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ABSTRACT

In the present study, we analyzed the role of impulsive differential equations in

population dynamics. Single-species and multi-species ecological models under

the affect of impulsive perturbations at fixed moments of time are proposed and

analyzed mathematically. The study of the underlying system consisting of three

major inter-related components, viz. population dynamics, impulse and integrated

pest management is carried out by using the concept of system analysis in which

the system is studied by defining its borders, by distinguishing its major com-

ponents, characterizing the change in them by mathematical equations and then

interconnecting the representative equations in order to obtain a model of the

original system. Once the model is governed by impulsive differential equations,

these equations are solved assuming the initial positivity of all the state variables.

The boundednes of the solutions obtained are checked using integral inequalities

of IDE. The stability and permanence of the systems was studied with the help of

stroboscopic map, comparison analysis technique and Floquet theory of impulsive

differential equations. Also, numerical solutions of the proposed models were ob-

tained using numerical techniques and MATLAB.

The proposed research work dealing with modeling of impulsive differential equa-

tions in population dynamics will be helpful to prevent the extinction of a par-

ticular species. It can also be helpful to agriculturists, ecologists and scientists to

use pesticides and insecticides in an optimal way to control pests. The study of

the factors under which impulse is applied and the components being effected will

help the concerned community to plan the remedial measures. Being quantitative

in nature, the mathematical model will prove to be economic in terms of time

and money being invested on large scale experiments. In the view of above, first

mathematical model is formulated on population dynamics considering single pop-

ulation and interacting populations, that is, prey-predator and competition. These

formulated models will be analyzed with different stability analysis criterion. On

the basis of literature review and research gaps, the following objectives have been

proposed in this present study:
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1. Modeling on single species population using impulsive differential equations

and their stability analysis by using Lyapnuov function.

2. Stability Analysis of single Species population model with impulse by using

Comparison theorems.

3. Modeling on interacting population (prey-predator) with impulse and stabil-

ity criterion by using Lyapnuov Direct Method and comparison theorems.

4. Modeling on interacting population (Competition) with impulse and stability

criterion by using Lyapnuov Direct Method and comparison theorems.

In chapter-1, basic introduction about population dynamics, mathematical mod-

eling, impulsive differential equations and pest management has been described.

The basic terms used in this study are also discussed. Under the section of liter-

ature review, the work done by many renowned researchers till date at national

and international level has been extensively examined. After analyzing the re-

search gaps, objectives of the present study have been proposed. To check the

boundedness, stability and permanence of the formulated models, mathematical

preliminaries of impulsive differential equations have been given. The last section

includes the summary of the study.

In chapter-2, Dynamics of single-species population with predation considering

Holling type-III functional response using impulsive differential equations is stud-

ied. Existence of positive and periodic solution is proved using fixed point with the

help of Brower’s fixed point theorem. Then sufficient conditions are established

for the global stability of solution using Lyapunov function and comparison anal-

ysis technique of impulsive differential equations. To validate theoretical results,

numerical simulation is done using MATLAB.

In chapter-3, a single-species population model under the influence of constant

and linear impulsive perturbations at fixed moments of time is analyzed in which

Holling type-IV or Monod Haldane functional response is taken as predation term.

The conditions required for the permanence of species are established by using

comparison analysis technique. Numerical example is given to substantiate the
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theoretical findings.

In chapter-4, microbial and biological pest control techniques are applied simul-

taneously by impulsively releasing natural enemies and infected pests to prevent

the outbreak of pest population. Therefore a SIN (prey-predator) model consider-

ing infection in prey with two classes (susceptible-infected) and stage structure in

predator is analyzed for the cause of integrated pest management. Prey acts as pest

and predator plays the role of a natural enemy. Firstly, local and global stability

of pest extinction periodic solution is carried out, then condition for the perma-

nence of system is derived using Stroboscopic map, comparison analysis technique

and Floquet theory of impulsive differential equations. Further, it is observed that

there exists a threshold value of the impulsive period which has significant effect

on the dynamics of the system. Finally, for validating the established results, nu-

merical simulation is done using MATLAB.

In chapter-5, a two-prey one-predator ecological model is proposed with mixed

functional responses (Holling IV and Beddington-DeAngelis) in context to pest

management. Firstly, it is proved that prey free periodic solution is locally stable

by using Floquet theory of impulsive differential equations. Secondly, two thresh-

old values of the impulsive release amount of natural enemies are calculated to

establish the global stability of prey free boundary equilibrium. This is achieved

by implementing the concept of the stroboscopic map and comparison analysis

technique. Finally, the permanence of the system is established. Further, valida-

tion of theoretically proved results is done using MATLAB.

In chapter-6, a three tropic level food chain model is proposed considering plant,

pest and natural enemies. Two different type of functional responses are taken for

middle and top predator. Threshold value of the impulsive period is calculated

for the annihilation of middle predator using Floquet theory, Lyapnuov functions

and stroboscopic map. Mid level predator plays the role of pest. Permanence of

system is also established. Some complex dynamics is also observed at higher value

of impulsive period greater than threshold value. Further, validation of theoretical

findings is done using MATLAB.

In chapter-7, two species periodic competitive model with Beddington-DeAngelis

inter-inhibition term in the presence of toxic substances is analyzed. It was found
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in various studies that some phytoplankton species release toxic substances in the

presence of other phytoplankton species to hinder their growth. This phenomenon

ultimately leads to the extinction of concerned species. The proposed model is

considered under the effect of impulsive perturbations. Sufficient conditions for

the eradication of one species and permanence of other are derived using suitable

Lyapunov functions and comparison analysis technique. Also, it is observed that

impulses effects the dynamics of the system. To substantiate theoretical findings,

numerical simulation is done using MATLAB.
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Chapter 1

General Introduction

1.1 Introduction

Ecology is a branch of science comprising interactions of organisms with their

environment and other organisms in the community. Due to these interactions,

individuals of a species exert selective pressures on each other. There are numer-

ous biotic and abiotic components of the environment which affect the evolution

of these organisms. Biotic factors consists of other living creatures in the environ-

ment and abiotic elements consists of physical aspects such as temperature, soil,

water, topography and others. The ecology, in general, can be categorised into two

parts: auto-ecology that deals with single species population; and syn-ecology that

studies the interactions of two or more species. The researchers of this discipline

inquisitively explore natural phenomena in which different types of species coexist

together in a common habitat.

Population refers to all the individuals of particular species or group who

live together under same environmental conditions and are capable to reproduce.

Population dynamics is the quantitative sub-discipline of ecology that studies vari-

ations in age and size of the populations in time and space. Here, the population
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may be of different age groups as age is a variable which change over time. It is

also apparent that the size of population may increase or decrease due to various

biological and ecological factors like birth rates, death rates, immigration, evacu-

ation and others. Thus, the investigation on the variations of age and size of the

population is defined as population dynamics. The study of population dynamics

relates with the interactions of two or more species in the same environment. The

different types of population interactions are illustrated below:

�Predation: It is an interaction between individuals of same or different species in

which population of one species serves nutrition to other species. Thus, the popu-

lation of one species grows and the other shrinks and it is known as prey-predator

relationship. The organism that is eradicated or reduced either for the time be-

ing or everlastingly due to the fact to provide food to another species (predator)

is known as the prey. Sometimes, the prey adopt defence mechanism to protect

themselves from the attacks of the predator like refuge effect, indestructible class

of prey, heterogeneity in the environment and others. On the other side, the preda-

tors are living organisms that hunt and feed diverse prey species. They contribute

in controlling the harmful prey populations of agricultural crops and act as good

bio-control agents. Normally, they are bigger in size than their prey.

�Competition: When individuals of closely related species fight for the same liv-

ing resources, for example, food and space, this type of population interaction is

known as competition. There is decline in population density of both the species.

�Mutualism: If members of two different species interact to boost the growth of

each other, then this type of interaction is called mutualism. To exemplify, inter-

action between plants and animals where some animals depend on plants for their

food and in turn they help in the pollination of the plants.

�Parasitism: It is defined as an interaction where one individual, known as para-

site, harms the other which is called host, for its growth. The parasite interferes

with the biological process of the host by feeding on its tissues or cells, resulting

in degradation of the host’s health. For example, interaction between pests and

plants.

�Commensalism: It refers to the interaction of two different species in which one

species gains while the other one is at no loss no gain. For example, birds oftenly

2



take shelter on tress but it does not effect the later in any way.

�Amensalism: Amensalism is defined as an interaction of two different popula-

tions where one population bears loses whereas the other remains unaffected.

Apart from these different types of two-species interactions, more complex net-

works of multi-species interactions exist namely, food-chain and food-web.

�Food-chain : It is a series of organisms having different trophic levels where the

species at lower trophic level acts as a food for the one at higher trophic level.

Only the first member of the series is producer whereas all others are consumers.

�Food-web: It refers to the interconnecting network of different food chains in an

ecosystem.

The survival of the most of the species depends on the natural food-chains and

food-webs existing in the environment. The removal of an element of these species’

networks can lead to ecological imbalance. Therefore, food-chain system is utmost

important for maintaining ecological balance, for example, about one lakh species

of decomposers help in splitting the organic matter into valuable nutrients which

further contribute to increase the fertility of the land.

Changes are the inheritance property of species within due period of time.

It is evident that there is always limit in the growth of population of species due

to many environmental and biological attributes. There are number of stress fac-

tors which affect the evolution of living organisms. Depending on the population

density of species, these can be particularly categorized into two types, density

dependent and density independent. In the former, we include food availability,

predation and competition. These factors could have favorable or detrimental

impacts to population. It does influence the fertility rate, mortality rate and mi-

gration of the species. To exemplify, it is observed that due to the increase in

population density, some female red squirrels, who got less nutritious food, in

the forests of Europe and Asia, responded negatively to reproduction rate [155].

Further it is also found that there is positive co-relation between the population

density and mortality rate, and migration of species. In the latter, there are en-

vironmental stressors such as pollution and catastrophic stressors like fires, floods

and hurricanes. For example, the soil and water pollution caused by chemical pes-
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Figure 1.1: Graphical representation of exponential and logistic growth model

ticides hamper the growth of amphibians and aquatic bodies, resulting in increase

in mortality rate. On the other hand, environmental catastrophes also contribute

in death and destruction of habitat of species.

The large number of mathematical models using ordinary differential equa-

tions are proposed to solve ecological problems. Ahmad and Rao [3] thoroughly

described the applications of ordinary differential equations in biology. In this

way, mathematical models are considered as an important tool to investigate and

forecast the nature of different species and their impact in the ecological system.

In past few decades, exhaustive studies on different types of species interactions

have been done which examined the behavior of these species in diverse ways. The

first single-species exponential growth model was proposed by Malthus [4]. It is

obvious that species experience several stress factors such as nutrition and space

available for their survival in a particular region. Thus, the model developed by

Malthus was then modified by Verhulst [5] who introduced the concept of carrying

capacity of the environment. The comparison between these two models is shown

in figure 1.1. Interactions among species for their survival is very important aspect

in the universe. Hence, the study of interdependence of species has acquired a cen-

tral stage for the researchers in which they eagerly want to know the symptomatic

results of these interactions on the evolution of species. Emphasizing on the study

of two-species interactions, the first classical prey-predator and competition in-

teraction models were proposed by Lotka and Volterra using ordinary differential

4



equations. Apart from this, number of food-chain and food-web models consisting

of multi-species dependence are proposed by various scholars by assuming same or

different functional responses at different trophic levels of the species interaction.

It is found that dynamics of these systems strongly depends on the death rate of

species [156]. Also, it is observed that in two-prey one-predator food web model,

chaotic behavior of the system can be controlled with harvesting of predator [157].

Futher, it is impossible to study continually, the evolutionary processes of

species which always remain dynamic due to various interventions imposed by hu-

mans and existing environment. Such sudden interventions are referred as harvest-

ing and stocking of species by mankind, and natural calamities in the environment.

Hence the study of differential equations with impulses assist to produce remark-

able results about evolution of species with instantaneous disturbances. Impulsive

differential equations (IDE) are more appropriate mathematical tool than ordinary

differential equations as it covers wider and comprehensive patterns of growth of

species. These differential equations with impulses were introduced in the middle

of twentieth century and after that, there is rigorous development in the study

of their applications in different fields of science. IDE contribute a lot to the dy-

namics of single-species and multi-species ecological models. These are helpful to

maintain ecological balance, for example, to prevent the eradication of particu-

lar species and to encourage coexistence of species. Impulsive species interaction

models (single -species, prey-predator, competition, food-chain and food-web) are

proposed and analyzed by various researchers.

Furthermore, impulsive prey-prdator, food-chain and food-web ecological

models are also applied to study pest management. The concept of pest man-

agement largely relates with the agriculture and its allied sectors. Agriculture

is the backbone of Indian economy where about 70 per cent of the population

depends on it for their subsistence which accounts 14 per cent in gross national

product of the nation. As the population of country is increasing robustly, the

area under cultivation is decreased and still decreasing which stipulated towards

the improvement and intensification of agriculture sector. Therefore, in order to

meet the needs of vast growing Indian population, it was necessary to take some
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corrective measures in various directions like increase the productivity of the crops,

technological advancement in agriculture, increase cropping intensity and others.

Thus pest management was one of the most significant mechanisms to increase the

efficiency of agriculture and allied activities along with to maintain the pest pop-

ulation in the crop. Under it, different kinds of agro-chemicals likes insecticides,

fungicides and herbicides are used in order to increase the yield productivity and

maximize profits. On the contrary, the excessive use of these chemicals contributed

in environmental degradation along with hazards to human health. Thus the con-

cept of integrated pest management (IPM) came into existence which combines

two or more pest control measures.

Mathematics is an unambiguous and universal language. Mathematical mod-

eling is the technique to represent the real world phenomenon in terms of mathe-

matical equations. With the advancement in technology, these well framed models

are used to perform numerical simulations on computers, which ultimately sim-

plifies the complex and tedious process of lengthy calculations. Although some

elements of compromise exist in modeling because while obtaining mathematical

representation of any real world interacting system, it is too complicate to model

in entirety. But only the pertinent information is considered to have a logical un-

derstanding of the nature of the dynamics of the system. This is the best way to

understand many arduous processes in this ever changing universe. Basically, two

categories of mathematical models are well known namely, deterministic models

and stochastic models. Mathematical models are being implemented in different

fields of science and engineering, that is, ecology, population dynamics, optimal

control, physics and chemistry.

The proposed research work related to the modeling on population dynamics

using IDE will be carried out by using mathematical models and these models will

be used to determine quantitatively the impact of impulses on single-species and

multi-species interactions. In the present study, prey-predator interactions under

the influence of impulses are studied in the context of pest management.
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1.2 Basic terminology of population dynamics and

pest management used in the thesis

1. Impulse : It is defined as a force or disturbance which acts for short period

of time.

2. Pest : These pest populations refers to the insects that are responsible to in-

flict the damage to the agricultural yield which ultimately effect on the quan-

tity as well as quality of the crops. This is the reason that many techniques

such as integrated pest management, pest control, bio-control, physical or

mechanical control are used to regulate their number.

3. Pesticides : The word pesticide includes several nomenclatures like insecti-

cides, fungicides, herbicides and others. They can be divided into two cat-

egories: synthetic or chemical pesticides and bio or organic pesticides. The

former has many adverse affects on earth, air, water, flora and fauna and

human population while the latter is an alternate to the chemical pesticides

and are more beneficial, safer and environment-friendly. There are many

sectors in which pesticides are used such as agriculture, forestry, industry,

public health and others.

4. Cultural Control : Cultural control method makes crop fields unattractive

to pest by various means such as crop rotation, soil solarisation, selecting best

suitable sowing and harvesting times, using built-in pest resistant varieties

of seeds and plants, eradication of old crops residues etc. All these measure

are used to hamper pest population’s reproduction, nourishment and shelter

in the respective fields.

5. Chemical Control : Chemical control is a method of IPM to control insect

pest problems below economically injury level. Under this technique, syn-

thetic pesticides are used which provide quick results to protect crops from

pests and diseases along with the improvement of yield productivity. Some

of pesticides which are used for spraying the crops in India are Fenthion,

Monocrotophos, Diazinon and Endosulphan. However, the rampant use of
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chemicals adversely affect to human health and environment. Thus, it is

essential to note that this technique should be used in limited way without

associating ecological degradation and risk to human beings.

6. Biological Control : Biological control means the use of natural enemies

in order to reduce or eradicate harmful prey population which inflict mas-

sive damage to the yield. These bio- control agents can be categorized as

predators, parasitoids, pathogens, fungi, bacteria etc. These are able to in-

hibit the growth of the prey resulting to enhancing the yield of the crop.

These insects play an important role not only in controlling pests/ diseases

but also to minimizing the use of synthetic pesticides. Thus, this strategy is

considered to be economical and environmentally sound.

7. Integrated Pest Management (IPM) : Integrated pest management is

an eco-friendly technique used to control pests. These pests can be generally

divided into different categories such as, bugs, rodents, weeds, nematodes

and virus. The term ‘integrated’ means combined control action. Thus inte-

grated pest management is defined as a significant ecological approach to pest

control which brings together different methods, that is, biological, cultural,

physical and chemical into a whole. This approach has many advantages

like reduces danger of pesticide resistance, minimizes the pesticide expenses,

growing of organic food products, increases agricultural yield, minimizes en-

vironmental deterioration and many others.

8. Economic Threshold (ET) : Economic Threshold value is used to mark

a fix point (level) without adverse effect to the specific yield. It is defined

as the pest density at which protective mechanisms are taken into account

to check the growth of prey population from embracing the Economic Injury

Level. In fact, it points out that the time has come to take actions and this

is the reason that some researchers [59] referred it as action threshold

9. Economic Injury Level (EIL) : It is a point where number of pests that

cause economic damage more than the cost to control the pest.
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1.3 Literature Review

Mathematical biology has become an interesting area of interdisciplinary research

during the last three decades. Several mathematicians, biologists and engineers

have made great achievements on mathematical modeling in population dynamics

and ecology for the benefit of the evolving world. It was started with the single-

species exponential growth model in which there was no restriction on the living

resources [4]. But there are several population limiting factors in the environment

as Dilao [2] stated that the population densities of species (human or animals)

undergo noticeable variations with the passage of time. These changes may hap-

pen due to the different attributes of the environment such as, climate change,

diseases, the available environmental resources for their survival and interactions

of individuals within or outside their community. Then the concept of carrying ca-

pacity of the environment was introduced and more realistic single-species logistic

growth model came into existence [5]. The approach given by Ludwig et al. [6]

of single-species model was more practical. The authors propounded an outbreak

model of Spruce budworm which is the major problem in some parts of United

States and Canada. These insects desolate conifer flora of North America and

Western Canada resulting privation of growth and sometimes tree fatality. They

represented the budworm growth with single-species logistic model, assuming pre-

dation by birds. In this model, it was presumed that, firstly, predation increase

with budworm population density and then become constant for larger prey pop-

ulation. This provided the idea for insect control either by spraying pesticide on

foliage or by increasing the threshold number of predators, which ultimately lower

the reproduction rate of pest population. Further, researchers observed that the

study of dynamics of population interactions was more natural as compared to

single-species. Out of all types of population interactions, prey-predator and com-

petition are extensively studied by various researchers. Classical prey-predator and

competition models were proposed by Lotka and Volterra. The qualitative analy-

sis of this classical prey-predator model was carried out with the assumption that

in the absence of predators, prey population grow infinitely and predator species

decline exponentially in the absence of food (prey) [1]. In two-species competition
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model, species were in competition for the same restricted living resources. By

considering logistic growth of both of the species, it is concluded that the superior

species would ever dominate which eventually lead to the extinction of inferior

species. This is called principle of competition exclusion. Now we move towards

the study of origin of impulsive differential equations and their importance in mod-

eling different ecological problems.

Many naturally occurring evolutionary processes in the real world does ex-

perience a sudden variation of state at some specific time events. Although, the

time period of occurrence of these instantaneous disturbances is small, but they

effect the dynamics of the whole process. These short term external disturbances

are known as impulses. Thus, it is very natural to implement differential equations

comprising impulsive effects–that is, impulsive differential equations to model these

real-world phenomena. The traits of the study of impulsive differential equations

(IDE) were pioneered by Mil’man and Myshkis [7] in the middle of 20th century.

Lakshmikantham et al. presented a general theory of these equations in their book

“Theory of Impulsive Differential Equations” [8]. The authors gave the example

of Kruger-Thiemer model of drug distribution to introduce the concept of IDE.

They categorized IDE into two parts, one with impulses at fixed time events and

second with impulses depending on the state of system. It was concluded that the

study of impulsive differential equations is more interesting than the corresponding

ordinary differential equations because it includes some new characteristics such

as noncontinuability of solutions. Along with this, for the existence and stabil-

ity of solutions of impulsive differential equations, the authors outlined different

methods such as upper and lower solutions, impulsive integral inequalities and

discontinuous Lyapunov functions. Milev and Bainov [9] identified more precised

criteria for the staility of solutions of IDE with impulses at fixed moments of time.

Bainov and Simenov [10] emphasized on periodic impulsive differential equations

and proposed the notion of Stroboscopic map and Floquet theory to study the sta-

bility of these systems. Also, they suggested some numerical-analytical methods

to find periodic solutions of these systems. Later on, Samoilenko and Perestyuk

[11] gave insight into almost periodic solutions and optimum control problems of
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impulsive differential equations. Further, researchers analyzed that solving impul-

sive differential equations analytically is very lengthy and tedious process and even

sometimes, it is not possible to find the analytical solution. Therefore, they paid

attention towards numerical solution of IDE. Randelovic et al. [12] provided gen-

eral algorithm to solve impulsive differential systems numerically. Continuing with

this approach, for better convergence, number of scholars developed different nu-

merical techniques to solve systems with impulses at fixed time events [13, 14, 19].

They also compared the results with analytic solutions and found good degree

of accuracy. The parameterized form of IDE is explored by several researchers

[15, 16, 17]. Singh and Srivastava, in their paper [18] reiterated on the decay rate

of solutions of IDE. They used comparison analysis technique and Lyapunov func-

tions to establish strict stability criteria for the solutions of IDE. Li t al. [20], by

enforcing Lyapunov’s second method, achieved existence and global attractiveness

of periodic solution of IDE. Impulsive differential equations have plethora of appli-

cations in the field of epidemiology, ecology, physics, chemistry, pharmacokinetics,

population dynamics and optimal control. So, these equations are continuously

attracting the attention of several researchers from different areas of science and

engineering. Zeng et al. [21] put forward his approach to apply impulsive vacci-

nation control on susceptible-infected-recovered (SIR) epidemic model to regulate

the disease outbreak. The scholars concluded that pulse vaccination at fixed mo-

ments of time was helpful to eliminate the disease and derived sufficient conditions

for global asymptotic stability of epidemic-eradication periodic solution. They

also observed chaotic behavior of the system depending on the amount of pulse

vaccination. Shi et al. [22], in their research paper, proposed and investigated

two SIR epidemic models, one without impulsive vaccination and the other under

the influence of impulsive vaccination. They calculated the threshold value of im-

pulsive vaccination rate and observed that if the rate of impulsive vaccination is

greater than threshold value, the epidemic would be eliminated otherwise it will

prevail and become permanent. Li et al. [23] explained that how impulsive con-

trol is beneficial for chemostat model. Dishlieva [24] gave the detailed description

of various applications of impulsive differential equations in different fields along

with brief summary of the difficulties arising in the study of solutions of these
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equations. Continuing in this direction, the importance of impulsive vaccination

in prevention of infectious diseases, particularly Cholera, is recently discussed by

Sisodiya et al. [25]. They categorized the total human population into four classes

namely, susceptible, exposed, infected and recovered. In this research paper, two

preventive measures are taken against Cholera. One is inoculation of vaccine at

fixed impulsive moments and second is the use of disinfectants to kill the harmful

bacteria.

This study explores the importance of impulsive differential equations in

modeling on population dynamics. The research also focuses on the stability anal-

ysis and applications of impulsive ecological models of single-species and species

interactions. It is the natural process that population interactions undergo sud-

den changes in the population densities of the concerned species. These changes

may happen due to fire, flood, seasonal birth patterns of species or human inter-

ventions such as harvesting and stocking of population. To maintain ecological

balance, harvesting and stocking is required, accordingly. Therefore, one of the

appropriate mathematical tool to study the effect of these instantaneous distur-

bances are impulsive differential equations. Several researchers have done rec-

ognized work in modeling on single-species models under the effect of impulsive

perturbations. Yan and Zhao [26] constituted periodic impulsive Lotka-Volterra

type single-species model and derived sufficient conditions for the global stability

of its periodic solution by using suitable Lyapunov function. Wang et al. [27]

explained the importance of spatial factors in population dynamics. It is quite

often that the species migrate to different places in search of better environment

for their survival. Mostly, this happens in regular pulses. Thus, the authors, in

this paper considered the impulsive diffusion of species from one patch to another

and proved the persistence of species in both the patches. Liu et al. [28] showed

how species living in a weak environment can be prevented from extinction with

the help of impulsive stocking at fixed moments of time. Tan et al. [29] proposed

a single-species model under the effect of external perturbations where species are

living in periodically varying environment. They have taken predation of species

according to Holling II functional response. By applying Brower’s fixed point theo-
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rem and Lyapunov method, it was proved that system has globally stable periodic

solution and species were permanent in the presence of impulses. Extending the

above work, Tan et al. [30] studied the effect of constant impulsive perturbations

at fixed time events on single-species population model and compared the results

with those obtained in [29]. Liu et al. [31] presented a single-species population

model with impulsive and random perturbations. They used stochastic impulsive

systems to frame the model and established conditions for the global stability of

the periodic solution. Now we make a shift towards the study of interactions of

same or different species under the influence of impulsive perturbations.

Our planet comprises of infinite number of species of various kinds. To main-

tain ecological balance, it is requisite to have their inter-dependency on each other.

Thus, researchers are paying more attention towards species interactions. Depend-

ing upon the number of species interacting, these are divided into two parts, one

is two species interaction (for eg. prey-predator and competition) and other is

multi-species (food-chain and food-web). The important factor to be considered,

while studying species interactions, is functional response. This refers to the intake

rate of the predator as a function of prey density. Dawes and Souza [32], in their

paper, described three different types of functional responses given by C.S. Holling.

These are known as–Holling Type I, Holling Type II and Holling Type III. In type

I, the consumption rate of predator is linearly dependent on prey density while in

type II and III, time required to search and handle prey is considered. Zhijun and

Ronghua [33] investigated a prey-predator model by taking into account the phe-

nomenon of group defense by the prey population using Monod-Haldane functional

response that is also known as Holling Type IV. It involves a decrease in predation

rate because the ability of prey species to defend themselves get enhanced in a

group. Apart from that, Beddington [34] and DeAngelis [35] also put forward a

new kind of functional response called Beddington-DeAngelis functional response

which includes interference in the predator population during predation. Ballinger

and Liu [36] were the first to explain permanence in impulsive prey-predator mod-

els where impulse occurs at fixed time events. They provided sufficient conditions

for permanence by using Lyapunov functions and also discussed how an unbounded
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growth of population of species can be controlled with the help of impulses. Xinzhi

and Rohlf [37] showed that the only way to control two-species or multi-species

dynamics is taking impulses on the population of first species. These impulses

can be in the form of addition or removal of some members of the species. They

have also given an example of fishery model to explain that the population of

particular types of fish species can be controlled with impulses (by adding prey

species of these fish species) to attract more anglers in a resort. Shuwen et al. [38]

analyzed a prey-predator model by considering impulsive stocking of the predator

and group defense by prey population using Monod-Haldane functional response.

They derived critical value of impulsive period for the permanence of the system.

Moreover, when the value of impulsive period is increased, the system exhibited

chaotic behavior. Dong et al. [39] have studied the more generalized situation,

where both prey and predator population are under impulsive perturbations. Prey

is impulsively stocked and predator is harvested impulsively at fixed moments of

time. After performing numerical simulation, the scholars identified that predator

extinction solution become globally stable under specified conditions on impulsive

period. A multi-species interaction model with impulses consisting of two prey and

one predator population was proposed by Song and Li [40]. They consider Holling

Type II function for the predation of both the preys by predator. By implementing

Floquet theory and comparison analysis technique of IDE, they have shown that

impulsive perturbations encourage co-existence of all the populations. Negi and

Gakkhar [41] examined a prey-predator model with Beddington-DeAngelis func-

tional response. Firstly, they established global asymptotic stability of predator-

free solution and then identified that with the increase in impulsive period, the

system lead towards bifurcation. Zheng et al. [42] studied the impact of delay

on impulsive prey-predator model and identified that combined effect of delay and

impulses pushed the system towards more chaos. Beak and Lee [43] investigated a

food chain system consisting of three-species with linear functional response. The

system is considered with impulsive stocking of mid-level predator. They derived

sufficient conditions for the permanence of the system. Hunki and Do [44] ex-

tended the above work by considering Holling type IV functional response. Along

with this, they incorporated impulsive harvesting of all the species and impulsive
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stocking of top-predator respectively at two different fixed time events. With the

help of Floquet theory and comparison analysis technique, they presented appro-

priate conditions for the stability of prey and predator-free boundary equilibrium

points. Xiaong et al. [45] examined the food chain model for its permanence with

simultaneous impulsive harvesting of prey and mid-level predator, and stocking

of top predator. Li et al. [47] constituted a predator-prey system by taking into

account the mutual interference between preys and predators under the influence

of impulsive perturbations. Sufficient conditions for global attractivity of the sys-

tem are identified using Lyapunov functions and comparison theorems. It is well

known fact that most of the existing species go through different stages such as

juvenile and adult in their life cycle. So, it was obvious to include age-structure in

modeling on population dynamics. Jiao et al. [46] proposed prey-predator model

considering two life stages of predator–that is, immature and mature. The prey is

impulsively stocked and predator is impulsively harvested. They also incorporated

the time required for the maturity of predator in the form of delay. Further, it

was assumed that immature predators depend on mature ones for their survival.

