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Differential equations are the mathematical models of the real-life problems which enable 

the researchers to do in depth investigation of the problem. For an instance, differential 

equations are used in economics to find the optimum investment strategies, in physics, it 

plays an important role to study the exponential decay of radioactive substances, in 

biosciences investigation regarding the rate of spew of diseases and factors liable to control 

the proliferation of certain infections is carried out with the help of mathematical modeling 

of the experiments. Thus, the numerical treatment of the differential equations is a 

flourishing concern for the researchers. A differential equation can be treated by an 

analytical method to find its exact solution or by a numerical method to provide an 

approximation to the solution. The analytical exploration of differential equations is often 

laborious, and it is tough to find the exact solution of the modelled differential equation. 

So, the advanced numerical methods are required for obtaining the precise solution of the 

differential equations. The well-known techniques for approximating the solution of the 

differential equations are finite difference method, finite element method, differential 

quadrature method and lie symmetry method. Collocation is another numerical technique 

for approximating the solution of the differential equation by satisfying it at collocation 

points, which are the few chosen points on the space domain of the problem. The 

collocation method is one of the rapidly progressing techniques because of its merits over 
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the other numerical techniques. The present thesis aims to demonstrate the significance of 

the numerical solution of singularly perturbed differential equations (SPDE) due to their 

broader scope of practices in each module of Science and Engineering, and the objectives 

of this research are: 

• To explore the possibility of obtaining the numerical solution of SPDE by some hybrid 

methods. 

• To study the effect of variation of perturbation and delay parameter on numerical 

solution of SPDE. 

• To find the solution of SPDE of second and higher order. 

The study of SPDE has become a full-grown mathematical subject with extended literature 

as numerical treatment of SPDE is a demanding practice because of the brisk variation of 

the solution at either side of the domain and due to the non-availability of the exact 

solutions of singularly perturbed delay differential equations. To fulfill the above 

indispensable gaps, we have focused on the numerical solution of these equations by 

various numerical techniques. In this work, these differential equations are approximated 

by various spline-based methods and various meshes have been selected to partition the 

boundary of the problem. The numerical results so obtained are scrutinized in all respects 

to capture the conduct of the solution of these equations with respect to the variation of 

delay and perturbed parameter. The maximum absolute error of the obtained solutions is 

also calculated by using double mesh principle. The convergence of the applied hybrid 

methods is incorporated to validate the stability of the schemes by using local truncation 

error.   

This thesis includes five chapters. The first chapter is preliminary of introduction and short 

discussion on nature of singularly perturbed differential equations, with the brief 

specifications about the SPDE and the literature investigation. Additionally, some 

implementations of SPDE and some rudimentary stability conditions of the numerical 

schemes, collocation method and double mesh principle to calculate error are included in 

this chapter. 



v 
 

In chapter 2, modified cubic B-spline collocation method is implemented on singularly 

perturbed delay differential equation (SPDDE). The alteration in B-spline basis function 

has been considered because the resultant matrix system becomes diagonally dominant, 

which reduces the calculations on the boundary of the problem. So, modified cubic B-

spline collocation scheme is applied to simulate SPDDE. In this chapter, two different 

SPDDE of second order for numerical solution.  

Considered SPDDE is with small delay and the problem is as follows: 

𝜀2𝑦′′(𝑥) + 𝑎(𝑥)𝑦(𝑥 − 𝛿) + 𝑏(𝑥)𝑦(𝑥) = 𝑓(𝑥), 0 < 𝑥 < 1 

subject to the boundary condition: 

𝑦(𝑥) = ∅(𝑥) on −𝛿 ≤ 𝑥 < 0 and 𝑦(1) = 𝛾. 

Where 0 < 𝜀 ≪ 1 and 0 < 𝛿 < 1. The coefficients 𝑎(𝑥), 𝑏(𝑥), 𝑐(𝑥) and 𝑓(𝑥) are the 

continuous functions, ∅(𝑥) is sufficiently smooth functions and 𝛾 is a constant. The above 

class of SPDDE arises in the mathematical modeling of biological processes such as in 

Stein’s model. This model describes the nerve cell system.  In this model, the delay 

parameter appears due to the decay in the inputs of the nerve system. The variable 𝑦 is 

assumed as first-exit time and the other term 𝑥𝑦′ in the equation represents the exponential 

delay in synaptic information.  A portion of this chapter is published in AIP conference 

proceedings by American institute of physics. 

Another second-order SPDDE 

𝜀𝑦′′(𝑥) + 𝑎(𝑥)𝑦′(𝑥 − 𝛿1) + 𝑏(𝑥)𝑦(𝑥 − 𝛿2) + 𝑐(𝑥)𝑦(𝑥) = 𝑓(𝑥) ,      0 < 𝑥 < 𝑙,  

subject to the conditions 

𝑦(𝑥) = ∅(𝑥) on −𝛿 ≤ 𝑥 < 0 where 𝛿 = max (𝛿1, 𝛿2) and y(𝑙)=𝛾 ,  

where 0<𝜀 ≪ 1, and 𝛿1 and 𝛿2 are delay parameters. 𝑎(𝑥), 𝑏(𝑥), 𝑐(𝑥), 𝑓(𝑥) are 

sufficiently smooth functions on [0, 𝑙] and ∅(𝑥) is a smooth function on [-𝛿, 0) has been 
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treated numerically by using same scheme. For the different values of parameters there 

exists four different type of perturbed delay differential equations as follows: 

a. Considering 𝛿1=𝛿2=𝛿 and 𝑙=1, the problem becomes: 

𝜀𝑦′′(𝑥) + 𝑎(𝑥)𝑦′(𝑥 − 𝛿) + 𝑏(𝑥)𝑦(𝑥 − 𝛿) + 𝑐(𝑥)𝑦(𝑥) = 𝑓(𝑥) ,     0 < 𝑥 < 1, 

       subject to the conditions: 

𝑦(𝑥) = ∅(𝑥) on −𝛿 ≤ 𝑥 < 0 and y(1)=𝛾 

b. Considering 𝛿1=0, 𝛿2=1,  𝑙=2, and c(x)=0, problem becomes: 

𝜀𝑦′′(𝑥) + 𝑎(𝑥)𝑦′(𝑥) + 𝑏(𝑥)𝑦(𝑥 − 1) = 𝑓(𝑥) ,     0 < 𝑥 < 2, 

       subject to the conditions: 

𝑦(𝑥) = ∅(𝑥) on −1 ≤ 𝑥 < 0 and y(2)=𝛾 

c. Considering 𝛿2=𝛿, a(x)=0 and 𝑙=1, problem reduces to 

𝜀𝑦′′(𝑥) + 𝑏(𝑥)𝑦(𝑥 − 𝛿) + 𝑐(𝑥)𝑦(𝑥) = 𝑓(𝑥) ,          0 < 𝑥 < 1, 

       subject to the conditions: 

𝑦(𝑥) = ∅(𝑥) on −𝛿 ≤ 𝑥 < 0 and 𝑦(1) = 𝛾 

d. Considering 𝛿1=𝛿, 𝑏(𝑥) = 0 and 𝑙=1, problem reduces to 

𝜀𝑦′′(𝑥) + 𝑎(𝑥)𝑦′(𝑥 − 𝛿) + 𝑐(𝑥)𝑦(𝑥) = 𝑓(𝑥) ,      0 < 𝑥 < 1, 

       subject to the conditions:  

𝑦(𝑥) = ∅(𝑥) on −𝛿 ≤ 𝑥 < 0  and 𝑦(1) = 𝛾 

This work was presented in the international conference, "Recent Advances on Theoretical 

and Computational Partial Differential Equations" held at Panjab University, Chandigarh . 
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Chapter 3 comprises of a collocation technique with trigonometric spline as basis functions. 

The basis functions are piecewise in the space {1, cos(𝑥), sin(𝑥), …,cos(𝑘𝑥), sin(𝑘𝑥)} and 

are periodic, and continuous differentiability functions. This method is applied on two 

SPDDE equations of order two and three. 

Consider second order SPDDE of the following form: 

𝐿𝑦 ≡ 𝜀𝑦′′(𝑥) + 𝑎(𝑥)𝑦(𝑥 − 𝛿) + 𝑏(𝑥)𝑦(𝑥) = 𝑓(𝑥), 0 < 𝑥 < 1 

under the constraints:  

𝑦(𝑥) = ∅(𝑥), 𝑥𝜖[−𝛿, 0] and 𝑦(1) = 𝛾. 

To obtain the approximate solution of this equation, trigonometric B-spline collocation 

technique is used. The domain is partitioned in a uniform mesh of equal length for each 

sub-interval. Work from this chapter is published in “International journal of Mathematical, 

Engineering and Management Sciences”. 

Consider third order SPDDE of the following form: 

−𝜀𝑦′′′(𝑥) + 𝑎(𝑥)𝑦′′(𝑥) + 𝑏(𝑥)𝑦′(𝑥) + 𝑐(𝑥)𝑦(𝑥) + 𝑑(𝑥)𝑦′(𝑥 − 1) = 𝑓(𝑥), 𝑥𝜖Ω∗ 

where Ω∗ = Ω
+⋃Ω

−,Ω− = (0,1),Ω+ = (1,2) and Ω = (0,2). 

with the boundary conditions: 

𝑦(𝑥) = 𝜙(𝑥), 𝑥𝜖[−1,0] and  𝑦′(2) = 𝛾 

This equation has been treated numerically by quintic trigonometric B-spline collocation 

technique. This work is published in “International Journal of Mathematical, Engineering 

and Management Sciences”. 

In chapter 4, exponential B-splines as basis functions with collocation method is considered 

for numerical treatment of SPDDE. Exponential B-splines are piecewise continuous 

functions and they are procured by multifold convolution of weight functions. To obtain 
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mathematical expression for exponential B-spline functions, the weights are taken as 

exponential functions.  

This technique has been deployed on a SPDDE with large delay. In this work, the 

mathematical model of heating systems which in turn results in delay differential equation 

is discussed and the recent numerical work carried out on SPDDE has been investigated. 

The considered SPDDE used in signal transmission in control theory. The considered 

equation is of the form: 

 −𝜀𝑦′′(𝑥) + 𝑎(𝑥)𝑦(𝑥) + 𝑏(𝑥)𝑦(𝑥 − 1) = 𝑓(𝑥) ,     𝑥 ∈ Ω−⋃Ω+,  

where Ω− = (0,1) and Ω+ = (1,2)   

subject to the conditions: 

    𝑦(𝑥) = ∅(𝑥), 𝑥 ∈ [−1,0], 𝑦(2) =𝛾.               

Chapter 5, embraces the comparison of exponential and trigonometric B-spline collocation 

technique. The SPDDE considered is: 

−𝜀𝑦′′(𝑥) + 𝑎(𝑥)𝑦′(𝑥) + 𝑏(𝑥)𝑦(𝑥 − 1) = 𝑓(𝑥), 𝑥𝜖Ω∗ 

subject to the conditions: 

𝑦(𝑥) = 𝜙(𝑥), 𝑥𝜖[−1,0],   𝑦(2) = 𝑙.                                               

Where 𝑎(𝑥) = {
𝑎1(𝑥), 𝑥𝜖[0,1]

𝑎2(𝑥), 𝑥𝜖(1,2]
 , 𝑓(𝑥) = {

𝑓(𝑥), 𝑥𝜖[0,1]

𝑓2(𝑥), 𝑥𝜖(1,2]
 ,  Ω∗ = Ω−⋃Ω+,  Ω− = (0,1) 

and Ω+ = (1,2)   

In this work, the considered equation has been treated with two techniques: cubic 

trigonometric B-spline collocation method and cubic exponential B-spline method with 

uniform and Shishkin mesh and the numerical results obtained by both schemes are 

compared. 

In chapter 6, conclusions and results have been established based on the present work. 

Moreover, further research work in this orientation has been proposed.  
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Chapter 1 

Introduction 

1.1 Introduction 

Numerical treatment of differential equations is of flourish concerns to researchers due to 

the wide range of application of differential equations in various disciplines such as 

biosciences, control theory, and physical sciences. Researchers have been investigating 

different differential equations, which frequently emerge in mathematical modeling of 

various problems by variety of numerical methods which provide more accurate solution. 

In addition to the accurate solution other challenges targeted by researchers are handling 

unusual behavior of solution under certain conditions.  

1.1.1 Singularly perturbed differential equation 

A singularly perturbed differential equation is an ordinary differential equation in which a 

variable, known as perturbation parameter, is associated with higher order derivative term. 

The perturbation parameter (𝜀) is a positive bijou (small) variable and crackdown in it 

reduces the order of the differential equation. So, these equations are known as singularly 

perturbed differential equations (SPDE). One of the examples of a physical system which 

results in SPDE is, control theory where tiny variables such as capacitance, resistance, 

inductance and so on raise the order but flip side clampdown (suppression) of these 

variables decreases the order of the system. Furthermore, the temperament of the restricted 

solution when 𝜀 → 0 is entirely divergent as compared to the solution for finite value of 𝜀 

and the hasty variation in the solution introduces the concept of boundary layer, which is 

also known as inner region.  

This notion of boundary layer was instigate by physicist Ludwing Prandtl (Prandtl, 1905) 

when he speculated that the frictional reaction was endured in the tiny layer near the surface 
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of fluid only. The singularly perturbed differential equations emerged in the modeling of 

divert intricate systems, such as pollution (Pudykiewicz, 1989), problem of polluted water 

in rivers (Baumert, Braun, Glos, Müller, & Stoyan, 1980), transportation of groundwater 

(Bear & Verruijt, 1987), mobile media involving electromagnetic field issues (Hahn, 

Bigeon, & Sabonnadiere, 1987), and production of oil from underground water body 

(Ewing, 1983) etc.  

A lot of work has been reported in the literature for numerical treatment of these equations. 

For instance, some spline-based methods are proposed by Aziz and Khan (Aziz & Khan, 

2002), Jha (Jha, 2012), El-salam (Abd El-Salam, 2013), Akram and Naheed (Akram  & 

Naheed, 2013). These methods were based on the simple technique to divide the domain 

in the uniform partition and to calculate the approximate solution at these points through 

method such as the finite element method, collocation method etc, using spline functions. 

Some differential transformations based on analytical methods were also reported, one 

such method was presented by Dogan et al. (Doğan, Ertürk, & Akın, 2012) while Mishra 

and Saini (Mishra & Saini, 2013) proposed a Liouville-Green transform based method. 

Gupta et al. (Gupta, Srivastava, & Kumar, 2011) and Akram (Akram, 2011) solved these 

equations by using the spline as basis functions. 

1.1.2 Delay differential equation 

Differential equations which embrace small parameter (𝛿) known as shift, delay or retarded 

are delay differential equations. This small parameter occurs in the argument of the reaction 

term, convention term or in both because of the involvement of feedback, which is 

mandatory to avoid an unsteady state. But a definite time is demanded to diagnose the 

instruction and to react on it in the feedback control. So, modeling of such problems as 

delay differential equation is a conventional way to interpret the process. For instance, a 

nonlinear differential equation given by Longtin and Milton (Longtin & Milton, 1988), 

which describes the simple and complex conduct exhibits in human pupil light reflex 

involves constant and delayed feedback. Other similar application of delay differential 

equations exists in optics (Mallet-Paret & Nussbaum, 1989), in the study of HIV infection 
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(Nelson & Perelson, 2002), in the sensitivity analysis in biosciences (Rihan, 2013), in 

neural models (Stein, 1967). Hence, a singularly perturbed delay differential equation 

(SPDDE) involves two small parameters: perturbation as well as delay parameter. 

The study of these differential equations is prominent because of their frequent emerge 

mathematical modeling of different applications in science and technology such as: 

Environmental issues  

In the study of major environmental issues like water pollution, appropriate uses of natural 

resources to save environment such as solar energy. The study of bearing of the population 

of a system of organism scan be well explained by a delay model which is prominent to 

insight pitfalls in the ecosystem due to human error such as the effect of pollution on the 

expansion of population of an organic system. 

In control theory 

The problems involving signal transmission in control theory are affected by time delays 

and the various causes which hinder the signal propagation such as media of propagation 

of the signal. The study of these mathematical models enables the technology to expand to 

have cost-effective techniques and to upgrade the services.  

In biosciences 

One of the factor which is liable for odd behavior of blood cells or nerves cells is a delay(a 

retardation) and to rein the problems study of the behavior of cells is essential to tackle the 

problems in ecology, epidemiology, immunology, physiology and neural network. 

In the study of deadly diseases 

The study of maladies such as cancer, HIV, tumor and swine flu which are jeopardizing 

human life in recent decades is significant in order to understand the factors affecting the 

treatment and the rate at which viral is deteriorating the condition of the patient. All these 

medical problems are demonstrated by delay differential equations. The study of these 
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mathematical models enables the scientist to endure factors such as the dose of 

chemotherapy required for a patient because chemotherapy not only control the expansion 

of cancer cells but also affect the immunity of the bearer. Similarly, a delay model of 

hospital enables the medical officer to understand the need of essential precautions to take 

in the hospital to control the spew of infection to the staff members and to other patients. 

Likewise, cell proliferation in the expansion of tumor is well explored by a delay model.  

In heating systems 

In current scenario environmental conditions enforce human being to work on man-made 

systems to live in a contented environment. So, central heating systems, cooling systems 

are needed. To adapt the less costly techniques with better performance, the study of these 

systems can well be elaborated by delay models. 

And many more such applications in science and technology. Thus, the major issues that 

are essential to resolve for mankind triggers the mathematicians to work on numerical 

treatment on SPDDE. 

In past decades, gigantic furtherance has been reported in numerical techniques for the 

solution of the differential equations and many researchers have proposed various 

techniques to solve SPDDE. Some spline based methods were given by Kumar and 

Kadalbajoo (Kumar & Kadalbajoo, 2012), Aggarwal and Sharma (Aggarwal & Sharma, 

2008), Chakravarthy et al. (Chakravarthy, Kumar, Rao, & Ghate 2015). Singularly 

perturbed delay differential equation has been treated using B-spline collocation method. 

The author had selected Shishkin mesh which is adequate to handle singularly perturbed 

problems (Kumar & Kadalbajoo, 2012).The mesh is constructed in such a way that more 

mesh points were created in the boundary layer region than outside of those regions.  

An optimized B-spline method has been proposed to solve singularly perturbed differential 

difference equation with delay as well as advance (Aggarwal & Sharma, 2008). 

Chakravarthy et al. (Chakravarthy, Kumar, Rao, & Ghate 2015) solved these equations 

using cubic splines in compression. In this article, the author considered the SPDDE of 
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second order with a large delay. The uniform mesh was selected to partition the domain 

and method based on cubic spline in compression was used to estimate the solution of the 

problem. Yuzbagj and Sezer (Yüzbaşı & Sezer, 2013) proposed an exponential collocation 

method for numerical treatment of SPDDE. The author discussed the solution of the 

problem by considering the exponential basic set {1,e-x,e-2x,….,e-Nx} and solution was of 

the form 𝑦(𝑥)=∑ 𝑎𝑛𝑒
−𝑛𝑥𝑁

𝑛=0 . Some computational schemes were given by File and Reddy 

(File & Reddy, 2013), Swamy et al. (Swamy, Phaneendra, Babu, & Reddy, 2015), and 

Kumar (Kumar, 2013). Some other techniques were also used such as asymptotic-fitted 

method by Andargie and Reddy (Andargie & Reddy, 2012). In the reported work, Taylor’s 

expansion was used to approximate the term containing negative shift. In the new equation, 

a fitted parameter on the highest order derivative was introduced and its value was 

determined by using theory of singular perturbation. Uniform mesh was selected and the 

interval [0, 1] was split into N equal parts. Hp Finite Element Method was proposed by 

Nicaise and Xenophontos (Nicaise & Xenophontos, 2013) to estimate the solution of 

second order SPDDE. The solution of boundary value problem decomposed into a smooth 

part, boundary layer part, an interior/interface layer part and a remainder.  

A terminal boundary–value technique was used by File and Reddy (File & Reddy, 2014) 

to solve the singularly perturbed delay differential equation of second order. A terminal 

point was introduced into the domain and the actual problem was decomposed into two 

problems. The introduced terminal point is common to both inner and outer regions. The 

inner region problem is solved by choosing the transformation and the new differential 

equation for the inner region is solved by using second order classical finite difference 

scheme. To solve the outer region problem uniform mesh with constant length has been 

considered and the classical central finite difference scheme is used. Finally, to obtain the 

solution of the original problem the two solutions obtained at inner region and outer region 

are combined. Hybrid initial value method was proposed by Subburayan (Subburayan, 

2016a)  to solve SPDDE of second order considered with the discontinuous coefficient of 

derivative term. The considered equation was a second order SPDDE with discontinuous 

convention coefficient and source term. The proposed scheme was reported to be of second 
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order convergent. An asymptotic-numerical hybrid method is also reported for the solution 

of SPDDE by Cengizci (Cengizci, 2017) 

Recently, SPDDE with mixed shifts has been treated numerically by Swamy et al.(Swamy, 

Phaneendra, & Reddy, 2016) by applying Galerkin method with exponential fitting. In that 

work, endured SPDDE was having the retarded term in the convention term and the used 

scheme was a successive complementary expansion method that provides the highly 

accurate numerical solution as compared to the reported schemes in literature.  

A fourth order finite difference scheme by File et al. (File, Gadisa, Aga, & Reddy, 2017) 

was reported for numerical treatment of SPDDE. In that work authors considered reaction-

diffusion equation for numerical solution. The considered SPDDE was of second order in 

which the retarded term exist in reaction term and the applied scheme was fourth order 

uniformly convergent finite difference method of fourth order. The considered SPDDE 

was: 

𝜀2𝑦′′(𝑥) + 𝑎(𝑥)𝑦(𝑥 − 𝛿) + 𝑏(𝑥)𝑦(𝑥) = 𝑓(𝑥) ,  

under the constraints: 

𝑦(𝑥) = ∅(𝑥) for −𝛿 ≤ 𝑥 ≤ 0 and 𝑦(1) = 𝛽. 

Cimen (Cimen, 2017) gave a prior estimation for SPDDE with delay parameter in 

convention term by considering the following equation : 

𝜀𝑦′′(𝑥) + 𝑎(𝑥)𝑦′(𝑥) + 𝑏(𝑥)𝑦′(𝑥 − 𝑟) + 𝑐(𝑥)𝑦(𝑥 − 𝑟) = 𝑓(𝑥) , 𝑥𝜖Ω 

subject to the conditions: 

𝑦(𝑥) = ∅(𝑥) for 𝑥𝜖Ω0  and 𝑦(𝑙) = 𝐴. 

In this work, the author focused to elucidate the method to evaluate the first and second 

order derivative of the solution of SPDDE. Kanth and Murali (Kanth & Murali, 2018) 

studied a nonlinear SPDDE which was first transformed into a system of linear SPDDE 

and then the system of linear equations was solved by an exponentially fitted spline 

method. The considered equation was: 

𝜀𝑦′′(𝑥) = 𝑔(𝑥, 𝑦, 𝑦′(𝑥 −  𝛿)) on (0,1) 
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subject to the constraint: 

 𝑦(𝑥) = ∅(𝑥) for −𝛿 ≤ 𝑥 ≤ 0  and 𝑦(1) = 𝛾. 

Sekar and Tamilselvan (Sekar & Tamilselvan, 2018) considered a class of SPDDE of 

convection-diffusion type of second order for numerical treatment with integral boundary 

condition and solved the considered equation:  

−𝜀𝑦′′(𝑥) + 𝑎(𝑥)𝑦′(𝑥) + 𝑏(𝑥)𝑦(𝑥) + 𝑐(𝑥)𝑦(𝑥 − 1) = 𝑓(𝑥) , 𝑥 ∈ Ω 

under the boundary conditions: 

 𝑦(𝑥) = ∅(𝑥) for −1 ≤ 𝑥 ≤ 0 and 𝑦(2) = 𝑙 + 𝜀 ∫ 𝑔(𝑥)𝑦(𝑥)𝑑𝑥
2

0
 

by using the finite difference scheme. The proposed scheme was tested on numerical 

illustrations. 

1.2 Mathematical modeling 

The singularly perturbed delay differential equations are the result of modeling of 

numerous problems in science and technology. Some of the models are explained are: 

1.2.1. Tumor expansion model 

A model which explains the study the tumor expansion was proposed by Cui and Xu (Cui 

& Xu, 2007). As stated by the authors, the proliferation of tumor occurs due to genetic 

transmutation of abnormal cells and the rate of extension of these cells is much more than 

the growth of normal cells. In the presented work, the considered model equation 

demonstrates the delay between the time required in initializing of the cell division and the 

time of origination of the daughter cells. By considering 𝑦(𝑡) as the radius of tumor at time 

𝑡 and 𝜏 as time delay, the obtained delay differential equation was of the form given by: 

          𝑦(𝑡) = 𝑓(𝑦(𝑡), 𝑦(𝑡 − 𝜏)) for 𝑡 > 0, and 𝑦(𝑡) = ∅(𝑡) for −𝜏 ≤ 𝑡 ≤ 0 

1.2.2. Heating systems as delay model 

The operation of thermal heating systems such as solar heating systems, central heating 

systems and so on is deployed on simple thermal heating systems which are composed of 
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a heater, storage pipes and pump. The pump circulates the heat transfer fluid from the 

heater to the storage. The retard in heat transfer comes into view due to the movement of 

fluid through pipes. The delaying effect of pipes plays an important role in the modeling 

of heater-storage systems in order to utilize maximum solar energy. A model developed 

for domestic hot water and for water heating in swimming pools had taken delaying effect 

of pipes into consideration and it was perceived that application of solar energy has been 

expanded as compared to the models which disregard the delaying effect of pipes (Kicsiny 

& Farkas, 2012). The use of delay approach for complex heating systems such as 

combustion system is an augmentation of delay differential equations. Kicsiny (Kicsiny, 

2014) developed one such model to elucidate heating systems with pipes. In his work, 

thermal engineering systems involving heat and mass transfer, fluid mechanics and science 

of thermodynamics were inspected. The model was based on the white-box model. It has 

considered both heat exchange and no heat exchange in the heating system and the delay 

parameter depends upon time and state of the heating system. This time delay was 

determined by the rate of flow of fluid through the pump. 

1.2.3. Delay model of the biological system  

The development of the bearing of the population of a system of organisms can be well 

explained by its mathematical modeling where delay gives the prominent insight into the 

dynamic conduct of the system. This time delay appears in a polluted ecosystem which is 

one of the important factors affecting the expansion of the biological system. So, delay 

differential equations are the result of mathematical modeling explaining organic structure. 

The disparity and bifurcation in the system emerges due to the time delay. One of the 

common bifurcations (the division of system into two parts) is hop bifurcation which refers 

to the division of the system at a point where the firmness turnaround and periodic solution 

arises as a particular variable changes its values. One such mathematical model of the 

singularly biological system is proposed by Zhang at el. (Zhang, Jie, & Meng, 2016) by 

considering the delay parameter. 
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By considering 𝜏 as the time delay of the transformation of immature organisms into 

mature organisms, 𝑢(𝑡) and 𝑣(𝑡) as the densities of the immature and mature organisms, 

𝐸(𝑡) as capture capability of mature creatures at time 𝑡, 𝑝 as a unit price, 𝑐 is a unit cost, 

and 𝑚 is economic profit.  𝑎𝐸(𝑡)𝑣(𝑡) represents the total revenue, and 𝑐𝐸(𝑡) denotes the 

total cost. The delay model of the biological system was given by: 

𝑢(𝑡) = 𝑝𝑣(𝑡) − 𝑞𝑢(𝑡 − 𝜏) − 𝑑1𝑢(𝑡) − 𝜙1𝑦(𝑡)𝑢(𝑡) 

𝑣(𝑡) = 𝑞𝑢(𝑡 − 𝜏) − 𝑑2𝑣(𝑡) − 𝛽𝑔
2(𝑡) − 𝐸(𝑡)𝑔(𝑡) − 𝜙2𝑦(𝑡)𝑔(𝑡) 

and 𝑦(𝑡) = 𝜃 − ℎ𝑦(𝑡), 0 = 𝐸(𝑡)(𝑝𝑔(𝑡) − 𝑐) − 𝑚. 

1.2.4. Delay model in the treatment of HIV 

Treatment of human immunodeficiency virus (HIV) infection is one of the major challenge 

in recent years due to the rapid spew of ailment, which is referred as occupancy of virus in 

blood that lessens the immunity of the sufferer. In the initial stage, the viral enter the blood 

due to outer contacts and increases to the summit. The immune cells known as cytotoxic T 

cells (CTL) get activated and rein the multiplication of the infection, and level of infection 

experience a decline to a steady state. The chronic infection (full-blown AIDS) is attained 

by the patient due to the high-level viral set-in blood. The time delays exist because of 

finite time is required for infected cells to produce virions and definite time is needed by 

immune cells to retort the viral contagion. One such mathematical model which includes 

both time delays was considered for analysis by Pawelek et al. (Pawelek, Liu, Pahlevani, 

& Rong, 2012). The delay differential equation was as follows: 

𝑑𝑇∗(𝑡)

𝑑𝑡
= 𝑘1𝑉(𝑡 − 𝜏1)𝑇(𝑡 − 𝜏1) − 𝛿𝑇

∗ − 𝑑𝑥𝐸𝑇
∗ 

𝑑𝐸(𝑡)

𝑑𝑡
= 𝑝𝑇∗(𝑡 − 𝜏2) − 𝑑𝐸𝐸 

where T(t) represents the number of uninfected target cells, 𝑇∗(𝑡) is productively infected 

cells, 𝑉(𝑡) are free virus, E (t) denotes effector cells and 𝜏1, 𝜏2 are time delays. 
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1.3 Collocation Method 

A differential equation can be solved by using an analytical or numerical method. The 

analytical exploration of differential equations sometimes is laborious, and it is tough to 

find the exact solution. So, the advanced numerical methods are obliged to easily get the 

precise solution of the differential equations. The well-known techniques for 

approximating the solution of differential equations are finite difference method, finite 

element method, differential quadrature method and lie symmetry method. Finite 

difference methods involve the determination of approximate derivatives at partitioned 

points of the domain. Some common finite difference methods are Euler method, Cranck-

Nicolson method, implicit methods etc. Collocation is a form of finite element method of 

approximating the solution of the differential equation by satisfying solution at collocation 

points, which are the few chosen points in the boundary of the problem. This method 

involves determining the function by passing a polynomial through selected points. And 

this polynomial can be determined by any set of basic functions for example B-spline, 

exponential basis functions or wavelets. B-spline basis functions used in this report will be 

explained in section 1.4. Collocation method is one of the rapid progressing technique 

because of some merits over other numerical techniques. One of the considerable 

conveniences of this technique is that its easiness to apply on an ordinary as well as on 

partial differential equations. And the other main benefit of the scheme is that it provides 

a piecewise continuous solution of the differential equations. 

