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Abstract

This thesis deals with the study of a single buyer, single supplier inventory model with
time quadratic and stock dependent demand for a finite planning horizon. A single de-
teriorating item which suffers a shortage with partial backlogging and some lost sales is
considered. Model is divided into two scenarios one with no permissible delay in pay-
ment and other with permissible delay in payment. Later is called centralized system
where the supplier offers the retailer, trade credit. In the centralized system, cost-saving
is shared amongst the two. The objective is to study the difference in minimum total
cost born by retailer and supplier under two scenarios including above-mentioned pa-
rameters. To obtain the optimal solution of the problem the model is solved analytically.
A numerical example and a comparative study are then discussed supported by sensi-
tivity analysis of each parameter.

Then a detail solution of re-manufacturing of a product in a supply chain model is
discussed. It is a non-traditional model considering time-dependent quadratic demand,
Weibull deterioration, shortages, partial backlogging and re-manufacturing of inventory.
This paper mainly focuses on remanufacturing and hence an attempt towards reducing
the environmental hazard. The process of remanufacturing is completed within one
cycle of replenishment. Trade credit between supplier and retailer also had been dis-
cussed. Two cases one of a centralized and the other of decentralization for a finite
planning horizon in a supply chain model are discussed. An algorithm has been derived
for solving a problem in both cases. Some managerial insights are talked about based
on sensitivity analysis on the parameters considered.

As per my next objective, I have discussed the recycling of an item within the plan-
ning horizon. Recycling of an item has become the natural requirement in inventory
handling. It decreases the burden of inventory for defective kind of items. Another ob-
vious phenomenon is deterioration of items in inventory. Hence two-parameter Weibull
deterioration of items is considered in this chapter. The idea is to introduce in a supply
chain model some greenness through recycling of defective items after the sorting pro-
cess.
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Lastly, a supply chain model which is discussed for fuzzy parameters such as fuzzy
deterioration cost, fuzzy holding cost fuzzy inventory carrying cost etcetera is con-
sidered for framing of the model which are later defuzzified using Centroid, Signed
Distance and Graded Mean Representation method. Centralized replenishment policy
in this finite planning horizon model is discussed along with sensitivity analysis.

Appendix A contains the excerpts of the Mathematica program for table formulation
submitted for copyright. In appendix B the list of published, accepted and communi-
cated research is provided.
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Chapter 1

Introduction

1.1 Introduction to thesis
For ages, people have been maintaining inventory even before the time of barcoding
people had a tough time predicting future sale and purchase. The necessity of better
and better inventory management has been growing since then. A very expensive tool
punch cards were introduced in the early 20th century. In today’s scenario, barcoding
and microchips have made the collection of inventory data very simple but predicting
inventory is still a daunting task. Many models and methods have been given by authors
so far. Study of inventory theory is a sub branch of operations research.

1. INTRODUCTION TO OPERATIONS RESEARCH:

Operations research is a science for solving various real life problems. For dif-
ferent problems there are different models for problem solving in Operations re-
search. To find the solution first the problem is formulated and one of the various
methods is adopted.

2. SIGNIFICANCE OF OPERATIONS RESEARCH

Operations research is used by executives of a company using mathematical anal-
ysis for error free decisions and better coordination. It is extensively used by
various public and private sectors. Operations research is also used by agricul-
ture, health and defence organizations.

3. GENERAL METHODS FOR SOLVING OPERATIONS RESEARCH MODEL

Various optimization techniques are adopted to optimize a real world problem
with modeling simulation. Some are as follows:

Manufacturing/Production Optimization
Network Optimization
Transportation Optimization
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Supply Chain Optimization
Scheduling Optimization etc.

4. Some tools used are as follows:

probability theory

numerical methods

Monte Carlo methods etc.

RESEARCH MODELS
In analytical or detective method techniques such as differentiation integration in-

terpolation and extrapolation and standard graphs are used for solving an operation
research model.

In numerical or iterative method as the name suggest problems with large number
of variables or parameters iterations on American solution is used to obtain an optimal
solution iterations are followed until the final optimal solution is reached which cannot
be justified further.

In Monte Carlo method random variables are used to estimate the actual popula-
tion the simulation is done under certain constraints and random variable that follows a
particular probability distribution this probability distribution represents the actual sce-
nario of the problem any test to prove this probability distribution the solution of the
model is obtained.

1.1.1 Description of inventory Systems
Types of inventory

There are different types of inventory. Some are mentioned below:

A branch of operations research deals with supply chain management system. One
of the essentials of the supply chain management is the management of the goods to
be transferred or stored in a storage this is called the inventory of the company or an
organisation.

Inventory or stock is the good in the storage Area of the company or an organisation
these goods can be of basically three different types raw inventory or goods, semi fin-
ished inventory, finished inventory called as the product. The inventory can be stored at
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different levels and different stages by different players such as manufacturers, distrib-
utors, dealers, retailers, buyers as well as customers.

Significance of inventory management

It is significant to store and maintain an inventory, as proper management can save the
organisation against the heavy loss. These losses can be because of different reasons
popping up during the ongoing business operations.

One of the major losses incurred is due to the demand fluctuation of the market.
Heavy demand means more of the inventory in the storage house is needed and low
demand means less of the inventory in storage house is required. One should have a
track on ups and downs of these market requirement so as to efficiently keepup the
inventory otherwise unused inventory may result into high inventory keeping cost and
less inventory in the store house can result into customer satisfaction and further into
shortage loss.

Other major parameter is deterioration. Deterioration happens when the raw ma-
terial, semi finished goods or finished goods stored has a certain life time. Beyond
that period the goods are no more in a condition to be used hence the purchase cost
of those goods are always at risk during the the storage of inventory. Thus inventory
management helps in estimating quality manufacturing also.

Inventory model

The most important question which arises is that how much inventory should be stored
that means how much inventory should be ordered and at what time . Here time means
how much time gap should be there between two orders of the inventory. This period
also called as replenishment cycle time varies with different factors such as demand,
deterioration etc. To find out the duration of of replenishment cycle a model is to be
framed this model is called as inventory model or in other words economic ordering
quantity model(EOQ)Hillier (2012).

This model this economic ordering quantity model is formulated mathematically
and with the use of mathematical and statistical tools an optimal inventory policy is
derived which is also called as scientific inventory management.

1.1.2 Inventory in a finite planning horizon
Finite planning Horizon model is a model which has "n" number or fixed number of
replenishment cycles.

Finite planning Horizon model or a fixed planning Horizon was discussed by Giri,
Chakrabarty, and Chaudhuri (2000). Considering finite number of replenishment cycles
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each replenishment cycle. Shortages were considered in each replenishment cycle ac-
cept the last cycle. Two different policies were taken into account and were compared.
One in which the shortages was there in all cycles except the last one and the other
in which the items were completely backlogged for replenishment cycles further Giri,
Chakrabarty, and Chaudhuri (2000) stated that the first policy resulted in in average
lower cost then second policy.

1.1.3 Deterioration
Deterioration is also understood as partial existence of the item due to damage or
decay to the original one. This deteriorated product is either discarded or is recy-
cled. Ghare and Schrader (1963) was the first to study deterioration. There are vari-
ous ways in which deterioration occurs, like Constant deterioration Papachristos and
Skouri (2000) and Pal, Mahapatra, and Samanta (2013), time varying deterioration
Sana (2010), Weibull Deterioration Philip (1974), Yang (2012), and Pal, Mahapatra,
and Samanta (2014a), exponential Ghare and Schrader (1963) and Jain and Aggar-
wal (2012) and fuzzy deterioration De Kumar, Kundu, and Goswami (2003), De and
Goswami (2006), Roy et al. (2007), and Halim, Giri, and Chaudhuri (2008). They used
the two-parameter Weibull distribution to represent the distribution of the time to dete-
rioration. The instantaneous rate function F(t) for a two-parameter Weibull distribution
is given by F (t) = α1β1t

β1−1 where α1 is the scale parameter, α1 > 0; β1 is the shape
parameter, β1 > 0; t is time of deterioration, t > 0.

1.1.4 Green inventory
As discussed in Zhu and Sarkis (2004) organisations in China dealing with greening
of the supply chain has to balance between the cost effectiveness and environmental
issues.

Greening of the supply chain is possible by keeping environmental factors into con-
sideration. World and societies are looking for sustainable growth in this direction.
Greening of the supply chain also means moving towards more sustainable products.
May it be greenhouse emission gases, recyclingM. Klausner and Horvath (1999) of
the products, or remanufacturing Wee and Chung c (2009), Wee and Chung (2009),
and Saadany and Jaber (2010) of the products the scientist community is exhaustively
exploring every such area. There is a very little literature for the green supply chain
considering the above factors.

1.1.5 Brief introduction to fuzzy
Many a times the class of elements to be picked from a Universal set doesn’t have a fix
criteria of precise criteria for the membership.
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FIGURE 1.1: Weibull deterioration-time graph
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For example "the set of good student" in the class to be selected from particular sec-
tion or class. Other cases are like "the class of short men", "the class of intelligent men"
etc. Fuzzy set theory deals with the above problem defining a class with a Continuum
of grades of membership. A fuzzy set for class is define in such a way that every ele-
ment of the set is having a correspondence with a real number from the set of interval
between 0 to 1.

High grade of membership of that element is considered when its correspondence
is with the real number that is close to 1 and a low grade of membership is considered
for that element when the correspondence is with the real number that is close to zero.
For other than fuzzy set the element was supposed to be either in the set or outside the
set that means only the possibility 1 and 0 one was there Zadeh (1965).

Chang (1999) assumed product quantity "q" as triangular fuzzy number Q̃ such that
Q̃ = (q1, q0, q2) and defined a membership function.

Given by Jaggi, Pareek, and Sharma (2013), a fuzzy number (q0, q1, q2) where
q0 < q1 < q2 and defined on R , is called a triangular fuzzy number by its continu-
ous membership function µa(x) : x→[0,1] is

µa =



x− q0

q1 − q0
, q0 ≤ x ≤ q1

q2 − x
q2 − q1

, q1 ≤ x ≤ q2

0, Otherwise
For defuzzification of the total cost function, Graded Mean Representation, Signed

Distance and Centroid methods can be used.
The graded mean integration representation of Q̃, for Q̃ = (q0, q1, q2), a triangular

fuzzy number, is defined as P (Q̃)
q0 + 4q1 + q2

6
The centroid method on Q̃, for Q̃ =

(q0, q1, q2), a triangular fuzzy number, is defined as

P (Q̃)
q0 + q1 + q2

3
The signed distance of Q̃, for Q̃ = (q0, q1, q2), a triangular fuzzy

number, is defined as P (Q̃)
q0 + 2q1 + q2

4

1.2 Motivation towards the work
A finite planning horizon model with exponentially decreasing demand Lin, Chao,
and Julian (2013) discussed that practicing with finite planning horizon model is more
proper than infinite model. But Lin, Chao, and Julian (2013) did not considered credit
period rate in a supply chain management.

Covert and Philip (1973) used two Parameter Weibull Deterioration since many
items in an inventory follows the same such as important drugs, batteries and others.
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Fig. 1.1 shows that if two parameter Weibull deterioration when 1<β<2 is for very
high deterioration rate in the begining which slows down with respect to time. The
rate of deterioration with respect to time is shown in Fig. 1.1 for different values of β.
Two Parameter Weibull Deterioration with backlogging is discussed by Rajeswari and
Vanjikkodi (2012) but the planning horizon was taken as infinite and is not a supply
chain model.

A research paper with Weibull Deterioration, decreasing demand, trade credit, al-
lowing shortages with fuzzy logic by Majumder, Bera, and Maiti (2015) was discussed
in an infinite planning horizon and the demand taken was not quadratic.

To the best of our knowledge none of the researchers has considered an inventory
model with permissible delay in payments, time quadratic and inventory dependent de-
mand, item deterioration, shortages with partial backlogging and lost sales in all cycles
under a finite planning horizon with credit period rate. In this research we have as-
sumed time quadratic and stock dependent demand, time proportional deterioration of
item, shortages in every cycle with partially backlogging because of lost sales in a finite
planning horizon under permissible delay in payments. The research proposed here is
a generalized one as particular cases can be derived by relaxing one or more parame-
ters assumed. Further considering fuzzy logic the scope of generalizing the model will
cease to exist.

1.3 Objectives and contribution
To study a generalized inventory model with permissible delay in payments, time quadratic
and inventory dependent demand, item deterioration, shortages with partial backlogging
and lost sales in all cycles under a finite planning horizon with credit period rate the fol-
lowing objectives are taken into consideration which would satisfy the need of inventory
management systems in times to come.

1. To study the model of supplier–retailer inventory coordination with credit term for
deteriorating item with time-quadratic demand and time-dependent partial back-
logging with shortages in all cycles.

2. Determination of supplier–retailer inventory coordination with credit term for
short life-cycle deteriorating product re-manufacturing in a green supply chain
inventory control system with inventory dependent and linear-trend demand.

3. To extend the supplier–retailer inventory coordination with credit term for short
life-cycle deteriorating product re-manufacturing in a green supply chain inven-
tory control system to time-quadratic demand and time-dependent partial back-
logging with shortages in all cycles.
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4. To study fuzzyfication of supplier–retailer inventory coordination with credit term
for deteriorating item with time-quadratic demand and time-dependent partial
backlogging with shortages in all cycles.

1.4 Areas of application
It is by the country Japan that Just In Time (JIT) concept was introduced in the manu-
facturing units. But De Haan and Yamamoto (1999) established the fact and stated that
JIT is a total fiction. The case study dealt with big firms like Toyota, japan for product
as cars with 2000 employees keeping inventory of Steel plates and other parts also firms
like Shinitetsu Oita, Japan for Steel as product keeping inventory of Coal, lime, iron ore
etc. Similar study was made for many more such firms. De Haan and Yamamoto (1999)
found that instead of within an outside firm inventory was maintained.

Inventory holding is for different items raw or finalized product such as Fibers,
Steel, Power devices, Cars, Shoes, Watertaps, Coal, lime, iron ore, Barley, malt hop,
bottles, toys, Textile, rubber, strings, Steel plates, pipes, parts etc.

A good inventory management by a retailer,dealer or manufacturer helps to reduce
overcome the inventory crisis situation and thus reduces loss and in return increases
profit. Inventory management accounts for timely order placement. Without a proper
inventory model considering the type of product into consideration precise quantity
required cannot be ordered. Inventory carrying charges for unutilized raw material can
be minimized by keeping a check on inventory demand. Similarly for the much favored
product in market a shortage can be avoided thus saving time of procurement. Avoiding
inventory backlog increases the market goodwill and keep the customers satisfied.

1.5 Basic notions of inventory management/concepts
Rate of demand

It has been observed that for different product different types of demand exists. Some
of the major types of demands are constant demand Ghare and Schrader (1963), linear
demand Wu and Zhao (2014a) , time-Quadratic demand Sarkar, Ghosh, and Chaudhuri
(2012b), exponential demand Ouyang, Wu, and Cheng (2005), demand Price sensitive
Dowlatshahi and Heidari (2013), fluctuating Rameswari (2012), demand with trape-
zoidal rate Hsieh (2013), demand wwhich is inventory Dependent Wu and Zhao (2014a)
and many others.
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Lead time

The time retailer places and order to the time supplier delivers an inventory is called
the lead time. In today’s scenerio when there are faster way of communication there
happens to be no lead time and therefore in my reserach lead time is considered as zero
.

Shortages

Shortage of the goods in an inventory occurs when there are fewer goods available as
compared to demand this may occur due to several factors. Factors may vary from
suppliers machine non functioning to transportation delay by the retailer during a cycle
in a supply chain model Ghiami, Williams, and Wu (2013), Agrawal, Banerjee, and
Papachristos (2013), Sarkar, Ghosh, and Chaudhuri (2012a), Ghoreishi, Weber, and
Mirzazadeh (2014), and Bhunia, Shaikh, and Gupta (2015).

Rate of deterioration

Deterioration of the product within the system may occur due to various reasons such as
wear Klein and Rosenberg (1960), spoilage , rusting, spillage, change or decay Ghare
and Schrader (1963) and therefore is important factor to be taken into account as it adds
for profit loss.

Different cost associated

The different cost associated with the inventory system of a supply chain model that are
considered are as follows:

1. Item or the product purchase cost per unit by retailer

2. Ordering cost of the retailer,

3. Setup cost of the supplier,

4. Opportunity cost

5. deterioration cost

6. remanufacturing cost

7. cost of scrutiny for defected items

8. transportation cost for recycling

9. Holding costs (Carrying Costs)
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10. Shortage Costs

11. cost of lost sales

1.5.1 Factors affecting inventory control
Demand: Number of units required throughout the planning horizon is called as de-
mand. Demand can be fluctuating or constant during the finite planning horizon. It may
be decreasing or increasing during a cycle.

Replenishment time: The time for ordering the inventory is called as replenishment
time or ordering time.

Order period: The length of time between one replenishment to another is called
order period or length of the cycle.

Ordering quantity: The number of units to be ordered by retailer in the beginning of
each cycle is called ordering quantity.

Credit period rate: The credit period offered to retailer by supplier within each cycle
to close the immediate previous account is called the credit period rate.

1.6 Methodology used
Examine the inventory problem and its environment

In inventory optimal values of three types of cost i.e. cost of carrying, cost of shortage
of inventory and cost of replenishment is quite very significant. These above mentioned
3 types of cost are often very closely related to each other. When one of the cost is
decreased or the cost is increased any one or the rest of the two of the other two cost
and sometimes even both may increases there is thus the problem of controlling the
cost so that there sum will be lowest. It is very tough and challenging question to
control the inventory. Many concept and techniques were proposed by mathematicians
for controlling the inventory eectively.

Analyze and define the problem

To control the inventory effectively we should consider two questions mainly.

1. When should inventory be replenished for different cycles during the planning
horizon?

2. How much should be replenished during the each cycle for the given planning
horizon?.



1.6. Methodology used 11

Thus the time element and quantity element are variable that one subject to con-
trol inventory system. Inventory problem is to find the specific values of the variables
that minimize the total cost and minimum cost is obtain when the carrying cost and
replenishing cost are literally balanced. Analysis of an inventory system consists of the
following steps:

1. Determination of the properties of the system.

2. Development of formulation of inventory problem.

3. Development of a model of the system.

4. Derivation of a solution of the system.

To solve the model we shall use the standard techniques available, along with numer-
ical methods, approximation methods or any other suitable method. We shall seek the
numerical implication to visualize its practical importance. For these numerical calcu-
lations, I have used software Mathematica version 8.0.

General methods for solving operations research models

In general, the following three methods are used for solving OR models. In all these
models, values of decision variables are obtained that optimize the given objective func-
tion (a measure of effectiveness).

1. Analytical (or Deductive ) Method In this method, classical optimization tech-
niques such as calculus, finite difference and graphs are used for solving an OR
model. In this case, a general solution have been specified by a symbol and the
optimal solution can be obtained in a non iterative manner.

2. Numerical (or Iterative) Method When analytical methods fail to obtain the so-
lution of a particular problem due to its complexity in terms of constraints or
number of variables, a numerical (or iterative) method is used to get the solution.
In this method, instead of solving the problem directly, a general algorithm is ap-
plied to obtain a specific numerical solution. The numerical method starts with a
solution obtained by trial and error and a set of rules for improving it towards op-
timality. The solution so obtained is then replaced by the improved solution and
the process of getting an improved solution is repeated until such improvement is
not possible or the cost of further calculation cannot be justified.

3. Monte Carlo Method

With Monte Carlo method estimation of a random variable is calculated. The
inventory mathematical model is considered to follow a probability distribution.
The random variable which follows the probability distribution of the inventory
model is chosen for the estimation under defined criteria and circumstances.
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Constructing an numerical model

The decision making model consists of the following basic constituents:

1. Decision variables

The numerical value of the decision variable has to be obtained which decides the
validity of the model the numerical value of the decision variable also provides a
decisive alternative for the model so formulated the main aim of the model formu-
lated is to obtain the the correct value numerical value of the decision variables
through iterative methods

2. Non-governable variables

Many a times decision variables are dependent upon some other variables which
are which cannot be controlled directly by the the examiner these are called non
govern able variables the non-governable variables are are influenced by natural
causes of phenomena but these non-governable variables contribute considerable
amount it for the the solution of the model

The objective of the model the objective of the model is to minimise the total cost
incurred by the retailer as well as the supplier the total cost constitutes of of the
various other cost under consideration

3. Constraints of the model

The decision variable the non-governable variables and the cost considered in
the model comes with restriction for example the the inventory replenishment for
the order cannot be negative also that the demand cannot be negative There are
several other cost incurred by both retailer and supplier for example holding cost
which cannot be considered as negative similarly there are other constraints for
the model under examination

In my research there are four models which has been considered basically the the
models can be of two types linear model and nonlinear model a linear model is
such that all the variables x1,x2, x3 . . . . . . , xn as well as f(x) and g(x) are of
linear form (f(x)= criterion or objective function to be optimized, g(x) = con-
straint) the decision variables non-governable variables for constraints all all are
linear within the equations but a nonlinear model which I have considered is is
nonlinear in nature in such a way that there are variables which are not linear
within the equations these equations. Such as the starting differential equations
of the model and the total cost equations.

4. Solution and Screening
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In this step the solution of the problems is obtained. With the help of data input
this nonlinear model is solved by the iterative method and a numerical solution is
obtained with the help of software mathematical version 8.0.

5. Execution of the Solution

Operations research is further subdivided into many categories. One such is in-
ventory theory. The solution obtained has to be implemented and the conflict
between the players has to be reduced. the execution of the solution of the model
is necessary to facilitate the retailer and supplier with the theory of conflict free
collaboration. Therefore the implementation of the generalized model after relax-
ing the variables to accomodate the organizational requirements will be the last
phase.

Differential equations

Consider now a linear trend in demand over (0,t) given by f(u) = a+ bu, b ≥ 0, and a
necessarily positive or zero and θ1 the rate of deterioration of inventory. The inventory
level at any time u is given by differential equation

dI(u)
dt

+ (θ1)I(u) = −f(u), 0 ≤ u ≤ t(1.1)

Optimization

1. Local Minima The function has a local minimum point at x∗ if f(x∗) ≤ f(x) for
all x in domain X within distance of x∗

2. Extreme Value Theorem Mathematical Optimization is the technique to find the
the minima or a Maxima a minimum value or a maximum value does exist if the
function is continuous within the interval as per extreme value theorem.

3. Hessian Matrix Definition(Uthayakumar (2015)):- Let f (x) be a function in n
variables. The Hessian matrix of f is the matrix consisting of all the second order
partial derivatives of f. That is, the Hessian matrix of f at the point x is the nXn
matrix. And f is strictly convex ⇐⇒ H is positive definite. A matrix is positive
definite if it’s symmetric and all its eigenvalues are positive as in 2.25.

Use of computers mathematica version 8.1

Following an algorithm and writing a program for the software Mathematica version
8.1 the optimal total cost for the retailer can be obtained which is in bold font table
below . See appendix A for the program.
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→ n1

a1 1 2 3 4 5 6 7
1 376.68 278.85 255.7 261.42 280.42 306.4 336.44

TABLE 1.1: Total cost of retailer in a decentralized system

1.7 Organization of thesis
The thesis is divided into eight chapters. The organization of the thesis is as follows:

Chapter 1 is about the introduction.
Chapter 2 deals with the study of a single buyer, single supplier inventory model

with time quadratic and stock dependent demand for a finite planning horizon. Sin-
gle deteriorating item which suffers shortage with partial backlogging and some lost
sales is considered. Model is divided into two scenario one with no permissible delay
in payment and other with permissible delay in payment. Later is called centralized
system where supplier offers the retailer, trade credit. In the centralized system cost
saving is shared amongst the two. The objective is to study the difference in minimum
total cost born by retailer and supplier under two scenarios including above mentioned
parameters. To obtain optimal solution of the problem the model is solved analytically.
Numerical example and a comparative study is then discussed supported by sensitivity
analysis of each parameter.

Chapter 3 presents a detail solution of re-manufacturing of a product in a supply
chain model. It is a non-traditional model considering time-dependent quadratic de-
mand, Weibull deterioration, shortages, partial backlogging and re-manufacturing of
inventory. This paper mainly focuses on remanufacturing and hence an attempt to-
wards reducing the environmental hazard. The process of remanufacturing is completed
within one cycle of replenishment. Trade credit between supplier and retailer also had
been discussed. Two cases one of a centralized and the other of decentralization for a
finite planning horizon in a supply chain model are discussed. An algorithm has been
derived for solving a problem in both the cases. Some managerial insights are talked
about on the basis of sensitivity analysis on the parameters considered.

Chapter 4 discusses clearly about recycling of an item within the planning hori-
zon. Recycling of an item has become the natural requirement in inventory handling.
It decreases the burden of inventory for defective kind of items. Another obvious phe-
nomenon is deterioration of items in inventory. Hence two-parameter Weibull deterio-
ration of items is considered in this chapter. The idea is to introduce in a supply chain
model some greenness through recycling of defective items after the sorting process.
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Chapter 5 deals with a supply chain model which is discussed for fuzzy parame-
ters such as fuzzy deterioration cost, fuzzy holding cost fuzzy inventory carrying cost
etcetera are considered for framing of the model which are later defuzzified using Cen-
troid, Signed Distance and Graded Mean Representation method. Centralized replen-
ishment policy in this finite planning horizon model is discussed along with sensitivity
analysis.

Appendix A contains the excerpts of the Mathematica program for table formulation
submitted for copyright. In appendix B the list of published, accepted and communi-
cated research is provided followed with bibliography.

1.8 Summary
Existing knowledge about the structure and properties of a specific sub problem can be
exploited in solving integrated models. Many more opportunities are still unexplored.
This research field thus remains very active.
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Chapter 2

Determination of credit period for a
model with coordination between
supplier and retailer

2.1 Abstract
In this chapter a single buyer, single supplier inventory model with time quadratic and
stock dependent demand for a finite planning horizon has been studied. Single dete-
riorating item which suers shortage, with partial backlogging and some lost sales is
considered. Model is divided into two scenarios, one with non permissible delay in
payment and other with permissible delay in payment. Latter is called, centralized sys-
tem, where supplier oers trade credit to retailer. In the centralized system cost saving is
shared amongst the two. The objective is to study the dierence in minimum costs borne
by retailer and supplier, under two scenarios including the above mentioned parameters.
To obtain optimal solution of the problem the model is solved analytically. Numerical
example and a comparative study are then discussed supported by sensitivity analysis
of each parameter.

2.2 Introduction
The available literature of different inventory models ( Wu and Zhao (2014b) etc.) re-

veals that the relation between retailer and supplier is becoming more stable in today’s
rapidly changing commercial world. The supplier steps forward and provides retailer,
the credit period for the settlement of the amount for quantity purchased. However, the
coordination between supplier and retailer depends upon kind of the product, its deteri-
oration, its demand etc. Need is to focus on type of product produced and launched.

It is due to the fact that long term relationship between retailer and supplier is the
key to success of both the parties. Many researchers have worked on the models which
strengthens the bond between retailer and supplier. Few of the authors like Banerjee
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(1986) Goyal (1988), Yang and Wee (2000), Sarker, Jamal, and Wang (2000), Chung
(2000) have presented their model for deterioration in a two level supply chain coordi-
nate system.

Goyal and Giri (2001) continued Raafat’s review work for permissible delay in
payment, price increase and price discount. An EOQ model which assumes that full
payment must be done by the retailer immediately after receiving the goods from the
supplier is a decentralized system where the supplier replenishes according to retailers
optimal quantity requirement on cycle to cycle basis. However, this is not practical,
as the supplier may offer the trade credit period to retailer i.e. a delay period for the
full payment (purchase cost) of the goods in a centralized system. Some of the related
articles with trade credit financing which includes deterioration of item/s can be found
in Wu and Wee (2001), Chang, Ouyang, and Teng (2003), Chang (2004), Ouyang,
Wu, and Cheng (2005), Chung and Liao (2006), Lo, Wee, and Huang (2007), Chung
and Huang (2007), Jaggi and Verma (2009), Chung and Lin (2011), and Hou and Lin
(2013) etc. and in their references.

With permissible delays in payments and assuming no shortages Chung and Huang
(2007) presented an inventory model. Liao and Huang (2010) investigated a similar
model to Chung and Huang (2007) by adopting a different approach. Huang (2007),
LiangLiang and Zhou (2011) investigates an inventory model under conditionally per-
missible delay in payment. Guria et al. (2013) framed an inventory policy for an item
with inflation and demand depending on selling price allowing and not allowing short-
ages with one of the provision being, immediate part payment to the wholesaler.

Shah, Patel, and Shah (1988) extended the model of Goyal (1985) by allowing short-
ages. Shortages or stock-out situation are likely to occur due to many conditions in
any commercial or industrial enterprise. Therefore consideration of stock-out in any
inventory model is essential in today’s scenario. It is assumed that the retailer on re-
ceiving of the ordered quantity from supplier satisfies the customer waiting and then
stocks the left over goods for his regular demand. But, all the customers waiting in
queue naturally cannot wait for stock to arrive because of their impatience or other
sources available in the vicinity. Thus a ratio of customers waiting goes into lost sales.
The shortages are then considered as partially backlogged. Abad; (1996) introduced a
model for customer’s impatience function. But it was Jamal, Sarkar, and Wang (1997)
who introduced a model assuming shortages for deteriorating items with permissible
delay in payments. Researchers such as Chang and Dye (2001), Ouyang, Teng, and
Chen (2006), Jaggi, Khanna, et al. (2010), Jaggi and Mittal (2012), Yang and Chang
(2013), and Bhunia et al. (2014) in their models considered deteriorating items with
partial backlogging and permissible delay in payments. . Lost sale was considered by
Dye, Hsieh, and Ouyang (2007) who modified the model of Abad (1996). Although
many authors has considered partial backlogging, deterioration, with permissible delay
in payments but, not much literature is found which includes study of lost sales, partial
backlogging, deterioration with permissible delay in payments.
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As stated in Sarkar, Ghosh, and Chaudhuri (2012b) time-dependent quadratic de-
mand function is better in all sense. Khanra and Chaudhuri (2003) and Ghosh and
Chaudhuri (2006) and Manna, Chaudhuri, and Chiang (2007), are also some of the
researchers who used the time quadratic demand function in their research work.