They obtained the threshold value of the amount of impulsive stocking of prey

for the permanence of the system. Zhao [48] developed a prey-predator model

considering stage-structure and time delay in predator. He assumed impulsive

harvesting for the predator and performing numerical simulation, concluded that

under prescribed conditions, predator extinction boundary equilibrium is globally

attractive. Du and Feng [49] confirmed the existence of periodic solution in a de-

layed predator-prey model with Beddington-DeAngelis functional response. It is

already confirmed that certain prey species prefer to travel in groups to avoid pre-

dation. Cosner et al. [50], in their paper, mentioned that some species of predators

also travel in groups. Zhou et al. [51] inspected a three-species food chain model

incorporating Hassell-Varley function response. They applied impulsive harvesting

to all the thre species and impulsive stocking to middle predator, respectively at

two different moments of time. Using small perturbation technique and Floquet

theory, they calculated threshold value of impulsive stocking amount of mid-level

predator for the permanrnce of the prey and top-predator free equilibrium state.

They further observed that system exhibit bifurcation and chaotic behavior which
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depend on the period of impulsive release. Now we make a shift towards pest

management as an application of prey-predator interactions.

Pest management is a major cause of concern in these days because pests

adversely effect plants, crops and natural vegetation. They are responsible to in-

flict the damage to human beings, animals and yields either directly or indirectly.

Therefore researchers at the global level are engaged to solve this problem of pests

through several techniques and tactics such as chemical control method, biologi-

cal control method, integrated pest management and others. Pesticides play an

important role to contain the effect of pests on crop yield. Aktar et al. [52], men-

tioned in their paper that India first time started to produce pesticides at a plant

established in Calcutta in 1952. They described that the immediate effects of pes-

ticides are high yield and better quality food over healthy crop. With the overall

increase in production, the revenue of the farmers also increases which ultimately

ensure them to meet their expenses. In contrast to the benefits of pesticides, these

have deleterious impacts on human health as well as environment. As pesticides

ingressed in the food chain, so the number of deaths caused by chronic diseases

arising from pesticide poisoning have increased gradually. Aquatic bodies also

endure the threat due to water contamination by the excessive use of pesticides.

Thus, it is to mention here that to save our environment and human beings, the

use of these pesticides must be limited. Kalmakoff and Longworth [53] explained

the use of microbial agents to regularize insect pests. The authors categorized the

insect pests into two types, that is, Lepidoptera such as butterflies and moths and

Coleoptera such as beetles. They specified that several pathogens can be used to

generate infectious diseases among pest population. These are protozoa, bacteria,

fungi and nematodes. Theses insect pathogens resides on the host pest and hamper

their growth by intervening in their biological process, which ultimately leads to

the death of host pest. Cherry et al. [54] carried out a study on the potential of

certain pathogens for integrated pest management (IPM) of stem borers in West

Africa. They found that most of the small scale farmers in Africa could not afford

to buy pesticides due to very high cost. Therefore, IPM is its best alternative where

unrestrained use of pesticides can be gradually reduced by efficiently combining
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with biological control. They concluded that the use of insect pathogen Beauveria,

which is specific fungi, is very effective for IPM strategy to stop the damage of

maize plants from pests. Burges and Hussey [55] discussed two ways to insert these

insect pathogens in the target pest population. These can either be added in the

marginal amount to the pest population to create an epidemic or can be used as

bio-pesticides when the targeted pests reach at an economically significant level.

Freedman [56] explained that the other way to control pests biologically is through

some specific natural enemies which act as predators for the targeted pests. To

exemplify, Caterpillars and Aphids are among the common pests of Tomato and

Cabbage, respectively. It is found that their natural enemies, Parasitic Wasp and

Hover Fly Larva are being used by farmers to control these pests. In this paper,

the authors proposed basic prey-predator model for pest control. Prey acts as pest

and predator plays the role of natural enemy. Further, studies suggested that if the

natural enemies are not available in enough numbers, they can be bred in suitable

environment and instantaneously released in the field from outside. This process

is called augmentation of natural enemies. Lenteren [58] discussed the concept

of augmentation of natural enemies for biological control in two ways. He spec-

ified that approximately 125 species are identified as natural enemies of specific

pests. First is inundative release where the natural enemies of the targeted pests

are reared in large numbers and released periodically in the field for immediate

pest control. This method is generally applied to the crops where only one par-

ticular type of pest species are prevalent. Second is seasonal inoculative release

which includes periodical release of these natural pest control agents. Apart from

providing the immediate control, this method helped to regularize the pest pop-

ulation throughout the season. He concluded that the scope of bio-pest control

is very wide because market demand of vegetables grown with minimized or no

use of pesticides is continuously rising. Thus, the dynamics of pest control models

can be effectively studied with the help of impulsive prey-predator interactions.

The concept of IPM came into limelight in the middle of twentieth century. After

that, there is continuous development in this field of IPM. Barclay [57] studied

a stage-structured prey-predator model with release of predator, pesticides and

habitat management for pest control strategy. He has taken two life stages of
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pest (prey) population and identified the various factors to be considered while

applying prey-predator systems to regulate pests. The first successful attempt in

the field of IPM was made by Tang et al [59]. They constructed two impulsive

models of IPM with fixed and unfixed time events, respectively. In the first model,

the authors adopted the strategies of biological as well as chemical methods in or-

der to reduce pest population in the crop with fixed impulsive effects. They took

threshold values of impulsive period for the global stability of prey neutral periodic

solution. The authors stressed to use these measures integrally as it not only cut

down pest population to tolerable level but is environmentally safe and econom-

ically feasible. In the second model, they examined the case of state-dependent

impulsive control events just after the preys attain an economic threshold value.

In this model, the strategies of releasing natural enemies, regular field monitoring

and spraying pesticides are taken into account simultaneously. Hong et al. [60]

showed how certain insect pathogens are beneficial to obstruct the growth of tar-

geted pests by applying continuous and impulsive release of infected pests. These

can be germinated in laboratories under suitable conditions and are not capable

to cause damage to crops. To exemplify, the viruses of dengue fever are transmit-

ted by Tiger mosquito and spraying with bacterium Bacillus thuringiensis help to

control flocks of these mosquitoes. The authors achieved that by controlling the

impulsive release amount of infected pests, pest population could be maintained

at acceptably low levels. Georgescu and Morosanu [61], in their research article,

studied an integrated pest management (IPM) model with biological and chemi-

cal control methods which are used in an impulsive and periodic manner. They

included pesticide spraying and impulsive release of infected pests at two different

time moments and applied the Floquet theory of impulsive differential equations to

check the stability of the system. Bhattacharya and Bhattacharya [62] conducted

a study to examine the problems in an agro-ecosystem. They examined that sterile

insect techniques (SIT) is very viable biological control method in controlling pest

population. They also favoured in the use of pesticides provided it should be in

low volume. The study stressed that if these control measures are adopted in plau-

sible manner, it could be helpful in increasing the production of yield also. The

study further indicated towards the vulnerability of the system in which climatic
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factors, particularly effects of temperature has discussed in an interesting way.

Depending on the richness of available survival resources, it is evident to consider

the patchy distribution of species in an environment. Thus, Georgescu and Zhang

[63] extended the work done in [61] by dividing the environment into two different

patches. They proposed a susceptible-infected (SI) model where movement of sus-

ceptible pests is allowed between patches but infected pests are forced to stay to

their respective patches. Spraying of pesticides and impulsive release of infected

pests is incorporated at two different time events. They discussed the effect of

dispersal rate from one patch to other on the stability of pest free equilibrium

state and highly recommended the diffusion of susceptible pests from unstable to

stable patch for effective pest control strategy. Another interesting SI model for

IPM was proposed by Jiao et al. [64] by considering Holling type II function as

incidence rate and identified sufficient conditions to maintain the pest population

at tolerable level. Georgescu and Zhang [65] presented susceptible pest-infected

pest-natural enemy (SIN) model with two life stages of natural enemies–that is,

immature and mature for IPM. The researchers assumed that immature preda-

tor could not haunt on prey and completely depend on mature predator for their

survival. They summed up that when density of pest population increases, high

voracity of predators would encourage timely eradication of pests. Wang et al.

[66] examined impulsive SI model for efficient pest control with more generalized

nonlinear transmission rate from susceptible to infected pests. Gao and Tang [67]

compared two different prey-predator models with instantaneous release of preda-

tors to curb the growth of pest population. First is the periodic Lotka-Volterra

type prey-predator model where fixed amount of natural enemies are released at

fixed impulsive moments and in second case, the release amount is proportional to

the predator density. It is found that proportional impulsive release is more ade-

quate for annihilation of pests. Zhao et al. [68] explored a three-species food chain

model with mixed functional response and infection in the prey species for pest

management. Infected prey (pests) are impulsively released at fixed time events.

An extensive numerical simulation is performed to observe the chaotic behavior of

system which depends on the impulsive release amount of infected prey population.

Further, Georgescua and Zhang [69] featured the possibility of availability of more
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than one species of natural enemies for prey species and developed an impulsive

pest control model with ‘n’ number of predator species which haunt on common

prey. Tang et al. [70] embodied the duration of residual effects of pesticides on the

growth of pests and natural enemies. They mentioned that repeated application of

pesticides could be diminished if these have strong and long residual effects. They

also considered the decay rate of pest population with pesticide spraying and es-

tablished permanence of the system. Yang and Yang [71] constructed an impulsive

pest management model. The authors studied periodically impulsive releasing of

predators and harvesting of pests at two different fixed time periods. Jatav and

Dhar [72] in a comprehensive study explored a three level plant-pest-natural en-

emy model with stage structure and impulsive perturbation. They investigated

impulsive releasing of predators and impulsive harvesting of pests in numerical

terms. The authors also examined the simultaneous effects of biological and chem-

ical control measures on annihilation and permanence of pests. The study further

highlighted that hybrid pest control strategies, in which two or more methods used,

are very productive and cost-effective techniques. It is more rational that imma-

ture individuals of any species take some time to get mature, thus, Dhar et al. [73]

assimilated delay time for maturation of immature to mature pests and analyzed

a prey-predator model with stage structure in pest population with impulsive re-

lease of predator for pest control. They calculated the threshold value of impulsive

period for the extinction of pests depending on significant factors such as, mat-

uration delay time of pests and impulsive release amount of predators. Because,

complete extermination of pests is not appreciated economically and biologically,

thus, they recapitulated that short time period of maturation or release of natural

enemies at small scale would encourage the permanence of the system. Li et al.

[74] studied an eco-epidemic model with double impulsive control method. They

examined global stability of the susceptible prey extinction periodic solution. In

the study, the scholars adopted a strategy in which infected preys and predators

are acquitted periodically at diverse points. The study confirmed that integrated

pest management is a cost-effective and environment-friendly tactic. Akman et al.

[75], in their review article on pest management models, generalised a number

of impulsive differential equation pest control models given by many renowned
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scholars. In this paper, they discussed random fluctuations in the birth rate of

the species. At the end, the authors suggested some valuable points to select the

best suitable models to study a problem. They highly stressed on the use of an

accurate and precise modelling parameters and simulated numerical techniques.

Mathur [76] made an inquisitive approach in which two-prey one –predator model

is proposed. He used organic and synthetic pest control techniques at two different

time periods. The author determined the threshold values for the eradication of

the pests and permanence of the system. Jiao et al. [77] explored a predator-prey

model by using impulsive diffusion which is linked with two patches. They found

that the diffusive rate of the natural enemy contributes a lot in controlling pest

population. Chaves et al. [78] conducted a study on the developments occurred

in the field of IPM as it contributed a lot in the formation of plethora of mathe-

matical models using in pest control. They discussed differential equations used in

agricultural ecosystems right from classical to modern times. The study is quite

useful to understand a number of aspects relating to the parametric values of pest

control, its impact on environment and economy etc. Apart from these studies, the

perception of delay in gestation time of natural enemies is also acknowledged by

some researchers. Because, if an infectious disease exists in pest (prey) population,

it is evident that the natural enemies would also get infected after the consumption

of diseased pests which effects their breeding. Kumar et al. [79] proposed and an-

alyzed a food chain model consisting plant, pest and natural enemies with disease

in pest population for pest control. They assimilated the gestation delay time for

natural enemies and studied the stability of different equilibrium states. Jose and

Usha [80] studied the nature of plant-pest virus, bio pesticides and predators food

chain model. The major focus of the study was to examine plant pest extinction

and pest eradication periodic solution. They applied Floquet theory of impulsive

differential equations. The study concluded that the use of organic pesticides is

very effective as it is not just to minimize the effect of pest but also to increase the

period of impulsive release of infected pests and natural enemies. Akman et al. [81]

in their study made an attempt to propose an integrated pest management (IPM)

model with prey refuge effect which describes the capability of pests to camouflage

themselves from the attack of pesticides and predators. The authors constructed a
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stage structured impulsive differential equation model which assumes that in order

to control pest population, it is essential to use pesticides and discharge predators

in the field at specified time period. The authors claimed that the present study

has the potential to extend in medical immunotherapy which helps in reducing the

risk of cancer and other harmful cells in human body. Chavez et al. [82] examined

the similarities and differences of two ecological models which are based on chem-

ical and biological control, implemented in periodic and impulsive manner. They

applied Path-Following technique which provides numerical explanation to system

parameters in pest control. It is essential to know that the authors focused on the

effect of the impulse period on the ecosystems with the help of a branching point

(BP). Kumari et al. [83, 87] studied integrated pest management approach which

significantly suppresses pest population and prevents pest resistance to yield. They

opined that these control measures are proved to be more effective in reducing pest

population if they applied in combination. This approach also led to positive eco-

nomic and environment outcomes. Kumar et al. [84] extended his work done in

[79] assuming gestation delay time in natural enemies as well as pest population.

They proved boundedness of the system and carried out the bifurcation analysis.

Tariq et al. [85] conducted a study to find out the harmful effects induced by ro-

dents in the fields of sugarcane. They conducted an experiment on three varieties

of sugarcane namely, Thatta-10, BL-4 and BF-129. It was observed that BL-4

variety was heavily destroyed by the rodents because of its softness as compared

to other two. The study further explored that egg mixed brodifacoum bait was

proved the most successful IPM strategy in reducing the rodents. Tiana et al.

[86] studied nonlinear impulsive control actions which are based on the density

of the prey and predator. They opined that these measures could develop com-

plex switching pattern which warns about the possibility of an epidemic of the

prey population because of ecological challenge. Gupta et al. [88] studied a stage

structured pest management model with mixed type of functional responses. The

authors examined that impulsive control method has acquired special significance

in the extinction and permanence of pests. The results in general of the study

brought out that the annihilation of susceptible pests (immature or mature) and

exposed preys completely leans on the pulse releasing amount and impulsive pe-
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riod. The study further pointed out that biological control methods which include

releasing of predators or infected pests are very effective to suppress the pest popu-

lation. Khan and Tang [89] proposed a prey- predator model with ratio-dependent

Action Threshold (AT) which is based on the pest density and its variation rate.

The authors formed Poincare map which proved to be very beneficial in exploring

the impulsive dynamics of the system. The study highlighted that it is possible

to control the whole pest population with the help of control action strategies. In

this study, the authors made an attempt to overcome the drawbacks of Economic

Threshold (ET) model which had particularly two major flaws. The first was to if

there was substantial number of population, the change rate was small. In the sec-

ond, the number of population was insignificant whereas the change rate was high.

With the advancement science and technology, researchers are still working to find

more efficient pest control methods which cause minimal environmental pollution.

Working in this direction, Anandhi et al. [90] made an attempt towards the use of

nano-pesticides in pest control. It is observed that many of the chemical pesticides

are sensitive towards various factors such as light, humidity and others, so very

low percentage of applied pesticide reaches the target. Thus, nano-particles can

be used to overcame these difficulties. They also provided some examples in their

paper where nano-pesticides are successfully used for pest control. Now we move

towards the study of impulsive perturbations on ecological models where species

compete for the same survival resources, that is competition models.

The first classical competition model was proposed by Lotka and Volterra.

Murray [1] analyzed this model with the assumption that both the species are

growing logistically in the absence of each other and are competing for the same

survival resources. He described that the species having greater competitive effect

on other, would be the superior and the second would be the inferior. He epito-

mized that the superior species dominate the inferior, which leads to its extinction.

This is called principle of competition exclusion. Ahmad [91] analyzed the basic

Lotka-Volterra competition model under more pragmatic situation when changes

in the species environment effect their growth. Thus, he explored the periodic

two-species competition model and derived required conditions for the system to
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follow the principle of competition exclusion. Further, it is found that many a

times, species experience instantaneous disturbances which bring about positive

or negative effects on population density of these living organisms. So, it is better

to study these systems with impulsive differential equations. Liu and Chen [92] ex-

amined an impulsive periodic Lotka-Volterra competition model. They concluded

that under impulsive perturbations, both the species could coexist. Jin et al. [93]

identified the influence of impulsive perturbations on the persistence and extinc-

tion of species in non-autonomous competition model. The authors have taken into

account the average growth rate of the species. Liu et al. [94] explored the linear

stability of trivial and non-trivial solutions of impulsive two-species competition

model using Floquet theory of IDE. Liu et al. [95] introduced the concept of delay

in competition system and presented an impulsive periodic two-species competition

model with delay in both the species. Liu et al. [96] also inspected an impulsive

delayed competition model and concluded that the influence of time delays on the

system is almost negligible while impulses contributed towards permanence of the

system. As earlier discussed, role of functional response of a species is very momen-

tous in species interactions. Inspired by prey-predator interactions with different

functional responses, researchers also examined competition models with non-linear

inter-inhibition terms. Yu and Chen [97] developed two-species competition model

with Beddington-DeAngelis inter-specific competition term. Furthermore, when

species in a particular region compete for the available living resources, they ex-

hibit specific behaviors to hamper the growth of their competitors. Thus, some

species discharge toxic substances in the presence of their competitors to harm

them. The study of competition interactions in the presence of toxic secretions by

species was firstly initiated by Chattopadhyay [98]. Liu et al. [99] investigated a

delayed two-species competition model with inhibitory toxic effects of species un-

der the influence of impulses. Various mathematical studies on competition models

considering the effect of toxic substances released by species in the presence of their

competitors proved the partial extinction of the system [100, 101, 102, 103].

After doing this extensive literature review, we realized that there is still need

to explore in the area of mathematical modeling on ecological models comprising
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single species and species interactions with impulsive effects.

1.4 Proposed objectives of the study

On the basis of literature review and research gaps, the following objectives have

been proposed in this present study:

1. Modeling on single species population using impulsive differential equations

and their stability analysis by using Lyapnuov function.

2. Stability Analysis of single species population model with impulse by using

Comparison theorems.

3. Modeling on interacting population (prey-predator) with impulse and stabil-

ity criterion by using Lyapnuov Direct Method and comparison theorems.

4. Modeling on interacting population (Competition) with impulse and stability

criterion by using Lyapnuov Direct Method and comparison theorems.

1.5 Mathematical Preliminaries

1.5.1 Impulsive Differential Equation

“An impulsive differential equation consists of two parts, first is an ordinary differ-

ential equation which describes the state of evolutionary process within impulsive

moments and second is the function defining the system at impulsive moments.

Consider that the state of a metamorphic system is described by an ordinary dif-

ferential equation

x′(t) = f(t, x),
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where t ∈ R, x ∈ Ω ⊂ Rn, f : R+ × Ω → Rn and impulsive moments for the

solution x(t) occurs at t = tk (k ∈ N).

Define I(t, x) : R× Ω→ Ω, where

(t, x)→ (t, x+ I(t, x))

is the transformation of the solution before the impulsive moment, x(t−k ), to after

the impulse effect, x(τ+
k ). Then

∆x(tk) = I(tk, x(tk))

where ∆x(tk) = x(t+k )− x(t−k ).

1.5.2 Types of Impulsive Differential Equations [8]

Impulsive differential equations are of three types:

Type1: Equation with impulses at fixed timesx′(t) = f(t, x), t 6= tk,

∆x = Ik(x), t = tk, k ∈ N.
(1.1)

The moments of impulsive effects t1 < t2 < t3 < · · · < tk are priory fixed and

tk → ∞ as k → ∞. The solution x(t) of the system (1.1) satisfies the equation

x′(t) = f(t, x) for t ∈ (tk, tk+1] and x(t) satisfies the relation x(t+k ) − x(t−k ) =

I(tk, x(tk)) for t = tk.

T ype2: Equation with impulses at variable timesx′(t) = f(t, x), t 6= tk(x),

∆x = Ik(x), t = tk(x), k ∈ N
(1.2)
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where tk : Ω→ R and t1 < t2 < t3 < · · · < tk are the moments of impulsive effects.

The impulses occur when the mapping point (t, x) meets some hyper surface σk

of the equationt = tk(x).

T ype3: Autonomous impulsive differential equationsx′(t) = f(x), x /∈ σ,

∆x = Ik(x), x ∈ σ,
(1.3)

where σ is an (n− 1) dimensional manifold contained in the phase space Ω ⊂ Rn.

The impulses occur when the solution x(t) meets the manifold σ.

1.5.3 Solution of Impulsive Differential Equation [8]

In the present study, we will deal with impulsive differential equations with fixed

moments. A function x : (t0, t0 + a)→ Rn, t0 ≥ 0, a > 0, is said to be solution of

system (1.1) if

(i) x(t+0 ) = x0 and (t, x(t)) ∈ R+ × Ω for t ∈ [t0, t0 + a).

(ii) x(t) is continuously differentiable and satisfies x′(t) = f(t, x(t)) for t ∈
[t0, t0 + a) and t 6= tk.

(iii) If t ∈ [t0, t0 + a) and t = tk, then x(τ+
k ) = x(tk) + Ik(x(t)), and at such t′s

we always assume that x(t) is left continuous.

1.5.4 Stability and Permanence of the Solution of Impul-

sive Differential Equation [8]

Definition 1.5.4.1. Let x0(t) = x(t, t0, y0) be a given solution of the system

(1.1) with x(t+0 ) = x0 existing for t ≥ t0. Then x0(t) is said to be
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(S1) stable, if for each ε > 0 and t0 ∈ R+, there exist a δ = δ(t0, ε) > 0 such that

| x0 − y0 |< δ implies | x(t)− x0(t) |< ε for t ≥ t0, where x(t) = x(t, t0, x0)

is any solution of system (1.1) existing for t ≥ t0;

(S2) uniformly stable, if δ in S1 is independent of t0;

(S3) attractive, if for each ε > 0 and t0 ∈ R+ there exist δ0 = δ0(t0) > 0 and a

T = T (t0, ε) > 0 such that for | x0 − y0 |< δ0 implies | x(t)− x0(t) |< ε for

t ≥ t0 + T ;

(S4) uniformly attractive, if δ0 and T in S3 are independent of t0;

(S5) asymptotically stable, if S1 and S3 holds;

(S6) uniformly asymptotically stable, if S2 and S4 holds.

Definition 1.5.4.2. The system (1.1) is said to be permanent if there exists con-

stants Q ≥ q > 0 such that q ≤ x(t) ≤ Q for sufficiently large t, where x(t) is any

solution of system (1.1) with x(0+) > 0.

Definition 1.5.4.3. Let V0 =
{
V : R+ ×Rn

+, continuous on (tk, tk+1]×Rn
+, and

lim(t, y)→(tk, x), t>tk V (t, x) = V (t+k , x)exists
}

. If V ∈ V0, then for (t, x) ∈ (tk, tk+1]×
Rn

+, the upper right derivative of V(t, x) with respect to the impulsive differential

system (1.1) is defined as

D+V (t, x) = lim
h→0+

sup
1

h
[V (t+ h, x+ hf(t, x))− V (t, x)]. (1.4)

1.5.5 Impulsive Integral Inequality [8]

Theorem 1.5.1. Assume that

(A0) the sequence tk satisfies 0 ≤ t1 < t2 < t3 < · · · , with limk→∞ tk =∞;

(A1) m ∈ PC1[R+, R] and m(t) is left continuous at t = tk;

(A2) for k = 1, 2..., t ≥ t0,
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m′(t) ≤ p(t)m(t) + q(t), t 6= tk

m(t+k ) ≤ dkm(tk) + bk, t = tk.
(1.5)

where q, p ∈ PC[R+, R], dk ≥ 0 and bk are constants

Then,

m(t) ≤ m(t0)
∏

t0<tk<t

dk exp

(∫ t

0

p(s)ds

)

+
∑

t0<tk<t

 ∏
tk<tj<t

dj exp

(∫ t

tk

p(s)ds

) bk

+

∫ t

t0

∏
s<tk<t

dk exp

(∫ t

s

p(σ)dσ

)
q(s)ds, t ≥ t0. (1.6)

1.5.6 Maximal and Minimal Solution of Impulsive Differ-

ential Equations [8]

Definition 1.5.6.1. Let r(t) = r(t, t0, x0) be the solution of system (1.1) on

[t0, t0 +a). Then r(t) is said to be the maximal solution of (1.1), if for any solution

x(t) = x(t, t0, x0) of (1.1) existing on [t0, t0 + a)], the inequality x(t) ≤ r(t)

holds. A minimal solution of system (1.1) can be similarly defined by reversing the

inequality.

1.5.7 Comparison Principle [8]

Theorem 1.5.2. Assume that (A0) and (A1) holds. Suppose that g : R+×R→ R

and ψk : R→ R, ψk(u) is non decreasing in u and for each k = 1, 2, 3, ...D+m(t) ≤ g(t, m(t)), t 6= tk, m(t0) ≤ u0,

m(t+k ) ≤ ψk(m(tk)), t = tk.
(1.7)
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Let r(t) be the maximal solution of the impulsive differential systemu′ = g(t, u), t 6= tk, u(t0) = u0,

u(t+k ) ≤ ψk(u(tk)), t = tk.
(1.8)

Then m(t) ≤ r(t), t0 ≤ t <∞.

1.5.8 Floquet Theory of Impulsive Differential Equations

[10]

Consider the linear T-periodic impulsive system with fixed moments of impulsedx
dt

= A(t)x, t 6= τk, t ∈ R,

∆x = Bk(x), t = τk, k ∈ Z,
(1.9)

subject to the following conditions

H1.1 The matrix A(.) ∈ PC(R, Cn×n) and A(t+ T ) = A(t) for t ∈ R.

H1.2 Bk ∈ Cn×n, det (E +Bk) 6= 0, τk < τk+1.

H1.3 There exists an integer q ∈ N such that Bk+q = Bk and τk+q = τk + T for

k ∈ Z.

Definition 1.5.8.1. Let x1(t), x2(t), · · · , xn(t) be solutions of system (1.9) on

the interval (0, ∞). Let X(t) = x1(t), x2(t), · · · , xn(t) are linearly independent

iff det X(t+0 ) 6= 0. Then X(t) is said to be fundamental matrix of (1.9).

Theorem 1.5.3. Let conditions H1.1-H1.3 hold. Then each fundamental matrix

of system (1.9) can be represented in the form

X(t) = φ(t)eΛt (t ∈ R), (1.10)
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where the matrix Λ ∈ Cn×n is constant and the matrix φ(.) ∈ PC1(R, Cn×n) is

non-singular and T -periodic.

To the fundamental matrix X(t) there corresponds a unique matrix M such

that X(t + T ) = MX(t) for all t ∈ R. Here, M is called the monodromy matrix

of system of equations (1.9). The eigen values µ1, µ2, · · · , µn of the monodromy

matrix M are called Floquet multipliers of (1.9). The eigen values λ1, λ2, · · · , λn
of matrix Λ are called Floquet exponents of (1.9).

Remark 1.5.8.1. In order to calculate the multipliers µ1, µ2, · · · , µn of (1.9), we

have to choose an arbitrary fundamental matrix X(t) of (1.9) and calculate the

eigenvalues of the matrix

M = W (t0 + T, t0) = X(t0 + T )X−1(t0), (1.11)

where t0 ∈ R is fixed. If X(0) = E, then we can choose M = X(T ) as the

monodromy matrix of (1.9).

Theorem 1.5.4. Let conditions H1.1-H1.3 hold. Then µ ∈ C is a Floquet mul-

tiplier of (1.9) if and only if there exists a non-trivial solution ϕ(t) of (1.9) such

that ϕ(t+ T ) = µϕ(t) for all t ∈ R.

Theorem 1.5.5. Let conditions H1.1-H1.3 hold. Then the system (1.9) has a

non- trivial kT -periodic solution if and only if the kth power of at least one of its

multipliers equals 1.

The multipliers of (1.9) completely characterize its stability. This is seen

from the following theorem and relation

1

T
ln | µj |= Re(λj), (j = 1, 2, · · · , n). (1.12)

Theorem 1.5.6. Let conditions H1.1-H1.3 hold. Then the linear T -periodic im-

pulsive system (1.9) is
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1. stable if and only if all multipliers µj (j = 1, 2, · · · , n) of the system (1.9)

satisfy the inequality | µj |≤ 1;

2. asymptotically stable if and only if all multipliers µj (j = 1, 2, · · · , n) of the

system (1.9) satisfy the inequality | µj |< 1;

3. unstable if | µj |> 1 for some j = 1, 2, · · · , n.

