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Abstract

Non-linear partial differential equations (PDEs) play a significant role in portraying

most physical phenomenon occurring in the field of engineering and physical sciences.

It is difficult to obtain an analytical solution of these mathematical models so

many researchers have applied various semi -analytical and numerical techniques

to solve these equations. In this thesis, our focus is to obtain the analytical solution

as a convergent series solution of non-linear PDEs, non-linear coupled and non-

linear fractional PDE. We have used homotopy perturbation method with integral

transformation like Laplace transformation, Sumudu transformation and Elzaki

transformation for the series solution of the above-said equations. The conditions

for the convergence of the series solution have been derived and verified by applying

it on some well known physical model. Further, these solutions analyzed using error

analysis and are represented in the tabular form and surface graphs.

The first chapter covers the introductory part of partial differential equations

(PDEs), perturbation theory and background of homotopy perturbation method.

Further, it contains the literature survey of the various semi-analytical techniques

like HPM, VIM, DTM,HPTM, HPSTM, HPETM and their modifications which

occurred in the last few decades. In the second chapter, HPTM is implemented

successfully for the series solution of a higher order non-linear PDE. Finally, the

series solution of fifth-order Korteweg-de Vries equation is obtained which describes

the model of waves occurring in ”shallow water waves”. In the next chapter, HPTM
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and HPSTM are implemented for the solution of non-linear coupled and fractional

PDEs. As an application of HPTM, the solution of Coupled KdV equations of

order three, Hirota Satsuma KdV system, 1 and 2-dimensional coupled Burgers

equation are obtained. Moreover, we have executed HPSTM to solve fractional K(2,

2) equation, Sawada Kotera equations, KdV equations and 1-D coupled attractor

Keller Segel equations. While using these semi-analytical techniques, the solution of

the non-linear PDEs is obtained in the form of infinite series. So, for the credibility

of the obtained series solution, we have derived the condition of convergence of

the series solution obtained by using HPSTM. Then, we have implemented the

condition of convergence to find the solution of Newell-Whitehead-Segel equation

and Fishers equations. Moreover, we have performed the error analysis and the

condition of maximum truncation error is verified. Further, we have achieved the

convergence of the HPTM of the series solution of non-linear fractional PDE and

then we have actualized the said procedure to solve the Burgers’ equation. In the

subsequent chapter, HPTM and HPETM are applied to solve the fractional non-

linear PDE and comparative analysis has been performed between the two methods.

At last, we have proposed a new efficient semi-analytical technique which is hybrid

of HPM and ”Sumudu transformation” method where we have used a new form of

Hes polynomial named as Accelerated Hes polynomial and we conclude that this

technique is more efficient semi-analytical technique than other classical techniques.

To validate the above argument, we have implemented the proposed technique on a

non-linear partial differential equation with proportionate delay. The convergence

of the series solution is verified and finally, the error analysis and the statistical

analysis has been performed to examine the precision of the proposed technique.
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Chapter 1

Introduction

1.1 Preliminary

Differential equations are utilized to express many general laws of nature and

have numerous applications in physical, social, economic and other dynamical

frameworks. Specifically, the origin of the differential equation might be considered

as the endeavors of Newton to represent the movement of particles. These equations

may give numerous valuable data about the framework if the condition is shaped

joining the different vital elements of the framework.

A differential equation depicts a relation between independent, dependent vari-

ables and its derivatives. We may characterize the differential equations in two

sections:

1. Ordinary differential equation (ODE)

2. Partial differential equation (PDE)

The differential equation which involves only one independent variable, one depen-

dent variable and its derivative with respect to an independent variable is known as

an ordinary differential equation. Some well -known examples of ordinary differential

equations are exponential decay or growth population model, prey-predator model,

1



CHAPTER 1. INTRODUCTION

Rayleigh’s equation (has application in fluid dynamics) and Lane–Emden equation

(has application in astrophysics).

A PDE is an equation which involves more than one independent variables like

x1, x2, ..., xn; a dependent variable u and its partial derivative w.r.t the independent

variables such as F

(

x1, x2, ..., xn, u,
∂u
∂x1
, ∂u
∂x2
, ..., ∂u

∂xn

)

= 0 . PDEs show up as often

as possible in every aspect of physics and engineering. Moreover, in recent years we

find that partial differential equations have extraordinary significance in numerous

areas like biology, chemistry, image processing, graphics and in economics (finance).

These partial differential equations are upgraded by some extra conditions, for

example, initial and boundary conditions. As the focus of our research is on partial

differential equations only, henceforth, we will give a brief description of partial

differential equations.

The analysis of partial differential equations has numerous viewpoints. The

established methodology is to make new strategies for finding explicit solutions.

Each mathematical advancement that empowers a solution of a new class of partial

differential equations prompts a colossal headway in physics because of the tremen-

dous significance of PDEs in physical science. The method of characteristics which

was structured by Hamilton incited noteworthy advances in optics and mechanics.

The advancement in PDEs has been accomplished with the introduction of numerical

techniques. The theoretical analysis of partial differential equations is not only

because of educational interest rather it has numerous applications. These PDEs

may derive from some physical problems or a model of engineering. Moreover, it

is expected in most of the cases that the solution of PDEs ought to be unique

and stable under small disturbances of data. So, it is essential to have a complete

analysis of the partial differential equations before solving it.

The French mathematician Jacques Hadamard (1865 - 1963) authored the idea

2



CHAPTER 1. INTRODUCTION

of the well-posedness condition of PDE. The PDE is said to be well-posed if does not

depend only on the solution but also depends upon some additional conditions like

initial or boundary conditions. The well-posed problem has the following conditions:

Existence:The solution to the problem exists.

Uniqueness: The solution that depicts a specific physical problem must be unique.

Stability: A small change in an equation or auxiliary conditions create only a small

change in the solution

The existence and uniqueness of the PDE are given by Cauchy-Kowalevski theorem,

which states that the Cauchy problem has a locally unique analytic solution if the

PDE coefficients are analytic in the unknown function and its derivatives.

1.1.1 Some basic terminologies

Definition 1.1.1 Order of PDE: It is the order of the highest partial derivative

that occurs in the equation. e.g.: ut = c2uxx is the partial differential equation

(PDE) of order 2, while ut + 2uxx + uxxxxx = 0 is PDE of order 5, where ut and ux

represent partial derivative with respect to t and x.

Definition 1.1.2 Linear PDE:

A linear PDE is that in which the dependent variable and its partial derivative

are linear. Some well-known examples of linear PDEs are given below:

∂u

∂t
+ V

∂u

∂x
= 0 (Transport equation)

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0 (Laplace equation)

(∇2 + k2)u = 0 (Helmholtz equation)

Definition 1.1.3 Quasi-linear PDE:A PDE is said to be quasi-linear if the

highest order derivative coefficient does not depend upon the highest order partial

3



CHAPTER 1. INTRODUCTION

derivative of dependent variable i.e. if the PDE is of order k then, the coefficient

of kth order term contain any function of an independent variable and dependent

variable of order less than k. Some of the well-known examples of quasi-linear PDEs

are

∂φ

∂t
+ φ

∂φ

∂x
= ν

∂2φ

∂x2
(Burgers’ equation)

∂2φ

∂t2
−
∂2φ

∂x2
−
∂4φ

∂x4
− 3

∂2(φ2)

∂x2
= 0 (Boussinesq equation)

Definition 1.1.4 Semilinear PDE: A PDE is said to be semilinear if the highest

order derivative coefficient does not depend upon the dependent variable and its

derivative. Some of the well-known examples of semilinear PDEs are

∂u

∂t
+
∂u

∂x
+ u2 = 0 (Transport equation)

∂φ

∂t
+ φ

∂φ

∂x
+ 6

∂3φ

∂x3
= 0 (Korteweg-de Vries equation)

∂2u

∂x2
+
∂2u

∂y2
= f(x, y) (Poisson’s equation)

Definition 1.1.5 Non-linear PDE: A PDE is non-linear if the highest order

derivative coefficient has non-linearity in the dependent variable. Some examples of

non-linear partial differential equations are:

φ2x + φ2y = 1, (Eikonal equation)

div

(

∇φ
√

(1 + |∇φ|2)

)

= 0. (Minimal surface equation)

Definition 1.1.6 Solution of PDE: The function φ is called the solution of the

PDE if the function φ is continuous and has continuous partial derivative up to the

order of the PDE and satisfies the PDE.

If the function φ is discontinuous then φ is called weak solution of PDE. For

example, Such equation governs the problem of fluid dynamics where discontinuous

4



CHAPTER 1. INTRODUCTION

solution called shocks waves to develop and propagate across the computational

domain. A typical example is the sonic blast created by a supersonic aircraft when

it surpasses the speed of sound.

Definition 1.1.7 Initial condition: If φ and all its derivatives are of order ≤ n

are continuous on domain D contained in space of independent variable of φ, then

φ is said to of space Cn.

If the independent variable is time and the condition to be satisfied at the initial

point, i.e. t = 0 then it is called initial condition. A problem which involves the

partial differential equation based on initial condition only is called initial value

problem.

Definition 1.1.8 Boundary condition: If the conditions are defined on the

boundary ∂D of the domain D then, the conditions are called boundary conditions.

PDE which includes the boundary conditions is said to be a boundary value problem.

There are mainly three types of boundary conditions:

Definition 1.1.9 Dirichlet boundary condition :If the conditions determined

the estimation of the dependent variable on the boundary ∂D of the domain, then

the conditions are said to be a Dirichlet boundary condition. For example: Consider

the following BVP

∂2φ

∂t2
− c2∇2φ = 0, x, y ∈ R, t ≥ 0 (1.1)

where

B(φ) = 0 on ∂D (1.2)

If B(φ) = 0 stands for the following boundary condition

φ = 0 on ∂D (Dirichlet condition)

5
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Definition 1.1.10 Neumann boundary condition :If the conditions specified

the derivative of the dependent variable on the boundary ∂D of the domain, then

the conditions are said to be a Neumann boundary condition. For example: if in the

problem (1.1), the boundary conditions B(φ) = 0 is of the form

∂φ

∂x
= 0 on ∂D (Neumann condition)

Definition 1.1.11 Robin boundary condition :If the conditions involve the

dependent variable and its derivative on the boundary ∂D of the domain, then the

conditions are said to be a Robin boundary condition or mixed boundary conditions.

For example: if in the problem (1.1), the boundary conditions B(φ) = 0 is of the

form

∂φ

∂x
+ φ = 0 on ∂D (Robin condition)

1.2 Fractional calculus

Fractional calculus is the study of the mathematical science that comes out of the

customary meaning of the integer-order differentiation and integration. It gives

a few tools for fathoming arbitrary order differential and integral equation. The

fractional calculus is as old as traditional calculus, however, has gained significant

importance amid the previous few decades, because of its immense importance in

various assorted fields of science and engineering which include fluid flow, visco-

elasticity, solid mechanics, signal processing, probability, statistics, etc. The number

of works managing dynamical frameworks portrayed by fractional-order equation

that include derivative and integral of arbitrary order as they delineate the memory

and innate properties of various substances. In 1695, L’Hopital wrote a letter to

Leibnitz in which he used to get some information about a particular notation he

published for the nth-order derivative of the linear function. He made an inquiry to
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Leibniz, what may the result be if n is half. Leibniz responded by saying that it is

an obvious conundrum, which will result in significant outcomes one day. So, this

was the first time when fractional derivative came into the picture.

Many researchers utilizing their definitions and notations to present the idea of

fractional order derivative and integral. The definitions which have been advanced

in the realm of the fractional derivative are the Caputo, Grunwald-Letnikov, and

Riemann-Liouville. The Riemann-Liouville definition is for the most part utilized

yet this methodology isn’t entirely appropriate for physical problems and real-

world problems. Caputo introduced the definition at which the initial conditions

are defined at the integral order dissimilar to the Riemann-Liouville at which the

initial conditions are defined at fractional order. The Grunwald - Letnikov method

proceeds towards the problem from the definition of the derivative. This method

is used exclusively in numerical algorithms. Grunwald-Letnikov definition is the

extension of the definition of derivative for fractional order.

1.2.1 Fractional derivatives and Homotopic function

This section is devoted to the review of the three important definitions of fractional

derivatives viz. Riemann-Liouville, Grunwald-Letnikov, and Caputo of fractional

derivative and some other basic definitions.

Definition 1.2.1 A real function g(t) ∈ Cµ, t > 0, µ ∈ R if ∃ q ∈ R; (q > µ), such

that g(t) = tqk(t), where k(t) ∈ C[0,∞) and g(t) ∈ Cm
µ if g(m) ∈ Cµ,m ∈ N.

Definition 1.2.2 Grunwald-Letnikov derivative of fractional order p is given as

f
p
h(t) =

1

hp

n
∑

r=0

(−1)r pCrf(t− rh)

Definition 1.2.3 Riemann-Liouville (R-L) definition of fractional order derivative

7
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is

aD
α
t f(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

f(η)

(t− η)α−n+1
dη, (n− 1) ≤ α < n (1.3)

Definition 1.2.4 Caputo definition of fractional order derivative is given as

C
aD

α
t f(t) =

1

Γ(n− α)

∫ t

a

fn(η)

(t− η)α−n+1
dη, (n− 1) ≤ α < n (1.4)

Definition 1.2.5 The Mittag-Leffler function of two parameter α and β is given by

[40]

Eα,β(τ) =
∞
∑

n=0

τn

Γ(αn+ β)
, α, β > 0 (1.5)

Definition 1.2.6 Homotopy (Homotopic functions): Let φ and ψ be two

continuous functions defined from a (topological) space X into Y , then they are

said to be homotopic if

1. φ and ψ have same initial and final points in X,

2. there exist a continuous function,

H : X × [0, 1]→ Y

such that H(x, 0) = φ(x) and H(x, 1) = ψ(x)

Example: Let φ, ψ : R → R be any two continuous real functions. Let us define a

function H : R × [0, 1] → R by

H(x, t) = (1− t)φ(x) + t ψ(x), 0 ≤ t ≤ 1

Clearly, H is continuous as it is composition of two continuous functions. Moreover,

H(x, 0) = φ(x) and H(x, 1) = ψ(x). Thus, H is a homotopy between φ and ψ.

8
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1.3 Perturbation theory

This theory involves techniques to find an estimated solution to the problem by

introducing a precise solution to the related simple problem. If the problem cannot

be resolved properly, the theory of perturbation is pertinent, be that as it may, can

be unraveled by adding a small parameter to the numerical depiction of the critical

physical problem. To elucidate the said technique. Consider the following non-linear

differential equation.

L(x) + ǫN(x) = 0, (1.6)

where x depends upon t only, i.e. x = x(t), L(x) and N(x) are linear and

non-linear operators and ǫ is a small parameter. Here we consider the non-linear

term as a perturbation in (1.6). We assume the solution of (1.6) as a power series

in small parameter ǫ.

x(t) = x0(t) + ǫx1(t) + ǫ2x2(t) + . . . (1.7)

On substituting (1.7) in (1.6) and comparing the like terms of ǫ, we get

various differential equations that can be effectively comprehended to acquire the

estimations of x0(t), x1(t), x2(t), . . . .

1.4 Series expansion methods for non-linear par-

tial differential equations

In general, obtaining an analytical solution of non-linear PDE is difficult and

apart from that, most of the fractional equations don’t have the definite solutions,

consequently, there is a considerable focus on the numerical and semi-analytical

solutions of such equations. Several semi-analytical techniques have been proposed

to discover the solution of non-linear, coupled and fractional PDE like

1. Variational Iteration Method
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2. Modified Variational Iteration Method

3. Adomian Decomposition Method

4. Laplace Decomposition Method

5. Differential Transform Method

6. Homotopy Analysis Method

7. Homotopy Perturbation Method

8. Homotopy Perturbation Transformation Method

9. Homotopy Perturbation Sumudu Transformation Method

10. Homotopy Perturbation Elzaki Transformation Method

As our focus of research is based on the techniques using Homotopy perturbation

method, so in the next section, we will discuss the description of the Homotopy

perturbation method, while HPTM, HPSTM, and HPETM will be explained in the

subsequent chapters.

1.5 Homotopy perturbation method (HPM)

Consider the following non-linear PDE

L(φ) +N(φ) = k(ρ), ρ ∈ Ω (1.8)

with boundary condition

B

(

φ,
∂φ

∂n

)

= 0, ρ ∈ Γ (1.9)

10
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where L is a linear and N is non-linear operator and k(ρ) is an analytic function,

Γ is the boundary of the domain Ω. In 1999, Dr. He [42], construct a homotopy of

eq. (1.8) as H : Ω× [0, 1]→ R defined as

H(φ, p) = p(L(φ) +N(φ)− k(ρ)) + (1− p)(L(φ)− L(φ0)) = 0 (1.10)

or

H(φ, p) = pL(φ0) + p(N(φ)− k(ρ)) + (L(φ)− L(φ0)) (1.11)

where p is parameter such that 0 ≤ p ≤ 1 and φ0 is an initial value of φ that satisfies

the eq. (1.9). Clearly, from (1.10), we have

H(φ, 0) = L(φ)− L(φ0) = 0 (1.12)

H(φ, 1) = (L(φ) +N(φ)− k(ρ)) = 0 (1.13)

As the value of p changes from 0 to 1, φ varies from φ0 to φ(x, t). The basic

assumption for this method is that the solution of (1.8) can be expressed as φ =

φ0 + φ1p+ φ2p
2 + φ3p

3 + . . . . The solution of (1.8) is given by

φ(x, t) = lim
p→1

(φ0 + φ1p+ φ2p
2 + φ3p

3 + . . . )

= φ0 + φ1 + φ2 + . . .

1.6 Integral transformation

Definition 1.6.1 The integral transformation (I.T.)of function f(τ) is defined as

a map

I : C0(f)→ C0(f)

I{f(τ)} = F (k) =

∫ ∞

−∞

K(τ, k)f(τ)dτ

where C0(f) is a space of all continuous functions and K(τ, k) is the kernel of

transformation.
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1.6.1 Laplace transformation and its properties

Definition 1.6.2 The Laplace transformation is the I.T. with the kernel of trans-

formation is K(τ, k) = e−sτ which is non-zero for the positive value of τ and is

defined as

L[f(τ)] =

∫ ∞

0

f(τ)e−sτdτ = F (s), τ > 0. (1.14)

Properties:

1. L{1} = 1
s
,

2. L{tm} = Γ(m+1)
sm+1 ,

3. L[f (n)(τ)] = snL[f(τ)]−
∑n−1

i=0 s
n−1−if (i)(0).

4. L

{

∂α

∂τα
f(τ)

}

= sαL{f(τ)} −
∑n−1

k=0 s
α−k−1f (k)(0), n− 1 < α ≤ n

where ∂α

∂τα
is Caputo fractional derivative [17].

1.6.2 Sumudu transformation and its properties

Definition 1.6.3 The Sumudu transformation [105] of f(t) is defined as

S[f(t)] =
1

u

∫ ∞

0

f(t)e−
t

udt, t > 0. (1.15)

Properties:

1. S{1} = 1,

2. S
{

tm

Γ(m+1)

}

= um,

3. S{fα(t)} = 1
uαS{f(t)} −

∑k=n−1
k=0

1
un−k f

k(0), n− 1 < α ≤ n,

where fα is the α order Caputo fractional derivative [17] of f .

4. S{fn(t)} = 1
unS{f(t)} −

∑k=n−1
k=0

1
un−k f

k(0)

12
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1.6.3 Elzaki transformation and its properties

Definition 1.6.4 The Elzaki transformation [23, 24] of g(τ) is defined as

E[g(τ)] = v

∫ ∞

0

e
−τ

v g(τ)dτ = F (v), τ > 0. (1.16)

Properties:

1. E{1} = v2,

2. E
{

tm

Γ(m+1)

}

= vm+2,

3. E

{

∂α

∂τα
g(τ)

}

= E{g(τ)}
vα

−
∑n−1

k=0 v
k−α+2g(k)(0), n− 1 < α ≤ n,

where ∂α

∂τα
is Caputo fractional derivative [17]

1.7 Literature review

The homotopy perturbation technique is greatly available to non-mathematicians

and engineers. J He, proposed HPM [42], this technique has been considered an

incredible scientific tool for different kind of non-linear problems, as it is a promising

and advancing technique. In addition to its scientific significance and association

with other branches of mathematics, it is broadly utilized in all the ramifications of

current science.

Different perturbation methods have been utilized to handle non-linear issues.

Sadly, the conventional perturbation methods rely upon the doubt that small

parameter should be present, which is over-exacting, making it hard to find more

extensive applications because most non-linear equations have no little parameter

using any means. Therefore, numerous new techniques have as of late acquainted

some ways to wipe out of the small parameter like artificial parameter method

which is introduced by Liu [72], Liao [70, 71] proposed HAM, VIM proposed by

J He [41], differential transform method (DTM) by Zhou [119],ADM by Adomian
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[4] and others. Now we discussed the various authors those who have used these

semi-analytical techniques on different classes of physical problems.

G.Adomian [4] proposed a solution for non-linear stochastic equations by con-

sidering different types of non-linearity. Further, Adomian [5] has applied the

decomposition and asymptotic decomposition method for the different non-linear

and the system of non-linear PDEs. Adomian [6] applied decomposition technique

on various physical problems like duffing equation, non-linear transport equation,

matrix Riccati equation, advection-diffusion and dissipative wave equation in which

the non-linear terms are handled with Adomian’s polynomial and they conclude that

this method gives a viable technique to provide the precise solution of a wide class of

dynamical system which represents the real physical problems. Adomian [7] provides

the solution of coupled non-linear PDE with uncoupled boundary conditions.

J He [41] proposed VIM for solving non-linear PDE and in [43] applied variation

iteration method on various non-linear models like duffing equation, mathemati-

cal pendulum, vibrations of the eardrum and then compared the approximation

obtained by the proposed method to the Adomian’s method and conclude that

VIM provides the solution faster than Adomian’s method. Further, J He [42]

proposed homotopy perturbation method (HPM) by using homotopy concept used

in topology and classical perturbation technique. J He [44], [45] and [46] applied

HPM successfully on various non-linear differential equations. J He [47], made a

comparison between HPM and HAM and conclude that HPM is a better option for

non-linear problems than HAM.

Liao [69] compared HAM and HPM and showed that HPM is a special case of

HAM. Moreover, he concludes that both the methods give better estimations with

just a couple of terms if the conjecture and auxiliary linear operator are adequate.

Ganji and Sadighi [30] applied HPM to fathom coupled systems of non-linear
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reaction-diffusion equation and compared its result with ADM. Moreover, they

conclude that the result obtained from HPM is in good concurrence with those of

ADM. Ghorbani and Jafar [33] used HPM for calculating the Adomian polynomial.

J He [50] gave a review of the VIM for solving some non-linear problems and he

also listed useful iteration formula for some general non-linear problem. Further,

he successfully implemented the variational iteration method on the integrodiffer-

ential equation, non-linear boundary value problem, oscillator, and wave equations.

Wazwaz [107] studied the solution of homogeneous and non-homogenous advection

problem using VIM and ADM and also presented the comparative study between

these two methods. Babolian et al. [13] proposed some general guidelines to the

researcher for choosing the homotopy equation and then applied these guidelines for

solving some time-dependent equation like Klein-Gordon (K-G) equation, Emden-

Fowler equation, Evolution equation, and Cauchy reaction-diffusion equation.

Ghorbani [32] defines He’s polynomial to solve the non-linear problem and

conclude that it is an easy and effective technique for the solution of the non-linear

problem than Adomian polynomial. Further, Ghorbani presented the comparative

study of He’s HPM with other methods like ADM, direct method and series solution

method on Integro-differential equations and conclude that HPM is more reliable

than other traditional methods. Hesameddini and Latifizadeh [53] combined Laplace

transformation with VIM to beat the trouble of figuring the Lagrange’s multiplier

and used for solving non-linear problems. Moreover, they conclude that the

proposed technique is more efficient than the variational iteration method. Yildrim

[114, 115, 116, 117] pertained HPM for the analytical solution of fractional non-

linear Schrödinger equation, time and space fractional advection-dispersion equation

and fractional PDEs evolved in liquid mechanics like wave equation, Korteweg-de

Vries, Zakharov-Kuznetsov equation, Burgers’ equation, and Klein–Gordon (K-G)
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equation.

