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ABSTRACT 

In the era of digital signal processing, like graphics and computation systems, 

multiplication-accumulation (MAC) is one of the prime operations. A MAC unit is a 

vital component of a digital system, like different FFT algorithms, convolution, image 

processing algorithms, etcetera. In this research work, various MAC architectures, 

along with its sub-blocks such as adder and multiplier, are reviewed thoroughly. The 

study shows that the efficiency of a MAC unit, along with its sub-blocks is mainly 

dependent upon the speed of operation, power dissipation, and chip area of the circuit 

along with the complexity level of the circuit. Many of the researchers have also 

emphasized on optimization of these design constraints to make the MAC efficient. 

Earlier studies have stressed on increasing the efficiency of the overall MAC unit, 

whereas some have presented the techniques to produce remarkable efficiency of the 

sub-blocks. In this research work, the effectiveness of the MAC is further improved by 

adopting both the approaches, i.e., the overall architecture of the MAC unit is optimized 

by applying a novel algorithm and the performance of the sub-blocks of the MAC is 

maximized by choosing hybrid design techniques. Techniques such as block enabling 

and pipelining are adopted in the proposed MAC architecture to make the overall unit 

efficient. A novel Universal Compressor based Multiplier (UCM) architecture is also 

proposed to make the sub-blocks of the MAC more efficient.  

The proposed UCM yields a high-speed operation, and hence, the enhanced 

performance is reported. The novel design of UCM is analyzed using the Cadence 

Spectre tool in 90 nm CMOS technology, which is further prototyped on the Nexys-4 

Artix-7 FPGA board. Also, a Process-Voltage-Temperature (PVT) variation analysis is 

performed on the UCM architecture using Cadence ADE-XL for proper validation, 

which results in faster operation in ultra-low supply voltages (less than 0.9 V) for 

higher-order bit multiplication. In comparison to Wallace tree-based architecture (in 

0.6 V to 0.9 V supply voltages), the proposed design has reduced the delay by 0.73% 

and 5.05% for 5 × 5-bit and 9 × 9-bit operations respectively. 



iv 
 

The novel architectures for Unsigned MAC (UMAC), Unsigned Synchronized MAC 

(USMAC), Signed MAC (SMAC), and Signed Floating-point MAC (SFMAC) are 

designed using proposed UCM architecture. The designed architectures are simulated 

on CMOS 90nm technology using Cadence Virtuoso.  The UMAC, USMAC, and 

SMAC can accommodate two 8-bit inputs and produces 16-bit output. Additionally, an 

extra bit is used in the case of SMAC architecture for representing a signed number. 

On the other hand, each input of the SFMAC representation is of 13 bits, in which two 

bits are reserved for the sign bits of the number and its exponent. Remaining eleven bits 

are used for 8-bit binary representation and 3-bit exponent representation. Therefore, 

the input numbers in the proposed SFMAC have a range from –(0.11111111)2 × 2+3 to 

+(0.11111111)2 × 2+3 and hence, the range of the inputs in a decimal number system is 

from –(7.96872)10 to +(7.96872)10. The performance of UMAC, USMAC, SMAC, and 

SFMAC architectures are compared on the basis of power at 2V supply voltage, 20 ns 

simulation period, and 333.33 MHz clock frequency.  It is inferred that the SFMAC 

results in maximum static and average dynamic power in comparison to other proposed 

MAC architectures because the transistor count in SFMAC is 2.5 and 5 times more than 

SMAC and USMAC architecture respectively. Furthermore, a power comparison of 

SFMAC architecture at different CMOS technologies (TSMC 130 nm and GPDK 90 

nm) in a specific input vector is studied at a frequency of 83.33 MHz. Finally, a 

performance comparison of the proposed MAC architectures and the existing 

architectures are discussed in detail, which shows significant improvement in terms of 

static as well as average power.  

 

 

 

Keywords: Compressor-based Multiplier; Low power; High speed; Nexys-4 Artix-7 

FPGA; Cadence Virtuoso; Signed-Floating-point MAC; Block Enabling; Clock 

Gating.  
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CHAPTER 1: INTRODUCTION 

 

 

The invention of the TRANfer-reSISTOR (transistor) by William B. Shockley, Walter 

H. Brattain, and John Bardeen at AT & T Bell laboratories had changed the electronics 

industry dramatically and opened the way for the advancement of the Integrated Circuit 

technology. Jack Kilby designed the first IC at Texas Instruments in early 1960, and 

since then, there is an evolution of different generations of IC technology. The types of 

generation are based on the transistor count, such as SSI consisting of 10 to 100 

transistors, MSI consisting of 100 to 1000 transistors, LSI consisting of 1000 to 10000 

transistors, and VLSI consisting of more than 10000 transistors. The fifth-generation, 

which has emerged recently as ULSI for which the range of transistor count on a single 

IC chip is not defined yet. Further miniaturization is yet to come, and there must 

inevitably be more revolutionary progress in applying the ULSI technology. 

Silicon CMOS technology has become the dominant manufacturing process for 

relatively high performance and cost-effective VLSI/ULSI circuits over the past several 

years. This development's ground-breaking essence is demonstrated by the rapid 

growth in which the number of transistors on a single chip integrated into circuits. 

Though transistor count (i.e. the area) is the primary reason for such development, 

energy efficiency and high-speed designs are also the primary concerns for the 

designers. Therefore, the typical design constraints of VLSI/ULSI circuits are power, 

delay and area. Any digital system's performance is measured concerning the power, 

delay and area. Design constraints can be explained as follows: 

• Timing: Any circuit has specific timing requirements. A circuit with optimized 

delay is the prime concern for VLSI designers. 

• Area: A circuit’s size can’t exceed the threshold limit. Here, circuit size refers 

to the backend design or final layout. 
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• Power: A circuit must have the capability to save as much as the power it can. 

But the VLSI designers must be careful while minimizing the power of digital 

circuits because a decrease in power consumption can make the circuit slower. 

There is an inverse relationship between the area and time constraints. The design has 

to be parallelized (which usually means that larger circuits have to be designed) to 

optimize timing (faster circuits) constraint for a specific technology. Designers 

typically have to compromise on circuit speed to create smaller circuits. Figure 1.1 

shows the inverse relationship. 

 

Figure 1.1: Area versus Timing trade-off 

In addition to design constraints, the optimization of target technology is influenced by 

operating environment variables such as I/O delays, drive strengths and output loads. 

To ensure that the circuits are configured for the appropriate operating environment, 

operating environment factors must be input into the logic synthesis tool. 

1.1 NEED FOR LOW-POWER DESIGN 

The popularity of portable devices and the requirement to limit the power consumption 

(and therefore heat dissipation) in heavily-dense VLSI/ULSI chips have resulted in 

quick and revolutionary advances in low-power design over the past few years. Mobile 

applications necessitating low-power dissipation and high throughput, let’s say 

notebook PCs, mobile communication devices, and PDAs, are the driving forces behind 
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these innovations. In most of these cases, low power consumption requirements need 

to be met along with equally challenging targets of high chip density and high speed. 

Therefore, the low-power IC design surfaced as a beneficial and fast-developing area 

of CMOS circuit design. Usually, the restricted battery life places very stringent 

demands on the portable system's overall power requirements. New types of 

rechargeable batteries say "Nickel-Metal Hydride (NiMH)" are being produced with 

better energy storage capacity than the traditional "Nickel-Cadmium (NiCd)" batteries. 

Still, there is no prospect of a significant increase in energy capacity in the foreseeable 

future. The energy density (which is the energy stored/unit weight) provided by new 

advancement in technologies (such as NiMH) is approximately 30 Watt-hour/pound, 

which is quite lesser considering the growing applications of portable systems. Scaling 

down the energy dissipation of ICs by improving functionality is, therefore, a 

significant task in the development of portable devices. 

In high-performance digital systems, such as microprocessors-microcontrollers, DSPs, 

etcetera, the need for low-power circuit development is also becoming a significant 

concern. Targeting higher chip density and higher processing speed contributes to the 

development of high-clock rate in very complex circuits. If the chip's clock speed rises 

then the chip's energy dissipation, thereby increasing the temperature linearly. As the 

dissipated heat has to be efficiently removed to maintain the temperature of the chip at 

an optimum level, the packaging cost, cooling and heat extraction becomes an 

important aspect. A few elite microchips structured in the mid-1990s (such as, Intel 

Pentium, DEC Alpha, PowerPC) which operates in a frequency ranging from 100-300 

MHz, and the total average power is ranging from 20-50 W. ULSI's reliability is one 

more critical factor to look after for the design engineers, as it emphases to the demand 

for energy-efficient design. There is a near connection between electronic circuit 

maximum power-dissipation and reliability concerns like electro-migration and system 

degradation caused by the carriers. Additionally, the thermal stress caused by chip heat 

dissipation is also a significant issue to look after in terms of reliability. As a 

consequence, increasing power-consumption is also critical for improving 

performance. 
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The procedures used in digital systems to achieve low-power consumption vary from 

device to device, technology to technology or algorithm to algorithm level. The 

standard system features (say threshold voltage), device dimension and interconnection 

properties are essential factors in reducing power consumption. Circuit level 

approaches such as a careful selection of circuit design logic family, decrement in the 

total number of voltage transitions and clocking approaches can be used to minimize 

transistor-level energy dissipation. Measures at the architecture level include intelligent 

power management of different system components, pipeline and concurrent usage, and 

bus layout design. 

Lastly, a good set of data processing algorithms also reduces the power consumed by 

the device as it reduces the number of switching activity for a particular task. 

1.1.1 Causes for power dissipation 

The energy or power dissipation in CMOS based circuits is categorized into three main 

categories, namely, 

1. Switching or Dynamic power consumption 

2. Short circuit power consumption 

3. Leakage power consumption 

A fourth power element, namely static power, would also be considered if the device 

or chip contains circuits other than standard CMOS gates that have direct current paths 

between VDD and VSS.  

Switching or Dynamic power consumption: 

Dynamic power is the dissipation of energy during a switching activity which means 

that a CMOS logic gate's output node voltage makes a switch that consumes electricity. 

For digital CMOS circuits, as energy is collected from the VDD to charge the capacitance 

at the output node, dynamic power is dissipated. The output node voltage usually 

transitions from 0 to VDD during the charging cycle, and the power used for the 

conversion is relatively independent of the circuit's functionalities. 
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Short-Circuit Power Consumption: 

The dissipation of the dynamic power described in the last sub-section is simply due to 

the power needed to charge the parasitic capacitance in the circuit, and the dynamic 

power is non-dependent on the input signal's rise/fall times. Now, in a situation where 

a CMOS logic gate is controlled with finite rise/fall time on the input waveforms, both 

the N-Channel MOSFETs and the P-Channel MOSFETs in the design may conduct 

momentarily and concurrently for a small duration of time during the transitions. This 

eventually forms a direct current path between the VDD and the VSS. 

Leakage Power Consumption: 

The N-Channel MOSFETs and the P-Channel MOSFETs used in digital designs using 

CMOS circuits usually have reverse leakage currents as well as sub-threshold currents 

with non-zero values practically. In a chip containing an enormous number of 

transistors, these flows of current can add to the total energy or power dissipation even 

when the transistors are not performing any transient activity. Primarily the processing 

parameters determine the scale of the leakage currents. The leakage current components 

found in N-Channel MOSFETs and P-Channel MOSFETs are: 

A. Reverse-diode leakage current 

B. Sub-threshold leakage current 

1.2 FACTORS AFFECTING HIGH-SPEED DESIGN 

The delay for a CMOS based circuit relies on the charge-discharge rate at the output of 

all capacitors. The capacitance of all capacitors connected to the circuit is due to two 

elements called the parasitic capacitance and the load capacitance. The propagation 

delay (τ�) of a CMOS inverter is given by equation 1.1. 

 �� = 2��/
��� (1.1) 

The delay in propagation (in general "propagation delay") is the time taken to transfer 

a signal to the output from the input. Typically, it is defined between the 50% points, 

as shown in figure 1.2. The propagation delay of the logic gate is the mean of the output 

signal switching from logic low to high (τ
��) and high to low (τ
��). As shown in 
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figure 1.2, the dotted lines, i.e. the ideal input or output which has immediately changed 

from low to high and high to low. But practically, any system can't change abruptly 

from logic high to low or vice versa. Therefore, there is a requirement for rise and fall 

time. Rise time is the time taken by a signal to change from 10% to 90% of the final 

value; whereas the fall time is the time taken by a signal to change from 90% to 10% 

of the final value. 

 

Figure 1.2: Rise-fall time during input output transitions 

For CMOS inverter, as shown in equation 1.1, the propagation delay varies directly 

with the changes of load capacitance and varies inversely with the value of 'K'. The 

same relation can be obtained for the output transistor in bipolar technology. The 

relationship of propagation delay and load capacitance is shown in figure 1.3 in 

graphical representation for three logic families, i.e. ECL, CMOS and TTL. As the 

graph depicts, the delay is low at low capacitances in the CMOS logic family in 

comparison to TTL logic. The main reason for the same is the load capacitance is an 

external capacitance, and it doesn't include the internal capacitance of the logic gate. 

The internal capacitance for CMOS devices is smaller than bipolar devices because a 

CMOS device takes considerably smaller space in the layout than the bipolar device. 
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Hence the larger size of the device offers higher input capacitance. However, as the 

load capacitance is much bigger than internal load capacitance, its influence is not 

visible in the propagation delay. 

 

Figure 1.3: Propagation delay versus load capacitance for different logic families 

On the other hand, the practical value of K is more significant for bipolar devices than 

CMOS devices. Therefore, with larger load capacitance the propagation delay for 

CMOS devices are more than that of TTL devices. Thus, if a large capacitance to be 

driven, i.e. the system has large fan-in, then bipolar devices are preferred. On the other 

way around, if the system has low output capacitance to drive, (i.e. < 30 pF), then 

CMOS can be preferred. For ECL logic family, the delay versus capacitance shows that 

these devices are fastest among all three since ECL logic systems don't enter saturation. 

Therefore, a circuit with higher speed and lower power consumption is always desired. 

Moreover, as there is a trade-off between the power consumption and delay, the 

performance of a circuit is mostly evaluated in terms of Power-Delay Product (PDP). 
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1.3 INTRODUCTION TO MULTIPLY & ACCUMULATE (MAC) 

ARCHITECTURE 

Today’s portable devices are capable of doing image filtering to face recognition, an 

audio signal enhancement to voice recognition and gesture-based control to biometric 

authentication. All those functionalities are the applications of Digital Signal 

Processing (DSP). A large number of mathematical operations are performed 

repeatedly and quickly on a series of data samples by DSP algorithms. Most operating 

systems and general-purpose microprocessors can successfully execute DSP 

algorithms. Still, because of power efficiency constraints, they are not suitable for use 

in portable devices such as PDAs and mobile phones. However, the rapid growth of 

portable electronics has introduced the significant challenges of low power and high 

throughput for VLSI/ULSI design engineers. 

Among the other digital blocks, Multiply and Accumulate (MAC) unit plays a vital role 

while evaluating the performance of a DSP block. While performing convolution, 

filtering or any other DSP operations, it is always desired to use an efficient MAC unit. 

The efficiency of a MAC unit is measured in terms of two factors:  

1) Speed of operation 

2) Overall power consumption [1, 2] 

The essential operation of the MAC is to fetch the inputs from the input devices or 

memory and process it through the multiplier block and provide the result to an adder 

which sum-up the current multiplier output with the previously accumulated result and 

then again accumulate the result in an accumulator register. Generalized block diagram 

of 8 × 8-bit MAC is shown in figure 1.4. The MAC architecture contains the main 

functional blocks as multiplier, adder and register/accumulator. The multiplier 

performs the multiplication operation over the two input operands; the adder performs 

the addition of the result of the multiplier with the result of the previous cycle and the 

register or accumulator stores the sum for next cycle addition. Different approaches for 

multiplication as well as the addition for MAC operation is described in detail in the 

literature by [3, 4] etcetera. Mathematically, the operation of the MAC is to generate 
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the product of two operands Xi and Yi and add the result with the previously stored 

result from the last multiplication in a single clock period [5]. The operation of MAC 

can be expressed, as mentioned in equation 1.2. 

 F= ∑ ����
n-1
i=0   (1.2) 

Where ‘i’ denote the range of the values. 

 

Figure 1.4: Generalized block diagram of 8 × 8 bit MAC 

A high-speed MAC architecture which promises with an optimized area is proposed in 

[1]. It uses 4:2 compressor circuits to improve speed. In 2012, a novel architecture for 

the multiplier is proposed by [6]. In 2013, a novel architecture using modified Wallace 

tree multiplier is proposed by [7]. The implementation is done for 64 bits. Modified 

Braun multiplier is used to implement a basic MAC unit in [8]. The implementation is 

done on NCSim and RTL Compiler. A low power Baugh Wooley multiplier-based unit 

is proposed in the year 2014 by [9]. A pipelined based architecture has been proposed 
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in this work. Split MAC architecture is explained by [10]. A technique to compress the 

partial product using "interleaved adders" and a "modified hybrid Partial-Product-

Reduction-Tree (PPRT)" schemes are proposed in this work to enhance the speed of 

operation further. There are several architectures explained in the past by various 

designers. However, all these different architectures (90% of them in the literature) are 

designed with the help of Hardware Descriptive Languages (HDL) such as Verilog or 

VHDL. The main disadvantage of using HDL is that the basic blocks, those are to be 

used while designing any architecture, use the predefined system defined primitives 

(standard PMOS-NMOS implementation).  Because of which, even after using smart 

and efficient structural designs, the architecture lags in certain aspects. The main reason 

for such a shortcoming is the non-optimization of basic building blocks viz. multiplier, 

accumulator and adder. 

