
DESIGN & ANALYSIS OF A NOVEL HYBRID 8 × 8 BIT

MULTIPLY AND ACCUMULATE (MAC) ARCHITECTURE

USING CLOCK GATING SCHEME FOR PIPELINED

PROCESSING

A

Thesis

Submitted to

For the award of

DOCTOR OF PHILOSOPHY (Ph.D.)

in

Electronics & Electrical Engineering

By

Rajkumar Sarma

41400103

Supervised by Co-supervised by

Dr. Cherry Bhargava Dr. Shruti Jain

LOVELY FACULTY OF TECHNOLOGY & SCIENCES

LOVELY PROFESSIONAL UNIVERSITY

PUNJAB

2020

i

CANDIDATE DECLARATION

I hereby certify that the work which is being presented in the thesis, entitled “Design

& analysis of a novel hybrid 8 × 8 bit Multiply and Accumulate (MAC)

architecture using clock gating scheme for pipelined processing” in fulfilment of

requirements for the award of degree of Doctor of Philosophy in Electronics &

Electrical Engineering is an authentic record of my own research work carried out under

the supervision of Dr. Cherry Bhargava & co-supervision of Dr. Shruti Jain. The matter

presented in this thesis has not been submitted elsewhere in part or fully to any other

University or Institute for the award of any degree.

Rajkumar Sarma

(Registration No: 41400103)

School of Electronics & Electrical Engineering

Lovely Professional University

Phagwara. Punjab, India

Date:

ii

CERTIFICATE

I hereby certify that Rajkumar Sarma (Registration No: 41400103) has prepared

thesis entitled “Design & analysis of a novel hybrid 8 × 8 bit Multiply and

Accumulate (MAC) architecture using clock gating scheme for pipelined

processing”, for the award of degree of Doctor of Philosophy in Electronics &

Electrical Engineering, under my guidance. The matter presented in this thesis has not

been submitted elsewhere in part or fully to any other University or Institute for the

award of any degree.

Dr. Cherry Bhargava

Associate Professor & Head

VLSI Design

School of Electronics & Electrical Engineering

Lovely Professional University

Phagwara, Punjab, India

Date:

Dr. Shruti Jain

Associate Professor

Department of Electronics & Communication Engineering

Jaypee University of Information Technology

Waknaghat, Solan, HP, India

Date:

iii

ABSTRACT

In the era of digital signal processing, like graphics and computation systems,

multiplication-accumulation (MAC) is one of the prime operations. A MAC unit is a

vital component of a digital system, like different FFT algorithms, convolution, image

processing algorithms, etcetera. In this research work, various MAC architectures,

along with its sub-blocks such as adder and multiplier, are reviewed thoroughly. The

study shows that the efficiency of a MAC unit, along with its sub-blocks is mainly

dependent upon the speed of operation, power dissipation, and chip area of the circuit

along with the complexity level of the circuit. Many of the researchers have also

emphasized on optimization of these design constraints to make the MAC efficient.

Earlier studies have stressed on increasing the efficiency of the overall MAC unit,

whereas some have presented the techniques to produce remarkable efficiency of the

sub-blocks. In this research work, the effectiveness of the MAC is further improved by

adopting both the approaches, i.e., the overall architecture of the MAC unit is optimized

by applying a novel algorithm and the performance of the sub-blocks of the MAC is

maximized by choosing hybrid design techniques. Techniques such as block enabling

and pipelining are adopted in the proposed MAC architecture to make the overall unit

efficient. A novel Universal Compressor based Multiplier (UCM) architecture is also

proposed to make the sub-blocks of the MAC more efficient.

The proposed UCM yields a high-speed operation, and hence, the enhanced

performance is reported. The novel design of UCM is analyzed using the Cadence

Spectre tool in 90 nm CMOS technology, which is further prototyped on the Nexys-4

Artix-7 FPGA board. Also, a Process-Voltage-Temperature (PVT) variation analysis is

performed on the UCM architecture using Cadence ADE-XL for proper validation,

which results in faster operation in ultra-low supply voltages (less than 0.9 V) for

higher-order bit multiplication. In comparison to Wallace tree-based architecture (in

0.6 V to 0.9 V supply voltages), the proposed design has reduced the delay by 0.73%

and 5.05% for 5 × 5-bit and 9 × 9-bit operations respectively.

iv

The novel architectures for Unsigned MAC (UMAC), Unsigned Synchronized MAC

(USMAC), Signed MAC (SMAC), and Signed Floating-point MAC (SFMAC) are

designed using proposed UCM architecture. The designed architectures are simulated

on CMOS 90nm technology using Cadence Virtuoso. The UMAC, USMAC, and

SMAC can accommodate two 8-bit inputs and produces 16-bit output. Additionally, an

extra bit is used in the case of SMAC architecture for representing a signed number.

On the other hand, each input of the SFMAC representation is of 13 bits, in which two

bits are reserved for the sign bits of the number and its exponent. Remaining eleven bits

are used for 8-bit binary representation and 3-bit exponent representation. Therefore,

the input numbers in the proposed SFMAC have a range from –(0.11111111)2 × 2+3 to

+(0.11111111)2 × 2+3 and hence, the range of the inputs in a decimal number system is

from –(7.96872)10 to +(7.96872)10. The performance of UMAC, USMAC, SMAC, and

SFMAC architectures are compared on the basis of power at 2V supply voltage, 20 ns

simulation period, and 333.33 MHz clock frequency. It is inferred that the SFMAC

results in maximum static and average dynamic power in comparison to other proposed

MAC architectures because the transistor count in SFMAC is 2.5 and 5 times more than

SMAC and USMAC architecture respectively. Furthermore, a power comparison of

SFMAC architecture at different CMOS technologies (TSMC 130 nm and GPDK 90

nm) in a specific input vector is studied at a frequency of 83.33 MHz. Finally, a

performance comparison of the proposed MAC architectures and the existing

architectures are discussed in detail, which shows significant improvement in terms of

static as well as average power.

Keywords: Compressor-based Multiplier; Low power; High speed; Nexys-4 Artix-7

FPGA; Cadence Virtuoso; Signed-Floating-point MAC; Block Enabling; Clock

Gating.

v

ACKNOWLEDGEMENT

I am deeply indebted and grateful to many people who supported me during the research

work and preparation of the thesis.

First and foremost, I give special thanks and glory to the God Almighty for giving me

the wisdom and health to complete this endeavor.

I would like to express sincere gratitude and appreciation to my supervisor Dr. Cherry

Bhargava, Associate Professor, School of Electronics & Electrical Engineering,

Lovely Professional University (Phagwara, Punjab) for her constant encouragement,

support and guidance. Her sincerity, positive and supportive attitude, calmness and

scholarly advice have been a steady source of inspiration to me. Her guidance helped

me all the time during my research work. I could not have imagined having a better

advisor and mentor for my Ph.D. study.

It is an honor and great privilege to pay ineffable gratitude to Dr. Shruti Jain , Associate

Professor, Department of Electronics & Communication Engineering, Jaypee

University of Information Technology (Waknaghat, Solan, HP), for her guidance and

assistance as co-supervisor. Her creative comments and suggestions from the initial

conception till the completion of this work are highly appreciated. l am greatly indebted

to her for her valuable advice, constructive criticism and their extensive discussions

around my work.

I will forever be thankful to Dr. Sandeep Dhariwal, Associate Professor, Alliance

College of Engineering and Design, Alliance University, (Bengaluru), for his

encouragement and support. His invaluable and scholastic insights always motivated

me.

I want to thank Dr. Loviraj Gupta , Executive Dean, Lovely Faculty of Technology &

Sciences, Lovely Professional University (Phagwara, Punjab) for providing me

valuable suggestion during my patent filing. This has helped me to expand my work in

a different level.

vi

I am greatly thankful to Mr. Ashok Mittal , Honorable Chancellor, Lovely Professional

University (Phagwara, Punjab) for providing me required facilities to carry out my

research work.

I express my veneration to Prof. Bhupinder Verma, Head of the School and all my

colleagues of School of Electronics & Electrical Engineering, Lovely Professional

University (Phagwara, Punjab) for their encouragement and support. I acknowledge the

contribution of the technical and non-technical staff in the School of Electronics &

Electrical Engineering, Lovely Professional University (Phagwara, Punjab) for

providing necessary facilities during the pursuit of my research.

Nobody has been more important to me in the pursuit of this research work than the

members of my family. I owe heartfelt thanks to my parents, my siblings and my in-

laws for their love, motivation, encouragement and guidance when it was mostly

required. Most importantly, I owe a lot to my ever supporting and caring wife Dr.

Subha Lakshmi Saikia, who have provided me unending inspiration emotionally and

mentally. I always fall short of words and felt impossible to describe her support in

words.

Rajkumar Sarma

vii

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGEMENT ... v

LIST OF FIGURES ... x

LIST OF TABLES ... xii

LIST OF ABBREVIATIONS ... xiii

CHAPTER 1: INTRODUCTION ... 1

1.1 NEED FOR LOW-POWER DESIGN ... 2

1.1.1 Causes for power dissipation ... 4

1.2 FACTORS AFFECTING HIGH-SPEED DESIGN 5

1.3 INTRODUCTION TO MULTIPLY & ACCUMULATE (MAC)

ARCHITECTURE ... 8

1.3.1 Multiplier ... 10

1.3.2 Accumulator .. 12

1.3.3 Adder ... 13

1.3.4 Block enabled technique & pipelined architecture 13

1.4 SIGNIFICANCE OF THIS RESEARCH .. 15

1.5 ROADMAP OF THE THESIS .. 16

CHAPTER 2: REVIEW OF LITERATURE .. 17

2.1 ADDER AND MULTIPLIER ... 17

2.2 MULTIPLY AND ACCUMULATE UNIT .. 21

2.3 MOTIVATION & TECHNICAL GAP ... 35

2.4 OBJECTIVE OF THE RESEARCH ... 36

CHAPTER 3: UCM-A NOVEL APPROACH FOR DELAY OPTIMIZAT ION 37

3.1 INTRODUCTION ... 37

viii

3.2 WALLACE TREE MULTIPLIER ARCHITECTURE 39

3.3 DESIGN PROCESS OF UCM ARCHITECTURE 40

3.3.1 UCM architecture .. 41

3.3.2 Addition of partial products ... 42

3.3.3 Special cases .. 44

3.4 CONCLUSIVE REMARKS .. 45

CHAPTER 4: UNSIGNED/SIGNED FIXED-POINT MAC ARCHITEC TURE

(UMAC, USMAC & SMAC) ... 46

4.1 INTRODUCTION ... 46

4.2 BASIC BUILDING BLOCKS OF MAC .. 47

4.2.1 Multiplier ... 48

4.2.2 Adder ... 49

4.3 EXISTING ARCHITECTURES OF MAC UNIT 50

4.4 PROPOSED MAC ARCHITECTURES ... 55

4.4.1 Proposed Unsigned MAC architecture (UMAC) 56

4.4.2 Proposed Unsigned Synchronized MAC architecture (USMAC) ... 57

4.4.3 Proposed Signed MAC architecture (SMAC) 60

4.5 CONCLUSIVE REMARKS .. 62

CHAPTER 5: MUX BASED SIGNED FLOATING-POINT MAC (SFM AC)

ARCHITECTURE ... 63

5.1 INTRODUCTION ... 63

5.2 SFMAC ARCHITECTURE... 67

5.2.1 Exponential Adder (EA) .. 69

5.2.2 8-bit multiplier ... 71

5.2.3 16-bit register ... 71

5.2.4 Exponent Comparator Circuit (ECC) .. 71

ix

5.2.5 Exponent Shifter Circuit (ESC) ... 74

5.2.6 16-bit adder .. 75

5.2.7 2:1/4:1 multiplexers of different sizes ... 75

5.2.8 Explanation of SFMAC using binary values 75

5.3 CONCLUSIVE REMARKS .. 80

CHAPTER 6: RESULTS & DISCUSSION ... 81

6.1 IMPLEMENTATION OF UCM ARCHITECTURE & FPGA

PROTOTYPING .. 81

6.1.1 Power & delay analysis of novel UCM architecture 82

6.1.2 Nexys-4 Artix-7 based FPGA Implementation 84

6.1.3 PVT analysis of UCM architecture ... 84

6.2 POWER, DELAY & AREA COMPARISON OF NOVEL UMAC,

USMAC, SMAC & SFMAC ARCHITECTURES .. 88

6.2.1 Comparison with existing architectures .. 91

CHAPTER 7: CONCLUSION & FUTURE WORK .. 94

7.1 CONCLUSION .. 94

7.2 FUTURE WORK DIRECTIONS .. 96

REFERENCES ... 97

LIST OF PUBLICATIONS .. 108

x

LIST OF FIGURES

Figure 1.1: Area versus Timing trade-off .. 2

Figure 1.2: Rise-fall time during input output transitions.. 6

Figure 1.3: Propagation delay versus load capacitance for different logic families 7

Figure 1.4: Generalized block diagram of 8 × 8 bit MAC ... 9

Figure 1.5: 4-bit Wallace tree multiplier .. 11

Figure 1.6: Basic accumulator or register circuit ... 12

Figure 1.7: Pipelined and Block enabled Architecture .. 14

Figure 3.1: Basic multiplication operation... 38

Figure 3.2: Wallace tree multiplier for 9 × 9 bit multiplication................................... 40

Figure 3.3: UCM architecture design process flow ... 41

Figure 3.4: UCM architecture for 9 × 9 bit multiplication .. 42

Figure 3.5: AND-XOR gate arrangement with K stages and L levels 44

Figure 4.1: Basic MAC Unit .. 47

Figure 4.2: Wallace tree multiplier (addition of partial products) 49

Figure 4.3: Full adder design which uses both CMOS and TG logic styles 50

Figure 4.4: Partial product addition matrix .. 51

Figure 4.5: 32-bit MAC architecture and its ASIC implementation 51

Figure 4.6: 32-bit MAC architecture ... 52

Figure 4.7: Pipelined MAC architecture .. 53

Figure 4.8: The RSFQ DS processor architecture ... 54

Figure 4.9: Fixed-point vector MAC architecture ... 55

Figure 4.10: Proposed architecture of UMAC ... 57

Figure 4.11: Output waveform of the proposed UMAC architecture 57

Figure 4.12: Block diagram of USMAC architecture .. 58

Figure 4.13: Output waveform of the USMAC architecture 59

Figure 4.14: Block diagram of SMAC architecture ... 60

Figure 4.15: Output waveform of the SMAC architecture .. 61

Figure 5.1: Pipelined single-precision FPMAC ... 63

Figure 5.2: An LZA logic for floating-point addition operation 64

xi

Figure 5.3: Floating point multiply-add units for IEEE 16-bit or IEEE 32-bit............ 65

Figure 5.4: RSFQ DS Processor .. 66

Figure 5.5: Input format representation of SFMAC .. 67

Figure 5.6: The novel SFMAC architecture .. 68

Figure 5.7: Exponential Adder (EA) architecture .. 70

Figure 5.8: The ECC architecture .. 72

Figure 5.9: The ECC with same sign bit .. 73

Figure 5.10: The ESC architecture ... 74

Figure 5.11: The simulation waveform of the SFMAC architecture 77

Figure 6.1: UCM and Wallace tree for 5 × 5-bit operations at voltages below 1V 83

Figure 6.2: UCM and Wallace tree for 9 × 9-bit operation at voltages below 1V....... 84

Figure 6.3: FPGA realization of the 9 × 9 UCM ... 85

Figure 6.4: PVT comparison of delay of UCM and Wallace tree for 5 × 5-bit operations

at 0.6V and 0.9V in different corners .. 87

Figure 6.5: PVT comparison of delay of UCM and Wallace tree for 9 × 9-bit operations

at 0.6V and 0.9V in different corners .. 87

Figure 6.6: Graphical comparison of UMAC, USMAC, SMAC and SFMAC

architectures with 2V supply voltage and 20 ns simulation period 89

Figure 6.7: Graphical analysis of the static power, average power and area of SFMAC

in CMOS GPDK 90 nm and TSMC 130 nm technology... 90

xii

LIST OF TABLES

Table 1.1: Comparisons of performance parameters for different logic styles 11

Table 5.1: Propagation delay of the internal blocks of SFMAC architecture 78

Table 5.2: The operation of the 16-bit 4:1 MUX based on the two select lines 79

Table 6.1: Delay comparison of UCM versus Wallace tree for 5 × 5-bit operation 82

Table 6.2: Delay comparison of UCM versus Wallace tree for 9 × 9-bit operation 82

Table 6.3: Delay comparison of UCM versus Wallace tree for 5 × 5-bit operations in

different corners ... 85

Table 6.4: Delay comparison of UCM versus Wallace tree for 9 × 9-bit operations in

different corners ... 86

Table 6.5: Comparison of UMAC, USMAC, SMAC and SFMAC architectures with 2V

supply voltage and 20 ns simulation period ... 89

Table 6.6: Comparison of SFMAC at supply voltage 2V and simulation period 40 ns in

CMOS GPDK 90 nm and TSMC 130 nm technology ... 90

Table 6.7: Performance comparison of Proposed MAC architecture with existing

architectures ... 92

xiii

LIST OF ABBREVIATIONS

MAC Multiply and Accumulate

FFT Fast Fourier Transform

UCM Universal Compressor-based Multiplier

FPGA Field Programmable Gate Array

PVT Process, Voltage and Temperature

ADE Analog Design Environment

V Voltage

UMAC Unsigned Multiply and Accumulate

USMAC Unsigned Synchronous Multiply and Accumulate

SMAC Signed Multiply and Accumulate

SFMAC Signed Floating-point Multiply and Accumulate

CMOS Complementary Metal Oxide Semiconductor

MHz Mega Hertz

GPDK Generic Process Design Kit

DSP Digital Signal Processing/Digital Signal Processor

PDA Personal Digital Assistant

VLSI Very Large-Scale Integration

NCSim Incisive Enterprise Simulator

RTL Register-Transfer Level

PPRT Partial Product Reduction Tree

VHDL VHSIC (Very High-Speed Integrated Circuit) Hardware

Description Language

HDL Hardware Description Language

PMOS P-channel Metal Oxide Semiconductor

NMOS N-channel Metal Oxide Semiconductor

IC Integrated Circuits

µs Micro Seconds

HA Half Adder

xiv

FA Full Adder

CPL Complementary Pass Transistor Logic

DPL Double Pass Transistor Logic

BCD Binary Coded Decimal

VDD Supply Voltage

fclk Clock Frequency

α Switching Activities

CL Load Capacitance

I/O Input-Output

ULSI Ultra-Large-Scale Integration

PC Personal Computer

NiMH Nickel-Metal Hydride

NiCd Nickel-Cadmium

DEC Digital Equipment Corporation

W Watt

VSS Source Supply or Ground

MOSFET Metal Oxide Semiconductor Field Effect Transistor

τP Propagation Delay

τPLH Signal Switching from Logic Low to High

τPHL Signal Switching from Logic High to Low

ECL Emitter-Coupled Logic

TTL Transistor-Transistor Logic

PDP Power-Delay Product

BiCMOS Bipolar Complementary Metal Oxide Semiconductor

CSA Carry Select Adder

MAVIP Multifunctional Architecture for Video and Image Processing

MIN Minimum

MAX Maximum

ASIC Application Specific Integrated Circuits

SAD Sum of Absolute Difference

CSD Canonical Signed Digit

xv

TSMC Taiwan Semiconductor Manufacturing Company

MOSIS Metal Oxide Semiconductor Implementation Service

CSLA Carry Select Adder

FAM Fused Add-Multiply

BEC Binary to Excess 1 Converter

GDI Gate Diffusion Input

DML Dual Mode Logic

FADD Floating-point Addition

LZA Leading Zero Anticipatory

OBDD Ordered Binary Decision Diagrams

DMT Discrete Multitone

SCM Single Carrier Modulation

VDSL Very high-speed Digital Subscriber Line

RSFQ DS Rapid Single Flux Quantum Digital Signal

GHz Giga Hertz

FPMAC Floating-Point Multiply and Accumulate

FMA Fused Multiply-Accumulate

ISE Integrated Synthesis Environment

PMADD Parallel Multiply Add

nm Nano Meter

APC Adaptive Power Control

UMC United Microelectronics Corporation

LNS Logarithmic Number System

LS-DCCFF Low-Swing Differential Conditional Capturing Flip-Flop

ASIP Application-Specific Instruction-set Processor

mW Milli Watt

TG Transmission Gate

IEEE Institute of Electrical and Electronics Engineers

PWM Pulse Width Modulation

2D MAC Two Dimensional Multiply-Accumulate

IP Intellectual Property

xvi

LUT Look-Up Table

SIMD Single Instruction Multiple Data

PID Proportional Integral Derivative

SIM Simulator

FIR Finite Impulse Response

IIR Infinite Impulse Response

DA Distributed Arithmetic

CNTFET Carbon Nanotube Field-Effect Transistor

HSPICE Hailey Simulation Program with Integrated Circuit Emphasis

HMC-MAC Hybrid Memory Cube Multiply-Accumulate

CMAC Complex Multiply Accumulate Cell

RPR-MAC Reduced Precision Redundancy Multiply And Accumulate

FINFET Fin Shaped Field Effect Transistor

DWT Discrete Wavelet Transform

RAM Random Access Memory

ROM Read Only Memory

SOC System on Chip

RCA Ripple Carry Adder

M Mantissa

B Base

E Exponent

PP-GENERATOR Partial Product Generator

ND New Data

EOS End-Of-Symbol

EOU End-Of-User

EOD End-Of-Data

RFD Ready-For-Data

CLK Clock

PED Pulse Edge Detector

ps Pico Seconds

MUX Multiplexer

xvii

FIFO First in First out

ALU Arithmetic and Logic Unit

MSB Most Significant Bit

S BIT Sign Bit

Exp S BIT Exponents’ Sign Bit

EA Exponential Adder

ECC Exponent Comparator Circuit

ESC Exponent Shifter Circuit

EXP Exponent

LSB Least Significant Bit

NUM Number (Output)

GDS-II Geometrical Data Base Standard for Information Interchange

FF Fast-Fast

FS Fast-Slow

NN Normal-Normal

SF Slow-Fast

SS Slow-Slow

LED Light Emitting Diode

IOB Input Output Buffer

1

CHAPTER 1: INTRODUCTION

The invention of the TRANfer-reSISTOR (transistor) by William B. Shockley, Walter

H. Brattain, and John Bardeen at AT & T Bell laboratories had changed the electronics

industry dramatically and opened the way for the advancement of the Integrated Circuit

technology. Jack Kilby designed the first IC at Texas Instruments in early 1960, and

since then, there is an evolution of different generations of IC technology. The types of

generation are based on the transistor count, such as SSI consisting of 10 to 100

transistors, MSI consisting of 100 to 1000 transistors, LSI consisting of 1000 to 10000

transistors, and VLSI consisting of more than 10000 transistors. The fifth-generation,

which has emerged recently as ULSI for which the range of transistor count on a single

IC chip is not defined yet. Further miniaturization is yet to come, and there must

inevitably be more revolutionary progress in applying the ULSI technology.