Biazar et.al. [16] proposed a modified form of Adomian decomposition method,

by this iterative method, the solution of a non-linear problem is obtained without

calculating Adomian polynomial separately, this technique is implemented on non-

linear partial differential equations and compared with ADM and VIM. Further, they

conclude that this technique leads to the outcomes which are equivalent to those

acquired by the variational iteration method. Das and Gupta [19] have solved time-

fractional diffusion equation having the external force and absorbent term whereas

Momani and Yildirim [77] have solved convection-diffusion fractional differential

equation using HPM but having non-linear source term.

Chen and Wang [18] have successfully implemented VIM on the neutral differ-

ential equation with proportionate delay. Gondal and Khan [36] combine HPM

with Laplace transformation to acquire the solution of the non-linear equation and

further Pade approximation has been incorporated with HPM and Laplace transform

to fastened the convergence of the series solution and named this technique as

(HPTPM) homotopy perturbation transform Pade method.

Khan and Mohyud-Din [62] incorporated He’s polynomial with Laplace transfor-

mation for the solution of MHD viscous fluid and recommended that this technique

is more reliable and adequate. Further, Khan and Wu [64] combine HPM with

Laplace transformation and named this technique as HPTM. Abazari and Ganji [1]

proposed 2-D DTM, 2-D reduced DTM and their properties and implement these

techniques for a non-linear partial differential equation with proportionate delay.

Gupta and Gupta [39, 67] employed HPTM on initial boundary value problem

where they consider Dirichlet as well as Neumann type boundary condition for

solving parabolic and hyperbolic like equations with variable coefficient. Madami

et.al. [74]combined Laplace transformation with homotopy perturbation method
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and named it as Laplace homotopy perturbation method. They used this technique

on non-homogeneous NPDE with variable coefficients. Haubold et.al.[40] gave a

review on Mittag-Leffler functions, functional relation with Mittag-Leffler functions

and its applications in fractional calculus. Cetinkaya et.al applied generalized

differential transformation method on non-linear fractional Korteweg -de Vries,

modified fractional Korteweg -de Vries equation and K (2,2) equation and conclude

that results acquired utilizing the proposed technique exhibited here concur well

with the numerical outcomes introduced somewhere else. Gupta and Singh [38]

studied the analytical solution of well known Fornberg - Whitham equation with

fractional order where fractional derivative was taken in Caputo sense.

Watugala [105] proposed a new form of integral transformation named as Sumudu

transformation and its properties. Further, he implemented this transformation on

differential equations and control engineering problems to discover the solution of

these problems. Kumar et.al. [66] proposed Sumudu homotopy perturbation trans-

formation as a coupling of Sumudu transformation and HPM and applied it on PDEs

with variable coefficients. Further, Singh et.al. [97] applied homotopy perturbation

Sumudu transformation on homogeneous and nonhomogenous advection problem

and conclude that this technique is beneficial for non-linear problems.

Elzaki [23, 24, 25] proposed a transformation called Elzaki transformation and

studied its properties and its applicability for solving linear ordinary and PDEs and

also discussed its relation with Laplace transformation. Khan et.al.[61] proposed

fractional Laplace homotopy perturbation transformation method for the fractional

problem where they used modified Reimann–Liouville fractional-order derivative.

Sushila et.al [85] proposed HASTM the blend of HAM and Sumudu transfor-

mation to study the analytical solution of Fokker–Planck equations. Mishra and

Nagar [76] proposed He-Laplace method as a blend of Laplace transform and HPM
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and implemented it on some linear and non-linear PDE’s. Further, Singh et.al. [95]

successfully implemented homotopy perturbation transformation method in time

and space fractional reaction– diffusion equation. Dhaigude et.al. [20] applied

ADM to study time-fractional, space fractional, time and space fractional Benjamin-

Bonamahony-Burger’s equations.

Elzaki and Hilal [26] consolidated HPM with Elzaki transformation in under-

standing non-linear partial differential equations. Grover et.al. [37] implemented

HPM for solving linear and non-linear parabolic equations. El-Kalla [57] proposed

homotopy perturbation technique in which he used a new form of He’s polynomial

for calculating the non-linear term which fastened the convergence of the series

solution and named this technique as Accelerated homotopy perturbation method.

El-Tawil and Huseen proposed a more generalized form of HAM and named it as the

q-homotopy analysis method. The series solution obtained through this technique

converges rapidly than HAM. They implemented this technique on some non-linear

PDE’s and they concluded that the region of convergence of series solution increases

as the value of the parameter decreases.

Sharma and Kumar [90] used HPM for the solution of the third-order KdV

equation. Mishra [75] used He-Laplace method for solving non-linear parabolic–

hyperbolic PDE where the non-linear terms are dealt with He’s polynomial. Kumar

et.al. [68] and Arife et.al. [9] applied homotopy analysis transformation method

for studying the solution of the fractional biological population model, fractional

diffusion equation and concluded that the solution obtained from HATM is in

great concurrence with the exact solution. Further, Singh et.al.[96] applied HPTM

on fractional Fornberg-Whitham equation in which the fractional-order derivative

was taken in Caputo sense. El-Tawil and Huseen [21] analyzed the convergence

of q-homotopy analysis method, they likewise talked about the condition, if the
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parameter is doled out than the solution merges to the exact solution.

Karbalaie et.al. [58] applied homotopy perturbation Sumudu transformation

method for the solution of non-linear fractional Fokker-Plank equation, biological

population model, wave equation and linear system of equations. Khan and Usman

[63] proposed modified HPTM for the non-linear boundary layer problem. They

used a diagonally Pade approximation to deal with the boundary conditions at

infinity. Abazari and Kilicman [2] solved first, second and third-order non-linear

integrodifferential equations with proportionate delay by applying the differential

transformation method (DTM) and conclude that the presented technique lessens

the computational challenges of alternate techniques, and every one of the counts

can be made straightforward controls.

Patra and Ray [83] applied HPSTM on fractional non-linear energy balance

equation of fin temperature and then compared the obtained solution with other

semi-analytical techniques like ADM and VIM. Further, they conclude that there is

a decent ascension between HPSM results with those of traditional techniques like

VIM and ADM.

Rubab et.al. [86] implemented homotopy perturbation Sumudu transformation

technique on linear and non-linear inhomogeneous Klien-Gordan equations and

calculated the exact solution of these equations. Yousif and Hamed [118] applied

HPSTM on time-fractional non-linear Inviscid Burgers’ equation, fifth-order KdV

equation, etc. and calculated the solution in the closed form using Mittag-Leffler

functions.

Adam [3] made a comparative study between He-Laplace method and successive

approximation method and conclude that although both the techniques are powerful

and efficient for getting a better approximate solution of linear and non-linear PDE’s

He-Laplace method reduces the volume of computation as compared to successive
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approximation method. Atangana [10] proposed modified homotopy perturbation

method which is a blend of HPM using Abel’s integral and decomposition method

for solving non-linear Keller-Segel model with different cases of sensitivity functions

and analyzed the technique with other semi-analytical techniques.

Ayati and Biazar [12] proposed the condition of convergence of HPM and

implemented it for the solution of the Lane-Emden equation. Jassim [55] imple-

mented HPTM for solving linear and non-linear Newell-Whitehead-Segel equation.

Filobello-Nino et.al. [28] proposed a modification in Laplace transform HPM to

get the precise solution of differential equations. In the proposed method, they

introduced an initial approximation as an arbitrary function of a polynomial with

some unknown parameter and they demonstrated the proficiency of the proposed

technique by effectively executing this method on non-linear differential equations

with mixed boundary conditions.

Johnston et.al. [56] implemented LHPM on space fractional-order and time-

fractional order Burger’s equation and conclude that the solution acquired from

LHPM is in concurrence with the solution acquired from VIM and ADM. Neamaty

et.al.[81] used HPETM on some time-fractional equation like time fraction advec-

tion equation, hyperbolic equation, and Fisher’s equation and then compared the

obtained solution of these equations with HPM and VIM.

Filobello-Nino et.al. [27] proposed some modification in LHPM to get the analyt-

ical solution of some variational problems. In their case study, the pertinence of their

work comprised of two points. One point showed that the proposed modification is a

very effective technique for linear and non-linear variational problems and secondly,

they suggested some mathematical manipulation in the nonhomogenous differential

equation with variable coefficient to transform them to the equation which can be

easily handled with the proposed technique. Moutsinga et. al.[80] applied Laplace
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homotopy perturbation method to explain non-linear frameworks of the stiff Riccati

differential equation emerging in finance.

Sakar et.al. [87] applied homotopy perturbation technique on time-fractional

non-linear PDEs with proportionate delay. The condition of convergence and

maximum truncation error has been discussed. Sedeeg [89] implemented homotopy

perturbation Elazaki transformation method (HPETM) on time-fractional 1-D heat

like equation, 2-D heat equation and 3-D heat like an equation. Moreover, he

expressed the solution in the closed compact form using the Mittag-Leffler function.

Tripathi and Mishra [103] effectively used Laplace transform HPM to obtain the

solution of singular IVP of LaneEmden type differential equations. Martinez et.al.

[112] proposed Feng’s first integral method to the analytical solution of non-linear

coupled space and time-fractional modified KdV equation, in which they have used

Reimann-Liouville fractional derivative.

Wang and Liu [104] applied HPM to solve the non-linear time-fractional

Fornberg-Whitham equation in which they used a fractional transformation to

change the fractional differential equation into PDE and afterward they execute

HPM for the solution of the above-said equation where the non-linear term is taken

care of with He’s polynomial. Wang et.al. [109] proposed the modification of exp–

function method for the fractional PDE. The modification in the method is of the

form of generalized Kudryashov method, generalized exponential rational function

method which is implemented for the solution of fractional Benjamin-Bona-Mahony

equation where they used He’s fractional derivative. Further, they gave a conclusion

that generalized exponential rational function technique is better than a generalized

Kudryashov method for FDE.

Liu et.al. [73] implemented an amalgamation of HPM and Laplace transforma-

tion for the solution of non-linear PDE’s. Tiwana et.al. [102] implemented HPTM
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for the solution of homogenous and non-homogenous non-linear fractional reaction-

diffusion system of Lotka-Volterra type differential equations. Hendi and Qarni [52]

proposed a combination of VIM with accelerated HPM i.e variational accelerated

HPM to solve non-linear 2-D Volterra-Fredholm integrodifferential equations and

the condition of convergence analysis of the analytic solution was also presented.

Gomez–Aguilar and Atangana [34] proposed a new form of fractional derivative

via Liouville-Caputo sense and via Riemann-Liouville sense. They used Mittag-

Leffler law, power, and exponential decay to model such fractional operator and

implemented this fractional operator for the solution of Genesio-Tesi’s model, Lotka-

Volterra equations and Newton-Leipnik’s model. Further, they concluded that this

type of operator would be efficient, accurate and very useful to model complex

physical problem. Singh and Kumar [94] implemented alternative VIM for the

fractional non-linear PDEs with proportionate delay. They used Caputo fractional

derivative and the solution obtained from the said technique quickly meets to the

precise solution.

Gomez-Aguilar et.al. [35] implemented homotopy perturbation transformation

technique to the analytical solution of some well known fractional non-linear PDE

like KdV, Klien Gordan, Burgers’ equation in which they used Caputo-Fabrizio oper-

ator as a fractional differential operator. Atangana and Gomez-Aguilar [11] proposed

the numerical estimation of the R-L derivative. They have discussed the numerical

approximation of Riemann-Liouville (R-L), Caputo-Fabrizio and Atangana-Baleanu

in (R-L) sense. They discussed the application of R-L in mathematics and to

model physical problems. Moreover, they executed these techniques for solving the

fractional diffusion-advection equation. Srivastava et.al. ([100]) applied q-HAM and

Laplace decomposition technique for solving fractional-order vibration equations.

Morales-Delgado et.al.[78] used the homotopy analysis method with Laplace
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transformation for the analytical solution of Keller Segel model where they used

Caputo-Fabrizio differential operator and Atangana-Baleanu operator in Caputo

sense. Yepez-Martnez and Gomez-Aguilar [110] implemented HPTM and Adams-

Bashforth-Moulton method for the fractional differential equation where they

used R-L, Liouville-Caputo, Caputo-Fabrizio, and generalized Mittag-Leffler law

fractional operator in Caputo sense. Yepez-Martnez et.al. [111] used the first

integral method for fractional non-linear PDE like non-linear fractional Sharma-

Tasso-Olver, modified Benjamin-Bona-Mahony equation and Schrodinger equation

where a fractional derivative is taken in a beta sense.
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Chapter 2

Series Solution of Higher Order
Non-linear PDE

A wide variety of problems like non-linear waves arise in gas dynamics, traffic

problem, chromatography, water waves, and the biological system can be modeled

as first-order non-linear PDE. Second-order non-linear PDE occurs in the study of

fluid mechanics, thermodynamics, electrodynamics, internal waves in the deep water

and population dynamics. Burgers’ equation (Fluid mechanics), Fisher′s equation

(Gene propagation), Benjamin- Ono (internal waves in deep water) and Fitzhugh-

Nagumo (Biological neuron model), Navier-Stokes equation (Fluid flow, gas flow)

etc. are some well known examples of second-order non-linear PDEs.

Third-order non-linear PDE arise during the study of shallow waves, solitons,

Peakons, plasma waves. Some of the examples of third-order non-linear PDEs

are Camassa-Holm equation (Peakon), Korteweg-de Vries (Shallow waves), Hirota

Satsuma equation (shallow water waves) and so on.

In this chapter, we attempt to discover the solution of higher-order non-linear

PDE using series solution methods specifically HPTM. Numerous scientist utilize
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CHAPTER 2. SERIES SOLUTION OF HIGHER ORDER NON-LINEAR PDE

distinctive strategies to unravel the KdV equation [15, 31, 84, 59, 60, 106, 113].

2.1 Homotopy perturbation transformation method

(HPTM)

Consider the following general non-linear partial differential equation

∂n

∂tn
w + Lw +Nw =f(x, t), t > 0, x ∈ R, , (2.1)

where L and N are linear and non-linear differential operators respectively which

satisfy Lipschitz condition and f(x, t) is the source term. Now applying Laplace

transform on (2.1), we get

L

{

∂n

∂tn
w + Lw +Nw

}

= L{f(x, t)}.

Using (1.6.1), we have

L
{

w
}

=
1

sn

(

n−1
∑

k=0

sn−k−1w(k)(x, 0)

)

+
1

sn
L

{

f(x, t)− Lw −Nw

}

.

L
{

w
}

=
n−1
∑

k=0

s−k−1w(k)(x, 0) +
1

sn
L

{

f(x, t)− Lw −Nw

}

.

Operating inverse Laplace transform , we get

w(x, t) =
n−1
∑

k=0

tk

k!
w(k)(x, 0) + L−1

{

1

sn
L

{

f(x, t)− Lw −Nw

}}

,

By applying HPM, we get

0 =(1− p)

(

w(x, t)− w(x, 0)

)

+ p

(

w(x, t)−
n−1
∑

k=0

tk

k!
w(k)(x, 0)

− L−1
{

1

sn
L

{

f(x, t)− Lw −Nw

}})

,

w(x, t) = w(x, 0) + p

( n−1
∑

k=1

tk

k!
w(k)(x, 0) +L−1

{

1

sn
L

{

f(x, t)−Lw−Nw

}})

(2.2)
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Let

w =
∞
∑

n=0

pnwn,

N w =
∞
∑

n=0

pnHn(x, t) (2.3)

where

Hn(w(x, t)) =
1

n!

∂n

∂pn

( ∞
∑

i=0

piwi

)

(2.4)

Substituting (2.3) and (2.4) in (2.2), we get

∞
∑

n=0

pnwn = w(x, 0) + p

( n−1
∑

k=1

tk

k!
w(k)(x, 0) (2.5)

+ L−1
{

1

sn
L

{

f(x, t)− L

( ∞
∑

n=0

pnwn

)

−

∞
∑

n=0

pnHn

}})

(2.6)

On looking at the coefficients of like power of p, we have

p0 : w0 =w(x, 0);

p1 : w1 =
n−1
∑

k=1

tk

k!
w(k)(x, 0) + L−1

{

1

sn
L

{

f(x, t)− Lw0 −H0

}}

;

p2 : w2 =− L
−1

{

1

sn
L

{

Lw1 +H1

}}

;

p3 : w3 =− L
−1

{

1

sn
L

{

Lw2 +H2

}}

,

...

hence, the approximate solution is obtained as p→ 1

w(x, t) = w0 + w1 + w2 + . . . .

2.2 Application

To illustrate the working procedure and significance of HPTM, we implement this

technique on the following well known higher-order non-linear PDEs. The present

study demonstrates that HPTM is very proficient for comprehending such non-linear

equations.
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2.2.1 Fifth-order Korteweg-de Vries (KdV) equation

This equation was first presented by Korteweg and de Vries in 1895. This equation

has numerous applications used to portray countless wonders of astrophysical and

physical phenomena like wave phenomena in enharmonic crystals, it is also used to

describe the waves occur in shallow water waves, ion-acoustic waves occur in plasma,

etc. The general form of the fifth-order KdV equation is given as

∂u

∂t
+ Au2∂u

∂x
+B

∂u

∂x

∂2u

∂x2
+ Cu

∂3u

∂x3
+D

∂5u

∂x5
= 0 (2.7)

with initial condition

u(x, 0) = h(x) (2.8)

The above equation is known as Lax’s fifth order KdV equation for A = 30, B = 30,

C = 10, D = 1 and is known as Sawada-Kotera equation [31] with A = 45, B = 15,

C = 15, D = 1 . Now we impose HPTM for the solution of these two well known

equations.

2.2.2 Solution of Sawada Kotera equation

Consider the Sawada Kotera Equation, given by

∂u

∂t
+ 45u2∂u

∂x
+ 15

∂u

∂x

∂2u

∂x2
+ 15u

∂3u

∂x3
+

∂5u

∂x5
= 0 (2.9)

with initial condition

u(x, 0) = 2m2 sech2(mx) (2.10)

By applying the Laplace transformation on eq.(2.9) and using eq.(2.10), we get

u(x, s) =
1

s
(2m2 sech2(mx))−

1

s
L
[

uxxxxx + 15uuxxx + 15uxuxx + 45u2ux

]

(2.11)
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Operating inverse Laplace transformation on eq.(2.11), we get

u(x, t) = 2m2 sech2(mx)− L−1
[

1

s
L
[

uxxxxx + 15uuxxx + 15uxuxx + 45u2ux

]

]

(2.12)

Now, we apply HPM on eq.(2.12)

∞
∑

n=0

pnun(x, t) = 2m2 sech2(mx)− p L−1

[

1

s
L

[

(
∞
∑

n=0

pnun(x, t))xxxxx

]]

− p L−1

[

1

s
L

[

∞
∑

n=0

pnHn(u)

]]

(2.13)

A couple of terms of He’s polynomials Hn(u) are given by

H0(u) = 15u0u0xxx + 15u0xu0xx + 45u2
0u0x

H1(u) = 15(u1u0xxx + u1xxxu0) + 15(u0xu1xx + u1xu0xx) + 45(2u0u1u0x + u2
0u1x)

H2(u) = 15(u0u2xxx + u1u1xxx + u2u0xxx) + 15(u0xu2xx + u1xu1xx + u2xu0xx) +

45
[

(2u1u2 + 2u0u3)u0x + (u2
1 + 2u0u2)u1x + 2u0u1u2x + u2

0u3x

]

On looking at the coefficients of like power of p of eq.(2.13), we have

p0 : u0(x, t) = 2m2 sech2(mx)

p1 : u1(x, t) = 64m7 tanh(mx) sech2(mx)t

p2 : u2(x, t) = −512m
12 sech4(mx)

(

3− 2 cosh2(mx)
)

t2

...

Therefore, solution of eq. (2.9) when p→ 1 is:

u(x, t) = 2m2 sech2(mx) + 64m7 tanh(mx) sech2(mx)t

− 512m12 sech4(mx)
(

3− 2 cosh2(mx)
)

t2 + . . .

Using the Taylor series, the above solution can be written as:

u(x, t) = 2m2 sech2
(

mx− 16m5t
)
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2.2.3 Solution of Lax’s fifth order equation

Consider the Lax’s fifth order Equation

ut + 30u2ux + 30uxuxx + 10uuxxx + uxxxxx = 0 (2.14)

with condition

u(x, 0) = 2k2
(

3 sech2(kx)− 1
)

(2.15)

Applying Laplace transformation on eq.(2.14) using initial condition (2.15),we get

u(x, s) =
1

s
(u(x, 0))−

1

s
L
[

uxxxxx + 10uuxxx + 30uxuxx + 30u2ux

]

(2.16)

where

N(u(x, t)) = 30u2ux + 30uxuxx + 10uuxxx. (2.17)

Operating inverse Laplace transformation on eq.(2.16), we have

u(x, t) = u(x, 0) = 2k2
(

3 sech2(kx)− 1
)

− L−1
[

1

s
L[N(u(x, t))] +

1

s
L[uxxxxx]

]

.

(2.18)

Now, we apply HPM on eq.(2.18)

∞
∑

n=0

pnun(x, t) = u(x, 0)− pL−1

[

1

s
L

[

∞
∑

n=0

pnHn(u)

]

+
1

s
L

[

∞
∑

n=0

pnun(x, t)

]

xxxxx

]

(2.19)

Some terms of Hn(u) are given by

H0(u) = 30u2
0u0x + 30u0xu0xx + 10u0u0xxx

H1(u) = 30(2u0u1u0x + u2
0u1x) + 30(u1xu0xx + u0xu1xx) + 10(u1u0xxx + u0u1xxx)

H2(u) = 30[(2u0u2 + u2
1)u0x + 2u0u1u1x + u2

0u2x] + 30[u2xu0xx + u1xu1xx + u2xu0xx]

+10[u2u0xxx + u1u1xxx + u0u2xxx]
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...

On looking at the coefficient of like powers of p in eq.(2.19), we have

p0 : u0(x, t) = 2k2
(

3 sech2(kx)− 1
)

p1 : u1(x, t) = 6k7t sech7(kx) [7 sinh(5kx) + 141 sinh(3kx)− 586 sinh(kx)]

p2 : u2(x, t) =
k12t2

2
sech12(kx)[1602472− 19327698 cosh(2kx) + 3754368 cosh(4kx)

−330327 cosh(6kx) + 8568 cosh(8kx)− 63 cosh(10kx)]

...

Therefore, solution of (2.14) when p→ 1 is:

u(x, t) = 2k2
(

3 sech2(kx)− 1
)

+ 6k7t sech7(kx)[7 sinh(5kx) + 141 sinh(3kx)

−586 sinh(kx)] +
k12t2

2
sech12(kx)[1602472− 19327698 cosh(2kx)

+3754368 cosh(4kx)− 330327 cosh(6kx) + 8568 cosh(8kx)

−63 cosh(10kx)] + . . .

Using Taylor series, the above solution can be written as:

u(x, t) = 2k2
(

3 sech2(kx− 56k5t)− 1
)

2.3 Conclusion

1. HPTM is incredibly basic, simple to use and exceptionally precise for solving

non-linear problems.

