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ABSTRACT

Differential equations play a very crucial role in mathematical modeling of a variety of
real-world problems. During the mathematical modeling of physical problems, most of
the time modeled differential equation is not so easy to solve and it becomes more
challenging when the mathematical model of phenomena carries the nonlinearities,
variable coefficients or a greater number of variable (higher dimensional) in it. This
results in the requirement of advanced numerical methods which can be regarded as a
strong solver to get an accurate numerical solution for a big class of these types of
differential equations. Researchers are putting continuous efforts for the improvement
of existing methods and the development of new hybrid methods with the aim to

develop a strong solver for these kinds of equations.

In the literature review, we came to know that the Taylor series can be used for the
analysis of function locally. If we want to analyze the function globally, then the Taylor
series fail, at that time, Fourier series come into literature. But Fourier series fail to
analyze the function locally. In the last couple of years, a large number of numerical
methods have been proposed to deal with the solution of different types of initial and
boundary value problems locally and globally. Some of the well-known methods
include the finite difference (FD) method and finite element (FE) method and finite
volume (FV) methods. But these methods are low order, expensive and have some
geometrical restrictions. These methods have very good spatial localization but are less
accurate. Another class of numerical techniques is the spectral methods in which the
solution is discretized by approximating it with a series of basis functions that are
infinitely differentiable and nonvanishing on the whole domain (global support).
Spectral methods are used in combination with the method of weighted residuals.
These methods have an exponential rate of convergence if the expected solution is
smooth in nature. But the spatial localization is not good when the expected solution is
discontinuous and non-smooth in nature. Spectral methods are also less effective for
the problems with more complex geometries but create less computationally cost as

compare to FDM, FEM, and FVM. Also, the Spectral method works on global support
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while FDM, FEM, and FVM work on compact (local) support. Spectral methods have
poor spatial localization for complex problems and irregular geometry but these are
more accurate and produce less error. On the other hand, FDM, FEM, and FVM are

less accurate but have good spatial localization.

All the methods have their own advantages and limitations. Wavelet based techniques
appear to be a solution for this situation where we can combine the benefits of all the
approaches (good special-time localization as well as better solution accuracy) using
wavelet bases in approximating the unknown solution. Because of the many advantages
of wavelets which are orthonormal and having compact support like translation, and
dilation using multiresolution analysis, highly compatible with the computer
environment and localized in both space and time make it competent enough to deal
with the various types of problems arises in the field of science and technology. Wavelet
based methods can easily be extended to a higher dimension to deal with more complex
problems. Wavelets are very compatible to make a connection with already established

fast and highly accurate numerical technique.

Many wavelets with different characteristics are existing in the literature for the
analysis of various types of data, signal, image, and solution analysis. But Haar wavelet
is mathematically simplest, computationally cheap, conceptually simple, and memory-
efficient oldest orthonormal wavelet with compact support existing in the literature.
Haar Wavelets has the simplest rectangular pulse pair explicit expression which can
integrate the desired number of times without any restriction. Special properties of Haar
wavelets with the simple explicit expression motivated us to use Haar wavelet bases
with spectral methods to solve various differential equations that arise in the field of
science and technology. In wavelet techniques, the accuracy of the solution can be
increased by increasing the dilation factor of the wavelet family. In literature, dyadic
wavelets are in preponderance in which dilatation factor runs on the power of 2. In the
thesis, novel Haar scale 3 (non-dyadic) wavelet-based numerical methods are
developed in which the dilatation factor runs on the power of 3 to analyze linear and

nonlinear differential equations of various types.



This thesis is dedicated to the development of Haar Scale 3 and Haar scale 2 Wavelets
based algorithms in combination with the existing numerical techniques such as
Collocation method, Quasilinearization process, and Gauss elimination method for
solving the various important differential equations. Quasilinearization process is used
for nonlinear problems along with Haar (scale 3 or scale 2) wavelets as described in
chapters 2 to 8. The broad range of numerical problems arising in different fields like
as higher-order linear and nonlinear boundary value problems, fractional Bagley-
Torvik equations, coupled space-time fractional- Burgers’ equation, hyperbolic
Telegraph equations, NBBMB (non-linear Benjamin Bona Mahony Burgers) equation,
linear and non-linear Sobolev equation are considered systematically. From the
mathematical point of view, these problems represent the ordinary differential equation
with associate boundary or initial conditions, higher-order linear and non-linear partial
differential equations, linear ordinary fractional differential equations and nonlinear
system of fractional partial differential equations which are treated in the mathematical

framework of functional analysis, linear algebra and approximation theory.

The presented work in this thesis is organized into the following nine chapters,
subsequently where the agenda for each of the chapters (with facts and details) is briefly

tllustrated.

Chapter 1-This chapter is regarding the introductory part of this thesis, the first two
sections (1.1-1.2) of this chapter contains the introduction, mathematical preliminaries
on differential equations and fractional calculus. Section 1.3 and section 1.4 include the
motivation to use wavelets and mathematical preliminaries on wavelets. The next
sections (1.5-1.6) include a brief introduction to the collocation method and
quasilinearization techniques . Sections (1.7-1.9) contain the literature review, findings
from the literature review, objectives, motivation, and scope. All these sections are

essential for the next chapters. Lastly, it contains the plan of work.

Chapter 2- In this chapter, the Haar wavelet collocation mechanism (HWCM) is
developed for obtaining the solution of higher-order linear and nonlinear boundary
value problems. The mechanism is based on approximation of solution by Haar scale 2

wavelet family. To tackle the nonlinearity in the problems, the quasilinearization
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technique is applied. Many examples are considered to prove the successful application
of the mechanism developed for getting a highly accurate result. By using the HWCM,
an approximate solution for higher-order boundary value problems (HOBVPs) are

obtained and compared with exact and numerical solutions available in the literature.

Chapter 3 -The main focus of chapter 3 is to construct a compactly supported non-
dyadic orthonormal wavelet family with scale factor 3. Orthonormal wavelet families
are extremely helpful in solving the various problems arise in the field of science and
technology. For the construction of the Haar scale 3 (non-dyadic) wavelet family, a
multi-resolution analysis (MRA) technique is used on the trivial Haar scale 3 (non-
dyadic) type function given by C.K Chui. Integrals of members of the Haar scale 3
(non-dyadic) wavelet family have been calculated for their use in the multiscale
approximation of unknown function running in various types of differential or integral
equations. Matrices of Haar Scale 3 wavelets and their integrals have been constructed
for their use in solving the various types of differential and integral equations. Two
numerical experiments have been considered to test the efficiency of the given wavelet

family in approximating the unknown function.

Chapter 4 - In this chapter, a new Haar scale 3 wavelet-based hybrid method is
developed for obtaining the solution of higher-order linear and nonlinear boundary
value problems. The proposed method is based on approximation of solution by Haar
scale 3 (non-dyadic) wavelets family with dilation factor 3. The discretization of the
domain is done by the collocation method. The nonlinearities in boundary value
problems are tackled by the quasi-linearization technique. Eleven linear and nonlinear
boundary value problems with orders ranging from eighth to twelfth are considered to
prove the successful application of the proposed method. Also, the obtained solutions
are compared with exact and numerical solutions available in the literature to prove the

efficiency of the method over other methods.

Chapter 5- The main agenda of this chapter is to develop a new hybrid method using
the Haar scale 3 (non-dyadic) wavelets for the investigation of Bagley-Torvik
Equation. From the mathematical point of view, it is an ordinary fractional differential

equation. Haar Scale 3 (non-dyadic) wavelets are used to estimate the solution by series
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approximation. To handle the fractional derivatives and integrals in the problem,
Caputo's sense definition of derivatives and Riemann-Liouville definitions of integrals
are used. A numerical solution has been produced for five different fractional Bagley-

Torvik Equations to establish the competency of the proposed method.

Chapter 6- The focus of this chapter is to develop a hybrid method using Haar scale 3
(non-dyadic) wavelets for obtaining the solution of coupled space-time fractional
Burgers’ equation. Coupled space-time fractional Burgers’ equations are
mathematically represented by a system of fractional partial differential equations. Haar
scale 3 (non-dyadic) wavelets are used to estimate the solution by series approximation.
Caputo and Riemann-Liouville definitions are used to handle the fractional derivatives
and integrals in the problem. A quasi-linearization technique is implemented to handle
the nonlinearity in the problems. Two examples of coupled space-time fractional

Burgers’ equations are studied to analyze the performance of the proposed technique.

Chapter 7- The main focus of chapter 7 is to introduce a noval numerical technique
based upon the two-dimensional Haar scale 3 (non-dyadic) wavelets for the solution of
1D- hyperbolic telegraph equation. It is a second order partial differential equation
which involves the mixed partial derivatives w.r.t space and time variables. In this
scheme, spatial discretization is done by two-dimensional Haar scale 3 (non-dyadic)
wavelets. The collocation method is used with two-dimensional Haar scale 3 (non-
dyadic) wavelets to convert 1D- hyperbolic telegraph equation into the system of
algebraic equations which are further solved with the help of the Thomas algorithm.
The proposed scheme is tested on four different equations of the above-said types to

establish the competency of the proposed scheme.

Chapter 8 -The main objective of this chapter is to introduce a hybrid technique
based upon the 8 —weighted differencing and Haar scale 3 (non-dyadic) wavelets
for the solution of (2+1)-dimensional partial differential equations such as Sobolev
and BBMB (Benjamin—Bona—Mahony—Burgers) Equations etc. In this scheme, time
discretization is done by 6 —weighted finite differencing scheme and spatial
discretization is done by Haar scale 3 (Non-dyadic) wavelets. The quasilinearization

process is used wherever we encountered with the non-linearity in the equations.
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The proposed scheme is tested on five different linear and nonlinear equations of the

above said types to establish the competency of the proposed scheme.

Chapter 9- This chapter concludes the findings of the present research work and
gives a discussion of the effects of method in dealing with different types of
differential equations. Based on present study, conclusions are drawn and future

research work in this direction is suggested.

During the study, nearly 210 reputed research publications, books, thesis, and notes
have consulted and cited in the references. For numerical computation, MATLAB

programs have developed.
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Chapter 1

Introduction

1.1 Introduction

Differential equations play a very important role in predicting the world around us.
These equations have a remarkable ability to study the characteristics of any
phenomenon happening around us. The area of differential equations is not a unified
topic; rather it is a union of numerous directions of research with a different source of
problems, motivations, and goals. Differential equations act as a language with which
one can commute with nature and natural phenomena. These equations have wide
applications in the variety of disciplines like physics, medicine, biology, chemistry,
economics, financial forecasting, image processing, environmental science, in almost
all the branches of engineering and the list goes on. As a result, the study of finding
solutions to these equations has attained huge importance in the field of science and
technology. In the last few decades, many useful and interesting contributions have
been made in this field. In general, the differential equations have been classified as
Ordinary Differential Equations (ODEs), Partial Differential Equations (PDEs), and
Fractional Differential Equations (FDEs). There are further classifications based upon
their order (First order or Higher-order), type of linearity (Linear, Quasilinear, Semi-
Linear, Non-linear), types of coefficients (constant or variable) they carry in the

equation, Homogeneity (Homogeneous, Non- Homogeneous), degree, etc.
1.2 Basic Terminology Used for Differential Equations

1.2.1 Ordinary Differential Equations (ODEs)

The differential equations which contain only one independent variable, one dependent
variable, and its derivative w.r.t an independent variable are known as ordinary
differential equations. Some well -known examples of ordinary differential equations

are exponential decay or growth population model, Prey-predator model, Rayleigh's



equation (has application in fluid dynamics), and Lane {Emden equation (has

application in astrophysics), etc.

1.2.2 Partial Differential Equations (PDEs)

PDEs are the equations which involves more than one independent variables like
X1,Xg, ..., Xn; @ dependent variable y and its partial derivatives with respect to the

independent variables such as

dy dy dy 0% 9%y 9% 0"y>_0

Flx,%x5,..,x
bz ”’y'axl’axz' "0xy 0x1% " 0x,%" T 0x,% " T Oy

Some well -known examples of partial differential equations are Burgers' equation,

Korteweg-de Vries equation, Klein—Gordon Equation, Blasius Equation, etc.
1.2.3 Fractional Differential Equations (FDEs)

FDEs are the equations which involve fractional derivatives (derivative of non-integer
arbitrary order) of the dependent variable y with respect to one or more than one

independent variable x, x5, ..., X;,.

0%y 0%y 9%y 9%y —o
x99, %" Bx, @t T Ox, ")

where |[a| < a™ <|a"|+1 Vn

F<x1,x2,...,xn,y,

These equations are the generalizations of ODEs and PDEs. They have extensively
attracted the scientific community because of their ability to model the rare complex
phenomena. Some well -known examples of fractional differential equations are
Fractional Bagley Torvik Equation, Coupled Burgers fractional Equation, Korteweg—

de-Vries fractional equations, fractional Bergman's model

1.2.4 Order of Differential Equations

. . . . . ds
It is the order of the highest order derivative that occurs in an equation e.g. d—xz +

d? . . .

u—lzi =0 is an ODE of order 3, while u; = c?u 4 = 0 is PDE of order 4, where
dx

u, represents the second-order partial derivative with respect to t and u,. 1s a fourth-

order derivative with respect to x and t.



1.2.5 Degree of Differential Equation

It is the degree of the highest order derivative that occurs in the differential equation

after making it free from radicals and fractions. E.g. Equation: (u,)? + (uy)2 =1 is

the partial differential equation (PDE) of degree 2.

1.2.6 Linear Differential Equation (LDE)

A linear differential equation is that in which the dependent variable and its derivatives
appear with first power only and there is no term containing the product of the
dependent variable with its derivative or the product of any two derivatives of the
dependent variable. Some well-known examples of linear differential equations are

given below:

. d?q dg , 1 .. .
(1 L =T R i V(t) (L-C-R Circuit Equation)
(i1) E;—(f +V Z—f =0 (Transport Equation)

0% 9%

2
(111) 37(5 + a2 T 72 = 0 (Laplace Equation)

1.2.7 Semi-Linear Differential Equation (SLDE)

A differential equation is said to be semilinear if the highest order derivative coefficient
does not depend upon the dependent variable and its derivatives. Some of the well-

known examples of semilinear differential equations are
., d? 1d
0) o= tio

ax? | xdx

+u?=0 (Lane-Emden Equation)

(i) Z—(f + Z—(ﬁ +@?2=0 (Transport equation)

0 a3
P_Z8_ 9
0x 0x3

. 0@ D . .
(111) a_(f + % + (Korteweg-de Vries equation)

1.2.8 Quasi-Linear Differential Equation (QLDE)

A differential equation of nth order which is not semilinear in nature is said to be quasi-
linear if the nth order derivative coefficient may depend upon the independent
variable(s), dependent variable and its derivatives of (n — 1)th order but does not
depend upon the n' order derivative of the dependent variable. Some of the well-known

examples of quasi-linear PDEs are:



(1) E;—(f + o Z—z =0 (Inviscid Burgers' equation)

.. 02 dp 02 02
(i) 202222 _°28
dtdx  dx 0x2  0y?2

=0 (Lin—Tsien equation)

1.2.9 Non-linear Differential Equation

A PDE is non-linear if the highest order derivative coefficient has non-linearity in the

dependent variable. Some examples of non-linear partial differential equations are:

2 2
(1) (Z—Z) + (%) =1 (Eikonal equation)
(1) div ( \/%;tpl") =0 (Minimal surface equation)

1.2.10 Solution of Differential Equation

The function ¢ is called the solution of the differential equation if the function ¢ is
continuous and has continuous derivative up to the order of differential equations and

satisfies the differential equation.

In each physical problem, the differential equations are to be solved within a given
domain belongs to the space of independent variables with a specified value of the
dependent variable given on the boundary dD of the domain D or at the given time t.
Then the differential equations are get upgraded by some extra conditions, for example,

initial and boundary conditions.

1.2.11 Initial Conditions (ICs)

If the independent variable is the time variable and condition to be satisfied by the
required solution is given at the initial point, i.e. t = 0 then it is called initial condition.
A problem that requires the solution of the differential equation based on initial

conditions only is called initial value problem.

1.2.12 Boundary conditions (BCs)

If the conditions for the required solution are defined on the boundary dD of the
domain D then, these conditions are called boundary conditions. The differential

equation in which conditions for the required solution are given on the boundary is said


https://en.wikipedia.org/wiki/Lin%E2%80%93Tsien_equation

to be a boundary value problem. There are mainly three types of boundary conditions:
1.2.12.1 Dirichlet Boundary Conditions (DBCs)

If the conditions for the required solution are prescribed on dependent variable along
the boundary dD of the domain D in the space of independent variables, then these
conditions are said to be a Dirichlet boundary conditions. For example: Consider the
following BVP

E:Tf—czvzq;:o, x,yERt>0 (1.1)
With the boundary condition @(x,y,t) = f(x,y,t) ondD.If ¢ =0 ondD then it
is called homogeneous Dirichlet boundary condition otherwise non-homogeneous.

Dirichlet boundary condition
1.2.12.2 Neumann Boundary Conditions (NBCs)

If the conditions for the required solution are specified on derivative of the dependent
variable on the boundary dD of the domain D, then the conditions are said to be a

Neumann boundary condition. For example: if in the problem (1.1), the boundary

conditions are of the form Z—: (x,y,t) = f(x,y,t) on dD (Neumann condition) where

Ao .. .. L ) ) a .
% directional derivative in the direction of n. If % =0 on dD then it is called

homogeneous Neumann boundary Condition otherwise non-homogeneous Neumann

boundary Condition.
1.2.12.3 Robin boundary condition (RBCs)

If the conditions for the required solution are prescribed on linear combination of the
dependent variable and its derivative on the boundary dD of the domain D, then the

conditions are said to be a Robin boundary condition or mixed boundary conditions.

For example: if in problem (1.1), the boundary condition is of the form k 3—2 + hp =

x,y,t) on dD (Robin condition). If % L hgp =0 ondD then it is called
y ox %

homogeneous Robin boundary condition otherwise non-homogeneous Robin boundary

Condition.



1.3 Fractional Calculus

Fractional calculus emerged as a great tool in explaining the physical and chemical
phenomenon with alienate kinetics having microscopic complex behavior. The
fractional calculus is as old as traditional calculus, however, it has gained significant
importance amid the previous few decades, because of its immense importance in
various assorted fields of science and engineering which include fluid flow,
viscoelasticity, solid mechanics, signal processing, probability, statistics, etc. The
number of works managing dynamical frameworks portrayed by fractional-order
equations that include derivative and integral of arbitrary order as they delineate the
memory and innate properties of various substances. In 1695, L'Hopital wrote a letter
to Leibnitz in which he used to get some information about a particular notation he
published for the nth-order derivative of the linear function. He made an inquiry to
Leibniz, what may the result be if n is half. Leibniz responded by saying that it is an
obvious conundrum, which will result in significant outcomes one day. So, it was the
first time when fractional derivative came into the picture. There are fractional
differential models which have a non-differentiable but continuous solution such as
Weierstrass type functions|1]. These kinds of characteristics are not possible to explain
with the help of ordinary or partial differential models. Earlier the field of fractional
calculus was purely mathematical without any visible application but in these days,
fractional calculus has gained huge importance in the field of science and technology
because of its application in the various field like theory of thermo-elasticity[2],
viscoelastic fluids[3], dynamics of earthquakes[4], fluid dynamics[5], etc. In one of the
experiments of Bagley and Torvik in which they studied the motion of a rigid plate
immersed into the Newtonian fluid. It was found in the experiment that retarding force
is proportional to the fractional derivative of the displacement instead of the velocity.
It has been observed during the experiment also that the fractional model is superior to
the integer-order model for the prediction of characteristics of the same material. It has
also been observed experimentally and from the real-time observation that there are
many complex systems in the real world like relaxation in viscoelastic material,
pollution diffusion in the surrounding, charge transport in amorphous semiconductors,

and many more which show anomalous dynamics. This capability of fractional



differential equations of explaining the abnormal dynamic of the system with more
efficiency and accuracy has gained huge attention from the scientific community. Many
of the important classical differential equations with integer-order has got extensions to
the generalized fraction differential equation with an arbitrary order for in-depth study

of the corresponding physical model

1.3.1 Some Basic Definitions of Fractional Calculus

Many researchers are utilizing their definitions and notations to present the idea of
fractional order derivative and integral. The definitions which have been advanced in
the realm of the fractional derivative are the Caputo, Grunwald-Letnikov, and Riemann-
Liouville. The Riemann-Liouville definition is most utilized part yet but this
methodology isn't appropriate for all physical problems and real-world problems.
Caputo introduced the definition in which the initial conditions are defined at the
integral order dissimilar to the Riemann-Liouville at which the initial conditions are
defined at fractional order. The Grunwald - Letnikov method proceeds towards the
problem from the definition of the derivative. This method is used exclusively in
numerical algorithms. Grunwald-Letnikov's definition is the extension of the definition

of derivative for fractional order.

1.3.1.1 Mittag-Leffler Function

It is an extension of exponential function which has huge importance in the field of

fractional calculus. It has two forms of expression as given below

1. One Parameter Mittag-Leffler Function [6] for a set of complex numbers and

any positive real no a 1is defined as
Ey=Y%0——— ,a> 0,aeR ,z€C 1.2
a ™ &m=0rmi1) a yAER, Z (1.2)

1.  Two-Parameter Mittag-Leffler Function [6] for a set of complex numbers and

positive real no’s a, f is defined as
Zm

Eqp = Yimeoramp) ' &F > 0@ PRz € C (1.3)



1.3.1.2 Riemann-Liouville Fractional Integral Operator [6]

The fractional integral operator defined by the mathematician Riemann-Liouville for

the positive real nos. @, a,t over the interval [a, b] is given by

1 t
WO = s f F@)(t - 2)* \dz (1.4)

where a denotes the order of derivative and te[a, b].
1.3.1.3 Riemann-Liouville Fractional Differential Operator [6]

The fractional differential operator defined by the mathematician Riemann-Liouville

for the positive real nos. a , a,t over the interval [a, b] is given by

L d—ft f@) dz m—1<a<meN

F(m—a) dtMmJa (t—z)x—m+1

dm
dt_mf(t) , a=meN

rDEf(E) = (1.5)

where a denotes the order of derivative and te[a, b].
1.3.1.4 Caputo Fractional Differential Operator [6]

The fractional differential operator defined by the Italian mathematician Caputo for the

positive real nos. a, a, t is

1 L@
T dz m—1<a<meN
DEF(E) = F(”;;“)fa(t‘z)“ ' (1.6)
dt—mf(t) , a=meN

where a denotes the order of derivative and te[a, b].
1.3.1.5 Grunwald-Letnikov Fractional Derivative[7]

Grunwald-Letnikov fractional derivative of order « > 0 for f(t) with respect to t and

with a terminal value a is given by

o i" ~ T(a+1) ~ 17
fh“)—njg‘gahak& D i Ta—rrp/ =D (4D



1.4 Motivation for Using Wavelets

During the mathematical modeling of physical problems, most of the time modeled
differential equation is not so easy to solve and it becomes more challenging when the
mathematical model of phenomena carries nonlinearities, variable coefficients or a
greater number of variable (higher dimensional) in it. Most of the real-time phenomena
of motion, reaction, diffusion, equilibrium, conservation, etc, are governed by these
types of differential equations. Yet, analytical theories provide only limited methods
for the investigation and analysis of these types’ equations. There are many differential
equations for which current mathematics fails to give any closed-form solution as more
advances are yet to come. However, we still desire some sort of solution for these
equations. There is a big class of ODEs, PDEs, FDEs models that cannot be solved
analytically. This results in the requirement of advanced numerical methods which can
be regarded as a strong solver to get an accurate numerical solution for these types of
equations. Researchers are putting continuous efforts for the improvement of existing
methods and the development of new hybrid methods with the aim to develop a strong

solver for these kinds of equations.

In the last couple of years, a large number of numerical methods are proposed for the
solution of initial and boundary value problems. Some of the well-known methods
include the finite difference (FD) method and finite element (FE) method and finite
volume (FV) methods. But these methods are low order, expensive and have some
geometrical restrictions. These methods have very good in their spatial localization but
are less accurate. Another approach of the Semi analytic technique gives us the result
in the form of a series solution but the biggest problem in the series solution is the
convergence of the series solution and the solution is not valid if series does not
converge and some of these are very sensitive to the initial guess. Another class of
numerical techniques is the spectral methods in which the solution is discretized by
approximating it with a series of basis functions which are infinitely differentiable and
nonvanishing on the whole domain (global support). Spectral methods are used in
combination with the method of weighted residuals. Spectral methods have an
exponential rate of convergence if the expected solution is smooth in nature. But the

spatial localization is not good when the expected solution is discontinuous and non-
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smooth in nature. Spectral methods are also less effective for the problems with more
complex geometries but create less computationally cost as compare to FDM, FEM,
and FVM. The spectral method works on global support while FDM, FEM, and FVM
work on compact (local) support. Spectral methods have poor spatial localization for
complex problems and irregular geometry but these are more accurate and produce less
error. On the other hand, FDM, FEM, and FVM are less accurate but have good spatial
localization. All methods have their own advantages and limitations.

Wavelet-based techniques appear to be a solution for this situation where we can
combine the benefits of all the approaches (good special-time localization as well as
better solution accuracy) using wavelet bases in approximating the unknown solution.
Because of many advantages of wavelets which are orthonormal and having compact
support like translation, and dilation using multiresolution analysis, highly compatible
with the computer environment and localized in both space and time make it competent
enough to deal with the various types of problems arise in the field of science and
technology. Wavelet-based methods can easily be extended to a higher dimension to
deal with more complex problems. Wavelets are very compatible to make a connection
with the established fast and highly accurate numerical technique.

Many wavelets with different characteristics are existing in the literature for the
analysis of various types of data, signal, image, and solution analysis. But Haar wavelet
is mathematically simplest, computationally cheap, conceptually simple, and memory-
efficient oldest orthonormal wavelet with compact support existing in the literature.
Haar Wavelets has a simplest rectangular pulse pair explicit expression which can
integrate the desired number of times without any restriction. Special properties of
wavelets with the simple explicit expression of Haar wavelets motivated us to use Haar
wavelet bases with spectral methods to solve various differential equations that arise in
the field of science and technology.

For discretization of the approximate solution of problem using the Haar wavelet
series, some of the weighted residual scheme is required. The collocation method is one
of the popular discretization schemes for the solution of differential equations. This will
be used for dealing with a variety of numerical problems to get the solution of different
linear and nonlinear differential equations. It includes fulfilling a differential equation

to some resilience at some chosen limited number of points, called collocation points.
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Differential equations are broadly examined by many researchers in a previous couple
of years due to an indispensable utilization of these equations in different fields of

research by the collocation method.

1.5 Basic Definition and Concepts of Wavelets

Orthonormal wavelets are one of the modernistic functions which have the capability
of dilation and translation. Because of these properties, numerical techniques that
involve wavelet bases are showing the qualitative improvement in contrast with other

methods. Some basic definitions for the understanding of wavelets are given below:

1.5.1 Definition (The Space L%*(R))

Space L?(R) is vector space of square integral functions i.e. L*(R) = {f :R->C:
f_ooool f|?dt < 00}.F0r getting the finite value of unknown coefficients it is very
much required that vector space should be a space of square integral function.

1.5.2 Definition (Inner Product)

The inner product of two functions f,geL*(R) is defined by (f,g)=

0 1
I f(®g(t)dt, in particular, the norm of function f is defined by |If|l > =(f,f)z =

(L If@Pde)?
1.5.3 Definition (Orthonormal functions)

Two functions f, g € L?>(R) are said to be orthonormal if

_(0,iff#g
(f’g)_{l,iff=g

This means that information carried by one function is independent of information
carried by any other function. There is no redundancy in the representation. This is good
because it means that neither computing cycles nor storage is wasted because of

coefficient redundancy.

1.5.4 Definition (Dilation and Translation operator in L?(R))

For any square-integrable function f(t) € L>(R) dilation operator D, and the

translation operator T}, are respectively defined as

11



(1) D f(t) = a% f (at) for any real a > 0.

(ii) T, f(t) = f(t — b) forany real b € R.
Where translation means shifting in a location of function by b units and dilation means
spread or compression in function. For a > 1, D, f(t) becomes the narrow down
version of f(t), thatis, D, compressed the function f(t). If0 < a < 1, then D, f(t)
is spread out version of f(t) ,that is, D, stretched the function f(t).

1.5.5 Definition (Wavelets)

The family of the translated and dilated version of function 1 (t) € L?(R),

(t) = —1 <t ) > € 1.8
Ypa Y , a>0,beR .
b, /lal a ( )

where Y satisfies the “admissibility condition” given by

0 2
Cy = f|¢|(:)|)| dw < oo, (1.9)

is called a wavelet family. If we fix function i (by taking a = 1 and b = 0), it is often

called mother wavelet.

1.5.6 Definition (Wavelet Transformation)

Relative to every basic wavelet 1, the integral wavelet transforms (IWT) on L2(R) is

defined by

1 t=b
Wf (@) = | fov()a soer®  wo

which represents how much amount of scaled and translated component of wavelet is

superimposed with the function f (t).It can also be written as

Wyf(a,b) ={f ,V¥pa) (1.11)
1.5.7 Definition (Wavelet Series)
A function ¥ (t) € L?(R) is called an orthonormal wavelet if the family {wb,a(t)}b Lof

wavelet 1 given in Equation (1.8), forms an orthonormal basis of L?(R) i.e

(Ub,a Vac) = 6pa-0ac (1.12)
where &), , is the Kronecker delta symbol given by
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0, ifa+b

5b,a={1' el (1.13)

and series representation of every function f(t) € L?(R) by the orthonormal wavelet
family {w ba (t)}b . is called a wavelet series as given below

FO= ) Cratna® (1.14)
b,a=0

where the wavelet coefficients Cy, , are given below

Cb,a = (f;lpb,a) (1-15)

To solve a mathematical model with wavelet transforms, it is desirable from a
mathematical point of view to use a space where the inner product of a function with
itself is related to the size (norm) of the function. For this reason, we will work in the
space L*(R). The simplest wavelet satisfying the admissibility condition is the Haar

wavelet which forms an orthonormal family with compact support and it is defined as

1.5.8 Definition (Haar Scale 2 Function)

1 for 0<5t<1;
0 otherwise

() = { (1.16)

1.5.9 Definition (Haar Scale 2 Wavelet)

1
1, for 0St<§;

o= -1, for %St<1; (1.17)

0, otherwise
Haar Scale 2 Function Haar Scale 2 Wavelet Function
=3 E3
Haar scale 2 Function Haar scale 2 Wavelet function

Figure 1.1 Haar scale 2 Function and Haar scale 2 Wavelet function
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1.5.10 Construction of wavelets family with multiresolution analysis

The concept of multiresolution analysis (MRA), formulated by Y. Meyer and S. Mallat

is crucial to the theory of wavelets. A multiresolution analysis (MRA) is a sequence of
closed subspaces {V; , j € Z } of L*(R) satisfying the following properties:
G) -~V CV, CV -
(i) clos;z (Ujezl/} ) = L*(R),
(iii) e,V = {03,
(iv) If f(x) € V; if and only if f (277x) €V, i.e. the spaces are the scaled
versions of the central space V.
(v) f(x) €eVyifandonlyif f(x —m) €V, forallm € Z
(vi) There exists a function ¢ € V, called the scaling function s.t set
{¢(x — m)}, ez forms the orthonormal basis in V, which is also known as

a Riesz Basis in I/}, .

Condition (i) to (iii) means that every function in L?(R)can be uniquely approximated
by elements of the subspaces V}, and as j approaches oo, the precision of approximation

increases. Conditions (iv) and (v) express the invariance of the system of subspaces

{V;} with respect to the translation and dilation operators. For a given MRA {V;} in
L*(R) with scaling function ¢, a wavelet is obtained by a new subspace W; of L*(R)

is defined which satisfies the following conditions
a) Vigr =V, +W;, V; LW; forallj ie Viyy =V,® W,
b) "'W_1 J_ WO J_ W1
) V=V, ®@XIyW, whichimplies 2(R) =V, @ X/ W, asj - oo

Hence every square-integrable function can be expressible in terms of Haar wavelet

series expansion and it can be used to solve numerical problems. Using Multi-resolution
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analysis (MRA) which is also known as a multiscale approximation (MSA), Haar

wavelet family with Scale 2 is obtained as follows:
1.5.11 Definition (Haar Scale 2 wavelet family)

Haar wavelet family is defined as

. 1 n (i) <t < uy(i)
h(t) =92/t —k) =1 -1 1, (1) < t < a5(0),
0 elsewhere (1.18)
i=123.... 2p
where x
2, () = g 3,(0) = 2’;;1 35 (i) = (";1), p=2,j=012.,k=012..,p—1

Jj is dilation parameter, k is the translation parameter and i is the wavelet number which
is calculated from the relation i —1 = p + k. The function h,(t) is called father
wavelet,h, (t) mother wavelet and all other functions hs(t), h,(t) ... are generated
from the translation and dilation of the mother wavelet. In chapter 3 of the thesis, scale
3 Haar wavelet family is constructed which is an improved version of Haar scale 2

wavelets.

So, this research aims to investigate the execution of collocation method with Haar
scale 2 and Haar scale 3 wavelets basis functions for the numerical solutions of some

important linear and nonlinear differential equations.

1.6 Collocation method

Considerable work has been accounted in the literature utilizing the Haar wavelet
collocation strategy for investigating and understanding the various physical
phenomena governed by the differential equations. The collocation method is one of
the popular discretization schemes for the solution of differential equations and it
belongs to the method of weighted residuals. It was first proposed by Kantorovich
[Kan] in 1934 and three years later, it was again proposed by Frazer R. A, et.al in 1937
for the same purposes. In the collocation method, weighted truncated series expansion
of the basis functions are used to approximate the solution function at the different

points of the domain which are also known as collocation points. The weight functions
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are used to ensure that the differential equation is satisfied as closely as possible by the
truncated series expansion of basis functions. Thus, the suitable values of the weight
functions are essential to achieving a good approximate solution to the differential
equations with minimum residual. The basic idea behind the use of the collocation
method in our thesis work is to find the most suitable weight such that the residual is
zero at the collocation points. In this method, we approximate the unknown solution
function by the truncated series of Haar wavelet basis functions and weight function
are used as a coefficient of Haar wavelets which will be evaluated in the process of
Haar wavelet collocation method. The brief description of the Haar wavelet collocation
method is as follows
Consider the one-dimensional boundary value problem

LE(T) =Y(1), V a<7t<b (1.19)
with boundary constraints

{(@=a, <EM®=¢ (1.20)

where L is the linear differential operator (maybe a constant coefficient or a variable
coefficient differential operator) and v is a real-valued continuous function of T on [ g,
b]. Consider the set of Haar wavelet family {h;}; . It is well known that the Haar
wavelets family form a complete orthonormal basis in [, ([ a, b]). Then, there will exist

some finite set A such that
[,([ a,b]) = span{h; :i € A} (1.21)

Let H be any subspace of I,([ a,b]) in which we wish to represent the solution to the
given problem. Then for any finite set A
H = span{h; :i € A} (1.22)

Now approximate the unknown solution function using Haar wavelet family as

n

£(r) = Z a;hi(0), vV a<t<b (1.23)

=1

These a;s are the wavelet coefficients which are to be determined in the process.

Also, L is the linear differential operator by assumption, then by applying £ on above

equation we get
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n

LE&(T) =Zaillhi(r), \4

i=1

a<7<bh (1.24)

Boundary conditions will be used in applying the linear differential operator £. Now

after using the Equation (1.23) and the boundary conditions, Equation (1.24) becomes

n

D arh@®=v@ v

i=1

a<T<b (1.25)

Discretize the above equation using the n collocation points {z;}[=; . To avoid the
singular system of algebraic equations one has to be very careful while selecting the
collocation points. Haar wavelets are discontinuous in nature. Therefore, to avoid the
collocation point at the point of discontinuity, following strategy is adopted

Firstly, the grid points on the curve or surface are selected using the formula 7; =
% , wherel =0,1,2,..n, n = 2/or3/ ,j =0,1,2, ... then the Collocation points are

calculated by using the expression given below

T4+ 7T
n="220 i=012,.m (1.26)
Now, Equation (1.25) becomes
n
zkxm@g=¢m) [=012 ..,n (1.27)
i=1
The above system of n equations can easily be put into the matrix form.
[ L hy(71) L hy(tq) L hy,_1(71) Lhy(t1) 1 a4 [ P(Ty) ]
L hy(t3) L hy(13) L hy_1(72) L hy, (1) a, P(1,)
L hy(73) L hy(73) L hy_1(73) L hy(73) as Y(t3)
Lhy(th—2) Lhy(th-2) Lhy_1(Th-2) Lhy(tyh-2) |[|n-2 I/J(Tn—z)
Lhy(Th-1) L hy(Tp-1) Lh,_1(th-1) Lhp(tp-1).||%n-1 Y(Ty-1)
L L hl (Tn) L hz (Tn) L hn—l(Tn) L hn (Tn) 1t an L w(Tn) .
(1.28)

Solving the above system of equations, wavelet coefficients a;'s can easily be

calculated. Substituting the wavelet coefficients a;'s in the equation (1.23), one can

represent an approximate solution of equation 1 uniquely in solution space H as

n

§@=) ah(®, v

=1
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1.7 Quasilinearization

In 1965, Bellman and Kalaba introduced the concept of quasilinearization method to
solve nonlinear equations. Quasilinearization technique has its origin in the Taylor
series approximation and Newton-Raphson method. Because of its features and
working, it is also known as the generalization of the Newton-Raphson method. The
quasilinearization technique helps in linearize the non-linear terms in the functional
equation and gives a sequence of functions that generally converges to exact solution
of parent non-linear functional equation. Quasilinearization technique transformed the
non-linear differential equation into a sequence of linear differential equations which
can be further solved recursively with less effort. The main idea to use this technique
is based upon the fact there is no analytic method to solve many non-linear functional
equations but the solution of these equations is the demand of the society. So, this
technique will help in converting the given nonlinear system into the equivalent
sequence of linear functional equations which can be further solve using the existing
techniques. In our thesis, we used this technique in combination with Haar scale 2 and
Haar scale 3 wavelets to solve various types of functional equations like ODEs, FDEs,
PDEs governing the various physical phenomena. In order to make the explanation of
the process involved in the technique simple and easy to understand, we considere a
non-linear 2™ order differential equation of the form

&' =yEQ@),1) V a<7<b (1.30)
with boundary constraints

§(@)=a, &B)=D (1.31)

where 1) is a non-linear function of 7 and ¢.
Choose an initial approximation for é(7) as &,(t) = é(a) = a and approximate

Y (&(t),7) using Taylor series expansion about &,(7) up to first two terms as

P(E(0), 1) = P(&o(0), ) + (§(1) = §6(1)) Y (§o (D), T) (1.32)
From Equations (1.31-1.33), we have
§"(@) = P& (1), ) + (1) = $o(D) Ye(§o(D),T) (1.33)
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Solving the above equation for &(7), we will get the next approximation for é(7) as
&1(1). Now again expand Y (é(t),7) about &é;(7) using Taylor series as explained

above, we get
§"(0) = Y(§1(7), 1) + (§(1) — §1(1)) Pe(§1(2),7) (1.34)

Solving the above equation again for £ (7), we will get the next approximation for & ()
as &,(1). To attain the required accuracy, continue the above process by using the

following recurrence relation as a generalization of the above process
k1 (1) = Y(&k(D), 1) + (i1 (D) — § (D)) e (G (D), T) (1.35)

with boundary constraints

$k(@) = a, $k(B) =D (1.36)

Now, considering the non-linear 2" order differential equation of the following form

"M =9E'(@),¢(@),1) VvV a<T<h (1.37)

where 1 is a non-linear function of 7, & and &’ . Repeating the above process

following recurrence relation is obtained.

k1D = P&, (0, D) + (a1 (D) — & (D) Y Gi (D), & (D), 1)

(1.38)
+ (€,k+1(T) - flk(r)) lpf’ (fllc (T), fk (T), T)
Generalizing the process of quasilinearization to the higher-order non-linear
functional equation following recurrence relation is obtained
L1 (1) = Y@, 7@, 6D, &0, 1) + 575 (&L, (@) —
(1.39)

§®) Y G @872, 60, &), D)

Where L" is the linear differential operator of order n and ) is a non-linear function of
E(D), &% (1), , €1 (1), & (1) and T. & () will be a known value at each step
which will be used to calculate; ;. The process will be started with &,(7) is a rough
initial approximation at the first stage and it will lead to the solution of the actual non-
linear differential equation through a sequence of convergent functions. These
sequences of functions are the solution of corresponding Linear differential equations

represented by Equation (1.40).
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1.8 Literature Review

First time the wavelets appeared in the thesis of Hungarian mathematician Alfred Haar
[8] in 1909. The Haar wavelet is a piecewise constant function and the main property
of this wavelet is compact support of wavelet. Unfortunately, it is not continuously
differentiable therefore it was not studied much at that time because of this limitation.
In the 1980s multiresolution analysis invented by S. Mallat [9] and Y. Meyer [10] has
given the most prosperity to the field of wavelet analysis. The main advantage of
multiresolution analysis was that it has provided scope for other researchers to develop
mathematically their own family of wavelets. Using work on multiresolution analysis
Y. Meyer developed his wavelets and these wavelets were continuously differentiable
but they do not have compact support. After a few years, Ingrid Daubechies [11], [12]
took the idea from Mallat and Meyer ’s work to create a new set of wavelet basis, which
were orthonormal and have compact support. These wavelets became the foundation of
wavelet application. Right from the beginning, the wavelets were considered as
scientific curiosity but because of huge research in the development of wavelets, it has
turned to an influential scientific mathematical tool, which can be used for many
applications. Within the Daubechies family of wavelets, wavelets were generally
classified by the number of vanishing moments. After applying the condition of
vanishing movements, a set of linear and non-linear simultaneous algebraic equations
on coefficients were obtained.Solving these equations, numerical values for the
coefficients were obtained. This straight forward approach has fulfilled the need of
researchers for understanding the construction of wavelets and became very popular in
the construction of wavelets. As a result, a new set of wavelets families came into
existence like coiflet wavelets, symlets wavelets, etc. These wavelets were continuous,
differentiable, and had compact support. These were extensively used in signal
processing, image processing and there were some applications in the numerical
analysis also. With the attractable properties of these wavelets, there was a big
limitation of these wavelets that they did not possess any explicit form of expression
and could not be used comfortably for discretization. One had to construct the wavelets
with the help of filter coefficients and because of this analytical differentiation or

integration for these wavelets became impossible. This made the process very
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complicated when the integrals of some nonlinear functions were required in an
application. Then a new concept of connection coefficients developed to calculate these
kinds of integrals but the process of calculation of these connection coefficients was
very complicated and had to perform separately for each such integral. Other than that,
the method was applicable only for some simple types of nonlinearities in the equations
(quadratic). Mishra and Sabina[13]also solved the differential equations using the
connection coefficients in the Galerkin method. Now because of this complexity in
obtaining the solutions by wavelets induced some pessimistic estimates. It was
considered that solving the mathematical problems by the wavelet method had no
advantage over the conventional methods. Strang and Nguyen [14](1996, p. 394) wrote
“The competition with other methods is severe. We do not necessarily predict that
wavelets will win”. It gave a new impulse to look for other possibilities to come out of
this deadlock. Again researchers started thinking about all the wavelets family
developed till that time.In 1997 Chen and Hsiao [15] had overcome the disadvantage
of the Haar wavelet of not being differentiable at the point of discontinuity. They
approximated the highest order derivative present in the problem with the Haar wavelet
series instead of approximating the solution function by the Haar wavelet series. The
rest all derivatives and solution function itself were founded by integrating the highest
order derivative. This technique has been proved very faithful and researchers are using
this technique in solving the mathematical models governed by differential, integral
and intro-differential equation. In 2001 Ulo Lepik [16] took the idea of Chen and Hsiao
[15] and used the wavelet transformations to analyze the linear vibration of single and
two degrees of freedom. He used the three type of wavelets transforms and found that,
in the case of single degree of freedom vibrations, all three wavelets were given the
same qualitative results but for the second degree of freedom of motion two wavelets
i.e. Mexican hat and Haar wavelets have given qualitatively different results are from
third wavelet i.e. Morlet wavelet. In 2004 Ulo Lepik and Enn Tamme[17] used Haar
wavelet to investigate the behavior of solution for linear integral equations. Different
kinds of integral equations (Fredholm and Volterra equations, integrodifferential
equations, etc) were considered. He found that the solution obtained by using Haar
wavelets was more effective than conventional solutions with the same step size and

in the case of Fredholm and Volterra equations the convergence rate was O(M~2). In
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2005 U".Lepik [18] developed a new technique based upon Haar wavelet to investigate
the solution of different types of ODEs and PDEs and compared Chen and Hsiao
method (CHM) with the method of segmentation and approximation by piecewise
constant approximation. He found that Chen and Hsiao wavelet method is
mathematically very simple because the wavelet matrices H and the matrices of their
integrals became more and more sparse which made the process very fast. But its
instability for approximating the higher-order derivatives became a disadvantage. In
2007 U. Lepik [19] applied the Haar wavelet method to solve the nonlinear evolution
equation. The method was tested on Burgers and Sine Gordon equations and found that
the method is in full competition with the other existing classical methods. The method
found was very economical as far as the computational cost and simplicity was
concerned. The method was found to be very suitable for the boundary value problem
as it automatically takes care of the boundary condition in the process of solution. In
2007, a little survey on the use of the Haar wavelet transform was given by the U. Lepik
[20] in which he discussed some different types of integral and differential equations.
In 2007 Ulo Lepik and Enn Tamme[21] applied the Haar wavelet transform technique
to test the applicability of the method on nonlinear Fredholm integral equations and the
results obtained were very promising. In 2008 U. Lepik [22] developed a new technique
of non-uniform Haar wavelets for solving the integral and differential equations and
proved that the Haar wavelet method with non-uniform mesh was suitable in the case
of problems where abrupt or rapid changes in the solution took place. In 2008 Phang
Chang, Phang Piau [23] developed the operational Matrices for Haar Wavelets to solve
the ODEs and performed all the calculations with the matrix representation of wavelets
and all of its integrals which reduced the complexity of the process. In 2009 U. Lepik
[24] developed the algorithm based upon Haar wavelets to solve the various fractional
integral equations. It was found that the method is very simple and fast to solve these
kind of fraction equations In 2009 E. Babolian and A.Shahsavaran[25] has proved the
convergence of the Haar wavelets method by doing the error analysis which was a big
question at that time and also handle the non- linearity in his process to solve nonlinear
Fredholm integral equations. In 2010 G. Hariharan, K. Kannan[26] had extended the
utility of the Haar wavelet technique to solve some nonlinear parabolic partial

differential equations using the Haar wavelet method where he considered very well
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know nonlinear PDEs for testing the performance of the method. He proved that the
proposed scheme was working better and had a good ability to handle the non-linearity
in the process and it could be used to a big group of nonlinear PDEs. In 2010
G.Hariharan [27] solved a physical model of deflection in a beam of finite length which
is governed by a fourth-order ODE with the associated boundary and initial conditions
using the Haar wavelets method. In the method a generalized operation matrix and the
matrices of their integrals were developed to solve this model and results were
compared with the exact solution available in the literature. It was shown in the results
that Haar wavelet method took smaller time on CPU and was able to give better results
for less degree of freedom as compare to the other methods. In 2011, G. Hariharan [28]
extended the use of Haar wavelet Method to solve the Klein-Gordon and the Sine-
Gordon Equations with modification in approximation. He found that the results were
closer to the exact real values for a very small no of collocation points and the accuracy
can further be improved by increasing the number of collocation points. In 2011 , Ulo
Lepik[29] applied the Haar wavelet method on the physical model of buckling of elastic
beams in which he produced the solution for the different situation in buckling of elastic
beams like crack simulation, beam vibrations on an elastic foundation, beams having
flexible cross-section etc. In this application of Haar wavelets, author revealed many
advantageous features of the Haar wavelet method like high accuracy for small number
of grid points, use of common subprograms for solving the different problems,
treatment of singularities in intermediate boundary condition and simplicity for
implementation etc. Author proved that the method could also be applied to more
complicated problems by taking the different examples. In 2011 V. Mishra, H. Kaur,
and R.C. Mittal [30] developed an algorithm by using Haar wavelet with collocation
method for solving various types of ODEs ,IDEs and integral equations .Numerical
experiment were performed to prove the reliability and efficiency of the algorithm
developed and found that wavelet-collocation algorithm was less time consuming, less
complicated as compare to the wavelet-Galerkin procedure for solving the similar types
of problems. In 2011 U. Lepik[31] solved partial differential equations with the aid of
two-dimensional Haar wavelets which could be used for solving the higher-dimensional
equation with less complexity. In 2012 Naresh Berwal, Dinesh Panchal and C. L.
Parihar [32] solved the Wave-Like Equation by using the Haar wavelet technique. In
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2013 Hariharan [33] developed a Haar wavelet algorithm for Fractional Klein-Gordon
Equations in which the author developed the wavelet operational matrices and the
operational matrices of their fractional integrals. A group of algebraic equations were
obtained by using these operational matrices on fractional Klein—Gordon equations.
Further, the group of algebraic equations was transformed into a matrix system and
solved for getting the unknown coefficients of the Haar wavelet series approximation
of the solution. The author claimed that method was very effective, simple, fast, and
flexible for other differential and integral systems. Also, the complexity of calculating
the correction coefficients could also be avoided in comparison with Daubechies
wavelets. In 2013 S. Sekar [34] has solved the Integro-Differential Equations using
single term Haar Wavelet and compare the results with Local Polynomial Regression
(LPR) method and proved the efficiency of the Haar wavelet method. In 2013 Naresh
Berwal and Dinesh Panchal[35] proved the efficiency of Haar wavelet method by
applying it onto L—C—R equation and comparing the results with exact solution. In 2013
Harpreet Kaur, et.al [36] Author have applied a quasi-linearization technique along with
the Haar wavelet bases to solve the nonlinear Blasius equation at uniform collocation
points. Blasius equation is very important equation of fluid mechanics and needed some
promising solution. Author claimed that in applying the quasi-linearization technique
along with Haar wavelet approximation did not require any iteration on the selected
collocation points which made the quasilinearization process of handling non linearity
very easy. In 2014 Umer Saeed and Mujeeb Ur Rehman[37] extended the utility of the
method of approximation of solution using Haar wavelet series for the fractional-order
nonlinear oscillation equations and found that solutions on large intervals were in
agreement with fourth-order Runge-Kutta method. In 2014 Umer Saeed and Mujeeb
ur Rehman[38] applied the Haar wavelet-Quasilinearization technique on Heat
Convection-Radiation Equations for getting the approximate solution. In which the
author first linearized the nonlinear heat transfer equation using quasilinearization
technique. Then the linear system was solved by approximating the dependent variable
and their derivatives by the truncated convergent series of Haar wavelet bases which
results into a matrix system after using the collocation points in the resultant algebraic
equations. Two special case of nonlinear heat transfer equation i.e distribution of

temperature in lumped system of slab made of variable thermal conductivity material