Remark 1.5.8.2. For impulsive differential equations with fixed impulsive mo-

ments, the definition of various types of stability of the solutions coincide with the

known notion of stability of the solutions of ordinary differential equations without

impulses. So, below we will define Lyapunov’s method for the stability of differen-

tial systems.

1.5.9 Lyapunov’s Direct Method of Stability [3, 104]

Let Ω be an open set in Rn containing the origin. Suppose V (x) is a scalar

continuous function defined on Ω. Then

Definition 1.5.9.1. A scalar function V (x) is said to be positive definite on the

set Ω if and only if V (0) = 0 and V (x) > 0 for x 6= 0 and x ∈ Ω.

Definition 1.5.9.2. A scalar function V (x) is said to be positive semidefinite on

the set Ω when V has the positive sign throughout Ω, except at points where it is

zero.

Definition 1.5.9.3. A scalar function V (x) is said to be negative definite (nega-

tive semidefinite) on the set Ω if and only if −V (x) is positive definite (positive

semidefinite) on Ω.

Theorem 1.5.7. If on a neighborhood Ω of the origin, there exist a function

V : Ω→ R and a constant a such that

(i) V (x) and its partial derivatives are continuous for all x ∈ Ω.

32



(ii) V (x) ≥ 0 for all x ∈ Ω and V (0) = 0.

(iii) V̇ (t, x) ≤ −a(V (x)) for all x ∈ Ω and for all t ≥ 0.

Then the zero solution of system (1.1) is uniformly asymptotically stable.

Definition 1.5.9.4. The function V ∈ C1(Ω, R) satisfying the above three condi-

tions is called strong Lyapunov function.

If in the third condition of Theorem 1.5.7, V (x) is negative semidefinite. Then

V (x) is called weak Lyapunov function.

1.5.10 Important Lemmas [10, 60]

Lemma 1.5.1. If V (t) be any solution of system (1.1) with V (0) ≥ 0 then V (t) ≥ 0

for all t ≥ 0. Also V (t) > 0 for all t ≥ 0 if V (0) > 0.

Lemma 1.5.2. ([10]) Consider the following impulsive system
dx(t)
dt

= x(t)r(t)
(

1− x(t)
k(t)

)
, t 6= τk,

v(τ+
k ) = (1 + ck)v(τk), t = τk, k ∈ Z+.

(1.13)

with initial condition x(0) > 0, r(t) and k(t) are continuous functions that are

periodic with period T , k(t) ≥ 0 ∀ t ≥ 0, ck > −1 and τk+r = τk + T , ck+r = ck

for some r ∈ N . If
∏r

k=1(1 + ck) exp
(∫ T

0
r(t)dt

)
> 1, then the system (1.13) has

a solution which is positive, globally asymptotically stable and periodic with period

T .

Lemma 1.5.3. ([60]) Consider the following impulsive system
I ′(t) = −wI(t), t 6= nτ,

∆I(t) = µ, t = nτ,

n ∈ Z+.

(1.14)
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with initial condition I(0+) = I0 and τ is the period of impulsive moments. It has

periodic solution I(t) and for any solution I(t) of (1.14), | I(t) − I(t) |→ 0 as

t→∞ where

I(t) =
µ exp(−w(t− nτ))

1− exp−(wτ)
and I(0+) =

µ

1− exp(−wτ)

Thus I(t) is globally stable.”

1.6 Summary

The study of the underlying system consisting of three major inter-related com-

ponents, viz. population dynamics, impulse and integrated pest management was

carried out by using the concept of system analysis in which the system is studied

by defining its borders, by distinguishing its major components, characterizing the

change in them by mathematical equations and then interconnecting the represen-

tative equations in order to obtain a model of the original system. For the proposed

study, it is planned to construct deterministic and dynamic mathematical models

using systems of linear and nonlinear impulsive differential equations in order to

predict the changes in the attributes of the inter-related objects of the system.

Once the model is governed by impulsive differential equations, these equations

were solved assuming the initial positivity of all the state variables. The bound-

ednes of the solutions obtained were checked using integral inequalities of IDE. The

stability and permanence of the systems was studied with the help of stroboscopic

map, comparison analysis technique and Floquet theory of impulsive differential

equations. Also, numerical solutions of the proposed models were obtained using

numerical techniques and MATLAB. This thesis consists of seven chapters whose

detail is as follows:

In chaper-1, basic introduction about population dynamics, mathematical mod-

eling, impulsive differential equations and pest management has been described.

The basic terms used in this study are also discussed. Under the section of liter-

ature review, the work done by many renowned researchers till date at national

34



and international level has been extensively examined. After analyzing the re-

search gaps, objectives of the present study have been proposed. To check the

boundedness, stability and permanence of the formulated models, mathematical

preliminaries of impulsive differential equations have been given. The last section

includes the summary of the study.

In chapter-2, a single-species model under the effect of periodically changing en-

vironment and impulsive perturbations is proposed and investigated in this paper

considering Holling type III functional response as predation term. It is assumed

that self-inhibition rate must be positive. Existence of positive periodic solution

is proved with Brower’s fixed point theorem. Sufficient conditions for the global

asymptotic stability of system are derived using suitable Lyapunov function and

comparison principle.

In chapter-3, a single-species population model under the influence of constant and

linear impulsive perturbations at fixed moments of time is explored taking Monod

Haldane functional response as predation term. It is assumed that species is living

in weak environmental conditions. The species become extinct in the absence of

impulsive perturbations. Sufficient conditions for the permanence of the species

surviving under unfavorable conditions are obtained. It is shown that in case of

linear impulses at fixed time events, higher value of impulsive perturbations expe-

dite the attainment of permanence of the system. Thus, we proved that extinction

of species can be prevented with impulsive stocking.

In chapter-4, a susceptible pest-infected pest-natural enemy (prey-predator) model

considering infection in prey with two classes (susceptible-infected) and stage struc-

ture in predator is examined for the cause of integrated pest management. Prey

acts as pest and predator plays the role of a natural enemy. Firstly, local and

global stability of pest extinction periodic solution is carried out, then condition

for the permanence of system is derived using Stroboscopic map, comparison anal-

ysis technique and Floquet theory. It is found that instead of using pesticides,

microbial control agents along with natural enemies are more efficient to suppress

the growth of pests. The threshold value of impulsive period is obtained and it

is established that susceptible pests can coexist with infected pests and natural

enemies. Also, the effect of releasing the number of infected pests and natural
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enemies is discussed and found that greater releasing amount of infected pests and

natural enemies supports pest eradication. Numerical simulations are performed

using MATLAB.

In chapter-5, a two-prey one-predator model is proposed with mixed functional

responses (Holling IV and Beddington-DeAngelis). Firstly, it is proved that prey

neutral periodic solution is locally stable by using Floquet theory of impulsive dif-

ferential equations. Secondly, two threshold values of the impulsive release amount

of predator are calculated to establish the global stability of prey free boundary

equilibrium. Also, conditions for the permanence of the system are derived. Nu-

merical solutions are also obtained using MATLAB.

In chapter-6, a three tropic level food chain model is analyzed considering plant,

pest and natural enemies for integrated pest management. Two different type of

functional responses are taken for mid level and top level predator. Threshold

value of the impulsive period is calculated for extinction of mid level predator

using Floquet theory of impulsive differential equations, Lyapnuov functions and

stroboscopic map. Mid level predator plays the role of pest. Permanence of system

is also established. Effect of spraying amount of pesticides and natural enemies

is discussed and found that greater releasing amount or small impulsive period

support pest eradication. Some complex dynamics is also observed at higher value

of impulsive period greater than threshold value. Further, validation of theoretical

findings is done using MATLAB.

In chapter-7, a two species periodic competitive model with Beddington-DeAngelis

inter-inhibition term in the presence of toxic substances is examined. The system

is considered under the effect of impulsive perturbations. Sufficient conditions for

the extinction of one species and permanence of other are derived using suitable

Lyapunov functions and comparison theorem of impulsive differential equations.

Therefore, extension of principle of competition exclusion is done for two species

competition system with Beddington-DeAngelis functional response under the ef-

fect impulsive perturbations and toxic substances released by both the species.

Also, it is observed that impulses effects the dynamics of the system. To substan-

tiate theoretical findings, numerical simulation is done using MATLAB.
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Chapter 2

Periodicity and Stability of

Single-species Model with Holling

Type III Predation Term using

Impulse

2.1 Introduction

Mathematical modeling is an important term to study population dynamics. For

the past years, modeling with ordinary differential equations is playing an impor-

tant part in the study of both single species and multi-species population dynamics.

Two main interactions among species are competition and prey-predator. Dynam-

ics of single-species exponential growth model and that of two-species interactions,

that is, Lotka-Volterra prey predator and competition model is studied. But, many

evolutionary processes taking place in nature undergo a change of state abruptly

at certain moments of time. These are sometimes influenced by short term per-

turbations which act instantaneously in the form of impulses. The time span of

these perturbations is small in relation to that of the studied process, but they
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effect the dynamics of the process. So these processes can better be analyzed us-

ing impulsive differential equations. Hence, these equations has wider scope and

greater practical importance than ordinary differential equations without impulses

because these are more closer to the practical problems. Initially, Mil’man and

Myshkis [7] worked in the field of quantitative study of impulsive differential equa-

tions. Further, work is done on solutions of impulsive differential equations and

their comparison theorems, see [8]. After this there is continuous development in

the study of impulsive differential equations. These are being used in modeling in

population dynamics, ecology and other applied sciences [24]. The Lotka-Volterra

periodic competing population model with impulsive perturbations in the form of

human activities is investigated by Liu and Chen [92]. They removed the continu-

ous interference of humans in biological processes with impulsive effect as species

are being harvested or stocked mostly seasonally. It occurs in regular pulses. In

the recent years, work has also been done on single species population.

Moving further, constant and linear impulses at fixed moments of time in

a periodic single-species model has analyzed by Liu et al.[153]. The authors es-

tablished conditions for the permanence of system using comparison theorems of

impulsive differential equations. They concluded that species can be protected

from extinction by linear and constant impulsive perturbations. In a single species

model, the periodicity and stability with impulsive perturbations by considering

the predation term as Holling Type-II functional response using comparison the-

orems and Lyapnuov function is examined by Tan et al [29]. In continuation of

this, Tan et al. [30] compared the effect of linear and constant impulsive perturba-

tions on single species population density considering Holling Type-II functional

response.

In the view of above, in this chapter, impulsive perturbations in a single-

species model are taken and its stability is discussed with the help of comparison

systems and Lyapnuov function by considering Holling Type –III functional re-

sponse as the predation term.
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2.2 Mathematical Model

Simple and useful framework to investigate the behavior of single-species model is

represented by the first order differential equation

n′(t) = n(t)f(n(t))− h(n(t)), (2.1)

where n(t) denotes the population density of species at any time t. In the ab-

sence of external factors f(n(t)) represents per capita rate at which the species

grows and h(n(t)) represents the cumulative effect of the outside, in the form of

predation or harvesting. The most suitable choice of f(n(t)) is given by f(n(t)) =

p(t) − q(t)n(t), q(t) > 0 giving rise to logistic growth model. Consider that pre-

dation is represented by the term h(n(t)). The predation term generally is an

increasing function in which saturation comes as the population density of prey

species increases. At low prey density, the predation term h(n(t)) decreases more

rapidly. As introduced by Ludwig et al. [6], Murray [1] took the form of h(n(t))

as αn(t)2

β+n(t)2
, so the dynamics of the species n is governed by the equation:

n′(t) = n(t)(p(t)− q(t)n(t))− αn(t)2

β + n(t)2
, (2.2)

where the predation term αn(t)2

β+n(t)2
is Holling type III functional response, p(t) is

intrinsic growth rate, q(t) is self-inhibition rate and the positive constants α, β

measures the saturation value. In equation (2.2), the coefficients are assumed to be

constants. But in real, due to periodic variations in the environment, these cannot

be taken as fixed constants. So, we assume that the coefficients α(t), β(t), q(t)

and p(t) are all periodic in nature. The species experience abrupt changes in such

a fluctuating environment. Thus, considering all these factors, the single species

model we obtained is governed by impulsive differential system is as follows:n′(t) = n(t)(p(t)− q(t)n(t))− α(t)n(t)2

β(t)+n(t)2
, t 6= τk,

n(τ+
k ) = (1 + γk)n(τk), t = τk, k ∈ Z+.

(2.3)
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where n(0) > 0, τk represents the moment of time when impulse occurs for every

k and 0 < τ1 < τ2 < τ3 < . . . < τk. β(t), α(t), q(t), & p(t) are positive and

periodic coefficients with period T for t ≥ 0. γk > −1 for biological relevance.

Here γkn(τk) < 0 represents the harvesting of species and γkn(τk) > 0 represents

stocking of species at time τk. Sufficient conditions required for the existence

of positive periodic solution and global asymptotic stability of system (2.3) are

derived in this chapter. Thus, firstly, it is proved that the system (2.3) has solution

which is periodic with period T by using Brower’s fixed point theorem. Then,

global asymptotic stability of positive T periodic solution has been established by

using Lyapunov function.

2.3 Existence of positive periodic solution

In this section, the existence of positive periodic solution of impulsive system (2.3)

is established. Consider the corresponding non-impulsive system of (2.3)

φ′(t) = φ(t)(p(t)−Q(t)φ(t))− α(t)γ(t)(φ(t))2

β(t) + (γ(t)φ(t))2
, (2.4)

where γ(t) =
∏

0<τk<t
(1 + γk), Q(t) = q(t)γ(t). It is very easy to prove that

φ(0) > 0 implies that φ(t) > 0 ∀ t ≥ 0.

Lemma 2.3.1. If the system (2.4) has solution φ(t), then n(t) =
∏

0<τk<t
(1 +

γk)φ(t) is the solution of system (2.3). Reverse is also true.

Proof. Suppose that the above non impulsive system (2.4) has solution φ(t). Let

n(t) =
∏

0<τk<t
(1 + γk)φ(t), then if t 6= τk, we have

n′(t)− n(t)

(
p(t)− q(t)n(t)− α(t)n(t)

β(t) + n(t)2

)
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=
∏

0<τk<t

(1 + γk)

(
φ′(t)− φ(t)

(
p(t)− q(t)

∏
0<τk<t

(1 + γk)φ(t) (2.5)

−
α(t)

∏
0<τk<t

(1 + γk)φ(t)

β(t) +
(∏

0<τk<t
(1 + γk)φ(t)

)2

))

=
∏

0<τk<t

(1 + γk)

(
φ′(t)− φ(t)

(
p(t)−Q(t)φ(t)− α(t)γ(t)φ(t)

β(t) + (γ(t)φ(t))2

))
=

∏
0<τk<t

(1 + γk)(0) = 0 (2.6)

On the other hand for every t = τk, we obtain

n(τ+
k ) = lim

t→τ+k

∏
0<τj<t

(1+γj)φ(t) =
∏

0<τj≤τk

(1+γj)φ(τk) = (1+γk)
∏

0<τj<τk

(1+γj)φ(τk)

Thus for k = 1, 2, 3 . . . , we obtain

n(τ+
k ) = (1 + γk)n(τk) (2.7)

It follows from equations (2.6) and (2.7) that n(t) is solution of system (2.3). This

proves lemma.

Lemma 2.3.2. Consider that φ(t) be the solution of the system (2.4). Then both

φ1(t) =
∏

t≤τk<t+T (1 + γk)φ(t+T ) and φ2(t) =
∏

t−T≤τk<t(1 + γk)φ(t−T ) are also

the solutions of system (2.4). Also φ1(0) = φ2(T ) =
∏

0≤τk<T (1 + γk)φ(0).

Proof. It is very easy to verify that φ1(t) is continuous. Now

φ′1(t) =
∏

t≤τk<t+T

(1 + γk)φ
′(t+ T )

=
∏

t≤τk<t+T

(1 + γk)φ(t+ T )

p(t+ T )− q(t+ T )
∏

0<τk<t+T

(1 + γk)φ(t+ T )

− α(t+ T )φ(t+ T )γ(t+ T )

β(t+ T ) +
(
γ(t+ T )φ(t+ T )

)2

)
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=
∏

t≤τk<t+T

(1 + γk)φ(t+ T )

p(t)− q(t) ∏
0<τk<t

(1 + γk)
∏

t≤τk<t+T

(1 + γk)φ(t+ T )

− α(t)φ(t+ T )γ(t+ T )

β(t+ T ) +
(
γ(t+ T )φ(t+ T )

)2

)

=
∏

t≤τk<t+T

(1 + γk)φ(t+ T )

(
p(t)− q(t)

∏
0<τk<t

(1 + γk)φ1(t)

−
α(t)

∏
0<τk<t

(1 + γk)
∏

t≤τk<t+T (1 + γk)φ(t+ T )

β(t) +
(∏

0<τk<t
(1 + γk)

∏
t≤τk<t+T (1 + γk)φ(t+ T )

)2

)

=
∏

t≤τk<t+T

(1 + γk)φ(t+ T )

(
p(t)−Q(t)φ1(t)− α(t)γ(t)φ1(t)

β(t) + (γ(t)φ1(t))2

)

= φ1(t)

(
p(t)−Q(t)φ1(t)− α(t)γ(t)φ1(t)

β(t) + (γ(t)φ1(t))2

)
Thus φ1(t) is the solution of system (2.4). Clearly, φ1(0) =

∏
0≤τk<T φ(0). Similarly,

it can be proved for φ2(t). This completes the proof of lemma 2.3.2.

Lemma 2.3.3. If lnB > 0, then ∃ φ1(0) > 0 such that
∏

0<τk<T
(1 + γk)φ1(T ) ≥

φ1(0), where φ1(t) is the solution of system (2.4) and

B =
∏

0<τk<T

(1 + γk) exp

(∫ T

0

p(t)dt

)
.

Proof. Let G = maxt∈[0, T ]

∏
0<τk<T

(1 + γk), g = mint∈[0, T ]

∏
0<τk<T

(1 + γk). If

lnB > 0, then we have B > 1. So, it is possible to find a positive constant δ such

that

Bδ =
∏

0<τk<T

(1 + γk) exp

(∫ T

0

(p(s)− δ)ds

)
> 1. (2.8)

Consider a constant d1 > 0 such that

qUGφ(t) +
αU

βL
≤ δ, if φ(t) ≤ d1, (2.9)
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where G is defined above. Suppose 0 < φ1(0) ≤ d1 exp
(
−
∫ T

0
p(s)ds

)
. Because

φ1(t) be the solution of system (2.4). This implies that

φ′1(t) ≤ p(t)φ1(t)

Solving this, we obtain

φ1(t) ≤ φ1(0) exp

(∫ T

0

p(s)ds

)
≤ φ1(0) exp

(∫ T

0

p(s)ds

)
≤ d1, t ∈ [0, T ].

(2.10)

Thus from equation (2.9) and system (2.4), we obtain

φ′1(t) = φ1(t)

(
p(t)− q(t)

∏
0<τk<t

(1 + γk)φ1(t)− α(t)γ(t)φ1(t)

β(t) +
(∏

0<τk<t
(1 + γk)φ1(t)

)2

)

≥ φ1(t)

(
p(t)−

{
qUGφ1(t) +

αU

βL

})
≥ φ1(t)(p(t)− δ), t ∈ [0, T ],

which implies that

φ1(T ) ≥ φ1(0) exp

(∫ T

0

(p(s)− δ)ds

)
(2.11)

From equations (2.8) and (2.11), we obtain

∏
0<τk<T

(1 + γk)φ1(T ) ≥ φ1(0)
∏

0<τk<T

(1 + γk) exp

(∫ T

0

(p(s)− δ)ds

)
≥ φ1(0)Bδ ≥ φ1(0)

Thus
∏

0<τk<T
(1 +γk)φ1(T ) ≥ φ1(0). This completes the proof of lemma 2.3.3.

Lemma 2.3.4. If the assumptions 0 < lnB < qLg
2qUG

and α(t)
β(t)

< p(t) holds true,

then there exists φ2(0) > 0 such that
∏

0<τk<T
(1 + γk)φ2(T ) ≤ φ2(0).
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Proof. It is possible to choose a positive constant δ1 such that

lnB < δ1T <
qLg

2qUG
. (2.12)

As a result

Bδ1 =
∏

0<τk<T

(1 + γk) exp

(∫ T

0

(p(s)− δ1)ds

)
< 1. (2.13)

Assume that d2 = 1
2qUGT

> 0 such that

qLgφ(t) ≥ δ1 if φ(t) ≥ d2. (2.14)

Let φ2(0) ≥ 2d2. Because φ2(t) is also the solution of equation (2.4), therefore

φ′2(t) = φ2(t)

(
p(t)− q(t)

∏
0<τk<t

(1 + γk)φ2(t)− α(t)γ(t)φ2(t)

β(t) + (γ(t)φ2(t))2

)

≥ φ2(t)

(
p(t)− α(t)

β(t)

)
− q(t)

∏
0<τk<t

(1 + γk)(φ2(t))2

≥ −q(t)
∏

0<τk<t

(1 + γk)(φ2(t))2

≥ −qUG(φ2(t))2

Thus,

φ′2(t) ≥ −qUG(φ2(t))2. (2.15)

Integrating Eq. (2.15)

1

φ2(t)
≤ 1

φ2(0)
+ qUGT ≤ 1

d2

, t ∈ [0, T ].

Therefore,

φ2(t) ≥ d2, t ∈ [0, T ]. (2.16)
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From system (2.4), equations (2.14) and (2.16), we obtain

φ′2(t) ≤ φ2(t) (p(t)−Q(t)φ2(t)) = φ2(t)

(
p(t)− q(t)

∏
0<τk<t

(1 + γk)φ2(t)

)
≤ φ2(t)(p(t)− δ1), t ∈ [0, T ].

Thus, we have

φ2(T ) ≤ φ2(0) exp

(∫ T

0

(p(s)− δ1)ds

)
,

which combining with equation (2.13), leads to

∏
0<τk<T

(1 + γk)φ2(T ) ≤ φ2(0)
∏

0<τk<T

(1 + γk) exp

(∫ T

0

(p(s)− δ1)ds

)
= φ2(0)Bδ1

≤ φ2(0)

This completes the proof.

Theorem 2.3.1. If the assumptions 0 < lnB < qLg
2qUG

and α(t)
β(t)

< p(t) holds true,

then there exists solution of the system (2.3) that is periodic with period T .

Proof. Let the solution of the system (2.4) be φ(t) with φ1(0) < φ(0) < φ2(0).

Using Kamke’s Theorem, φ1(t) < φ(t) < φ2(t).

Define a map L : [φ1(0), φ2(0)]→ [φ1(0), φ2(0)] such that

L(φ0) =
∏

0<τk<T

(1 + γk)φ(T ).

As the map L is continuous, so, by applying Brower’s Fixed Point Theorem, we

get φ∗0 → [φ1(0), φ2(0)] such that

L(φ∗0) = φ∗0,
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that is

φ∗0 =
∏

0<τk<T

(1 + γk)φ
∗(T ), (2.17)

where φ∗(t) is the solution of system (2.4) with φ∗(0) = φ∗0.Also φ(t) =
∏

t≤τk<t+T (1+

γk)φ
∗(t+ T ) is the solution of system (2.4) with

φ(0) =
∏

0≤τk<t+T

(1 + γk)φ
∗
T

= φ∗(0). (2.18)

By the uniqueness theorem, we have

φ(t) = φ∗(t) =
∏

t≤τk<t+T

(1 + γk)φ
∗(t+ T ). (2.19)

By Lemma (2.3.1), n∗(t) =
∏

0≤τk<T (1 + γk)φ
∗(t) is the solution of system (2.3).

Further, from equation (2.19)

n∗(t+ T ) =
∏

0<τk<t+T

(1 + γk)φ
∗(t+ T ) =

∏
0<τk<t

(1 + γk)
∏

t<τk<t+T

(1 + γk)φ
∗(t+ T )

=
∏

0<τk<t

φ∗(t) = n∗(t).

This means n∗(t) is periodic with period T . This completes the proof of Theorem

(2.3.1).

2.4 Global asymptotic stability of positive peri-

odic solution

In this section, the discussion on the global asymptotic stability of positive and

periodic solution of system (2.3) is held. Firstly, lemma is proved which is useful

for the proof of main results.
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Lemma 2.4.1. Assume that

r∏
k=1

(1 + γk) exp

(∫ T

0

(
p(t)− α(t)

β(t)

)
dt

)
> 1 (2.20)

holds, then there exists two positive constants κ, K and finite time t̆ such that any

positive solution n(t) of the system (2.3) satisfies κ ≤ n(t) ≤ K ∀ t ≥ t̆.

Proof. Assume that n(t) is any positive solution of the system (2.3) with n(0) > 0.

From system (2.3), we obtainn′(t) ≤ n(t)(p(t)− q(t)n(t)), t 6= τk,

n(τ+
k ) = (1 + γk)n(τk), t = τk, k ∈ Z+.

(2.21)

Consider the comparison impulsive system (2.22) of system (2.21) with n(0) = v(0).v′(t) = v(t)(p(t)− q(t)v(t)), t 6= τk,

v(τ+
k ) = (1 + γk)v(τk), t = τk, k ∈ Z+.

(2.22)

Because of condition (2.20), using Lemma (1.5.2), the system (2.22) has a unique

positive solution v∗(t) that is periodic with period T . Thus for any positive solution

v(t) of system (2.22), limt→∞ | v(t)−v∗(t) |→ 0. Therefore, there exists sufficiently

small ὲ > 0 and t̆1 such that

v(t) ≤ v∗(t) + ὲ ∀ t ≥ t̆1. (2.23)

By the comparison theorem of impulsive differential equations

n(t) ≤ v(t) ≤ v∗(t) + ὲ ∀ t ≥ t̆1 (2.24)

Because of condition (2.20) and Lemma 1.5.2, the comparison system of (2.3) given

below in equation (2.25) has unique globally asymptotically stable periodic solution
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ψ∗(t). Thus for any positive solution ψ(t) of system (2.25),

lim
t→∞
| ψ(t)− ψ∗(t) |→ 0.

ψ′(t) = ψ(t)
(
p(t)− q(t)ψ(t)− α(t)

β(t)

)
, t 6= τk,

ψ(τ+
k ) = (1 + γk)ψ(τk), t = τk, k ∈ Z+.

(2.25)

Therefore, there exists sufficiently small ὲ1 > 0 and t̆2 such that

ψ∗(t)− ὲ1 ≤ u(t) ∀ t ≥ t̆2. (2.26)

By comparison theorem of impulsive differential equations, if ψ(t̆2) = n(t̆2), then

we have

ψ∗(t)− ὲ1 ≤ u(t) ≤ n(t) ∀ t ≥ t̆2. (2.27)

Let t̆ = max
{
t̆1, t̆2

}
, and

κ = min
t∈[0, T ]

{ψ∗(t)− ὲ1} , K = max
t∈[0, T ]

{v∗(t) + ὲ} . (2.28)

From equation (2.28),

κ ≤ n(t) ≤ K ∀ T ≥ t̆. (2.29)

This completes the proof.

Theorem 2.4.1. In addition to conditions in Lemma 2.3.4 and Lemma 2.4.1,

assume that

q(t) >
(K2 − β(t))α(t)

(β(t) + κ2)2
, (2.30)

then the system (2.3) has positive periodic solution which is globally asymptotically

stable.

Proof. Let n(t) be any positive solution of system (2.3). By lemma 2.4.1, there
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exists sufficiently large t̊ such that for all t > t̊ ≥ t̆,

κ ≤ n(t) ≤ K, κ ≤ n∗(t) ≤ K. (2.31)

By using mean value theorem and Eq. (2.31), we obtain

1

K
| n(t)− n∗(t) |≤| lnn(t)− lnn∗(t) |≤ 1

κ
| n(t)− n∗(t) | . (2.32)

Consider the Lyapunov function %(t) defined as %(t) =| lnn(t)− lnn∗(t) | .
Calculating the Dini derivative D+%(t) of %(t) for t > t̊ and t 6= τk,

D+%(t) = sgn (n(t)− n∗(t))
(
n′(t)

n(t)
− n∗

′
(t)

n∗(t)

)
= sgn (n(t)− n∗(t)) [−q(t)(n(t)− n∗(t))

+
α(t)n(t)n∗(t)(n(t)− n∗(t))− α(t)β(t)(n(t)− n∗(t))

(β(t) + (n∗(t))2)(β(t) + (n(t))2)

]
≤ −

[
q(t)− α(t)(K2 − β(t))

(β(t) + κ2)2

]
| n(t)− n∗(t) | . (2.33)

From equation (2.30), it is possible to find a constant ω > 0, such that

q(t) >
α(t)(K2 − β(t))

(β(t) + κ2)2
+ ω (2.34)

Combining equation (2.33) and equation (2.34), we obtain

D+%(t) ≤ −ω | n(t)− n∗(t) |≤ −ω | lnn(t)− lnn∗(t) |≤ −ωκ%(t) (2.35)

For t = τk, we have

%(τ+
k ) =| lnn(τ+

k )− n∗(τ+
k ) | =| ln(1 + γk)n

∗(τk)− ln(1 + γk)n(τk) |

=| lnn(τk)− n∗(τk) |= %(τk), (2.36)

which means %(t) is continuous. Thus, using differential inequality theorem, it
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follows from equations (2.35) and (2.36) that for t > t̊

%(t) ≤ %(τj) exp(−ωκ(t− τj)), (2.37)

where τj is the impulsive point and %(t) is continuous.