Collocation method is used to approximate the solution of the differential equation by many 

researchers. Some of the reported work is as follows: 

Mittal and Jain solved nonlinear parabolic partial differential equations by cubic B-spline 

collocation scheme. (Mittal & Jain, 2012a) The good Boussinesq equation was solved by 

Siddiqi and Arshed (Siddiqi & Arshed, 2014). Mohammadi (Mohammadi, 2014) solved 

Euler-Bernoulli beam models by using sextic B-spline collocation method. Morinishi et al. 

(Morinishi, Tamano, & Nakabayashi, 2003) used collocation technique for compressible 

turbulent channel flow. Botella (Botella, 2002) solved Navier-Stokes equation by applying 
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collocation method. Diffusion problems have been solved using cubic B-spline collocation 

method by Gupta and Kukreja (Gupta & Kukreja, 2012). Lakestani and Dehghan 

(Lakestani & Dehghan, 2012) have solved generalized Kuramoto-Sivashinsky equation by 

using spline collocation method. Dag et al. (Dag, Hepson, & Kacmaz, 2014) solved 

Burger’s equation by cubic trigonometric B-spline collocation technique. Abbas  et al. 

(Abbas, Majid, Ismail, & Rashid, 2014a) proposed a finite difference collocation scheme 

for the numerical treatment of a one-dimensional wave equation.  

Time-dependent HJB equations were solved using multivariate B-splines collocation by 

Govindarajan et al. (Govindarajan, Visser, & Krishnakumar, 2014). Singularly perturbed 

differential equations have also been treated using collocation method by Kadalbajoo and 

Kumar (Kadalbajoo & Kumar, 2008). Kadalbajoo and Gupta (Kadalbajoo & Gupta, 2009) 

solved singularly perturbed convection-diffusion problem by using parameter uniform B-

spline collocation method. Kadalbajoo and Arora  (Kadalbajoo & Arora, 2009) used B-

spline collocation method for solution of the singular-perturbation problem using artificial 

viscosity. Rao and Kumar (Rao & Kumar, 2007) applied optimal B-spline collocation 

method for approximating the solution of self-adjoint singularly perturbed boundary value 

problems. Nonlinear fractional differential equations have been solved by using spline 

collocation method by Pedas and Tamme (Pedas & Tamme, 2014). A new approach 

including semi orthogonal B-spline wavelet collocation scheme was proposed by Sahu and 

Ray (Sahu & Ray, 2014) to solve Fredholm integral equations of the second kind. Li (Li, 

2012)  solved fractional differential equations using cubic B-spline wavelet collocation 

method.  

1.4 B-spline 

1.4.1 Introduction of spline 

Splines are the computational curves which are the piecewise polynomial approximation 

of the available data and is continuously differentiable to some degree on an interval of the 

boundary. The concept of splines is used in designing of the ships, enshrining of car 
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designs, design of buildings, aerospace industry for delineation (designing), constructing, 

congregating (assembling) different parts of the aircraft and many more. Romans used 

wooden cuttings for making the fickle(variable) wooden ribs to strengthen their ships hulls. 

The idea of spline is shown in Figure 1.1(Schoenberg, 1946). 

 

              

Figure 1.1: Spline template 

The concept of spline curves was introduced to have a piecewise smooth polynomial in 

lieu of having a higher degree polynomial, which is difficult to handle. By combining 

polynomials of lower degree, a smooth polynomial over a specific domain can be obtained 

irrespective of the number of points in the segment of the domain. This property of splines 

enables the researchers to easily work for numerical computations by using computerized 

algorithms. 

One more application of bezier curves (which are specific spline curves), in designing a 

three-dimensional structure of a car proposed by French engineer Pierre Etienne Bezier. 

Such a 3-D design of the car was not possible with a set of composite curves. To elucidate 

internal as well as an external outline of the car design demands a variable surface. Figure 

1.2 (Townsend, 2015) shows such design of car by bezier curves. 

 



13 
 

                                       

Figure 1.2: 3-D design of car. 

In the contemporary time, spline based software such as CAD is broadly used in aerospace 

engineering for manufacturing of fighter planes and for designing buildings by 

architectures. 

Mathematically, a spline is a piecewise smooth curve characterized by polynomials. To 

understand this concept, consider a uniform partition of the domain [𝑎, 𝑏] as 𝑥0 < 𝑥1 <

𝑥2 < ⋯ < 𝑥𝑁−1 < 𝑥𝑁  where 𝑥0 = 𝑎 and 𝑥𝑁 = 𝑏, here 𝑥𝑖
′𝑠 are referred as knots. A spline 

function 𝑆(𝑥) is defined as: 

𝑆(𝑥) =∑𝑝𝑖(𝑥)

𝑁

𝑖=1

 

in domain [𝑎, 𝑏], where 𝑝(𝑥) is a 𝑘𝑡ℎ degree polynomial in each subinterval [𝑥𝑖 , 𝑥𝑖+1] for  

𝑖 = 0,1,2, … ,𝑁 − 1 with the characteristic that the polynomial 𝑝(𝑥) and its 𝑘 − 1 

derivatives are continuous in [𝑎, 𝑏]. 

1.4.2 B-spline 

A B-spline is a generalization of the Bezier curves. Schoenberg (Schoenberg, 1946) was 

the first person who introduced the name B-spline. A B-spline is characterized as a spline 

function that has minimal support for a given degree, smoothness, and zone partition. 

Let us consider partition of domain [𝑎, 𝑏] as 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑁−1 < 𝑥𝑁 where 𝑥0 =

𝑎 and 𝑥𝑁 = 𝑏, here 𝑥𝑖
′𝑠 are referred to as knots and intervals [𝑥𝑖 , 𝑥𝑖+1) referred as ith knot 
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span. The knot partition is said to be uniform or non-uniform partition if the span of knots 

is equal or unequal respectively. The basis functions are defined as: 

 

𝐵𝑖,0(𝑥) = {
1, if 𝑥𝑖 ≤ 𝑥 < 𝑥𝑖+1
0,            otherwise

 

and 𝐵𝑖,𝑗(𝑥) =
𝑥−𝑥𝑖

𝑥𝑖+𝑗−𝑥𝑖
𝐵𝑖,𝑗−1(𝑥) +

𝑥𝑖+𝑗+1−𝑥

𝑥𝑖+𝑗+1−𝑥𝑖+1
𝐵𝑖+1,𝑗−1(𝑥) where 𝑗 = 1,2,3, … , 𝑝  

Then the B-spline curve is defined as: 

𝐵(𝑥) = ∑ 𝑥𝑖𝐵𝑖,𝑝(𝑥)
𝑁
𝑖=0 . 

In a B-spline, each knot point is associated with the function 𝐵𝑖,𝑗(𝑥) which is a 

polynomial of order 𝑘 (degree 𝑘 − 1). The shapes of the B-spline functions are as shown 

below in Figure 1.3.  

 



15 
 

 

Figure 1.3: B-spline functions 

Nowadays, the idea of B-spline has been extended to both rational and non-uniform 

partitions. The concept of non-uniformly spaced knots along the curve is used in designing 

of aircrafts as it involves spacing of spline at placing multiple knots in one location in the 

corner at that point. A new mathematical model to meet all needs of Boeing called Non-

Uniform Rational Basis Splines, or NURBS was introduced by combining rational Bezier 

curves and non-uniform B-Splines.  

1.5 Convergence Analysis 

Estimation of convergence and its order is prominent to authorize any numerical approach. 

Convergence measures the closeness of the approximated solution to the exact solution. To 
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elaborate the meaning of convergence, consider the differential equation of the form 

∅(𝑥, 𝑦𝑥) = 0 with condition y(0) = 𝑦0 , 0 < 𝑥 < 𝑋 

Any numerical approach used to evaluate the solution of the above equation is convergent 

if 

𝑚𝑎𝑥

𝑛𝜖{0,1,…,
𝑋

∆𝑥
}
|𝑌𝑛 − 𝑦𝑛| → 0 as ∆𝑥 → 0,  

where 𝑌 is exact solution, 𝑦 is calculated solution and |𝑌𝑛 − 𝑦𝑛| is absolute error. It means 

as the step size ∆𝑥  become smaller, the estimated solution come closer to the true solution, 

then the applied numerical scheme will be convergent.  

The rate of convergence also known as global order of accuracy of a scheme is 𝑝, if 

𝑚𝑎𝑥

𝑛𝜖{0,1,…,
𝑋

∆𝑥
}
|𝑌𝑛 − 𝑦𝑛| ≤ 𝜃(∆𝑥𝑝) as ∆𝑥 → 0  (Jerison, 2007) 

A higher order of convergence indicates a faster convergence rate of the numerical method. 

Convergence analysis of the applied hybrid schemes with truncation error has been covered 

in this report. 

1.6 Error Analysis 

To justify the numerical results, it is essential to compare the obtained results with the exact 

solutions if present or with numerical results computed by the reported numerical 

approaches in the literature. For numerical treatment of SPDDE, concept of error used in 

this research work are as follows: 

• Absolute error 

• Maximum absolute error 

• Double mesh principle: As the exact solution of SPDDE is not available, so we used 

double mesh principle to find the absolute error. 

𝐸𝜖
𝑁 = |𝑦𝑖

𝑁 − 𝑦2𝑖
2𝑁|, 0 ≤ 𝑖 ≤ 𝑁 

and 𝐷𝑁=𝑚𝑎𝑥|𝑦𝑖
𝑁 − 𝑦2𝑖

2𝑁|, 0 ≤ 𝑖 ≤ 𝑁 
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• Truncation Error 

To find out the order of convergence of a numerical method, truncation error is calculated. 

In scientific computing and numerical analysis, local truncation error is the error obtained 

while abbreviating the infinite sum as a finite number.  

Figure 1.4 and 1.5 (Fitzpatrick, 2006) shows the truncation error and instability of two 

methods: Euler’s method and fourth order Runge-Kutta method by considering one term 

and two terms for accuracy (solid curve represents results for a fourth-order Runge-Kutta 

method and dotted curve  for Euler’s method plotted against the step-length h) .   

 

Figure1.4: Error while considering single term accuracy 
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Figure 1.5: Error while considering double term accuracy 
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Chapter 2 

Modified cubic B-spline collocation method for numerical 

solution of second order singularly perturbed delay differential 

equation 

2.1 Introduction 

Many researchers have examined different differential equations with various spline-based 

techniques. These methods are effectual because of their intelligibility and feasibility. The 

chief benefit of using these methods is that they are able to approximate the curve up to a 

certain smoothness. Therefore, the spline-based methods are considered as the premier 

methods to approximate the solution of differential equations within the domain. This, 

prompt us for the study of SPDDE by cubic B-spline based numerical method.  

The modification in cubic B-spline functions gives different types of shape control tools 

and the change in the value of nodal point effects the shape of the smooth curve. One of 

the advantages of weight modification in the basis of B-spline is to obtain fine tuning of 

the shape of the curve as shown in Figure 2.1 (Juhász & Hoffmann, 2002). This change 

exerts strong clench (grip) on the positioning of the curve in the convex hull property region 

(which states that the curve lies within the convex set of its knot points). 
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Figure 2.1: Solid lines present cubic B-spline curve and dotted lines show its modified curve 

Mathematically, the alteration in the basis functions facilitates the calculation work as the 

resultant system of the matrix obtained is diagonally dominant and relaxes the calculations 

on the boundary of the problem. So, in this work, modified B-spline collocation technique 

has been used to imprecise the solution of SPDDE of second order. The concept of 

alteration in the basis has been used by many researchers to solve diverse differential 

equations. Mittal and Jain (Mittal & Jain, 2013) applied this scheme to find the solution of 

non-linear Fisher’s reaction-diffusion equation. Mittal and Bhatia (Mittal & Bhatia, 2014) 

treated nonlinear Sine-Gordon equation by modified cubic B-spline collocation method. 

Arora and Singh (Arora & Singh, 2013) solved Burgers’ equation by modified cubic-B-

spline differential quadrature method. Mittal and Jain (Mittal & Jain, 2012b) applied B-

spline collocation method to approximate the solution of non-linear Burger’s equation. One 

dimensional hyperbolic telegraphic equation of second order tested by Mittal and Bhatia 

(Mittal & Bhatia, 2013) by using third order splines with collocation method. Fisher’s 

equation was numerically treated by Ersoy and Dag (Ersoy & Dag, 2015b) by extended B-

spline collocation method. 
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2.2 Mesh strategy 

To imprecise the numerical solution of SPDDE, the domain 0≤x≤ 𝑙 is partitioned into a 

uniform mesh known as Shishkin mesh. (Kumar & Kadalbajoo, 2012) The piecewise 

uniform mesh is constructed in such a way that more mesh points are generated in the 

boundary layer region than the points outside these regions. The given domain [0, 𝑙] is 

divided into two sub intervals [0, 𝜏 ] and [𝜏, 𝑙], that results in partition {0=𝑥0 < 𝑥1 < 𝑥2 <

. . . < 𝑥𝑁 = 𝑙} with 𝑁 as total partition points. 

On the boundary layer, 𝑥 = 0 mesh points are given by      

 𝑥𝑖 = {
𝑖ℎ𝑖 ,                 if 𝑖 = 0,1,2,3…… . ,

𝑁

2

𝜏 + (𝑖 −
𝑁

2
)ℎ𝑖 ,    if 𝑖 =

𝑁

2
+ 1,

𝑁

2
+ 2,…… . . , 𝑁 

 

where 

 ℎ𝑖 = {

2𝜏

𝑁
, if 𝑖 = 1,2,3… . . ,

𝑁

2
2(𝑙 − 𝜏)

𝑁
, if 𝑖 =

𝑁

2
+ 1,

𝑁

2
+ 2,……𝑁

  

  On the boundary layer, 𝑥 = 𝑙 mesh points are given by      

      𝑥𝑖 = {
𝑖ℎ𝑖 ,                         if   𝑖 = 0,1,2,3…… . ,

𝑁

2

𝑙 − 𝜏 + (𝑖 −
𝑁

2
) ℎ𝑖,   if  𝑖 =

𝑁

2
+ 1,

𝑁

2
+ 2,…… . . , 𝑁

      

where 

 ℎ𝑖 = {

2(𝑙 − 𝜏)

𝑁
,              if  𝑖 = 1,2,3… . . ,

𝑁

2

 
2(𝜏)

𝑁
,                             if  𝑖 =

𝑁

2
+ 1,

𝑁

2
+ 2,……𝑁 

 



22 
 

2.3 Modified cubic B-spline method 

An approximation to the solution is 𝑦(𝑥)=∑ 𝛼𝑖𝐵𝑖(𝑥)
𝑁+1
𝑖=−1   

where 𝛼𝑖
′𝑠 are unknown real coefficients and 𝐵𝑖(𝑥)

′𝑠 are the B-spline basis functions. The 

cubic B-spline 𝐵𝑖 for 𝑖 = −1,0,1,2, … ,𝑁 + 1 is as follow:  

 𝐵𝑗 =
1

ℎ3

{
  
 

  
 (𝑥 − 𝑥𝑗−2)

3
,                                            𝑥 ∈ [𝑥𝑗−2, 𝑥𝑗−1),

(𝑥 − 𝑥𝑗−2)
3
− 4 (𝑥 − 𝑥𝑗−1)

3
,         𝑥 ∈ [𝑥𝑗−1, 𝑥𝑗),

(𝑥𝑗+2 − 𝑥)
3
− 4 (𝑥𝑗+1 − 𝑥)

3
,          𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1),

(𝑥𝑗+2 − 𝑥)
3
,                                            𝑥 ∈ [𝑥𝑗+1, 𝑥𝑗+2),

0,                                                      otherwise.

 

The set of functions {𝐵−1, 𝐵0, 𝐵1, ……… . . , 𝐵𝑁, 𝐵𝑁+1} , form a basis for the function 

defined over the region 0≤ 𝑥 ≤ 1. At nodal points, the values of 𝐵𝑖(𝑥), 𝐵𝑖
′(𝑥), 𝐵𝑖

′′(𝑥) are 

given below: 

Table 2.1: B-spline basis values 

 

 

 

 

 

 

Modified cubic B-spline basis function has been used to solve the singularly perturbed 

delay differential equation. A diagonal leading system of differential equations is obtained 

by modifying the cubic B-spline basis function into a new set of basis functions. Below is 

the procedure of modifying the basis functions: 

                           Nodal Values 

𝑥𝑖−2 𝑥𝑖−1 𝑥𝑖 𝑥𝑖+1 𝑥𝑖+2 

𝐵𝑖(𝑥) 0 1 4 1 0 

𝐵𝑖
′(𝑥) 0 3/h 0 -3/h 0 

𝐵𝑖
′′(𝑥) 0 6/h2 -12/h2 6/h2 0 
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 �̃�0(𝑥) = 𝐵0(𝑥) + 2𝐵−1(𝑥), 

 �̃�1(𝑥) = 𝐵1(𝑥) − 𝐵−1(𝑥), 

 �̃�𝑖(𝑥) = 𝐵𝑖(𝑥) for 𝑖 = 2,3, … ,𝑁 − 2 

 �̃�𝑁−1(𝑥) = 𝐵𝑁−1(𝑥) − 𝐵𝑁+1(𝑥), 

 �̃�𝑁(𝑥) = 𝐵𝑁(𝑥) + 2𝐵𝑁+1(𝑥). 

To approximate the solution of SPDDE using modified cubic B-spline collocation method, 

the imprecise result defined as: 

𝑦(𝑥) =∑𝛼𝑖 �̃�𝑖(𝑥)

𝑁

𝑖=0

 

By using above and the values of  �̃�𝑖(𝑥) at nodal points from Table 2.1 following equation 

has been obtained: 

𝑦(𝑥0) = 6 𝛼0 

𝑦(𝑥𝑖) =  𝛼𝑖−1 + 4 𝛼𝑖 + 𝛼𝑖+1,  𝑖 = 1,2,3… . , 𝑁 − 1, 

𝑦(𝑥𝑁) = 6 𝛼𝑁 

And the value of derivatives 𝑦′(x) and 𝑦′′(x) at nodal points are given as: 

ℎ 𝑦′(𝑥0) = −6𝛼0+6𝛼1, 

 

ℎ 𝑦′(𝑥𝑖) = −3𝛼𝑖−1+3𝛼𝑖+1, 1 ≤ 𝑖 ≤ 𝑁 − 1, 

 

ℎ 𝑦′(𝑥𝑁) = −6𝛼𝑁−1+6𝛼𝑁, 

 ℎ2𝑦′′(𝑥0) = 0, ℎ
2𝑦′′(𝑥𝑖) = 6𝛼𝑖−1 − 12𝛼𝑖 + 6 𝛼𝑖+1, 1 ≤ 𝑖 ≤ 𝑁 − 1,  ℎ2𝑦′′(𝑥𝑁) = 0 
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2.4 First-exist time problem 

In this work, second order SPDEs has been considered for numerical treatment using 

collocation technique with modified cubic B-spline. The endured SPDDE emerge from the 

model first-exist time problem using formulated by stein (Stein, 1967) describes the 

regulation of the required time for the causation of action potential in nerve cell by random 

synaptic inputs in the dendrites. The input of the distribution is taken as a Poisson process 

with exponential decay between the inputs. The decay between the inputs is exponential 

and the input of the distribution was taken as a Poisson process (Lange & Miura, 1982) 

(Lange & Miura, 1994). The problem for expected first-exist time 𝑦(𝑥), is given by: 

 

𝜎2

2
𝑦′′ + (𝜇 − 𝑥)𝑦′ + 𝜆𝐼𝑦(𝑥 − 𝑎1) + 𝜆𝐸𝑦(𝑥 + 𝑎𝐸) − (𝜆𝜆𝐸 + 𝜆𝐼)𝑦 = −1 

with the boundary condition: 

𝑦 ≡ 0,    𝑥 ∉ (𝑥1, 𝑥2). 

 

where 𝑦 is the expected first-exist time and exponential decay between synaptic inputs is 

given by first-order derivative term −𝑥𝑦′. The excitatory and inhibitory synaptic inputs 

given by undifferentiated terms, modeled as Poisson process with mean rate 𝜆𝐸 and 

𝜆𝐼 respectively, the membrane potential 𝑎𝐸  and 𝑎𝐼, depend on voltage and are small 

quantities.  

2.4.1 SPDDE from stein model 

We considered the following singularly perturbed differential equation with a minute delay 

  𝜀2𝑦′′(𝑥) + 𝑎(𝑥)𝑦(𝑥 − 𝛿) + 𝑏(𝑥)𝑦(𝑥) = 𝑓(𝑥), 0 < 𝑥 < 1  (2.1) 

subject to conditions: 

𝑦(𝑥) = ∅(𝑥) on −𝛿 ≤ 𝑥 ≤ 0, 𝑦(1) = 𝛾,   (2.2) 

 

where 0<𝜀 ≪ 1 and 𝛿(0 < 𝛿 ≤ 1). 𝑎(𝑥), 𝑏(𝑥), 𝑓(𝑥) and ∅(𝑥) are sufficiently smooth 

functions and 𝛾 is a constant. When the shift 𝛿 vanish, sign of (𝑎(𝑥) + 𝑏(𝑥)) determines 
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the behavior of the solution of the problem (2.1), (2.2). Positive value of (𝑎(𝑥) + 𝑏(𝑥))  

indicates that the solution of problem shows oscillatory behavior and negative 

(𝑎(𝑥) + 𝑏(𝑥)) depicts that the solution shows layer behavior. In particular, the layer 

behavior of the solution is destroyed when the delay is large, and the solution begins to 

exhibit oscillation behavior. 

In this work, Taylor’s series has been used to manage the retarded expression. Then the 

resultant differential-difference equation becomes:  

𝑝(𝑥)𝑦′′ + 𝑞(𝑥)𝑦′ + 𝑟(𝑥)𝑦(𝑥) = 𝑓(𝑥)   (2.3) 

 

where 𝑝(𝑥) = (𝜀2 + 𝛿2/2)𝑎(𝑥), 𝑞(𝑥) = −𝛿𝑎(𝑥), 𝑟(𝑥) = 𝑎(𝑥) + 𝑏(𝑥). 

2.4.2 Solution of SPDDE with a small shift by collocation method  

Collocation method is applied by electing collocation points selected to concur with nodes 

and substituting the values of 𝑦𝑖, 𝑦𝑖
′ 𝑎𝑛𝑑 𝑦𝑖

′′ at nodal points in equation. This results a 

system of 𝑁 + 1 linear equations in 𝑁 + 1  variables. 

𝑡𝑖
−𝛼𝑖−1 + 𝑡𝑖𝛼𝑖 + 𝑡𝑖

+𝛼𝑖+1 = ℎ
2𝑓𝑖,          1 ≤ 𝑖 ≤ 𝑁 − 1    (2.4) 

where 

𝑡𝑖
− = 6𝑝(𝑥𝑖) − 3ℎ𝑞(𝑥𝑖) + ℎ

2𝑟(𝑥𝑖), 

𝑡𝑖 = −12𝑝(𝑥𝑖) + 4ℎ
2𝑟(𝑥𝑖), 

𝑡𝑖
+ = 6𝑝(𝑥𝑖) + 3ℎ𝑞(𝑥𝑖) + ℎ

2𝑟(𝑥𝑖) 

The given boundary conditions become,  

6𝛼0 = ∅0 and 6𝛼𝑁 = 𝛾. 

Now we have 𝑁 + 1 linear equations 

A𝛼=B 
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where 𝛼 = [𝛼0 , 𝛼1, 𝛼2, ……… . , 𝛼𝑁]
𝑇 with right hand side B= [𝑏0, 𝑏1, 𝑏2, ……… . 𝑏𝑁]

𝑇 and 

coefficient matrix given by:  

 

A=

1 1 1

1 1 1

1 0 0

0 0

0 0 0 0

0 0

0 0 1

i i i

n n n

t t t

t t t

t t t

− +

− +

− +

− − −

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

B=(
∅0 

6
, ℎ2𝑓1, … ℎ

2𝑓𝑁−1,
𝛾

6
)
𝑇

 

2.4.3 Numerical examples 

Example 2.1: 

𝜀2𝑦′′(𝑥) + 0.25𝑦(𝑥 − 𝛿) − 𝑦(𝑥) = 1,     

with restriction 

    𝑦(𝑥) = 1, −𝛿 ≤ 𝑥 ≤ 0,   𝑦(1) = 0. 

 

The maximum absolute error obtained for Example 2.1 for different values of shift 

parameter is shown in Table 2.2-2.3 for different values of shift and perturbation parameter, 

respectively. It is observed that maximum absolute error decreases as 𝜀 increases. On the 

other side, the maximum absolute error decreases and width of layer increases with 

increase in 𝛿. Figure 2.2 shows the results obtained for this example. 

Example 2.2: 

𝜀2𝑦′′(𝑥) + 𝑦(𝑥 − 𝛿) + 2𝑦(𝑥) = 1,      
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with restriction 

𝑦(𝑥) = 1, −𝛿 ≤ 𝑥 ≤ 0,   𝑦(1) = 0. 

Table 2.4 represents the results obtained for Example 2.2 for distinct values of N. It is 

observed that the absolute error (Abs. error) decreases with increase in N. Figure 2.3-2.4 

shows oscillatory behavior of the solution. 

Example 2.3: 

𝜀2𝑦′′(𝑥) − 2𝑒−𝑥𝑦(𝑥 − 𝛿) − 𝑦(𝑥) = 1,     

with restriction 

𝑦(𝑥) = 1, −𝛿 ≤ 𝑥 ≤ 0,   𝑦(1) = 0. 

Table 2.5 - 2.8, shows obtained solution and maximum absolute error (Max Abs. Error) 

obtained for Example 2.3 for different values of shift parameter and 𝜀 respectively. It is 

detected that maximum absolute error decreases as 𝜀 increases. Figure 2.5 shows the results 

obtained for this example. 

2.5 Generalized perturbed delay differential equation 

Consider the following general boundary value problem: 

     𝜀𝑦′′(𝑥) + 𝑎(𝑥)𝑦′(𝑥 − 𝛿1) + 𝑏(𝑥)𝑦(𝑥 − 𝛿2) + 𝑐(𝑥)𝑦(𝑥) = 𝑓(𝑥) , 0 < 𝑥 < 𝑙,  

with restrictions: 

      𝑦(𝑥) = ∅(𝑥) on −𝛿 ≤ 𝑥 < 0 where 𝛿 = max (𝛿1, 𝛿2) and y(𝑙)=𝛾 ,    

where 0<𝜀 ≪ 1 and 𝛿1 and 𝛿2 are delay parameters. 𝑎(𝑥), 𝑏(𝑥), 𝑐(𝑥) and 𝑓(𝑥) are 

sufficiently smooth functions on [0, 𝑙] and ∅(𝑥) is a smooth function on [-𝛿, 0).  

For the different values of parameters there exist four different types of perturbed delay 

differential equations as follows: 

Type 1: Considering 𝛿1=𝛿2=𝛿 and 𝑙=1, the problem becomes: 
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 𝜀𝑦′′(𝑥) + 𝑎(𝑥)𝑦′(𝑥 − 𝛿) + 𝑏(𝑥)𝑦(𝑥 − 𝛿) + 𝑐(𝑥)𝑦(𝑥) = 𝑓(𝑥) ,     0 < 𝑥 < 1, 

under restrictions: 

𝑦(𝑥) = ∅(𝑥) on −𝛿 ≤ 𝑥 < 0 and 𝑦(1) = 𝛾 , 

This system of equation exhibits layer on the left side or right side of domain depending 

on the sign of 𝑎(𝑥). If 𝑎(𝑥)>0, the layer exits on the left side otherwise on the right side. 

Type 2: Considering 𝛿1=0,𝛿2=1, 𝑙=2, and 𝑐(𝑥) = 0, problem becomes: 

 𝜀𝑦′′(𝑥) + 𝑎(𝑥)𝑦′(𝑥) + 𝑏(𝑥)𝑦(𝑥 − 1) = 𝑓(𝑥) ,     0 < 𝑥 < 2, 

under restrictions: 

       𝑦(𝑥) = ∅(𝑥) on −1 ≤ 𝑥 < 0 and 𝑦(2) = 𝛾 , 

above system exhibits boundary layer at 𝑥 = 0 if 𝑎(𝑥) ≥ 0 and if 𝑎(𝑥) < 0 then system  

exhibits boundary layer at 𝑥 = 2 . 

Type 3: Considering 𝛿2=𝛿, 𝑎(𝑥)=0 and 𝑙=1, problem reduces to 

 𝜀𝑦′′(𝑥) + 𝑏(𝑥)𝑦(𝑥 − 𝛿) + 𝑐(𝑥)𝑦(𝑥) = 𝑓(𝑥) ,          0 < 𝑥 < 1, 

under restrictions: 

      𝑦(𝑥) = ∅(𝑥) on −𝛿 ≤ 𝑥 < 0 and 𝑦(1)=𝛾 , 

Type 4: Considering 𝛿1=𝛿, 𝑏(𝑥) = 0 and 𝑙=1, problem reduces to 

 𝜀𝑦′′(𝑥) + 𝑎(𝑥)𝑦′(𝑥 − 𝛿) + 𝑐(𝑥)𝑦(𝑥) = 𝑓(𝑥) ,      0 < 𝑥 < 1, 

under restrictions: 

      𝑦(0) = ∅(𝑥) on −𝛿 ≤ 𝑥 < 0  and 𝑦(1) = 𝛾 
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2.5.1 Description of method for the numerical solution of generalized perturbed 

delay differential equation 

To approximate the retarded argument in the considered equation following Taylor’s series 

is used: 

𝑦′(𝑥 − 𝛿1) ≈ 𝑦
′(𝑥) − 𝛿1𝑦

′′(𝑥) 

and 

 𝑦(𝑥 − 𝛿2) ≈ 𝑦(𝑥) − 𝛿2𝑦
′(𝑥) + (

𝛿2
2

2
)𝑦′′(𝑥) 

On substituting above Taylor’s series approximations, equation (2.5) and (2.6) leads  

to: 

𝜀𝑦′′(𝑥) + 𝑎(𝑥)[𝑦′(𝑥) − 𝛿1𝑦
′′(𝑥)] + 𝑏(𝑥) [𝑦(𝑥) − 𝛿2𝑦

′(𝑥) + (
𝛿2
2

2
)𝑦′′(𝑥)] 

+𝑐(𝑥)𝑦(𝑥) = 𝑓(𝑥) 

or  𝑝(𝑥)𝑦′′(𝑥) + 𝑞(𝑥)𝑦′(𝑥) + 𝑟(𝑥)𝑦(𝑥) = 𝑓(𝑥)    (2.7) 

    where 𝑝(𝑥) = 𝜀 − 𝛿1𝑎(𝑥) + (
𝛿2

2

2
) 𝑏(𝑥), 𝑞(𝑥) = 𝑎(𝑥) − 𝛿2𝑏(𝑥), 𝑟(𝑥) = 𝑏(𝑥) + 𝑐(𝑥) 

Collocation method is applied by selecting collocation points selected to concur with nodes 

and substituting the values of 𝑦𝑖, 𝑦𝑖
′ and 𝑦𝑖

′′ at nodal points in equation (2.7). This gives a 

system of N-1 linear equations in N+1 variables. 