24



and lumper system cooling profile were studied by using the proposed scheme. Author
in the manuscript claimed that Haar wavelet-quasilinearization technique was roughly
coincide with exact solution and gave better results as compare to the other methods.
In 2014 R.C. Mittal, Harpreet Kaur, and Vinod Mishra [39] developed Haar wavelet-
based algorithm to investigate the phenomena governed by the nonlinear coupled
Burgers’ equation. After applying the Haar wavelets with Collocation method the
system of nonlinear coupled Burgers’ partial differential equations transformed in the
new system of ODEs. Resultant system of ODEs then solved by the Runge Kutta
technique. Author established the stability analysis of this hybrid scheme also. The
method was tested on some test problems and author claimed that it was giving the
quite satisfactory results and the method could be extended to solve other higher order
differential system of equation. In 2014 Asmita C. Patel & V. H. Pradhan [40] applied
the Wavelet Galerkin scheme for solving the nonlinear partial differential Equations.
They used Daubecheis wavelet with Galerkin method to solve the nonlinear partial
differential equations. In 2014 Sangeeta Arora , Yadwinder Singh Brar and Sheo
Kumar[41] implemented the Haar Wavelet Matrices techniques for finding the
Numerical Solutions of Differential Equations . In 2014 Osama H. M., Fadhel S. F and
Zaid A. M [42] applied Haar wavelet method to solve fractional Variational problems.
In 2014 Santanu Saha Ray[43] did a comparison of two most promising schemes for
solving the Fractional differential equations.In his work, he compared the performance
of the Haar wavelet method with the Optimal Homotopy Asymptotic method on
Fractional Fisher type equations. The author claimed that both methods were
appropriate and reliable for solving these kinds of equations. But optimal Homotopy
Asymptotic method provided better results as compared to the Haar wavelet method for
a certain number of grid points. On the other hand, the accuracy of the Haar wavelet
method could be improved by increasing the number of grid points. In 2015 O. Orug,
F. Bulut, A. Esen [44] developed a new hybrid technique for the investigation of the
solution of modified Burgers Equation. In the algorithm temporal part was discretized
and handled by finite differencing, spatial part was discretized by Haar wavelets
whereas the non-linearities in the equation were handled by quasi-linearization
technique. Author tested the method developed on three test problems and claimed that

method is fully consistent, fast, and very much economical in terms of computational
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cost. In 2015 Manoj Kumar and sapna pandit[45]solved the Fokker Plank Equations
with constant and variable coefficients by using an algorithm based on the Haar wavelet
method. In 2015 S. C. Shiralashetti and A. B. Deshi[46] addressed the multi-term FDEs
by using collocation method with Haar wavelet bases and found that HWCM equally
competent and easy to implement in comparison with other existing methods. It was
very effective, was easy to implement and able to approximate the solution accurately
compared to existing methods. In 2015 M. Fallahpour, M. Khodabin, and K.
Maleknejad [47] developed Haar wavelet-based method to tackle more variables in
two-dimensional linear Stochastic Volterra integral equation and difficulty of finding
solution because of the randomness. After testing the method on the test examples
author claimed that method is reliable, efficient, and fast but could be improved to be
more accurate by using other numerical methods. In 2015 S.C. Shiralashetti et.al [48]
extended the applicability of Haar wavelet collocation method for the investigation of
models governed by singular initial value problems . Authors of the manuscript
showed that HWCM was a powerful numerical method for the solution of the linear
and non-linear singular initial value Problems as compared to other methods like
Adomian decomposition Method (ADM) & Variational iteration method (VIM) etc. In
2015 Inderdeep Singh, Sangeeta Arora, Sheo Kumar [49] solved the wave equation by
using Haar wavelet and proved that the method was better than other method . In 2016
S. C. Shiralashetti, M. H. Kantli and A. B. Deshi[50] developed Haar wavelet based
collocation method to address the nonlinear ODEs emerging in the field of fluid
dynamics with different boundary conditions. After testing the method on different
problems of fluid dynamics with different boundary conditions the author claimed that
HWCM established a solid foundation for its use in solving these kinds of problems
because of their simplicity and fast convergence. In 2016 S. C. Shiralashetti et.al [51]
solved the Klein—Gordon equations by using the Haar wavelet method and showed that
it worked better than classical numerical methods like finite difference method. In 2016
Firdous A. Shah et.al [52] developed an explicit form of operational matrix of Haar
wavelets for solving the various linear and non-linear fractional differential
equations.Many standard benchmark problems were tested and claimed the superiority
of the method by giving numerical evidence in terms of fast convergence and better

accuracy. In 2016 A. C. Patel and V. H. Pradhan[53] implemented the Haar wavelet
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method on the advection-dispersion equation representing one-dimensional
contaminant transport through a porous medium. In 2016 O. Oruc, F. Bulut, and A.
Esen [54] developed the Haar wavelet-based hybrid technique for the investigation of
the phenomena governed by Regularized Long Wave Equation. Time derivatives were
discretized by using finite differencing and space derivatives were approximated by
truncated Haar wavelet series. Various test problems related to solitary wave motion
had been analysed and claimed that method was working well to analyze these kinds of
problems. In 2016 Harpreet Kaur, Shin Min Kang [55] developed the time
discretization of Haar wavelet Series approximations with Quasilinearization technique
for solving well known nonlinear PDEs .Quasilinearization was used to tackle the
nonlinearity in nonlinear PDEs .Haar wavelet method with collocation method was
used to convert the given PDEs into a linear system of equations which were further
solved by Thomas algorithm. In 2017 S. C. Shiralashetti, et.al [56] used adaptive grid
by adding the more grid points which were actually the midpoints of the regular uniform
grid points in the regular uniform grid of Haar Wavelets. The new adaptive grid Haar
wavelet technique was applied to solve the parabolic type of PDEs along with
collocation method and showed that the new technique gives better accuracy in
comparison to regular HWCM and FDM. In 2017 Saedeh Foadian et.al [57]claimed
that the system of equations obtained after applying the Haar wavelets along with the
quasilinearization and collocation technique on the coupled nonlinear Reaction-
Diffusion Equations (RDEs) was very sensitive to the wavelets coefficients and the
matrix on the right-hand side of the equation. They used Tikhonov Regularization (TR)
method to stabilize this ill-conditioned system of linear equation to obtain a stable
numerical approximation for RDEs with suitable initial and boundary conditions.
Further Author claimed that proposed methods was faster, stable and was giving the
better results as compared to finite difference method (FDM) and radial basis function
(RBF) method. In 2017 Bijil Prakash et.al [58] extended the application of Haar
wavelets for the solution of SEIR epidemic model governed by nonlinear fractional
differential equation. The model carried the non-constant population which was very
cumbersome, sometime not possible to solve analytically. It became more difficult
when the corresponding model is fractional and non-linear in nature. In this article

Author claimed that the method was working very well to address these kinds of
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biological mathematical models of various infectious diseases. In 2017 M. Erfanian
et.al [59] developed the method for integro-differential equations of mixed Volterra—
Fredholm type using the rationalized Haar wavelet bases to avoid the numerical
integration involved in the process. It was claimed by the author in the manuscript that
proposed method reduced the computational cost and increased the efficiency by
avoiding the step of converting Integro-Differential Equation into a difference equation.
In 2017, Somayeh Arbabi et.al [60] applied the two-dimensional Haar wavelets method
for solving the systems of partial differential equations. Convergence and stability of
the method was proved. Method was tested on the test problems and claimed that results
obtained were in a very good coincidence with the exact solution. In 2017 Firdous A.
Shah and R. Abass[61] extended the application of Haar wavelet method to one-
dimensional singularly perturbed boundary-value problems. In their work they
converted the given singularly perturbed boundary-value problems in the system of
difference equations with the help of Haar Wavelet series approximation and then by
using the collocation approach a system of linear equations was obtained. In this
manuscript author tested the given method on five benchmark problems and claimed
that the proposed method was easy to implement on computer, giving better results as
compare to other existing methods and could be implemented to more challenging and
more complex problems of singularly perturbed equation. In 2017 Umer Saeed [62]
developed an algorithm for the solution of fractional Lane-Emden type equations. In
this algorithm, he approximated the unknown solution, nonlinear term in the differential
equation by using the Adomian decomposition method and reduced the given non-
linear equation into the system of linear FDEs. Then linear FDEs were then solved with
the help of the Haar wavelet collocation method and back substituting these solutions
in the Adomian series the series solution is obtained. The author compared the results
obtained by the present method with the other methods available in the literature and
claimed that the method was giving an excellent result as compared to the other
methods. The author also claimed that the method was competent enough to handle
different types of nonlinearities in the various types of the differential equations. In
2017 S. C. Shiralashetti, et.al [63] extended the application of the Haar wavelet
collocation method to solve the nonlinear Volterra-Fredholm-Hammerstein integral

equations. In the manuscript, nonlinear Volterra-Fredholm-Hammerstein integral
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equations were first converted in the corresponding differential equations by
differentiating the given integral equations using Leibnitz rule and then solved with the
help of Haar wavelet collocation method. The results were compared with the exact
solution and found satisfactory with error of order 10712 . In 2017 Ravikiran A.
Mundewadi, et.al [64] applied the same procedure of Haar wavelet collocation method
to solve the various integro-differential and integral equations. In 2017 Imran Aziz, et.al
[65] developed a new algorithm by using the three-dimensional Haar wavelets to solve
the mathematical model governed by the three-dimensional partial differential
equations with Dirichlet boundary conditions which are elliptic in nature. Many
benchmark problems were tested by the author to prove the exactness and diverse
applicability of the method. In 2017 Zakieh Avazzadeh [66] extended the application
of 2D Haar wavelet method to solve the nonlinear age structured population model
governed by the non-classical partial differential equation with boundary constraint as
integral equations. In this manuscripts author reduced the given problem into an
algebraic system which lead to a sparse matrix system and increased the computational
efficiency. In 2017 Umer Saeed [67] used the Haar wavelet quasilinearization technique
for finding the solution of the system of fractional nonlinear differential equations and
compared the results with other existing methods like variational iteration method
(VIT), Homotopy perturbation method (HPM) and found that present method is a
numerical accuracy enhancement over the existing methods. In 2017 Ram Jiwari, et.al
[68] developed the technique to investigate the MHD Falkner-Skan flow over
permeable. In this technique, authors used a Lie algebra of infinitesimal generators to
transform the given system of 2D partial differential equations into a system of linear
and nonlinear ordinary differential equations which are further solved by the Haar
wavelet quasilinearization technique. In 2017 Randhir Singh, et.al [69] extended the
application of the Haar wavelet quasilinearization technique for getting the solution of
doubly singular boundary value problems. The method was tested on different physical
models governed by the doubly singular differential equation and it was claimed by the
author that the proposed method is giving the results better than other methods. In 2017
Sapna Pandit, et.al [70] extended the application of the 2D Haar wavelet method finding
the solution of well-known linear and non-linear hyperbolic type wave equations and

claimed that the method was reliable and it could be expanded to explore more
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biological, physical and chemical phenomena. In 2017 Somayeh Arbabi, et.al[60]
extended the application of the 2D Haar wavelet method for finding the solution of
systems of nonlinear partial differential equations in higher dimensions. The author also
discussed the convergence and stability of the 2D Haar wavelet method. The method
was tested on some 2D and 3D PDEs and found that it was working better and giving
better results as compared to other methods. In 2017 R. C. Mittal, et.al [71] developed
a new technique based upon a Haar scale 3 wavelets. It was improved and hybrid
version Haar Scale 2 wavelets. The New technique was used for the Sensitivity
Analysis of Shock Wave in planar and non-planar Burgers Equations. Forward finite
difference scheme was used for time discretization, scale 3 wavelets were used for
space discretization of the derivatives and quasilinearization technique was used to
tackled the non-linearities in the equation. Proposed Technique was tested on six
problems. Author claimed that the method performed was superior in contrast to other
classical methods and could be applied to a vast class of integral equations, PDEs,
ODEs. In 2017 Sapna Pandit, et.al[72] applied the Scale-2 Haar wavelets technique for
the sensitivity analysis of shock wave in planar and non-planar Burgers Equations.
Author claimed that the proposed method was fully capable of capturing the shock wave
behaviour for small values of viscosity where most of the numerical methods failed. In
2018 Sirajul Hagq, et.al [73]used two dimensional Haar scale 2 wavelets for finding the
solutions of Sobolev Equations and BBMB equations in higher dimensions where the
discretization of temporal part was done by finite differencing scheme and spatial part
was discretize by 2D Haar Wavelets collocation scheme. Method was tested on Sobolev
and BBMB equations and results were compared modified weak Galerkin finite
element method. Author claimed that present method gave better results in comparison
with modified weak Galerkin finite element method. In 2018 Muhammad Ahsan, et.al
[74]used two types of Haar wavelet collocation schemes to solve the unsteady inverse
heat problems. In the first scheme (HWCM1), author used a transformation to convert
a non-homogeneous PDE into a homogeneous form and in the second scheme
(HWCM2) author used the traditional Haar wavelet collocation scheme. Both schemes
were tested on unsteady inverse heat problems and found that HWCM1 was working
better than HWCM2. Further author claimed that HWCM1 could be applied to a huge
class of nonlinear inverse PDEs as well. In 2018 Maarjus Kris, et.al[75] used FDM-
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finite difference method, HWM -Haar wavelet method, DQM-differential quadrature
method for the investigation of functionally graded material beam in terms of free
vibration analysis. All three methods were evaluated on the bases of their performance.
It was concluded that HWM outperformed over FDM but the accuracy of the DQM was
more than the HWM and FDM. Also, HWM could be more efficient for the analysis of
nanostructures because of its properties. In 2018 Inderdeep Singh, et.al [76] used one
and two dimensional Haar wavelets for finding the solution of BBMB, Harry Dym
(HD), higher dimensional Diffusion Equations and the results were compared with
other existing methods (ADM,HPM,HAM,FDM,QTBS ).It was concluded by the
author that the presented method was working better than the other methods. In 2018 J.
Majak, et.al [77] developed a new higher order Haar wavelet method for finding the
solution of integro-differential and differential equations. The method was tested on
some integro-differential and differential equations as an application to FGM
Structures. It was found that new method had improved order of convergence and less
order of error and it could be utilized with minor adaption for a vast class of integro-
differential and differential equations. In 2018 R.C. Mittal, et.al [78] developed a Haar
Scale-3 wavelet-based technique for finding the solution of ordinary fractional
dynamical systems. The method was tested with some test problem and compared with
scale 2 Haar wavelets. It was found that Haar Scale-3 wavelet-based method converged
faster than Haar Scale-2 wavelet-based method. In 2019 Omid Baghani [79] made a
correction on the convergence analysis of Rationalized Haar wavelet method .He tested
the claim for order of convergence on three examples and verified by the theoretical

and numerical evidence that order of convergence for rationalized Haar wavelet
M

method is 0(iq") ,not 0(q') where q = o

In 2019 Sidra Saleem, et.al [80]used two

dimensional Haar wavelet for finding the solution of higher dimensional nonlinear
parabolic partial differential equations. After converting the differential system into a
4D array system, Kronecker tensor product was used to find the unknown coefficients.
These coefficients were used to write the final solution. The method was tested on five
different problems and concluded that it was efficient enough to handle these kinds of
equations in higher dimensions. In 2019 Omer Orug, et.al [81] extended the use of two

dimensional Haar wavelet along with the finite difference method for finding the
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solution of time fractional reaction—sub diffusion equation. The proposed method was
tested on two different equations and compared with alternating direction implicit
method and meshless-based method. As a conclusion, author claimed that method is
equally competent , extremely simple and easy to use as compare to other methods. In
2019 Muhammad Ahsan, et.al [82] applied Haar wavelet-finite difference method along
with the quasilinearization technique to investigate linear and nonlinear Schrodinger
equation and concluded that the method successfully simulates the physical behaviour
of the phenomena governed by the Schrodinger equation. It can be extended for the
higher dimensional Schrodinger equation with high computational cost. But one has to
take on irregular domain with some supporting technique. In 2019 Amir Mohammadi,
et.al [83] applied Haar wavelet collocation—Picard method for the investigation of
fractional Emden—Fowler equations and the results were compared with the Adomian
decomposition method and Homotopy perturbation method introduced. It was
concluded by the author that proposed method was easy and effective in handling the
singular and nonlinear fractional partial differential equations as compare to HPM and
ADM. In 2019 Aditya Kaushik, et.al [84] used Rationalized Haar functions along with
the collocation method to solve the various types of differential and integral equations
and claimed that the method was effective, highly accurate, highly competitive and
caused less computational cost. In 2019 R. C. Mittal, et.al [85] developed a New Scale-
3 Haar wavelet-based technique to solve the second order ODEs with singular
coefficient and nonlinearity. The new technique was tested on some benchmark
problems and it was claimed by the author that the proposed scheme gave better results
as compared to the cubic spline method, quadratic spline method, and scale-2 Haar
wavelet method. It was shown that the scale-3 Haar wavelet method had a faster rate of
convergence as compare to scale-2 Haar wavelet method. In 2020 Irfan Awana, et.al
[86] extended the application of Haar wavelet-based collocation technique for the
investigation of Pennes bioheat transfer model. The results were compared with exact
solution of Pennes bioheat transfer model available in literature and found that present
technique was working well for these kinds of problems also. In 2020 Mart Ratas,
et.al[87] have extended the application of Higher Order Haar Wavelet Method
(HOHWM) for the investigation of mathematical models governed nonlinear evolution

equations. The given method was compared with Haar wavelet method (HWM) and
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concluded that both the methods are equally capable of handling these kinds of
problems. If higher accuracy was required then HOHWM was suggested and less
computational cost was required then HWM was suggested. In 2020 Nosheen Pervaiz,
et.al [88] extended the application of Haar Wavelet Method for the investigation of
nonlinear Schrodinger equations with Dirichlet boundary conditions. Crank-Nicolson
scheme was used for time discretization and Haar wavelet collocation scheme was used
for space discretization. The method was tested on some nonlinear Schrodinger
equations with different initial and boundary conditions and found that method was
working well with these kind of problems. In 2020 Arun Kumar, et.al [89] extended the
application of Haar wavelet Method to the field of electromagnetic problems. Author
tested the Haar wavelet method on four electromagnetic problems related to
transmission line, uniform plane wave in lossy dielectricc EM waves travelling in
different media and telegrapher’s equation. It was concluded by the author after the
comparative analysis that Haar wavelet methods were expressively faster as compared
to standard analytic solutions. In 2020 Ghader Ahmadnezhad, et.al [90] extended the
application of Haar wavelet method for the investigation of fractional Fisher equation
the field. In the proposed method ,Iteration Picard technique was used to handle the
non-linearity in the fractional fisher’s equation. The Haar wavelets were used to convert
the resultant differential system into the system of difference equation which were
further solved by matrix method. The results then compared with the other methods like
HPM, MVIM with exact solution.It was concluded that obtained results coincide with
exact solution. In 2020 Randhir Singh, et.al [91] extended the application of Haar
wavelet quasilinearization Method for the investigation of Emden-Fowler Type
Equations with different boundary conditions which were nonlinear doubly singular
boundary value problem. It was concluded that obtained results were in good agreement
with the exact solution and method was working better than finite difference method
and cubic spline method. In 2020 Saedeh Foadian, et.al [92] used the Haar wavelet
method along with the Tikhonov regularization method for getting the solution of time-
delayed Burgers-Fisher equation. It was concluded by the author that method was easy

to implement on computer environmental with less computational cost and less storage.
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A literature review of about 100 papers shows that the Haar wavelet-based methods are

very accurate, powerful, and efficient methods for solving the problems of science and

technology. During the literature review, besides the immense application and great

utility of Haar wavelets in the field of science and technology, the scope for new

findings has been observed which is given below.

1.9 Finding from the literature review

1.

There are many shreds of evidence for the existence of non-dyadic (Scale 3)
wavelets in electronics engineering but a very few algorithm was developed till date
in mathematics for non-dyadic(Scale 3) wavelets.

Though some hybrid methods in the literature have been seen, still there is a huge
possibility of a new hybrid method where wavelets can also be combined with any
of the Variational techniques, approximation techniques, semi-analytic techniques
to create a hybrid method.

There is no algorithm developed for finding the solution of higher-order ordinary
differential equations by the wavelet method.

There is a huge scope for finding the solution of Fractional differential equations
by the wavelet method.

There is no algorithm developed to solve the system of nonlinear ordinary
differential equations by wavelet methods.

There is no algorithm developed to solve the system of nonlinear partial differential

equations in more than two variables by the wavelet method.

1.10 Objectives

Wavelet methods have become popular for their simplicity of implementation,
small computation costs resulting from the sparsity, very high accuracy for small
number of grid points, etc. The thesis presented will be used to find the solution of
differential equations using wavelet methods in various fields like physics,
medicine, biology, chemistry, economics, financial forecasting, image processing,

Environmental science, etc.
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The objectives of the proposed study are

1. To explore the possibility of coupling the Wavelet method with other legacy
methods or by changing the dilation factor to frame hybrid method.

2. To investigate the applicability of the wavelet method in solving the differential

equations used in various fields.

3. To implement the method developed for solving the Physical models which

have significance in the field of science and engineering.

4. To analyze the solution obtained for the concerning problems with the analytical

or numerical solution available in the literature.

This thesis is dedicated to the development of Haar Scale 3 and Haar scale 2 Wavelets
based algorithms for solving the linear-nonlinear differential equations. The broad
range of numerical problems arising in different fields like as higher-order linear and
nonlinear boundary value problems, fractional Bagley-Torvik equations, coupled
space-time fractional- Burgers’ equation, hyperbolic Telegraph equations, NBBMB
(non-linear Benjamin Bona Mahony Burgers) equation, linear and non-linear Sobolev
equation are considered systematically. From the mathematical point of view, these
problems represent the ordinary differential equation with associate boundary or initial
conditions, Higher-order Linear and non-linear partial differential equations, Linear
ordinary Fractional differential equations and Nonlinear system of fractional partial
differential equations which are treated in the mathematical framework of functional
analysis, linear algebra, and approximation theory. All the calculations have been
performed using MATLAB 7 software installed on system with 4gb ram and intel core

13 processor .
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Chapter 2
Numerical Solution by Haar Scale 2 Wavelet
Collocation Method for a Class of Higher Order

Linear and Nonlinear Boundary Value Problems

2.1 Introduction

Higher order boundary value problems (HOBVPs) are getting huge attention from
researchers because of the fact that many physical phenomena like hydrodynamic and
hydromagnetic stability [93], induction motor with two rotor circuits [94], viscoelastic
flows in fluid dynamics, etc. are governed by the higher-order boundary value
problems. Therefore, to find an accurate, efficient, and simple solution to these
problems have achieved great significance during the last decades. The existence and
uniqueness of the solution of HOBVPs have been proved by Agarwal in his book [95].
General analytical solution for these kinds of problems has not yet been established.
Therefore, researchers are using numerical techniques to find the solutions of HOBVPs.
Many numerical mechanisms have been developed in the literature to solve these
problems such as Variational Iteration Decomposition Method (VIDM) [96], Optimal
Homotopy Asymptotic Method (OHAM) [97], Galerkin Method with Quintic B-splines
(GMQBS) [98], Legendre Galerkin Method (LGM) [99], Reproducing Kernel Space
Method (RKSM) [100], Variational Iteration Method (VIM) [101], Modified
Variational Iteration Method (MVID) [102], Sextic B-splines Collocation Method
(SBSCM) [103], Petrov-Galerkin Method (PGM)[104], etc. But many of these methods
involve cumbersome calculation process which slows down the rate of convergence
and some of these methods are also very sensitive to the initial guess and can fall in the
process of infinite iteration for the wrong initial guess and hence can increase the
computational cost. In the past decade, the wavelet-based numerical method has

become predominant because of its simple applicability and high accuracy. Wavelet is
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a small wave that can be manipulated in two ways; one way is the translation which
means shifting of all points of wavelet in the same direction and for the same distance
and other is scaling or dilatation which means stretching or shrinking of original
wavelet.

Mathematically wavelet can be represented by Equation (2.1)

Yap = ﬁw (t ; b) 2.1)

Here a is the dilation parameter and b is the translation parameter.

Wavelet transformation of any function x(t)is defined by Equation (2.2)

w(a, b) = jt x(t)\/%l,b (t - b) dt 2.2)

. . . . b D
which gives us an information that at t = ~ how much the scaled function is similar

to the given solution function x (t).
Many wavelets have been developed and used by the researchers for finding the
numerical solutions of differential equations. Out of which Haar wavelet family is the
simplest wavelet family having explicit mathematical expression as given by the
Equation (2.3) and (2.4)

1 0<t<1

Haar Scaling Function ¢(t) = { 0 elsewhere (2.3)
1 0<t<:
Haar Wavelet function (t) =1 _4 lot<e 2.4)
5 <

0 elsewhere

Haar wavelet family has very useful characteristics, such as localization in frequency
and time, orthogonality of family members, compact support, simple applicability, high
accuracy for a smaller number of collocation points, and time efficiency for a large
system with more variable quantities, etc. In the past two decades, many researchers
have worked on finding the solution of HOBVPs by HWCM. Siraj-ul-Islam et al.[105]
have obtained the solution of second-order BVPs by HWCM. Fazal-i-Haq et al. [106]—
[108] have obtained solutions of Third, fourth, sixth-order BVPs by HWCM.
A.P.Reddy et al. [109], [110] have obtained a solution of fifth and seventh order BVPs
by HWCM. So far, more than seventh order BVPs have not been solved by Haar
Wavelet Collocation Method (HWCM).
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This inspires us to use the collocation method with Haar wavelets as a basis function to
solve HOBVPs of the type given below in Equation no.(2.5).

The main objective of our work is to establish and apply the Haar wavelet collocation
method for the numerical solutions of linear and nonlinear HOBVPs emerging in many
physical phenomena. To test the efficiency and accuracy of the method, we consider
the general HOBVPs (Equation (2.5)) of the type

x"(t) = f(t,x,x',x", -, x" ), a<t<b (2.5)

with the following types of constraints on the solution at the boundary points given by

Equation (2.6) and (2.7)

x(@) = v1,x(b) = 01,5 (@) = v, x'(b) = G, -+, x(z)(a)
. (2.6)
=vn ,x(f_l)(b) =on , if n is even integer
2 2
%(@) = y1,x(b) = 6,%' (@) = Y2, x' (b) = 8+, xT V(@)
@.7)

=Yn-1 ,x(T) (b) = On+1, if nis an odd integer
2 2

2.2 Haar Wavelet and Its Integrals

In generalized form, Haar wavelet family [10] is represented by the Equation (2.8)

' 1 1 (1) St <ny(i)
h(®) =92/t —k)={ -1 1y (D) St <ns(i), i=123,..2p (2.8)
0 elsewhere
Where
G =5, 060 = 22, 60 =2, p=2/, j=012,+,k=12.,p-1

, L represents wavelet number calculated from the relationi — 1 = p + k , j represents
the level of dilation/resolution of the wavelet (as we increase the value of j support of
wavelet decreases) and k represents the translation parameters of the wavelet. The
function h, (t) is called father wavelet,h, (t) are mother wavelet and all other functions
h,(t) ,hs(t), hy(t) ... are generated from the translation and dilation of the mother
wavelet.

Using the explicit mathematical expression of Haar wavelet family, we can integrate
Equation (2.3) and (2.8) over the interval [0,1) as many time as required by using the

formula given in Equation (2.9)
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i (£) = fot fot fot ......... M EIMeS -+ +n oo J:hi(x)(dx)m

f (t —x)™ 1h;(x)dx 29)

(m - !
vm=123.... , =123, .... 2p
After evaluating the above integrals for Equation (2.3) and (2.8), we get Equation (2.10)
and (2.11)

qp,i(t) =;7Ij for i=1 (2.10)
qp,i(t) =
(0 t <u (D)
%(t — (D) 1,.(0) < t < (D)
* %ﬂ@—x&ﬂf—zﬁ—%xﬂf] m<t<u@ (O
k% [(t—.)) = 2(t =s,D)) + (t=:(D)’] > 5300

for i =2
2.3 Approximation of Function by Haar Wavelets

From the properties, one can observe that the members of a family of Haar wavelet are
orthogonal to each other, thus any square-integrable function x(t) over the interval
[0,1) can be expressed an infinite series of scale 3 Haar bases as given in Equation

(2.12)

e

x(0) = ) aghy(®) 2.12)

i=0
Here a;'s are Haar wavelet coefficients whose values can be calculated as a; =
fol x(t) h;(t)dt ,i = 1,2,3, ... .But in practice, only the finite number of terms of the
above equation are considered. We are considering only the first 2p terms where p =

2/, j =0,1,2, ... of series to approximate the function x(t) as given in Equation (2.13)

2p

x(t) = xpp, = z a;h; (t) (2.13)

i=0
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2.4 Haar Wavelet Mechanism for Boundary Value Problems

Case 1: Consider the linear higher-order boundary value problems as given in Equation

(2.14)

ao(Ox™() + a; Ox" 1) + a(O)x"72() + -+ a, (Ox(t) = f(0), 214
V te(a, b) ‘

with the constraints on the solution at the boundary points given in Equation(2.6) and
(2.7).ap(t), a (t),a,(t) ... ... a,(t) and f(t) as continuous functions of variable t

defined on the interval [a, b].

The step-wise mechanism for obtaining the solution of HOBVPs by applying the Haar

wavelet collocation method can be defined as follows:

Step 1: Approximate the highest order derivative present in the equation as x™(t) =
Zizfl a;h;(t) where h;(t) are members of Haar wavelet family and a;s are the wavelet

coefficients which are to be determined in the process.

Step 2: Now integrate x™(t) = Zl-zfl a;h;(t) from O totas many times as desired in
the application. If we integrate n — m number of times we get the following expression

2p n-m-—1

O =Y A+ Y A™(0)
[ v=0

i=1

(2.15)

vm=123,,n—1
Where the values of g,_,,;’s can be calculated using the formulas given in Equations

(2.10) and (2.11)

Now we introduce the following notation

Biy- [, i(¥)dx  i=123,..2p (2.16)

Step 3: Convert the given boundary value problem into the initial value problem to get

the matrix system given in Equation (2.17)
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1 n—-1 n-1n-2) m-1Dn-2)n-3)(n—4) - (n—(s—l)) x™1(0)

1 n—2 n—-2)(n-3) m—-2)(n-3)n—-4)(n—5) - (n—s) x"2(0)

1 n-3 nm-=3)(n-4) m=3)n—4)(n—-5Mm—6)-- (n—(s+1)) x"3(0)

1 n—G6-10 n-G6-10  ~ (-@-D)n-@-2)(-@2s-3) |xcD0)

1 n—s n=-)n-G+1) ~ (-ph-@+D)n-(@+2) - (n—(ZS—Z))J x"*(0) (217)
(n—1)4,
(n—2)14,

(n—23)!4,

(- (s— D)4,
(n—s)!Ag

, if niseven

-1

nm
where Ag = x°71(1) _< 2 Z (0)) _ZZp aiBnii-si» S = , ,
—, ifnisodd

s—=1 I i=1“i

SN
N

by solving the above system, we get the values of x™~1(0), x"~2(0), x"~3(0), -,
xn—(s—l)(o)’ x"7%(0) in terms of a;, Bpy1-s; -

Step 4: Substitute the value of x(t) and its derivatives x'(t),x" (t),x""(t) - x™(t)

as obtained in the Step1 and Step 2 in the linear differential equation (2.14)

Step 5: Find the grid points for the curve or surface using t; = é, where [ =

0,1,2,..2p, p = 27, j =0,1,2,... then the Collocation points are calculated by using

the expression in Equation (2.18)

f="10 1 =0,12,..,2p (2.18)

Step 6: Discretize the equations obtained in step 4 by using the collocation points Given
in Equation (2.18) and the initial conditions obtained in step 3. Then we can easily put
the result into the matrix form.
Step 7: Solve this system obtained in step 6 for the values of wavelet coefficients a;'s.
Substitute these coefficients in the equation obtained for x(t) and obtain the Haar
wavelet collocation method-based solution of given differential equation.
Case 2: For Nonlinear higher-order boundary value problems

x"(t) = f(t,x,x, x", -, x"" 1), a<t<b (2.19)
with the constraints on the solution at the boundary points given in Equations (2.6)-

2.7)

Step1: Apply Quasilinearization technique [111], [112]on nonlinear HOBVPs to obtain

the sequence of Linear HOBVPs by using the following recurrence relation
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x4 (0) = £ 2, (), %7 (8), 27 (£), -+, %771 (E))
= ) (2.20)
Gt = 1) o (6,20 (0, 50, 57 (0), 2271 ©)
u=0
x,(t) is the initial guess for the approximated solution which is used to find the next
refined approximated solution x,.,(t) and the constraints on the solution at the

boundary points are now transformed as

n
O
501 (@) =3, % (5) = 01, Haa(@) = V2, Koy (0) = 0, x5, ) =,
(g_l) (b) = ifni
X2 = on,ifnis even

n-1 n-1
Xr41(@) = V1, Xpg1 (D) = 81, Xp41(a) =v2, o) xr(+21 )(b) = 5nT-1;xr(+21 )(a) =

yn+1, if n is an odd integer
2

Vi,Vy o Vg, 01,09, ag VY10 Y2y ven e ,Ynr1, 0q, Og, veeeee ,0n-1  are the real constants.
2 2

Step 2: After applying Step 1 of Case 2 for nonlinear HOBVPs, apply all the steps given
under case 1 for linear HOBVPs from Step 1 to Step 7.

2.5 Convergence Analysis

It has been proved by the Babolian and Shahsavaran [113] if x(t)is any differentiable
function such that |x'(t)| < M V t € (0,1) for some positive real constant M and x(t)

is approximated by haar wavelet family as given in Equation (2.21)
2p

Xap(£) = z a;hi () 2.21)

i=0
Then the error bound calculated for Haar wavelet approximation of function x(t) by

L,-norm is given by Equation (2.22)

1

lx® —xp®l =0(;)  22)

which means if we know the exact value of M then we can get the exact error bound

2 2
lx(® =22 D" < 5

for the approximation. Also, with the increase in the level of resolution (the value of j
or p=2/) error decreased which proves the convergence for approximate solutions to

the exact solution. This same is shown in the Numerical Experiments performed below.
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2.6 Numerical Experiments and Error Analysis

To describe the applicability and effectiveness of the proposed mechanism, some
Numerical Experiments on “eighth and ninth order linear and nonlinear boundary value
problems” have been performed with the given mechanism as the given below. L, ,L,
and absolute errors are calculated to check the efficiency of the proposed method.L,

,Lo, and absolute errors are defined as

Absolute error =|upyqer (t1) — Unym (E) | (2.23)

Lo = mlaxluexact(tl) — Unum (8| (2.24)

2
\/Zlflluexact (tl) — Unum (t) | z

L, (2.25)

\/leflluexact(tl)lz
Numerical Experiment No. 2.1: - Eighth order linear differential equation is

considered for the numerical solution as given in Equation (2.26)
d8x(t)
dtd
with the following types of constraints on the solution as given in Equation (2.27)
x(0)=1,x"(0)=0,x"(0)=-1,x""(0) =-2,x(1) =0,x'(1) = —e,
x"(1) =-2e,x'""(1) = -3e

—x(t)=—-8e* , 0<t<1 (2.26)

(2.27)

Exact solution of numerical experiment no. 2.1 is given in the literature as
x(t) = (1 —t)et.

By applying the mechanism of solution explained above for the linear differential
equation, we get the HWCM solution for numerical experiment no. 2.1. Table 2.1 and
Figure 2.1 shows the comparison between the exact and HWCM solution for j=2 which
explains the high accuracy obtained by HWCM for a small number of grid points (in
this case only 8 Grid pts). L, and L, errors at j=2 are 7.08E-10, 9.45E-10 respectively.
It has been observed from the Table 2.2 and Figure 2.2 that with the increase in the
level of resolution j, the errors between the exact solution and HWCM solution
decreases which ensures the convergence of HWCM solution to exact solution. The
performance of HWCM is compared with the other method in Table 2.3 and it has been
found that HWCM is working better than the other methods [96], [97]
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Table 2.1: Exact and Approximated solution by HWCM for j=2 for Numerical

Experiment No. 2.1

x(t) Exact Solution Solution by HWCM
0.0625 0.997963555235493 | 0.997963555232622
0.1875 0.980062077654547 | 0.980062077521416
0.3125 0.939701084556985 | 0.939701084023347
0.4375 0.871217042981700 | 0.871217042050077
0.5625 0.767836412420131 | 0.767836411475210
0.6875 0.621480459244466 | 0.621480458687880
0.8125 0.422537772602477 | 0.422537772459936
0.9375 0.159599341128933 | 0.159599341125753

Table 2.2: L, and L, errors at different level of resolution for Numerical Experiment

Table 2.3: Comparision of absolute errors obtained by different methods in Numerical

No. 2.1
Level of Resolution (j) | p=2/ | Number of Grid Points(2p) | Ly-error | L -error
0 1 2 1.33E-08 | 1.36E-08
1 2 4 2.79E-09 | 3.06E-09
2 4 8 7.08E-10 | 9.45E-10
3 8 16 1.77E-10 | 2.47E-10
4 16 32 4.43E-11 | 6.25E-11
5 32 64 1.11E-11 | 1.56E-11
6 64 128 2.77E-12 | 3.91E-12
7 128 256 6.93E-13 | 9.78E-13
8 256 512 1.73E-13 | 2.45E-13

Experiment No. 2.1

x(t) |  Exact Solution HWCM Solution | HWCM(E") | VIDM(E®) [96] [ OHAM(E") [97]
0.1 | 0.994653826268083 | 0.994653826297070 | 2.90E-11 6.71E-06 2.55E-09
0.2 | 0.977122206528136 | 0.977122206759530 | 2.31E-10 1.27E-07 2.84E-09
0.3 | 0.944901165303202 | 0.944901165717264 | 4.14E-10 1.75E-07 3.12E-09
0.4 | 0.895094818584762 | 0.895094818707398 | 1.23E-10 2.06E-07 3.40E-09
0.5 | 0.824360635350064 | 0.824360634815975 | 5.34E-10 2.18E-07 3.67E-09
0.6 | 0.728847520156204 | 0.728847519355493 | 8.01E-10 2.08E-07 3.94E-09
0.7 | 0.604125812241143 | 0.604125811877154 | 3.64E-10 1.78E-07 4.20E-09
0.8 | 0.445108185698494 | 0.445108185798495 | 1.00E-10 1.29E-07 4.45E--09

E” (Absolute Error) =Exact Solution-Approximate Solution
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Numerical Experiment No. 2.2: - Eighth order linear differential equation is

considered for the numerical solution as given in Equation (2.28)

dx(t) d7x(t) d°x(t) d°x(t) d4x(t)+d3x(t)+d2x(t)

dt8 * dt’ * dt6 * dt> * dt* dt3 dt? (2.28)
dx(t) . . '
+7+x(t) =14 cost — 16sint — 4tsint ,0<t <1

with the constraints on the solution at the boundary points as given in Equation (2.29)

x(0)=0,x"(0)=-1,x"(0) =0,x"""(0) = 7,x(1) = 0,x'(1) = 2sinl

(2.29)
x""(1) =4cos1+2sin1,x'""(1) =6cos1—6sin1l

Exact solution of numerical experiment no. 2.2 is given in the literature as

x(t) = (t? — 1) sint .

By applying the mechanism of solution explained above for linear differential equation
we get the HWCM solution for numerical experiment no. 2.2. Table 2.4 and Figure 2.3
shows the comparison between the exact and HWCM solution for j=2 which explains
the high accuracy obtained by HWCM for a small number of grid points (in this case
only 8 Grid pts). L, and L, errors at j=2 are 1.47E-08, 6.60E-09 respectively. Table 2.5
and Figure 2.4 ensures the convergence of the HWCM solution to the exact solution.
The performance of HWCM is compared with the other method in Table 2.6 and it has
been found that HWCM is working better than the other methods [99], [114].
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Table 2.4: Exact and Approximated solution by HWCM for j=2 for Numerical
Experiment No. 2.2

x(t) Exact Solution Approximated Solution by HWCM
0.0625 | -0.0622153361320580 -0.0622153361104450
0.1875 | -0.1798500558604710 -0.1798500548792540
0.3125 | -0.2774152221408910 -0.2774152182804620
0.4375 | -0.3425819735984970 -0.3425819669995290
0.5625 | -0.3645623744875140 -0.3645623679434340
0.6875 | -0.3346560773518020 -0.3346560735861070
0.8125 | -0.2467295039362580 -0.2467295029938770
0.9375 | -0.0976113842034430 -0.0976113841830550

Table 2.5: L, and L, errors at different level of resolution for Numerical Experiment

No. 2.2

Level of Resolution (j) | p=2/ | Number of Grid Points | L,-error | L-error
0 1 2 2.00E-07 | 6.89E-08
1 2 4 5.79E-08 | 2.14E-08
2 4 8 1.47E-08 | 6.60E-09
3 8 16 3.67E-09 | 1.73E-09
4 16 32 9.19E-10 | 4.37E-10
5 32 64 2.30E-10 | 1.10E-10
6 64 128 5.74E-11 | 2.74E-11
7 128 256 1.44E-11 | 6.85E-12
8 256 512 1.08E-14 | 2.60E-14
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Table 2.6: Comparision of Numerical results in terms of Absolute error obtained by

different methods
x(t) Exact Solution HWCM Solution | HWCM (E*) | GMQBS(E") [114] | LGM(E") [99]
0.1 | -0.098835082480360 | -0.098835081782372 6.98E-10 3.80E-07 5.04E-08
0.2 | -0.190722557563259 | -0.190722550744819 6.82E-09 2.15E-06 5.14E-07
0.3 | -0.268923388061819 | -0.268923368938548 1.91E-08 5.63E-06 1.56E-10
0.4 | -0.327111407539266 | -0.327111377683842 2.99E-08 9.75E-06 2.71E-06
0.5 | -0.359569153953152 | -0.359569122469850 3.15E-08 1.14E-05 3.26E-06
0.6 | -0.361371182972823 | -0.361371158840556 2.41E-08 1.01E-05 2.82E-06
0.7 | -0.328551020491222 | -0.328551006968581 1.35E-08 7.27E-06 1.68E-06
0.8 | -0.258248192723828 | -0.258248187818473 4.91E-09 3.87E-06 5.78E-07

E" (Absolute Error) = Exact Solution-Approximate Solution

Numerical Experiment No. 2.3: - For Eighth Order Non-linear differential equation

as given in Equation (2.30)

d®y(t)

r (2.30)

=(y(t)?%e™t ,0<t<1
with the following types of constraints on the solution as given in Equation (2.31)

x(0)=1,x"(0)=1,x"(0)=1,x"0)=1,x(1)=e,x'(1) =e,
(2.31)
xX'D=e,x'"(1)=e

Exact solution of numerical experiment no. 2.3 is given in the literature as
x(t) = et.

By applying the mechanism of solution explained above for non-linear differential
equations, we get the HWCM solution for a given numerical experiment no. 2.3. Table
2.7 and Figure 2.5 shows the comparison between the exact and HWCM solution for
j=2 which explains the high accuracy obtained by HWCM for a small number of grid
points (in this case only 8 Grid pts). L, and L, errors at j=2 are 3.22E-11, 9.92E-11
respectively. Figure 2.6 and Table 2.8 ensure the convergence of the HWCM solution
to the exact solution. The performance of HWCM is compared with the other methods
in Table 2.9 and it has been found that HWCM is working better than the other methods
[100], [101].
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Table 2.7: Exact and Approximated solution by HWCM for j=2 for Numerical
Experiment No. 2.3

x(t) Exact Solution Approximated

Solution by HWCM
0.0625 1.064494458917860 1.064494458916330
0.1875 1.206230249420980 1.206230249344930
0.3125 1.366837941173790 1.366837940844480
0.4375 1.548830298634130 1.548830298011330
0.5625 1.755054656960290 1.755054656273750
0.6875 1.988737469582290 1.988737469141240
0.8125 2.253534787213200 | 2.253534787089520
0.9375 2.553589458062920 | 2.553589458059910

Table 2.8: L, and L,, errors at different level of resolution for Numerical Experiment

No.2.3

Level of Resolution (j) | p=2/ | Number of Grid Points(2p) | Ly-error | L -error
0 1 2 6.31E-10 | 1.48E-09
1 2 4 1.27E-10 | 3.20E-10
2 4 8 3.22E-11 | 9.92E-11
3 8 16 8.05E-12 | 2.60E-11
4 16 32 2.01E-12 | 6.56E-12
5 32 64 5.03E-13 | 1.64E-12
6 64 128 1.26E-13 | 4.11E-13
7 128 256 3.15E-14 | 1.03E-13
8 256 512 1.73E-13 | 2.45E-13
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Table 2.9: Comparision of Numerical results in terms of Absolute error obtained by

different methods
x(t) Exact Solution HWCM Solution HWCM(E") Repl‘Od:l cin VITED
Kernel(E") [100] [101]
0.1 1.105170918075640 1.105170918071520 4.13E-12 1.61E-08 1.91E-07
0.2 1.221402758160170 1.221402758125510 3.47E-11 3.07E-08 1.25E-07
0.3 1.349858807576000 1.349858807504780 7.12E-11 4.227E-08 7.25E-08
0.4 1.491824697641270 1.491824697588310 5.30E-11 4.972E-08 4.85E-08
0.5 1.648721270700120 1.648721270718270 1.81E-11 5.231E-08 2.91E-07
0.6 1.822118800390500 1.822118800448210 5.77E-11 4.978E-08 7.80E-08
0.7 2.013752707470470 2.013752707493520 2.30E-11 4.237E-08 1.11E-07
0.8 2.225540928492460 2.225540928475000 1.75E-11 3.08E-08 1.71E-07

E” (Absolute Error) =Exact Solution-Approximate Solution

Numerical Experiment No. 2.4: - Ninth order linear differential equation is considered

for the numerical solution as given in Equation (2.32)

d°x(t
dtg ) = x(t) — 9et,

0<t<1 (2.32)

with the following types of constraints on the solution as given in Equation (2.32)

x(0)=1,x"(0)=0,x"(0) = =1,x""(0) = =2,x%(0) = =3,x(1) =

(2.33)
0,x'(1) =—e x"(1) =—-2e,x""(1) = —3e

Exact solution of numerical experiment no. 2.4 as given in the literature is

x(t) = (1 —t)et
By applying the mechanism of solution explained above for linear differential equation
we get the HWCM solution for numerical experiment no. 2.4. Table 2.10 and Figure
2.7 shows the comparison between the exact and HWCM solution for j=2 which
explains the high accuracy obtained by HWCM for a small number of grid points (in
this case only 8 Grid pts). Lyand L, errors at j=2 are 4.26E-11, 6.20E-11 respectively.
Figure 2.8 and Table 2.11 ensure the convergence of HWCM solution to the exact
solution. The performance of HWCM is compared with the other methods in Table 2.12
and it has been found that HWCM is working better than the other methods [102], [103].
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Table 2.10: Exact and Approximated solution by HWCM for j=2 for Numerical

Experiment No. 2.4

x(t) Exact Solution Approximated Solution by HWCM
0.0625 0.997963555235493 0.997963199230146
0.1875 0.980062077654547 0.980005763297981
0.3125 0.939701084556985 0.939262340817424
0.4375 0.871217042981700 0.869924631962752
0.5625 0.767836412420131 0.765699977494341
0.6875 0.621480459244466 0.619356938393400
0.8125 0.422537772602477 0.421480313163833
0.9375 0.159599341128933 0.159519239821921

Table 2.11: L, and L, errors at different level of resolution for Numerical Experiment

No. 2.4
Level of Resolution (j) | p=2/ | Number of Grid Points | L,-error | L-error
0 1 2 5.32E-10 | 5.82E-10
1 2 4 1.73E-10 | 2.29E-10
2 4 8 4.26E-11 | 6.20E-11
3 8 16 1.06E-11 | 1.53E-11
4 16 32 2.65E-12 | 3.86E-12
5 32 64 6.64E-13 | 9.66E-13
6 64 128 1.66E-13 | 2.41E-13
7 128 256 4.15E-14 | 6.04E-14
8 256 512 1.03E-14 | 1.52E-14
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Table 2.12: Comparision of Numerical results in terms of Absolute error obtained by

different methods
x(t) Exact Solution HWCM Solution | HWCM(E") | MVIM(E") [102] | SBSCM(E") [103]
0.1 | 0.9946538262680830 | 0.9946538262688390 | 7.56E-13 2.00E-10 1.08E-06
0.2 | 0.9771222065281360 | 0.9771222065427060 | 1.46E-10 2.00E-10 5.19E-06
0.3 | 0.9449011653032020 | 0.9449011653609080 | 5.77E-10 2.00E-10 6.13E-06
0.4 | 0.8950948185847620 | 0.8950948186884760 | 1.04E-10 2.00E-10 1.23E-05
0.5 | 0.8243606353500640 | 0.8243606354476210 | 9.76E-11 2.00E-10 1.07E-05
0.6 | 0.7288475201562040 | 0.7288475201913140 | 3.51E-11 6.00E-10 4.91E-06
0.7 | 0.6041258122411430 | 0.6041258122230930 | 1.80E-11 1.00E-09 9.95E-06
0.8 | 0.4451081856984940 | 0.4451081856796940 | 1.88E-11 2.00E-09 1.65E-06

E" (Absolute Error) =Exact Solution-Approximate Solution

Numerical Experiment No. 2.5 : - For Ninth order non- linear differential equation as

given in Equation (2.34)

d°x(t)
dt®

2dx(t)

—= (2.34)

=cos3t, 0<t<1

- (x(®)
with the following types of constraints on the solution as given in Equation (2.35)

x(0)=0,x"(0)=1,x"(0) =0,x""(0) = —1,x"(0) = 0,x(1) =

(2.35)
sinl ,x'(1) =cos1,x"(1) = —sinl1 ,x""(1) = —cos 1

Exact solution of numerical experiment no. 2.5 is given in the literature as
x(t) = sint.