From equation (2.31), we have

%(τj) =| lnn(τ+
k )−n∗(τ+

k ) |≤| lnn(τj) | + | lnn∗(τj) |≤ max {2 | lnκ |, 2 | lnK |} ,
(2.38)

which implies that %(τj) is bounded. Thus, we get

%(τj) exp(−ωκ(t− τj))→ 0, as t→∞. (2.39)

From equations (2.37) and (2.39), we obtain

| lnn(t)− lnn∗(t) |→ 0, as t→∞ (2.40)

which combining with equation 2.32, gives

1

K
| n(t)− n∗(t) |≤| lnn(t)− lnn∗(t) |→ 0, as t→∞. (2.41)

As a result,

lim
t→∞
| n(t)− n∗(t) |→ 0 (2.42)

Therefore, n(t) is globally asymptotically stable. This completes the proof of

Theorem 2.4.1.
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2.5 Numerical Example

To substantiate the theoretical findings, consider the following system
n′(t) = n(t)(0.2 + 0.1cosπt− (1.4 + 0.1sinπt)n(t))− (0.11+0.01cosπt)n(t)2

1.5+0.1(cosπt)+n(t)2
, t 6= τk,

n(τ+
k ) = (1 + γk)n(τk), t = τk,

k ∈ Z+.

(2.43)

with n(0) = 0.3. Clearly T = 2. Let r = 2, τk = k ∈ N. Therefore, τk+2 = τk+2. If

k = 2s−1, choose γ2s−1 = −0.2 and if k = 2s, choose γ2s = 0.2, s ∈ N. It is verified

that assumptions in Lemma 2.3.4 are true. By applying Theorem 2.3.1, the system

2.3 has a positive solution n∗(t) that is periodic with period 2 as shown in Figure

2.1. Graphical representation of n∗(t) for t ∈ [40, 50] is shown in Figure (2.2).

Also, assumptions in Lemma 2.4.1 and Theorem 2.4.1 are true for the system 2.43.

By Theorem 2.4.1, the positive periodic solution n∗(t) is globally asymptotically

stable. As shown in Figure 2.3, there exists a positive solution n(t) of the system

2.3 with initial value n(0) = 0.2 which approaches to the positive periodic solution

n∗(t) with initial value n∗(0) = 0.3. For t ∈ [40, 50], n(t) completely merges in

n∗(t) as shown in Figure 2.4.

0 5 10 15 20 25 30 35 40
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0.2

0.25
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t

n
*(
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Figure 2.1: Graphical representation of solution of the system (2.43) with n∗(0) =
0.3, t ∈ [0, 40].
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Figure 2.2: Graphical representation of solution of the system (2.43) with n∗(0) =
0.3, t ∈ [40, 50].

2.6 Conclusion

A single-species model under the effect of impulsive perturbations is proposed and

analyzed in this paper considering Holling type III functional response as predation

term. The system (2.3) represents the variation in the population density of species

in a periodically changing environment and the system (2.4) reflects that how the

population density varies under the effect of impulsive perturbations. Figures

2.1 and 2.2 show that a positive 2-periodic solution n∗(t) exists under suitable

impulsive perturbations. Figures 2.3 and 2.4 reflect the global asymptotic stability

of positive solution n∗(t), periodic with period 2. It is assumed that self-inhibition

rate q(t) must be positive. The growth rate p(t) can also be negative in the weak

environmental conditions. Thus, it is concluded that extinction of species can be

prevented with linear impulsive perturbations. Therefore, impulsive effect is taken

on a single-species living in a periodically changing environment. Mathematical

modeling is done using impulsive differential equations where impulse is applied

at fixed time events. By making use of comparison analysis technique, Lyapunov

function and Brower’s fixed point theorem, existence and global asymptotic of

solution of the system (3.2) that is positive periodic is achieved.

Further, in future, results can also be established by considering impulsive
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Figure 2.3: Graphical representation of the solutions n∗(t) and n(t) of the system
(2.43) with n∗(0) = 0.3, n(0) = 0.2, t ∈ [0, 40].

forms that are more general and non linear.
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Figure 2.4: Graphical representation of the solutions n∗(t) and n(t) of the system
(2.43) with n∗(0) = 0.3, n(0) = 0.2, t ∈ [40, 50].
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Chapter 3

Impact of Constant and Linear

Impulsive Perturbations

Considering Holling Type IV

Functional Response: A Single

Species Model

3.1 Introduction

Impulsive differential equations are more suitable tool than ordinary differential

equations to model population ecology because evolution of species encounter dif-

ferent sudden short term changes in population density in this ever changing envi-

ronment. There are wide range of applications of IDE in different fields of science,

see [24, 92, 154, 25]. In a single species model, the periodicity and stability under

the influence of linear impulsive perturbations at fixed moments of time by consid-

ering the predation term as Holling Type-II functional response using comparison

theorems and Lyapnuov function is discussed by Tan et al. [29]. In continuation
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of this, the effect of linear and constant impulsive perturbations on single species

population density considering Holling Type-II functional response is compared by

Tan et al. [30]. Liu et al. [153] analyzed the constant and linear impulses at fixed

moments of time by taking single species model in which Holling Type III func-

tional response is taken as predation term and permanence has been established

using comparison theorems of impulsive differential equations. They concluded

that species can be protected from extinction by linear and constant impulsive

perturbations. Liu et al. [31] investigated a single species non-autonomous model

with impulsive and random perturbations in which environmental noise is also

taken.

In continuation of above, in this paper, impulsive perturbations at fixed mo-

ments of time in a single-species model are taken and permanence of the species

is discussed with the help of comparison theorem on by considering Holling Type

IV or Monod-Haldane functional response as the predation term.

3.2 Mathematical Model

Considering all these facors, the single species model we obtain is governed by the

following impulsive systemΨ′(t) = Ψ(t)(σ(t)− ω(t)Ψ(t))− µ(t)Ψ(t)
β(t)+Ψ(t)γ(t)+δ(t)Ψ(t)2

, t 6= tn,

Ψ(t+n ) = Ψ(t−n ) +Q(Ψ(tn)), t = tn, n ∈ Z+,
(3.1)

where the predation term µ(t)Ψ(t)
β(t)+Ψ(t)γ(t)+δ(t)Ψ(t)2

is Holling type IV functional re-

sponse, Ψ(0) > 0, and tn represents the moments of time of impulse for every

0 < t1 < t2 < t3 < . . . < tn. Consider the set of positive integers Z+. The variables

β(t), γ(t), δ(t), and ω(t) are positive and periodic functions with period T for

t ≥ 0 as some seasonal changes can occur in environment. The species are consid-

ered to be living in weak environment, so the growth rate σ(t) is taken as negative.

ω(t) > 0 is the self-inhibiting rate. β(t), µ(t), γ(t), and δ(t) are measures of
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saturation value. Q(Ψ(tn)) is impulse function that is positive and represents the

amount of species increased at impulsive moment tn. It can be linear as well as

constant depending on whether the impulsive increase in the population density of

species is directly proportional to the population at present or it is constant. The

aim of this chapter is to establish required sufficient conditions for the permanence

of system (3.1) with constant and linear impulsive perturbations. Further, it is

proved that impulse has significant impact on permanence of the species and their

extinction can also be prevented. Through out this paper, it is assumed that {rn}
is the sequence of numbers with rn > −1 and e is an integer such that tn+e = tn+T .

3.3 Permanence of system (3.1) with Q(Ψ(tn)) = r

Here, in this subsection, sufficient conditions required for the permanence of the

system (3.1) with constant impulsive perturbations are established. Consider the

following lemma.

Lemma 3.3.1. (Lemma 2.3 in [28]) Consider the impulsive systemΨ′(t) = Ψ(t)σ(t), t 6= tn,

Ψ(t+n ) = Ψ(tn) + p, t = tn, n ∈ Z+,
(3.2)

where σ(t) is continuous and periodic function with period T . If
∫ T

0
σ(t)dt < 0,

then the system (3.2) has a unique periodic solution that is positive and globally

asymptotically stable.

For constant impulsive perturbations, system (3.1) becomesΨ′(t) = Ψ(t)(σ(t)− ω(t)Ψ(t))− µ(t)Ψ(t)
β(t)+Ψ(t)γ(t)+δ(t)Ψ(t)2

, t 6= tn,

Ψ(t+n ) = Ψ(t−n ) + r, t = tn, n ∈ Z+.
(3.3)

Theorem 3.3.1. System (3.3) is permanent.
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Proof. For t ∈ (tn−1, tn], from system (3.3), we obtain
Ψ′(t) = Ψ(tn−1) exp

{∫ tn
tn−1

[
σ(u)− ω(u)Ψ(u)− µ(u)

β(u)+Ψ(u)γ(u)+δ(u)Ψ(u)2

]
du
}
, t 6= tn,

Ψ(t+n ) = Ψ(t−n ) +Q(Ψ(tn)), t = tn,

n ∈ Z+.

(3.4)

Because exponential function is always positive, thus, Ψ(t) > 0 if Ψ(0) > 0 for

t > 0. Now we obtain the upper and lower bounds of any positive solution of the

system (3.3). From system (3.3), we haveΨ′(t) ≤ Ψ(t)σ(t), t 6= tn,

Ψ(t+n ) = Ψ(t−n ) + r, t = tn, n ∈ Z+.
(3.5)

Consider its comparison impulsive systemν ′(t) = ν(t)σ(t), t 6= tn,

ν(t+n ) = ν(t−n ) + r, t = tn, n ∈ Z+.
(3.6)

Because species are living in weak environment, thus,
∫ T

0
σ(t)dt < 0, by Lemma

3.3.1, system (3.6) has a unique positive solution ν̂(t) which is periodic and globally

asymptotically stable. This implies that for suitably small ε̃ > 0 there exists t̊1 > 0

such that

ν(t) < ν̂(t) + ε̃ ∀ t ≥ t̊1, (3.7)

where ν(t) is any positive solution of the system (3.6) with ν(0) = Ψ(0). Using com-

parison analysis technique of impulsive differential equations and equation (3.7),

it is obtained that

Ψ(t) ≤ ν̂(t) + ε̃ ∀ t ≥ t̊1. (3.8)

Let H = maxt∈[0, T ][ν̂(t) + ε̃]. Therefore, from equation (3.8)

Ψ(t) ≤ H ∀ t ≥ t̊1. (3.9)
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Further, to obtain lower bound of Ψ(t), for t ≥ t̊1, from the system (3.3)Ψ′(t) ≥ Ψ(t)
(
σ(t)− ω(t)H − µ(t)

β(t)

)
≥ Ψ(t)

(
σ(t)− η − ω(t)H − µ(t)

β(t)

)
, t 6= tn,

Ψ(t+n ) = Ψ(t−n ) + r, t = tn,

(3.10)

Consider the following comparison impulsive differential system of (3.10)C ′(t) = C(t)
(
σ(t)− η − ω(t)H − µ(t)

β(t)

)
, t 6= tn,

C(t+n ) = C(t−n ) + r, t = tn, n ∈ Z+,
(3.11)

where it is possible to find a constant η > 0 such that∫ T

0

(
σ(t)− η − ω(t)H − µ(t)

β(t)

)
dt < 0. (3.12)

By Lemma 3.3.1, the system (3.11) has a unique positive periodic solution which

is globally asymptotically stable. Thus, there exists t̊2 > t̊1 such that

C(t) ≥ Ĉ(t)− ε̃ ∀ t ≥ t̊2. (3.13)

where C(t) is any positive solution of the system (3.6) with C (̊t2) = Ψ(̊t2). Again,

using comparison principle of IDE and equation (3.13), it is obtained that

Ψ(t) ≥ Ĉ(t)− ε̃ ∀ t ≥ t̊2. (3.14)

Let Ĉ = mint∈[0, T ][Ĉ(t)− ε̃]. Therefore, from equation (3.14)

Ψ(t) ≥ Ĉ ∀ t ≥ t̊2. (3.15)

From equations (3.9) and (3.15),

Ĉ ≤ Ψ(t) ≤ H ∀ t ≥ t̊2. (3.16)

This completes the proof of theorem 3.3.1.
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3.4 Permanence of the system (3.1) with Q(Ψ(tn)) =

rnΨ(tn)

In this subsection, conditions required for the permanence of system (3.1) are

established when impulsive increase in the population density of the species is

directly proportional to population density at present. Therefore, consider the

following impulsive systemΨ′(t) = Ψ(t)(σ(t)− ω(t)Ψ(t))− µ(t)Ψ(t)
β(t)+Ψ(t)γ(t)+δ(t)Ψ(t)2

, t 6= tn,

Ψ(t+n ) = Ψ(t−n ) + rnΨ(τ−n ), t = tn, n ∈ Z+.
(3.17)

Theorem 3.4.1. If the inequality

e∏
n=1

(1 + rn) exp

{∫ T

0

[
σ(t)− µ(t)

β(t)

]
dt

}
> 1 (3.18)

holds true, then the system (3.17) is permanent.

Proof. For t ∈ (tn−1, tn], from system (3.3), we obtain
Ψ′(t) = Ψ(tn−1) exp

{∫ tn
tn−1

[
σ(u)− ω(u)Ψ(u)− µ(u)

β(u)+Ψ(u)γ(u)+δ(u)Ψ(u)2

]
du
}
, t 6= tn,

Ψ(t+n ) = (1 + rn)Ψ(t−n ), t = tn,

n ∈ Z+,

(3.19)

Because, exponential function is always positive, thus, Ψ(t) > 0 if Ψ(0) > 0 for

t > 0. Now we obtain the upper and lower bounds of any positive solution of the

system (3.17). From system (3.17), we haveΨ′(t) ≤ Ψ(t)(σ(t)− ω(t)Ψ(t)), t 6= tn,

Ψ(t+n ) = (1 + rn)Ψ(t−n ), t = tn, n ∈ Z+.
(3.20)
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Consider its comparison impulsive systemD′(t) = D(t)(σ(t)− ω(t)D(t), t 6= tn,

D(t+n ) = (1 + rn)D(t−n ), t = tn, n ∈ Z+.
(3.21)

Now inequality (3.18) implies that
∏e

n=1(1 + rn) exp
{∫ T

0
σ(t)dt

}
> 1 is true.

Therefore, by Lemma 1.5.2, the system (3.21) has a unique positive solution D∗(t)

which is periodic and globally asymptotically stable. Thus, ∃ t̊3 > 0 such that for

suitably small ε̃1

D(t) < D∗(t) + ε̃1 ∀ t ≥ t̊3. (3.22)

Using comparison analysis technique of IDE, we obtain

Ψ(t) ≤ D(t) < D∗(t) + ε̃1 ∀ t ≥ t̊3. (3.23)

From system (3.17)Ψ′(t) ≥ Ψ(t)(σ(t)− µ(t)
β(t)
− ω(t)Ψ(t)), t 6= tn,

Ψ(t+n ) = (1 + rn)Ψ(t−n ), t = tn, n ∈ Z+,
(3.24)

Consider its comparison impulsive systemq′(t) = q(t)(σ(t)− µ(t)
β(t)
− ω(t)q(t)), t 6= tn,

q(t+n ) = (1 + rn)q(t−n ), t = tn, n ∈ Z+.
(3.25)

By inequality (3.18) and Lemma 1.5.2, system (3.25) has unique positive periodic

solution q∗(t) which is globally asymptotically stable. Thus, for suitably small

ε̃2 > 0, there exists t̊4 such that

q∗(t)− ε̃2 ≤ q(t) ≤ Ψ(t) ∀ t ≥ t̊4. (3.26)

Let

λ∗ = min
t∈[0, T ]

{q∗(t)− ε̃2} , γ∗ = max
t∈[0, T ]

{D∗(t) + ε̃1} (3.27)
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Table 3.1: Expressions of the coefficients in system (3.3)

Coefficient Expression

σ(t) -0.17+0.16cos(πt)
ω(t) 1.5+0.1sin(πt)
µ(t) 0.17+0.1cos(πt)
β(t) 1.4+cos(πt)
γ(t) 1.7+cos(πt)
δ(t) 1.5+cos(πt)

Therefore, it is obtained that λ∗ ≤ Ψ(t) ≤ γ∗. This completes the proof of theorem

3.4.1.

3.5 Numerical Example and Discussion

A single-species model under the effect of impulse is proposed in which Holling type

IV functional response is taken as predation term. It is considered that species are

living in weak environment, that is, survival conditions are not favorable to growth

of species. Sufficient conditions are found for the permanence of single species

model under the effect of constant as well as linear impulsive disturbances using

comparison analysis technique. It is observed that in case of linear perturbations,

bigger value of rn favors the permanence of the system (3.17). Bigger the value

of rn, more quickly the permanence is achieved even in weak environment. But,

under constant impulsive perturbations, permanence of the species is independent

of the value of rn. To substantiate the theoretical results, the values of different

parameters of systems (3.3) and (3.17) are given in Table 3.1. Also the initial

condition is Ψ(0) = 0.3. Here, tn = n ∈ Z+, T = 2 and e = 2 because tn+2 = tn+2.

Further, it is established that the inequality in Lemma 2.4.1 holds true for

the give numerical values . Thus, permanence of the system (3.17) is achieved.

Figure 3.1 depicts that in the absence of impulsive perturbations, the density of

the species Ψ(t) → 0, that is species will driven towards extinction. Figure (3.2)
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Figure 3.1: Graphical representation of population density Ψ(t) with time when
Ψ(0) = 0.3 in the absence of impulse.

graphically represents the population density Ψ(t) when rn = 0.15. Thus, it is clear

from Figures (3.2) and (3.3) that lower value of impulsive perturbations does not

favors the permanence of species. Higher the value of the impulsive perturbation,

more quickly the permanence of system (3.17) is achieved (see Figure 3.4). Figure

(3.5) represents the permanence of system (3.3).

Hence, it is observed that the role of impulsive perturbations is very impor-

tant in the dynamics of single-species model and also to prevent the extinction of

species.
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Figure 3.2: Graphical representation of population density Ψ(t) of system (3.17)
for Ψ(0) = 0.3 and rn = 0.15.
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Figure 3.3: Graphical representation of population density Ψ(t) of system (3.17)
for Ψ(0) = 0.3 and rn = 0.3.
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Figure 3.4: Graphical representation of population density Ψ(t) of system (3.17)
for Ψ(0) = 0.3 and rn = 0.4.
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Figure 3.5: Graphical representation of population density Ψ(t) of system (3.3) for
Ψ(0) = 0.3 and rn = 0.4.
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Chapter 4

Stability Analysis of an

Eco-Epidemiological SIN Model

with Impulsive Control Strategy

for Integrated Pest Management

Considering Stage-Structure in

Predator

4.1 Introduction

Eradication of agricultural pests is a matter of great concern over the past few

decades. Many times their outbreak has resulted in production loss because of the

destruction of crops and economic impoverishment due to spending on measures

to avert these losses. Therefore, with the advancement in agricultural technology,

farmers are acquiring the best pest control techniques. One such widely used

technique is chemical control consisting of spraying pesticides. Also, biological
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control using specific living organisms as natural enemies of pests is implemented

on a large scale nowadays. Other techniques include physical control by killing and

removing pests with hand using manpower and remote sensing. Big achievements

have been made by eminent researchers in this regard. Although, McEwen [106]

observed that pesticides are proved to be very effective to eradicate pests. But they

are contributing a lot to environmental pollution, identified as a paramount health

hazard to mankind and also harmful for certain beneficial pests such as pollinators

as described in [53]. Several pest species have become resistant to pesticides due to

long term use. Cherry [54] also studied that due to high cost, small scale farmers

are finding it hard to use chemical pesticides.

Therefore, biological control is the best alternative. It is executed in two

ways. Freedman [56] explained that the first way includes some specific natural

enemies and these act as predators for the targeted pests. Second is the microbial

control that involve spreading of some infectious diseases in pests using viruses.

These are bacteria, fungi, nematodes and protozoa. Again, there are two ways to

insert these insect pathogens in the targeted pest community. In the first method,

to create an epidemic in the pest population, a marginal number of pathogens are

inserted in the pest population. In the second method, pathogens are used as bio-

pesticides. In this approach, the pathogen is applied when the targeted pests reach

at an economically significant level and the pathogen cannot survive for a long time

in the environment as explained in [55] and [105]. Therefore, these organisms are

capable of creating an epidemic in the pest population by interfering with their bio-

logical process. One such example is given in [119] that entomopathogenic bacteria

Bacillus Thuringiensis acts as strong microbial control agent against many species

of Lepidopteran pests (Cotton Bollworm, Pink Bollworm). Moreover, Biological

pest control is considered as a boon for both open crop fields and greenhouses.

Lanteren and Woets [109] stated that more than fifty percent of the world’s green-

house area is covered by the Netherlands and United Kingdom. Biological control

had been a great success in these countries as the parasitoid Encassia Formosa is

widely used to control tomato pest Trialeurodes Vaporariorum.

Mary and Robert [108] explained that Integrated Pest Management is to
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suppress the pest population below the acceptable range which is called economic

injury level (EIL) in order to avoid major economic and yield loss. Because com-

plete eradication of pests is very expensive, so integrated pest management (IPM)

is emerging as a topic of broad interest for the past few years. Many researchers

are working in this area and they have provided different strategies to hinder the

growth of the targeted pests using a combination of chemical and biological con-

trol. Nandi et al. [120] developed an ecological model consisting of predator-prey

interaction with two-stage infection in prey for pest management using ordinary

differential equations. The authors have analyzed the dynamics of the system at

five different equilibria. They found that when natural enemies are absent, there

was rapid increase in the pest population below some critical value of the carrying

capacity.

Further, the dynamics of pest control models using biological and chemi-

cal control techniques is studied effectively with the help of impulsive differen-

tial equations as these techniques involve the instantaneous implication of viruses

or natural predators of specified pests. Impulsive differential equations have a

plethora of applications in modeling in ecology, population dynamics and other

applied sciences described in [8, 10, 24]. These act as a good mathematical tool

to represent several real-life phenomena that undergo short term perturbations,

see [110, 39, 46, 29]. Liu et al. [111] have studied the dynamics of the prey-

dependent consumption model with impulsive control strategy. The authors have

established that the pest population can be suppressed by taking an impulsive pe-

riod greater than the specified threshold value to prevent an outbreak. Similarly,

valuable results in terms of threshold impulsive period and the release amount of

infected pests and natural enemies are obtained in [64, 112, 113, 114, 117, 118]

to check the pest population. Recently, the researchers have paid more attention

in the implementation of microbial pest control by dividing the pest population

into two or three parts as susceptible-infected (SI), susceptible-exposed-infected

(SEI) and susceptible-exposed-infected -natural enemy (SEIN) models. Wang and

Song [116] have studied an impulsive SEI model for pest management considering

nonlinear incidence rate and established threshold impulsive period which was the
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key parameter for the permanence of the system. Extending this work, Mathur

and Dhar [121] analyzed an eco-epidemiological SEIN model considering impul-

sive control and have observed that predators have significant role to calculate the

threshold value of the impulsive period.

Furthermore, a good biological understanding of different life stages of pests

and natural enemies must be there for the effectiveness of biological pest control.

Hence, Jatav and Dhar [72] considered a stage-structured plant-pest-natural enemy

(food-chain) model to find the conditions for the permanence of the system. Again,

Bhanu et al. [88] extended the work done in [121] by analyzing stage- structure in

susceptible pest population.

In this chapter, therefore, a stage-structured predator-prey model is taken

into consideration by acknowledging infection in prey for IPM. Prey acts as pest

and predator plays the role of a natural enemy. Also, the functional response of

the prey population to predator plays a significant role in predator-prey interac-

tions. It can be prey dependent or predator dependent. In this paper, the func-

tional response of susceptible pest population to the predator is taken as Holling

type IV. It incorporates the situation of group defense by prey species. Thus,

there is decrease in predation rate because the ability of prey species to defend

themselves get enhanced in a group. In this modeling process, stage structuring

in the predator population is considered as it is proposed by Ma et al. [115].

They have taken two stages of predator, immature larvae and mature adults. The

death rate of immature and mature predator population is taken as same. There-

fore, the following predator-prey model is proposed and examined in this chapter

by taking an immature and mature class of predator and infection in prey. Let

xs(t), xi(t), yem(t), yea(t) be the population densities of susceptible prey, infected

prey, immature and mature natural enemies, respectively at time t with initial con-

ditions xs(0) > 0, xi(0) > 0, yem(0) > 0 and yea(0) > 0. The model is formulated
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under some assumptions as follows :

dxs(t)

dt
= αxs

(
1− xs

β

)
− βixsxi

1 + γ4xs
− αnxsyea

1 + γ2xs + γ3x2
s

,

dxi(t)

dt
=

βixsxi
1 + γ4xs

− δ1xi,

dyem(t)

dt
=

γ1αnxsyea
1 + γ2xs + γ3x2

s

− µemyem − δ2yem,

dyea(t)

dt
= µemyem − δ2yea,


t 6= nτ,

∆xs(t) = 0,

∆xi(t) = e1,

∆yem(t) = e2,

∆yea(t) = e3,


t = nτ, n ∈ Z+.

(4.1)

(a) The logistic growth of prey population is taken in the absence of infection.

(b) The infected prey population is neither able to reproduce nor recover. Also

they do not contribute towards carrying capacity of the total prey population.

(c) Mature predator only catch susceptible pest and immature predator is not

capable of predation. So, their growth mainly depends on mature predator.

(d) There are four different kinds of Holling type functional responses are avail-

able depending on the situation. In this paper, the crowding effect of the

susceptible pest population is incorporated. Therefore, Holling II type in-

cidence rate is considered for transmission from susceptible to infected pest

population.

(e) Functional response of prey population to predator is taken as Holling type

IV.
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(f) For the integrated pest control, infected pests, immature and mature natu-

ral enemies are released periodically at time t = nτ with intensities e1, e2, e3

respectively. ∆xs(t) = xs(t
+) − xs(t), ∆xi(t) = xi(t

+) − xi(t), ∆yem(t) =

yem(t+)− yem(t), ∆yea(t) = yea(t
+)− yea(t), where τ is the impulsive period.

The different parameters used in system (4.1) are defined as follows :

(i) α > 0 is the internal growth rate of susceptible pests and β > 0 is the

carrying capacity.

(ii) αn > 0 measures the efficiency of the prey to avoid predator’s attack.

(i) γ2 > 0, γ3 > 0, γ4 > 0 are the half saturation constants from Holling type

IV and II functional responses.

(ii) µem is the conversion rate from immature to mature predator.

(iii) βi is the transmission rate from susceptible to infected pest and δ1 is the

death rate of infected prey.

(iv) δ2 is the death rate of immature and mature natural enemies.

(v) γ1 represents the fraction of prey available to immature predator.

Let R+ = [0, ∞), R4
+ = {x ∈ R4 : x ≥ 0}, Ω = intR4

+. The map defined by the

right hand of the system (4.1) is given as g = (g1, g2, g3, g4)T . Let S0 ={V : R+×
R4

+ 7→ R+, continuous on (nτ, (n+ 1) τ ]× R4
+ and lim(t, y)→(nτ, x), t>nτ S (t, x) =

S (nτ+, x) exits}.

Our main aim here is to suppress the pests in a targeted region beneath a

tolerable limit so that it does not cause major production loss.

71



4.2 Boundedness and Global Stability

4.2.1 Upper bound of all the variables

Here, in this section, firstly, upper bound for all the variables of system (4.1) are

obtained in the coming lemma.

Lemma 4.2.1. For sufficiently large t, ∃ Q0 > 0 such that xs(t) ≤ Q0, xi(t) ≤
Q0, yem(t) ≤ Q0, yea(t) ≤ Q0 . That is there is an upper bound for every solution

of (4.1).

Proof. Consider X(t) = (xs(t), xi(t), yem(t), yea(t)) as any solution of (4.1).

Let W (t, X(t)) = xs(t) + xi(t) + yem(t) + yea(t) for t 6= nτ,

D+W (t) + θW (t) = αxn(t)− αxn(t)2

β
− βixn(t)xi(t)−

αnxn(t)yea(t)

1 + γ2xn(t)

+ βixn(t)xi(t)− δ1xi(t) +
γ1αnxn(t)yea(t)

1 + γ2xn(t)
− δ2yem(t)

+ µemyem(t) + θ(xn(t) + xi(t) + yem(t) + yea(t))

− µemyem(t)

= αxn(t)− αxn(t)2

β
− (δ2 − θ)(yem(t) + yea(t))

− (1− γ1)
αnxn(t)yea(t)

1 + γ2xn(t)
− (δ1 − θ)xi(t)

≤ (α + θ)xn(t)− αxn(t)2

β
(γ ≤ 1)

≤ β(α + θ)2

4α
= L0

Also, W (t+) = W (t) + e1 + e2 + e3 for t = nτ. Therefore using impulsive integral
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inequality from Theorem 1.5.1, we obtain

W (t) ≤ W (0) exp

(∫ t

0

(−θ)
)
ds+ (e1 + e2 + e3)

∑
0<nτ<t

exp

(∫ t

nτ

(−θ)ds
)

+

∫ t

0

(
L0 exp

∫ t

s

(−θdσ)

)
ds

≤ W (0) exp(−θt) + (e1 + e2 + e3)
∑

0<nτ<t

exp(−θ(t− nτ)) +
L0

θ
(1− exp(−θt))

≤ W (0) exp(−θt) +
L0

θ
(1− exp(−θt)) +

(e1 + e2 + e3)(exp(−θ(t− τ)))

1− exp(−θτ)

+
(e1 + e2 + e3)(exp(θt))

exp(θτ)− 1

→ L0

θ
+

(e1 + e2 + e3)(exp(θτ))

exp(θτ)− 1
= Q0 as t→∞

Thus, W(t) is uniformly bounded. Hence, ∃ the constant Q0 such that xs(t) ≤
Q0, xi(t) ≤ Q0, yem(t) ≤ Q0, yea(t) ≤ Q0. This completes the proof.