𝑡𝑖
−𝛼𝑖−1 + 𝑡𝑖𝛼𝑖 + 𝑡𝑖

+𝛼𝑖+1 = ℎ
2𝑓𝑖 ,          1 ≤ 𝑖 ≤ 𝑁 − 1 

where 

𝑡𝑖
− = 6𝑝(𝑥𝑖) − 3ℎ𝑞(𝑥𝑖) + ℎ

2𝑟(𝑥𝑖), 

𝑡𝑖 = −12𝑝(𝑥𝑖) + 4ℎ
2𝑟(𝑥𝑖), 
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𝑡𝑖
+ = 6𝑝(𝑥𝑖) + 3ℎ𝑞(𝑥𝑖) + ℎ

2𝑟(𝑥𝑖) 

The given boundary conditions become, 6𝛼0 = ∅0 and 6𝛼𝑁 = 𝛾.  

Using these values, matrix system of form 𝐴𝑋 = 𝐵 has been obtained which is set of 𝑁 +

1 linear equations in 𝑁 + 1  variables 𝑋=[𝛼0 , 𝛼1, 𝛼2, ……… . , 𝛼𝑁]
𝑇 with right hand side 

𝐵=[𝑏0, 𝑏1, 𝑏2, ……… . 𝑏𝑁]
𝑇 and the coefficient matrix is given by: 

 

A=

1

1 1 1

1 0 0

0
1 1

0 0 0

0

0 0 1

i

n n n

i i

tt t

tt t

t t t

− +

− +

− +

− − −

 
 
 
 
 
 
 
 
 
 
 
 
 
 
    

2.5.2 Convergence  

To find the rate of convergence, a procedure has been examined to detect truncation error. 

By using 𝑦(𝑥𝑖) and 𝑦′(𝑥𝑖), a relation in 𝑦(𝑥𝑖) and 𝑦′(𝑥𝑖) at points 𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1 can be 

obtained as 

ℎ[𝑌𝑁
′(𝑥𝑖−1) + 4𝑌𝑁

′(𝑥𝑖) + 𝑌𝑁
′(𝑥𝑖+1)] = 3[𝑦(𝑥𝑖+1)-y(𝑥𝑖−1)] 

Now using 𝐸(𝑦(𝑥𝑖))=𝑦(𝑥𝑖+1) the above relation can be re-written as  

(𝐸−1 + 4 + 𝐸)ℎ𝑌𝑁
′(𝑥𝑖) = 3(𝐸 − 𝐸−1)𝑦(𝑥𝑖) 

or 

ℎ𝑌′𝑁(𝑥𝑖) = [
3(𝐸 − 𝐸−1)

(𝐸−1 + 4 + 𝐸)
] 𝑦(𝑥𝑖) 

Now substituting 𝐸 = 𝑒ℎ𝐷 and expand it in powers of ℎ𝐷, following is obtained:  
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𝑌′𝑁(𝑥𝑖) = 𝑦(𝑥𝑖) −
1

30
ℎ4𝑦𝑣(𝑥𝑖) + 𝑂(ℎ

6)                 

So, the local truncation error is 𝑇𝑖(ℎ𝑖) = ℎ4 [
1

30
𝑦𝑣(𝑥𝑖)] + 𝑂(ℎ

6) 

 Let 𝑌=(y1, y2, y3,….,yn-1)
t and if �̅� = (𝑦1̅̅ ̅, 𝑦2̅̅ ̅, 𝑦3̅̅ ̅, … . . 𝑦𝑛−1̅̅ ̅̅ ̅̅ )𝑡 is the exact solution. We  

know that 𝐴�̅� − 𝑇(ℎ) = 𝐶 , where C is a constant and 𝑇(ℎ) is local truncation error.  

 So, we have 𝐴(�̅� − 𝑌) = 𝑇(ℎ). Re-writing truncation error in form of error equation  

  𝐴𝐸 = 𝑇(ℎ) 

where 𝐸=�̅� − 𝑌=(𝑒1, 𝑒2, 𝑒3, ………𝑒𝑛−1)
𝑇.  

The element wise error is 𝑒𝑗 = ∑ �̅�𝑘,𝑖
𝑛
𝑖=0 𝑇𝑖(ℎ), for 𝑗 = 0,1,23, … , 𝑛 implies the result 

that 𝑒𝑗 ≤
𝑘ℎ2

|𝐿𝑖|
 where 𝑘 is a constant independent of ℎ.  

So, it is concluded that our method is almost second-order convergent. 

2.5.3 Error analysis 

To validate the coherence of the scheme, eight test examples have been solved. The results 

have been achieved using double mesh principle 𝐸𝜖
𝑁 = max |𝑦𝑖

𝑁 − 𝑦2𝑖
2𝑁|, 0 ≤ 𝑖 ≤ 𝑁 to 

calculate maximum absolute error. 

Example 2.4: 

𝜀𝑦′′(𝑥) + (1 + 𝑥)𝑦′(𝑥 − 𝛿) + exp(−2𝑥) 𝑦(𝑥 − 𝛿) − 2 exp(−𝑥) 𝑦(𝑥) = 0 ,      

subject to restriction 

𝑦(𝑥) =1, for−𝛿 ≤ 𝑥 < 0 and 𝑦(1) = 0  
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with boundary layer on left side. Table 2.9 shows the results obtained for example 1 with 

Shishkin mesh and values of parameters used are 𝜀 =0.1, 𝛿=0.01, 𝜏=0.2 and 𝑁 varies from 

64 to 1024. It is observed that absolute error decrease as the value of 𝑁 increases. 

Example 2.5: 

𝜀𝑦′′(𝑥) − (1 + 𝑥)𝑦′(𝑥 − 𝛿) + exp(−2𝑥) 𝑦(𝑥 − 𝛿) − exp(−𝑥) 𝑦(𝑥) = 0 ,      

subject to restriction 

𝑦(𝑥) =1, for−𝛿 ≤ 𝑥 < 0 and 𝑦(1) = -1  

has boundary layer on 𝑥 =1. Table 2.10-2.12 shows the results for example 2.5 which are 

obtained by using Shishkin mesh with the different values of the transition parameter with 

𝜀 = 0.1,  𝛿 = 0.01. Figure 2.6 shows the graph of solution of example 2.5 with 𝑁 =256 with 

boundary layer on right side. 

Example 2.6: 

𝜀𝑦′′(𝑥) − 3𝑦′(𝑥) + 𝑦(𝑥 − 1) = 0 ,  

under the boundary restrictions: 

𝑦(𝑥) =1 on −1 ≤ 𝑥 < 0 and 𝑦(2) =2.  

This example has boundary layer at 𝑥 = 2 with la arge delay. Tables 6 depicts the results 

for example 3 by using Shishkin mesh for different values of 𝜀 with 𝑁 = 16, 𝛿 =1, 𝜏=0.4. 

Example 2.7: 

𝜀𝑦′′(𝑥) − 2𝑦′(𝑥) + 5𝑦(𝑥 − 1) = 0 , 

with the conditions: 

𝑦(𝑥) =1 on −1 ≤ 𝑥 < 0 and 𝑦(2) =2.  

Tables 2.14 show the results for 2.7.  



33 
 

Example 2.8: 

𝜀𝑦′′(𝑥) + 0.25𝑦(𝑥 − 𝛿) − 𝑦(𝑥) = 1 , 

subject to the constraints,  

value of 𝑦 is 1 on −𝛿 ≤ 𝑥 < 0 and 𝑦(1)=0. 

Example 2.9: 

𝜀𝑦′′(𝑥) − 0.25𝑦(𝑥 − 𝛿) − 𝑦(𝑥) = 1 , 

subject to the constraints,  

value of 𝑦 is 1 on −𝛿 ≤ 𝑥 < 0 and 𝑦(1)=0. 

Two examples 2.8 and 2.9 are considered from type (c) with layer and oscillation behavior. 

Figure 2.7 shows the graph of example 2.7 and table 2.15 shows the results for example 

2.9 for different values of delta. Shishkin mesh along fixed value for 𝜏, 𝜀 and N have been 

used for this research work. It is observed that solution improves as the value of delta 

decreases. Figure 2.8 shows the graph of example 2.8. The graph shows the layer behavior 

of the solution obtained using Shishkin mesh where the value of 𝜀 = 0.01, 𝛿=0.001, N= 32 

and 𝜏 =0.4. 

Example 2.10: 

𝜀𝑦′′(𝑥) + 𝑦′(𝑥 − 𝛿) − 𝑦(𝑥) = 0 , 𝑥 ∈ [0,1] 

subject to the restrictions: 

𝑦(0) =1 and 𝑦(1) =1 

Example 2.11: 

   𝜀𝑦′′(𝑥) − 𝑒𝑥𝑦′(𝑥 − 𝛿) − 𝑥𝑦(𝑥) = 0 , 

subject to the restrictions: 
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𝑦(0) = 1 and 𝑦(1) = 1 

Both examples given above are with boundary layer on left side. Table 2.16 and 2.17 shows 

the results of the solution obtained for example 2.10 and 2.11 respectively. In these tables 

results obtained by uniform mesh and Shishkin mesh are presented with 𝜏= 0.4 (for 

Shishkin mesh), 𝜀= 0.1 and 𝛿= 0.01. Figure 2.9 shows the graph of Example 2.11 that 

depicts the solution obtained by using Shishkin mesh and uniform mesh for N=512, 𝜀 =0.1 

and 𝛿 =0.01. Maximum absolute error obtained using Shishkin mesh and uniform mesh for 

Example 2.11 has been compared in Table 2.18 for different values of 𝜀 with 𝛿 = 0.001, 𝜏 

= 0.4 (for Shishkin mesh), 𝑁=64 and 128. It has been observed that the maximum absolute 

error obtained with Shishkin mesh is less than maximum absolute error obtained with 

uniform mesh. 

2.6 Summary  

Due to the application in neurobiology, the considered differential equations trigger the 

researchers to solve them by distinctive methods. In this chapter, modified cubic B-spline 

basis functions have been used to solve SPDDE with collocation method. The convergence 

analysis of the applied scheme has been discussed to test the stability of the method. 

Boundary of the problem has been partitioned into uniform mesh and piecewise uniform 

mesh (Shishkin mesh). The result obtained by both meshes has been compared. The 

presented scheme is easy to use and readily adapted for computer implementation. Based 

on results obtained, it can be concluded that the proposed method is significant for the 

solution of second order singularly perturbed differential equations with small shift and for 

a general SPDDE. It is spotted that the solution obtained using Shishkin mesh improves 

for large values of 𝑁 and with a decrease in value of delay. It can be concluded that the 

method is easy to apply on a variety of SPDDE. 
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Table2.2: Maximum absolute error in solution of Example 2.1 with 𝜹 = 0.01 

𝜀 N=64 N=128 N=256 N=512 

0.01 0.163803 0.033685 0.007710 0.001530 

0.02 0.091470 0.021261 0.004989 0.000993 

0.03 0.055668 0.013340 0.003144 0.000619 

 

 

Table 2.3: Maximum absolute error in solution of Example 2.1 with 𝜺 = 0.01 

𝛿 N=64 N=128 N=256 N=512 

0.200 0.008089 0.001885 0.001160 0.001120 

0.020 0.137142 0.030440 0.007072 0.001407 

0.002 0.174330 0.032699 0.007367 0.001457 
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Figure 2.2: Solution of Example 2.1 with 𝜺 = 0.01 
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Table 2.4: Solution of Example 2.2 with 𝜺 = 0.1 and 𝜹 = 0.01 

 

 

 

Figure 2.3: Solution of Example 2.2 with 𝜺 = 0.1 and 𝜹 = 0.01 
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Figure 2.4: Solution of Example 2.2 with 𝜺 = 0.01 and 𝜹 = 0.2*epsilon 

 

Table 2.5: Numerical solution of Example 2.3 with 𝜺 = 0.01 and 𝜹 = 0.01 
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Table 2.6:  Numerical solution of Example 2.3 with 𝜺 = 0.02 and 𝜹 = 0.01 

 

Table 2.7:  Numerical solution of Example 2.3 with 𝜺 = 0.03 and 𝜹 = 0.01 

 

Table 2.8:  Maximum absolute error of Example 2.3 with  𝜺 = 0.001 

𝛿 N=128 N=256 N=512 

0.00100 0.020636 0.007791 0.001744 

0.00010 0.002844 0.000428 2E-06 

0.00001 0.004215 0.000420 1E-06 
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Figure 2.5: Solution of Example 2.3 with 𝜺 =. 𝟎𝟎𝟏 

 

Table 2.9:  Solution of Example 2.4 with Shishkin mesh 

xi N=64 
Absolute 

Error 
N=128 

Absolute 

Error 
N=256 

Absolute 

Error 
N=512 

Absolute 

Error 
N=1024 

0.00 1.000000 0.000000 1.000000 0.000000 1.000000 0.000000 1.000000 0.000000 1.000000 

0.05 0.718136 0.001462 0.717282 0.000608 0.716851 0.000177 0.716832 0.000158 0.716674 

0.10 0.492861 0.002857 0.491266 0.001262 0.490446 0.000442 0.490273 0.000269 0.490004 

0.15 0.306881 0.004481 0.304444 0.002044 0.303198 0.000798 0.302766 0.000366 0.302400 

0.20 0.145823 0.006466 0.142375 0.003018 0.140630 0.001273 0.139842 0.000485 0.139357 

0.40 0.047802 0.002239 0.046598 0.001035 0.046010 0.000447 0.045739 0.000176 0.0455629 

0.60 0.015469 0.000719 0.015089 0.000339 0.014902 0.000152 0.014812 6.19E-05 0.0147500 

0.80 0.004554 0.000210 0.004445 0.000101 0.004390 4.64E-05 0.004363 1.94E-05 0.0043439 

1.00 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
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Table 2.10: Solution of Example 2.5 with 𝝉 = 0.2 

xi N=32 N=64 N=128 N=256 

0.000 1.000000 1. 000000 1. 00000 1. 000000 

0.175 0.981658 0.981784 0.981815 0.981828 

0.350 0.956725 0.956838 0.956867 0.956885 

0.525 0.930907 0.930992 0.931017 0.931031 

0.700 0.904432 0.904455 0.904486 0.904514 

0.775 0.857557 0.857375 0.857356 0.857352 

0.850 0.729837 0.729702 0.729694 0.729689 

0.925 0.328554 0.331384 0.332097 0.33228 

1.000 -1.00000 -1.00000 -1.00000 -1.00000 

 

Table 2.11: Solution of Example 2.5 with 𝝉= 0.3 

xi N=32 N=64 N=128 N=256 

0.00 1.000000 1.000000 1.000000 1.000000 

0.20 0.978269 0.978431 0.978469 0.978483 

0.40 0.949264 0.949399 0.949425 0.949432 

0.60 0.920099 0.920077 0.920038 0.920010 

0.80 0.883276 0.881791 0.880975 0.880532 

0.85 0.781700 0.779887 0.778996 0.778539 

0.90 0.563645 0.562602 0.561956 0.561568 

0.95 0.081295 0.083020 0.083179 0.083056 

1.00 -1.00000 -1.00000 -1.00000 -1.00000 
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Table 2.12: Solution of Example 2.5 with 𝝉 = 0.4 

xi N=32 N=64 N=128 N=256 

0.00 1.000000 1.000000 1.000000 1.000000 

0.15 0.984917 0.985011 0.985036 0.985045 

0.30 0.964160 0.964248 0.964278 0.964291 

0.45 0.942001 0.942099 0.942145 0.942162 

0.60 0.920521 0.920735 0.920878 0.920940 

0.70 0.893295 0.893252 0.893326 0.893351 

0.80 0.818751 0.818189 0.818131 0.818112 

0.90 0.507499 0.509355 0.509869 0.509992 

1.00 -1.00000 -1.00000 -1.00000 -1.00000 

 

 

Figure 2.6: Solution of Example 2.5 with Shishkin mesh 
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Table 2.13: Solution of Example 2.6 with 𝝉 = 0.4, N = 16 and 𝜹= 1 

 

 

 

 

 

 

 

Table 2.14: Solution of Example 2.7 with 𝝉 = 0.4, N = 16 and 𝜹= 1 

xi 𝜀=0.1 𝜀 =0.01 𝜀 =0.001 𝜀 =0.0001 𝜀 =0.00001 

0.00 1.00000 1.00000 1.00000 1.00000 1.00000 

0.15 1.12978 1.12985 1.12985 1.12985 1.12985 

0.30 1.26161 1.26179 1.26181 1.26182 1.26181 

0.45 1.39263 1.39295 1.39298 1.39298 1.39298 

0.60 1.51904 1.51942 1.51946 1.51946 1.51946 

1.70 1.64009 1.64041 1.64044 1.64045 1.64045 

1.80 1.76126 1.76152 1.76154 1.76155 1.76155 

1.90 1.88169 1.88185 1.88186 1.88187 1.88187 

2.00 2.00000 2.00000 2.00000 2.00000 2.00000 

 

 

 

 

 

 

 

xi 𝜀=0.1 𝜀=0.01 𝜀=0.001 𝜀=0.0001 𝜀=0.00001 

0.00 1.000000 1.000000 1.000000 1.00000 1.000000 

0.15 0.869165 0.871692 0.871951 0.871977 0.871979 

0.30 0.709945 0.714641 0.715121 0.715170 0.715174 

0.45 0.517010 0.523305 0.523950 0.524015 0.524021 

0.60 0.285557 0.292629 0.293356 0.293428 0.293435 

1.70 0.0149903 0.0218526 0.0225581 0.0226287 0.0226355 

1.80 -0.288102 -0.282380 -0.281791 -0.281732 -0.281726 

1.90 -0.625973 -0.622489 -0.62213 -0.622094 -0.622091 

2.00 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 
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Table 2.15: Solution of Example 2.9 with 𝝉= 0.4, N = 8 and 𝜺=0. 1 

xi 𝛿=0.01 𝛿 =0.02 𝛿 =0.03 𝛿 =0.04 𝛿 =0.05 

0.00 1.000000 1.000000 1.000000 1.000000 1.000000 

0.10 0.497865 0.499426 0.501045 0.502721 0.504453 

0.20 0.104346 0.106637 0.109028 0.111517 0.114101 

0.30 -0.180856 -0.178557 -0.176135 -0.173591 -0.170927 

0.40 -0.379150 -0.377316 -0.375347 -0.373245 -0.371011 

0.55 -0.492079 -0.490994 -0.489776 -0.488425 -0.486941 

0.70 -0.474446 -0.474157 -0.473754 -0.473236 -0.472605 

0.85 -0.307344 -0.307507 -0.307599 -0.307621 -0.307571 

1.00 0.000000 0.000000 0.000000 0.000000 0.000000 

Maximum 

absolute error 0.049830 0.051659 0.053628 0.055730 0.057964 

 

 

Figure 2.7: Solution of Example 2.8 with 𝜺 = 𝟎. 𝟎𝟎𝟏 and 𝜹 = 𝟎. 𝟎𝟎𝟎𝟑 
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Figure 2.8: Solution of Example 2.9 with Shishkin mesh 

 

Table 2.16: Solution of Example 2.10 

Shishkin mesh Uniform mesh 

xi N=128 N=256 N=512 xi N=128 N=256 N=512 

0.00 1.000000 1.000000 1.000000 0.000 1.000000 1.000000 1.000000 

0.10 0.623968 0.623855 0.623466 0.125 0.579792 0.579727 0.579599 

0.20 0.542317 0.542186 0.541751 0.250 0.530084 0.530070 0.529922 

0.30 0.552180 0.551969 0.551555 0.375 0.568156 0.568134 0.567963 

0.40 0.592818 0.592516 0.592160 0.500 0.631718 0.631689 0.631490 

0.55 0.662997 0.660353 0.662931 0.625 0.707679 0.707641 0.707421 

0.70 0.758543 0.758613 0.758585 0.750 0.793958 0.793918 0.793690 

0.85 0.870742 0.870786 0.870808 0.875 0.891020 0.890983 0.890850 

1.00 1.000000 1.000000 1.000000 1.000 1.000000 1.000000 1.000000 
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Table 2.17: Maximum absolute error obtained for Example 2.10 with Shishkin mesh and uniform mesh 

 𝜀=0.03 𝜀 =0.05 𝜀 =0.07 𝜀 =0.09 

Max absolute error with 

Shishkin mesh 0.008304 0.003848 0.002234 0.001484 

Max absolute error with 

uniform mesh 0.010972 0.005341 0.003147 0.002084 

 

 

Figure 2.9: Solution of Example 2.10 with uniform and Shishkin mesh 
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Table 2.18: Solution of Example 2.11 

Shishkin mesh Uniform mesh 

xi N=128 N=256 N=512 xi N=128 N=256 N=512 

0.00 1.000000 1.000000 1.000000 0.000 1.000000 1.000000 1.000000 

0.15 0.980245 0.980253 0.980256 0.125 0.972976 0.972991 0.973008 

0.30 0.948972 0.948983 0.948989 0.250 0.926161 0.926179 0.926199 

0.45 0.910997 0.911033 0.911053 0.375 0.862754 0.862775 0.862800 

0.60 0.873931 0.874157 0.874269 0.500 0.791566 0.791585 0.791593 

0.70 0.845383 0.845627 0.845733 0.625 0.729398 0.729410 0.729398 

0.80 0.820320 0.820559 0.820650 0.750 0.705082 0.705073 0.705049 

0.90 0.818859 0.819058 0.819127 0.875 0.767318 0.767265 0.767232 

1.00 1.000000 1.000000 1.000000 1.000 1.000000 1.000000 1.000000 

 

 

 

 

 

 

 



48 
 

Chapter 3 

Trigonometric B–spline collocation method for numerical 

treatment of singularly perturbed delay differential equations 

3.1 Introduction 

Trigonometric spline functions were introduced by Schoenberg (Schoenberg, 1964) and 

then the divert aspect of these functions were studied by many researchers (Koch, Lyche, 

Neamtu, & Schumaker, 1995) (Lyche & Winther, 1979). These functions have been given 

surveillance in recent years due to their application in the geometric modeling of the 

surfaces. These functions are used in developing geometric models such as CAGD 

(computer-aided graphic design) and are piecewise in the space {1,cos(𝑥),sin(𝑥), 

…,cos(𝑘𝑥), sin(𝑘𝑥)}. 

Definition of trigonometric spline function: In the partition of the domain [𝑎, 𝑏] with the 

knot points 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁, a trigonometric spline function 𝑇𝑆(𝑥) of order N fulfill the 

following constraints: 

i) 𝑇𝑆(𝑥)  is a periodic function and is continuously differentiable 4N times. 

ii) In each sub-interval [𝑥𝑖 , 𝑥𝑖+1], the function TS(x) satisfy the differential 

equation: 

𝐷2(𝐷2 + 1)2… . (𝐷2 + 𝑛2)2𝑦 = 0 

The first order trigonometric functions (Lange & Miura, 1982) are given by:  

                                                           𝑇𝑆1,𝑖(𝑥) = {
1,
0,

 
for  𝑥𝑖 ≤ 𝑥 < 𝑥𝑖+1

otherwise
 

And the 𝜏 ordered trigonometric 𝑖𝑡ℎ function for 𝜏 ≥ 2 is given by:   

𝑇𝑆𝜏,𝑖(𝑥) = 𝑠𝑖𝑛 (
𝑥 − 𝑥𝑖
2

)𝐵𝜏−1,𝑖(𝑥) + 𝑠𝑖𝑛 (
𝑥𝑖+𝜏 − 𝑥

2
)𝐵𝜏−1,𝑖+1(𝑥) 
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where  𝐵𝜏−1,𝛾(𝑥) = {

𝑇𝜏−1,𝛾(𝑥)

𝑠𝑖𝑛(
𝑥𝛾+𝜏+1−𝑥𝛾

2
)
,              𝑥𝛾 < 𝑥𝛾+𝜏−1 

0,                                       𝑥𝛾 = 𝑥𝛾+𝜏−1 
 for 𝛾 = 𝑖 or 𝛾 = 𝑖 + 1 

Figure 3.1 (Hussain, Abbas, & Irshad, 2017) shows quadratic trigonometric B-spline. 

 

Figure 3.1: Quadratic trigonometric B-spline 

In the present time, researchers are working on the solution of many differential equations 

by numerical schemes based on trigonometric B-spline functions. Nonclassical diffusion 

problems are treated by Abbas et al. (Abbas, Majid, Ismail, & Rashid, 2014b) by applying 

numerical method using cubic trigonometric B-spline. Zin et al. (Zin, Majid, Ismail, & 

Abbas, 2014) solved the wave equation by cubic trigonometric B-spline with finite 

difference approach. Tamsir et al. (Tamsir, Dhiman, & Srivastava, 2018) simulated the 

Fisher’s reaction-diffusion equations by cubic trigonometric B-spline differential 

quadrature method. Irk and Keshkin (Irk & Keskin, 2016) approximated solution of the 

regularized long wave equation by applying Galerkin finite element method. Collocation 

finite difference scheme based on cubic trigonometric B-spline is used to find numerical 

solution of the hyperbolic problems by Abbas et al.  (Abbas, Majid, Ismail, & Rashid, 

2014a). Yaseen and Abbas (Yaseen & Abbas, 2018) presented a numerical technique based 

on finite difference formulation and cubic trigonometric B-splines to find the solution of 

time-fractional telegraph equation. Yaseen et al. (Yaseen, Abbas, Ismail, & Nazir, 2017) 

used cubic trigonometric B-spline collocation approach for numerical solution of the 

fractional sub-diffusion equations. Alshomrani et al. (Alshomrani, Pandit, Alzahrani, 

Alghamdi, & Jiwari, 2017) proposed a numerical algorithm based on modified cubic 

https://www.sciencedirect.com/topics/mathematics/difference-scheme
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trigonometric B-spline functions for computational modeling of hyperbolic-type wave 

equations.  

Dag et al.  (Dag, Hepson, & Kacmaz, 2014) used cubic trigonometric B-spline collocation 

method for numerical treatment of Burgers’ equation. Arora and Joshi (Arora & Joshi 

2016) compared the imprecise numerical solution of one dimensional (1D) hyperbolic 

telegraph equation with appropriate primary and limiting conditions by two different basis: 

B-spline and trigonometric B-spline functions with differential quadrature method. A 

computational approach presented by Arora and Joshi (Arora & Joshi 2018) by using 

modified trigonometric cubic B-spline for numerical solution of Burgers’ equation in one 

and two dimensions.  

So, trigonometric B-spline collocation technique has been considered to simulate SPDDE. 

A second order SPDDE is solved by trigonometric cubic B-spline collocation method while 

a third order SPDDE is numerically treated by quintic trigonometric B-spline collocation 

scheme. 

3.2 Numerical solution of second-order problem  

Consider the singularly perturbed delay differential equation of the form: 

𝐿𝑦 ≡ 𝜀𝑦′′(𝑥) + 𝑎(𝑥)𝑦(𝑥 − 𝛿) + 𝑏(𝑥)𝑦(𝑥) = 𝑓(𝑥), 0 < 𝑥 < 1 (3.1)  

subject to the boundary conditions: 

𝑦(𝑥) = 𝜙(𝑥), 𝑥𝜖[−𝛿, 0] and 𝑦(1) = 𝛾     

where 0 < ε <<1 and 𝜙(x) is sufficiently smooth on [−1, 0] and 𝛾 is a given constant which 

is independent of ε. 

Delay term is managed by using expression given by: 

𝑦(𝑥 − 𝛿) = 𝑦(𝑥) − 𝛿𝑦′(𝑥) 

On substituting above delay term relation in equation (3.1), following equation has been 

obtained: 

𝜀𝑦′′(𝑥) − 𝑎(𝑥)𝛿𝑦′(𝑥) + (𝑎(𝑥) + 𝑏(𝑥))𝑦(𝑥) = 𝑓(𝑥)    
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Re-writing above equation following is achieved:  

𝑝(𝑥)𝑦′′(𝑥) + 𝑞(𝑥)𝑦′(𝑥) + 𝑠(𝑥)𝑦(𝑥) = 𝑓(𝑥)  (3.2)  

where 𝑝(𝑥) = 𝜀, q(x)=−𝑎(𝑥)𝛿 and 𝑠(𝑥) = 𝑎(𝑥) + 𝑏(𝑥) 

3.2.1 Trigonometric cubic B-spline collocation method 

The approximate solution of the considered problem is obtained by using the cubic 

trigonometric B-spline collocation method. The set of functions 

{𝑇−1, 𝑇0, 𝑇1, ……… . . , 𝑇𝑁 , 𝑇𝑁+1} form a basis for functions defined over the interval [0,1]. 

Let {0 ≡ 𝑥0 < 𝑥1 < 𝑥2 <. . . < 𝑥𝑁 ≡ 1} be the partitioned of the domain. The length of 

each sub intervals is given by ℎ where ℎ=𝑥𝑖+1 − 𝑥𝑖, 𝑖 = 0,1,2, …𝑁 − 1.  

An approximation to the solution can be expressed in terms of trigonometric B-splines as  

𝑦(𝑥) =∑ 𝛼𝑖𝑇𝑖(𝑥)
𝑁+1
𝑖=−1      

where 𝛼𝑖
′𝑠 are unknown coefficients to be determined using the constraint that  𝑦(𝑥) 

satisfies the considered problem at 𝑁+1 collocation points as well as the boundary 

conditions and 𝑇𝑖(𝑥)
′𝑠 are the trigonometric B-spline basis functions. 