1.3.1 Multiplier  

In DSP architectures, multiplication is the fundamental operation. Multipliers require 

large area (because of partial product generation), long latency and consume relatively 

higher power than adder/subtractor circuits. Any multiplier-based system's 

performance is evaluated based on the optimization of the primary design constraints 

(explain later in this chapter). The reason for the same is that the multiplier is the 

slowest unit in the arithmetic system. Hence, maximizing the speed of operation of the 

multiplier along with optimization of power and area is the primary concern for any 

system design. However, the trade-off between area and speed & power and speed are 

unavoidable. Therefore, minimizing one of design constraint (power, delay or speed) 

may have the possibility to increase the other one. Moreover, as mentioned above, the 

hardware requirement in multiplier circuit is enormous. Hence, low power design is a 

challenge as it has become the authoritative measures for designing the power-efficient 

multiplier designs for high speed and compact devices. As mentioned earlier, the 

multiplier is one of the central units for designing a power-efficient circuit, where the 

multiplier block decides the efficiency of the DSP. Therefore, extensive research work 

has been performed on low power multiplier designs with different area-speed 

constraints.  
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Figure 1.5: 4-bit Wallace tree multiplier 

Table 1.1: Comparisons of performance parameters for different logic styles 

Australian computer scientist Chris Wallace proposed a fast multiplication technique 

in the year 1964 [11]. The hardware requirement in this architecture is very high, but it 

reduces the delay substantially. The architecture promises to get the products and 

quotients within a time of 1 µs and 3 µs respectively if it is used in diode-transistor 

logic. The architecture proposed in [11] can be used where a high-speed design is a 

primary concern, not the regularity of the structure. Figure 1.5 shows the conventional 

Wallace tree architecture. As mentioned by [12] in 2012, “The Wallace tree multiplier 

is faster than an array multiplier because its height is logarithmic in word size, not 

Multiplier 

Type 

Logic 

Style 

Delay 

(ns) 

Power 

(µW) 

PDP 

(fJ) 

No. of 

Transistor 

Array 

CMOS 8.300 10.73 89.06 384 

CPL 4.337 24.70 131.82 368 

DPL 4.667 19.72 92.03 448 

Tree 

CMOS 4.247 10.68 45.35 384 

CPL 4.105 23.61 125.25 368 

DPL 4.526 19.87 89.93 448 
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linear”. The only disadvantage of Wallace tree multiplier is that its irregular structure. 

In the recent past, many attempts are made to modify the Wallace tree structure, but a 

hand full of attempts are made to make the design regular. The performance comparison 

of array multiplier and Wallace tree in different logic style is given in table 1.1 [13]. 

1.3.2 Accumulator 

An accumulator or register is a temporary storage where the internal as well as final 

arithmetical and/or logical results are stored. Without an accumulator or register it 

becomes very crucial to store the outcome of each and every operation (summation, 

multiplication, shift, etcetera) to the main memory. The main reason to use the 

accumulator or register is to read the stored data in the immediate previous cycle and 

to use it in the next operation because mathematical operations often take place in a 

stepwise manner, using the results from one operation as the input to the next. 

Moreover, the main memory access is slower than accessing an accumulator or register 

repetitively; which eventually decreases the speed of operation of the circuit. But it is 

to be noted that, though the technology used for accessing large main memory is slower 

but its design cost is cheaper than that of an accumulator or register as the memory.  

 

Figure 1.6: Basic accumulator or register circuit 

The fundamental element constituting an accumulator or a register is a D-flip-flop 

which can store a 1-bit of data. Two AND gates with clock input are also used. Hence, 

the register cell has three inputs, namely "write or negation of read", "clock" and "D". 

The output of the block is Q. Figure 1.6 shows the single-bit register [5].  



13 
 

1.3.3 Adder  

An adder is also known as summer is a logic circuit which adds two numbers. Adders 

or summer circuit is used not only for addition but also for multiplication, updating the 

addresses, increment/decrement operations, table indices etcetera. The adder operation 

is performed in binary number systems, but the adder can also be applied on BCD, 

excess -3 etcetera. Adders are of two types:  

• Half Adder: It adds two 1-bit binary numbers and the outputs are ‘sum’ and 

‘carry’ values. For ‘sum’ output is the XOR of the two inputs whereas, the 

‘carry’ output is the AND of the two inputs. Half adder is used rigorously in full 

adder circuit, multi-bit adder circuit, multiplier circuit etcetera.  

• Full Adder: It performs addition operation on three 1-bit variables and 

produces the ‘sum’ and ‘carry’ outputs. It takes into account the carry input also. 

Most of the n-bit adder architectures utilize full adders. The multiplier, adder-

cum-subtractor circuit etcetera use the full adder circuit rigorously.  

1.3.4 Block enabled technique & pipelined architecture 

As the feature size is scaled down, low power is the most critical issue in today's VLSI 

design. Block Enabling is one of the most elegant and classic technique for reduction 

of dynamic power, a significant contributor in total power consumption of any VLSI 

circuit [13]. 

 ������� = ���! "#��$ + �&&
' . ) $*. +. �� (1.3) 

The mathematical expression for dynamic power is shown in equation 1.3, where ‘VDD’ 

is the supply voltage, ‘fclk’  is the clock frequency, ‘α’ represents the switching activities 

at nodes and ‘CL’ represents load capacitances. Block enabling technique facilitates 

saving of electrical power used by digital signal processors by reducing the switching 

activity ‘α'. The power-saving is ensured in this technique by activating the design block 

as and when required. For this, initially, the delay for each building block of the 

architecture needs to be calculated. Every building block of the architecture gets 

enabled only after the desired delay required by that block to produce the output 



14 
 

correctly. The successive blocks are disabled until the inputs are available to the 

respective block and thus saving power [14].  

The basic idea of pipelining comes from everyday life. For example, water pipe 

continuously sends water without waiting for the water previously sent to be out, which 

leads to a reduction in critical paths. In DSP, pipelining either reduces the power 

consumption at the same speed or increases the clock speed. In the buffered and 

synchronous pipelined architectures, "pipeline registers" are introduced between the 

functional blocks, and are synchronized (using a clock pulse). The delay between each 

clock signal is set in such a way that when the registers are clocked, the data stored in 

it is passed to the next stage. The representation of pipelined architecture with block 

enabling technique is shown in figure 1.7. 

 

Figure 1.7: Pipelined and Block enabled Architecture 

The main objective of the research work is to investigate various pipelined MAC 

architectures which are efficient in terms of the implementation of the high-yielding 

signal processing architectures and also to have lesser power consumption. This is 

because, the power consumption, speed and high-yielding rates are always interlinked 

with the DSP systems. Initially, a 1 × 1-bit fixed point unsigned MAC unit is designed 

in full custom IC design platform (using Cadence Virtuoso) with appropriate 

geometries to produce optimized power, area, and delay. Similarly, using the same 
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concept, a 1 × 1-bit floating point signed/unsigned MAC unit is proposed and later the 

work is extended till 8 × 8 bit fixed-point signed/unsigned number and 8 × 8 bit floating-

point signed/unsigned number. Full custom IC design platform is chosen for this 

research work to optimize the essential and fundamental building block.  

1.4 SIGNIFICANCE OF THIS RESEARCH 

As discussed earlier in this chapter, the multiplier and accumulator are the critical 

components of MAC architecture [1-9]. As the efficiency of the MAC is dependent 

upon the efficiency of the multiplier (mainly), an efficient multiplier (in terms of typical 

design constraints) design can further improvise the efficiency of a MAC unit. 

Moreover, the existing multipliers in the literature [11-13] are mostly based on the 

Wallace tree algorithm. It is claimed that the multipliers based on the Wallace tree 

reduce the steps involved to add the partial products. Still, it uses half adder or full 

adder for the addition of partial products which increases the complexity of the circuit. 

Further, any electronic circuit can be designed by two different approaches, namely the 

top-down approach and the bottom-up approach. In the top-down approach, the designs 

are implemented by focusing mainly on the output efficiency of the overall design. i.e. 

importance is given on the implementation of the process or algorithm, not on the 

optimization of primary cells. On the other hand, in the case of the bottom-up approach, 

the whole digital architecture is designed starting from its primary cell, i.e. importance 

is given on optimization of the primary cell as well as on the practical implementation 

of the algorithm. In the existing literature, full custom circuit design for the MAC unit 

has never been proposed [1-9]. Additionally, synchronization, clock gating techniques 

and pipelining can further enhance the speed of operation and minimize the power 

consumption.  

Therefore, in this research work, a universal compressor (N:M of any size) based 

multiplier is proposed to use it as the core of the proposed MAC unit to improve the 

efficiency. Additionally, a full custom IC approach with synchronization, clock gating 

techniques and pipelining is adopted in the design of the proposed MAC to optimize 

the overall architecture which eventually provides much more efficiency in terms of 

power as well as delay. 
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1.5 ROADMAP OF THE THESIS 

Chapter 2 offers a detailed review of literature based on adder, multiplier and MAC 

architectures. It has presented the recent developments in these areas in recent years. 

Based on the literature survey, the objectives of this research work are framed. 

Chapter 3 shows the design and implementation of the novel UCM architecture, which 

promises higher speed at ultra-low supply voltages (less than 0.6V). A novel universal 

compressor (N:M of any size) is used for the addition of partial products while 

designing the multiplier. The multiplier is named as Universal Compressor-based 

Multiplier (UCM). The prototype of the proposed multiplier is implemented on FPGA. 

The UCM architecture is applied for developments of different architectures of MAC 

for fixed-point unsigned/signed, and floating-point unsigned/signed operations in 

chapter 4 and 5. 

Chapter 4 discusses the UMAC, USMAC and SMAC architectures which are 

specialized in unsigned, synchronized-unsigned and synchronized-signed operations 

respectively for fixed-point inputs. The novel UCM architecture explained in chapter 3 

is used for designing the MAC architectures. The graphical outputs of the UMAC, 

USMAC and SMAC architectures shows the accuracy of the designs and advantages 

of one over another. 

Chapter 5 discusses the implementation of the SFMAC architecture, which is capable 

of performing signed/unsigned fixed-point or signed/unsigned floating-point MAC 

operation on given 8-bit inputs. The SFMAC architecture is the further extension of the 

MAC architectures proposed in chapter 4. The block enabling technique is deployed 

along with pipelining to optimize the power consumption of the proposed SFMAC 

architecture.  

Chapter 6 consists of the detailed results and discussion of the proposed architectures. 

A comparative analysis is also shown in this chapter. 

Finally, the conclusion of the thesis, its importance and its future works that can be 

adopted, are addressed in chapter 7. 
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CHAPTER 2: REVIEW OF 

LITERATURE 

 

 

As mentioned in the previous chapter, the essential component of a MAC unit is a 

multiplier; on the other hand, the integral component of a multiplier is an adder or 

summer. Therefore, this section is explained in two parts; namely i) Adder and 

Multiplier and ii) Multiply and Accumulate unit. 

2.1 ADDER AND MULTIPLIER 

(Wallace, 1964): A m × n bit multiplier using combinational logic (in one gating step) 

is proposed. The proposed architecture promises to get the products and quotients 

within a time of 1 µs and 3 µs respectively if it is used in diode-transistor logic. 

Moreover, a rapid square-root process is also discussed [11]. 

(Itoh, et al., 2001): In this work, a rectangular styled Wallace-tree architecture is 

proposed. As stated, the partial products are segregated into two groups and summed 

up separately in top-down and bottom-up directions [15]. 

(Onomi, et al., 2001): A Wallace-tree multiplier architecture suitable for pipeline 

scheme is proposed in this research, where "carry-save adders are used for the addition 

of partial products". In this proposed work, the authors have claimed for removing the 

irregularity present in a conventional Wallace tree architecture [16]. 

(Liao, Su, et al., 2002): A CSA portioning algorithm is proposed in this paper, which 

is applied to the Booth-encoded Wallace-tree algorithm. As stated by the authors, "by 

taking into various data arrival times, a branch-and-bound algorithm is proposed and a 

heuristic to partition an n-bit carry-select adder into several adder blocks so that the 

overall delay of the design is minimized" [4]. 



18 
 

(Guevorkian, et al., 2005): An architecture targeting mobile multimedia systems is 

proposed in this paper by introducing a “MAVIP”, which is a “reconfigurable extension 

derived from a high-radix multiplier structure". A MAVIP may be configured "either 

to a processing unit with DSP-specific operations such as multiplication, multiply-

accumulate, parallel addition, MIN/MAX, etcetera or one/another ASIC such as a 

matrix-vector multiplier, FIR filter or SAD accelerator" [17]. 

(Kuo, et al., 2008): Low power high-performance latch adder-based Wallace tree 

multiplier has been proposed. The proposed techniques-based tree multiplier provides 

22.3-23.7% of lesser delay and 5.5-3.3% of lesser power consumption than the 

conventional traditional latch-adder technique-based tree multiplier [18]. 

(Chen, et al., 2008): Canonical Signed digit multiplier is proposed with the help of 

Wallace tree adder is proposed. CSD requires to the lookup table for fetching the data 

from memory. Hence the speed of operation has improved. Finally, the FPGA 

implementation is done [19]. 

(Yi, et al., 2009): In this research work, a modified booth algorithm is studied and 

proposed which yields a variable bit-length multiplier. The proposed multiplier can 

perform "a 32 × 32-bit or dual 16 × 16-bit or four 8 × 8-bit multiplications, which 

greatly enhance the parallelism of the multiplier". The overall implementation is 

performed in Verilog HDL [20]. 

(Nachtigal, et al., 2010): In this research work, reversible design of single-precision 

floating-point multiplier is proposed which uses a technique called "operand 

decomposition approach". To design a "reversible 24 × 24-bit multiplier", the operands 

are partitioned into three groups consisting of 8 bits each. Therefore, the "24 × 24 bit 

reversible multiplication" is performed using nine "reversible 8 × 8-bit Wallace tree 

multipliers" and then the outputs are summed to get the final result [21]. 

(Singh, et al., 2012): Various logic style-based "1-bit full adders" and "AND2 

function" are designed in this paper and used for designing 4 × 4 unsigned arrays and 

tree multiplier. The full adders and AND2 function are designed in different logic 
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techniques such as CMOS logic, CPL logic and DPL logic style to improve the area, 

power, delay and PDP [13]. 

(Rao, et al., 2012): An improved version of tree-based Wallace tree multiplier 

architecture using Booth Recorder is proposed in this work. This proposed architecture 

reduces the latency and area of Wallace tree multiplier with the help of the Booth 

algorithm and compressor adders. The overall implementation is performed in Verilog 

HDL [12]. 

(Sousa, 2013): In this paper, an improved version of modulo (2n + I) multipliers is 

proposed. The efficiency is achieved by “manipulating the Booth tables and by applying 

a simple correction term” in the existing modulo (2n + I) multiplier algorithm. 

Moreover, the author states in the paper that “the proposed multiplier is almost as 

efficient as those for ordinary integer multiplication” [22]. 

(Khan, et al., 2013): The complexity of Wallace tree multiplier reduced in this research 

work without compromising with the delay. As full adder is used gregariously in 

Wallace tree multiplier (in partial product reduction as well as in the form of carry-

propagation-adder), an "energy-efficient CMOS full adder" is used at the place of full 

adder standard cell to reduce power, area and delay [23].  

(Kshirsagar, et al., 2013): For simultaneous arithmetic operation and therefore, to 

increase the speed of operations, a “four-stage pipelining at the intermediate nodes” is 

discussed in this proposed work. The architecture is designed in Verilog HDL and 

simulated using Cadence Spectre tool at TSMC 45nm technology. Cadence RTL 

Compiler is used for detailed analysis of the circuit [24].  

(Jayaprakash, et al., 2013): This paper proposed a novel "low-power hybrid full 

adder" which consumes deficient power. The same is compared with its conventional 

counterpart (28T). The power consumption is found to be low in this design. The 

implementation is done on MOSIS 90 nm Technology [25]. 

(Bhattacharyya, et al., 2014): A hybrid full adder based on CMOS and transmission 

gate technique is proposed in this paper. The design is also extended till 32-bit full 
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adder operation. The implementation of the circuit is done in Cadence Spectre tool in 

90 nm and 180 nm CMOS technology [3]. 

(Paradhasaradhi, et al., 2014): The "Modified CSLA (MCSLA)" is proposed in this 

paper, which is designed using "Common Boolean Logic" and implemented using the 

Wallace Tree Algorithm. The implemented MCSLA is compared with regular CSLA 

architectures. The proposed work requires lesser area in comparison to normal Wallace 

tree multiplier [26]. 

(Luu, et al., 2014): An unsigned 32-bit multiplier for best timing performance with the 

optimized area is proposed in this research paper. The architecture uses "a modified 

Radix-4 Booth encoder, a modified Wallace Tree adder, and a Carry Look Ahead 

adder" [27]. 

(Reddy, et al., 2014): In this paper, a Gate Diffusion Input technique based low-power 

multiplier for 8-bit operation is proposed. The reduction in power and area is achieved 

by using “Booth encoding and Wallace tree technique” as this algorithm generates the 

minimal number of partial products for signed number multiplication and provides an 

efficient way to add the partial products [28].  

(Srinitha, et al., 2015): A VHDL based high performance Fused Add-Multiply (FAM) 

unit architecture is proposed in this research work. The proposed architecture uses 4:2 

compressor block instead of full adder/half adder [29]. 

(Jaiswal, et al., 2015): A MUX based full adder is proposed in this research article and 

then, the work is further extended for designing a Wallace tree multiplier. Because of 

the optimization of the adder, the performance of the multiplier has got improved. The 

architectural design is done in Verilog, and the functionalities are confirmed using 

Quartus II [30]. 

(Shoba, et al., 2017): A “ CslA and Binary to Excess 1 Converter (BEC)" based 

multiplier is proposed in this paper. Because of the use of the BEC, the total number of 

adders is reduced by n/4 than orthodox addition scheme (here 'n' is the width of the 

input). Moreover, a Vedic multiplier is used as a base multiplier which requires lesser 
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area and lesser delay. Additionally, Gate Diffusion Input (GDI) logic style is used for 

designing the proposed multiplier. The functionality of the proposed multiplier is 

analyzed and verified by Cadence Spectre Tool in 45 nm CMOS technology. From the 

comparative analysis, it is found that the proposed multiplier requires 17% lesser PDP 

than its close competitor. The Monte Carlo simulation is also performed to analyze the 

performance in extreme conditions [31]. 