By applying the mechanism of solution explained above for the non-linear differential
equation we get the HWCM solution for numerical experiment no. 2.5. Table 2.13 and
Figure 2.9 shows the comparison between the exact and HWCM solution for j=2 which
explains the high accuracy obtained by HWCM for a small number of grid points (in
this case only 8 Grid pts). L, and L, errors at j=2 are 3.37E-11, 9.99E-11 respectively.
Figure 2.10 and Table 2.14 ensure the convergence of HWCM solution to the exact
solution. The performance of HWCM is compared with the other methods in Table 2.15
and it has been found that HWCM is working better than the other methods [103], [104].
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Table 2.13: Exact and Approximated solution by HWCM for j=2 for Numerical
Experiment No 2.5

x(t) Exact Solution Approximated Solution by HWCM
0.0625 0.0624593178423800 0.0624593178422206
0.1875 0.1864032967622700 0.1864032967589660
0.3125 0.3074385145803810 0.3074385145651280
0.4375 0.4236762572039380 0.4236762571679480
0.5625 0.5333026735360200 0.5333026734810870
0.6875 0.6346070800152690 0.6346070799572420
0.8125 0.7260086552607130 0.7260086552196350
0.9375 0.8060811082606930 0.8060811082443460

Table 2.14: L, and L, errors at different level of resolution for Numerical

Experiment No. 2.5

Level of Resolution (j) | p=2/ | Number of Grid Points | L,-error | L-error
0 1 2 6.41E-10 | 1.68E-09
1 2 4 1.47E-10 | 3.40E-10
2 4 8 3.37E-11 | 9.99E-11
3 8 16 8.25E-12 | 2.85E-11
4 16 32 2.01E-12 | 6.56E-12
5 32 64 5.03E-13 | 1.64E-12
6 64 128 1.26E-13 | 4.11E-13
7 128 256 3.25E-14 | 1.23E-13
8 256 512 1.93E-13 | 2.60E-13
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Table 2.15: Comparision of Absolute error obtained by different methods

x(t) Exact Solution HWCM Solution | HWCM(E") | PGM(E") [104] | SBSCM(E")[103]
0.1 | 0.099833416646828 | 0.099833416646669 1.59E-13 1.86E-07 2.85E-06
0.2 | 0.198669330795061 | 0.198669330791757 3.30E-12 7.30E-07 1.35E-06
0.3 | 0.295520206661340 | 0.295520206646087 1.53E-11 9.83E-07 4.09E-06
0.4 | 0.389418342308651 | 0.389418342272661 3.60E-11 1.22E-06 1.05E-06
0.5 | 0.479425538604203 | 0.479425538549270 5.49E-11 8.34E-07 3.45E-05
0.6 | 0.564642473395035 | 0.564642473337008 5.80E-11 3.87E-06 3.46E-05
0.7 | 0.644217687237691 | 0.644217687196613 4.11E-11 5.66E-06 2.09E-05
0.8 | 0.717356090899523 | 0.717356090883176 1.63E-11 4.89E-06 2.01E-05

E" (Absolute Error) =Exact Solution-Approximate Solution

2.7 Conclusion

We have applied the Haar Wavelet Collocation Method (HWCM) to find the numerical
solution of linear and nonlinear HOBVPs.Some numerical experiments are performed
by considering the linear and nonlinear HOBVPs.L, ,L,, and absolute errors are
calculated for each numerical experiments. It has been observed that as we increase the
level of resolution L, ,L., , absolute errors decreases which prove the convergence of
HWCM solution to the exact solution. High level of accuracy obtained by the proposed
method for few grid points (In Numerical Experiment No.5 for two grid points, level
of accuracy obtained is of 1071%) proves the reliability of this mechanism. The
proposed method is equally effective for both linear and nonlinear HOBVPs. The
accurateness of the solution is up to the level of 1071* and can be increased by
increasing the level of resolution. The performance of HWCM is compared with the
other methods like Variational Iteration Decomposition Method (VIDM) [96], Optimal
Homotopy Asymptotic Method (OHAM) [97], Galerkin Method with Quintic B-splines
(GMQBS) [98], Legendre Galerkin Method (LGM) [99], Reproducing Kernel Space
Method (RKSM) [100], Variational Iteration Method (VIM) [101], Modified
Variational Iteration Method (MVID) [102], Sextic B-splines Collocation Method
(SBSCM) [103], Petrov-Galerkin Method (PGM)[104] and it is found that HWCM is
working better than these methods . The rapid convergence and high accuracy obtained
from the proposed method provides a strong base to extend the application of HWCM
to solve a big class of physical problems governed by ODEs, PDEs, and Integral
equations. Computational work is fully supportive and compatible with the proposed

algorithm.
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Chapter 3

Haar Scale 3 Wavelets and Related Integral

3.1 Haar Scale 3 Wavelets Family

Let us Consider any two arbitrary integers A, B such that B > A. let J be the maximum

level of resolution to be considered for phenomena under study. Define new quantities

M,jk.p suchthat M=3/,p=3/,j=012,..] ,k=012,..,p—1, where j

denotes the level of resolution and k the translation in wavelets. Now divide the interval

[A, B) into 3M uniform subinterval of equal length At = % . When J=0, A = 0 and

B =1 then we have the following members in Haar Scale 3 wavelet family [115]

represented by the Equations (3.1)-(3.3)

o _ 1 0<t<1
(@) =971 = {0 elsewhere
(L1 o0<t<-
3
1 2 ! <t< -
hy(£) = P(8) = —=1 37773
O =0 =— 373
-1 -<t<1
3
\ 0 elsewhere
(1 o<t<?
- 3
3] o 1<t<2
ha(®) = 9*(0) = |5 37 73
2
-1 -<t<l1
3
\ 0 elsewhere
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where the function h,(t) is called father wavelet, h,(t) , h;(t) are called mother

wavelets.

3.1.1 Construction of Orthonormal Function Spaces [10]

Consider t € [0,1) ,then we get

oo 1
f_ YO (YO (t)dt = fo 11dt=1 (3.4)

2

0 1
f Yo (OYO(t — 1)dt = f 1.0 dt +f 01dt=0+0=0 (3.5)
—00 0

1
It follows from Equations (3.4)-(3.5) and the geometric structure of Haar function that
translations of Haar functions are orthonormal but the scaled translations are only

orthogonal, not orthonormal (Equation (3.6)-(3.7)) i.e

[ele) 1 k :k

Jo 0=k - kde =0 ={ o RTE 5
I 1

| wo@e- ke - kpde = {5 ko = ke (3.7)
—® O klikz

k k+1
) < - . .
=SS for any integer j and k

1
0 elsewhere

where  Y°(3/t —k) = {

But the orthogonal scaled translations can be normalized using the way given in

Equation (3.8)

[ (fviwnos) (ve-sja(y 425, os

Let V, be space spanned by the set {°(¢), ¥ °(t — 1),9°(t — 2) ..., } which will act as
a bases for V;, .Therefore

Vo = span{y®(t — k): keZ} (3.9)

Let V; be space spanned by the set {vV39°(3t),V39°(3t — 1), V3¢°3t - 2),...,}

which will act as a bases for V; and we denote it as
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V, = span {3% Y°(3t — k): keZ} (3.10)

Similarly
2
V, = span {37 Y°(3%t — k): keZ} (3.11)
3
Vs = span {37 Yo (33t — k): keZ} (3.12)
i .
V; = span {32 Yo (3/t —k): keZ} =P (t) (3.13)

It is always possible to write the bases of V, (Equation (3.9)) itself as a linear

combination of bases of V; (Equation (3.10))

PO(t) =\/i3_(\/3_1/)0(3t)+\/3_1/J°(3t—1)+\/§lp0(3t—2)) (3.14)
W - 1) = =(VFYOGt-3) + VI E -9 +V3WGE-9) s
POt —2) = \/ig_(x/a_tpO(E%t —6) +V3y°(3t —7) +V3°(3t — 8)) (3.16)

Also, the bases of V; (Equation (3.10)) itself as a linear combination of bases of V,

(Equation(3.11))

1
V39O(3t) = \/—3_(31/;0(91:) +39°(9t — 1) + 39°(9¢t — 2)) (3.17)

1
V3Bt —1) = J—§(3¢°(9t —3) +3yY°(9t =4 +3y°(9t-5))  (3.18)

1
V3y9°(3t—2) = J—§(3¢°(9t —6) +3y°(9t = 7) +3y°(9t - 8))  (3.19)

and so, on
Therefore, we can write

SVoaoclh,eclacl,...cl, (3.20)
Where
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k k+1

Po(3it—k) = {1 37 St<73; (3.21)
0 elsewhere

Now we will test the orthonormality of mother wavelets Y (t) , 12 (t) represented by

the Equation (3.22)

(—1 te [Oé) f 1 te [Oé)
Yi(t) = % 2 LE Eg) , YA = \E 0 LE E%) (3.22)
~1 te E 1) ~1 te E 1)
0 elsewhere 0
Consider t € [0,1) ,then

elsewhere
[2 wr oyt dt =
fj (_TD (%) dt+ j; (%) (%) dt+ j; (%) CT;) dt (3.23)

<1+4+1)—1
2 2 2/

1
3

IZ w2 Op?(tdt =

f% 3 > dt + §(0)(0)dt+f1 > > dt
0 \?2 2 L 2 2 2 (3.24)

—1(3+0+3)—1
—3\2 2/

[2 9t (Ddt =
f(%) jg dt+f;<%)(0)dt+é<%> —\/é dt (3.25)
:1<_§+0 ﬁ>:
3 2 2

It follows from Equations (3.23)-(3.25) and the geometric structure of the wavelets that

Set {Y1(t — ky),Y?(t — k;): kq , k,€Z} is orthonormal. Let W, be space spanned by
the set of bases {y1(t), Y2(t), Y1 (t — 1),yY?(t —2),..}.

[2 93Oy (3t)dt =
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N

1
9

G LR

= fwx/izpl(at) V3 yYl(3t)dt =1 (3.26)
[5 2@ (3t)dt =

3 3 3 : 3 3 3 1/3 3 1

9 9 9
fo ( §><£> dt+j%(0)(0)dt+f§ (—j%)(—\ﬁ) at=5(>+0+3) =2
- f CFw (30 VI p2G0de = 1 (3.27)
[5 B (B)dt =

[E(E) < @oe ()

1/ V3 V3
=§<—7+0+7>=0

olw

= foo\/ﬁpl(%) V3 ¢?(3t)dt = 0 (3.28)

From Equations (3.26)-(3.28) one can generalized that the Set {\/§ Y13t —
k1), V323t — ky): ky , k2€Z} is orthonormal. Let W, be space spanned by the set of
bases {V3 ¥1(3t), V3 ¥?(3t), V391 (3t — 1),V3 9?3t — 1), ... }.

From the geometric properties, it has been verified that the linear combinations of the

elements of W, are not able to create W,. i.e W, is not a subset of W, .But

IZ pt oy (3t)de =

[ e [ ]

_1(1 2_|_1>_0
9\2 2 2/

OIN

(_TD (_T;) at (3.29)
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IZ 92Oy (3)dt =

HBD=£(B-4(BD)-

IZ YOy (3t)dt =

[E(E)« o FE[E)-

(L0 D)

IZ 920yt (3)dt =

[E@af (e

1( V3 2V3 \/§>=0

Ol w

9

2 2 2
Therefore from Equation (3.29)-(3.32), we can conclude W, L W;.
Similarly, if

WZ = Span{3 lp1(32t - kl)l 3 lp2(32t - kz): k1 B szZ}

3 3
Wy = span {32 Y1 (33 — ky), 32 2 (33t — ky): ks, kpell)

J . J .
w; = span{Bf Y137t —ky), 3292 (3/t — ky): ky ,kzez}
Then, it can easily be proved

"'W_z J_ W—l l WO l Wl J_ Wz i
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Also
J . J .
W; = span {3? P13t —ky), kleZ} @ {35 Y23/t — ky): ,kZ(:'Z} = W' @wWy
w; = le@wjz (3.37)
Where

W' = span {3% P (3t —ky), k1€Z} , Wf = span {3% (37t — ky): 'kZEZ}

(4 kb, 3atd
3Jj 3j+1
| 1 3k, + 1 3k, + 2
Y3t —k)= = { 2 i St<—3Er (3.38)
V2 3k, + 2 3k, + 3
-1 W <t< W
\ 0 elsewhere
( 1 E - 3k, +1
3/~ 3/+1
| 3 | o Bka 1 _3kp+2
lp2(3]t - kZ) = E { 3j+1 - 3j+1 (3‘39)
3k, + 2 3k, + 3
-1 —_—< —_—
3]+1 3]+1
\ 0 elsewhere

As V, c V; then what is missing in V,, in comparison with V; .Now we will investigate

it with the help of the following function graph. Consider the arbitrary function f (t)

10

Arbitrary function f(t)
T T T

| =]

-3 -3

| h | (3t-3) | h | (3t-4)
.

o 0.5 1 1.5
t

h | (3t-5) h | (3t-6) | h | (3t-7) I h , (3t-8)
.

|

|

|

|

| | |
| | |

| | |

| | |

| | |

| | |

| | |

| | |

| | |

" | | l
2

h, (3‘t-1) h | (3t-2)

2.5 3

Figure 3.4: Arbitrary Function in 2D

Now we will express f(t) in terms of the bases of V; as follows
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f(@) =6y9°(3t) +3yY°(Bt — 1) + 9Y° (3t — 2) — 3Y°(3t — 3)
+ 6y°(3t — 4) + 9Y°(3t — 3) + 3yY°(3t — 3) (3.40)
—3yY°@3t —3) + 3yY°(3t — 3)
It can be seen from the function graph that terms of the above function in the different
unit intervals can be expressible in terms of the bases of V,, W , W¢ as follows

610 (3¢t) + 3Y°(3t — 1) + 9Y°(3t — 2)
3V2 3 3.41
— 6900 - 220 - fz‘/’z(t) .

9Y°(3t — 5) + 6y°(3t —4) — 3yY°(3t — 3)
= 4°(t — 1) + V21 (t — 1) — 2V6y2(t — 1)
3Y°(3t — 6) — 3Y°(3t — 7) + 3yY°(3t — 8)
= 90>t —2) —2V2yl(t — 2) — 0 92 (t — 2)
Using Equations (3.41)-(3.43) ,Equation (3.40) becomes

(3.42)

(3.43)

3v2 3
f(©) =69°(0) —9'(D) — f;tﬂz(t) FHIE-DHVRIE-D =5y
Vey2(t — 1) +9°(t — 2) — 2V29pi(t — 2) — 0 Y2 (t — 2)
Now f(t) (Equation (3.45)) has been completely expressed in terms of the bases of
Vo, Wo , W¢.Similar way it can easily be proved that V, is also orthogonal to Wy , W¢.
Therefore, any function in V; can be expressed in terms of the bases of V, and W,
where W, = Wi@®W¢.
Mathematically one can say
V1 = VO @ WO = VO @ W01®W02 (345)

Similarly, using similar arguments we can prove

V,=V,®W, =V, ® W OW? (3.46)

V=V, ®W, =V, ®WidW2 (3.47)
Viia =Via @ Wj_p = Vj_, © Wi_,0W72, (3.48)
V=V @ Wiy = Vi @ WL eW?, (3.49)
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Vi=Vo @We®WE D v oo S Wi,ew?, ®wl,ew?, (3.50)
which mean each square-integrable function f(t) can be expressible in terms of the

bases of Vo, W', W7 j =01,23........

3.1.2 Multi-resolution analysis (MRA)

Now it clear from the above discussion ( Equation (3.4) - (3.50) ) that the sequence of
closed subspaces of W;,V; © L,(R),j €EZ of L,(R) space satisfies the following

properties
a) P°(e) eV, = ¢Y°(3/t) eV

b) Yo(t) eV, =y°(Bt—k)eVy,
o YWEWs, i=12  =yi(3)ew
d YO ew!, i=12 =y9i(3t—k)ew
— 1 2 _ i . _
e) Wy=Ww;ew" =ew ,i=12
f) ”.CVOCV:LCVZCV:,} CV4C...
g) J—WOJ-WlJ-WzJ_W3J_W4_J_
h V=V, @I W ® S, w?
i) Y°(t) eV, = Y°(t—Kk) € Vy; k € Zis a Riesz Basis in V,

Process of designing the orthonormal wavelet family using the sequence of closed
subspace W;,V;,j €Z of L,(R), which satisfies the above set of properties is also
known as Multi-resolution analysis (MRA)[9]. The approximation of arbitrary function
using the members of these orthonormal wavelet families is known as a multiscale
approximation (MSA). The multiscale approximation is one of the modern numerical
frameworks to find the solution of various types of differential and integral equation

arises in the field of science and technology.

Now using the above-described process, Haar Scale 3 wavelet family is obtained as

follows:
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Fori=1
o ecee (3.51)
hi(t) = p(t) = {0 elsewhere

For 1 = 2,4-, Bp -1
—1 () <t <p(0)

2 (D) <t <uz(d) (352
-1 n3 (i) <t < my(i)

0 elsewhere

() =93t —k) = %

For i=357..3p

1 n (i) <t < uy(i) (3.53)
_ Y E 0 u,(1) <t < u3(i) :
hi(t) = y*(3c — k) _ﬂ 1 %z(i) St<)—fi(i)
0 elsewhere

3k+1
3p

(3k+2) N _ k41 _ ajf .
3p 5%4(1)_ p,P—3 ,]—0,1,2,...

where (1) = 7, 2() = 27, 13 (D) =
,k=012,..,p—1

Table 3.1: Relationship between the wavelet number i ,dilation parameter j and
translation parameter k for even members of wavelet family

2 4 6 8 10 |12 14 |16 18 120 |22 |24 |26
0 1 1 1 2 2 2 2 2 2 |2 |2
|
9

&K~ |~

0 0 1 2 0 2 3 4 5 16 |7
m |1 3 3 3 9 9 9 9 9 19 19
Table 3.2: Relationship between the wavelet number i ,dilation parameter j and

O |0 |

translation parameter k for odd members of wavelet family

i1 3 5 7 19 11 (13 |15 |17 |19 |21 |23 |25 |27
j [0 |0 1 1 1 2 2 2 2 2 2 2 2 2
kK10 |0 |0 | 2 10 1 2 3 4 5 6 7 8
m |1 1 3 3 3 9 9 9 9 9 9 9 9 9

The wavelet number i > 1 is calculated from the relation i = p + 2k + 2 (for even
index) and i = p + 2k + 1(for odd index). j represents the level of dilation of the and
k represents the translation parameters of the wavelet. The function hy(t) is called
father wavelet, h,(t) , h3(t) mother wavelet and all other functions
hy(t) ,hs(t), he(t) ... ... are generated from the translation and dilation of the mother
wavelet. For even index i, (t) will be considered and for odd index i,9?(t) will

be considered.
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Figure 3.5: Members of the Haar Scale 3 wavelet family ( h, (t) —

and /] =1
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Figure 3.6: Members of the Haar Scale 3 wavelet family ( hyo(t) — hyg(t)) at third

level of resolution | = 2
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Figure 3.7: Members of Haar Scale 3 wavelet family ( hyo(t) — h,,(t)) at the third

level of resolution | = 2
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3.2 Integrals of Haar Scale 3 Wavelet Family

we can integrate Equations (3.51)-(3.53) over the interval [A, B) as many times as

required by using the formula given in Equation (3.54)

q.:(t) —f f f ......... B times -+ -+ fthl-(x)(dx)ﬁ

(3.54)
v ﬁ =123.... , =123, ... 3p

_ N _(LA<t<B
For i =1 the value of h;(t) = {0 elsewhere
Therefore

q11(t) = 1)'f (t—x)'" h (x)dx = f ldx = (t—A)
A
000 = =5 f (t = 0%y ()dx = f (t—x)dx =5 (¢~ A)?

1
050 = 5=, ] -2 = 5 [ (=0 dx =3 €= )

1 t - 1 t -
51 () = o5, [, (€ = 0P i ()dx = = [, (£ = x)P ldx =

1 (3.55)
E(t — A)F VE=123....
For an even integer i = 2,4,6,8,+--,3p — 1
; 1 2 ny (1) <t < n3(0)
h(t) =y9(3/t—k)=— 2\ = 3
(@ =w'( ) V2| -1 u3(0) <t < ay(i)
0 elsewhere
411(8) = 55 [, (= 0 (@ dx = [y hi(x) d
(3.56)

i=2468,3p—1
When t € [4,#,(i)) then qq;(t) = f: h;(x) dx = f:O dx =0
When t € [%1(i), xz(i)) then
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a1i(®) = [ b dx + [ ) () dx

PAO) =1 (t=1(D)
—f 0dx +f(l)\/_dx AT

When t € [»,(i), #5(i)) then

41i©) = [ b dx + [0 hi() dx + [ ) hi() dx

_ @, #n(0) -1
= [, 0dx+ [ ) 55 dx x+J, (t)\/—

= — = (60 = 1) + 5 (6 = %0) = 52t = 31D + 2.
= =(=(t=u®) +3(t - %))
When t € [35(i),#,(i)) then

fhl(t) J‘”1(1) h( )d _I_J‘”z() h( )d +fk3() hi(.X,') dx_l_f:

1D 2(D) NO) h;(x) dx

== (1Y odx+ [%) ~tdx+ [°) 2dx + f}  —~1dx)
== (0= (2(D) = 2,.(D)) + 2(33(0) — 2,(D) = (¢ = #3(0)))

= = (=t + 10 = 363 + 31:(D) = = (=t + 1) = 36,(D) + 33 (D))

:%(—(t — ()" +3(t —,0))" = 3(t — (D))
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When t € [#,(i), B) then

g (®) = [ hi(0) dx + f”z(‘) hy(x) dx + f”s(‘) hy(x) dx + f”‘*( )b (x) dx +
f% Lol () dx

=ﬁ(f”1(‘) 0 dx +f”2(” —1dx +f”3(” 2 dx +f”4(‘)—1 dx + [}, 0dx)
= = (0= (02D = (D) + 2(63() = 1)) = (2 (D) = #3(D)) + 0)
= = (0D = 3x() + 33(D) = 14 (D))

= = (=(t =) +3(t = 2(D)" = 3(t = #2(D)" + (£ = 4(D)*)

Therefore, the first integral of the even members' of Haar Scale 3 wavelets family is

represented by the Equation (3.57)

q1,i() =
(0 for 0<t<x() Y
_1_!1(’5 - %1(1'))1 for x,()) <t < u,(i0)
%< %[—(t - %1(i))1 +3(t— %Z(i))l] for () St <nz(D)\
%[—(t - %1(i))1 + 3(t - J{Z(i))l - 3(t - %3(1'))1] forxug (i) <t < u,(0)
S=(t =) +3(t—#(D) = 3(t —2:(D) + (t = #4(D)'] for () <t <1
(3.57)
Now second integrals take f = 2
424(8) = Gy [y (6 = 0° R (0dx = [[(¢ — )hy(x)dx (3.58)

Vi=2468,3p—1

When t € [A4,#,(i)) then

G2:(t) = [;(t = 0)h(X)dx = [;(t —x) 0dx = 0
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When t € [%1(i), xz(i)) then
a24(0) = [Vt = 0h () dx + J ) (& — i) dx

_ @, t - -1(t- }{1(1))
=[,( x)de+f”1(i) \/_( —x)dx = VoA

When t € [»,(i), #5(i)) then

420(6) = [0 = %) hiG) dx + 120 = ) hyx) dx + J) (¢ — %) By(x) dx

= f”l(l) 0(t—x)dx+ f”z((ll))\/i —x)dx + f L0, \/_ —x) dx

1 ((=00)’ (- 0)°) L2 (t=25(D)?
V2 2! vz 2!

= = x 2 (~(t= )" +3(t - 2)°)
When t € [35(i), #,(i)) then

02, () = [Pt — 0hy () dx + f”z(” (t — x)hy(x) dx + f”3(‘) (t — x)hy(x) dx +
f% (i)(t —x) h;(x) dx

(Y 0de+ 20 —(t—x) dx + [20 2(t = x) dx + [} —(t - x) dx)

-z X0 2(0)

=3 (O " (eatO) OV 2 (t=6@)° (=) (t-m(i))Z)

vz 21 2! 2!

V2

= Ex3(~(t =) +3(t - 060)" - 3(t - %))

71



When t € [#,(i), B) then

un3(i)

(t — x)h; (x) dx + f (t — x)h; (x) dox

A

A

x4 (0)
gz, (t) = j (t —x)h;(x) dx + f

A 210

t

#4(0)
+ f (t —x)h;(x) dx + f (t—x)h;(x) dx

#3(0) 14 (1)

_ 1 x4 (1) 1, (1) un3 (i) 14 (1)
= E(IA 0 dx + fkl(i) —(t—x)dx + sz(i) 2(t —x) dx + fk3(i) —(t—
t
x) dx + fm(i) 0 dx)
1 (o L (@ (oa@)) ) (@) -00)) | (@) (e @)? 0)
V2 2! 2! 2!

= = x2(=(t= @) +3(t —20))" = 3(t = 23())" + (t = #4(D)?)

Therefore, the second integral of the even members of Haar Scale 3 wavelets family is

given by Equation (3.59)

~—

q2,i(t) =
(0 for 0< t<x(i) )
_Z—Il(t - ”1(0)2 for (i) <t <,(i)
%{ %[—(t - %1(i))2 + 3(t - %z(i))z] for ,(i) <t < x3(i)
%[—(t - %1(1'))2 +3(t - %Z(i))z —-3(t- J’fg(i))z] for nz(i) <t < nyu(i)
L=(t =0 (D)" +3(t—#(D)" = 3(t = 5(D)" + (t —3,D) ] forwuu(D <t <1
(3.59)

Proceeding in this way, integral of any order £ for the even members of Haar scale 3

wavelet family are given by Equation (3.60)

Clﬁ,i(t)'s for i=2468,:-,3p—1 are given below

qp,i(t) =
( 0 for 0< t<x(i)
S e=k®) for () < t < 2,(0)
5= @)+ 3(e - @) for () <t <x5(0)
2=(t =0 0)" +3(t = ®) - 3(t—%)’] for (i) < t < x,(0)
S=(t- 11 D) +3(t = 1,0)) = 3(t = 15(D))’ + (¢ =20, (D)'] forug(D <t <1

(3.60)
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For odd integers i = 3,5,7 ...3p

1 n1(0) <t < uy(i)

Catmie a3 0 ny (D) < t < m3(i)

hi(t) = (37t — k) —L -1 n3(D) <t < (D)
0 elsewhere

q1:(t) = f (t =) h;(x)dx = f hj(x)dx V i=3,5,7..3p

(1- 1)'

When t € [4,5,(i)) then
q1,(0) = [} hi(x) dx = [, 0dx =0
When t € [5;(i), #,(i)) then

41,0 = ;" b Go) dx + f) ) hy(x) dx

_ (@, t 3 _ 3 (t=a®)
=J, T 0da f%1(i) \/; dx =z

When t € [3,(i), #3(i)) then

qi, l(t) fﬂl() h; ( ) dx + fﬂz((l)) h'(x) dx + f;:z(i), hi(x) dx

= 9 0dx +f”2(‘)f dx+ [, ) 0dx

o4 f (2 (D) — 7)) + 0 = f (& ADRE nzm))

When t € [35(i), #,(i)) then

fhl(t) J‘”1(1) h( )d _I_J‘”z() h( )d +fk3() hi(.X,') dx_l_f:

(D) 2(0) S () dx
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_ %1 (D) n2(1) n3(0) t
—\L(f1 0dx+ 20 1dx+ %) 0dx + [ —1dx)

= \E(O + (2D —3,(D) + 0 = (t — #3(D)) = \E(—t S AOEZAOETAO)

3 (1) = (t=r02(D)) = (=23 (D))"
= Ji( )

When t € [#,(i), B) then

g (®) = [ hi(0) dx + f”z(‘) hy(x) dx + f”s(‘) hy(x) dx + f”‘*( )b (x) dx +
[ o hi) dx—\/:(fkl(l) 0dx+ [0 dx+ [0 0dx + [0 ~1dx +

f% .0 dx)
= \E(O + (”z(i) - ”1(0) +0—- (”4(i) — %3(1')) + O)
_ \E (=2 (D) + 22(0) + 25 (D) — 24 (D))

.\ 1 A1 ~\1 .
= \E((t =) = (t=100) = (t=#5D)" + (¢ =% D))
Therefore, the first integral of the odd members of the Haar Scale 3 wavelets family is

given by Equation (3.62)

q1,i(t) =
r 0 for 0<t<x(i)
%(t - %1(0)1 for x,(D) <t <,(i)
§< %[(t - %1(1'))1 - (t - %Z(i))l] for ny(i) <t <iu3(i) \
%[(t - %1(1'))1 — (- %Z(i))l — (- %3(i))1] for n3(i) <t < (i)
(t =) = (t—2D) = (t =) + (t —0,D)']  form@<t<1

(3.62)
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Now for second integrals take f = 2

42i() = 55, [, (¢ = 0 hy(@dx = [t = 0)hy(x)dx

i=2468,,

When t € [A4,#,(i)) then
g, (t) = f:(t — x)h;(x)dx = fAt(t —x)0dx=0
When t € [%1(i), xz(i)) then

a1i(®) = [t = 0h G0 dx + [ ) (¢ = i) dx

= fjl(l’)(t — x) 0 dx +f ) f(t _ X) dx = (t 741(1))

2!

When t € [3,(i), #3(i)) then

4 (0) = [0 = 20) hy(@) e + 7200 — ) i) dx + [

(3.63)
3p—1

)(t x) h;(x) dx

#1(D), PAONE t
=[,"70({t-x)dx+ [ (l)\/;(t—x)dx+f”2(l.)’0(t—x)dx

oo \E ((t_mm)zz_!(t_ma))) 0= \f Lt - ®) - (t-00)?)

When t € [35(i), #,(i)) then

4, (®) = 77V = 0hy() dxc + [70) (¢ = 0hy () doc + [0 (¢ = 20y (x) dx +

fn3(i)(t — x) h;(x) dx
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:\/;(fm(l) 0 dx +f”2(l)(t—X)dx+f 3(1)0d +f " _(t - x)dx)

_ \/5 <0 _ (@) (@) (t-uga)y)
2 2! 2!

= [1x2((t =m0 - (=60 - (- 60))

When t € [#,(i), B) then
g1 (®) = [Vt — )hy () dx + f”z(” (t — x)h;(x) dx + f”s(‘) (t — x)hy(x) dx +

[ = 0Oh ) dx + [ (¢t = 20 (x) dx—f(f”l(l) 0 dx+ [[2) (¢t -

P4

x) dx +f”3(l)0d +f”4(l)—(t—x) dx+f}:

(D) 5(0) 0 dx)

4D

2! 2!

= \E(O _ (@) (a@)) o @) (@) o)

= \E x = ((t=0D)" = (t=2(D)" = (t = #5(D)" + (¢ — 2,()?)

Proceeding in this way, integral of any order f for the odd members of Haar scale
3wavelet family are given by Equation (3.64)
qpi(t)'s for i=3579,,3p are given below

~—

qp,i(t) =
F 0 for 0< t<x() Y
1 \\B . .
E(t — %1(1)) for (i) <t < x,(0)
3 21— @) - (- 0) ) for (i) St < x3(0)
2
%[(t - zl(i))ﬁ - (t - }fz(i))lg - (t - }t;;(i))ﬁ] for ;(0) <t < 3,(Q)
(- 1)) = (t=1,0)) = (t = 15D) + (6 —20,())°]  forug() <t <1
(3.64)
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Figure 3.8: First integral of the first nine members of the Haar Scale 3 wavelet family
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Figure 3.9: Second integral of the first nine members of the Haar Scale 3 wavelet family
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3.3 Matrices of Haar Scale 3 Wavelets and their Integrals

To find the numerical solution of differential equations using Haar scale 3 wavelets, a
discrete form of the Haar scale 3 wavelets series is required. There are many techniques
to do this but we are restricting ourselves to the collocation method. Haar scale 3
wavelets are discontinuous in nature. Therefore, to avoid the collocation point at the
point of discontinuity approach given in Equations (3.65)-(3.66) is applied for the

selection of collocation points ¢;.

T,_1+T .
t, = (112—1) , 1=1,2,3-3p, p=3 (3.65)
Where
(B—A4) .
T=A+=p—=sl, 1=123-3p, p=3 (3.66)

Now replacing t with t; in the above equations, a discrete form of wavelet can be
obtained which can easily expressible in the matrix form. Now for A = 0,B =1 and
J = 0, we have the following Haar scale 3 matrix H and Matrices Q, Q, of their first

and second integrals.
A=0,B=1,j=o=>T0=§ T2=§ T3=§ T4=§

Haar Scale 3 Wavelet matrix for the initial level of resolution (j = 0)

. : 1 _3 _5
Collocation points =  t; = A ty =~ ty = -
1 1 1 —h
H= |-0.70711 1.414214 0.70711 [« h;
1.224745 0 1.224745] < h;

First integral matrix Q4 of Haar Scale 3 Wavelet matrix for the initial level of resolution
G=0)

. . 1 3 5
Collocation points = t; == ty =~ ty = -

@, =| —0.117851130197758 0 0.117851130197758 | < 412

0.167666666666667  0.500000000000000 0.833333333333333 ‘_%,1}
0.204124145231931  0.408248290463863 0.204124145231932 1< q13

Second integral matrix Q, of Haar Scale 3 Wavelet matrix for the initial level of

resolution (j = 0)
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1

Collocation points = ¢, = p =2 ty = ¢
0.167666666666667 0.500000000000000 0.833333333333333 1< 921
Q, =] —0.117851130197758 0 0.117851130197758 | < 422
0.204124145231931  0.408248290463863 0.204124145231932 1< d23
Haar Scale 3 Wavelet matrix for the next level of resolution (j = 1)
1 3 5 7 11 13 15 17
COHptS=> tl:ﬁ t2=ﬁ t3=§ t4=ﬁ t5=E tGZE 7=E 8=E 9=E
1 1 1 1 1 1 1 1 1 1< h
—-0.707 —0.707 —0.707 1414 1414 1414 -—0.707 —0.707 —0.707|< hz
1225 1225 1.225 0 0 0 —1.225 —1.225 —1.225|< hs
—-0.707 1414 —0.707 0 0 0 0 0 0 [« hs
H=| 1.225 0 —1.225 0 0 0 0 0 0 |<—hs
0 0 0 —0.707 1.414 —0.707 0 0 0 le—ng
0 0 0 1225 0 —1.225 0 0 0 |—n,
0 0 0 0 0 0 —-0.707 1414 —0.707|— hq
0 0 0 0 0 0 1.225 0 —1.2250 p,

First integral matrix @, of Haar Scale 3 Wavelet matrix for the initial level of resolution

G=1

Coll. Pts = t1=1—18 t2=1—38 t3—% t4=1—78 t5=% té—% 7=§ tgz% tgzg
r 0.056 0.167 0.278 0.389 0.500 0.611 0.722 0.833 0.94471< 911
-0.039 -0.118 -0.196 -0.157 0.000 0.157 0.196 0.118 0.039[< 91,2
0.068 0.204 0.340 0.408 0.408 0.408 0.340 0.204 0.068|< 91,3
—0.039 0 0.039 0 0 0 0 0 0 “—q14
Q, = | 0068 0136  0.068 0 0 0 0 0 0 | s
0 0 0 —0039 0  0.039 0 0 0 | dus
0 0 0 0.068 0.136 0.068 0 0 0 |—aus
0 0 0 0 0 0 —0039 0 0039 qus
0 0 0 0 0 0 0068 0.136 0.0681< qu0

Second integral matrix @, of Haar Scale 3 Wavelet matrix for the initial level of

resolution (j = 1)

COH.PtS:tl:% t2=ﬁ t3=E t4_§ t5=§ tG_E 7= tg = t9=E
r 0.002 0.014 0.039 0.076 0.125 0.187 0.261 0.347 0.446 1< 921
—-0.001 -0.010 -0.027 -0.050 —-0.059 -—0.050 —0.027 —0.010 —0.001|¢< 922
0.002 0.017 0.047 0.091 0.136 0.181 0.225 0.255 0.270 |[< 923
—-0.001 -0.007 -0.001 0 0 0 0 0 0 24
@, =1 0.002 0.015 0.028 0.030 0.030 0.030 0.030 0.030 0.030 | 925
0 0 0 —-0.001 -0.007 -0.001 0 0 0 26
0 0 0 0.002 0.015 0.028 0.030 0.030 0.030 < 427
0 0 0 0 0 0 —0.001 —0.007 —0.001{< 928
0 0 0 0 0 0 0.002 0.015 0.028 1< 429
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3.4 Approximation of Function Using Haar Scale 3 Wavelet
Series

Consider any square-integrable function f(t) over the interval [A,B). Now to
approximate f(t) using Haar scale 3 wavelet family, f(t) can be written as an infinite

series of Haar scale three wavelet family as given in Equation (3.67)

£ = ah(®)
i=0 (3.67)
= a;hy (8) + ap (37t — k) + ap?(3/t — k)
o e;i od;>1

Here a;'s are the wavelet coefficients and their values are to be determined by the
proposed method. But for computational purposes, one can consider a finite number of
terms. By considering the first 3p terms to approximate the function f(t) we get

Equation (3.68)

fO = fop® =X2 ah(®) , p=3",j=012,.. (3.68)

using the collocation points t;,l = 1,2,3--- in Equation (3.68), it takes the discrete

form as given in Equation (3.69)

3p

FE) ~ fop (D) = Z ah(t) 1=123- (3.69)

i=0

The above equation can easily be expressible into the matrix form as
F =AH

Where H is the Haar matrix of order 3p X 3p and F, A are the row matrices of order
1 X 3p.H and F are known matrices and the value of A can be evaluated by solving the
above matrix system as

A=FH!

81



Then by substituting the values of unknown coefficients a;’s from the matrix
A = [a;]1x3p in the above equation, wavelet approximation of f(t) at the desired level

of resolution can be obtained. To test order of accuracy of approximation a well-defined

L, ,L, and absolute errors can be calculated which are defined as
Absolute error =|Ugyget (t1) — Unym (ED) ]

Lo = mlaxluexact(tl) - unum(tl)l

3
\/Zlflluexact (tl) - unum(tl) |2

L,

3p
\/Zl=1 Iuexact (tl) |2
where t; represents the collocation points of the domain.

3.5 Numerical Experiments

Numerical Experiment No. 3.1: Consider a function f(t) = t? over the interval

(0,1).Now approximate the function f(t) using the Haar scale 3 wavelet series at | =

1 as

3p

fO =) ah(® , p=3
i=0
i th llocati int t=r = ti= > t, =

using e collocation points 15135 2= b= ta=
7 9 11 13 15 17 .
— tg=— t¢g= —t;=— tg=— t9g= — above equation transforms to a
18 18 18 18 18 18

system of simultaneous linear equations which can be further be put in the matrix

system as
AH =F
a1 1 1 1 1 1 1 1 1 1 [0.0031;
az| |-0707 —0.707 —0.707 1414 1414 1414 -0.707 —0.707 —0.707| |0.0278
as| | 1225 1225 1225 O 0 0  —-1225 -1225 -1.225| [0.0772
as| |-0707 1414 -0707 0O 0 0 0 0 0 0.1512
as| | 1.225 0 -1225 0 0 0 0 0 0 |=]0.2500
as 0 0 0  -0707 1414 -0.707 0 0 0 0.3735
a 0 0 0 1225 0 —-1225 0 0 0 0.5216
ag 0 0 0 0 0 0 —0707 1414 -0707| ]0.6944
lagl L 0 0 0 0 0 0 1.225 o -12251 lo.g9ozol
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Solving the above matrix system using MATLAB software, following of Haar scale 3
coefficients are obtained

a; = 0.3323, a, =—-0.0524 , a; = —-0.2722, a, = —0.0058, a5 = —0.0302,
ae = —0.0058 a; = —0.0907, ag =-—0.0058 , aq = —0.1512

By using these values of wavelet coefficients f(t) is approximated as follows

Exact Value vs Numerical Approximation L1071 Absolute error

25

~

Absolute error

Fig.3.10a

Fig.3.10b

Figure 3.10: Graph of approximation of function f(t) = t? in comparison with exact
values at the different collocation points (Fig.3.10a) and absolute error(Fig.3.10b) in
the approximation of a function by Haar scale 3 wavelets at | = 1.

Table 3.3: Comparison of the exact and approximated solution by Haar scale 3

Wavelets for Numerical Experiment No. 3.1

t Exact Value ( tZ) Approximated value (tz) Absolute Error
0.0555555555555556 0.0030864197530864 0.0030864197530864 4.16E-17
0.1666666666666670 0.0277777777777778 0.0277777777777778 2.08E-17
0.2777777777777780 0.0771604938271605 0.0771604938271605 2.78E-17
0.3888888888888890 0.1512345679012350 0.1512345679012350 0.00E+00
0.5000000000000000 0.2500000000000000 0.2500000000000000 0.00E+00
0.6111111111111110 0.3734567901234570 0.3734567901234570 0.00E+00
0.7222222222222220 0.5216049382716050 0.5216049382716050 2.22E-16
0.8333333333333330 0.6944444444444440 0.6944444444444440 1.11E-16
0.9444444444444440 0.8919753086419750 0.8919753086419750 0.00E+00
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Numerical Experiment No. 3.2 : Consider a function f(t) = sint over the interval

(0,1).Now approximate the function f(t) using the Haar scale 3 wavelet series at | =

1 as

3p

fO =) ah(® , p=3
i=0
i th llocati int h=— L=— t3=— t,=

using e collocation points 1= b= = =
7 9 11 13 15 17 :
— ts=— tg= —t;=— tg=— t9g= — above equation transforms to a
18 18 18 18 18 18

system of simultaneous linear equations which can be further be put in the matrix

system as
a1 1 1 1 1 1 1 1 1 71 70.05557
az| |-0.707 -0.707 —-0.707 1.414 1414 1414 -0.707 —0.707 —0.707| ]0.1659
as 1.225 1225 1225 0 0 0 —1.225 —1.225 —1.225| [0.2742
as| |-0.707 1414 -0.707 0 0 0 0 0 0 0.3792
as| | 1.225 0 —1.225 0 0 0 0 0 0 |[=]04794
ag 0 0 0 —0.707 1414 -0.707 0 0 0 0.5738
az 0 0 0 1.225 0 —1.225 0 0 0 0.6611
ag 0 0 0 0 0 0 —0.707 1.414 -0.707! [0.7402
lagl L 0 0 0 0 0 0 1.225 0 —1.2250  lp.8102!

Solving the above matrix system using MATLAB software, following of Haar scale 3
coefficients are obtained

a; =0.4599 , a, =0.0124, a; = —0.2335, a4, = 0.0005, as = —0.0893, a¢ =
0.0014 ,a, =-0.0795, ag = 0.0022, ay = —0.0609

Exact Value vs Numerical Approximation 10 16 Absolute error

x=sin t
Absolute error
By

o1 | — o Exactvalue
— % Numerical Approximation

Fig.3.11a Fig.3.11b
Figure 3.11: Graph of approximation of function f(t) = Sin t in comparison with exact
values at the different collocation points (Fig.3.11a) and absolute error(Fig.3.11b) in

the approximation of a function by Haar scale 3 wavelets at /] = 1.
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for Numerical Experiment No. 3.2

Table 3.4: Comparison of the exact and approximated solution by Haar scale 3 wavelets

. Exact Value (Sin ¢) Approximated value Absolute
Sint) Error

0.0555555555555556 0.0555269820047339 0.0555269820047339 4.16E-17
0.1666666666666670 0.1658961326934150 0.1658961326934150 2.78E-17
0.2777777777777780 0.2742192892107270 0.2742192892107270 5.55E-17
0.3888888888888890 0.3791605039172600 0.3791605039172600 1.11E-16
0.5000000000000000 0.4794255386042030 0.4794255386042030 0.00E+00
0.6111111111111110 0.5737778263110660 0.5737778263110660 0.00E+00
0.7222222222222220 0.6610537218848880 0.6610537218848880 3.33E-16
0.8333333333333330 0.7401768531960370 0.7401768531960370 3.33E-16
0.9444444444444440 0.8101713960172990 0.8101713960172990 3.33E-16

3.6 Conclusion

Construction scheme introduced by Charles K. Chui, Jian-ao Lian has been followed to
construct the compactly supported orthonormal Haar scale 3 nondyadic wavelet family.
Haar Scale 3 function and their corresponding compactly supported symmetric and anti-
symmetric wavelets are used and their general Integrals of nth order have been
calculated by integrating then n-time. Matrices of Haar Scale 3 Wavelets and their
Integrals have been calculated for the approximation of arbitrary function using the
members of Haar scale 3 orthonormal wavelet families which will also be used to solve
the various types of integral and differential equations in the subsequent chapters. Two
functions of different types have been approximated using the Haar scale 3 wavelet
families at the first level of resolution /] = 1 and errors have been analyzed. It is found
that error is of the order 1071® which is the default precision level of MATLAB 7
software. In the next chapters, we will extend the application of the method to solve the
various types of Differential equations (ODEs, PDEs, FDEs). The proposed Technique
is well-suited and very much helpful with the computer environment. Common

programs can be used to solve various types of problems.
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Chapter 4

A Novel Haar Scale 3 Wavelet Based Hybrid
Method for Finding the Solutions of Higher
Order Boundary Value Problems

4.1 Introduction

Many physical phenomena like hydrodynamic and hydromagnetic stability [93],
induction motor with two rotor circuits [116], viscoelastic flows in fluid dynamics, etc.
are governed by the higher-order boundary value problems. Higher-order boundary
value problems (HOBVPs) have been a major concern for the researchers, especially
when these are nonlinear or higher-order linear ODE with variable coefficients. The
existence and uniqueness of the solution for HOBVPs have already been established by
Agarwal in his book [95]. But general closed-form solution for these kinds of problems
has yet not been established. Therefore, researchers are using numerical techniques to
find the solutions of HOBVPs. Many numerical mechanisms have been developed by
the researchers to solve these problems such as Variational Iteration Decomposition
Method (VIDM) [96], Optimal Homotopy Asymptotic Method (OHAM) [97], Galerkin
Method with Quintic B-splines (GMQBS) [117], Legendre Galerkin Method (LGM)
[99], Reproducing Kernel Space Method (RKSM) [100], Variational Iteration Method
(VIM) [101] , Modified Variational Iteration Method (MVID) [102], Sextic B-splines
Collocation Method (SBSCM) [103], Petrov-Galerkin Method (PGM)[104], Homotopy
Perturbation Method (HPM) [118] , Quintic B-Spline Collocation Method (QBSCM)
[119] , Haar Wavelet Collocation Method (HWCM) [120] with dilation factor 2,
Modified Adomian Decomposition Method (MADM) [121] etc.