Now, by using trigonometric cubic B-spline basis functions and their values at the nodal 

points, the value of 𝑦(𝑥) and its first and second order derivative can be expressed in terms 

of 𝛼𝑖
′𝑠 as: 

𝑦(𝑥𝑖) =  𝑘1𝛼𝑖−1 + 𝑘2𝛼𝑖 + 𝑘1𝛼𝑖+1 

     𝑦′(𝑥𝑖) = 𝑘3𝛼𝑖−1+𝑘4𝛼𝑖+1 

 

𝑦′′(𝑥𝑖) = 𝑘5𝛼𝑖−1 + 𝑘6𝛼𝑖 + 𝑘5𝛼𝑖+1 

where 𝑘1 = 𝑠𝑖𝑛2 (
ℎ

2
) 𝑐sc (ℎ) csc (

3ℎ

2
), 

𝑘2 =
2

1+2cos(ℎ)
,  
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𝑘3 = −
3

4
csc (

3ℎ

2
),  

𝑘4 =
3

4
csc (

3ℎ

2
), 

𝑘5 =
3((1 + 3 cos(ℎ))𝑐𝑜𝑠2 (

ℎ

2
))

16 (2 cos (
ℎ

2
) + cos (

3ℎ

2
))
, 

𝑘6 = −
3𝑐𝑜𝑡2 (

ℎ

2
)

2 + 4 cos(ℎ)
 

To apply the collocation technique, collocation points are selected in such a way that they 

concur with the nodal points. On substituting the values of 𝑦𝑖, 𝑦𝑖
′ and 𝑦𝑖

′′ at nodal points in 

equation (3.2) we get a system of 𝑁 + 1 linear equations in 𝑁 + 3 unspecified variables 

as: 

 

𝐸𝑖
𝑙𝛼𝑖−1 + 𝐸𝑖𝛼𝑖 + 𝐸𝑖

𝑟𝛼𝑖+1 = 𝑓𝑖,          0 ≤ 𝑖 ≤ 𝑁   (3.3) 

where      

    𝐸𝑖
𝑙 = 𝑝(𝑥)𝑘5 + 𝑞(𝑥)𝑘3 + 𝑠(𝑥)𝑘1, 

𝐸𝑖 = 𝑝(𝑥)𝑘6 + 𝑠(𝑥)𝑘2 

𝐸𝑖
𝑟 = 𝑝(𝑥)𝑘5 + 𝑞(𝑥)𝑘4 + 𝑠(𝑥)𝑘1 

Now, to obtain a system with the number of variables equal to the number of equations, 

boundary conditions have been used to calculate the value of two unknowns 𝛼−1and 𝛼𝑛+1. 

 

When 𝑖 = 0 in equation (3.3) there exist an unspecified variable 𝛼−1 and similarly, for 𝑖 =

𝑛 in equation (3.3) variable 𝛼𝑛+1 exists. 

From boundary conditions, equation given below has been obtained: 
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𝛼−1 =
∅0−𝑘2𝛼0−𝑘1𝛼1

𝑘1
  and 𝛼𝑛+1 =

𝛾−𝑘1𝛼𝑛−1−𝑘2𝛼𝑛

𝑘1
 

By using the value of 𝛼−1and 𝛼𝑛+1 in the above system, following equation is obtained: 

 

𝛼0 (
−𝑘2

𝑘1
𝐸0

𝑙 + 𝐸0) + 𝛼1(𝐸0
𝑟 − 𝐸0

𝑙) = 𝑓0 −
∅𝐸0

𝑙

𝑘1
  (3.4) 

and 

𝛼𝑛−1(𝐸𝑛
𝑙 − 𝐸𝑛

𝑟) + 𝛼𝑛 (𝐸𝑛 −
𝑘2

𝑘1
𝐸𝑛

𝑟) = 𝑓𝑛 −
𝛾𝐸𝑛

𝑟

𝑘1
  (3.5) 

Now we have 𝑁 + 1 linear equations in 𝑁 + 1  variables which can be expressed as matrix 

system: 𝐴𝑌 = 𝐵 where 𝑌 = [𝛼0 , 𝛼1, 𝛼2, ……… . , 𝛼𝑁]
𝑇. 

The coefficient matrix 𝐴 is given by  

A=

2
0 0 0 0

1

1 1 1

1 1

2

1

0

0

0 0 0

0

0

l r l

l r

l r

i i i

l r

i n n

l r r

n n n n

k
E E E E

k

E E E

E E E

E E E

k
E E E E

k

− −

 
− − 

 
 
 
 
 
 
 
 
 
 
 
 
 

− − 
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B=

0
0 0

1

1

1

1

( ) ( )

( )

( )

( ) ( )

l

n

r

n
n

f x E
k

f x

f x

E
f x

k





−

 
− 

 
 
 
 
 
 
 
 
 
 

− 
 

 

3.2.2 Convergence analysis 

Consider an assumption that the function 𝑦(𝑥) is a function with continuous derivatives 

over the entire domain [0, 1]. The tri-diagonal system of the matrix defined above is: 

𝐴𝑌 = 𝐵 where 𝐴 = (𝑚𝑖,𝑗), 0≤ 𝑖, 𝑗 ≤ 𝑁 is a tridiagonal matrix with 

𝑚𝑖,𝑖−1 = 𝐸𝑖
𝑙, 𝑚𝑖,𝑖 = 𝐸𝑖 and 𝑚𝑖,𝑖+1 = 𝐸𝑖

𝑟for 𝑖 = 1,2,3,4, …… ,𝑁 − 1 

𝑚0,0 = 𝐸0, 𝑚0,1 = 𝐸0
𝑟, 𝑚𝑁−1,𝑁 = 𝐸𝑁 and 𝑚𝑁,𝑁 = 𝐸𝑁

𝑟  

with local truncation error 

𝑇𝑖(ℎ𝑖) = ℎ2 [(
𝑘2

2(2𝑘1 + 𝑘2)
) (

𝑘3 + 𝑘4
2𝑘1 + 𝑘2

) 𝑦′] + 𝑂(ℎ3) 

and  

𝑌 = (y1,y2,y3,….,yn-1)
T 

Also if �̅� = (𝑦1̅̅ ̅, 𝑦2̅̅ ̅, 𝑦3̅̅ ̅, … . . 𝑦𝑛−1̅̅ ̅̅ ̅̅ )𝑇 is the exact solution and the local truncation error is 

𝑇(ℎ) = (𝑇1(ℎ1), 𝑇2(ℎ2), 𝑇3(ℎ3), ……… . 𝑇𝑛−1(ℎ𝑛−1))
𝑇
 

Also, it is known that  𝐴�̅� − 𝑇(ℎ) = 𝐶, where 𝐶 is any constant. 

Hence it can be said that  𝐴(�̅� − 𝑌) = 𝑇(ℎ) 
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The choice of h is made sufficiently small, so that matrix A is irreducible and monotone. 

Thus 𝐴−1 exists. 

The error equation can be written as 𝐴𝐸 = 𝑇(ℎ)     (3.6) 

where 𝐸=�̅� − 𝑌=(𝑒1, 𝑒2, 𝑒3, ………𝑒𝑛−1)
𝑇 

Hence from equation (3.6), 𝐸 = 𝐴−1𝑇(ℎ)      (3.7) 

From the theory of matrices it is known that if A=𝑚1𝑘,𝑖 then ∑ 𝑚𝑘,𝑖𝑆𝑖 = 1 
𝑛
𝑖=0  

where 𝑚𝑘,𝑖is the (k,i)th element of the 𝐴−1. 

Here we have 𝑆𝑖 = ∑ 𝑚𝑖,𝑗 = ℎ0𝐵𝑖
𝑛−1
𝑗=1 ,  

where 

𝐵𝑖={

𝑝(𝑥𝑖)(𝑘5 + 𝑘6) + 𝑞(𝑥𝑖)(𝑘4) + 𝑠(𝑥𝑖)(𝑘1 + 𝑘2) for 𝑖 = 0 

𝑝(𝑥𝑖)(2𝑘5 + 𝑘6) + 𝑞(𝑥𝑖)(𝑘3 + 𝑘4) + 𝑠(𝑥𝑖)(2𝑘1 + 𝑘2) for i = 1,2,3, … . . , N − 1

𝑝(𝑥𝑖)(𝑘5 + 𝑘6) + 𝑞(𝑥𝑖)(𝑘4) + 𝑠(𝑥𝑖)(𝑘1 + 𝑘2) for 𝑖 = 𝑁

 

Therefore, 

∑𝑚𝑘,𝑖

𝑛

𝑖=0

≤
1

min(𝑆𝑖)
≤

1

|𝐵𝑖|
 

Thus, from the equation (3.7), the element-wise error is 𝑒𝑗 = ∑ 𝑚𝑘,𝑖
𝑛
𝑖=0 𝑇𝑖(ℎ), for  

𝑗 = 0,1,2,3,…..,𝑛 implies the result that: 

𝑒𝑗 ≤
𝑘ℎ2

|𝐵𝑖|
 

where 𝑘 is a constant independent of ℎ. 

Therefore, ‖𝐸‖ = 𝑂(ℎ2) 

This concludes that order of convergence is two for the uniform mesh. 
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3.2.3 Numerical analysis of second-order SPDDE 

Example 3.1:  

    𝜀𝑦′′(𝑥) − 2𝑦(𝑥 − 𝛿) − 𝑦(𝑥) = 1 

subject to the boundary conditions: 

𝑦(𝑥) = 1,−𝛿 ≤ 𝑥 ≤ 0   and 𝑦(1) = 0.  

This example illustrates the behavior of SPDDE with the left layer. The maximum absolute 

error obtained for this example for diverse values of delay parameter and for different 

values of the perturbed parameter is presented in table 3.1 and 3.2, respectively. The results 

are compared with the existing method and it is found that results by present method are 

better as compared to the discussed method. The conduct of the solution is presented in 

Figure 3.2. 

Example 3.2:  

Consider 

    𝜀𝑦′′(𝑥) + 0.25𝑦(𝑥 − 𝛿) − 𝑦(𝑥) = 1  

subject to the boundary conditions: 

𝑦(𝑥) = 1,−𝛿 ≤ 𝑥 ≤ 0   and 𝑦(1) = 0 

This example is a SPDDE with left layer and the behavior of the solution obtained for 

different values of delay parameters is shown in Figure 3.8. The maximum absolute error 

obtained for various values of delay parameter and for different values of the perturbed 

parameter is presented in table 3.3 and 3.4 respectively.  

Example 3.3: 

Consider 

   𝜀𝑦′′(𝑥) + 0.25𝑦(𝑥 − 𝛿) + 𝑦(𝑥) = 1  
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under restriction: 

𝑦(𝑥) = 1,−𝛿 ≤ 𝑥 ≤ 0   and 𝑦(1) = 0 

The oscillation behavior of the obtained solution of example 3.3 is presented for four 

different values of 𝛿 in Figure 3.8. In table 3.5, the maximum absolute error calculated for 

this example for different values of delay parameter is presented. 

Example 3.4: 

Consider  

   𝜀𝑦′′(𝑥) + 𝑦(𝑥 − 𝛿) + 2𝑦(𝑥) = 1  

under restriction: 

𝑦(𝑥) = 1,−𝛿 ≤ 𝑥 ≤ 0   and 𝑦(1) = 0 

The solution of example 3.4 shows oscillation behavior which is presented in Figure 3.8 

for three different values of perturbation parameter and the maximum absolute error found 

for this example for different values of delay 𝛿 and 𝑁 is presented in table 3.6. 

3.2.4 Discussion and conclusions 

A numerical approach based on trigonometric cubic B-spline function with collocation 

method has been used to determine the solution of SPDDE. Uniform mesh has been used 

to partition the domain. The presented scheme is applied on four numerical examples and 

the results obtained are shown in tables. Graphs are also plotted for the solution. The results 

obtained are better than the results obtained by the reported method. The rate of 

convergence of the presented scheme is calculated as two by application of truncation error. 

It can be deduced that the given method is easy and efficient to apply on SPDDE.  
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3.3 Numerical treatment of third order SPDDE 

For numerical treatment of third order differential equations, cubic B-spline function-based 

scheme do not provide good numerical results when applied on some differential equations 

because the third order derivatives of cubic spline functions become constant. So, higher 

order B-spline functions are required to approximate the solution of higher order 

differential equations.   

 

 

Figure 3.2: Quintic trigonometric spline curve 

Figure 3.2 (Misro, Ramli, & Ali, 2017) shows Quintic trigonometric spline curve which is 

a polynomial curve of degree five. Quintic B-spline function-based scheme is engaging 

researchers to obtain the numerical solution of differential equations with greater accuracy 

as compared to the cubic B-spline function. Many researchers have worked with this 

function-based scheme. Mittal and Arora (Mittal & Arora, 2010) used this scheme to 

approximate the solution of the Kuramoto–Sivashinsky equation. Irk and Dag (Irk & Dag, 

2011) solved the generalized nonlinear Schrodinger equation by applying this collocation 

scheme. A second order mixed boundary value problem  was solved by Lag and Xu (Lang 

& Xu, 2012) by B-spline collocation method. Arshed (Arshed, 2017) proposed numerical 

solution of time-fractional super diffusion fourth-order differential equation by Quintic B-

spline collocation method. A quintic B-spline finite-element method has been presented by 

Saka (Saka, 2012) for numerical solution of the nonlinear Schrödinger equation. Zakaria 

https://www.sciencedirect.com/topics/physics-and-astronomy/collocation
https://www.sciencedirect.com/topics/mathematics/b-spline
https://www.sciencedirect.com/topics/physics-and-astronomy/collocation
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et al. (Zakaria, Hassan, Hamid, Majid, & Ismail, 2017) presented solution of Boussinesq 

equation by using both quintic B-spline and quintic trigonometric B-spline interpolation 

methods. Siddiqi and Arshed (Siddiqi & Arshed, 2013) used quintic B-Spline collocation 

method for the numerical solution of fourth-order parabolic partial differential equations. 

Saka et al. (Saka, Dag, & Irk, 2008) used the same method for numerical treatment of the 

RLW equation. 

3.3.1 Problem statement of third order SPDDE 

The problem is to find solution 𝑦𝜖𝑌 = 𝐶1(Ω̅)⋂𝐶2(Ω)⋂𝐶3(Ω∗) so that it satisfies the 

following equation: 

−𝜀𝑦′′′(𝑥) + 𝑎(𝑥)𝑦′′(𝑥) + 𝑏(𝑥)𝑦′(𝑥) + 𝑐(𝑥)𝑦(𝑥) + 𝑑(𝑥)𝑦′(𝑥 − 1) = 𝑓(𝑥), 𝑥𝜖Ω
∗
     (3.8) 

with boundary conditions:  

𝑦(𝑥) = 𝜙(𝑥) , 𝑥𝜖[−1,0], 𝑦′(2) =  𝛾     

where 𝜀 is very-very small positive number and 𝑎(𝑥), 𝑓(𝑥) are discontinuous functions as 

shown below (Subburayan & Mahendran, 2018): 

𝑎(𝑥) = {
𝑎1(𝑥), 𝑥𝜖[0,1]

𝑎2(𝑥), 𝑥𝜖(1,2]
 and 𝑓(𝑥) = {

𝑓1(𝑥), 𝑥𝜖[0,1]

𝑓2(𝑥), 𝑥𝜖(1,2]
 

The functions 𝑎(𝑥) and 𝑓(𝑥) are sufficiently smooth and bounded on Ω
∗
, 𝑏(𝑥), 𝑐(𝑥) and 

𝑑(𝑥) are sufficiently smooth on Ω̅, where Ω
∗ = Ω

+⋃Ω
−,Ω− = (0,1),Ω+ = (1,2) and 

Ω = (0,2). 

To tackle the delay parameter Taylor’s series up to second order accuracy is used as 

𝑦 ′(𝑥 − 1) = 𝑦′(𝑥) − 𝑦 ′′(𝑥) 

Following equation is obtained using the above value in equation (3.8),  

𝑃(𝑥)𝑦 ′′′(𝑥) + 𝑄(𝑥)𝑦 ′′(𝑥) + 𝑅(𝑥)𝑦 ′(𝑥) + 𝑆(𝑥)𝑦(𝑥) = 𝑓(𝑥) (3.9) 

where 𝑃(𝑥) = −𝜀, 𝑄(𝑥) = 𝑎(𝑥) − 𝑑(𝑥), 𝑅(𝑥) = 𝑏(𝑥)+𝑑(𝑥) and 𝑆(𝑥) = 𝑐(𝑥). 
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3.3.2 Existence of solution 

Theorem: The equation (3.8) has solution  �̅� = (𝑦1, 𝑦2) where 

𝑦1𝜖𝐶
0(Ω̅)⋂𝐶1(Ω⋃{2}) and 𝑦2𝜖𝐶

0(Ω̅)⋂𝐶1(Ω)⋂𝐶2(Ω∗) . 

Proof: As discussed by Subburayan and Mahendran (Subburayan & Mahendran, 2018). 

3.3.3 Quintic trigonometric collocation scheme 

Quintic trigonometric B-spline with collocation scheme is used for numerical solution of 

the considered SPDDE. Let the partitioned of the domain be  {0 ≡ 𝑥0 < 𝑥1 < 𝑥2 <. . . <

𝑥𝑁 ≡ 2}, where ℎ = 𝑥𝑖+1 − 𝑥𝑖. The set of functions {𝑇5,−2(𝑥), 𝑇5,−1(𝑥),… , 𝑇5,𝑁+2(𝑥)} 

form the basis for functions defined over the interval [0, 2]. The approximated solution is 

considered as: 

𝑦(𝑥) = ∑ 𝛼𝑖𝑇5,𝑖(𝑥)
𝑁+2
𝑖=−2      

where 𝑇5,𝑖(𝑥) the trigonometric B-spline basis function of fifth order as described in 

(Zakaria, Hassan, Hamid, Majid, & Ismail, 2017) and 𝛼𝑖 are unknown coefficients to be 

determined.  

At the nodal points 𝑥𝑖, the function 𝑦(𝑥) and its derivatives are determined as: 

𝑦(𝑥𝑖) = 𝑘1𝑐𝑖−2 + 𝑘2𝑐𝑖−1+𝑘3𝑐𝑖+𝑘2𝑐𝑖+1+𝑘1𝑐𝑖+2, 

𝑦′(𝑥𝑖) = 𝑘4𝑐𝑖−2 + 𝑘5𝑐𝑖−1+𝑘6𝑐𝑖+1+𝑘7𝑐𝑖+2 

𝑦′′(𝑥𝑖) = 𝑘8𝑐𝑖−2 + 𝑘9𝑐𝑖−1+𝑘10𝑐𝑖 + 𝑘9𝑐𝑖+1+𝑘8𝑐𝑖+2,  

𝑦′′′(𝑥𝑖) = 𝑘11𝑐𝑖−2 + 𝑘12𝑐𝑖−1+𝑘13𝑐𝑖+1+𝑘14𝑐𝑖+2 

where the constants 𝑘𝑖for quintic trigonometric B-spline are as follows: 𝑠𝑒𝑐 

𝑘1 =
𝑠𝑖𝑛(

ℎ

4
)
4

𝑠𝑖𝑛(ℎ) 𝑠𝑖𝑛(
3ℎ

2
) 𝑠𝑖𝑛(2ℎ) sin(

5ℎ

2
)
 , 
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𝑘2 =
5+8𝑐𝑜𝑠ℎ

4coshcos(
ℎ

2
)(1+2cos(ℎ))(1+2𝑐𝑜𝑠ℎ+2cos (2ℎ))

,  

𝑘3 =
5+6cos(ℎ) 𝑠𝑒𝑐ℎ sec(

ℎ

2
)
2

4+8𝑐𝑜𝑠(ℎ)+8cos(2ℎ)
, 

𝑘4 =
−5𝑠𝑖𝑛(

ℎ

2
)
2

4sin(
3ℎ

2
) sin(2ℎ) sin(

5ℎ

2
)
 ,  

𝑘5 =
−5(1+4𝑐𝑜𝑠ℎ)𝑐𝑜𝑠𝑒𝑐(

ℎ

2
) sec(ℎ)

8(1+2cos(h))(1+2cos(ℎ)+2cos(2ℎ))
 ,  

𝑘6 =
5(1+4cos(ℎ))𝑐𝑜𝑠𝑒𝑐(

ℎ

2
) sec(ℎ)

8(1+2cos(ℎ))(1+2cos(ℎ)+2cos(2ℎ))
,  

𝑘7 =
5𝑠𝑖𝑛(

ℎ

2
)
2

4sin(
3ℎ

2
) sin(2ℎ) sin(

5ℎ

2
)
,  

𝑘8 =
5(3+5cos(ℎ))

16cos (ℎ)(1+2cos(ℎ))(1+2cos(ℎ)+2cos(2ℎ))𝑠𝑖𝑛(ℎ)2
, 

𝑘9 =
5(3+cos(ℎ)+4cos(2ℎ))

32cos(ℎ) cos(
ℎ

2
)(1+2cos(ℎ))(1+2cos(ℎ)+2cos(2ℎ))𝑠𝑖𝑛(

ℎ

2
)
2 ,  

𝑘10 =
−5(2+5cos(ℎ)+2cos(2ℎ))

8cos (ℎ)(1+2cos(ℎ)+2cos(2ℎ))𝑠𝑖𝑛(ℎ)2
 , 

𝑘11 =
−5(−1+25cos(ℎ))

128 cos(ℎ) cos(
ℎ

2
)(1+2cos(ℎ))(1+2cos(ℎ)+2cos(2ℎ))𝑠𝑖𝑛(

ℎ

2
)
3, 

𝑘12 =
−5(1−27cos (ℎ))+2cos (2ℎ))

64cos (h)(1+2cos(ℎ))(1+2cos(ℎ)+2cos(2ℎ))𝑠𝑖𝑛(
ℎ

2
)
3 , 

𝑘13 =
5(1−27cos(ℎ)+2cos(2ℎ))

64cos (h)(1+2cos(ℎ))(1+2cos(ℎ)+2cos(2ℎ))𝑠𝑖𝑛(
ℎ

2
)
3 ,  

 𝑘14 =
5(−1+25cos(ℎ))

128 cos(ℎ) cos(
ℎ

2
)(1+2cos(ℎ))(1+2cos(ℎ)+2cos(2ℎ))𝑠𝑖𝑛(

ℎ

2
)
3 
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Now, by substituting the values of 𝑦𝑖, 𝑦𝑖,
′   𝑦𝑖

′′and  𝑦𝑖
′′′ at nodal points in equation (3.9), a 

system of 𝑁 + 1 linear equations in 𝑁 + 5 unspecified variables have been obtained as: 

 

𝑊1
𝑖𝛼𝑖−2 +𝑊2

𝑖𝛼𝑖−1 +𝑊3
𝑖𝛼𝑖 +𝑊4

𝑖𝛼𝑖+1 +𝑊5
𝑖𝛼𝑖+2 = 𝑓𝑖,      0 ≤ 𝑖 ≤ 𝑁  (3.10) 

where 

𝑊1
𝑖 = 𝑘11𝑃(𝑥) + 𝑘8𝑄(𝑥) + 𝑘4𝑅(𝑥) + 𝑘1𝑆(𝑥), 

𝑊2
𝑖 = 𝑘12𝑃(𝑥) + 𝑘9𝑄(𝑥) + 𝑘5𝑅(𝑥) + 𝑘2𝑆(𝑥), 

𝑊3
𝑖 = 𝑘10𝑄(𝑥) + 𝑘3𝑆(𝑥), 

𝑊4
𝑖 = 𝑘13𝑃(𝑥) + 𝑘9𝑄(𝑥) + 𝑘6𝑅(𝑥) + 𝑘2𝑆(𝑥), 

𝑊5
𝑖 = 𝑘14𝑃(𝑥) + 𝑘8𝑄(𝑥) + 𝑘7𝑅(𝑥) + 𝑘1𝑆(𝑥), 

To calculate the values of 𝑁 + 5 unknown variables, the two given boundary conditions 

and two extra conditions as following are used: 

(i) 𝑦0 = ∅   (ii) 𝑦′(2) = 𝛾  and (iii) 𝑦′′(0) = 0, (iv) 𝑦′′(2) = 0 

The variables 𝛼−1, 𝛼−2, 𝛼𝑁+1 and 𝛼𝑁+2will be calculated by using above four conditions. 

By solving the system of equations 𝑦0 = ∅ and 𝑦′′(0) = 0, values of 𝛼−2 and 𝛼−1 has been 

obtained as: 

 

𝛼−2 =
𝐿𝑘2−𝑅𝑘9

𝑘8𝑘2−𝑘1𝑘9
= 𝐴1 (say) 

and 𝛼−1 =
𝑅𝑘8−𝐿𝑘1

𝑘8𝑘2−𝑘1𝑘9
= 𝐴2 

 

where L=−𝑘10𝛼0 − 𝑘9𝛼1 − 𝑘8𝛼2 and R=∅ − 𝑘3𝛼0 − 𝑘2𝛼1 − 𝑘1𝛼2 
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Similarly, by solving the system of equations 𝑦′(2) = 𝛾 and 𝑦′′(2) = 0, values of 𝛼𝑁+2 

and 𝛼𝑁+1  has been obtained as below: 

    𝛼𝑁+1 =
𝐿1𝑘7−𝑅1𝑘8

𝑘9𝑘7−𝑘8𝑘6
 =𝐴3 

and 𝛼𝑁+2 =
𝑅1𝑘9−𝐿1𝑘6

𝑘9𝑘7−𝑘8𝑘6
 = 𝐴4 

where 𝐿1=−𝑘8𝛼𝑁−2 − 𝑘9𝛼𝑁−1 − 𝑘10𝛼𝑁 and 𝑅1=𝛾 − 𝑘4𝛼𝑁−2 − 𝑘5𝛼𝑁−1 

Substituting these values in equation (3.10) for 𝑖 = 0,1, 𝑁 − 1 and 𝑖 = 𝑁, following 

equations have been obtained: 

 

 𝛼0𝑊3
0 + 𝛼1𝑊4

0 + 𝛼2𝑊5
0 = 𝑓0 − 𝐴1𝑊1

0 − 𝐴2𝑊2
0   (3.11)  

 

𝛼0𝑊2
1 + 𝛼1𝑊3

1 + 𝛼2𝑊4
1 + 𝛼3𝑊5

1 = 𝑓1 − 𝐴2𝑊1
1    (3.12) 

 

𝛼𝑁−3𝑊1
𝑁−1 + 𝛼𝑁−2𝑊2

𝑁−1 + 𝛼𝑁−1𝑊3
𝑁−1 + 𝛼𝑁𝑊4

𝑁−1 = 𝑓𝑁−1 − 𝐴3𝑊5
𝑁−1 (3.13) 

 . 

and 

  𝛼𝑁−2𝑊1
𝑁 + 𝛼𝑁−1𝑊2

𝑁 + 𝛼𝑁𝑊3
𝑁 = 𝑓𝑛 − 𝐴3𝑊4

𝑁 − 𝐴4𝑊5
𝑁  (3.14) 

Now, considering equations (3.9) and (3.11) to (3.14) for 𝑖 = 2,3, … ,𝑁 − 2,  a system of 

order 𝑁 + 1, 𝐴𝛼 = 𝐵 is obtained with 𝑁 + 1 variables and where 𝛼 =

[𝛼0 , 𝛼1 , 𝛼2 , ……… . , 𝛼𝑁 ]
𝑇 A is pentadiagonal matrix given by 
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A=

0 0 0

3 4 5

1 1 1 1

2 3 4 5

2 2 2 2 2

1 2 3 4 5

1 2 3 4 5

2 2 2 2 2

1 2 3 4 5

1 1 1 1

1 2 3 4

1 2 3

0

0

0

0

0

i i i i i

N N N N N

N N N N

N N N

W W W

W W W W

W W W W W

W W W W W

W W W W W

W W W W

W W W

− − − − −

− − − −

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

B=

0 0 1 1

0 1 1 2 2 1 2 1 2 2 1 3 5 3 4 4 5( ( ) , ( ) , ( ),..., ( ), ( ) , ( ) )N N N T

N n nf x AW A W f x A W f x f x f x AW f x AW A W−

− −− − − − − −  

3.3.4 Convergence Analysis 

Here 𝐶  has been assumed as a non-specific positive constant independent of 𝛿, 𝜀 and N, 

which may capture different values at different points. 

Lemma 3.1 

If the functions a(x), b(x), c(x), d(x) and f(x) are sufficiently smooth and are independent 

of 𝜀, then the solution y of (3.8) satisfies (Kumar & Kadalbajoo, 2012) 

|𝑦(𝑘)(𝑥)| ≤ 𝐶 (1 + 𝜀−𝑘𝑒−
𝛼𝑥

𝜀 ) , 𝑘 = 0,1,2… 

For proof of this lemma, one can follow procedure similar to as given in article by Kellogg 

and Tsan (Kellogg & Tsan, 1978). 

Lemma 3.2 

Hall error estimation: If 𝑓(𝑥) ∈ 𝐶2[0,1] and 𝑦(𝑥) ∈ 𝐶4[0,1], then ‖𝐷𝑗(𝑦 − 𝑌)‖ ≤

𝜆𝑗‖𝑦
4‖ℎ4−𝑗, 𝑗 = 0,1,2, … where 𝜆𝑗 are the constants (Hall, 1968). 

Lemma 3.3 
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If A is diagonally dominant by rows and 𝛼 = mini(|𝑎𝑖,𝑖| − ∑ |𝑎𝑖,𝑗|𝑖≠𝑗 ). Then ‖𝐴−1‖<
1

𝛼
 

(Varah, 1975). 

Lemma 3.4  

The trigonometric B-splines 𝑇5,−2, 𝑇5,−1, … , 𝑇5,𝑁+2,  satisfy the inequality 

 ∑ |𝑇5,𝑖(𝑥)|
𝑁+1
𝑖=−1 ≤ 10, 0 ≤ 𝑥 ≤ 2. 

Proof: The result can be proved similarly as proved by Kadalbajoo and Aggarwal 

(Kadalbajoo & Aggarwal, 2005)   

 

Theorem 3.1 

Let S(x) be the approximation obtained by collocation method to the solution 𝑦(𝑥) of 

boundary value problem (3.8). If  𝑓𝜖𝐶2[0,1], then the error estimate is given by  

supε𝑚𝑎𝑥𝑖|𝑦(𝑥𝑖) − 𝑆(𝑥𝑖)| ≤ 𝐶𝑁
−1𝑙𝑛3𝑁, where 0 ≤ 𝑖 ≤ 𝑁 and 0<𝜀 ≤ 1. 