2. HPTM needs less computational work in comparison to other classical techniques.

3. HPTM is very precise and cost proficient tool for taking care of such non-linear

problems.
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Chapter 3

Series Solution of Coupled

Non-linear PDE

3.1 Coupled partial differential equation

A system of PDEs with n variable is said to be coupled PDEs if the solution of one

of the variables depends upon the solution of others. For example: consider the

following system of equations:

∂u

∂t
= f(u, x, t),

∂v

∂t
= g(v, x, t) (3.1)

and

∂z

∂t
= F (z, w, x, t,

∂z

∂x
,
∂w

∂x
),

∂w

∂t
= G(z, w, x, t,

∂z

∂x
,
∂w

∂x
) (3.2)

So, from equation (3.1) and (3.2), we conclude that equation (3.1) just represents

the system of PDEs with variables u and v, whereas equation (3.2) represents,

coupled system of partial differential equation because in equation (3.2) , solution

of z depends upon the solution of w.

Numerous applications in material science are displayed by non-linear partial
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differential conditions. Various analysts are willing to comprehend these models,

they emphasize finding a definite or estimated solution using diverse numerical or

semi-analytical techniques. Here, we use HPTM for solving some system of non-

linear coupled PDEs (third-order KdV Equations and coupled Burgers’ equations

in 1-D and 2-D). A few researchers have utilized HPM to comprehend such sort of

non-linear coupled equations [8, 14, 30, 51, 101].

3.2 Application

Presently, we will endeavor to discover the solution for the most famous coupled

PDEs with the assistance of HPTM.

3.2.1 Coupled Korteweg-de Vries equation

At the point when a framework bolsters two particular long-wave modes with almost

correspondent stage speeds, the weakly non-linear and linear dispersion unfolding

conventionally prompts two coupled KdV equations. The coupled Korteweg-de Vries

equation of order three is given by

∂φ

∂t
=

∂3φ

∂x3
+ φ

∂φ

∂x
+ ψ

∂ψ

∂x
∂ψ

∂t
= −2∂

3ψ

∂x3
+ φ

∂ψ

∂x

3.2.2 Solution of coupled KdV equation

Consider the system of KdV equation of order three

∂φ

∂t
=

∂3φ

∂x3
+ φ

∂φ

∂x
+ ψ

∂ψ

∂x
,

∂ψ

∂t
= −2∂

3ψ

∂x3
+ φ

∂v

∂x
(3.3)

with initial conditions

φ(x, 0) =
(

3− 6 tanh2 x

2

)

, ψ(x, 0) = −
(

3ι
√
2 tanh2 x

2

)

. (3.4)
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By applying Laplace transformation on eq.(3.3) and using (3.4), we get

φ(x, s) =
1

s

(

3− 6 tanh2 x

2

)

+
1

s
L [φxxx + φφx + ψψx] , (3.5)

ψ(x, s) =
1

s

(

−3ι
√
2 tanh2 x

2

)

− 1

s
L [2ψxxx + φψx] . (3.6)

operating inverse Laplace transform on eq.(2.11) and (2.12), we get

φ(x, t) = (3− 6 tanh2(
x

2
) + L−1

[

1

s
L [φxxx + φφx + ψψx]

]

, (3.7)

ψ(x, t) = (−3ι
√
2 tanh2 x

2
)− L−1

[

1

s
L [2ψxxx + φψx]

]

. (3.8)

Now, we apply HPM on eq. (3.7) and (3.8), we have

φ(x, t) = φ0 + φ1p+ φ2p
2 + . . . ,

ψ(x, t) = ψ0 + ψ1p+ ψ2p
2 + . . . (3.9)

∞
∑

n=0

pnφn(x, t) =

(

3−6 tanh2
(x

2

)

)

−pL−1
[

1

s
L
[

(

∞
∑

n=0

pnφn(x, t)

)

xxx

+
∞
∑

n=0

pnH1
n(x, t)

]]

,

(3.10)
∞
∑

n=0

pnψn(x, t) =

(

−3ι
√
2 tanh2

(x

2

)

)

−pL−1
[

1

s
L
(

∞
∑

n=0

pnψn(x, t)

)

xxx

+
∞
∑

n=0

pnH2
n(x, t)

]

.

(3.11)

A couple of terms of He’s polynomials i.e. H i
n, i = 1, 2, are given by

H1
0 (x, t) = φ0φ0x + ψ0ψ0x

H1
1 (x, t) = (φ1φ0x + φ0φ1x) + (ψ1ψ0x + ψ0ψ1x)

H1
2 (x, t) = (φ2φ0x + φ1φ1x + φ0φ2x) + (ψ2ψ0x + ψ1ψ1x + ψ0ψ2x)

...

Similarly,

H2
0 (x, t) = φ0ψ0x

H2
1 (x, t) = (φ1ψ0x + φ0ψ1x)
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H2
2 (x, t) = (φ2ψ0x + φ1ψ1x + φ0ψ2x)

...

On looking at the coefficients of like power of p of (3.10) and (3.11), we have

p0 : φ0(x, t) =
(

3− 6 tanh2 x

2

)

,

p0 : ψ0(x, t) = −
(

3ι
√
2 tanh2 x

2

)

p1 : φ1(x, t) = −6t sech2 x

2
tanh

x

2
,

p1 : ψ1(x, t) = 3ι
√
2t sech2 x

2
tanh(

x

2
)

p2 : φ2(x, t) =
3

2
t2

(

2 sech2 x

2
+ 7 sech4 x

2
− 15 sech6 x

2

)

p2 : ψ2(x, t) =
3ι
√
2

4
t2

(

2 sech2 x

2
+ 21 sech4 x

2
− 24 sech6 x

2

)

...

Setting p = 1 results the approximate solution as:

φ(x, t) =
(

3− 6 tanh2 x

2

)

+−6t sech2 x

2
tanh

x

2

+
3

2
t2
(

2 sech2 x

2
+ 7 sech4 x

2
− 15 sech6 x

2

)

. . .

ψ(x, t) = −
(

3ι
√
2 tanh2 x

2

)

+ 3ι
√
2t sech2 x

2
tanh(

x

2
)

+
3ι
√
2

4
t2

(

2 sech2 x

2
+ 21 sech4 x

2
− 24 sech6 x

2

)

. . .

The results are similar to that obtained with HPM [8].

3.2.3 Coupled Hirota Satsuma equation

In 1981, Hirota and Satsuma [54] proposed the Coupled KdV condition and found

that it has a 3-soliton arrangement. Further, in 1982, the author[88] discovered

that the soliton of coupled Korteweg de Vries condition can be acquired from the
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KP equation. Moreover, they demonstrate that after an appropriate scaling of the

variables Coupled Hirota Satsuma equation converted to the coupled KdV equation.

This equation has application in shallow water waves.

3.2.4 Solution of coupled Hirota Satsuma KdV equation

Consider the following system of coupled equation.

∂ψ

∂t
=

1

2

∂3ψ

∂x3
− 3ψ

∂ψ

∂x
+ 3φ

∂ζ

∂x
+ 3ζ

∂φ

∂x
,

∂φ

∂t
= 3ψ

∂φ

∂x
− ∂3φ

∂x3
,

∂ζ

∂t
= 3ψ

∂ζ

∂x
− ∂3ζ

∂x3
. (3.12)

subject to the initial condition

ψ(x, 0) = −1

3
+ 2 tanh3 x, φ(x, 0) = tanh x, ζ(x, 0) =

8

3
tanh x. (3.13)

By applying the aforesaid method on eq.(3.12) and using(3.13), we get

ψ(x, s) =
1

s
[ψ(x, 0)] +

1

s
L
[

1

2
ψxxx − 3ψψx + 3(φζ)x

]

, (3.14)

φ(x, s) =
1

s
[φ(x, 0)] +

1

s
L [3ψφx − φxxx] , (3.15)

ζ(x, s) =
1

s
[ζ(x, 0)] +

1

s
L [3ψζx − ζxxx] . (3.16)

Now operating the inverse Laplace transform on eq.(3.14),(3.15) and (3.16), we get

ψ(x, t) =

(

−1

3
+ 2 tanh3 x

)

+ L−1
[

1

s
L
[

1

2
ψxxx − 3ψψx + 3(φζ)x

]]

, (3.17)

φ(x, t) = tanh x+ L−1
[

1

s
L [3ψφx − φxxx]

]

, (3.18)

ζ(x, t) =
8

3
tanh x+ L−1

[

1

s
L [3ψζx − ζxxx]

]

. (3.19)
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Now, we apply HPM on eq.(3.17,3.18,3.19)

∞
∑

n=0

pnψn(x, t) = −
1

3
+2 tanh3 x−pL−1

[

1

s
L
[

∞
∑

n=0

pnH1
n(x, t)

]

+
1

s
L
[

∞
∑

n=0

pnψn(x, t)

]

xxx

]

,

(3.20)
∞
∑

n=0

pnφn(x, t) = tanh x+ pL−1
[

1

s
L
[

∞
∑

n=0

pnH2
n(x, t)

]

− 1

s
L
[

∞
∑

n=0

pnφn(x, t)

]

xxx

]

,

(3.21)
∞
∑

n=0

pnζn(x, t) =
8

3
tanh x+ pL−1

[

1

s
L

[

∞
∑

n=0

pnH3
n(x, t)

]

− 1

s
L
[

∞
∑

n=0

pnζn(x, t)

]

xxx

]

.

(3.22)

The couple of terms of He’s polynomials H1
n(x, t), H

2
n(x, t), H

3
n(x, t) are given by

H1
0 = −3ψ0ψ0x + 3φ0ζ0x + 3ζ0φ0x,

H1
1 = −3(ψ1ψ0x + ψ1xψ0) + 3(φ0ζ1x + φ1ζ0x) + 3(ζ1φ0x + ζ0φ1x),

H1
2 = −3(φ2ψ0x+ψ1ψ1x+ψ0ψ2x)+3(φ2ζ0x+φ1ζ1x+φ0ζ2x)+3(ζ2φ0x+ζ1φ1x+ζ0φ2x),

...

H2
0 = 3ψ0φ0x,

H2
1 = 3(ψ1φ0x + ψ0φ1x),

H2
2 = 3(ψ2φ0x + ψ1φ1x + ψ0φ2x),

...

H3
0 = ψ0ζ0x,

H3
1 = ψ1ζ0x + ψ0ζ1x,

H3
2 = ψ2ζ0x + ψ1ζ1x + ψ0ζ2x,

...
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On looking at the coefficient of p of eq. (3.20,3.21,3.22), we have

p0 : ψ0(x, t) = −1

3
+ 2 tanh3 x,

p0 : φ0(x, t) = tanh x,

p0 : ζ0(x, t) =
8

3
tanh x,

...

p1 : ψ1(x, t) = 4t sech2 x tanh x,

p1 : φ1(x, t) = t sech2 x,

p1 : ζ1(x, t) =
8

3
t sech2 x,

...

p2 : ψ2(x, t) = 4t sech2 x(1− 3 tanh2 x),

p2 : φ2(x, t) = −t2 sech2 x tanh x,

p2 : ζ2(x, t) = −
8

3
t2 sech2 x tanh x,

...

The approximate solution of eq.(3.12) is acquired, as p→ 1 i.e.

ψ(x, t) = −1

3
+ 4t sech2 x tanh x+ 4t2 sech2 x(1− 3 tanh2 x) . . . (3.23)

φ(x, t) = tanh x+ t sech2 x− t2 sech2 x tanh x . . . (3.24)

ζ(x, t) =
8

3
tanh x+

8

3
t sech2 x− 8

3
t2 sech2 x tanh x . . . (3.25)

So, from above solution, we analyse that the results obtained in eq. (3.23,3.24,3.25)

are similar with HPM [8].
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3.2.5 1-D coupled Burgers’ equation

Burgers’ equation is a non-linear PDE which has a wide application in fluid

mechanics. The 1-D coupled Burgers’ equation is to be considered as a mathematical

model of sedimentation and development of the scaled volumetric concentration of

two sorts of particles in liquid suspensions and colloids under the impact of gravity.

The 1-D coupled Burgers’ equation is given by

∂φ

∂t
=

∂2φ

∂x2
− φ

∂ψ

∂x
− ψ

∂φ

∂x
+ 2φ

∂φ

∂x
,

∂ψ

∂t
=

∂2ψ

∂x2
− φ

∂ψ

∂x
− ψ

∂φ

∂x
+ 2ψ

∂ψ

∂x
.

3.2.6 Solution of 1-D coupled Burgers’ equation

Consider the following system

∂φ

∂t
=

∂2φ

∂x2
+ 2φ

∂φ

∂x
− ∂(φψ)

∂x
,

∂ψ

∂t
=

∂2ψ

∂x2
+ 2ψ

∂ψ

∂x
− ∂(φψ)

∂x
. (3.26)

subjected to the conditions

φ(x, 0) = cos x, ψ(x, 0) = cos x. (3.27)

Operating Laplace transform on both equations (3.26) and using initial conditions

(3.27)

φ(x, s) =
1

s
cos x+

[

1

s
(L(φxx) + L(2φφx − (φψ)x))

]

, (3.28)

ψ(x, s) =
1

s
cos x+

[

1

s
(L(φxx) + L(2ψψx − (φψ)x))

]

. (3.29)

Now, applying the inverse Laplace transformation on eq.(3.28,3.29)

φ(x, t) = cos x+ L−1
[

1

s
(L(φxx) + L(2φφx − (φψ)x))

]

, (3.30)

ψ(x, s) = cos x+ L−1
[

1

s
(L(φxx) + L(2ψψx − (φψ)x))

]

. (3.31)
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Now, we apply HPM on eq.(3.30,3.31)

∞
∑

n=0

pnφn(x, t) = cos x+ pL−1
[

1

s
L
[

∞
∑

n=0

pnH1
n(x, t)

]

+
1

s
L
[

∞
∑

n=0

pnφn(x, t)

]

xx

]

,

(3.32)
∞
∑

n=0

pnψn(x, t) = cos x− pL−1
[

1

s
L
[

∞
∑

n=0

pnH2
n(x, t)

]

+
1

s
L
[

∞
∑

n=0

pnψn(x, t)

]

xx

]

.

(3.33)

The couple of terms of H1
n(x, t), H

2
n(x, t) are given below:

H1
0 (x, t) = 2φ0φ0x − (φ0ψ0x + φ0xψ0),

H1
1 (x, t) = 2(φ1ψ0x + φ0φ1x)− (φ1ψ0x + φ0ψ1x + φ0xψ1 + φ1xψ0),

H1
2 (x, t) = 2(φ2ψ0x+φ1φ1x+φ0φ2x)−(φ2φ0x+φ1ψ1x+φ0ψ2x+ψ2φ0x+ψ1φ1x+ψ0φ2x),

...

H2
0 (x, t) = 2ψ0ψ0x − (φ0ψ0x + φ0xψ0),

H2
1 (x, t) = 2(ψ1ψ0x + ψ0ψ1x)− (φ1ψ0x + φ0ψ1x + φ0xψ1 + φ1xψ0),

H2
2 (x, t) = 2(ψ2ψ0x+ψ1ψ1x+ψ0ψ2x)−(φ2φ0x+φ1ψ1x+φ0ψ2x+ψ2φ0x+ψ1φ1x+ψ0φ2x),

...

On looking at the coefficients of like power of p of eq.(3.32,3.33), we have

p0 : φ0 = cos x,

p1 : φ1 = −t cos x,

p2 : φ2 =
t2

2
cos x,

p3 : φ3 = −t
3

6
cos x,

...
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p0 : ψ0 = cos x,

p1 : ψ1 = −t cos x,

p2 : ψ2 =
t2

2
cos x,

p3 : ψ3 = −t
3

6
cos x,

...

Therefore, solution of eq. (3.26) is acquired when p→ 1 i.e.:

φ(x, t) = φ0 + φ1 + φ2 + . . . , ψ(x, t) = ψ0 + ψ1 + ψ2 + . . . .

φ(x, t) = cos x

(

1− t+
t2

2
− t3

6
+ . . .

)

, (3.34)

ψ(x, t) = cos x

(

1− t+
t2

2
− t3

6
+ . . .

)

. (3.35)

The solution obtained in eq.(3.34,3.35) in the closed form as φ(x, t) = cos(x)e−t and

ψ(x, t) = cos(x)e−t. The results are similar to that obtained by HPM [101] and [51].

3.2.7 Solution of 2- dimensional coupled Burgers’ equation

Consider the 2- dimensional equation

φt−∇2φ−2φ∇φ+(φψ)x+(φψ)y = 0, φt−∇2ψ−2ψ∇ψ+(φψ)x+(φψ)y = 0. (3.36)

subjected to the conditions

φ(x, y, 0) = cos(x+ y), ψ(x, y, 0) = cos(x+ y). (3.37)

Applying the Laplace transformation on equations (3.36) using initial conditions

(3.37)

φ(x, y, s) =
1

s
cos(x+ y) +

[

1

s

(

L(∇2φ+ 2φ∇φ− (φψ)x − (φψ)y)
)

]

, (3.38)

ψ(x, y, s) =
1

s
cos(x+ y) +

[

1

s

(

L(∇2ψ + 2ψ∇ψ − (φψ)x − (φψ)y)
)

]

. (3.39)

42



CHAPTER 3. SERIES SOLUTION OF COUPLED NON-LINEAR PDE

Now, operating inverse Laplace transformation on eq. (3.38,3.39), we get

φ(x, y, t) = cos(x+ y) + L−1
[

1

s

(

L(∇2φ+ 2φ∇φ− (φψ)x − (φψ)y)
)

]

, (3.40)

ψ(x, y, t) = cos(x+ y) + L−1
[

1

s

(

L(∇2ψ + 2ψ∇ψ − (φψ)x − (φψ)y)
)

]

. (3.41)

Now, we apply HPM on eq. (3.40,3.41), we have

∞
∑

n=0

pnφn = cos(x+ y) + pL−1
[

1

s
L
[

∞
∑

n=0

pnH1
n

]

+
1

s
L
[

∞
∑

n=0

pnφn

]

xx

]

+ pL−1
{

L
[

∞
∑

n=0

pnφn

]

yy

}

, (3.42)

∞
∑

n=0

pnψn = cos(x+ y)− pL−1
[

1

s
L
[

∞
∑

n=0

pnH2
n(φ, ψ)

]

+
1

s
L
[

∞
∑

n=0

pnψn

]

xx

]

− pL−1
{

L
[

∞
∑

n=0

pnψn

]

yy

}

. (3.43)

The couple of terms of H1
n, H

2
n are given by

H1
0 = 2φ0∇φ0 − φ0∇ψ0 − ψ0∇φ0,

H1
1 = 2(φ0∇φ1 + φ1∇φ0)− (φ0∇ψ1 + φ1∇ψ0)− (ψ0∇φ1 + ψ1∇φ0),

H1
2 = 2(φ0∇φ2+φ1∇φ1+φ2∇φ0)−(φ0∇ψ2+φ1∇ψ1+φ2∇ψ0)−(ψ0∇φ2+ψ1∇φ1+ψ2∇φ0),

...

H2
0 = 2ψ0∇ψ0 − φ0∇ψ0 − ψ0∇φ0,

H2
1 = 2(ψ0∇ψ1 + ψ1∇ψ0)− (φ0∇ψ1 + φ1∇ψ0)− (ψ0∇φ1 + ψ1∇φ0),

H2
2 = 2(ψ0∇ψ2+ψ1∇ψ1+ψ2∇ψ0)−(φ0∇ψ2+φ1∇ψ1+φ2∇ψ0)−(ψ0∇φ2+ψ1∇φ1+ψ2∇φ0),

...
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On looking at the coefficients of like power of p of eq. (3.42,3.43), we have

p0 : φ0 = cos(x+ y),

p0 : ψ0 = cos(x+ y),

p1 : φ1 = −2t cos(x+ y),

p1 : ψ1 = −2t cos(x+ y),

p2 : φ2 = 2t2 cos(x+ y),

p2 : ψ2 = 2t2 cos(x+ y),

p3 : φ3 = −
4t3

3
cos(x+ y),

p3 : ψ3 = −
4t3

3
cos(x+ y),

...

Therefore, solution of eq. (3.36) when p→ 1 is:

φ(x, y, t) = φ0 + φ1 + φ2 + . . . , ψ(x, y, t) = ψ0 + ψ1 + ψ2 + . . .

φ(x, y, t) = cos(x+ y)

(

1− 2t+
4t2

2!
− 8t3

3!
. . .

)

,

ψ(x, y, t) = cos(x+ y)

(

1− 2t+
4t2

2!
− 8t3

3!
. . .

)

. (3.44)

The solution obtained in eq.(3.44) can be written in the closed form as φ(x, y, t) =

cos(x+ y)e−2t and ψ(x, y, t) = cos(x+ y)e−2t. The obtained results are observed to

be in great concurrence with HPM [51].
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3.2.8 1-D Keller-Segel equations

In 1970, Keller and Segel presented a mathematical formulation of cellular slime

mold aggregation process. The simplified form of the Keller Siegel equation in one

dimension is given as

∂u

∂t
= a

∂2u

∂x2
− ∂

∂x

(

u(x, t)
∂χ(ρ)

∂x

)

, (3.45)

∂ρ

∂t
= b

∂2ρ

∂x2
+ cu(x, t)− dρ(x, t). (3.46)

In the above equations u(x, t) and ρ(x, t) represents the concentration of amoebae

and chemical substance respectively. The chemo-tactic term ∂
∂x

(

u(x, t)∂χ(ρ)
∂x

)

indicates the sensitivity of the cells, χ(ρ) called the sensitivity function of ρ.

3.2.9 Solution of coupled attractor 1-D Keller Segel equa-

tion

Consider the following coupled system:

∂v

∂t
= a

∂2v

∂x2
− ∂

∂x

(

v
∂χ(ρ)

∂x

)

,

∂ρ

∂t
= b

∂2ρ

∂x2
+ c v − d ρ, (3.47)

subject to conditions

v(x, 0) = m exp(−x2), ρ(x, 0) = n exp(−x2). (3.48)

Case-I Consider χ(ρ) = 1, then ∂
∂x

(

v
∂χ(ρ)
∂x

)

= 0,

hence Keller- Segel equation (3.47) reduces to

∂v

∂t
= a

∂2v

∂x2
,

∂ρ

∂t
= b

∂2ρ

∂x2
+ c v − d ρ. (3.49)

By applying HPTM on eq.(3.49), we have

∞
∑

n=0

pnvn = v(x, 0) + pL−1
{

1

s
L
{

a

(

∞
∑

n=0

pnvn

)

xx

}}

, (3.50)
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∞
∑

n=0

pnρn = ρ(x, 0) + pL−1
{

1

s
L
{

b

(

∞
∑

n=0

pnρn

)

xx

}}

+pL−1
{

1

s
L
{

c

(

∞
∑

n=0

pnvn

)

− d

(

∞
∑

n=0

pnρn

)}}

.

(3.51)

On looking at the coefficients of like power of p of eq.(3.50) & (3.51) and using

(3.48), we have

p0 : v0 = m exp(−x2);

p0 : ρ0 = n exp(−x2);

p1 : v1 =
am t

1

(

−2 exp(−x2) + 4x2 exp(−x2)
)

;

p1 : ρ1 =
t

1

(

(c exp(−x2)m− d exp(−x2)n)− 2nb exp(−x2)(2x2 − 1)
)

;

p2 : v2 =
a2m t2

2

(

12 exp(−x2)− 48x2 exp(−x2) + 16x4 exp(−x2)
)

;

p2 : ρ2 =
t2

2
((d exp(−x2)(−cm+ dn) + 2a exp(−x2)cm(−1 + 2x2)

+2b exp(−x2)(−1 + 2x2)(cm− 2dn) + 4b2 exp(−x2)n(3− 12x2 + 4x4));

p3 : v3 =
a3 exp(−x2)m t3

6
(−120 + 720x2 − 480x4 + 64x6);

p3 : ρ3 =
t3

6
(d2(cm− dn) exp(−x2) + b exp(−x2)(6− 24x2 + 8x4)

+2acm exp(−x2)(d− 2dx2) + 4b2 exp(−x2)(cm− 3dn)(3− 12x2 + 4x4)

+8b3n exp(−x2)(−15 + 90x2 − 60x4 + 8x6) + 4a2 exp(−x2)cm(3− 12x2 + 4x4)

+2bd exp(−x2)(−2cm+ 3dn)(−1 + 2x2))),

...