(Ozcan, et al., 2018): A "Montgomery multiplier" which works iteratively is proposed 

in this work. A digit of the multiplier is multiplied by the digits of the multiplicand in 

every iteration. And the result is stored in an accumulator. Each time the total number 

of multiplier and multiplicand is reduced by the Montgomery method. As stated in the 

paper, the total number of iterations required to complete the multiplication process is 

eight cycles, and therefore it saves some hardware resources. The prototype of the 

architecture is implemented on the Virtex-7 FPGA board [32].  

(Rose, et al., 2019): A DML multiplier which is capable of performing the mixed 

operation mode (i.e. a mixture of the static/dynamic mode) is proposed which promises 

to offer "better performance and energy trade-off" in comparison to the standard CMOS 

based designs. In fact, "the use of the dynamic mode for higher precision operations 

ensures higher performance as compared to the standard CMOS circuit (16% gain on 

average) at the cost of higher energy consumption". In comparison with standard 

CMOS implementation, the proposed DML's mixed-mode offers 15% of EDP 

improvement in a varied range supply voltage. A detailed PVT analysis is also carried 

out to ensure the performance at extreme conditions [33]. 

2.2 MULTIPLY AND ACCUMULATE UNIT  

(Suzuki, et al., 1996): A FADD core is proposed in this design. The core has been 

fabricated in CMOS 0.5um technology. LZA technique is used for normalizing the 

numbers. HDL is used for the overall design [34].  

(Pillai, et al., 2000): A floating-point low power multiply-accumulate unit is presented 

in this work. Transition activity and data path are simplified to reduce the power 
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consumption. A 4 state FSM model is used to represent the switching activity. Due to 

data path simplification, the latency and delay are reduced [35]. 

(Natter, et al., 2000): A signed VHDL based MAC is proposed in this work. The design 

is also implemented on FPGA board. The proposed MAC algorithm uses "recursion 

formula in terms of new input-independent variables". The correctness of the proposed 

MAC is verified on MALAB and MAX plus II [36]. 

(William, et al., 2001): The technique proposed in the paper reduces the total number 

of partial product by a factor of two if applied to "signed-binay (SB) number". The 

work is also extended for FPGA hardware [37]. 

(Plessis, et al., 2002): Field Programmable Gate Arrays (FPGAs) are rapidly gaining 

popularity for signal processing applications. Multiplication, addition and Multiply-

Accumulate (MAC) are the most important building blocks in signal processing. This 

paper will compare a number of structures to find the optimum configurations for 

minimum delay, size and cost in an FPGA [38]. 

(Huang, et al., 2002): A "novel limited resource scheduling (LRS) algorithm" based 

MAC for "DWT-processor" is proposed in this work. Given a set of architecture 

constraints and DWT parameters, the LRS algorithm can generate four scheduling 

matrices that drive the data path to perform the DWT computation, and the performance 

has also been investigated. Because the registers of FIR filtering are reused for the inter-

octave storage, the MAClevel DWT architecture may require less extra inter-octave 

memory than the traditional architecture [39]. 

(Premkumar, et al., 2002): In this paper an alternative multiply accumulate units for 

the pulse shaping filters that use a new representation for their coefficients is proposed. 

Consequently, these new structures are fast, efficient and dissipate less power. The 

filters proposed take into account constraints, such as, inter symbol interference, 

response characteristics etc. in their design methodology [40]. 

(Tian, et al., 2002): In this paper, an algorithm of 32x32 multiply and MAC 

instructions’ VLSI implementation with 32x8 multiplier-accumulator in DSP 
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applications is presented. The 32x32 multiplication is achieved by 4 times 32x8 

multiplication. The result of 32x8 multiplication serves as a partial product of the next 

32x8 operation, when the result’ of such four multiplication is accumulated, we get the 

result of 32x32. The 32x8 multiplication is only implemented by the hardware Booth 

multiplier [21[31. The algorithm of multiply and MAC instructions’ implementation is 

the better trade-off between serial multiplier and, parallel multiplier [41]. 

(Liao, et al., 2002): A high-performance and low-power 32-bit multiply–accumulate 

unit (MAC) is described in this paper. In the proposed architecture, one-cycle 

throughput for 16-bit 16-bit and 32-bit 16-bit MAC instructions was achieved at very 

high frequencies. To handle media streams more efficiently, the single-instruction-

multiple-data (SIMD) and the multiply-with-implicit-accumulate (MIA) features were 

added [42]. 

(Kao, et al., 2002): This research develops a theoretical model to predict how dynamic 

power and subthreshold power must be balanced to give an optimal operating point that 

minimizes total active power consumption for different workload and operating 

conditions. A 175-mV multiply-accumulate test chip using a triple-well technology 

with tunable supply and body bias values is measured to experimentally verify the 

tradeoffs between the various sources of power [43]. 

(Suvakovic, et al., 2003): A mechanism to minimize non-adiabatic dissipation in 

adiabatic circuit is explained in this research work. As stated, “the non-adiabatic 

dissipation is minimized by architectural design involving a small number of complex 

logic gates”. For designing complex adiabatic gates “Ordered Binary Decision 

Diagrams (OBDD)” is used. Finally, an optimized architecture “for adiabatic parallel 

multipliers” is explained and its power consumption is also estimated [44]. 

(Shim, et al., 2003): This paper shows the usage of MAC in Very High-Speed Digital 

Subscriber line. A detailed analysis is also performed for DMT (Discrete Multitone) 

and SCM (Single-Carrier Modulation) used in VDSL (Very high-speed Digital 

Subscriber Line). The work is further extended to estimate the memory requirement for 

the proposed design in addition to conventional complexity measures [45]. 
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(Li, et al., 2003): This paper describes a reconfigurable architecture of a high-

performance pipelined 32-bit Multiply-Accumulate Unit (MAC). which is designed for 

a powerful embedded Digital Signal Processor (DSP). The proposed MAC unit can 

carry out two 16-bit multiplications in one clock cycle. The 32 × 16. 32 × 32. 32 × 

16+80 and 32 × 32+80 operations can be implemented in two clock cycles. These 

characteristics allow the DSP being applied efficiently in different situations [46]. 

(Grossschadl, et al., 2003): A 32-bit MAC unit for RISC processor is presented in this 

research work. The proposed MAC unit can perform a variety of operations including 

(32 x 32)-bit signed/unsigned multiplication, (32 x 32+64)-hit signed/unsigned 

multiplication-accumulation, and (32 x 32+32+32)-bit multiplication-accumulation on 

unsigned integers [47]. 

(Kataeva, et al., 2005): Paper explains about RSFQ DS Processor, mainly used for 

removal of interferences from any signal. The author proposed MAC unit for floating 

point Multiplication-Addition. The Multiply-Accumulate unit comprises of three-unit 

namely parallel-multiplier, combiner and register or accumulator. The combiner 

evaluates the sum of the sums and the carries from M-MSB bits of the multiplier. The 

simulation is verified in VHDL [48]. 

(Bunyk, et al., 2005): Describes a MAC unit specific for programmable Band pass 

filtering. As explained in the paper, the clock frequency of the presented architecture is 

20 GHz and it can perform 2.5 billion MAC instructions/sec. For doing such analysis, 

the data sample is considered to be of 7-bits and filter coefficient is considered of 16-

bits which is arriving in bit-serial mode. The simulation is verified in VHDL. Basically, 

this MAC unit is application specific. It consists of a D flip flop (to act as a shift 

register), clocked AND gate and T flip flop for counting purposes [49]. 

(Cardoso, et al., 2005): In this work, minimization of Accumulator unit in MAC for 

block matching motion estimation is proposed. The FPGA implementation and 

mathematical models are discussed in this paper [50]. 

(Danysh, et al., 2005): This paper presents a “64-bit fixed-point vector MAC 

architecture capable of supporting multiple precisions”. The “vector MAC” has the 
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ability to perform “one 64 × 64, two 32 × 32, four 16 × 16, or eight 8 × 8-bit 

signed/unsigned multiply accumulates” using fundamentally the same hardware as a 

scalar 64-bit MAC and with only a slight increment in delay. The proposed design is 

implemented using Verilog HDL in Synopsys tool [51]. 

(Vangal, et al., 2006): A “pipelined single-precision Floating-Point Multiply 

Accumulator (FPMAC)” consisting of accumulator in radix-32 and internal carry-save 

addition is explained in this research work. Additionally, an improved version of 

“Leading-Zero Anticipator (LZA) and overflow prediction logic” required in carry-

save addition is also explained [52]. 

(Kataeva, et al., 2007): A “RSFQ digital signal processor design based on hybrid 

RSFQ-CMOS memory” is proposed in this paper. The DSP consists of an “RSFQ 

multiply-accumulate Unit, memory caches and synchronization block, partitioned into 

multiple chips, and a large CMOS memory”. The MAC unit is shown as an internal and 

essential unit in the RSFQ architecture [53]. 

(Voronenko, et al., 2007): This work provides an algorithm for fused multiply 

accumulate instruction. In this paper, a generalized procedure to alter any transform 

algorithm into an FMA algorithm is explained [54]. 

(Abdelgawad, et al., 2007): In this work 8-bit, 16 bit and 32-bit MAC is proposed and 

implemented on Xilinx ISE and on FPGA board. The design shows improvement in 

area and power. 4:2 compressor circuits are used to make the multiplier circuit faster 

[1]. 

(Xia, et al., 2009): The novel design is implemented in ModelSim in TSMC 90 nm 

CMOS technology. Here “4-pipelined high-performance split Multiply-Accumulator 

(MAC)” architecture is proposed. In order to achieve higher speed, a novel partial 

product compression technique using interleaved adders and a “modified hybrid Partial-

Product-Reduction-Tree (PPRT)” is also proposed. As stated by the author, the 

proposed MAC can perform “1-way 32-bit, 4-way 16-bit signed/unsigned multiply or 

multiply-accumulate operations and 2-way Parallel Multiply Add (PMADD) 

operations” [10]. 
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(Shanthala, et al., 2009): In this research work an 8-bit MAC unit is proposed using 

Cadence Virtuoso 180nm Technology. Clock gating scheme is used to optimize the 

power consumption [14].  

(Shanthala, et al., 2009): In this research work an 8-bit pipelined MAC unit is 

proposed using Cadence Virtuoso 180nm Technology. Various adder/multiplier 

circuits are compared and implemented for the MAC [55]. 

(Hoang, et al., 2010): A Multiply-Accumulate (MAC) architecture which can operate 

on 2’s complement numbers are explained in this paper. The author claims that the 

proposed architecture is a high-speed and power-efficient MAC which uses 

“accumulation guard bits and saturation circuitry”. The implementation is done 

basically on VHDL and designed in 65 nm 1.1V cell library [56]. 

(Quan, et al., 2010): This paper presents a 32-bit vector multiply-accumulate (MAC) 

architecture capable of supporting multiple precisions. The vector MAC can perform 

one 32×32, one 32×16, two 16×16, four 8×8 bit signed/unsigned multiply-accumulate 

using Booth encoding algorithm and Wallace tree compressing. A reconfigurable Booth 

encoding array is implemented using 8×8 Booth unit as the basic element, and longer 

bit modes are obtained by combining these elements selectively. This MAC unit can 

also perform multiply between scalar and vector operands [57]. 

(Jain, et al., 2010): This paper describes energy efficient and reconfigurable 

fused/continuous Multiply-Accumulator (MAC) architecture for single-precision 

Floating-point and 16-bit signed integer operands. This eight-stage pipelined and 

single-cycle throughput MAC design contains a bit level pipelined multiplier, followed 

by fast sparse-tree adder and single cycle accumulator loop with delayed normalization 

logic [58]. 

(Hsieh, et al., 2011): In this paper, an APC (Adaptive Power Control) system is 

proposed which performs on power gated circuitries. The proposed architecture is 

tested using a standard MAC fabricated in UMC 90 nm standard CMOS process. The 

basic implementation is done on RTL compiler [2]. 
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(Kouretas, et al., 2012): A novel low-power approach to perform addition/subtraction 

in LNS (Logarithmic Number System) is explained in this research work. The paper 

also explains the impact of such low power addition/subtraction circuit used in LNS on 

digital filter VLSI implementation. The implementation is done in UMC 90 nm 

standard CMOS process [59]. 

(Esmaeili, et al., 2012): A “Low-Swing Differential Conditional Capturing Flip-Flop 

(LS-DCCFF)” is presented in this work. The flip flop explained in this work is capable 

of operate in a low swing LC resonant clocking scheme and utilizes reduced swing 

inverters at the clock input. The verification of the operation is done using LS-DCCFF 

in a dual-mode MAC. The dual-mode MAC is fabricated in TSMC 90 nm CMOS 

technology. Here, the optimization of the MAC unit is not performed but a technique 

to improve the performance of the MAC using LS-DCCFF is explained [60]. 

(Deepak, et al., 2012): In this work a novel multiplier circuit is proposed using which 

a MAC unit is designed. Cadence NC Sim and RTL compiler are used for doing all 

these analyses [6]. 

(Maechler, et al., 2012): VLSI based architecture is proposed based on MAC. 

Basically, this paper shows the importance of MAC as its application [61]. 

(Zhang, et al., 2012): A pipelined architecture for discrete wavelet transform is 

presented. The objective of this study is to design a high-speed VLSI architecture which 

has a high operating frequency with smaller clock periods. The architecture also 

achieves an efficient utilization of the hardware by increasing the inter as well as intra-

stage computational parallelism for effective usage of pipelining [62]. 

(Mooney, et al., 2013): An “ASIP (Application-Specific Instruction-set Processor)” is 

designed, implemented, and evaluated in this research work. The proposed dual MAC 

is implemented on FPGA and its performances are evaluated in a “closed-loop power 

converter system”. A dual MAC Data Path is also proposed in this design [63]. 

(Marr, et al., 2013): A Statistical analysis of computations/ unit energy in different 

processor over a period of 30 years is performed in this paper. The analysis shows that 
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the energy efficiency improvement rate has declined sharply in the recent a few years. 

An energy efficient asynchronous pipeline technique is presented in this work [64]. 

(Jagadees, et al., 2013): In this work a novel multiplier circuit is proposed using which 

a MAC unit is designed for 64-bit input. The overall MAC unit design operates at a 

frequency of 217 MHz. The overall power dissipation found to be as 177.732 mW [7]. 

(Abdelgawad, 2013): In this research work an ASIC implementation of a 32-bit MAC 

unit is proposed, which reduces the requirement of 5.5% of the total area, 9% of the 

power, and 13% of the delay compared to the conventional MAC unit. The simulation 

is done 0.18um CMOS technology using HDL [65]. 

(Francis, et al., 2013): In this work a modified Braun Multiplier is used with bypassing 

technique to design the overall MAC. Designs are implemented in 0.13um CMOS 

technology. TG, DPL etcetera logics are used to design the full adders in the circuit [8].  

(Amaricai, et al., 2014): A “Floating-point multiply-add fused architecture” for IEEE 

16-bit or IEEE 32-bit (half precision or single precision respectively) is discussed. The 

architecture is designed by amalgamation of the multiplication and addition/subtraction 

blocks required for mantissa data calculation in a single operation. This has provided 

an efficient usage of DSP blocks in Field Programmable Gate Arrays (FPGAs). The 

architecture is also implemented on FPGA [66]. 

(Warrier, et al., 2014): A Baugh-Wooley algorithm based pipelined MAC architecture 

using a 16x16 bit multiplier is proposed. The Clock gating technique is also used at the 

idle pipeline stages to reduce the power consumption. The author claims that, the 

proposed architecture consumes 30-80% lesser power than the conventional MAC 

architectures. At the end various MAC units available in the literature are compared. 

The implementation is done in 65nm CMOS using HDL in TSMC library [9]. 

(Burg, et al., 2014): A novel architecture for adaptive systems is presented in this 

paper. The architecture mainly stresses upon the systems whose exact specifications are 

not known. Here a Walsh-based architecture model is proposed which is better than 
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MAC based architecture. But the Walsh-based architecture needed a vector table from 

which it refers its values. So basically, it is kind of look up table technique [67]. 

(Ahish, et al., 2015): A “partial product reduction block” is proposed in the work, 

which is used for optimizing the area, power and delay of the multiplier used. The 

partial product reduction block uses different multi-bit adder row wise instead of the 

conventional adder which performs column wise. The proposed technique has reduced 

the delay power and area by 46%, 39% and 17% [68]. 

(Akbarzadeh, et al., 2015): A modified pipelined modulo 2n + 1 modified booth 

multiplier is proposed. The design is further extended for implementing a modulo 2n + 

1 MAC architecture. The CMOS transistor level implementation of multiplier as well 

as MAC has shown significant improvement in power and PDP [69]. 

(Chen, et al., 2015): A compact architecture for performing MAC operation for “PWM 

signals”. The presented architecture consists of a “dual scale counter and a 2D MAC 

operator”. The proposed “2D MAC” operator is compared with the MAC operator from 

the FPGA IP which has an 8-bit resolution. The result reveals that 2D-MAC reduces 

the chip area with comparable power than FPGA IP [70]. 

(Cini, et al., 2015): In this research, a MAC unit is proposed which is suitable for “6-

input LUT” based FPGAs. No pipelining structure is deployed as the design uses “(6,3) 

counters” in partial product reduction. The proposed MAC takes 16x16 bit input and 

produces 40-bit output which has sign extended bit. Significant improvement is 

reported when the proposed MAC is equated with the traditional MAC algorithms and 

redundant carry save architectures [71]. 