Silicon CMOS technology has become the dominant manufacturing process for

relatively high performance and cost-effective VLSI/ULSI circuits over the past several

years. This development's ground-breaking essence is demonstrated by the rapid

growth in which the number of transistors on a single chip integrated into circuits.

Though transistor count (i.e. the area) is the primary reason for such development,

energy efficiency and high-speed designs are also the primary concerns for the

designers. Therefore, the typical design constraints of VLSI/ULSI circuits are power,

delay and area. Any digital system's performance is measured concerning the power,

delay and area. Design constraints can be explained as follows:

• Timing: Any circuit has specific timing requirements. A circuit with optimized

delay is the prime concern for VLSI designers.

• Area: A circuit’s size can’t exceed the threshold limit. Here, circuit size refers

to the backend design or final layout.

2

• Power: A circuit must have the capability to save as much as the power it can.

But the VLSI designers must be careful while minimizing the power of digital

circuits because a decrease in power consumption can make the circuit slower.

There is an inverse relationship between the area and time constraints. The design has

to be parallelized (which usually means that larger circuits have to be designed) to

optimize timing (faster circuits) constraint for a specific technology. Designers

typically have to compromise on circuit speed to create smaller circuits. Figure 1.1

shows the inverse relationship.

Figure 1.1: Area versus Timing trade-off

In addition to design constraints, the optimization of target technology is influenced by

operating environment variables such as I/O delays, drive strengths and output loads.

To ensure that the circuits are configured for the appropriate operating environment,

operating environment factors must be input into the logic synthesis tool.

1.1 NEED FOR LOW-POWER DESIGN

The popularity of portable devices and the requirement to limit the power consumption

(and therefore heat dissipation) in heavily-dense VLSI/ULSI chips have resulted in

quick and revolutionary advances in low-power design over the past few years. Mobile

applications necessitating low-power dissipation and high throughput, let’s say

notebook PCs, mobile communication devices, and PDAs, are the driving forces behind

3

these innovations. In most of these cases, low power consumption requirements need

to be met along with equally challenging targets of high chip density and high speed.

Therefore, the low-power IC design surfaced as a beneficial and fast-developing area

of CMOS circuit design. Usually, the restricted battery life places very stringent

demands on the portable system's overall power requirements. New types of

rechargeable batteries say "Nickel-Metal Hydride (NiMH)" are being produced with

better energy storage capacity than the traditional "Nickel-Cadmium (NiCd)" batteries.

Still, there is no prospect of a significant increase in energy capacity in the foreseeable

future. The energy density (which is the energy stored/unit weight) provided by new

advancement in technologies (such as NiMH) is approximately 30 Watt-hour/pound,

which is quite lesser considering the growing applications of portable systems. Scaling

down the energy dissipation of ICs by improving functionality is, therefore, a

significant task in the development of portable devices.

In high-performance digital systems, such as microprocessors-microcontrollers, DSPs,

etcetera, the need for low-power circuit development is also becoming a significant

concern. Targeting higher chip density and higher processing speed contributes to the

development of high-clock rate in very complex circuits. If the chip's clock speed rises

then the chip's energy dissipation, thereby increasing the temperature linearly. As the

dissipated heat has to be efficiently removed to maintain the temperature of the chip at

an optimum level, the packaging cost, cooling and heat extraction becomes an

important aspect. A few elite microchips structured in the mid-1990s (such as, Intel

Pentium, DEC Alpha, PowerPC) which operates in a frequency ranging from 100-300

MHz, and the total average power is ranging from 20-50 W. ULSI's reliability is one

more critical factor to look after for the design engineers, as it emphases to the demand

for energy-efficient design. There is a near connection between electronic circuit

maximum power-dissipation and reliability concerns like electro-migration and system

degradation caused by the carriers. Additionally, the thermal stress caused by chip heat

dissipation is also a significant issue to look after in terms of reliability. As a

consequence, increasing power-consumption is also critical for improving

performance.

4

The procedures used in digital systems to achieve low-power consumption vary from

device to device, technology to technology or algorithm to algorithm level. The

standard system features (say threshold voltage), device dimension and interconnection

properties are essential factors in reducing power consumption. Circuit level

approaches such as a careful selection of circuit design logic family, decrement in the

total number of voltage transitions and clocking approaches can be used to minimize

transistor-level energy dissipation. Measures at the architecture level include intelligent

power management of different system components, pipeline and concurrent usage, and

bus layout design.

Lastly, a good set of data processing algorithms also reduces the power consumed by

the device as it reduces the number of switching activity for a particular task.

1.1.1 Causes for power dissipation

The energy or power dissipation in CMOS based circuits is categorized into three main

categories, namely,

1. Switching or Dynamic power consumption

2. Short circuit power consumption

3. Leakage power consumption

A fourth power element, namely static power, would also be considered if the device

or chip contains circuits other than standard CMOS gates that have direct current paths

between VDD and VSS.

Switching or Dynamic power consumption:

Dynamic power is the dissipation of energy during a switching activity which means

that a CMOS logic gate's output node voltage makes a switch that consumes electricity.

For digital CMOS circuits, as energy is collected from the VDD to charge the capacitance

at the output node, dynamic power is dissipated. The output node voltage usually

transitions from 0 to VDD during the charging cycle, and the power used for the

conversion is relatively independent of the circuit's functionalities.

5

Short-Circuit Power Consumption:

The dissipation of the dynamic power described in the last sub-section is simply due to

the power needed to charge the parasitic capacitance in the circuit, and the dynamic

power is non-dependent on the input signal's rise/fall times. Now, in a situation where

a CMOS logic gate is controlled with finite rise/fall time on the input waveforms, both

the N-Channel MOSFETs and the P-Channel MOSFETs in the design may conduct

momentarily and concurrently for a small duration of time during the transitions. This

eventually forms a direct current path between the VDD and the VSS.

Leakage Power Consumption:

The N-Channel MOSFETs and the P-Channel MOSFETs used in digital designs using

CMOS circuits usually have reverse leakage currents as well as sub-threshold currents

with non-zero values practically. In a chip containing an enormous number of

transistors, these flows of current can add to the total energy or power dissipation even

when the transistors are not performing any transient activity. Primarily the processing

parameters determine the scale of the leakage currents. The leakage current components

found in N-Channel MOSFETs and P-Channel MOSFETs are:

A. Reverse-diode leakage current

B. Sub-threshold leakage current

1.2 FACTORS AFFECTING HIGH-SPEED DESIGN

The delay for a CMOS based circuit relies on the charge-discharge rate at the output of

all capacitors. The capacitance of all capacitors connected to the circuit is due to two

elements called the parasitic capacitance and the load capacitance. The propagation

delay (τ�) of a CMOS inverter is given by equation 1.1.

 �� = 2��/
��� (1.1)

The delay in propagation (in general "propagation delay") is the time taken to transfer

a signal to the output from the input. Typically, it is defined between the 50% points,

as shown in figure 1.2. The propagation delay of the logic gate is the mean of the output

signal switching from logic low to high (τ
��) and high to low (τ
��). As shown in

6

figure 1.2, the dotted lines, i.e. the ideal input or output which has immediately changed

from low to high and high to low. But practically, any system can't change abruptly

from logic high to low or vice versa. Therefore, there is a requirement for rise and fall

time. Rise time is the time taken by a signal to change from 10% to 90% of the final

value; whereas the fall time is the time taken by a signal to change from 90% to 10%

of the final value.

Figure 1.2: Rise-fall time during input output transitions

For CMOS inverter, as shown in equation 1.1, the propagation delay varies directly

with the changes of load capacitance and varies inversely with the value of 'K'. The

same relation can be obtained for the output transistor in bipolar technology. The

relationship of propagation delay and load capacitance is shown in figure 1.3 in

graphical representation for three logic families, i.e. ECL, CMOS and TTL. As the

graph depicts, the delay is low at low capacitances in the CMOS logic family in

comparison to TTL logic. The main reason for the same is the load capacitance is an

external capacitance, and it doesn't include the internal capacitance of the logic gate.

The internal capacitance for CMOS devices is smaller than bipolar devices because a

CMOS device takes considerably smaller space in the layout than the bipolar device.

7

Hence the larger size of the device offers higher input capacitance. However, as the

load capacitance is much bigger than internal load capacitance, its influence is not

visible in the propagation delay.

Figure 1.3: Propagation delay versus load capacitance for different logic families

On the other hand, the practical value of K is more significant for bipolar devices than

CMOS devices. Therefore, with larger load capacitance the propagation delay for

CMOS devices are more than that of TTL devices. Thus, if a large capacitance to be

driven, i.e. the system has large fan-in, then bipolar devices are preferred. On the other

way around, if the system has low output capacitance to drive, (i.e. < 30 pF), then

CMOS can be preferred. For ECL logic family, the delay versus capacitance shows that

these devices are fastest among all three since ECL logic systems don't enter saturation.

Therefore, a circuit with higher speed and lower power consumption is always desired.

Moreover, as there is a trade-off between the power consumption and delay, the

performance of a circuit is mostly evaluated in terms of Power-Delay Product (PDP).

8

1.3 INTRODUCTION TO MULTIPLY & ACCUMULATE (MAC)

ARCHITECTURE

Today’s portable devices are capable of doing image filtering to face recognition, an

audio signal enhancement to voice recognition and gesture-based control to biometric

authentication. All those functionalities are the applications of Digital Signal

Processing (DSP). A large number of mathematical operations are performed

repeatedly and quickly on a series of data samples by DSP algorithms. Most operating

systems and general-purpose microprocessors can successfully execute DSP

algorithms. Still, because of power efficiency constraints, they are not suitable for use

in portable devices such as PDAs and mobile phones. However, the rapid growth of

portable electronics has introduced the significant challenges of low power and high

throughput for VLSI/ULSI design engineers.

Among the other digital blocks, Multiply and Accumulate (MAC) unit plays a vital role

while evaluating the performance of a DSP block. While performing convolution,

filtering or any other DSP operations, it is always desired to use an efficient MAC unit.

The efficiency of a MAC unit is measured in terms of two factors:

1) Speed of operation

2) Overall power consumption [1, 2]

The essential operation of the MAC is to fetch the inputs from the input devices or

memory and process it through the multiplier block and provide the result to an adder

which sum-up the current multiplier output with the previously accumulated result and

then again accumulate the result in an accumulator register. Generalized block diagram

of 8 × 8-bit MAC is shown in figure 1.4. The MAC architecture contains the main

functional blocks as multiplier, adder and register/accumulator. The multiplier

performs the multiplication operation over the two input operands; the adder performs

the addition of the result of the multiplier with the result of the previous cycle and the

register or accumulator stores the sum for next cycle addition. Different approaches for

multiplication as well as the addition for MAC operation is described in detail in the

literature by [3, 4] etcetera. Mathematically, the operation of the MAC is to generate

9

the product of two operands Xi and Yi and add the result with the previously stored

result from the last multiplication in a single clock period [5]. The operation of MAC

can be expressed, as mentioned in equation 1.2.

 F= ∑ ����
n-1
i=0 (1.2)

Where ‘i’ denote the range of the values.

Figure 1.4: Generalized block diagram of 8 × 8 bit MAC

A high-speed MAC architecture which promises with an optimized area is proposed in

[1]. It uses 4:2 compressor circuits to improve speed. In 2012, a novel architecture for

the multiplier is proposed by [6]. In 2013, a novel architecture using modified Wallace

tree multiplier is proposed by [7]. The implementation is done for 64 bits. Modified

Braun multiplier is used to implement a basic MAC unit in [8]. The implementation is

done on NCSim and RTL Compiler. A low power Baugh Wooley multiplier-based unit

is proposed in the year 2014 by [9]. A pipelined based architecture has been proposed

10

in this work. Split MAC architecture is explained by [10]. A technique to compress the

partial product using "interleaved adders" and a "modified hybrid Partial-Product-

Reduction-Tree (PPRT)" schemes are proposed in this work to enhance the speed of

operation further. There are several architectures explained in the past by various

designers. However, all these different architectures (90% of them in the literature) are

designed with the help of Hardware Descriptive Languages (HDL) such as Verilog or

VHDL. The main disadvantage of using HDL is that the basic blocks, those are to be

used while designing any architecture, use the predefined system defined primitives

(standard PMOS-NMOS implementation). Because of which, even after using smart

and efficient structural designs, the architecture lags in certain aspects. The main reason

for such a shortcoming is the non-optimization of basic building blocks viz. multiplier,

accumulator and adder.

1.3.1 Multiplier

In DSP architectures, multiplication is the fundamental operation. Multipliers require

large area (because of partial product generation), long latency and consume relatively

higher power than adder/subtractor circuits. Any multiplier-based system's

performance is evaluated based on the optimization of the primary design constraints

(explain later in this chapter). The reason for the same is that the multiplier is the

slowest unit in the arithmetic system. Hence, maximizing the speed of operation of the

multiplier along with optimization of power and area is the primary concern for any

system design. However, the trade-off between area and speed & power and speed are

unavoidable. Therefore, minimizing one of design constraint (power, delay or speed)

may have the possibility to increase the other one. Moreover, as mentioned above, the

hardware requirement in multiplier circuit is enormous. Hence, low power design is a

challenge as it has become the authoritative measures for designing the power-efficient

multiplier designs for high speed and compact devices. As mentioned earlier, the

multiplier is one of the central units for designing a power-efficient circuit, where the

multiplier block decides the efficiency of the DSP. Therefore, extensive research work

has been performed on low power multiplier designs with different area-speed

constraints.

11

Figure 1.5: 4-bit Wallace tree multiplier

Table 1.1: Comparisons of performance parameters for different logic styles

Australian computer scientist Chris Wallace proposed a fast multiplication technique

in the year 1964 [11]. The hardware requirement in this architecture is very high, but it

reduces the delay substantially. The architecture promises to get the products and

quotients within a time of 1 µs and 3 µs respectively if it is used in diode-transistor

logic. The architecture proposed in [11] can be used where a high-speed design is a

primary concern, not the regularity of the structure. Figure 1.5 shows the conventional

Wallace tree architecture. As mentioned by [12] in 2012, “The Wallace tree multiplier

is faster than an array multiplier because its height is logarithmic in word size, not

Multiplier

Type

Logic

Style

Delay

(ns)

Power

(µW)

PDP

(fJ)

No. of

Transistor

Array

CMOS 8.300 10.73 89.06 384

CPL 4.337 24.70 131.82 368

DPL 4.667 19.72 92.03 448

Tree

CMOS 4.247 10.68 45.35 384

CPL 4.105 23.61 125.25 368

DPL 4.526 19.87 89.93 448

12

linear”. The only disadvantage of Wallace tree multiplier is that its irregular structure.

In the recent past, many attempts are made to modify the Wallace tree structure, but a

hand full of attempts are made to make the design regular. The performance comparison

of array multiplier and Wallace tree in different logic style is given in table 1.1 [13].

1.3.2 Accumulator

An accumulator or register is a temporary storage where the internal as well as final

arithmetical and/or logical results are stored. Without an accumulator or register it

becomes very crucial to store the outcome of each and every operation (summation,

multiplication, shift, etcetera) to the main memory. The main reason to use the

accumulator or register is to read the stored data in the immediate previous cycle and

to use it in the next operation because mathematical operations often take place in a

stepwise manner, using the results from one operation as the input to the next.

Moreover, the main memory access is slower than accessing an accumulator or register

repetitively; which eventually decreases the speed of operation of the circuit. But it is

to be noted that, though the technology used for accessing large main memory is slower

but its design cost is cheaper than that of an accumulator or register as the memory.

Figure 1.6: Basic accumulator or register circuit

The fundamental element constituting an accumulator or a register is a D-flip-flop

which can store a 1-bit of data. Two AND gates with clock input are also used. Hence,

the register cell has three inputs, namely "write or negation of read", "clock" and "D".

The output of the block is Q. Figure 1.6 shows the single-bit register [5].

13

1.3.3 Adder

An adder is also known as summer is a logic circuit which adds two numbers. Adders

or summer circuit is used not only for addition but also for multiplication, updating the

addresses, increment/decrement operations, table indices etcetera. The adder operation

is performed in binary number systems, but the adder can also be applied on BCD,

excess -3 etcetera. Adders are of two types:

• Half Adder: It adds two 1-bit binary numbers and the outputs are ‘sum’ and

‘carry’ values. For ‘sum’ output is the XOR of the two inputs whereas, the

‘carry’ output is the AND of the two inputs. Half adder is used rigorously in full

adder circuit, multi-bit adder circuit, multiplier circuit etcetera.

• Full Adder: It performs addition operation on three 1-bit variables and

produces the ‘sum’ and ‘carry’ outputs. It takes into account the carry input also.

Most of the n-bit adder architectures utilize full adders. The multiplier, adder-

cum-subtractor circuit etcetera use the full adder circuit rigorously.

1.3.4 Block enabled technique & pipelined architecture

As the feature size is scaled down, low power is the most critical issue in today's VLSI

design. Block Enabling is one of the most elegant and classic technique for reduction

of dynamic power, a significant contributor in total power consumption of any VLSI

circuit [13].

 ������� = ���! "#��$ + �&&
' .) $*. +. �� (1.3)

The mathematical expression for dynamic power is shown in equation 1.3, where ‘VDD’

is the supply voltage, ‘fclk’ is the clock frequency, ‘α’ represents the switching activities

at nodes and ‘CL’ represents load capacitances. Block enabling technique facilitates

saving of electrical power used by digital signal processors by reducing the switching

activity ‘α'. The power-saving is ensured in this technique by activating the design block

as and when required. For this, initially, the delay for each building block of the

architecture needs to be calculated. Every building block of the architecture gets

enabled only after the desired delay required by that block to produce the output

14

correctly. The successive blocks are disabled until the inputs are available to the

respective block and thus saving power [14].

The basic idea of pipelining comes from everyday life. For example, water pipe

continuously sends water without waiting for the water previously sent to be out, which

leads to a reduction in critical paths. In DSP, pipelining either reduces the power

consumption at the same speed or increases the clock speed. In the buffered and

synchronous pipelined architectures, "pipeline registers" are introduced between the

functional blocks, and are synchronized (using a clock pulse). The delay between each

clock signal is set in such a way that when the registers are clocked, the data stored in

it is passed to the next stage. The representation of pipelined architecture with block

enabling technique is shown in figure 1.7.

Figure 1.7: Pipelined and Block enabled Architecture

The main objective of the research work is to investigate various pipelined MAC

architectures which are efficient in terms of the implementation of the high-yielding

signal processing architectures and also to have lesser power consumption. This is

because, the power consumption, speed and high-yielding rates are always interlinked

with the DSP systems. Initially, a 1 × 1-bit fixed point unsigned MAC unit is designed

in full custom IC design platform (using Cadence Virtuoso) with appropriate

geometries to produce optimized power, area, and delay. Similarly, using the same

15

concept, a 1 × 1-bit floating point signed/unsigned MAC unit is proposed and later the

work is extended till 8 × 8 bit fixed-point signed/unsigned number and 8 × 8 bit floating-

point signed/unsigned number. Full custom IC design platform is chosen for this

research work to optimize the essential and fundamental building block.

1.4 SIGNIFICANCE OF THIS RESEARCH

As discussed earlier in this chapter, the multiplier and accumulator are the critical

components of MAC architecture [1-9]. As the efficiency of the MAC is dependent

upon the efficiency of the multiplier (mainly), an efficient multiplier (in terms of typical

design constraints) design can further improvise the efficiency of a MAC unit.

Moreover, the existing multipliers in the literature [11-13] are mostly based on the

Wallace tree algorithm. It is claimed that the multipliers based on the Wallace tree

reduce the steps involved to add the partial products. Still, it uses half adder or full

adder for the addition of partial products which increases the complexity of the circuit.

Further, any electronic circuit can be designed by two different approaches, namely the

top-down approach and the bottom-up approach. In the top-down approach, the designs

are implemented by focusing mainly on the output efficiency of the overall design. i.e.

importance is given on the implementation of the process or algorithm, not on the

optimization of primary cells. On the other hand, in the case of the bottom-up approach,

the whole digital architecture is designed starting from its primary cell, i.e. importance

is given on optimization of the primary cell as well as on the practical implementation

of the algorithm. In the existing literature, full custom circuit design for the MAC unit

has never been proposed [1-9]. Additionally, synchronization, clock gating techniques

and pipelining can further enhance the speed of operation and minimize the power

consumption.

Therefore, in this research work, a universal compressor (N:M of any size) based

multiplier is proposed to use it as the core of the proposed MAC unit to improve the

efficiency. Additionally, a full custom IC approach with synchronization, clock gating

techniques and pipelining is adopted in the design of the proposed MAC to optimize

the overall architecture which eventually provides much more efficiency in terms of

power as well as delay.

16

1.5 ROADMAP OF THE THESIS

Chapter 2 offers a detailed review of literature based on adder, multiplier and MAC

architectures. It has presented the recent developments in these areas in recent years.

Based on the literature survey, the objectives of this research work are framed.

Chapter 3 shows the design and implementation of the novel UCM architecture, which

promises higher speed at ultra-low supply voltages (less than 0.6V). A novel universal

compressor (N:M of any size) is used for the addition of partial products while

designing the multiplier. The multiplier is named as Universal Compressor-based

Multiplier (UCM). The prototype of the proposed multiplier is implemented on FPGA.

The UCM architecture is applied for developments of different architectures of MAC

for fixed-point unsigned/signed, and floating-point unsigned/signed operations in

chapter 4 and 5.

Chapter 4 discusses the UMAC, USMAC and SMAC architectures which are

specialized in unsigned, synchronized-unsigned and synchronized-signed operations

respectively for fixed-point inputs. The novel UCM architecture explained in chapter 3

is used for designing the MAC architectures. The graphical outputs of the UMAC,

USMAC and SMAC architectures shows the accuracy of the designs and advantages

of one over another.

Chapter 5 discusses the implementation of the SFMAC architecture, which is capable

of performing signed/unsigned fixed-point or signed/unsigned floating-point MAC

operation on given 8-bit inputs. The SFMAC architecture is the further extension of the

MAC architectures proposed in chapter 4. The block enabling technique is deployed

along with pipelining to optimize the power consumption of the proposed SFMAC

architecture.

Chapter 6 consists of the detailed results and discussion of the proposed architectures.

A comparative analysis is also shown in this chapter.

Finally, the conclusion of the thesis, its importance and its future works that can be

adopted, are addressed in chapter 7.

17

CHAPTER 2: REVIEW OF

LITERATURE

As mentioned in the previous chapter, the essential component of a MAC unit is a

multiplier; on the other hand, the integral component of a multiplier is an adder or

summer. Therefore, this section is explained in two parts; namely i) Adder and

Multiplier and ii) Multiply and Accumulate unit.