After using microbial and natural pest control, when susceptible pest pop-

ulation becomes extinct, then xs(t) = 0, the impulsive system (4.1) reduces to

dxi(t)

dt
= −δ1xi(t),

dyem(t)

dt
= −µemyem(t)− δ2yem(t),

dyea(t)

dt
= µemyem(t)− δ2yea(t),


t 6= nτ,

∆xi(t) = e1,

∆yem(t) = e2,

∆yyea(t) = e3,

 t = nτ, n ∈ Z+.

(4.2)

From first and fourth equations of system (4.2) and using Lemma 1.5.3, we get

globally asymptotically stable periodic solution x̄i(t) as :

x̄i(t) =
e1 exp((−δ1)(t− nτ))

1− exp(−δ1τ)
, x̄i(0

+) =
e1

1− exp(−δ1t)
. (4.3)
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Similarly, applying Lemma 1.5.3 on second and fifth equations of system (4.2), we

have

ȳem(t) =
e2 exp(−(µem + δ2)(t− nτ))

1− exp((−µem + δ2)τ)
, ȳem(0+) =

e2

1− exp((−µem + δ2)τ)
. (4.4)

Now substituting the value of ȳem(t) in third equation of system (4.2), we get the

following subsystem
dyea(t)
dt

= µemȳem(t)− δ2yea(t), t 6= nτ,

∆yea(t) = e3, t = nτ, n ∈ Z+.
(4.5)

Integrating first equation of system (4.5) on t ∈ (nτ, (n+ 1)τ ],

yea(t) =
e2(exp(−δ2(t− nτ)))− exp(−(µem + δ2)(t− nτ))

1− exp(−(µem + δ2)τ)

+ yea(nτ+) exp(−δ2(t− nτ)).

(4.6)

After solution is effected by impulse at time (n+1)τ , the stroboscopic map is given

as :

yea(t) =
e2(exp(−δτ)− exp(−(µem + δ2)τ)

1− exp(−(µem + δ2)τ)
+ yea(nτ+) exp(−δ2τ) + e3

= h(yea(nτ+)), nτ < t ≤ (n+ 1)τ. (4.7)

The system (4.7) has a unique fixed point y∗ea. Therefore,

h(y∗ea) = y∗ea

This implies

y∗ea =
e2(1− exp(−µemτ)) exp(−δ2τ)

(1− exp−(δ2 + µem)τ)(1− exp(−δ2τ))
+

e3

1− exp(−δ2τ)
.

As from equation (4.7), h(yea) is an increasing function, therefore 0 < yea < y∗ea

implies yea < h(yea) < y∗ea and yea > y∗ea implies y∗ea < h(yea) < yea. Thus by [107],
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y∗ea is globally stable. Hence, the corresponding periodic solution of system (4.5)

is

ȳea(t) =
−e2 exp((−δ2 + µem)(t− nτ))

1− exp(−(δ2 + µem)τ)
+

(e2 + e3) exp(−δ2(t− nτ))

1− exp(−δ2τ)
, where

(4.8)

ȳea(0
+) = y∗ea =

−e2

1− exp(−δ2 + µem)τ
+

e2 + e3

1− exp(−δ2τ)
, t ∈ (nτ, (n+ 1)τ ],

(4.9)

which is globally asymptotically stable.

Theorem 4.2.1. There exists a threshold value (τmax) of the impulsive period such

that if τ ≤ τmax, then the susceptible pest eradication solution (0, x̄i(t), ȳem(t), ȳea(t))

is locally asymptotically stable and if τ > τmax, it is unstable where

τmax =
1

α

[
βie1

δ1

− αne2

δ2 + µem
+
αn(e2 + e3)

δ2

]
.

Proof. Here, we use small perturbation method to prove the local stability of the

required solution. Let (ζ1(t), ζ2(t), ζ3(t), ζ4(t)) be the small perturbations in the

periodic solution (0, x̄i(t), ȳem(t), ȳea(t)) respectively.

dζ1(t)

dt
= αζ1(t)− βix̄i(t)ζ1(t)− αnȳea(t)ζ1(t),

dζ2(t)

dt
= βix̄i(t)ζ1(t)− δ1ζ2(t),

dζ3(t)

dt
= γ1αnȳea(t)ζ1(t)− µemζ3(t)− δ2ζ3(t),

dζ4(t)

dt
= µemζ3(t)− δ2ζ4(t),


t 6= nτ,

ζ1(t+) = ζ1(t),

ζ2(t+) = ζ2(t),

ζ3(t+) = ζ3(t),

ζ4(t+) = ζ4(t),


t = nτ, n ∈ Z+.

(4.10)
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Then, we obtain the system (4.10) by substituting

xs(t) = ζ1(t), xi(t) = x̄i + ζ2(t), yem(t) = ȳem(t) + ζ3(t), yea(t) = ȳea(t) + ζ4(t).

The above system represents system of linear differential equations, which can be

written in matrix form. Hence, for t 6= nτ , the coefficient matrix is given as

B =


α− βix̄i(t)− αnȳea(t) 0 0 0

βix̄i(t) −δ1 0 0

γ1αnȳea(t) 0 −(µem + δ2) 0

0 0 µem −δ2

 ,

and for t = nτ, 
ζ1(t+)

ζ2(t+)

ζ3(t+)

ζ4(t+)

 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



ζ1(t)

ζ2(t)

ζ3(t)

ζ4(t)

 .
Let Φ(t) be the fundamental solution of system (4.10), then

dΦ(t)

dt
= BΦ(t), (4.11)

Φ(τ) = Φ(0) exp(

∫ T

0

B dt),

with Φ(0) = I, the identity matrix. Solving, we have

Φ(τ) =


e(

∫ τ
0 α−βix̄i(t)−αnȳea(t)dt) 0 0 0

e(
∫ τ
0 βix̄i(t)dt) e(

∫ τ
0 −δ1dt) 0 0

e(
∫ τ
0 γ1αnȳea(t)) 0 e(

∫ τ
0 −(µem+δ2)dt) 0

0 0 e(
∫ τ
0 µemdt) e(

∫ τ
0 −δ2dt)

 ,

which is upper triangular matrix. Now according to Floquet theory of impulsive

differential equations (Remark 1.5.8.1 and Theorem 1.5.5), if absolute values of

all the eigen values of Monodromy matrix M are less than one, then the required
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solution is globally stable where

M = [Φ(0)]−1Φ(τ).

Since M is an upper triangular matrix, therefore, eigen values of M are

λ1 = exp

(∫ τ

0

α− βix̄i(t)− αnȳea(t)dt
)
,

λ2 = exp

(∫ τ

0

−δ1dt

)
,

λ3 = exp

(∫ τ

0

−(µem + δ2)dt

)
,

λ4 = exp

(∫ τ

0

−δ2dt

)
. (4.12)

Now, it is obvious from (4.12), that | λ2 |< 1, | λ3 |< 1, | λ4 |< 1 and | λ1 |< 1 if

τ ≤ τmax. This completes the proof.

4.2.2 Global Stability

Theorem 4.2.2. There is a threshold value (τ̌) of the impulsive period such that

if τ < τ̌ , then the susceptible pest extinction solution (0, x̄i(t), ȳem(t), ȳea(t)) is

globally asymptotically stable where,

τ̌ =
1

α

[
βie1

δ1(1 + γ4β)
−
(

1

1 + γ2β + γ3β2

)(
αne2

δ2 + µem
+
αn(e2 + e3)

δ2

)]
.

Proof. Let (xs(t), xi(t), yem(t), yea(t)) be an arbitrary solution of (4.1). Given

that τ < τ̌ , so, it is possible to find sufficiently small ὲ > 0such that∫ τ

0

(
α− βi(x̄i(t)− ὲ

1 + γ4β
− αn(ȳea(t)− ὲ)

1 + γ2β + γ3β2

)
dt = %1 < 0. (4.13)
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From (4.1), 
dxi(t)
dt
≥ −δ1xi(t), t 6= nτ

∆xi(t) = e1, t = nτ, n ∈ Z+.
(4.14)

Consider the corresponding comparison impulsive system of (4.14) as
dwi(t)
dt

= (−δ1wi), t 6= nτ

∆wi(t) = e1, t = nτ.
(4.15)

Applying Lemma 1.5.3, system (4.15) has periodic solution

w̄i(t) =
e1 exp((−δ1)(t− nτ))

1− exp(−δ1τ)
, t ∈ (nτ, (n+ 1)τ ],

which is globally asymptotically stable. Therefore, using comparison principle

(Theorem 1.5.2), xi(t) ≥ wi(t) → w̄i(t) and w̄i(t) = x̄i(t). Hence, ∃ a positive

integer κ such that xi(t) > x̄i(t)− ὲ ∀ t ≥ κτ . Again from (4.1)
dyem(t)
dt
≥ −(µem + δ2)yem(t), t 6= nτ,

∆yem(t) = e2, t = nτ.
(4.16)

Consider the following comparison system of (4.16)
dwem(t)

dt
= −(µem + δ2)wem(t), t 6= nτ,

∆wem(t) = e2, t = nτ.
(4.17)

Similarly, by using Lemma 1.5.3 and comparison analysis technique of impulsive

differential equations, it is obtained that yem(t) ≥ wem(t)→ w̄em(t) and w̄em(t) =

ȳem(t). Hence, ∃ a positive integer κ1 such that yem(t) > ȳem(t) − ὲ ∀ t ≥ κ1τ .

From fourth equation of system (4.1), we have,
dyea(t)
dt
≥ µem(ȳem(t)− ὲ)− δ2)yea(t), t 6= nτ,

∆yea(t) = e3, t = nτ.
(4.18)
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Consider its corresponding comparison impulsive system
dwea(t)
dt

= µem(ȳem(t)− ὲ)− δ2)wea(t), t 6= nτ,

∆wea(t) = e3, t = nτ.
(4.19)

Applying Lemma 1.5.3, we get periodic solution of system (4.19)

w̄ea(t) =
−e2 exp((−δ2 + µem)(t− nτ))

1− exp(−(δ2 + µem)τ)
+

(e2 + e3) exp(−δ2(t− nτ))

1− exp(−δ2τ)
− µemὲ

δ2

.

Applying comparison theorem of IDE, yea(t) ≥ wea(t) → w̄ea(t). Hence, ∃ a

positive integer κ2 such that yea(t) > ȳea(t)− ὲ ∀ t ≥ κ2τ (κ2 > κ1 > κ). Therefore,

for t ≥ κ2τ , first equation of (4.1) gives

dxs(t)

dt
≤
[
α− βi(xi − ὲ)

1 + γ4β
− αn(yea − ὲ)

1 + γ2β + γ3β2

]
xs. (4.20)

Integration of equation (4.20) on (κ2τ, (κ2 + 1)τ ] gives

xs((κ2 + q)τ) ≤ xs(κ2τ) exp(q%1)→ 0 as t→∞ (∵ %1 < 0). (4.21)

This implies that there exists a positive integer κ3 > κ2 and sufficiently small

ὲ1 > 0 such that xs(t) < ὲ1 for t ≥ κ3 and ὲ1 <
δ1
βi

. Using maximum value of

xs(t) in the second equation of system (4.1), we get
dxi(t)
dt
≤ (βiὲ1 − δ1)xi, t 6= nτ,

∆xi(t) = e1, t = nτ.

Analyzing again its comparison impulsive system
dui(t)
dt

= (βiὲ1 − δ1)xi, t 6= nτ,

∆ui(t) = e1, t = nτ.
(4.22)

Applying Lemma 1.5.3, system (4.22) has periodic solution ūi(t), which is globally
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asymptotically stable.

ūi(t) =
e1 exp((βiὲ1 − δ1)(t− nτ))

1− exp(βiὲ1 − δ1τ)
, t ∈ (nτ, (n+ 1)τ ].

Therefore, by Theorem 1.5.2, x1(t) ≤ ui(t)→ ūi(t). Hence, ∃ a positive integer κ4

such that

xi(t) < ūi(t) + ὲ ∀ t ≥ κ4τ. (4.23)

From third equation of system (4.1)
dyem(t)
dt
≤ (γ1αnὲ1Q0)− (µem + δ2)yem(t), t 6= nτ,

∆yem(t) = e2, t = nτ.

Applying the same argument, ∃ a positive integer κ5 such that

yem(t) ≤ ūem(t) + ὲ ∀ t ≥ κ5τ, (4.24)

where

ūem(t) =
γ1αnὲ1Q0

µem + δ2

+
e2exp(−(µem + δ2)(t− nτ))

1− exp(−(µem + δ2)τ)
.

From fourth equation of system (4.1), we have
dyea(t)
dt
≤ µem(ūem(t) + ὲ)− δ2)yea(t), t 6= nτ,

∆yea(t) = e3, t = nτ.
(4.25)

Similarly, as above ∃ a positive integer κ6 such that

yea(t) ≤ ūea(t) + ὲ2∀ t ≥ κ6τ, (4.26)

where

ūea(t) =
−e2 exp((−δ2 + µem)(t− nτ))

1− exp(−(δ2 + µem)τ)
+

(e2 + e3) exp(−δ2(t− nτ))

1− exp(−δ2τ)

+
µem
δ2

(
γ1αnὲ1Q0

µem + δ2

+ ὲ

)
.
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As ὲ > 0, ὲ1 > 0 and ὲ2 > 0 are sufficiently small, therefore, ūem(t) → ȳem(t)

and ūea(t) → ȳea(t) as t → ∞ (ὲ1 → 0). Hence, it is established that xs(t) →
0, xi(t)→ x̄i(t), yem(t)→ ȳem(t), andyea → ȳea(t) as t→∞. This completes the

proof.

4.3 Permanence

The required condition for the system to be permanent is established as follows

Theorem 4.3.1. The system (4.1) is permanent if τ > τmax.

Proof. Upper bound of xs(t), xi(t), yem(t), yea(t) of the system is already been

obtained in Lemma 4.2.1. Also in the above section, it is proved that

xi(t) > x̄i(t)− ὲ = q1 ∀ t ≥ κ4τ,

yem(t) > ȳem(t)− ὲ = q2 ∀ t ≥ κ5τ,

yea(t) > ȳea(t)− ὲ = q3 ∀ t ≥ κ6τ. (4.27)

Thus, for the permanence of the system (4.1), there must exists a constant q4 <

min
(
β, δ1

βi

)
such that xs(t) ≥ q4 for sufficiently large t. This is done in two steps

as follows:

Step I To start with, assume that xs(t) ≥ q4 is not true ∀ t. Thus ∃ a positive

integer l1 such that xs < q4 ∀ t ≥ l1τ . Considering this assumption, from system

(4.1), we have 
dxi(t)
dt
≤ −(δ1 − βiq4), t 6= nτ,

∆xi(t) = e1, t = nτ.

Consider the following impulsive system
dŭi(t)
dt

= −(δ1 − βiq4)ŭi, t 6= nτ,

∆ŭi(t) = e1, t = nτ.
(4.28)
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Applying Lemma 1.5.3, system (4.28) has periodic solution

ŭi(t) =
e1 exp(−(δ1 − βiq4)(t− nτ))

1− exp(−(δ1 − βiq4)τ)
, t ∈ (nτ, (n+ 1)τ ]

which is globally asymptotically stable. Therefore by comparison principle, xi(t) ≤
ui(t)→ ŭi(t). Hence, ∃ a positive integer l2 such that

xi(t) ≤ ŭi(t) + ὲ3 ∀ t ≥ l2τ. (4.29)

From the third equation of the system (4.1)
dyem(t)
dt
≤ (γ1αnq4Q0)− (µem + δ2)yem(t), t 6= nτ,

∆yem(t) = e2, t = nτ.

Now, consider the following impulsive system
dvem(t)
dt

= (γ1αnq4Q0)− (µem + δ2)yem(t), t 6= nτ,

∆vem(t) = e2, t = nτ.
(4.30)

Applying the same argument, ∃ a positive integer l2 such that

yem(t) ≤ v̄em(t) + ὲ3 ∀ t ≥ l2τ, (4.31)

where

v̄em(t) =
γ1αnq4Q0

µem + δ2

+
e2exp(−(µem + δ2)(t− nτ))

1− exp(−(µem + δ2)τ)
, (4.32)

vem(0+) =
γ1αnq4Q0

µem + δ2

+
e2

1− exp(−(µem + δ2)τ)
.

Now, from fourth equation of system (4.1), we have
dyea(t)
dt
≤ µem(v̄em(t) + ὲ3)− δ2)yea(t), t 6= nτ,

∆yea(t) = e3, t = nτ.
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Considering again its comparison system as below
dvea(t)
dt

= µem(v̄em(t) + ὲ3)− δ2)vea(t), t 6= nτ,

∆vea(t) = e3, t = nτ.
(4.33)

Applying Lemma 1.5.3 and comparison theorem, ∃ a positive integer l3 such that

yea(t) ≤ v̄ea(t) + ὲ3∀ t ≥ l3τ, (4.34)

where

v̄ea(t) =
−e2 exp(−(δ2 + µem)(t− nτ))

1− exp(−(δ2 + µem)τ)
+

(e2 + e3) exp(−δ2(t− nτ))

1− exp(−δ2τ)
(4.35)

+
µem
δ2

(
γ1αnq̀4Q0

µem + δ2

+ ὲ3

)
.

Therefore, for t ≥ l2τ , first equation of system (4.1) gives

dxs(t)

dt
≥
[
α− αq4

β
βi(ŭ− ὲ3)− αn(v̄ea + ὲ3)

]
xs(t)

Integration of above equation on (l2τ, (l2 + 1)τ ] gives

xs((l2 + 1)τ) ≥ xs(l2τ) exp

(∫ (l2+1)τ

l2τ

[
α− αq4

β
− βi(ŭ+ ὲ3)− αn(v̄ea + ὲ3)

]
dt

)
≥ xs(l2τ) exp(%2).

where

%2 =

∫ (l2+1)τ

l2τ

[
α− αq4

β
− βi(ŭ+ ὲ3)− αn(v̄ea + ὲ3)

]
dt.

Because τ > τmax, so it is possible to find q4 > 0 and ὲ3 > 0 such that %2 > 0.

This implies

xs[(l2 + l)τ ] ≥ xs(l2τ) exp(l%2)→∞

as l → ∞. This is in contradiction to our assumption that xs(t) < q4 ∀ t ≥
l1τ, (l2 > l1). Hence ∃ t̊ > l1τ such that xs(̊t) ≥ q4.
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Step II There is nothing to prove if xs(t) ≥ q4 ∀ t > t̊. But if this is not true,

let t̊1 = inf{t | xs(t) < q4 ; t > t̊}. Thus, xs(t) ≥ q4 ∀ t ∈ [̊t, t̊1], t̊1 ∈
(ň1τ, ( ˇn1 + 1)τ ]. xs(t̊1) = q4, because of continuity of xs(t). Let τ ∗ = (ň2 + ň3)τ

where ň2 = ň21 + ň22 + ň23 and ň21, ň22, ň23, ň3 satisfying the following conditions

(ň21)τ > −
(

1

δ1 − βiq4

)
ln

ὲ3

Q0 + e1

,

(ň22)τ > −
(

1

µem + δ2

)
ln

ὲ3

Q0 + e2

,

(ň23)τ > −
(

1

µem + δ2

)
ln

ὲ3

Q0 + e3

,

exp(ň3%2 − υ(ň2 + 1)τ) > 1, υ =

(
αq4

β
+ βiQ0 + αnQ0

)
.

(4.36)

Now, we will prove that ∃ t̊2 ∈ ((ň1 + 1)τ, (ň1 + 1)τ + τ ∗] such that xs(t̊2) ≥ q4.

Suppose this is not true, then xs(t) < q4 ∀ t ∈ ((ň1 +1)τ, (ň1 +1)τ +τ ∗]. If system

(4.28) is considered with ŭi((ň1 + 1)τ+) = xi((ň1 + 1)τ+), then using Lemma 1.5.3

for t ∈ ((ň1 + 1)τ, ( ˇn1 + 1)τ + τ ∗], we have

ŭi(t) =

[
ŭi(ň1 + 1)τ+)− e1

1− exp(−(δ1 − βiq4)τ)

]
exp(−(δ1 − βiq4)(t− (n+ 1)τ))

+ ŭi(t)

This implies

| ŭi(t)− ŭi(t) | ≤ (Q0 + e1) exp(−(δ1 − βiq4)(t− nτ))

≤ ὲ3.

which depicts that

xi(t) ≤ ŭi(t) < ŭi(t) + ὲ3, (ň1 + ň21 + 1)τ ≤ t ≤ (ň1 + 1)τ + τ ∗.

Now consider the system (4.30) with vem((ň1 + ň21 +1)τ+) = yem((ň1 + ň21 +1)τ+),
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then using Lemma 1.5.3, we have,

vem(t) =
[
vem((ň1 + ň21 + 1)τ+)− vem(0+)

]
exp(−(µem+δ2)(t−(ň1+ň21+1)τ))vem(t).

Hence,

| vem(t)− vem(t) | ≤ (Q0 + e2) exp(−(µem + δ2)(t− (ň1 + ň21 + 1)τ))

≤ ὲ3∀(ň1 + ň21 + ň22 + 1) ≤ t ≤ (ň1 + 1)τ + τ ∗

which concludes that yem(t) ≤ vem(t) + ὲ3. Finally, consider (4.33) with vea((ň1 +

ň21 + ň22 + 1)τ+) = yea((ň1 + ň21 + ň22 + 1)τ+) ≥ 0, then using Lemma 1.5.2, we

have,

vea(t) = (vea(ň1 + ň21 + ň22 + 1)τ+ − vea(0+))

× exp(−(µem + δ2)(t− (ň1 + ň21 + ň22 + 1)τ) + vea(t)

This implies

| vea(t)− vea(t) | ≤ (Q0 + e3) exp(−(µem + δ2)(t− (ň1 + ň21 + ň22 + 1)τ))

≤ ὲ3∀(ň1 + ň2 + 1)τ ≤ t ≤ (ň1 + 1)τ + τ ∗

Therefore,

yea(t) ≤ vea(t) + ὲ3.

Hence, from first equation of system (4.1), we obtain

dxs(t)

dt
≥
[
α− αq4

β
βi(ŭ− ὲ3)− αn(v̄ea + ὲ3)

]
xs(t).

Integrating the above equation on [(ň1 + ň2 + 1)τ, (ň1 + ň2 + ň3 + 1)τ ], we get

xs((ň1 + ň2 + ň3 + 1)τ) ≥ xs((ň1 + ň2 + 1)τ) exp(%2ň3). (4.37)

Further, for t ∈ [t̊1, (ň1 + 1)τ ], two possibilities are there

Case(i) If xs(t) < q4 ∀ t ∈ [t̊1, (ň1 + 1)τ ], then from above assumption xs(t) <
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q4 ∀ t ∈ [t̊1, (ň1 + 1)τ + τ ∗]. This implies

dxs(t)

dt
≥
(
−αq4

β
− βiQ0 − αnQ0

)
xs(t). (4.38)

Integrating equation (4.38) on [t̊1, (ň1 + ň2 + 1)τ ], we have

xs((ň1 + ň2 + 1)τ) ≥ xs(t̊1) exp(−υ(ň2 + 1)τ). (4.39)

Using (4.39) in (4.37)

xs((ň1 + ň2 + ň3 + 1)τ) ≥ xs(t̊1) exp(%2ň3) exp(−υ(ň2 + 1)τ) > q4.

But this contradicts our assumption. Therefore, xs(t) ≥ q4 in [t̊1, (ň1+ň2+ň3+1)τ ]

for some t. Let t̊3 = inf{t | xs(t) ≥ q4; t > t̊2}. Due to continuity of xs(t),

xs(t̊3) = q4. Now integration of equation (4.38) on the interval [t̊2, t̊3] gives

xs(t) ≥ xs(t̊2) exp((−υ)(t− t̊2)

≥ q4 exp((−υ)(t− t̊2)

≥ q4 exp(υ(ň2 + ň3 + 1)τ) = q4.

Since xs(t̊3) ≥ q4, so similar process can be continued for t > t̊3. Hence xs(t) ≥
q4 ∀ t > t1.

Case(ii) If ∃ t̊4 ∈ [t̊1, (ň1 + 1)τ ] such that xs(t̊4) ≥ q4, then let t̊5 = inf{t | xs(t) ≥
q4; t > t̊2}. Therefore, xs(t) < q4 for t ∈ [t̊2, t̊5] and xs(t̊5) = q4. Now, integration

of equation (4.38) on the interval [t̊2, t̊5] gives

xs(t) ≥ xs(t̊2) exp((−υ)(t− t̊2)) ≥ q4 exp(υτ) = q4.

Because xs(t̊5) ≥ q4, so, similar argument can be followed for t > t̊5. Hence, it is

concluded that xs(t) ≥ q4 ∀ t > t̊.

Step III Let a = min{q1, q2, q3, q4},Θ = {R3
+ : a ≤ xi(t), xs(t), yem(t), yea(t) ≤

Q0}. Thus, from above steps and Lemma 4.2.1, it is proved that each solution of

system (4.1) will always remain in region Θ. Therefore, by Definition 1.5.4.2,
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system (4.1) is permanent.

4.4 Numerical Analysis and Discussion

In this chapter, a prey-predator model, with stage structure in predator and in-

fection in prey, is constituted and investigated to control the outbreak of pest

population. Susceptible prey is considered as a pest and predator acts as the

natural enemy. The main aim is to inspect how the period of impulsive pertur-

bations and releasing amounts of infected pests and natural enemies population is

beneficial for integrated pest management.

It is analyzed that in the absence of impulsive release of infected pests and

natural enemies, stable limit cycles exist for susceptible pest and infected pest pop-

ulation while immature and mature predator is driven towards extinction as shown

in Figure 4.1. The global stability of pest-free equilibrium point is established and

then it is derived that the system (4.1) is permanent. For ensuring the same, the

threshold value of the impulsive period is calculated that depends on number of

infected pests and natural enemies.The values of different parameters of the sys-

tem (4.1) used for numerical simulation are given in Table 4.1. The initial values

of population densities of susceptible prey, infected prey, immature and mature

predator are xs(0) = 0.5, xi(0) = 0.8, yem(0) = 0.8, yea(0) = 4. Therefore, by

using all these numerical values, it is observed that if there is no impulsive release,

that is e1 = e2 = e3 = 0, then there exist stable limit cycles for susceptible and

infected pest population. But immature and mature predators become extinct as

shown in figure (4.1). Further from Theorems 4.2.2 and 4.3.1 we get τ̌ = 1.836 and

τmax = 4.55. Therefore, it is found that susceptible pest free solution is globally

stable if τ > τ̌ as depicted in Figure (4.2). Also, phase portrait of susceptible pest

verses infected pest in Figure (4.2e) shows that stable limit cycle moves towards

chaotic behavior. But complete extinction of pests is not encouraged biologically.

Thus, Theorem 4.3.1 implies that if τ > τmax system (4.1) is permanent as shown

in Figure (4.3) and exhibit chaotic behavior (see Figures 4.3e and 4.3f).
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Table 4.1: Values of different parameters used in system(4.1)

Parameter Representation
Its Value
(per week)

α Reproduction rate of susceptible pest 1.7
β Carrying capacity of susceptible pest 3
βi Contact rate of susceptible pest per

unit time infected pest 2.6
αn Rate of predation by mature natural enemy 0.3
γ2 half saturation constant by Holling IV 0.1
δ1 Death rate of infected pest 0.5
γ1 Conversion rate of pest to

immature natural enemy 0.7
µem Conversion rate of immature to

mature natural enemy 0.4
δ2 Death rate of mature and immature natural enemy 0.3
e1 Impulsive releasing amount of infected pests 0.5
e2 Impulsive releasing amount of

immature natural enemy 2
e1 Impulsive releasing amount of

mature natural enemy 4
γ3 half saturation constant 0.2
γ4 half saturation constant 0.1
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Apart from this, it is also analyzed that if e1 = 0, that is only natural en-

emies are released then τmax = 3.02511. As shown in Figure (4.4), the system

is again permanent and shows chaotic behavior but threshold value of impulsive

period decreased which means that natural enemies are to be released at a fast

pace. But this is not always feasible specially when natural enemies are not native

species and are being reared. Similarly, if e2 = 0 then τmax = 3.88. Permanence

and chaotic behavior of the system is shown graphically in Figure (4.5). If e3 = 0,

then τmax = 2.20168 and permanence of the system (2.2) is shown in Figure (4.6).