Wavelet-based numerical techniques are one of the latest techniques in the
mathematical theory of approximation which are in considerable qualitative progress

in comparison with other methods. The majority of the work has been done by using
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Scale 2 dilation (dyadic) wavelets. Till date, no literature is available for the use of Haar
scale 3 (non-dyadic) wavelets in finding the solution of higher-order boundary value
problems. The existence of Haar scale 3 wavelets has been proved by Chui and Lian
[115] in 1995 in the study of the construction of wavelets. This motivates and inspires
us to use the Haar scale 3 wavelets with a collocation method for the solution of
HOBVPs. In the present study, a new wavelet-based hybrid method is developed by

using the Haar scale 3 wavelets with the collocation method.

The main objective of our work is to establish a Haar scale 3 wavelet-based collocation
technique for the numerical solution of linear and nonlinear HOBVPs emerging in
many physical phenomena. To test the efficiency and accuracy of the method, we

consider the general HOBVPs of the type given in Equation (4.1)

xn(t) = f(t, x'x’,x” ......... xn_l) a<t<b (41)

with the constraints on the solution at the boundary points given in Equations (4.2)-

(4.3)

n
x(a) = vy, x(b) = 01,x' (@) = vy, x"(b) = gy, -+ ,x(i‘l)(a)
(2-a) (4.2)
=vn,x\2 /(b)) =0n , if n is even integer
2 2
(n_—l_l)
x(a) =y, x(b) = 81,x' (@) =y, x'(b) = &3, , xV2 7 /(a)
=yn-1,x\ 2 /(b) = On+1, if n is an odd integer
2 2
where  Vq,V, s Vn, 01,05, 0,00, Y1, V2, wen e ,Ynr1, 01, 0p, 000 oo ,0n-1 are the real
2 2 2 2

constants

This chapter is prearranged into the sections as follows. In section 2, the Haar scale 3
wavelet and its integrals are briefly described. In this section, the wavelet family has
also been generated with the help of a multiresolution analysis. The approximation of
solution by Haar scale 3 wavelets is briefly described in section 3. The convergence of
the method is given in section 4. To validate the proposed method, eleven non-linear
and linear higher-order boundary value problems are considered in section 5. In this
section performance of the proposed method is compared with other methods to

demonstrate the efficiency and accuracy of the method. Error analysis and convergence
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of the proposed method have also been discussed for each of the examples at different
levels of resolution in section 5. In the last section, conclusions are drawn from the

results of Numerical Experiments and ideas for future research is given.

4.2 Haar Scale 3 wavelets and their integrals

The explicit mathematical expressions of Haar scale 3 function and mother wavelets
for Haar scale 3 wavelet family with dilation factor three [71], [115] are given in the

Equations (4.4)-(4.6)

1 0<t<1

Haar scaling function ¢@(t) = { 0 elsewhere 4.4
{ -1 0s<t<:
. 1 2 Z<t<?
Haar symmetric wavelet ¥, (t) = 5 3= 3 4.5)
~1 S<t<1
0 elsewhere
1 0<t<:
3] 0 <<l
Haar antisymmetric wavelet 1, (t) = > 3= 3 (4.6)
~1 S<t<1
0 elsewhere

The main difference between the Haar scale 2 and Haar scale 3 wavelet family is that,
in the construction of Haar scale 2 wavelet family, we get only one mother wavelet to
generate whole wavelet family, but in the case of Haar scale 3 wavelet family, we get
more than one mother wavelets to generate whole wavelet family, which increases the
rate of convergence of the solution. In the case of dilation factor 3, two wavelets
represented by Equations (4.5) and (4.6) are obtained to generate the whole wavelet
family. The construction of the Haar scale 3 wavelet family is done by using the

properties of Multi-resolution analysis which are described below.
4.2.1 Multi-resolution Analysis (MRA)
A multi-resolution analysis(MRA) of L, (R) is defined as a sequence of closed subspace

W

., V; € Ly(R),j € Z with the following properties (where L, (R) is vector space of

square integral functions)

a) p() €V, = ¢p(3/t) €V}
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b) p() eV, = ¢(3/t—k) eV,
o YW ews, i=12 =9i(3)ew
d) i) eW, i=12 =¢'(3/t—k)ew
_ ! 2 _ i
Q) W= WOW? =W} ,i=12
f) "'CVOCV1CV2CV3 CV4C"'
g) "‘lW0lW1lW2lW3lW4l"'
h V=Vo +X5W+ 5w
i) ¢(t) eVy= ¢p(t—k) € Vy;k € Zis aRiesz Basis in I/,

Now by applying MRA, generalized form of Haar scale 3 wavelet family is obtained
and is represented by the Equations (4.7)-(4.9)

1 o0<t<1 o
() = 9(0) = {0 elsewhere fori =1 4.7)

-1 1 (1) St <ny(i)

(R — (2 ) = L 2 1y () <t < u3(i) L
hi() =9 (3t — k) VZI =1 aa(i) St <np(D) for (4.8)
0 elsewhere

2,4,..3p— 1
n1() <t <uy(i)

1
; 0 1y(1) <t < 3(i) .
h-t=231t—k=\/§ 2 V7, =
(6 =¥( )= 1 w=e<nm 1T (4.9)
0 elsewhere
3,6,..3p

(3k+2)
3p

where 2,(1) = 7, 2() = 2% x3() = T2 (D =5 p =3/, j=012,..

,k=0,12,...,p—1. Here i > 1 represents wavelet number calculated from the
relations i —1 = p + 2k (foreveni)andi — 2 = p + 2k (for odd i), j represents the
level of dilation/resolution of the wavelet (as we increase the value of j support of
wavelet decreases) and k represents the translation parameters of the wavelet. The

function h (t) is called father wavelet,h, (t)and h;(t) are mother wavelets and all other
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functions h,(t), hs(t), he (t), ... are generated from translation and dilation of the
mother wavelets are called daughter wavelets.

Using the explicit mathematical expression of Haar scale 3 wavelet family given in
Equations (4.4)-(4.9), we can integrate over the interval [0,1) as many time as required

by using the formula given in Equation (4.10)

G (8) = fot fot fot ......... T EIMES +v oen er fot hy () (dx)™ = — fot(t _

(m-1)!

)™ h(x)dx, m=1,23...... L, i=123, e 3p

(4.10)

After evaluating the above integrals for Equation (4.7), we get Equation (4.11)

api(O) = for i=1 4.11)

Using Equation (4.10) on Equation (4.8), we get the values of q,,;(t)'s for i=
2,4,6,8,:--,3p — 1 which are given by Equation (4.12)

qm,i(t) =
0 for 0< t<uxu()
;n—ll(t -y (i))m for (i) <t <u,(0)
% —[=(t =20 @®)" +3(t — 2 (D)"] for () <t < #3(0)
—[=(t =) +3(t —2(D)" = 3(t = %)) for us (i) < t < 2,(i)
—[—(t =) +3(t —2,(D)" = 3(t —23(D)" + (t = 2(D)"] forxu(i) <t <1

4.12)
Using Equation (4.10) on Equation (4.9), we get the values of q,,;(t)'s for i=

3,5,7,9, -, 3p which are given by Equation (4.13)

qm,i(t) =
0 for 0< t<xu()
% (c- Hl(i))m for 1 (i) <t < uy(i0)
\E % [(t - xl(i))m —(t- xz(i))m] for (i) <t < u3(Q)
—[(t =) = (£ =2(D)" = (£ = 23D)"] for ns(i) < t < uy(D)

—[(t = @) = (£ =) = (t=2D)" + (£ =2(D)"]  form(D<t<1

(4.13)

4.3 Approximation of Function by Haar scale 3 Wavelets

Theorem 4.3.1: Let x(t) be any square integrable function over the interval [4, B)

whose highest order derivative is expressible as a linear combination of Haar wavelet
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family as x™(t) = Z?fo a;h;(t). Then all derivatives of x(t) of order less than n are

given by
3p n-m-1
t—A)Y
x™(t) = Z a;qQn—m,i(t) + Z %xmw(/ﬂ for m
i=1 v=0 '
= 0'1'2'3 ......... n— Z'n — 1
Proof: Wehave  x™(t) = %P, a;hi(t).

Integrating x™(t) one-time w.r.t t within the limits A to t we get
3p

XM = ) @g1,i(0) +x"(4)

i=1
The theorem is proved by using the principle of mathematical inductionon N (= n —
m)
Take N=1=>n—-m=1=>m=n-—1,byputting m =n— 1 we get
3p

XM = ) @1, (0) + X" (4)

i=1
which is the same as calculated above. Hence the result is true for N=1
Now assume that the result is true for N =n—m = k.

Pu N=k=>n—-m=k=>m=n—kin

3p k-1 (t = A)
KD = ) aige(©) + ) e xWTOT ()
i=1 v=0 v

To prove the result for N = k + 1, integrating the above equation within the limits A

to t, we get
3p k—
n—-k-1 y (t — A)V+1 (n=-k)+v n—-k-1
D) = ) Al () F ) S xIRA) xR )
i=1 v=0 '

—k— e (t-A)t _
XHL(E) = B i, i(8) + XTKTL(A) + [0 () +

(t—;)z xRy 4oy _(t‘kfll)k (=1 +(k-1) (A)]
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XML = B, aien i (6) + S xm D () + [k er0)a ) o

(t-4)* x (= (k+1)+2 (e A) x (—(k+D+k
- (A) + -4 2 @)

k+1)-1 (-4 (-
a0 () = 3P lqk+u<t)+z< )T x (et ()

Hence the result is true for N = n — m = K + 1. Therefore, the result is true for all the
derivatives of x(t). which completes the proof.

Since the members of the family of Haar scale 3 wavelets are orthogonal to each other,
thus by using theorem 4.3.2 and the properties of wavelets, any square-integrable
function x(t) over the interval [0,1) can be expressed as an infinite series of scale 3

Haar wavelet bases as given in Equation (4.14)

x(t) = ) ahi(t) = ahi(t)
; (4.14)
+ apt(3’t—k)+ ) ayp?(3't—k)
e;li o;i

Here a;'s are Haar wavelet coefficients whose values can be calculated as a; =
folx(t) h;(t)dt ,i=1,2,3,..3p . In practice, only the finite number of terms are

considered, hence considering the first 3p terms, where p =3/ , j=0,1,2,.. to

approximate the function x(t) we get Equation (4.15)
3p

X(0) % X3 = ) athi(®) (4.15)

i=0
4.4 Convergence Analysis

It has been proved by the Mittal and Pandit [71] that if x(t) is any differentiable
function such that |x'(t)| < M V t € (0,1) for some positive real constant M and x(t)

is approximated by Haar wavelet family as given below:

3p

x3p(®) = ) aihi(®

i=0
Then the error bound calculated for Haar wavelet approximation of function x(t) by

L,-norm is given by the Equation (4.16)
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M1 1
0 = xap ()] < =37 = 0 (5) (4.16)

which means if we know the exact value of M then we can get the exact error bound
for the approximation. Also, with the increase in the level of resolution (the value of j
or p=3/) error decreased which proves the convergence for approximate solutions to
the exact solution. This concept of convergence is also presented by the numerical

experiments performed on the following problems.

4.5 Numerical Experiments and Error Analysis

To describe the applicability and effectiveness of the proposed mechanism, eleven
linear and nonlinear higher-order boundary value problems have been solved. To check
the efficiency of the proposed method L, ,L,, and absolute errors are calculated which

are defined as
Absolute error =|upyqcr (t1) — Unym (E) |

Ly, = mlaxluexact(tl) - unum(tl)l

3
\/Zlflluexact (tl) — Unum (tl) IZ
3
\/2151 |uexact(tl) |2

L,

where t; represents the collocation points of the domain.

Numerical Experiment No. 4.1: - Consider the eighth order linear differential

equation

d8x(t)

— x(t)=—-8et , 0<t<1 (4.17)

with the following types of constraints on the solution at the boundary points

x(0) =1,x"(0) =0,x"(0) =-1,x""(0) = -2,x(1) = 0,x'(1) = —e,x" (1) =
—2e,x'"(1) = -3e

Analytic solution of the problem is x(t) = (1 — t)e®.

The present method is applied to the above problem to test the efficiency of the method

and the following solution is obtained:
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x(t) = ?21 a;i[qg,i(t) — f1(£)qg, (1) — f2(t)q7; (1) — f3() g6, (1) —fa(t) g5, (1] —
LA (e~ Df(0) — 2e — )f(O—-Be — f; (1) — 5 — S+ 1, where

fi(t) = —20t7 + 70t — 84t5 + 35t*, f,(t) = 10t” — 34t® + 39¢> — 15¢*

f3(£) = =267 + 6.5¢° — 7t5 + 2.5t% | fy(£) = <t7 —2t® + 215 — =%,

These a;'s are the wavelets coefficients and q; ;'s are the wavelet integrals.

Numerical Experiment No. 4.1

t i

b

——Exact Solution
——Numerical Solution

0 02 04

t
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f)- x

~

—A—|=2
—#—J=3

——j=4

Figure 4.1:Comparison of exact and Figure 4.2: Absolute Error at different

numerical  solution

Experiment No.4.1

for

Numerical level

of resolution [ =2,3,4

Numerical Experiment No. 4.1

in

Table 4.1: Exact and Approximated solution by HS3WCM for j=1 for Numerical

Experiment No. 4.1

x(®) Exact Solution Approximated Solution
by HS3WCM
0.0556 0.998398425606890 0.998398425605433
0.1667 0.984467010721372 0.984467010648896
0.2778 0.953472569424642 0.953472569105286
0.3889 0.901597042799825 0.901597042162876
0.5000 0.824360635350064 0.824360634559944
0.6111 0.716519011851887 0.716519011198242
0.7222 0.571945470614687 0.571945470278510
0.8333 0.383495981815471 0.383495981737315
0.9444 0.142854690821557 0.142854690819942

The solution is also presented in the form of tables and figures for different collocation

points at different levels of resolution for better visibility of results. It is shown in Figure

4.1 and Table 4.1
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agreement with the exact solution for different values of j (levels of resolution). From
Figure 4.2 and Table 4.2, it can be concluded that the errors are reducing by increasing
the level of resolution which ensures the convergence of the method. Moreover, L, and
Lo, errors at j=1 are 5.60E-10 and 7.90E-10 respectively which are less than error
obtained in case of Haar scale 2 wavelet shown in Table 4.3 shows the comparison of
the accuracy of results obtained by the present method, Variational Iteration
Decomposition Method (VIDM)[96] and optimal Homotopy asymptotic method
(OHAM)[97]. It can be concluded from the obtained results, that the present method is
providing better results as compared to other methods, which verifies the efficiency and
reliability of the method.

Table 4.2: L, , L, errors at different level of resolution for Numerical Experiment

No.4.1

Level of L,-error L,-error L, -error L.-error
Resolution (j) Haar scale 2 Haar scale 3 Haar scale 2 Haar scale 3
wavelet wavelet wavelet wavelet

0 1.33E-08 5.40E-09 1.36E-08 7.16E-09
1 2.79E-09 5.60E-10 3.06E-09 7.90E-10
2 7.08E-10 6.23E-11 9.45E-10 8.79E-11
3 1.77E-10 6.92E-12 2.47E-10 9.77E-12
4 4.43E-11 7.69E-13 6.25E-11 1.09E-12
5 1.11E-11 8.54E-14 1.56E-11 1.21E-13
6 2.77E-12 9.52E-15 391E-12 1.38E-14

Table 4.3: Comparision of Numerical results at Random collocation Points available in

Literature for Numerical Experiment No. 4.1

x(t) Exact Solution Approximated Solution | HS3WCM(E") | VIDM(E") [96] OH?91\7/I](E*)
0.1 0.994653826268083 0.994653826215959 5.21E-11 6.71E-08 2.55E-09
0.2 | 0.977122206528136 0.977122206231891 2.96E-10 1.27E-07 2.84E-09
0.3 0.944901165303202 0.944901165118273 1.85E-10 1.75E-07 3.12E-09
0.4 0.895094818584762 0.895094819504096 9.19E-10 2.06E-07 3.40E-09
0.5 | 0.824360635350064 0.824360637948572 2.60E-09 2.18E-07 3.67E-09
0.6 | 0.728847520156204 0.728847523706210 3.55E-09 2.08E-07 3.94E-09
0.7 0.604125812241143 0.604125815143196 2.90E-09 1.78E-07 4.20E-09
0.8 0.445108185698494 0.445108186965076 1.27E-09 1.29E-07 4.45E-09
0.9 | 0.245960311115695 0.245960311272646 1.57E-10 6.66E-08 4.70E-09

E* (Absolute Error) =Exact Solution-Approximate Solution
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Numerical Experiment No. 4.2 : - Consider the eighth order linear differential

equation given as:

d8x(t) , d7x(t) . dbx(t) . d4x(t) , d*x(t) . d3x(t) ., d?x(t) = dx(t) _
dts acr T aes dts dt* dt3 FTERT +x(t) = (4.18)

14 cost — 16sint — 4tsint ,0<t<1

with the following types of constraints on the solution at the boundary points
x(0) =0,x(0) =—-1,x"(0) =0,x""(0) = 7,x(1) = 0,x' (1) = 2sinl,x" (1) =
4cosl+2sinl,x""'(1) =6cos1—6sinl

Analytic solution of the problem is x(t) = (t* — 1) sint .
We proposed the following approximate solution of this problem based on the Haar

scale 3 wavelet mechanism which satisfies the given boundary conditions

x(t) = 72, ailqg,:(8) — fi()q,:(1) — £()q7:(1) — f3()g6:(D—f2(D)gs,,(1)] —
%fl(t) + (2 sinl — g)fz(t) + (4cos1+2sinl1—7)f5(t) +(6cos1 —6sin1 —

3
() + % —t , Where

fi(t) = —20t7 + 70t — 84t5 + 35t*, f,(t) = 10t” — 34t® + 39t> — 15¢*

fo(t) = =2t7 + 6.5t5 — 7t5 + 2.5t%, f,(¢) = %t7 —%tf’ + %tf’ —%t‘*

These a;'s are the wavelets coefficients and q;;'s are the wavelet integrals.

The obtained solution is compared with the exact solution at the second level of
resolutions in Table 4.4 and Figure 4.3. Note that the obtained solution and exact
solution are roughly coincided, which explains the high accuracy obtained by the
proposed method for a small number of grid points. L, and L, errors at j=1 are 1.16E-
08, 5.53E-09 respectively which are less than the error obtained in the case of Haar
scale 2 wavelets shown in Table 4.5. It can be concluded from Table 4.5 and Figure
4.4 that with the increase in the level of resolution j, the error between the exact solution
and obtained solution decreases which ensures the convergence of the proposed
solution to the exact solution. In Table 4.6 performance of the proposed method is
compared with the Galerkin Method with Septic B-splines[114] and Legendre Galerkin
method [99]. We infer that our method is working better than the methods [114] [99]

given in Table 2b.
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Figure 4.3: Comparison of exact and Figure 4.4: Absolute Error at different

numerical

Experiment No. 4.2

Table 4.4: Exact and Approximated solution by HS3WCM for j=1 for Numerical

Experiment No. 4.2

solution

for

Numerical level of resolution J = 2,3,4 in Numerical

Experiment No. 4.2

() Exact Solution Approximated Solution by
HS3IWCM
0.0556 -0.055355602430645 -0.055355602419651
0.1667 -0.161287906785265 -0.161287906248417
0.2778 -0.253060393438294 -0.253060391112554
0.3889 -0.321818328942119 -0.321818324390107
0.5000 -0.359569153953152 -0.359569148418721
0.6111 -0.359496601052921 -0.359496596569607
0.7222 -0.316244836086907 -0.316244833830374
0.8333 -0.226165149587678 -0.226165149074205
0.9444 -0.087518515001869 -0.087518514991516

Table 4.5: L, and L, errors at different level of resolution for Numerical Experiment

No. 4.2
Level of L,-error L,-error L.-error L.-error
Resolution (j) Haar scale 2 | Haar scale 3 Haar scale 2 | Haar scale 3
wavelet wavelet wavelet wavelet

0 2.00E-07 1.10E-07 6.89E-08 4.93E-08
1 5.79E-08 1.16E-08 2.14E-08 5.53E-09
2 1.47E-08 1.29E-09 6.60E-09 6.16E-10
3 3.67E-09 1.43E-10 1.73E-09 6.85E-11
4 9.19E-10 1.59E-11 4.37E-10 7.61E-12
5 2.30E-10 1.77E-12 1.10E-10 8.45E-13
6 5.74E-11 1.97E-13 2.74E-11 9.41E-14
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Table 4.6: Comparison of Numerical results at Random collocation Points available in

Literature for Numerical Experiment No. 4.2

GMQBS(E") | LGM(E")

x(t) Exact Approximated HS3WCM(E¥)
[114] [99]

0.1 -0.098835082480360 | -0.098835083008578 5.28E-10 3.80E-07 5.04E-08
0.2 -0.190722557563259 | -0.190722561614420 4.05E-09 2.15E-06 5.14E-07
0.3 -0.268923388061819 | -0.268923396590150 8.53E-09 5.63E-06 1.56E-10
0.4 -0.327111407539266 | -0.327111416381471 8.84E-09 9.75E-06 2.71E-06
0.5 -0.359569153953152 | -0.359569157955952 4.00E-09 1.14E-05 3.26E-06
0.6 -0.361371182972823 | -0.361371181204998 1.77E-09 1.01E-05 2.82E-06
0.7 -0.328551020491222 | -0.328551016592605 3.90E-09 7.27E-06 1.68E-06
0.8 -0.258248192723828 | -0.258248190503417 2.22E-09 3.87E-06 5.78E-07
0.9 -0.148832112829222 | -0.148832112522090 3.07E-10 1.43E-06 5.88E-08

E” (Absolute Error) =Exact Solution-Approximate Solution

Numerical Experiment No. 4.3 : - Consider the eighth order non-linear differential

equation

8
d;;gﬂ = (x()%e™t ,0<t<1

(4.19)

with the following types of constraints on the solution at the boundary points

x(0)=1,x"(0)=1x"(0)=1x"(0)=1,x(1) =e,x'(1) =e,x"(1) =

e,x""(1) =e.
Analytic solution of the problem is  x(t) = e’ .

In this problem, non-linearity in the differential equation is tackled by the
Quasilinearization technique. By using Quasilinearization technique, above non-linear

differential equation is transformed into a sequence of linear differential equations as

given in Equation (4.20)
8
dxdr—:sl(t) —2etx,x, = —x2e7t , 0<t<1 r=012-- (4.20)

subjected to the boundary conditions
%r41(0) = 1,x741(0) = 1, %744 (0) = 1,754 (0) = Lxy i1 (1) = €, %744 (1) =€,
x%41(1) =e,x/1,(1) = e where x,,,(t) is the (r + 1)th approximation for x(t).

Then by applying the present method on the sequence of linear differential equations,

we proposed the following solution:

99



x(t) = 72, ailqg,:(8) — fi()qg,:(1) — £()q7:(1) — f3(D)g6;(D—f2(D)gs (D] +
(=AW + (e =) £® + (= DAEO+HE - DAO + 5+ 5+ +1
where fi(t) = —20t7 + 70t® — 84t5 + 35t*
fo(t) = 10t” — 34t% + 39¢> — 15¢*
f3(t) = —2t7 + 6.5t% — 7t> + 2.5t*
1

1 1 1
t)=—-t’ —=t® +—t> ——t*
fa(t) c > > c

These a;'s are the wavelets coefficients and q; ;s are the wavelet integrals.

The solution obtained by the present method is explained with the help of tables and
figures. Table 4.7 and Figure 4.5 shows the comparison between the exact and obtained
solution for the Equation (4.19) at j=1 which explains the high accuracy obtained by
the proposed method for a small number of grid points (in this case only 9 grid pts). L,
and L., errors at j=1 are 2.54E-11, 8.30E-11 respectively which is less than error
obtained in case of Haar scale 2 wavelets. Table 4.8 and Figure 4.6 ensures the
convergence of the present solution to the exact solution. The performance of the
present method is compared with the other methods in Table 4.9 and it can be
concluded that the present method is working better than the other methods [100],
[101].
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Table 4.7: Exact and Approximated solution by HS3WCM for j=1 for Numerical

Experiment No. 4.3

x(t) Exact Solution Approximated Solution by
HS3WCM
0.0556 1.057127744760230 1.057127744760390
0.1667 1.181360412865640 1.181360412873280
0.2778 1.320192788434120 1.320192788467740
0.3889 1.475340615490620 1.475340615557600
0.5000 1.648721270700120 1.648721270783100
0.6111 1.842477459047700 1.842477459116250
0.7222 2.059003694212870 2.059003694248070
0.8333 2.300975890892820 2.300975890900990
0.9444 2.571384434788030 2.571384434788190

Table 4.8: L, , L, errors at different level of resolution for Numerical Experiment

No.4.3

Level of L,-error L,-error L,-error L.-error
Resolution (j) Haar scale 2 Haar scale 3 Haar scale 2 | Haar scale 3
wavelet wavelet wavelet wavelet

0 6.31E-10 2.47E-10 1.48E-09 7.50E-10
1 1.27E-10 2.54E-11 3.20E-10 8.30E-11
2 3.22E-11 2.83E-12 9.92E-11 9.23E-12
3 8.05E-12 3.14E-13 2.60E-11 1.03E-12
4 2.01E-12 3.50E-14 6.56E-12 1.14E-13
5 5.03E-13 3.96E-15 1.64E-12 1.33E-14
6 1.26E-13 5.54E-16 4.11E-13 3.11E-15

Table 4.9: Comparision of Numerical results at Random collocation Points available in

Literature for Numerical Experiment No. 4.3

x(t) Exact Approximated HSIWCEM Reproducing VIT(E®) [101]
(E") Kernel(E") [100]
0.1 | 1.105170918075640 | 1.105170918082360 6.72E-12 1.61E-08 1.91E-07
0.2 | 1.221402758160170 | 1.221402758200630 4.05E-11 3.07E-08 1.25E-07
0.3 | 1.349858807576000 | 1.349858807613920 3.79E-11 4.23E-08 7.25E-08
0.4 | 1.491824697641270 | 1.491824697560440 8.08E-11 4.97E-08 4.85E-08
0.5 | 1.648721270700120 | 1.648721270427080 2.73E-10 5.23E-08 2.91E-07
0.6 | 1.822118800390500 | 1.822118800001710 3.89E-10 4.98E-08 7.80E-08
0.7 | 2.013752707470470 | 2.013752707147060 3.23E-10 4.24E-08 1.11E-07
0.8 | 2.225540928492460 | 2.225540928350050 1.42E-10 3.08E-08 1.71E-07
0.9 | 2.459603111156940 | 2.459603111139210 1.77E-11 1.62E-08 7.93E-08
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Numerical Experiment No. 4.4: - Consider the ninth order linear differential equation

a’x(t)

- x(t) — 9et ,0<t<1 4.21)

with the following types of constraints on the solution at the boundary points

x(0) =1,x"(0) =0,x"(0) = —=1,x"""(0) = =2,x"%(0) = =3,x(1) = 0,x'(1) = —e
x"(1) = —-2e,x""(1) = —3e

Analytic solution of the problem is x(t) = (1 — t)et .
The present method is applied to the linear differential equation (4.21) and we proposed

the following solution as

x(t) = 2?51 a;[qo:(t) — f1(t)qq:(1) — f2()qg,; (1) — f3(t)q7,; (1) —f2(t)qe:(1)] —

t*  t3 ot

LA +(C-e) @+ (2-20) FO+G-30O S-S =S +1

3 2

where
fi(t) = —35¢t8 + 120t° — 140t> + 56,
fo(t) = 15t8 — 50t7 + 56t° — 21¢t>,

f3(t) = —2.5t% + 8t7 — 8.5t% + 3¢5,

1

_18_ 17,16 1.5
f4(t)—6t STt ==t

These a;'s are the wavelets coefficients and q; ;s are the wavelet integrals.

Below Figure 4.7 and Table 4.10 shows the numerical solution obtained from the
present method at j=1 are in good agreement with the exact solution which explains the
high accuracy obtained by the present method for a small number of grid points (in this
case only 9 Grid pts). L,and L, errors at j=1 are 3.36E-11, 4.65E-11 respectively which
are less than error obtained in case of Haar scale 2 wavelets. It can be concluded that
the rate of convergence of the Haar scale 3 wavelet is faster than Haar scale 2 wavelets.
Table 4.11 and Figure 4.8 ensure the convergence of the proposed solution to the exact
solution. The performance of the present method is compared with the other methods
and it can be concluded that the present method is working better than the other

methods[102][103] given in Table 4.12.
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Figure 4.7: Comparison of exact and Figure 4.8: Absolute Error at different

numerical solution for Numerical level of resolution | =2,3,4 in

Experiment No. 4.4 Numerical Experiment No. 4.4

Table 4.10: L, , L, errors at different level of resolution for Numerical Experiment

No.4.4

Level of L;-error L;-error L, -error L,-error
Resolution (j) Haar scale 2 Haar scale 3 Haar scale 2 | Haar scale 3
wavelet wavelet wavelet wavelet

0 5.32E-10 3.17E-10 5.82E-10 4.20E-10
1 1.73E-10 3.36E-11 2.29E-10 4.65E-11
2 4.26E-11 3.73E-12 6.20E-11 5.41E-12
3 1.06E-11 4.14E-13 1.53E-11 6.03E-13
4 2.65E-12 4.60E-14 3.86E-12 6.71E-14
5 6.64E-13 5.09E-15 9.66E-13 7.55E-15
6 1.66E-13 7.26E-17 2.41E-13 8.11E-17

Table 4.11: Exact and Approximated solution by HS3WCM for j=1 for Numerical

Experiment No. 4.4

Approximated Solution
x(t) Exact Solution
by HS3WCM
0.0556 0.998398425606890 0.998398425606881
0.1667 0.984467010721372 0.984467010719958
0.2778 0.953472569424642 0.953472569414279
0.3889 0.901597042799825 0.901597042770934
0.5000 0.824360635350064 0.824360635304049
0.6111 0.716519011851887 0.716519011805412
0.7222 0.571945470614687 0.571945470586460
0.8333 0.383495981815471 0.383495981807899
0.9444 0.142854690821557 0.142854690821380
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Table 4.12: Comparision of Numerical results at Random collocation Points available

in Literature for Numerical Experiment No. 4.4

x(t) Exact Approximated HS:WYCM MVIM(E’) | SBSCM(E’)
(EY) [102] [103]
0.1 | 0.994653826268083 | 0.994653826266204 1.88E-12 2.00E-10 1.08E-06
0.2 | 0.977122206528136 | 0.977122206495194 3.29E-11 2.00E-10 5.19E-06
0.3 | 0.944901165303202 | 0.944901165177828 1.25E-10 2.00E-10 6.13E-06
0.4 | 0.895094818584762 | 0.895094818349846 2.35E-10 2.00E-10 1.23E-05
0.5 | 0.824360635350064 | 0.824360635081231 2.69E-10 2.00E-10 1.07E-05
0.6 | 0.728847520156204 | 0.728847519963689 1.93E-10 6.00E-10 4.91E-06
0.7 | 0.604125812241143 | 0.604125812167427 7.37E-11 1.00E-09 9.95E-06
0.8 | 0.445108185698494 | 0.445108185693307 5.19E-12 2.00E-09 1.65E-06
0.9 | 0.245960311115695 | 0.245960311117830 2.13E-12 3.04E-09 2.00E-06

E” (Absolute Error) =Exact Solution-Approximate Solution

Numerical Experiment No. 4.5: - Consider the ninth order non- linear differential

equation

d®x(t)
dt®

— (x(t))zdi;—(tt) = cos3t

, 05t <1

with the following types of constraints on the solution at the boundary points
x(0)=0,x"(0) =1,x"(0) =0,x""(0) = -1,x"(0) = 0,x(1) =sinl ,x'(1) =

cos1 ,x""(1) =—sinl ,x"""(1) = —cos 1

Analytic solution of the problem is x(t) = sint .

(4.22)

In this problem, non-linearity in the differential equation is tackled by the

Quasilinearization technique. By using Quasilinearization technique, given non-linear

differential equation is transformed into a sequence of linear differential equations as

9
d’;’"—;l(t) — 2Xp Xy Xpyq — X2 Xppq +2x2 %, =cos3x,0<t<1,r= 4.23)
0,1,2 -
subjected to the boundary conditions
%r41(0) = 0,2741(0) = 1,1(0) = 0,1, (0) = —1,x,%,(0) = 0, x4, (1) =
sinl,x;,,(1) =cos1 ,x,,(1) = —sinl ,x,.[,(1) = —cos 1, where x,,,(t) is the

(r + 1)th approximation for x(t).Then by applying the present method on the sequence
of linear differential equations, we proposed the following solution for Equation (4.22)

as
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x(t) = ;21 ai[qo:(8) = f1()q0,:(1) = £(£)qs,: (1) = f3(£)q7, (D —fa() g6 (V)] +
(sin1 = 2) (0 + (cos 1= 3) fo(®) + (1 = sin DO +(1 — cos DF(E) == + ¢

Where

fi(t) = —35t® + 120t° — 140¢t> + 56t*
fo(t) = 15t8 — 50t7 + 56t° — 21t°
f3(t) = —2.5t® + 8t7 — 8.5t% + 3t°

fa(®) =

6 2

1 1 1
—t8 ——t7 +§t6 ——t°

1
6

These a;'s are the wavelets coefficients and q; ;s are the wavelet integrals.
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Figure 4.10: Absolute error at different

numerical solution for Numerical level of resolution | = 2,3,4 for

Experiment No. 4.5 Numerical Experiment No. 4.5

Table 4.13: Exact and Approximated solution by HS3WCM for j=1 for Numerical
Experiment No. 4.5

(@) Exact Solution Approximated Solution by
HS3IWCM
0.0556 0.055526982004734 0.055526982003702
0.1667 0.165896132693415 0.165896132535308
0.2778 0.274219289210727 0.274219288018338
0.3889 0.379160503917260 0.379160500502594
0.5000 0.479425538604203 0.479425533025153
0.6111 0.573777826311066 0.573777820538742
0.7222 0.661053721884888 0.661053718298351
0.8333 0.740176853196037 0.740176852213119
0.9444 0.810171396017299 0.810171395993874
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Table 4.13 and Figure 4.9 shows the comparison between the exact and approximated
numerical solution at j=1 for the given problem which explains the high accuracy
obtained by the present method for a small number of grid points (in this case only 9
Grid pts). L, and L, errors at j=1 are 2.54E-11, 8.43E-11 respectively which are less
than error obtained in case of Haar scale 2 wavelets. Table 4.14 and Figure 4.10 ensure
the convergence of the proposed solution to the exact solution. The performance of the
present method is compared with the other methods [103][104] and it has been found
that the present method is working better than the other methods[103][104] given in the
Table 4.15.

Table 4.14: L, , L, errors at different level of resolution for Numerical Experiment

No. 4.5
Level of L,-error L,-error L,-error L.-error
Resolution (j) Haar scale 2 Haar scale 3 Haar scale 2 | Haar scale 3
wavelets wavelets wavelets wavelets
0 6.41E-10 2.17E-10 1.68E-09 7.55E-10
1 1.47E-10 2.54E-11 3.40E-10 8.43E-11
2 3.37E-11 2.93E-12 9.99E-11 9.33E-12
3 8.25E-12 3.34E-13 2.85E-11 1.25E-12
4 2.01E-12 3.85E-14 6.56E-12 1.44E-13
5 5.03E-13 4.75E-15 1.64E-12 1.83E-14
6 1.26E-13 5.93E-16 4.11E-13 3.41E-15

Table 4.15: Comparision of Numerical results at Random collocation Points available

in Literature for Numerical Experiment No. 4.5

x(t) Exact Approximated HS3WCM (E%) PGM(E) SBSCM(E’)
[104] [103]
0.1 0.099833416646828 | 0.099833416630007 1.68E-11 1.86E-07 2.85E-06
0.2 0.198669330795061 0.198669330448275 3.47E-10 7.30E-07 1.35E-06
0.3 0.295520206661340 | 0.295520205069110 1.59E-09 9.83E-07 4.09E-06
0.4 0.389418342308651 0.389418338575155 3.73E-09 1.22E-06 1.05E-06
0.5 0.479425538604203 | 0.479425532943724 5.66E-09 8.34E-07 3.45E-05
0.6 0.564642473395035 | 0.564642467456141 5.94E-09 3.87E-06 3.46E-05
0.7 0.644217687237691 0.644217683060221 4.18E-09 5.66E-06 2.09E-05
0.8 0.717356090899523 | 0.717356089246222 1.65E-09 4.89E-06 2.01E-05
0.9 0.783326909627483 | 0.783326909436309 1.91E-10 2.86E-06 3.84E-06

E” (Absolute Error) =Exact Solution-Approximate Solution
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Numerical Experiment No. 4.6: - Consider the tenth order linear differential equation

dOx(t
2O w8t , o0sts1 (4.24)

with the following types of constraints on the solution at the boundary points

x(O) = 1rx’(0) = O,XH(O) = _l,x’”(O) = _leiv(o) = _3”1
x(1)=0,x"(1) = —e,x"(1) = =2e,x""(1) = =3e,x(1) = —4e
Analytic solution of the problem is x(t) = (1 —t)e’.

By applying the Haar Scale 3 wavelet mechanism for the solution of the linear

differential equation, we proposed the following solution for the Equation (4.24)

x(t) = ?51 a;i[q10,i(£) = f1(t)G10,:(1) — f2(£)qo, (1) —
£3(O)86,:(D—fi(O)47,:(D~fs(O)46, (D] = - A + (5= ) a(®) + (3 -

4 3 2
2e) f3()+(5 - 3)f{(D+(3 - 4e)fs() = - = —+1
Where fi(t) = 70t° — 315t + 540t7 — 420t + 126t> ,f,(t) = —35x° +
155t8 — 260t7 + 196t — 56t> ,  f3(t) = 7.5x% — 32.5¢® + 53t7 — 38.5t° +
1056, fi(®) = —gx? +300 —TU+ T =0 f5(0) = 5 —5e0 +0t =
2t —t°.
6 24

These a;'s are the wavelets coefficients and q; ;'s are the wavelet integrals. Figure 4.11

and Table 4.16 show the comparison between the exact and obtained solution for j=1
which explains the high accuracy obtained by the present method for a small number
of grid points (in this case only 9 Grid pts).L, and L, errors at j=1 are 1.79E-12, 2.65E-
12 respectively which are less than error obtained in case of Haar scale 2 wavelets.
Table 4.17 and Figure 4.12 ensure the convergence of the obtained solution (HS3WCM
solution) to the exact solution. The performance of the present is compared with the
other methods[118], [119] and it has been found that the present method is working
better than the other methods given in Table 4.18.
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Table 4.16: Exact and Approximated solution by HS3WCM for j=1 for Numerical

Experiment No. 4.6

x(t) Exact Solution Solution by HS3WCM
0.0556 0.998398425606890 0.998398425606891
0.1667 0.984467010721372 0.984467010721508
0.2778 0.953472569424642 0.953472569425507
0.3889 0.901597042799825 0.901597042801862
0.5000 0.824360635350064 0.824360635352717
0.6111 0.716519011851887 0.716519011853969
0.7222 0.571945470614687 0.571945470615589
0.8333 0.383495981815471 0.383495981815614
0.9444 0.142854690821557 0.142854690821560

Table 4.17: L, , Ly, errors at different level of resolution for Numerical Experiment

No.4.6
Level of L;-error L;-error L, -error L,-error
Resolution (j) Haar scale 2 Haar scale 3 Haar scale 2 | Haar scale 3
wavelet wavelet wavelet wavelet

0 3.66E-11 1.51E-11 3.76E-11 2.02E-11
1 8.51E-12 1.79E-12 9.39E-12 2.65E-12
2 2.26E-12 1.98E-13 3.12E-12 2.95E-13
3 5.65E-13 2.21E-14 8.26E-13 3.28E-14
4 1.41E-13 3.20E-15 2.09E-13 8.60E-15
5 3.54E-14 1.87E-15 5.25E-14 9.21E-15
6 9.01E-15 1.91E-15 1.32E-14 1.39E-14
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Table 4.18: Comparison of Numerical results at Random collocation Points available

in Literature for Numerical Experiment No. 4.6

x(t) Exact Approximated HS3VZCM HPM(E') | QBSCM(E")
(E) [118] [119]
0.1 0.994653826268083 0.994653826268138 5.46E-14 1.14E-06 8.82E-06
0.2 0.977122206528136 0.977122206528696 5.60E-13 2.69E-06 8.64E-06
0.3 0.944901165303202 0.944901165303723 5.21E-13 3.70E-06 2.92E-06
0.4 0.895094818584762 0.895094818582427 2.33E-12 4.35E-06 5.96E-07
0.5 0.824360635350064 0.824360635342947 7.12E-12 4.58E-06 6.74E-06
0.6 0.728847520156204 0.728847520146812 9.39E-12 4.36E-06 1.43E-05
0.7 0.604125812241143 0.604125812234420 6.72E-12 3.71E-06 1.27E-05
0.8 0.445108185698494 0.445108185696260 2.23E-12 2.69E-06 8.14E-06
0.9 0.245960311115695 0.245960311115542 1.53E-13 1.42E-06 3.49E-06

E” (Absolute Error) =Exact Solution-Approximate Solution

Numerical Experiment No. 4.7 : - Consider the tenth order non-linear differential
equation

10
dd;gt) = (x(t))?e™t ,0<t<1

(4.25)

with the following types of constraints on the solution at the boundary points
x(0) = 1,x'(0) =1,x"(0) = 1,x""(0) = 1,x(0) = 1,x7(0) = 1,x(1) = e,
xX(D=e,x"(D=e,x""(1)=ex¥(1) =e,x’(1) =e

Analytic solution of the problem is x(t) = e’.

Non-linearity in the differential equation is tackled by the Quasilinearization technique.
By using Quasilinearization technique given non-linear differential equation is

transformed into a sequence of linear differential equations as

d %41 (t) _

—ho = 2x,. x40 8, 0<t<1 r=0,12- (4.26)

subjected to the boundary conditions

%41(0) = 1,2741(0) = 1,%41(0) = 1, %, (0) = 1,x%,(0) = 1, x,4,(1) =
e, xj (D) =e,x),.;(1)=e,x},(1) = e,x%,(0) =e where x,,,(t) is the (r +

1)th approximation for x(t).
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By applying the present method on the given linear differential equation, we proposed

the following solution
x(t) = ?21 a;[q10,i(t) — f1(t)q10,:(1) — f2(£)qq, (1) —
£3(O)6,: (D= £a()07,:(D~f5(O)q6, (D] + (e = ) i(0) + (€ = 3) o) + (e -

D AMO+He - DO+ - DO +S+E+ S 441

where f;(t) = 70t — 315t® + 540t” — 420t° + 126t5, fo(t) = —35x° +

155t8 — 260t7 + 196t° — 56t°, f3(t) =7.5x° —32.5t8 + 53t — 38.5t% +
5 _ 59,7, 1,7 23.6 .5 _ 1 9 1l.g 1.7

10.5t> , fi,(t) = cXT A+t Sttt -t f5(t)—24x Sttt

16 +—¢5.

6 24

These a;'s are the wavelets coefficients and q; ;s are the wavelet integrals.

Table 4.19: Exact and Approximated solution by HS3WCM for j=1 for Numerical
Experiment No. 4.7

x(t) Exact Solution Approximated Solution by
HS3WCM
0.0556 1.057127744760230 1.057127744760230
0.1667 1.181360412865640 1.181360412865630
0.2778 1.320192788434120 1.320192788434040
0.3889 1.475340615490620 1.475340615490440
0.5000 1.648721270700120 1.648721270699890
0.6111 1.842477459047700 1.842477459047520
0.7222 2.059003694212870 2.059003694212790
0.8333 2.300975890892820 2.300975890892810
0.9444 2.57138443478803 2.57138443478803
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Table 4.20: L, , L, errors at different level of resolution for Numerical Experiment No.

4.7
L,-error L,-error L,-error L,-error
Level of
. . Haar scale 2 Haar scale 3 Haar scale 2 Haar scale 3
Resolution (j)

wavelet wavelet wavelet wavelet
0 5.73E-13 1.44E-12 1.75E-12 3.36E-12
1 6.75E-14 3.22E-13 2.32E-13 8.19E-13
2 7.91E-15 8.53E-14 2.73E-14 2.72E-13
3 1.31E-15 2.17E-14 4.66E-15 7.33E-14
4 6.01E-16 5.75E-15 2.22E-15 1.98E-14
5 5.27E-16 1.78E-15 2.22E-15 6.22E-15
6 5.23E-17 8.07E-16 3.55E-16 2.89E-15

Table 4.21: Comparision of Numerical results at Random collocation Points available

in Literature for Numerical Experiment No. 4.7

x(t) Exact Approximated HS3WCM | HPM [118] | QBSCM [119]
0.1 | 1.105170918075640 | 1.105170918075640 | 5.77E-15 1.41E-06 1.25E-05
0.2 | 1.221402758160170 | 1.221402758160110 | 6.02E-14 2.69E-06 8.70E-06
0.3 | 1.349858807576000 | 1.349858807575920 | 7.51E-14 3.70E-06 2.15E-06
0.4 | 1.491824697641270 | 1.491824697641440 1.73E-13 4.35E-06 1.13E-05
0.5 | 1.648721270700120 | 1.648721270700740 | 6.16E-13 4.58E-06 3.97E-05
0.6 | 1.822118800390500 | 1.822118800391350 | 8.43E-13 4.36E-06 5.40E-05
0.7 | 2.013752707470470 | 2.013752707471080 | 6.12E-13 3.71E-06 6.79E-05
0.8 | 2.225540928492460 | 2.225540928492670 | 2.05E-13 2.69E-06 4.89E-05
0.9 | 2.459603111156940 | 2.459603111156960 1.38E-14 1.42E-06 2.00E-05

E” (Absolute Error) =Exact Solution-Approximate Solution

The proposed solution is compared with the exact solution at different levels of
resolutions in Table 4.19 and Figure 4.13. Note that obtained solution and exact solution
have roughly coincided which explains the high accuracy obtained by the proposed
method for a small number of grid points. L, and L, errors at j=1 are 3.22E-13, 8.19E-
13 respectively which are less than error obtained in case of Haar scale 2 wavelets
shown in Table 4.20. It can be concluded from Table 4.20 and Figure 4.14 that with the
increase in the level of resolution j, the error between the exact solution and obtained
solution decreases which ensures the convergence of the proposed solution to the exact
solution. In Table 4.21, the performance of the proposed method is compared with the
Homotopy Perturbation Method [118] and Quintic B-Spline Collocation Method [119].
We infer that our method is working better than the methods [118], [119] given in Table
4.21.
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Numerical Experiment No. 4.8 : - Consider the eleventh order linear differential
equation

dWx(t)

— —11let +x(¢), 0<t<1 (4.27)

with the following types of constraints on the solution at the boundary points
x(0) =1,x'(0) = 0,x"(0) = —1,x""(0) = —=2,x"(0) = —3,x¥(0) = —4,
x(1)=0,x"(1) =—e,x" =—=2e,x""(1) = —3¢,x(1) = —4e

Analytic solution of the problem is x(t) = (1 — t)e®.

We introduced the following approximate solution for the solution of given differential

equation (Equation (4.27)) by applying the Haar Scale 3 wavelet mechanism

x(t) = ?51 a;[q11,i(t) — f1(®)q11,i(1) — f2(£)q10,(1) —

£3(©)90: (D= f1(O85,(D~fs(Da7:(D] = (55) 1O + (5= ) (&) + (3 -

t*  t3  t2

2¢) F5(O+(7 = 3O+ — 4e)fs(®) — 2~ L L _

+1,
8 3 2

Where  f;(t) = 126t1° — 560t° + 945t8 — 720t” + 210t® , f,(t) = —56t1° +

245x° — 405t® + 300t7 — 84t® , f3(t) =10.5¢1° — 45 x% + 72.5¢8 — 52¢7 —
6 _ 410 4 25 9 13 .3 9.7 7.6 .5 _ 1. 9 1,8 1.7

14t° |, f,(t) = —t +—x Sttt =ttt ,fs(t)—Mx Sttt

1 1 . .
. t® + 22 t5. These a;'s are the wavelets coefficients and g ;i's are the wavelet integrals.