The approximate solution of eq.(3.49) is obtained as p→ 1 i.e.

v(x, t) = v0 + v1 + v2 + . . . ,
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ρ(x, t) = ρ0 + ρ1 + ρ2 + . . .

v(x, t) = m exp(−x2)
(

1 + a(−2 + 4x2)
t

1
+ a2(12− 48x2 + 16x4)

t2

2

)

+me−x
2

(

a3(−120 + 720x2 − 480x4 + 64x6)
t3

6

)

+ . . .

ρ(x, t) = n exp(−x2) + t

1

(

(c exp(−x2)m− d exp(−x2)n)− 2nb exp(−x2)(2x2 − 1)
)

+
t2

2
((d exp(−x2)(−cm+ dn) + 2a exp(−x2)cm(−1 + 2x2)

+
t3

6
(d2(cm− dn) exp(−x2) + b exp(−x2)(6− 24x2 + 8x4)

+ 2acm exp(−x2)(d− 2dx2) + 4b2 exp(−x2)(cm− 3dn)(3− 12x2 + 4x4)

+ 8b3n exp(−x2)(−15 + 90x2 − 60x4 + 8x6) + 4a2 exp(−x2)cm ·

(3− 12x2 + 4x4) + 2bd exp(−x2)(−2cm+ 3dn)(−1 + 2x2)) + . . .

Case-II Consider χ(ρ) = ρ, then ∂
∂x

(

v
∂χ(ρ)
∂x

)

= ∂v
∂x

∂ρ

∂x
+ v ∂2ρ

∂x2 ,

hence, Keller- Segel equation (3.47) reduces to

∂v

∂t
= a

∂2v

∂x2
−

(

∂v

∂x

∂ρ

∂x
+ v

∂2ρ

∂x2

)

,

∂ρ

∂t
= b

∂2ρ

∂x2
+ c v − d ρ. (3.52)

Now, for the solution of eq. (3.52), we apply HPTM on eq. (3.52), we have

∞
∑

n=0

pnvn = v(x, 0) + pL−1
{

1

s
L
{

a
∂2

∂x2

(

∞
∑

n=0

pnvn

)

−
(

∞
∑

n=0

pnHn

)}}

,

(3.53)

∞
∑

n=0

pnρn = ρ(x, 0) + pL−1
{

1

s
L
{

b
∂2

∂x2

(

∞
∑

n=0

pnρn

)}}

+pL−1
{

1

s
L
{

c

(

∞
∑

n=0

pnvn

)

− d

(

∞
∑

n=0

pnρn

)}}

.

(3.54)
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where
∞
∑

n=0

pnHn(x, t) =

(

∂v

∂x

∂ρ

∂x
+ v

∂2ρ

∂x2

)

.

An initial couple of terms of He’s polynomial i.e. Hn(x, t) are given below:

H0(x, t) = v0xρ0x + v0ρ0xx;

H1(x, t) = v0xρ1x + v1xρ0x + v0ρ1xx + v1ρ0xx;

H2(x, t) = v0xρ2x + v1xρ1x + v0xρ2x

+v0ρ2xx + v1ρ1xx + v1ρ0xx,

...

On looking at the like terms of p of eq. (3.53)& (3.54) and using eq.(3.48) and

He’s polynomial, we get

p0 : v0(x, t) = m exp(−x2);

p0 : ρ0(x, t) = n exp(−x2);

p1 : v1(x, t) = 2mt exp(−2x2) (n− 4nx2 + a exp(x2)(−1 + 2x2))

p1 : ρ1(x, t) = t
(

c exp(−x2)m− n(d exp(−x2) + b exp(−x2)(2− 4x2))
)

;

p2 : v2(x, t) = mt2
(

−c exp(−2x2)m(−1 + 4x2) + 2a2 exp(−x2)(3− 12x2 + 4x4)
)

− mt2
(

2a exp(−2x2)n(7− 58x2 + 40x4) + n(d exp(−2x2)(−1 + 4x2)
)

− mt2
(

2b exp(−2x2)(3− 18x2 + 8x4) + 2n exp(−3x2)(1− 18x2 + 24x4)
)

;

p2 : ρ2(x, t) =
1

2
exp(−2x2)t2

(

−cd exp(x2)m+ d2 exp(x2)n
)

+
1

2
exp(−2x2)t2

(

2cmn− 8cmnx2 + 2ac exp(x2)m(−1 + 2x2)
)

+
1

2
exp(−2x2)t2

(

2bexp(x2)(cm− 2dn)(−1 + 2x2)
)

+
1

2
exp(−2x2)t2

(

4b2exp(x2)n(3− 12x2 + 4x4)
)

...
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The solution of eq.(3.52) is obtained as p→ 1

v(x, t) = v0 + v1 + v2 + . . .

ρ(x, t) = ρ0 + ρ1 + ρ2 + . . .

v(x, t) = m exp(−x2) + 2mt exp(−2x2) (n− 4nx2 + a exp(x2)(−1 + 2x2))

+ mt2
(

−c exp(−2x2)m(−1 + 4x2) + 2a2 exp(−x2)(3− 12x2 + 4x4)
)

− mt2
(

2a exp(−2x2)n(7− 58x2 + 40x4) + n(d exp(−2x2)(−1 + 4x2)
)

+ . . .

ρ(x, t) = n exp(−x2) + t
(

c exp(−x2)m− n(d exp(−x2) + b exp(−x2)(2− 4x2))
)

+
1

2
exp(−2x2)t2

(

−cd exp(x2)m+ d2 exp(x2)n
)

+
1

2
exp(−2x2)t2

(

2cmn− 8cmnx2 + 2ac exp(x2)m(−1 + 2x2)
)

+
1

2
exp(−2x2)t2

(

2bexp(x2)(cm− 2dn)(−1 + 2x2)
)

+
1

2
exp(−2x2)t2

(

4b2exp(x2)n(3− 12x2 + 4x4)
)

+ . . .

3.3 Conclusion

1. HPTM is extremely simple to handle the non-linear term present in the coupled

equations.

2. This semi-analytical technique needs less computation than HPM, only a few

iterations leads to the approximate solution of such complex non-linear problems.

3. We discover that solution obtained from this semi-analytical technique is in great

concurrence with an exact solution.

4. HPTM is precise and costs proficient tool for taking care of such non-linear

problems.
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Chapter 4

Series Solution of Fractional PDE

Fractional calculus is an extension of basic calculus of arbitrary order. The

physical problems engineering like thermodynamics, ecology, plasma physics occur-

ring in the field of engineering and science so forth are displayed as a non-linear

partial or fractional differential equation. In recent years, many researchers have

been attracted towards fractional calculus because of its gigantic appropriateness

to demonstrate the non-linear phenomenon. The non-linear complex phenomenon

assumes an imperative job in physical sciences, and the generalized KdV equation

is broadly utilized in the portrayal of waves in non-linear LC circuits, shallow and

stratified inward waves, particle acoustic waves. It is hard to tackle these problems

analytically henceforth, a few numerical and semi-analytical techniques are created

to take care of such problems.

In this chapter, we have applied HPSTM to obtain the solution of some non-

linear fractional PDE (Sawada-Kotera equation, KdV equation of fifth-order and K
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(2,2) equations all of the time-fractional type).

4.1 Homotopy perturbation Sumudu transform

method (HPSTM)

To understand the working procedure of this method, we consider the following

fractional non-linear PDE

Dα
t w + L w +N w = g(x, t), (4.1)

with initial condition

∂s

∂ts
w = ws(x, 0), s = 0, 1, 2, 3, ...,m− 1 (4.2)

where m − 1 < α ≤ m, Dα
t is the Caputo fractional derivative, g(x, t) is the

source term, L and N are linear and non-linear differential operator respectively.

Now operating Sumudu transform on eq.(4.1), we have

S[Dα
t w + L w +N w] = S[g].

Using (1.6.2) and eq. (4.2), we get

S[w(x, t)] =
m−1
∑

k=0

ukw(k)(x, 0) + uαS[g]− uαS[Lw +Nw]. (4.3)

Operating inverse Sumudu transformation on eq. (4.3), we have

w(x, t) =
m−1
∑

k=0

tk

Γ(k + 1)
w(k)(x, 0)− S−1 [uαS[Lw +N w − g]] . (4.4)

Now, we apply HPM on eq. (4.4)

w(x, t) =
∞
∑

n=0

pnwn, (4.5)

where the non-linear term can be expressed as

N w =
∞
∑

n=0

pnHn. (4.6)
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A few terms of Hn are given by

Hn(w0, ..., wn) =
1

n!

∂n

∂pn

[

N

(

∞
∑

i=0

(piwi)

)]

p=0

, n = 0, 1, 2, 3... (4.7)

Using eq.(4.5) and (4.6) in eq. (4.4), we get

∞
∑

n=0

pnwn(x, t) = w(x, 0)

−p

(

m−1
∑

k=1

tk

Γ(k + 1)
w(k)(x, 0) + S−1

[

uαS

[

L

∞
∑

n=0

pnwn(x, t) +
∞
∑

n=0

pnHn(w)− g(x, t)

]])

.

(4.8)

On looking at the like terms of p of eq. (4.8), we have

p0 : w0(x, t) = w(x, 0),

p1 : w1 =
m−1
∑

k=1

tk

Γ(k + 1)
w(k)(x, 0)− S−1 [uαS[Lw0 +H0 − g(x, t)]] ,

p2 : w2 = −S
−1 [uαS[Lw1 +H1]] ,

p3 : w3 = −S
−1 [uαS[Lw2 +H2]] , (4.9)

...

Hence, solution of (4.1) is obtained as p→ 1

w(x, t) = w0 + w1 + w2 + w3 . . . (4.10)

4.2 Application

Now, we implement HPSTM to solve the following well- known non-linear fractional

PDE.

53



CHAPTER 4. SERIES SOLUTION OF FRACTIONAL PDE

4.2.1 K(2, 2) equation

The K(m,n) equation which is a speculation of the KdV equation, depicts the

advancement of the weakly non-linear and dispersive wave used in different fields

mainly plasma physics, fluid mechanics, etc.

The time-fractional K(m,n) equation is given by

∂αu

∂tα
− a

∂(un)

∂x
+ b

∂3(um)

∂x3
= 0,

K(2, 2) equation, when m = 2, n = 2, a = −1 and b = 1 i.e.

∂αu

∂tα
+ 2u

∂u

∂x
+ 2u

∂3u

∂x3
+ 6

∂u

∂x

∂2u

∂x2
= 0.

4.2.2 Solution of fractional K(2,2) equation

Consider the fractional K(2, 2) equation, where 0 < α ≤ 1.

Dα
t w + 2w

∂w

∂x
+ 2w

∂3w

∂x3
+ 6

∂w

∂x

∂2w

∂x2
= 0, (4.11)

with initial condition

w(x, 0) = x. (4.12)

Operating Sumudu transformation on eq.(4.11) and using eq.(4.12), we get

S[Dα
t w] = −S

[

2w
∂w

∂x
+ 2w

∂3w

∂x3
+ 6

∂w

∂x

∂2w

∂x2

]

. (4.13)

Using (1.6.2) and operating inverse Sumudu transform on eq. (4.13), we have

w(x, t) = x− S−1
[

uαS

{

2w
∂w

∂x
+ 2w

∂3w

∂x3
+ 6

∂w

∂x

∂2w

∂x2

}]

. (4.14)

By applying HPM on eq. (4.14), we get

∞
∑

n=0

pnwn(x, t) = x− S−1

[

uαS

{

∞
∑

n=0

pnHn(w)

}]

. (4.15)
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A few components of He’s polynomials i.e.Hn(w) are given by

H1
0 (w) = 2w0w0x + 2w0u0xxxx + 6w0xw0xxx,

H1
1 (w) = 2(w0u1x + w1w0x) + 2(w0u1xxx + w1w0xxx) + 6(w0xw1xx + w1xw0xx),

H1
2 (w) = 2(w0w2x + w1w1x + w2w0x) + 2(w0w2xxx + w1w1xxx + w2w0xxx)

+ 6(w0xw2xx + w1xw1xx + w2xw0xx),

...

On looking at the like terms of p of eq. (4.15), we have

p0 : w0 = x,

p1 : w1 =
−2x

Γ(1 + α)
tα,

p2 : w2 = 23
x

Γ(1 + 2α)
t2α,

p3 : w3 = −

(

25

Γ(1 + 3α)
+

23Γ(1 + 2α)

Γ(1 + α)Γ(1 + 3α)

)

xt3α,

...

As p→ 1, the series solution of eq. (4.11) is

w(x, t) = x+
−2x

Γ(1 + α)
tα+23

x

Γ(1 + 2α)
t2α−

(

25

Γ(1 + 3α)
+

23Γ(1 + 2α)

Γ(1 + α)Γ(1 + 3α)

)

xt3α+. . .

(4.16)

Also when α = 1, eq.(4.16) can be rewritten as:

w(x, t) = x− 2xt+ 4xt2 − 8xt3 + . . . , (4.17)

and the solution acquired in eq. (4.17) in closed form is given as w(x, t) = x
1+2t

.
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4.2.3 Solution of time fractional Sawada Kotera equation

Consider the fractional IVP

D
β
t w + 45w2wx + 15wxwxx + 15wwxxx + wxxxxx = 0; t > 0, 0 < β ≤ 1, (4.18)

where

w(x, 0) = 2k2 sech2(kx). (4.19)

The exact solution of eq. (4.18) for β = 1 is

w(x, t) = 2k2 sech2(k(x− 16kt)). (4.20)

Operating Sumudu transformation on eq.(4.18) and using eq.(4.19), we get

S[Dβ
t w] = −S[45w

2wx + 15wxwxx + 15wwxxx + wxxxxx]. (4.21)

Operating the inverse Sumudu transformation on eq. (4.21), we get

w(x, t) = w(x, 0)− S−1
[

uβS[45w2wx + 15wxwxx + 15wwxxx + wxxxxx]
]

. (4.22)

By applying HPM on eq. (4.22), we get

∞
∑

n=0

pnwn(x, t) = w(x, 0)−pS−1

[

uβS

[(

∞
∑

n=0

pnwn(x, t)

)

xxxxx

+

(

∞
∑

n=0

pnHn(w)

)]]

,

(4.23)

where
∞
∑

n=0

pnHn(w) = 45w2wx + 15wxwxx + 15wwxxx.

A few components of He’s polynomials i.e.Hn(w) are given by

H0(w) = 45w2
0w0x + 15w0xw0xx + 15w0w0xxx,

H1(w) = 45(2w0w1w0x +w2
0w1x) + 15(w1xw0xx +w0xw1xx) + 15(w1w0xxx +w1xxxw0),

H2(w) = 45[(2w1w2 + 2w0w3)w0x + (w2
1 + 2w0w2)w1x + 2w0w1w2x + w2

0w3x]

+15[w0w2xxx + w1w1xxx + w2w0xxx] + 15[w0xw2xx + w1xw1xx + w2xw0xx,(4.24)
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...

on looking at the like terms of eq. (4.23), we have

p0 : w0(x, t) = 2k2 sech2(kx),

p1 : w1(x, t) = 64k7 sech2(kx) tanh(kx)
tβ

Γ(1 + β)
,

p2 : w2(x, t) = −512 sech
2(kx)(3 sech2(kx)− 2)

t2β

Γ(1 + 2β)
,

...

Therefore, the series solution of eq. (4.18) is

w(x, t) = 2k2 sech2(kx) + 64k7 sech2(kx) tanh(kx)
tβ

Γ(1 + β)

− 512 sech2(kx)(3 sech2(kx)− 2)
t2β

Γ(1 + 2β)
+ . . . .

4.2.4 Solution of time- fractional KdV equation

Consider the following fractional IVP

D
β
t w + 2w2wx + 6wxwxx + 3wwxxx + wxxxxx = 0; t > 0, 0 < β ≤ 1 (4.25)

where

w(x, 0) = 10k2(3 sech2(kx)− 1). (4.26)

Operating Sumudu transformation on eq. (4.25) and using (4.26), we get

S[Dβ
t w] = −S[2w

2wx + 6wxwxx + 3wwxxx + wxxxxx]. (4.27)

Operating the inverse Sumudu transformation on eq. (4.27), we have

w(x, t) = w(x, 0)− S−1
[

uβS[2w2wx + 6wxwxx + 3wwxxx + wxxxxx]
]

. (4.28)
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By applying HPM on eq. (4.28), we get

∞
∑

n=0

pnwn(x, t) = w(x, 0)−pS−1

[

uβS

[(

∞
∑

n=0

pnwn(x, t)

)

xxxxx

+

(

∞
∑

n=0

pnHn(w)

)]]

,

(4.29)

where
∞
∑

n=0

pnHn(w) = 2w2wx + 6wxwxx + 3wwxxx.

A couple of terms of He’s polynomials i.e. Hn(w) are given by

H0(w) = 2w2
0w0x + 6w0xw0xx + 3w0w0xxx,

H1(w) = 2(2w0w1w0x + w2
0w1x) + 6(w1xw0xx + w0xw1xx) + 3(w1w0xxx + w1xxxw0),

H2(w) = 2[(2w1w2 + 2w0w3)w0x + (w2
1 + 2w0w2)w1x + 2w0w1w2x + w2

0w3x]

+6[w0w2xxx + w1w1xxx + w2w0xxx] + 3[w0xw2xx + w1xw1xx + w2xw0xx,

...

On looking at the like terms of p of eq. (4.29), we have

p0 : w0(x, t) = 10k2(3 sech2(kx)− 1),

p1 : w1(x, t) = 5760k7 sech2(kx) tanh(kx)
tβ

Γ(1 + β)
,

p2 : w2(x, t) = 552960k12 sech2(kx)(1− 3 tanh2(kx))
t2β

Γ(1 + 2β)
,

...

Hence, the acquired solution of eq. (4.25) is given as

w(x, t) = 10k2(3 sech2(kx)− 1) + 5760k7 sech2(kx) tanh(kx)
tβ

Γ(1 + β)
+

552960k12 sech2(kx)(1− 3 tanh2(kx))
t2β

Γ(1 + 2β)
+ . . .
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4.2.5 Solution of fractional attractor 1-D Keller Segel equa-
tion

Consider the following Coupled system:

∂βv

∂t
= a

∂2v

∂x2
−

∂

∂x

(

v
∂χ(ρ)

∂x

)

,

∂βρ

∂t
= b

∂2ρ

∂x2
+ c v − d ρ, 0 < β ≤ 1, (4.30)

subject to conditions

v(x, 0) = m exp(−x2), ρ(x, 0) = n exp(−x2). (4.31)

Case-I Consider the sensitivity function χ(ρ) = 1, then the Chemo-tactic term

i.e. ∂
∂x

(

v
∂χ(ρ)
∂x

)

= 0, hence Keller- Segel equation reduces to

∂βv

∂t
= a

∂2v

∂x2
,

∂βρ

∂t
= b

∂2ρ

∂x2
+ cv(x, t)− dρ(x, t), 0 < β ≤ 1. (4.32)

By applying HPSTM on eq.(4.32), we have

∞
∑

n=0

pnvn = v(x, 0) + pS−1

{

uβS

{

a

(

∞
∑

n=0

pnvn

)

xx

}}

, (4.33)

∞
∑

n=0

pnρn = ρ(x, 0) + pS−1

{

uβS

{

b

(

∞
∑

n=0

pnρn

)

xx

}}

+pS−1

{

uβS

{

c

(

∞
∑

n=0

pnvn

)

− d

(

∞
∑

n=0

pnρn

)}}

.

(4.34)
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On looking at the like terms of p of eq.(4.33) & (4.34) and using (4.31), we have

p0 : v0 = m exp(−x2);

p0 : ρ0 = n exp(−x2);

p1 : v1 =
am tβ

Γ(1 + β)

(

−2 exp(−x2) + 4x2 exp(−x2)
)

;

p1 : ρ1 =
tβ

Γ(1 + β)

(

(cm− dn)− 2nb exp(−x2)(2x2
− 1)

)

;

p2 : v2 =
a2m t2β

Γ(1 + 2β)

(

12 exp(−x2)− 48x2 exp(−x2) + 16x4 exp(−x2)
)

;

p2 : ρ2 =
t2β

Γ(1 + 2β)
((d exp(−x2)(−cm+ dn) + 2a exp(−x2)cm(−1 + 2x2)

+2b exp(−x2)(−1 + 2x2)(cm− 2dn) + 4b2 exp(−x2)n(3− 12x2 + 4x4));

p3 : v3 =
a3 exp(−x2)m t3β

Γ(1 + 3β)
(−120 + 720x2

− 480x4 + 64x6);

p3 : ρ3 =
t3β

Γ(1 + 3β)
(d2(cm− dn) exp(−x2) + b exp(−x2)(6− 24x2 + 8x4)

+2acm exp(−x2)(d− 2dx2) + 4b2 exp(−x2)(cm− 3dn)(3− 12x2 + 4x4)

+8b3n exp(−x2)(−15 + 90x2
− 60x4 + 8x6) + 4a2 exp(−x2)cm(3− 12x2 + 4x4)

+2bd exp(−x2)(−2cm+ 3dn)(−1 + 2x2))),

...

The approximate solution of eq.(4.32) is obtained as p→ 1 i.e.

v(x, t) = v0 + v1 + v2 + . . . ,

ρ(x, t) = ρ0 + ρ1 + ρ2 + . . .

v(x, t) = m exp(−x2)

(

1 + a(−2 + 4x2)
tβ

Γ(1 + β)
+ a2(12− 48x2 + 16x4)

t2β

Γ(1 + 2β)

)

+me−x
2

(

a3(−120 + 720x2
− 480x4 + 64x6)

t3β

Γ(1 + 3β)
+ . . .

)

,
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ρ(x, t) = n exp(−x2) +
tβ

Γ(1 + β)

(

(cm− dn)− 2nb exp(−x2)(2x2
− 1)

)

+
t2β

Γ(1 + 2β)
((d exp(−x2)(−cm+ dn) + 2a exp(−x2)cm(−1 + 2x2)

+ 2b exp(−x2)(−1 + 2x2)(cm− 2dn) + 4b2 exp(−x2)n(3− 12x2 + 4x4))

+
t3β

Γ(1 + 3β)
(d2(cm− dn) exp(−x2) + b exp(−x2)(6− 24x2 + 8x4)

+ 2acm exp(−x2)(d− 2dx2) + 4b2 exp(−x2)(cm− 3dn)(3− 12x2 + 4x4)

+ 8b3n exp(−x2)(−15 + 90x2
− 60x4 + 8x6) + 4a2 exp(−x2)cm(3− 12x2 + 4x4)

+ 2bd exp(−x2)(−2cm+ 3dn)(−1 + 2x2))) + . . .

Case-II Consider the senstivity function χ(ρ) = ρ, then the Chemo-tactic term

i.e. ∂
∂x

(

v
∂χ(ρ)
∂x

)

= ∂v
∂x

∂ρ

∂x
+ v ∂2ρ

∂x2 , hence, Keller- Segel equation reduces to

∂βv

∂t
= a

∂2v

∂x2
−

(

∂v

∂x

∂ρ

∂x
+ v

∂2ρ

∂x2

)

,

∂βρ

∂t
= b

∂2ρ

∂x2
+ c v − d ρ, 0 < β ≤ 1, (4.35)

Now, for the solution of eq. (4.35), we apply HPSTM on eq. (4.35), we have

∞
∑

n=0

pnvn = v(x, 0) + pS−1

{

uβS

{

a

(

∞
∑

n=0

pnvn

)

xx

−

(

∞
∑

n=0

pnHn(x, t)

)}}

,

(4.36)

∞
∑

n=0

pnρn = ρ(x, 0) + pS−1

{

uβS

{

b

(

∞
∑

n=0

pnρn

)

xx

}}

+pS−1

{

uβS

{

c

(

∞
∑

n=0

pnvn

)

− d

(

∞
∑

n=0

pnρn

)}}

.

