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ABSTRACT 

In medical domain, a large number of images are produced by different imaging 

modalities such as Digitized X-rays Films, Digital Mammogram, Computed 

Tomography (CT), Cardiac Catheterization, Magnetic Resonance Imaging (MRI), 

Positron Emission Tomography (PET), Digital Electronic Microscopy (DEM), Digital 

Subtraction Angiography (DSA), Nuclear Medicine, Doppler Ultrasound etc., however 

Ultrasound imaging is still widely used because it is non-invasive, economical and 

portable. Some of the familiar applications of ultrasound imaging are growth 

monitoring of fetus, to identify problems in abdomen and to analyse the variety of 

diseases in tissues like liver and kidney. 

Fatty liver is a disease that occurs when the fat content of 'hepatocytes' 

increases, resulting in a difference in the texture of the liver surface. Analysis of 

quantitative texture may also provide essential information that is otherwise difficult to 

obtain through visual analysis of ultrasound image. Study on Computer-Aided 

Diagnosis (CAD) has grown at a higher rate in the area of medical imaging and 

diagnostic radiology in the last few years. It introduces the pattern recognition software 

that analyses suspicious features on the image and helps the radiologists to solve the 

problem of fatty liver disease. There are many issues to be considered in the design of 

a CAD System that includes Region of Interest (ROI) extraction, feature extraction, 

selection of optimal features from the extracted features and classifier. The most 

important issue in the design process is the use of appropriate visual features and the 

methodologies to extract them from raw images, as these affect the subsequent 

processes of the CAD system. 

In India and Western countries, fatty liver disease (steatosis) is a highly 

prevalent condition of all liver diseases. Radiologists measure the fatty tissue mainly 

by a highly subjective visual interpretation of the ultrasound image of the liver. 

Automatic methods of image classification seek to emulate such a visual decision and 

classify images based on the underlying characteristics of the textures. With widespread 

acceptance of ultrasound imaging as a tool, it is important to efficiently process images 

using computer vision techniques. 
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A review of related work in processing and analysis of ultrasound images has 

been done. From the literature survey it has been found that in recent years many 

approaches have been proposed for the analysis of ultrasound images and major work 

has been done in the area of Computer Aided Diagnosis of fatty liver (Steatosis). A 

major current focus is on use of machine learning techniques to classify the liver 

ultrasound images and feature selection to find an optimal set of features that can not 

only capture the texture of images but also enhances the semantic interpretability. 

For the classification of fatty and normal images the present research work has 

focused on liver ultrasound images. Radiologists are more interested in the image subpart 

(Region of Interest) rather than the image as a whole. ROI is a sub-part of the picture 

containing very valuable diagnostic information. In the past, several researchers used 

ROI to analyse texture. Since a ROI is used as the 'representative' of the image and all 

other computations and diagnoses depend on the ROI, the selection of a suitable image 

area as ROI is therefore very crucial. In this thesis work, from the ultrasound liver image 

ROI of size 30×30 pixels size has been extracted from the full ultrasound image. This 

size of ROI also decreases the computational cost of extracting the texture features from 

the small sized ROI. For carrying out this work, 90 ultrasound liver images are collected 

from Delta Diagnostic Centre Patiala, India. Experienced radiologists are requested to 

acquire the images and to label them as per the standard procedure. For speckle reduction 

a modified fourth order partial differential equation-based filter has been used. In order 

to enhance the edges and fine details in the ultrasound image ‘edge-map’ technique has 

been used. To further increase the efficacy, after feature extraction from the region of 

interest all the features have been normalized. 

Texture analysis is an important and useful area of study in many computer 

imaging and machine vision applications. The fatty liver image visually differs from 

normal liver image in terms of tonal variations (intensity-based like contrast, brightness 

etc.). Over the last few years, the researchers have suggested several models for texture 

analysis. We can categorize these models into structural, statistical, model-based and 

transform-based models. Each model visualizes texture in a different way and it is 

always a challenging task to determine the optimal texture model for liver tissue 

classification. Different texture models such as “Haralick's Spatial Gray Level Co-
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occurrence Matrix (SGLCM), Gray Level Difference Statistics (GLDS), First-order 

Statistics (FoS), Statistical Feature Matrix (SFM), Law’s Texture Energy Measures 

(TEM), Fractal and Fourier Power Spectrum (FPS)” were used in the proposed work to 

extract the features from ROI. In this thesis, four different methods have been proposed 

for the classification of liver ultrasound images into two categories. 

The first proposed method is based on the use of Decision Tree Classifier with 

Principal Component Analysis (PCA). Decision Tree is a Supervised Machine 

Learning algorithm where the data is continuously split according to a certain 

parameter. Further, the use of PCA has been widely studied in the literature for the 

dimensionality reduction process. Therefore, extracted features are first fed to the 

Decision Tree Classifier. The experimental results showed that an accuracy of 88.9% 

has been obtained with Decision Tree Classifier. Further in the next experiment PCA 

has been used for projecting original data into a new coordinate space. From the 

experimental results it has been found that when PCA is used for reducing the 

dimensionality and the transformed features are passed to Decision Tree Classifier an 

accuracy of 93.3% has been achieved. The experimental results show that Decision 

Tree with PCA approach can not only simplify the decision tree model but can also 

increase the Decision Tree prediction accuracy. It has been found from the 

experimental results that Decision Tree with PCA outperforms in comparison to 

Decision Tree. 

In the second proposed method, the extracted forty-five features are passed to 

K-Nearest Neighbour (K-NN) classifier and ten different distance metrics available in 

literature are explored for the classification purpose. Additional experiments were also 

conducted to find the best value of K which reduces the number of errors we encounter 

while retaining the ability of the algorithm to make predictions accurately when given 

data that it has not seen before. It was found from the experimental results that the 

proposed method using K-NN classifier yielded best results with City Block distance 

metric and a value of k as 7. The overall accuracy obtained with these parameter 

settings is 96.7%. 

The third proposed method is based on the use of Neural Network (NN) for the 

classification of liver ultrasound images. A NN classification system mimics the human 
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reasoning. The neural network created for classification purpose is a two-layer 

feedforward neural network in which sigmoid function has been used in the hidden 

layer and SoftMax transfer function has been used in the output layer of the neural 

network. After the extensive experiments it has been found that an overall accuracy of 

98.9% has been achieved with this approach.  

 Finally, in the last proposed work the performance of 4 classifiers i.e. Sequential 

Minimal Optimization (SMO), IBk, AdaBoostM1 and BF-Tree is evaluated for 5 different 

experiments based on different number of selected best features. Mutual Information (MI) 

feature selection method has been used for selecting the best features, which gives output 

on the basis of their weight. From the experimental results, it was found that with the 20 

best features selected by the MI feature selection technique, the proposed CAD system can 

provide 95.55% accuracy and sensitivity of 97.77%. The experimental results indicate that 

the proposed method can be used with greater precision to distinguish fatty and normal 

ultrasound images. The experimental results also proved that feature selection has 

significant impact on the classification accuracy. 

 The current research work is expected to make a major impact in the field of 

ultrasound imaging. Finally, a few suggestions based on the experimental results and 

observations have been provided for future work. 
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Chapter-1 

Introduction 

 

1.1 Motivation 

In medical domain, images are produced in ever increasing quantities by various 

imaging modalities like Cardiac Catheterization, Computed Tomography (CT), Digital 

Mammogram, Doppler Ultrasound, Digitized X-rays Films, Magnetic Resonance 

Imaging (MRI), Nuclear Medicine, Positron Emission Tomography (PET), Digital 

Subtraction Angiography (DSA), Digital Electronic Microscopy (DEM) etc., but still 

ultrasound imaging is extensively adopted, since it is non-invasive, economical and 

portable [1-3].  Some of the popular ultrasound imaging applications are monitoring 

fetal development, diagnosing problems in the abdomen and evaluating diseases in 

tissues such as the kidney and the liver [4-5]. Ultrasound imaging is commonly used to 

diagnose fatty liver (Steatosis) in liver complications. In India, the prevalence of fatty 

liver among adults is over 30% [6-8]. The term "Steatosis" refers to a condition that 

results due to the increase in fat content over 5 per cent of the hepatocyte weight. This 

metabolism results in a variation in liver surface texture. The visual inspection of such 

a variance in the texture of the liver surface is usually subjective since it relies on the 

radiologist's ability to analyse the difference in the grey level and the textural features 

of the liver tissue in an image. Quantitative texture analysis of liver images can however 

supply important information that is hard to acquire otherwise through visual 

examination of ultrasound images. Also, the diagnostic accuracy by visual perception 

in marginal cases is approximately 72% due to speckle noise [9]. One of the drawbacks 

associated with the Ultrasound imaging technique is speckle noise. Speckle not only 

deteriorates the visual quality of ultrasonic images but also masks several precise 

details of the tissues under inspection. Speckle is a locally clustered multiplicative noise 

with granular pattern, and this makes the ultrasound image visual quality low. The 

presence of speckle effects the automated image processing and analysis of an 

ultrasound image. Therefore, Speckle elimination is essential step prior to the 

implementation of any of such automated image processing technique.  



2 
 

Although a lot of work has been done in the area of speckle suppression and liver 

tissue characterization in ultrasound images, but still it is the subject of great 

significance due to increasing prevalence of fatty liver across the globe [10]. Therefore, 

a quantitative method with better accuracy is still need of the hour in biomedical 

imaging to assist the radiologists for better diagnosis. 

The major objective of the proposed research work is processing and analysis of 

ultrasound images for disease diagnosis. This chapter presents an introduction about 

the various medical imaging modalities. This is followed by a concise literature review 

of the fatty liver and ultrasound imaging for disease diagnosis. At the end, the database 

used in the current research work and some contributions made in the proposed research 

work are presented, followed by the brief organization of the thesis. 

1.2 Medical Imaging Modalities 

Medical imaging is a tool or procedure to generate images of interior of the body 

for various surgical actions and clinical studies, including visual depiction of the 

activities of the organs. Medical imaging comprises different imaging modalities and 

processes required for diagnostic and treatment purposes.  Medical imaging helps to 

expose internal structures that are masked by the skin and bones, as well as to 

effectively treat disease. In medical domain, many images are produced by different 

imaging modalities such as “Digital Radiography, Mammography, Computed 

Tomography (CT), Cardiac Catheterization, Magnetic Resonance Imaging (MRI), 

Positron Emission Tomography (PET), Digital Electronic Microscopy (DEM), Digital 

Subtraction Angiography (DSA), Nuclear Medicine, Doppler Ultrasound” etc. 

The field of medical imaging has its origins in Röntgen's accidental discovery in 

1895 of a new form of electromagnetic radiation, X-rays. In the decades that followed, 

doctors have commonly used X-Ray radiography for finding the structural and 

physiological state of internal organs of the body that includes intestines, stomach, 

brain and lungs. Hospitals have also incorporated computers and digital imaging into 

radiology and medical imaging services. Computers are now used regularly for 

different activities, ranging from data collection and image creation to image display 

and analysis [11]. 



3 
 

The need for computers and computing in image generation, processing, display, 

visualisation, and analysis continued to expand with the development of new imaging 

modalities. Computers are now part of almost every medical imaging system, including 

mammography, x-ray, ultrasonography, CT, Nuclear Medicine (NM), and MRI. Most 

departments of radiology have transformed into "totally digital" and "filmless" 

departments even using computers for image archiving and communication through the 

development of Picture Archiving and Communication System (PACS). The X-ray 

film which started the field of radiological imaging has almost disappeared [12]. 

Possibly the image is one of the most useful tools in medicine as it offers a 

mechanism for diagnosis, tracking drug treatment reactions and patient care with the 

benefit of being a very quick non-invasive procedure with very few side effects and an 

excellent cost-effective relationship. Hard-copy image formats, i.e. analog video films, 

were the initial medical image support but they became uncommon. The need for 

greater upkeep, storage space and the amount of material needed to view images in this 

format resulted in its disuse. Digital images address the aforementioned problems 

nowadays while providing the possibility of text annotations in metadata format. Since 

the large number of images are produced in medical domains, the image recovery 

systems are required to provide effective and reliable access of image database on the 

basis of their visual content (colour, shape and/or texture) [13]. 

Table 1.1 gives an overview of existing imaging modalities, image dimensions 

and number of images per exam in medical imageology.  

1.3 Ultrasound Imaging 

Medical ultrasound is commonly used for many clinical applications such as 

abdominal imaging, fetal examination, hepatic diagnosis, echocardiography, etc. As 

ultrasound is a real-time imaging tool that uses no ionizing radiation, it is usually 

favoured over other imaging modalities. In addition, the equipment used for ultrasound 

imaging is compact and inexpensive in comparison with other modalities such as CT 

and MRI, and is thus commonly used in small clinics and rural areas. Even the World 

Health Organization's (WHO) flagship initiative, Door to Door Healthcare (D2DH), in 
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underdeveloped countries, uses ultrasound imaging as a primarily diagnostic method 

due to its portability and other aforementioned benefits [15]. 

Table 1.1:  Types and size of some commonly used digital medical images [14] 

S. No. Modality Image 

Dimensions 

Gray 

Level 

(Bits) 

Average 

Size/Per 

Examination 

1 Cardiac Catheterization 512×512 or 

1024×1024 

8 500-1000 MB 

2 Computed Radiography 2048×2048 12 8-32 MB 

3 Computed Tomography (CT) 512×512 12 20 MB 

4 Digital Color Microscopy (DCM) 512×512 24 Varies 

5 Digital Electronic Microscopy 

(DEM) 

512×512 8 Varies 

6 Digital Subtraction Angiography 

(DSA) 

512×512 8 4-10 MB 

7 Digital Mammography 4096×4096 12 64 MB (a pair) 

8 Digitized X-Ray films 2048×2048 12 8 MB 

9 Doppler Ultrasound 512×512 24 15-24 MB 

10 Magnetic Resonance Imaging 

(MRI) 

256×256 12 8-20 MB up 

11 Nuclear Medicine (NM) 128×128 8 or 16 2 MB 

12 Spiral or helical CT 512×512 12 40-150 MB 

13 Ultrasound (US) 512×512 8 5-8 MB 

Ultrasounds are high frequency sound waves from 20 kHz to 10 GHz, which act 

as pressure waves in a medium. Ultrasound ranges from 1MHz to 30MHz as used in 

medical applications. Ultrasound echoes from pressure waves are used for medical 

examination to collect knowledge about tissue within the body. An ultrasonic image is 

obtained by positioning the ultrasound probe (piezoelectric transducer) on a patient's 

skin near the area of interest. The piezoelectric transducer converts the electrical signal 

into a pulse or wave of ultrasound which penetrates the body. 
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As the pulse propagates through the tissue, tissue structures generate reflections 

which travel back to the transducer. The intensity of a reflected signal contains the 

reflective structure information, and the delay between sending a signal and receiving 

an echo indicates the distance between the structure and the transducer. The transducer 

transforms those mechanical echoes back to electrical signals. Then, in an ultrasonic 

imaging system, these electrical signals are amplified, demodulated and ultimately 

transformed into real images. As the ultrasound wave frequency increases, it undergoes 

greater attenuation in the body and hence reduces the wave penetration. Frequencies 

between 3MHz and 5 MHz are thus used to view large body parts, such as liver and 

kidneys, from the skin at a depth of 15 to 20 cm [17-18]. 

The general schematic organization of an ultrasound imaging system is shown in Figure 

1.1. 

Address Generator Timing Controller
Time Gain 

Compensation

Pulse Generator

Amplifier

Scan Converter

Image DisplayTransducers + 

Multiplexers

 

Figure 1.1: Block Diagram of Ultrasound Imaging Process [16] 

1.4 Fatty Liver and Diagnosis of Fatty Liver Disease 

Liver disease is a common term used for several damage that reduces the 

functioning of the liver. Liver disease may occur due to presence of toxin, infection, 

drugs, alcohol, injury, insulin resistance etc. All the reasons which cause liver disease 

may leads to inflammation, clotting abnormalities, scarring and liver failure [19]. Fatty 

Liver Disease (FLD) is one of the most widespread liver diseases [20]. Fatty Liver 
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(Steatosis) or FLD are the major problem which cannot be recognized with that much 

accuracy basically fatty liver diseases are caused due to more gathering of fat content 

of hepatocytes in liver cells [21]. There are two types of fatty liver diseases one is called 

as Alcoholic Steatosis and the other one is called as Non-Alcoholic Fatty Liver Disease 

(NAFLD). The Non-Alcoholic Fatty Liver Disease (NAFLD) first named in 1980 by 

Ludwig et al. [22]. The inflammation, condition known as alcoholic (ASH) or Non-

Alcoholic Steatohepatitis (NASH) may lead due to the accumulation of triglycerides in 

the liver [23-24]. The usual causes of FLD includes overuse of alcohol, insulin 

resistance, obesity, hyperlipidaemia, metabolic syndrome [25].  It is roughly calculated 

that it affects 15- 24% of the world's population [26-27]. Out of which 90% of 

individuals consumes more than 60 gm of alcohol a day to increase cause of FLD and 

rest of the reason for FLD incorporate insulin resistance and all types of the metabolic 

disorder, for example, obesity, Type 2 diabetes, and hyperlipidaemia [28]. If FLD is 

not detected early it may lead to cirrhosis, liver cancer, steatohepatitis or damage to the 

liver and acute liver failure [29]. So, the early treatment and detection is important for 

control of the fatty liver diseases. The normal and fatty ultrasound liver images of the 

human body is shown in Figure 1.2. 

 

                  

      (a) Normal liver of the human body                  (b) Fatty liver of the human body 

     identified by the clean inferior pattern.                  appear brighter and smoother. 

Figure 1.2: Normal and Fatty ultrasound liver images of the human body 

In medical imaging, the early diagnosis of FLD is consider as very essential task, 

because with the help of proper treatment, disease incurred damage can frequently be 
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reduced. Presently, a variety of methods is used to analyse of FLD and these methods 

are classified into two types FLD invasive techniques and non-invasive techniques [23, 

30]. However, one of the invasive techniques to diagnose a fatty liver is Liver biopsy 

[31-32]. Since Liver biopsy detects FLD more accurately but patients have also 

suffered from pain and discomfort due to this invasive technique [33]. Many other non-

invasive diagnostic techniques for FLD are being used like Computed Tomography, 

Functional Magnetic Resonance Imaging but among all Ultrasound is most popular 

image modality for fatty liver disease diagnosis because it allows to conceptualize the 

human tissues without damaging them and it is inexpensive and also has high 

sensitivity [34]. These diagnosis methods are briefly explained in the following 

paragraphs with summary of their advantages and limitations. Different types of causes 

and diagnosis techniques are shown in Figure 1.3. 

 

Figure 1.3: Causes of Fatty Liver Diseases and diagnosis of FLD 

1.5 Computer Aided Diagnosis System 

In therapeutic imaging and diagnostic radiology, Computer-Aided Diagnosis 

(CAD) has ended up a standout amongst the most important research topic [35]. It 

introduces the pattern recognition software that analyse suspicious features on the 

image and help the radiologists to solve the problem FLD. CAD system helps to 

increase the detection rate of identification of disease by reducing the false negative 
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rate and can be applied to digital images for the purpose of inscribing a variety of 

diagnostic problems. CAD technique reduces the pain and discomfort of the patient and 

also reduces the cost which is required at the time of treatments for liver diseases [36-

37]. To develop the CAD system for Ultrasound images Texture analysis is required to 

extract various textural features [38]. 

“Texture is basically a property that signifies the area and structure of an image 

or it may also be described as a normal repetition of a component or example on a 

surface. Surfaces of an image are compound visual patterns that are made out of 

elements or areas with sub-patterns with the qualities of color, brightness, shape, size, 

etc.” A continuing texture in an image indicates a set of its features that are consistent, 

steadily changing or roughly regular [39]. Likewise, it might be viewed as a similar 

gathering in an image [40]. Texture analysis is one of the most important techniques in 

a range of applications, from medical imaging to remote detection. In texture analysis, 

the most important task is to extract texture characteristics that most thoroughly 

represent knowledge in the unique picture about the spatial distribution of gray-level 

changes. Various features have been investigated for diagnosis of FLD. These include 

“Spatial Gray-Level Co-occurrence Matrices (SGLCM) given by Haralick et al [41], 

Fourier Power Spectrum (FPS) given by Lendaris and Stanley [42]. Gray Level 

Difference Statistics (GLDS) are introduced by Weszka and Dyer [43]”. These all 

models are used to extract various features to analyse texture of the liver disease, then 

feature selection techniques is used to extract the best features among them all. In the 

last few years, various classification methods are used to characterize liver diseases. 

Classifier like Bayesian classifier, classification of liver ultrasound images using 

texture analysis with the help of Fuzzy logic [44-46], Neural-Network Based Classifier 

[47-49], Support Vector Machine (SVM) classifier [50-52]. In this thesis various 

feature extraction models and classifiers are used to propose a CAD system, which are 

briefly explained in chapter 3. 

1.6 Liver Ultrasound Database 

In this research work, 90 ultrasound liver images are collected from Delta 

Diagnostic Centre Patiala, India. Out of 90 images, half of the images are of fatty liver. 

To create this medical image dataset, 90 patients (within the age group of 25 – 60 years) 
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has been examined by experienced radiologists. The ultrasound images are captured by 

ultrasound machine named as Voluscan730 PRO (General Electric Medicare). The 

machine works with the curved array probe of 68 mm at the frequency of 3.6 MHz. The 

Time Gain Compensation (TGC) setting is preserved in such a way that the degree of 

background grey is approximately the same across the depth. Patients are advised to 

prevent the effects of shifting liver glycogen and water storage on ultrasound imaging for 

the eight hours before ultrasound scanning. Experienced radiologists are requested to 

acquire the images and to label them as per the standard procedure. 

1.7 Significance of the Proposed Research Work 

With the ultimate goal of processing and analysis of Ultrasound images this thesis 

makes some contributions that are closely related to the classification of liver 

ultrasound images for disease diagnosis. The first contribution is extensive literature 

survey done in the area of ultrasound imaging in which various existing approaches and 

methods have been studied and analysed in detail. The second contribution is related 

to speckle reduction and extraction of texture features from the region of interest using 

wide variety of texture models available in the literature as texture-based analysis is 

very useful in ultrasound tissue characterization. The third contribution has focussed 

on feature selection i.e. identifying and extracting the better features to capture the 

texture of images and improve correlation to the human visual similarity. The fourth 

contribution is based on use of different classifiers available in literature for the 

classification task with extensive parameter setting which is a unique kind of study in 

itself. For carrying out the proposed work, 90 ultrasound liver images have been 

collected from Delta Diagnostic Centre Patiala, India. The performance is evaluated 

using commonly used medical statistics: Sensitivity, Specificity, Accuracy and Area 

under ROC Curve. 