2.1 ADDER AND MULTIPLIER

(Wallace, 1964): A m × n bit multiplier using combinational logic (in one gating step)

is proposed. The proposed architecture promises to get the products and quotients

within a time of 1 µs and 3 µs respectively if it is used in diode-transistor logic.

Moreover, a rapid square-root process is also discussed [11].

(Itoh, et al., 2001): In this work, a rectangular styled Wallace-tree architecture is

proposed. As stated, the partial products are segregated into two groups and summed

up separately in top-down and bottom-up directions [15].

(Onomi, et al., 2001): A Wallace-tree multiplier architecture suitable for pipeline

scheme is proposed in this research, where "carry-save adders are used for the addition

of partial products". In this proposed work, the authors have claimed for removing the

irregularity present in a conventional Wallace tree architecture [16].

(Liao, Su, et al., 2002): A CSA portioning algorithm is proposed in this paper, which

is applied to the Booth-encoded Wallace-tree algorithm. As stated by the authors, "by

taking into various data arrival times, a branch-and-bound algorithm is proposed and a

heuristic to partition an n-bit carry-select adder into several adder blocks so that the

overall delay of the design is minimized" [4].

18

(Guevorkian, et al., 2005): An architecture targeting mobile multimedia systems is

proposed in this paper by introducing a “MAVIP”, which is a “reconfigurable extension

derived from a high-radix multiplier structure". A MAVIP may be configured "either

to a processing unit with DSP-specific operations such as multiplication, multiply-

accumulate, parallel addition, MIN/MAX, etcetera or one/another ASIC such as a

matrix-vector multiplier, FIR filter or SAD accelerator" [17].

(Kuo, et al., 2008): Low power high-performance latch adder-based Wallace tree

multiplier has been proposed. The proposed techniques-based tree multiplier provides

22.3-23.7% of lesser delay and 5.5-3.3% of lesser power consumption than the

conventional traditional latch-adder technique-based tree multiplier [18].

(Chen, et al., 2008): Canonical Signed digit multiplier is proposed with the help of

Wallace tree adder is proposed. CSD requires to the lookup table for fetching the data

from memory. Hence the speed of operation has improved. Finally, the FPGA

implementation is done [19].

(Yi, et al., 2009): In this research work, a modified booth algorithm is studied and

proposed which yields a variable bit-length multiplier. The proposed multiplier can

perform "a 32 × 32-bit or dual 16 × 16-bit or four 8 × 8-bit multiplications, which

greatly enhance the parallelism of the multiplier". The overall implementation is

performed in Verilog HDL [20].

(Nachtigal, et al., 2010): In this research work, reversible design of single-precision

floating-point multiplier is proposed which uses a technique called "operand

decomposition approach". To design a "reversible 24 × 24-bit multiplier", the operands

are partitioned into three groups consisting of 8 bits each. Therefore, the "24 × 24 bit

reversible multiplication" is performed using nine "reversible 8 × 8-bit Wallace tree

multipliers" and then the outputs are summed to get the final result [21].

(Singh, et al., 2012): Various logic style-based "1-bit full adders" and "AND2

function" are designed in this paper and used for designing 4 × 4 unsigned arrays and

tree multiplier. The full adders and AND2 function are designed in different logic

19

techniques such as CMOS logic, CPL logic and DPL logic style to improve the area,

power, delay and PDP [13].

(Rao, et al., 2012): An improved version of tree-based Wallace tree multiplier

architecture using Booth Recorder is proposed in this work. This proposed architecture

reduces the latency and area of Wallace tree multiplier with the help of the Booth

algorithm and compressor adders. The overall implementation is performed in Verilog

HDL [12].

(Sousa, 2013): In this paper, an improved version of modulo (2n + I) multipliers is

proposed. The efficiency is achieved by “manipulating the Booth tables and by applying

a simple correction term” in the existing modulo (2n + I) multiplier algorithm.

Moreover, the author states in the paper that “the proposed multiplier is almost as

efficient as those for ordinary integer multiplication” [22].

(Khan, et al., 2013): The complexity of Wallace tree multiplier reduced in this research

work without compromising with the delay. As full adder is used gregariously in

Wallace tree multiplier (in partial product reduction as well as in the form of carry-

propagation-adder), an "energy-efficient CMOS full adder" is used at the place of full

adder standard cell to reduce power, area and delay [23].

(Kshirsagar, et al., 2013): For simultaneous arithmetic operation and therefore, to

increase the speed of operations, a “four-stage pipelining at the intermediate nodes” is

discussed in this proposed work. The architecture is designed in Verilog HDL and

simulated using Cadence Spectre tool at TSMC 45nm technology. Cadence RTL

Compiler is used for detailed analysis of the circuit [24].

(Jayaprakash, et al., 2013): This paper proposed a novel "low-power hybrid full

adder" which consumes deficient power. The same is compared with its conventional

counterpart (28T). The power consumption is found to be low in this design. The

implementation is done on MOSIS 90 nm Technology [25].

(Bhattacharyya, et al., 2014): A hybrid full adder based on CMOS and transmission

gate technique is proposed in this paper. The design is also extended till 32-bit full

20

adder operation. The implementation of the circuit is done in Cadence Spectre tool in

90 nm and 180 nm CMOS technology [3].

(Paradhasaradhi, et al., 2014): The "Modified CSLA (MCSLA)" is proposed in this

paper, which is designed using "Common Boolean Logic" and implemented using the

Wallace Tree Algorithm. The implemented MCSLA is compared with regular CSLA

architectures. The proposed work requires lesser area in comparison to normal Wallace

tree multiplier [26].

(Luu, et al., 2014): An unsigned 32-bit multiplier for best timing performance with the

optimized area is proposed in this research paper. The architecture uses "a modified

Radix-4 Booth encoder, a modified Wallace Tree adder, and a Carry Look Ahead

adder" [27].

(Reddy, et al., 2014): In this paper, a Gate Diffusion Input technique based low-power

multiplier for 8-bit operation is proposed. The reduction in power and area is achieved

by using “Booth encoding and Wallace tree technique” as this algorithm generates the

minimal number of partial products for signed number multiplication and provides an

efficient way to add the partial products [28].

(Srinitha, et al., 2015): A VHDL based high performance Fused Add-Multiply (FAM)

unit architecture is proposed in this research work. The proposed architecture uses 4:2

compressor block instead of full adder/half adder [29].

(Jaiswal, et al., 2015): A MUX based full adder is proposed in this research article and

then, the work is further extended for designing a Wallace tree multiplier. Because of

the optimization of the adder, the performance of the multiplier has got improved. The

architectural design is done in Verilog, and the functionalities are confirmed using

Quartus II [30].

(Shoba, et al., 2017): A “ CslA and Binary to Excess 1 Converter (BEC)" based

multiplier is proposed in this paper. Because of the use of the BEC, the total number of

adders is reduced by n/4 than orthodox addition scheme (here 'n' is the width of the

input). Moreover, a Vedic multiplier is used as a base multiplier which requires lesser

21

area and lesser delay. Additionally, Gate Diffusion Input (GDI) logic style is used for

designing the proposed multiplier. The functionality of the proposed multiplier is

analyzed and verified by Cadence Spectre Tool in 45 nm CMOS technology. From the

comparative analysis, it is found that the proposed multiplier requires 17% lesser PDP

than its close competitor. The Monte Carlo simulation is also performed to analyze the

performance in extreme conditions [31].

(Ozcan, et al., 2018): A "Montgomery multiplier" which works iteratively is proposed

in this work. A digit of the multiplier is multiplied by the digits of the multiplicand in

every iteration. And the result is stored in an accumulator. Each time the total number

of multiplier and multiplicand is reduced by the Montgomery method. As stated in the

paper, the total number of iterations required to complete the multiplication process is

eight cycles, and therefore it saves some hardware resources. The prototype of the

architecture is implemented on the Virtex-7 FPGA board [32].

(Rose, et al., 2019): A DML multiplier which is capable of performing the mixed

operation mode (i.e. a mixture of the static/dynamic mode) is proposed which promises

to offer "better performance and energy trade-off" in comparison to the standard CMOS

based designs. In fact, "the use of the dynamic mode for higher precision operations

ensures higher performance as compared to the standard CMOS circuit (16% gain on

average) at the cost of higher energy consumption". In comparison with standard

CMOS implementation, the proposed DML's mixed-mode offers 15% of EDP

improvement in a varied range supply voltage. A detailed PVT analysis is also carried

out to ensure the performance at extreme conditions [33].

2.2 MULTIPLY AND ACCUMULATE UNIT

(Suzuki, et al., 1996): A FADD core is proposed in this design. The core has been

fabricated in CMOS 0.5um technology. LZA technique is used for normalizing the

numbers. HDL is used for the overall design [34].

(Pillai, et al., 2000): A floating-point low power multiply-accumulate unit is presented

in this work. Transition activity and data path are simplified to reduce the power

22

consumption. A 4 state FSM model is used to represent the switching activity. Due to

data path simplification, the latency and delay are reduced [35].

(Natter, et al., 2000): A signed VHDL based MAC is proposed in this work. The design

is also implemented on FPGA board. The proposed MAC algorithm uses "recursion

formula in terms of new input-independent variables". The correctness of the proposed

MAC is verified on MALAB and MAX plus II [36].

(William, et al., 2001): The technique proposed in the paper reduces the total number

of partial product by a factor of two if applied to "signed-binay (SB) number". The

work is also extended for FPGA hardware [37].

(Plessis, et al., 2002): Field Programmable Gate Arrays (FPGAs) are rapidly gaining

popularity for signal processing applications. Multiplication, addition and Multiply-

Accumulate (MAC) are the most important building blocks in signal processing. This

paper will compare a number of structures to find the optimum configurations for

minimum delay, size and cost in an FPGA [38].

(Huang, et al., 2002): A "novel limited resource scheduling (LRS) algorithm" based

MAC for "DWT-processor" is proposed in this work. Given a set of architecture

constraints and DWT parameters, the LRS algorithm can generate four scheduling

matrices that drive the data path to perform the DWT computation, and the performance

has also been investigated. Because the registers of FIR filtering are reused for the inter-

octave storage, the MAClevel DWT architecture may require less extra inter-octave

memory than the traditional architecture [39].

(Premkumar, et al., 2002): In this paper an alternative multiply accumulate units for

the pulse shaping filters that use a new representation for their coefficients is proposed.

Consequently, these new structures are fast, efficient and dissipate less power. The

filters proposed take into account constraints, such as, inter symbol interference,

response characteristics etc. in their design methodology [40].

(Tian, et al., 2002): In this paper, an algorithm of 32x32 multiply and MAC

instructions’ VLSI implementation with 32x8 multiplier-accumulator in DSP

23

applications is presented. The 32x32 multiplication is achieved by 4 times 32x8

multiplication. The result of 32x8 multiplication serves as a partial product of the next

32x8 operation, when the result’ of such four multiplication is accumulated, we get the

result of 32x32. The 32x8 multiplication is only implemented by the hardware Booth

multiplier [21[31. The algorithm of multiply and MAC instructions’ implementation is

the better trade-off between serial multiplier and, parallel multiplier [41].

(Liao, et al., 2002): A high-performance and low-power 32-bit multiply–accumulate

unit (MAC) is described in this paper. In the proposed architecture, one-cycle

throughput for 16-bit 16-bit and 32-bit 16-bit MAC instructions was achieved at very

high frequencies. To handle media streams more efficiently, the single-instruction-

multiple-data (SIMD) and the multiply-with-implicit-accumulate (MIA) features were

added [42].

(Kao, et al., 2002): This research develops a theoretical model to predict how dynamic

power and subthreshold power must be balanced to give an optimal operating point that

minimizes total active power consumption for different workload and operating

conditions. A 175-mV multiply-accumulate test chip using a triple-well technology

with tunable supply and body bias values is measured to experimentally verify the

tradeoffs between the various sources of power [43].

(Suvakovic, et al., 2003): A mechanism to minimize non-adiabatic dissipation in

adiabatic circuit is explained in this research work. As stated, “the non-adiabatic

dissipation is minimized by architectural design involving a small number of complex

logic gates”. For designing complex adiabatic gates “Ordered Binary Decision

Diagrams (OBDD)” is used. Finally, an optimized architecture “for adiabatic parallel

multipliers” is explained and its power consumption is also estimated [44].

(Shim, et al., 2003): This paper shows the usage of MAC in Very High-Speed Digital

Subscriber line. A detailed analysis is also performed for DMT (Discrete Multitone)

and SCM (Single-Carrier Modulation) used in VDSL (Very high-speed Digital

Subscriber Line). The work is further extended to estimate the memory requirement for

the proposed design in addition to conventional complexity measures [45].

24

(Li, et al., 2003): This paper describes a reconfigurable architecture of a high-

performance pipelined 32-bit Multiply-Accumulate Unit (MAC). which is designed for

a powerful embedded Digital Signal Processor (DSP). The proposed MAC unit can

carry out two 16-bit multiplications in one clock cycle. The 32 × 16. 32 × 32. 32 ×

16+80 and 32 × 32+80 operations can be implemented in two clock cycles. These

characteristics allow the DSP being applied efficiently in different situations [46].

(Grossschadl, et al., 2003): A 32-bit MAC unit for RISC processor is presented in this

research work. The proposed MAC unit can perform a variety of operations including

(32 x 32)-bit signed/unsigned multiplication, (32 x 32+64)-hit signed/unsigned

multiplication-accumulation, and (32 x 32+32+32)-bit multiplication-accumulation on

unsigned integers [47].

(Kataeva, et al., 2005): Paper explains about RSFQ DS Processor, mainly used for

removal of interferences from any signal. The author proposed MAC unit for floating

point Multiplication-Addition. The Multiply-Accumulate unit comprises of three-unit

namely parallel-multiplier, combiner and register or accumulator. The combiner

evaluates the sum of the sums and the carries from M-MSB bits of the multiplier. The

simulation is verified in VHDL [48].

(Bunyk, et al., 2005): Describes a MAC unit specific for programmable Band pass

filtering. As explained in the paper, the clock frequency of the presented architecture is

20 GHz and it can perform 2.5 billion MAC instructions/sec. For doing such analysis,

the data sample is considered to be of 7-bits and filter coefficient is considered of 16-

bits which is arriving in bit-serial mode. The simulation is verified in VHDL. Basically,

this MAC unit is application specific. It consists of a D flip flop (to act as a shift

register), clocked AND gate and T flip flop for counting purposes [49].

(Cardoso, et al., 2005): In this work, minimization of Accumulator unit in MAC for

block matching motion estimation is proposed. The FPGA implementation and

mathematical models are discussed in this paper [50].

(Danysh, et al., 2005): This paper presents a “64-bit fixed-point vector MAC

architecture capable of supporting multiple precisions”. The “vector MAC” has the

25

ability to perform “one 64 × 64, two 32 × 32, four 16 × 16, or eight 8 × 8-bit

signed/unsigned multiply accumulates” using fundamentally the same hardware as a

scalar 64-bit MAC and with only a slight increment in delay. The proposed design is

implemented using Verilog HDL in Synopsys tool [51].

(Vangal, et al., 2006): A “pipelined single-precision Floating-Point Multiply

Accumulator (FPMAC)” consisting of accumulator in radix-32 and internal carry-save

addition is explained in this research work. Additionally, an improved version of

“Leading-Zero Anticipator (LZA) and overflow prediction logic” required in carry-

save addition is also explained [52].

(Kataeva, et al., 2007): A “RSFQ digital signal processor design based on hybrid

RSFQ-CMOS memory” is proposed in this paper. The DSP consists of an “RSFQ

multiply-accumulate Unit, memory caches and synchronization block, partitioned into

multiple chips, and a large CMOS memory”. The MAC unit is shown as an internal and

essential unit in the RSFQ architecture [53].

(Voronenko, et al., 2007): This work provides an algorithm for fused multiply

accumulate instruction. In this paper, a generalized procedure to alter any transform

algorithm into an FMA algorithm is explained [54].

(Abdelgawad, et al., 2007): In this work 8-bit, 16 bit and 32-bit MAC is proposed and

implemented on Xilinx ISE and on FPGA board. The design shows improvement in

area and power. 4:2 compressor circuits are used to make the multiplier circuit faster

[1].

(Xia, et al., 2009): The novel design is implemented in ModelSim in TSMC 90 nm

CMOS technology. Here “4-pipelined high-performance split Multiply-Accumulator

(MAC)” architecture is proposed. In order to achieve higher speed, a novel partial

product compression technique using interleaved adders and a “modified hybrid Partial-

Product-Reduction-Tree (PPRT)” is also proposed. As stated by the author, the

proposed MAC can perform “1-way 32-bit, 4-way 16-bit signed/unsigned multiply or

multiply-accumulate operations and 2-way Parallel Multiply Add (PMADD)

operations” [10].

26

(Shanthala, et al., 2009): In this research work an 8-bit MAC unit is proposed using

Cadence Virtuoso 180nm Technology. Clock gating scheme is used to optimize the

power consumption [14].

(Shanthala, et al., 2009): In this research work an 8-bit pipelined MAC unit is

proposed using Cadence Virtuoso 180nm Technology. Various adder/multiplier

circuits are compared and implemented for the MAC [55].

(Hoang, et al., 2010): A Multiply-Accumulate (MAC) architecture which can operate

on 2’s complement numbers are explained in this paper. The author claims that the

proposed architecture is a high-speed and power-efficient MAC which uses

“accumulation guard bits and saturation circuitry”. The implementation is done

basically on VHDL and designed in 65 nm 1.1V cell library [56].

(Quan, et al., 2010): This paper presents a 32-bit vector multiply-accumulate (MAC)

architecture capable of supporting multiple precisions. The vector MAC can perform

one 32×32, one 32×16, two 16×16, four 8×8 bit signed/unsigned multiply-accumulate

using Booth encoding algorithm and Wallace tree compressing. A reconfigurable Booth

encoding array is implemented using 8×8 Booth unit as the basic element, and longer

bit modes are obtained by combining these elements selectively. This MAC unit can

also perform multiply between scalar and vector operands [57].

(Jain, et al., 2010): This paper describes energy efficient and reconfigurable

fused/continuous Multiply-Accumulator (MAC) architecture for single-precision

Floating-point and 16-bit signed integer operands. This eight-stage pipelined and

single-cycle throughput MAC design contains a bit level pipelined multiplier, followed

by fast sparse-tree adder and single cycle accumulator loop with delayed normalization

logic [58].

(Hsieh, et al., 2011): In this paper, an APC (Adaptive Power Control) system is

proposed which performs on power gated circuitries. The proposed architecture is

tested using a standard MAC fabricated in UMC 90 nm standard CMOS process. The

basic implementation is done on RTL compiler [2].

27

(Kouretas, et al., 2012): A novel low-power approach to perform addition/subtraction

in LNS (Logarithmic Number System) is explained in this research work. The paper

also explains the impact of such low power addition/subtraction circuit used in LNS on

digital filter VLSI implementation. The implementation is done in UMC 90 nm

standard CMOS process [59].

(Esmaeili, et al., 2012): A “Low-Swing Differential Conditional Capturing Flip-Flop

(LS-DCCFF)” is presented in this work. The flip flop explained in this work is capable

of operate in a low swing LC resonant clocking scheme and utilizes reduced swing

inverters at the clock input. The verification of the operation is done using LS-DCCFF

in a dual-mode MAC. The dual-mode MAC is fabricated in TSMC 90 nm CMOS

technology. Here, the optimization of the MAC unit is not performed but a technique

to improve the performance of the MAC using LS-DCCFF is explained [60].

(Deepak, et al., 2012): In this work a novel multiplier circuit is proposed using which

a MAC unit is designed. Cadence NC Sim and RTL compiler are used for doing all

these analyses [6].

(Maechler, et al., 2012): VLSI based architecture is proposed based on MAC.

Basically, this paper shows the importance of MAC as its application [61].

(Zhang, et al., 2012): A pipelined architecture for discrete wavelet transform is

presented. The objective of this study is to design a high-speed VLSI architecture which

has a high operating frequency with smaller clock periods. The architecture also

achieves an efficient utilization of the hardware by increasing the inter as well as intra-

stage computational parallelism for effective usage of pipelining [62].

(Mooney, et al., 2013): An “ASIP (Application-Specific Instruction-set Processor)” is

designed, implemented, and evaluated in this research work. The proposed dual MAC

is implemented on FPGA and its performances are evaluated in a “closed-loop power

converter system”. A dual MAC Data Path is also proposed in this design [63].

(Marr, et al., 2013): A Statistical analysis of computations/ unit energy in different

processor over a period of 30 years is performed in this paper. The analysis shows that

28

the energy efficiency improvement rate has declined sharply in the recent a few years.

An energy efficient asynchronous pipeline technique is presented in this work [64].

(Jagadees, et al., 2013): In this work a novel multiplier circuit is proposed using which

a MAC unit is designed for 64-bit input. The overall MAC unit design operates at a

frequency of 217 MHz. The overall power dissipation found to be as 177.732 mW [7].

(Abdelgawad, 2013): In this research work an ASIC implementation of a 32-bit MAC

unit is proposed, which reduces the requirement of 5.5% of the total area, 9% of the

power, and 13% of the delay compared to the conventional MAC unit. The simulation

is done 0.18um CMOS technology using HDL [65].

(Francis, et al., 2013): In this work a modified Braun Multiplier is used with bypassing

technique to design the overall MAC. Designs are implemented in 0.13um CMOS

technology. TG, DPL etcetera logics are used to design the full adders in the circuit [8].

(Amaricai, et al., 2014): A “Floating-point multiply-add fused architecture” for IEEE

16-bit or IEEE 32-bit (half precision or single precision respectively) is discussed. The

architecture is designed by amalgamation of the multiplication and addition/subtraction

blocks required for mantissa data calculation in a single operation. This has provided

an efficient usage of DSP blocks in Field Programmable Gate Arrays (FPGAs). The

architecture is also implemented on FPGA [66].

(Warrier, et al., 2014): A Baugh-Wooley algorithm based pipelined MAC architecture

using a 16x16 bit multiplier is proposed. The Clock gating technique is also used at the

idle pipeline stages to reduce the power consumption. The author claims that, the

proposed architecture consumes 30-80% lesser power than the conventional MAC

architectures. At the end various MAC units available in the literature are compared.

The implementation is done in 65nm CMOS using HDL in TSMC library [9].

(Burg, et al., 2014): A novel architecture for adaptive systems is presented in this

paper. The architecture mainly stresses upon the systems whose exact specifications are

not known. Here a Walsh-based architecture model is proposed which is better than

29

MAC based architecture. But the Walsh-based architecture needed a vector table from

which it refers its values. So basically, it is kind of look up table technique [67].

(Ahish, et al., 2015): A “partial product reduction block” is proposed in the work,

which is used for optimizing the area, power and delay of the multiplier used. The

partial product reduction block uses different multi-bit adder row wise instead of the

conventional adder which performs column wise. The proposed technique has reduced

the delay power and area by 46%, 39% and 17% [68].