(4.37)

where
∞
∑

n=0

pnHn(x, t) =
∂v

∂x

∂ρ

∂x
+ v

∂2ρ

∂x2
.
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An initial couple of terms of He’s polynomial i.e. Hn(x, t) are given below:

H0(x, t) = v0xρ0x + v0ρ0xx;

H1(x, t) = v0xρ1x + v1xρ0x + v0ρ1xx + v1ρ0xx;

H2(x, t) = v0xρ2x + v1xρ1x + v0xρ2x

+v0ρ2xx + v1ρ1xx + v1ρ0xx,

...

On looking at the like terms of p of eq. (4.36)& (4.37) and using eq.(4.31) and

He’s polynomial, we get

p0 : v0(x, t) = m exp(−x2);

p0 : ρ0(x, t) = n exp(−x2);

p1 : v1(x, t) =
2m tβ

Γ(1 + β)
(a(2x2

− 1)− n exp(−x2)(4x2
− 1));

p1 : ρ1(x, t) =
tβ exp(−x2)

Γ(1 + β)
((cm− dn) + 2nb(−1 + 2x2));

p2 : v2(x, t) =
2m exp(−3x2) t2β

Γ(1 + 2β)
(−c exp(x2)m(−1+4x2)+2a2 exp(2x2)(3−12x2+4x4)

−2a exp(x2)n(7− 58x2 + 40x4) + nd exp(−x2)(−1 + 4x2)

−2nb exp(x2)(3− 18x2 + 8x4) + 2n2(1− 18x2 + 24x4));

p2 : ρ2(x, t) =
t2β exp(−2x2)

Γ(1 + 2β)
(exp(x2)d(−cm+ nd) + 2cmn(1− 4x2)

+ 2 exp(x2)(acm+ b(cm− 2dn)(−1 + 2x2) + 4b2n exp(x2)(3− 12x2 + 4x4));
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p3 : v3(x, t) =
2m exp(−4x2) t3β

Γ(1 + 3β)(Γ(1 + β))2
(−cd exp(2x2)m+d2exp(2x2)n+14c exp(x2)mn

− 2d exp(x2)n2 + 4n3 + 4cd exp(2x2)mx2
− 4d2nx2 exp(2x2) + n3x4(1056− 768x2)

−156cmnx2 exp(x2)+36dn2x2exp(x2)−248n3x2+144cmnx4 exp(x2)−48dn2x4 exp(x2)

+4a3 exp(3x2)(−15+90x2
−60x4+8x6)−4b2n exp(2x2)(−15+120x2

−100x4+16x6)

− 4a2n exp(2x2)(−75 + 924x2
− 1252x4 + 336x6)− 2bcm exp(2x2)(3− 18x2 + 8x4)

+ 4nb exp(x2)(d exp(x2)(3− 18x2+8x4)− 2bn exp(x2)(−3+ 72x2
− 148x4+48x6))

−2a exp(2x2)cm(9−66x2+40x4)+4an exp(x2)(d exp(x2)(3−24x2+16x4)−4b exp(x2)·

(−6+ 63x2
− 72x4+16x6))− 8an exp(x2)(−7+ 162x2

− 380x4+168x6))(Γ(1+ β))2

− 2 exp(x2)(n(−cm+ dn)(1− 18x2 + 24x4) + bn2(6− 120x2 + 248x4
− 96x6)

+a exp(x2)(cm− dn)(1− 10x2+8x4)+2bn(−3+36x2
− 52x4+16x6))Γ(1+2β)),

p3 : ρ3(x, t) =
t3β exp(−3x2)

Γ(1 + 3β)
(cd2m exp(2x2) + 2c2m2 exp(x2)− d2n exp(2x2)

−4cdmn exp(x2)) + 4cmn2
− 8c2m2x2 exp(x2)− 16cdmnx2 exp(x2)

−72cmn2x2 + 96cmn2x4 + 6bd2n exp(2x2)n(−1 + 2x2) ·

(−15 + 90x2
− 60x4 + 80x6) + 4a2cm exp(2x2)(3− 12x2 + 4x4)

+8b3n exp(2x2)− 4bcm exp(x2) · (d exp(x2)(−1 + 2x2)

+n(9− 66x2 + 40x4)) + 2acm exp(x2) · (−d exp(x2)(−1 + 2x2)

+2b exp(x2)(3− 12x2 + 4x4)− 2n(7− 58x2 + 40x4))),

... (4.38)

On using eq.(4.38) and (4.38) and as p → 1, the approximate solution of eq.(4.35)

is

v(x, t) = v0 + v1 + v2 + . . .

ρ(x, t) = ρ0 + ρ1 + ρ2 + . . .
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v(x, t) = m exp(−x2)+
2m tβ

Γ(1 + β)
(a(2x2

−1)−n exp(−x2)(4x2
−1))+

2m exp(−3x2) t2β

Γ(1 + 2β)

(−c exp(x2)m(−1+4x2)+2a2 exp(2x2)(3−12x2+4x4)−2a exp(x2)n(7−58x2+40x4)

+ nd exp(−x2)(−1 + 4x2)− 2nb exp(x2)(3− 18x2 + 8x4) + 2n2(1− 18x2 + 24x4))

2m exp(−4x2) t3β

Γ(1 + 3β)(Γ(1 + β))2
(−cd exp(2x2)m+ d2exp(2x2)n+ 14c exp(x2)mn

− 2d exp(x2)n2 + 4n3 + 4cd exp(2x2)mx2
− 4d2nx2 exp(2x2) + n3x4(1056− 768x2)

−156cmnx2 exp(x2)+36dn2x2exp(x2)−248n3x2+144cmnx4 exp(x2)−48dn2x4 exp(x2)

+4a3 exp(3x2)(−15+90x2
−60x4+8x6)−4b2n exp(2x2)(−15+120x2

−100x4+16x6)

− 4a2n exp(2x2)(−75 + 924x2
− 1252x4 + 336x6)− 2bcm exp(2x2)(3− 18x2 + 8x4)

+ 4nb exp(x2)(d exp(x2)(3− 18x2+8x4)− 2bn exp(x2)(−3+ 72x2
− 148x4+48x6))

− 2a exp(2x2)cm(9− 66x2 + 40x4) + 4an exp(x2)(d exp(x2)(3− 24x2 + 16x4)

−4b exp(x2)(−6+63x2
−72x4+16x6))−8an exp(x2)(−7+162x2

−380x4+168x6))(Γ(1+β))2

− 2 exp(x2)(n(−cm+ dn)(1− 18x2 + 24x4) + bn2(6− 120x2 + 248x4
− 96x6)

+ a exp(x2)(cm− dn)(1− 10x2 + 8x4) + 2bn(−3 + 36x2
− 52x4 + 16x6))Γ(1 + 2β)

ρ(x, t) = n exp(−x2)+
tβ exp(−x2)

Γ(1 + β)
((cm−dn)+2nb(−1+2x2))+

2m exp(−3x2) t2β

Γ(1 + 2β)

(−c exp(x2)m(−1+4x2)+2a2 exp(2x2)(3−12x2+4x4)−2a exp(x2)n(7−58x2+40x4)

+ nd exp(−x2)(−1 + 4x2)− 2nb exp(x2)(3− 18x2 + 8x4) + 2n2(1− 18x2 + 24x4))

t3β exp(−3x2)

Γ(1 + 3β)
(cd2m exp(2x2) + 2c2m2 exp(x2)− d2n exp(2x2)− 4cdmn exp(x2))

+4cmn2
−8c2m2x2 exp(x2)−16cdmnx2 exp(x2)−72cmn2x2+96cmn2x4+6bd2n exp(2x2)

n(−1+2x2)+4a2cm exp(2x2)(3−12x2+4x4)+8b3n exp(2x2)·(−15+90x2
−60x4+80x6)

−4bcm exp(x2)·(d exp(x2)(−1+2x2)+n(9−66x2+40x4))+2acm exp(x2)(−d exp(x2)·

(−1 + 2x2) + 2b exp(x2)(3− 12x2 + 4x4)− 2n(7− 58x2 + 40x4)))
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4.3 Conclusion

1. For fractional non-linear PDE, the HPSTM technique is better, extremely

straightforward.

2. It seems quite easy to handle non-linear terms.

3. HPSTM needs less computation than HPM, only a few iterations lead to the

approximate solution of such complex non-linear problems.

4. HPSTM has fast convergence for solving fractional non-linear PDE.

5. The solution obtained from HPSTM is in great concurrence with an exact solution

as fractional-order derivative converges to integer order.
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Chapter 5

Convergence Analysis of Series

Solution

A vast majority of the problems happening in the field of science and engineering

like thermodynamics, liquid mechanics, material science, plasma physical science,

environmental science and so forth are displayed as non-linear PDE or fractional

PDE. As it is hard to handle these issues logically or numerically henceforth, a

few numerical and semi-analytical techniques are proposed to tackle these issues.

However, the outcome acquired from these techniques is more precise and worthy

than the numerical one. Many researchers have applied various methods like HPM

[42, 46], ADM [20, 33], HAM[69], HPTM [64], HPSTM[97] for the series solution of

such equations.

In this chapter, we have applied HPSTM and HPTM for the series solution

of non-linear PDE and fractional PDE. However, for the validity of the acquired

series solution, the condition of convergence and uniqueness is derived. Accuracy is

achieved in the context of convergence and error analysis.

Firstly, we have derived the condition of the convergence of the series solution

of PDE using HPSTM and then it is verified by implementing it on well known

Newell-Whitehead-Segel equation[82] and Fisher′s equation [65]. Further, in the
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same manner, the condition of convergence of HPTM is derived and implemented

on well known fractional Burgers’ equation. Moreover, the maximum truncation

error and the error analysis have been done and the results are also interpreted in

the form of surface graphs. For the results related to convergence analysis of HPM

we refer the reader to [12, 22, 98].

5.1 Convergence analysis of HPSTM

Here we emphasize the condition of convergence of HPSTM for the series solution

of non-linear PDE. For this, consider the following general non-linear PDE:

∂nU(x, t)

∂tn
+ L U(x, t) +N U(x, t) =f(x, t), t > 0, x ∈ R, (5.1)

Consider the Banach space C[0, T ] of all continuous real-valued functions on [0, T ]

with supremum norm. Throughout this section, we consider U(x, t), Un(x, t) ∈

C[0, T ], ∀ n ∈ N.

Theorem 5.1.1 (Uniqueness theorem) The solution obtained by HPSTM of partial

differential equation (5.1) has a unique solution, whenever 0 < γ < 1.

Proof: The solution of eq.(5.1) is of the form U(x, t) =
∑

∞

n=0 p
nUn(x, t) . Here,

U(x, t) =
n−1
∑

k=0

tk

k!
U (k)(x, 0) + S−1

{

un

(

S

{

f(x, t)− LU(x, t)−NU(x, t)

})}

.

Let U and V be the distinct solution of the eq.(5.1) then

|U − V | =

∣

∣

∣

∣

− S−1
[

un

(

S

[

L(U − V ) +N(U − V )

])]
∣

∣

∣

∣

.

Using convolution theorem,

|U − V | ≤

∫ t

0

(

|L(U − V )|+ |N(U)−N(V )|

)∣

∣

∣

∣

(t− τ)n

n!

∣

∣

∣

∣

dτ

≤

∫ t

0

(η|(U − V )|+ δ|U − V |)

∣

∣

∣

∣

(t− τ)n

n!

∣

∣

∣

∣

dτ
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where L is a bounded operator i.e. |L(U)− L(V )| ≤ η|U − V |,N satisfies Lipschitz

condition with δ > 0 such that |N(U)−N(V )| ≤ δ|U − V |.

|U − V | ≤

∫ t

0

(η + δ)(|U − V |)

∣

∣

∣

∣

(t− τ)n

n!

∣

∣

∣

∣

dτ

Using mean value theorem of integral calculus, |U−V | ≤ [(η+δ)|U−V |]MT , where

M = max(t− τ)n and t ∈ [0, T ]. Hence, |U −V | ≤ |U −V |γ, where γ = (n+ δ)MT.

So (1− γ)|U − V | ≤ 0, implies U = V whenever, 0 < γ < 1.

Theorem 5.1.2 Let U and Un(x, t) be defined in Banach space B, the condition

that the series solution
∑

∞

n=0 Un, converges to the solution U is ||Un+1|| ≤ γ ||Un||

where γ ∈ (0, 1) and n ∈ N.

Proof: For the convergence of sequence {sn} of the partial sums of the series

U(x, t) =
∑

∞

n=0 Un, we prove that {sn} is a Cauchy sequence in (C[0, T ], || · ||).

As,

||sn+1 − sn|| = ||Un+1|| ≤ γ||Un||

≤ γ2||Un−1|| ≤ · · · ≤ γn+1||U0||

Hence,

||sn − sm|| = ||Σn
i=m+1Ui|| ≤ Σn

i=m+1||Ui||

≤ γm+1(Σn−m
i=0 γi)||U0|| = γm+1 (1− γn−m)

1− γ
||U0||, n,m ∈ N

Since , 0 < γ < 1, hence ||sn − sm|| ≤
γm+1

1−γ
||U0||. Also U0 is bounded, therefore

||sn+1 − sn|| → 0 as m,n → ∞. So {sn} is a Cauchy sequence in C[0, T ], hence
∑

∞

n=0 Un(x, t) is convergent.

Remark 5.1.3 The maximum truncated error of U(x, t) =
∑

∞

n=0 Un is given by

γm+1

1−γ
||U0||.
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5.2 Application

In order to understand the functioning and significance of the HPSTM, we apply

the said technique to present the solution of well-known Newell-Whitehead-Segel

equation.

5.2.1 Newell-Whitehead-Segel equation

Uniform, oscillatory and pattern states are very common in non-equilibrium systems.

Many stripes patterns such as swells in sand, stripes of seashells emerge in an assort-

ment of spatially expanded frameworks which can be displayed by an arrangement

of conditions called amplitude condition. In 2-D system, the amplitude equation,

i.e. Newell-Whitehead -Segel equations depicts the presence of stripe design. The

equation derived by Newell, Whitehead and Segel is of the form.

∂U

∂t
= a

∂2U

∂t2
+ b U − c Um.

where a, b are real numbers, c and m are positive integers.

5.2.2 Solution of Newell-Whitehead-Segel equation

Consider the following equation

∂U

∂t
=

∂2U

∂x2
+ 2U − 3U2 with initial condition U(x, 0) = λ. (5.2)

By applying the Sumudu transformation on eq. (5.2) with the initial conditions, we

get

S{U(x, t)} =
1

1− 2u
λ+

u

1− 2u
S{Uxx − 3U2} (5.3)

Operating inverse Sumudu transformation on eq. (5.3), we have

U(x, t) = e2tλ+ S−1{
u

1− 2u
S{Uxx − 3U2}} (5.4)
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Now, we apply HPM, eq.(5.4) becomes

∞
∑

n=0

Un(x, t) = e2tλ+ pS−1
{

u

1− 2u
S

{( ∞
∑

n=0

pnUn(x, t)

)

xx

−

∞
∑

n=0

pnHn(x, t)

}}

(5.5)

A few couple of terms of He’s polynomial Hn is given by

H0 = 3U2
0 ,

H1 = 6U0U1,

H2 = 6U0U2 + 3U2
1 ,

H3 = 6U0U3 + 6U1U2,

...

On looking at the coefficients of like power of p of eq. (5.5), we have

p0 : U0 = e2tλ,

p1 : U1 = −
3

2
λ2(e2t(e2t − 1)),

p2 : U2 =
9

4
λ3(e2t(e2t − 1)2),

p3 : U3 = −
27

8
λ4(e2t(e2t − 1)3),

p4 : U4 =
81

16
λ5(e2t(e2t − 1)4),

...
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For t = 1
2
ln(1 + 2γ

3λ
) , where 0 < γ < 1. Consider

||s1 − s0|| = ||U1|| =

∣

∣

∣

∣

∣

∣

∣

∣

−
3

2
λ2(e2t(e2t − 1))

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

(e2tλ)(−
3

2
λ(e2t − 1))

∣

∣

∣

∣

∣

∣

∣

∣

≤ ||(e2tλ)|||γ| = γ||U0||,

||s2 − s1|| = ||U2|| =

∣

∣

∣

∣

∣

∣

∣

∣

9

4
λ3(e2t(e2t − 1)2)

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

(e2tλ)(
9

4
λ2(e2t − 1)2)

∣

∣

∣

∣

∣

∣

∣

∣

≤ ||U0|||γ
2| = γ2||U0||,

||s3 − s2|| = ||U3|| =

∣

∣

∣

∣

∣

∣

∣

∣

−
27

8
λ4(e2t(e2t − 1)3)

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

(e2tλ)(−
27

8
λ3(e2t − 1)3)

∣

∣

∣

∣

∣

∣

∣

∣

≤ γ3||U0||,

||s4 − s3|| = ||U4|| =

∣

∣

∣

∣

∣

∣

∣

∣

81

16
λ5(e2t(e2t − 1)4)

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

(e2tλ)(
81

16
λ4(e2t − 1)4)

∣

∣

∣

∣

∣

∣

∣

∣

≤ γ4||U0||,

...

Consider

||sn − sm|| ≤ ||sn − sn−1||+ ||sn−1 − sn−2||+ · · ·+ ||sm+1 − sm||

= ||Un||+ ||Un−1||+ ||Un−2||+ · · ·+ ||Um+1||

≤ γm+1(1 + γ1 + γ2 + · · ·+ γn−m−1)||U0||

≤
γm+1

1− γ
||U0||

Hence, ||sn− sm|| → 0 as m,n→∞, which implies that {sn} is a Cauchy sequence.

Hence, the approximate solution of eq. (5.2) is

U(x, t) = e2tλ−
3

2
λ2e2t(e2t − 1) +

9

4
λ3e2t(e2t − 1)2 −

27

8
λ4e2t(e2t − 1)3

+
81

16
λ5(e2t(e2t − 1)4) + · · · (5.6)

Hence, the series solution obtained in eq.(5.6) converges to U(x, t) = e2tλ

1+ 3

2
λ(e2t−1)

.
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5.2.3 Fisher’s equation

Fisher(1937) proposed a non-linear equation to portray the spread of a viral

mutant in an interminably long habitat. This equation is experienced in different

applications, such as gene equation, tissue engineering, and neurophysiology.

Fisher’s equation is the partial differential equation of the form

∂φ

∂t
− a

∂2φ

∂t2
= bφ(1− φ).

It belongs to the class of reaction-diffusion equation.

5.2.4 Solution of Fisher’s equation

Consider the follwing IVP

∂φ

∂t
=

∂2φ

∂x2
+ φ(1− φ), (5.7)

where φ(x, 0) = β.

Operating Sumudu transformation on eq. (5.7) and using initial conditions, we get

S{φ(x, t)} =
1

1− u
β +

u

1− u
S{φxx − φ2}. (5.8)

Now, operating inverse Sumudu transformation on eq. (5.8), we have

φ(x, t) = etβ + S−1{
u

1− u
S{φxx − φ2}}. (5.9)

We apply HPM, eq. (5.9) becomes

∞
∑

n=0

φn(x, t) = etβ+pS−1
{

u

1− u
S

{( ∞
∑

n=0

pnφn(x, t)

)

xx

−
∞
∑

n=0

pnHn(x, t)

}}

. (5.10)
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A couple of terms of Hn(x, t) are given by

H0 = φ2
0,

H1 = 2φ0φ1,

H2 = 2φ0φ2 + φ2
1,

H3 = 2φ0φ3 + 2φ1φ2,

...

On looking at the like terms of eq. (5.10), we have

p0 : φ0 = etβ,

p1 : φ1 = −β2(et(et − 1)),

p2 : φ2 = β3(et(et − 1)2),

p3 : φ3 = −β4(et(et − 1)3),

p4 : φ4 = β5(et(et − 1)4),

...

For t = ln(1 + γ

β
) , where 0 < γ < 1. Let us consider

||s1 − s0|| = ||φ1|| =

∣

∣

∣

∣

∣

∣

∣

∣

− β2(et(et − 1))

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

(etβ)(−β(e2t − 1))

∣

∣

∣

∣

∣

∣

∣

∣

≤ ||(etβ)|||γ| = γ||φ0||,

||s2 − s1|| = ||φ2|| =

∣

∣

∣

∣

∣

∣

∣

∣

β3(et(et − 1)2)

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

(etβ)(β2(et − 1)2)

∣

∣

∣

∣

∣

∣

∣

∣

≤ ||φ0|||γ
2| = γ2||φ0||,

||s3 − s2|| = ||φ3|| =

∣

∣

∣

∣

∣

∣

∣

∣

− β4(et(et − 1)3)

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

(etβ)(β3(et − 1)3)

∣

∣

∣

∣

∣

∣

∣

∣

≤ β3||φ0||,

||s4 − s3|| = ||φ4|| =

∣

∣

∣

∣

∣

∣

∣

∣

β5(et(et − 1)4)

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

(etβ)(β4(et − 1)4)

∣

∣

∣

∣

∣

∣

∣

∣

≤ β4||φ0||,

...
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Consider

||sn − sm|| ≤ ||φn||+ ||φn−1||+ ||φn−2||+ +||φm+1||

≤ γm+1(1 + γ1 + γ2 + +γn−m−1)||φ0||

≤
γm+1

1− γ
||φ0||

Hence, ||sn−sm|| → 0 asm,n→∞, so {sn} is a Cauchy sequence. The approximate

solution of eq. (5.7) is

φ(x, t) = etβ − β2et(et − 1) + β3et(et − 1)2 − β4et(et − 1)3

+ β5(et(et − 1)4) + · · · (5.11)

Hence the series solution converges to the exact solution φ(x, t) = etβ

1+β(et−1)
.

Table 5.1: Numerical solution of Newell-Whitehead-Segel equation (5.2) for λ = 2

t Uexact

UHPSTM

= s5

truncation

error

U5

= |s5 − s4|

U4

= |s4 − s3|

U3

= |s3 − s2|

0 2 2 0 0 0 0

0.01 1.9238 1.9238 0 0 0.0005 0.0075

0.02 1.8546 1.8546 0 0.0005 0.0038 0.0312

0.03 1.7914 1.7918 0.0004 0.0025 0.0136 0.0731

0.04 1.7335 1.7351 0.0016 0.0084 0.0338 0.1353

0.05 1.6802 1.6855 0.0053 0.0219 0.0694 0.22

0.06 1.6311 1.6445 0.0134 0.0483 0.1262 0.3299

0.07 1.5857 1.6152 0.0295 0.095 0.2108 0.4676

0.08 1.5436 1.6025 0.0589 0.1723 0.331 0.6359

0.09 1.5044 1.6134 0.109 0.2934 0.4959 0.8382

0. 1 1.4678 1.6576 0.1898 0.4755 0.7158 1.0777
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Table 5.2: Numerical solution of Fisher’s equation (5.7) for β = 3

t φexact

φHPSTM

= s5

truncation

error

φ5

= |s5 − s4|

φ4

= |s4 − s3|

φ3

= |s3 − s2|

0 2 2 0 0 0 0

0.025 1.9518 1.9518 0 0 0.0003 0.0053

0.05 1.907 1.907 0 0.0002 0.0023 0.0221

0.075 1.8652 1.8654 0.0002 0.0013 0.0081 0.0523

0.1 1.8262 1.827 0.0008 0.0043 0.0206 0.0978

0.125 1.7897 1.7921 0.0024 0.0114 0.0428 0.1607

0.15 1.7555 1.7617 0.0062 0.0255 0.0788 0.2434

0.175 1.7233 1.7374 0.0141 0.051 0.1333 0.3486

0.2 1.6931 1.7219 0.0288 0.0939 0.2121 0.479

0.225 1.6646 1.7191 0.0545 0.1624 0.3219 0.6379

0.25 1.6377 1.7346 0.0969 0.2674 0.4707 0.8287

5.3 Convergence of HPTM for the series solution

of fractional PDE

Here, we emphasize on the condition of convergence of HPTM for the series solution

of non-linear fractional PDE. For that, we consider the following non-linear fractional

PDE.