(Gerlach, et al., 2015): The proposed work explains a real and “complex valued MAC” 

which uses same amount of multiplier as it is been used for implementing “complex 

valued SIMD MAC” and butterfly operation. The proposed architecture is evaluated in 

terms of power, area and performance [72]. 

(Kumar, et al., 2015): A “novel FPMAC” is proposed in this work which works with 

optimal computation to make it faster. The propose design promises for lesser power 
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consumption. Proposed architecture is implemented in Xilinx ISE (14.5) and 

synthesized using CMOS 90 nm technology library using Synopsys Design Compiler 

[73]. 

(Priya, et al., 2015): This research work evaluates 3 MAC architectures consisting of 

array, booth and Wallace tree multiplier which leads to an incorporation in PID 

controller. The simulation is performed in Model SIM and it is synthesized in Xilinx 

ISE. The result suggests that the MAC unit with Wallace tree consumes lesser power 

and area [74]. 

(Narasimhan, et al., 2015): An “optimized co-processor unit”, targeting specifically 

for Digital Signal processing application is presented in this work. The co-processor 

hardware consists of MAC unit, control unit and a 32-bit output accumulator as the 

leading operative blocks. Vedic as well as booth multiplier is used for designing the 

proposed MAC architecture. The MAC unit takes two 16-bit inputs or one 32-bit input 

and produces one 32-bit output [75]. 

(DeBrunner, et al., 2015): For FIR filter implementation a fused MAC unit is 

developed which truncated multiplication techniques which uses the accumulation 

technique. As because of truncated multiplier, the power and area are reduced. Different 

types of truncated multiplication approaches have been presented in this study [76]. 

(Basiri, et al., 2015): In this paper, a floating-point MAC circuit is used to design the 

2nd order IIR filters and thereafter the 2nd order IIR filter is used rigorously to design a 

configurable 6th order IIR filter. The 6th order IIR filter is used to perform “one 6th order 

or three 2nd order or one 4th order and one 2nd order IIR filter operations in parallel”. 

The performance of the proposed 6th order IIR filter is evaluated in CMOS 45 nm 

technology and the result shows that the proposed 6th order IIR filter requires 58.4% 

less power than conventional MAC based architecture [77]. 

(Nandal, et al., 2015): A series of LUT is used in the place of MAC in the proposed 

work. A technique called “Distributed Arithmetic (DA)” is used. The FPGA based 

implementation of FIR filter is also discussed in this work. A parallel FIR digital filter 

is used for high-speed and low-power operations. The DA technique calculates the 
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partial products without using a conventional multiplier for fixed-point number. The 

analysis on the proposed architecture shows a high-speed and low-power design.  The 

proposed filter is implemented in VHDL. The proposed method has reduced the number 

of LUT used by 60%, occupied slices by 40% and number of gates by 50% [78].  

(Anitha, et al., 2015): In this work Vedic multiplier and reversible logics are 

implemented. Using these finally 32-bit MAC architecture has been designed. The 

implementations are done using Verilog HDL in Cadence RTL. Not implemented for 

signed fixed/floating point number [79]. 

(Karthikeyan, et al., 2016): A modified full adder is used in the research work which 

reduces the power and area requirements. For estimating the power, CNTFET 

technology is used in HSPICE simulation. According to the author, “a model is 

developed for nanoscale devices and circuits, including both CMOS technology and 

CNTFET technology with the aim of guiding nanoscale device and circuit design”. The 

new design offers large device speed than conventional designs [80]. 

(Babu, et al., 2016): A low power high through put architecture is proposed in this 

work. Fixed point implementation has been done for signed number. The design has 

been implemented in Cadence Virtuoso 90 nm technology [5]. 

(Dhindsa, et al., 2016): The core design units of Multiply-Accumulate architecture are 

optimized for energy-efficient architecture design using clock gating scheme is 

presented in this work. Moreover, the MAC unit is designed with synchronization to 

work in single clock cycle due to which the overall speed of operation has enhanced. 

The implemented design in Cadence Virtuoso as well as NCSim using 90 nm CMOS 

technology. Finally, the design in analog platform and digital platform is compared and 

the result shows that the digital approach of the design offers six times more power 

consumption than in analog design environment [81]. 

(Garland, et al., 2017): A MAC unit that uses weight-sharing CNNs is explained in 

this research work. A binning approach is used where a counter counts the frequency 

of each weight and place it in a bin. The accumulated value is multiplied thereafter. The 

hardware requirement for multiplier is reduced as the adders and selection logic 
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replaces the multiplier. The detailed comparison shows that the presented architecture 

requires lesser area and lesser power comparison [82]. 

(Jeon, et al., 2017): A novel architecture called “HMC-MAC” is presented in this 

paper. As the name suggests, a MAC architecture is implemented in the HMC. As stated 

by the author, “a conventional HMC works independently to maximize the parallelism, 

and HMC-MAC is based on the conventional HMC without modifying the architecture 

much. Therefore, a large number of MAC operations can be processed in parallel” [83].  

(Ananthalakshmi, et al., 2017): A novel “reversible floating point fused arithmetic 

unit architecture” is proposed in this work. The proposed architecture is also satisfying 

“IEEE 754 standard”. Adiabatic logic technique along with reversible logic styles offers 

a power efficient proposed design. In the proposed design the hardware is reduced and 

latency is improved by employing fused elements and decomposing the operands in the 

realization respectively. To test the operation of the proposed design FFT and FIR filter 

are realized which the key requirements in Digital Signal Processors. The result shows 

that the proposed architecture utilizes a smaller number of gates, requires less quantum 

cost and produces lesser number of garbage output at low latency [84]. 

(Kamp, et al.,, 2018): Design optimization for Complex Multiply Accumulate Cell 

(CMAC) are presented in this research work. A novel signaling technique is used to 

converts a complex multiplication into single integer multiplication. The FPGA based 

implementation is done on Xilinx ultarscale+ which promises to save power and 

therefore the cost [85]. 

(Lv, et al., 2018): An architecture required in modern FPGA is presented in this 

research study where a customized 32-bit floating point data is used. The 32-bit data is 

used for multiplication and accumulation. The customized 32-bit floating point data 

representation is compared with 32-bit IEEE standard [86]. 

(Zhang, et al., 2018): A fixed/floating point MAC unit is proposed in this research 

work which can be applied for the applications such as deep learning algorithm. The 

said architecture supports 16-bit floating point multiplication (half precision) and 32-
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bit accumulation (single precision). The presented architecture requires 4.6% more area 

than a half-precision MAC unit. The implementation is done using VHDL [87]. 

(Chen, et al., 2018): This paper implemented RPR-MAC. The paper also significantly 

proves that signed-integer-multiplication in 2´s complement format can make RPR 

much more efficient. Signed integer multiplication is further extended for MAC 

operation by “proposing RPR implementations” that improve the “error correction 

capabilities with a limited impact on circuit overhead”. The tested result of the proposed 

design shows that the Mean Square Error can be significantly reduced by using this 

technique [88]. 

(Ryu, et al., 2018): A “pipelining method” that eradicates some of the flip-flops for 

designing a MAC is proposed. In machine learning accelerator operations, MAC 

processing plays a vital role. A pipeline structure always helps in reducing the “length 

of the critical paths”. At the same time, to increase the pipelining, the flip-flop count 

must be increased which, consequently increase the area and power consumption. The 

result shows that the proposed MAC architecture requires 20% lesser power and area 

each than the conventional pipelined MAC [89]. 

(Patil, et al., 2018): In this research paper, a “radix-4 booth multiplier-based MAC 

unit” is proposed which improvise the delay of the MAC unit. (6,3) counter is used for 

reduction of the partial products. The proposed MAC unit takes 16X16 bit input 

produces 40-bit output. The proposed MAC is simulated in Xilinx ISE and implemented 

in Spartan-6 FPGA board [90]. 

(Patil, et al., 2019): In this review paper, a comparison study is performed on MAC 

unit based on different kinds of multipliers and adders. The functionality of the 

multiplier is to produce the result based on the multiplication of the inputs whereas, the 

adder unit sum up the current product with the previous result. The study gives a 

broader picture regarding speed of operation and power consumption of different MAC 

architecture available in the literature [91].  

(Camus, et al., 2019): A comparison is performed for run-time configurable MAC 

units. The circuits are synthesized in a 28nm CMOS technology. The comparison is 
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performed in terms of power and throughput in order to identify the optimized 

architecture for neural network [92]. 

(Zhang, et al., 2019): A MAC unit using the “posit number format” in deep learning 

application is presented in this paper. Additionally, a “posit MAC unit generator” is 

written in C language. A detailed analysis is performed for area, delay and power in ST 

Microelectronics 28 nm technology with varied bit width [93].  

(Senthilkumar, et al., 2019): A discrete wavelet transforms which can be used in the 

field of biomedical signal processing is implemented using Vedic mathematics. Instead 

of using CMOS, FinFET and CNTFET technologies are used in this architecture. The 

basic architecture of DWT architecture requires adder block, multiplier block, MAC 

block and additionally, in-order store the co-efficient, RAM or ROM blocks. The core 

of the SOC is designed using Vedic mathematics sutras. The usage of CNTFET has 

reduces the power consumption by 95% [94]. 

(Tung, et al., 2020): In this paper, we propose a low-power high-speed pipeline 

multiply-accumulate (MAC) architecture. In the proposed MAC architecture, the 

addition and accumulation of higher significance bits are not performed until the PPR 

process of the next multiplication. To correctly deal with the overflow in the PPR 

process, a small-size adder is designed to accumulate the total number of carries [95]. 

(Nahmias, et al., 2020): In this research paper several proposed tunable photonic MAC 

systems are discussed, and provide a concrete comparison between deep learning and 

photonic hardware using several empirically validated device and system models. It 

also shows significant potential improvements over digital electronics in energy, speed, 

and compute density [96]. 

(Zhang, et al., 2020): In this paper, a new flexible multiple-precision multiply-

accumulate (MAC) unit is proposed for deep neural network training and inference. 

The proposed MAC unit supports both fixed-point operations and floating-point 

operations. For floating-point format, the proposed unit supports one 16-bit MAC 

operation or sum of two 8-bit multiplications plus a 16-bit addend. Verilog HDL is used 

for designing the overall MAC architecture [97]. 
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2.3 MOTIVATION & TECHNICAL GAP 

MAC unit performs the essential mathematical operations in the digital signal 

processing systems. Since the MAC unit speed decides the DSP's speed, the primary 

consideration of the research done in recent times has focused mainly to enhance the 

speed of the MAC unit.  Also, as the DSPs are inevitable in portable electronics, a 

constraint on power consumption forces to optimize energy efficiency. Therefore, 

power dissipation is another primary concern in the MAC operation. Hence, from the 

detailed literature review it can be summarized that: 

1. As discussed earlier in this chapter, the multiplier and accumulator are the critical 

components of MAC architecture. As the efficiency of the MAC is dependent upon 

the efficiency of the multiplier (mainly), an efficient multiplier (in terms of typical 

design constraints) design can further improvise the efficiency of a MAC unit. 

Moreover, the multiplier proposed in the literature are mostly based on the Wallace 

tree algorithm. It is claimed that the multipliers based on the Wallace tree reduce 

the steps involved to add the partial products. Still, it uses half adder or full adder 

for the addition of partial products which increases the complexity of the circuit [4, 

12, 15, 18, 23, 24, 26-28, 30]. On the modified Wallace tree multiplier proposed in 

the literature uses compressor-based circuits (up to 7:3 only) to reduce the steps 

involved to add the partial products. Therefore, if a universal compressor (N:M of 

any size) is applied to the multiplier for the addition of partial products, it can further 

improve the efficiency. 

2. Any electronic circuit can be designed by two different approaches, namely the top-

down approach and the bottom-up approach. In the top-down approach, the designs 

are implemented by focusing mainly on the output efficiency of the overall design. 

i.e. importance is given on the implementation of the process or algorithm, not on 

the optimization of primary cells. On the other hand, in the case of the bottom-up 

approach, the whole digital architecture is designed starting from its primary cell, 

i.e. importance is given on optimization of the primary cell as well as on the 

practical implementation of the algorithm. In the literature, full custom circuit 

design for the MAC unit has never been proposed & most of the available 
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architectures in the literature have used HDL based approach [7, 56, 60, 69, 75, 87]. 

Moreover, almost 99% (80 out of 81 papers) of the architectures available in the 

literature have neither implemented for signed operation nor floating-point designs. 

Therefore, the practical applicability of such design needs to be further tested. 

Hence a full custom IC approach can provide a much more efficient MAC in terms 

of power as well as delay. 

3. Synchronization, clock gating techniques and pipelining can further enhance the 

speed of operation and minimize the power consumption [48, 81]. Simultaneously 

all these techniques are neither adopted nor described for any of the MAC explained 

in the literature. Though some architectures in the literature have used the clocking 

signals for the accumulation of data only (in the register or accumulator), most of 

the architectures haven't used any clocking signal. Any circuit in asynchronous 

mode can't be implemented in a real-time application.  

2.4 OBJECTIVE OF THE RESEARCH 

Delay and power optimization are very much essential for any kind of digital circuits. 

As the MAC unit is the heart of a DSP, it is always demanding to use an efficient MAC 

architecture. In this research work, the focus is given on the optimization of the basic 

building blocks. Based on the technical gap identified, the objectives of this proposed 

research work are defined as:  

I. To design & implement a novel multiplier architecture and analyzing its 

performance using Cadence Virtuoso 90 nm Technology.  

II.  To design a novel 8 × 8 bit signed/unsigned MAC architecture for fixed-point 

numbers using Cadence Virtuoso 90 nm Technology.  

III.  To design & analyze a novel 8 × 8 bit signed/unsigned synchronous MAC 

architecture using clock gating scheme for fixed-point numbers using Cadence 

Virtuoso 90 nm Technology.  

IV.  To design a novel 8 × 8 bit signed/unsigned MAC architecture for floating-

point numbers using Cadence Virtuoso 90 nm Technology.  

V. To design & analyze a novel 8 × 8 bit signed/unsigned synchronous MAC 

architecture using clock gating scheme for floating-point numbers using 

Cadence Virtuoso 90 nm Technology.  
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CHAPTER 3: UCM-A NOVEL 

APPROACH FOR DELAY 

OPTIMIZATION 

 

 

3.1 INTRODUCTION 

Multiplication has a vast field of applications such as digital signal processing, 

multimedia systems, arithmetic operation, digital communication, etcetera. The process 

of the multiplication can be segregated into two categories, namely “partial product 

generator” and “final sum/carry generator using adder circuits”. Therefore, the 

multiplication process requires more hardware resources and processing time in 

comparison to the primary adder/subtractor circuit. In a simplified view, a multiplier 

requires AND gates (for partial product generation) and adder circuits (half adders and 

full adders) for the addition of partial products to yield the final result. Figure 3.1 shows 

the simplified operation of a multiplier. As per the literature, various multiplier 

algorithms/architectures are proposed in the past, such as booth encoder, Wallace tree 

adder, array multiplier, modified booth multiplier, etcetera [4]. All these 

algorithms/architectures use different approaches to make the multiplier operation more 

efficient. For example, booth multiplier or modified booth multipliers are algorithmic 

approaches where the main focus is on reducing the total number of partial products. 

On the other hand, as explained in [4], the efficient addition of the partial products is 

the key advantage in Wallace tree multiplier. Hence a combination of both can provide 

a better result. 

There are various multiplier circuits explained in the literature, which mainly focuses 

on the issues of power consumption, delay of the multiplier circuit, and lesser area [11-

13, 15-18, 20-24, 26-28, 30, 53]. But as per studies, it is found that area and the speed 
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of operation are the two most conflicting design constraints. Hence increasing the speed 

of operation enhances the area requirement. On the other hand, as day by day, the size 

of the transistor is decreasing, the area cannot become a significant issue in today's 

digital systems. The power consumption and delay of a particular circuit depends upon 

the supply voltage (VDD). A slight increment in the supply voltage increases the overall 

power consumption, but at the same time, it decreases the delay of the circuit. Hence 

there is always a trade-off between power consumption and delay of a circuit. 

Therefore, the supply voltage plays a vital role in designing a low power circuit. I.e., 

for a low power design, an optimized supply voltage is needed to be chosen so that the 

output logic is valid, and the power consumption is bare minimum with a comparable 

delay value. As per the literature survey, it is found that most of the multiplier design 

uses Wallace tree multiplier as the underlying algorithm and in the majority of the cases, 

the basic Wallace tree multiplier algorithm has been modified to get better results [4, 

12, 15, 18, 26, 30]. The reason for the same is that the Wallace tree algorithm is the 

simplest way of designing multiplier with optimized delay/power consumption.  

 

Figure 3.1: Basic multiplication operation  

In this chapter, a high-speed multiplier architecture with a minimal value of supply 

voltage is proposed. In the implemented architecture, the supply voltage is minimized 

to reduce the power consumption of the circuit without compromising the speed of the 

multiplier circuit. The study mainly focusses on the optimization of the partial product 

addition. The reason behind the same is that, for partial product generation, the booth 

algorithm produces a better result than any other multiplication approach. Secondly, as 
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discussed above, the majority of the multipliers use Wallace tree adder for partial 

product addition. Hence, an optimized and efficient partial product adder, which can 

replace the Wallace tree algorithm, can yield a better multiplier. 

3.2 WALLACE TREE MULTIPLIER ARCHITECTURE 

The conventional Wallace tree multiplier algorithm is divided into three stages: 

Stage 1: partial-product generation. 

Stage 2: addition of partial products which creates `sum' and `carry' terms separately. 

Stage 3: a final adder, which is generally a fast adder to add the ‘sum’ terms and ‘carry’ 

terms together to yield the final result [27]. 

In stage 1, the partial products are the AND product of each multiplier bit with each 

multiplicand bit. It can be implemented either by using conventional two-input AND 

gate to find the partial product of each multiplicand and multiplier or by using advanced 

booth multiplier to reduce the total number of partial products. With the help of 2nd 

order booth algorithm, the number of the partial product is reduced to half (approx.) of 

the bit width of the multiplier [15]. 

