 and ID2 for the Salt and Pepper noise case (Fig. 3.5(c) and (d), respectively). To 

show the process of noisy pixel restoration in the case of the Salt and Pepper noise, we 

explore the following two scenarios: 

1. If only one of the two top-ranked algorithms (ROAD-TGM and DBMF) is able 

to detect and denoise the Salt and Pepper noise, then under such conditions, only  
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Figure 3.6. Denoised matrix (IH) restored using the proposed hybrid algorithm on Salt 

and Pepper noise. NB: ID1, matrix for image denoised by Rank-Ordered Absolute 

Differences Trimmed Global Mean Filter (ROAD-TGM); and ID2, matrix for 

image denoised by Decision-Based Median Filter (DBMF). 

the value of the denoised pixel is used by the proposed algorithm to produce 

denoised matrix IH. In the example shown in Fig. 3.6, when the value of 

ID1(1,2) is equivalent to zero, it means the ROAD-TGM failed to detect the 

noise at this location. At this same location, the ID2 derived from the DBMF 

algorithm successfully denoised the pixel, shown as ID2(1,2) and revalued it as 

166. Therefore, the proposed algorithm selects the value denoised by the DBMF 

algorithm (i.e., 166) for the denoised matrix, i.e., IH (1,2) = 166. Similarly, at 

pixel location ID1(2,3), the ROAD-TGM successfully denoised this pixel, 

replacing the noisy value (255) with a computed pixel value (162), while the 
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DBMF failed to detect noise at this location, yielding ID2(2,3) = 255. In this 

case, the proposed algorithm denoised the pixel location by using the denoised 

value of ROAD-TGM, i.e., ID1(2,3) = 162. 

 

 

Figure 3.7. Denoised matrix (IH) restored by the proposed algorithm following non 

extreme noise addition. NB: ID1, matrix for image denoised by Rank-Ordered 

Absolute Differences Trimmed Global Mean Filter (ROAD-TGM); and 

ID2, matrix for image denoised by Decision-Based Median Filter (DBMF). 

2. If both the algorithms (ROAD-TGM and DBMF) are able to detect and 

denoise the Salt and Pepper noise successfully, but the values restored by both 

algorithms after denoising are different because of their different correction 

functions, then the proposed algorithm replaces the noisy pixel with an average 

of the values computed by both ROAD-TGM and DBMF algorithms. In the 

example shown in Fig. 3.6, ID1(3,2) = 162 and ID2(3,2) = 170 are the two 
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different values restored by algorithms ROAD-TGM and DBMF, respectively. 

To denoise the Salt and Pepper noise, the proposed algorithm replaces the noisy 

pixel location in the final denoised matrix IH with an average value of both 

algorithm results, i.e., IH (3,2) = (162+170)/2. 

 

Case 2: This case involved restoration of pixels affected by non-extreme noise (1 to 

254), as highlighted in Fig. 3.5(f). The denoised matrix (IH) computed by the proposed 

hybrid algorithm for this case is shown in Fig. 3.7. In matrix IR for the non-extreme 

noise case (Fig. 3.5(i)), there are two noise-affected pixels: IR (1,2) and IR (2,3). 

Herein, we consider the denoising process of the proposed algorithm for non-extreme 

noise under two scenarios: 

 

1. If only one of the top two-ranked algorithms (ROAD-TGM and DBMF) is able 

to detect and correct a pixel corrupted by non-extreme noise, then under these 

conditions the proposed algorithm restores the values in the final matrix IH by 

using the successfully denoised value of the respective algorithm. In the 

example shown in Fig. 3.7, values of the denoised matrix ID1(2,3) and ID2(2,3) 

produced by ROAD-TGM and DBMF algorithm are different. In this case, the 

proposed algorithm first subtracts the denoised values of both algorithms to 

calculate the difference(diff)value, i.e., diff = mod(ID1(2,3)−ID2(2,3)). If the 

calculated difference value is greater than or equivalent to 20, this means one of 

the algorithms failed to detect the non-extreme noise. To identify the 

successfully denoised pixel value, the proposed algorithm considers the 

immediate neighbors (ID1 (1,3) = 168, ID1(2,2) = 158 and ID2(2,3) = 152, 

which are close to ID1(2,3), and calculates a neighborhood mean, i.e., 

(168+158+152)/3 = 159.33 (using only non-corrupted neighboring values). The 

proposed algorithm replaces the noisy pixel in the final matrix IH with ID1(2,3) 

as the accepted denoised pixel value, while ID2(2,3) is ignored. 
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       (aa)               (ab)               (ac)         (ad)    (ae)             (af)                (ag) 

 

       (ba)               (bb)               (bc)         (bd)    (be)             (bf)                (bg) 

 

       (da)               (db)               (dc)         (dd)    (de)             (df)                (dg) 

 

      (ea)               (eb)               (ec)         (ed)    (ee)             (ef)                (eg) 
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       (fa)               (fb)               (fc)         (fd)    (fe)             (ff)                (fg) 

 

       (ga)               (gb)               (gc)         (gd)    (ge)             (gf)                (gg) 

 

        (ha)               (hb)               (hc)         (hd)    (he)             (hf)                (hg) 

Figure 3.8. (aa–ha) Texture image corrupted by 10%–80% Salt and Pepper noise, (ab–

hb) Image restored using proposed hybrid technique from (aa–ha), (ac–hc) Image 

restored using the ROAD-TGM from (aa–ha), (ad–hd) Image restored using the DBMF 

from (aa–ha), (ae–he) Image restored using the CWMF from (aa–ha), (af–hf) Image 

restored using the PSMF from (aa–ha), (ag–hg) Image restored using the MF from (aa–

ha). NB: ROAD-TGM, Rank-Ordered Absolute Differences Trimmed Global 

Mean Filter; CWMF, Center Weighted Median Filter; DBMF, Decision-Based 

Median Filter; PSMF, Progressive Switching Median Filter; and MF, Median filter. 

2. If ROAD-TGM and DBMF are able to detect and denoise the non-extreme noise 

successfully, but the values restored by both algorithms are different because of the 
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different functions used by each algorithm, then the proposed algorithm replaces 

the noisy pixel with an average computed from both ROAD-TGM and DBMF 

values. In Fig. 3.7, the two algorithms produced respective values of ID1(1,2) = 166 

and ID2(1,2) = 158. The proposed algorithm computes the difference value 

(‘diff’value = 8). If the difference value is less than 20, this means that both 

algorithms detected and denoised the non-extreme noise successfully. Therefore, in 

the matrix IH, the proposed algorithm replaces the noisy pixel with the mean value, 

(166+158)/2 = 162. 

Similarly, a hybrid model was prepared for color images, wherein the combination of 

ROAD-TGM and CWMF algorithms was used in the proposed hybrid algorithm. Same 

process for grayscale and color images can be repeated for strip lines  and botch 

artifacts. 

 

3.6 Results and Discussion 

This section discusses the evaluation of the proposed hybrid method and those of 

existing algorithms. As discussed earlier, for each image, different noise types were 

incrementally added from 10% noise level to 80% noise level, forming sequences of 

increasingly corrupted images having either salt and pepper or artifacts types. A 

comparative analysis of the proposed algorithm with existing denoising algorithms on 

images corrupted by 10% to 80% Salt and Pepper noise is shown in Fig. 3.9–3.10. The  

PSNR, SSIM and IEF values were used to evaluate the performance of the proposed 

and existing algorithms on all grayscale images and color images. The PSNR, SSIM 

and IEF values for each image and for each noise level were calculated for the denoised 

image produced by both the proposed and existing algorithms; these are shown in box 

plots and table for all noise levels and for all images. The results prove that the hybrid 

model was better than all other algorithms, producing better PSNR, SSIM and IEF 

values in all cases. Typically, the overall mean PSNR value of the proposed hybrid 

model was 22.56, which has higher than values for all other models: ROAD-TGM 

(PSNR = 19.82), DBMF (PSNR = 18.02), CWMF (PSNR = 15.99), PSMF (PSNR = 

15.45), and MF (PSNR = 15.18) (Fig. 3.9). The box plots also show that the proposed 
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hybrid model outperformed all other algorithms in terms of the SSIM parameter. The 

mean SSIM value of the proposed hybrid model was 0.68, which was higher than values 

for all other models: ROAD-TGM (SSIM = 0.64), DBMF (SSIM = 0.55), CWMF 

(SSIM = 0.38), PSMF (SSIM = 0.44) and MF (SSIM = 0.41). Similarly, IEF values of 

proposed hybrid model was 44.76 which is much higher than other algorithms.  The 

results of various denoising techniques on images corrupted by artifacts and noise are 

shown in Table 3.1 for grayscale images. Again, the performance of the proposed 

hybrid model was better than all other algorithms in terms of denoising the artifacts, 

producing better PSNR, SSIM and IEF values in all cases. The mean PSNR, mean 

SSIM and mean IEF values of the proposed hybrid model for strip lines were 24.46, 

0.091, 16.82 and for blotch artifact values were 45.06, 0.99, 19.76 respectively.  These 

were higher than those of all other algorithms. The Table 3.1 clearly demonstrate the 

superiority of the proposed hybrid model compared to other existing algorithms. Our 

comparative analysis of denoising algorithms on color images affected by Salt and 

Pepper noise and artifacts are shown in Fig. 3.10 and Table 3.2, respectively. In the 

case of impulse noise, the proposed hybrid model produced a PSNR value of 25.83, 

SSIM value of 0.76 and 72.23, which were higher than those of ROAD-TGM, DBMF, 

CWMF, PSMF, and MF algorithms. In the case of artifacts, the proposed algorithm 

outperformed the other existing algorithms, for blotch artifact the mean PSNR value of 

40.91, SSIM value of 0.996 and IEF value of 26.12. similarly, for strip lines artifact 

values are 40.91, 0.96 and 51.45 as shown in Table 3.2. 

 

      (a) 
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      (b) 

 

 (c) 

Figure 3.9. Comparative analysis of algorithms for 10% to 80% Salt and Pepper noise-

affected grayscale image (a) Peak signal to noise ratio (PSNR); (b) Structural Similarity 

Index (SSIM); (C) Image Enhancement Factor (IEF). NB: ROAD-TGM, Rank-

Ordered Absolute Differences Trimmed Global Mean Filter; CWMF, Center 

Weighted Median Filter; DBMF, Decision-Based Median Filter; PSMF, 

Progressive Switching Median Filter; and MF, Median filter. 
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Table 3.1. Comparative analysis of proposed hybrid algorithm with existing algorithms 

for grayscale images. 

 

 

 

      (a) 

 

Mean PSNR 22.568 19.825 18.002 15.966 15.456 15.181

Mean SSIM 0.686 0.640 0.551 0.383 0.444 0.419

Mean IEF 44.769 17.960 9.158 7.007 5.736 4.818

Mean PSNR 45.060 44.214 36.299 19.442 22.636 22.713

Mean SSIM 0.999 0.998 0.997 0.525 0.765 0.770

Mean IEF 19.768 14.447 1.643 0.068 0.128 0.130

Mean PSNR 24.464 23.723 15.533 13.235 13.706 13.719

Mean SSIM 0.910 0.875 0.784 0.394 0.578 0.582

Mean IEF 16.829 10.688 1.278 0.781 0.841 0.844

Grayscale 

dataset 

50 

images

Salt and Pepper                               

(10%-80%)

Blotchs                   

(2x2 - 9x9)

Strip lines                  

(2 - 9)

Proposed Hybrid ROAD-TGM DBMF CWMF PSMF MF
Image 

type
Noise type Parameter
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      (b) 

 

 

              (c) 

Figure 3.10. Comparative analysis of algorithms for Salt and pepper noise-affected 

color image (a) Peak signal to noise ratio (PSNR); (b) Structural Similarity Index 

(SSIM); (C) Image Enhancement Factor (IEF). NB: ROAD-TGM, Rank-Ordered 

Absolute Differences Trimmed Global Mean Filter; CWMF, Center Weighted 

Median Filter; DBMF, Decision-Based Median Filter; PSMF, Progressive 

Switching Median Filter; and MF, Median filter. 
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Table 3.2. Comparative analysis of proposed hybrid algorithm with existing algorithms 

for color images. 

 

 

 

3.7 Conclusion 

In this chapter, a novel hybrid denoising algorithm was built from the two best 

performing algorithms for grayscale and color images, based on a comparative analysis 

of ROAD-TGM, DBMF, CWMF, PSMF and MF. The hybrid algorithm selected 

ROAD-TGM and DBMF for grayscale images; and ROAD-TGM and CWMF for color 

images for (i) noisy pixel detection; and (ii) noisy pixel restoration. In the first 

processing stage, the hybrid algorithm detected the noisy pixel position, while in the 

second stage, the original value of the detected noisy pixel was restored using values of 

both inbuilt algorithms. To evaluate the performance of our proposed hybrid algorithm, 

different levels of noise from 10% to 80% were added to both grayscale and color 

images, and their PSNR, SSIM and IEF values were calculated after denoising. The 

PSNR, SSIM and IEF values indicated that the proposed denoising algorithm 

outperformed all five other algorithms tested. 
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Chapter 4 

Spatially Adaptive Image Denoising Via Enhanced 

Noise Detection Method for Grayscale and Color 

Images 

  

Keeping in view the variety of the applications, image denoising still remains the 

unexplored territory for the researchers. There are many pros and cons in existing 

denoising algorithms. The two prime cons of image denoising algorithms are (i) Over 

and under detection of noisy pixels (ii) Low performance at high noise levels. So, in 

order to overcome these existing issues, a spatially adaptive image denoising via 

enhanced noise detection method (SAID-END) is proposed for grayscale and color 

images. The denoising is achieved using a two-stage sequential algorithm, the first stage 

ensures accurate noise estimation by eliminating over and under detection of noisy 

pixels. The second stage performs image restoration by considering non-noisy pixels in 

estimation of the original pixel value. To enhance the accuracy while denoising high-

density impulse noise and artifacts, both noise estimation and restoration stages are 

using a spatially adaptive window (window expands to spatially connected area), the 

size of the window depends upon the noise level in the vicinity of the reference noisy 

pixel. The two stages of the proposed method are referred to as (i) Enhanced adaptive 

noise detection (ii) Non-corrupted pixel sensitive adaptive image restoration. The 

proposed method is evaluated by two test steps to ensure its versatility and robustness. 

In the first step, the proposed method is tested on a wide standard data set of color and 

grayscale images affected by impulse noise and artifacts. The results of proposed 

method are compared with well-known methods compatible for denoising impulse 

noise and artifacts. In the second step, the results of proposed method are compared 

with the recent state of the art algorithms for traditional test images. The result shows 

that the proposed method outperforms the existing denoising methods when applied to 

grayscale and color images. 
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4.1 Introduction 

Various applications like recognition, edge detection, medical imaging and satellite 

imaging require high-quality noise free images. So, it is a necessity to denoise the images 

as preprocessing to such applications. It is important to retain information such as edges, 

texture and structure details while performing the image denoising. Specifically, edges 

are extremely important in the biomedical field analysis like forensic examination and 

hairline cracks in bones. Noise and artifacts are two major contributors in image quality 

deterioration. In digital images, salt & pepper noise deteriorate the image quality by 

introducing extreme values 0 and 255[39]. The artifacts represent deterioration of image 

quality due to spots and scratches.  

 

Median filter (MF)[74], [75] is one of the most popular standard non-linear filter to 

remove impulse noise.  This filter performs well for low level of noise but the 

performance of filter reduces drastically as noise level increases. Modified forms of MF 

are commonly used and preferred for image denoising till date. Decision Based Median 

Filter (DBMF), Center Weighted Median Filter (CWMF), Progressive Switching Median 

Filter (PSMF), Different Applied Median Filter (DAMF), and Iterative Mean Filter (IMF) 

are some examples of methods modified from MF. DBMF [8], [76], [77] is an effective 

method for denoising low and mid noise density affected images. This method introduces 

blurring and artifacts at high noise levels. The CWMF [58], [78] algorithm provides better 

proximity to original values by providing more weight to center values of the window. 

This method achieves better visual performance but as more values get corrupted in the 

selected window due to high noise density, its performance dilutes. PSMF[11], [56], [61] 

is a two-stage cascaded process, first noise is detected and then restored iteratively. Pixel 

values of the current iteration are considered for calculation of pixel value in the next 

iteration. This method can denoise impulse noise and low level of blotches. DAMF[61] 

algorithm was developed to operate on a wide range of impulse noise. It can successfully 

denoise all range of impulse noise but its performance declines sharply as noise density 

becomes very high. IMF[62] is using a fixed window base iterative mechanism for high-

density impulse noise reduction. This is a very promising method and achieves the 

desired results. The use of a fixed window provides high speed operation of  IMF 
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algorithm but affects its accuracy when very high noise density is present in the window. 