1.8 Organization of Thesis 

The thesis is organized in five chapters. The Chapter 1 gives the introduction of 

the research work and discusses the motivation behind the present research work. A 

brief literature review of the Medical Imaging and Fatty Liver Diagnosis has been 
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presented. A description of Image Database used in the proposed work and significance 

of proposed research work has also been discussed in this chapter. 

Chapter 2 gives a review of literature i.e. overview of Image Enhancement and various 

Computer Aided Diagnosis Systems for fatty liver. The significance and background 

of the various texture models are also discussed in this chapter. Performance indices 

used for evaluation are presented in this chapter. At the last of this chapter, research 

gaps and objectives of the research work are presented. 

Chapter 3 presents material and methods. In this chapter, the proposed methods for 

the classification of Liver Ultrasound images have been discussed. For the 

classification of liver ultrasound images, this thesis presents four different methods. 

Chapter 4 presents results and discussion. In this chapter various results of the 

proposed approaches have been discussed in detail. A wide variety of parameters have 

been used for evaluating the performance of the proposed methods. 

Chapter 5 concludes the research contributions and highlights the important findings 

based on the experimental analysis and observations. Scope for the future work and 

possible extensions to this work are also discussed in this chapter for the new 

researchers in this area. 
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Chapter-2 

Review of Literature 

 

2.1 Introduction 

 In medical field, liver plays a vital role in human body, as it maintains quality of 

blood as well as performs very important functions like storage of carbohydrates, 

excretion, fats and fatty acids etc. Liver also helps in filtering the harmful substances 

which may cause damage to human health and leads to liver diseases. However, liver 

diseases can occur due to alcohol consumption, taking drugs, by injury or by infection 

and as a result leads to liver failure, obesity, diabetes, blockage or damage [7]. 

According to the scenario, the most common example of liver disease which has been 

noticed worldwide is Fatty Liver Disease (FLD) or also known as Fatty Liver Steatosis, 

which cannot be recognized with very high accuracy [4, 6]. Fatty Liver Diseases are 

caused due to more gathering of fat content of hepatocytes in liver cells. The overuse 

of alcohol, insulin resistance, obesity, hyperlipidemia, metabolic syndrome are the 

main causes of FLD [2]. It is roughly calculated that it affects 15 to 24 percent of the 

world's population [4]. If FLD is not detected early, it may lead to cirrhosis, liver 

cancer, steatohepatitis or damage to the liver and acute liver failure. So, the early 

treatment and detection is important for the control of the FLD. For the identification 

of fatty liver diseases invasive and non-invasive techniques are available. The invasive 

involves liver biopsy whereas non-invasive diagnostic techniques involves functional 

Magnetic Resonance Imaging (fMRI), Computed Tomography (CT), Ultrasound etc. 

Invasive techniques detect FLD accurately but these techniques cause more pain and 

discomfort to the patients as compared to non-invasive techniques. Therefore, non-

invasive is more preferable by the radiologists. Furthermore, Ultrasound is the most 

popular imaging modality for FLD diagnosis because it allows to conceptualize the 

human tissues without damaging them and at the same time it is inexpensive and has 

high sensitivity rate [7, 19].  

 As per author's knowledge, the ultrasound images show sensitivity of around 60% 

to 100% and specificity of around 75% to 100%. But this imaging modality is an 
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operational dependable which leads to failure. To reduce operational dependability and 

to get the consistent output, many CAD systems have been developed by scientists [8]. 

These systems reduce the pain and discomfort of the patient and also reduces the cost 

which is required at the time of treatments for liver diseases. To develop the CAD 

system for diagnosis of FLD, shape and texture analysis are used. However, in this thesis 

the major focus is put on the texture analysis of ultrasound images. 

2.2 Ultrasound Image Enhancement 

Medical ultrasonic imaging uses pulsed acoustic waves which a handheld 

transducer transmits and receives. Ultrasound imaging is found to be established 

technology that has been used worldwide. Ultrasound imaging has lot of benefits that 

includes scalable, no ionizing radiation and cost effective that makes this technology 

affordable. But when the ultrasound signals propagate through tissues, the quality of 

image reduces. 

2.2.1 Speckle Reduction Filters 

Speckle is a locally correlated multiplicative noise that has granular pattern, and 

this makes the visual quality of ultrasound image poor. Speckle also hinders the 

automatic image analysis task very difficult. Therefore, it is important to suppress the 

speckle noise in the preprocessing stages. The random variation in the power of the 

back scattered waves causes speckle noise. Speckle may contain some important 

information related to the diagnosis, but still it is treated as outlier because it 

considerably reduces the quality of image which leads to problems in discriminating 

fine details inside the images [53-54]. Work on the removal of speckle from ultrasonic 

images is narrowly divided into 4 categories: 

• Homogeneity of pixels intensity 

• Local statistics in a window 

• Wavelet based filters  

• Partial differential equation/an-isotropic diffusion-based filters 

The research on speckle reduction from ultrasound images is broadly classified into 

four categories. The first one is based on local statistics in a window, second category 
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is based on homogeneity of pixels intensity, third is partial differential equation or an-

isotropic diffusion-based filters, and the fourth is wavelet based or other multi-

resolution based filters. The early methods of speckle suppression from ultrasound 

images involved averaging the pictures of the same tissue that are uncorrelated and 

developed under diverse spatial points [55-56]. Even though these methods suppress 

speckle considerably, but multiple images of the same object are needed for the same 

[57]. A Partial Differential Equation (PDE) based anisotropic diffusion filter is used to 

remove noise from ultrasound images [58-59]. Yu and Acton have introduced Speckle 

Reduction Anisotropic Diffusion (SRAD) technique in which diffusion constant is 

replaced with “instantaneous coefficient of variation” as a function of local gradient 

magnitude and Laplacian of image [60]. However, for reference a uniform portion has 

to be manually selected which this dependent on the user. You et al. proposed Fourth-

Order Partial Differential Equations (FPDE) for speckle removal [60]. With this 

method, speckle can be suppressed easily but the edges and some fine details are not 

maintained. Recently, a modified version of SRAD is also proposed by Mittal et al. 

which further enhances the visual quality of ultrasound images [62]. Many researchers 

have carried out a significant image enhancement work using wavelet transform to 

refine the ultrasound images [63-64]. Gupta et al. proposed a new speckle reduction 

filter called Homo-Genthresh, which is adaptive and versatile [65-66]. The method 

utilizes Homomorphic wavelet thresholding technique by modeling speckle as 

Generalized Nakagami distribution rather than Gaussian one. A collection of wide-

band 2D directive filters based on modified Gabor function have been proposed by 

Dantas and Costa, in which, each filter works in a specific direction to refine the image 

with reduced speckle while preserving the resolution [67]. Gungor et al. speckle noise 

reduction method improved the performance of edge-sensitive filter [68]. The authors 

generated a homogeneity map based upon the local statistics of the window for every 

pixel in the image. Yang et al. proposed a hybrid technique in which considered a non-

Local Mean filter and the local statistics of speckle for reduction [69]. Zhang et al. 

proposed a new method that applied the concept of wavelet and guided filter to liver 

ultrasound images for speckle reduction [70]. For performance evaluation, the authors 

have used clinical images, and further result analysis declared that the proposed method 
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has strong ability in removing the speckle noise by maintaining the fine details of the 

image that includes edges of the disease bearing region. 

The de-noised findings of clinical medical ultrasound images indicate that the 

approach proposed not only has a good capacity to de-speckle, but also retains the 

specifics of the image, such as the edge of a lesion. 

Most of the above said filters perform well in homogenous areas but they lack 

near the edges either by leaving the speckle near the edges or they blur the edges while 

filtering. 

2.2.2 Relevant Literature on Speckle Reduction  

In the last few years, many investigators have proposed numerous approaches for 

speckle reduction. This section describes the latest work done in the area of speckle 

reduction. 

In order to preserve the edges after image processing Gungor et. al. proposed the 

homogeneity map method [68]. The authors have applied edge and smoothing filters 

on the speckled image. The results obtained show that the proposed method ensures the 

effective performance.  

A two low-rank approximation-based method has been proposed by Sagheer et 

al. for the despeckling of ultrasound images [71]. For performance evaluation the 

authors have used simulated and clinical ultrasound images. The performance has been 

evaluated by Peak Signal to Noise Ratio (PSNR), Structural Similarity Index Measure 

(SSIM), Edge Preserving Index (EPI) and Naturalness Image Quality Parameter 

(NIQE) parameters. The authors have compared the performance of proposed method 

with state of art methods.  

Khvostikov et. al. have analysed the benefits of anisotropic diffusion speckle 

filtering method over the total variation method [72]. The introduced method results in 

speckle filtration without any additional parameters.  

A new way, based on TV regularisation and updated bay shrinkage, was 

proposed by Elyasi et al. [73]. For performance evaluation, the authors used synthetic 

and real ultrasonic images. The results are compared with common filtering techniques 
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and a Wavelet domain technique as well as parameters such as PSNR, SNR, RMSE, 

SSIM, NSD, MSD and an average time to evaluate the quality of the image. 

All the initial techniques for extracting speckles from ultrasonic images 

included averaging the images that are uncorrelated and collected in various spatial 

areas [74] Although these methods significantly suppress speckle, yet multiple images 

of the same object are required for processing [57]. An anisotropic diffusion filter based 

on Partial Differential Equation (PDE) is often used to eliminate speckle from 

ultrasonic images [58-59].  The Table 2.1 summarizes the literature review in terms of 

Speckle suppression technique used with their corresponding results.  

Table 2.1: Literature Review of Speckle Suppression Techniques 

Ref. No Year Authors 
Speckle Suppression 

Techniques used 
Results 

[61] 2000 Kaveh et al. 

Fourth-Order Partial 

Differential Equations 

(FPDE) 

Speckle can be suppressed 

easily but the edges and 

some fine details cannot be 

maintained 

[63] 2001 Achim et al. Wavelet transform  

The proposed approach is 

found to be expensive in 

terms of estimation of the 

distribution parameters at 

different scale on interest.  

[60] 2002 Yu and Acton 

Speckle Reduction 

Anisotropic Diffusion 

(SRAD) 

In comparison to previous 

speckle reduction 

techniques, the proposed 

SRAD method is found to 

be good. 

[64] 2003 
Michailovich et 

al. 
Wavelet transform  

The output of the proposed 

algorithm is tested. It is 

shown that this algorithm, 
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built on the basis of the 

"Gussian" reflectivity 

function, remains applicable 

to wider distribution classes  

[65] 2005 Gupta et al. Homo-Genthresh 

Homomorphic wavelet 

thresholding technique was 

used by modeling speckle as 

Generalized Nakagami 

distribution rather than 

Gaussian one. 

[67] 2007 
Dantas and 

Costa 

2D directive filters 

with modified Gabor 

function 

Each filter works in a 

specific direction to refine 

the image with reduced 

speckle while preserving the 

resolution. 

[62] 2010 Mittal et al. 
Modified version of 

SRAD 

Visual analysis by SRAD 

method of processed images 

reveals that speckles are 

minimized at the expense of 

object textures appearance. 

[68] 2015 Gungor et al. Edge-sensitive filter 

In order to generate the 

homogeneity map local 

statistics of the window for 

each of the pixel has been 

used. 

[69] 2016 Yang et. al. 
Local statistics and 

non-local mean filter 

The experimental results 

indicate that the proposed 

filters exhibit the best 

quantitative measurements 

(SNR, MSE, SSIM, and SV) 



17 

 

 

[70] 

 

 

2016 

 

Zhang et al. 
Wavelet and guided 

filter 

The experimental results 

show the good skill of the 

proposed system. 

[75] 2017 Zhu et al. 
Low-rank 

minimization Approach 

The proposed method 

provides results that are 

better quantitatively and 

qualitatively. 

 

 [76] 

 

 

2018 

 

 

Dass R. 

 

Wiener Filter and 

Discrete Wavelet 

Transform in 

Homomorphic Region 

The findings show that the 

technique proposed is 

statistically as well as 

visually efficient in 

comparison with other 

techniques. 

[77] 2019 
Jubaiahmed et 

al. 

Contourlet transform 

based anisotropic 

nonlinear diffusion 

filtering 

The results indicate that the 

proposed technique has 

better noise removal 

performance. 

 

In addition to the above-mentioned models, the models for speckle reduction i.e. 

total variation proposed by Rudin et al. [78] and anisotropic smoothing model proposed 

by Yu et al. [79] are found to be better as compared to other existing models. The 

wavelet-based techniques also play a major role in the speckle filtration. These 

techniques can be categorized as: (a) homomorphic filtering comprises of the wavelet 

filtering in the image-logarithm assent to an exponential operation, (b) non-

homomorphic filtering [80-81] screens the wavelet coefficients of actual image. 

Singh et. al. proposed a hybrid algorithm to suppress the speckle and for 

denoising of ultrasound images [82]. The proposed algorithm performed better than 

other SR filter because it completely eliminates speckle noise by collecting local and 

non-local data. The effects of tests on synthetic, simulated and actual ultrasound 

pictures are used to check the condition. Compared with other common noise reduction 

methods, the proposed hybrid algorithm is present. The results verify that the proposed 
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hybrid model with reference to MSE, SNR, and MSSIM values exhibits the best 

denoising efficiency. It is further observed that the proposed algorithm may retain the 

contrast level in denoted ultrasound images during de speckling. 

Roy et al. al. suggested a novel technique to de-noise the speckle that affects the 

properties of fuzzy set theory [83]. The definition of degree of conformity not only 

effectively separated the speckle structures from the edges of the Ultrasound images 

from the blurry and blurred structures, but also retained the organ structural details in 

photographs. The performance in terms of less computational time of the proposed 

filter is observed as better than all other filters used in speckle denoising in Ultrasound 

images except the SRAD filter, with least computational time.  

Deka et al. shows the potential for incomplete and over-complete representations 

to de-speck photographic and actual ultrasound images distorted by correlated speckle 

noise [84]. The approach proposed goes through two stages. The authors have used K-

SVD based denoising approach, in which they have combined this approach with a 

simple noise estimation method in order to remove the noise from the ultrasound 

images. The results depict that the proposed method performs better in terms of visual 

and quantitative aspects as compared to the well-known available spatial domain filters.  

Arnal et al. suggested parallel strategy where the de-speckling algorithm parallels 

multiprocessor shared memory with OpenMP and multicore cluster using a hybrid 

combination of MPI and OpenMP [85]. The experimental results show that the due to 

use of parallel implementations there is a significant speedup in the process that results 

in reduced computational time.  

Frequency Equalization Compounding (FEC) technique proposed by Yoon et.al. 

successfully aims at enhancement of contrast in abdominal imaging [86]. As a result of 

weighting factors and frequency dependent attenuation for each sub-band, the proposed 

study focusses on the estimation of the center frequency downshift. These estimated 

results can be employed in dynamic quadrature demodulation and image compounding. 

The study results are verified by using in vitro phantom and the in vivo studies and it 

is observed that proposed method shows merits over the classical FC methods. 
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Zhu et.al suggests an optimization method with simultaneous preservation of 

features in ultrasonic images to eliminate speckle noise from the ultrasound pictures 

[87]. With the feature asymmetry metric, the proposed study applies various restrictions 

in features and speckle noise. The study is effective in separating the speckle noise and 

features by using the theory of phase congruency in US images. During comparison 

with the traditional gradient-based metric the proposed study is found to be more 

reliable to the huge differences in image contrast.  

Gupta et.al in their study of despeckling techniques in ultrasound images 

observed that after using the combination of NSST threshold approach along with 

nonlinear modified anisotropic diffusion equation despeckled images are obtained with 

better output in terms of noise suppression and edge preservation [88]. In the proposed 

study, the noise components with larger amplitude are reduced with the help of 

diffusion process on low- frequency approximation coefficients and thresholding, 

thereby increasing denoising performance with improved preservation of edges.  

Adaptive Fast Bilateral Filter (AFBF) created on local characteristics to reduce  

the speckles and enhance the accuracy of ultrasound images, was proposed by Shao 

et.al [89]. The filter was proposed keeping into account the fact that for better diagnosis 

suppression of noise and preservation of structure is very crucial in post processing 

techniques. The proposed filter has been derived from the conventional filter. In order 

to separate the speckle from the tissue structure a local characteristic matching method 

has been used by the authors. Analysis in phantom and in vivo imaging shows that the 

method can preserve the structure efficiently and reduce the noise in the images.  

The results of the disease diagnosis from ultrasound images can be improved by 

reduction of speckle noise. The authors proposed an innovative approach for measuring 

the performance of the suggested approach by using 2D FIR filter with the ABC 

algorithm to reduce the speckle noise by calculating MSE, PSNR and SNR values [90]. 

The proposed system was tested with synthetic image, fetal ultrasound images and 

clinical noisy ultrasound images. The image denoising was accomplished profitably by 

using a population based computational scheme. The greatest improvement of the 

proposed system is that it is very easy to implement, and better results can be obtained. 
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2.3 Texture Analysis and Liver Tissue Characterization 

Texture is a complex visual pattern which is composed of objects that are grouped 

together based upon attributes such as size, brightness, slope, colour, etc [91]. Russ et 

al. has defined the texture as variation in local brightness from pixel to pixel in a small 

region in an image [92]. Texture models are usually classified into four classes; 

structural, statistical, model-based and transform methods. 

2.3.1 Structural Texture Model 

In this model, the texture is composed of texture elements (primitives) such as 

similar pattern lines which are finely defined in an image [93-94].  For proper 

description of the texture, placement rules for the primitives needs to be well defined. 

The benefit of the structural model is that the representative details of the image can be 

simply understood [95]. However, structural texture techniques can only describe 

regular texture patterns, which limit their applicability [96].  

2.3.2 Statistical Texture Model 

Statistical texture model describes a set of useful techniques that portray the 

texture of a region by calculating the higher-order moments of the grayscale histograms 

from the image [97]. These techniques represent the non-deterministic characteristics 

that maintain associations between the grey levels of an image. In grey-level images, 

the textures differ largely in their second order moments. Spatial Gray Level co-

occurrence Matrix (SGLCM) is the most accepted second order statistical feature for 

texture analysis [98]. Similarly, Grey Level Run Length Matrix (GLRLM) symbolizes 

rough textures that have many pixels in a constant gray level run and fine textures are 

characterized to have many few pixels in gray level run length [94]. The basic working 

of GLRLM lies on the calculation of higher order statistics of the gray level histogram.  

2.3.3 Model based Textures  

The Model based texture analysis makes the most of the inter-pixel relationship: 

a weighted average of the intensities of the pixels is calculated that lie in its 

neighbourhood. The parameters estimated from the image model are the descriptors of 

the textural feature.  Few examples include the Fractals and Markov Random Fields 

(MRF). Stochastic and Fractal model attempt to characterize image texture by using a 
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generative image model and stochastic model respectively [99-101]. The fractal model 

is commonly used for natural texture Modeling.  

2.3.4 Transform based Texture Model 

Transform Texture models include the Fourier model [91], Wavelet transforms 

and Gabor [102]. In these models an image is represented in a co-ordinate system that 

matches to the characteristics of a texture (such as frequency) [103-104]. In other 

words, a new image is created using spatial frequency properties of the variations in 

the pixel intensities. Features that are derived from a set of Gabor filters are widely 

used for image segmentation [105].  

“The ultrasound quantitative tissue characterization is an image processing 

technique, which reveals the hidden patterns to extract more information about tissue 

function and pathology than it is being observed through visual analysis [106]. Initial 

research in the area of tissue characterization to detect cirrhosis in the liver, had been 

done by Wells and Mountford [107-108]. In a significant research by Chivers and Hill, 

a scientific technique is used to retrieve the quantitative data from the tissue using 

scattering [109]. Since then, this branch of medical ultrasound has undergone 

considerable development. A lot of methods for Ultrasound Tissue Characterization 

(UTC) have been proposed and they are broadly classified into three categories [110].” 

These characterization techniques are (i) Radio Frequency (RF) analysis using spectral 

analysis of RF signals, (ii) Elastography of the tissue and (iii) Texture analysis of 

ultrasound images. The first category is based on RF signals that are received from the 

beam former before they fetched to display system. The second category is tissue 

characterization through elastography. In this imaging process brightness of the image 

depends upon the stiffness of tissue. An ultrasound probe emits vibrations that cause a 

shear wave in the liver, which corresponds to liver stiffness [111]. In another study, 

Fukushima et al. measured liver elastography in patients with Non-Alcoholic Steato-

Hepatitis (NASH) and demonstrated that liver elasticity is able to predict the fibrosis 

[112]. However, this method has a limited sensitivity and specificity, as shown by the 

Lewis. According to him, the modality was able to differentiate various stages of liver 

fibrosis with sensitivity of 86% and specificity of 85% [111]. Although RF signal-based 

liver tissue characterization is used by number of researchers [106, 113-114], but most 
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of the researchers have used the third type of tissue characterization technique for liver; 

the texture analysis [115-119]. The main reason for this choice is that, when steatosis 

occurs, the liver surface changes significantly changed. This variation in the surface of 

liver makes the texture analysis a suitable tool to analyse this organ. Moreover, the 

texture analysis is directly related to the visual features in the ultrasound image, and 

radiologists are comfortable to correlate the texture features with the visual 

information. The texture analysis is very useful to characterize the liver because of its 

size and the quasi-periodic scattering structures found throughout the healthy tissue 

[119]. It has been established that, texture analysis-based liver classification and liver 

tissue characterization methods outperform other techniques [116-118]. 

Many feature models are available for the classification of the liver tissue (normal 

and abnormal) from an ultrasound image [120]. The most common texture feature 

models include: The SGLCM by Haralick [98], the TEM proposed by Laws [121], and 

the FPS by Landeris [42]. These models have been effectively applied to many real-

world texture identification problems. The Statistical Feature Matrix (SFM) is also a 

useful texture model used to identify surface textures [120]. Weszka and Dyer proposed 

a Grey Level Difference Statistics (GLDS) for classification of terrain mainly through 

texture analysis [43]. Mandelbrot proposed fractal-based features for the identification 

of roughness in natural surfaces. Wu et al. proposed Multiresolution fractal dimensions 

also called Fractal Features (FF) which utilizes previously mentioned texture models 

for liver tissue classification [122]. Thijssen et al. concluded high significance of 

SGLCM parameters for the characterization of the ultrasound images [106]. 

2.4 Computer Aided Diagnosis of Liver Ultrasound Images 

In the field of diagnostic radiology and imaging, Computer-Aided Diagnosis 

(CAD) research has evolved at greater pace in recent years. It introduces the pattern 

recognition software that analyses suspicious features on the image and helps the 

radiologists to solve the problem of fatty liver disease. The CAD systems aim to increase 

the detection rate of a disease by reducing the false negatives. CAD systems can be 

applied to digital images for the purpose of inscribing a variety of diagnostic problems. 