(Akbarzadeh, et al., 2015): A modified pipelined modulo 2n + 1 modified booth

multiplier is proposed. The design is further extended for implementing a modulo 2n +

1 MAC architecture. The CMOS transistor level implementation of multiplier as well

as MAC has shown significant improvement in power and PDP [69].

(Chen, et al., 2015): A compact architecture for performing MAC operation for “PWM

signals”. The presented architecture consists of a “dual scale counter and a 2D MAC

operator”. The proposed “2D MAC” operator is compared with the MAC operator from

the FPGA IP which has an 8-bit resolution. The result reveals that 2D-MAC reduces

the chip area with comparable power than FPGA IP [70].

(Cini, et al., 2015): In this research, a MAC unit is proposed which is suitable for “6-

input LUT” based FPGAs. No pipelining structure is deployed as the design uses “(6,3)

counters” in partial product reduction. The proposed MAC takes 16x16 bit input and

produces 40-bit output which has sign extended bit. Significant improvement is

reported when the proposed MAC is equated with the traditional MAC algorithms and

redundant carry save architectures [71].

(Gerlach, et al., 2015): The proposed work explains a real and “complex valued MAC”

which uses same amount of multiplier as it is been used for implementing “complex

valued SIMD MAC” and butterfly operation. The proposed architecture is evaluated in

terms of power, area and performance [72].

(Kumar, et al., 2015): A “novel FPMAC” is proposed in this work which works with

optimal computation to make it faster. The propose design promises for lesser power

30

consumption. Proposed architecture is implemented in Xilinx ISE (14.5) and

synthesized using CMOS 90 nm technology library using Synopsys Design Compiler

[73].

(Priya, et al., 2015): This research work evaluates 3 MAC architectures consisting of

array, booth and Wallace tree multiplier which leads to an incorporation in PID

controller. The simulation is performed in Model SIM and it is synthesized in Xilinx

ISE. The result suggests that the MAC unit with Wallace tree consumes lesser power

and area [74].

(Narasimhan, et al., 2015): An “optimized co-processor unit”, targeting specifically

for Digital Signal processing application is presented in this work. The co-processor

hardware consists of MAC unit, control unit and a 32-bit output accumulator as the

leading operative blocks. Vedic as well as booth multiplier is used for designing the

proposed MAC architecture. The MAC unit takes two 16-bit inputs or one 32-bit input

and produces one 32-bit output [75].

(DeBrunner, et al., 2015): For FIR filter implementation a fused MAC unit is

developed which truncated multiplication techniques which uses the accumulation

technique. As because of truncated multiplier, the power and area are reduced. Different

types of truncated multiplication approaches have been presented in this study [76].

(Basiri, et al., 2015): In this paper, a floating-point MAC circuit is used to design the

2nd order IIR filters and thereafter the 2nd order IIR filter is used rigorously to design a

configurable 6th order IIR filter. The 6th order IIR filter is used to perform “one 6th order

or three 2nd order or one 4th order and one 2nd order IIR filter operations in parallel”.

The performance of the proposed 6th order IIR filter is evaluated in CMOS 45 nm

technology and the result shows that the proposed 6th order IIR filter requires 58.4%

less power than conventional MAC based architecture [77].

(Nandal, et al., 2015): A series of LUT is used in the place of MAC in the proposed

work. A technique called “Distributed Arithmetic (DA)” is used. The FPGA based

implementation of FIR filter is also discussed in this work. A parallel FIR digital filter

is used for high-speed and low-power operations. The DA technique calculates the

31

partial products without using a conventional multiplier for fixed-point number. The

analysis on the proposed architecture shows a high-speed and low-power design. The

proposed filter is implemented in VHDL. The proposed method has reduced the number

of LUT used by 60%, occupied slices by 40% and number of gates by 50% [78].

(Anitha, et al., 2015): In this work Vedic multiplier and reversible logics are

implemented. Using these finally 32-bit MAC architecture has been designed. The

implementations are done using Verilog HDL in Cadence RTL. Not implemented for

signed fixed/floating point number [79].

(Karthikeyan, et al., 2016): A modified full adder is used in the research work which

reduces the power and area requirements. For estimating the power, CNTFET

technology is used in HSPICE simulation. According to the author, “a model is

developed for nanoscale devices and circuits, including both CMOS technology and

CNTFET technology with the aim of guiding nanoscale device and circuit design”. The

new design offers large device speed than conventional designs [80].

(Babu, et al., 2016): A low power high through put architecture is proposed in this

work. Fixed point implementation has been done for signed number. The design has

been implemented in Cadence Virtuoso 90 nm technology [5].

(Dhindsa, et al., 2016): The core design units of Multiply-Accumulate architecture are

optimized for energy-efficient architecture design using clock gating scheme is

presented in this work. Moreover, the MAC unit is designed with synchronization to

work in single clock cycle due to which the overall speed of operation has enhanced.

The implemented design in Cadence Virtuoso as well as NCSim using 90 nm CMOS

technology. Finally, the design in analog platform and digital platform is compared and

the result shows that the digital approach of the design offers six times more power

consumption than in analog design environment [81].

(Garland, et al., 2017): A MAC unit that uses weight-sharing CNNs is explained in

this research work. A binning approach is used where a counter counts the frequency

of each weight and place it in a bin. The accumulated value is multiplied thereafter. The

hardware requirement for multiplier is reduced as the adders and selection logic

32

replaces the multiplier. The detailed comparison shows that the presented architecture

requires lesser area and lesser power comparison [82].

(Jeon, et al., 2017): A novel architecture called “HMC-MAC” is presented in this

paper. As the name suggests, a MAC architecture is implemented in the HMC. As stated

by the author, “a conventional HMC works independently to maximize the parallelism,

and HMC-MAC is based on the conventional HMC without modifying the architecture

much. Therefore, a large number of MAC operations can be processed in parallel” [83].

(Ananthalakshmi, et al., 2017): A novel “reversible floating point fused arithmetic

unit architecture” is proposed in this work. The proposed architecture is also satisfying

“IEEE 754 standard”. Adiabatic logic technique along with reversible logic styles offers

a power efficient proposed design. In the proposed design the hardware is reduced and

latency is improved by employing fused elements and decomposing the operands in the

realization respectively. To test the operation of the proposed design FFT and FIR filter

are realized which the key requirements in Digital Signal Processors. The result shows

that the proposed architecture utilizes a smaller number of gates, requires less quantum

cost and produces lesser number of garbage output at low latency [84].

(Kamp, et al.,, 2018): Design optimization for Complex Multiply Accumulate Cell

(CMAC) are presented in this research work. A novel signaling technique is used to

converts a complex multiplication into single integer multiplication. The FPGA based

implementation is done on Xilinx ultarscale+ which promises to save power and

therefore the cost [85].

(Lv, et al., 2018): An architecture required in modern FPGA is presented in this

research study where a customized 32-bit floating point data is used. The 32-bit data is

used for multiplication and accumulation. The customized 32-bit floating point data

representation is compared with 32-bit IEEE standard [86].

(Zhang, et al., 2018): A fixed/floating point MAC unit is proposed in this research

work which can be applied for the applications such as deep learning algorithm. The

said architecture supports 16-bit floating point multiplication (half precision) and 32-

33

bit accumulation (single precision). The presented architecture requires 4.6% more area

than a half-precision MAC unit. The implementation is done using VHDL [87].

(Chen, et al., 2018): This paper implemented RPR-MAC. The paper also significantly

proves that signed-integer-multiplication in 2´s complement format can make RPR

much more efficient. Signed integer multiplication is further extended for MAC

operation by “proposing RPR implementations” that improve the “error correction

capabilities with a limited impact on circuit overhead”. The tested result of the proposed

design shows that the Mean Square Error can be significantly reduced by using this

technique [88].

(Ryu, et al., 2018): A “pipelining method” that eradicates some of the flip-flops for

designing a MAC is proposed. In machine learning accelerator operations, MAC

processing plays a vital role. A pipeline structure always helps in reducing the “length

of the critical paths”. At the same time, to increase the pipelining, the flip-flop count

must be increased which, consequently increase the area and power consumption. The

result shows that the proposed MAC architecture requires 20% lesser power and area

each than the conventional pipelined MAC [89].

(Patil, et al., 2018): In this research paper, a “radix-4 booth multiplier-based MAC

unit” is proposed which improvise the delay of the MAC unit. (6,3) counter is used for

reduction of the partial products. The proposed MAC unit takes 16X16 bit input

produces 40-bit output. The proposed MAC is simulated in Xilinx ISE and implemented

in Spartan-6 FPGA board [90].

(Patil, et al., 2019): In this review paper, a comparison study is performed on MAC

unit based on different kinds of multipliers and adders. The functionality of the

multiplier is to produce the result based on the multiplication of the inputs whereas, the

adder unit sum up the current product with the previous result. The study gives a

broader picture regarding speed of operation and power consumption of different MAC

architecture available in the literature [91].

(Camus, et al., 2019): A comparison is performed for run-time configurable MAC

units. The circuits are synthesized in a 28nm CMOS technology. The comparison is

34

performed in terms of power and throughput in order to identify the optimized

architecture for neural network [92].

(Zhang, et al., 2019): A MAC unit using the “posit number format” in deep learning

application is presented in this paper. Additionally, a “posit MAC unit generator” is

written in C language. A detailed analysis is performed for area, delay and power in ST

Microelectronics 28 nm technology with varied bit width [93].

(Senthilkumar, et al., 2019): A discrete wavelet transforms which can be used in the

field of biomedical signal processing is implemented using Vedic mathematics. Instead

of using CMOS, FinFET and CNTFET technologies are used in this architecture. The

basic architecture of DWT architecture requires adder block, multiplier block, MAC

block and additionally, in-order store the co-efficient, RAM or ROM blocks. The core

of the SOC is designed using Vedic mathematics sutras. The usage of CNTFET has

reduces the power consumption by 95% [94].

(Tung, et al., 2020): In this paper, we propose a low-power high-speed pipeline

multiply-accumulate (MAC) architecture. In the proposed MAC architecture, the

addition and accumulation of higher significance bits are not performed until the PPR

process of the next multiplication. To correctly deal with the overflow in the PPR

process, a small-size adder is designed to accumulate the total number of carries [95].

(Nahmias, et al., 2020): In this research paper several proposed tunable photonic MAC

systems are discussed, and provide a concrete comparison between deep learning and

photonic hardware using several empirically validated device and system models. It

also shows significant potential improvements over digital electronics in energy, speed,

and compute density [96].

(Zhang, et al., 2020): In this paper, a new flexible multiple-precision multiply-

accumulate (MAC) unit is proposed for deep neural network training and inference.

The proposed MAC unit supports both fixed-point operations and floating-point

operations. For floating-point format, the proposed unit supports one 16-bit MAC

operation or sum of two 8-bit multiplications plus a 16-bit addend. Verilog HDL is used

for designing the overall MAC architecture [97].

35

2.3 MOTIVATION & TECHNICAL GAP

MAC unit performs the essential mathematical operations in the digital signal

processing systems. Since the MAC unit speed decides the DSP's speed, the primary

consideration of the research done in recent times has focused mainly to enhance the

speed of the MAC unit. Also, as the DSPs are inevitable in portable electronics, a

constraint on power consumption forces to optimize energy efficiency. Therefore,

power dissipation is another primary concern in the MAC operation. Hence, from the

detailed literature review it can be summarized that:

1. As discussed earlier in this chapter, the multiplier and accumulator are the critical

components of MAC architecture. As the efficiency of the MAC is dependent upon

the efficiency of the multiplier (mainly), an efficient multiplier (in terms of typical

design constraints) design can further improvise the efficiency of a MAC unit.

Moreover, the multiplier proposed in the literature are mostly based on the Wallace

tree algorithm. It is claimed that the multipliers based on the Wallace tree reduce

the steps involved to add the partial products. Still, it uses half adder or full adder

for the addition of partial products which increases the complexity of the circuit [4,

12, 15, 18, 23, 24, 26-28, 30]. On the modified Wallace tree multiplier proposed in

the literature uses compressor-based circuits (up to 7:3 only) to reduce the steps

involved to add the partial products. Therefore, if a universal compressor (N:M of

any size) is applied to the multiplier for the addition of partial products, it can further

improve the efficiency.

2. Any electronic circuit can be designed by two different approaches, namely the top-

down approach and the bottom-up approach. In the top-down approach, the designs

are implemented by focusing mainly on the output efficiency of the overall design.

i.e. importance is given on the implementation of the process or algorithm, not on

the optimization of primary cells. On the other hand, in the case of the bottom-up

approach, the whole digital architecture is designed starting from its primary cell,

i.e. importance is given on optimization of the primary cell as well as on the

practical implementation of the algorithm. In the literature, full custom circuit

design for the MAC unit has never been proposed & most of the available

36

architectures in the literature have used HDL based approach [7, 56, 60, 69, 75, 87].

Moreover, almost 99% (80 out of 81 papers) of the architectures available in the

literature have neither implemented for signed operation nor floating-point designs.

Therefore, the practical applicability of such design needs to be further tested.

Hence a full custom IC approach can provide a much more efficient MAC in terms

of power as well as delay.

3. Synchronization, clock gating techniques and pipelining can further enhance the

speed of operation and minimize the power consumption [48, 81]. Simultaneously

all these techniques are neither adopted nor described for any of the MAC explained

in the literature. Though some architectures in the literature have used the clocking

signals for the accumulation of data only (in the register or accumulator), most of

the architectures haven't used any clocking signal. Any circuit in asynchronous

mode can't be implemented in a real-time application.

2.4 OBJECTIVE OF THE RESEARCH

Delay and power optimization are very much essential for any kind of digital circuits.

As the MAC unit is the heart of a DSP, it is always demanding to use an efficient MAC

architecture. In this research work, the focus is given on the optimization of the basic

building blocks. Based on the technical gap identified, the objectives of this proposed

research work are defined as:

I. To design & implement a novel multiplier architecture and analyzing its

performance using Cadence Virtuoso 90 nm Technology.

II. To design a novel 8 × 8 bit signed/unsigned MAC architecture for fixed-point

numbers using Cadence Virtuoso 90 nm Technology.

III. To design & analyze a novel 8 × 8 bit signed/unsigned synchronous MAC

architecture using clock gating scheme for fixed-point numbers using Cadence

Virtuoso 90 nm Technology.

IV. To design a novel 8 × 8 bit signed/unsigned MAC architecture for floating-

point numbers using Cadence Virtuoso 90 nm Technology.

V. To design & analyze a novel 8 × 8 bit signed/unsigned synchronous MAC

architecture using clock gating scheme for floating-point numbers using

Cadence Virtuoso 90 nm Technology.

37

CHAPTER 3: UCM-A NOVEL

APPROACH FOR DELAY

OPTIMIZATION

3.1 INTRODUCTION

Multiplication has a vast field of applications such as digital signal processing,

multimedia systems, arithmetic operation, digital communication, etcetera. The process

of the multiplication can be segregated into two categories, namely “partial product

generator” and “final sum/carry generator using adder circuits”. Therefore, the

multiplication process requires more hardware resources and processing time in

comparison to the primary adder/subtractor circuit. In a simplified view, a multiplier

requires AND gates (for partial product generation) and adder circuits (half adders and

full adders) for the addition of partial products to yield the final result. Figure 3.1 shows

the simplified operation of a multiplier. As per the literature, various multiplier

algorithms/architectures are proposed in the past, such as booth encoder, Wallace tree

adder, array multiplier, modified booth multiplier, etcetera [4]. All these

algorithms/architectures use different approaches to make the multiplier operation more

efficient. For example, booth multiplier or modified booth multipliers are algorithmic

approaches where the main focus is on reducing the total number of partial products.

On the other hand, as explained in [4], the efficient addition of the partial products is

the key advantage in Wallace tree multiplier. Hence a combination of both can provide

a better result.

There are various multiplier circuits explained in the literature, which mainly focuses

on the issues of power consumption, delay of the multiplier circuit, and lesser area [11-

13, 15-18, 20-24, 26-28, 30, 53]. But as per studies, it is found that area and the speed

38

of operation are the two most conflicting design constraints. Hence increasing the speed

of operation enhances the area requirement. On the other hand, as day by day, the size

of the transistor is decreasing, the area cannot become a significant issue in today's

digital systems. The power consumption and delay of a particular circuit depends upon

the supply voltage (VDD). A slight increment in the supply voltage increases the overall

power consumption, but at the same time, it decreases the delay of the circuit. Hence

there is always a trade-off between power consumption and delay of a circuit.

Therefore, the supply voltage plays a vital role in designing a low power circuit. I.e.,

for a low power design, an optimized supply voltage is needed to be chosen so that the

output logic is valid, and the power consumption is bare minimum with a comparable

delay value. As per the literature survey, it is found that most of the multiplier design

uses Wallace tree multiplier as the underlying algorithm and in the majority of the cases,

the basic Wallace tree multiplier algorithm has been modified to get better results [4,

12, 15, 18, 26, 30]. The reason for the same is that the Wallace tree algorithm is the

simplest way of designing multiplier with optimized delay/power consumption.

Figure 3.1: Basic multiplication operation

In this chapter, a high-speed multiplier architecture with a minimal value of supply

voltage is proposed. In the implemented architecture, the supply voltage is minimized

to reduce the power consumption of the circuit without compromising the speed of the

multiplier circuit. The study mainly focusses on the optimization of the partial product

addition. The reason behind the same is that, for partial product generation, the booth

algorithm produces a better result than any other multiplication approach. Secondly, as

39

discussed above, the majority of the multipliers use Wallace tree adder for partial

product addition. Hence, an optimized and efficient partial product adder, which can

replace the Wallace tree algorithm, can yield a better multiplier.

3.2 WALLACE TREE MULTIPLIER ARCHITECTURE

The conventional Wallace tree multiplier algorithm is divided into three stages:

Stage 1: partial-product generation.

Stage 2: addition of partial products which creates `sum' and `carry' terms separately.

Stage 3: a final adder, which is generally a fast adder to add the ‘sum’ terms and ‘carry’

terms together to yield the final result [27].

In stage 1, the partial products are the AND product of each multiplier bit with each

multiplicand bit. It can be implemented either by using conventional two-input AND

gate to find the partial product of each multiplicand and multiplier or by using advanced

booth multiplier to reduce the total number of partial products. With the help of 2nd

order booth algorithm, the number of the partial product is reduced to half (approx.) of

the bit width of the multiplier [15].

In stage 2, the partial products are added using half adder/full adder. The partial

products with `N' rows are grouped in sets of three rows each. Any rows that are not

part of the group of three rows are transferred to the next level without any modification.

In the groups of three rows, full adders are applied to the columns containing three

partial products, and half adders are applied to the columns containing two partial

products (in the groups of two rows) [13]. The columns with only one partial product

are transferred to the next level without any modification. For the next level calculation,

use the sum and carry output of the full adder/half adder of the previous level along

with the remaining partial products. The same procedure is followed until and unless

there are only two rows left.

In stage 3, the remaining two rows are added either by using an n-bit RCA or by using

a fast adder such as carry look-ahead adder, carry select adder, etcetera. Figure 3.2

elaborates the operation of the Wallace tree multiplier algorithm in detail, where 'a0'-

'a8' are representing the multiplicands; 'b0'-'b8' are representing the multipliers; 'q0'-

40

'q80' are serving the partial products; 'Sxx' is representing the sum; 'Cxx' is representing

the carry outputs of half adder/full adder and 'CRx' is serving the ripple carries at the

final stage. Moreover, as shown in figure 3.2, the rectangles with three variables

represent full adder, and the rectangles with two variables represent half adder.

Figure 3.2: Wallace tree multiplier for 9 × 9 bit multiplication

3.3 DESIGN PROCESS OF UCM ARCHITECTURE

A universal N:M bit compressor-based multiplier is proposed in this research work.

Where ‘N’ and ‘M’ are the number of inputs and outputs respectively. The process flow

41

of the proposed UCM design is shown in figure 3.3. As shown in figure 3.3, the novel

architecture is designed in Cadence Virtuoso 90 nm CMOS technology as well as in

Verilog HDL. The power and delay analysis are carried out from virtuoso-based design,

whereas the Verilog HDL program is used for FPGA prototyping.

Figure 3.3: UCM architecture design process flow

3.3.1 UCM architecture

Although the Wallace tree multiplier is much faster than the array multiplier [30], it

requires a large number of adders. Secondly, the Wallace tree multiplier is highly

irregular and complicated. So, to overcome the irregular structure, several modified

Wallace tree algorithms are proposed in the literature [4, 12, 15, 18, 23, 24, 26-28, 30].

All these multiplier algorithms are based upon Wallace tree algorithms. Hence

replacing the Wallace tree algorithm may further improve the result of the multiplier.

Another critical point here is, instead of using traditional Wallace tree adder,

compressor circuits such as 3:2 compressors or 4:2 compressors, etcetera can be used

for partial product addition. But as there is a possibility of using the same compressor

again and again for doing addition (same as Wallace tree addition), the same wouldn't

be much useful. The UCM architecture is designed as shown in figure 3.4, where the

rectangles with three variables represent full adder, the rectangles with two variables

represent half adder, and the rectangles with more than three variables represents a

compressor circuit. The architecture of UCM is composed of three stages. The stage 1

42

and stage 3 of the novel UCM architecture remain the same as that of the Wallace tree

algorithm, since whether it is partial product generation or the addition of intermediate

‘sum’ or ‘carry’ terms using a simple adder these can be selected according to the

designer's requirement. Therefore, it is more critical to substitute stage 2, i.e., the

addition of partial product, which separately produces ‘sum’ and ‘carry’ terms.

Figure 3.4: UCM architecture for 9 × 9 bit multiplication

3.3.2 Addition of partial products

While adding partial products, the partial products are arranged in such a way that the

summation of multiplicand and multiplier's bit position is identical. The summation of

the location of the bit can be called a 'weight' of a specific partial product. For example,

in figure 3.4, 'q35', 'q43', 'q51', 'q59', 'q67' and 'q75' are aligned in a single column

because of the fact that the weight for all of the partial products mentioned is eleven,

43

i.e. 'q35'='a8'.'b3', 'q43'='a7'.'b4', 'q51'='a6'.'b5' etcetera. Thus, the summation of the bit

position is either 8 + 3 or 7 + 4 or 6 + 5, which is equal to 11 in all situations. Hence,

its alignment is critical for the addition of partial products. Once the partial products

are properly aligned, the next move is to add all of the partial products that fall into that

specific group. At first, the total number of stages and levels need to be determined for

adding a specific column. Each stage consists of a pair of AND-XOR gates, and the

total number of stages is counted from top to bottom in one level. The total number of

first level stages is 'i-1', where 'i' is the total number of partial products to be added in

a specific column.