∂α

∂tα
w(x, t) + L w(x, t) +N w(x, t) = f(x, t), t > 0, x ∈ R, n− 1 < α ≤ n, (5.12)

here, ∂
α

∂tα
, is the Caputo fractional derivative with respect to t, L and N are linear

and non-linear differential operators respectively which satisfy Lipschitz condition,

f(x, t) is the source term. Consider the Banach space C[0, T ] of all continuous

functions on [0, T ] with supremum norm. Throughout this section, we consider

w(x, t) , wn(x, t) ∈ C[0, T ].
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Theorem 5.3.1 (Uniqueness theorem) The solution obtained by HPTM of frac-

tional partial differential equation (5.12) has a unique solution, whenever 0 < γ < 1.

Proof: The solution of eq.(5.12) is of the form w(x, t) =
∑

∞

n=0 p
nwn(x, t) . Here,

w(x, t) =
n−1
∑

k=0

tk

k!
w(k)(x, 0) + L−1

{

1

sα

(

L

{

f(x, t)− L w(x, t)−N w(x, t)

})}

.

Let W and V be the distinct solutions of the eq.(5.12) then

|W − V | = | − L−1[
1

sα
(L[L(W − V ) +N(W − V )])]|.

Using convolution theorem,

|W − V | ≤

∫ t

0

(

|L(W − V )|+ |N(W )−N(V )|

)
∣

∣

∣

∣

(t− τ)n−1

(n− 1)!

∣

∣

∣

∣

dτ

≤

∫ t

0

(η|(U − V )|+ δ|U − V |)

∣

∣

∣

∣

(t− τ)n

n!

∣

∣

∣

∣

dτ

{

L is a bounded operator i.e. |L(W ) − L(V )| ≤ η|W − V |,N satisfies Lipschitz

condition with δ > 0 such that |N(W )−N(V )| ≤ δ|W − V |

}

.

|W − V | ≤

∫ t

0

(η + δ)|W − V |)

∣

∣

∣

∣

(t− τ)n−1

(n− 1)!

∣

∣

∣

∣

dτ

Using mean value theorem of integral calculus, |W − V | ≤ [(η + δ)|W − V |] M T ,

where M = max(t − τ)n and t ∈ [0, T ]. Hence, |W − V | ≤ |W − V |γ, where

γ = (n+ δ)M T. So (1− γ)|W − V | ≤ 0, implies W = V whenever, 0 < γ < 1.

Theorem 5.3.2 Let w and wn(x, t) be defined in Banach space B, the condition

that the series solution
∑

∞

n=0 wn , converges to the solution w is ||wn+1|| ≤ γ ||wn||

where γ ∈ (0, 1) and n ∈ N.

Proof: Let

sn = w0 + w1 + w2 + · · ·+ wn (5.13)
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be the partial sum of the series solution
∑

∞

n=0 wn. The convergence of sequence {sn}

of the partial sums will be proved, if we show that {sn} is a Cauchy sequence in

(C[0, T ], || ||). Consider

||sn+1 − sn|| = ||wn+1|| ≤ γ||wn||

≤ γ2||wn−1|| ≤ · · · ≤ γn+1||w0||

Hence,

||sn − sm|| = ||Σn
i=m+1wi|| ≤ Σn

i=m+1||wi||

≤ γm+1(Σn−m
i=0 γi)||w0|| = γm+1 (1− γn−m)

1− γ
||w0||, n,m ∈ N

Since , 0 < γ < 1, hence ||sn − sm|| ≤
γm+1

1−γ
||w0||. Also w0 is bounded, therefore

||sn+1 − sn|| → 0 as m,n → ∞. which shows that {sn} is a Cauchy sequence in

C[0, T ], hence
∑

∞

n=0 wn(x, t) is convergent.

5.4 Application

To understand the effectiveness of the HPTM, we impose this technique to the

following well-known equation.

5.4.1 Burgers’ equation

The Burgers’ equation ∂u
∂t
+ u∂u

∂x
= c∂

2u
∂x2 , which is a balance between time evolution,

non -linearity, and diffusion. This is a non-linear mathematical model used for

diffusive waves especially occur in fluid dynamics. In 1948, Burgers’ proposed this

equation to illuminate turbulence depicted by the interaction of two inverse impacts

of convection and diffusion. The term uux represents the shocking impact that will

make waves break while the term cuxx represents the diffusion.
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5.4.2 Solution of fractional Burgers’ equation

Consider the Burgers’ equation of fractional order

∂ηu

∂tη
+ u

∂u

∂x
=

∂2u

∂x2
, 0 < η ≤ 1 (5.14)

with initial condition

u(x, 0) = 2x (5.15)

Operating Laplace transformation on eq.(5.14), we have

L

{

∂ηu

∂tη
+ u

∂u

∂x

}

= L

{

∂2u

∂x2

}

(5.16)

Using (1.6.1) on (5.15), we have

sηL{u} − sη−1u(x, 0) = L

{

∂2u

∂x2
− u

∂u

∂x

}

or

L{u} =
1

s
2x+

1

sη
L

{

∂2u

∂x2
− u

∂u

∂x

}

(5.17)

Operating inverse Laplace transformation on eq.(5.17), we get

u(x, t) = 2x+ L−1
{

1

sη
L

{

∂2u

∂x2
− u

∂u

∂x

}}

(5.18)

Now, we apply HPM , we get

∞
∑

n=0

pnun(x, t) = 2x+ pL−1
{

1

sη
L

{( ∞
∑

n=0

pnun(x, t)

)

xx

−

∞
∑

n=0

pnHn(x, t)

}}

(5.19)

where Hn(x, t) represents He’s polynomial used for non-linear term present in eq.

(5.18), i.e.

∞
∑

n=0

pnHn(x, t) = u
∂u

∂x
=

( ∞
∑

n=0

pnun(x, t)

)( ∞
∑

n=0

pnun(x, t)

)

x

(5.20)
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A few couples of terms of He’s polynomial using eq.(5.20) are given below:

H0(x, t) = u0u0x;

H1(x, t) = u1u0x + u1u0x;

H2(x, t) = u2u0x + u1u1x + u0u2x;

...

On looking at the coefficient of like power of p of eq.(5.19), we have

u0(x, t) = 2x;

u1(x, t) =
−4x tη

Γ(η + 1)
;

u2(x, t) =
16x t2η

Γ(2η + 1)
;

u3(x, t) =
16x t3η

Γ(3η + 1)

(

4 +
Γ(2η + 1)

(Γ(η + 1))2

)

;

u4(x, t) = 64xt4η
[

2Γ(3η + 1)

Γ(η + 1)Γ(2η + 1)Γ(4η + 1)
+

1

Γ(4η + 1)

(

4 +
Γ(2η + 1)

(Γ(η + 1))2

)]

,

... (5.21)

For η = 1 and t = γ

2
, where 0 < γ < 1, let us consider

||s1 − s0|| = ||u1|| =

∣

∣

∣

∣

∣

∣

∣

∣

−4x tη

Γ(η + 1)

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

(2x)(
−2tα

Γ(α + 1)
)

∣

∣

∣

∣

∣

∣

∣

∣

≤ ||2x||

∣

∣

∣

∣

2(
γ

2
)

∣

∣

∣

∣

= γ||u0||,

||s2 − s1|| = ||u2|| =

∣

∣

∣

∣

∣

∣

∣

∣

16x t2η

Γ(2η + 1)

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

(2x)

(

8t2

Γ3

)
∣

∣

∣

∣

∣

∣

∣

∣

,

≤ ||u0||

(

8(γ
2
)2

2

)

= γ2||u0||

||s3 − s2|| = ||u3|| =

∣

∣

∣

∣

∣

∣

∣

∣

16x t3η

Γ(3η + 1)

(

4 +
Γ(2η + 1)

(Γ(η + 1))2

)
∣

∣

∣

∣

∣

∣

∣

∣

,

=

∣

∣

∣

∣

∣

∣

∣

∣

(2x)
8 t3

Γ(4)

(

4 +
Γ(3)

(Γ(2))2

)
∣

∣

∣

∣

∣

∣

∣

∣

≤ γ3||u0||,
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||s4 − s3|| = ||u4|| =

∣

∣

∣

∣

∣

∣

∣

∣

64xt4η
[

2Γ(3η + 1)

Γ(η + 1)Γ(2η + 1)Γ(4η + 1)

+
1

Γ(4η + 1)

(

4 +
Γ(2η + 1)

(Γ(η + 1))2

)]
∣

∣

∣

∣

∣

∣

∣

∣

,

=

∣

∣

∣

∣

∣

∣

∣

∣

(2x)(32t4)

[

2Γ4

Γ2Γ3Γ5
+

1

Γ5

(

4 +
Γ3

(Γ2)2

)]
∣

∣

∣

∣

∣

∣

∣

∣

≤ ||u0||

∣

∣

∣

∣

32

(

γ

2

)4[
1

4
+
1

4

]
∣

∣

∣

∣

= γ4||u0||;

...

Consider

||sn − sm|| ≤ ||un||+ ||un−1||+ · · ·+ ||um+1||

≤ ||u0||γ
n + ||u0||γ

n−1 + · · ·+ ||u0||γ
m+1

= γm+1(1 + γ + γ2 + · · ·+ γn−m−1)||u0||

≤
γm+1

1− γ
||u0||

Hence ||sn − sm|| → 0 as n,m → ∞, which shows that {sn} is a Cauchy sequence.

So, the approximate solution of (5.14) is given as

u(x, t) = 2x−
4x tη

Γ(η + 1)
+

16x t2η

Γ(2η + 1)
−

16x t3η

Γ(3η + 1)

(

4 +
Γ(2η + 1)

(Γ(η + 1))2

)

+ 64xt4η
[

2Γ(3η + 1)

Γ(η + 1)Γ(2η + 1)Γ(4η + 1)
+

1

Γ(4η + 1)

(

4 +
Γ(2η + 1)

(Γ(η + 1))2

)]

+ . . .

(5.22)

when η = 1, solution (5.22) of Burgers’ equation (5.14) reduces to

u(x, t) = 2x− 4xt+ 8xt2 − 16xt3 + 32xt4 − · · · =
2x

(1 + 2t)
. (5.23)

From eq. (5.23),we discover that series solution obtained in eq.(5.22) converges to

the exact solution of Burgers’ equation when η = 1.Further fig. (5.1) and (5.2) shows

that the surface graphs of the solution of eq.(5.14) up to fifth-order approximation
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for different values of η. It also shows that as the value of η approaches to one

the surface graph approaches to surface graph of the exact solution. Further, the

approximate solutions for η = 1 obtained for different values of x and t is presented

in table 5.3 which supports our analytical results regarding the convergence of the

method.

Figure 5.1: Surface graph of fractional Burgers’ equation for η = 0.2, 0.4 and 0.6

Figure 5.2: Surface graph of fractional Burgers’ equation for η = 0.8 and 1
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Table 5.3: Approximate solution of fractional Burgers’ equation (5.14) up to fourth
order

t x s3 s4 s5 uexact |s4 − s3| |s5 − s4|

0 0 0 0 0 0 0

0.1 0.1664 0.1667 0.1667 0.1667 0.0003 0

0.1 0.2 0.3328 0.3334 0.3333 0.3333 0.0006 0.0001

0.3 0.4992 0.5002 0.5 0.5 0.001 0.0002

0.4 0.6656 0.6669 0.6666 0.6667 0.0013 0.0003

0.5 0.832 0.8336 0.8333 0.8333 0.0016 0.0003

0 0 0 0 0 0 0

0.1 0.1392 0.1443 0.1423 0.1429 0.0051 0.002

0.2 0.2 0.2784 0.2886 0.2845 0.2857 0.0102 0.0041

0.3 0.4176 0.433 0.4268 0.4286 0.0154 0.0062

0.4 0.5568 0.5773 0.5691 0.5714 0.0205 0.0082

0.5 0.696 0.7216 0.7114 0.7143 0.0256 0.0102

0 0 0 0 0 0 0

0.1 0.1088 0.1347 0.1192 0.125 0.0259 0.0155

0.3 0.2 0.2176 0.2694 0.2383 0.25 0.0518 0.0311

0.3 0.3264 0.4042 0.3575 0.375 0.0778 0.0467

0.4 0.4352 0.5389 0.4767 0.5 0.1037 0.0622

0.5 0.544 0.6736 0.5958 0.625 0.1296 0.0778
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5.5 Conclusion

1. The convergence and uniqueness of HPSTM and HPTM are expressed analyti-

cally.

2. The estimated results of a series solution with maximum truncation error are

obtained and reported in table 5.1 and 5.2.

3. Results acquired about the convergence and error analysis of HPTM and HPSTM

are numerically illustrated.

4. The obtained results are approaching to exact results and are closed.
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Chapter 6

Comparative Study of HPTM
with HPETM

The fractional calculus is an important tool to refine the description of most of

the natural phenomenon. Fractional PDEs attracted the interest of many researchers

because of their successive appearance in diverse fields of science and engineering.

Many numerical and semi-analytical methods are utilized to obtain solutions of

linear and non-linear PDEs.

In this chapter, we apply HPTM [64, 92, 93] and HPETM [23, 24, 25, 26],[81]

to discover the solution of fractional Fisher’s equation, time-fractional Fornberg-

Whitham equation, and time-fractional Inviscid Burgers’ equation and we obtain a

power series solution is a rapidly convergent series and just a couple of iterations

leads to a more accurate solution. In these techniques, there is no need for the

algorithm like discretizing the problem, no linearization is required for the non-linear

problems. There are much symbolic computation software like Maple, Mathematica,

etc. with which we can easily calculate more terms very easily, hence it reduces the

computational cost for solving such a complex problem. Finally, we compare the
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result obtained by these methods.

6.1 Homotopy perturbation Elzaki transform method

(HPETM)

Consider the following general fractional non-linear partial differential equation

∂α

∂tα
w(x, t) + Lw(x, t) +Nw(x, t) =f(x, t), t > 0, x ∈ R, n− 1 < α ≤ n, (6.1)

here, ∂
α

∂tα
, is the Caputo fractional derivative with respect to t. Now applying Elzaki

transform, we get

E

{

∂α

∂tα
w + Lw +Nw

}

= E
{

f(x, t)
}

.

Using (1.6.3), we have

E
{

w
}

=
n−1
∑

k=0

vk+2w(k)(x, 0) + vα
(

E

{

f(x, t)− Lw −Nw

})

.

Applying the inverse Elzaki transform, we have

w =
n−1
∑

k=0

tk

k!
w(k)(x, 0) + E−1

{

vα
(

E

{

f(x, t)− Lw −Nw

})}

. (6.2)

By applying HPM, we get

0 =(1− p)

(

w(x, t)− w(x, 0)

)

+ p

(

w(x, t)−
n−1
∑

k=0

tk

k!
w(k)(x, 0)

− E−1
{

vαE

{

f(x, t)− Lw −Nw

}})

,

Let

w(x, t) =
∞
∑

n=0

pnwn(x, t), (6.3)

Nw(x, t) =
∞
∑

n=0

pnHn(w(x, t))

where

Hn(w(x, t)) =
1

n!

∂n

∂pn

(

∞
∑

i=0

piwi

)

(p=0)

, n = 0, 1, 2, 3, . . . (6.4)
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So, (6.2) becomes

∞
∑

n=0

pnwn = w(x, 0) + p

n−1
∑

k=1

tk

k!
w(k)(x, 0)

+E−1

{

vα

(

E

{

f(x, t)− L

∞
∑

n=0

pnwn −
∞
∑

n=0

pnHn(w)

})}

On equating the coefficients of like powers of p, we have

p0 : w0 =w(x, 0);

p1 : w1 =
n−1
∑

k=1

tk

k!
w(k)(x, 0) + E−1 {vα (E {f(x, t)− Lw0(x, t)−H0})} ;

p2 : w2 =− E−1 {vα (E {Lw1(x, t) +H1})} ;

p3 : w3 =− E−1 {vα (E {Lw2(x, t) +H2})} ,

...

therefore, the HPETM series solution is obtained as p→ 1

w(x, t) = w0 + w1 + w2 + w3 + . . . .

6.2 Convergence analysis

In this section, we emphasis on the condition of convergence of the proposed method

for the series solution of eq. (6.1).

Theorem 6.2.1 Let w and wn(x, t) be defined in Banach space B, the condition that

series solution given by eq. (6.3) converges to the solution is such that ||wn+1|| ≤

η ||wn|| where η ∈ (0, 1).The condition of convergence is proved in [98, 99].

Remark 6.2.2 The maximum truncated error of w(x, t) =
∑

∞

n=0 wn is given by

ηm+1

1−η
||w0||.
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6.3 Application

To understand the effectiveness of the said technique, we apply this technique to

the following famous equations.

6.3.1 Fisher’s equation

In (1937), Fisher proposed a non-linear equation to portray the spread of a viral

mutant in an interminably long habitat. This equation is experienced in different ap-

plications, such as gene equation, tissue engineering, and neurophysiology. Fisher’s

equation is the partial differential equation of the form

∂U

∂t
− a

∂2U

∂t2
= bU(1− U)

6.3.2 Solution of time fractional Fisher’s equation using
HPETM

Consider the time fractional non-linear Fisher’s equation [81]

∂βw

∂tβ
=

∂2w

∂x2
+ 6w(1− w), t > 0, x ∈ R, 0 < β ≤ 1, (6.5)

with w(x, 0) = 1
(1+ex)2

.

By applying HPETM on (6.5), we have

∞
∑

n=0

pnwn =
1

(1 + ex)2
+p

(

E−1
{

vβ
(

E

{

∞
∑

n=0

(pnwn)xx+6

{

∞
∑

n=0

pnwn−6
∞
∑

n=0

pnHn(x, t)

}})})

,

(6.6)

The initial couple of terms of components of Hn(w) are given by

H0 = w2
0;

H1 = 2w0w1;

H2 = w2
1 + 2w0w2,

...
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Comparing the like terms of (6.6), we have

p0 : w0 =
1

(1 + ex)2
,

p1 : w1 =10
extβ

(1 + ex)3Γ(β + 1)
,

p2 : w2 =50
ex(2ex − 1)t2β

(1 + ex)4Γ(2β + 1)
,

p3 : w3 =

(

50
ex(−16e3x − 15e2x + 30ex + 5)

(1 + ex)6
+ 600e2x

Γ(2β + 1)

(1 + ex)6Γ(β + 1)2

)

t3β

Γ(3β + 1)
.

...

Hence the solution is

w(x, t) =
1

(1 + ex)2
+ 10

extβ

(1 + ex)3Γ(β + 1)
+ 50

ex(2ex − 1)t2β

(1 + ex)4Γ(2β + 1)

+

(

50
ex(−16e3x − 15e2x + 30ex + 5)

(1 + ex)6
+ 600e2x

Γ(2β + 1)

(1 + ex)6Γ(β + 1)2

)

t3β

Γ(3β + 1)
+. . . .

(6.7)

The above solution at β = 1 converges to w(x, t) = 1
(1+ex−5t)2

.

6.3.3 Fornberg-Whitham equation

Notably, the KdV equation and some Camassa Holm type equations concede

soliton solutions which keep up a consistent shape and move at steady speed; and

numerous Camassa Holm type conditions have peakon (peaked soliton) solution. It

is fascinating that the Fornberg-Whitham equation does not just permit traveling

wave solutions, yet besides, has peakon solution.

6.3.4 Solution of time fractional Fornberg-Whitham equa-
tion using HPETM

Consider the time-fractional Fornberg-Whitham equation [96]

∂β

∂tβ
w(x, t) =

∂3w

∂x2∂t
−
∂w

∂x
+w

∂3w

∂x3
−w

∂w

∂x
+3

∂w

∂x

∂2w

∂x2
, t > 0, x ∈ R, 0 < β ≤ 1, (6.8)
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with initial condition w(x, 0) = e
x

2 .

By applying HPETM on (6.8), we have

∞
∑

n=0

pnwn = e
x

2 +p

(

E−1
{

vβ
(

E

{

∞
∑

n=0

pn
(

(wn)xxt+(−wn)x+Hn(w)

)})})

, (6.9)

The initial a couple of terms of components of Hn are given by

H0 = w0w0xxx − w0w0x + 3w0xw0xx;

H1 = w0w1xxx + w1w0xxx − w0w1x − w1w0x + 3w0xw1xx + 3w1xw0xx;

H2 = w0w2xxx + w1w1xxx + w2w0xxx − w0w2x − w1w1x − w2w0x

+ 3w2xw0xx + 3w1xw1xx + 3w0xw2xx.

On looking at the like terms of (6.9), we have

p0 : w0 =e
x

2 ;

p1 : w1 =
−e

x

2

2

tβ

Γ(β + 1)
;

p2 : w2 =
−e

x

2

8

t2β−1

Γ2β
+

e
x

2

4

t2β

Γ(2β + 1)
;

p3 : w3 =e
x

2

(

−1

32

t3β−2

Γ(3β − 1)
+
1

8

t3β−1

Γ(3β)
−
1

8

t3β

Γ(3β + 1)

)

,

...

Hence, the solution is

w(x, t) = e
x

2 −
e

x

2

2

tβ

Γ(β + 1)
−

e
x

2

8

t2β−1

Γ2β
+

e
x

2

4

t2β

Γ(2β + 1)

+ e
x

2

(

−1

32

t3β−2

Γ(3β − 1)
+
1

8

t3β−1

Γ(3β)
−
1

8

t3β

Γ(3β + 1)

)

+ . . . .

(6.10)

From the above solution, it is clear that the approximate solution obtained from the

abovesaid technique is converging to exact solution i.e. w(x, t) = e
1

2
(x− 4t

3
) for β = 1.
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6.3.5 Inviscid Burgers’ equation

It is worth mentioning that Inviscid Burgers’ equation is a prototype of the

conservation law i.e. ∂u
∂t
+ ∂

∂x

(

∫

f(u)du

)

= 0.The Inviscid Burgers’ equation is

given as

∂u

∂t
+ u

∂u

∂x
= 0

It is a non-linear hyperbolic equation. It has application in gas dynamics and traffic

flow.

6.3.6 Solution of time fractional Inviscid Burgers’ equation
using HPETM

Consider the following non-homogeneous time fractional Inviscid Burgers’ equation

[118]

D
β
t w + wwx = 1 + x+ t, w(x, 0) = x, 0 < β ≤ 1 (6.11)

By applying HPETM on eq.(6.11), we have

∞
∑

n=0

pnwn = x+ p

(

E−1
{

vβE

{

1 + x+ t

}

− vβE

{

∞
∑

n=0

pnHn(x, t)

}})

(6.12)

where

wwx =
∞
∑

n=0

pnHn(x, t)

The initial couple of terms of Hn(w) are given as

H0 = w0w0x

H1 = w0w1x + w1w0x

H2 = w0w2x + w1w1x + w2w0x

...
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On comparing the like terms of (6.12), we have

p0 : wo = x

p1 : w1 = (1 + x)
tβ

Γ(1 + β)
+

tβ+1

Γ(β + 2)
− E−1

{

vβE
{

H0

}

}

=
tβ

Γ(1 + β)
+

tβ+1

Γ(β + 2)

p2 : w2 = −E
−1

{

vβE
{

H1

}

}

= −

(

t2β

Γ(2β + 1)
+

t2β+1

Γ(2β + 2)

)

p3 : w3 = −E
−1

{

vβE
{

H2

}

}

=

(

t3β

Γ(3β + 1)
+

t3β+1

Γ(3β + 2)

)

...