CAD technique reduces the pain and discomfort of the patient and also reduces the cost 

which is required at the time of treatments for liver diseases. To develop the CAD system 
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for Ultrasound images texture analysis is required to extract various textural features. 

Texture signifies the structure and surface characteristics of an image usually described 

as a regular repetition of a pattern on a surface. Textures of an image consist of complex 

patterns varying in brightness, color, shape, size, etc. A texture is said to be constant if 

its characteristics are constant otherwise, it is gradually changing. Foremost, texture 

features are extracted completely represent the distribution of spatial information of gray-

level in the original image. Various features have been investigated for diagnosis of FLD. 

The brief summarization of related researches is as shown in Table 2.2. 
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Table 2.2: Literature Review of Computer Aided Diagnosis of Liver Ultrasound Images 

 

Ref. 

No 
Year Source 

Ultrasound images Used 

Image 

Size in 

pixels  

Feature 

Extraction 

Feature 

Selection 
Classifier 

Accuracy 

Rate 

Normal Fatty  

[126] 2007 

Chittaranjan 

National Cancer 

Institute, Kolkata 

76 24 NA SGLDM 
Student's 

t test 

Neural 

Network 
NA 

[127] 2009 

 

Not mentioned in 

the paper 

 

42 42 256×256 GWT NA 
FFNN and 

BPNN 
94% 

[26] 2008 
Municipal 

hospital 
25 68 

767 × 

572  

GLCM 

,NFLSD,  

NGTDM and 

NFFGR 

Statistica

l 
SVM 97% 
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[34] 2009 
US Modality in a 

hospital 
10 10 NA 

RF and Speckle 

image. 
NA Naive Bayes 95% 

[118] 2012 

Multan Institute 

of Nuclear and 

Radiologists 

39 30 560×450 WPT & DWT  NA 
SVM, ν-

LSVC 
95% 

[116] 2012 
By radiologist in 

a hospital 
42 58 

1024 × 

1024  

GLCM, 

GLRLM, HOS 

based features, 

and DWT. 

 

NA 

RBPNN, K-

NN,  Naive 

Bayes 

93.30% 

[128] 2012 

DDC, Patiala & 

PGIMER 

Chandigarh 

15 15 640×480  
SFM, TEM, 

SGLCM, FPS 
FDR 

Bayesian 

classifier. 
92% 

[21] 2014 

DDC, Patiala & 

PGIMER 

Chandigarh 

90 90 640×480 

GLDS, FOS, 

FPS, SGLCM,  

SFM, TEM  

FDR 

AND 

PCC 

 

Information 

fusion-based 

classifier 

95% 
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[45] 2016 

University of 

Malaya Medical 

Centre, Malaysia 

50 50 
1024 × 

1024  

GIST descriptor 

models 

 ROC, 

Student’s 

t-test, 

Bhattach

aryya 

distance, 

Wilcoxo

n signed-

rank test 

AdaBoost 

classifier, 

Decision 

tree, 

Discriminant 

classifier, 

Naive 

Bayes, 

Probabilistic 

Neural 

Network, 

Support 

Vector 

Machine, , 

K-Nearest 

Neighbour 

98% 

[146] 2017 
Taba Imaging 

Center, Iran 
28 47 

768 × 

1024 

GLCM and 

Wavelet Packet 

Transform 

(WPT) 

NA SVM 94.91% 

[147] 2018 

 Asian Institute 

of Gastroenterolo

gy, Hyderabad, 

India 

196 

173 Grade I, 

157 Grade II 

and 124 

Grade III  

NA 

Curvelet 

transform and 

SVD 

NA 

Cubic kernel 

SVM and K-

Nearest 

Neighbor 

96.90% 
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[142] 2018 

University of 

Malaya Medical 

Centre, Kuala 

Lumpur, 

Malaysia 

78 62 
256 × 

256 

  bi-directional 

empirical mode 

decomposition 

and 

Radon transform  

Particle 

Swarm 

Optimiza

tion 

Probabilistic 

Neural 

Network 

92.95% 

[148] 2018 

Delta Diagnostic 

centre, Patiala& 

PGIMER 

Chandigarh 

45 45 NA 

 FPS, SFM, 

SGLCM, 

GLDS, FOS, 

TEM, FF. 

Mutual 

Informati

on 

SMO, IBk, 

Ad-

aboostM1 

and BF Tree 

95.55% 

[37] 2019 

Faculty of 

Medicine, Cairo 

University 

25 32 
768 × 

1366 

First-order gray 

level 

parameters, 

GLCM, Local 

binary patterns  

Wilcoxo

n rank-

sum test 

kernel-based 

SVM, s 

kNN, linear 

SVM, and 

LDA 

98.80% 

 

Note: - NA stands for Not Applicable 
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2.4.1 Previous Work in Processing and Analysis of Liver Ultrasound Images 

Computer Aided Classification methods are being used since 1972 when 

Mountford and Wells classified normal and abnormal liver using A-mode ultrasounds 

[107-108]. Later on Yajima et al. in 1983 performed a research for liver classification 

using different classifiers on ultrasound images through texture features [123]. He 

revealed that liver classification using computer aided methods have more than 90% 

accurate. Since then many researchers have used B-mode ultrasound images for liver 

tissue classification. 

Weszka et al. compared three standard approaches that are used for automatic 

texture classification and basically two sets of terrain samples were used to classify 

[43]. Texture features were extracted by the various feature extraction models like 

Fourier Power Spectrum, First Order Statistics of Gray Level and Second Order Gray 

Level Statistics differences. In this study, work was done to find feature sets with 

respect to their orientation and size sensitivity. The author used a set of fifty-four aerial 

photographic terrain samples that belong to nine land use classes and also a larger-scale 

study has been done by using 180 LANDSAT non-imagery samples from 3 geological 

terrains. In a result it has been found that the FPS features did not performed well while 

the other additional feature sets all performed comparably and this was also the 

limitation of the paper. 

 Kadah et al. proposed tissue classification algorithm for diffuse liver 

classification from ultrasound images [115]. The data set consists of total 120 images 

and these 120 were divided into two equal size training and testing dataset. The 

performance of several classifiers like Statistical classifier and neural classifier are 

evaluated which provide good results. This paper has proposed feature extraction 

algorithms for extraction of parameters such as First and Second Order Gray Level, 

Backscattering Coefficient and Attenuation and Backscattering from liver images. The 

results obtained from the neural network classifier gave 100% sensitivity of fatty liver 

images. The hardware implementation was demanded to be made simple for easier 

tissue analysis of ultrasound images. 

Badawi et al. made use of Fuzzy logic-based algorithm for classification of tissue 

in diffuse liver diseases from ultrasound images [44].  In this paper, a fuzzy approach 
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is applied for automatic segregation of diffuse liver diseases. It extracted numerical 

quantitative features from the ultrasound images. There were 140 cases of normal, 

cirrhotic, fatty liver from which fuzzy rules are generated for differentiation of cirrhosis 

liver from normal liver. In this study, the fuzzy system outcome is obtained on the basis 

of three main categories: normal cirrhosis or fatty and the steps were taken for 

differentiating the pathologies by dividing the input spaces of the data into fuzzy sets. 

This approach demands expert knowledge for generation of fuzzy rules and the fuzzy 

inference procedures for pathology determination. As a result, the sensitivity and 

specificity is much higher than the statistical methods which is also as good as the 

neural networks techniques.  

Palvopous et al. proposed a Fuzzy Neural Network based texture analysis [124]. 

The dataset of total 150 images were used and the 32 by 32 pixel ROI were selected 

from each images. In this study two main steps is performed firstly, tissue 

characterization features extraction basically five techniques and models like Spatial 

GLCM were used for feature extraction. Secondly, the classification of fatty and normal 

liver is done by using a fuzzy neural network classifier. The Voronoi diagram obtained 

from the training patterns were used for the creation of fuzzy sets and building of class 

boundaries. In this due to large number of different subset combinations the result leads 

to accuracy rate of greater than 75% of correct classification. 

Chen et al. proposed an Automatic Diagnostic System (ADS) for CT Liver 

Images Classification that classify liver diseases by finding CT liver boundary 

automatically [125]. In this paper, the system contains a Detect-Before-Extract (DBE) 

for liver boundary identification. A neural network classifier was applied to distinguish 

two liver tumors namely hemageoma and hepatoma. In this study, normalized 

Brownian motion model in DBE system is applied liver boundaries and deformable 

contour model was used to outline the liver boundary. The proposed system consists 

the dataset of 30 liver cases. As a result, the classifier Multi-Probabilitic Neural 

Network (MPNN) is not always produce optimal results in every application and can 

be replaced by a better system. The limitation of this paper was it is not necessary that 

MPNN provides optimal results in all applications.  
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 Mukherjee et al. proposed a classification of normal and fatty ultrasound liver 

images which relied on spatial pattern of echogenicity and echoes [126]. This was a 

subjective method for classification. A dataset of 100 ultrasound human liver images 

have been taken from hospital in this work. To generate profile plots a Self-Organizing 

Map (SOM) was used as a classifier. In this paper, the author analyzes the pattern 

content in both fatty and normal livers diagnosis with the help SOM algorithm. In this 

study each individual feature Student’s t test is calculated to differentiate among the 

results obtained from fatty and normal livers. Based upon the statistical distribution, 

the two components such as maximum probability and uniformity of the feature vector 

are identified to be most distinguishing. In this work, the best results for classification 

after statistical texture analysis were obtained by using “Maxp” and “Uni” of the 

ultrasound human images.  

Li et al. proposed a Support Vector Machine (SVM) based CAD system for Fatty 

Liver Ultrasonic Images [26]. A database of total 95 ultrasound images was used.  Out 

of these 95 ultrasound images, 25 normal liver and 68 fatty liver cases were used for 

training and testing purposes. This study presented classification of normal and fatty 

livers with high recognition rate.  In this paper, Near-Field Light-Spot Density, Near-

Far-Field Grayscale Ratio, Neighborhood Gray-Tone Difference Matrix (NGTDM) 

and Grayscale Co-occurrence Matrix features were extracted. RBF kernel was used in 

SVM classifier and the accuracy obtained from the classification rate of normal 87% 

and fatty liver 97.1%.  

Ribeiro et al. presented a Quantitative Tissue Characterization Technique 

(QTCT) technique for detection of FLD in ultrasound liver images [34]. All images 

were stored in DICOM format. In this study features were selected in such a way that 

as same characteristics are selected by the physicians in the diagnosis of the disease. 

For the diagnosis of the liver steatosis from ultrasound images, the author presented an 

automatic classification algorithm that applied Naive Bayes classifier for fatty liver 

characterization and the overall accuracy leads to 95% and 100% sensitivity.  

Sriraam et al. has presented a performance evaluation of CAD tool for diagnosis 

of Ultrasound Liver Disease [127]. The proposed CAD tool applied Gabor wavelet 

transform to compute statistical features for segmentation of image into sub block for 
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proper analysis. In this study, out of 42 images, 20 training images and 22 were used 

for testing. Classification was performed using a Back Propagation Neural Network 

(BPNN). With BPNN classifier, accuracy of 96.8% was obtained. 

Afsar et al. proposed a novel automatic method for classification of liver tissue 

[118]. The proposed system selects a characteristic Region of Interest (ROI) from an 

image automatically. In this study, total 88 cases ultrasound images were acquired from 

MINAR. Statistical features were extracted by using Wavelet Transform (WT) and also 

ROI of an image was analyzed. In this study an effective method, WT with multi-scale 

analysis capability is used for FLD detection using features that measure variations in 

echogenicity, homogeneity and granularity of ultrasound. Classification process was 

carried out by ν-Linear Support Vector Classifier (ν-LSVC). The proposed system 

produced a 95% accuracy.  In future, work on larger database of liver images needs to 

be done. The work can be extended in future by using features that are based upon the 

differences in echogenicity of the liver from renal and spleen cortex. 

Singh et al. presented a new metric of classification of Liver Ultrasound Images 

[128]. A set of 30 ultrasound images were taken to evaluate the performance of 

proposed metric. Out of which 15 images are used as normal liver and rest of the 15 

images were taken as fatty liver images. A ROI of size 30 × 30 was selected along the 

central line of the image. In this study, five texture models were used for extraction of 

texture features. Fisher's linear discriminative analysis was applied to extract the best 

features. Furthermore, the selected features are then aggregated into a single metric by 

taking into consideration the weightage identical to the visual principal that is used for 

liver classification. The proposed method gave 92% accuracy and 100% sensitivity. 

The main drawback of the proposed study is that the criterion used for characterization 

is very much machine dependent. 

Acharya et al. presented a fatty liver classification framework by taking three 

feature models into account for feature extraction and also used directly B-mode 

ultrasound images for feature extraction [116]. The author used total 35 ultrasound liver 

images for classifier development and evaluation. In this paper, Probabilistic Neural 

Network (PNN) and K-Nearest Neighbor (K-NN classifiers were used that gave 93.3% 

accuracies with a small sample size, balanced sensitivity 94.4% and the specificity 
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91.7%. The proposed classifier has some advantages like easy to implement, less 

complex, faster diagnosis and no additional cost required to build classifier. The main 

drawback was that the type of distortion was chosen manually by physician and hence 

the process was not completely automated. 

 Singh et al. presented a method based on fusion of information using texture 

analysis of ultrasound images [21]. In this study, seven models are used to extract 

texture features. By using these seven models total 35 texture features were extracted. 

Out of these 35 features the best 7 features selected. The process of categorizing the 

fatty and normal liver are carried out in two steps firstly the best texture features are 

identified and secondly the information fusion of these best features, a new 

classification method is proposed and a linear classifier is used for fusion of selected 

feature. In this paper, whole process contains less time and low complexity and as a 

result the accuracy and sensitivity leads to 95% and 100%. In future, sub-classification 

of fatty liver as ‘low’, ‘moderate’ and ‘severe’ needs to be explored with the proposed 

method.  Further, application to other general classification problems can also be done 

for an annotated dataset.  

Acharya et al. proposed a classification technique of fatty and normal liver [129].  

Discrete Cosine Transform and Radon Transform were used in this method. The 

extracted features are then fed to minimum Redundancy and Maximum Relevance 

(mRMR) ranking method. The dataset included images of both normal and fatty livers 

that were acquired by expert in University of Malaya Hospital, Malaysia. 

Saba et al. proposed a computer-based detection system for the Fatty Liver 

Diseases [130]. For carrying out the experiments the authors have selected 124 images 

from a ultrasound database consisting of cancerous and normal images of 62 patients. 

6 sets of features namely Basic geometric, Fourier transform, Haralick, Gupta 

transform, Discrete Cosine Transform and Gabor transform were used. Back 

Propagation Network (BPN) classifier was for classification of images as normal and 

abnormal. 

Acharya et al. proposed an approach for the classification and detection of 

steatosis from ultrasound images [45]. For feature extraction the authors have used 
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GIST descriptor models. In order to identify the highly discriminating features, 

Marginal Fisher Analysis (MFA) along with Wilcoxon Rank test has been used. Finally 

features are fused together by using variety of classifiers such as Linear Discriminant 

Analysis (LDA), Support Vector Machine (SVM), AdaBoost, K-Nearest Neighbor (K-

NN), Probabilistic Neural Network (PNN), Decision Tree (DT), and Naïve Bayes (NB) 

for classification of liver images. 

 Singh et al. [21] proposed a method based on an information fusion for liver 

classification using texture analysis of ultrasound images. Seven different models have 

been used in this paper to extract 35 texture features. On the basis of Linear 

Discriminative Analysis (LDA) and Pearson’s Correlation Coefficient (PCC) feature 

selection techniques best seven features were extracted. The process of categorizing the 

fatty and normal liver are carried out in two steps firstly the best texture features are 

identified and secondly the information fusion of these best features, a new classification 

method is proposed and then by using a linear classifier, fusion of selected features take 

place. In this paper the accuracy and sensitivity lead to 95% and 100%.  

 Acharya et al. [116] presented a data mining framework for classification of 

ultrasound fatty liver diseases. In this study, author takes three feature models into 

account for feature extraction and also used directly B-mode ultrasound images for 

feature extraction. The author used total 35 ultrasound liver images for classifier 

development and evaluation. In this paper K-Nearest Neighbour (K-NN) and 

Probabilistic Neural Network (PNN) classifiers are used that gave 93.3% accuracies with 

a small sample size, balanced sensitivity 94.4% and the specificity 91.7%.  

 Li et al. [26] proposed CAD of Fatty Liver Ultrasonic Images which is based on 

SVM. The database of total 95 ultrasound images were obtained from the local hospital. 

This study presented categorization of fatty and normal livers at immense recognition 

rate and also SVM is used as classifier for characterization of fatty and normal ultrasound 

livers images. In this paper features were extracted from Near-Field Light-Spot Density 

(NFLSD), Grayscale Co-occurrence Matrix and Near-Far-Field Grayscale Ratio, 

Neighborhood Gray-Tone Difference Matrix (NGTDM). As a result, the classification 

accuracy rate obtained by the normal liver is 84% and fatty liver is 97.1%. 



34 

 

 Ribeiro et al. [34] presented characterization and classification of FLD by 

ultrasound. In this paper Quantitative Tissue Characterization Technique (QTCT) is used 

for significant features and for detection of FLD in ultrasound liver images. In this study, 

to select different features the physicians used similar characteristics in the diagnosis of 

the disease. For the diagnosis of the FLD from ultrasound images, the author presented 

an automatic classification algorithm. Naive Bayes classifier is used for fatty liver 

characterization and classification and the overall accuracy leads to 95% and 100% 

sensitivity.  

 Singh et al. [128] has presented Liver Classification from Ultrasound Images based 

on new quantitative metric. A set of 30 ultrasound images were taken to calculate the 

performance of proposed metric. In this study, author selected ROI of size 30×30 onward 

the middle line of the image. In this work, five different texture models are used to extract 

various texture features and the best features are then selected on the basis of fisher's 

linear discriminative (FLD) analysis. The overall accuracy obtained 92%. 

 Mukherjee et al. [126] proposed the subjective classification of fatty and normal 

ultrasound liver images on the basis of spatial pattern of echoes and echogenicity. A 

dataset of 100 ultrasound human liver images have been taken from hospital in this work. 

To generate profile plots a Self-Organizing Map (SOM) was used as a classifier. In this 

work the best results obtained from the statistical texture analysis by using “Maxp” and 

“Uni” of the ultrasound human images.  

Sabih et al. [118] proposed a novel method for Automated Classification of Liver 

Disorders using Ultrasound Images. In this work, the proposed system automatically 

choose an illustrative Region of Interest (ROI) in a liver ultrasound for diagnosis. In this 

study total 88 cases were taken for classification of liver disorder. A number of statistical 

features are achieved by using Wavelet Packet Transform (WPT) and also ROI was 

analyzed by the author. The overall accuracy of 95% is obtained by the system.  

Sriraam et al. [127] presented a CAD Tool for Detection of Ultrasound Liver 

Disease. The proposed CAD tool contain Gabor wavelet transform to compute statistical 

features. In this study out of 42 images, 20 images are taken for training and another 22 

images are used for testing. Classification is done by a Back Propagation Neural Network 
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(BPNN) and feed-forward neural network model. By using BPNN classifier 96.8% 

accuracy obtained and 94% accuracy obtained by multi classification.  

Krishnan et al. have proposed a classification system for liver Ultrasound images 

based on Grey Level Run Length Matrix based features [131]. For classifying the 

images, the Support Vector Machine Classifier has been used. The authors have also 

analyzed the performance of linear, non-linear and diffusion filters for improving the 

quality of images.  

Virmani et al.  proposed a system to characterize liver ultrasound images into 

normal liver, cirrhotic liver and hepatocellular carcinoma [132]. The authors have used 

multiresolution wavelet packet texture descriptors for texture representation of Region 

of Interest and feature selection has been done with Genetic Algorithm. For classifying 

the images, Support Vector Machine classifier has been used.  

Jeon et al. have proposed a new multiple Region of Interest based liver ultrasound 

image classification [133]. The authors have extracted features to represent the various 

characteristics in the image. For classification purpose, Support Vector Machine with 

Sigmoid Function has been used.  

Singh et al. presented a classification approach based on texture analysis of Liver 

ultrasound images in which they have used seven different texture models to represent 

the texture of Region of Interest [134]. Feature selection has been done by Linear 

Discriminant Analysis (LDA) and Pearson Correlation Coefficient (PCC). Finally, the 

authors have classified the images using the proposed information fusion-based 

classifier.  

Acharya et al. proposed a novel approach to classify normal, FLD and cirrhotic 

liver based on Curvelet Transform and different entropy features [135]. 

Probabilistic Neural Network (PNN) classifier has been used for the classification 

purpose.  

Saba et al. have used six set of features comprising of 128 features in total for the 

classification of liver ultrasound images into normal and abnormal categories [136]. 



36 

 

Back Propagation Neural Network (BPNN) has been used for the classification 

purpose.  

An integrated index to classify the liver ultrasound images has been proposed by 

Acharya et al. [137]. For feature extraction the authors have used Radon Transform 

(RT) and Discrete Cosine Transform (DCT). Further, Locality Sensitive Discriminant 

Analysis (LSDA) has been applied to reduce the number of features. Afterwards, the 

highly ranked features are fused be means of Probabilistic Neural Network (PNN), 

Decision Tree (DT), Support Vector Machine (SVM), Fuzzy Sugeno (FS), K-Nearest 

Neighbour (K-NN) and AdaBoost classifiers for getting the better performance.  

Xu et al.  proposed a CAD system to distinguish liver ultrasound images in two 

categories based on texture features and SVM classifier [138]. For feature extraction 

the authors have employed GLCM model and GLRLM model to extract 96 features in 

total.  

Amin et al. proposed a computationally efficient technique for the classification 

of liver images [139]. For extraction of features Wavelet Packet Transform (WPT) has 

been used and classification has been done with several classifiers that include kNN, 

linear SVM, kernel-based SVM and LDA.  

Krithiga et al. have proposed an automated classification technique based on the 

texture and wavelet domain features [140]. For feature selection the authors have 

employed Correlation based feature selection method and finally classification is done 

using random forest-based learning. 

Recent studies for the classification of fatty and normal liver ultrasound images 

using different texture features and classifiers can be found in [141-145].  

2.5 Performance Evaluation Metrics 

The performance of classification methods is evaluated by Receiver Operating 

Characteristics (ROC) analysis through Specificity, Sensitivity and Accuracy [123-125]. 

This analysis is based on the number of correct instances in each class out of total 

instances. The True Positive (TP) is the number of instances when the disease is 

correctly detected. The False Positive (FP) is the number of instances when the patient 
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does not have the disease but it was detected as disease. False Negative (FN) is the 

number of instances when the patient has the disease but it was not detected. In medical 

related classification methods, this number is very critical, because if some method has 

even a single instance in FN then it means the method may miss the detection of disease, 

which is not at all desirable in medical imaging. The True Negative (TN) is the number 

of instances when the disease is not present and the method also recommend the same. 