Gupta and Vrat (1986) introduced an inventory model for stock-dependent con-
sumption rates. Baker and Urban (1988) introduced that the demand rate decreases
with the decrease in inventory where the demand rate being inventory level dependent.
developed an EOQ model with partially permissible delay in payments linked to or-
der quantity for deteriorating items. Later, Min et al. (2012) and Sarkar, Ghosh, and
Chaudhuri (2012c) studied inventory model for inventory-level-dependent demand and
permissible delay in payments.

To the best of our knowledge none of the authors has considered an inventory model
with permissible delay in payments, time quadratic and inventory dependent demand,
item deterioration, shortages with partial backlogging and lost sales in all cycles under
a finite planning horizon with credit period rate. In this model we have assumed time
quadratic and stock dependent demand, time proportional deterioration of item, short-
ages in every cycle with partially backlogging because of lost sales in a finite planning
horizon under permissible delay in payments. The model proposed here is a generalized
one as particular cases can be derived by relaxing one or more parameters assumed.

The flow of the rest of the chapter is organized as follows: In Section 2 we have
provided the assumptions and notations, in section 3 a mathematical model is developed
and its solution is provided, section 4 contains optimality conditions for cost equations,
in section 5 we have given algorithm, with a numerical example and sensitivity analysis,
section 6 is for conclusions.

2.3 Assumptions and notations

2.3.1 Assumptions
1. Inventory level is zero initially.

2. Lead time is zero.

3. The deterioration of items is proportional to time.

4. The ordering cost, holding cost and shortage cost are constant during the planning
horizon.

5. Shortages exist for each cycle and are partially backlogged. It is assumed that
only a fraction B(τ)of the demand during the stock-out period is backlogged as
the customers are impatient. ′τ ′ is the amount of time for which the customers
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waits before receiving goods and the remaining fraction [1 − B(τ)] is lost. Here

B(τ) =
1

1 + δτ
, δ > 0.dot

6. There is no repair or replacement of the deteriorated items.

7. Supply chain consist of single item with single retailer and single supplier.

8. Lot for lot replenishment policy is followed by the supplier.

9. The unit capital cost is same for the retailer and the supplier.

10. The ordering cost of the retailer is less than the set up cost of the supplier.

11. There is no inventory with the supplier as the production rate is infinite and the replen-
ishment is instantaneous.

2.3.2 Notations
For retailer

1. H is planning horizon which is finite and fixed.

2. The demand rate f(t) = a1 + b1t + c1t
2, a1 ≥ 0, b1 6= 0, c1 6= 0 at time t(> 0)is

a continuous function of time, where a1, b1,and c1 are constants.

3. A variable fraction θ2 =αt of the on-hand inventory deteriorates per unit of time
where 0 < α < 1.

4. Ihr($/unit/yr), is the inventory holding cost where capital cost is excluded.

5. Cc($/unit/yr) is the capital cost for the retailer as well as for the supplier.

6. h($/unit/yr) is the inventory cost, where h = Ihr + Cc.

7. Or($/order) is the ordering cost of the retailer

8. Pr($/unit), is the purchasing cost of the retailer.

9. s($/unit/yr) is the shortage cost of the retailer.

10. l($/unit/yr) is the cost of lost sales.

11. θ1 is the stock dependent demand rate.
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12. IDi (t) is the level of inventory at time t where t ∈ [ti, si+1], {i = 1, 2, ..., n1}
for a decentralized system and ICj (t) is the level of inventory at time t where
t∈[tCj , s

C
j+1], {j = 1, 2, ..., n2} for a centralized system.

13. RD
i is the total inventory for the interval [ti, si+1], {i = 1, 2, ..., n1} for decentral-

ized system and for centralized system RC
j is the total inventory for the interval

[tCj , s
C
j+1], {j = 1, 2, ..., n2}.

14. SDi is the total amount of shortages in the interval [si, ti], {i = 1, 2, ..., n1} for de-
centralized system and for centralized system SCj is the total amount of shortages
in the interval [sCj , t

C
j ], {j = 1, 2, ..., n2}.

15. QD
i = RD

i + SDi , is the quantity ordered at the time ti for ith cycle {i =
1, 2, ..., n1} in decentralize system similarly for centralized system QC

j = RC
j +

SCj , is the quantity ordered at the time tCj for jth cycle {j = 1, 2, ..., n2}

16. DD
i is the total amount of deteriorated items in the ith replenishment cycle {i =

1, 2, ..., n1} and DC
j is the total amount of deteriorated items in the jth replen-

ishment cycle {j = 1, 2, ..., n2} for decentralized and centralized system respec-
tively.

17. LDi is the total quantity of lost sales for the interval [si, ti], {i = 1, 2, ..., n1} and
LCj is the total quantity of lost sales for the interval [sCj , t

C
j ], {j = 1, 2, ..., n2} for

decentralized and centralized system respectively.

18. MC
j is the credit period offered by the supplier to retailer for jth cycle {j =

1, 2, ..., n2} in centralized system.

19. B(τ) =
1

1 + δτ
,δ > 0, is the backlogging rate and τ is the time that customer

has to wait.

20. TDi is the length of the ith replenishment cycle, {i = 1, 2, ..., n1} and TCj is the
length of the jth replenishment cycle, {j = 1, 2, ..., n2} for decentralized and
centralized system respectively.

21. TCD
r and TCC

r is the total cost of the retailer in decentralized and centralized
system repectively during the planning horizon H.

For supplier

1. Ss($/order) is the setup cost per order.

2. Ps($/unit) is the purchasing cost per unit and Ps < Pr.

3. TCD
s and TCC

s is the total cost for decentralized and centralized system respec-
tively during the planning horizon H.
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FIGURE 2.1: Graphical representation of Inventory Model

2.3.3 Decision variables
1. ti {i = 1, 2, ..., n1} and tCj {j = 1, 2, ..., n2} are the replenishment time during

decentralized and centralized system respectively.

2. si {i = 1, 2, ..., n1} and sCj {j = 1, 2, ..., n2} are the time for decentralized and
centralized system respectively where the inventory level reaches zero. Also that
s1 = 0 and sn1+1 = H .

3. n1 and n2 are the total number of replenishment cycles for decentralized and
centralized system respectively for the planning horizon H.

4. λ is the credit period rate.

2.4 Mathematical formulation and solution
of the model

Fig. 1 illustrates the carry of inventory during n1 replenishment cycles. Initially
the inventory level is zero and shortages starts accumulating. First replenishment is
obtained at time t1. A portion of which is used to meet the shortages accumulated
during the interval [s1, t1] and rest is utilized to fulfill the demand and deterioration
during the interval [t1, s2]. The inventory is consumed and falls to zero at s2. This
repeats for every cycle [si, si+1] where {i = 1, 2, ..., n1}.
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Here we consider two cases, one for decentralized and other for centralized system.
Case 1 is for decentralized system. In this case the supplier replenishes the inventory
ordered as per the optimum needs of retailer.

Case 1: Decentralized system
In this system the supplier follows the optimal replenishment cycles of the retailer.

The instantaneous level of inventory IDi (t) with boundary condition IDi (si+1) = 0 is
given by following differential equation

dIDi (t)
dt

+ (θ1 + θ2) IDi (t) = −f(t), ti ≤ t ≤ si+1, {i = 1, 2, . . . , n1} . (2.1)

The instantaneous level of shortage ISi(t) with the boundary condition
ISi(si) = 0, is given by following differential equation

dISi(t)
dt

= f(t)B(t) =
f(t)

1 + δ (ti − t)
, si ≤ t ≤ ti, {i = 1, 2, . . . , n1} (2.2)

Taking θ2 =αt (0 < α < 1), the solution of the differential equation 1 is

IDi (t) =
∫ si+1

t
e
θ1(u−t)+

α
2

(u2−t2)
f(u)du, ti ≤ t ≤ si+1, {i = 1, 2, . . . , n1} . (2.3)

The total amount of inventory carried during the interval [ti, si+1] is given by

RD
i =

∫ si+1

ti


∫ si+1

t
e
θ1(u−t)+

α
2

(u2−t2)
f(u)du

 dt, {i = 1, 2, . . . , n1} . (2.4)

By applying the change in the order of integration and neglecting α2 and higher
powers of α , we get

RD
i =

∫ si+1
ti

[(
1 + θ1t+

α
2
t2
)

(t− ti)−
θ1

2
(t2 − t2i )−

α
6

(t3 − t3i )
]
f(t)dt,

{i = 1, 2, . . . , n1} (2.5)

The total amount of shortage during the ith cycle in the interval [si, ti] is SDi =∫ ti
si
ISi(t)dt =

∫ ti
si

(∫ ti
si

f(t)
1 + δ (ti − t)

dt

)
dt =

∫ ti
si

(ti − t) f(t)
1 + δ (ti − t)

dt,

{i = 1, 2, . . . , n1} . (2.6)
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Total quantity during the planning horizon =QD =
∑n1
i=1Q

D
i =∑n1

i=1

(
RD
i + SDi

)
.

The total number of items deteriorated during the ithreplenishment cycle is

DD
i =

∫ si+1

ti
θ2I

D
i (t)dt, {i = 1, 2, . . . , n1} . (2.7)

DD
i =

∫ si+1

ti
αt

[(
1 + θ1t+

α
2
t2
)

(t− ti)−
θ1

2

(
t2 − t2i

)

-
α
6

(t3 − t3i ) f(t)dt, {i = 1, 2, . . . , n1} .(2.8)

The quantity lost during the ith replenishment cycle in the interval [si, ti] is

LDi =
∫ ti

si
[f(t)− f(t)B(t)] dt =

∫ ti

si

δ (ti − t) f(t)
1 + δ (ti − t)

dt, {i = 1, 2, . . . , n1} . (2.9)

The total cost for retailer consist of ordering cost, inventory cost (including capital
oppurtunity cost), purchasing cost, shortage cost, deterioration cost and the cost of lost
sales. Therefore total cost of retailer is

TCD
r (n1, s1, t1, . . . , sn1+1) = n1Or + h

∑n1
i=1

∫ si+1
ti IDi (t)dt+ Pr

∑n1
i=1Q

D
i +

Pr
∑n1
i=1D

D
i + s

∑n1
i=1 S

D
i + l

∑n1
i=1 L

D
i

= n1Or + (h+ Pr)
∑n1
i=1

∫ si+1
ti

[(
1 + θ1t+

α
2
t2
)

(t− ti)−
θ1

2
(t2 − t2i )−

α
6

(t3 − t3i ) f(t)dt

+Pr
∑n1
i=1

∫ si+1
ti αt

[(
1 + θ1t+

α
2
t2
)

(t− ti)−

θ1

2
(t2 − t2i )−

α
6

(t3 − t3i ) f(t)dt

+ (Pr + s+ lδ)
n1∑
i=1

∫ ti

si

(ti − t) f(t)
1 + δ (ti − t)

dt, {i = 1, 2, . . . , n1}. (2.10)
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To minimize TCD
r the values of ti and si are to be determined. The necessary condi-

tion for TCD
r to be minimum are

∂TCD
r (ti, si;n1)
∂ti

=0 and
∂TCD

r (ti, si;n1)
∂si

=0.

Where
D
r (ti, si;n1)

∂ti
= (h+ Pr)

∫ si+1
ti

[
α
2

(t2i − t2)

+θ1 (ti − t)− 1f(t)dt

+Pr

∫ si+1

ti
αt [θ1 (ti − t)− 1] f(t)dt+(Pr+s+ lδ)

∫ ti

si

1

1 + δ (ti − t)2 f(t)dt (2.11)

as α is very small α2) and higher terms are neglected.
D
r (ti, si;n1)

∂si
= (h+ Pr)

[(
1 + θ1si +

α
2
si

2

)
(si − ti−1)− θ1

2

(
si

2 − t2i−1

)
−

α
6

(
si

3 − t3i−1

)
f (si)] + Prαsi

[
(1 + θ1si) (si − ti−1)− θ1

2(
si

2 − t2i−1

)
f (si)− (Pr + s+ lδ)

(ti − si)
1 + δ (ti − si)

f (si) (2.12)

as α is very small α2 and higher terms are neglected.
Let the optimal solution (see section 2.5 for optimality condition) obtained from

equation
TCD

s

(
nDO1 , s1, t

DO
1 , sDO2 , . . . , sDOn1+1 = H

)
= nDO1 Ss +

∑nDO1
i=1 PsQ

DO
i

= nDO1 Ss +
nDO1∑
i=1

Ps
(
RDO
i + SDOi

)
. (2.13)

And the total optimal order quantity during the planning horizon H is

QDO =
nDO1∑
i=1

QDO
i =

nDO1∑
i=1

(
RDO
i + SDOi

)
. (2.14)

Case 2: Centralized system

In this system supplier calculates its replenishment cycle schedule and lures the
retailer to follow the same on basis of sharing the cost saving. Since the supplier offers
his new optimal number of replenishment cycle nCO2 which is ≤ the retailers optimal
cycle for decentralized system nD1 the inventory carrying cost of retailer increases and
suppliers set up cost decreases. Since the retailer’s ordering cost is much less than
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supplier’s set up cost, centralized system results in extra cost saving which is further
shared by both.

The total cost for retailer with n2 replenishment cycle will be
TCC

r

(
n2, s1, t

C
1 , . . . , s

C
n2+1

)
= n2Or + h

∑n2
j=1R

C
j +Pr

∑n2
j=1 Q

C
j +Pr

∑n2
j=1 D

C
j +

s
∑n2
j=1 S

C
j + l

∑n2
j=1 L

C
j

= n2Or + (h+ Pr)
∑n2
j=1

∫ sCj+1

tCj

[(
1 + θ1t+

α
2
t2
)(

t− tCj
)
−

θ1

2

(
t2 −

(
tCj
)

2
)
− α

6

(
t3 −

(
tCj
)

3
)
f(t)dt

+Pr
∑n2
j=1

∫ sCj+1

tCj
αt

[(
1 + θ1t+

α
2
t2
)(

t− tCj
)
− θ1

2

(
t2 −

(
tCj
)

2
)
−

α
6

(
t3 −

(
tCj
)

3
)
f(t)dt

+ (Pr + s+ lδ)
n2∑
j=1

∫ tCj

sCj

(
tCj − t

)
f(t)

1 + δ
(
tCj − t

) dt, {j = 1, 2, . . . , n2} . (2.15)

The retailer’s increase in cost for centralized system is given by

TCC
r

(
n2, s1, t

C
1 , . . . , s

C
n2+1

)
− TCD

r (nDO1 , s1, t
DO
1 , sDO2 , . . . , sDOn1+1 = H). (2.16)

The total cost of supplier including the retailers increase in cost is
TCC

s

(
n2, s1, t

C
1 , . . . , s

C
n2+1

)
= n2Ss+

∑n2
j=1 PsQ

C
j +TCC

r

(
n2, s1, t

C
1 , . . . , s

C
n2+1

)
−

TCD
r

(
nDO1 , s1, t

DO
1 , sDO2 , . . . , sDOn1+1 = H

)
= n2 (Ss +Or)

+
∑n2
j=1 (h+ Pr + Ps)

∫ sCj+1

tCj

[(
1 + θ1t+

α
2
t2
)(

t− tCj
)
− θ1

2

(
t2 −

(
tCj
)

2
)

− α
6

(
t3 −

(
tCj
)

3
)
f(t)dt

+Pr
∑n2
j=1

∫ sCj+1

tCj
αt

[(
1 + θ1t+

α
2
t2
)(

t− tCj
)
− θ1

2

(
t2 −

(
tCj
)

2
)
−

α
6

(
t3 −

(
tCj
)

3
)
f(t)dt+ (Pr + s+ Ps + lδ)

∑n2
j=1

∫ tCj
sCj

(
tCj − t

)
f(t)

1 + δ
(
tCj − t

) dt− TCD
r

(
nDO1 , s1, t

DO
1 , sDO2 , . . . , sDOn1+1 = H

)
,

{j = 1, 2, . . . , n2} , s1 = 0. (2.17)

To find the minimum TCC
s the values of tCj and sCj are determined, similarly as

obtained for TCD
r in decentralized system.



2.4. Mathematical formulation and solution
of the model

27

Let the optimal solution (see section 2.5 for optimality condition) is obtained as in
from equation 2.12, 2.11 for Min TCC

s

(
n2, s1, t

C
1 , . . . , s

C
n2+1 = H

)
be nCO2 , s1, t

CO
1 , sCO2 , . . . , sCOn2+1 =

H
The total optimal order quantity during the planning horizon H is
QC =

∑nCO2
j=1 Q

CO
j =

∑nCO2
j=1

(
RCO
j + SCOj

)
The retailer accepts this system only when its total cost is not more than that in

centralized system. i.e.
TCD

r

(
nDO1 , s1, t

DO
1 , sDO2 , . . . , sDOn1+1 = H

)
≥ TCC

r

(
nCO2 , s1, t

CO
1 , sCO2 , . . . , sCOn2+1

= H −
nCO2∑
j=1

Ccλ
(
sCOj+1 − sCOj

)
QCO
j (2.18)

where MC
j is the length of credit period and λ is the credit period rate, equal for every

replenishment cycle.
MC
j = λ

(
sCOj+1 − sCOj

)
Minimum of credit period rate λmin is such that the new total optimal cost of retailer

after receiving of his share equates total optimal cost of decentralized system.
TCC

r

(
nCO2 , s1, t

CO
1 , sCO2 , . . . , sCOn2+1 = H

)
−∑nCO2

j=1 Ccλmin
(
sCOj+1 − sCOj

)
QCO
j

= TCD
r

(
nDO1 , s1, t

DO
1 , sDO2 , . . . , sDOn1+1 = H

)
(2.19)

Similarly for supplier,
nCO2 Ss +

∑nCO2
j=1 PsQ

CO
j +

∑nCO2
j=1 Ccλmax

(
sCOj+1 − sCOj

)
QCO
j

= TCD
s

(
nDO1 , s1, t

DO
1 , sDO2 , . . . , sDOn1+1 = H

)
(2.20)

Therefore from equation 2.18 and 2.19, the minimum and maximum values that
credit period rate can attain is as follows λmin =

TCC
r

(
nCO2 , s1, t

CO
1 , sCO2 , . . . , sCOn2+1 = H

)
− TCD

r

(
nDO1 , s1, t

DO
1 , sDO2 , . . . , sDOn1+1 = H

)
∑nCO2
j=1 Cc

(
sCOj+1 − sCOj

)
QCO
j

(2.21)

λmax =

TCD
s

(
nDO1 , s1, t

DO
1 , sDO2 , . . . , sDOn1+1

= H − nCO2 Ss +
∑nCO2
j=1 PsQ

CO
j∑nCO2

j=1 Cc
(
sCOj+1 − sCOj

)
QCO
j

(2.22)

λ̄, i.e. average of λmax and λmin ensures equal partition of extra cost saving amongst
both, incorporating this the final total cost of retailer and supplier are
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TCCOλ
r

(
nCO2 , s1, t

CO
1 , sCO2 , . . . , sCOn2+1 = H

)
=

TCC
r

(
nCO2 , s1, t

CO
1 , sCO2 , . . . , sCOn2+1 = H

)
−

nCO2∑
j=1

Ccλ̄
(
sCOj+1 − sCOj

)
QCO
j (2.23)

TCCOλ
s

(
nCO2 , s1, t

CO
1 , sCO2 , . . . , sCOn2+1 =

H = nCO2 Ss +
nCO2∑
j=1

PsQ
CO
j +

nCO2∑
j=1

Ccλ̄
(
sCOj+1 − sCOj

)
QCO
j (2.24)

2.5 Optimality condition for TCD
r and TCC

s

The sufficient condition for TCD
r to be minimum is that the following Hessian ma-

trix ∇2TCD
r of TCD

r for a fixed n1 is positive definite as given by Sarkar, Ghosh, and
Chaudhuri (2012b).

∇2TCD
r =



∂2TCDr
∂t21

∂2TCDr
∂t1∂s1

0 0 0 0 0 0 0

∂2TCDr
∂s1∂t1

∂2TCDr
∂s21

∂2TCDr
∂s1∂t2

0 0 0 0 0 0

0
∂2TCDr
∂t2∂s1

∂2TCDr
∂t21

∂2TCDr
∂t2∂s2

0 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0
∂2TCDr

∂tn1−1∂sn1−2

∂2TCDr
∂t2n1−1

∂2TCDr
∂tn1−1∂sn1−1

0

0 0 0 0 0 0
∂2TCDr

∂sn1−1∂tn1−1

∂2TCDr
∂s2n1−1

∂2TCDr
∂sn1−1∂tn1

0 0 0 0 0 0 0
∂2TCDr

∂tn1∂sn1−1

∂2TCDr
∂t2n1


(2.25)

Where
∂2TCD

r (n1, s1, t1, . . . , sn1+1)

∂t2i
= (hr + w)

∫ si+1
ti (αti + θ1) (a1 + b1t+ c1t

2) dt +

(hr + w) (a1 + b1ti + c1ti
2)

+w
∫ si+1
ti (αtθ1 (a1 + b1t+ c1t

2) dt+ wαti (a1 + b1ti + c1ti
2)− 2(w + s+ lδ)δ∫ ti

si

(a1 + b1t+ c1t
2)

{1 + δ (ti − t)3 dt

+(w + s+ lδ)
(
a1 + b1ti + c1ti

2
)
. (2.26)
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∂2TCD
r (n1, s1, t1, , sn1+1)

∂si∂ti

=
∂2TCD

r (n1, s1, t1, . . . , sn1+1)
∂ti∂si

= −(w + s+ lδ)
(a1 + b1si + c1si

2)
(1 + δ (ti − si)) 2 , (2.27)

∂2TCD
r (n1, s1, t1, . . . , sn1+1)

∂si∂ti+1

=
∂2TCD

r (n1, s1, t1, . . . , sn1+1)
∂ti∂si−1

= 0., (2.28)

∂2TCDr (n1,s1,t1,...,sn1+1)
∂s2i

= 1
6

[
− 1

(1−δsi+δ
ti

26(s+ w + lδ) (−a1 + b1 (δs2
i − 2si (1 + δti) + ti (1 + δti))

+c1si (2δs
2
i + 2ti (1 + δti)− si (3 + 4δti)] + 3si (b1 + 2c1si)

(si − t−1+i) (2 + siθ1 − t−1+iθ1)
+6 (w + hr) (a1 + si (b1 + c1si)) (1 + (si − t−1+i) (αsi + θ1))
+ (w + hr) (b1 + 2c1si) (si − t−1+i)(
6 + 2αs2

i − αt2−1+i − 3t−1+iθ1 + si (−αt−1+i + 3θ1)
)

+

3wα (a1 + si (b1 + c1si)) (3s2
i θ1 + si (4− 4t−1+iθ1)

+t−1+i (−2 + t−1+iθ1) , (2.29)

We have that∇2TCD
r is a tridiagonal matrix. Therefore using the properties of tridi-

agonal matrix, equation 2.26, 2.27, 2.28 and 2.29, and also the theorem stated below, it
follows that∇2TCD

r is positive definite.

Theorem: If ti and si satisfy inequations (i)
∂2TCD

r

∂t2i
>0, (ii)

∂2TCD
r

∂s2
i

>0, (iii)

∂2TCD
r

∂t2i
− ∂2TCD

r

∂ti∂si
>0 and (iv)

∂2TCD
r

∂s2
i

− ∂2TCD
r

∂si∂ti
>0 for i=1,2,. . . ,n1 then

∇2TCD
r is positive definite.

The same can be used to show that ∇2TCC
s is a positive definite and TCC

s (n2, s0,
tc1,sc1, ..., scn+1) attains a minimum.

Based on the above theorem we propose the algorithm of solution which is as follows:
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2.6 Algorithm
1. Allocating the values to the parameters a1, b1, c1, hr, l, s, α ,δ , Or, Pr, s1.

2. Find the optimal ordering schedule for retailer when decentralized.

(a) Set n1=1, s1=0, s2=H. Initializing the value of the parameter t1,
calculate t1 from equation 2.12 .

(b) Set n1=2.

(c) Initializing the value of the parameter t1,and using t1, and {s1 = 0}, calcu-
late s2 from equation 2.12.

(d) With the values of t1 and s2 calculate t2 from equation 2.12.

(e) Proceeding in this way, and using the values of t2, and s2, calculate s3

from equation 2.11, until all unique optimal t′is and s′is { i=1,
2, . . . ,n1are obtained for the value of n1.

(f) Repeat step 2.4 and 2.5 for n1.

(g) For n1 = 1 and if TCD
r (n1) < TCD

r (n1 + 1),then TCD
r (n1)

= TCD
r O (n1).Stop.

(h) For n1 ≥ 2andifTCD
r (n1) < TCD

r (n1 − 1)
and TCD

r (n1) < TCD
r (n1 + 1) ,

then TCD
r (n1) = TCDO

r (n1) and stop or else let n1 = n1 + 1,
andgotostep2.3

3. The optimal replenishment cycle for retailer and supplier when decentralised is
nDO1 = n1.

4. Calculate TCDO
r

(
nDO1 , s1, t

DO
1 , sDO2 , . . . , snDO1 +1

)
,

TCDO
s

(
nDO1 , s1, t

DO
1 , sDO2 , . . . , snDO1 +1

)
and QDO from equations 2.10,2.13 and and (14) respectively.

5. Proceeding as in steps 2 to 4 calculate nCO2 , s1, t
CO
1 , sCO2 , . . . and

TCCO
r

(
nCO2 , s1, t

CO
1 , sCO2 , . . . , snCO2 +1

)
, TCCO

s

(
nCO2 , s1, t

CO
1 , sCO2 , . . . , snCO2 +1

)
andQCOforacentralisedsystem.

6. Calculate λmin, λmax, TC
COλ
r andTCCOλ

s from equations 2.21, 2.22, 2.23 and 2.24 re-
spectively.
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2.6.1 Numerical example
Example1: {a1 = 1, 7, 17 units/yr}, b1 = 5 units/ yr, c1 = 1 unit/yr, Pr = 0.3 $/unit,
s=2 $/unit, l=12 $/unit, θ1 = 0.2, δ = 6, α = 0.002, s1 = 0, Or = 40 $/order, Ss = 120
$/setup, H=4, Ps = 0.3 $/unit, Cc = 1.2 $/unit/yr , Ihr = 1.8 $/unit/yr, h=3 $/unit/yr
(Cc + Ihr). To solve the non linear system of equations we take the help of numeri-
cal computation software Mathematica(version 8.0). Table 2.1 comprises of the total
cost of the retailer for a={1,7,17} and replenishment cycles n1={1,2,...7} in decentral-
ized system. Optimal total cost of retailer for a={1,7,17} are $255.703, $308.34 and
$371.36 for 3, 4 and 5 replenishment cycles respectively. Total cost decreases from
n1=1, reaches minimum at n1=3 and again increases gradually for remaining cycles.
This convexity of total cost of retailer can be seen in Table 2.1 for all values of a.

Table 2.2 shows the optimal solutions ti’s and si’s for different values of a and their
corresponding optimal cycles. Table 2.5 comprises of suppliers total cost in a central-
ized system for a ={1,7,17} and for each a different cycles n2 ranging from 1 to 7.
Again as in table 2.3 the total cost shows its convexity for different values of a, here the
optimal total cost for a={1,7,17} are $255.80 $332.93 and $429.37 respectively. The
optimal replenishment cycles for a={1,7,17} are therefore 1,2,3 respectively. For all
the optimal repleshment cycles obtained in Table 2.4, the corresponding optimal ti’s
and si’s are shown in Table for a={1,7,17}.