Numerical Experiment No. 4.9 : - Consider the eleventh order non- linear differential

equation

dtWx(t) + (x(t))? = 11(cost —sint) — t(cost + sint ) + t3(1 —
at (4.28)

sin2t) , 0<t<1

with the following types of constraints on the solution at the boundary points
x(0) = 0,x'(0) = —1,x"(0) = 2,x""(0) = 3,x™(0) = —4,x"(0) = -5,

x(1) =sinl—cos1,x'(1) =2sin1 ,x"(1) =3cos1+sinl,x"' (1) =
2cos1—4sinl ,x%(1) = -5cos1—3sin1l

112



Analytic solution of the problem is x(t) =t (sint — cost) .The non-linearity in the
differential equation is tackled by the quasilinearization technique. By using the
quasilinearization technique given non-linear differential equation is transformed into
a sequence of linear differential equations as

d' x4 (t) 2 = ' .
o+ 20 Xpyy — %7 = 11(cost —sint) — t(cost +sint) + (429)

t?(1—sin2t), 0<t<1 r=20,1,2-

subjected to the boundary conditions

%r41(0) = 0,x741(0) = =1, %741 (0) = 2, %744 (0) = 3,%,%,(0) = —4, %74, (0) =
—5,%,41(1) =sin1 —cos1 ,x.,,(1) = 2sin1 ,x,,,(1) =3cos1 +

sinl,x,7,(1) =2cos1—4sinl,x,[;(1) = =5cos1—3sinl where x,,,(t) is

the (r + 1)th approximation for x(t).

Then by applying the Haar scale 3 wavelet mechanism for the solution of the linear
differential equations on the sequence of linear differential equations, we proposed the

following solution for the given equation.

x(t) = ?21 a;[q11,i(t) — f1(®)q11,;(1) — f2(£)q10,:(1) —
f3(£)qo,i (1) —f4(£)qs,: (1 —f5(£)q7,:(1)] + ((sin1 — cos 1) —i) fi(®) + (2sinl -

18—3)f2(t) + ((3 cos1l+sinl) — %) fz(®)+((2cos1 —4sinl) + %)ﬁ;(t)+(9 -

. tz t3 t4 t5
(5c051+351n1))f5(t)—t+?+?—3_5,

Where f;(t) = 126t1° — 560t° + 945t — 720t7 + 210t5,£,(t) = —56t1° +

245x° — 405t + 300t7 — 84t° ,f5(t) = 10.5t1° — 45 x° + 72.5t8 — 52t7 — 14t°

_ 410 4 25,9 _13.8 9.7 7.6 _ ;5 _ 1 9o 1,17 1.
Ja(t) = —t +—x St ottt t>,fs(t) X Tttt =ttt

1 . .
7 t5 . These a;'s are the wavelets coefficients and g ;i's are the wavelet integrals.

It can be concluded from Figure 4.15, Figure 4.16, Table 4.22 , and Table 4.23 that the
results obtained from the present method are in good agreement with the exact solution.
To have more detail of results, absolute error obtained in the present solution is
compared with the error obtained in other methods [122]-[124] in Table 4.24 and

Table 4.25 and we infer our method provides better accuracy.
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Table 4.22: Exact and Approximated solution by HS3WCM for j=1 for Numerical

Experiment No.4.8

x(t) Exact Solution Approximated Solution by HS3WCM
0.0556 0.998398425606890 0.998398425606890
0.1667 0.984467010721372 0.984467010721374
0.2778 0.953472569424642 0.953472569424665
0.3889 0.901597042799825 0.901597042799900
0.5000 0.824360635350064 0.824360635350189
0.6111 0.716519011851887 0.716519011852007
0.7222 0.571945470614687 0.571945470614748
0.8333 0.383495981815471 0.383495981815481
0.9444 0.142854690821557 0.142854690821556

Table 4.23: Exact and Approximated solution by HS3WCM for j=1 for Numerical

Experiment No. 4.9

x(t) Exact Solution Approximated Solution by HS3WCM
0.0556 -0.052385011388556 -0.052385011388556
0.1667 -0.136707849811585 -0.136707849811584
0.2778 -0.190957749800737 -0.190957749800731
0.3889 -0.212399606414346 -0.212399606414325
0.5000 -0.199078511643085 -0.199078511643052
0.6111 -0.149864712744852 -0.149864712744822
0.7222 -0.064483504858708 -0.064483504858693
0.8333 0.056470507594150 0.056470507594154
0.9444 0.211535090710309 0.211535090710311
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Table 4.24: Comparison of Numerical results at Random collocation Points available

in Literature for Numerical Experiment No. 4.8

x(t) Exact Approximated HS3WCM(E") MADM(E’) [122]
0.1 0.994653826268083 | 0.994653826268084 1.44E-15 3.80E-09
0.2 0.977122206528136 | 0.977122206528185 4.93E-14 4.60E-07
0.3 0.944901165303202 | 0.944901165303448 2.46E-13 5.30E-06
0.4 0.895094818584762 | 0.895094818585289 5.27E-13 3.10E-05
05 0.824360635350064 | 0.824360635350693 6.29E-13 1.20E-04
0.6 0.728847520156204 | 0.728847520156638 435E-13 3.60E-04
0.7 0.604125812241143 | 0.604125812241291 1.48E-13 9.30E-04
0.8 0.445108185698494 | 0.445108185698504 9.88E-15 2.10E-03
0.9 0.245960311115695 | 0.245960311115694 1.55E-15 4.30E-03

E*(Absolute Error) =Exact Solution-Approximate Solution

Table 4.25: Comparision of Numerical results at Random collocation Points available

in Literature for Numerical Experiment No. 4.9

x(t) Exact Approximated HS3WCM (E°) DTM(E*)[125] | VIT

0.1 -0.089517074863120 | -0.089517074863118 1.67E-15 1.51E-13 1.03E-15
0.2 -0.156279449409236 | -0.156279449409184 | 5.25E-14 5.23E-12 5.34E-14
0.3 -0.197944884739280 | -0.197944884739013 | 2.67E-13 3.07E-11 5.59E-13
0.4 -0.212657060677694 | -0.212657060677103 | 5.91E-13 9.74E-11 3.32E-12
0.5 -0.199078511643085 | -0.199078511642340 | 7.45E-13 3.69E-10 1.48E-11
0.6 -0.156415884908786 | -0.156415884908215 | 5.71E-13 2.00E-09 5.38E-11
0.7 -0.084437150032758 | -0.084437150032512 | 2.46E-13 1.03E-08 1.66E-10
0.8 0.016519505241886 0.016519505241929 4.36E-14 4.39E-08 4.42E-10
0.9 0.145545247221137 0.145545247221138 9.99E-16 1.58E-07 1.04E-09

E" (Absolute Error) =Exact Solution-Approximate Solution

Numerical Experiment No. 4.10 : - Consider the twelfth order linear differential

equation

d12x(t)
dt

+ tx(t) = —(120+ 23t + t3)et ,0<t <1

(4.30)

with the following types of constraints on the solution at the boundary points

x(0) = 0,x'(0) = 1,x"(0) = 0,x""(0) = —3,x*(0) = —8,x7(0) = —15,

x(1) =0,x"(1) = —e,x"(1) = —4e,x"" (1) = —9¢,x"(1) = —16e,x(1) =
—25e.

Analytic solution of the problem is x(t) = t(1 — t)e’ .
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We proposed the following solution for the Equation (4.30) by applying the present

method for the solution of linear differential equation with variable coefficients

x(t) = ?21 a;i[q12,;(t) — f1(£)q12,;(1) — f2(£)q11,,(1) —

f3(£)q10,i (D)= £2(£)qo,i (1) —f5(£)qs,: (1) —f6 () q7,,(1)] — (i) fi(®) + (g—z -

e) f(t) + (3 — 4e) (0 + (3 — 9¢) fu(£)+(23 — 16€) f5 () +(15 — 25e)f (¢) -

Where f;(t) = —252t1 + 1386t1° — 3080t° + 3465t% — 1980t” + 462t°,
fo(t) =126 t11 — 686t1° + 1505x° — 1665t8 + 930t7 — 210t°, f3(t) =

5
—28t11 + 2210 — 325x% + 2% — 192¢7 — 42¢°, fy(6) = 2¢11 - =10 4
5
2x® =28 42267 — 246, fi(8) = a4 S xl0 = x4 8 — 7 4 g
6 2 6 3 4 24 24

These a;'s are the wavelets coefficients and q;;'s are the wavelet integrals.

Numerical Experiment No. 4.11: - Consider the twelfth order non- linear differential

equation
d12x(¢)
dt

d®x(t)
dt

= 2et(x())? + 0<t<1 (4.31)

with the following types of constraints on the solution at the boundary points

x(0) =1,x"(0) =—-1,x"(0) = 1,x""(0) = =1,x¥(0) = 1,x¥(0) = -1 x(1) =
T =—et,x"(D)=et,x"(1) =—eLxP(1) =, x"(1) = —e?

Analytic solution of the problem is x(t) = e~*. In this problem, non-linearity in the
differential equation is tackled by the quasilinearization technique. By using
Quasilinearization technique given non-linear differential equation is transformed into
a sequence of linear differential equations as

dPxrei(t) d®xp44(t)
dt12z dt

—4delx, x4 = —2x%e', 0<t<1.,r=0,12- (432)

subjected to the boundary conditions

Xr+1(0) = 1, %744 (0) = -1, x}'+1(0) Lxt1(0) = —1,%%,(0) = 1, x5+1(0) =
“Lxpp (D =e 6 (D) = —e " x (D) =e ™t g (D) = —e x5 (1) =
e 1,x¥, (1) = —e ! where x,,,(t) is the (r + 1)th approximation for x(t).
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Then by applying the present method for the solution of the linear differential equation
on the sequence of linear differential equations as obtained above, we proposed the

following solution

x(t) = ?31 ai[q12,(t) — f1(©)q12,;(1) — f2(£)q11,:(1) —
f3(8)q10,i (D) —f2(£)qo,; (1) —f5(t)qg; (1) —f6(£)q7,;,(1)] + (e“ - i) f1() + (% -

120

)0+ (7 =) AO+ (- e A+ O+ - e DO -5+

Where fi(t) = —252t1 +1386t1° — 3080¢t° + 3465t8 — 1980t7 + 462t°,
fo(t) = 126 t11 — 686t1° + 1505x° — 1665t + 930t7 — 210t®, f5(¢t) =

5
—28t11 + s’zﬂtlo — 325x° +%t8 —192¢7 — 42t5, f,(¢t) = %tll - 32—7t10 +
2050 — B8 42217 — B8 fi(r) = At 4+ 5410 J8x0 4 228 307 4 T g6
6 2 6 4 24 3 4 24 24

These a;'s are the wavelets coefficients and q;;'s are the wavelet integrals. It can be
concluded from Figure 4.17, Figure 4.18, Table 4.26, and Table 4.27 that the results
obtained from the present method are roughly coinciding with the exact solution. To
have more detail of results, absolute error obtained in the present solution is compared
with the error obtained by the other methods [126], [127] given in Table 4.28 and Table

4.29 and we conclude that our method provides better accuracy.
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Table 4.26: Exact and Approximated solution by HS3WCM for j=1 for Numerical

Experiment No. 4.10

x(t) Exact Solution Approximated Solution by HS3WCM
0.0556 0.055466579200383 0.055466579200383
0.1667 0.164077835120229 0.164077835120226
0.2778 0.264853491506845 0.264853491506824
0.3889 0.350621072199932 0.350621072199874
0.5000 0.412180317675032 0.412180317674953
0.6111 0.437872729465042 0.437872729464982
0.7222 0.413071728777274 0.413071728777253
0.8333 0.319579984846226 0.319579984846204
0.9444 0.134918319109249 0.134918319109259

Table 4.27: Exact and Approximated solution by HS3WCM for j=1 for Numerical

Experiment No. 4.11

x(t) Exact Solution Approximated Solution by HS3WCM
0.0556 0.945959468906765 0.945959468906766
0.1667 0.846481724890614 0.846481724890614
0.2778 0.757465128396966 0.757465128396966
0.3889 0.677809578005450 0.677809578005451
0.5000 0.606530659712633 0.606530659712634
0.6111 0.542747481164222 0.542747481164222
0.7222 0.485671785247712 0.485671785247712
0.8333 0.434598208507078 0.434598208507079
0.9444 0.388895563989223 0.388895563989223

Table 4.28: Comparision of Numerical results at Random collocation Points available

in Literature for Numerical Experiment No. 4.10

x(t) Exact Approximated HS3WCM (E) | VIT(E*)[126] | DTM(E*)[127]
0.1 | 0.099465382626808 | 0.099465382626808 4.58E-16 9.52E-13 1.64E-15
0.2 | 0.195424441305627 | 0.195424441305619 8.13E-15 1.25E-13 2.08E-13
0.3 | 0.283470349590961 | 0.283470349590953 7.77E-15 3.35E-13 3.44E-12
0.4 | 0.358037927433905 | 0.358037927433964 5.92E-14 5.38E-13 2.46E-11
0.5 | 0.412180317675032 | 0.412180317675209 1.77E-13 8.04E-13 1.10E-10
0.6 | 0.437308512093722 | 0.437308512093943 221E-13 1.14E-12 3.67E-10
0.7 | 0.422888068568800 | 0.422888068568938 1.38E-13 3.93E-13 9.89E-10
0.8 | 0.356086548558795 | 0.356086548558830 3.50E-14 1.23E-13 2.28E-09
0.9 | 0221364280004126 | 0.221364280004120 547E-15 8.25E-13 4.68E-09

E*(Absolute Error) =Exact Solution-Approximate Solution

118




Table 4.29: Comparision of Numerical results at Random collocation Points available

in Literature for Numerical Experiment No. 4.11

x(t) Exact Approximated HS3WCM(E") | DTM(E") | VIT(EY)
[127] [126]
0.1 | 0.904837418035960 | 0.904837418035960 1.11E-16 4.11E-15 1.61E-07
0.2 | 0.818730753077982 | 0.818730753077982 0.00E+00 1.30E-13 | 3.07E-07
03 | 0.740818220681718 | 0.740818220681718 2.22E-16 6.75E-13 | 4.22E-07
04 | 0.670320046035639 | 0.670320046035639 7.77E-16 1.53E-12 | 4.97E-07
0.5 | 0.606530659712633 | 0.606530659712633 4.44E-16 1.98E-12 | 5.22E-07
0.6 | 0.548811636094027 | 0.548811636094026 1.11E-16 1.57E-12 | 4.97E-07
0.7 | 0.496585303791410 | 0.496585303791410 1.11E-16 717E-13 | 4.22E-07
0.8 | 0.449328964117222 | 0.449328964117222 1.11E-16 1.42E-13 | 3.07E-07
0.9 | 0.406569659740599 | 0.406569659740600 3.33E-16 4.16E-15 1.61E-07

E*(Absolute Error) =Exact Solution-Approximate Solution

4.6 Conclusion

We have applied the Haar scale 3 wavelet collocation method (HS3WCM) to find the
numerical solution of linear and nonlinear HOBVPs. Eleven numerical experiments are
performed by considering linear and nonlinear HOBVPs of different orders. L, ,L, and
absolute errors are calculated for each numerical experiment. It has been observed that
as we increase the level of resolution, errors decrease which proves the convergence of
HS3WCM solution to the exact solution. High level of accuracy obtained by the
proposed method for few grid points (In Numerical Experiment No. 4.11, for two nine
grid points, level of accuracy obtained is of 10716) proves the reliability of this
mechanism. The proposed method is equally effective for both linear and nonlinear
HOBVPs. The accurateness of the solution is up to the level of 1071 and can be
increased by increasing the level of resolution. The performance of the proposed
method is compared with the various other methods [4-24] in the numerical
experiments and it is found that the proposed method is working better than the other
methods. The rapid convergence and high accuracy obtained from the proposed method
provides a strong base to extend the application of the method to solve a big class of
physical problems governed by ODEs, PDEs, FDEs, and Integral equations.

Computational work is fully supportive and compatible with the proposed algorithm.
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Chapter 5
Haar Scale 3 Wavelets Based Computational
Technique for the investigation of Bagley-Torvik

Equations

5.1 Introduction

Fractional calculus is a branch of applied mathematics which emerges as a great tool in
explaining the physical and chemical phenomenon with alienate kinetics having
microscopic complex behavior. There are fractional differential models which have a
non-differentiable but continuous solution such as Weierstrass type functions[1]. These
kinds of characteristics are not possible to explain with the help of ordinary or partial
differential models. Earlier the field of fractional calculus was purely mathematical
without any visible application but in these days, fractional calculus has gained huge
importance in the field of science and technology because of its application in the
various field like theory of thermo-elasticity[2], viscoelastic fluids[3], dynamics of
earthquakes[4], fluid dynamics[5], etc. Bagley-Torvik equation is one of the most
important fractional models in the field of viscoelastic fluids. In this model, Bagley and
Torvik have studied the motion of a rigid plate immersed into the Newtonian fluid. It
is found in the experiment that retarding force is proportional to the fractional derivative
of the displacement instead of the velocity. It has been observed during the experiment
that the fractional model is superior to the integer-order model for the prediction of
characteristics of the same material. But general closed-form solution for fractional
Bagley-Torvik equation has yet not been established. Therefore, many researchers are
involved in developing the various numerical and semi-analytic schemes for
investigating the different phenomena governed by the Bagley-Torvik equation such as
Adomian decomposition method [128], Variational iteration method[129], Homotopy

analysis method[130], Generalized Taylor collocation method [131], Haar wavelet
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method with dilation factor 2[132], Fractional iteration method[133], Bessel
collocation method [134], Chebyshev wavelet method [135], Fractional Taylor
Method[136], Hybrid functions approximation [137], Gegenbauer Wavelet
Method[138], Reproducing kernel [139], Sumudu transformation method [140] etc.
But the study of characteristics of different materials governed by Bagley Torvik
equations has yet not been investigated by any of non-dyadic wavelet-based technique.
Orthonormal wavelets are one of the modernistic functions which have the capability
of dilation and translation. Because of these properties, numerical techniques that
involve wavelet bases are showing the qualitative improvement in contrast with other
methods. In literature, dyadic wavelets are in preponderance. In 1995, Chui and Lian
[115] has developed the Haar scale 3 (non-dyadic) wavelets by using the process of
multiresolution analysis. In 2018, Mittal and Pandit have used the Haar scale 3 (non-
dyadic) wavelets [71], [141], [142] for solving the various types of differential
equations and found that these wavelet bases are equally competent in solving the
various types of mathematical models governed by differential equations. Also, it was
shown by them that the non-dyadic wavelet has a faster rate of convergence as
compared to the Haar scale 2 dyadic wavelets. Moreover, investigation of
characteristics of the solution to the Bagley Torvik equation has yet not been done by
Haar scale 3 (non-dyadic) wavelet methods. This encourages us to develop a new
technique using the Haar scale 3 (non-dyadic) wavelet for analyzing the behavior of
systems governed by the Bagley Torvik equation.

The prime purpose of the proposed work is to establish a new computational technique
for obtaining the solution of Bagley Torvik equations emerging in the field of fluid

dynamics using Haar scale 3 (non-dyadic) wavelet bases as given below

aD?x(t) + ﬁD%x(t) + yD%x(t) + x(t) = g(t) (5.1)

with boundary conditions
x(0)=6y,x(1) =6, or x(0)=46,,x"(1) =385 (5.2)
This chapter follows the sequence of sections as described: In section 2, the basic
definitions of fractional calculus are given. In section 3, explicit forms of Haar scale 3
(non-dyadic) parent wavelets with their families and procedure to find their integrals

have been explained briefly. Representation of the solution using Haar scale 3 (non-
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dyadic) wavelets is explained in section 4. Section 5 explains the method of solution
using Haar scale 3 (non-dyadic) wavelets. In section 6, the Argument for the
convergence of the technique is given. In section 7, solutions of five different examples
of Bagley Torvik equations are produced using the present method to analyze the
efficiency and performance of the present method. In section 8, the conclusion drawn

from the results and in future research ideas is given.
5.2 Some basic definitions of Fractional calculus

5.2.1 Mittag-Leffler Function

It is an extension of exponential function which has huge importance in the field of

fractional calculus. It has two forms of expression as given below

iii. ~One Parameter Mittag-Leffler Function [6]for a set of complex

numbers and any positive real no a is defined as

o _ z"
Ey =Ym=0 ramin '@ > 0,aeR ,z€ C (5.3)

iv.  Two-Parameter Mittag-Leffler Function [6] for a set of complex

numbers and positive real no’s &, is defined as
m

Ea,ﬁ — Z;‘zzom ,a,ﬁ > O, CZ,,BER,Z eC (54)

5.2.2 Riemann-Liouville Fractional Integral Operator [6]

The fractional integral operator defined by the mathematician Riemann-Liouville for

the positive real nos. @, a,t over the interval [a, b] is given by

1

R gf(t)=%

ftf(z)(t —2)%ldz (5.5)

where a denotes the order of derivative and te[a, b].

5.2.3 Riemann-Liouville Fractional Differential Operator [6]

The fractional differential operator defined by the mathematician Riemann-Liouville

for the positive real nos. a , a,t over the interval [a, b] is given by
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1 ﬂft f(2)

r(m—a) dt™m7a (t—z)x—m+1

dm
dt_mf(t) , a=meN

dz m—1<a<meN

rDESf(E) = (5.6)

where a denotes the order of derivative and te[a, b].

5.2.4 Caputo Fractional Differential Operator [6]

The fractional differential operator defined by the Italian mathematician Caputo for the

positive real nos. a , a, t is

! ft 7@ l<a<meN
rm—-a)l, (t—2z)xm Z.m asm

dm

dt_mf(t) , a=meN

where a denotes the order of derivative and te[a, b].

DEF(E) = i (5.7)

5.3 Integrals of Haar scale 3 (non-dyadic) Wavelet

The closed-form expressions for father wavelet, symmetric and antisymmetric mother
wavelets for Haar scale 3 (non-dyadic) wavelet family with dilation factor three [71],
[115] are given below

Haar scale 3 function

{1 0<t<1 (5.8)

t
(0 0 elsewhere
Haar scale 3 symmetric wavelet function

(1 o<t<.
- 3
1 2
1] Lol (59
0 = —=A =
1/)1 \/E 3 3
-1 -<t<l1
3 S
‘0 elsewhere
Haar scale 3 antisymmetric wavelet function
( 1
1 0<t<=
- 3
1 2
3 i < (5.10)
wz(t>=f5< 0 3=f<3
2
-1 -<t<l1
‘0 elsewhere
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The main difference which makes the Haar scale 3 (non-dyadic) wavelets better than
the Haar scale 2 dyadic wavelets is that only one mother wavelet is responsible for the
construction of whole wavelet family but in case of Haar scale 3 (non-dyadic) wavelets,
two mother wavelets with different shapes are responsible for the construction of the
whole family. Because of this fact, Haar scale 3 (non-dyadic) wavelets increase the
convergence rate of the solution. Wavelets represented by equations (5.9)-(5.10) are the
mother wavelets which generate the whole Haar scale 3 (non-dyadic) wavelet family.
A multi-resolution analysis is used to get the whole Haar scale 3 (non-dyadic) wavelet

family as described below.

5.3.1 Multi-resolution Analysis (MRA)

MRA for space L,(R) is defined as a sequence of closed subspace W;,V; < L,(R),j €

Z which has the properties as given below

a) p(t) €V, = ¢(3’t) €V

b)p(t) eVy = (3t —k)€eV;

)P t) eWS,i=12 = P'(3/t) e W/
d)pi(e) e Wy, i =12 = (3t —k) e W}
W) = WreW? = oW/ ,i=12

f) "‘CVO CV1 CVZ CV3 CV4 C e

g) lW0lW1J_W2J_W3lW4J_

j—1 j—1
— 1 2
RV, =Vo + ) Wit YW,
i=0 i=0

i) ¢(t) € Vy implies ¢p(t — k) € V,y; k € Z and it forms Riesz basis in

Now by applying MRA, generalized form of Haar scale 3 (non-dyadic) wavelet family
is obtained as follows:

Fori=1

.1 o<t<1
hi(8) = o) = {0 elsewhere (5.11)
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For i=24,.3p—-1

-1 () <t < (i)
2 u, (1) <t < ug3(i)

hi(t) = (37t — k) = —
i V2| =1 () <t <a,(0)

0 elsewhere (5.12)
For i =36,..3p
1 1, (D) <t < x,(i)
; 3) 0 ny (1) <t < n3(0)
h(t) =¢?(3/t—k) = |= 2V = 35
(0 = 9*( ) 2)-1 13(i) <t <)
0 elsewhere (5.13)
where 3, (D) = 506,() = 22 w0 = E2 00, =2 p =3/, j=0,12,..

,k=0,12,..,p— 1. Here i,j,k respectively represent the wavelet number, level of
resolution (dilation), and translation parameters of wavelet family. The values of
i (for i > 1) can be calculated with the help of j,k by using the following relations

{i—1=3j+2k for eveni

i . . (-By using this relation for different dilation and
i—2=3'+2k for odd i

translations  of h,(t),h3(t), we will get the wavelet family as
h,(t), h3(t), hy(t), hs(t), hg (t), ... where h,(t)and h;(t) are also called mother
wavelets and rest all the wavelets which we have obtained from mother wavelet are

called daughter wavelets.

Now one can easily integrate the equations (5.11)-(5.13) the desired number of times

over the interval [A, B) by using Riemann Liouville Integral formula [6] as given below

qpi(t) = F(B)f h;(x)(t — x)P~tdx Vv 0<B<m, 5.14)

After evaluating the above integrals qg;(t)'s for i=2,4,6,8,---,3p — 1 are given

below qp;(t) =

0 for 0< t<x()
o (e ()’ for (D) <t < ,(0)
LR ;H) [—(t —:))" +3(t — 1,(D)”] for #,(i) < t < 3(0)
r(ﬁ+1) [—(t =) +3(t = 1,0 = 3(t =25 ®)] for (i) < t <, (i)
(e - 1)) +3(t=1,0) = 3(t = D) + (= 1,D)] forma() <t <1
(5.15)
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qpi(t)'s for i=3,5,79,,3p are given by qp;(t) =

0 for 0< t<u()
m(t —n®)’ for (D) <t < u,(i)
ﬁ< @[(t —0®) = (t=10)] for ) St<x0) |
raplt-m0) - (- %0) - (- k)] For wsi) <t < #,(0)
T [(t —6,D) = (t = 1D = (t =) + (t —aD)]  formy <t<1

r+1)
(5.16)

tB

ST for i=1 (5.17)

qp,i(t) =

5.4 Approximation of solution

Using the properties of Haar scale 3 (non-dyadic) wavelets as explained in section 3,

any function x(t) € L,(R) can be expressed as

x(t) = a;hi(t)
; (5.18)
= a;hy(t) + a (3t —k) + a; (3t — k)
o e;i od;>1

Here a;'s are the wavelet coefficients and their values are to be determined by the
proposed method. But for computational purposes, one has to consider a finite number

of terms. By considering the first 3p terms to approximate the function u(t) we get

x(t) = ugp, = Loy azhi(t) where p=3/,j=0,1,2, ... (5.19)
5.5 Method of Solution Based on Haar Scale 3 Wavelets
Consider the Bagley Torvik equation

aD2x(t) + BD2x(t) + yDzx(t) + 8x(t) = g(©) (5.20)

with initial conditions x(0) = §,,x'(0) = 83 , where a,B,y,6 are the arbitrary
constants.

Now the solution x(t) for the above equation can be obtained using the following steps
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Step1: Approximate the highest order derivative present in the equation (5.20) (i.e.

D?x(t)) using the Haar scale 3 (non-dyadic) wavelet bases as

D2x(t) = %% aihi(t) = ayhy(t) + Leveni ap® (37t — k) + (5.21)
Yoda i>1 ap*(3/t — k) |
where a;s for i=0,1, 2...,3p are the Haar scale 3 (non-dyadic) wavelet coefficients
Step 2: By integrating the equation (5.21) within the limits O to t, we get
x'(t) = a;91,:(8) +¥'(0) = %7 a;91,4(t) + 65 (5.22)
Again, integrating the equation (5.22) within the limits 0 to t, we get

x(t) —Z a;qz,i(t) + 5t +y(0) —Z a;q,i(t) + 65t + 6, (5.23)

Step 3: Differentiate the equation (5.23) using Caputo definition of fractional

derivatives we get

1
Dzx(t) = ?50 a;qz () + 2 53\/5 (5.24)
S
3
2 =y . L
Dax(t) = Xi2, alq%’i(t) + 55 = (5.25)

Step 4: Using equations (5.21)-(5.25),Equation (5.20) becomes

@By aihi(t) + |2 aias, (t)+63r]+y[zl 0 aids (1) +

(5.26)
2 53\/5 l +8[2F) aiqa,: () + 83t + 8,1 = g(©)
After simplification, we get
Lo ailah;(t) + B, (O +y LER (O + 6q2,;(D] = g(0) - [ﬁ53
(5.27)

2)/63\/% + 5(65t + 53) l

Step 4: After Discretizing the equation (5.27) using the collocation points we get the

following matrix system
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aH =F (5.28)
Then using the Thomas algorithm, we obtained the wavelet coefficients a;’s. Then by
substituting the values of wavelet coefficients a;’s in equation (5.23), we get the non-
dyadic wavelet-based solution of Bagley Torvik equations with the given initial
conditions. Similarly, by using the above steps we can find the solution of Bagley

Torvik equations with other boundary conditions.

5.6 Convergence Analysis

Mittal and Pandit [78] has proved that if x(t) eL?(R) such that [x™(t)] <
M,V te(0,1) where M is any real constant and x(t) is approximated by Haar scale 3
(non-dyadic) family as given below:

3p

xp(©) = ) ahi(®) (5.29)

i=0

Then the error bound for the solution x(t) using L,-norm is calculated as

lx(©) - 0l = (3)

2(m-a) 8 M2 3—2(j+1)(m—a+1)
3 <

— (5.30)
(F(m —a+ 1))2 1—372m a)ﬂ)

Clearly, the error bound is inversely proportional to the level of resolution which
ensures the convergence of approximated solution to exact solution with the increase

in the level of resolution j. Moreover, if we know the exact values of m, @, and M, then

the maximum value of error bound can also be calculated.

5.7 Error Analysis by Numerical Experiments

To describe the appropriateness of the proposed technique for the Bagley Torvik
equations of fractional order, solutions of five different problems obtained by the
proposed computational technique have been analyzed and absolute errors are
calculated to check the efficiency of the present scheme with the help of following

formulas
Absolute error =|Xg,qct (t1) — Xpnum (ED)| (5.31)

where t; represents the collocation points of the domain.

129



3
Numerical Experiment No. 5.1 : D?x + Dzx +x =t + 4\/% + 2 under (5.32)

the boundary constraints x(0) = 0,x(1) =1
Exact solution of the problem is x(t) = t2

After applying the method of the solution discussed in section 5.5 the following

solution is proposed

x() = 0P, ai[qa,(B) — tqp (D] +t (5.33)

a;'s are the wavelets coefficients which will be obtained by the following procedure
and q;;'s are the wavelet integrals that have been already calculated in section 5.3.
After applying the proposed scheme on Equation (5.32), it reduced to the following

system

2Ly a; [\/ﬁ (hi(t) +q1,(8) + CIZ,i(t)) - (\/Et% + 1) QZ,i(l)l =4t+1+
2 (5.34)

Vi [tg — t% + 21,%]

After discretizing the equation(5.34) using the collocation points we get the following
matrix system
aH =F

After solving the above matrix system, we get the values of a;'s.which will be used to
find out the solution. Results achieved by the proposed technique are conferred by the
graphs and tables for the better visibility of accuracy. Figure 5.1 and Table 5.1
demonstrate the visible agreement in the exact and approximated solutions. In Table
5.1 results achieved by the present technique are compared with other method existing
in the recent literature and found it outperform over others methods like Variational
Iteration Method (VIM)[129], Homotopy asymptotic method (HAM)[130],
Reproducing Kernel Analysis (RKA)[139], which demonstrates the superiority and
reliability of the method. Figure 5.2 is depicting the high level of accuracy (which is of

order 1017) obtained at the different collocation points.
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solution of Numerical Experiment No.

Table 5.1: Comparision of results achieved with other methods in the existing

literature for the Numerical Experiment. No. 5.1

Present Method(E") . . .

t | Exact Solution RKA(E")[139] VIM(E)[129] | HAM(E")[130]
0.1 0.01 6.93889390390723¢-18 0 0.5487432¢—4 | 2.3265¢-13
0.2 0.04 0 0 0.6312556e—3 | 1.4385¢-11
0.3 0.09 0 0 0.2665571e—2 |  6.1890¢-11
0.4 0.16 2.77555756156289%¢-17 0 0.7480121e—2 | 2.2736¢-11
0.5 0.25 0 2.77555756156289%¢-17 | 0.1679592¢—1 |  1.3680e-10
0.6 0.36 0 5.55111512312578¢-17 | 0.3277307e—1 | 3.5678¢-11
0.7 0.49 5.55111512312578¢-17 | 5.55111512312578¢-17 | 0.5806535e—1 | 2.6188e-10
0.8 0.64 0 1.11022302545678e-17 | 0.9588508¢—1 | 4.3416e-10
0.9 0.81 0 1.11022302545678e-17 | 0.1500768448 |  1.0816e-10

E*(Absolute Error)
Numerical Experiment No. 52 : D%x(t)+0.5 D%x(t) +x(t) =3+

? (fagt ™ +1) wrtB.Cs x(0)=0,x(1) =2 (535)
Exact solution of the problem is x(t) = t2 + 1.

After applying the method of the solution discussed in section 5.5 the following solution
is proposed

x(t) = X8 ai[qz;(®) — tqz (D] +t + 1 (5.36)

a;'s are the wavelets coefficients which will be obtained by the following procedure

and q;;'s are the wavelet integrals that have been already calculated in section 5.3.
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After applying the proposed technique on the equation no.(5.35). It reduced to the

following system

3p 1
) 1
Z a; <hi(t) + —Q§‘i(t) + CIz,i(t)> —| =+t ]q:(1)
i=0 2 vr (5.37)
= 2—t+2+[ t2——t2]
T[

After discretizing the equation (5.37) using collocation points we get the matrix system.

aH =F
After solving the above matrix system, we get the vales of a;’s.which will be used to

find out the solution.

It can be observed from Table 5.2 and Figure 5.3 that the results achieved by the
proposed method agree well with the exact solution, which demonstrates the high
efficiency of the proposed technique to solve these kinds of problems. Also from Table
5.2, we can conclude that the proposed technique is a strong solver in terms of better
accuracy in comparison with the other method [139]. Figure 5.4 is showing the errors

at the different colocation points.
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Table 5.2: Comparison of results achieved with other methods in the existing literature

for the Numerical Experiment. No. 5.2

¢ | Exact Approximated Solution Present Method(E") RKA(E")[139]
Solution
0.1 1.01 1.01000000000000000000 0 1.932676241e-12
0.2 1.04 1.04000000000000000000 0 3.161981788¢-11
0.3 1.09 1.09000000000000000000 0 3.679907490¢-10
0.4 1.16 1.16000000000000000000 0 3.661697390¢-09
0.5 125 1.25000000000000000000 0 3.300057339¢-09
0.6 1.36 1.36000000000000000000 0 2.745960126¢-09
0.7 1.49 1.49000000000000022204 2.22044604925031e-16 | 2.096272045¢-10
0.8 1.64 1.64000000000000000000 0 1.404942829¢-11
0.9 1.81 1.81000000000000000000 0 7.004619107¢-12

E* (Absolute Error)

1
Numerical Experiment No. 5.3 : Consider the equation D?x(t) + Dzx(t) + x(t) =

2(_2_;-05 _ 1 ,-o05 : o
2+t (F(Z.S)t +1) t(r(1.5)t +1) subjected to the boundary condition

x(0) = 0,x(1) = 0 (5.38)
Exact solution of the Numerical Experiment is x(t) =t% —t .

After applying the method of the solution discussed in section 5 the following solution

is obtained by the proposed method
x(t) = X772, ai[qp,:(8) — tqz,:(1)] (5.39)

a;'s are the wavelets coefficients which will be obtained by the procedure discussed
above and q;;'s are the wavelet integrals that have been already calculated in section
5.3. Table 5.3 depicting the performance of the method in contrast with other methods
existing in the recent literature. It validates the high efficiency and performance of the
method. Getting high accuracy for a small number of grid points makes it a strong
solver for these kinds of mathematical models. Figure 5.5 demonstrates that the results
achieved with the proposed technique agree well with the exact solution and Figure 5.6

explains the errors in the solution at the different collocation points.
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Table 5.3: Comparision of results achieved with other methods in the existing t

literature for Numerical Experiment. No. 5.3

t | Exact Approximated Solution Present Method (E”) RKA(E")[139]
Solution
0.1 -0.09000 -0.090000000000000000000000000000 0 4.178019042¢e-12
0.2 | -0.16000 -0.160000000000000027755575615629 -2.77555756156289e-17 6.892891813e-11
0.3 | -0.21000 -0.210000000000000055511151231258 5.55111512312578e-17 8.052572498e-10
0.4 | -0.24000 -0.240000000000000055511151231258 5.55111512312578e-17 8.010652391e-09
0.5 | -0.25000 -0.250000000000000055511151231258 5.55111512312578e-17 7.193844853e-09
0.6 | -0.24000 -0.240000000000000055511151231258 5.55111512312578e-17 5.949374826e-09
0.7 | -0.21000 -0.210000000000000055511151231258 5.55111512312578e-17 4.504783491e-10
0.8 | -0.16000 -0.160000000000000027755575615629 2.77555756156289¢-17 2.989430925e-11
0.9 | -0.09000 -0.090000000000000027755575615629 2.77555756156289¢-17 1.473612898e-12

E" (Absolute Error)
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3
Numerical Experiment No. 5.4 : D?x(t) + Dzx(t) + x(t) =t + % + 1 subjected
the boundary condition x(0) =0, x'(1) =1

to Analytic solution of the problem is x(t) =t + 1.

=
(5.40)

By using the method of the solution discussed in section 5.5, we proposed the following

solution for the above equations
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x(®) =7 aiqr () +t+1

(5.41)

a;'s are the wavelets coefficients which will be obtained by the procedure discussed

above and q;;'s are the wavelet integrals that have been already calculated in section

5.3. It is shown in Table 5.4 and Figure 5.8 that the results achieved with the proposed

technique are exactly matching with the exact solution with no error. It is also shown

in Table 5.4 that the results achieved with the proposed technique are superior to the

results obtained by the other methods available in the existing literature. Figure 5.7

explains the high level of agreement between the exact and approximated solution.
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Table 5.4: Comparison of results achieved with other methods in the existing literature

for the Numerical Experiment. No. 5.4

Exact Approximated Present Method
t . RKA(E")[139] BCM(E")[134]
Solution Solution (E)
0.1 1.1 1.1 0 0 9.3742¢-16
0.2 1.2 1.2 0 0 3.9634¢-15
0.3 1.3 1.3 0 0 4.2834e-15
0.4 1.4 1.4 0 0 3.2975¢-15
0.5 1.5 1.5 0 0 2.0455¢-15
0.6 1.6 1.6 0 2.220446049E-16 1.0277e-15
0.7 1.7 1.7 0 0 3.4773¢-16
0.8 1.8 1.8 0 0 6.9289¢-17
0.9 1.9 1.9 0 2.220446049E-16 2.3947¢-16
E* (Absolute Error)
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Numerical Experiment No. 5.5

subjected to the boundary condition x(0) = 0,x(1) =0

2 128 2 64 5
Dax(t) + x(t) =t° —t* + TRt
(5.42)

Exact solution for this numerical experiment is x(t) = t° — t*

Using the method of solution explained in section no 5.5, Following solution is

proposed for the numerical experiment no. 5.5

x(t) = Z?fl a;[q,;(t) —tqz,;(1)]

(5.43)

a;'s are the wavelets coefficients which will be obtained by the procedure discussed

above and q;;'s are the wavelet integrals that have been already calculated in section

3. Results presented in Figure 5.9 and Figure 5.10 are depicting the performance of the

proposed method. It can be observed from these figures that results are roughly

matching with the exact solution. Table 5.5 represents the absolute error at the

collocation points.
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Table 5.5: Comparision of results achieved by the proposed method with the exact

solution for the Numerical Experiment. No.5.5

t Exact Solution Approximated Solution Present Method (E")

0.00617284 -1.4429480000E-09 4.9171205846E-05 4.92E-05
0.01851852 -1.1542691000E-07 6.7922819931E-05 6.80E-05
0.0308642 -8.7943672400E-07 8.3907873324E-05 8.48E-05
0.04320988 -3.3354066130E-06 9.5100857199E-05 9.84E-05
0.05555556 -8.9967653980E-06 1.0151360079E-04 1.11E-04
0.06790123 -1.9814020830E-05 1.0157260482E-04 1.21E-04
0.08024691 -3.8140343926E-05 9.3243967138E-05 1.31E-04
0.09259259 -6.6697153309E-05 7.3993891171E-05 1.41E-04
0.10493827 -1.0853969954E-04 4.0900842117E-05 1.49E-04
0.11728395 -1.6702264946E-04 -9.2943502120E-06 1.58E-04
0.12962963 -2.4576567051E-04 -8.0140150666E-05 1.66E-04
0.14197531 -3.4861901510E-04 -1.7543265253E-04 1.73E-04
0.15432099 -4.7962910491E-04 -2.9917635750E-04 1.80E-04
0.16666667 -6.4300411523E-04 -4.5554663647E-04 1.87E-04
0.17901235 -8.4307955932E-04 -6.4885316645E-04 1.94E-04
0.19135802 -1.0842838727E-03 -8.83504001 14E-04 2.01E-04
0.2037037 -1.3711039977E-03 -1.1639700577E-03 2.07E-04
0.21604938 -1.7080509673E-03 -1.4947498869E-03 2.13E-04
0.22839506 -2.0996254899E-03 -1.8803346416E-03 2.19E-04
0.24074074 -2.5502835338E-03 -2.3251731862E-03 2.25E-04
0.25308642 -3.0644019109E-03 -2.8336373097E-03 2.31E-04
0.2654321 -3.6462438616E-03 -3.4099870140E-03 2.36E-04
0.27777778 -4.2999246389E-03 -4.0583358614E-03 2.42E-04
0.29012346 -5.0293770928E-03 -4.7826163651E-03 2.47E-04
0.30246914 -5.8383172545E-03 -5.5865454139E-03 2.52E-04
0.31481481 -6.7302099212E-03 -6.4735897242E-03 2.57E-04
0.32716049 -7.7082342397E-03 -7.4469313129E-03 2.61E-04
0.33950617 -8.7752492913E-03 -8.5094329872E-03 2.66E-04
0.35185185 -9.9337596759E-03 -9.6636038485E-03 2.70E-04
0.36419753 -1.1185881097E-02 -1.0911564807E-02 2.74E-04
0.37654321 -1.2533305943E-02 -1.2255014107E-02 2.78E-04
0.38888889 -1.3977268878E-02 -1.3695192856E-02 2.82E-04
0.40123457 -1.5518512420E-02 -1.5232850567E-02 2.86E-04
0.41358025 -1.7157252525E-02 -1.6868210697E-02 2.89E-04
0.42592593 -1.8893144178E-02 -1.8600936200E-02 2.92E-04
0.4382716 -2.0725246971E-02 -2.0430095076E-02 2.95E-04
0.45061728 -2.2651990688E-02 -2.2354125925E-02 2.98E-04
0.46296296 -2.4671140892E-02 -2.4370803509E-02 3.00E-04
0.475308064 -2.6779764510E-02 -2.6477204310E-02 3.03E-04
0.48765432 -2.8974195412E-02 -2.8669672090E-02 3.05E-04

0.5 -3.1250000000E-02 -3.0943783462E-02 3.06E-04
0.51234568 -3.3601942792E-02 -3.3294313448E-02 3.08E-04
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0.52469136 -3.6023952003E-02 -3.5715201053E-02 3.09E-04
0.53703704 -3.8509085134E-02 -3.8199514831E-02 3.10E-04
0.54938272 -4.1049494554E-02 -4.0739418453E-02 3.10E-04
0.5617284 -4.3636393083E-02 -4.3326136283E-02 3.10E-04
0.57407407 -4.6260019578E-02 -4.5949918942E-02 3.10E-04
0.58641975 -4.8909604518E-02 -4.8600008887E-02 3.10E-04
0.59876543 -5.1573335587E-02 -5.1264605982E-02 3.09E-04
0.61111111 -5.4238323257E-02 -5.3930833072E-02 3.07E-04
0.62345679 -5.6890566377E-02 -5.6584701554E-02 3.06E-04
0.63580247 -5.9514917752E-02 -5.9211076957E-02 3.04E-04
0.64814815 -6.2095049731E-02 -6.1793644516E-02 3.01E-04
0.66049383 -6.4613419790E-02 -6.4314874745E-02 2.99E-04
0.67283951 -6.7051236116E-02 -6.6755989015E-02 2.95E-04
0.68518519 -6.9388423191E-02 -6.9096925131E-02 2.91E-04
0.69753086 -7.1603587380E-02 -7.1316302911E-02 2.87E-04
0.70987654 -7.3673982508E-02 -7.3391389755E-02 2.83E-04
0.72222222 -7.5575475453E-02 -7.5298066235E-02 2.77E-04
0.7345679 -7.7282511722E-02 -7.7010791659E-02 2.72E-04
0.74691358 -7.8768081044E-02 -7.8502569662E-02 2.66E-04
0.75925926 -8.0003682946E-02 -7.9744913774E-02 2.59E-04
0.77160494 -8.0959292343E-02 -8.0707813004E-02 2.51E-04
0.78395062 -8.1603325119E-02 -8.1359697417E-02 2.44E-04
0.7962963 -8.1902603714E-02 -8.1667403713E-02 2.35E-04
0.80864198 -8.1822322707E-02 -8.1596140806E-02 2.26E-04
0.82098765 -8.1326014400E-02 -8.1109455403E-02 2.17E-04
0.83333333 -8.0375514403E-02 -8.0169197584E-02 2.06E-04
0.84567901 -7.8930927218E-02 -7.8735486380E-02 1.95E-04
0.85802469 -7.6950591824E-02 -7.6766675354E-02 1.84E-04
0.87037037 -7.4391047259E-02 -7.4219318181E-02 1.72E-04
0.88271605 -7.1206998208E-02 -7.1048134226E-02 1.59E-04
0.89506173 -6.7351280585E-02 -6.7205974126E-02 1.45E-04
0.90740741 -6.2774827117E-02 -6.2643785369E-02 1.31E-04
0.91975309 -5.7426632931E-02 -5.7310577875E-02 1.16E-04
0.93209877 -5.1253721134E-02 -5.1153389575E-02 1.00E-04
0.94444444 -4.4201108401E-02 -4.4117251993E-02 8.39E-05
0.95679012 -3.6211770559E-02 -3.6145155825E-02 6.66E-05
0.9691358 -2.7226608169E-02 -2.7178016522E-02 4.86E-05
0.98148148 -1.7184412112E-02 -1.7154639868E-02 2.98E-05
0.99382716 -6.0218291745E-03 -6.0116875623E-03 1.01E-05

E" (Absolute Error)
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5.8 Conclusion

After looking at the results of five numerical experiments performed using the proposed
technique, we infer that the Bagley-Torvik equation of fractional order can easily be
solved by the proposed scheme with less computational cost and high accuracy. For
example, in Numerical Experiment no. 1 level of accuracy obtained is or order 10717
for only 9 colocation points in the first iteration. Moreover, the use of common
MATLAB subprograms to solve various types of fractions equations, makes it more
computer-friendly. Very good accuracy is obtained for a very small number of
collocation points and the results achieved are better than or at par with the other
methods existing in the recent literature. It makes the proposed scheme a strong solver
for these kinds of fractional differential equations. Therefore, by looking at the
performance of the method, we conclude that the given method can be extended to solve
other sets of fractional differential equations. All the calculations have been performed
using MATLAB 7. Computational time taken by each experiment to give solution using
MATLAB 7 software installed on system with 4gb ram and intel core i3 processor is

3.546sec, 3.319 sec, 2.410 sec, 3.361 sec, 3.813 sec respectively.
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Chapter 6

Haar Scale-3 wavelets and Quasilinearization
based Hybrid Technique for the Solution of
Coupled Space-Time Fractional- Burgers’

Equation

6.1 Introduction

Fractional calculus emerges as a great tool in explaining the physical and chemical
phenomenon with alienate kinetics having microscopic complex behavior. There are
fractional differential models which have a non-differentiable but continuous solution
such as Weierstrass type functions[1]. These kinds of characteristics are not possible to
explain with the help of ordinary or partial differential models. Earlier the field of
fractional calculus was purely mathematical without any visible application but in these
days, fractional calculus has gained huge importance in the field of science and
technology because of its application in the various field like theory of thermo-
elasticity[2], viscoelastic fluids[3], dynamics of earthquakes[4], fluid dynamics[5], etc.
It has also been observed experimentally and from the real-time observation that there
are many complex systems in the real world like relaxation in viscoelastic material,
pollution diffusion in the surrounding, charge transport in amorphous semiconductors,
and many more which show anomalous dynamics. This capability of fractional
differential equations of explaining the abnormal dynamic of the system with more
efficiency and accuracy has gained huge attention from the scientific community. Many
of the important classical differential equations with integer-order has got extensions to
the generalized fraction differential equation with an arbitrary order for in-depth study
of the corresponding physical model. But the general analytic solution for many

fractional differential equations that are non-homogeneous in nature are very difficult
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and cumbersome to achieve. Moreover, finding the solution of such equations becomes
more challenging when there are nonlinearities in the equations.