All these terms are represented in Table 2.3. On the basis of this formulation, the 

following terms are used to indicate the performance of classification method. 

“True Positive (TP): Ultrasound Image classified as fatty that proved to be fatty.” 

“False Positive (FP): Ultrasound Image classified as fatty that proved to be normal.” 

“True Negative (TN): Ultrasound Image classified as normal that proved to be normal.” 

“False Negative (FN): Ultrasound Image classified as normal that proved to be fatty.” 

Table 2.3: Evaluation of Classification Accuracy 

 Is the liver ultrasound fatty? 

Yes No 

Did the test indicate the 

Presence of dense tissue? 

Yes True Positive (TP) False Positive (FP) 

No False Negative (FN) True Negative (TN) 

 

Sensitivity, also called True Positive Fraction (TPF) is defined as the ratio of “number 

of correct positive assessments to the number of truly positive cases”. 

                                   𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                  (2.1) 

Specificity or True Negative Fraction (TNF) is defined as the ratio of the number of 

correct negative assessments to the number of truly negative cases.                                                    

 

                                  
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

𝑇𝑁

𝑇𝑁+𝐹𝑃
                              (2.2) 

Accuracy is defined as the ratio of “number of correct assessments” to the “total 

number of cases”.     
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TP TN
Accuracy

TP FP TN FN

+
=

+ + +
                                      (2.3) 

“ROC-AUC is a good indicator for evaluating efficiency of the classifier. AUC 

reflects the overall accuracy of a test, with an average value of 1.0 suggesting a high 

sensitivity and specificity. The AUC value 0.5 does not implies any discrimination. 100 

per cent sensitivity means that all positive images are classified as positive, i.e. fatty 

images are recognised as fatty. Specificity is related to the capacity of the classifier to 

distinguish the negative cases.” 

2.6 Research Gaps 

In the medical field, images, and especially digital images, are produced in 

enormous quantities and are used for diagnostics and therapy. Due to non-ionizing 

property, portable, real time imaging and low-cost Ultrasound Imaging has been widely 

used. 

A review of related work in processing and analysis of ultrasound images has 

been done. From the literature survey it has been found that in recent years many 

approaches have been proposed for the analysis of ultrasound images and major work 

has been done in the area of Computer Aided Diagnosis of fatty liver (Steatosis). From 

the literature survey it has been found that the subjective evaluation of liver ultrasound 

images is less accurate and highly dependent on the experience of radiologist.  

The visual criteria for separating fatty liver and normal liver are usually 

subjective. Diagnosis primarily relies on the radiologists' ability to analyse and compare 

differences in textural properties in the image. Homogeneity and echogenicity are 

examples of these characteristics. It has been found that different radiologist’s 

sometimes have different interpretation for the same image. 

However, the echogenicity concept was widely discussed by experienced 

radiologists, particularly in marginal cases, through visual analysis of pictures. 

Diagnostic accuracy is currently estimated at approximately 72 percent by visual 

interpretation [2]. The low precision of visual perception further raises the need for 

objective methods for the liver classification based on quantitative texture analyses.  
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Much research was carried out in the field of liver characterization using 

ultrasound imaging. There are numerous methods of quantitative liver characterization, 

such as back-scatter Radio Frequency (RF) and an analysis of attenuation, elastography 

etc. but the most reliable technique is texture analysis. A large number of texture 

models have been used for Ultrasound Tissue Characterization including the “Spatial 

Gray Level Co-occurrence Matrix (SGLCM), Law's Texture Energy Measure (TEM), 

Grey Level Difference Statistics (GLDS), Fourier Power Spectrum (FPS), Statistical 

Feature Matrix (SFM), First Order Statistics (FOS) and Grey Level Run Length 

Matrices (GLRLM).” 

The features extracted by above-mentioned texture models are used with various 

classifiers. Each classifier exhibits its own merits and demerits. The more precise 

methods are computationally expensive, whereas methods that are easier are not very 

much accurate. It has been found that main issues are involved in the processing and 

analysis of ultrasound images that includes extraction of Region of Interest, feature 

extraction, selection of highly discriminating features and type of classifier. In view of 

the above, a quantitative, improved method needs to be established that gives 

reasonably high accuracy with less computational load. 

2.7 Objectives of the Proposed Work 

Keeping in view of the above research gaps, the following objectives are defined: 

1. To study and analyze various speckle reduction methods and quantitative 

texture analysis methods for Ultrasound liver tissue characterization. 

2. To propose a speckle suppression filter that enhances the edges and fine details 

in the ultrasound images. 

3. To propose a method to help the radiologists in characterizing the fatty liver 

more accurately and fast. 

4. Performance evaluation of the proposed speckle suppression filter and liver 

tissue characterization method on Ultrasound images through visual analysis by 

the expert radiologists as well as through quantitative metrics. 
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2.8 Conclusion 

In the domain of medical imaging informatics, a large amount of image data is 

being produced from different medical imaging modalities. Effective methods are 

required to manage these complex images. In the recent years, a lot of work has already 

been done to improve the performance of Computer Aided Diagnosis methods. Each 

method has its own advantages and limitations.  

In this chapter a comprehensive survey of related work and a description of the 

mathematical models used to achieve the proposed goals has been done. Various 

speckle reduction techniques have been studied to identify the best method. Different 

texture domain models have also been studied and analyzed to find the optimal set of 

features for liver tissue characterization. 
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 Chapter-3 

Material and Methods 

 

3.1 Introduction 

The present research work has focused on liver ultrasound images for the 

classification of fatty liver images and normal images. Among all the liver diseases, 

fatty liver disease (steatosis) is a highly prevalent illness of all liver problems in India 

and Western countries. Radiologists primarily measure the fatty tissue by a highly 

subjective visual interpretation of the ultrasound image of the liver. Automatic methods 

of image classification seek to emulate such a visual decision and classify images based 

on the underlying characteristics of the textures. With widespread acceptance of 

ultrasound imaging as a tool, there is a need to process images efficiently using 

techniques of computer vision. In this chapter, four different methods have been 

proposed for the classification of liver ultrasound images. The present research work is 

likely to contribute significantly in the area of ultrasound imaging. 

3.2 Proposed Method I 

(Based on Decision Tree Classifier with Principal Component Analysis) 

3.2.1 Image Dataset Used 

In this research work, 90 ultrasound liver images are collected from Delta 

Diagnostic Centre Patiala, India. Out of 90 images, half of the images are of fatty liver. 

To create this medical image dataset, 90 patients (within the age group of 25 – 60 years) 

has been examined by experienced radiologists. The ultrasound images are collected by 

the ultrasonic system Voluscan730 PRO (General Electric Medicare) with a curved array 

probe of 68 mm at a frequency of 3.6 MHz. In order to keep the background grey level 

same across the whole range, the Time Gain Compensation (TGC) setting has been done 

accordingly. All the patients were advised to take at least eight hours fast before 

ultrasound scan so that increasing liver glycogen and water concentration does not effect 

the quality of ultrasound imaging. Experienced radiologists are requested to acquire the 

images and to label them as per the standard procedure. 
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Parameter Settings for Decision 

Tree Classifier

Using seven different Texture 

Models

Image Dataset

Speckle reduction

ROI Extraction

Feature Extraction

Apply Principal 

Component Analysis

45 Normal 

Liver Images 

45 Fatty Liver 

Images

Explained 

variance has 

been set to 

95%
Classification with Decision 

Tree Classifier
Preset - Fine Tree

Maximum number of splits - 100

Split Criterion - Gini s Diversity Index

Surrogate Decision splits - off

Performance Evaluation

Fatty and Normal Liver Images

30×30 pixels 

size from full 

ultrasound 

image

SGLCM, GLDS, FoS, SFM, Law s 

TEM, Fractal and FPS 

 

Figure 3.1: Steps carried out in Proposed Method I 

3.2.2 Speckle Reduction 

Speckle is a locally correlated multiplicative noise that has granular pattern, and 

this makes the visual quality of ultrasound image poor. Speckle also hinders the 

automatic image analysis task very difficult. Therefore, it is important to suppress the 

speckle noise in the pre-processing stages. A modified fourth order partial differential 

equation-based filter as proposed by Singh et al. [151] was used to accomplish this 

work. The proposed filter is adaptive to the local 'variance coefficient' in the 3x3 space 

window. Proposed method employs the local statistics in a moving window, to flatten 

or preserve the central pixel. In order to enhance the fine details and edges in the 

ultrasound image ‘edge-map’ technique has been used. To further increase the efficacy, 

after feature extraction from the region of interest all the features have been normalized. 

The visual analysis done by the radiologists indicate that the method is suitable for 
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computer aided analysis of ultrasound images, as it preserves the diagnostically 

significant information in the image. 

3.2.3 Region of Interest (ROI) Extraction 

In medical image processing, to identify the ultrasound image characteristics 

quantitatively, a “Region of Interest” (ROI) is extracted [128, 148, 151]. ROI is a 

selected significant part of an image which represent the whole image and also helps 

the users to avoid unnecessary calculations. Different authors have used different ROI 

sizes in their research work but for reliable statistics, a 30×30 fixed square size ROI 

(900 pixels) [21] is selected by the experienced radiologists from each image in the 

present research work. The sample ROIs contain tissue pattern only. The ROI size (30 

× 30 pixels) of an image is chosen diagonally to avoid effect of liver glycogen, fat, 

blood vessels and water storage [125, 152]. The main reason for choosing square shape 

is that most of the texture models are based on calculations of matrices, which can be 

easily done for square matrices. Thus, the square-shaped ROIs were chosen for this 

analysis. This size of ROI also decreases the computational cost in extracting the texture 

features. In earlier studies researchers have proved that ROI extracted from the full 

image should have sufficient number of pixels so that better analysis can be done and 

moreover parameters of texture are considered sensitive to sample size. *Kadah et al. 

stated that a 30x30 square sized ROI (900 pixels) provides a suitable sample size for 

reliable statistics. Furthermore, conversations with the radiologists also indicate that a 

size of 30x30 pixels is ideal, and that ROI should be extracted from or near the centre 

line of image. Therefore, a ROI of size 30x30 pixels is selected for the present study. 

3.2.4 Feature Extraction 

 The next step in the present methodology is to extract texture features from ROI 

selected from each ultrasound liver image in the database. As per the literature survey 

done by authors, various texture feature extraction models have been extensively 

explored in medical applications, which extract different features from an image in 

different ways for different purposes. In [21], seven different texture feature extraction 

models i.e. SGLCM, FoS, FPS, GLDS, TEM, SFM and FF have been used to extract 

total 35 features. In the present study, same models (as shown in Table 3.1 and Figure 
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3.3) have been used to extract total 45 features in order to improve the classifier 

accuracy of existing CAD systems.  

 

Figure 3.2: Region of Interest Extraction from full image 

Table 3.1: Various models used for feature extraction 

Models 

used 
Feature Extraction 

SGLCM 

“Angular Second Moment, Contrast, Correlation, Inverse difference 

moment, Sum of square, Difference Entropy, Entropy, Sum Variance, 

Sum Average, Sum Entropy, Maximal Correlation Cofficient, Difference 

Variance, information measure of correlation 1, information measure of 

correlation 2. 

FOS Mean, Variance, Skewness, Kurtosis      

GLDS 

 

Homogeneity, Contrast, Mean, Energy, Entropy 

SFM Coarseness, Contrast, Periodicity, Roughness 

Law’s TEM 

Spot_Level, Edge_Level, Wave_Level, Ripple_Level, Spot_Edge, 

Wave_Edge, Wave_Spot, Ripple_Edge, Ripple_Spot, Ripple_Wave, 

Spot_Spot, Edge_Edge, Wave_Wave, Ripple_Ripple 
 

Fractal Hurst Coefficient at Resolution 1, Hurst Coefficient at Resolution 2. 

FPS Radial Sum, Angular Sum” 
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Proposed Algorithm 

Input: Liver Ultrasound Image 

Output: Class of Image (Normal/Fatty) 

1. For each image I in N, obtain      
ii) ri = Extract 30×30 pixels ROI from I 

ii) R = R U ri, where 

R is a set of all extracted 30×30 pixels ROI, 

N is the total no of images. 

2. For each ri in R, Obtain 

i) F1-14=Extract GLCM based Haralick 

Features 

ii) F15-19=Extract GLDS Features 

iii) F20-23=Extract FoS Features 

iv) F24-27=Extract SFM Features 

v) F28-41=Extract Law’s TEM Features 

vi) F42-43=Extract Fractal Features 

vii) F44-45=Extract FPS Features 

3. S= {F1-14 U F15-19 U F20-23 U F24-27 U F28-41 U F42-43 U F44-45} 

4. Apply Principal Component Analysis on S. 

(i) Standardized d-dimensional dataset. 

(ii) Create the covariance matrix. 

(iii) Decompose the covariance matrix into its 

eigenvalues and eigenvectors. 

(iv) Sort your own values to define the 

corresponding vectors by decreasing 

order. 

(v) Choose k eigenvectors that match the k 's 

largest eigen values, where k is the 

dimension of the new subspace function. 

(vi) Create the projection matrix W from top k 

eigenvectors 

(vii) To obtain the new k-dimensional feature 

subspace, transform the d-dimensional 

data set X using the projection matrix W. 

5. For each ri in R 

i) Apply Decision Tree based Classification 

using PCA. 

6. End 
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SGLCM 

Features

GLDS 

Features

FoS 

Features

SFM 

Features

Law s TEM

Fractal 

Features

 FPS 

Features

 Angular Second Moment, 

Contrast, Correlation, Sum of 

Squares, Inverse Difference 

Moment, Sum Average, Sum 

Variance, Sum Entropy, Entropy, 

Difference Variance, Difference 

Entropy, Information Measure of 

Correlation 1, Information 

Measure of Correlation 2, 

Maximal Correlation Coefficient 

Homogeneity, Contrast, Mean, 

Energy, Entropy

Mean, Variance, Skewness, 

Kurtosis

Coarseness, Contrast, Periodicity, 

Roughness

 Edge_Level, Spot_Level, 

Wave_Level, Ripple_Level, 

Spot_Edge, Wave_Edge, 

Ripple_Edge, Wave_Spot, 

Ripple_Spot, Ripple_Wave, 

Edge_Edge, Spot_Spot, 

Wave_Wave, Ripple_Ripple 

 Hurst Coefficient at Resolution 1, 

Hurst Coefficient at Resolution   

Mean, Variance, Skewness, 

Kurtosis

 

Figure 3.3: Different texture models used in the proposed work 
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(i). Haralick’s Gray Level Cooccurrence Matrix based Features 

“A set of 14 texture features are used in this study, and these are defined on a 

single co-occurrence matrix. In GLCM model the selection of distance d and angle 

plays a crucial role. In the proposed work, for a chosen distance d=1 and for angles θ 

= 0°, 45°, 90°, and 135°, we have calculated four values for each feature and their 

average is taken for further analysis. 

The various representations used to compute these texture features are given as follows: 

Notations        Description 

𝑃(𝑖, 𝑗)               𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑖 𝑎𝑛𝑑 𝑗 𝑔𝑟𝑒𝑦 𝑙𝑒𝑣𝑒𝑙 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛  occures 𝑖𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒  

𝑝(𝑖, 𝑗)               (𝑖, 𝑗)𝑡ℎ entry in a normalized co − occurrence matrix,   

=
𝑃(𝑖, 𝑗)

𝑅
 where, R is a normalizing constant. 

𝑝𝑥(𝑖)                 = ∑ 𝑃(𝑖, 𝑗), obtained by summing the rows of p(i, j).

𝑁𝑔

𝑖=1

 

𝑁𝑔                      Number of distinct gray levels in the quantized image.  

𝑝𝑦(𝑗)                  = ∑ 𝑃(𝑖, 𝑗), obtained by summing the columns of p(i, j).

𝑁𝑔

𝑗=1

 

𝑝(𝑥+𝑦)(𝑘)          = ∑  

𝑁𝑔

𝑖=1 𝑖+𝑗=𝑘

∑ 𝑝(𝑖, 𝑗),                                 𝑘 = 2, 3, … … . ,2𝑁𝑔.

𝑁𝑔

𝑗=1

 

𝑝(𝑥−𝑦)(𝑘)           = ∑  

𝑁𝑔

𝑖=1 |𝑖−𝑗|=𝑘

∑ 𝑝(𝑖, 𝑗),                                 𝑘 = 0,1,2, . . 𝑁𝑔 − 1.

𝑁𝑔

𝑗=1

 

∑  = ∑  

𝑁𝑔

𝑖=1

 

𝑖

    𝑎𝑛𝑑    ∑  = ∑  

𝑁𝑔

𝑗=1

 

𝑗

  

𝜇𝑥, 𝜇𝑦, 𝜎𝑥 and 𝜎𝑦are the means and standard deviations of  𝑝𝑥and 𝑝𝑦. 

The Haralick features calculated in this thesis work are detailed in the following section 

[153]. 

(a) Angular Second Moment (ASM): It is measure of uniformity or energy of texture. 

It is computed as summation of squared elements of SGLCM.  
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                              𝐴𝑆𝑀 =  ∑ ∑{𝑝(𝑖, 𝑗)}2

 

𝑗

 

𝑖

                                                   (3.1) 

A homogeneous image has a few gray level values so SGLCM contains few but high 

values of P(𝑖, 𝑗). So, value of ASM will be high. 

(b) Contrast (CNT): It is measure of intensity contrast between pixel and its 

neighborhood over the entire image and is difference moment of SGLCM. 

                         𝐶𝑁𝑇 =  ∑ 𝑛2   {∑ ∑  

𝑁𝑔

𝑗=1 |𝑖−𝑗|=𝑛

 𝑝(𝑖, 𝑗)

𝑁𝑔

𝑖=1 

}

𝑁𝑔−1

𝑛=0

                              (3.2) 

High contrast value provides clear separation between objects in an image. 

(c) Correlation (CRC): It is measure of how correlated a pixel is to its neighbor over 

the entire image. 

𝐶𝑅𝐶 =
∑  ∑ (𝑖𝑗)𝑝(𝑖, 𝑗) −  𝜇𝑥𝜇𝑦𝑗𝑖

𝜎𝑥𝜎𝑦
                                        (3.3) 

(d) Inverse Difference Moment (IDM): It is measure of closeness of distribution of 

elements in co-occurrence matrix to main diagonal. 

𝐼𝐷𝑀 = ∑ ∑
1

1 + (𝑖 − 𝑗)2
𝑝(𝑖, 𝑗)

𝑗𝑖

                                      (3.4) 

This feature has relatively high value when high values of matrix are near the main 

diagonal. High value indicates homogeneity of image. 

(e) Variance (VAR): It provides measure of deviation from mean value of SGLCM.  

                                           𝑉𝐴𝑅 = ∑(𝑖 − 𝑗)2

𝑁𝑔

𝑖=1

𝑝𝑥+𝑦(𝑖)                                                  (3.5) 

(f) Sum Average (SAVG): It indicates brightness of image. Sum average is high if 

image is bright. 

                                      𝑆𝑉𝐴𝐺 = ∑ 𝑖𝑝𝑥+𝑦(𝑖)                                                                  (3.6)

2𝑁𝑔

𝑖=2

 

(g) Entropy (ENT): It is statistical measure of randomness in image. Homogeneous 

image have high entropy while inhomogeneous image have low entropy. 

𝐸𝑁𝑇 = − ∑ ∑ 𝑝(𝑖, 𝑗) log(𝑝(𝑖, 𝑗))

 

𝑗

 

𝑖

                                        (3.7) 
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(h) Sum Entropy (SENT): It measure entropy of vectorP𝑥+𝑦. Its value is lower than 

entropy. 

𝑆𝐸𝑁𝑇 = − ∑ 𝑝𝑥+𝑦

2𝑁𝑔

𝑖=2

(𝑖) log{𝑝𝑥+𝑦(𝑖)}                                      (3.8) 

(i) Sum Variance (SVAR): It is measure of deviation of elements of P𝑥+𝑦from sum 

entropy. It has high value for low contrast image. 

𝑆𝑉𝐴𝑅 = ∑(𝑖 − 𝑆𝐸𝑁𝑇)2

2𝑁𝑔

𝑖=2

𝑝𝑥+𝑦(𝑖)                                                  (3.9) 

(j) Difference Entropy (DENT): It is measure of entropy of vector P𝑥−𝑦. Its weight 

increases as we move away from main diagonal. 

𝐷𝐸𝑁𝑇 = − ∑ 𝑝𝑥−𝑦

𝑁𝑔−1

𝑖=0

(𝑖) log{𝑝𝑥−𝑦(𝑖)}                                  (3.10) 

(k) Difference Variance (DVAR): It is measure of deviation of elements of P𝑥−𝑦 vector 

from difference entropy. Sum variance and difference variance are opposite to each 

other. 

         𝐷𝑉𝐴𝑅 = ∑ (𝑖 − 𝐷𝐸𝑁𝑇)2

𝑁𝑔−1

𝑖=0

𝑝𝑥−𝑦(𝑖)                                              (3.11) 

(l) Information Measures of Correlation 1 (IMC1): Homogeneous image has low 

value for information measures of correlation 1. 

𝐼𝑀𝐶1 =
𝐻𝑋𝑌 − 𝐻𝑋𝑌1

max {𝐻𝑋, 𝐻𝑌}
                                                                 (3.12) 

                 𝑤ℎ𝑒𝑟𝑒, 𝐻𝑋 𝑎𝑛𝑑 𝐻𝑌 𝑎𝑟𝑒 𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑒𝑠 𝑜𝑓𝑝𝑥 𝑎𝑛𝑑 𝑝𝑦 𝑎𝑛𝑑 

                     𝐻𝑋𝑌 = − ∑ ∑ 𝑝(𝑖, 𝑗) log(𝑝(𝑖, 𝑗)) ,

 

𝑗

 

𝑖

  

                    𝐻𝑋𝑌1 = − ∑ ∑ 𝑝(𝑖, 𝑗) log{px(i)py(j)} ,

 

𝑗

 

𝑖

  

                  𝐻𝑋𝑌2 = − ∑ ∑ 𝑝𝑥(𝑖)𝑝𝑦(𝑗) log{px(i)py(j)} .

 

𝑗

 

𝑖
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(m) Information Measures of Correlation 2 (IMC2): Image with more energy has low 

value of information measures of correlation 2.” 