Table 2.5 is a comparison chart for the total cost, optimal replenishment cycle, op-
timal quantity for both retailer as well as supplier for decentralized and centralized
system. The last two columns shows the cost saving done by retailer and supplier. for
a=17 the cost saving by retailer is 24.93% which is less than compared to that of a=7
which 25.83%. The cost saving increase from a=1 to a=7 but shows adecrement in
a=17. This implies a=7 will be the more appropriate value for example 1 as far as the
profit of retailer and supplier is concerned. It is not difficult to derive that for what

values of a1, b1, c1, ...etc.
∆TC
TCDO

r

,
∆TC
TCDO

r

, would be maximum.
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TABLE 2.1: Total cost of retailer in a decentralized system

→ n1

a1 1 2 3 4 5 6 7
1 376.68 278.85 255.7 261.42 280.42 306.4 336.44
7 545.13 381.68 321.88 308.34 316.59 335.87 361.35
17 819.03 533.65 416.73 377.61 371.36 381.2 400.02

TABLE 2.2: Optimal schedule for retailer in a decentralized system

a1 nDO1 s1 s2 s3 s4 s5 s6

1 3 0 2.08 3.13 4.
7 4 0 1.36 2.38 3.24 4.
17 5 0 0.99 1.87 2.64 3.35 4.

a1 nDO1 t1 t2 t3 t4 t5
1 3 0.85 2.18 3.19
7 4 0.19 1.45 2.44 3.29
17 5 0.08 1.06 1.92 2.69 3.39

TABLE 2.3: Total Cost of supplier in a centralized system

→ n2

a1 1 2 3 4 5 6 7
1 255.8 275.82 369.93 493.63 631.21 776.17 925.44
7 377.65 332.93 389.21 492.19 618.04 755.66 899.94
17 599.49 434.24 429.37 504.44 614.51 741.88 878.94
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TABLE 2.4: Optimal schedule for supplier in a centralized system

a1 nCO2 s1 s2 s3 s4
1 1 0 4.
7 2 0 2.56 4.
17 3 0 1.59 2.89 4.

a nCO2 t1 t2 t3
1 1 2.34
7 2 0.96 2.73
17 3 0.2 1.72 2.98

TABLE 2.5: Percentage change

Decent-
ralized
system

Cent-
ralized
system

a1 TCDO
r TCDO

s nDO1 QDO λmin λmax λ̄ TCCOλ
r TCCOλ

s nCO2 QCO ∆TC
TCDO

r

∆TC
TCDO

s

1 255.70 369.93 3. 33.11 0.51 0.99 0.75 198.63 312.86 1. 49.39 22.32 15.43
7 308.34 492.19 4. 40.65 0.47 1.50 0.98 228.71 412.56 2. 65.31 25.83 16.18
17 371.36 614.51 5. 48.36 0.36 1.81 1.08 278.79 521.94 3. 79.97 24.93 15.06
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2.6.2 Senstivity analysis
For Example 1 we have observed the sensitivity of each parameter as obtained in

Table 2.7, 2.8 and 2.9 . This has been done by changing the value of each parameter by
-50%, -25%, 25% and 50%, of the value considered in example 1.

1. TCCOλ
r is highly sensitive to Or and H, moderately sensitive to a1, b1, c1, Cc, Ihr,

l, Ss and δ. Also TCCOλ
r less sensitive to s, Ps, α and θ1. For all the parame-

ters given in Table 2.6 except Ss, with the increase in parameter’s value TCCOλ
r

increases. For increase in Ss, TCCOλ
r decreases.

2. TCCOλ
s is highly sensitive to H, moderately sensitive to l,Ss andOr. Also TCCOλ

r

less sensitive to a1, b1, c1, Cc, Ihr, s, Pr, Ps, α, θ1 and δ. For all the parameters
given in Table 2.6 except Sr, with the increase in parameter’s value TCCOλ

s in-
creases. For increase in Sr, TCCOλ

s decreases.

3. λ is highly sensitive to Cc, Ss and Or, moderately sensitive to a1, b1, Ihr, δ and H.
Also that it is less sensitive to c1, s, l, Pr, Ps, α and θ1. λ increases with increase
in Ihr, Pr, Ss, α, θ1. With the increase in value of other remaining parameters, λ
decreases.

4. nDO1 is sensitive to Or and H and nCO2 is sensitive to Ss and H. nDO1 is insensitive
to all the parameters except Or and H while nCO2 is insensitive to all the other
parameters except Ss and H. With the increase in Or, nDO1 decreases but with
increase in H, nDO1 increases. Similarly with the increase in Ss, nCO2 decreases
but with increase in H, nCO2 increases. This result differs from that of example 1
in Wu and Zhao (2014). In a centralized system the optimal replenishment cycle
depends upon the supplier’s setup cost and in a decentralized system the optimal
replenishment cycle depends upon ordering cost of retailer.

2.6.3 Comparative study

Inferences from example 1 reveals that the present model as a whole is sensitive
towards the objective, that is to enhance coordination between supplier and the
retailer. For the comparison of our model with that of Wu and Zhao, (2014) we
have considered a case where the values of parameters are same as example 1 of
their model. But the values of new parameters introduced in the present model
are c1=1, s=1, l=5, α= 0.001 and δ=4, taken in this case.

Following our algorithm we have calculated the cost saving earned by both re-
tailer and supplier as shown in table 2.6.The percentage change in total cost of
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retailer increases from 2.92 to 21.03 when a1 is 500. The increment is observed
for all the three values of a1 i.e. 500, 1500 and 2500, both for retailer and supplier.

Although in our model both the retailer and supplier gets hefty profits but the
former enjoys greater cost saving. This phenomenon is opposite to what was
observed by Wu and Zhao (2014c) . So our model is more effective when it
comes to attracting retailer under cost saving schemes.
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TABLE 2.6: Comparison chart

Parameters
→ a1 b1 c1 Pr Ps Or Ss Ihr Cc θ1 H s l α δ % change % change

in total in total
cost of cost of
retailer supplier

500 1000 − 3 1.2 50 150 0.6 0.4 0.1 1 − − − − 2.92 5.41
Wu and 1500 1.53 3.14

Zhao, (2014) 2500 1.19 2.53

500 1000 1 3 1.2 50 150 0.6 0.4 0.1 1 1 5 0.001 4 21.03 12.61
Present 1500 31.63 15.73
study 2500 13.94 8.00
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2.7 Conclusion

The present chapter is an extended model of Wu and Zhao (2014c) , which
investigates the effect of parameters such as time quadratic and inventory de-
pendent demand, deterioration, shortages, partial back logging and lost sales on
relationship of retailer and supplier under permissible delay in payment for finite
planning horizon. An analytical solution of the problem has been discussed for
two cases (i) where retailers optimal replenishment schedule is followed by sup-
plier(Decentralized system) and (ii) where retailer follows the optimal replenish-
ment schedule given by supplier(Centralized system). For a Centralized system
supplier offers the retailer a credit period rate mechanism for sharing the profit.
A completely new algorithm has been discussed. Results are very motivating as
the cost saving i.e. some multiple of unit capital cost, under these parameters
done by both retailer and supplier is a huge amount given in percentage. In a
real life market situation where there are different types of products available in
the market this model suites to almost all of such kind as particular cases can be
worked out by relaxing one or the other parameter.This model can be extended
by assuming a single supplier and multi-retailer integrated system, or by studying
quantity discounts and shortages for imperfect items under inflation.
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TABLE 2.7: Senstivity Analysis part 1 for the contribution of each parameter in the model

% change in parameter a1 b1 c1 Cc

∆TCCOλr X100%

TCCOλrO

∆TCCOλs X100%

TCCOλsO

∆λX100%
λO

nDO1

nCO2

−50
−25

25
50
−50
−25

25
50
−50
−25

25
50
−50
−25

25
50
−50
−25

25
50

−18.81
−9.25
9.03
17.89
−4.74
−2.34
2.27
4.48
14.39
6.66
−5.75
−10.69

4.
4.
4.
4.
2.
2.
2.
2.

−21.13
−10.53
10.48
20.93
−4.41
−2.2
2.19
4.37
12.16
5.61
−4.78
−8.86

4.
4.
4.
4.
2.
2.
2.
2.

−10.88
−5.4
5.33
10.59
−2.28
−1.13

1.1
2.17
3.75
1.79
−1.67
−3.23

4.
4.
4.
4.
2.
2.
2.
2.

−14.21
−6.92
6.58
12.84
−1.75
−0.81
0.68
1.26
64.8
21.43
−12.71
−21.08

4.
4.
4.
4.
2.
2.
2.
2.
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TABLE 2.8: Senstivity Analysis part 2 for the contribution of each parameter in the model

% change in parameter Ihr S l Pr

∆TCCOλr X100%

TCCOλrO

∆TCCOλs X100%

TCCOλsO

∆λX100%
λO

nDO1

nCO2

−50
−25

25
50
−50
−25

25
50
−50
−25

25
50
−50
−25

25
50
−50
−25

25
50

−21.88
−10.52

9.75
18.8
−2.85
−1.26
0.99
1.75
−25.94
−13.3
13.73
27.74

4.
4.
4.
4.
2.
2.
2.
2.

−0.35
−0.17
0.17
0.34
−0.15
−0.08
0.07
0.15
0.69
0.34
−0.34
−0.67

4.
4.
4.
4.
2.
2.
2.
2.

−8.22
−9.28
5.02
8.38
−29.84
−4.18
2.25
3.77
−1.85
5.94
−9.83
−16.18

3.
4.
4.
4.
1.
1.
2.
2.

−3.43
−1.7
1.68
3.35
−0.37
−0.18
0.18
0.35
−4.48
−2.25
2.26
4.52
4.
4.
4.
4.
2.
2.
2.
2.
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TABLE 2.9: Senstivity Analysis part 3 for the contribution of each parameter in the model

% change in parameter Ps Ss Or α θ1 δ H

∆TCCOλr X100%

TCCOλrO

∆TCCOλs X100%

TCCOλsO

∆λX100%
λO

nDO1

nCO2

−50
−25

25
50
−50
−25

25
50
−50
−25

25
50
−50
−25

25
50
−50
−25

25
50

−0.54
−0.27
0.27
0.54
−1.3
−0.65
0.65
1.3
0.8
0.4
−0.4
−0.8

4.
4.
4.
4.
2.
2.
2.
2.

25.42
13.12
−13.12
−29.58
−44.08
−21.81
21.81
41.78
−56.98
−19.61
19.61
16.97

4.
4.
4.
4.
3.
2.
2.
1.

−80.54
−39.21
13.12
50.29
34.95
16.89
−2.42
−18.19
94.27
45.55
−6.54
−49.05

6.
5.
4.
3.
2.
2.
2.
2.

−0.09
−0.04
0.04
0.09
−0.02
−0.01
0.01
0.02
−0.06
−0.03
0.03
0.06
4.
4.
4.
4.
2.
2.
2.
2.

−2.97
−1.46
1.41
2.77
−0.75
−0.36
0.34
0.66
−2.71
−1.33
1.29
2.55
4.
4.
4.
4.
2.
2.
2.
2.

−7.36
−2.77
1.88
3.26
−2.25
−0.88
0.62
1.09
7.36
2.76
−1.85
−3.18

4.
4.
4.
4.
2.
2.
2.
2.

−68.28
−41.25
27.35
89.32
−53.99
−29.12
45.64
79.39
30.61
8.54
20.22
4.31
2.
3.
6.
7.
1.
1.
3.
4.
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Chapter 3

A green supply chain model for time
quadratic
inventory dependent demand and
partially backlogging
with Weibull deterioration under
the finite horizon

3.1 Abstract

This chapter presents a detail solution of re-manufacturing of a product in a
supply chain model. It is a non-traditional model considering time-dependent
quadratic demand, Weibull deterioration, shortages, partial backlogging and re-
manufacturing of inventory. This chapter mainly focuses on remanufacturing and
hence an attempt towards reducing the environmental hazard. The process of
remanufacturing is completed within one cycle of replenishment. Trade credit
between supplier and retailer also had been discussed. Two cases one of a cen-
tralized and the other of decentralization for a finite planning horizon in a supply
chain model are discussed. An algorithm has been derived for solving a prob-
lem in both the cases. Some managerial insights are talked about on the basis of
sensitivity analysis on the parameters considered.
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3.2 Introduction

No doubt improving environmental quality comes at a cost but at the same
time, proper disposal of hazardous waste is very costly as in . Due to the market
competitiveness retailer and supplier in a supply chain are bound to collaborate
by sharing each other’s information for mutual benefits such as profit in terms
of money and customer satisfaction. For the product’s which is electrical, elec-
tronic, plastic, glass, jewelry etc., manufacturers are trying to provide a quality
product by re-manufacturing and reducing the defects in an item. This results in
the greening of a supply chain.

The reverse manufacturing problem for an electronic industry was recently con-
sidered and simplified by Chung and Wee (2011) green product design and re-
manufacturing. While raising significant concern over environmental initiatives,
Zhang, Bi, and Liu (2009) in one of the conclusions mentioned that policymak-
ers should give more heed to employees and nearby communities. Mudgal et
al. (2010) identified and analyzed the barriers to green business practices. Con-
sidering re-manufacturing in green supply chain Rani, Ali, and Agarwal (2017)
discussed a model. Green retailing is now a buzz word amongst retailer due
to growing pressure from the eco friendly environment by different stakehold-
ers such as consumers, no profit organizations, government etc. Saha, Nielsen,
and Moon (2017) states that continuous investment in green operations is always
profitable to the retailer. Remanufacturing a product may include replacement of
a worn out part, fixation of breakage occurred due to transportation, software up
gradation, remolding or other cosmetic operations.

In some cases, re-manufacturing may limit repairing only but in almost all cases
re-manufacturing reduces polluting hazard from environment since the products
are neither disposed of nor discarded. The Green supply chain can decrease pro-
duction cost and environmental problem as supplier manufacturers less number
of units and the retailer has not to throw away the defective goods. The 7 product
criteria for re-manufacturing given by Jr (2000). Normally model assumes that
defective product does not exist in an inventory which is not true practically. The
re-manufactured product is latest than previously manufactured products due to
latter’s technological obsolescence and therefore can be priced higher.
Re-manufacturing cost is less than repair cost was stated by Klausner, Grimm,
and Horvath (1999).

Deterioration in an inventory model was introduced by Ghare and Schrader (1963).
Permissible delay in payment was at first allowed by Goyal (1985) for the fixed
time period in an economic order quantity model. Aggarwal and Jaggi (1995)
considered deteriorating items while extending Goyal (1985) work. Two-parameter
Weibull distribution rate in an economic ordering quantity model was introduced
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by Philip (1974). Both constant and two-parameter Weibull distribution deteri-
oration in a production lot size model was first used by Misra (1975). A model
taking ramp type demand rate and partially backlogging of product which deteri-
orates with Weibull deterioration rate was discussed by Skouri and Konstantaras
(2009). With two-parameter Weibull’s distribution deteriorating rate considering
the effect of inflation under finite time horizon of an item was studied by Pal,
Mahapatra, and Samanta (2014b). As per Sarkar, Ghosh, and Chaudhuri (2012b)
is better than linear demand. Time-dependent quadratic demand function was
introduced by Khanra and Chaudhuri (2003).

Authors using the time quadratic demand function in their research work are
Ghosh and Chaudhuri (2006), Manna, Chaudhuri, and Chiang (2007), Singh et
al. (2017a), Singh et al. (2017b) and others. Shortages were allowed by Jamal,
Sarker, and Wang (1997) while extending Goyal (1985) model. Shortage of goods
in inventory setup occurs due to many reasons, therefore there is a necessity of
considering a stock out situation in any inventory model. The ordered quantity
received by the retailer is used to satisfy waiting for customers and the remain-
ing for existing demand. Customer’s impatient during waiting time results into
lost sales. Shortages are then partially backlogged. Abad (1996) introduced a
model for customer impatient function. Later a model assuming shortages with
the permissible delay in payment was introduced by Jamal, Sarker, and Wang
(1997). Model developed by Abad (1996) was modified by Dye, Hsieh, and
Ouyang (2007) introducing lost sales.

However, to the best of our knowledge, a model incorporating an inventory item,
which bears parameters such as Weibull deterioration, shortages, partial backlog-
ging, Lost sales, disassembly and re-manufacturing with trade credit in a green
supply chain within a finite planning horizon is not yet discussed. Proposed
model gives an insight into solving of such problem. Assumptions and nota-
tions are given in section 3.3. Model is formulated in section 3.4 and solved for
two cases centralized and decentralized. Optimality of the proposed model is
given in section 3.5. Model is further explained by an example given in section
3.7. Finally, a table of sensitivity analysis is given in section 3.8. The research
reported in this chapter is based on following assumptions. The methodology is
mathematical formulation of the model and solving by applying iterative methods
through software Mathematica(8.1).

3.3 Assumptions and notations

(a) Shortage with partial backlogging follows with zero initial level of inven-
tory.
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(b) Lead time is zero.

(c) Time dependent quadratic demand f(t) = a+ bt+ ct2 is assumed.

(d) Deterioration is a function of two parameter Weibull distribution of time
θ1(t) = αβtβ−1, 0 < α < 1, β ≥ 1 where t denotes deterioration time.

(e) The cost such as for purchasing of an item (Po($/unit)), deterioration (DC($/unit)),
lost sale (Lo($/unit)), setup (Ss($/order)), ordering (Co($/order)), short-
age (So($/unit)), holding (Ho($/unit/unittime)), screening (Sc($/unit)),
transportation (Tc($/unit)), disassembly
(DsAsm($/unit)), remanufacturing (Rem($/unit)) and oppurtunity cost
(Oc($/unit)) are constant during the finite planning horizon (H).

(f) There is a shortage of items in each cycle and due to customers impatience, a
fraction B(τ), of the demand is partially backlogged where τ is the amount

of time customers wait upto receiving of goods. 1 − B(τ) = 1− 1
1 + δτ

,

fraction of demand is lost, where δ > 0.

(g) Two cases are considered decentralized and centralized. Decentralized where
optimal schedule of ordering nDO1 is dependent on retailer’s total cost(TCD

r )
and centralized where both supplier (TCC

s ) and retailer’s increased cost(TCC
r −

TCDO
r ) are considered for calculating optimal schedule of ordering nC−O2 .

(h) In both the cases screening of all items i.e. IDoi for ith cycle, is done. De-
fected/repairable items which is P ∗ IDoi , after screening by retailer are then
transported by supplier for disassembly and re-manufacturing at time t = t

′
i.

All P ∗ IDoi items at time t = t
′′
i are then transported back to retailer for sale

in the same ith cycle.

(i) ti {i = 1, 2 . . . nD1 } and tj {j = 1, 2 . . . nC2 } are the time of replenishment
during decentralized and centralized case respectively.

(j) si {i = 1, 2 . . . nD1 } and sj {j = 1, 2 . . . nC2 } are the starting time for short-
ages in a decentralized and centralized case respectively. Also that s1 = 0
and sn1+1 = H .

(k) The total number of orders placed are nD1 and nC2 in a decentralized and
centralized case respectively during the planning horizon H.

(l) Supply chain is of a single item with a single retailer and single supplier.

(m) Lot for lot replenishment policy is followed by the supplier.

(n) Ioi in general or IDoi is the amount of inventory at time t = ti in a decentral-
ized case.

(o) IDsi is the amount of inventory left with retailer after removal of items for
re-manufacture at time t = t

′
i in ith cycle.
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(p) IDfi is the amount of inventory at time t = t
′′
i just before p∗IDoi re-manufactured

items are introduced in retailers inventory.

(q) Si is the total shortage of items occurred during time t where si ≤ t < ti.

(r) Opportunity cost is same for both retailers as well as the supplier.

(s) Ordering cost of the retailer is less than the setup cost of the supplier.

(t) Supplier holds the inventory during re-manufacturing.

(u) λ is the credit period rate.

3.4 Conceptualization of the proposed model

This section contains two subsections, 3.4.1 and 3.4.2. In the subsection 3.4.1
there is no coordination between retailer and supplier but on the contradiction
subsection, 3.4.2 is for a solution of the model when there is coordination between
them. The proposed model is as shown in figure 3.1 .

FIGURE 3.1: Inventory Diagram

3.4.1 Decentralized case for finite planning horizon

In a decentralized case scheduled number of replenishments (nD1 ) is dependent
upon retailers total cost (TCD

r ). Inventory level (ID1i ) at any time t is dependent
on constant rate (θ1) of inventory level, deterioration rate (θ2) of item/s of inven-
tory and time-dependent quadratic demand function. Model is represented by the
equation below
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dID1i (t)
dt

+ (θ1 + θ2) ID1i (t) = −f (t), {i = 1, 2 . . . nD2 } (3.1)

where θ2 = αβtβ−1 is the Weibull deterioration rate. As shown in figure 3.1
screening for defective\repairable is done upto time t = t

′
i in an ith cycle and

p ∗ IDoi is deivered to supplier for re-manufacturing in every cycle. Thererfore
with boundary conditions ID1i

(
t
′
i

)
= IDsi where ti ≤ t ≤ t

′
i the inventory level at

time t is given by

ID1i (t) = IDsi e
θ1

(
t
′
i−t
)

+α

(
t
′β
i −t

β

)
+ e−(θ1t+αtβ)

∫ t
′
i

t
eθ1u+αuβ f (u)du. (3.2)

With boundary value ID1i (ti) = IDoi the above equation reduces to

IDsi = IDoi e
θ1

(
ti−t

′
i

)
+α

(
tβi −t

′β
i

)
− e

−
(
θ1t
′
i+αt

′β
i

) ∫ t
′
i

ti
eθ1u+αuβ f (u)du. (3.3)

From t
′
i to t′′i the defected/repairable items are re-manufactured. At time t′′i all the

p ∗ IDoi items are transported back to the retailer for sale.

Further ID2i (t) and ID3i (t) are taken as inventory level at any time t for time duration
t
′
i < t ≤ t

′′
i and t′′i < t ≤ si+1 respectively. For t′i < t ≤ t

′′
i with boundary

conditions ID1i
(
t
′′
i

)
= ID2i

(
t
′′
i

)
= IDfi the inventory level at time t is given by

ID2i (t) = IDfi e
θ1

(
t
′′
i −t
)

+α

(
t
′′
i
β−tβ

)
+ e−(θ1t+αtβ)

∫ t
′′
i

t
eθ1u+αuβ f (u)du. (3.4)

Now since ID1i
(
t
′
i

)
= ID2i

(
t
′
i

)
= IDsi − pI

D
oi

, the above equation will be

IDsi − pI
D
oi

= IDfi e
θ1

(
t
′′
i −t
)

+α

(
t
′′
i
β−tβ

)
+ e

−
(
θ1t
′
i+αt

′β
i

) ∫ t
′′
i

t
′
i

eθ1u+αuβ f (u)du. (3.5)

At t = si+1 the inventory level for ith cycle is zero. With boundary conditions
for t where, t′′i ≤ t ≤ si+1 ,ID3i

(
t
′′
i

)
= IDfi + pIDoi and ID3i (si+1) = 0 the inventory

level at time t is given by

ID3i (t) = e−(θ1t+αtβ)
∫ si+1

t
eθ1u+αuβ f (u)du. (3.6)
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and IDfi = −pIDoi + e
−
(
θ1t
′′
i +αt

′′β
i

) ∫ si+1

t
′′
i

eθ1u+αuβ f (u)du. Solving above equations
we get

IDoi =

[
a (si+1 − ti) +

b
2

(
s2
i+1 − t2i

)
+

c
3(

s3
i+1 − t3i

) [
1− θ1ti − αtβi − p

{
θ1

(
ti − t

′
i

)
+ α

(
t
′′β
i − t

′β
i

)}]
+ θ1

(
a
2(

s2
i+1 − t2i

)
+

b
3

(
s3
i+1 − t3i

)
+

c
4

(
s4
i+1 − t4i

)
+ α

(
a

β + 1

(
sβ+1
i+1 − t

β+1
i

)
+

b
β + 2

(
sβ+2
i+1 − t

β+2
i

)
+

c
β + 3

(
sβ+3
i+1 − t

β+3
i

)
, (3.7)

IDfi = −p
{[
a (si+1 − ti) +

b
2

(
s2
i+1 − t2i

)
+

c
3(

s3
i+1 − t3i

) [
1− θ1ti − αtβi − p

{
θ1

(
t
′′
i − t

′
i

)
+ α

(
t
′′β
i − t

′β
i

)}]
+ θ1

(
a
2(

s2
i+1 − t2i

)
+

b
3

(
s3
i+1 − t3i

)
+

c
4

(
s4
i+1 − t4i

)
+ α

(
a

β + 1(
sβ+1
i+1 − t

β+1
i

)
+

b
β + 2

(
sβ+2
i+1 − t

β+2
i

)
+

c
β + 3

(
sβ+3
i+1 − t

β+3
i

)
+
(
1− θ1t

′′
i − αt

′′β
i

) (
a
(
si+1 − t

′′
i

)
+

b
2

(
s2
i+1 − t

′′2
i

)
+

c
3

(
s3
i+1 − t

′′3
i

)
+ θ1

(
a
2(

s2
i+1 − t

′′2
i

)
+

b
3

(
s3
i+1 − t

′′3
i

)
+

c
4

(
s4
i+1 − t

′′4
i

)
+ α

(
a

β + 1

(
sβ+1
i+1 − t

β+1
i

)
+

b
β + 2

(
sβ+2
i+1 − t

β+2
i

)
+

c
β + 3

(
sβ+3
i+1 − t

β+3
i

)
(3.8)

and IDsi =
(
1− θ1t

′
i − αt

′β
i

)(
a
(
si+1 − t

′
i

)
+

b
2

(
s2
i+1 − t

′
i
2
)

+
c
3(

s3
i+1 − t

′
i
3
)

+
(
−p

{
θ1

(
ti − t

′
i

)
+ α

(
t
′′β
i − t

′β
i

)})
(
a (si+1 − ti) +

b
2

(
s2
i+1 − t2i

)
+

c
3

(
s3
i+1 − t3i

))
+ θ1

(
a
2
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(
s2
i+1 − t

′
i
2
)

+
b
3

(
s3
i+1 − t

′
i
3
)

+
c
4

(
s4
i+1 − t

′
i
4
)

+ α

(
a

β + 1

(
sβ+1
i+1 − t

′β+1
i

)
+

b
β + 2

(
sβ+2
i+1 − t

′β+2
i

)
+

c
β + 3

(
sβ+3
i+1 − t

′β+3
i

)
. (3.9)

After substituting the value of IDsi in equation 3.2 we get ID1i (t) =[
a (si+1 − ti) +

b
2

(
s2
i+1 − t2i

)
+

c
3

(
s3
i+1 − t3i

)] [
1− θ1ti − αtβi

−p
{
θ1

(
ti − t

′
i

)
+ α

(
t
′′
i β − t

′β
i

)}
θ1

(
a
2

(
s2
i+1 − t2i

)
+

b
3

(
s3
i+1 − t3i

)
+

c
4

(
s4
i+1 − t4i

)

+α

(
a

β + 1

(
sβ+1
i+1 − t

β+1
i

)
+

b
β + 2

(
sβ+2
i+1 − t

β+2
i

)
+

c
β + 3(

sβ+3
i+1 − t

β+3
i

)
+
(
1− θ1t− αtβ

) (
a
(
ti − t

′
i

)
+

b
2

(
t2i − t

′
i
2
)

+
c
3

(
t3i − t

′
i
3
)

+ θ1

(
a
2

(t2i − t2) +
b
3

(t3i − t3)

+
c
4

(t4i − t4) + α

(
a

β + 1 (
tβ+1
i − tβ+1

)
+

b
β + 2

(
tβ+2
i − tβ+2

)
+

c
β + 3

(
tβ+3
i − tβ+3

)
.(3.10)

Similarly from equation 3.4 and 3.6 substituting the values of IDsi and IDfi we
obtain ID2i (t) =

p

[[
a (si+1 − ti) +

b
2

(
s2
i+1 − t2i

)
+

c
3

(
s3
i+1 − t3i

)]
[
1− θ1ti − αtβi− p

{
θ1

(
ti − t

′
i

)
+ α

(
t
′′β
i − t

′β
i

)}]
+θ1

(
a
2

(
s2
i+1 − t2i

)
+

b
3

(
s3
i+1 − t3i

)

+
c
4

(
s4
i+1 − t4i

)
+ α

(
a

β + 1

(
sβ+1
i+1 − t

β+1
i

)
+

b
β + 2
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(
sβ+2
i+1 − t

β+2
i

)
+

c
β + 3

(
sβ+3
i+1 − t

β+3
i

)

+

[(
1− θ1t− αtβ

)(
a (si+1 − t) +

b
2

(
s2
i+1 − t2

)
+

c
3(

s3
i+1 − t3

)
+ θ1

(
a
2

(s2
i − t2) +

b
3

(t3i − t3) +
c
4

(t4i − t4) + α

(
a

β + 1

(
tβ+1
i − tβ+1

)
+

b
β + 2

(
tβ+2
i − tβ+2

)
+

c
β + 3

(
tβ+3
i − tβ+3

)
(3.11)

and

ID3i (t) =

[
a (si+1 − t) +

b
2

(
s2
i+1 − t2

)
+

c
3(

s3
i+1 − t3

) (
1− θ1t− αtβ

)
+ θ1

(
a
2

(
s2
i+1 − t2

)
+

b
3

(
s3
i+1 − t3

)

+
c
4

(
s4
i+1 − t4

)
+ α

(
a

β + 1

(
sβ+1
i+1 − tβ+1

)
+

b
β + 2

(
sβ+2
i+1 − tβ+2

)
+

c
β + 3

(
sβ+3
i+1 − tβ+3

)
. (3.12)

Different cost associated with retailer during the planning horizon where
i = 1, 2 . . . nD1

Holding cost =

nD1∑
i=1

Ho ∗RD
i =

nD1∑
i=1

Ho

(∫ t
′
i

ti
I1i(t)dt+

∫ t
′′
i

t
′
i

I2i(t)dt+
∫ si+1

t
′
i
′

I3i(t)dt

)
. (3.13)

Ordering cost = nD1 ∗Or, Deterioration Cost=∑nD1
i=1 DC

(∫ t′i
ti θ1I1i(t)dt+

∫ t′′i
t
′
i

θ1I2i(t)dt+
∫ si+1

t
′′
i

θ1I3i(t)dt
)

=
nD1∑
i=1

DC

(∫ t
′
i

ti
αβtβ−1I1i(t)dt+

∫ t
′′
i

t
′
i

αβtβ−1I2i(t)dt+
∫ si+1

t
′′
i

αβtβ−1I3i(t)dt

)
,

(3.14)
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Shortage cost =∑nD1
i=1 So

∫ ti
si
Si(t)dt

=
∑nD1
i=1 So

∫ ti
si

(∫ t
si

f(u)
1 + δ (ti − u)

du

)
dt =

nD1∑
i=1

So

∫ ti

si

(ti − t) (a+ bt+ ct2)
1 + δ (ti − t)

dt, (3.15)

Cost of lost sales =∑nD1
i=1 Lo

∫ ti
si

[
f(t)− f(t)

1 + δ (ti − t)

]
dt

=
n1∑
i=1

Lo

∫ ti

si

δ (ti − t) (a+ bt+ ct2)
1 + δ (ti − t)

dt, (3.16)

Purchase cost during a planning horizon =

nD1∑
i=1

Pr ∗QD
i =

nD1∑
i=1

Pr
[
IDoi + SDi

]
(3.17)

and Screening Cost=

nD1∑
i=1

Sc ∗ IDoi . (3.18)

Quantity to be ordered in each cycle

= QD
i = IDoi + SDi (3.19)

Total cost of the retailer during a planning horizon = TCD
r (ti, si, n

D
1 ) = Purchase

cost + Holding cost + Detererioration cost + Shortgae cost + cost of Lost sale
+Screening Cost =∑nD1
i=1{Pr

[
IDoi + Si

]
+Ho

[∫ t′i
ti I1i(t)dt+

∫ t′′i
t
′
i

I2i(t)dt+
∫ si+1

t
′′
i

I3i(t)dt+DCαβ
[∫ t′i
ti t

β−1I1i(t)dt+

∫ t′′i
t
′
i

tβ−1I2i(t)dt+
∫ si+1

t
′′
i

tβ−1I3i(t)dt

+So
∫ ti
si

(ti − t) (a+ bt+ ct2)
1 + δ (ti − t)

dt

+Lo

∫ ti

si

δ (ti − t) (a+ bt+ ct2)
1 + δ (ti − t)

dt+ Sc ∗ IDoi} (3.20)
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Different total costs associated with supplier during the complete planning horizon
for i = 1, 2 . . . nD1

Setup cost in a decentralized case = Ss ∗ nD1 , Purchase cost =
∑nD1
i=1 Ps ∗ (IDoi + SDi ),

Transportation cost =
∑nD1
i=1 Tc ∗ p ∗ IDoi , Cost of Disassembly =

∑nD1
i=1DsAsm ∗ p ∗ IDoi

and Cost of Remanufacturing =
∑nD1
i=1 Rem ∗ p ∗ IDoi .