Some other algorithms were also designed by using trimmed values to avoid noise effect 

on original value estimation. Rank Ordered Absolute Differences with Trimmed Global 

Mean filter (ROAD-TGM)[8] is a window base two-stage algorithm, where the first stage 

focus on noise detection and the second stage ensures the desired restoration. This 

algorithm uses TGM when all values of the selected window are noisy. Similarly, 

adaptive unsymmetric trimmed shock filter (AUTSF)[63] is also a two-stage process for 

the detection and restoration of noisy image. This algorithm performs well on both color 

and grayscale images. Modified cascaded filter (MCF)[64] is a hybrid approach using 

trimmed median values to neglect the effect of noise on the restoration stage. This 

algorithm can operate well on color images affected by impulse noise. Fuzzy decision-

based algorithms and supervised data-driven models were also developed to enhance the 

image denoising for impulse noise.  Adaptive Type-2 Fuzzy Filter (FDS, fuzzy denoising 

for Impulse noise)[65] this is also two-stage algorithm, where first stage operates to 

classify pixel as good or bad and second stage, uses the weighted mean value for the 

restoration of noisy value. Iterative scheme-inspired network (IIN)[66] denoises on the 

basis of training data, the accuracy of the algorithm depends on size and type of images 

in the dataset.  

 

As discussed above various algorithms are available to denoise the noisy image, these 

algorithms work mainly on two-stage procedure (i) Detection of noisy pixel and (ii) 

Restoration of the noisy pixel. The success of such algorithms depends upon the 

individual performance of these respective stages[3], [79]–[82]. For the detection stage, 

the performance of the algorithm depends upon how accurately locations of corrupted 

pixels are detected. Detecting corrupted pixels locations in the presence of noise is a very 

challenging task that causes false detection once the noise level increases to a certain 

level. This leads to the problem of under and overdetection of noisy pixels. Similarly, for 

noisy pixels, restoration stage performance depends upon how close the algorithm 

restores the corrupted pixel value to the original value. As noise level increases in the 

image more of the neighboring pixels tend to get corrupted and it is very difficult to 

restore the desired values of the pixel[51], [83]–[85]. Therefore, in order to overcome the 

problem of over/under detection and to restore the value of corrupted pixels close to the 
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original values, the SAID-END method is proposed. The proposed method works 

exceedingly well in high noise scenarios for both grayscale and color images. 

 

The main contributions of this chapter are as follows 

1. We propose an enhanced adaptive noise detection algorithm to overcome the problem 

of over/under noise detection. The proposed method confirms the noisy pixel by using 

systematic thresholding and similarity index formulation. 

2. We propose a non-corrupted pixel sensitive adaptive image restoration to increase the 

accuracy of the image restoration stage. This stage excludes the noisy values from 

contributing to original value estimation and it ensures the maximum number of noise-

free pixels in the selected window. This process uses a spatially adaptive window with 

maximum non-corrupted pixel ratio criteria. 

 

In the past decade, numerous contributions were made for denoising grayscale images 

and the challenges were addressed from diverse and many points of view. But 

significantly fewer contributions were made while addressing the issue of color image 

denoising[86], [87]. In this article, the focus is to provide a novel approach that is highly 

effective for both grayscale and color images. The proposed image denoising algorithm 

is applied to a variety of grayscale and color image data set. Experimental results 

demonstrate that it achieves high denoising performance in terms of Peak Signal-to-Noise 

Ratio (PSNR)[10], [61], [69], [88], [89], Image Enhancement Factor (IEF)[62], [64], [90] 

and Structural Similarity Index (SSIM)[61], [71], [91]–[94], that is superior than 

conventional denoising methods.  

4.2 Preliminaries for Noisy Dataset Generation 

 

Two data sets are used in the evaluation process of the proposed method first, datasets 

used in this analysis  consists of 50 grayscale images from the Brodatz texture dataset 

(Fig. 3.1)[68] and 16 color images from the University of South California miscellaneous 

dataset volume 3 (Fig. 3.2)[67] as already discussed in chapter 3. The first data set is used 

to validate the performance on wide data set for both noise and artifact. Secondly, some 

commonly used traditional test images like Lena (grayscale and color) and Peppers 

(grayscale) are used for comparison of the proposed method with the recent state of the 
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art methods. All simulations were carried out in MATLAB (MathWorks, Natick, MA, 

USA). Sample of eight levels (10% to 80%) of salt and pepper noise affected grayscale 

and color images are shown in Fig 4.1 and Fig 4.2 respectively. 

 

Figure 4.1. Eight levels of impulse noise affected Brick texture grayscale images. 

 

 

Figure 4.2. Eight levels of impulse noise affected Baboon color images. 
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Let’s discuss first data set for test one, this case is to establish the robustness of the 

proposed method, two types of artifacts i.e., Strip lines and Blotches[19], [95] and one 

types of noise i.e., Salt & Pepper[96], [97] are added in the images at varying levels (Fig. 

4.3). 

 

Since the work is to propose the denoising algorithm which can denoise the images 

affected with any noise level (low to high noise level). So, in order to check the robustness 

of the proposed method, the noise and artifacts are added in the image in eight steps each 

as shown in (Fig. 4.3). First Salt and Pepper noise is added to an image in eight steps 

from 10% to 80% (10% is considered as low level 80% is considered as high noise level). 

Vertical and horizontal strip lines are added in eight steps starting from 2 pixels wide strip 

lines to 9-pixel wide strip line with an increment of one-pixel width. Similarly, Blotches 

artifacts are also introduced in an image with 8 levels starting from a square of 2*2 to 9*9 

with an increment of one. The noise (Salt & Pepper) and artifacts (strip lines and blotches) 

are added one by one and then the proposed method is applied to noisy images to achieve 

a noise-free image. The protocol of adding noise and artifacts in the images is as follows. 

 

• The noise (Salt & Pepper) having 10% of corruption level is added in the image 

(as shown in Fig. 4.3). 

• Then, the noise level is increased by 10% to achieve a total noise level of 20% 

and this increased noise level of 20% is added in the image. 

• Similarly, keep on increasing the noise level by 10% until the noise level reaches 

up to 80%. 

• So, the database of corrupted images is created by adding noise level started from 

10% to 80%. 

• Similarly, create the data set of corrupted images using Strip lines and Blotches. 

• The process of dataset creation & addition of different noise levels from 1 to 8 in 

both grayscale & color images is shown in Fig. 4.3. 

 

Afterward, noise affected data in both grayscale and color images were denoised using 

existing well-known algorithms. ROAD-TGM[8], DBMF [8], [11],  (CWMF)[17], [78], 
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(PSMF)[11], [56], (MF)[74] and proposed method. A comparison of the proposed 

method  

 

Figure 4.3. Explanation of test one Dataset, the procedure for addition of different 

noises, artifacts and description of protocol. 
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with the five other existing algorithms is done using box plots. Each box plot for the 

grayscale image dataset represents values obtained from 400 denoised images (50 

images*8 levels of noise). Similarly, the color image data set each box plot represents 

parameter values obtained from 128 images (16 images*8 levels of noise). Our 

methodology is shown schematically in Fig. 4.3. For evaluation of the proposed method 

with the recent state of the art algorithms some commonly used traditional images i.e., 

Lena (grayscale and color) and Peppers (grayscale) are corrupted with 10% to 90% 

impulse noise. Then the proposed method along with the recent state of the art algorithms 

i.e., FDS, DAMF, IIN and IMF are applied to grayscale image dataset for performance 

comparison. For color image denoised, a performance comparison is drawn between 

AUTSF, MCF and proposed method. The grayscale image and color image comparison 

are drawn on the basis of PSNR and SSIM parameters as these are commonly preferred 

parameters. 

 

4.3 Algorithm of Proposed Denoising Method. 

 

In this chapter, the SAID-END method is proposed. The proposed method works on the 

concept of finding noisy pixels using systematic thresholding and spatially adaptive 

window hence overcoming the problem of under & overdetection. Secondly, the original 

value of the noisy pixel is restored adaptively by adjusting the statistical parameter 

median. The proposed method consists of two stages. 

 

(A) Enhanced adaptive noise detection 

(B) Non-corrupted pixel sensitive adaptive image restoration 

 

Following is a detailed explanation of two stages of the proposed method. 

 

A. Enhanced Adaptive Noise Detection 

The detailed flowchart of the detection stage of the proposed method is shown in Fig 

4.4. As mentioned earlier, the noise is added in the image ranges from 1 to 8 levels. Let 

assume the image having Salt and Pepper noise with a noise level of 10%. 
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 Figure 4.4. Flow chart of the detection stage of the proposed method.              
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The objective of this stage is to detect noisy pixels. Let’s assume 𝐼𝑖(𝑗) as a noisy dataset 

of grayscale images.  

 

𝐼𝑖(𝑗) 𝑤ℎ𝑒𝑟𝑒  𝑗=𝑁𝑜𝑖𝑠𝑒𝑙𝑒𝑣𝑒𝑙(10%,20%…80%)
𝑖=𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠(1 𝑡𝑜 50 𝑓𝑜𝑟 𝑔𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡)

   (1) 

 

The first image (𝑖 = 1) is having a noise level of 10% ( 𝑗 = 10). So, the first image 

having a noise level of 10% is denoted as 𝐼1(10) (flowchart is shown in Fig 4.4)  

 

a) Consider the query pixel (first pixel) of  𝐼1(10) and create the window around 

query pixel with distance one (create a window on the immediate neighborhood). 

b) Check whether the query pixel is having abrupt intensity values i.e., (i) 0 or 255 

(ii) check if the intensity difference of query pixel with neighbor pixels in the 

window is greater than 20. 

c) If any of the above condition is valid then, consider this query pixel as ambivalent 

pixel (doubtful to be the noisy pixel (𝐼𝑎)). More confirmation is required to 

declare 𝐼𝑎  as a noisy pixel. 

d) Further, check if the selected window contains single or multiple ambivalent 

pixels. 

e) If  𝐼𝑎  is the only pixel in the window having extreme value or only pixel with 

intensity difference greater than 20 from surrounding pixels then it is a noisy 

pixel. If not then check how many pixels in the window are having extreme values 

and intensity difference greater than 20. 

f) Then, count how many 𝐼𝑎
′ 𝑠 are present in the selected window. Let’s assume there 

are ‘s’ ambivalent pixels 𝐼𝑎𝑠 (𝐼𝑎𝑠1
, 𝐼𝑎𝑠2

, 𝐼𝑎𝑠3
…). The formula for calculating 

Ambivalent Pixels Percentage (𝐴𝑃𝑃)  is given below. 

 

% 𝐴𝑃𝑃 =  
𝐼𝑎𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑤𝑖𝑛𝑑𝑜𝑤
*100     (2) 

g) The pixel  𝐼𝑎 is considered noisy, if 𝐴𝑃𝑃 satisfy the following condition.    

 

  𝐴𝑃𝑃 ≤  𝐷𝑟𝑒𝑓   Where 𝐷𝑟𝑒𝑓 = 30%        (3) 
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If 𝐴𝑃𝑃 does not satisfy the above criteria then check the similarity of 𝐼𝑎 with the 

neighbor pixels.  

h) To declare 𝐼𝑎 as a noisy or non-noisy pixel, Calculate Maximum Similarity Index 

(MSI) [98]which is  

 

𝑀𝑆𝐼 = [𝑠𝑢𝑚(𝑀𝑆𝐼𝑅)] − 𝑊𝑃𝑟𝑒𝑓          (4) 

 

where MSIR is the Maximum Similarity Index Range which is calculated as. 

 

       𝑀𝑆𝐼𝑅 =
𝑆𝐼𝑅𝑖

𝑆𝑟𝑒𝑓
                   (5) 

 

 where, 

  i = 1,2, …  𝑊𝑃𝑟𝑒𝑓   (Window pixel reference)      

  𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝑆𝑟𝑒𝑓) = 20 

   𝑊𝑃𝑟𝑒𝑓 = 30% 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑤𝑖𝑛𝑑𝑜𝑤  

 

Similarity Index Range (𝑆𝐼𝑅) i.e difference of  𝐼𝑎  with all non-extreme pixels in the 

window 𝑁𝑁𝑖𝑗  (𝑁𝑁𝑖1, 𝑁𝑁𝑖2, 𝑁𝑁𝑖3-----𝑁𝑁𝑖𝑛). Where ‘i’ represent window number and ‘j’ 

represent the pixel number of respective window (𝑁𝑁11 indicates the first pixel of the 

first window).  So, to create a vector 𝑆𝐼𝑅 equation is given below. 

 

𝑆𝐼𝑅 = [𝑑1, 𝑑2---𝑑𝑛]            (6)  

 

𝑑1 = | 𝑁𝑁11 −   𝐼𝑎|                                            (7) 

 

Similarly, 𝑑2 𝑡𝑜 𝑑𝑛 can be created by varying pixel represented by j in the above 

equation. Arrange 𝑆𝐼𝑅 in ascending order. 

i) Ambivalent pixel   𝐼𝑎   can be declared as a noisy pixel. If MSI satisfies the 

following conditions. 
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𝑅𝑒𝑠𝑢𝑙𝑡 =  {
𝑛𝑜𝑖𝑠𝑦                   𝑖𝑓     𝑀𝑆𝐼 > 0
𝑛𝑜𝑛 𝑛𝑜𝑖𝑠𝑦          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

       (8) 

j) If 𝑀𝑆𝐼 of pixel is lesser than zero or ratio of corrupted pixels is greater than 𝐷𝑟𝑒𝑓   

then expand the window and repeat step d to step j. 

k) In case window expanded to maximum window size (pixel distance thirteen) 

while MSI remains less than zero, then the status of  𝐼𝑎 will be fixed as non-noisy.   

l) For 𝑅𝑞𝑝 𝑝𝑖𝑥𝑒𝑙𝑠(𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑞𝑢𝑒𝑟𝑦 𝑝𝑖𝑥𝑒𝑙𝑠) repeat steps h to j. 

 

Let’s understand the detection stage with the help of the following examples. Let’s say 

the matrix of the original image having intensity values of pixels as shown in  Fig. 4.5. 

The original matrix (prior to addition of noise is shown in Fig. 4.5) is corrupted by the 

different types of noises and artifacts to express the cases of detection stage. The 

following cases are discussed. 

 

Case 1 (a), (b): When single-pixel is corrupted in the selected window having 

extreme values (0 or 255). 

Case 1 (c), (d): When single-pixel is corrupted in the selected window having value 

between 0 and 255. 

Case 2: When less than 30% of pixels in a selected window are ambivalent pixels. 

Case 3: When more than 30% of pixels in a selected window are ambivalent pixels.  

Case 4: Edge preservation. 

Firstly, let’s take an example of noisy image affected by Salt and Pepper noise shown 

in Fig. 4.6. 

 

Figure 4.5. Original Matrix (without any noise). 

 
172 165 167 165 170 

170 170 166 172 171 

171 175 170 173 169 

177 167 164 169 168 

173 174 171 168 166 
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Case 1 (a), (b): When single-pixel is corrupted in the selected window having extreme 

values (0 or 255). 

As shown in Fig. 4.6, there are two windows in each window there is only one corrupted 

(ambivalent) pixel i.e., pixel having value ‘0’ in window 𝑁𝑁1 and another pixel having 

extreme value ‘255’ in window 𝑁𝑁2. So as per the proposed method, this pixel will be 

considered as noisy (as there is only one ambivalent pixel in each of the windows) 

shown in Fig. 4.6. 

 

Figure 4.6. Matrix for noise detection case 1 (a) and (b). 

Case 1 (c), (d): When single-pixel is corrupted in the selected window having value 

between 0 and 255. 

Pixels of an image can take non-extreme values now let us consider the case 1 (c) 

(shown in Fig. 4.7) which consist of non-extreme value in the selected window. Pixel 

in window 𝑁𝑁3 is having value ‘100’ which is having a difference greater than 20 

(reference intensity difference threshold) from every neighbor   pixel in the window. 

So, it will be considered as the odd man out and labeled as a noisy pixel. Case 1 (d) 

(shown in Fig. 4.7) takes care of those noises which can attain any value except from 

value neither extreme in nature nor having a difference greater than 20 from every 

neighbor pixel in the selected window. In such cases, it is difficult to decide the 

  

Window for case 1(a) - 𝑁𝑁1 

 

 

172 165 167 165 170 

 

Noisy  

Pixel 170 0 166 172 171 

 

 

171 175 170 173 169 

 

 

177 167 164 255 168 

Noisy  

Pixel 

 
173 174 171 168 166 

 

                                     Window for case 1(b) -  𝑁𝑁2 
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Remaining Query Pixels (𝑅𝑞𝑝 as shown in Fig. 4.4) is a noisy pixel or original pixel. 