𝐼𝑀𝐶2 = (1 − exp[−2.0(𝐻𝑋𝑌2 − 𝐻𝑋𝑌)])1 2⁄                                     (3.13) 

 

Table 3.2: Description of Features 

Feature Name of Feature Texture Model 

F1 ASM 

GLCM Model 

F2 Contrast 

F3 Correlation 

F4 Sum_Squares 

F5 Inverse_Diff_Moment 

F6 Sum_Average 

F7 Sum_Variance 

F8 Sum_Entropy 

F9 Entropy 

F10 Diff_Variance 

F11 Diff_Entropy 

F12 Info_Measure1 

F13 Info_Measure2 

F14 Max_Corr_Coff 

F15 Homogeneity 

GLDS Model 

F16 Contrast 

F17 Mean 

F18 Energy 

F19 Entropy 

F20 Mean 

FoS Model 
F21 Variance 

F22 Skewness 

F23 Kurtosis 

F24 Coarseness 

SFM Model 
F25 Contrast 

F26 Periodicity 

F27 Roughness 
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Table 3.2: Description of Features (Continued) 

  

Feature Name of Feature Texture Model 

F28 EE 

Law's TEM 

Model 

F29 SS 

F30 WW 

F31 RR 

F32 EL 

F33 SL 

F34 WL 

F35 RL 

F36 SE 

F37 WE 

F38 RE 

F39 WS 

F40 RS 

F41 RW 

F42 H1 
Fractal Model 

F43 H2 

F44 Sr 
FPS Model 

F45 Stheta 
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Table 3.3: Feature values of Region of Interest obtained by Haralick’s GLCM Model for Fatty Liver Ultrasound Images 

Image F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 

ROI 1 0.4510 0.1103 0.7709 18.5568 0.9448 8.6161 52.9274 1.3995 1.5038 0.2507 0.5010 -0.4917 0.7924 0.7718 

ROI 2 0.5317 0.0862 0.7787 18.2463 0.9569 8.5299 55.0911 1.1544 1.2406 0.1927 0.4237 -0.5122 0.7582 0.7787 

ROI 3 0.5610 0.1034 0.7144 14.4415 0.9483 7.6000 41.7237 1.1887 1.2900 0.2344 0.4798 -0.4273 0.7112 0.7311 

ROI 4 0.6927 0.0701 0.7234 15.0331 0.9649 7.7667 47.3915 0.9141 0.9816 0.1530 0.3664 -0.4524 0.6709 0.7301 

ROI 5 0.8834 0.0264 0.7105 15.5228 0.9868 7.9046 56.6059 0.3912 0.4168 0.0482 0.1762 -0.4711 0.4881 0.7105 

ROI 6 0.7257 0.0759 0.6500 25.6797 0.9621 10.1471 86.4324 0.8695 0.9453 0.1672 0.3874 -0.3911 0.6076 0.6502 

ROI 7 0.7511 0.0736 0.6220 16.3359 0.9632 8.0851 53.0453 0.8235 0.8945 0.1615 0.3791 -0.3594 0.5807 0.6543 

ROI 8 0.4043 0.1103 0.8455 16.6930 0.9448 8.1816 43.1183 1.7124 1.7933 0.2507 0.5010 -0.5880 0.8818 0.8487 

ROI 9 0.9772 0.0080 0.4706 15.8112 0.9960 7.9851 62.1851 0.1007 0.1076 0.0115 0.0675 -0.2498 0.1923 0.4706 

ROI 10 0.5696 0.0989 0.7109 22.8338 0.9506 9.5632 72.3331 1.0927 1.1906 0.2234 0.4653 -0.4215 0.6902 0.7109 

 

Table 3.4: Feature values of Region of Interest obtained by Haralick’s GLCM Model for Normal Liver Ultrasound Images 

Image F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 

ROI 11 0.4455 0.1253 0.7496 13.9737 0.9374 7.4655 36.7325 1.4769 1.5974 0.2852 0.5444 -0.4505 0.7825 0.7540 

ROI 12 0.4268 0.0862 0.8791 9.6093 0.9569 6.1115 21.0134 1.6758 1.7599 0.1927 0.4237 -0.6396 0.9023 0.8942 

ROI 13 0.5519 0.0632 0.8440 7.5736 0.9684 5.4908 19.6729 1.1388 1.1889 0.1359 0.3401 -0.6090 0.8131 0.8564 

ROI 14 0.4202 0.0885 0.8277 6.2177 0.9557 4.9345 13.6084 1.3745 1.4598 0.1983 0.4315 -0.5750 0.8326 0.8281 

ROI 15 0.5817 0.1023 0.7065 8.1460 0.9489 5.6678 20.7979 1.1730 1.2740 0.2317 0.4762 -0.4300 0.7096 0.7202 

ROI 16 0.9548 0.0092 0.7515 3.8763 0.9954 3.9632 14.3740 0.1802 0.1877 0.0135 0.0754 -0.5265 0.3767 0.7515 

ROI 17 0.7275 0.0517 0.7686 4.5831 0.9741 4.2563 12.6081 0.7616 0.8132 0.1076 0.2937 -0.5232 0.6647 0.7686 

ROI 18 0.8918 0.0264 0.6796 3.8081 0.9868 3.9138 12.7053 0.3688 0.3952 0.0482 0.1762 -0.4536 0.4575 0.6796 

ROI 19 0.7319 0.0575 0.7318 4.5260 0.9713 4.2437 12.5364 0.7557 0.8126 0.1217 0.3173 -0.4712 0.6335 0.7318 

ROI 20 0.4357 0.1057 0.7751 5.7882 0.9471 4.7540 12.5456 1.3318 1.4369 0.2399 0.4870 -0.4950 0.7830 0.7751 
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(ii) GLDS Features  

“The GLDS algorithm uses first-order local property value statistics based on the 

absolute differences between pairs of grey or average grey levels to extract the 

following 5 texture measurements: homogeneity, contrast, mean, energy and entropy 

[43]. These characteristics are based on the absolute difference between pairs of grey 

levels separated from each other at distance  𝛿 = (∆𝑥, ∆𝑦). For a given displacement 

𝛿 = (∆𝑥, ∆𝑦),  the difference image  𝑓𝛿(𝑥, 𝑦) is defined as: 

𝑓𝛿(𝑥, 𝑦) = |𝑓(𝑥, 𝑦) − 𝑓(𝑥 + ∆𝑥, 𝑦 + ∆𝑦)|                                 (3.14) 

and 𝑝𝛿 is the probability density (gray-level histogram) of 𝑓𝛿(𝑥, 𝑦) for 𝑚 gray levels. 

Various texture features extracted from 𝑝𝛿  are: 

(a) Homogeneity (HOMG): It is a measure of similarity in grey level intensities. 

𝐻𝑂𝑀𝐺 =
∑ 𝑝𝛿(𝑖)

1 + 𝑖
                                                             (3.15) 

(b) Contrast (CNTG): It is a measure of grey level intensity difference between 

neighboring pixels. 

     𝐶𝑁𝑇𝐺 = ∑ 𝑖2𝑝𝛿(𝑖)                                                       (3.16) 

(c) Mean (MENG): It is the average value of the grey level intensities within a given 

area. 

𝑀𝐸𝑁𝐺 =
1

𝑚
∑ 𝑖 𝑝𝛿(𝑖)                                                    (3.17) 

(d) Energy (ENGG): It represents amplitude of grey level values.  

𝐸𝑁𝐺𝐺 = ∑ 𝑝𝛿(𝑖)2                                                          (3.18) 

(e) Entropy (ENTG): It measures the randomness in grey level intensities within the 

given area.” 

𝐸𝑁𝑇𝐺 = − ∑ 𝑝𝛿(𝑖) log 𝑝𝛿(𝑖)                                     (3.19) 
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Table 3.5 Feature values of Region of Interest obtained by GLDS Model for Fatty Liver Ultrasound Images 

Image F15 F16 F17 F18 F19 

ROI 1 0.6326 35.5529 3.1779 0.3142 2.7975 

ROI 2 0.6733 19.1893 2.2538 0.3488 2.4972 

ROI 3 0.6577 24.9423 2.6319 0.3375 2.5946 

ROI 4 0.6510 16.9390 2.2314 0.3149 2.5602 

ROI 5 0.7094 7.1701 1.4011 0.3782 2.1450 

ROI 6 0.6304 46.5952 3.5548 0.3127 2.8721 

ROI 7 0.6309 38.2433 3.2693 0.3112 2.8246 

ROI 8 0.6926 18.4772 2.1168 0.3881 2.3682 

ROI 9 0.7033 9.9344 1.6131 0.3749 2.2359 

ROI 10 0.6750 17.9035 2.1601 0.3479 2.4727 

 

Table 3.6: Feature values of Region of Interest obtained by GLDS Model for Normal Liver Ultrasound Images 

Image F15 F16 F17 F18 F19 

ROI 11 0.6271 35.7759 3.2157 0.3037 2.8330 

ROI 12 0.5878 55.5478 4.1237 0.2656 3.0965 

ROI 13 0.6674 16.6915 2.1454 0.3442 2.4573 

ROI 14 0.6271 26.5061 2.8453 0.3023 2.7497 

ROI 15 0.6389 27.1022 2.7616 0.3112 2.7212 

ROI 16 0.6968 7.4150 1.4710 0.3621 2.1902 

ROI 17 0.6342 23.7009 2.6217 0.3016 2.6982 

ROI 18 0.6856 8.5964 1.5894 0.3492 2.2711 

ROI 19 0.6777 13.3591 1.8987 0.3470 2.4033 

ROI 20 0.6539 21.6069 2.4569 0.3242 2.6027 
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(iii) FOS Features 

“In this model, the statistics of first order describing the distribution of the gray-

level image (histogram) are used. These characteristics are obtained from a normalised 

image histogram. Assuming pixel values of the image to be random variables that can 

take discrete values 𝑖 = 0,1, … 𝑁𝑔 − 1 where, 𝑁𝑔 is the number of gray levels, the 

normalized histogram is defined as: 

                      𝑝(𝑖) =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑤𝑖𝑡ℎ 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑖

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠
       𝑤ℎ𝑒𝑟𝑒,

= 0, 1, … 𝑁𝑔

− 1                                                                                                              (3.20) 

  

For characterising the image's texture, key moments derived from the histogram are 

used. Based on the grey value of pixels in the image, the following statistical features 

are calculated: mean value, variance, skewness and Kurtosis [154]. 

(a) Mean (MENF or µ): Mean provides the measure of average intensity level of 

image. 

        𝜇 =  ∑ 𝑖𝑝(𝑖)                                                            (3.21)

𝑁𝑔−1

𝑖=0

 

(b) Skewness (SKWF or μ3): Skewness is a measure of lack of symmetry in the 

histogram.  

 𝜇3 =  𝜎−3 ∑ (𝑖 − 𝜇)3𝑝(𝑖)

𝑁𝑔−1

𝑖=0

                                     (3.22) 

(c) Kurtosis (KRTF or µ4): Kurtosis is variability of grey level intensity around the 

mean value. 

𝐾𝑅𝑇𝐹 =   𝜇4 = 𝜎−4 ∑ (𝑖 − 𝜇)4𝑝(𝑖) − 3

𝑁𝑔−1

𝑖=0

                                      (3.23) 

The constant value 3 is used in equation 2.27 to normalize 𝜇4  to 0 for Gaussian shaped 

histogram.”
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Table 3.7: Feature values of Region of Interest obtained by FoS Model for Fatty Liver Ultrasound Images 

Image F20 F21 F22 F23 

ROI 1 119.7256 197.7969 -0.0755 2.2735 

ROI 2 121.2811 110.7288 0.2145 3.0158 

ROI 3 99.4000 93.3511 0.5310 3.5198 

ROI 4 103.1711 103.2641 -0.0143 2.8543 

ROI 5 103.6778 47.1895 -0.3827 2.9529 

ROI 6 148.8867 111.9760 0.0672 2.5750 

ROI 7 110.6178 117.4383 0.1531 2.8682 

ROI 8 112.1944 329.4722 0.1870 2.1612 

ROI 9 105.3222 28.3828 -0.1623 3.7349 

ROI 10 133.8322 65.7419 0.4326 2.9584 

 

Table 3.8: Feature values of Region of Interest obtained by FoS Model for Normal Liver Ultrasound Images 

Image F20 F21 F22 F23 

ROI 11 99.2733 177.5631 0.2771 2.8682 

ROI 12 75.3122 371.6925 0.4482 2.9307 

ROI 13 63.4444 128.5825 0.0250 2.5583 

ROI 14 56.0133 159.6465 0.4024 2.8474 

ROI 15 64.2789 109.3656 0.6664 3.6631 

ROI 16 30.6533 34.7732 0.1180 3.3407 

ROI 17 44.4144 99.4382 0.7437 4.2553 

ROI 18 28.5589 42.9799 0.5244 3.5160 

ROI 19 43.8089 85.3057 0.5131 2.7458 

ROI 20 52.7467 95.9914 0.3079 2.9827 
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(iv)  Laws’ TEM Features  

“Another approach to texture quantification that uses convolution with different 

filters is based on the masks of the Laws [121]. These are constructed using three simple 

vectors in one dimension, corresponding to centre-weighted local average, Edge 

detection with first symmetric differentiation, and Spot detection with second 

differentiation. These steps are measured first by adding small kernels of convolution 

to a digital image and then performing a nonlinear windowing operation. 

𝐿5 = [    1        4        6         4            1]                                      (3.24) 

𝐸5 = [ −1    − 2       0          2           1]                                     (3.25) 

𝑆5 = [ −1         0        2          0     − 1]                                     (3.26) 

9 distinct two-dimensional kernels are obtained from these one-dimensional 

convolution kernels by combining a vertical 1-d kernel with a horizontal 1-d kernel. A 

list of all names for the 5x5 kernels is given below: 

                     L5L5       E5L5      S5L5                                          

                                          L5E5       E5E5      S5E5                                                               

                                          L5S5        E5S5      S5S5                                                               

Subsequently, the texture energy measures are computed by applying 

convolution kernels: The digital image (or regions) of size 𝑁 rows and 𝑀 columns is 

convoluted with each of these 9 kernels. The result is a set of 9 𝑁x 𝑀 grayscale images. 

The windowing operation is performed in a local neighborhood as follows: 

𝑁𝐸𝑊(𝑥, 𝑦) =  ∑ ∑ |𝑂𝐿𝐷(𝑥 + 𝑖, 𝑦 + 𝑗|                       (3.27)

7

𝑗=−7

7

𝑖=−7

 

All convolution kernels except L5L5 are zero-mean. Thus, L5L5T  is used as 

normalizing image. Normalizing any TEM image pixel-by-pixel with the L5L5T  image 

will normalize that feature for contrast. After the normalization L5L5T image is 

discarded. The similar features in vertical and horizontal directions can be combined to 

create rotation invariant features. The following 6 TEM features are used in this study: 

LL Texture Energy from L5*L5 kernel; EE Texture energy from E5*E5 kernel, SS 

Texture energy from S5*S5 kernel, LE average texture energy from L5*E5 and E5*L5 

kernels, ES average texture energy from E5*S5 and S5*E5 kernels, and LS average 
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texture energy from L5*S5 and S5*L5 kernels. When the image is transformed with 

the masks of Laws, metrics which quantify the texture of a region of interest are 

obtained from the filtered image by computing statistics. Usually these measurements 

are the sum of the absolute or squared pixel values determined by the number of pixels 

thus called energy measures.” 

(v) FPS Features 

“This texture model includes details about the image's texture orientation, grain 

size and texture contrast. The Discrete Fourier Transform (DFT) method is used here 

for texture quantification because it is difficult to explain repetitive global patterns with 

spatial techniques but relatively easy to represent with peaks in the spectrum [155]. To 

define texture, the DFT's Radial sum and Angular sum were computed. The FPS 

functions in the frequency domain are determined from the power spectrum. 

|𝐹(𝑢, 𝑣)|2 = 𝐹(𝑢, 𝑣)𝐹∗(𝑢, 𝑣)                                                 (3.28) 

where, 𝐹(𝑢, 𝑣) is the Fourier transform of the image and 𝐹∗(𝑢, 𝑣) is the complex 

conjugate of Fourier transform of the image. 

Spectral features are expressed in polar coordinates to yield a function 𝑆(𝑟, 𝜃). 

For each direction 𝜃, 𝑆(𝑟, 𝜃) can be expressed as 𝑆𝜃(𝑟) and similarly for each frequency 

𝑟, 𝑆(𝑟, 𝜃) can be expressed as 𝑆𝑟(𝜃). Analyzing 𝑆𝜃(𝑟) for a fixed value of 𝜃 gives the 

behavior of spectrum along a radial direction from the origin and is called wedge 

analysis whereas analyzing 𝑆𝑟(𝜃) for a fixed value of 𝑟 gives the behavior of spectrum 

along a circle centered on the origin and is called ring analysis. A global interpretation 

is obtained by summing over discrete variables: 

𝑆𝜃 = ∑ 𝑆𝜃(𝑟)

𝜋

𝜃=0

                                                                      (3.29) 

and 

𝑆𝑟 = ∑ 𝑆𝑟(𝜃)

𝑅0

𝑟=1

                                                                      (3.30) 

where,  𝑅0 is the radius of circle centered at origin. In this texture model, two features: 

𝑆𝑟 and 𝑆𝜃 are calculated and these are measure of the orientation of the texture.”
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Table 3.9: Feature values of Region of Interest obtained by Law’s TEM Model for Fatty Liver Ultrasound Images 

Image F28 F29 F30 F31 F32 F33 F34 F35 F36 F37 F38 F39 F40 F41 

ROI 1 0.8484 1.0119 1.0456 1.0790 1.0866 0.9830 0.9194 0.8681 0.9277 1.0648 1.2480 1.0367 1.1036 1.1165 

ROI 2 1.0030 1.0352 1.0604 1.1555 0.9817 1.0846 0.8560 0.7560 1.0713 1.0459 1.1486 0.9297 1.1006 1.0646 

ROI 3 1.2011 1.2611 1.1073 0.9035 0.8345 1.0053 1.1491 1.1742 1.1136 1.0253 0.9936 1.1211 1.0216 1.0451 

ROI 4 1.0554 0.7860 1.0115 0.7187 0.8981 0.8867 0.8748 1.0130 0.8567 0.8460 0.9453 0.8649 1.0746 0.9555 

ROI 5 1.3267 1.1514 1.2012 1.2934 1.0586 1.0448 0.8482 0.9748 1.1840 0.9511 1.0090 1.1026 1.0988 1.1374 

ROI 6 0.9881 1.0399 1.0601 0.7887 1.1825 1.0668 0.8752 0.8587 0.9238 0.9956 0.8878 0.9294 1.0091 1.0672 

ROI 7 0.9503 0.6517 1.0665 1.0301 0.8796 0.7117 0.9429 0.7479 0.6509 0.7251 0.6810 0.7931 0.7948 0.9308 

ROI 8 0.5127 0.8832 0.8699 1.1143 0.9059 0.8190 0.7426 0.9197 0.7902 0.8796 0.8266 1.0080 0.8221 0.9403 

ROI 9 0.6560 0.9244 0.6860 0.8610 0.6238 0.7208 0.8951 0.9900 0.9085 0.9046 0.8862 0.7409 0.7567 0.8890 

ROI 10 1.0833 1.1872 1.1093 1.1041 0.9797 0.9692 0.9520 0.8979 1.0644 1.0159 0.9672 1.1479 1.1336 1.0553 

 

Table 3.10: Feature values of Region of Interest obtained by Law’s TEM Model for Normal Liver Ultrasound Images 

Image F28 F29 F30 F31 F32 F33 F34 F35 F36 F37 F38 F39 F40 F41 

ROI 11 1.1442 1.1129 0.9634 0.7693 1.1542 0.9815 0.9613 1.0986 1.0025 1.0093 1.1245 1.0827 1.0628 0.9628 

ROI 12 1.0249 0.9309 0.8915 1.0455 1.3023 1.1209 0.9592 0.8166 1.0105 0.7902 0.7437 0.9452 0.8685 0.9683 

ROI 13 0.6902 0.9760 1.0223 0.8098 0.8889 0.8952 0.7929 0.8867 0.7178 0.7199 0.6948 0.9309 0.8232 0.7967 

ROI 14 0.6586 0.8527 1.0151 0.9367 0.9807 1.0451 1.0525 0.9465 0.7827 0.9330 1.0168 0.8607 0.9596 1.0348 

ROI 15 0.9749 0.9731 0.9613 0.9147 0.9884 1.1141 1.1851 1.2335 0.8934 0.9098 0.8961 0.9377 0.8850 1.0266 

ROI 16 0.7340 0.7449 0.6774 0.5920 1.0179 1.0993 1.0552 0.8016 0.8192 0.8092 0.7585 0.6190 0.6982 0.7657 

ROI 17 1.0840 0.8042 0.9218 0.9477 0.9966 0.7525 0.9003 0.9796 0.7143 1.0107 1.0565 1.1344 0.9225 0.9224 

ROI 18 0.8015 0.5986 0.7255 0.6169 0.8718 1.0174 1.0300 0.9234 0.9339 0.9621 0.9749 0.8838 0.8172 0.6401 

ROI 19 1.1115 1.0064 0.9853 0.7783 1.2463 1.1562 1.2613 1.1572 1.0453 0.9668 0.9299 0.9695 1.0371 1.0038 

ROI 20 0.5498 0.8324 0.9488 1.1073 0.8456 0.9589 1.0046 0.9993 0.9118 0.8674 0.7697 0.8819 0.8718 1.0178 
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Table 3.11: Feature values of Region of Interest obtained by FPS Model for Fatty Liver Ultrasound Images 

Image F44 F45 

ROI 1 877104.06 20531396.00 

ROI 2 703251.25 20504478.00 

ROI 3 799946.25 16935822.00 

ROI 4 616353.25 17576676.00 

ROI 5 476110.06 17400360.00 

ROI 6 865238.75 24929916.00 

ROI 7 905153.56 18833874.00 

ROI 8 850841.38 19445278.00 

ROI 9 488563.44 17492136.00 

ROI 10 598449.50 22396142.00 

 

Table 3.12: Feature values of Region of Interest obtained by FPS Model for Normal Liver Ultrasound Images 

Image F44 F45 

ROI 11 844629.13 17257552.00 

ROI 12 1147602.63 13758881.00 

ROI 13 676986.00 11229438.00 

ROI 14 828404.81 10202119.00 

ROI 15 734314.38 11344594.00 

ROI 16 386824.66 5482707.00 

ROI 17 702693.19 8042051.00 

ROI 18 459252.56 5190159.00 

ROI 19 590917.81 7920410.50 

ROI 20 739893.69 9291179.00 

 



61 

 

(vi) SFM Features 

“The SFM tests the statistical properties of pixel pairs within an image at different 

distances which are used for statistical analysis. The texture features such as Coarseness, 

Contrast, Periodicity, and Roughness are measured based on the SFM [122]. In this model a 

matrix M𝑠𝑓𝑚 of size (𝐿𝑟 + 1) x (2𝐿𝑐 + 1) is constructed whose (𝑖, 𝑗) element is the 

𝑑 statistical feature of the image, where 𝑑 = (𝑗 − 𝐿𝑐, 𝑖) is an intersample spacing distance 

vector for 𝑖 = 0,1, … … . . , 𝐿𝑟 and 𝑗 = 0,1, … … .2𝐿𝑐 and 𝐿𝑟 and 𝐿𝑐 are the constants which 

determine the maximum inter-sample spacing distance. In this method, two such matrices 

constructed are the contrast matrix (M𝑐𝑜𝑛) and the dissimilarity matrix (M𝑑𝑠𝑠) whose (𝑖, 𝑗) 

elements are ‘change in contrast’ and ‘change in dissimilarity’ respectively. 