Hence the solution of (6.11) is

w(x, t) = x+
tβ

Γ(1 + β)
+

tβ+1

Γ(β + 2)
−

(

t2β

Γ(2β + 1)
+

t2β+1

Γ(2β + 2)

)

+

(

t3β

Γ(3β + 1)
+

t3β+1

Γ(3β + 2)

)

+. . .

or

w(x, t) = x+

(

tβ

Γ(1 + β)
−

t2β

Γ(2β + 1)
+

t3β

Γ(3β + 1)
+ . . .

)

+

(

tβ+1

Γ(β + 2)
−

t2β+1

Γ(2β + 2)
+

t3β+1

Γ(3β + 2)
+ . . .

)

or

w(x, t) = x−

∞
∑

n=1

(−1)ntnβ

Γ(nβ + 1)
− t

∞
∑

n=1

(−1)ntnβ

Γ(nβ + 2)

w(x, t) = x+ 1 + t− Eβ,1(−t
β)− tEβ,2(−t

β) (6.13)

where Eβ,2(−t
β) in eq. (6.13) is Mittag-Leffler function defined in (1.5). When

β = 1, the exact solution of (6.11) is w(x, t) = x+ t.
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6.3.7 Solution of time fractional Fisher’s equation using
HPTM

Consider the time fractional non-linear Fisher’s equation[81]

∂βw

∂tβ
=

∂2w

∂x2
+ 6w(1− w), t > 0, x ∈ R, 0 < β ≤ 1, (6.14)

with initial condition w(x, 0) = 1
(1+ex)2

.

By applying HPTM on (6.14), we have

∞
∑

n=0

pnwn =
1

(1 + ex)2
+p

(

L−1
{

1

sβ

(

L

{

∞
∑

n=0

(pnwn)xx+6

{

∞
∑

n=0

pnwn−
∞
∑

n=0

pnHn(w)

}})})

(6.15)

The first few components of Hn(w) are given by

H0(w) = w2
0;

H1(w) = 2w0w1;

H2(w) = w2
1 + 2w0w2,

...

Comparing the like powers of p on both sides of (6.15), we have

p0 : w0 =
1

(1 + ex)2
;

p1 : w1 =10
extβ

(1 + ex)3Γ(β + 1)
;

p2 : w2 =50
ex(2ex − 1)t2β

(1 + ex)4Γ(2β + 1)
;

p3 : w3 =

(

50
ex(8e2x − 11ex + 5)

(1 + ex)5
+ 600e2x

Γ(2β + 1)

(1 + ex)6Γ(β + 1)2

)

t3β

Γ(3β + 1)
,

...
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Figure 6.1: Surface graph of
w(x, t) of eq. (6.14), when β =
0.6

Figure 6.2: Surface graph of
w(x, t) of eq. (6.14), when β =
0.8

Figure 6.3: Surface graph of
w(x, t) of eq. (6.14), when β = 1

Figure 6.4: Surface graph of
w(x, t) of eq. (6.14), when β =
1(exact solution)

Hence, the solution is given as

w(x, t) =
1

(1 + ex)2
+ 10

extβ

(1 + ex)3Γ(β + 1)
+ 50

ex(2ex − 1)t2β

(1 + ex)4Γ(2β + 1)

+

(

50
ex(−16e3x − 15e2x + 30ex + 5)

(1 + ex)6
+ 600e2x

Γ(2β + 1)

(1 + ex)6Γ(β + 1)2

)

t3β

Γ(3β + 1)
+. . . .

(6.16)
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Figure 6.5: Plot of of w(x, t) of eq. (6.14) when x = 0.4 and β = 0.6, 0.8 and 1

6.3.8 Solution of time fractional Fornberg-Whitham equa-
tion using HPTM

Consider the time-fractional Fornberg-Whitham equation [96]

∂β

∂tβ
w(x, t) =

∂3w

∂x2∂t
−

∂w

∂x
+ w

∂3w

∂x3
− w

∂w

∂x
+ 3

∂w

∂x

∂2w

∂x2
, t > 0, x ∈ R, 0 < β ≤ 1,

(6.17)

with initial condition w(x, 0) = e
x

2 .

By applying HPTM on (6.17), we have

∞
∑

n=0

pnwn = e
x

2 +p

(

L−1
{

1

sβ

(

L

{

∞
∑

n=0

pn
(

(wn)xxt+(−wn)x+Hn(w)

)})})

(6.18)
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Table 6.1: Approximate solution of Fisher’s equation (6.5) and (6.14) up to fourth
order( when β = 1)

x t wHPETM wHPTM w abs.error ||w1|| ||w2|| ||w3||

(approx.) (approx.) (exact sol.)

0.1 0.304691131 0.304691131 0.302317425 0.002373706 0.104031064 1.88E-02 7.49E-04

0.11 0.319292625 0.319292625 0.316042418 0.003250207 0.11443417 2.28E-02 9.97E-04

0.3 0.12 0.334319781 0.334319781 0.329984205 0.004335576 0.124837277 2.71E-02 1.29E-03

0.13 0.34977709 0.34977709 0.344120184 0.005656906 0.135240383 3.18E-02 1.65E-03

0.14 0.365669045 0.365669045 0.358426914 0.007242131 0.145643489 3.69E-02 2.05E-03

0.1 0.276611064 0.276611064 0.275603147 0.001007917 9.64E-02 1.92E-02 4.91507E-05

0.11 0.29026645 0.29026645 0.288830839 0.001435611 0.106061562 2.32E-02 6.54196E-05

0.4 0.12 0.304302372 0.304302372 0.302317425 0.001984947 0.115703523 2.76E-02 8.49324E-05

0.13 0.318718535 0.318718535 0.316042418 0.002676117 0.125345483 3.24E-02 0.000107984

0.14 0.333514645 0.333514645 0.329984205 0.00353044 0.134987443 3.76E-02 0.00013487

0.1 0.249765515 0.249765515 0.25 0.000234485 8.87E-02 1.92E-02 0.000734094

0.11 0.262435106 0.262435106 0.262653581 0.000218475 9.76E-02 2.33E-02 0.00097708

0.5 0.12 0.275441031 0.275441031 0.275603147 0.000162116 0.10646815 2.77E-02 0.001268515

0.13 0.288778885 0.288778885 0.288830839 5.19537E-05 0.115340496 3.25E-02 0.001612806

0.14 0.302444264 0.302444264 0.302317425 0.000126839 0.124212842 3.77E-02 0.002014355

The inital couple of terms of Hn(w) are given by

H0(w) = w0w0xxx − w0w0x + 3w0xw0xx;

H1(w) = w0w1xxx + w1w0xxx − w0w1x − w1w0x + 3w0xw1xx + 3w1xw0xx;

H2(w) = w0w2xxx + w1w1xxx + w2w0xxx − w0w2x − w1w1x − w2w0x

+3w2xw0xx + 3w1xw1xx + 3w0xw2xx.

On looking at the like terms of (6.18), we have

p0 : w0 =e
x

2 ;
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p1 : w1 =
−e

x

2

2

tβ

Γ(β + 1)
;

p2 : w2 =
−e

x

2

8

t2β−1

Γ2β
+

e
x

2

4

t2β

Γ(2β + 1)
;

p3 : w3 =e
x

2

(

−1

32

t3β−2

Γ(3β − 1)
+
1

8

t3β−1

Γ(3β)
−
1

8

t3β

Γ(3β + 1)

)

,

...

Hence, the solution is given as

w(x, t) = e
x

2 −
e

x

2

2

tβ

Γ(β + 1)
−

e
x

2

8

t2β−1

Γ2β
+

e
x

2

4

t2β

Γ(2β + 1)

+ e
x

2

(

−1

32

t3β−2

Γ(3β − 1)
+
1

8

t3β−1

Γ(3β)
−
1

8

t3β

Γ(3β + 1)

)

+ . . . .

(6.19)

6.3.9 Solution of time fractional Inviscid Burgers’ equation
using HPTM

Consider the non-linear non-homogeneous time fractional Inviscid Burgers’ equation[118]

D
β
t w + wwx = 1 + x+ t, w(x, 0) = x, 0 < β ≤ 1 (6.20)

By applying HPTM on eq.(6.20), we have

∞
∑

n=0

pnwn = x+ p

(

L−1
{

1

sβ
L

{

1 + x+ t

}

−
1

sβ
L

{

∞
∑

n=0

pnHn(w)

}})

(6.21)

where

wwx =
∞
∑

n=0

pnHn(w)
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Figure 6.6: Surface graph of
w(x, t) of eq. (6.17), when β =
0.6

Figure 6.7: Surface graph of
w(x, t) of eq. (6.17), when β =
0.8

Figure 6.8: Surface graph of
w(x, t) of eq. (6.17), when β = 1

Figure 6.9: Surface graph of
w(x, t) of eq. (6.17), when β =
1(exact solution)

The first few components of He’s polynomial i.e. Hn(w) are given as

H0 = w0w0x

H1 = w0w1x + w1w0x

H2 = w0w2x + w1w1x + w2w0x

...
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Figure 6.10: Plot of of w(x, t) of eq. (6.17) when x = 2 and β = 0.6, 0.8 and 1

On comparing the like powers of p on both sides of (6.21), we have

p0 : wo = x

p1 : w1 = (1 + x)
tβ

Γ(1 + β)
+

tβ+1

Γ(β + 2)
− L−1

{

1

sβ
L
{

H0

}

}

=
tβ

Γ(1 + β)
+

tβ+1

Γ(β + 2)

p2 : w2 = −L
−1

{

1

sβ
L
{

H1

}

}

= −

(

t2β

Γ(2β + 1)
+

t2β+1

Γ(2β + 2)

)

p3 : w3 = L
−1

{

1

sβ
L
{

H2

}

}

=

(

t3β

Γ(3β + 1)
+

t3β+1

Γ(3β + 2)

)

...

Hence the solution of (6.20) is

w(x, t) = x+
tβ

Γ(1 + β)
+

tβ+1

Γ(β + 2)
−

(

t2β

Γ(2β + 1)
+

t2β+1

Γ(2β + 2)

)

+

(

t3β

Γ(3β + 1)
+

t3β+1

Γ(3β + 2)

)

+. . .
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Table 6.2: Approximate solution of Fornberg-Whitham equation (6.8) and (6.17) up
to fourth order (when β = 1)

t x wHPETM wHPTM w abs.error ||w1|| ||w2|| ||w3||

(approx.) (approx.) (exact sol.)

1 1.543580941 1.543580941 1.542390265 1.19E-03 0.082436064 0.018548114 0.004156152

2 2.544934731 2.544934731 2.542971638 1.96E-03 0.135914091 0.030580671 0.006852335

0.1 3 4.195888024 4.195888024 4.19265143 3.24E-03 0.224084454 0.050419002 0.011297591

4 6.917849834 6.917849834 6.912513593 5.34E-03 0.369452805 0.083126881 0.018626579

5 11.40560617 11.40560617 11.3968082 8.80E-03 0.609124698 0.137053057 0.030710037

1 1.351024036 1.351024036 1.349858808 1.17E-03 0.247308191 0.043278933 0.00711011

2 2.227462066 2.227462066 2.225540928 1.92E-03 0.407742274 0.071354898 0.01172259

0.3 3 3.672464088 3.672464088 3.669296668 3.17E-03 0.672253361 0.117644338 0.019327284

4 6.054869657 6.054869657 6.049647464 5.22E-03 1.108358415 0.193962723 0.031865304

5 9.982792395 9.982792395 9.974182455 8.61E-03 1.827374094 0.319790467 0.052537005

1 1.180724868 1.180724868 1.181360413 6.36E-04 0.412180318 0.05152254 0.004293545

2 1.946686205 1.946686205 1.947734041 1.05E-03 0.679570457 0.084946307 0.007078859

0.5 3 3.209542954 3.209542954 3.211270543 1.73E-03 1.120422268 0.140052783 0.011671065

4 5.291641738 5.291641738 5.29449005 2.85E-03 1.847264025 0.230908003 0.019242334

5 8.72444229 8.72444229 8.729138364 4.70E-03 3.04562349 0.380702936 0.031725245

or

w(x, t) = x+

(

tβ

Γ(1 + β)
−

t2β

Γ(2β + 1)
+

t3β

Γ(3β + 1)
+ . . .

)

+

(

tβ+1

Γ(β + 2)
−

t2β+1

Γ(2β + 2)
+

t3β+1

Γ(3β + 2)
+ . . .

)

or

w(x, t) = x−

∞
∑

n=1

(−1)ntnβ

Γ(nβ + 1)
− t

∞
∑

n=1

(−1)ntnβ

Γ(nβ + 2)

or

w(x, t) = x+ 1 + t− Eβ,1(−t
β)− tEβ,2(−t

β)

When β = 1,solution of (6.20) reduces to w(x, t) = x+ t.
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Figure 6.11: Surface graph of
w(x, t) of eq. (6.20), when β =
0.6

Figure 6.12: Surface graph of
w(x, t) of eq. (6.20), when β =
0.8

Figure 6.13: Surface graph of
w(x, t) of eq. (6.20), when β = 1

Figure 6.14: Surface graph of
w(x, t) of eq. (6.20), when β =
1(exact solution)

6.4 Analysis

We Know that

L{f(t)} =

∫

∞

0

e−stf(t) = f̄(s) (6.22)

Also from (1.16) and (6.22), we have

E{f(t)} = F (v) = vf̄

(

1

v

)

(6.23)
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Figure 6.15: Plot of of w(x, t) of eq. (6.20) when x = 0.5 and β = 0.6, 0.8 and 1

or

f̄

(

1

v

)

=
1

v
F (v)

⇒ f̄(s) =
1

v
F (v), where v =

1

s

Hence

L{tn} =
Γ(n+ 1)

sn+1
. (6.24)

using (6.23)

⇒ E{tn} = vn+2Γ(n+ 1),

L

{

∂β

∂tβ
f(t)

}

= sβL{f(t)} −
n−1
∑

k=0

sβ−k−1f (k)(0), n− 1 < β ≤ n,
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Table 6.3: Approximate solution of Inviscid Burgers’ equation (6.11) and (6.20) up
to fourth order( β = 1)

x t wHPETM wHPTM w abs.error ||w1|| ||w2|| ||w3||

(approx.) (approx.) (exact sol.)

0.25 0.50016276 0.50016276 0.5 0.00016276 0.28125 0.033854167 0.002766927

0.25 0.5 0.752604167 0.752604167 0.75 0.002604167 0.625 0.145833333 0.0234375

0.75 1.013183594 1.013183594 1 0.013183594 1.03125 0.3515625 0.083496094

1 1.291666667 1.291666667 1.25 0.041666667 1.5 0.666666667 0.208333333

0.25 0.75016276 0.75016276 0.75 0.00016276 0.28125 0.033854167 0.002766927

0.5 0.5 1.002604167 1.002604167 1 0.002604167 0.625 0.145833333 0.0234375

0.75 1.263183594 1.263183594 1.25 0.013183594 1.03125 0.3515625 0.083496094

1 1.541666667 1.541666667 1.5 0.041666667 1.5 0.666666667 0.208333333

0.25 1.00016276 1.00016276 1 0.00016276 0.28125 0.033854167 0.002766927

0.75 0.5 1.252604167 1.252604167 1.25 0.002604167 0.625 0.145833333 0.0234375

0.75 1.513183594 1.513183594 1.5 0.013183594 1.03125 0.3515625 0.083496094

1 1.791666667 1.791666667 1.75 0.041666667 1.5 0.666666667 0.208333333

using (6.23), we have

⇒
1

v
E{fβ(t)} =

1

vβ
F (v)

v
−

n−1
∑

k=0

(

1

v

)β−k−1

f (k)(0), n− 1 < β ≤ n,

⇒ E{fβ(t)} =
F (v)

vβ
−

n−1
∑

k=0

vk−β+2f (k)(0), n− 1 < β ≤ n.

Fig. 6.1-6.4, represent the surface graphs of approximate solution of (6.14) for

various estimations of β and the exact solution for β = 1 and we find that approx-

imate solution up to order four converges to exact solution for β = 1, in table 6.1,

the condition of convergence is verified i.e. we analyse that ||w1|| < ||w2|| < ||w3||.

Moreover, from Fig.6.5, we conclude that with the decrease in the estimation of β,

w(x, t) increases. On the other hand, Fig. 6.6-6.9 and Fig. 6.11-6.14 represent the

surface graph of (6.17) and (6.20) for various estimations of β and the exact solution

for β = 1, the approximate solution of w(x, t) approaches to exact solution when
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β = 1, but by slightly decreasing the value of β, the value of w(x, t) also decreases

which is shown in the Fig. 6.10 and Fig.6.15.

6.5 Conclusion

1. We made a comparative study of two powerful semi-analytical techniques i.e.

HPTM and HPETM for the solution of non-linear fractional PDE.

2. Elzaki transformation and its properties could be derived from Laplace transfor-

mation. Hence both the semi-analytical techniques give the same series solution.

3. The series solution obtained from HPTM and HPETM satisfied conditions of

convergence that are reported in obtained results mentioned in tables 6.1, 6.2

and 6.3.

4. HPTM and HPETM both the techniques are equally competent for homogeneous

and non-homogeneous non-linear fractional PDE.
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Chapter 7

Accelerated HPSTM for the Series
Solution of Non-linear PDE

The model including delay differential equations may display physical frame-

works for which the advancement does rely upon the present and past circumstances.

This type of the model is found in the area of population dynamics and epidemiology,

where the delay is due to the gesture or maturity period, or is in numerical

control, where there is a delay in taking care of in the controller input circle. The

partial differential equation with proportionate delay is a particular case of delay

differential equation emerge uniquely in the field of medicine, populace ecology,

control frameworks, biology, and climate models[108]. Some of the authors have

adopted numerical techniques like HPM, VIM, and DTM for solving delay partial

differential equations.

Here we apply a new form of a semi-analytic technique named as Accelerated

HPSTM to study the following type of PDE with proportional delay.

wt(x, t) = F (w(α1x, β1t), wx(α2x, β2t), wxx(α3x, β3t), . . . ), (7.1)

w(x, 0) = g(x),
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αi, βj ∈ (0, 1), i, j ∈ N , and F is the partial differential operator.

7.1 Accelerated homotopy perturbation Sumudu

transform method (AHPSTM)

To elucidate the proposed technique, let us consider the following non-linear equation

∂nψ(x, t)

∂tn
+ Lψ(x, t) +Nψ(x, t) =f(x, t), t > 0, x ∈ R, (7.2)

Now applying Sumudu transform, we get

S

{

∂nψ(x, t)

∂tn
+ Lψ +Nψ

}

= S
{

f(x, t)
}

.

Using (1.6.2), we have

S{ψ(x, t)} = un
n−1
∑

k=0

uk−nψk(x, 0) + unS
{

f(x, t)− Lψ(x, t)−Nψ(x, t)
}

(7.3)

Operating inverse Sumudu transform on (7.3), we have

ψ(x, t) =
n−1
∑

k=0

tk

k!
ψ(k)(x, 0) + S−1

{

un
(

S

{

f(x, t)− Lψ(x, t)−Nψ(x, t)

})}

. (7.4)

By applying HPM, we get

0 =(1− p)

(

ψ(x, t)− ψ(x, 0)

)

+ p

(

ψ(x, t)−
n−1
∑

k=0

tk

k!
ψ(k)(x, 0)

− S−1
{

unS

{

f(x, t)− Lψ(x, t)−Nψ(x, t)

}})

,

where p ∈ [0, 1] is parameter and ψ(x, 0), ψk(x, 0), k = 1, 2, . . . , n− 1 are the initial

approximations of the given differential equation (7.2). Let

ψ(x, t) =
∞
∑

n=0

pnψn(x, t), (7.5)

Nψ(x, t) =
∞
∑

n=0

pnH̃n(ψ(x, t)) (7.6)

Here, we use H̃n given in [57] also known as accelerated He’s polynomial.
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∞
∑

n=0

H̃n(ψ) =
∞
∑

n=0

Hn(ψ),

with

H̃n(ψ0, ψ1, ψ2, . . . , ψn) = N(Sn)−
n−1
∑

k=0

H̃k, n ≥ 1 (7.7)

here Hn(ψ) is He’s polynomial

Using (7.5) and (7.7), eq.(7.4) becomes

∞
∑

n=0

pnψn(x, t) = ψ(x, 0) + p{

n−1
∑

k=1

tk

k!
ψ(k)(x, 0)+

S−1(un(S{f(x, t)− L

∞
∑

n=0

pnψn(x, t)−
∞
∑

n=0

pnH̃n(ψ)}))}.

On looking at the coefficient of like power of p, we have

p0 : ψ0 =ψ(x, 0);

p1 : ψ1 =
n−1
∑

k=1

tk

k!
ψ(k)(x, 0) + S−1

{

un
[

S
{

f(x, t)− Lψ0(ax, bt)− H̃0

}]}

;

p2 : ψ2 =− S−1
{

un
[

S
{

Lψ1(x, t) + H̃1

}]}

;

p3 : ψ3 =− S−1
{

un
[

S
{

Lψ2(x, t) + H̃2

}]}

.

...

Hence the solution is obtained by taking the limit p→ 1 and we have

ψ(x, t) =
∞
∑

i=0

ψi(x, t).

To elucidate the efficiency of the proposed method and importance of Accelerated

He’s polynomial over He’s polynomial. Let us consider the non-linear term as

Nψ(x, t) = ψ2ψx
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If we write an initial couple of terms of He’s polynomial, we have

H0(ψ) = ψ2
0ψ0x;

H1(ψ) = 2ψ0ψ1ψ0x + ψ2
0ψ1x;

H2(ψ) = ψ2
0ψ2x + 2ψ0ψ1ψ1x + 2ψ0ψ2ψ0x + ψ2

1ψ0x;

H3(ψ) = 2ψ0ψ3ψ0x + 2ψ1ψ2ψ0x + 2ψ0ψ2ψ1x + 2ψ0ψ1ψ2x + ψ2
0ψ3x + ψ2

1ψ1x,

... (7.8)

A couple of terms of Accelerated He’s polynomial are

H̃0(ψ) = ψ2
0ψ0x;

H̃1(ψ) = 2ψ0ψ1ψ0x + ψ2
0ψ1x + ψ2

1ψ0x + ψ2
1ψ1x + 2ψ0ψ1ψ1x;

H̃2(ψ) = 2ψ0ψ2ψ0x + 2ψ1ψ2ψ0x + 2ψ0ψ2ψ1x + 2ψ1ψ2ψ1x

+2ψ0ψ1ψ2x + ψ2
2ψ1x + ψ2

2ψ2x + ψ2
0ψ2x + ψ2

1ψ2x

H̃3(ψ) = 2ψ1ψ3ψ1x + 2ψ2ψ3ψ1x + 2ψ1ψ3ψ2x + 2ψ2ψ3ψ2x

+2ψ1ψ2ψ3x + 2ψ1ψ3ψ3x + 2ψ2ψ3ψ3x + (ψ1x + ψ2x)ψ
2
3

+(ψ2
0 + ψ2

1)ψ3x + (ψ2
2 + ψ2

3)ψ3x + ψ0xψ3(2ψ1 + 2ψ2 + ψ3)

+2ψ0(ψ0xψ3 + ψ1xψ3 + ψ2xψ3 + ψ3xψ1 + ψ3xψ2 + ψ3xψ3)

... (7.9)

on comparing (7.8) and (7.9), it is clear that H̃0, H̃1, H̃2 and H̃3 of accelerated He’s

polynomial contains not only the terms present in H0, H1, H2, H3 but also the terms

which might be present in H4, H5, H6, . . . which shows that the solution obtained

using accelerated He’s polynomial would converge faster than using He’s polynomial.

7.2 Convergence analysis

In this section, we insist on the position of the convergence of the proposed method

for chain solution. Now, we emphasize on the position of convergence of the proposed
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method for the series solution of eq. (7.2).

Theorem 7.2.1 Let ψ and ψn(x, t) be defined in Banach space B, the condition that

the series solution given by eq. (7.5) converges to the solution is ||ψn+1|| ≤ η ||ψn||

where η ∈ (0, 1).The condition of convergence has been proved in [98, 99].