Therefore, many researchers are involved in developing the various numerical and
semi-analytic schemes for finding solutions to the different problems governed by these
differential equations. Some of the fractional differential equations which have been
recently studied because of their capability of explaining the real time phenomena’s are
fractional Black-Scholes equation[ 143], time-fractional Klein—Gordon equations [144],
[145], time-fractional Fisher's equation [146], [147] , fractional Bagley Torvik equation
[148], time-fractional Burgers’ equation[149], [150] , Fitzhugh—Nagumo fractional
differential equation [151], fractional Ginzburg-Landau equation[152], [153],
fractional Korteweg-de Vries—Burgers’ equation[154], [155], nonlinear fractional order
oscillatory Van der Pol system[156], fractional Poisson equation [157],fractional
Riccati differential equations [158],fractional Schrodinger equation[159], fractional
Sine-Gordon equations[160], fractional Bioheat equations [161] ,time fractional
Caudrey-Dodd-Gibbon-Sawada-Kotera equation [162] , Sharma-Tasso—Olver
equation[163], Fokker—Planck fractional equation[164], [165], fractional Telegraph
equation[166], [167], time-fractional generalized Boussinesq equation[168] , Navier—
Stokes time-fractional differential equation [169] ,time-fractional wave equation[170]

, two-dimensional fractional Helmholtz equations[171] etc.

Fractional coupled Burgers’ equation is also very important in the field of fluid
mechanics to study the motion of fluids concentrations under the effect of gravity. It is
a mathematical model of time-dependent sedimentation or creaming of different
concentrations of two kinds of particles in fluid colloids or suspensions, under the effect
of gravity[172]. Burgers’ equations are the special case of Navier Stokes’ equations and
are very much important in the field of science and technology. Researchers are in
continuous progress to study the different characteristics of the phenomenon governed
by the fractional models by developing the different algorithms to solve time-fractional
coupled Burgers’ equation such as Fractional Variational iteration method
(FVIM)[173], Differential Transformation Method (DTM)[174], Homotopy
Perturbation Method (HPM)[175], Coupled Fractional Reduced Differential Transform
Method(CFRDTM)[176], Adomian Decomposition Method (ADM) [177], etc. But the
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study of characteristics of different concentrations of two kinds of particles governed
by fractional coupled Burgers’ equation has yet not been investigated by any of the

scale 3 Haar wavelet-based technique simultaneously with space and time fraction.

Orthonormal wavelets are one of the modernistic functions which have the capability
of dilation and translation. Because of these properties, numerical techniques that
involve wavelet bases are showing the qualitative improvement in contrast with other
methods. In literature, dyadic wavelets are in preponderance. In 1995, Chui and Lian
[115] have developed the Haar scale 3 (non-dyadic) wavelets by using the process of
multiresolution analysis. In 2018, Mittal and Pandit have used the scale 3 Haar wavelets
[71], [141], [142] for solving the various types of differential equations and found that
these wavelet bases are equally competent in solving the various types of mathematical
models governed by differential equations. Also, it was shown by them that the Haar
scale 3 (non-dyadic) wavelet has a faster rate of convergence as compared to the Haar
scale 2 dyadic wavelets. Moreover, investigation of characteristics of the solution to the
fractional coupled Burgers’ equation has yet not been done by the Scale 3 Haar wavelet
methods as far as our knowledge is concerned. This encourages us to develop a new
technique using scale 3 Haar wavelet for analyzing the behavior of systems governed

by the fractional coupled Burgers’ equation.

The prime objective of the proposed work is to provide a new numerical technique for
obtaining the solution of space-time fractional-coupled Burgers’ Equation (6.1)
emerging in the field of fluid dynamics using scale 3 Haar wavelet bases.

(0%u 0%u dhu o (uv)

5re ~ gz MU M o xela,b] ,te[0,T] o
avv_azv 0% Aa(uv) abl tefor .
oty  0x2 fvaxg PR x€la, ,t€[0,T]

subjected to the boundary constraints given in Equation (6.2)

U.(Cl, t) = fl(t) ,'U,(b, t) = fZ(t) ) 'U(Cl, t) = (pl(t) ,U(b, t) =

(6.2)
(pZ(t) Vte [O, T]
and with the constraints at the initial value given in Equation (6.3)
u(x,0) =h(x) , v(x0) =p) vV xela,b] (6.3)

a, (3,7, 6 represents the order of fractional derivatives such that 0 < a,8,y,8 < 1.
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Different variations can be observed in the solution space by giving different values to
these four parameters a, 5, y, 6 . However, on taking a = f§ = y = §=1 the fractional-
coupled Burgers’ equation will respond like a classical coupled Burgers’ equation with
integer order. n,&,u, A are arbitrary constants depending upon the system parameter
like Peclet number, Reynold number, etc.

This chapter follows the sequence of sections as described: In section 2, explicit forms
of scale 3 Haar wavelets with their families and procedure to find their integrals have
been explained briefly. Representation of the solution using scale 3 Haar wavelets is
explained in section 3. Section 4 explains the method of solution using scale 3 Haar
wavelets. In section 5, the convergence of the method is discussed. In section 6,
solutions of two different coupled Burgers’ fractional equations are produced using the
present method to analyze the efficiency and performance of the present method. In

section 7, the conclusion drawn from the results and future research ideas are given.

6.2 Scale 3 Haar Wavelets and Its Integrals

The mathematical expressions for father wavelet (Scale 3 Haar function) and mother
wavelets for scale 3 Haar wavelet family with dilation factor three [71], [115] are
represented by the Equation (6.4),(6.5) and (6.6)
0<t<1

_ _(1 .
hi(t) = @(8) = {0 elsewhere fori=1 (6.4)
-1 1(0) <t <ay(i)
N i ) L) 2 () St <)
MO=VE=F 1 e <n ©5)
0 elsewhere
for =24 .3p—-1
1 n(0) <t < u,(0)
Ny 2 (20 L) E 0 1, (1) <t < u3(i)
WO =R k) = \ﬁ —1 (D) S € < (i) (6.6)
0 elsewhere

for i=236,..3p
3k+1
3p

(3k+2)
3p

@ ="2p=3,j=012..

where »,(i) = 5, u, (i) = , n3(i) =

,k=0,12,..,p—1. Here i,j, k respectively represent the wavelet number, level of

resolution (dilation), and translation parameters of wavelet family. The values of
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i (for i > 1) can be calculated with the help of j,k by using the following relations
i—1=3/+2k foreven values of i and i — 2 = 3/ + 2k for odd values of i. By
using this relation for different dilation and translations of h,(t), h5(t), we will get the
wavelet family as hq (t), h,(t), h3(t), hy(t), hs(t), hg (t), ... where h,(t)and hs(t) are
also called mother wavelets and rest all the wavelets which we have obtained from
mother wavelets are called daughter wavelets.

The main difference which makes the Haar scale 3 (non-dyadic) wavelets better than
the Haar scale 2 dyadic wavelets is that only one mother wavelet is responsible for the
construction of whole wavelet family but in case of scale 3 Haar wavelets, two mother
wavelets with different shapes are responsible for the construction of the whole family.
Because of this fact, scale 3 Haar wavelets increase the convergence rate of the solution.
The construction of scale 3 Haar wavelet family is done by using the properties of
Multi-resolution analysis which are described below

Now one can easily integrate the Equations (6.4),(6.5) and (6.6) the desired number of
times over the interval [A, B) by using Riemann Liouville Integral formula [6] as given

in Equation (6.7)

api(t) = — [ @)t -x)Ffdx Vv 0<p<m,

m=123.... , i=123,.... 3p
After evaluating the above integrals for Equation (6.4), we get Equation (6.8)
th .
qﬁ,i(t) = TG for i=1 (6.8)

Using Equation (6.7) on Equation (6.5), we get the values of qg;(t)'s for i=
2,4,6,8,:--,3p — 1 which are given by Equation (6.9)

qp,i(t) =
0 for 0= t<i(i)
-1 Y i
reg+1) (=) for (i) <t <,(0)
% F(ﬁ1+ ) [—(t - m(i))ﬁ +3(t— Hz(i))ﬁ] for (i) <t < u3(i)
F(ﬂl-i- 1) [_(t - %1(1.))!; + 3(t — X (l))ﬁ - S(t - H3(i))ﬁ] fOT' %3(1') <t< %4(1-)
G k@) +3( =0 @) = 3= x0) + (= 1)1 forx@ <t s

(6.9)
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Using Equation (6.7) on Equation (6.6), we get the values of qg;(t)'s for i=

3,5,7,9, -, 3p which are given by Equation (6.10)

qp,i(t) =
0 for 0< t<xa(i)
;(t—% (i))ﬁ for n (i) <t < u,(0)
g+ 1) ! S
1
ﬁ{ L o ®) = (t—%0)" for xm@)<t<u® |
ﬁ [(t = (D)’ = (¢ = 2,0)° = (¢ = 25D))°] for (i) < t < wy(i)
ﬁ [(t =)’ = (t = 0,(D))° = (= s:D) + (£ —2,D)1  form,()<t<1

(6.10)

6.3 Approximation of Solution

Using the properties of scale 3 Haar wavelets, any function x(t) € L,(R) can be

expressed an infinite series of scale 3 Haar bases as given in Equation (6.11)
U(t) = Z(lx;o aihi(t) = alhl(t) + Zeveniailpl(3jt — k) +
Yoaai ap*(3't — k)

Here a;'s are the wavelet coefficients whose values are to be determined by the

6.11)

proposed method. But for computational purposes, one can consider a finite number of
terms. By considering the first 3p terms to approximate the function u(t) we get

Equation (6.12)

u(t) = ug, = Zf’fo a;h;(t) where p=3/,j=0,12,.. (6.12)

6.4 Method of Solution

By applying the quasi-linearization technique to linearize the non-linear terms of
Equation (6.1), (6.2) and (6.3), we get the equivalent linear expressions given by

Equation (6.13),(6.14),(6.15) and (6.16)

UV ri1 = Ups1 W)y + U (V)1 — Ur (D) (6.13)

(vux)r+1 = vr+1(ux)r + Ur(ux)r+1 - Ur(ux)r (6.14)
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(uug) = ura(up) +ur(ug), ,, —ur(up), (6.15)
WVs)ri1 = Vrg1(Ws)r + 1 (Ws)rsr — v (Vs)y (6.16)

using Equations (6.13),(6.14),(6.15) and (6.16), non-linear coupled fractional
differential Equations (6.1), (6.2) and (6.3), transformed into a sequence of linear

differential equations as given in Equation (6.17) and (6.18)

0%u
(at“)r+1 = (eddrea =1 (ur+1(uﬁ)r + ur(uﬁ)r+1 B ur(uﬁ)r)

6.17
— 1l W)y + U (B — U (2),) (17
+ (UT+1(ux)r + Ur(ux)r+1 - Ur(ux)r)]
d'v
(5p) = Qe = §@raa @o)r + B @oris =5 (w5))
r+1
6.18
= A1 W)y + 2 (01 — (22, (©19)
+ (vr+1(ux)r + vr(ux)r+1 - vr(ux)r)]
subjected to the boundary constraints given by Equation (6.19)
wa, tryq) = filtrr) s ulb tryr) = fo(641) , V(@ trgq) = @1(Ers1)
(6.19)
v(b, tri1) = @2(tr41)
and with the constraints on initial values given by Equation (6.20)
u(x,0) = h(x), v(x,0) =p(x), V xe[a,b], t,4; €[0,T] and
(6.20)
r=012--m-1
where 44 represents  (r + 1)th approximation for t in the process of
quasilinearization.
3m
Upr (X, ) = z azh; (x) (6.21)
i=1
3m
Vex (%, ) = Z bih;(x) (6.22)
i=1

Integrating the Equation (6.21) and (6.22) with respect to t from ¢, to t,,; we get

3m
uxx(xr tr+1) = (tr+1 -t )Z aihi(x) + uxx(x; tr) (6.23)
i=1
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3m
Uxx(X, tr+1) = (tr+1 - tr )Z bihi(x) + vxx(x' tr) (6.24)
i=1

Now integrating the Equation (6.23) and (6.24) with respect to x within the limits 0 to x

we get

ux(xr tr+1) = (tr+1 - tr ) 213211 aiCIi,l(x) + ux(x: tr) + (ux(or tr+1) -

Ux(x: tr+1) = (tr+1 -t ) 213211 biCIi,l(x) + vx(x: tr) + (Ux(Ol tr+1) -
Ux(O, tr)) (626)

again, integrating the Equation (6.25) and (6.26) with respect to x within the limits

0 to x we get

u(x, tryy) = (bry1 — ) T aiqi () + (ulx t) —u(0,t,)) +
x(1e (0, tr11) — 1 (0,£,)) + (0, ,44) (6.27)

V(% try1) = (brgr — ) 25 biqi2 () + (v(x, t,) —v(0,¢,)) +
xX(v2 (0, tr41) — (0, 6,)) + v(0, 1) (6.28)

on substitute the values of unknown quantities u, (0, t,41) — U, (0,t,) , 1V, (0, t;41) —

v,(0,t,) by evaluating it from the above equations using x = 1 in the Equation (6.27)

and (6.28), we get

Ut trrg) = (brer — &) X% ai(qi(0) — x 2 (1)) + (ulx, t,) —

u(0,t.)) + x(u(l, trpq) — u(0, t41)) — x(u(@, t,) —u(0,t,)) + (6.29)
‘LL(O, tT+1)

V(X trp1) = (brgr — ) T30 bi(qi 2 (1) — x ;2 (1)) + (v(x, t,) —

v(0,t,)) + x(v(L, try1) — (0, t41)) — x(v(1,t,) — v(0,£,)) + (6.30)
17(0, tT+1)

ux(xr tr+1) = (tr+1 - tr ) 213211 ai(CIi,l(x) - Qi,z(l)) + ux(x: tr) +

(w(1, tryr) — u(0,tr41)) — (u(L,t,) —u(0,t,)) (6.31)
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Ve (%X, trp) = (brgr — &y )Z 1 b (qll(x) %2(1)) + v (x, t) +

(W, tren) = (0, tr0)) — (v(L, 1) — v(0,£,) (6.32)
aw@wﬁo e ﬂﬁm%xm—x%xnyk
(6.33)
X 3ta (u(l tre1) — u(0,tr41)) +22 pye (0 tri1)
aBu xB
_B(x’ tr+1) = (tr+1 tr )Z 14 (qlz [3( x) — r(z—p) 4 (1) +
(6.34)
3 (x; r) + F(Z ﬁ) [(u(l tr+1) u(O; tr+1)) - (u(l, tr) - u(O; tr))]
%ﬂmmu=—%%$¢—zlbmﬂ@>x%xnw- 635)
X S (v(l tr+1) — v(0, tr+1)) +2 3ra (0 tre1)
O (ra1) = (bran — ) 3 (125 () — s 12 (1) +
(6.36)

68 6
6_261‘; (x, t‘r) + F(;C_S) [('U(l, tr+1) - 'U(O, tr+1)) - ('U(l, tr) - 'U(O, tr))]
Now using the boundary constraints and discretizing the space variable as x — x;

where x; = 22—;1 , =012, .... 2p in the Equations (6.29)-(6.36) and substituting

the values obtained in Equation (6.17) and (6.18) the following system of
equations(Equation(6.37)) is obtained for different values of r

A1x3pAspxsp T b1><3pB3p><3p = Cixap } (6.37)
b1x3p D3px3p + AixspEspxsp = Fixap '

where the Equations (6.38) to (6.43) respectively represents the values of A,B,C,D ,E
and F as

A=

(tr - tr)l_a
;(12_(1) (CIi,z (xl) — X142 (1)) - (tr+1 -t ) {h’i(xl) —

UOWL@m@J M%Anymw@mﬁ<a—mﬁ(%xnﬁ>— (6.38)
u@%»@m@o—M%xn)+w@m@o—%xn»ﬂ
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B =k (e = ) (@wor (a12000) = 21412 (1) + ey (91Ge0) -

o) (6:39)

C= uxx(xll tr) -1 [(uﬁ)r ((u(xl' tr) - fl(tr)) + xl(fz(tr+1) -

fl(tr+1)) — X (fz(tr) - fl(tr)) + fl(tr+1)) + Uy (% (xlr tr) +

2 (o) = filtran) = (o) = ﬁ(t»))) —u (uﬁ)rl -
w[{ @ (e ) = A1) + 2(foltren) = filtrsn)) = xa(fa(t) =
i) + filtre ) + (v te) + ((02(tran) = 02(642))) = (6.40)
(0206 = 915)) ) = 1} + @y (0 8) = 18 +
11 ((02(t40) = 0264)) = 1 (026 = 92 (1)) + 92(6r11) ) +
v (Gt ) + (o) = fultre)) = (026 = 01(8)) ) -
wwd, J=x (@A) ()

D =

(r - r)l_y
— ol ;(12_; (Qi,z (1) — %192 (1)) — (try1— ) {hi (x;) —

& ((Ug)r (qi,z(xl) —X19i2 (1)) T <qi,2—5(xl) B F(zliS) (qi‘z(l))>> - (6.41)

2 ((r (01260 = 012 (D) + 1w (412000 = g2 (1)))}]

E =[2G = ) (@0 (902000 =310 ) + w1 (12000

a2 (D) )]

(6.42)
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F = 0 (1, ) = | o)y ( (0000, 6) = 9(6)) + 11(92(tra) —

91(tr0)) = x1(92(6) — 9:8)) + 01 (6r4)) + v (S Crty) +

2 (@2tren) = 01(tr)) = (02(8) = 03(6)) ) = (W), | =

A {@r( (@ t) = fiE)) + xu(faltre) = ltren) = x(fae) -

@)+ filtre))) + (v G t) + (02(641) — @1(6r41)) — (6.43)
(02(t) = 92(8)) ) = ur ()} + () (v ) — 9 (8)) +

11(@2(tr) = 91(tr41)) = x1(@2() = 91(6)) + 91(tr01) ) +

vy (0 t) + (foltran) = fi(tre)) = (f6) = () =

v (Uy)r ] - X (aa% ((pZ (t) = gol(t)) )t=tr+1 N (%)

t=try1

The process of the solution starts by taking r = 0,t, = 0 and the boundary conditions
are given in Equation (6.44)

u(xy, tr) = ulx;, 0) = h(xp), uy (xy, t) = uy(x;, 0) = hy(x),
Unexe (X1, £) = Uy (67, 0) = Iy (1)

v(x, tr) = v(x, 0) = p(x), v (o, £) = v (3, 0) = pr(x),
Vs (X, £) = Uy (X1, 0) = Pone (31)

The values of wavelet coefficients can be calculated successively for different values
of r =0,1,2 ... by using the Equation (6.45) and (6.46)
Aix3p = (C —FD™'B) x (A— ED™'B) (6.45)
bixsp = (C —FE™'A) x (B — DE™'A) (6.46)

(6.44)

Then by putting the values of the wavelet coefficient a;'s and b;'s in the Equation
(6.47) and (6.48) one can obtain numerically approximated solution successively for

u(x,t) and v(x,t) for r=0,1,2, 3... as follows
u(xy trn) = (g — &) T i(qi2 () — 2, qi2(D) + (uCety) —
f@&) + x(fo(tren) = filtren)) = xu(fo (&) = fi(t)) + fu(trsn)
v tren) = (brar — 6 X1 0i(qi2(e) — x0qi2(D) + (vl ty) —
01(t) + 2 (92(tr41) — @1(tr41)) = 2:(@2(t) — 1(6)) + @1 (tr40)

at various times by using successive iteration for r = 0,1,2, 3, ...

(6.47)

(6.48)

151



6.5 Convergence Analysis

To establish the convergence of the proposed method, we considered the asymptotic
extension of Equation (6.47) and (6.48) for a fixed value of t =¢,,; and x = x; as

given below

u(x, t) = At * 22, a;(qi2(x) —xq;2(1)) + A+ Bx ,Where A =

u(x, t)+fi(try) — fi(t),B = (fz (trs1) — fl(tr+1)) — (fz(tr) - (6.49)
fl(tr))

v(x,t) = At * %72, bi(qi2(x)) —xq;2(1)) + C + Dx , Where C =

(V(xl: ty) — <P1(tr)) + @1(tr41) D = (fﬂz (tr+1) — <P1(tr+1)) - (6.50)

(‘Pz (tr) —¢1 (tr))

Now the convergence of the theorem will be proved with the help of the following

lemma

Lemma 1: let u(x)eL?(R)be any square-integrable function such that |u™(x)| <

2V2Z M 1

3r(m—a+1) X 3j(m—a+%)

M,V x€(0,1) and Dfu(x) = }.;2; a;h;(x).Then |a;| <
Proof: Let Dfu(x)=3Z;a;h;(x) be the exact solution and Dfug,(x) =
Zf’fl a;h;(x) be the approximated solution

Now the error at the Jth level of resolution can be represented by Equation (6.51) and

the value of a; is given by Equation (6.52)

|5 1" = D200 - DUz I = [£E3psr aihiCO|”
(XiZap+1 @ihi(x) |, XiZsper aihi(x) ) =
L S a1 B mapar @itich; ()i (x) dx =

1
Z?O=3p+1 2k =3p+1 Al fO hi () hy (x) dx = Z?O=3p+1 a;a; = Z?i3p+1|ai|2

(6.51)
a; = 3% fol h;(x) D&u(x)dx = 3£ (fol Y,  (x) Dfu(x)dx +
fol ;% (x) Df‘u(x)dx) = 3% [(f}:z((ig)%Dfu(x)dx + (6.52)
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\/_
ff((ll))\/_D“u(x)dx + f”“((l))\/iD“u(x)dx) + (f;z((ll)) . D%u(x)dx +

fm‘(l) \/—D“u(x)dx)]

n3(i) 2

By applying the mean value theorem[178] of integral on Equation (6.52), we get ¢, €
(51(0), 2, (D) , &2 € (3¢2(D), #5(1) ) &3 € (33(i), #4(0)) (Equation (6.53)) such that

[0 Dru(o)dx = G (D) = 4 ()DSu(er) = = DEuley)

V4

[0 DEu@dx = G (D) = 4, (DIDSu(e,) = 5= Duley) (6.53)

f:4((ll))1)au(x)dx = (34(i) — #3()))D%u(es) = % D%u(es)

Now using Equation (6.53) ,Equation (6.52) becomes Equation (6.54)
32 [ (V3-1 V3-1
a; = 2 ((T) Dfu(e;) + V2DFu(e,) — (T) Df‘u(s3)>
j
32 [ (V3-1 V3-1
=2 <(T) Dfu(e;) + V2DFu(e,) — (T) D,f‘u(sg))

35 ((“:Fl) Dfu(ey) +VZDule,) — (S22) D (53)> (6.54)

Now by using the Caputo definition of fractional derivatives on Equation (6.54), we get

Equation (6.55)

o (5) (s e ) +
V2 (F(ml—a) fosz (821‘2‘&2—)"”1 dz) B (\/—f/%l) (I‘(ml—a) fOE3 (‘93—uzw)l‘5‘z‘)"“r1 dZ))

_]2

x/_I‘(m @)

&2 (g,—2)~ (g —z)a—m+1

<(\/— ) f0€1 (Eljlz)!gz—)mﬂ dz — 2 f e dz — (\/— -

81 u (Z) u (Z)
D) (I e + 2 00 )
(6.55)



_j_

31 u™(z) €1 u™(2)
= o (8 = D (7 etz = [ ) -

(2) 0 "(2)
(05 1) (1 ) =2 £ e

_]_

| lI = ((\/— )( 0 (fz)%dz—fogl@fz)%dz) —

(6.56)
" (2) u™(z)
(\/— - 1) ( €1 (e fz)(xzm+1 ) —2 fgz (Ez_z)azmﬂ dZ)

u™(z) u™(z)
la;| < _\/_[‘(m @) [(\/— 1) 0 (61-2)% m+1d _fo (€3—z)@—m+1 dz| +

(VB )| 2O | + 2| D (©37

€1 (g4—z)@-M+1 &2 (g5—z)@-Mm+1

_j_z
3 2 Iy £ 1 1
|al| S \/Er(m_a) [( 3 - 1) fO 1|um(z)| [(El_z)(x—m+1 - (83_Z)a—m+1] dZ +

£ 1 0 1 (6.58)
(\/§ - 1) fg:lum(z)l WdZ +2 fszlum(z)l(gz—z)TﬂH'le]

—j—2

37z M & 1
|ai| — \/_I‘(m a) [(\/— - 1)f ! [(8 —Z)“ m+1 - (83_Z)a—m+1] dZ +

(V3-1)J

———dz+2]" dz] (6.59)

& (s —Z)“ (6._g)a—m+1 (82—Z)a m+1

Taking modulus on both sides of Equation (6.55) and applying the properties of

modulus, we get Equation (6.56),(6.57),(6.58),(6.59),(6.60),(6.61) and (6.62)

_j_z
32 M [(V3-1) _ e ym—a _ . m-a m—a

(e — &)™ — 26,

m-a> O, 81 < 83 = Slm_a < £3m_a = Slm_a — £3m—0{ < O
82 > 0 = —Zgzm_“ < 0

= Slm_a - ng_a - 2£2m_a < O
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la;| < B#M (vV3-1) [2(e; — &)™ ]| < 4.3#1\4
U= V2rm-o) | (m-a) 3 1 V2 T(m—a+1)
(6.61)
_]‘_2
_ 223 2 M 1
T I(m-a+1) * 3/m-a)
22 M 1
| < X 6.62
ol < 3r(m—a+1) gj(m—a+%) ( )

Theorem 1: - If u(x, t) represent the exact solution and us,, (x, t) represents the Scale

3 Haar wavelet-based approximated solution, then for a fixed value of t = ¢,

1B || = lluCe, t) — ugm (x, Ol <

1
m-a-3

F(m-a+1) 1_3—( >

. 1
42ZM K |At| < 37j(m-a+3) >

Proof. At jth level of resolution, error estimation for the solution is given by
[Ei || = l1uCe, ) — ugm (6, O = |AL * X2 30041 4:(q12(%) = x q32(1)]

”E]”2 = |At]* * |Z(ix;3m+1 ai(ql',z(x) —X Qi,z(l))lz = U_oooo(Z?ismﬂ ai(Qi,z(x) -

Xqi2(1)) © Xizsmer @(Qr2(0) — X qr (1))

< |At]? *

3 amer Diecama Jp @it (@200 = 2412 (1) (@2 () — xqu,2(1) ) dx |

< |At]? * |al-ak Mi,k|

Where My = Sup N (qi,z (x) — in,z(l)) (qk,z () — qu,z(l)) dx
L

2
”EJ” < |At]* * Z?O=3m+1|ai(a3mMi,3m + a3mi1Mizme1 + QGame2Mizme2 +

A3m+3 Mizmes + )|

< |At]? * Z?ozgm+1|aiMi(a3m + A3m+1 T Azma2 + A3z, + o )| hereM; = Sup M;
i,k

Using the result of Lemma 1 stated in Equation (6.62) in the above equation, we get

||E.||2< +W2K |At|23—j(m_a+%)
]

(o]
— I'(m—a+1) 1_3_(,-,1_“_%) 2i=3m+1|aiMi|
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Take M = Sup M;
i

2 42 K|At)2 M3T/Mmmet))
||E']|| Sr(m —a+ 1) _(m_a_l) |ai|
1-3 2) i=3m+1
. 1 . 1
472 K|At)2 M3/ Moty W2 K 3~/(m-a+y)

TTm-—a+1); _s(mad) Tn—a+1);_,(m-ab)

15 = 42M K |At] 3-itm-a+y)
= Im—a+1) 1— 3—(m—a—%)

(6.63)

It is clear from the Equation (6.63) that error bound is inversely proportional to the level
of resolution which means that with the increase in the level of resolution, error bound
decreases i.e. j = o0 = ||E]|| — 0. This proves the convergence of solution u (x, t).
Similarly, the convergence of v(x,t) solution can be proved. It ensures the stability of

the solutions.

6.6 Results and Discussions Based Upon Numerical
Experiments

To describe the appropriateness of the present scheme for fractional coupled Burgers’
equation, solutions of two problems obtained by the present scheme have been analyzed
and absolute errors are calculated to check the efficiency of the present scheme with
the help of following formulas

Absolute error =|Ugygct (t1) — Unum (ED) ]
where t; represents the collocation points of the domain.
Numerical Experiment No. 6.1: - Consider the following space-time fractional

coupled Burgers’ equation

(0°u 0%u dfu  a(uw)

ata—ﬁi-zum—w , XE[O,].] ,tE[O,T] 664
v 9% N %y a(uv) 04] tefoT '
o ~ax Ao Tax - xel0 Al L rel0T]
Subjected to the boundary conditions given in Equation (6.65)
u(0,t) = 0,u(1,t) = e tsinl , v(0,t) =0,v(1,t) = e tsinl
(6.65)

vV te[0,T]
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and with the initial condition given in Equation (6.66)

u(x,0) =sinx , v(x,0) = sinx V xe[0,1] (6.66)
The exact solution of the Equation (6.64) subjected to the conditions given in Equation

(6.65)and (6.66) a=f =y =6 =1is

u(x,t) = e tsinx ,v(x,t) = e tsinx (6.67)

The numerical solution obtained by applying the given methodology for Equation

(6.64) subjected to the conditions given in Equation (6.65) and (6.66) is

u(xy, tryr) = (b — 6 X a:(qi, (0) — % q12(1) + (u(xlrtr) - fl(tr)) +
xl(fz(tr+1) - fl(tr+1)) - xl(fz (t;) — fl(tr)) + fi(tr+1)

U(xl' tr+1) = (tr+1 -t ) 213211 bi(CIi,z(xl) — X Qi,z(l)) + (U(xl' tr) - (pl(tr)) +
X (fpz (tr+1) — <P1(tr+1)) - xl((pz (t;) — <P1(tr)) + @1 (tr41)

at the various times by using successive iteration for r = 0,1,2,3, - . The process of
finding the solution in the discrete form starts by taking r = 0,t, = 0 and f;(t,) =
0,f5(t,) =e trsinl, @.(t,) =0,¢,(t;41) =e sinl forr =0,t, =0 and rest

all the values will be obtained using the iterative process.

Results obtained for numerical experiment no. 6.1 are also reported by the way of
figures and tables. It can be seen from Figure 1 and Figure 2 that the solution obtained
by the proposed method for the case (Wwhena = f =y = § = 1) is in good agreement
with the analytical solution available in the literature. Table 1 and Figure 3 shows the
absolute errors in the results obtained at the different collocation points for the case a =
B =y =26=1 anditis of order 10~ which assures the efficiency and reliability of
the proposed method. In Table 2, results obtained by the present method are compared
with another method [176] available in the literature and it is found that the present
method outperforms over another method available in the literature. Table 3 is
explaining the absolute error in the solution for different values of At which illustrate
the direct dependence of absolute error on mesh size for time variable. For better

visibility contour plots and 2D-solution plots are also given in Figure 4 and Figure 5.

157



Table 6.1 : Absolute error in numerical results u(x, t) at collocation points for integer

order o= B=1vy= 0 =1 with n=&§ =-2, p=A=1 and A4t = 0.1 in Experiment No.6.1

X =

Time(t) | 0.0556 0.1667 0.2778 | 0.3889 0.5 0.6111 0.7222 | 0.8333 | 0.9444
l

01 2.30% 5.82% 9.26% 1.24x% 1.52% 1.76X 1.97% 2.15% 2.30%
1075 105 105 107* 10~* 1074 10~* 1074 10~*
02 6.66X 1.69% 2.68% 3.59% 4.39% 5.09% 5.70% 6.22X 6.67X
1075 10~* 1074 1074 10~* 1074 10~* 1074 10~*
03 1.04x 2.62% 4.16X 5.56% 6.80% 7.88% 8.82x 9.63% 1.03%
1074 10~* 1074 1074 10~* 1074 10~* 1074 1073
0.4 1.30% 3.27% 5.19% 6.93% 8.47x 9.82% 1.10X 1.20% 1.29%
1074 10~* 10~* 1074 107 107 1073 1073 1073
0.5 1.42% 3.57% 5.64% 7.53X% 9.20% 1.07% 1.19% 1.30% 1.39%
1074 10~* 1074 1074 107 1073 1073 1073 1073
0.6 1.38% 3.44% 5.44% 7.25% 8.85x 1.03% 1.15% 1.25% 1.34%
1074 10~* 10~* 1074 107 1073 1073 1073 1073
0.7 1.17% 2.89% 4.55% 6.06% 7.40% 8.57x% 9.58% 1.04x 1.12%
1074 10~* 1074 1074 10~* 107 107 1073 1073
0.8 7.87% 1.94% 3.05% 4.05% 4.94% 5.72% 6.39% 6.97x 7.46X
1075 10~* 10~* 1074 10~* 1074 10~* 1074 10~*
0.9 2.80% 6.86% 1.08% 1.43% 1.74% 2.02% 2.25% 2.46X 2.63%
1075 105 107 1074 10~* 1074 10~* 1074 10~*

Table 6.2: Comparision of Numerical results at Random collocation Points available in
Literature for Numerical Experiment. No. 6.1 at integer-order o= f=y= 0 =1 withn=¢

=-2,u=A=1 and At = 0.1

Collocation | Exact Solution | Numerical Numerical Scale 3 Haar Reduced differential
Points u(x, t) Solution Solution wavelet method Transform method
(x,t) =v(xt) u(x,t) v(x,t) (Absolute Error) (Absolute Error)

= e tsinx [176]
(0.1,0.1) 0.090333 0.090329 0.090329 4.09x 1076 1.62x 1073
(0.2,0.2) 0.162657 0.162730 0.162730 7.38x 1075 2.52x 107*
(0.3,0.3) 0.218927 0.219199 0.219199 2.73x 107* 1.24x 1073
(0.4,0.4) 0.261035 0.261596 0.261596 5.61x 107* 3.77x 1073
(0.5,0.5) 0.290786 0.291659 0.291659 8.73x 107* 8.86x 1073
(0.6,0.6) 0.309882 0.311006 0.311006 1.12x 1073 1.76x 1072
(0.7,0.7) 0.319909 0.321135 0.321135 1.23x 1073 3.11x 1072
(0.8,0.8) 0.322329 0.323434 0.323434 1.11x 1073 5.07x 1072
(0.9,0.9) 0.318477 0.319182 0.319182 7.05x 10~* 7.71x 1072
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Table 6.3: Maximum absolute error in numerical results u(x,t) and v(x,t) at the

integer order a= = y= 06 =1 with n=&§ = -2, p=A=1 for different values of At.

At IE@)leo IE@)lle
0.0100 1.221420967286724x 10~* 1.221420967286724x 10~*
0.0010 2.218389533070741x 1076 2.218389533070741x 1076
0.0001 2.413116217958589x 1078 2.413116217958589x 1078

u = = =1 s=
exact %f) for =1, g=1, 7—1, 9=1

1 u(x,t)=8.297803438386536e-01

u(x,t)

u(x,t)

u

Approximated (xtyfor =1, g=1, =1, §=1

u(x,t)=8.297804122772982e-01

v = —. = -
exact (x,t) for =1, ﬂ-1, 7-1, &5=1

1 Vv(x,t)=8.297803438386536e-01

v(x,t)

v

Approximated (xt) for =1, ﬂ=1: 'y=1, =1

V(x,t)=8.297804122772984e-01

Figure 6.1: 3D Graphical representation of exact and approximated solution of

Numerical Experiment No. 6.1 for integer order o= =1y=06 =1 with n=& = -2, p=A=1

and At=0.01

The most important fact has been explained by Figure 6 and Figure 7 that when we shift

from one classical order derivative (integer-order 0) to another classical order derivative

(integer-order 1) in the coupled Burgers’ equation the behavior of the solution does not

remain the same. Many variations have been observed in the solution space with the

variation in the order of time derivative or space derivative which gives a better insight

of the microscopic behavior of poly-dispersive sedimentation phenomena of two

different types of particle concentration in the fluid.
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Absolute error in u(x,t) at j=2 for

|
x
3

numerical xb
o N
@ N o

o

lu exact xt—-u

o= ,3=1' 7:1, 51

Absolute error in v(x,t) at j=2 for a=1, ,3=1' ’)’=1’ 5=1

(x.0)l

numerical

:
S
S

-V

IV exact (%)

Figure 6.2:

Surface plot of absolute error in the solutions u(x,t) and v(x,t) of Numerical

Experiment No. 6.1 for j=3 at o= p=y=0 =1 with n=§ = -2, p=A=1 and At =0.01.

08 [

For j=3 and p=81

For j=3 and p=81

Figure 6.3 :Contour representation of solutions u(x,t) and v(x,t) of Numerical

Experiment No. 6.1 at o= =y= 06 =1 with =& =-2, y=A=1 and At=0.01.

0.8

2D-Graph of Exact and Numerical solution for u(x,t)

— O Exact Solution at t=0.1
— % Numerical Solution at t=0.1
& Exact Solution at t=03
+— Numerical Solution at t=0.3
Exact Solution at at t=0.5
— & Numerical Solution at t=0.5

> Exact Solution at t=0.7

— Numerical Solution at t=0.7

u(x,t)

2D-Graph of Exact and Numerical solution for v(x,t)

08 T T T T T T T T
o Exact Solution at t=0.1
07 L |~ Numerical Solution at t=0.1
4 Exact Solution at t=0.3
Numerical Solution at t=0.3
06 || ExactSolutionatatt=05
& Numerical Solution at t=0.5
05 | | Exactsolutonatt=07
Numerical Solution at t=0.7

v(x,t)

Figure 6.4 :2D-Graphical representation of exact and approximated solutions u(x,t) and

v(x,t) of Numerical Experiment No. 6.1 for different values of t at the integer order

o= B=v=0=1 withn=& = -2, p=A=1 and At =0.01.
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u (x,t) for

Approximated =025, (=0.25, A=0.25, §=0.25

1 u(x,t)=8.289465143854958e-01

u(x,t)

v(x,t)

v (x,t) for

Approximated =025, (=0.25, A=0.25, §=0.25

1 V(x,1)=8.289465143854642e-01

u (x,t) for

=0.5, (3=0.25, =0.25, §=0.25
Approximated a B y &

1 u(x,t)=8.292975943997053e-01

u(x,t)

v(x,t)

v

N (x,t) for
Approximated
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u(x,t)

v(x,t)

v (x,t) for

Approximated a=0.75, (=0.75, =1, §=0.75
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u (x,t) for

Approximated =1, §=0.75, =1, §=0.75

1 u(x,t)=8.300305216393573e-01

u(x,t)

v(x,t)

v

. (x,t) for
Approximated

a=1, B=0T5, =1, §=075
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Figure 6.5: Approximate solution of Numerical Experiment No. 6.1 in 3D with different

values of a, B3, v, 0 € (0,1] for which the solution behaves differently at n=¢& = -2, p=A=1

and At=0.01.
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Numerical Experiment No. 6.2 : - Consider the following space-time fractional

coupled Burgers’ equation

0%u 62u+ fu  a(uv) 04] te[oT
ez~ oxz TiUgxE T Tox v Xelol ,tel0T] 6.69)
v 0% %v  o(uv) 04] e[0T '
o ~ox TPV " ax v XelOl tel0T]
Subjected to the boundary conditions given in Equation (6.69)
u(0,t) = 0,u(1,t) =0,v(0,t) =0,v(1,t) =0 Vv tel0,T] (6.69)
and with the initial condition given in Equation (6.70)
u(x,0) =sin(2nx —m) , v(x,0) = sin(2rx — m) Vv xe[0,1] (6.70)

Analytic solution of the Equation (6.68) in special case whena = =y =6§ = 11is

u(x, t) = e 4™t sin(2mx — 1) , v(x,t) = e+t sin(2nx — 1) (6.71)

The numerical solution obtained by applying the given methodology is
u(xy, trpr) = (brq — &) X0 a;(qi2(x1) —x,qi (1)) + (u(xl, ty) — fl(tr)) +
Xy (fz(tr+1) - f1(tr+1)) - xl(fz (t,) — fl(tr)) + f1(trs1)

v(xp, try1) = (brgr — ) X301 bi(qi, (1) — x.95,(1)) + (U(xl' ty) — <P1(tr)) +
Xy (fpz (trs1) — <P1(tr+1)) - xl((pz (t;) — <P1(tr)) + @1(trs1)

at various times by using successive iteration for r = 0,1,2,3,-:- . where f;(t,) =
0,f2(t,) =0, o.(t;) =0,0,(t;,) =0 forr =0,t; =0 and rest all the values will
be obtained using the iterative process.

Table 4 explains the absolute errors in the results obtained by the proposed method for
example 2 by considering the domain x € [0,1] and At = 0 and it is of order 107>
which assures the efficiency and reliability of the proposed method. It can be seen from
Figure 8 to Figure 14 that the solution obtained by the proposed method for the case
(whena = f =y = 6 = 1) isin good agreement with the analytical solution available
in the literature. Table 5 is explaining the absolute error in the solution for different
values of At which illustrate the direct dependence of absolute error on mesh size for
time variable. It can also be observed from the Figure 13 and Figure 14 that whenever

we are changing the values of y and 6 by fixing the values of a, B, we are getting the
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change in the solution space of v(x,t) and there is no change in the solution space of

u(x, t) and vice versa. It is because of the reason that a, B are orders of the time and

space fractional derivatives of u(x, t) respectively and that y, § are orders of the time

and space fractional derivatives of u(x, t) respectively which explains the importance

of fractional models in explaining the microscopic behavior of the phenomenon.

Table 6.4 :Absolute error in numerical results u(x, t) at random collocation points for

integer order a= = y= 6 =1 with n= & = -2, p=A=1 in Numerical Experiment No.6.2

: _; 0.05556 | 0.16667 | 0.27778 | 0.38889 | 0.50000 | 0.61111 | 0.72222 | 0.83333 | 0.94444
6.67x 4.35x 3.22x 2.62x 2.25x 1.99% 1.81x 1.67x 1.56x
01 105 1075 1075 1075 105 105 105 1075 1075
1.69% 1.10x 8.17x 6.64x 5.69% 5.05x 4.58x 4.23x 3.95%
0-2 10~* 1074 1075 1075 1075 1075 1075 1075 1075
1.92% 1.25x 9.29% 7.55% 6.47% 5.74% 5.21X% 4.81% 4.49%
0-3 107 1074 1075 1075 105 105 105 1075 1075
1.25x 8.18% 6.06% 4.93% 4.22X 3.75% 3.40% 3.14% 2.93%
0-4 107 1075 1075 1075 105 105 105 1075 1075
2.89x 6.44x 1.05x 1.04x 9.44x 9.33x 1.52x 1.11x 9.49%
0.5 10-19 10-19 10-18 10-18 10-19 10-19 10-18 10-18 10-19
1.25x 8.18% 6.06x 4.93% 4.22x 3.75% 3.40x 3.14x 2.93%
0-6 107 1075 1075 1075 105 105 105 1075 1075
1.92% 1.25% 9.29x 7.55% 6.47x 5.74% 5.21x 4.81x 4.49x
07 10~* 1074 1075 1075 1075 1075 1075 1075 1075
1.69x 1.10x 8.17% 6.64X% 5.69% 5.05% 4.58% 4.23% 3.95%
08 107 1074 1075 1075 105 105 105 1075 1075
6.67x 4.35x 3.22x 2.62x 2.25x 1.99% 1.81x 1.67x 1.56x
02 105 1075 1075 1075 105 105 105 1075 1075

Table 6.5:Maximum absolute error in numerical results u(x,t) and v(x,t) at the integer

order o= B=1vy= 0 =1 with n=&§ = -2, p=A=1 for different values of At.

At IE@)le IE@)le
0.0100 2.09861158048527x 10~* 2.098611580485271x 10~*
0.0010 3.764653977598853% 107° 3.764653977598853x 10~°
0.0001 6.090606685656975x 1078 6.090606685656975x 1078
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Figure 6.6: 3D Graphical representation of exact and approximated solution u(x,t) of

Numerical Experiment No. 6.2 at a= = vy= 0 =1 withn=& =-2, p=A=1 and At = 0.001.
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Figure 6.7: 3D Graphical representation of exact and approximated solution v(x,t) of

Numerical Experiment No. 6.2 at a= = y= 0 =1 with n=& = -2, p=A=1 and At = 0.001.
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Figure 6.8: Surface plot of absolute error in the solutions u(x,t) and v(x,t) of Numerical

Experiment No. 6.2 for j=2 at o= f=y=0 =1 with n=&§ =-2, p=A=1 and At=0.001.
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Figure 6.9 :Contour representation of solutions u(x,t) and v(x,t) of Numerical
Experiment No. 6.2 at the integer order a= = y= 0 =1 with n= & = -2, p=A=1 and At =
0.001.
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Figure 6.10: 2D-Graphical representation of exact and approximated solutions u(x,t)
and v(x,t) of Numerical Experiment No. 6.2 for different values of t at the integer

order o= B=1vy= 0 =1 with n=&§ = -2, p=A=1 and At =0.001.

165



u =i =i = = v = = =i =i
Approximaea D TOr 0025, =025, 4=025, §=0.25 poproximaea 0 10T =025, (=025, 4=0.25, §=0.25

u(x,t)
v(x,t)

003

u = - = -~ v = - = -
Approximated (xt)for  =0.25, (3=0.25, =0.75, §=0.25 Approximated (xt) for =025, (3=0.25, =0.75, §=0.25

NNRRRRSSSS
ANTIY

\

u = = = - v = = = =
Approximatea AT @705, §705, =05, §=0.5 Approximated D 1O @705, =05, 405, 5705

3
=
-05
003
u = = = = v = = = =
Approximated (xt) for  =0.75, ‘B 0.5, ¥ 0.5, §=0.5 Approximated (x,t) for  =0.75, ﬂ 0.5, % 0.5, §=0.5
' 0s
N
SRS
7 {ﬁ\\\‘ _
X
=

003

Figure 6.11: Approximate solution of Numerical Experiment No. 6.2 in 3D with

different values of a, B, v, 0 € (0,1] for which the solution behaves differently at n=& =
-2, pi=A=1 and At =0.001.
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6.7 Conclusion

We have developed a scale 3 Haar wavelet-based collocation scheme to find the
solution of nonlinear coupled fractional differential equations. Two examples of space-
time fractional coupled Burgers’ equation with different boundary and initial
constraints are considered to prove the reliability and efficiency of the proposed
numerical scheme. It has been observed in with the help of MATLAB stimulation and
computations that solution is behaving differentially as we vary the order of fractional
derivatives in space-time fractional coupled Burgers’ equation and giving the accuracy
of order 107> at integer-order derivative (i.e. at @ = f = y = §=1) for j=2 which
demonstrate the performance of the scheme. The proposed method is compared with
another method available in the literature and it is found that the proposed method is
working better than the other method. Looking at the performance of the method for
the given set of numerical experiments, the proposed method can be extended to explain
the behavior of the different phenomenon by solving the system of fractional
differential equations governing those phenomena. The proposed method provides an
insight into the microscopic behavior of phenomena under study. The given method is
also fully supportive and compatible with the ordinary, partial, fractional differential

equations and integral equations.
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Chapter 7
Two Dimensional Haar Scale 3 Wavelet based

solution of Hyperbolic Telegraph Equation.

7.1 Introduction

In this chapter a new numerical technique is developed for obtaining the solution of
second-order hyperbolic Telegraph equation of the type given in Equation (7.1), using

two-dimensional Haar Scale 3 wavelet bases.