Proof: Consider 𝑌(𝑥) be the unique spline interpolate to the solution 𝑦(𝑥) of SPDDE given 

in (3.8) given by 𝑦(𝑥) = ∑ 𝛼𝑖𝑇5,𝑖(𝑥)
𝑁+2
𝑖=−2 and the estimated error is given by 

|𝑦(𝑥) − 𝑆(𝑥)| 

Now using Hall error estimation as defined in Lemma 3.2 has resulted in the following 

estimation: 

|𝐿𝑦(𝑥𝑖) − 𝐿𝑌(𝑥𝑖)| = |−𝜀||𝑦′′′(𝑥𝑖) − 𝑌
′′′(𝑥𝑖)| + |𝑎(𝑥) − 𝑑(𝑥)||𝑦

′′(𝑥𝑖) − 𝑌
′′(𝑥𝑖)| 

                             +|𝑏(𝑥) + 𝑑(𝑥)||𝑦′(𝑥𝑖) − 𝑌
′(𝑥𝑖)| + |𝑐(𝑥)||𝑦(𝑥𝑖) − 𝑌(𝑥𝑖)| 

≤ (𝑐𝜀𝜆3ℎ + (‖𝑎(𝑥)‖ + ‖𝑏(𝑥)‖)𝜆2ℎ
2 + (‖𝑏(𝑥)‖ + ‖𝑑(𝑥)‖)𝜆1ℎ

3 + ‖𝑐(𝑥)‖𝜆0ℎ
4)‖𝑦4‖ 

Using Lemma 3.1, results in the following: 
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|𝐿𝑦(𝑥𝑖) − 𝐿𝑌(𝑥𝑖)| ≤ (𝑐𝜀𝜆3ℎ + (‖𝑎(𝑥)‖ + ‖𝑏(𝑥)‖)𝜆2ℎ
2 

         +(‖𝑏(𝑥)‖ + ‖𝑑(𝑥)‖)𝜆1ℎ
3 

                                                             +‖𝑐(𝑥)‖𝜆0ℎ
4) 𝐶 (1 + 𝜀−𝑘𝑒−

𝛼𝑥

𝜀 )  (3.15) 

where 𝜀−1 ≤ 𝐶 ln𝑁.  

Thus, |𝐿𝑦(𝑥𝑖) − 𝐿𝑌(𝑥𝑖)| ≤ 𝐶𝑁−1𝑙𝑛3𝑁   

Therefore, the result is |𝐿𝑦(𝑥𝑖) − 𝐿𝑌(𝑥𝑖)| = |𝑓(𝑥𝑖) − 𝐿𝑌(𝑥𝑖)| ≤ 𝐶𝑁−1𝑙𝑛3𝑁 (3.16) 

 

Now consider the SPDDE as: 

 𝐿𝑌(𝑥) = 𝑓(̅𝑥𝑖) with restrictions 𝑌(𝑥0) = 𝜙(0), 𝑌(𝑥𝑁) = 𝛾. 

A�̅�=�̅� is a linear system of equations obtained from the above problem, which follows that 

A(𝛼 − �̅�) = 𝐵 − �̅�         (3.17) 

where 𝐵 − �̅� = [𝑓(𝑥0) − 𝑓(̅𝑥0), 𝑓(𝑥1) − 𝑓(̅𝑥1),… , 𝑓(𝑥𝑁) − 𝑓(̅𝑥𝑁)]
𝑇
 

By using (11), ‖𝐵 − �̅�‖ ≤ 𝐶𝑁−1𝑙𝑛3𝑁      (3.18) 

The matrix A is strictly diagonal dominant for sufficiently small values of ℎ and  

|𝑎𝑖,𝑖| − (|𝑎𝑖,𝑖−1| + |𝑎𝑖,𝑖+1|)={

𝐹(𝑥0), for first row

𝐿(𝑥𝑁), for last row

𝑀(𝑥𝑖),    otherwise

 

where, for first row, for last row, otherwise 

𝐹(𝑥0) = −(𝑘13 + 𝑘14)𝑃(𝑥0) + (𝑘10 − 𝑘9 − 𝑘8)𝑄(𝑥0) − (𝑘6 + 𝑘7)𝑅(𝑥0) + (𝑘3 − 𝑘2 −

𝑘1)𝑆(𝑥0), 
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𝐿(𝑥𝑁) = −(𝑘11 + 𝑘12)𝑃(𝑥𝑁) + (𝑘10 − 𝑘9 − 𝑘8)𝑄(𝑥𝑁) + (𝑘5 − 𝑘4)𝑅(𝑥𝑁) + (𝑘6 − 𝑘2 −

𝑘1)𝑆(𝑥𝑁), 

𝑀(𝑥𝑖) = −𝜀𝐴
′ + (𝑎(𝑥𝑖) − 𝑑(𝑥𝑖))𝐴

′′ − (𝑏(𝑥𝑖) + 𝑑(𝑥𝑖))𝐴
′′′ + 𝑐(𝑥𝑖)𝐴

′′′′, 

And 𝐴′ = 𝑘11 + 𝑘10 + 𝑘13 + 𝑘14,  𝐴
′′ = 𝑘10 − 2𝑘8 − 2𝑘9,  𝐴

′′′ = 𝑘4 + 𝑘5 + 𝑘6 +

𝑘7,  𝐴
′′′′ = 𝑘3 − 2𝑘1 − 2𝑘2 

It is apparent, that A is strictly diagonally dominant and by using Lemma 3.3, it is 

concluded that 

‖𝐴−1‖ ≤ 𝐶          (3.19) 

Now combining (3.17) and (3.18) with approximate solution, 𝑦(𝑥) = ∑ 𝛼𝑖𝑇5,𝑖(𝑥)
𝑁+2
𝑖=−2 , we 

get: 

|𝛼 − �̅�| ≤ 𝐶𝑁−1𝑙𝑛3𝑁, 0 ≤ 𝑖 ≤ 𝑁 

Similarly, estimating |𝛼𝑖 − 𝛼�̅�| from the boundary and assumed conditions as defined in 

section 4 results in,  𝑚𝑎𝑥|𝛼𝑖 − 𝛼�̅�| ≤ 𝐶𝑁−1𝑙𝑛3𝑁, 𝑓𝑜𝑟 − 2 ≤ 𝑖 ≤ 𝑁 + 2  (3.20)    

Now by using Lemma 3.4 and equation 3.20 to estimate |𝑆(𝑥) − 𝑌(𝑥)|, following is 

obtained:  

|𝑆(𝑥) − 𝑌(𝑥)| = ∑(𝛼𝑖 − 𝛼�̅�)𝑇5,𝑖(𝑥)

𝑁+2

𝑖=−2

 

it results in |𝑆(𝑥) − 𝑌(𝑥)| ≤ 𝐶𝑁−1𝑙𝑛3𝑁, which leads to outcome of theorem with triangle 

inequality. 

sup(ε)max(𝑖) |𝑦(𝑥𝑖) − 𝑆(𝑥𝑖)| ≤ 𝐶𝑁−1𝑙𝑛3𝑁,  𝑤here 0 ≤ 𝑖 ≤ 𝑁 and 0<𝜀 ≤ 1. 

Hence the theorem is proved. 
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3.3.5 Numerical Examples of third order SPDDE 

To validate the proposed scheme two examples are considered for numerical solution. The 

double mesh principle is used to calculate the maximum absolute error and 

DN=𝑚𝑎𝑥|𝑦𝑖
𝑁 − 𝑦2𝑖

2𝑁| where 1 ≤ 𝑖 ≤ 𝑁. 

Example 3.5:  

 −𝜀𝑦′′′(𝑥) + 𝑎(𝑥)𝑦′′(𝑥) + 𝑏(𝑥)𝑦′(𝑥) + 𝑐(𝑥)𝑦(𝑥) + 𝑑(𝑥)𝑦′(𝑥 − 1) = 𝑓(𝑥) 

𝑦(𝑥) = 1 + 𝑥, 𝑥𝜖[−1,0],  𝑦′(2) = 2 

where 𝑎1 = 16, 𝑎2 = 10, 𝑏(𝑥) = 0, 𝑐(𝑥) = −1, 𝑑(𝑥) = −1, 𝑓1(𝑥) = 1, 𝑓2(𝑥) = −1 

 

Example 3.6:  

 −𝜀𝑦′′′(𝑥) + 𝑎(𝑥)𝑦′′(𝑥) + 𝑏(𝑥)𝑦′(𝑥) + 𝑐(𝑥)𝑦(𝑥) + 𝑑(𝑥)𝑦′(𝑥 − 1) = 𝑓(𝑥) 

𝑦(𝑥) = 1 + 𝑥, 𝑥𝜖[−1,0], 𝑦′(2) = 2 

where 𝑎1 = 10 + exp(𝑥
2) , 𝑎2 = 10 + exp(−x) , 𝑏(𝑥) = 3, 𝑐(𝑥) = −1, 𝑑(𝑥) =

−1, 𝑓1(𝑥) = 1, 𝑓2(𝑥) = −1. 

Table 3.7 and 3.8 represents the maximum absolute error obtained for different values of 

N for example 3.5 and 3.6, where figures 3.7 and 3.8 show the solution of these 

examples. 

3.3.6 Discussion 

Third order SPDDE with large delay is considered with discontinuous convection-diffusion 

coefficient and source term. With the uniform partition of the domain, the solution is 

approximated by quintic trigonometric B-spline basis by collocation technique. Discussion 

of convergence is carried out by the hall’s theorem and method is first order convergent. It 

is concluded from the numerical results that maximum absolute error declines as 
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𝑁 increases. So, it can be concluded that the presented scheme is efficient to simulate the 

SPDDE. 

Table 3.1: The maximum error obtained for 𝜺 = 0.1 and for different values of N and 𝜹 for Example 3.1 

𝛿 N=100 N=200 N=400 

0.03 5.7e-005 5.0e-006 4.0e-006 

0.05 3.9e-005 2.5e-005 5.0e-006 

0.09 7.1e-003 1.4e-005 3.0e-006 

Results by Swamy et al. (Swamy, Phaneendra, Babu, & Reddy, 2015) 

0.03 3.1674e-003 1.6058e-003 8.0837e-004 

0.05 8.7514e-003 4.7344e-003 2.4561e-004 

0.09 3.0784e-003 1.5660e-003 7.9000e-004 

 

 

Table 3.2: The maximum absolute error of Example 3.1 for 𝛅 = 𝟎. 𝟓𝛆 

𝜀 𝑁 = 2−4 𝑁 = 2−5 𝑁 = 2−6 𝑁 = 2−7 

2−4 2.906e-003 7.13e-004 1.82e-004 4.00e-005 

2−5 5.226e-003 1.262e-003 3.14e-004 7.80e-005 

2−6 1.071e-002 2.485e-003 6.110e-004 1.520e-004 

Results by Swamy et al. (Swamy, Phaneendra, Babu, & Reddy, 2015)  

2−4 2.1118e-002 1.1692e-002 6.1941e-003 3.1887e-003 

2−5 2.7872e-002 1.6023e-002 8.6367e-003 4.4957e-003 

2−6 3.5711e-002 2.1293e-002 1.1869e-002 6.2731e-003 
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Figure 3.3: Solution of Example 3.1 for 𝜺  =0.01 
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Table 3.3: The maximum error obtained for 𝛆 =0.1 for different values of N and 𝛅 for Example 3.2 

𝛿 N=100 N=200 N=400 

0.03 3.3e-005 6.1e-005 9.0e-006 

0.05 2.5e-005 5.0e-006 1.8e-005 

0.09 6.0e-006 7.0e-006 2.1e-005 

Results by Swamy et al. (Swamy, Phaneendra, Babu, & Reddy, 2015) 

0.03 2.1999e-003 1.1041e-003 5.5315e-004 

0.05 2.2012e-003 1.1049e-003 5.5345e-004 

0.09 2.1999e-003 1.1038e-003 5.5289e-004 

 

Table 3.4: The maximum absolute error of Example 3.2 for 𝜹 = 𝟎. 𝟓𝜺 

𝜀 𝑁 = 2−4 𝑁 = 2−5 𝑁 = 2−6 𝑁 = 2−7 

2−4 5.95e-004 1.56e-004 3.9e-005 8.00e-006 

2−5 1.152e-003 2.88e-004 7.4e-005 1.8e-005 

2−6 2.233e-003 5.48e-004 1.43e-004 3.30e-005 

Results by Swamy et al. (Swamy, Phaneendra, Babu, & Reddy, 2015)  

2−4 1.8632-002 9.6189e-003 4.8865e-003 2.4643e-003 

2−5 2.8161e-002 1.4818e-002 7.6255e-003 3.8713e-003 

2−6 3.7958e-002 2.0967e-002 1.0977e-002 5.6273e-003 
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Figure 3.4: Solution of Example 3.2 for 𝛆 = 0.01 

Table 3.5: Maximum absolute error obtained for Example 3.3 for 𝜺 = 𝟎. 𝟏 

𝛿 N=100 N=200 N=400 

0.03 1.18e-003 6.8e-004 3.0e-004 

0.05 1.04e-003 3.5e-004 2.87e-003 

0.09 1.03e-003 9.2e-004 5.9e-004 

Results by Swamy et al. (Swamy, Phaneendra, Babu, & Reddy, 2015) 

0.03 2.5991e-003 1.2872e-003 6.4039e-004 

0.05 2.6270e-003 1.3013e-003 6.47505e-004 

0.09 2.6813e-003 1.3289e-003 6.6139e-004 
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Figure 3.5: Solution of Example 3.3 for different values of 𝜺 𝒂𝒏𝒅 𝜹 

Table 3.6: Maximum absolute error obtained for Example 3.4 for 𝜺 = 𝟎. 𝟏 and for different values of N 

𝛿 N=100 N=200 N=400 

0.03 8.8e-004 1.4e-004 2.53e-004 

0.05 7.6e-004 1.6e-004 3.3e-004 

0.09 8.3e-004 2.8e-004 2.11e-004 

Results by Swamy et al. (Swamy, Phaneendra, Babu, & Reddy, 2015) 

0.03 1.5929e-002 7.4850e-003 3.6202e-003 

0.05 1.5470e-002 7.2782e-003 3.5209e-003 

0.09 2.1396e-002 1.0097e-002 4.8916e-003 
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Figure 3.6: Solution of Example 3.4 
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Table 3.7: Maximum absolute error of Example 3.5 

𝜀 N=16 N=32 N=64 N=128 N=256 N=512 N=1024 

𝜀 = 2−6 

 

1.29E+00 

 

1.08E+00 

 

1.41E-01 

 

6.13E-03 

 

2.69E-04 

 

2.46E-02 

 

1.93E-01 

 

𝜀 = 2−7 

 

1.10E+00 

 

1.04E+00 

 

1.18E-01 

 

2.00E-03 

 

1.38E-06 

 

8.69E-09 

 

7.16E-08 

 

𝜀 = 2−8 

 

1.00E+00 

 

1.01E+00 

 

1.04E-01 

 

7.20E-04 

 

8.63E-07 

 

1.29E-11 

 

7.84E-18 

 

𝜀 = 2−9 

 

9.52E-01 

 

9.98E-01 

 

9.69E-02 

 

5.81E-04 

 

1.41E-07 

 

1.22E-13 

 

2.29E-23 

 

𝜀 = 2−10 

 

9.26E-01 

 

9.90E-01 

 

9.31E-02 

 

6.46E-04 

 

1.24E-07 

 

4.94E-15 

 

1.81E-27 

 

𝜀 = 2−11 

 

9.13E-01 

 

9.86E-01 

 

9.12E-02 

 

6.71E-04 

 

1.19E-07 

 

1.95E-15 

 

1.05E-30 

 

 

𝜀 = 2−12 

 

9.06E-01 

 

9.84E-01 

 

9.03E-02 

 

6.82E-04 

 

1.15E-07 

 

1.10E-15 

 

1.16E-30 

 

𝜀 = 2−13 

 

9.03E-01 

 

9.83E-01 

 

8.98E-02 

 

6.87E-04 

 

1.12E-07 

 

7.29E-16 

 

2.74E-31 

 

 

𝜀 = 2−14 

 

9.01E-01 

 

9.83E-01 

 

8.96E-02 

 

6.89E-04 

 

1.11E-07 

 

5.61E-16 

 

1.82E-31 

 

𝜀 = 2−15 

 

9.00E-01 

 

9.83E-01 

 

8.94E-02 

 

6.90E-04 

 

1.10E-07 

 

4.82E-16 

 

1.38E-31 

 

𝜀 = 2−16 

 

9.00E-01 

 

9.83E-01 

 

8.94E-02 

 

6.91E-04 

 

1.10E-07 

 

4.44E-16 

 

1.17E-31 

 

𝜀 = 2−17 

 

9.00E-01 

 

9.82E-01 

 

8.93E-02 

 

6.91E-04 

 

1.10E-07 

 

4.25E-16 

 

1.07E-31 

 

𝜀 = 2−18 

 

9.00E-01 

 

9.82E-01 

 

8.93E-02 

 

6.91E-04 

 

1.09E-07 

 

4.15E-16 

 

1.02E-31 

 

𝜀 = 2−19 

 

9.00E-01 

 

9.82E-01 

 

8.93E-02 

 

6.91E-04 

 

1.09E-07 

 

4.11E-16 

 

9.97E-32 

 

𝜀 = 2−20 

 

9.00E-01 

 

9.82E-01 

 

8.93E-02 

 

6.91E-04 

 

1.09E-07 

 

4.08E-16 

 

9.85E-32 

 

𝜀 = 2−21 

 

9.00E-01 

 

9.82E-01 

 

8.93E-02 

 

6.91E-04 

 

1.09E-07 

 

4.07E-16 

 

9.79E-32 

 

𝜀 = 2−22 

 

9.00E-01 

 

9.82E-01 

 

8.93E-02 

 

6.91E-04 

 

1.09E-07 

 

4.07E-16 

 

9.76E-32 

 

𝜀 = 2−23 

 

9.00E-01 

 

9.82E-01 

 

8.93E-02 

 

6.91E-04 

 

1.09E-07 

 

4.06E-16 

 

9.75E-32 
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Figure 3.7: Graph of solution of Example 3.5 for N=128 and 𝛆 =0.25 
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Table 3.8: Maximum absolute error of Example 3.6 

𝜀 N=16 N=32 N=64 N=128 N=256 N=512 N=1024 

𝜀 = 2−6 

 

3.37E+00 

 

7.46E-01 

 

7.90E-02 

 

6.84E-03 

 

2.04E-04 

 

1.67E-02 

 

2.48E-01 

 

𝜀 = 2−7 

 

3.13E+00 

 

5.87E-01 

 

8.32E-02 

 

2.23E-03 

 

5.57E-06 

 

5.61E-09 

 

9.54E-06 

 

𝜀 = 2−8 

 

3.01E+00 

 

5.16E-01 

 

8.74E-02 

 

9.33E-04 

 

7.23E-07 

 

1.02E-11 

 

4.45E-18 

 

𝜀 = 2−9 

 

2.95E+00 

 

4.83E-01 

 

8.79E-02 

 

4.20E-04 

 

7.41E-08 

 

1.49E-13 

 

2.19E-23 

 

𝜀 = 2−10 

 

2.92E+00 

 

4.67E-01 

 

8.78E-02 

 

2.06E-04 

 

4.57E-08 

 

1.67E-15 

 

1.34E-27 

 

𝜀 = 2−11 

 

2.91E+00 

 

4.59E-01 

 

8.77E-02 

 

1.91E-04 

 

6.42E-08 

 

2.49E-15 

 

1.68E-29 

 

𝜀 = 2−12 

 

2.90E+00 

 

4.55E-01 

 

8.76E-02 

 

1.97E-04 

 

7.28E-08 

 

1.85E-15 

 

3.69E-31 

 

𝜀 = 2−13 

 

2.90E+00 

 

4.53E-01 

 

8.76E-02 

 

1.98E-04 

 

7.57E-08 

 

1.42E-15 

 

2.65E-31 

 

𝜀 = 2−14 

 

2.90E+00 

 

4.52E-01 

 

8.75E-02 

 

1.99E-04 

 

7.69E-08 

 

1.21E-15 

 

2.34E-31 

 

𝜀 = 2−15 

 

2.89E+00 

 

4.52E-01 

 

8.75E-02 

 

2.00E-04 

 

7.74E-08 

 

1.10E-15 

 

1.96E-31 

 

𝜀 = 2−16 

 

2.89E+00 

 

4.51E-01 

 

8.75E-02 

 

2.00E-04 

 

7.76E-08 

 

1.05E-15 

 

1.74E-31 

 

𝜀 = 2−17 

 

2.89E+00 

 

4.51E-01 

 

8.75E-02 

 

2.00E-04 

 

7.78E-08 

 

1.02E-15 

 

1.63E-31 

 

𝜀 = 2−18 

 

2.89E+00 

 

4.51E-01 

 

8.75E-02 

 

2.00E-04 

 

7.78E-08 

 

1.01E-15 

 

1.57E-31 

 

𝜀 = 2−19 

 

2.89E+00 

 

4.51E-01 

 

8.75E-02 

 

2.00E-04 

 

7.78E-08 

 

1.00E-15 

 

1.54E-31 

 

𝜀 = 2−20 

 

2.89E+00 

 

4.51E-01 

 

8.75E-02 

 

2.00E-04 

 

7.79E-08 

 

1.00E-15 

 

1.53E-31 

 

𝜀 = 2−21 

 

2.89E+00 

 

4.51E-01 

 

8.75E-02 

 

2.00E-04 

 

7.79E-08 

 

1.00E-15 

 

1.52E-31 

 

𝜀 = 2−22 

 

2.89E+00 

 

4.51E-01 

 

8.75E-02 

 

2.00E-04 

 

7.79E-08 

 

9.99E-16 

 

1.52E-31 

 

𝜀 = 2−23 

 

2.89E+00 

 

4.51E-01 

 

8.75E-02 

 

2.00E-04 

 

7.79E-08 

 

9.99E-16 

 

1.52E-31 
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Figure 3.8: Graph of solution of Example 3.6 for N=128 and  𝜺 = 0.25 
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Chapter 4 

Exponential B-spline collocation scheme for numerical 

treatment of singularly perturbed delay differential equations 

4.1 Introduction 

Definition: Exponential B-splines  

The piecewise continuous basic spline functions (Asahi, Ichige, & Ishii, 2002) can be 

procured by multifold convolution of functions 𝜔𝑖(𝑥) for i=1,2,3….,n s.t 𝛾𝑛(𝑥) = 𝜔1⊛

…⊛𝜔𝑛(𝑥), where ⊛ denotes convolution integral operation. 

 

The weight functions 𝜔𝑖(𝑥) are defined as following: 

i) For central basic spline, these are defined in the domain [-1/2,1/2) and vanish 

in other region 

ii) For shift basic spline, these weights are defined in [0,1) 

iii) For polynomial B-spline, the 𝜔𝑖(𝑥) functions are the rectangular functions of 

height 1. 

To illustrate the exponential B-spline basis consider Figure 4.1 (Asahi, Ichige, & Ishii, 

2002), which shows the exponential B splines obtained by convolution. 

 

 

Figure 4.1: (a) B spline polynomials of order 2, (b) exponential B splines obtained by convolution 
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Now, to obtain the mathematical expression for exponential B-spline functions the weights 

will be considered as exponential functions 𝜔1
𝜇1 exp(𝜇𝑖𝑥) , 𝜇𝑖𝜖𝐶   and 𝜔1

𝜇1𝜖𝐶 is a 

normalization factor. 

The vector 𝜇𝑟⃗⃗⃗⃗ = (𝜇1, 𝜇2, … , 𝜇𝑟)
𝑇 and then the exponential B-spline function can be 

demonstrated as: 

Τ𝜇𝑟⃗⃗⃗⃗  ⃗(𝑥) =∑𝑑𝜇𝑛⃗⃗ ⃗⃗  ⃗[𝑘]𝜎𝜇𝑛⃗⃗ ⃗⃗  ⃗(𝑥 − 𝑘)

𝑘𝜖𝑍

 

where 𝑑𝜇𝑟[𝑘] = 𝛿[𝑘] − 𝑒𝜇𝑟𝛿[𝑘 − 1] is single discrete difference function (𝛿[𝑘]is 

Kronecter’s delta function),  𝑑𝜇𝑛⃗⃗ ⃗⃗  ⃗[𝑘] = 𝑑𝜇1 ∗ 𝑑𝜇2 ∗ … ∗ 𝑑𝜇𝑛[𝑘] is multiple discrete 

difference function, 𝜎𝜇𝑛⃗⃗ ⃗⃗  ⃗(. ) is the continuous exponential truncated power given by: 

 

𝜎𝜇1(𝑥) = {
𝜔1 (𝑥 −

1

2
) ,           𝑥𝜖[0,∞)

0,                           otherwise
 . 

Then the recursively relation is expressed as 𝜎𝜇𝑟⃗⃗⃗⃗  ⃗(𝑥) = ∫ 𝜔𝑟 (𝑥 −
1

2
)

∞

0
𝜎𝜇𝑟⃗⃗⃗⃗  ⃗−1(𝑥 − 𝑥1)𝑑𝑥1. 

So, the expanded exponential B-spline function is given by:  

Τ𝑚
𝜇𝑛⃗⃗ ⃗⃗  ⃗(𝑥) = Τ𝜇𝑛⃗⃗ ⃗⃗  ⃗ (

𝑥

𝑚
) = 𝜆𝑚

𝜇𝑛⃗⃗ ⃗⃗  ⃗∑ 𝑑𝜇𝑛⃗⃗ ⃗⃗  ⃗[𝑘]𝑘𝜖𝑍 𝜎
𝜇𝑛⃗⃗⃗⃗ ⃗⃗ 

𝑚 (𝑥 = 𝑚𝑘) with m as positive integer  

And 𝜆𝑚
𝜇𝑛⃗⃗ ⃗⃗  ⃗ = 𝑚∏

sinh(
𝜇𝑟
2𝑚
)

sinh(
𝜇𝑟
2
)
exp (−

𝑚−1

2𝑚

𝑛
𝑟=1 𝜇𝑟) is the scalar function. 

In recent years many researchers have worked on exponential B-spline function for 

numerical solution of the differential equations such as: Mohammadi (Mohammadi, 2013) 

presented an exponential B-spline collocation method for approximating solution of 

convection-diffusion equation with Dirichlet’s type boundary conditions. Hepson et al. 

(Hepson, Korkmaz, & Dag, 2017) proposed exponential B-spline collocation method for 

approximating numerical solutions of the Gardner equation. Burger’s equation was treated 

by Ersoy et al. (Ersoy, Dag, & Adar, 2016) by exponential B-spline collocation method. 

Ersoy and Dag (Ersoy & Dag, 2016) numerically treated Kuramoto-Sivashinsky equation 



81 
 

together with Crank Nicolson scheme by using exponential cubic B-spline collocation 

method. Dag and Ersoy (Dag & Ersoy, 2016) applied exponential B-spline collocation 

method to approximate the numerical solution of Fisher's equation. Ersoy and Dang  

(Ersoy, Korkmaz, & Dag 2016) proposed exponential B-Spline collocation method for 

numerical solutions of Boussinesq systems for water waves. Numerical solutions of the 

Korteweg-de Vries (KdV) equation was approximated by Ersoy and Dag (Ersoy & Dag, 

2015a) by the exponential cubic B-spline algorithm by reducing the problem into a system 

of algebraic equations which were solved by using a variant of Thomas algorithm.  

The exponential B-spline Galerkin method was used by Gorgulu et al. (Gorgulu, Dag, & 

Irk, 2016) to get the numerical solution of the Burgers' equation. Gorgulu et al. (Gorgulu, 

Dag, & Irk, 2017) solved solitary waves of RLW equation by exponential B-spline 

Galerkin method. Apart from numerical solution of differential equations, exponential B-

spline interpolation is technique used in image compression, digital zooming, computed 

tomography (CT), magnetic resonance imaging (MRI) (Gupta, Lee, & Lee, 2007). A novel 

efficient technique was proposed by Fahmy and Fahmy (Fahmy & Fahmy, 2012) for spatial 

image compression by applications of exponential B-spline functions due to the extra 

degrees of freedom inherited by the arbitrary choice of exponential B-spline parameters.  

4.2 Problem statement 

Consider following perturbed delay differential equation: 

−𝜀𝑦′′(𝑥) + 𝑎(𝑥)𝑦(𝑥) + 𝑏(𝑥)𝑦(𝑥 − 1) = 𝑓(𝑥) ,     𝑥 ∈ Ω−⋃Ω+,  (4.1) 

subject to the conditions 

    y(x)=∅(𝑥) ,  𝑥 ∈ [−1, 0], 𝑦(2) =𝛾 ,                

where 𝑎(𝑥) ≥ 𝛼1 > 𝛼 > 0, 𝛽0 ≤ 𝑏(𝑥) ≤ 𝛽 < 0, 𝛼1 + 𝛽0 > 𝜂 > 0, Ω− = (0,1) and 

Ω+ = (1,2)  . Also, the functions 𝑎(𝑥), 𝑏(𝑥) and 𝑓(𝑥) are sufficiently smooth on Ω̅ where 

Ω̅ = [0,2]. 
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This type of SPDDE (4.1) showcase layer comportment at 𝑥 = 0 and at 𝑥 = 2, and 

existence of solution of such equations are well explained in article by Schmitt (Schmitt, 

1969). Furthermore, this type of boundary value problem transpires (emerges) in control 

theory where the problems involving signal transmission are tangled by the sequel of time 

delays (Kaufmann, Kaufmann, Pamboukian, & Moraes, 2012). Some of the root causes 

liable for emerge of these time delays are ascertained such as media of propagation of 

signal and excellence of appliance used while some of the causes are ambiguous. For the 

readers concerned in such variational problems can refer (Élʹsgolʹc, 1964). 

Taylor’s series up to second order accuracyis used to handle the delay term.  

𝑦(𝑥 − 1) = 𝑦(𝑥) − 𝑦′(𝑥) +
𝑦′′(𝑥)

2
 

By using the above relation in equation (4.1), following equation is obtained 

 𝑃(𝑥)𝑦′′(𝑥) + 𝑄(𝑥)𝑦′(𝑥) + 𝑅(𝑥)𝑦(𝑥) = 𝑓(𝑥)   (4.2) 

where 

𝑃(𝑥) = 𝜀 −
𝑏(𝑥)

2
, 𝑄(𝑥) = −𝑏(𝑥)and 𝑅(𝑥) = 𝑏(𝑥)+𝑎(𝑥) 

4.3 Exponential cubic B-spline collocation method 

The domain is partitioned into a uniform mesh with each sub intervals of length 1/N and 

the resultant partition is {0≡ 𝑥0 < 𝑥1 < 𝑥2 <. . . < 𝑥𝑁 ≡ 2} where 𝑁 is the total number of 

partition points.  

An approximation to the solution is considered as: 

𝑦(𝑥)=∑ 𝛼𝑖𝐸𝐵𝑖(𝑥)
𝑁+1
𝑖=−1     (4.3) 

where 𝛼𝑖
′𝑠 are the unknown real coefficients and 𝐸𝐵𝑖(𝑥)

′𝑠 are the exponential B-spline 

basis functions.  
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The set of functions {𝐸𝐵−1(𝑥), 𝐸𝐵0(𝑥), 𝐸𝐵1(𝑥),… , 𝐸𝐵𝑁+1(𝑥)} form the basis for 

functions defined over the interval [0, 2]. To know more about exponential B-spline 

function one can refer (Ersoy & Dag, 2016).  