On the other side, the horizontal AND-XOR pair count is the total number of levels

needed for the design. From a different angle, it can be found that the total number of

levels required in a design is the total number of AND-XOR pairs provided in the

bottom-most stages, i.e., the number of AND-XOR pairs through right to left. In each

level, the total number of stages required is decremented by one from its preceding

level's total number of stages. The total number of levels 'n' needed in a specific column

for 'i' number of partial products is given by equation 3.1 and 3.2.

 2�-1 ≥ - (3.1)
⇒ 2� ≥ i+1

⇒ /(log102) ≥ log10(i+1)

∴ / ≥
log10(i+1)

log102

 or n ≥ log'(- + 1) (3.2)

where ̀ i' and ̀ n' are natural numbers starting from 1, 2, 3,, ∞. If the 'n' value resulted

in the fractional part, then its next higher natural number is to be considered. For

example, for adding three partial products in a column, the total number of levels is n≥

log
'

(3 + 1), so n=2. Similarly, suppose i=8, i.e., n≥ log
'

(8 + 1), and it is evaluated

as n=3.16. As 'n' should be a natural number, its next higher natural number is

considered and therefore n=4. Figure 3.5 shows the basic block diagram for K stages

and L levels. As shown in the figure, 'A0’, ‘A 1’, ‘A 2’ up to ‘AK’ are the partial products;

the term ‘Y0’ is the sum and ‘Y1’, ‘Y 2’, ‘Y 3’,....., ‘YL' are the carries. The algorithm

shown in figure 3.5 is, therefore, in simple words, an N-bit compressor circuit that

generates the sum of a particular column and single or multiple carries.

44

Figure 3.5: AND-XOR gate arrangement with K stages and L levels

3.3.3 Special cases

• In the last level, only the XOR gate is used instead of the AND-XOR pair

• When i=2, only one level is used to get the sum and carry. In this scenario,

the carry is the data output from the AND gate.

• For i=1, the input itself is the sum (output), and it does not generate a carry.

45

It is worth noting that the output through level 1 is the sum of the partial products

present in a particular column, and the outputs of the rest of the levels are the

corresponding carry bits, i.e., level 2 to level 'L'. Upon obtaining the sum as well as

carry bits of all columns, the next move is to add the sum bits with the previous column's

carry bits. For this, any of the practical algorithms, such as the DADA algorithm,

Wallace tree algorithm, or even ripple carry adder, can be used as the number of rows

has significantly decreased.

3.4 CONCLUSIVE REMARKS

The novel UCM architecture is a universal method for compressor design, which is

dominantly used in multiplier architecture. The compressor architecture is capable of

N:M bit compression; therefore, it can be directly applied to a multiplier with N × N

bits. Moreover, the UCM architecture has reduced the complexity of the Wallace tree

multiplier because of the novel compressor algorithm. The application of the UCM on

MAC architectures is shown in chapters 4 and 5. The power-delay and PVT analysis of

UCM architecture is shown in chapter 6.

46

CHAPTER 4: UNSIGNED/SIGNED

FIXED-POINT MAC ARCHITECTURE

(UMAC, USMAC & SMAC)

4.1 INTRODUCTION

The DSP devices are used in many applications, such as image processing, speech

encoding, audio mixing, etcetera. The MAC unit plays a critical role in these

applications since the input signals must be multiplied and then added with the previous

result. The primary MAC unit includes a multiplier, summer (or adder), and register.

MAC's arithmetic operations can be performed on two different number systems: a)

fixed point and b) floating-point. There are signed and unsigned numbers in the fixed-

point representation, which are to be multiplied and then added, but at the same time,

the fixed-point number system is not sufficiently efficient for performing arithmetic

operations on reasonably large numbers. Therefore, there is a requirement for the

floating-point number system. The floating-point number system is the combination of

the mantissa term and the exponent terms. So, in general, the real numbers in a floating-

point number system is represented as equation 4.1.

 N=M×BE (4.1)

where ‘M’ is the mantissa, ‘B’ is the base, and ‘E’ the is exponent. Therefore, all such

design aspects of fixed, as well as floating-point numbers, must be considered when

constructing a MAC unit.

On the other hand, the function of the MAC unit is termed, as shown in equation 4.2.

 > = ∑ ?�@�
�AB
�CD (4.2)

47

The equation 4.2 represents that a MAC unit performs multiplication of two numbers

and add the result with the previously stored values. The primary building block for the

MAC unit, as discussed earlier, is multiplier and adder. For the MAC block to be

efficient, the MAC unit's multiplier and adder blocks must be efficient in terms of

power, speed, and area.

Figure 4.1: Basic MAC Unit

4.2 BASIC BUILDING BLOCKS OF MAC

The basic building block of the MAC unit is represented in figure 4.1 [14]. The

multiplier block collects and multiplies two n-bit inputs, and produces the 2N-bit

output, which is further processed to the register/accumulator unit. The register

temporarily stores the data and sends the data to the adder as an input. The adder sums

up the register unit output together with the accumulator register accumulated value,

which is the result of the previous cycle. Thus, the MAC unit's overall output is taken

from the accumulator register output. Hence, the MAC unit architecture consists of an

N-bit multiplier, 2N bit register, (2N+1) bit adder, and two (2N+1)-bit accumulator

registers (one for storing the output value and the other for reading the previous output).

48

4.2.1 Multiplier

As explained earlier, the processing elements of MAC mainly involve the

multiplication of two numbers; therefore, in such types of processing systems, the

multiplier is required. In the literature, various fast and effective multipliers are

described. The Array Multiplier is a basic multiplier that follows the product generation

and addition principle. But this architecture becomes bulkier with higher PDP when the

total number of summation levels increases. The solution to this problem is to use the

“Wallace tree multiplier based on the structure of Wallace tree”. In 1964, C.S.Wallace

proposed the Wallace tree multiplier, which “generates the product of two numbers

using purely combinational logic, i.e., in one gating step”. This work has also outlined

a rapid square-root process [11], as explained in figure 4.2. However, in the Wallace

tree multiplier, every partial product is added in the top to bottom direction. Therefore,

the total number of adders increases in a conventional Wallace tree multiplier. A

rectangular styled Wallace tree multiplier is proposed in which the “partial products are

divided into two groups and added in the opposite direction to overcome this problem.

The partial products in the first group are added downward, and the partial products in

the second group are added upward” [15]. On the other hand, in the literature, a phase

mode parallel multiplier is also proposed [16]. The presented multiplier has a “Wallace-

tree structure comprising trees of carry-save-adders for the addition of partial products”.

This structure has avoided the use of the irregular structure of the conventional Wallace

tree; therefore, it is much appropriate for pipeline operation.

A couple of architectures in the literature also focused on adder cell optimization. As

adder is an essential unit in multiplier or divider, the main focus of the optimization is

on the adder part. The literature proposes a carry-select-adder optimization technique in

which a “carry-select-adder partitioning algorithm” is used for the Wallace tree

multiplier using booth encoded techniques, which is found to be much efficient [4]. By

considering different data arrival times, a “branch-and-bound algorithm” is proposed,

and a generalized technique to separate an n-bit carry-select-adder in several small

blocks of adder unit is introduced so that the overall delay of the design can be

minimized. In a separate approach by [22], an improved version of modulo (2n + 1)

49

multipliers is proposed in 2013. The efficiency is achieved by “manipulating the Booth

tables and by applying a simple correction term” in the existing modulo (2n + 1)

multiplier algorithm. Moreover, the author states that "the proposed multiplier is almost

as efficient as those for ordinary integer multiplication”. On the other hand, in 2012, a

comparative analysis is done by [13] for designing a multiplier using “complementary

MOS (CMOS) logic style, Complimentary Pass Transistor (CPL) logic style, and

Double Pass Transistor (DPL) logic” style. A single-precision reversible floating-point

multiplier is proposed by [21] in the year 2010. A 24-bit multiplier is proposed in this

work by decomposing the whole 24 bits in three portions of 8 bit each.

Figure 4.2: Wallace tree multiplier (addition of partial products)

4.2.2 Adder

An adder is also known as summer, is a logic circuit that adds two numbers. An adder

or summer circuit is used not only for addition but also for multiplication, updating the

address, increment/decrement operation, table indices, etcetera. The adder operation is

performed in binary number systems, but the adder can also be applied on BCD, excess

50

-3, etcetera. In the literature, various full adder architectures are proposed. In 2013, a

“novel low power hybrid full adder using MOSIS 90 nm technology” is proposed,

which consumes meager power [25]. The design being proposed is compared to its

conventional full adder, which consists of 28 transistors. A hybrid 1-bit full adder is

introduced in a different approach, which uses both CMOS and TG logic styles [3]. The

entire design is implemented in both 90 nm technology and 180 nm technology. The

proposed design offers very little power at 1.8V supply voltage and moderately low

delay. Figure 4.3 shows the adder, as described in [3].

Figure 4.3: Full adder design which uses both CMOS and TG logic styles

4.3 EXISTING ARCHITECTURES OF MAC UNIT

In 2007, an 8-bit, 16-bit, and 32-bit MAC is proposed and implemented on the Xilinx

ISE and FPGA boards [1]. The design shows both area and power improvements. 4:2

Compressor circuits are used for faster design of the multiplier circuit. Using Cadence

Virtuoso 180 nm Technology in [55], an 8-bit MAC Unit is proposed. For the said MAC

architecture, several adder/multiplier circuits are also compared and implemented. In

2012, a multiplier in which the terms are rearranged to reduce the "total number of

partial products by 25%" is proposed and shown in figure 4.4. [6]. The proposed

51

multiplier is further used to offer a MAC architecture. Also, cadence NC Sim and RTL

compiler are used to do the analyses.

Figure 4.4: Partial product addition matrix

Figure 4.5: 32-bit MAC architecture and its ASIC implementation

In a different approach in [7], it suggest a multiplier circuit using a modified Wallace

tree multiplier and carry-save-adder. Further, a MAC device is also designed for 64-bit

input, operating at 217 MHz and consuming a total dissipation of 177,732 mW of

power. Abdelgawad has proposed an ASIC implementation of the 32-bit MAC in [65].

The proposed architecture has reduced hardware complexity, thereby reducing power

consumption and decreasing delay, which decreases the area by 5.5%, power by 9%,

and delay by 13% compared to conventional MAC architecture. Figure 4.5 displays the

block diagram of the proposed design by Abdelgawad. The simulation is performed in

180nm technology using HDL.

52

In 2013, a new MAC architecture based on a modified Braun multiplier with a bypass

technique is proposed [8]. Designs are implemented in CMOS technology of 130 nm.

The full adders in the circuit are constructed using TG logic, DPL logic style, etcetera.

In [9], it is suggested that a pipeline MAC architecture consisting of a 16-bit multiplier.

The multiplier that is implemented is based on the Baugh-Wooley algorithm. The

proposed architecture is found to be more power-efficient, which is 30 percent to 80

percent lower than traditional MAC architectures. Implementation is performed in the

TSMC library using HDL in 65 nm CMOS technology. In 2015, the authors have

implemented a Vedic multiplier and various logic-based reversible designs in [79].

Using these, finally, a 32-bit MAC architecture has been designed, as shown in figure

4.6. The implementations are rendered in Cadence RTL using Verilog HDL.

Figure 4.6: 32-bit MAC architecture

As adiabatic architecture offers little energy dissipation, a MAC unit using adiabatic

logic is proposed by [44]. Using a smaller number of complex logic gates, the non-

adiabatic dissipation is optimized, and the comparative study of the proposed MAC

with the existing designs is also discussed. On the other hand, in 2009, the authors have

implemented a novel design in ModelSim in TSMC 90 nm CMOS technology in [10].

Here “4-pipelined high-performance split Multiply-Accumulator (MAC)” architecture

53

is proposed. To improve the architecture's operating speed, a partial product

compression circuit based on "interleaved adders" and a hybrid "Partial-Product-

Reduction-Tree (PPRT)" is proposed. The benefit of this MAC is that it can perform 1-

way 32-bit or 4-way 16-bit signed/unsigned "multiply or MAC operation" and "2-way

parallel multiply-add operations". Figure 4.7 shows the architecture discussed in [10].

Figure 4.7: Pipelined MAC architecture

In 2009, the researchers have proposed an 8-bit MAC unit using 180 nm technology

[14]. Various adder/multiplier circuits are compared and implemented for the MAC. As

the circuit designed by [14] is without a clock signal, it faces a synchronization issue.

In 2014, a multiply-added floating-point unit for low-precision formats is proposed

[66]. To achieve this architecture, which is required in the processing of mantissa data

in a single operation, the multiplication and addition/subtraction operations are fused.

54

The architecture is implemented on the FPGA board. In 2005, the paper by [48] have

discussed regarding RSFQ DS Processor, specifically used to eliminate interference

from any signal. The author suggested the incorporation of multiplication-addition in

the MAC for floating-point operation. The suggested MAC module consists of three

units, i.e., a parallel multiplier, combiner, and accumulator, as seen in figure 4.8. The

combiner performs the “summation of sums and carries from M-MSB bits” of the

multiplier. In VHDL, the simulation is verified.

Figure 4.8: The RSFQ DS processor architecture

A MAC unit specific for “programmable bandpass filtering” is described in [49]. This

MAC device is clock-able at 20 GHz frequency and can perform “2.5 billion MAC

operations/second for 7-bit data”. In VHDL, the simulation is tested. Authors have

suggested a "block matching motion estimation" method for the minimization of the

accumulator unit in MAC [50]. This paper also explores the implementation of the

MAC on FPGA and its mathematical models. In [51], an architecture of "64-bit fixed-

55

point vector MAC" is proposed, which supports multiple precisions. The MAC vector

can perform “one 64 × 64”, “two 32 × 32”, “four 16 × 16”, or “eight 8 × 8" bit signed

or unsigned multiplication and accumulation using the same hardware as the scalar 64-

bit MAC architecture. The proposed design is implemented using Verilog HDL in the

Synopsys tool, as shown in figure 4.9. A two-cycle MAC architecture with efficient

power-delay is proposed in [56]. The proposed architecture includes accumulation

guard bits and saturation circuitry as well as it supports two’s complement numbers.

Implementation is performed on VHDL and conceived in a cell library of 65 nm at

1.1V.

Figure 4.9: Fixed-point vector MAC architecture

4.4 PROPOSED MAC ARCHITECTURES

The proposed MAC architectures focus primarily on the signed/unsigned architecture

for fixed-point inputs based on the synchronized block that are enabled with proper

pipelining. The block enabling is a power saver technique that temporarily triggers a

circuit, and the circuit becomes disabled afterward. Most of the energy/power can be

56

saved because of this basic phenomenon. The second reason why synchronization is

introduced is to avoid unnecessary data loss. Because proper synchronization is not

available, the data being processed in the preceding block may get lost while

transferring the same to the next block. Third and most importantly, the processing

through pipelining is the digital system's ultimate necessity as it improves the system's

performance tremendously.

As the two core blocks are multiplier and adder, a detailed analysis is done while

selecting the appropriate circuits. The delay-cum-power efficient design is given

critical importance whilst selecting the adder. As mentioned in chapter 1, the

simultaneous minimization of delay and power consumption of any circuit is not

possible because of the trade-off between these two design constraints. Therefore the

'delay-cum-power efficient design’ here signifies the optimization of one of the design

constraints while minimizing the other or vice versa. The adder circuit proposed in [3]

is used in the proposed MAC design, as it is found to be the most suitable for delay-

cum-power efficient design. On the other hand, as stated in section 4.1, it is found that

although the array multiplier is considered to be the most straightforward algorithm for

multipliers, it generates a very high delay compared to the Wallace tree multiplier.

Whereas, the Wallace tree multiplier in rectangular style is the best option since it

divides the partial products into two groups and hence faster than the conventional

Wallace tree multiplier [15]. But the irregular structure is the most significant

disadvantage of Rectangular styled Wallace tree multiplier. Therefore, the novel UCM

architecture (proposed in the previous chapter), which has a better performance in terms

of delay in comparison to the Wallace tree multiplier, is chosen as the multiplier for the

proposed 8-bit MAC architectures.

4.4.1 Proposed Unsigned MAC architecture (UMAC)

The unsigned architecture is nothing more than conventional MAC architecture. For n-

bit inputs, as discussed earlier, it consists of an n-bit size multiplier, a (2n+1)-bit adder,

and a 2n & (2n+1)-bit register or accumulator. Figure 4.10 and figure 4.11 shows the

detailed block diagram and the output waveform of the UMAC architecture,

respectively.

57

Figure 4.10: Proposed architecture of UMAC

Figure 4.11: Output waveform of the proposed UMAC architecture

4.4.2 Proposed Unsigned Synchronized MAC architecture (USMAC)

The critical disadvantage of UMAC architecture is that the synchronization mechanism

is not available, due to which the appropriateness of this architecture is in doubt. It

58

creates precise results, but it is challenging to verify the output waveform. Besides, the

static power consumption for the UMAC architecture is very high due to the lack of the

block enabling technique. Since the UMAC architecture requires no synchronized

mechanism, only the registers are synchronized with clock pulses that make the

multiplier and adder blocks active throughout the simulation. Hence the rise in the

consumption of static power.

Figure 4.12: Block diagram of USMAC architecture

USMAC architecture is proposed to rectify the errors of UMAC architecture. The add-

on to the USMAC architecture is that the individual design blocks are connected to the

clock pulse with a PED block and a Latch block to detect the clock edges and

temporarily store the processed data, as shown in figure 1.7, respectively. Due to the

minor modification in the architecture, all the results can now be read and validated.

Moreover, USMAC's static power consumption is also meager compared to UMAC

architecture, since each block of the USMAC architecture is synchronized with the

proper clock pulse. On the other side, it also adds the pipelining framework for proper

data latching. The clock signal to the individual block of the USMAC architecture is

provided with sufficient delay to control the pipeline process, as an incorrect data

latching may result in undesirable results at the final output. A delay of 500 ps is thus

maintained between the 1st and 2nd blocks and so on. Figure 4.12 and figure 4.13,

59

respectively, display the block diagram and the output waveform of the proposed

USMAC architecture.

Figure 4.13: Output waveform of the USMAC architecture

60

4.4.3 Proposed Signed MAC architecture (SMAC)

In SMAC architecture, care is taken of the MAC process for positive, as well as the

negative number. Multiplexers are used in this architecture for choosing positive and

negative numbers. For the multiplication of negative numbers, the negative values are

expressed in 2's complement form. For proper data latching, a gap of 500 ps is

established between each block, as described in the previous sub-section. The proposed

SMAC architecture block diagram and output waveform are shown in figure 4.14 and

figure 4.15, respectively.

Figure 4.14: Block diagram of SMAC architecture

61

Figure 4.15: Output waveform of the SMAC architecture

62

4.5 CONCLUSIVE REMARKS

The novel MAC architectures for unsigned/signed fixed-point architectures are

explained in this chapter. As shown in this chapter, the UMAC architecture (designed

for unsigned MAC operation) has the limitation of producing the result accurately

because of the non-availability of synchronization. This problem is rectified by the

USMAC architecture, where the unsigned MAC is synchronized using a clock gating

technique along with pipelining. Finally, for signed MAC operation, SMAC

architecture is proposed, which is capable of performing the multiply-accumulate

operation on positive as well as negative inputs. The MAC unit with floating-point and

signed input (SFMAC architecture) is explained in chapter 5.

63

CHAPTER 5: MUX BASED SIGNED

FLOATING -POINT MAC (SFMAC)

ARCHITECTURE

5.1 INTRODUCTION

The actual MAC block is not just limited to the fixed-point number system. For

applications such as image processing, speech encoding, audio mixing, etcetera,

floating-point MAC architecture is much needed. In the literature, different approaches

are adopted for designing effective floating-point MAC architectures. In [52], one of

the notable floating-point MAC architectures is proposed, where a “pipelined single-

precision Floating-Point Multiply Accumulator (FPMAC)" consisting of the

accumulator in radix-32 and internal carry-save addition is explained. Additionally, an

improved version of “Leading-Zero Anticipator (LZA) and overflow prediction logic”

required in carry-save addition is also described. The FPMAC is shown in figure 5.1.

Figure 5.1: Pipelined single-precision FPMAC

64

A floating-point MAC architecture is proposed in the year 1996, where an LZA

technique is used for a FADD core, as shown in figure 5.2. This logic carries out the

simultaneous execution of the “pre-decoding for normalization” along with a

summation of the significand [34]. The rounding operation, in parallel with the shifting

of the normalization, is also proposed in this architecture. The CMOS logic is used for

implementing the primary circuits for the design. Its area penalty of the FADD core is

found to be as low as 30% of the traditional LZA method. The FADD core is fabricated

by 0.5 µm CMOS technology at a supply voltage of 3.3 V.

Figure 5.2: An LZA logic for floating-point addition operation

65

A “Floating-point multiply-add fused” architecture for IEEE 16-bit or IEEE 32-bit (half

precision or single precision respectively) is discussed in [66]. The architecture is

designed by the amalgamation of the multiplier and adder/subtractor required for

mantissa data calculation in a single operation, which has provided an efficient usage

of DSP blocks in FPGAs. The architecture is also implemented on FPGA. The

architecture is shown in figure 5.3.

Figure 5.3: Floating point multiply-add units for IEEE 16-bit or IEEE 32-bit

66

Figure 5.4: RSFQ DS Processor

In [48], as shown in figure 5.4, explains about RSFQ DS processor, mainly used for the

removal of interferences from any signal. The author proposed the MAC unit for

floating-point multiplication-addition. The MAC unit consists of a three-unit parallel

multiplier, combiner, and accumulator. The “combiner performs a summation of sums

and carries from M-MSB” bits of the multiplier. The simulation is verified in VHDL.

In this chapter, a multiplexer-based MAC architecture is proposed, which is capable of

performing multiply and accumulation on signed floating-point inputs. For this, a novel

input-data format is introduced, which takes 9-bit binary data with the MSB as the sign

bit and 4-bit exponential input with the MSB as the exponential sign bit. Therefore, the

size of the novel input-data format is 13-bits. Moreover, the SFMAC architecture uses

multiplexer circuits rigorously for selecting among a positive or negative number. The

next section and its sub-section explain the SFMAC architecture in detail, which mainly

consists of input format representation, EA block, ECC block, ESC block, etcetera.

67

5.2 SFMAC ARCHITECTURE

The architecture has a separate number representation. The initial considerations for the

proposed SFMAC architecture are as mentioned below:

1. The architecture uses sign-magnitude as well as 2's complement representations to

represent positive as well as negative numbers (including exponent terms). The

overall inputs and output of SFMAC are represented in sign-magnitude form,

whereas for internal calculations, the same data are converted into 2's complement

form. The final output of the proposed MAC architecture (MAC output) is 16-bits,

and the sign bit of the result is identified by the ‘C2’ bit.

2. The inputs to the SFMAC are two 8-bit binary number arranged in a format, as

shown in figure 5.5 below:

Figure 5.5: Input format representation of SFMAC

The size of each input of the SFMAC representation is 13 bits, in which two bits

are reserved for the sign bits of the number and its exponent. The sign bit can be '0'

or '1' based on positive or negative number representation, respectively. Remaining

eleven bits are used for 8-bit binary representation and 3-bit exponent representation

in binary. One significant point here to note is that the 3rd bit of the exponent in

binary representation is by default made as '0' because, to represent a 2-bit number

in 2’s complement form, it requires 3 bits. The range of 2’s complement

representation is given by equation 5.1.