A 𝛿 statistical feature is the statistical feature of an image 𝐼 with inter-sample spacing 

distance vector  𝛿 = (∆𝑥, ∆𝑦).  𝛿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 and 𝛿𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 are defined as: 

𝛿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡: 𝐶𝑂𝑁(𝛿) ≡ 𝐸{[𝐼(𝑥, 𝑦) − 𝐼(𝑥 + ∆𝑥, 𝑦 + ∆𝑦)]2}                 (3.31) 

𝛿𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦:  𝐷𝑆𝑆(𝛿) ≡ 𝐸{|𝐼(𝑥, 𝑦) − 𝐼(𝑥 + ∆𝑥, 𝑦 + ∆𝑦)|}           (3.32) 

       where, 𝐸{∙} denotes the expectation operation.  

The four texture features extracted from image are: 

(a) Coarseness (CRCC): It is a measure of the ‘size’ of primitives. It represents 

occurrence of similar grey levels in a given area. 

𝐶𝑅𝑆𝑆 = 𝑐/𝑚𝑐𝑟𝑠                                                                               (3.33) 

where 𝑐 is a normalizing factor and c = 100 and 𝑚𝑐𝑟𝑠 is the mean of all elements of 

the matrix M𝑑𝑠𝑠 

𝑚𝑐𝑟𝑠 = ∑ 𝐷𝑆𝑆(𝑖, 𝑗) 𝑛⁄

 

(𝑖,𝑗)∈𝑁𝑟

                                                   (3.34) 

where Nr  is the set of displacement vectors and n is the number of elements in the 

matrix Mdss. 

(b) Contrast (CNTS): It is a measure of difference in the grey level intensities for a 

specified neighborhood. 
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𝐶𝑁𝑇𝑆 = [ ∑ 𝐶𝑂𝑁(𝑖, 𝑗) 4⁄

(𝑖,𝑗)∈𝑁𝑟

]

1 2⁄

                                          (3.35) 

(c) Periodicity (PER): The feature is a measure of the repetition of a specific pattern 

in the image. 

𝑃𝐸𝑅 =
𝑀̅𝑑𝑠𝑠 − 𝑀𝑑𝑠𝑠

𝑀̅𝑑𝑠𝑠

                                                         (3.36) 

where M̅dss is the mean of all elements of  Mdss and Mdss  is the deepest valley in 

the matrix.  

(d) Roughness (RGH):  It measures the dissimilarity between the neighboring pixels      

                         𝑅𝐺𝐻 = (𝐷𝑓
(ℎ)

+ 𝐷𝑓
(𝑣)

) 2                                                        (3.37)⁄  

where Df
(h) and Df

(v) are the estimated fractal dimensions in the horizontal and vertical 

directions by considering the displacement vector of the forms (∆x, 0) and 

 (0, ∆y)  respectively.   𝐷𝑓  is obtained from the equation: 

𝐷𝑓 = 3 − 𝐻                                                             (3.38) 

and H can be evaluated from the dissimilarity matrix since the    (𝑖, 𝑗 + 𝐿𝑐)   element of 

the dissimilarity matrix is    𝐸{|∆𝐼|} with 𝛿 = (𝑗, 𝑖). 𝐻 and 𝐸{|∆𝐼|}  are related as:  

𝐸{|∆𝐼|} = 𝐶||𝛿||𝐻                                                          (3.39) 

Thus, first of all 𝐻  is estimated separately for horizontal and vertical directions from 

dissimilarity matrix as per equation (2.43) by considering displacements of 

(∆x, 0) and (0, ∆y) respectively. Then 𝐷𝑓
(ℎ)

 and 𝐷𝑓
(𝑣)

are evaluated according to 

equation (2.42) and finally roughness is calculated according to equation. 

In this thesis work SFM features are calculated for 𝐿𝑟 = 4 and 𝐿𝑐 = 4.” 

(vii) Fractal Features  

“The Hurst coefficients (H(k)) are calculated for different image resolutions, where a 

smooth texture surface is represented by a large value of parameter H(k), while a rough 

texture surface is indicated by the lower value [120]. 
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In this model, hurst coefficient is calculated at two image resolutions: Original image 

of size NxM; termed as H1and original image scaled by a factor of 1⁄2 and of size N⁄2 

x M/2; termed as H2. 

For a given image 𝐼 Hurst coefficient 𝐻 is estimated from the relationship: 

𝐸(|∆𝐼|) = 𝑘(∆𝑟)𝐻                                                                   (3.40) 

where, 𝐸(∙) denotes the expectation operator, ∆𝐼 ≡ 𝐼(𝑥2, 𝑦2) − 𝐼(𝑥1, 𝑦1), 

∆𝑟 ≡ ‖(𝑥2, 𝑦2) − (𝑥1, 𝑦1)‖ is the spatial distance and  𝑘 = 𝐸(|∆𝐼|)∆𝑟=1 

Hurst coefficients for the two resolutions are evaluated from equation (3.41) as the 

texture features.” 

                       log 𝐸(|∆𝐼|) = log 𝑘 + 𝐻 log(∆𝑟)                                               (3.41) 

 

 

 



64 

 

Table 3.13: Feature values of Region of Interest obtained by SFM Model for Fatty Liver Ultrasound Images 

Image F24 F25 F26 F27 

ROI 1 29.0379 19.9756 0.6082 2.5488 

ROI 2 27.1024 20.4235 0.6567 2.3724 

ROI 3 24.7214 21.4303 0.7306 2.3371 

ROI 4 31.7511 18.7044 0.6398 2.4361 

ROI 5 49.6692 12.7042 0.5473 2.4754 

ROI 6 19.0376 24.8473 0.6648 2.3931 

ROI 7 18.7656 25.0191 0.5945 2.3963 

ROI 8 54.8398 13.4467 0.6420 2.6128 

ROI 9 42.2134 14.6586 0.6405 2.4355 

ROI 10 33.9778 17.5713 0.6391 2.4693 

 

Table 3.14: Feature values of Region of Interest obtained by SFM Model for Normal Liver Ultrasound Images 

Image F24 F25 F26 F27 

ROI 11 25.9393 21.2929 0.5799 2.5039 

ROI 12 13.5109 27.8508 0.7380 2.2725 

ROI 13 37.2484 16.9168 0.7568 2.4153 

ROI 14 23.5672 22.0033 0.6931 2.3357 

ROI 15 20.5469 23.9247 0.6292 2.3281 

ROI 16 43.3335 14.3528 0.6479 2.3322 

ROI 17 20.8680 23.4555 0.6839 2.2671 

ROI 18 37.3123 16.1793 0.6492 2.2799 

ROI 19 38.7623 16.2259 0.6623 2.3483 

ROI 20 22.4244 22.5875 0.7142 2.2444 
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Table 3.15: Feature values of Region of Interest obtained by Fractal Model for Fatty Liver Ultrasound Images 

Image F42 F43 

ROI 1 0.4126 0.1672 

ROI 2 0.5548 0.3277 

ROI 3 0.5912 0.3583 

ROI 4 0.5271 0.1475 

ROI 5 0.4334 0.2395 

ROI 6 0.5543 0.3709 

ROI 7 0.5591 0.3926 

ROI 8 0.3101 -0.3383 

ROI 9 0.5336 0.3299 

ROI 10 0.4787 0.2569 

 

Table 3.16: Feature values of Region of Interest obtained by Fractal Model for Normal Liver Ultrasound Images 

Image F42 F43 

ROI 11 0.4429 0.1543 

ROI 12 0.6435 0.5150 

ROI 13 0.5276 0.1844 

ROI 14 0.5966 0.3822 

ROI 15 0.6189 0.4217 

ROI 16 0.6044 0.3490 

ROI 17 0.6575 0.5605 

ROI 18 0.6301 0.4397 

ROI 19 0.5890 0.2327 

ROI 20 0.6549 0.4747 
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3.2.5 Principal Component Analysis 

Dimensionality reduction decreases the model’s complexity and prevents 

overfitting. There are two methods to reduce the dimensionality. One is feature 

selection in which highly discriminating features are selected from the initial feature 

vector on the basis of some algorithm. The other method is feature transformation in 

which the initial extracted feature set is transformed into some another subspace that is 

used for classification purpose. In the literature, the PCA algorithm is widely used to 

compress a dataset into a smaller dimensional space to preserve most of the data 

concerned. 

“PCA operates on a condition that, while data in a higher-dimensional space is mapped 

to data in a lower-dimensional space, there should be a maximum variance or distribution of 

data in the lower-dimensional space [156]”. 

The function of PCA is based on the full variance or distribution of data in the 

lower dimension space while the data in a higher dimension space is compared to data 

in a lower measured space in view of the restriction that new axes are orthogonal to 

each other, the orthogonal axes (main elements) of the new subspaces can be interpreted 

as directions of maximum variance as shown in this figure: 

 

Figure 3.4: Directions of Maximum Variance 

In the above diagram, the original function axes are x1 and x2, and the key 

components are PC1 and PC2. 
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“If we use PCA to minimise dimensionality, we construct a d x k – dimensional 

transformation matrix W that allows us to map a sample vector x to a new k – 

dimensional subspace with less dimensions than the original d – dimensional function 

space: 

As a result of translating the original d-dimensional data into this new k-

dimensional subspace (typically k [d]), the first main component will have the greatest 

possible variance and all consequent main components will have the greatest variance 

provided that these components are uncorrelated (orthogonal) to the other main 

components — even though the input features are co-related. Figure 3.5 describes steps 

taken in the proposed study.” 

Algorithm: 

1. Standardized dataset of d-dimensions. 

2. Create the covariance matrix. 

3. Decompose the covariance matrix into its eigenvalues and eigenvectors. 

4. Sort your own values to define the corresponding vectors by decreasing order. 

5. Choose k eigenvectors that match the k 's largest eigen values, where k is the 

dimension of the new subspace function. 

6. Create the projection matrix W from top k eigenvectors 

7. To obtain the new k-dimensional feature subspace, transform the d-

dimensional data set X using the projection matrix W. 

3.2.6 Classification with Decision Tree Classifier 

Decision tree classifiers have an accurate, readable classification model in several 

different application contexts [36, 158]. By constructing a decision tree, the Decision 

Tree Classifier tree node sets a test in an attribute, and any branch that falls out of that 

node corresponds to one of the possible attribute values. Leaf is associated with class 

labels of the case. The training collection shall be graded according to the results of the 

track tests, by sailing from the root of the tree to a leaf. 

Each node divides the instance space into two or more sub-spaces according to 

the test condition of an attribute starting from the tree root node. Then a new node will 

be generated as you travel down the tree branch that is the attribute value. This process 
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is repeated until all records in the training set are listed for the subtree rooted in the new 

node. The decision tree building method typically operates top-down by selecting a test 

status at each stage to better divide the records. 

Standardize the dataset

Construction of Covariance Matrix

Decompose the matrix of covariances into its 

eigenvectors and eigenvalues

Sort the eigenvalues by decreasing order to rank 

the corresponding eigenvectors

Select k eigenvectors corresponding to the 

highest k eigenvalues

Construct a projection matrix 

Use projection matrix to transform the input 

dataset

New feature subspace

 

Figure 3.5: Steps performed in Principal Component Analysis 
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3.3 Proposed Method II 

(Based on K-Nearest Neighbors’ Algorithm) 

 

Parameter Settings for K-NN Classifier

Liver Ultrasound Dataset

Normal Images –   

Fatty Images - 45

Region of Interest 

Extraction

30×30 pixels size

Extraction of Texture 

Features

Using seven texture models

Classification with k-NN 

Classifier

Performance Evaluation

Fatty and Normal Liver Images

Preset - Medium KNN

No. of Neighbours - Different values have been set 

Distance Metric - City Block

Distance Weight - Squared Inverse

Standardized Data - Yes

Feature Selection - All features used

Evaluation of Distance 

Metrics
City block, Euclidean, 

Chebychev Minkowski, 

Mahalanobis, Cosine, 

Correlation Spearman, 

Hamming, Jaccard

 

Figure 3.6: Flowchart of proposed methodology used in Proposed Method II 

The main aim of this work is to identify a subset of features that improves the 

model performance and enhances the semantic interpretability.  

See Figure 3.6 for the flowchart of the proposed technique. The proposed 

technique consists of various steps such as extraction of the ROI, extraction of the 

Texture Feature, selection of features and classification. 

3.3.1 Extraction of Region of Interest and Features 

In the proposed method, for ROI Extraction the similar process as mentioned in 

proposed method I has been used. The ROI’s of size 30 × 30 pixels are extracted from 

the Liver Ultrasound dataset. Texture analysis is a significant and valuable area of study 

in many computer imaging and machine vision applications. The tonal variations make 

the fatty liver and normal image different. Over the last few years, the researchers have 

suggested several models for texture analysis. We can categorize these models into 
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structural, statistical, model-based and transform-based models. Each model visualizes 

texture in a different way and it is always a challenging task to determine the optimal 

texture model for liver tissue classification. Various texture models like “Haralick's 

Spatial Gray Level Co-occurrence Matrix (SGLCM), First-order Statistics (FoS), 

Statistical Feature Matrix (SFM), Gray Level Difference Statistics (GLDS), Fourier 

Power Spectrum (FPS), Law Texture Energy Measures (TEM), Fractal” were used in 

the proposed work to extract the features from ROI. 

The details of these texture models are given in section 3.2.3. The extracted 

features using different texture models are given in Table 3.1. 

Proposed Algorithm 

Input: Liver Ultrasound Image 

Output: Class of Image (Normal/Fatty) 

1. For each image I in N, obtain      
ii) ri = Extract 30×30 pixels ROI from I 

iii) R = R U ri, where 

R is a set of all extracted 30×30 pixels ROI, 

N is the total no of images. 

2. For each ri in R, Obtain 

(viii) F1-14=Extract GLCM based Haralick Features 

(ix) F15-19=Extract GLDS Features 

(x) F20-23=Extract FoS Features 

(xi) F24-27=Extract SFM Features 

(xii) F28-41=Extract Law’s TEM Features 

(xiii) F42-43=Extract Fractal Features 

(xiv) F44-45=Extract FPS Features 

3. S= {F1-14 U F15-19 U F20-23 U F24-27 U F28-41 U F42-43 U F44-45} 

4. For each ri in R 

(viii) Apply kNN based Classification using S. 

(ix) Evaluate different values of k. 

(x) Evaluate different similarity metrics 

5. End 
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3.3.2 Classification with K-Nearest Neighbour Classifier  

Given two classes: Fatty and Normal, a feature vector ‘x’ of liver ultrasound 

image whose class label is unknown. The main task is to classify ‘x’ in one of the two 

classes given above. In order to classify the feature vectors of testing data, K-Nearest 

Neighbor (k-NN) classifier [159] is used. The algorithm is given below: 

k-NN Algorithm 

1. Among the 𝑁 training points, search for the K nearest 

neighbours closest to 𝑥 using a distance measure. The 

parameter 𝑘 is user defined. For two class problem k should 

be odd. 

2. Out of the 𝑘 closest neighbours, identify the number 𝑘𝑖 of 

the points that belongs to class 𝑤𝑖. Obviously, 

∑ 𝑘𝑖

𝑐

𝑖=1

= 𝑘 

3. Assign 𝑥 to class 𝑤𝑖, for which 𝑘𝑖 > 𝑘𝑗 , 𝑗 ≠ 1. In other words, 

𝑥 is assigned to the class in which the majority of the 𝑘-

closest neighbors belong. 

4. End 

 

The key advantage of the k-NN classifier is its simplicity, lack of parameter 

assumptions and intuitive existence (i.e. it is presumed that new samples belong to the 

same class as the training samples in the feature space that are nearest to them). As a 

classifier, k-NN is used as the simplest and most commonly used machine learning 

algorithm. 

  Suppose we are given 𝑐 classes, 𝑤𝑖 , 𝑖 = 1,2,3, … 𝑐,  and a point 𝑥 ∈ 𝑅𝑙, and 𝑁 

Training points, 𝑥𝑖 , 𝑖 = 1,2,3, … , 𝑁, in the 𝑙-dimensional space, with the corresponding 

class labels. Given a point, 𝑥, whose class label is unknown, the task is to classify 𝑥 in 

one of the 𝑐 classes.  

Further in this work, different distance metrics have been used.  
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“One of the simplest and most common classifications is the K-Nearest 

Neighbour (K-NN) classification [160-161]. Its quality however competes with the 

most complex literature classifiers. The centre of this classifier is largely based on 

calculating the difference or similarity between the examples tested and the examples 

of the training. The question arises as to the distance metric should be used for the KNN 

classifier from a great number of available distance and similarity measures?” 

In KNN classifier, different methods are used to classify the distances between 

the test sample and the training data samples. Distance measurements therefore play a 

crucial role in deciding the final performance for the classification. Very few studies 

explored the impact of various distance metrics on KNN 's results, which used a limited 

number of distances. Such experimental shortage does not prove which distance to use 

with the KNN classifier is better.  

‘Best distance metric’ is the one that gives best performance of the KNN in terms 

of overall accuracy [162]. In this thesis work, 10 different distance metrics available in 

the literature have been explored. The details of the distance metrics used are given in 

Table 3.2. 

Table 3.17: Distance Metrics used in the Proposed Method II 

Sr. No. Distance Metric Used 

1 City block 

2 Euclidean 

3 Chebychev  

4 Minkowski 

5 Mahalanobis 

6 Cosine 

7 Correlation  

8 Spearman 

9 Hamming  

10 Jaccard 
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3.4 Proposed Method III 

(Based on a two-layer feedforward Neural Network) 

 

Using seven different Texture 

Models

Dataset Division

Image Dataset

ROI Extraction

Feature Extraction

Creation of two-layer 

feedforward Neural 

Network

Performance Evaluation

Fatty and Normal Liver Images

30×30 pixels 

size from full 

ultrasound 

image

SGLCM, GLDS, FoS, SFM, Law s 

TEM, Fractal and FPS 

Total 90 Images of Normal and Fatty Liver

Training 50%

Validation 15%

Testing 35%

 

 

Figure 3.7: Steps carried out in Proposed Method III 

3.4.1 ROI Extraction and Feature Extraction 

In the proposed method, for ROI Extraction the similar process as mentioned in 

proposed method I has been used. Size 30×30-pixel ROIs are derived from the dataset 

of Liver Ultrasound. Texture features are extracted using different texture models such 

as “Haralick's Spatial Gray Level Co-occurrence Matrix (SGLCM), Gray Level 

Difference Statistics (GLDS), First-order Statistics (FoS), Law's Texture Energy 

Measures (TEM), Fourier Power Spectrum (FPS), Statistical Feature Matrix (SFM), 

and fractal features” are extracted from each ROI selected from the entire ultrasound 

picture. Figure 3.7 indicates the measures carried out in the Proposed Method III. 

The details of these texture models are given in section 3.2.3. The extracted 

features using different texture models are given in Table 3.1. 
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3.4.2 Creation of two-layer feedforward neural network 

A two-layer feedforward neural network [163-165] was modelled in the Proposed 

Method III. For the creation of a neural network classification system a three-stage 

(training – validation – test) approach is used. Sigmoid transfer function was used in 

the hidden layer of the neural network and a SoftMax transfer function was used as a 

standard network for the classification of liver ultrasound images in the output layer. 

The value of the hidden neurons is set as 10 for conducting the experiments. Since the 

number of categories to be listed in is two, the output neuron value is set as 2. 

(i)  Division of Dataset 

A total of 90 images are randomly divided into Training, Validation and Testing. 

Training data set is the data set that has been provided to the network for the training 

purpose and accordingly network is adjusted on the basis of its error rate [166]. 

Validation data set is basically used to measure the generalization capability of network 

and further to halt the process of training when there is no improvement in the 

generalization. Testing data set is independent of the training data set and validation 

data set that has no effect on training. This data set is used to measure the network 

performance after training. 

In the proposed work, the neural network has been trained with scaled conjugate 

gradient backpropagation. As the cross-entropy error of the validation sample increases 

that shows the generalization has stopped improving and ultimately training stops. 

(ii) Training of designed network 

In the proposed work, the neural network has been trained with scaled conjugate 

gradient backpropagation. As the cross-entropy error of the validation sample increases 

that shows the generalization has stopped improving and ultimately training stops. 

Figure 3.8 shows the neural network has been trained with scaled conjugate gradient 

backpropagation.  
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Figure 3.8: Training of Designed Neural Network 

 

3.5 Proposed Method IV 

(Based on Sequential Minimal Optimization and Mutual Information 

Feature Selection) 

It is clear from the literature that many researchers have done work on the 

classification of fatty and normal liver ultrasound images and to the best of author's 

knowledge, very less work is done on feature selection techniques in this domain. 

Furthermore, the researchers have focused more upon the accuracy rate instead of Miss 

Rate. But it is well known that classifying fatty liver as normal is more harmful than 

classifying normal liver as fatty. With regard to this, in this thesis, we have worked 

upon above issues deeply. Figure 3.9 shows the flowchart of Proposed Method IV. The 

proposed method consists of various steps like ROI Extraction, Feature Extraction, 



76 

 

Feature Selection and Classification. The details of these steps are mentioned in 

subsequent sections. 

 

 

 

Figure 3.9: Flowchart depicting the working of Proposed Method IV 

 



77 

 

3.5.1 ROI Extraction 

In medical image processing, to identify the ultrasound image characteristics 

quantitatively, a “Region of Interest” (ROI) is extracted. ROI is a selected significant part 

of an image which represent the whole image and also helps the users to avoid 

unnecessary calculations. Different authors have used different ROI sizes in their 

research work but for reliable statistics, a 30 × 30 fixed square size ROI (900 pixels) [21] 

is selected by the experienced radiologists from each image in the present research work. 

The sample ROIs contain tissue pattern only. The ROI size (30 × 30 pixels) of an image 

is chosen diagonally to avoid effect of liver glycogen, fat, blood vessels and water 

storage. 