Total cost of supplier = TCD
s (ti, si, n

D
1 ) =∑nD1

i=1{Ss ∗ n+ Ps ∗ (IDoi + SDi ) + (Tc ∗ p+DsAsm ∗ p+

Rem ∗ p+Ho ∗ p) ∗ IDoi}, {i = 1, 2 . . . nD1 } (3.21)

where nD1 is the total number of replenishment cycles.

Solution for decentralized case

For brevity of solution t′i − ti = t
′′
i − t

′
i is taken as CT . Considering α, θ1 very small

and neglecting their square and higher order, change in TCD
r with respect to ti and si is

obtained in equation 3.22 and 3.23 as follows.

δTCD
r (ti, si, n

D
1 )

δti

= Ho

(∫ t′i
ti

(
(−a− bti − ct2i )

(
−pθ1CT − pα

(
t
′′β
i − t

′β
i

))
+(

a (si+1 − ti) +
b
2

(
s2
i+1 − t2i

)
+

c
3

(
s3
i+1 − t3i

))
(
−pαβ

(
t
′′(β−1)
i − t

′(β−1)
i

))
dt+

(
1− θ1t

′
i − αt

′β
i

)
(
a
(
si+1 − t

′
i

)
+

b
2

(
s2
i+1 − t

′
i
2
)

+
c
3

(
s3
i+1 − t

′
i
3
))

+

θ1

(
a
2

(
t2i − t

′
i
2
)

+
b
3

(
t3i − t

′
i
3
)

+
c
4

(
t4i − t

′
i
4
))

+

α

(
a

β + 1

(
t
(β+1)
i − t

′(β+1)
i

)
+

b
β + 2

(
t
(β+1)
i − t

′(β+2)
i

)
+

c
β + 3(

t
(β+1)
i − t

′(β+3)
i

)
−
(
1− θ1ti − α

(
ti
β
))(

a (si+1 − ti) +
b
2

(
s2
i+1 − t2i

)
+

c
3
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(
s3
i+1 − t3i

)
+Ho

(
(−p)

∫ t′′i
t
′
i

((1+

θ1

(
t
′′
i − ti − t

)
+ α

(
t
′′β
i − t

β
i − tβ

)
− pθ1CT − pα

(
t
′′β
i − t

′β
i

)
(−a− bti − ct2i ) +

(
a (si+1 − ti) +

b
2

(
s2
i+1 − t2i

)
+

c
3

(
s3
i+1 − t3i

))
(
αβ

(
t
′′(β−1)
i − ti(β−1)

)
− pαβ

(
t
′′(β−1)
i − t

′(β−1)
i

))
+θ1 (−ati − bt2i − ct3i ) + α

(
−ati(β−1) − bti(β+1) − ct(β+2)

i

)
dt+(

1− θ1t
′′
i − αt

′′β
i

)(
a
(
si+1 − t

′′
i

)
+

b
2(

s2
i+1 − t

′′
i

2
)

+
c
3

(
s3
i+1 − t

′′
i

3
)

+

θ1

(
a
2

(
s2
i+1 − t

′′
i

2
)

+
b
3(

s3
i+1 − t

′′
i

3
)

+
c
4

(
si+1

4 − t′′i 4
)

+ α

(
a

β + 1

(
si+1

(β+1) − t′′i (β+1)
)

+
b

β + 2(
si+1

(β+2) − t′′i (β+2)
)

+
c

β + 3

(
si+1

(β+3) − t′′i (β+3)
)

−
(
1− θ1t

′
i − αt

′β
i

)(
a
(
si+1 − t

′
i

)
+

b
2

(
s2
i+1 − t

′
i
2
)

+
c
3(

s3
i+1 − t

′
i
3
)
− θ1

(
a
2

(
s2
i+1 − t

′
i
2
)

+
b
3(

s3
i+1 − t

′
i
3
)

+
c
4

(
si+1

4 − t′i4
)
− α

(
a

β + 1(
si+1

(β+1) − t
′(β+1)
i

)
+

b
β + 2

(
si+1

(β+2) − t
′(β+2)
i

)
+

c
β + 3(

si+1
(β+3) − t

′(β+3)
i

)
+ p

(
a (si+1 − ti) +

b
2

(
s2
i+1 − t2i

)
+

c
3(

s3
i+1 − t3i

) (
θ1CT + α

(
t
′′β
i − t

′β
i

))
−Ho

((
1− θ1t

′′
i − αt

′′β
i

)(
a
(
si+1 − t

′′
i

)
+

b
2(

s2
i+1 − t

′′
i

2
)

+
c
3

(
s3
i+1 − t

′′
i

3
)

+ θ1

(
a
2
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(
s2
i+1 − t

′′
i

2
)

+
b
3

(
s3
i+1 − t

′′
i

3
)

+
c
4(

si+1
4 − t′′i 4

)
+ α

(
a

β + 1(
si+1

(β+1) − t′′i (β+1)
)

+
b

β + 2(
si+1

(β+2) − t′′i (β+2)
)

+
c

β + 3(
si+1

(β+3) − t′′i (β+3)
)

+DC

(
−
∫ t′′i
t
′
i

αβt(β−1)p (−a− bti − ct2i ) dt

+αβt
′(β−1)
i

(
a
(
si+1 − t

′
i

)
+

b
2(

s2
i+1 − t

′
i
2
)

+
c
3

(
s3
i+1 − t

′
i
3
)
− αβt(β−1)

i(
a (si+1 − ti) +

b
2

(
s2
i+1 − t2i

)
+

c
3(

s3
i+1 − t3i

)
− αβt

′′(β−1)
i p

(
a (si+1 − ti) +

b
2(

s2
i+1 − t2i

)
+

c
3

(
s3
i+1 − t3i

)
+

αβt
′(β−1)
i p

(
a (si+1 − ti) +

b
2

(
s2
i+1 − t2i

)

+
c
3

(
s3
i+1 − t3i

)

+So
∫ ti
si

a+ bt+ ct2

(1 + δ (ti − t)) 2 dt

+Lo
∫ ti
si

δ (a+ bt+ ct2)
(1 + δ (ti − t)) 2 dt

+Po

((
a (si+1 − ti) +

b
2

(
s2
i+1 − t2i

)
+

c
3(

s3
i+1 − t3i

) (
−θ1 − αβt(β−1)

i − pαβ
(
t
′′(β−1)
i − t

′(β−1)
i

))
+
(
1− θ1ti − αtβi − pθ1CT − pα

(
t
′′β
i − t

′β
i

))
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(−a− bti − ct2i ) + θ1 (−ati − bt2i − ct3i )

+α
(
−atβi − bt

(β+1)
i − ct(β+2)

i

)
+
∫ ti
si

−δ (a+ bt+ ct2)
(1 + δ (ti − t)) 2 dt

+ (a+ bti + ct2i ) + Sc

((
a (si+1 − ti) +

b
2(

s2
i+1 − t2i

)
+

c
3

(
s3
i+1 − t3i

)
(
−θ1 − αβt(β−1)

i − pαβ
(
t
′′(β−1)
i − t

′(β−1)
i

))
+
(
1− θ1ti − αtβi − pθ1CT − pα

(
t
′′β
i − t

′β
i

))
(−a− bti − ct2i ) + θ1 (−ati − bt2i − ct3i )

+α
(
−atβi − bt

(β+1)
i − ct(β+2)

i

)
(3.22)

δTCD
r (ti, si, n

D
1 )

δsi

= Ho

(∫ t′i−1
ti−1

(((a+ bsi + cs2
i )(

1− θ1t− αtβ − pθ1CT − pα
(
t
′′β
i−1 − t

′β
i−1

))
+θ1 (asi + bs2

i + cs3
i ) + α

(
asβi + bs

(β+1)
i + cs

(β+2)
i

)
dt

+Ho

(∫ t′′i−1

t
′
i−1

((−p) ((a+ bsi + cs2
i )(

1 + θ1

(
t
′′
i−1 − ti−1 − t

)
+ α

(
t
′′β
i−1 − t

β
i−1 − tβ

)
−pθ1CT − pα

(
t
′′β
i−1 − t

′β
i−1

)
+ θ1 (asi + bs2

i + cs3
i )

+α
(
asβi + bs

(β+1)
i + cs

(β+2)
i

)
+
(
1− θ1t− αtβ

)
(a+ bsi + cs2

i ) + θ1 (asi + bs2
i + cs3

i )

+α
(
asβi + bs

(β+1)
i + cs

(β+2)
i

)
dt

+Ho

(∫ si
t
′′
i−1

((
1− θ1t− αtβ

)
(a+ bsi + cs2

i )

+θ1 (asi + bs2
i + cs3

i ) + α
(
asβi + bs

(β+1)
i + cs

(β+2)
i

)
dt

+DC

(∫ t′i−1
ti−1

(
αβt(β−1)

)
(a+ bsi + cs2

i ) dt
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+
∫ t′′i−1

t
′
i−1

(
αβt(β−1)

)
(1− p) (a+ bsi + cs2

i ) dt+∫ si
t
′′
i−1

(
αβt(β−1)

)
(a+ bsi + cs2

i ) dt

−So (ti − si)
a+ bsi + cs2

i

1 + δ (ti − si)

−Loδ (ti − si)
a+ bsi + cs2

i

1 + δ (ti − si)

+Po
(
(a+ bsi + cs2

i )
(
1− θ1ti−1 − αtβi−1 − pθ1CT

−pα
(
t
′′β
i−1 − t

′β
i−1

)
+ θ1 (asi + bs2

i + cs3
i )

+α
(
asβi + bs

(β+1)
i + cs

(β+2)
i

)
− a+ bsi + cs2

i

1 + δ (ti − si)

+Sc
(
(a+ bsi + cs2

i )
(
1− θ1ti−1 − αtβi−1 − pθ1CT

−pα
(
t
′′β
i−1 − t

′β
i−1

)
+ θ1 (asi + bs2

i + cs3
i ) +

α
(
asβi + bs

(β+1)
i + cs

(β+2)
i

)
(3.23)

After obtaining the values of t′is and s′is, from equation 3.22 and 3.23, TCD
r (ti, si, n

D
1 )

and TCD
s (ti, si, n

D
1 ) are calculated for different nD1

′s, from equation 3.20 and 3.21.
Thus obtaining total optimal cost of retailer TCDO

r (tDOi , sDOi , nDO1 ), optimal cost of
supplier TCDO

s (tDOi , sDOi , nDO1 ),Optimal number of replenishment cycles (nDO1 ) and
optimal ordering quantity (QDO) from equation 3.20, 3.21 and 4.11 respectively. Refer
section 3.7 for an example.

3.4.2 Centralized case for a finite planning horizon

In a centralized case scheduled number of replenishment cycle is dependent upon the
suppliers total cost TCC

s (tj, sj, n
C
2 ) and increase in retailer’s cost. Increased retailer’s

cost is obtained by subtracting total optimal cost of retailer TCDO
r (tDOi , sDOi , nDO1 ) dur-

ing decentralized system from total cost of retailer in a centralized system TCC
r (tj, sj, n

C
2 ).

Different cost associated with supplier during the planning horizon for j = 1, 2 . . . nC2

With all the cost function assumed to be same as in decentralized case here supplier’s
total cost = TCC

s (tj, sj, n
C
2 ) =∑nC2

j=1{Ss ∗ n+ Ps ∗ (Ioj + Sj) + (Tc ∗ p+DsAsm ∗ p+
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Rem ∗ p+Ho ∗ p) ∗ Ioj}+ TCC
r (tj, sj, n

C
2 )− TCDO

r (tDOi , sDOi , nDO1 ), (3.24)

where {j = 1, 2 . . . nC2 }. TCC
r (tj, sj, n

CO
2 ) can be obtained from equation 3.20 by

replacing in TCD
s (ti, si, n

D
1 ), ti from optimal tj , si from optimal sj and nDO2 from nCO2 .

QCO can be obtained with similar substitution in QDO.

Solution for centralized case

Considering α, θ1 very small and neglecting their square and higher order, now change
in TCC

s with respect to tj and sj is obtained in equation 3.25 and 3.26 as follows.

δTCC
s (tj, sj, n

C
2 )

δtj

= (Ps+ pTc+ pDsAsm+ pRem)

((
a (sj+1 − tj) +

b
2(

s2
j+1 − t2j

)
+

c
3

(
s3
j+1 − t3j

)
(
−θ1 − αβt(β−1)

j−1 − αβ
(
t
′′
j

(β−1) − t′(β−1)

j

))
+(

1− θ1tj − αtβj − pθ1CT − pα
(
t
′′
j
β − t′βj

)) (
−a− btj − CT 2

j

)
+θ1

(
−atj − bt2j − CT 3

j

)
+ α

(
−atβj − bt

(β+1)
j − CT (β+2)

j

)
−Ps

(∫ tj
sj

δ (a+ bt+ CT 2)
(1 + δ (tj − t)) 2 dt

+
(
a+ btj + CT 2

j

)
+ pHo

(∫ t′′j
t
′
j

((
a (sj+1 − tj) +

b
2

(
s2
j+1 − t2j

)

+
c
3

(
s3
j+1 − t3j

) (
−θ1 − αβt(β−1)

j−1

−αβ
(
t
′′
j

(β−1) − t′(β−1)

j

)
+
(
1− θ1tj − αtβj

−pθ1CT − pα
(
t
′′
j
β − t′βj

) (
−a− btj − CT 2

j

)
+

θ1

(
−atj − bt2j − CT 3

j

)
+ α

(
−atβj − bt

(β+1)
j − CT (β+2)

j

)
dt

+Ho

(∫ t′j
tj

((
−a− btj − CT 2

j

) (
−pθ1CT − pα

(
t
′′
j
β − t′βj

))

+

(
a (sj+1 − tj) +

b
2
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(
s2
j+1 − t2j

)
+

c
3

(
s3
j+1 − t3j

)
(
−αβ

(
t
′′
j

(β−1) − t′(β−1)

j

))
dt+(

1− θ1t
′−αt′βj
j

)(
a
(
sj+1 − t

′
j

)
+

b
2(

s2
j+1 − t

′2
j

)
+

c
3

(
s3
j+1 − t

′3
j

)

+θ1

(
a
2

(
t2j − t

′2
j

)

+
b
3

(
t3j − t

′3
j

)
+

c
4

(
t4j − t

′4
j

)

+α

(
a

β + 1

(
t
(β+1)
j − t′(β+1)

j

)
+

b
β + 2

(
t
(β+2)
j − t′(β+2)

j

)
+

c
β + 3(

t
(β+3)
j − t′(β+3)

j

)
−
(
1− θ1tj − α

(
tβj
))(

a (sj+1 − tj) +
b
2(

s2
j+1 − t2j

)
+

c
3

(
s3
j+1 − t3j

)
+Ho

(
(−p)

∫
t
′
j

t
′′
j ((1+θ1(t′′j −tj−t)

+α
(
t
′′
j
β − tβj − tβ

)
− pθ1CT − pα

(
t
′′
j
β − t′βj

) (
−a− btj − CT 2

j

)
+

(
a (sj+1 − tj) +

b
2

(
s2
j+1 − t2j

)
+

c
3

(
s3
j+1 − t3j

))
(
αβ

(
t
′′
j

(β−1) − t(β−1)
j−1

)
− αβ

(
t
′′
j

(β−1) − t′(β−1)

j

))
+ θ1

(
−atj − bt2j − CT 3

j

)
+α

(
−atβj − bt

(β+1)
j − CT (β+2)

j

)
dt+

(
1− θ1t

′′
j − αt

′′
j
β
) (
a
(
sj+1 − t

′′
j

)
+

b
2

(
s2
j+1 − t

′′
j

2
)

+
c
3

(
s3
j+1 − t

′′
j

3
)

+ θ1

(
a
2

(
s2
j+1 − t

′′
j

2
)

+

b
3

(
s3
j+1 − t

′′
j

3
)

+
c
4

(
s4
j+1 − t

′′
j

4
)

+ α

(
a

β + 1

(
s

(β+1)
j+1 − t

′′
j

(β+1)
)

+
b

β + 2(
s

(β+2)
j+1 − t

′′
j

(β+2)
)

+
c

β + 3

(
s

(β+3)
j+1 − t

′′
j

(β+3)
)
−
(

1− θ1t
′−αt′βj
j

)
(
a
(
sj+1 − t

′
j

)
+

b
2

(
s2
j+1 − t

′2
j

)
+

c
3

(
s3
j+1 − t

′3
j

))
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−θ1

(
a
2

(
s2
j+1 − t

′2
j

)
+

b
3

(
s3
j+1 − t

′3
j

)
+

c
4

(
s4
j+1 − t

′4
j

))

−α
(

a
β + 1

(
s

(β+1)
j+1 − t

′(β+1)

j

)
+

b
β + 2

(
s

(β+2)
j+1 − t

′(β+2)

j

)

+
c

β + 3

(
s

(β+3)
j+1 − t

′(β+3)

j

)
+ p

(
a (sj+1 − tj) +

b
2(

s2
j+1 − t2j

)
+

c
3

(
s3
j+1 − t3j

) (
θ1CT + α

(
t
′′
j
β − t′βj

))
−Ho

((
1− θ1t

′′
j − αt

′′
j
β
)(

a
(
sj+1 − t

′′
j

)
+

b
2(

s2
j+1 − t

′′
j

2
)

+
c
3

(
s3
j+1 − t

′′
j

3
)

+ θ1

(
a
2(

s2
j+1 − t

′′
j

2
)

+
b
3

(
s3
j+1 − t

′′
j

3
)

+
c
4

(
s4
j+1 − t

′′
j

4
)

+α

(
a

β + 1

(
s

(β+1)
j+1 − t

′′
j

(β+1)
)

+
b

β + 2

(
s

(β+2)
j+1 − t

′′
j

(β+2)
)

+
c

β + 3(
s

(β+3)
j+1 − t

′′
j

(β+3)
)

+DC

(
−
∫ t′′j
t
′
j

αβt(β−1)p
(
−a− btj − CT 2

j

)
dt

+αβt

′(β−1)

(
a

(
sj+1−t

′
j

)
+
b
2

(
s2j+1−t

′2
j

)
+
c
3

j(
s3
j+1 − t

′3
j

)
− αβt(β−1)

j−1

(
a (sj+1 − tj) +

b
2

(
s2
j+1 − t2j

)
+
c
3

(
s3
j+1 − t3j

)
− αβt′′j (β−1)p (a (sj+1 − tj)

+
b
2

(
s2
j+1 − t2j

)
+

c
3

(
s3
j+1 − t3j

)
+ αβt

′(β−1)
j p (a (sj+1 − tj)

+
b
2

(
s2
j+1 − t2j

)
+

c
3

(
s3
j+1 − t3j

)
+

So
∫ tj
sj

a+ bt+ CT 2

(1 + δ (tj − t)) 2 dt+

Lo
∫ tj
sj

δ (a+ bt+ CT 2)
(1 + δ (tj − t)) 2 dt+

Po

((
a (sj+1 − tj) +

b
2

(
s2
j+1 − t2j

)
+

c
3
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(
s3
j+1 − t3j

) (
−θ1 − αβt(β−1)

j−1 − αβ
(
t
′′
j

(β−1) − t′(β−1)

j

))
+
(
1− θ1tj − αtβj − pθ1CT − pα

(
t
′′
j
β − t′βj

)) (
−a− btj − CT 2

j

)
+θ1

(
−atj − bt2j − CT 3

j

)
+ α

(
−atβj − bt

(β+1)
j − CT (β+2)

j

)
+
∫ tj
sj

−δ (a+ bt+ CT 2)
(1 + δ (tj − t)) 2 dt+

(
a+ btj + CT 2

j

)
+ Sc

((
a (sj+1 − tj) +

b
2

(
s2
j+1 − t2j

)
+

c
3(

s3
j+1 − t3j

) (
−θ1 − αβt(β−1)

j−1 − αβ
(
t
′′
j

(β−1) − t′(β−1)

j

))
+(

1− θ1tj − αtβj − pθ1CT − pα
(
t
′′
j
β − t′βj

)) (
−a− btj − CT 2

j

)
+

θ1

(
−atj − bt2j − CT 3

j

)
+ α

(
−atβj − bt

(β+1)
j − CT (β+2)

j

)
(3.25)

δTCC
s (tj, sj, n

C
2 )

δsj
= (Ps + pTc + pDsAsm+ pRem)

((
a+ bsj + cs2

j

)
(
1− θ1tj−1 − αtβj−1 − pθ1CT − pα

(
t
′′β
j−1 − t

′β
j−1

))
+θ1

(
asj + bs2

j + cs3
j

)
+ α

(
asβj + bs

(β+1)
j + cs

(β+2)
j

))
−Ps

a+ bsj + cs2
j

1 + δ (tj − sj)

+Hop

(∫ t′′j−1

t
′
j−1

((
a+ bsj + cs2

j

) (
1− θ1tj−1 − αtβj−1 − pθ1CT

−pα
(
t
′′β
j−1 − t

′β
j−1

)
+ θ1

(
asj + bs2

j + cs3
j

)
+ α

(
asβj + bs

(β+1)
j + cs

(β+2)
j

)
dt

+Ho

(∫ t′j−1

tj−1

(((
a+ bsj + cs2

j

) (
1− θ1t− αtβ − pθ1CT

−pα
(
t
′′β
j−1 − t

′β
j−1

)
+ θ1

(
asj + bs2

j + cs3
j

)
+ α

(
asβj + bs

(β+1)
j + cs

(β+2)
j

)
dt+

Ho

(∫ t′′j−1

t
′
j−1

(
(−p)

((
a+ bsj + cs2

j

) (
1 + θ1

(
t
′′
j−1 − tj−1 − t

)
+α

(
t
′′β
j−1 − t

β
j−1 − tβ

)
− pθ1CT − pα

(
t
′′β
j−1 − t

′β
j−1

)
+ θ1

(
asj + bs2

j + cs3
j

)
+α

(
asβj + bs

(β+1)
j + cs

(β+2)
j

)
+
(
1− θ1t− αtβ

) (
a+ bsj + cs2

j

)
+θ1

(
asj + bs2

j + cs3
j

)
+ α

(
asβj + bs

(β+1)
j + cs

(β+2)
j

)
dt

+Ho

(∫ sj
t
′′
j−1

((
1− θ1t− αtβ

) (
a+ bsj + cs2

j

)
+ θ1

(
asj + bs2

j + cs3
j

)
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+α
(
asβj + bs

(β+1)
j + cs

(β+2)
j

)
dt+DC

(∫ t′j−1

tj−1

(
αβt(β−1)

) (
a+ bsj + cs2

j

)
dt

+
∫ t′′j−1

t
′
j−1

(
αβt(β−1)

)
(1− p)

(
a+ bsj + cs2

j

)
dt

+
∫ sj
t
′′
j−1

(
αβt(β−1)

) (
a+ bsj + cs2

j

)
dt−

So (tj − sj)
a+ bsj + cs2

j

1 + δ (tj − sj)
− Loδ (tj − sj)

a+ bsj + cs2
j

1 + δ (tj − sj)

+Po
((
a+ bsj + cs2

j

) (
1− θ1tj−1 − αtβj−1 − pθ1CT − pα

(
t
′′β
j−1 − t

′β
j−1

))
+θ1

(
asj + bs2

j + cs3
j

)
+ α

(
asβj + bs

(β+1)
j + cs

(β+2)
j

)
− a+ bsj + cs2

j

1 + δ (tj − sj)

+Sc
((
a+ bsj + cs2

j

) (
1− θ1tj−1 − αtβj−1 − pθ1CT − pα

(
t
′′β
j−1 − t

′β
j−1

))
+

θ1

(
asj + bs2

j + cs3
j

)
+ α

(
asβj + bs

(β+1)
j + cs

(β+2)
j

)
(3.26)

After obtaining the values of t′js and s′js, TC
C
s (tj, sj, n

C
2 ) and TCC

r (tj, sj, n
C
2 ) are cal-

culated for different n′js, from equation 3.25 and 3.26. Thus obtaining total optimal
cost of supplier TCCO

s (tCOj , sCOj , nCO2 ), optimal cost of retailer
TCCO

r (tCOj , sCOj , nCO2 ), Optimal number of replenishment cycles (nCO2 ) and optimal
ordering quantity (QCO).

Now calculating the systems improved cost. The supplier shares the profit, obtained
due to reduction of replenishment cycles in centralized case compared to decentralized
case, with retailer.

System’s improved cost in centralized case

= Profit = [TCDO
s + TCDO

r ]− [TCCO
s + TCCO

r ] (3.27)

Improved retailer’s cost = TCCOP
r = TCDO

r − TCDO
r

TCDO
r + TCDO

s

and Improved sup-

plier’s cost = TCCOP
s = TCDO

s − TCDO
s

TCDO
r + TCDO

s

.

Percentage profit of retailer =
TCDO

r − TCCOP
r

TCDO
r

∗100 and Percentage profit of retailer

=
TCDO

s − TCCOP
s

TCDO
s

∗ 100.

The profit shared can also be gained by retailer in terms of credit. Where credit period

rate =
TCDO

r − TCCOP
r

Oc ∗ (sCOi+1 − tCOi ) ∗QCO .
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3.5 Optimality condition for TCD
r and TCC

s

δTCD
r

δt2i
,
δTCD

r

δs2
i

,
δTCC

s

δt2j
,
δTCC

s

δt2j
,
∂2TCD

r

∂ti∂si
and

∂2TCD
r

∂si∂ti
can be obtained through

partial differentiation as solved in equation 3.22, 3.23, 3.25 and 3.26. The sufficient
condition for TCD

r to be minimum is that the following Hessian matrix ∇2TCD
r of

TCD
r for a fixed n1 is positive definite Sarkar, Ghosh, and Chaudhuri (2012b). Where

∇2TCD
r =



∂2TCDr
∂t21

∂2TCDr
∂t1∂s1

0 0 0 0 0 0 0

∂2TCDr
∂s1∂t1

∂2TCDr
∂s21

∂2TCDr
∂s1∂t2

0 0 0 0 0 0

0
∂2TCDr
∂t2∂s1

∂2TCDr
∂t21

∂2TCDr
∂t2∂s2

0 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0
∂2TCDr

∂tn1−1∂sn1−2

∂2TCDr
∂t2n1−1

∂2TCDr
∂tn1−1∂sn1−1

0

0 0 0 0 0 0
∂2TCDr

∂sn1−1∂tn1−1

∂2TCDr
∂s2n1−1

∂2TCDr
∂sn1−1∂tn1

0 0 0 0 0 0 0
∂2TCDr

∂tn1∂sn1−1

∂2TCDr
∂t2n1



.

(3.28)

Theorem 1 : If ti and si satisfy inequations (i)
∂2TCD

r

∂t2i
>0, (ii)

∂2TCD
r

∂s2
i

>0, (iii)

∂2TCD
r

∂t2i
− ∂2TCD

r

∂ti∂si
>0 and (iv)

∂2TCD
r

∂s2
i

− ∂2TCD
r

∂si∂ti
>0 for i = 1, 2 . . . nD1 then

∇2TCD
r is positive definite.

The same can be used to show that ∇2TCC
s is a positive definite and TCC

s (n2, s0,
tc1,sc1, ..., scn2+1) attains a minimum.