68

 −(2�AB) to +(2�AB − 1) (5.1)

Where ‘n’ is the number of bits.

Figure 5.6: The novel SFMAC architecture

69

Therefore, in this architecture, the exponent term can range from ‘-4’ to ‘+3’.

Hence, the input numbers can have a range from –(0.11111111)2 × 2+3 to

+(0.11111111)2 × 2+3 and thus, the range of the inputs of the current SFMAC

architecture in a decimal number system is from –(7.96875)10 to +(7.96875)10.

3. The inputs to the SFMAC architecture should be entered in decimal point only. For

example, instead of providing the inputs to the SFMAC as (001)2 and (010)2, the

numbers should be entered as (0.00100000)2 × 2+3 and (0.0100000)2 × 2+3.

Similarly, (101)2 and (10)2 should be represented as (0.10100000)2 × 2+3 and

(0.10000000)2 × 2+2 respectively to process it through the SFMAC.

4. The EA block performs multiplication of the exponents of the inputs. Therefore, it

basically adds the exponents (as 2n × 2m = 2(n+m)). Though the inputs to the EA block

is of 4 bit each (including one sign bit), it produces the result in 5 bits as the addition

of two 2-bit number can produce a maximum of 3-bit result and for representing a

3-bit binary number in 2's complement form, it requires 4-bits. On the other hand,

the MSB bit (i.e., 5th bit) is the sign bit of the result.

The primary content of the SFMAC architecture are:

• Exponential Adder (EA)

• 8-bit multiplier

• 16-bit register

• Exponent Comparator Circuit (ECC)

• Exponent Shifter Circuit (ESC)

• 16-bit adder and

• 2:1/4:1 multiplexer of different sizes

The overall architecture of SFMAC is shown in figure 5.6.

5.2.1 Exponential Adder (EA)

As mentioned above, the EA block performs the multiplication of the exponential terms

of the inputs. The size of each exponent is 4-bit, out of which one bit is reserved for

sign representation. The EA architecture is shown in figure 5.7, and the following steps

are followed in the EA block:

70

Figure 5.7: Exponential Adder (EA) architecture

i) Based on the sign bit, the exponents are represented in 2’s complement form.

ii) True/2’s complement form of both the exponents are added using a 4-bit adder

block.

iii) As the inputs to the adder block is in true or 2’s complement form, the sum term

of the adder doesn’t provide an exact result. Therefore, the output of the adder

block is further processed through a 4-bit 4:1 multiplexer to represent the result

in sign magnitude form. The outcome of the 4-bit 4:1 multiplexer is based on

the following conditions:

• If the ‘XOR’ output of both the sign bit and carry a bit of the adder block is

either '00' or '11' then pass, the adder output itself is the output of the 4-bit

4:1 multiplexer.

71

• Else the output of the 4-bit 4:1 multiplexer is the 2’s complement

representation of the adder block.

iv) The output of the EA is in sign-magnitude form only. The final sign bit of the

EA block is based on the ‘XOR’ value of the sign bit of the exponent 1, exponent

2, and the carry bit of the adder block.

v) A PED-latch block pair is used at the output of each output bits to make the EA

block synchronized.

5.2.2 8-bit multiplier

The multiplier block used in this case is the novel UCM architecture, which is explained

in detail in chapter 3. The additional circuitry that is added to the multiplier is the

synchronization. As used in the EA block, a PED-latch block pair is used at the output

of each output bits of the multiplier.

5.2.3 16-bit register

Generally, due to fluctuation in the inputs, the output changes, and it is almost

impossible to track the output. The primary use of the register is to hold the data until

the next cycle is processed. Here, 16-bit registers are used at the final output and

immediately after the multiplier. The main content of the register is a D flip-flop and a

data selection circuit consisting of basic gates. The basic design of the register is already

elaborated in chapter 1.

5.2.4 Exponent Comparator Circuit (ECC)

As shown in figure 5.8, the inputs to the ECC are the product of the exponents (EA

output, i.e., 5-bit) and the output exponent of the previous cycle (5-bit in size). The

major point to consider here is that if both the input terms to the ECC block carry the

same sign, then the actual difference among the two is the arithmetic difference between

the numbers. Whereas, if both the inputs carry different signs, then the actual difference

among the two is the arithmetic sum of the two numbers. For example, the actual

difference between '+a' and ‘+b’ is ‘a-b’ or ‘b-a’. Whereas, for ‘-a’ and '-b', the actual

difference is 'a-b' or 'b-a' only. But if the inputs are '+a' and ‘-b’ or ‘-a’ and ‘+b’ then

72

the actual difference is going to be ‘a+b’ or ‘b+a’. The operation of the ECC block is

as follows:

Figure 5.8: The ECC architecture

i) Based on the sign bit, the inputs to the ECC are represented in 2’s complement

form.

ii) The operation of the ECC is further segregated based on the sign bits of the

inputs as follows:

a. If both the sign bits are different, then add the inputs of the ECC to produce

a 4-bit output (i.e., discard the carry bit) but introduce the 5th bit as '1' if the

product of the exponents of the inputs is negative, but the previous exponent

is positive. Make the 5th bit as '0' in the other circumstances.

b. If both the sign bits of the inputs to the ECC are same then find out the input

which is higher among the two and find the difference between the inputs

as per the following procedure:

73

• For finding the higher number, compare both the numbers bit by bit,

i.e., start comparing from MSB to LSB, as shown in figure 5.9.

• For finding the difference, use the 2’s complement approach. The

difference produces a 4-bit output (i.e., discard the borrow bit) but

introduces the 5th bit as '0' if the product of the exponents of the inputs

is higher than the previous cycle exponent. Make the 5th bit as ‘1' in

the other circumstances.

• In this architecture, multiplexers are used to compare the inputs.

iii) This operation produces a 5-bit output, which is further used for performing the

binary shifts.

Figure 5.9: The ECC with same sign bit

74

5.2.5 Exponent Shifter Circuit (ESC)

The ESC block is responsible for shifting the smaller number (either the product of the

8-bit inputs or the previous cycle MAC output) by the amount of difference between

the exponents of these two. The inputs to the ESC block are the 5-bit output of the ECC

block, a 16-bit product of the inputs, and 16-bit value of the previous cycle output. The

step by step procedure is as follows:

Figure 5.10: The ESC architecture

75

i) As shown in figure 5.10, the identification of the smaller number is made based

on the ECC output (5-bits). If the MSB of the ECC block output is '1', then the

product of the inputs is shifted towards the right by the equivalent decimal value

of the remaining 4-bit binary of the ECC block output. On the other hand, if the

MSB of the ECC block output is '0', then the previous output is shifted towards

the right by the equivalent decimal value of the remaining 4-bit binary of the

ECC block output.

ii) The input to the ESC block, which need not be shifted, is identified by the same

MSB of the ECC block output.

5.2.6 16-bit adder

The adder block is again a synchronized block (i.e., it is clocked). The outputs of the

ESC block are processed through a 2's complement block and a 2:1 Multiplexer for

representing a positive or negative value. For example, if the shifted output of the ESC

block is negative, then the 2’s complement value of the shifted output of the ESC block

is considered. Similarly, the non-shifted output of the ESC block is negative, then the

2’s complement value of the non-shifted output of the ESC block is considered. The

shifted or non-shifted number can be the product of the inputs or the previous output.

Therefore, to distinguish the same, the 5th bit of the ECC block output is considered.

The rest of the adder block is the same, as explained in chapter 1. Additionally, the PED

and latch pair is used for synchronization.

5.2.7 2:1/4:1 multiplexers of different sizes

As the algorithm doesn’t use any programming approach, for solving the conditions,

multiplexers of various sizes with multiple or single bits is considered.

5.2.8 Explanation of SFMAC using binary values

Let us consider an example to elaborate on the operation of the proposed architecture.

The input numbers are as follows:

Input1=001001011, Input1 exponent=0000

Input2=101010001, Input2 exponent=1001

76

The MSB (9th bit) of input1 and input2 is the sign bit, which is highlighted in bold.

Similarly, the MSB (4th bit) of input1-exponent and input2-exponent is the sign bit,

which is highlighted in bold as well. In this example, input1 and input1-exponent are

positive & input2 and input2-exponent are negative. On the other hand, the previous

output 00000000000000000 with exponent as 0000. Therefore, the previous output, as

well as its exponent, is positive. The execution steps as per the example mentioned

above are as follows:

1. Based on the inputs, the product of the two inputs (NUM) is calculated as

10001011110111011 (in 16 bit). As one of the input numbers is negative, the

resultant is negative.

2. The exponent of the NUM is the addition of the exponents of the inputs. The NUM

exponent result is 10001 (-1). The NUM exponent is represented in 5 bits because

the addition of two 2-bit numbers can produce a result in 3-bit. Moreover, a negative

3-bit number requires 4 bits to represent. Additionally, the 5th bit is used to signify

the sign bit.

3. If the exponents of the NUM and previous outputs are compared, then it can be

observed that the exponent of NUM is -1 and exponent of previous output is +0.

Therefore, the NUM is smaller than the last output, and hence, the NUM is shifted

by 1 bit from the left to get the updated NUM as 10000101111011101.

4. The shifted NUM (i.e., 10000101111011101) is added with previous output

00000000000000000 which produces a result as 10000101111011101 with

exponent as 00000. The same is shown in HEX code as -0BDD × 2+0 in the output

curve at the 2nd rising edge of clock 8, as shown in figure 5.11.

5. In the next cycle, as the input doesn't change, the NUM remains the same, i.e.,

10001011110111011. On the other hand, the latest value of input1-exponent and

input2-exponent are 1011 and 0010. Therefore, it produces the NUM exponent as

10001 (-1).

6. As the NUM in this cycle is smaller than the previous cycle output (as the last

output's exponent is more significant than NUM exponent), the NUM is shifted by

1 bit towards its right, which produces the updated NUM as 10000101111011101

with updated NUM exponent as 00000.

77

7. The updated NUM and previous output are added and produce the result as

10001011110111010 with the exponent as 00000. The same is shown in HEX code

as -17BA × 2+0 in the output curve at the 3rd rising edge of clock 8. The simulation

waveform is shown in figure 5.11.

8. The clock in this SFMAC architecture is applied in a pipelined manner, as

mentioned below:

Figure 5.11: The simulation waveform of the SFMAC architecture

78

a. The pipeline mechanism using the clock is ensured by activating the consecutive

blocks. A single clock signal is applied with a fixed clock period. But the

consecutive clocks are differed by a delay of 1.4 ns. The reason for the delay is

to latch the previous block’s output effectively as the input for the next block.

The delay of clock signals is calculated by the maximum propagation delay of

the individual blocks of the SFMAC architecture, which is given by the equation

5.2.

�G$H *_�"$�� = J?K(�&"$��_LM, �&"$��_OGP , . . . … … . . . , �&"$��_#"R') (5.2)

��"$��_LM is the propagation delay of the EA block; ��"$��_OGP is the propagation

delay of the UCM and so on. The propagation delay of all blocks of SFMAC is

shown in table 5.1.

Table 5.1: Propagation delay of the internal blocks of SFMAC architecture

Block Delay (in ps) Inference

Multiplier 433.7
The maximum delay from A0 to P15, considering

all inputs as high.

Register 123.6
Delay from the positive edge of the clock to any

of the output

Full Adder 22.4
Delay from A0 to OUT15, considering all inputs as

high

EA Block 268.9 ps

Delay from Exp20 to ExpOUT2,

considering Exp1 as positive & Exp2 as

negative

ESC Block (along

with ECC block)
1367.5

With same sign bits of both the exponents (as

negative or positive) in the ECC block and

maximum bit shift in the ESC block

2:1 MUX 12.6 With the critical path from ‘S’ to ‘Y’

4:1 MUX 18.9
Maximum delay occurred either in ‘S0’ to ‘Y’,

‘S1’ to ‘Y’ or ‘S 2’ to ‘Y’

79

b. As there are a total of nine clocked blocks in this architecture, the amount of

total delay required is eight times 1.4 ns (1.4 ns × 8 = 11.2 ns). This means a set

of inputs latched at time 0 ns is evaluated and produces the output only after

11.2 ns. Therefore, the clock period is fixed at 12 ns (or 83.333 MHz operational

frequency), so the execution of the last clock and latching on the first clock

doesn’t get overlapped.

c. The EA block is enabled with clock 0.

d. The multiplier block is enabled with the clock 1 signal.

e. Clock 2 signal is used as a clock signal for the 16-bit register for the multiplier.

f. There is no clock applied to the ECC block, which produces 5-bit output.

g. Clock 3 is applied to the ESC block, which yields the shifted/non-shifted NUM

or previous output. Parallelly the same clock is used to the 2:1 MUXs for

updating the select line of the 16-bit 2:1 MUXs to update the true or

complemented NUM/Previous output.

h. Clock 4 is applied to the 16-bit 2:1 MUXs to update the true or complemented

NUM/Previous output.

i. For adding the true or 2’s complement form of shifted/non-shifted 16-bit inputs,

Clock 5 is applied.

j. The 16-bit 2:1 MUX block is activated on the edges of clock 6, which choose

between the true output of the full adder output or the 2’s complement output of

the full adder output. The carry bit of the output of the full adder is applied as

the select line.

Table 5.2: The operation of the 16-bit 4:1 MUX based on the two select lines

XOR of I/P

sign bits

Sign bit of the

previous output
Operation

0 0 No change or true form

0 1 Pass the output of the 16-bit 2:1 MUX as such

1 0 Pass the output of the 16-bit 2:1 MUX as such

1 1 2’s complement

80

k. The output of the MAC block is based on the selection of XOR of the sign bit

of the inputs and sign bit in the last output. The input for the 4:1 MUX (16-bit)

is the output of the 2:1 MUX (16-bit). The inputs for the 4:1 MUX (16-bit) is

latched at the positive edges of clock 7. The operation of the 4:1 MUX is

explained in table 5.2.

l. Finally, a 16-bit register is used at the output so that the internal glitches doesn't

change the output value. The 16-bit register block is enabled with clock 8.

5.3 CONCLUSIVE REMARKS

The novel SFMAC architecture for signed-floating point MAC operation is explained

in this chapter. The circuit is implemented on Cadence Virtuoso CMOS 90 nm as well

as in TSMC 130 nm technology. The internal building blocks of SFMAC are also

explained in detail. The step-by-step working procedure of EA block, ECC block and

ESC block are also explained in this chapter. The operation of SFMAC is also explained

with the help of an example also. Earlier in the literature, a full-custom based approach

has never been adopted to design the floating-point synchronized MAC architecture

from the primary or leaf cell. The proposed SFMAC architecture shows the simplicity

of the design which primarily uses multiplexers of different sizes.

81

CHAPTER 6: RESULTS & DISCUSSION

The multiplier/MAC unit shown in chapter 1-5 is implemented on Cadence Virtuoso.

Additionally, the UCM architecture is also prototyped on the Nexys-4 Artix-7 FPGA

board. Based on the performance of the architectures, its detail analysis is done in this

chapter.

6.1 IMPLEMENTATION OF UCM ARCHITECTURE & FPGA

PROTOTYPING

The existing multipliers in the literature are mostly based on the Wallace tree algorithm

[4, 12, 15, 18, 23, 24, 26-28, 30]. It is claimed that the multipliers based on the Wallace

tree reduce the steps involved to add the partial products. Still, it uses half adder or full

adder for the addition of partial products which increases the complexity of the circuit.

To overcome the shortcoming of Wallace tree multiplier, the UCM architecture is

proposed which uses universal compressor of N-bit size. This has ensured the proposed

UCM architecture as much faster than the Wallace tree multiplier. Moreover, the

proposed UCM architecture is implemented in Cadence Virtuoso 90 nm technology.

This has customized the internal building blocks of the UCM and hence, highly

efficient. To compare the implemented UCM with Wallace tree multiplier and array

multiplier, the architectures are designed on Cadence Virtuoso 90 nm technology as

well as Verilog HDL (for implementing it on Nexys-4 Artix-7 FPGA board). The result

shows that the UCM is much more efficient in supply voltage as low as 600 mV for 5-

bit as well as a 9-bit multiplier. The reason for implementing a 5-bit and 9-bit multiplier

is to show the complexity and accuracy handling capacity of the algorithm (for which

an odd number of inputs are taken). Due to lowering the supply voltage, not only the

speed of operation is improved in comparison with the Wallace tree algorithm, but the

power consumption has dropped substantially.

82

6.1.1 Power & delay analysis of novel UCM architecture

The tabular comparison of UCM and Wallace tree multiplier for 5-bit and 9-bit is shown

in table 6.1 and table 6.2, respectively. As there is always a trade-off between power

and delay, the average power consumption of the UCM is slightly higher than the

Wallace tree multiplier. For example, the average power (a total of static as well as

dynamic) consumption of the UCM at 600 mV supply voltage and for 5 × 5-bit

operations is 20.32 µW, whereas, for Wallace tree multiplier, the same is recorded as

19.54 µW. Similarly, at 900 mV and for 9 × 9-bit operations, the average power

consumption for implemented UCM is 355.8 µW, whereas, for the Wallace tree

multiplier, it is 299.9 µW.

Table 6.1: Delay comparison of UCM versus Wallace tree for 5 × 5-bit operation

Multiplier
Algorithms

Delay at different VDD

0.6V 0.7V 0.8V 0.9V
UCM 2.769 ns 2.701 ns 2.664 ns 2.641 ns

Wallace tree 2.789 ns 2.717 ns 2.677 ns 2.652 ns
Array multiplier Invalid outputs

Table 6.2: Delay comparison of UCM versus Wallace tree for 9 × 9-bit operation

Multiplier
Algorithms

Delay at different VDD
0.6V 0.7V 0.8V 0.9V

UCM 2.281 ns 2.21 ns 2.171 ns 2.147 ns
Wallace tree 2.401 ns 2.298 ns 2.241 ns 2.205 ns

Array multiplier Invalid outputs

At the same time, there is a significant improvement of delay for the implemented UCM

in comparison to the Wallace tree. The irregular structure of the Wallace tree algorithm

is the leading cause of the lagging in delay. As per the Elmore formula, the wire delay

is proportional to the square of its length, and the relationship is expressed by equation

6.1.

 τd=(R×C×L2)/2 (6.1)

Where ‘R’,’C’ and ‘L’ are the wire resistance, capacitance, and length, respectively.

Hence with an irregular structure with an increased length of wire can affect the speed

83

of operation of the circuit. On the other hand, the array multiplier could not produce

any result in such low supply voltages (below 1.0V) due to which its power and delay

analysis could not be performed.

Figure 6.1: UCM and Wallace tree for 5 × 5-bit operations at voltages below 1V

The graphical representation of the delay analysis of 5 × 5 bit as well as 9 × 9-bit

multipliers is shown in figure 6.1 and figure 6.2. It is clear from the graphical analysis

that in 5 × 5-bit as well as 9 × 9-bit multiplication operation, the implemented UCM

takes lesser time to pass the signal from input to the output (critical path). As the supply

voltage drops further, the difference between the delay values of UCM and Wallace

tree multiplier is significant, and it is much evident in 9 × 9-bit multiplier. For example,

at 600 mV supply voltage and 9 × 9-bit multiplication, the difference in delay between

Wallace tree and implemented UCM is 120 ps, on the other hand, for 5 × 5-bit

multiplication, the difference in delay between the two is 20 ps. Hence it can be

summarized that, as the multiplier size increases, the delay of the UCM is significantly

low than the Wallace tree multiplier at ultra-low supply voltage (as low as 600 mV).

84

Figure 6.2: UCM and Wallace tree for 9 × 9-bit operation at voltages below 1V

6.1.2 Nexys-4 Artix-7 based FPGA Implementation

The FPGA implementation of the UCM on the Nexys-4 Artix-7 FPGA board is shown

in figure 6.3. The FPGA realization is done for 5 bits as well as 9 bits. Switches along

with buttons are used as the 18-bit inputs, whereas the LEDs are used as 18-bit outputs

for verification of the implemented UCM. For 9-bit multiplier realization, 213 out of

63400 (approximately 0.33%) LUTs are used as logic units, whereas 36 input-output

buffers (IOB) are used out of which 18 are input buffers, and 18 are output buffers. On

the other hand, for 5-bit multiplier realization, 42 (approximately 0.06%) LUTs are

used as logic units, and 20 input-output buffers (IOB) are used. The total on-chip power

for 9-bit, as well as 5-bit UCM implementation, is 40.62 mW with junction temperature

as 25.2o C.

6.1.3 PVT analysis of UCM architecture

VLSI is an art of chip design, which turns specification into usable hardware. Cadence

offers software for both the front end and back end projects, where the GDS-II file is

85

eventually sent for fabrication after comprehensive design steps. But the yield of the

fabricated designs is found to be very low due to process complexity (i.e., pressure,

supply voltage, temperature, etcetera). The main reason for the loss of yield is the

variation of the fabrication parameter between wafer and wafer. To improve design

yield, the IC should be in a position to sustain extreme variation. Validation of the

design cycle through PVT and 3-sigma variation becomes, therefore, essential before

fabrication.