To overcome this challenge distance base similarity is calculated for the 𝑅𝑞𝑝 and 

similarity conditions need to be satisfied for thirty percent pixels of the total number of 

pixels in the considered window. Otherwise, the pixel will be considered as a noisy 

pixel. Maximum Similarity Index (MSI) calculations are already discussed above (refer 

to equation no.4 - 8) in this chapter. In window 𝑁𝑁4 of case 1 (d) (Fig. 4.7) the 

remaining query pixel (𝑅𝑞𝑝) value is 145 which is not having an intensity difference of 

20 from every other pixel in the window. So, it is important to check the similarity of 

query pixel with its non-extreme neighbors. Let us understand this example in detail by 

applying the equation number 4 and onwards respectively. In this case  𝑅𝑞𝑝 is having 

value 145 and 𝑑1 𝑡𝑜 𝑑𝑛 are the values of its neighbor pixels. Let's start by creating the 

Similarity Index Range (𝑆𝐼𝑅).  

 

Figure 4.7. Matrix for noise detection case 1 (c) and case 1 (d). 

 

𝑆𝐼𝑅 =[|170 − 145|,|173 − 145|,|169 − 145|,|164 − 145|, |168 − 145|, …… 

|171 − 145|,|168 − 145|,|166 − 145|]        (9) 

 

  
Window for case 1(c) - 𝑁𝑁3 
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Noisy  
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Noisy  

Pixel 
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                                     Window for case 1(d) -  𝑁𝑁4 
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𝑆𝐼𝑅 = [25,28,24,19,23,26,23,21]                 (10) 

Arrange the 𝑆𝐼𝑅 in ascending order as follows 

𝑆𝐼𝑅 =  [19,21,23,23,24,25,26,28]                      (11) 

Calculate 30% of the total number of pixels in the selected window, window 𝑁𝑁4 is a 

having dimensions 3x3 (total 9 pixels). So, 30 percent of 9 is 2.7 which can be rounded 

off to 3. Now consider the first 3 distance from 𝑆𝐼𝑅 vector (as 3 is the result of 30 % of 

9 pixels) and then divide 𝑆𝐼𝑅 values with Similarity reference (𝑆𝑟𝑒𝑓)which is defined 

as 20 as shown in the following operation. 

𝑀𝑆𝐼𝑅 = [19 20⁄ , 21 20⁄ , 23 20⁄ ]                          (12) 

𝑀𝑆𝐼𝑅 = [0.95,1.05,1.15]                             (13) 

𝑀𝑆𝐼 = [0.95 + 1.05 + 1.15] − 3 = 0.15              (14) 

As 𝑀𝑆𝐼 is greater than zero in this example the respective 𝑅𝑞𝑝 pixel will be considered 

as 

 Case 2: When less than 30% of pixels in a selected window are ambivalent pixels. 

To understand this case in detail let’s consider an example in Fig. 4.8. In this case, a 

window is considered with the initial distance one from ambivalent pixels and is 

initially having 3x3 dimensions.  Consider two ambivalent pixels in both windows 

(𝑁𝑁1& 𝑁𝑁2) and the rest of the pixels are non-corrupted pixels. So specifically, for this 

case 7 pixels in each window are non-corrupted and two are query pixels out of total 9 

pixels. The corrupted (ambivalent) pixels are highlighted with yellow color in both 

windows. The algorithm will calculate percentage of ambivalent pixels (𝐴𝑃𝑃 refer to 

equation no.3) in the selected window. The percentage of ambivalent pixels should be 

less than the considered threshold value i.e., 𝐷𝑟𝑒𝑓= 30% and 𝐴𝑃𝑃 =

22% ((2/9)*100=22%). So, when the calculated percentage of ambivalent pixels is less 

than the considered threshold value then the ambivalent pixel will be considered as a 

noisy pixel. 
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Figure 4.8. Matrix for multiple ambivalent pixels in the selected window. 

 

Figure 4.9. Matrix for multiple ambivalent pixels in selected window. 

Case 3: When more than 30% of pixels in a selected window are ambivalent pixels.  

 In this example, three pixels are considered as ambivalent pixels out of total 9 pixels 

(initial window is of 3*3 dimensions) as shown in Fig. 4.9. The ambivalent pixel 
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percentage is 33% ((3/9)*100=33%) which is greater than the considered threshold 

value (𝐷𝑟𝑒𝑓 = 30%). In such a condition when the noise level is higher than the  

 

Figure 4.10. Matrix for multiple ambivalent pixels in selected window of 5*5 size. 
 

threshold value, the algorithm will increase the window size by pixel distance one. The 

new window is having 5*5 dimensions shown in Fig. 4.10 and the total number of pixels 

are now 25 in the window. The algorithm will again calculate the Ambivalent Pixel 

Percentage (𝐴𝑃𝑃 refer to equation no.3) for the considered case it will be 12% 

((3/25)*100 =12%) which is less than the considered threshold value(𝐷𝑟𝑒𝑓= 30%), So 

query pixel will be declared as a noisy pixel. 

Due to the high amount of noise present in cases where multiple noise pixels are 

existing in a window. Ambivalent pixel percentage can have value higher than 30%, in 

such cases algorithm will keep on increasing the window size by pixel distance one and 

repeat the ambivalent pixel percentage calculation again until ambivalent pixel 

percentage becomes less than 30%. In proposed method increasing the window size is 

restricted to maximum pixel distance thirteen, if till this limit of pixel distance thirteen 
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ambivalent pixel percentage remains higher than 30% then the pixel is considered as 

original pixel. 

 

Figure 4.11.  Edge preservation process (a) Original Lena image; (b) Zoomed hat edge; 

(c) Zoomed shoulder edge; (d) Zoomed mirror edge; (e) Intensity values of picture (b); 

(f) Intensity values of picture (c); (g) Intensity values of picture (d). 

Case 4: Edge Preservation 

To understand the edge and detail preservation process of the proposed method in 

natural conditions, let us consider an example of a standard Lena image. For this 

purpose, three edges from different locations are marked to represent different contrast 

situations and have been discussed case by case. These cases are as follows: 

Case 4-A: Edge pixel on hat (shown in Fig.4.11 (a))  

Case 4-B: Edge pixel on shoulder (shown in Fig.4.11 (b))  

Case 4-C: Edge pixel on mirror (shown in Fig.4.11 (c)). 
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 The direction of the edge is marked by the yellow color in Fig.4.11(e-g). The proposed 

method preserve edge by doing classification of edges as non-corrupted pixels. 

Case 4-A: Edge pixel on hat  

The first example is considered from Lena hat as shown in  Fig. 4.11(b) and its 

respective intensity values are presented in Fig. 4.11(e). Let us form a 3x3 initial 

window by considering the center pixel (𝑹𝒒𝒑 𝑖𝑠 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑞𝑢𝑒𝑟𝑦 𝑝𝑖𝑥𝑒𝑙) as a base is 

shown in Fig.4.11(e) which is under evaluation (originally an edge pixel). To verify the 

pixel as noisy or non-noisy for this case we need to satisfy 𝑴𝑺𝑰  equation. Let us 

compute MSI in steps (as per step h and i of the proposed algorithm) as mentioned in 

the proposed method. 

Computation of Similarity Index Range (𝑺𝑰𝑹) from values of Fig.4.11(e) by using 

equation 6-7. 

SIR =[|104 − 96|,|87 − 96|,|82 − 96|,|80 − 96|, |117 − 96|, |95 − 96|,……., 

|150 − 96|,|151 − 96|]                    (15) 

SIR = [8,9,14,16,21,1,54,55]                                                   (16) 

Arrange the SIR in ascending order as follows 

SIR =  [1,8,9,14,16,21,54,55]                      (17) 

To ensure the detailed preservation we are using 30% criteria of window size. The 

rationale of using a 30% value is that the proposed method on this data set gives the 

best results when 30% criteria are used. This criterion is set to 30% to make the 

algorithm work well in considerably high noise conditions (as noise increases, the count 

of non-corrupted pixel reduces). Calculate 30% of the total number of pixels in the 

selected window, the window has initial dimensions of 3x3 (total 9 pixels). So, 30 

percent of 9 is 2.7 which can be rounded off to 3. 

Thirty percent criteria also ensure quality with an increase in window size (adaptive 

window). Now consider the first 3 distance from 𝑺𝑰𝑹 vector (as 3 is the result of 30 % 
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of 9 pixels) and then divide 𝑺𝑰𝑹 values with similarity reference (𝑺𝒓𝒆𝒇) which is 

defined as 20. 𝑺𝒓𝒆𝒇 is a weight that provides tolerance to the algorithm with varying 

noise ratio, for this chapter it is set to 20 as this tolerance weight is working well on a 

large dataset considered in this analysis. MSI is calculated as shown in the following 

equations by using equations 4-5. 

MSIR = [1 20⁄ , 8 20⁄ , 9 20⁄ ]                (18) 

MSIR = [0.05,0.4,0.45]                 (19) 

MSI = [0.05 + 0.4 + 0.45] − 3 = −2.1              (20) 

As 𝑴𝑺𝑰 is less than zero in this example the respective 𝑹𝒒𝒑 pixel will be considered as 

a non-noisy pixel. So, the edge will be preserved (original intensity value will be kept 

as such). In this way proposed algorithm finds the pixels on edges as non-noisy.  

Case 4-B: edge pixel on shoulder.   

MSI is calculated from intensity values of  Fig.4.11(f) on similar lines as in above-

mentioned case by considering the initial window size as 3 x 3.  

 SIR =[|78 − 84|,|43 − 84|,|52 − 84|,|172 − 84|, |48 − 84|, |216 − 84|, 

|178 − 84|,|89 − 84|]               (21) 

SIR = [6,41,32,88,36,132,94,5]               (22)  

Arrange the SIR in ascending order as follows 

SIR =  [5,6,32,36,41,88,94,132]               (23)  

SIR = [5 20⁄ , 6 20⁄ , 32 20⁄ ]                             (24) 

MSIR = [0.25,0.3,1.6]                                  (25) 

MSI = [0.25 + 0.3 + 1.6] − 3 = −0.85                              (26) 
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As 𝑴𝑺𝑰 is less than zero in this example the respective 𝑹𝒒𝒑 the pixel will be considered 

as a non-noisy pixel. So, the edge will be preserved. 

Case 4-C: Edge pixel on mirror.  

In this case, find out the MSI of intensity values given in  Fig. 4.11(g) on a similar 

pattern as mentioned in the proposed method (step h and i).  

 𝑆𝐼𝑅 =[|42 − 68|,|53 − 68|,|85 − 68|,|41 − 68|, |110 − 68|, |59 − 68|,…, 

|99 − 68|,|133 − 68|]                            (27)  

𝑆𝐼𝑅 = [26,15,17,27,42,9,31,65]                                (28) 

Arrange the 𝑆𝐼𝑅 in ascending order as follows 

𝑆𝐼𝑅 =  [9,15,17,26,27,42,9,31,65]                               (29) 

𝑀𝑆𝐼𝑅 = [9 20⁄ , 15 20⁄ , 17 20⁄ ]                            (30) 

𝑀𝑆𝐼𝑅 = [0.45,0.75,0.85]                                                        (31) 

𝑀𝑆𝐼 = [0.45 + 0.75 + 0.85] − 3 = −0.95                               (32) 

As 𝑀𝑆𝐼 is less than zero in this example the respective 𝑅𝑞𝑝 pixel will be considered as 

a non-noisy pixel. So the edge will be preserved (edge pixel will be kept in original 

form). 

B. Non-Corrupted Pixel Sensitive Adaptive Image Restoration 

Once the pixel is detected as noisy pixel (as shown in Fig. 4.6 – 4.10), next stage is to 

restore the original values of noisy pixels. For this purpose, the restoration stage is 

proposed. The flow chart of the restoration process is shown in Fig. 4.15. In case of 

high noise density fixed window size is a prime reason for the loss of edge information. 

To overcome this issue, noise level based adaptive window is preferred to ensure high 

amount of non-corrupted pixels in the window[99], [100]. The noise restoration stage 

uses the location of noisy pixels identified by noise detection stage. This stage ensures 
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a minimum of 70% non-corrupted pixels (maximum non-corrupted pixel ratio criteria) 

are used to estimate the original value to increase accuracy. The maximum non-

corrupted pixel ratio criteria is implemented by an adaptive window with the condition 

on noise level less than 30%. The use of local information of non-corrupted in the 

window can preserve edge details to a certain extent.  To understand the process of 

noise restoration stage in detail let us consider the following cases. 

 

Figure 4.12. Matrix for single restored pixels in selected window. 
 

Case 1: When a single pixel is noisy pixel in selected window 

 This case restores the original value of noise detected in case 1 (a)-(d) of the detection 

stage. In the considered matrix for noise restoration, noise location is already known as 

a result of detection stage. The algorithm will utilize the location of noisy pixel and 

create an initial window with distance one which results in 3*3 matrix. Algorithms 

utilizing only non-corrupted neighbor pixels to restore the value of noisy pixel (non-

corrupted and corrupted pixels are already identified in the detection stage). The median 

of non-corrupted pixels in the selected window is taken and replaced with the value of 

  

              Window for case 1(a) - 𝑁𝑁1 

 
172 165 167 165 170 

 

Denoised 
Pixel 170 170 166 172 171 

 

 
171 175 170 173 169 

 

 
177 167 164 169 168 

Denoised 

Pixel 

 
 173 174 171 168 166 

 

                                     Window for case 1(b) -  𝑁𝑁2 

FIGURE 12. Matrix for single restored pixels in selected window. 

 



 

72 

 

noisy pixel (noisy pixels in the selected window are not included in the median 

calculation). This process of restoration stage is shown in Fig. 4.15.   Consider case 1 

(a) window 𝑁𝑁1 (as shown in Fig. 4.6) and case 1 (c) window 𝑁𝑁3  (as shown in Fig. 

4.7) in these windows noisy pixel value is replaced by median value 170 (calculated by 

taking a median of non-corrupted pixels of the respective window). For case 1 (b) 

window 𝑁𝑁2 (as sown in Fig. 4.6) and case 1 (d) window 𝑁𝑁4 (shown in Fig. 4.7) 

noisy pixel is restored with median value 169 (as integer value is required in the image, 

so round off operation is applied on decimal values). Final restored matrix from noisy 

matrix shown in Fig. 4.6 and Fig. 4.7 is presented in Fig. 4.12.  

 

Figure 4.13. Matrix for multiple restored pixels in selected window. 

Case 2: When less than 30% of pixels in a selected window are noisy pixels 

Noisy pixels in a considered window 𝑁𝑁1 𝑎𝑛𝑑 window 𝑁𝑁2 of matrix shown in Fig. 

4.8 are multiple. Let’s consider case 2(a) window 𝑁𝑁1  (shown in Fig. 4.8) first, 

Algorithm will calculate percentage of noisy pixels in the selected window. Percentage 

of noisy pixels should be less than the considered threshold value of 30%, in the 

considered window it is 22% ((2/9)*100=22%). So, the median value of seven non-

corrupted pixels is calculated as 170 and replaced with the noisy pixel in case 2(a) 

window 𝑁𝑁1. As now noisy pixel of case 2(a) window 𝑁𝑁1 is restored, now case 2(b) 
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window 𝑁𝑁2 will have only one noisy value which is filtered as case 1 of the restoration 

stage already discussed above. So median value of eight non-corrupted pixels in the 

window 𝑁𝑁2 is replaced with noisy pixel (median value 169). Restored matrix from 

noisy matrix shown in Fig. 4.8 is presented in Fig. 4.13. 

 

Figure 4.14. Matrix for multiple restored pixels in selected window. 

Case 3: When more than 30% of pixels in a selected window are noisy pixels. 

When noisy pixels in a considered window are high (greater than 30%) shown in Fig. 

4.9. Then window size is increased by one and noisy pixel percentage in a selected 

window is calculated again (Noisy Pixel Percentage (𝑁𝑃𝑃) calculation is similar to 

calculation of 𝐴𝑃𝑃 simply replace ambivalent pixels with detected noisy pixels in the 

equation no.2). This process is repeated until the noisy pixel percentage in the selected 

window is less than 𝐷𝑟𝑒𝑓 which is 30% and then the median is calculated from non-

corrupted values. For denoising of the matrix shown in Fig. 4.9 it is required to increase 

the window size by one (as noise pixel percentage is greater than 30% in case 3(a)), the 

new window size will be of 5x5 and noisy pixel percentage is 12% ((3/25)*100=12). 

As 12% is less than considered a threshold value of 30%, so the median value of non-

corrupted pixels from the current window is calculated as value ‘170’ (out of 25 total 

values 23 are considered for median calculation) which is replaced with noisy pixel 
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value ‘0’.  Now for noisy pixel having value ‘120’, again window is created with 

distance one (3x3) and now the percentage of noisy pixel is calculated as 12% 

((2/9)*100=12%) which is less than considered threshold value 30%. Now, this pixel 

will be denoised as case 2 where the median is calculated by ignoring the other noisy 

pixels in the window. So, for this pixel median is calculated as 169 (actual value was 

173 it is not possible to achieve the same value every time). For noisy pixel value 255 

case 1 will be applicable as the other two pixels in the window are already restored. So 

the median is calculated as 169 with a similar procedure to case 1 of image restoration 

stage and replaced with noisy pixel (shown in Fig.4.14). 