In stage 2, the partial products are added using half adder/full adder. The partial 

products with `N' rows are grouped in sets of three rows each. Any rows that are not 

part of the group of three rows are transferred to the next level without any modification. 

In the groups of three rows, full adders are applied to the columns containing three 

partial products, and half adders are applied to the columns containing two partial 

products (in the groups of two rows) [13]. The columns with only one partial product 

are transferred to the next level without any modification. For the next level calculation, 

use the sum and carry output of the full adder/half adder of the previous level along 

with the remaining partial products. The same procedure is followed until and unless 

there are only two rows left. 

In stage 3, the remaining two rows are added either by using an n-bit RCA or by using 

a fast adder such as carry look-ahead adder, carry select adder, etcetera. Figure 3.2 

elaborates the operation of the Wallace tree multiplier algorithm in detail, where 'a0'-

'a8' are representing the multiplicands; 'b0'-'b8' are representing the multipliers; 'q0'-
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'q80' are serving the partial products; 'Sxx' is representing the sum; 'Cxx' is representing 

the carry outputs of half adder/full adder and 'CRx' is serving the ripple carries at the 

final stage. Moreover, as shown in figure 3.2, the rectangles with three variables 

represent full adder, and the rectangles with two variables represent half adder. 

 

Figure 3.2: Wallace tree multiplier for 9 × 9 bit multiplication 

3.3 DESIGN PROCESS OF UCM ARCHITECTURE 

A universal N:M bit compressor-based multiplier is proposed in this research work. 

Where ‘N’ and ‘M’ are the number of inputs and outputs respectively. The process flow 
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of the proposed UCM design is shown in figure 3.3. As shown in figure 3.3, the novel 

architecture is designed in Cadence Virtuoso 90 nm CMOS technology as well as in 

Verilog HDL. The power and delay analysis are carried out from virtuoso-based design, 

whereas the Verilog HDL program is used for FPGA prototyping.    

 

Figure 3.3: UCM architecture design process flow 

3.3.1 UCM architecture 

Although the Wallace tree multiplier is much faster than the array multiplier [30], it 

requires a large number of adders. Secondly, the Wallace tree multiplier is highly 

irregular and complicated. So, to overcome the irregular structure, several modified 

Wallace tree algorithms are proposed in the literature [4, 12, 15, 18, 23, 24, 26-28, 30]. 

All these multiplier algorithms are based upon Wallace tree algorithms. Hence 

replacing the Wallace tree algorithm may further improve the result of the multiplier. 

Another critical point here is, instead of using traditional Wallace tree adder, 

compressor circuits such as 3:2 compressors or 4:2 compressors, etcetera can be used 

for partial product addition. But as there is a possibility of using the same compressor 

again and again for doing addition (same as Wallace tree addition), the same wouldn't 

be much useful. The UCM architecture is designed as shown in figure 3.4, where the 

rectangles with three variables represent full adder, the rectangles with two variables 

represent half adder, and the rectangles with more than three variables represents a 

compressor circuit. The architecture of UCM is composed of three stages. The stage 1 
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and stage 3 of the novel UCM architecture remain the same as that of the Wallace tree 

algorithm, since whether it is partial product generation or the addition of intermediate 

‘sum’ or ‘carry’ terms using a simple adder these can be selected according to the 

designer's requirement. Therefore, it is more critical to substitute stage 2, i.e., the 

addition of partial product, which separately produces ‘sum’ and ‘carry’ terms. 

 

Figure 3.4: UCM architecture for 9 × 9 bit multiplication 

3.3.2 Addition of partial products 

While adding partial products, the partial products are arranged in such a way that the 

summation of multiplicand and multiplier's bit position is identical. The summation of 

the location of the bit can be called a 'weight' of a specific partial product. For example, 

in figure 3.4, 'q35', 'q43', 'q51', 'q59', 'q67' and 'q75' are aligned in a single column 

because of the fact that the weight for all of the partial products mentioned is eleven, 
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i.e. 'q35'='a8'.'b3', 'q43'='a7'.'b4', 'q51'='a6'.'b5' etcetera. Thus, the summation of the bit 

position is either 8 + 3 or 7 + 4 or 6 + 5, which is equal to 11 in all situations. Hence, 

its alignment is critical for the addition of partial products. Once the partial products 

are properly aligned, the next move is to add all of the partial products that fall into that 

specific group. At first, the total number of stages and levels need to be determined for 

adding a specific column. Each stage consists of a pair of AND-XOR gates, and the 

total number of stages is counted from top to bottom in one level. The total number of 

first level stages is 'i-1', where 'i' is the total number of partial products to be added in 

a specific column. 

On the other side, the horizontal AND-XOR pair count is the total number of levels 

needed for the design. From a different angle, it can be found that the total number of 

levels required in a design is the total number of AND-XOR pairs provided in the 

bottom-most stages, i.e., the number of AND-XOR pairs through right to left. In each 

level, the total number of stages required is decremented by one from its preceding 

level's total number of stages. The total number of levels 'n' needed in a specific column 

for 'i' number of partial products is given by equation 3.1 and 3.2. 

 2�-1 ≥ - (3.1) 
⇒ 2� ≥ i+1 

⇒ /(log102) ≥ log10(i+1) 

∴ / ≥
log10(i+1)

log102
 

 or n ≥ log'(- + 1) (3.2) 

where ̀ i' and ̀ n' are natural numbers starting from 1, 2, 3, ......, ∞. If the 'n' value resulted 

in the fractional part, then its next higher natural number is to be considered. For 

example, for adding three partial products in a column, the total number of levels is n≥

log
'

(3 + 1), so n=2. Similarly, suppose i=8, i.e., n≥ log
'

(8 + 1), and it is evaluated 

as n=3.16. As 'n' should be a natural number, its next higher natural number is 

considered and therefore n=4. Figure 3.5 shows the basic block diagram for K stages 

and L levels. As shown in the figure, 'A0’, ‘A 1’, ‘A 2’ up to ‘AK’ are the partial products; 

the term ‘Y0’ is the sum and ‘Y1’, ‘Y 2’, ‘Y 3’,....., ‘YL' are the carries. The algorithm 

shown in figure 3.5 is, therefore, in simple words, an N-bit compressor circuit that 

generates the sum of a particular column and single or multiple carries. 
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Figure 3.5: AND-XOR gate arrangement with K stages and L levels 

3.3.3 Special cases 

• In the last level, only the XOR gate is used instead of the AND-XOR pair 

• When i=2, only one level is used to get the sum and carry. In this scenario, 

the carry is the data output from the AND gate. 

• For i=1, the input itself is the sum (output), and it does not generate a carry. 
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It is worth noting that the output through level 1 is the sum of the partial products 

present in a particular column, and the outputs of the rest of the levels are the 

corresponding carry bits, i.e., level 2 to level 'L'. Upon obtaining the sum as well as 

carry bits of all columns, the next move is to add the sum bits with the previous column's 

carry bits. For this, any of the practical algorithms, such as the DADA algorithm, 

Wallace tree algorithm, or even ripple carry adder, can be used as the number of rows 

has significantly decreased. 

3.4 CONCLUSIVE REMARKS 

The novel UCM architecture is a universal method for compressor design, which is 

dominantly used in multiplier architecture. The compressor architecture is capable of 

N:M bit compression; therefore, it can be directly applied to a multiplier with N × N 

bits. Moreover, the UCM architecture has reduced the complexity of the Wallace tree 

multiplier because of the novel compressor algorithm. The application of the UCM on 

MAC architectures is shown in chapters 4 and 5. The power-delay and PVT analysis of 

UCM architecture is shown in chapter 6.    
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CHAPTER 4: UNSIGNED/SIGNED 

FIXED-POINT MAC ARCHITECTURE 

(UMAC, USMAC & SMAC) 

 

 

4.1 INTRODUCTION 

The DSP devices are used in many applications, such as image processing, speech 

encoding, audio mixing, etcetera. The MAC unit plays a critical role in these 

applications since the input signals must be multiplied and then added with the previous 

result. The primary MAC unit includes a multiplier, summer (or adder), and register. 

MAC's arithmetic operations can be performed on two different number systems: a) 

fixed point and b) floating-point. There are signed and unsigned numbers in the fixed-

point representation, which are to be multiplied and then added, but at the same time, 

the fixed-point number system is not sufficiently efficient for performing arithmetic 

operations on reasonably large numbers. Therefore, there is a requirement for the 

floating-point number system. The floating-point number system is the combination of 

the mantissa term and the exponent terms. So, in general, the real numbers in a floating-

point number system is represented as equation 4.1. 

 N=M×BE (4.1) 

where ‘M’ is the mantissa, ‘B’ is the base, and ‘E’ the is exponent. Therefore, all such 

design aspects of fixed, as well as floating-point numbers, must be considered when 

constructing a MAC unit.  

On the other hand, the function of the MAC unit is termed, as shown in equation 4.2. 

 > = ∑ ?�@�
�AB
�CD   (4.2) 
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The equation 4.2 represents that a MAC unit performs multiplication of two numbers 

and add the result with the previously stored values. The primary building block for the 

MAC unit, as discussed earlier, is multiplier and adder. For the MAC block to be 

efficient, the MAC unit's multiplier and adder blocks must be efficient in terms of 

power, speed, and area.  

 

Figure 4.1: Basic MAC Unit 

4.2 BASIC BUILDING BLOCKS OF MAC 

The basic building block of the MAC unit is represented in figure 4.1 [14]. The 

multiplier block collects and multiplies two n-bit inputs, and produces the 2N-bit 

output, which is further processed to the register/accumulator unit. The register 

temporarily stores the data and sends the data to the adder as an input. The adder sums 

up the register unit output together with the accumulator register accumulated value, 

which is the result of the previous cycle. Thus, the MAC unit's overall output is taken 

from the accumulator register output. Hence, the MAC unit architecture consists of an 

N-bit multiplier, 2N bit register, (2N+1) bit adder, and two (2N+1)-bit accumulator 

registers (one for storing the output value and the other for reading the previous output). 
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4.2.1 Multiplier  

As explained earlier, the processing elements of MAC mainly involve the 

multiplication of two numbers; therefore, in such types of processing systems, the 

multiplier is required. In the literature, various fast and effective multipliers are 

described. The Array Multiplier is a basic multiplier that follows the product generation 

and addition principle. But this architecture becomes bulkier with higher PDP when the 

total number of summation levels increases. The solution to this problem is to use the 

“Wallace tree multiplier based on the structure of Wallace tree”. In 1964, C.S.Wallace 

proposed the Wallace tree multiplier, which “generates the product of two numbers 

using purely combinational logic, i.e., in one gating step”. This work has also outlined 

a rapid square-root process [11], as explained in figure 4.2. However, in the Wallace 

tree multiplier, every partial product is added in the top to bottom direction. Therefore, 

the total number of adders increases in a conventional Wallace tree multiplier. A 

rectangular styled Wallace tree multiplier is proposed in which the “partial products are 

divided into two groups and added in the opposite direction to overcome this problem. 

The partial products in the first group are added downward, and the partial products in 

the second group are added upward” [15]. On the other hand, in the literature, a phase 

mode parallel multiplier is also proposed [16]. The presented multiplier has a “Wallace-

tree structure comprising trees of carry-save-adders for the addition of partial products”. 

This structure has avoided the use of the irregular structure of the conventional Wallace 

tree; therefore, it is much appropriate for pipeline operation. 

A couple of architectures in the literature also focused on adder cell optimization. As 

adder is an essential unit in multiplier or divider, the main focus of the optimization is 

on the adder part. The literature proposes a carry-select-adder optimization technique in 

which a “carry-select-adder partitioning algorithm” is used for the Wallace tree 

multiplier using booth encoded techniques, which is found to be much efficient [4]. By 

considering different data arrival times, a “branch-and-bound algorithm” is proposed, 

and a generalized technique to separate an n-bit carry-select-adder in several small 

blocks of adder unit is introduced so that the overall delay of the design can be 

minimized. In a separate approach by [22], an improved version of modulo (2n + 1) 
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multipliers is proposed in 2013. The efficiency is achieved by “manipulating the Booth 

tables and by applying a simple correction term” in the existing modulo (2n + 1) 

multiplier algorithm. Moreover, the author states that "the proposed multiplier is almost 

as efficient as those for ordinary integer multiplication”. On the other hand, in 2012, a 

comparative analysis is done by [13] for designing a multiplier using “complementary 

MOS (CMOS) logic style, Complimentary Pass Transistor (CPL) logic style, and 

Double Pass Transistor (DPL) logic” style. A single-precision reversible floating-point 

multiplier is proposed by [21] in the year 2010. A 24-bit multiplier is proposed in this 

work by decomposing the whole 24 bits in three portions of 8 bit each. 

 

Figure 4.2: Wallace tree multiplier (addition of partial products) 

4.2.2 Adder 

An adder is also known as summer, is a logic circuit that adds two numbers. An adder 

or summer circuit is used not only for addition but also for multiplication, updating the 

address, increment/decrement operation, table indices, etcetera. The adder operation is 

performed in binary number systems, but the adder can also be applied on BCD, excess 
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-3, etcetera. In the literature, various full adder architectures are proposed. In 2013, a 

“novel low power hybrid full adder using MOSIS 90 nm technology” is proposed, 

which consumes meager power [25]. The design being proposed is compared to its 

conventional full adder, which consists of 28 transistors. A hybrid 1-bit full adder is 

introduced in a different approach, which uses both CMOS and TG logic styles [3]. The 

entire design is implemented in both 90 nm technology and 180 nm technology. The 

proposed design offers very little power at 1.8V supply voltage and moderately low 

delay. Figure 4.3 shows the adder, as described in [3]. 

 

Figure 4.3: Full adder design which uses both CMOS and TG logic styles 

4.3 EXISTING ARCHITECTURES OF MAC UNIT 

In 2007, an 8-bit, 16-bit, and 32-bit MAC is proposed and  implemented on the Xilinx 

ISE and FPGA boards [1]. The design shows both area and power improvements. 4:2 

Compressor circuits are used for faster design of the multiplier circuit. Using Cadence 

Virtuoso 180 nm Technology in [55], an 8-bit MAC Unit is proposed. For the said MAC 

architecture, several adder/multiplier circuits are also compared and implemented. In 

2012, a multiplier in which the terms are rearranged to reduce the "total number of 

partial products by 25%" is proposed and shown in figure 4.4. [6]. The proposed 
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multiplier is further used to offer a MAC architecture. Also, cadence NC Sim and RTL 

compiler are used to do the analyses.  

 

Figure 4.4: Partial product addition matrix 

 

Figure 4.5: 32-bit MAC architecture and its ASIC implementation 

In a different approach in [7], it suggest a multiplier circuit using a modified Wallace 

tree multiplier and carry-save-adder. Further, a MAC device is also designed for 64-bit 

input, operating at 217 MHz and consuming a total dissipation of 177,732 mW of 

power. Abdelgawad has proposed an ASIC implementation of the 32-bit MAC in [65]. 

The proposed architecture has reduced hardware complexity, thereby reducing power 

consumption and decreasing delay, which decreases the area by 5.5%, power by 9%, 

and delay by 13% compared to conventional MAC architecture. Figure 4.5 displays the 

block diagram of the proposed design by Abdelgawad. The simulation is performed in 

180nm technology using HDL. 
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In 2013, a new MAC architecture based on a modified Braun multiplier with a bypass 

technique is proposed [8]. Designs are implemented in CMOS technology of 130 nm. 

The full adders in the circuit are constructed using TG logic, DPL logic style, etcetera. 

In [9], it is suggested that a pipeline MAC architecture consisting of a 16-bit multiplier. 

The multiplier that is implemented is based on the Baugh-Wooley algorithm. The 

proposed architecture is found to be more power-efficient, which is 30 percent to 80 

percent lower than traditional MAC architectures. Implementation is performed in the 

TSMC library using HDL in 65 nm CMOS technology. In 2015, the authors have 

implemented a Vedic multiplier and various logic-based reversible designs in [79]. 

Using these, finally, a 32-bit MAC architecture has been designed, as shown in figure 

4.6. The implementations are rendered in Cadence RTL using Verilog HDL. 

 

Figure 4.6: 32-bit MAC architecture 

As adiabatic architecture offers little energy dissipation, a MAC unit using adiabatic 

logic is proposed by [44]. Using a smaller number of complex logic gates, the non-

adiabatic dissipation is optimized, and the comparative study of the proposed MAC 

with the existing designs is also discussed. On the other hand, in 2009, the authors have 

implemented a novel design in ModelSim in TSMC 90 nm CMOS technology in [10]. 

Here “4-pipelined high-performance split Multiply-Accumulator (MAC)” architecture 
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is proposed. To improve the architecture's operating speed, a partial product 

compression circuit based on "interleaved adders" and a hybrid "Partial-Product-

Reduction-Tree (PPRT)" is proposed. The benefit of this MAC is that it can perform 1-

way 32-bit or 4-way 16-bit signed/unsigned "multiply or MAC operation" and "2-way 

parallel multiply-add operations". Figure 4.7 shows the architecture discussed in [10]. 

 

Figure 4.7: Pipelined MAC architecture 

In 2009, the researchers have proposed an 8-bit MAC unit using 180 nm technology 

[14]. Various adder/multiplier circuits are compared and implemented for the MAC. As 

the circuit designed by [14] is without a clock signal, it faces a synchronization issue. 

In 2014, a multiply-added floating-point unit for low-precision formats is proposed 

[66]. To achieve this architecture, which is required in the processing of mantissa data 

in a single operation, the multiplication and addition/subtraction operations are fused.  
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The architecture is implemented on the FPGA board. In 2005, the paper by [48] have 

discussed regarding RSFQ DS Processor, specifically used to eliminate interference 

from any signal. The author suggested the incorporation of multiplication-addition in 

the MAC for floating-point operation. The suggested MAC module consists of three 

units, i.e., a parallel multiplier, combiner, and accumulator, as seen in figure 4.8. The 

combiner performs the “summation of sums and carries from M-MSB bits” of the 

multiplier. In VHDL, the simulation is verified. 