Figure 6.3: FPGA realization of the 9 × 9 UCM

Table 6.3: Delay comparison of UCM versus Wallace tree for 5 × 5-bit operations in
different corners

Corners in -
40o, 0o & +50o

Celsius

UCM (in ns
@ 600 mV)

Wallace
tree (in ns
@ 600 mV)

UCM (in
ns @

900 mV)

Wallace
tree (in ns
@ 900 mV)

Nominal (27) 2.769 2.789 2.641 2.652
FF_0 (-40) 2.665 2.677 2.59 2.597
FF_1 (0) 2.684 2.698 2.601 2.61

FF_2 (+50) 2.709 2.725 2.616 2.626
FS_0 (-40) 2.75 2.766 2.623 2.632

86

FS_1 (0) 2.782 2.801 2.64 2.651
FS_2 (+50) 2.822 2.845 2.663 2.676
NN_0 (-40) 2.72 2.735 2.613 2.622
NN_1 (0) 2.749 2.767 2.629 2.64

NN_2 (+50) 2.786 2.809 2.651 2.663
SF_0 (-40) 2.728 2.746 2.617 2.627
SF_1 (0) 2.76 2.782 2.635 2.647

SF_2 (+50) 2.802 2.829 2.658 2.673
SS_0 (-40) 2.826 2.849 2.656 2.668
SS_1 (0) 2.875 2.902 2.682 2.697

SS_2 (+50) 2.937 2.97 2.716 2.734

A PVT analysis is performed at different corners (Fast-Fast, Fast-Slow, Normal-

Normal, Slow-Fast, and Slow-Slow) and three different extreme temperatures (-40o, 0o

and +50o Celsius) to validate the performance of the UCM architecture further. Table

6.3 and table 6.4 shows the delay comparison of UCM and Wallace tree 5 × 5-bit and

9 × 9-bit architecture respectively at 0.6V and 0.9V supply voltage in different corners

along with variation in temperature (-40o, 0o and +50o Celsius)

Table 6.4: Delay comparison of UCM versus Wallace tree for 9 × 9-bit operations in
different corners

Corners in -
40o, 0o & +50o

Celsius

UCM (in ns
@ 600 mV)

Wallace
tree (in ns
@ 600 mV)

UCM (in
ns @

900 mV)

Wallace
tree (in ns
@ 900 mV)

Nominal (27) 2.281 2.401 2.147 2.205
FF_0 (-40) 2.171 2.239 1.138 1.195
FF_1 (0) 2.192 2.27 1.153 1.222

FF_2 (+50) 2.218 2.31 1.247 1.257
FS_0 (-40) 2.258 2.353 2.126 2.171
FS_1 (0) 2.291 2.402 2.145 2.198

FS_2 (+50) 2.334 2.463 2.169 2.233
NN_0 (-40) 2.228 2.322 1.235 1.252
NN_1 (0) 2.259 2.369 2.134 2.187

NN_2 (+50) 2.3 2.43 2.157 2.221
SF_0 (-40) 2.239 2.351 2.123 1.259
SF_1 (0) 2.274 2.406 1.421 1.289

SF_2 (+50) 2.32 2.479 2.168 1.439
SS_0 (-40) 2.339 2.484 2.162 2.227
SS_1 (0) 2.391 2.561 2.19 2.268

SS_2 (+50) 2.456 2.659 2.227 2.323

87

Figure 6.4: PVT comparison of delay of UCM and Wallace tree for 5 × 5-bit
operations at 0.6V and 0.9V in different corners

Figure 6.5: PVT comparison of delay of UCM and Wallace tree for 9 × 9-bit
operations at 0.6V and 0.9V in different corners

88

The graphs in figure 6.4 and figure 6.5 clearly show that the delay in UCM architecture

is significantly improved compared to the Wallace tree architecture for 5 x 5 bit as well

as 9 x 9-bit multiplication. Most importantly, the UCM architecture proves to be the

better performer than Wallace tree architecture at ultra-low supply voltages for 5-bit

multiplication at different corners and extreme temperatures. On the other hand, the

delay of UCM has a much more significant drop compared to the Wallace tree at 600

mV (at different corners and extreme temperatures) for 9-bit multiplication. While the

UCM architecture delay appears to be slightly higher than the Wallace tree in the slow-

fast (SF) corner at -40o, 0o, and +50o Celsius for 9-bit multiplication at 900 mV. The

reason for the same might be the use of different processes at the SF corner. The

minimum and maximum delay for 5 × 5-bit multiplication using UCM architecture at

600 mV are 2.665 ns and 2.937 ns, respectively, as shown in table 6.3. Whereas 2.677

ns and 2.97 ns are the same for Wallace tree, respectively. Likewise, 2.59 ns and 2.716

ns are the minimum and maximum delay for 5 × 5-bit multiplication using UCM

architecture at 900 mV, which are 2.597 ns and 2.734 ns respectively for Wallace tree.

It can be observed from table 6.4 that for 9 × 9-bit multiplication using UCM

architecture at 600 mV, the minimum and maximum delays are 2.171 ns and 2.456 ns

respectively. In contrast, for the Wallace tree, the values are 2.239 ns and 2.659 ns. On

the other hand, for 9 × 9-bit multiplication using UCM architecture at 900 mV, the

minimum and maximum delays are 1.138 ns and 2.227 ns, respectively. In contrast, for

the Wallace tree, the values are 1.195 ns and 2.323 ns.

6.2 POWER, DELAY & AREA COMPARISON OF NOVEL UMAC,

USMAC, SMAC & SFMAC ARCHITECTURES

The proposed UMAC, USMAC, SMAC (fixed-point), and SFMAC (floating-point)

architectures are implemented at the Cadence Virtuoso 90 nm technology. The power

consumption of the proposed designs is measured using the Cadence Spectra tool. The

detailed report of the static power, average power, and area are shown in table 6.5.

Static power is assessed for 2V supply voltage, while average power is measured for

20 ns simulation period and 333.33 MHz frequency. The area, on the other hand, is

measured in terms of total transistor count.

89

Table 6.5: Comparison of UMAC, USMAC, SMAC and SFMAC architectures with
2V supply voltage and 20 ns simulation period

Architecture
Static power
(at VDD=2V)

Average power (at
VDD=2V and simulation

period=20 ns)

Area (Total
number of
transistors)

UMAC 3072 µW 2253 µW 4556
USMAC 758 µW 2905 µW 5744
SMAC 1721 µW 7317 µW 10928

SFMAC 4854 µW 26950 µW 25783

As discussed earlier, UMAC architecture's static power consumption is the highest as

block enabling is not being used in this architecture. On the other hand, since the SMAC

architecture area is about two times greater (in terms of the number of transistors) than

the USMAC architecture, the static and thus the average power consumption of SMAC

architecture is higher than that of the USMAC architecture. Moreover, the static and

the average dynamic power are the highest for SFMAC architecture, as shown in the

comparison table 6.5. The reason for the same is the total number of transistor count in

SFMAC is almost five times higher than that of USMAC and 2.5 times higher than that

of SMAC architectures. The graphical analysis is shown in figure 6.6.

Figure 6.6: Graphical comparison of UMAC, USMAC, SMAC and SFMAC
architectures with 2V supply voltage and 20 ns simulation period

Furthermore, table 6.6 shows a power comparison of SFMAC architecture at different

CMOS technologies in a specific input vector. The simulation period is kept as 40 ns

because:

90

1. the reset signal (active low) is low till 10.8 ns

2. the clock signals have a time period of 12 ns

Table 6.6: Comparison of SFMAC at supply voltage 2V and simulation period 40 ns
in CMOS GPDK 90 nm and TSMC 130 nm technology

Architecture
Static Power in

µW (for
VDD=2V)

Average power in µW
(for V DD=2V and

simulation period=40 ns)

Area (Total
number of
transistors)

GPDK 90 nm CMOS Technology
SFMAC 476.94 7980 25783

TSMC 130 nm CMOS Technology
SFMAC 2398.76 25990 25783

Therefore, till 23.2 ns, the output signal remains at ‘0’. The SFMAC architecture is not

only implemented in GPDK 90 nm but also in TSMC 130 nm CMOS Technology. The

power consumption of the implemented designs is calculated using Cadence Spectra

Tool.

Figure 6.7: Graphical analysis of the static power, average power and area of SFMAC
in CMOS GPDK 90 nm and TSMC 130 nm technology

Figure 6.7 shows the graphical analysis of the static power, average power, and area of

SFMAC in CMOS GPDK 90 nm and TSMC 130 nm technology. The static power is

evaluated for 2V supply voltage, whereas the average power is measured for a

simulation period of 40 ns and at a frequency of 83.33 MHz. The average dynamic

power consumption of the SFMAC in TSMC 130 nm is higher than GPDK 90 nm

91

because the transistor sizing is higher in 130 nm technology, which affects the load

capacitance (�$H��). The average dynamic power of a CMOS circuit is given by

equation 6.2.

 ��WR = +X�$H���&&
')G�Y (6.2)

Similarly, the static power consumption is also a function of device geometry.

Therefore, a circuit consisting of a higher device dimension has higher static power

consumption.

6.2.1 Comparison with existing architectures

It is challenging to compare the proposed MAC architectures with those that are already

available in the literature because most of the available architectures in the literature

have used HDL based approach. On the other hand, the proposed architectures are

implemented in Cadence Virtuoso 90 nm environment. Moreover, almost 99% (80 out

of 81 papers) of the architectures available in the literature have neither implemented

for signed operation nor floating-point designs. For example, [1, 6, 8, 9, 79] etcetera

are unsigned-fixed-point MAC architectures, which are implemented on HDLs such as

Verilog or VHDL. Moreover, some of the architectures haven’t even specifies the

technology used in the design. Therefore, the comparison of proposed MAC

architectures with the existing MAC architecture becomes challenging.

Though some architectures in the literature have used the clocking signals for the

accumulation of data only (in the register or accumulator), most of the architectures

haven't used any clocking signal. For example, [8, 71, 74] etcetera are existing MAC

architecture but without proper synchronization. Any circuit in asynchronous mode

can't be implemented in a real-time application. Therefore, the practical applicability of

such design needs to be further tested.

From the literature, a few existing MAC architectures are found suitable to compare

with the proposed MAC architectures. Though all parameters of comparison (such as

technology specified, operating frequency, supply voltage, tool used, size and type of

MAC etcetera) are not matching but most of the parameters are common while

comparing the existing and proposed MAC architectures. Table 6.7 shows the

92

comparison, where most of the architectures are compared with UMAC architecture,

and only one architecture (i.e. [87]), which is implemented for floating-point signed

operation is compared with proposed SFMAC architecture. The differences are visible

from table 6.7 that the architectures in [55], [7] and [69] have a significantly higher

static as well as average power (in mW) than proposed UMAC architecture. In [56] and

[60], the performance is evaluated in 65nm and 90 nm technologies for 16-bit

operations at 1.1V and 1V, respectively. It is clear from table 6.7 that the power

consumption of [56] is significantly higher than UMAC. On the other hand, the

architecture in [60] operates in 1V supply voltage with operating frequency 100 MHz,

and therefore, a direct comparison can't be made with UMAC. Though the architecture

in [75] is implemented in 180nm technology and 1.8V supply voltage for 16-MAC

operation, the power consumption is way more than the UMAC architecture. For [80],

the implementation is done for 1-bit MAC operation in 32nm CMOS and CNTFET

technology, and hence, comparison with 8-bit UMAC is not relevant. The architecture

in [87] is compared with proposed SFMAC architecture, and the analysis shows that

the performance of SFMAC is much better in terms of power consumption.

Table 6.7: Performance comparison of Proposed MAC architecture with existing
architectures

Sl
No.

Existing
work in

Existing architecture
description

Implementation
on

Power Consumption

1 [55]

Pipelined Multiply
Accumulate Unit (fixed-

point) in 180nm technology,
1.8V at 83.3 MHz & 8 × 8

bit operation

Cadence
Virtuoso

50.26 mW

2 [7]

Multiply Accumulate Unit
(fixed-point) in 180nm
technology, 1.8V at 217

MHz & 64 × 64 bit operation

Verilog HDL 177.732 mW

3 [56]

Pipelined Multiply
Accumulate Unit (fixed-

point) in 65nm technology,
1.1V at 591 MHz & 16 × 16

bit operation

VHDL 8.2 mW

93

4 [60]

Multiply Accumulate Unit
(fixed-point) in 90nm

technology, 1V at 100 MHz
& 16 × 16 bit operation

HDL in
Cadence’s
HSPICE
simulator

1.506 mW

5 [69]

Pipelined Multiply
Accumulate Unit (fixed-

point) in 180nm technology,
1.8V & 8 × 8 bit operation

HDL in
Synopsys
Design

Compiler

Dynamic
Power

Static
Power

3.627 mW 2.010 mW

6 [75]

Multiply Accumulate Unit
(fixed-point) in 180nm

technology, 1.8V at 5 MHz
& 16 × 16 bit operation

Verilog HDL

MAC
using
Booth

MAC
using
Vedic

493.648
mW

1765.241
mW

7 [80]

Multiply Accumulate
Unit(fixed-point) in 32nm

CMOS & CNTFET
technology & 1 × 1 bit

operation

CMOS
Tech

CNTFET
Tech

0.9902
mW

0.6335
mW

8 [87]

Fixed/Floating-Point
Multiply Accumulate Unit in
90nm technology for 16-bit
half-precision multiplication

VHDL 14.07 mW

Sl
No.

Proposed
architecture

Proposed architecture
description

Implementation
on

Power Dissipation

1 UMAC
Unsigned MAC architecture
in 90nm tech., 2V at 333.33
MHz & 8x8 bit operation

Cadence
Virtuoso 90nm

CMOS

Static
Power

Average
Power

3.072 mW 2.253 mW

2 USMAC

Unsigned Synchronized
MAC architecture in 90nm
tech., 2V at 333.33 MHz &

8x8 bit operation

Cadence
Virtuoso 90nm

CMOS

Static
Power

Average
Power

0.758 mW 2.905 mW

3 SMAC

Signed MAC (synchronous)
architecture in 90nm tech.,

2V at 333.33 MHz & 8x8 bit
operation

Cadence
Virtuoso 90nm

CMOS

Static
Power

Average
Power

1.721 mW 7.317 mW

4 SFMAC

Signed Floating-Point MAC
architecture in 90nm tech.,
2V at 83.33 MHz & 8x8 bit

operation

Cadence
Virtuoso 90nm

CMOS

Static
Power

Average
Power

0.476 mW 7.98 mW

94

CHAPTER 7: CONCLUSION & FUTURE

WORK

7.1 CONCLUSION

The summary of this research work along with new possibilities for further

improvement is presented in this chapter. The objective of this research work is to

design suitable low power high-speed MAC unit for signed-floating operation. For

achieving the said objective, the Unsigned MAC (UMAC) architecture, the Unsigned

Synchronized MAC (USMAC) architecture, Signed MAC (SMAC) architecture with

synchronization and the Signed Floating-point MAC (SFMAC) architecture with

synchronization are designed and implemented. As the multiplier is said to be the heart

of the MAC architecture, a novel Universal Compressor based Multiplier (UCM) is

designed and implemented. This work examines, discusses and uses fast adder and

multiplication schemes in the design and development of proposed novel UCM

architecture. The prototype of the proposed UCM architecture has been implemented

on Nexys-4 Artix-7 FPGA board using Xilinx Vivado 17.4 and Xilinx ISIM simulator

for simulation.

Further, a detailed analysis of the novel UCM along with Wallace tree multiplier and

array multiplier at ultra-low supply voltages (as low as 600 mV) is performed on

Cadence Spectre tool in GPDK 90 nm technology. A significant improvement in terms

of delay of the proposed UCM in comparison to Wallace tree multiplier is sighted. The

irregular structure of the Wallace tree algorithm is the leading cause for the lagging in

delay, as an asymmetrical structure with increased length of wire can affect the speed

of operation of the circuit. On the other hand, the array multiplier could not produce

any result in such low supply voltages (below 1V) due to which its power and delay

analysis could not be performed. The UCM architecture is further analyzed by

95

performing a PVT analysis at different corners (Fast-Fast, Fast-Slow, Normal-Normal,

Slow-Fast and Slow-Slow) and three different extreme temperatures (-40o, 0o and +50o

Celsius).

The block enabling schemes along with pipelining is used to model the MAC design

power-efficient. Block enabling technique facilitates saving of electrical power, used

by digital signal processors, by reducing the switching activity ‘α’. It ensures power

saving of the MAC architecture, by turning on a functional logic block only when

required. For achieving pipelining, the time between each clock signal is set such that

when the registers are clocked, the data written to them is the final result of the

preceding stage.

For proper implementation of floating-point MAC implementation, each input of the

Signed Floating-point MAC (SFMAC) is represented in 13 bits, in which two bits are

reserved for the sign bits of the number, and its exponent. The sign bit has a provision

to be represented in the form of '0' or '1' based on positive or negative number

representation, respectively. Remaining eleven bits are used for 8-bit binary

representation and 3-bit exponent representation in binary. Therefore, the input

numbers have a range from –(0.11111111)2 × 2+3 to +(0.11111111)2 × 2+3 and hence,

the range of the inputs of the current SFMAC architecture in a decimal number system

is from –(7.96872)10 to +(7.96872)10. Different MAC architectures are designed and

analyzed using Cadence Spectre tool to validate its power/delay performance. The

CMOS 90 nm technology and TSMC 130 nm technologies are used for different MAC

architecture designs.

The comparison of power for the proposed UMAC, USMAC, SMAC and SFMAC

architectures are analyzed for a fixed input vector with 2V supply voltage and 20 ns

simulation period. The clock frequency is maintained at 333.33 MHz. It is analyzed

from the comparison that the static power consumption for UMAC architecture

outperforms other proposed architectures as no block enabling is used in the UMAC

architecture. On the other hand, as the area of the SMAC architecture is approximately

two times larger (in terms of the number of transistors) than the USMAC architecture,

the static and therefore the average power consumption of SMAC architecture is higher

96

than the USMAC architecture. The static and the average dynamic power of SFMAC

are maximum among all other proposed architectures because the total number of

transistor count in SFMAC is almost five times higher than that of USMAC and 2.5

times higher than that of SMAC architectures.

Furthermore, a power comparison of SFMAC architecture at different CMOS

technologies (TSMC 130 nm and GPDK 90 nm) in a specific input vector is studied at

a frequency of 83.33 MHz. It is analyzed from the comparison that the average dynamic

power, as well as the static power consumption of the SFMAC in TSMC 130 nm, is

higher than GPDK 90 nm because of the transistor sizing. A detailed comparison is

depicted in chapter 6 to analyze the efficiency of the MAC architectures over the

existing architectures. The comparison shows a significant improvement in terms of

static as well as average power for UMAC, USMAC, SMAC and SFMAC architectures

over the existing architectures.

7.2 FUTURE WORK DIRECTIONS

At different abstraction level, a detailed power calculation can be done and hence the

possibility of power reduction can be considered. Furthermore, a parametric analysis,

along with Monte-Carlo analysis, will give a detailed picture of the proposed

architectures at extreme corners and extreme supply voltage as well as temperature.

Much more optimization at the abstract level can improve the performance of the

proposed MAC architectures in terms of delay, power and PDP. An optimized layout

design would provide an opportunity for post-layout simulation and hence ASIC

fabrication.

97

REFERENCES

[1] A. Abdelgawad and M. Bayoumi, "High speed and area-efficient multiply

accumulate (MAC) unit for digital signal processing applications," in IEEE

International Symposium on Circuits and Systems, New Orleans, LA, pp. 3199-

3202: IEEE, 2007.

[2] W. C. Hsieh and W. Hwang, "Adaptive power control technique on power-gated

circuitries," IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 19, no. 7, pp. 1167-1180, 2011.

[3] P. Bhattacharyya, B. Kundu, S. Ghosh, V. Kumar, and A. Dandapat,

"Performance analysis of a low-power high-speed hybrid 1-bit full adder

circuit," IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 23, no. 10, pp. 2001-2008, 2014.

[4] M. J. Liao, C. F. Su, C. Y. Chang, and A. C. H. Wu, "A carry-select-adder

optimization technique for high-performance booth-encoded wallace-tree

multipliers," in IEEE International Symposium on Circuits and Systems,

ISCAS-2002, Phoenix-Scottsdale, AZ, USA, pp. 81-84, 2002.

[5] N. J. Babu and R. Sarma, "A novel low power multiply–accumulate (MAC) unit

design for fixed point signed numbers," Advances in Intelligent Systems and

Computing, vol. 394, no. 1, pp. 675-690, 2016.

[6] S. Deepak and B. J. Kailath, "Optimized MAC unit design," in IEEE

International Conference on Electron Devices and Solid State Circuit (EDSSC),

Bangkok, Thailand, pp. 1-4: IEEE, 2012.

[7] P. Jagadees, S. Ravi, and K. H. Mallikarjun, "Design of a high performance 64

bit MAC unit," in International Conference on Circuits, Power and Computing

Technologies, Nagercoil, India, pp. 782-786: IEEE, 2013.

[8] T. Francis, T. Joseph, and J. K. Antony, "Modified MAC unit for low power

high speed DSP application using multiplier with bypassing technique and

optimized adders," in 2013 Fourth International Conference on Computing,

Communications and Networking Technologies (ICCCNT), Tiruchengode,

India, pp. 1-4, 2013.

98

[9] R. Warrier, C. H. Vun, and W. Zhang, "A low-power pipelined MAC

architecture using baugh-wooley based multiplier," in IEEE 3rd Global

Conference on Consumer Electronics (GCCE), Tokyo, Japan, pp. 505-506,

2014.

[10] B. J. Xia, P. Liu, and Q. D. Yao, "New method for high performance multiply-

accumulator design," Journal of Zhejiang University Science, vol. 10, no. 7, pp.

1067-1074, 2009.

[11] C. S. Wallace, "A suggestion for a fast multiplier," IEEE Transactions on

Electronic Computers, vol. 13, no. 1, pp. 14-17, 1964.

[12] M. J. Rao and S. Dubey, "A high speed and area efficient booth recoded wallace

tree multiplier for fast arithmetic circuits," in Asia Pacific Conference on

Postgraduate Research in Microelectronics & Electronics (PRIMEASIA),

Hyderabad, India, pp. 220-223, 2012.

[13] A. K. Singh, B. P. De, and S. Maity, "Design and comparison of multipliers

using different logic styles," International Journal of Soft Computing and

Engineering (IJSCE), vol. 2, no. 2, pp. 374-379, 2012.

[14] S. Shanthala and S. Y. Kulkarni, "VLSI design and implementation of low

power MAC unit with block enabling technique," European Journal of

Scientific Research, vol. 30, no. 4, pp. 620-630, 2009.

[15] N. Itoh, Y. Naemura, H. Makino, Y. Nakase, T. Yoshihara, and Y. Horiba, "A

600-MHz 54-bit multiplier with rectangular-styled wallace tree," IEEE Journal

of Solid-State Circuits, vol. 36, no. 2, pp. 249-257, 2001.

[16] T. Onomi, K. Yanagisawa, M. Seki, and K. N. Ima, "Phase-mode pipelined

parallel multiplier," IEEE Transactions on Applied Superconductivity, vol. 11,

no. 1, pp. 541-544, 2001.

[17] D. Guevorkian, A. Launiainen, V. Lappalainen, P. Liuha, and K. Punkka, "A

method for designing high-radix multiplier-based processing units for

multimedia applications," IEEE Transactions on Circuits and Systems for Video

Technology, vol. 15, no. 5, pp. 716-725, 2005.

[18] T. Y. Kuo and J. S. Wang, "A low-voltage latch-adder based tree multiplier," in

IEEE International Symposium on Circuits and Systems, Seattle, WA, pp. 804-

807, 2008.

99

[19] L. Chen, X. Y. Tian, and X. J. Zhao, "Improved multiplier of CSD used in digital

signal processing," in International Conference on Machine Learning and

Cybernetics, Kunming, pp. 2905-2908: IEEE, 2008.

[20] Q. Yi and H. Jing, "An improved design method for multi-bits reused booth

multiplier," in 4th International Conference on Computer Science & Education,

Nanning, China, pp. 1914-1916: IEEE, 2009.

[21] M. Nachtigal, H. Thapliyal, and N. Ranganathan, "Design of a reversible single

precision floating point multiplier based on operand decomposition," in 10th

IEEE conference on Nanotechnology, Kintex, Korea, pp. 233-237, 2010.