 

Figure 4.15. Noise restoration stage algorithm. 
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4.4 Results and Discussion 

This section evaluates the performance of the proposed method and comparison is done 

with existing denoising algorithms. This comparison is carried out in two test stages. 

Let’s discuss the first stage for the comparison of the proposed method with well-known 

methods based on the wide dataset. As mentioned earlier the noise (salt pepper) and 

artifacts (Strip lines & blotches) are added in images (Grayscale and color images). For 

each image, different noise levels were incrementally added from noise level one to 

noise level eight and 2 pixels to 9 pixels range is used for strip lines and blotches 

artifacts, forming sequences of increasingly corrupted images. 

 

(a) 

     

       (aa)             (ab)              (ac)         (ad)             (ae)             (af)              (ag) 

 

       (ba)             (bb)              (bc)         (bd)             (be)             (bf)              (bg) 
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       (ca)             (cb)              (cc)         (cd)             (ce)             (cf)              (cg) 

Figure 4.16. (a) Original texture image, (aa) Texture image corrupted by 50% Salt and 

Pepper noise, (ba) Texture image corrupted by 6 pixel wide strip line artifact, (ca) 

Texture image corrupted by 6*6 pixel blotches artifacts, (ab–cb) Image restored using 

proposed method from (aa–ca), (ac–cc) Image restored using the ROAD-TGM from 

(aa–ca), (ad–cd) Image restored using the DBMF from (aa–ca), (ae–ce) Image restored 

using the CWMF from (aa–ca), (af–cf) Image restored using the PSMF from (aa–ca), 

(ag–cg) Image restored using the MF from (aa–ca). NB: ROAD-TGM, Rank-Ordered 

Absolute Differences Trimmed Global Mean Filter; CWMF, Center Weighted Median 

Filter; DBMF, Decision-Based Median Filter; PSMF, Progressive Switching Median 

Filter; and MF, Median filter.  

For the visual understanding of images before and after denoising, A set of grayscale 

images are present in Fig 4.16 and color images are present in Fig 4.17. A comparative 

analysis of the proposed method with existing denoising algorithms on grayscale 

images corrupted by level 1 to level 8 of noise and artifacts is shown in Fig. 4.18–4.20. 

The PSNR, SSIM and IEF values are used to evaluate the performance of the proposed 

and existing algorithms on all grayscale images and color images.  

 

(a) 
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      (aa)             (ab)              (ac)         (ad)             (ae)             (af)              (ag) 

 

       (ba)             (bb)              (bc)         (bd)             (be)             (bf)              (bg) 

 

       (ca)             (cb)              (cc)         (cd)             (ce)             (cf)              (cg) 

Figure 4.17. (a) Original color image, (aa) Color image corrupted by 50% Salt and 

Pepper noise, (ba) Color image corrupted by 6 pixel wide strip line artifact, (ca) Color 

image corrupted by 6*6 pixel size blotches artifacts,(ab–cb) Image restored using 

proposed method from (aa–ca), (ac–cc) Image restored using the ROAD-TGM from 

(aa–ca), (ad–cd) Image restored using the DBMF from (aa–ca), (ae–ce) Image restored 

using the CWMF from (aa–ca), (af–cf) Image restored using the PSMF from (aa–ca), 

(ag–cg) Image restored using the MF from (aa–ca). NB: ROAD-TGM, Rank-Ordered 

Absolute Differences Trimmed Global Mean Filter; CWMF, Center Weighted Median 

Filter; DBMF, Decision-Based Median Filter; PSMF, Progressive Switching Median 

Filter; and MF, Median filter.  
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The PSNR, SSIM and IEF values for each image and for each noise and artifact level 

were calculated for the denoised image produced by both the proposed and existing 

algorithms. These results are shown in box plots representation for all noise levels and 

all images. The results prove that the proposed method is better than all other algorithms 

in comparison, producing better PSNR, SSIM and IEF values in all cases. Typically, 

the overall mean PSNR value of the proposed method is 23.95, which is higher than all 

other models: ROAD-TGM (PSNR = 19.82), DBMF (PSNR = 18.17), CWMF (PSNR 

= 16.03), PSMF (PSNR = 15.50), and MF (PSNR = 14.68). 

The box plots also show that the proposed method outperformed all other algorithms in 

terms of the SSIM parameter. The mean SSIM value of the proposed method is 0.83, 

which is higher than values for all other models: ROAD-TGM (SSIM = 0.63), DBMF 

(SSIM = 0.55), CWMF (SSIM = 0.38), PSMF (SSIM = 0.44) and MF (SSIM = 0.41). 

The mean IEF value of the proposed method is  47.12, which is higher than values for 

all other models: ROAD-TGM (IEF = 17.96), DBMF (IEF = 9.15), CWMF (IEF = 7.0), 

PSMF (IEF = 5.73) and MF (IEF = 4.81). 

 The results of various denoising techniques on images corrupted by strip lines and 

blotches artifacts are shown in Fig.4.19 and Fig 4.20. Again, the performance of the 

proposed method is better than all other algorithms, producing better PSNR, SSIM and 

IEF values in all cases. The mean PSNR, mean SSIM and mean IEF values of the 

proposed method for strip lines artifact are: PSNR= 25.73, SSIM=0.92, IEF=17.71 and 

for blotches artifacts are: PSNR= 45.51,  SSIM=0.99, IEF=20.80, which are higher than 

all other algorithms considered in the comparison. The box plots clearly demonstrate the 

superiority of the proposed method compared to other existing algorithms. 

Our comparative analysis of denoising algorithms on color images affected by Salt and 

Pepper noise, Strip lines artifacts and Blotches artifacts are shown in Fig. 4.21 and Fig. 

4.23, respectively. In the case of noise and artifacts, the proposed method produced a 

PSNR value of 36.37, SSIM value of 0.92 and IEF value of 72.23, which were higher 

than ROAD-TGM, DBMF, CWMF, PSMF, and MF algorithms.  
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(a) 

 
(b) 

 
(c) 

Figure 4.18. Comparative analysis of algorithms for 10% to 80% Salt and Pepper noise-

affected grayscale images (a) Peak signal to noise ratio (PSNR); (b) Structural 

Similarity Index (SSIM); (c) Image enhancement factor (IEF). NB: ROAD-TGM, 

Rank-Ordered Absolute Differences Trimmed Global Mean Filter; CWMF, Center 

Weighted Median Filter; DBMF, Decision-Based Median Filter; PSMF, Progressive 

Switching Median Filter; and MF, Median filter. 
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(a) 

  

(b) 

 

(c) 

Figure 4.19. Comparative analysis of algorithms for 2 pixels to 9 pixels wide strip line-

affected grayscale images (a) Peak signal to noise ratio (PSNR); (b) Structural 

Similarity Index (SSIM); (c) Image Enhancement Factor (IEF). NB: ROAD-TGM, 

Rank-Ordered Absolute Differences Trimmed Global Mean Filter; CWMF, Center 

Weighted Median Filter; DBMF, Decision-Based Median Filter; PSMF, Progressive 

Switching Median Filter; and MF, Median filter. 
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(a) 

 
(b) 

 
(c) 

Figure 4.20. Comparative analysis of algorithms for 2*2 pixel to 9*9 pixel size 

blotches-affected grayscale images (a) Peak signal to noise ratio (PSNR); (b) Structural 

Similarity Index (SSIM); (c) Image Enhancement Factor (IEF). NB: ROAD-TGM, 

Rank-Ordered Absolute Differences Trimmed Global Mean Filter; CWMF, Center 

Weighted Median Filter; DBMF, Decision-Based Median Filter; PSMF, Progressive 

Switching Median Filter; and MF, Median filter.  
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 (a)  

 
(b) 

 
(c) 

Figure 4.21. Comparative analysis of algorithms for 10% to 80% Salt and Pepper noise-

affected color images (a) Peak signal to noise ratio (PSNR); (b) Structural Similarity 

Index (SSIM); (c) Image enhancement factor (IEF). NB: ROAD-TGM, Rank-Ordered 

Absolute Differences Trimmed Global Mean Filter; CWMF, Center Weighted Median 

Filter; DBMF, Decision-Based Median Filter; PSMF, Progressive Switching Median 

Filter; and MF, Median filter. 
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(a) 

 
(b) 

 
(c) 

Figure 4.22. Comparative analysis of algorithms for 2 pixels to 9 pixels wide strip line-

affected color images (a) Peak signal to noise ratio (PSNR); (b) Structural Similarity 

Index (SSIM); (c) Image Enhancement Factor (IEF). NB: ROAD-TGM, Rank-Ordered 

Absolute Differences Trimmed Global Mean Filter; CWMF, Center Weighted Median 

Filter; DBMF, Decision-Based Median Filter; PSMF, Progressive Switching Median 

Filter; and MF, Median filter. 
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.  

(a) 

 
(b) 

 
(c) 

Figure 4.23. Comparative analysis of algorithms for 2*2 pixel to 9*9 pixel size 

blotches-affected color images (a) Peak signal to noise ratio (PSNR); (b) Structural 

Similarity Index (SSIM); (c) Image Enhancement Factor (IEF). NB: ROAD-TGM, 

Rank-Ordered Absolute Differences Trimmed Global Mean Filter; CWMF, Center 

Weighted Median Filter; DBMF, Decision-Based Median Filter; PSMF, Progressive 

Switching Median Filter; and MF, Median filter. 
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Table 4.1. Color image denoising comparison of the proposed method with the recent 

state of the art methods.   

 

*For Table 4.1-4.2 The values in bold represent better PSNR and SSIM as compared to 

several state-of-the-art algorithms. ** For Table 4.1-4.2 ‘—' indicates value not 

available for denoising method. 

In the case of Strip lines artifacts and Blotches artifacts, the proposed method 

outperformed the other existing algorithms, with a PSNR value of 40.91,58.83; SSIM 

value of 0.96, 0.99 and IEF value of 51.45,26.12 respectively. 

The mean PSNR, mean SSIM and mean IEF values of the proposed method for strip 

lines artifact are: PSNR= 25.73, SSIM=0.92, IEF=17.71 and for blotches artifacts are: 

PSNR= 45.51, SSIM=0.99, IEF=20.80, which are higher than all other algorithms 

considered in the comparison. The box plots clearly demonstrate the superiority of the 

proposed method compared to other existing algorithms. Our comparative analysis of 

denoising algorithms on color images affected by Salt and Pepper noise, Strip lines 

artifacts and Blotches artifacts are shown in Fig. 4.21 and Fig. 4.23, respectively. In the 

case of noise and artifacts, the proposed method produced a PSNR value of 36.37, SSIM 

value of 0.92 and IEF value of 72.23, which were higher than ROAD-TGM, DBMF, 

CWMF, PSMF, and MF algorithms. In the case of Strip lines artifacts and Blotches 

artifacts, the proposed method outperformed the other existing algorithms, with a PSNR 

value of 40.91,58.83; SSIM value of 0.96, 0.99 and IEF value of 51.45,26.12 

respectively. 

In the second stage of comparison, the proposed method is evaluated with the recent 

state of art methods. This comparison is performed for both grayscale and color image 

Test Image
10% 20% 30% 40% 50% 60% 70% 80% 90% Mean

PSNR 41.51 38.12 35.91 34.20 32.60 31.05 29.22 27.38 24.29 32.70

SSIM — — — — — — — — — —

PSNR — — 38.95 36.55 34.20 31.42 26.41 21.34 8.46 28.19

SSIM — — — — — — — — — —

PSNR 44.20 41.34 38.99 36.66 34.32 32.93 31.96 30.11 27.82 35.35

SSIM 0.9855 0.9740 0.9663 0.9544 0.9399 0.9295 0.9080 0.8721 0.8346 0.9294

 SAID-END    

Method

Noise level

Lena

AUTSF      

[63]

MCF [64]
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as discussed in Section II. For color image denoising comparison, colored Lena image 

affected with (10% to 90%) impulse noise is used as a test image. The main parameter 

in this comparison is PSNR as this parameter is commonly used by recent methods for 

color image denoising, but for proposed method SSIM results are also presented along 

with PSNR values in Table 4.1. The proposed method outperforms the recent state of 

the art methods by gaining superior mean PSNR value 35.35 for the noise range of 10% 

to 90% in comparison to denoising performance of AUTSF (32.70) and IMF (28.19). 

For color image denoising proposed algorithm obtained high mean SSIM value ‘0.93’ 

for the image affected with low to high density of noise.   The proposed method has 

also achieved high value of SSIM (0.9294) parameter which reflects good image 

quality.  

Table 4.2. Grayscale image denoising comparison of the proposed method with recent 

state of the art methods. 

 

Traditional Lena and Peppers grayscale images corrupted with low to high density of 

impulse noise (10% to 90%) are denoised using the proposed method. This comparison 

with FDS, DAMF, IIN and IMF methods is presented in Table 4.2, where ‘—’ indicate 

Test Image
10% 20% 30% 40% 50% 60% 70% 80% 90% Mean

PSNR 41.40 37.25 34.49 31.67 28.99 26.54 23.95 21.39 18.30 29.33

SSIM 0.9894 0.9759 0.9573 0.9293 0.8858 0.8280 0.7441 0.6379 0.5020 0.83

PSNR 42.97 39.29 36.84 34.94 33.21 31.64 30.22 28.53 25.93 33.73

SSIM 0.9902 0.9788 0.9655 0.9494 0.9304 0.9064 0.8770 0.8370 0.7620 0.91

PSNR — 31.43 29.50 27.62 26.39 — — — — 28.74

SSIM — — — — — — — — — —

PSNR 43.48 40.18 37.05 35.40 33.98 32.49 31.23 29.70 27.42 34.55

SSIM 0.9913 0.9796 0.9675 0.9541 0.9383 0.9183 0.8953 0.8623 0.8058 0.92

PSNR 45.21 42.35 39.80 37.67 35.33 33.94 32.97 31.12 28.83 36.36

SSIM 0.9957 0.9842 0.9765 0.9646 0.9501 0.9397 0.9182 0.8823 0.8448 0.94

PSNR 40.65 36.9 34.32 31.72 29.32 26.83 24.11 21.37 18.15 29.26

SSIM 0.9825 0.9627 0.9396 0.9079 0.8687 0.8110 0.7355 0.6360 0.5085 0.82

PSNR 41.52 37.89 35.67 33.95 32.55 31.31 29.79 28.28 25.87 32.98

SSIM 0.9815 0.9606 0.9389 0.9131 0.8866 0.8541 0.8180 0.7719 0.7049 0.87

PSNR — 27.23 26.21 24.82 23.98 — — — — 25.56

SSIM — — — — — — — — — —

PSNR 41.83 38.59 36.65 35.14 33.9 32.69 31.43 30.01 27.88 34.24

SSIM 0.9858 0.9684 0.9504 0.9299 0.9091 0.8846 0.8572 0.8219 0.7700 0.90

PSNR 43.41 40.13 38.13 36.76 35.08 33.84 32.91 31.18 29.83 35.70

SSIM 0.9922 0.9863 0.9674 0.9433 0.9256 0.9009 0.8799 0.8521 0.8187 0.92

Peppers

FDS [65]

DAMF [61]

IIN [66]

IMF [62]

 SAID-END    

Method

Noise level

Lena

FDS [65]

DAMF [61]

IIN [66]

IMF [62]

 SAID-END    

Method
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unavailability of value. To achieve fair performance comparison, only common test 

images and statistical paraments of the recent state of the art algorithms are used. 

Performance evaluation of grayscale images using parameter PSNR and SSIM, shows 

the superiority of the proposed method among the recent state of the art algorithms 

(refer to Table 4.2). The proposed method achieves mean PSNR value of 36.36 in 

comparison to lower values of the recent state of the art methods (FDS=29.33, 

DAMF=33.73, IIN=28.74, IMF=34.45) for grayscale Lena image. Again, on Lena 

grayscale test image the proposed method achieves better performance for SSIM 

parameter by obtaining the mean SSIM value 0.94 in comparison to the recent state of 

art algorithms (FDS=0.83, DAMF=0.91, IIN=N.A, IMF=0.92). Similarly, the proposed 

method performs well on the second traditional test image (Peppers). The proposed 

method repeats its success over the recent state of art methods for both the parameters 

PSNR and SSIM by achieving higher values. The proposed method achieves mean 

parameter (PSNR/SSIM) values (35.71/0.92) followed by FDS (29.26/082), DAMF 

(32.98/087), IIN (25.56/N.A) and IMF (34.24/0.90). Table 4.3 represents the 

comparison of proposed method with existing denoising techniques for Grayscale and 

Color image dataset. 

Table 4.3. Grayscale and Color image denoising comparison of the proposed method 

with the existing methods.   