In all these situations, permanence of the system is achieved but at relatively low

values of τmax than the situation when we released both infected pests and natural

enemies (immature and mature) simultaneously. Also numerical simulation is per-

formed to examine the effect of impulsive releasing of natural enemies and infected

pest population on the extinction of susceptible pest population. It is observed

that susceptible pest population moves towards extinction as impulsive release is

increased as shown in Figure (4.2f). The results obtained in this chapter supports

those obtained by Mathur and Dhar [121]. But the model (4.1) incorporates the

concept of stage-structure in natural enemies that makes it more realistic. Ad-

ditionally, crowding effect of susceptible pest population and mutual interference

between natural enemies is considered with the help of Holling II and Holling IV

functional responses. As a result the threshold value of the impulsive period for

complete eradication of susceptible pests τ̌ is decreased while the threshold value

for the coexistence of pest and natural enemies population τmax is increased. Thus

infected pests and natural enemies are to be released after longer period.

4.5 Conclusion

The war between pests and humans is going on from several decades. From time

to time, different pest control techniques are acquired by mankind. Working on

the same path, here, we investigated a stage structure predator-prey model for

the purpose of integrated pest management. It is found that instead of using

pesticides, microbial control agents along with natural enemies are more efficient
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Figure 4.1: Stable limit cycles of susceptible pests and infectious pests when e1 =
e2 = e3 = 0 and xs(0) = 0.5, xi(0) = 0.8, yem(0) = 0.8, yea(0) = 4.

90



0 20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t

 S
u
s
c
e
p
ti
b
le

 p
e
s
t 
(x

s
(t

))

(a)

0 20 40 60 80 100 120 140 160
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

In
fe

c
te

d
 p

e
s
t 
(x

i(t
))

(b)

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5

2

2.5

t

Im
m

a
tu

re
 n

a
tu

ra
l 
e
n
e
m

y
 (

y
e
m

(t
))

(c)

0 20 40 60 80 100 120 140 160
1

2

3

4

5

6

7

8

t

M
a
tu

re
 n

a
tu

ra
l 
e
n
e
m

y
 (

y
e
a
(t

))

(d)

0 0.1 0.2 0.3 0.4 0.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x
s
(t)

x
i(t

)

(e)

0 20 40 60 80 100 120 140 160
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t

 S
u
s
c
e
p
ti
b
le

 p
e
s
t 
(x

s
(t

))

 

 

e
1
=e

2
=e

3
=0

e
1
=0.5, e

2
=1, e

3
=2

e
1
=1.5, e

2
=2, e

3
=4

(f)

Figure 4.2: Global stability of pest extinction periodic solution
(0, xi(t), yem(t), yea(t)) of system (4.1) at τ < τ̌(= 4.7) with
e1 = 0.5, e2 = 2, e3 = 4.
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Figure 4.3: Permanence of the system (4.1) at τ > τmax(= 4.55) with xs(0
+ =

0.5), xi(0
+) = 0.8, yem(0+) = 0.8, yea(0

+) = 4 with e1 = 0.5, e2 = 2, e3 = 4
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Figure 4.4: Permanence of the system (4.1) at τ > τmax(= 3.02511) with xs(0
+) =

0.5, xi(0
+) = 0.8, yem(0+) = 0.8, yea(0

+) = 4 and e1 = 0, e2 = 2, e3 = 4.
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Figure 4.5: Permanence of the system (4.1) at τ > τmax(= 3.88) with xs(0
+) =

0.5, xi(0
+) = 0.8, yem(0+) = 0.8, yea(0

+) = 4 and e1 = 0.5, e2 = 0, e3 = 4.
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Figure 4.6: Permanence of the system (4.1) at τ > τmax(= 2.20168) with xs(0
+) =

0.5, xi(0
+) = 0.8, yem(0+) = 0.8, yea(0

+) = 4 and e1 = 0.5, e2 = 2, e3 = 0.
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in pest control. In Theorem 3, the threshold value of impulsive period (τmax) is

obtained and it is established that susceptible pests can coexist with infected pests

and natural enemies if τ > τmax. Also, the effect of releasing the number of infected

pests and natural enemies is discussed and found that greater releasing amount

supports pest eradication.
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Chapter 5

A Two-prey One-predator

Ecological Model with Holling IV

and Beddington-DeAngelis

Functional Response for

Impulsive Pest Control Strategy

5.1 Introduction

Study of ecological models is becoming an interesting area of research over the

past few decades. It all started with the single species population model proposed

by Malthus [4] in which there is no restriction on living resources. This was not

quite realistic. Then Verhulst [5] analyzed a more realistic logistic growth model

considering limitation on living resources. Because, it was more natural to consider

population interactions, so the simplest prey-predator model was firstly proposed

by Lotka and Volterra with some biologically relevant assumptions, see [127]. Af-

ter that, many researchers have extensively studied three species ecological models.
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It was found that while studying population interactions, the important factor is

functional response. Initially, Holling suggested three different types of functional

responses as described in [32]. In type I, the consumption rate of predator is lin-

early dependent on prey density while in type II and III, time required to search

and handle prey is considered. Then came the Monod-Haldane functional response

that is also known as Holling type IV . It incorporated the situation of group de-

fense by prey species. Liu et al. [33] investigated a prey-predator model by taking

into account the phenomenon of group defense by the prey population. It involves

a decrease in predation rate because the ability of prey species to defend themselves

get enhanced in a group. Also, the recognition of an individual prey by predator

becomes difficult in a cluster. One such example is decreased potential of wolves

to attack small herds of lone musk ox as explained in [122]. Apart from that, Bed-

dington [34] and DeAngelis [35] also put forward a new kind of functional response

called Beddington-DeAngelis functional response which includes interference in the

predator population during predation.

Moving further, it is absolutely natural to consider that prey-predator inter-

actions undergo sudden changes in population density of concerned species. These

changes can be in the form of fire, flood, seasonal birth or due to human interven-

tions such as harvesting and stocking of population. Many of times, harvesting and

stocking are done to maintain ecological balance. Therefore, impulsive differential

equations are an appropriate mathematical tool to analyze these instantaneous

disturbances. These are thoroughly studied by various researchers [8, 10]. There

are plethora of applications of impulsive differential equations in ecology and other

applied sciences as explained in [24]. Dong et al. [39] investigated predator-prey

model where stocking of prey and harvesting of predator was done impulsively.

The authors established required conditions for predator-free boundary solution

and then for the permanence of the system. Song and Li [40] studied the dynamic

behavior of a food web model under impulsive perturbations. They observed that

if the impulsive period was less than the calculated threshold value, both the prey

populations became extinct. Also, the authors studied the permanence of the

system. Xiaong et al. [45] examined a Holling Type IV food chain model con-
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sidering the impulsive effect. The researchers established global stability of prey

and middle predator extinction solution. So, there is extensive literature avail-

able on three species population interactions under impulsive perturbations, see

[43, 44, 134, 135].

Further, the preservation of non-renewable resources for future generations

while meeting their present needs for food is the main goal of sustainable agricul-

ture. Pest management is an essential component to accomplish this goal. Pesti-

cides are widely being used to kill pests but studies found that these act as a major

component of environmental pollution. Also, pests become resistant to certain pes-

ticides after long term use [52]. So, Integrated Pest Management (IPM) is its best

alternative. In IPM, the use of pesticides is combined appropriately with biological

control to check the growth of pest population. Biological control includes the use

of specified natural enemies to kill targeted pests. Because natural enemies and

spraying of pesticides are to be done instantaneously, so prey-predator interactions

with impulsive effect were used to constitute pest control models. Prey acted as

pest and predator played the role of a specific natural enemy.

Therefore, many researchers have inspected three species food chain and food

web models considering different Holling type functional responses for impulsive

pest control strategies as described in [123, 124, 125, 126, 144, 130, 131, 133].

They found different threshold values of impulsive period for global stability of the

prey (pest) extinction periodic solution and permanence of the respective system.

Shulin and Cuihua [132] proposed a two-prey one-predator model with Beddington-

DeAngelis functional response for both the prey populations. They established

required conditions for the permanence of the system and also provided a thresh-

old value of the impulsive release amount of natural enemy for the extinction of

one of the prey populations. Similarly, Gupta et al. [136] inspected Susceptible-

Exposed-Infected-Natural enemy (SEIN) model considering Beddington-DeAngelis

functional response with impulsive control for IPM. Yu et al. [129] proposed a

community food web model with two different prey populations and one preda-

tor population for impulsive pest control strategy. The authors applied biological

pest control technique by periodically releasing natural enemies of the targeted
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pest population. Because both the prey populations have the same natural en-

emy, so apparent competition between prey species is considered in the above

model. The researchers established the condition for the global stability of prey

free equilibrium. Further, it was found that the system exhibit rich dynamics such

as period-doubling bifurcation and chaos. However, in this paper, biological pest

control technique is combined effectively with chemical pest control to suppress the

pest population. Also, as both the prey (pest) species shares the same resources

for their survival, so direct competition is taken into account. Motivated by above,

a two-prey one-predator model is formulated in this paper by taking into account

the direct competition between prey populations because they are competing for

the same natural resources. Also, different functional responses are considered

for both the preys. The first prey population exhibits the phenomenon of group

defense, so, Holling type IV functional response is considered as predation term.

While for the predation of second prey, mutual interference between the predator

population is involved, so Beddington-DeAngelis functional response is taken for

predation. Also, spraying of pesticides is effectively combined with the biological

pest control for Integrated Pest Management. The model and different parameters

used in it are defined as follows:

(i) xp(t), xq(t), yne(t) be the population densities of two preys species and the

predator species at time t.

(ii) α1 > 0 and α2 > 0 are the intrinsic reproduction rate of two prey populations

and β > 0 is the carrying capacity.

(iii) αp > 0, αq > 0 be the predation rates of first and second prey respectively.

(iv) α3 > 0 and α4 > 0 are the parameters representing competition between two

prey species.

(v) β1 is the saturation constant by Holling and β2 measures the rate of group

defense.

(vi) η1 > 0 is the measure of interference between predators for predation and β3

is the saturation constant

(vii) γ1 > 0 and γ2 > 0 denotes the rates of conversing prey into predator
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(viii) bne > 0 be the death rate of predator.



dxp(t)

dt
= α1xp(t)

(
1− xp(t)

β

)
− αpxp(t)yne(t)

1 + β1xp(t) + β2x2
p(t)

− α3xp(t)xq(t)

dxq(t)

dt
= α2xq(t)

(
1− xq(t)

β

)
− αqxq(t)yne(t)

β3 + xq(t) + η1yne(t)

− α4xp(t)xq(t)

dyne(t)

dt
=

γ1αpxp(t)yne(t)

1 + β1xp(t) + β2x2
p(t)

+
γ2αqxq(t)yne(t)

β3 + xq(t) + η1yne(t)

− bneyne(t)



t 6= nτ,

∆xp(t) = −e1xp(t)

∆xq(t) = −e2xq(t)

∆yne(t) = e3

 t = nτ, n ∈ Z+.

(5.1)

Let R+ = [0,∞), R3
+ = {x ∈ R3 : x ≥ 0}, Ω = intR3

+. The map defined by the

right hand of the system (5.1) is given as g = (g1, g2, g3)T . Let S0 ={V : R+ ×
R3

+ 7→ R+, continuous on (nτ, (n+ 1) τ ] × R3
+ and lim(t, y)→(nτ, x), t>nτ S (t, x) =

S (nτ+, x) exits}.

5.2 Boundedness and Global Stability

5.2.1 Upper bound of all the variables

Here, in this section, firstly, upper bound for all the variables of system (5.1) are

obtained in the coming lemma.

Lemma 5.2.1. For sufficiently large t, there exists a constant N > 0 such that

xp(t) ≤ N, xq(t) ≤ N, yne(t) ≤ N. That is there is an upper bound for every

solution of (5.1).
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Proof. Consider X(t) = (xp(t), xq(t), yne(t)) as an arbitrary solution of (5.1). Let

Q(t, X(t)) = xp(t) + xq(t) + yne(t) then for t 6= nτ,

D+Q(t) + θQ(t) = (α1 + θ)xp + (α2 + θ)xq −
α1x

2
p

β
−
α2x

2
q

β

− (1− γ1)
αpxp(t)yne(t)

1 + β1xp(t) + β2x2
p(t)
− (bne − p)yne(t)

− (1− γ2)
αqxq(t)yne(t)

β3 + xq(t) + η1yne(t)
− (α3 + α4)xpxq

≤ (α1 + θ)xp + (α2 + θ)xq −
α1x

2
p

β
−
α2x

2
q

β
(p < bne and γ ≤ 1)

≤ β

4

[
(α1 + θ)2

α1

+
(α2 + θ)2

α2

]
= L0

Also, Q(t+) = Q(t) + e3 for t = nτ. Therefore by Theorem 1.5.1

Q(t) ≤ Q(0) exp

(∫ t

0

(−θ)
)
ds+ e3

∑
0<nτ<t

exp

(∫ t

nτ

(−θ)ds
)

+

∫ t

0

(
L0 exp

∫ t

s

(−θdσ)

)
ds

≤ W (0) exp(−θt) + (e3)
∑

0<nτ<t

exp(−θ(t− nτ)) +
L0

θ
(1− exp(−θt))

≤ W (0) exp(−θt) +
L0

θ
(1− exp(−θt)) +

(e3)(exp(−θ(t− τ)))

1− exp(−θτ)
+

(e3)(exp(θt))

exp(θτ)− 1

→ L0

θ
+

(e3)(exp(θτ))

exp(θτ)− 1
= N as t→∞

This implies Q(t) is uniformly bounded. Hence, ∃ the constant N such that xp(t) ≤
N, xq(t) ≤ N, yne(t) ≤ N . This completes the proof.

After spraying pesticides and releasing natural enemies, when pest population

becomes extinct, then xp(t) = 0 and xq(t) = 0, the impulsive system (5.1) reduces
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to 
dyne(t)
dt

= −bneyne(t), t 6= nτ,

∆yne(t) = e3, t = nτ, n ∈ Z+.
(5.2)

Now, using Lemma 1.5.3, system (5.2) has periodic solution yne(t) which is globally

asymptotically stable.

yne(t) =
e3 exp((−bne)(t− nτ))

1− exp((−bne)τ)
, yne(0

+) =
e3

1− exp((−bne)τ)
. (5.3)

Theorem 5.2.1. Let (xp(t), xq(t), yne(t)) be an arbitrary solution of system (5.1).

Then the boundary equilibrium (0, 0, yne(t)) is locally asymptotically stable if the

following conditions are satisfied.

ln(1− e1) + α1τ −
αpe3

bne
< 0. (5.4)

and

ln(1− e2) + α2τ +
αq
bneη1

[
ln

(
1− η1e3(1− exp(−bneτ))

β3(1− exp(−bneτ)) + η1e3

)]
< 0. (5.5)

Proof. To prove that the required solution is locally stable, we use small pertur-

bation method.

dζ1(t)

dt
= α1ζ1(t)− αpyne(t)ζ1(t),

dζ2(t)

dt
= α2ζ2 −

αqζ2yne(t)

β3 + η1yne(t)
,

dζ3(t)

dt
= αpγ1yne(t)ζ1 +

γ2αqζ2yne(t)

β3 + η1yne(t)
− bneζ3,


t 6= nτ,

ζ1(t+) = (1− e1)ζ1(t),

ζ2(t+) = (1− e2)ζ2(t),

ζ3(t+) = ζ3(t),

 t = nτ, n ∈ Z+.

(5.6)

103



Let ζ1(t), ζ2(t), ζ3(t) be the small perturbations in 0, 0, yne(t), respectively. Then

xp(t) = ζ1(t), xq(t) = ζ2(t), and yne(t) = yne(t) + ζ3(t).

Putting these values in system (5.1), it reduces to system (5.6). The system (5.6)

represents system of linear differential equations, which can be written in matrix

form. Hence, for t 6= nτ , the coefficient matrix is given as

B =


α1 − αpyne(t) 0 0

0 α2 − αqyne(t)

β3+η1yne(t)
0

αpγ1yne(t)
γ2αqyne(t)

β3+η1yne(t)
−bne

 ,
and for t = nτ, 

ζ1(t+)

ζ2(t+)

ζ3(t+)

ζ4(t+)

 =

1− e1 0 0

0 1− e2 0

0 0 1


ζ1(t)

ζ2(t)

ζ3(t)

 .
Let Φ(t) be the fundamental solution of system (5.6), then

dΦ(t)

dt
= BΦ(t), (5.7)

Φ(τ) = Φ(0) exp(

∫ T

0

B dt),

with Φ(0) = I, the identity matrix. Solving, we have

Φ(τ) =


exp(

∫ τ
0
α1 − αpyne(t)dt) 0 0

0 exp(
∫ τ

0
α2 − αqyne(t)

β3+η1yne(t)
dt) 0

exp(
∫ τ
o
αpγ1yne(t)dt) exp(

∫ τ
0

γ2αqyne(t)

β3+η1yne(t)
dt) exp(

∫ τ
0
−bnedt)

 ,
which is upper triangular matrix. Now according to Floquet theory of impulsive

differential equations (Remark 1.5.8.1 and Theorem 1.5.5), if absolute values of

all the eigen values of Monodromy matrix M are less than one, then the required
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solution is globally stable where

M =

1− e1 0 0

0 1− e2 0

0 0 1

φ(τ)

Since M is an upper triangular matrix, therefore, eigen values of M are

λ1 = (1− e1) exp

(∫ τ

0

α1 − αpyne(t)dt
)
,

λ2 = (1− e2) exp

(∫ τ

0

α2 −
αqyne(t)

β3 + η1yne(t)
dt

)
,

λ3 = exp

(∫ τ

0

−(bne)dt

)
.

(5.8)

It is obvious from (5.8), that | λ3 |< 1. Now | λ1 |< 1 and | λ2 |< 1 if

ln(1− e1) + α1τ −
αpe3

bne
< 0

and

ln(1− e2) + α2τ +
αq
bneη1

[
ln

(
1− η1e3(1− exp(−bneτ))

β3(1− exp(−bneτ)) + η1e3

)]
< 0.

This completes the proof.

5.2.2 Global Stability

Theorem 5.2.2. If conditions (5.4 and 5.5) are satisfied and

e3 > max

[
α1τbne
αp

(1 + β1L+ β2L
2),

α2τbne
αq

(β3 + L+ η1L)

]
,

then the boundary equilibrium (0, 0, yne(t)) is globally asymptotically stable.
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Proof. By analyzing system (5.1), we have
dyne(t)
dt
≥ −bneyne(t), t 6= nτ

∆yne(t) = e3, t = nτ, n ∈ Z+.
(5.9)

Consider the corresponding comparison impulsive system of (5.9) as
dwne(t)
dt

= −bneyne(t), t 6= nτ

∆wne(t) = e3, t = nτ, n ∈ Z+.
(5.10)

Applying Lemma 1.5.3, (5.10) has periodic solution

wne(t) =
e3 exp((−bne)(t− nτ))

1− exp(−bneτ)
, t ∈ (nτ, (n+ 1)τ ],

which is globally asymptotically stable. Therefore by Theorem 1.5.2, yne(t) ≥
wne(t)→ wne(t) and wne(t) = yne(t). Hence, ∃ a positive integer κ1 such that

yne(t) > yne(t)− ὲ ∀ t ≥ κ1τ.

Let W (t) = xp(t) + xq(t), then for t 6= nτ , we have

W
′ |(5.1) = α1xp −

α1x
2
p

β
− αpxpyne

1 + β1xp + β2x2
p

− α3xpxq + α2xq −
α2x

2
q

β

− αqxqyne
β3 + xq + η1xq

− α4xpxq

≤
(
α1 −

αp(yne − ὲ)
1 + β1xp + β2x2

p

)
xp +

(
α2 −

αq(yne − ὲ)
β3 + xq + η1xq

)
xq. (5.11)

Let M1 =
(
α1 − αp(yne−ὲ)

1+β1xp+β2x2p

)
and M2 =

(
α2 − αq(yne−ὲ)

β3+xq+η1xq

)
. If

e3 > max

[
α1τbne
αp

(1 + β1L+ β2L
2),

α2τbne
αq

(β3 + L+ η1L)

]
,

then M1 < 0 and M2 < 0. Assume that M = min {|M1 |, |M2 |}. Then from
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equation (5.11), for t 6= nτ we obtain

W
′ |(5.1)≤ −MW (t)

for t ≥ κ2τ . Therefore we have the following system
dW (t)
dt
≤ −MW (t), t 6= nτ

W (t+) ≤ W (t), t = nτ, n ∈ Z+.
(5.12)

So, by using Theorem 1.5.2, we obtain, W (t) ≤ W0 exp(−Mt) → 0 as t → ∞.

This implies that xp(t), xq → 0 as t→∞. So, here exists ὲ1 > 0 and ὲ2 > 0 such

that xp(t) < ὲ1 and xq(t) < ὲ2 for t ≥ κ2τ . Again, from system (5.1), we obtain

that 
dyne(t)
dt
≤ (γ1αpὲ1 + γ2αqὲ2 − bne)yne(t), t 6= nτ

∆yne(t) = e3, t = nτ, n ∈ Z+.
(5.13)

Consider its correspondence comparison system
dvne(t)
dt
≤ (γ1αpὲ1 + γ2αqὲ2 − bne)vne(t), t 6= nτ

∆vne(t) = e3, t = nτ, n ∈ Z+.
(5.14)

Applying Lemma 1.5.3, system (5.14) has periodic solution

vne(t) =
e3 exp((−bne − (γ1αpὲ1 + γ2αqὲ2))(t− nτ))

1− exp((−bne − (γ1αpὲ1 + γ2αqὲ2))τ)
, t ∈ (nτ, (n+ 1)τ ],

which is globally asymptotically stable. Therefore by Theorem 1.5.2, yne(t) ≤
vne(t)→ vne(t). Hence, ∃ a positive integer κ3 such that

yne(t) < vne(t) + ὲ ∀ t ≥ κ3τ, (κ3 > κ2 > κ1)

Therefore, as t→∞, xp → 0, xq → 0 and yne(t)→ yne(t). Thus (0, 0, yne(t)) is

globally asymptotically stable. This completes the proof.
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5.3 Permanence

Firstly, condition for the system to be permanent is established as follows:

Theorem 5.3.1. The system (5.1) is permanent if

ln(1− e1) + α1τ −
αpe3

bne
> 0. (5.15)

and

ln(1− e2) + α2τ +
αq
bneη1

[
ln

(
1− η1e3(1− exp(−bneτ))

β3(1− exp(−bneτ)) + η1e3

)]
> 0. (5.16)

Proof. Upper bound of xp(t), xq(t), yne(t) of the system is already been obtained

in Lemma 5.2.1. Also in the above section, it is proved that

yne(t) > yne(t)− ὲ = r1 ∀ t ≥ κ1τ, (5.17)

Thus, for permanence of the system (5.1), there must exists a constant r2, r3 such

that xp(t) ≥ r2 and xq(t) ≥ r3 for sufficiently large t. Here, lower bound of xp is

attained. This is achieved in two steps as follows:

Step I Firstly, we will prove that ∃ t̊1 ∈ (0,∞) such that xp(̊t1) ≥ r2. If this

is not true, then xp(t) ≤ r2∀ t > 0. Considering this assumption, from system of

equations (5.1), we have
dyne(t)
dt
≤ (γ1αpr2 + γ2αqN − bne)yne(t), t 6= nτ

∆yne(t) = e3, t = nτ, n ∈ Z+.

Consider the following impulsive system
dune(t)
dt

= (γ1αpr2 + γ2αqN − bne)une(t), t 6= nτ

∆une(t) = e3, t = nτ, n ∈ Z+.
(5.18)

Here r2 should be such that γ1αpr2 + γ2αqN − bne < 0. Applying Lemma 1.5.3,
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(5.18) has periodic solution

une(t) =
e3 exp(−(bne − (γ1αpr2 + γ2αqN)(t− nτ)))

1− exp(−(bne − (γ1αpr2 + γ2αqL)τ)
, t ∈ (nτ, (n+ 1)τ ].

which is globally asymptotically stable. Therefore by Theorem 1.5.2, yne(t) ≤
une(t)→ une(t). Hence, ∃ a positive integer κ4 such that

yne(t) ≤ une(t) + ὲ3 ∀ t ≥ κ4τ. (5.19)

Therefore, for t > κ4τ , first equation of system (5.1) gives
dxp(t)

dt
≥ xp

[
α1

(
1− N

β

)
− αp(une(t) + ὲ3)− α3N

]
, t 6= nτ

∆xp(t) = −e1xp(t), t = nτ, n ∈ Z+.
(5.20)

Integration of first equation of system (5.20) on (κ4τ, (κ4 + 1)τ ] gives the following

stroboscopic map

xp[(κ4 + 1)τ ] ≥ xp(κ4τ)(1− e1)

× exp

(∫ (κ4+1)τ

κ4τ

(
α1

(
1− N

β

)
− αp(une(t) + ὲ3)− α3N

)
dt

)
≥ xp(κ4τ)%1 (5.21)

where

%1 = (1− e1) exp

(∫ (κ4+1)τ

κ4τ

(
α1

(
1− N

β

)
− αp(une(t) + ὲ3)− α3N

)
dt

)

Because of condition given in equation (5.15), it is possible to find ὲ3 and N such

that %1 > 1. Therefore, for some positive integer q, from equation (5.21),

xp[(κ4 + q)τ ] ≥ xp(κ4τ)(%1)q →∞ as q →∞.

This is contradiction to our assumption. Hence, there must exist t̊1 > 0 such that
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xp(̊t1) ≥ r2.

Step II There is nothing to prove if xp(t) ≥ r2 ∀ t > t̊1. But if this is not true, let

t̊2 = inf{t | xp(t) < r2; t > t̊1}. Thus xp(t) ≥ r2 ∀ t ∈ [̊t1, t̊2], t̊2 ∈ (ň1τ, (ň1+1)τ ].

xp(̊t2) = r2, because of continuity of xp(t). Let τ ∗ = (ň2 + ň3)τ where ň2 and ň3

satisfy the following conditions

(ň2)τ > −
(

1

bne − (γ1r1αp + γ2Nαq)

)
ln

ὲ3

L+ e3

,

(1− e1)ň2+1(%1)ň3(exp(υ(ň2 + 1)τ)) > 1

(5.22)

where

υ =

[
α1

(
1− r2

β

)
− (αp + α3N)

]
< 0.

Now, we will prove that ∃ t̊3 ∈ ((ň1 + 1)τ, (ň1 + 1)τ + τ ∗] such that xp(̊t3) ≥ r2.

Suppose this is not true, then xp(t) < r2 ∀ t ∈ ((ň1 +1)τ, (ň1 +1)τ+τ ∗]. If system

(5.18) is considered with une((ň1 + 1)τ+) = yne((ň1 + 1)τ+), then using Lemma

1.5.3 for t ∈ ((ň1 + 1)τ, (ň1 + 1)τ + τ ∗], we have

une(t) =

[
une(ň1 + 1)τ+)− e3

1− exp(−bne − (γ1r1αp + γ2Nαq)τ)

]
×

exp(−bne − (γ1r1αp + γ2Nαq)(t− nτ))) + une(t)

This implies

| une(t)− une(t) | ≤ (N + e3) exp(−bne − (γ1r1αp + γ2Nαq)(t− nτ)))

≤ ὲ3.

which depicts that yne(t) ≤ une(t) < une(t)+ ὲ3, (ň1 +ň2 +1)τ ≤ t ≤ (ň1 +1)τ+τ ∗.

Hence system of equations (5.20) holds for (ň1 + ň2 + 1)τ ≤ t ≤ (ň1 + 1)τ + τ ∗.

Thus, integrating first equation of system (5.20) in the interval (ň1+ň2+1)τ, (ň1+

1)τ + τ ∗) and using jump condition, we get the following stroboscopic map

xp(ň1 + ň2 + ň3 + 1)τ ≥ xp(ň1 + ň2 + 1)%ň3
1 (5.23)
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Further, for t ∈ [̊t2, (ň1 + 1)τ ], two possibilities are there

Case(i) If xp(t) < r2 ∀ t ∈ [̊t2, (ň1 + 1)τ ], then from the above assumption

xp(t) < r2 ∀ t ∈ [̊t2, (ň1+1)τ+τ ∗]. This implies xp(t) < r2 ∀ t ∈ [̊t2, (ň1+ň2+1)τ ].

Thus, from the system of equations (5.1), we have
dxp(t)

dt
≥ xp

[
α1

(
1− r2

β

)
− αpN − α3N

]
, t 6= nτ

∆xp(t) = −e1xp(t), t = nτ, n ∈ Z+.
(5.24)

Solving the system (5.24) in [̊t2, (ň1 + ň2 + 1)τ ], we have

xp((ň1 + ň2 + 1)τ) ≥ (1− e1)ň2+1xp(̊t2) exp(υ(ň2 + 1)τ). (5.25)

Using (5.25) in (5.23)

xp((ň1 + ň2 + ň3 + 1)τ) ≥ xp(̊t2)(1− e1)ň2+1%ň3
1 exp(υ(ň2 + 1)τ) > r2.

But this contradicts our assumption. Therefore, ∃ t̊3 ∈ (ň1τ, (ň + 1)τ) such that

xp(̊t3) ≥ r2. Let t̊4 = inf{t | xp(t) ≥ r2; t > t̊2}. Due to continuity of xp(t),

xs(̊t4) = r2. Now integration of equation (5.24) on the interval [t̊2, t̊4] gives

xp(t) ≥ xp(̊t2) exp((υ)(t− t̊2)

≥ r2 exp((υ)(t− t̊2)

≥ r2 exp(υ(ň2 + ň3 + 1)τ) = r4.