290 4 9q 90 g2, 0% 7.1
o t2a-+ Bro =S +g(xt),  (x,¢)€[01]x[0,T] (7.1)

under the following types of initial constraints of the type given in Equation (7.2)

P(x,0) =Py (x), 52 (x,0) = 1h,(x) (72)

and the boundary constraints of the type given in Equation (7.3)

(,0(0, ’t") = fl(t)i 1€ [O, T], (P(l't) = fz(’t)' ’t" € [0' T] (73)

where a > f# > 0 are known constants, ¥, (x), Y, (x), & (%), &(£), g(x, 1) are the
given functions and ¢ (x, t) is the function whose value is to be determined. When a >
0, = 0 then equation represents the damped wave motion equation and when a >
[ > 0 then it is named as the Telegraph Equation. These types of equations are
emerging in the field of electric signal propagation in cables[179], pulsating blood flow
in the arteries[180], ‘acoustic wave propagation’ in porous media of Darcy-type[181],
vibrations in the different structures, walk theory[182], Maxwell viscous fluid parallel
flow study[183], etc. Telegraph equation is a special type of hyperbolic equation which
is more suitable in modeling the reaction-diffusion as compare to the ordinary diffusion
equation for many branches of engineering and sciences. Telegraph equation plays a
crucial role in the area of atomic physics and it is considered as one of the fundamental

equations of atomic physics. Finding the solution to these types of equations become a
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big challenge as there is no established analytic method to solve these kinds of
problems. Therefore, many researchers are involved in developing the various
numerical and semi-analytic schemes for finding solutions to the different problems
governed by telegraph equations. Some of the methods which have been freshly
developed and applied to solve the telegraph equations are Septic B-Spline Collocation
Method (SBSCM) [184], Cubic B-Spline Quasi-Interpolation Method(CBSQIM)[185],
Cubic B-Spline Collocation Method(CBSCM)[186]-[188], Reproducing Kernel
Hilbert Space Method(RKHSM)[189], Radial Basis Function Method(RBFM)[190],
Dual Reciprocity Boundary Integral Equation Method (DRBIEM)[190], Differential
Quadrature Method (DQM)[191], Trigonometric B-Splines Method(TBSM)[187] ,
Homotopy Analysis Method (HAM)[192],Chebyshev Tau Method(CTM)[193], etc.

But the study of establishing the solution for the Telegraph equation using the Haar
scale 3 wavelets has not been attempted in the literature which motivated us to develop
a new technique for the solution of these types of equations. Orthonormal wavelets are
one of the modernistic functions which have the capability of dilation and translation.
Because of these properties, numerical techniques that involve wavelet bases are
showing the qualitative improvement in contrast with other methods. In literature,
dyadic wavelets are in preponderance. In 1995, Chui and Lian [115] has developed the
Haar scale 3 (non-dyadic) wavelets by using the process of multiresolution analysis. In
2018, Mittal and Pandit have used the Haar scale 3 (non-dyadic) wavelets [71], [141],
[142], [194] for solving the various types of differential equations and found that these
wavelet bases are equally competent in solving the various types of mathematical
models governed by differential equations. Also, it was shown by them that the Haar
scale 3 wavelet has a faster rate of convergence as compared to the Haar scale 2 dyadic
wavelets. This gives us good hope of getting a better solver for these equations by
developing a new hybrid technique based upon Haar scale 3 Wavelets for the solution
of Telegraph equations.

This chapter follows the sequence of sections as described: In section 2, explicit forms
of Haar scale 3 parent wavelets with their families and procedure to find their integrals
have been explained briefly. Representation of the solution using Haar scale 3 wavelets

is explained in section 3. Section 4 explains the method of solution using Haar scale 3
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wavelets. In section 5, solutions of three different Telegraph equation are produced to
analyze the competence and performance of the method. In section 6, the conclusion

drawn from the results and in future research ideas are given.

7.2 Explicit forms of Haar scale 3 wavelets and their
integrals

The mathematical expressions for Haar scale 3 wavelet family [71], [115] are given

below

~ (1 o0<t<1
hi(t) = @(t) = {0 elsewhere (7.4)

-1 u (i) <t < uy(i)
2 u,(1) <t < u3(i)
-1 n3(iD) S t < ny(i) (7.5)
0 elsewhere
for =24 .3p—-1

1 u (i) <t < ny(i)

o . ov_ [3) 0 wy(1) <t < u3(0)
hi(t) = y*(3/t — k) = L 1 D St <) (7.6)
0 elsewhere

for i=236,..3p

. 1
h(0) =93/t —k) = N

(3k+2)
3p

where 7, (i) = g 1, (i) = % ns(i) = . 7,(0) = % p=3,j=012,..

,k=012,..,p—1.Here i,j,k respectively represent the wavelet number, level of
resolution (dilation), and translation parameters of wavelet family. The values of
i (for i > 1) can be calculated with the help of j,k by using the following relations

{ll : ; z ?:;]] -:_ 22];( ]/: Z: f)l:ledn ll }.By using this relation for different dilation and
translations of h,(t), h3(t), we will get the wavelet family where h,(t) and h;(t) are
also called mother wavelets and rest all the wavelets which we have obtained from
mother wavelet are called daughter wavelets.

The main difference which makes the Haar scale 3 (non-dyadic) wavelets better than
the Haar scale 2 dyadic wavelets is that only one mother wavelet is responsible for the

construction of whole wavelet family but in case of Haar Scale 3 wavelets, two mother

wavelets with different shapes are responsible for the construction of the whole family.
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Because of this fact, Haar Scale 3 wavelets increase the convergence rate of the

solution.

Now one can easily integrate the Equations (7.4)-(7.6)the desired number of times over

the interval [A, B) by using the formula as given below

i (1) = fot fot fot ......... ML EIMES +v oener fot h; () (dx)™ = ﬁfot(t _ o

After evaluating the above integrals for Equation (7.4), we get Equation (7.8)

qﬁ,i(t) = % for i=1 (7.8)

Using Equation (7.7) on Equation (7.5), we get the values of g, ;(t)'s for i=
2,4,6,8,:--,3p — 1 which are given by Equation (7.9)

Qm,i(t) =
0 for 0<t<x()
;n—ll(t — @) for n (i) <t < ny(i)
\/ii %[—(t - zl(i))m +3(t - %Z(i))m] for x,(0) <t < 3(i)
—[=(t =) +3(t —(D)" = 3(t = %)) for uz(i) < t < 2,(0)
—[—(t =) +3(t =2, (D))" = 3(t —23(D)" + (t = 2(D)"] forxu(i) <t <1

(7.9)

Using Equation (7.7) on Equation (7.6), we get the values of g, ;(t)'s for i=
3,5,7,9, -+, 3p which are given by Equation (7.10)

Qm,i(t) =
0 for 0< t<xu()
% (t = (D))" for n (i) <t < ny(i)
\E (- )" = (t - x0)"] for ny() St <ns(i)
—[(t =) = (£ =2(D)" = (£ = 23D)"] for xs(i) < t < uy(D)
—[(t = @) = (£ =) = (t=2D)" + (£ =2(D)"]  form(D)<t<1

(7.10)
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7.3 Approximation of solution

Using the properties of Haar Scale 3 wavelets as explained in section 3, any function

u(x,t) € L,(R) can be approximated as

w8 = ) Y ag hi(Oh(6) (7.11)

i=1 1=1
These a;;'s will be determined by the proposed method. But for the computational
purpose, one can consider a truncated series up to 3p X 3p terms. By considering the

3p X 3p terms to approximate the function u(x,t) we get
3p 3p

w8 ~ w6 ) = ) ayhi(Oh(®) (7.12)

i=11=1

where p =3/, j,j' =0,1,2, ...

7.4 Method of Solution

Now space variables are discretized with the help of ‘Two dimensional Haar scale 3

wavelets’ as explained below

3p 3p

PrreeC6t) = ) > hu(x) hole) (7.13)
i=1 =1
Integrating the Equation (7.13) w.r.t x within the domain 0 to x , we get
3p 3p
Geee@ ) = D > @ 41a@) he(E) + 0 (0,1) (7.14)
i=11=1

Now by integrating the Equation (7.14) w.r.t x within the domain 0 to 1, the value of
U,++(0, %) is given by
3p 3p

©x:(0,%) = ((Ptt(l; 1) — @+ (0, ’f)) - z Z ir q2,:(1) he(2) (7.15)

i=11=1

Using Equation (7.15), Equation (7.14) becomes

3p 3p

Peee@t) = D > e (0,460 = 424 (D) hel®)

i=11=1

+ (Qott(l"t) — @40, ’f))

(7.16)
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Again, integrating the Equation (7.16) w.r.t x within the limits we get

3p 3p

Qee(x, ) = z z a«u’( qz2,:,(x) — x QZ,/L(]-)) he(£) + 2 @ (1,£) + (1

i=11=1
—x) 94£(0,2)
Taking the limit 0 to £ , integrating the Equation (7.17) w.r.t ¢ and then by applying

(7.17)

the boundary conditions, we get Equation (7.18)

3p 3p

0D = D Y @ 0u00) = % 4:4(1) 41e(®) + % (9 (1)
=1 1=1 (7.18)
—P,())+ (1 - x)( ¢+(0,1) — l/’z(o)) + P, (x)

Integrate the Equation (7.18) w.r.t £ within the same limit, we get

3p 3p
0= > > au (0400 = % 02u(D) G200 + 2 (620 — £(0))
=i (7.19)
=2t Po(D) + (1= D)6 - £,0) - (1= 2) £1h,(0)
+ 1P, (x)

Differentiating the equation (7.19) two times with respect to x ,we get @, as given by

Equation (7.20)

3p 3p

) = DY Ay ha()45,0(8) + () e ()

i=11=1

(7.20)

Putting the approximation of @, , @, @ and ¢ from Equations (7.17)-(7.20) in
Equation (7.1) ,we get Equation (7.21)

S B @i (42400 = % 420(1)) he(8) + 2(6,(8)),,, +(1-

2)(6@®),, +a (T air( @2:(0) = % 42,0(1)) qu,e(6) +

2 (9:(1,8) = (D) + (1 = 2) (9 (0,£) = 92(0)) + P (%)) +

B (S, 532 @i (02400 = % 020(D) @20() + % (E2(8) — £,0)) -

(7.21)
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%9510 + (1= 06000 = 5(0) = (1 = 2) £16,(0) + £1h,(x) ) =

2?51 Z?fl Aip hi(2)q0(1) + t(P2) 2 () + g(x, %)

After Simplification Equation (7.21) results into (7.22)
S I e [(2000 = 2 42,00) he(®) + @ (424 () -
% @20(0) 4100) + 8 (( 0200 = %42, (D) 42008 ) -
h(®)d2(0)] =g £) + tW) (@) — (2(&2(1)),,, + (1 -

2)(&®),,) - a ( (@1, £) = (1) + (1 = 2)(9£(0,£) — P,(0)) + o
() = B (2 (§,(6) — £(0)) — 2 £, (1) + (1 — 2) (&, () —
£(0)) = (1= ) £1h,(0) + £1h,(x))

Now discretizing the variable as x = x, , t > t; where x, = 22—;1 ty = 22;1, rs =

1,2,......3p in the Equations (7.22), we get the system of algebraic equations which
is given by Equation (7.23)

3p 3p

z Z @it Rijrs = F(1,s) (7.23)

i=11=1

Where R;;,s = [( G, (2r) — 24 CIZ,i(l)) he(ts) + a (( qz,i(xy) —
% G2,,(1)) Ch,(’(’ts)) + B (( Gz, (xr) — %y qm(l)) ‘b,{(ts)) - (7.24)

Ro(:) 2 (£5)]

F(r,5) = g(t £5) + tW2)ax (@) = (2, (52(£),,, + (1 -
2)(&(£)),,) — a (2 (L) = 2(1) + (1 = 2.)( 000, £)
P2(0)) + P2(x,)) = B (2 (E2(£) = £(0)) — 2, £, P, (1) +

(1 = %) (2(8) = £2(0)) — (1 — 2,) £,(0) + £ (%))

(7.25)
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The above system(Equation (7.23)-(7.25)) reduced to the system of algebraic equations
and further, it gets reduced to the system of 4D-arrays represented by Equation (7.26)

A3p><3pR3p><3p><3p><3p = F3p><3p (7.26)
Further, the above arrays system(Equation (7.26)) is reduced to the following matrix
system using the transformations a,;, = by and F.; = G,

B1 3 ZS 3 2 3 2 = Gl 3 2
x(3p)*° (3p)*x(3p) x(3p) (727

where A =3p(i—1)+land u=3p(r—1) +s.

The values of b, can be calculated successively for different values of n = 1,2 ... by
solving the above system of equations using the Thomas algorithm via MATLAB
Program. Original wavelet coefficients a;, can be restored using the above
transformation. These coefficients will be used in the equations to determine the final

solution of the problem ) for different value of t,, for n=0,1, 2..

7.5 Error analysis with Numerical Experiments

The proposed scheme is tested on some Telegraph equations to judge the competence
of the scheme and level of accuracy obtained by the present scheme. L, — error, L, —
error and absolute errors have been calculated for each problem using the present

scheme with the help of following formulas

Absolute error =|uUgyger (X, ts) — Upym (X, t5) ]

(7.28)
L, = H;E;_X Uexact (Xr, ts) — Unym (X, t5) ]
(7.29)
\/folluexact (xrr ts) — Unum (xrr ts)lz
L, = (7.30)

3
\/Zlflluexact(xr; ts) |2
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Numerical Experiment No. 7.1 : - Consider the 1D hyperbolic Telegraph equation of

second order

2% 99  p2 _ 9%
oz T2a—+ B =——+ g(x,t), (x,t)€[0,1]x][0,T] (7.31)

under the following types of initial constraints
p(x,0)=e*, x€]0,], Z—(f(x, 0) =—e*, x€]0,1] (7.32)

and the boundary constraints

p(0,t)=et, +€[0,T], o@(,t)=elt +€][0,T] (7.33)
with2a =1, =1and g(x,4) =0 and ¢@(x, 1) is a function whose value is to be
determined.
t

An existing solution for numerical experiment no. 7.1 is @(x,t) = e*~

We proposed the following numerical solution using the current scheme

3p 3p

0 ) =) > (0400 = % 324(D) B2 + 2 (E2(5) = £(0)

i=11=1

—xt P, (D) + (1 —2)(&,.(8) — &,(0)) — (1 — x) £, (0) + £, (x)

a;;'s are the wavelets coefficients which will be obtained by the procedure discussed in
section 7.4 and q;;'s are the wavelet integrals that are already calculated in section 7.3.
The particular solution is obtained using the boundary condition on the above equations
and presented in the form of tables and figures. Figure 7.1 demonstrates the visible
agreement in the exact and approximated solutions. Table 7.2 is depicting the current
method performance in comparison with the exact solution existing in the recent
literature. We infer that the proposed method is working well. Further, it has been
observed from Table 7.1 that the error norm decreases with increase in collocation
points which ensures the stability of the proposed numerical scheme. Hence, we can
conclude that the proposed technique is a strong solver in terms of good accuracy.

Table 7.1: L, and L, errors at different value of j for Experiment No.7.1

Level of
resolution

L,-error 4.837014364118279¢-05 5.426745837985967¢-06 6.036516821232161e-07
Lo-error 1.151108100422293¢-04 1.306821554991622¢-05 1.454308205639521e-06
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Figure 7.1: Graphical representation of Approximate solution(Figure 7.1a), Exact
solution(Figure 7.1b), Absolute error(Figure 7.1¢) and contour view of approximate
solution(Figure 7.1¢) in the Numerical Experiment No.7.1

Table 7.2: Comparison of results achieved for Numerical Experiment No.7.1 with Exact

solution
Approximate Exact Absolute
* ‘ Solution solution error

0.1 0.1 0.999674 1 3.26E-04
0.2 0.2 0.999229 1 7.71E-04
0.3 0.3 0.999076 1 9.24E-04
0.4 0.4 0.999188 1 8.12E-04
0.5 0.5 0.999310 1 6.90E-04
0.6 0.6 0.999281 1 7.19E-04
0.7 0.7 0.999249 1 7.51E-04
0.8 0.8 0.999416 1 5.84E-04
0.9 0.9 0.999768 1 2.32E-04
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Numerical Experiment No. 7.2 : - Consider the 1D hyperbolic Telegraph equation of

second order

0, 00, g2 _
oz T 2a 5 T B = -zt g(x,t), (x,%)€[0,1]x][0,T] (7.34)

under the following types of initial constraints
¢(x,0) = sinx, Z—(f(x, 0) =-—sinx Vx€][0,1] (7.35)
and the boundary constraints
0(0,£) =0, o(1,£) =e tsinl, £ €][0,T] (7.36)
witha=2,B%=2and g(x,£) =0 and ¢@(x,%) is the unknown function whose

value is to be determined.

An existing solution obtained from the literature for experiment no. 7.2 is ¢@(x,t) =
e~ ! sin x. Results obtained by the proposed scheme has been explained with the help
of tables and surface plots. It is very much clear from Figure 2 and Table 7.3 that results
achieved with the proposed scheme are roughly coinciding with the analytic solution.
The level of accuracy obtained for the solution is of order 10™* which is a noteworthy
achievement for these kinds of problems. The solution achieved can further be
improved by increasing the number of collocation points. In Table 7.4 error norms
obtained by the present scheme are presented in comparison with the exact solution. It
has been observed that with the increase in the collocation points (level of resolution),
error norms are decreasing which ensures the stability of the proposed scheme. We infer

that our scheme is working well.

Table 7.3: Comparison of results achieved for Numerical Experiment No. 7.2 with

Exact solution

X t Approximate Solution | Exact solution Absolute
error

0.1 0.1 0.089473 0.090333 8.60E-04
0.2 0.2 0.161207 0.162657 1.45E-03
0.3 0.3 0.217964 0.218927 9.63E-04
0.4 0.4 0.260608 0.261035 4.27E-04
0.5 0.5 0.290540 0.290786 2.47E-04
0.6 0.6 0.309681 0.309882 2.02E-04
0.7 0.7 0.319588 0.319909 3.21E-04
0.8 0.8 0.321902 0.322329 4.27E-04
0.9 0.9 0.318267 0.318477 2.10E-04
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Figure 7.2: Graphical representation of Approximate solution (Figure 7.2a), Exact

solution(Figure 7.2b), Absolute error (Figure 7.2c), and contour view of the approx.

solution (Figure 7.2d) in the solution of Numerical Experiment no No. 7.2

Table 7.4: L, and L, errors at different value of j for Numerical Experiment No. 7.2

Level of resolution

J=1

J=2

J=3

L,-error

2.966139636402692¢-04

1.412472863080943¢-05

1.508868064851954¢-06

L -error

3.086337934932737¢-04

1.238748966753134¢-05

1.129461926263620e-06

Numerical Experiment No. 7.3: - Consider the 1D hyperbolic Telegraph equation of

second order

2%¢
at2

2 4 g2y = 2@
+2a--+ B9 == +g(x,1),
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(x,t) €[0,1] x [0,T]

(7.37)



under the following types of initial constraints
p(x,0) =22, Z(x,0)=1 ,x€[01] (7.38)

and the boundary constraints

p0,t)=t, e(1,t) =1+t V £€][0,T] (7.39)
witha =1, =1and g(x,%) =x?>+t—1 and @(x,%) is the unknown function
whose value is to be determined.

The solution obtained from the existing literature for Exp.no.7.3 is ¢(x,t) = x% + ¢.

u u
Approximated (X't) exact (X,t)

<S
SR

SSEXES, SIS
SIS SIS
SIS < SISO <

CSISSCSIIIES CSISSSAIKES
SSSSISSSRSISIIS SESRISSSISIISIIIEN,
<S “\s‘: OSSOSO

SIS 2
SIS

o

< <

u(x,t)
u(x,t)

Figure 7.3a Figure 7.3b

Absolute error in u(x,t) at j=3 For j=3 and p=81

(x.t)

Approximated

Figure 7.3¢ Figure 7.3d

Figure 7.3: Graphical representation of Approximate solution(Figure 7.3a), Exact
solution(Figure 7.3b), Absolute error(Figure 7.3c), and contour view of the approx.
solution (Figure 7.3d) in the solution of Numerical Experiment No.7.3.

It is shown in  Table 7.5 and Figure 7.3 that results achieved with the proposed
technique are exactly matching with the exact solution with no error. Figure 7.3

explains the high level of agreement between the exact and approximated solution.
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Getting high accuracy for a small number of grid points makes it a strong solver for

these kinds of mathematical models.

Table 7.5: Comparison of results achieved for Numerical Experiment No.7.3. with

Exact
solution
X t Approximate Solution Exact solution | Absolute error
0.1 0.1 0.3 0.3 0
0.2 0.2 0.6 0.6 0
0.3 0.3 0.9 0.9 0
0.4 0.4 1.2 1.2 0
0.5 0.5 1.5 1.5 0
0.6 0.6 1.8 1.8 0
0.7 0.7 2.1 2.1 0
0.8 0.8 24 24 0
0.9 0.9 2.7 2.7 0

7.6 Conclusion

After looking at the results of numerical experiments performed on three numerical
Experiments with the proposed technique, we infer that 1D- hyperbolic Telegraph
equations of second order can easily be solved by the proposed scheme with less
computational cost and high accuracy. Level of accuracy obtained is or order 10™* for
only 9 colocation points in the first iteration is a noteworthy achievement for these kinds
of equations. Moreover, the use of common MATLAB subprograms to solve various
types of Telegraph equations, makes it more computer-friendly. Very good accuracy is
obtained for a very small number of collocation points makes the proposed scheme a
strong solver for these kinds of differential equations. Therefore, by looking at the
performance of the method, we conclude that the given method can be extended to solve
another set of differential equations. All the calculations have been performed using

MATLAB 7 software installed on system with 4gb ram and intel core i3 processor .
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Chapter 8

A Hybrid Scheme Based Upon 8 —Weighted
Differencing and Haar Scale 3 Wavelets for the
Approximate Solution of (2+1)-dimensional

Partial Differential Equations.

8.1 Introduction

To study the dynamics of any real-time phenomenon happening around us, one of the
most accurate approaches is by using a mathematical model of it. It is said that where
there is a motion there is a differential equation corresponding to it. Mathematical
modeling for a majority of real-time phenomena results in a partial differential equation.
Partial differential equations are playing a very important role in predicting the world
around us. It can be seen in the literature that the numbers of a phenomenon in science
and technology have been studied via linear or non-linear partial differential equations.
Most of the partial differential equations do not possess any closed-form solution.
Moreover, finding the solution of such equations become more challenging when there

are nonlinearities in the equations.

The main purpose of our study is to introduce a new hybrid scheme based upon the
6 —weighted differencing and Haar scale 3 (non-dyadic) wavelets for the solution of

following types of two-dimensional partial differential equations given in Equation

(8.1)

9 — (bp); —abp + LV +y V. (9Vp) + 5¢?
=uV.(F(@)+f (xy1),(xy) €Qt >0

subjected to initial and boundary constraints are given in Equations (8.2) and (8.3)

(8.1)

p(x,y,0) =gxy) Vxy) € Q (8.2)

183



o(x,y,t) =h(x,y,t) V(xy)€ dQte[0,T] (8.3)
where Q is any closed and bounded domain contained in R? with smooth or piecewise
smooth boundary represented by 9. F(¢) is a non-linear function of ¢ , f (x,y,t),
is the source term and « , 5, ¥, §, u are the real constants. In the present study, we will
restrict ourselves to the following special cases of the Equation (8.1) under the

boundary and initial constraints represented by Equations (8.2) and (8.3).
Case 1: Ontaking a =1, =1,y =0,6 =0,u =1, Equation (8.1) reduced to

Pe = (Ap)e —Dp + Vo = V.(F(@)) + f (x,y,t),(x,y) €Qt >0 (84

which is known as NBBMB (non-linear Benjamin Bona Mahony Burgers) equation.
Case 2: Ontaking a = 0,8 =0,y = —1,8 = n?,u = 0, Equation (8.1) reduced to

9 — (Bp)e — V.(9V9) + m?9* = +f (x,y,0), (x,y) €Qt > 0 (8.5)
which is known as a non-linear Sobolev equation.

Case 3: Ontaking a =1, =0,y =0,6 = 0,u = 0 ,Equation no.(8.1) reduced to

o —L@)e—bp=f(xyt), (xy) €Qt>0 (8.6)
which is known as linear Sobolev equation.

Sobolev equations belong to the important class of partial differential equations in
which the highest order derivative present in the differential equation contains mixed
derivative with respect to time and space. These types of equations have a convincing
physical background because of its huge use in Soil moisture migration [195], drainage
of liquids through rocks having cracks [196], heat conduction Continuum
Mechanics[197], etc. On the same platform, the BBMB equation appeared in the
analysis of wave propagation in different mediums like surface waves with a long
wavelength in liquids, Acoustic waves in harmonic crystals, Acoustic-gravity waves in
incompressible fluids, Hydromagnetic waves in a cold plasma, etc[198]. The extensive
appearance of these kinds of equations in the mathematical modeling of different
phenomena occurring in science and technology have gained the attention of the
scientific community. But the closed form solution of these kinds of equations has yet

not been established and even very cumbersome to achieve. Therefore, many
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researchers are involved in developing the various numerical and semi-analytic
schemes for finding solutions to the different problems governed by these differential
equations. Some of the methods which have been recently developed and applied to
solve the two-dimensional Sobolev and BBMB equations are Expanded Mixed Finite
Element Method (EMFEM)[199], Local Discontinuous Galerkin Method
(LDGM)[200], Collocation Spectral Method (CSM)[201], Crank-Nicolson Finite
Volume Element Method(CNFVM) [202], Haar Wavelet Method[73], etc.

But the study of establishing the solution for (2+1) dimensional partial differential
equations using the Haar scale 3 (non-dyadic) wavelets has not been attempted in the
literature which motivated us to develop a new technique for the solution of these types
of equations. Orthonormal wavelets are one of the modernistic functions which have
the capability of dilation and translation. Because of these properties, numerical
techniques that involve wavelet bases are showing the qualitative improvement in
contrast with other methods. In literature, dyadic wavelets are in preponderance. In
1995, Chui and Lian [115] has developed the Haar scale 3 (non-dyadic) wavelets by
using the process of multiresolution analysis. In 2018, Mittal and Pandit have used the
Haar scale 3 (non-dyadic) wavelets [71], [141], [142], [194] for solving the various
types of differential equations and found that these wavelet bases are equally competent
in solving the various types of mathematical models governed by differential equations.
Also, it was shown by them that the Haar scale 3 (non-dyadic) wavelet has a faster rate
of convergence as compared to the Haar scale 2 dyadic wavelets. This gives us good
hope of getting a better solver for these equations by developing a new hybrid technique
based upon 6 —Weighted Differencing and Haar scale 3 (non-dyadic) Wavelets for the

solution of (2+1) dimensional partial differential equations.

This chapter follows the sequence of sections as described: In section 2, explicit forms
of Haar scale 3 (non-dyadic) parent wavelets with their families and procedure to find
their integrals have been explained briefly. Representation of the solution using Haar
scale 3 (non-dyadic) wavelets is explained in section 3. Section 4 explains the method
of solution using Haar scale 3 (non-dyadic) wavelets. In section 5, the convergence of
the method is discussed. In section 6, solutions of three different (2+1)-dimensional

partial differential Equations are produced using the present method to analyze the

185



efficiency and performance of the present method. In section 7, the conclusion drawn

from the results and in future research ideas is given.

8.2 Explicit forms of Haar scale 3 Wavelets and their
integrals

The mathematical expressions for Haar scale 3 (non-dyadic) wavelet family with

dilation factor three [71], [115] are given below

_ .1 o0s<t<1 o
hi(t) = @(8) = {0 elsewhere fori=1 (8.7)
-1 1(0) <t < (i)
N i ) L) 2 () St <ag(d)
hi(®) = yi(3e — k) = V2| =1 () S ¢ <aa(i) (8.8)
0 elsewhere
for i=24,.3p—-1
1 n(0) <t < u,(0)
Ny 2 (20 L) E 0 n, (1) <t < u3(i)
hi() =923t~ k) = L 1 ) <t <) (8.9)
0 elsewhere

for i=236,..3p

(3k+2)
3p

where (1) = 7, 2() = 2% x3() = T2 (D =5 p=3/, j=012,..

,k=0,1,2,..,p—1.Here i,j,k respectively represent the wavelet number, level of

resolution (dilation), and translation parameters of wavelet family.

The values of i (fori > 1)can be calculated with the help of j,k by using the

i—1=3/+2k foreveni

following relations i . ]
i—2=3'+2k for odd i

}. By using this relation for

different dilation and translations of h,(t), h;(t), we will get the wavelet family as
hy(t), h,(t), hs(t), hy(t), hs(t), hg (t), ... where h,(t) and h;(t) are also called
mother wavelets and rest all the wavelets which we have obtained from mother wavelet

are called daughter wavelets.

The main difference which makes the Haar scale 3 (non-dyadic) wavelets better than

the Haar scale 2 dyadic wavelets is that only one mother wavelet is responsible for the
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construction of whole dyadic wavelet family but in case of Haar scale 3 (non-dyadic)
wavelets, two mother wavelets with different shapes are responsible for the
construction of the whole family. Because of this fact, Haar scale 3 (non-dyadic)

wavelets increase the convergence rate of the solution.

Now one can easily integrate the equations (8.7)-(8.9) the desired number of times over

the interval [A, B) by using Riemann Liouville Integral formula as given below

1

qm,i(t) — fot fot fot ......... M tIIMes +++ v+ o fot h; (x)(dx)™ = fot(t _

(m-1)!

_— 3 L (8.10)
x) hi(x)dx, m=1,23....... ,i1=1,23,......... 3p

After evaluating the above integrals for Equation (8.7), we get Equation (8.11)
tm .
qp,(t) = — for i=1 (8.11)

Using Equation (8.10) on Equation (8.8), we get the values of g, ;(t)'s for i=
2,4,6,8,:--,3p — 1 which are given by Equation (8.12)

qm,i(t) =
0 for 0<t<x()
;n—ll(t — @) for n (i) <t < (i)
% —[—(t =0 @®)" +3(t — 7 (D)"] for () <t < n3(0)
—[—(t =) +3(t —2(D)" = 3(t = %)) for ns(i) < t < y(i)
—[=(t = @)" +3(t —2,(D)" = 3(t —23(D)" + (t = 2(D)"] forxu(i) <t <1

(8.12)
Using Equation (8.10) on Equation (8.9), we get the values of g, ;(t)'s for i=

3,5,7,9, -+, 3p which are given by Equation (8.13)

qm,i(t) =
0 for 0< t<x(i)
% t— Hl(i))m for (i) <t < u,(0)
\/; % [(t - zl(i))m - (t - Hz(i))m] for () <t <u3(Q)
% [(t - }tl(i))m - (t- xz(i))m —(t- %3(i))m] for 3(i) St <y (i)
—[(t =) = (t =) = (= 25D)" + (£ —2a(D)"]  foruy(D <t <1

(8.13)
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8.3 Approximation of solution

Using the properties of Haar scale 3 (non-dyadic) wavelets as explained in section 3,
any function x(t) € L,(R) can be expressed as an infinite series of Haar scale 3 (non-

dyadic) wavelet bases as given in Equation (8.14)

u(t) = XiZo a;hi(t)
=a1hy (t) + Yeveni aip (37t — k) + Yoaa is1 aip?(37't — k) (8.14)
Here a;'s are the wavelet coefficients whose values are to be determined by the
proposed method. But for computational purposes, one can consider a finite number of
terms. By considering the first 3p terms to approximate the function u(t) we get

Equation (8.15)
3p

u(t) ~ g, = Z a;hi () (8.15)

i=0

where p =3/, j=10,1,2,..

8.4 Description of Proposed Scheme

This section is used to describe the procedure involved in the proposed scheme for
getting the solution to the concerned problems. To make the explanation of the process
simple and easy to understand, we are considering the linear case of Equation (8.1) as

given by Equation (8.16)

o —(Bp)i—Ap=f (xyt), (xy) €Qt>0 (8.16)
Using the 8 —weighted finite differencing scheme for time discretization, Equation

(8.16) becomes

(@ = D)oy, — (@ — @) e, = At (8(Bg - £ (x,y, ), T~

(8.17)
6)(Ap — f (.Y, ))e=, )
After simplifications Equation (8.17) results in Equation (8.18)
O™t — (14080 (@ + 93y) = 0" — (1= (1 - 0)At) (i +
(8.18)

@) + (1 — @At f™ + At 41

subjected to initial and boundary constraints given in Equation (8.19)
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o(x,y,0) = g(x,y) vV (x,y) € Q,
o™ (x,y,t) = h(x,y,t,) V(x,y) € 0Qt€[0,T], n=123.. (8.19)

where ™ = @(x,y,t,), f*"=f(x,y,t,) ,Q=1[01] xX[0.1]

Now space variables are discretized with the help of two dimensional Haar scale 3 (non-

dyadic) wavelets as explained below
3p 3p

S () = DT Al () () (820)

i=11=1

Integrating Equation (8.20) w.r.t x within the domain 0 to x , equation (8.20) leads to

3p 3p
Piyy (x,y) = z z afi*tqi1 () b (y) + 03y (0, ) (8.21)

i=1 1=1
Now by integrating the Equation (8.21) w.r.t x within the domain 0 to 1, the value of
(pfc;; (0,y) is given by

3p 3p
PO = L) - g0, = ) Y alflg(D kG (322)

i=11=1

Now using Equation(8.22),Equation (8.21) becomes

3p 3p

P = Y Y i (0200 — 42(D) MG + PHLY)
i=1 =1 (8.23)
— 955 (0,)
Again, integrating the Equation (8.23) w.r.t x within the limits we get
3p 3p
e = ) Yl (01200 = x 412 (D) ) +x 35 (1,y)
= = (8.24)
+ (1= x)31(0,9)
Integrate the Equation (8.24) w.r.t y within the limits 0 to y we get
o3 y) = B2 T al ™ (41200 — x 412(D)) 412 () +
x (31 (1Ly) = o3 1(1,0)) + (1 — 1) (¢31(0,) — 931(0,0)) + (8.25)

p3t(x,0)
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@3 (x,0) = (9™ (x, 1) — 9™ (x, 0))

3p 3p

Z Z n+1 ql 2(x) —x qi,z(l)) q12(1)

=11= (8.26)
_ X((pn+1(1,1) _ (pn+1(1,0)) + X(pn+1(1,0)

— (1= x)(e™1(0,1) — ¢™1(0,0)) + (1 — x)p*1(0,0)

3p 3p

oI (x, y>-ZZ (4200 = x 42(D) (011 0) — 02(D)

i=1 1=

+x o3t (L) + (1 —x) 93*1(0,y)

+ (™ (x, 1) — o™ (x,0))
x(e™1(1,1) — ™ (1,0))

- (1 =x)(e™*(0,1) — ¢™(0,0))

(8.27)

Integrate the Equation (8.27) w.r.t y within the limits 0 to y we get Equation (8.28)

oY) = 28, T it (40200 — 2 42 (D) (41200 = ¥ +
x(e™1(Ly) = 9™1(1,0)) + (1 = x)(¢™**(0,y) — 9™*(0,0)) +
y(e™ 1 (x, 1) — 0™ (x,0)) — xy(p™*1(1,1) — ¢™1(1,0)) — (1 —
0y(e™1(0,1) = ™1(0,0)) + @™+ (x, 0)

(8.28)

Similarly, by using the same procedure the expression for (pxx , (p,fc+1 can be obtained

as given in Equations (8.29) and (8.30).

PR Y) = B8 T an b0 (0,200 =y @12(D) + y ol 1) +

8.29
(1 -yt (x,0) (829
Ot (xy) = X2, 5L aft! (qll(x) qi,z(l)) (Ql,z()’) -y CIl,z(l)) +
Yy o2 (x, 1)+ (1 —y) o2*(x,0) + (™ (L, y) — 9™1(0,y)) —
(8.30)

y(e™1(1,1) — ™1(0,1)) — (1 — ) (9™ 1(1,0) — 9™+1(0,0))
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Substituting all the above-calculated value in Equation (8.18), it becomes

2P i alt (9200 = x 412 (D) (@2 () — g2 (D) = (L +
080) (1) (91200 = ¥ 412(D) + (41200 = x 412 (D) b)) =

(" — (1 — (1 — A (i + @Fy) + (1 — O)AL 7 + OAL f™1) + (1 +

OAL) (y PO D+ (A =yt (x,0) +x o (Ly) + (1 — (8.31)

x) 3 (0, y)) — (x(e™1(1,) — ™ (1,0)) + (1 — x)(™*1(0,y) —
e™1(0,0)) + y(¢™ 1 (x, 1) — 9™ (x,0)) — xy(p™(1,1) —
e™1(1,0)) — (1 — )y(e™1(0,1) — ™1(0,0)) + @™ 1(x,0) )

Now using the boundary constraints and discretizing the space variable as x = x,. ,y =

ys Wwhere x, = 22—;1 > Vs = %, r,s=12,.... 3p in the equation (8.31) we get
the following system of algebraic equations as given in Equation (8.32)

3p 3p

> Z TRy = F(r,) (8.32)

i=1 1=

Ritrs = (22060 = % 012(D) (012 0%) — q12(D) — (1 +

080) ( hae) (4120 = ¥ @12(D)) + (1206) - 33)
% 412 (D) Gy Vi

F(r,s) = ("0 ¥5) — (1 = (1 = 0)A) (@2 (Vs ) + 03y (%7, 5 ) +

(1= O)AL f™ (2, ¥ ) + OAL 10y, 7)) + (1 + 08 (y5 I (2, 1) +

(1= ¥ @i (2, 0) +x @ (1L, y5) + (1 = %)l (0, ) -
(@™ (1, y5) — @™ (1,0)) + (1 — %) (™10, 5) — 9™ *1(0,0)) +
Ys(@™ 1t 1) = 0™ (1, 0)) — xy5 (0" (1,1) — 9™ (1,0)) - (1 -
x)ys(@™1(0,1) — ¢"*1(0,0)) + 9™ (x,,0))

(8.34)

The above system reduced to the system of algebraic equations (Equation 8.34)

and further, it gets reduced to the following system of 4D-arrays (Equation 8.35)
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AzpxapR3px3px3px3p = Fapx3p (8.35)

Further, the above 4D-arrays system is reduced to the following 2D-matrix system

(Equation (8.35)) using the transformations af;"* = b;*' and F5 = G,

B1x(3p)2S 3p)2x(3p)? = G1x(3p)? (8.36)
where A =3p(i—1)+land u=3p(r—1) +s

Then the values of b]** can be calculated successively for different values of n=1,2...
by solving the above system of equation using the Thomas algorithm via MATLAB
Program. Original wavelet coefficients ali*! can be restored using the above
transformation. These coefficients will be used in the equations to determine the final

solution of the problem ) for different value of ¢t,, for n= 0,1, 2..

8.5 Convergence of 2D-Haar Scale 3 Wavelets

In this section, the convergence of 2D-Haar Scale 3 Wavelets for the approximation of
two dimentional unknown solution of the problem is discussed with detailed arguments

by proving the following theorem

Theorem: If u(x,y) € C%([0,1] X [0,1]) be any square-integrable function such that

%u(x,y)
0x0y

| < M, ¥ %, ye[0,1] x [04] and u(x,y) = £2, 52, aghy()hy () Then
2 2
”E]J'” = ||u(x,y) _u3p,3p'(x'y)”
<M2 1 1 +(47) 1+<47> 1
— =X — I x—=4(— | x—
= 262\81 " p3p3 " \240/ " p3 " \240) " 3

where p =3/, =0,1,2,.. ;p' =37,J'=0,1,2,... andJ , ]’ are the different level

of resolution for the wavelets families of h;(x) , h;(y) respectively.

Proof: Let u(x,y)=X72,221a;h;(x)h(y) be the exact solution and

Usp 3 (X, Y) = TP, ?f; a; h; (x)h;(y) be the approximated solution

Now the error in approximating the solution by two dimensional Haar scale 3 (non-

dyadic) wavelets is represented by the Equation (8.37)
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Epp=u(xy) = uspsp (,¥) = EiZsp11 Litaprer ahi (O (v) +

o ' o (8.37)
Y2api1 Zomy auhi CON ) + X T2 s i1 aahi (O O) =X +Y + Z
Where the values of X ,Y and Z are given by the Equation (8.38)
X = X211 Simapre1 Ahi MG, Y = T4 T2 aghi (Ol () | $3%)
Z =32 S s anhi (O ()
2 2
IE, ;|7 = luCey) = tapsp G| = IX +Y +Z 2 = (X +Y +
ZX4+Y+Z)=(X,X)+(Y, VNV+(ZZ)Y+2(X,Y)+2(Y,2) + (8.39)
2(Z,X)
Now
(X0=() D ah®h®), ) D awhhG)
i=3p+11=3p’+1 i=3p+11=3p’'+1
- f [ D anwrm | Y Y amGono) |dxdy
—0 —oo \i=3p+1l= 3p +1 i=3p+11=3p'+1

Z Z Z al]aklf h; (x)hk(x)dxj hi (V)b (y)dy (8.40)

i=3p+1j=3p'+1 k=3p+11=3p’'+1

Now by using the orthogonal properties of Haar scale 3 (non-dyadic) wavelets on

Equation (8.40), we get Equation (8.41)

(X, %)= Z Z (31“”)<31' ) = 3/+1' Z Z au (841

i=3p+11=3p’+1 i=3p+11=3p'+1

where | and J'represent the level of resolutions at which solution is approximated

Similarly, by using the procedure discussed in Equation (8.40) and (8.41), we get
Equation (8.42)

__1 3p’ ) __1 ¢3p
( Y rY) - WZ?L@H Zl:l ailz D <Z rZ> - 3J+] Zi:l Z?i3p’+1 ailz

(X,Y)=(Y,Z)=(Z,X)=0

(8.42)

Now, Equation (8.39) becomes
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2 _ 1 2 3p' _1 2
”E],]’” = (Z(l'x;3p+1 Z?°=3p’+1 o G T YiZap+1 Xi=1 vy

1 (8.43)
Z?i Z(lx;3p’+1waizl)
where a;; is represented by Equation (8.44)
]+]
a;; = ulx,y)dxdy
. o (8.44)
=3 f e (37 | oty dy) dx
0 0
where h;(x) = ;" (%) + ¥;°(0) . i (¥) = ¥, ) + P2 ()
1 1 1
| moYuCe Iy = | wlorucedy + [ wie)utydy
0
= (120 Futeydy + [0 V2ule, y)dy + [0 Zux,ydy) + (8.45)

#2(1) V3 )
(fuf(l) , utny)dy +1,. 4(1)7”(" y)dy)

By applying the mean value theorem of integral on Equation (8.45), we get &, €
(%1 (D), xn, (l)) ,€5 € (%2 (D), x5 (l)), &3 € (%3 ), %4(1)) such that

[ uCy)dy = 0 —aOux &) = 75 ulx, &)
[ uGey)dy = 06 = x(DIu(x, &) = 55 u(x, &)

[ uey)dy = Gea() = 5 (DYu(x, &) = 55 u(x, €5)

Now equation (8.45) results into (8.46)

fy MO ux, ;v)dx——(( Nue) +V2ux e) — (B2 utx eg)>

3p’

== V31 u(x, e) + (5= ) ulx, &) — \/—H u(x, &3)
3p' \\ v2

fol h;(y) u(x,y)dx = 3%, <\E (u(x, g) —ulx, 83)) + % (u(x, £,) —

(8.46)
u(x, 51)) + \/% (u(x, &) —u(x, 53))>
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By applying the Lagrange mean value theorem on Equation (8.46), we get ¢, €

(e1,€3) ,6p € (&1,&2 ), & € (&2 , €5 ) such that

o M) u y)dx = (f(l—eg (6 20) + 35 (22 = £) 3o (1. 8,) +
(8.47)

1 7]
e )T (e ))

From Equation (8.47), Equation (8.44) becomes
J+]'

ay=37 [ ( J o) ueey) dy) dx

-3 (¢i1<x>+wﬁ(x))<3’7 | Bty dY>dx
0 0

]

NOER” (x))(f (81— £3) 52 (0, 20) + 5 (2 — &) T2 (1,2) +

1 d
\/_5(52 - 53)%(9@ Ec )) dx

]+1

<\f (&1 — &) J, i () + ¥ (x)) (x Ea)dx+ — &) [ (0 +
¥ (x)) (x Sb)dx+\/—(52 &) J, (i () + 92 (X)) (x Eb)dx>l
Which implies

I+
3— H (iH-10
W= 5 (\[ (e = e5) | [ 1 ay v €addx +

H3(") Jdu H4(l) —-10du Hz(l)\/_au
sz(l) \/_ (x ga)dx+f3(l) \/—a ( Ea)dx) (fkl(l) 2 2y ( ,Ea)dX‘l‘

-390 19
fZ((ll)) 2 au (*x, ‘Sa)dx)] (e =) [( Z"é?mi (x, &) dx +

un3(i) ou n4(i) —10u n (l)fau
f,;m \/_ (x gp)dx + | 340) Sy (x, eb)dx) (f%f(l) >y = (x, g5)dx +

-390 18
fZ((ll)) 2 au (*x, ‘Sb)dx)] (e =) [( :((ll))fau (x, ec)dx +

n3() r50u #4 (i) —1 0u 25 (i) V3 du
sz(l) \/_ (x Ec)dx + f 3(1) \/—a ( ch)dx) + (fﬂl(l) 75 x, Ec)dx +

n3z(d) 2 o9y

OB ,gc)dx)D (8.48)
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By applying the mean value theorems as applied above, Equation (8.48) becomes

]+1 [\/’ (e — E3)< <f (ea,’ — a % = (&, €2) +

1 9%u 9%u
ﬁ(‘saz’ — &4,") 6x0y( e +—= (€a2 — &g, )6x6y ("1 €a ))) +

81)( (f (8b1 €bs )_(gb &) + \/—(gbzl B

" I} 1
0) o (20", 20) + 75 (20, = 2,") 2 (&5 ,sb>)>+ﬁ(sz—

) (Bp <f (861 - 6x6y (EC &)+ 5 V2 (802 ) dxdy (Sc” &)+

1 ! nr
N (562 — & ) 6x0y( c €& )))] (8.49)

Where

Salli Sblli 5(:1, € (%1(i); "2 (l)) ’ Saz ,, szli SCZI € (%2 (l), H3 (l))' £a3 ,' €b3l; 5(:3,

€ (33(D), #,()))

and

g, € (eal’ :Ea3,) ,€q4 € (eal’, eaz’),ea”’ € (eaz’, £a3’), g, € (ebl’ :5b3’) , € E

(8171” gbzl)’gam € (gbzl’gb3’)’ EC’ € (801’ ’803,) ’EC” € (801” ECZI)’EC”’ € (802,’ 803,)

Now Equation (8.49) reduced into Equation (8.50)

)G G+ GIm G+
%(ix,,)( ze)w%(aw -
R (E@m 3@ m+=u)

all =

(8.50)

[
/N
S
<
N——
+
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After Simplifying Equation (8.50), we get Equation (8.51)

+J'
Lo 32 M _ M .
CTI P g3 xpripd
MZ
T 4 x 3% x 3333/
Therefore

MZ

2 <
W= 3w pip? (8.51)

M?