Based on the above Theorem 1 the algorithm for the solution is as follows:

3.6 Algorithm for both decentralized and centralized
cases

1. The parameters α , θ1, CT , DC , Po, So, Ho, Lo, a, b, c, p, Sc, Co, β , Tc, DsAsm,
Rem, Ss, Ps and δ are allocated with constant values.

2. In a decentralized case find the optimal ordering schedule.

(a) Set nD1 =1, sD1 =0, s2=H. Calculate t1 from equation 3.22
(b) Set nD1 =2 in equation 3.22.
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(c) With given value of parameter t1 and s1 = 0, calculate s2 from equation 3.22
(d) Now with the values of t1, s2 and s1 = 0 calculate t2 from equation 3.23
(e) Similarly for remaining nDi

′s repeat 2c, 2d calculate all respective, unique and
optimal values of t′is and s′is with euations 3.22 and 3.23

(f) For nD1 = 1 and if TCD
r

(
nD1
)
< TCD

r

(
nD1 + 1

)
,then TCD

r

(
nD1
)

= TCDO
r

(
nD1
)
.Stop

(g) For nD1 ≥ 2 and if TCD
r

(
nD1
)
< TCD

r

(
nD1 − 1

)
and

TCD
r

(
nD1
)
< TCD

r

(
nD1 + 1

)
, then TCD

r

(
nD1
)

= TCDO
r

(
nD1
)
, nDO1 = nD1

and stop else let nD1 = nD1 + 1 and goto step

3. In a decentralized case the optimal replenishment cycle for retailer and supplier is
nDO1 = n1.

4. Calculate TCDO
r

(
nDO1 , s1, t

DO
1 , sDO2 , ..., snDO1 +1

)
,

TCDO
s

(
nDO1 , s1, t

DO
1 , sDO2 , ..., snDO1 +1

)
and QDO from equations 3.20, 3.21 and

4.11 respectively.

5. In a centralized case find the optimal ordering schedule.

(a) Set nC2 =1, s1=0, s2=H. Calculate t1 from equation 3.25
(b) Set nC2 =2 in equation 3.25.
(c) With given value of parameter t1 and s1 = 0, calculate s2 from equation 3.25
(d) Now with the values of t1, s2 and s1 = 0 calculate t2 from equation 3.26
(e) Similarly for remaining nCj

′s repeat 5c, 5d calculate all respective, unique and
optimal values of tCj

′s and sCj
′s with euations 3.25 and 3.26

(f) For nC2 = 1 and if TCC
s

(
nC2
)
< TCC

s

(
nC2 + 1

)
,then

TCC
s

(
nC2
)

= TCCO
s

(
nC2
)
.Stop

(g) For nC2 ≥ 2 and if TCC
s

(
nC2
)
< TCC

s

(
nC2 − 1

)
and TCC

s

(
nC2
)
< TCC

s

(
nC2 + 1

)
,

then TCC
s

(
nC2
)

= TCCO
s

(
nC2
)
, nCO2 = nC2 and stop else let nC2 = nC2 + 1,

and goto step 5c

6. Following steps 2 to 5 calculate tCj , sCj , nCO2 , TCCO
s , TCCO

r , QCO.

7. Calculate Profit, TCCOP
r , TCCOP

s and λ.

3.7 Example to distinguish both the cases and obtaining
profit in a green supply chain
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TABLE 3.1: Total cost of retailer in a decentralized case

TCD
r

TCD
s

↓
a
→ n1 1 2 3 4 5 6 7

1425. 50369.2 46697.4 46609.9 47927.4 50155.2 53125. 56766.2
1500 52676.9 48810.9 48653.1 49935.2 52141.4 55095.7 58724.7
1575. 54984.7 50924.3 50696.2 51943. 54127.5 57066.5 60683.2

when
n1 = 3
34812.7
35583.4
36354.2

TABLE 3.2: Optimal schedule for retailer in a decentralized case

a nDO1 s1 s2 s3 s4

1425. 3 0 0.8257 1.9838 4.
1500 3 0 0.8237 1.9804 4.
1575. 3 0 0.8219 1.9773 4.

a nDO1 t1 t2 t3
1425. 3 0.0002 0.826 1.9843
1500 3 0.0002 0.824 1.9809
1575. 3 0.0002 0.8222 1.9778
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TABLE 3.3: Total Cost of supplier in a centralized case

↓
a
→ n1 1 2 3 4

1425. 32108.9 22999.3 27302.8 38647.8
1500 33604.9 23744.5 27722.6 38864.6
1575. 35086.1 24489.8 28142.4 39081.4

TABLE 3.4: Optimal schedule for supplier in a centralized case

a nCO2 s1 s2 s3
1425. 2 0 2.1551 4.
1500 2 0 2.1531 4.
1575. 2 0 2.1514 4.

a nCO2 t1 t2
1425. 2 0.0012 2.1563
1500 2 0.0012 2.1544
1575. 2 0.0012 2.1526
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Keeping a note of our main assumption that the setup cost of the supplier is greater
than ordering cost of retailer an example has been framed. The values of different
parameters are taken as follows. α = 0.0009, θ1 = 0.0009, DC = 600, Po = 5, So =
290, Ho = 1, Lo = 600, b = 50, c = 15, p = 0.005, Sc = 0.64, Co = 300, β = 1.5,
Tc = 300, DsAsm = 35, Rem=300, Ss = 2000, Ps = 0.9, δ = 10, Oc = 0.7, H = 4

and t′′i − t
′
i = t

′
i − ti =

H
4
.

Also three different values of a that is a = 1425, 1500 and 1575 are considered
for comparision. Shown in the table 5.1 the total optimal cost of the retailer in the
decentralized system, TCDO

r = 46609.9, 48653.1 and 50696.2 for a = 1425, 1500
and 1575 respectively. The corresponding TCDO

s = 34812.7, 35583.4 and 36354.2.
Table 5.2 is for the optimal schedule when n1 = 3 and a = 1425, 1500 and 1575. For
centralized case table 5.3 shows nCO2 = 2 which is less than nDO1 = 3 for all three
a’s and corresponding TCCO

s = 22999.3, 23744.5 and 24489.8 total optimal cost of
supplierTCCO

s (tCOj , sCOj , nCO2 ) in the centralized system where the optimal schedule
is decided by the supplier. The optimal replenishment schedule so obtained for the
corresponding "a" value is given in table 3.4. Column 12 of table ?? shows that profit
percentage decreases with increase in the value of a. And with an increase in a, credit
period rate λ also decreases.
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FIGURE 3.2: For Lo



3.7.
E

xam
ple

to
distinguish

both
the

cases
and

obtaining
profitin

a
green

supply
chain67

FIGURE 3.3: For Ss
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FIGURE 3.4: For Po
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FIGURE 3.5: For α
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FIGURE 3.6: Convexity
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3.8 Conclusion
From example 1, with small percentage change that is 2 and 5, one by one, in all of
the parameters value, keeping rest of the values unchanged, percentage profit has been
observed. The last column is for percentage profit for both retailer and supplier which
will be same for both retailer and supplier. As shown in table 5.5 and 5.6 for different
parameters profit increases with the increase in value of the parameters like c, Po, DC ,
Lo, Ss, α, Co, δ, β, So. But the profit decreases with increase in value of parameters
a, b, Ps, Ho, p, Sc, Tc, DsAsm, Rem, CT and θ1. Therefore profit decreases with
increase in cost related to remanufacturing that is transportation cost(Tc), dissassembly
cost(DsAsm), remanufacturing cost(Rem) and the time taken(CT = t

′′
i −t

′
i = t

′
i−ti =

H
4

) for remanufacturing. The more the cost associated with remanufacturing, less is

the profit. Profit also decreases with the increase in the amount of inventory delivered
for remanufacturing(p) and screening cost(Sc) of inventory for the defective\repairable
item.

The proposed model will provide a direction for the suppliers in developing coun-
tries like India where the efforts for new startup programs are promoted and initiated.
Suppliers are now moving towards greener inventory management due to the govern-
ment and social pressure. Due to health hazard goods cannot be simply discarded this
in turn also reduces supplier and retailer’s goodwill and compromises their market rep-
utation. Thus there is a dire need of solving problems related to remanufacturing or
repairing. Further, the proposed model can be extended in several ways such as fuzzi-
fying the parameters, increasing the number of retailers, replacing the single item with
multi items and applying inflationary conditions to some or all the cost involved in the
present model.



72
C

hapter3.
A

green
supply

chain
m

odelfortim
e

quadratic
inventory

dependentdem
and

and
partially

backlogging
w

ith
W

eibulldeterioration
underthe

finite
horizon

TABLE 3.6: For δtable1

δ TCDO
r TCDO

s nDO1 QDO TCCO
s TCCO

r

9.5 44347.1 35591.7 3 6734.95 20965.2 23738.8
9.8 44344.5 35586.7 3 6734.94 20965. 23741.4
10.2 44340.9 35580.1 3 6734.93 20964.8 23744.9
10.5 44338.2 35575.1 3 6734.93 20964.6 23747.5
10 44342.7 35583.4 3 6734.94 20964.9 23743.1

δ nCO2 QCO TCCOP
r TCCOP

s

Percentage
improvement
inretailer′s

cost

Percentage
improvement
insupplier′s

cost
9.5 2 6737.13 35234.7 24800.2 19903.9 44.0772 44.0772
9.8 2 6737.13 35224.8 24802.4 19904.1 44.0689 44.0689
10.2 2 6737.13 35211.4 24805.3 19904.3 44.0577 44.0577
10.5 2 6737.14 35201.2 24807.6 19904.5 44.0492 44.0492
10 2 6737.13 35218.1 24803.8 19904.2 44.0633 44.0633
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TABLE 3.7: For b

b TCDO
r TCDO

s nDO1 QDO TCCO
s TCCO

r

47.5 44215.2 35523.9 3 6714.89 20920.9 23680.2
49. 44291.7 35559.6 3 6726.92 20947.3 23717.9
51. 44393.7 35607.2 3 6742.96 20982.5 23768.3
52.5 44470.3 35643. 3 6754.99 21008.9 23806.1
50 44342.7 35583.4 3 6734.94 20964.9 23743.1

b nCO2 QCO TCCOP
r TCCOP

s

Percentage
improvement
inretailer′s

cost

Percentage
improvement
insupplier′s

cost
47.5 2 6717.07 35138. 24731.2 19869.8 44.0663 44.0663
49. 2 6729.11 35186.1 24774.8 19890.4 44.0645 44.0645
51. 2 6745.16 35250.1 24832.9 19917.9 44.0621 44.0621
52.5 2 6757.19 35298.2 24876.5 19938.5 44.0604 44.0604
50 2 6737.13 35218.1 24803.8 19904.2 44.0633 44.0633
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TABLE 3.8: For Lo

Lo TCDO
r TCDO

s nDO1 QDO TCCO
s TCCO

r

570. 44342.7 35583.3 3 6734.94 20965.3 23743.3
588. 44342.7 35583.4 3 6734.94 20965. 23743.2
612. 44342.7 35583.5 3 6734.94 20964.8 23743.1
630. 44342.8 35583.5 3 6734.94 20964.6 23743.
600 44342.7 35583.4 3 6734.94 20964.9 23743.1

Lo nCO2 QCO TCCOP
r TCCOP

s

Percentage
improvement
inretailer′s

cost

Percentage
improvement
insupplier′s

cost
570. 2 6737.13 35217.4 24804.1 19904.4 44.0626 44.0626
588. 2 6737.13 35217.8 24804. 19904.3 44.063 44.063
612. 2 6737.13 35218.3 24803.7 19904.1 44.0636 44.0636
630. 2 6737.14 35218.7 24803.6 19904. 44.064 44.064
600 2 6737.13 35218.1 24803.8 19904.2 44.0633 44.0633
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TABLE 3.9: For Ss

Ss TCDO
r TCDO

s nDO1 QDO TCCO
s TCCO

r

1900. 44342.7 34683.4 3 6734.94 20964.9 23343.1
1960. 44342.7 35223.4 3 6734.94 20964.9 23583.1
2040. 44342.7 35943.4 3 6734.94 20964.9 23903.1
2100. 44342.7 36483.4 3 6734.94 20964.9 24143.1
2000 44342.7 35583.4 3 6734.94 20964.9 23743.1

Ss nCO2 QCO TCCOP
r TCCOP

s

Percentage
improvement
inretailer′s

cost

Percentage
improvement
insupplier′s

cost
1900. 2 6737.13 34718.1 24861.9 19446.2 43.9324 43.9324
1960. 2 6737.13 35018.1 24826.9 19721.1 44.0113 44.0113
2040. 2 6737.13 35418.1 24781. 20087. 44.1148 44.1148
2100. 2 6737.13 35718.1 24747.1 20360.9 44.1913 44.1913
2000 2 6737.13 35218.1 24803.8 19904.2 44.0633 44.0633
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TABLE 3.10: For p

p TCDO
r TCDO

s nDO1 QDO TCCO
s TCCO

r

0.000475 44348.7 25156.1 3 6734.96 48374.1 14144.4
0.00049 44348.7 25190.6 3 6734.96 20953.5 14179.4
0.00051 44348.7 25236.7 3 6734.96 20953.5 14221.8
0.000525 44348.7 25271.3 3 6734.96 20953.6 14253.6
0.0005 44348.7 25213.7 3 6734.96 20953.5 14200.6

p nCO2 QCO TCCOP
r TCCOP

s

Percentage
improvement
inretailer′s

cost

Percentage
improvement
insupplier′s

cost
0.000475 1 6754.38 6986.32 39891. 22627.5 10.0516 10.0516
0.00049 2 6737.17 34406.5 22406. 12726.9 49.4777 49.4777
0.00051 2 6737.17 34410.1 22418.2 12757.1 49.4501 49.4501
0.000525 2 6737.17 34412.8 22427.4 12779.8 49.4295 49.4295
0.0005 2 6737.17 34408.3 22412.1 12742. 49.4639 49.4639
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TABLE 3.11: For α

α TCDO
r TCDO

s nDO1 QDO TCCO
s TCCO

r

0.000855 43967. 35448.3 3 6734.28 21136.5 23623.9
0.000882 44191.7 35529.9 3 6734.67 21033. 23696.2
0.000918 44494.6 35636.2 3 6735.21 20897.5 23789.
0.000945 44724.2 35714.1 3 6735.61 20797.5 23855.9
0.0009 44342.7 35583.4 3 6734.94 20964.9 23743.1

α nCO2 QCO TCCOP
r TCCOP

s

Percentage
improvement
inretailer′s

cost

Percentage
improvement
insupplier′s

cost
0.000855 2 6736.55 34655. 24780.8 19979.5 43.6376 43.6376
0.000882 2 6736.9 34992.4 24794.6 19934.7 43.8932 43.8932
0.000918 2 6737.37 35444.4 24813.3 19873.2 44.2331 44.2331
0.000945 2 6737.73 35784.9 24827.6 19825.8 44.4874 44.4874
0.0009 2 6737.13 35218.1 24803.8 19904.2 44.0633 44.0633
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TABLE 3.12: Senstivity Analysis 1

Parameter

a→

b→

c→

Po →

,

%change
−5%
−2%
+2%
+5%


−5%
−2%
+2%
+5%


−5%
−2%
+2%
+5%


−5%
−2%
+2%
+5%

,

value
1425.
1470.
1530.
1575.

47.5
49.
51.
52.5

14.25
14.7
15.3
15.75

4.75
4.9
5.1
5.25

,

nOP1

3
3
3
3

3
3
3
3

3
3
3
3

3
3
3
3

,

QDOP

6434.29
6614.68
6855.2
7035.59

6714.89
6726.92
6742.96
6754.99

6718.89
6728.52
6741.36
6750.98

6734.94
6734.94
6734.94
6734.94

,

nOP2

2
2
2
2

2
2
2
2

2
2
2
2

2
2
2
2

,

QCOP

6436.39
6616.84
6857.43
7037.88

6717.07
6729.11
6745.16
6757.19

6721.08
6730.71
6743.55
6753.19

6737.13
6737.13
6737.13
6737.13

,

%Profit
44.6143
44.4466
44.2334
44.0807

44.3387
44.3386
44.3385
44.3384

44.3343
44.3369
44.3403
44.3428

43.9516
44.0192
44.1067
44.1703
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TABLE 3.13: Senstivity Analysis 2

Parameter

Ps →

DC →

Ho →

Lo →

,

%change
−5%
−2%
+2%
+5%


−5%
−2%
+2%
+5%


−5%
−2%
+2%
+5%


−5%
−2%
+2%
+5%

,

value
0.855
0.882
0.918
0.945

570.
588.
612.
630.

0.95
0.98
1.02
1.05

570.
588.
612.
630.

,

nOP1

3
3
3
3

3
3
3
3

3
3
3
3

3
3
3
3

,

QDOP

6734.94
6734.94
6734.94
6734.94

6734.77
6734.87
6735.
6735.1

6735.11
6735.
6734.88
6734.78

6734.94
6734.94
6734.94
6734.94

,

nOP2

2
2
2
2

2
2
2
2

2
2
2
2

2
2
2
2

,

QCOP

6737.18
6737.15
6737.12
6737.09

6737.1
6737.12
6737.15
6737.17

6737.13
6737.13
6737.13
6737.14

6737.13
6737.13
6737.13
6737.14

,

%Profit
44.411
44.2026
43.9236
43.7134

43.6327
43.8912
44.2352
44.4926

44.2817
44.1487
43.9804
43.8606

44.3379
44.3383
44.3388
44.3392
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TABLE 3.14: Senstivity Analysis 3

Parameter

Sc →

Co →

Tc →

DsAsm→

,

%change
−5%
−2%
+2%
+5%


−5%
−2%
+2%
+5%


−5%
−2%
+2%
+5%


−5%
−2%
+2%
+5%

,

value
0.608
0.6272
0.6528
0.672

285.
294.
306.
315.

285.
294.
306.
315.

33.25
34.3
35.7
36.75

,

nOP1

3
3
3
3

3
3
3
3

3
3
3
3

3
3
3
3

,

QDOP

6734.94
6734.94
6734.94
6734.94

6734.94
6734.94
6734.94
6734.94

6734.94
6734.94
6734.94
6734.94

6734.94
6734.94
6734.94
6734.94

,

nOP2

2
2
2
2

2
2
2
2

2
2
2
2

2
2
2
2

,

QCOP

6737.13
6737.13
6737.13
6737.13

6737.13
6737.13
6737.13
6737.13

6737.13
6737.13
6737.13
6737.13

6737.13
6737.13
6737.13
6737.13

,

%Profit
44.3392
44.3388
44.3383
44.3379

44.1957
44.2815
44.3956
44.481

44.4566
44.3857
44.2916
44.2213

44.3523
44.3441
44.3331
44.3248



3.8.
C

onclusion
81

TABLE 3.15: Senstivity Analysis 4

Parameter

Rem→

CT →

δ →

β →

,

%change
−5%
−2%
+2%
+5%


−5%
−2%
+2%
+5%


−5%
−2%
+2%
+5%


−5%
−2%
+2%
+5%

,

value
285.
294.
306.
315.

0.095
0.098
0.102
0.105

9.5
9.8
10.2
10.5

1.425
1.47
1.53
1.575

,

nOP1

3
3
3
3

3
3
3
3

3
3
3
3

3
3
3
3

,

QDOP

6734.94
6734.94
6734.94
6734.94

6734.94
6734.94
6734.94
6734.94

6734.94
6734.94
6734.94
6734.94

6734.94
6734.94
6734.94
6734.94

,

nOP2

2
2
2
2

2
2
2
2

2
2
2
2

2
2
2
2

,

QCOP

6737.13
6737.13
6737.13
6737.13

6737.13
6737.13
6737.13
6737.13

6737.13
6737.13
6737.13
6737.13

6737.13
6737.13
6737.13
6737.13

,

%Profit
44.4566
44.3857
44.2916
44.2213

44.3636
44.3487
44.3283
44.3127

44.3379
44.3383
44.3388
44.3392

43.4384
43.9725
44.7128
45.2897
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TABLE 3.16: Senstivity Analysis 5

Parameter

So →

θ →

,

%change
−5%
−2%
+2%
+5%


−5%
−2%
+2%
+5%

,

value
275.5
284.2
295.8
304.5

0.000855
0.000882
0.000918
0.000945

,

nOP1

3
3
3
3

3
3
3
3

,

QDOP

6734.94
6734.94
6734.94
6734.94

6734.7
6734.84
6735.03
6735.18

,

nOP2

2
2
2
2

2
2
2
2

,

QCOP

6737.13
6737.13
6737.13
6737.13

6737.13
6737.13
6737.13
6737.13

,

%Profit
44.3385
44.3385
44.3386
44.3386

44.3408
44.3395
44.3377
44.3363
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Chapter 4

Green Supply coordination model

4.1 Abstract
This paper is mainly about re-manufacturing of an item within the planning horizon.
Re-manufacturing of a product has become a natural requirement in inventory han-
dling. It decreases the burden of inventory for defective kind of items. Another obvious
phenomenon is deterioration of items in inventory. Hence two-parameter Weibull de-
terioration of items is considered in our model. The idea is greening of a supply chain
model through re-manufacturing of defective items after the screening process

4.2 Introduction
Market across the world are looking for a greener management policies in all sectors.
recycling of the products have thus begun to become a vital activity. Apart from in-
creasing the profit margin buyer satisfaction has to be claimed with the implementation
of environment-friendly models for recycling. We have thus derived a model for recy-
cling of the defective products within a replenishment cycle. Jeganathan et al. (2018)
has discussed two-commodity continuous review inventory system with postponed in
demands.

Selvi et al. (2017) has derived a replenishment policy for deteriorating items consid-
ering sorting price, transportation price for back orders minimizing annual total price.
Singh et al. (2017a) is a good model in which the authors have discussed an EOQ
model with items which deteriorates with time and are partially backlogged with short-
ages. Further Singh et al. (2017b) analyzed the inventory replenishment policy under
inflation.

A production, remanufacture and waste disposal Economic production quantity
model was presented by Kundu and Chakrabarti (2018) concluding that policy of re-
cycling is a better strategy as far as carbon emissions are concerned.

Considering returns with different quality grades Sun et al. (2018) in their study
explored the benefits of scheduling the manufacturing and remanufacturing sequence.
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Two types of product green (environmental-friendly) product along with the regular
product was included in the model studied by Raza et al. (2018) with green (environmental-
friendly) product price higher than the regular product. Recently Rani, Ali, and Agarwal
(2017) discussed in the green supply the re-manufacturing of items that are deteriorat-
ing. First to mention a two-parameter Weibull distribution rate and deterioration in an
EOQ model was Philip (1974) and Ghare and Schrader (1963) respectively. Khanra and
Chaudhuri (2003) introduced time-dependent quadratic demand function.

The time quadratic demand function was considered by Ghosh and Chaudhuri (2006),
Manna, Chaudhuri, and Chiang (2007), Singh et al. (2017a), Singh et al. (2017b) and
others.

There is a dire need of deterioration, disassembly and recycling of a product to
be considered and the same is presented here. All the notations and assumptions are
provided in segment 4.3. For two events the model formulation is provided in segment
4.4. In segment 4.5 the optimality condition for the suggested model is discussed.
Finally, the example is given in segment 4.5 further explains the model.

4.3 Assumptions and notations
1. There is no lead time.

2. Demand function is f(τ) = a+ bτ + cτ 2 where τ is time.

3. Deterioration function of time is α1(τ)= βγτ γ−1, 0 < β < 1, γ ≥ 1 is a Weibull
distribution.

4. Different price involved in the model are as follows: purchasing of an item hold-
ing (H($/unit/unittime)), (Po($/unit)), deterioration (DetC($/unit)), lost
sale (Lo($/unit)), setup (Ss($/order)), shortage (So($/unit)), sorting
(Sc($/unit)), ordering (Co($/order)), transportation (Tc($/u-nit)), disassem-
bly (DisAssmb($/unit)), recycling (Rec($/unit)) and oppurtunity price
(Oc($/unit)). These prices are fixed during the finite planning horizon (H).

5. In first event Optimal plan of ordering ndo1 dependents upon total price of buyer
(tcdr) and second event where both supplier (tcCs ) and buyer’s increased price
(tcCr − tcdor ) are used for optimal ordering schedule nC−O2 .

6. sorting of complete product for the two events i.e. Idoi for ith cycle, is required.
The recyclable items which is P ∗ Idoi, after sorting by buyer are shipped by sup-
plier for recycling and disassembly at time τ = τ

′
i . All P ∗ Idoi products are then

shipped to buyer for selling in the ith cycle at τ = τ ”
i .

7. τi {i = 1, 2 . . . nd1} and τj {j = 1, 2 . . . nc2} are the time of replenishment during
both the events.
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8. nd1 and nc2 are number of orders placed in the two events.

9. Ioi or Idoi is the inventory quantity at time τ = τi for event 1.

10. The quantity of inventory that remains with buyer after recylable items are dis-
carded at time τ = τ

′
i in ith cycle is Idsi.

11. The quantity of inventory at time τ = τ ”
i right before p ∗ Idoi recylabled items are

brought in buyers inventory is Idfi.

4.4 Mathematical conceptualization for the suggested
model

There are two segments 4.4.1 and 4.4.2. Firstly the buyer has his own order plan in
next segment buyer follows that of the supplier. Suggested model is as demonstrated in
figure 4.1.

FIGURE 4.1: Pictorial graph of Inventory Model

4.4.1 First event for finite planning horizon
In first event scheduled number of replenishments (nd1) is depends on buyers total max-
imum price (tcdr). Constant rate (α1) of inventory level, deterioration rate (α2) and
quadratic demand function of time dominates the inventory level (Id1i) at any time τ .
Primary equation of the model is as follows:

dId1i(τ)
dτ

+ (α1 + α2) Id1i(τ) = −f (τ), {i = 1, 2 . . . nd2} (4.1)
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where α2 = βγτ γ−1 is the Weibull deterioration rate. Figure 4.1 shows till time
τ = τ

′
i sorting for defective\recyclable items is completed for ith cycle and p ∗ Idoi is

shipped to supplier for recycling. The inventory level at time t with boundary conditions
Id1i
(
τ
′
i

)
= Idτi−1

where τi ≤ t ≤ τ
′
i can be obtained as follows:

Id1i(τ) = Idτi−1
e
α1

(
τ
′
i−t
)

+β

(
τ
′γ
i −τ

γ

)
+

e−(α1t+βτγ)
∫ τ

′
i

τ
eα1u+βuγ f (v)dv. (4.2)

With boundary value Id1i (τi) = Idoi the above equation reduces to

Idτi−1
= Idoie

α1

(
τi−τ

′
i

)
+β

(
τγi −τ

′γ
i

)
−

e
−
(
α1τ
′
i+βτ

′γ
i

) ∫ τ
′
i

τi
eα1u+βuγ f (v)dv. (4.3)

The defected/recyclable items are recycled from time τ ′i to τ ”
i . p ∗ Idoi products

are shipped to buyer for selling at τ ”
i . Id2i(τ) and Id3i(τ) are inventory level at τ for

τ
′
i < t ≤ τ ”

i and τ ”
i < t ≤ τi+1 respectively. For τ ′i < t ≤ τ ”

i with boundary conditions
Id1i
(
τ ”
i

)
= Id2i

(
τ ”
i

)
= Idfi the inventory level at time τ is given by

Id2i(τ) = Idfie
α1(τ”i −t)+β(τ”i γ−τγ)+

e−(α1t+βτγ)
∫ τ”i

τ
eα1u+βuγ f (v)dv. (4.4)

Now since Id1i
(
τ
′
i

)
= Id2i

(
τ
′
i

)
= Idτi−1

− pIdoi , the above equation will be

Idτi−1
− pIdoi = Idfie

α1(τ”i −t)+β(τ”i γ−τγ) + e
−
(
α1τ
′
i+

βτ
′γ
i

∫ τ”i

τ
′
i

eα1u+βuγ f (v)dv. (4.5)

At t = τi+1, ith cycle the number of items are nil. Id3i
(
τ ”
i

)
− pIdoi = Idfi and Id3i (τi+1) is

zero for τ ”
i ≤ t ≤ τi+1 and

Id3i(τ) = e−(α1t+βτγ)
∫ τi+1

τ
eα1u+βuγ f (v)dv. (4.6)

and
Idfi = −pIdoi + e−(α1τ”i +βτ”γi ) ∫ τi+1

τ”i
eα1u+βuγ f (v)dv.. Solving above equations we get Idoi

and Idτi−1
. After substituting the value of Idτi−1

in equation 4.2 we get Id1i(τ) =. Similarly
from equation 4.4 and 4.6 substituting the values of Idτi−1

and Idfi we obtained Id2i(τ) and
Id3i(τ).
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Buyer’s price are as under

Holding price =∑nd1
i=1 H ∗Rd

i =
∑nd1
i=1H

(∫ τ ′i
τi
I1i(τ)dτ

+
∫ τ”i

τ
′
i

I2i(τ)dτ +
∫ τi+1

τ
′
i
′
I3i(τ)dτ. (4.7)

Ordering price = nd1 ∗Or, Deterioration price=∑nd1
i=1 DetC

(∫ τ ′i
τi
α1I1i(τ)dτ +

∫ τ”i
τ
′
i

α1I2i(τ)dτ

+
∫ τi+1

τ”i
α1I3i(τ)dτ

=
∑nd1
i=1DetC

(∫ τ ′i
τi
βγτ γ−1I1i(τ)dτ

+
∫ τ”i

τ
′
i

βγτ γ−1I2i(τ)dτ +
∫ τi+1

τ”i

βγτ γ−1I3i(τ)dτ, (4.8)

price of purchasing =

nd1∑
i=1

Pr ∗ qdi =
nd1∑
i=1

Pr ∗ Idoi (4.9)

and sorting price=

nd1∑
i=1

Sc ∗ Idoi . (4.10)

Number of items in ith cycle = qdi
= Idoi (4.11)

Maximum price of the buyer =
tcdr(τi, τi−1, n

d
1) = total price of purchase + total price to Hold inventory + total price of

Detererioration + sorting price =∑nd1
i=1{Pr

[
Idoi + Si

]
+H

[∫ τ ′i
τi
I1i(τ)dτ

+
∫ τ”i
τ
′
i

I2i(τ)dτ+∫ τi+1

τ”i
I3i(τ)dτ +DetCβγ

[∫ τ ′i
τi
τ γ−1I1i(τ)dτ

+
∫ τ”i

τ
′
i

τ γ−1I2i(τ)dτ +
∫ τi+1

τ”i

τ γ−1I3i(τ)dτ + Sc ∗ Idoi} (4.12)
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Supplier’s price are as under

Setup price in first event = Ss ∗ nd1, Purchase price =
∑nd1
i=1 Ps ∗ Idoi, Transportation

price =
∑nd1
i=1 Tc ∗ p ∗ Idoi, price of Disassembly =

∑nd1
i=1DisAssmb ∗ p ∗ Idoi and price

of recycling =
∑nd1
i=1 Rec ∗ p ∗ Idoi.