The exponential B-splines, 𝐸𝐵𝑖 at the partition points together with the simulate points 

𝑥−3, 𝑥−2, 𝑥−1, 𝑥𝑁+1, 𝑥𝑁+2, 𝑥𝑁+3 outside the domain [0, 1] can be defined as:  

𝐸𝐵𝑖 =

{
 
 
 
 

 
 
 
 𝑏2 ((𝑥𝑖−2 − 𝑥) −

1

𝑝
(sinh(𝑝(𝑥𝑖−2 − 𝑥)))),                                          [𝑥𝑖−2, 𝑥𝑖−1],

𝑎1 + 𝑏1(𝑥𝑖 − 𝑥) + 𝑐1 exp(𝑝(𝑥𝑖 − 𝑥)) + 𝑑1 exp(−𝑝(𝑥𝑖 − 𝑥)),    [𝑥𝑖−1, 𝑥𝑖],

𝑎1 + 𝑏1(𝑥 − 𝑥𝑖) + 𝑐1 exp(𝑝(𝑥 − 𝑥𝑖)) + 𝑑1 exp(−𝑝(𝑥 − 𝑥𝑖)),    [𝑥𝑖 , 𝑥𝑖+1],

𝑏2 ((𝑥 − 𝑥𝑖+2) −
1

𝑝
(sinh(𝑝(𝑥 − 𝑥𝑖+2)))),                                         [𝑥𝑖+1, 𝑥𝑖+2],

0,                                                                                                                     otherwise.

 

where 

𝑎1 =
𝑝𝑐ℎ

𝑝ℎ𝑐 − 𝑠
, 

𝑏1 =
𝑝

2 
[
𝑐(𝑐 − 1) + 𝑠2

(𝑝ℎ𝑐 − 𝑠)(1 − 𝑐)
] ,  

𝑏2 =
𝑝

2(𝑝ℎ𝑐 − 𝑠)
,  

𝑐1 =
1

4
[
exp(−𝑝ℎ)(1−𝑐)+𝑠(exp(−𝑝ℎ)−1)

(𝑝ℎ𝑐−𝑠)(1−𝑐)
], 

𝑑1 =
1

4
[
exp(𝑝ℎ)(𝑐−1)+𝑠(exp(𝑝ℎ)−1)

(𝑝ℎ𝑐−𝑠)(1−𝑐)
], 

and 𝑐 = cosh(𝑝ℎ) , 𝑠 = sinh(𝑝ℎ), 𝑝 is the free parameter. 
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Table 4.1: Values of exponential basis 

𝑥 𝑥𝑖−2 𝑥𝑖−1 𝑥𝑖 𝑥𝑖+1 𝑥𝑖+2 

𝐸𝐵𝑖(𝑥) 0 𝑠 − 𝑝ℎ

2(𝑝ℎ𝑐 − 𝑠)
 

1 𝑠 − 𝑝ℎ

2(𝑝ℎ𝑐 − 𝑠)
 

0 

𝐸𝐵′𝑖(𝑥) 0 𝑝(𝑐 − 1)

2(𝑝ℎ𝑐 − 𝑠)
 

0 𝑝(𝑐 − 1)

2(𝑝ℎ𝑐 − 𝑠)
 

0 

𝐸𝐵′′𝑖(𝑥) 0 𝑝2𝑠

2(𝑝ℎ𝑐 − 𝑠)
 

−𝑝2𝑠

𝑝ℎ𝑐 − 𝑠
 

𝑝2𝑠

2(𝑝ℎ𝑐 − 𝑠)
 

0 

 

Now by using values of 𝐸𝐵𝑖(𝑥), 𝐸𝐵
′
𝑖(𝑥) and 𝐸𝐵

′′
𝑖(𝑥) at nodal points from Table 4.1, 

𝑦(𝑥) and its first and second order derivative can be expressed as:  

𝑦(𝑥𝑖) =  𝑚1𝑎𝑖−1 + 𝑎𝑖 +𝑚1𝑎𝑖+1 

𝑦′(𝑥𝑖) = 𝑚2𝑎𝑖+1 −𝑚2𝑎𝑖−1 

𝑦′′(𝑥𝑖) = 𝑚3𝑎𝑖−1 − 2𝑚3𝑎𝑖 +𝑚3𝑎𝑖+1 

where 𝑚1 =
𝑠−𝑝ℎ

2(𝑝ℎ𝑐−𝑠)
, 𝑚2 =

𝑝(𝑐−1)

2(𝑝ℎ𝑐−𝑠)
, 𝑚3 =

𝑝2𝑠

2(𝑝ℎ𝑐−𝑠)
 

By substituting the values of 𝑦𝑖 ,  𝑦𝑖
′ and 𝑦𝑖

′′ at nodal points in equation (4.2), a system of 

N+1 linear equations in N+3 unspecified variables has been obtained as: 

  𝐸𝑖
𝑙𝛼𝑖−1 + 𝐸𝑖𝛼𝑖 + 𝐸𝑖

𝑟𝛼𝑖+1 = 𝑓𝑖,          0 ≤ 𝑖 ≤ 𝑁  (4.4) 

where 

𝐸𝑖
𝑙 = 𝑃(𝑥)𝑚1 − 𝑄(𝑥)𝑚2 + 𝑅(𝑥)𝑚3 

𝐸𝑖 = 𝑃(𝑥) − 2𝑅(𝑥)𝑚3 

𝐸𝑖
𝑟 = 𝑃(𝑥)𝑚1 + 𝑄(𝑥)𝑚2 + 𝑅(𝑥)𝑚3 
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The variables 𝛼−1 and 𝛼𝑁+1 exists when 𝑖 = 0  and 𝑖 = 𝑁 will be considered in equation 

(4.4). To eliminate these variables, boundary conditions 𝑦(𝑥0) = ∅0 and 𝑦(𝑥𝑁) = 𝛾 are 

used that results in: 

𝛼−1 =
∅0−𝛼0−𝑚1𝛼1

𝑚1
  and 𝛼𝑁+1 =

𝛾−𝛼𝑁−𝑚1𝛼𝑁−1

𝑚1
 

 

Substituting these values in equation (4.4) for i=0 and i=N results in: 

 𝛼0 (𝐸0 −
1

𝑚1
𝐸0

𝑙) + 𝛼1(𝐸0
𝑟 − 𝐸0

𝑙) = 𝑓0 −
∅0𝐸0

𝑙

𝑚1
  (4.5) 

and 

   𝛼𝑁−1(𝐸𝑁
𝑙 − 𝐸𝑁

𝑟) + 𝛼𝑁 (𝐸𝑁 −
1

𝑚1
𝐸𝑁

𝑟) = 𝑓𝑁 −
𝛾𝐸𝑁

𝑟

𝑚1
 (4.6) 

The N+1 equations in N+1 variables lead to system of linear equations A𝛼=B where 𝛼 =

[𝛼0 , 𝛼1, 𝛼2, ……… . , 𝛼𝑁]
𝑇. 

The tri-diagonal matrix A is given by 

 

 

0 0 0 0

1

1 1 1

1 1 1

1

1
0

0

0 0 0

0

1
0

l r l

l r

l r

i i i

l r

N N N

l r r

N N N N

E E E E
m

E E E

E E E

E E E

E E E E
m

− − −

− 
+ − 

 
 
 
 
 
 
 
 
 
 
 
 
 

− − 
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and the right-hand side is a column matrix B, given by 

0
0 0

1

1

2

1

1

( )

( )

( )

( )

( ) ( )

l

N

r

N
N

f x E
m

f x

f x

f x

E
f x

m





−

  
−  

  
 
 
 
 
 
 
 
 
 
 
 

−
 
 

 

4.4 Convergence Analysis 

In this section, a procedure is narrated to discuss the convergence analysis of the method 

by truncation error. It is assumed that the function 𝑦(𝑥) be the function with continuous 

derivatives over the entire domain [0,1]. 

Now using the approximated relation of  𝑌𝑁(𝑥𝑖), 𝑌𝑁
′(𝑥𝑖) , the following relationship has 

been obtained: 

𝑚1𝑌𝑁
′(𝑥𝑖−1) + 𝑌𝑁

′(𝑥𝑖) + 𝑚1𝑌𝑁
′(𝑥𝑖+1) = 𝑚2[𝑦𝑁(𝑥𝑖+1)+𝑦𝑁(𝑥𝑖−1)]  (4.7) 

Using the operator 𝐸(𝑦(𝑥𝑖))=𝑦𝑁(𝑥𝑖+1) in equation (4.7) results in 

(𝑚1𝐸
−1 + 1 +𝑚1𝐸)𝑌𝑁

′(𝑥𝑖) = 𝑚2(𝐸 − 𝐸
−1)𝑦𝑁(𝑥𝑖) 

Hence,  

𝑌′𝑁(𝑥𝑖) = [
𝑚2(𝐸 − 𝐸

−1)

(𝑚1𝐸−1 + 1 +𝑚2𝐸)
] 𝑦𝑁(𝑥𝑖) 

On using 𝐸 = 𝑒ℎ𝐷 and expand it in powers of ℎ𝐷, the following is obtained. 

𝑌′𝑁(𝑥𝑖) = [
𝑚2(𝑒

ℎ𝐷 − 𝑒−ℎ𝐷) 

(𝑚1𝑒−ℎ𝐷 + 1 +𝑚2𝑒ℎ𝐷)
] 𝑦𝑁(𝑥𝑖) 



87 
 

                 =   
2𝑚2ℎ

𝜆
𝑦𝑁
′ (𝑥𝑖) + ℎ

2 [
−2𝑚2(𝑚2 −𝑚1)

𝜆2
] + 𝑂(ℎ3) 

where 𝜆=𝑚1 +𝑚2 + 1 

Therefore, the truncation error is: ℎ2 [
−2𝑚2(𝑚2−𝑚1)

𝜆2
] + 𝑂(ℎ3) 

Now the obtained system of equations 𝐴𝑌 = 𝐵 where 𝐴 = (𝑡𝑖,𝑗), 0≤ 𝑖, 𝑗 ≤ 𝑁 which is a 

tridiagonal matrix with 

𝑡𝑖,𝑖−1 = 𝐸𝑖
𝑙, 𝑡𝑖,𝑖 = 𝐸𝑖  and 𝑡𝑖,𝑖+1 = 𝐸𝑖

𝑟   for i=1,2,3,4,……,N-1 

𝑡0,0 = 𝐸0, 𝑡0,1 = 𝐸0
𝑟, 𝑡𝑁−1,𝑁 = 𝐸𝑁  and 𝑡𝑁,𝑁 = 𝐸𝑁

𝑟  

with local truncation error 𝑇𝑖(ℎ𝑖) = ℎ
2 [

−2𝑚2(𝑚2−𝑚1)

𝜆2
] + 𝑂(ℎ3) 

And 𝑌 = (y1,y2,y3,….,yn-1)
T 

Also if  �̅� = (𝑦1̅̅ ̅, 𝑦2̅̅ ̅, 𝑦3̅̅ ̅, … . . 𝑦𝑛−1̅̅ ̅̅ ̅̅ )𝑇 is the exact solution and the local truncation error is 

𝑇(ℎ) = (𝑇1(ℎ1), 𝑇2(ℎ2), 𝑇3(ℎ3), ……… . 𝑇𝑛−1(ℎ𝑛−1))
𝑇
, then as it is known  𝐴�̅� − 𝑇(ℎ) =

𝐶, where 𝐶 is any constant. 

So, result is 𝐴(�̅� − 𝑌) = 𝑇(ℎ) 

The error equation can be written as 𝐴𝐸 = 𝑇(ℎ)     (4.8) 

where 𝐸=�̅� − 𝑌=(𝑒1, 𝑒2, 𝑒3, ………𝑒𝑛−1)
𝑇 

Hence from equation (4.8), 𝐸 = 𝐴−1𝑇(ℎ)      (4.9) 

A is irreducible and monotone for small h. 

Thus 𝐴−1 exists. 

From the theory of matrices, it is known that ∑ 𝑡𝑘,𝑖̅̅ ̅̅ 𝑆𝑖 = 1 𝑛
𝑖=0  
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where 𝑡𝑘,𝑖̅̅ ̅̅  is the (k,i)th  element of the 𝐴−1. 

Here we have 𝑆𝑖 = ∑ 𝑡𝑖,𝑗 = ℎ0𝐵𝑖
𝑛−1
𝑗=1 ,  

where 𝐵𝑖={

 𝑃(𝑥𝑖)(1 + 𝑚1) − 𝑄(𝑥𝑖)(𝑚2) + 𝑅(𝑥𝑖)(−𝑚3),                                       for 𝑖 = 0 

𝑃(𝑥𝑖)(1 + 2𝑚1),                                                                for i = 1,2,3, … . . , N − 1

𝑃(𝑥𝑖)(1 + 𝑚1) + 𝑄(𝑥𝑖)(𝑚2) − 𝑅(𝑥𝑖)(−𝑚2),                                       for 𝑖 = 𝑁

 

Therefore, ∑ 𝑡𝑘,𝑖̅̅ ̅̅𝑛
𝑖=0 ≤

1

min(𝑆𝑖)
≤

1

|𝐵𝑖|
 

Thus from the equation (4.9), the element-wise error is 𝑒𝑗 = ∑ 𝑡𝑘,𝑖̅̅ ̅̅𝑛
𝑖=0 𝑇𝑖(ℎ), for 𝑗 =

0,1,2,3, … . . , 𝑁 implies the result that: 

𝑒𝑗 ≤
𝑘ℎ2

|𝐵𝑖|
 

where 𝑘 is a constant independent of ℎ. 

Therefore, ‖𝐸‖ = 𝑂(ℎ2) 

This concludes that our method is second order convergent for the uniform mesh. 

4.5 Numerical Examples 

Example 4.1: 

Consider a SPDDE as:  

−𝜀𝑦′′(𝑥) + 5𝑦(𝑥) − 𝑦(𝑥 − 1) = 1, 

under the conditions:  

𝑦(𝑥)=1,  𝑥 ∈ [−1,0], 𝑦(2) =2. 

The maximum error obtained for this example is presented in Table 4.2 for 𝜀 =

2−4, 2−5, …… , 2−23 and the value of DN is compared by the results obtained by the reported 

scheme. It is observed from the results that with an increase in the value of 𝑁 from 16 to 
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256 the maximum absolute error diminishes while for 𝑁 =512 the obtained error again 

escalates. In Table 3, the maximum error obtained is shown for 𝜀 = 0.01, 0.001 and 

0.0001 and it is found that as the value of perturbation parameter sinks, the absolute error 

increases. The obtained solution by the presented scheme is given in Table 4 for some 

selected nodal points in the domain for 𝜀=0.01 and for diverse values of 𝑁. The layer 

conduct of the approximated solution for different values of perturbation parameter 𝜀 is 

presented in Figure 4.2. 

Example 4.2: 

Consider equation given by: 

−𝜀𝑦′′(𝑥) + (𝑥 + 5)𝑦(𝑥) − 𝑦(𝑥 − 1) = 1, 

under the conditions: 

    y(x)=1, 𝑥 ∈ [−1,0], 𝑦(2) =2. 

The layer behavior of the approximated solution of this example is presented in Figure 4.3. 

And the maximum error obtained for this example presented in Table 4.5 for different 

values of 𝜀 and 𝑁. It is perceived that as the value of 𝑁 enriches from 16 to 256, maximum 

absolute error contracts but for 𝑁 =512, a fluctuation in the error is spotted. In Table 4.6, 

maximum error obtained is shown for 𝜀 = 0.01, 0.001 and 0.0001. The calculated solution 

is presented in Table 4.7 for some nodal points in the domain. 

Example 4.3: 

We have considered SPDDE: 

−𝜀𝑦′′(𝑥) + 2𝑦(𝑥) − 2𝑦(𝑥 − 1) = 1, 

under the conditions: 

    𝑦(𝑥)=1,  𝑥 ∈ [−1,0], 𝑦(2) =2. 
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The behavior of the solution of this example is found to be of layer type as presented in 

Figure 4.3. The maximum error obtained for this example is presented in Table 4.8 and 4.9 

for various values of 𝜀 and 𝑁. From the results obtained in Table 4.8, it can be deduced 

that maximum absolute error depletes with up-gradation in total number of partition points 

for 𝜀 = 2−5, 2−7, 2−13 but for all other values of 𝜀, the absolute error decreases from 𝑁 

=16 to 128 and then deviates. The calculated solution is presented in Table 4.10 for various 

values of 𝑁. 

4.6 Discussion 

We have considered a boundary value problem for one type of SPDDEs. To find an 

approximate solution for this type of problem, we have used an exponential B-spline 

collocation method. The method is shown to be of second order convergent. The proposed 

scheme has been applied in three numerical examples and result has been compared with 

the existing schemes and it is found that our results are better than the reported results in 

the literature. Some recent work reported to solve the SPDDE is also reviewed. The 

behavior of the approximated solution is presented as graphs for all considered problems. 

From the results, it can be surmised that the discussed method of exponential B-spline can 

obtain results of required accuracy. 
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Table 4.2: Maximum absolute error obtained for Example 4.1 

𝜀 N=16 N=32 N=64 N=128 N=256 N=512 

2-4 

 

6.4760E-03 

 

1.6120E-03 

 

3.6600E-04 

 

8.5000E-05 

 

7.9000E-05 

 

3.0800E-04 

 

2-5 

 

5.8860 E-03 

 

1.4680E-03 

 

3.3400E-04 

 

7.4000E-05 

 

7.6000E-05 

 

3.0500E-04 

 

2-6 

 

6.1710 E-03 

 

1.5370E-03 

 

3.4900E-04 

 

7.4000E-05 

 

8.4000E-05 

 

2.8100E-04 

 

2-7 

 

6.3200 E-03 

 

1.5740E-03 

 

3.6000E-04 

 

7.7000E-05 

 

8.4000E-05 

 

3.1400E-04 

 

2-8 

 

6.3970E-03 

 

1.5930E-03 

 

3.6300E-04 

 

8.0000E-05 

 

6.9000E-05 

 

3.1500E-04 

 

2-9 6.4370E-03 

 

1.6020E-03 

 

3.6300E-04 

 

7.9000E-05 

 

5.7000E-05 

 

2.8100E-04 

 

2-10 6.4550 E-03 

 

1.6060E-03 

 

3.6700E-04 

 

8.4000E-05 

 

8.6000E-05 

 

2.8700E-04 

 

2-11 

 

6.4650E-03 

 

1.6100E-03 

 

3.6600E-04 

 

8.1000E-05 

 

7.1000E-05 

 

3.0700E-04 

 

2-12 

 

6.4710E-03 1.6100E-03 3.6600E-04 7.9000E-5 5.8000E-5 3.0600E-04 

2-13 

 

6.4730E-03 

 

1.6110E-03 

 

3.6700E-04 

 

7.8000E-05 

 

4.7000E-05 

 

2.9200E-04 

 

2-14 

 

6.4740E-03 

 

1.6110E-03 

 

3.6800E-04 

 

7.9000E-05 

 

6.3000E-05 

 

3.4200E-04 

 

2-15 

 

6.4750E-03 

 

1.6110E-03 

 

3.6800E-04 

 

7.6000E-05 

 

8.2000E-05 

 

3.2900E-04 

 

2-16 6.4760E-03 

 

1.6110E-03 

 

3.6600E-04 

 

8.1000E-05 

 

9.3000E-05 

 

3.4400E-04 

 

2-17 

 

6.4750E-03 

 

1.6120E-03 

 

3.6600E-04 

 

8.3000E-05 

 

8.6000E-05 

 

3.1700E-04 

 

2-18 

 

6.4750E-03 

 

1.6110E-03 

 

3.6700E-04 

 

8.1000E-05 

 

8.7000E-05 

 

3.1400E-04 

 

2-19 

 

6.4750E-03 

 

1.6120E-03 

 

3.6800E-04 

 

8.4000E-05 

 

5.7000E-05 

 

3.2600E-04 

 

2-20 

 

6.4760E-03 

 

1.6100E-03 

 

3.6900E-04 

 

7.4000E-05 

 

7.2000E-05 

 

3.1300E-04 

 

2-21 

 

6.4750E-03 

 

1.6120E-03 

 

3.6500E-04 

 

7.8000E-05 

 

4.3000E-05 

 

3.3900E-04 

 

2-22 

 

6.4760E-03 

 

1.6110E-03 

 

3.6700E-04 

 

7.8000E-05 

 

5.4000E-05 

 

3.1400E-04 

 

2-23 

 

6.4760E-03 

 

1.6110E-03 

 

3.6700E-04 

 

8.6000E-05 

 

7.8000E-05 

 

3.3500E-04 
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DN by our 

method 

6.4760 E-03 

 

1.6120E-03 

 

3.6800E-04 

 

8.6000E-05 

 

9.3000E-05 

 

3.4400E-04 

 

DN in 

(Subburayan 

& 

Ramanujam, 

2013) 

1.2175 E-01 5.2206E-02 1.8447E-02 6.5158E-03 2.1589E-03 6.5625E-04 

 

Table 4.3: Maximum absolute error obtained for Example 4.1 for different values of 𝜺 

𝜀 N=16 N=32 N=64 N=128 N=256 

0.01 6.2770E-03 

 

1.5640E-03 

 

3.5500E-04 

 

7.8000E-05 

 

7.0000E-05 

 

0.001 6.4550E-03 

 

1.6070E-03 

 

3.6600E-04 

 

8.0000E-05 

 

6.8000E-05 

 

0.0001 6.4740E-03 

 

1.6100E-03 

 

3.6700E-04 

 

8.1000E-05 

 

6.8000E-05 
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Table 4.4: Solution of Example 4.1 for 𝜺 = 𝟎. 𝟎𝟏 

xi N=16 N=32 N=64 N=128 N=256 N=512 

 

0.000 

 

1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 

 

0.250 

 

0.707339 0.707643 0.707723 0.707737 0.707745 0.707753 

 

0.500 

 

0.531473 0.531983 0.532117 0.532142 0.532154 0.532169 

 

0.750 

 

0.430268 0.431084 0.431296 0.431339 0.431354 0.431375 

 

1.000 

 

0.384337 0.385787 0.386158 0.386238 0.386261 0.386279 

 

1.250 

 

0.398841 0.401538 0.40222 0.402373 0.402412 0.40242 

 

1.500 

 

0.522984 0.527685 0.528865 0.529131 0.529195 0.529169 

 

1.750 

 

0.911869 0.918146 0.91971 0.920065 0.920143 0.920073 

2.000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 
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Figure 4.2: Solution of Example 4.1 for diverse values of 𝜺. 
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Table 4.5: Maximum absolute error obtained for Example 4.2 for different values of 𝜺 

𝜀 N=16 N=32 N=64 N=128 N=256 N=512 

2-4 

 

7.6480E-03 

 

1.8930E-03 

 

4.3900E-04 

 

1.1700E-04 

 

1.7000E-05 

 

1.9000E-05 

 

2-5 

 

8.2800E-03 

 

2.0440E-03 

 

4.7600E-04 

 

1.2600E-04 

 

2.5000E-05 

 

2.1000E-05 

 

2-6 

 

8.6270E-03 

 

2.1260E-03 

 

4.9700E-04 

 

1.3200E-04 

 

1.8000E-05 

 

2.0000E-05 

 

2-7 8.8090E-03 

 

2.1700E-03 

 

5.0600E-04 

 

1.3100E-04 

 

2.5000E-05 

 

2.7000E-05 

 

2-8 8.9020E-03 

 

2.1930E-03 

 

5.1300E-04 

 

1.3500E-04 

 

2.5000E-05 

 

3.0000E-05 

 

2-9 

 

8.9490E-03 

 

2.2030E-03 

 

5.1600E-04 

 

1.3600E-04 

 

2.7000E-05 

 

1.4000E-05 

 

2-10 

 

8.9730E-03 

 

2.2100E-03 

 

5.1600E-04 

 

1.3600E-04 

 

3.7000E-05 

 

1.6000E-05 

 

2-11 

 

8.9850E-03 

 

2.2120E-03 

 

5.1700E-04 

 

1.3600E-04 

 

2.6000E-05 

 

3.3000E-05 

 

2-12 

 

8.9910E-03 

 

2.2140E-03 

 

5.1800E-04 

 

1.3600E-04 

 

2.6000E-05 

 

1.9000E-05 

 

2-13 

 

8.9940E-03 

 

2.2130E-03 

 

5.1900E-04 

 

1.3700E-04 

 

2.1000E-05 

 

2.0000E-05 

 

2-14 8.9960E-03 

 

2.2150E-03 

 

5.1800E-04 

 

1.3400E-04 

 

3.1000E-05 

 

1.0000E-05 

 

2-15 

 

8.9970E-03 

 

2.2140E-03 

 

5.1700E-04 

 

1.3800E-04 

 

2.3000E-05 

 

1.6000E-05 

 

2-16 

 

8.9970E-03 

 

2.2150E-03 

 

5.1800E-04 

 

1.3800E-04 

 

2.5000E-05 

 

1.4000E-05 

 

2-17 

 

8.9970E-03 

 

2.2160E-03 

 

5.1700E-04 

 

1.3800E-04 

 

2.4000E-05 

 

4.3000E-05 

 

2-18 

 

8.9970E-03 

 

2.2150E-03 

 

5.1600E-04 

 

1.3800E-04 

 

2.3000E-05 

 

1.9000E-05 

 

2-19 

 

8.9970E-03 

 

2.2150E-03 

 

5.1700E-04 

 

1.3700E-04 

 

2.7000E-05 

 

1.9000E-05 

 

2-20 

 

8.9970E-03 

 

2.2150E-03 

 

5.1800E-04 

 

1.3600E-04 

 

2.3000E-05 

 

1.9000E-05 

 

2-21 

 

8.9970E-03 

 

2.2140E-03 

 

5.1900E-04 

 

1.3700E-04 

 

3.0000E-05 

 

2.0000E-05 

 

2-22 

 

8.9970E-03 

 

2.2160E-03 

 

5.1800E-04 

 

1.3400E-04 

 

3.4000E-05 

 

1.6000E-05 

 

2-23 

 

8.9970E-03 

 

2.2150E-03 

 

5.1900E-04 

 

1.3500E-04 

 

3.0000E-05 

 

2.4000E-05 
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DN by our 

method 

8.9970E-03 2.2160E-03 5.1900E-04 1.3800E-04 3.0000E-05 

4.3000E-05 

DN in 

(Subburayan & 

Ramanujam, 

2013) 

1.6717E-01 7.4650E-02 2.7140E-02 9.3384E-03 3.1724E-03 9.6871E-04 

 

Table 4.6: Maximum absolute error obtained for various values of 𝜺 for Example 4.2 

𝜀 N=16 N=32 N=64 N=128 N=256 

0.01 8.7570E-03 

 

2.1580E-03 

 

5.0400E-04 

 

1.2900E-04 

 

2.6000E-05 

 

0.001 8.9730E-03 

 

2.2090E-03 

 

5.1700E-04 

 

1.3800E-04 

 

2.7000E-05 

 

0.0001 8.9950E-04 

 

2.2140E-03 

 

5.1900E-04 

 

1.3700E-04 

 

2.0000E-05 
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Table 4.7: Approximate solution of Example 4.2 for 𝜺 = 𝟎. 𝟎𝟏 

xi N=16 N=32 N=64 N=128 N=256 N=512 

 

0.000 

 

1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 

 

0.250 

 

0.687818 0.688021 0.688076 0.688082 0.68808 0.688086 

 

0.500 

 

0.493245 0.493629 0.493731 0.49375 0.493756 0.493753 

 

0.750 

 

0.375968 0.376655 0.376834 0.376871 0.376879 0.376885 

 

1.000 

 

0.314159 0.315527 0.315876 0.315954 0.315972 0.315979 

 

1.250 

 

0.308449 0.311315 0.312036 0.312203 0.312243 0.312251 

 

1.500 

 

0.405000 0.410684 0.412099 0.412428 0.412504 0.412527 

 

1.750 

 

0.777506 0.786263 0.788421 0.788925 0.789054 0.789072 

2.000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 
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Figure 4.3: Solution of Example 4.2 at different values of 𝜺. 
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Table 4.8: Maximum absolute error obtained for Example 4.3 for diverse values of 𝜺 

𝜀 N=16 N=32 N=64 N=128 N=256 N=512 

2-4 

 

8.0000E-04 

 

2.2000E-04 

 

4.0000E-05 

 

3.0000E-05 

 

7.0000E-05 

 

7.0000E-05 

 

2-5 

 

8.9000E-04 

 

2.4000E-04 

 

4.0000E-05 

 

4.0000E-05 

 

4.0000E-05 

 

2.8000E-04 

 

2-6 

 

9.3000E-04 

 

2.5000E-04 

 

5.0000E-05 

 

1.0000E-05 

 

4.0000E-05 

 

1.0000E-04 

 

2-7 9.5000E-04 

 

2.6000E-04 

 

4.0000E-05 

 

3.0000E-05 

 

2.0000E-05 

 

1.1000E-04 

 

2-8 9.6000E-04 

 

2.6000E-04 

 

5.0000E-05 

 

3.0000E-05 

 

5.0000E-05 

 

1.1000E-04 

 

2-9 

 

9.6000E-04 

 

2.6000E-04 

 

3.0000E-05 

 

4.0000E-05 

 

4.0000E-05 

 

9.0000E-05 

 

2-10 

 

9.6000E-04 

 

2.6000E-04 

 

4.0000E-05 

 

2.0000E-05 

 

3.0000E-05 

 

9.0000E-05 

 

2-11 

 

9.7000E-04 

 

2.6000E-04 

 

4.0000E-05 

 

2.0000E-05 

 

3.0000E-05 

 

2.3000E-04 

 

2-12 

 

9.7000E-04 

 

2.6000E-04 

 

5.0000E-05 

 

2.0000E-05 

 

5.0000E-05 

 

2.3000E-04 

 

2-13 

 

9.7000E-04 

 

2.6000E-04 

 

3.0000E-05 

 

3.0000E-05 

 

2.0000E-05 

 

1.2000E-04 

 

2-14 9.7000E-04 

 

2.6000E-04 

 

4.0000E-05 

 

3.0000E-05 

 

6.0000E-05 

 

3.0000E-04 

 

2-15 

 

9.7000E-04 

 

2.6000E-04 

 

3.0000E-05 

 

5.0000E-05 

 

6.0000E-05 

 

6.0000E-05 

 

2-16 

 

9.7000E-04 

 

2.6000E-04 

 

5.0000E-05 

 

2.0000E-05 

 

5.0000E-05 

 

1.7000E-04 

 

2-17 

 

9.7000E-04 

 

2.5000E-04 

 

4.0000E-05 

 

6.0000E-05 

 

7.0000E-05 

 

2.9000E-04 

 

2-18 

 

9.8000E-04 

 

2.6000E-04 

 

3.0000E-05 

 

2.0000E-05 

 

9.0000E-05 

 

7.0000E-05 

 

2-19 

 

9.7000E-04 

 

2.7000E-04 

 

4.0000E-05 

 

1.0000E-05 

 

1.2000E-04 

 

3.6000E-04 

 

2-20 

 

9.7000E-04 

 

2.6000E-04 

 

3.0000E-05 

 

1.0000E-05 

 

3.0000E-05 

 

1.5000E-04 

 

2-21 

 

9.7000E-04 

 

2.6000E-04 

 

4.0000E-05 

 

2.0000E-05 

 

3.0000E-05 

 

1.1000E-04 

 

2-22 

 

 

9.7000E-04 

 

2.6000E-04 

 

4.0000E-05 

 

1.0000E-05 

 

2.0000E-05 

 

1.4000E-04 

 

2-23 9.7000E-04 2.6000E-04 4.0000E-05 1.0000E-05 2.0000E-05 5.0000E-05 
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DN by our 

method 

9.7000E-04 

 

2.6000E-04 

 

5.0000E-05 

 

6.0000E-05 

 

1.2000E-04 3.6000E-04 

 

DNin 

(Subburayan 

& 

Ramanujam, 

2013) 

7.0787E-02 3.0352E-02 1.0725E-02 3.7882E-03 1.2551E-03 3.8154E-04 

           
Table 4.9: Maximum absolute error obtained for various values of 𝜺 for Example 4.3 

𝜀 N=16 N=32 N=64 N=128 N=256 

0.01 9.4000E-04 

 

2.5000E-04 

 

4.0000E-05 

 

1.0000E-05 

 

2.0000E-05 

 

0.001 9.7000E-04 

 

2.6000E-04 

 

4.0000E-05 

 

3.0000E-05 

 

4.0000E-05 

 

0.0001 9.6000E-04 

 

2.7000E-04 

 

4.0000E-05 

 

1.0000E-05 

 

3.0000E-05 
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Table 4.10: Solution of Example 4.3 for 𝜺 = 𝟎. 𝟎𝟏 

xi N=16 N=32 N=64 N=128 N=256 N=512 

 

0.000 

 

1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

 

0.250 

 

1.01231 1.01241 1.01244 1.01244 1.01244 1.01245 

 

0.500 

 

1.03255 1.03278 1.03284 1.03286 1.03285 1.03287 

 

0.750 

 

1.06582 1.06622 1.06633 1.06634 1.06635 1.06637 

 

1.000 

 

1.12049 1.1211 1.12126 1.12129 1.12129 1.12131 

 

1.250 

 

1.21036 1.21118 1.21139 1.21143 1.21144 1.21145 

 

1.500 

 

1.35809 1.35903 1.35928 1.35932 1.35932 1.35933 

 

1.750 

 

1.60090 1.60170 1.601910 1.60194 1.60195 1.60195 

2.000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 
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Figure 4.4: Layer behavior of Example 4.3 for 𝜺 = 𝟎. 𝟎𝟏 
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Chapter 5 

A comparison of trigonometric B-spline collocation method 

and exponential B-spline collocation technique 

5.1 Introduction 

The trigonometric B-spline functions are piecewise continuous functions in the space 

Γ𝑚 =span {1, cos(𝑥) , sin(𝑥) , … , cos(𝑘𝑥) , sin(𝑘𝑥)}. These are periodic functions and 

possess continuous differentiability four times the number of partition points in the domain. 