Since xs(̊t4) ≥ r2, so similar process can be continued for t > t̊4. Hence xp(t) ≥
r2 ∀ t > t̊1.

Case(ii) if ∃ t̊5 ∈ [̊t2, (ň1 +1)τ ] such that xp(̊t5) ≥ r2, then let t̊6 = inf{t | xp(t) ≥
r2; t > t̊2}. Therefore, xp(t) < r2 for t ∈ [̊t2, t̊6] and xp(̊t6) = r2. Again, integration

of equation (5.24) on the interval [̊t2, t̊6] gives

xp(t) ≥ xp(̊t2) exp((υ)(t− t̊2)) ≥ r2 exp(υτ) = r2.

Because xs(̊t6) ≥ r2, so, similar argument can be followed for t > t̊6. Hence, it is
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concluded that xp(t) ≥ r2 ∀ t > t̊1. Similarly, we can prove that xq(t) ≥ r3 for

some t.

Step III Let r4 = min{r1, r2, r3},Θ = {R3
+ : r4 ≤ xp(t), xq(t), yne(t) ≤ N}.

Thus, from above steps and Lemma 5.2.1, it is proved that each solution of system

(5.1) will always remain in region Θ. Therefore, by Definition 1.5.4.2, system (5.1)

is permanent.

5.4 Numerical Analysis and Discussion

A food web model consisting of two-prey species and a predator species considering

Holling IV and Beddington-DeAngelis type functional responses is examined in this

chapter for impulsive pest control strategy. The dynamics of the required ecological

model is studied numerically by obtaining the solution of system (5.1) with initial

values lying in the first octant. Biologically feasible values of different parameters

are given in Table 5.1. From Theorem 5.2.2, it is obtained that the prey (pest)

free equilibrium (0, 0, yne(t)) is globally stable. So, it is found that if e3 > 13.5,

the equilibrium point (0, 0, yne(t)) is globally asymptotically stable (see Figure

5.1). Again, the results of Theorem 5.3.1 are verified numerically as if e3 < 6.7, the

system (5.1) is permanent (see Figure 5.2). Therefore both the prey and predator

species coexist. Thus we have obtained two threshold values of impulsive release

amount of natural enemy i.e. e3 as e∗3 = 6.7 and e∗∗3 = 13.5.

Further, numerically, it is observed that because of the principle of compe-

tition exclusion, second prey species goes to extinction if 6.7 ≤ e3 < 8 and if

8 ≤ e3 ≤ 13.5, the extinction of first prey species takes place (see Figures 5.3 and

5.4). Thus the results obtained will be helpful to control the pest population in

order to avoid major production or economic loss.
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Table 5.1: Values of different parameters used in system (5.1)

Parameter Representation Its Value

α1 Intrinsic reproduction rate of the first
prey population 0.9

α2 Intrinsic reproduction rate of the second
prey populations 1.2

β Carrying capacity 15
αp Predation rate of first prey 0.6
β1 Saturation constant by Holling 0.3
β2 Rate of group defense by first prey population 0.1
α3 Effect of first prey species on second

due to competition 0.01
αq Predation rate of second prey 0.8
β3 Saturation constant by Beddington-DeAngelis 1.5
η1 Measure of interference between predators 0.08
α4 Effect of second prey species on first

due to competition 0.02
γ1 Rates of conversing first prey species

into predator 0.35
γ2 Rates of conversing second prey species

into predator 0.45
bne Death rate of predator 0.45
e1 Impulsive harvesting rate of first prey species 0.01
e2 Impulsive harvesting rate of second prey species 0.05
e3 Impulsive release amount of mature

natural enemy 13.6
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Figure 5.1: Global stability of prey extinction periodic solution (0, 0, yne(t)) of
system (5.1) at e3(= 13.6) > e∗∗3 with xp(0

+ = 0.8), xq(0
+) = 0.6, yne(0

+) = 1
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Figure 5.2: Permanence of the system (5.1) at e3(= 6.5) < e∗3 with xp(0
+ =

0.8), xq(0
+) = 0.6, yne(0

+) = 1
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Figure 5.3: Graphical representation of the solution of the system (5.1) at e3 =
7 i.e.e∗3 ≤ e3 < 8 with xp(0

+) = 0.8, xq(0
+) = 0.6, yne(0

+) = 1 and e1 = 0.01, e2 =
0.05.
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Figure 5.3: Continued
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Figure 5.4: Graphical representation of the solution of the system (5.1) at e3 =
9 i.e.8 ≤ e3 < e∗∗3 with xp(0

+) = 0.8, xq(0
+) = 0.6, yne(0

+) = 1 and e1 = 0.01, e2 =
0.05.
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5.5 Conclusion

The dynamics of a food web model under the influence of impulsive perturbations

is studied analytically and numerically. Here, we have taken mixed functional

response as first prey species exhibit the phenomenon of group defense while in

the second case, mutual interference in predators is considered. Hence, Holling

Type IV functional response is used for the predation of first prey species while

Beddington-DeAngelis type in the predation of second prey species. It is proved

that the prey free equilibrium (0, 0, yne(t)) is globally stable if the conditions

in Theorem 5.2.2 are satisfied. Also, conditions for the permanence of the system

(5.1) are established. It is also concluded that the system (5.1) follows the principle

of competitive exclusion.
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Chapter 6

A Three Tropic Level Food Chain

Model Considering Holling Type

II and IV Functional Response for

Impulsive Pest Control Strategy

6.1 Introduction

Preservation of non-renewable resources and protection of environment for coming

generations while satisfying human requirements for fodder is the main aim of

sustainable agriculture. It’s biggest component is pest management. In order to

prevent major economic and production loss, it is the need of hour to control pest

population. Pesticides are widely being used to eradicate pests [60, 106]. But

there are some big issues with the use of pesticides. Firstly, these are responsible

for environmental pollution up to great extent and identified as a health hazard

to mankind. Secondly, aquatic bodies suffer due to water pollution caused by

pesticides. Pesticides are harmful to beneficial insects such as pollinators. Further,

due to high cost, small scale farmers are finding it hard to use chemical pesticides
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[54]. Moreover, after long term use, pests even became resistant to pesticides.

Therefore, chemical pesticides must be combined with some other pest control

techniques to get maximum benefit and minimum loss. This is called integrated

pest management. Biological control is proved to be boon for te same. It includes

identifying specific natural enemies of the targeted pest population. These enemies

can be predators, parasites or some microbial control agents [137]. All these help

to suppress growth of pest population. Natural enemies either kill the pests or

hinder their biological process resulting in death of pests. Biological control is

used for both open crop field crops and greenhouses. In Netherlands and United

Kingdom, the parastoid Encarsia Formosa is used on wider scale to control tomato

pest Trialeurodes Vaporariorum [109].

In this chapter, pesticides are applied along impulsive release of natural ene-

mies to manage the pest population. It is observed that many of these insect pests

do not cause much damage in their native habitat. But, the problem becomes seri-

ous when they migrate into the region where there are no natural enemies. Hence,

specified natural enemies can be reared or stocked under favorable environmental

conditions and then released periodically in targeted regions to kill pests [138].

Therefore, in our work threshold value of impulsive period for impulsive release of

natural enemies is calculated in order to check the pest population. Since pesticides

and natural enemies are released periodically, so this can be well analyzed using

impulsive differential equations. [8, 10]. There are plethora of applications of im-

pulsive differential equations in Ecology and other applied sciences [24]. Also pest

management can be studied effectively with the help of perturbed prey-predator

interactions. Great achievements have been made by eminent researchers by con-

sidering prey as pest and natural enemies as predators.

Further, functional response of prey population to predator has an important

role in predation. This response can be prey dependent (Holling type) or both

prey and predator dependent (Beddington-DeAngelis type). Liu and Chen [110]

analyzed Lotka-Volterra predator-prey system with impulsive perturbations using

Holloing Type II functional response and studied the chaotic behavior of system.
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Zhang [139] established two pest-one natural enemy model, and found threshold

value of impulsive period for pest free equilibrium. Similarly, valuable results have

been obtained in [140, 123, 124, 141] considering food chain and food web models

for impulsive pest control strategy. Zhang [142] studied the bifurcation analysis

of prey-predator impulsive pest control model with Holling type IV functional

response. He found that bifurcation depends on the impulsive release amount of

natural enemies. Differnt threshold values of impulsive period have been obtained

in [143, 144] for permanence of the system.

Furthermore, good biological understanding of different life stages (immature

larva, mature adult) of pests and natural enemies must be there for effectiveness

of biological pest control. Hence, Jatav and Dhar [72] considered a stage struc-

tured (in natural enemies) plant-pest-natural enemy (food-chain) model to find

the conditions for permanence of the system. Again, Bhanu et.al. [136] extended

the above work by analyzing stage- structure in pests also.

In view of the above, a three tropic level plant-pest-natural enemy food chain

model is developed using Holling type II and IV functional responses for impulsive

pest control strategy. Pesticides and natural enemies are released periodically and

simultaneously with impulsive period to manage pest population.

6.2 Mathematical Model

The following predator-prey food chain model is proposed in this chapter. Here,

prey act as plant crop, mid level prey plays the role of pest and top predator is

the specified natural enemy. The model is formulated under some assumptions as

follows

(A1) The prey (plant) grows logistically in the absence of predator.

(A2) Prey response to mid level predator is Holling type II and mid level prey

response to top predator is Holling type IV.

(A3) Pesticides do not cause any harm to natural predators.
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(A4) For the integrated pest control, pesticides are sprayed and natural enemies

are released periodically at time t = nτ with intensities θ1 and θ2, respectively

where τ is the impulsive period.



dxc
dt

= αxc

(
1− xc

β

)
− αcxcyp

1 + γ1xc
,

dyp
dt

=
αcxcyp

1 + γ1xc
− αpypzne

1 + γ2y2
p

− δ1yp,

dzne
dt

=
αpypzne
1 + γ2y2

p

− δ2zne,


t 6= nτ,

∆yp(t) = −θ1yp,

∆zne(t) = θ2,

}
t = nτ, n ∈ Z+.

(6.1)

The different parameters used in (6.1) are defined as follows

(i) xc, yp, zne be the densities of prey, mid level predator and top predator at

time t.

(ii) α > 0 is the intrinsic reproduction rate of susceptible pests and β > 0 is the

carrying capacity.

(iii) αc and αp be the discovery rates by Holling and γ1, γ2 > 0 are the half

saturation constants.

(iv) δ1, δ2 be the death rates of mid level predator and top predator, respectively.

Let R+ = [0, ∞), R3
+ = {x ∈ R3 : x ≥ 0}, Ω = intR3

+. The map defined by the

right hand of the system (2.1) is given as g = (g1, g2, g3)T . Let S0 = {V : R+ ×
R3

+ 7→ R+, continuous on (nτ, (n+ 1) τ ] × R3
+ and lim(t,y)→(nτ,x),t>nτ S (t, x) =

S (nτ+, x) exits}.

Our main aim here is to suppress the pests in a targeted region beneath a

tolerable limit so that it does not cause major production loss.
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6.3 Boundedness and Global Stability

6.3.1 Upper bound of all the variables

Here, in this section, firstly, upper bound for all the variables of system(6.1) are

obtained in the following lemma.

Lemma 6.3.1. For sufficiently large t, there exists a constant L > 0 such that

xc ≤ L, yp ≤ L, zne ≤ L. That is there is an upper bound for every solution of

(6.1).

Proof. Suppose (xc(t), yp(t), zne(t)) be any solution of (6.1). Let Q(t) = xc(t) +

yp(t) + zne(t) then for t 6= nτ,

D+Q(t) + pQ(t) = αxc −
αx2

c

β
− αcxcyp

1 + γ1xc
+

αcxcyp
1 + γ1xc

− αpypzne
1 + γ2y2

p

+
αpypzne
1 + γ2y2

p

− δ1yp − δ2zne + p(xc + yp + zne)

= (α + p)xc −
αx2

c

β
− (δ1 − p)yp − (δ2 − p)(zne

≤ (α + p)xc −
αx2

c

β

≤ β(α + p)2

4α
= L0

Q(nτ+) = Q(nτ) + θ2, for t = nτ.

Therefore by Theorem 1.5.1,

Q(t) ≤ Q(0) exp

(∫ t

0

(−p)
)
ds+ θ2

∑
0<nτ<t

exp

∫ t

nτ

(−p)ds+

∫ t

0

(
L0 exp

∫ t

s

(−pdσ)

)
ds

≤ Q(0) exp(pt) + (θ2)
∑

0<nτ<t

exp(−p(t− nτ)) +
L0

p
(1− exp(−pt))
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≤ Q(0) exp(−pt) +
L0

p
(1− exp(−pt)) +

θ2(exp(−p(t− τ)))

1− exp(−pτ)
+
θ2(exp(pt))

exp(pτ)− 1

→ L0

p
+
θ2(exp(pτ))

exp(pτ)− 1
as t→∞

This implies

Q(t) ≤ L, L =
L0

p
+
θ2(exp(pτ))

exp(pτ)− 1

Thus Q(t) is uniformly bounded. Hence, ∃ the constant L such that xc ≤ L, yp ≤
L, zne ≤ L. This completes the proof.

After using chemical pesticides and natural enemies, when pest population

becomes extinct, then yp = 0, the impulsive system (6.1)reduces to

dxc
dt

= αc

(
1− xc

β

)
dzne
dt

= −δ2zne,

 t 6= nτ,

∆zne = θ2,
}
t = nτ, n ∈ Z+.

(6.2)

First equation of (6.2) is simply logistic population growth model. It has two

equilibrium points 0 and β. xc = 0 is unstable while xc = β is stable equilibrium

point. Also applying Lemma 1.5.3 on second and third equations of (6.2), we get

globally asymptotically stable periodic solution zne(t) as

zne(t) =
θ2 exp((−δ2)(t− nτ))

1− exp((−δ2)τ)
, zne(0

+) =
θ2

1− exp((−δ2)τ)
. (6.3)

Now, system (6.1) has two pest extinction equilibrium points (0, 0, zne(t)) and

(β, 0, zne(t)).

Theorem 6.3.1. Let (xc(t), yp(t), zne(t)) be any solution of system (6.1), then

(i) X1 = (0, 0, zne(t)) is unstable.

(ii) There exists a threshold value(τmax) of the impulsive period such that if

τ ≤ τmax, then the pest eradication solution X2 = (β, 0, zne(t)) is locally
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asymptotically stable and if τ > τmax, it is unstable where

τmax =

(
θ2αp
δ2

− ln(1− θ1)

)(
1 + γ1β

αcβ − δ1 − δ1γ1β

)
.

Proof. (i) Here, we use small perturbation method to prove the local stability

of the required solution. Let ζ1(t), ζ2(t), ζ3(t) be the small perturbations in

0, 0 and z̄ne, respectively. Then

xc(t) = ζ1(t), yp(t) = ζ2(t), zne(t) = z̄ne(t) + ζ3(t).

Putting these values in system (6.1) and after linearization it reduces to

dζ1(t)

dt
= αζ1(t),

dζ2(t)

dt
= −αpzne(t)ζ2 − δ1ζ2,

dζ3(t)

dt
= αpzne(t)ζ2 − δ2ζ3,


t 6= nτ,

ζ1(nτ+) = ζ1(t),

ζ2(nτ+) = (1− θ1)ζ2(t),

ζ3(nτ+) = ζ3(t),

 t = nτ, n ∈ Z+.

(6.4)

Then (6.4)represents system of linear differential equations, which can be

written in matrix form. Hence for t 6= nτ , the coefficient matrix is given as

B =

α 0 0

0 −αpzne(t)− δ1 0

0 αpzne(t) −δ2

 ,
and for t = nτ ζ1(nτ+)

ζ2(nτ+)

ζ3(nτ+)

 =

1 0 0

0 1− θ1 0

0 0 1


ζ1(nτ)

ζ2(nτ)

ζ3(nτ)

 ,
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Let Φ(t) be the fundamental solution matrix of system (6.4), then

dΦ(t)

dt
= BΦ(t), (6.5)

Φ(t) = Φ(0) exp(

∫ T

0

A dt),

with Φ(0) = I, the identity matrix. Solving for Φ(t), we have

Φ(t) =

exp(
∫ τ

0
αdt) 0 0

0 exp(
∫ τ

0
−αpzne(t)− δ1dt) 0

0 exp(
∫ τ

0
αpzne(t)dt) exp(

∫ τ
0
−δ2dt)

 ,
Now according to Floquet Theory of impulsive differential equations(Remark

1.5.8.1 and Theorem 1.5.5), if absolute values of all the eigen values of Mon-

odromy matrix M are less than one, then the required solution is globally

stable where

M =

1 0 0

0 1− θ1 0

0 0 1φ(τ)

φ(τ).

The eigen values of M are

λ1 = exp

(∫ τ

0

αdt

)
,

λ2 = (1− θ1) exp

(∫ τ

0

−αpzne(t)− δ1dt

)
,

λ3 = exp

(∫ τ

0

−δ2)dt

)
.

(6.6)

Now it is obvious from (6.6) that | λ1 |> 1(α > 0). Hence the pest extinction

solution (0, 0, zne(t)) is unstable.

(ii) Similarly, we can discuss the local stability of second pest extinction equilib-

rium point (β, 0, znet)). Here,

xc(t) = ζ1(t) + β, yp(t) = ζ2(t), zne(t) = z̄ne(t) + ζ3(t).
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Proceeding similarly as above, the Monodromy matrix M in this case is

M =

1 0 0

0 (1− θ1) 0

0 0 1


−α − αcβ

1+γ1β
0

0 αcβ
1+γ1β

− αpzne(t)− δ1 0

0 αpzne(t) −δ2

 (6.7)

Therefore, the eigen values of M are

λ1 = −ατ < 0,

λ2 = (1− θ1) exp

(∫ τ

0

αcβ

1 + γ1β
− αpzne(t)− δ1dt

)
,

λ3 = −δ2τ.

(6.8)

Now, it is obvious from (6.8) that | λ1 |< 1, | λ3 |< 1 and | λ2 |< 1 if

τ ≤ τmax. Hence the required result.

6.3.2 Global Stability

Theorem 6.3.2. There is a threshold value(τ̌) of the impulsive period such that if

τ < τ̌ , then the pest eradication solution (β, 0, zne(t)) is globally asymptotically

stable where

τ̌ =

(
θ2αp
δ2

− ln(1− θ1)

)(
1

αcβ − δ1

)
.

Proof. Let (xc(t), yp(t), zne(t)) be arbitrary solution of (6.1). Given that τ < τ̌ ,

so, it is possible to find sufficiently small ε̃1 > 0such that∫ τ

0

(αc(β + ε̃1)− αp(zne(t)− ε̃1 − δ1)) dt = %1 < 0. (6.9)
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From (6.1),
dxc
dt
≤ αxc

(
1− xc

β

)
(6.10)

Consider its comparison differential equation

duc
dt

= αuc

(
1− uc

β

)
(6.11)

Using comparison analysis technique of ordinary differential equations, xc ≤ uc →
β as t→∞. Therefore,

xc ≤ β + ε̃1 for t > κ1τ.

From (6.1), 
dzne(t)
dt
≥ −δ2zne(t), t 6= nτ,

∆zi(t) = θ2, t = nτ, n ∈ Z+.
(6.12)

Using comparison analysis technique of impulsive differential equations and Lemma

1.5.3, solution of (6.12) must satisfies zne(t) ≥ zne(t) − ε̃1 ∀ t ≥ κ2t. Again from

system(6.1)
dyp(t)

dt
≤ αc(β + ε̃1)− αp(zne(t)− ε̃1 − δ1), t 6= nτ,

∆yp(t) = −θ1yp, t = nτ, n ∈ Z+.
(6.13)

Integrating first equation of system (6.13) on (κ2τ, (κ2 + 1)τ ] gives

yp((κ2 + 1)τ) ≤ yp(κ2τ) exp

(∫ (κ2+1)τ

κ2τ

αc(β + ε̃1)− αp(zne(t) + ε̃1 − δ1)dt

)
(6.14)

After using impulsive jump condition from second equation of system (6.13), we

obtain the stroboscopic map

yp((κ2 + 1)τ) ≤ (1− θ1)yp(κ2τ) exp(%1)
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This implies, for some positive integer q, we get

yp((κ2 + q)τ) ≤ (1− θ1)qyp(κ2τ) exp(q%1)→ 0 as t→∞ (∵ %1 < 0) (6.15)

This implies, there exists a positive integer κ3 > κ2 and sufficiently small ε̃2 > 0

such that yp(t) < ε̃2 for t ≥ κ3 and ε̃2 <
δ2
αp

. Using maximum value of yp(t) in first

equation of system (6.1), we get

dxc
dt
≥ αxc

(
1− xc

β
− αcε̃2

)
.

So limt→∞ xc(t) = β. Now, consider the following subsystem of (6.1)
dzne(t)
dt
≤ (αpε̃2 − δ2)zne(t), t 6= nτ,

∆zi(t) = θ2, t = nτ, n ∈ Z+.
(6.16)

Likewise, applying comparison analysis technique and Lemma 1.5.3, system (6.16)

has periodic solution

wne(t) =
θ2exp(−(δ2 − αpε̃2)(t− nτ))

1− exp(−(δ2 − αpε̃2)τ)
.

such that zne(t) < wne(t) + ε̃3 ∀ t ≥ κ4τ . As ε̃1 > 0, ε̃2 > 0 and ε̃3 > 0 are

sufficiently small, therefore, wne(t) → zne(t) as t → ∞. Hence it is proved that

xc → β, yp(t)→ 0 and zne(t)→ zne(t) as t→∞.

6.4 Permanence and Numerical Simulation

Firstly, condition for the system to be permanent is established as follows

Theorem 6.4.1. The system (6.1) is permanent if τ > τ̌ .

Proof. Upper bound of xc(t), yp(t), zne(t) of the system is already been obtained
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in Lemma 6.3.1. Also in the above section, it is proved that

zne(t) > zne(t)− ὲ = r1 ∀ t ≥ κ2τ. (6.17)

Also
dxc
dt
≥ αxc

(
1− xc

β
− αcL

)
.

This implies xc > (1 − αcL)β = r2 for sufficiently large t. Thus, for permanence

of the system (6.1), there must exists a constant r3 <
δ2
αp

such that yp(t) ≥ r3 for

sufficiently large t. This is done in two steps as follows:

Step I To start with, assume that ys(t) ≥ r3 is not true ∀ t. Thus ∃ a positive

integer t̃1 such that yp < r3 ∀ t ≥ t̃1. Considering this assumption, from (6.1), we

have 
dzne(t)
dt
≤ (αpr3 − δ2)zne), t 6= nτ,

∆zne(t) = θ2, t = nτ.

Consider the following impulsive system
dune(t)
dt

= (αpr3 − δ2)une, t 6= nτ,

∆une(t) = θ2, t = nτ.
(6.18)

Applying Lemma 1.5.3, (6.18) has periodic solution

une(t) =
θ2 exp(−(δ2 − αpr3)(t− nτ))

1− exp(−(δ2 − αpr3)τ)
, t ∈ (nτ, (n+ 1)τ ].

which is globally asymptotically stable. Therefore by Theorem 1.5.2, zne(t) ≤
une(t)→ une(t). Hence, ∃ a positive integer κ5 such that

zne(t) ≤ une(t) + ε̃4∀t ≥ κ5τ. (6.19)

Therefore, xc > r2 implies that for t > κ5τ , we have the following subsystem of
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(6.1) 
dyp(t)

dt
≥ αcr2 − αp(une(t)− ε̃4 − δ1)yp, t 6= nτ,

∆yp(t) = −θ1yp, t = nτ, n ∈ Z+.
(6.20)

Integration of (6.20) on (κ5τ, (κ5 + 1)τ ] gives the stroboscopic map

yp((κ5 + 1)τ) ≥ yp(κ5τ)(1− θ1) exp

(∫ (κ5+1)τ

κ5τ

[αcr2 − αp(une(t) + ε̃4)− δ1] dt

)
≥ yp(κ5τ)%3.

where

%3 = (1− θ1) exp

(∫ (κ5+1)τ

κ5τ

[αcr2 − αp(une(t) + ε̃4)− δ1] dt

)
.

Because τ > τ̌ , so it is possible to find r2 > 0 and ε̃4 > 0 such that %2 > 1. This

implies

yp[(κ5 + q)τ ] ≥ yp(κ5τ)%q2 →∞

as q →∞ This is in contradiction to our assumption that yp < r3 ∀ t ≥ t̃1. Hence

∃ t̃2 > t̃1 such that yp(t̃2) ≥ r3.

Step II There is nothing to prove if yp(t) ≥ r3 ∀ t > t̃2. But if this is not true, let

t̃3 = inf{t | yp(t) < r3; t > t̃2}. Thus yp(t) ≥ r3 ∀ t ∈ [t̃2, t̃3], t̃3 ∈ (ň1τ, ( ˇn1 + 1)τ ].

yp(t̃3) = r3, because of continuity of yp(t). Let τ ∗ = (ň2 + ň3)τ where ň2 and ň3

satisfies the following conditions

(ň2)τ > −
(

1

δ2 − αpr3

)
ln

ε̃4

L+ θ2

,

(1− θ1)ň2+ň3+1 exp(ň3%3 − υ(ň2 + 1)τ) > 1.

(6.21)

where

υ = (αcr2 − αpL− δ1) < 0

Now, we will prove that ∃ t̃4 ∈ ((ň1 + 1)τ, (ň1 + 1)τ + τ ∗] such that yp(t̃4) ≥ r3.

Suppose this is not true, then yp(t̃4) < r3 ∀ t ∈ ((ň1 +1)τ, (ň1 +1)τ+τ ∗]. If system
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(6.18) is considered with une((ň1 +1)τ+) = xs((ň1 +1)τ+), then using Lemma 1.5.3

for t ∈ ((ň1 + 1)τ, ( ˇn1 + 1)τ + τ ∗], we have

une(t) =

[
une((ň1 + 1)τ+)− θ2

1− exp(−(δ2 − αpr3)τ)

]
× exp(−(δ2 − αpr3)(t− (ň1 + 1)τ)) + une(t)

This implies

| une(t)− une(t) | ≤ (L+ θ2) exp(−(δ2 − αpr3)(t− (ň1 + 1)τ))

≤ ε̃4.

which depicts that

zne(t) ≤ une(t) < une(t) + ε̃4, (ň1 + ň2 + 1)τ ≤ t ≤ (ň1 + 1)τ + τ ∗.

Integrating (6.20) on [(ň1 + ň2 + 1)τ, (ň1 + ň2 + ň3 + 1)τ ], we get

yp((ň1 + ň2 + ň3 + 1)τ) ≥ yp((ň1 + ň2 + 1)τ)(1− θ1)ň3 exp(%3ň3) (6.22)

Now, for t ∈ [t3, (ň1 + 1)τ ], there are two possibilities described below :

Case(i) If yp(t) < r3 ∀ t ∈ [t̃3, (ň1 + 1)τ ], then from above assumption yp(t) <

r3 ∀ t ∈ [t̃3, (ň1 + 1)τ + τ ∗]. This implies
dyp(t)

dt
≥ (αcr2 − αpL− δ1)yp, t 6= nτ,

∆yp(t) = −θ1yp, t = nτ, n ∈ Z+.
(6.23)

Integrating first equation of system (6.23) in [t̃3, (ň1 + ň2 + 1)τ ] and using impulse

condition, we obtain the stroboscopic map

yp((ň1 + ň2 + 1)τ) ≥ yp(t̃3)(1− θ1)ň2+1 exp(−υ(ň2 + 1)τ). (6.24)
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Using (6.24) in (6.22)

yp((ň1 + ň2 + ň3 + 1)τ) ≥ yp(t̃3)(1− θ1)ň1+ň2+1 exp(%3ň3) exp(υ(ň2 + 1)τ) > r3.

But this contradicts our assumption. Therefore, yp(t) ≥ r3 in [t̃3, (ň1+ň2+ň3+1)τ ]

for some t. Let t̃5 = inf{t | yp(t) ≥ r3, t > t̃4}. Due to continuity of yp(t),

yp(t̃5) = r3. Now integration of equation (6.23) on the interval [t̃3, t̃5] gives

yp(t) ≥ (1− θ1)yp(t̃3) exp((υ)(t− t̃3)

≥ (1− θ1)r3 exp((υ)(t− t̃3)

≥ (1− θ1)r3 exp(υ(ň2 + ň3 + 1)τ) = r3.

Since yp(t̃5) ≥ r3, so similar process can be continued for t > t̃5. Therefore,

yp(t) ≥ r3∀t > t̃2.

Case(ii) If ∃ t̃6 ∈ [t̃3, (ň1 + 1)τ ] such that yp(t̃6) ≥ r3, then let t̃7 = inf{t | yp(t) ≥
r3, t > t̃3}. Therefore, yp(t̃7) = r3. Again, integrating equation (6.23) on the

interval [t̃3, t̃7], we get

yp(t) ≥ yp(t̃3) exp((υ)(t− t̃3)) ≥ r3 exp(υτ) = r3.

So, similar argument can be followed for t > t̃7. Hence, it is concluded that

yp(t) ≥ r3 ∀ t > t̃2.

Step III Let a = min{r1, r2, r3}, Θ = {R3
+, : a ≤ xc(t), yp(t), zne(t) ≤ L}.