Total price of supplier = tcds(τi, τi−1, n
d
1) =∑nd1

i=1{Ss ∗ n+ Ps ∗ Idoi + (Tc ∗ p+

DisAssmb ∗ p+Rec ∗ p+H ∗ p) ∗ Idoi}, {i = 1, 2 . . . nd1} (4.13)

frequency refilling the inventory for a finite planning horizon is nd1

Solution for first event

Taking Cτ = τ
′
i − τi = τ ”

i − τ
′
i . Ignoring exponent 2 and higher for β, α1, change in

tcdr with respect to τi,
δtcdr(τi, τi−1, n

d
1)

δτi
is calculated.

After obtaining the values of τ ′is tc
d
r(τi, τi−1, n

d
1) and tcds(τi, τi−1, n

d
1) are calculated

for different nd1
′s, from equation 4.12 and 4.13. Thus obtaining total optimal price of

buyer tcdor (τ doi , τ
do
i−1, n

do
1 ), optimal price of supplier tcdos (τ doi , τ

do
i−1, n

do
1 ), Optimal number

of replenishment cycles (ndo1 ), (qdo) by 4.12, 4.13 and 4.11 respectively. Example is
presented in segment 4.5.

4.4.2 Second event
Second event’s frequency of refilling cycle relies on the difference in buyer’s price
calculated by deducting tcdor (τ doi , τ

do
i−1, n

do
1 ) by tccr(τj, τj, n

c
2) and suppliers maximum

price tccs(τj, τj, n
c
2).

Supplier’s prices are as under

Supplier’s maximum price as in earlier event
= tccs(τj, τj, n

c
2) =∑nc2

j=1{(Tc ∗ p+DisAssmb ∗ p+Rec ∗ p+H ∗ p) ∗ Ioj + Ss ∗ n+ Ps ∗ Ioj}

+tccr(τj, τj, n
c
2)− tcdor (τ doi , τ

do
i−1, n

do
1 ), (4.14)

where {j = 1, 2 . . . nc2}. tccr(τj, τj, n
co
2 ) can be obtained from equation 4.12 by

replacing in tcds(τi, τi−1, n
d
1), τi from optimal τj , τi−1 from optimal τj and ndo2 from nco2 .

With qdo now to calculate qco .
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Solution for second event

Ignoring exponent 2 and higher for β, α1, now change in tcCs with respect to τj i.e.
δtccs(τj, τj, n

c
2)

δτj
is calculated.

After obtaining the values of τ ′js, tc
c
s(τj, n

c
2) and tccr(τj, n

c
2) are calculated for dif-

ferent n′js. Thus obtaining total optimal price of supplier tccos (τ coj , n
co
2 ), optimal price

of buyer tccor (τ coj , n
co
2 ), Optimal number of replenishment cycles (nco2 ) and (qco) optimal

number of units.
Share of profit with buyer is calculated since the systems optimal price is decreased.
System’s improved price in second event= Profit =

[tcdos + tcdor ]− [tccos + tccor ] (4.15)

Improved buyer’s price = tccopr = tcdor −
tcdor

tcdor + tcdos
and Improved supplier’s price

= tccops = tcdos −
tcdos

tcdor + tcdos
.

Percentage profit of buyer =
tcdor − tccopr

tcdor
∗ 100 and Percentage profit of buyer

=
tcdos − tccops

tcdos
∗ 100.

If buyer opts for credit the rate of credit for a period is given by

=
tcdor − tccopr

Oc ∗ (τ coi+1 − τ coi ) ∗ qco .

4.5 Optimality condition for tcdr and tccs

The
δtcdr
δτ 2
i

,
δtcdr
δτ 2
i−1

,
δtccs
δτ 2
j

,
δtccs
δτ 2
j

,
∂2tcdr

∂τi∂τi−1
and

∂2tcdr
∂τi−1∂τi

can be obtained easily

through partial differentiation. The sufficient condition for tcdr to be minimum is that
the following Hessian matrix ∇2tcdr of tcdr for a fixed n1 is positive definite Sarkar,
Ghosh, and Chaudhuri (2012b). Where∇2tcdr =
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∂2tcdr
∂τ21

∂2tcdr
∂τ1∂τ0

0 0 0 0 0

∂2tcdr
∂τ0∂τ1

∂2tcdr
∂τ20

∂2tcdr
∂τ0∂τ2

0 0 0 0

0 ∂2tcdr
∂τ2∂τ0

∂2tcdr
∂τ21

∂2tcdr
∂τ2∂τ2

0 0 0
... ... ... ... ... ... ...
0 0 0 0 0

∂2tcdr
∂τn1−1∂τn1−2

0

0 0 0 0 0 0
∂2tcdr

∂τn1−1∂τn1

0 0 0 0 0 0
∂2tcdr
∂τ2n1


.(4.16)

If τi and τi−1 satisfy inequations (i)
∂2tcdr
∂τ 2

i

>0, (ii)
∂2tcdr
∂τ 2

i−1

>0, (iii)
∂2tcdr
∂τ 2

i

−

∂2tcdr
∂τi∂τi−1

>0 and (iv)
∂2tcdr
∂τ 2

i−1

− ∂2tcdr
∂τi−1∂τi

>0 for i = 1, 2 . . . nd1 then ∇2tcdr is

positive definite.
The same can be used to show that ∇2tccs is a positive definite and tccs(n2, τ0, τ c1 ,τ c0 ,

..., τ cn2+1) attains a minimum. Where∇2tccs =



∂2tccs
∂τ21

∂2tccs
∂τ1∂τ0

0 0 0 0 0

∂2tccs
∂τ0∂τ1

∂2tccs
∂τ20

∂2tccs
∂τ0∂τ2

0 0 0 0

0 ∂2tccs
∂τ2∂τ0

∂2tccs
∂τ21

∂2tccs
∂τ2∂τ2

0 0 0
... ... ... ... ... ... ...
0 0 0 0 0

∂2tccs
∂τn1−1∂τn1−2

0

0 0 0 0 0 0
∂2tccs

∂τn1−1∂τn1

0 0 0 0 0 0
∂2tccs
∂τ2n1


.(4.17)

TABLE 4.2: Refill optimal frequency for buyer in first event is as follows

Sc ndo1 τ1 τ2 τ3 t4
0.64 2 0 2 3.3291 4.

Example to distinguish both the events and obtaining profit in a green supply chain
To validify the model an example has been solved taking into consideration the

assumptions. The values of different parameters are taken as follows. β = 0.0009,
α1 = 0.09, CT = 0.4, DC = 1, Po = 1, Ho = 5, a = 1500, b = 500, c = 150,

p = 30, Sc = 0.64, Co = 300, γ = 1, Tc = 0.01, DisAssmb = 0.01, Rec = 0.01,

Ss = 2000, Ps = 0.5, δ = 10, H = 4 and τ ”
i − τ

′
i = τ

′
i − τi =

H
4
.
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Shown in the table 5.1 the total optimal price of the buyer in the first system,
tcdor = 6.92112× 106. The corresponding tcdos = 2.16682× 107. Table 5.2 is for the

optimal schedule when n1 = 1 and Sc = 0.64. For second event table 5.3 shows
nco2 = 1 which is equal to ndo1 = 1 for Sc and tccos = 7.07822× 106 total optimal price

of supplier tccos (τ coj , τ
co
j , n

co
2 ) in the second system where the optimal schedule is

confirmed by the supplier. The optimal replenishment schedule so obtained for "Sc"
value is given in table 5.4.
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TABLE 4.5: Percentage profit

Sc tcdor tcdos ndo1 qdo tccos tccor

0.64 6.92112× 106 2.16682× 107 2 143057. 7.07822× 106 1.76245× 107

nco2 qco tccopr tccops

Systems
improved
price

Percentage
improvement
insupplier′s

price
1 142733. 3.88653× 106 5.98024× 106 1.87225× 107 13.5944

Percentage
improvement
insupplier′s

price
13.5944
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4.6 Conclusion
The 13th and 14th column in table 4.5 is for percentage profit for both buyer and sup-
plier which will be same for both buyer and supplier. Both the buyer and supplier has
obtained 13.5944 percentage of profit in the second event where the supplier decides
the optimum replenishment schedule which is a huge margin. In table 4.5 12th, the
column shows that system has considerable improvement in total price i.e. total price is
reduced. This model proposes recycling of items where total setup price of the supplier
is more than the ordering price of the buyer. The suggested model can be extended
in several ways such as fuzzifying the parameters, using inflation to the price involved
in the present model and introducing weibull deterioration as discussed by Singh et al.
(2018a), Singh et al. (2019) and others.
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Chapter 5

Fuzzy parameters for supplier
and retailer coordination in inventory
control

5.1 Abstract
A supply chain model is discussed for materials substances such as metals, ceramics,
or plastics manufactured which is deteriorating in nature. Fuzzy parameters such as
fuzzy deterioration cost, fuzzy holding cost fuzzy inventory carrying cost etcetera are
considered for framing of the model which are later defuzzified using Centroid, Signed
Distance and Graded Mean Representation method. Centralized replenishment policy
in this finite planning horizon model is discussed along with sensitivity analysis.

5.2 Introduction
Along with defined criteria of membership, fuzzy set was introduced by Zadeh (1965).
The EOQ formula including the fuzziness was given by Park (1987). Introduction to
fuzzy arithmetic theory and operation was provided by Kaufman and Gupta (1991).
An operator’s approximation for an interval in a fuzzy number system was provided
by Grzegorzewski (2002) and Mahata and Goswami (2009) solved using Fuzzy Non-
Linear Programming (FNLP) taking different cost as triangular fuzzy numbers. The
solution of EPQ with cost fuzzy in nature are solved by special fuzzy technique(PGP)
Mahapatra, Mandal, and Samanta (2011). De Kumar, Kundu, and Goswami (2003) de-
rived a methodology for the optimum value of the fuzzy total cost. Roy et al. (2007)
allowed payment delay considering fuzzy cost function for fuzzy inflation and deteri-
oration rate. Partial backlogging, demand which is stochastic with deterioration fuzzy,
Halim, Giri, and Chaudhuri (2008) examined an EOQ model. Total profit for fuzzy
inflation, discount environment with constant product deterioration using method UFM
and GRG technique is evaluated by Maity and Maiti (2008).
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For a deteriorating item, optimal inventory decision is derived using a genetic algo-
rithm (GA) for an inventory-based demand by Roy et al. (2009). An EOQ model for
Pareto optimal solution taking fuzzy total costs including shortage, holding and another
cost as triangular fuzzy numbers is investigated by Mahata and Goswami (2009).

With shortages, inventory dependent demand and deteriorating products Valliathal
and Uthayakumar (2010) studied a deterministic model which is fuzzified for different
cost such as set up cost, opportunity cost etc. considering those as triangular fuzzy
numbers and using Signed-distance method to defuzzify.

Product deterioration cost, trade credit, demand rate and other cost considered as
fuzzy numbers, Mahata and Mahata (2011) defuzzified using Graded Mean Integration
Representation method. Taking lost sales rate as triangular fuzzy number ie fuzzify-
ing the backorder rate, Ouyang and Chang (2001) constructed a new fuzzy number,
called as a statistic-fuzzy number, and then developed an algorithm to find the optimal
schedule.

Lin (2008) extended Ouyang and Chang (2001) by fuzzyfying the backorder and
shortage, defuzzyfying using the signed distance method and compared the fuzzy model
with that of the crisp. Other authors discused fuzzy shortages are Gani and Maheswari
(2010) and De and Sana (2013) .

Expressing order quantity as a triangular fuzzy number, Yao and Lee (1996) found
after defuzzification that cost of the crisp model is on the lower side compared to the
fuzzy model.

Triangular fuzzy numbers as input values for an inventory model, the total minimum
cost is found by Gen, Tsujimura, and Zheng (1997), along with inventory replenishment
quantity, transforming a fuzzy model into crisp.

Backorder quantity as a fuzzy triangular number, Chang, Yao, and Lee (1998) com-
pared fuzzy and crisp model finding the centroid of the cost function.

With item quantity as a triangular fuzzy number, Chang (1999) found the centroid
of the fuzzy cost function’s membership function.

Authors considering triangular fuzzy number are Yao and Wu (2000), Wu and Yao
(2003), Gani and Maheswari (2010), and Valliathal and Uthayakumar (2013) and others.

Graded mean method of defuzzification was used by Gani and Maheswari (2010).
Signed Distance Method for defuzzification was considered by Chen and Ouyang (2006),
Ameli, Mirzazadeh, and Shirazi (2011), Roy and Samanta (2009), Valliathal and Uthayaku-
mar (2010), Sadi-Nezhad, Nahavandi, and Nazemi (2011), and Valliathal and Uthayaku-
mar (2013) and others. Centroid method for defuzyfication was used by Petrović, Petro-
vić, and Vujošević (1996) and Yao and Chiang (2003).

In this chapter, we have fuzzified all parameters viz. namely demand, holding, or-
dering, unit cost, excluding cycle length and length of the planning horizon as triangu-
lar fuzzy numbers. The arithmetic operations are defined under the function principle.
The total cost function and order quantity has been defuzzified using Signed Distance
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Method, Centroid Method and Graded Mean Representation Method to obtain the opti-
mal order quantity.

5.3 Assumptions
1. At the starting point of time s1 = 0 there is no inventory.

2. Within each cycle product deterioration is some proportion of ’t’ time.

3. The model is considered with shortages and backloggging in each cycle with rate

κ([) =
1

1 + ρ[
,ρ > 0.

4. Retailer and Supplier has same Capital cost.

5. Set up cost is more than the Ordering cost.

5.4 Notations
Fuzzy point, memership function for level of a fuzzy interval, triangular fuzzy num-
ber is defined as in Jaggi et al. (2012). Also Graded Mean Integration Representation,
Signed Distance, Centroid Method is followed for defuzzification.
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For retailer



H Total length of planning horizon.
f(ã1, b̃1, c̃1; t) time quadratic demand whereã1, b̃1,

= ã1 + b̃1t+ c̃1t
2 andc̃1are constants.

θ2 = α̃t Deterioration of the inventory where
0 < α̃ < 1.

Ĩhr Holding cost.
C̃c capital cost
h̃ inventory cost, where h̃ = Ĩhr + C̃c
Õr ordering cost
P̃r purchasing cost
s̃ shortage cost
l̃ lost sales cost
θ̃1 Stock dependent demand rate
ĨDi (t) Inventory level in decentralized system
ĨCj (t) Inventory level in centralized system
R̃D
i total inventory for the interval[ti, si+1]

R̃C
j total inventory for the interval[tCj , s

C
j+1]

S̃Di amount of shortages in the interval[si, ti]
S̃Cj total amount of shortages in the interval

[sCj , t
C
j ]for centralized

system
Q̃D
i = R̃D

i + S̃Di quantity ordered
D̃D
i amount of deteriorated items

1. The numer of products deteriorated are D̃D
j and D̃C

j the two system respectively.

2. Quantity of lost sales is denoted by L̃Di and L̃Cj .

3. κ([) =
1

1 + ρ[
,ρ > 0, is the backlogging rate and [ is the time that customer has

to wait.

4. Retailer has T̃C
D

r and T̃C
C

r as the total cost for two cases and T̃C
D

s and T̃C
C

s is
for supplier.

For supplier
{
S̃s($/order) Cost for set up
P̃s($/unit) per product purchase

5.5 Determining parameters
1. Time of refilling for different cycles are ti {i = 1, 2, ..., n1}.
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2. Commencement of shortage in each cycle is at si {i = 1, 2, ..., n1} and sCj {j =
1, 2, ..., n2} where s1 = 0 and sn1+1 = H .

3. Total numer of refilling are n1 and n2.

4. The rate of credit is λ̃.

5.6 Conceptualization
Fig.1 displays the replenishment, reduction of inventory during the finite planning hori-
zon. Inventory reduces due to sale and deterioration. Also shown is that during shortage
period in every cycle lost of sale has occurred. Shortage period is between the interval
[si, ti] where {i = 1, 2, ..., n1}.

In a decentralized system the retailer decides the number of replenishment cycle
while in a centralized system supplier decides for the number of replenishment cycles
in a finite planning horizon. We have fuzzyfied the model and have compared the result
using three different of defuzzyication.

Since this chapter is an extension Singh et al. (2017a), the differential equation and
total cost of the supplier in present model is same as (1), (2) and (17) of Singh et al.
(2017a).

The fuzzyfied total cost of retailer is
T̃C

D

r (n1, s1, t1, ..., sn1+1) = n1Õr+h̃
∑n1
i=1

∫ si+1
ti IDi (t)dt+P̃r

∑n1
i=1 Q̃

D
i +P̃r

∑n1
i=1 D̃

D
i +

s̃
∑n1
i=1 S̃

D
i + l̃

∑n1
i=1 L̃

D
i

To minimize T̃C
C

s we calculate the values of tj and sj . Taking fi(ai, bi, ci; t) =
a1+b1t+c1t

2i = 1, 2, 3, T = (tj − t) , TSj = (sj − tj−1) , Tj = (tj − sj) and applying
Centroid Method for defuzzyfication the necessary condition to minimize T̃C

C

s are
∂ ˜TC

C

s (tj, sj;n1)
∂tj

=0 and ∂T̃C
C

s (tj, sj;n1)
∂sj

=0.

where ∂T̃C
C

s (tj, sj;n1)
∂tj

=((
(hr1 +W1)

∫ sj+1

tj ((α1/ 2)((
t2j
)
− t2

)
+θ1T −1f(a1, b1, c1; t)dt+W1 ∗

∫ sj+1

tj α1 ∗ t (θ1T − 1) f(a1, b1, c1; t)dt

+ (S1 +W1 + l1 ∗ ρ1)
∫ tj
sj
f(a1, b1, c1; t)/

(
(1 + ρ1T )2

)
dt+(

(hr2 +W2)
∫ sj+1

tj

(
(α2/ 2)

((
t2j
)
− t2

)
+ θ2T − 1

)
f(a2, b2, c2; t)dt

+W2 ∗
∫ sj+1

tj α2 ∗ t (θ2T − 1) f(a2, b2, c2; t)dt

+ (S2 +W2 + l2 ∗ ρ2)
∫ tj
sj
f(a2, b2, c2; t)/

(
(1 + ρ2T )2

)
dt+ ((hr3 +W3)∫ sj+1

tj

(
(α3/ 2)

((
t2j
)
− t2

)
+ θ3T − 1

)
f(a3, b3, c3; t)dt
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+W3 ∗
∫ sj+1

tj α3 ∗ t (θ3T − 1) f(a3, b3, c3; t)dt

+ (S3 +W3 + l3 ∗ ρ3)
∫ tj

sj
f(a3, b3, c3; t)/

(
(1 + ρ3T )2

)
dt))/3

(5.1)

and ∂T̃C
C

s (tj, sj;n1)
∂sj

=((
(hr1 +W1)

((
1 + θ1 ∗ sj + (α1/ 2)

(
s2
j

))
TSj

− (θ1/ 2)
((
s2
j

)
−
(
t2j−1

))
− (α1/ 6)((

s3
j

)
−
(
t3j−1

))
f(a1, b1, c1; sj) + (W1 ∗ α1 ∗ sj ((1

+θ1 ∗ sjTSj − (θ1/ 2)
((
s2
j

)
−
(
t2j−1

))
(
a1 + b1 ∗ sj + c1 ∗

(
s2
j

))
− (W1 + S1 + l1 ∗ ρ1) (Tj/ (1 + ρ1 ∗ Tj))

f(a1, b1, c1; sj) + ((hr2 +W2) ((1 + θ2 ∗ sj + (α2/ 2)(
s2
j

)
TSj − (θ2/ 2)

((
s2
j

)
−
(
t2j−1

))
−

(α2/ 6)
((
s3
j

)
−
(
t3j−1

)) (
a2 + b2 ∗ sj + c2 ∗

(
s2
j

))
+ (W2 ∗ α2 ∗ sj ((1 + θ2 ∗ sj)TSj − (θ2/ 2)((
s2
j

)
−
(
t2j−1

))
f(a2, b2, c2; sj)− (W2 + S2 + l2 ∗ ρ2) (Tj/ (1

+ρ2 ∗ Tjf(a2, b2, c2; sj) + ((hr3 +W3) ((1+

θ3 ∗ sj + (α3/ 2)
(
s2
j

)
TSj − (θ3/ 2)

((
s2
j

)
−
(
t2j−1

))
− (α3/ 6)

((
s3
j

)
−
(
t3j−1

))
f(a3, b3, c3; sj)

+
(
W3 ∗ α3 ∗ sj

(
(1 + θ3 ∗ sj)TSj − (θ3/ 2)

((
s2
j

)
−
(
t2j−1

)
f(a3, b3, c3; sj)− (W3 + S3 + l3 ∗ ρ2)

(Tj/ (1 + ρ2 ∗ Tj)) f(a3, b3, c3; sj)3 (5.2)

Similarly with Graded Mean Representation Method we obtain, ∂ ˜TC
C

s (tj, sj;n1)
∂tj

=0 and

∂T̃C
C

s (tj, sj;n1)
∂sj

=0.Where ∂T̃C
C

s (tj, sj;n1)
∂tj

=((
(hr1 +W1)

∫ sj+1

tj

(
(α1/ 2)

((
t2j
)
− t2

)
+ θ1T − 1

)
f(a1, b1, c1; t)dt+W1 ∗

∫ sj+1

tj α1 ∗
t(θ1T − 1) f(a1, b1, c1; t)dt+(S1 +W1 + l1 ∗ ρ1)

∫ tj
sj
f(a1, b1, c1; t)/

(
(1 + ρ1T )2

)
dt+

4 ((hr2 +

W2

∫ sj+1

tj

(
(α2/ 2)

((
t2j
)
− t2

)
+ θ2T − 1

)
f(a2, b2, c2; t)dt+W2 ∗
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∫ sj+1

tj α2 ∗ t (θ2T − 1) (a2 + b2 ∗ t+ c2 ∗ t2) dt+ (S2 +W2 + l2 ∗ ρ2)

∫ tj
sj
f(a2, b2, c2; t)/

(
(1 + ρ2T )2

)
dt+ ((hr3 +W3)∫ sj+1

tj

(
(α3/ 2)

((
t2j
)
− t2

)
+ θ3T − 1

)
f(a3, b3, c3; t)dt+W3 ∗∫ sj+1

tj α3 ∗ t (θ3T − 1) f(a3, b3, c3; t)dt+ (S3 +W3 + l3 ∗ ρ3)

∫ tj

sj
f(a3, b3, c3; t)/

(
(1 + ρ3T )2

)
dt))/6 (5.3)

and ∂T̃C
C

s (tj, sj;n1)
∂sj

=

(((hr1 +W1) ((1 + θ1 ∗ sj + (α1/ 2)(
s2
j

)
TSj − (θ1/ 2)

((
s2
j

)
−
(
t2j−1

))
−

(α1/ 6)
((
s3
j

)
−
(
t3j−1

))
(
a1 + b1 ∗ sj + c1 ∗

(
s2
j

))
+ (W1 ∗ α1 ∗ sj ((1 + θ1 ∗ sj)

TSj − (θ1/ 2)
((
s2
j

)
−
(
t2j−1

))
f(a1, b1, c1; sj)− (W1 + S1 + l1 ∗ ρ1) (Tj/ (1 + ρ1 ∗ Tj))
f(a1, b1, c1; sj) + 4 ((hr2 +W2) ((1 + θ2 ∗ sj + (α2/ 2)(
s2
j

)
TSj − (θ2/ 2)((

s2
j

)
−
(
t2j−1

))
− (α2/ 6)

((
s3
j

)
−
(
t3j−1

))
f(a2, b2, c2; sj) +

(
W2 ∗ α2 ∗ sj

(
(1 + θ2 ∗ sj)TSj − (θ2/ 2)

((
s2
j

)
−
(
t2j−1

)
f(a2, b2, c2; sj)− (W2 + S2 + l2 ∗ ρ2)

(Tj/ (1 + ρ2 ∗ Tj)) f(a2, b2, c2; sj) + ((hr3 +W3)((
1 + θ3 ∗ sj + (α3/ 2)

(
s2
j

))
TSj − (θ3/ 2)((

s2
j

)
−
(
t2j−1

))
− (α3/ 6)

((
s3
j

)
−
(
t3j−1

)
f(a3, b3, c3; sj) + (W3 ∗ α3 ∗ sj ((1 + θ3 ∗ sj)TSj−

(θ3/ 2)
((
s2
j

)
−
(
t2j−1

))
f(a3, b3, c3; sj)−

(W3 + S3 + l3 ∗ ρ2) (Tj/ (1 + ρ2 ∗ Tj)) f(a3, b3, c3; sj)6 (5.4)

And with Graded Mean Representation Method we obtain, ∂ ˜TC
C

s (tj, sj;n1)
∂tj

=0

and ∂T̃C
C

s (tj, sj;n1)
∂sj

=0.Where ∂T̃C
C

s (tj, sj;n1)
∂tj

=((
(hr1 +W1)

∫ sj+1

tj ((α1/ 2)
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((
t2j
)
− t2

)
+θ1T −1f(a1, b1, c1; t)dt+W1 ∗

∫ sj+1

tj α1 ∗ t (θ1T − 1) f(a1, b1, c1; t)dt

+ (S1 +W1 + l1 ∗ ρ1)
∫ tj
sj
f(a1, b1, c1; t)/

(
(1 + ρ1T )2

)
dt+ 2 ((hr2 +W2)∫ sj+1

tj

(
(α2/ 2)

((
t2j
)
− t2

)
+ θ2T − 1

)
f(a2, b2, c2; t)dt+W2 ∗

∫ sj+1

tj α2 ∗ t (θ2T − 1) f(a2, b2, c2; t)dt

+ (S2 +W2 + l2 ∗ ρ2)
∫ tj
sj
f(a2, b2, c2; t)/

(
(1 + ρ2T )2

)
dt

+
(
(hr3 +W3)

∫ sj+1

tj

(
(α3/ 2)

((
t2j
)
− t2

)
+ θ3T − 1

)
f(a3, b3, c3; t)dt

+W3 ∗
∫ sj+1

tj α3 ∗ t (θ3T − 1) f(a3, b3, c3; t)dt+

(S3 +W3 + l3 ∗ ρ3)
∫ tj

sj
f(a3, b3, c3; t)/

(
(1 + ρ3T )2

)
dt))/4 (5.5)

and ∂T̃C
C

s (tj, sj;n1)
∂sj

=

(((hr1 +W1) ((1 + θ1 ∗ sj + (α1/ 2)(
s2
j

)
TSj − (θ1/ 2)

((
s2
j

)
−
(
t2j−1

))
− (α1/ 6)

((
s3
j

)
−
(
t3j−1

))
f(a1, b1, c1; sj)

+ (W1 ∗ α1 ∗ sj ((1 + θ1 ∗ sj)TSj − (θ1/ 2)((
s2
j

)
−
(
t2j−1

))
f(a1, b1, c1; sj)− (W1 + S1 + l1 ∗ ρ1)

(Tj/ (1 + ρ1 ∗ Tj)) f(a1, b1, c1; sj) + 2 ((hr2 +W2)((
1 + θ2 ∗ sj + (α2/ 2)

(
s2
j

))
TSj

− (θ2/ 2)
((
s2
j

)
−
(
t2j−1

))
− (α2/ 6)((

s3
j

)
−
(
t3j−1

))
f(a2, b2, c2; sj) + (W2 ∗ α2 ∗ sj ((1 + θ2 ∗ sj)TSj

− (θ2/ 2)
((
s2
j

)
−
(
t2j−1

))
f(a2, b2, c2; sj)

− (W2 + S2 + l2 ∗ ρ2) (Tj/ (1 + ρ2 ∗ Tj)) f(a2, b2, c2; sj)

+
(
(hr3 +W3)

((
1 + θ3 ∗ sj + (α3/ 2)

(
s2
j

))
TSj

− (θ3/ 2)
((
s2
j

)
−
(
t2j−1

))
− (α3/ 6)((

s3
j

)
−
(
t3j−1

))
f(a3, b3, c3; sj) + (W3 ∗ α3 ∗ sj ((1+

θ3 ∗ sjTSj − (θ3/ 2)
((
s2
j

)
−
(
t2j−1

))

f(a3, b3, c3; sj)− (W3 + S3 + l3 ∗ ρ2) (Tj/ (1 + ρ2 ∗ Tj)) f(a3, b3, c3; sj)))/4 (5.6)

As shown in table 5.1 total number of replenishment cycles are 4. And the total
number of refilling cycles calculated and suggested by supplier is 2 as shown in table
5.2. Optimal schedule for supplier in a decentralized is shown in table 5.3 by three dif-
ferent defuzzyication methods, Centroid Method, Graded Mean Representation Method
and Signed Distance Method. As shown in table 5.4 percentage profit is maximum by
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FIGURE 5.1: Model description

centroid method of defuzzyication for retailer and for supplier it is by Graded Mean
Method of defuzzyication.