 

Mean PSNR 23.953 19.825 18.002 15.966 15.456 15.181

MeanSSIM 0.834 0.640 0.551 0.383 0.444 0.419

Mean IEF 47.125 17.960 9.158 7.007 5.736 4.818

Mean PSNR 45.515 44.214 36.299 19.442 22.636 22.713

MeanSSIM 0.999 0.998 0.997 0.525 0.765 0.770

Mean IEF 20.809 14.447 1.643 0.068 0.128 0.130

Mean PSNR 25.739 23.723 15.533 13.235 13.706 13.719

MeanSSIM 0.926 0.875 0.784 0.394 0.578 0.582

Mean IEF 17.714 10.688 1.278 0.781 0.841 0.844

Mean PSNR 36.372 23.700 19.170 21.323 18.733 17.403

MeanSSIM 0.924 0.756 0.531 0.694 0.574 0.513

Mean IEF 73.678 50.175 11.958 26.639 14.837 12.223

Mean PSNR 60.010 44.064 39.672 27.423 30.588 30.635

MeanSSIM 0.996 0.994 0.994 0.916 0.958 0.959

Mean IEF 26.646 15.670 1.533 0.164 0.292 0.294

Mean PSNR 41.733 27.876 16.300 15.402 15.048 15.051

MeanSSIM 0.965 0.939 0.788 0.711 0.734 0.735

Mean IEF 52.481 25.358 1.301 1.138 0.961 0.962

Grayscale 

dataset 

50 

images

Salt and 

Pepper                               

(10%-80%)

Blotchs                   

(2x2 - 9x9)

Strip l ines                  

(2 - 9)

Color 

image 

dataset 

16 

images

Salt and 

Pepper                

(10%-80%)

Blotchs                   

(2x2 - 9x9)

Strip l ines                  

(2 - 9)

Road-

TGM
DBMF CWMF PSMF MF

Image 

type
Noise type Parameter

Proposed 

Adaptive
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4.5 Conclusion 

In order to overcome the performance issues of the existing denoising methods, a two-

stage SAID-END denoising algorithm has been proposed. At first, the proposed method 

overcomes the issues of over/under detection of noisy pixels by using enhanced 

adaptive noise detection stage. This stage uses systematic thresholding with iterative 

similarity indexing to ensure the accurate categorization of noisy and non-noisy pixels. 

After the classification of pixels, the task was to reduce the impact of high-density noise 

on original value estimation which was achieved by using a non-corrupted pixel 

sensitive adaptive image restoration stage. This stage ensures the computation of 

restored value would be carried out only when a good amount of non-corrupted pixels 

are available in the window. This process has been implemented using an adaptive 

window mechanism with non-corrupted pixel ratio criteria. Once the non-corrupted 

pixel ratio criteria is satisfied, the original value of noisy pixel was restored using 

statistical measure i.e., median of non-corrupted pixel values. The two-stage test has 

been carried out on the proposed method to evaluate its performance. The first test was 

carried out to validate the operativity of the proposed method on a wide range of noise 

and artifacts affected dataset. The proposed method has shown better PSNR, SSIM and 

IEF performance when compared with some well-known algorithms for a wide dataset 

of color and grayscale images. The second test stage was performed to evaluate the 

proposed method in comparison to the recent state of art algorithms. The commonly 

referred traditional test images have been used to perform this comparison. The 

proposed algorithm has shown improved performance on the basis of PSNR and SSIM 

parameters. In the future, this work can be extended by increasing the proximity of 

restored value to the original value to achieve higher detail preservation. 
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Chapter 5 

Amalgamation of ROAD-TGM or SAID-END with 

Progressive PCA Using Performance Booster 

Method for Detail Preserving Image Denoising 

 

This chapter presents two algorithms ROAD TGM-PPCA-PB and SAID END-PPCA-

PB each having a two-stage sequential method for denoising grayscale and color 

images. Firstly, discussion will be with respect to ROAD TGM-PPCA-PB and by 

replacing the ROAD TGM algorithm with SAID END algorithm we can achieve SAID 

END-PPCA-PB algorithm which is having highest performance for impulse noise 

denoising.   At first ROAD TGM-PPCA-PB method enhances the accuracy of the noise 

detection stage by using spatial domain filter rank-order absolute difference trimmed 

global mean (ROAD-TGM) along with transform domain-based progressive principle 

component analysis (PPCA) method. Then the performance booster algorithm is used 

to ensure the proximity of restored value to the original value. Quite often in real-world 

applications images are corrupted with Salt & Pepper noise, Strip lines artifact and 

Blotches artifact.  We observed the proposed method is capable of removing the above-

mentioned noises and artifacts with comparatively better accuracy.  

The proposed method uses the progressive PCA for its dimension reduction ability and 

local information of image restored by ROAD-TGM to provide enhanced noise 

detection performance. Before noise removal, a performance booster algorithm 

eliminates noisy values by using sequential hard thresholding and estimates the 

tentative original values automatically. Then algorithm decides the suitable value for 

the restoration of noise pixel by using a structural similarity index (SSIM) to ensure the 

proximity of restored image to the original image. The proposed algorithm is tested on 

a standard set of color and grayscale images to ensure the versatility of the proposed 

algorithm. The experiment shows that the proposed algorithms achieves high denoising 

performance for noise and artifact while maintaining the visually important details. 
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5.1 Introduction 

It is important for applications of image processing and computer vision to obtain 

detailed visual information from visual imaging sensors[101], [102]. Acquiring useful 

detailed visual information is only possible if details of the image are free from noise. 

It’s always a need of the hour to achieve a higher quality detail preservation image 

denoising method to keep the visual detail of the image intact. The images are usually 

deteriorated due to the effect of Salt & Pepper noise[6], [90], [43], [103], [104], 

Blotches[42], [95], [105] and Strip lines[19], [106] artifacts. Salt & Pepper noise tends 

to change any pixel color into either white or black. Blotch affects the images as a patch 

or set of pixels have unusual values than the surrounding. Similarly, Strip lines will be 

degrading the image quality in the form of vertical or horizontal lines. 

The denoising techniques are generally bifurcated into two domain procedures i.e. 

Spatial domain and Transform domain. Spatial domain algorithms are mostly 

depending upon the knowledge of image properties like similarity of pixel intensity in 

a region. Natural images in the spatial domain can be divided into a set of pixel groups 

(groups based on the similarity of pixels) and each group of pixels has a different rage 

of pixel values. Some of the spatial domain filters are Median filter (MF)[43], [107], 

[108], Decision Base Median Filter (DBMF)[11], [90], [109], Center Weight Median 

Filter (CWMF)[58], [59], [110], Progressive Switching Median Filter (PSMF)[11], 

[61], [109], Rank Ordered Absolute Differences with Trimmed Global Mean Filter 

(ROAD-TGM)[8] and Iterative Mean Filter (IMF)[62]. MF is one of the basic yet 

powerful filter for a low level of noise. This filter introduces a blurring effect while 

denoising the high-level noise. MF is good for the removal of Salt & Pepper noise but 

it is unable to repeat the same performance for artifacts. DBMF is the filter that works 

in two stages. The first stage decides whether the pixel is noisy or non-noisy and the 

second stage replaces the noisy pixel with its median value. This filter maintains the 

quality of image details while denoising it for the low level of noise. This filter does 

not perform in the same manner for the high level of noise. CWMF is window base 

technique, the algorithm provides the more weightage to center pixel values of the 

window.  This filter performs good for impulse noise like Salt & Pepper but does not 

achieve the same performance for artifacts. PSMF is a two-stage filter, the first stage 
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will identify the noisy and non-noisy pixels. The second stage filters the noisy pixel 

with an iterative mechanism due to which this method can preserve the edges of the 

image. The drawback of PSMF is it cannot maintain the same performance for noise 

apart from Salt & Pepper. ROAD-TGM also works with a two-stage procedure where 

stage one detects the noisy pixel by using ROAD algorithm and the second stage 

restores the noisy image with a median value of non-noisy pixels of the respective 

window. In this algorithm, restoration is performed by TGM method when the selected 

window does not have noise-free pixels. ROAD-TGM is also capable of detail 

preservation and can work on artifacts along with Salt & Pepper noise. IMF is one of 

the promising methods for Salt & Pepper noise, this method uses iterative process for 

denoising of image. It works on a fixed window which increase the operational speed 

but limits its proximity to original pixel in case of high noise. 

The wavelets and principal component analysis (PCA)[111] are examples of transform 

base procedures. Some algorithms based on transforms are Bayes least squares with a  

Gaussian  scale-mixture (BLS-GSM)[112], dictionary learning (DL)[113], [114] based 

denoising etc. BLS-GSM algorithm performs well for a different level of noise but due 

to a fixed wavelet basis, it does not maintain structural integrity. These stated problems 

were resolved in DL method by replacing fixed bases with adaptive bases and provides 

better spatial image representation. PCA is one of the prominent techniques used 

together with other various algorithms to enhance their performance due to its 

dimension reduction abilities. In the dimension reduction process, PCA reduces random 

values by considering certain principle values. An example of such an algorithm is 

linear minimum mean square error estimation (LMMSE)[115] with PCA. Moreover, 

the best denoising performance with detail preservation can be achieved by combining 

the advantages of both the spatial domain and transform domain-based techniques. 

Some efforts are already made in this field i.e. block-matching 3-D shape-adaptive 

principle component analysis (BM3DSAPCA)[116] where the performance of BM3D 

is enhanced by PCA. As the PCA method estimates the unknown level of noise in the 

image without considering any prior information, its estimation may deviate from the 

original noise value. So, it is required that a performance booster method for estimation 

of original value should be designed to ensure the high quality of the denoised image. 
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Although these algorithms produce good results of denoising for a wide range of noise 

levels but due to above-stated issues they introduce blurring effect in the resultant 

image. So, it becomes important to design a high-quality image denoising algorithm 

that can denoise the image by maintaining the high quality of visual information in the 

image.  

 

A set of parameters is always preferred to ensure and evaluate image quality produced 

by the image denoising algorithm. These parameters are Peak Signal to Noise Ratio 

(PSNR)[40], [61], [117], Image Enhancement Factor (IEF)[19], [109], [118] and 

Structural Similarity (SSIM)[51], [61], [119], [120]. To conclude the issues of image 

denoising we can summarize the issues in two stages, first an algorithm with qualities 

of spatial domain and transform domain is need of the hour to achieve high noise 

detection accuracy. Second, a performance booster algorithm is required to ensure the 

proximity of randomly estimated values to the original value for enhancing the quality 

of the restoration stage of the denoising process.  

 

The proposed algorithm addresses these issues by providing multi-domain base 

denoising with a performance booster algorithm to ensure high-quality denoising. The 

algorithm is based on ROAD-TGM with progressive PCA [114], [121], [122] to 

achieve detail preservation with accurate denoising. We are utilizing the ability of 

ROAD-TGM to denoise images affected by a wide range of noise and artifacts. But due 

to the estimation of restored values using the median and mean function in ROAD-

TGM, the values may deviate from the original value with a significant margin which 

gives us a scope of increasing the proximity of estimated value to the original value. To 

achieve better prediction of the noisy values, the algorithm is also including the random 

value estimation ability of progressive PCA. To maintain the estimation of restored 

values close to original values, we propose a performance booster algorithm. The 

performance booster algorithm first uses the hard threshold to eliminate the extreme 

estimation and then uses a set of similarity mapping steps to maintain the proximity of 
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restored value with original value without having any prior information of original 

value.  

This chapter makes two Substantial contributions: 

1. In this chapter, we present an effective detection method which can estimate both 

noise (Salt & Pepper noise) and artifacts (Strip lines and Blotches). The proposed 

method is based on the amalgamation of ROAD-TGM or SAID END with progressive 

PCA. 

2. For enhanced restoration, we propose a performance booster algorithm using a 

window base systematic thresholding and similarity index evaluation. The proposed 

algorithm can automatically identify the suitable value for noisy pixel restoration in the 

image. Due to which it enhances the proximity to the original values. 

5.2 Preliminaries 

This section briefly describes the image denoising methods used in this analysis as well as form 

the theoretical basis for this chapter. The image denoising algorithms are mainly categories as 

transform domain and spatial domain. The features of spatial and transform domain algorithms 

are effectively incorporate in the proposed algorithm to ensure desired performance. 

A. ROAD-TGM (Ranked Order Absolute Difference with Trimmed Global Mean) 

This method uses ROAD algorithm to detect the location of noisy pixels and restore it by using 

a median of non-noisy values. In case all of the pixels in the selected window are noisy then 

restoration is applied by using TGM[8]. Let’s understand this process in detail. Consider 𝒍 =

(𝒓, 𝒄) be the location of the pixel under evaluation. Window size should always be odd as the 

window will be centered around the pixel 𝒄𝒑. The set of pixels in a window size of 

(𝟐𝒏 + 𝟏) × (𝟐𝒏 + 𝟏) are represented by 𝝋. Here 𝒏 is positive integer 𝒏 ≥ 𝟏. 

𝝋(𝒏) = {𝒄𝒑 + (𝒊, 𝒋) ∶  −𝒏 ≤ 𝒊, 𝒋 ≤ 𝒏}       (1) 

To be specific let’s consider 𝒏 = 𝟐 and under this condition the total number of pixels in the 

𝟓 × 𝟓 window. 

𝝋∗ = 𝝋(𝟓)          (2) 
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To create the difference vector from a matrix 𝝋∗ , the absolute difference of  𝒄𝒑 intensity value 

in the window is calculated with its neighbors 𝝋𝒍𝟏,𝒍𝟐
∗ .Absolute difference vector is represented 

as 𝑫𝒍𝟏,𝒍𝟐 and its give below. 

𝑫𝒍𝟏,𝒍𝟐 = |𝝋𝒍𝟏,𝒍𝟐
∗ − 𝒄𝒑|         (3) 

Sort the difference vector 𝑫𝒍𝟏,𝒍𝟐 and arrange it in increasing order to create 𝑰𝑫. Then ROAD 

can be calculated by using equation 4. 

𝑹𝑶𝑨𝑫𝑵(𝒍) = ∑ 𝑰𝑫(𝒍)𝑵
𝒊=𝟏         (4) 

Where 𝟐 ≤ 𝑵 ≤ 𝟕 

ROAD algorithm provides information about closeness of neighbor pixels to its center pixel  

𝒄𝒑. ROAD algorithms work on a basic concept that in natural images pixel intensity in a 

selected area is close to each other and any random noise proves to have high variation in 

comparison to original values. 

Trimmed global mean (TGM) algorithm detects the noisy pixels by using a hard threshold. On 

grayscale image intensity level pixel 𝑿(𝒓, 𝒄) is declared as corrupted pixels, if this pixel is not 

in the range of 𝟎 ≤ 𝑿(𝒓, 𝒄) ≤ 𝟐𝟓𝟓. If all the neighbor pixels to 𝒄𝒑 are non-corrupted then 

median of non-corrupted neighbor is calculated and replace the 𝒄𝒑 location value with the 

calculated value. In the case of image affected by a higher level of noise, it is possible that no 

neighbor is have non-corrupted value. In this case 𝒄𝒑 (noisy center pixel of the window) is 

replaced by TGM. TGM is calculated by ignoring all the corrupted values of an image and 

taking the mean of all non-corrupted values image. TGM is only preferred in this algorithm 

when the entire values of the selected window are corrupted. 

B. Progressive PCA 

The Progressive PCA is based on a two-stage sequential process. In the first stage, the algorithm 

divides the given image into equal or size varying partitions (equal size of partitions are 

preferred) to create non-overlapping subpartitions of the image. In the second stage of the 

algorithm, the PCA is progressively applied to subsets generated in the first stage[121]. For 

more understanding let’s assume a set of patterns are given in variable 𝑰𝒎, expressed as below. 

𝑰𝒎 = {𝑰𝒎𝟏, 𝑰𝒎𝟐, 𝑰𝒎𝟑,……,𝑰𝒎𝑵}        (5) 
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Each column of given variable 𝑰𝒎 is expressed as a column vector 𝑰𝒎𝒊(𝒊 = 𝟏, 𝟐, 𝟑, . . . . . , 𝑵). 

As we already know that the task of first stage is to divide the given information into X y-

dimensional non-overlapping subsets to form d by X matrix.  

𝑰𝒎𝒊 = {𝑰𝒎𝒊𝟏, 𝑰𝒎𝒊𝟐, 𝑰𝒎𝒊𝟑,……,𝑰𝒎𝒊𝑿}       (6) 

With  

𝑰𝒎𝒊𝒋 = (𝑰𝒎𝒊((𝒋−𝟏)𝒚+𝟏), . . . . . , 𝑰𝒎𝒊(𝒋𝒚))
𝑻

       (7) 

 

 

Figure 5.1. The flowchart of the proposed algorithm.  