3.5.2 Texture Feature Extraction 

 The next step in the present methodology is to extract texture features from ROI 

selected from each ultrasound liver image in the database. As per the literature survey 

done by authors, various texture feature extraction models have been extensively 

explored in medical applications, which extract different features from an image in 

different ways for different purposes. In [21], seven different texture feature selection 

models i.e. “SGLCM, FPS, GLDS, FoS, SFM, TEM and FF” have been used to extract 

total 35 features. In the present study, same models have been used to extract total 45 

features in order to improve the classifier accuracy of existing CAD systems.  

3.5.3 Feature Selection using Mutual Information (MI) 

 From the past few years, it has been found that data analysis task is one of the major 

difficulties in case of very high dimensional dataset. To overcome this problem, feature 

selection methods are used. Selection is basically an extensive method for identifying the 

best characterizing features. In this work, total 45 texture features are extracted. Out of 

which, the best features are selected by the Mutual Information (MI) method [167], which 

is based on information theory and is used to evaluate the amount of information achieved 

between two random variables. If value of MI is zero, both variables are independent and 

contain no information about each other. As seen from Algorithm 1, this method finds 

out the relevant and redundant features from the dataset, and this subset of features S ∈ 

F produces equal or better classification accuracy as compared to original feature set F. 

In the present work, five different experiments are carried out based on the required 
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number of features (k) to be selected, i.e. 5 best features (k=5), 10 best features (k=10), 

15 best features (k=15), 20 best features (k=20) and in last 45 features all together. 

 Algorithm 1. Mutual Information 

(Initialization) 

1. Set F  set of all image features of dataset D 

2. Set S  empty set 

(Computation of Mutual Information) 

3. For 𝑓𝑖𝜖 F 

           Compute I (𝐶; 𝑓𝑖); 

  where I (𝐶; 𝑓𝑖) = ∑ 𝑃(𝑐; 𝑓𝑖)𝑐 𝜖 𝐶, 𝑓𝑖
log

𝑃(c,𝑓𝑖)

𝑃(𝑐)𝑃(𝑓𝑖)
 

4. Find the feature 𝑓𝑖 that maximizes I (𝐶; 𝑓𝑖) 

            S S  {𝑓𝑖},  F   F/{𝑓𝑖}; 

           Repeat until |S| = k; 

where k is the required no. of features to be selected 

(Output) 

5. Output the set S with the selected features. 

 

3.5.4 Classification with Sequential Minimal Optimization 

For classifying the ultrasound images on the basis of feature selection, different binary 

classifiers i.e. SMO [26], IBk [168], AdaboostM1 [169] and BF Tree [170] are evaluated to 

achieve high recognition rate. In this paper, the binary classification is taken into account 

because ultrasound liver images can be classified either fatty or normal liver. The choice of 

classifier for evaluation purpose is made keeping in view their respective advantages. SMO 

classifier (also known as Support Vector Machine (SVM) classifier) outperforms in high 

dimensional space, avoids local convergence and provides optimal solutions. This classifier 

uses kernel trick and helps in solving the problems of overfitting. On the other hand, IBk works 

as K-Nearest Neighbour (K-NN) classifier which is fast, easy to implement and gives effective 

outcome. The AdaBoost M1 Classifier is a productive classification algorithm with boosting 

features and enhances the characterization rate, whereas BF Tree helps in removing impurity 

and examining new pruning techniques by deciding the quantity of developments. The 

parameter settings for different classification algorithms is done with the help of WEKA [171] 
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tool, to perform extensive experiments for the selection of optimal values of different 

parameters for different classifiers. 

3.6 Conclusion 

 Fatty Liver Disease (FLD) is one of the most critical diseases that should be 

detected and cured at the earlier stage in order to decrease the mortality rate. To identify 

the FLD, ultrasound images have been widely used by the radiologists. However, due to 

poor quality of ultrasound images, they found difficulties in recognizing FLD. To resolve 

this problem, many researchers have developed various Computer Aided Diagnosis 

(CAD) systems for the classification of fatty and normal liver ultrasound images. 

However, the performance of existing CAD systems is not good in terms of sensitivity 

while classifying the FLD. In this chapter, four different methods have been proposed for 

the classification of liver ultrasound images. 
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Chapter-4 

Results and Discussion 

 

4.1 Introduction 

  The findings of the proposed methods are introduced and discussed in this 

chapter with reference to the study purpose, which is the processing and analysis of 

ultrasound images for diagnosis of disease. The main objective of this research work is 

to determine the accuracy of the classification of fatty and normal ultrasound images 

of the liver. As described in Chapter 3, the present work has used seven different texture 

feature extraction models to extract texture features and different classifiers to 

distinguish fatty and normal liver images. In this analysis, different values for 

parameters were set to obtain good results for the classification. To assess efficiency of 

the methods proposed, 5-fold cross-validation has been performed. The exploratory 

results revealed that the methods proposed could be used with higher accuracy to 

distinguish fatty and normal liver ultrasound images.  

4.2 Performance Evaluation of Proposed Method I 

(Based on Decision Tree Classifier with Principal Component Analysis) 

 For evaluating the performance of the proposed method, the extracted 45 featured 

are passed to the Decision Tree Classifier and parameter setting has been done to obtain 

the maximum accuracy.  

Table 4.1 shows the parameter settings done for Decision Tree classifier. The 

preset used is Fine Tree with maximum no. of splits as 100. Further, Gini’s Diversity 

Index has been used as split criteria for evaluating the performance. 

Table 4.1: Parameter Settings for Decision Tree Classifier 

 

Preset Fine Tree 

Max. no. of splits 100 

Surrogate Decision splits  off 

Criterion used for split Gini’s Diversity Index 
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Figure 4.1: Plot of number of observations with Decision Tree classifier 

 

 

Figure 4.2: Positive Predictive Value and False Discovery Rate when Decision Tree 

classifier used 
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Figure 4.3: True Positive Rate and False Negative Rate when Decision Tree classifier 

used 

 

 

Figure 4.4: ROC curve when Decision Tree classifier used 
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From the figure 4.1, it is clearly shown that when extracted forty-five features 

have been passed to Decision Tree classifier with the above parameter settings, then 

classifier is able to make predictions as shown in above Figure 4.1 in terms of TP, TN, 

FP and FN. Figure 4.2 shows Positive Predictive Value and False Discovery Rate when 

Decision Tree classifier has been used. Figure 4.3 presents True Positive Rate (TPR) 

and False Negative Rate (FNR) when Decision Tree classifier has been used. Here, 

TPR refers to the fraction of correctly graded results per true class and the FNR is the 

fraction of erroneously classified results per true class. In the last two columns on the 

right the plot shows summaries per true class. 

The receiver operating characteristic (ROC) curve as shown in Figure 4.4 

showing true and false positive rates. The ROC plot represents true positive vs. false 

positives rate for the already identified trained classifier. The good outcome without 

incorrectly classified points is a right angle to the top left of the curve. A 45-degree line 

depicts a poor outcome and is no better than chance. The Area Under Curve number is 

a measure of classifier's overall efficiency. An overall accuracy of 88.9% has been 

achieved in case of decision tree classifier when all forty-five extracted features have 

been used. The area under ROC curve is found to be 0.90. 

The use of Principal Component Analysis (PCA) has been widely studied in the 

literature for the dimensionality reduction process. Therefore, in the proposed work, 

PCA has been used for projecting original data into a new coordinate space. Principal 

Component Analysis (PCA) was used to lower predictor space dimensionality. In order 

to prevent overfitting issue, dimensionality in classification must be reduced. To 

generate new variables which can be termed as principal components, PCA converts 

predictors linearly to remove redundant measurements. Table 4.2 shows the Parameter 

Settings done for Decision Tree with PCA. While using PCA the explained variance 

has been set to 95%. It has been found from the literature survey, the higher value 

results in overfitting whereas the use of lower value results in removing discriminating 

dimensions.  
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Table 4.2: Parameter Settings for Decision Tree with PCA 

Preset Fine Tree 

Maximum number of splits 100 

Criterion used for splits Gini’s Diversity Index 

Surrogate Decision splits  off 

 

 

 

 

 

 

Figure 4.5: Plot of number of observations when Decision Tree classifier with PCA used 
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Figure 4.6: Positive Predictive Value and False Discovery Rate when Decision Tree 

classifier with PCA used 

 

Figure 4.7: True Positive Rate and False Negative Rate when Decision Tree 

classifier with PCA used 
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Figure 4.8: ROC curve when Decision Tree classifier with PCA used 

 

 

Figure 4.9: Parallel Coordinate Plot 
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In case of PCA, explained variance per component in order is found to be – 

99.9%, 0.1%, 0.0 %, 0.0 %, 0.0 %, 0.0 %, 0.0 %, 0.0 %, 0.0 %, 0.0 %. One component 

was retained during training as the number of components cannot be greater than the 

number of numerical predictors.  

Figure 4.5 shows the observations when Decision Tree classifier with PCA has 

been used. From the figure it is clearly evident that when PCA has been used with 

Decision Tree the model is able to make good predictions in terms of TP and TN. Figure 

4.6 presents Positive Predictive Value and False Discovery Rate when Decision Tree 

classifier with PCA has been used. False discovery rate is found to be 7%, which is less 

than as compared to False Discovery Rate found in the case when Decision Tree 

classifier alone has been used. Figure 4.7 gives True Positive Rate and False Negative 

Rate when Decision Tree classifier with PCA has been used. It is clearly evident from 

the figure that model is able to make good predictions. The Figure 4.8 shows ROC 

curve when Decision Tree classifier with PCA has been used. The area under ROC 

curve is found to be 0.95.  

Figure 4.9 shows parallel coordinate plot. In order to identify the highly 

discriminating features that separates two classes this plot plays a crucial role. Further 

the dashed lines in this plot show misclassified points. 

Table 4.3: Comparison of Accuracy and Area Under ROC for Decision Tree Classifier 

and Decision Tree with PCA 

Classifier Features Used Overall Accuracy Area Under ROC 

Decision Tree All 45 88.9% 0.90 

Decision Tree with PCA PCA 93.3% 0.95 

 

The Table 4.3 clearly shows the comparison of performance of Decision Tree 

Classifier and Decision Tree with PCA. From the experimental results, it has been 

found that Decision Tree with PCA outperforms as compared to Decision Tree. In 

comparison with the basic decision tree algorithm, the proposed results revealed that 

Decision Tree with PCA method not only improves the overall accuracy in predicting 

two classes but also makes the decision tree model simplified. 
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4.3 Performance Evaluation of Proposed Method II 

(Based on K-Nearest Neighbors’ Algorithm) 

In this work the feature vectors consist of all the extracted forty-five features from 

different texture models. These features are used for classification with k-NN classifier. 

Given two classes, a feature vector ‘x’ of liver image whose class label is unknown. 

The main task is to classify ‘x’ in one of the two classes. In order to classify the feature 

vectors of testing data, K-Nearest Neighbour (K-NN) classifier is used. The selection 

of value of k in KNN plays a significant role. In the proposed work, the K-NN algorithm 

has been tested with different values of k and that value of k has been selected for 

further experimentation in which the model is able to make good number of predictions 

with data that the model has not seen before. 

Further in this work an experimental study has been done to evaluate the different 

distance metrics available to evaluate the performance. 

The key advantage of the K-NN classifier is its simplicity, lack of parameter 

assumptions and intuitive existence (i.e. it is presumed that new samples belong to the 

same class as the training samples in the feature space that are nearest to them). Being 

simplest and widely used machine learning algorithm, K-NN is used as a classifier.   

Table 4.4 shows parameter setting done to evaluate the performance. The preset 

used is Medium K-NN. The whole data is standardized to get the best performance. 

Experiments have been performed with different values of K. 

 

Table 4.4: Parameter setting of K-NN Classifier 

Preset Medium KNN 

No. of Neighbours Different values have been set 

Distance Metric  City Block 

Distance Weight Squared Inverse 

Standardized Data Yes 

Feature Selection All features used 
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Table 4.5: Comparison of overall accuracy for different values of K 

Value of k Overall Accuracy 

1 83.3 % 

3 93.3 % 

5 95.6 % 

7 96.7 % 

9 95.6 % 

11 93.3 % 

13 95.6 % 

 

K-NN classification is a nearest-neighbour classification model in which both the 

distance metric and the number of nearest neighbours can be altered. In this thesis work, 

an experimental study has been done to identify the best value K. For this different 

value of K have been used as shown in Table 4.5. From the experimental results it has 

been found that for value of K as 1, an accuracy of 83.3% has been achieved. As the 

value of K is increased to 3, there is sharp increase in the overall accuracy and founds 

to be 93.3%. When value of k is further increased to K=5 an accuracy of 95.6% has 

been achieved. This clearly shows that value of K has significant effect on the 

classification accuracy. Further the value of K is set to 7 and an accuracy of 96.7% has 

been achieved. After that for K=9, 11 and 13, the overall accuracy starts decreasing. 

From the experimental results it has been found that for K=7 the model gave highest 

accuracy. Therefore, in the present work the value of K has been set to 7 for further 

experiments. 
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Figure 4.10: Plot of number of observations with k-NN Classifier 

 

 

Figure 4.11: True Positive Rate and False Negative Rate when k-NN classifier used 
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Figure 4.12: Positive Predictive Value and False Discovery Rate when k-NN Classifier 

used 

 

 

Figure 4.13: ROC curve when k-NN classifier used 
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Figure 4.10 shows the Plot of number of observations with k-NN Classifier has 

been used. Figure 4.11 presents True Positive Rate and False Negative Rate when k-

NN Classifier has been used. Positive Predictive Value and False Discovery Rate are 

shown in Figure 4.12 when k-NN Classifier has been used. ROC curve has been shown 

in Figure 4.13. From the figures it is clearly evident that the proposed method based on 

k-NN classifier gave good results. Area under ROC curve is found to be 0.99 in case 

of k-NN classifier. The Area Under Curve number is a measure of the overall quality 

of the classifier. 

In the next experiment, the performance of different similarity metrics available 

in literature have been evaluated for k-NN Classifier. For carrying out the experiments, 

the value of k is set to 7. Table 4.6 shows the overall accuracy achieved with different 

distance metrics. From the experimental results it has been found that an accuracy of 

96.7% has been achieved with City block distance metric. In case of Euclidean distance, 

the accuracy obtained is 93.3% where as Chebychev distance metric gave an accuracy 

of 75.6%. It is clearly evident from the table that Chebychev, Mahalanobis, Hamming, 

Jaccard distance metric gave an accuracy of less than 80%. The highest accuracy is 

achieved in case of city block distance metric with value of k as 7. The results show 

that city block distance metric is good in finding the distance from each query point to 

every point in X. 

Table 4.6: Comparison of Overall Accuracy with different Distance Metrics 

 

Sr. No. Distance Metric Used Overall Accuracy 

1 City block 96.7 % 

2 Euclidean 93.3 % 

3 Chebychev  75.6 % 

4 Minkowski 93.3 % 

5 Mahalanobis 73. 3 % 

6 Cosine 93.3 % 

7 Correlation  92.2 % 

8 Spearman 92.2 % 

9 Hamming  50. 0 % 

10 Jaccard 50.0 % 
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Figure 4.14:  True Positive Rate and False Negative Rate with Euclidean Distance 

Metric 

 

 

Figure 4.15:  True Positive Rate and False Negative Rate with Chebyshev Distance 

Metric 
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Figure 4.16:  True Positive Rate and False Negative Rate with Minkowski Distance 

Metric 

 

 

Figure 4.17:  True Positive Rate and False Negative Rate with Mahalanobis distance 

Metric 
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Figure 4.18:  True Positive Rate and False Negative Rate with Cosine Distance Metric 

 

 

 

Figure 4.19:  True Positive Rate and False Negative Rate with Correlation Distance 

Metric 
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Figure 4.20:  True Positive Rate and False Negative Rate with Spearman Distance 

Metric 

 

 

Figure 4.21:  True Positive Rate and False Negative Rate with Hamming Distance 

Metric 
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Figure 4.22:  True Positive Rate and False Negative Rate with Jaccard Distance Metric 

Figure 4.14 to Figure 4.22 shows the True Positive Rate and False Negative Rate 

obtained with different distance metrics. 

The experimental results showed that the extracted features are when used with 

KNN Classifier with city block as distance metric and k value as 7 a highest accuracy 

of 96.7% has been achieved. It is also observed that in the implementation of algorithm, 

no additional efforts are required to construct a model and change various specifications 

which makes algorithm easy to apply. 

4.4 Performance Evaluation of Proposed Method III 

(Based on a two-layer feedforward Neural Network) 

A two-layer feedforward neural network has been modelled in the Proposed 

Method III. Sigmoid transfer function was used in the hidden layer of the neural 

network, and a SoftMax transfer function was used in the output layer as a standard 

network for the classification of hepatic ultrasound. The value of the hidden neurons is 

set as 10 for conducting the experiments. As the number of categories into which 

classification has to be done are two so the value of output neurons is set as 2. 
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A total of 90 images are randomly divided into Training, Validation and Testing set as 

shown in Table 4.7. 

 

Table 4.7: Division of dataset into Training, Validation and Testing 

Dataset Percentage (%) Number of Images 

Training 50% 44 

Validation 15% 14 

Testing 35% 32 

Total 90 

 

 

Figure 4.23: Neural Network parametes used and progress of network 

• Training data set is the data set that has been provided to the network for the 

training purpose and accordingly network is adjusted on the basis of its error 

rate. 
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• Validation data set is basically used to measure the generalization capability of 

network and further to halt the process of training when there is no improvement 

in the generalization. 

• Testing data set is independent of the training data set and validation data set 

that has no effect on training. This data set is used to measure the network 

performance after training. 

In the proposed work, the neural network has been trained with scaled conjugate 

gradient backpropagation. As the cross-entropy error of the validation sample increases 

that shows the generalization has stopped improving and ultimately training stops. 

Figure 4.23 shows neural network parameters used and progress of the network. 

           

           

       

 

Figure 4.24: Train Network results Cross Entropy CE and Percent Error % E 

In Figure 4.24, training network results that include Cross Entropy and Percent Error 

are presented. 

Minimizing Cross-Entropy (CE) : The minimum value of cross entropy results in 

good classification that means lower values are preffered. There is no error when the 

value reaches zero. 

Percent Error (%E): This value of percent error reveals the number of samples that 

are misclassified in which the value of 100 indicates maximum misclassifcation and 

value of zero signifies there is no missclassifictaion. 
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Figure 4.25 and Figure 4.26 shows statistics related to training; the figures clearly 

show that we have reached at the bottom of local minima of the goal function. In this 

figure validation fails are the iterations when the value of validation MSE increases. 

Figure 4.27 shows the plot of error histogram. In this figure red bar represents 

testing data, blue bars represent training data and validation data is represented by green 

bar. The above histogram provides the data of outliers that are the data points where fit is 

considerably worse than the most of data. Determination of outliers is found to be a 

god idea as it tells us whether the data is bad or if those data points differ from the rest 

of data. 

 

 

Figure 4.25: Plot validation performance of network 
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Figure 4.26: Plot of training state values 

 

 

Figure 4.27: Plot of error histogram 
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Figure 4.28: Plot of Confusion Matrix 

The above Figure 4.28 clearly shows the confusion matrices that have been 

generated for the training set, validation set, testing set and combined. From the 

experimental results it has been found that the results are good in terms of classification 

as low numbers of incorrect responses are there. In the figure the blue squares show the 

overall accuracies obtained in the proposed method. From the experimental results it 

has been found that an overall accuracy of 96.8% has been achieved for test data with 

very few incorrect classifications. This shows that the proposed method can be used for 

the classification of liver ultrasound images. 
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Figure 4.29 shows plot of ROC curves. In the graphs the coloured lines reflect 

ROC curves. As the threshold varies, “the ROC curve is a plot of the true positive rate 

(sensitivity) versus the false positive rate (1-specificity)”. A perfect exam, with 100 

percent sensitivity and 100 percent accuracy, will show points in the upper-left corner. 

The network performs very well for that issue. 

 

Figure 4.29: Plot of Receiver Operating Characteristic 
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4.5 Performance Evaluation of Proposed Method 4 

(Based on Sequential Minimal Optimization and Mutual Information 

Feature Selection) 

In this work, 45 texture features using different texture models i.e. “SGLCM, 

GLDS, FoS, SFM, Law’s TEM, Fractal and FPS” have been extracted from fixed ROI 

of size 30 × 30 pixels in order to reduce the Miss Rate to a great extent. The process is 

further carried out by MI feature selection method and classification algorithms. The 

performance of 4 classifiers i.e. SMO, IBk, AdaBoostM1 and BF-Tree is evaluated for 

5 different experiments based on different number of selected best features. 

Summarizing the result of all the experiments, SMO is outperforming with accuracy 

rate of 95.55%, miss rate of 2.22% and sensitivity rate of 97.77% on the present dataset 

with 20 best features selected by the MI feature selection technique. 

 The main aim of this research work is to evaluate the classification accuracy of 

fatty and normal images based on different number of best features, taking Miss Rate into 

consideration. The present work has used seven different feature extraction models to 

extract texture features and four different classifiers to classify fatty and normal liver 

images. In this study, different parameter values have been set to obtain good 

classification results. In order to evaluate the performance of the classifier, 5-fold cross-

validation has been performed. The overall process is frequently performed five-times 

that involve every fold being chosen arbitrarily. Mutual Information feature selection 

method has been used for selecting the best features, which gives output on the basis of 

their weight. The obtained observations for 5 different experiments as follow. 

4.5.1 Experiment 1 - Performance Evaluation of 5 Best Features Selected by MI 

Feature Selection Method. 

The present study evaluates the performance of 5 best features with the help of MI 

feature selection method by ranking features according to their weights in descending 

order. For result analysis, overall five experiments have been carried out in this whole 

process. The first experiment is carried out by using 5 best features out of 45 features, 

according to the sized vector of feature relevance's (MIs) in the descending order. These 

features are: Sum Average, Sum variance, Sum of Square, Mean and Angular Sum which 

are obtained from three models i.e. SGLCM, FOS and FPS. These features show very 

high discriminating power to classify normal and fatty liver as evidenced from the 
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boxplots of  best five features (as shown in Figure 4.30 and 4.31), where a clear separation 

exists between feature values of normal and fatty liver ultrasound images. The highest 

AUC obtained in this experiment is 0.96 by AdaBoost M1 classifier as shown in Table 

4.8. 

Table 4.8: Performance Evaluation of Five Best Features 

 

 

(A) Box plot of Sum of Square 

 

Features 

Extracted 
Classifiers 

TP TN Sensitivity 

(%) 

Specificity 

(%) 
AUC 

Miss 

Rate (%) 

Accuracy 

(%) FP FN 

5 

BEST 

FEATURES 

SMO 
 41  40 

91.11 88.88 0.90 8.88 90.00 
5 4 

IBK 
 43  40 

95.55 88.88 0.93 4.44 92.22 
5 2 

ADABOOST 

M1 

 43 42 
95.55 93.33 0.96 4.44 94.44 

3 2 

BF-TREE 
43 42 

95.55 93.33 0.95 4.44 94.44 
3 2 
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(B) Box plot of Sum Variance                 

 

(C) Box plot of Sum Average 

Figure 4.30: Box plot of highly discriminant features extracted from models SGLCM 
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             (D) Box plot of Angular Sum                                                        

 

(E) Box plot of Mean 

Figure 4.31: Box plot of highly discriminant features extracted from models FoS and FPS. 
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4.5.2 Experiment 2 - Performance Evaluation of 10 Best Features Selected by MI 

Feature Selection Method. 