Thus, from above steps and Lemma 6.3.1, it is proved that each solution of system

(6.1) will always remain in region Θ. Therefore, by Definition 1.5.4.2, system 6.1

is permanent.

6.5 Numerical Analysis and Discussion

A prey-predator food chain model with harvesting of middle prey and stocking

of top predator is constituted and investigated in this chapter to control the out-
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Table 6.1: Values of different parameters used in system (6.1)

Parameter Representation
Its Value
(per week)

α Reproduction rate of prey 1.1
β Carrying capacity 1.1
αc Predation rate by mid

level predator (pest) 0.9
αp Rate of predation by

top predator (natural enemy) 0.9
γ1 Half saturation constant for

Holling II predation 0.1
γ2 Half saturation constant for

Holling IV predation 0.2
δ1 Death rate of mid level predator 0.4
δ2 Death rate of top predator (natural enemy) 0.6
θ1 Impulsive spraying amount of pesticides 0.1
θ2 Impulsive release amount of

natural enemies 3

break of pest population. Mid level prey is taken as pest and top predator plays

the role of natural enemy. Use of pesticides is combined with impulsive release of

natural enemies for Integrated pest management. Firstly, global stability of mid

level predator (pest) free solution is established and then condition for the perma-

nence of system is derived. For this, threshold value of impulsive period is found

that depends on releasing amounts of pesticides and natural enemies population.

The initial values of population densities of prey, mid level and top predator are

xc(0
+) = 0.5, yp(0

+) = 0.5, zne(0
+) = 1. The values of different parameters that

are used in (6.1) are given in Table 6.1. After simple calculation, we get τ̌ = 7.805

and τmax = 9.256653. Therefore, by Theorem 6.3.1, it is obtained that pest erad-

ication solution is locally stable if τ ≤ 9.256653. Also, Theorem 6.3.2 is verified

here that is the pest free solution is globally stable if impulsive period τ < 7.805

(see Figure 6.1). Hence impulsive perturbations contribute a lot to the dynamics

of the system since some complex dynamics is there at higher values of impulsive

period greater than threshold value. Thus, combination of chemical and natural
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Figure 6.1: Global stability of pest extinction periodic solution (β, 0, zne(t)) of
system (6.1) at τ < τ̌(= 7.805)

control is very effective for pest control.

6.6 Conclusion

The war between pests and humans is going on from several decades and time

to time, different pest control techniques are acquired by mankind. Working on

the same path, here we investigated a predator-prey three tropic level model for

the purpose of integrated pest management. It is found that instead of using

pesticides alone, combination of chemical control along with natural enemies is

more efficient in pest control. In Theorem 6.4.1, threshold value of impulsive

period τ̌ is obtained and it is established that pests can coexist with infected pests
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Figure 6.2: Permanence of the system (6.1) at τ > τ̌(= 7.805) with xc(0
+ =

0.5), yp(0
+) = 0.5, zne(0

+) = 1, phase portrait of mid level predator and top preda-
tor and phase portrait when system (6.1) is permanent.

135



and natural enemies if τ > τ̌ . Also effect of spraying amount of pesticides and

natural enemies is discussed and found that greater releasing amount or small

impulsive period support pest eradication.
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Chapter 7

Dynamics of Two Species

Competitive System Considering

Beddington-DeAngelis

inter-specific Competition Term

under the Effect of Toxic

Substances and Impulsive

Perturbations

The study of the dynamical behavior of ecological models has remained an interest-

ing area of research over the past few decades. It was started with the single-species

model proposed by Malthus [4]. Then Verhulst [5] modified this model to make it

more realistic. Further, researchers observed that the study of dynamics of popu-

lation interactions rather than single-species was more natural. Out of all types of

population interactions, prey-predator and competition are extensively studied by
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various researchers. The simplest two-species competition model was firstly pro-

posed by Lotka and Volterra. In this model, two species were in competition for

the same resources. They concluded that the superior species will ever dominate

which eventually lead to the extinction of inferior species. This is called principle

of competition exclusion. Sahir Ahmad [91] explored the non-autonomous com-

petitive Lotka-Volterra model. Thus, he established sufficient conditions for the

system to follow the principle of competition exclusion.

Furthermore, it was absolutely natural that population interactions undergo

sudden changes in the population densities of the concerned species. These changes

may happen due to fire, flood, seasonal birth patterns of species or human inter-

ventions such as harvesting and stocking of population. To maintain ecological

balance, harvesting and stocking is required, accordingly. Therefore, one of the

significant mathematical tool to study the effect of these instantaneous distur-

bances, are impulsive differential equations. These are thoroughly studied by Lak-

shmikantham and Bainov [8, 10]. There are plethora of applications of impulsive

differential equations in ecology and other applied sciences, see [24, 39, 40, 144] and

references therein. Liu and Chen [92] studied the dynamics of impulsive periodic

Lotka-Volterra competition model. Using Floquet theory of differential equations,

they established that impulsive perturbations are helpful to prevent extinction

of inferior competitor, so these perturbations encourage avoidance of principle of

competition exclusion. Jin et al. [93] studied persistence and extinction in Lotka-

Volterra competition model under the influence of impulsive perturbations. In

this paper, the authors focused on the average growth rates of the species. Apart

from this, Liu et al. [94] confirmed that impulsive perturbations can promote the

coexistence of the species during competition.

In addition to this, it was found that while analyzing prey-predator popu-

lation interactions, the important factor to be considered, is functional response.

These interactions are examined with linear functional response, Holling type and

ratio dependent also. Therefore, inspired by this, many authors chosen non-linear

inter-specific competition term for the two species competition models. Liu et

al. [95] derived sufficient conditions for the permanence and extinction of impul-

138



sive Lotka-Volterra competition model considering Holling type II inter-inhibition

term. After that, it was found that some species have to mature to hinder the

growth of other competing species. So, delay factor was introduced in impulsive

competition systems but it was observed that delays do not have distinguishable

effect on the dynamics of system [96]. Apart from the Holling’s four different types

of functional responses, Beddington and DeAngelis put forward a new kind of func-

tional response that includes the combined effect of Holling II and ratio dependent

functional responses. Several scholars studied prey-predator interactions consider-

ing Beddington-DeAngelis functional response which includes mutual interference

in predator population, see [145, 132, 150]. Kharbanda and Kumar [149] investi-

gated a food web model consisting of one prey and two predators. They considered

two different types of functional responses, that is, Beddington-DeAngelis for the

first predator and Crowley-Martin for the second predator. They derived sufficient

conditions for the local stability of different equilibrium points and global stability

of inner equilibrium point. Motivated by this, Yu and Chen [97] examined two

species competition model by taking Beddington De-Angelis functional response

as inter-specific competition and then they established sufficient conditions for the

partial extinction and permanence of the system. He et al. [146] examined the per-

manence, extinction and global attractivity of nonautonomous competitive system

with impulsive effect and infinite delays.

Moving further, it is analyzed that presence of toxic substances in the envi-

ronment always has prominent effect on the dynamics of the species interactions.

Chattopadyhay [98] firstly introduced this concept that some species produce toxic

substances in the presence of other to hamper the growth of their competitors. He

derived that the effect of toxic substances do contribute in the stability of the

competition systems. Kar and Chaudhuri [147] mentioned in their paper that cer-

tain aquatic species release toxicants. To exemplify the unicellular green algae

Chlorella vulgaris releases a toxin that has detrimental effects on its own pop-

ulation as well as on some planktonic algae, Asterionella formos and Nitzschia

frusttulum. Many scholars studied the extinction of species in competition system

under the combined influence of toxic substances produced by both the species
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in the presence of each other and impulses, see [148, 100, 99, 151, 102, 152]. Li-

juan et al. [103] considered the possibility that only one species releases toxin in

the presence of other and studied the extinction of species. Fengde et al. [101]

proposed two species competition model under the influence of toxic substances.

The authors have used Beddington- DeAngelis function as inter-inhibition term

and derived sufficient conditions for the extinction of one species and permanence

of the other which verified the concept of principle of competition exclusion. But

they have ignored the effect of outside disturbances on the population density of

the species such as harvesting or stocking of species. These small perturbations

have significant effect on the dynamics of population interaction models.

It is very often that ecological systems are enormously disturbed by human

exploring activities. Thus, it is more appropriate to consider the model analyzed

by Fengde et al. [101] under the influence of impulsive perturbations. Therefore,

in this paper, we have analyzed the periodic two species competition model with

Beddington-DeAngelis inter-specific competition under the influence of impulsive

perturbations.

7.1 Mathematical Model

Let yf (t) and ys(t) be the population densities of two species competing for the

same living resources. The assumption is that both the species produce toxins in

the presence of other. The terms γf (t)y
2
f (t)ys(t) and γs(t)yf (t)y

2
s(t) represents the

effect of toxicans produced by species ys on yf and yf on ys, respectively. This leads

to the following mathematical model with initial conditions yf (0) > 0 & ys(0) > 0.

Here, τk represents the moments of impulsive effect. The terms (1 + l1k)yf (τk)

and (1 + l2k)ys(τk) denotes amount of impulsive harvesting or stocking of both the

species at time t = τk. If l1kyf (τk) > 0, l2kys(τk) > 0, then both the species are

stocked impulsively and if l1kyf (τk) < 0, l2kys(τk) < 0, then harvesting of species

is done. Also for biological relevance, (1 + lik) > 0, i = 1, 2. The biological

interpretation of parameters used in the model (7.1) is as follows:
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1. α1(t) and α2(t) be the intrinsic reproduction rate of species yf and ys, re-

spectively.

2. β1(t) and β2(t) be the rates of intra-specific competition within species.

3. γf (t) and γs(t) are the measures of the toxic effect that one species exert on

another.

4. Because the species are considered to be living in a periodically varying envi-

ronment, therefore, the coefficients α1(t), α2(t), β1(t), β2(t), af (t), as(t), γf (t),

γs(t) are all positive periodic continuous functions with period Ť . There ex-

ists a positive integer m such that τk+m = τk + Ť .



dyf (t)

dt
= yf (t)

[
α1(t)− β1(t)yf (t)−

af (t)ys(t)

bf (t) + cf (t)yf (t) + df (t)ys(t)

]
(
−γf (t)y2

f (t)ys(t)
)
,

dys(t)

dt
= ys(t)

[
α2(t)− β2(t)ys(t)−

as(t)yf (t)

bs(t) + cs(t)yf (t) + ds(t)ys(t)

]
−
(
γs(t)yf (t)y

2
s(t)
)
,


t 6= τk,

yf (τ
+
k ) = (1 + l1k)yf (τk),

ys(τ
+
k ) = (1 + l2k)ys(τk),

}
t = τk, k ∈ N.

(7.1)

Through out this paper, it is assumed that for any function h(t), hL =

inf−∞<t<∞ h(t) and hM = sup−∞<t<∞ h(t). Further, average intrinsic growth rate

of both the species is considered in this paper.

7.2 Positivity of Solutions

Lemma 7.2.1. Suppose Y (t) = (yf (t), ys(t)) is any solution of (7.1) with yf (0) ≥
0 and ys(0) ≥ 0, then yf (t) ≥ 0, ys(t) ≥ 0 ∀ t > 0. Also yf (t) > 0, ys(t) > 0 ∀ t >
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0 if yf (0) > 0 and ys(0) > 0.

Proof. Let

P (t) =

[
α1(t)− β1(t)yf (t)−

af (t)ys(t)
bf (t) + cf (t)yf (t) + df (t)ys(t)

− γf (t)yf (t)ys(t)
]
,

Q(t) =

[
α2(t)− β2(t)ys(t)−

as(t)yf(t)

bs(t) + cs(t)yf (t) + ds(t)ys(t)
− γs(t)yf (t)ys(t)

]
.

Thus if Y (t) = (yf (t), ys(t))
T is any solution of (7.1) with yf (0) ≥ 0 and ys(0) ≥ 0,

then integrating first equation of system (7.1) in (τn, τn+1) and using equation

third of system (7.1), we obtain

yf (t) = yf (τ
+
n ) exp

∫ t

τn

(P (s)ds), t ∈ (τn, τn+1] (7.2)

and

yf (τ
+
n ) = (1 + l1k)yf (τn). (7.3)

Therefore, from equation (7.3), we have

yf (t) = (1 + l1k)yf (τn) exp

∫ t

τn

(P (s)ds), t ∈ (τn, τn+1] (7.4)

This implies

yf (t) = (1 + l1k)
2yf (τn−1) exp

∫ t

τn

(P (s)ds), t ∈ (τn, τn+1] (7.5)

By repeating this process, we obtain

yf (t) = (1 + l1k)
nyf (0) exp

∫ t

0

(P (s)ds), t ∈ (τn, τn+1] (7.6)

Because yf (0
+) ≥ 0 and exponential function is always positive. Hence yf (t) ≥

0 ∀ t > 0. Similarly it can be proved for ys(t).

Lemma 7.2.2. (refer [99]) Let Y (t) = (yf (t), ys(t)) is any solution of (7.1) with
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yf (t) > 0 and ys(t) > 0, then we have

lim
t→∞

sup yf (t) ≤ φM[α1] (7.7)

lim
t→∞

sup ys(t) ≤ φM[α2] (7.8)

where φ[α1] is the unique positive solution of impulsive system
dyf (t)

dt
= yf (t) (α1(t)− β1(t)yf (t)) , t 6= τk,

yf (τ
+
k ) = (1 + l1k)yf (τk), t = τk, k ∈ N

and φ[α2] is the unique positive solution of impulsive system
dys(t)
dt

= ys(t) (α2(t)− β2(t)ys(t)) , t 6= τk,

ys(τ
+
k ) = (1 + l2k)ys(τk), t = τk, k ∈ N

7.3 Extinction of one species and Permanence of

other

Theorem 7.3.1. If

αL1

αM2
≥ max

{
βM1 (bMs + cMs φ

M
[α1] + dMs φ

M
[α2])

aLs
,
γMf
γLs

,
aMf
bLf β

L
2

}
,where (7.9)

αL1 = αL1 +
1

Ť

m∑
k=1

ln(1 + l1k) > 0 (7.10)

αM2 = αM2 +
1

Ť

m∑
k=1

ln(1 + l2k) > 0 (7.11)

then for any solution (yf (t), ys(t)) of the system (7.1), species ys will be driven to

extinction.
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Proof. By using lemma 7.2.2, there exists a positive constant ὲ1 such that

yf (t) < φM[α1] + ὲ1 (7.12)

ys(t) < φM[α2] + ὲ1 (7.13)

Now, the given conditions (7.9) can be written as

βM1
aMs

bMs +cMs (φM
[α1]

+ὲ1)+dMs (φM
[α2]

+ὲ1)

≤ αL1

αM2
,

aMf
bLf

βL2
≤ αL1

αM2
,
γMf
γLs
≤ αL2

αM2
.

Therefore, it is possible to find two constants % and µ such that

βM1
aMs

bMs +cMs (φM
[α1]

+ὲ1)+dMs (φM
[α2]

+ὲ1)

≤ %

µ
≤ αL1

αM2
, (7.14)

aMf
bLf

βL2
≤ %

µ
≤ αL1

αM2
,

γMf
γLs
≤ %

µ
≤ αL1

αM2
. (7.15)

Thus

µβM1 −
%aMs

bMs + cMs (φM[α1] + ὲ1) + dMs (φM[α2] + ὲ1)
≤ 0,

µαM1
bLf
− %βL2 ≤ 0, (7.16)

µγMf − %γLs ≤ 0 and %αM2 − µαL1 ≤ 0. (7.17)

From equation (7.17), it is possible to find a positive constant κ such that

%

(
αM2 +

1

Ť

m∑
k=1

ln(1 + l2k)

)
− µ

(
αL1 +

1

Ť

m∑
k=1

ln(1 + l1k)

)
< − κ

Ť
< 0. (7.18)
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From system (7.1) and equation (7.16), we obtain

d

dt

[
ln

(ys(t))
%

(yf (t))µ

]
= [%α2(t)− µα1(t)] + [µγf (t)− %γs(t)]yf (t)ys(t)

+ yf (t)

[
µβ1(t)− %as(t)

bs(t) + cs(t)yf (t) + ds(t)ys(t)

]
+ xs(t)

[
µaf (t)

bf (t) + cf (t)yf (t) + df (t)ys(t)
− %β2(t)

]
(7.19)

≤ [%α2(t)− µα1(t)] + [µγMf (t)− %γLs (t)]yf (t)ys(t)

+ yf (t)µβ
M
f (t) + ys(t)

[
µaMf (t)

bLf (t)
− %βL2 (t)

]

−

[
%aLs (t)yf (t)

bMs (t) + cMs (t)(φM[α1] + ὲ1) + dMs (t)(φM[α2] + ὲ1)

]

≤ %α2(t)− µα1(t), t 6= τk (7.20)

and

ln

(
(ys(τ

+
k ))%

(yf (τ
+
k ))µ

)
= ln

(
(1 + l1k)

%

(1 + l2k)µ

)
+ ln

(
(ys(τk))

%

(xf (τk))µ

)
, t = τk (7.21)

Now, for any t ∈ [τδ, τδ+1) where τδ ∈ [n1Ť , (n1 + 1)Ť ), n1 ∈ N. Integrating in-

equality (7.20) over the intervals [0, τ1), [τ1, τ2), [τδ−1, τδ) and [τδ, t), respectively,

we obtain

ln

(
(ys(τ1))%

(yf (τ1))µ

)
− ln

(
(ys(0))%

(yf (0))µ

)
≤
∫ τ1

0

(%α2(t)− µα1(t))dt

ln

(
(ys(τ2))%

(yf (τ2))µ

)
− ln

(
(ys(τ

+
1 ))%

(yf (τ
+
1 ))µ

)
≤
∫ τ2

τ1

(%α2(t)− µα1(t))dt

...

ln

(
(ys(t))

%

(yf (t))µ

)
− ln

(
(ys(τ

+
δ ))%

(yf (τ
+
δ ))µ

)
≤
∫ t

τδ

(%α2(t)− µα1(t))dt
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Using equation (7.21) in all the above inequalities and adding the resulting in-

equalities, we have

ln

(
(ys(t))

%

(yf (t))µ

)
− ln

(
(ys(0))%

(yf (0))µ

)
≤
∫ t

0

(%α2(t)− µα1(t))dt+ ln

∏
0<τk<t

(1 + l2k)
%∏

0<τk<t
(1 + l1k)µ

=

∫ n1Ť

0

(%α2(t)− µα1(t))dt+ n1%

m∑
k=1

ln(1 + l2k)

+

∫ t

n1Ť

(%α2(t)− µα1(t))dt− n1µ
m∑
k=1

ln(1 + l1k)

+ ln

∏
n1Ť<τk<t

(1 + l2k)
%∏

n1Ť<τk<t
(1 + l1k)µ

≤ n1%

(
ŤαM2 +

m∑
k=1

ln(1 + l2k)

)

− n1µ

(
ŤαL1 +

m∑
k=1

ln(1 + l1k)

)
+ C

≤ −n1κ+ C (7.22)

where

C = max
0≤V≤Ť

(∫ V

0

(%α2(t)− µα1(t))dt+ ln

∏
0≤τk<V (1 + l2k)

%∏
0≤τk<t(1 + l1k)µ

)
.

This implies

(ys(t))
%

(yf (t))µ
≤ exp (−n1κ+ C)

(ys(0))%

(yf (0))µ

(ys(t)
%) ≤ (yf (t))

µ exp(−n1κ+ C)
(ys(0))%

(yf (0))µ
(7.23)

Now, from Lemma 7.2.2, yf (t) is bounded above, therefore from (7.23)

lim
t→∞

(ys(t))→ 0.
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Thus, species ys will become extinct.

Theorem 7.3.2. If the condition (7.10) is satisfied, then the first species yf is

permanent, that is, there exists a constant ν > 0 such that for any solution

(yf (t), ys(t))
T of system (7.1), yf (t) satisfies

ν ≤ lim
t→∞

inf yf (t) ≤ lim
t→∞

sup yf (t) ≤ φM[α1],

where φM[α1] is defined in Lemma 7.2.2.

Proof. From Theorem 7.3.1, limt→∞ ys(t) = 0, therefore, there exists ὲ2 > 0 such

that

ys(t) ≤ ὲ2 ∀, t > Ť1. (7.24)

Also from condition (7.10), it is possible that

αL1 −
aM1 ὲ2
bLf

+
1

Ť

m∑
k=1

ln(1 + l1k) > 0. (7.25)

From system (7.1), we obtain the following impulsive subsystem
dyf (t)

dt
≥ yf (t)

(
αL1 −

aMf ὲ2

bLf
− (β1 + γf ὲ2)yf (t)

)
, t 6= τk

yf (τ
+
k ) = (1 + l1k)yf (τk), t = τk, k ∈ N

(7.26)

Now consider the corresponding comparison system of (7.26)
duf (t)

dt
= uf (t)

(
αL1 −

aMf ὲ2

bLf
− (β1 + γf ὲ2)uf (t)

)
, t 6= τk

uf (τ
+
k ) = (1 + l1k)uf (τk), t = τk, k ∈ N

(7.27)

By using condition (7.25), Theorem 1.5.2 and Lemma 1.5.2, the impulsive system

(7.26) has a unique periodic solution u∗f (t) which is globally stable. Therefore,

yf (t) > u∗f (t) − ὲ3 ∀ t > Ť2, (Ť2 > Ť2). Let ν = inf(u∗f (t)− ὲ3), t ∈ [0, Ť ]. This

implies limt→∞ yf (t) ≥ ν. This completes the proof.
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Next, we will discuss the global attractivity of the species yf (t).

Theorem 7.3.3. The species yf is globally attractive if condition (7.10)is true.

Therefore, for any positive solution (yf (t), ys(t))
T of the system (7.1) and any

positive solution v(t) of
dv(t)
dt

= v(t) (α1(t)− β1(t)v(t)) , t 6= τk,

v(τ+
k ) = (1 + l1k)v(τk), t = τk, k ∈ N

(7.28)

we have, limt→∞(yf (t)− v(t)) = 0.

Proof. Consider the Lyapunov function W (t) =| ln yf (t)−ln v(t) |. Now, for t > Ť2

and t 6= τk, k ∈ N, the Dini derivative of W (t) is

D+W (t) = sgn(ln(yf (t))− ln(v(t)))

(
y
′

f (t)

yf (t)
− v

′
(t)

v(t)

)
= sgn(yf (t)− v(t)) (−β1(t)(yf (t)− v(t)))

− sgn(yf (t)− v(t))

(
af (t)ys(t)

bf (t) + cf (t)yf (t) + df (t)ys(t)
− γf (t)yf (t)ys(t)

)
≤ −β1(t) | yf (t)− v(t) | +m(t) (7.29)

where m(t) = v(t)) +
af (t)ys(t)

bf (t)+cf (t)yf (t)+df (t)ys(t)
− γf (t)yf (t)ys(t). m(t)→ 0 because

ys(t) → 0 as t → ∞. For t > Ť2, we have v(t) > yf (t) >
ν
2
. Therefore, by using

mean value theorem

| ln yf (t)− ln v(t) |≤ 2

ν
| yf (t)− v(t) | .
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Now, from equation(7.29)

D+W (t) ≤ −β1(t)ν

2
| ln yf (t)− ln v(t) | +m(t)

≤ −β1(t)ν

2
W (t) +m(t)

≤ −θW (t) +m(t)

(7.30)

Further, for t = τk, W (τ+
k ) = W (τk). Therefore for t > Ť2, we obtain

D+W (t) + θW (t) ≤ m(t) (7.31)

Applying differential inequality theorem to equation (7.31) for t > Ť2, we get

W (t) ≤ exp(−θ(t− Ť2))

(∫ t

Ť2

m(s) exp(−θ(t− Ť2))ds+W (Ť2)

)
(7.32)

This implies W (t)→ 0 as t→∞. Thus yf (t)→ v(t) as t→∞. Hence, the species

yf is globally stable.

Theorem 7.3.4. Assume that

αM1

αL2
≤

aLf
(bMs + cMs φ

M
[α1] + dMs φ

M
[α2])

and
αM1

αL2
≤ βL1 + bLs

aMs
(7.33)

then the species yf will extends towards extinction and species ys will be permanent.

That is for any solution (yf (t), ys(t))
T of system (7.1) ys(t)→ u(t) where u(t) is

any positive solution of the system
du(t)
dt

= u(t) (α2(t)− β2(t)u(t)) , t 6= τk

u(τ+
k ) = (1 + l1k)u(τk), t = τk, k ∈ N

(7.34)

Proof. Proof is obtained by interchanging the role of yf (t) and ys(t) in Theorems

7.3.1, 7.3.2 and 7.3.3.
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Table 7.1: Values of the coefficients in system (7.1)

Coefficient Value

α1 1.6
α2 0.8
β1 1.7+0.4sin(2πt)
β2 1.4+0.6sin(2πt)
af 1.2+0.3sin(2πt)
as 1.5+0.7sin(2πt)
bf 1
bs 1
cf 0.2
cs 0.2
df 0.2
ds 0.2

γf
√

2 + cos(2πt)
γs 1.5

7.4 Numerical Analysis and Discussion

Motivated by the work done in [102, 101], here we have examined the extinction

of two species Lotka-Volterra model with Beddington-DeAngelis type inter-specific

competition under the effect of toxic substances and impulsive perturbations. For

validation of theoretical findings, consider the system (7.1) with the coefficients

given in the Table (7.1). Here, all the coefficients are periodic functions with

period Ť=1. Let τk = k. So there exists an integer m=1 such that τk+m = τk + Ť .

There are four different cases.

Case(i) First if l1k = 0.7 and l2k = −0.5, i.e. species yf is stocked while ys is

harvested, through simple computation, we obtain

φM[α1] = 1.23076, φM[α2] = 1,

γMf
γLs

= 1.60947,
aMf
bLf β

L
2

= 1.875,
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βM1 (bMs + cMs φ
M
[α1] + dMs φ

M
[α2])

aLs
= 3.79615,

αL1

αM2
= 12.6425

Therefore, it can be easily concluded from above values that conditions given in

Theorem 7.3.1 are satisfied. Thus, species ys is driven to extinction while species

yf is permanent as shown in Figure 7.1.

Case (ii) Now, if roles of yf and ys are interchanged in system (7.1), then by

retaining the same values of all the coefficients and taking impulsive factor l1k =

−0.7, l2k = 0.5, that is first species undergo impulsive harvesting and other is

stocked impulsively, we obtain

βL1 b
L
s

aMs
= 0.59091,

aLf
bMf + cMf φ

M
[α1] + dMf φ

M
[α2]

= 0.6223 and
αM1

αL2
= 0.32856.

This implies that conditions in Theorem 7.3.4 are satisfied. Hence, species yf will

become extinct while species ys is permanent as shown in Figure 7.2.

The results obtained in the above two cases supports those obtained by Fengde et al.

[101], in which the authors have not analyzed the effect of impulsive perturbations

on two species competition model. Additionally, we have established that both

the species can become extinct or achieve permanence depending on the value of

external perturbations. Thus rich dynamical behavior is observed for different val-

ues of impulsive perturbations l1k and l2k as discussed in the following two cases.

Case (iii) It is found that if in system (7.1), both the species undergo impulsive

harvesting, that is, l1k = l2k = −0.9, then,

α1 = α1 +
1

Ť

m∑
k=1

ln(1 + l1k) = −0.7026 and α2 = α2 +
1

Ť

m∑
k=1

ln(1 + l2k) = −1.5026

So, the conditions in Theorem 7.3.1 and Theorem 7.3.4 are not satisfied. Thus

both the species tends to extinction as shown in Figure 7.3.

Case (iv) On the other hand, if in system (7.1), the values of impulsive pertur-

bations are l1k = 0.7 and l2k = −0.1, then,

α1 = α1 +
1

Ť

m∑
k=1

ln(1 + l1k) = 2.1306 and α2 = α2 +
1

Ť

m∑
k=1

ln(1 + l2k) = 0.6946
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So, neither the conditions in Theorem 7.3.1 nor in Theorem 7.3.4 are satisfied. The

system (7.1) becomes permanent as shown in Figure 7.4. Thus from Figures 7.1

and 7.2, it is clear that one species will survive and other will go to extinction which

supports the results obtained without impulses in [100]. Therefore, in this paper
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(c) Phase portrait of system (7.1)

Figure 7.1: Global attractivity of species yf and extinction of species ys of sys-
tem (7.1) when l1k = 0.7, l2k = −0.5 with initial conditions (yf (0), ys(0))T =
(0.8, 0.6)T , (1.2, 0.6)T , (1.4, 0.6)T

extension of principle of competition exclusion is done for two species competition

system with Beddington-DeAngelis functional response under the effect impulsive

perturbations and toxic substances released by both the species. Further, from

Figures 7.1, 7.2, 7.3, 7.4, it can be easily observed that impulsive perturbations
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Figure 7.2: Global attractivity of species ys and extinction of species yf of sys-
tem (7.1) when l1k = −0.7, l2k = 0.5 with initial conditions (yf (0), ys(0))T =
(0.8, 0.6)T , (0.8, 1.0)T , (0.8, 1.5)T

have great impact on the dynamics of the competition models.
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Figure 7.3: Extinction of species yf and ys of system (7.1) when l1k = −0.9,
l2k = −0.9 with initial conditions (yf (0), ys(0))T = (0.8, 0.6)T
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Figure 7.4: Permanence of the system (7.1) when l1k = 0.7, l2k = −0.1 with initial
conditions (yf (0), ys(0))T = (0.8, 0.6)T
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