As considered 𝒋𝒕𝒉 subset of 𝑰𝒎𝒊 where 𝒊 = 𝟏, 𝟐, 𝟑, … . , 𝑵 and 𝒋 = 𝟏, 𝟐, 𝟑, … . , 𝑿. After 

the competition of the first step, the PCA is applied to subsets progressively. The 

progressive approach is implemented by applying PCA  to subsets from left to 

right.𝐏𝐂𝐀𝟏 is obtained by performing the second stage on the first subset 

{𝑰𝒎𝟏𝟏, 𝑰𝒎𝟐𝟏, 𝑰𝒎𝟑𝟏,……,𝑰𝒎𝑵𝟏} and obtain the respective reduced subset 

{𝑹𝒊𝒎𝟏𝟏, 𝑹𝒊𝒎𝟐𝟏, 𝑹𝒊𝒎𝟑𝟏,……,𝑹𝒊𝒎𝑵𝟏}. The subset formed in 𝐏𝐂𝐀𝟏 are shown in 

equation 8. 

{(
𝑹𝒊𝒎𝟏𝟏

𝑰𝒎𝟏𝟏
) , (

𝑹𝒊𝒎𝟐𝟏

𝑰𝒎𝟐𝟏
) , (

𝑹𝒊𝒎𝟑𝟏

𝑰𝒎𝟑𝟏
) , … . . , (

𝑹𝒊𝒎𝑵𝟏

𝑰𝒎𝑵𝟏
)}     (8) 
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Then these generated subsets are used to argument the directionality of new subsets, 

which are going to be the base of the next step of the progressive stage to form 𝐏𝐂𝐀𝟐 . 

So, by using similar steps we can form  𝐏𝐂𝐀𝒙 where 𝒙 ≤ 𝑿. 

5.3 Implementation of Proposed Algorithm 

The proposed algorithms work in two sequential stages. In the first stage algorithm 

work on the primary objective of estimating the noise location in the image. Then the 

second stage works on identifying the suitable value for the restoration of noisy pixel 

locations to achieve higher efficiency of denoising and detail preservation. The 

denoised image is obtained as a result of a combination of these two stages, where stage 

one ensures the accurate detection of noisy pixels and stage two ensures the pixel value 

restoration similar to the original value to obtain high accuracy with least distortion to 

details. 

 

A. Amalgamation of ROAD-TGM  and  Progressive  PCA  for  Global  Noise 

Detection 

 The key parameter in the process of image denoising is noise estimation. To denoise 

the image affected by the noise, it is required to identify the location of noise in the 

image. The various method has been devolved in the spatial domain and transform 

domain. To achieve high accuracy of noise location detection. But these algorithms do 

have the scope of improvement, as the problem of over and under detection exists. We 

address this issue by the proposed algorithm by verifying the detected noisy pixel 

location for high accuracy. The verification process carried out by using the individual 

resultant images of both the algorithm's ROAD-TGM and progressive PCA. 

Noisy image α with noise level β (1≤β≤ 8) is given as input to ROAD-TGM and 

progressive PCA algorithms for produce denoising image as a response.  For the image 

denoising analysis Salt & Pepper noise, Blotch artifacts and Strip lines artifacts are used 

to produce noisy dataset Ð containing noisy images α. The noisy dataset Ð is expressed 

in equation 9. 
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 Ð  =  [ α1,  α2,  α3, . . . ,  α𝑛]           (9) 

 

Let the subscript â and ê are denoised images produced by ROAD-TGM and 

progressive PCA algorithms respectively. To achieve enhanced performance, it is 

required to ensure the accuracy of the noisy pixel detection stage. The unsupervised 

noise detection stage is designed for validation of noise estimation and it is achieved 

by equation 10-11. 

 

Φ =|â − ê|                    (10) 

Φ𝑚= {0 ,     0 < Φ ;  otherwise 1                (11) 

 

Where Φ is difference matric reflecting the two cases. The case one contains zero values 

indicating original values with no change and case two contains non zero values 

representing noisy pixel location. This works on a fact that every algorithm works on 

different parameters which lead to similar yet different restored values of the pixel. 

Therefore, noise estimation accuracy increases as noisy pixel may remain undetected 

by ROAD-TGM may get detected by progressive PCA algorithms or vice-versa will 

get reflected in matrix Φ. Φ can be converted into a binary map  Φ𝑚 by using equation 

11. The binary map  Φ𝑚 is an effective way to indicate the verified noisy pixel location 

on image â and ê by Determine Φ𝑝 according to (13); 

 

 Φ𝑟 =  Φ𝑚 × â                              (12) 

 Φ𝑝 =  Φ𝑚 × ê                   (13) 
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The matrix  Φ𝑝 and  Φ𝑟 are the superimposed noise maps with respect to ROAD-TGM 

and progressive PCA respectively. Further, these superimposed noise maps produced 

by enhanced detection stage are used in the noise restoration stage for forming the non-

overlapping windows. The enhanced detection stage process is concluded in Algorithm 

1. 

 

Algorithm 1 Enhanced Noise Detection Algorithm 

 

Input: Noisy image data set Ð. 

Output: The noise location map  Φ𝑟, Φ𝑝; 

1: Input selection: Noisy image  α1  with noise level β from data set Ð. 

2: ROAD-TGM: Do ROAD-TGM on image to get â. 

3: Progressive PCA: Do: Progressive PCA on the image to get ê. 

4: for both image matrix𝑠  â, ê do 

5:  Determine Φ according to (11); 

6:  Determine Φ𝑚 according to (12); 

7:  Determine Φ𝑟 according to (13); 

8:  Determine Φ𝑝 according to (14); 

9: End for 

10: Return  Φ𝑟, Φ𝑝. 
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B. Adaptive Performance Booster Method 

Once the detection stage identifies the location of the noisy pixel. Non-overlapping 

windows are formed by considering the noisy pixel location in the center of the matrix. 

Let’s consider the total number of detected noisy pixels as ñ. Therefore, the noisy pixel 

locations of the image 𝜱𝒑 and  𝜱𝒓  are used to divided â and ê into ñ patches of 3 × 3 

to ensure high-speed operation of the algorithm. The subscript š and ž represent ñ 

patches of image â and ê represented using equation 14-15.  

 

 š = [𝒑𝟏, 𝒑𝟐, 𝒑𝟑, . . . , 𝒑ñ ]                (14) 

 ž = [𝒓𝟏, 𝒓𝟐, 𝒓𝟑, . . . , 𝒓ñ ]                (15) 

where both 𝒑𝟏 𝒂𝒏𝒅  𝒓𝟏 are 3 × 3 dimensional patches of image 𝜱𝒑 and  𝜱𝒓 

respectively.  

To achieve a higher performance of the restoration stage algorithm, we need to decrease 

the difference between the original pixel value and restored pixel value. Therefore, the 

algorithm eliminates the noisy values for pixel restoration by using sequential 

thresholding. The sequential hard thresholding is important to eliminate the cases where 

ROAD-TGM or progressive PCA restored a noisy value due to all noisy neighbors.  

The center value of the patch matrix  𝒑ñ and 𝒓ñ are validated by sequential hard 

thresholding. The selected value is considered only if it satisfies the conditions given 

in equation 16-19 and similarly hard thresholding can be applied for 𝒓ñ. 

 

𝒑ñ(𝟐, 𝟐)  ≠  𝟐𝟓𝟓                 (16) 

𝒑ñ(𝟐, 𝟐) ≠  𝟎                  (17) 

𝒑ñ(𝟐, 𝟐) ≠ 𝒎𝒂𝒙(ê)                  (18) 

𝒑ñ(𝟐, 𝟐)  ≠ 𝒎𝒊𝒏 ( ê )                 (19) 
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These sequential thresholds eliminate noisy restored value in case of Salt & Pepper, 

Strip lines and Blotches. To maintain the denoising performance under influence of  

high level of noise, additional hard thresholding conditions are required, so in this case 

thresholding is computed by using equations 20-22.  

(𝒑ñ(𝟐, 𝟐)−𝒓ñ(𝟐, 𝟐)) < Ø                 (20) 

∑(𝒑ñ − 𝒑ñ(𝟐, 𝟐)) < Ø                    (21) 

∑(𝒓ñ − 𝒓ñ(𝟐, 𝟐)) < Ø                    (22) 

Subscript Ø = 𝟐𝟎 represents the threshold for the highly noise affected case in this 

simulation. To enhance the value of the restored pixel, the difference between the 

original and restored value is required to minimize. Subscript K is weight to control the 

pixel value estimation, for this simulation K is having a range from 1 to10. Algorithms 

produce a set of tentative (T) original values by using equations 23-26. 

𝑻𝟏 = |(|𝒑ñ(𝟐, 𝟐) −  𝒓ñ(𝟐, 𝟐)|/𝑲)+𝒑ñ(𝟐, 𝟐)|              (23) 

𝑻𝟐 = |(|𝒑ñ(𝟐, 𝟐) −  𝒓ñ(𝟐, 𝟐)|/𝑲)−𝒑ñ(𝟐, 𝟐)|              (24) 

𝑻𝟑 = |(|𝒑ñ(𝟐, 𝟐) −  𝒓ñ(𝟐, 𝟐)|/𝑲)+𝒓ñ(𝟐, 𝟐)|              (25) 

𝑻𝟒 = |(|𝒑ñ(𝟐, 𝟐) −  𝒓ñ(𝟐, 𝟐)|/𝑲)−𝒓ñ(𝟐, 𝟐)|              (26) 

The next set of tentative original values are computed by considering the deviation 

percentage into account using equation 31-38. The subscript 𝑫𝑷Ñ represent the 

deviation percentage, utilized to form subscript 𝑫𝒓  and 𝑫𝒑  which represents the 

absolute difference vector with respect to ROAD-TGM and progressive PCA 

respectively. The vector  𝑫𝒗𝒓  and 𝑫𝒗𝒑  are form similar to equation 3. The combined 

dataset of all 𝑫𝒓  and 𝑫𝒑  values for ñ windows is form by using equation 27-30. 

𝑫𝒗𝒓 =  [𝑫𝒓𝟏, 𝑫𝒓𝟐, 𝑫𝒓𝟑, . . . , 𝑫 𝒓ñ ]                  (27) 

𝑫𝒗𝒑 =  [𝑫𝒑𝟏, 𝑫𝒑𝟐, 𝑫𝒑𝟑, . . . , 𝑫 𝒑ñ ]                  (28) 
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𝑫𝑷ñ = (|𝒎𝒊𝒏(𝑫𝒗𝒑𝟏,ñ
)/𝒎𝒂𝒙(𝑫𝒗𝒑𝟏,ñ

)| × 𝟏𝟎𝟎) / 𝑲               (29) 

𝑫𝑹ñ = (|𝒎𝒊𝒏(𝑫𝒓𝒑𝟏,ñ
)/𝒎𝒂𝒙(𝑫𝒓𝒑𝟏,ñ

)| × 𝟏𝟎𝟎) / 𝑲               (30) 

𝑻𝟓 = |𝒓ñ(𝟐, 𝟐)  + 𝑫𝑹ñ|                  (31) 

𝑻𝟔 = |𝒑ñ(𝟐, 𝟐) +  𝑫𝑷ñ|                  (32) 

𝑻𝟕 = |𝒓ñ(𝟐, 𝟐) −  𝑫𝑹ñ|                  (33) 

𝑻𝟖 = |𝒑ñ(𝟐, 𝟐) − 𝑫𝑷ñ|                  (34) 

𝑻𝟗 = |𝒑ñ(𝟐, 𝟐) −  𝑫𝑷ñ| + Ö                  (35) 

𝑻𝟏𝟎 = |𝒓ñ(𝟐, 𝟐)  −  𝑫𝑹ñ| + Ö                 (36) 

𝑻𝟏𝟏 = |𝒑ñ(𝟐, 𝟐) +  𝑫𝑷ñ| – Ö                  (37) 

𝑻𝟏𝟐 = |𝒓ñ(𝟐, 𝟐)  +  𝑫𝑹ñ| – Ö                 (38) 

 

Subscript Ö is the weight for generation of tentative original values, where Ö is having 

a range from 1 to 10. These tentative original pixel values are then evaluated by 

computing similarity 𝑺𝑭𝒓  (similarity with respect to ROAD-TGM) with its neighbor 

pixels by using equation 39-40. 

 

𝑺𝑭𝒓=SSIM (š, 𝑻𝒏)                  (39) 

Where  

SSIM =  
(2𝐴𝑥𝐴𝑦+𝐵1)(2𝐶𝑥𝑦+𝐵2)

(𝐴𝑥
2+𝐴𝑦

2 +𝐵1)(𝐶𝑥
2+𝐶𝑦

2+𝐵2)
               (40) 

To evaluate the proximity between two images SSIM is computed. The evaluation of 

SSIM computed between tentative original pixel values Tn and all the immediate 
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neighbor’s noisy pixel location available in š to ensures the proximity of restored value 

to the original value. The subscript 𝐴𝑥 𝑎𝑛𝑑  𝐴𝑦 are the mean of two different images x 

and y. Constant B1 and B2 are utilized to maintain stability. 𝐶𝑥𝑦 is covariance computed 

from image x and y. The subscript 𝐶𝑥
2 𝑎𝑛𝑑 𝐶𝑦

2 represents the variance of images x and 

y respectively. The Tn having maximum similarity is used to restore the noisy pixel 

location in image â  which provide enhanced restoration with detail preservation. The 

performance booster algorithm stage process is concluded in Algorithm 2. 

 

 

Algorithm 2 Performance Booster Algorithm 

 

Input: Superimposed noise map images  Φ𝑟, Φ𝑝. 

Output: The noise location map SFr 

1: Input selection: Noise map images  Φ𝑟, Φ𝑝.  

2: Patch extraction: segment the image into ñ patches by using 3×3   window to form š 

and ž.  

3: Sequential thresholding: Do sequential thresholding on š and ž to eliminate noisy 

values; If condition 16-12 satisfy, consider value for computing tentative original 

values; otherwise, no change. 

4: Estimation set 1: Do original pixel value estimation to get tentative original value set 

1 according to (23-26). 

5: For preliminaries of estimation set 2, do. 

6: Determine 𝐷𝑣𝑟 according to (28); 

7: Determine 𝐷𝑣p according to (28); 
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8: Determine 𝑫𝑷ñ according to (29); 

9: Determine 𝑫𝐑ñ according to (30); 

10: End for 

11: Estimation set 2: Do original pixel value estimation to get tentative original value 

set 1 according to (31-38). 

12: Determine SFr according to (39,40); 

13: Return SFr 

 

 

5.4 Experimental Results and Analysis 

In this section, the effectiveness of the proposed algorithm is verified in two stages first 

by comparing it with MF, PSMF, CWMF, DBMF and ROAD-TGM. The proposed 

algorithm is tested for a vast data set of gray and color images. These images are 

affected by eight increasing steps of noise to ensure the robustness of the algorithm. 

Both color and grayscale images are affected with Salt & Pepper noise, Strip line 

artifact and Blotch artifact to form noisy data set. The Salt & Pepper noise is applied to 

images in the range of 10% to 80 % with equal eight steps to form the noisy dataset-1. 

To form the noisy dataset-2 for images affected with Strip lines, a set of vertical and 

horizontal Strip lines are formed on the image with a width of 2 pixels to 9 pixels 

(equally separated eight steps). Similarly, for noisy dataset-3, Blotch artifacts are 

applied on images with eight steps of square shape starting from 2×2 pixels wide shape 

to 9×9 pixels wide shape. The raw dataset used in this analysis contains 16 color images 

and 50 grayscale images. The images employed in this experimental analysis are of 256 

× 256 size. The color images are from the University of South California miscellaneous 

dataset volume 3[67] and grayscale images from the Brodatz texture[68] dataset. 

Secondly, the proposed method is tested for grayscale Lena and Peppers traditional test 

image affected with 10% to 90% Salt & Pepper noise. Then the proposed method is 
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compared with the recent state-of-the-art IMF algorithm for impulse noise reduction. 

This comparison is evaluated by computing PSNR and SSIM. The traditional images 

employed in the second experimental analysis are of 512 × 512 size. 

The experimental simulations are run with software MATLAB with 1.70 GHz Intel 

Core i5 with 8GB RAM. In this analysis, we set the threshold for high level of noise 

affected images  Ø is set to 20. As discussed above weight variable is set as K=2 and 

weight for original tentative value is set to Ö = 5. 

The denoising effect of the image denoising algorithm can be inspected by parameter 

PSNR. The PSNR is measured in decibels (dB) as it is computed by ratio of maximum 

possible power of a signal to the destructive noise power. High the value of PSNR 

indicates better performance and the low value of PSNR indicates poor performance 

for a denoising algorithm. The PSNR can be computed by using equation 41 and 42. 