 The second experiment is carried out by using 10 best features out of 45 features. 

In this case, SMO and IBk classifiers perform almost equally but the sensitivity value of 

SMO is higher than that of IBk classifier. The 10 best selected features are: Sum Average, 

Sum variance, Sum of Square, Mean, Angular Sum, Roughness, Hurst Coefficient at 

Resolution 1, Correlation, Maximum Correlation Coefficient and Periodicity which are 

obtained from five models i.e. SGLCM, FOS, SFM, FPS and Fractal Feature. AdaBoost 

M1 classifier gives 93.33% accuracy and is good in identifying both normal liver as well 

as fatty ultrasound images. Moreover, for AdaBoost M1 classifier AUC value of 0.96, 

which is highest among all the cases as shown in Table 4.9. 

Table 4.9: Performance Evaluation of 10 Best Features 
 

 

4.5.3 Experiment 3 - Performance Evaluation of 15 Best Features Selected by MI 

Feature Selection Method. 

 The third experiment includes 15 best features out of 45 features in which SMO 

classifiers gives 93.33% accuracy rate with 95.55% sensitivity and IBk classifiers gives 

94.44% accuracy rate with 93.33% sensitivity. It has been observed from Table 4.10, 

AUC is higher in case of IBk classifier as compared to SMO classifier. The 15 best 

selected features are: Sum Average, Sum variance, Sum of Square, Mean, Angular Sum, 

Roughness, Hurst Coefficient at Resolution 1, Correlation, Maximum Correlation 

Coefficient, Periodicity, Skewness, Information Measure of Correlation 1, Spot_Spot, 

Features 

Extracted 
Classifiers 

TP TN Sensitivity 

(%) 

Specificity 

(%) 
AUC 

Miss 

Rate (%) 

Accuracy 

(%) FP FN 

10 

BEST 

FEATURES 

SMO 
41 41 

91.11 91.11 0.91 8.88 91.11 
4 4 

IBK 
42 41 

93.33 91.11 0.95 6.66 92.22 
4 3 

ADABOOST 

M1 

42 42 
93.33 93.33 0.96 6.66 93.33 

3 3 

BF-TREE 
40 38 

88.88 84.44 0.92 11.11 86.66 
7 5 
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Edge_Level, Wave_Level which are obtained from five models i.e. SGLCM, FOS, SFM, 

FPS, TEM and Fractal Feature. In this experiment, AdaBoost M1 classifier gives 93.33% 

which provides better performance as compared to other classifiers with the highest AUC 

i.e. 0.96. In AdaBoost M1 classifiers the decision stump is used as a base classifier with 

10 number of iterations. Whereas, in BF-tree classifiers the post pruning strategy is used 

with 5 number of folds in internal cross- validation. 

Table 4.10: Performance Evaluation of 15 Best Features 

 

Features 

Extracted 
Classifiers 

TP TN Sensitivity 

(%) 

Specificity 

(%) 
AUC 

Miss 

Rate (%) 

Accuracy 

(%) FP FN 

15 

BEST 

FEATURES 

SMO 
43 41 

95.55 91.11 0.93 4.44 93.33 
4 2 

IBK 
42 43 

93.33 95.55 0.94 6.66 94.44 
2 3 

ADABOOST 

M1 

42 42 
93.33 93.33 0.96 6.66 93.33 

3 3 

BF-TREE 
40 39 

88.88 86.66 0.92 11.11 87.77 
6 5 

 

4.5.4 Experiment 4 - Performance Evaluation of 20 Best Features Selected by MI 

Feature Selection Method. 

Table 4.11: Performance Evaluation of 20 Best Features 

 

Features 

Extracted 
Classifiers 

TP TN Sensitivity 

(%) 

Specificity 

(%) 
AUC 

Miss 

Rate (%) 

Accuracy 

(%) FP FN 

20 

BEST 

FEATURES 

SMO 
44 42 

97.77 93.33 0.95 2.22 95.55 
3 1 

IBK 
40 43 

88.88 95.55 0.98 11.11 92.22 
2 5 

ADABOOST 

M1 

41 42 
91.11 93.33 0.96 8.88 92.22 

3 4 

BF-TREE 
40 39 

88.88 86.66 0.85 11.11 87.77 
6 5 

 



110 

 

  The experiment four is performed by using 20 best features out of 45 features. 

SMO classifier gives 95.55% accuracy with 97.77% sensitivity in case of best 20 features 

as shown in Table 4.11. The 20 best selected features are: Sum Average, Sum variance, 

Sum of Square, Mean, Angular Sum, Roughness, Hurst Coefficient at Resolution 1, 

Correlation, Maximum Correlation Coefficient, Periodicity, Skewness, Information 

Measure of Correlation 1, Spot_Spot, Edge_Level, Wave_Level, Homogeneity, 

Information Measure of Correlation 2, Radial Sum, Spot_Level, mean which is obtained 

from all Seven models. IBk and AdaBoost M1 classifier have same recognition rate in 

classifying fatty and normal liver but the sensitivity of IBk is less as compared to the 

sensitivity of AdaBoost M1 classifier. For IBk classifiers, the choice of value of k is made 

by changing the odd values of k from 1 to 7. It has been observed that the value of k=5 

outperforms the other value and Moreover, it provides high value of AUC i.e. 0.98.  

4.5.5 Experiment 5 - Classification Performance of All Features 

Table 4.12: Performance Evaluation of All Features 

The experiment five considers the classification performance of all features. 

Overall, 45 features have been extracted after using 7 texture models. With the help of 

various classifiers like SMO, IBk, AdaBoostM1 and BF-Tree, the performance of these 

features is evaluated. The performance of classification using all 45 features is shown in 

Table 4.12. SMO classifier delivers better performance ie. 95.55 % accuracy as compared 

to the other three classifiers. The IBk and AdaBoost M1 classifiers give equal accuracy 

i.e. 90% but the sensitivity of IBk classifier is more as compared to AdaBoost MI 

Features 

Extracted 
Classifiers 

TP TN Sensitivity 

(%) 

Specificity 

(%) 
AUC 

Miss 

Rate (%) 

Accuracy 

(%) FP FN 

ALL 

FEATURES 

SMO 
44 42 

97.77 93.33 0.95 2.22 95.55 
3 1 

IBK 
41 40 

91.11 88.88 0.95 8.88 90.00 
5 4 

ADABOOST 

M1 

40 41 
88.88 91.11 0.95 11.11 90.00 

4 5 

BF-TREE 
39 38 

86.66 84.44 0.82 13.33 85.55 
7 6 
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classifier. In this experiment, the overall AUC 0.95 is obtained by SMO. From the 

experimental results it has been found that a set of 20 optimal features selected by the MI 

feature selection technique resulted in same accuracy as in the case of 45 features with 

SMO classifier. 

4.5.6 Comparative Analysis of Different Kernel Functions of SMO Classifier 

Table 4.13 Performance analysis of SMO classifier by using different kernel functions 
 

SMO 

Classifier 

Kernels 

Used 

Sensitivity 

Rate (%) 

Specificity 

Rate (%) 
AUC 

Miss 

Rate 

Accuracy 

Rate (%) 

5 Best 

Features 

RBF 91.11 88.88 0.90 8.88 90.00 

Polykernel 91.11 88.88 0.90 8.88 90.00 

PUK 88.88 93.33 0.91 11.11 91.11 

Normalised 

Polykernel 
100 75.60 0.87 0 87.77 

10 Best 

Features 

RBF 88.88 84.44 0.86 11.11 86.66 

Polykernel 91.11 91.11 0.91 8.88 91.11 

PUK 93.33 91.11 0.92 6.66 92.22 

Normalised 

Polykernel 
93.33 91.11 0.92 6.66 92.22 

15 Best 

Features 

RBF 91.11 91.11 0.91 8.88 91.11 

Polykernel 95.55 91.11 0.93 4.44 93.33 

PUK 95.55 91.11 0.93 4.44 93.33 

Normalised 

Polykernel 
95.55 91.11 0.93 4.44 93.33 

20 Best 

Features 

RBF 91.11 91.11 0.91 8.88 91.11 

Polykernel 97.77 93.33 0.95 2.22 95.55 

PUK 93.33 93.33 0.93 6.66 93.33 

Normalised 

Polykernel 
95.55 91.11 0.93 4.44 93.33 

45 

Features 

RBF 93.33 93.33 0.93 6.66 93.33 

Polykernel 97.77 93.33 0.95 2.22 95.55 

PUK 95.55 88.88 0.92 4.44 92.22 

Normalised 

Polykernel 
95.55 93.33 0.94 4.44 94.44 
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 The SMO classifier utilizes feedback features from two classes to calculate 

maximum edge hyper-plane that distinguishes the two classes and provide optimal 

solutions [29]. If the features are not directly distinguishable, special kernel functions 

can be applied to change the data to a higher perspective feature space. This section 

carries out the comparison between some normally used kernel functions i.e. 

normalised polykernel [31], polykernel [31], Pearson VII Universal Kernel (PUK) [30] 

and Radial Basis Function (RBF) [32]. From the experimental results, it has been 

analysed that in case of 5 best and 10 best features, PUK kernel gives good results with 

accuracy more than 90 percent. This kernel is excellent in case of flexibility and can 

easily replace the set of commonly used kernel functions. whereas, in case of 15 best, 

20 best and all 45 features together polynomial kernel provide better results as compare 

to other kernel functions with accuracy of 93.33% and 95.55%. The normalised 

polynomial gives zero miss rate in case of 5 best features but this kernel sometimes 

gives inappropriate result which is not good enough in terms of accuracy. In summary, 

polynomial kernel consumes very less time to test the performance of the classifier in 

contrast to other kernels and provide better accuracy as shown Table 4.13. Further, it 

has been analysed that performance of 20 best features selected by MI feature selection 

technique is same as that of all 45 features in the case of polynomial kernel. Therefore, 

instead of using 45 features, 20 best features selected by the MI feature selection 

technique can be used for the classification of liver ultrasound images.  

4.5.7 Comparison with previous work 

Table 4.14: Comparison of Present Work with the Previous Related Researches 
 

Papers 
Number of features 

extracted 
Number of images used 

Overall 

Accuracy 

(%) 

 Singh. et al. [128] 27 30 92.0 

Singh. et al. [21] 35 180 95.0 

Proposed Method I 10 90 93.3 

Proposed Method II  45 90 96.7 

Proposed Method III 45 90 98.9 

Proposed Method IV 20 90 95.5 
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 Clearly, Table 4.14 demonstrates that when compared with the previous 

researches [128, 21], the present CAD system is better in terms of overall accuracy. But 

in the present work, an accuracy of 95.55% has been achieved with 20 best features 

selected by the MI feature selection technique. Very low Miss rate has been achieved 

which is the limelight of this thesis work and is not even previously targeted by the 

researchers. 

4.6 Discussion 

Fatty Liver Disease (FLD) is one of the most critical diseases that should be 

detected and cured at the earlier stage in order to decrease the mortality rate. To identify 

the FLD, ultrasound images have been widely used by the radiologists. However, due 

to poor quality of ultrasound images, they found difficulties in recognizing FLD. To 

address this issue, computer-aided diagnostic methods are proposed in this thesis, and 

the efficiency of the proposed methods is assessed using different performance metrics. 

In the Proposed Method I, extracted features are fed to the Decision Tree 

Classifier and parameter setting has been done to obtain the maximum accuracy. The 

experimental results showed that an accuracy of 88.9% has been obtained with 

Decision Tree Classifier. In the proposed work, PCA has been used for projecting 

original data into a new coordinate space. From the experimental results it has been 

found that when PCA is used for dimensionality reduction and the transformed features 

are passed to Decision Tree Classifier an accuracy of 93.3% has been achieved. After 

analysing the experimental results, it has been concluded that Decision Tree with PCA 

method enhances the prediction accuracy of the decisions tree classifier as well as 

simplifies the decision tree model. 

In the Proposed Method II, the extracted forty-five features are passed to K-

Nearest Neighbour (K-NN) Classifier for classification purpose. After extensive 

experiments it has been found that K-NN classifier gave best results with city block 

distance metric and value of k as 7. The overall accuracy obtained with these parameter 

settings is 96.7% with area under ROC curve as 0.99. 



114 

 

In the Proposed Method III, a two-layer feed forward neural network for the 

classification of liver ultrasound images has been proposed in this thesis work. After 

the extensive experiments it has been found that an overall accuracy of 96.8% with 

100% sensitivity and 92.9% specificity has been achieved with this network.  

The process is further carried out by Mutual Information (MI) feature selection 

method and classification algorithms in Proposed Method IV. The performance of 4 

classifiers i.e. SMO, IBk, AdaBoostM1 and BF-Tree is evaluated for 5 different 

experiments based on different number of selected best features. Summarizing the 

result of all the experiments, SMO is outperforming with accuracy rate of 95.55%, miss 

rate of 2.22% and sensitivity rate of 97.77% on the present dataset with 20 best features 

selected by the MI feature selection technique. Also, it has been analysed that the 

performance of all 45 features in combination is same as that of 20 features when SMO 

classifier is used with polynomial kernel. Therefore, instead of using 45 features, the 

selected combination of 20 features can be used, which further reduces the 

computational cost in classifying the images. Therefore, combination of these 20 

optimal features can be used for liver ultrasound image classification. Furthermore, for 

the extensive experiments of SMO classifier, results have been obtained with 4 

different kernels i.e. RBF, Polykernel, Normalised kernel and PUK kernel, where the 

overall best results are given by Polykernel. 

 In conclusion, experiments demonstrated that the proposed techniques gave better 

results for the classification of liver ultrasound images into two categories. Therefore, the 

proposed methods can be used for the classification of fatty and normal liver ultrasound 

images with higher accuracy.  
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Chapter - 5 

Summary and Conclusions 

 

5.1 Summary 

In the medical field, images, and especially digital images, are produced in 

enormous quantities and are used for diagnostics and therapy. Out of all the imaging 

modalities, Ultrasound is one of the popular imaging modalities due to its low cost, 

portable, real time imaging and non-ionizing nature. Ultrasound imaging has been 

widely used for the diagnosis of prostrate, visualization of fetus development and to 

see various abnormalities in the organs that includes gallbladder, kidneys and liver. In 

medical field, liver plays a vital role in human body, as it maintains quality of blood 

as well as performs very important functions like storage of carbohydrates, excretion, 

fats and fatty acids etc. 

Fatty liver is a disease where the fat content of the "hepatocytes" increases, 

which results in variation of the liver surface texture. To describe it, we can research 

and analyse the granular structure of the tissue or an area. The unique grainy pattern 

of fatty liver and normal liver can be represented as texture. Therefore, texture 

analysis can provide vital information that cannot be obtained via visual interpretation 

of ultrasound images for tissue characterization. Considering this concept as 

inspiration, several texture models were studied and evaluated so that the best features 

could be used to develop a better classification system. 

From the literature survey it has been found that the subjective evaluation of 

liver ultrasound images is less accurate and highly dependent on the experience of 

radiologist. Therefore, in this thesis work in order to assist radiologists, Computer 

Aided Diagnostic methods are proposed for the classification of liver ultrasound 

images in two classes i.e. Fatty liver and Normal liver. 

From a clinical point of view, Computer Aided Diagnosis (CAD) systems based 

on liver tissue can guide radiologists in its classification. In automated liver tissue 

classification, it is important to determine which features give the best distinction 
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between categories. In addition to structural and spectral descriptors, the texture of 

this area can help to differentiate between different tissues and can be represented by 

statistical descriptors derived from the image intensity histogram or the matrix of co-

occurrence. 

5.2 Conclusion 

A review of related work in processing and analysis of ultrasound images has 

been done. From the literature survey it has been found that in recent years many 

approaches have been proposed for the analysis of ultrasound images and major work 

has been done in the area of Computer Aided Diagnosis of fatty liver (Steatosis). A 

major current focus is on use of machine learning techniques to classify the liver 

ultrasound images and use of feature selection techniques to identify an optimal set of 

features that not only captures the image texture but also improves the semantic 

interpretability. 

With the ultimate goal of processing and analysis of Ultrasound images this 

thesis makes some contributions that are closely related to the classification of liver 

ultrasound images for disease diagnosis. The first contribution is extensive literature 

survey done in the area of ultrasound imaging in which various existing approaches 

and methods have been studied and analysed in detail. The second contribution is 

related to extraction of texture features from the region of interest using wide variety 

of texture models available in the literature as texture-based analysis is very useful in 

ultrasound tissue characterization. The third contribution has focussed on feature 

selection i.e. to identify and extract discriminating features that not only captures the 

texture of image but at the same time also improves correlation to the human visual 

similarity. The fourth contribution is based on use of different classifiers available in 

literature for the classification task with extensive parameter setting which is a unique 

kind of study in itself. For carrying out the proposed work, 90 ultrasound liver images 

have been collected from Delta Diagnostic Centre Patiala, India. The performance is 

evaluated using commonly used medical statistics: Sensitivity, Specificity, Accuracy 

and Area under ROC Curve. Following are the major conclusions of the work carried 

out in this thesis: 
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From the literature survey, it is clear that many researchers have done work on 

the classification of fatty and normal liver ultrasound images and to the best of 

author's knowledge, very less work is done on feature selection techniques in this 

domain. Furthermore, the researchers have focused more upon the accuracy rate 

instead of Miss Rate. But it is well known that classifying fatty liver as normal is 

more harmful than classifying normal liver as fatty. The performance of existing 

CAD systems is not good in terms of sensitivity while classifying the FLD. 

In this thesis work, Computer Aided Diagnostic methods are proposed for the 

classification of liver ultrasound images in two classes i.e. Fatty liver and Normal 

liver. For this purpose, texture features are extracted by using seven different texture 

models i.e. SGLCM, FPS, GLDS, FoS, SFM, TEM and FF to represent the texture of 

Region of Interest (ROI) of size 30 × 30 pixels extracted from the ultrasound liver 

image. It is worth mentioning here that very few researchers in earlier studies have 

used all these models in conjunction for performance evaluation. 

Further, these extracted features are fed to the Decision Tree Classifier and 

parameter setting has been done to obtain the maximum accuracy. The experimental 

results showed that an accuracy of 88.9% has been obtained with Decision Tree 

Classifier. The use of Principal Component Analysis (PCA) has been widely studied 

in the literature for the dimensionality reduction process. Therefore, in the proposed 

work, PCA has been used for projecting original data into a new coordinate space. 

From the experimental results it has been found that when PCA is used for 

dimensionality reduction and the transformed features are passed to Decision Tree 

Classifier an accuracy of 93.3% has been achieved. The experimental results showed 

that there is increase of almost 4.4% accuracy when PCA has been used that clearly 

shows that PCA gives better representation of the data. Further it has been found that 

Area Under ROC with Decision Tree Classifier is 0.90 where as there is significant 

increase in Area under Curve when PCA is used with Decision Tree Classifier i.e. 

found to be 0.95.Comparing with the traditional decision tree algorithm, the 

experimental results show that Decision Tree with PCA method can not only simplify 

the decision tree model, but also can improve prediction accuracy of the decision tree. 
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From the experimental results it has been found that Decision Tree with PCA 

outperforms as compared to Decision Tree. 

In the next work, the extracted forty-five features are passed to K-Nearest 

Neighbour (K-NN) Classifier for classification purpose. The selection of value of k in 

K-NN plays a significant role. In the proposed work, the KNN algorithm has been 

tested with different values of K (i.e. 1, 3, 5 7, 9, 11 and 13) and that value of k has 

been selected for further experimentation in which the model is able to make good 

number of predictions with data that the model has not seen before. Further, in this 

work, 10 different distance metrics have been evaluated to obtain the maximum 

accuracy. After extensive experiments it has been found that K-NN classifier gave 

best results with city block distance metric and value of K as 7. The overall accuracy 

obtained with these parameter settings is 96.7% with area under ROC curve as 0.99. 

Furthermore, in this thesis work a two-layer feedforward neural network has 

been modelled in the Proposed Method III. Sigmoid transfer function was used in the 

hidden layer of the neural network, and a SoftMax transfer function was used in the 

output layer as a standard network for the classification of hepatic ultrasound. The 

value of the hidden neurons is set as 10 for conducting the experiments. As the 

number of categories into which classification has to be done are two so the value of 

output neurons is set as 2. After extensive experiments it was found that with this 

network an overall accuracy of 98.9 percent with 100 percent sensitivity and 97.8 

percent specificity was achieved. 

In order to reduce the Miss Rate to a great extent. The process is further 

carried out by Mutual Information (MI) feature selection method and classification 

algorithms. The performance of 4 classifiers i.e. SMO, IBk, AdaBoostM1 and BF-

Tree is evaluated for 5 different experiments based on different number of selected 

best features. Summarizing the result of all the experiments, SMO is outperforming 

with accuracy rate of 95.55%, miss rate of 2.22% and sensitivity rate of 97.77% on 

the present dataset with 20 best features selected by the MI feature selection 

technique. Also, it has been analysed that the performance of all 45 features in 

combination is same as that of 20 features when SMO classifier is used with 

polynomial kernel. Therefore, instead of using 45 features, the selected combination 
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of 20 features can be used, which further reduces the computational cost in 

classifying the images. Therefore, combination of these 20 optimal features can be 

used for liver ultrasound image classification. Furthermore, for the extensive 

experiments of SMO classifier, results have been obtained with 4 different kernels i.e. 

RBF, Polykernel, Normalised kernel and PUK kernel, where the overall best results 

are given by Polykernel. 

In conclusion, experiments demonstrated that the proposed techniques gave 

better results for the classification of liver ultrasound images into two categories. The 

present work is likely to contribute significantly to the area of liver ultrasound 

imaging. The methods developed will in particular be useful for the processing and 

analysis of liver ultrasound images. 

5.3 Scope for Future Work 

Suggested below are a few directions and challenges in which further work in 

the area of processing and analysis of ultrasound images can be taken up. 

(i) More focus is provided in the present work on classifying two classes i.e. fatty 

liver and normal liver. The study can be expanded in future to classify the 

liver ultrasound images into more categories. 

(ii) The work can be further extended by making use of other texture feature 

models that exists in literature for the classification purpose. 

(iii) Presently, the ROI selection is manual, which requires significant experience 

and domain knowledge. In future, a system can be proposed to automatically 

select the ROI from an ultrasound image. 
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