 

Figure 4.8: The RSFQ DS processor architecture 

A MAC unit specific for “programmable bandpass filtering” is described in [49]. This 

MAC device is clock-able at 20 GHz frequency and can perform “2.5 billion MAC 

operations/second for 7-bit data”. In VHDL, the simulation is tested. Authors have 

suggested a "block matching motion estimation" method for the minimization of the 

accumulator unit in MAC [50]. This paper also explores the implementation of the 

MAC on FPGA and its mathematical models.  In [51], an architecture of "64-bit fixed-
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point vector MAC" is proposed, which supports multiple precisions. The MAC vector 

can perform “one 64 × 64”, “two 32 × 32”, “four 16 × 16”, or “eight 8 × 8" bit signed 

or unsigned multiplication and accumulation using the same hardware as the scalar 64-

bit MAC architecture. The proposed design is implemented using Verilog HDL in the 

Synopsys tool, as shown in figure 4.9. A two-cycle MAC architecture with efficient 

power-delay is proposed in [56]. The proposed architecture includes accumulation 

guard bits and saturation circuitry as well as it supports two’s complement numbers. 

Implementation is performed on VHDL and conceived in a cell library of 65 nm at 

1.1V. 

 

Figure 4.9: Fixed-point vector MAC architecture 

4.4 PROPOSED MAC ARCHITECTURES 

The proposed MAC architectures focus primarily on the signed/unsigned architecture 

for fixed-point inputs based on the synchronized block that are enabled with proper 

pipelining. The block enabling is a power saver technique that temporarily triggers a 

circuit, and the circuit becomes disabled afterward. Most of the energy/power can be 
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saved because of this basic phenomenon. The second reason why synchronization is 

introduced is to avoid unnecessary data loss. Because proper synchronization is not 

available, the data being processed in the preceding block may get lost while 

transferring the same to the next block. Third and most importantly, the processing 

through pipelining is the digital system's ultimate necessity as it improves the system's 

performance tremendously. 

As the two core blocks are multiplier and adder, a detailed analysis is done while 

selecting the appropriate circuits. The delay-cum-power efficient design is given 

critical importance whilst selecting the adder. As mentioned in chapter 1, the 

simultaneous minimization of delay and power consumption of any circuit is not 

possible because of the trade-off between these two design constraints. Therefore the 

'delay-cum-power efficient design’ here signifies the optimization of one of the design 

constraints while minimizing the other or vice versa.  The adder circuit proposed in [3] 

is used in the proposed MAC design, as it is found to be the most suitable for delay-

cum-power efficient design. On the other hand, as stated in section 4.1, it is found that 

although the array multiplier is considered to be the most straightforward algorithm for 

multipliers, it generates a very high delay compared to the Wallace tree multiplier. 

Whereas, the Wallace tree multiplier in rectangular style is the best option since it 

divides the partial products into two groups and hence faster than the conventional 

Wallace tree multiplier [15]. But the irregular structure is the most significant 

disadvantage of Rectangular styled Wallace tree multiplier. Therefore, the novel UCM 

architecture (proposed in the previous chapter), which has a better performance in terms 

of delay in comparison to the Wallace tree multiplier, is chosen as the multiplier for the 

proposed 8-bit MAC architectures.   

4.4.1 Proposed Unsigned MAC architecture (UMAC) 

The unsigned architecture is nothing more than conventional MAC architecture. For n-

bit inputs, as discussed earlier, it consists of an n-bit size multiplier, a (2n+1)-bit adder, 

and a 2n & (2n+1)-bit register or accumulator. Figure 4.10 and figure 4.11 shows the 

detailed block diagram and the output waveform of the UMAC architecture, 

respectively. 
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Figure 4.10: Proposed architecture of UMAC 

 

Figure 4.11: Output waveform of the proposed UMAC architecture 

4.4.2 Proposed Unsigned Synchronized MAC architecture (USMAC) 

The critical disadvantage of UMAC architecture is that the synchronization mechanism 

is not available, due to which the appropriateness of this architecture is in doubt. It 
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creates precise results, but it is challenging to verify the output waveform. Besides, the 

static power consumption for the UMAC architecture is very high due to the lack of the 

block enabling technique. Since the UMAC architecture requires no synchronized 

mechanism, only the registers are synchronized with clock pulses that make the 

multiplier and adder blocks active throughout the simulation. Hence the rise in the 

consumption of static power. 

 

Figure 4.12: Block diagram of USMAC architecture 

USMAC architecture is proposed to rectify the errors of UMAC architecture. The add-

on to the USMAC architecture is that the individual design blocks are connected to the 

clock pulse with a PED block and a Latch block to detect the clock edges and 

temporarily store the processed data, as shown in figure 1.7, respectively.  Due to the 

minor modification in the architecture, all the results can now be read and validated. 

Moreover, USMAC's static power consumption is also meager compared to UMAC 

architecture, since each block of the USMAC architecture is synchronized with the 

proper clock pulse. On the other side, it also adds the pipelining framework for proper 

data latching. The clock signal to the individual block of the USMAC architecture is 

provided with sufficient delay to control the pipeline process, as an incorrect data 

latching may result in undesirable results at the final output. A delay of 500 ps is thus 

maintained between the 1st and 2nd blocks and so on. Figure 4.12 and figure 4.13, 
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respectively, display the block diagram and the output waveform of the proposed 

USMAC architecture. 

 

Figure 4.13: Output waveform of the USMAC architecture 
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4.4.3 Proposed Signed MAC architecture (SMAC) 

In SMAC architecture, care is taken of the MAC process for positive, as well as the 

negative number. Multiplexers are used in this architecture for choosing positive and 

negative numbers. For the multiplication of negative numbers, the negative values are 

expressed in 2's complement form. For proper data latching, a gap of 500 ps is 

established between each block, as described in the previous sub-section. The proposed 

SMAC architecture block diagram and output waveform are shown in figure 4.14 and 

figure 4.15, respectively.  

 

Figure 4.14: Block diagram of SMAC architecture 
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Figure 4.15: Output waveform of the SMAC architecture 
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4.5 CONCLUSIVE REMARKS 

The novel MAC architectures for unsigned/signed fixed-point architectures are 

explained in this chapter.  As shown in this chapter, the UMAC architecture (designed 

for unsigned MAC operation) has the limitation of producing the result accurately 

because of the non-availability of synchronization. This problem is rectified by the 

USMAC architecture, where the unsigned MAC is synchronized using a clock gating 

technique along with pipelining. Finally, for signed MAC operation, SMAC 

architecture is proposed, which is capable of performing the multiply-accumulate 

operation on positive as well as negative inputs.  The MAC unit with floating-point and 

signed input (SFMAC architecture) is explained in chapter 5.  



63 
 

CHAPTER 5: MUX BASED SIGNED 

FLOATING -POINT MAC (SFMAC) 

ARCHITECTURE 

 

 

5.1 INTRODUCTION 

The actual MAC block is not just limited to the fixed-point number system. For 

applications such as image processing, speech encoding, audio mixing, etcetera, 

floating-point MAC architecture is much needed. In the literature, different approaches 

are adopted for designing effective floating-point MAC architectures. In [52], one of 

the notable floating-point MAC architectures is proposed, where a “pipelined single-

precision Floating-Point Multiply Accumulator (FPMAC)" consisting of the 

accumulator in radix-32 and internal carry-save addition is explained. Additionally, an 

improved version of “Leading-Zero Anticipator (LZA) and overflow prediction logic” 

required in carry-save addition is also described. The FPMAC is shown in figure 5.1. 

 

Figure 5.1: Pipelined single-precision FPMAC 
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A floating-point MAC architecture is proposed in the year 1996, where an LZA 

technique is used for a FADD core, as shown in figure 5.2. This logic carries out the 

simultaneous execution of the “pre-decoding for normalization” along with a 

summation of the significand [34]. The rounding operation, in parallel with the shifting 

of the normalization, is also proposed in this architecture. The CMOS logic is used for 

implementing the primary circuits for the design. Its area penalty of the FADD core is 

found to be as low as 30% of the traditional LZA method. The FADD core is fabricated 

by 0.5 µm CMOS technology at a supply voltage of 3.3 V.  

 

Figure 5.2: An LZA logic for floating-point addition operation 
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A “Floating-point multiply-add fused” architecture for IEEE 16-bit or IEEE 32-bit (half 

precision or single precision respectively) is discussed in [66]. The architecture is 

designed by the amalgamation of the multiplier and adder/subtractor required for 

mantissa data calculation in a single operation, which has provided an efficient usage 

of DSP blocks in FPGAs. The architecture is also implemented on FPGA. The 

architecture is shown in figure 5.3. 

 

Figure 5.3: Floating point multiply-add units for IEEE 16-bit or IEEE 32-bit 
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Figure 5.4: RSFQ DS Processor 

In [48], as shown in figure 5.4, explains about RSFQ DS processor, mainly used for the 

removal of interferences from any signal. The author proposed the MAC unit for 

floating-point multiplication-addition. The MAC unit consists of a three-unit parallel 

multiplier, combiner, and accumulator. The “combiner performs a summation of sums 

and carries from M-MSB” bits of the multiplier. The simulation is verified in VHDL. 

In this chapter, a multiplexer-based MAC architecture is proposed, which is capable of 

performing multiply and accumulation on signed floating-point inputs. For this, a novel 

input-data format is introduced, which takes 9-bit binary data with the MSB as the sign 

bit and 4-bit exponential input with the MSB as the exponential sign bit. Therefore, the 

size of the novel input-data format is 13-bits. Moreover, the SFMAC architecture uses 

multiplexer circuits rigorously for selecting among a positive or negative number. The 

next section and its sub-section explain the SFMAC architecture in detail, which mainly 

consists of input format representation, EA block, ECC block, ESC block, etcetera.  
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5.2 SFMAC ARCHITECTURE 

The architecture has a separate number representation. The initial considerations for the 

proposed SFMAC architecture are as mentioned below:  

1. The architecture uses sign-magnitude as well as 2's complement representations to 

represent positive as well as negative numbers (including exponent terms). The 

overall inputs and output of SFMAC are represented in sign-magnitude form, 

whereas for internal calculations, the same data are converted into 2's complement 

form. The final output of the proposed MAC architecture (MAC output) is 16-bits, 

and the sign bit of the result is identified by the ‘C2’ bit. 

2. The inputs to the SFMAC are two 8-bit binary number arranged in a format, as 

shown in figure 5.5 below: 

 

Figure 5.5: Input format representation of SFMAC 

The size of each input of the SFMAC representation is 13 bits, in which two bits 

are reserved for the sign bits of the number and its exponent. The sign bit can be '0' 

or '1' based on positive or negative number representation, respectively. Remaining 

eleven bits are used for 8-bit binary representation and 3-bit exponent representation 

in binary. One significant point here to note is that the 3rd bit of the exponent in 

binary representation is by default made as '0' because, to represent a 2-bit number 

in 2’s complement form, it requires 3 bits. The range of 2’s complement 

representation is given by equation 5.1. 
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  −(2�AB) to +(2�AB − 1) (5.1) 

Where ‘n’ is the number of bits. 

 

Figure 5.6: The novel SFMAC architecture 
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Therefore, in this architecture, the exponent term can range from ‘-4’ to ‘+3’. 

Hence, the input numbers can have a range from –(0.11111111)2 × 2+3 to 

+(0.11111111)2 × 2+3 and thus, the range of the inputs of the current SFMAC 

architecture in a decimal number system is from –(7.96875)10 to +(7.96875)10. 

3. The inputs to the SFMAC architecture should be entered in decimal point only. For 

example, instead of providing the inputs to the SFMAC as (001)2 and (010)2, the 

numbers should be entered as (0.00100000)2 × 2+3 and (0.0100000)2 × 2+3. 

Similarly, (101)2 and (10)2 should be represented as (0.10100000)2 × 2+3 and 

(0.10000000)2 × 2+2 respectively to process it through the SFMAC. 

4. The EA block performs multiplication of the exponents of the inputs. Therefore, it 

basically adds the exponents (as 2n × 2m = 2(n+m)). Though the inputs to the EA block 

is of 4 bit each (including one sign bit), it produces the result in 5 bits as the addition 

of two 2-bit number can produce a maximum of 3-bit result and for representing a 

3-bit binary number in 2's complement form, it requires 4-bits. On the other hand, 

the MSB bit (i.e., 5th bit) is the sign bit of the result. 

The primary content of the SFMAC architecture are: 

• Exponential Adder (EA) 

• 8-bit multiplier 

• 16-bit register 

• Exponent Comparator Circuit (ECC) 

• Exponent Shifter Circuit (ESC) 

• 16-bit adder and 

• 2:1/4:1 multiplexer of different sizes 

The overall architecture of SFMAC is shown in figure 5.6. 

5.2.1 Exponential Adder (EA) 

As mentioned above, the EA block performs the multiplication of the exponential terms 

of the inputs. The size of each exponent is 4-bit, out of which one bit is reserved for 

sign representation. The EA architecture is shown in figure 5.7, and the following steps 

are followed in the EA block: 
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Figure 5.7: Exponential Adder (EA) architecture 

i) Based on the sign bit, the exponents are represented in 2’s complement form.  

ii)  True/2’s complement form of both the exponents are added using a 4-bit adder 

block. 

iii)  As the inputs to the adder block is in true or 2’s complement form, the sum term 

of the adder doesn’t provide an exact result. Therefore, the output of the adder 

block is further processed through a 4-bit 4:1 multiplexer to represent the result 

in sign magnitude form. The outcome of the 4-bit 4:1 multiplexer is based on 

the following conditions: 

• If the ‘XOR’ output of both the sign bit and carry a bit of the adder block is 

either '00' or '11' then pass, the adder output itself is the output of the 4-bit 

4:1 multiplexer.  
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• Else the output of the 4-bit 4:1 multiplexer is the 2’s complement 

representation of the adder block. 

iv) The output of the EA is in sign-magnitude form only.  The final sign bit of the 

EA block is based on the ‘XOR’ value of the sign bit of the exponent 1, exponent 

2, and the carry bit of the adder block. 

v) A PED-latch block pair is used at the output of each output bits to make the EA 

block synchronized.  

5.2.2 8-bit multiplier  

The multiplier block used in this case is the novel UCM architecture, which is explained 

in detail in chapter 3. The additional circuitry that is added to the multiplier is the 

synchronization. As used in the EA block, a PED-latch block pair is used at the output 

of each output bits of the multiplier. 

5.2.3 16-bit register 

Generally, due to fluctuation in the inputs, the output changes, and it is almost 

impossible to track the output. The primary use of the register is to hold the data until 

the next cycle is processed. Here, 16-bit registers are used at the final output and 

immediately after the multiplier. The main content of the register is a D flip-flop and a 

data selection circuit consisting of basic gates. The basic design of the register is already 

elaborated in chapter 1.  

5.2.4 Exponent Comparator Circuit (ECC) 

As shown in figure 5.8, the inputs to the ECC are the product of the exponents (EA 

output, i.e., 5-bit) and the output exponent of the previous cycle (5-bit in size). The 

major point to consider here is that if both the input terms to the ECC block carry the 

same sign, then the actual difference among the two is the arithmetic difference between 

the numbers. Whereas, if both the inputs carry different signs, then the actual difference 

among the two is the arithmetic sum of the two numbers. For example, the actual 

difference between '+a' and ‘+b’ is ‘a-b’ or ‘b-a’. Whereas, for ‘-a’ and '-b', the actual 

difference is 'a-b' or 'b-a' only. But if the inputs are '+a' and ‘-b’ or ‘-a’ and ‘+b’ then 
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the actual difference is going to be ‘a+b’ or ‘b+a’. The operation of the ECC block is 

as follows: 

 

Figure 5.8: The ECC architecture 

i) Based on the sign bit, the inputs to the ECC are represented in 2’s complement 

form.  

ii)  The operation of the ECC is further segregated based on the sign bits of the 

inputs as follows: 

a. If both the sign bits are different, then add the inputs of the ECC to produce 

a 4-bit output (i.e., discard the carry bit) but introduce the 5th bit as '1' if the 

product of the exponents of the inputs is negative, but the previous exponent 

is positive. Make the 5th bit as '0' in the other circumstances.  

b. If both the sign bits of the inputs to the ECC are same then find out the input 

which is higher among the two and find the difference between the inputs 

as per the following procedure: 
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• For finding the higher number, compare both the numbers bit by bit, 

i.e., start comparing from MSB to LSB, as shown in figure 5.9. 

• For finding the difference, use the 2’s complement approach. The 

difference produces a 4-bit output (i.e., discard the borrow bit) but 

introduces the 5th bit as '0' if the product of the exponents of the inputs 

is higher than the previous cycle exponent. Make the 5th bit as ‘1' in 

the other circumstances. 

• In this architecture, multiplexers are used to compare the inputs. 

iii)  This operation produces a 5-bit output, which is further used for performing the 

binary shifts. 

 

Figure 5.9: The ECC with same sign bit 
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5.2.5 Exponent Shifter Circuit (ESC) 

The ESC block is responsible for shifting the smaller number (either the product of the 

8-bit inputs or the previous cycle MAC output) by the amount of difference between 

the exponents of these two. The inputs to the ESC block are the 5-bit output of the ECC 

block, a 16-bit product of the inputs, and 16-bit value of the previous cycle output. The 

step by step procedure is as follows: 

 

Figure 5.10: The ESC architecture 
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i) As shown in figure 5.10, the identification of the smaller number is made based 

on the ECC output (5-bits). If the MSB of the ECC block output is '1', then the 

product of the inputs is shifted towards the right by the equivalent decimal value 

of the remaining 4-bit binary of the ECC block output. On the other hand, if the 

MSB of the ECC block output is '0', then the previous output is shifted towards 

the right by the equivalent decimal value of the remaining 4-bit binary of the 

ECC block output. 

ii)  The input to the ESC block, which need not be shifted, is identified by the same 

MSB of the ECC block output. 