 

PSNR=  10 𝑙𝑜𝑔 
2552

𝑀𝑆𝐸
                  (41) 

 

MSE=
1

𝐼×𝐽
∑ ∑ [𝑎𝑑(𝑥, 𝑦) − 𝑎0(𝑥, 𝑦)]2𝐽

𝑦=1
𝐼
𝑥=1                (42) 

 

Where MSE is mean square error and the original image is represented with subscript  

𝑎0(𝑥, 𝑦) with size I×J. 
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(a) 

 
        (aa)            (ab)            (ac)        (ad)    (ae)            (af)              (ag)             

          

        (ba)             (bb)             (bc)         (bd)     (be)             (bf)             (bg)             

       (ca)             (cb)      (cc)          (cd)      (ce)             (cf)              (cg)             

 

Figure 5.2. (a) Original color image, (aa) Color image corrupted by 60% Salt & Pepper 

noise, (ba) Color image corrupted by 6*6 pixel Blotches artifacts, (ca) Color image 

corrupted by 6 pixel wide Strip line  artifact,(ab–cb) Image restored using MF from 

(aa–ca), (ac–cc) Image restored using the PSMF from (aa–ca), (ac–cd) Image restored 

using the CWMF from (aa–ca), (ae–ce) Image restored using the DBMF from (aa–ca), 

(af–cf) Image restored using the ROAD-TGM from (aa–ca), (ag–cg) Image restored 

using the Proposed algorithm from (aa–ca). NB: MF, Median filter; PSMF, Progressive 

Switching Median Filter; CWMF, Center Weighted Median Filter; DBMF, Decision-

Based Median Filter; and ROAD-TGM, Rank-Ordered Absolute Differences Trimmed 

Global Mean Filter.  
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(a) 

     (aa)              (ab)            (ac)        (ad)    (ae)            (af)              (ag) 

 

 
      (ba)              (bb)             (bc)         (bd)     (be)             (bf)             (bg)            

      

 
      (ca)             (cb)             (cc)          (cd)      (ce)             (cf)              (cg)             

    

Figure 5.3. (a) Original texture image, (aa) Texture image corrupted by 60% Salt & 

Pepper noise, (ba) Texture image corrupted by 6*6 pixel Blotches artifacts, (ca) Texture 

image corrupted by 6 pixel wide Strip line  artifact,(ab–cb) Image restored using MF 

from (aa–ca), (ac–dc) Image restored using the PSMF from (aa–ca), (ad–cd) Image 

restored using the CWMF from (aa–ca), (ae–ce) Image restored using the DBMF from 

(aa–ca), (af–cf) Image restored using the ROAD-TGM from (aa–ca), (ag–cg) Image 

restored using the Proposed algorithm from (aa–ca). NB: MF, Median filter; PSMF, 

Progressive Switching Median Filter; CWMF, Center Weighted Median Filter; DBMF, 

Decision-Based Median Filter; and ROAD-TGM, Rank-Ordered Absolute Differences 

Trimmed Global Mean Filter.  
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The denoised image formed as a result of the denoising algorithm is represented as 

𝑎𝑑(𝑥, 𝑦). To perceive the improvement of the denoised image the parameter IEF is 

computed using equation 45. 

 

𝑉𝑂= 
1

𝐼×𝐽
∑ ∑ [𝑎𝑛(𝑥, 𝑦) − 𝑎0(𝑥, 𝑦)]2𝐽

𝑦=1
𝐼
𝑥=1                (43) 

𝑉𝐷= 
1

𝐼×𝐽
∑ ∑ [𝑎𝑑(𝑥, 𝑦) − 𝑎0(𝑥, 𝑦)]2𝐽

𝑦=1
𝐼
𝑥=1                (44) 

IEF =  𝑉𝑂 𝑉𝐷⁄                    (45) 

 

MSE is computed for calculation of IEF, as discussed earlier 𝑎0(𝑥, 𝑦) is original image 

and 𝑎𝑑(𝑥, 𝑦) is a denoised image. The subscript 𝑎𝑛(𝑥, 𝑦) represents the noisy image. 

An increase in the value of IEF reflects the better performance of the denoising 

algorithm. The third parameter used to evaluate the performance of the proposed 

denoising algorithm based on the similarity of the denoised image with the original 

image. This parameter is SSIM and it is computed by using equation 40. The computed 

value of SSIM is having a range of zero to one. In this range value, one indicates perfect 

similarity which is only possible in the case of same images. To meet the objective 

detail preservation, evaluation of denoised image can be performed by analyzing the 

SSIM, the PSNR and IEF. For the first comparison (vast noise data set of color and 

grayscale image), a sample of pictorial results of color image and grayscale image 

denoising are presented for visual evaluation in Fig. 5.3 – Fig. 5.4, respectively. The 

proposed algorithm has less over-smoothing and better detail preservation than the 

algorithms in comparison. For Salt & Pepper noise ROAD-TGM reduces the noise to a 

considerable level with low blurring but it is still inferior to the proposed algorithm. 

For artifacts, proposed algorithm had achieved far better performance than other state-

of-the-art algorithms in comparison. The proposed algorithm had achieved better noise 

estimation and accurate noise restoration. The result of PSNR, SSIM and IEF for color 

denoised images shown in Fig.5.3 are presented in Table 5.1, which shows the 

superiority of the proposed algorithm in terms of noise reduction and detail 

preservation. Similarly, for grayscale texture image (Fig. 5.4) results are shown in Table 

5.2.  
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Table 5.1 Results of the PSNR, SSIM and IEF of the denoised color images (shown in 

Fig.5.3) with different types of algorithms. 

 

 

Table 5.2 Results of the PSNR, SSIM and IEF of the denoised grayscale texture images 

(shown in Fig.5.4) with different types of algorithms. 

 

PSNR SSIM IEF PSNR SSIM IEF PSNR SSIM IEF PSNR SSIM IEF PSNR SSIM IEF PSNR SSIM IEF

10% 28.31 0.93 21.91 28.41 0.94 22.77 25.27 0.86 29.77 29.49 0.79 29.03 34.50 0.97 75.05 39.07 0.98 90.93

20% 25.52 0.87 23.07 25.63 0.88 23.49 24.91 0.85 27.15 24.58 0.61 18.61 30.80 0.94 66.75 35.51 0.96 77.81

30% 21.23 0.67 12.95 22.41 0.75 17.02 24.45 0.84 22.49 21.25 0.47 12.98 28.02 0.92 67.76 34.26 0.94 72.22

40% 17.58 0.43 7.42 19.47 0.53 11.48 23.60 0.81 20.32 18.73 0.38 9.75 25.31 0.89 43.87 34.12 0.92 69.19

50% 14.13 0.24 4.19 16.27 0.33 6.87 21.42 0.69 10.99 16.74 0.31 7.67 22.43 0.73 28.37 33.83 0.90 63.89

60% 11.42 0.14 2.71 13.44 0.20 4.31 17.53 0.44 10.97 14.99 0.24 6.16 19.38 0.50 16.88 33.30 0.85 59.43

70% 9.38 0.08 1.96 10.66 0.12 2.65 13.15 0.19 4.71 13.53 0.19 5.11 17.49 0.36 12.73 32.58 0.83 50.34

80% 7.49 0.05 1.45 8.39 0.06 1.79 9.86 0.08 2.50 12.25 0.13 4.34 16.47 0.34 11.54 31.90 0.80 41.07

2x2 30.72 0.92 0.46 30.58 0.94 0.46 25.56 0.87 0.21 49.87 0.95 3.48 59.86 0.96 63.56 64.82 0.97 77.84

3x3 28.50 0.90 0.41 29.51 0.93 0.40 24.54 0.85 0.17 44.27 0.93 2.16 58.00 0.95 63.45 62.40 0.96 72.23

4x4 27.19 0.88 0.35 28.06 0.91 0.34 23.46 0.82 0.14 40.75 0.93 1.74 56.93 0.93 61.06 60.57 0.95 66.63

5x5 26.82 0.85 0.29 27.70 0.90 0.28 22.34 0.80 0.11 38.21 0.91 1.53 54.25 0.93 56.09 58.29 0.94 61.48

6x6 24.44 0.81 0.22 26.33 0.88 0.22 21.19 0.79 0.08 36.37 0.86 1.42 53.78 0.92 49.91 55.22 0.93 50.96

7x7 23.03 0.79 0.15 25.93 0.87 0.15 20.04 0.77 0.05 34.89 0.84 1.35 51.83 0.91 47.47 53.60 0.92 42.55

8x8 21.62 0.77 0.09 23.52 0.86 0.09 19.86 0.75 0.03 33.61 0.82 1.29 48.78 0.90 35.34 51.41 0.91 36.64

9x9 20.19 0.75 0.04 22.11 0.85 0.04 17.68 0.74 0.01 32.52 0.80 1.26 47.16 0.89 32.07 49.47 0.90 34.75

2 16.60 0.78 0.99 16.59 0.78 0.99 21.19 0.82 2.74 19.64 0.84 1.92 36.64 0.96 95.99 43.73 0.97 56.52

3 14.93 0.75 0.99 14.93 0.75 0.99 14.65 0.68 0.97 16.75 0.81 1.47 34.41 0.94 85.71 42.05 0.96 48.85

4 13.74 0.73 0.99 13.73 0.73 0.99 13.52 0.66 0.96 15.03 0.78 1.31 31.92 0.91 64.19 41.15 0.92 43.01

5 12.80 0.70 0.98 12.80 0.70 0.98 12.63 0.64 0.96 13.81 0.76 1.24 28.85 0.89 39.45 40.52 0.91 39.86

6 12.03 0.68 0.98 12.03 0.68 0.98 11.89 0.61 0.95 12.86 0.73 1.19 27.11 0.85 31.67 39.77 0.87 38.64

7 11.38 0.66 0.98 11.38 0.65 0.97 11.26 0.59 0.94 12.08 0.71 1.16 25.85 0.84 27.57 39.64 0.86 37.18

8 10.82 0.63 0.97 10.82 0.63 0.97 10.72 0.57 0.93 11.42 0.68 1.13 24.91 0.80 25.30 39.77 0.82 36.86

9 10.33 0.61 0.95 10.33 0.61 0.95 10.24 0.55 0.91 10.85 0.66 1.12 24.16 0.78 23.91 39.88 0.80 34.18

Blotchs 

Artifact

Strip 

lines 

Artifact

DBMF ROAD-TGM ROAD TGM-PPCA-PB

Salt & 

Pepper 

noise

Noise  

Type

Noise 

level

MF PSMF CWMF

PSNR SSIM IEF PSNR SSIM IEF PSNR SSIM IEF PSNR SSIM IEF PSNR SSIM IEF PSNR SSIM IEF

10% 17.32 0.78 2.85 17.17 0.77 2.48 13.74 0.35 2.46 22.78 0.95 6.16 24.78 0.97 9.44 26.73 0.97 14.35

20% 16.13 0.73 2.64 15.95 0.71 2.38 13.48 0.34 2.36 19.52 0.89 5.65 21.06 0.92 7.90 23.22 0.95 13.73

30% 14.80 0.66 2.54 14.82 0.65 2.35 13.14 0.32 2.33 16.94 0.81 4.67 18.71 0.86 6.99 20.90 0.92 12.98

40% 13.24 0.57 2.25 13.43 0.57 2.04 12.70 0.30 2.02 14.90 0.71 4.00 16.82 0.78 6.10 19.22 0.88 12.03

50% 11.57 0.46 1.83 12.11 0.48 1.96 11.96 0.26 1.94 13.26 0.60 3.94 15.44 0.69 5.54 17.78 0.84 10.90

60% 9.84 0.33 1.68 10.46 0.36 1.58 10.94 0.20 1.57 12.28 0.48 3.69 14.13 0.59 4.88 16.56 0.78 9.86

70% 8.49 0.24 1.55 9.04 0.25 1.39 9.63 0.15 1.38 12.25 0.39 3.34 13.03 0.47 4.66 15.17 0.68 8.24

80% 7.07 0.13 1.29 7.61 0.15 0.74 7.90 0.08 0.74 11.98 0.30 3.21 12.68 0.33 4.45 13.71 0.56 6.54

2x2 18.32 0.61 0.10 19.42 1.71 0.10 16.32 0.36 0.04 44.06 0.94 1.69 47.81 0.96 4.68 45.29 0.97 5.72

3x3 17.30 0.58 0.08 18.40 1.68 0.08 15.30 0.36 0.03 40.74 0.91 1.58 42.87 0.92 4.02 43.10 0.94 5.00

4x4 16.27 0.53 0.07 17.37 1.63 0.06 14.27 0.36 0.03 38.10 0.88 1.58 39.76 0.88 3.89 40.42 0.90 4.83

5x5 15.20 0.52 0.05 16.30 1.62 0.05 13.20 0.36 0.02 35.00 0.84 1.57 38.94 0.85 3.75 39.72 0.87 4.62

6x6 13.12 0.48 0.03 14.22 1.58 0.03 11.12 0.36 0.01 32.52 0.79 1.38 37.83 0.82 3.65 38.53 0.83 3.67

7x7 11.04 0.47 0.02 12.14 1.57 0.02 9.04 0.36 0.01 30.85 0.71 1.26 35.46 0.77 3.11 36.75 0.80 2.88

8x8 10.97 0.42 0.01 12.07 1.52 0.01 8.97 0.36 0.00 29.63 0.66 1.23 33.72 0.73 2.58 34.31 0.76 2.60

9x9 9.88 0.40 0.00 10.98 1.50 0.00 7.88 0.36 0.00 28.64 0.61 1.21 33.78 0.71 2.48 34.78 0.75 1.88

2 14.03 0.72 0.89 13.98 0.71 0.89 12.66 0.33 0.75 18.82 0.92 1.81 23.67 0.96 5.53 25.71 0.97 10.23

3 12.95 0.69 0.88 12.91 0.68 0.87 11.13 0.30 0.72 16.02 0.88 1.42 21.46 0.93 5.45 23.14 0.95 8.84

4 12.07 0.66 0.86 12.04 0.66 0.85 10.58 0.29 0.69 14.35 0.85 1.28 19.84 0.90 5.27 21.68 0.94 8.51

5 11.37 0.64 0.83 11.34 0.63 0.83 10.11 0.28 0.65 13.13 0.82 1.21 19.06 0.87 5.11 20.21 0.91 7.45

6 10.79 0.62 0.80 10.77 0.61 0.80 9.71 0.27 0.60 12.24 0.79 1.16 18.57 0.84 5.00 19.28 0.89 7.30

7 10.29 0.60 0.76 10.26 0.59 0.75 9.34 0.26 0.54 11.51 0.76 1.14 18.05 0.81 4.96 19.68 0.90 6.95

8 9.83 0.58 0.70 9.82 0.57 0.69 9.00 0.25 0.46 10.90 0.74 1.12 17.64 0.79 4.72 19.71 0.90 6.15

9 9.43 0.55 0.60 9.42 0.55 0.59 8.69 0.24 0.44 10.37 0.71 1.10 17.30 0.76 4.54 20.04 0.91 5.89

Blotchs 

Artifact

Strip 

lines 

Artifact

DBMF ROAD-TGM  ROAD TGM-PPCA-PB

Salt & 

Pepper 

noise

Noise  

Type

Noise 

level

MF PSMF CWMF
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Table 5.3 The mean value results of PSNR, SSIM and IEF of the denoised color and 

grayscale dataset with ROAD TGM-PPCA-PB and existing algorithms. 