[22] L. A. Sousa, "Algorithm for modulo (2"+ 1) multiplication," Electronics

Letters, vol. 39, no. 9, pp. 752-754, 2013.

[23] S. Khan, S. Kakde, and Y. Suryawanshi, "VLSI implementation of reduced

complexity wallace multiplier using energy efficient CMOS full adder," in

IEEE International Conference on Computational Intelligence and Computing

Research, Enathi, India, pp. 1-4: IEEE, 2013.

[24] R. D. Kshirsagar, E. V. Aishwarya, A. S. Vishwanath, and P. Jayakrishnan,

"Implementation of pipelined booth encoded wallace tree multiplier

architecture," in International Conference on Communication and Green

Computing Conservation of Energy (ICGCE), Chennai, India, pp. 199-204,

2013.

[25] M. Jayaprakash, A. Shanmugam, and M. Mohamed, "Design and analysis of

low power hybrid adder," Journal of Theoretical and Applied Information

Technology, vol. 58, no. 3, pp. 618-622, 2013.

[26] D. Paradhasaradhi, M. Prashanthi, and N. Vivek, "Modified wallace tree

multiplier using efficient square root carry select adder," in International

Conference on Green Computing Communication and Electrical Engineering

(ICGCCEE), Coimbatore, India, pp. 1-5: IEEE, 2014.

[27] X. V. Luu, T. T. Hoang, T. T. Bui, and A. V. Dinh-Duc, "A high-speed unsigned

32-bit multiplier based on booth-encoder and wallace-tree modifications," in

International Conference on Advanced Technologies for Communications

(ATC'14), Hanoi, Vietnam, pp. 739-744, 2014.

100

[28] B. N. M. Reddy, H. N. Sheshagiri, and S. Shanthala, "Implementation of low

power 8-Bit multiplier using gate diffusion input logic," in IEEE 17th

International Conference on Computational Science and Engineering,

Chengdu, China, pp. 1868-1871, 2014.

[29] S. Srinitha and B. Sargunam, "Area effective and speed optimized fused add-

multiply unit," in 2nd International Conference on Innovations in Information

Embedded and Communication Systems, Coimbatore, India, pp. 1-6, 2015.

[30] K. B. Jaiswal, N. Kumar, P. Seshadri, and G. Lakshminarayanan, "Low power

wallace tree multiplier using modified full adder," in 3rd International

Conference on Signal Processing, Communication and Networking (ICSCN),

Chennai, India, pp. 1-4: IEEE, 2015.

[31] M. Shoba and R. Nakkeeran, "Energy and area efficient hierarchy multiplier

architecture based on vedic mathematics and GDI logic," International Journal

on Engineering Science and Technology, vol. 20, no. 1, pp. 321-331, 2017.

[32] E. Ozcan and S. S. Erdem, "A fast digit based Montgomery multiplier designed

for FPGAs with DSP resources," Microprocessors and Microsystems, vol. 62,

no. 1, pp. 12-19, 2018.

[33] R. D. Rose, P. Romero, and M. Lanuzzaa, "Double-precision dual mode logic

carry-save multiplier," Integration, vol. 64, no. 1, pp. 71-77, 2019.

[34] H. Suzuki, H. Morinaka, H. Makino, Y. Nakase, and K. Mashiko, "Leading-

zero anticipatory logic for high-speed floating point addition," IEEE Journal of

Solid-State Circuits, vol. 31, no. 8, pp. 1157-1164, 1996.

[35] R. V. K. Pillai, D. Al-Khalili, and A. J. Al-Khalili, "Low power architecture for

floating point MAC fusion," IEE Proceedings-Computers and Digital

Techniques, pp. 288-296, 2000.

[36] W. G. Natter and B. Nowrouzian, "A novel algorithm for signed-digit online

multiply-accumulate operation and its purely signed-binary hardware

implementation," in IEEE International Symposium on Circuits and Systems,

vol. 5, pp. 329-332: IEEE, 2000.

[37] W. G. Natter and B. Nowrouzian, "A novel multiplier recoding technique and

its application to the development of a high-speed parallel online multiply-

101

accumulate architecture," in IEEE International Symposium on Circuits and

Systems, vol. 2, pp. 713-716: IEEE, 2001.

[38] W. P. du Plessis, "Optimal MAC structures in an FPGA," in IEEE AFRICON

6th Africon Conference in Africa, pp. 333-336: IEEE, 2002.

[39] S. R. Huang and L. R. Dung, "VLSI implememtation for MAC-level DWT

architecture," in IEEE Computer Society Annual Symposium on VLSI. New

Paradigms for VLSI Systems Design. ISVLSI 2002, pp. 101-106: IEEE, 2002.

[40] A. B. Premkumar, A. S. Madhukumar, and C. T. Lau, "MAC units for matched

filters in DS-CDMA systems," IEEE Transactions on Broadcasting, vol. 48, no.

1, pp. 52-57, 2002.

[41] Z. Tian, D. S. Yu, and Y. L. Qiu, "A high effective algorithm of 32-bit multiply

and MAC instructions’ VLSI implementation with 32 x 8 multiplier-

accumulator in DSP applications " in 6th International Conference on Signal

Processing, vol. 1, pp. 5-8: IEEE, 2002.

[42] Y. Liao and D. B. Roberts, "A high-performance and low-power 32-bit

multiply-accumulate unit with single-instruction-multiple-data (SIMD)

feature," IEEE Journal of Solid-State Circuits, vol. 37, no. 7, pp. 926-931, 2002.

[43] J. T. Kao, M. Miyazaki, and A. R. Chandrakasan, "A 175-mV multiply-

accumulate unit using an adaptive supply voltage and body bias architecture,"

IEEE journal of solid-state circuits, vol. 37, no. 11, pp. 1545-1554, 2002.

[44] D. Suvakovic, C. Salama, and T. Andre, "Energy efficient adiabatic multiplier-

accumulator design," Journal of VLSI Signal Processing, vol. 33, no. 1, pp. 83-

103, 2003.

[45] B. Shim and N. R. Shanbhag, "Complexity analysis of multicarrier and single-

carrier systems for very high-speed digital subscriber line," IEEE Transactions

on Signal Processing, vol. 51, no. 1, pp. 282-292, 2003.

[46] Y. L. Y. Li and J. C. J. Chen, "A reconfigurable architecture of a high

performance 32-bit MAC unit for embedded DSP," in 5th International

Conference on ASIC, vol. 2, pp. 1285-1288: IEEE, 2003.

[47] J. Grossschadl and G. A. Kamendje, "A single-cycle (32 x 32+ 32 + 64)-bit

multiply/accumulate unit for digital signal processing and public-key

102

cryptography," in 10th IEEE International Conference on Electronics, Circuits

and Systems, vol. 2, pp. 739-742: IEEE, 2003.

[48] I. Kataeva, H. Zhao, H. Engseth, E. Tolkacheva, and A. Kidiyarova-

Shevchenko, "RSFQ digital signal processor for interference cancellation,"

IEEE Transactions on Applied Superconductivity, vol. 15, no. 2, pp. 405-410,

2005.

[49] P. I. Bunyk, Q. P. Herr, and M. W. Johnson, "Demonstration of multiply-

accumulate unit for programmable band-pass ADC," IEEE Transactions on

Applied Superconductivity, vol. 15, no. 2, pp. 392-395, 2005.

[50] J. S. Cardoso and C.-R. L., "Accumulator size minimization for a fast cumulant-

based motion estimator," IEEE Transactions on Circuits and Systems for Video

Technology, vol. 15, no. 12, pp. 1660-1664, 2005.

[51] A. Danysh and D. Tan, "Architecture and implementation of a Vector/SIMD

multiply-accumulate unit," IEEE Transactions on Computers, vol. 54, no. 3, pp.

284-293, 2005.

[52] S. R. Vangal, Y. V. Hoskote, N. Y. Borkar, and A. Alvandpour, "A 6.2-GFlops

floating-point multiply-accumulator with conditional normalization," IEEE

Journal of Solid-State Circuits, vol. 41, no. 10, pp. 2314-2323, 2006.

[53] I. Kataeva, H. Engseth, and A. Kidiyarova-Shevchenko, "Scalable matrix

multiplication with hybrid CMOS-RSFQ digital signal processor," IEEE

Transactions on Applied Superconductivity, vol. 17, no. 2, pp. 486-489, 2007.

[54] Y. Voronenko and M. Püschel, "Mechanical derivation of fused multiply–add

algorithms for linear transforms," IEEE Transactions on Signal Processing, vol.

55, no. 9, pp. 4458-4473, 2007.

[55] S. Shanthala, C. P. Raj, and S. Y. Kulkarni, "Design and VLSI implementation

of pipelined multiply accumulate unit," in Second International Conference on

Emerging Trends in Engineering and Technology, Nagpur, India, pp. 381-386:

IEEE, 2009.

[56] T. T. Hoang, M. Själander, and P. Larsson-Edefors, "A high-speed, energy-

efficient two-cycle multiply-accumulate (MAC) architecture and its application

to a double-throughput MAC unit," IEEE Transactions on Circuits and

Systems-I: Regular Papers, vol. 57, no. 12, pp. 3073-3081, 2010.

103

[57] H. Quan, R. Xiao, K. You, X. Zeng, and Z. Yu, "A novel vector/SIMD multiply-

accumulate unit based on reconfigurable booth array," in 10th IEEE

International Conference on Solid-State and Integrated Circuit Technology, pp.

524-526: IEEE, 2010.

[58] S. Jain et al., "A 90mW/GFlop 3.4 GHz reconfigurable fused/continuous

multiply-accumulator for floating-point and integer operands in 65nm," in 23rd

International Conference on VLSI Design, pp. 252-257: IEEE, 2010.

[59] I. Kouretas, C. Basetas, and V. Paliouras, "Low-power logarithmic number

system addition/subtraction and their impact on digital filters," IEEE

Transactions on Computers, vol. 62, no. 11, pp. 2196-2209, 2012.

[60] S. E. Esmaeili, A. J. Al-Kahlili, and G. E. R. Cowan, "Low-swing differential

conditional capturing flip-flop for LC resonant clock distribution networks,"

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20,

no. 8, pp. 1547-1551, 2012.

[61] P. Maechler et al., "VLSI design of approximate message passing for signal

restoration and compressive sensing," IEEE Journal on Emerging and Selected

Topics in Circuits and Systems, vol. 2, no. 3, pp. 579-590, 2012.

[62] C. Zhang, C. Wang, and M. O. Ahmad, "A pipeline VLSI architecture for fast

computation of the 2-D discrete wavelet transform," IEEE Transactions on

Circuits and Systems-I: Regular Papers, vol. 59, no. 8, pp. 1775-1785, 2012.

[63] J. Mooney, A. E. Mahdi, and M. Halton, "Application-specific instruction-set

processor for control of multi-rail DC-DC converter systems," IEEE

Transactions on Circuits and Systems-I: Regular Papers, vol. 60, no. 1, pp. 243-

254, 2013.

[64] B. Marr, B. Degnan, P. Hasler, and D. Anderson, "Scaling energy per operation

via an asynchronous pipeline," IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 21, no. 1, pp. 147-151, 2013.

[65] A. Abdelgawad, "Low power multiply accumulate unit (MAC) for future

wireless sensor networks," in IEEE Sensors Applications Symposium

Proceedings, Galveston, TX, USA, pp. 129-132: IEEE, 2013.

104

[66] A. Amaricai, O. Boncalo, and C. E. Gavriliu, "Low-precision DSP-based

floating-point multiply-add fused for field programmable gate arrays," The

Institution of Engineering and Technology, vol. 8, no. 4, pp. 187-197, 2014.

[67] A. Burg and O. Keren, "Universal hardware for systems with acceptable

representations as low order polynomials," IEEE Transactions on Circuits and

Systems-I: Regular Papers, vol. 61, no. 10, pp. 2878-2887, 2014.

[68] S. Ahish, Y. B. N. Kumar, D. Sharma, and M. H. Vasantha, "Design of high

performance multiply-accumulate computation unit," in IEEE International

Advance Computing Conference (IACC), Banglore, India, pp. 915-918: IEEE,

2015.

[69] N. Akbarzadeh, S. Timarchi, and A. A. Hamidi, "Efficient multiply-add unit

specified for DSPs utilizing low-power pipeline modulo 2n+ 1 multiplier," in

9th Iranian Conference on Machine Vision and Image Processing, Shahid

Beheshti University, Tehran, Iran, pp. 120-123, 2015.

[70] Y. C. Chen, C. T. Tang, H. C. Wu, and H. Chen, "A compact multiply-

accumulate architecture for clustering pulse-width coded biomedical signals,"

in International Symposium on Bioelectronics and Bioinformatics (ISBB),

Beijing, China, pp. 83-86, 2015.

[71] U. Cini and O. Kurt, "A high performance multiply-accumulate unit with double

carry-save scheme for 6-input LUT based reconfigurable systems," in 9th

International Conference on Electrical and Electronics Engineering (ELECO),

Bursa, Turkey, pp. 940-944, 2015.

[72] L. Gerlach, G. Payá-Vayá, and H. Blume, "An area efficient real and complex-

valued multiply-accumulate SIMD unit for digital signal processors," in IEEE

Workshop on Signal Processing Systems (SiPS), Hangzhou, China, pp. 1-6,

2015.

[73] R. Kumar and M. Pattanaik, "A novel dual multiplier floating point multiply

accumulate architecture," in 19th International Symposium on VLSI Design and

Test, Ahmedabad, India, pp. 1-2, 2015.

[74] V. Priya and V. Kavitha, "Design of efficient multiply-accumulate block for

PID controllers," in 2nd International Conference on Electronics and

Communication Systems (ICECS), Coimbatore, India, pp. 322-325, 2015.

105

[75] A. Rahul Narasimhan and R. S. Subramanian, "High speed multiply-

accumulator coprocessor realized for digital filters," in IEEE International

Conference on Electrical, Computer and Communication Technologies

(ICECCT), Coimbatore, India, pp. 1-4, 2015.

[76] L. S. DeBrunner, D. Williams, and C. Riker, "Truncated multiply-and-

accumulate units for FIR filter implementation with reduced coefficient length,"

in 51st Asilomar Conference on Signals, Systems, and Computers, Pacific

Grove, CA, USA, pp. 457-461, 2015.

[77] M. M. A. Basiri and S. N. Mahammad, "Configurable folded IIR filter design,"

IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, no. 12,

pp. 1144-1148, 2015.

[78] A. Nandal, T. Vigneswarn, A. K. Rana, and A. Dhaka, "An efficient 256-tap

parallel FIR digital filter implementation using distributed arithmetic

architecture," in Eleventh International Multi-Conference on Information

Processing-2015, Banglore, India, pp. 605-611, 2015.

[79] R. Anitha, N. Deshmukh, S. K. Sahoo, P. S. Karthikeyan, and I. J. Reglend, "A

32 bit MAC unit design using vedic multiplier and reversible logic gate," in

2015 International Conference on Circuit, Power and Computing Technologies

[ICCPCT], Nagercoil, India, pp. 1-6: IEEE, 2015.

[80] K. V. Karthikeyan, R. Babu, N. Mathan, and B. Karthick, "Performance analysis

of an efficient MAC unit using CNTFET technology," in Recent Advances In

Nano Science And Technology 2015, Chennai, Tamilnadu, India, vol. 3, pp.

2525-2531, 2016.

[81] A. K. Dhindsa and R. Sarma, "Pipelined and clock gated MAC architecture

design and implementation," Far East Journal of Electronics and

Communications, vol. 16, no. 1, pp. 607-621, 2016.

[82] J. Garland and D. Gregg, "Low complexity multiply accumulate unit for weight-

sharing convolutional neural networks," IEEE Computer Architecture Letters,

vol. 16, no. 2, pp. 132-135, 2017.

[83] D. I. Jeon, K. B. Park, and K. S. Chung, "HMC-MAC: processing-in memory

architecture for multiply-accumulate operations with hybrid memory cube,"

IEEE Computer Architecture Letters, vol. 17, no. 1, pp. 5-8, 2017.

106

[84] A. V. Ananthalakshmi and G. F. Sudha, "A novel power efficient 0.64-GFlops

fused 32-bit reversible floating point arithmetic unit architecture for digital

signal processing applications," Microprocessors and Microsystems, vol. 51,

no. 1, pp. 366-385, 2017.

[85] W. Kamp, N. Abel, and G. Comoretto, "Complex multiply accumulate cells for

the square kilometre array correlators," in International Conference on

ReConFigurable Computing and FPGAs (ReConFig), Cancun, Mexico,

Mexico, pp. 1-6: IEEE, 2018.

[86] A. Lv, C. Wang, L. Hou, Z. Zeng, J. Guo, and N. Jiang, "An arithmetic unit and

multiplying accumulation unit of a custom floating point data format," in IEEE

3rd International Conference on Integrated Circuits and Microsystems

(ICICM), Shanghai, China, pp. 282-285, 2018.

[87] H. Zhang, H. J. Lee, and S. B. Ko, "Efficient fixed/floating-point merged mixed-

precision multiply-accumulate unit for deep learning processors," in IEEE

International Symposium on Circuits and Systems (ISCAS), Florence, Italy, pp.

1-5: IEEE, 2018.

[88] K. Chen, L. Chen, P. Reviriego, and F. Lombardi, "Efficient implementations

of reduced precision redundancy (RPR) multiply and accumulate (MAC),"

IEEE Transactions on Computers, vol. 68, no. 5, pp. 784-790, 2018.

[89] S. Ryu, N. Park, and J. J. Kim, "Feedforward-cutset-free pipelined multiply–

accumulate unit for the machine learning accelerator," IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 27, no. 1, pp. 138-146, 2018.

[90] P. A. Patil and C. Kulkarni, "Multiply accumulate unit using radix-4 booth

encoding," in Second International Conference on Intelligent Computing and

Control Systems (ICICCS), Madurai, India, pp. 1076-1080: IEEE, 2018.

[91] P. A. Patil and C. Kulkarni, "A survey on multiply accumulate unit," in Fourth

International Conference on Computing Communication Control and

Automation (ICCUBEA), Pune, India, pp. 1-5, 2019.

[92] V. Camus, C. Enz, and M. Verhelst, "Survey of precision-scalable multiply-

accumulate units for neural-network processing," in IEEE International

Conference on Artificial Intelligence Circuits and Systems (AICAS), Hsinchu,

Taiwan, pp. 57-61, 2019.

107

[93] H. Zhang, J. He, and S. B. Ko, "Efficient posit multiply-accumulate unit

generator for deep learning applications," in IEEE International Symposium on

Circuits and Systems (ISCAS), Sapporo, Japan, pp. 1-5: IEEE, 2019.

[94] V. M. Senthilkumar, S. Ravindrakumar, D. Nithya, and N. V. Kousik, "A vedic

mathematics based processor core for discrete wavelet transform using FinFET

and CNTFET technology for biomedical signal processing," Microprocessors

and Microsystems, vol. 71, no. 1, pp. 16-32, 2019.

[95] C. W. Tung and S. H. Huang, "A high-performance multiply-accumulate unit

by integrating additions and accumulations into partial product reduction

process," IEEE Access, vol. 8, pp. 87367-87377, 2020.

[96] M. A. Nahmias, T. F. De Lima, A. N. Tait, H. T. Peng, B. J. Shastri, and P. R.

Prucnal, "Photonic multiply-accumulate operations for neural networks," IEEE

Journal of Selected Topics in Quantum Electronics, vol. 26, no. 1, pp. 1-18,

2019.

[97] H. Zhang, D. Chen, and S. Ko, "New flexible multiple-precision multiply-

accumulate unit for deep neural network training and inference," IEEE

Transactions on Computers, vol. 69, no. 1, pp. 26-38, 2019.

108

LIST OF PUBLICATIONS

PATENT & COPYRIGHT:

1. “N-Bit Compressor Based Multiplier Circuits”, by Rajkumar Sarma, Cherry

Bhargava, Sandeep Dhariwal, & Shruti Jain. (June 20th, 2018). Patent Application

Number: 201811022936. Accessed on: July 26th, 2019. [Online].

Available:http://ipindiaservices.gov.in/PatentSearch/PatentSearch//ViewApplicati

onStatus.

2. “A Multiplexer Based MAC Architecture Implementation on FPGA”, by

Rajkumar Sarma, Cherry Bhargava & Shruti Jain (June 25th, 2020). Provisional

Patent Application Number: 202011026964.

3. “A Handbook to Use Digital Circuit Simulation Tools”, by Rajkumar Sarma,

Cherry Bhargava & Shruti Jain. Copyright Registration Number: L-83855/2019.

Registered on: July 8th, 2019.

4. “Novel Signed Floating-Point MAC (SFMAC) Architecture”, by Rajkumar

Sarma, Cherry Bhargava & Shruti Jain. Copyright Registration Number: L-

91179/2020. Registered on: May 6th, 2019.

INTERNATIONAL JOURNALS:

1. R. Sarma, C. Bhargava, and S. Jain, “A MUX based signed-floating-point MAC

architecture using UCM algorithm”, Bulletin of The Polish Academy of Sciences:

Technical Sciences, In-press. [SCI: 1.385 IF]

2. R. Sarma, C. Bhargava, S. Dhariwal, and S. Jain, “UCM: A novel approach for

delay optimization”, International Journal of Performability Engineering, vol. 15,

no. 4, pp. 1190-1198, 2019. [SCOPUS: 0.16 SJR]

109

3. R. Sarma, C. Bhargava, and S. Jain, “Accelerated PVT analysis of UCM

architecture using cadence ADE-XL”, International Journal of Engineering and

Advanced Technology, vol. 8, no. 5, pp.1913-1919, 2019. [SCOPUS: 0.1 SJR]

4. R. Sarma, C. Bhargava, and S. Jain, “Application of Ameliorated Harris Hawks

Optimizer for Designing of Low-Power Signed Floating-point MAC Architecture”,

Neural Computing and Applications (NCAA), submitted & under review. [SCI]

BOOK CHAPTER & CONFERENCES:

1. R. Sarma, C. Bhargava, and S. Jain, “PVT Variability Check on UCM

Architectures at Extreme Temperature-Process Changes”, AI Techniques for

Reliability Prediction for Electronic Components, IGI Global, ISBN:

9781799814641, pp. 238-251, 2019.

2. R. Sarma, S. Dhariwal, and S. Jain, “Design and analysis of a novel 8 × 8 bit

signed/unsigned synchronous MAC architecture using clock gating scheme

for fixed-point arithmetic ”, 2nd International Conference on Intelligent Circuits

and Systems, ICICS 2018, Punjab, India, pp. 423-429, 2018.

3. R. Sarma, S. Dhariwal, and S. Jain, “A novel normalization architecture for

floating-point arithmetic ”, International Conference on Data Science &

Machine Learning, ICDSML-2020, accepted for publication.

	4. Thesis First Page.pdf
	Microsoft Word - All chapter_together_done_ON_010720_post_VIVA-VOCE.pdf