5.7 Optimality condition for T̃CD
r and T̃CC

s

The sufficient condition for T̃C
D

r to be minimum is that the following Hessian ma-
trix ∇2T̃C

D

r ofT̃C
D

r for a fixed n1 is positive definite Sarkar, Ghosh, and Chaudhuri
(2012b).

∇2T̃C
D

r =



∂2T̃C
D

r

∂t21

∂2T̃C
D

r

∂t1∂s1
0 0 0 0 0 0 0

∂2T̃C
D

r

∂s1∂t1

∂2T̃C
D

r

∂s21

∂2T̃C
D

r

∂s1∂t2
0 0 0 0 0 0

0
∂2T̃C

D

r

∂t2∂s1

∂2T̃C
D

r

∂t21

∂2T̃C
D

r

∂t2∂s2
0 0 0 0 0

... ... ... ... ... ... ... ... ...

0 0 0 0 0
∂2T̃C

D

r

∂tn1−1∂sn1−2

∂2T̃C
D

r

∂t2n1−1

∂2T̃C
D

r

∂tn1−1∂sn1−1

0

0 0 0 0 0 0
∂2T̃C

D

r

∂sn1−1∂tn1−1

∂2T̃C
D

r

∂s2n1−1

∂2T̃C
D

r

∂sn1−1∂tn1

0 0 0 0 0 0 0
∂2T̃C

D

r

∂tn1∂sn1−1

∂2T̃C
D

r

∂t2n1


(5.7)
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TABLE 5.1: Optimal total cost suggested by retailer

T̃C
D

r

↓
c̃ = 0.8

→ n1 1 2 3 4 5 6 7

C.M. 525.777 369.339 313.198 301.936 311.587 331.785 357.905
Signed. D.M. 525.577 369.198 313.099 301.863 311.528 331.734 357.858
G.M.R.M. 525.377 369.058 313.002 301.791 311.471 331.685 357.815 height

T̃C
D

s

when
n1 = 4
491.7
491.684
491.692

TABLE 5.2: Optimal total cost when total refilling cycles are suggested by supplier

T̃C
C

s

↓
c̃ = 0.8

→ n1 1 2 3 4 5 6 7

C.M. 363.926 326.378 386.355 491.7 619.033 757.641 902.62
S.D.M. 363.797 326.298 386.318 491.692 619.041 757.658 902.642
G.M.R.M. 363.666 326.218 386.281 491.684 619.049 757.676 902.666 height

T̃C
C

r

when
n1 = 2
369.339
369.058
369.198
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TABLE 5.3: Refilling schedule as suggested by supplier

c̃ = 0.8 nCO2 s1 s2 s3
C.M. 2 0 2.52914 3.99999
G.M.R.M 2 0 2.53169 3.99999
S.D.M. 2 0 2.53042 3.99999

c̃ = 0.8 nCO2 t1 t2
C.M. 2 0.909663 2.70008
G.M.R.M 2 0.911067 2.70181
S.D.M. 2 0.910364 2.70094
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TABLE 5.4: Percentage profit when c̃ = 0.8

Decent−
ralized
system

c̃ = 0.8 T̃C
DO

r T̃C
DO

s nDO1 QDO λmin λmax λ̄
C.M. 301.936 491.7 4 38.9321 0.460187 1.59805 1.02912

G.M.R.M. 301.791 491.684 4 38.9117 0.453455 1.57345 1.01345
S.D.M. 301.863 491.692 4 38.9218 0.456822 1.58575 1.02129

Cent−
ralized
system

T̃C
COλ

r T̃C
COλ

s nCO2 QCO
ρT̃C

T̃C
DO

r

ρT̃C

T̃C
DO

s

214.051 414.226 2 63.1288 29.1071 15.7563
216.453 411.538 2 63.1086 28.2773 16.3003
215.253 412.881 2 63.1187 28.6917 16.0286
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TABLE 5.5: Senstivity analysis 1

Parameter

a→

b→

c→

Hr →

hc →

l→

S →

α→

,

%change


−20%
−10%
+10%
+20%


−20%
−10%
+10%
+20%


−20%
−10%
+10%
+20%


−20%
−10%
+10%
+20%


−20%
−10%
+10%
+20%


−20%
−10%
+10%
+20%


−20%
−10%
+10%
+20%


−20%
−10%
+10%
+20%

,

value

5.6
6.3
7.7
8.4

4.
4.5
5.5
6.

0.8
0.9
1.1
1.2

2.4
2.7
3.3
3.6

0.96
1.08
1.32
1.44

9.6
10.8
13.2
14.4

1900.
1960.
2040.
2100.

0.0016
0.0018
0.0022
0.0024

,

CentroidMthd. GradedMthd. SignedMthd.
%Rtlr. %S. %Rtlr. %S. %Rtlr. %S.
30.62 16.53
29.00 15.81
25.96 14.39
24.54 13.69

29.80 17.06
28.18 16.34
25.15 14.94
23.73 14.25

30.21 16.79
28.59 16.08
25.56 14.66
24.14 13.97

29.79 15.86
28.57 15.49
26.41 14.66
25.44 14.20

27.86 15.97
27.22 15.82
26.12 15.42
25.65 15.18

28.84 15.90
27.90 15.65
26.26 15.04
25.55 14.69

29.11 15.76
28.27 15.42
26.66 14.77
25.89 14.44

28.28 16.30
27.44 15.97
25.85 15.31
25.09 14.99

28.69 16.03
27.85 15.69
26.25 15.04
25.49 14.72

32.27 16.56
29.66 15.79
25.57 14.51
23.97 14.02

31.43 17.08
28.83 16.30
24.77 15.07
23.19 14.58

31.85 16.82
29.25 16.04
25.17 14.79
23.58 14.30

28.89 14.19
27.93 14.79
27.29 15.19
27.36 15.15

27.71 14.97
26.97 15.43
26.59 15.66
26.75 15.56

28.39 14.52
27.47 15.10
26.95 15.42
27.10 15.33

30.89 17.17
29.03 16.05
26.12 14.27
24.99 13.57

30.12 17.68
28.23 16.58
25.29 14.83
24.15 14.13

30.50 17.42
28.63 16.32
25.70 14.55
24.57 13.85

27.53 15.14
27.49 15.12
27.41 15.07
27.37 15.04

26.72 15.69
26.68 15.66
26.60 15.61
26.56 15.59

27.12 15.41
27.08 15.39
27.00 15.34
26.96 15.32

27.47 15.10
27.46 15.10
27.45 15.09
27.44 15.09

26.65 15.64
26.64 15.64
26.63 15.63
26.62 15.63

27.05 15.37
27.05 15.37
27.04 15.36
27.04 15.36
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TABLE 5.6: Senstivity analysis 2

Parameter

Sr →

Cs →

ρ→

θ →

%change
−20%
−10%
+10%
+20%


−20%
−10%
+10%
+20%


−20%
−10%
+10%
+20%


−20%
−10%
+10%
+20%

value
32.
36.
44.
48.

0.24
0.27
0.33
0.36

4.8
5.4
6.6
7.2

0.16
0.18
0.22
0.24

C.M. G.M. S.M. C.M. G.M. S.M.
27.69 13.98
27.56 14.53
27.34 15.65
27.24 16.21

26.71 15.09
26.67 15.36
26.60 15.91
26.57 16.19

27.34 13.70
27.19 14.53
26.91 16.20
26.80 17.03

27.70 15.31
27.57 15.20
27.33 14.98
27.20 14.87

26.88 15.86
26.76 15.75
26.51 15.52
26.39 15.41

27.29 15.59
27.17 15.48
26.92 15.25
26.80 15.14

28.42 15.61
27.90 15.33
27.07 14.88
26.73 14.70

28.13 16.45
27.55 16.14
26.63 15.66
26.26 15.46

28.02 15.87
27.49 15.60
26.66 15.16
26.32 14.98

27.94 15.32
27.69 15.21
27.21 14.98
26.98 14.87

27.13 15.87
26.88 15.75
26.4 15.53
26.17 15.42

27.53 15.59
27.29 15.48
26.81 15.25
26.58 15.15
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5.8 Conclusion
Mentioned are the two tables of sensitivity analysis. For all the parameters, observations
have been recorded with 10% and 20% of the increase and 10% and 20% of decrease
of the parameter’s actual value. These values are mentioned in column number 3 of the
table 5.5 and 5.6.

%profit of the retailer is maximum with the Centroid Method than compared to the
other two methods for all the parameters. For -20% of parameters value, the maximum
rise is by l that is 30.89% and minimum rise is by α that is 27.47%. %profit of supplier
is maximum with Graded Mean Representation Method. The maximum rise is by l and
the minimum is obtained by a change in hc.

%profit of the retailer is minimum with Graded Mean Representation Method. For
-20% of parameters value, minimum fall is due to α that is 26.65%. %profit of supplier
is minimum with Graded Mean Representation Method. For -20% of the parameters
value, the minimum rise is by alpha 26.65%. Except for Sr, %profit of the retailer
is minimum with Centroid Method. The study can be extended for the inclusion of
Weibull deterioration of the product, inflation of cost and greening of the supply chain
as in Singh et al. (2017b), Singh et al. (2018b) and Singh et al. (2019).
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Appendix A

Program in software Mathematica
version 8.1

The excerpts of the program for table formulation given for copyright is as given below:
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FIGURE A.1: Copyright Submission



percentage = H 0.95 0.98 1.02 1.05 1 L;

foralpha = Table@alphainitial@@1, 1DD * percentage@@1, iDD, 8j, 1, 1<, 8i, 1, 5<D;

8Α = 0.0009, Θ1 = 0.0009, CT = 0.1, DC = 600, Po = 5, So = 290, Ho = 1, Lo = 600,

a = 1500, b = 50, c = 15, p = 0.005, Sc = 0.64, Co = 300, Β = 1.5, Tcp = 1, Tc = 300,

DsAsmp = 1.25, DsAsm = 35, Remp = 10, Rem = 300, Ss = 2000, Ps = 0.9, ∆ = 10<; TCRIND =

TableBâ
j=1

j=i
i * Co + â

j=1

j=i HPo + ScL * Ha HTabforsiv@@i, j + 1DD - Tabfortiv@@i, jDDL +

Hb � 2L HTabforsiv@@i, j + 1DD^2 - Tabfortiv@@i, jDD^2L +

Hc � 3L HTabforsiv@@i, j + 1DD^3 - Tabfortiv@@i, jDD^3LL
H1 - Θ1 * Tabfortiv@@i, jDD - foralpha@@1, vDD * Tabfortiv@@i, jDD^Β -

p * HΘ1 * HTabfortiv@@i, jDD + 2 * CT - Tabfortiv@@i, jDD + CTL + foralpha@@1,

vDD * HHTabfortiv@@i, jDD + 2 * CTL^Β - Tabfortiv@@i, jDD^ΒLLL +

Θ1 * HHa � 2L HTabforsiv@@i, j + 1DD^2 - Tabfortiv@@i, jDD^2L +

Hb � 3L HTabforsiv@@i, j + 1DD^3 - Tabfortiv@@i, jDD^3L + Hc � 4L
HTabforsiv@@i, j + 1DD^4 - HTabfortiv@@i, jDDL^4LL + foralpha@@1, vDD

HHa � HΒ + 1LL HTabforsiv@@i, j + 1DD^HΒ + 1L - Tabfortiv@@i, jDD^HΒ + 1LL +

Hb � HΒ + 2LL HTabforsiv@@i, j + 1DD^HΒ + 2L - Tabfortiv@@i, jDD^HΒ + 2LL +

Hc � HΒ + 3LL HTabforsiv@@i, j + 1DD^HΒ + 3L - Tabfortiv@@i, jDD^HΒ + 3LLL +

à
Tabforsiv@@i,jDD
Tabfortiv@@i,jDDHHa + b * y + c * y^2L � H1 + ∆ * HTabfortiv@@i, jDD - yLLL ây +

â
j=1

j=i
Ho * à

Tabfortiv@@i,jDD
Tabfortiv@@i,jDD+CTHH1 - Θ1 * y - foralpha@@1, vDD * y^ΒL

Ha HTabforsiv@@i, j + 1DD - yL + Hb � 2L HTabforsiv@@i, j + 1DD^2 - y^2L +

Hc � 3L HTabforsiv@@i, j + 1DD^3 - y^3LL +

Θ1 * HHa � 2L HTabforsiv@@i, j + 1DD^2 - y^2L + Hb � 3L HTabforsiv@@
i, j + 1DD^3 - y^3L + Hc � 4L HTabforsiv@@i, j + 1DD^4 - y^4LL +

foralpha@@1, vDD * HHa � HΒ + 1LL HTabforsiv@@i, j + 1DD^HΒ + 1L -

y^HΒ + 1LL + Hb � HΒ + 2LL HTabforsiv@@i, j + 1DD^HΒ + 2L - y^HΒ + 2LL +

Hc � HΒ + 3LL HTabforsiv@@i, j + 1DD^HΒ + 3L - y^HΒ + 3LLL +

H-p HΘ1 * HHTabfortiv@@i, jDD + 2 CTL - HTabfortiv@@i, jDD + CTLL +

foralpha@@1, vDD * HHTabfortiv@@i, jDD + 2 CTL^Β - HTabfortiv@@i,

jDD + CTL^ΒLLL Ha HTabforsiv@@i, j + 1DD - Tabfortiv@@i, jDDL +

Hb � 2L HTabforsiv@@i, j + 1DD^2 - Tabfortiv@@i, jDD^2L +

Hc � 3L HTabforsiv@@i, j + 1DD^3 - Tabfortiv@@i, jDD^3LLL ây +

â
j=1

j=i
Ho * à

Tabfortiv@@i,jDD+CT

Tabfortiv@@i,jDD+2 CTHH-p HHa HTabforsiv@@i, j + 1DD - Tabfortiv@@i, jDDL +

Hb � 2L HTabforsiv@@i, j + 1DD^2 - Tabfortiv@@i, jDD^2L +

Hc � 3L HTabforsiv@@i, j + 1DD^3 - Tabfortiv@@i, jDD^3LL
H1 - Θ1 * Tabfortiv@@i, jDD - foralpha@@1, vDD * Tabfortiv@@i, jDD^Β -

p HΘ1 * HTabfortiv@@i, jDD + 2 * CT - Tabfortiv@@i, jDD + CTL +

foralpha@@1, vDD * HHTabfortiv@@i, jDD + 2 * CTL^Β -

Tabfortiv@@i, jDD^ΒLL + Θ1 HTabfortiv@@i, jDD + 2 * CT - yL +

foralpha@@1, vDD HHTabfortiv@@i, jDD + 2 * CTL^Β - y^ΒLL +

Θ1 * HHa � 2L HTabforsiv@@i, j + 1DD^2 - Tabfortiv@@i, jDD^2L +

+
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Θ1 * HHa � 2L HTabforsiv@@i, j + 1DD^2 - Tabfortiv@@i, jDD^2L +

Hb � 3L HTabforsiv@@i, j + 1DD^3 - Tabfortiv@@i, jDD^3L +

Hc � 4L HTabforsiv@@i, j + 1DD^4 - HTabfortiv@@i, jDDL^4LL +

foralpha@@1, vDD HHa � HΒ + 1LL HTabforsiv@@i, j + 1DD^HΒ + 1L -

Tabfortiv@@i, jDD^HΒ + 1LL + Hb � HΒ + 2LL HTabforsiv@@i, j + 1DD^

HΒ + 2L - Tabfortiv@@i, jDD^HΒ + 2LL + Hc � HΒ + 3LL
HTabforsiv@@i, j + 1DD^HΒ + 3L - Tabfortiv@@i, jDD^HΒ + 3LLLL +

HH1 - Θ1 * y - foralpha@@1, vDD * y^ΒL Ha HTabforsiv@@i, j + 1DD - yL +

Hb � 2L HTabforsiv@@i, j + 1DD^2 - y^2L +

Hc � 3L HTabforsiv@@i, j + 1DD^3 - y^3LL + Θ1 * HHa � 2L
HTabforsiv@@i, j + 1DD^2 - y^2L + Hb � 3L HTabforsiv@@i, j + 1DD^3 -

y^3L + Hc � 4L HTabforsiv@@i, j + 1DD^4 - y^4LL + foralpha@@1,

vDD HHa � HΒ + 1LL HTabforsiv@@i, j + 1DD^HΒ + 1L - y^HΒ + 1LL +

Hb � HΒ + 2LL HTabforsiv@@i, j + 1DD^HΒ + 2L - y^HΒ + 2LL +

Hc � HΒ + 3LL HTabforsiv@@i, j + 1DD^HΒ + 3L - y^HΒ + 3LLLLLL ây +

â
j=1

j=i
Ho * à

Tabfortiv@@i,jDD+CT

Tabfortiv@@i,jDD+2 CTHH1 - Θ1 * y - foralpha@@1, vDD * y^ΒL
HHa HTabforsiv@@i, j + 1DD - yL + Hb � 2L HTabforsiv@@i, j + 1DD^2 - y^2L +

Hc � 3L HTabforsiv@@i, j + 1DD^3 - y^3LL +

Θ1 * HHa � 2L HTabforsiv@@i, j + 1DD^2 - y^2L + Hb � 3L HTabforsiv@@
i, j + 1DD^3 - y^3L + Hc � 4L HTabforsiv@@i, j + 1DD^4 - y^4LL +

foralpha@@1, vDD HHa � HΒ + 1LL HTabforsiv@@i, j + 1DD^HΒ + 1L - y^HΒ + 1LL +

Hb � HΒ + 2LL HTabforsiv@@i, j + 1DD^HΒ + 2L - y^HΒ + 2LL +

Hc � HΒ + 3LL HTabforsiv@@i, j + 1DD^HΒ + 3L - y^HΒ + 3LLLLL ây +

â
j=1

j=i
DC * à

Tabfortiv@@i,jDD
Tabfortiv@@i,jDD+CTHforalpha@@1, vDD * Β * y^HΒ - 1L

HHa HTabforsiv@@i, j + 1DD - Tabfortiv@@i, jDDL +

Hb � 2L HTabforsiv@@i, j + 1DD^2 - Tabfortiv@@i, jDD^2L +

Hc � 3L HTabforsiv@@i, j + 1DD^3 - Tabfortiv@@i, jDD^3LL
H1 - Θ1 * y - foralpha@@1, vDD * y^Β - p HΘ1 * HHTabfortiv@@i, jDD + 2 CTL -

HTabfortiv@@i, jDD + CTLL + foralpha@@1, vDD *

HHTabfortiv@@i, jDD + 2 CTL^Β - HTabfortiv@@i, jDD + CTL^ΒLLL +

Θ1 * HHa � 2L HTabforsiv@@i, j + 1DD^2 - Tabfortiv@@i, jDD^2L +

Hb � 3L HTabforsiv@@i, j + 1DD^3 - Tabfortiv@@i, jDD^3L +

Hc � 4L HTabforsiv@@i, j + 1DD^4 - HTabfortiv@@i, jDDL^4LL +

foralpha@@1, vDD * HHa � HΒ + 1LL HTabforsiv@@i, j + 1DD^HΒ + 1L -

Tabfortiv@@i, jDD^HΒ + 1LL + Hb � HΒ + 2LL HTabforsiv@@i, j + 1DD^

HΒ + 2L - Tabfortiv@@i, jDD^HΒ + 2LL + Hc � HΒ + 3LL
HTabforsiv@@i, j + 1DD^HΒ + 3L - Tabfortiv@@i, jDD^HΒ + 3LLLLL ây +

â
j=1

j=i
DC * à

Tabfortiv@@i,jDD+CT

Tabfortiv@@i,jDD+2 CTHforalpha@@1, vDD * Β * y^HΒ - 1L
H-p HHa HTabforsiv@@i, j + 1DD - Tabfortiv@@i, jDDL +

Hb � 2L HTabforsiv@@i, j + 1DD^2 - Tabfortiv@@i, jDD^2L +

L
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CTL + foralpha@@1, vDD * HHTabfortiv@@n1ast@@1DD, jDD + 2 * CTL^Β -

Tabfortiv@@n1ast@@1DD, jDD^ΒLLL +

Θ1 * HHa � 2L HTabforsiv@@n1ast@@1DD, j + 1DD^2 - Tabfortiv@@n1ast@@1DD, jDD^2L +

Hb � 3L HTabforsiv@@n1ast@@1DD, j + 1DD^3 - Tabfortiv@@n1ast@@1DD, jDD^3L +

Hc � 4L HTabforsiv@@n1ast@@1DD, j + 1DD^4 -

HTabfortiv@@n1ast@@1DD, jDDL^4LL +

foralpha@@1, vDD HHa � HΒ + 1LL HTabforsiv@@n1ast@@1DD, j + 1DD^HΒ + 1L -

Tabfortiv@@n1ast@@1DD, jDD^HΒ + 1LL +

Hb � HΒ + 2LL HTabforsiv@@n1ast@@1DD, j + 1DD^HΒ + 2L -

Tabfortiv@@n1ast@@1DD, jDD^HΒ + 2LL +

Hc � HΒ + 3LL HTabforsiv@@n1ast@@1DD, j + 1DD^HΒ + 3L -

Tabfortiv@@n1ast@@1DD, jDD^HΒ + 3LLLL +

Ho * p * Ha HTabforsiv@@n1ast@@1DD, j + 1DD - Tabfortiv@@n1ast@@1DD, jDDL +

Hb � 2L HTabforsiv@@n1ast@@1DD, j + 1DD^2 - Tabfortiv@@n1ast@@1DD, jDD^2L +

Hc � 3L HTabforsiv@@n1ast@@1DD, j + 1DD^3 - Tabfortiv@@n1ast@@1DD, jDD^3LL
H1 - Θ1 * Tabfortiv@@n1ast@@1DD, jDD - foralpha@@1, vDD *

Tabfortiv@@n1ast@@1DD, jDD^Β -

p * HΘ1 * HTabfortiv@@n1ast@@1DD, jDD + 2 * CT - Tabfortiv@@n1ast@@1DD, jDD +

CTL + foralpha@@1, vDD * HHTabfortiv@@n1ast@@1DD, jDD + 2 * CTL^Β -

Tabfortiv@@n1ast@@1DD, jDD^ΒLLL +

Θ1 * HHa � 2L HTabforsiv@@n1ast@@1DD, j + 1DD^2 - Tabfortiv@@n1ast@@1DD, jDD^2L +

Hb � 3L HTabforsiv@@n1ast@@1DD, j + 1DD^3 - Tabfortiv@@n1ast@@1DD, jDD^3L +

Hc � 4L HTabforsiv@@n1ast@@1DD, j + 1DD^4 -

HTabfortiv@@n1ast@@1DD, jDDL^4LL +

foralpha@@1, vDD HHa � HΒ + 1LL HTabforsiv@@n1ast@@1DD, j + 1DD^HΒ + 1L -

Tabfortiv@@n1ast@@1DD, jDD^HΒ + 1LL +

Hb � HΒ + 2LL HTabforsiv@@n1ast@@1DD, j + 1DD^HΒ + 2L -

Tabfortiv@@n1ast@@1DD, jDD^HΒ + 2LL +

Hc � HΒ + 3LL HTabforsiv@@n1ast@@1DD, j + 1DD^HΒ + 3L -

Tabfortiv@@n1ast@@1DD, jDD^HΒ + 3LLL à
Tabfortiv@@n1ast@@1DD, jDD + CT

Tabfortiv@@n1ast@@1DD, jDD + 2 CT

ây ,

8i, 1, 1<F; Print@MatrixForm@TCSINDDD; Print@
"QIND"D;

QIND =

TableB
â

j=1

j=n1ast@@1DD
Ha HTabforsiv@@n1ast@@1DD, j + 1DD - Tabfortiv@@n1ast@@1DD, jDDL +

Hb � 2L HTabforsiv@@n1ast@@1DD, j + 1DD^2 - Tabfortiv@@n1ast@@1DD, jDD^2L +

Hc � 3L HTabforsiv@@n1ast@@1DD, j + 1DD^3 - Tabfortiv@@n1ast@@1DD, jDD^3LL
H1 - Θ1 * Tabfortiv@@n1ast@@1DD, jDD - foralpha@@1, vDD *

Tabfortiv@@n1ast@@1DD, jDD^Β - p *

HΘ1 * HTabfortiv@@n1ast@@1DD, jDD + 2 * CT - Tabfortiv@@n1ast@@1DD, jDD + CTL +

foralpha@@1, vDD * HHTabfortiv@@n1ast@@1DD, jDD + 2 * CTL^

Β - LLL +
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foralpha@@1, vDD * HHTabfortiv@@n1ast@@1DD, jDD + 2 * CTL^

Β - Tabfortiv@@n1ast@@1DD, jDD^ΒLLL +

Θ1 * HHa � 2L HTabforsiv@@n1ast@@1DD, j + 1DD^2 - Tabfortiv@@n1ast@@1DD, jDD^2L +

Hb � 3L HTabforsiv@@n1ast@@1DD, j + 1DD^3 - Tabfortiv@@n1ast@@1DD, jDD^3L +

Hc � 4L HTabforsiv@@n1ast@@1DD, j + 1DD^4 -

HTabfortiv@@n1ast@@1DD, jDDL^4LL +

foralpha@@1, vDD HHa � HΒ + 1LL HTabforsiv@@n1ast@@1DD, j + 1DD^HΒ + 1L -

Tabfortiv@@n1ast@@1DD, jDD^HΒ + 1LL +

Hb � HΒ + 2LL HTabforsiv@@n1ast@@1DD, j + 1DD^HΒ + 2L -

Tabfortiv@@n1ast@@1DD, jDD^HΒ + 2LL +

Hc � HΒ + 3LL HTabforsiv@@n1ast@@1DD, j + 1DD^HΒ + 3L -

Tabfortiv@@n1ast@@1DD, jDD^HΒ + 3LLL +

à
Tabforsiv@@n1ast@@1DD,jDD
Tabfortiv@@n1ast@@1DD,jDDHHa + b * y + c * y^2L �

H1 + ∆ * HTabfortiv@@n1ast@@1DD, jDD - yLLL ây ,

8i, 1, 1<F; Print@MatrixForm@QINDDD; Print@
"TCSJT"D;

TCSJT =

TableB

â
j=1

j=i

Ss * i +

Ps * Ha HTabforsidashv@@i, j + 1DD - Tabfortidashv@@i, jDDL +

Hb � 2L HTabforsidashv@@i, j + 1DD^2 - Tabfortidashv@@i, jDD^2L +

Hc � 3L HTabforsidashv@@i, j + 1DD^3 - Tabfortidashv@@i, jDD^3LL
H1 - Θ1 * Tabfortidashv@@i, jDD - foralpha@@1, vDD *

Tabfortidashv@@i, jDD^Β - p * HΘ1 * HTabfortidashv@@i, jDD +

2 * CT - Tabfortidashv@@i, jDD + CTL + foralpha@@1, vDD *

HHTabfortidashv@@i, jDD + 2 * CTL^Β - Tabfortidashv@@i, jDD^ΒLLL +

Θ1 * HHa � 2L HTabforsidashv@@i, j + 1DD^2 - Tabfortidashv@@i, jDD^2L +

Hb � 3L HTabforsidashv@@i, j + 1DD^3 - Tabfortidashv@@i, jDD^3L +

Hc � 4L HTabforsidashv@@i, j + 1DD^4 - HTabfortidashv@@i, jDDL^4LL +

foralpha@@1, vDD HHa � HΒ + 1LL HTabforsidashv@@i, j + 1DD^HΒ + 1L -

Tabfortidashv@@i, jDD^HΒ + 1LL + Hb � HΒ + 2LL HTabforsidashv@@i,

j + 1DD^HΒ + 2L - Tabfortidashv@@i, jDD^HΒ + 2LL + Hc � HΒ + 3LL
HTabforsidashv@@i, j + 1DD^HΒ + 3L - Tabfortidashv@@i, jDD^HΒ + 3LLL +