Remark 7.2.2 The condition of absolute truncation error is given below:

||ψ −
n

∑

k=0

ψk|| ≤
ηn+1

1− η
||ψ0||

.

7.3 Application

7.3.1 Solution of generalized Burgers’ equation with pro-
portional delay

Consider the following initial value problem [1]

∂ψ(x, t)

∂t
= ψxx(x, t) + ψx

(

x, t
2

)

ψ
(

x
2
, t
2

)

+
1

2
ψ(x, t), t > 0, x ∈ R, (7.10)

where ψ(x, 0) = x. By applying Sumudu transformation on eq. (7.10), we have

S
{∂ψ(x, t)

∂t
−

1

2
ψ(x, t)

}

= S
{

ψxx(x, t) + ψx

(

x, t
2

)

ψ
(

x
2
, t
2

)}

, (7.11)

S
{

ψ(x, t)
}

= x
2

2− u
+

2u

2− u

(

S
{

ψxx(x, t) + ψx

(

x, t
2

)

ψ
(

x
2
, t
2

)}

)

. (7.12)

By applying inverse Sumudu transformation on eq.(7.12), we have

ψ(x, t) = xe
t

2 + S−1
{

2u

2− u

(

S
{

ψxx(x, t) + ψx

(

x, t
2

)

ψ
(

x
2
, t
2

)}

)}

. (7.13)

Now, we apply AHPSTM on (7.10), we have

∞
∑

n=0

pnψn(x, t) = xe
t

2 + p S−1
{

2u

2− u

(

S

{

∞
∑

n=0

(pnψn)xx(x, t) +
∞
∑

n=0

pnH̃n(ψ)

})}

,

(7.14)
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where the initial couple of terms of H̃n are given as

H̃0(ψ) = ψ0x

(

x, t
2

)

ψ0

(

x
2
, t
2

)

,

H̃1(ψ) = ψ0x

(

x, t
2

)

ψ1

(

x
2
, t
2

)

+ ψ1x

(

x, t
2

)

ψ0

(

x
2
, t
2

)

+ ψ1x

(

x, t
2

)

ψ1

(

x
2
, t
2

)

,

H̃2(ψ) = ψ0x

(

x, t
2

)

ψ2

(

x
2
, t
2

)

+ ψ1x

(

x, t
2

)

ψ2

(

x
2
, t
2

)

+ ψ2x

(

x, t
2

)

ψ2

(

x
2
, t
2

)

+ ψ2x

(

x, t
2

)

ψ0

(

x
2
, t
2

)

+ ψ2x

(

x, t
2

)

ψ1

(

x
2
, t
2

)

,

H̃3(ψ) = ψ0x

(

x, t
2

)

ψ3

(

x
2
, t
2

)

+ ψ1x

(

x, t
2

)

ψ3

(

x
2
, t
2

)

+ ψ2x

(

x, t
2

)

ψ3

(

x
2
, t
2

)

+ ψ3x

(

x, t
2

)

ψ3

(

x
2
, t
2

)

+ ψ3x

(

x, t
2

)

ψ2

(

x
2
, t
2

)

+ ψ3x

(

x, t
2

)

ψ1

(

x
2
, t
2

)

+ ψ3x

(

x, t
2

)

ψ0

(

x
2
, t
2

)

H̃4(ψ) = ψ0x

(

x, t
2

)

ψ4

(

x
2
, t
2

)

+ ψ1x

(

x, t
2

)

ψ4

(

x
2
, t
2

)

+ ψ2x

(

x, t
2

)

ψ4

(

x
2
, t
2

)

+ ψ3x

(

x, t
2

)

ψ4

(

x
2
, t
2

)

+ ψ4x

(

x, t
2

)

ψ4

(

x
2
, t
2

)

+ ψ4x

(

x, t
2

)

ψ3

(

x
2
, t
2

)

+ ψ4x

(

x, t
2

)

ψ2

(

x
2
, t
2

)

+ ψ4x

(

x, t
2

)

ψ1

(

x
2
, t
2

)

+ ψ4x

(

x, t
2

)

ψ0

(

x
2
, t
2

)

...

On looking at the like powers of p of eq. (7.14), we have

p0 : ψ0 =xe
t

2 ;

p1 : ψ1 =

(

t

2

)

xe
t

2 ;

p2 : ψ2 =xe
t

2

((

t2

222!

)

+
1

2

(

t3

233!

))

;

p3 : ψ3 =xe
t

2

(

1

2

(

t3

233!

)

+
7

8

(

t4

244!

)

+
5

8

(

t5

255!

)

+
5

16

(

t6

266!

)

+
5

64

(

t7

277!

))

;

p4 : ψ4 =xe
t

2

(

1

8

(

t4

244!

)

+
23

64

(

t5

255!

)

+
5

8

(

t6

266!

)

+
395

512

(

t7

277!

)

+
2455

4096

(

t8

288!

)

+ . . .

)

;

...

(7.15)

As p→ 1, we get the series solution of (7.14) as

ψ(x, t) =
∞
∑

i=0

ψi(x, t),
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Figure 7.1: Solution of generalized Burgers’ equation (7.10) with proportionate delay

(a) Approximate solution using AH-
PSTM up to fourth order (b) (Exact sol.)

using (7.15), we get

ψ(x, t) = xe
t

2 + xe
t

2

(

t

2

)

+ xe
t

2

((

t2

222!

)

+
1

2

(

t3

233!

))

+ xe
t

2

(

1

2

(

t3

233!

)

+
7

8

(

t4

244!

)

+
5

8

(

t5

255!

)

+
5

16

(

t6

266!

)

+
5

64

(

t7

277!

))

+ xe
t

2

(

1

8

(

t4

244!

)

+
23

64

(

t5

255!

)

+
5

8

(

t6

266!

)

+
395

512

(

t7

277!

)

+
2455

4096

(

t8

288!

)

+ . . .

)

ψ(x, t) = xe
t

2

(

1+
t

2
+

(

t3

233!

)

+

(

t4

244!

)

+
63

64

(

t5

255!

)

+
15

16

(

t6

266!

)

+
435

512

(

t7

277!

)

+. . .

)

(7.16)

The exact solution of the eq(7.10) in closed form is

ψ(x, t) = xet (7.17)

On comparing (7.17) and (7.16), we find that the series solution rapidly converges

to the actual solution. So, we discover that the accelerated homotopy perturbation

Sumudu transformation method provides us the faster rate of convergence which

can be seen in table 7.1 that the value of ψn (APSTM) decreases rapidly.
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Table 7.1: Approximate solution of (7.10) using AHPSTM

x t ψ2 ψ3 ψ4

(AHPSTM) (AHPSTM) (AHPSTM)

0.25 0.002259289 4.8675E-05 3.87068E-07

0.25 0.5 0.010449426 0.00046536 7.54081E-06

0.75 0.027174522 0.00187525 4.64816E-05

1 0.055816085 0.00530269 0.000178857

0.25 0.004518577 9.73499E-05 7.74136E-07

0.5 0.5 0.020898851 0.000930721 1.50816E-05

0.75 0.054349045 0.003750499 9.29631E-05

1 0.111632169 0.01060538 0.000357713

0.25 0.006777866 0.000146025 1.1612E-06

0.75 0.5 0.031348277 0.001396081 2.26224E-05

0.75 0.081523567 0.005625749 0.000139445

1 0.167448254 0.015908069 0.00053657
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7.3.2 Solution of non-linear PDE with proportional delay

Consider the following initial value problem[1]

∂ψ(x, t)

∂t
= ψxx

(

x,
t

2

)

ψ

(

x, t
2

)

− ψ(x, t), t > 0, x ∈ R, (7.18)

with initial condition ψ(x, 0) = x2.

By applying Sumudu transformation on both sides of (7.18), we get

S

{

∂ψ(x, t)

∂t
+ ψ(x, t)

}

= S

{

ψxx

(

x,
t

2

)

ψ

(

x, t
2

)}

, (7.19)

(

1

u
+ 1

)

S

{

ψ(x, t)

}

−

(

1

u

)

ψ(x, 0) = S

{

ψxx

(

x,
t

2

)

ψ

(

x, t
2

)}

, (7.20)

S

{

ψ(x, t)

}

= x2
1

1 + u
+

u

1 + u

(

S

{

ψxx

(

x,
t

2

)

ψ
(

x, t
2

)

})

. (7.21)

By applying inverse Sumudu transformation, we have

ψ(x, t) = x2e−t + S−1
{

u

1 + u

(

S

{

ψxx

(

x,
t

2

)

ψ
(

x, t
2

)

})}

. (7.22)

Now , we apply AHPSTM on (7.18), we have

∞
∑

n=0

pnψn(x, t) = x2e−t + p S−1
{

u

1 + u

(

S

{

∞
∑

n=0

pnH̃n(ψ)

})}

, (7.23)

where the initial couple of terms of H̃n are given as

H̃0(ψ) = ψ0xx

(

x, t
2

)

ψ0

(

x, t
2

)

,

H̃1(ψ) = ψ0xx

(

x, t
2

)

ψ1

(

x, t
2

)

+ ψ1xx

(

x, t
2

)

ψ0

(

x, t
2

)

+ ψ1xx

(

x, t
2

)

ψ1

(

x, t
2

)

,

H̃2(ψ) = ψ0xx

(

x, t
2

)

ψ2

(

x, t
2

)

+ ψ1xx

(

x, t
2

)

ψ2

(

x, t
2

)

+ ψ2xx

(

x, t
2

)

ψ2

(

x, t
2

)

+ψ2xx

(

x, t
2

)

ψ0

(

x, t
2

)

+ ψ2xx

(

x, t
2

)

ψ1

(

x, t
2

)

,

...
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On looking at the like powers of p of (7.23), we have

p0 : ψ0 =x
2e−t;

p1 : ψ1 =x
2e−t(2t);

p2 : ψ2 =x
2e−t

(

22t2

2!
+

1

2

23t3

3!

)

;

p3 : ψ3 =x
2e−t

(

1

2

23t3

3!
+

7

8

24t4

4!
+

5

8

25t5

5!
+

5

16

26t6

6!
+

5

64

27t7

7!

)

;

p4 : ψ4 =x
2e−t

(

1

8

24t4

4!
+

23

64

25t5

5!
+

5

8

26t6

6!
+

395

512

27t7

7!
+

2455

4096

28t8

8!
+ . . .

)

;

...

(7.24)

Hence the series solution of (7.18)is obtained by

ψ(x, t) = x2e−t + x2e−t(2t) + x2e−t
(

22t2

2!
+

1

2

23t3

3!

)

+ x2e−t
(

1

2

23t3

3!
+

7

8

24t4

4!
+

5

8

25t5

5!
+

5

16

26t6

6!
+

5

64

27t7

7!

)

+ x2e−t
(

1

8

24t4

4!
+

23

64

25t5

5!
+

5

8

26t6

6!
+

395

512

27t7

7!
+

2455

4096

28t8

8!
+ . . .

)

ψ(x, t) = x2e−t
(

1 + 2t+
22t2

2!
+

23t3

3!
+

24t4

4!
+

63

64

25t5

5!
+

15

16

(2t)6

6!
+

435

512

(2t)7

7!
+ . . .

)

(7.25)

The exact solution of the eq(7.10) in closed form is

ψ(x, t) = x2et (7.26)

On comparing (7.26) and (7.25), it is clear that the series approaches to the

exact solution. Also from the table 7.2, it is clear that ||ψ4|| < ||ψ3|| < ||ψ2|| i.e. the

series solution satisfy the condition of convergence.

7.3.3 Solution of non-linear PDE with proportional delay

Consider the following equation [1]

∂ψ(x, t)

∂t
= ψxx

(

x

2
,
t

2

)

ψx

(

x
2
, t
2

)

− ψx(x, t)− ψ(x, t), t > 0, x ∈ R, (7.27)
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Figure 7.2: Solution of Non-linear PDE (7.18) with proportionate delay

(a) Approximate solution using AH-
PSTM up to fourth order (b) (Exact sol.)

Table 7.2: Approximate solution of (7.18) up to fourth order

x t ψ2 ψ3 ψ4

(AHPSTM) (AHPSTM) (AHPSTM)

0.25 0.006591413 0.000626203 2.11215E-05

0.25 0.5 0.022113097 0.004755562 0.000350289

0.75 0.041516592 0.015073801 0.001831803

1 0.06131324 0.033256958 0.005952034

0.25 0.026365652 0.002504813 8.44858E-05

0.5 0.5 0.088452388 0.019022246 0.001401156

0.75 0.166066366 0.060295204 0.007327211

1 0.245252961 0.133027834 0.023808135

0.25 0.059322716 0.00563583 0.000190093

0.75 0.5 0.199017873 0.042800054 0.003152601

0.75 0.373649324 0.135664209 0.016486225

1 0.551819162 0.299312626 0.053568305

115



CHAPTER 7. ACCELERATED HPSTM FOR NON-LINEAR PDE

with initial condition ψ(x, 0) = x2.

On operating Sumudu transformation on both sides of (7.27), we have

S

{

∂ψ(x, t)

∂t
+ ψ(x, t)

}

= S

{

ψxx

(

x

2
,
t

2

)

ψx

(

x
2
, t
2

)

− ψx(x, t)

}

, (7.28)
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, (7.29)
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, (7.30)

By applying inverse Sumudu transformation, we have

ψ(x, t) = x2e−t + S−1
{

u

1 + u

(
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2
,
t

2

)
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− ψx(x, t)

})}

. (7.31)

Now , we apply here AHPSTM on (7.27), we have

∞
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The initial couple of terms of H̃n are given by
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...

On looking at like powers of p of (7.32), we have

p0 : ψ0 =x
2e−t;
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Figure 7.3: Solution of Non-linear PDE (7.27) with proportionate delay

(a) Approximate solution using AH-
PSTM up to fourth order (b) (Exact sol.)

p1 : ψ1 =0;

p2 : ψ2 =0;

p3 : ψ3 =0;

...

Therefore, the series solution of (7.27) is

ψ(x, t) = x2e−t. (7.33)

Also the exact solution of the eq.(7.27) in closed form is

ψ(x, t) = x2e−t (7.34)

So from eq.(7.33) and eq.(7.34),we have found this exact solution in only one

iteration.

7.4 Statistical Analysis

In order to validate the solution obtained from the semi-analytic technique AHPSTM

and to investigate the techniques(AHPSTM, HPM and DTM) for giving better out-

comes in regard of solution of non-linear problem considered in eq.(7.10),(7.18)and
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Table 7.3: Approximate solution of (7.10) up to fourth order

x t Exact sol AHPSTM DTM[1] HPM[87] Abs.Err. Abs.Err. Abs.Err.

(AHPSTM) (DTM) (HPM)

0.25 0.3210063542 0.3210063530 0.3210042318 0.3210042318 1.22e-9 2.12e-6 2.12e-6

0.25 0.5 0.4121803177 0.4121802694 0.4121093750 0.4121093750 4.83e-8 7.09e-5 7.09e-5

0.75 0.52925000412 0.5292495523 0.5286865234 0.5286865234 4.52e-7 5.63e-4 5.63e-4

1 0.6795704571 0.6795681075 0.6770833333 0.6770833333 2.35e-6 2.49e-3 2.49e-3

0.25 0.6420127083 0.6420127059 0.6420084635 0.6420084635 2.4e-9 4.24e-6 4.24e-6

0.5 0.5 0.8243606354 0.8243605388 0.8242187500 0.8242187500 9.66e-8 1.42e-4 1.42e-4

0.75 1.058500008 1.058499105 1.057373047 1.057373047 9.03e-7 1.13e-3 1.13e-3

1 1.359140914 1.359136215 1.354166667 1.354166667 4.70e-6 4.97e-3 4.97e-3

0.25 0.9630190625 0.9630190588 0.9630126953 0.9630126953 3.7e-9 6.36e-6 6.36e-6

0.75 0.5 1.236540953 1.236540808 1.236328125 1.236328125 1.45e-7 2.13e-4 2.13e-4

0.75 1.587750012 1.587748657 1.586059570 1.586059570 1.36e-6 1.69e-3 1.69e-3

1 2.038711371 2.038704323 2.031250000 2.031250000 7.05e-6 7.46e-3 7.46e-3

(7.27) we have employed a statistical technique i.e. paired student’s t-test at 5%

level of significance to the data of tables 7.3, 7.4 and 7.5. The null hypothesis has

been defined as under

Null Hypothesis:

HA
0 : µA

1 = µA
2j, H

B
0 : µB

1 = µB
2j, H

C
0 : µC

1 = µC
2j,

where µk
1, k = A,B,C denotes the exact solution of (7.10),(7.18) and (7.27)

respectively while µk
2j, K = A,B,C, j = 1, 2, 3 denotes the approximate solution

of eq. (7.10),(7.18) and (7.27) via AHPSTM, DTM and HPM respectively. The

considered degree of freedom is nk − 1 = 12 − 1 = 11 and the tabulated value of

t at α = 5% is |ttab.| = 2.201. The calculated values of test statistic of (7.10),(7.18)

and (7.27) for pair AHPSTM with exact solution Ai, DTM with exact solution Bi
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Table 7.4: Approximate solution of (7.18) up to fourth order

x t Exact sol AHPSTM DTM[1] HPM[87] Abs.Err. Abs.Err. Abs.Err.

(AHPSTM) (DTM) (HPM)

0.25 0.0802515885 0.0802513111 0.0802510579 0.0802510579 2.77e-7 5.30e-7 5.30e-7

0.25 0.5 0.1030450794 0.1030352801 0.1030273438 0.1030273438 9.80e-6 1.77e-5 1.77e-5

0.75 0.1323125010 0.1322294700 0.1321716308 0.1321716308 8.30e-5 1.41e-4 1.41e-4

1 0.1698926143 0.1694996494 0.1692708333 0.1692708333 3.93e-4 6.22e-4 6.22e-4

0.25 0.3210063542 0.3210052443 0.3210042318 0.3210042318 1.11e-6 2.12e-6 2.12e-6

0.5 0.5 0.4121803177 0.4121411203 0.4121093750 0.4121093750 3.92e-5 7.09e-5 7.09e-5

0.75 0.5292500042 0.5289178802 0.5286865234 0.5286865234 3.32e-4 5.63e-4 5.63e-4

1 0.6795704571 0.6779985974 0.6770833333 0.6770833333 1.57e-3 2.49e-3 2.49e-3

0.25 0.7222642969 0.7222617997 0.7222595215 0.7222595215 2.50e-6 4.78e-6 4.78e-6

0.75 0.5 0.9274057148 0.9273175206 0.9272460938 0.9272460938 8.82e-5 1.60e-4 1.60e-4

0.75 1.190812509 1.190065230 1.189544678 1.189544678 7.47e-4 1.27e-3 1.27e-3

1 1.529033528 1.525496844 1.523437500 1.523437500 3.54e-3 5.60e-3 5.60e-3

and HPM with exact solution Ci, i = 1, 2, 3 are given below:

|tcal.(A1)| = 2.192, |tcal.(B1)| = 2.282, |tcal.(C1)| = 2.282,

|tcal.(A2)| = 1.884, |tcal.(B2)| = 1.914, |tcal.(C2)| = 1.914,

|tcal.(B3)| = 1.954, |tcal.(C3)| = 1.954

From the above analysis, it is clear that null hypothesis H0 is accepted for eq.

(7.10) only for pair AHPSTM solution and exact solution but rejected for DTM

with exact solution and HPM with exact solution while for eq. (7.18) and (7.27),

null Hypothesis is accepted in all the three cases (Note:For eq. (7.27), as we get exact

solution with AHPSTM , so we do not test statistically). Hence, with this statistical

analysis we conclude that AHPSTM gives better solution than other semianalytical

technique like DTM and HPM.
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Table 7.5: Approximate solution of (7.27) up to fourth order

x t Exact sol AHPSTM DTM[1] HPM[87] Abs.Err. Abs.Err. Abs.Err.

(AHPSTM) (DTM) (HPM)

0.25 0.0486750489 0.0486750489 0.0486755371 0.0486755371 0 4.88e-7 4.88e-7

0.25 0.5 0.0379081662 0.0379081662 0.0379231771 0.0379231771 0 1.50e-5 1.50e-5

0.75 0.0295229096 0.0295229096 0.0296325684 0.0296325684 0 1.10e-4 1.10e-4

1 0.0229924651 0.0229924651 0.0234375000 0.0234375000 0 4.45e-4 4.45e-4

0.25 0.1947001958 0.1947001958 0.1947021484 0.1947021484 0 1.95e-6 1.95e-6

0.5 0.5 0.1516326649 0.1516326649 0.1516927083 0.1516927083 0 6.00e-5 6.00e-5

0.75 0.1180916382 0.1180916382 0.1185302734 0.1185302734 0 4.39e-4 4.39e-4

1 0.09196986029 0.09196986029 0.0937500000 0.0937500000 0 1.78e-3 1.78e-3

0.25 0.4380754405 0.4380754405 0.4380798340 0.4380798340 0 4.39e-6 4.39e-6

0.75 0.5 0.3411734961 0.3411734961 0.3413085938 0.3413085938 0 1.35e-4 1.35e-4

0.75 0.2657061859 0.2657061859 0.2666931152 0.2666931152 0 9.87e-4 9.87e-4

1 0.2069321857 0.2069321857 0.2109375000 0.2109375000 0 4.01e-3 4.01e-3

7.5 Conclusion

1. We obtained a power series solution is a rapidly convergent series and analyzed

that only a few iterations yield a high precision solution.

2. The proposed technique converges faster than other semi-analytical techniques

like HPM, VIM, and DTM.

3. To approve and elucidate the effectiveness of the method, we have implemented

the proposed technique on non-linear PDEs.

4. The series solution satisfies the condition of convergence which is reported in the

results mentioned in tables 7.1 and 7.2.

5. The approximate results obtained by the semi-analytical technique are approach-

ing to the exact solutions. These results are nearly equal.
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6. The AHPSTM is faster than HPM, VIM, and DTM as it needs less number of

iterations to obtain the convergent results.

7. The proposed method gives a better result to the solution of nonlinear PDEs as

no discretizing algorithm and no linearization is required for non-linear problems.

8. Only a few iterations lead to the solution and it can be easily calculated and

hence it reduces the computational cost.

9. AHPSTM is equally competent for linear and non-linear PDEs.
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Concluding Remarks

All the physical problems can be modeled in the form of non-linear PDEs. It is

exceptionally hard to acquire the analytical solution of these non-linear problems.

To overcome this difficulty, various semi-analytical techniques and numerical tech-

niques have been implemented by many authors. Here we have used Homotopy

perturbation method as the main tool with different integral transformations like

Laplace, Sumudu and Elzaki transformation to obtain the solution of various non-

linear higher ordered, coupled and fractional PDEs in which we have a high degree of

non-linearity. We have analyzed that with these methodologies we can undoubtedly

discover the solution in the form of series expansion which rapidly converges to a

precise solution. The condition of convergence of these semi-analytical techniques

is derived and verified by applying these techniques on the problems of non-linear

partial and fractional PDEs.

Finally, we propose a new semi-analytical technique which is more efficient than

the classical semi-analytical techniques like HPM, VIM, and DTM, as only a few

numbers of iterations are required to get convergent results. AHPSTM gives a

better outcome for non-linear PDE solution as no discretizing algorithm and no

linearization is required for non-linear problems. Only a few iterations will lead to

the solution, and these can be easily calculated and hence reduces the computational

cost.
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Future Scope

We aim to make progressively utilization of the proposed technique for the solution

of some new form of fractional PDEs using Caputo-Fabrizio, Atangana-Baleanu

fractional operator and fractional integro-differential equations. Further, the status

of the proposed technique, the present structure will likewise be explored. The

proposed technique will be explored with integral transform like Fourier transform,

Mellin transform and will be compared with numerical techniques or semi-analytical

techniques like Finite element method, Haar wavelet, etc. Moreover, statistical

analysis (like paired t-test, ANOVA) can also be performed to validate the results

obtained from the method.
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