5.2.6 16-bit adder 

The adder block is again a synchronized block (i.e., it is clocked). The outputs of the 

ESC block are processed through a 2's complement block and a 2:1 Multiplexer for 

representing a positive or negative value. For example, if the shifted output of the ESC 

block is negative, then the 2’s complement value of the shifted output of the ESC block 

is considered. Similarly, the non-shifted output of the ESC block is negative, then the 

2’s complement value of the non-shifted output of the ESC block is considered. The 

shifted or non-shifted number can be the product of the inputs or the previous output. 

Therefore, to distinguish the same, the 5th bit of the ECC block output is considered. 

The rest of the adder block is the same, as explained in chapter 1. Additionally, the PED 

and latch pair is used for synchronization.  

5.2.7 2:1/4:1 multiplexers of different sizes 

As the algorithm doesn’t use any programming approach, for solving the conditions, 

multiplexers of various sizes with multiple or single bits is considered. 

5.2.8 Explanation of SFMAC using binary values 

Let us consider an example to elaborate on the operation of the proposed architecture. 

The input numbers are as follows: 

Input1=001001011, Input1 exponent=0000 

Input2=101010001, Input2 exponent=1001 
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The MSB (9th bit) of input1 and input2 is the sign bit, which is highlighted in bold. 

Similarly, the MSB (4th bit) of input1-exponent and input2-exponent is the sign bit, 

which is highlighted in bold as well. In this example, input1 and input1-exponent are 

positive & input2 and input2-exponent are negative. On the other hand, the previous 

output 00000000000000000 with exponent as 0000. Therefore, the previous output, as 

well as its exponent, is positive. The execution steps as per the example mentioned 

above are as follows: 

1. Based on the inputs, the product of the two inputs (NUM) is calculated as 

10001011110111011 (in 16 bit). As one of the input numbers is negative, the 

resultant is negative. 

2. The exponent of the NUM is the addition of the exponents of the inputs. The NUM 

exponent result is 10001 (-1). The NUM exponent is represented in 5 bits because 

the addition of two 2-bit numbers can produce a result in 3-bit. Moreover, a negative 

3-bit number requires 4 bits to represent. Additionally, the 5th bit is used to signify 

the sign bit. 

3. If the exponents of the NUM and previous outputs are compared, then it can be 

observed that the exponent of NUM is -1 and exponent of previous output is +0. 

Therefore, the NUM is smaller than the last output, and hence, the NUM is shifted 

by 1 bit from the left to get the updated NUM as 10000101111011101. 

4. The shifted NUM (i.e., 10000101111011101) is added with previous output 

00000000000000000 which produces a result as 10000101111011101 with 

exponent as 00000. The same is shown in HEX code as -0BDD × 2+0 in the output 

curve at the 2nd rising edge of clock 8, as shown in figure 5.11.  

5. In the next cycle, as the input doesn't change, the NUM remains the same, i.e., 

10001011110111011. On the other hand, the latest value of input1-exponent and 

input2-exponent are 1011 and 0010. Therefore, it produces the NUM exponent as 

10001 (-1). 

6. As the NUM in this cycle is smaller than the previous cycle output (as the last 

output's exponent is more significant than NUM exponent), the NUM is shifted by 

1 bit towards its right, which produces the updated NUM as 10000101111011101 

with updated NUM exponent as 00000. 
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7. The updated NUM and previous output are added and produce the result as 

10001011110111010 with the exponent as 00000. The same is shown in HEX code 

as -17BA × 2+0 in the output curve at the 3rd rising edge of clock 8. The simulation 

waveform is shown in figure 5.11. 

8. The clock in this SFMAC architecture is applied in a pipelined manner, as 

mentioned below: 

 

Figure 5.11: The simulation waveform of the SFMAC architecture 
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a. The pipeline mechanism using the clock is ensured by activating the consecutive 

blocks. A single clock signal is applied with a fixed clock period. But the 

consecutive clocks are differed by a delay of 1.4 ns. The reason for the delay is 

to latch the previous block’s output effectively as the input for the next block. 

The delay of clock signals is calculated by the maximum propagation delay of 

the individual blocks of the SFMAC architecture, which is given by the equation 

5.2. 

�G$H *_�"$�� = J?K( �&"$��_LM, �&"$��_OGP , . . . … … . . . , �&"$��_#"R') (5.2) 

��"$��_LM is the propagation delay of the EA block; ��"$��_OGP is the propagation 

delay of the UCM and so on. The propagation delay of all blocks of SFMAC is 

shown in table 5.1.  

Table 5.1: Propagation delay of the internal blocks of SFMAC architecture 

Block Delay (in ps) Inference 

Multiplier 433.7 
The maximum delay from A0 to P15, considering 

all inputs as high. 

Register 123.6 
Delay from the positive edge of the clock to any 

of the output 

Full Adder 22.4 
Delay from A0 to OUT15, considering all inputs as 

high 

EA Block 268.9 ps 

Delay from Exp20 to ExpOUT2, 

considering Exp1 as positive & Exp2 as 

negative 

ESC Block (along 

with ECC block) 
1367.5 

With same sign bits of both the exponents (as 

negative or positive) in the ECC block and 

maximum bit shift in the ESC block 

2:1 MUX 12.6 With the critical path from ‘S’ to ‘Y’ 

4:1 MUX 18.9 
Maximum delay occurred either in ‘S0’ to ‘Y’, 

‘S1’ to ‘Y’ or ‘S 2’ to ‘Y’ 
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b. As there are a total of nine clocked blocks in this architecture, the amount of 

total delay required is eight times 1.4 ns (1.4 ns × 8 = 11.2 ns). This means a set 

of inputs latched at time 0 ns is evaluated and produces the output only after 

11.2 ns. Therefore, the clock period is fixed at 12 ns (or 83.333 MHz operational 

frequency), so the execution of the last clock and latching on the first clock 

doesn’t get overlapped.  

c. The EA block is enabled with clock 0. 

d. The multiplier block is enabled with the clock 1 signal. 

e. Clock 2 signal is used as a clock signal for the 16-bit register for the multiplier. 

f. There is no clock applied to the ECC block, which produces 5-bit output. 

g. Clock 3 is applied to the ESC block, which yields the shifted/non-shifted NUM 

or previous output. Parallelly the same clock is used to the 2:1 MUXs for 

updating the select line of the 16-bit 2:1 MUXs to update the true or 

complemented NUM/Previous output. 

h. Clock 4 is applied to the 16-bit 2:1 MUXs to update the true or complemented 

NUM/Previous output. 

i. For adding the true or 2’s complement form of shifted/non-shifted 16-bit inputs, 

Clock 5 is applied. 

j. The 16-bit 2:1 MUX block is activated on the edges of clock 6, which choose 

between the true output of the full adder output or the 2’s complement output of 

the full adder output. The carry bit of the output of the full adder is applied as 

the select line. 

Table 5.2: The operation of the 16-bit 4:1 MUX based on the two select lines 

XOR of I/P 

sign bits  

Sign bit of the 

previous output 
Operation 

0 0 No change or true form 

0 1 Pass the output of the 16-bit 2:1 MUX as such 

1 0 Pass the output of the 16-bit 2:1 MUX as such 

1 1 2’s complement 
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k. The output of the MAC block is based on the selection of XOR of the sign bit 

of the inputs and sign bit in the last output. The input for the 4:1 MUX (16-bit) 

is the output of the 2:1 MUX (16-bit). The inputs for the 4:1 MUX (16-bit) is 

latched at the positive edges of clock 7. The operation of the 4:1 MUX is 

explained in table 5.2.  

l. Finally, a 16-bit register is used at the output so that the internal glitches doesn't 

change the output value. The 16-bit register block is enabled with clock 8. 

5.3 CONCLUSIVE REMARKS 

The novel SFMAC architecture for signed-floating point MAC operation is explained 

in this chapter. The circuit is implemented on Cadence Virtuoso CMOS 90 nm as well 

as in TSMC 130 nm technology. The internal building blocks of SFMAC are also 

explained in detail. The step-by-step working procedure of EA block, ECC block and 

ESC block are also explained in this chapter. The operation of SFMAC is also explained 

with the help of an example also. Earlier in the literature, a full-custom based approach 

has never been adopted to design the floating-point synchronized MAC architecture 

from the primary or leaf cell. The proposed SFMAC architecture shows the simplicity 

of the design which primarily uses multiplexers of different sizes.   
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CHAPTER 6: RESULTS & DISCUSSION  

 

 

The multiplier/MAC unit shown in chapter 1-5 is implemented on Cadence Virtuoso. 

Additionally, the UCM architecture is also prototyped on the Nexys-4 Artix-7 FPGA 

board. Based on the performance of the architectures, its detail analysis is done in this 

chapter. 

6.1 IMPLEMENTATION OF UCM ARCHITECTURE & FPGA 

PROTOTYPING 

The existing multipliers in the literature are mostly based on the Wallace tree algorithm 

[4, 12, 15, 18, 23, 24, 26-28, 30]. It is claimed that the multipliers based on the Wallace 

tree reduce the steps involved to add the partial products. Still, it uses half adder or full 

adder for the addition of partial products which increases the complexity of the circuit. 

To overcome the shortcoming of Wallace tree multiplier, the UCM architecture is 

proposed which uses universal compressor of N-bit size. This has ensured the proposed 

UCM architecture as much faster than the Wallace tree multiplier. Moreover, the 

proposed UCM architecture is implemented in Cadence Virtuoso 90 nm technology. 

This has customized the internal building blocks of the UCM and hence, highly 

efficient. To compare the implemented UCM with Wallace tree multiplier and array 

multiplier, the architectures are designed on Cadence Virtuoso 90 nm technology as 

well as Verilog HDL (for implementing it on Nexys-4 Artix-7 FPGA board). The result 

shows that the UCM is much more efficient in supply voltage as low as 600 mV for 5-

bit as well as a 9-bit multiplier. The reason for implementing a 5-bit and 9-bit multiplier 

is to show the complexity and accuracy handling capacity of the algorithm (for which 

an odd number of inputs are taken). Due to lowering the supply voltage, not only the 

speed of operation is improved in comparison with the Wallace tree algorithm, but the 

power consumption has dropped substantially. 
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6.1.1 Power & delay analysis of novel UCM architecture 

The tabular comparison of UCM and Wallace tree multiplier for 5-bit and 9-bit is shown 

in table 6.1 and table 6.2, respectively. As there is always a trade-off between power 

and delay, the average power consumption of the UCM is slightly higher than the 

Wallace tree multiplier. For example, the average power (a total of static as well as 

dynamic) consumption of the UCM at 600 mV supply voltage and for 5 × 5-bit 

operations is 20.32 µW, whereas, for Wallace tree multiplier, the same is recorded as 

19.54 µW. Similarly, at 900 mV and for 9 × 9-bit operations, the average power 

consumption for implemented UCM is 355.8 µW, whereas, for the Wallace tree 

multiplier, it is 299.9 µW.  

Table 6.1: Delay comparison of UCM versus Wallace tree for 5 × 5-bit operation 

Multiplier 
Algorithms 

Delay at different VDD 

0.6V 0.7V 0.8V 0.9V 
UCM 2.769 ns 2.701 ns 2.664 ns 2.641 ns 

Wallace tree 2.789 ns 2.717 ns 2.677 ns 2.652 ns 
Array multiplier Invalid outputs 

 

Table 6.2: Delay comparison of UCM versus Wallace tree for 9 × 9-bit operation 

Multiplier 
Algorithms  

Delay at different VDD 
0.6V 0.7V 0.8V 0.9V 

UCM 2.281 ns 2.21 ns 2.171 ns 2.147 ns 
Wallace tree 2.401 ns 2.298 ns 2.241 ns 2.205 ns 

Array multiplier Invalid outputs 
 

At the same time, there is a significant improvement of delay for the implemented UCM 

in comparison to the Wallace tree. The irregular structure of the Wallace tree algorithm 

is the leading cause of the lagging in delay. As per the Elmore formula, the wire delay 

is proportional to the square of its length, and the relationship is expressed by equation 

6.1. 

 τd=(R×C×L2)/2 (6.1) 

Where ‘R’,’C’ and ‘L’ are the wire resistance, capacitance, and length, respectively. 

Hence with an irregular structure with an increased length of wire can affect the speed 
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of operation of the circuit.  On the other hand, the array multiplier could not produce 

any result in such low supply voltages (below 1.0V) due to which its power and delay 

analysis could not be performed. 

 

Figure 6.1: UCM and Wallace tree for 5 × 5-bit operations at voltages below 1V 

The graphical representation of the delay analysis of 5 × 5 bit as well as 9 × 9-bit 

multipliers is shown in figure 6.1 and figure 6.2. It is clear from the graphical analysis 

that in 5 × 5-bit as well as 9 × 9-bit multiplication operation, the implemented UCM 

takes lesser time to pass the signal from input to the output (critical path). As the supply 

voltage drops further, the difference between the delay values of UCM and Wallace 

tree multiplier is significant, and it is much evident in 9 × 9-bit multiplier. For example, 

at 600 mV supply voltage and 9 × 9-bit multiplication, the difference in delay between 

Wallace tree and implemented UCM is 120 ps, on the other hand, for 5 × 5-bit 

multiplication, the difference in delay between the two is 20 ps. Hence it can be 

summarized that, as the multiplier size increases, the delay of the UCM is significantly 

low than the Wallace tree multiplier at ultra-low supply voltage (as low as 600 mV).  
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Figure 6.2: UCM and Wallace tree for 9 × 9-bit operation at voltages below 1V 

6.1.2 Nexys-4 Artix-7 based FPGA Implementation  

The FPGA implementation of the UCM on the Nexys-4 Artix-7 FPGA board is shown 

in figure 6.3. The FPGA realization is done for 5 bits as well as 9 bits. Switches along 

with buttons are used as the 18-bit inputs, whereas the LEDs are used as 18-bit outputs 

for verification of the implemented UCM. For 9-bit multiplier realization, 213 out of 

63400 (approximately 0.33%) LUTs are used as logic units, whereas 36 input-output 

buffers (IOB) are used out of which 18 are input buffers, and 18 are output buffers. On 

the other hand, for 5-bit multiplier realization, 42 (approximately 0.06%) LUTs are 

used as logic units, and 20 input-output buffers (IOB) are used. The total on-chip power 

for 9-bit, as well as 5-bit UCM implementation, is 40.62 mW with junction temperature 

as 25.2o C. 

6.1.3 PVT analysis of UCM architecture 

VLSI is an art of chip design, which turns specification into usable hardware. Cadence 

offers software for both the front end and back end projects, where the GDS-II file is 
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eventually sent for fabrication after comprehensive design steps. But the yield of the 

fabricated designs is found to be very low due to process complexity (i.e., pressure, 

supply voltage, temperature, etcetera). The main reason for the loss of yield is the 

variation of the fabrication parameter between wafer and wafer. To improve design 

yield, the IC should be in a position to sustain extreme variation. Validation of the 

design cycle through PVT and 3-sigma variation becomes, therefore, essential before 

fabrication. 

 

Figure 6.3: FPGA realization of the 9 × 9 UCM 

 

Table 6.3: Delay comparison of UCM versus Wallace tree for 5 × 5-bit operations in 
different corners 

Corners in -
40o, 0o & +50o 

Celsius 

UCM (in ns 
@ 600 mV) 

Wallace 
tree (in ns 
@ 600 mV) 

UCM (in 
ns @ 

900 mV) 

Wallace 
tree (in ns 
@ 900 mV) 

Nominal (27) 2.769 2.789 2.641 2.652 
FF_0 (-40) 2.665 2.677 2.59 2.597 
FF_1 (0) 2.684 2.698 2.601 2.61 

FF_2 (+50) 2.709 2.725 2.616 2.626 
FS_0 (-40) 2.75 2.766 2.623 2.632 
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FS_1 (0) 2.782 2.801 2.64 2.651 
FS_2 (+50) 2.822 2.845 2.663 2.676 
NN_0 (-40) 2.72 2.735 2.613 2.622 
NN_1 (0) 2.749 2.767 2.629 2.64 

NN_2 (+50) 2.786 2.809 2.651 2.663 
SF_0 (-40) 2.728 2.746 2.617 2.627 
SF_1 (0) 2.76 2.782 2.635 2.647 

SF_2 (+50) 2.802 2.829 2.658 2.673 
SS_0 (-40) 2.826 2.849 2.656 2.668 
SS_1 (0) 2.875 2.902 2.682 2.697 

SS_2 (+50) 2.937 2.97 2.716 2.734 

A PVT analysis is performed at different corners (Fast-Fast, Fast-Slow, Normal-

Normal, Slow-Fast, and Slow-Slow) and three different extreme temperatures (-40o, 0o 

and +50o Celsius) to validate the performance of the UCM architecture further. Table 

6.3 and table 6.4 shows the delay comparison of UCM and Wallace tree 5 × 5-bit and 

9 × 9-bit architecture respectively at 0.6V and 0.9V supply voltage in different corners 

along with variation in temperature (-40o, 0o and +50o Celsius) 

Table 6.4: Delay comparison of UCM versus Wallace tree for 9 × 9-bit operations in 
different corners 

Corners in -
40o, 0o & +50o 

Celsius 

UCM (in ns 
@ 600 mV) 

Wallace 
tree (in ns 
@ 600 mV) 

UCM (in 
ns @ 

900 mV) 

Wallace 
tree (in ns 
@ 900 mV) 

Nominal (27) 2.281 2.401 2.147 2.205 
FF_0 (-40) 2.171 2.239 1.138 1.195 
FF_1 (0) 2.192 2.27 1.153 1.222 

FF_2 (+50) 2.218 2.31 1.247 1.257 
FS_0 (-40) 2.258 2.353 2.126 2.171 
FS_1 (0) 2.291 2.402 2.145 2.198 

FS_2 (+50) 2.334 2.463 2.169 2.233 
NN_0 (-40) 2.228 2.322 1.235 1.252 
NN_1 (0) 2.259 2.369 2.134 2.187 

NN_2 (+50) 2.3 2.43 2.157 2.221 
SF_0 (-40) 2.239 2.351 2.123 1.259 
SF_1 (0) 2.274 2.406 1.421 1.289 

SF_2 (+50) 2.32 2.479 2.168 1.439 
SS_0 (-40) 2.339 2.484 2.162 2.227 
SS_1 (0) 2.391 2.561 2.19 2.268 

SS_2 (+50) 2.456 2.659 2.227 2.323 
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Figure 6.4: PVT comparison of delay of UCM and Wallace tree for 5 × 5-bit 
operations at 0.6V and 0.9V in different corners 

 

Figure 6.5: PVT comparison of delay of UCM and Wallace tree for 9 × 9-bit 
operations at 0.6V and 0.9V in different corners 
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The graphs in figure 6.4 and figure 6.5 clearly show that the delay in UCM architecture 

is significantly improved compared to the Wallace tree architecture for 5 x 5 bit as well 

as 9 x 9-bit multiplication. Most importantly, the UCM architecture proves to be the 

better performer than Wallace tree architecture at ultra-low supply voltages for 5-bit 

multiplication at different corners and extreme temperatures. On the other hand, the 

delay of UCM has a much more significant drop compared to the Wallace tree at 600 

mV (at different corners and extreme temperatures) for 9-bit multiplication. While the 

UCM architecture delay appears to be slightly higher than the Wallace tree in the slow-

fast (SF) corner at -40o, 0o, and +50o Celsius for 9-bit multiplication at 900 mV. The 

reason for the same might be the use of different processes at the SF corner. The 

minimum and maximum delay for 5 × 5-bit multiplication using UCM architecture at 

600 mV are 2.665 ns and 2.937 ns, respectively, as shown in table 6.3. Whereas 2.677 

ns and 2.97 ns are the same for Wallace tree, respectively. Likewise, 2.59 ns and 2.716 

ns are the minimum and maximum delay for 5 × 5-bit multiplication using UCM 

architecture at 900 mV, which are 2.597 ns and 2.734 ns respectively for Wallace tree. 