(Guido, 1997). The detailed discussion of these functions is already done in chapter 3.  

The exponential B-splines are the rectangular functions and obtained by convolution 

integral operation. The mathematical expression for exponential B-spline functions is 

obtained by considering the weights as exponential functions. For definition of these 

functions refer to introduction part of chapter 4. 

In recent years, many researchers have worked on exponential B-spline function as well as 

trigonometric B-spline function for numerical solution of the differential equations. The 

matrix differential equations of second order are solved by using exponential and 

trigonometric cubic B-splines by Raslan et al. (Raslan, Hadhoud, & Shaalan, 2018). The 

maximum absolute error obtained by cubic B-spline, trigonometric cubic B-spline and 

exponential cubic B-spline are compared for three numerical examples. 

5.2 Problem Statement 

The following singularly perturbed boundary value is considered for numerical treatment: 

{
−𝜀𝑦′′(𝑥) + 𝑎(𝑥)𝑦′(𝑥) + 𝑏(𝑥)𝑦(𝑥 − 1) =  𝑓(𝑥), 𝑥𝜖Ω∗           (5.1)

𝑦(𝑥) = 𝜙(𝑥), 𝑥𝜖[−1,0],   𝑦(2) = 𝑙.                                              (5.2)
 

where 𝑎(𝑥) = {
𝑎1(𝑥), 𝑥𝜖[0,1]

𝑎2(𝑥), 𝑥𝜖(1,2]
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and f(𝑥) = {
𝑓1(𝑥), 𝑥𝜖[0,1]

𝑓2(𝑥), 𝑥𝜖(1,2]
 

𝑎1(1 −) ≠ 𝑎2(1 +),  

𝑓1(1 −) ≠ 𝑓2(1 +), 𝑎1(𝑥) ≥ 𝛼1 > 𝛼 > 0 and 𝑎2(𝑥) ≤ −𝛼2 < −𝛼 < 0, 𝛼 < min{𝛼1, 𝛼2} 𝑎𝑔. 

And ε is very-very small positive number, 0 < ε<<1. The functions 𝑎(𝑥), 𝑓(𝑥) are 

sufficiently smooth functions and are bounded in region Ω∗. And the function 𝑏(𝑥) is a 

sufficiently smooth function on Ω̅ where Ω̅= [0, 2], Ω = (0, 2), Ω∗=Ω−⋃Ω+, Ω−=(0,1) and  

Ω+ = (1, 2) and 𝜙 is a smooth function on [−1, 0]. 

Taylor’s series up to second order accuracy is used to handle the delay term.  

𝑦(𝑥 − 1) = 𝑦(𝑥) − 𝑦′(𝑥) +
𝑦′′(𝑥)

2
 

By using above in equation (5.1), following is obtained: 

 𝑃(𝑥)𝑦′′(𝑥) + 𝑄(𝑥)𝑦′(𝑥) + 𝑅(𝑥)𝑦(𝑥) = 𝑓(𝑥)   (5.3) 

where 𝑃(𝑥) = −𝜀 +
𝑏(𝑥)

2
, 𝑄(𝑥) = 𝑎(𝑥) − 𝑏(𝑥)and 𝑅(𝑥) = 𝑏(𝑥) 

5.3 Existence of Solution 

Theorem: The equation (5.1)-(5.2) has solution 𝑦𝜖𝐶0(Ω̅)⋂𝐶1(Ω)⋂𝐶2(Ω∗). 

Proof: As discussed by Farrell et al. (Farrell, Hegarty, Miller, O'Riordan, & Shishkin, 

2004) 

5.4 Selection of mesh 

To capture the layer behavior of considered SPDDE the domain is partitioned into the 

piecewise uniform refined mesh also known as Shishkin mesh.  

The interval [0,2] is divided into five subintervals as: 

 [0,𝜏1], [1 − 𝜏1, 1], [1, 1 + 𝜏2], [1 + 𝜏2, 2 − 𝜏2], [2 − 𝜏2, 2] 
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where 𝜏1 = min (
1

2
,
2𝜀 ln𝑁

𝛼
) and 𝜏2 = min (

1

4
,
2𝜀 ln𝑁

𝛼
).  

The mesh {0=𝑥0 < 𝑥1 < 𝑥2 < ⋯… .< 𝑥𝑁 = 2} is defined as: 

𝑥0 = 0, 𝑥𝑖 = 𝑥0 + 𝑖ℎ1 for 1 ≤ 𝑖 ≤
𝑁

4
 where ℎ1 =

4(1−𝜏1)

𝑁
, 

𝑥𝑖 = 𝑥𝑖−1 + 𝑖ℎ2 for 
𝑁

4
≤ 𝑖 ≤

𝑁

2
where ℎ2 =

4𝜏1

𝑁
, 

𝑥𝑖 = 𝑥𝑖−1 + 𝑖ℎ3 for 
𝑁

2
≤ 𝑖 ≤

5𝑁

8
where ℎ3 =

8𝜏2

𝑁
, 

𝑥𝑖 = 𝑥𝑖−1 + 𝑖ℎ4, 
5𝑁

8
≤ 𝑖 ≤

7𝑁

8
 where  ℎ4 =

4(1−2𝜏2)

𝑁
, 

𝑥𝑖 = 𝑥𝑖−1 + 𝑖ℎ3, 
7𝑁

8
≤ 𝑖 ≤ 𝑁 

5.5  Implementation of Collocation Method 

The approximate solution of equation is obtained using exponential B-spline basis 

function. Let the partitioned of the domain be {0 ≡ 𝑥0 < 𝑥1 < 𝑥2 <. . . < 𝑥𝑁 ≡ 2} where 

𝑁 is total number of partition points and ℎ = 𝑥𝑖+1 − 𝑥𝑖. An approximation to the solution 

is given as below: 

𝑦(𝑥)=∑ 𝛼𝑖𝐸𝐵𝑖(𝑥)
𝑁+1
𝑖=−1        (5.4) 

where 𝛼𝑖
′s are the unknown real coefficients and 𝐸𝐵𝑖(𝑥)’s are the exponential B-spline 

basis functions. The exponential B-splines, 𝐸𝐵𝑖(𝑥) at the partition points can be defined as 

in chapter 4 (section: 4.3). 

Now by using the values of 𝐸𝐵𝑖(𝑥), 𝐸𝐵
′
𝑖(𝑥) 𝑎𝑛𝑑 𝐸𝐵

′′
𝑖(𝑥) at nodal points from Table 4.1, 

y(x) and its first two derivatives can be expressed as: 

𝑦(𝑥𝑖) =  𝑚1𝛼𝑖−1 + 𝛼𝑖 +𝑚1𝛼𝑖+1, 

𝑦′(𝑥𝑖) = 𝑚2𝛼𝑖+1 −𝑚2𝛼𝑖−1, 

𝑦′′(𝑥𝑖) = 𝑚3𝛼𝑖−1 − 2𝑚3𝛼𝑖 +𝑚3𝛼𝑖+1 

where 𝑚1 =
𝑠−𝑝ℎ

2(𝑝ℎ𝑐−𝑠)
, 𝑚2 =

𝑝(𝑐−1)

2(𝑝ℎ𝑐−𝑠)
, 𝑚3 =

𝑝2𝑠

2(𝑝ℎ𝑐−𝑠)
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Now, to apply the collocation technique, the collocation points are selected in such a way 

that they concur with the nodal points. On substituting the values of 𝑦𝑖,  𝑦𝑖
′ and 𝑦𝑖

′′ at nodal 

points in equation (5.4), a system of N+1 linear equations in N+3 unspecified variables has 

been obtained as: 

 

  𝐸𝑖
𝑙𝛼𝑖−1 + 𝐸𝑖𝛼𝑖 + 𝐸𝑖

𝑟𝛼𝑖+1 = 𝑓𝑖,          0 ≤ 𝑖 ≤ 𝑁   (5.5) 

where 

𝐸𝑖
𝑙 = 𝑃(𝑥)𝑚1 − 𝑄(𝑥)𝑚2 + 𝑅(𝑥)𝑚3,  

𝐸𝑖 = 𝑃(𝑥) − 2𝑅(𝑥)𝑚3,  

 𝐸𝑖
𝑟 = 𝑃(𝑥)𝑚1 + 𝑄(𝑥)𝑚2 + 𝑅(𝑥)𝑚3 

The additional variables 𝛼−1 and 𝛼𝑛+1 exists when 𝑖 = 0 and 𝑖 = 𝑛 will be considered in 

equation (5.5). To eliminate these variables, using boundary conditions following has been 

used: 

 

𝛼−1 =
∅0−𝛼0−𝑚1𝛼1

𝑚1
  and 𝛼𝑛+1 =

𝛾−𝛼𝑛−𝑚1𝛼𝑛−1

𝑚1
 

 

On substituting these values in equation (5.5) for 𝑖 = 0 and 𝑖 = 𝑁, the following is 

obtained: 

 𝛼0 (
1

𝑚1
𝐸0

𝑙 + 𝐸0) + 𝛼1(𝐸0
𝑟 − 𝐸0

𝑙) = 𝑓0 −
∅𝐸0

𝑙

𝑚1
  (5.6) 

and 

   𝛼𝑛−1(𝐸𝑁
𝑙 − 𝐸𝑁

𝑟) + 𝛼𝑛 (𝐸𝑁 −
1

𝑚1
𝐸𝑁

𝑟) = 𝑓𝑛 −
𝛾𝐸𝑛

𝑟

𝑚1
  (5.7) 

 

Now we have N+1 equations in N+1 variables as A𝛼=B where 𝛼 =

[𝛼0 , 𝛼1, 𝛼2, ……… . , 𝛼𝑁]
𝑇. 

The tridiagonal matrix A is given by  
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0 0 0 0

1

1 1 1

1 1 1

1

1
0

0

0 0 0

0

1
0

l r l

l r

l r

i i i

l r

N N N

l r r

N N N N

E E E E
m

E E E

E E E

E E E

E E E E
m

− − −

 
− + − 
 
 
 
 
 
 
 
 
 
 
 
 
 

− − 
 

 

 

and the right-hand side is a column matrix B, given by 

0
0 0

1

1

2

1

1

( )

( )

( )

( )

( ) ( )

l

n

r

n
n

f x E
m

f x

f x

f x

E
f x

m





−

  
−  

  
 
 
 
 
 
 
 
 
 
 
 

−
 
   

Similar procedure is followed to approximate the solution by using trigonometric cubic B-

spline basis functions by considering 𝑦(𝑥)=∑ 𝛼𝑖𝑇𝑖(𝑥)
𝑁+1
𝑖=−1  as approximate solution, where 

𝑇𝑖(𝑥)
′𝑠 are the Trigonometric B-spline basis functions.  

The value of 𝑦(𝑥) and its first two derivatives can be expressed in terms of 𝛼𝑖
′𝑠 as: 

𝑦(𝑥𝑖) =  𝑘1𝛼𝑖−1 + 𝑘2𝛼𝑖 + 𝑘1𝛼𝑖+1 

𝑦′(𝑥𝑖) = 𝑘3𝛼𝑖−1+𝑘4𝛼𝑖+1 



108 
 

 

𝑦′′(𝑥𝑖) = 𝑘5𝛼𝑖−1 + 𝑘6𝛼𝑖 + 𝑘5𝛼𝑖+1 

where 𝑘1 = 𝑠𝑖𝑛2 (
ℎ

2
) csc(ℎ) csc (

3ℎ

2
), 

𝑘2 =
2

1+2cos(ℎ)
, 

𝑘3 = −
3

4
csc (

3ℎ

2
), 

𝑘4 =
3

4
csc (

3ℎ

2
), 

 𝑘5 =
3((1+3cos(ℎ))𝑐𝑜𝑠2(

ℎ

2
))

16(2cos(
ℎ

2
)+cos(

3ℎ

2
))

 

and 𝑘6 = −
3𝑐𝑜𝑡2(

ℎ

2
)

2+4 cos(ℎ)
 

Using 𝑦(𝑥𝑖), 𝑦
′(𝑥𝑖)and 𝑦′′(𝑥𝑖)in (3) we get a system of 𝑁 + 1 linear equations in 𝑁 +

3 unspecified variables as: 

 

𝑇𝑖
𝑙𝛼𝑖−1 + 𝑇𝑖𝛼𝑖 + 𝑇𝑖

𝑟𝛼𝑖+1 = 𝑓𝑖, 0 ≤ 𝑖 ≤ 𝑁  (5.8) 

where 

𝑇𝑖
𝑙 = 𝑃(𝑥)𝑘5 + 𝑞(𝑥)𝑘3 + 𝑅(𝑥)𝑘1 

𝑇𝑖 = 𝑃(𝑥)𝑘6 + 𝑅(𝑥)𝑘2 

 𝑇𝑖
𝑟 = 𝑃(𝑥)𝑘5 + 𝑄(𝑥)𝑘4 + 𝑅(𝑥)𝑘1 

Here also there exist two additional variables 𝛼−1 and 𝛼𝑛+1 whose values are obtained 

from boundary conditions. 

𝛼−1 =
∅0−𝑘2𝛼0−𝑘1𝛼1

𝑘1
  and 𝛼𝑛+1 =

𝛾−𝑘1𝛼𝑛−1−𝑘2𝛼𝑛

𝑘1
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From using above in equation (5.8) N+1 equations in N+1 variables as 𝐴′𝛼=𝐵′ is obtained 

with 

𝐴′=

2
0 0 0 0

1

1 1 1

1 1 1

2

1

0

0

0 0 0

0

0

l r l

l r

l r

i i i

l r

n n n

l r r

n N N N

k
T T T T

k

T T T

T T T

T T T

k
T T T T

k

− − −

 
− − 

 
 
 
 
 
 
 
 
 
 
 
 
 

− − 
 

 

 

And 𝐵′=

0
0 0

1

1

1

1

( ) ( )

( )

( )

( ) ( )

l

n

r

n
n

f x T
k

f x

f x

T
f x

k





−

 
− 

 
 
 
 
 
 
 
 
 
 

− 
 

 

5.6 Convergence Analysis 

This section is preserved for the exploration of the convergence of both the techniques used 

for approximation of solution. It is presumed that 𝐶 is a non-specific positive constant 

independent of 𝛿, 𝜀 and 𝑁, which may capture different values at different points. 
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Lemma 5.1 

If the functions 𝑎(𝑥), 𝑏(𝑥), 𝑐(𝑥) and 𝑓(𝑥) are sufficiently smooth and are independent of 

𝜀, then the solution y of (5.1) –(5.2) satisfies 

|𝑦(𝑘)(𝑥)| ≤ 𝐶 (1 + 𝜀−𝑘𝑒−
𝛽𝑥

𝜀 ) , 𝑘 = 0,1,2…   (Kumar & Kadalbajoo, 2012). 

Lemma 5.2 

Hall error estimation: If 𝑓(𝑥) ∈ 𝐶2[0,1] and 𝑦(𝑥) ∈  𝐶4[0,1],  

Then ‖𝐷𝑗(𝑦 − 𝑌)‖ ≤ 𝜆𝑗‖𝑦
4‖ℎ̅4−𝑗 , 𝑗 = 0,1,2, … where 𝜆𝑗 are the constants (Hall, 1968). 

Lemma 5.3  

(Varah, 1975) If A is diagonal dominant by rows and 𝛼 = mini(|𝑎𝑖,𝑖| − ∑ |𝑎𝑖,𝑗|𝑖≠𝑗 ).  

Then ‖𝐴−1‖∞ <
1

𝛼
 . 

Lemma 5.4 

For the refined mesh, 
ℎ̅

𝜀
≤ 𝑐𝑁−1 ln𝑁. 

Proof:  

As discussed in section 5.4, [0,2] partitioned into four subintervals: 

[0,𝜏1], [1 − 𝜏1, 1], [1, 1 + 𝜏2], [1 + 𝜏2, 2 − 𝜏2], [2 − 𝜏2, 2] 

with 𝜏1 = min (
1

2
,
2𝜀 ln𝑁

𝛼
) and 𝜏2 = min (

1

4
,
2𝜀 ln𝑁

𝛼
) 

If,1 ≤ 𝑖 ≤
𝑁

4
 ,ℎ̅ =

4(1−𝜏1)

𝑁
 and for 

5𝑁

8
≤ 𝑖 ≤

7𝑁

8
, ℎ̅ =

4(1−2𝜏2)

𝑁
 

For 
𝑁

4
≤ 𝑖 ≤

𝑁

2
 , ℎ̅ =

4𝜏1

𝑁
 

For 
𝑁

 2
≤ 𝑖 ≤

5𝑁

8
 and 

7𝑁

8
≤ 𝑖 ≤ 𝑁 , ℎ̅ =

8𝜏2

𝑁
, 

combining all subintervals, clearly 
ℎ̅

𝜀
≤ 𝑐𝑁−1 ln 𝑁. 
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Lemma 5.5  

The trigonometric B-splines 𝑇𝑖’s and exponential B-splines 𝐸𝐵𝑖(𝑥)’s, satisfy the 

inequality ∑ |𝐸𝐵𝑖(𝑥)|
𝑁+1
𝑖=−1 ≤ 10 and ∑ |𝑇𝑖(𝑥)|

𝑁+1
𝑖=−1 ≤ 10, 0 ≤ 𝑥 ≤ 2. 

Proof: The result can be proved similarly as proved by Kadalbajoo and Aggarwal 

(Kadalbajoo & Aggarwal, 2005)   

Theorem 5.1 

Let S(x) be the approximation to the solution y(x) of boundary value problem (5.1)-(5.2). 

IF 𝑓𝜖𝐶2[0,1], then the error estimate is given by  

Sup𝜀𝑚𝑎𝑥𝑖|𝑦(𝑥𝑖) − 𝑆(𝑥𝑖)| ≤ 𝐶𝑁−2𝑙𝑛3𝑁, where 0 ≤ 𝑖 ≤ 𝑁 and 0<𝜀 ≤ 1 and 𝐶 is a 

positive constant as defined above. 

Proof:  

Consider 𝑌(𝑥) be the unique spline interpolate to the solution 𝑦(𝑥) of SPDDE given in 

(1)-(2) and the estimated error is given by |𝑦(𝑥) − 𝑆(𝑥)|.  

Now by using Hall error estimation as defined in Lemma 5.2 the following estimation has 

been obtained: 

|𝐿𝑦(𝑥𝑖) − 𝐿𝑌(𝑥𝑖)| = |−𝜀 +
𝑏(𝑥)

2
| |𝑦′′(𝑥𝑖) − 𝑌

′′(𝑥𝑖)| + |𝑎(𝑥) − 𝑏(𝑥)||𝑦
′(𝑥𝑖) − 𝑌

′(𝑥𝑖)| 

                             +|𝑏(𝑥)||𝑦(𝑥𝑖) − 𝑌(𝑥𝑖)| 

         ≤ (𝑐𝜀𝜆3ℎ̅
2 + (‖𝑏(𝑥)‖ + ‖𝑏(𝑥)‖)𝜆1ℎ̅

3 + ‖𝑏(𝑥)‖𝜆0ℎ̅
4)‖𝑦4‖ 

Using lemma 5.1, results in 

|𝐿𝑦(𝑥𝑖) − 𝐿𝑌(𝑥𝑖)| ≤ (𝑐𝜀𝜆3ℎ̅
2 + (‖𝑏(𝑥)‖ + ‖𝑏(𝑥)‖)𝜆1ℎ̅

3 + ‖𝑏(𝑥)‖𝜆0ℎ̅
4)𝐶 (1 +

𝜀−4𝑒−
𝛽𝑥

𝜀 )          (5.9) 
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By lemma 5.4, 
ℎ̅

𝜀
≤ 𝑐𝑁−1 ln 𝑁, following is obtained: 

|𝐿𝑦(𝑥𝑖) − 𝐿𝑌(𝑥𝑖)| ≤  𝐶𝑁−2𝑙𝑛2𝑁   

Therefore, |𝐿𝑦(𝑥𝑖) − 𝐿𝑌(𝑥𝑖)| = |𝑓(𝑥𝑖) − 𝐿𝑌(𝑥𝑖)| ≤ 𝐶𝑁−1𝑙𝑛3𝑁  (5.10) 

Now consider the boundary value problem as 

𝐿𝑌(𝑥) = 𝑓(̅𝑥𝑖) with conditions 𝑌(𝑥0) = 𝜙(0), 𝑌(𝑥𝑁) = 𝛾       

A�̅�=�̅� is linear system of equations obtained from above problem, which follows that 

 A(𝛼 − �̅�) = 𝐵 − �̅�         (5.11) 

where 𝐵 − �̅� = [𝑓(𝑥0) − 𝑓(̅𝑥0), 𝑓(𝑥1) − 𝑓(̅𝑥1),… , 𝑓(𝑥𝑁) − 𝑓(̅𝑥𝑁)]
𝑡
 

By using (5.10), ‖𝐵 − �̅�‖ ≤ 𝐶𝑁−2𝑙𝑛2𝑁      (5.12) 

The matrix A is strictly diagonal dominant for sufficiently small values of ℎ. 

Now by exponential scheme: 

|𝑎𝑖,𝑖| − (|𝑎𝑖,𝑖−1| + |𝑎𝑖,𝑖+1|)=  

{
 
 

 
 (
𝑚2

𝑚1
− 2𝑚2)𝑄(𝑥0) + (−2𝑚3 −

𝑚3

𝑚1
)𝑅(𝑥0),               from first row

(−
𝑚2

𝑚1
+ 2𝑚2)𝑄(𝑥𝑁) + 𝑅(𝑥𝑁) (−2𝑚3 −

𝑚3

𝑚1
) , from last row

(1 − 2𝑚1)𝑃(𝑥𝑖) − 4𝑚3𝑅(𝑥𝑖),                                   otherwise

 

For trigonometric scheme 

 |𝑎𝑖,𝑖| − (|𝑎𝑖,𝑖−1| + |𝑎𝑖,𝑖+1|)= 

{
 
 

 
 (𝑘6 − 2𝑘5 −

𝑘2𝑘5

𝑘1
)𝑃(𝑥0) + (−𝑘3 − 𝑘4 −

𝑘2𝑘3

𝑘1
)𝑄(𝑥0) + (−2𝑘1)𝑅(𝑥0),     from first row

(𝑘6 −
𝑘2

𝑘1
𝑘5) 𝑃(𝑥𝑁) + (𝑘4 − 𝑘3 −

𝑘2𝑘4

𝑘1
)𝑄(𝑥𝑁),                                                   from last row

(𝑘6 − 2𝑘5)𝑃(𝑥𝑖) + (𝑘2 − 2𝑘1)𝑅(𝑥𝑖) − (𝑘3 + 𝑘4)𝑄(𝑥𝑖),                           otherwise
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Therefore, from 5.13 and lemma 5.3, ‖𝐴−1‖ ≤ 𝐶  (for both schemes)  (5.13) 

Now combining (5.11), (5.12), and (5.13), following is obtained. 

|𝛼 − �̅�| ≤ 𝐶𝑁−2𝑙𝑛2𝑁 , 0 ≤ 𝑖 ≤ 𝑁         (5.14) 

Now, by using boundary conditions (5.6) and (5.7), the value of |𝛼−1 − 𝛼−1̅̅ ̅̅ ̅| and 

|𝛼𝑁+1 − 𝛼𝑁+1̅̅ ̅̅ ̅̅ ̅| are estimated,  

|𝛼−1 − 𝛼−1̅̅ ̅̅ ̅| ≤ 𝐶𝑁−2𝑙𝑛2𝑁 and |𝛼𝑁+1 − 𝛼𝑁+1̅̅ ̅̅ ̅̅ ̅| ≤ 𝐶𝑁−2𝑙𝑛2𝑁 

Therefore, 𝑚𝑎𝑥|𝛼𝑖 − 𝛼�̅�| ≤ 𝐶𝑁−2𝑙𝑛2𝑁, for − 1 ≤ 𝑖 ≤ 𝑁 + 1   (5.15)    

Now using lemma 5.5 and (5.15) to estimate  

|𝑆(𝑥) − 𝑌(𝑥)| =

{
 
 

 
 ∑(𝛼𝑖 − 𝛼�̅�)𝐸𝐵𝑖(𝑥) for exponential scheme

𝑁+1

𝑖=−1

∑(𝛼𝑖 − 𝛼�̅�)𝑇𝑖(𝑥)

𝑁+1

𝑖=−1

 for trigonometric scheme

 

results in |𝑆(𝑥) − 𝑌(𝑥)| ≤ 𝐶𝑁−2𝑙𝑛3𝑁, which leads to result of theorem with triangle 

inequality as: 

sup(ε)max(𝑖) |𝑦(𝑥𝑖) − 𝑆(𝑥𝑖)| ≤ 𝐶𝑁−2𝑙𝑛2𝑁, where 0 ≤ 𝑖 ≤ 𝑁 and 0<𝜀 ≤ 1. 

Hence the result is proved. 

5.7 Numerical Examples 

To validate the proposed scheme two examples are considered for numerical solution. The 

double mesh principle is used to calculate the maximum absolute error (MAE), 

𝐷𝑁=𝑚𝑎𝑥|𝑦𝑖
𝑁 − 𝑦2𝑖

2𝑁| where 1 ≤ 𝑖 ≤ 𝑁. 
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Example 5.1: 

 

−𝜀𝑦′′(𝑥) + 3𝑦′(𝑥) − 𝑦(𝑥 − 1) = 0, 𝑥𝜖Ω−

−𝜀𝑦′′(𝑥) − 4𝑦′(𝑥) − 𝑦(𝑥 − 1) = 0, 𝑥𝜖Ω+

𝑦(𝑥) = 1, 𝑥𝜖[−1,0],   𝑦(2) = 2.

 

Example 5.2: 

 

−𝜀𝑦′′(𝑥) + (3 + 𝑥2)𝑦′(𝑥) − 𝑦(𝑥 − 1) = 1, 𝑥𝜖Ω−

−𝜀𝑦′′(𝑥) − (4 + 𝑥)𝑦′(𝑥) − 𝑦(𝑥 − 1) = −1, 𝑥𝜖Ω+

𝑦(𝑥) = 1, 𝑥𝜖[−1,0],   𝑦(2) = 2.

 

5.7.1 Discussion of numerical examples 

It is perceptible from the Table 5.2 and 5.6 that with refined mesh for both examples by 

exponential B-spline collocation technique the maximum absolute error declines as 𝑁 

increases from 16 to 64, and then a fall in absolute error is observed with rise in 𝑁. In 

contrast, maximum absolute error alleviates with magnification in value of 𝑁 by 

trigonometric B-spline collocation method. Overall, better numerical solution is obtained 

by exponential B-spline method for small values of 𝑁, whereas trigonometric B-spline 

collocation method provided superior approximate solution for large values of 𝑁. Table 

5.3 and 5.7, presents maximum absolute error obtained with uniform mesh for examples 

and it is found that the maximum absolute error obtained by exponential scheme is less as 

compared to trigonometric scheme, and error reduces with increment in value of 𝑁 from 

16 to 256 but from 𝑁 =256 to 1024, error upraised. 