Z Z 347 ¢

i=3p+11=3p'+1

Z Z 3/+J’

i=3p+11=3p’+1

Z Z 4 x 34]+4] +4

i=3p+11=3p’'+1

- 4 z z 34]+4]+4

i=3p+11=3p'+1

2 oo
M Z 34]4

Z 3-4)—4

i=3/t14+1

o) 3] +1

53 o

4 x 34 x 33/33)

e

), 3

1=3)"+141

i=3/+t14+1 J +11=3)" 41
Mz (o] (o] , ) ) Mz 2 (o] [ee] )
_ 3—4]—42 3] +1_3] —-4] = X — Z —4]2 -3]
( )3 T X3 3 3
i=3/+t14+1 J'+1 i=3/+t14+1 J'+1
= 1 1 1 1 M?
Y e ) ) = s <
4 34 34 26 33 26 33 34 x 262 p3p’
J+1 J+1
M? 1
Z Z 3+ @i < 37 X 262 p3p’3 (8.52)
i=3p+11=3p’+1
Now consider
o 3p' , ® 37 , @ ) +1
Z ZL M- Z Z; M- 3-4/-4 Z 3-4J'
3J+J’ 4 34/+4]' +4 4
i=3p+11=1 i=3p+1 =1 i=3/+141 =1
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’3]+1

DA

i=3/+1+1 0 =3/
M2 < 4
== z 3-41-42(31’+1 -3/ +1)3Y
i=3/+141 0
M1 w Ly / L3yt s aca)!
=I5 Z 3 2(2.3 +374")
i=3/+1+1 0

_ M2t 1y(s4e 1 81 1
__ﬁ(%xﬁ> %( _33f’+3)+%( _34j'+4)

4
M22(1 1)(1269) M? <47> 1
—[—x— = X X —
262~ \240) " p?

1, _ M 47y 1 53
Z 2—31+ﬂ“ﬂ—ﬁx<m)x5 (8.53)

i=3p+1 I=1

Similarly proceeding as above, we have

[oe)

M2 47\ 1 .
Z Z 37 = 56 (%)XF (8:54)

i=11=3p'+1

Now using Equations (8.52)-(8.54), Equation (8.43) becomes

oo 3p’ o)

2
&1 = Z Z St Y ZW : Z > e

i=3p+11=3p’+1 i=3p+1 i=11=3p’+1

M? 1 M? 47
( ) p’3

< X X
=3ix262 "\ pips | 262 < \240

IE ”2<M2 1>< 1 +<47>x1+(47)x 1
1= 262\81 7 533 T \240) * 2 T \240) " 13 (8.53)

For p > 00,p" - o0,

1 M? <47) 1
3

X — X [—] X
23 262 " \2a0

the convergence of the proposed

scheme.
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8.6 Numerical Experiments and error analysis

To describe the efficiency of the present scheme, some numerical experiments have
been conducted on the test problems considering (2+1)-dimensional partial differential
equations. L, , L, and absolute errors have been calculated to check the level of

accuracy of the present scheme with the help of following formulas at a fixed time t

Absolute error =|ueyqcr (Xr) Vs, £) — Unum (Xr, Y5, £ (8.56)

Ly = nrlgxluexact (xrr Vs» t) — Unum (xrr Vs» )| (8.57)

3
\/Zlflluexact (xrr Vs t) — Upum (xrr Vs) t) |2

L, (8.58)

3p
\/lelluexact (xr, Y5, ]2

Numerical Experiment No. 8.1 : In this Numerical Experiment, we considered the

two-dimensional Sobolev equation of the type

o — (D) —Ap =f (x,y,t), (x,y)€[01]x[0,1],t > 0 (8.59)

with the following boundary and initial constraints

Casel. (@) (x,y,0) = sin(mx) sin(mwy) (x,y) € 0,1] x [0,1]
(b (x,y,t) = e tsin(mx) sin(mwy) (x,y) € 00,t € [0,T]

Source term f(x,y,t) = —e tsin(nx) sin(wy)

Case II. (a)o (x,v,0) = e**Ysin(mx) sin(my) (x,y) €10,1] x [0,1]
(b)p (x,y,t) = e*V*t sin(nx) sin(mwy) (x,y) € 002,t € [0,T]

Source term f(x,y,t) = e**V*t((4n? — 3) sin(wx)sin(my) — 4w sinm(x + 7))

Case III. (a)@p(x,y,0) = e*77 sin(nx) sin(mwy) (x,y) €[0,1] x [0,1]
(B)p(x,y,t) = e* Y7t sin(nx) sin(wy) (x,y) € 002,t €[0,T]
Source term f(x,y,t) = —e* V"t sin(mx) sin(my)

Exact solution of Numerical Experiment No. 8.1 for

Casel. ¢ (x,y,t) = e tsin(mx) sin(mwy)
CaseIl. ¢ (x,y,t) = e**Y*tsin(mx) sin(my)

Case IIl. @(x,y,t) = e* Y7t sin(nx) sin(mwy)
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We proposed the following general solution for Numerical Experiment No.8.1 using

the proposed scheme

P y) = B8 T it (402 (0) — 2 42 (D) (21200 — ya,.0)) +
x(e™(Ly) = 9™1(1,0)) + (1 = x)(¢™(0,y) — 9™ (0,0)) + y(¢" ' (x, 1) —

e™1(x,0)) — xy(™1(1,1) — ™1(1,0)) — (1 — x)y(9™*1(0,1) — »™*1(0,0)) +
(pn+1(x’ 0)

here ™1 (x,y) = @(x,¥,ths1) ¥V (x,¥) € [0,1] X [0,1], tp41 € [0,T], n=1,2,3 ...
,a;;'s are the wavelets approximation coefficients and q;;'s are the integrals of Haar

scale 3 (non-dyadic) wavelets.

The particular solution for each case has been obtained using the boundary condition
on the Equation (8.59) and presented in the form of tables and figures. It can be seen
from Figure 8.1-Figure 8.3 that the results achieved by applying the proposed scheme
are in good agreement with the analytic solutions. Table 8.1-Table 8.3 are depicting the
performance of the proposed scheme in comparison with the other methods[[73],
[203],[204]] existing the recent literature at a different level of resolution. We infer that
the proposed method is working better than the other methods[73], [204], and giving
the results comparable to the method [203]. Further, it is observed that as we increase
the level of resolution j, the error norms decrease which ensures the stability of the
proposed numerical scheme. Hence, we can conclude that the proposed technique is a

strong solver in terms of better accuracy.

Table 8.1: L,,L, errors in the solution at t=1,At = 0.01,68 = 0.5 of Numerical

Experiment No. 8.1 for case 1.

Ji L, Lo L,[204] | Loo[204] L,[73] Loo[73] L, [203] | Lo [203]
0 | 4.04E-02 | 1.49E-02 | 1.47E-02 | 6.28 E —02 - - 2.74E—02 | 137E 02
1 | 5.02E-03 | 1.84E-03 | 8.10E-03 | 221 E 02 | 1.75E-02 | 7.48E-03 | 930 E—04 | 427E —04
2 | 5.72E-04 | 2.10E-04 | 2.92E-03 | 6.49E —03 | 8.95E-03 | 2.15E-03 | 496 E 04 | .46 E —04
3 | 7.11E-05 | 2.62E-05 | 8.01E-04 | 1.72E 03 | 4.01E-03 | 4.95E-04 | 9.84 E 05 | 1.26 E—05
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For j=3 and p=81 Absolute error in u(x,y,t=1) at j=3
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Figure 8.1c Figure 8.1d
Figure 8.1: Graphical representation of Exact solution(Figure 8.1a), Approximate
solution (Figure 8.1b), contour view of the approx. solution (Figure 8.1c) and absolute

error(Figure 8.1d) in the solution at t=1, At = 0.01, 80 = 0.5 of Numerical Experiment
No. 8.1 for case 1.

Table 8.2: L, ,Ly errors in the solution at t=1,At = 0.01,0 = 0.5 of Numerical

Experiment No. 8.1 for case 2.

Ji L, Lo L,[204] Loo[204] L,[203] Loo[203]

0 | 1.8834E-02 | 7.6790E-03 | 6.7382E-01 8.5627E-01 - -

1 | 3.0684E-03 | 1.3353E-03 | 1.8475E-01 2.7254E-01 6.9125E 03 | 3.6864E 03
2 | 3.5747E-04 | 1.5944E-04 | 4.7550E-02 7.9913E-02 2.0205E 03 | 6.1921E 04
3 | 43790E-05 | 1.9293E-05 | 1.1658E-02 2.0915E-02 5.5575E 04 | 7.7847E 05
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Figure 8.2¢ Figure 8.2d
Figure 8.2: Graphical representation of Exact solution ( Figure 8.2a), Approximate
solution (Figure 8.2b), contour view of the approx. solution ( Figure 8.2¢) and absolute
error( Figure 8.2d) in the solution at t=1, At = 0.01, 0 = 0.5 of Numerical Experiment
No. 8.1 for case 2.

Table 8.3: L, ,Ly errors in the solution at t=1,At = 0.01,0 = 0.5 of Numerical

Experiment No. 8.1 for case 3.

Il L, Lo | Ly[204] | Loo[204] L2 Lo, [73] | Ly[203] Leo
[73] [203]
o | 19196 | 1.5873 [ 2.4663 | 1.0505 - - 1.2031 | 8.8937
E-02 | E-01 | E-03 E-02 E-02 | E-03
| | 31149 127491 1712651 | 52058 [ 1.0450 | 627731 | 3.5605 | 1.8882
E-03 | B-02 | E-03 E-03 | E02 | E-03 | E-04 | E-04
, | 3558132240 | 42776 [ 16720 | 59420 [ 1.7252 | 9.4118 [ 29171
E-04 | E-03 | E-04 E03 | E-03 | E-03 | E-05 | E-05
5| 36585 [3.3583 | 11685 | 45449 | 26154 [ 3.8947 [ 2.0569 [ 3.2249
E-05 | E-04 | E-04 E04 | E-03 | E-04 | E-05 | E—06
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Figure 8.3: Graphical representation of Exact solution ( Figure 8.3a), Approximate
solution (Figure 8.3b), contour view of the approx. solution (Figure 8.3c) and absolute
error ( Figure 8.3d) in the solution at t=1, At =0.01,6 = 0.5 of Numerical

Experiment No. 8.1 for case 3.

Numerical Experiment No. 8.2 : In this Numerical Experiment, we considered the

two-dimensional non-linear Sobolev equation of the following type
@ — (Ap)e — V.(pVp) + m?9® = f (x,y,1), (x,y) €Qt > 0 (8.60)

With the following boundary and initial constraints

(e (x, y,0) = sin(nx) sin(ry) (x,y) €[0,1] x [0,1]
(i) (x,y,t) = et sin(nx) sin(mwy) (x,y) € dQ,t€[0,T]

and the source term
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f (x,y,t) = (14 2n?)et sin(mx)sin(my) + 3w2e?t sin?(mx)sin?(mwy) —
2% (e?t sin?(mx)cos?(my) + e?t cos?(mx)sin?(my))
Using the 8 —weighted finite differencing scheme for time discretization, the above

equation becomes

O™ — (@It + ol !) — BA ((pnﬂ(pfcl;l + I 4 (p2)nHl 4 ((szz)nﬂ _
2 (p2)™) = o™ — (@ + @3y + (1= OAL(9 gl + 9"}, + (p2)" +
(p2)" = T2 (@H™) +(1 — O)ALL™ + GAL f7+1

By applying the quasilinearization technique to linearize the non-linear terms as

described below

n+1 n+1

(@)™t = @™ Lol + @™ — @™oy

n,n+l

(0y)™" = 0™ 03, + 00l — 0"},
(@)™ =202+ — (@)™
(02)""" = 20303 - (¢3)"
((pZ)Tl+1 — 2¢n¢n+1‘ _ (¢2)n

The equation leads to

(1 - 6at(R + @fy — 2m20™)) ™ — (1 + 64 ™) (03t + @3yt) -
20At(@Rortt + eloitt) = @™ — (@ + @) + (1 — 20)At (@™ @R + @™ @), +
(@)™ + (92)" — T2 (9*)™) +(1 — O)ALf™ + 6AL f™+

n+1 n+1 n+1 n+1

yPxx”  Pyy > Px

boundary constraints then discretizing the space variable as x = x,. ,y =y, where

Putting the values of ¢ , (p{}“ from section 8.4 and using the

2r-1 2s-1 : .
= Zp , Vs = Z—p, r,s=12,.... 3p  in the above equations we get the

following system of algebraic equations

3p 3p

Z z a3+1 Ri,l,r,s = F(T, S)

i=11=1

where
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Riyrs = (1 — 0At(i + 0}y — 2ﬂ2<p")) (Qi,z (x) —x qi,z(l)) (CIl,z(}’) -
v ) = (1 + 68t ™ ((hie) (01200 = ¥ 02D + (a1206) -
Xy qi,z(l)) hl(ys)> — 264t (%’} (Qi,l(x) - qi,z(l)) (Ql,z -y Ql,z(l)) +

03 (01200 = 2 02 0) (012 0) - 41.(D) Vi

F(r,s) = (qo%xr, ¥e) = (@8 Cer, ) + 9l (i, ) ) + (1 =
20)At (9" (tr, Vo) 03 (6, 15 + 9™ Cer, Y 0y G, 35) + (93, 35))" +
(020G 39)) " = m2(92 Cer3))") +(1 = O)ALF ™ (xy, y5) + OAL 71, ys>> -

(1 - 08¢ (93 Gt 30) + 93y 70) — 20297 Cer, 1) ) (3 (0721, 30) -
@™M1(1,0)) + (1 = %) (@™ (0, y5) — ¢™*(0,0)) + ys (0™ (x, 1) —

" (xy, 0)) = x5 (@™ (1,1) — 9™1(1,0)) — (1 = x.)y5 (0™ (0,1) —
PL0,0)) + 9™ (2, 0)) + (1 + 64 9" (2, 7)) (75 2 (e 1) + (1 -

YOI (e, 0) + x 95 (1Lye) + (1 = 1) (0,3)) +

20At(@F(s o3 0, 1) + (1= y5) 92 (x,, 0) + (0™ (L y5) — 9™ 1(0,5)) —
Ys(@™1(1,1) = 9™1(0,1)) — (1 = ) (0™*1(1,0) — 9™*(0,0)) +

o3 @3 (Lys) + (1 —x) @3 1(0,55) + (™ (%, 1) — @™ (., 0)) —

x (@™ H(1,1) — o™1(1,0)) — (1 — x,) (™1(0,1) — ¢™*1(0,0)) )

The above system reduced to the system of algebraic equations and further, it gets

reduced to the following system of 4D-arrays

A3p><3pR3p><3p><3p><3p = F3p><3p

Further, the above arrays system is reduced to the following matrix system using the

: n+l _ pn+l —
transformations a;" " = b;" " and Es = G,

B1x3p)2S 3p)?x(3p)2 = G1x(3p)?

Where A =3p(i—1)+land u=3p(r—1) +s

205



Then the values of b}** can be calculated successively for different values of n=1,2...
by solving the above system of equation using the Thomas algorithm via MATLAB
Program. Original wavelet coefficients a»*’ can be restored by using the above
transformation. These coefficients will be used in the equations to determine the final

solution of the problem for different value of t,, for n=0,1, 2..

“ = u X,y,t=1
Approximated (xy.t=1) exact ( y )

GRS q GRS
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Figure 8.4a Figure 8.4b
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N
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- o

Figure 8.4c Figure 8.4d

Figure 8.4: Graphical representation of Exact solution (Figure 8.4a), Approximate
solution( Figure 8.4b), contour view of the approx. solution (Figure 8.4c) and Absolute
error ( Figure 8.4d) in the solution at t=1, At =0.01,0 = 0.5 of Numerical
Experiment No. 8.2.

Results obtained by the proposed scheme are explained with the help of tables and
surface plots. It is very much clear from Figure 8.4 that results achieved with the
proposed scheme are roughly coinciding with the analytic solution. The level of

accuracy obtained for the solution is of order 10~* which is a noteworthy achievement
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for these kinds of problems. The solution achieved can further be improved by
increasing the number of collocation. In Table 8.4 error norms obtained by the present
scheme are also compared with the other methods [205][73] at different levels of
resolution j and it has been observed that with the increase in the collocation points
(level of resolution), error norms are decreasing which ensure the stability of the
proposed scheme. We infer that our scheme is working well as compare to the methods

[73], [205].

Table 8.4: L, ,L, errors in the solution at t=1,At = 0.001,60 =1 of Numerical

Experiment No. 8.2.

] L, Lo L, [73] L [73] L, [205]
0 3.8655E-02 | 1.0441E-01 1.7284E—01 | 5.8662E—02 | 3.1576E—02
1 4.7240E-03 | 1.2236E-02 | 7.5881E—02 | 1.3147E-02 | 7.8313E-03
) 5.0009E-04 | 9.3648E-04 | 3.4724E—02 | 3.0030E-03 | 1.9572E—03
3 1.7150E-04 | 6.2176E-04 | 1.3063E—02 | 5.5208E-02 |  -----

Numerical Experiment No. 8.3: In this Numerical Experiment, we considered the

two-dimensional non-linear Sobolev equation of the following type

o — (B@)e—Ap+ Vo = V.(F(@)+f (3,0, (xy) €Qt > 0

With the following boundary and initial constraints
(x,y) €[0,1] x [0,1]
(x,y) € 00,t € [0,T] and

D¢ (x,y,0) = sin(x + y)
(i (x,y,t) = tsin(x+y)

The source terms
flx,y,t) = (3+ 2t — 2t? cos(x + y))sin(x + y) + 2 t cos (x + y)

The numerical solution obtained by using the proposed scheme at t =t,,,,n =

0,1,2 ...1s given by

06y, trer) = Zi% B2 it (41200 — x 412 (1) (01200 = y01,. ) +
(@™ (L) — @™ (1,0)) + (1 - 2)(9™ 1 (0,y) — ¢™1(0,0)) + y(0™ (6, 1) -

e™1(x,0)) — xy(™H(1,1) — ™1(1,0)) — (1 — )y(9™*1(0,1) — ¢™*1(0,0)) +
(pn+1(x' 0)
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Where the wavelet coefficient alit*

has been determined will the help of the scheme

discussed in section 8.4 and in the Numerical Experiment No. 8.3.

u
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Figure 8.5a
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Figure 8.5: Graphical representation of Exact solution ( Figure 8.5a), Approximate

solution( Figure 8.5b), contour view of the approx. solution (Figure 8.5¢) and absolute

error ( Figure 8.5d) in the solution at t=1, At =0.01,6 = 0.5 of Numerical

Experiment No. 8.3.

The solution for the given problem has been calculated with the help of the proposed

scheme and the result achieved have been compared with an exact solution available in

the literature. Figure 8.5 is depicting a good agreement in the exact and approximated

solutions. Further, L, and L, errors have been calculated for different value of t at the

level of resolution J=3 and presented in Table 8.5 which demonstrates the efficiency

of the proposed scheme. The level of accuracy obtained is of order 107> for this
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problem at J=3 which can be further improved by increasing the level of resolution.
Moreover, in Table 8.5 error norms obtained with proposed are also compared with the

method [73] and it outperforms over method [73].

Table 8.5: L, , L, errors in the solution at the different values of t with 8 = 0.5 and

J=3 for Numerical Experiment No. 8.3

t L, Lo, L, [73] L., [73]
0.1 4.9037E-04 7.3137E-05 9.0478E-04 9.7897E-05
0.2 1.6986E-04 5.4437E-05 1.9331E-03 2.0530E-04
03 9.1296E-05 4.1336E-05 — —
0.4 1.2961E-04 7.6725E-05 — —
0.5 1.8913E-04 1.2210E-04 5.2227E-03 5.6699E—04
0.6 2.4703E-04 1.7748E-04 — —
0.7 3.0204E-04 2.4279E-04 ~ ~
0.8 3.5479E-04 3.1806E-04 — —
0.9 4.0587E-04 4.0327E-04 ~ ~

1 4.5574E-04 4.9842E-04 8.5980E—03 9.8933E-04

8.7 Conclusion

A new numerical method is developed and implemented on (2+1) dimensional partial
differential equations. In the proposed hybrid method #-weighted differencing scheme
is used with the collocation method by considering the two-dimensional Haar scale 3
(non-dyadic) wavelets as the base function. The convergence of the method is proved
by establishing the error bound for the proposed method. The proposed method is tested
on different linear and nonlinear (2+1) dimensional partial differential equations i.e
Sobolev and BBMB (Benjamin—Bona—Mahony—Burgers) Equations and it is found that
the scheme outperforms over the other method. Implementation of the proposed scheme
is very easy in the computer environment. Similar programming modules can be used

to solve the different partial differential equations with little modifications.
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Chapter 9

Conclusions and Future Scope

9.1 Conclusions

Most of the physical problems can be modeled in the form of a differential equation for
their extensive study. It is exceptionally hard to acquire the analytical solution for most
of the differential equations when the differential mathematical model of phenomena
carries the nonlinearities, variable coefficients, or a greater number of variables (higher
dimensional) in it. This results in the requirement of advanced numerical methods
which can be regarded as a strong solver to get an accurate numerical solution for these
types of differential equations. Researchers are putting continuous efforts for the
improvement of existing methods and the development of new hybrid methods with the
aim to develop a strong solver for these kinds of equations. In literature, dyadic

wavelets are in preponderance in which dilatation factor runs on the power of 2.

This thesis aims to develop and explore the implementation of Haar Scale 3 (non-
dyadic) wavelet-based numerical methods in which the dilatation factor runs on the
power of 3. The proposed method is relatively a new idea used to compute the numerical
solution of some important higher-order linear and nonlinear boundary value problems,
time-dependent partial differential equations., fractional differential equations, and
nonlinear system of fractional partial differential equations. In this thesis, we have used
Haar Scale 3 and Haar scale 2 wavelets as the main tool with existing numerical
techniques such as the Collocation method, Quasilinearization process, and Gauss
elimination method to obtain the solution of various linear-nonlinear higher ordered,
coupled and fractional differential equations. The condition of convergence of these
numerical techniques is derived. Finally, we proposed a new Haar scale 3 (non-dyadic)
wavelet-based technique that is more efficient than the classical Haar scale 2 dyadic

wavelet-based technique.
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Haar scale 3 wavelet basis functions have advantages over the standard Haar scale 2
wavelet basis functions in terms of rate of convergence, accuracy, and efficiency to
approximate any function as shown in Table 4.2, 4.5, 4.8 to 4.10, 4.14, 4.17, 4.20 in
chapter four. Moreover, the proposed method has given better results as compared to
some existing methods in the literature as demonstrated with the help of Table 4.3, 4.6,
49t04.12,4.15,4.18,4.20,4.21,4.24,4.25, 4.28 in chapter 4, when implemented with
collocation and quasilinearization methods. This basis function also reduces the
computational complexity in comparison to the finite element method as it is easy to

implement with collocation and quasilinearization methods.

The proposed wavelet methods, namely Haar scale 3 (non-dyadic) wavelet collocation
method, Haar scale 3 (non-dyadic) wavelet quasilinearization method have proven to
be very useful in a large class of problems arising in real-world applications. Due to its
inherent features of Haar scale 3 (non-dyadic) wavelets such as computationally cheap,
conceptually simple, memory efficient, orthonormality with compact support, this
method becomes an improved alternative tool to traditional numerical techniques. In
fact, the simplicity, sparsity of non-dyadic wavelet matrices, and solution
representation with significantly smaller number of wavelet coefficients increase the
speed of convergence of the method. Haar scale 3 (non-dyadic) wavelet-based
technique gives a better outcome for less value of the level of resolution. Only a few
numbers of collocation points in this technique will lead to the solution and hence

reduces the computational cost.

The considered problems in the chapters of thesis arise in mathematical modeling of
many physical, chemical and biological phenomena happening in the fields of science
and engineering such as viscoelastic flows in fluid dynamics, viscoelastic fluids[3],
hydrodynamic and hydromagnetic stability [93], induction motor with two rotor circuits
[116], fluid mechanics [172], electric signal propagation in cables[179], pulsate blood
flow in the arteries[180], ‘acoustic wave propagation’ in porous media of Darcy-
type[181], vibrations in the different structures, walk theory[182], Maxwell viscous
fluid parallel flow study[183], Soil moisture migration [195], drainage of liquids
through rocks having cracks [196], heat conduction Continuum Mechanics[197], etc in

the analysis of wave propagation in different mediums [198].

212



Although the major findings of the proposed methods are already discussed in the

respective preceding chapters, we now summarize some of the advantages of the

methods as follows:

1.

The proposed method is relatively a new idea used to compute the numerical
solution of some important higher-order linear and nonlinear differential
equations with the boundary conditions, time-dependent (2+1) dimensional
PDEs, FDEs and nonlinear system of FPDE:s.

Operational matrices of Haar scale 3 (non-dyadic) wavelets and the matrices of
integrals of Haar scale 3 (non-dyadic) wavelets are sparse in nature which
accelerate computation work involved and creates a very less cost for
computation.

Non-dyadic Haar wavelet-based methods gives better accuracy as compare to
the other existing methods VIDM [96], OHAM [97], GMQBS [117], LGM [99],
RKSM [100], VIM [101] , MVID [102], SBSCM [103], PGM [104], HPM
[118], QBSCM [119] , HWCM [120] with dilation factor 2, MADM [121]
etc. as shown in the Tables 4.1- Tables 4.29, Table 5.1-Table 5.5,Table 6.2,
Table 8.1-Table 8.5 in the different chapter of this thesis.

In the context of convergences for the considered equations, rate of convergence
of using Haar scale 3 wavelets bases is faster as compare to the Haar scale 2

wavelet basis function

. While implementing the Haar scale 3 wavelet basis functions with collocation

method it is observed that the collocation method is easy to apply with Haar
scale 3 wavelets in comparison to other numerical techniques such as finite
element methods.

Haar scale 3 (non-dyadic) wavelet method is very convenient to solve boundary
value problems in ordinary, partial, and fractional differential equations since
the boundary conditions will get automatically into the process of the method.
Haar scale 3 (non-dyadic) wavelet-based solutions of critical differential
equations like fractional Coupled Burgers’ equation, linear and non-linear
Sobolov, and BBMB equation which are highly complex (2+1) dimensional

partial differential equations are obtained with ease.
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8. The effectiveness and precision of the proposed method can be seen through the
figures given in the different chapters where results obtained with the Scale-3
Haar wavelet and the exact solution available in the literature are lying on one
another for a very few numbers of collocations points. The exactness of a
solution obtained by the method is up to the degree of 1071® which can be
further increased by increasing the number of collocation points as shown in
chapter 4.

9. It can be concluded that the Haar scale 3 (non-dyadic) wavelet-based method is
more elegant in terms of theory, accuracy, easy implementation on computer
system, and small computation cost which provides a better solution in
comparison to other classical wavelet methods. One common program can be
used as a subprogram for all the problems under consideration which shows the
better compatibility of the proposed technique with the computer environment
for programming.

10. Haar scale 3 (non-dyadic) wavelets can easily be extended for the higher
dimensional and higher-order differential, integral and fractional model using
their flexible characteristic.

11. The main limitation with Haar scale 3 wavelet family is that the members of
this wavelet family are discontinuous at the partition points. Because of this
derivative approach at the initial stage is not applicable. Therefore, one has to
adopt the integration procedure to determine the wavelets weight coefficients.
Also,computational cost increases with the increase in the level of resolution .

12. Finally, the scale-3 Haar wavelets approach proved to be elegant, effective and
have great potential to deal with various types of mathematical models and they

are excellent as compare to results available in the literature

9.2 Future Scope

For the physical problems considered in this thesis with single or coupled
differential equations, the Haar scale 3 (non-dyadic) wavelet approach is proved
to be elegant, effective and has great potential to deal with various types of
mathematical models. There are several conceivable ideas which can be

concluded from the research work carried out in this thesis, on which someone
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interested may focus their upcoming research. Some of them can be summarized
as follows:

The proposed technique can be extended for the integral equation, integro-
differential, and fractional integro-differential equations by using some recent
advances in the field of fractional calculus (like Caputo-Fabrizio definitions,
Atangana-Baleanu fractional operator). The presented Haar scale 3 (non-
dyadic) wavelet methods can also be adapted to find the solution of some new
form of linear and nonlinear partial, fractional, and ordinary differential
equations.

In this thesis, we have used Haar Scale 3 and Haar scale 2 wavelets as the main
tool with existing numerical techniques such as Collocation method,
Quasilinearization process, and Gauss elimination. But a huge variety of
wavelets with different structures and characteristics are existing in the
literature like Daubechies, Shannon, Gabor, Legendre, Bernoulli, Hermite,
Chebyshev, Spline, Bessel, Laguerre, ultraspherical, Gegenbauer and CAS
wavelets, etc . To see the efficiency and accuracy of a numerical technique
based on a specific wavelet, a comparative study will be further helpful,
motivating, and interesting.

While using the Haar scale 3 (non-dyadic) wavelet collocation method,
nonlinear problems are linearized by using quasilinearization formula as
discussed in the thesis. The proposed technique can also be explored with the
other existing technique to handle the non-linearities in equations like the
method of lines, Generalized Newton Rapson method, etc.

Most of the partial and fractional differential Equations governing the different
real-time phenomena solved in this research work are one and two dimensions
second order differential equations. The proposed method can be extended to
solve higher-order, higher dimensional differential equations appearing in the
field engineering and sciences.

In this research work, the collocation method is applied with non-dyadic Haar
wavelet basis functions. This basis function can also be implemented with other

numerical legacy methods and will be compared with numerical techniques or
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semi-analytical techniques like the Finite element method, another wavelet
technique, etc.

6. In present research work, the convergence of the proposed techniques has been
established in the respective chapters. But there are many other venues like
stability analysis, statistical analysis (like paired t-test, ANOVA) can also be

performed to validate the results obtained from the method.
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Abstract. In this paper, Haar wavelet collocation mechanism (HWCM) is developed for obtaining the solution of higher
order linear and nonlinear boundary value problems. Mechanism is based on approximation of solution by Haar wavelet
family. To tackle the nonlinearity in the problems, Quasilinearization technique is applied. Many examples are considered
to prove the successful application of the mechanism developed for getting the highly accurate result. By using the HWCM,
an approximate solution for higher order boundary value problems (HOBVPs) are obtained and compared with exact and
numerical solutions available in the literature.

Keywords: Haar Wavelet, Quasilinearization, Collocation method and Boundary value problems (65L10)

INTRODUCTION

Higher order boundary value problems (HOBVPs) are getting huge attention from researchers because of the fact that
many physical phenomena like hydro dynamic and hydromagnetic stability [ 1], induction motor with two rotor circuits
[2]. viscoelastic flows in fluid dynamics etc. are governed by the higher order boundary value problems. Therefore,
to find accurate, efficient and simple solution of these problems has achieved the great significance during the last
decades. Existence and uniqueness of solution of HOBVPs has been proved by Agarwal in his book [3]. General
analytical solution for these kinds of problems has not yet been established. Therefore. researchers are using numerical
techniques to find the solutions of HOBVPs. Many numerical mechanisms have been developed in the literature to
solve these problems such as Adomian decomposition method (ADM). Variational Iteration Method (VIM).
Variational Iteration Decomposition Method (VIDM). Optimal Homotopy asymptotic method (OHAM). Galerkin
Method with Quintic B-splines (GMQBS). Legendre Galerkin method (LGM). Reproducing Kernel Space Method
(RKSM), Modified Variational Iteration Method (MVID), Sextic B-splines Collocation Method (SBSCM), Petrov-
Galerkin Method (PGM). Homotopy Perturbation Method (HPM). Quintic B-Spline Collocation Method (QBSCM) .
But many of these methods involve cumbersome calculation process which slows down the rate of convergence and
some of these methods are also very sensitive to the initial guess and can fall in the process of infinite iteration for the
wrong initial guess and hence can increase the computational cost.

In the past decade wavelet based numerical method has become predominant because of its simple applicability and
high accuracy. Wavelet is a small wave which can be manipulated in two ways: one way is translation which means
shifting of all points of wavelet in the same direction and for the same distance and other is scaling or dilatation which
means stretching or shrinking of original wavelet. Mathematically wavelet can be represented as

Var =729 (57) )
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In this paper, a new wavelet based hybrid method is developed for obtaining the solution of higher order
linear and nonlinear boundary value problems. The proposed method is based on approximation of solu-
tion by non-dyadic wavelets family with dilation factor 3. Discretization of domain is done by collocation
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order ranging from eighth to twelfth to prove the successful application of the proposed method. Also,

the obtained solutions are compared with exact and numerical solutions available in the literature to

prove the efficiency of the method over other methods.

© 2018 Ain Shams University. Production and hosting by Elsevier B.V. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Many physical phenomena like hydro dynamic and hydromag-
netic stability [1], induction motor with two rotor circuits [ 2], vis-
coelastic flows in fluid dynamics etc. are governed by the higher
order boundary value problems. Higher order boundary value
problems (HOBVPs) have been a major concern for the research-
ers, especially when these are nonlinear or higher order linear
ODE with variable coefficients. Existence and uniqueness of solu-
tion for HOBVPs has already been established by Agarwal in his
book [3]. But general closed form solution for these kinds of prob-
lems has yet not been established. Therefore, researchers are
using numerical techniques to find the solutions of HOBVPs.
Many numerical mechanisms have been developed by the
researchers to solve these problems such as Variational Iteration
Decomposition Method (VIDM) [4], Optimal Homotopy Asymp-
totic Method (OHAM) [5], Galerkin Method with Quintic B-
splines (GMQBS) [6], Legendre Galerkin Method (LGM) [7], Repro-
ducing Kernel Space Method (RKSM) [8], Variational Iteration
Method (VIM) [9], Modified Variational Iteration Method (MVID)
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Peer review under responsibility of Ain Shams University.
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[10], Sextic B-splines Collocation Method (SBSCM) [11], Petrov-
Galerkin Method (PGM) [12], Homotopy Perturbation Method
(HPM) [13], Quintic B-Spline Collocation Method (QBSCM) [14],
Haar Wavelet Colocation Method (HWCM) [15] with dilation fac-
tor 2, Modified Adomian Decomposition Method (MADM) [16]
etc.

Wavelet based numerical techniques are one of the latest
techniques in mathematical theory of approximation which are
in considerable qualitative progress in comparison with other
methods. Majority of the work has been done by using dyadic
wavelets. Till date no literature is available for the use of
non-dyadic wavelets in finding the solution of higher order
boundary value problems. The existence of non-dyadic wavelets
have been proved by Chui and Lian [17] in 1995 in the study of
construction of wavelets. This motivates and inspires us to use
non-dyadic wavelet with collocation method for the solution of
HOBVPs. In the present study, a new wavelet based hybrid
method is developed by using non-dyadic wavelet with colloca-
tion method.

The main objective of our work is to establish a non-dyadic
Haar wavelet based collocation technique for numerical solution
of linear and nonlinear HOBVPs emerging in many physical phe-
nomena. To test the efficiency and accuracy of the method, we con-
sider the general HOBVPs of the type

XMty =f(xx X" x"1) a<t<b (1.1)

with the following types of constraints on the solution at the
boundary points

This is an open access artidle under the CC BY-NC-ND license (http://creativecommons.org/licenses [by-nc-nd/4.0/).
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ABSTRACT: The aim of proposed study is to develop a new hybrid method using the non-dyadic wavelets
for the investigation of Bagley-Torvik Equation. Non-dyadic wavelets are used to estimate the solution by
series approximation. To handle the fractional derivatives and integrals in the problem, Caputo sense
definition of derivatives and Riemann-Liouville definitions of integrals are used. Numerical solution has
been produces for five different fractional Bagley-Torvik Equations to establish the competency of the

proposed method.

Keywords: Non-dyadic wavelets, Bagley-Torvik Equation, Caputo derivatives, Quasi-linearization, Fractional

differential equations (65L10)
I. INTRODUCTION

Fractional calculus is a branch of applied mathematics
which emerges as a great tool in explaining the physical
and chemical phenomenon with alienate kinetics having
microscopic complex behavior. There are fractional
differential models which have a non-differentiable but
continuous solution such as Weierstrass type functions
[1]- These kinds of characteristics are not possible to
explain with the help of ordinary or partial differential
models. Earlier the field of fractional calculus was purely
mathematical without any visible application but in these
days, fractional calculus has gained a huge importance
in the field of science and technology because of its
application in the various field like theory of thermo-
elasticity [2], viscoelastic fluids [3], dynamics of
earthquakes [4], fluid dynamics [5] etc. Bagley-Torvik
equation is one of the most important fractional model in
the field of viscoelastic fluids. In this model, Bagley and
Torvik has studied the motion of rigid plate immersed
into the Newtonian fluid. It is found in the experiment that
retarding force are proportional to the fractional
derivative of the displacement instead of the velocity. It
has been observed during the experiment that fractional
model is superior than the integer order model for the
prediction of characteristics of the same material. But
general closed-form solution for fractional Bagley-Torvik
equation has yet not been established. Therefore, many
researchers are involved in developing the various
numerical and semi-analytic schemes for investigating
the different phenomena governed by the Bagley-Torvik
equation such as Adomian decomposition method [6],
Variational iteration method [7], Homotopy analysis
method[8], Generalized Taylor collocation method [9],

Haar wavelet method with dailation factor 2[10],
Fractional iteration method [11], Bessel collocation
method [12], Chebyshev wavelet method [13],
Fractional Taylor Method [14], Hybrid functions

approximation [15], Gegenbauer Wavelet Method [16],

Reproducing  kernel  algorithm Sumudu
transformation method [18] etc.

But the study of characteristics of different materials
governed by Bagley Torvik equations has yet not been
investigated by non-dyadic wavelet-based technique.
Wavelets are one of the modernistic orthonormal
functions which have a capability of dilation and
translation. Because of these properties, numerical
technigues which involve wavelets bases are showing
the qualitative improvement in contrast with other
methods. In literature, dyadic wavelets are in
preponderance. In 1995, Chui and Lian [19] has
developed the non-dyadic wavelets by using the process
of multire solution analysis. In 2018, Mittal and Pandit
have used the non-dyadic wavelets [20]-{22] for solving
the various types of differential equations and found that
these wavelet bases are equally competent in solving
the various types of mathematical models governed by
differential equations. Also, it was shown by them that
the non-dyadic wavelet has a faster rate of convergence
as compared to the dyadic wavelets. Moreover,
investigation of characteristics of the solution to the
Bagley Torvik equation has yet not been done by non-
dyadic wavelet methods. This encourages us to develop
a new technique using non-dyadic wavelet for analyzing
the behavior of systems governed by the Bagley Torvik
equation.

The prime purpose of proposed work is to establish a
new computational technique for obtaining the solution
of following types of Bagley Torvik equations emerging
in the field of fluid dynamics using non-dyadic wavelet
bases.

aD2x(t) + BDax(t) + yDix(t) + x(£) = g(t)

(171,

with
boundary conditions 1)
x(0) = 8y,x(1) = &,
or

x¥(0)=6;,x'(1) =8,

Rawat et al., International Journal on Emerging Technologies 10(2a): 14-26(2019)
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ABSTRACT

The aim of this study is to develop a hybrid method using scale 3 Haar wavelets for
obtaining the solution of coupled space-time fractional Burgers’ equation. Scale 3 Haar
wavelets were used to estimate the solution by series approximation. Caputo and Riemann-
Liouville definitions were used to handle the fractional derivatives and integrals in the
problem. A quasi-linearization technique was implemented to handle the nonlinearity in
the problems. Two examples of coupled space-time fractional Burgers’ equations were
studied to analyze the performance of the proposed technique.

Keywords: Caputo derivatives, fractional coupled Burgers’ Equation, Quasi-linearization, Riemann-Liouville

integration, scale 3 Haar wavelets

INTRODUCTION

Fractional calculus emerges as a great tool in explaining the physical and chemical
phenomenon with alienate kinetics having microscopic complex behavior. There are
fractional differential models which have a non-differentiable but continuous solution such
as Weierstrass type functions (Zahle & Ziezold, 1996). These kinds of characteristics are
not possible to explain with the help of ordinary or partial differential models. Earlier the
field of fractional calculus was purely mathematical without any visible application but
in these days, fractional calculus has gained
a huge importance in the field of science
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Abstract. The main focus of the current work 1s to mntroduce the new numerical technique based

upon theHaar scale 3 wavelets for the solution of 1D- hyperbolic telegraph equation. In this
scheme,spatial discretization is done by scale 3 Haar wavelets. The collocation method is used
with Haar scale 3 wavelets to convert 1D- hyperbolic telegraph equation into the system of
algebraic equations which are further solved with the help of Thomas algorithm. The proposed
scheme is tested on four different equations of above said types to establish the competency of the
proposed scheme.

Keywords: Scale 3 Haar wavelets,1D- hyperbolic telegraph equation, Partial differential
Equations (65L.10)

1. Introduction

The prime objective of current work is to provide new numerical technique for obtaining the
solution of second order hyperbolic Telegraph equation of the following type, using two-
dimensional Haar Scale 3 wavelet bases.

d 92

—+ 2a,—+ﬂ2fp=%+g-(x,t),(x,t)e [0,1] x [0,T] (1.1)
under the following types of initial constraints

@(x,0) =1 (x)

do
S (%.0) = ()
and the boundary constraints
¢(0,4) =&(£), t€]0,T]
p(1,4) =& (), t€][0,T]

Where a > = 0 are known constants, iy (x), 2 (x), & (1), & (L), g(x, ) are the given
functions and @(x, ) is the function whose value is to be determined. When ¢ > 0,5 =0
then equation represents the damped wave motion equation and when « > f > 0 then it
isnamed asthe telegraph Equation. These types of equations emerging in the fieldof electric
signal propagation in cables[1], pulsate blood flow in the arteries[2]. ‘acoustic wave
propagation’” in porous media of Darcy-type[3], vibrations in the different structures,

Page |4030 Copyright © 2019Author
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Abstract: - In this paper, basic idea of wavelets, its connection with Fourier expansion and advantages of
wavelet expansion over Fourier expansion is reviewed. Further the idea of removing Gibb’s phenomena over
Fourier phenomena is also discussed. The discrete wavelet transform is very much useful in solving the
various problems in the field of science and technology. Therefore, these transformations have attained very
good prestige of being very effective mndividually and by getting hybrid with other established techniques in
solving the many of the real time problems. One of the oldest and mathematically most simple as compared
with other wavelets which owes its origin to 1910 is the Haar wavelet. This review aims to provide the
fantastic application of Haar wavelets in solving the various problem of science and technology. In current
article some computational and mathematical capabilities of Haar wavelets and diverse applications in
various field have been reviewed. Some future scope in the direction of developing the new hybrid method

for solving the various advance problems have also been discussed.

Introduction

The decomposition, synthesis and analysis of functions, in various function spaces, is one of the most useful
activities of mathematics, mathematical physics and lastly of Data/signal processing m engieering. It 1s one
of the most intensively studied topics in mathematics since the beginning of 19th century. The bold
declaration of Fourier (Pinsky, (2002)), about expressing any periodic function in the form of trigonometric
series kept the entire scientific community on alert for nearly two centuries-especially in establishing
convergence, uniform

convergence etc of Fourier Series. In this process one finds blossoming of rich topics like Lebesgue integral,
tunctions of striking theories in Banach space, Hilbert space etc.

A function has power series representation if it 1s smooth and gives its local structure accurately. Fourier
series of functions with classical orthogonal functions is useful for the global analysis of functions. These
can be used for representing functions with no smoothness properties but they are mefficient for analysing
the detail behaviour of a function near a point. A pure Fourier basis diagonalizes translation invariant linear
operators. We look for a basis (of function spaces) that 1s well localized in frequency and nearly diagonalizes
the operator 1.e. their matrix entries decay rapidly away from the diagonal. Also, it is desirable a basis to be
well localized 1n space for effective local analysis. What 1s missing 1s a method for analysing the local
uregular behaviour of functions that aren’t smooth and this is where wavelets come into play. Wavelet is a

small impulsive function which can be operated in two ways: one way 1s translation w.r.t the mitial condition

JETIRDS06190 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 1287
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Abstract

The main focus of the current work is to construct a compactly supported non-dyadic orthonormal wavelet
family with scale factor 3. Orthonormal wavelet families are very much helpful in solving the various problems
arises in the field of science and technology. For the construction of non-dyadic wavelet family, multi-resolution
analysis (MRA) technique is used on trivial Haar scale 3 type function given by C.K Chui. Integrals of members
of non-dyadic wavelet family have been calculated for their usein multiscale approximation of unknown function
running in various types differential or integral equation. Matrices of Haar Scale 3 wavelets and their integrals
have constructed for their use mn solving the various types of differential and integral equations. Two numerical
experiments have been conducted to test the efficiency of the given wavelet family in approximating the

unknown function.

1 Haar Scale 3 Wavelets Family

Let us Consider any two arbitrary integers <4, B such that B > A. let J be the maximum level of resolution to be
considered for phenomena under study. Define new quantities M ,j,k.p such that M =3/ ,p=3/  j=

0,12,..] k=012, ..,p—1, where j denotes the level of resolution and kthe translation in wavelets. Now

divide the interval [4, B) into 3M uniform subinterval of equal length At = % . WhenJ=0,A =0and B=1

then we have the following members in Haar Scale 3 wavelet family[1] (Haar Scale 3 wavelet famuly).

mO=VO = () e

0 elsewhere (1.1
1 0=st< !
- 3
1 2 1ot
h(©) =yYr(t) =— 3="73
2(6) =i 7z 3 3 (12)
=1 -<t<l1
3
0 elsewhere
JETIREB06001 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org \ 1
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Abstract. The current work amms to introduce a hybnd techmque based upon the 8 —weighted
differencing and non-dyadic wavelets for the solution of (2+1)-dimensional linear Sobolev Equations
etc. In the scheme, time discretization is done by the 8 —weighted finite differencing scheme and spatial
discretization is done by Non-dyadic wavelets. The proposed scheme is tested on five different linear
and nonlinear equations of above said types to establish the competency of the proposed scheme.

Keywords: Non-dyadic wavelets, Theta weighted finite difference, Quasilinearization, Partial
differential Equations (651.10)

1 Introduction

Sobolev equations belong to the important class of partial differential equations in which the highest order
derivative present in the differential equation contains mixed derivative. with respect to time and space.
These types of equations have a convincing physical background because of its huge use in Soil moisture
migration [1], drainage of liquuds through rocks having cracks [2], heat conduction Continuum
Mechanies[3], ete. The extensive appearance of these kinds of equations in the mathematical modelling of
different phenomena occurring in science and technology have gained the attention of the scientific
community. But the analytic solutions Sobolev equations are very cumbersome to achieve. Therefore, many
researchers are involved in developing the various numerical and semi-analytic schemes for finding
solutions to the different problems governed by these differential equations. Some of the methods which
have been recently developed and applied to solve the two-dumensional Sobolev and BBMB equations are
Expanded Mixed Finite Element Method (EMFEM)[4] , Local Discontinuous Galerkin Method
(LDGM)[5], Collocation Spectral Method (CSM)[6], Crank-Nicolson Finite Volume Element
Method(CNFVM) [7], Haar Wavelet Method[8].

But the study of establishing the solution for (2+1) dunensional partial differential equations usimg the non-
dyadic wavelets has not been attempted 1in the literature which motivated us to develop a new technique for
the solution of these types of equations. Wavelets are one of the modernistic orthonormal functions which
have a capability of dilation and translation. Because of these properties, numerical techmques which
mvolve wavelets bases are showing the qualitative improvement i contrast with other methods. In
literature, dyadic wavelets are m preponderance. In 1995, Chu and Lian [9] has developed the non-dyadic
wavelets by using the process of multiresolution analysis. In 2018, Mittal and Pandit have used the non-
dyadic wavelets [10]-[13] for solving the various types of differential equations and found that these
wavelet bases are equally competent in solving the various types of mathematical models governed by
differential equations. Also, it was shown by them that the non-dyadic wavelet has a faster rate of
convergence as compared to the dyadic wavelets. This gives us good hope of getting a better solver for
these equations by developing a new hybrd techmque based upon 6 —Weighted Differencing and Non-
Dyadic Wavelets for the solution of (2+1) dimensional partial differential equations.

The manuscript follows the sequence of sections as described: In section 2, explicit forms of non-dyadic
parent wavelets with their families and procedure to find their integrals have been explained briefly.
Representation of the solution using non-dyadic wavelets 1s explained 1n section 3. Section 4 explains the
method of solution using non-dyadic wavelets. In section 5, the convergence of the method 1s discussed. In
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Abstract. Current article proposes a hybrid technique based upon the 8 —weighted differencing and Haar
scale 3 wavelets for the solution of (2+1)-dimensional non-linear partial differential equations such as
Sobolev and BBMB (Benjamuin-Bona—Mahony—Burgers) Equations etc. In this scheme, tune
discretization is done by the 8 —weighted finite differencing scheme and spatial discretization is done by
2D-Haar scale 3 wavelets. The quasilinearization process is used wherever we encountered with the non-
linearity in the equations. The proposed scheme 1s tested on some nonlinear equations of above said types
to establish the competency of the proposed scheme.

Keywords: Haar scale 3 wavelets, Theta weighted finite difference, Quasilinearization, Partial differential
Equations (65L10)

1 Introduction

To study the dynamics of any real-time phenomenon happening around us, one of the most accurate
approaches is by using a mathematical model of it. It is said that where there is a motion there is a differential
equation corresponding to 1t. Mathematical modelling for a majonty of real-tune phenomena’s results nto a
partial differential equation. Partial differential equations are playing a very important role in predicting the
world around us. It can be seen 1n the literature that the numbers of phenomenon in science and technology
have been studies via non-linear partial differential equations. Most of the non-linear partial differential
equations do not possess any closed-form solution. Moreover, finding the solution of such equations becomes
more challenging when there is a nonlinearity in the higher dimensional equation.

The main purpose of our study is to introduce a new hybrid scheme based upon the 8 —weighted differencing
and Haar scale 3 wavelets for the solution of following types of three-dimensional non-linear partial
differential equations

P — (M) —abp + Vo +y V.(pVp) + 5¢p* = nV.(F(@)) + f (x,y,0,(x,y) (1D

eEQt >0
subjected to initial and boundary constraints
p(x,y,0)=g(xy) V(xy) € Q 1.2)
ey, ) =h(x,y,0) ¥ (x,y) € 0Q,te[0,T] (1.3)

where Q is any closed and bounded domain contained in R? with smooth or piecewise smooth boundary
represented by d€). F(¢) is a non-linear function of ¢ , f (x, y,t), is the source term and a, 8 ,y, §, it are
the real constants. In the present study, we will restrict ourselves to the following special cases of the equation
no. (1.1) under the boundary and 1nitial constraints represented by equations (1.2)-(1.3).

Case 1:Ontaking a =1, =1,y =0,6 =0,u =1, Equation no. (1.1) reduced to
¢ — (). — A + Vo = V.(F(p)) + f (x,y,0,(x,y) €Qt >0 (9

which 1s known as NBBMB (non-linear Benjamin Bona Mahony Burgers) equation.
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