It can be observed from table 6.4 that for 9 × 9-bit multiplication using UCM 

architecture at 600 mV, the minimum and maximum delays are 2.171 ns and 2.456 ns 

respectively. In contrast, for the Wallace tree, the values are 2.239 ns and 2.659 ns. On 

the other hand, for 9 × 9-bit multiplication using UCM architecture at 900 mV, the 

minimum and maximum delays are 1.138 ns and 2.227 ns, respectively. In contrast, for 

the Wallace tree, the values are 1.195 ns and 2.323 ns. 

6.2 POWER, DELAY & AREA COMPARISON OF NOVEL UMAC, 

USMAC, SMAC & SFMAC ARCHITECTURES 

The proposed UMAC, USMAC, SMAC (fixed-point), and SFMAC (floating-point) 

architectures are implemented at the Cadence Virtuoso 90 nm technology. The power 

consumption of the proposed designs is measured using the Cadence Spectra tool. The 

detailed report of the static power, average power, and area are shown in table 6.5. 

Static power is assessed for 2V supply voltage, while average power is measured for 

20 ns simulation period and 333.33 MHz frequency. The area, on the other hand, is 

measured in terms of total transistor count. 
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Table 6.5: Comparison of UMAC, USMAC, SMAC and SFMAC architectures with 
2V supply voltage and 20 ns simulation period 

Architecture 
Static power 
(at VDD=2V) 

Average power (at 
VDD=2V and simulation 

period=20 ns) 

Area (Total 
number of 
transistors) 

UMAC 3072 µW 2253 µW 4556 
USMAC 758 µW 2905 µW 5744 
SMAC 1721 µW 7317 µW 10928 

SFMAC 4854 µW 26950 µW 25783 

As discussed earlier, UMAC architecture's static power consumption is the highest as 

block enabling is not being used in this architecture. On the other hand, since the SMAC 

architecture area is about two times greater (in terms of the number of transistors) than 

the USMAC architecture, the static and thus the average power consumption of SMAC 

architecture is higher than that of the USMAC architecture. Moreover, the static and 

the average dynamic power are the highest for SFMAC architecture, as shown in the 

comparison table 6.5. The reason for the same is the total number of transistor count in 

SFMAC is almost five times higher than that of USMAC and 2.5 times higher than that 

of SMAC architectures. The graphical analysis is shown in figure 6.6. 

 

Figure 6.6: Graphical comparison of UMAC, USMAC, SMAC and SFMAC 
architectures with 2V supply voltage and 20 ns simulation period 

Furthermore, table 6.6 shows a power comparison of SFMAC architecture at different 

CMOS technologies in a specific input vector. The simulation period is kept as 40 ns 

because: 
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1. the reset signal (active low) is low till 10.8 ns 

2. the clock signals have a time period of 12 ns  

Table 6.6: Comparison of SFMAC at supply voltage 2V and simulation period 40 ns 
in CMOS GPDK 90 nm and TSMC 130 nm technology 

Architecture 
Static Power in 

µW (for 
VDD=2V) 

Average power in µW 
(for V DD=2V and 

simulation period=40 ns) 

Area (Total 
number of 
transistors) 

GPDK 90 nm CMOS Technology 
SFMAC 476.94 7980 25783 

TSMC 130 nm CMOS Technology 
SFMAC 2398.76 25990 25783 

Therefore, till 23.2 ns, the output signal remains at ‘0’. The SFMAC architecture is not 

only implemented in GPDK 90 nm but also in TSMC 130 nm CMOS Technology.  The 

power consumption of the implemented designs is calculated using Cadence Spectra 

Tool.  

 

Figure 6.7: Graphical analysis of the static power, average power and area of SFMAC 
in CMOS GPDK 90 nm and TSMC 130 nm technology 

Figure 6.7 shows the graphical analysis of the static power, average power, and area of 

SFMAC in CMOS GPDK 90 nm and TSMC 130 nm technology. The static power is 

evaluated for 2V supply voltage, whereas the average power is measured for a 

simulation period of 40 ns and at a frequency of 83.33 MHz. The average dynamic 

power consumption of the SFMAC in TSMC 130 nm is higher than GPDK 90 nm 
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because the transistor sizing is higher in 130 nm technology, which affects the load 

capacitance (�$H��). The average dynamic power of a CMOS circuit is given by 

equation 6.2.  

 ��WR = +X�$H���&&
')G�Y (6.2) 

Similarly, the static power consumption is also a function of device geometry. 

Therefore, a circuit consisting of a higher device dimension has higher static power 

consumption. 

6.2.1 Comparison with existing architectures 

It is challenging to compare the proposed MAC architectures with those that are already 

available in the literature because most of the available architectures in the literature 

have used HDL based approach. On the other hand, the proposed architectures are 

implemented in Cadence Virtuoso 90 nm environment. Moreover, almost 99% (80 out 

of 81 papers) of the architectures available in the literature have neither implemented 

for signed operation nor floating-point designs. For example, [1, 6, 8, 9, 79] etcetera 

are unsigned-fixed-point MAC architectures, which are implemented on HDLs such as 

Verilog or VHDL. Moreover, some of the architectures haven’t even specifies the 

technology used in the design. Therefore, the comparison of proposed MAC 

architectures with the existing MAC architecture becomes challenging. 

Though some architectures in the literature have used the clocking signals for the 

accumulation of data only (in the register or accumulator), most of the architectures 

haven't used any clocking signal. For example, [8, 71, 74] etcetera are existing MAC 

architecture but without proper synchronization. Any circuit in asynchronous mode 

can't be implemented in a real-time application. Therefore, the practical applicability of 

such design needs to be further tested. 

From the literature, a few existing MAC architectures are found suitable to compare 

with the proposed MAC architectures. Though all parameters of comparison (such as 

technology specified, operating frequency, supply voltage, tool used, size and type of 

MAC etcetera) are not matching but most of the parameters are common while 

comparing the existing and proposed MAC architectures. Table 6.7 shows the 
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comparison, where most of the architectures are compared with UMAC architecture, 

and only one architecture (i.e. [87]), which is implemented for floating-point signed 

operation is compared with proposed SFMAC architecture. The differences are visible 

from table 6.7 that the architectures in [55], [7] and [69] have a significantly higher 

static as well as average power (in mW) than proposed UMAC architecture. In [56] and 

[60], the performance is evaluated in 65nm and 90 nm technologies for 16-bit 

operations at 1.1V and 1V, respectively.  It is clear from table 6.7 that the power 

consumption of [56] is significantly higher than UMAC. On the other hand, the 

architecture in [60] operates in 1V supply voltage with operating frequency 100 MHz, 

and therefore, a direct comparison can't be made with UMAC.  Though the architecture 

in [75] is implemented in 180nm technology and 1.8V supply voltage for 16-MAC 

operation, the power consumption is way more than the UMAC architecture. For [80], 

the implementation is done for 1-bit MAC operation in 32nm CMOS and CNTFET 

technology, and hence, comparison with 8-bit UMAC is not relevant. The architecture 

in [87] is compared with proposed SFMAC architecture, and the analysis shows that 

the performance of SFMAC is much better in terms of power consumption.  

Table 6.7: Performance comparison of Proposed MAC architecture with existing 
architectures 

Sl 
No. 

Existing 
work in 

Existing architecture 
description 

Implementation 
on 

Power Consumption 

1 [55] 

Pipelined Multiply 
Accumulate Unit (fixed-

point) in 180nm technology, 
1.8V at 83.3 MHz & 8 × 8 

bit operation 

Cadence 
Virtuoso 

50.26 mW 

2 [7] 

Multiply Accumulate Unit 
(fixed-point) in 180nm 
technology, 1.8V at 217 

MHz & 64 × 64 bit operation 

Verilog HDL 177.732 mW 

3 [56] 

Pipelined Multiply 
Accumulate Unit (fixed-

point) in 65nm technology, 
1.1V at 591 MHz & 16 × 16 

bit operation 

VHDL 8.2 mW 
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4 [60] 

Multiply Accumulate Unit 
(fixed-point) in 90nm 

technology, 1V at 100 MHz 
& 16 × 16 bit operation 

HDL in 
Cadence’s 
HSPICE 
simulator 

1.506 mW 

5 [69] 

Pipelined Multiply 
Accumulate Unit (fixed-

point) in 180nm technology, 
1.8V & 8 × 8 bit operation 

HDL in 
Synopsys 
Design 

Compiler 

Dynamic 
Power 

Static 
Power 

3.627 mW 2.010 mW 

6 [75] 

Multiply Accumulate Unit 
(fixed-point) in 180nm 

technology, 1.8V at 5 MHz 
& 16 × 16 bit operation 

Verilog HDL 

MAC 
using 
Booth 

MAC 
using 
Vedic 

493.648 
mW 

1765.241 
mW 

7 [80] 

Multiply Accumulate 
Unit(fixed-point) in 32nm 

CMOS & CNTFET 
technology & 1 × 1 bit 

operation 

----------- 

CMOS 
Tech 

CNTFET 
Tech 

0.9902 
mW 

0.6335 
mW 

8 [87] 

Fixed/Floating-Point 
Multiply Accumulate Unit in 
90nm technology for 16-bit 
half-precision multiplication 

VHDL 14.07 mW  

Sl 
No. 

Proposed 
architecture  

Proposed architecture 
description 

Implementation 
on 

Power Dissipation 

1 UMAC 
Unsigned MAC architecture 
in 90nm tech., 2V at 333.33 
MHz & 8x8 bit operation 

Cadence 
Virtuoso 90nm 

CMOS 

Static 
Power 

Average 
Power 

3.072 mW 2.253 mW 

2 USMAC 

Unsigned Synchronized 
MAC architecture in 90nm 
tech., 2V at 333.33 MHz & 

8x8 bit operation 

Cadence 
Virtuoso 90nm 

CMOS 

Static 
Power 

Average 
Power 

0.758 mW 2.905 mW 

3 SMAC 

Signed MAC (synchronous) 
architecture in 90nm tech., 

2V at 333.33 MHz & 8x8 bit 
operation 

Cadence 
Virtuoso 90nm 

CMOS 

Static 
Power 

Average 
Power 

1.721 mW 7.317 mW 

4 SFMAC 

Signed Floating-Point MAC 
architecture in 90nm tech., 
2V at 83.33 MHz & 8x8 bit 

operation 

Cadence 
Virtuoso 90nm 

CMOS 

Static 
Power 

Average 
Power 

0.476 mW 7.98 mW 
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CHAPTER 7: CONCLUSION & FUTURE 

WORK  

 

 

7.1 CONCLUSION 

The summary of this research work along with new possibilities for further 

improvement is presented in this chapter. The objective of this research work is to 

design suitable low power high-speed MAC unit for signed-floating operation. For 

achieving the said objective, the Unsigned MAC (UMAC) architecture, the Unsigned 

Synchronized MAC (USMAC) architecture, Signed MAC (SMAC) architecture with 

synchronization and the Signed Floating-point MAC (SFMAC) architecture with 

synchronization are designed and implemented. As the multiplier is said to be the heart 

of the MAC architecture, a novel Universal Compressor based Multiplier (UCM) is 

designed and implemented. This work examines, discusses and uses fast adder and 

multiplication schemes in the design and development of proposed novel UCM 

architecture. The prototype of the proposed UCM architecture has been implemented 

on Nexys-4 Artix-7 FPGA board using Xilinx Vivado 17.4 and Xilinx ISIM simulator 

for simulation. 

Further, a detailed analysis of the novel UCM along with Wallace tree multiplier and 

array multiplier at ultra-low supply voltages (as low as 600 mV) is performed on 

Cadence Spectre tool in GPDK 90 nm technology. A significant improvement in terms 

of delay of the proposed UCM in comparison to Wallace tree multiplier is sighted. The 

irregular structure of the Wallace tree algorithm is the leading cause for the lagging in 

delay, as an asymmetrical structure with increased length of wire can affect the speed 

of operation of the circuit. On the other hand, the array multiplier could not produce 

any result in such low supply voltages (below 1V) due to which its power and delay 

analysis could not be performed. The UCM architecture is further analyzed by 
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performing a PVT analysis at different corners (Fast-Fast, Fast-Slow, Normal-Normal, 

Slow-Fast and Slow-Slow) and three different extreme temperatures (-40o, 0o and +50o 

Celsius).  

The block enabling schemes along with pipelining is used to model the MAC design 

power-efficient. Block enabling technique facilitates saving of electrical power, used 

by digital signal processors, by reducing the switching activity ‘α’. It ensures power 

saving of the MAC architecture, by turning on a functional logic block only when 

required. For achieving pipelining, the time between each clock signal is set such that 

when the registers are clocked, the data written to them is the final result of the 

preceding stage. 

For proper implementation of floating-point MAC implementation, each input of the 

Signed Floating-point MAC (SFMAC) is represented in 13 bits, in which two bits are 

reserved for the sign bits of the number, and its exponent. The sign bit has a provision 

to be represented in the form of '0' or '1' based on positive or negative number 

representation, respectively. Remaining eleven bits are used for 8-bit binary 

representation and 3-bit exponent representation in binary. Therefore, the input 

numbers have a range from –(0.11111111)2 × 2+3 to +(0.11111111)2 × 2+3 and hence, 

the range of the inputs of the current SFMAC architecture in a decimal number system 

is from –(7.96872)10 to +(7.96872)10. Different MAC architectures are designed and 

analyzed using Cadence Spectre tool to validate its power/delay performance. The 

CMOS 90 nm technology and TSMC 130 nm technologies are used for different MAC 

architecture designs.  

The comparison of power for the proposed UMAC, USMAC, SMAC and SFMAC 

architectures are analyzed for a fixed input vector with 2V supply voltage and 20 ns 

simulation period. The clock frequency is maintained at 333.33 MHz. It is analyzed 

from the comparison that the static power consumption for UMAC architecture 

outperforms other proposed architectures as no block enabling is used in the UMAC 

architecture. On the other hand, as the area of the SMAC architecture is approximately 

two times larger (in terms of the number of transistors) than the USMAC architecture, 

the static and therefore the average power consumption of SMAC architecture is higher 
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than the USMAC architecture. The static and the average dynamic power of SFMAC 

are maximum among all other proposed architectures because the total number of 

transistor count in SFMAC is almost five times higher than that of USMAC and 2.5 

times higher than that of SMAC architectures. 

Furthermore, a power comparison of SFMAC architecture at different CMOS 

technologies (TSMC 130 nm and GPDK 90 nm) in a specific input vector is studied at 

a frequency of 83.33 MHz. It is analyzed from the comparison that the average dynamic 

power, as well as the static power consumption of the SFMAC in TSMC 130 nm, is 

higher than GPDK 90 nm because of the transistor sizing. A detailed comparison is 

depicted in chapter 6 to analyze the efficiency of the MAC architectures over the 

existing architectures. The comparison shows a significant improvement in terms of 

static as well as average power for UMAC, USMAC, SMAC and SFMAC architectures 

over the existing architectures. 

7.2 FUTURE WORK DIRECTIONS 

At different abstraction level, a detailed power calculation can be done and hence the 

possibility of power reduction can be considered. Furthermore, a parametric analysis, 

along with Monte-Carlo analysis, will give a detailed picture of the proposed 

architectures at extreme corners and extreme supply voltage as well as temperature. 

Much more optimization at the abstract level can improve the performance of the 

proposed MAC architectures in terms of delay, power and PDP. An optimized layout 

design would provide an opportunity for post-layout simulation and hence ASIC 

fabrication. 
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