In Table 5.1 and 5.5, maximum absolute error by trigonometric scheme with refined mesh 

are presented for different values of perturbation parameter, also the maximum absolute 

error obtained is compared by existing method and found less as compared to reported 

method. 

From Table 5.4 and 5.8, the results obtained by trigonometric scheme, shows that 

maximum absolute error is less for small values of  𝑁 by uniform mesh, and for large values 
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of 𝑁 by refined. Furthermore, with increase in 𝑁, Maximum absolute error decreases in 

same scheme with refined mesh where a fluctuation is perceptible if uniform mesh is used 

to partition the domain. On flip side, while using exponential scheme little maximum 

absolute error is obtained by uniform mesh as compared to refined mesh.  

Exponential scheme is providing better solution with uniform mesh, but an increase in error 

is notable if value of  𝑁 is raised beyond 256. Overall, exponential scheme with uniform 

mesh approximate improves solution with uniform mesh for 𝑁=16 to 256, but for 𝑁=512 

and 1024, trigonometric scheme with refined mesh yields better solution as compared to 

exponential scheme. 

From figure 5.2 and 5.5, it is observed that conduct of solution is same by exponential 

scheme with both mesh and by trigonometric method with uniform mesh. But by 

trigonometric scheme with refined mesh the vogue of solution is in reverse manner. 

5.8 Conclusion  

A singularly perturbed delay boundary value problem of second order with discontinuous 

convection coefficient and source term is considered for numerical treatment by 

trigonometric B-spline and exponential B-spline on piecewise uniform refined (Shishkin) 

mesh. Discussion of convergence is carried out by Hall’s theorem for both exponential and 

trigonometric B-spline collocation method and the order of convergence of the method is 

of almost second order. From numerical results, it is observed that better numerical solution 

is obtained by exponential B-spline method for small values of 𝑁, whereas trigonometric 

B-spline collocation method provided superior approximate solution for large values of  𝑁. 

The results are also compared by both schemes for uniform as well as refined mesh and it 

can be concluded that trigonometric scheme with refined mesh yields better solution 

whereas exponential scheme gives improved solution with uniform mesh. Both basis 

functions provided the solutions with good accuracy. Hence, the discussed techniques can 

be applied to other SPDDE for numerical solution.  
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Table 5.1: Maximum absolute error of Example 5.1 by trigonometric B-spline with refined mesh with 
𝝉𝟏=0.3, 𝝉𝟐=0.15 

𝜀 N=16 N=32 N=64 N=128 N=256 N=512 N=1024 

2-6 0.115909 0.019628 0.009065 0.004419 0.002195 0.001155 0.000929 

2-7 0.116116 0.019476 0.009005 0.004395 0.002186 0.001146 0.000933 

2-8 0.116224 0.019395 0.008974 0.004387 0.002173 0.001154 0.000925 

2-9 0.116280 0.019354 0.008959 0.004379 0.002170 0.001129 0.000942 

2-10 0.116309 0.019333 0.008952 0.004376 0.002172 0.001146 0.000928 

2-11 0.116324 0.019324 0.008946 0.004373 0.002174 0.001140 0.000914 

2-12 0.116330 0.019317 0.008945 0.004371 0.002169 0.001153 0.000939 

2-13 0.116334 0.019315 0.008943 0.004375 0.002167 0.001132 0.000957 

2-14 0.116336 0.019314 0.008943 0.004372 0.002172 0.001141 0.000951 

2-15 0.116337 0.019313 0.008943 0.004371 0.002174 0.001117 0.000951 

2-16 0.116337 0.019313 0.008942 0.004371 0.002179 0.001130 0.000967 

2-17 0.116337 0.019313 0.008942 0.004365 0.002179 0.001130 0.000967 

2-18 0.116337 0.019313 0.008941 0.004373 0.002167 0.001138 0.000955 

2-19 0.116337 0.019312 0.008942 0.004374 0.002169 0.001134 0.000906 

2-20 0.116338 0.019313 0.008942 0.004372 0.002172 0.001127 0.000981 

2-21 0.116338 0.019313 0.008942 0.004373 0.002176 0.001123 0.000986 

2-22 0.116337 0.019313 0.008941 0.004373 0.002172 0.001120 0.000989 

2-23 0.116337 0.019313 0.008942 0.004373 0.002174 0.001123 0.001005 

2-24 0.116337 0.019313 0.008942 0.004372 0.002171 0.001133 0.000997 

2-25 0.116337 0.019313 0.008942 0.004373 0.002172 0.001137 0.000992 

2-26 0.116337 0.019313 0.008942 0.004373 0.002172 0.001137 0.000992 

2-27 0.116337 0.019313 0.008942 0.004373 0.002172 0.001137 0.000992 

DN 0.116338 0.019628 0.009065 0.004419 0.002195 0.001155 0.001005 

DN in  

(Subburayan, 

2016b) 

0.072967 0.047273 0.039152 0.027566 0.018534 0.011663 0.0069885 
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Table 5.2: Maximum absolute error of Example 5.1 by both schemes with refined mesh 

𝜀 
Applied basis 

functions 
N=16 N=32 N=64 N=128 N=256 N=512 

2-5 

 

Exponential 
0.02984 

 

0.00547 

 

0.00477 

 

0.01469 

 

0.04700 

 

0.10459 

 

 

Trigonometric 
0.115909 0.019628 0.009065 0.004419 0.002195 0.001155 

2-10 

 

Exponential 
0.03222 

 

0.00601 

 

0.00477 

 

0.01464 

 

0.04695 

 

0.10522 

 

 

Trigonometric 
0.116309 0.019333 0.008952 0.004376 0.002172 0.001146 

2-15 

 

Exponential 
0.03238 

 

0.00604 

 

0.00477 

 

0.01464 

 

0.04702 

 

0.10509 

 

 

Trigonometric 
0.116337 0.019313 0.008943 0.004371 0.002174 0.001117 

2-20 

Exponential 
0.03238 

 

0.00605 

 

0.00478 

 

0.01466 

 

0.04706 

 

0.10502 

 

 

Trigonometric 
0.116338 0.019313 0.008942 0.004372 0.002172 0.001127 

2-25 

Exponential 
0.03239 

 

0.00604 

 

0.00477 

 

0.01464 

 

0.04706 

 

0.10525 

 

 

Trigonometric 
0.116337 0.019313 0.008942 0.004373 0.002172 0.001137 
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Table 5.3: Maximum absolute error of Example 5.1 by both schemes with uniform mesh 

𝜀 
Applied basis 

functions 
N=16 N=32 N=64 N=128 N=256 N=512 N=1024 

2-5 

Exponential 
0.005550 

 

0.001380 

 

0.000320 

 

6E-05 

 

4E-05 

 

0.001650 

 

0.027770 

 

Trigonometric 
0.098240 

 

0.023230 

 

0.009250 

 

0.004190 

 

0.002190 

 

0.003400 

 

0.019370 

 

2-10 

 

Exponential 
0.01314 

 

0.00310 

 

0.00073 

 

0.0002 

 

0.00035 

 

0.00255 

 

0.01277 

 

Trigonometric 
0.09593 

 

0.02373 

 

0.00941 

 

0.00396 

 

0.00147 

 

0.00745 

 

0.01985 

 

2-15 

 

Exponential 
0.01320 

 

0.00311 

 

0.00074 

 

0.00021 

 

0.00044 

 

0.00228 

 

0.01755 

 

Trigonometric 
0.09577 

 

0.02376 

 

0.00942 

 

0.00398 

 

0.00156 

 

0.0054 

 

0.02251 

 

2-20 

Exponential 
0.01321 

 

0.00311 

 

0.00074 

 

0.00021 

 

0.00026 

 

0.00287 

 

0.01716 

 

Trigonometric 
0.09577 

 

0.02376 

 

0.00942 

 

0.00393 

 

0.00152 

 

0.00669 

 

0.01843 

 

2-25 

Exponential 
0.01321 

 

0.00311 

 

0.00073 

 

0.0002 

 

0.00037 

 

0.00272 

 

0.01724 

 

Trigonometric 
0.09577 

 

0.02376 

 

0.00941 

 

0.00396 

 

0.00142 

 

0.00532 

 

0.02245 
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Table 5.4: Maximum absolute error obtained for Example 5.1 by both schemes and 

 both meshes for 𝜺=2-6 

 

Trigonometric 

scheme 

Mesh type N=16 N=32 N=64 N=128 N=256 N=512 N=1024 

 Refined  

 
0.115909 0.019628 0.009065 0.004419 0.002195 0.001155 0.000929 

Uniform  0.098240 

 

0.023230 

 

0.009250 

 

0.004190 

 

0.002190 

 

0.003400 

 

0.019370 

 

 

Exponential 

Scheme 

Refined 0.029840 

 

0.005407 

 

0.004770 

 

0.014690 

 

0.047000 

 

0.104590 

 
Not exist 

Uniform 0.005550 

 

0.001380 

 

0.000320 

 

6E-05 

 

4E-05 

 

0.001650 

 

0.027770 

 

 

 

Figure 5.1: Solution of Example 5.1 by trigonometric scheme and refined mesh 
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Figure 5.2: Solution of Example 5.1 by both schemes with refined mesh for 𝑵=64 and 𝜺 =0.25 
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Figure 5.3: Solution of Example 5.1 
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Table 5.5: Solution of Example 5.2 by trigonometric B-spline by refined mesh with 𝝉𝟏=0.3,𝝉𝟐=0.15. 

𝜀 N=16 N=32 N=64 N=128 N=256 N=512 N=1024 

2-6 
0.109726 

 

0.020282 

 

0.008614 

 

0.004059 

 

0.001983 

 

0.000995 

 

0.000580 

 

2-7 
0.109806 

 

0.020150 

 

0.008556 

 

0.004034 

 

0.001973 

 

0.000995 

 

0.000538 

 

2-8 
0.109850 

 

0.020080 

 

0.008527 

 

0.004020 

 

0.001971 

 

0.000981 

 

0.000530 

 

2-9 
0.109871 

 

0.020044 

 

0.008512 

 

0.004015 

 

0.001970 

 

0.000980 

 

0.000596 

 

2-10 
0.109883 

 

0.020026 

 

0.008503 

 

0.004013 

 

0.001962 

 

0.000974 

 

0.000572 

 

2-11 
0.109889 

 

0.020018 

 

0.008500 

 

0.004009 

 

0.001960 

 

0.000986 

 

0.000555 

 

2-12 
0.109892 

 

0.020013 

 

0.008498 

 

0.004010 

 

0.001962 

 

0.000988 

 

0.000540 

 

2-13 
0.109894 

 

0.020011 

 

0.008497 

 

0.004011 

 

0.001954 

 

0.000989 

 

0.000557 

 

2-14 
0.109894 

 

0.020009 

 

0.008497 

 

0.004012 

 

0.001956 

 

0.000980 

 

0.000561 

 

2-15 
0.109894 

 

0.020009 

 

0.008496 

 

0.004011 

 

0.001960 

 

0.000981 

 

0.000558 

 

2-20 
0.109895 

 

0.020009 

 

0.008495 

 

0.004011 

 

0.001961 

 

0.000979 

 

0.000578 

 

2-25 
0.109895 

 

0.020008 

 

0.008497 

 

0.004008 

 

0.001962 

 

0.000985 

 

0.000580 

 

2-27 
0.109895 

 

0.020008 

 

0.008497 

 

0.004008 

 

0.001962 

 

0.000985 

 

0.000580 

 

DN 
0.109895 

 

0.020150 

 

0.008614 

 

0.004059 

 

0.001983 

 

0.000995 

 

0.000596 

 

DN in  

(Subburayan, 

2016b) 

0.047088 0.028800 0.024542 0.016827 0.01337 0.0071177 0.0042869 
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Table 5.6: Maximum absolute error of Example 5.2 by both schemes with refined mesh 

𝜀 
Applied basis 

functions 
N=16 N=32 N=64 N=128 N=256 N=512 

2-6 

 

Exponential 
0.02168 

 

0.00564 

 

0.00666 

 

0.01476 

 

0.05009 

 

0.10956 

 

Trigonometric 
0.109726 

 

0.020282 

 

0.008614 

 

0.004059 

 

0.001983 

 

0.000995 

 

2-10 

 

 

Exponential 
0.0231 0.00599 0.00667 0.01476 0.05009 0.10954 

Trigonometric 
0.109883 

 

0.020026 

 

0.008503 

 

0.004013 

 

0.001962 

 

0.000974 

 

2-15 

 

Exponential 
0.02319 

 

0.00603 

 

0.00666 

 

0.01477 

 

0.05007 

 

0.10957 

 

Trigonometric 
0.109894 

 

0.020009 

 

0.008496 

 

0.004011 

 

0.001960 

 

0.000981 

 

2-20 

Exponential 
0.0232 

 

0.00602 

 

0.00667 

 

0.01477 

 

0.05007 

 

0.10957 

 

Trigonometric 
0.109895 

 

0.020009 

 

0.008495 

 

0.004011 

 

0.001961 

 

0.000979 

 

2-25 

Exponential 
0.02319 

 

0.00603 

 

0.00666 

 

0.01477 

 

0.05007 

 

0.10957 

 

Trigonometric 
0.109895 

 

0.020008 

 

0.008497 

 

0.004008 

 

0.001962 

 

0.000985 
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Table 5.7: Maximum absolute error of Example 5.2 by both schemes with uniform mesh 

𝜀 
Applied basis 

functions 
N=16 N=32 N=64 N=128 N=256 N=512 N=1024 

2-5 

 

Exponential 
0.00538 

 

0.00129 

 

0.0003 

 

8E-05 

 

6E-05 

 

0.00074 

 

0.00149 

 

Trigonometric 
0.09525 

 

0.02383 

 

0.00919 

 

0.00403 

 

0.00199 

 

0.00134 

 

0.00435 

 

2-10 

 

Exponential 
0.00579 

 

0.00138 

 

0.00033 

 

8E-05 

 

6E-05 

 

0.00037 

 

0.00333 

 

Trigonometric 
0.09294 

 

0.02433 

 

0.00932 

 

0.00408 

 

0.00161 

 

0.0026 

 

0.01013 

 

2-15 

 

Exponential 
0.00582 

 

0.00139 

 

0.00032 

 

7E-05 

 

0.00013 

 

0.00034 

 

0.00238 

 

Trigonometric 
0.09278 

 

0.02436 

 

0.00933 

 

0.00408 

 

0.00157 

 

0.00268 

 

0.01031 

 

2-20 

Exponential 
0.00582 

 

0.00139 

 

0.00033 

 

8E-05 

 

0.00014 

 

0.00029 

 

0.00229 

 

Trigonometric 
0.09278 

 

0.02437 

 

0.00933 

 

0.00409 

 

0.0016 

 

0.00276 

 

0.01028 

 

2-25 

Exponential 
0.00582 

 

0.00138 

 

0.00034 

 

8E-05 

 

0.00011 

 

0.00029 

 

0.00241 

 

Trigonometric 
0.09278 

 

0.02437 

 

0.00932 

 

0.00408 

 

0.00166 

 

0.00257 

 

0.01031 
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Table 5.8: Maximum absolute error obtained for Example 5.2 by both schemes and both meshes MAE 

for 𝜺=2-6 

 

Trigonometric 

scheme 

Mesh type N=16 N=32 N=64 N=128 N=256 N=512 N=1024 

 

Refined  

0.109726 

 

0.020282 

 

0.008614 

 

0.004059 

 

0.001983 

 

0.000995 

 

0.000580 

 

Uniform  0.09525 

 

0.02383 

 

0.00919 

 

0.00403 

 

0.00199 

 

0.00134 

 

0.00435 

 

 

Exponential 

Scheme 

 

Refined  

0.02168 

 

0.00564 

 

0.00666 

 

0.01476 

 

0.05009 

 

0.10956 

 
Not exist 

Uniform  0.00538 

 

0.00129 

 

0.0003 

 

8E-05 

 

6E-05 

 

0.00074 

 

0.00149 

 

 

 

Figure 5.4: Solution of Example 5.2 by exponential scheme for 𝑵=64 and 𝜺 =0.25 
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 Figure 5.5: Solution of Example 5.2 by both schemes with refined mesh for 𝑵 =64 and 𝜺 =0.25  
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Figure 5.6: Solution of Example 5.2 
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Chapter 6 

Conclusion and Future Directions 

6.1 Conclusion 

This thesis aims to explore the numerical solution of singularly perturbed delay differential 

equations. The ramifications of many mathematical models in real life are the singularly 

perturbed differential equations. These equations are prominent to study due to the broad 

applications of these equations in the development of science and technology. On the flip 

side, the challenges to simulate the equation is because of the abrupt change in the solution 

at the boundary layer, which results when the small parameter 𝜀 → 0. This small parameter: 

perturbation parameter appears due to lack of continuity which may be the result of small 

parameters in the system, if suppressed diminish the order of the differential equation. The 

other important parameter associated with singularly perturbed delay differential equations 

is delay (retarded or shift) parameter. This delay comes into picture for any system which 

involves feedback control mean examination of a process in order to make changes to 

improve the system, for an instance; in a cricket match, the batsman continuously monitors 

the ball offered by the fielder and then by using that information he decide to hit the ball 

in a particular direction with some specific force by controlling his body position.  So, the 

time delay effects the functioning of the system and then the output of the system. Analysis 

of this small parameter delay help to better understanding of the physical system and to do 

the best utilization of the resources. As an example, it was observed by the researchers that 

output of the solar pane is improved if the delay is considered in the modeling of the heating 

systems as compared to the utility of the solar energy through solar panel without 

considering the retarded term in the model.  
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6.2 Highlights of work 

In this work, singularly perturbed delay differential equations are numerical treated by 

various numerical techniques. Various spline basis with collocation method have been used 

to find the approximate solution of these equations. The concept of fitting of polynomials 

is selected to solve these equations because of the major advantage of that they are easy to 

handle and the compact support property of splines for low computational complications. 

The collocation method is considered as an effortless method in numerical solution as it 

only involves fitting polynomial at selected points in the domain of the problem. 

The SPDDE considered for numerical treatment in the chapters is the result of the 

mathematical model of various applications in science and technology such as biosciences, 

control theory, neurobiology, bifurcation and related to problems in the field of sciences.  

The main highlights of the chapters are as follows: 

Chapter two includes a modified cubic B-spline collocation method used for numerical 

solution of two SPDDEs of second order. Modified cubic spline has been used because 

modification in cubic spline provides a diagonal dominant matric system which is easy to 

solve. One of the equations considered in this chapter arises in neurobiology which 

describes the study of nerve cells and the other equation is a general second order SPDDE, 

that results in four different SPDDEs for different values of the parameters. The singularly 

perturbed difference equation from stein model and is described in this work. In this 

chapter, the domain has been partitioned by uniform as well as Shishkin mesh. The 

convergence analysis of the scheme has been discussed, and maximum absolute error has 

been calculated by using double mesh principle. It is clear from the numerical results that 

maximum absolute error is less if Shishkin mesh is generated for partition of the domain 

as compared to uniform mesh. The variation in numerical solution has been examined with 

alteration in the perturbation and delay parameter. 

In chapter three, Trigonometric B–spline collocation technique has been adapted for 

numerical analysis of SPDDE. The reason to select this technique is that trigonometric B–
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spline functions are highly periodic and are continuously differentiable 4 times the number 

of knot points in the partition of the domain. A second order SPDDE has been treated by 

cubic trigonometric B–spline method and a third SPDDE by quintic trigonometric B-spline 

scheme. The implementation of the scheme was simple, and the results obtained by this 

scheme have been found better as compared to the existing method. For both equations, 

convergence analysis has been carried out separately by using the concept of truncation 

error and Hall’s theorem. Graphs have been plotted to capture the layer behavior of the 

solution of considered SPDDE and to show the pointwise maximum absolute error in the 

domain. 

Chapter four is devoted to exponential B-splines based scheme for calculating the 

numerical solution of SPDDE. The exponential B-spline functions have been procured by 

multifold convolution of rectangular functions. A SPDDE of second order with large delay 

has been considered for numerical treatment by exponential B-splines collocation 

technique. In this work, the procedure to find truncation error has been explained well and 

the method used is second order convergent. The results obtained by the existing method 

have been found better as compared to the reported scheme. The conduct of solution has 

been discussed in detail with respect to the number of partition points and perturbation 

parameter. 

Chapter five deals with a comparison of two spline-based schemes. The two schemes are: 

trigonometric B-spline collocation and exponential B-spline collocation are compared in 

order to investigate the conduct of solution provided by both schemes. In this work, to 

partition the domain, refined mesh has been selected. The convergence analysis of both 

schemes has been carried out through Hall’s theorem and both schemes found to be of 

second order convergent. It was found from the numerical results that exponential B-spline 

collocation method accord better solution for small values of 𝑁 whereas trigonometric B-

spline collocation scheme provides best solution for large values of  𝑁. 
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6.3 Overall Numerical Work done 

The following table briefly describes about the singularly perturbed delay differential 

equations considered for the numerical solution in present work: 

Table 6.1: Summary of the numerical treatments performed on SPDDEs 

S.No. SPDDE  Mesh selected Method Conclusion Order  

of 

convergence 

1 𝜀2𝑦′′(𝑥) + 𝑎(𝑥)𝑦(𝑥 − 𝛿) + 𝑏(𝑥)𝑦(𝑥) = 𝑓(𝑥), 0 < 𝑥 < 1 

subject to conditions: 

𝑦(𝑥) = ∅(𝑥) on −𝛿 ≤ 𝑥 ≤ 0, and 𝑦(1) =  𝛾 

 

Shiskhin 

mesh 

Collocation method 

was used to solve 

SPDDE using 

modified B-spline 

basis functions. 

The presented scheme was 

simple to use and readily 

adapted for implementation 

through computer. 

Not presented 

2 𝜀𝑦′′(𝑥) + 𝑎(𝑥)𝑦′(𝑥 − 𝛿1) + 𝑏(𝑥)𝑦(𝑥 − 𝛿2) + 𝑐(𝑥)𝑦(𝑥)

= 𝑓(𝑥) ,      0 < 𝑥 < 𝑙 

subject to the conditions: 

𝑦(𝑥)=∅(𝑥) on −𝛿 ≤ 𝑥 < 0, where 𝛿 = max (𝛿1, 𝛿2)  

and 𝑦(𝑙)=𝛾 ,  

 

Uniform and 

Shiskhin 

mesh 

Modified B-spline 

collocation method. 

The proposed method was 

significant for the solution of 

second order singularly 

perturbed differential 

equations with small shift 

and for a general SPDDE. 

Two 

3 𝐿𝑦 ≡ 𝜀𝑦′′(𝑥) + 𝑎(𝑥)𝑦(𝑥 − 𝛿) + 𝑏(𝑥)𝑦(𝑥) = 𝑓(𝑥), 0 < 𝑥 <

1  

subject to constraint: 

𝑦(𝑥) = 𝜙(𝑥), 𝑥𝜖[−𝛿, 0] and 𝑦(1) = 𝛾  

 

Uniform mesh 

Trigonometric cubic 

B-spline collocation 

method. 

 

Results obtained are better 

than the results obtained by 

the reported method. 

Two 

4 −𝜀𝑦′′′(𝑥) + 𝑎(𝑥)𝑦′′(𝑥) + 𝑏(𝑥)𝑦′(𝑥) + 𝑐(𝑥)𝑦(𝑥)

+ 𝑑(𝑥)𝑦′(𝑥 − 1) = 𝑓(𝑥),  

𝑥 ∈ Ω∗, where Ω∗ = Ω+ ∪ Ω−,  Ω− = (0,1),  Ω+ = (1,2)   

subject to the conditions: 

𝑦(𝑥)=∅(𝑥), 𝑥𝜖[−1,0] and 𝑦(2)=𝛾   

 

 

 

Uniform mesh 

Quintic 

trigonometric B-

spline collocation 

method 

The presented scheme is 

efficient to simulate a class of 

third order SPBVP with large 

delay with discontinuous 

convection-diffusion 

coefficient and source term.   

One 
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6.4 Conclusions from our work 

1. The implementation of the scheme (collocation method) is straightforward for 

computer implementation. 

2. The concept of obtaining piecewise continuous polynomials in splines basis provides 

better solutions as compared to reported methods. 

3. The applied techniques are investigated in detail and order of convergence is 

establishes in each method by using the concept of truncation error and Hall theorem. 

Procedure to calculate truncation error and to estimate error for the selected mesh 

strategy is well explained in this work.  

4. The conduct of numerical solution is examined and shown through graphs with 

variation of perturbation parameter and delay parameter. 

5. The solution of SPDDE exhibits layer and oscillation behavior depending on the sign 

of the coefficient of derivative term in the SPDDE. 

6.5 Suggestions for Future Work 

For future work, following are the suggestions for consideration: 

1. Other numerical methods 

Collocation method considering spline as basis function has been used; further 

work can be extended by using some other numerical method such as Galerkin 

5 −𝜀𝑦′′(𝑥) + 𝑎(𝑥)𝑦(𝑥) + 𝑏(𝑥)𝑦(𝑥 − 1) = 𝑓(𝑥) ,     

 𝑥 ∈ Ω−⋃Ω+, where Ω− = (0,1),  Ω+ = (1,2)   

subject to the conditions: 

𝑦(𝑥)=∅(𝑥) , 𝑥 ∈ [−1,0], 𝑦(2) =𝛾 

Uniform mesh Exponential B-

spline collocation 

scheme 

The discussed method of 

exponential B-spline is 

capable of obtaining results 

of required accuracy as 

compared to existing 

methods. 

Two 

6 
{
−𝜀𝑦′′(𝑥) + 𝑎(𝑥)𝑦′(𝑥) + 𝑏(𝑥)𝑦(𝑥 − 1) = 𝑓(𝑥), 𝑥𝜖Ω∗           

𝑦(𝑥) = 𝜙(𝑥), 𝑥𝜖[−1,0],   𝑦(2) = 𝑙.                                              
 

where 𝑎(𝑥) = {
𝑎1(𝑥), 𝑥𝜖[0,1]

𝑎2(𝑥), 𝑥𝜖(1,2]
 

and f(𝑥) = {
𝑓1(𝑥), 𝑥𝜖[0,1]

𝑓2(𝑥), 𝑥𝜖(1,2]
 

Ω∗ = Ω+ ∪ Ω−,  Ω− = (0,1),  Ω+ = (1,2)   

 

Uniform and 

Shiskhin 

mesh 

Both mentioned 

basis functions can 

provide the solutions 

with good accuracy 

Comparison of 

Trigonometric and 

exponential B-spline 

collocation schemes  

Two 



133 
 

method or by any other numerical method to find more refine solutions of singularly 

perturbed delay differential equations. 

2. Numerical treatment of singularly perturbed equation of higher order 

In this work, only SPDDE of second and third order has been considered, all the 

discussed methods can be extended to SPDDE of higher order or for the system of 

simultaneous SPDE. 

3. Higher order B-spline 

Cubic and quantic B-spline basis function for generation of polynomials has been 

used here, this work can be extended by considering septic or higher order B-spline. 

4. Focus on the obtained solution with selected mesh 

So far only maximum absolute error is calculated to validate any numerical scheme 

but in some works values of few parameters are missing. In present work, the values 

of the approximated solution have been shown, which can be investigated in detail 

depending on the chosen mesh for partition of the domain. 

5. Other errors 

In lieu of concentrating on the maximum absolute error, the conduct of the solution 

obtained can be analyzed in all respected depending on the values of the retarded 

and perturbation parameter with the selected mesh strategy. 

6. Other mesh strategies 

Uniform mesh as well as piecewise uniform mesh has been chosen for this work: 

Shishkin mesh for the partition of the domain, some other mesh strategies can be 

chosen to study the numerical solution of SPDE. 

7. Improvement in exponential B-spline collocation 

In present work, exponential B-spline collocation method has been used to solve a 

second order singularly perturbed delay differential equation and it was observed 

that the solution improves as the number of partition points increase but after a 

certain step, the solution ceases to improve, rather maximum absolute error 

increases. So, further improvement in the solution can be obtained by amendments 
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in the method or by doing comprehensive study this odd behavior of the solution 

can be measured. 

8. Practical aspects of the effect of change parameters in the concerned 

application 

The values of the retarded and perturbation parameter with the selected mesh 

strategy can be well studied with the concerned mathematical model instead of 

doing general discussion.     
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Research publications/Conferences/Workshops attended 

 
Research publications: 

1. Geeta Arora and Mandeep Kaur, “Numerical simulation of singularly perturbed 

differential equation with small shift”. In AIP Conference Proceedings (Vol. 1860, 

No. 1, p. 020047). AIP Publishing. (2017, July) 

2. Mandeep Kaur and Geeta Arora, “Solution of Second Order Singular Perturbed 

Delay Differential Equation Using Trigonometric B-Spline”.  International Journal 

of Mathematical, Engineering and Management Sciences Vol. 4, No. 2, 349–360, 

2019 ISSN: 2455-7749. 

3. Mandeep Kaur and Geeta Arora, “A review on singular perturbed delay differential 

equations”. ISSN: O: 2319-6475, ISSN, 6(3): 2341-2346, 2017. 

4. Mandeep Kaur and Geeta Arora, “Quintic B-spline technique for numerical 

treatment of third order singular perturbed delay differential equation”, International 

Journal of Mathematical, Engineering and Management Sciences Vol. 4, No. 6, 

1471-1482, 2019. 

5. Mandeep Kaur and Geeta Arora, “Numerical simulation of singular perturbed 

differential equation with large delay using exponential B-spline collocation 

method”, communicated. 

6. Geeta Arora and Mandeep Kaur Vaid, “Comparison of exponential and 

trigonometric B-spline collocation technique for simulation of singular perturbed 

delay differential equation”, communicated. 

7. Geeta Arora and Mandeep Kaur Vaid ,“A Numerical Approach for Simulation of 

Generalized Perturbed Delay Differential Equation Using Shishkin Mesh”, 

communicated. 
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Conferences: 

 
1. Paper presented on “Numerical simulation of singularly perturbed differential 

equation with small shift”, at RAFAS at LPU. (25-26 November 2016). 

2. Paper presented on “A numerical approach for simulation of generalized 

perturbed delay differential equation using Shishkin mesh”, at Recent advances 

in theoretical and computational partial differential equations with applications, 

Punjab University Chandigarh. (05-09 December, 2016). 

 

Workshop: 
 

Participated in workshop “Computational techniques for differential equations with 

MATLAB (CTDE-2015)”, 02-06 July 2015 at Indian institute of technology 

Roorkee, India. 

 

 

 