à
Tabforsidashv@@i, jDD
Tabfortidashv@@i, jDDHHa + b * y + c * y^2L � H1 + ∆ * HTabfortidashv@@i, jDD - yLLL
ây + HTc + Rem + DsAsmL *

p * HHa HTabforsidashv@@i, j + 1DD - Tabfortidashv@@i, jDDL +

Hb � 2L HTabforsidashv@@i, j + 1DD^2 - Tabfortidashv@@i, jDD^2L +

Hc � 3L HTabforsidashv@@i, j + 1DD^3 - Tabfortidashv@@i, jDD^3LL

188   Lo SS p alpha 4 Variables only program 1.nb



Hc � 3L HTabforsidashv@@i, j + 1DD^3 - Tabfortidashv@@i, jDD^3LL
H1 - Θ1 * Tabfortidashv@@i, jDD - foralpha@@1, vDD * Tabfortidashv@@i, jDD^Β -

p * HΘ1 * HTabfortidashv@@i, jDD + 2 * CT - Tabfortidashv@@i, jDD + CTL +

foralpha@@1, vDD * HHTabfortidashv@@i, jDD + 2 * CTL^Β -

Tabfortidashv@@i, jDD^ΒLLL +

Θ1 * HHa � 2L HTabforsidashv@@i, j + 1DD^2 - Tabfortidashv@@i, jDD^2L +

Hb � 3L HTabforsidashv@@i, j + 1DD^3 - Tabfortidashv@@i, jDD^3L +

Hc � 4L HTabforsidashv@@i, j + 1DD^4 - HTabfortidashv@@i, jDDL^4LL +

foralpha@@1, vDD HHa � HΒ + 1LL HTabforsidashv@@i, j + 1DD^HΒ + 1L -

Tabfortidashv@@i, jDD^HΒ + 1LL + Hb � HΒ + 2LL HTabforsidashv@@i, j + 1DD^

HΒ + 2L - Tabfortidashv@@i, jDD^HΒ + 2LL + Hc � HΒ + 3LL
HTabforsidashv@@i, j + 1DD^HΒ + 3L - Tabfortidashv@@i, jDD^HΒ + 3LLLL +

Ho * p * Ha HTabforsidashv@@i, j + 1DD - Tabfortidashv@@i, jDDL +

Hb � 2L HTabforsidashv@@i, j + 1DD^2 - Tabfortidashv@@i, jDD^2L +

Hc � 3L HTabforsidashv@@i, j + 1DD^3 - Tabfortidashv@@i, jDD^3LL
H1 - Θ1 * Tabfortidashv@@i, jDD - foralpha@@1, vDD * Tabfortidashv@@i, jDD^Β -

p * HΘ1 * HTabfortidashv@@i, jDD + 2 * CT - Tabfortidashv@@i, jDD + CTL +

foralpha@@1, vDD * HHTabfortidashv@@i, jDD + 2 * CTL^Β -

Tabfortidashv@@i, jDD^ΒLLL +

Θ1 * HHa � 2L HTabforsidashv@@i, j + 1DD^2 - Tabfortidashv@@i, jDD^2L +

Hb � 3L HTabforsidashv@@i, j + 1DD^3 - Tabfortidashv@@i, jDD^3L +

Hc � 4L HTabforsidashv@@i, j + 1DD^4 - HTabfortidashv@@i, jDDL^4LL +

foralpha@@1, vDD HHa � HΒ + 1LL HTabforsidashv@@i, j + 1DD^HΒ + 1L -

Tabfortidashv@@i, jDD^HΒ + 1LL + Hb � HΒ + 2LL
HTabforsidashv@@i, j + 1DD^HΒ + 2L - Tabfortidashv@@i, jDD^HΒ + 2LL +

Hc � HΒ + 3LL HTabforsidashv@@i, j + 1DD^HΒ + 3L -

Tabfortidashv@@i, jDD^HΒ + 3LLL à
Tabfortidashv@@i, jDD + CT

Tabfortidashv@@i, jDD + 2 CT

ây + â
j = 1

j = i
i * Co +

â
j=1

j=i HPo + ScL * Ha HTabforsidashv@@i, j + 1DD - Tabfortidashv@@i, jDDL +

Hb � 2L HTabforsidashv@@i, j + 1DD^2 - Tabfortidashv@@i, jDD^2L +

Hc � 3L HTabforsidashv@@i, j + 1DD^3 - Tabfortidashv@@i, jDD^3LL
H1 - Θ1 * Tabfortidashv@@i, jDD - foralpha@@1, vDD * Tabfortidashv@@i, jDD^Β -

p * HΘ1 * HTabfortidashv@@i, jDD + 2 * CT - Tabfortidashv@@i, jDD + CTL +

foralpha@@1, vDD * HHTabfortidashv@@i, jDD + 2 * CTL^Β -

Tabfortidashv@@i, jDD^ΒLLL +

Θ1 * HHa � 2L HTabforsidashv@@i, j + 1DD^2 - Tabfortidashv@@i, jDD^2L +

Hb � 3L HTabforsidashv@@i, j + 1DD^3 - Tabfortidashv@@i, jDD^3L +

Hc � 4L HTabforsidashv@@i, j + 1DD^4 - HTabfortidashv@@i, jDDL^4LL +

foralpha@@1, vDD HHa � HΒ + 1LL HTabforsidashv@@i, j + 1DD^HΒ + 1L -

Tabfortidashv@@i, jDD^HΒ + 1LL + Hb � HΒ + 2LL HTabforsidashv@@i,

j + 1DD^HΒ + 2L - Tabfortidashv@@i, jDD^HΒ + 2LL + Hc � HΒ + 3LL
HTabforsidashv@@i, j + 1DD^HΒ + 3L - Tabfortidashv@@i, jDD^HΒ + 3LLL +

à
Tabforsidashv@@i, jDD
Tabfortidashv@@i, jDDHHa + b * y + c * y^2L � H1 + ∆ * HTabfortidashv@@i, jDD - yLLL

+
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ây +

â
j = 1

j = i
Ho * à

Tabfortidashv@@i, jDD
Tabfortidashv@@i, jDD + CTHH1 - Θ1 * y - foralpha@@1, vDD * y^ΒL

Ha HTabforsidashv@@i, j + 1DD - yL + Hb � 2L HTabforsidashv@@i, j + 1DD^2 -

y^2L + Hc � 3L HTabforsidashv@@i, j + 1DD^3 - y^3LL +

Θ1 * HHa � 2L HTabforsidashv@@i, j + 1DD^2 - y^2L + Hb � 3L
HTabforsidashv@@i, j + 1DD^3 - y^3L +

Hc � 4L HTabforsidashv@@i, j + 1DD^4 - y^4LL + foralpha@@1, vDD *

HHa � HΒ + 1LL HTabforsidashv@@i, j + 1DD^HΒ + 1L - y^HΒ + 1LL +

Hb � HΒ + 2LL HTabforsidashv@@i, j + 1DD^HΒ + 2L - y^HΒ + 2LL +

Hc � HΒ + 3LL HTabforsidashv@@i, j + 1DD^HΒ + 3L - y^HΒ + 3LLL +

H-p HΘ1 * HHTabfortidashv@@i, jDD + 2 CTL - HTabfortidashv@@i, jDD + CTLL +

foralpha@@1, vDD * HHTabfortidashv@@i, jDD + 2 CTL^Β -

HTabfortidashv@@i, jDD + CTL^ΒLLL
Ha HTabforsidashv@@i, j + 1DD - Tabfortidashv@@i, jDDL +

Hb � 2L HTabforsidashv@@i, j + 1DD^2 - Tabfortidashv@@i, jDD^2L +

Hc � 3L HTabforsidashv@@i, j + 1DD^3 - Tabfortidashv@@i, jDD^3LLL ây +

â
j = 1

j = i
Ho * à

Tabfortidashv@@i, jDD + CT

Tabfortidashv@@i, jDD + 2 CTHH-p HHa HTabforsidashv@@i, j + 1DD -

Tabfortidashv@@i, jDDL + Hb � 2L
HTabforsidashv@@i, j + 1DD^2 - Tabfortidashv@@i, jDD^2L +

Hc � 3L HTabforsidashv@@i, j + 1DD^3 - Tabfortidashv@@i, jDD^3LL
H1 - Θ1 * Tabfortidashv@@i, jDD - foralpha@@1, vDD * Tabfortidashv@@i,

jDD^Β - p HΘ1 * HTabfortidashv@@i, jDD + 2 * CT - Tabfortidashv@@
i, jDD + CTL + foralpha@@1, vDD * HHTabfortidashv@@i, jDD +

2 * CTL^Β - Tabfortidashv@@i, jDD^ΒLL +

Θ1 HTabfortidashv@@i, jDD + 2 * CT - yL + foralpha@@1, vDD
HHTabfortidashv@@i, jDD + 2 * CTL^Β - y^ΒLL + Θ1 * HHa � 2L
HTabforsidashv@@i, j + 1DD^2 - Tabfortidashv@@i, jDD^2L + Hb � 3L
HTabforsidashv@@i, j + 1DD^3 - Tabfortidashv@@i, jDD^3L + Hc � 4L
HTabforsidashv@@i, j + 1DD^4 - HTabfortidashv@@i, jDDL^4LL +

foralpha@@1, vDD HHa � HΒ + 1LL HTabforsidashv@@i, j + 1DD^

HΒ + 1L - Tabfortidashv@@i, jDD^HΒ + 1LL +

Hb � HΒ + 2LL HTabforsidashv@@i, j + 1DD^HΒ + 2L -

Tabfortidashv@@i, jDD^HΒ + 2LL + Hc � HΒ + 3LL HTabforsidashv@@
i, j + 1DD^HΒ + 3L - Tabfortidashv@@i, jDD^HΒ + 3LLLL +

HH1 - Θ1 * y - foralpha@@1, vDD * y^ΒL Ha HTabforsidashv@@i, j + 1DD - yL +

Hb � 2L HTabforsidashv@@i, j + 1DD^2 - y^2L + Hc � 3L HTabforsidashv@@
i, j + 1DD^3 - y^3LL + Θ1 * HHa � 2L HTabforsidashv@@i, j + 1DD^

2 - y^2L + Hb � 3L HTabforsidashv@@i, j + 1DD^3 - y^3L +

Hc � 4L HTabforsidashv@@i, j + 1DD^4 - y^4LL + foralpha@@1,

vDD HHa � HΒ + 1LL HTabforsidashv@@i, j + 1DD^HΒ + 1L - y^HΒ + 1LL +

Hb � HΒ + 2LL HTabforsidashv@@i, j + 1DD^HΒ + 2L - y^HΒ + 2LL +

LLLL +
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Hb � HΒ + 2LL HTabforsidashv@@i, j + 1DD^HΒ + 2L - y^HΒ + 2LL +

Hc � HΒ + 3LL HTabforsidashv@@i, j + 1DD^HΒ + 3L - y^HΒ + 3LLLLLL ây +

â
j = 1

j = i
Ho * à

Tabfortidashv@@i, jDD + CT

Tabfortidashv@@i, jDD + 2 CTHH1 - Θ1 * y - foralpha@@1, vDD * y^ΒL
HHa HTabforsidashv@@i, j + 1DD - yL + Hb � 2L HTabforsidashv@@i, j + 1DD^2 -

y^2L + Hc � 3L HTabforsidashv@@i, j + 1DD^3 - y^3LL +

Θ1 * HHa � 2L HTabforsidashv@@i, j + 1DD^2 - y^2L + Hb � 3L
HTabforsidashv@@i, j + 1DD^3 - y^3L +

Hc � 4L HTabforsidashv@@i, j + 1DD^4 - y^4LL + foralpha@@1, vDD
HHa � HΒ + 1LL HTabforsidashv@@i, j + 1DD^HΒ + 1L - y^HΒ + 1LL +

Hb � HΒ + 2LL HTabforsidashv@@i, j + 1DD^HΒ + 2L - y^HΒ + 2LL +

Hc � HΒ + 3LL HTabforsidashv@@i, j + 1DD^HΒ + 3L - y^HΒ + 3LLLLL ây +

â
j = 1

j = i
DC * à

Tabfortidashv@@i, jDD
Tabfortidashv@@i, jDD + CTHforalpha@@1, vDD * Β * y^HΒ - 1L

HHa HTabforsidashv@@i, j + 1DD - Tabfortidashv@@i, jDDL +

Hb � 2L HTabforsidashv@@i, j + 1DD^2 - Tabfortidashv@@i, jDD^2L +

Hc � 3L HTabforsidashv@@i, j + 1DD^3 - Tabfortidashv@@i, jDD^3LL
H1 - Θ1 * y - foralpha@@1, vDD * y^Β - p HΘ1 *

HHTabfortidashv@@i, jDD + 2 CTL - HTabfortidashv@@i, jDD + CTLL +

foralpha@@1, vDD * HHTabfortidashv@@i, jDD + 2 CTL^Β -

HTabfortidashv@@i, jDD + CTL^ΒLLL +

Θ1 * HHa � 2L HTabforsidashv@@i, j + 1DD^2 - Tabfortidashv@@i, jDD^2L +

Hb � 3L HTabforsidashv@@i, j + 1DD^3 - Tabfortidashv@@i, jDD^3L +

Hc � 4L HTabforsidashv@@i, j + 1DD^4 - HTabfortidashv@@i, jDDL^4LL +

foralpha@@1, vDD * HHa � HΒ + 1LL HTabforsidashv@@i, j + 1DD^HΒ + 1L -

Tabfortidashv@@i, jDD^HΒ + 1LL + Hb � HΒ + 2LL
HTabforsidashv@@i, j + 1DD^HΒ + 2L - Tabfortidashv@@i, jDD^HΒ + 2LL +

Hc � HΒ + 3LL HTabforsidashv@@i, j + 1DD^HΒ + 3L -

Tabfortidashv@@i, jDD^HΒ + 3LLLLL ây +

â
j = 1

j = i
DC * à

Tabfortidashv@@i, jDD + CT

Tabfortidashv@@i, jDD + 2 CTHforalpha@@1, vDD * Β * y^HΒ - 1L
H-p HHa HTabforsidashv@@i, j + 1DD - Tabfortidashv@@i, jDDL + Hb � 2L

HTabforsidashv@@i, j + 1DD^2 - Tabfortidashv@@i, jDD^2L + Hc � 3L
HTabforsidashv@@i, j + 1DD^3 - Tabfortidashv@@i, jDD^3LL H1 -

Θ1 * Tabfortidashv@@i, jDD - foralpha@@1, vDD * Tabfortidashv@@i,

jDD^Β - p HΘ1 * HTabfortidashv@@i, jDD + 2 * CT - Tabfortidashv@@
i, jDD + CTL + foralpha@@1, vDD * HHTabfortidashv@@i, jDD +

2 * CTL^Β - Tabfortidashv@@i, jDD^ΒLLL + Θ1 * HHa � 2L
HTabforsidashv@@i, j + 1DD^2 - Tabfortidashv@@i, jDD^2L + Hb � 3L
HTabforsidashv@@i, j + 1DD^3 - Tabfortidashv@@i, jDD^3L + Hc � 4L
HTabforsidashv@@i, j + 1DD^4 - HTabfortidashv@@i, jDDL^4LL +

foralpha@@1, vDD HHa � HΒ + 1LL HTabforsidashv@@i, j + 1DD^HΒ + 1L -

Tabfortidashv@@i, jDD^HΒ + 1LL + Hb � HΒ + 2LL HTabforsidashv@@
DD^ - L +
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Tabfortidashv@@i, jDD^HΒ + 1LL + Hb � HΒ + 2LL HTabforsidashv@@
i, j + 1DD^HΒ + 2L - Tabfortidashv@@i, jDD^HΒ + 2LL +

Hc � HΒ + 3LL HTabforsidashv@@i, j + 1DD^HΒ + 3L - Tabfortidashv@@
i, jDD^HΒ + 3LLLL + HH1 - Θ1 * y - foralpha@@1, vDD * y^ΒL

Ha HTabforsidashv@@i, j + 1DD - yL + Hb � 2L HTabforsidashv@@i, j +

1DD^2 - y^2L + Hc � 3L HTabforsidashv@@i, j + 1DD^3 - y^3LL +

Θ1 * HHa � 2L HTabforsidashv@@i, j + 1DD^2 - y^2L + Hb � 3L
HTabforsidashv@@i, j + 1DD^3 - y^3L +

Hc � 4L HTabforsidashv@@i, j + 1DD^4 - y^4LL + foralpha@@1, vDD
HHa � HΒ + 1LL HTabforsidashv@@i, j + 1DD^HΒ + 1L - y^HΒ + 1LL +

Hb � HΒ + 2LL HTabforsidashv@@i, j + 1DD^HΒ + 2L - y^HΒ + 2LL +

Hc � HΒ + 3LL HTabforsidashv@@i, j + 1DD^HΒ + 3L - y^HΒ + 3LLLLLL ây +

â
j = 1

j = i
DC * à

Tabfortidashv@@i, jDD + 2 CT

Tabforsidashv@@i, j + 1DD Hforalpha@@1, vDD * Β * y^HΒ - 1L
HH1 - Θ1 * y - foralpha@@1, vDD * y^ΒL HHa HTabforsidashv@@i, j + 1DD - yL +

Hb � 2L HTabforsidashv@@i, j + 1DD^2 - y^2L + Hc � 3L HTabforsidashv@@
i, j + 1DD^3 - y^3LL + Θ1 * HHa � 2L HTabforsidashv@@i, j + 1DD^

2 - y^2L + Hb � 3L HTabforsidashv@@i, j + 1DD^3 - y^3L +

Hc � 4L HTabforsidashv@@i, j + 1DD^4 - y^4LL + foralpha@@1, vDD
HHa � HΒ + 1LL HTabforsidashv@@i, j + 1DD^HΒ + 1L - y^HΒ + 1LL +

Hb � HΒ + 2LL HTabforsidashv@@i, j + 1DD^HΒ + 2L - y^HΒ + 2LL +

Hc � HΒ + 3LL HTabforsidashv@@i, j + 1DD^HΒ + 3L - y^HΒ + 3LLLLLL ây +

â
j = 1

j = i
So * à

Tabforsidashv@@i, jDD
Tabfortidashv@@i, jDDHHTabfortidashv@@i, jDD - yL Ha + b * y + c * y^2L �

H1 + ∆ * HTabfortidashv@@i, jDD - yLLL ây +

â
j = 1

j = i
Lo * à

Tabforsidashv@@i, jDD
Tabfortidashv@@i, jDDHHTabfortidashv@@i, jDD - yL * ∆ *

Ha + b * y + c * y^2L � H1 + ∆ * HTabfortidashv@@i, jDD - yLLL ây -

RETTOCIND@@1DD, 8k, 1, 1<, 8i, 1, 4<F; Print@MatrixForm@
TCSJTDD;

Print@
"Suppliers

Total

Optimal

Cost

without

Coordination

for

a

="D;

Print@"SUPTOCWC="D; SUPTOCWC =

Table@
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Abstract. In this paper a single buyer, single supplier inventory model with time quadratic and stock dependent demand for a finite
planning horizon has been studied. Single deteriorating item which suffers shortage, with partial backlogging and some lost sales
is considered. Model is divided into two scenarios, one with non permissible delay in payment and other with permissible delay
in payment. Latter is called, centralized system, where supplier offers trade credit to retailer. In the centralized system cost saving
is shared amongst the two. The objective is to study the difference in minimum costs borne by retailer and supplier, under two
scenarios including the above mentioned parameters. To obtain optimal solution of the problem the model is solved analytically.
Numerical example and a comparative study are then discussed supported by sensitivity analysis of each parameter.
Keywords: Inventory, Deterioration, Time quadratic and inventory dependent demand, Partially backlogged shortages, Supply
chain management.

INTRODUCTION

The existing literature of different inventory models (Wu and Zhao[1] and others) reveals that the relation between
retailer and supplier is becoming more stable in today’s rapidly changing commercial world. The supplier steps for-
ward and provides the retailer, credit period to settle the amount for quantity purchased. However, the coordination
between supplier and retailer depends upon kind of the product, its deterioration, its demand etc. Need is to focus on
type of product produced and launched.

Ghare and Schrader [2] were the first authors to consider ongoing deterioration of inventory. Goyal[3] introduced
a model for EOQ under permissible delay in payments, for fixed time period. Aggarwal and Jaggi[4] extended the
work of Goyal[3], for the deteriorating items. Due to the fact that long term relationship between retailer and supplier
is key to success of both parties many researchers have worked on the models which strengthen the bond between
retailer and supplier. For instance [5, 6, 7, 8, 9, 10, 11, 12] have presented their model for deterioration, in a two level
supply chain coordinate system.

Raafat[13] provided a review of the deteriorating inventory literature. Raafat[13] defined deterioration as (i)
spoilage, (ii) physical depletion and (iii) decay, and also further classified many mathematical deteriorating inven-
tory models into a number of categories. Goyal and Giri[14] continued Raafat’s review work for permissible delay
in payment, price increase and price discount. An EOQ model which assumes that full payment must be done by the
retailer immediately after receiving the goods from the supplier in a decentralized system where the supplier replen-
ishes according to retailers optimal quantity requirement on cycle to cycle basis. However, this is not practical, as the
supplier may offer the trade credit period to retailer i.e. a delay period for the full payment of the goods in a centralized
system. Some of the related articles with trade credit financing which includes deterioration of item/s can be found
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Abstract. This paper presents a detail solution of re-manufacturing of a product in a supply chain model. It is a non-traditional
model considering time-dependent quadratic demand, Weibull deterioration, shortages, partial backlogging and re-manufacturing
of inventory. This paper mainly focuses on remanufacturing and hence an attempt towards reducing the environmental hazard. The
process of remanufacturing is completed within one cycle of replenishment. Trade credit between supplier and retailer also had
been discussed. Two cases one of a centralized and the other of decentralization for a finite planning horizon in a supply chain
model are discussed. An algorithm has been derived for solving a problem in both the cases. Some managerial insights are talked
about on the basis of sensitivity analysis on the parameters considered.

Keywords: Inventory, Weibull deterioration, Time quadratic and inventory dependent demand, Partially backlogged shortages,
Green supply chain management.

1 INTRODUCTION

No doubt improving environmental quality comes at a cost but at the same time, proper disposal of hazardous
waste is very costly as given by Richter [1]. Due to the market competitiveness retailer and supplier in a supply chain
are bound to collaborate by sharing each others information for mutual benefits such as profit in terms of money and
customer satisfaction as discussed by Wu and Zhao [2]. For the products which is electrical, electronic, plastic, glass,
jewelry etc., manufacturers are trying to provide a quality product by re-manufacturing and reducing the defective
items as considered in Tiwari et al. [3]. This results in the greening of a supply chain.

The reverse manufacturing problem for an electronic industry was recently considered and simplified by Chung
and Wee [4] green product design and remanufacturing. While raising significant concern over environmental initia-
tives, Zhang et al. [5] in one of the conclusions mentioned that policymakers should give more heed to employees and
nearby communities. Mudgal et al. [6] identified and analyzed the barriers to green business practices. Considering
re-manufacturing in green supply chain Rani et al. [7] discussed a model. Green retailing is now a buzz word amongst
retailer due to growing pressure from the eco friendly environment by different stakeholders such as consumers, no
profit organizations, government etc. Saha et al. [8] states that continuous investment in green operations is always
profitable to the retailer. Remanufacturing a product may include replacement of a worn out part, fixation of breakage
occurred due to transportation, software up gradation, remolding or other cosmetic operations.

In some cases, re-manufacturing may limit repairing only but in almost all cases re-manufacturing reduces pol-
luting hazard from environment since the products are neither disposed of nor discarded. The Green supply chain can
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Abstract 

This paper is mainly about re-manufacturing of an item within the planning horizon. Re-manufacturing of a 

product has become a natural requirement in inven-tory handling. It decreases the burden of inventory for 

defective kind of items. Another obvious phenomenon is deterioration of items in inventory. Hence two-

parameter Weibull deterioration of items is considered in our model. The idea is greening of a supply chain 

model through re-manufacturing of defective items after the screening process 

 

Keywords: Green supply chain management inventory Weibull deterioration Time quadratic inventory 

dependent demand Partially backlogged shortages 

 

Introduction 
 

Market across the world are looking for a greener man-agement policies in all sectors. Re-manufacturing of the 

products have thus begun to become a vital activity. Apart from increasing the pro t margin customer sat-

isfaction has to be claimed with the implementation of environment-friendly models for manufacturing. We 

have thus derived a model for re-manufacturing of the defective products within a replenishment cycle. A two-

warehouse partial backlogging inventory model with ramp type demand rate, three-parameter Weibull distribu-

tion deterioration under in ation and permissible delay 

 

in payments are discussed Chakraborty et al. [1]. Je-ganathan et al. [4] has discussed two-commodity con-

tinuous review inventory system with postponed in de-mands. 

 

Selvi et al. [12] has derived a replenishment pol-icy for deteriorating items considering screening cost, 

transportation cost for back orders minimizing annual total cost. Singh et al. [14] is a good model in which the 

authors have discussed an economic ordering quantity model with deteriorating items also including partial 

backlogging with shortages. Further Singh et al. [15] analyzed the inventory replenishment policy under in-

ation. 

 

A production, remanufacture and waste disposal Eco-nomic production quantity model was presented by 

Kundu and Chakrabarti [6] concluding that policy of remanufacturing is a better strategy as far as carbon 

emissions are concerned. 

 

Considering returns with di erent quality grades Sun et al. [16] in their study explored the bene ts of 

scheduling the manufacturing and re-manufacturing se-quence. Two types of product green (environmental-

friendly) product along with the regular product was included in the model studied by Raza et al. [10] with 

green (environmental-friendly) product price higher than the regular product. Recently Rani et al. [9] discussed 

re-manufacturing in the green supply chain with items that are deteriorating. Deterioration of an inventory 

model was introduced by Ghare and Schrader [2]. First to mention a two-parameter Weibull distribution rate in 

an EOq model was Philip [8]. Khanra and Chaud-huri [5] introduced time-dependent quadratic demand 

function. 

 

Ghosh and Chaudhuri [3], Manna et al. [7], Singh et al. [14], Singh et al. [15] and others. were the authors  

using the time quadratic demand function in their pa-pers. 

 

However, to the best of our knowledge, a model incorporating an inventory item, which bears param-eters 

such as Weibull deterioration, disassembly and re-manufacturing with trade credit in a green supply chain 

within a nite planning horizon is not yet dis-cussed fully. Proposed model gives an insight into solv-ing such 

problem. Assumptions and notations are given in section 1. Model formulation is done in section 2 and solved 
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A supply chain model is discussed for materials substances such as metals, ceramics, or plas-
tics manufactured which is deteriorating in nature. Fuzzy parameters such as fuzzy deterioration
cost, fuzzy holding cost fuzzy inventory carrying cost etcetera are considered for framing of the
model which are later defuzzified using Centroid, Signed Distance and Graded Mean Represen-
tation method. Centralized replenishment policy in this finite planning horizon model is discussed
along with sensitivity analysis.

Keywords: Supply Chain Management, Inventory, Fuzzy, Time Quadratic, Inventory Dependent
Demand, Partially Backlogged Shortages.

1. INTRODUCTION

Along with defined criteria of membership, fuzzy set was

introduced by Ref. [1]. The EOQ formula including the

fuzziness was given by Ref. [2]. Introduction to fuzzy

arithmetic theory and operation was provided by Ref. [3].

An operator’s approximation for an interval in a fuzzy

number system was provided by Refs. [4, 5] solved using

Fuzzy Non-Linear Programming (FNLP) taking different

cost as triangular fuzzy numbers. The solution of EPQ

with cost fuzzy in nature are solved by special fuzzy tech-

nique (PGP) [6]. Reference [7] derived a methodology for

the optimum value of the fuzzy total cost. Reference [8]

allowed payment delay considering fuzzy cost function

for fuzzy inflation and deterioration rate. Partial backlog-

ging, demand which is stochastic with deterioration fuzzy,

Ref. [9] examined an EOQ model. Total profit for fuzzy

inflation, discount environment with constant product dete-

rioration using method UFM and GRG technique is eval-

uated by Ref. [10].

For a deteriorating item, optimal inventory decision is

derived using a genetic algorithm (GA) for an inventory-

based demand by Ref. [11]. An EOQ model for Pareto

optimal solution taking fuzzy total costs including short-

age, holding and another cost as triangular fuzzy numbers

is investigated by Ref. [5].

With shortages, inventory dependent demand and dete-

riorating products [12] studied a deterministic model

which is fuzzified for different cost such as set up cost,

∗Author to whom correspondence should be addressed.

opportunity cost etc. considering those as triangular fuzzy

numbers and using Signed-distance method to defuzzify.

Product deterioration cost, trade credit, demand rate

and other cost considered as fuzzy numbers, Ref. [13]

defuzzified using Graded Mean Integration Representation

method. Taking lost sales rate as triangular fuzzy number

i.e., fuzzifying the backorder rate, Ref. [14] constructed a

new fuzzy number, called as a statistic-fuzzy number, and

then developed an algorithm to find the optimal schedule.

Reference [15] extended [14] by fuzzyfying the back-

order and shortage, defuzzyfying using the signed dis-

tance method and compared the fuzzy model with that of

the crisp. Other authors discused fuzzy shortages are [16]

and [17].

Expressing order quantity as a triangular fuzzy number,

Ref. [18] found after defuzzification that cost of the crisp

model is on the lower side compared to the fuzzy model.

Triangular fuzzy numbers as input values for an inven-

tory model, the total minimum cost is found by Ref. [19],

along with inventory replenishment quantity, transforming

a fuzzy model into crisp.

Backorder quantity as a fuzzy triangular number,

Ref. [20] compared fuzzy and crisp model finding the cen-

troid of the cost function.

With item quantity as a triangular fuzzy number,

Ref. [21] found the centroid of the fuzzy cost function’s

membership function.

Authors considering triangular fuzzy number

are [16, 22–24] and others.

Graded mean method of defuzzification was used by

Ref. [16]. Signed Distance Method for defuzzification

J. Comput. Theor. Nanosci. 2019, Vol. 16, No. 10 1546-1955/2019/16/4135/008 doi:10.1166/jctn.2019.8492 4135
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