 

 

Table 5.4 Results of the PSNR, SSIM of the denoised grayscale traditional images with 

proposed algorithms and state of art algorithms  

 

Mean PSNR 25.489 19.825 18.002 15.966 15.456 15.181

MeanSSIM 0.856 0.640 0.551 0.383 0.444 0.419

Mean IEF 63.009 17.960 9.158 7.007 5.736 4.818

Mean PSNR 49.611 44.214 36.299 19.442 22.636 22.713

MeanSSIM 0.999 0.998 0.997 0.525 0.765 0.770

Mean IEF 22.889 14.447 1.643 0.068 0.128 0.130

Mean PSNR 26.732 23.723 15.533 13.235 13.706 13.719

MeanSSIM 0.973 0.875 0.784 0.394 0.578 0.582

Mean IEF 23.197 10.688 1.278 0.781 0.841 0.844

Mean PSNR 39.282 23.700 19.170 21.323 18.733 17.403

MeanSSIM 0.933 0.756 0.531 0.694 0.574 0.513

Mean IEF 76.567 50.175 11.958 26.639 14.837 12.223

Mean PSNR 61.210 44.064 39.672 27.423 30.588 30.635

MeanSSIM 0.996 0.994 0.994 0.916 0.958 0.959

Mean IEF 27.179 15.670 1.533 0.164 0.292 0.294

Mean PSNR 42.568 27.876 16.300 15.402 15.048 15.051

MeanSSIM 0.970 0.939 0.788 0.711 0.734 0.735

Mean IEF 53.531 25.358 1.301 1.138 0.961 0.962

CWMF PSMF MF

Grayscale 

dataset 50 

images

Salt and 

Pepper                               

(10%-80%)

Blotchs                   

(2x2 - 9x9)

Strip l ines                  

(2 - 9)

Image 

type 
Noise type Parameter ROAD TGM-PPCA-PB Road-TGM

Color 

image 

dataset 16 

images

Salt and 

Pepper                

(10%-80%)

Blotchs                   

(2x2 - 9x9)

Strip l ines                  

(2 - 9)

DBMF

Test Image
10% 20% 30% 40% 50% 60% 70% 80% 90% Mean

PSNR 41.40 37.25 34.49 31.67 28.99 26.54 23.95 21.39 18.30 29.33

SSIM 0.9894 0.9759 0.9573 0.9293 0.8858 0.8280 0.7441 0.6379 0.5020 0.83

PSNR 42.97 39.29 36.84 34.94 33.21 31.64 30.22 28.53 25.93 33.73

SSIM 0.9902 0.9788 0.9655 0.9494 0.9304 0.9064 0.8770 0.8370 0.7620 0.91

PSNR — 31.43 29.50 27.62 26.39 — — — — 28.74

SSIM — — — — — — — — — —

PSNR 43.48 40.18 37.05 35.40 33.98 32.49 31.23 29.70 27.42 34.55

SSIM 0.9913 0.9796 0.9675 0.9541 0.9383 0.9183 0.8953 0.8623 0.8058 0.92

PSNR 44.26 41.46 38.96 36.88 34.59 33.23 32.28 30.47 28.22 35.59

SSIM 0.9927 0.9813 0.9736 0.9617 0.9473 0.9369 0.9155 0.8797 0.8423 0.94

PSNR 45.21 42.35 39.80 37.67 35.33 33.94 32.97 31.12 28.83 36.36

SSIM 0.9957 0.9842 0.9765 0.9646 0.9501 0.9397 0.9182 0.8823 0.8448 0.94

PSNR 46.11 43.20 40.60 38.42 36.04 34.62 33.63 31.74 29.41 37.08

SSIM 0.9967 0.9852 0.9863 0.9742 0.9596 0.9491 0.9274 0.8911 0.8532 0.95

PSNR 49.34 46.22 43.44 41.11 38.56 37.04 35.98 33.96 31.47 39.68

SSIM 0.9999 0.9883 0.9981 0.9859 0.9711 0.9605 0.9385 0.9018 0.8635 0.96

PSNR 40.65 36.9 34.32 31.72 29.32 26.83 24.11 21.37 18.15 29.26

SSIM 0.9825 0.9627 0.9396 0.9079 0.8687 0.8110 0.7355 0.6360 0.5085 0.82

PSNR 41.52 37.89 35.67 33.95 32.55 31.31 29.79 28.28 25.87 32.98

SSIM 0.9815 0.9606 0.9389 0.9131 0.8866 0.8541 0.8180 0.7719 0.7049 0.87

PSNR — 27.23 26.21 24.82 23.98 — — — — 25.56

SSIM — — — — — — — — — —

PSNR 41.83 38.59 36.65 35.14 33.9 32.69 31.43 30.01 27.88 34.24

SSIM 0.9858 0.9684 0.9504 0.9299 0.9091 0.8846 0.8572 0.8219 0.7700 0.90

PSNR 42.50 39.29 37.33 35.99 34.34 33.13 32.22 30.53 29.20 34.95

SSIM 0.9893 0.9834 0.9645 0.9405 0.9229 0.8982 0.8773 0.8496 0.8163 0.9158

PSNR 43.41 40.13 38.13 36.76 35.08 33.84 32.91 31.18 29.83 35.70

SSIM 0.9922 0.9863 0.9674 0.9433 0.9256 0.9009 0.8799 0.8521 0.8187 0.92

PSNR 44.28 40.93 38.89 37.50 35.78 34.52 33.57 31.80 30.43 36.41

SSIM 0.9932 0.9873 0.9771 0.9527 0.9349 0.9099 0.8887 0.8606 0.8269 0.9257

PSNR 48.26 44.62 42.39 40.87 39.00 37.62 36.59 34.67 33.16 39.69

SSIM 0.9992 0.9971 0.9956 0.9708 0.9526 0.9272 0.9056 0.8770 0.8426 0.9409

Noise level

Lena

FDS [65]

Peppers

FDS [65]

DAMF [61]

IIN [66]

IMF [62]

Hybrid 

Method

 SAID-END    

Method

ROADTGM -

PPCA-PB

SAID END-

PPCA-PB

DAMF [61]

IIN [66]

IMF [62]

Hybrid 

Method

 SAID-END    

Method

ROAD TGM-

PPCA-PB

SAID END-

PPCA-PB
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Table 5.5 Results of the PSNR, SSIM of the denoised color traditional images with 

proposed algorithms and state of art algorithms  

 

 

Table 5.6 The mean value results of PSNR, SSIM and IEF of the denoised color and 

grayscale dataset with SAID END-PPCA-PB and existing algorithms. 

 

Test Image
10% 20% 30% 40% 50% 60% 70% 80% 90% Mean

PSNR 41.51 38.12 35.91 34.20 32.60 31.05 29.22 27.38 24.29 32.70

SSIM — — — — — — — — — —

PSNR — — 38.95 36.55 34.20 31.42 26.41 21.34 8.46 28.19

SSIM — — — — — — — — — —

PSNR 43.67 40.84 38.96 36.55 34.22 31.45 30.52 28.75 26.57 34.61

SSIM 0.9658 0.9545 0.9470 0.9353 0.9211 0.9109 0.8898 0.8547 0.8179 0.9108

PSNR 44.20 41.34 38.99 36.66 34.32 32.93 31.96 30.11 27.82 35.35

SSIM 0.9855 0.9740 0.9663 0.9544 0.9399 0.9295 0.9080 0.8721 0.8346 0.9294

PSNR 45.08 42.17 39.77 37.39 35.01 33.59 32.60 30.71 28.38 36.08

SSIM 0.9934 0.9818 0.9740 0.9620 0.9474 0.9369 0.9153 0.8791 0.8413 0.9368

PSNR 47.79 44.70 42.15 39.64 37.11 35.60 34.55 32.55 30.08 38.24

SSIM 0.9993 0.9906 0.9828 0.9707 0.9559 0.9454 0.9235 0.8870 0.8488 0.9449

Noise level

Hybrid 

Method

ROAD TGM-

PPCA-PB

SAID END-

PPCA-PB

Lena

AUTSF      

[63]

MCF [64]

 SAID-END    

Method

Mean PSNR 31.861 19.825 18.002 15.966 15.456 15.181

MeanSSIM 0.890 0.640 0.551 0.383 0.444 0.419

Mean IEF 72.461 17.960 9.158 7.007 5.736 4.818

Mean PSNR 53.580 44.214 36.299 19.442 22.636 22.713

MeanSSIM 1.000 0.998 0.997 0.525 0.765 0.770

Mean IEF 29.756 14.447 1.643 0.068 0.128 0.130

Mean PSNR 29.138 23.723 15.533 13.235 13.706 13.719

MeanSSIM 0.982 0.875 0.784 0.394 0.578 0.582

Mean IEF 27.836 10.688 1.278 0.781 0.841 0.844

Mean PSNR 43.996 23.700 19.170 21.323 18.733 17.403

MeanSSIM 0.963 0.756 0.531 0.694 0.574 0.513

Mean IEF 80.309 50.175 11.958 26.639 14.837 12.223

Mean PSNR 63.658 44.064 39.672 27.423 30.588 30.635

MeanSSIM 0.997 0.994 0.994 0.916 0.958 0.959

Mean IEF 29.625 15.670 1.533 0.164 0.292 0.294

Mean PSNR 46.399 27.876 16.300 15.402 15.048 15.051

MeanSSIM 0.986 0.939 0.788 0.711 0.734 0.735

Mean IEF 57.814 25.358 1.301 1.138 0.961 0.962

CWMF PSMF MF

Grayscale 

dataset 50 

images

Salt and 

Pepper                               

(10%-80%)

Blotchs                   

(2x2 - 9x9)

Strip l ines                  

(2 - 9)

Image 

type
Noise type Parameter SAID END-PPCA-PB Road-TGM

Color 

image 

dataset 16 

images

Salt and 

Pepper                

(10%-80%)

Blotchs                   

(2x2 - 9x9)

Strip l ines                  

(2 - 9)

DBMF
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Table 5.7 Comparison of SAID END-PPCA-PB with all proposed algorithms and 

existing algorithms  

 

 

To ensure the robustness of algorithm evaluation was conducted on wide data set of 16 

color images and 50 grayscales texture dataset, the results of the test are repeating the 

success of the proposed algorithm on wide data set as presented in Table 5.3. Table 5.3 

contains the mean PSNR, SSIM and IEF parameters value of denoised color and 

grayscale image dataset with respect to noise type and noise level. 

 

 Similarly, a better performing enhanced algorithm can further be produced by 

replacing the ROAD-TGM with SAID-END algorithm (as already discussed in Chapter 

4) in the design process. The results of the second comparison of the proposed 

algorithms with state-of-the-art algorithms for impulse noise reduction from the 

grayscale and color image are presented in Table 5.4 - Table 5.5 respectively. The 

proposed algorithms has outperformed the other algorithms in both the parameters 

SSIM and PSNR for images affected with salt & noise ranging from 10% to 90%. 

Performance comparison on large dataset for amalgamation of SAID-END with 

Progressive PCA using performance booster method is presented in Table 5.6. To 

Mean PSNR 31.861 25.489 23.953 22.568 19.825 18.002 15.966 15.456 15.181

MeanSSIM 0.890 0.856 0.834 0.686 0.640 0.551 0.383 0.444 0.419

Mean IEF 72.461 63.009 47.125 44.769 17.960 9.158 7.007 5.736 4.818

Mean PSNR 53.580 49.611 45.515 45.060 44.214 36.299 19.442 22.636 22.713

MeanSSIM 1.000 0.999 0.999 0.999 0.998 0.997 0.525 0.765 0.770

Mean IEF 29.756 22.889 20.809 19.768 14.447 1.643 0.068 0.128 0.130

Mean PSNR 29.138 26.732 25.739 24.464 23.723 15.533 13.235 13.706 13.719

MeanSSIM 0.982 0.973 0.926 0.910 0.875 0.784 0.394 0.578 0.582

Mean IEF 27.836 23.197 17.714 16.829 10.688 1.278 0.781 0.841 0.844

Mean PSNR 43.996 39.282 36.372 25.839 23.700 19.170 21.323 18.733 17.403

MeanSSIM 0.963 0.933 0.924 0.767 0.756 0.531 0.694 0.574 0.513

Mean IEF 80.309 76.567 73.678 72.233 50.175 11.958 26.639 14.837 12.223

Mean PSNR 63.658 61.210 60.010 58.833 44.064 39.672 27.423 30.588 30.635

MeanSSIM 0.997 0.996 0.996 0.996 0.994 0.994 0.916 0.958 0.959

Mean IEF 29.625 27.179 26.646 26.124 15.670 1.533 0.164 0.292 0.294

Mean PSNR 46.399 42.568 41.733 40.915 27.876 16.300 15.402 15.048 15.051

MeanSSIM 0.986 0.970 0.965 0.960 0.939 0.788 0.711 0.734 0.735

Mean IEF 57.814 53.531 52.481 51.452 25.358 1.301 1.138 0.961 0.962

MFImage type Noise type Parameter SAID END-PPCA-PB ROAD TGM-PPCA-PB Proposed Adaptive Proposed Hybrid Road-TGM DBMF CWMF PSMF

Grayscale 

dataset 50 

images

Salt and 

Pepper                               

(10%-80%)

Blotchs                   

(2x2 - 9x9)

Strip l ines                  

(2 - 9)

Color 

image 

dataset 16 

images

Salt and 

Pepper                

(10%-80%)

Blotchs                   

(2x2 - 9x9)

Strip l ines                  

(2 - 9)
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validate superior performance of SAID END-PPCA-PB the final comparison of SAID 

END-PPCA-PB with algorithms proposed in Chapter 3 to Chapter 5 and existing 

algorithm Table 5.7 is presented. 

 

5.5 Conclusion 

In this chapter, we have proposed ROAD END-PPCA-PB and SAID END-PPCA-PB 

which are not only the enhanced noise detection algorithm but also having accurate 

performance booster method. In these proposed algorithms the best features of both 

spatial domain and transform domain are integrated to achieve the high performance. 

Each noise location is verified by the amalgamation of ROAD-TGM or SAID END and 

progressive PCA to enhance the detection stage performance. To ensure the accurate 

restoration of the noisy pixel three-stage algorithm is designed using sequential hard 

thresholding to eliminate chances of noise involvement in the calculation. Followed by 

a tentative original value estimation stage to decrease the difference of estimated value 

and original value.  Finally, restoration is achieved by similarity mapping which ensures 

only the most suitable value among tentative original values will be used to restore the 

noisy pixel location. The proposed algorithms work well on both color and grayscale 

image data set. Our future work will be focus on the improvement of the proposed 

method as well as its applications in the field of computer vision and visual tracking. 
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Chapter 6 

Conclusions and Future Scope 

 

In this chapter, the conclusions of the thesis work based on the analytical study carried 

out in the field of color and grayscale image denoising have been presented. The prime 

objective of the study was to evaluate the performance of these image denoising 

algorithms and identify the existing research gaps. On the basis of these gaps, new 

adaptive image denoising algorithm have been presented in this work.  

 

6.1 Conclusions 

 

In Chapter 1, a brief introduction to image denoising algorithms for the grayscale and 

color image dataset have been presented. The applications and advantages of these 

algorithms have been also discussed. Further, this chapter also gives the importance of 

image denoising day today life and, also the need for improvement in the image 

denoising algorithms. Based on this, an exhaustive literature survey of the various 

methods employed by the researchers to achieve effective image denoising for 

grayscale and color image dataset has been presented in Chapter 2. 

 

In Chapter 3, the few techniques studied in literature have been analyzed and simulated 

on wide dataset of standard color and grayscale images. Also, the design of new hybrid 

image denoising model has been carried out and simulated for validation of results. The 

main focus was to understand the basic design process of image denoising algorithm 

for grayscale and color image dataset. 

 

A new adaptive image denoising algorithm with adaptive detection and restoration 

stage   have been presented in Chapter 4. This design has been thoroughly analyzed 

using PSNR, SSIM and IEF parameters.  The adaptive algorithm achieves its high-

quality image denoising performance by optimally maintaining tradeoff between 

quality and processing time. Lastly, Chapter 5 gives another two enhanced image 
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denoising algorithms to increase proximity of proposed algorithm with the original 

image. These algorithms use progressive principle component analysis along with 

performance booster algorithm. The basic design process of this algorithm is inspired 

by the algorithm presented in an earlier chapter.  

The main contributions of this thesis work are summarized as: 

• Comparative analysis of image denoising algorithm for grayscale and color 

images. 

• Design and simulation of hybrid image denoising algorithm for grayscale and 

color image denoising. 

• Design and simulation of spatially adaptive image denoising algorithm using 

enhanced noise detection method for grayscale and color images. 

• Simulation of algorithm designed by amalgamation of ROAD-TGM and 

progressive PCA using performance booster method for detail preserving image 

denoising. 

• Simulation of algorithm designed by amalgamation of SAID-END and 

progressive PCA using performance booster method for detail preserving image 

denoising. 

The proposed hybrid method, SAID-END method, ROAD-PPCA-PB and SAID-

END-PPCA-PB has respectively achieved 3.01% (PSNR=35.59), 5.24% 

(PSNR=36.36), 7.32% (PSNR=37.08) and 14.85% (PSNR=39.68) PSNR 

improvement over best performing recent state of the art IMF algorithm value 

(PSNR=34.55) for grayscale standard Lena test image. For the standard grayscale 

test image of Peppers, the respective algorithms have achieved 2.07% 

(PSNR=34.95), 4.26% (PSNR=35.70), 6.34% (PSNR=36.41) and 15.92% 

(PSNR=39.69) PSNR improvement over the recent state of the art IMF algorithm 

value (PSNR=34.24).  Similarly, these algorithms have achieved 5.84% 

(PSNR=34.84), 8.10% (PSNR=35.35), 10.34% (PSNR=36.08) and 16.94% 

(PSNR=38.24)  PSNR improvement respectively over best performing recent state 

of the art AUTSF algorithm value (PSNR=32.70)  for color standard Lena test 

image. 
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6.2 Future Works 

As discussed above, the proposed work is focused on the design and simulation of 

adaptive image denoising algorithm for grayscale and color image dataset. The work 

has been carried out extensively based on the research gaps identified in the literature. 

However, there are still a few dimensions of this work that need to be touched in the 

future. Hence, here are a few issues that can be addressed in future work: 

 

• Design and performance evaluation of image denoising algorithm for 

biomedical applications. 

• Design and development of image denoising algorithm with real time 

applications.  

• Design and performance evaluation of performance booster algorithm with 

artificial intelligence. 

• Design and performance evaluation of image denoising algorithm for video 

applications. 

• Design and performance evaluation of image denoising algorithm for remote 

sensing applications. 
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